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Preface

This book represents the second part of a planned three-volume monograph on Par-
ticle Penetration and Radiation Effects. The aim of the series is to introduce stu-
dents, researchers, engineers and radiologists working with accelerators and their
applications in research and technology to theoretical tools and to some important
predictions and results.

Volume 1, which appeared in 20061 has the additional goal to introduce students
of physics and related fields to general aspects of particle penetration. About half
the chapters of Volume 1, based on lectures delivered at the University of Copen-
hagen and later at the University of Southern Denmark, served that purpose. Also
the present volume contains introductory material of general interest, but here this
division refers to individual chapters, and no attempt has been made to define a
precise border line.

Originally, in the late 1970s, the book was intended to be an introduction to the
theory of particle stopping. Progress on the project was slow at that time because of
the author’s involvement in numerous parts of an active field of research. This, in
turn, implied the wish to cover a broader research area, hence the expansion into a
three-volume series.

Throughout this process it has been my ambition that a reader working within
accelerator-oriented physics, trying to find an answer to a specific question, should
get help here, either in the form of a reader-friendly formula or computer program,
perhaps an outline of a theory, reference to pertinent literature, and if nothing else,
a note that information is missing to the author’s knowledge. It is up to the reader
to judge the degree to which this ambition has been fulfilled. I am of course aware
of gaps. Most notably, readers in high-energy physics and high-energy accelera-
tors may ask numerous questions which this book does not answer. Conversely, my
ambition had the consequence that numerous research programs were initiated and
completed on the way, with the result that finishing the first volume took several
decades and the present volume took about seven years.

1 P. Sigmund, Particle Penetration and Radiation Effects. General Aspects and Stopping of Swift
Point Charges, Springer 2006; paperback edition, Springer 2007.
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viii Preface

Volume 1 introduced general concepts of the theory of particle penetration, and
specific applications dealt with swift point charges, i.e., protons, antiprotons and
alpha particles. This restriction has been given up in the present volume, which
addresses the penetration of heavier ions as well as molecules and clusters. Also the
restriction to swift ions has been relaxed. Moreover, the reader will find theoretical
descriptions of phenomena which were discussed only briefly in Volume 1, such
as multiple scattering and nuclear stopping. Special attention has been given to the
charge states of penetrating ions, a topic of central importance in electronic stopping
of partially-stripped ions.

I do not expect the average reader to read this book from one end to the other. The
chosen structure should allow you to pick a chapter and read it from the beginning to
the end. However, in view of numerous references to Volume 1, my recommendation
is to have easy access to that book.

Theoretical tools available in the field of particle penetration and radiation effects
have been developed over about a century. Like in all fields of research, and almost
all aspects of modern life, computers have come to play an ever increasing role.
It is useful here to distinguish between computation and simulation. Theory and
simulation usually start at some basic equations, but the difference lies in the use of
mathematics, which is replaced by numerics in simulation. My personal experience
with simulation is that of an interested spectator. Although I have written a couple of
small simulation codes, I doubt whether I would be able to write a code of the type
that occupies a large machine for hours, days or months, and convince myself that
it produces acceptable results. Therefore, simulation codes, when mentioned at all,
are characterized by the physics that enters, rather than computational techniques.

As indicated above, this book is a direct continuation of Volume 1. Only in rare
cases did I repeat calculations and/or arguments from there. As in Volume 1, I have
marked some parts with a star, indicating that those parts can be left out in a first
reading. There are few of the kind, since I expect mostly readers with a clear defini-
tion of their interests and needs.

There are problems in the end of each chapter, but they are fewer in number than
in Volume 1, and mostly of the type where a calculation sketched in the main text
should be carried through explicitly.

A notorious problem in a field of research with roots a century ago is the list of
literature references. The BibTeX database which I collected for use in this series
of monographs has now come up to over 7000 items. Even though not all of those
are relevant to the present volume, a tough selection had to be made to generate a
meaningful bibliography. In general, the number of references has been kept low
in topics that are treated in extenso, while those treated in a cursory manner are
represented more generously in the bibliography. Other selection criteria are clarity
and simplicity of the arguments. Although there are numerous references to papers
with my name in the by-line, I like to emphasize that also those titles represent a
selection. I mention this to make sure that if you find that a relevant paper of mine
is not referred to, you should not automatically deduce that it is obsolete.

Unquestionably, numerous worthwhile contributions had to be left out. However,
I tried to catch papers that initiated major developments. With this, modern biblio-
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graphic tools should enable the interested reader to complete the list of references
for most of the topics discussed here.

The table of contents of this volume shows all those items that I mentioned in
the preface of Volume 1. However, when arriving at the chapter on Channeling, it
occurred to me that my colleague Jens Ulrik Andersen at Aarhus University had
contributed a chapter to my collection on ‘Ion Beam Science, Solved and Unsolved
Problems’2, which deserves to be more widely known and, coming from first-hand
experience, is much more well-disposed and formulated than I would be able to do
it. Even though that chapter has been written with a slightly different target group
in mind, I am glad to include it in the present book with the kind permission of the
author and the publisher.

Odense, January 2014 Peter Sigmund

2 J. U. Andersen, Mat. Fys. Medd. Dan. Vid. Selsk. 52, 655-698 (2006)
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General Notations

� Sections marked by a star (?) can be jumped over in a first reading.
� Problems marked by a star (?) are considerably more difficult and/or time-

consuming than average.
� Notations < � � � > or � � � are utilized synonymously to indicate averages, depen-

dent on readability.
� The symbol .T; dT / indicates the interval limited by T and T C dT . Similarly,

(�; d2�) indicates a solid angle d2� around the unit vector �, and (r; d3r/
indicates a volume element d3r D dx dy dz located at a vector distance r from
the origin.

A Vector potential
A1; A2 Mass number of projectile and target atom
An Coefficient in pathlength
An
`

Coefficient in vector range
a Screening radius
a0 Bohr radius, 0.529177 Å
aad Adiabatic radius, v=!
aTF Thomas-Fermi radius, 0:8853a0Z�1=3

B Bethe parameter, 2mv2=�!
B� .a; b/ Incomplete beta function
b Collision diameter 2e1e2=m0v2

C;C12; C22 Coefficient in power cross section
c Speed of light, 2.99792�108 m/s
cj ; c`; cJ Expansion coefficient

d3k Volume element in Fourier space
dR Pathlength element
d3r Volume element
d�; d�12; d�22 Differential cross section
d�� Internuclear distance in molecule or solid

xxiii



xxiv General Notations

E Electric field
E Energy
E? Transverse energy
e Unit vector on the impact plane
E Total energy
e Elementary charge, 1:602176 � 10�19 Coulomb
eV Electron volt, 1.602176�10�19 J

F ; F Force
FR.v; r/ Range profile
F.x/ D jjFIJ .x/jj Transition matrix
F.�E; x/;F.�E; x/; FIJ .�E; x/ Energy-loss spectrum
F.E;R/ Pathlength distribution
Fe.v; r/ Spatial distribution of deposited electronic energy
Fn.v; r/ Spatial distribution of deposited nuclear energy
FJ Charge fraction
F.˛; t/; F .˛; x/ Angular multiple-scattering profile
F.k; x/ Fourier transform of multiple-scattering profile
F.˛;�; x/ Angular-lateral multiple-scattering distribution
fn; fn`; f .!/d! Oscillator strength

G.�; x/ Lateral multiple-scattering distribution
g.�/ Screening function

H;H Hamiltonian
Hn.�/ Hermite polynomial
Hen.�/ Modified Hermite polynomial
h Planck’s constant, 6.62607�10�34 Js
� h=2� , 6.58212�10�16 eV s

I Mean logarithmic excitation energy (I -value)
i Imaginary unit

J0 Bessel function

K0; K1 Modified Bessel functions
K.�/ d�.�/=d2�
k Electronic-stopping constant, (9.39)
keV 103 eV
k; k Wave vector, wave number
kF Fermi wave number

L Stopping number
L Cube length in periodicity volume
ln Natural logarithm
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` Angular-momentum quantum number

M1 Mass of projectile ion
M2 Mass of target atom
M .n/.E/ Moment over pathlength distribution
M n
`

Moment in Legendre polynomial expansion
MeV 106 eV
m Electron mass, 9.10938�10�31 kg
m Exponent in power cross section

N Number of atoms per volume
N1 Number of electrons bound to an atom D Z1 � q1
NA Avogadro’s number, 6.02214�1023/mol
Ni Mean number of ion pairs in cascade
n Number of electrons per volume,NZ2
n Principal quantum number
nm Nanometer, 10�9 m

P Probability
P ; P Momentum
P` Legendre polynomial
Pn Poisson distribution
p; p Impact parameter
P? Transverse momentum

Q D jjQIJ jj �IJ � ıIJ
P
L �IL

Q Inelastic energy loss
q1 Projectile charge number
q1e Projectile charge
hq1i Mean ionic charge number
q; q Wave vector, wave number

R.t/ Projectile trajectory
R Internuclear distance
R.E/ Range, pathlength
R.E;E1/ Pathlength for slowing-down from E to E1
Rp Projected range
R? Lateral range
r ; r Vectorial, scalar distance from origin
r ; r� Position operator for electron(s)
rs Wigner-Seitz radius, .3=4�na30/

1=3

r; r0 Internuclear distance in dicluster
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S Stopping cross section
Se Electronic stopping cross section
Sn Nuclear stopping cross section
S .1/ Transport stopping cross section
S Eikonal
SJ ; SJK State-separated stopping cross section
s Variable in Laplace space
s; sn; se Stopping cross section in Lindhard-Scharff units

T Energy transfer
Te Electronic energy loss
Tn Nuclear energy loss
Tmax Maximum energy transfer in collision
t Time

U.r/ Axial potential
U Ionization or binding energy
u Atomic mass unit, 1.660538�10�27 kg
u.r/ Time-independent wave function
u; u Relative velocity in c.m.s. frame
u !=kvF

V ; V; V1; V2 Potential (=potential energy)
V3 Three-body potential
v0 Bohr speed, e2=� D c=137:0360

v; vi ; v; vi Velocity, speed
ve Orbital electron velocity
vF Fermi speed
vTF Thomas-Fermi speed

W Straggling parameter
R
T 2 d�.T /

W Mean energy to create an ion pair
W D jjWIJ jj Straggling parameter, state-separated
w Velocity in centre-of-mass frame
wn Dimensionless nuclear-straggling parameter
w Wave function

x x-coordinate
x Penetration depth

Y`� Spherical harmonics
y y-coordinate
Z Atomic number
Z1 Atomic number of projectile nucleus
Z1 Effective nuclear-charge number
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Z2 Atomic number of target nucleus
z z-coordinate
z k=2kF

˛; ˛ Multiple-scattering angle
˛ Fine-structure constant, 1/137.0360
Q̨ Multiple-scattering angle in Thomas-Fermi units
Ǫ Multiple-scattering angle in Born units

ˇ0 0:2118=Z
2=3
1 in Thomas-Fermi-Dirac theory

ˇ; ˇ �=x, �=x, chord angle in multiple scattering
ˇ v=c

� Scale factor between angular and lateral
multiple-scattering distribution

	2 Effective-charge ratio
	 4M1M2=.M1 CM2/

2

	 Lorentz factor 1=
p
1 � v2=c2

�E Energy loss
ı` Phase shift
ır ; ıR Infinitesimal path element

".k; !/ Longitudinal dielectric function

 Ion energy in Lindhard-Scharff scaling, (6.38)

 Transverse energy

j Excitation energy

� 
 sin2.‚=2/
� 2mvF a=�

�.
/ Energy deposited in electronic motion in
Lindhard-Scharff scaling

� R=a
‚ Centre-of-mass scattering angle
 Polar angle

� 2Z1v0=v
� Wave number
�k 2.871e2a0 in Thomas-Fermi theory
�a 0:739e2 in Thomas-Fermi-Dirac theory

� de Broglie wavelength, h=mv
� Mean free path
�̄ �=2� , �=mv
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� Sommerfeld parameterZ1e2=�v
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� Cross section
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ˆ Electric potential
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Charge States of Swift Ions



Chapter 1

Charge Equilibrium

Abstract The mean equililibrium charge of a penetrating ion can be estimated on the
basis of Bohr’s velocity criterion or Lamb’s energy criterion. Qualitative and quanti-
tative results are derived on the basis of the Thomas-Fermi model of the atom, which
is discussed explicitly. This includes a brief introduction to the Thomas-Fermi-Dirac
model. Special attention is paid to trial function approaches by Lenz and Jensen as
well as Brandt and Kitagawa. The chapter also offers a preliminary discussion of
the role of the stopping medium, gas-solid differences, and a survey of data compi-
lations.

1.1 Introductory Comments

Volume 1 was dedicated to the stopping and scattering of point charges. This pro-
vided an opportunity to illustrate fundamental theoretical concepts and procedures.
In practice the theory applies to light particles such as electrons and positrons,
protons and antiprotons, and heavier ions above a limiting energy which increases
rapidly with increasing atomic number.

The restriction to penetrating point charges has been dropped in the present vol-
ume. Already about a century ago, Flamm and Schumann (1916) suggested that
an alpha particle may capture an electron from the penetrated medium. Henderson
(1923) and Rutherford (1924) demonstrated experimentally the presence of singly-
charged helium ions in an emerging beam. It was clear that electron capture must be
possible for all ions including protons. Conversely, neutral atoms may lose electrons
by collisions with the atoms of the penetrated medium.

As a result of a sequence of electron capture and loss events one may expect a
penetrating ion to approach a state of dynamical equilibrium around a charge state
for which the number of capture events equals the number of loss events per unit
time or pathlength in the average. Whether such a state is actually achieved does not
only depend on the thickness of the penetrated layer but also on the rate of energy
loss, since cross sections for electron capture and loss depend on beam energy.

3P. Sigmund, Particle Penetration and Radiation Effects Volume 2,
Springer Series in Solid-State Sciences 179, DOI: 10.1007/978-3-319-05564-0_1,
� Springer International Publishing Switzerland 2014
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Fig. 1.1 Mean charges of fission fragments penetrating through gaseous targets and emerging from
solid targets vs. atomic numberZ2 of the material, according to Lassen (1951b). Separate data are
shown for light and heavy fragments

Mean equilibrium charges of alpha particles are close to 2 at energies in the MeV
range. Therefore, penetration studies involving composite particles only became ur-
gent with the discovery of nuclear fission (Hahn and Strassmann, 1939, Meitner
and Frisch, 1939), where medium-mass heavy ions at MeV energies are involved.
Measurements of track lengths of such fission fragments in cloud chambers were
performed almost instantaneously by Brostrøm et al. (1940), and a number of now
classical papers appeared which addressed the charge and energy loss of those parti-
cles (Bohr, 1940, 1941, Lamb, 1940, Knipp and Teller, 1941, Brunings et al., 1941).
This early development was summarized by Bohr (1948).

Systematic experimental studies of the charges of fission fragments were initiated
by Lassen (1951b,a), who reported a striking difference between solid and gaseous
stopping media: Figure 1.1 shows that these ions had mean charges ranging from �
11 to 24, which were higher for ions emerging from a solid than for ions penetrating
through a gas. This ‘density effect’ became the subject of much lively discussion
for almost half a century, starting with early theoretical studies by Bell (1953), Bohr
and Lindhard (1954), Neufeld (1954), Gluckstern (1955) and others.

A particularly distressing feature of this density effect, indicated already in
Lassen’s early studies but clearly confirmed in later measurements on tandem accel-
erators by Pierce and Blann (1968), was the near absence of a corresponding density
effect in the energy loss. This seeming inconsistency intensified the discussion.

In this monograph the complex of charge-state distributions and charge-dependent
stopping has been divided up into three problem areas which will be treated in five



1.2 Qualitative Orientation 5

Fig. 1.2 Equilibrium charge fractions for bromine ions in carbon. Numbers above the curves rep-
resent the charge number. See text. From Shima et al. (1992)

successive chapters. The present chapter addresses equilibrium charge states with-
out explicit reference to charge-exchange cross sections. Chapter 2 deals with cross
sections for electron capture and loss, and Chap. 3 with the associated statistics and
energetics. Chapters 4 and 5 deal with the mean energy loss and straggling of swift
heavy ions, respectively.

1.2 Qualitative Orientation

Increasing the charge of an ion requires energy. Therefore, as a rough guideline
we may assume that the cross section for electron loss decreases with increasing
ion charge. Conversely, with decreasing ion charge the capture cross section will
decrease and will rapidly approach zero for negative ion charges. Therefore, the
probability of a projectile to be in a certain charge state, the charge fraction, will
have a maximum near some equilibrium charge state and decrease monotonically in
both directions.

If the incident charge is higher than the equilibrium charge, capture typically
dominates over loss, and vice versa in the opposite case. Remind, however, that
charge exchange is a stochastic process: For an individual trajectory, charge frac-
tions can take any value that is compatible with conservation laws.

Figure 1.2 illustrates the situation on the example of Br in C. That figure is based
on interpolation and scaling of experimental data by Shima et al. (1992). Numbers
above the graphs denote the charge state q. As an example, take q D 20, which is
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the most abundant one at E ' 1MeV/u. Neighbouring charge states 19 and 21 are
slightly less abundant, while charge fractions for states 15C and 25C are about a
factor of 30 lower at that energy.

We may conclude that the distribution in charge-states in equilibrium at a given
beam energy may be rather narrow, so that it makes sense to neglect the difference
between the average and the peak value and, as a first estimate, to characterize the
equilibrium charge state by one number, which in principle depends on the atomic
numbers Z1 and Z2 of the projectile and the target, respectively, and the beam
energy as well as on the physical state of the medium.

1.3 Stripping Criteria

Strictly speaking, the mean equilibrium charge is defined as an average over charge
distributions such as those shown in Fig. 1.2. This need not be an integer number.
The definition mentioned above requires the average number of capture events per
unit time or pathlength to equal the number of loss events. This is already an approx-
imation, since capture and loss cross sections for atoms with a non-integer number
of electrons do not make sense. Moreover, databases over cross sections are neces-
sarily incomplete, in particular for condensed stopping media. Therefore, simpler
models that do not require quantitative information about cross sections are highly
desirable. Let us have a look at options proposed in the literature.

1.3.1 Velocity Criterion

Consider a projectile moving with a velocity v and carrying a number of electrons
with orbital speeds ve. Viewed in a moving reference frame, the projectile is exposed
to a beam of target electrons and nuclei. Bohr (1940) divided the projectile electrons
into two groups according to whether their orbital speed is greater or smaller than
v. Those with orbital speeds significantly smaller than the projectile speed v are rel-
atively weakly bound and will, consequently, have a relatively high ionization cross
section and hence be stripped efficiently. Conversely, those with orbital velocities
significantly greater than v will tend to respond adiabatically to the disturbance and
have only a small chance to be stripped off. The physical content of the adiabaticity
criterion has been discussed in Problem 2.19, Vol. 1.

Moreover, you will see in Chap. 2 that electron capture is inefficient when the
projectile speed exceeds the orbital speed.

With this we have arrived at the Bohr stripping criterion: In the equilibrium
charge state, electrons with orbital velocities ve < v are stripped off or, in other
words: If the projectile carries more electrons initially than predicted by the Bohr
stripping criterion, ionization will dominate until the outermost electrons have the
orbital speed v.
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Fig. 1.3 Principal quantum number and shell filling. See text

If the projectile carries fewer electrons than predicted by the Bohr stripping cri-
terion, the outermost electrons will have large orbital velocities. This implies that
there are empty states into which electrons can be captured. Hence, capture cross
sections will be sizable, while ionization is inefficient.

Equilibrium charge states resulting from the Bohr stripping criterion depend on
the adopted atom model. Bohr (1948) argued as follows: Consider an electron in the
outermost shell of an ion with the charge q1e. Within a hydrogenic model, its orbital
velocity may be written as

ve ' q1

n
v0; (1.1)

where n is the principal quantum number of that shell and v0 D c=137 the Bohr
speed.

Figure 1.3 illustrates the filling of shells according to the periodic table. The step-
like curve shows the principal quantum number of the outermost occupied shell vs.
atomic numberZ1. Also shown is the curve

n D Z
1=3
1 ; (1.2)

which approximately connects the upper ends of the steps. With this approximation
the Bohr stripping criterion implies

v ' q1

Z
1=3
1

v0 (1.3)

or (Bohr, 1948)

q1 ' Z
1=3
1

v

v0
; (1.4)
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Fig. 1.4 Equilibrium charge fraction vs. projectile speed according to (1.4) and (1.6)

where q1 denotes the equilibrium charge. However, q1 cannot increase indefinitely.
A plausible way to extend the range of validity of this estimate is to write (1.4) in
the form

q1

Z1
' v

Z
2=3
1 v0

: (1.5)

Since q1=Z1 cannot exceed unity, we may try a simple extrapolation of (1.4) to
arrive at

q1 ' Z1

�
1 � e�v=Z2=3

1
v0

�
; (1.6)

as proposed by Pierce and Blann (1968) and shown in Fig. 1.4. You may already
have noticed the Thomas-Fermi speed

vTF D Z
2=3
1 v0; (1.7)

which was mentioned in Sect. 7.2.1, Vol. 1.
While the derivation of these expressions is clearly qualitative, (1.4) and (1.6)

compare favourably in general with measured equilibrium charges for a wide variety
of projectile-target combinations. Numerous modifications based on empirical data
have been made (Betz, 1972), but the Bohr stripping criterion as formulated above
is still a useful tool in the field of heavy-ion penetration.

Figure 1.5 shows a more quantitative evaluation of the Bohr criterion. Here, the
quantity hv2e i has been evaluated for individual shells via tabulated Hartree-Fock
wave functions from Clementi and Roetti (1974). For Fluorine and Chlorine you
may see 3 and 5 steps, respectively, reflecting subshells of the neutral atom. In
bromine and iodine, s and p electrons have been combined for each shell.
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Fig. 1.5 Equilibrium charge fraction vs. projectile speed for halogen ions evaluated from the re-
quirement that hv2

e i > v2. From Schinner and Sigmund (2014)

1.3.2 Energy Criterion

A different criterion was first introduced by Lamb (1940) who, like Bohr, assumed
that loosely-bound electrons are stripped off rapidly. This process is assumed to con-
tinue until the most loosely bound electron has a binding energy exceedingmv2=2,
the kinetic energy of a free target electron in a reference frame moving with the ion.
For a hydrogenic atom, the binding energy of the outermost electron is D mv2e =2.
In that case Lamb’s stripping criterion is equivalent with Bohr’s.

This criterion may be formulated more quantitatively. Consider a given ion with
N1 electrons. Let its ground-state energy be E.N1/. If the ion moves with a speed
v, its total energy will be given as

E.N1/ D E.N1/C 1

2
.M1 CN1m/v

2; (1.8)

where M1v
2=2, the kinetic energy of the nucleus, is taken as a constant in the

present context.
Now let N1 vary: If N1 is small, the ion will be highly charged and hence have

a high energy E.N1/, while N1mv2=2 is small. If N1 is large, the ion is nearly
neutral, so E.N1/ is low but N1mv2=2 is large. Hence, E.N1/ must be expected to
have a minimum at Neq, so that

E.Neq ˙ 1/ > E.Neq/: (1.9)

Insertion of (1.8) into (1.9) leads to
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Fig. 1.6 Computed binding energies for all charge states of sulphur and xenon ions according to
Carlson et al. (1970). From Schinner and Sigmund (2014)

E.Neq/� E.Neq C 1/ <
1

2
mv2 < E.Neq � 1/� E.Neq/: (1.10)

This means that v vs.Neq, and hence q1 vs. v, has a step-like structure in this model.
The energy criterion assumes that if the ion moves in a medium, collisions with

the nuclei and electrons of the target allow the charge of the ion to equilibrate, i.e., to
let the ion attain the lowest energy state by losing or capturing electrons. According
to (1.8) this state is independent of the properties of the medium, although the time it
takes to approach equilibrium must depend on the type of interactions taking place.

For ions with many electrons we may approximate (1.9) by

dE.N1/
dN1

D dE.N1/
dN1

C 1

2
mv2 D 0 (1.11)

forN1 D Neq. As it stands, both (1.9) and (1.11) involve the assumption thatE.Neq/

represents the ground state energy of the ion, whatever it is isolated or embedded
into a medium. This may be a limitation on the validity of the model, as will be
discussed in Sect. 1.5.

Setting dE.N1/=dN1 ' U.N1/, where U.N1/ is an effective ionization energy
of an ion with N1 electrons, the energy criterion (1.11) reduces to

U.N1/ ' mv2=2: (1.12)

This is the criterion proposed by Lamb (1940).
Figure 1.6 shows binding energies for all charge states of sulphur and bromine

computed by Carlson et al. (1970).
Figure 1.7 shows equilibrium charge states of halogen ions calculated from data

like those shown in Fig. 1.7 and (1.12). Steps of the type shown in Fig. 1.3 are still
present, although less pronounced.
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Fig. 1.7 Mean equilibrium charge fractions for halogen ions according to (1.12). The simple
formula (1.6) has been included for reference. From Schinner and Sigmund (2014)

1.4 Thomas-Fermi Theory

The energy criterion allows a quantitative evaluation on the basis of the Thomas-
Fermi model of the atom, which was briefly introduced in Sects. 7.2.1–7.2.3, Vol. 1,
mainly in order to establish scaling relations for stopping parameters. Use will be
made more frequently of the model in the present volume dealing with heavier ions,
since the accuracy of Thomas-Fermi theory increases with atomic number. Some
essential features of the theory will be outlined here, following by and large the
presentation of Gombas (1949, 1956).

1.4.1 Thomas-Fermi Equation for an Atomic Ion

The Thomas-Fermi model treats an atom, molecule or even an extended medium as
an ensemble of Fermi gases of infinitesimal size of varying density, often called a
‘local density approximation’. The energy of an ion with atomic numberZ1 andN1
electrons E.N1/ can be expressed as

E.N1/ D Ekin.N1/C ECoul.N1/C Eexcor.N1/ (1.13)

where

Ekin.N1/ D
Z

d3r �.r/
3

5

�
2k2F
2m

(1.14)

is the kinetic energy in accordance with (7.3), Vol. 1 and kF the Fermi wave number.
Making use of the relation � D k3F =3�

2, see (5.146), Vol. 1, we may write this in
the form
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Ekin.N1/ D �k

Z
d3r �.r/5=3; (1.15)

where

�k D 3

5

�
2

2m
.3�2/2=3 D 2:871e2a0: (1.16)

The electrostatic energy reads

ECoul.N1/ D �Z1e2
Z

d3r
�.r/

r
C e2

2

Z
d3r

Z
d3r 0 �.r/�.r

0/
jr � r 0j : (1.17)

One distinguishes between the straight Thomas-Fermi model (Thomas, 1926,
Fermi, 1927, 1928) where the exchange-correlation term Eexcor.N1/ in (1.13) is
ignored, and the Thomas-Fermi-Dirac model (Dirac, 1930) where Eexcor.N1/ is de-
termined on the basis of the exchange energy of the Fermi gas.

Explicit calculations will be shown mainly for the straight Thomas-Fermi model
ignoring both exchange and correlation. Additional features introduced by exchange
will be mentioned briefly. Correlation terms, stemming from higher-order perturba-
tion theory in terms of the Coulomb interaction between electrons affect quantitative
details (Gombas, 1943) but will not be considered here. For an estimate of the cor-
relation term being based on many-body electron theory you might consult Hedin
and Lundqvist (1969).

In the straight Thomas-Fermi model we have

E.N1/ D �k

Z
d3r �.r/5=3 �Z1e

2

Z
d3r

�.r/

r

C e2

2

Z
d3r

Z
d3r 0 �.r/�.r

0/
jr � r 0j C 1

2
.M1 CN1m/v

2: (1.18)

We wish to find an electron density �.r/which minimizes E.N1/. Once that function
has been determined we may find the number of electrons by integration,

N1 D
Z

d3r �.r/: (1.19)

This differs from the standard presentations of Thomas-Fermi theory (Gombas,
1949, 1956), where the ion charge is given, so that (1.19) represents a boundary
condition which enters into the scheme via a Lagrange parameter.

For an infinitesimal variation ı�.r/ we find the change in energy ıE.N1/,

ıE.N1/ D
Z

d3r ı�.r/�
5

3
�k�.r/

2=3 � Z1e
2

r
C e2

Z
d3r 0 �.r 0/

jr � r 0j C 1

2
mv2

�
; (1.20)

and hence, from ıE.N1/ D 0,
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5

3
�k�.r/

2=3 � Z1e
2

r
C e2

Z
d3r 0 �.r 0/

jr � r 0j C 1

2
mv2 D 0: (1.21)

Now, the quantity

�.r/ D Z1e

r
� e

Z
d3r 0 �.r 0/

jr � r 0j (1.22)

represents the potential seen by a test charge. With this, (1.21) may be written in the
form

�.r/ D
�
3

5�k

�3=2 �
e�.r/ � 1

2
mv2

�3=2
: (1.23)

Expressing �.r/ by Poisson’s equation r2�.r/ D 4�e�.r/ you finally arrive at

r2
�
�.r/� �0

	 D 4�e�0
�
�.r/� �0

	3=2
; (1.24)

where

�0 D mv2

2e
(1.25)

and

�0 D
�
3e

5�k

�3=2
D 0:09553

�me
�

�3=2
: (1.26)

Equation (1.24) is the well-known Thomas-Fermi equation introduced in Sect. 7.2.3,
Vol. 1. This includes the quantity �0 which, in the standard case of N1 being pre-
determined, represents a Lagrange parameter. In the present context, �0 is predeter-
mined via the projectile speed according to (1.25).

1.4.2 Solution

Following Gombas (1949) again you may write the potential in the form

�.r/ � �0 D Z1e

r
g.�/; (1.27)

where � D r=a. Here a is a screening radius which may be chosen such as to incor-
porate all dependence on atomic number. If so, g.�/ will be a universal screening
function.

Noting that

r2 D 1

r

d2

dr2
r (1.28)

for a spherically symmetric function, you may rewrite (1.24) in the form (cf. Prob-
lem 1.1)

d2g.�/
d�2

D C1

�1=2
g.�/3=2 (1.29)
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Fig. 1.8 Solutions of the Thomas-Fermi equation (1.31) for g.0/ D 1. Numbers at the curves
indicate the values of dg.�/=d�j�D0. From Gombas (1949)

with

C1 D
"
2

�
4

3�

�2=3
aZ

1=3
1

a0

#3=2
; (1.30)

where a0 D �
2=me2 is the Bohr radius and use has been made of (1.16) and (1.26).

We may define the screening radius a such that C1 D 1. With this the Thomas-
Fermi equation reduces to

d2g.�/

d�2
D g.�/3=2

�1=2
(1.31)

and
a D aTF D 0:8853 a0Z

�1=3
1 ; (1.32)

which defines the numerical constant quoted in (7.15), Vol. 1.
Equation (1.31) can be solved if two constants are given. Since �.r/ must ap-

proach the Coulomb potential close to the nucleus we have

g.0/ D 1: (1.33)

Figure 1.8 shows solutions for various values of g0.0/ D dg.�/=d�j�D0. You may
notice that the shape of the solutions is quite sensitive to the value of g0.0/. As
�g0.0/ increases, the integral under the curves decreases. Remembering (1.19), you
may expect this quantity to be uniquely related to the number of electrons surround-
ing the nucleus.

Inspection of (1.23) indicates that there is a point r0 for which
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e�.r0/ D 1

2
mv2 (1.34)

and hence �.r0/ D 0, so that �.r/ D 0 for r > r0, assuming that �.r/ falls off
monotonically. Outside r0 we must have a Coulomb potential with the ion charge
q1,

�.r/ D .Z1 �N1/e

r
for r � r0 (1.35)

and, at r D r0,

�.r0/ D .Z1 �N1/e
r0

D �0; (1.36)

where the last identity follows from (1.27). Thus, the charge number q1 is given by

q1 D Z1 �N1 D r0�0

e
D r0mv

2

2e2
(1.37)

In Thomas-Fermi units this reads

q1

Z1
D 0:8853

2
�0
v2

v2TF

; (1.38)

where vTF D v0Z
2=3
1 is the Thomas-Fermi speed.

Equation (1.38) provides the connection between the ion charge and the beam ve-
locity, once the Thomas-Fermi equation has been solved for a given value of g0.0/.
The connection between g0.�0/ and q1 or N1 is found from

N1 D
Z
0<r�r0

d3r �.r/ D 1

4�e

Z
0<r�r0

d3r r2�.r/: (1.39)

After inserting (1.27) and r D a� this reads

N1 D Z1

Z �0

0C
d� �g00.�/ D Z1

�
�g0.�/ � g.�/

��0

0
; (1.40)

where �0 D r0=a. With g.0/ D 1 and g.�0/ D 0 this reduces to

�0g
0.�0/ D � q1

Z1
: (1.41)

Equations (1.36) and (1.41) also follow from the standard treatment, where N1
is predetermined and the atom at rest (Gombas, 1949, 1956). This implies that the
relation between the charge distribution �.r/ and the number of electrons N1 is in-
dependent of the projectile speed. In other words, in the present description, the
ion charge depends on the projectile speed, while the electron density reflects the
ground-state configuration of the ion for the given ion charge, whatever the projec-
tile speed.
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Fig. 1.9 Equilibrium charge fraction q1=Z1 of a free Thomas-Fermi ion vs. velocity. Dots: Eval-
uated from numerical tabulations (Tal and Levy, 1981, Lee and Wu, 1997) of Thomas-Fermi func-
tions for different charge states; also included is Bohr’s estimate (1.5), the results given by Lamb
(1940) and by Knipp and Teller (1941) as well as (1.42) and (1.6)

Accurate tabulations of the Thomas-Fermi function for varying charge numbers
are available. Dots in Fig. 1.9 were found from tables by Tal and Levy (1981) and by
Lee and Wu (1997). This result is equivalent with that of Yarlagadda et al. (1978).
It is seen to be well represented by a fitting formula

q1

Z1
D 1 � e�1:43v=Z2=3

1
v0

1C e�3:56v=Z2=3
1

v0

: (1.42)

Small deviations from the result of Lamb (1940) are presumably due to inaccuracies
of the Thomas-Fermi functions available at the time. The behaviour at low speed
(v � vTF/ is represented by Bohr’s expression, q1 D Z

1=3
1 v=v0, multiplied by

0.725. Deviations from the frequently-used exponential curve (1.6) are, however,
noticeable. The result of Knipp and Teller (1941), based on the velocity criterion,
differs significantly, in particular at low speed.

1.4.3 Trial Function Approach

Variational principles are frequently explored by means of trial functions. In Thomas-
Fermi theory, the first ansatz goes back to Lenz (1932) and Jensen (1932). Before
reporting specific results, let us first look at a rather general formulation, setting

�.r/ D N1

a3
f .�/; (1.43)
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where � D r=a and Z
4��2 d� f .�/ D 1: (1.44)

The Thomas-Fermi-Dirac energy, (1.18), reads

E D A1
N
5=3
1

a2
�A2Z1N1

a
C A3

N 2
1

a
�A4

N
4=3
1

a
CN1

mv2

2
; (1.45)

where

A1 D �k

Z 1

0

4��2 d� f .�/5=3; (1.46)

A2 D e2
Z 1

0

4�� d� f .�/; (1.47)

A3 D e2
Z 1

0

4�� d�f .�/
Z �

0

4�� 02 d� 0f .� 0/; (1.48)

A4 D �a

Z 1

0

4��2 d� f .�/4=3: (1.49)

In the Ritz procedure, the function f .�/ is not varied freely but will be given some
form which is expected to be more or less realistic. It may contain variational pa-
rameters. N1 and a are independent variational parameters.

If f .�/ does not contain additional parameters, minimization of (1.45) with re-
spect to N1 and a yields

@E

@N1
D 5A1

3

N
2=3
1

a2
�A2Z1

a
C 2A3

N1

a
� 4A4

3

N
1=3
1

a
C mv2

2
D 0 (1.50)

@E

@a
D �2A1N

5=3
1

a3
CA2

Z1N1

a2
� A3

N 2
1

a2
C A4

N
4=3
1

a2
D 0: (1.51)

Here, (1.51) provides a connection between the screening radius and the number of
electrons which is independent of v, as was found in the previous section in case
of the exact solution. Equation (1.50) specifies the connection between N1 and the
speed v.

Let us have a look at limiting cases. For a bare ion, N1 D 0, you readily verify
from (1.51) that a D 0 and, consequently, v D 1 according to (1.50). For a neutral
ion, N1 D Z1, you may expect v D 0, but this is not generally the case. In the
Thomas-Fermi case where A4 D 0 you find

a D 2A1

.A2 �A3/Z1=31
(1.52)

mv2

2
D .A2 �A3/.A2 � 7A3/Z

4=3
1

12A1
: (1.53)
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Table 1.1 Parameters entering Ritz variational procedure. See text

f.�/ mA1=�
2 A2=e

2 A3=e
2 A4=e

2 .A2 � 7A3/=e
2

Lenz-Jensen exp.��1=2/=16��3=2 0:06324 0:5 0:0625 0:05629 0.0625
Yukawa exp.��/=4�� 0:24000 1:0 0:2500 0:17756 -0.7500
Exponential exp.��/=8� 0:03614 0:5 0:2969 0:10638 -1.5781

If we assume that a neutral ion is the most stable configuration at low speed we must
have

A2 � 7A3; (1.54)

and if we want q1.v D 0/ D Z1 we must have

A2 D 7A3: (1.55)

Inspection of (1.47) and (1.48) shows that this condition only involves the function
f .�/, independent of N1 and a.

Equation (1.55) is a fairly strong requirement. In the Thomas-Fermi-Dirac model,
where A4 is taken into account you find, for N1 D Z1,

a D 2A1

.A2 � A3 CA4Z
�2=3
1 /Z

1=3
1

; (1.56)

mv2

2
D .A2 � A3 CA4Z

�2=3
1 /.A2 � 7A3 C 3A4Z

�2=3
1 /Z

4=3
1

12A1
; (1.57)

i.e.,
A2 D 7A3 � 3A4=Z2=31 : (1.58)

This may give a hint on how to incorporate an explicit Z1 dependence into a trial
function for the Thomas-Fermi-Dirac case.

1.4.4 Examples of Trial Functions

A successful variational procedure involving trial functions was developed by Lenz
(1932) and Jensen (1932). In the present notation their charge density may be ex-
pressed through (1.43) with

f .�/ D const
exp.��1=2/

�3=2

0
@ nX
jD0

cj �
j=2

1
A ; (1.59)

where c0 D 1 and cj for j D 1 : : : n are additional variational parameters. In
practice n was set to either zero or 1.



1.4 Thomas-Fermi Theory 19

0

0.2

0.4

0.6

0.8

1.0

0 1 2 3

Thomas-Fermi
Lenz-Jensen 0 order
Kr
Ar
Ne
He

Lenz-Jensen
Zero order

v/v
TF

q 1/Z
1

Fig. 1.10 Mean equilibrium charge fraction q1=Z1 in statistical theory. The dot-dashed line is
the Thomas-Fermi curve shown in Fig. 1.9. The solid line results from the zero-order Lenz-Jensen
model (cj D 0 for j � 1). The four lines in colour are based on the same model but include
the exchange term in accordance with the Thomas-Fermi-Dirac model. The dashed curve (‘LJ
corrected’) neglects exchange but was constructed by multiplyingA3 by a factor 8=7

Results for the case of n D 0 are compared in Table 1.1 together with two other
examples,

� a Yukawa function (Brandt and Kitagawa, 1982),

�.r/ D N1

4�a2r
e�r=a; (1.60)

and
� a simple exponential

�.r/ D N1

8�a3
e�r=a: (1.61)

In addition to the coefficients Aj , j D 1; : : : 4, also the expression A2 � 7A3 has
been included in Table 1.1. This quantity is positive but small for Lenz-Jensen in-
teraction, indicating thatN1 does not drop completely to zero as v approaches zero.
This reflects the fact that for an atom or ion at rest, the c1 term cannot be neglected
(Gombas, 1949).

Conversely, for the two other trial functions,A2�7A3 is negative and substantial.
Although adding the A4-term provides a correction in the desired direction, it is far
from large enough to generate a physically acceptable picture. This discourages any
attempt to determine equilibrium charges with one of these trial functions on the
basis of the Lamb criterion.

Figure 1.10 shows results for the Lenz-Jensen model. All curves are found to
lie below the Thomas-Fermi result shown in Fig. 1.9. The straight zero-order Lenz-
Jensen result shows q1 to drop below zero at v ' vTF=3. The dashed curve (‘LJ
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Fig. 1.11 First-order Lenz-Jensen approximation. Solid curve: Rms orbital velocity vs. beam speed
according to Schinner and Sigmund (2014). Dashed curve: Charge fraction. Dotted curve: Screen-
ing radius. All in Thomas-Fermi units

corrected’) was found by multiplying A3 by 8=7, thus forcing q1 to approach zero
at v D 0. This is just to indicate that the behaviour of these curves at low charge
states/beam velocities is quite sensitive to minor modifications of the input.

Also included in the graph are four curves including exchange. As noticed al-
ready, the exchange correction is quite small except for helium, but it moves the
curves away from the origin rather than towards it.

Finally, let us have a look at the first-order Lenz-Jensen approximation. For c1 ¤
0, c1 is treated as an additional variational parameter, which adds a third equation
to (1.50) and (1.51). You find some hints in Problem 1.6.

Figure 1.11, which is based on this approximation, shows a significantly more
reasonable behaviour of the charge fraction at low projectile speed, as compared to
the zero-order result from Fig. 1.10. Also shown is the rms orbital speed vs. projec-
tile speed according to Schinner and Sigmund (2014). While this is not the speed
that is entering the Bohr stripping criterion, the two speeds are evidently not unre-
lated.

1.4.5 Brandt-Kitagawa Theory

It is evident from Table 1.1 that the Yukawa potential is not a suitable trial func-
tion in connection with the straight Thomas-Fermi model. Nevertheless, Brandt and
Kitagawa (1982) proposed a description, based on this trial function, which has
been utilized with considerable success. How is this possible? Well, the problem
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Fig. 1.12 Same as Fig. 1.10 for Yukawa trial function. Solid curve (‘BK w/o exchange’): Full
Coulomb interaction without exchange and correlation. Dashed curve (‘BK corrected’): Coulomb
interaction reduced by factor 4/7. Dashed coloured lines: Including exchange for Kr, Ar, Ne, He
(top to bottom)

lies in the quantity A2 � 7A3 which, according to Table 1.1, is nonvanishing, so the
projectile is not neutral for v D 0, see Fig. 1.12.

Brandt and Kitagawa (1982) proposed to force the quantity A2 � 7A3 to vanish
by reducing the Coulomb energy of the electron gas by a factor of 4/7. They argued
that the exchange-correlation energy lowers the Coulomb interaction and that, in the
average, this could be accounted for by a constant factor. The result is shown as the
dashed curve in Fig. 1.12. It was also demonstrated, by comparison with the Lenz-
Jensen function, that energy and screening versus charge state showed a reasonable
behaviour.

Despite this success, there are obvious objections:

1. If A1�7A2 differs significantly from zero, this indicates a weak point in the trial
function, not in the expression for the energy.

2. The exchange-correlation energy of the Fermi gas is here treated as output rather
than as input, as it should in a variational calculation where the electron density
is the variable.

3. According to Table 1.1 as well as Fig. 1.12 the relative magnitude of the exchange
term is much smaller than the necessary correction, and the correlation term is
even smaller.

A critical discussion of the model of Brandt and Kitagawa was presented by Mathar
and Posselt (1995), where also possible modifications by taking into account the
orbital motion of the target electrons were analyzed.
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Fig. 1.13 Pile-up of electron trajectories behind a moving ion. See text

1.5 Effect of the Stopping Medium

Up to this point the charge state of a moving ion has been considered as independent
of the medium. However, as mentioned in Sect. 1.1, a significant gas-solid difference
in the equilibrium charge of fission fragments was observed long ago by Lassen
(1951b,a). One may assume that differences of this kind are more general, and that
dependencies on other physical and chemical properties of the target might exist.

We shall see in Chap. 3 that cross sections for electron capture and loss play a
central role in the theoretical interpretation of the gas-solid effect observed for fis-
sion fragments and other swift heavy ions. However, even within the present picture,
where we look at the minimum-energy state of a moving ion, the stopping medium
has an influence by modifying the Coulomb potential of the projectile and thus the
energy levels of bound electrons.

An early hint on such an influence is due to Neufeld and Snyder (1957). Fig-
ure 1.13 shows the situation in the rest frame of the projectile. Here the projectile is
exposed to a homogeneous current of target electrons which experience its attractive
force and hence are deflected toward the ion trajectory. As a consequence there will
be collected an excess negative charge behind the ion.

Neufeld and Snyder (1957) asserted that the repulsive potential determined by
this negative charge will give rise to expulsion of projectile electrons and, hence,
to an increased ion charge state. The magnitude of this effect must increase with
increasing density of the stopping material.

1.5.1 Linear Theory

One way of studying this effect is by use of the polarization potential discussed in
Chap. 5, Vol. 1,

ˆind.r; t/ D Z1e

2�2

Z
d3k
k2

eik�.r�vt/

�
1

".k; !/
� 1

�
(1.62)
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Fig. 1.14 Induced potential for Fermi gas atB D 2mv2=�!P D 10 and rs D 2. From Schinner
and Sigmund (2012)

according to Lindhard (1954), where ".k; !/ is the dielectric function which is most
often taken to be the one for a Fermi gas of density �.

The polarization (orwake) potential has been discussed extensively in connection
with the penetration of molecules and clusters. Therefore, a detailed discussion will
be found in Chap. 10. Only some selected results will be shown here.

The potential (1.62) has cylindrical symmetry. Therefore, introducing cylindrical
coordinates .x;�/ and viewing the situation from a reference frame moving with
the projectile velocity v, we may write the induced potential in the form introduced
by Neufeld and Ritchie (1955),

ˆind.x; �/ D Z1e

�

Z 1

0

k dk J0.k�/
Z 1

�1

ei�x d�
k2 C �2

�
0
@ 1

"
�p

k2 C �2; �v
� � 1

1
A ; (1.63)

where J0 indicates a Bessel function in standard notation (Abramowitz and Stegun,
1964).

Numerous graphs from the literature show wake potentials calculated from this
or related models (Echenique et al., 1990). Figure 1.14 shows a three-dimensional
picture of the induced potential of a point charge moving at B D 2mv2=�!p D 10

through a Fermi gas with an electron density � characterized by a Wigner-Seitz
radius rs D 2, where

4�

3
.rsa0/

3� D 1: (1.64)
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Fig. 1.15 The induced potential shown in Fig. 1.14 in the plane � D 0 (top) and x D 0 (bottom),
together with the bare Coulomb potential and the total potential. From Schinner and Sigmund
(2012)

The Fermi gas has been described by the dielectric function of Lindhard (1954),
(5.154)–(5.156), Vol. 1.

Figure 1.15 shows the induced potential, the Coulomb potential and the sum of
the two, the potential seen by a test charge. Two prominent features are evident
in the total potential. Near the projectile the Coulomb potential is screened asym-
metrically. Further away, at some distance behind the projectile, the potential is
dominated by the induced potential.

Consider first the behaviour of the potential in the vicinity of the projectile near
x D � D 0. Here the induced potential tends to screen the Coulomb potential.
Figure 1.15 shows that screening is lacking forward-backward symmetry and, more-
over, varies from the longitudinal to the transverse plane. Comparison with Fig. 1.16
indicates that the variation with projectile speed is negligible in the transverse and
the forward direction — when visualized in the proper scaled variable !p�=v —
while the variation in the backward direction is noticeable.

We may draw the qualitative conclusion that screening of the Coulomb potential
must reduce the number of bound states. Therefore, in the absence of other effects,
the induced potential must tend to decrease the number of bound electrons.
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Fig. 1.16 Same as Fig. 1.15 for B D 2mv2=�!p D 100. From Schinner and Sigmund (2012)

1.5.2 Application to Light Ions

Quantitative estimates in the literature have focused on protons, following pioneer-
ing work by Neelavathi et al. (1974). Key questions have been:

1. Under which conditions can a proton moving through an electron gas bind an
electron, and

2. Under which conditions can a proton bind two electrons.

An illuminating review of this aspect has been provided by Arista (2006). With a
focus on projectile speeds well below the Fermi velocity, theoretical tools employed
in those studies were taken from condensed-matter physics, going far beyond the
simple linear theory sketched in the previous section.

In addition to a careful review of the literature, where there are mutually conflict-
ing results, Arista (2006) presented simple estimates based on a nonlinear theory of
the Fermi gas which is to be discussed in Chap 8. This theory involves the Friedel
sum rule, which is discussed in Appendix 8.10.2 and operates with three trial func-
tions for the potential of a proton embedded in the electron gas.
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Fig. 1.17 Binding energy of an electron state around a proton moving in a Fermi gas (rs D 2/ at
a speed v. Atomic units v0 and e2=a0. From Arista (2006)

The main result of such an estimate — which is supported by experimental evi-
dence — is shown in Fig. 1.17, indicating that a bound state exists only for v � v0,
and that the binding energy of neutral hydrogen in vacuum is reached at v=v0 above
10. Results based on the three trial functions for the potential, each of which be-
ing characterized by one variational parameter, the screening radius, are in close
agreement with each other.

Arista (2006) concludes that ‘slow protons in metals behave as free particles
dressed by a screening cloud of conduction electrons’, while bound states appear at
higher velocities.

1.5.3 Wake-Riding Electrons

The oscillatory structure behind the ion which you have seen in Figs. 1.14–1.16
has given rise to lively discussions in the literature. One interesting aspect is the
question of whether electrons could be trapped in bound states in the first or higher
potential maxima (Neelavathi et al., 1974) — i.e., in the minima of the potential
energy of electrons — where the potential has a quasi-paraboloidal shape. Such a
‘wake-riding’ electron would be expected to leave the target about simultaneously
with the projectile ion, and since it cannot any longer be expected to be bound, it
would be recordable as a free electron with the velocity of the emerging ion and
with a direction close to that of the ion beam.

However, energy spectra of electrons emitted by swift ions emerging from a solid
target show signatures of a wide variety of processes, which will be the subject of a
chapter in Volume 3. In the present context, cusp or convoy electrons are of interest.
The term ‘cusp’ refers to the narrow distribution in both energy and direction of



1.5 Effect of the Stopping Medium 27

these electrons. The term ‘convoy’ refers to an original prediction (Neelavathi et al.,
1974) of wake-riding electrons.

Cusp electrons have been observed in numerous experiments in both solids and
gases, and relevant processes include both electron capture and electron loss into the
continuum (Macek, 1970). Experimental evidence (Laubert et al., 1978, Meckbach
et al., 1977, Breinig et al., 1982, Kroneberger et al., 1996) appears to favour the latter
processes rather than wake-riding. However, regardless of the specific interpretation,
the very fact that electrons are emitted with a velocity close to that of the projectile
indicates proximity in space. While such electrons contribute to the screening of the
ionic potential, their number is usually considerably less than one electron per ion.

Calculated electronic binding energies in such states depend on the material
and the projectile speed (Neelavathi et al., 1974, Flores and Echenique, 1991).
For 2.5 MeV protons, Neelavathi et al. (1974) quote 4.08 eV in aluminium. For
v D 0:8v0, Salin et al. (1999) quote 136 eV in an electron gas with rs D 2:07.
Considering either Bohr’s or Lamb’s stripping criteria, the lifetime of wake-riding
electrons must be quite short.

1.5.4 Effect of Screening

Now, consider the effect of projectile screening on the charge state of a heavier ion.
Following Schinner and Sigmund (2014) we ignore forward-backward asymmetry
of the screening radius and set the potential to

�.r/ ' Z1e

r
e�!r=v; (1.65)

as was done by Lindhard (1976) in a different context. Since we are concerned about
the potential in the vicinity of the nucleus, we may approximate

�.r/ ' Z1e

r

�
1 � !r

v

�
; (1.66)

assuming the projectile speed to be high enough so that v=! is large compared to the
effective projectile radius. Here, ! is an effective plasma frequency of the medium.

This implies that a termZ
d3r �e.r/

��Z1e!
v

�
D �Z1N1e2!

v
(1.67)

has to be added to the energy E.N1/ in (1.18). This leaves (1.51) unchanged but
adds an additional term to (1.50). Since (1.65) represents an expansion up to first
order in !=v, it is appropriate also to solve the resulting cubic equation for N1=Z1,

v2

v2TF
D �2 � �

vTF

v
(1.68)
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Fig. 1.18 Influence of the stopping medium on the equilibrium charge according to the Lamb cri-
terion applied to a Lenz-Jensen trial function. Evaluated from (1.15). Labels of the curves indicate
the value of 	, (1.70). From Schinner and Sigmund (2014)

with

�2 D .A2 � 7A3N1=Z1/.A2 � A3N1=Z1/

6A1.N1=Z1/2=3mv
2
0

(1.69)

and

� D 2�!

Z1mv
2
0

(1.70)

by expansion up to the first order in !=v. Then,

v2

v2TF
' �2 � �

�
: (1.71)

Figure 1.18 illustrates the case of Lenz-Jensen interaction. You may note that even
for rather small values of � there is a noticeable positive solid-gas difference.

1.6 Data

Numerous measurements have been performed aiming at equilibrium charges of
ions penetrating through gaseous and solid materials. Experimental techniques have
been described in classical reviews by Allison (1958) and Betz (1972) who focused
on light and heavy ions, respectively. For a more recent review focusing on experi-
mental methods, the reader is referred to Geissel et al. (2002).
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Fig. 1.19 Mean charges of light and heavy fission fragments penetrating through argon and oxygen
vs. gas pressure, from Lassen (1951b)

1.6.1 Gas-Solid Difference

Pioneering measurements, performed by Lassen (1951b) by means of fission frag-
ments, were mentioned in Sect. 1.1. In view of the limited range of accessible atomic
numbers and beam energies, the most obvious variation to study appeared to be the
influence of the medium. Measurements were performed on solids and gases, the
latter as a function of gas pressure. Results were shown in Fig. 1.1.

Figure 1.19 shows equilibrium charges in gases vs. pressure, likewise from
Lassen (1951b). A clear increase with gas pressure is seen. Here, as in Fig. 1.1,
the charge increases with the electron density of the medium, pointing at a common
origin. This will be discussed in Sect. 3.3.3.

1.6.2 Compilations

In view of the large number of projectile-target combinations of potential interest,
much attention has been paid to scaling properties of the mean equilibrium charge
hq1i in three-dimensional parameter space .Z1; Z2; v/. Guided by theoretical esti-
mates of the type of (1.6), where properties of the target material do not enter at all,
special efforts have been made to identify an adequate scaling variable of the type of
v=Z

2=3
1 v0, while Z2-dependencies were most often treated as perturbations, except

for gas-solid differences mentioned above.
Figure 1.20 shows average charge fractions for ions with Z1 ranging from 16

to 92 for ions emerging from carbon foils (upper graph) and from gas targets
(lower graph). Adopted scaling variables are v=Z0:451 v0 according to Nikolaev and
Dmitriev (1968) in the upper graph and v=Z0:551 v0 in the lower graph (Betz, 1972).
Noticeably higher values are observed in the upper graph over the entire velocity
range covered, confirming the existence of a distinct gas-solid difference.
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Fig. 1.20 Average charge fraction of sulphur to uranium ions vs. scaled velocity. Upper graph:
Carbon foil. Velocity variable v=Z0:45

1 v0 with v0 D v0=0:608. Lower graph: Gas targets of N2,
O2 and air. Velocity variable v=Z0:55

1 v0. From Betz (1972)

An extensive analysis of measured equilibrium charge fractions in carbon (Shima
et al., 1982) has led to an empirical formula which has frequently been utilized in
estimates also on other solid targets,

hq1i
Z1

D 1 � e�1:25XC0:32X2�0:11X3 I X D 0:608v=Z0:451 v0: (1.72)

Comparison with (1.6) indicates a somewhat steeper slope in the low-velocity limit
as well as a difference in the Z1-dependence.

More recently, Schiwietz and Grande (2001) proposed
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Fig. 1.21 Average charge fraction in gases (upper graph) and solids (lower graph) and empirical
fits, (1.73) and (1.74) vs. scaled velocity. Zp and vp stand for Z1 and v, respectively. From
Schiwietz and Grande (2001)

hq1i
Z1

D x6 C 376x

x6 C 690x � 1206x0:5 C 1428

x D
 

�

Z
0:017	�0:03
2

!1C0:4=Z1

(1.73)

for gas targets and
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Fig. 1.22 Average charge fraction vs. speed according to Schiwietz and Grande (2001) for gases,
plotted in Thomas-Fermi units.Z1 D Z2. Also included is the Thomas-Fermi curve from Fig. 1.9
and the zero-order Lenz-Jensen curve from Fig. 1.10.

hq1i
Z1

D x4 C 12x

x4 C 10:37x C 0:3x0:5 C 6C 0:07=x

x D
 

�

1:68Z
0:019	
2

!1C1:8=Z1

(1.74)

for solids with
� D v

Z0:521 v0
: (1.75)

Here, the approach to complete ionization is asserted to be power-like rather than
exponential. At low velocities, hq1i is asserted to be / v1C0:4=Z1 for gases and
/ v2C3:6=Z1 for solids.

Figure 1.21 gives an impression both of the quality of the scaling and the accu-
racy of the fit. Clearly, these fitting formulae are entirely empirical, and deviations
from adopted scaling properties may well be systematic. On the other hand, rough
estimates of equilibrium charge states are possible for systems where measurements
are unavailable.

Figure 1.22 shows the curve from Fig. 1.21 plotted in Thomas-Fermi units. It is
seen that the curve denoted ‘Thomas-Fermi’, taken from Fig. 1.9, lies consistently
above the empirical interpolation, although the difference gets less pronounced with
increasing atomic number. The Lenz-Jensen curve from Fig. 1.10 represents a rea-
sonable average behaviour at low speed but approaches the TF curve at high speed.

Finally, Fig. 1.23 shows plots of (1.74) and (1.73) in Thomas-Fermi units. The
gas-solid difference clearly emerges from these graphs, as well as the near-inde-
pendence of the mean equilibrium charge on the atomic number of the stopping
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Fig. 1.23 Equilibrium charges according to Schiwietz and Grande (2001) plotted in Thomas-Fermi
units

material. Conversely, deviations from v=vTF scaling are pronounced, albeit mostly
so for small Z2, where the Thomas-Fermi model cannot expected to be valid.

You may have noticed that none of the scaling relations mentioned so far takes
into account shell effects such as the plateaus seen in Figs. 1.3 and 1.7.

1.7 Discussion and Outlook

The prime message of this chapter is that ions in charge equilibrium experience
considerable screening for v � vTF or

E � 0:025Z
4=3
1 MeV/u; (1.76)

and that the K shell can only be expected to be stripped for v � Z1v0 or

E � 0:025Z21 MeV/u: (1.77)

Theoretical estimates presented in this chapter refer mostly to penetration through
gas targets. The energy criterion has been dominating, mostly because it can be
formulated quantitatively. Its main weakness is the lack of a statement on the time
or pathlength required to reach charge equilibrium. Moreover, it does not say any-
thing about the width of the charge-state spectrum. Thomas-Fermi estimates tend to
predict higher equilibrium charges than measured.
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Determining equilibration distances and charge-state populations requires ex-
plicit knowledge of the kinetics of charge exchange, as expressed by cross sections
or transition amplitudes and appropriate statistical tools. This will be the subject of
the following two chapters.

The observation of the gas-solid difference in the charge state and the ongoing
controversy about its origin has, until a few years ago, been a considerable challenge
to theoreticians. We shall come back to this repeatedly.

Both the very definition of the charge state of an atom moving in a medium and
the validity of procedures to estimate transition probabilities or amplitudes have
been the subject of lively discussion. I shall not go into details here but mainly
mention a few points of interest and supply pertinent references.

From an experimental point of view, there are two obvious ways to approach the
problem, observation of processes accompanying the emerging ion, and in situ anal-
ysis of the penetrating ion. The first option is related primarily to electron emission,
the second to X-ray emission.

The first aspect has been discussed in Sect. 1.5.3. Bound states of swift protons
moving through a solid material have been a subject of lively discussion. For a recent
review you are referred to Arista (2006). Several theoretical predictions were based
on the Fermi gas model described in Chap. 5, Vol. 1, but even within that framework,
predictions varied from 0 to 2 permitted charge states (Brandt, 1975, Cross, 1977,
Peñalba et al., 1992). Arista’s conclusion appears to be close to the view of Cross
(1977) who considered the coupling between the ion and the electron gas to be weak
and, consequently, considered the charge-state evolution as a sequence of capture
and loss processes much like in a gas.

As to the second aspect, in situ observation of charge states in solids is possible
by X-ray spectrometry. Energies of inner-shell electrons are shifted according to the
charge state. This satellite structure may be observed in precision measurements and
thus may provide information about charge fractions of penetrating ions (Knudson
et al., 1974). These experiments are difficult both because of the smallness of the
shifts and the interference with the Doppler effect.

Measurements of this type appear most promising for heavy ions at very high ve-
locities, where ions are highly charged and K X-ray levels shifted considerably. Re-
sults obtained with 11.4 MeV Ca ions by Rosmej et al. (2005) indicate a reasonable
agreement between charge states deduced from x-ray spectra and those measured
by magnetic deflection of ions after emergence from the foil.

1.8 Appendix

1.8.1 Exchange Energy in the Thomas-Fermi Equation

This appendix presents a brief derivation of the exchange term, (1.90).
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Consider first a 2-electron system, where, in an individual-particle description,
two stationary states 1 and 2 are occupied. Write the wave function‰.x1; x2/ in the
form

‰.x1; x2/ D 1p
2
Œu1.x1/u2.x2/� u2.x1/u1.x2/� ; (1.78)

where x stands for both space and spin variables. The Coulomb interaction energy
is given by

ECoulomb D
“

dx1dx2‰.x1; x2/?
e2

jr1 � r2j
‰.x1; x2/: (1.79)

Since e2=r12 does not depend on the spin, ECoulomb is nonvanishing only when the
two states 1 and 2 have identical spin. We can, therefore, replace x by r and write

ECoulomb D e2
“

d3r1d3r2
�.r1/�.r2/

jr1 � r2j
C Eexch; (1.80)

where

Eexch D �
“

d3r1d3r2
u?1.r1/u

?
2.r2/u2.r1/u1.r2/

jr1 � r2j
; (1.81)

where the first term represents the classical Coulomb interaction energy. We evaluate
the exchange term Eexch

Coulomb for free electrons with

uj .r/ D 1p
�

eikj �r ; (1.82)

where� represents the volume of a large box. With this, the Coulomb potential has
the expansion

e2

r
D
X

q

4�e2

�q2
eiq�r : (1.83)

Carrying out the above integral you will find

Eexch
Coulomb D � 4�e2

�.k1 � k2/2
: (1.84)

Now, consider a Fermi gas characterized by a density � or a Fermi wave number
kF . The total exchange energy is then given by the integral

Eexch D �
�

�

.2�/3

�2“
d3k1d3k2

4�e2

�.k1 � k2/2
: (1.85)

If you are willing to solve Problem 1.4, you will find that

Eexch D e2�k4F
4�3

: (1.86)



36 1 Charge Equilibrium

With
k3F D 3�2� (1.87)

you find the energy density
E

�
D �a�

4=3 (1.88)

with

�a D 3

4

�
3

�

�1=3
e2 (1.89)

in the notation of Gombas (1949).

1.8.2 Thomas-Fermi-Dirac Theory

Following Gombas (1949), we take into account the exchange contribution (Dirac,
1930), which adds a term

Eexch D ��a
Z

d3r �.r/4=3 (1.90)

with

�a D 34=3

4�1=3
e2 (1.91)

to (1.13).
Carrying out the argument described in Sects. 1.4.1 and 1.4.2, you will obtain an

additional term �4.�a=3/�.r/1=3 to (1.21) which leads to

�.r/ D �0

�
�0 C

q
�20 C �.r/� �0

�3
(1.92)

with

�0 D
r

e

2�2a0
: (1.93)

Applying Poisson’s formula you arrive at the Thomas-Fermi-Dirac equation

r2


�.r/� �0 C �20

� D 4��0e

�
�0 C

q
�20 C �.r/� �0

�3
(1.94)

or, in Thomas-Fermi units,

g00.�/ D �

"s
g.�/

�
C ˇ0

#3
(1.95)

with
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Fig. 1.24 Same as Fig. 1.8 for solutions of the Thomas-Fermi-Dirac equation. Z1 D 54. From
Gombas (1949)

ˇ0 D �0
p
a=Z1e D 0:2118

Z
2=3
1

; (1.96)

� D r=a, and

�.r/C �20 � �0 D Z1e

r
g.�/: (1.97)

So far, this derivation follows Gombas (1949), except again that the constant �0 D
mv2=2e is predefined, while the number N1 of electrons on the projectile is free
and follows from the charge density �.r/.

However, from (1.92) and Fig. 1.24 you may note that the charge density does not
approach zero. Since the number of electrons must be finite, there must be a certain
radius r0 where �.r/ is truncated. Determining this radius is part of the minimizing
procedure, as recognized by Jensen (1934, 1935). The present evaluation is slightly
different, since there are no boundary conditions, but the result is identical with
Jensen’s.

Writing the total energy as

E.N1/ D 1

2
M1v

2 C �k

Z
d3r �.r/5=3 � �a

Z
d3r �.r/1=3 �Z1e

2

Z
d3r

�.r/

r

C e2

2

Z
d3r d3r 0 �.r/�.r

0/
jr � r 0j C 1

2
mv2

Z
d3r �.r/; (1.98)
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we minimize the energy with respect to r0,

dE
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D 4�r20

�
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2
�.r0/

!
D 0: (1.99)

Noting that the third, fourth and fifth term in the brackets may be written as
�e�.r0/Œ�.r0/ � �0�, and inserting �.r0/ � �0 from (1.92) you end up with
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or
dE

dr0
D 4�r20�.r0/

�
�2
3
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3
�a�.r0/

1=3

�
: (1.101)

Setting dE=dr0 D 0 leads to

�.r0/ D
�
�a

2�k

�3
D 0:002127

a30
: (1.102)

This result is identical with the one quoted by Gombas (1949), although the deriva-
tion is simpler: For a fixed number N1 of electrons, �.r/ and r0 cannot be var-
ied independently. Therefore, in the derivation of Gombas (1949) also a derivative
d�.r/=dr0 needs to be considered.

For the standard Thomas-Fermi model, where �a is ignored, we find �.r0/ D 0,
in agreement with (1.34) in Sect. 1.4.2. For the Thomas-Fermi-Dirac model, on the
other hand, the electron density at the edge has a fixed nonvanishing value, (1.102),
independent of atomic number and charge state.

The numberN1 of electrons on the projectile is found from

N1 D
Z

d3r�.r/ D Z1

Z �0

0

d� �g00.�/ D Z1
�
�0g

0.�0/ � g.�0/C 1
	

(1.103)

or
q1 D Z1 �N1 D Z1

�
g.�0/ � �0g0.�0/

	
: (1.104)

A major benefit of the straight Thomas-Fermi model is the universal dependence of
the charge density on r=aTF. This feature is no longer present in the Thomas-Fermi-
Dirac model, where an explicit dependence on Z1 enters via the term ˇ0 in (1.95).
This, in addition to the abrupt fall-off to zero at r0, may well generate some doubt



References 39

as to whether including electron exchange in the theory is an overall improvement
of the scheme. I shall touch this aspect once more in the next section.

Problems

1.1. Derive (1.29) and (1.30) from (1.18), (1.27) and (1.28).

1.2. Show that (1.31) approaches the solution

g.�/ � 144=�3 (1.105)

for large �.

1.3. Compare the behaviour of �.r/ at small r for the exact solution of the Thomas-
Fermi equation with the behaviour of the ansatz by Lenz and Jensen.

1.4. Derive (1.86) from (1.85). Hint: The straightforward but a bit cumbersome
way is by introducing spherical coordinates and carrying out the angular integra-
tions first. A more elegant procedure is making use of the Fourier transform of the
Coulomb potential.

1.5. Show that, if (1.50) and (1.51) are valid, the equilibrium charge behaves as
/ v2 at low projectile speed.

1.6. Try to reproduce the curves shown in Fig. 1.10.

1.7. Make an estimate of the expected difference between charge ratios for light and
heavy fission fragments shown in Fig. 1.1 on the basis of (1.6).

1.8. Look up an element representative for heavy fission fragments and its represen-
tative energy, and find the gas-solid difference from (1.73) and (1.74). Compare this
with Fig. 1.1.

References

Abramowitz M. and Stegun I.A. (1964): Handbook of mathematical functions.
Dover, New York

Allison S.K. (1958): Experimental results on charge-changing collisions of hydro-
gen and helium atoms and ions at kinetic energies above 0.2 keV. Rev Mod Phys
30, 1137–1168

Arista N.R. (2006): Charge states and energy loss of ions in solids. Mat Fys Medd
Dan Vid Selsk 52, 595–623

Bell G.I. (1953): The capture and loss of electrons by fission fragments. Phys Rev
90, 548–557



40 1 Charge Equilibrium

Betz H.D. (1972): Charge states and charge-changing cross sections of fast heavy
ions penetrating through gaseous and solid media. Rev Mod Phys 44, 465–539

Bohr N. (1940): Scattering and stopping of fission fragments. Phys Rev 58, 654–655
Bohr N. (1941): Velocity-range relation for fission fragments. Phys Rev 59, 270–

275
Bohr N. (1948): The penetration of atomic particles through matter. Mat Fys Medd

Dan Vid Selsk 18 no. 8, 1–144
Bohr N. and Lindhard J. (1954): Electron capture and loss by heavy ions penetrating

through matter. Mat Fys Medd Dan Vid Selsk 28 no. 7, 1–31
Brandt W. (1975): Ion screening in solids. In S. Datz, B.R. Appleton and C.D.

Moak, editors, Atomic Collisions in Solids, 261–288. Plenum Press, New York
Brandt W. and Kitagawa M. (1982): Effective stopping-power charges of swift ions

in condensed matter. Phys Rev B 25, 5631–5637
Breinig M., Elston S.B., Huldt S., Liljeby L., Vane C.R., Berry S.D., Glass G.A.,

Schauer M., Sellin I.A., Alton G.D. et al. (1982): Experiments concerning elec-
tron capture and loss to the continuum and convoy electron production by highly
ionized projectiles in the 0.7–8.5-MeV/u range transversing the rare gases, poly-
crystalline solids, and axial channels in gold. Phys Rev A 25, 3015–3048

Brostrøm K.J., Bøggild J.K. and Lauritsen T. (1940): Cloud-chamber studies of fis-
sion fragment tracks. Phys Rev 58, 651–653

Brunings J.H.M., Knipp J.K. and Teller E. (1941): On the momentum loss of heavy
ions. Phys Rev 60, 657

Carlson T.A., Nestor C.W., Wasserman N. and McDowell J.D. (1970): Calculated
ionization potentials for multiply charged ions. Atomic Data 2, 63–99

Clementi E. and Roetti C. (1974): Roothaan-Hartree-Fock atomic wave functions.
Atomic Data & Nucl Data Tables 14, 177

Cross M.C. (1977): Charge states of fast protons in solids. Phys Rev B 15, 602–607
Dirac P.A.M. (1930): Note on exchange phenomena in the Thomas atom. Proc

Cambridge Phil Soc 26, 376–385
Echenique P.M., Flores F. and Ritchie R.H. (1990): Dynamic screening of ions in

condensed matter. Sol State Phys 43, 229–318
Fermi E. (1927): Un metodo statistico per la determinazione di alcune proprietá

dell’ atomo. Rend Acad Lincei 6, 602
Fermi E. (1928): Eine statistische Methode zur Bestimmung einiger Eigenschaften

des Atoms und ihre Anwendungen auf die Theorie des periodischen Systems der
Elemente. Z Physik 48, 73

Flamm L. and Schumann R. (1916): Die Geschwindigkeitsabnahme der ˛-Strahlen
in Materie. Ann Physik 50, 655

Flores F. and Echenique P. (1991): Dynamic screening, charge states and energy
loss of ions in solids. Nucl Instrum Methods B 56/57, 358–360

Geissel H., Weick H., Scheidenberger C., Bimbot R. and Gardès D. (2002): Exper-
imental studies of heavy-ion slowing down in matter. Nucl Instrum Methods B
195, 3–54

Gluckstern R.L. (1955): Electron capture and loss by ions in gases. Phys Rev 98,
1817–1821



References 41

Gombas P. (1943): Erweiterung der Statistischen Theorie des Atoms. Z Physik 121,
523–542

Gombas P. (1949): Die Statistische Theorie des Atoms. Springer, Vienna
Gombas P. (1956): Statistische Behandlung des Atoms. In S. Flügge, editor, Hand-
buch der Physik, vol. 36, 109–231. Springer, Berlin

Hahn O. and Strassmann F. (1939): Über den Nachweis und das Verhalten der bei
der Bestrahlung des Urans mittels Neutronen entstehenden Erdalkalimetalle. Nat
Wiss 27, 11–15

Hedin L. and Lundqvist S. (1969): Effects of electron-electron and electron-phonon
interactions on the one-electron states of solids, vol. 23 of Solid State Physics,
1–181. Academic Press, New York

Henderson G.H. (1923): Changes in the charge of an alpha-particle passing through
matter. Proc Roy Soc A 102, 496–U14

Jensen H. (1932): Die Ladungsverteilung in Ionen und die Gitterkonstante des Ru-
bidiumbromids nach der statistischen Methode. Z Physik 77, 722

Jensen H. (1934): Über Den Austausch im Thomas-Fermi-Atom. Z Physik 89, 713–
719

Jensen H. (1935): Erg"anzung Zur Arbeit: Über Den Austausch im Thomas-Fermi-
Atom. Z Physik 93, 232–235

Knipp J. and Teller E. (1941): On the energy loss of heavy ions. Phys Rev 59,
659–669

Knudson A.R., Burghalter P.G. and Nagel D.J. (1974): Vacancy configurations of
argon projectile ions in solids. Phys Rev A 10, 2118–2122

Kroneberger K., Sigaud G.M., Kuzel M., Maier R., Schosnig M., Schlosser D.,
Groeneveld K.O., Focke P., Suarez S. and Meckbach W. (1996): Beam-foil con-
voy electrons emerging from uncleaned and cleaned surfaces in coincidence with
charge-analysed projectiles including neutrals. J Phys B 29, 3727–3740

Lamb W.E. (1940): Passage of uranium fission fragments through matter. Phys Rev
58, 696–702

Lassen N.O. (1951a): Total charges of fission fragments as functions of the pressure
in the stopping gas. Mat Fys Medd Dan Vid Selsk 26 no. 12, 1–19

Lassen N.O. (1951b): The total charges of fission fragments in gaseous and solid
stopping media. Mat Fys Medd Dan Vid Selsk 26 no. 5, 1–28

Laubert R., Sellin I.A., Vane C.R., Suter M., Elston S.T., Alton G.D. and Thoe
R.S. (1978):Z, velocity and target material dependence of convoy electrons from
solids. Phys Rev Lett 41, 712

Lee P.S. and Wu T.Y. (1997): Statistical potential of atomic ions. Chin J Physics 35,
6–11

Lenz W. (1932): Über die Anwendbarkeit der statistischen Methode auf Ionengitter.
Z Physik 77, 713

Lindhard J. (1954): On the properties of a gas of charged particles. Mat Fys Medd
Dan Vid Selsk 28 no. 8, 1–57

Lindhard J. (1976): The Barkas effect – or Z31 , Z41 -corrections to stopping of swift
charged particles. Nucl Instrum Methods 132, 1–5



42 1 Charge Equilibrium

Macek J. (1970): Theory of the forward peak in the angular distribution of electrons
ejecteed by fast protons. Phys Rev A 1, 235–241

Mathar R.J. and Posselt M. (1995): Effective-charge theory of the electronic stop-
ping of heavy ions in solids: Stripping criteria and target-electron models. Phys
Rev B 51, 107–116

Meckbach W., Chiu K.C.R., Brongersma H.H. and McGowan J.W. (1977): Do
present charge-transfer to continuum theories correctly describe production of
vi D ve electrons in ion beam-foil collisions? J Phys B 10, 3255–3270

Meitner L. and Frisch O.R. (1939): Physical evidence for the division of heavy
nuclei under neutron bombardment. Nature 143, 276

Neelavathi V.N., Ritchie R.H. and Brandt W. (1974): Bound electron states in the
wake of swift ions in solids. Phys Rev Lett 33, 302–305

Neufeld J. (1954): Electron capture and loss by moving ions in dense media. Phys
Rev 96, 1470–1478

Neufeld J. and Ritchie R.H. (1955): Passage of charged particles through plasma.
Phys Rev 98, 1632–1642

Neufeld J. and Snyder W.S. (1957): Dependence of the average charge of an ion on
the density of the surrounding medium. Phys Rev 107, 96–102

Nikolaev V.S. and Dmitriev I.S. (1968): On the equilibrium charge distributions of
heavy elemental ion beams. Phys Lett A 28, 277–278

Peñalba M., Arnau A., Echenique P.M., Flores F. and Ritchie R.H. (1992): Stopping
power for protons in aluminum. Europhys Lett 19, 45

Pierce T.E. and Blann M. (1968): Stopping powers and ranges of 5-90-MeV S32,
Cl35,Br79, and I127 ions in H2, He, N2, and Kr: A semiempirical stopping power
theory for heavy ions in gases and solids. Phys Rev 173, 390–405

Rosmej O.N., Blazevic A., Korostiy S., Bock R., Hoffmann D.H.H., Pikuz S.A.,
Efremov V.P., Fortov V.E., Fertman A., Mutin T. et al. (2005): Charge state and
stopping dynamics of fast heavy ions in dense matter. Phys Rev A 72, 052901

Rutherford E. (1924): The capture and loss of electrons by alpha particles. Philos
Mag 47, 277

Salin A., Arnau A., Echenique P.M. and Zaremba E. (1999): Dynamic nonlinear
screening of slow ions in an electron gas. Phys Rev B 59, 2537–2548

Schinner A. and Sigmund P. (2012): Polarization wake of penetrating ions: Oscilla-
tor model. Europ Phys J D 66, 56

Schinner A. and Sigmund P. (2014): Unpublished
Schiwietz G. and Grande P.L. (2001): Improved charge-state formulas. Nucl Instrum

Methods B 175-177, 125–131
Shima K., Ishihara T. and Mikumo T. (1982): Empirical formula for the average

charge-state of heavy ions behind various foils. Nucl Instrum Methods 200, 605–
608

Shima K., Kuno N., Yamanouchi M. and Tawara H. (1992): Equilibrium charge
fractions of ions of Z D 4 � 92 emerging from a carbon foil. At Data Nucl Data
Tab 51, 173–241

Tal Y. and Levy M. (1981): Expectation Values of Atoms and Ions: The Thomas-
Fermi Limit. Phys Rev A 23, 408–415



References 43

Thomas L.H. (1926): The calculation of atomic fields. Proc Cambr Philos Soc 23,
542–547

Yarlagadda B.S., Robinson J.E. and Brandt W. (1978): Effective-charge theory and
the electronic stopping power of solids. Phys Rev B 17, 3473–3483



Chapter 2

Charge Exchange: Atomistics

Abstract This chapter addresses primarily the process of charge exchange and cross
sections for electron capture. The theory of electron loss, which is similar to the
theory of target ionization, is indicated only briefly in this chapter. The treatment of
charge exchange includes classical and quantal theory of the Thomas process as well
as other classical models by Bohr and others. Essential steps are described in the
development of the quantum theory of charge exchange for light ions, in particular
problems encountered with the Brinkman-Kramers theory and the significance of
first- vs. second-order perturbation theory in charge exchange. Brief accounts are
given of the distorted-wave and eikonal approximations to charge exchange as well
as the process of radiative electron capture. The chapter concludes with a list of data
sources.

2.1 Introductory Comments

An ion penetrating through a gaseous or condensed material can experience a
change in its charge by losing or capturing one or more electrons in collisions with
the constituents of the medium. Such events affect the stopping and scattering of
the penetrating particle and, therefore, more or less directly, the induced radiation
effects.

Electron loss in a collision may be viewed as an ionization event, where the
roles of the projectile and the target are interchanged. This implies that much of
the theory described in other chapters of Volumes 1 and 2 of this monograph can
be applied to electron loss. However, the particle that loses electrons is typically
positively charged now rather than neutral. Conversely, the particle that gives rise to
electron loss is a target atom which, in the context of this monograph, is most often
electrically neutral.

There is no analog to electron capture in what we have looked at so far. However,
the jump of an electron from one atom or ion to another one is one of the central

P. Sigmund, Particle Penetration and Radiation Effects Volume 2, 45
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problems in many areas of science, especially in chemistry and biochemistry, plasma
physics, biophysics and astrophysics.

From an atomic-collision physics point of view, a charge-exchange process be-
tween two atomic particles may be viewed from any frame of reference. In other
words, the theory of the process

AC CB0 ! A0 C BC (2.1)

is independent of whether AC or B0 is viewed as the target. Therefore, in atomic-
collision physics the term ‘charge exchange’ denotes what is called ‘electron cap-
ture’ in particle penetration. In particle penetration, on the other hand, ‘charge ex-
change’ denotes the exchange of an electron between the projectile and the medium,
and hence the interplay of capture and loss of electrons by the projectile.

The phenomenon of electron capture was predicted by Flamm and Schumann
(1916) and discovered experimentally by Henderson (1923) who identified the pres-
ence of HeC ions in a beam of alpha particles penetrating through a gas. A first
attempt of a theoretical explanation was made by Thomas (1927) on the basis of
classical collision theory, and the quantal approach was pioneered by Oppenheimer
(1928) and Brinkman and Kramers (1930).

Renewed interest in charge-changing processes in connection with particle pen-
etration arose with the discovery of nuclear fission. Fragments from a fission reac-
tion are fairly heavy, highly-charged ions with atomic numbers around 40 and 50,
respectively, with initial velocities v=v0 � 10. The importance of charge-exchange
processes in the slowing down of such fragments was recognized by Bohr (1940,
1941) immediately after the discovery of fission. This was followed up in extensive
measurements by Lassen (1951a,b) which were mentioned in the previous chapter.

When particle accelerators became available for atomic-physics experiments,
measurements on charge exchange became a favoured subject, as is evidenced in
early reviews by Allison (1958), Nikolaev (1965) and Betz (1972) that are still
worthwhile reading. In the meantime the literature has exploded, but the present
survey will focus on topics that are of importance in particle penetration. Amongst
central theoretical references I like to mention classic papers by Thomas (1927),
Brinkman and Kramers (1930), Bell (1953) and Bohr and Lindhard (1954), and
more recent comprehensive reviews by Bransden and McDowell (1992), Dewangan
and Eichler (1994) and Tolstikhina and Shevelko (2013).

While the theory of charge exchange is one of the most challenging areas in
atomic-collision physics, a reader interested mostly in applications may jump over
this chapter on first reading and return to specific sections as the need arises.

2.2 Charge-Changing Events

Let us first consider the simple case of a stripped ion, e.g., a swift proton meeting a
free electron. Can the electron be captured by the proton? Well, if no other particle
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A

B

C

D

Fig. 2.1 Left: Electron emission by Auger process; right: Electron capture by inverse Auger re-
combination. Symbols A–D indicate energy levels

is involved, the process is forbidden by the conservation laws of energy and mo-
mentum: If it were allowed, the reverse process would likewise be allowed, where a
hydrogen atom spontaneously emits its electron without any external action.

To be more precise, consider the process in the rest frame of the ion: A free
electron approaching the nucleus has a positive energy, and hence will be scattered
rather than captured. Hence, in order to be captured, the electron must have a way
to get rid of its energy.

Let us see what happens if a third particle is involved. This could be a photon.
Indeed, if the collision is accompanied by the emission of a photon, excess energy
can be carried away so that the electron can end up in a bound state. This is called
radiative recombination (Oppenheimer, 1928) or ‘radiative electron capture’ (REC).
While the cross section for such a process is negligible at velocities v � c, radiative
electron capture is an important process in the relativistic regime.

Restrictions imposed by conservation laws can also be overcome if the ion car-
ries electrons to start with. The kinetic energy of the captured electron may be
transmitted to one or more electrons which get excited. You may view this as an
inverse Auger process. Figure 2.1(left) illustrates an Auger process, where an elec-
tron jumps from a level C to a lower level B, thereby giving its energy to another
electron that can jump from level C to the continuum. The inverse process, i.e.,
inverse Auger recombination, is illustrated on the right diagram in Fig. 2.1.

More important in the context of particle penetration is the charge exchange be-
tween two or more atomic particles. In that case, energy and momentum conserva-
tion are taken care of primarily by the motion of the recoiling nuclei which, as a first
approximation, is independent of the behaviour of the electrons. These nuclei pro-
vide a time-dependent potential that governs the motion of the electrons, somewhat
similar to what happens in a molecule. In close collisions, electron orbits may even
temporarily resemble those in a ‘united atom’, i.e., an atom with atomic number
Z1 CZ2. An electron bound to one atom before a collision has a statistical chance
to be bound to the other one at the time of separation. This process has high proba-
bility if it can proceed without a major change in orbital speed. Therefore, the cross
section for the process decreases rapidly when the projectile speed does not match
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Fig. 2.2 Double-scattering
process leading to electron
capture according to Thomas
(1927)

1
e

2

φ

θ

an orbital speed. A proper description of this type of resonant process invokes the
laws of quantum mechanics.

At high relative velocities, multiple collisions between an electron and the col-
liding nuclei may end up with an electron bound to the projectile. This process will
be discussed in the following section.

Special considerations may be necessary for particles penetrating through con-
densed matter, where the question of whether or not an electron is bound to a projec-
tile may not have a unique answer. This is not only of theoretical interest: Swift ions
emerging from a foil are accompanied by electrons. As mentioned in Sect. 1.5.3, the
energy spectrum of these emitted ‘secondary electrons’ frequently shows a ‘convoy
peak’ in the beam direction at an energy � mv2=2, where v is the velocity of the
emerging ion beam. Such convoy or ‘cusp’ electrons, which may reflect ‘capture
into continuum’ or ‘loss into the continuum’ may have travelled in the vicinity of
the ion for a certain pathlength.

In this connection an operational definition of the charge of an ion travelling
through a material is needed. This may be achieved with X-ray spectroscopic meth-
ods: Since the energy of an X-ray emission line depends on the charge of the emit-
ting atom, X-rays emitted from penetrating ions will be split into a family of satellite
lines reflecting the charge states involved (Knudson et al., 1974, Horvat et al., 1995).

2.3 Early Estimates

2.3.1 Double Scattering: The Thomas Process

A simple process leading to electron capture was proposed by Thomas (1927), see
Fig. 2.2. A projectile 1 moves with a speed v toward a target atom 2 and hits a
target electron e which is kicked off with a recoil speed ve. If the electron can be
considered initially at rest, the relation between the recoil angle � and the electron
energy reads

1

2
mv2e D 2mv2 cos2 � : (2.2)
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according to (3.7) and (3.8), Vol. 1. Hence, for � D 60ı we have

ve D v : (2.3)

This is a necessary condition for the electron to be captured by the projectile, but not
a sufficient one, since the direction of motion does not match that of the projectile.
However, if the spatial configuration allows a subsequent collision with the target
nucleus, the electron may scatter another 60ı with negligible energy loss. If this
happens in the same scattering plane, and if the kinetic energymu2=2 in a reference
frame moving with the projectile is lower than the binding energy, the electron can
be considered as being captured.

Up to this point the argument rests on conservation laws of energy and momen-
tum and is, therefore, independent of whether a classical or quantal description is
adopted. When it comes to the evaluation of the cross section, there is, however, a
difference. Thomas (1927) evaluated a cross section for this process on the basis
of classical collision theory. His derivation hinges heavily on the relation between
impact parameter and scattering angle for the two consecutive collisions. The ne-
glect of the orbital motion implies that the theory can only be valid for v 	 v0. In
that velocity range a classical description of electron motion becomes questionable
according to Sect. 2.3.6, Vol. 1. The predicted capture cross section, which will not
be derived here, reads

�c D 64
p
2

3
�a20Z

2
1Z

7=2
2

�
a0

b1

�7=2 �v0
v

�11
(2.4)

for alpha particles in hydrogen, where b1 D 2Z1e
2=mumax and umax is the maxi-

mum allowed relative speed where the electron still is bound to the projectile.
Equation (2.4), when taken literally as the theory of charge exchange at high

velocity, was found to predict cross sections several orders of magnitude smaller
than measured. This, however, does not imply that the process does not exist:

1. The predicted velocity dependence / v�11 of the capture cross section was sub-
sequently found to describe the behaviour of the total capture cross section in the
limit of high but nonrelativistic projectile speed (Drisko, 1955).

2. Despite a low total capture cross section the process leaves a signature in the
differential cross section, i.e., the cross section at a given scattering angle of the
projectile. Indeed, since the electron carries away a lateral momentummv sin �,
the Thomas process should be observable at an angle

 ' m

M1

sin � D
p
3

2

m

M1

(2.5)

from the incident-beam direction. This peak was found in experiments by Horsdal-
Pedersen et al. (1983) on HC-He and HC-H2 and by Vogt et al. (1986) on HC-H,
as is illustrated in Fig. 2.3.
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Scattering angle [mrad]

Fig. 2.3 Differential cross section for single-electron capture in 7.5 MeV HC-He collision. Empty
symbols: Measurements of Horsdal-Pedersen et al. (1983). Solid symbols: Measurements of Fis-
cher et al. (2006). Solid line: Measurements of Fischer et al. (2006) convoluted with experimental
resolution of Horsdal-Pedersen et al. (1983). From Fischer et al. (2006)

3. Double scattering processes may be treated in second-order quantal perturba-
tion theory. Such calculations have been performed and will be discussed in
Sect. 2.4.5.1.

4. Spruch (1978) demonstrated that the classical treatment of the Thomas process is
valid when applied to the charge exchange between highly excited, high-angular-
momentum quantum states.

2.3.2 Bohr’s Model

A characteristic feature of the Thomas model is the fact that the orbital motion of
the target electron in its initial state is left out of consideration in the kinematics of
the capture process. Instead, the electron speed is adjusted to that of the projectile
by the first of two collision events. This feature also enters into an early estimate
by Bohr (1948) which, like the Thomas model, addressed electron capture by swift
alpha particles. Bohr notes that the cross section for acceleration to � v is given by

�v � �b2 (2.6)

with b D 2Z1e
2=mv2 (cf. Problem 3.7, Vol. 1). The criterion for capture, however,

is quantal and requires the electron to be confined to a sphere with a radius a0 �
�=mv around the projectile nucleus. The probability P for this to happen is given
by the ratio .a0=a/3, where a D a0=Z1 is the orbital radius in the projectile ground
state, i.e.,
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P �
�
Z1v0

v

�3
: (2.7)

On the basis of a simple atomic model, Bohr argued that the number of target elec-
trons that could be captured by this process was given by

n � Z
1=3
2

v

v0
: (2.8)

Collecting these factors, Bohr obtained a capture cross section

�c � 4�a20Z
5
1Z

1=3
2

�v0
v

�6
: (2.9)

While Bohr reported reasonable agreement with early measurements on alpha-
particle ranges by Rutherford (1924), we need to keep in mind that direct mea-
surements of capture cross sections did not exist at the time of writing1.

2.4 Quantum Theory of One-Electron Capture ?

2.4.1 A Qualitative Estimate

An essential feature of both the Thomas and the Bohr model is the need to accelerate
the electron in the capture process. However, regardless of the magnitude of the
projectile speed v, there is a probability for an electron in an atom to have an orbital
speed ve of the order of or even exceeding v, although this probability decreases
rapidly as v exceeds the mean velocity of the tightest-bound electrons. Therefore,
quantum theory allows charge exchange by a process where the electron velocity in
the target frame matches an orbital velocity in the projectile.

Figure 2.4 illustrates this process in classical terms: An electron with an orbital
speed ve, bound to a target nucleus 2, has a velocity ve � v relative to a penetrating
projectile 1. Let us assume the two nuclei to be identical, e.g. hydrogen. Then, if

jve � vj D ve ; (2.10)

the electron may orbit around the projectile nucleus 1 after the collision without
having to get rid of (or gain) kinetic energy.

From (2.10) you easily derive

v � ve D v2=2 : (2.11)

This condition can only be fulfilled if

ve � v=2 : (2.12)

1 Bohr’s paper, although printed in 1948, had been essentially finished about a decade earlier.
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Fig. 2.4 Classical illustration
of resonant electron capture.
See text
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Now, in classical mechanics, orbital radius and speed are uniquely related by Ke-
pler’s third law. Therefore this process is only possible for a distinct configuration in
space (impact parameter) and time. In quantum mechanics the uncertainty principle
allows these conditions to relax. We may then estimate a capture cross section

�c / �r20P1.v=2/P2.v=2/; ; (2.13)

where

P2.v=2/ D
Z
ve>v=2

d3vef2.ve/ ; (2.14)

is the probability for a target electron to have an orbital speed exceeding v=2.
Here f2.ve/ is the velocity distribution in the initial state, P1.v=2/ is the analog
of P2.v=2/ for the projectile, and

r0.v/ � 2�

v
(2.15)

is a representative radius defining the area in which capture is possible.
For Z1 D Z2 and hydrogenic 1s wave functions with a screening radius a you

may like to estimate the probability P2.v=2/ in Problem 2.4. For v 	 v0=Z you
find

P2.v=2/ D 4

5�

�a0v0
av

�5
: (2.16)

With this, (2.13) reduces to

�c � 222

25�
a20Z

10
�v0
v

�12
: (2.17)

Apart from a numerical factor, this is identical with the result of the rigorous quantal
calculation by Brinkman and Kramers (1930) which will be sketched below.

Note distinctly different dependencies on the projectile speed v in (2.4), (2.9) and
(2.17), providing stringent experimental tests on existing theories.
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2.4.2 General Considerations

We shall now have a look at charge exchange from a similar starting point as in
Sect. 4.3, Vol. 1, where the Bethe theory of excitation and energy loss was presented
on the basis of quantal perturbation theory. Charge exchange is more complex, since
the initial and final wave functions belong to different basis sets generated by dif-
ferent hamiltonians, dependent on whether it is the target or the projectile that binds
an electron.

Unlike the Bethe theory which, in its original form, is still today a quantitative
tool in the description of stopping for a considerable fraction of the pertinent param-
eter space in particle penetration, the original theory of charge exchange, initiated by
Oppenheimer (1928) and Brinkman and Kramers (1930), encountered unexpected
problems, the solution of which turned out to be a longlasting, somewhat painful
but also illuminating process. You may find a clear and encyclopedic description of
this development, summarizing contributions from over 400 references to the perti-
nent literature, in a review by Dewangan and Eichler (1994). The discussion in the
following two sections relies heavily on this work, but I shall shortcut the historical
development and try to arrive at the simplest conclusions more or less directly, still
following Dewangan and Eichler (1994) in numerous details.

The notation in this chapter will be more similar to the one adopted in Volume 1
than to the standard notation that has developed in the literature on charge exchange
over the years.

2.4.3 Semiclassical Theory

We shall consider a three-particle system consisting of a target nucleus with atomic
number Z2 located in the origin, a projectile nucleus with atomic number Z1 in
uniform motion,

R.t/ D p C vt ; (2.18)

and an electron bound initially to the target nucleus. Equeation (2.18) implies that
we operate in the semiclassical (or impact-parameter) picture. You may recall from
Sects. 4.3 and 4.4, Vol. 1 that apart from terms of the order ofm=M1 andm=M2, the
semiclassical picture delivers the same excitation cross sections as a fully quantal
description involving an incident plane wave. The same can be shown to be true in
charge exchange (Crothers and Holt, 1966, Dewangan and Eichler, 1994) but will
not be detailed here.

2.4.3.1 The Hamiltonian

The hamiltonian of the system may be written in the form
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H D p2

2m
C V2.r/C V1.jr � Rj/C V12.R/ ; (2.19)

where

V2.r/ D �Z2e
2

r
I V1.jr � Rj/ D � Z1e

2

jr � Rj I V12.R/ D Z1Z2e
2

R
: (2.20)

The interaction potential V12.R/ between the nuclei does not produce a force on the
electron, but it has been included nevertheless because it depends on time through
R.t/. The kinetic energy of the projectile nucleus, on the other hand, is taken con-
stant here and can, therefore, safely be neglected.

In the absence of the projectile, electron motion is governed by the hamiltonian

H D p2

2m
C V2.r/ (2.21)

with eigenstates uj .r/ and energies 
j .
We now split the hamiltonian H according to

H D H2 C V1 ; (2.22)

where
H2 D H C V12.R/C V1.R/ (2.23)

and
V1 D V1.jr � Rj/� V1.R/ : (2.24)

Here, a term V1.R/ has been added to the unperturbed hamiltonian and subtracted
from the perturbation. This innocently-looking step was first proposed by Bates
(1958), but it was Cheshire (1964) who recognized its central significance. Since
it causes the perturbation V1 to decrease as R�2 for large R, it removes undesired
consequences of the long range of the Coulomb force of the type encountered in
Sect. 3.5.1, Vol. 1.

2.4.3.2 Unperturbed Wave Functions

Let us first determine the unperturbed eigenstates of

H2 D H C f .t/ (2.25)

with

f .t/ D V12.R/C V1.R/ D Z1.Z2 � 1/e2

R
: (2.26)

Since f .t/ does not contain the electron coordinate r , it will make itself noticed as
a phase factor e�i˛.t/ in the wave function with
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˛.t/ D 1

�

Z t

dt 0 f .t 0/ D 1

�

Z t

dt 0
Z1.Z2 � 1/e2p
p2 C .vt 0/2

(2.27)

or

˛.t/ D ��1 ln
R � vt

p
C ˛0 ; (2.28)

where

�1 D Z1.Z2 � 1/e2
�v

; (2.29)

and ˛0 is an arbitrary constant which can be set equal to zero.
With this, eigenstates to H2 may be written as

 j .r ; t/ D ei�1 lnŒ.R�vt/=p
e�i�j t=�uj .r/ : (2.30)

Although we are now ready in principle to perform a perturbation expansion in
terms of V1, we need a valid description of the end configuration, where the electron
is bound to the projectile. To this end we split the hamiltonian according to

H D H1 C V2 ; (2.31)

where

H1 D p2

2m
C V1.jr � Rj/C V12.R/C V2.R/ (2.32)

and
V2 D V2.r/ � V2.R/ ; (2.33)

in strict analogy to (2.22)–(2.24).
Denoting eigenstates and energies of an electron in a projectile atom at rest as

v`.r/ and �`, respectively, an alternative basis set for the entire three-body system,
making reference to bound projectile states, reads

�`.r; t/ D ei�2 lnŒ.R�vt/=p
e�i	`t=�v`.r � R/ ei.k�r�!t/ ; (2.34)

where

�2 D Z2.Z1 � 1/e2

�v
: (2.35)

The last factor in (2.34) accounts for the uniform motion of the projectile. You may
verify in problem 2.1 that

�k D mvI �! D mv2=2 : (2.36)

2.4.3.3 Transition Amplitude

Since the �`.r; t/ form a complete basis set for the hamiltonian H, they can serve
as a basis for expansion of the exact wave function  .r ; t/ of the system,
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 .r ; t/ D
X
`

c`.t/ �`.r; t/ (2.37)

with coefficients

c`.t/ D
Z

d3r ��
` .r ; t/  .r ; t/ (2.38)

which, in addition to time, depend on velocity v and impact parameter p. The prob-
ability for the electron to be bound to the projectile into a state ` after the collision
is given by

P`.p; v/ D jc`.1/j2 : (2.39)

We may write the transition amplitude in the form

c`.1/ D
Z C1

�1
dt

d

dt

Z
d3r ��

` .r; t/ .r ; t/ ; (2.40)

since the overlap integral between the unperturbed initial target state and the unper-
turbed final projectile state, both taken at t D �1, vanishes.

You may rewrite the time derivative making use of the Schrödinger equation,
noting that  .r ; t/ is governed by H and �`.r ; t/ by H1,

c`.1/ D 1

i�

Z C1

�1
dt
Z

d3r ��
` .r ; t/.H � H1/ .r ; t/

D 1

i�

Z C1

�1
dt
Z

d3r ��
` .r; t/V2 .r ; t/: (2.41)

If you miss some details in this derivation, go to Problem 2.2.

2.4.3.4 Perturbation Expansion

Equation (2.41) is an exact relationship. In order to determine c`.1/ we need to
find the function  .r ; t/, which is a solution to the Schrödinger equation for the
three-particle system. An impressive arsenal of theoretical/computational methods
has become available for this purpose (Bransden and McDowell, 1992, Dewangan
and Eichler, 1994). Here we apply a perturbation expansion in powers of V1 which,
according to (4.36)–(4.38), Vol. 1 can be written in the form

 .r ; t/ D  0.r ; t/C
X
j

d
.1/
j .t/ j .r ; t/C : : : (2.42)

with

d
.1/
j .t/ D 1

i�

Z t

�1
dt 0
Z

d3r  �
j .r ; t

0/V1.r; t 0/ 0.r; t 0/ : (2.43)

With this we find
c`.1/ D c

.1/

`
.1/C c

.2/

`
.1/ : : : ; (2.44)
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where

c
.1/

`
.1/ D 1

i�

Z C1

�1
dt
Z

d3r ��
` .r ; t/V2 0.r ; t/ (2.45)

and

c
.2/

`
.1/ D � 1

�2

X
j

Z 1

�1
dt
Z

d3r ��
` .r; t/V2.r; t/ j .r ; t/

Z t

�1
dt 0
Z

d3r 0  �
j .r

0; t 0/V1.r 0; t 0/ 0.r 0; t 0/: (2.46)

While evaluating the leading term c
.1/

`
.1/ is by no means trivial, the form of the

second term indicates that the analytical complexity will increase rapidly with in-
creasing order.

2.4.4 First-Order Perturbation

Ignoring the second-order term for a while let us focus on the first-order term

 .r ; t/ '  0.r ; t/ ; (2.47)

where n D 0 denotes the initial state, so that

c`.1/ D 1

i�

Z C1

�1
dt
Z

d3r ��
` .r ; t/

�
Z2e

2

R.t/
� Z2e

2

r

�
 0.r ; t/ : (2.48)

This result, reflecting the B1B or ‘boundary-corrected first Born approximation’,
was demonstrated by Dewangan and Eichler (1986) to produce results in good
agreement with measurements of charge-exchange cross sections. The fact that valid
predictions may emerge already from the first Born approximation was in contrast
to the accepted view for many years.

You may wonder why it is the potentialV2 that appears in the transition amplitude
equation (2.41) rather than the perturbing potential V1. Well, the projection of  on
�` with  j as the initial state is the same as the projection of  on  j if �` is the
final state. If you adopt the latter description, you end up with (2.41), but with V2

replaced by V1, as you may verify by working on Problem 2.2.
Dual descriptions of scattering processes play a key role in the literature. This

has given rise to a special nomenclature which, however, will not be followed here,
because we are not going deeply enough into this subject matter to justify the effort.
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2.4.4.1 Resonance Charge Exchange

Evaluation of the multiple integral equation (2.48) is complicated in general, but
suitable tools have been developed for fully analytical evaluation in special cases,
and accurate numerical evaluation in others. As an example we shall have a look at a
relatively simple case, so-called resonance charge exchange, where Z1 D Z2 D Z

and charge exchange is considered between equivalent levels 0 ! 0. Then, by
insertion of (2.34), (2.48) reduces to

c0.1/ D 1

i�

Z 1

�1
dt
Z

d3r e�i.k�r�!t/u�
0.r � R/

�
Ze2

R
� Ze2

r

�
u0.r/ ; (2.49)

where the t-dependent phase factors ˛.t/ have dropped out. Now, since�
� �

2

2m
r2 � Z2e

2

r

�
u0.r/ D 
0u0.r/ ; (2.50)

where 
0 is the energy of the initial (and final) state we may replace�
Ze2

R
� Ze2

r

�
u0.r/ D

�
Ze2

R
C 
0 C �

2

2m
r2

�
u0.r/ : (2.51)

After introduction of the Fourier transform

u0.r/ D 1

.2�/3=2

Z
d3q u0.q/e

iq�r (2.52)

you find

c0.1/ D 1

.2�/3i�

Z 1

�1
dt
Z

d3r
Z

d3q
Z

d3q0e�i.k�r�!t/

� e�iq0 �.r�R/u�
0.q

0/
�
Ze2

R
C 
0 C �

2

2m
r2

�
u0.q/eiq�r : (2.53)

Here you may carry out the r2-operation and integrate over r . As a result you will
identify a Dirac function ı.�k�q0 Cq/. After integration over q0 you then arrive at

c0.1/ D 1

i�

Z 1

�1
dt ei!t

Z
d3q

� ei.q�k/�R u�
0.q � k/

�
Ze2

R
C 
0 � �

2q2

2m

�
u0.q/: (2.54)



2.4 One-Electron Capture 59

2.4.4.2 Brinkman-Kramers Approximation

Recalling that R depends on time, cf. (2.18), you will find it reasonable to split
(2.54) into two,

c0.1/ D cBK
0 .1/C�c0.1/ ; (2.55)

where cBK
0 .1/ originates in the term 
0 � �

2q2=2m and �c0.1/ in Ze2=R. The
superscript ‘BK’ stands for Brinkman-Kramers2. Considering the former term we
may integrate over time and obtain

cBK
0 .1/ D

Z
d3q ei.q�k/�p ı.q � v � k � v C !/ f0.q/ (2.56)

with

f0.q/ D 2�

i�
u�
o.q � k/

�

0 � �

2q2

2m

�
u0.q/: (2.57)

In the original work of Oppenheimer (1928) and Brinkman and Kramers (1930), the
term�c0.1/ was absent. If we ignore it for a moment we may go over to the cross
section

�BK
0 D

Z
d2p

ˇ̌
cBK
0 .1/

ˇ̌2
(2.58)

or, after insertion of (2.56) and integration over p,

�0 D .2�/2

v

Z
d3q ı.q � v � k � v C !/ jf0.q/j2 (2.59)

according to a procedure which was used in Sect. 4.3.4, Vol. 1.
Noting first that ! � k � v D ��k2=2m we recognize that the Dirac function

under the integral implies that q � k D k2=2 and thus,

.q � k/2 D q2: (2.60)

Since �q is the initial momentum of the target electron and �.q � k/ the final mo-
mentum of the captured electron seen from the laboratory frame, we learn from
(2.60) that charge exchange in this model is only possible in case of exact velocity-
matching. This is a quantification of the process sketched in Sect. 2.4.1, in particular
Fig. 2.4. Note the equivalence of (2.60) with (2.10).

Equation (2.60) also tells us that for s-states, all angular dependence is contained
in the Dirac function. Integration over the angular variable then leads to

2 In the literature, the term OBK, which stands for Oppenheimer-Brinkman-Kramers, occurs fre-
quently instead of BK. Both schemes, Oppenheimer (1928) and Brinkman and Kramers (1930)
operate in the first Born approximation without the term Ze2=R in the brackets, and in both
schemes, (2.49) plays a central role, although Oppenheimer (1928) derived it from the plane-wave
Born approximation, while Brinkman and Kramers (1930) started from the semiclassical impact-
parameter description. However, while the explicit evaluation by Brinkman and Kramers (1930)
involves exact integrations as described below, the evaluation by Oppenheimer (1928) invokes ap-
proximations which lead to drastic discrepancies.
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�BK
0 D .2�/5

�2v2

Z 1

k=2

q dq ju0.q/j4
�

0 � �

2q2

2m

�2
: (2.61)

For the 1s state of a hydrogen-like atom with

u0.r/ D 1p
�a3

e�r=a (2.62)

you may derive (Problem 2.3) the particularly simple result

�BK
0 D �a202

8 v
2
0

v2

Z 1

qDk=2

d.qa/2

.1C q2a2/6
(2.63)

or, after integration,

�BK
0 D �a20

218Z10v120
5v2.v2 C 4Z2v20/

5
: (2.64)

For v 	 2Z2v0 this result differs from the qualitative estimate (2.17) by a factor
of 5�2=16 D 3:1. As we shall learn shortly, (2.64) predicts a too large value, and
(2.17) comes closer to the correct result.

From a physical point of view, the steep decrease of the capture cross section with
increasing projectile speed reflects the fact that the process involves exclusively the
far tails of the velocity distribution of the electron in the target and projectile state.

This calculation can be generalized to capture into an excited state with the prin-
cipal quantum number n > 1. For a one-electron system with arbitrary Z1; Z2 one
finds (McDowell and Coleman, 1970)

�BK
n D �a20

218.Z1Z2/
5v8v120

5n3
�
v4 C 2.Z22 CZ21=n

2/v2v20 C .Z22 �Z21=n
2/2v40

	5 : (2.65)

Setting Z1 D Z2 you may recognize that the cross section for capture into excited
states falls off approximately as n�3.

2.4.4.3 Relativity

Equation (2.64) experiences a major change at beam velocities approaching the ve-
locity of light (Mittleman, 1964, Shakeshaft, 1979, Moiseiwitsch, 1980, Bransden
and McDowell, 1992). Calculations on the basis of the Dirac equation show a dif-
ference between charge exchange with and without spinflip, which increases with
increasing energy up to a factor of � 4 in the extreme relativistic regime. Available
analytic estimates are based on approximations valid in the moderately relativistic
range and differ from author to author. Moiseiwitsch (1980) reports capture cross
sections which can be written in the form

�c;direct D 27�

5
a20

˛12

	 � 1
�

	 C 1

	 � 1C 2˛2

�5
(2.66)
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for capture without spinflip and

�c;spinflip D 23�

5
a20˛

12 .	 C 1/3

.	 � 1C 2˛2/4
(2.67)

for capture with spinflip. Here, ˛ D v0=c D 1=137 is the fine structure constant and
	 D 1=

p
1 � v2=c2.

Both expressions are seen to go as � 1=	 with increasing projectile energy, i.e.,
inversely proportional to the beam energy, in contrast to the steep decrease in the
nonrelativistic limit.

While (2.66) approaches (2.64) for v=c � 1, (2.67) reads

�c;spinflip
v=c�1D 210�

5
a20˛

4

�
v20

v2 C 4v20

�4
: (2.68)

The factor ˛4 makes this a very small quantity.

2.4.4.4 B1B Approximation

You may recall that (2.64) stems from ignoring the term Ze2=R in (2.54) or (2.49).
The term�c0.1/ in (2.55) has been evaluated by Jackson and Schiff (1953) and by
Bates and Dalgarno (1952). Instead of going through a rather cumbersome integra-
tion procedure I shall try to demonstrate how it happens that incorporation of this
term reduces the cross section (2.64) substantially in case of the H-H system.

For clarity, change the spatial variable in (2.49) according to r ! r C R=2, so
that

c0.1/ D 1

i�

Z 1

�1
dt e�i.k�R=2C!t/

Z
d3r e�ik�r

u�
0.r � R=2/

�
Ze2

R
� Ze2

jr C R=2j
�
u0.r C R=2/; (2.69)

Figure 2.5 shows plots of the function u�
0.r � R=2/u0.r C R=2/ for the ground

state of hydrogen for R=a D 2 and 1/2. You may identify a horizontal ridge along
the connection line between the two nuclei and otherwise a strong decrease. Taylor
expansion of the factor Ze2=R�Ze2=jr C R=2j around the midpoint between the
nuclei, which is r D 0 in (2.69), leads to

Ze2

R
� Ze2

jr C R=2j ' Ze2

R
� 2Ze2

R

�
1 � 2

R � r

R2
: : :

�
: (2.70)

Here, the leading term for large R is �1=R. If we had failed to include the first
term in (2.70), the result would have been �2=R instead. Since the cross section
is governed by the square of the transition amplitude, we may expect a substantial
correction.
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Fig. 2.5 Plots of the function u�
0.r � R=2/u0.r C R=2/ for the 1s state of a hydrogen-like

atom. Left: a=R D 1=2; right: a=R D 2. x denotes the component of r in the direction of R in
units of a. y denotes a component perpendicular to R in units of a
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Fig. 2.6 The ratio �B1B=�BK according to Jackson and Schiff (1953) for the HC-H system, cf.
(2.71). The dashed line indicates the regime where relativistic corrections need to be considered

According to Jackson and Schiff (1953), the ratio between the complete B1B
cross section and the BK result reads

�B1B

�BK
D 1

192

�
127C 56

v20
v2

C 32
v40
v4

�

� 1

48

v0

v
arctan

v

2v0

�
83C 60

v20
v2

C 32
v40
v4

�

C 1

24

v20
v2

arctan2
v

2v0

�
31C 32

v20
v2

C 16
v40
v4

�
(2.71)

for the HC-H system. This function is shown in Fig. 2.6. Evidently, the B1B correc-
tion causes a decrease by up to an order of magnitude below the BK result in the
pertinent velocity range v � v0.
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Relativistic calculations have been performed by Eichler (1987). For the HC-H
system, corrections to Figure 2.6 amount to a few per cent in the upper end of the
graph but become very substantial for heavy ions.

2.4.4.5 Problems with the Brinkman-Kramers Approximation

For a full description of the historical development the reader is referred to the ar-
ticle by Dewangan and Eichler (1994). In brief, measurements on charge exchange
in HC-H collisions by Keene (1949) and Ribe (1951) demonstrated that the predic-
tions of Brinkman and Kramers (1930) overestimated the capture cross section by
about a factor of four at beam energies ranging from a few keV to over 100 keV.
Almost simultaneously, Bates and Dalgarno (1952) and Jackson and Schiff (1953)
pointed out that this discrepancy could be removed by adding a term e2=R to the
perturbing potential �e2=jr � Rj. The justification of this term was the fact that the
hamiltonian equation (2.19) of the three-body system contains the internuclear in-
teraction Z1Z2e2=R. While it was unclear why the internuclear interaction should
have such a drastic influence on the electronic transition probability, the agreement
with experiment was very convincing over an energy range from � 30 to 150 keV. It
seemed plausible that poor agreement at lower velocities was due to insufficiencies
of the Born approximation.

As a test of the validity of this model it was applied to heavier ions, in casu C6C,
N7C and F9C on Ar by Halpern and Law (1975). Here, cross sections calculated
in the modified BK approach overestimated existing experimental values by two
to three orders of magnitude. From the above derivation you may recognize that
this was caused by incorporation of a term Z1Z2e

2=R instead of Z2e2=R in the
perturbation. Therefore, this extension of the Brinkman-Kramers scheme could not
be taken as an acceptable solution of the charge-exchange problem.

In Sect. 2.3.1 we have seen that the Thomas capture mechanism invokes two
scattering events by the electron. It seemed reasonable, therefore, to assume that a
quantal description of charge exchange would warrant a treatment up to the second
order in the perturbation expansion (Drisko, 1955). A wealth of clever theory has
been developed based on this assumption over almost half a century, cf. the review
by Dewangan and Eichler (1994). And indeed, second-order terms in the BK expan-
sion may well be dominating over those of first order. However, once second-order
terms become comparable in magnitude with first-order terms the question becomes
relevant whether third- and higher-order terms ever become negligible. Indeed, even
the convergence of the Born expansion itself has been questioned many years ago
(Aaron et al., 1961).

It was Cheshire (1964) who identified the long range of the Coulomb interaction
as the cause of the problem and who showed how to eliminate it by rearranging
the hamiltonian, adding and subtracting the term Z2e

2=R. However, only HC-H
was addressed, wherewith the results of Bates and Dalgarno (1952) and Jackson
and Schiff (1953) were reproduced. As a consequence, the true scope of this was
only slowly recognized in the subsequent development (Belkić et al., 1979). The
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breakthrough came with a paper by Dewangan and Eichler (1986) that produced a
fairly reasonable description of charge exchange in the HC-Ar system already in the
first Born approximation.

2.4.4.6 Heteronuclear Systems

Electrons may be captured into a variety of final projectile states, particularly in
heteronuclear collision systems, i.e., for Z1 ¤ Z2, where the resonance condition

j D �` is normally not fulfilled. Exact analytical calculations, asymptotic expan-
sions and accurate numerical evaluations may be found in the literature, and again
Bransden and McDowell (1992) and Dewangan and Eichler (1994) are very valu-
able sources for a literature search. Several comparisons with experimental data are
shown there, which demonstrate good agreement between theory and experiment for
charge exchange between bare Z1-ions (Z1 > 1/ and hydrogen as well as between
protons and the K-shell of an atom (Z2 > 1).

Here I like to briefly discuss features that deserve attention in this context, in
particular the role of the phase factor ˛.t/.

Keeping within first-order perturbation theory, we may go back to (2.48) which,
after insertion of (2.30) and (2.34) reads

c`.1/ D 1

i�

Z C1

�1
dt
Z

d3r ei� lnŒ.R�vt/=p
 ei.	`��0/t=�

� v�
` .r � R/ e�i.k�r�!t/

�
Z2e

2

R.t/
� Z2e

2

r

�
u0.r/; (2.72)

where

� D �1 � �2 D .Z2 �Z1/e2
�v

: (2.73)

You may note that the terms going as Z1Z2, expressing the interaction V12.R/
between the target nuclei and which enter �1 and �2, have dropped out in the differ-
ence �. While this was to be expected, it appears gratifying nevertheless. However,
a phase factor exp.i� lnŒjR � vt j=p� has to be dealt with for heterogeneous systems
(Z1 ¤ Z2). To this adds a phase factor exp.i Œ�` � 
0�t=�/.

Note also that the p-dependence in (2.72) gives rise to a phase factor e�i� lnp.
This complicates calculations on differential cross sections for charge exchange.
This phase factor drops out when the capture probability jc`.1/j2 is determined,
which leads to the total cross section for charge exchange.

It is of interest to study the role of the phase factor exp.i� lnŒ.R � vt/=p�/.
Figure 2.7 shows the function

ln
R � vt
p

D ln
�p

1C .vt=p/2 � vt=p
�

(2.74)
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Fig. 2.7 The function ln.
p
1C .vt=p/2 � vt=p/ governing the phase factor exp.i� lnŒ.R �

vt/=p
/ in (2.72)

versus vt=p. You may note that except in the vicinity of t D 0, this phase factor
gives rise to rapid oscillations of the integrand, indicating that the time interval in
which capture is likely, narrows in as Z1 increases with Z2 kept constant3.

Figure 2.8 shows the real and imaginary part of the phase factor for � D 1=2

and 2, respectively. The theory as presented above is a high-speed theory. Hence,
small values of � appear most representative. Evidently, rapid oscillations in this
case complicate the evaluation and require reliable computational methods.

2.4.5 Beyond First-Order Perturbation Theory

In addition to straight second-order perturbation theory, an impressive number of
attempts has been made to explain and repair the discrepancies between calculated
and measured cross sections for charge exchange. Dewangan and Eichler (1994) list
and discuss twenty-one theoretical schemes. Many of them exist in a ‘boundary-
corrected’ version, where the electron wave function carries a phase factor of the
type of ˛.t/, (2.28) with an arbitrary constant ˛0, and an uncorrected version,
where such a factor is missing. In view of the central importance of the Coulomb
boundary correction, uncorrected versions may be considered inadequate, except for

3 In the literature you will most often find a slightly different form of this phase factor, which is
found by replacing p in the denominator by another constant, in casu the de Broglie wavelength
̄ D �=mv, so that

ln
R � vt
p

! ln
mv.R � vt/

�
; (2.75)

which is the form proposed by Cheshire (1964). This replacement reflects a different choice of the
constant ˛0 mentioned in (2.28) and does not affect the final result, unless an approximation is
made that spoils this invariance.
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Fig. 2.8 Real and imaginary part of the phase factor exp.i� lnŒ.R � vt/=p
/ entering the tran-
sition amplitude for heterogeneous collision systems, Z1 ¤ Z2. Upper graph: � D 2; Lower
graph: � D 1=2

Z1 D Z2, where the phase factors cancel out. Amongst eight schemes for which a
boundary-corrected version exists, I wish to give preference to the CDW (continuum
distorted wave) picture and the eikonal approximation.

2.4.5.1 Second-order Perturbation Theory

Contributions from second-order perturbation theory to charge exchange were dis-
cussed qualitatively right from the beginning, but interest in these contributions in-
creased dramatically as the deficiencies of the Brinkman and Kramers (1930) ap-
proach discussed in Sect. 2.4.4.5 became evident. You may have noticed in Chaps. 3
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Fig. 2.9 Total (left) and differential (right) cross section for charge exchange in the HC-H system.
BK: Brinkman and Kramers (1930); JS: Jackson and Schiff (1953); D: Drisko (1955); II: Second
Born approximation (Kramer, 1972); From Kramer (1972)

and 6, Vol. 1, and again in Sect. 2.4.3.4, that perturbation theory for collision pro-
cesses gets considerably more complex when you go from the first to higher orders.
But in hindside, the major obstacle in front of a successful theory was the lacking
recognition of the Coulomb boundary condition and the importance of the rear-
rangement of the hamiltonian expressed by (2.22).

Early second-order theories starting with Drisko (1955), Dettmann (1971) and
Kramer (1972) were straight extensions of the Brinkman-Kramers approach. Most
importantly, it was found that asymptotically the contribution to the capture cross
section from the second Born approximation behaved as v�11, in agreement with
the classical estimate of capture by double scattering (Thomas, 1927). Although the
practical significance of this result is limited because relativistic corrections were
neglected, it meant that first-order perturbation theory could not provide a quantita-
tive description.

The scheme did not lead to better agreement with experimental results than
the BK calculation. This led to an impressive theoretical effort by several re-
search groups, which resulted in a variety of theoretical schemes. In addition to
the distorted-wave and eikonal approximations to be sketched below, I like to men-
tion schemes which take into account higher-order contributions in terms of either
Z1 or Z2, whichever is bigger. Such approaches seemed appropriate for strongly
asymmetric collision partners (Briggs, 1977, Macek and Shakeshaft, 1980, Macek
and Taulbjerg, 1981). If you are interested in a comprehensive discussion of the pros
and cons of such approaches, I refer again to Bransden and McDowell (1992) and
Dewangan and Eichler (1994).
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We have seen in Sect. 2.4.4.4 that the scheme of Jackson and Schiff (1953) yields
results compatible with those of the B1B approximation when applied to HC-H.
From (2.46) you may extract that this feature also pertains in the second order.
Therefore, an early numerical evaluation by Kramer (1972) may be expected to pro-
vide valid results. Figure 2.9 shows comparisons between first- and second-order
results for both the total charge-exchange cross section and the cross section dif-
ferential in scattering angle, which reflects the dependence of the charge-exchange
probability on impact parameter.

In the total cross section (Fig. 2.9left) you see that a major improvement is the
step from the Brinkman-Kramers to the Jackson-Schiff result, while the second Born
approximation provides a further, but only minor decrease. The differential cross
section drops down to zero at some intermediate angle. This reflects a change in
sign of the transition amplitude. According to Horsdal-Pedersen (1981) this dip is a
general phenomenon related to the way how the nucleus-nucleus interaction is taken
into account in the hamiltonian.

Calculations for other systems with Z1 D Z2 were performed by Belkić et al.
(1987), and for Z1 ¤ Z2 by Decker and Eichler (1989). Note here that the number
of integrations invoked in (2.46) is prohibitively large for numerical evaluation in
general. While it is tempting, as a first step, to carry out the summation over j , this
is not straightforward since a simple closure relationX

j

 j .r; t/ j .r
0; t/ D ı.r � r 0/ (2.76)

holds only for t D t 0. Therefore, an approximation has frequently been used where
the intermediate states are approximated by free-particle wave functions,

uj .r ; t/ D 1

.2�/3=2
eiŒk�r�.�k2=2m/t � : (2.77)

With this, the sum over j reduces to an integration over k,

X
j

 j .r ; t/ 
�.r; t 0/ D 1

.2�/3
f .t; t 0/

Z
d3k eik�.r�r0/e�i.�k2=2m/.t�t 0/ (2.78)

with

f .t; t 0/ D exp
�

i�1 ln
R � vt

R � vt 0
�
: (2.79)

This integral can be evaluated in closed form (Problem 2.5), so that

X
j

 j .r; t/ 
�.r ; t 0/

D e�3i�=4

�
m

2��.t � t 0/

�3=2
f .t; t 0/ exp

�
i
m.r � r 0/2

2�.t � t 0/

�
(2.80)
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2.4.5.2 Distorted-Wave Picture

Distorted-wave scattering theories are perturbation expansions in which part of
the perturbation has been incorporated into the zero-order wave function. In other
words, an interaction potential VDW.r; t/ is adopted which allows for an analytic or
at least accurate nonperturbational determination of zero-order wave functions. The
subsequent perturbation expansion operates on the basis of an effective interaction
U.r; t/ D V.r; t/�VDW.r; t/ which is weaker than the actual interaction V.r; t/ and
therefore leads to a more rapidly converging perturbation series.

Thus, perturbation theory as outlined in Sect. 2.4.3 is a distorted-wave theory
with the special choice of UDW.r; t/ D V1.r/ � V1.R.t//. We have seen that this
rearrangement of the interaction implies the phase factor e�i˛.t/=�. However, in the
literature on charge exchange these features do not always appear together: There
are distorted-wave theories which do not incorporate a phase factor, or allow for a
phase factor only in either the incoming or the outgoing wave.

The success of a distorted-wave theory hinges on a suitable model interaction
which approximates the real interaction and, at the same time, allows to find appro-
priate wave functions in zero order, preferrably exact ones. Since deviations from
free undisturbed motion are expected to be most pronounced at maximum interac-
tion, distorted-wave potentials have typically a short range.

Calculations on charge exchange with DW models have been performed by many
authors starting from Cheshire (1964). For analytical convenience, DW potentials
frequently depend on the time variable only. A popular choice is

VDW.t/ D
Z

d3r  �
0 .r ; t/V.r; t/  0.r ; t/ (2.81)

which, for a hydrogen-like target and an interaction of the form of (2.24), leads to

VDW.t/ D Z1e
2

�
1

R.t/
C 1

a

�
e�2R.t/=a ; (2.82)

as you may find by solving Problem 2.6. Selected results will be shown below.

2.4.5.3 Eikonal Approximation

Consider the function

 eik.r ; t/ D e�iS.r;t/=� 0.r; t/ ; (2.83)

where

S.r ; t/ D
Z t

dt 0 V.r ; t/ (2.84)

and  0.r ; t/ is an eigenfunction to H0.  eik.r ; t/ is not an exact solution to the
Schrödinger equation, ŒH0 C V.r; t/� .r ; t/ D i�@ .r ; t/=@t , but you may easily
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Fig. 2.10 Left: Total capture cross section for HC-H. Solid line: B1B approximation (Belkić et al.,
1987); dotted line: CDW approximation (Belkić et al., 1979); dashed line: Eikonal approximation
(Dewangan and Eichler, 1994). Right: Same for HeCC-H. Solid line: B1B approximation (Belkić
et al., 1987); dotted line: CDW approximation (Belkić and Janev, 1973, Belkić et al., 1992). Exper-
imental data refer to atomic hydrogen quoted by Dewangan and Eichler (1994). From Dewangan
and Eichler (1994)

verify that

i�
@ eik.r; t/

@t
D Œ
0 C V.r; t/�  eik.r ; t/ : (2.85)

Therefore, eik.r ; t/will normally be a better approximation to the exact wave func-
tion than the zero-order approximation 0.r ; t/, where V.r; t/ would be missing on
the right-hand side of (2.85).

The quantity S.t/ as defined by (2.84) is called the eikonal. A similar quantity
in optics is called the optical path. The eikonal approximation (2.83) is a standard
scheme in quantum mechanics (Schiff, 1981), which was introduced into scattering
theory by Molière (1947).

In the context of (2.24), the eikonal reads

S.r ; t/ D
Z t

dt 0
�
V1.jr � R.t/j/� V1 .R.t//

�

D Z1e
2

v
ln
vjr � Rj C v � .r � R/

vR � v � R
: (2.86)

You may note that S D 0 for t D ˙1. This implies that the full phase factor
exp.�i˛.t/=� has to be added to the eikonal wave function in order that it satisfies
the Coulomb boundary condition. This condition is fulfilled if  0.r ; t/ is taken in
the boundary-corrected form, (2.30).
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Fig. 2.11 Total capture cross sections for HC-He for three energy intervals (left to right).
Solid lines: B1B; dot-dashed lines: DWBA; dashed lines: OBK; double-dot-dashed lines: eikonal
(Kobayashi et al., 1985). Experimental data quoted by Toshima et al. (1987). From Toshima et al.
(1987)

2.4.5.4 Comparison with Experiment

The unperturbed wave function  0, the CDW wave function  CDW or the eikonal
wave function  eik can all serve as first-order approximations in a perturbation the-
ory of charge exchange. Either approximation can be improved by going to the next
order or by applying other approaches such as variational procedures.

Figure 2.10 shows results for protons in hydrogen. Calculations refer to atomic
hydrogen as a target. Five sets of experimental data were likewise found with atomic
hydrogen, while the remaining six data sets refer to molecular hydrogen. The agree-
ment with experimental results appears very good, and differences between three
theoretical results are comparable with the scatter of experimental data. Note that
the cross section varies over almost nine orders of magnitude for an energy variation
over only two orders of magnitude.

Figure 2.11 shows comparisons between several calculational schemes and mea-
surements for HC-He. It appears that the best agreement with experiment is achieved
with the B1B and the eikonal method. However, calculations refer to 1s � 1s pro-
cesses only, and the calculated cross sections were multiplied by a constant factor of
1.2 to account for the fact that measured cross sections do not differentiate between
final states.

Figure 2.12 shows the measured differential cross section for charge exchange in
HC-He by Fischer et al. (2006) which was already shown in Fig. 2.3, but now com-
pared with two theoretical results. Although the Thomas peak is clearly identified in
both measurement and theory, quantitative agreement with experimental data does
not appear better than about a factor of two. It is important here to note the angular
scale: Considering the necessary angular resolution, it is a remarkable achievement
by the experimentalists (Horsdal-Pedersen et al., 1983, Fischer et al., 2006) that the
peak has been identified at all.
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Fig. 2.12 Differential cross section for single-electron capture in 7.5 MeV HC-He collision. Solid
symbols: Measurements of Fischer et al. (2006). Solid line: CDW calculation (Abufager et al.,
2005); dashed line: multiple-scattering (Faddeev) calculation (Adivi and Bolorizadeh, 2004). The-
oretical calculations convoluted with the experimental resolution of the apparatus. Dotted lines:
Theory before convolution. From Fischer et al. (2006)

2.5 Multiple-Electron Systems

2.5.1 Classical Models

A number of models for electron capture in a single event have been developed on
the basis of classical collision theory. It is instructive to confront these models with
quantal estimates to be discussed in the following section.

2.5.1.1 Bell Model

The estimate of Bell (1953) addressed electron capture from light gas atoms by
fission fragments with a high projectile charge q1e. Even in a distant interaction,
the force exerted by the projectile on a target electron can exceed its binding force.
From the instant when this happens, the electron is considered only to interact with
the projectile, and the effect of the target is ignored. The electron is considered as
captured if its speed in the rest frame of the projectile is below the escape velocity.

Quantitative estimates on the basis of this model involve standard relations of
classical Kepler motion. Trends of the capture cross sections were mentioned by
Bell, but quantitative conclusions were only reported on equilibrium charges, which
also invoke a model for electron loss.

Extensive calculations on the basis of a modified Bell model were performed by
Gluckstern (1955).
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2.5.1.2 Bohr-Lindhard Model

The model of Bohr and Lindhard (1954) likewise addresses capture and loss by
fission fragments. Similar to Bell, they introduce a critical distance r0 at which the
Coulomb force due to the projectile balances the centrifugal force of the electron
in its Kepler motion around the target nucleus. While the projectile approaches the
target even further, the electron is assumed to gradually adjust its velocity toward
the projectile speed, so that at some time its energy in the rest frame (kinetic plus
potential) becomes zero. If this happens while the distance between the two nuclei
is still less than r0, the electron is considered as captured, so that the capture cross
section is �c D �r20 .

On the basis of a simple atomic model, Bohr and Lindhard (1954) find

�c D �a20q
2
1Z

1=3
2

�v0
v

�3
: (2.87)

While this formula differs from Bohr’s earlier expression, (2.9), you may recall that
(2.87) is geared toward fission fragments, while (2.9) was developed with applica-
tion to alpha particles in mind.

Bohr and Lindhard also note that the considered process favours electrons mov-
ing at a speed close to v=2, where only a minor adjustment in velocity is required
for the electron to bind to the projectile, cf. Fig. 2.4 above. This condition may be
difficult to fulfill for very light target atoms, with the consequence of electron cap-
ture becoming a rare process. By relaxing the criterion for capture, an alternative
expression was found, valid specifically for weakly-bound target electrons, where

�c D �a20q
2
1

�v0
v

�2 q22
n03 : (2.88)

Here q2e represents a screened charge of the target nucleus and n0 an effective quan-
tum number.

Knudsen et al. (1981b) applied the Bohr-Lindhard model in conjunction with
a simple atomic model to establish an approximate scaling relationship for capture
cross sections for a wide range of collision systems. Figure 2.13 shows a comparison
of their formula with a large number of experimental data. While the scaling is by no
means perfect, the formula may well provide a reliable order-of-magnitude estimate
of a capture cross section in situations where experimental data are unavailable.

2.5.1.3 Straight Simulation

Computer simulation, i.e., straight numerical solution of the pertinent equations of
motion has become increasingly successful with the development of powerful com-
puters. In the context of charge exchange, pertinent equations of motion are New-
ton’s second law as well as the Schrödinger and the Dirac equation.
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Fig. 2.13 Capture cross section for positive ions in argon. Experimental data for N, O, F, Ne, Ar,
Br, Kr, I, Xe and W ions with charges q varying from 4 to 17 from a large number of sources
quoted by Knudsen et al. (1981a) and compared with an empirical scaling relation. From Knudsen
et al. (1981a)

We have seen that a classical description may well be appropriate if certain con-
ditions are fulfilled. However, proper incorporation of the orbital motion of target
and projectile electrons makes even the simplest collision systems untractable by
conventional mathematical methods. This stimulated Abrines and Percival (1966a)
to establish a straight numerical approach, which now goes under the label CTMC,
or classical-trajectory Monte Carlo Calculation.

CTMC invokes three steps,

� the preparation of a statistical sample,
� simulating the dynamics of each configuration, and
� a statistical analysis of the outcome.

Quantum mechanics enters implicitly via input parameters such as binding energies
and velocity distributions of the electrons. Obtaining accurate results requires good
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Fig. 2.14 State-separated cross sections for charge exchange in HC-He collisions calculated by
the CTMC method compared with experimental results. From Schultz et al. (1992)

statistics and, hence, extensive computation time. On the other hand, one and the
same output obtained by this method can be used to extract a variety of quantities
of physical interest, e.g., excitation and ionization cross sections.

Abrines and Percival (1966b) applied the scheme to charge exchange in HC-H
with good success. The range of applicability of the method has been greatly ex-
panded by the work of Olson and Salop (1977), whose code has become a standard
tool in atomic-collision theory, in particular when highly-charged ions and high-Z2
targets are involved. Figure 2.14 shows an example.

Numerical solutions of the Schrödinger equation have become common in atomic-
collision physics. Such calculations can be performed by the ‘coupled-channel’
method, where the wave function is expanded in terms of some basis such as (2.37),
but instead of solving the resulting set of linear equations by perturbation expansion,
a complete numerical solution is found by defining a subset of a finite number of
states that are supposed to govern the process considered.

The number of states involved in charge-exchange and ionization processes
increases with increasing projectile velocity. Therefore, the applicability of this
method is limited by computational power to not too high projectile speeds. Dif-
ferential cross sections are less CPU-intensive than total cross sections which may
require reliable results for a wide range of impact parameters.

An example is the the END (Electron Nuclear Dynamics) code, which was de-
signed with a view to the kinetics of chemical reactions (Deumens et al., 1994). In
this code the nuclear motion is described by quantal wave packets of width zero.
The adopted formalism is a quantal version of the Lagrange formalism known from
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Fig. 2.15 Total capture cross section for HC-H. Solid curve: END (Killian et al., 2004); Experi-
mental data and other theoretical curves quoted by Killian et al. (2004). From Killian et al. (2004)

classical mechanics. The forward and backward coupling between electronic and
nuclear motion is taken into account, as well as electron-electron interaction. In that
sense, the code is suitable for application in systems containing many electrons,
but the main limitations is available computational power. An example is shown in
Fig. 2.15.

2.5.2 Data

An extensive compilation of calculated and measured capture cross sections may be
found in three articles by Janev et al. (1983), Gallagher et al. (1983) and Janev and
Gallagher (1983).

On the basis of empirical scaling relations found by Alonso and Gould (1982),
Knudsen et al. (1981a), Ryufuku (1982) and Janev et al. (1980), Schlachter et al.
(1983) proposed the empirical scaling relation

�c D
p
q1

Z1:82

1:1 � 10�8

QE4:8
�
1 � e�0:037 QE2:2

� �
1 � e�2:44�10�5 QE2:6

�
; (2.89)

where
QE D E

Z1:252 q0:71
; (2.90)
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Fig. 2.16 Scaling of electron capture cross sections according to Schlachter et al. (1983). Solid
line: (2.89). Points: Measured. From Schlachter et al. (1983)

with �c in cm2 and E in keV/u. Here, the QE�4:8 dependence determines the high-
energy behaviour for QE � 100. The second factor causes a bend-over in the interval
10 � QE � 100, and the last factor causes a further bend-over so that the function
approaches a constant for QE < 10. An example is shown in Fig. 2.16.

Comparisons with measurements on a number of systems were performed by
Shevelko et al. (2010). Two examples, referring to measurements with Ge31C on Ne
(Stöhlker et al., 1992) and Xe18C on N2 (Olson et al., 2002), are shown in Fig. 2.17.
The agreement achieved with (2.89) and theoretical estimates, CTMC and eikonal
approximation (Stöhlker et al., 1992) as well as CDW and the CAPTURE code
(Shevelko et al., 2004) illustrates the statement by Tolstikhina and Shevelko (2013)
that ‘getting an accuracy within a factor of 2 is a rather tedious task’.

2.6 Radiative Electron Capture ?

It has been mentioned in Sect. 2.2 that an ion may capture a free electron if the pro-
cess is accompanied by the emission of a photon. This process, illustrated schemati-
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Fig. 2.17 Comparison of measured single-electron capture cross sections with semi-empirical for-
mula and theoretical estimates. See text. From Shevelko et al. (2010)

cally in the left part of Fig. 2.18, is called radiative recombination. The right part of
the figure indicates that radiative recombination is the inverse of the wellknown pho-
toemission (or photoelectric emission) process. Radiative recombination can also
take place with an electron that is initially bound to another atom or molecule. Then
we talk about ‘radiative electron capture’.

The existence of this effect was deduced by Raisbeck and Yiou (1971) from
measurements of equilibrium charge states of high-energy (40–600 MeV) protons
penetrating thin metal foils.

Subsequently, Schnopper et al. (1972) found X-ray emission in experiments with
S, Cl and Br ions with energies up to 140 MeV. Ions in that energy range are highly
charged, so that the emission of characteristic X-rays is greatly reduced. Measured
continuous X-ray spectra were ascribed to radiative electron capture.

Kienle et al. (1973) made similar experiments with N, Ne and Ar beams at ener-
gies up to 288 MeV and, in addition to demonstrating convincing comparisons with
theory, identified that also Bremsstrahlung was active.

From the experimental conditions specified here you may get an impression of
radiative electron capture being a high-velocity phenomenon. Let us see how we can
get at an estimate without diving too much into relativistic collision theory.
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electron
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electron

Fig. 2.18 Radiative recombination (left) and photoemission (right)

2.6.1 Detailed Balance

Figure 2.18 suggests a relation between photoemission and radiative recombination.
One condition that must be common to both phenomena is energy conservation,

�! D U C Ee ; (2.91)

where �! is the photon energy,Ee the kinetic energy of the free electron and U the
binding energy of the electron in the atom.

However, also the cross sections are related. To appreciate this, consider first an
elastic collision between two particles 1 and 2. In Chap. 3, Vol. 1 we have considered
the differential cross section both classically and quantally and have moved freely
between the laboratory and the centre-of-mass frame of reference. We also made
use of a reference frame in which the projectile was at rest. The differential cross
section was expressed in various variables, but its magnitude was independent of the
frame of reference, at least in the nonrelativistic limit. Indeed, in classical nonrela-
tivistic collision theory the differential cross section is equal to an area 2�p dp, the
magnitude of which is the same, whether viewed from the laboratory, the projectile
or any other reference frame.

The process shown in Fig. 2.18 is not an elastic collision, hence the above argu-
ment does not apply here. However, the transition probability must be independent
of the arrow of the time, as long as energy conservation is fulfilled. This is called
the principle of detailed balance. You may convince yourself of this by looking into
Problem 2.7. In order to convert it into a relation between cross sections we employ
the definition emerging from (2.1), Vol. 1, where the cross section for an event was
found to be given by the ratio of the mean number of events per unit time and the
incident current density.

Following Landau and Lifshitz (1960) we consider a reaction between two parti-
cles which results in a change of their identity, so that 1 and 2 represent the state of
the system before and after the interaction. If the initial state is specified, the final
state will represent a variety of configurations, such that the probability for transi-
tion to a given state j2 is given by some function P.j1; j2/. In the reverse process,
on the other hand, it is the state j2 that is specified, while j1 comprises a variety of
configurations. The time reversal implied by the Schrödinger equation, on the other
hand, specifies both the initial and the final state.
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It is convenient to consider a finite normalization volume L3 here, as has been
done in Sect. 5.7.1, Vol. 1, so that a free particle is characterized by a wave function

 k.r/ D 1

L3=2
eik�r (2.92)

with k D .�x; �y ; �z/2�=L.
The total number of quantum states in an element d3k in momentum space (dis-

regarding spin) is then given by

�
L

2�

�3
d3k : (2.93)

We may then express the transition probability by a probability density w12,

P.j1; j2/ ! w12

�
L

2�

�3
d3k2 : (2.94)

where both the incident and the final configuration represent single quantum states.
Hence the quantity w12 so defined must satisfy detailed balance,

w12 D w21 : (2.95)

We may write the cross section d�12 in the form

d�12 D dK12ı.E1 � E2/dE2 ; (2.96)

where the Dirac function represents energy conservation, cf. (2.91), while dK12
contains all other dependencies.

The transition probability is given by the product of the cross section, and the
incident current density, so that

w12 D
�
2�

L

�3
v1N1dK12ı.E1 � E2/

dE2
d3k

; (2.97)

where N1 and v1 represent the number of incident particles per volume and their
speed, respectively.

The same relation holds for the inverse process with subscripts 1 and 2 inter-
changed. With this, (2.95) reduces to

v1 dK12
dE2

k22dk2d2�2
D v2 dK21

dE1
k21dk1d2�1

; (2.98)

where we have set N1 D N2 D 1=L3, i.e., one incident particle in either process.
Now, let state 1 represent a photon and 2 an electron, so that dK12 is the cross

section for photoemission and dK21 the cross section for radiative recombination.
Then,
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E1 D �k1cI v1 D c (2.99)

and
E2 D �

2k22=2mI v2 D �k2=m ; (2.100)

so that (2.98) reduces to

k21
dK12
d2�2

D k22
dK21
d2�1

(2.101)

or
d�RR

d�
D
�

�!

mvc

�2 d�ph

d�
(2.102)

With this, the problem has been reduced to finding a cross section for photoemission,
a classic topic from the early days of quantum theory.

2.6.2 Photoemission

In order to find the latter we have to go back to the problem of excitation of an
atom by an electromagnetic wave which has been considered in Sect. A.5.2, Vol. 1.
That treatment was based on the dipole approximation, i.e., long wavelength or
low photon energy. This assumption does not necessarily apply when we want to
consider radiative electron capture by swift ions. Here, the mismatch between the
orbital speed and the ion speed is typically so large that photon energies will lie in
the x ray or even gamma regime.

Quantal calculations of the cross section for photoemission were initiated by
Wentzel (1926) and followed up by Sommerfeld and Schur (1930) and Stobbe
(1930).

The interaction of an electron with an electromagnetic field can be described by
a hamiltonian

H D 1

2m

�
P C e

c
A
�2

� eˆ ; (2.103)

where A and ˆ denote the vector and scalar potential, respectively4 and P the
momentum.

We may describe a monochromatic electromagnetic wave by

A D A0 cos.k � r � !t/I k � A0 D 0I ˆ D 0 : (2.104)

This is equivalent with an electric field

E D E0 sin .k � r � !t/ (2.105)

for A0 D cE0=!: With this, the interaction of the wave with a Z-electron atom
may be described by a hamiltonian

4 As everywhere else in this monograph we operate in gaussian units here. For translation to SI
units refer to Sect. A.1.1, Vol. 1 or to Jackson (1975).
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H D H C V ; (2.106)

where H is the hamiltonian of the free atom and

V D e

mc

ZX
�D1

A.r� ; t/ � P� : (2.107)

We have dropped the quadratic term in A since we are only going up to the first
order in a perturbation expansion.

Assume the field to be switched on at t D 0 and to be switched off at t D t1.
Then, the transition amplitude from the initial state j0i to a state jj i is given by

cj .t1/ D 1

i�

Z t1

0

dt ei!j 0t hj jV j0i (2.108)

according to (4.37), Vol. 1, or

cj .t1/ D � e

2�mc

 *
j

ˇ̌̌
ˇ̌X
�

eik�r� A0 � P�

ˇ̌̌
ˇ̌ 0
+

ei.!j 0�!/t � 1
!j0 � !

C
*
j

ˇ̌̌
ˇ̌X
�

e�ik�r� A0 � P�

ˇ̌̌
ˇ̌ 0
+

ei.!j 0C!/t � 1
!j0 C !

!
: (2.109)

Here,
�!j0 D Ej � E0 (2.110)

represents the excitation energy. The denominator in the first term in the brackets
of (2.109) indicates that this term is going to be large when the photon energy �!

comes close to �!j0. By the same argument we may deduce that the second term,
with ! C !j in the denominator, is small by comparison in the present context and
will be neglected.

The transition probability per unit time is then given by

w D 1

t1

X
j

ˇ̌
cj .t1/

ˇ̌2 D e2

�2m2c2t1

�
X
j

ˇ̌̌
ˇ̌
*
j

ˇ̌̌
ˇ̌X
�

eik�r� A0 � P�

ˇ̌̌
ˇ̌ 0
+ˇ̌̌
ˇ̌
2  

sin .!j 0�!/t1
2

!j0 � !

!2
; (2.111)

as long as w � 1, where the sum over j goes over all states that are compatible
with energy conservation, !j0 D !.

Before evaluating the sum, let us consider the matrix element in (2.111). Since
we deal with electrons ejected at fairly high energies we may approximate the final
state as a free-electron state,
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jj i D 1

L3=2
eikj �r : (2.112)

Then, in an independent-particle model of the atom we may write*
j

ˇ̌̌
ˇ̌X
�

eik�r� A0 � P�

ˇ̌̌
ˇ̌ 0
+

D 1

L3=2

X
�

Z
d3r e�ikj �reik�rPu�.r/ ; (2.113)

where P D �i�r and u�.r/ is the wave function describing the �th initially occu-
pied single-electron state. By partial integration this reduces to*
j

ˇ̌̌
ˇ̌X
�

eik�r� A0 � P�

ˇ̌̌
ˇ̌ 0
+

D �

L3=2

X
�



A0 � kj

� Z
d3r ei.k�kj /�ru�.r/ ; (2.114)

Going back to (2.111) we need to evaluate the sum over j . The condition !j0 D !

implies that only states in a thin shell with radius
p
2m.�! � U / in k-space can be

excited. Following (2.93) we may introduce a density of states %.E/ in energy space
by means of the relation

%.Ej /dEj D
�
L

2�

�3 Z
d3k ; (2.115)

where the integration goes over all states with a specified energy. The sum over j is
the replaced by an integration overEj , which is conveniently performed by making
the replacement

x D .!j0 � !/t1=2 (2.116)

and yields

w12 D e2kj d2�j
.4�/2�mc2



A0 � kj

�2 ˇ̌̌ˇ̌X
�

Z
d3r ei.k�kj /�ru�.r/

ˇ̌̌
ˇ̌
2

: (2.117)

With a photon current density

cE20
8��!

D !A20
8��c

(2.118)

we then find the differential cross section for photoemission

d� D
e2kj k

2
jz

2�mc!
d2�j

ˇ̌̌
ˇ
Z

d3r ei.kx �kj �r/u�.r/
ˇ̌̌
ˇ
2

; (2.119)

where the x-axis denotes the direction of propagation and the z-axis the polarization
of the incident wave. This result, as well as the essence of the derivation, follows
Schiff (1981).



84 2 Atomistics

10-16

10-12

10-8

10-4

100

0.01 0.1 1 10

∝ v-7

v/Z
1
v

0

(σ
R

R
/a

02 ) 
×

 Z
12 m

v 02 /(
U

+E
e)

Fig. 2.19 Cross section �RR for radiative recombination according to the Stobbe formula (2.122)

2.6.3 Examples

For capture into the K shell, Stobbe (1930) finds the total cross section for radiative
recombination, in the notation of Eichler and Meyerhof (1995),

�ph D 28�2

3

e2

mc!

�
�2

1C �2

�3
exp .�4� arctan.1=�//
1 � exp.�2��/ ; (2.120)

where � is the Sommerfeld parameter

� D Z1e
2

�v
: (2.121)

With this, and (2.102), the cross section for radiative recombination reads, in the
nonrelativistic limit,

�RR D 28�2

3

�!

mv2
a20˛

3

�
�2

1C �2

�3
exp .�4� arctan.1=�//
1 � exp.�2��/ ; (2.122)

where ˛ D 1=137 is the fine structure constant.
Figure 2.19 shows a universal plot of (2.122). It is seen that, due to the factor ˛3,

the absolute value of the capture cross section is small when taken in atomic units.
However, with increasing projectile speed a / v�7 dependence is approached which
is much slower than that for nonradiative capture, going as / v�11 or / v�12.

An extensive discussion of the relativistic case has been given by Eichler and
Meyerhof (1995), based on pioneering work by Sauter (1931a,b).

While (2.119) together with (2.98) shows essential features of radiative electron
capture, such as the dependence on the frequency ! of the emitted X-ray as well as
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Fig. 2.20 Calculated and measured differential cross section for radiative electron capture to
125 MeV S16C in carbon. Smooth curves represent strong-potential Born approximation (SPB)
and impulse approximation (IA). From Jakubassa-Amundsen et al. (1984)

the order of magnitude of the effect, detailed theory is more complex (Kleber and
Jakubassa, 1975, Eichler and Stöhlker, 2007).

Figure 2.20 shows an example of capture from carbon into the K shell of a fully-
stripped sulphur ion. You may note first that the triply-differential cross section
(solid angle and X-ray energy) is of the order of 100 b = 10�22 cm2. The peak lo-
cated between �! ' 5 and 6 is made up primarily by the kinetic energy of a target
electron in the rest frame of the ion, i.e., mv2=2=2.1 keV and the K shell binding
energy of 3.5 keV.

2.7 Electron Loss

From a theoretical point of view, electron loss is an ionization process seen from a
reference frame moving with the projectile. For passage through a gaseous medium,
the particle at rest in the moving reference frame is charged, while the one in motion
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is neutral. For passage through a conducting medium it may be necessary also to
consider ionization by free target electrons.

Both Volume 1 and the present volume in this monograph address primarily the
first and the second moment over the energy-loss spectrum. The ionization cross sec-
tion is related to the zero’th moment and, as such, is more sensitive to the behaviour
near threshold. Since ionization phenomena are central to the topic of radiation ef-
fects, the treatment of ionization cross sections and ionization thresholds will be
reserved to Volume 3. Therefore, the treatment of loss cross sections presented here
is rather superficial.

2.7.1 Single and Multiple Loss

A look at stopping cross sections for heavy ions will tell you that ionization cross
sections can be quite large, so that the probability for single, double and higher ion-
izations may become significant. This implies that we have to distinguish between
single and multiple loss events.

Consider, for simplicity, ionization of a given shell containing n electrons in
an atom at rest. In an independent-particle model, let Q.p/ be the probability per
electron to be liberated after passage of a projectile at a vectorial impact parameter
p. Then, the probability for emission of exactly one electron is

P1.p/ D nQ.p/ Œ1 �Q.p/�n�1 : (2.123)

Similarly, the probability for emission of two electrons is given by

P2.wp/ D n.n � 1/
2

ŒQ.p/�2 Œ1 �Q.p/�n�2 : (2.124)

In other words, the cross section for loss of � electrons is given by

�� D
 
n

�

!Z
d2p ŒQ.p/�� Œ1 �Q.p/�n�� : (2.125)

For not too large values of Q.p/ we may approximate the cross section for single
ionization by

�1 ' n

Z
d2pQ.p/� n.n � 1/

Z
d2p ŒQ.p/�2 (2.126)

and the cross section for double ionization by

�2 ' n.n � 1/

2

Z
d2p ŒQ.p/�2 ; (2.127)

so that
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�1 ' �I � 2�2 ; (2.128)

where

�I D n

Z
d2pQ.p/ (2.129)

is the total ionization cross section.
These considerations can be formulated such as to invoke electrons from different

shells (McGuire and Weaver, 1977). Rigourous definitions would have to involve
transition amplitudes between many-body wave functions.

2.7.2 Theoretical Schemes

In principle, any theoretical scheme to treat ionization processes should be applica-
ble to treat electron loss. This also includes theoretical schemes designed for stop-
ping, such as the Bethe theory, binary theory or CasP.

Since ionization cross sections are determined primarily by energy transfers close
to threshold, soft collisions provide the dominating contribution at least at high pro-
jectile speeds. In the present case, where the ‘projectile’ is a neutral atom, the screen-
ing of the Coulomb interaction implies that this dominance is weakened.

Figure 2.21 shows a comparison between differential energy-loss cross sections
for neutral and fully-stripped carbon ions on helium, calculated by a version of the
PASS code that generates differential energy-loss cross sections (Weng et al., 2006).
This graph includes shell and Barkas-Andersen corrections. While the spectrum for
fully-stripped C ions shows only a minor deviation from the T �2-dependence for
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free-Coulomb scattering, the spectrum for neutral carbon is very close to a T �3=2
dependence.

The standard scheme for calculating ionization cross sections is the Born approx-
imation (Inokuti, 1971). This scheme involves quite complex calculations, once the
upper integration limit becomes essential.

It is useful here to recall the scaling properties of corrections to the straight Bethe
theory of stopping:

� The shell correction is characterized by hv2e i=v2 / Z
4=3
2 v20=v

2,
� The Barkas-Andersen correction is characterized by the inverse of the parameter

entering the Bohr stopping formula, Z1e2!=mv3 / Z1Z2v
3
0=v

3,

� The screening correction is characterized by v2TF =v
2 / Z

4=3
1 v20=v

2.

Thus, calculations on the basis of the Born approximation will be appropriate for
light ions, provided that shell corrections are taken into account. Conversely, what-
ever scheme is employed for heavy ions, projectile screening need to be considered.
The role to be assigned to the Barkas-Andersen correction depends on the desired
accuracy.

Like the Born approximation, the classical-trajectory-Monte-Carlo (CTMC) sim-
ulation method (Olson et al., 1989) differentiates between single and multiple ion-
ization events.

In the regime of dominating single ionization, classical binary scattering is most
convenient. Assume the interaction between a neutral atom and a projectile electron
to be given by

V.r/ D �Z1e2
r

�.r=a/ ; (2.130)

with a given screening function and radius, � and a, respectively. Then, from (3.76)
and (3.8), Vol. 1 you will be able to derive a relation for the energy loss

T D T .v; p/ (2.131)
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to a projectile electron, where v is the projectile speed and p the impact parameter
between a projectile electron and a target nucleus. The loss cross section for a given
shell J is then given by

�J D nJ�p
2
J ; (2.132)

where pJ is defined by
T .v; pJ / D UJ ; (2.133)

UJ being the ionization energy of the J th shell. Such a calculation includes screen-
ing but ignores Barkas-Andersen and shell corrections.

Figure 2.22 shows an example for �.r=a/ D exp.�r=a/, where the scattering
integral can be evaluated analytically (cf. Problem 2.8). Also included is the estimate
for straight Coulomb interaction,

�J D 2�nJZ
2
1e
4

mv2UJ
: (2.134)

Even though the accuracy of the Yukawa prediction deteriorates at low energies, you
will note that the difference to the Coulomb cross section becomes substantial.

2.7.3 Data

Numerous available experimental data for both capture and loss cross sections may
be found in compilations. Lo and Fite (1969) offer data for both gaseous and metal-
lic ions in gas targets over en energy range covering the keV and lower MeV region.
Dehmel et al. (1973) cover a similar energy range with many more data and include a
bibliography ordered by ion-target combination. Tables by Tawara et al. (1985) and
Janev et al. (1988), focusing on nuclear fusion, offer extensive data for charge ex-
change in atomic and molecular hydrogen as well as helium. Dmitriev et al. (2010)
provide a summary of their own data, taken over half a century and covering a broad
spectrum of ion-target combinations in the keV/u energy range.

Calculated capture and loss cross sections at higher energies can be extracted
from output of the ETACHA code (Rozet et al., 1996) forZ1 
 36. The LOSS code
by Shevelko et al. (2001) delivers calculated electron loss cross sections for heavier
ions at high energies.

2.8 Discussion and Outlook

Although the process of electron capture in atomic collisions was studied originally
in connection with particle penetration, the subject has developed its own dynam-
ics both from an experimental and a theoretical point of view. If you find that this
chapter overemphasizes charge exchange in simple hydrogen-like collision systems,



90 2 Atomistics

you are unquestionably right, when comparing with monographs on related subjects
such as Kumakhov and Komarov (1981) or Nastasi et al. (1996). On the other hand,
this is only a rudimentary account of the effort spent in the field and reported by
Bransden and McDowell (1992) or Dewangan and Eichler (1994).

Just as in other areas of ion-beam physics, there is a striking contrast between
the degree of sophistication of both theory and experiment on the one hand, and the
degree of agreement between theoretical predictions and experimental results on the
other. Clearly there is space for improvement.

To the extent that charge exchange can be characterized by cross sections, the
statistical theory aiming at equilibrium charges, fluctuations and approach to equi-
librium can be developed without reference to specific ion-target combinations. This
is the topic of the following chapter.

Problems

2.1. Show that (2.34) satisfies the Schrödinger equation

H1�`.r; t/ D i�
@�`.r ; t/

@t
(2.135)

and demonstrate that the electron density is centered around the projectile position
R.t/.

2.2. Go through the derivation of (2.41) from (2.38). You need to write down the
Schrödinger equation for the two pertinent hamiltonians. You will also need the
relation Z

d 3r  �
1 .r/O 2.r/ D

Z
d 3r ŒO 1.r/�

� 2.r/ (2.136)

for hermitian operators (Schiff, 1981).

2.3. Derive (2.63) from (2.61) for the HC-H system using (2.62).

2.4. Find the velocity distribution f .ve/ for the wave function (2.62) and determine
the probability P.v=2/ D R1

v=2 f .ve/4�v
2
e dve for an electron to have a velocity

ve > v=2.

2.5. Derive (2.80) from (2.78) and demonstrate that (2.80) approaches a Dirac func-
tion ı.r � r 0/ for t ! t 0. [Hint: Show first that the integral over r 0 yields f .t; t 0/
for arbitrary t and t 0. Then study the behaviour of the function for t ! t 0].

2.6. Derive (2.82)

2.7. Demonstrate that, for an arbitrary collision event, the transition probability P12
from a state 1 to a state 2 of the particles involved, is identical with the probability
for the inverse process P21. Hint: Write  2 D S 1 and look at the properties of the
operator S . If needed, consult Landau and Lifshitz (1960).

2.8. Try to reproduce Fig. 2.22 from the information given in the text.
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Chapter 3

Charge Exchange: Statistics and Energetics

Abstract This chapter deals with three interrelated topics. In the first part, stochastic
theory of charge-state distributions is developed with cross sections for electron cap-
ture and loss as well as excitation cross sections and lifetimes as input. This yields
general expressions for equilibrium charge fractions as well as transients. The sec-
ond part addresses the energetics of charge-changing collisions, taking into account
electronic binding energies and the momentum of recoiling nuclei. The third part
addresses general expressions for mean energy loss and straggling in the presence
of charge exchange.

3.1 Introductory Comments

Charge exchange has an influence on energy loss. Firstly, energy is spent in a charge-
changing event. This contributes to electronic stopping but is neither explicitly nor
implicitly contained in those estimates that have been considered in various chap-
ters of Volume 1. Secondly, the stopping cross section depends on the ion charge.
Therefore the energy loss per pathlength will oscillate irregularly around some equi-
librium value. This effect may to some degree average out in the mean energy loss,
but it definitely contributes to energy-loss straggling. The significance of the effect
was pointed out by Bohr (1948), while quantitative predictions and experiments
came much later, starting with Vollmer (1974), Efken et al. (1975) and Winterbon
(1977).

A special complication which has frequently been left out of theoretical treat-
ments is the influence of excited projectile states on the equilibrium charge state:
A projectile may undergo excitation without electron capture or loss. This will, as
a first approximation, give rise to a higher cross section for electron loss than that
of a projectile in its ground state. Ignoring this feature may result in an incorrect
prediction of the equilibrium charge.

P. Sigmund, Particle Penetration and Radiation Effects Volume 2,
Springer Series in Solid-State Sciences 179, DOI: 10.1007/978-3-319-05564-0_3,
� Springer International Publishing Switzerland 2014
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Fig. 3.1 Charge exchange in
sandwich target. See text

� � �

y x

I L J

In the present chapter we shall look first into the statistics of charge-changing
events, thereafter energy loss in charge-changing events and, finally, the statistics of
energy loss in the presence of charge exchange.

3.2 Statistics of Charge and Excitation States

In this section we shall have a look at statistical relations that govern the evolution
of the charge state as an ion travels through a stopping medium. The focus will be on
two approaches that are physically equivalent but make use of different mathemati-
cal tools. Fundamental equations will invoke occupation probabilities for ‘projectile
states’, but when misunderstanding is unlikely we may also call them ‘charge frac-
tions’.

3.2.1 Transition Matrix

Let us start by considering an ion incident on a layer of some homogeneous target
material (Fig. 3.1) of thickness x C y. This thickness is assumed small enough so
that energy loss and angular deflection can be ignored. Let us specify the electronic
states of the ion by capital letters I D 1; 2 : : : which are thought to run over all
charge and excitation states. Let FIJ .x/ be the probability that a projectile initially
in state I be in a state J after penetrating through a layer x.

Assuming statistical independence of events in the two layers shown in Fig. 3.1
we must have

FIJ .x C y/ D
X
L

FIL.y/FLJ .x/: (3.1)
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This follows from the fundamental laws of multiplication and addition of probabil-
ities.

Equation (3.1) is seen to be a matrix equation. Indeed, if we define a matrix

kFIJ .x/k D F.x/; (3.2)

(3.1) reads
F.x C y/ D F.y/F.x/: (3.3)

This equation has the general solution

F.x/ D eNxQ; (3.4)

where Q is an arbitrary square matrix with as many rows and columns as there are
states contributing to F.x/. The exponential of a matrix is defined in straight analogy
to the exponential of a scalar quantity,

eNxQ D
1X
�D0

.NxQ/�

�Š
: (3.5)

The density N , the number of atoms per volume, has been factorized out since we
know already that the proper measure of the layer thickness is the number of atoms
per area, Nx.

The explicit form of the matrix Q is governed by the physics of the process
involved. Consider a very thin target so that

F.x/ D 1 CNxQ : : : (3.6)

Truncating the series at the term linear in Nx indicates restriction to the single-
collision limit. Now, in that case we can easily write down FIJ .x/, which will be
given by

FIJ .x/ D ıIJ

 
1 �

X
L

Nx�IL

!
CNx�IJ ; (3.7)

where �IJ is the cross section for transition from state I to state J in a single col-
lision. The transition I ! J may represent a capture, loss or excitation of one or
more electrons. The first term on the right-hand side in (3.7) represents the proba-
bility for penetration through x without any such transition.

Remembering that the unit matrix is given by 1 D jjıIJ jj we deduce

QIJ D �IJ � ıIJ
X
L

�IL (3.8)

from (3.6) and (3.7). From this followsX
J

QIJ D 0 (3.9)
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for arbitrary I , a relation that will become useful in the following.
This description was proposed by the author (Sigmund, 1992). Apart from the

assumptions of negligible energy loss and angular deflection—which could be aban-
doned if necessary—another, more serious assumption enters the above derivation,
the separability of individual collision events. This is not expected to be a prob-
lem if the medium is a dilute gas. Whether or not the assumption is problematic
for condensed matter can be judged by inspecting pertinent cross sections. If this
inspection indicates mean free paths for charge exchange of the order of the inter-
atomic distance, the use of transition probabilities becomes questionable, so that
quantal transition amplitudes may have to be considered instead.

The notation introduced in this chapter applies to a number of discrete states, as
it would be the case if we only considered charge states. The notation also allows
for a finite number of discrete states belonging to one and the same charge state. In
practice, the number of such states will be kept small.

3.2.2 Rate Equations

You may recognize that the above derivation and Fig. 3.1 are analogous to the ex-
position of the Bothe-Landau formula for the energy-loss spectrum in Sect. 9.2.1,
Vol. 1. You may also recall that an alternative derivation of the Bothe-Landau for-
mula goes over transport equations, of which there exist forward and backward ver-
sions, discussed in Sect. 9.5.2, Vol. 1. You are invited to derive equivalent equa-
tions for the charge fractions in Problem 3.1, following a procedure described in
Sect. 9.5.1, Vol. 1. Here we shall follow a more direct approach.

Differentiation of (3.4) with respect to x yields

dF.x/
dx

D NF.x/Q D NQF.x/: (3.10)

When written in components the first identity reads

dFIJ
dx

D N
X
L



FIL�LJ � FIJ�JL

�
: (3.11)

This represents a set of rate equations which are frequently encountered in the lit-
erature (Bohr and Lindhard, 1954, Allison, 1958, Betz, 1972). The first term on the
right-hand side represents the increase per travelled pathlength in the charge frac-
tion J by transitions from all L to J , whereas the second term reflects the loss from
J to all L. You will encounter this type of rate equation wherever you deal with
stochastic processes.

The second identity reads

dFIJ
dx

D N
X
L

�IL


FLJ � FIJ

�
: (3.12)
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This is the backward form of the rate equation which has only rarely been mentioned
in the present context (Sigmund, 1991). Operationally, the forward form (3.11) is
most suitable for performing averages over incident states, while averages over final
states are conveniently evaluated via the backward equation (3.12).

A major advantage of an approach via rate equations is the option to include an
explicit dependence of the cross sections for charge exchange on the beam energy
(Burenkov et al., 1992).

3.2.3 Spontaneous Processes

Transitions in the electron structure of the projectile are not necessarily collision-
induced: An excited projectile may relax into a lower level by a radiative transition.
Moreover, the projectile may undergo charge exchange by an Auger process. While
such processes are stochastic, the pertinent variable is real time t rather than path-
length x D vt .

Spontaneous processes may be included in the statistic description by means of
the replacement

Nx�IJ ! Nvt�IJ C tƒIJ (3.13)

and using either t or vt as the independent variable, whereƒIJ denotes a transition
probability per unit time.

Equation (3.13) tells you that the relative significance of collision-induced and
spontaneous processes depends on the quantityNv�IJ =ƒIJ . At low density and/or
low projectile speed there is time enough between collisions for spontaneous pro-
cesses to proceed. Thus there will be a good chance that after a collision the projec-
tile will be able to relax into its ground state before the subsequent encounter.

3.2.4 Examples

It has been most common to determine the charge evolution either by numerical so-
lution of the rate equations (3.11) or by Monte Carlo simulation. Direct evaluation of
the transition matrix has not been customary except for the two-state case discussed
below, even though this method is certainly competitive and perhaps superior, espe-
cially with regard to accuracy, necessary programming effort and computing power,
as documented by Osmani and Sigmund (2011).

3.2.4.1 The Two-State Case

As a start, consider a system with only two states, I; J D 1; 2. Then the matrix Q
reads
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Fig. 3.2 Development of charge fraction FIJ with penetration depth x for two-state system. Ar-
bitrary units, except that the unit of Nx must be the inverse of the unit of the cross section �IJ .
Numerical values of cross sections do not refer to a specific system

Q D
������12 �12

�21 ��21

���� : (3.14)

Note that diagonal elements �11 and �22—which are undefined and meaningless—
do not enter.

From (3.14) follows
Q2 D ��Q (3.15)

and, hence,
Qn D .��/n�1Q; (3.16)

where
� D �12 C �21: (3.17)

With this the exponential series (3.4) reduces to

eNxQ D 1 C Q
�

�
1 � e�Nx�

�
(3.18)

or

kFIJ .x/k D 1

�

�����21 �12�21 �12

����C 1

�

���� �12 ��12
��21 �21

���� e�Nx� : (3.19)

Here the first term is independent of x and, hence, represents the equilibrium charge
fractions

F1 D �21

�
I F2 D �12

�
: (3.20)

The second term represents the transient behaviour: For x D 0 it ensures that
FIJ .0/ D ıIJ as it must be. More important, the 1=e depth for approaching equi-
librium is

ƒ D 1

N�
: (3.21)
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Fig. 3.3 Development of charge fractions FIJ with penetration depth x for three-state system.
Arbitrary units, except that the unit ofNx must be the inverse of the unit of the cross section �IJ .
Numerical values of cross sections do not refer to a specific system

Figure 3.2 shows an example. Diagonal elements start at unity for x D 0, while
off-diagonal elements start at zero. Asymptotic charge fractions are independent of
the initial state.

3.2.4.2 More than Two States

Also the three-state system has an algebraic solution. It was derived by Allison
(1958) from the rate equation and by the author (Sigmund, 1992) via the matrix
method. However, with six free parameters in the general case, that solution is diffi-
cult to bring into an illuminating form. Instead we shall have a look at examples.

The matrix Q reads

Q D
������
��1 �12 �13
�21 ��2 �23
�31 �32 ��3

������ ; (3.22)

where
�1 D �12 C �13I �2 D �21 C �23I �3 D �31 C �32 (3.23)

are the total cross sections for transitions from levels 1, 2 and 3, respectively. Charge
fractions have been determined by straight numerical summation of the series (3.4).

Figure 3.3 shows an example. If, for a moment, you only consider F11.x/,
F13.x/, F31.x/ and F33.x/, you will see essentially Fig. 3.2 apart from quantitative
details. However, the intermediate state brings about a new feature: F12 develops a
maximum as a function of penetration depth. The rapid initial increase is due to the
relatively large cross section �12 in conjunction with a small value of �13, while the
subsequent decrease is due to the relatively large value of �23.
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Fig. 3.4 Approach to charge equilibrium in three-state system with two states for the neutral atom.
Upper graph: charged component; lower graph: neutral component. See text

Figure 3.4 also shows a three-state system. Explicit numbers do not refer to a
specified system, but we may consider 1 to denote the ground state and 2 an excited
state of a neutral projectile, while 3 denotes a state where an electron has been lost.
The upper graph shows the neutral fractions nn D F11 CF12 and cn D F31 CF32
for an initially neutral or charged projectile, respectively, while the lower graph
shows the charged fractions nc D F13 and cc D F33 for an initially neutral or
charged particle, respectively. Each of the two graphs shows two sets of input, dif-
fering only in one quantity, namely the cross section �21 for decay from the excited
state 2 to the neutral ground state 1. The case where this quantity is set to zero
(thick lines) is referred to as ‘solid’, with reference to the model by Bohr and Lind-
hard (1954) to be discussed below. The case where it is nonvanishing (thin lines)
is referred to as ‘gas’. At present we just note that the presence of an intermediate
state affects both the transient behaviour and the equilibrium charge. It is seen that
the equilibrium charge increases when deexcitation of the excited state is forbidden.
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Fig. 3.5 Measured charge fractions C6C, C5C and C4C (top to bottom) versus target thickness
for incident C6C ions at 3.0 MeV/u. The solid line without data point shows the fraction of C5C

ions in an excited state. From Read (1984)

Fig. 3.6 Measured charge fractions for 6.0 MeV I 2C ions in argon. The abscissa variable is � D
Nx. From Ryding et al. (1969)

Figure 3.5 shows the development of charge states for incident C6C ions. The
theoretical analysis is based on four states. While the fraction of C4C is found to be
negligible, the fraction of excited C5C ions is found to be significant.

Figure 3.6 shows an example of measured charge fractions as a function of pen-
etrated pathlength for 11 charge states of iodine ions in argon. The incident charge
is q D 2. Consequently,F2 decreases monotonically, while F1 goes through a max-
imum but decreases even more rapidly thereafter. Neutrals are not recorded, while
even F11 accounts for � 2 pct. in equilibrium.
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3.2.5 Eigenvalue Expansion ?

According to elementary calculus, solutions of linear differential equations with
constant coefficients can be expressed in terms of exponentials. In the present con-
text this implies that the matrix (3.4) can be written as

F.x/ D
X
�

F.�/eNxq
.�/

; (3.24)

where q.�/ is an eigenvalue to Q,

Qˆ.�/ D q.�/ˆ.�/: (3.25)

The number of terms in the sum (3.24) is equal to the number of states. One can
prove (Sigmund, 1992) that one of the eigenvalues q.�/, say q.0/ is vanishing, while
the others are negative. Thus, the matrix F.0/ contains the equilibrium charge frac-
tions, while the others determine the approach to equilibrium.

Equation (3.24) assumes all eigenvalues to be different, i.e., no degeneracy. In
case of degeneracy, exponentials get multiplied by polynomials of first or higher
order, dependent on the degree of degeneracy.

The Laplace transform f.s/ of F.x/ reads

f.s/ D
Z 1

0

dx e�sx F.x/ D
X
�

F.�/

s �Nq.�/
(3.26)

according to (3.24), or

f.s/ D 1

s1 �NQ
(3.27)

according to (3.4). Thus, charge fractions may be determined from the residues of
the poles of the matrix (3.27).

For many applications the very existence of the above expansion is helpful even
when none or not all of the coefficients F.�/ are evaluated explicitly (Sigmund, 1992,
1994).

Equation (3.19) represents an example of (3.24).

3.3 Charge Equilibrium

Both the two-state and the three-state case show that with increasing depth x, aver-
age charge fractions approach an asymptotic value, the equilibrium charge fraction
which is independent of the initial charge state. This is a much more general result.
Abbreviating FIJ .1/ D FJ we may write (3.11) in the limit of large x,
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dFJ
dx

D N
X
L



FL�LJ � FJ �JL

� D 0: (3.28)

In other words, in an equilibrated beam, the number of ions per time or pathlength
being fed into a state J is equal to the number of those lost from that state,X

L

FL�LJ D FJ
X
L

�JL: (3.29)

The sum over all states is important here. Except in special cases, e.g. for a two-state
system, detailed balancing does not hold,

FL�LJ ¤ FJ�JL; (3.30)

as you may prove in Problem 3.2.

3.3.1 Continuum Approximation ?

Bohr and Lindhard (1954) found an elegant procedure to determine charge distribu-
tions for heavy ions by assuming the number of charge states involved to be large
enough so that a continuum description may be justified. Only one state is involved
for each ion charge q, called Fq.x/ in the following, so thatX

q

Fq.x/ D 1: (3.31)

We also need the average charge

F .1/.x/ D
X
q

qFq.x/ (3.32)

and the square average
F .2/.x/ D

X
q

q2Fq.x/: (3.33)

Cross sections for charge exchange are denoted as

��q.q/: (3.34)

For �q < 0 we deal with a capture cross section, while loss cross sections refer to
�q > 0. Evidently, this notation allows for multiple loss and capture events.

We may derive a rate equation for Fq.x/ from (3.11) by dropping the index I
and substituting J ! q,
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dFq
dx

D N
X
�q

�
Fq��q��q.q ��q/� Fq��q.q/

	
: (3.35)

Multiplying by q and summing over q then yields

dF .1/

dx
D N

X
q;�q

�qFq��q.q/: (3.36)

Now, assume cross sections to vary slowly with the ion charge, so that

��q ' ��q.qequ/C .q � qequ/�
0
�q.qequ/; (3.37)

where qequ is the mean equilibrium charge at the beam velocity under consideration.
With this, (3.36) reduces to

dF .1/

dx
D N.F .1/ � qequ/

X
�q

�q� 0
�q.qequ/CN

X
�q

�q��q.qequ/: (3.38)

Now, in charge equilibrium we have F .1/.x/ � qequ, so that both the term on the
left-hand side and the first term on the right-hand side must vanish. This implies that
also the second term on the right-hand side must vanish,X

�q

�q��q.qequ/ D 0: (3.39)

This relation determines the equilibrium charge. In the special case when only
single-electron processes are allowed, equilibrium is defined by the cross-over of
the cross sections for capture and loss. Using (3.39) we may write (3.38) in the form

d
dx
.F .1/ � qequ/ D � 1

�
.F .1/ � qequ/; (3.40)

where
1

�
D �N

X
�q

�q� 0
�q.qequ/ (3.41)

defines the approach to equilibrium. Then,

F .1/.x/ D qequ C
h
F .1/.0/� qequ

i
e�x=: (3.42)

Going back to (3.35), multiplying by q2 and summing over q we find an equivalent
relation for F .2/.x/,

dF .2/

dx
D N

X
q;�q

Fq��q.q/
�
2q�q C�q2

	
: (3.43)
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After approximating the cross sections by (3.37), you will arrive at a relation which,
on the right-hand side, contains terms with both F .2/, F .1/ and F0 D 1. This rela-
tion becomes more compact after going over to the variance

M2.x/ D F .2/.x/ �
h
F .1/.x/

i2
; (3.44)

where it reduces to

dM2

dx
D � 2

�
M2 CN

h
F .1/ � qequ

iX
�q

�q2� 0
�q.qequ/CN

X
�q

�q2��q.qequ/ :

(3.45)
Now, in charge equilibrium the term on the left-hand side as well as the second term
on the right-hand side must vanish, so that

M2;equ D N�

2

X
�q

�q2��q.qequ/: (3.46)

This defines the width of the charge-state distribution in equilibrium.

3.3.2 Gaussian Apparoximation

From the mean charge and its variance one may construct a gaussian charge distri-
bution. Numerous measurements have confirmed the approximately gaussian shape
of equilibrium charge distributions Nikolaev (1965), Betz (1972). From an exten-
sive discussion in Chap. 9, Vol. 1, you may recall that Bothe-Landau-type profiles
approach gaussians with increasing pathlength.

However, exceptions have been found. Figure 3.7 shows equilibrium charge dis-
tributions for bromine ions in carbon at two different energies. An almost perfectly
gaussian profile is found at 100 MeV, while a significantly steeper decrease at the
high-charge end is observed for 140 MeV. The explanation offered by the authors
is based on the fact that a major drop is found from charge state 25 to 26. Since
Z1 D 35 for bromine, this implies that a Br25C ion has a filled L shell, while for
q D 26 a hole in the L shell must be created which has a much higher binding
energy than M electrons and, hence, a lower loss cross section. Clearly, a proper
description of this feature goes beyond the continuum model: The assumption of a
linear dependence of capture and loss cross section on the ion charge is incompatible
with a sudden drop of the loss cross section.
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Fig. 3.7 Charge fractions of 100 MeV (upper graph) and 140 MeV (lower graph) bromine ions in
carbon as a function of travelled pathlength and profiles (left) and equilibrium distributions (right).
Incident charge states were 11 and 15, respectively. From Moak et al. (1967)
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Fig. 3.8 Mean charge fractions of fission fragments penetrating through gaseous targets and
emerging from solid targets vs. atomic number Z2. Data from Lassen (1951b)

3.3.3 Gas-Solid Difference

3.3.3.1 Lassen’s Measurements

Even though the two graphs in Fig. 1.21 do not refer to the same abscissa scale, it
is evident that mean charge fractions are higher in the lower graph than in the upper
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one. This is in accordance with observations by Lassen (1951b) shown in Figs. 1.1
and 1.19.

Lassen also noted that the sign of the gas-solid difference is inverted from the
light to the heavy fragment. However, from the scaling rules discussed in Chap. 1
we know that comparison with theory ought to go via charge fractions rather than
absolute charges. Thus, when the same data are plotted as charge fractions (Fig. 3.8),
the sign of the gas-solid difference is the same for the light and the heavy fragment.

While differences between light and heavy fragments may be ascribed to differ-
ent velocities (Problem 1.7), the gas-solid difference is clearly outside the scatter
which you may expect according to Fig. 1.21.

The increase of the mean equilibrium charge in gases with increasing pressure
shown in Fig. 1.19 is much weaker than the gas-solid effect and, with the exception
of measurements on hydrogen gas, barely outside experimental accuracy. Never-
theless the effect was considered real and, as you will see below, its existence was
confirmed in subsequent studies.

3.3.3.2 Analysis by Bohr & Lindhard

While there is a number of potential reasons for observing a gas-solid difference,
the observation of a pressure dependence in experiments on gas targets, referred
to in Fig. 1.19 appears to point at a density effect as the prime candidate for an
explanation.

A thorough analysis by Bohr and Lindhard (1954), based on their solution of rate
equations discussed in Sect. 3.3.1 as well as simple estimates of capture and loss
cross sections, showed reasonable absolute agreement with measured equilibrium
charge states of fission fragments in gases by Lassen (1951b,a). Their version of
the rate equations, which considers only one projectile state for each ion charge,
assumes that at a given velocity, cross sections for capture and loss only depend on
the ion charge and not on the detailed electron structure. In other words, if an ion
has undergone a collision ending up in an excited state, it will have time enough
to relax into its ground state by a radiative transition before the next collision. The
degree to which this condition is satisfied will typically depend on the density of the
target medium.

Bohr & Lindhard argued that with increasing gas pressure, an increasing fraction
of the penetrating ions will not have time to decay into their ground states between
collisions and hence be in an excited state. This will cause an increase in the effective
cross section for electron loss and thus a shift of the equilibrium between capture and
loss processes toward higher charge states. This explanation appeared particularly
plausible because the effect was more pronounced in hydrogen than in helium and
argon gas: Excited states in hydrogen lie relatively close to the continuum, while
excited states in heavier atoms are distributed more uniformly.

Bohr & Lindhard asserted that similar considerations apply to the gas-solid dif-
ference reported by Lassen (1951b), although they emphasized the complexity of
the phenomenon. In particular, they pointed out that highly excited ions emerging
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from a solid may emit electrons and thus end up in a higher charge state before
hitting the detecting device.

3.3.3.3 Further Development

The gas-solid difference in charge state received increased interest when monoener-
getic, mass- and charge-separated heavy-ion beams became available at tandem ac-
celerators (cf. Sect. 1.3.1, Vol. 1). Particular interest was paid to a seeming paradox:
From the fact that the stopping cross section for a point chargeZ1e is proportional
toZ21 , one expected an approximate q21 dependence of the stopping cross section for
a heavy ion on its charge q1e. Thus, a noticeable gas-solid difference in the equi-
librium ion charge would result in an even more pronounced gas-solid difference in
equilibrium stopping. Such a difference was not found in a thorough and extensive
experimental study by Pierce and Blann (1968). We shall come back to this aspect in
Chap. 4. At this point, let us just look at a few more measurements on charge states.

Figure 3.9 shows charge fractions measured by Ryding et al. (1970) as a function
of target thickness for chlorine ions in hydrogen. Pertinent cross sections for elec-
tron capture and loss were determined by fitting the low-thickness portion of the
measured charge fractions to the rate equations (3.11). The obtained fit was found
only to describe the measured dependence over a limited thickness interval.

The analysis was then repeated with density-dependent cross sections by divid-
ing up the interval covered by measurements into six overlapping regimes, each
assuming density-independent cross sections. These regimes are indicated in the
graph. The resulting effective cross sections are shown in the lower graph. A weak
increase of the effective ionization cross section is found, in agreement with the
expectation of Bohr and Lindhard (1954), but a more pronounced decrease of the
capture cross section.

While one could possibly argue for a decreased capture cross section for ions
penetrating solids, Betz and Grodzins (1970) asserted that electron emission after
emergence from the target, mentioned by Bohr and Lindhard (1954) as an addi-
tional process, was actually the dominating one. This was a plausible way to explain
the seeming absence of a gas-solid difference in stopping cross section mentioned
above. Since electron emission by highly excited ions proceeds via Auger electrons,
this explanation implies that a number of Auger electrons equivalent with the gas-
solid difference in charge state would have to be detectable near the exit point. In an
experiment with 125 Br ions in carbon, Schramm and Betz (1992) found less than
one Auger electron per incident ion. This is much less than required to confirm the
assertion of Betz and Grodzins (1970).

The question of whether the loss or the capture cross section has the dominating
influence on the density effect and/or the gas-solid effect is unresolved and still
a matter of discussion. Figure 3.10 shows experimental results from measurements
with singly-charged or bare Ni ions at very high beam velocities. Notice in particular
that measurements were performed on both solid and gaseous methane. No evidence
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Fig. 3.9 Upper graph: Charge fractions of 4 MeV incident Cl2C ions in hydrogen as a function of
target thickness. Circles: Measurements. Solid lines: Based on rate equations and measurements
at low thicknesses assuming cross sections independent of target density. The measured mean
equilibrium charge is 3.24. Lower graph: Extracted capture cross sections �32; �43 and loss cross
sections �23; �34. From Ryding et al. (1970)

was found for a gas-solid difference in the capture cross sections, while a � 40 pct.
difference was found for the loss cross section.

3.3.3.4 Limits of Classical Statistics

An aspect to be mentioned here is the question to what extent the rate equations
derived in Sect. 3.2.2 can provide a valid statistical description of the evolution of
charge states. The Chapman-Kolmogorov relation (3.1) rests on the assumption that
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Fig. 3.10 Effective loss and
capture cross sections of gases
and solids for 200 MeV/u
Ni27C and Ni28C ions,
respectively. Points: Mea-
sured under single-collision
conditions by Ogawa et al.
(2007). Lines: Calculated for
loss (Surzhykov et al., 2005,
Shevelko et al., 2001) and
capture (Surzhykov et al.,
2005, Shevelko et al., 2004).
From Ogawa et al. (2007)

events in the two layers depicted in Fig. 3.1 are separable and independent of each
other. This is not necessarily true when the layer thickness approaches atomic di-
mensions. The point becomes even clearer when you look at the derivation of the
rate equations, (3.11) and (3.12), where it is explicitly assumed that transitions from
one state to another can be separated into distinct (typically atomic) interactions.

A proper quantal description considers the superposition of transition amplitudes
instead of probabilities or cross sections. As a rough guidance we may expect a
description in terms of cross sections to be valid whenever the pertinent events are
well separated in space, i.e., if the mean free path for charge-changing events,

�chex D 1

N
P
J �IJ

(3.47)

is large compared to the interatomic distance D of the medium.
Methods of treating the problem when a quantal description appears indicated

have been explored in the literature. Arbó et al. (1999) and Reinhold et al. (2000)
considered transitions in swift one-electron atoms without charge exchange by a
quantal Langevin equation for relativistic protons and for 13.6 MeV/u Ar17C ions,
respectively. The latter calculations refer to measurements of the excitation state of
emitted emerging ions.
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3.4 Energetics of Charge Exchange ?

In addition to cross sections for electron capture and loss we shall also be interested
in the energy balance of these events. After all, if an electron is captured in a colli-
sion between a swift ion and a stationary target atom, the electron will, in addition
to its orbital motion, be superimposed a translational motion along with the ion.
Conversely, in case of electron loss, the binding energy will have to be provided.
The pertinent source of energy is, by and large, the kinetic energy of the projectile.

You may be tempted to estimate the energy loss in a capture event as

T D 1

2
mv2 C U2 � U1; (3.48)

where the first term denotes the energy necessary to accelerate a target electron to
the beam velocity, the second term denotes the energy necessary to remove the elec-
tron from the target, while the third term denotes the energy released upon capture.
However, electron capture is not necessarily an isolated event and may have to be
considered along with the recoiling energy of the nucleus as well as simultaneous
excitation processes in the target and/or projectile atom.

You may also try to write down an intuitive relation for energy loss in an electron-
loss event, but I like to issue a warning already now, because it may quite well
happen that you end up with a wrong result.

In the following we therefore shall consider the energetics from first principles.
You may wish to glance over this section in your first reading, but I don’t encourage
you to skip it completely.

3.4.1 Definitions

If the projectile carries electrons, it has internal energy and centre-of-mass energy.
If it is exposed to an external electric or magnetic field, also considerations regard-
ing potential energy may become of interest. Leaving out the latter possibility, we
still need to define what we mean by energy loss. As we shall see now, the proper
definition depends on the quantity measured.

The situation is straightforward in an atomic-collision experiment in a dilute gas
target, where single collisions prevail. Assuming the collision partners to be in their
ground states initially, the difference between the translational energies before and
after the collision—which is independent of the chosen reference frame—will be
denoted inelastic energy loss Q in the absence of electron loss.

Numerous phenomena in radiation physics are related to the energy deposited in
the stopping medium. In that case, a fundamental quantity is potential and kinetic
energy transferred to the constituents of the target.

The signal in a stopping measurement is most often provided by the projectile,
although exceptions exist, such as thermometric measurements of the type discussed
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in Sect. 7.4.2 of volume 1. Now, the energy of an ion depends on the number of
electrons carried by the projectile and their excitation states. This quantity will vary
stochastically both upward and downward. It is, therefore, not a suitable parameter
to characterize stopping, where energy loss is expected to dominate over energy
gain.

Instead, the change in projectile velocity will be utilized to characterize energy
loss (Sigmund and Glazov, 1998, 2003). This does not prevent us from using con-
ventional energy units. After all, the energy loss per atomic mass unit—the key
parameter in most tabulations—is a measure of velocity degradation. In practice we
shall operate with the quantity M1�.v

2=2/, where M1 is the initial mass of the
projectile ion, i.e., the mass of the nucleus and all electrons.

In other words, except for relativistic corrections, energy loss in a single collision
event will be defined as

T D M1

2

�
v21 � v0

1
2
�
; (3.49)

where v1 and v0
1 are the initial and final projectile speeds, respectively, even in case

of charge exchange, where the final projectile mass will differ from M1.

3.4.2 Electron Capture: One Dimension

Consider a rather simple case first. For resonance charge transfer between like
atoms,Z1 D Z2 andM1 D M2, the internal energy does not change. Let us restrict
ourselves for a moment to one dimension. Then, conservation laws read

M1v1 D .M1 Cm/v0
1 C .M2 �m/v0

2 (3.50)
1

2
M1v

2
1 D 1

2
.M1 Cm/v0

1
2 C 1

2
.M2 �m/v0

2
2
; (3.51)

where v1 and v0
1 denote the projectile velocity before and after the collision, respec-

tively, and v2 D 0 and v0
2 those of the recoiling target atom. You may remember

from Sect. 2.2 that the target atom plays a central role in the energy-momentum
balance.

In Problem 3.3 you are invited to derive the following solutions of (3.50) and
(3.51), still for M2 D M1,

v0
1 D v1

1Cm=2M1

(3.52)

or, for m � M1,
M1.v1 � v0

1/ D mv1

2
: (3.53)

From this you find

T D M1

2

�
v21 � v0

1
2
�

D m

2
v21 : (3.54)
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Fig. 3.11 Inelastic collision
viewed in the centre-of-mass
frame of reference
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Consider now the case of nonresonant charge exchange. While the momentum
equation (3.50) does not change, energy conservation now requires

1

2
M1v

2
1 � U2 D 1

2
.M1 Cm/v0

1
2 � U1 C 1

2
.M2 �m/v0

2
2
; (3.55)

where U2 and U1 are the binding energies of the captured electron in its initial and
final state, respectively.

By solving Problem 3.4 you will derive that now

T D 1

2

�
v21 � v0

1
2
�

D 1

2
mv21 C U2 � U1 (3.56)

for m � M1;M2, in agreement with (3.48).

3.4.3 Planar Collision: Excitation only

As a preliminary exercise for a three-dimensional inelastic collision, consider the
interaction between two heavy particles leading to electronic excitation of either
or both collision partners but without charge exchange or electron loss. Defining
velocities w1;w2 in the centre-of mass system (Fig. 3.11) by

w1 D v1 � V I w2 D �V (3.57)

with V D M1v1=.M1 CM2/, we may write conservation laws in the form

M1w1 CM2w2 D M1w
0
1 CM2w

0
2 D 0 (3.58)

and
1

2
M1w

2
1 C 1

2
M2w

2
2 D 1

2
M1w

0
1
2 C 1

2
M2w

0
2
2 CQ (3.59)

where w0
1 and w0

2 are velocities after the collision andQ is the sum of the excitation
energies of target and projectile. Eliminating w2 and w0

2 you find
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Fig. 3.12 Energy transfer T in inelastic collision without ionization of either target or projectile.
See text

w0
1
2 D w21 � 2M2Q

M1.M1 CM2/
: (3.60)

Setting
w0
1 D 


w0
1 cos ;w0

1 sin 
�

(3.61)

you find

T D M1

2

�
v21 � v0

1
2
�

D 1

2
	E

 
1 � cos 

s
1 �

�
1C M1

M2

�
Q

E

!
C M2Q

M1 CM2

; (3.62)

where
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E D M1

2
v21 (3.63)

and

	 D 4M1M2

.M1 CM2/2
: (3.64)

Examples are shown in Fig. 3.12.
For swift ions we may expand the square root to first order in Q. Then,

T D 	E sin2


2
C
�
1 � 2M1

M1 CM2

sin2


2

�
Q: (3.65)

In the limit of soft collisions, where  is small, T reduces to the excitation energy
Q. Keep in mind, however, that Q is not a constant but is correlated with  via the
impact parameter.

3.4.4 Planar Collision: Electron Capture

Consider now electron capture in two dimensions. In the centre-of-mass frame of
reference, conservation laws now read

M1w1 CM2w2 D .M1 Cm/w0
1 C .M2 �m/w0

2 D 0 (3.66)

and

1

2
M1w

2
1 C 1

2
M2w

2
2 �U2 D 1

2
.M1Cm/w0

1
2C 1

2
.M2�m/w0

2
2�U1CQ: (3.67)

It is assumed here that only one electron is captured, but additional excitation in the
target and/or projectile is accounted for via an excitation energyQ.

Going through the same procedure as above, expanding up to the first power in
m=M , Ui=E andQ=E you arrive at

T D 	E sin2


2
C
�
1 � 2M1

M1 CM2

sin2


2

��
1

2
mv21 C U2 � U1 CQ

�
: (3.68)

This relation is similar to (3.65). Note in particular that (3.56) from the linear model
is reproduced in the limit of  D 0, apart from the excitation energy Q which was
neglected there. Multielectron capture processes could be treated similarly.

3.4.5 Three-dimensional Collision: Electron Loss

Before discussing the above results, let us also look at the case of electron loss from
the projectile (Fig. 3.13). Here, conservation laws read
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Fig. 3.13 Electron-loss colli-
sion viewed in the centre-of-
mass frame of reference
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and

1

2
M1w

2
1 C 1

2
M2w

2
2 D 1

2
.M1 �m/w0

1
2 C 1

2
M2w

0
2
2 C 1

2
mu2 C U1; (3.70)

where u is the velocity of a liberated electron in the centre-of-mass frame of refer-
ence and U1 its binding energy.

After eliminating w2 and w0
2 and omitting terms of higher than first order in

m=M and U=E , you arrive at an equation equivalent with (3.59) but with Q re-
placed by

Q ! U1 C m

2

�
u C M1

M2

w1

�2
� m

2

�
1C M1

M2

�2
w21 (3.71)

or
Q ! U1 C m

2
.u C V /2 � m

2
v21 : (3.72)

Introducing the velocity ve of the liberated electron in the laboratory frame of refer-
ence,

ve D u C V ; (3.73)

we finally obtain

T D 	E sin2


2
C
�
1 � 2M1

M1 CM2

sin2


2

��
U1 C m

2
v2e � m

2
v21

�
(3.74)

in agreement with a result derived by Sigmund and Glazov (2003).

3.4.6 Elastic and Inelastic Energy Loss

The expressions (3.65), (3.68) and (3.74) all contain a term 	E sin2 �
2

, which is the
energy loss in an elastic collision according to (3.8), Vol. 1. In Problem 3.6 you will
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have an opportunity to demonstrate that this term represents the energy of the recoil-
ing atom including the number of electrons attached to it after the interaction even
for inelastic collisions. Therefore, at least within the present linear approximation
in Q=E , we may continue to identify this term as ‘nuclear energy loss’ Tn.

With this, we may write T in the form

T D Te C Tn C�T; (3.75)

where

Te D
Q for excitation;
1
2
mv21 C U2 � U1 CQ for single-electron capture;
U1 C 1

2
m.v2e � v21/ for single-electron loss

(3.76)

and

�T D � 2M1

M1 CM2

Te sin2


2
(3.77)

represents a coupling term between electronic and nuclear energy loss.
We are presently engaged in an energy regime where electronic energy loss dom-

inates. Nevertheless, there is always a small range of scattering angles (or impact
parameters) where nuclear energy loss exceeds electronic energy loss. Disregarding
this angular range we restrict our attention to scattering angles for which Tn � Te.
In that angular regime, the coupling term is seen to be / .m=M2/

2 and hence neg-
ligible. We shall get to the complementary case when addressing stopping of low-
energy ions in Chap. 8.

Excitation and capture are not mutually excluding processes, nor are excitation
and loss. These phenomena may be quantified by suitable differential cross sections
taking into account both charge exchange and energy loss, as we shall do in the
following chapter. At this point let me just mention the energy transfer in a complete
(one-electron) capture-loss cycle,

Te D 1

2
mv2e C U2 CQ; (3.78)

whereQ now stands for the sum of all excitation energies except from the respective
ground states U1 and U2. This is a central quantity in the analysis of experimental
data.

The importance of the energy spent in charge-changing events was mentioned al-
ready by Bohr (1948). However, quantitative estimates of the energy spent in capture
and loss processes are rarely found in the literature. In calculations of stopping cross
sections the effect is normally ignored, and the same is true in numerous estimates
of straggling where this may not be justified, as will be seen below.

Cowern et al. (1984a) have extracted a value of Te D 2:30 keV from stopping
measurements involving 3 MeV/u C 5C and C 6C in carbon. Ogawa et al. (1991a)
mention (3.76). The fact that electron loss cannot be treated as if it were a sim-
ple projectile excitation was recognized by Sigmund and Glazov (2003). The im-
portance of charge exchange in light-ion stopping was demonstrated by Schiwietz
(1990) and Grande and Schiwietz (1991).
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Fig. 3.14 Energy loss and charge exchange in two layers. See text

3.4.7 Radiative Electron Capture

In radiative electron capture the excess energy of a captured electron is carried away
by a photon. At nonrelativistic projectile speeds, the momentum of the electron, on
the other hand, is taken up by the projectile since the momentum of the emitted
photon goes as 1=c. Therefore, we may write

T D �

�
P 2

2M1

�
D P

M1

�P D mv2 (3.79)

as an adequate approximation in the nonrelativistic regime, where the cross section
for radiative capture is small.

3.4.8 Spontaneous Processes

We have considered spontaneous transitions in Sect. 3.2.3. The direct effect of ra-
diative transitions on projectile energy loss is small, since the momentum carried
away by the photon is proportional to 1=c, as noted in the foregoing section.

The situation is different for Auger processes, where an electron carries away a
momentum mu, where mu2=2 is an Auger energy. With this we obtain an energy
change

T D �

�
P 2

2M1

�
D mvu cos�; (3.80)

where � is the emission angle.
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We may assume Auger emission to be isotropic as a first approximation. This
implies that Auger emission does not contribute to the mean energy loss but may
become significant in straggling.

3.5 Statistics of Energy Loss and Charge Exchange

In this section we shall look at the coupling between energy loss and charge ex-
change. This will involve the statistics of charge exchange as presented in Sect. 3.2
and of energy loss presented in Chap. 9, Vol. 1, taking into account the correlation
between the two processes. Much of the presentation is an elaboration of two of the
author’s papers (Sigmund, 1991, 1992).

3.5.1 Generalized Bothe-Landau Formula

Consider an ion in state I with an energyE in x D 0. Let us define

FIJ .�E; x/ d.�E/ (3.81)

as the probability for the ion to be in state J and to have suffered an energy loss
.�E; d.�E// after having penetrated a pathlength x.

We may find a relation to be satisfied by FIJ .�E; x/ from Fig. 3.14, which is
identical with Fig. 3.1, except that energy loss �E has been added as a statistical
variable. Then, in complete analogy to (3.1) above as well as (9.4), Vol. 1, we find
the following relation for a double layer,

FIJ .�E; x C y/ D
X
L

Z
d.�E 0/ FIL.�E 0; y/FLJ .�E ��E 0; x/; (3.82)

assuming statistical independence of the events in the second from those in the first
layer. Moreover, the argument is only valid for energy losses �E � E, since the
independence of pertinent cross sections of the beam energy is essential for the
argument.

Following the procedure outlined in Sect. 9.2.1, of Vol. 1, we go into Fourier
space,

FIJ .k; x/ D
Z 1

�1
d.�E/ e�ik�E FIJ .�E; x/; (3.83)

where (3.82) reads

FIJ .k; x C y/ D
X
L

FIL.k; y/FLJ .k; x/ (3.84)

or, in matrix notation,
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F.k; x C y/ D F.k; y/ � F.k; x/; (3.85)

where F.k; x/ D kFIJ .k; x/k. Equation (3.85) has the general solution

F.k; x/ D eNxC.k/; (3.86)

where C.k/ is a matrix to be determined from the physics, in casu the single-
collision limit, where

F.k; x/ D 1CNxC.k/ : : : : (3.87)

Considering explicitly what may happen during penetration through a thin layer we
find

FIJ .�E; x/ D
"
1 �Nx

X
L

Z
dT KIL.T /

#
ıIJ ı.�E/

CNxKIJ .�E/ : : : ; (3.88)

where KIJ .T / D d�IJ =dT is the differential cross section per target atom or
molecule for energy loss T and transition from state I to state J . Also,Z

dT KIJ .T / D �IJ (3.89)

is the cross section for transition from state I to state J regardless of energy loss, as
it was introduced in Sect. 3.2.1. Note, however, that unlike in Sect. 3.2, the case of
J D I has a well-defined meaning, once energy loss is involved: It is the differential
cross section for energy loss in a charge-conserving collision.

In Fourier space, (3.88) reduces to

FIJ .k; x/ D
"
1 �Nx

X
L

�IL

#
ıIJ CNx

Z
dT KIJ .T /e�ikT C : : : (3.90)

After adding and subtracting a term Nx�IJ , this reads

FIJ .k; x/ D ıIJ CNxQIJ �Nx�IJ .k/; (3.91)

where QIJ is defined in (3.8) and

�IJ .k/ D
Z

dT KIJ .T /
�
1 � e�ikT

�
(3.92)

is a generalized transport cross section of the type introduced in (9.15), of Vol. 1.
With this, (3.91) may be written in matrix form

F.k; x/ D 1 CNxQ �Nx� : : : : (3.93)

Comparing this to (3.87) we find that
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C.k/ D Q � � .k/; (3.94)

and hence, after inverse Fourier transform,

FIJ .�E; x/ D 1

2�

Z
dk eik�E

�
eNxŒQ�� .k/


�
IJ
: (3.95)

This expression (Sigmund, 1992) is a straight generalization of the Bothe-Landau
formula for the energy-loss spectrum discussed in Chap. 9, Vol. 1. If there is only
one state, we have Q D 0, and (3.95) reduces to the standard form. In Problem 3.7
you may verify that integration over �E leads back to the charge-state distribution
(3.4).

3.5.2 Transport Equations

As in the separate energy-loss and charge-state distributions, also the joint spectrum
can be derived from transport equations. In Problem 3.8 you will be asked to derive
the following relationships, valid for a thin target with negligible energy loss,

� @

@x
FIJ .�E; x/ D N

X
L

Z
dT

�
FIJ .�E; x/KJL.T / (3.96)

�FIL.�E � T; x/KLJ .T /
	

(3.97)

� @

@x
FIJ .�E; x/ D N

X
L

Z
dT KIL.T /

�
FIJ .�E; x/� FLJ .�E � T; x/	;

where the upper equation is of the forward and the lower of the backward type.
If you integrate either of these relations over�E and observe thatZ

d.�E/FIJ .�E; x/ D FIJ .x/; (3.98)

you arrive back at the rate equations introduced in Sect. 3.2.2.

3.5.3 Mean Energy Loss

A procedure to derive mean energy loss and straggling from the Bothe-Landau for-
mula has been described in Sect. 9.2.3, Vol. 1. The same procedure will now be ap-
plied to (3.95) in order to determine state-specific mean energy loss and straggling
from FIJ .�E; x/. As a first step we determine moments

F
.1/
IJ .x/ D

Z
d.�E/�EFIJ .�E; x/ D i

@

@k

�
eNxC.k/

�
IJ

ˇ̌̌
ˇ
kD0

(3.99)
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and

F
.2/
IJ .x/ D

Z
d.�E/�E2FIJ .�E; x/ D � @2

@k2

�
eNxC.k/

�
IJ

ˇ̌̌
ˇ
kD0

: (3.100)

in straight analogy with the scalar case.
Since exp.NxC/ is defined by an exponential series of the type of (3.5), differ-

entiation can conveniently proceed over that series, so that

@

@k
eNxC.k/ D

1X
nD1

.Nx/n

nŠ



C0Cn�1 C CC0Cn�2 C � � � C Cn�1C0� : (3.101)

Now, according to (3.94) we have

C.k D 0/ D Q (3.102)

and

C0.k D 0/ D dC.k/
dk

ˇ̌̌
ˇ
kD0

D �iS (3.103)

with S D kSIJ k and

SIJ D
Z

dT TKIJ .T /: (3.104)

With this we find

F
.1/
IJ .x/ D

1X
nD1

.Nx/n

nŠ



SQn�1 C QSQn�2 C � � � C Qn�1S

�
IJ
: (3.105)

3.5.3.1 Summing over Projectile States

Equation (3.105) can be greatly simplified for two limiting cases which are of par-
ticular interest.

If we are only interested in the total stopping of the beam, we may sum over all
exit charge states J . Now, because of the sum rule (3.9), this implies that all those
terms in (3.105) which end with Q will drop out, so that

F
.1/
I .x/ D

X
J

F
.1/
IJ .x/ D

X
J

1X
nD1

.Nx/n

nŠ



Qn�1S

�
IJ
: (3.106)

The sum can be rewritten as an integral over x, whereafter it can be summed with
the result

F
.1/
I .x/ D N

X
J

Z x

0

dx0
�

eNx
0QS
�
IJ

D N
X
JK

Z x

0

dx0 FIJ .x0/SJK ; (3.107)
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Fig. 3.15 Relative energy loss versus pathlength of 3 MeV/u Li3C, C6C and C5C ions incident on
carbon, divided by .Z1=2/

2 times the measured energy loss of helium ions. From Cowern et al.
(1984b)

where FIJ .x/ is the charge fraction (3.4), which we have learned to calculate by a
simple algebraic procedure.

Differentiation of (3.107) with respect to x leads to the specific energy loss at
depth x,

dF .1/I

dx
D N

X
J

FIJ .x/SJ : (3.108)

Here,
SJ D

X
K

SJK (3.109)

represents the stopping cross section of an ion in state J , and FIJ .x/ the probability
for the projectile to be in state J at depth x. While we could have written down this
relation without going over a complex matrix formalism, that same formalism also
allows to derive relations that would have been hard to arrive at by mere intuition.

Note that SJ contains contributions both from collisions which affect the projec-
tile state (J ¤ I ) and those which do not (J D I ).

3.5.3.2 Example: The Two-State Case

As an instructive example, consider the two-state case, for which we already know
the charge fractions from Sect. 3.2.4.1. Here, (3.107) reads

.�E/1 D Nx
��21
�
S1 C �12

�
S2

�
C �12

�2
.S1 � S2/

�
1 � e�Nx�

�
: (3.110)

The corresponding equation for .�E/2 is found by interchanging indices 1 and 2.
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The first term in (3.110) represents the energy lost by an equilibrated beam, while
the second term leads to an intercept ı.�E/ D �12.S1 � S2/=�2, if the asymptotic
straight line is extrapolated toward zero pathlength. The actual behaviour of .�E/1
at small pathlengths reads

.�E/1 ' NxS1 � 1

2
N 2x2�12 .S1 � S2/ : (3.111)

An interesting quantity is the difference

.�E/1 � .�E/2 D 1

�
.S1 � S2/

�
1 � e�Nx�

�
; (3.112)

which allows to determine the difference S1 � S2. Evidently, measurements of the
energy loss at low thickness for the two charge states, of equilibrium stopping, of
charge fractions and of the above difference leave little uncertainty about input pa-
rameters �12, �21, S1 and S2. Note, however, that measurements of the mean en-
ergy loss alone do not differentiate between diagonal elements S11 and S22 and
off-diagonal elements S12 and S21 without some theoretical input.

Figure 3.15 shows data of Cowern et al. (1984b), plotted as relative energy losses
with the equilibrium energy loss of helium ions as a reference. While the graph illus-
trates qualitative features, quantitative analysis is obscured by the mixing up with
helium data, stimulated by the effective-charge concept which is to be discussed
in Chap. 4. A more direct way employing relative data goes as follows: Consider
a two-state system with O6C as state 1 and O5C as state 2 and normalize energy
losses to NxS1, i.e., the energy loss of a bare oxygen ion that does not undergo
charge exchange. You are invited to carry out such an analysis in Problem 3.9.

3.5.3.3 Equilibrated Beam

Another limiting case is to consider an ion beam that is already equilibrated from
the start. This can be described by a distribution

FJ .�E; x/ D
X
I

FIFIJ .�E; x/; (3.113)

i.e., a straight superposition. With this we may determine the mean energy loss of an
equilibrated beam from (3.105). In carrying out the sum it is then useful to recognize
that X

I

FIQIK D 0; (3.114)

as you may verify by inserting the definition (3.8) and observing (3.29). This implies
that terms in (3.105) which have a factor Q on the left, will not contribute to the sum.
As a result we find
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X
I

FIF
.1/
IJ .x/ D

1X
nD1

.Nx/n

nŠ

X
I

FI


SQn�1�

IJ

D N

Z x

0

dx0 X
I

FISIKFKJ .x
0/: (3.115)

Finally, we may consider the mean energy loss of an equilibrated beam, in which
case terms with Q on either end may be dropped. This leads to

h�Ei D
X
IJ

FI h�EiIJ D Nx
X
IJ

FISIJ ; (3.116)

which is consistent with (3.108).
It is useful to keep in mind that even though we have looked at an equilibrated

beam, the mean energy loss depends on the exit charge state. As an illustration,
consider a situation where you decide to measure the energy loss of a beam with a
mean charge hqi D Z1=2, but where you direct your detector at ions emerging in
the very rare charge state q D Z1. Clearly, an ion that has travelled for a certain
pathlength in this high charge state will have suffered more than average stopping.

3.5.4 State-Specific Mean Energy Loss ?

Let us now go back to the state-specific mean energy loss as given by (3.105). Eval-
uating the matrix sums is straightforward numerically if proper input is available.
However, for understanding what goes on it is useful again to consider the two-state
case which can be evaluated in closed form.

3.5.4.1 Two-State Case

The sums over n in (3.105) can readily be evaluated if you make use of (3.16). You
will then obtain

F
.1/
IJ .x/ D

Z x

0

dx0
�
NS C N

�

�
1 � e�Nx0�

�
.SQ C QS/

CN

�2

�
1 � e�Nx0� �Nx0�e�Nx0�

�
QSQ

�
IJ

; (3.117)

which may be rearranged into
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F
.1/
IJ .x/ D

Z x

0

dx0
�
NRS R

h
1 � e�Nx0�

i

CN e�Nx0�

�
S � Nx0

�
QS Q

��
IJ

: (3.118)

or, after integration,

F
.1/
IJ .x/ D NxRSR � 1

�

�
1 � e�Nx�

� �
R

Q
�

C Q
�

R
�

CNxe�Nx� Q
�

R
Q
�
; (3.119)

where

1

�
Q D

�����F2 F2
F1 �F1

���� I R D
�

1 C Q
�

�
D
����F1 F2F1 F2

���� (3.120)

according to (3.14).
For Nx� 	 1, (3.118) leads to

h�EiIJ D F
.1/
IJ .x/

FIJ .x/
! Nx .F1S1 C F2S2/C .�E0/IJ ; (3.121)

where .�E0/IJ is an intercept which you are invited to evaluate in Problem 3.10.
We may set

S12 D �12
12 � �F2
12 (3.122)

S21 D �21
21 � �F1
21; (3.123)

where 
12 and 
21 are mean energies spent in the respective charge exchange pro-
cesses.

Figure 3.16 shows calculated curves for a system studied experimentally by
Ogawa et al. (1991b,a, 1992). Numerical input has been adopted from Ogawa et al.
(1991b,a). Bare helium ions are dominating in equilibrium by about five orders of
magnitude while neutral ions are below the detection limit. At an energy of 32 MeV,
the energy loss 
21 in a capture event is so large that the spectrum F11.�E; x/ splits
up into two clearly identifiable peaks with increasing target thickness. Peak energy
losses for the first and second peak have been included in Fig. 3.16. Note, however,
that at the target thicknesses covered in the graph, peak energy losses are smaller
than mean energy losses. This may well be the reason for a minor discrepancy be-
tween the calculated and measured data for the case 11.
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Fig. 3.16 Mean energy loss of 32 MeV 3He ions in carbon as a function of thickness. Only singly
(1) and doubly (2) charged ions are considered. Experimental points from Ogawa et al. (1991a).
See text

3.5.4.2 More than Two States

While (3.119) could in principle be written down explicitly in terms of the cross
sections involved, it appears difficult to get it into an illuminating form, except in
limiting cases of large or small pathlength. This type of complexity increases rapidly
as the number of involved states increases. On the other hand, if numerical values
of all pertinent cross sections are available, evaluating state-specific mean energy
losses is straightforward. In addition to (3.105), suitable tools are the two transport
equations

� @

@x
F
.1/
IJ .x/ D N

X
L

�
F
.1/
IJ .x/�JL � F

.1/
IL .x/�LJ � FIL.x/SLJ

	
(3.124)

� @

@x
F
.1/
IJ .x/ D N

X
L

�
�ILF

.1/
IJ .x/ � �ILF

.1/
LJ .x/ � SILFLJ .x/

	
;

where the charge fractions FIJ .x/ enter as input.
Another tool is the Monte Carlo method which, in this context, has been em-

ployed by Blazevic et al. (2000). Figure 3.17 shows a summary of output from such
a code1. Out of 1 million incident ions, 183,302 did not undergo charge exchange
and ended up in the initial charge state 10C. This accounts for 45.1% of all ions
with final charge state 10C. Amongst the rest, 161,056 ions (or 39.6%) capture an
electron but lose it again, while another 32,957 (or 8.1%) end up in charge state 10C

1 The published figure contains minor errors in the percentages. Figure 3.17 is a corrected version
kindly provided by Dr. Blazevic.
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Fig. 3.17 Charge-changing events during passage of 2 MeV/u Ne ions with an initial charge C10
through a 3.8 μg/cm2 carbon foil. See text. From Blazevic et al. (2000)

after two loss-capture cycles. Finally, 29,380 ions (or 7.2%) end up in charge state
10C after two capture events in sequence and two subsequent loss events.

A table of this kind allows to tabulate mean energy losses, if frozen-charge stop-
ping cross sections SII and energy losses 
IJ in charge-changing events are known.

These Monte Carlo calculations were triggered by extensive measurements per-
formed by the same authors (Blazevic et al., 2000). The data analysis resulted in
a set of frozen-charge stopping cross sections SII , which we will get back to in
Sect. 4.8.3.
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Measurements by Frey et al. (1995) with 1 MeV/u Ni ions on carbon foils re-
vealed a large number of charge states involved. Again, we shall come to these data
in Sect. 4.8.3.

3.5.5 Straggling

We are now ready to determine the second moment h�E2i starting from (3.100) and
following Sigmund (1992) and Närmann and Sigmund (1994). As in Sect. 3.5.3.1
we consider the total outgoing beam, i.e., we sum over outgoing projectile states.
Then, in taking the derivative of (3.101) we only need to take into account terms
that do not end with Q, i.e.,

X
J

F
.2/
IJ .x/ D

X
J

( 1X
nD1

.Nx/n

nŠ
Qn�1W

C2
1X
nD2

.Nx/n

nŠ



SQn�2S C QSQn�3S C � � � C Qn�2S2

�)
IJ

; (3.125)

where

WIJ D
Z

dT T 2KIJ .T /: (3.126)

This may be rearranged into

X
J

F
.2/
IJ .x/ D

X
J

�Z x

0

N dx0eNx
0QWC

C 2

Z x

0

N dx0
Z x0

0

N dx00eN.x�x0/QSeNx
00QS

!
IJ

: (3.127)

To prove this, expand the exponentials in (3.127) and perform the integrals (see also
Problem 3.11).

In terms of charge fractions this reads

X
J

F
.2/
IJ .x/ D

X
K

Z x

0

N dx0 FIK.x0/WK

C 2
X
KLM

Z x

0

N dx0
Z x0

0

N dx00 FIK.x � x0/SKLFLM .x00/SM ; (3.128)

where
WI D

X
J

WIJ : (3.129)
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Since we have summed over all charge states, we haveX
J

F
.2/
IJ .x/ D h�E2iI : (3.130)

In order to get the variance we need to subtract h�Ei2I D
h
F
.1/
I .x/

i2
from (3.107).

Taking the derivative with respect to x we obtain the differential straggling at
depth x, �

d�2.x/
N dx

�
I

D
�

d�2.x/
N dx

�
I;coll

C
�

d�2.x/
N dx

�
I;chex

(3.131)

where �
d�2.x/
N dx

�
I;coll

D
X
J

FIJ .x/WJ (3.132)

is conventionally called collisional straggling, and

�
d�2.x/
N dx

�
I;chex

D 2
X
JL

N

Z x

0

dx0

"X
K

FIJ .x � x0/SJKFKL.x0/� FIJ .x
0/SJFIL.x/

#
SL (3.133)

is called charge-exchange straggling2.
The term

P
J FIJ .x/WJ is analogous to (3.108) and does not need special con-

sideration at this point. The charge-exchange contribution can be rewritten as

�
d�2.x/

N dx

�
I;chex

D 2
X
JKL

N

Z x

0

dx0 FIJ .x � x0/SJK

� 
FKL.x0/� FIL.x/
�
SL; (3.134)

which makes it clear that the integral receives contributions mainly from small val-
ues of x0.

Now, let us consider this quantity for large values of x, where

FKL.x
0/� FIL.x/ ! FKL.x

0/� FL; (3.135)

which differs from zero only for x0 smaller than some depth comparable to the
equilibration distance. If x is large compared to this quantity, we have

FIJ .x � x0/ ! FJ ; (3.136)

2 Strictly speaking, nondiagonal terms WIJ for I ¤ J belong to charge-exchange straggling.
The present, slightly imprecise notation is compatible with the literature, where energy loss due to
charge exchange has most often been neglected.
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and hence,�
d�2

N dx

�
chex

D 2N
X
JKL

FJSJK

Z 1

0

dx .FKL.x/ � FL/ SL: (3.137)

3.5.5.1 The Two-state Case

It is instructive again to consider the two-state case. After insertion of (3.19) you
may evaluate the integrals and obtain

�
d�2

N dx

�
chex

D 2

�
.S1 � S2/

2X
JD1

FJ .F2SJ1 � F1SJ2/ : (3.138)

Charge-exchange straggling for the two-state case was first analysed by Vollmer
(1974), who neglected all energy loss in charge-changing events. With this, (3.138)
reduces to�

d�2

N dx

�
chex

D 2

�
F1F2 .S11 � S22/2 D 2�12�21

�3
.S11 � S22/

2 : (3.139)

This relation was first derived by Efken et al. (1975), while the complete expression
(3.138) was found by the author (Sigmund, 1992).

You are kindly invited to analyse the physical content of (3.138) in Problems 3.12
and 3.13.

3.5.5.2 Continuum Approximation ?

Equation (3.137) is ready to be evaluated if FIJ .X/ and SIJ are available for all
significant states. Nevertheless, let us try to reduce the expression to an even hand-
ier form. Following Sigmund et al. (2011) and Fig. 3.18 assume that the charge-
dependent stopping cross section SI varies approximately linearly around the equi-
librium value S , in analogy to an approximation described in Sect. 3.3.1,

SI ' S C .qI � q/�S; (3.140)

where qI is the charge number, q the equilibrium charge and �S D dSI=dqI at q.
With this you find

X
L

.FKL.x/ � FL/ SL

D S
X
L

.FKL.x/ � FL/C�S
X
L

.FKL.x/ � FL/ .qL � q/ : (3.141)
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Fig. 3.18 Stopping cross section for 1 MeV BrqJ C ions in Ne calculated by the PASS code. Target
excitation/ionization only. Also included are a linear and a quadratic approximation. q D 22:5 is
the mean equilibrium charge at 1 MeV/u according to ETACHA Rozet et al. (1996). From Sigmund
et al. (2011)

Here, the first term vanishes since
P
L FKL.x/ D 1 for all K . The second term

reduces to
�S .q.K; x/� q/ ; (3.142)

where
q.K; x/ D

X
L

FKL.x/qL (3.143)

is the mean charge at depth x, if the particle was in state K at x D 0.
Then, �

d�2

N dx

�
chex

D 2N�S
X
JK

FJSJKQK ; (3.144)

where

QK D
Z 1

0

dx .q.K; x/ � q/ : (3.145)

You may verify that in the two-state case this actually delivers the exact result (Prob-
lem 3.14).

Going back to (3.144), let us separate diagonal from off-diagonal terms in SJK .
Consider first the diagonal terms and set

SJJ ' S0 C .qJ � q/�S0; (3.146)



3.5 Energy Loss 137

which then differs from (3.140) in that S0 and �S0 refer to the diagonal terms of
the stopping cross section, while S and �S include capture and loss.

With this,

�
d�2

N dx

�
chex;diag

D 2NS0�S
X
J

FJQJ

C 2N�S�S0
X
J

FJ .qJ � q/QJ : (3.147)

After going back to the definition (3.145), it is seen that the first term vanishes in
view of X

J

FJFJL.x/ D FL; (3.148)

since the equilibrium distribution does not change as a function of pathlength.
Hence, �

d�2

N dx

�
chex;diag

D 2N�S�S0
X
J

FJ .qJ � q/QJ : (3.149)

Next, consider the off-diagonal terms which are connected to charge exchange.�
d�2

N dx

�
chex;offdiag

D 2N�S
X
J¤K

FJSJKQK (3.150)

As a first approximation, assume that only one-electron capture and loss are signifi-
cant, so that�

d�2

N dx

�
chex;offdiag

D 2N�S
X
J

FJ .SJ;JC1QJC1 C SJ;J�1QJ�1/ : (3.151)

After redefining indices this can also be written as�
d�2

N dx

�
chex;offdiag

D 2N�S
X
J

.FJ�1SJ�1;J C FJC1SJC1;J /QJ : (3.152)

Here the quantity in the parentheses depends on J , and we may again assume that
near equilibrium it depends linearly on the charge, so that

FJ�1SJ�1;J C FJC1SJC1;J ' FJ .Schex C .qJ � q/�Schex/ : (3.153)

This defines Schex and �Schex.
After insertion into (3.152), the term going as Schex drops out just as above, so

that �
d�2

N dx

�
chex;offdiag

D 2N�S�Schex

X
J

FJ .qJ � q/QJ ; (3.154)
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which looks similar to (3.149). Summing up the two contributions we find�
d�2

N dx

�
chex

D 2N�S .�S0 C�Schex/
X
J

FJ .qJ � q/QJ ; (3.155)

In Problem 3.15 you are welcome to demonstrate that charge-exchange straggling
in the present approximation reduces to the exact result in the two-state case.

The factor in front of the sum in (3.155) shows that charge-exchange straggling
is essentially proportional to the square of the variation of the stopping cross sec-
tion with the ion charge. The sum over J , on the other hand, contains only charge
fractions including transients. We have learned early in this chapter how to evaluate
the latter. In the following chapter we shall see how to determine charge-dependent
stopping cross sections.

3.5.6 Energy-Loss Profiles

In Chap. 9, Vol. 1, qualitative features of energy-loss spectra have been discussed.
Following Bohr (1948), three domains have been identified according to the trav-
elled path length,

I A thin-target regime, where the spectrum is characterized by a peak position sig-
nificantly below the mean energy loss and a Coulomb-like tail up to the maximum
energy transfer Tmax,

II A moderately-thick-target regime where the spectrum is a slightly-skewed gauss-
ian, and

III A very-thick-target regime, where the energy loss is a substantial fraction of the
initial energy.

Regime III does not present any major challenges beyond those already considered:
Energy-loss profiles are determined by mean energy loss, straggling and perhaps
skewness, and charge exchange, if significant, may be taken into account in accor-
dance with the results of the previous two sections.

The situation is different with regard to regimes I and II. According to the Bohr
criterion (Bohr, 1948) the two regimes are separated by the parameter

κ D �2

T 2max
; (3.156)

where κ < 1 specifies the thin-target regime and κ > 1 the moderately-thick-target
regime. Moreover, for κ � 1 the spectrum approaches the Landau form (Landau,
1944), while for κ 	 1 the spectrum is gaussian-like. The intermediate regime
between the latter two extremes may be wide and requires special attention.

We have seen in Fig. 3.16 that energy-loss spectra may split up into contributions
from different numbers of capture-loss cycles. Let us see under what conditions
such separation is possible.
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Consider swift ions with

Tmax ' 2mv2I 
 ' 1

2
mv2; (3.157)

where 
, the mean energy loss in a capture-loss cycle, is governed primarily by the
contribution from capture. Now, in regime II, where � > Tmax, the width of the
profile is greater than four times the separation between individual peaks. There-
fore, individual peaks will not be visible and deconvolution will be difficult if not
impossible. Thus, pronounced individual peaks can only be expected in regime I,
and only at target thicknesses significantly below the Bohr limit. To actually see
more than one peak one also has to satisfy experimental requirements on energy
resolution and peak-to-background ratio of the detecting device.

The first calculations of energy-loss spectra including charge exchange were re-
ported by Winterbon (1977) on the basis of transport equations and the moment
method. In brief, moments up to 4th order were taken over (3.97), and the result-
ing equations were solved recursively with input available at the time, i.e., capture
and loss cross sections for 15 MeV iodine ions in oxygen, tabulated by Betz (1972)
and a simple Coulomb-like model for collisional energy loss. Energy loss in charge
exchange was ignored, i.e. the possibility of multiple peaks was eliminated from
start.

A striking feature of Winterbon’s results is the observation that both relative
straggling, relative skewness and relative kurtosis increase strongly with decreasing
ion charge. This can be traced to the assumption of q2 dependence of the differential
cross section on the ion charge q. We shall see in the following chapter that higher
moments become less and less sensitive to q. Hence, caution is indicated regarding
the quantitative results of Winterbon’s calculations.

More recently, a number of studies of the problem were reported by Glazov in
cooperation with the author ((Glazov, 1998, 2002, Glazov et al., 2002) and refer-
ences quoted there). The emphasis in this work is on the development of accurate
calculational methods to describe energy-loss spectra over a wide range of target
thicknesses. Systems analysed include He, Li and O ions on carbon, where exper-
imental data are available (see Ogawa et al. (1996) and references quoted there).
Measurements as well as calculations refer to two significant charge states. Except
for Glazov et al. (2002), authors employed empirical data for stopping and charge-
exchange cross sections.

Two calculational methods were employed, both of which are extensions to mul-
tistate systems of calculational tools described in Vol. 1: For low thicknesses a gen-
eralization of Landau’s scheme is utilized which has been described in Sect. 9.3.4,
Vol. 1, while for larger thicknesses an extension of the steepest-descent method (Sig-
mund and Winterbon, 1985) as described in Sect. 9.4.2, Vol. 1 was employed. Com-
parison to straight numerical results showed that the ranges of validity of the two
methods overlap.

In the following I shall restrict myself to line out Glazov’s description for thin
targets and the way how multiple-peak structure shows up, and quote a number of
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results for the two-state case which illustrate the general behaviour. For much of the
mathematics I have to refer to the original papers.

In accordance with Glazov (2002) let us define a matrix F.p/.�E; x/ such that
F
.p/
IJ .�E; x/d.�E/ is the probability for an ion in an initial charge state I to end

up in charge state J after pathlength x with an energy loss .�E; d.�E// and p
charge-changing events.

We may find a recursion formula for F .pC1/
IJ .�E; x/,

F
.pC1/
IJ .�E; x/ D

X
K¤L

Z x

0

N dx0
Z

d.�E 0/
Z

dT

F
.0/
IK .�E

0; x0/KKL.T /F
.p/
LJ .�E ��E 0 � T; x � x0/; (3.158)

which expresses the probability for the projectile to travel a pathlength x0 without
charge exchange, to switch from state K to L in .x0; dx0/ and to undergo p charge-
changing events before ending up at x with an energy loss �E . By definition we
have

F
.0/
IJ .�E; x/ D ıIJ e�Nx�IFI .�E; x/; (3.159)

where
�I D

X
J

�IJ ; (3.160)

FI .�E; x/ is the energy-loss distribution for a frozen charge,

FI .�E; x/ D 1

2�

Z
dk eik�E�Nx�II .k/; (3.161)

and

�II .k/ D
Z
dT KII .T /

�
1 � e�ikT

�
: (3.162)

With this, F .p/IJ .�E; x/ can be calculated for arbitrary p, although values of p > 4
have neither been calculated nor resolved in measurements.

Figure 3.19 shows results for 32 MeV He ions in carbon, reflecting experimen-
tal conditions of the work of Ogawa et al. (1991b) and later work. Terms in the
above expansion were evaluated numerically with realistic input for the energy-loss
spectrum and charge-exchange cross sections. An extension of the Landau spectrum
allowing for charge exchange was developed at the same time and gave results very
close to those shown in Fig. 3.19.

The equilibrium charge state of 32 MeV He ions is close to 2C. Therefore, in-
tegrated charge fractions for (+in,+out) (right graph) are five orders of magnitude
smaller than for (++in,++out) (left graph). Similarly, for (++in,++out), the vast ma-
jority of particles detected have not undergone charge exchange, while the number
of particles having undergoing 1 or 2 charge-exchange cycles, denoted by (2) or
(4), respectively, is 3–4 and 7 orders of magnitude smaller. Conversely, at the foil
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Fig. 3.19 Calculated energy-loss spectra for 32 MeV He ions in carbon foils, separated into contri-
butions from 0, 2 and 4 charge-changing collisions. Left: Incident and exit charge state 2C. Right:
Incident and exit charge state 1C

thicknesses depicted in the graphs, almost all ions detected with (+in,+out) have
undergone at least one charge-changing event.

3.6 Discussion and Outlook

You have probably realized that major portions of the present chapter report fairly
recent and, in part, ongoing work including work in which the author of this mono-
graph is heavily involved. Similar observations will be appropriate when you read
the following two chapters.

I have given much attention to the matrix method in the stochastic theory of
charge exchange, even though I am not sure whether it will be competitive in the
long run with the Monte Carlo method or numerical solution of rate equations, but
because it leads to compact expressions especially for energy loss and straggling
and, hence, increased insight into energy-loss processes. I admit that the results
arrived at as final results may not yet be explicit enough for a representative user.
For this reason, work in this area has not yet stopped but is going on, as you may note
from recent papers (Osmani and Sigmund, 2011, Sigmund et al., 2011, Vockenhuber
et al., 2013).

Energetics of charge exchange is usually dealt with in a rather cursory manner.
The results of the treatment offered here, taking account binding energies as well
as momentum of recoiling nuclei, are not necessarily dramatic from a numerical
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point of view, but they indicate that it is important to establish a unique relationship
between quantities measured and those calculated.

Problems

3.1. Derive forward and backward transport equations for charge fractions from
(3.1) by assuming either x or y to be small enough so that the probability for more
than one collision becomes negligible.

3.2. Find a physical or a mathematical argument to support the statement on detailed
balancing made in (3.30). One possible way is to study a three-state system.

3.3. Derive (3.54) from (3.50) and (3.51) and find an argument why transverse mo-
mentum transfer can be neglected.

3.4. Derive (3.56) from (3.50) and (3.55).

3.5. Derive the three relations (3.65), (3.68) and (3.74).

3.6. Write down the law of energy conservation for the three types of collision event
discussed in Sect. 3.4 in the laboratory frame of reference, and demonstrate that the
relation

1

2
M1v

0
2
2 D 	E sin2



2
; (3.163)

which you know for elastic collisions with a target atom initially at rest, also holds
for these three types of inelastic collisions, at least up to first order in m=M2, Q=E
and Ui=E.

3.7. Show that (3.95) satisfies the following relation,Z 1

�1
d.�E/FIJ .�E; x/ D FIJ .x/ : (3.164)

3.8. Derive (3.97) by the method described in Sect. 9.5.1 of Volume 1 and Sect. 3.2.2
in the present chapter.

3.9. Carry out an analysis of Figs. 3.5 and 3.15 by the method sketched in the last
paragraph of Sect. 3.5.3.2.

3.10. Derive analytical expressions for the intercepts .�E0/11 and .�E0/21 and
evaluate numbers with input given by Ogawa et al. (1991a,b):

�12 D 5:23 � 10�18 cm2I �21 D 8:12 � 10�23 cm2 (3.165)

S11 D 83:8 eVcm2=μgI S22 D 156:9eVcm2=μgI (3.166)


12 C 
21 D 6:49 keV : (3.167)
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3.11. Verify the step form (3.125) to (3.127). You will need the integral

Z 1

0

dt tm.1 � t/n D mŠnŠ=.mC nC 1/Š (3.168)

3.12. Consider straggling in the two-state case and split it into three contributions,

� one where S12 and S21 as well as W12 and W21 are neglected,
� one where S11 and S22 W11 andW22 are neglected and
� what remains.

Try to appreciate the origin of the respective fluctuations and try to make rough
estimates of the significance of various terms dependent on beam velocity, based on
what you have learned in Sect. 3.4 on the energetics of charge exchange.

3.13. Evaluate the three contributions to straggling for the two-state system in
Sect. 3.5.5.1 with the numbers specified in Problem 3.10. Set W12 D �12


2
12

and similarly for W21. Verify that the dominating correction to Bohr straggling is
NxW21, and show that charge-exchange straggling is insignificant for this system
at the specified energy.

3.14. Show that (3.144) reduces to the exact result, (3.138), for the two-state case.
Evaluate the QIJ on the basis of (3.19).

3.15. Demonstrate that (3.154) reduces to the exact result, (3.138), in the two-state
case. Hint: There is a common factor in (3.149) and (3.154),X

J

FJ .qJ � q/QJ D �12�21

N�3
.q1 � q2/2; (3.169)

so that �
d�2

Ndx

�
chex

D 2�S .�S0 C�Schex/
�12�21

�3
.q1 � q2/2 : (3.170)

This comes already close to the exact result. Use (3.153) to derive two linear equa-
tions determining Schex and�Schex, and insert the solutions into (3.170).

3.16. Evaluate (3.128) for the case of three projectile states. You may get help from
Sigmund (1992).
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Chapter 4

Stopping

Abstract This chapter reports theoretical tools to determine stopping cross sections
for heavy ions. The focus is on binary stopping theory (PASS code) and PCA/UCA
theory (CasP code), but also convergent kinetic energy and approaches via trans-
port cross sections are characterized. Problems with the effective-charge scheme
are discussed, and extensive comparisons with measured stopping cross sections are
presented. Applications include charge-dependent stopping, stopping in compound
materials as well as impact-parameter-dependent energy loss.

4.1 Introductory Comments

Until the late 1930s, measurements on stopping of charged particles were performed
mainly with ˛ and ˇ particles. Heavier ions were employed in gas discharges, but
little was known about their penetration properties, since experimental techniques
to measure ranges or energy losses at accessible energies—which were in the eV
and lower keV range at the time—were not available. This situation changed with
the discovery of nuclear fission, as a result of which heavy ions with energies of
the order of 100 MeV and hence velocities in excess of the Bohr velocity became
available. Tracks of these particles could be observed in a cloud chamber, and their
ranges were studied in some detail in a series of measurements by Brostrøm et al.
(1940).

These measurements were analysed by Bohr (1940, 1941), who pointed out sev-
eral features which distinguished heavy from light ions with regard to their stopping
behaviour:

� Stopping by elastic nuclear collisions plays a far greater role, in particular toward
the end of the track,

� Heavy ions are not necessarily point charges but must be expected to carry bound
electrons, the number of which may fluctuate during slowing down, so that the
effective ion charge will be smaller than the nuclear charge,

P. Sigmund, Particle Penetration and Radiation Effects Volume 2,
Springer Series in Solid-State Sciences 179, DOI: 10.1007/978-3-319-05564-0_4,
� Springer International Publishing Switzerland 2014
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Fig. 4.1 Measured stopping cross sections for oxygen ions in aluminium, compared with Bohr and
Bethe formula. Experimental data from several sources compiled by Paul (2013)

� Application of the Bethe theory to heavy-ion stopping becomes questionable be-
cause of the breakdown of the Born approximation for ions of high atomic num-
ber Z1.

You may see an illustration of the last point in Fig. 4.1, which shows more re-
cently measured stopping cross sections for oxygen ions in polycrystalline alu-
minium. Also included are stopping cross sections calculated from the standard
formula

S D 4�Z21Z2e4

mv2
L ; (4.1)

where

L D
8<
:

ln.2mv2=�!0/ (Bethe)

ln.Cmv3=Z1e2!0/ (Bohr)
: (4.2)

according to (4.93) and (4.118), Vol. 1, with C D 1:1229 and �!0 D 166 eV.
According to (2.80), Vol. 1, classical scattering theory should be valid for � D

2Z1v0=v 	 1 or
E � Z21 � 0:1 MeV/u ; (4.3)

i.e., E � 6:4MeV/u for the system under consideration. Figure 4.1 shows that the
two theoretical curves cross each other at that energy and that the Bohr formula
comes closer to the experimental data below the crossing, while the opposite is
found above the crossing. This is in full agreement with the expectation from the
Bohr criterion: The Born approximation takes over above the limit of validity of
classical stopping theory.

Figure 4.1 also demonstrates that the two theoretical expressions break down at
low velocities, but initially both expressions overestimate the stopping cross sec-
tion. This may be ascribed to the neglect of screening due to electrons bound to
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the projectile. The fact that both expressions turn negative at some lower velocity
is in part a consequence of the mathematical approximations applied, as discussed
in Chap. 4, Vol. 1, but also due to the neglect of several physical phenomena that
become exceedingly important at lower beam energies and which will be discussed
in this chapter.

We shall see in Sect. 4.3 that for a rather long period of time, stopping mea-
surements involving heavy ions were analysed in terms of the Bethe theory also at
velocities below the limit of validity of the Born approximation. This implied that
for the system shown in Fig. 4.1, projectile screening had to be taken to be the ori-
gin of an overestimate by up to a factor of 3 of the Bethe stopping cross section.
Bethe himself was not involved in this development, and Bohr had died in 1963.
However, Lindhard repeatedly emphasized the importance of the Bohr criterion in
this context, implying that something was seriously wrong with the physics here.

About two decades ago the author of this monograph was asked by the Interna-
tional Commission of Radiation Units and Measurements (ICRU) to chair a com-
mittee collecting available knowledge on stopping of heavy ions and to issue a table
of recommended values of stopping cross sections for materials of interest. At that
time the field was dominated by empirical interpolation schemes with little if any
underlying theoretical foundation. A notable exception was the work by Brandt and
Kitagawa (1982) which will be commented below.

As a result I devoted several years of research to the development of a theoret-
ical scheme to calculate stopping cross sections for ions heavier than helium, with
Bohr stopping theory as the most feasible available starting point. This research
has resulted in a report (ICRU, 2005), a monograph (Sigmund, 2004), a summary
(Sigmund, 2006) and a rather large number of research papers. I shall try here to
sum up this development, which also stimulated other research groups to work in
the area, in some detail. Therefore I shall to some extent deviate from the general
strategy in this monograph and devote a comparatively large fraction of space to the
presentation of my own and my coworkers’ contributions.

4.2 Experiments

Until the mid 1960s, measurements were performed with fission fragments which
have a relatively narrow range of initial energies. Information on stopping gained
from ion ranges measured at a fixed energy is rather limited. Accurate stopping
measurements have became possible with the use of tandem accelerators in the late
1960s. This made it possible to specify not only the initial energy but also the mass
and charge of the beam particles (Moak and Brown, 1963, 1966).

We have seen in Chap. 3 that the presence of various charge states in the beam
varies along the trajectory but tends toward a dynamic equilibrium. Tabulated stop-
ping cross sections are generally supposed to represent stopping in charge equi-
librium. This implies the more or less tacit assumption that charge equilibrium is
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established over a path length that is small compared to the foil thickness in a given
measurement.

Measurements on thin foils with varying thickness allow to follow the approach
to charge equilibrium and the influence of the ion charge on the energy loss (Cow-
ern et al., 1984). In rare cases measurements have been performed of energy-loss
spectra for a specific entrance and exit charge state (Ogawa et al., 1991, Blazevic
et al., 2002). From a theoretical point of view such measurements are particularly
interesting in those cases where it is possible to distinguish between particles that
have undergone charge exchange and those that have not (Datz et al., 1972).

A particularly intriguing feature has been the gas-solid difference in charge state
mentioned in Chap. 3. The discussion about the physical origin of the difference in
mean charge has already been mentioned in Sect. 3.3.3, but even more intriguing
was the subsequent discovery that this difference apparently did not affect the stop-
ping cross section (Pierce and Blann, 1968). As a consequence, Betz and Grodzins
(1970) proposed that there was no gas-solid difference in equilibrium charge state,
and that the increased charge of ions emerging from solid targets was caused by
Auger decay on the way from the foil to the detector. As we shall see, it took many
years to resolve this question.

It was mentioned above that nuclear stopping is not necessarily negligible in
measurements with heavy ions. It actually becomes dominating at low energy. Nu-
clear energy losses also imply angular deflection. This may complicate the analysis
of stopping measurements with heavy ions, in particular at low beam energy. This
aspect will be discussed in Chap. 7.

An interesting feature is the oscillatory dependence of electronic stopping cross
sections at a fixed beam velocity v on the atomic number Z1 of the ion, so-called
Z1 oscillations (Ormrod and Duckworth, 1963, Ormrod et al., 1965, Fastrup et al.,
1966), which will be discussed in Chap. 8.

Figure 4.2 shows a survey of ion-target (Z1; Z2) combinations for which equilib-
rium stopping cross sections were available by october of 20091. Some holes have
been filled since then, but the general picture remains unchanged: There are large
islands that are not covered by data at all, and for most other ion-target combinations
only 1–4 data sets are available. Note that an accelerator typically covers about one
order of magnitude variation in beam energy, while the range of beam energies of
potential interest goes over more than six orders of magnitude.

In other words, theory is indispensable in this field and will remain so for many
years.

4.3 Effective Charge and its Problems

Consider for a moment the stopping of fission fragments. With a mass of � 100 u
and an energy of � 100MeV the energy lies in the range of � 1MeV/u and, hence,

1 The author is grateful to Prof. H. Paul for producing this graph.
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Fig. 4.2 Ion-target combinations covered by stopping data by october 2009. Graph updated from
ICRU (2005). Numbers denote the number of available literature references. Compiled by H. Paul

a velocity of v � 6v0. The mean charge fraction is given roughly by

q1

Z1
� v

Z
2=3
1 v0

� 0:5 : (4.4)
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Fig. 4.3 Effective-charge ratio �2 for oxygen in numerous target materials, determined from (4.6).
From Paul (2013). Also included is the square of the Thomas-Fermi charge fraction (thin solid line)

Both Bohr and Bethe stopping theory were developed for bare projectiles, i.e., point
charges. The question arises, therefore, how to accommodate the above reduction
in the effective ion charge into stopping theory. Bohr (1940, 1941) recognized that
� D 2Z1v0=v > 1 for fission fragments and replacedZ1 by q1 in the Bohr formula
in order to obtain a rough estimate of the penetration depth.

This idea was taken up by Northcliffe (1960), but with the important difference
that Bohr stopping theory was replaced by Bethe theory. Unlike in Bohr theory,
the charge enters only as a factor here. Northcliffe proposed to define an effective-
charge ratio by reference to the stopping cross section for protons,

	2 D 1

Z21

S.Z1; Z2; v/

S.1;Z2; v/
(4.5)

or to ˛ particles,

	2 D
�
2

Z1

�2
S.Z1; Z2; v/

S.2;Z2; v/
; (4.6)

where S.Z1; Z2; v/ is the stopping cross section of an atom Z2 for an ion Z1 in
charge equilibrium. In either case, 	2 was suggested to depend on Z1 and v but
not on Z2. The effective-charge ratio 	2 could then be determined empirically for
those ions and velocities where data were available, and the rest could be handled
by interpolation, making use of analytical fitting formulae. An example is given in
Fig. 4.3. Once 	.Z1; v/ has been determined, S.Z1; Z2; v/ can be found for any
material for which a proton or ˛ stopping cross section is available.

While this scheme, or a slight modification thereof, was employed in numerous
tabulations and codes providing stopping cross sections for heavy ions (Steward,
1968, Northcliffe and Schilling, 1970, Hubert et al., 1980, Ziegler et al., 1985, Hu-
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bert et al., 1990, Paul and Schinner, 2001), several problems are either obvious or
have shown up gradually:

� The effective-charge ratio 	2 extracted from (4.5) or (4.6) deviates significantly
from the corresponding quantity extracted from the measured charge population.

� This has been found to be the case both for the absolute magnitude and the
dependence on v and Z1. An example is seen in Fig. 4.3, where the functionh
1 � exp.�v=Z2=31 v0/

i2
, which represents the square of the simple Thomas-

Fermi charge fraction, has been included.
� Evidently, 	2 is not independent of Z2.
� On the theoretical side, the application of a formula derived for point charges to

screened ions, i.e., the replacement of the nuclear charge by the ion charge, was
questionable from the beginning,

� The role of the Barkas-Andersen (or Z31 ) effect in heavy-ion stopping was not
clear,

� For heavy ions in the classical regime the atomic number does not only enter as
a factor but also under the logarithm and, most important,

� Since screening is important for v � v0Z
2=3
1 and the Born regime is confined to

projectile speeds v � v0Z1, the scheme can be expected to be valid for

v0Z1 � v � v0Z
2=3
1 ; (4.7)

a condition that is not fulfilled for any ion with Z1 > 1.

The next-to-last point is illustrated in Fig. 4.4, which shows stopping numbers
for bare protons and bare oxygen according to the simple Bohr and Bethe formu-
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lae, (4.2). The two curves coincide above 6 MeV/u. Also shown is the ratio between
the two curves, which is D 1 above 6 MeV/u, but at lower energies looks suspi-
ciously like an effective-charge ratio 	2, except that it turns negative at the apparent
threshold defined by the Bohr formula. While this curve exhibits the qualitative be-
haviour seen in the empirical data in Fig. 4.3, it is completely unrelated to projectile
screening.

Brandt and Kitagawa (1982) have made an attempt to establish a theoretical basis
for the effective-charge concept. This work had a profound effect on the theory of
heavy-ion stopping, even though the effective-charge concept has now been largely
abandoned.

4.4 Bohr Theory Extended

The Bohr criterion (4.3) for validity of a classical-orbit theory of ion-electron scat-
tering, E � Z21 0:1MeV/u, comprises a rather wide energy range for Z1 	 1.
Therefore I shall try to use Bohr stopping theory as described in Sect. 4.2, Vol. 1, as
a starting point to develop a theory of heavy-ion stopping. This will require incor-
poration of a number of effects which were unknown when Bohr (1913) proposed
his theory (Sigmund, 2005) and which did not enter the discussion in Volume 1.

4.4.1 Low-Speed Limit

According to Fig. 4.1, both the simple Bethe formula and the simple Bohr formula
predict negative stopping cross sections below some threshold. Since the deriva-
tion of those formulae does not involve negative energy losses, this feature must
be an artifact introduced by mathematical approximations. Figure 4.3 in Sect. 4.5.1,
Vol. 1, shows that if you avoid asymptotic expansions of Bessel functions, the result-
ing Bohr stopping cross section approaches zero stopping at zero energy smoothly
(Sigmund, 1996).

4.4.2 Screening

As a preliminary exercise let us consider Bohr stopping theory with the Coulomb
interaction ˆ.r ; t/ in (4.13), Vol. 1 replaced by a screened potential

ˆ.r ; t/ D e1

jr � R.t/jg .jr � R.t/j/ ; (4.8)

where g.r/ is some screening function. A simple example is
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g0.r/ D e�r=a (4.9)

with a screening radius a left open for now. while a more realistic representation
could be achieved by a sum of exponentials such as

g.r/ D
X
n

˛ne�r=an I
X
n

˛n D 1 : (4.10)

Note first that
1

r
e�r=a D 1

2�2

Z
d3q

q2 C 1=a2
eiq�r : (4.11)

If you are unfamiliar with this relation you are invited to verify it by going to Prob-
lem 4.1. Comparing (4.11) with (4.15), Vol. 1, you will see that the denominator q2

has been expanded to q2C1=a2. As noted by Johnson (1982), you may include this
modification in the calculation presented in detail in Sect. 4.2.2, Vol. 1, and end up
with the following expression for the Fourier transform of the electric field at the
position of the target electron,

E.!/ D � e1!
�v2

�
iK0

�p
�2 C p2=a2

�
; K1

�p
�2 C p2=a2

�
; 0
�
; (4.12)

where
� D !p

v
: (4.13)

Now, remind that according to (4.11), Vol. 1, the quantity

T D 1

2m

ˇ̌̌
ˇ
Z 1

�1
dt .�eE .t// ei!0t

ˇ̌̌
ˇ
2

(4.14)

represents the energy transfer in a single distant collision to an electron bound har-
monically with a resonance frequency!0. Then, (4.12) tells us that in Bohr’s calcu-
lation we need to replace

!2

v2
! !2

v2
C 1

a2
: (4.15)

Here v=! D aad is the adiabatic radius which represents the effective screening due
to harmonic binding of the target electron, whereas a represents screening in the
ion-electron potential. Thus, while the two types of screening have different physical
origins, they nevertheless enter in a completely equivalent manner into (4.15).

You may turn this argument around: Instead of incorporating binding of the target
electron as a separate harmonic potential in the equation of motion, we could instead
include it in an exponentially-screened ion-electron potential (4.9) with a screening
radius specified in (4.15).

To complete this argument, let us go back to unscreened Coulomb interaction by
setting a D 1. Then we may replace the harmonic potential in the Bohr model
by an exponentially-screened Coulomb potential with the adiabatic radius as the
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screening radius. This is exactly what has been found already in Sect. 6.4.5, Vol. 1
when binary stopping theory was discussed.

4.4.3 Charge Dependence

Equation (4.8) or (4.9) could approximately represent a neutral atom. Characterizing
an ion with a charge q1e requires an extension such as

V.r/ D �q1e
2

r
� .Z1 � q1/e2

r
g.r/ ; (4.16)

where Z1 � q1 denotes the number of electrons bound to the projectile (Brandt and
Kitagawa, 1982).

Let us keep to an exponential dependence, g D g0.r/ in accordance with (4.9).
Then, making use of (4.12) you will find

T D 2Z21e4

mv2p2
f .p/ (4.17)

with

f .p/ D
�
q1

Z1
�K1.�/C

�
1 � q1

Z1

�p
�2 C p2=a2K1

�p
�2 C p2=a2

��2

C
�
q1

Z1
�K0.�/C

�
1 � q1

Z1

�
�K0

�p
�2 C p2=a2

��2
: (4.18)

This relation reduces to Bohr’s formula, (4.23), Vol. 1, for q1 D Z1 and a D 1.
It has been utilized in the calculation of stopping cross sections within the general
framework of the Bohr theory (Sigmund, 1997). However, an important ingredient is
missing here: The Barkas-Andersen correction which accounts for deviations from
the Z21 law could become substantial for Z1 	 1.

4.5 Binary Stopping Theory and PASS Code

Binary stopping theory has been documented in a number of papers by A. Schinner
and the author, primarily Sigmund and Schinner (2000, 2002) and ICRU (2005).
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Fig. 4.5 Definition of reff.
See text
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4.5.1 The Kernel

The essential point in binary theory, described in Sect. 6.4.5, Vol. 1, is the represen-
tation of binding by screening of the interaction potential. We have seen that this
is achieved by the replacement (4.15). Thus, the effective ion-electron interaction
potential for a screened ion emerges from (4.16) by this replacement,

V.r/ D �q1e
2

r
e�!r=v � .Z1 � q1/e2

r
e�

p
!2=v2C1=a2 r ; (4.19)

if we adopt exponential screening. More complex screening function such as (4.10)
can be handled correspondingly.

The energy transfer to a free target electron,

T D 2mv2 sin2‚=2 ; (4.20)

where‚ is the centre-of-mass scattering angle, can be evaluated from (3.76), Vol. 1
for a distant collision,

‚ D � 2

mv2p

Z 1

p

drp
1 � p2=r2

d
dr
ŒrV.r/� (4.21)

to the leading power in V . Insertion of (4.19) and integration then reproduces (4.17)
with f given by the first term in (4.18) to the leading term in Z1 (cf. Problem 4.2).

The missing second term in (4.18) was shown in Sect. 6.4.5, Vol. 1 to originate
in the transfer of potential energy to a harmonically bound electron. While there is
no transfer of potential energy to a free electron, the equivalent of this contribution
could nevertheless be determined via the transfer of angular momentum, which does
occur also in a free binary collision. The argument goes as follows:

The angular momentum J achieved by a target electron, with reference to its
initial position in the laboratory frame of reference, may be written as

J D reffP : (4.22)
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Here,P is the transferred momentum and reff the distance of the asymptotic (straight
line) trajectory from the point of departure (Fig. 4.5). reff can be expressed by the
time integral � (cf. Sect. 3.3.4, Vol. 1) and reduces to

reff ! 2� � p‚ (4.23)

for distant collisions, while P reduces to

P ! mv‚ (4.24)

in that limit.
The transfer of potential energy is then given by

Epot D 1

2
m!2r2eff : (4.25)

We therefore need to evaluate the time integral for the potential (4.19). This can be
achieved by the relation

� D � 1

mv2

Z 1

p

drp
r2 � p2

d
dr

�
r2V.r/

	
(4.26)

which yields2

reff D 2Z1e
2

mv2

h
ˇK0 .�/C .1 � ˇ/K0

�p
�2 C p2=a2

�i
: (4.27)

Inserting this into (4.25) you obtain the missing second term in (4.18).
With this, an exact mapping has been achieved of the extended Bohr model dis-

cussed in Sect. 4.4.3 for screened ions on a binary scattering model for distant col-
lisions. It was shown by Sigmund and Schinner (2000) that the validity of this ap-
proach also extends to the next order in Z1. However, unlike the leading order, the
equivalence in the second order is not algebraically exact.

Binary stopping theory does not make use of a perturbation expansion. Instead,
the scattering problem defined by the interaction potential (4.19) is solved by nu-
merical integration of the scattering integrals (3.34) and (3.61) derived in Volume 1.
The energy transfer T .v; p/ is then determined as a function of projectile speed and
impact parameter from (4.20) and (4.25). Integration over the impact parameter de-
livers the stopping cross section S.v/ D R

2�p dp T .v; p/, as well as the straggling
parameterW.v/ D R

2�p dp T .v; p/2 if desired.
As described up till now, binary stopping theory delivers a stopping cross section

for a one-electron atom interacting with a partially-stripped ion. Since no perturba-
tion expansion has been made, the Barkas-Andersen effect is inherent in the scheme.
The incorporation of higher-order terms is not exact, but its numerical accuracy was

2 There is a misleading misprint in (A.33), Vol. 1, p. 399: The contents of the square brackets should
read K0.p=a/� .p=a/K1.p=a/. Moreover, ‘dr’ is missing in the integral (A.132).
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tested by Sigmund and Schinner (2000) against an explicit evaluation of theZ31 term
for screened heavy ions (Schinner and Sigmund, 2000).

In order to allow prediction of stopping cross sections, further extensions of the
Bohr theory are necessary:

� We need to allow for more than one electron in a target atom,
� The orbital motion of the target electrons needs to be incorporated,
� A smooth transition to the Bethe regime needs to be ensured,
� Projectile excitation and electron capture and loss need to be allowed for,
� Relativistic corrections need to be incorporated.

These features have to be accounted for in any theory of heavy-ion stopping. They
can be dealt with in a variety of ways. Before looking into how they enter into
binary stopping theory, let us try to find some qualitative criteria for their respective
significance.

According to Sect. 6.6, Vol. 1, the shell correction produces a leading correction
term to the stopping number of the order of v2e=v

2 at large ion speeds. Within the
Thomas-Fermi model of the atom (cf. Sect. 7.2.2, Vol. 1), we have ve ' v0Z

2=3
2 .

Thus, the shell correction goes as

�Lshellcor / Z
4=3
2

v20
v2
: (4.28)

We have already seen that the Barkas-Andersen correction produces a correction
term of the order of Z1e2!=mv3. With the Thomas-Fermi expression for the I -
value, �! / Z2mv

2
0 this leads to a correction

�LBarkas / Z1Z2
v30
v3
: (4.29)

Screening due to electrons accompanying the projectile becomes significant when
the ratio v=Z2=31 v0 is not 	 1.

Finally, the Bloch correction is governed by the Bohr parameter 2Z1v0=v. All
these corrections may be taken as small at high projectile speeds, and with decreas-
ing speed their relative importance depends onZ1 andZ2. For Z1 > Z2, the Bloch
correction is most important, followed by screening, Barkas-Andersen and shell cor-
rection. Conversely, for Z1 < Z2, the shell correction is leading, followed by the
Bloch and Barkas-Andersen terms, and screening becomes noticeable at even lower
projectile speeds.

4.5.2 Multiple-Electron Atoms

Binary stopping theory assumes independent target electrons. This implies that a
neutral atom is characterized by Z2 resonance frequencies. Some of those may be
identical. In practice we need a set of resonance frequencies !n or !n` for the nth
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principal shell or the n`th subshell and the number of electrons Z2fn or Z2fn`
in the respective shell or subshell, where fn and fn` are taken as dipole oscillator
strengths introduced in Sect. 4.5.3, Vol. 1.

Several procedures have been proposed for deriving appropriate sets of .fn; !n/
pairs for individual atoms. A convenient option, proposed by Sternheimer (1952) is
as follows,

� Z2fn` is taken as identical with the nominal number of electrons in the n`th
subshell according to the periodic table,

� �!n` is taken as proportional to the respective subshell binding energy Un`,
� The common proportionality constant ˛ is chosen such that

ln I D
X
n`

fn ln .˛Un`/ ; (4.30)

where I is the logarithmic mean excitation energy, the ‘I -value’ of the material.

Since binding energies Un` are well documented for all materials (Carlson et al.,
1970), this is a very convenient procedure. The proportionality between! andU ap-
pears well justified as a function ofZ2 for specific shells, cf. Fig. 7.13, Vol. 1. How-
ever, the assumption of a common proportionality factor between different shells of
one and the same atom is not corroborated by comparisons of more reliable data, as
you may see in Table 7.1, Vol. 1. Moreover, the procedure assumes the I -value to
be wellknown and thus implicitly involves fitting of stopping data.

This procedure has been adopted in the CasP code to be discussed below (Grande
and Schiwietz, 2010). In the PASS code, an implementation of binary stopping the-
ory, it has been incorporated as an option for determining .fn`; !n`/ when more
reliable data are unavailable.

The standard procedure adopted in the PASS code makes reference to continuous
oscillator-strength spectra f .!/ found from optical and X-ray data, cf. Sect. 7.6.2,
Vol. 1. Here,

Z2fn` D
Z
n`

d!f .!/ (4.31)

and

Z2fn` ln!n` D
Z
n`

d!f .!/ ln.!/ ; (4.32)

where
R
n`

indicates an integral over a frequency range which can be assigned to the
n`th subshell. The delimitation of the principal shells is suggested by absorption
edges in the spectra for the innermost shells. Separation of subshells may be less
clear, but because of the logarithmic averaging expressed in (4.31) this delimitation
does not have a critical influence on the final outcome. The same statement applies
to outer shells, where an assignment to shells and subshells on the basis of measured
spectra is usually ambiguous.

Oscillator-strength spectra may also be calculated. A major effort was taken in
the 1970s to compute moments and logarithmic mean values over such spectra for
elements up to krypton (Dehmer et al., 1975, Inokuti et al., 1981). These calcula-
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tions reproduced relative variations found in stopping and other measurements as
a function of Z2, but the calculated absolute values were not accurate enough for
computing stopping parameters. Recent efforts along this line combine computa-
tional methods and experimental data (Smith et al., 2006).

4.5.3 Projectile Excitation and Ionization

According to (3.108), the mean energy loss per path length, summed over all charge
states, is given by �

�dE

dx

�
I

D N
X
JK

FIJ .x/SJK ; (4.33)

where FIJ .x/ is the probability for an ion to occupy state J at depth x if it was in
state I at x D 0 and SIJ D R

T d�IJ .T / is a partial stopping cross section.
When the stationary state is reached, this reads

�dE
dx

D N
X
J

FJSJ ; (4.34)

where
SJ D

X
K

SJK (4.35)

and FJ D FIJ .1/. A rigorous evaluation of (4.34) does not only require knowl-
edge of FJ for all significant charge and excitation states of the projectile, it also
requires knowledge of the cross sections for charge exchange and the associated en-
ergy transfers from all those states, in addition to the energy-loss cross sections for
target excitation in a ‘frozen’ charge state. In order to get a tractable expression we
need to make some simplifications.

We shall see below that most often, target excitation is the dominant energy-loss
process. This process depends on the charge state of the ion but is less sensitive to
its excitation state. Therefore, with regard to target excitation we may restrict the
sum over J to go over the significant charge states.

In Sect. 3.5.5.2 the stopping cross section was approximated as a linear function
of the charge state. This implies that instead of averaging over the stopping cross
section we can try to average over the charge state. Then, (4.34) reduces to

�dE
dx

' NS.q/ ; (4.36)

where q is the equilibrium charge. The quality of this approximation and its limita-
tions will be discussed in Sect. 4.8.3.

In the PASS code the approximation (4.36) has been applied to all processes un-
dergone by a projectile in the equilibrium charge state, not only to target excitation.
This appears acceptable as long as other processes are not dominant.
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Consider now energy loss by charge exchange. We may assume that single-
electron processes dominate. With this, the stopping cross section in (4.36) re-
duces to

S.q/ D Sfrozen.q/C Scapt.q/C Sloss.q/ : (4.37)

Now, in charge equilibrium, the mean number of electrons captured per path length
is equal to the mean number of electrons lost per pathlength. When only single-
electron capture and loss events are allowed, also the mean number of capture events
per pathlength must equal the mean number of loss events per pathlength. And if the
distribution of charge fractions does not have a narrow peak around the maximum,
we may even assume that the cross sections for capture and loss are approximately
equal in charge equilibrium

�capt ' �loss D �chex ; (4.38)

despite the cautionary remark in connection with (3.29).
If we allow this approximation, we may write

S.q/ ' Sfrozen.q/C �chexTcl ; (4.39)

where Tcl is the mean energy loss per capture-loss cycle from (3.78).
The quantity Sfrozen, the stopping cross section for an ion which does not change

its charge, consists of two contributions, one related to target excitation/ionization
which has been discussed earlier in this section, and another one related to projectile
excitation.

Projectile excitation is treated parallel to target excitation as much as possible.
This is most easily visualized by viewing the collision from a reference frame mov-
ing with the projectile. Then

� The roles of target and projectile are switched, but the relative speed is the same,
� Now it is the ‘projectile’ that is neutral, while the ‘target’ particle is partially

stripped, and
� Only energy transfers 0 
 T 
 U are considered (Sigmund and Glazov, 2003),

where U is the binding energy of the ‘target’ taken from (Carlson et al., 1970).

It was asserted above that the excitation state of the true projectile has only a mi-
nor influence on the stopping cross section for target excitation. This statement is
not necessarily true when it comes to projectile excitation, since that stopping cross
section increases with decreasing shell binding energy if the projectile is in an ex-
cited state.

This feature has been handled in the PASS code by allowing one of two options,

� The projectile is in its ground state at the given charge, or
� Individual shells are only partially occupied. They are assumed to be filled to a

fraction q1=Z1 from the bottom up.

A more realistic description may be expected to be intermediate between the two
extremes. This allows to estimate the uncertainty introduced by this feature.
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Any dependence ofUn` and!n` on the charge state has been ignored in the PASS
code until the time of writing.

4.5.4 Extension into the Bethe Regime

In Sect. 6.3.3, Vol. 1 an inverse-Bloch correction was mentioned which, when added
to the Bohr stopping formula, produces the Bethe stopping formula. This correction—
which does not depend on the material, has been incorporated as an option into the
PASS code. In this way, stopping cross sections predicted by PASS approach the
Bethe form at high projectile speeds.

However, the inverse-Bloch correction makes reference to bare ions. Therefore
we need to pay attention to the possibility that it needs to be modified for partially-
screened projectile ions.

Remember that the transition point between the Bohr and the Bethe regime lies
at v / 2Z1v0, while the mean charge is given by (1.6) approximately. This implies
that the average charge fraction at the transition point is given by

qcrit

Z1
' 1 � e�2Z1=3

1 : (4.40)

This is 0.86 for protons, 0.94 for lithium and even closer to 1 for heavier ions.
Moreover, the ratio approaches 1 rapidly with increasing speed. In other words,
unless you need high-precision data it appears well justified, in the determination of
stopping cross sections in charge equilibrium, to apply the inverse-Bloch correction
for bare ions.

4.5.5 Shell Correction

The shell correction takes into account the orbital motion of the target electrons. The
Bohr theory, operating with a classical model of the atom, ignores this feature. Al-
though the shell correction is fully incorporated in the Bethe theory of stopping, the
simple Bethe logarithm ln 2mv2=�! is based on an asymptotic expression, where
terms of order hv2e =v2i are neglected. Also the Bloch correction, (6.20), Vol. 1, fol-
lows this pattern. Therefore, a shell correction has to be incorporated over the entire
velocity range, except at projectile speeds much larger than the highest orbital speed.

The topic has been discussed extensively in Sect. 6.6, Vol. 1. A convenient way of
incorporating the shell correction is kinetic theory, presented in Sect. 6.6.4, Vol. 1.
This scheme is particularly well suited for use in binary collisions, where it is exact,
as far as the kinetic-energy transfer (4.20) is concerned. Moreover, Sigmund and
Schinner (2006) demonstrated that what is commonly denoted as shell corrections
can fully be accounted for by
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� avoiding asymptotic expansions in powers of 1=v and
� accounting for orbital velocities ve in accordance with kinetic theory (Sigmund,

1982).

In the PASS code the same formalism has been applied to the potential-energy
transfer (4.25). This is not justified on theoretical grounds, but since potential-
energy transfer is generally small compared to the kinetic term, the error made is
asserted to be tolerable.

4.5.6 Relativistic Effects

Stopping at relativistic projectile speeds has been discussed in Sect. 6.7, Vol. 1.
When dealing with very heavy ions we have to address the fact that relativistic
velocities do not lie automatically in the Bethe regime. Indeed, the Sommerfeld pa-
rameter Z1v0=v may come close to 1 at v ' c for the heaviest ions. Since the
relativistic corrections in Bohr and Bethe theory differ from each other, there might
be a reason for concern.

This problem was addressed in a comprehensive manner by Lindhard and Sørensen
(1996), who developed their theory on the basis of relativistic quantum theory of
scattering and wrote the main result in the form of a correction to the relativistic
Bethe stopping formula, cf. (6.121), Vol. 1. This theory ignores screening by projec-
tile electrons as well as shell corrections. It has been implemented by A.H. Sørensen
in a FORTRAN code which, by courtesy of A.H. Sørensen, has been incorporated
in the PASS code.

In precision measurements of stopping of very heavy ions, screening by projectile
K electrons may not be negligible. This aspect has been treated by Sørensen (2007),
but it is not part of the PASS code.

4.6 PCA/UCA Approximation and CasP Code

Grande and Schiwietz (1998) proposed a scheme to determine stopping cross sec-
tions for light and heavy ions as well as straggling parameters and impact-parameter
dependencies. The scheme has, after further development, resulted in the CasP code
which is available on the internet (Grande and Schiwietz, 2010). Although the orig-
inal derivation starts from the Bethe theory, the essential features can as well be
characterized within the Bohr theory.
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Fig. 4.6 Replot of Fig. 4.2, Vol. 1: Plotted is the function f.v; p/ in (4.41) as a function of � D
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4.6.1 The Kernel

Let us consider a one-electron atom with a resonance frequency!0. Then, according
to (4.22), Vol. 1, the energy loss T .p/ at an impact parameter p is given by

T0.p/ D 2Z21e4

mv2p2
f .p; v/ ; (4.41)

where f .v; p/ is a dimensionless function which, in the Bohr theory, was deter-
mined separately for close and distant collisions.

Grande and Schiwietz (1998) considered three impact-parameter regimes. For
large p the dipole approximation

f .v; p/ D �2
h
.K0.�//

2 C .K1.�//
2
i

I � D !0p=v (4.42)

is employed according to (4.23), Vol. 1. Figure 4.6 shows f .�/, which is close to
1 up to the adiabatic radius and drops rapidly toward zero as the impact parameter
increases. The figure is equivalent to Fig. 4.2, Vol. 1, but the logarithmic scale is
more illustrative for the present purpose.

In the opposite end, the expression T0.p/ D 2Z21e4=mv2p2 diverges at small
impact parameters. In the Bohr theory this divergence is removed by employing the
Thomson formula, which is equivalent with (4.84), Vol. 1,

f .p/ D 1

1C .b=2p/2
� �2

�2 C 1=�2
; (4.43)
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where b D 2Z1e
2=mv2 is the collision diameter and � D mv3=Z1e

2!0. Three rep-
resentative cases, corresponding to different projectile speeds, have been included
in Fig. 4.6.

It is seen that there is an intermediate range of impact parameters where both
functions are close to 1, dependent on speed. This allows to join the two regimes
in the Bohr theory, cf. Sect. 4.5.1, Vol. 1. You may go to Problem 4.3 and try to
derive the above result starting from the Born approximation (Grande and Schiwietz,
1998).

Grande and Schiwietz (1998) added two features to this scheme, both of which
are quantum features that are absent in the Bohr theory. Firstly, if we define p as
the impact parameter to the nucleus, we need to convolute T0.p/ with the spatial
distribution function ge.re/ of the electrons,

T .p/ D
Z

d3rege.re/T0 .jp � �ej/ ; (4.44)

where �e is the component of re in the impact plane perpendicular to the projectile
velocity. This modification has been applied both in the low-p and the intermediate
regime.

As a second modification, the orbital velocity distribution fe.ve/ was taken into
account in the close-collision regime. The resultant expression, which was likewise
derived from the Born approximation, does not contain Planck’s constant except
through fe.ve/, i.e., it must be equivalent with what can be derived by the methods
presented in Sect. 6.5.1, Vol. 1.

Evidently the scheme does not predict a Barkas-Andersen effect. You may also
worry about the validity of treating the spatial distribution ge.re/ and the velocity
distribution fe.ve/ as uncorrelated. However, that approximation does not affect the
stopping cross section, which is found by integration over the impact parameter.

4.6.2 Extensions

Starting from this kernel of the theory, called perturbative convolution approxima-
tion (PCA), extensions are necessary of the same type as those listed on page 161
for the binary theory:

� The extension to multielectron atoms follows by summing up contributions from
individual subshells. .fn`; !n`/ pairs are determined by the procedure of Stern-
heimer (1952) described above.

� Screening by electrons bound to the projectile has been allowed for (Azevedo
et al., 2000), following the scheme outlined by Sigmund (1997).

� A smooth transition to the classical regime has been achieved by an impact-
parameter-dependent Bloch correction (Schiwietz and Grande, 1999). While this
is problematic from a conceptual point of view, it was determined in practice
by inserting a scaling factor into the Thomson formula (4.43), which made the
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stopping cross section to agree with Bloch’s result, (6.4), Vol. 1. The resultant
scheme is called unitary convolution approximation (UCA).

� Projectile excitation/ionization has been allowed for by interchanging the roles
of projectile and target.

� Electron capture has not been included.
� Relativity corrections have been included in accordance with the Bethe theory.

The Lindhard-Sørensen correction has not been included.
� A Barkas-Andersen correction has been incorporated by means of a multiplica-

tive factor, so that the ratio between the corrected and the uncorrected stopping
cross section is taken over from binary stopping theory.

A detailed summary of the scheme was presented by Grande and Schiwietz (2002).

4.7 Transport Cross Section

According to (3.118) the stopping cross section is closely related to the transport
cross section

� .1/ D
Z

d�.‚/ .1 � cos‚/ : (4.45)

For a heavy particle interacting with free electrons, the relation reads

S D mv2� .1/ : (4.46)

This relation allows to employ methods of classical or quantal scattering theory, in
particular those described in Chap. 3, Vol. 1, to be employed in the calculation of
stopping cross sections.

Calculations of the transport cross section frequently make use of the partial-
wave expansion. As a result, the transport cross section can be expressed by phase
shifts,

� .1/ D 4�

k2

X
`

.`C 1/ sin2.ı` � ı`C1/ (4.47)

according to (3.119), Vol. 1.
In the context of stopping theory this relation was first used in a thesis on low-

velocity stopping by Finnemann (1968). This, as well as a large number of followup
papers will be discussed in Chap. 8. In the present chapter we shall have a look at
studies of high-velocity stopping on the basis of this scheme.

One of those studies has already been discussed in Sects. 6.3.2 and 6.7.2, Vol. 1,
where the Bloch correction was determined via the difference between the transport
cross section for free-Coulomb scattering and its perturbation limit.
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4.7.1 A General Remark

Unlike Lindhard and Sørensen (1996), who studied differences in transport cross
sections, theoretical schemes discussed in the present section employ the transport
cross section approach to determine absolute stopping cross sections. Therefore the
question arises to what extent (4.46), which is exact for free target electrons, is valid
for bound electrons.

Let us start with the Bohr theory. In Sect. 6.4.5, Vol. 1, we found that the transfer
of kinetic energy to a target electron is given by

T .p/ D 2mv2 sin2
‚.p/

2
D 2Z21e4!20

mv4

h
K1

�!0p
v

�i2
(4.48)

in a free ion-electron collision governed by a Yukawa potential with a screening
radius v=!0. Equation (4.48) represents the leading term in an expansion in powers
of Z1. It coincides with the first term emerging from the Bohr theory. However, the
second term,

�T .p/ D 2Z21e4!20
mv4

h
K0

�!0p
v

�i2
; (4.49)

is ignored here. Now, in Problem 4.4 you may find thatZ 1

0

2�p dp�T D 4�Z21e4

mv2
1

2
: (4.50)

Thus, at least in this case the transport equation approach misses a term 1/2 in the
stopping number L.

A similar result emerges from the Born approximation, as was observed by Arista
(2002): From the differential cross section for a Yukawa potential, (3.94), Vol. 1, you
may determine the transport cross section and, by setting the screening radius equal
to v=!0, arrive at a stopping cross section

S D
Z
T d� D 4�Z21e4

mv2

�
1

2
ln


1C B2

� � 1

2

B2

1C B2

�
(4.51)

with B D 2mv2=�!0. Evidently, for B 	 1 a factor 1/2 is missing in the stopping
number.

Figure 4.7 shows a comparison between the stopping number L following from
(4.51) and the exact result from the Born approximation for a harmonic oscillator
(Sigmund and Haagerup, 1986). Also included is the simple Bethe logarithm. The
difference between the exact (Born) result and the Bethe logarithm reflects the shell
correction. It is seen that the difference between the transport cross section and
the Bethe logarithm is almost constant down to about B D 3. At this low energy,
omitting the term 1/2 underestimates the stopping cross section by almost a factor
of two. Even at B D 100 the error is about 10%.

Evidently, this aspect has to be dealt with in any stopping theory based on (4.46).
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Fig. 4.7 Stopping number L D Smv2=4�Z2
1e4 for a harmonic oscillator in the Born approxi-

mation. Solid line: Found from transport cross section, (4.51). Dashed line: Exact result (Sigmund
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4.7.2 Generalized Friedel Sum Rule

The transport-equation approach is particularly suited to study deviations from the
Born approximation. Indeed, exact evaluation of the scattering theory for a Yukawa
potential or other screened-Coulomb potentials will generally deliver a Barkas-
Andersen effect as well as a Bloch-type correction. The significance of these effects
tends to increase with decreasing projectile speed. The choice of the screening ra-
dius is crucial here. While the choice of a D v=!0 appears to represent reality well
at high projectile speed, this does not necessarily remain true down to low speed.

In the present section we shall have a look at a procedure in which the screening
radius is determined by requiring a sum rule to be fulfilled. The starting point is the
Friedel sum rule (Friedel, 1952) which ensures neutrality of a free electron gas in
the presence of a charged impurity, discussed in Appendix 8.10.2. The approach was
first proposed by Cherubini and Ventura (1985) and used in low-velocity stopping
(Calera-Rubio et al., 1994).

Subsequently, Nagy and Bergara (1996) extended the approach to higher beam
velocities. It was assumed that the electron distribution is in equilibrium, so that a
neutrality requirement can be imposed. It was also assumed that the dynamically-
screened potential is spherical. Within these assumptions, the argument leading to
the Friedel sum rule—which involves phase shifts of a spherical potential—can be
generalized to a Fermi sphere displaced in velocity space by an amount correspond-
ing to the beam velocity.

One useful result of this work is an expression of the effective screening radius
a as a function of the beam velocity,
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Fig. 4.8 Screening radius in Yukawa potential to describe velocity-dependent stopping according
to (4.52)

a2 D v2F
3!2P


1

2
C v2F � v2

4vvF
ln

ˇ̌̌
ˇv C vF

v � vF

ˇ̌̌
ˇ
��1

: (4.52)

As you may see in Fig. 4.8, a is very close to the adiabatic radius v=!P down to
v � 2vF .

The approach was developed and systematized further by Lifschitz and Arista
(1998), who applied it to an analysis of proton-antiproton differences in stopping
(Arista and Lifschitz, 1999). Arista (2002) applied the model to heavy-ion stopping
by allowing for static screening in the potential. A more detailed summary has been
presented subsequently (Arista and Lifschitz, 2004). Arista and Sigmund (2007)
pointed out that phase shifts computed by numerical solution of the Schrödinger
equation can be replaced by semi-classical (WKB) phase shifts without significant
loss of accuracy.

The method has been successful in the analysis of experimental data—as will be
seen below—but in view of unsolved problems I refrain from going into details:

� The assumption of an electron distribution in equilibrium around a swift pro-
jectile is a mere postulate which has been noted as such by Nagy and Bergara
(1996). It has not been proven, and no attempt has been published to the author’s
knowledge to even make it plausible.

� As was shown in Sect. 4.7.1, the transport-equation approach fails to reproduce
the potential-energy transfer. This problem was avoided in binary stopping theory
by invoking angular-momentum transfer. A way to overcome this obstacle has
not been found in the present approach.

� The approach is geared toward the free electron gas, and inner shells have usually
been treated by conventional methods. This may be adequate in low-velocity
stopping but imposes further questions at high projectile speed.
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Fig. 4.9 Predicted stopping force for H and He in carbon. Standard version of PASS (ICRU, 2005)
and Grande and Schiwietz (2008, 2011). Experimental data from Paul (2013). TE: Target excita-
tion/ionization only; PE: Projectile excitation/ionization only

4.7.3 Convergent Kinetic Theory (CKT)

In Sect. 1.8.6, Vol. 1, you have got acquainted with a method to circumvent the prob-
lem that the transport-equation approach does not produce the entire stopping cross
section but only the kinetic part. In essence, the approach of Lindhard and Sørensen
(1996) boils down to setting

S D S0 C�S ; (4.53)

where S is the exact stopping cross section, S0 a convenient zero-order approxima-
tion, and

�S D S � S0 (4.54)

the rest, which can be approximated such as to account for a correction considered to
be important. Lindhard and Sørensen (1996) discussed the Bloch correction, which
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originates in close collisions. Therefore, S0 was chosen such that distant collisions
were covered adequately, with the Bethe expression being the proper choice. The
difference �S could then be determined from two transport cross sections. This
simplified the problem because electron binding is of minor importance for close
collisions and therefore could be ignored.

Maynard et al. (2001) generalized this approach in two ways. Firstly, S0 was not
necessarily identified as the Bethe expression. Secondly, more than one iteration
was allowed for, such as

S D S0 C .S1 � S0/C .S � S1/ ; (4.55)

where the two differences on the right-hand side account for different effects.
Such an approach delivers insight into the relative importance of corrections. The

two expressions of which a difference is formed have to be determined by identical
procedures except for the specific effect that is analysed.

The starting point of the work of Maynard et al. (2001) is the kinetic theory of
high-temperature plasmas, and the main goal is the slowing-down of highly-charged
ions in such plasmas. A number of scenarios have been analysed, with either the
Bethe or the Bohr expression as the zero-order approximation S0. Corrections ac-
counted for are projectile screening, Bloch correction and Barkas-Andersen effect
as well as shell correction.

4.8 Applications

4.8.1 Equilibrium Stopping Forces from PASS and CasP

Figures 4.9–4.11 show stopping forces in carbon calculated by the PASS and CasP
code compared with experimental data. The latter are quoted from an extensive
compilation by Paul (2013), which has been updated at regular intervals starting
from 2000, and where also all original references may be found. The selected ions
reflect the availability of experimental data covering a significant energy range, cf.
Fig. 4.2.

Calculations with CasP have mainly been based on the 4.0 version from 2008,
where both shell and Barkas-Andersen correction are included. For comparison,
data computed by the 5.0 version from 2011 have been included for H-C and Xe-
C. Charge-dependent stopping cross sections are averaged over equilibrium charge
fractions. Calculations have been stopped at 100 MeV/u, because not all relativistic
corrections are applied in the code.

Calculations with PASS have been performed with input from ICRU (2005). The
charge dependence has been handled by evaluating stopping cross sections at the
mean equilibrium charge, for which the Thomas-Fermi expression (1.6) has been
adopted for all ions. Barkas-Andersen and shell correction are included as well as
projectile excitation, capture and loss.
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Fig. 4.10 Same as Fig. 4.9 for Li, C, O and Ar ions
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Fig. 4.11 Same as Fig. 4.9 for Ca, Kr, Xe and Au ions

Both theories have been geared toward intermediate and high projectile speeds
and are not expected to be valid below the Bohr speed, i.e., below 25 keV/u. Nev-
ertheless, plots have been extended down to 1 keV/u in order to allow an estimate
of the error made if the theory is applied outside its prospective range of validity.
It is seen that while CasP leads to an increasingly pronounced underestimate of the
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Fig. 4.12 Predicted stopping force for H, He, Li, B, C and N in argon. Standard version of PASS
(ICRU, 2005) and Grande and Schiwietz (2010). Experimental data from Paul (2013)

stopping force at beam energies below 100 keV/u, the error in PASS is more mod-
erate. Note that predictions at low speed lie below experimental data for He, C, O,
Ar, Ca and Xe ions, yet above for Li and Kr ions, while there is surprisingly good
agreement for H and Au ions. The lacking systematics reflects the overall accuracy
of both theory and experiment in the low-velocity region.

The agreement between the two theoretical estimates and experiment is excellent
at high speed. This mainly indicates the accuracy of the .f; !/ pairs and, in particu-
lar, the overall I -value in the database. In the intermediate-energy range, noticeable
discrepancies are seen for both H, He and Li ions. This holds for both PASS and
CasP. For PASS, the main reason is the use of (4.36). For CasP, lacking agreement
for light ions indicates a weakness in the applied shell corrections.

Discrepancies of varying degree are also seen for heavier ions. In a few cases
such as Kr and Xe, CasP comes closer to the experimental results than PASS, while
the opposite is found for C and O ions. PASS calculations have all been performed

with the Thomas-Fermi mean charge q D Z1

�
1 � exp.�v=Z2=31 v0/

�
, while CasP

calculations make use of an empirical expression for the mean charge (Schiwietz
and Grande, 2001).

Figures 4.12 and 4.13 show similar results for an argon gas target. Significant de-
viations from experimental data are seen for H and He ions at low and intermediate
projectile speeds. For heavier ions experimental data are sparse. Excellent agree-
ment is found for O, S and Cl ions. For Li, N and Ne ions there are pronounced
inconsistencies between different experimental data sets. For Xe, Pb and U exper-
imental data lie consistently above the theoretical curves near the stopping maxi-
mum. A similar behaviour may be identified in Fig. 4.11. The adopted charge-state
dependence is significant here (Fettouhi et al., 2006). A curve based on CasP has
only been included for the O-Ar system. Here, CasP lies below the experimental
data, while PASS lies above. While both discrepancies are rather large, the coverage
with experimental data is quite sparse.



4.8 Applications 177

0.01

0.1

1

10

0.001 0.1 10 1000

PASS: Total
PASS: TE
PASS: PE
CasP4.0

O - Ar

E [MeV/u]

-d
E

/d
x 

[M
eV

cm
2 /m

g]

0.1

1

10

0.001 0.1 10 1000

PASS: Total
PASS: PE
PASS: TE

Ne - Ar

E [MeV/u]

-d
E

/d
x 

[M
eV

cm
2 /m

g]

0.1

1

10

0.001 0.1 10 1000

PASS: Total
PASS: PE
PASS: TE

S - Ar

E [MeV/u]

-d
E

/d
x 

[M
eV

cm
2 /m

g]

0.1

1

10

0.001 0.1 10 1000

PASS: Total
PASS: PE
PASS: TE

Cl - Ar

E [MeV/u]

-d
E

/d
x 

[M
eV

cm
2 /m

g]

0.1

1

10

0.001 0.1 10 1000

PASS: Total
PASS: TE
PASS: PE

Ar - Ar

E [MeV/u]

-d
E

/d
x 

[M
eV

cm
2 /m

g]

0.1

1

10

0.001 0.1 10 1000

PASS: Total
PASS: PE
PASS: TE

Kr - Ar

E [MeV/u]

-d
E

/d
x 

[M
eV

cm
2 /m

g]

0.1

1

10

100

0.001 0.1 10 1000

PASS: Total
PASS: PE
PASS: TE
SRIM2008

Xe - Ar

E [MeV/u]

-d
E

/d
x 

[M
eV

cm
2 /m

g]

0.1

1

10

100

0.001 0.1 10 1000

PASS: Total
PASS: PE
PASS: TE

Pb - Ar

E [MeV/u]

-d
E

/d
x 

[M
eV

cm
2 /m

g]

1

10

100

0.001 0.1 10 1000

PASS: Total
PASS: PE
PASS: TE

U - Ar

E [MeV/u]

-d
E

/d
x 

[M
eV

cm
2 /m

g]

Fig. 4.13 Same as Fig. 4.12 for O, Ne, S, Cl, Ar, Kr, Xe, Pb and U ions. For O a prediction from
Grande and Schiwietz (2010) has been added. For Xe a prediction from Ziegler et al. (2008) has
been added

4.8.2 Equilibrium Stopping Forces from Empirical Tabulations

Until a few years ago the only available sources of stopping data for heavy ions
were empirical tables or codes, based on interpolation between existing experimen-
tal data for selected ion-target combinations. An early attempt to produce a com-
prehensive table, based on effective-charge scaling, was presented by Steward and
Wallace (1966). A set of tables by Northcliffe and Schilling (1970) was the dominat-
ing data source for many years. Later on several comprehensive data compilations
were provided by Ziegler (1980) and Ziegler et al. (1985). Later versions have be-
come available on the internet (Ziegler et al., 2008). Other empirical sources of
heavy-ion stopping data were presented by Hubert et al. (1980, 1990) and Paul and
Schinner (2001). For a discussion of the merits of these and other tabulations you
are referred to ICRU (2005). Original experimental data have been compiled in an
ongoing effort by Paul (2013).

For statistical analyses of their respective agreement with experimental data you
may have a look at Paul and Schinner (2003). In general, discrepancies between
empirical tabulations and experimental data are smaller than between theoretical
calculations and experimental data. This must be so, since the data used for testing
are in essence the same data that were used to produce the tabulations. The benefit
of theoretical calculations such as CasP and PASS is the fact that predictions of
stopping cross sections for ion-target combinations in a range where no or only few
reliable data exist, have the same a priori accuracy as those where a comparison with
experimental data is possible.
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A special feature of empirical codes is the use of scaling relationships. The code
MSTAR by Paul and Schinner (2001) uses a comparatively simple scaling relation
with only few adjustable parameters. Therefore, predicted stopping cross sections
are heavily dominated by ion-target combinations in the dark spots of Fig. 4.2. This
has rather drastic consequences in low-velocity stopping, as we shall see in Chap. 8.
Conversely, the fitting procedure in the SRIM code, which is not well documented,
appears to allow for considerable structure in the predictions, as may be seen in
Fig. 4.13 for the Xe-Ar system.

4.8.3 Charge-Dependent Stopping

The curves shown in Fig. 4.9–4.13 were determined on the basis of (4.36) as far as
PASS is concerned, while curves found by CasP are based on the correct average
equilibrium value, (4.34) for x ! 1. In the present paragraph we shall have a
closer look at the two approaches.

Figure 4.14 shows stopping cross sections of carbon for frozen charges of HeqC
and ArqC. The contribution from target excitation/ionization is dominating. You
may note that for Ar-C the stopping cross section increases by about one order of
magnitude as the charge increases from 0 to 18. This increase is much weaker than
the q2 dependence which you may frequently see advocated in the literature (Ziegler
et al., 1985).

Figure 4.15 shows equilibrium charge fractions and mean equilibrium charges
for the two systems considered in Fig. 4.14. Evidently, high charge states increase
in importance with increasing energy. Also included is the Thomas-Fermi estimate
of the mean equilibrium charge,

qTF D Z1

�
1 � e�v=Z2=3

1
v0

�
: (4.56)

It is seen that the two mean charges agree well with each other except at the low-
energy end, where ETACHA yields significantly lower values. This is the energy
range where ETACHA predicts sizable charge fractions for negative ions. Rozet
et al. (1996) mention a lower validity limit of � 1MeV/u for predictions from
ETACHA. This limit is presumably on the conservative side.

Figure 4.16 shows stopping cross sections found from the data underlying
Fig. 4.14 and 4.15. As it must be, the two procedures, based on (4.34) and (4.36)
lead to identical results at high energies where bare ions dominate the charge distri-
bution. Differences occur at intermediate and low beam energies. These differences
are sizable for He-C and negligible within the accuracy of the underlying theory in
case of Ar-C.

This feature must be more general: For a heavy ion with many charge states the
charge distribution is made up by only a small number of charges (cf. Fig. 4.15) at
a given energy. The frozen-charge stopping cross section varies approximately lin-
early with the ion charge over this interval. Hence it makes little difference whether
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Fig. 4.14 Stopping cross section of carbon for frozen charges HeqC (top) and ArqC (bottom).
Target excitation/ionization only. Calculated by the PASS code

the averaging is done over the stopping cross sections or the ion charge. This argu-
ment does not hold for light ions. The difference is not dramatic according to the
left part of Fig. 4.16, but it is noticeable.

The standard procedure in the PASS code utilizes the Thomas-Fermi expression
(4.56) for the mean charge. Figure 4.15 indicates that the difference between the
two predictions for the mean equilibrium charge far exceeds the difference between
the two ways of determining the mean stopping cross section. It is to be expected,
therefore, that the standard procedure in the PASS code overestimates stopping cross
sections for light ions such as H, He and Li. This does not concern antiprotons,
which penetrate as bare ions.

Figures 4.15 and 4.16 concern target excitation only. Similar considerations ap-
ply to projectile excitation. Figure 4.14 shows pertinent frozen-charge stopping
cross sections. Unlike target excitation/ionization, the contribution due to projec-



180 4 Stopping

0.001

0.01

0.1

1

10

0.1 0.2 0.5 1 2 5

Mean charge (ETACHA)
Mean charge (TF)
q=2

0+ 1+

2+

He - C

E [MeV/u]

F
(q

),
 q

0.001

0.01

0.1

1

10

100

0.1 1 10

Mean charge (ETACHA)
Mean charge (TF)
q = 18

Ar - C

0+
2+ 4+ 6+ 8+

10+
12+

14+

16+

18+

E [MeV/u]

F
 (

q)
, q

Fig. 4.15 Equilibrium charge fractions (indicated by qC) and mean equilibrium charges for He-C
(top) and Ar-C (bottom) calculated by ETACHA (Rozet et al., 1996). Also included is the Thomas-
Fermi estimate of the mean equilibrium charge, (4.56)

tile excitation/ionization increases with decreasing charge state. It is seen that target
excitation/ionization dominates over the entire energy interval covered in the graph.

Direct measurements of charge-dependent stopping have been performed by sev-
eral groups (Ogawa et al., 1991, Frey et al., 1996, Blazevic et al., 2000). Figure 4.17
shows an example. In measurements by Frey et al. (1996), the energy loss was mea-
sured of 1 MeV/u NiqC ions in C with equal entrance and exit charge for q D 8, 13,
16 and 18. Predicted stopping forces for frozen charge states from PASS and CasP
agree reasonably well for q � 10 but underestimate the measured energy loss. While
the influence of projectile excitation is insignificant, you may note that inclusion of
capture and loss contributes substantially and brings the theoretical prediction close
to the experimental finding.
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Fig. 4.16 Equilibrium stopping cross section for He-C (top) and Ar-C (bottom) calculated from
PASS and ETACHA. Target excitation/ionization only. Solid lines: Average stopping cross section
according to (4.34); dotted lines: Stopping cross section at average charge according to (4.36). Also
included is the mean equilibrium charge (ETACHA) shown in Fig. 4.15

These measurements have been performed in an energy range where PASS and
CasP tend to deliver reliable results. It is likely, therefore, that the measurements did
not deal with frozen charges.

Similar comparisons have been performed by Blazevic et al. (2002).
Figure 4.18 shows calculated stopping forces of titanium for uranium ions for

several charge states as a function of beam energy. Contributions due to target and
projectile excitation/ionization are shown separately. It is seen that the difference is
smallest at low beam energy for neutral ions. I increases significantly with increas-
ing ion charge whereas it decreases slowly with increasing energy.

Extensive measurements on charge-dependent stopping were performed by Ogawa
and coworkers, which will be discussed in the following chapter.
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Fig. 4.18 Stopping force of Ti for UqC calculated from PASS code. Solid lines: Target excita-
tion/ionization only. Dotted lines: Projectile excitation/ionization only

4.8.4 Stopping in Compound Materials

To the extent that the energy loss of a penetrating particle is made up by a sum of en-
ergy losses in individual atomic collisions, the stopping cross section per molecule
in a compound material A`BmCn. . . is given by

S D `SA CmSB C nSC : : : ; (4.57)

where SA is the stopping cross section of an A-atom corrected for changes of the
electron structure as compared to a free A atom and correspondingly for B, C. . . .
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If uncorrected atomic stopping cross sections are inserted, (4.57) reduces to what
commonly is called Bragg’s rule after Bragg and Kleeman (1905)3.

Differences in electron structure between bound and free atoms affect valence
electrons. Within the PASS and CasP codes such differences are accounted for
when measured or calculated dipole oscillator strengths are available (Palik, 2000,
Berkowitz, 1979, 2002). In conducting materials the difference is primarily due to
conduction electrons, which can be treated as a Fermi gas or the like. Semi-empirical
schemes, based on the character of chemical bonds, have been developed by Powers
et al. (1973), Powers (1980) and Thwaites (1983).

Bragg’s rule is actually a good starting point in numerous cases. Based on explicit
studies with binary stopping theory (Sigmund et al., 2003, Sharma et al., 2004) as
well as physical reasoning, Sigmund et al. (2005) established a number of trends
with regard to the magnitude of deviations from Bragg’s rule:

If you are looking for pronounced deviations from Bragg’s rule,

� look for a material with a high binding energy and
� a low atomic number, so that valence electrons make a large contribution to stop-

ping.
� A good example would be LiF.

Moreover,

� Choose a low bombarding-ion energy, where inner-shell excitation channels may
be closed or

� bombard with antiprotons, which do not experience screening and hence interact
with all electrons inside the adiabatic radius.

� Heavy ions experience relatively more screening. Therefore, distant collisions
tend to be suppressed. Hence, the accuracy of predictions based on Bragg’s rule
tends to increase with increasing Z1.

In the SRIM code (Ziegler, 2012) it is assumed that deviations from Bragg’s rule are
independent of the bombarding ion. Since experimental data quoted above refer to
protons and alpha particles, deviations from Bragg’s rule tend to be overestimated in
SRIM for heavier ions. For Z1 � 6, Bragg’s rule is a better option (Sigmund et al.,
2005).

4.9 Impact-Parameter-Dependent Energy Loss ?

Almost all treatment of energy loss in this book as well as volume 1 has been based
on impact-parameter dependencies, the only exception being the plane-wave Born

3 W.H. Bragg performed a long series of experimental studies in radioactivity, in particular ranges
of alpha and beta particles in matter, starting with Bragg (1904). One of his observations was that
‘for all the materials examined the loss in traversing any atom is nearly proportional to the square
root of the weight of that atom’. Braggs law was expressed as follows: ‘The loss in the case of a
complex molecule is proportional to the sum of the square roots of the weights of the constituents
atoms.’
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approximation presented in Sect. 4.4, Vol. 1. Integration over impact parameter leads
to a more or less handy expression for the stopping cross section which allows incor-
poration of shell corrections via kinetic theory, cf. Sect. 4.5.5 and Sect. 6.6, Vol. 1.

Although the stopping cross section is a central quantity in particle penetra-
tion, it is not the only relevant integral over T .p/. Explicit expressions for impact-
parameter-dependent energy loss are needed in case of slowing down in regular
structures, e.g. under conditions of planar or axial channeling, or when a projectile
is scattered from a plane surface under grazing incidence, cf. Fig. 1.3, Vol. 1. Impact-
parameter dependencies are also needed in straggling, cf. the following chapter as
well as Chap. 8, Vol. 1.

We know that the shell correction ensures incorporation of the orbital motion
of electrons bound to the target atom or the projectile ion into the calculation of
the energy loss. As far as the stopping cross section is concerned, this implies that
the distribution in orbital velocity must be accounted for. If the impact-parameter
dependence is of interest, also the distribution in configuration space needs to be
accounted for.

4.9.1 Local-Density Approximation

A popular approach, particularly in the theory of channeling, is the local-density
approximation discussed in Sect. 7.2.4, Vol. 1, where the mean energy transfer in an
ion-atom collision is expressed by

T .p/ D
Z 1

�1
dx �.x;p/S



�.x;p/

�
; (4.58)

where p is a vectorial impact parameter, �.x;p/ � �.r/ is the electron density in
the point r D .x;p/, and S.�/ the stopping cross section per electron of a Fermi
gas with an electron density �.

Equation (4.58) has typically been evaluated on the basis of the Lindhard dielec-
tric function, (5.153), Vol. 1 or one of several modifications and simplifications. This
has the advantage that orbital velocities are easily incorporated. However, there are
at least two obvious limitations,

� The quantity dominating the dependence on p in (4.58) is the factor �.x;p/ in
front of the stopping cross section. Therefore, the effective interaction range is
the radius of the atom. On the other hand, we know that the effective interaction
range is the adiabatic radius which, dependent on the speed, may far exceed
atomic dimensions.

� Expressions for stopping in an electron gas used in the present context are based
on the Born approximation, the applicability of which is severely limited for
heavy ions.
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4.9.2 Born Approximation

The Born approximation, in the form described in Sect. 4.3.2, Vol. 1, provides ex-
pressions for impact-parameter-dependent stopping to the lowest order in Z1 with
full allowance for shell corrections, at least in principle. Most explicit studies refer
to light ions like protons, antiprotons and He ions (Mikkelsen and Sigmund, 1987,
Kabachnik et al., 1988, Balashova et al., 1990, Mortensen et al., 1991, Kabachnik
and Chumanova, 1994, Grande and Schiwietz, 1998, Azevedo et al., 2000).

For heavy ions, in the classical regime, calculations on the basis of the Born
approximation retain their validity at large impact parameters. Likewise, the signif-
icance of shell and Barkas-Andersen corrections decreases with increasing impact
parameter. Conversely, significant errors must be expected for close collisions. This
suggests that in calculations addressing straggling—which is governed by close col-
lisions, cf. Fig. 8.2, Vol. 1,—caution is indicated with regard to the Born approxima-
tion.

4.9.3 PCA/UCA Approximation

The unitary convolution approximation has been derived as an extension of the Born
approximation in the original paper (Schiwietz and Grande, 1999) as well as in a
more recent version (Grande and Schiwietz, 2009), but as described in Sect. 4.6, the
shell correction has been ignored in the kernel and incorporated as a correction. The
theory does not allow for a Barkas-Andersen correction.

4.9.4 Binary Theory

The scattering of an ion on electrons in motion has been treated in Sect. 6.5, Vol. 1.
That treatment aimed at an expression for the stopping cross section and therefore
ignored all spatial dependence. An extension of this treatment to allow for spatial
dependencies has been presented by the author (Sigmund, 2000) and applied to the
present problem by Schinner and Sigmund (2010).

Let us first consider the energy transfer in a binary collision between a heavy
projectile with a velocity v and a free electron with an initial velocity ve . In a refer-
ence frame moving with the projectile the electron has a velocity w D ve � v. After
scattering elastically on the projectile that velocity changes to

w0 D w cos‚C p0

p0w sin‚ ; (4.59)

where p0 and ‚.w; p0/ denote the vectorial impact parameter and the scattering
angle, respectively, in the moving reference frame.
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Fig. 4.19 Projectile inter-
action with moving target
electron in lab frame. From
Sigmund (2000)
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In the laboratory frame the electron has a velocity v0
e D w0 C v after the interac-

tion, and the energy transfer can be expressed as

T D m

2

�
v0
e
2 � v2e

�
D mv � .v � ve/.1 � cos‚/Cm

w

p0 p
0 � v sin‚ : (4.60)

Note that p0 is the impact parameter of a target electron, while we are interested
in the impact parameter to the nucleus. The kernel of binary stopping theory is a
mapping of the Bohr oscillator model on a binary scattering configuration. Within
the Bohr model, the initial state of the target atom can be characterized by a
harmonically-bound electron in motion on an elliptic orbit,

r.t/ D reei!.t�t0/ (4.61)

v.t/ D veei!.t�t0/ (4.62)

with ve D i!re.
We may define t0 as the time of closest approach between the projectile and the

nucleus. Then the electron orbit may be approximated as

r.t/ ' re C ve.t � t0/ : (4.63)

for t ' t0, see Fig. 4.19. Now this straight-line motion is taken as the incoming
trajectory in a binary-scattering process. We may view this trajectory from a frame
of reference moving with the projectile,

r.t/ D s C w.t � t0/ (4.64)

where
s D re � p : (4.65)

The impact parameter p0 in the moving reference frame is given by the projection
of s on the impact plane,

p0 D s � .s � Ow/ Ow (4.66)
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with Ow D w=w. The scattering angle in the moving reference frame can then be
determined from the adopted potential with the initial speed w D jve � vj and the
impact parameter p0 D

p
s2 � .s � Ow/2.

Let us check whether we can reproduce the stopping cross section

S D
�Z

d 2p T .p/

�
ve

(4.67)

that we know from Sect. 6.5.1, Vol. 1.
The relation between d 2p and d 2p0 is given by the conservation of particle flux,

v d 2p D w d 2p0 : (4.68)

With this and (4.60), (4.67) reads

S D m

�Z
d 2p0 w

v

�
v � .v � ve/.1� cos‚/Cm

w

p0 p
0 � ve sin‚;

��
ve

: (4.69)

Integration of the second term over the impact parameter yields a vanishing result,
while the first term leads to the transport cross section

� .1/.w/ D
Z
d 2p0 �1 � cos‚.w; p0/

	
; (4.70)

so that
S D m

Dw
v

v � .v � ve/ �
.1/.w/;

E
ve

: (4.71)

in agreement with (6.71), Vol. 1.

4.9.5 Examples

Measuring impact-parameter-dependent energy losses would be a much more sensi-
tive probe for the validity of different stopping models than measurements of stop-
ping cross sections. However, data can be extracted mostly from measurements of
stopping in channels and surface scattering at grazing incidence, i.e., at fairly large
impact parameters. As the impact parameter decreases, the need to separate nuclear
from electronic energy transfer introduces uncertainties. Conversely, the accuracy
of existing calculations is not yet up to the standard of other aspects of particle
penetration. Keep this in mind when studying the examples shown in this section.

Figure 4.20 shows an example of T .p/ evaluated by PASS and CasP. CasP results
are based on the Born approximation and, therefore, are proportional to Z21 . This
suggests to plot T=Z21 in Rydberg units,R D 13:6 eV. Excellent agreement is found
at large impact parameters both between results for different ions and calculated by
different codes, while differences are found at small impact parameters. Results
for H ions lie in the Born regime and the two codes predict very similar results.
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Fig. 4.20 Calculated mean energy loss of bare H, He and Li ions to atomic hydrogen at E D
300 keV/u. Lines: PASS results of Schinner and Sigmund (2010). Points: CasP results of Grande
and Schiwietz (2009). From Schinner and Sigmund (2010)

Conversely, results for Li ions lie in the classical regime, and PASS results lie below
those from CasP.

Figure 4.21 shows results for different charge states. The upper graph shows
T=Z21 in Rydberg units R D 13:6 eV. As to be expected, all curves converge at
small impact parameters, while increasing differences are found with increasing
impact parameter. Conversely, the lower graph shows T=q21 , all curves show perfect
agreement at large impact parameters, while a major variation is seen at p D 0.

4.10 Discussion and Outlook

This chapter has dealt with the stopping of swift heavy ions. Quantitative predic-
tions in this area were, until around year 2000, based on Bethe theory combined
with empirical scaling by the effective-charge postulate. You have seen that several
theoretical schemes have now been developed that enable reliable predictions of
stopping cross sections on the basis of existing atomic data, without introduction of
adjustable parameters to be fitted by comparison with stopping data.

Most existing data—experimental and theoretical—refer to equilibrium stop-
ping, which is of interest in numerous applications. While only few experimental
data exist documenting transient effects in the stopping of heavy ions, all theoret-
ical schemes discussed in this chapter allow theoretical predictions, provided that
reliable data for charge-exchange cross sections are available.
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Fig. 4.21 Calculated mean energy loss of partially-screened neon ions NeqC to atomic carbon.
R D 13:61 eV. a0 D 0:529 Å. v=v0 D 2. The upper graph shows absolute energy losses
in units of RZ2

1 , while the lower graph shows energy losses divided by q2
1 . From Schinner and

Sigmund (2010)

Also impact-parameter-dependent energy losses can be predicted. This is of sig-
nificance not the least in the analysis of experimental channeling data.

The range of validity in terms of projectile speed of the schemes discussed here
is broad. In the upper end it includes relativistic effects, except contributions from
pair production and bremsstrahlung in the ultrarelativistic regime.

While the velocity range v ' v0 has been deliberately omitted and will be cov-
ered in Chap. 8, caution is indicated with regard to stopping cross sections already
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in the range of v ' 2v0 and below, i.e., for E � 100 keV/u, where you will find
significant scatter between experimental data and noticeable differences between
theoretical predictions.

Problems

4.1. Derive the Fourier transform in three dimensions of the exponentially-screened
Coulomb potential

ˆ.r/ D e1

r
e�r=a : (4.72)

4.2. Go through the derivation in Sect. 4.2.2, Vol. 1 by replacing straight Coulomb
interaction by the charge-dependent potential (4.16) with the exponential screening
function (4.9). Try to reproduce (4.18).

4.3. In the ‘sudden approximation’ the term exp.i!j0t 0/ in (4.37) is set equal to
1, i.e., electronic binding is ignored. This approximation appears justified if the
collision time � obeys the condition

!j0 ' 2p=v � 1 : (4.73)

Demonstrate that within this approximation you arrive at

T .p/ ' 2Z21e
4

mv2p2
: (4.74)

If you need help, consult Grande and Schiwietz (1998).

4.4. Carry out the integral in (4.50).
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Chapter 5

Straggling

Abstract This chapter addresses energy-loss straggling of ions with v > v0.
The topic is divided up into uncorrelated or linear straggling, correlated straggling
(bunching and packing) and charge-exchange straggling. The theory of linear strag-
gling is developed in straight analogy with the stopping cross section. Bunching
takes into account the spatial confinement of electrons in the atoms, while pack-
ing takes into account the spatial arrangement of atoms in molecules and solids.
Charge-exchange straggling accounts for the dependence of elementary energy-loss
processes on the ion charge. Significant gas-solid differences are pointed out in per-
tinent theory as well as experiment.

5.1 Introductory Comments

Electronic-energy-loss straggling has been analysed in Chaps. 8 and 9, Vol. 1 with
a focus on swift point charges. Chapter 8 addressed the variance of an energy-loss
profile which, for an atomic gas, reads

�2 D ˝
.�E � h�Ei/2˛ D Nx

Z
T 2 d�.T / ; (5.1)

whereas Chap. 9 addressed the shape of the energy-loss profile F.�E; x/ as a func-
tion of the travelled pathlength x.

The treatment of straggling to be presented here rests heavily on what has been
discussed in Volume 1. However, we shall see that for heavier ions it is mostly the
variance that is of interest, so that it is more important that you are familiar with the
essentials of Chap. 8, Vol. 1 than with Chap. 9.

In the previous chapter the theoretical treatment of the stopping cross section has
been presented as an extension of the theory of stopping of point charges presented
in Volume 1. A similar extension will now be applied to the treatment of straggling
presented in Chap. 8, Vol. 1.

P. Sigmund, Particle Penetration and Radiation Effects Volume 2,
Springer Series in Solid-State Sciences 179, DOI: 10.1007/978-3-319-05564-0_5,
� Springer International Publishing Switzerland 2014
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However, the analogy is not complete, because straggling is more complicated
for two fundamental reasons.

Firstly, straggling is not just a linear superposition of contributions from individ-
ual target electrons: The spatial correlation of the electrons plays a role. Indeed, if
an ion hits an electron in a given atom, it has an increased chance to also hit another
electron in the same atom. This is immaterial for the mean energy loss but it affects
straggling. Correlation effects have already been considered in Sect. 8.9, Vol. 1, and
they have been shown to go as the square of the stopping cross section. Since the
stopping cross section increases with increasing Z1, this aspect deserves increased
attention here.

A second effect is absent in the stopping of point charges and, therefore, was not
mentioned in Volume 1. Straggling due to charge exchange, discussed in Sect. 3.5.5,
adds an extra dimension. Although charge exchange also contributes to the stopping
cross section, its role in straggling is greatly enhanced, since all processes that lead
to energy loss depend on the charge state: If the ion charge fluctuates, all energy
losses fluctuate, not only those due to charge exchange.

5.2 General Considerations

Figure 5.1 shows five energy-loss spectra measured with 63.4 MeV Li2C ions in
carbon. With the target thickness increasing from 5 to 38 μg/cm2 both peak and
mean energy loss shift toward higher values as you would expect. However, a second
peak develops which becomes dominating at 50 μg/cm2, and at 109 μg/cm2 the first
peak has essentially vanished.

In order to understand what is going on here we have to appreciate that at the
beam energy under consideration the charge-state distribution in equilibrium peaks
at q D 3. Therefore, with increasing travelled pathlength an increasing fraction of
the beam particles switches from q D 2 to q D 3, with an increased energy loss per
pathlength as a consequence. Since the cross section for capture is small, switching
back to q D 2 is unlikely. Therefore, from � 100 μg/cm2 we see essentially the
energy-loss spectrum for a point charge q D 3. You may gain qualitative insight by
looking at Problem 5.4.

We may extract the message from these results that an energy-loss spectrum can
have more than one peak. Charge exchange is not the only possible reason for a
multiple-peak structure: In fact, with sufficient energy resolution, all energy-loss
spectra would exhibit a variety of major and minor peaks. The specific feature for
charge exchange is that it takes a relatively large energy, Tc � mv2=2 for a swift
ion to capture an electron. Hence, for a beam energy of uv2=2 ' 10MeV you have
mv2=2 ' 5 keV. If the energy resolution of the detector is better than 5 keV, you
have a chance to resolve adjacent peaks.

When considering the mean energy loss we always encounter a more or less pro-
nounced difference between predictions based on classical dynamics and on Born
approximation, respectively. We have seen in Sect. 8.2, Vol. 1, that this difference
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Fig. 5.1 Energy-loss spectrum for 63.4 MeV 6Li2C ions in carbon, from Ogawa et al. (1996)

is much less pronounced in straggling. Indeed, for a bare ion there is no equiva-
lent of a Bloch correction in straggling in the nonrelativistic regime. This has the
consequence that classical arguments often can be applied in straggling where a
corresponding treatment of stopping would have required a quantal treatment.

A central result of straggling theory is (8.15), Vol. 1,

�2 D 4�Z21Z2e
4Nx ; (5.2)

derived by Bohr (1915) and commonly denoted as Bohr straggling. The range of
validity of this formula is wide for a point charge, but deviations occur in the re-
gion around and below the stopping maximum as well as in the relativistic velocity
regime. With increasing ion mass, both the limit between the classical and the Born
regime and the stopping maximum move toward higher velocities. Therefore, clas-
sical scattering theory must be more widely applicable in studies of energy-loss
straggling as Z1 increases.

Heavy ions at relativistic velocities tend to be stripped of most of their electrons.
While the theory of stopping and straggling of completely stripped heavy ions has
already been reported in Sects. 8.4.3 and 8.8, Vol. 1, the regime of weak screening
is important and will have to be considered.
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5.2.1 Validity of the Gaussian Approximation

In Sect. 9.2, Vol. 1 we distinguished between thin, moderately-thick and very thick
targets, where the specification of a thin target followed a criterion established by
Bohr (1915, 1948),

T 2max 	 �2 : (5.3)

In the opposite case, T 2max � �2, the spectrum is expected to approach Gaussian
shape. We speak about moderately-thick targets as long as the spectrum is close
to symmetric. At thicknesses where the projectile loses a significant fraction of its
energy, the profile starts skewing again, in which case we talked about very thick
targets.

Now, inserting Tmax ' 2mv2 and (5.2) into (5.3) you obtain

Nx � .2mv2/2

4�Z21Z2e
4

(5.4)

as a condition for seeing a quasi-single-collision spectrum. This condition is increas-
ingly hard to satisfy as Z1 increases. It is for this reason that the opposite situation
of a quasi-gaussian spectrum becomes increasingly common with increasing atomic
number of the projectile. For numbers you are encouraged to look into Problem 5.1.

We have seen in the previous section that a necessary condition for a double-
peaked energy-loss spectrum is a detector resolution better than mv2=2. Another
condition must be that this structure not be wiped out by straggling, i.e.,

mv2

2
	 �2 : (5.5)

Now, since mv2=2 ' Tmax=4, (5.5) is a more severe condition than (5.3). Thus,
the maximum thickness for seeing a multiple-peak structure is one quarter of the
maximum thickness for what we call thin foils.

Actually, a closer analysis by Glazov and Sigmund (1997, 2000) of the spectra
shown in Fig. 5.1 reveals that the observed width is mainly an expression of detector
resolution rather than of energy-loss straggling. If a detector with higher energy
resolution had been available to the experimenters, the peaks would be narrower.

5.2.2 Correlated and Uncorrelated Straggling

In Sect. 8.9, Vol. 1 the straggling parameterW D �2=Nx of an atom was split into
two parts according to

W D W0 C�W (5.6)

with
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W0 D
Z

d2p
Z2X
iD1

D
T 2i .pi /

E
(5.7)

and

�W D
Z

d2p
Z2X
i¤j

D
Ti .pi /Tj .pj /

E
; (5.8)

where pi denotes the impact parameter to the i th target electron. Averages are taken
over the distribution in real and velocity space of those electrons.

The term W0 in (5.7) represents a linear superposition of contributions from all
target electrons. We may call this ‘uncorrelated’ or ‘linear’ straggling. It differs from
the corresponding expression for the stopping cross section only in the replacement
of hTi .pi /i by

˝
T 2i .pi /

˛
.

The term �W in (5.8) represents a double sum and, hence, must increase more
strongly than linearly with the number of target electrons. We talk about ‘correlated
straggling’ here. The dominating correlation is expressed by the impact parameter:
It is the spatial proximity of the electrons in an atom that causes enhanced strag-
gling compared with Bohr straggling. A quantitative treatment requires a theory of
impact-parameter-dependent energy loss. We shall have to look into this topic.

5.3 Uncorrelated Straggling

Theoretical schemes used for evaluating stopping cross sections for swift heavy ions
have been presented in Sects. 4.4–4.7. While all these schemes allow you to evaluate
uncorrelated straggling parameters, results have been reported mainly for binary
theory (Sigmund and Schinner, 2003, 2010) and the PCA-UCA model (Grande and
Schiwietz, 2009).

Within the framework of binary stopping theory we may write

W0 D Z2
X
n`

fn`

Z
2�pi dpiT 2n`.pi / ; (5.9)

where fn` denotes the bundled oscillator strength for the (n; `)th shell, normalized
according to

P
fn` D 1, and T 2n`.p/ the square of the energy loss versus impact

parameter, averaged over the velocity distribution of the respective shell1.
In principle we also would have to average over the spatial distribution of the

target electrons, yet this is immaterial because of the integration over the impact
parameter.

A convenient reference standard is Fig. 5.2, taken over from Volume 1, which
represents a universal plot of the electronic straggling parameter versus beam veloc-

1 As in previous instances of this monograph, averages are expressed either by brackets, h: : : i
or bars, dependent on readability. There is no systematic difference in the physical significance,
unless stated otherwise.
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Fig. 5.2 Straggling in Bohr model. Ratio W=WB for close and distant interactions and the sum.
From Vol. 1 (Sigmund, 2006)

ity for an arbitrary fully-stripped ion hitting a one-electron atom characterized by
a resonance frequency !0. Since the scaling property is linked to the Bohr variable
� D mv3=Z1e

2!0, that variable will be used also in the graphs to follow, with !0
replaced2 by I=�.

All those corrections to the Bohr theory of stopping which have been discussed
in the previous chapter, are also relevant in straggling, albeit with different weights.
Here follows a brief survey.

5.3.1 Screening

Screening reduces the contribution from distant interactions. Figure 5.2 shows that
distant interactions play a rather minor role in straggling. Therefore, the reduction
of straggling due to projectile screening must be significantly smaller than the cor-
responding reduction in the stopping cross section.

2 According to (8.21), Vol. 1 the appropriate resonance frequency for straggling should be given
by I1=�, where I1 is defined byX

j

.�j � �0/fj lnI1 D
X

j

.�j � �0/fj ln.�j � �0/:

This would be relevant if different target materials were compared.
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Fig. 5.3 Uncorrelated straggling for H, Ne and Br ions in Si according to binary stopping theory.
Solid lines: fully-stripped ions. Dotted lines: neutral ions. Projectile excitation included
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Fig. 5.4 Uncorrelated straggling parameter W0 in units of WBohr of frozen-charge ArqC ions in
carbon, calculated from binary theory. Target excitation/ionization only

Figure 5.3 shows a comparison of uncorrelated straggling between fully-stripped
and neutral projectiles. Clearly, the difference between these two extreme charge
states increases from hydrogen to bromine, yet it is much smaller than in case of the
stopping cross section.

Figure 5.4 shows similar results for seven charge states of Ar in C, ranging from
0 to 18C. In comparison with the corresponding Fig. 4.14 which, roughly, showed
a linear dependence of the stopping cross section on the ion charge, we see a much
weaker dependence here. A noticeable difference is seen between bare argon and all
other charge states. Evidently, screening by K electrons is significant over almost the
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entire velocity range covered by the graph. Note also the nonmonotonic dependence
on the ion charge at the upper end of the graph. This is related to the shell correction
(see below).

5.3.2 Transition to the Bethe regime

We have seen in Sect. 8.2, Vol. 1 that there is no nonrelativistic Bloch correction
in straggling for bare ions. Consequently there is no nonrelativistic inverse-Bloch
correction either. That finding assumes bare-Coulomb interaction and cannot tacitly
be adopted to screened ions.

However, screening becomes significant for v � Z
2=3
1 v0. In this velocity range,

the Bohr kappa parameter is

� D 2Z1e
2

�v
� 2Z

1=3
1 ; (5.10)

which is greater than 1 for all Z1. Therefore, the velocity range where screening
plays a major role lies within the classical regime.

Now, our starting point is classical stopping theory, with screening taken into
account. Extension into the Born regime requires an inverse-Bloch correction in
principle, but since ions are essentially stripped in the Born regime, that correction
must vanish.

Thus, even though the Bloch correction affects close interactions, no correction
is necessary for straggling in charge equilibrium, if straggling is evaluated within
classical theory.

5.3.3 Shell and Barkas-Andersen correction

These two corrections affect both distant and close interactions. Moreover, they are
tightly intertwined, as can be seen in Sect. 8.7, Vol. 1.

Figure 5.5 shows uncorrelated straggling for H, Ne and Br in Si as well as for
the corresponding mirror ions. The shell correction is seen to give rise to the fa-
miliar Bethe-Livingston shoulder which goes above Bohr straggling. As you may
recall from Sect. 4.5.1, the shell correction becomes less important as Z1 increases.
Indeed, for Br-Si the shoulder has almost disappeared.

Also included in Fig. 5.5 are curves for mirror ions, i.e., antinuclei screened by
the equivalent number of positrons. The difference between solid and dotted lines
indicates the Barkas-Andersen effect, which becomes quite large in the low-velocity
range and which increases in significance as Z1 increases.
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Fig. 5.5 Uncorrelated straggling for H, Ne and Br ions in Si. Target excitation/ionization only.
Dashed lines (empty symbols) show results for mirror ions, i.e., antinuclei surrounded by the equiv-
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Fig. 5.6 Uncorrelated energy-loss straggling in silicon in charge equilibrium. Solid lines: Includ-
ing projectile excitation. Dotted lines: Target excitation/ionization only

5.3.4 Projectile Excitation and Ionization

Figure 5.6 illustrates the influence of projectile excitation on uncorrelated straggling
for H, Ne and Br ions in Si. For hydrogen ions this influence is negligible, while it
is rather small for Ne and Br. This has to be so, because linear collisional straggling
is dominated by large energy transfers. As was discussed in Sect. 4.5.3, large energy
transfers do not change the velocity of the projectile. Hence, only energy transfers
T < U1 are taken into account.
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Fig. 5.7 Uncorrelated energy-loss straggling of neon ions in silicon. Solid lines: Charge equilib-
rium. Dotted lines: Neutral projectile. Circles (blue lines): Target excitation/ionization. Squares
(red lines): Projectile excitation

Figure 5.7 demonstrates that the contribution of target excitation/ionization to
linear collisional straggling is rather insensitive to the ion charge. While this is
not the case for projectile excitation, that contribution is found to be small for
both options of the ion charge, except at low velocities corresponding to � D
mv3=Z1e

2! < 0:1.

5.3.5 Relativity

According to (8.33), Vol. 1, the primary relativistic correction is a multiplicative
factor .1 � ˇ2=2/=.1 � ˇ2/ to Bohr straggling, (5.2), where ˇ D v=c. This factor
becomes significant for ˇ � 0:5. This is also the velocity range where the Lindhard-
Sørensen correction, shown in Fig. 8.13, Vol. 1, becomes substantial.

At v D 0:5c, the mean equilibrium charge is given by

q1 ' Z1

�
1 � e�137=2Z2=3

1

�
: (5.11)

This implies that q1 ' 53:5 for a xenon ion and q1 ' 89 for uranium. Dependent on
the desired accuracy, a screening correction may be needed even in the relativistic
regime.

Screening corrections in this energy range have been evaluated by Sørensen
(2002) for hydrogen- and heliumlike heavy ions. Explicit screening corrections
were given for stopping cross sections and found to have a substantial influence on
charge-exchange straggling. Screening corrections in collisional straggling are small
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in absolute terms, but as you may see from Fig. 8.13, Vol. 1, collisional straggling it-
self goes rapidly to zero at high beam energies. As it turns out, forE � 400MeV/u,
collisional straggling for U91C is closer to U92C than to Pa91C (Sørensen, 2010).

5.3.6 Electron Capture

Electron capture has been mentioned in Sect. 5.2 as a cause of multiple-peak
structure, which can only be observed with ultrathin foils. For moderately-thick
foils one may ask whether electron capture contributes to the straggling parameter
W D R

T 2 d�.T /.
With Tc ' mv2=2, we may compare the quantity

Wc D
�m
2
v2
�2
�c (5.12)

with Bohr straggling,WBohr D 4�Z21Z2e
4. In terms of atomic parameters, the cap-

ture contribution is negligible if Wc � WBohr or

�c

�a20
� Z21Z2

�
2v0

v

�4
: (5.13)

From Chap. 2 we know that at high projectile speed the capture cross section de-
creases much faster than / v�4. Conversely, at low projectile speed, where �c ap-
proaches a constant value, uncorrelated straggling decreases more slowly than / v4

with decreasing v. Thus, there is an intermediate velocity range where the ratio of
the capture contribution and uncorrelated collisional straggling goes through a max-
imum.

5.3.7 Short Summary of Linear Straggling

Figure 5.6 provides a good qualitative survey on uncorrelated straggling:

� Bohr straggling holds down to a value of � D mv3=Z1e
2! � 100,

� For � � 100 the Bohr parameter is not a suitable scaling parameter,
� The Bethe-Livingston shoulder is most pronounced for protons.

5.4 Bunching and Packing

Bunching and packing are effects caused by the spatial correlation of the electrons,
which has been ignored in the treatment underlying the previous section. Bunching
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addresses the correlation between electrons in an individual atom, while packing
denotes the correlation between contributions from different atoms.

General expressions describing the two effects have been derived in Sect. 8.9,
Vol. 1, except for the notation: No distinction was made there between bunching
and packing. Instead, both effects were denoted as bunching.

Bunching is most directly studied in dilute atomic-gas targets such as noble
gases. Bunching of electrons in atoms gives rise to fewer interactions but larger
energy losses than for a random distribution of target electrons. This increases fluc-
tuations in energy loss. A similar effect occurs when a molecular gas is compared
with an atomic gas, although differences in electronic properties between bound and
unbound atoms also need to be considered. In condensed matter, short-range order
implies that the sequence of collisions undergone by a penetrating particle does not
obey Poisson statistics. Instead, collisions take place at more regular intervals in
time or space. This tends to decrease fluctuations in energy loss.

5.4.1 Statistics

Within the range of applicability of a classical-orbit picture of electronic energy loss,
the basic statistical relations are strictly analogous for both bunching and packing,
dating back to a paper by the author (Sigmund, 1976) and, in more general form,
Sigmund (1978). The present derivation refers to bunching following Sigmund and
Schinner (2010). Bunching was first treated explicitly by Besenbacher et al. (1980).

Let us introduce a probability P.T;p/ dT for energy loss .T; dT / in a single
collision as a function of a vectorial impact parameter p to the target nucleus. This
defines the differential cross section for energy loss .T; dT / as

d�.T / D dT
Z

d2p P.T;p/ : (5.14)

From this follows the stopping cross section

S D
Z
T d�.T / D

Z
d2p T .p/ (5.15)

and the straggling parameter

W 2 D
Z

d2p T 2.p/ ; (5.16)

where T .p/ D R
dT TP.T;p/ and similarly for T 2.

It is instructive to write (5.16) in the form (Grande and Schiwietz, 1991),

W D
Z

d2p
n�
T 2.p/� �

T .p/
	2�C �

T .p/
	2o

; (5.17)
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where the first two terms in the brackets denote the energy-loss fluctuation at a given
impact parameter, whereas the last term determines straggling when no distinction
is necessary between the impact parameter to the nucleus and the one to an electron,
as is the case in Bohr’s estimate presented in Sect. 2.3.3, Vol. 1.

Now consider a target atom with Z2 electrons. In a classical-orbital description
we may introduce an impact parameter p� to the �th electron, so that

T .p/ D
Z2X
�D1

Tj�
.p�/ ; (5.18)

where j� denotes the state of the �th electron, i.e., its distribution in real and velocity
space.

With this, (5.15) reduces to

S D
X
�

Z
d2p� T j�

.p�/ �
X
�

S� ; (5.19)

where

S� D
Z

d2p T j�
.p/ (5.20)

is the stopping cross section of the �th electron. Evidently, the spatial correlation of
the target electrons has dropped out. The bar in (5.20) denotes an average over the
distribution in orbital velocity, i.e., the shell correction.

In order to evaluate (5.16) we need

T 2.p/ D
X
��

Tj�
.p�/Tj�

.p�/ : (5.21)

If we assume that the motion of electrons in the atom is uncorrelated, we may split
the right-hand side according to

T 2.p/ D
X
�

T 2j�
.p�/C

X
�¤�

Tj�
.p�/ Tj�

.p�/ : (5.22)

Here, the average of the second term factorizes into separate averages over individ-
ual electrons.

You may wonder why correlated motion of electrons can be neglected in estimat-
ing correlation effects. Well, there are several types of correlation, and the underly-
ing assumption is that the most prominent, and certainly the most obvious type of
correlation is bunching, i.e., the fact that the motion of the electrons is limited to a
region of atomic dimensions.

Taking into account other correlations such as exchange effects requires a quantal
treatment. A brief discussion within the Born approximation may be found in Fano’s
review (Fano, 1963).

Going back to (5.22) we may add and subtract the diagonal term missing in the
second contribution to arrive at
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Wat D
X
�

Z
d2p


T 2j�

.p�/ �
�
Tj�

.p�/
�2�

C
Z

d2p

 X
�

Tj�
.p�/

!2
(5.23)

or, making use of (5.18),

Wat D
X
�

Z
d2p

�
T 2j�

.p/ � 

Tj�

.p/
�2�C

Z
d2p



T .p/

�2
: (5.24)

With the notations

Wj D
Z

d2p T 2j .p/ (5.25)

and

Vj D
Z

d2p


Tj .p/

�2
(5.26)

we may write (5.24) in the form

W D W0 C�W ; (5.27)

where
W0 D

X
n;`

fjWj (5.28)

and

�W D
Z

d2p
�
T .p/

	2 �
X
j

fjVj ; (5.29)

where fj is the number of target electrons in the j th shell, so thatX
j

fj D Z2 : (5.30)

Here W0 represents uncorrelated straggling, while �W represents bunching. The
bars denote averages over the distribution in real and velocity space of the target
electrons.

In order to evaluate the integrals entering (5.29) we need expressions for the de-
pendence of the mean energy transfer T j .p/ on impact parameter, cf. the discussion
in Sect. 4.9.

5.4.2 Bunching: Atoms

Quantitative calculations on bunching corrections for light ions were first reported
by Besenbacher et al. (1980) and later by Grande and Schiwietz (1991). Since the
stopping cross section enters quadratically, the effect must increase in importance
with increasing atomic number.
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Fig. 5.8 Bunching correction �W=WBohr versus beam energy for H and Br ions in He (top),
Ne (middle) and Ar (bottom). Comparison of PASS calculations with and without inverse-Bloch
correction and CasP calculations. From Sigmund and Schinner (2010)

Figure 5.8, taken from Sigmund and Schinner (2010), demonstrates this on
the example of H and Br ions. As was to be expected, the bunching correction
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has a maximum near the maximum of the stopping cross section, which lies at
� 100 keV/u for protons but at a considerably higher energy for bromine.

The same graph also shows a significant dependence on the target atom. The
increase in magnitude from He to Ne must be due to the increasing number of elec-
trons involved which gives rise to a higher electron density. Note that the bunching
effect originates in small impact parameters. Further increase from Ne to Ar is rather
small.

A word of caution is in place here. As you may notice, there are peculiar discon-
tinuities in some of the curves, and there are significant differences between results
computed from the PASS code and from CasP, indicating considerable uncertainties
in the underlying computations. While a generous error margin should be kept in
mind, there are clear trends as a function of Z1 and Z2. Also, the magnitude of the
bunching correction does not seem to exceed�W=WBohr � 2, and the slope on both
sides of the maximum appears steeper than in case of the stopping cross section.
More quantitative details await more accurate computations.

5.4.3 Packing: Molecules

Packing in a molecular gas has been treated in detail in Sect. 8.9.3, Vol. 1. Interest at
this point is directed at the variation with Z1. Intuitively we may expect packing to
be a smaller effect than bunching in view of the greater distances between electrons.

For a polyatomic molecule we have a packing correction

�W D
X
�¤�

�W�� (5.31)

with

�W��D
�Z

d2p
Z

d2p0 T�.p/T�.p0/ ı


p � p0 � b��

��
; (5.32)

where T�.p/ is the mean energy loss to atom � at impact parameter p and b�� is
the projection of the internuclear distance r�� on the impact plane. Angular brack-
ets denote an average over all orientations of the molecule as well as, if allowed
for, fluctuations in the spatial distribution due to zero-point and thermal vibrations.
According to (8.93), Vol. 1, this can be written as

�W�� D 1

2�d 2��

Z
d2p

Z
d2p0 T�.p/T�.p

0/q
1 � .p � p0/2=d 2��

; (5.33)

where d�� is the internuclear distance between the �th and the �th atom. Angular
brackets have been omitted here, indicating that internal molecular motion has been
neglected.
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Fig. 5.9 Packing correction �W for He, Ne and Br ions (top to bottom) penetrating through
molecular nitrogen. Solid line: S2=2�d2 for the equilibrium distance of the neutral molecule,

d D 1:5 Å. Thin lines: Same for d D 1:0 and 2.0 Å. Dashed line:
R
T

2
d� . All expressions

normalized to Bohr straggling. From Sigmund and Schinner (2010)

If the internuclear distance is large compared to the ion-atom interaction range,
this reduces to
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�W�� ' S�S�

2�d 2��
; d�� large ; (5.34)

where S� is the stopping cross section for atom �. In the opposite limit you find

�W�� '
Z

d2pT�.p/T�.p/; d�� small : (5.35)

You are invited in Problem 5.3 to convince yourself that the formula

�W�� ' Min

 
S�S�

2�d 2��
;

Z
d2pT�.p/T�.p/

!
(5.36)

will give you a good overall estimate.
Figure 5.9 shows an example for molecular nitrogen. As Z1 increases from 2

(He) to 53 (Br), the maximum of the packing correction is seen to increase and to
move to higher energies. This is to be expected in view of the proportionality with
the square of the stopping cross section. In accordance with (5.36) the magnitude
depends sensitively on d�� � d . Noting that the option d D 1:5Å is closer to
reality, you may conclude that the low-d approximation (5.35) is of little importance
except perhaps for Br-N2 at energies below 0.1 MeV/u.

5.4.4 Packing: Solids

The packing correction for solids has been found to be negative long ago (Sig-
mund, 1978), but quantitative predictions have appeared only recently (Sigmund
and Schinner, 2010).

We restrict ourselves to a monoatomic medium. The packing condition presented
in Sect. 8.9.4, Vol. 1, refers to an amorphous medium. A slight generalization is
necessary, if the theory is to be applied to a polycrystalline medium.

With reference to Fig. 5.10 we may write the average square of the energy loss in
the form ˝

.�E/2
˛ D z

A
W0 C z

A

X
�

0 Z
d2p T .p/T .p C b�/ (5.37)

according to (8.106), Vol. 1, where z is the number of atoms in the target and A its
area. b� is the lateral component of the vectorial distance r� of atom � from an atom
located in the origin, and the prime indicates omission of that atom from the sum.

From this we find the packing correction

Nx�W D ˝
.�E/2

˛ � h�Ei2 �NxW0

D 1

.2�/2
Nx

Z
d2k jS.k/j2

 X
�

e�ik�b� �N

Z
d 3r e�ik��

!
; (5.38)
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Fig. 5.10 Definition of geo-
metric quantities determining
energy loss in solids. From
Vol. 1
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where

S.k/ D
Z

d2pT .p/e�ik�b (5.39)

and � is the lateral component of r .
Writing Z

d2k jS.k/j2 sin.kr/
kr

D 2�S2

r2
‰ .r/ (5.40)

we find

�W D S2

2�

2
4 X
0<ri<r0

1

r2i
‰ .ri /�N

Z r0

0

d3r
1

r2
‰ .r/

3
5 : (5.41)

The function ‰.r/ approaches unity at large values of r . In the opposite limit,
r ! 0, ‰.r/ approaches

‰.r/ ! 2�r2

S2

Z
d2p



T .p/

�2
: (5.42)

Approximating this function by its limiting behaviour at both ends, as was done in
(5.36), we find

�W ' �W1 C�W2 (5.43)

according to Sigmund and Schinner (2010) with

�W1 D S2

2�

"X0

ri<r0

1

r2i
� 4�Nr0

#
(5.44)
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Fig. 5.11 Straggling of He (upper graph) and Br (lower graph) ions in diamond. Charge-exchange
straggling and projectile excitation excluded. Curves labelled ‘uncorrected’ are based on (5.9)
disregarding bunching correction. Curves labelled ‘corrected’ contain both bunching and packing
correction

and

�W2 D 4

3
NS2d0 : (5.45)

r0 is to be taken large enough to let the content of the square brackets come close
to its asymptotic value. d0 is defined by the cross-over of the low-r and the high-r
limits,

d 20 D
�Z

d2pT .p/2
��1

S2

2�
: (5.46)

Note that �W1=S2 depends on the structure, while �W2=N depends on atomic
parameters.

Examples shown in Figs. 5.11 and 5.12 have been evaluated assuming the high-d
limit (5.34). This implies numerical evaluation of the quantity
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Fig. 5.12 Same as Fig. 5.11 for germanium. Experimental data from Malherbe and Alberts (1982)
included in the upper graph

Table 5.1 The parameter 1=D2 defined in (5.47) in units of the cubic lattice constant d for four
cubic structures and graphite. For graphite d is the in-layer lattice constant 2.456 Å; the height of
the unit cell is 6.696 Å. From Sigmund and Schinner (2010)

Structure .d=D/2

simple cubic 8.8
graphite 9.3
body-centered cubic 14.4
face-centered cubic 22.8
diamond 33.9

1

D2
D

0X
0<ri<r0

1

r2i
�N

Z r0

0

d3r
1

r2
(5.47)

for several lattice structures, cf. Table 5.1.
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In the case of He on diamond (Fig. 5.11, upper graph) the bunching and packing
correction nearly cancel each other, while for Br ions the packing condition domi-
nates and gives rise to an overall decrease in straggling.

In the corresponding graph for germanium (Fig. 5.12) the bunching correction is
noticeably greater, as you may have expected by looking at Fig. 5.8. Here the net
effect is an enhancement in straggling beyond the uncorrelated case. For Br in Ge
this gives rise to a maximum straggling value of five times the Bohr value.

5.5 Charge-Exchange Straggling

Statistical expressions for charge-exchangestraggling have been found in Sect. 3.5.5.
The most general result—which includes the transient behaviour—is (3.133), which
reduces to (3.137) for the stationary case. If only two significant states are involved,
these relations simplify considerably, as discussed in Sect. 3.5.5.1. The number of
input parameters increases rapidly as more states get involved, as demonstrated for
three states by Sigmund (1992). Instead, the continuum approximation discussed in
Sect. 3.5.5.2 is a convenient scheme to evaluate charge-exchange straggling at least
in equilibrium.

5.5.1 Neglecting Energy Loss by Charge Exchange?

According to (3.138), charge-exchange straggling reduces to

�
d�2

N dx

�
chex

D 2

�
.S1 � S2/

2X
JD1

FJ .F2SJ1 � F1SJ2/ : (5.48)

in charge equilibrium, when only two states are active. In the literature, off-diagonal
elements S12 and S21 have most often been ignored. Let us check to what degree
this may be justified.

For clarity, consider hydrogen as the projectile and let 1 denote a bare proton and
2 ! 0 a neutral hydrogen atom. Then,

S1 � S2 D .S11 � S00/C Scapt � Sloss (5.49)

and X
J

.F2SJ1 � F1SJ2/ D F1F0 .S11 � S00/ � F 21 Scapt C F 20 Sloss ; (5.50)

where Sloss ' Tloss�loss and Scapt ' Tcapt�capt denote the stopping cross sections in
a loss or capture event, respectively.
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In (5.49), the importance of electron capture and/or loss is determined by the
pertinent stopping cross sections. In (5.50) also the charge fractions play a role. This
may change the relative weight of the three contributions substantially. For example,
consider the limit of high energy, where F0 � 1 and F1 ' 1. If only stopping cross
sections were considered, the three terms would typically be in decreasing order.
Weighted by charge fractions, the first contribution would experience a substantial
decrease, even more so the second one, whereas the third contribution, albeit small
because of the small capture cross section, would be essentially unchanged.

Thus, energy loss by charge exchange cannot generally be neglected without a
detailed analysis.

5.5.2 Examples

Figure 5.13 shows results from a detailed study of the two-state case by Besen-
bacher et al. (1981).�2 was determined for hydrogen and helium ions in Ar and Kr
for beam energies ranging from 70 to 500 keV/u. Dots in the two graphs show the
difference



�2=�2Bohr

�
He � 


�2=�2Bohr

�
H for Ar and Kr targets, respectively. The

lower solid curve in either graph shows an estimate of charge-exchange straggling,
based on (5.48), ignoring energy loss by charge exchange and inserting known cross
sections for charge exchange as well as frozen-charge stopping cross sections mea-
sured by Cuevas et al. (1964). The dot-dashed curve represents bunching, estimated
on the basis of a local-density approximation. The dashed curve, representing the
sum of the two, is seen to agree rather well with the experimental results.

The upper solid curve in the two graphs represents charge-exchange straggling,
estimated on the basis of the assumption that the stopping cross section of singly-
charged He should be identical with that for protons. Besenbacher et al. (1981) drew
the important conclusion from this and similar results for other ion-target combina-
tions that previously-reported results on charge-exchange straggling overestimated
the effect.

Figure 5.14 shows an example for a very heavy ion (bismuth) at high beam en-
ergy. As was discussed in Sects. 6.7.2 and 8.8, Vol. 1, the theory of stopping and
straggling of heavy bare nuclei at relativistic velocities needs to be amended by a
Lindhard-Sørensen correction (Lindhard and Sørensen, 1996). Experimental results
shown in Fig. 5.14 have been normalized to Lindhard-Sørensen straggling. It is seen
that measured values of straggling agree well with the results of a Monte-Carlo sim-
ulation incorporating charge exchange based on measured cross sections for electron
capture and loss, allowing for three charge states 83C, 82C and 81C. Although the
two graphs do not refer to exactly the same beam energy, the influence of screening
is seen to be noticeable.

For a qualitative interpretation you are invited to look into Problem 5.5.
Figure 5.15 illustrates trends for sulphur ions in carbon. Equation (3.155) al-

lows to separate charge-exchange straggling into two factors, one governed by the
dependence of the energy loss on the ion charge, the other being governed by the
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Fig. 5.13 Charge exchange and bunching in Ar and Kr. See text. From Besenbacher et al. (1981)

charge-state evolution. The top graph indicates that the dependence on beam en-
ergy is determined primarily by the charge fractions, while the charge dependence
of the stopping cross section shows a comparatively slow decrease with energy.
The large difference between results obtained from two different methods to arrive
at charge fractions (Rozet et al., 1996, Osmani and Sigmund, 2011) indicates that
charge-exchange straggling must be quite sensitive to input cross sections for elec-
tron capture and loss. Note in particular the difference between height and position
of the maximum in the bottom graph. On the other hand, both estimates indicate
charge-exchange straggling to far exceed the Bohr value around the maximum.

Moreover, note that the stopping maximum for S in C—which characterizes
bunching and packing—lies at 0.8 MeV/u according to ICRU (2005), i.e. far below
the maximum of charge-exchange straggling.
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Z2

Fig. 5.14 Straggling of 200 (top) and 290 ! 250 (bottom) MeV/u bismuth ions in different solid
materials, normalized to the prediction for collisional straggling of Lindhard and Sørensen (1996).
Circles: Measurements of Weick et al. (2000). Other symbols: Different simulations accounting
for charge-exchange straggling. Top: Calculation for bare ions. From Weick et al. (2000). Bottom:
Calculation including screening correction in the stopping cross section. From Sørensen (2002)

5.6 Dielectric Theory

5.6.1 Recapitulation

According to (8.34), Vol. 1, Lindhard dielectric theory predicts straggling for a point
charge Z1e to be given by
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Fig. 5.15 Charge-exchange straggling in equilibrium of sulphur ions in carbon. Top: The functions
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J FJ .qJ �q/QJ and s1 D .dS=dqJ /qJ Dq entering (3.155). Bottom: Two estimates
of charge-exchange straggling�Wchex, based on two sets of charge fractions. From Sigmund et al.
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(5.51)

in a medium characterized by a dielectric function ".k; !/.
This expression has been evaluated by Bonderup and Hvelplund (1971), who

reported results for four electron densities in Fig. 8.7, Vol. 1.
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5.6.2 Local-Density Approximation

Bonderup and Hvelplund (1971) applied the local-density approximation of Lind-
hard and Scharff (1953) to evaluate the straggling parameter of an atom by setting

�2

�2Bohr

D
R
4�r2dr �.r/�2 .�.r/; v/

Z2�2
0
Bohr

; (5.52)

where �.r/ is the electron density of a target atom normalized to Z2, and �2
0
Bohr is

the asymptotic value of �2 .�.r/; v/ at high speed v.
While a formal justification of the local-density approximation in the theory of

energy loss is not known to the author, one might argue that this approximation
could be more well-founded in straggling on physical grounds, since straggling
hinges on large energy transfers, i.e., close collisions.

Bonderup and Hvelplund (1971) evaluated (5.52) for protons and alpha particles
and Lenz-Jensen electron densities for �atom.r/ over a wide velocity range. The
function �2 .�atom.r/; v/ was divided into two branches governed by a high- and a
low-speed expression, dependent on the ratio vF .r/=v.

Chu (1976) evaluated the same scheme but replaced Lenz-Jensen electron distri-
butions by Hartree-Fock densities according to Herman and Skillman (1963). Re-
sults are shown in Fig. 5.16. While there is good qualitative agreement between
Hartree-Fock and Thomas-Fermi results, the former show an oscillatory behaviour
similar to what is found for the stopping cross section, cf. Figs. 7.3 and 7.4, Vol. 1.
Both densities lead to increasing deviations from Bohr straggling as Z2 increases.
This confirms that the critical beam speed at which straggling reaches Bohr strag-
gling increases with increasing atomic number of the target.

5.6.3 Empirical Extension to Heavier Ions

Yang et al. (1991) extended the above scheme to heavier ions by the following steps:

� Calculated results of Chu (1976) were parameterized in terms of a 4-parameter
fit.

� The projectile atomic numberZ1 was replaced by an effective charge q1 D 	Z1,
where 	 is the effective-charge ratio characterizing the stopping cross section.

� A resonance term depending on another four parameters was added to account
for correlation effects. These parameters were determined by comparison to em-
pirical data for straggling of light ions. Different parameter families were adopted
for solids and gases.

� Finally, one more resonance term depending on another four parameters was
added to account for charge-exchange straggling. These parameters were deter-
mined by comparison to available experimental straggling data for heavy ions.
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Fig. 5.16 Atomic straggling parameter versus atomic number Z2 of the target for protons (scale
on the right) and 4He (scale on the left), calculated by local-density approximation. Solid lines:
Hartree-Fock density. Dashed curves and points: Thomas-Fermi density. Straight line: Bohr strag-
gling. From Chu (1976)

Different parameter families were adopted for atomic gases, molecular gases and
solids.

Clearly, with such a large number of free parameters the experimental straggling
data available at the time ought to be characterized with a reasonable accuracy. This
is indeed seen to be the case for aluminium (lower graph). An interesting feature is
seen in the upper graph, where curves for heavy ions such as gold and iodine seem
to rise far above the Bohr value, even though supporting experimental data are not
available.
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Fig. 5.17 �=�Bohr versus E=Z3=2
1 for carbon (top) and aluminium target (bottom). Lines from

the multi-parameter fit of Yang et al. (1991). From Yang et al. (1991)

5.7 Data

Experimental data for straggling of heavy ions have been compiled and condensed
into an empirical interpolation formula by Yang et al. (1991). An example is shown
in Fig. 5.17. You will find more recent data for solid targets in the literature, but I
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hesitate to present specific references, because the analysis of many published data
is affected by insufficient information about nonuniform foil thickness.

Increasing energy loss with increasing atomic number of the ion implies decreas-
ing penetration depth and, hence decreasing film thickness for reliable measure-
ments of mean energy loss and straggling. While the influence on the mean energy
loss is limited, as long as the mean thickness of the foil is known with sufficient
accuracy, the influence on straggling is potentially serious. In the worst scenario,
where the target has a narrow hole over the entire thickness, some of the penetrat-
ing particles have zero energy loss. Surface roughness is frequently estimated from
atomic-force micrographs of the target surface: Such an analysis does not necessar-
ily discover a hole.

Sun et al. (2007) performed measurements at rather low beam energies, up to
0.25 MeV/u, on thin SiN films with high uniformity. Figure 5.18 shows measured
maximum values of �2=�2Bohr � 0:8 in the energy range covered. On the other
hand, scaling with the Bohr parameter � D mv3=Z1e

2! is surprisingly well ful-
filled, considering that several target-electron shells are involved. The agreement
with the formula of Yang et al. (1991) is seen to be rather poor in the low-energy
range, while the experimental data do not cover the energy range where that formula
suggests a rapid increase in case of the heavier ions.

Vockenhuber et al. (2013) reported measurements with krypton ions up to 10 MeV
in gas targets. Figure 5.19, showing data for Kr-He, indicates values of W=WBohr �
100, up to a factor of � 2 above the formula of Yang et al. (1991). Comparison
with PASS indicates that neither linear straggling nor bunching could explain such
an effect. Charge-exchange straggling delivers the right order of magnitude, but
uncertainties in the numerical evaluation are still too great to allow a quantitative
comparison.

Straggling experiments in gases with low-energy ions will be discussed in
Chap. 8.

5.8 Discussion and Outlook

This chapter focused on energy-loss straggling of medium to high energy ions.
While theoretical formalism and computational tools are reasonably well developed,
only few explicit quantitative predictions are available, and generally-valid scaling
relations are essentially absent. This is not surprising, considering that theoretical
understanding of the mean energy loss has emerged only since the beginning of the
present millennium.

Uncorrelated (linear) straggling, treated in Sect. 5.3, is fairly well understood:
Theoretical schemes aiming at stopping cross sections can be applied to evaluate
straggling parameters. By and large, the influence of projectile screening, Barkas-
Andersen and shell corrections is less pronounced than in case of the stopping cross
section.
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Fig. 5.18 Energy-loss straggling of several ions in the keV/u energy range in SiN films of high
thickness uniformity. Measurements by Sun et al. (2007). Top: Scale as in Fig. 5.2. Also included
are data extracted from the SRIM code. Bottom: Compared with interpolation formula of Yang
et al. (1991). From Sun et al. (2007)

Bunching and packing corrections, on the other hand, appear significant, espe-
cially around the stopping maximum. Simple expressions for the packing correc-
tion in molecules and solids have been around for several decades (Sigmund, 1976,
1978), although there is still lacking experimental evidence whether this correction
is negative for a solid, unlike the well documented case of an equivalent molecular
gas, where this correction is positive.

First estimates of a bunching correction were performed on the basis of an
electron-gas model (Besenbacher et al., 1980), and an early estimate employing
impact-parameter-dependent energy loss was presented for protons (Grande and
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to interpolation formula by Yang et al. (1991). From Vockenhuber et al. (2013)

Schiwietz, 1991). A more systematic study on the basis of the PASS code for
heavy-ion stopping has now revealed some qualitative trends (Sigmund and Schin-
ner, 2010).

Most pronounced is a peak near the stopping maximum, going roughly as the
square of the stopping cross section, the magnitude of which increases with increas-
ing Z2—because of an increasing density of target electrons—and increasing Z1
via the dependence on S2. For solids, the bunching correction is counteracted by
the packing correction, and examples shown in Sect. 5.4 indicate that the sum may
be either positive or negative, dependent on the ion-target combination.

Unambiguous evidence for the significance of charge-exchange straggling may
be found in the measurements of Ogawa et al., an example of which is shown in
Fig. 5.1. These unique measurements refer to fairly light ions, high beam energy and
thin foils. More frequent is the situation where the inherent structure of the spectrum
cannot be resolved and where, instead, a gaussian-like spectrum is produced by
charge exchange.

Charge-exchange straggling is predicted to go as / .dS=dq/2 in charge equi-
librium. This function goes through a maximum, but the position of that maximum
differs from the maximum of S2. In the example shown in Fig. 5.15, the maximum
of charge-exchange straggling lies at a significantly higher energy than the maxi-
mum of bunching.

According to theoretical results summarized here as well as to numerous exper-
imental findings, straggling may, dependent on ion-target combination and beam
energy, be an order-of-magnitude higher than predicted by Bohr. It is a major chal-
lenge to experimentally distinguish between high values of straggling and experi-
mental artifacts.
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Problems

5.1. 1. An accelerator delivers singly-charged ions with Z1 D 1 to 18 and E D
10MeV. Assume Bohr straggling and find the maximum target thickness satisfy-
ing (5.4).

2. Make the same evaluation for stripped ions.

5.2. Carry out a calculation similar to (4.67)–(4.71) for the straggling parameter

W D
�Z

d2p T 2.p/
�

ve

(5.53)

and check the result against (8.47), Vol. 1.

5.3. Justify the approximative expression (5.36) on the basis of (5.33). You may use
a feasible model for the function T��.p/ such as (8.98), Vol. 1. Further help may be
found from Sigmund and Schinner (2010).

5.4. Treat the system depicted in Fig. 5.1 by the two-state approximation. Try to lo-
cate approximately the channel number corresponding to zero energy loss. Assume
the energy loss to be / q2 and extract a value of the electron-loss cross section
assuming the capture cross section to be negligible.

5.5. For a qualitative explanation of trends emerging from Fig. 5.14 consider a two-
state system with q1 D Z1 D 83 and q2 D Z1 � 1 D 82. Moreover, consider
F1 	 F2 and ignore energy loss to electron capture and loss. Assume S.q1/ '
.q1=Z1/

2Sproton for simplicity and demonstrate, using nonrelativistic Bethe theory,
that

.��2/chex

�2Bohr

' 8
F1F2

�

Sproton

mv2�12
: (5.54)

Convince yourself that this yields a steep increase with decreasing speed v. How do
you explain the increase with decreasingZ2?
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Chapter 6

Interatomic Potentials, Scattering and Nuclear
Stopping

Abstract This chapter focuses on interatomic potentials of interest in single and
multiple scattering of heavy charged particles and the associated energy loss. In the
keV energy range and above it is commonly assumed that binary elastic scattering
on central potentials makes up an adequate description. Limitations of this descrip-
tion are mentioned. Classical scattering for screened-Coulomb interaction is out-
lined, and special attention is given to scaling properties, in particular for Thomas-
Fermi-type interaction. Power-law scattering is mentioned as a convenient tool for
rough estimates. Comparisons between different theoretical estimates as well as be-
tween measured and calculated cross sections are presented, and attempts to directly
invert a measured cross section into the underlying potential are reported. The chap-
ter concludes with explicit results for nuclear stopping and straggling including per-
tinent experiments.

6.1 Introductory Comments

Elements of classical and quantal scattering theory for central-force potentials have
been presented in Chap. 3, Vol. 1, with applications mainly to Coulomb interaction
between point charges. The present chapter addresses interactions between screened
ions and atoms as well as between neutral atoms. In the field of radiation physics
such screened-Coulomb forces are most often expressed in terms of central pairwise
potentials, but more sophisticated descriptions may be appropriate, in particular for
collisions at energies in the eV and lower-keV range.

A simple estimate presented in Sect. 2.3, Vol. 1 suggests the stopping cross sec-
tion for electronic collisions to exceed that for elastic nuclear collisions by 3–4 or-
ders of magnitude. This result holds for interactions between practically free point
charges within an energy regime where stopping cross sections decrease monotoni-
cally with increasing energy. You have seen in Chap. 4 that the electronic stopping
cross section actually experiences a maximum and, from there, decreases monoton-
ically toward zero with decreasing energy. We shall see that the nuclear stopping

P. Sigmund, Particle Penetration and Radiation Effects Volume 2,
Springer Series in Solid-State Sciences 179, DOI: 10.1007/978-3-319-05564-0_6,
� Springer International Publishing Switzerland 2014
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cross section exhibits a similar behaviour, but at a lower energy and with a differ-
ent height. In general there exists a cross-over point between electronic and nuclear
stopping at some energy which, for not too light ions, lies in the keV or lower-MeV
range. For collision cascades governing radiation effects such as defect formation
and sputtering, discussed briefly in Chap. 1, Vol. 1, nuclear stopping is most often
the dominating process.

At higher beam energies, where electronic stopping dominates energy loss, an-
gular deflections are governed by the interaction with the nuclei, as you have seen in
Chap. 2, Vol. 1. For small-angle deflections—which determine multiple scattering—
it is essential that screening of the interaction be taken properly into account.

6.2 Potentials

Calculating the interaction force between two (neutral or charged) atoms is in prin-
ciple a problem of quantum chemistry, but the type of questions asked in radiation
physics is different from standard problems treated in quantum chemistry. Most of
all, the range of internuclear distances of interest in scattering problems differs from
that in molecular physics: Atoms moving with kinetic energies in the keV regime or
above may approach each other to internuclear distances much smaller than those
of atoms bound in a molecule. From this follows that interaction forces of interest
are predominantly repulsive, while in traditional quantum chemistry it is more the
equilibrium range that is of interest.

Moreover, the range of relative velocities of interacting atoms may lie several
orders of magnitude above what is of interest in molecular spectroscopy and chem-
ical reaction kinetics. In quantum chemistry and molecular-beam physics, adiabatic
potentials, based on the ground-state configuration of the combined electron cloud
of two collision partners, are typically a good first estimate. Conversely, once the
relative speed between the colliding nuclei exceeds characteristic orbital velocities
of the target and projectile electrons, it may be more appropriate to consider the op-
posite extreme, ignore any deformation of the electron clouds during collision and,
instead, determine the interaction between undisturbed atomic-electron configura-
tions.

Within the scope of this book, more emphasis will be laid on general behaviour
than on element-specific details. Therefore, scaling laws valid for a wide range of
elements and their experimental verification will receive attention. This, in fact, is
dictated by necessity: There are about 104 ion-target systems if only atomic beams
and elemental targets are taken into consideration. If molecular and cluster beams
are allowed for as well as alloyed and compound targets, the variety of systems to
be treated ab initio becomes rapidly prohibitive from the point of view of computa-
tional capacity and manpower.

The main justification of various adopted screening functions and screening
radii is their ability to accurately describe pertinent experimental results. Those in-
clude measurements of elastic ion-atom scattering distributions under single- and/or
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multiple-collision conditions as well as range distributions of ions in solids. Exper-
iments in the former category will be mentioned later in this chapter, whereas the
physics of ion ranges will be the subject of Chap. 9.

6.2.1 Bohr’s Estimate

Bohr (1948) presented a first estimate of the interaction potential between two atoms
on the basis of the electrostatic interaction energy of two stiff charge distributions,

V.R/ D �e
Z

d3r �1.r/ˆ2.r/ ; (6.1)

where �1.r/ D �1.r1/ and �2.r/ D �2.r2/ denote the charge density and electro-
static potential of the respective collision partners,

r1 D jr � R1j r2 D jr � R2j (6.2)

and R D jR1 � R2j their internuclear distance. Yukawa-type charge distributions
were assumed with Thomas-Fermi-type screening radii

a1 D a0

Z
1=3
1

I a2 D a0

Z
1=3
2

: (6.3)

You are encouraged to determine V.R/ by solving Problem 6.1. If both collision
partners are neutral atoms, the result is

V.R/ D Z1Z2e
2

R
g.R/ (6.4)

g.R/ D a22e�R=a1 � a21e�R=a2

a22 � a21
: (6.5)

Equation (6.5) has been plotted in Fig. 6.1 for a series of values of the ratio a1=a2.
The distance R is taken relative to the Bohr screening radius defined by

1

a2
D 1

a21
C 1

a22
: (6.6)

As you could expect, for large values of a1=a2, atom 1 acts similar to a point charge,
so that curves approach Bohr’s expression

g.R/ D e�R=a : (6.7)

Scaling with a according to (6.6) is obeyed approximately for R=a � 1, but in-
creasing differences are seen in the tails.
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Fig. 6.1 Screening function g.R/ of the interaction potential between two neutral atoms according
to (6.5). Numbers in the legend refer to different values of a1=a2. The solid curve refers to Bohr’s
estimate, (6.7)

The potential used in a series of papers by Lindhard and coworkers, especially
Lindhard et al. (1968), differs from Bohr’s estimate in two respects,

� The exponential screening function was replaced by the neutral-atom screen-
ing function either for the Thomas-Fermi or the Lenz-Jensen atom discussed in
Sect. 1.4.4, and

� The screening radius was replaced by the aj D 0:8853a0=Z
1=3
j .

Figure 6.1 refers to the interaction between two neutral atoms. In the literature
you will see potentials of this type also applied to interactions between positively
and even negatively charged ions and atoms. This is plausible for not too highly-
charged ions, since substantial deflection and/or energy transfer in elastic collisions
implies impact parameters smaller than outer-shell radii.

To study this point further, you may use the result of Problem 6.1 which, for a
nonvanishing ion charge q1e, yields a screening function

g.R/ D 1

1 � a21=a22

��
1 � q1

Z1

�
e�R=a1 C

�
q1

Z1
� a21
a22

�
e�R=a2

�
: (6.8)

For a meaningful plot you need to make some assumptions on the dependence
of the screening radius a1 on the ion charge. This can be done by matching the
screening functions shown in Fig. 1.8 by an exponential

g.r=a/ ' .1 � q=Z/e�r=a : (6.9)

Within the accuracy of an exponential fit to the potential we may write (Sigmund,
1997)

a ' aTF.1 � q=Z/˛ : ˛ ' 1 (6.10)
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Fig. 6.2 Dependence of the Thomas-Fermi screening radius on the charge state of a positive ion.
Upper graph: Comparison between (6.8) (triangles) and (6.9) (line). Lower graph: Points from
Fermi and Amaldi (1934). Lines: .1�q=Z/˛ with ˛ D 0:5; 1 and 1.5, cf. (6.10). From Sigmund
(1997)

A more rigorous argument in support of (6.10), which does not make use of an
exponential approximation, goes back to Fermi and Amaldi (1934). Their result is
likewise shown in Fig. 6.2.

With this, Fig. 6.3 has been based on the relation

a1

a2
D 1 � q1

Z1
; (6.11)

The dependence onZ1 andZ2 indicated in (6.3) is rather weak and has been ignored
here. You may note that for a nearly-stripped ion the interaction potential depends
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Fig. 6.3 Screening function for the interaction between a neutral atom and an ion with charge q1e
for Z1 D Z2 and q2 D 0 according to (6.8)

sensitively on the charge, while such a dependence is barely visible for R=a2 � 0:5

and quite small further up to R=a2 � 1:5.

6.2.2 Thomas-Fermi Theory

Although a derivation of the interatomic potential proposed by Lindhard and Scharff
was never published, an unpublished draft existed which, as far as the theoretical ba-
sis is concerned, was very similar to that underlying the theory of Firsov (1957b,a).
Actually, both theories rely heavily on the work of Lenz (1932) and Jensen (1932)
on the interaction between Thomas-Fermi atoms and ions as summarized by Gom-
bas (1949).

You may recall from the discussion in Sect. 1.4 that the energy of a Thomas-
Fermi atom contains a kinetic contribution, (1.15), in addition to potential (elec-
trostatic) energy. This contribution also affects the interaction between two atoms
but has been neglected in Bohr’s estimate. It represents a quantum effect and takes
into account that a straight overlap between stiff charge distributions may not be
allowed by the Pauli principle, so that some electrons have to move up to higher
(unoccupied) states.

Let us consider the energy of a diatomic molecule in the Thomas-Fermi model.
An appropriate starting point is (1.18) which we may rewrite in a generalized form,
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Fig. 6.4 The contribution of the kinetic-energy correction to the screening function for exponential
atomic charge distributions

E D �k

Z
d3r �.r/5=3 � e

Z
d3r �.r/ˆn.r/

C e2

2

Z
d3r

Z
d3r 0 �.r/�.r

0/
jr � r 0j (6.12)

for v D 0, where the potential Z1e=r of the nucleus has been denoted by ˆn.r/.
In this form (6.12) may also describe the electron energy of a molecule, with the
replacement

ˆn.r/ D Z1e

r1
C Z2e

r2
: (6.13)

You could try to determine an equilibrium configuration of the electrons in a
molecule by applying the variational principle, just as has been done in case of
an atom. The interaction energy between the two atoms/ions could then be found
by adding the Coulomb interaction between the nuclei and subtracting the energies
of the two isolated atoms. The resulting expression would represent an adiabatic
potential in the Thomas-Fermi approximation.

Lenz (1932) and Jensen (1932) as well as Gombas (1949), aiming at this adia-
batic potential, argued that a first approximation for this quantity could be found by
superposition of undisturbed atomic charge distributions,

�.r/ ' �0.r/ D �1.r1/C �2.r2/ ; (6.14)

since the difference ı� D � � �0 will enter in the second order into the error in the
energy.

As indicated above, with increasing relative velocity of two collision partners,
straight superposition may become a more appropriate representation of the poten-
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tial than adiabatic interaction. Therefore, the error made by adopting (6.14) will be
even smaller in the present context.

Within this picture we may subtract the energies of the constituent atoms from
(6.12) and obtain

V.R/ D Z1Z2e
2

R
C �k

Z
d3r

h
.�1.r1/C �2.r2//

5=3 � �1.r1/
5=3 � �2.r2/5=3

i

�
Z

d3r
�
Z1e

2

r1
�2.r2/C Z2e

2

r2
�1.r1/

�

C
Z

d3r
Z

d3r 0 e2

jr � r 0j �1.r1/�2.r
0
2/: (6.15)

for the interaction energy of two atoms. Figure 6.4 shows the contribution

�gkin D R

Z1Z2e2

� �k
Z

d3r
h
.�1.r1/C �2.r2//

5=3 � �1.r1/
5=3 � �2.r2/

5=3
i

(6.16)

to the screening function for a Yukawa-type charge density with Bohr’s screening
radius. With this choice, the result depends only on R=a and Z1=Z2, and the de-
pendence on Z1=Z2 is not very pronounced.

Comparison of Fig. 6.4 to Fig. 5.17 indicates that the contribution of �gkin to
the screened potential increases with increasing distance and eventually dominates.
If you have difficulties in appreciating this, you are encouraged to look into Prob-
lem 6.3.

Equation (6.15) has served as the theoretical basis for numerous computations of
interatomic potentials. Apart from computational details, theoretical schemes differ
in the input, especially

� atomic charge distributions and
� possible inclusion of exchange and correlation terms.

This author is unaware of a fully analytical evaluation of the kinetic-energy contribu-
tion, (6.16). Although authors invested considerable effort in preparing the double
integral for numerical evaluation, there is little reason to go into details, because
straight numerical integration is no particular challenge on present-day computers.

6.2.2.1 Firsov’s Estimate

The central study in the present context is the theory of Firsov (1957b,a). Note first
that in quantum mechanics, an approximate solution of the Schrödinger equation
leads to an overestimate of the energy of the considered system. This feature also
prevails in Thomas-Fermi theory. A simple proof, following Firsov (1957b) has been
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Fig. 6.5 Comparison between Bohr or Lindhard-Scharff and Firsov screening radii. Top: Fig-
ure 6.1 redrawn employing the Firsov screening radius as the abscissa variable. Bottom: Same
as Fig. 6.4 for Firsov case

sketched in Problem 6.4. Superposition of atomic charge distributions is an approxi-
mation to the true charge density. Therefore, the resulting interaction potential must
lead to an overestimate of the total electronic energy of the system of two atoms or
ions. Firsov (1957b) also found an expression very similar to (6.15) which delivers
an upper bound to the total energy. He also found that the difference between the
two expressions, when evaluated with Thomas-Fermi input, does not exceed 5%.
Note that this assumes the ‘true’ potential to be adiabatic.

Numerical evaluation of the two resulting potentials led Firsov (1957a) to pro-
pose

g.R/ D g0.R=a/ (6.17)



244 6 Potentials and Scattering

as an interpolation formula, where g0 denotes the Thomas-Fermi screening function
for a neutral atom and

a D 0:8853a0�
Z
1=2
1 CZ

1=2
2

�2=3 : (6.18)

Firsov’s expression differs from Lindhard’s choice only in the screening radius. You
may easily convince yourself that the ratio aLindhard=aFirsov decreases from 1.12 to
1.04 for Z1=Z2 increasing from 1 to 100.

Figure 6.5 demonstrates the consequences on the scaling of the potential for
Yukawa-type electron densities. The upper graph shows clearly improved scaling
compared with Fig. 6.1, in particular for R=a � 1, where scaling is essentially per-
fect. On the other hand, no significant improvement of scaling is found in the kinetic
contribution in comparison with Fig. 6.4.

6.2.2.2 Thomas-Fermi-Dirac Approach

Firsov’s approach was extended by Abrahamson et al. (1961) to the Thomas-Fermi-
Dirac scheme by including an exchange contribution in the Thomas-Fermi energy
in accordance with Sect. 1.8.2. Again a maximization principle was employed in ad-
dition to the energy expression which provides a minimum. As a result of extensive
numerical operations the authors suggested an interpolation formula,

V.R/ D Z1Z2e
2

2R

�
g0

�
R

a1

�
C g0

�
R

a2

��
� �2a
120�k

.Z1 CZ2/C Nƒ.R/ ; (6.19)

where aj D 0:8853a0=Z
1=3
j are Thomas-Fermi radii and g0 is the Thomas-Fermi

function of a neutral atom. The last two terms in this expression, the first of which
is independent of the internuclear distance R, represent the effect of the exchange
term via the constant �a defined in (1.91).

Equation (6.19) has been applied to evaluate interaction potentials between rare-
gas atoms by Abrahamson (1963b,a). The focus of those calculations was on inter-
nuclear distances far beyond the Thomas-Fermi screening radius, typically up to 6
Bohr radii, where potentials discussed here cannot be expected to provide a realistic
estimate of the interaction.

Figure 6.6 shows an example for He-Ne. The potential is close to exponential for
R > a0, softer than Bohr’s expression but harder than Thomas-Fermi screening.

As pointed out by Günther (1964), Firsov’s variational principles lead to ques-
tionable results when applied to the Thomas-Fermi-Dirac model due to the finite di-
mensions of the atomic charge densities. Rather than abandoning the TFD model al-
together, Nikulin (1971) proposed to keep the TFD functional and to insert Hartree-
Fock atomic electron densities without the use of variational parameters.
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Fig. 6.6 Interaction poten-
tial between neutral He and
Ne atoms according to the
Thomas-Fermi-Dirac model.
Also included potentials of
Amdur and Mason (1956)
and Srivastava (1958). From
Abrahamson (1963a)

6.2.3 Other Binary Potentials

6.2.3.1 Hartree-Fock Estimates

If we accept the point of view of Firsov (1957b) that the electron density enter-
ing into the energy expression is a trial function, any physically acceptable expres-
sion for the electron density can be adopted, so that there is no reason to restrict
to Thomas-Fermi-type input. Thus we can just as well apply accurate atomic elec-
tron distributions available from the literature. However, as long as interaction en-
ergies are determined by the Thomas-Fermi expression, with or without exchange-
correlation, the error in such computations is substantial. In other words, subtleties
in atomic wave functions will be immaterial.

The first attempt to improve the accuracy of the Thomas-Fermi model in this way
were the calculations of molecular electron densities by Lenz (1932) and Jensen
(1932), where a trial function, (1.59) was adopted which was not a solution of the
Thomas-Fermi equation but a better approximation to reality. In the present context
this idea was taken up by Wedepohl (1967) who applied electron densities calculated
by Hartree and Hartree (1938) and empirical densities deduced from X-ray diffrac-
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Fig. 6.7 Interaction potential between two argon atoms according to Wilson and Bisson (1971),
compared with four potentials deduced from scattering measurements and three calculated poten-
tials (Abrahamson, 1963b, Gilbert and Wahl, 1967, Wedepohl, 1967). From Wilson and Bisson
(1971)

tion measurements (Witte and Wölfel, 1958). Interaction energies were calculated
including the exchange term.

Wilson and Bisson (1971) applied the same scheme but used tabulations by Her-
man and Skillman (1963) for several homonuclear atom pairs. An example is shown
in Fig. 6.7. This work was continued by Wilson et al. (1977), and results were pa-
rameterized in terms of a screening function

g.R/ D
X

Cj e�bjR=a ; (6.20)

which was first introduced by Molière (1947), who operated with three pairs of
constants .Cj ; bj /, cf. Table 6.1 and the Bohr screening radius. Results of Wilson

et al. (1977) were plotted in terms of R=aFirsov with aFirsov D 0:8853a0=.Z
1=2
1 C



6.2 Potentials 247

Table 6.1 Constants defining screening function (6.20) according to Molière (1947), Wilson et al.
(1977) (Kr-C) and Ziegler et al. (1985) (ZBL)

Potential Molière Kr-C ZBL

C1 b1 0.35 0.3 0.190 945 0.278 544 0.028 17 0.201 62
C2 b2 0.55 1.2 0.473 674 0.637 174 0.280 22 0.402 90
C3 b3 0.10 6.0 0.335 381 1.919 249 0.509 86 0.942 29
C4 b4 0.181 75 3.199 8

Fig. 6.8 Screening function for several atom pairs due to Wilson et al. (1977). See text. From
Wilson et al. (1977)

Z
1=2
2 /2=3, but with three pairs of constants .Cj ; aj / for each atom pair. The data set

for the Kr-C pair (cf. Table 6.1) yields the so-called krypton-carbon potential, which
has been frequently applied also to other atom-atom or ion-atom pairs. Examples are
the data points in Fig. 6.8.

Similar computations were performed by numerous authors (Kim and Gordon,
1974, Dedkov, 1984, 1989), where also charged ions, in particular alkalis, were
studied. A comprehensive review with a special emphasis on radiation physics is
due to Dedkov (1995).

The work of Wilson et al. (1977) was extended to a large number of atom-atom
pairs by Biersack and Ziegler (1982) and Ziegler et al. (1985), and an interpolation
formula of the type of (6.20) was established with constants listed in Table 6.1 and
commonly referred to as the ZBL potential.
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Fig. 6.9 Screening functions for Au-C and Kr-C interaction potentials. Solid circles: DFT(RESC);
Empty circles: HF(RESC); solid lines: ZBL; dotted lines: Molière. From Kuzmin (2006)

6.2.3.2 Ab Initio Calculations

More recently, quantum chemistry codes have been applied to calculate interatomic
potentials. The standard procedure here is to determine the ground-state energy of
a molecule for a given configuration of the nuclei and to subtract the energy of the
isolated atoms, i.e., one deals with adiabatic potentials. Apart from computational
aspects the result of such calculations depends mainly on the basis set of atomic
wave functions. Also relativistic effects may be taken into account.
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Figure 6.9 shows two examples. Good agreement is found for R � a0 between
the results of two different codes, Density Functional Theory (TFD-RESC)1 and
Hartree-Fock (HF-RESC) as well as the Molière potential, whereas ZBL shows a
slight difference. At larger distances substantial differences are found.

6.2.4 Nonbinary Potentials

6.2.4.1 Embedded-Medium Potentials

A useful theoretical basis for calculating interactions especially inmetals is found in
condensed-matter theory. The starting point is the problem of the electronic state of a
foreign atom in a solid or at a solid surface. In the so-called effective-medium theory,
the solid is replaced by a free electron gas (Nørskov, 1977, Nørskov and Lang, 1980,
Stott and Zaremba, 1980, Nørskov, 1982, Daw and Baskes, 1983, 1984). The energy
of such a system can be calculated by various methods, including density-functional
theory. As a result one may find formation energies of point defects, chemisorption
energies and the like.

Daw (1989), Adams and Foiles (1990) considered the effective interaction of two
atoms embedded into an electron gas. This results in an embedded-atom potential
taking proper care of the attractive part of the interaction force as well as the chem-
ical properties of the interacting atoms.

This aspect will be discussed in some detail in connection with radiation effects
in Volume 3 of this monograph.

6.2.4.2 Empirical Potentials

When simulating collision processes in solids or liquids you may need a realistic
description of the equilibrium state of the medium. A convenient way to achieve
such a description is to find a reasonable trial function with a number of parame-
ters that can be fitted such as to match the known structure as well as mechanical
and/or thermal properties of the material as closely as desirable. Such potentials
must be attractive over a certain range of distances. An early example is the well-
known Lennard-Jones or 6–12 potential (Lennard-Jones, 1924) with constants fitted
to the van der Waals constants of real gases. Another empirical potential is the Born-
Mayer potential, describing ionic crystals by a sum of a repulsive exponential and
the Coulomb attraction between anions and cations (Born and Mayer, 1932).

More complicated structures may be described by means of many-body poten-
tials. A useful example is the Stillinger-Weber potential characterizing silicon (Still-
inger and Weber, 1985),

V D V2 C V3 ; (6.21)

1 Relativistic scheme of elimination of small components (RESC) of the four-component Dirac
equation.
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where V2 is a two-body potential with five free parameters and

V3.Ri ;Rj ;Rk/

D h.Rij ; Rik; j ik/C h.Rj i ; Rjk ; ijk/C h.Rki ; Rkj ; ikj / (6.22)

a three-body potential expressed by two interatomic distances and one angle, where
j ik is the angle between Rj i and Rki . Expressing a three-body potential in this
way facilitates the search for parameters reproducing the crystal structure.

For silicon, different sets of trial functions have become commonly used, de-
veloped by Stillinger and Weber (1985) and by Tersoff (1986). For monoatomic
materials at least seven adjustable parameters enter, and a correspondingly higher
number for heteroatomic substances.

Potentials describing material properties near equilibrium need to be amended
such as to properly describe the behaviour at small internuclear distances. It is a
requirement on the chosen parametrization that a smooth transition between the two
regimes is obtainable.

6.2.5 Power Potentials

For rough estimates it is frequently useful to approximate the screening function in
power form (Bohr, 1948),

g.�/ ' ks

s
�1�s : (6.23)

Here the exponent s and the magnitude ks can be determined in principle by match-
ing (6.23) in power and slope to the actual potential. This, however, is rarely done in
practice. A more efficient procedure will be mentioned in Sect. 6.4.2. Independent
of the applied procedure, the exponent s depends on the range of distances where
the screening function is supposed to be matched. For exponential screening, (6.5),
s can take any value � 1, while the Thomas-Fermi function mentioned in Sect. 6.2.2
behaves as / R�3 at large distances, so the range of s-values is limited to 1 � 3.

6.3 Screened-Coulomb Scattering

The basic tools for characterizing elastic scattering have been collected in Chap. 3,
Vol. 1. The present section serves to provide specific results for ion-atom scattering
under screened-Coulomb interaction.
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Fig. 6.10 Modified Bohr criterion for elastic scattering. See text

6.3.1 Limitations of Classical Elastic-Scattering Theory

It is a common procedure in the theory of heavy-ion penetration to treat nuclear
scattering and stopping by classical scattering theory assuming elastic collisions.
According to the Bohr criterion derived in Sect. 2.3.6, Vol. 1, classical scattering
theory should be valid for

2Z1Z2e
2

�v
	 1 : (6.24)

This defines an upper velocity limit, above which quantal scattering theory needs
to be applied. That limit increases rapidly with increasing atomic numbers of the
collision partners involved.

Nevertheless, some caution is indicated. Firstly, (6.24) has been derived for un-
screened Coulomb interaction. An extension to screened-Coulomb interaction is ev-
idently needed. Secondly, (6.24) assumes small-angle scattering. To what extent
does it apply at large scattering angles? Thirdly, to what extent can electronic exci-
tation and charge exchange be neglected? Let us briefly look into these aspects.

6.3.1.1 Generalization of the Bohr Criterion

A generalization of (6.24) was provided by Lindhard (1965). Figure 6.10 illustrates
the scattering in the centre-of-mass frame of reference. A particle with reduced mass
m0 and velocity v passes through an aperture of width 2ıp at an impact parameter p
to a scattering centre C. According to the uncertainty principle, this implies a spread
in transverse momentum

ıP1 � �

2ıp
; (6.25)

which is equivalent to a spread in scattering angle‚,



252 6 Potentials and Scattering

0.1

1

10

100

1000

0.01 0.1 1 10

p/a

[d
/d

(p
/a

)]
[1

/K
1(p

/a
)]

Fig. 6.11 Modified Bohr criterium. See text

ı‚1 � ıP1

m0v
: (6.26)

Conversely, the spread in impact parameter ıp leads to a spread in scattering angle

ı‚2 D
ˇ̌̌
ˇd‚dp

ˇ̌̌
ˇ ıp : (6.27)

The total spread is then found as

ı‚2 D ı‚21 C ı‚22 : (6.28)

This quantity has a minimum at

ıp2 D �

2m0vjd‚=dpj ; (6.29)

where

ı‚2min D �jd‚=dpj
m0v

: (6.30)

According to Bohr (1948), a classical description is approximately valid if the
spread in scattering angle ı‚ is small compared to the scattering angle ‚ itself.
The resulting criterion can be written in the formˇ̌̌

ˇ d

dp
1

‚.p/

ˇ̌̌
ˇ � m0v

�
: (6.31)

You can easily convince yourself that this reduces to (6.24) for Coulomb interac-
tion. However, the fact that the scattering angle occurs in the denominator in (6.31)
indicates a modification in particular at small angles.

As an example, consider two particles interacting via the Bohr potential
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V.R/ D Z1Z2e
2

R
e�R=a ; (6.32)

cf. (6.7). In problem 6.5 you will find that, for large impact parameters or small
angles, (6.31) reduces to

� � 2Z1Z2e
2

�v
	
ˇ̌̌
ˇ d
d.p=a/

1

K1.p=a/

ˇ̌̌
ˇ ; (6.33)

where K1.z/ is a modified Bessel function in standard notation (Abramowitz and
Stegun, 1964).

The function on the right-hand side of (6.33) has been drawn up in Fig. 6.11. You
may note that the quantity on the left side of (6.33) is Bohr’s kappa as introduced in
(2.80), Vol. 1. For Coulomb interaction that quantity needs to exceed 1, the stipled
line in Fig. 6.11. For screened interaction no change occurs at small impact param-
eters, p � a, where the potential is Coulomb-like (cf. the stipled line), while the
solid line, valid for the Bohr potential, rises steeply fromp=a � 1 on, thus making it
increasingly difficult to fulfill the modified Bohr criterion. However, for heavy col-
lision partners and v � v0, a situation typical for applications in radiation damage,
ion implantation etc, � is much greater than 1. Therefore it makes sense to extend
the ordinate scale in Fig. 6.11 to the level indicated in the graph.

6.3.1.2 Quantal Effects

The assumption of small-angle scattering is not critical to the derivation of the mod-
ified Bohr criterion presented in the previous section. Moreover, Fig. 6.11 does not
give rise to concern about larger scattering angles (or smaller impact parameters).
An exception is straight backscattering at 180ı, where one might be concerned about
interference between the incoming and outgoing wave (Sect. 7.8.3).

Quantal effects are, however, observable in the scattering of heavy particles. One
of the most drastic ones is charge exchange, discussed in Chap. 2. Charge exchange
may show pronounced variations with beam energy and scattering angle (Ziemba
and Everhart, 1959, Lockwood et al., 1963). This implies that dependent on the
detection device, measured distributions in angle or energy may deviate dramatically
from the smooth spectra expected from classical scattering theory.

Inelastic energy loss by electron excitation or ionization affects conservation laws
and thus angular as well as energy distributions of scattered particles. In fact, inelas-
tic energy losses can be determined experimentally in this way, as was discussed in
Problems 3.4 and 3.5, Vol. 1.



254 6 Potentials and Scattering

6.3.2 Recapitulation

6.3.2.1 Classical Scattering Integral

The central result of classical binary scattering theory is contained in (3.34) and
(3.35), Vol. 1, which relates the scattering angle ‚ in the centre-of-mass frame to
the impact parameter p by

‚ D � � 2p

Z 1

Rm

dR
R2

�
1 � V.R/

Er
� p2

R2

��1=2
; (6.34)

where Er D m0v
2=2 is the relative kinetic energy and Rm the closest distance of

approach that satisfies the relation

1 � V.Rm/

Er
� p2

R2m
D 0 : (6.35)

For screened-Coulomb interaction (6.4) or

V.R/ D Z1Z2e
2

R
g.R=a/ ; (6.36)

(6.34) reduces to

‚ D � � 2p
Z 1

Rm

dR
R2

�
1 � a


R
g

�
R

a

�
� p2

R2

��1=2
(6.37)

with


 D aEr

Z1Z2e2
(6.38)

in accordance with (3.50), Vol. 1. Introducing a dimensionless impact parameter

� D p

a
(6.39)

you find

‚ D � � 2�

Z 1

�m

d�
�2

�
1 � g.�/


�
� �2

�2

��1=2
; (6.40)

where �m D Rm=a.

6.3.2.2 Scaling Properties

Equation (6.40) expresses the scattering angle as a function of 
 and �,

‚ D ‚.
; p=a/ : (6.41)
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You may write this relation in the form

p D ah

�

; sin

‚

2

�
; (6.42)

and thus

d� D
ˇ̌
�dp2

ˇ̌
D �a2g1

�

; sin2

‚

2

�
d sin2

‚

2
; (6.43)

where h and g1 are functions determined by the screening function g.
The relation to the energy transfer is given by (3.8), Vol. 1,

T D 	E sin2
‚

2
(6.44)

with

	 D 4M1M2

.M1 CM2/2
(6.45)

for nonrelativistic collisions.

6.3.2.3 Classical Small-Angle Scattering

In Chap. 3.3.6, Vol. 1, an expansion of the classical scattering integral, (6.40) in pow-
ers of the interaction was found. The first term in this expansion, called momentum
approximation, reads

‚ D � 1

pEr

Z 1

p

drp
1 � p2=r2

d
dr

�
rV.r/

	
(6.46)

or, for screened-Coulomb interaction,

‚ D � 1


p=a

Z 1

p=a

d�p
1 � .p=a/2=�2

dg.�/
d�

: (6.47)

Equation (6.47) must be expected to accurately characterize the scattering law at
sufficiently small angles.

6.3.3 Lindhard-Scharff Scaling

In addition to (6.43), which is an exact scaling property for classical elastic scatter-
ing on a screened Coulomb potential, Lindhard et al. (1968) derived an approximate
scaling relationship which reduces the function g.
; sin2‚=2/ to a function of just
one variable.
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6.3.3.1 Power Potential

Following their argument, consider first the case of a power potential, where

g

�
R

a

�
D ks

s

� a
R

�s�1
; (6.48)

where s > 1 and ks a constant. With this, (6.47) reduces to

‚ D .s � 1/ks
s
.p=a/s

Z 1

1

dt
t1�s

p
t2 � 1

: (6.49)

The integral may be reduced to a standard form by substituting t D 1= sinu. With
this you find

‚ D ks	s




�
a

p

�s
; (6.50)

where

	s D 1

2
B

�
1

2
;
s C 1

2

�
(6.51)

and B.x; y/ is the beta function

B.x; y/ D
Z 1

0

dt tx�1.1 � t/y�1 D �.x/�.y/

�.x C y/
: (6.52)

in the conventional definition (Abramowitz and Stegun, 1964).

6.3.3.2 Extrapolation

Equation (6.50) has a divergence at p D 0 instead of the expected result ‚ D � . In
order to correct for this, Lindhard et al. (1968) made a bold wide-angle approxima-
tion by replacing

‚ ! 2 sin‚=2 (6.53)

p !
q
p2 C p20 (6.54)

with a quantity p0 to be determined by the requirement that ‚ D � for p D 0, so
that

2
 D ks

2
B.1=2; .s C 1/=2/.a=p0/

s : (6.55)

The substitution (6.54) has the convenience that p0 drops out in the differential cross
section with ‚ as a variable, since

2�pdp � �dp2 � �d.p2 C p20/ : (6.56)
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Fig. 6.12 Differential cross section for the Thomas-Fermi potential plotted in Lindhard-Scharff
units. See text

With this, one may expect that the function g.
; sin‚=2/ is approximately a
function of the product 
 sin‚=2, which approaches 
‚=2 implied by (6.50) in the
small-angle limit.

6.3.3.3 Verification

The standard form of the Lindhard-Scharff scaling relation reads as

d�.‚/ D �a2
d



 sin ‚

2

�

2 sin2 ‚

2

f

�

 sin

‚

2

�
(6.57)

with a yet unknown function f .
 sin‚=2/.
Scattering angles for the Sommerfeld approximation of the Thomas-Fermi po-

tential have been evaluated numerically and tabulated by Robinson (1970). These
cross sections have been plotted in Fig. 6.12 for 
 ranging from 0.01 to 10. It is seen
that Lindhard-Scharff scaling is fulfilled within a 10–20% error margin. A similar
result was found for the Bohr potential in the original paper (Lindhard et al., 1968).

6.3.3.4 Magic Formula

While exact evaluation of scattering integrals is no longer a challenge, an accurate
analytical approximation is still attractive. A ‘magic formula’ found by Lindhard
et al. (1968) takes its starting point at the power law (6.50).
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Fig. 6.13 The function �s , (6.51) (solid line) compared with the approximation � 0
s , (6.58) (points)

Figure 6.13 shows that the function 	s is accurately approximated by the expres-
sion

	 0
s D 1

s

r
3s � 1
2

: (6.58)

Inserting 	 0
s for 	s and noting that the function 1=sps is proportional to the potential,

you may write (6.50) in the form

‚2 D �3
4
p3

d
dp

�
p2=3V.p/2

�
: (6.59)

This may be extrapolated to large angles in the way sketched in Sect. 6.3.3.2, but as
mentioned there, this extrapolation does not affect the differential cross section.

The result of applying the magic formula to the Thomas-Fermi potential has been
included in Fig. 6.12.

6.3.4 Comparison of Differential Cross Sections

The function f .�/ with

� D 
 sin
‚

2
(6.60)

is a convenient tool to compare differential cross sections originating in different
scattering potentials. A convenient parametrization of f .�/was found by Winterbon
et al. (1970),

f .�/ ' ��1�2m�
1C �

2��2.1�m/	q�1=q ; (6.61)
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Table 6.2 Coefficients entering scaling function f.	/ for differential scattering cross section,
(6.61) according to Winterbon (1972)

Screening function u m q 

Thomas-Fermi 0.333 0.667 1.309
Thomas-Fermi-Sommerfeld 0.311 0.588 1.70
Lenz-Jensen 0.191 0.512 2.92
Molière 0.216 0.570 2.37
Bohr 0.103 0.570 2.37

0
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η=εsinΘ/2

f(
η)

Fig. 6.14 Reduced differential cross section for several screened-Coulomb potentials, (6.61) with
coefficients from Table 6.2

and parameters for several screening functions may be found in Table 6.2.

6.3.5 Inversion

Equation (6.34) expresses the scattering angle by the impact parameter and the beam
energy, if the potential is given as a function of distance. You may ask whether that
relation can be inverted, such that the potential can be determined from scattering
measurements.

This type of inversion problem occurs in many fields of science. In the present
context, relevant information can be found by varying the beam energy at a fixed
scattering angle or vice versa, or a combination of the two. A scheme operating at a
fixed scattering angle was proposed by Hoyt (1939), based on the solution of a re-
lated problem by Klein (1932). For the case of fixed beam energy and variable angle
a similar scheme has been developed by Firsov (1953) and applied successfully in
the analysis of experimental data.
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In deriving Firsov’s formula I am following Lane and Everhart (1960). Starting
at (6.34) we may introduce a function

‰.R/ D R2
�
1 � V.R/

Er

�
; (6.62)

so that

‚.p/ D � � 2p
Z 1

Rm

dR
R

1p
‰.R/� p2

(6.63)

Replacement of R by ‰ as the integration variable leads to

‚.p/ D � � 2p

Z 1

p2

d‰p
‰ � p2

d.lnR.‰//
d‰

; (6.64)

since ‰.Rm/ D p2, as follows from (6.34).
Now, the constant � can be expressed as

� D p

Z 1

p2

d‰p
‰ � p2

d ln‰
d‰

; (6.65)

as you may verify by carrying out the integration on the right-hand side. With this
we arrive at

‚.p/ D p

Z 1

p2

d‰0p
‰0 � p2

d
d‰0 ln

�
‰0

R.‰0/2

�
; (6.66)

where the integration variable has been renamed to ‰0.
After multiplying this equation by 1=

p
p2 �‰ and integrating from p D p

‰

to infinity, and interchanging the order of integrations you find

Z 1
p
‰

dp
‚.p/p
p2 �‰

D

1

2

Z 1

‰

d‰0 d
d‰0

�
ln

‰0

R.‰0/2

�Z ‰0

‰

dp2p
.‰0 � p2/.p2 �‰/

: (6.67)

Since the integral over dp2 reduces to � , we arrive atZ 1
p
‰

dp
‚.p/p
p2 �‰

D �

2

�
ln

‰0

R.‰0/2

�1

‰0D‰
� �

2

�
ln
‰.R0/
R02

�1

R0DR
(6.68)

or Z 1
p
‰

dp
‚.p/p
p2 �‰

D �

2
ln
�
R2

‰

�
: (6.69)

Note that ‰.R/=R2 approaches 1 for large R according to the definition.
Equation (6.69) expresses R as a function of ‰ and, hence, of V=Er . You may

verify its validity on the example discussed in Problem 6.7.
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Lane and Everhart (1960) have demonstrated that an interaction potential actually
can be extracted by inversion of scattering data. However, the procedure is by no
means trivial in practice. The first step is to express a measured differential cross
section in centre-of-mass coordinates. The second step is an integration according toZ �

‚0D‚
d�.‚0/ D

Z p

0

2�p0dp0 : (6.70)

Typically the coverage with data points in the interval 0 
 ‚ 
 � is incomplete.
As a minimum, this limits the range of distances or energies covered by the deduced
potential. Next, in order to allow integration as required in (6.69), some inter- or
extrapolation may have to made, and finally, the potential has to be extracted from
an implicit connection between ‰ and R.

The uniqueness of the inversion process has likewise been studied. Note first that
Rutherford’s cross section is identical for attractive and repulsive Coulomb interac-
tion. Apart from that, a study by Demkov et al. (1971) indicates that the procedure
becomes nonunique in case of cut-off potentials.

Figure 6.15 shows an example of a successful inversion. Lane and Everhart
(1960) measured angular distributions of ArC ions on Ar from about 1ı to 40ı.
The top graph shows the data for 25 keV. The bottom graph shows potentials ex-
tracted from cross sections measured at 25, 50, and 100 keV (solid lines), as well as
the Firsov (dotted) and Bohr (dashed) potentials. The near-coincidence of the three
extracted potentials provides confidence both in the data and the procedure. Evi-
dently, increasing the beam energy allows determination of the potential at smaller
internuclear distances.

Potentials extracted from collision experiments are needed mostly for application
in collision studies. Therefore, it appears more appropriate to compare measured to
calculated cross sections, rather than comparing potentials found by inversion to
calculated potentials.

6.3.6 Scattering Experiments

Direct measurements of differential cross sections are done on isolated target atoms.
Data exist mainly for noble-gas targets. Early systematic measurements were per-
formed by Everhart and coworkers, starting with Everhart et al. (1955), including
the study of Lane and Everhart (1960) quoted above. The focus in this program, as
well as in a parallel study by Fedorenko and coworkers (Kaminker and Fedorenko,
1955) changed gradually into inelastic processes.

Only few studies have been performed subsequently of ion-atom scattering aim-
ing at interatomic potentials in the repulsive (keV) regime. Here I like to mention a
couple of examples.
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Fig. 6.15 Inversion of ArC-Ar differential scattering cross section (top) and the resulting potential
(bottom). See text. From Lane and Everhart (1960)

6.3.6.1 Oscillatory Structure

Figures 6.16 and 6.17 show cross sections measured on xenon gas by Loftager et al.
(1979). The abscissa variable is � D 
 sin‚, and plotted is the ratio between the
measured cross section in centre-of-mass variables and the Lenz-Jensen cross sec-
tion. In Fig. 6.16, showing Ar on Xe, data referring to beam energies from 2.5 to
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Fig. 6.16 Measured differential cross sections of ArC on xenon. Plotted is the ratio between mea-
surement and the Lenz-Jensen cross section (Lindhard et al., 1968) with the adopted screening

radius a D 0:8853a0=

q
Z

2=3

1 CZ
2=3

2 . Abscissa reduced to Lindhard variable 	 D � sin‚=2.
Also included: TF (Thomas-Fermi) (Lindhard et al., 1968). r0 represents the closest distance of
approach calculated for interaction potential based on superimposed LJ (2LJ) or Hartree-Fock
(2DHFS) atomic charge densities. From Loftager et al. (1979)

400 keV fall essentially on one line, in agreement with the scaling relation (6.57).
Loftager et al. (1979) concluded from this that scattering has been elastic.

Figure 6.17 shows data for C, Ne, Kr, Xe and Cd ions on Xe. You may first notice
that with the exception of a small part of the C-Xe data, all experimental points fall
in between the Thomas-Fermi and the Lenz-Jensen curve. Moreover, within a 20%
margin, Lindhard-Scharff scaling is well obeyed for 
 sin‚=2 � 0:002, while major
differences between different ions are found in the opposite end.

All data shown in Figs. 6.16 and 6.17 show an oscillatory structure which was
found earlier (Loftager and Hermann, 1968, Afrosimov et al., 1972) and which has
been ascribed to shell effects by Afrosimov et al. (1972). There are several possible
reasons for such oscillatory structures. Very pronounced effects are found if scat-
tered particles are recorded separately according to charge states (Ziemba and Ev-
erhart, 1959, Aberth et al., 1965). Loftager et al. (1979) found that differential cross
sections for an interatomic potential allowing for shell structure (labelled DHFS in
Fig. 6.17) show weak oscillations with a phase in good agreement with experiment.
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Fig. 6.17 Same as Fig. 6.16 for different ions on xenon. Also included: TF (Thomas-Fermi) (Lind-
hard et al., 1968), WHB (Wilson et al., 1977), aLJ (suggested average). From Loftager et al. (1979)

Fig. 6.18 Angular deflec-
tion in inelastic scattering.
Schematic and exaggerated.
See text

T

An explanation of the observations in Figs. 6.16 and 6.17 in terms of inelasticity
(Afrosimov et al., 1972) appears most plausible: In Fig. 6.18 you find the sketch of
an inelastic scattering event in the centre-of-mass frame. The only difference to the
standard case of scattering on a central-force potential is an inelastic energy loss
which, for simplicity, is assumed to take place at the apsis T. When arriving at T
the particle has a certain angular momentum around the force centre which must be
conserved. Since speed is reduced, the deflection angle and the impact parameter
will increase. A quantitative discussion was given by Hartung et al. (1985) with
near-perfect agreement between experiment and theory.

An experimental and theoretical study of pertinent processes and their respective
contributions to the differential cross section, involving doubly-differential distribu-
tions in angle and energy as well as separation of charge states, has been performed
on NaC-Ne by Olsen et al. (1979). Figure 6.19 indicates that the contribution of
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Fig. 6.19 Differential cross sections for 2 keV NaC-Ne according to Olsen et al. (1979). A: Elastic;
B: One-electron processes; C: Two-electron processes. K: Elastic scattering ignoring all electronic
processes. From Olsen et al. (1979)

truly elastic collisions to the differential cross section (label A) may be very small—
� 1% in this case—while ignoring all inelasticity (label K) may well lead to a result
of the right order of magnitude (label TOTAL).

6.3.6.2 Inversion

An extensive effort to extract interatomic potentials from differential cross sections
has been made by Zinoviev (2011). Literature data for a number of ion-target combi-
nations were analyzed by the Firsov procedure described in Sect. 6.3.5. Figure 6.20
shows results plotted as a function of R=af , where af is a screening radius de-
fined as

af D 0:8853a0

.Z˛1 CZ˛2 /
ˇ

(6.71)

with ˛ D 1=2 and ˇ D 2=3.
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Fig. 6.20 Screening function g.R=a/ extracted from experimental scattering data by Firsov in-
version. af denotes the Firsov screening radius. From Zinoviev (2011)

Fig. 6.21 Shadow cone in small-angle Rutherford scattering. See text

6.3.7 Shadow Cone

Imagine a homogeneous beam of particles scattered on a hard sphere of radius a
with a mass much greater than the mass of a single projectile. Then, particles hitting
the sphere will be scattered out of the beam. As a result there will be a cylindrical
region behind the sphere where no moving particles will be detected. In other words,
the sphere generates a cylindrical shadow of radius a.

What form of shadow can we expect when scattering obeys Rutherford’s law
rather than billiard-ball dynamics? This question was asked by Lindhard (1965),
who provided an answer involving small-angle scattering.
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Following Lindhard’s argument, note first that for small scattering angles, (3.42),
Vol. 1, reduces to

‚ D b

p
I b D 2Z1Z2e

2

M0v2
(6.72)

or, in the laboratory frame of reference,

� D Z1Z2e
2

Ep
; (6.73)

where � is the scattering angle of the projectile,E the beam energy and p the impact
parameter. Still assuming small angles we may place a coordinate system .x; y/ in
the impact plane, so that a single trajectory may be approximated by two straight
lines

y D

p for x < 0
p C .Z1Z2e

2=Ep/x for x > 0
(6.74)

Such trajectories have been plotted in Fig. 6.21. Instead of a plain cylinder, we now
find a parabolic cylinder which follows the relation

y D 2

r
Z1Z2e2

E
x : (6.75)

Target particles lying within this ‘shadow cone’ will not be hit by the beam, regard-
less of the impact parameter. Specifically, if you want to hit a target particle at some
distance x D d behind the first target atom, you have to tilt the beam by an angle

�� > ‚c D y.d/

d
D 2

r
Z1Z2e2

Ed
: (6.76)

This is a useful relation in the study of channeling, cf. Sect.1̇.1.1, Vol. 1. We shall
come back to this in Appendix 11.

The shadow cone has come to play an important role in ion-surface scattering
at energies well below the Rutherford regime. Accurate calculations (Oen, 1983)
may have to avoid the small-angle approximation and may need to take into account
the time integral, cf. Sect. 3.3.4, Vol. 1. Alternatively, trajectories may be simulated
(Yamamura and Takeuchi, 1984).

6.4 Nuclear Stopping

According to Sects. 2.2.3-.2.2.5, Vol. 1, the energy loss in an elastic binary collision
may be characterized by the nuclear stopping force�

�dE

dx

�
n

D NSn (6.77)
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with

Sn D
Z
Tn d� (6.78)

and

Tn D 	E sin2
‚

2
; (6.79)

where 	 D 4M1M2=.M1 CM2/
2.

If you have a tabulation of the scattering integral (6.34) for a given potential, the
nuclear stopping cross section Sn can be found by integration,

Sn D 	E

Z 1

0

2�p dp sin2
‚.p/

2
(6.80)

without going over the differential cross section.

6.4.1 Scaling Properties

Conversely, making use of the scaling relations for the differential cross section in
Sect. 6.3.2.2 you find�

�dE
dx

�
n

D N�a2	E

Z �

0

g

�

; sin2

‚

2

�
d sin2

‚

2
: (6.81)

This suggests the introduction of a dimensionless measure of the pathlength x,

� D N�a2	x : (6.82)

With this, (6.81) reduces to
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This relation is general for elastic binary scattering on a screened-Coulomb potential
in the nonrelativistic energy regime.

Specifically, with Lindhard-Scharff scaling, (6.57), this reduces to
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and f .�/ is determined by the screening function of the potential.
Figure 6.22 shows sn.
/ found by integration of the curves shown in Fig. 6.14

according to (6.84). In addition, the function
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Fig. 6.22 Stopping cross sections in universal plot for the cross sections shown in Fig. 6.14. Also
included is ZBL, i.e., the function adopted by Ziegler et al. (1985)
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from Ziegler et al. (1985) with

a D 1:1383I b D 0:01321I c D 0:21226I d D 0:19593 (6.87)

has been included. Note, however, that a comparison of the actual cross sections
would have to take into account the adopted form of the screening radius.

6.4.2 Power Cross Section

Power cross sections have been introduced as a convenient tool in the derivation
of the Lindhard-Scharff scaling relationship, (6.57). They have also been useful on
their own as model cross sections in solving transport equations, as you will see in
Chap. 9.

Going back to (6.57) and looking at Fig. 6.12 we may approximate f .�/ by

fm.�/ D �m�
1�2m (6.88)

over a limited range of �-values, so that m D 0 yields a linear increase, applying to
the low-� regime, while m D 1 characterizes the asymptotic behaviour at large �,
i.e., Rutherford scattering.

Insertion of (6.88) into (6.57) yields
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Fig. 6.23 Exponent m in power cross section extracted from stopping cross sections shown in
Fig. 6.22

d�.E; T / D CE�mT �1�mdT (6.89)
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where the numerical coefficient�m could be determined by going back to (6.23) and
(6.50). It is, however, more efficient to determine �m by matching a power law to a
more accurately determined scattering law. This could be either the function f .�/
or the stopping cross section. The latter takes the form

S D
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0

T d�.E; T / D 1

1 �mC	
1�mE1�2m : (6.91)

or, in dimensionless units,

sn D �m

2.1�m/

1�2m : (6.92)

Figure 6.23 shows the variation of the exponentm found by matching the stop-
ping cross sections shown in Fig. 6.22 in value and slope by the power form (6.91).
You may note that there is a low-energy regime where a power law is a good ap-
proximation, and a high-energy regime close to Rutherford scattering.

The intermediate regime around 
 � 1 has frequently been characterized by
m D 1=2 (Bohr, 1948, Nielsen, 1956, Firsov, 1958, Lindhard et al., 1963, Winter-
bon et al., 1970). Such a cross section is approximately equivalent with a potential
/ 1=R2. Niels Bohr employed this potential to characterize the effect of ‘excessive
screening’, i.e., interactions at distances R � a and beyond. The corresponding
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Fig. 6.24 Nuclear straggling in dimensionless units, (6.94)

differential cross section d�.T / / dT=T 3=2 has convenient analytical properties.
From (6.91) the particularly valuable property emerges that the stopping cross sec-
tion becomes independent of energy for m D 1=2. The differential cross section
expressed in the scattering angle becomes d�.‚/ / d‚=‚2 at small angles. It will
turn out that also this functional shape has convenient analytic properties.

The main drawback of theR�2 potential is that with its convenient analytic prop-
erties, numerous results can be derived that seemingly depend only on one parameter
and frequently have the simple appearance of generally valid relationships. In other
words, there is a temptation to ignore the limited range of validity of this particular
interaction potential. This pitfall can be avoided with due care.

6.4.3 Straggling

The expression for straggling,
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may, for Lindhard-Scharff scaling, be written in the form
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where according to (6.82)
� D N�a2	x : (6.95)
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This is illustrated in Fig. 6.24 for the potentials shown in Fig. 6.14. This function
approaches the value 1/4 at high energies (cf. Problem 6.8).

You may notice, by comparing Fig. 6.24 with Fig. 6.22, that
p
wn exceeds the

stopping cross section sn for 
 > 1. This is the regime where the differential cross
section approaches the Rutherford cross section. If there were no electronic stop-
ping, straggling would be governed by an analogue of the Landau distribution dis-
cussed in Sect. 9.3.2, Vol. 1.

6.4.4 Measurements of Nuclear Stopping

6.4.4.1 Experimental Aspects

Only a minute fraction of the experimental literature on stopping cross sections is
devoted to nuclear stopping. This is by no means accidental.

Direct measurements of nuclear stopping have to take place at energies where
electronic stopping is not dominating by several orders of magnitude, and accurate
measurements require energies where nuclear stopping actually dominates. Even
then, separating electronic from nuclear stopping is not a trivial task, as you will see
in Chap. 7.

There are problems even in the absence of significant electronic stopping, which
have been discussed in detail by Sidenius (1974):

� Nuclear energy loss is coupled to angular deflection. In the standard geometry
the energy loss is measured in the beam direction with a narrow detection an-
gle. Except for M1 	 M2, ions with large energy losses will not be detected.
While this simplifies the measurement of electronic stopping cross sections, nu-
clear stopping cross sections will be underestimated. Evidently, measurements of
nuclear stopping require wide-angle detection. For M1 < M2 even detection in
the backward direction may be necessary.

� In addition to beam particles the particle flux also contains energetic recoil atoms.

6.4.4.2 Results

In order to limit straggling to an acceptable limit, targets may have to be thin. There-
fore, most direct measurements have been performed on gases.

Figure 6.25 shows measurements of Hvelplund (1975) with very heavy ions on
hydrogen gas. The large mass ratio M1=M2 facilitates the detection of the entire
scattered beam, and energies are low enough so that electronic stopping constitutes
only a minor correction. Data for individual ions seem to fall on smooth curves
which, by and large, lie in between the Thomas-Fermi and Lenz-Jensen predictions.
Data for different ions differ significantly, more than what one would expect from
universal scaling relations. Later time-of-flight data by Martini (1976) for the Pb-
H2 system (not shown in the graph) tend to agree with the data of Sidenius at the
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Fig. 6.25 Stopping cross section of heavy ions in hydrogen gas compared with theory. Data la-
belled Th, Pb, Hg and Gd: Stopping cross sections from Hvelplund (1975). Data labelled Sidenius
from Sidenius (1963). Solid line: Thomas-Fermi nuclear stopping; dashed line: Lenz-Jensen nu-
clear stopping; dash-dotted curve: Total Thomas-Fermi stopping. From Hvelplund (1975)

Fig. 6.26 Nuclear stopping cross section in Si. Comparison of various experimental results with
universal stopping formula. See text. From Grahmann and Kalbitzer (1976)

low-energy end and with those of Hvelplund in the high-energy end. On the other
hand, the difference between two data sets for Pb ions is as large as the difference
between Th and Hg, suggesting that part of the deviation from scaling may be due
to experimental error.
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Figure 6.26 is another witness of the problematic nature of direct measurements
of nuclear stopping. Experimental data for stopping of B, C, N, Ne and Ar ions in
CH4, C, Al, Si and Ge from several sources (Ormrod and Duckworth, 1963, Orm-
rod et al., 1965, Högberg and Skoog, 1972, Sidenius, 1974, Oetzmann et al., 1975,
Grahmann and Kalbitzer, 1976) have been plotted in Lindhard-Scharff dimension-
less units and compared with the Thomas-Fermi prediction of Lindhard et al. (1968).
Apart from drastic deviations from the expected scaling behaviour you will notice
that all experimental results lie significantly below the theoretical curve, even in the
upper half of the abscissa variable, 
1=2 > 1:5, where the stopping cross section
should be independent of the adopted screening function according to Fig. 6.22.

What went wrong here? Firstly, data by Ormrod and Duckworth (1963), Ormrod
et al. (1965), Högberg and Skoog (1972) had been taken with the aim of measuring
electronic stopping. Nuclear stopping was minimized by choosing a detection angle
that eliminated particles with a high nuclear energy loss. These data should not have
been included in the graph. Secondly, data labelled ‘this work’ by Grahmann and
Kalbitzer (1976) all refer to mass ratios M1=M2 < 1, where a noticeable fraction
of the beam particles will suffer large-angle backscattering.

Conversely, the highest stopping cross sections listed in the graph refer to
M1=M2 > 1 where this effect is much less pronounced. While the observed de-
viation from the Thomas-Fermi prediction fits well into the general pattern in the
low-energy portion of the graph, the relatively small deviation found for the data
of Sidenius (1974) can be ascribed to the fact that the target is CH4, for which the
scaling behaviour of atomic targets cannot be expected to be accurately fulfilled.

In brief, what remains of Fig. 6.26 is a scatter between relevant data of the same
approximate magnitude as the one in Fig. 6.12, which serves as a theoretical basis
for Lindhard-Scharff scaling.

The technique of Doppler-shift attenuation described briefly in Sect. 7.4.4, Vol. 1,
has also been applied in low-energy stopping (Bister et al., 1975, Shane et al., 1976).
While separation of nuclear from electronic stopping is not a trivial matter, compar-
isons with the Lindhard-Scharff predictions of the total stopping cross sections are
much more favourable than what one might extract from Fig. 6.26.

6.5 Discussion and Outlook

The discussion in this chapter is based on Chap. 3, Vol. 1. Applications discussed
there were dealing mainly with plain Coulomb interaction. Tools collected in the
present chapter are quite adequate to treat scattering and nuclear stopping in the
medium to upper keV regime and above. With equivalent knowledge of electronic
stopping in this energy regime—to be discussed in Chap. 8—and suitable statistical
tools—to be collected in Chap. 9—you will be well equipped to treat several as-
pects of particle penetration. Limitations prevail to lower energies especially in the
medium and lower eV regime, where the many-body nature of collisions becomes
exceedingly important, and where many-body potentials may be needed for quan-
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titative predictions. These aspects become particularly important in the theory of
radiation effects, the main subject of Volume 3 of this series.

Problems

6.1. Estimate the interaction potential between an ion 1 with a charge q1e and a
neutral atom 2 from the electrostatic interaction energy

V.R/ D �e
Z

d2r�1.r/ˆ2.r/ (6.96)

between two stiff charge distributions, characterized by potentials

ˆ1.r/ D q1e

r1
C .Z1 � q1/e

r1
e�r1=a1 (6.97)

ˆ2.r/ D Z2e

r2
e�r2=a2 ; (6.98)

where r1 and r2 denote the distance from the respective nuclei, and a1 and a2 are
arbitrary screening radii.

6.2. Figure 6.1 indicates that the screening function (6.5) turns negative at large
values of R. Convince yourself, e.g. by looking at the limit a1=a2 D 1, that this is
not a calculational error.

6.3. Consider a neutral Thomas-Fermi atom with a Yukawa-type charge density.
Determine the kinetic energy per volume as well as the electrostatic energy per
volume and compare the dependence on the distance r from the nucleus in the two
cases. Show that regardless of atomic number and screening radius, electrostatic
energy dominates at small r , while the opposite holds at large r .

6.4. Following Firsov (1957b) show that for a neutral system, the solution of the
Thomas-Fermi equation minimizes the total energy. Hint: Set � D �0Cı�, where �0
is the charge density connected to an exact solution of the Thomas-Fermi equation
for the potential. Insert this into (1.18) for v D 0 and expand in powers of ı�.
The zero-order term represents the exact energy, the linear term vanishes, and the
quadratic term can be written in the form

ı2E D 5

9
�k

Z
d3r

ı�.r/2

�0.r/1=3
C e2

2

Z
d3rd3r 0 ı�.r/ı�.r

0/
jr � r 0j ; (6.99)

which is positive.

6.5. By solving Problem 3.8, Vol. 1, you will arrive at the scattering law for a Bohr
potential, (6.32),
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‚.p/ D 2Z1Z2

m0v2
K1

�p
a

�
(6.100)

for small scattering angles, whereK1 denotes a modified Bessel function in standard
notation (Abramowitz and Stegun, 1964). Evaluate (6.31) for this scattering law.

Write the result in the form

2Z1Z2e
2

�v
	 g2.p=a/; (6.101)

and demonstrate that g2.p=a/ � 1 for unscreened Coulomb interaction.

6.6. Khodyrev (2000) argues that the Bohr criterion (6.24) ought to be replaced by

2p 	�̄: (6.102)

Identify the difference to Bohr’s argument, and try to form an opinion on what is
most relevant.

6.7. Problem 3.6, Vol. 1, concerns the scattering integral for the potential V.R/ D
A=R2, where A is a constant. Use the solution of that problem, ‚ D �.1 �
p=
p
p2 C A=Er/, to derive the potential by means of the Firsov inversion formula,

(6.69).

6.8. Show that for Rutherford scattering, the function w.
/=	 shown in Fig. 6.24
reduces to w.
/=	 � 1=4.
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Chapter 7

Multiple Scattering

Abstract This chapter addresses multiple scattering of swift ions. Special atten-
tion is devoted to basic statistical tools. Angular profiles are considered in three
dimensions (Goudsmit-Saunderson) as well as two and one dimension (small-angle
approximation). Also lateral profiles as well as correlated angular-lateral distribu-
tions are considered. The correlation between energy loss and angular scattering is
analysed mainly with a view to the separation of nuclear from electronic stopping.

7.1 Introductory Comments

The topic of multiple scattering1 has been introduced in Sect. 2.4, Vol. 1. The fact
that differential cross sections increase toward small laboratory scattering angles,
and possibly diverge, implies that a given deflection angle typically is the result of
several scattering events. Thus, multiple scattering is a statistical process. This is
particularly true for small scattering angles.

From Volume 1 you may recall that there is a qualitative difference between
multiple scattering of light and heavy particles. Large scattering angles are much
more frequent for electrons and positrons than for protons and heavier particles.
Moreover, multiple scattering of electrons and positrons is due to both target nuclei
and electrons, whereas multiple scattering of protons and heavier particles is almost
exclusively due to target nuclei2. Only within a very narrow angular range is there
a noticeable contribution from target electrons. However, target electrons contribute
indirectly by screening the ion-target interaction potential.

Following the general scope of this volume we shall focus on multiple scattering
of ions. Although it is becoming more and more common to estimate multiple-
scattering phenomena by computer simulation, statistical methods have been devel-

1 Part of the text and many graphs have been taken over in more or less modified form from
Sigmund (1991).
2 An exception occurs in channelled motion, where angular deflection by nuclei is drastically
reduced.

P. Sigmund, Particle Penetration and Radiation Effects Volume 2,
Springer Series in Solid-State Sciences 179, DOI: 10.1007/978-3-319-05564-0_7,
� Springer International Publishing Switzerland 2014
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Fig. 7.1 Multiple scattering in a layer of thickness x: Notations

oped to a high degree of sophistication over the past century and are still competi-
tive.

In Sect. 2.4.2, Vol. 1 the Bohr-Williams model for multiple scattering was in-
troduced briefly, where the angular distribution of an initially well-collimated beam
was divided up into a large-angle portion governed by Rutherford’s law and a gauss-
ian small-angle portion. Similar arguments were employed in Sect. 9.3.1 to charac-
terize energy-loss straggling.

The analogy between energy loss and multiple angular deflection is not restricted
to the Bohr-Williams theory. It applies to the general statistical theory of stopping
and scattering as well as other approximation methods do. Therefore it will be help-
ful to let the structure of this chapter to some extent follow the outline of Chap. 9,
Vol. 1.

7.2 Needs

The standard problem in multiple scattering deals with the angular distribution
F.˛; x/ of an initially well-collimated beam after penetration of a slab of a given
thickness x. The notation is defined in Fig. 7.1. Scattering angles in individual scat-
tering events are denoted by �, while the cumulative deflection angle is denoted
by ˛.

In general, ˛ is to be understood as a vector on the unit sphere, but also its
projection on a plane may be of interest, e.g. for visual inspection of trajectories in
a cloud or bubble chamber, in photographic emulsion and the like.

Standard theory of multiple scattering ignores energy loss. For layer thicknesses
where energy loss cannot be ignored, one may introduce an effective beam energy
equal to the average between entrance and exit energy. However, energy loss can be
incorporated rigorously by operating with velocity vectors in a three-dimensional
description.

α

φ1

φ2

φ3

ρ

x
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Fig. 7.2 Multiple scattering
in two adjacent layers

In addition to the deflection angle also the lateral displacement from a straight
trajectory may be of interest and readily measurable whenever trajectories are vi-
sualized. The lateral displacement is denoted by � in Fig. 7.1. Pronounced angular
deflection may result in a noticeable lateral displacement. In other words, angular
and lateral distributions must be expected to be correlated, and knowledge of corre-
lated angular-lateral distributions may be needed in certain situations.

Figure 7.1 assumes force-free motion between collision events. Static or time-
dependent electric and magnetic fields may complicate the matter. The disturbing
influence of gravitation is most often too small to be measurable.

While the simple slab geometry may appear idealized, it may nevertheless serve
as a most useful tool in the treatment of more complex experimental geometries:
Knowledge of angular deflection and lateral spread over a finite pathlength may
well be utilized in estimates of slit scattering on an aperture, reflection of a beam
under grazing incidence on a planar or stepped surface, and similar situations.

Further complications are target nonuniformities such as inhomogeneous chem-
ical composition, voids, bubbles and surface topography.

Finally, changes of the beam along its trajectory caused by charge exchange with
the medium (Chap. 3) may be influential and have been found to be measurable.

7.3 Statistics: Angular Distributions

In this section, general relations determining energy-loss spectra derived in Chap. 9.2,
Vol. 1, will be generalized to multiple-scattering distributions. A central underlying
assumption is the statistical independence of successive collision events. This is con-
sidered to be justified for penetration through a random medium, as long as charge
exchange can be considered negligible.
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7.3.1 Two-Layer Argument

Consider a projectile penetrating through a homogeneous, isotropic and infinite
medium, where it can be scattered but does not lose or gain kinetic energy. Let
F.�;�0; t/ d2�0 be the probability for its direction of motion at time t to lie in the
interval .�0; d2�0/, if it was � at time zero. Here, � and �0 are unit vectors.

In complete analogy to Sect. 9.2.1, Vol. 1, we may then write down a Chapman-
Kolmogorov-type equation

F.�;�0; t1 C t2/ D
Z

d2�00F.�;�00; t1/F.�00;�0; t2/ ; (7.1)

if we may assume statistical independence of the events taking place in the two time
intervals. This relation expresses the fact that the angular distribution after time
t1 C t2 is a convolution of the distributions characterizing scattering in the two time
intervals t1 and t2.

Figure 7.2 illustrates the physics on a sandwich foil. We could have replaced the
time variable t in (7.1) by the layer thickness x, implying small scattering angles,
but by using time (or pathlength) as a variable we are independent of this restriction.

7.3.2 Expansion in Legendre Polynomials

For an isotropic medium the angular distribution depends only on the angle between
the initial and final directions � and �0, respectively. We may express this as

F.�;�0; t/ � F.� � �0; t/ (7.2)

and expand the distribution in terms of Legendre polynomials in the variable
cos˛ D � � �0,

F.� � �0; t/ D
1X
`D0

.2`C 1/A`.t/P`.cos˛/ (7.3)

with yet unknown coefficients A`.t/, from which a factor 2`C 1 has been split off
for convenience. Insertion of (7.3) into (7.1) leads to

1X
`D0

.2`C 1/A`.t1 C t2/P`.cos˛/ D
1X
`D0

1X
`0D0

.2`C 1/.2`0 C 1/A`.t1/A`0.t2/

�
Z

d2�00P`.� � �00/P`0.�00 � �0/: (7.4)

The integral over d2�00 may be evaluated after introduction of spherical coordinates.
With the choice
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� D .1; 0; 0/ (7.5)

�0 D .cos˛; sin ˛ cos�; sin ˛ sin�/ (7.6)

�00 D .cos ; sin  cos ; sin  sin / (7.7)

it reads

Z
d2�00P`.� � �00/P`0.�00 � �0/ D

Z 1

�1
d cos

Z 2�

0

d 

� P`.cos /P`0.cos˛ cos  C sin ˛ sin  cos. � �//: (7.8)

Now, insertion of the addition theorem for spherical harmonics, cf. (A.58), Vol. 1,

P`0.cos˛ cos  C sin ˛ sin  cos. � �//

D 4�

2`0 C 1

`0X
mD0

Y`0m.˛; �/Y
�
`0m.;  / (7.9)

shows immediately that after integration over the azimuthal angle  only the terms
for m D 0 remain, so that

Z
d2�00P`.� � �00/P`0.�00 � �0/

D 2�P`0.cos˛/
Z 1

�1
d cos P`.cos /P`0.cos /

D 4�

2`C 1
ı``0P`.cos˛/ (7.10)

in view of the orthogonality relation for Legendre polynomials.
Insertion of (7.10) into (7.4), and noting that (7.1) has to be satisfied for arbitrary

angles ˛ you find
A`.t1 C t2/ D 4�A`.t1/A`.t2/ : (7.11)

Since this relation has to be satisfied for arbitrary values of t1 and t2, it has the
general solution

A`.t/ D 1

4�
eC`t ; (7.12)

with arbitrary coefficients C` that have to be determined from the physics involved.
We may now write (7.3) in the form

F.� � �0; t/ D
1X
`D0

2`C 1

4�
eC`tP`.cos˛/ (7.13)

or, for a small time increment or pathlength,



286 7 Multiple Scattering

F.� � �0; t/ '
1X
`D0

2`C 1

4�
Œ1C C`t � P`.cos˛/I t small : (7.14)

On the other hand, the scattering behaviour of a thin layer is governed by the differ-
ential cross section d�.�/ D K.�/d2�. In the single-collision limit we may write
the angular distribution as

F.� � �0; t/ D Œ1 �Nvt��
ı.cos˛ � 1/

2�
CNvtK.˛/I t small ; (7.15)

where

� D
Z
K.�/ d2� (7.16)

is the total scattering cross section, N the number of scattering centres per volume
and vt the travelled pathlength. Here the two terms on the right-hand side express
the probabilities for zero and one collision, respectively, and the respective angular
distributions.

After expansion of these expressions in terms of Legendre polynomials accord-
ing to

ı.cos˛ � 1/ D
1X
`D0

2`C 1

2
P`.cos˛/ (7.17)

and

K.˛/ D
1X
`D0

2`C 1

2
P`.cos˛/

Z
K.�/P`.cos�/ d.cos�/ ; (7.18)

you recognize that the terms of zero order in t in (7.14) and (7.15) agree with each
other already. Setting the terms of first order in t equal to each other leads to

C` D �Nv
Z
K.�/ d2� Œ1 � P`.cos�/� : (7.19)

With this we have arrived at the following result for the angular distribution,

F.˛; t/ 2� sin ˛ d˛ D sin˛ d˛
1X
`D0

.`C 1=2/e�Nvt�`P`.cos˛/ (7.20)

with

�` D
Z

d�.�/ Œ1 � P`.cos�/� : (7.21)

This result was derived by Goudsmit and Saunderson (1940). It is exact under the
assumptions noted in the beginning of this section. It is equally valid for small and
large deflection angles. Therefore its main application area lies in the scattering
of electrons and positrons. The fact that the independent variable is the time or
pathlength restricts the range of applicability of this formula to such situations where
one of these quantities can be measured.
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Fig. 7.3 Projection of a
multiple-scattering trajec-
tory on a plane perpendicular
to the initial direction of mo-
tion. From Sigmund (1991)

7.3.3 Small-Angle Approximation

Multiple scattering of protons and heavier particles is mainly a small-angle phe-
nomenon. In this case a small-angle approximation can be applied which constitutes
a major simplification of the theory. This scheme implies that all angles, i.e., both
the scattering angle � in individual collisions and the total deflection angle ˛ are
small in absolute terms.

In order to specify the point, go back to (7.6) but expand up to first order in ˛,

�0 ' .1; ˛ cos�; ˛ sin�/ � .1; e0/ ; (7.22)

where we have introduced a two-dimensional vector

e0 D .˛ cos�; ˛ sin�/ (7.23)

in the impact plane, i.e., a plane perpendicular to the initial direction of motion �

(Fig. 7.3).
Here is a summary of implications of this picture:

� The small-angle approximation must be expected to break down at angles where
cos˛ is significantly smaller than unity and ˛ significantly larger than sin ˛.

� Within the range of validity of the small-angle approximation the penetration
depth is equal to the travelled pathlength.

� e0 is assumed to run over the entire impact plane, but discrepancies must be
expected whenever ˛ deviates significantly from tan˛.

In other words, while the small-angle approximation is an extremely useful tool
within its range of validity, repairing its deficiencies at deflection angles outside this
range requires careful consideration of more than one type of correction.
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7.3.4 Bothe Formula

The fact that the directional distribution only depends on the deflection angle was
expressed by (7.2) in the rigorous description. In the small-angle approximation, the
product � � �0 reduces to unity. Instead, the deflection angle is expressed here as
the difference e 0 � e. Hence,

F.e; e0; t/ � F.e0 � e; t/ (7.24)

for an isotropic scattering medium.
Instead of an expansion in Legendre polynomials, the appropriate transformation

over an infinite plane is the Fourier transform,

F.e0 � e; t/ D 1

.2�/2

Z
d2k eik�.e0�e/F.k; t/ : (7.25)

Insertion into (7.1) leads to

1

.2�/2

Z
d2kF.k; t1 C t2/eik�.e0�e/ D 1

.2�/4

Z
d2k

Z
d2k0

Z
d2e00F.k; t1/F.k0; t2/eik�.e00�e/eik0�.e0�e00/: (7.26)

Here the integration over d2e00 can be carried out and leads to a delta function. With
this you find that

F.k; t1 C t2/ D F.k; t1/F.k; t2/ : (7.27)

Since this relation has to be fulfilled for all t1 and t2, it follows that the function
F.k; t/ must be an exponential,

F.k; t/ D eC.k/t ; (7.28)

where C.k/ is an unknown function which can be determined from the single-
scattering limit similar to the procedure applied in Sect. 7.3.2.

In that limit the angular distribution is given by

F.e0 � e; t/ ' Œ1 �Nvt�� ı.e0 � e/CNvtK.e0 � e/ ; (7.29)

representing the probabilities for zero and one deflection event, respectively.
After inverse Fourier transform this reads

F.k; t/ D
Z

d2e0 e�ik�.e0�e/F.e 0 � e; t/

D 1 �Nvt

Z
d2�K.�/

h
1 � e�ik��

i
; (7.30)

where the integration variable e0 has been replaced by
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� D e0 � e : (7.31)

Conversely, (7.28) reduces to

F.k; t/ ' 1C C.k/t (7.32)

for small t: Comparison with (7.30) then leads to

C.k/ D �Nv�.k/ ; (7.33)

where

�.k/ D
Z

d2�K.�/
h
1 � e�ik��

i
: (7.34)

With this, (7.25) reads

F.˛; t/ D 1

.2�/2

Z
d2k eik�˛�Nvt�.k/ : (7.35)

Making use of the azimuthal symmetry of the cross section and the relation

Z 2�

0

d�ez cos� D 2�J0.z/ ; (7.36)

where J0.z/ is a Bessel function of the first kind in standard notation, we may
rewrite (7.35) in the form

F.˛; x/ d2˛ D ˛ d˛

Z 1

0

k dk J0.k˛/e
�Nx�.k/ (7.37)

with

�.k/ D
Z 1

0

d�.�/ Œ1� J0.k�/� ; (7.38)

where time has been replaced by the foil thickness x D vt . Equation (7.37) in
conjunction with (7.38) has been derived by Bothe (1921b). It represents a straight
extension to two dimensions of the Bothe-Landau formula (9.14), Vol. 1. It is a
very powerful tool in the description of multiple scattering. However, the above
derivation, while elegant, is not particularly transparent with regard to the underly-
ing physics. The following section is intended to provide some clarification.

7.3.5 Collision Counting?

Let us try an alternative way to derive (7.35), making use of statistical arguments
presented in Sect. 2.2.2, Vol. 1.

For simplicity, let us group the multiplicity of vectorial scattering angles � into
discrete bundles �i , i D 1; : : : ; I . If a projectile in a particular passage undergoes
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ni events with a scattering angle �i , the total deflection angle will be given by

˛ D
IX
iD1

ni�i : (7.39)

If the probability for ni events of type i is denoted as Pni
, the angular distribution

can be written as

F.˛/ D
1X

n1D0
Pn1

1X
n2D0

Pn2
� � �

1X
nI D0

PnI
ı

 
˛ �

IX
iD1

ni�i

!
: (7.40)

7.3.5.1 Poisson Statistics

For a random medium, events of type i are mutually independent and hence may be
assumed to be governed by Poisson’s formula, (2.7), Vol. 1,

Pni
D .Nx�i /

ni

ni Š
e�Nx�i : (7.41)

Inserting this together with

ı

 
˛ �

IX
iD1

ni�i

!
D 1

.2�/2

Z
d2k eik�.˛�PI

iD1 ni �i / (7.42)

into (7.40) we find

F.˛/ D 1

.2�/2

Z
d2k eik�˛

1X
n1D0

.Nx�1/
n1

n1Š
e�Nx�1e�in1k��1

1X
n2D0

.Nx�2/
n2

n2Š
e�Nx�2e�in2k��2 : : :

1X
nI D0

.Nx�I /
nI

nI Š
e�Nx�I e�inI k��I (7.43)

or, after summation of the exponential series,

F.˛/ D 1

.2�/2

Z
d2k eik�˛�NxPI

iD1 �i CNxPI
iD1 �i e�ik��i

: (7.44)

This has the form of (7.35) with
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�.k/ D
IX
iD1

�i

�
1 � e�ik��i

�
: (7.45)

Making the transition to a continuous differential cross section,

�i !
Z

d�.�/ (7.46)

we arrive back at (7.34).
This derivation makes it clear that the number of scattering events may vary

significantly from trajectory to trajectory.

7.3.5.2 Fixed Number of Interactions

In the literature you will often find arguments based on a fixed number, say n, of
scattering events. Let us briefly look into this aspect. Instead of numbering types
of events by an index i , it is now appropriate to number the events themselves by
an index j . For a given event j the probability for a scattering angle .�; d2�/ is
given by

d�.�/

�
; (7.47)

assuming the total cross section � D R
d�.�/ to be finite. Then the distribution in

total scattering angle ˛ is given by

Fn.˛/ D
Z

d�.�1/

�

Z
d�.�2/

�
: : :

Z
d�.�n/

�
ı

0
@˛ �

nX
jD1

�j

1
A (7.48)

or, after inserting

ı .˛ � �1 � �2 � : : : � �n/ D 1

.2�/2

Z
d2k eik�.˛��1��2�:::��n/ ; (7.49)

Fn.˛/ D 1

.2�/2

Z
d2 k eik�˛

�Z
d�.�/
�

e�ik��
�n

: (7.50)

This expression is obviously different from (7.35). However, if we let the number n
of scattering events be distributed according to Poisson’s formula,

Pn D .Nx�/n

nŠ
e�Nx� : (7.51)

the angular distribution

F.˛/ D
1X
nD0

PnFn.˛/ (7.52)
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is readily seen to take on the form (7.35) with �.k/ given by (7.34).
Thus, for large values of n, when the width of the Poisson distribution becomes

small, we may expect (7.50) to approach (7.35). However, (7.50) does not appear
more attractive either from a mathematical or a computational point of view than
(7.35), and from a physical point of view it may even be undesirable since its uti-
lization in practice requires the cross section to be finite.

Note that the total cross section drops out after application of (7.51). Therefore,
� need not be finite if the number of interactions is Poisson-distributed. Then, a
necessary condition for a meaningful result is the convergence of �.k/ as given by
(7.34).

7.3.6 Excursion into Truncated Cross Sections?

The screened-Coulomb potentials that we deal with in this monograph all have an
infinite interaction range, although the approach to zero may be more or less rapid.
In classical scattering theory this implies that the differential cross section gets sin-
gular at scattering angle zero. In the analysis of energy loss this is not a funda-
mental obstacle, since an energy-loss spectrum hinges on the stopping cross section
and higher moments, while the total cross section does not enter. Similarly, you may
note that the integrand entering the transport cross section �.k/ in the Bothe-Landau
formula is regular at � D 0, provided that �2d�.�/=d� is finite.

There is a problem, however, if you try to predict a multiple-scattering profile
by computer simulation. You can do this by defining probabilities of a given scatter
process such as (7.47), where the denominator will be infinitely large. Alternatively
you may operate with the scattering probability j2�p dpj, in which you will have to
treat an infinite range of impact parameters. An obvious way to solve this problem
is to introduce a maximum impact parameter or a minimum scattering angle and to
make sure that the final result is insensitive to the precise value of either quantity.
Such values can be found in practice, whenever the corresponding transport equation
has a well-defined solution.

However, you will also find physical arguments in the literature supporting a
definite choice of a truncated interaction potential at least in the case of solid target
materials. Such arguments rest on two undisputable facts,

� Strictly binary collisions are impossible in solids, and
� Interatomic potentials in solids differ from interatomic potentials in vacuum.

The proper solution to the first problem, when considered serious, is molecular-
dynamics simulation, which is to be discussed in Volume 3 of this monograph. So-
lutions to the second problem have been discussed in Sect. 6.2.4.

A third way to circumvent these problems is to truncate the interaction potential
at some distance less than half the nearest-neighbour distance in the target structure.
This is unproblematic, if the scattering angle or energy loss are insignificant at this
impact parameter, but an error is introduced if that is not the case. Note that the
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statistical weight increases linearly with the impact parameter, so that even small
scattering angles and/or energy losses may be significant. However, special tools
such as perturbation theory may be valuable e.g. in the treatment of many-body
collisions.

7.3.7 Transport Equation

Numerous treatments of multiple scattering in the literature are based on a transport
equation of the type presented in (9.103) or (9.104), Vol. 1. The method will first be
used to rederive Bothe’s equation for the angular distribution and, subsequently, to
find a relation governing the correlated angular-lateral distribution.

In order to find a suitable relationship for small-angle multiple scattering, con-
sider the passage through a small pathlength interval ıx. Let the angular distribution
for small angles be given by F.e; x/, where x D vt is the penetration depth. Assum-
ing ıx sufficiently small so that the probability for two collisions can be ignored,
you have

F.e; x C ıx/ D F.e; x/

�
1 �N ıx

Z
d�.�/

�

CN ıx

Z
d�.�/ F.e � �; x/; (7.53)

where the two terms on the right-hand side express the probabilities for zero and
one interaction, respectively, and the appropriate angular distribution. Expansion up
to first order in ıx leads to

@F.e; x/

@x
D �N

Z
d�.�/ ŒF .e; x/ � F.e � �; x/� ; (7.54)

which is a transport equation or kinetic equation.
In Fourier space, specified by (7.25), this relation reads

@F.k; x/

@x
D �F.k; x/N

Z
d�.�/

h
1 � e�ik��

i
: (7.55)

Solution of this differential equation, together with the initial condition

F.e; 0/ D ı.e/ (7.56)

or
F.k; 0/ D 1 (7.57)

leads you directly to (7.35).
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7.3.8 Projected Distribution

Visual inspection of a trajectory e.g. in photographic emulsion, materials forming
fission tracks, or cloud or bubble chambers warrants calculations of the distribution
in projected scattering angle. Going back to (7.22), let us consider the distribution
in projected deflection angle ˇ D ˛ cos� within the small-angle approximation.

For small-angle scattering, the angular distribution projected on a plane contain-
ing the initial direction as an axis is easily found from Bothe’s formula, (7.35),
written in the form

F.˛y ; ˛z ; x/ D 1

.2�/2

Z
dky dkz eiky˛yCikz˛z�Nx�

�p
k2

yCk2
z

�
: (7.58)

Integration over ˛z then yields

F.˛y ; x/ D 1

2�

Z
dky eiky˛y�Nx�.ky / (7.59)

or, dropping the subscript y,

F.˛; x/ D 1

2�

Z 1

�1
dk eik˛�Nx�.k/ : (7.60)

Thus, the only difference between the two-dimensional and the one-dimensional dis-
tribution is in the replacement of the Bessel function J0.k˛/ in (7.37) by exp.ik˛/
in (7.60) (Snyder and Scott, 1949), while �.k/ is unchanged.

7.3.9 Packing

In Sect. 5.4 we have seen that fluctuations in energy loss (straggling) are sensitive
to the structure of the medium. An important example, discussed in Sect. 5.4.3, is
energy loss in a molecular gas as compared to an atomic gas. A similar situation is
found for multiple scattering (Sidenius et al., 1976, Sigmund, 1977).

In a molecular gas it is the molecules that are distributed at random, while atoms
are correlated. Consider a diatomic gas made up by atoms A and B separated from
each other by a vectorial distance d . Then, the scattering angle in a collision may
be written as

� D �A.pA/C �B .pB/ : (7.61)

The Bothe formula retains the standard form

F.˛; x/ D 1

.2�/2

Z
d2k eik�˛�Nx�.k/ ; (7.62)

and the transport cross section can be written as
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�.k/ D
Z

d2p .1 � exp Œ�ik � .�A.pA/C �B.pB //�/ (7.63)

under the assumption of classical binary scattering, where

pA � pB D � ; (7.64)

and � is the projection of d on the impact plane defined by the two vectorial impact
parameters pA and pB . These relations hold for a fixed orientation of all molecules,
and a priori neither d�.�/ nor F.˛/ has azimuthal symmetry. If the molecules are
oriented at random, the orientational average has to be taken over the distribution
function F.˛; x/, while it is not obvious whether that average already can be taken
in the transport cross section.

We may, however, write the latter in the form

�.k/ D �A.k/C �B .k/C��.k/ ; (7.65)

where �A.k/ and �B .k/ refer to isolated atoms and

��.k/ D �
Z

d2p
�
1 � e�k�pA

� �
1 � e�k�pB

�
: (7.66)

For ��.k/ D 0, �.k/ represents a random mixture of A and B atoms of density N
each.

If the clusters are oriented at random, (7.62) has to be averaged over all orien-
tations. We may tentatively assume that ��.k/ is a small perturbation, so that the
integrand may be expanded up to the first order in ��.k/. This implies that the
averaging only affects differential cross section,

h��.k/iav D �
Z

d2pA

Z
d2pB

�
1 � e�k�pA

� �
1� e�k�pB

�
� hı.pA � pB � �/iav : (7.67)

According to (8.92), Vol. 1, the Dirac function reduces to

hı.pA � pB � �/iav D 1

2�d2
p
1 � .pA � pB/2=d2

' 1

2�d2
; (7.68)

so that

��.k/ ' ��A.k/�B .k/
2�d2

: (7.69)

The assumption that .pA� pB/
2 � d2 was also made in connection with the pack-

ing effect in straggling in Sect. 5.4.3. Typically the screening radius of the nuclear
interaction is smaller than the adiabatic radius limiting the electronic interaction.
Therefore this approximation is better justified in multiple scattering than in elec-
tronic straggling.
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7.4 Statistics: Correlated Distributions ?

7.4.1 Lateral-Angular Distribution

Let us have a look at the combined distribution F.e;�; x/ for the angular deflection
e and the lateral displacement � D .y; z/ in the small-angle approximation. A
suitable start is a transport equation (Scott, 1949). During passage through a thin
layer ıx, the lateral spread will increase even if no collision takes place. Hence,
disregarding terms of higher than first order we find

F.˛;�; x C ıx/ D
�
1 �Nıx

Z
d�.�/

�
F.˛;� � ˛ ıx; x/

CNıx

Z
d�.�/F.˛ � �;�; x/ (7.70)

or, after expansion up to first order in ıx,

�
@

@x
C ˛ � r�

�
F.˛;�; x/

D �N
Z

d�.�/ ŒF .˛;�; x/ � F.˛ � �;�; x/� ; (7.71)

where

r� D
�
@

@y
;
@

@z

�
: (7.72)

In order to solve (7.71) we may try the ansatz

F.˛;�; x/ D 1

.2�/4

Z
d2k

Z
d2� eik�˛Ci��.��x˛/F.k;�; x/ : (7.73)

With this (7.71) reduces to

@F.k;�; x/

@x
D �N�.k � x�/F.k;�; x/ ; (7.74)

with the solution
F.k;�; x/ D e�N R x

0 dx0�.k�x0�/ ; (7.75)

so that

F.˛;�; x/ D 1

.2�/4

Z
d2k

Z
d2� eik�˛Ci��.��x˛/�N R x

0 dx0�.k�x0�/ : (7.76)

By integrating over the angular variable we find a Bothe-type relation for the
lateral displacement,
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G.�; x/ D
Z

d2˛F.˛;�; x/ D 1

.2�/2

Z
d2� ei����N R x

0 dx0�.�.x�x0// : (7.77)

7.4.2 Energy-Angular Distribution

For a particle beam penetrating through a thin layer, you may be interested in the
dependence of the energy-loss spectrum on the angle of emergence from the foil.
This is important not least in precision measurements of the electronic and nuclear
energy loss. For small scattering angles and small energy losses �E � E, the
above derivation of Bothe’s formula (7.35) can easily be generalized by replacing
the unit vector ˛ by the full velocity vector v, so that

F.v; x/ d3v D d3v
.2�/3

Z
d3k eik�v�Nx�.k/ ; (7.78)

where

�.k/ D
Z

d�.v; v0/
�
1 � e�ik�.v0�v/

�
; (7.79)

and d�.v; v0/ is the differential cross section for scattering from a velocity v into a
velocity interval .v0; d3v0/.

Since we normally use energy and angular variables, it will be more convenient
to write

F.�E;˛; x/ d.�E/ d2˛

D d.�E/ d2˛
.2�/3

Z
d�
Z

d2k ei��ECik�˛�Nx �.�;k/ (7.80)

with

�.�;k/ D
Z

d�.T;�/
h
1 � e�i�T�ik��

i
: (7.81)

You may integrate over the azimuthal variable in complete analogy to Sect. 7.3.4.

7.4.2.1 Mean Energy versus Angle

Individual energy-loss events are more or less accompanied by angular deflection.
This effect is particularly important in case of nuclear energy loss. We may deter-
mine the mean energy loss as a function of scattering angle, a quantity of interest in
case of negligible skewness.

From (7.80) we find



298 7 Multiple ScatteringZ
d.�E/�EF.�E;˛; x/

D 1

.2�/2

Z
d2k eik�˛�Nx�.k/

�
�iNx @

@�
�.�;k/

�
�D0

: (7.82)

This determines the mean energy loss �E as a function of the scattering angle,

�E.˛/ D 1

F.˛/

1

.2�/2

Z
d2k eik�˛�Nx�.k/NxS.k/ ; (7.83)

where F.˛; x/ is the energy-integrated angular distribution and

S.k/ D
Z

d�.T;�/ T e�ik�� (7.84)

depends on the relative importance of electronic and nuclear stopping.

7.4.2.2 Angular Distribution at Moderate Target Thickness

For heavy ions you may encounter the situation that energy loss cannot be neglected,
even though scattering angles are small. As a first approximation it may be sufficient
to compute �.k/ at the energyE��E=2. If that is considered insufficient you may
have to think of your target divided up into a number of layers, say n, with thickness
xj small enough so that the angular distribution in the j th foil can be described by
a profile

Fj .Ej ;˛j ; xj / D 1

.2�/2

Z
d2k eikj �˛j �Nxj �.Ej ;kj / ; (7.85)

where Ej is an energy between the mean entrance and exit energy of the j th foil.
Assuming negligible energy-loss straggling you find

F.˛; x/ D 1

.2�/2

Z
d2k eik�˛�N P

j xj �.Ej ;k/ (7.86)

by convolution, where x D P
xj and ˛ D P

˛j . Alternatively you may let n go to
infinity and write (Sigmund, 1991)

F.˛; x/ D 1

.2�/2

Z
d2k eik�˛�N R x

0 dx0 �.E.x0/;k/ : (7.87)

This point has been studied in detail by Valdes and Arista (1994).
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7.4.3 Effect of Charge Exchange

Just as in energy-loss straggling, the charge of an ion may play a role in multiple
scattering for at least two reasons. Firstly, electron capture and loss processes are ac-
companied by momentum change. Secondly, the cross section for elastic scattering
is governed by the interatomic potential which depends on the ion charge. If we may
ignore energy loss, calculating the contribution of charge exchange to the angular
distribution becomes closely analogous to the theory of charge-exchange straggling
sketched in Sect. 3.5. Indeed, within the small-angle approximation all that is neces-
sary is to replace the one-dimensional, unidirectional energy-loss variables�E and
T by the two-dimensional angular variables ˛ and �, respectively. This implies that
(3.95) turns into

FIJ .˛; x/ D 1

.2�/2

Z
d2k eik�˛

�
eNx.Q�� .k//

�
IJ
; (7.88)

where

�IJ .k/ D
Z

d�IJ .�/
�
1 � e�ik��

�
(7.89)

and, from (3.8),
QIJ D �IJ � ıIJ

X
L

�IL : (7.90)

A major simplification occurs if

d�IJ .�/ � d�IJ .�/ ; (7.91)

so that

�IJ .k/ � �IJ .k/ D
Z

d�IJ .�/ .1 � J0.k�// : (7.92)

7.5 Approaches

7.5.1 Moments and Cumulants

Moments and cumulants do not play as important a role in multiple scattering as
they do in the description of energy loss. Indeed, while energy loss is characterized
primarily by the first moment, i.e., the stopping cross section, the first moment h˛i
over the multiple-scattering distribution most often vanishes for symmetry reasons.
The second moment, on the other hand, diverges if evaluated uncritically in the
small-angle approximation. Indeed, if (2.100), Vol. 1,

h˛2i D Nx

Z
�2d�.�/ ; (7.93)
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is evaluated on the basis of the small-angle version of Rutherford’s law,

d�.�/ / � d�

�4
; (7.94)

a logarithmic divergence shows up both at small and large angles. While the former
can be removed by allowing for a screening correction, the latter feature is inherent
in the small-angle approximation. This problem can be overcome in an approximate
way by the Bohr-Williams scheme to be presented below.

Moments and cumulants can, however, be evaluated in the Goudsmit-Saunderson
description, (7.20) and (7.21). Making use of the relation

Z 1

�1
d cos˛ P`.cos˛/ D 2ı`0 (7.95)

and the recurrence relation for Legendre polynomials, (A.59), Vol. 1, and setting
R D vt you readily obtain Z

d2˛F.˛; t/ D 1; (7.96)Z
d2˛ cos˛ F.˛; t/ D e�NR�1 ; (7.97)Z

d2˛ cos2 ˛ F.˛; t/ D 1

3
C 2

3
e�NR�2 ; (7.98)

where �` has been defined in (7.21). More relevant are the cumulants

h1 � cos˛i D 1 � e�NR�1 ; (7.99)

h.1 � cos˛/2i D 4

3
� 2e�NR�1 C 2

3
e�NR�2 : (7.100)

7.5.2 Diffusion Limit

In Chap. 9, Vol. 1, we learned that with increasing travelled pathlength the energy-
loss distribution approaches a gaussian with a width determined by the straggling
parameter. Let us have a look at the behaviour of the angular distribution with in-
creasing travelled pathlength.

7.5.2.1 Goudsmit-Saunderson Distribution

Going first to the Goudsmit-Saunderson description (7.20) we note that all terms in
the series except the one for ` D 0 decrease toward zero with increasing pathlength.
Dropping all terms ` � 1 leads to an isotropic distribution F.˛/ D 1=4� . The
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relative magnitude of the subsequent terms depends on the cross section. However,
we may note that P`.cos˛/ is an oscillating function, and the number of maxima
and minima increases linearly with `. Such oscillations will barely be visible in a
situation where the angular distribution has become nearly isotropic.

Therefore, as a first approximation we may drop all terms with ` � 2 and write

F.˛/ ' 1

4�

�
1C 3 cos˛e�NR�1

�
I R large (7.101)

as an estimate of the approach to an isotropic distribution.

7.5.2.2 Small-Angle Scattering

Next, let us go to the small-angle approximation, (7.35). With increasing penetration
depth x, the distribution will broaden in angle. This implies narrowing of the Fourier
transform. Therefore, the distribution in angle will be predominantly determined by
small values of k. Expansion of (7.34) in powers of k up to the leading order yields

�.k/ ' 1

2

Z
.k � �/2 d�.�/ D 1

4
k2
Z
�2 d�.�/ : (7.102)

Let us assume a cross section that does not cause the integral to diverge and make
use of

h˛2i D Nx

Z
�2d�.�/ : (7.103)

Then we may write

Nx�.k/ ' 1

4
k2h˛2i : (7.104)

With this, the integration in (7.35) can be carried out, so that the multiple-scattering
profile assumes gaussian form

F.˛/ ' 1

�h˛2i e�˛2=h˛2i : (7.105)

7.5.2.3 Lateral Distribution

Application of the same procedure to the lateral distribution, (7.77), leads to

F.�; x/ D 1

�h�2ie��2=h�2i (7.106)

with

h�2i D 1

3
Nx3

Z
�2 d�.�/ : (7.107)
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7.5.2.4 Angular-Lateral distribution

You may also apply the diffusion approximation to the lateral-angular distribution,
(7.80). After carrying out the fourfold integration you will arrive at

F.˛; �; x/ d2˛ d2� D 3d2˛ d2�
.2�x2D/2

e�˛2=Dx�3�2=Dx3C3˛��=Dx2

; (7.108)

where

D D N

4

Z
�2 d�.�/ (7.109)

is a measure of the diffusion coefficient. According to Scott (1963), (7.108) was first
found by Fermi.

7.5.3 An Integrable Example

Bothe (1921a) gave an example of an integrable two-dimensional distribution. Bothe
made reference to a different physical application, but his calculation may neverthe-
less serve as a useful model for multiple scattering (Lindhard, 1970).

Consider the differential cross section

d�.�/ D C
d�

�2
; 0 
 � < 1 (7.110)

with some constant C. This refers to scattering on the R�2 potential mentioned in
Sect. 6.4.2.

Insertion of (7.110) into (7.38) yields

�.k/ D Ck ; (7.111)

and subsequent integration of (7.37) leads to

F.˛; x/ D 1

2�

NCx

.˛2 C .NCx/2/
3=2

: (7.112)

We first observe that this function is not gaussian, nor does it approach gaussian
shape in the limit of large pathlengths. This does not constitute an inconsistency
with the result of Sect. 7.5.2, since the integral

R1
0
�2d�.�/ does not exist.

Next, we note that despite the divergence of the cross section at small angles �,
the multiple-scattering profile remains finite at ˛ D 0, although it goes as / .Nx/�2
and hence becomes large at small pathlengths.

Moreover, in the limit of large angles, ˛ 	 NCx, the distribution (7.112) ap-
proaches the probability for a single scattering event specified by the cross section
(7.110),
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F.˛; x/ d2˛ ' NCx
d˛

˛2
: (7.113)

Finally, the half-width of the distribution is given by

˛1=2 D
p
22=3 � 1NCx (7.114)

i.e., proportional to the pathlength x. This finding is in striking contrast to the re-
sult of the diffusion approximation where ˛1=2 / p

Nx according to (7.105) and
(7.103).

7.5.4 Transition to Single Scattering

If we expand the exponential in (7.35) in terms of the penetration depth,

e�Nx�.k/ D 1 �Nx�.k/C 1

2
.Nx/2 Œ�.k/�2 C : : : ; (7.115)

we may get a measure of the relative significance of single, double, triple etc. col-
lision events to the multiple-scattering distribution. We know already the two first
terms in this expansion from (7.29). Going to the next order in Nx and integrating
over d2k you will arrive at

F.˛/ D ı.˛/CNx

Z
d�.�/ Œı.˛ � �/ � ı.�/�

C 1

2
.Nx/2

Z
d�.�/

Z
d�.�0/

� �ı.˛ � � � �0/� ı.˛ � �/ � ı.˛ � �0/C ı.˛/
	
: : : : (7.116)

As long as we keep away from the initial beam direction, i.e., for ˛ ¤ 0, this
reduces to

F.˛/ D NxK.˛/C 1

2
.Nx/2

Z
d2�K.�/K.˛ � �/

� .Nx/2K.˛/
Z

d2�K.�/C : : : : (7.117)

You may note that the second and third term on the right-hand side both diverge if
K.�/ is singular at � D 0. However by limiting the integrations in the second and
third term to a small interval around � D 0 and � D ˛, you can convince yourself
that these divergencies cancel each other, so that the sum of the two terms of second
order, originating in double-scattering events, remains finite even if the differential
cross section diverges at small �.

If the contribution from double scattering were characterized by only the first
term on the right-hand side, it would normally be dominating over the single-
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collision term, even for a finite total cross section. However, with the divergence
removed we may conclude that the double-scattering term is made up predominantly
by contributions from scattering angles � and �0 not close to zero.

Hence, we may expect that for physically relevant cross sections the multiple-
scattering distribution will approach the single-scattering law at large angles. This
was found to be the case in the example discussed in Sect. 7.5.3.

7.5.5 Bohr-Williams Model

A physically very appealing model of multiple scattering was proposed by Williams
(1939). According to Sect. 7.5.4 the angular distribution approaches the single-
scattering distribution at large angles. Therefore we may introduce an angle ˛?

which, approximately, separates the single-scattering from the multiple-scattering
regime, so that

F.˛; x/ ' Nx
d�.˛/

2�˛d˛
for ˛ > ˛? : (7.118)

Deflections at angles � < ˛? occur more than once in the average and are treated in
the diffusion approximation. For small-angle multiple scattering this implies

F.˛; x/ D 1

�h˛2ie�˛2=h˛2i (7.119)

with

h˛2i D Nx

Z ˛?

0

�2 d�.�/ : (7.120)

The integral in (7.120) diverges for Coulomb scattering but becomes finite when
screening at small scattering angles is taken into account.

The diffusion approximation must be expected to be inadequate at angles ˛ �
˛?, and the same must be true for the single-collision approximation. Evidently,
some interpolation is necessary in the intermediate angular range.

We have not yet defined the limiting angle ˛?. There are several options,

1. over the wide-angle part (Williams, 1939),

Nx

Z ˛max

˛?

d�.�/ D 1 : (7.121)

2. or over the small-angle part,

˛?
2 D ˝

�2
˛ D Nx

Z ˛?

0

�2 d�.�/ (7.122)

3. or over the normalization,
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Fig. 7.4 Comparison between Bohr-Williams approximation and exact result for model distribu-
tion (7.112). Solid line: exact; dashed line: single-collision limit; lines with markers: diffusion
limit; labels indicate the value of ˛?=NCx.
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0

C
Z 1

˛?

#
2�˛ d˛F.˛; x/ D 1 : (7.123)

Let us first have a look at the example discussed in Sect. 7.5.3, where an exact solu-
tion is available. Here the Bohr-Williams scheme leads to

F.˛; x/ '

8̂<
:̂
NCx
2�˛3 ˛ > ˛?

for
1

�NxC˛? exp
�
� ˛2

NCx˛?

�
˛ < ˛?

: (7.124)

The two first options for ˛? mentioned above both yield

˛? D NCx ; (7.125)

while the third option cannot be fulfilled on the basis of (7.124).
Figure 7.4, which is an expanded version of Fig. 2.7, Vol. 1, shows (7.124) for

three values of the parameter ˛?=NCx. You may note that for all three values
chosen, ˛?=NCx D 1, 2 and 4, interpolation between the small-angle and the
single-scattering limit is unproblematic. For ˛?=NCx D 1 the scattered intensity
for ˛ D 0 is overestimated by a factor of two. This problem does not occur for
˛?=NCx D 2. The optimum choice appears to be close to ˛?=NCx D 2, where
the two cross-over points with the single-scattering curve almost merge, and where
there is agreement with the exact curve at ˛ D 0. On the other hand, the agreement
between the three diffusion profiles and the exact curve is not encouraging, and it
seems fair to conclude that the Bohr-Williams scheme does not produce an accurate
multiple-scattering profile for the cross section (7.110), which represents heavily-
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screened Coulomb interaction. However, the approximation becomes powerful in
high-energy scattering, in particular at target thicknesses where the single-scattering
regime constitutes only a tiny fraction of the scattered beam, as you will see below.

7.5.6 Simulation

A major discussion of simulation techniques in particle penetration has been post-
poned to Volume 3. Simulation is particularly powerful in the field of radiation ef-
fects. However, since multiple-scattering problems can conveniently be analysed by
simulation, a brief discussion has been included here.

Simulation techniques fall naturally into three categories:

� Monte-Carlo simulation (MC) operates with cross sections and is roughly equiv-
alent to the theory presented in the present chapter.

� Binary-collision codes (BC) operate on a pre-installed target structure and utilize
scattering laws relating impact parameters to scattering angle and energy transfer.

� Molecular-dynamics (MD) codes solve equations of motion for a many-body
system comprising a given initial target structure and a projectile.

All methods are free of technical limitations such as small-angle approximation,
neglecting energy loss, target geometry and the like. BC and MD codes allow to
study the effects of crystal structure including thermal vibrations. Achieving ade-
quate statistics may be a problem with BC and MD simulations.

On the other hand, care is indicated at small scattering angles. It is necessary to
truncate interaction potentials at some impact parameter. As a consequence there is
a minimum scattering angle which may affect the multiple-scattering profile.

By and large, simulation methods are particularly useful in cases where transport
theory becomes problematic, at low beam energies, for large scattering angles and
for complex geometries.

7.6 Angular Distribution

7.6.1 Scaling properties

In this section, estimates of multiple-scattering angular distributions will be anal-
ysed under the assumption of elastic screened-Coulomb scattering on a potential

V.R/ D Z1Z2e
2

R
g

�
R

a

�
; (7.126)

characterized by a screening function g and a screening radius a. For the purpose of
establishing scaling properties it is not required to specify g or a.
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We shall focus here on small angles. It is tempting, therefore, to characterize
single scattering by first-order perturbation theory.

7.6.1.1 Classical Scattering

Take first the classical expression, (3.76), Vol. 1, which may be expected to be valid
for small angles,

 ' � 1

pEr

Z 1

p

drp
1 � p2=r2

d
dr

frV.r/g : (7.127)

The relations between laboratory and c.m.s. variables read

� ' M2

M1 CM2

 I Er D M2

M1 CM2

E (7.128)

for small angles. Therefore the relation (7.127) remains valid if we replace  by �
and Er by E ,

Er‚ D E� for small angles : (7.129)

After insertion of (7.126) you arrive at

� D �Z1Z2e
2

Ea
g1

�p
a

�
; (7.130)

where g1 is a function determined by the screening function g. This suggests to
introduce the scaled angular variable (Meyer, 1971)

Q� D Ea

Z1Z2e2
� : (7.131)

The differential cross section then reads

d�.�/ D j2�p dpj D 2�a2
d Q�
Q�3 Qg. Q�/ ; (7.132)

where the function Qg. Q�/—which likewise depends on the screening function g—
has been defined so that it reduces to unity for unscreened Coulomb scattering. This
relation looks very similar to (6.57). You are welcome to analyse this similarity in
detail by going to Problem 7.6.

A scaling relationship for small-angle multiple scattering can then be found by
defining the scaled deflection angle

Q̨ D Ea

Z1Z2e2
˛ : (7.133)

With this, (7.37) reduces to (Meyer, 1971)
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F.˛; x/d2˛ D Q̨ d Q̨
Z 1

0

Qk d Qk J0. Qk Q̨ / e�� Q�. Qk/ (7.134)

with

Q�. Qk/ D 2

Z 1

0

d Q�
Q�3 Qg. Q�/

�
1 � J0. Qk Q�/

�
; (7.135)

where
� D �a2Nx ; (7.136)

and Qk D Z1Z2e
2k=Ea.

7.6.1.2 Born Approximation

At high projectile speeds it becomes more appropriate to characterize single scat-
tering in the Born approximation. Then, from (3.94), Vol. 1 we may deduce that
the function Qg. Q�/ in (7.132) must be replaced by some function Og1.a=�̄/ �
Og1.M1va�=�/. It may then be more appropriate to introduce the scaled angular
variable (Molière, 1948, Bethe, 1953)

O� D M1va

�
� (7.137)

instead of Q�.
From (3.89) and (3.90) you find, for a screened-Coulomb potential with a screen-

ing function g.r=a/,

d�.�/ D 2�a2
d O�
O�3

Og1. O�/ ; (7.138)

where

Og1. O�/ D
h
�1 O�f . O�/

i2
(7.139)

with

�1 D 2Z1Z2e
2

�v
(7.140)

and

f . O�/ D
Z 1

0

d� g.�/ sin.� O�/ ; (7.141)

as you may derive in Problem 7.7.
You may then introduce a dimensionless angle

Ǫ D M1va

�
˛ : (7.142)

This yields, then, the multiple-scattering profile
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F.˛; x/d2˛ D Ǫ d Ǫ
Z 1

0

Ok d Ok J0. Ok Ǫ / e�� O�. Ok/ (7.143)

with

O�. Ok/ D 2

Z 1

0

d O�
O�3

Og1. O�/
�
1 � J0. Ok O�/

�
(7.144)

and Ok D �k=M1va.

7.6.2 Relativity

In Chap. 2, Vol. 1, the angular deflection over a small scattering angle was deter-
mined via the momentum transfer perpendicular to the direction of motion. This
quantity, when expressed by projectile velocity, invokes the impulse and hence is
unaffected by effects of relativity. However, conversion of the momentum transfer
�P? into a scattering angle according to

� D �P?
Pjj

(7.145)

involves the momentum Pjj D 	M1v of the projectile with

	 D 1p
1 � v2=c2

: (7.146)

Therefore, the relations derived above remain valid in the relativistic regime if the
projectile mass M1 is replaced by M1	 . In practice this implies the substitution

E ! 1

2
M1	v

2 � 1

2
Pjjv : (7.147)

Note that the expression on the right-hand side is not the relativistic expression for
the kinetic energy of the projectile.

7.6.3 Weak Screening

For fast electrons and light ions the differential scattering cross section is Rutherford-
like except at very small scattering angles. You can easily convince yourself that the
transport cross section, (7.38), diverges due to a singularity at � D 0, if you in-
sert the straight Rutherford cross section. Thus, taking into account screening is
essential. Molière (1948) showed how the effect of screening can be expressed by
introducing a single parameter that he called the screening angle.
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In classical scattering, screening becomes important when the impact parameter
is not small compared to the screening radius, i.e.,

� � b1=a D Z1Z2e
2

Ea
; (7.148)

where b1 D Z1Z2e
2=E is the collision diameter. Expressed in dimensionless vari-

ables this reads
Q� � 1 ; (7.149)

where Q� is defined by (7.131).
Within the range of validity of the Born approximation the equivalent regime is

p � �̄ (7.150)

i.e.,

� �
b1

�̄
D 2Z1Z2e

2

�v
(7.151)

or, in dimensionless variables,
O� � 1 ; (7.152)

where O� is defined in (7.137).
Thus, within the regime of weak screening, the function Qg. Q�/ governing the dif-

ferential cross section (7.132) approaches unity not far above Q� D 1. A correspond-
ing statement holds for Og1. O�/ in (7.138).

While scattering angles � are � 1 here, scaled scattering angles Q� or O� may be-
come large at high energies, as is evident from their definitions. We may, therefore,
split the transport cross sections, (7.135) and (7.144) into two parts at some angle
�1, so that screening only affects the integral from 0 to �1. This procedure, applied
originally by Bohr (1913) and Bethe (1930) in classical and quantal stopping the-
ory, respectively, was extended to multiple scattering by Molière (1948) and later
by Bethe (1953).

Following Bethe (1953) we shall consider the Born regime, but since notations
in Sects. 7.6.1.2 and 7.6.1.1 are analogous, the final result can easily be transcribed
into the classical regime.

Let us write the scaled transport cross section in the form

O�. Ok/ D O�1. Ok/C O�2. Ok/ ; (7.153)

where

O�1. Ok/ D 2

Z O�1

0

d O�
O�3

Og1. O�/
h
1 � J0. Ok O�/

i
(7.154)

and

O�2. Ok/ D 2

Z 1

O�1

d O�
O�3
h
1 � J0. Ok O�/

i
: (7.155)
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Here it has been assumed that O�1 	 1, so that Og1. O�/ � 1 in (7.155).
Now, we know that the halfwidth of the multiple-scattering profile increases

with the thickness. Let us assume the target to be thick enough so that the scaled
halfwidth O�1=2 	 1. If so, we can assume that

1 � O�1 � O�1=2 : (7.156)

The factor 1 � J0. Ok O�/ draws its main contributions from Ok O�1=2 � 1. With this, the
argument in the Bessel function in (7.154) is always � 1, so that

O�1. Ok/ ' 1

2
Ok2
Z O�1

0

d O�
O�

Og1. O�/ : (7.157)

The second integral can be reduced by repeated partial integration to

O�2. Ok/ D 1

O�21

h
1 � J0. Ok O�1/

i

C
Ok
2 O�1

J1. Ok O�1/C 1

2
Ok2
"

�	 � ln
Ok O�1
2

CO
n Ok2 O�21

o#
; (7.158)

where 	 D 0:5772 is Euler’s constant. Ignoring terms of order Ok2 O�21 or higher we
finally obtain

O�2. Ok/ ' 1

2
Ok2
"
1 � 	 � ln

Ok O�1
2

#
(7.159)

and hence,

O�. Ok/ D 1

2
Ok2
"Z O�1

0

d O�
O�

Og1. O�/C 1 � 	 � ln
Ok O�1
2

#
: (7.160)

Following Molière (1948), Bethe (1953) defines a screening angle O�a by the relation

� ln O�a D lim
O�1!1

"Z O�1

0

d O�
O�

Og1. O�/C 1

2
� ln O�1

#
: (7.161)

The reason for this particular choice is that for an exponential screening function
the screening angle reduces to O�a D 1, as you may verify by solving Problem 7.9.
With this you find

O�. Ok/ D 1

2
Ok2
�
� ln. Ok O�a/C 1

2
C ln 2 � 	

�
; (7.162)

where use has been made of the fact thatZ 1

O�1

d O�
O�
�

Og1. O�/ � 1
�

D 0 : (7.163)
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Fig. 7.5 Angular distributions evaluated in the small-angle approximation. The parameter � D
�Nxa2 is a measure of the target thickness. From Sigmund and Winterbon (1974)

Evidently, the multiple-scattering profile (7.143) becomes independent of O�1 and
dependent only on the dimensionless thickness � and the screening angle O�a.

This approximation may yield reasonable results for Ok � 1, i.e., for � 	 1.
Bethe (1953) expressed his results in terms of a few tabulated formulas, valid for
high-energy electrons. In the following section we shall focus on ions.

7.6.4 Numerical Results

Multiple-scattering profiles for ions were evaluated by numerous authors over the
years. Here I focus on three studies.

Meyer (1971) evaluated multiple-scattering profiles for exponential screening for
both classical and Born scattering as well as for Thomas-Fermi interaction. His tab-
ulations were based on a truncated potential, but it was found that the resulting
halfwidths were insensitive to the choice of cut-off radius. There are, however, nu-
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Fig. 7.6 Expanded version of Fig. 7.5 in Lindhard-Scharff units as in Fig. 6.12, that visualizes the
transition to single scattering. From Sigmund and Winterbon (1974)

merical problems with large-angle scattering, where the reported profiles do not
approach the single-scattering cross section.

Sigmund and Winterbon (1974) focused on classical scattering and produced
tables for both Thomas-Fermi and Lenz-Jensen interaction. Truncation was avoided,
and proper approach to single scattering was verified in all cases. A numerical error
affecting tabulated low-thickness profiles was corrected subsequently (Sigmund and
Winterbon, 1975). Also results for selected power cross sections were included for
comparison.

Amsel et al. (2003) likewise produced tables for Thomas-Fermi and Lenz-Jensen
interaction, but also studied projected profiles and supplied results of Monte Carlo
simulations illustrating detailed trajectories. An attempt was made to compute
multiple-scattering profiles by autoconvolution of the profiles from a number of
thin layers, but that procedure was given up due to numerical problems in reproduc-
ing tails. Instead, their evaluation went over the Fourier transform as was done by
previous authors.

Figure 7.5 shows multiple-scattering profiles evaluated in the small-angle ap-
proximation for Thomas-Fermi interaction. With available computer power at the
time of publication in mind, the transport cross section Q�. Qk/ was evaluated analyti-
cally, so that only one numerical integration was necessary to determine the profile
from (7.37).

The expected approach to gaussian shape is seen with increasing target thickness
as expressed by � D �Nxa2, but for small values of � , the profile looks more
Lorentzian-like.

There are at least two observations to be kept in mind from Fig. 7.5,
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Fig. 7.7 Multiple-scattering halfwidths in the small-angle approximation for Thomas-Fermi and
Lenz-Jensen screening and three power cross sections. Dimensionless units. From Sigmund and
Winterbon (1974)

� Deviations from gaussian shape become pronounced in the wide-angle tails of
the angular distribution. This was to be expected, since the profile must approach
the single-scattering law here, as shown in Fig. 7.6.

� Experimentally, half-widths are frequently determined by fitting a measured pro-
file to a gaussian. Dependent on how such a fit is performed, significant errors
may arise. As an example, try to fit a parabola to the profile for � D 0:01 in the
angular range 0 < Q̨1=2 � 0:5. This would result in a significant underestimate
of the halfwidth.

Figure 7.7 shows halfwidths versus thickness in dimensionless units, for several
interaction potentials. The curves T-F and L-J represent Thomas-Fermi and Lenz-
Jensen screening, respectively, while the curves for m D 0:191, 0.311 and 0.5 rep-
resent power scattering. Note that m D 0:191 and 0.311 reflect the behaviour of
the Lenz-Jensen and Thomas-Fermi potential at large distances, respectively. This
explains the behaviour at small values of � . The curve for m D 1=2 represents
(7.110).

The main conclusions to be drawn from Figs. 7.5–7.7 are as follows,

� Details of the screening behaviour become unimportant at large thickness, and
� At small thicknesses, the halfwidth appears to be very sensitive to the adopted

screening function.
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Fig. 7.8 Measured multiple-scattering profile for 500 keV C in 548 Å Se. Solid line: Meyer (1971).
Points: Measured by Andersen et al. (1974). From Andersen et al. (1974)

7.6.5 Measurements

The experimental literature on multiple scattering of ions of all masses and energies
is extensive, yet a comprehensive review is not known to the author. The present
brief survey addresses primarily ions heavier than protons at moderate energies,
where classical scattering provides an appropriate theoretical description.

Figure 7.8 shows a multiple-scattering profile measured by Andersen et al. (1974)
compared with the calculation of Meyer (1971). Meyer’s correction for truncation
of the potential, mentioned in Sect. 7.6.4, has been ignored. Excellent agreement is
found over an intensity range covering more than an order of magnitude.

Figure 7.9 shows a test on the scaling properties. Measurements from several
groups representing different ions, targets and a wide range of energies, covering a
�-range of six orders of magnitude, confirm the validity of Thomas-Fermi scaling as
far as the halfwidth is concerned. Moreover, excellent agreement is found with the
theoretical prediction based on Thomas-Fermi interaction. The latter curve is taken
from the table of Amsel et al. (2003) which goes to quite high �-values but does
not incorporate relativistic corrections. Such a correction is, however, included in
Fig. 7.10, which was generated by Geissel et al. (2002).

Figure 7.11 shows the ratio F.2˛1=2/=F.˛1=2/, which characterizes the shape
of a multiple-scattering profile. It is seen that this ratio is significantly higher than
it would be for a gaussian profile. Deviations from strict Thomas-Fermi scaling are
more pronounced here than in Fig. 7.9. Such deviations can be expected to increase
if you go further out into the tails.



316 7 Multiple Scattering

0.1

1

10

100

1000

10-1 101 103 105

Andersen
Anne: Ar 
Anne: O 
Anne: Kr 
Anne: Mo 
Spahn: Ne
Hooton: O
Hooton:Cl
Hooton: Fe
Amsel et al

τ

α~ 1/
2

Fig. 7.9 Multiple-scattering halfwidths for a wide range of ions, targets and energies. Measure-
ments of Andersen and Bøttiger (1971), Spahn and Groeneveld (1975), Hooton et al. (1975) and
Anne et al. (1988). Solid line from Amsel et al. (2003). From ICRU (2005) (expanded)

Fig. 7.10 Multiple scatter-
ing of relativistic heavy
ions: Solid line: Theory of
Sigmund and Winterbon
(1974). Data from Anne
et al. (1988), Schwab et al.
(1990), Scheidenberger et al.
(1998). 85 MeV/u Ar ! Al
(full circles), Pt (full
square), Au (full triangles),
1500 MeV/u C ! Pb (as-
terisk), 940 MeV/u U ! Al
(open circles), Ti (open
squares), and Au (open tri-
angles). From Geissel et al.
(2002)
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7.6.6 Special Aspects

In this section I like to list a few pertinent references on problems of a more technical
nature which are encountered in practice but which, if treated here, would make this
chapter unduly long.
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Fig. 7.11 Ratio F .2˛1=2/=F .˛1=2/ for numerous ions with 3 � Z1 � 30 in carbon foils of
three different thicknesses and energies from 200 to 1000 keV, measured by Andersen and Bøttiger
(1971). Solid line: Meyer (1971). The horizontal line represents a gaussian profile. From Andersen
and Bøttiger (1971)

7.6.6.1 Projected Angular Distributions

Amsel et al. (2003) reevaluated multiple-scattering distributions for Thomas-Fermi
and Lenz-Jensen interaction. Most of the tables in the printed paper refer to pro-
jected distributions, but cylindrical distributions of the type discussed here can be
found in the internet on the homepage associated with the paper (Amsel et al., 2003).

The two distributions are quantitatively different, as you may recognize by solv-
ing Problem 7.10, but in the Gaussian limit they have the same half-width. Note,
however, that the projection on an arbitrary plane can be constructed from the full
cylindrically-symmetric distribution. The projection on a plane containing the plane
of incidence, which is determined by (7.60) does not provide this option.

7.6.6.2 Heavy Ion in Light Material

If the ion mass M1 exceeds the target mass M2, the maximum scattering angle in a
single-scattering event is given by

sin �max D M2

M1

(7.164)



318 7 Multiple Scattering

according to (3.6), Vol. 1. For M1 	 M2 this may imply that the c.m.s. scatter-
ing angle is large even if the laboratory scattering angle is small. The small-angle
approximation becomes then questionable, and discrepancies with experimental re-
sults have been found (Geissel et al., 1985). This situation has been treated on the
basis of the approach of Goudsmit and Saunderson (1940) by Winterbon (1987,
1989).

7.6.6.3 Role of Charge Exchange

In the range of impact parameters characteristic of small-angle scattering, the
Coulomb potential of the nucleus is more or less perfectly screened by electrons
bound to the projectile. Therefore the influence of charge exchange on multiple
scattering deserves attention.

Figure 7.12 shows a set of measurements for N ions in C by Kanter (1983).
The incident energy E D 3:7MeV and the incident charge state q D 1 were kept
constant, and the eight graphs represent multiple-scattering profiles for exit charge
states q D 0–7. According to ETACHA (Rozet et al., 1996), the beam should be
close to charge-equilibrated at the foil thickness 1.6 μg/cm2. The graph shows that
a very large fraction of the ions is in charge states q D 4–6. Angular distributions
for q D 0–5 all look very similar, whereas profiles for q D 6 and 7 are significantly
broader, indicating that one or more collisions immediately before exit were more
violent than average.

The main conclusion from Fig. 7.12 is that the influence of charge exchange is
measurable in exit-charge-specific multiple-scattering profiles, while an influence
on the total angular profile of the beam must be rather small.

While an explicit theoretical prediction on the basis of (7.92) is not available,
Kanter (1983) included the results of a Monte-Carlo simulation in his work. Fig-
ure 7.12 indicates the occurrence of a ring structure around a minimum at zero scat-
tering angle for the highest exit charge state. This appears to confirm the conclusion
that deviations from average behaviour originate in the last collision.

7.7 Lateral Distribution

7.7.1 Scaling Properties

The lateral distribution, given by (7.77), may be rewritten in terms of the chord angle

ˇ D �

x
(7.165)

illustrated schematically in Fig. 7.13. With the substitution
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Fig. 7.12 Multiple-scattering profiles of 3.7 MeV NC ions in 1.6 μg/cm2 carbon for exit charge
states q D 0–7. Points: Measured. Lines: Monte Carlo simulation. From Kanter (1983)

k D �x (7.166)

you obtain

G.�; x/ d2� � Gˇ .ˇ; x/ d2ˇ D d2ˇ
.2�/2

Z
d2keik�ˇ�Nx 1

k

R k
0 dk0�.k0/: (7.167)
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Fig. 7.13 Connection between lateral spread �, chord angle ˇ , multiple-scattering angle ˛ and
penetration depth x

You may notice that the only difference to the angular multiple-scattering distri-
bution is the replacement of the transport cross section �.k/ by its average value
.1=k/

R k
0 dk0�.k0/.

7.7.2 Power Scattering

Marwick and Sigmund (1975) noted that for power scattering, where �.k/ / k2m,
angular profiles may be converted into lateral profiles by replacing �.k/ with
�.k/=.2mC 1/ or

˛ D �mˇ � �m
�

x
(7.168)

with
�m D .1C 2m/1=2m : (7.169)

This implies, for example, that the lateral profile form D 1=2 follows from (7.112)
by substituting ˛ D 2�=x, i.e.,

F.ˇ; x/ D 1

2�

NCx=2

.ˇ2 C .NCx=2/2/
3=2

: (7.170)

The quantity �m decreases from 2.718 to 1.732 for m going from 0 to 1. It appears
justified, for such a weak variation, to adopt power scattering with m dependent on
the thickness. Quantitatively, such a dependence may be determined by matching a
power-law profile to a Thomas-Fermi or Lenz-Jensen angular profile at angle zero.
The two graphs in Fig. 7.14 show the variation of m and �.�/ � �m.�/ with the
dimensionless thickness parameter � . You may note that the variation of � over a
limited range of thicknesses is slow.
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Fig. 7.14 Top: Effective exponent m for power scattering versus dimensionless target thickness � .
Bottom: Effective scaling factor � in (7.168). From Marwick and Sigmund (1975)

7.7.3 Numerical Results

Projected lateral profiles have been tabulated by Amsel et al. (2003) and may be
downloaded from the homepage associated with that paper. Figure 7.15 shows
a comparison between tabulated projected profiles for Thomas-Fermi interaction.
Scaling has been tested by scaling the lateral profile, expressed through the chord
angle ˇ, to the angular profile at zero angle. This required a scaling factor � D 1:94,
which is in perfect agreement with Fig. 7.14.

7.7.4 Measurements

Measurements of lateral distributions were performed by Sidenius and Andersen
(1975) and by Knudsen et al. (1976). Figure 7.16 shows results for a large num-
ber of ions in the energy range 20–180 keV. Thomas-Fermi scaling appears well
confirmed, and all results fall in between the Thomas-Fermi and the Lenz-Jensen
prediction.
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Fig. 7.15 Projected multiple-scattering profile for Thomas-Fermi interaction at thickness � D 1.
Angular (blue) and lateral (red) profile according to Amsel et al. (2003). Dotted red line: Angular
profile scaled by � D 1:94

Fig. 7.16 Halfwidths of lat-
eral profiles in xenon gas plot-
ted in Thomas-Fermi units,
measured by Sidenius and
Andersen (1975) and com-
pared with Thomas-Fermi and
Lenz-Jensen prediction. Ions
listed in the legend had ener-
gies between 20 and 180 keV.
The stipled line serves to
guide the eye. From Sidenius
and Andersen (1975)

Lateral distributions in gases can be measured with good accuracy down to very
low layer thicknesses in terms of atoms/area. This implies that when � approaches
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Fig. 7.17 Halfwidth of lateral profiles of ions in Xe gas measured by Knudsen et al. (1976) at very
small target thickness corresponding to � ' 0:033. From Knudsen et al. (1976)

the single-collision regime, structure in the interatomic potential becomes visible
when the profiles of ions with different atomic numberZ1 are compared. An exam-
ple is shown in Fig. 7.17.

7.7.5 Packing

Unpublished measurements by Sidenius in the early 1970s of multiple scattering
distributions in molecular gas revealed minor differences from the scaling prop-
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Fig. 7.18 Packing effect in multiple scattering. Ratio of multiple-scattering lateral half-widths of
50 keV Pb ions incident on nitrogen and neon (upper graph) and oxygen and neon (lower graph)
gas targets. Calculations for power scattering from Sigmund (1977). Measurements and graph from
Besenbacher et al. (1978)

erties predicted for atomic gases. These measurements initiated theoretical studies
reported in Sects. 5.4 and 7.3.9.

Systematic measurements by Sidenius et al. (1976) and Besenbacher et al. (1978)
revealed a substantial packing effect in molecular gases. Figure 7.18 shows a com-
parison of measured halfwidths with predictions based on (7.69) and power scatter-
ing (Sigmund, 1977). With decreasing layer thickness, pertinent scattering angles
decrease, so representative impact parameters increase. With increasing impact pa-
rameter the potential of a molecule approaches the united-atom limit. This is indi-
cated by the horizontal lines.

Unlike in the case of energy loss, the theory has not yet been generalized to solid
targets. Multiple scattering distributions need to be characterized by the distribution
rather than the second moment.
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Fig. 7.19 Contours representing angular scans through a beam diameter. Left: Measured for
50 keV Ar in Xe at � D 0:082. Contours decreasing in 10% steps; Middle: Calculated for power
scattering with exponentsm D 0:191, 0.291 and 0.491. Right: Comparison of calculation (dashed
curves) with experiment (solid curves) for contours 50 and 23%. From Sigmund et al. (1978)

7.7.6 Angular-Lateral Distribution

You can easily convince yourself that in the diffusion approximation, (7.108), the
angular distribution in a given point r D .x;�/ in space has contour lines

�
˛ C 3

2
ˇ

�2
C 3

4
ˇ2 D constant ; (7.171)

i.e., a set of ellipses centered around the origin.
Approximate calculations for power scattering have been reported by Firsov et al.

(1976) for the power potential withm D 1=2 and applied to measurements of energy
spectra of ions reflected from plane surfaces after grazing incidence. Approximate
calculations for arbitrary power potentials, 0 < m < 1 were reported and compared
with measurements by Sigmund et al. (1978), see Fig. 7.19.

More systematic calculations by Amsel et al. (2003) are likewise based on power
scattering. Figure 7.20 shows the variation with the power exponent starting from
the diffusion limit (upper-left graph).

7.8 Energy-Angular Distribution

Joint distributions in energy and angle are of interest in several areas. An aspect
of considerable practical importance is the angular distribution at layer thicknesses
large enough so that energy loss cannot be neglected. Several options to overcome
this problem in cases where the energy loss is small compared to the beam energy
have been mentioned in Sect. 7.4.2.2 and will not be discussed further here. Situa-
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Fig. 7.20 Contour graphs (10%) for power scattering with exponent m D �=2. From Amsel et al.
(2003)

tions where the energy loss is comparable to the beam energy belong into the topic
of ion ranges to be discussed in Chap. 9.

Here are two specific situations, where correlated energy-angle distributions
serve as a useful and, perhaps, necessary tool:

� Separating nuclear from electronic stopping in cases where both mechanisms
contribute to stopping.

� Measurements involving resonance effects such as Doppler-shift attenuation to
determine nuclear lifetimes, or inverted-Doppler-shift attenuation to measure
stopping forces.

� A third situation, sometimes called the Ishiwari-effect, generated considerable
theoretical activity because the effect, if real, would have cast doubt at the out-
come of numerous measurements of electronic stopping.

I shall here briefly discuss the first of these three topics.
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Fig. 7.21 Detector geome-
tries in stopping measure-
ments. From Sigmund (1991)

7.8.1 Separation of Nuclear from Electronic Stopping

While the energy loss of a particle along its path is determined by the sum of the
electronic and the nuclear stopping cross section, the radiation effects caused by
the two processes are different in both character and magnitude and, therefore,
will typically be studied separately. Moreover, stopping theory delivers estimates
of electronic and nuclear stopping cross sections. For both reasons, measurements
are needed from which data on electronic and nuclear stopping can be extracted
separately.

Figure 7.21 shows three characteristic geometries. In the upper graph the detect-
ing device records the energy loss of all, or at least the majority of the incident par-
ticles. In such an experiment the quantity measured is the sum of the electronic and
nuclear stopping cross section. This geometry is convenient for direct measurements
of nuclear stopping in the energy regime where electronic stopping is negligible.

The middle graph shows the opposite extreme, where the detector records en-
ergy losses of particles scattered into a a narrow angular range around the direction
of incidence. This is the standard geometry in electronic-stopping measurements.
Nuclear energy losses in single collisions are small for small scattering angles and,
dependent on the opening angle, negligible. However, multiple-scattering trajecto-
ries may involve larger angles. Therefore, nuclear stopping will not be completely
suppressed.

The geometry sketched in the lower graph allows an angular scan of the energy
loss. We shall get back to this case in Sect. 7.8.2.

Let us first find out some criteria regarding the importance of a nuclear-stopping
correction. Roughly, nuclear stopping has its maximum at a dimensionless energy
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if we set A1 � 2Z1 and A2 � 2Z2. At beam energies far above Ec , nuclear
stopping will be a small correction. For lower beam energies, nuclear stopping will
become a significant contribution for light ions, and dominating for heavier ions.

Next, let us look at the peak energy loss due to nuclear stopping in the beam di-
rection. An elegant and efficient approximation was offered by Fastrup et al. (1966),
based on the Bohr-Williams theory of multiple scattering with the limiting angle ˛�
defined by (7.122). Now, for small scattering angles, the relation T D Tmax sin2‚=2
reduces to

T D M1

M2

E�2 (7.173)

for M1 < M2. It is assumed, then, that the energy-loss spectrum at angles ˛ > ˛�
reflects the single-scattering cross section, while for ˛ < ˛� one expects a gaussian-
like spectrum centered around

T � D M1

M2

E˛�2 : (7.174)

This is equivalent with

T � D
Z T �

0

T d�.T / : (7.175)

A rigorous description, based on the Bothe-Landau equation is due to Glazov
and Sigmund (2003). Here (7.83) was solved numerically for Thomas-Fermi and
Lenz-Jensen interaction neglecting electronic stopping. Figure 7.22 shows universal
plots of nuclear-energy-loss profiles at angle zero. You may take note of consider-
able skewness and, in particular at the smallest �-value, a major difference between
Lenz-Jensen and Thomas-Fermi interaction which could be expected on the basis of
Fig. 6.22.

Figure 7.23 shows a comparison between the two approaches, which indicates
good quantitative agreement for �-values down to � � 1=2.

What happens for M1 > M2? Here the energy-loss spectrum has two branches,
one of which has its maximum at ˛ D 0. This binary-collision peak is well sepa-
rated from what has been discussed in this section. Depending on target thickness it
may even lie far above the electronic-energy-loss spectrum. Its presence may sug-
gest inspection of the measured spectrum, but it should not preclude extraction of
accurate stopping parameters.

For a detailed discussion both of the pertinent theory and examples of nuclear-
stopping corrections applied in the literature the reader is referred to Glazov and
Sigmund (2003).
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Fig. 7.22 Energy-loss spectra in forward direction. Nuclear stopping only. � is the foil thickness
in Thomas-Fermi units, (7.136). From Glazov and Sigmund (2003)

7.8.2 Angular Scan

Going back to Fig. 7.21 consider now the third of the three geometries, i.e., an angu-
lar scan of the energy-loss spectrum or related parameters such as the mean energy
loss. At angles large enough to ensure single-collision conditions such measure-
ments may provide information on differential cross sections. Conversely, only little
variation of the energy-loss and related quantities is expected within the multiple-
scattering angle.



330 7 Multiple Scattering

0.00001

0.001

0.1

10

0.1 1 10 100

Thomas-Fermi, BW 
Thomas-Fermi, BL
Lenz-Jensen, BW
Lenz-Jensen, BL

τ

y p =
 ε

Δε
p/ γ

Fig. 7.23 Most probable energy loss in beam direction, calculated from (7.122) (BW) and (7.80)
(BL). From Glazov and Sigmund (2003)

Fig. 7.24 Mean energy loss versus emergence angle of 7 MeV protons in Be and Ag foils. Also
the multiple scattering distributions are shown. From Ishiwari et al. (1982)

It was a surprise, therefore, when Ishiwari et al. (1982) reported a variation in the
mean energy loss of 7 MeV protons in metallic and organic foils. Figure 7.24 shows
two examples, representing a light and a heavy target, Be and Ag, respectively. It
was shown that this effect could not be explained in terms of nuclear stopping and
was, therefore, tentatively ascribed to electronic stopping.

As a consequence, several attempts were made to explain the phenomenon the-
oretically by Meyer et al. (1977), Jakas et al. (1983, 1984a), Gras-Marti (1985),
Sigmund and Winterbon (1985), starting at the Bothe-Landau formula or its exten-
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Fig. 7.25 Schematic illus-
tration of the fact that for a
nonuniform target, high en-
ergy loss tends to correlate
with high multiple-scattering
angles

sion, (7.80). These studies were useful theoretical exercises but did not explain the
‘Ishiwari effect’ indicated in Fig. 7.24.

A credible explanation was given by Lindhard (1984), stimulated by the sim-
ilarity of �E.‚/ with the multiple-scattering profile following Molière (1948),
which is also shown in Fig. 7.24. Figure 7.25 shows a schematic view of a foil
with a nonuniform thickness. For particles passing through the foil at point b, where
the thickness is small, both energy loss and multiple scattering angle are relatively
small, whereas the opposite is the case for particles passing through point a. Thus,
the energy loss increases with increasing ˛.

Numerical estimates by Mertens and Krist (1986) confirmed the reality of the ef-
fect in principle. Subsequent measurements by Ishiwari et al. (1990) and Sakamoto
et al. (1992) were performed with 5 MeV HC on Cu. Foil thickness nonuniformity
was measured to be 4 and 2 pct. After correction for nonuniformity, a 0.75% in-
crease in energy loss up to 3ı remained, which was ascribed to impact-parameter-
dependent electronic energy loss.

Figure 7.26 shows that for 5 MeV HC on Cu, a scattering angle 1ı < � <

3ı corresponds to an impact parameter 0:005 < p < 0:016 Å. In this interval,
the electronic energy loss shows a variation of 0.1 eV according to the CasP code
(Grande and Schiwietz, 2010), while the nuclear energy loss varies between 20 and
200 eV. Both contributions, which have to be compared with a mean energy loss
of 111.40 keV, have been included in Fig. 7.26. We may conclude, therefore, that
angular variations in the energy loss of protons observed at these high energies do
not reflect an unexpected dependence on impact parameter of the electronic energy
loss.
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Fig. 7.26 Dependence of scattering angle � (from Rutherford’s law) and electronic energy loss
T on impact parameter p in single collision of 5 MeV HC on Cu atom (from CasP (Grande and
Schiwietz, 2010)

Several experiments have been carried out involving lower beam energies and/or
heavier ions and supported by pertinent theory. While there is no doubt about the
existence of angular-dependent stopping, such experiments have not led to surpris-
ing results or generated controversies. Studies by Jakas et al. (1984b), Geissel et al.
(1984), Bednyakov et al. (1986), Lantschner et al. (1987) and Lennard and Geissel
(1992) give an impression of this topic.

7.8.3 Trajectory Inversion

Another surprising effect was reported by Pronko et al. (1979). Figure 7.27 shows
a Rutherford backscattering spectrum from a massive target, in casu 800 keV HeC
on copper. This spectrum is of the type shown in Fig. 1.7, Vol. 1, except that the
penetration depth at which backscattering took place replaces the energy scale on
the abscissa. A special feature in this experiment is the use of detectors that allow to
study backscattering angles close to 180ı. Two detectors have been employed with
acceptance angles of 0.2 (narrow acceptance) and 4.5ı (wide acceptance).

The spectrum for wide acceptance is seen to show the regular behaviour which
is found for scattering angles off 180ı, while a pronounced increase is observed for
ions backscattered from the near-surface region into the narrow-acceptance detector.
Evidently, the two curves have been normalized such as to agree in deeper layers.

It was observed immediately by Jakas and Baragiola (1980) and Crawford (1980)
that the effect had to be related to reversibility: Consider a static material structure,
regular or random, and disregard thermal vibrations. Then an ion backscattered from
a target atom at 180ı will undergo essentially the same trajectory as on the way
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Fig. 7.27 Rutherford spectrum of 800 keV HeC scattered from a thick Cu target. Instead of the
energy of the backscattered ion the abscissa scale shows the depth of penetration at which backscat-
tering has taken place. ‘Narrow’ and ‘wide’ acceptance indicate detector angles of 0.2 and 4.5ı,
respectively. From Pronko et al. (1979)

in, i.e., even though it undergoes multiple scattering it will emerge from the solid
opposite to its incoming direction. Effects causing deviations from strict reversibility
are

� Energy loss in the backscattering event, which changes all cross sections,
� Energy loss by electronic stopping, which changes cross sections gradually,
� Motion of recoil atoms in the time between scattering events on the way in and

out, which changes impact parameters, and
� Thermal vibrations in the structure, which likewise changes impact parameters.

Here the first effect must be dominating at low penetration depth, while the others
contribute to its gradual disappearance at larger depths due to increased pathlength
and timespan.

All these effects can be accounted for in proper simulations, and good agreement
with measurements has been achieved already by Barrett et al. (1980). A treatment
by transport theory by Jakas et al. (1984a), assuming a random medium, allowed
for energy change in the backscattering event. Reasonable agreement with measure-
ments was achieved in the depth range where the effect is small, but the effect is
underestimated at depth zero, presumably because both the change in velocity and
the lateral displacement were treated as small perturbations.



334 7 Multiple Scattering

7.9 Discussion and Outlook

Multiple scattering of ions is a comparatively well-developed area in the theory of
particle penetration. With regard to the weakly-screened regime, i.e., protons and
alpha particles, this has been so already half a century ago (Scott, 1963). Calcula-
tions and tabulations for heavier ions (Meyer, 1971, Sigmund and Winterbon, 1974,
Amsel et al., 2003) provide fairly comprehensive coverage of both angular and lat-
eral profiles, as far as penetration through unlimited media is concerned. Problems
must be faced when surfaces are involved, such as in the scattering of particle beams
at grazing incidence on a plane surface (Winter, 2002). There are analytical treat-
ments on the topic, most notably by Firsov (1970), where the algebraic complexity
is overcome by assuming 1=R2 interaction.

Limitations of the analytical schemes discussed in this chapter are most easily
identified from the results: Caution is indicated when scattering angles and/or energy
losses become large or when a profile overlaps with target inhomogeneities such as
surfaces and voids. Monte Carlo simulation is the standard strategy to deal with such
problems. This, however, hinges on a proper treatment of small-angle scattering and
hence, requires careful consideration of how to truncate the interaction potential as
mentioned in Sect. 7.3.6.

I have mentioned several types of correlation in this chapter, although in a more
cursory form, mainly to illustrate the power of transport theory. While analytic so-
lutions are not necessarily available, you should be aware that simulational solution
may require excessive computation times, depending on the number of variables
involved.

Problems

7.1. Derive the transport equation (7.54) from (7.1) by assuming one of the two
layers to be infinitesimally small. If needed, get help from Sect. 9.5.1, Vol. 1.

7.2. Derive (7.35) and (7.34) explicitly, starting at (7.1) by going through the argu-
ment that led to the Bothe-Landau formula for the energy loss.

7.3. Evaluate the multiple-scattering distribution versus pathlength of a particle re-
stricted to a plane and able to undergo scattering events with equal probability for
� D ˙90ı. Write up the result as a sum of two standard Fourier series and generate
a few representative plots.

7.4. Derive (7.59) and (7.60) from (7.40).

7.5. Determine the screening angle �a for Yukawa screening. Use the scattering law
resulting from the Born approximation, (3.94), Vol. 1.
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7.6. Show that Lindhard-Scharff scaling, defined in Sect. 6.3.3.2, holds rigorously
within the small-angle approximation for any screened-Coulomb potential. Show
that the function Qg. Q�/ relates to the function f .
 sin.‚=2// introduced in (6.57) as

Qg. Q�/ D Q�f . Q�=2/: (7.176)

7.7. Derive (7.138)–(7.141) from (3.86), (3.89) and (3.90) in Volume 1.

7.8. Unlike (7.149), (7.152) does not involve the screening radius. Derive a condi-
tion for (7.152) to be a stronger restriction than (7.152) and draw a conclusion.

7.9. Show that for Born scattering on an exponentially-screened Coulomb potential
the screening angle becomes O� D 1.

7.10. Evaluate the projected angular distribution for the cross section (7.110). Start
from (7.60) and/or (7.112).

7.11. Convince yourself, on the basis of the Rutherford cross section, that the mag-
nitude of �E.˛/ shown in Fig. 7.24 cannot be explained by nuclear energy loss.

7.12. Construct a few diagrams of the type of Fig. 7.26 for 0.5 MeV HC and for
5 MeV CC on Cu.

7.13. Try to estimate the relative significance of recoil motion and thermal vibra-
tions on the difference between impact parameters on the way in and out in the
experiment shown in Fig. 7.27. Hint: Look at the distance travelled in the interven-
ing time.
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Slow Ions



Chapter 8

Stopping of Slow Ions

Abstract This chapter addresses the stopping and straggling of ions at velocities
up to the Thomas-Fermi speed vTF D Z

2=3
1 v0, with the main focus on velocities

up to the Bohr speed v0.This topic is characterized by many unsolved problems
both on the experimental and the theoretical side. Experimental findings play a more
dominant role in this chapter than in other parts of this monograph. The newly found
reciprocity principle is explored in the evaluation of data. Much existing theory
is based directly or indirectly on electron-gas theory, especially Fermi-gas theory.
The Lindhard-Scharff formula and Firsov’s theory are discussed along with various
extensions. The transport cross section approach is explored in conjunction with
partial waves, Born approximation as well as linear and nonlinear dielectric theory.
Stopping cross sections are known to show pronounced oscillations as a function of
the atomic numberZ1 of the projectile, and presumably also of Z2, where evidence
is weaker.

8.1 Introductory Comments

Figure 4.1 indicates severe limitations of both Bohr and Bethe stopping theory to-
ward low beam energies. For O in Al, the stopping cross section turns negative
at � 300 keV/u according to the Bohr formula and at � 70 keV/u for the simple
Bethe formula. We have seen in chapter 4 that a number of corrections extend the
range of validity of both theories toward lower projectile velocities. Although ex-
cellent agreement with experimental results was found in some systems down to
� 1 keV/u, significant discrepancies were found in others.

The simple Bethe stopping formula assumes the orbital speed of the target elec-
trons to be negligible compared to the projectile speed. Orbital speeds are not even
considered in the original Bohr theory, which was developed before Bohr’s atomic
model. At energies below 100 keV/u we deal with projectile speeds of the order of
the Bohr speed v0 or less, i.e., a velocity range representative of outer-shell target
electrons.

P. Sigmund, Particle Penetration and Radiation Effects Volume 2,
Springer Series in Solid-State Sciences 179, DOI: 10.1007/978-3-319-05564-0_8,
� Springer International Publishing Switzerland 2014
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Orbital motion of target electrons is taken care of by the shell correction. Once a
correction is not small but becomes the dominating feature, there is a strong motiva-
tion to build up the theory from the opposite end, in casu a projectile moving slowly
compared to the orbital speed of the electrons.

Neglecting orbital motion is not the only limitation: Bethe’s theory is based on
the Born approximation which represents an expansion in terms of the Sommerfeld
parameter Z1e2=�v. This parameter gets large when v gets small. Although we
have learned that Bohr theory takes over at lower projectile speeds, the treatment
of distant interactions in Bohr’s theory (cf. Sect. 4.2.2, Vol. 1) rests on the ‘sudden’
approximation, i.e., the assumption that the displacement of a target electron during
the interaction is negligible. Clearly, there must be a lower limit of the velocity range
where such an assumption is valid.

We may conclude that stopping of slow ions needs a different theoretical basis,
taking due account of the fact that the perturbation of the medium by the projec-
tile may be substantial, that interaction times are not small, and that the electronic
structure of the target in the vicinity of the projectile may be distorted significantly.

Major complications also exist on the experimental side. As you may see from
Fig. 4.3, there is considerable scatter in the experimental data. Part of this is caused
by the asserted scaling in the graph, where measurements employing oxygen on
numerous target materials are involved. However, we shall see below that there is
also substantial scatter between experimental data on one and the same system.

Stopping measurements in the conventional transmission geometry require thin-
ner and thinner foils, the lower the beam energy. This is a severe limitation in par-
ticular for heavy ions, where the stopping force is large.

Moreover, the contribution from nuclear stopping to the total stopping cross sec-
tion increases with decreasing energy. Therefore, separating nuclear from electronic
stopping is essential in comparisons with theoretical predictions.

Finally, nuclear stopping is intimately connected to angular scattering. Therefore
the proper correction for nuclear stopping depends on the experimental geometry.

At the time of writing a universal theory of electronic stopping for slow ions is
not readily available. Just as in case of swift ions, stopping of light ions has received
more interest both experimentally and theoretically. Since stopping of slow light
ions such as protons and antiprotons has not been considered in detail in Volume 1,
attention will be given to this subject here, although stopping of heavier ions is the
main issue.

8.2 Velocity-proportional Stopping?

It may be useful to start with a rather general survey of experimental observations
as well as theoretical considerations. More quantitative insight will be looked for in
the following sections.
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Fig. 8.1 Ranges of fission fragments in gaseous and solid materials compared to theoretical calcu-
lation by Lindhard et al. (1963b). � D N�a2�R and � D Era=Z1Z2e

2 denote dimensionless
measures of the range and the initial energy in accordance with (6.82) and (6.38), respectively. The
quantity � denotes a correction for the part of the range that does not generate enough ionization
to produce a visible track, and k is a dimensionless constant. Experimental data from Alexander
and Gazdik (1960), Fulmer (1957), Leachman and Schmitt (1954). From Lindhard et al. (1963b)

8.2.1 Stokes’ Law

If you throw a steel ball into the air, and if there is no wind, the ball will, in addi-
tion to gravity, experience a friction force proportional to the velocity according to
Stokes’ law.

A simple theoretical explanation is provided by kinetic gas theory: The ball is
hit by gas molecules with average speeds far in excess of the speed of the ball.
Seen from the ball, the gas molecules have a net velocity opposite to the direction
of motion of the ball, and hence will transfer a net momentum to the ball. If you
neglect changes in air pressure around the ball, the resulting friction force will be
proportional to the ball velocity.

This model is analogous to the movement of a heavy particle through a classical
electron gas. Recalling that a friction force is synonymous with the loss of kinetic
energy per pathlength, we may expect a range of beam energies where the stopping
cross section is proportional to the projectile speed.

Fermi and Teller (1947) showed that velocity-proportional stopping also holds
for a Fermi gas. That theory has undergone substantial development, as will be
discussed below.

Evidence supporting the asserted proportionality of the stopping cross section
with the projectile speed was first collected from measurements of the ranges of
fission fragments, cf. Fig. 8.1. At this point we just note that the solid line represents
the relation R / p

E, from which you easily derive that



346 8 Stopping of Slow Ions

dE
dR

D 1

dR=dE
/

p
E : (8.1)

Direct measurements employing ion beams of a well-defined species and beam en-
ergy penetrating thin foils were reported from the 1960s on (Ormrod and Duck-
worth, 1963, Fastrup et al., 1966). The results of these as well as numerous sub-
sequent studies may be inspected in Paul’s internet album (Paul, 2013). The as-
serted proportionality of the stopping cross section with the beam speed has been
confirmed in many of these measurements, but noticeable deviations have been ob-
served. Such deviations have often been expressed in terms of a power law

dE
dx

/ Ep ; (8.2)

where p can range from 0.4 to 0.75 according to Fastrup et al. (1966).

8.2.2 Z1 Structure

An interesting observation which emerged already from the first direct measure-
ments (Ormrod and Duckworth, 1963, Ormrod et al., 1965) is an oscillatory struc-
ture of the stopping cross section as a function of the atomic number of the ion,
called Z1 structure or Z1 oscillations. The phenomenon is illustrated in Fig. 8.2 in
the dependence of the electronic stopping cross section Se on Z1 at a fixed beam
speed. The relative amplitude of the oscillations appears to increase with decreasing
velocity. These oscillations go along with an oscillatory dependence of the exponent
p defined in (8.2) on Z1 (Fastrup et al., 1966). This phenomenon became a major
challenge to theoreticians for many years.

Once Z1 oscillations had been found, experimentalists also looked for Z2 os-
cillations. Pertinent experiments involve a variety of target materials. Comparing
stopping measurements on different materials is, a priori, more tricky, since other
material properties such as target structure and purity may vary significantly. We
shall look for evidence in favour of Z2 structure in the following section.

8.2.3 Reciprocity

Consider a collision between two neutral atoms 1 and 2 with atom 2 being initially
at rest. Assume the energy to be low enough that ionization and charge exchange
are negligible, but allow for electronic excitation of either atom or both with an
excitation energyQ. This means that atom 1 has lost an energy

T ' Q (8.3)
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Fig. 8.2 Electronic stopping
cross sections of various ions
in carbon at four different
beam speeds. Measurements
by Fastrup et al. (1966) for
v=v0 D 0:41, 0.63, 0.91
and 1.1 (bottom to top).
Also included are theoretical
predictions from (8.73) and
(8.80). From Fastrup et al.
(1966)

in addition to a possible recoil loss.
The excitation energy Q follows a probability distribution P.Q;‚/dQ which

depends on the scattering angle. The electronic stopping cross section may then be
determined from

Se D
Z

d�.‚/
Z

dQQP.Q;‚/ ; (8.4)

where ‚ denotes the c.m.s. scattering angle.
This relation does notdistinguish between atom 1 and atom 2. Therefore we may

expect that for a collision between two neutral atoms, in the absence of electron
capture or loss,

Se.1 ! 2/ D Se.2 ! 1/ : (8.5)

Equation (8.5) is a reciprocity relation (Sigmund, 2008a). It is strictly valid under
conditions which are rarely satisfied in practice, but if you allow for minor devia-
tions it is an extremely useful tool.

At low beam velocities the equilibrium charge is close to zero. Although the
excitation probability of a CC ion hitting a neutral Si atom is not identical with that
of a SiC ion hitting a neutral C atom, the difference will typically lie in the few-%
range.

Figure 8.3 shows an example. Measured stopping cross sections reported in the
literature for Si in C (red symbols) and C in Si (blue symbols) have been plotted



348 8 Stopping of Slow Ions

10

20

50

100

200

500

0.001 0.01 0.1

Grahmann & Kalbitzer 76

Hoffmann et al 76

Santry et al 1991

Jiang et al 1999

Zhang et al 2003

Ormrod & Duckworth 65

Fastrup et al 66

Lennard & Geissel 1987

Ward et al 1979

Zhang et al 2002

Blue symbols: C in Si
Red symbols: Si in C

E [MeV/u]

S
e [1

0-1
5 eV

cm
2 ]

Fig. 8.3 Electronic stopping cross sections for C in Si (blue symbols) and Si in C (red sym-
bols). Experimental data from Grahmann and Kalbitzer (1976), Hoffmann et al. (1976), Santry
and Werner (1991), Jiang et al. (1999), Zhang and Weber (2003), Ormrod et al. (1965), Fastrup
et al. (1966), Lennard and Geissel (1987), Ward et al. (1979), Zhang et al. (2002), compiled by
Paul (2013). From Sigmund (2008a)

over three orders of magnitude in beam energy. With the exception of a single point
(Hoffmann et al., 1976), reciprocity appears to be obeyed within experimental scat-
ter up to ' 100 keV/u. At 100 keV, the mean equilibrium charge is 2.7 for C in Si
and 4.1 for Si in C. This difference appears to be insignificant, whereas at higher
energies, the higher charge of Si gives rise to an increasing difference between the
two data sets.

Reciprocity is a rather new principle at the time of writing, but numerous similar
examples have been presented (Sigmund, 2008a), and a code to systematically anal-
yse all ion-target combinations of the periodic table has been worked out by Kuzmin
and Sigmund (2011).

The principle is not fulfilled rigorously, but it is nevertheless a useful tool in
connection with experimental data:

� Reciprocity may be helpful in identifying experimental errors or errors in data
analysis. As an example, inspection of Fig. 8.3 suggests caution regarding a sin-
gle outlier.

� There are numerous ion-target combinations where measurements of ion 1 in
target 2 are hard to perform, while ion 2 in target 1 is more accessible. Reciprocity
may then provide a first estimate of the stopping cross sections.

� Reciprocity may also be helpful in testing theoretical predictions. It will normally
be clear from the input whether or not reciprocity is inherent in a theory.

In Sect. 8.2 we had a first look at Z1 oscillations in electronic stopping. As far as
reciprocity is valid, there should be Z2 oscillations with a similar magnitude and
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Fig. 8.4 Electronic stopping cross sections at v D v0 for carbon ions in different materials and
for different ions in carbon (upper graph). The same for nitrogen (lower graph). Experimental data
that are not taken at v0 were inter- or extrapolated toward v0 by a power law. Empty symbols refer
to cases where extrapolation is somewhat uncertain

similar positions of maxima and minima. Figure 8.4 illustrates two examples. The
coverage with data is barely sufficient to allow a definite statement. More modestly
we may conclude that existing data do not contradict the postulate that Z2 and Z1
structure are related phenomena.

8.2.4 Threshold Behaviour

Bohr (1948) argued that at beam velocities below the Bohr speed v0 D e2=�, which
is a measure of the velocity of the most loosely-bound electrons in the target, elec-
tronic collisions will be adiabatic. He therefore asserted that electronic stopping
would decrease rapidly as the projectile speed dropped below � v0. While the ar-
gument is valid, the decrease is less dramatic than one might have expected: Where
visible at all, threshold effects tend to manifest themselves in a more or less abrupt
change in the exponent p in (8.2).
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Fig. 8.5 Stopping cross section of helium for hydrogen ions. Data points from Golser and Semrad
(1991) and Schiefermüller et al. (1993). Lines calculated by PSTAR code (ICRU, 1993)

Figure 8.5 shows an example reported by Golser and Semrad (1991) and con-
firmed by Schiefermüller et al. (1993).

8.3 Experimental Aspects

8.3.1 Problems and Tools

Most stopping cross sections reported in the literature were measured via energy
spectra of ions after penetrating a thin foil or being reflected from a thick target.
There are several ways to measure energy losses in reflection. A reasonably trans-
parent method makes use of a thin layer of atoms heavier than the stopping medium,
e.g. Au in Si, at a certain depth. Alternative options include Doppler-shift attenua-
tion and penetration profiles (ranges). A common problem to all methods is the
analysis.

If the energy loss is approximately proportional to
p
E, the relative energy loss

goes as 1=
p
E. At low beam energies this necessitates the use of exceedingly thin

films in transmission measurements.
Nuclear stopping is substantial in the low-velocity range and becomes even dom-

inating for all but the lightest ions below some critical beam energy. Figure 8.6
shows stopping forces for representative ions in silicon according to the SRIM tab-
ulation (Ziegler, 2012). Both the electronic and the nuclear stopping force are seen
to increase with the atomic number of the ion, the increase being more pronounced
for the nuclear one. Consequently the cross-over between the two moves upward in
energy with increasing atomic number.
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Fig. 8.6 Upper graph: Electronic stopping force (solid lines) and nuclear stopping force (broken
lines) for Sb, B, He and H ions (top to bottom) in Si according to Ziegler (2012). Lower graph:
Same with different abscissa unit

Figure 8.6 shows that hydrogen differs from other ions by the absence of a cross-
over between nuclear and electronic stopping. Here, electronic stopping dominates
over the entire depicted energy range. Moreover, in the energy range where stopping
measurements are typically made, i.e. at energies above 10 keV, nuclear stopping ac-
counts for � 1% of the energy loss or less. Conversely, for Sb ions, nuclear stopping
dominates up to � 20 keV/u, and becomes a 1% correction only at energies above
� 1MeV/u.

You may appreciate that in the vast majority of stopping measurements—which
have been performed with protons and alpha particles at energies above and around
the electronic-stopping maximum—nuclear stopping is only a matter of concern in
precision measurements, i.e., at a level of accuracy of � 1% or better (Andersen,
1991). Conversely, extracting an electronic stopping cross section from a measure-
ment with Sb ions at energies below 1 MeV requires serious considerations about
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the data analysis: Even a minor error in the treatment of nuclear stopping may result
in a major error of the extracted electronic-stopping cross section.

The problem of separating electronic from nuclear stopping has been discussed
in Sect. 7.8.1. As a general rule, the correction for nuclear stopping is smaller than
the full nuclear-stopping cross section in the standard geometry for foil experiments,
because those particles that have suffered large nuclear losses tend to be scattered
out of the beam and do not enter the detector. In the experimental literature you may
find three different procedures for applying such a correction,

� Subtracting some adopted nuclear-stopping cross section from the total measured
stopping cross section,

� The same, but correcting for multiple scattering, or
� Monte-Carlo simulation with an adopted differential scattering cross section.

A survey of published data by Glazov and Sigmund (2003) revealed that very few
authors presented enough documentation that would enable the reader to judge the
quality of the nuclear-stopping correction, with the notable exception of Fastrup
et al. (1966), where both uncorrected and corrected data are listed. When the correc-
tion is found by Monte-Carlo simulation, a minimum requirement is specification of
the interatomic potential, but since small-angle multiple scattering is involved, also
cut-off angles need to be specified, as discussed in Sect. 7.3.6.

8.3.2 Data

Published experimental data have been compiled by Paul (2013). This database lists
data for protons, He ions and ions heavier than helium. This division has historical
reasons, because the International Commission on Radiation Units and Measure-
ments (ICRU) issued separate reports on the stopping of protons and alpha particles
(ICRU, 1993) and of ions heavier than helium (ICRU, 2005). Unlike these two re-
ports, which focus on stopping of swift ions, Paul’s database lists stopping cross
sections for the whole energy range where data have been published.

You may have noted above that protons play a special role in that there is no
cross-over between electronic and nuclear stopping. There is another special feature
of protons: According to Lindhard and Scharff (1961), the energy range for which
the stopping cross section is approximately proportional to the velocity is defined
by the Thomas-Fermi speed, i.e., for

E <
1

2
M1v

2
F D 1

2
uv20A1Z

4=3
1 ; (8.6)

where A1 is the mass number of the projectile. This limiting energy increases more
rapidly than with the square of the atomic number.
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Fig. 8.7 Stopping cross sections of gold for protons or deuterons compiled by Paul (2013). The-
oretical curves and numerous data references have been removed from the original graph of Paul
(2013)

8.3.2.1 Protons

Paul’s database lists stopping cross sections for protons in a large number of elemen-
tal and compound materials. Figure 8.7 shows the case of gold, where exceptionally
many data exist. Gold is a material where impurity effects should play a minor role,
and where preparation of thin foils is a well-established routine. Nevertheless, the
scatter in the data from different sources is significant around and below the stop-
ping maximum, even if a few outliers are ignored.

Figure 8.8 shows a reciprocity test involving hydrogen as projectile and target
(H2 gas). Despite an abundance of data, sufficiently many data for such a test have
been found only for three pairs, all involving gas data. It is seen that data involv-
ing hydrogen as a target consistently lie � 20% above those for hydrogen ions.
Considering the difference between a naked proton and a neutral hydrogen atom or
molecule in the present context, a violation of the reciprocity principle could well
be expected in this case. Actually, with the small number of data (N-H2 and O-H2
from Weyl (1953), O-H2 from Hvelplund (1971)), the observed deviation may be
considered to lie within the error margin.



354 8 Stopping of Slow Ions

1

2

5

10

20

1 10 100

Triangles: N - H
2

Circles: H - N
2

E [keV/u]

S
e [1

0-1
5 eV

cm
2 ] 

5

10

20

1 10 100

Triangles: O - H
2

Circles: H - O
2

E [keV/u]

S
e [1

0-1
5 eV

/c
m

2 ]

2

5

10

20

10 100

Triangles: Ne - H
2

Circles: H - Ne

E [keV/u]

S
e [1

0-1
5 eV

cm
2 ]

Fig. 8.8 Reciprocity test on H-N, H-O and H-Ne stopping cross sections. Lines indicate a E
dependence. Data from Paul (2013)

8.3.2.2 Helium Ions

Figure 8.9 shows a graph equivalent to Fig. 8.7 but now for helium. While the scatter
between data from different sources has reduced considerably around the stopping
maximum, discrepancies from � 300 keV downward prevail.
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Fig. 8.9 Stopping cross sections of gold for 4He or 3He ions compiled by Paul (2013). Theoretical
curves and numerous data references have been removed from the original graph in Paul (2013)
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Fig. 8.10 Reciprocity test on He-N stopping cross sections. Data from Paul (2013)

Figure 8.10 shows a reciprocity test corresponding to Fig. 8.8. I have found only
five ion-target combinations, where data are available that would allow such a test.
The best coverage is for N-He, which is shown in the graph. Reciprocity is accu-
rately fulfilled up to � 30 keV/u, and deviations above that energy show consistently
higher energy losses for nitrogen in helium than for helium in nitrogen, as has to be
expected.
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Fig. 8.11 Survey of experimental low-velocity stopping data. Every pair .Z1;Z2/ for which stop-
ping cross sections have been published for velocities below the Thomas-Fermi speed vTF D
v0Z

2=3
1 is marked by a point with a colour. For red squares only data for Z1 in Z2 are listed by

Paul (2013). For blue squares only data for Z2 in Z1 are listed. Green squares indicate that both
types of data are available. Output from REST code provided by V. Kuzmin

8.3.2.3 Heavier Ions

Figure 8.11 shows a survey of available data for 3 
 Z1; Z2 
 92 produced by the
REST code (Kuzmin and Sigmund, 2011). This code, which reads data from Paul’s
database according to chosen selection criteria such as maximum and minimum
beam energy as well as atomic numbers, was developed as a tool to study reciprocity.
In Fig. 8.11, the Thomas-Fermi speed vTF D v0Z

2=3
1 was chosen as the maximum.

A green point on the graph indicates a stopping cross section close to linear in
v. Colours approaching red indicate a steeper dependence. A flatter dependence is
indicated by a colour closer to blue.

Clearly, for most ion-atom pairs .Z1; Z2/, no stopping cross sections have been
measured at low-velocities. While data exist for a variety of target materials. the
number of ions for which data are available is very restricted, if you need to go
beyond the most common materials such as carbon, aluminium, silver and gold.

Figure 8.12 shows reciprocity tests for four atom pairs .Z1; Z2/, none of which
is gaseous at room temperature. Although the number of supporting data is limited,
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Fig. 8.12 Reciprocity test on solid materials. From Sigmund (2008a)

Fig. 8.13 Range profiles of 500 keV KC ions in W. From Eriksson et al. (1967)

reciprocity appears well fulfilled in all these cases. Several cases of major deviations
from reciprocity have been reported (Sigmund, 2008a, Kuzmin and Sigmund, 2011).
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Fig. 8.14 Electronic stopping force on 11.6 keV/u ions moving through the h100i channel in tung-
sten. Extracted from range measurements. From Eriksson et al. (1967)

8.3.3 Stopping in Crystals

The topic of channeling will be taken up in the Appendix, where Sect. 11.10.1 has
been devoted to energy loss. It is nevertheless useful to get into this topic here,
because observations in this area have produced results that have greatly contributed
to the understanding of random stopping.

Figure 8.13 shows range profiles of 500 keV KC ions in tungsten from Eriksson
et al. (1967). Profiles are shown for penetration along three low-indexed directions
as well as for random slowing-down. You may note that the h110i, h100i and h111i
profiles differ significantly from the random profile by a second peak at a larger
depth and a very steep drop-off that allows the extraction of a maximum penetration
depth. It is asserted that ions reaching the maximum penetration depth have travelled
along nearly straight lines close to the potential minimum in the channel or, in other
words, at a constant impact parameter to the target atoms enclosing the channel.

Figures 8.14 and 11.27 show stopping forces in tungsten, extracted from maxi-
mum ranges of ions slowing down along the h100i and h110i channels. According
to (2.36), Vol. 1, the range R.E0/ of an ion with an initial energyE0 is given by

R.E0/ D
Z E0

0

dE
dE=dx

; (8.7)

so that
dR.E0/

dE0
D 1

.dE=dx/E0

: (8.8)

Application of this to the maximum range determines the minimum energy loss dur-
ing passage through the channel. Comparison of Fig. 11.27 with Fig. 8.14 reveals

� a very similar behaviour in the two channels,
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Fig. 8.15 Electronic stopping force on 11.6 keV/u ions moving through h110i channel in silicon.
Redrawn after Eisen (1968)

� pronouncedZ1 oscillations for ions with Z1 
 55, and
� reduced stopping compared to random, by comparison with estimates of Firsov

(1959) and Lindhard and Scharff (1961) to be discussed below.

A similar, even more dramatic result was reported by Eisen (1968) on the basis of
direct measurements of energy spectra of ions passing through the h110i channel in
silicon, see Fig. 8.15. Also these measurements refer to minimum energy loss.

The essential new feature of these data is a very large amplitude ratio of the
oscillations. Such observations trigger the interest of theoreticians. Indeed, there
has been a flood of theoretical studies in this area ever since.

8.4 Limitations to Additivity ?

We have, so far, assumed the nuclear and electronic contributions to stopping and
scattering to be strictly additive. This assumption is exactly fulfilled if the target
is made up of independent electrons and nuclei. It is also well justified at energies
where nuclear collisions do not contribute significantly to energy loss and electronic
collisions do not contribute significantly to scattering. In the present chapter, where
nuclear energy loss is significant and possibly dominating, it appears appropriate to
look for possible interferences between nuclear and electronic energy loss.
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Fig. 8.16 Inelastic two-body
collision
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8.4.1 Conservation Laws in Inelastic Collisions

Figure 8.16 indicates a collision between two atomic particles with masses M1 and
M2, respectively. The collision is viewed in the centre-of mass frame, where the sum
of the two momenta P1 and P2 is zero. The two atoms are allowed to be excited
as a result of the collision, and we allow for charge exchange in either direction
while ionization is assumed to be forbidden. As a result, the masses have changed
according to

M 0
1 D M1 C�M I M 0

2 D M2 ��M ; (8.9)

since no electrons are lost.
From energy conservation we find

P 21
2M1

C P 22
2M2

D P 0
1
2

2M 0
1

C P 0
2
2

2M 0
2

CQ ; (8.10)

where Q is the net excitation energy, taking into account excitation of both atoms
including the energy balance of a possible charge-exchange event.

We may express (8.10) in terms of reduced masses �;�0, so that

P 21
2�

D P 0
1
2

2�0 CQ (8.11)

or

P 0
1 D

s
�0

�



P 21 � 2μQ

�
: (8.12)

We may express this relation in terms of the c.m.s. velocities u1 D P1=M1 and
u0
1 D P 0

1=M
0
1 before and after the collision, respectively. In doing so, we lin-

earize the relation with respect to the small parameter�M=� as well as the quantity
2 μQ=P 21 . With this you obtain
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u0
1 ' u1

�
1 � �M

2�

��
1 � M2Q

M1Mu21

�
; (8.13)

where M D M1 CM2.
Now, view the collision in a reference frame where atom 2 is initially at rest.

Then, the transformation presented in Sect. 3.2.1, Vol. 1, leads to

u1 D v1 � V I u0
1 D v0

1 � V ; (8.14)

where V D M1v1=M is the centre-of-mass velocity. Then,

v0
1
2 D V 2 C u0

1
2 C 2V u0

1 cos‚ ; (8.15)

where ‚ is the scattering angle in the c.m.s. frame, cf. Fig. 8.16. Insertion of (8.13)
and linearization then lead to

T D M1

2

�
v21 � v0

1
2
�

D 	
M1

2
v21 sin2

‚

2

C
�
1 � 2M1

M1 CM2

sin2
‚

2

��
Q C �M

2
v21

�
; (8.16)

where 	 D 4M1M2=.M1 CM2/
2.

The physical model underlying the present paragraph is standard atomic-collision
physics. An early reference is Fedorenko (1959). The present calculation, which
is due to the author (Sigmund, 2008b), is geared toward stopping: You may have
wondered why the energy loss was expressed as in the first line of (8.16) and not
as M1v

2
1=2 � M 0

1v
0
1
2
=2, i.e., the true loss of kinetic energy. The reason is that in

particle stopping we always refer to the change in the velocity of the nucleus or, if
you prefer, the centre-of-mass of the projectile.

8.4.2 Mean Energy Loss

Rearranging the contributions in (8.16) leads to

T D 	
M1

2
v21 sin2

‚

2

�
1 � Q

�v21
� �M

2�

�
CQC �M

2
v21 : (8.17)

Here,

Tn D 	
M1

2
v21 sin2

‚

2
(8.18)

represents the elastic energy loss, while

Te D QC �M

2
v21 (8.19)
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represents energy loss to excitation and charge exchange, i.e., electronic energy loss.
With this we can write (8.17) in the form

T D Tn C Te � TnTe

2Er
; (8.20)

where Er D �v21=2 is the initial kinetic energy in the c.m.s.
Looking at the fractional energy loss,

T

Er
D Tn

Er
C Te

Er
� 1

2

Tn

Er

Te

Er
(8.21)

you may note that the interference term is of second order, i.e., it becomes significant
only when at least one of the first-order terms is not � 1. This can be the case for
close collisions. The stopping cross section may then be written as

S D Sn C Se ��S (8.22)

with

�S D 1

2Er

Z
d2p Tn.p/Te.p/ (8.23)

in the impact-parameter representation, or

�S D 1

2Er

Z
d�.‚/Tn.‚/Te.‚/ ; (8.24)

expressed via the differential cross section.
In the standard transmission geometry, where close collisions at most contribute

to a high-loss peak that is ignored in the analysis, this correction will typically be
negligible.

8.5 Free Target Electrons

8.5.1 Lindhard Theory

In Chap. 5, Vol. 1, the dielectric description of stopping has been presented. This
theory allows a consistent description of stopping in a Fermi gas for weakly inter-
acting particles, i.e., protons and other low-Z1 ions.

We may write (5.30), Vol. 1, in the form

�dE
dx

D iZ21e
2

�v2

Z
j!j<kv

dkd!
!

k

1

".k; !/
; (8.25)

where ".k; !/ is the longitudinal dielectric function. The transverse part has been
dropped, since we are interested in low projectile speeds (v � c) here.
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Fig. 8.17 Integration regimes
defined in (8.28)
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In Sects. 5.7.2 and 5.7.3, Vol. 1, you can find a derivation following Lindhard
(1954) of the dielectric function for a Fermi gas,

".z; u/ D 1C �2

z2

�
f1.z; u/C if2.z; u/

�
; (8.26)

where

f1.z; u/ D 1

2
C 1

8z

�
1 � .z � u/2	 ln

ˇ̌̌
ˇz � uC 1

z � u � 1

ˇ̌̌
ˇ

C 1

8z

�
1 � .z C u/2

	
ln

ˇ̌̌
ˇz C uC 1

z C u � 1

ˇ̌̌
ˇ (8.27)

and

f2.z; u/ D

8̂̂̂
<̂
ˆ̂̂̂:

�
2
u z C u < 1 I/

�
8z

�
1 � .z � u/2

	
for jz � uj < 1 < z C u II/

0 jz � uj > 1 III/

: (8.28)

Here

u D !

kvF
I z D k

2kF
I �2 D e2

��vF
: (8.29)

Writing (8.25) in .u; z/ variables implies that

!

k
dkd! D 4k2Fv

2
Fzu dz du (8.30)
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Fig. 8.18 The factor C1.vF/
determining the Lindhard-
Winther low-speed stopping
formula, (8.35). The abscissa
is the Wigner-Seitz radius,
rs D 1:919v0=vF. See text
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with the limits
0 < z < 1I juj < v=vF : (8.31)

We may also write

i
".z; u/

D i"1.z; u/C "2.z; u/

"21.z; u/C "22.z; u/
; (8.32)

where "1 and "2 represent the real and imaginary part of the dielectric function.
The imaginary part of the stopping force must drop out. Therefore, only "2 re-

mains in the numerator. This limits the integration interval according to (8.28).
If we restrict ourselves to the leading order in v for small v, (8.28) tells us that

only region I in Fig. 8.17 yields a nonvanishing contribution. We may then carry out
the integration over u and arrive at

�dE

dx
D 4

3�
Z21
mv0v

a0

Z 1

0

dz
z

1

.1C �2f1.z; 0/=z2/2
: (8.33)

Dividing by the electron density n D k3F=3�
2 we obtain the stopping cross section

per target electron,

S D 4�Z21e
2a0

v

v0

�
v0

vF

�3
C1.vF/ ; (8.34)

where

C1.vF/ D
Z 1

0

dz
z

1

.1C �2f1.z; 0/=z2/2
: (8.35)

Figure 8.18 shows C1 found by numerical integration of (8.35). An accurate an-
alytic expression1 was given by Lindhard and Winther (1964),

1 There is a misprint in the original paper: The denominator in Equ. (15) there, 2.1 C �2=3/2

should be changed to the one in (8.36) here.
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C1 D 1

2.1� �2=3/2
�

ln
�
2

3
C 1

�2

�
� 1 � �2=3

1C 2�2=3

�
: (8.36)

This expression is included in the figure. The origin of the third curve will be dis-
cussed below.

8.5.2 Transport Cross Section

Here we go a bit deeper into the analog to Stokes’ law. Equation (6.71), Vol. 1, ex-
presses the stopping cross section per target electron of a heavy particle with an
arbitrary nonrelativistic velocity v in a gas of free electrons with a velocity distribu-
tion f .ve/ as

S D m

� jve � vj
v

v � .v � ve/�
.1/.jve � vj/

�
ve

; (8.37)

where the brackets indicate an average over ve and

� .1/.v/ D
Z
.1 � cos‚/ d�.v;‚/ (8.38)

is the transport cross section per target electron at rest.
Expansion in powers of v=ve up to the first order beyond the leading term yields

S ' m

v

��
ve � ve � v

ve

� 
�ve � v C v2
� �
� .1/.ve/ � ve � v

ve
� .1/

0
��

ve

; (8.39)

where � .1/
0 D d� .1/.ve/=dve.

For an isotropic distribution, f .ve/ � f .ve/, averages over uneven powers of
ve � v vanish, and

˝
.ve � v/2

˛
ve

D hv2e iv2=3. Then the leading nonvanishing term
reduces to

S ' mv

3

D
4ve�

.1/.ve/C v2e �
.1/0
E
ve

� mv

3

�
1

v2e

d
dve

�
v4e �

.1/.ve/
��

ve

: (8.40)

Finally, note that a projectile can transfer more energy to a moving electron than
to an electron at rest. In a central collision between a heavy projectile with a speed v
and an electron moving with a speed ve towards the projectile, the energy transfer is

Tmax D 2mv.v C ve/ : (8.41)

You may convince yourself of the correctness of this result by going to Problem 8.1.
Here the low-speed limit, where

Tmax ' 2mvve ; (8.42)

is of interest.



366 8 Stopping of Slow Ions

8.5.3 Fermi Gas

For a degenerate Fermi gas the velocity spectrum of the target electrons is given by

f .ve/ D 3

4�v3F
.vF � v/ ; (8.43)

where  indicates the Heaviside step function. In Problem 8.2 you may verify that
(8.40) then reduces to the expression

S D mvvF�
.1/.vF/ (8.44)

for the stopping cross section of a heavy particle moving slowly through a Fermi
gas.

Equation (8.44) has become the starting point of numerous theoretical studies of
stopping at low ion speeds. This formula was first proposed by Lindhard and utilized
in the thesis of Finnemann (1968). The earliest quotation in a journal appears to
be in a paper by Ferrell and Ritchie (1977) with reference to Finnemann (1968).
Lindhard’s derivation may be found in the lecture notes of Bonderup (1981).

8.5.4 Born Approximation

Consider a neutral atom with an atomic numberZ1 travelling at low speed through a
Fermi gas. Let the disturbing potential of the projectile be a Yukawa potential with a
screening radius a, and describe the scattering by the Born approximation. You may
derive a transport cross section from (3.94), Vol. 1, by going to Problem 8.3 with the
result that

� .1/.vF/ D �b2

2

(
ln

"
1C

�
2a

�̄

�2#
� 1

1C .�̄=2a/2

)
; (8.45)

where

b D 2Z1e
2

mv2F
I �̄ D �

mvF
(8.46)

and, hence,

S D 4�Z21e
2a0

v

v0

�
v0

vF

�3
Ca.vF/; (8.47)

where

Ca.vF/ D 1

2

�
ln


1C �2

� � 1

1C 1=�2

�
(8.48)

with

� D 2mvFa

�
: (8.49)
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8.5.5 Screening

The screening radius a introduced in the previous section is still undefined. Fermi
and Teller (1947) suggested that it should be of the order of

p
a0=kF. A more rig-

orous calculation goes back to Lindhard’s lectures. It is reproduced here, following
Bonderup (1981).

Consider a point charge Z1e embedded in a Fermi gas with an electron density
�. The charge will attract electrons, such that the electron density at distance r will
be given by

�.r/ D �C ı�.r/ : (8.50)

As a consequence, the maximum electron momentum �kF will depend on r . Since
the Fermi energy must be constant we have

�
2k2F .r/

2m
� eˆ.r/ D �

2k2F
2m

; (8.51)

if we require the potential to vanish far away.
Making use of � D k3F=3�

2 we may write this relation as

�
2

2m



3�2

�2=3 �
�2=3.r/ � �2=3

�
D eˆ.r/ : (8.52)

Assuming weak disturbance, i.e., smallZ1, �2=3.r/ ' �2=3C2ı�.r/=3�1=3 we find

ı�.r/ D emkF

�2�2
ˆ.r/ : (8.53)

The electron density must be connected to the potential via Poisson’s equation,

1

r

d2

dr2
Œrˆ.r/� D �4� ŒZ1ı.r/ � eı�.r/� : (8.54)

Insertion of ı�.r/ from (8.53) yields

d2

dr2
Œrˆ.r/� � 1

a2
Œrˆ.r/� D 0 for r > 0 (8.55)

with
a2 D �a0

4kF
: (8.56)

Thus,

ˆ.r/ D Z1e

r
e�r=a : (8.57)

This confirms that the self-consistent potential of a static point charge is a Yukawa
potential in the limit of a weak disturbance, and it defines the screening radius a
which is to be inserted into (8.49).

From (8.56) we find
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2a

�̄

�2
D �vF

v0
� 1

�2
: (8.58)

With this the stopping cross section is well defined. When expressed in terms of
(8.34) we may write

Ca.vF/ D ln
1C �2

�2
� 1

1C �2
: (8.59)

It is seen that (8.59) agrees with (8.36) asymptotically at small � or large vF. This re-
sult has been included in Fig. 8.18. You may note very good agreement also outside
the asymptotic regime.

8.5.6 Partial Waves

The method of partial waves in scattering theory has been presented in Sect. 3.4.4,
Vol. 1. The transport cross section was expressed by

� .1/ D
Z
.1 � cos‚/d�.‚/ D 4�

k2

X
`

.`C 1/ sin2.ı` � ı`C1/; (8.60)

where ı` is a phase shift and k D mv=� a wave number, in casu of a target electron
being scattered by a projectile ion.

Quantal scattering is of interest in the present context, because it is known to
provide an explanation of the Ramsauer-Townsend effect, i.e., the experimental ob-
servation by Ramsauer (1921) and Bailey and Townsend (1921) of a nonmono-
tonic velocity dependence of the cross section of slow electrons scattered on gas
atoms. A possible connection with Z1-oscillations observed in electronic stopping,
cf. Fig. 8.2, was pointed out by Lindhard and explored in an unpublished thesis by
Finnemann (1968).

Calculations based on (8.60) have been published by numerous authors, start-
ing with Briggs and Pathak (1973, 1974). A central aspect is the scattering poten-
tial. Finnemann (1968) employed Thomas-Fermi-type potentials of isolated atoms.
However, quantal scattering cross sections are sensitive to the potential, and in case
of v � vF it appears important to take into account the screening of an ion or atom
in an electron gas.

You may have seen this demonstrated in Sect. 8.5.5, where the screening radius
a D

p
�a0=4kF differed drastically from that of an isolated atom, a ' a0=Z

3
1 . In

that case, an energy argument was employed to derive a self-consistency condition.
An equivalent procedure in the present case is use of Friedel’s sum rule (Friedel,
1952), which will be introduced in Appendix 8.10.2, in conjunction with a trial
potential with one free parameter (Apagyi and Nagy, 1987, Calera-Rubio et al.,
1994).

A rigorous description of the potential of an external charge distribution embed-
ded into a Fermi gas is provided by density functional theory (Kohn and Sham,
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Fig. 8.19 Transport cross section at v D 0:75v0 calculated by numerical evaluation of phase
shifts for Thomas-Fermi potentials of neutral atoms (upper graph) and for Hartree-Fock potentials
deduced from the tables of Clementi and Raimondi (1963), Clementi et al. (1967) (lower graph).
The quantity plotted is Se=4� . From Briggs and Pathak (1973)

1965), a sketch of which will be given in Appendix 8.10.3. Echenique et al. (1981,
1986) determined phase shifts for such a potential and calculated transport cross
sections. This procedure has been applied successfully to a number of systems.

Only few examples were mentioned in Sect. 3.4.4, Vol. 1, where exact phase
shifts are known, while nothing was said about determining phase shifts in general.
Apart from perturbation expansions (Schiff, 1981), the quasiclassical (WKB) tech-
nique is a very attractive tool in this context (Ferrell and Ritchie, 1977). A brief in-
troduction will be found in Appendix 8.10.1. Variational methods (Callaway, 1976,
Gerjuoy et al., 1983) are powerful and used to be the most efficient tool before
the general availability of powerful computers. Straight numerical solution of the
time-independent Schrödinger equation is a ready-to-use option with present-day
computers and used most frequently now.



370 8 Stopping of Slow Ions

8.5.6.1 Evaluation from Free-Atom Potential

Finnemann (1968) evaluated transport cross sections on the basis of the relation

�dE

dx
D �mvvF�

.1/.vF/ D 4

3�

mv2F
a0

v

v0

X
`

.`C 1/ Œı`.vF/� ı`C1.vF/� (8.61)

by combination of (8.44) with (8.60). The Lenz-Jensen form of the Thomas-Fermi
potential was utilized, and phase shifts were determined from the semiclassical
(WKB) formula derived in Appendix 8.10.1 or by numerical integration of the radial
Schrödinger equation.

Briggs and Pathak (1973) evaluated the transport cross section from the high-
speed limit v 	 v0 which, in the present notation, leads to

�dE
dx

D �mv2� .1/.v/ D 4

3�

mv3F
v0a0

X
`

.`C 1/ Œı`.v/ � ı`C1.v/� : (8.62)

This expression agrees with (8.61) for v D vF, but differences get increasingly
pronounced for v ¤ vF:

1. In (8.61) the phase of the Z1 oscillations is determined by the density of the
electron gas, while it is governed by the projectile speed in (8.62),

2. Equation (8.61) predicts a strictly linear dependence on projectile speed, while
(8.62) tends to produce a quadratic dependence, cf. Problem 8.5,

3. Differences in absolute magnitude become significant: Briggs and Pathak (1973)
were able to match positions of maxima and minima to measurements by Bøttiger
and Bason (1969) on gold at v D 0:75v0, cf. Fig. 8.19. From the magnitude of
the stopping force they deduce an electron density of about 4 electrons per gold
atom. Conversely, if the low-speed formula is applied in the analysis, maxima
and minima are matched at vF D 0:75v0. This is equivalent with an electron
density of 1.6 electrons per gold atom. This value is significantly closer to the
number of conduction electrons in gold.

In Problem 8.6 you may convince yourself that the first correction term to the linear
dependence predicted by (8.44) is of third order in v. Thus, the linear dependence is
fairly robust, as you may also see from Fig. 5.9, Vol. 1.

I have discussed this point in considerable detail, because you may find numer-
ous comparisons with experimental results in a long series of papers by Pathak
and coworkers in the literature. There is nothing astonishing if good agreement is
achieved at v ' vF or v 	 vF, but those predictions should not be extrapolated to
lower projectile speeds.
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8.5.6.2 Application of Friedel Sum Rule

As in the case of the Born approximation above, it appears appropriate to take into
account the change in the electron density of the target due to a slowly moving ion.
As a first approximation one may employ a stability condition derived by Friedel
(1952) for a static impurity in a Fermi gas, which is known as the Friedel sum rule
and sketched in Appendix 8.10.2,

2

�

1X
`D0

.2`C 1/ı`.vF/ D Z1 : (8.63)

The significance of the Friedel sum rule in the stopping of low-velocity ions ap-
pears to have been recognized first by Apagyi and Nagy (1987) and applied by the
same authors in several studies of proton and antiproton stopping (Nagy and Apagyi,
2004).

Heavier ions, with a particular view at Z1 structure, were considered by Calera-
Rubio et al. (1994). Phase shifts were evaluated for a Yukawa potential by numerical
solution of the Schödinger equation, and self-consistency was obtained by determin-
ing the screening radius so that the Friedel sum rule is satisfied.

8.5.6.3 Density Functional Method

The density functional method provides an accurate description of the potential of
an impurity embedded into a Fermi gas. The Friedel sum rule, rather than being a
tool to determine a free parameter in the potential, can be employed here as a final
test on the accuracy of the calculation.

Features of the density-functional method are sketched in Appendix 8.10.3. Fig-
ure 8.20 shows electron densities around a proton embedded in a Fermi gas, cal-
culated from density functional theory, and an otherwise equivalent linear approxi-
mation according to Almbladh et al. (1976). It is seen that the linear approximation
underestimates the pile-up of electrons near the proton. The behaviour at larger dis-
tances, characterized by Friedel oscillations, is predicted very differently by the two
schemes. Similar, possibly even more drastic features must be expected for other
ions.

Stimulated by evidence of this kind, Echenique and coworkers developed stop-
ping theory on the basis of density functional theory. A pioneering paper by
Echenique et al. (1981) was followed up by a long series of studies. Much of the
initial effort was devoted to proton and antiproton stopping, but work on heavier
ions followed.

Figure 8.21 demonstrates significant differences for slow protons in a Fermi gas
between the predictions of density functional theory and linear theory according to
Lindhard and Winther (1964). In the most common density range, nonlinear theory
predicts higher stopping.
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Fig. 8.20 Electron density around an embedded proton in a Fermi gas with rs D 4. Calculated
from density functional theory. The line denoted L represents the result of linear response theory.
Abscissa and ordinate in atomic units. From Almbladh et al. (1976)

Fig. 8.21 Ratio of velocity-proportional stopping cross sections calculated from density functional
theory and result of Lindhard and Winther (1964) as a function of the density parameter rs . From
Echenique et al. (1986)

Figure 8.22 shows predicted stopping forces on slow ions versus Z1. Also in-
cluded are experimental data from Fig. 8.15 (Eisen, 1968) on channeling of low-
velocity ions in the h110i channel of silicon. The value rs D 2:38 has been chosen
to enforce agreement for Z1 D 5. It is close to the value rs D 2:0 that describes an
electron gas with four electrons per silicon atom.
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Fig. 8.22 Energy loss of low-energy ions in h110i channel of silicon. Small dots connected by
lines: Calculated from density functional theory by Echenique et al. (1986). Large dots: Measure-
ments by Eisen (1968). From Echenique et al. (1986)

8.5.7 Local-Density Approximation

In Sect. 7.2, Vol. 1, the local-density approximation was discussed. This scheme al-
lows to evaluate atomic parameters from properties of a free-electron gas as a func-
tion of the electron density. For the electronic stopping cross section of an atom,
(7.25) was derived which can be written in the form

S D
Z 1

0

4�r2 dr �.r/S


�.r/

�
; (8.64)

where S.n/ is the stopping cross section of a Fermi gas with a density n and �.r/
the electron density of the target atom. This relation assumes uniform motion of the
projectile through the target atom. The present paragraph addresses the use of the
local-density approximation in the low-velocity regime.

One may expect the local-density approximation to be justified when the electron
density varies slowly over the effective range of interaction. While this is rarely the
case, it appears nevertheless more appropriate than in case of swift ions, where
interaction ranges may become very large. At this point the main criterion for the
feasibility of the local-density approximation—which is a postulate—-is its success,
i.e., whether its results are in accordance with experiment or with calculations based
on first principles.
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8.5.7.1 Nonuniform Projectile Motion

At low projectile speeds we have to worry about changes in magnitude and direction
of the relative velocity between projectile and target during the interaction. The
main purpose of the present paragraph is to identify the limits of the assumption of
uniform motion. Once deviations become really serious, theoretical descriptions are
influenced by specifics of the experimental setup to which an estimate is going to be
applied.

Consider the relative motion of two colliding atoms and characterize it by a
vector r.t/ as a function of time. Let atom 1 experience a friction force F .r/ D
�F.r/v=v. Then the energy loss during the entire passage is given by

T D �
Z

F � dr D
Z 1

�1
dt F .t/v.t/ : (8.65)

In Chap. 2, Vol. 1, we have learned that the trajectory is governed by the nuclear
interaction. Ignoring the electronic interaction we may determine the trajectory from
the theory of elastic collisions. With this we find

m0

2
v.t/2 C V.r/ D m0

2
v2 ; (8.66)

where V.r/ is the screened interatomic potential, v the initial speed and m0 D
M1M2=.M1 C M2/ the reduced mass. Moreover, from (3.31) and (3.32) we may
deduce that

dt D ˙dr
v

�
1 � 2V.r/

m0v2
� p2

r2

��1=2
; (8.67)

where p is the impact parameter. The minus sign refers to the incoming trajectory,
where dr=dt < 0. Hence,

T .p/ D 2

Z 1

rmin.p/

dr F.r/
1 � 2V.r/=m0v2

Œ1 � 2V.r/=m0v2 � p2=r2�1=2 ; (8.68)

where rmin.p/ is determined by the root of the square root in the denominator.
The electronic stopping cross section of the atom may then be found by

Se D
Z 1

0

2�p dp T .p/ D
Z 1

rmin

4�r2 dr F.r/
�
1 � 2V.r/

m0v2

�3=2
; (8.69)

where rmin D rmin.0/ is the distance of closest approach in a head-on collision.
After inserting F.r/ D �.r/S.�.r// we finally obtain

Se D
Z 1

rmin

4�r2 dr �.r/S.�.r//
�
1 � 2V.r/

m0v2

�3=2
; (8.70)

where S.�/ is the stopping cross section of a homogeneous Fermi gas.
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Fig. 8.23 The function


1� 2V.r/=m0v

2
�3=2

appearing in (8.70) for various values of the Lind-
hard energy variable � D m0v

2a=Z1Z2e
2 for exponential screening, exp.�r=a/

In the limit of high speed v, the elastic interaction can be ignored. With that we
arrive back at (8.64). The effect of the correction factor is manifested by a deviation
from strict velocity-proportionality of the stopping cross section.

The importance of the factor
�
1 � 2V.r/=m0v

2
	3=2

in low-energy stopping was
pointed out by Kishinevskii (1962). This function has been sketched in Fig. 8.23 for
exponential screening, i.e., V.r/ D 


Z1Z2e
2=r

�
exp.�r=a/.

You may recall that the cross-over between nuclear and electronic stopping lies
around 
 ' 2. Let us, therefore, restrict our attention to velocities equivalent
to 
 � 10, where nuclear stopping may be considered negligible. In that case,
Fig. 8.23 tells us that deviations from straight-line motion cause changes mainly
at r=a � 1. Note that the Thomas-Fermi radius responsible for the nuclear inter-

action, a D 0:8853a0=

q
Z
2=3
1 CZ

2=3
2 , is always smaller than the Thomas-Fermi

radius of either of the collision partners.

8.5.7.2 Tails in Electron Density

Equation (8.44), which represents the starting point for calculations in the low-
velocity range employing the local-density approximation, has been derived under
the assumption that v � vF. According to Fig. 5.9, Vol. 1, the proportionality with
v holds quite accurately up to slightly above vF: For the case considered, rs D 2,
vF is close to the Bohr speed. However, at v 	 vF the stopping cross section bends
over and approaches the � v�2 dependence following from the Bethe formula.

The integral (8.64) extends over the entire space. This includes regions where
�.r/ is small but nonvanishing. When �.r/ becomes sufficiently small, the condition
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Fig. 8.24 Integrand of low-
velocity stopping integral for
aluminium in local-density
approximation. Numbers on
figures represent Z1. From
Calera-Rubio et al. (1994)

v < vF.r/ will no longer be fulfilled. This implies that the second factor in the
integral, S



�.r/

�
, will cause a more or less drastic overestimate of the integrand, if

it is approximated by the linear expression following from (8.44).
If we wish to compute a stopping cross section at v D v0, we are allowed to apply

the linear formula as long as vF.r/ > v0. For a simple Thomas-Fermi estimate,
assume an exponential electron density

�.r/ ' Z2

8�a3
e�r=a (8.71)

with a ' a0Z
�1=3
2 . With this, the above limitation reads

r <
a0

Z
1=3
2

ln
�
3�

8
Z22

�
: (8.72)

Figure 8.24 shows an example, taken from Calera-Rubio et al. (1994). The integrand
of (8.64), including the factor r2 from the volume element, has been plotted for
several ions in aluminium. All integrands have a maximum slightly below r D a0,
and all have a minimum slightly above r D 1:5a0. All curves show a clear increase
toward greater distances.

The work of Calera-Rubio et al. (1994) addressed solid aluminium. Therefore,
the integration was limited to the interval 0 < r < ra, where ra D 3a0 is the
atomic radius in the Al structure. While this prevents the integral from diverging, the
procedure clearly overestimates the stopping cross section. Moreover, this argument
would not apply to aluminium vapour.

This problem is clearly an artifact of the combination between the linear approx-
imation, (8.44) and the local-density approximation. While the success of (8.44) is
well documented in channeling, where use of the Fermi-gas model is justified to a
certain extent, the local-density approximation, if accepted at all, should be applied
in conjunction with the full, velocity-dependent stopping cross section for the Fermi
gas, whether in the Lindhard approximation or in a more sophisticated scheme.
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8.5.8 Lindhard-Scharff Formula

The formula

S D 8��e
Z1Z2

Z
a0e

2 v

v0
(8.73)

for the stopping cross section at low projectile speed with

Z D
�
Z
2=3
1 CZ

2=3
2

�3=2
(8.74)

was published by Lindhard and Scharff (1961) without an explicit derivation. The
proportionality with v was inferred from the Fermi gas, and the proportionality fac-
tors were found from Thomas-Fermi arguments. Empirically, the formula was ‘not
far in error’. Considering its impact for more than half a century, it would have been
beneficial if a more quantitative derivation had been published. Amongst a number
of valid causes for this omission, the main reason was the fact that by the time the
formula became really interesting,Z1 oscillations had been discovered, which were
not predicted by the formula.

This author has never seen a complete derivation of (8.73). Various hints can be
found in two earlier papers (Sigmund, 1975, 2008b), and a serious effort has been
reported by Tilinin (1995), who also specified limits of validity of his approximative
steps.

Equation (8.73) obeys the reciprocity criterion, apart from a numerical factor �e
which was inserted to improve the agreement of calculated ranges of fission frag-
ments with experiment. This factor was given as �e ' Z

1=6
1 to account for the in-

crease of the projectile charge at higher velocities: As shown in Fig. 8.1, (8.73) was
intended to cover a rather broad range of projectile speeds up to the Thomas-Fermi
speed vTF D Z

2=3
1 v0.

Disregarding the empirical factor �e you may conclude that the .Z1; Z2/ sym-
metry of the stopping cross section implies that target and projectile excitation have
been treated in an equivalent manner.

Consider the excitation of atom 2 by projectile 1. From (8.34) we find

S12 D 4�Z21e
2a0

v

v0

Z
d3r�.r/

�
v0

vF

�3
C1.vF/

D 4

3�
Z21e

2a0
v

v0

Z 1

0

4�

�
r

a0

�2
d
�
r

a0

�
C1.vF/: (8.75)

In the Thomas-Fermi model, C1.vF/ is a function of Z2 and r=a. If we set a '
a0=Z

1=3
2 , S12 becomes proportional to Z21=Z2 if the integral varies weakly with

Z2. The symmetrized expression, S12 C S21 does not show the scaling properties
shown in (8.73). However, Tilinin (1995) points out that the integrand approaches
the contribution from atomic charge distributions at small r and from united-atom
charge distributions at large r . This precludes simple scaling properties.
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Tilinin (1995) writes his final result in terms of (8.73) multiplied by a function
�.
; �/, where 
 D m0v

2a=2Z1Z2e
2 and � D Z1=Z2. This function, which is

given in tabulated form (Tilinin, 1995), has generally very low values at small en-
ergies .
 � 1/ because of nonuniform projectile motion discussed in Sect. 8.5.7.1,
but comes close to 1 for 
 > 0:1, depending somewhat on the ratio �.

8.5.8.1 Modifications

Modifications of the Lindhard-Scharff model aim at explaining oscillatory structure
in the stopping cross section as a function of the atomic numberZ1 of the ion.

Bhalla and Bradford (1968) converted Lindhard’s expression for the stopping
force of a Fermi gas on a point charge at low speed into an expression for the in-
elastic energy loss in a binary collision, using intuitive arguments. This expression
was evaluated on the basis of Hartree-Fock wave functions of Herman and Skillman
(1963). Comparison with experiments showed good agreement in the phases of the
oscillations. Reasonable absolute agreement was achieved with two (more or less)
adjustable parameters.

A similar, but more transparent argument was applied by Pietsch et al. (1976),
who noticed that it is primarily the factor 1=Z in (8.73) that represents the details
of the charge distributions of the interacting atoms via the screening radius

a D 0:8853a0

Z1=3
: (8.76)

By a slight generalization,

Z2=3 ! Œ˛.Z1; r0/�
2Z

2=3
1 C Œ˛.Z2; r0/�

2Z
2=3
2 (8.77)

with a function ˛.Z; r0/ to be adjusted to Hartree-Fock charge distributions accord-
ing to Herman and Skillman (1963), surprisingly good agreement was achieved with
measurements, when the free parameter r0 was fixed to the value r0 D 2a0.

This idea was taken up again by Sugiyama (1981), who proposed an alternative
way to determine the screening radius.

8.6 Bound Target Electrons

In this section the stopping problem is approached from an atomic-collision point of
view. This implies that the primary standard of reference is theory and experiments
of collisions between ions and isolated (gas) atoms. This discipline is a huge field
of research on its own. Due to clever experimentation it has reached a degree of
sophistication which, in some cases, is far beyond the resolution achieved in stop-
ping measurements. On the other hand, much good physics can be learned from
knowledge achieved there.
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Fig. 8.25 Firsov’s view of
electronic energy loss for a
homonuclear system, Z1 D
Z2. See text

2

1

8.6.1 Electron Promotion

Electron promotion was discovered in the early days of quantum mechanics. It ex-
plains how colliding atoms may form molecules and how molecules may break up
either spontaneously or under external action. In the mid 1960s it became clear
(Fano and Lichten, 1965) that electron promotion also may explain how inner shells
may be excited in collisions at energies too low for the processes considered until
now in this monograph to be responsible.

As an example, take an L electron of argon. In order to overcome the binding en-
ergy U ' 182=22 Rydbergs, the ion must have a minimum energy of � 0:1MeV/u,
if the maximum energy transfer is given by (8.42) according to Problem 8.4. Actu-
ally, the observed threshold for X-ray excitation lies in the lower keV range, depen-
dent on the incident ion.

8.6.2 Firsov Theory

Inspired by experiments by Fedorenko and coworkers, O.B. Firsov wrote a number
of papers in the late 1950s on elastic and inelastic ion-atom collisions. As it turned
out, these papers became more influential in the field of stopping of charged particles
than in genuine atomic-collision physics.

The present section is taken over from a lecture by the author on the occasion of
the 50th anniversary of this series of Firsov’s papers (Sigmund, 2008b).

Consider an ion 1 with a speed v below the Bohr velocity v0 colliding with a
target atom 2 at rest. Firsov’s view (Firsov, 1959) of such an event is indicated in
Fig. 8.25:
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� At any instant of time there exists a surface, the Firsov surface, which defines the
respective domains of the collision partners.

� This surface is thought to be placed so that the normal component of the electric
field vanishes everywhere.

� Electrons passing from the target domain to the projectile domain are taken as
captured and hence transfer a momentum �mv to the projectile, thus causing it
to slow down.

� The cross section for momentum transfer is determined by the electron flux from
the target to the projectile domain.

From this, the basic Firsov expression is found for the electronic energy loss Te.p/
in a single collision at impact parameter p,

Te.p/ D m

Z
dR

dt
� dR

Z
d2r

1

4
�.r/ve.r/ ; (8.78)

where R.t/ denotes the trajectory of the projectile,
R

d2S an integration over the
Firsov surface, �.r/ the electron density in the quasimolecular collision system and
ve.r/ the average electron speed. The factor 1=4 originates in the assumption that
the electron flux is isotropic.

There are numerous options in the implementation of this physical picture. In the
original model, the following additional simplifications were made:

1. The Firsov surface was replaced by a plane,
2. That plane was placed midways between the collision partners,
3. The relative motion of the collision partners was taken as uniform,
4. The relation between mean electron speed ve and density � in the quasi-molecule

was determined by the Thomas-Fermi model, and
5. A simple approximation was adopted for the electron density which allowed (al-

most) analytic evaluation.

The somewhat awkward geometry of a colliding quasi-molecule tends to make
analytic evaluation difficult or impossible. This hurdle is absent as long as we focus
on a homonuclear collision with atomic numbers Z1 D Z2 D Z. Then the Firsov
surface is indeed a plane midways between the nuclei as indicated in Fig. 8.25, and
the two partners contribute equally to the integral over that plane. We then obtain

Te.p/ D mv

Z 1

�1
dx
Z
2��F d�F

1

4
�.r/ve.r/ ; (8.79)

where R2 D p2 C x2, and �F denotes the radial variable on the Firsov plane.
After integration over the impact parameter p we obtain the stopping cross sec-

tion

Se D
Z 1

0

2�p dp Te.p/ D 4�2

3
mv

Z 1

0

r4 dr �.r/ve.r/ : (8.80)

The electron distribution has here tacitly been approximated as spherical around
either collision partner, i.e., �.r/ ' 2�at.r/, where �at.r/ refers to one atom. We
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Fig. 8.26 Test of the a-dependence of the stopping cross section for Z1 D Z2. Stopping cross
sections at v D v0 and exponent 2p found by fitting measured values of S , extracted from Paul
(2013). Atomic radii from Clementi and Raimondi (1963), Clementi et al. (1967). Circles show the
Firsov prediction (8.82) with C D 30

may characterize �at.r/ by a screening radius a so that

�at.r/ D Z

a3
g
� r
a

�
(8.81)

with some function g which may depend onZ. If we, moreover, adopt the Thomas-
Fermi relation ve / �1=3�=m, the stopping cross section reduces to

Se D C�Z4=3av ; (8.82)

where the dimensionless constantC is governed by the integral
R1
0
y4 dy Œf .y/�4=3.

Firsov’s result is equivalent with (8.82) for C D 20:4 independent of Z. If the
screening function f depends explicitly on Z, also C will depend on Z.

For Z1 ¤ Z2, correction factors enter which depend on the details of the charge
distribution. In Firsov’s original calculation, Z has been replaced by .Z1 C Z2/=2

and a by 0:8853a0=.Z1 CZ2/
1=3.

For later consideration we keep in mind that the stopping cross section is propor-
tional to the radius a of the charge distribution.

8.6.3 Dependence on Atomic Radius

Let us see to what extent measured stopping cross sections obey the scaling prop-
erties following from the Firsov and Lindhard & Scharff picture. Figure 8.26 shows
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measured stopping cross sections for Z1 D Z2 at v D v0, extracted from Paul
(2013), atomic radii calculated from Hartree-Fock wave functions (Clementi and
Raimondi, 1963, Clementi et al., 1967), and the prediction of (8.82) with C D 30,
i.e., greater than the Firsov value C D 20:4. Also shown is an exponent 2p de-
fined by (8.2) and determined by fitting a power law to the set of experimental data
available for each Z.

The coverage with experimental stopping cross sections for Z1 D Z2 is far
from comprehensive. Nevertheless, observed shell structure in S is surprisingly well
represented by the atomic radii in the first power, as predicted by the Firsov model.
Note also that the exponent 2p as extracted from measurements is quite close to
2p D 1.

An attempt to directly relate the stopping cross section to the atomic radius was
made by Pietsch et al. (1976). On the basis of the Lindhard-Scharff formula, (8.73),
they arrived at Se / a3. Figure 8.26 indicates that such a result—-which deviates
dramatically from Firsov scaling—is likely to exaggerateZ1 and Z2 structure.

8.6.4 Modifications

Firsov’s model is sufficiently simple and transparent to allow for a variety of modi-
fications. Such modifications appear justified to the extent that they match the qual-
itative nature of the model. Caution is indicated, if a modified theory aims at high
precision, or if the degree of complexity of an addition far exceeds that of the origi-
nal model. A concise review has been given by Akhiezer and Davidov (1979).

In the work of Kishinevskii (1962), Firsov’s restriction to the range of 1=4 �

Z1=Z2 � 4 was dropped by allowing for nonuniform motion of the nuclei as men-
tioned in Sect. 8.5.7.1, by placing the Firsov surface in the potential minimum, by
avoiding the R�2 potential and by a more stringent numerical evaluation.

Modified-Firsov theories primarily aim at explainingZ1 structure. El-Hoshy and
Gibbons (1968) observed that oscillations roughly followed the shell structure, with
minima for Li, Na and Cu ions. A qualitative description was proposed by introduc-
ing an effective atomic number for the ion, otherwise following closely the Firsov
model.

Quantitative descriptions without introduction of free parameters were proposed
by Winterbon (1968) and Cheshire et al. (1968), who replaced Thomas-Fermi
charge distributions by Hartree-Fock functions. The electron flux through the Firsov
surface was expressed by J D �ve. Winterbon, following Firsov, used the Thomas-
Fermi expression

1

2
mv2e D �k�

2=3 (8.83)

to determine v, while Cheshire determined ve from the expectation value of the
kinetic energy for Slater orbitals,

 D const rn�1e��rY`m.; �/ : (8.84)
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Both authors inserted Hartree-Fock electron densities for individual orbitals from
Clementi (1965). In addition, Winterbon also allowed for a spectrum of charge
states, while Cheshire assumed the ion to be singly charged.

Both authors compared the resulting impact-parameter-dependent energy losses
to stopping data for channelled ions from Eriksson et al. (1967) and Eisen (1968).
While experimentally very pronounced Z1 oscillations were found, calculated os-
cillation amplitudes were found to be much smaller. Winterbon (1968) made com-
parisons with data on stopping in amorphous carbon by Ormrod et al. (1965) and
Fastrup et al. (1966). Although Z1 oscillations are much less pronounced there,
calculated oscillation amplitudes are still significantly smaller.

Cheshire’s approach, unlike Winterbon’s, suffers from an inconsistency: Al-
though the electron velocity is determined from a quantal expectation value, the
expectation value of the flux is not given by the product of the expectation values
of � and ve, as pointed out by Brice (1972). Indeed, Bhalla et al. (1970), following
up on Cheshire’s approach, found that the outcome of calculations following that
scheme depended sensitively on the chosen parametrization of the Hartree-Fock in-
put.

Nevertheless, Cheshire’s scheme was employed by several authors, including
Land and Brennan (1976) who, in a series of papers and a tabulation (Land and
Brennan, 1978) found good agreement with measured stopping cross sections for
random slowing-down by introduction of an adjustable constant, i.e., an effective
impact parameter.

The approach of Kessel’man (1971) is similar to Winterbon’s, but an analytical
approximation to Hartree-Fock densities due to Green et al. (1969) was employed.
Pronounced shell effects were predicted for related quantities, but no comparisons
with stopping measurements were reported. In a recent even more simplified model
of Kimura and Takeuchi (2009) the electron density was determined from the ZBL
potential used in the SRIM code (Ziegler et al., 1985), and atomic structure was
entered through the screening radius by the requirement that the average radius
of the charge distribution matched that of a Hartree-Fock distribution. For random
slowing-down, the magnitude of the computed stopping cross sections agrees with
experiments about as well as the original Firsov formula, while the phases of the
predicted Z1 oscillations are close to opposite to those measured.

8.6.5 Numerical Procedures

Direct computation of collision processes by straight solution of the time-dependent
Schrödinger equation has been possible for many years. Such computations operate
typically within the semi-classical model, where the motion of the nuclei is char-
acterized by classical trajectories, whereas electronic motion obeys Schrödinger’s
equation. This implies that the stopping cross section is given by the usual integral
over the impact parameter. Since the computation of an individual collision event at
a given energy, impact parameter and projectile state is computationally intensive,
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Fig. 8.27 Stopping cross
section of He for H ions
computed by the coupled-
channel method compared
with six sets of measurements.
Shown is a weighted mean
value for HC and H0, where
the contribution from H� was
found to be negligible. From
Grande and Schiwietz (2004)

such calculations have been performed mainly to provide benchmarks for simplified
models. While all these tools are potentially useful to study low-velocity stopping,
none of them has been used systematically in this context. Especially, none of them
has been employed to study Z1 or Z2 structure. Therefore this survey will be quite
short.

8.6.5.1 Coupled-Channel Computations

The starting point of coupled-channel calculations, in the version proposed by
Schiwietz (1990), is similar to that of semiclassical stopping theory, discussed in
Sect. 4.3, Vol. 1, with the difference that no perturbation expansion is applied to the
time-dependent expansion coefficients cj .t/ that determine the amplitudes of the
excited target states. Specifically, nuclear motion is characterized by classical tra-
jectories, and electronic motion is described in terms of independent particles. A
comprehensive survey of the method and its applications was given by Grande and
Schiwietz (2004).

Coupled-channel calculations are computationally intensive, not the least be-
cause of the lack of sum rules that are useful in perturbation theory. The efficiency
and reliability of this method depends on the number of states that contribute to the
excitation spectrum. Applications reported by Grande and Schiwietz (2004) focused
on the stopping of light ions (protons, antiprotons and alpha particles) in light targets
(hydrogen and helium) in an energy range below the Bethe regime.

A particularly successful comparison with experimental data is shown in Fig. 8.27,
where calculations and measurements extend down to 2 keV/u. At these energies,
the energy loss in this system was found to be dominated by electron capture.
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8.6.5.2 Electron-Nuclear Dynamics

Electron-nuclear dynamics, proposed by Deumens and Öhrn (1988) represents sim-
ilar physics as the coupled-channel model. The formalism, developed for the treat-
ment of chemical reactions, is presumably more powerful and versatile through the
introduction of appropriate generalized coordinates into a quantal Lagrangian. Ap-
plications in atomic-collision and stopping theory, summarized by Cabrera-Trujillo
et al. (2004), have likewise focused on the interaction between light ions and atoms.

Calculations have routinely been performed down to energies of 10 eV/u. While
this is outside the scope of the present monograph—as well as that of stopping
theory—this feature must be useful in other branches of collision physics and chem-
istry.

8.6.5.3 Time-Dependent Density Functional Theory

Time-dependent density functional theory is a generalization of the familiar density
functional theory. The theoretical basis is a time-dependent generalization of the
theorem of Hohenberg and Kohn (1964), derived by Runge and Gross (1984), see
also Appendix 8.10.3. The scheme has become a powerful tool in the computation
of static and dynamic properties of solids (Marques et al., 2006).

The method was applied to the stopping of protons and antiprotons in LiF by
Pruneda et al. (2007). Even though the subject was one of intense discussion at
the time, i.e., the seeming absence of an energy threshold in the stopping cross
section of a high-bandgap material, the main merit of that work appears to be a
new approach to the long-standing problem of low-energy stopping, going beyond
the classical approaches of Lindhard-Scharff and Firsov on the one hand, and free-
electron models on the other.

A successful application to the stopping of low-velocity heavy ions is due to
Hatcher et al. (2008). This work addressed the motion of an ion through the h110i
and h100i channels in silicon with the aim to compare with measurements by Eisen
(1968). The calculation was performed as a molecular-dynamics simulation of the
motion of an ion with initial velocity v D 0:68v0 through a layer of material initially
in the ground state. Figure 8.28 shows an even better agreement between experiment
and theory, compared to Fig. 8.21.

8.6.5.4 Classical-Trajectory Monte Carlo

The CTMC method (Classical-trajectory Monte Carlo) consists in numerical solu-
tions of Newton’s equations of motion for all or part of the electrons belonging to the
system to be investigated. In its standard form the scheme was proposed by Olson
and Salop (1977) as a tool to analyse ion-atom collisions with an arbitrary num-
ber of electrons. Atoms and ions are characterized by initial conditions mimicking
pertinent quantum states, i.e., distributions in real and velocity space.
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Fig. 8.28 Energy loss of ions with initial velocity v D 0:68v0 in h110i (upper graph) and
h111i (lower graph) channel in Si. Experimental data from Eisen (1968). Calculations from time-
dependent density functional theory by Hatcher et al. (2008). HEG=homogeneous electron gas.
Also included are results of Echenique et al. (1986). From Hatcher et al. (2008)

The scheme has proven successful in problems that are difficult to attack by
other methods, in particular processes involving swift highly-charged ions. Its po-
tential use in stopping problems has been examined by comparison with results from
coupled-channel calculations (Grande and Schiwietz, 1995). For light ions, H, He
and Li in atomic hydrogen, increasing discrepancies were found for beam energies
from 300 keV/u downward. This was ascribed to the failure of classical theory to
account for adiabaticity. As you may recall from the discussion in Chaps. 2 and 4,
Vol. 1, this problem was circumvented in the classical Bohr theory by postulating a
harmonic atomic binding force.

Calculations for a heavier ion have been performed by Liamsuwan and Nikjoo
(2012), who analysed C in water. Figure 8.29 shows close coincidence of all theo-
retical curves above 2 MeV/u. At lower energies and down to 50 keV/u the CTMC
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Fig. 8.29 Stopping cross section of liquid water for carbon ions. Experimental data from Mon-
tenegro et al. (2007) compared with calculations by CTMC (‘this work’) from Liamsuwan and
Nikjoo (2012), Grande and Schiwietz (2010), Ziegler (2012), ICRU (2005) and Watt (1996). From
Liamsuwan and Nikjoo (2012)

result is lower than all others. Drastic discrepancies are found between all data at
even lower energies. This is the regime of dominating nuclear stopping.

8.6.5.5 Electronic Stopping in Collision Cascades

The theory of collision cascades aims at understanding phenomena such as radiation
damage and sputtering and deals with the scattering and slowing down of primary
and higher-order recoil atoms in the lower keV/u energy range and below. Except
for target materials containing hydrogen or other very light materials, energy loss
is dominated by nuclear stopping. However, energy transfer to target electrons may
be the main process in the transport of energy away from the cascade volume, in
particular under spike conditions, i.e., a region with high deposited-energy density.

The conventional treatment of electronic energy loss in collision cascades was
initiated by Lindhard et al. (1963a) by allowing for a friction force acting on all
moving particles, quantified by the Lindhard-Scharff formula, (8.73). This scheme
has also been applied, either as it stands or slightly modified, in numerous simulation
codes, although genuine quantal schemes are coming up such as Mason et al. (2011),
Correa et al. (2012). A discussion of this development will be taken up in Volume 3.



388 8 Stopping of Slow Ions

Fig. 8.30 Stopping force of C on U, I and Br ions. Lines inserted to guide the eye. From Brown
and Moak (1972)

8.7 Transition to Higher Energies

At the time of publication, Fig. 8.1 was taken as a proof of the assertion that the
regime of velocity-proportional stopping extends beyond the Bohr speed up to the
region around the stopping maximum which, according to Lindhard and Scharff
(1961), should lie close to the Thomas-Fermi velocity vTF D Z

2=3
1 v0. For this

reason, the regime below the stopping maximum is usually called the regime of
velocity-proportional or frictional stopping.

This assertion has become influential in the subsequent development. The LSS
range theory, a main subject of the following chapter, as well as numerous computer
codes implementing that theory, rest on frictional stopping. Extraction of stopping
cross sections from range measurements (Simons et al., 1975) assumes velocity-
proportional stopping, and the same is true when, in the analysis of Z1 or Z2 struc-
ture, measurements at different projectile speeds are scaled to a definite value, usu-
ally the Bohr speed v0 (Paul, 2013).

An indication of deviations from this simple picture may already be found in the
work of Fastrup et al. (1966), who tried to fit their measured stopping cross sections
as well as those of Ormrod and Duckworth (1963) by a power law, Se D constEp

and found values of p oscillating between 0.4 and 0.75 for v � 1:1v0.
Direct measurements of stopping cross sections for v � v0 revealed significant

deviations from velocity-proportional stopping. Figure 8.30 shows stopping data for
Br, I and U ions in C according to Brown and Moak (1972). Linear extrapolation
leads to positive intercepts at virtual threshold energies that increase with the atomic
number of the ion.

Lifschitz and Arista (2013) pointed out that these results are in qualitative agree-
ment with heavy-ion stopping theory. Figure 8.31 shows calculations by the PASS
code. Three expressions have been adopted for the mean equilibrium charge, the
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Fig. 8.31 Stopping force on Br ions in C. Calculation by PASS code. Upper graph: Three options
of the mean equilibrium charge. Dots and dotted line: Measurements and linear extrapolation of
Brown and Moak (1972). Lower graph: Frozen charges. Dotted line: Mean equilibrium charge

standard-Thomas-Fermi expression q=Z1 D 1 � exp.�v=vTF/, the expression by
Shima et al. (1982), and an implementation of the criterion of Lamb (1940) by
Schinner (2013). In the upper graph, all three curves contain a region of approxi-
mately linear behaviour that results in an apparent threshold when extrapolated to
lower speeds. The standard Thomas-Fermi charge yields the best agreement with the
measurements and also reproduces the apparent threshold. The lower graph shows
calculated stopping curves for frozen charges. These curves do not show an apparent
threshold. You may, therefore, conclude that the behaviour observed by Brown and
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Fig. 8.32 Stopping force on atomic and molecular hydrogen ions in LiF. From Draxler et al. (2005)

Moak (1972) is caused by the increasing contribution of higher charge states with
increasing velocity, and that it does not indicate a real threshold effect.

More recently such behaviour has also been found in experiments with protons
and deuterons for both insulators and metals by several groups, including Draxler
et al. (2005), Serkovic et al. (2007), Markin et al. (2008), Loli et al. (2010). An
example is shown in Fig. 8.32.

8.8 Straggling ?

8.8.1 General Considerations

Figure 5.2 shows a universal plot for �2 D
D
.�E � h�Ei/2

E
, predicted on the

basis of the Bohr theory for a point charge. This graph falls naturally into three
regimes, a high-energy regime for mv3=Z1e2!0 � 10, a low-energy regime up to
mv3=Z1e

2!0 � 1 and an intermediate regime. We shall see below that according
to both Lindhard and Firsov theory, the energy-loss straggling should approach a
quadratic dependence on the beam speed v. With a linear dependence of the mean
energy loss in the same regime this implies that the relative width of the energy-loss
spectrum should become independent of v in the low-velocity range.

Qualitative results like this are well founded in theory, whereas quantitative pre-
dictions are scarce and incomplete.
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The situation in the experimental area is equally problematic. Energy-loss mea-
surements with low-energy ions are frequently performed by time-of-flight tech-
niques. Proper analysis of such measurements involves conversion of measured
time-of-flight spectra into energy spectra. If the extracted spectrum is close to gauss-
ian, one may get an estimate of mean energy loss and straggling from peak and
halfwidth, respectively.

This procedure invokes a number of pitfalls at low projectile speed. In the stan-
dard transmission geometry, those problems mentioned in connection with mea-
surements of the mean energy loss in Sect. 8.3, in particular nuclear energy loss and
multiple scattering, also affect the width of the energy distribution as well as the
shape. Moreover, nonuniformities in foil thickness may be large on a relative scale
and may dominate the measured width.

For the variance of the measured spectrum one may assume the relation˝
.�E � h�Ei/2˛ D ˝

.�E � h�Ei/2˛
0

C ˝
.�E � h�Ei2˛foil C�2 ; (8.85)

where
˝
.�E � h�Ei/2˛

0
represents the energy spread of the incident beam,

˝
.�E � h�Ei/2˛foil D hıx2i

�
dE
dx

�2
(8.86)

the spread due to nonuniformity of the foil, and �2 the (nuclear and electronic)
straggling.

While the first term in (8.85) may be negligible, extracting separate informa-
tion about the second and third term is a nontrivial task. Direct measurements of
hıx2i, when attempted at all, have typically not been considered accurate enough
to extract data for extracting �2. Therefore, trial and error procedures have been
most common, where hıx2i enters as a fitting parameter in comparisons between
measurements at varying ion type and beam energy.

Measurements in gases are less problematic than in solids. Here, foil thickness is
equivalent with the pressure in the target chamber, and an important validity test is
checking the proportionality of �2 with pressure.

Straggling data are needed in practice in ion beam analysis with medium and low
energy light ions. For heavy ions, where nuclear stopping and straggling are signif-
icant to dominating, electronic energy-loss straggling is of interest in connection
with detectors. In low-energy ion implantation electronic straggling is commonly
ignored, but an estimate of the error in this approximation might be of interest.
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8.8.2 Free Target Electrons

8.8.2.1 Transport Cross Section

In Sect. 8.6, Vol. 1, the following expression was derived for the straggling parame-
ter W per target electron,

W D d�2

N dx
D
Z
T 2d�

D
*
m2

jv � vej
v

(�
.v2 � v � ve/

2 � 1

2



v2v2e � .v � ve/

2
��
� .2/.jv � vej/

C �
v2v2e � .v � ve/

2
	
� .1/.jv � vej/

)+
ve

; (8.87)

where

� .2/.v/ D
Z
.1 � cos /2d�.v; / (8.88)

is a higher-order transport cross section.
If all target electrons had a definite speed ve, series expansion in powers of v=ve

would reduce (8.87) to

W D 2

3
m2v3e�

.1/.ve/v (8.89)

up to the leading term, independent of � .2/. This implies that for a Maxwell gas
of classical electrons we may expect velocity-proportional straggling in the limit of
low speed.

While we shall see below that this does not hold for a Fermi gas, this result is rele-
vant for electronic straggling in a hot gas target. In principle it might also be relevant
for nuclear straggling of a heavy projectile moving in a light gas target (Sigmund,
1982) after replacement of m and ve by target mass and speed, respectively, albeit
at energies lower than what is considered in this monograph.

8.8.2.2 Fermi Gas: Lindhard Theory

The low-speed limit of (8.87) can be evaluated for a Fermi gas along the same lines
as was done with the stopping force in Sect. 8.5.1, leading to

d�2

ndx
D 6�Z21e

4 v
2

v20

Z 1

0

z4 dz

Œz2 C �2f1.0; z/�
2
; (8.90)

for the straggling parameter per target electron, i.e., an expression proportional to
v2. Here, n represents the electron density. This above expression is seen in the
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Fig. 8.33 Straggling ratio of Fermi gas for protons at different densities expressed by the param-
eter �2 D e2=��vF . Points: numerical computations; lines: analytical approximations. From
Bonderup and Hvelplund (1971)

low-speed limit of Fig. 8.33, which actually was evaluated directly from (5.51) by
Bonderup and Hvelplund (1971).

Explicit expressions for low-and high-speed expansions were given by Sigmund
and Fu (1982). The low-speed expansion reads

�2

�2Bohr

� 3

2

v2

v2F
C2.�/ (8.91)

with

C2.�/ ' 1

.1 � �2=3/2

�
"
1C 7�2=6

1C 2�2=3
� 3�=2p

1 � �2=3
arctan

p
1 � �2=3

�

#
: (8.92)

A number of modifications of this scheme may be found in the literature. Arista
and Brandt (1981) applied the formalism to a non-degenerate plasma to estimate
both mean energy loss and straggling for a high-temperature plasma. Several authors
studied the effect of modified dielectric functions (Gras-Marti, 1985, Wang and Ho,
1995, Arbo et al., 2002).
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8.8.2.3 Fermi Gas: Transport Cross Section

In Sect. 5.7.2, Vol. 1, it was mentioned that the Pauli principle is automatically satis-
fied in Lindhard dielectric theory. This is not necessarily the case in a theory based
on the transport cross section, since that quantity rests on the interaction of an in-
dividual target electron with the projectile. As we shall see, this is without conse-
quence for the stopping cross section, but it is significant for straggling.

For a degenerate Fermi gas, with

f .ve/ D 3

4�v3F
for 0 < ve < vF (8.93)

and zero otherwise, the velocity v0
e of a target electron after a collision must be

outside the Fermi sphere, i.e., v0
e > vF . In the centre-of-mass system, which is

identical with the moving system since M1 	 m, we thus have

.u C v/2 
 v2F I .u0 C v/2 � v2F ; (8.94)

where u and u0 are relative velocities before and after a collision. After introduction
of spherical coordinates,

u D u.1; 0; 0/;

u0 D u.cos‚; sin‚ cos ; sin‚ sin /; (8.95)

v D v.cos�; sin�; 0/;

where u0 D u expresses the fact that the collision is elastic in the cms frame, the
energy transfer T D mv � .u0 � u/ reduces to

T D 2mvu sin
‚

2

�
� cos� sin

‚

2
C sin� cos

‚

2
cos 

�
: (8.96)

If v � vF , ve must lie close to the Fermi edge, i.e.,

ve D vF � ıv (8.97)

with ıv � vF , and
u ' ve � v cos� : (8.98)

From this we find

S D
Z

d3ve f .ve/
u

v

Z
d�.u;‚/

Z
d 
2�

.2mvu/ sin
‚

2

�
�

� cos� sin
‚

2
C sin� cos

‚

2
cos 

�
(8.99)

for the stopping cross section, and
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W D
Z

d3ve f .ve/
u

v

Z
d�.u;‚/

Z
d 
2�

.2mvu/2 sin2
‚

2

�
�

� cos� sin
‚

2
C sin� cos

‚

2
cos 

�2
(8.100)

for the straggling parameter.
To the leading order we may set u D vF , and the integration over ve reduces to

a thin shell near vF with

0 
 ıv 
 2v sin
‚

2

�
� cos� sin

‚

2
C sin� cos

‚

2
cos 

�
(8.101)

according to (8.94). Thus,

S D 6mv

Z
d�.vF ; ‚/ sin2

‚

2

Z
d cos�

�
Z

d 
2�

�
� cos� sin

‚

2
C sin� cos

‚

2
cos 

�2
(8.102)

and

W D 12m2v2F v
2

Z
d�.vF ; ‚/ sin3

‚

2

Z
d cos�

�
Z

d 
2�

�
� cos� sin

‚

2
C sin� cos

‚

2
cos 

�3
: (8.103)

For convenience, the angular integration over ve has been replaced by averaging
over the direction v of the incoming beam. This trick was also used in Sect. 4.4.4,
Vol. 1, on the way to the Bethe formula.

Recognizing that the brackets above represent the scalar product of two unit vec-
tors .� sin‚=2; cos‚=2/ and .cos�; sin� cos /, which has to be positive, inte-
grations can easily be carried out and lead to

S D mvF v�
.1/.vF / (8.104)

in agreement with (8.44) and

W D 3.mvF v/
2

Z
d�.vF ; ‚/ sin3

‚

2
; (8.105)

a result derived by the author (Sigmund, 1982). The dependence on v2 is in agree-
ment with (8.91) but differs from (8.89) which is proportional to v. This difference
is due to the Pauli principle.
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Fig. 8.34 Comparison of the functions Ca.vF/ and Cb.vF/ entering low-speed expressions for
stopping cross section and straggling, (8.48) and (8.107), respectively, assuming Born approxima-
tion and exponentially-screened Coulomb scattering with a D a0

8.8.2.4 Born Approximation

Evaluation of (8.105) along the same line as the stopping cross section in Sect. 8.5.4
yields

�2

�2Bohr

D 3

2

v2

v2F
Cb.vF/ (8.106)

with

Cb.vF / D 1 � 3

2�
arctan �C 1=2

1C �2
; (8.107)

where

� D 2mvFa

�
: (8.108)

Figure 8.34 shows that the function Cb.vF / is quite similar to the corresponding
function Ca.vF/ for the stopping cross section, (8.48).

Figure 8.35 shows a measure of the ratio �2=v2 for three screening radii. None
of them resembles the Lindhard expression, which implicitly contains a density-
dependent screening radius.

8.8.2.5 Partial Waves

Ashley et al. (1986) evaluated (8.105) by the method discussed in Sect. 8.5.6.3 for
the stopping cross section. Results have been included in Fig. 8.36. Very pronounced
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Z1 structure shows up. Maxima and minima were found to move slowly towards
lower values of Z1 with decreasing electron density.

Such a structure should be expected to show up in measurements under chan-
neling conditions. Pertinent measurements have not been published to the author’s
knowledge.
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Fig. 8.37 Straggling param-
eters at v D 0:9v0 for
2 � Z1 � 12 in He, Ne and
air compared with (8.109).
From Hvelplund (1971)

We have seen that Z1 structure in the stopping cross section is much less pro-
nounced under random slowing-down than in channeling. This feature must be ex-
pected to be even more pronounced in straggling because of decreased contribution
of conduction electrons.

8.8.3 Bound Target Electrons

8.8.3.1 Firsov Theory

Hvelplund (1971), reporting measurements of straggling of several ions in gases,
compared his results with an application of Firsov’s formula to straggling. Assuming
straight-line motion of the projectile through the target atom one finds



8.8 Straggling ? 399

Fig. 8.38 Contributions from K and L shell of carbon to proton straggling. Experimental data from
Yang et al. (1991), Shchuchinsky and Peterson (1984), Konac et al. (1998), Tosaki et al. (2005).
Theoretical curves from MELF-GOS (dashed lines, see text), local-density approximation (solid
lines) and an ad hoc expression due to Konac et al. (1998). From Montanari et al. (2007)

W D
Z 1

0

2�p dp ŒT .p/�2 D 0:418 .Z1 CZ2/
8=3 v

2

v20
e4: (8.109)

You may recall that Firsov’s theory ascribes all energy loss to charge exchange.
Nevertheless, the description above ignores charge-exchange straggling. You may
ponder in Problem 8.8 about this paradox.

Figure 8.37 shows a qualitative agreement of (8.109) with experimental data,
in particular an approximate scaling with Z1 C Z2, while quantitative agreement
is barely better than a factor of two. There is a fairly pronounced oscillatory Z1
structure for the He target, while such a structure is hardly identifiable for air or
neon.

8.8.3.2 Quantal Estimates

In an extensive study of light-ion straggling by Montanari et al. (2007), calculations
were compared with experiments on C, Al, Si and Cu over an energy range from
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�10 keV/u to 10 MeV/u. Three calculational tools were employed. The MELF-GOS
scheme, based on the Born approximation, employs generalized oscillator strengths
matched to tabulated dipole oscillator-strength spectra at low wave numbers and
extrapolated to high wave numbers in accordance with the Lindhard function (Lind-
hard, 1954) as amended by Mermin (1970).

While low-velocity straggling is not the main focus of that work, you may note
in Fig. 8.38 a large discrepancy at the low-energy end below 100 keV/u. Apart from
nuclear straggling and the break-down of the Born approximation, the most likely
source of the discrepancy is foil inhomogeneity. In all cases, agreement with calcu-
lations is expected to improve at higher energies.

8.8.4 Comparison with Experiment

Figure 8.39 shows data from Hvelplund (1971) plotted as straggling ratios as is
common for high-energy data. In the upper graph, for He ions, curves scale close to
/ v2. The same is true in the intermediate energy range in the lower graph, for Ne
ions, although curves flatten at the low- and high-energy ends of the graph.

In both graphs, curves for 5 
 Z1 
 12 appear to coincide within experimental
accuracy, whereas data for He and Li ions fall outside other data in this kind of plot.

Measurements of straggling for low-energy protons and antiprotons were re-
ported by Møller et al. (2008). Figure 8.40 shows results for aluminium. Experi-
mental data are as measured, i.e. have not been corrected for foil inhomogeneity.
Dashed lines represent calculations by the PASS code for protons (upper) and an-
tiprotons (lower), uncorrected for packing and bunching.

These curves lie about a factor of two below the experimental data. It was then
assumed that the difference is predominantly due to foil inhomogeneity. Since the
same foils were used for proton and antiproton measurements, an estimate for foil
inhomogeneity ıx was then found from (8.85) for the proton data. The value so
determined was then utilized to determine a ‘prediction’ for the standard deviation
for antiprotons (solid line). The dot-dashed line represents the adopted fit to the
proton data. Considering experimental scatter, the agreement between theory and
experiment appears reasonable.

The main lesson from this and similar graphs for Ni and Au is a substantial
proton-antiproton difference (Barkas effect) in straggling. Both theoretical and ex-
perimental curves show energy dependencies / v or steeper. This is to be expected
for the contribution from foil inhomogeneity. With regard to the straggling parame-
ter, Fig. 8.40 supports the predictions of both the Fermi-gas model as well as binary
theory of �2 / v2.
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Fig. 8.39 Straggling for slow ions 2 � Z1 � 12 in helium (upper graph) and neon (lower graph).
Measurements from Hvelplund (1971)

8.9 Discussion and Outlook

Low-energy electronic stopping has stimulated a surprising number of theoretical
studies. This is unquestionably due to the discovery ofZ1 oscillations half a century
ago. I have tried to sketch a variety of theoretical approaches, but I am fully aware
of the fact that this survey is by no means complete.

While there are successes, such as the explanation ofZ1 structure in silicon under
channeling conditions discussed in Sect. 8.5.6.3, and a reasonable characterization
of the overall behaviour in random stopping by the Lindhard-Scharff formula as
well as Teplova’s extension of the Firsov formula, there are open questions:
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� Very little is known about low-energy electronic stopping in insulators. This ap-
plies to both theory and experiment. And yet, the role of electronic processes in
radiation effects is far more pronounced in insulators than in metals.

� Experimental scatter is large, and it is hard to distinguish between accurate and
less accurate experiments. Nuclear-stopping corrections may be substantial, yet
there is no agreement on how such corrections should be made, and most pub-
lished papers do not contain sufficient documentation so that the reader could
apply a chosen correction.

� The role of the ion charge in low-energy stopping has barely been mentioned,
even though its significance in solid-state physics and chemistry of solid matter
is well established.

� Threshold effects in stopping have been searched for since the 1960s. While few
successes can be noted, there is missing a theory to predict where and where not
a nontrivial threshold effect might be expected.

� Current attempts to establish powerful computer codes have a potential to solve
many of the open questions. The problem here is, as in many other areas, to
achieve a proper balance between adequate statistics and tolerable computation
time.
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8.10 Appendix

8.10.1 The WKB Method

The WKB (or JWKB or quasiclassical) method is the application to the Schrödinger
equation of a mathematical technique that goes back to the early nineteenth century.
It is a method to solve linear differential equations with slowly variable coefficients.
JWKB stands for Jeffreys, Wenzel, Kramers and Brillouin. The application to calcu-
late scattering phase shifts has been ascribed to Ford et al. (1959). You will find an
instructive introduction to the method in the book of Bransden and Joachain (2000)
with numerous applications, although the calculation of scattering phase shifts is
not included explicitly. An explicit treatment of the application to scattering may be
found in Landau and Lifshitz (1960).

The time-independent Schrödinger equation for a central symmetric potential,

� �
2

2m
r
2 .r/C V.r/ .r/ D 
 .r/ (8.110)

has solutions of the form

 D A`
u`.r/

r
Y
�

`
.; �/; (8.111)

where A` is a constant, Y �
`

a spherical harmonic,


 D �
2k2

2m
(8.112)

the total energy, and u`.r/ obeys�
� �

2

2m

d2

dr2
C �

2`.`C 1/

2mr2
C V.r/ � 


�
u`.r/ D 0: (8.113)

In the region where V.r/ D 0, you may find in Chap. 3, Vol. 1, page 93, that u` D
A`e˙ikr . Hence, if the potential varies ‘slowly’, it makes sense to make an ansatz

u`.r/ D A`e
i
�
S.r/: (8.114)

Insertion into (8.111) leads to

.S 0/2

2m
� i�

2m
S 00 C �

2`.`C 1/

2mr2
C V � 
 D 0; (8.115)

where a prime denotes the derivative with respect to r .
The trick in the WKB method is to make contact to classical motion by an ex-

pansion in powers of �,
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S D S0 C �S1 C 1

2
�
2S2 : : : : (8.116)

Insertion into (8.115) leads to
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with the solutions

S0 D ˙
Z r

r0

dr 0
s
2m

�

 � �2`.`C 1/

2mr 02 � V.r 0/
�

C B` ; (8.120)

where r0 is the point where the the square root vanishes, B` is an arbitrary constant,
and

S1 D i
2

lnS 0
0 C C`: (8.121)

Ignoring higher terms in � we then find

u`.r/ D A0
`p
S 0
0
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0
@˙i

Z r

0

dr 0
s
k2 � `.`C 1/

r 02 � 2m

�2
V.r 0/

1
A ; (8.122)

where A0
`

D A` exp.iB`=�/.
Consider first the case of a free particle, V.r/ D 0, where

S0.r/=� D
p
k2r2 � `.`C 1/C

p
`.`C 1/

 
arcsin

p
`.`C 1/

kr
� �

2

!
: (8.123)

Asymptotically, for large values of kr this reduces to

S0=� ! kr �
p
`.`C 1/�=2: (8.124)

However, we know from (3.109), Vol. 1, that ı` D .`C 1=2/�=2. This discrepancy
can be repaired by making the replacement

`.`C 1/ ! .`C 1=2/2 (8.125)

in (8.115). The phase shift ı` is defined as the difference between the phase with
and without the interaction, i.e.,
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ı` D
Z 1

r0

dr

r
k2 � .`C 1=2/2

r2
� 2m

�2
V.r/

�
Z 1

r0

dr

r
k2 � .`C 1=2/2

r2
: (8.126)

The dependence on r in these expressions is similar to but not identical with that of
classical scattering integrals determining scattering angle and time integral, (3.34)
and (3.61), Vol. 1.

8.10.2 Friedel Sum Rule

This section deals with the screening of a point charge embedded into a Fermi gas.
The problem appeared in connection with the study of impurities in metallic solids.
Friedel (1952) predicted that the change in electron density induced around an im-
purity shows radial oscillations when calculated quantally. These changes obey a
sum rule which arises from the requirement that except for the induced charge the
system as a whole must be electrically neutral.

Following Friedel (1954) and Ziman (1972), let us start with a single electron
enclosed in a large spherical box with radius R. One solution of the stationary
Schödinger equation is

 n`.r; cos / D const j`.kr/P`.cos /; (8.127)

where
k D

p
2m
=�2 ; (8.128)


 the electron energy,  the polar angle, P`.cos / a Legendre polynomial and

j`.kr/ D
p
�=2kr J`C1=2.kr/ (8.129)

a spherical Bessel function in standard notation (Abramowitz and Stegun, 1964).
Asymptotically, for large arguments kr 	 1,

J` �
p
2=�kr cos.kr � �`=2� �=4/ (8.130)

according to Abramowitz and Stegun (1964) and hence,

 n`.r; cos / � const
kr

sin.kr � `�=2/P`.cos / : (8.131)

We want the wave function to vanish at the spherical boundary, r D R. This defines
allowed values of the wave number k,

kn` D .nC `=2/�

R
: (8.132)
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Fig. 8.41 A positively charged impurity embedded into a Fermi gas attracts electrons. This gener-
ates bound states in the bottom, indicated by a blue line and empty states in the top (black area).
Redrawn after Friedel (1952)

Now, imagine a positive chargeZ1e in the origin. This will attract electrons into
a number of bound states, and all energy levels will shift downwards, as indicated by
a shift from left to right in Fig. 8.41. This implies that some states below the Fermi
level will be vacated, as indicated by the black area in the figure. There will be no
change far away from the origin. Therefore, the Fermi level will not be affected by
embedding the point charge. To ensure neutrality, the black area will be filled with
Z1 electrons. Now, as is evident from Fig. 8.41, these electrons have wave numbers
k ' kF , i.e., they are characterized by asymptotic wave functions (8.131). Although
the impurity potential changes the wave function, it does not change the asymptotic
dependence on r , as you may recall from (3.109), Vol. 1. Hence, changes can be
expected only in the phase. Writing

 n`.r; cos / � const
kr

sin.kr � `�=2C ı`/P`.cos / : (8.133)

instead of (8.131) we get a phase shift ı.k/ for the various levels. The number of
allowed levels between two wave numbers k and k0 will be given by

�� D 2.2`C 1/Œı`.k/� ı`.k
0/�=� (8.134)

since there are 2` C 1 allowed values of the azimuthal quantum number for every
`-value and 2 states for every orbital quantum number.

We must have ı`.0/ D 0 in the absence of an impurity according to (8.131),
since changes only occur in the near vicinity of the impurity. On the other hand, if
you sum up �� over all k-values, all cancel except the uppermost one. Hence

2

�

X
`

.2`C 1/ı`.kF / D Z1; (8.135)

which is Friedel’s sum rule for a Fermi gas.
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8.10.3 Density Functional Theory

According to (1.18), the Thomas-Fermi model expresses the energy of an atom
or molecule as a functional of the electron density. This is also the case for the
Thomas-Fermi-Dirac model including the exchange energy, (1.90), as well as vari-
ous versions including correlation. While (1.18) is an approximation, it has an exact
generalization due to Hohenberg and Kohn (1964).

Hohenberg and Kohn (1964) consider a stationary many-electron system in an
external potential such as the Coulomb potential of a nucleus. Once you know the
ground-state wave function—assuming that that state is non-degenerate—all prop-
erties of the system in the ground state, including the density �.r/, are defined
uniquely. These authors then proved that the same is true if the electron density
�.r/ is known. This may appear surprising, since the wave function depends on 3N
variables, while �.r/ only depends on three variables r D .x; y; z/.

This theorem has been generalized to a system governed by a time-dependent
external potential by Runge and Gross (1984), who found that properties of such a
system are determined by the time-dependent electron density �.r; t/, but with the
important addition that the state of the system at t depends on �.r; t 0/ at all times
t 0 
 t .

These theorems have been converted into general schemes for the computation
of electronic properties of atoms, molecules and solids denoted density functional
theory and time-dependent density functional theory. In the basic paper, Kohn and
Sham (1965) operate on the basis of the Thomas-Fermi energy functional,

E D
Z

d3r
�
�kin.r/C �.r/V.r/C �xc.r/

	C e2

2

“
d3r d3r 0 �.r/�.r

0/
jr � r 0j ; (8.136)

where �kin.r/ and �xc.r/ denote the density of kinetic energy and of exchange-
correlation energy, respectively. Variation, keeping the number of electrons constant,
leads to

@�kin

@�
C V C @�xc

@�
C e2

Z
d3r 0 �.r 0/

jr � r 0j D 0 : (8.137)

From this, Kohn and Sham (1965) showed that

Veff D V C @�xc

@�
C e2

Z
d3r 0 �.r 0/

jr � r 0j (8.138)

is an effective potential in which an individual electron moves independently.
Kohn and Sham (1965) used Slater determinants in the practical implementation,

starting with a convenient set of single-particle wave functions, determining �.r/
and Veff.r/, solving Schrödinger’s equation for the potential Veff.r/ and, from the
N lowest-lying orbitals determining a new Slater determinant and, hence a new
electron density n.r/. This can be used for another iteration.

The scheme has undergone rapid development over several decades and has
found a wide range of applications in physics, chemistry and adjacent fields, and
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you will easily find lots of pertinent reviews and textbooks as well as ready-to-use
computer codes.

Problems

8.1. An electron hitting a heavy particle in a central collision at a velocity v0 trans-
fers a momentum 2mv0 to the projectile. Use this result to calculate the change in
kinetic energy of heavy particle moving with a velocity v hitting an electron moving
with a velocity ve toward the projectile in a central collision.

8.2. Derive (8.44) from (8.40) by inserting (8.43), performing partial integration and
observing that d.x/=dx � ı.x/.

8.3. Derive (8.45) from (8.44) and (3.94), Vol. 1.

8.4. Estimate the minimum energy for an ion to ionize the L shell of an argon atom.
Set the binding energyU D 182=22e2=2a0,mv2e=2 D U and assume the maximum
energy transfer to be given by (8.42).

8.5. Illustrate the difference between �dE=dx D nmv2� .1/.v/, the high-v limit of
the stopping force, and the low-v limit �dE=dx D nmvvF�

.1/.vF/ in case of the
Born approximation, (8.45). Make plots of both curves for a couple of representative
electron densities and demonstrate that the high-speed limit predicts a quadratic
velocity dependence at low speed.

8.6. Extend the series expansion sketched in Sect. 8.5.2 to the next order in v and
show that all terms vanish. If you feel fit, go to the subsequent term which leads to
a nonvanishing contribution / v3 to the stopping cross section.

8.7. Find exact phase shifts for the potential

V.r/ D
 �Z1e2



1
r

� 1
a

�
r < a

0 r > a
(8.139)

and determine the total cross section as a function of the electron speed (Allis and
Morse, 1931).

8.8. Consider a medium penetrated by an ion that can occupy one of two states 1
and 2. Introduce probabilities F12.p/ and F21.p/ as a function of impact parameter
p for capture and loss, respectively. Determine a general expression for the mean
energy loss T .p/ as well as the stopping cross section and straggling parameter
in accordance with the Firsov model, where the energy loss in a capture event is
given by mv2=2, while all other energy loss is ignored. Next, still ignoring all other
sources of energy loss, determine cross sections for capture and loss and find the
straggling parameter according to the general expression, (3.138).



References 409

References

Abramowitz M. and Stegun I.A. (1964): Handbook of mathematical functions.
Dover, New York

Akhiezer I.A. and Davidov L.N. (1979): Theory of electronic stopping of heavy
ions in metals. Usp Fiz Nauk 129, 239–254. [Engl. transl. Sov. Phys. Usp. 22,
804-812 (1979)]

Alexander J.M. and Gazdik M.F. (1960): Recoil properties of fission fragments.
Phys Rev 120, 874–886

Allis W.P. and Morse P.M. (1931): Theory of scattering of slow electrons on atoms.
Z Physik 70, 567–582

Almbladh C.O., v. Barth U., Popovic Z.D. and Stott M.J. (1976): Screening of a
proton in an electron gas. Phys Rev B 14, 2250–2254

Andersen H.H. (1991): Accelerators and stopping power experiments. In A. Gras-
Marti, H.M. Urbassek, N.R. Arista and F. Flores, editors, Interaction of charged
particles with solids and surfaces, vol. B 271 of NATO ASI Series, 145–192.
Plenum, New York

Apagyi B. and Nagy I. (1987): A simple calculation of the stopping power of an
electron gas for slow protons. J Phys C 20, 1265–1268

Arbo D.G., Gravielle M.S., Miraglia J.E., Eckardt J.C., Lantschner G.H., Fama M.
and Arista N.R. (2002): Energy straggling of protons through thin solid foils.
Phys Rev A 65, 042901

Arista N.R. and Brandt W. (1981): Energy loss and straggling of charged particles
in plasmas of all degeneracies. Phys Rev A 23, 1898–1905

Ashley J.C., Ritchie R.H., Echenique P.M. and Nieminen R.M. (1986): Nonlinear
calculations of the energy loss of slow ions in an electron gas. Nucl Instrum
Methods B 15, 11–13

Bailey V.A. and Townsend J.S. (1921): The motion of electrons in gases. Philos
Mag 42, 873–891

Bhalla C.P. and Bradford J.N. (1968): Oscillating behavior of electron stopping
power. Phys Lett A 27, 318–319

Bhalla C.P., Bradford J.N. and Reese G. (1970): Critical examination of modified
Firsov theory of inelastic energy loss in atomic collisions. In D.W. Palmer, M.W.
Thompson and P.D. Townsend, editors, Atomic collisions in solids, 361–373.
North Holland, Amsterdam

Bohr N. (1948): The penetration of atomic particles through matter. Mat Fys Medd
Dan Vid Selsk 18 no. 8, 1–144

Bonderup E. (1981): Interaction of charged particles with matter. Institute of
Physics, Aarhus. URL http://www.phys.au.dk/~ahs/EBnotes.htm

Bonderup E. and Hvelplund P. (1971): Stopping power and energy straggling for
swift protons. Phys Rev A 4, 562–589

Bøttiger J. and Bason F. (1969): Energy loss of heavy ions along low-index direc-
tions in gold single crystals. Radiat Eff 2, 105–110

Bransden B.H. and Joachain C.J. (2000): Quantum Mechanics. Prentice Hall, Har-
low, 2 edn.



410 8 Stopping of Slow Ions

Brice D.K. (1972): Three-parameter formula for the electronic stopping cross sec-
tion at nonrelativistic velocities. Phys Rev A 6, 1791–1805

Briggs J. and Pathak A. (1973): Momentum transfer cross sections and the Z1 os-
cillations in stopping power. J Phys C 6, L153 – L157

Briggs J.S. and Pathak A.P. (1974): The stopping power of solids for low-velocity
channelled heavy ions. J Phys C 7, 1929–1936

Brown M.D. and Moak C.D. (1972): Stopping powers of some solids for 30-90-
MeV 238U ions. Phys Rev B 6, 90–94

Cabrera-Trujillo R., Sabin J.R., Deumens E. and Öhrn Y. (2004): Dynamical pro-
cesses in stopping cross sections. Adv Quantum Chem 45, 109–124

Calera-Rubio J., Gras-Marti A. and Arista N.R. (1994): Stopping power of low-
velocity ions in solids - inhomogeneous electron-gas model. Nucl Instrum Meth-
ods B 93, 137–141

Callaway J. (1976): The variational method in atomic scattering. Phys Reports 45,
89–173

Cheshire I.M., Dearnaley G. and Poate J.M. (1968): The Z1-dependence of elec-
tronic stopping. Phys Lett A 27, 304–305

Clementi E. (1965): Table of atomic functions. IBM J Res Devel 9 suppl.
Clementi E. and Raimondi D.L. (1963): Atomic screening constants from SCF func-

tions. J Chem Phys 38, 2686–2689
Clementi E., Raimondi D.L. and Reinhardt W.P. (1967): Atomic screening constants

from SCF functions. II. Atoms with 37 to 86 electrons. J Chem Phys 47, 1300–
1307

Correa A.A., Kohanoff J., Artacho E., Sanchéz-Portal D. and Caro A. (2012): Non-
adiabatic forces in ion-solid interactions: The initial stages of radiation damage.
Phys Rev Lett 108, 213201

Deumens E. and Öhrn Y. (1988): Electron-nuclear dynamics with diabatic and adi-
abatic wave packets. J Phys C 92, 3181–3189

Draxler M., Chenakin S., Markin S. and Bauer P. (2005): Apparent velocity thresh-
old in the electronic stopping of slow hydrogen ions in LiF. Phys Rev Lett 95,
113201

Echenique P.M., Nieminen R.M., Ashley J.C. and Ritchie R.H. (1986): Nonlinear
stopping power of an electron gas for slow ions. Phys Rev A 33, 897–904

Echenique P.M., Nieminen R.M. and Ritchie R.H. (1981): Density functional cal-
culation of stopping power of an electron gas for slow ions. Sol St Comm 37,
779–781

Eisen F.H. (1968): Channeling of medium-mass ions through silicon. Can J Physics
46, 561–572

El-Hoshy A.H. and Gibbons J.F. (1968): Periodic dependence of the electronic stop-
ping cross section for energetic heavy ions in solids. Phys Rev 173, 454–460

Eriksson L., Davies J.A. and Jespersgaard P. (1967): Range measurements in ori-
ented tungsten single crystals (0. 1-1. 0 MeV). I. Electronic and nuclear stopping
powers. Phys Rev 161, 219–234

Fano U. and Lichten W. (1965): Interpretation of ArC – Ar collisions at 50 keV.
Phys Rev Lett 14, 627–629



References 411

Fastrup B., Hvelplund P. and Sautter C.A. (1966): Stopping cross section in carbon
of 0.1-1.0 MeV atoms with 6 < Z1 < 20. Mat Fys Medd Dan Vid Selsk 35 no.
10, 1–28

Fedorenko N.V. (1959): Ionization by collisions of ions with atoms. Usp Akad
NAUK 68, 481–511. [Engl. Transl. Sov. Phys. Uspekhi 2, 526 (1959)]

Fermi E. and Teller E. (1947): The capture of negative mesotrons in matter. Phys
Rev 72, 399–408

Ferrell T.L. and Ritchie R.H. (1977): Energy losses by slow ions and atoms to elec-
tronic excitation in solids. Phys Rev B 16, 115–123

Finnemann J. (1968): En redegørelse for resultaterne af beregninger over spred-
ning af elektroner med lav energi på afskærmede Coulombfelter. Master’s thesis,
Aarhus University

Firsov O.B. (1959): A qualitative interpretation of the mean electron excitation en-
ergy in atomic collsions. Zh Eksp Teor Fiz 36, 1517–1523. [Engl. transl. Sov.
Phys. JETP 9, 1076-1080 (1959)]

Ford K.W., Hill D.L., Wakano M. and Wheeler J.A. (1959): Quantum effects near a
barrier maximum. Ann Physics 7, 239–258

Friedel J. (1952): The distribution of electrons round impurities in monovalent met-
als. Philos Mag 43, 153–189

Friedel J. (1954): Electronic structure of primary solid solutions in metals. Adv
Phys 3, 446–507

Fulmer C.B. (1957): Scintillation response of CaI(Tl) crystals to fission fragments
and energy vs. range in various materials for light and heavy fiission fragments.
Phys Rev 108, 1113–1116

Gerjuoy E., Rau A.R.P. and Spruch L. (1983): A unified formulation of the con-
struction of variational principles. Rev Mod Phys 55, 725–774

Glazov L.G. and Sigmund P. (2003): Nuclear stopping in transmission experiments.
Nucl Instrum Methods B 207, 240–256

Golser R. and Semrad D. (1991): Observation of a striking departure from velocity
proportionality in low-energy electronic stopping. Phys Rev Lett 66, 1831–1833

Grahmann H. and Kalbitzer S. (1976): Nuclear and electronic stopping powers of
low energy ions with Z 
 10 in silicon. Nucl Instrum Methods 132, 119–123

Grande P.L. and Schiwietz G. (1995): On classical calculations of the electronic
stopping power at intermediate energies. J Phys B 28, 425–433

Grande P.L. and Schiwietz G. (2004): Ionization and energy loss beyond perturba-
tion theory. Adv Quantum Chem 45, 7–46

Grande P.L. and Schiwietz G. (2010): CasP version 4.1. URL www.
casp-program.org/

Gras-Marti A. (1985): Increased energy losses in off-beam directions for MeV pro-
tons traversing thin films. Nucl Instrum Methods B 9, 1–5

Green A.E.S., Sellin D.L. and Zachor A.S. (1969): Analytic independent-particle
model for atoms. Phys Rev 184, 1–9

Hatcher R., Beck M., Tackett A. and Pantelides S.T. (2008): Dynamical effects in
the interaction of ion beams with solids. Phys Rev Lett 100, 103201



412 8 Stopping of Slow Ions

Herman F. and Skillman S. (1963): Atomic structure calculations. Prentice Hall,
New Jersey

Hoffmann I., Jäger E. and Müller-Jahreis U. (1976): Z1-dependence of electronic
energy straggling of light ions. Radiat Eff 31, 57–59

Hohenberg P. and Kohn W. (1964): Inhomogeneous electron gas. Phys Rev 136,
B864–B871

Hvelplund P. (1971): Energy loss and straggling of 100-500 keV atoms with 2 

Z1 
 12 in various gases. Mat Fys Medd Dan Vid Selsk 38 no. 4, 1–25

ICRU (1993): Stopping powers and ranges for protons and alpha particles, vol. 49
of ICRU Report. International Commission of Radiation Units and Measure-
ments, Bethesda, Maryland

ICRU (2005): Stopping of ions heavier than helium, vol. 73 of ICRU Report. Oxford
University Press, Oxford

Jiang W., Grötzschel R., Pilz W., Schmidt B. and Möller W. (1999): Random and
channeling stopping powers and charge-state distributions in silicon for 0.2 – 1.2
MeV/u positive heavy ions. Phys Rev B 59, 226–234

Kessel’man V.S. (1971): Stopping power of crystals for inelastic collisions with
oscillatory dependence on ion charge. Zh Tekh Fiz 41, 1708–1716. [English
translation: Sov. Phys. Techn. Phys. 16, 1346 (1972)]

Kimura H. and Takeuchi W. (2009): Dependence of electronic stopping power on
incident ions using new Firsov formula. Nucl Instrum Methods B 267, 2817–
2822

Kishinevskii L.M. (1962): Cross sections for inelastic atomic collisions. Izv Akad
NAUK SSSR 26, 1410. [Engl. transl. Bull. Acad. Sci. USSR Phys. Ser. 20,1433-
1438 (1963)]

Kohn W. and Sham L.J. (1965): Self-consistent equations including exchange and
correlation effects. Phys Rev 140, A1133–A1138

Konac G., Klatt C. and Kalbitzer S. (1998): Universal fit formula for electronic
stopping of all ions in carbon and silicon. Nucl Instrum Methods B 146, 106–113

Kuzmin V. and Sigmund P. (2011): Exploring reciprocity as a tool in low-energy
electronic stopping. Nucl Instrum Methods B 269, 817–823

Lamb W.E. (1940): Passage of uranium fission fragments through matter. Phys Rev
58, 696–702

Land D.J. and Brennan J.G. (1976): Sensitivity of the electronic stopping power to
the shell structure of the target material. Nucl Instrum Methods 132, 89–93

Land D.J. and Brennan J.G. (1978): Electronic stopping power of low-velocity ions.
At Data Nucl Data Tab 22, 235–247

Landau L.D. and Lifshitz E.M. (1960):Quantummechanics. Non-relativistic theory,
vol. 3 of Course of theoretical physics. Pergamon Press, Oxford

Leachman R.B. and Schmitt H.W. (1954): Fine structure in the velocity distribution
of slowed fission fragments. Phys Rev 96, 1366–1371

Lennard W.N. and Geissel H. (1987): Energy loss and energy loss straggling for
heavy ions. Nucl Instrum Methods B 27, 338–343

Liamsuwan T. and Nikjoo H. (2012): An energy-loss model for low- and
intermediate-energy carbon projectiles in water. Int J Radiat Biol 88, 45–49



References 413

Lifschitz A.F. and Arista N.R. (2013): The stopping of heavy ions in the low-to-
intermediate energy range: The apparent velocity threshold. Nucl Instrum Meth-
ods B 245–248

Lindhard J. (1954): On the properties of a gas of charged particles. Mat Fys Medd
Dan Vid Selsk 28 no. 8, 1–57

Lindhard J., Nielsen V., Scharff M. and Thomsen P.V. (1963a): Integral equations
governing radiation effects. Mat Fys Medd Dan Vid Selsk 33 no. 10, 1–42

Lindhard J. and Scharff M. (1961): Energy dissipation by ions in the keV region.
Phys Rev 124, 128–130

Lindhard J., Scharff M. and Schiøtt H.E. (1963b): Range concepts and heavy ion
ranges. Mat Fys Medd Dan Vid Selsk 33 no. 14, 1–42

Lindhard J. and Winther A. (1964): Stopping power of electron gas and equipartition
rule. Mat Fys Medd Dan Vid Selsk 34 no. 4, 1–22

Loli L.N.S., Sanchez E.A., Grizzi O. and Arista N.R. (2010): Stopping power of
fluorides and semiconductor organic films for low-velocity protons. Phys Rev A
81, 022902

Markin S.N., Primetzhofer D., Prusa S., Brunmayr M., Kowarik G., Aumayr F. and
Bauer P. (2008): Electronic interaction of very slow light ions in Au: Electronic
stopping and electron emission. Phys Rev B 78, 195122

Marques M.A., Ullrich C.A., Nogueira F., Rubio A., Burke K. and Gross E.K.U.,
editors (2006): Time-Dependent Density Functional Theory. Springer, New York

Mason D.R., Race C.P., Foulkes W.M.C., Finnis M.W., Horslfield A.P. and Sutton
A.P. (2011): Quantum mechanical simulations of electronic stopping in metals.
Nucl Instrum Methods B 269, 1640–1645

Mermin N.D. (1970): Lindhard dielectric function in the relaxation-time approxi-
mation. Phys Rev B 1, 2362–2363

Møller S.P., Csete A., Ichioka T., Knudsen H., Kristiansen H.P.E., Uggerhøj U.I.,
Andersen H.H., Sigmund P. and Schinner A. (2008): Antiproton and proton en-
ergy loss straggling at keV energies. Europ Phys J D 46, 89–92

Montanari C.C., Miraglia J.E., Heredia-Avalos S., Garcia-Molina R. and Abril I.
(2007): Calculation of energy-loss straggling of C, Al, Si, and Cu for fast H, He,
and Li ions. Phys Rev A 75, 022903

Montenegro E.C., Shah M.B., Luna H., Scully S.W.J., de Barros A.L.F., Wyer J.A.
and Lecointre J. (2007): Water fragmentation and energy loss by carbon ions at
the distal region of the Bragg peak. Phys Rev Lett 99, 213201

Nagy I. and Apagyi B. (2004): Stopping power of an electron gas for heavy unit
charges: Models in the kinetic approximation. Adv Quantum Chem 46, 267–291

Olson R.E. and Salop A. (1977): Charge-transfer and impact-ionization cross sec-
tions for fully and partially stripped positive ions colliding with atomic hydrogen.
Phys Rev A 17, 531–541

Ormrod J.H. and Duckworth H.E. (1963): Stopping cross sections in carbon for
low-energy atoms with Z 
 12. Can J Physics 41, 1424–1442

Ormrod J.H., MacDonald J.R. and Duckworth H.E. (1965): Some low-energy
atomic stopping cross sections. Can J Physics 43, 275–284



414 8 Stopping of Slow Ions

Paul H. (2013): Stopping power graphs. URL https://www-nds.iaea.org/
stopping/

Pietsch W., Hauser U. and Neuwirth W. (1976): Stopping powers from the inverted
Doppler shift attenuation method: Z-oscillations: Bragg’s rule or chemical ef-
fects; solid and liquid state effects. Nucl Instrum Methods 132, 79–87

Pruneda J.M., Sánchez-Portal D., Arnau A., Juaristi J.I. and Artacho E. (2007): Elec-
tronic stopping power in LiF from first principles. Phys Rev Lett 99, 235501

Ramsauer C. (1921): Über den Wirkungsquerschnitt der Gasmoleküle gegenüber
langsamen Elektronen. Ann Phys 64, 513–540

Runge E. and Gross E.K.U. (1984): Density-functional theory for time-dependent
systems. Phys Rev Lett 52, 997–1000

Santry D. and Werner R. (1991): Measured stopping powers of 12C and 14N ions in
thin elemental foils. Nucl Instrum Methods B 53, 7–14

Schiefermüller A., Golser R., Stohl R. and Semrad D. (1993): Energy loss of hydro-
gen projectiles in gases. Phys Rev A 48, 4467–4475

Schiff L.I. (1981):Quantum mechanics. McGraw-Hill, Auckland
Schinner A. (2013): Implementation of the Lamb criterion for the equilibrium
charge state of a heavy ion. Unpublished

Schiwietz G. (1990): Coupled-channel calculation of stopping powers for
intermediate-energy light ions penetrating atomic H and He targets. Phys Rev
A 42, 296–306

Serkovic L.N., Sanchez E.A., Grizzi O., Eckardt J.C., Lantschner G.H. and Arista
N.R. (2007): Stopping power of fluorides for low-velocity protons. Phys Rev A
76, 040901(R)

Shchuchinsky J. and Peterson C. (1984): Stopping power and energy-loss strag-
glings of slow protons moving in carbon, aluminum and gold - effective-charge
fractions and straggling of heavy-ions. Radiat Eff 81, 221–229

Shima K., Ishihara T. and Mikumo T. (1982): Empirical formula for the average
charge-state of heavy ions behind various foils. Nucl Instrum Methods 200, 605–
608

Sigmund P. (1975): Energy loss of charged particles in solids. In C.H.S. Dupuy, ed-
itor, Radiation damage processes in materials, NATO Advanced Study Institutes
Series, 3–117. Noordhoff, Leyden

Sigmund P. (1982): Kinetic theory of particle stopping in a medium with internal
motion. Phys Rev A 26, 2497–2517

Sigmund P. (2008a): Reciprocity in the electronic stopping of slow ions in matter.
Europ Phys J D 47, 45–54

Sigmund P. (2008b): Stopping of slow ions. Izv Russ Akad NAUK Ser Fiz 72,
608–616. [Bulletin Russ. Acad. Sci. Phys. Ser. 72, 569-578 (2008)]

Sigmund P. and Fu D.J. (1982): Energy loss straggling of a point charge penetrating
a free-electron gas. Phys Rev A 25, 1450–1455

Simons D.G., Land D.J., Brennan J.G. and Brown M.D. (1975): Range, Distribution,
and Stopping Power of 800-keV 14NC Ions Implanted in Metals from Z2 D 22

to Z2 D 32. Phys Rev A 12, 2383



References 415

Sugiyama H. (1981): Modification of Lindhard-Scharff-Schiøtt formula for elec-
tronic stopping power. J Phys Soc Japan 50, 929–932

Tilinin I.S. (1995): Quasiclassical expression for inelastic energy losses in atomic
particle collisions below the Bohr velocity. Phys Rev A 51, 3058–3065

Tosaki M., Ohsawa D. and Isozumi Y. (2005): An experimental evaluation of spa-
tial distribution for deeply penetrating protons in carbon material. Nucl Instrum
Methods B 230, 59–62

Wang N. and Ho Y. (1995): Energy straggling of protons in solids. J Appl Phys 78,
4830–4834

Ward D., Andrews H.R., Mitchell I.V., Lennard W.N., Walker R.B. and Rud N.
(1979): Systematics for the Z1-oscillation in stopping powers of varioussolid ma-
terials. Can J Phys 57, 645–656

Watt D.E. (1996): Quantities for dosimetry of ionizing radiations in liquid water.
Taylor & Francis, London

Weyl P.K. (1953): The energy loss of hydrogen, helium, nitrogen, and neon ions in
gases. Phys Rev 91, 289–296

Winterbon K.B. (1968): Z1 oscillations in stopping of atomic particles. Can J
Physics 46, 2429–2433

Yang Q., O’Connor D.J. and Wang Z. (1991): Empirical formulae for energy loss
straggling of ions in matter. Nucl Instrum Methods B 61, 149

Zhang Y., Possnert G. and Weber W.J. (2002): High-precision measurement of elec-
tronic stopping powers for heavy ions using high-resolution time-of-flight spec-
trometry. Nucl Instrum Methods B 196, 1–15

Zhang Y. and Weber W.J. (2003): Validity of Braggs’ rule for heavy-ion stopping in
silicon carbide. Phys Rev B 68, 235317

Ziegler J.F. (2012): Particle interactions with matter. URL www.srim.org
Ziegler J.F., Biersack J.P. and Littmark U. (1985): The stopping and range of ions in
solids, vol. 1 of The stopping and ranges of ions in matter. Pergamon, New York

Ziman J.M. (1972): Principles of the theory of solids. Cambridge University Press,
Cambridge, 2 edn.



Chapter 9

Range and Energy Deposition

Abstract This chapter introduces the basic equations for range and energy profiles.
Several range concepts such as vector range, projected and lateral range, pathlength
and chord length are introduced as well as relations between these quantities. In-
put in the form of electronic and nuclear energy loss and scattering is taken from
previous chapters, but the correlation between these quantities deserves attention in
range and energy deposition profiles. Methods of solution including construction
from moments and numerical solution of transport equations are discussed. Results
are presented primarily in the form of more or less universal scaling relations indi-
cating trends, and a few specific comparisons with experiment are shown to illustrate
the degree of predictivity of various schemes.

9.1 Introductory Comments

Figure 1.1, Vol. 1, shows a photograph of the tracks of alpha particles in a cloud
chamber. The range, or penetration depth, of such particles and its dependence on
penetrating species, projectile energy and penetrated material is a quantity of cen-
tral importance in most application areas. Accurate measurements and reliable pre-
dictions of particle ranges have been recognized to be necessary ingredients in all
applications of radioactivity in the beginning of the past century and, later on, ap-
plications of all types of accelerators. It is the need to understand ion ranges that
forms the main motivation to quantitatively study stopping forces and straggling,
even though those topics have developed their own dynamics.

Penetration depths of alpha particles in a cloud chamber are of the order of cen-
timeters. Ranges in condensed matter scale down inversely proportional with in-
creasing density of the medium, so we arrive in the micrometer range. Ranges of
heavy keV ions in solids—which are of interest in micro- and nanotechnology—
may be down in the nanometer range. Conversely, heavy ions in the upper MeV and
lower TeV range—which are used in particle therapy—come up into the 10-100 cm
range in condensed matter.

P. Sigmund, Particle Penetration and Radiation Effects Volume 2,
Springer Series in Solid-State Sciences 179, DOI: 10.1007/978-3-319-05564-0_9,
� Springer International Publishing Switzerland 2014
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418 9 Range and Energy Deposition

By and large, experimental problems in measuring penetration profiles increase
with decreasing energy. Reliable experimental methods became available in the late
1950s (Davies et al., 1960b) and have undergone refinement ever since.

On the theoretical side, the main problem is to find reliable input in terms of
stopping and scattering cross sections. This has been the main subject of the pre-
vious eight chapters. Once such input has become available, tools are needed to
study ion-range profiles as well as the spatial distribution of deposited energy. That
aspect is nowadays taken care of mostly by suitable computer simulation codes.
Therefore, the present chapter can focus on fundamental aspects as well as qualita-
tive guidelines on the relative importance of stopping and scattering, of electronic
versus nuclear stopping, and on their dependence on ion and target mass or atomic
number.

9.1.1 Recapitulation

According to (2.35), Vol. 1, the quantity

R.E;E1/ D
Z E

E1

dE 0

NS.E 0/
(9.1)

represents an estimate of the mean pathlength travelled by a particle while slow-
ing down from an initial energy E to some energy E1. In the analysis of a cloud-
chamber photograph, E1 will be taken to be the energy below which the projectile
does not leave a visible track.

The quantity specified by (9.1) is frequently called the ‘csda range’, where csda
stands for continuous slowing-down approximation. It represents the pathlength in
case of negligible straggling.

Figure 9.1 shows the electronic stopping cross section of aluminium for oxygen
ions as a function of the beam energy E together with the total range down to zero
energy1. You may identify a low-energy regime up to � 0:1MeV/u, where the range
goes approximately like the square root of the energy, and a high-energy regime
from � 10 MeV/u upward, where the range is approximately / E2. The behaviour
in between these two regimes can very roughly be characterized as linear in energy.

Figure 9.1 also shows range straggling�R computed from (2.38), Vol. 1,

�2R D
Z E

0

dE 0 NW.E
0/

ŒNS.E 0/�3
: (9.2)

Both calculations neglect nuclear stopping and straggling, and electronic straggling
has been approximated by Bohr straggling. You may note that in the high-energy

1 For the calculation of the range the stopping cross section has been extrapolated down to zero
energy.



9.1 Introductory Comments 419

0.001

0.1

10

1000

0.1 1 10 100 1000
0.1

1

10

100

1000

10000

O - Al

E [MeV/u]

S
 [1

0-1
5 eV

cm
2 ]

R
 [ μ

m
], 

Ω R
 [μ

m
]

Fig. 9.1 RangeR (solid curve), stopping cross section S (including measurements) and rms. range
straggling�R (dotted curve) for oxygen in aluminium. Measured stopping cross sections compiled
by Paul (2013). Calculated stopping cross section from Sigmund and Schinner (2002). Pathlength
calculated from (9.1) for E1 D 0 and range straggling from (9.2). Nuclear stopping neglected
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Fig. 9.2 Energy and stopping force versus pathlength for oxygen ion slowing down in aluminium
from an initial energy 400 MeV/u to 0, calculated from (9.1) on the basis of the stopping cross
section shown in Fig. 9.1. Nuclear stopping and scattering neglected

regime above 10 MeV, the relative fluctuation varies only slowly, whereas at lower
energies it increases as the energy decreases.

These features are rather general for all ion-target combinations, except for the
limiting energies which vary with Z1 and Z2.

Figure 9.2, which has been generated from (9.1) and the theoretical curve for
S.E/ in Fig. 9.1, shows the beam energy and the mean energy loss as a function of
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the travelled pathlength. You may notice that the beam energy degrades only slowly
in the beginning of the trajectory, where the stopping force is small. Conversely, a
sharp decrease is found when the beam energy approaches the stopping maximum.
This behaviour is also reflected in the complementary quantity, the energy deposited
per unit pathlength which goes through a sharp Bragg maximum before going to
zero at the ion range.

9.1.2 Needs

Ion range and straggling as shown in Fig. 9.1 have been calculated under the simpli-
fying assumption of negligible nuclear stopping and straggling. It has been tacitly
assumed that (9.1) represents an average pathlength, whereas the derivation of this
expression in Volume 1 does not account for statistical considerations. A proper
statistical treatment should start at a penetration profile

FR.v; r/d3r ; (9.3)

defined as the probability for a projectile with an initial velocity v in the point r D
0 to end up in a volume element .r ; d3r/ when coming to rest. This profile will
depend on masses and atomic numbers of the species and the target atoms. Nuclear
scattering and stopping need to be accounted for and may even be dominating. In
a homogeneous medium, profiles will be translationally invariant, but in practical
applications, symmetry breaking such as the existence of a (plane or rough) surface
and other kinds of inhomogeneity may greatly complicate the matter.

Figure 9.2, showing an energy-deposition profile under the assumption of negli-
gible nuclear stopping and scattering, needs to be generalized similarly. In addition,
it is convenient to distinguish between deposition of nuclear and electronic energy,
Fn.v; r/d3r and Fe.v; r/d3r , respectively. Although all energy will ultimately end
up as heat, i.e., nuclear motion, this distinction is relevant on a short timescale: The
transfer of electronic energy to the atoms or molecules of a material is slow on the
time scale of collision processes.

Defining a deposited-energy profile is meaningful as long as the penetration
depth of the particles involved, electrons or atoms, decreases toward zero with de-
creasing energy.

9.2 Pathlength

A comprehensive scheme for calculating ion ranges in a homogeneous and isotropic
medium has been outlined by Lindhard et al. (1963b). Unlike previous approaches,
this scheme allows for both nuclear and electronic stopping, the basic equations are
written down in general terms, and a clear distinction is made between pathlength
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(range along the path) and vector range or related quantities. Following Lindhard
et al. (1963b) we shall first have a look at the pathlength. This makes the proce-
dure transparent and allows straight generalization to the vector range and related
quantities.

9.2.1 Integral Equation

Following Lindhard et al. (1963b), let us define a function F.E;R/ such that
F.E;R/ dR is the probability for a projectile with initial energy E to come to rest
after a travelled pathlength .R; dR/. In order to find an equation governingF.E;R/,
let the projectile travel over a pathlength increment ıR. Let ıR be so small that
the probability for more than one collision is negligible. With the differential cross
section d�.E; T / D K.E; T / dT , there is a probability NıR d�.E; T / for a col-
lision with energy loss .T; dT / and a complementary probability for no collision,
1 �NıR

R
d�.E; T /. With this, F.E;R/ is now made up by two contributions,

F.E;R/ D NıR

Z
d�.E; T /F.E � T;R � ıR/

C
�
1 �NıR

Z
d�.E; T /

�
F.E;R � ıR/ (9.4)

by the rules of combined probabilities. Note the occurrence of R � ıR on the right-
hand side, indicating that we still look for an end position .R; ıR/ seen from the
starting point of the trajectory.

After expanding

F.E;R � ıR/ ' F.E;R/ � ıR @

@R
F.E;R/ (9.5)

you will recognize that terms of zero order in ıR drop out from (9.4), and equating
terms of first order leads to

� @

@R
F.E;R/ D N

Z
d�.E; T /

�
F.E;R/ � F.E � T;R/

	
: (9.6)

This is a linear homogeneous integro-differential equation, similar to but not iden-
tical with (9.103), Vol. 1. In order to find a unique solution we need a normalization
condition. Since F.E;R/ is a probability density, an obvious requirement isZ 1

0

dRF.E;R/ D 1 : (9.7)

The above derivation assumes the total cross section
R

d�.E; T / to be finite. We
have dealt with numerous situations where this assumption is not fulfilled. On the
other hand, it is evident that a possible singularity of d�.E; T / at T D 0 is counter-
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acted in (9.6) by a factor

�
F.E;R/� F.E � T;R/

	 ' T
@

@E
F.E;R/ for small T : (9.8)

If the differential cross section is truncated at some energy Tc , the above derivation
is valid. According to (9.8), the integral on the right-hand side differs from (9.6) by
a term Z Tc

0

T d�.E; T / : (9.9)

If this expression is finite and goes to zero for Tc going to zero, (9.6) should be valid
even for an infinite total cross section.

9.2.2 Moments

Still following Lindhard et al. (1963b), introduce moments over the pathlength pro-
file,

M .n/.E/ D
Z

dRRnF.E;R/; n D 0; 1; 2 : : : (9.10)

Multiplying (9.6) by Rn and integrating yields

nM .n�1/ D N

Z
d�.E; T /

�
M .n/.E/�M .n/.E � T /

	
; (9.11)

where it has been assumed that F.E;1/ D 0, i.e., the projectile must have a finite
pathlength.

From (9.7) we find that M0 D 1. Thus, for the average pathlength hRi D
M .1/.E/ we find

1 D N

Z
d�.E; T /

�
M .1/.E/�M .1/.E � T /	 : (9.12)

The equation for the second moment,

2M .1/ D N

Z
d�.E; T /

�
M .2/.E/�M .2/.E � T /

	
; (9.13)

can be rewritten in terms of the range straggling

�2R.E/ D M .2/.E/�
h
M .1/.E/

i2
; (9.14)

so that
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N

Z
d�.E; T /

�
�2R.E/��2R.E � T /

	
D 2M .1/.E/�N

Z
d�.E; T /

�
M .1/.E/2 �M .1/.E � T /2

	
: (9.15)

9.2.3 Simple Solutions

An approximate expression for the mean range may be found, based on the as-
sumption that differential cross sections, whether electronic or nuclear, favour small
energy transfers. Thus, after expanding

M .1/.E � T / ' M .1/.E/� T dM .1/.E/

dE
; (9.16)

(9.12) reads

1 D NS.E/
dM .1/.E/

dE
(9.17)

or

hRi D M .1/.E/ D
Z E

0

dE 0

NS.E 0/
(9.18)

in agreement with (9.1). While a solution M .1/.E/ of (9.12) is indeed an average
pathlength, the last expression in (9.18) represents evidently an approximate so-
lution, the accuracy of which depends on the cross section, as you may judge by
solving Problem 9.1.

In an attempt to apply the same procedure to (9.15), consider first the term on the
right-hand side. With

N

Z
d�.E; T /

�
M .1/.E/2 �M .1/.E � T /2

	
' NS.E/2M .1/.E/

dM .1/.E/

dE
' 2M .1/.E/; (9.19)

the right-hand side of (9.15) vanishes. Thus, we have to go to the next order, yielding
a term

1

2
NW.E/

d2

dE2
M .1/.E/2

D NW.E/

2
4 dM .1/.E/

dE

!2
CM .1/.E/

d2M .1/.E/

dE2

3
5 : (9.20)

Equation (9.12) then expands to
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1 D NS.E/
dM .1/.E/

dE
� 1

2
NW.E/

d2M .1/.E/

dE2
; (9.21)

where W.E/ D R
T 2 d�.E; T / is the straggling parameter. With this, (9.15) re-

duces to

NS.E/
d�2R.E/

dE
D NW.E/

 
dM .1/.E/

dE

!2
(9.22)

or

�2R.E/ D
Z E

0

dE 0 NW.E
0/

ŒNS.E 0/�3
(9.23)

to the leading order, in agreement with Bohr’s formula (9.2).

9.2.4 Profiles

At high beam energies, where straggling may be a small effect, range profiles can
be approximated as gaussians,

F.R/ ' 1p
2��2

exp
�

� .R � hRi/2
2�2

�
: (9.24)

However, the rigorous profile must always be skew, if not for other reasons since
F.E;R/ D 0 for R < 0.

Methods for reconstructing profiles from moments will be discussed below. Di-
rect analytical solutions of the fundamental equation (9.6) for a feasible cross sec-
tion have not been found to the author’s knowledge. Numerical solutions have been
found, but (9.6), which is very appropriate for generating moments recurrently, is
not a good starting point for determining profiles numerically, since there are no ini-
tial conditions for F.E;R/ at R D 0 or elsewhere. An alternative would be Laplace
transform according to

f .E; s/ D
Z 1

0

dR e�sRF.E;R/ : (9.25)

Here,
f .E; 0/ D 1 (9.26)

according to (9.7) can serve as an initial condition.
An alternative is a numerical solution of the forward Boltzmann equation,

(9.106), Vol. 1. In the present notation this reads

@F.E;R/

@R
D N

Z
dT

��K.E; T / F.E;R/CK.E C T /F.E C T;R/
	
; (9.27)
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where F.E;R/ is the energy distribution at pathlength R. This defines an initial
condition for

F.E; 0/ D F0.E/ ; (9.28)

where F0.E/ may be taken to be a narrow, e.g. gaussian profile. F.E;R/ can then
be determined iteratively in suitable steps ıR.

9.2.5 Input

According to (8.16), the energy loss in an individual collision event may be repre-
sented in the form

T D Te C Tn C Tx ; (9.29)

where Te is the electronic energy loss, Tn the energy loss in the absence of electronic
processes, and Tx an interference term that is usually neglected. If so, we find the
usual expression,

S.E/ ' Se.E/C Sn.E/ (9.30)

for the stopping cross section, while the straggling parameter,

W.E/ D
Z
T 2d�.E; T / D Wee C 2Wen CWnn (9.31)

contains a mixed term,

Wen D
Z

d�.E; T / TeTn (9.32)

or, in terms of an impact-parameter dependence,

Wen D
Z
2�p dp Te.p/Tn.p/ ; (9.33)

If Tx is not negligible, up to three additional terms enter (9.31).
In the LSS theory (Lindhard et al., 1963b), which addresses low-energy heavy

ions, only nuclear straggling as expressed by Wnn is taken into account. At high
energies, where nuclear stopping is insignificant, only Wee is usually considered.
Evidently,Wen must be important in some transition regime.

9.2.6 Scaling Properties

Scaling properties for nuclear stopping have been introduced in Sect. 6.4.1. With a
dimensionless variable � for the pathlengthR we have


 D M2Ea

.M1 CM2/Z1Z2e2
I � D N�a2	R (9.34)
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for screened-Coulomb interaction and a screening radius a, where

	 D 4M1M2=.M1 CM2/
2 : (9.35)

We may now write the total pathlength in terms of dimensionless variables in the
form

�.
/ D
Z �

0

d
0

sn.
0/C se.
0/
; (9.36)

if the interference term discussed above can be omitted. In the absence of electronic
stopping, this is a universal formula for all projectile and target atoms within the
range of validity of a universal screening function such as Thomas-Fermi screening
or exponential (Bohr) screening.

If electronic stopping cannot be neglected, universality gets lost, since

se.
/ D
�

d

d�

�
e

D 


E

R

�

�
dE
dR

�
e

: (9.37)

If we adopt the Lindhard-Scharff formula (8.73) for Se, this reads

se.
/ D k
1=2 (9.38)

with

k D �e

�
2.M1 CM2/

0:8853M1

�3=2 �
Z1Z2m

ZM2

�1=2

D 0:0795�e
.A1 C A2/

3=2

A
3=2
1 A

1=2
2

�
Z1Z2

Z

�1=2
(9.39)

with Z2=3 D Z
2=3
1 C Z

2=3
2 in accordance2 with Lindhard et al. (1963b). For rough

orientation we may write A1 ' 2Z1 and A2 ' 2Z2, so that

k � 0:056�e
.Z1 CZ2/

3=2

Z1

�
Z
2=3
1 CZ

2=3
2

�3=4 : (9.40)

Figure 9.3 shows that k increases monotonically as a function of Z2=Z1, indicating
that the relative importance of electronic stopping increases as Z1 decreases.

Figure 9.4 shows plots of dimensionless pathlengths versus dimensionless en-
ergy for various screened-Coulomb potentials. Evidently, the difference between the
Bohr potential—which has the lowest stopping cross section and hence the highest
range—and the Thomas-Fermi potential in the other extreme is small at high ener-
gies but increases with decreasing energy and reaches almost two orders of magni-
tude at 
 D 0:001.

2 Lindhard et al. (1963b) report a value 0.0793 for the numerical constant. Note that the definition
of the atomic mass unit has changed since 1963.
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Fig. 9.3 Approximate behavior of the electronic-stopping constant k vs. Z2=Z1 according to
(9.40)
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Fig. 9.4 Total pathlength based solely on nuclear stopping. Calculated from (9.36) for se D 0,
employing nuclear stopping cross sections from Fig. 6.22

Figure 9.5, reconstructed after two similar graphs by Lindhard et al. (1963b),
shows what happens when electronic stopping is included. The upper graph shows
the range of low energies, 
 
 1. The difference between solid and dashed curves
indicates the influence of electronic stopping, characterized by values of the constant
k specified in (9.39). As you may expect, that difference gets smaller as k increases.
Dotted lines show that ranges would be drastically overestimated if nuclear stopping
were neglected.

The lower graph in Fig. 9.5 shows the high-energy behaviour for 
 � 1. Here the
solid lines approach the dotted lines representing solely electronic stopping. You
may note that this approach is quite slow, in particular for low values of k. Con-
versely, the difference between Thomas-Fermi and Lenz-Jensen nuclear stopping is
barely visible.
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Fig. 9.5 Same as Fig. 9.4 for Thomas-Fermi nuclear stopping including Lindhard-Scharff elec-
tronic stopping (solid lines). Lenz-Jensen curves would be barely distinguishable on the scale of
the graphs. Dotted lines: electronic stopping only. Numbers on the right axes indicate the factor k
in the electronic-stopping formula as specified in (9.39)

Lindhard et al. (1963b) evaluated straggling in dimensionless units following
(9.2). Figure 9.6 shows the energy dependence of pathlength straggling for a number
of values of the parameter k determining the contribution of electronic stopping. It is
seen that relative straggling depends only weakly on the beam energy in the regime
of dominating nuclear stopping (
 � 1), while there is a sharp drop-off at higher
energies. You may look at Problem 9.3 to study the behaviour at higher energies.

9.2.7 Power Cross Section

Lindhard et al. (1963b) pointed out that exact solutions of the range equation can
be found for power scattering, if electronic stopping is neglected. Write the cross
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Fig. 9.6 Relative straggling of pathlength according to (9.2), based on nuclear and (Lindhard-
Scharff) electronic stopping. Electronic straggling ignored. From Lindhard et al. (1963b)

section (6.89) in the form

d�.E; T / D CE�2m dt
t1Cm I 0 
 t 
 	 (9.41)

with t D T=E and set

M .n/ D An

�
E2m

NC

�n
(9.42)

with an unknown function An D An.E/. Then (9.11) reduces to

nAn�1 D An

Z �

0

dt
t1Cm

�
1 � .1 � t/2mn

	
: (9.43)

Since A0 D 1, it is seen that An is independent of E for all n, and that these
coefficients can be determined recursively, starting from n D 1. A straightforward
way to carry out the integral on the right-hand side involves partial integration with
the purpose to remove the divergence at t D 0. This yields

nAn�1 D An

�
� 1

m
	�m 
1 � .1 � 	/2mn

�C 2nB� .1 �m; 2mn/
�
; (9.44)

where

B� .x; y/ D
Z �

0

dt tx�1.1 � t/y�1 (9.45)

is the incomplete Beta function (Abramowitz and Stegun, 1964). Alternatively, as-
sume for a moment that m < 0. This allows direct integration, so that
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Fig. 9.7 Derivation of (9.49)
for the vector-range profile.
See text

	δr
	v

	v′

	r
	r − 	δr

P

nAn�1 D An

�
� 1

m
	�m � B� .�m; 1C 2mn/

�
: (9.46)

Since the term on the right-hand side remains regular at m D 0, analytical continu-
ation into the regime of positive values of m is justified. You can easily verify from
recursion formulae (Abramowitz and Stegun, 1964) that the two forms, (9.44) and
(9.46), represent the same function.

9.3 Projected and Lateral Range

In the following we shall try to take account of angular deflection during slowing-
down. This can conveniently be done by starting at the vector range FR.v; r/. The
index R will be dropped for clarity in this section.

9.3.1 Integral Equation

Following the procedure outlined in Sect. 9.2.1 we ask for the probabilityF.v; r/ d3r
for a projectile with an initial velocity v to end up in a volume element .r ; d3r/ sur-
rounding a point P. Figure 9.7 indicates that the projectile travels for a short distance
jırj in the direction of v. At this point there are two possibilities:

� The particle has undergone a collision and moves on with some velocity v0. The
probability for this to happen is N jırj d�.v; v0/. We are now looking for the
probability F.v0; r � ır/ d3r for the particle to end up near point P.

� The complementary probability for the projectile not to have undergone a colli-
sion is 1 � N jırj R d�.v; v0/. In this case we look for the probability F.v; r �
ır/ d3r for the projectile to end up near point P.

This leads to
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F.v; r/ D N jırj
Z

d�.v; v0/ F.v0; r � ır/

C �
1 �N jırj

Z
d�.v; v0/

	
F.v; r � ır/: (9.47)

After expanding

F.v; r � ır/ ' F.v; r/ � ır � r rF.v; r/ (9.48)

the terms of zero order in ır drop out, and the terms of first order read

�ır � r rF.v; r/ D N jırj
Z

d�.v; v0/
�
F.v; r/ � F.v0; r/

	
: (9.49)

With the unit vector

e D ır

jırj D v

jvj (9.50)

this reads, finally,

�e � r rF.v; r/ D N

Z
d�.v; v0/

�
F.v; r/ � F.v0; r/

	
: (9.51)

To connect this to the description involving a differential cross section expressed in
terms of energy transfer it is convenient to replace velocities by energies. We may
then write

� e � rrF.E; e; r/

D N

Z
d�.E; e; T; e0/

�
F.E; e; r/� F.E � T; e0; r/

	
: (9.52)

This is again a linear homogeneous integro-differential equation. In order to find a
unique solution we need to impose a normalization condition,Z

d3r F.v; r/ D
Z

d3r F.E; e; r/ D 1 : (9.53)

9.3.2 Range Parameters

Figure 9.8 shows range parameters according to Lindhard et al. (1963b),

� The vector range R points from the origin to the end of a given trajectory,
� The projected range Rp represents the projection of R on the initial direction of

motion,
� The lateral range R? represents the distance from the end point to the initial

direction of motion,



432 9 Range and Energy Deposition

Fig. 9.8 Range concepts
according to Lindhard et al.
(1963b). See text. Figure from
Sigmund (2004)

O

N

L M
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� The chord range Rc D jRj D
q
R2p CR2? is the straight distance between the

starting point and the end point of the trajectory,
� The penetration depth x represents the projection of R on a chosen direction,

typically the surface normal of a target exposed to a beam incident at some angle,
and

� The pathlengthR represents the length of the trajectory.

All these quantities obey the laws of statistics and can be quantified by distribution
functions that are related to each other. Most important in practical applications
are the penetration depth and the lateral range. We shall look into these quantities
separately and subsequently derive a relation between them.

9.3.3 Input

Evaluation of (9.52) requires a model for the differential cross section. The widely
adopted model proposed by Lindhard et al. (1963b) has four ingredients,

1. Electronic and nuclear processes are decoupled,
2. Angular deflection in electronic processes is ignored,
3. Straggling in electronic energy loss is likewise ignored,
4. Electronic energy loss is taken to be proportional to the projectile speed.

The first two assumptions, although not rigorously valid, are consistent with what
we have learned about quasielastic collisions in Chaps. 6–8. The third assumption
is well justified at low beam energy but deserves attention in the high-energy range.
The fourth assumption can easily be dropped to the extent that better input might be
available.
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If electronic energy loss is accounted for via its dependence on impact parameter,
all these assumptions are much less restrictive than in the original formulation.

Going over for a moment to an impact-parameter representation we may write
(9.52) in the form

� e � rrF.E; e; r/

D N

Z
d2p

�
F.E; e; r/ � F.E � Tn.p/ � Te.p/; e0.p/; r/

	
; (9.54)

where Tn.p/ and Te.p/ represent nuclear and electronic energy loss, respectively.
If we adopt the first assumption above, the scattered direction e0 is unrelated to
electronic processes. If electronic energy loss may be taken small compared to E �
Tn, we may write

F.E � Tn.p/� Te.p/; e
0; r/ ' F.E � Tn.p/; e

0; r/

� Te.p/
@

@E
F.E � Tn.p/; e

0; r/C 1

2
T 2e .p/

@2

@E2
F.E � Tn.p/; e 0; r/: (9.55)

If we neglect the coupling between electronic and nuclear energy loss, in accordance
with the first assumption above, we may set Tn D 0 in the terms proportional to Te
and T 2e ,

F.E � Tn.p/� Te.p/; e
0; r/ ' F.E � Tn.p/; e

0; r/

� Te.p/
@

@E
F.E; e0; r/C 1

2
T 2e .p/

@2

@E2
F.E; e0; r/ (9.56)

or, going back to the notation in terms of cross sections,

� e � rrF.E; e; r/ D N

Z
d�n.E; T /

�
F.E; e; r/� F.E � T; e0; r/

	
CNSe.E/

@

@E
F.E; e; r/� 1

2
NWe.E/

@2

@E2
F.E; e; r/; (9.57)

where Se andWe are the electronic stopping cross section and straggling parameter,
respectively, and the differential cross section has reduced to the cross section for
nuclear elastic scattering.

Equation (9.57) reduces to the LSS model if We is ignored3.

3 Including We at low velocity would not be meaningful: If a correction to nuclear straggling
were necessary in the regime of dominating nuclear stopping, the first such correction would have
to be a coupling term between Tn and Te . However, at high energies, where electronic straggling
dominates, (9.57) may become useful since it incorporates angular deflection by nuclear collisions.
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9.3.4 Mean Range

Let us first have a look at mean ranges. We deal with slowing-down in a homo-
geneous, isotropic and infinite medium. If we assume cylindrical symmetry of the
differential cross section, the mean vector range must point into the direction of the
velocity, i.e., it reduces to the projected range, and the lateral component of the vec-
tor range must vanish in the average. Thus, after you have repeated the procedure
applied to the pathlength in the previous section, (9.57) reduces to

1 D NSe.E/
dRp.E/

dE
CN

Z
d�n.E; T /

�
Rp.E/� cos�0Rp.E � T /	 ; (9.58)

where �0 is the laboratory scattering angle in a collision characterized by a differ-
ential cross section d�.E; T /. The factor cos�0 in the second term in the brackets
arises from the projection of the vector rangeRp.v0/ on v. The connection between
cos�0 and T for elastic collisions has been derived in Sect. 3.2.1, Vol. 1. In the
present notation it reads

cos�0 D .1 � t/1=2 C ˛t.1 � t/�1=2 ; (9.59)

where

˛ D 1

2

�
1 � M2

M1

�
I t D T

E
: (9.60)

As you may have expected, ˛ becomes substantial for large ratios M2=M1.
Once Rp.E/ has been found from (9.58), the mean penetration depth will be

hxi.E/ D cos Rp.E/ ; (9.61)

where  is the angle between the direction of incidence and a given reference axis.
Comparison of (9.58) with (9.12), which you may also write in the form

1 D NSe.E/
dR.E/

dE
CN

Z
d�n.E; T / ŒR.E/�R.E � T /� ; (9.62)

shows that the only difference to the mean pathlength is the factor cos�0 in the
brackets.

Application of (9.16) to (9.58) leads to

1 D N
h
Se.E/C S .1/.E/

i dRp.E/
dE

CN� .1/.E/Rp.E/ (9.63)

according to Schiøtt (1966), which differs from (9.17) by an additive term contain-
ing the transport cross section

� .1/.E/ D
Z

d�n.E; T /
�
1 � cos�0	 (9.64)
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Fig. 9.9 Projected-range corrections according to Lindhard et al. (1963b) (upper graph) and
Schiøtt (1966) (lower graph)

and the replacement of the stopping cross section by Se.E/C S .1/.E/ with

S .1/.E/ D
Z
T cos�0d�.E; T /: (9.65)

With the approximation T � E , � .1/.E/ reduces to

� .1/.E/ ' M2Sn.E/=.2M1E/ (9.66)

and S .1/.E/ ' Sn.E/. With this, (9.63) reduces to

1 D N ŒSe.E/C Sn.E/�
dRp.E/

dE
CN

M2

2M1

Sn.E/

E
Rp.E/ : (9.67)

This equation is easily solvable. The difference from (9.18) increases with in-
creasing mass ratio M2=M1. Figure 9.9 shows a couple of useful plots that allow a
quick estimate of the importance of a projected-range correction. �p is the projected
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range in dimensionless units defined in (9.34). Note in particular the large correction
in case of protons or deuterons.

9.3.5 Higher Moments

During the development of ion implantation in the 1960s and 1970s, range profiles
were reconstructed from higher moments. Second moments, determining variance
or standard deviation were most important, but skewed profiles were found experi-
mentally early on. Thanks to the development of powerful computers—which is not
the least due to ion implantation!—Monte Carlo and other simulation techniques
nowadays provide a less painful procedure to arrive at reliable penetration profiles.

On the other hand, the mathematical formalism employed in the calculation of
higher moments of range profiles, developed originally in the context of neutron dif-
fusion, is distinguished by beauty and power and does not deserve to be abandoned.
Much of this goes back to the Manhattan project during World War II. Amongst
prominent scientists involved in this development I like to mention E. Fermi, E.
Amaldi, H.A. Bethe, R.E. Marshak, G. Placzek and G.C. Wick.

9.3.5.1 Penetration Depth

Consider a monodirectional source of ions in a plane x D 0 in an infinite medium
and look for the penetration profile F.E; e; x/, which can be expressed as

F.E; e; x/ D
Z

dy dz F.E; e; r/ : (9.68)

Equation (9.57) then reduces to

� cos 
@F.E; e; x/

@x
D N

Z
d�n.E; T /

�
F.E; e; x/ � F.E � T; e0; x/

	
CNSe.E/

@F.E; e; x/

@E
� 1

2
NWe.E/

@2F.E; e; x/

@E2
; (9.69)

where  is the angle between e and the x-axis4.
A convenient way of attacking this type of equations was introduced by Wick

(1949). You may first convince yourself, either by a physical argument or by looking
at (9.69), that F.E; e; x/ cannot depend on the azimuth of e. We may decouple the
angular and energy dependence by writing

F.E; e; x/ � F.E; cos ; x/ D
1X
`D0

.2`C 1/F`.E; x/P`.�/ ; (9.70)

4 Remember, however, the footnote 3 on page 433.
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where � D cos  andP`.�/ are Legendre polynomials discussed in Appendix A.2.3,
Vol. 1.

With this, the term on the left-hand side of (9.69) reads

� �@F.E; �; x/
@x

D �
X
`

Œ.`C 1/P`C1.�/C `P`�1.�/�
@F`.E; x/

@x

� �
X
`

�
`
@F`�1.E; x/

@x
C .`C 1/

@F`C1.E; x/
@x

�
P`.�/ (9.71)

by means of the recursion formula, (A.59), Vol. 1, and renumbering summation in-
dices.

Amongst the terms on the right-hand side of (9.69) only the one involving the
scattered ion needs special attention. Note first that the scattering angle �0 can be
expressed as

cos�0 D e � e 0 : (9.72)

Next, the triple-differential cross section d� can be written as (Holmes and Leibfried,
1960)

d� D d�.E; e; T; e0/ D d�.T /
d2e 0

2�
ı


e � e0 � cos�0� (9.73)

where the Dirac function expresses the connection between scattering angle and
energy loss for elastic collisions, (9.59). See also Problem 9.4.

Now, according to (A.57), Vol. 1, you may write

ı


e � e0 � cos�0� D

1X
`D0

�
`C 1

2

�
P`.e � e0/P`.cos�0/ (9.74)

and, according to (A.58), Vol. 1,

P`.e � e0/ D 4�

2`C 1

X̀
�D�`

Y ?`�.e
0/Y`�.e/ ; (9.75)

where Y`�.e/ are spherical harmonics with

Y`0.e/ D
r
2`C 1

4�
P`.�/ : (9.76)

I shall leave it to you to collect the parts in Problem 9.5, you will take benefit from
Appendix A.2.3, Vol. 1. You will arrive at
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� ` @
@x
F`�1.E; x/� .`C 1/

@

@x
F`C1.E; x/

D .2`C 1/N

Z
d�n.E; T /

�
F`.E; x/ � P`.cos�0/F`.E � T; x/	

CSe.E/@F`.E; x/
@E

� 1

2
We.E/

@2F`.E; x/

@E2

�
: (9.77)

Now, the normalization conditionZ 1

�1
dx F.E; �; x/ D 1 (9.78)

reduces to Z 1

�1
dx F`.E; x/ D ı`0 : (9.79)

Defining moments, reminding that we deal with an infinite medium,

M n
` .E/ D

Z 1

�1
dx xnF`.E; x/ ; (9.80)

we finally arrive at

n
�
`M n�1

`�1 .E/C .`C 1/M n�1
`C1 .E/

	
D .2`C 1/N

Z
d�n.E; T /

�
M n
` .E/� P`.cos�0/M n

` .E � T /	

CSe.E/
dM n

`
.E/

dE
� 1

2
We.E/

d 2M n
`
.E/

dE2

)
: (9.81)

This relation, together with (9.79) which now reads

M 0
` .E/ D ı`0 ; (9.82)

allows to determine all moments M n
`
.E/ recursively, starting from n D 0.

9.3.5.2 Projected and Lateral Range

Higher-order averages of range profiles were calculated by Leibfried (1963) and
Baroody (1964) assuming hard-sphere scattering for the elastic interaction. More
general equations were established, and solved for elastic power-law scattering, by
Sanders (1968a,b) and Winterbon et al. (1970).

Let us first have a look at the relation between the penetration depth and the
projected range as well as the lateral range. Figure 9.10 shows the situation in the
plane z D 0. For a given trajectory, the coordinates of the end point P are .x; y/ in a
reference frame oriented along the x-axis. In a coordinate frame oriented along the
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Fig. 9.10 Relation between
penetration depth, projected
range and lateral range. See
text

x

y
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Y

P

θ

initial velocity, the coordinates are .X; Y /. These coordinates are related as

x D X cos  � Y sin  (9.83)

y D X sin  C Y cos ; (9.84)

see Fig. 9.10. From hY i D 0 we find

hxi D hXi cos D F 10 C 3M 1
1 .E/P1.�/ (9.85)

or
hXi D 3M 1

1 .E/ ; (9.86)

whereas F 10 D 0. From

hx2i D hX2i cos2  C hY 2i sin2 

D M 2
0 .E/C 3M 2

1 .E/P1.�/C 5M 2
2 .E/P2.E/ (9.87)

you find

hX2i D hR2pi D M 2
0 .E/CM 2

2 .E/ (9.88)

hY 2i D M 2
0 .E/� 1

2
M 2
2 .E/ (9.89)

or

h�R2pi D M 2
0 .E/CM 2

2 .E/� �
3M 1

1 .E/
	2

(9.90)

hR2?i D 2hY 2i D 2M 2
0 .E/�M 2

2 .E/: (9.91)

Relations between higher moments can be derived similarly.
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9.3.5.3 Scaling Properties

Scaling properties can conveniently be studied on the example of power cross sec-
tion

d�.E; T / D CE�m dT
T 1Cm for 0 < T 
 	E (9.92)

found in (6.89). If you ignore electronic stopping, (9.81) reduces to

M n
` D An`

�
E2m

NC

�n
(9.93)

with coefficients An
`

determined by

n


`An�1

`�1 C .`C 1/An�1
`C1

�
D .2`C 1/An`

Z �

0

dt
t1Cm

�
1 � P`.cos�0/.1 � t/2mn

	
: (9.94)

Equationm (9.93) shows that within the range of validity of elastic nuclear scattering
and power scattering, relative quantities such as the ratio between second moments
and the square of the first moment become independent of the energy.

On the other hand, for M2=M1 ¤ 1 such ratios depend on the masses in-
volved, and this dependence enters both through the mass transfer factor 	 D
4M1M2=.M1 CM2/

2 and the scattering angle cos�0 given by (9.59).
Figure 9.11 (lower part), showing the projected-range correction factor hXi=R as

a function of the mass ratioM2=M1, confirms what we have already seen in Fig. 9.9:
M2=M1 can become quite large, indicating that the trajectory of a light ion in a
heavy target is very much diffusion-like. That conclusion is even more evident from
the data for straggling: While relative straggling is small for M2=M1 � 1, mainly
because 	 is small, it becomes large forM2=M1 	 1 despite 	 being small. Note in
particular that h�X2i and hY 2i approach each other, indicating that the penetration
profile approaches a spherical shape centered around the mean projected range.

Figures 9.12 and 9.13 show third- and fourth-order averages. Here, the skewness
of a distribution (Feller, 1966) is defined as˝

.X � hXi/3˛
h.X � hXi/2i3=2

; (9.95)

and the kurtosis is ˝
.X � hXi/4˛

h.X � hXi/2i2
: (9.96)

The analysis of these graphs is left to Problems 9.6 and 9.7.
A more general screened-Coulomb cross section can be modelled approximately

by a power cross section with an exponentm dependent on energy. If electronic en-
ergy loss is allowed for, the constant k in the LSS description will enter, or an equiv-
alent parameter characterizing the electronic stopping cross section in Lindhard-
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Fig. 9.11 Lower part: Projected-range correction factor and relative range straggling for power-law
scattering and neglecting electronic stopping, as well as longitudinal and lateral straggling versus
target/ion mass ratioM2=M1. Power exponentm D 1=2 (solid line) and 1/3 (dashed line). Upper
graph: Same for deposited energy to be discussed in Sect. 9.4. From Winterbon et al. (1970)

Scharff units. With this number of parameters, the value of scaling relations be-
comes questionable, considering that there are basically only three parameters, i.e.,
Z1; Z2 and the beam energyE.

9.3.6 Charge Exchange

We have seen in Chap. 5 that charge exchange may contribute to energy-loss strag-
gling. When this contribution is significant, it will also affect range straggling. Most
often it will be adequate to include this as an additional contribution to straggling
in the formalism discussed up till now. This assumes that the ion beam is in charge
equilibrium over most of the trajectory. When that assumption is not satisfied, it may
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Fig. 9.12 Same as Fig. 9.11 for third-order moments. From Winterbon et al. (1970)

be appropriate instead to solve the transport problem with due account for charge-
dependent stopping.

Pertinent integral equations were established in backward and forward form by
Burenkov et al. (1992b). We shall here just look at the pathlength equation. Gener-
alization to the vector range is straightforward.

With the notation for charge states introduced in Chap. 3 we may define a range
profile FJ .E;R/ dR as the probability for an ion with an energyE in a charge state
J to come to rest after a pathlength .R; dR/. Following the procedure leading to
(9.4) we may write

FJ .E;R/ D NıR
X
K

Z
d�JK.E; T /FK.E � T;R � ıR/

C
"
1 �NıR

X
K

Z
d�JK.E; T /

#
FJ .E;R � ıR/ (9.97)

and arrive at

� @

@R
FJ .E;R/ D N

X
K

Z
d�JK.E; T /

�
FJ .E;R/ � FK.E � T;R/

	
: (9.98)
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Fig. 9.13 Same as Fig. 9.11 for fourth-order moments. From Winterbon et al. (1970)

We may try to separate the cross section ignoring any interference between nuclear
and electronic energy loss as well as charge exchange. This leads to

� @

@R
FJ .E;R/ D N

Z
d�n.E; T /

�
FJ .E;R/� FJ .E � T;R/

	
CNSJ .E/

@

@E
FJ .E;R/� 1

2
NWJ .E/

@2

@E2
FJ .E;R/

CN
X
K

�JK
�
FJ .E;R/� FK.E;R/

	
: (9.99)

This takes into account the variation of the stopping cross section and the straggling
parameter with the charge state. If necessary, equilibrium values of mean energy
loss and straggling due to charge exchange can be included in SJ and WJ .

Although these equations look very similar to those discussed in Chaps. 3 and 5,
finding analytic solutions is much more complex, since the dependence of the cross
sections on the beam energy cannot be neglected. Therefore, even the simplest case
of a two-state system calls for numerical integration.

Aiming at high-energy ion implantation, Burenkov et al. (1992b) provided nu-
merical solutions under conditions of negligible nuclear stopping, incorporating
electronic straggling and ignoring energy loss in charge exchange. In a parallel at-
tack, Burenkov et al. (1992a) provided an equivalent Monte-Carlo solution of the
problem. Some caution is indicated with regard to the input: Little information was
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Fig. 9.14 Penetration profile of 100 MeV Al in Si. The influence of charge exchange is shown as
the difference between the solid and the stippled line. Circles denote experimental results by Ferla
et al. (1993). Profiles normalized to the ion fluence. From Komarov et al. (1999)

available at the time on charge-dependent stopping of heavy ions, i.e., the crucial
parameter in that context. An example is shown in Fig. 9.14. For 100 MeV Al in Si,
increasing the initial ion charge from 1 to 12 gave rise to a 2% decrease in mean
penetration depth but a 12% increase in the width of the profile.

9.4 Deposited Energy

In Fig. 9.2 you have seen the energy-loss function �dE=dx plotted as a function of
the travelled pathlength. This is a qualitative measure of the distribution in depth
of radiation effects such as ionization, dissociation and emission of photons. It is a
qualitative measure, because the energy lost by electronic stopping may be trans-
ferred to high-energy electrons that dissipate their energy away from the point of
impact. Energy transport by secondary and higher-generation electrons will thus
result in a deposited energy profile which, together with angular deflection of the
projectile, will cause more or less significant deviations from curves like the one
shown in Fig. 9.2.

Similar effects occur when you make a plot of the nuclear stopping cross section
as a function of pathlength: Nuclear energy loss goes into recoil atoms which may
generate secondary and higher-order recoils and thus result in a recoil cascade, as
mentioned in Sect. 1.1.2, Vol. 1.

Moreover, electrons and atoms experience both electronic and nuclear stopping,
so cascades of electrons and recoil atoms must be coupled. This implies that not
only the depth distribution shown in Fig. 9.2 is oversimplified: The normalization
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to the total energy E will actually be an overestimate, since part of the energy will
have been absorbed by recoil atoms.

Just as in the first part of this chapter, loss of electrons and nuclei through a target
surface is ignored, since we deal with an infinite medium.

Here the concept of deposited energy enters as a central aspect in the theory of
radiation effects. Energy is said to be deposited when it is no longer transferred to
other particles by collision processes. A precise definition of the concept requires
a distinction between collision processes and other types of energy transport or,
preferably, reference to some measurable effect such as the amount of ionization or
structural damage created in the medium.

The presentation below relies heavily on a pioneering study by Lindhard et al.
(1963a).

9.4.1 Nuclear and Electronic Processes

According to Lindhard et al. (1963a) the energy of an atom with an initial energyE
may be deposited amongst the nuclei of a medium, �.E/, and amongst the electrons
in the medium, �.E/, so that

�.E/C �.E/ D E : (9.100)

In a polyatomic medium one may split �.E/ into contributions �j .E/, j D 1; 2 : : :

for the species present in the medium. The fact that energy is considered conserved
in (9.100) implies that deposited energy includes both kinetic and potential energy
or, in other words, that all binding energies enter the balance.

9.4.2 Zero-Order Moments

9.4.2.1 Integral Equations

Consider an infinite homogeneous monoatomic medium, and let one of the atoms
receive an energyE . This atom will dissipate its energy in interactions with the con-
stituents of the target. As a result there will be recoil atoms and liberated electrons
which, in turn, collide with the constituents of the medium and generate higher-
order generations of recoils and liberated electrons. Such recoil and ionization cas-
cades constitute a main topic in the theory of radiation effects to be discussed in
Volume 3. The present, preliminary discussion serves to provide a basis for spatial
energy-deposition profiles and their relation to range profiles.

In order to determine the average amount of energy �.E/ spent in nuclear mo-
tion, let the primary particle travel a distance ıR short enough to let the probabil-
ity for more than one collision be negligible. Following the procedure outlined in
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Sect. 9.2.1 we may then write

�.E/ D NıR

Z
d�.E; Tn; Te/

�
�.E � Tn � Te/C �.Tn � U /

C
X
j

�e.Te;j � Uj /

�
C
�
1 �NıR

Z
d�.E; Tn; Te/

�
�.E/; (9.101)

where �e.E/ denotes the �-function for an electron of energy E and Uj the ioniza-
tion energy of an electron in the j th target shell. U represents the binding energy of
a target atom to its equilibrium site. For a gas target we have U D 0.

After dropping all but first-order terms in ıR we find

Z
d�.E; Tn; Te/

�
�.E/ � �.E � Tn � Te/

��.Tn � U /�
X
j

�e.Te;j � Uj /
	 D 0 ; (9.102)

In their evaluation, Lindhard et al. (1963a) ignored
P
j �e.Te;j � Uj /, although

it was mentioned explicitly that there are cases where this is not justified. Following
their route, let us drop that term for a moment. With that simplification, (9.102)
reduces to a homogenous integral equation, so finding a unique solution requires an
additional condition. Lindhard et al. (1963a) set the requirement that

lim
E!0

�.E/=E D 1 : (9.103)

This condition is feasible as long as the electronic stopping cross section Se.E/
approaches zero more rapidly than the nuclear stopping cross section Sn.E/ at small
energies. For the power form discussed in Chap. 6 this implies that 1 � 2m < 1=2

at low energies or
m > 1=4 (9.104)

for velocity-proportional electronic stopping. Only two of the cross sections listed
in Table 6.61 fall into this category.

For an initial ion .Z1;M1/ incident on a monoatomic medium .Z2;M2/, you
may introduce a quantity �12.E/ as the average amount of energy ending up in
nuclear motion of target atoms. Repeating the argument above, you arrive atZ

d�12.E; Tn; Te/
�
�12.E/� �12.E � Tn � Te/ � �22.Tn � U /	 D 0 ; (9.105)

where d�12 denotes the differential cross section for a 1-atom hitting a 2-atom, and
�22.E/ is determined by (9.102) in the formZ

d�22.E; Tn; Te/
�
�22.E/� �22.E � Tn � Te/� �22.Tn � U /

	 D 0 : (9.106)
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You may note that unlike (9.106), (9.105) is an inhomogeneous equation, the solu-
tion of which is defined without a normalization condition, once �22.E/ has been
found from (9.106).

In ignoring the term �Pj �e.Te;j �Uj / in (9.102) and subsequent relations we
have assumed that energy deposited in electronic motion cannot be transferred from
electronic to nuclear motion. There are at least two important cases where this is not
justified:

� For high enough incident energies, primary or higher-generation electrons may
have sufficient energy to generate recoil atoms.

� Ample evidence has accumulated since the 1970s that electronic processes may
cause radiation damage, sputtering and similar processes that are related to nu-
clear motion at energies where binary collisions are not expected to give rise
to these phenomena. One possible mechanism, pointed out already by Lindhard
et al. (1963a), is conversion of bonding to antibonding states in covalent media
with the result that the involved atoms repel each other. A much more detailed
discussion of this point will be reserved to Volume 3.

If the quantity �e.E/ is not negligible, it obeys the integral equation

Z
d�e2.E; Tn; Te/

�
�e.E/� �e.E � Tn � Te/

��22.Tn � U /�
X
j

�e.Te;j � Uj /
�

D 0: (9.107)

Evidently, (9.102) and (9.107) constitute a coupled system of integral equations even
for self-bombardment, i.e., Z1 D Z2, of a monoatomic target material.

Energy deposition by electrons becomes even more important in the complemen-
tary quantity �.E/, the average amount of energy deposited in electronic motion.
Especially for swift heavy ions, primary electrons may have larger ranges than the
ion. Therefore, energy deposition profiles like the one shown in Fig. 9.2 may be
affected substantially by energy transport via primary and secondary electrons.

Integral equations for �.E/ are, within the present view, identical with (9.102)–
(9.107). As an example, the analog of (9.105) is

Z
d�12.E; Tn; Te/

�
�12.E/� �12.E � Tn � Te/ � �22.Tn � U /

�
X
j

�e2.Te;j � Uj /
	 D 0; (9.108)

if the last term in the brackets is not thrown away.
If �e2.E/ can be ignored, (9.100) and (9.103) lead to

lim
E!0

�.E/

E
D 0 : (9.109)
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If �e2.E/ is kept, (9.108) is an inhomogeneous equation governed by the analog of
(9.107).

9.4.2.2 Solutions

Integral equations of the type discussed in the previous section can be solved step-
by-step starting from energy zero on the basis of an initial condition such as (9.103).
However, in applications it may be appropriate to apply this type of equations di-
rectly to measurable quantities such as the number of defects, inner-shell vacancies
or ionizations, for which more specific initial conditions may be constructed from
the threshold behaviour of those phenomena. Regardless of the specific threshold
behaviour, once it is known, the pertinent integral equation can be solved numeri-
cally or, with suitable approximations, analytically.

Finding solutions for specific quantities is a main topic of radiation physics and
belongs into Volume 3 of the present series. At this point we shall keep to quantities
�.E/ and �.E/ and the initial conditions (9.103) and (9.109).

To find an approximate solution of the integral equation (9.102), apply (9.8) to
�.E/, so that5

ŒSn.E/C Se.E/�
d�.E/

dE
�
Z

d�.E; Tn/�.Tn/ D 0 (9.110)

or

�.E/ D
Z E

0

dE 0

Sn.E 0/C Se.E 0/

Z
d�.E 0; Tn/�.Tn/ : (9.111)

Approximating further so thatZ
d�.E; Tn/�.Tn/ '

Z
d�.E; Tn/ Tn D Sn.E/ (9.112)

you arrive at

�.E/ '
Z E

0

dE 0 Sn.E
0/

Sn.E 0/C Se.E 0/
(9.113)

as a first approximation for �.E/.
Figure 9.15 shows an evaluation of (9.113) for power scattering, cf. Prob-

lem 9.15. In accordance with (9.104), the case of m D 0:1 does not provide a
physically acceptable solution.

For Z1 ¤ Z2, the analog of (9.111) is

�12.E/ D
Z E

0

dE 0

Sn;12.E 0/C Se;12.E 0/

Z
d�12.E; Tn/�22.Tn/ ; (9.114)

5 Indices introduced in �.E/ or 	.E/ in the previous section will be omitted for clarity, where
this is possible.
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Fig. 9.15 Fraction �.E/=E of energy deposited in nuclear motion according to approximate for-
mula (9.113) for power cross section d� D CE�mT�1�m dT and Se DK

p
E . The parameter

˛ is defined as ˛ D Œ.1�m/K=C
1=.2m�1=2/

Fig. 9.16 Function �.�/ for equal-mass case in dimensionless units. Solid line: Numerical solu-
tion of (9.102) ignoring the �e-term for Thomas-Fermi scattering and with the electronic-stopping
constant k D 0:15. The dot-dashed line reflects power scattering for m D 3=4. The stippled line
is based on (9.113), likewise for power scattering withm D 3=4. From Lindhard et al. (1963a)

where Sn;12.E/ and Se;12.E/ denote the nuclear and electronic stopping cross sec-
tion, respectively, of particle 1 in species 2.

The quantity �12.E/=E has been evaluated for 24 representative ion-target com-
binations by Winterbon (1975). Figure 9.17 shows four examples. The full-drawn
curves represent the Lindhard-Scharff value kL of the constant k. The other curves
indicate the sensitivity to the choice of k, i.e., the effect of Z1 oscillations.



450 9 Range and Energy Deposition

C-Be: k=kL D 0:8; 1:0; 1:3; 1:7; 2:0 C-Au: 0:6; 0:8; 1:0; 1:25; 1:6

Au-C: k=kL D 0:6; 0:7; 0:85; 1:0; 1:25 Au-Ag: 0:5; 0:65; 0:8; 1:0; 1:3

Fig. 9.17 The ratio �.�/=� versus � for four ion-target combinations. The point � D 1 has been
marked on the abscissa. From Winterbon (1975)

Later, Winterbon (1986) developed a technique to solve moment equations iter-
atively, allowing for electronic-stopping input over a wide energy range including
the stopping maximum as well as electronic straggling.

9.4.2.3 Measurements

Experimental tests of theoretical predictions concerning �.E/ and �.E/ rely mostly
on measurements of �.E/.

Measurement of particle energies in proportional counters rely on the proportion-
ality of the number of ion-electron pairs Ni generated in a gas-filled chamber with
the energyE of the incident radiation, e.g. beta rays,

Ni ' E

W
; (9.115)
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Fig. 9.18 Energy loss to electronic motion 	.E/ compared to measurements of the ionization
efficiency of Ge atoms in Ge. Solid and dotted lines according to Lindhard et al. (1963a) for
k D 0:15 and 0.20, respectively. Experimental data from Chasman et al. (1965, 1968), Jones and
Kraner (1971, 1975). From Jones and Kraner (1975)

where W , the ‘W -value’ or energy to create an ion pair, is an important parameter
in radiation physics (ICRU, 1979), to be discussed in Volume 3 of this series.

Measurements on numerous ion-target combinations show that the ionization ef-
ficiency of heavy particles is not a universal material constant but also depends on
the projectile and its energy. One relevant factor in this connection is energy transfer
into nuclear motion, so that, instead of (9.115) one would use

Ni ' �.E/

W
; (9.116)

for comparison with measurements.
Figure 9.18 shows a comparison of �.E/ for Ge atoms in Ge with experimental

values based on measured ionization efficiencies and involving a constant equivalent
to Ni D 2:96 eV over an energy range from 0.25 to 100 keV. Considering that the
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predicted ionization efficiency at the low-energy end is � 10% below what would
be expected from (9.115), and that even at the high-energy end it is still � 0:3, the
agreement between theory and experiment is impressive.

9.4.3 Higher Moments

9.4.3.1 Integral Equations

Now that we have a concept of deposited energy, let us look at the spatial distribution
of that quantity. Define Fn.v; r/ d3r as the average density of energy deposited in
nuclear motion in a volume element .r ; d3r/ as a consequence of a primary atom
moving with a velocity v in r D 0. The corresponding density of electronic energy
is called Fe.v; r/ d3r , and the two densities are normalized according toZ

d3r Fn.v; r/ D �.E/; (9.117)Z
d3r Fe.v; r/ D �.E/: (9.118)

When necessary, indices can be added to identify projectile and target target atoms.
Following the procedure described in Sect. 9.3.1 we can find an integral equation

for F12.v; r/ which can stand for either Fn or Fe,

F12.v; r/ D N jırj
Z

d�
�
F12.v

0; r � ır/C F22.v
00; r � ır/

C
X
j

Fe2.vj ; r/
	C �

1 �N jırj
Z

d�
�
F.v; r � ır/; (9.119)

where d� denotes the cross section differential in the velocities of the scattered
particle 1, the recoiling particle 2 and of ejected electrons. If the projectile is a
target atom, we may replace the index 1 by 2. Following Sect. 9.3.1 we obtain a
linear integral equation which, in terms of energy and angular variables reads

� e � rrF12.E; e; r/ D N

Z
d�.E; e; Tn; e

0; Te/
�
F12.E; e; r/

�F12.E � Tn; e0; r/ � F22.Tn; e 00; r/�
X
j

Fe2.vj ; r/

�
: (9.120)
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9.4.3.2 Moments

Equations for higher moments are derived following the scheme outlined in Sect. 9.3.5.1
as far as the depth distribution of deposited energy is concerned, and correspond-
ingly for the projected and lateral profiles discussed in Sect. 9.3.5.2, with the fol-
lowing changes and additions:

1. A recoil term representing F22.Tn; e 00; r/ will have to be added,
2. Where necessary a term representing

P
j Fe2.Te � Uj ; ej ; r/ will have to be

added,
3. In view of the normalization, (9.117) and (9.118), average values are found by

dividing the appropriate moment by the respective zero-order moment.

As far as 1) is concerned, a term �P`.cos�00/M n
`
.Tn � U / must be added in the

brackets of (9.81), where

cos�00 D Tn

	E
(9.121)

and 	 D 4M1M2=.M1 CM2/
2.

The term representing liberated electrons may be constructed similarly, although
caution is indicated regarding the scattering angle �00 of an ejected electron, except
for beam velocities significantly higher than orbital velocities in the target.

Finally, the last item has the effect that relations such as (9.86) read

hXin D 3M 1
n;1.E/

�.E/
(9.122)

hXie D 3M 1
e;1.E/

�.E/
: (9.123)

9.4.3.3 Scaling Properties

As in case of range profiles, particularly simple scaling rules apply to the case of
negligible electronic stopping coupled with power-law elastic scattering. Here, mo-
ments scale as

M n
` .E/ D Bn`

E1C2mn

.NC/n
; (9.124)

and the coefficients Bn
`

are, for equal masses, determined by

n


`Bn�1

`�1 C .`C 1/Bn�1
`C1

� D .2`C 1/B``

Z �

0

dt
t1Cm

�
�
1 � P`.cos�0/.1 � t/2mnC1 � C22

C12
P`.cos�00/t2mnC1

�
(9.125)

under the assumption that the cross sections d�12 and d�22 obey a power law with
the same exponentm but different constants C12 and C22 in the notation of (9.41).
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Skewness

Curtosis

Fig. 9.19 Skewness (top) and kurtosis(bottom) for carbon ions in gold as a function of �. R: Range;
D: Nuclear motion �.�/; I: Electronic motion 	.�/. Stipled curves indicate different k-values as
in Fig. 9.17. From Winterbon (1975)

Results are shown in Figs. 9.11–9.13. When compared with ranges, average
depths of energy deposition are slightly smaller than those of the ions, while the
width of the energy deposition profile significantly exceeds the straggling of the
ion range. More dramatic differences occur in higher moments shown in Figs. 9.12
and 9.13: Although range profiles show nonvanishing skewness and a kurtosis ¤ 3,
deviations from gaussian shape appear moderate, while in case of the deposited-
energy profile this is true at most for M2=M1 > 1, where both profiles are strongly
influenced by angular deflection of the projectile.

Winterbon (1975) has provided graphs of skewness and kurtosis versus beam en-
ergy for both range, nuclear and electronic motion and 24 ion-target combinations.
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Figure 9.19 shows the case of C in Au. It is seen that for the range, a small posi-
tive skewness in the nuclear-stopping regime turns into a large negative skewness in
the electronic-stopping regime. The damage distribution shows a significant positive
skewness in the nuclear-stopping regime but turns likewise negative at higher ener-
gies. The ionization distribution is seen to have positive skewness at all energies.

The lower figure shows that the range profile has a kurtosis close to the gaussian
value 3.0 up to 
 ' 100 but a strong increase at higher energies, while the two
other profiles have a kurtosis ' 4 in the nuclear-stopping regime and a slow de-
crease at higher energies, following each other up to 
 ' 100. Caution is indicated
with regard to higher energies since, for Z1 � Z2, the assumption of velocity-
proportionality is no longer valid.

9.5 Range and Energy-Deposition Profiles

9.5.1 Construction from Moments

The problem of reconstructing a function from its moments does not necessarily
have a unique solution, and the chance for finding a satisfactory solution in prac-
tice depends heavily on the kind of function you deal with. In the present context
we deal with non-negative functions. This simplifies the task, as does the fact that
typically we deal with unimodal profiles, i.e., profiles with only one maximum6.
However, profiles may have discontinuities in value or slope. An obvious cause of
discontinuity in ion bombardment is the presence of a surface, but discontinuities
may have to be dealt with even in an infinite medium, to the extent that a projec-
tile can be considered to start moving abruptly (Glazov, 1994). In the following we
shall deal with an infinite medium. When a surface is marked, this marks the start
of projectile motion. Discontinuities will be ignored. This is fully justified for the
range profile. For energy and momentum profiles the matter will come up again in
connection with sputtering in Volume 3.

9.5.1.1 Gram-Charlier and Edgeworth Expansion

There is ample evidence from early work with alpha particles that range profiles
can be close to gaussian. However, Figs. 9.12 and 9.13 show that deviations oc-
cur. That figure assumes negligible electronic stopping. Moreover, deviations are
more pronounced for the power-law exponent m D 1=3 than for m D 1=2. These
two features indicate a tendency for deviations from gaussian shape to increase
with decreasing energy. Minor to moderate deviations from gaussian shape are con-

6 Bimodal profiles have, however, been found experimentally in case of slowing-down in single
crystals by Eriksson et al. (1967), cf. Fig. 8.13 and the discussion in Sect. 11.10.1.
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veniently described in terms of Hermite polynomial (Gram-Charlier) expansions
(Feller, 1966).

A strictly gaussian range profile is characterized by

 D 1p
2�

e��2=2 (9.126)

with
� D x � a

˛
(9.127)

and
a D hxiI ˛ D

p
h.x � hxi/2i (9.128)

Following Winterbon et al. (1970) we may then write an ansatz

F.x/ D  .�/

1X
nD0

cnHen.�/ ; (9.129)

where He.�/ are Hermite polynomials7 in the notation of Abramowitz and Stegun
(1964) and

cn D 1

nŠ˛

nX
rD0

˛�rMrHen�r .�a=˛/ ; (9.130)

where

Mr D
Z 1

�1
dx xrF.x/ (9.131)

From (9.128) follows that

c0 D 1

˛
c1 D 0

c2 D 0

c3 D � 1

6˛

h.x � hxi/3i
h.x � hxi/2i3=2 ; (9.132)

where you may note the skewness in the last expression.
The Edgeworth expansion represents a rearrangement of the individual terms in

the Gram-Charlier expansion (Feller, 1966) in higher-order terms. As far as range
profiles are concerned, deviations from gaussian shape are generally small and can
most often be taken care of by the leading correction, i.e., the term determined by
c3. Skewness in the range profile is predominantly caused by angular deflection,
which tends to shorten the range.

7 The connection to the more conventional polynomials Hn.�/ is given by Hen.�/ D
2�n=2.�=

p
2/ according to Abramowitz and Stegun (1964).
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Energy-deposition profiles my deviate significantly from gaussian shape, as is
evident from Fig. 9.2. Model examples for elastic collisions in the power approxi-
mation were studied by Winterbon et al. (1970). More realistic cases were studied by
Winterbon (1972), and a number of examples were compiled by Winterbon (1975).

9.5.1.2 Pearson Distributions

Pearson distributions (Pearson, 1895) are four-parameter functions designed to fit
skew probability densities. These functions are defined as solutions of differential
equations of the type

dF.x/=dx

F.x/
C P1.x/

P2.x/
D 0 ; (9.133)

where P1.x/ and P2.x/ are polynomials of first and second order, respectively.
Pearson functions are classified into a number of families, dependent on the relation
between the skewness and the kurtosis characterizing the distribution. There are two
main groups, dependent on whether or not P2.x/ has a root for real values of x. A
gaussian profile is obtained in the limiting case of P2.x/ D constant.

Numerous authors employed Pearson functions in fitting measured range pro-
files or estimating range profiles from calculated moments. Following Hofker et al.
(1975), several of them made reference to the Pearson IV family, which can be writ-
ten as

F.x/ D const
�
1C y2

	�m
e�� arctany ; (9.134)

with
y D

�x � x0
˛

�
; (9.135)

where x0 represents the peak of the distribution and � and ˛ are related to the width,
the skewness and the kurtosis.

Winterbon (1983b) analysed a large number of calculated range moments from
his compilation (Winterbon, 1975) and found that all results fell into a very narrow
strip in a plot of kurtosis vs. skewness, marked by thick solid lines in Fig. 9.20,
left graph. The Pearson IV curve falls outside this strip for the parameter range of
negative skewness. Winterbon therefore found the Pearson VI distribution to be the
most universally applicable ansatz, which can be written as

F.x/ D const
�
1C x � x0

˛1

�m1
�
1C x � x0

˛2

�m2

: (9.136)

Negative skewness, equivalent with a tail towards low penetration depth, is charac-
teristic of high-energy range profiles and caused mainly by elastic scattering. In the
ion implantation regime, i.e., the range of dominating nuclear stopping, the Pearson
IV distribution is not in contradiction with Winterbon’s criterion. In that regime the
skewness tends to be positive, in part because tails in the backward direction will be
absent in case of noticeable reflection, partly because measuring techniques may be
accompanied by diffusion and mixing.
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Fig. 9.20 Regions of validity of various Pearson distributions. Left graph from Winterbon (1983b).
Right graph from Ashworth et al. (1990). � D skewness. See text

In a thorough study including simulations of a large number of ion-target combi-
nations, Ashworth et al. (1990) found that all Pearson families I–VII can be useful,
dependent on the respective part of the parameter space in terms of atomic numbers
and beam energy.

9.5.1.3 Padé Approximants

A Padé approximant is a rational function,

R.x/ D
 

mX
�D0

a�x
�

! 
nX
�D0

b�x
�

!�1
I b0 D 1 (9.137)

to approximate some given function within a certain interval. Padé approximants
have been useful in the construction of energy and, especially, momentum distribu-
tion functions (Littmark, 1974, Littmark and Sigmund, 1975).
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9.5.2 Direct Methods

9.5.2.1 Transport Equation

Although fully numerical solution of the transport equation for a range or damage
profile is an option, no examples in the literature are known to the author. Actually,
the code BEST (Vicanek and Urbassek, 1988), standing for ‘Boltzmann Equation
Solving Tool’ is a Monte Carlo code which, like numerous others, efficiently pro-
vides range profiles and related quantities that are roughly equivalent with what can
be extracted from moments found by analytical methods with numerical methods.

9.5.2.2 Multigroup Methods

Multigroup methods, widely used in neutron transport theory, operate with a discrete
number of energy steps. If the energy range between zero and the initial energy is
divided up into n energies, the transport equation splits into n equations, describ-
ing the feeding of particles from every level to all lower ones. When applied to
the slowing down of ions, this procedure neglects the fact that the mean free path
decreases rapidly with decreasing energy. This problem has been overcome by Win-
terbon (1983a) by dynamically adjusting the interval size to the travelled pathlength,
keeping the number of intervals constant.

A pathlength profile was constructed for power scattering on the basis of up to
n D 7, requiring 2n� 1 moments. Comparison with an accurately computed profile
revealed good agreement already for n D 5 and perfect agrement for n D 7.

9.5.2.3 Brice’s Method

A method to compute energy deposition distributions avoiding higher-order mo-
ments was proposed by Brice (1970). This scheme aims at high-energy implanta-
tion. Figure 9.2 shows a model for electronic energy deposition versus pathlength,
neglecting straggling, multiple scattering and nuclear stopping. Evidently, an equiv-
alent graph could be constructed for nuclear energy deposition versus pathlength.

In order to generate more realistic graphs for the two quantities, one needs to in-
clude nuclear energy loss from the beginning in the conversion from beam energy to
travelled pathlength. Brice (1970) included multiple scattering by a correction factor
determined from the ratio Rp.E/=R.E/ between projected range and pathlength,
either on an integral or a differential basis. Statistics were incorporated via a mod-
ified range distribution F.E;E 0; R/dR, which represents the probability for an ion
of initial energy E to pass through the energy E 0 at a travelled pathlength .R; dR/.
Profiles F.E;E 0; R/ were assumed gaussian and determined by solving moment
equations. Energy deposition was then incorporated as dE 0=dx. In this form (Brice,
1974) the scheme does not allow for either secondary-electron or recoil transport.
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Fig. 9.21 Top: Depth distributions of 100 keV B ions in Si after slowing down to 90, 80, 60 keV
and after coming to rest. Bottom: Depth deposition of energy deposition rate after slowing down
to 90, 80, 60 and 30 keV and the overall deposited energy. From Brice (1975a)

Recoil transport was incorporated approximately later (Brice, 1975b). An example
is shown in Fig. 9.21.
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9.5.3 Simulation Codes

Computer simulation of particle penetration and radiation effects has, from the early
days of computing in the 1950s, developed into a discipline with its own series of
conferences and monographs. A characteristic feature of half a century’s develop-
ment is a trend towards minimizing external input.

As an example, the minimum input in a realistic Monte Carlo simulation is a
differential cross section for nuclear collisions and a stopping cross section for elec-
tronic collisions. This was replaced in early molecular-dynamics simulations by an
interatomic potential and a lattice structure. In more advanced simulations the lat-
tice structure is output, provided that an appropriate potential has been adopted. In
quantum molecular dynamics, electronic stopping is output rather than input, and
with proper computing power and computational skill, most of the findings reported
in this monograph might become replaced by numerical solution of Schrödinger’s
equation or relativistic equivalents.

Simulation techniques will be discussed explicitly in a separate chapter in Vol-
ume 3 of this series. Therefore only a very brief survey will be given here.

9.5.3.1 Monte Carlo Simulations

The physical model underlying Monte Carlo simulations is roughly equivalent with
that represented by transport equations considered in the present chapter. Early work
was devoted to electron penetration, summarized in an informative review by Berger
(1963).

Most Monte Carlo schemes operate with a finite total cross section �tot which
define a distribution in free pathlength�R,

f1.�R/d�R D e�N�R�tot d�R : (9.138)

From this, a random-number generator selects a sequence of free pathlengths. For
a given pathlength, an elastic energy loss Tn is then selected from a probability
distribution

f2.Tn/dTn D d�n.E; T /
�tot

: (9.139)

This defines a scattering angle at the same time. After subtraction of an electronic
energy loss N�RSe the simulator can go to the next iteration step, until the particle
energy has come below some predefined value, whereafter another trajectory can be
studied.

Early Monte Carlo simulations (Oen et al., 1963) involving heavy particles oper-
ated with hard-sphere cross sections, where a total cross section is readily available.
For classical scattering cross sections for potentials utilized in this field and dis-
cussed in Chap. 6 the total cross section becomes infinite. I am aware of several
obvious ways to circumvent this problem:
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� Truncate the cross section at some minimum energy transfer Tmin and choose
this quantity small enough so that simulation results are unaffected within some
prescribed error margin. This is the standard solution in most codes.

� Truncate the cross section at Tmin and correct for the error by adding a quantity

�S D
Z Tmin

0

T d�.E; T / (9.140)

to the electronic stopping cross section. Remember that small energy transfers
do not contribute significantly to straggling.

� Use a fixed free path. This solution has been adopted in the TRIM code (Wilson
et al., 1977). This requires likewise an addition to the stopping cross section.

The predictive power of a Monte Carlo code must depend on the quality of the
input and statistical accuracy. When applied to penetration in solids, common to all
three categories is a breakdown at low energies, typically the sub-keV energy range,
where the mean free path becomes comparable with the interatomic distance in the
medium.

9.5.3.2 Binary Collision Codes

Although Monte Carlo codes operate with binary collisions, the term ‘Binary col-
lision code’ denotes another kind of simulation, where input is a scattering integral
instead of a cross section, and a lattice structure. This type of code proved very
useful in early studies of channeling (Robinson and Oen, 1963, Beeler and Besco,
1964, Barrett, 1968). It simulates trajectories of a projectile and, most often, recoil-
ing target atoms, in a prescribed structure.

Typically, the relation between scattering angle and impact parameter is given by
the classical scattering integral, (6.34), involving an adopted potential. Positioning
the trajectory in space—and possibly in time—requires the time integral discussed
in Sect. 3.3.4, Vol. 1. Electronic stopping is added either via a stopping cross section
or as an impact-parameter-dependent energy loss per collision.

Amongst powerful binary-collision codes I like to mention MARLOWE by
Robinson and Torrens (1974), OKSANA by Shulga (1983) and ACAT by Yama-
mura and Takeuchi (1987).

Binary-collision codes are used for collisions in solids and mostly in crystals.
Even though the structure of the target material is taken explicitly into account, often
including thermal displacements, problems prevail at low energies, albeit less obvi-
ous than in Monte Carlo simulations. The main problem is the many-body nature
of collisions in the sub-keV energy regime. Robinson (1981) offered a partial solu-
tion to this problem by incorporating scattering integrals for many-body collisions
of Andersen et al. (1966). Shulga and Sigmund (1995), using the same procedure,
built in an option to compute low-energy events by molecular-dynamics simulation.
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9.5.3.3 Molecular Dynamics

Molecular-dynamics codes are based on Newton’s second law or Hamilton’s equa-
tion of motion which are solved numerically with a binary or many-body interaction
potential as input. Electronic energy loss is most often added in the form of a stop-
ping cross section, but projects to incorporate excitation and ionization a priori are
under development.

The method was initiated by Alder and Wainwright (1959), who studied the ther-
mal motion of particles interacting as hard spheres. A planar lattice of Cu atoms
interacting via a potential of the form V D A exp.�r=a/ at energies up to 400 eV
was simulated by Gibson et al. (1960). Further development was slow because of
limited computing power and the absence of suitable graphical tools to visualize
processes in three dimensions.

Molecular dynamics is complementary to binary-collision simulation in the sense
that its limitations lie in the high-energy end of the energy scale, where the demands
on computation times for individual events and reaching adequate statistics increase
rapidly.

An illuminating review of the strengths and weaknesses of molecular dynamics,
written by an interested observer, is due to Andersen (1987).

9.5.4 Measurements

Profiles of deposited energy, electronic or nuclear, are measured indirectly through
associated radiation effects such as displaced lattice atoms, disorder, ionization as
well as electron emission and sputtering. These topics will be reserved to Volume 3
in this series.

Much effort has been invested in the measurement of range profiles starting in the
late 1950s (Nielsen, 1956, Davies et al., 1960b). These studies were motivated by
the need to produce targets for nuclear-reaction studies by ion implantation. There is
a maximum enrichment, dependent on the ion and its energy as well as the material,
and one parameter determining this enrichment is the penetration depth.

From the mid 1960s on, interest turned into implantation in semiconductors with
the development of integrated circuits. Since then the scope has been extended con-
tinuously to a wide variety of materials, including biologic material. With the grow-
ing interest in micro- and nanotechnology the main challenge has been to continu-
ously improve depth resolution on the atomic scale.

9.5.4.1 Destructive Techniques

It is customary to distinguish between destructive and nondestructive techniques.
In a destructive technique, the implanted target is typically etched in a controlled
way. This can be done by chemical, e.g. electrochemical, etching (Davies et al.,



464 9 Range and Energy Deposition

α

β

1

3

2

x

α

β

1

2

3

d

x

Fig. 9.22 Nondestructive depth profiling by Rutherford backscattering spectroscopy (RBS, left)
and ERDA (Elastic recoil detection analysis, right), schematic

1960a) or sputtering (Lutz and Sizmann, 1963). The depth profile F.x/ dx can then
be measured in a number of ways:

� If the implanted species is radioactive, the residual activity of the target after
each erosion step is a measure of the integral profile,

R1
x
F.x0/ dx0 (Davies et al.,

1960a).
� More generally, surface analysis by e.g. low-energy ion scattering or Auger spec-

troscopy (Feldman and Mayer, 1986) can be employed in situ to record the im-
plant concentration at the surface during the etching process. This is a relative
measure of the implant concentration F.x/.

� Similar information can be found by recording the sputtered flux by SIMS (Sec-
ondary Ion Mass Spectrometry) (Hofker et al., 1975).

Electrochemical etching played a central role in the development of ion implan-
tation. Examples are shown in Figs. 9.23–9.25 below. The technique can have
nanometer resolution, depending on the material, but it is applicable only to a small
number of materials. Moreover, it is time-consuming since measurements cannot be
performed in situ.

Measurements involving sputtering can be performed in situ, but since the sput-
ter process causes distortions of the original profile, corrections are necessary. An
important disturbing effect is atomic mixing (Andersen, 1979, Hofer and Littmark,
1979), a topic to be discussed in Volume 3.

9.5.4.2 Nondestructive Techniques

Figure 9.22 shows two examples of almost nondestructive depth profiling. In Ruther-
ford backscattering (RBS), an incident ion 1 with an energy E is reflected from an
impurity atom 3 in a matrix 2. The energy of the scattered ion is given by

Eout D E ��E1 ��E2 ��E3; (9.141)
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where

�E1 D 1

cos˛

Z x

0

dx0NS12


E.x0/

�
; (9.142)

�E2 D 	13.E ��E1/ sin2
‚

2
; (9.143)

�E3 D � 1

cosˇ

Z 0

x

dx0NS12


E.x0/

�
: (9.144)

Here, S12.E/ is the stopping cross section of the material, ‚ the c.m.s. scattering
angle, which is related to the laboratory scattering angle �1 by

sin2
‚

2
D 1

2

�
1C M1

M2

sin2 �1

�
˙ 1

2
cos�1

q
1 � .M1=M2/2 sin2 �1; (9.145)

i.e., the inverse of (3.5), Vol. 1, and given here by �1 D � � ˛ � ˇ, and

	13 D 4M1M3

.M1 CM3/2
: (9.146)

You may notice that for a given scattering angle, the term �E2 depends on the
implanted species. This implies that spectra of different species appear in different
energy intervals. The terms �E1 and �E2, on the other hand, depend on the depth
x of the implant. You may find a typical RBS spectrum in Fig. 1.7, Vol. 1.

This technique is particularly useful for heavy impurities in light targets, with
H or He ions as preferred ions. Use of heavier ions increases the depth resolution
because of higher stopping cross sections but diminishes the separation of different
impurities. For M1 > M3, genuine backscattering (�1 > �=s) is forbidden by
conservation laws. This problem can be avoided by measuring Rutherford scattering
in transmission on a thin foil or by grazing incidence.

However, in such cases the ERDA technique, indicated on the right part of
Fig. 9.22 is often a better solution. In this technique, which was proposed by
L’Ecuyer et al. (1976), it is the energy of the recoiling implant atom that is mea-
sured, which is given by

E 0 D 	13
�
E ��E1

�
sin2

‚

2
� 1

cosˇ

Z d

x

dxNS31


E.x/

�
: (9.147)

Equations 9.142–9.144 as well as (9.147) ignore multiple scattering and energy-loss
straggling. Moreover, to determine absolute concentration profiles also the scatter-
ing cross section d�13 enters the description. A number of elaborate computer codes
have been developed to perfectionate these two as well as other ion-beam analytical
techniques. A major biannual conference series on ion beam analysis has been held
starting 1974, and several handbooks are on the market. For details the reader is
referred to Wang and Nastasi (2010).
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Fig. 9.23 Range profiles of 137Cs ions in aluminium. Top: Integral profiles for 5–50 keV. Bottom:
Differential profile for 50 keV. From Davies et al. (1960b)

9.5.4.3 Examples

Figure 9.23 shows one of the first range profiles measured for keV ions, measured
by electrochemical stripping (Davies et al., 1960b). To appreciate the resolution,
note that 1 μg/cm2 is equivalent with 3.7 nm of aluminium. The lower graph shows
a profile close to gaussian in the peak region and a distinct tail at greater depth. The
upper graph shows that this tail is close to exponential.

Figure 9.24 demonstrates the influence of channeling on a range profile. The
upper graph shows a comparison between a range profile in amorphous aluminium
oxide with that in an aluminium polycrystal. The difference between the two profiles
is not dramatic at small depths, up to about the 50% level. However, the deep tail
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Fig. 9.24 Range profiles of 40 keV 85Kr. Top graph: Integral profiles in amorphous Al2O3 and
polycrystalline Al. Bottom graph: Al single crystal with the beam incident along h111i, h110i,
h100i directions, and normal incidence, 7ı off h112i. From Piercy et al. (1963)

in aluminium is absent in the oxide. The lower graph demonstrates that this effect
depends on the crystal direction, and the longest ranges are observed for the most
open crystal direction, the h100i direction. This finding plays a central role in the
discovery of the channeling effect to be discussed in Sect. 11.

Still another phenomenon shows up in Fig. 9.25 where, in addition to long-range
channeling, an additional tail is observed in all profiles except the one in the amor-
phous target. A characteristic feature is an approximately equal slope for all crystal
directions, indicating that it is not a collisional process.

Davies and Jespersgård (1966) concluded that the ‘super tails’ were due to dif-
fusion of projectile particles after slowing down. Andersen and Sigmund (1965)
suggested interstitial diffusion as the underlying mechanism by showing that for
M1 < M2, projectiles could come to rest in a tungsten lattice without getting
trapped in a lattice vacancy. The opposite behaviour was predicted for M1 > M2.
Unpublished measurements by Domeij and Eriksson (1965) confirmed this asser-
tion.
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Fig. 9.25 Integral range profiles of 20 keV 85Kr in W single crystal in three crystal directions,
compared with a W polycrystal. Data for an amorphous crystal were derived from measurements
on anodic tungsten oxide. From Kornelsen et al. (1964)

9.5.4.4 Comparison with Theory

As indicated in the introduction to this chapter, range calculations are nowadays
performed with various simulation programs which, by and large, are based on the-
oretical concepts described in the foregoing sections. You may find an extensive list
of literature references in a monograph by Eckstein (1991). Here I want to summa-
rize some obvious pitfalls that should not be overlooked.

� Ion implantation profiles depend on the implant fluence. Increasing fluence im-
plies a change in the composition of the target material, crystal damage, surface
erosion by sputtering and mixing of previously implanted ions. In an early study
by McCargo et al. (1963), previously measured ranges were reported too low by
a factor of two because of high fluence.

� When comparing measured mean ranges with a Monte Carlo simulation, you
may underestimate the range if there is a significant tail due to channeling. A
comparison of the most probable range or, even better, the full profile is more
appropriate in such a case.

� Experimental errors and artifacts may average out in mean ranges but tend to
enhance fluctuations. If the measured range straggling turns out smaller than the
calculation, there is likely to be an error in the theory, or perhaps in the analysis
of the measurement.

All simulational models contain adjustable parameters, in particular the precise
form of the screening radius and the screening function of the potential, as well as
the precise energy dependence and proportionality factor of the electronic stopping
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Fig. 9.26 Mean range of Pb ions in carbon. Measurement by Friedland et al. (1998). Simulations
by two versions of the SRIM code (Ziegler et al., 2008). Theoretical curve (LSS) according to
Lindhard et al. (1963b). From Sigmund (2013)

cross section. A crucial test on the validity of a given scheme, whether analytical
or numerical, is its validity over a wide range of parameters. An example is shown
in Fig. 9.26. It demonstrates, on a specific example, that the original LSS scheme
(Lindhard et al., 1963b), with the original input, is still competitive with contempo-
rary simulation codes.

9.6 Fluctuations and Correlations

While fluctuations in the ion range are fully accounted for in the transport equa-
tions discussed in Sects. 9.2.1 and 9.3.1, distributions in deposited energy are not.
In contrast to a single bombarding ion, energy is shared amongst many particles in
a recoil cascade and/or an ionization cascade, and both the sharing between nuclear
or electronic motion, the respective distributions in space and the conversion into
measurable quantities such as structural defects or inner-shell vacancies are subject
to fluctuation. In particular, deposited-energy distributions discussed in Sect. 9.4.3.1
are mean values over many incident ions, while the distribution of deposited energy
due to an individual ion may look very different.

Fluctuations in specific quantities like structural defects or inner-shell vacancies
are central aspects of the theory of radiation effects and will be considered in Vol-
ume 3 of this series. Here, only one quantity will be mentioned briefly, which is
tightly connected to the topics discussed in this chapter, the correlation between
deposited energy and the penetration of the ion.

Slightly generalizing Westmoreland and Sigmund (1970), let us define a quantity
gn;e.v; r ;R/ d3r as the mean energy deposited in nuclear or electronic motion in a
volume .r ; d3r/ by a projectile starting in r D 0 with a velocity v and coming to
rest in R.
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Fig. 9.27 Conditional distribution function of deposited energy gn.E; x/ for normal incidence.
Thick solid lines: Gaussian approximation; thick stippled lines: Including third-order moments.
Thin lines denote the corresponding average energy deposition profiles. Abscissa variable � D
˛.x � x/, so that � D 0 denotes the mean projected range; ˛ D 1=

p
�x2; arrows denote the

actual penetration depth of the projectile; power scattering m D 1=3. Mass ratio M2=M1 D 4
(left) and 1 (right). From Westmoreland and Sigmund (1970)

We may also define a joint distribution in mean deposited energy and vector
range,

F.v; r ;R/ d3r d3R D F.v;R/gn;e.v; r ;R/ d3r d3R : (9.148)

This function satisfies a backward transport equation of the type of (9.49) and
(9.120). Following the procedure applied in the derivation of those relations you
will obtain

� v

v
� r rF.v; r ;R/ � v

v
� rRF.v; r ;R/ D N

Z
d�.v; v0; v00/

� �F.v; r;R/� F.v0; r;R/� FR.v
0;R/Fn;e.v00; r/

	
: (9.149)

While it is possible in principle to find a transport equation for gn;e.v; r ;R/, cf.
Problem 9.10, it is easier to find a solution for (9.149) and from there to find
gn;e.v; r ;R/ from the definition, (9.148).

Approximate solutions can by found by the moment method starting fromZ
d3r F.v; r ;R/ D FR.v;R/


�.E/

�.E/
; (9.150)
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depending on whether the nuclear or electronic energy distribution is of interest.
Moreover, Z

d3R F.v; r ;R/ D Fn;e.v; r/: (9.151)

Westmoreland and Sigmund (1970) derived moment equations and solutions for
nuclear energy deposition governed by power scattering up to the third moment.
Results are shown in Fig. 9.27. You may note that for M2=M1 D 4 (left group
of graphs), where the projectile undergoes wide-angle scattering, there is a drastic
difference between the energy deposition profile when the projectile comes to rest
in x ˙

p
�x2 (top and bottom graph, respectively). This difference is significantly

smaller for M2=M1 D 1 (right group of graphs).
Equations of the type discussed in this section are well established in statistical

physics. Equations first derived by Dederichs (1965), characterizing vacancy and
interstitial distributions, were generalized by the present author (Sigmund et al.,
1968) to power scattering and applied in particular in a theory of elastic-collision
spikes (Sigmund, 1974). Winterbon et al. (1970) derived a transport equation for the
probability density of deposited energy in space. Jakas (1979) determined solutions
for the second moment. Large fluctuations were found, consistent with Fig. 9.27.
Moreover, results turned out to be sensitive to the exponent m in the power cross
section. The fact that solutions only could be found for m < 1=2 suggests caution.

9.7 Discussion and Outlook

This chapter is dominated by contributions of J. Lindhard and his coworkers, who
developed the theory of ion penetration in the keV and lower-MeV energy range in
the late 1950s. This effort has been documented in four seminal publications (Lind-
hard and Scharff, 1961, Lindhard et al., 1963a,b, 1968), which formed the ground
for all subsequent work in the field, including numerous computer simulation codes.
While there are better interaction potentials or cross sections for specific systems
now, as well as electronic stopping cross sections based on measurements, little has
changed in the basic concepts, in particular the definition of the quantities of inter-
est. Also the hierarchy of processes to be considered in calculations is essentially the
one adopted by Lindhard and coworkers, except in high-energy implantation where
electronic straggling cannot be ignored.

Changes have occurred in the calculational techniques. Analytical methods are
most suitable to provide moments over range and energy deposition profiles, but
whenever a complete profile is needed, and deviations from gaussian shape are ex-
pected, direct methods are to be preferred, and computer simulation, in particular by
the Monte Carlo method, has been the appropriate solution for many years. Achiev-
ing adequate statistics is no longer a problem, and to the extent that reliable input is
available, potential sources of error are minor.

Challenges still exist in the treatment of ion slowing-down at lower energies, i.e.,
in the eV regime, where uncertainties pile up both in the general description and
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the input. The dominating technique in this regime is molecular dynamics. Scaling
relations found for the keV and MeV regime cannot be expected to be valid here.
Therefore, every ion-target combination needs individual attention. This aspect will
receive special attention in Volume 3 of this series.

Problems

9.1. Find an exact solution of (9.12) for the differential cross section

d�.E; T / D �.E/

E
dT for 0 
 T 
 E (9.152)

and show that it differs from (9.18) by a factor of two. Is this a serious objection to
the approximation expressed by (9.16)?

9.2. Derive an equation for
D
.R � hRi/3

E
by the procedure leading to (9.15). Find a

solution by the method used to derive (9.23). The result is

˝
.R � hRi/3˛ D

Z E

0

dE 0
�
3
ŒNW.E 0/�2

ŒNS.E 0/�5
� NQ.E 0/
ŒNS.E 0/�4

�
; (9.153)

where Q.E/ D R
T 3d�.E; T /.

9.3. Show that in the energy regime of Bethe stopping and Bohr straggling, the
quantity h.R�hRi/2i=hRi2 exhibits a slow monotonic decrease as a function of the
beam energy.

9.4. Where does the factor 1=2� in (9.73) arise from?

9.5. Fill in the details leading to (9.77), making use of Appendix A.2.3, Vol. 1.

9.6. Analyse Fig. 9.12. Why is the skewness positive everywhere? What is the rea-
son for the decrease with increasingM2=M1? What can you conclude from the fact
that the quantity hXY 2i=hXihY 2i is close to 1 for all mass ratios?

9.7. Analyse Fig. 9.13. Calculate the kurtosis of a gaussian profile. How does this
compare to the data shown in the graph, and what can you conclude from this? What
can you conclude from the fact that the quantity hX2Y 2i=hX2ihY 2i is close to 1 for
all mass ratios?

9.8. Establish integral equations analogous to (9.102) and (9.105) for a homoge-
neous polyatomic medium. Hint: Introduce the quantity �jk.E/ which denotes the
mean energy deposited in species k by a primary atom of species j .

9.9. Reproduce Fig. 9.15 on the basis of the information given in the caption.

9.10. Derive (9.149) for Z1 ¤ Z2. Make sure to get the recoil term correctly. By
inserting (9.148) find a transport equation for gn;e.v; r ;R/, where the range and
energy deposition profile enter as input.
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Part V
Penetration of Aggregates



Chapter 10

Penetration of Molecules and Clusters

Abstract The main part of this chapter addresses the penetration of diclusters, i.e.,
diatomic molecules that enter a stopping medium and move in a more or less corre-
lated manner. Topics of prime interest are Coulomb explosion, multiple scattering,
energy loss and charge state. Specific results refer to beams of initially random ori-
entation and to clusters aligned with the beam direction. Selected results are also
discussed for larger clusters, mainly hydrogen clusters.

10.1 Introductory Comments

Modern accelerators can deliver beams of molecular ions over a wide energy range.
The interaction of such beams with gaseous and solid materials is an active area of
both basic and applied research. The penetration properties of such beams are an
important aspect of the field of particle penetration.

Interest in the field started with a study by Poizat and Remillieux (1972) of the
penetration of swift (MeV) HC

2 ions through a gold single crystal. Until then the
general expectation was that molecules would break up shortly after entering the
material and that the fragments would move independently. The observation of a
small fraction of molecules in the exiting beam generated a discussion of whether
those molecules had penetrated the crystal intact, or whether they had formed by
recombination after exiting the foil.

While both possibilities seem realistic, the difference is not necessarily well de-
fined, since the state of binding of a molecule must be more or less affected by the
presence of the medium. Caution is indicated, therefore, in talking about penetrating
molecules. Instead it has become customary to speak about penetration of clusters
of atoms, even when the ‘cluster’ is made up by only two atoms, commonly called
a dicluster.

Penetration properties of clusters can be studied by applying the tools used for
atomic projectiles. Here the pertinent standard of reference is an atomic beam with
the same velocity. Quantities to study are equilibrium charge states, mean energy

P. Sigmund, Particle Penetration and Radiation Effects Volume 2,
Springer Series in Solid-State Sciences 179, DOI: 10.1007/978-3-319-05564-0_10,
� Springer International Publishing Switzerland 2014
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482 10 Molecules and Clusters

loss and straggling, multiple scattering as well as radiation effects to be discussed
in Volume 3.

Molecular fragments tend to be charged. Therefore, a penetrating cluster experi-
ences Coulomb explosion. This implies a gradually increasing internuclear distance
with increasing dwell-time in the target as well as an increasing difference in the
velocities of the fragments as compared to that of the centre of mass. As a result
one may find a multiple-peak structure in the energy-loss spectrum of a penetrating
dicluster (Golovchenko and Lægsgaard, 1974, Gemmell et al., 1975).

These observations gave rise to extensive studies of cluster penetration by means
of coincidence techniques which reveal the combined influence of Coulomb explo-
sion, energy loss and multiple scattering (Gemmell, 1982). A direct outcome of such
studies is the option to deduce the structure of the incident molecular ion from the
distribution in phase space of the emerging fragments (Gaillard et al., 1978). This
technique developed to a useful tool in the study of molecular ions (Gemmell, 1981).

Another important application area of swift molecular ion beams is the deposi-
tion of high densities of energy, giving rise to heating, electron emission, sputtering
and associated phenomena. Ion beams may well be competitive with lasers in this re-
spect, the main difference being a strong localization of the deposited energy around
the trajectory of the cluster or its fragments.

It will be evident from these introductory remarks that penetration of clusters is
a fairly complex phenomenon. I shall, therefore, try to focus on various effects one
by one and consider their combined effect in a more cursory manner.

10.2 Coulomb Explosion

10.2.1 Dynamics

As a start, let us treat a simple model of Coulomb explosion. Consider two atomic
ions with atomic masses M1 and M2 and charges q1 and q2 at an internuclear dis-
tance r D r0 at time t D 0 in vacuum. Due to the mutual Coulomb repulsion, r will
increase with time. Energy conservation requires that

�

2

�
dr
dt

�2
C q1q2

r
D q1q2

r0
; (10.1)

where � D M1M2=.M1 CM2/ is the reduced mass.
From this you obtain the relative speed w.r/ D dr=dt as a function of distance,

w.r/

w1
D
r
1 � r0

r
; (10.2)

where
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Fig. 10.1 Relative speed w.r/ D dr=dt of an exploding dicluster according to (10.2)
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Fig. 10.2 Relative separation of an exploding dicluster according to (10.4). The dashed line shows
the asymptotic behaviour. The round symbols indicate the analytical approximation, (10.5)

w1 D
s
2q1q2

�r0
(10.3)

is the asymptotic relative speed.
This relation—which is a universal scaling law valid for unscreened Coulomb

interaction—is illustrated in Fig. 10.1. It is seen that by the time when the internu-
clear distance r has doubled, r D 2r0, the relative speed has reached 70% of its
asymptotic value.

The distance as a function of time is determined by

w1t
r0

D
s
r

r0

�
r

r0
� 1

�
C ln

�r
r

r0
C
r
r

r0
� 1

�
: (10.4)
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This relation is illustrated in Fig. 10.2. Also (10.4) is a universal scaling law in case
of unscreened Coulomb interaction. You may appreciate that a simple analytical
interpolation formula,

r

r0
' 1C .w1t=r0/2

w1t=r0 C 2:86
(10.5)

describes the behaviour accurately over the entire time range.

10.2.2 Time Constant

According to (10.4), Coulomb explosion is characterized by a time constant

� D r0

w1
: (10.6)

Let the cluster move with an initial speed v. Then, the pathlength travelled by the
projectile during the time � may be expressed as

v�

a0
D 1p

2Z1Z2

r
�

m

�
r0

a0

�3=2
v

v0
; (10.7)

if we may set q1 D Z1e and q2 D Z2e. According to Fig. 10.2, Coulomb explosion
is essentially complete at t � 5� . Evidently, for swift particles, where v 	 v0,
the right-hand side of (10.7) may become 	 1. This implies that for penetration
through a thin solid target, only a minor part of the Coulomb explosion takes place
while the cluster moves inside (cf. Problem 10.2).

10.2.3 Transformation to the Laboratory Frame

Consider now a measurement of the final velocity distribution of the two particles,
analysed with a detector some distance away from the target. In a reference frame
where the molecule is at rest, particle 1 will have a velocity

w1 D M2

M
w1e ; (10.8)

where M D M1 C M2 is the total mass and e a unit vector defining the initial
orientation of the molecule.

In the laboratory frame of reference, atom 1 has the velocity v1 D v C w1 or the
energy

E1 D M1

2



v2 C w21 C 2w1v cos�

�
; (10.9)
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Fig. 10.3 Distribution in energy and angle of HC ions resulting from Coulomb explosion of 2 MeV
HC

2 incident on a 2 μg/cm2 carbon foil. Energy measured relative to 1 MeV. From Golovchenko
and Lægsgaard (1974)

where � is the angle between v and e, i.e., between the molecular orientation and
the beam direction. This reduces to

E1 D M1

2
v2 C �vw1 cos� C M2

M

q1q2

r0
; (10.10)

whereas atom 2 has an energy

E2 D M2

2
v2 � �vw1 cos� C M1

M

q1q2

r0
: (10.11)

Consider the important case of a homonuclear molecule with M1 D M2 and
q1 D q2. According to (10.10) and (10.11), Coulomb explosion causes the energy
spectrum to split into two branches for all orientations except for � D �=2, i.e.,
when the molecule is oriented perpendicular to the beam.

This is illustrated in Fig. 10.3 which represents the result of measurements by
Golovchenko and Lægsgaard (1974) with 2 MeV HC

2 ions penetrating through a thin
carbon foil. The sharp peaks predicted by (10.10) and (10.11) are broadened due to
multiple scattering and other effects to be discussed below, but the splitting of the
energy spectrum is clearly visible as well as the fact that it is most pronounced in the
forward direction corresponding to an orientation � D 0. The two peaks merge into
one at some finite scattering angle 0 corresponding to the orientation � D ˙�=2.
You are encouraged to evaluate 0 in Problem 10.3.
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10.2.4 Energy and Angular Spectra

For a given orientation the energy spectrum of atom 1 may be written as

f .E1/dE1 D ı


E1 �M1v

2=2�M1w
2
1=2�M1w1v cos�

�
dE1 : (10.12)

For random orientation we find an energy spectrum

F.E1/dE1 D dE1
1

2

Z 1

�1
d cos� f .E1/

D
8<
:
.M1w1v/

�1dE1 for M1

2
.v �w1/2 
 E1 
 M1

2
.v C w1/

2

0 otherwise.
(10.13)

This represents a constant energy distribution within limits defined by (10.13).
Next, consider the distribution in energy and angle of the emerging particles. In

the following we shall deal with swift ion beams, where

v 	 w1 : (10.14)

This is encountered most often in the literature, especially in the case considered in
Fig. 10.3.

For a given orientation, atom 1 receives a momentum component

�P D M1w1 sin � (10.15)

perpendicular to the beam direction. Hence, within the small-angle approximation
it is deflected by an angle

1 ' w1

v
sin � : (10.16)

We may thus expand (10.12) into

f .E1; 1/dE1d1 D ı


E1 �M1v

2=2�M1w1v cos�
�

� ı
�
1 � w1

v
sin �

�
dE1d1 (10.17)

where the term M1w
2
1=2 has been neglected.

Introducing the solid angle d2�1 D 2�1 d1 (in the small-angle approximation)
and averaging over � you obtain a double-differential distribution

F.E1; 1/dE1 d2�1 D dE1 d2�1
2�M1w1v

ı

 
21 �

�w1
v

�2
C
�
�E1

M1v2

�2!
; (10.18)

where

�E1 D E1 � M1

2
v2 : (10.19)
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Integration over the solid angle leads back to (10.13). Conversely, integration
over the energy leads to

F.1/d
2�1 D d2�1

2�

v=w1q
.w1=v/2 � 21

(10.20)

for 1 
 w1=v, and zero otherwise. This distribution was derived by Golovchenko
and Lægsgaard (1974). It is characterized by a broad valley around the beam axis
and a sharp peak toward the maximum scattering angle w1=v.

All these features agree qualitatively with Fig. 10.3. A more quantitative anal-
ysis requires taking into account multiple scattering as well as the distribution of
internuclear distances r0 and, perhaps, stopping.

10.3 Multiple Scattering

In this section we shall look at the effect of multiple scattering on the motion of a
dicluster. Coulomb explosion will be ignored here. The combined effect of Coulomb
explosion and multiple scattering will be considered in Sect. 10.6.2.

10.3.1 Independent Atoms

Consider a diatomic cluster entering a foil of thickness x. We want to know the dis-
tribution F0.˛1;˛2; x/ d2˛1 d2˛2 of the scattering angles after emergence from the
target. Here, ˛1 and ˛2 are vectorial scattering angles in the small-angle approxi-
mation.

For reference, assume the two atoms to scatter independently of each other, so
that

F0.˛1;˛2; x/ D F.˛1; x/F.˛2; x/ (10.21)

or, by (7.35),

F0.˛1;˛2; x/ D 1

.2�/4

Z
d2k1

Z
d2k2 eiŒk1�˛1Ck2�˛2
�NxŒ�1.k1/C�2.k2/
 ;

(10.22)

�i .k/ D
Z

d�i .�/
h
1� e�ik��

i
I i D 1; 2 ; (10.23)

where d�i .�/ is the differential scattering cross section of atom i in the small-angle
approximation.

It is convenient to introduce the scattering angle of the centre-of-mass,

˛ D M1

M
˛1 C M2

M
˛2 ; (10.24)
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where M D M1 CM2, and the relative scattering angle

�˛ D ˛1 � ˛2 : (10.25)

As we have seen in the previous section, the quantity of prime interest is the rel-
ative motion of the two atoms. This implies that we are mostly interested in the
distribution

F0.�˛; x/ D
Z

d2˛F.˛1;˛2; x/ D 1

.2�/2

Z
d2k eik��˛�NxŒ�1.k/C�2.k/
 :

(10.26)
In other words, the distribution in relative scattering angle reflects single scattering
governed by the differential cross section

d�.�/ D d�1.�/C d�2.�/ : (10.27)

10.3.2 Correlated Scattering

The assumption of independent scattering cannot be justified in general: If the clus-
ter is aligned with the beam direction, the two atoms will scatter on a target atom at
approximately the same impact parameter. Therefore, let us go one step further and
take into account the orientation of the dicluster. We may define a differential cross
section d�.�1;�2/ for scattering of atom 1 by an angle .�1; d2�1/ and atom 2 by
an angle .�2; d2�2/ in a collision with a single target atom. With this, the multiple-
scattering distribution reads

F.˛1;˛2; x/ D 1

.2�/4

Z
d2k1

Z
d2k2 ei.k1�˛1Ck2�˛2/�Nx�.k1;k2/ (10.28)

with

�.k1;k2/ D
Z

d�.�1;�2/
h
1 � e�i.k1��1Ck2��2/

i
(10.29)

in complete analogy with the single-particle distribution.
To find the differential cross section, vectorial impact parameters .p1;p2/ are

defined according to Fig. 10.4, and the projection of the internuclear-distance vector
r on the impact plane is denoted as �. With this the differential cross section reads

d�.�1;�2/ D d2�1 d2�2

Z
d2p1

Z
d2p2

ı .�1 � �1.p1// ı .�2 � �2.p2// ı .p1 � p2 C �/ : (10.30)

The transport cross section now reads
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Fig. 10.4 Small-angle scat-
tering of dicluster on target
atom viewed in the impact
plane perpendicular to the
beam direction
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�.k1;k2/ D
Z

d2p1

Z
d2p2 ı .p1 � p2 C �/�

1 � e�iŒk��1.p1/Ck��2.p2/

�
: (10.31)

Consider again the distribution in the relative scattering angle �˛. In straight anal-
ogy with the calculation in the previous section you find

F.�˛; x/ D
Z

d2˛F.˛1;˛2; x/ D 1

.2�/2

Z
d2k eik��˛�Nx�.k;�k/ : (10.32)

It is of interest to identify the deviation from the uncorrelated case, (10.26). With
that in mind, write (10.32) as

F.�˛; x/ D 1

.2�/2

Z
d2k eik��˛�NxŒ�1.k/C�2.k/C��.k/
 (10.33)

with

��.k/ D �
Z

d2p1

Z
d2p2

ı .p1 � p2 C �/
h
1 � e�ik��1.p1/

i h
1 � eik��2.p2/

i
: (10.34)

10.3.3 Examples

10.3.3.1 Alignment

In case of perfect alignment we have

� D 0 (10.35)

and hence,
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��.k/ D �
Z

d2p
h
1 � e�ik��1.p/

i h
1 � eik��2.p/

i
: (10.36)

10.3.3.2 Random Orientation

In the case of random orientation we may assume that only a small fraction of the
beam is affected by correlation. Hence, we may assume ��.k/ to be small, so that
expŒ�Nx��.k/� ' 1 �Nx��.k/. This allows to carry out the angular average,

hı .p1 � p2 C �/i D 1

2�r
p
r2 � .p1 � p2/2

; (10.37)

cf. (8.92), Vol. 1. For not too low beam energy the effective interaction range of the
nuclear interaction is small compared to the internuclear distance. Hence,

hı .p1 � p2 C �/i ' 1

2�r2
: (10.38)

Then we find
F.�˛; x/ D F0.�˛; x/C F1.�˛; x/C : : : (10.39)

with

F1.�˛; x/ D Nx

.2�/3r2

Z
d2k �1.k/�2.k/ eik��˛�NxŒ�1.k/C�2.k/
 : (10.40)

10.3.3.3 ��2 Scattering

For qualitative orientation, consider a homonuclear dicluster and a scattering law

d�.�/ D C
d�

�2
: (10.41)

With this we find

�.k/ D Ck (10.42)

��.k/ D �2Ck; (10.43)

For the perfectly-aligned case this leads to

F.�˛; x/ � ı.�˛/ ; (10.44)

as it must be.
For the orientational average we have
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F0.�˛; x/ D 2NCx

2�

1

Œ.2NCx/2 C�˛2�3=2
(10.45)

F1.�˛; x/ D 2NCx

2�

3NC 2x

2�r2
2.2NCx/2 � 3�˛2

Œ.2NCx/2 C�˛2�7=2
: (10.46)

This may be written in the form

F1.�˛; x/

F0.�˛; x/
D 3

4�r2Nx

1

˛21

1 � 3.�˛=˛1/
2=2

1C .�˛=˛1/2
; (10.47)

where ˛1 D 2NCx is close to the halfwidth. This function decreases rapidly with
˛1 and with x.

10.4 Energy Loss

Correlation effects of the kind experienced in multiple scattering are also observed
in energy loss. They tend to be more pronounced here, because the interaction range
of electronic stopping is larger than that of elastic scattering. In the literature you
find the terminologies ‘proximity effect’ or ‘vicinage effect’, both of which refer to
correlations in pertinent impact parameters.

We consider the mean energy loss of a swift n-atomic cluster. To establish a
reference, assume the atoms to interact independently with the target atoms. Then
the total energy loss will be

dE

dx
D N

nX
sD1

Ss ; (10.48)

where Ss is the stopping cross section for an individual atomic ion s. Deviations
from this expression are conventionally expressed by the stopping ratio

R D SP
s Ss

; (10.49)

where S is the stopping cross section for the cluster.
Indications of deviations from R D 1 were first reported by Ewing (1962). Cal-

culations and measurements by Brandt et al. (1974) confirmed the existence of the
effect1. Extensive measurements have been performed with swift proton clusters.
According to a compilation by Arista (2000), stopping ratios for HC

2 in carbon have
been measured by several groups and are reported to lie between R D 0:8 and 1.4,
dependent on beam energy and target thickness.

1 However, Shubeita et al. (2011) found significantly lower enhancement factors than those re-
ported by Brandt et al. (1974)
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Fig. 10.5 Proximity effect in
energy loss. See text. From
Schinner and Sigmund (2012)
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10.4.1 Qualitative Considerations

If the range of interaction between the projectile atoms and the target electrons
far exceeds the internuclear distance of the cluster, the latter will effectively act
as one particle with the combined charge

P
s qs , as far as distant interactions are

concerned. This is conventionally called the ‘united-atom limit’. As regards close
interactions, the atoms in the cluster tend to act independently. Therefore, the actual
stopping cross sections must be expected to lie below that of the united atom.

In the opposite case of a short interaction range, a proximity effect can only be
expected for specific orientations of a cluster, such as has been seen in the case of a
dicluster aligned with the beam direction in case of multiple scattering, analysed in
Sect. 10.3.

Consider first a diatomic cluster. Identifying the interaction range with the adia-
batic radius we may expect a significant proximity effect for

v

!
� r ; (10.50)

where r is the instantaneous internuclear distance in the cluster and ! a represen-
tative resonant frequency of weakly-bound target electrons. With �! � e2=2a0
(10.50) reads

v

v0
>
1

2

r

a0
� 1 (10.51)

for r � 2a0.
We may conclude that the proximity effect in energy loss must have an onset

around v � v0, and it can be treated by the Born approximation or classical theory
dependent on Bohr’s kappa parameter � D 2Z1v0=v.

Next, consider a molecule made up by two atoms 1 and 2 interacting with a
classical electron E (Fig. 10.5). The force acting on the electron is given by the
vector sum F D F 1CF 2 of the forces from the two constituents. A similar relation
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holds for the momentum transfer P . Hence, the kinetic-energy transfer is greater
than the sum of individual energy transfers if P1 � P2 > 0, i.e., the angle between
P1 and P2 must be less than 90ı. Thus, for electrons located outside the circle
indicated in Fig. 10.5 the energy loss is enhanced, while it is weakened for electrons
located inside the circle.

Since the effective interaction range increases with the beam speed v, the relative
significance of the region of enhanced energy loss increases with increasing speed if
r is constant. Conversely, as r increases because of Coulomb explosion, the region
of decreased energy loss increases, resulting in a decrease in the stopping ratio R.
Moreover, screening of the interaction due to electrons accompanying the projectile
ions must diminish the relative significance of the region of enhanced stopping.
Therefore,R must be expected to decrease with decreasing charge state.

The first theoretical treatments (Brandt et al., 1974, Arista, 1978) as well as nu-
merous subsequent ones—see Arista (2000) for a comprehensive review—are based
on dielectric stopping theory. We shall come back to this formalism below, but as
Fig. 10.5 indicates, the origin of non-additive stopping is the vector nature of the
ion-electron interaction. For that reason it appears most instructive to treat the prob-
lem first as an interaction with an isolated target atom.

In Bethe theory, where the stopping cross section is / Z21 , an upper bound for
enhanced stopping may be found via the united-atom limit, i.e., an atom with atomic
number

P
s Zs . This suggests

Rmax D
�P

s Zs
	2P

s Z
2
s

: (10.52)

For a homonuclear cluster this would be Rmax D n, the number of atoms in the
cluster. At the velocities where measurements have been made, observed values are
not anywhere near this limit.

10.4.2 Born Approximation

Treatments of the proximity effect in stopping on the basis of the Bethe theory were
reported by Steinbeck and Dettmann (1978), Basbas and Ritchie (1982), Ray et al.
(1992) for bare cluster ions and by Jensen and Sigmund (2000) for screened cluster
ions.

The interaction between a swift point chargeZ1e and an atom was treated within
the Born approximation in Sect. 4.3.2, Vol. 1. We may extend this treatment to the
interaction of two point chargesZ1e;Z2e with an atom by making the replacement

V.r; t/ D
Z0X
�D1

�Z1e2
jr� � R.t/j )

Z0X
�D1

� �Z1e2
jr� � R1.t/j

C �Z2e2
jr� � R2.t/j

�
; (10.53)

where Z0 now denotes the atomic number of the target atom.
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Introducing relative coordinate vectors,

R1.t/ D R.t/C M2

M
r.t/I R2.t/ D R.t/� M1

M
r.t/ ; (10.54)

we may assume the time dependence in r.t/ by Coulomb explosion to be small for
the duration of the interaction, so that

r.t/ ' r D constant : (10.55)

We may repeat the derivation presented in Sects. 4.3.2 and 4.3.4, Vol. 1 (cf. Prob-
lem 10.4) on the basis of (10.53) and (10.54). Instead of (4.5.2), Vol. 1, we then
arrive at the expression

�j D 4e4

�2v

Z
d3q
q4

ˇ̌
Fj0.q/

ˇ̌2
ı


!j0 � q � v

�
� �Z21 CZ22 C 2Z1Z2 cos.q � r/

	
(10.56)

for the excitation cross section of state j of the target atom.
By solving Problem 10.5 you will convince yourself that the factor in the square

brackets may be generalized to an n-atomic cluster according to

Z21 CZ22 C 2Z1Z2 cos.q � r/ !
X
s

Z2s C
X
s¤s0

ZsZs0 cos .q � rss0/ : (10.57)

The term / P
s Z

2
s represents the sum of the uncorrelated cross sections of the

moving atoms leading to (10.48). The remaining terms, which are / 2ZsZs0 , con-
tain factors cos.q � rss0/ in the integrand and thus depend on the angle between v

and the distance vector rss0 D Rs � Rs0 .
Going back for a moment to the dicluster, you may expect, based on the discus-

sion of multiple scattering, that two cases offer themselves for straight evaluation of
(10.56),

1. random orientation, where we may replace cos.q � r/ by

hcos.q � r/i D sin.qr/
qr

; (10.58)

2. complete alignment with the beam, where

cos.q � r/ D cos
�!j0r

v

�
: (10.59)

You may then follow the derivation of the stopping cross section described in
Sects. 4.3.4 and 4.5.3, Vol. 1, with the result
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S D 2�Z21e
4

mv2

X
j




j � 
0

� Z dQ
Q2

ˇ̌
Fj0.q/

ˇ̌2 �
Z21 CZ22 C 2Z1Z2u.r/

	
;

(10.60)
and correspondingly for an n-atomic cluster. The function u.r/ reads

u.r/ D

8̂<
:̂

sin.qr/
qr random orientation

for
cos


!j 0r

v

�
perfect alignment:

(10.61)

You are encouraged to derive a more general expression in Problem 10.6.

10.4.2.1 Bethe Limit

In the Bethe limit, i.e., when shell corrections are ignored, the stopping cross section
reduces to

S D 2�Z0e
4

mv2

X
j

fj0

Z 2mv2

.�!j 0/
2=2mv2

dQ
Q

�
"X

s

Z2s C 2
X
s<s0

ZsZs0g.rss0/

#
(10.62)

in the notation of Sect. 4.5.4, Vol. 1.

10.4.2.2 Random Orientation

For random orientation, (10.62) can be integrated (Steinbeck and Dettmann, 1978,
Basbas and Ritchie, 1982) and expressed in terms of integral cosine functions
(Abramowitz and Stegun, 1964). This calculation has been left to the reader as Prob-
lem 10.7. In the limit of 2mv2 	 �!j0 you will then find

�S D 2
X
s<s0

ZsZs0

4�Z0e
4

mv2

X
j

fj0

�
ln

1

qminrss0

C 1 � 	

�
; (10.63)

where
qmin D !j0=v (10.64)

and 	 D 0:57721 is Euler’s constant.
You may note that the upper limit, qmax D 2mv=�, does not appear in (10.63).

This reflects the fact that the proximity effect results from distant interactions.
Insertion of (10.64) leads to an expression containing the I -value,
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ln I D
X
j

fj0 ln.�!j0/ (10.65)

according to (4.119), Vol. 1. Thus, (10.63) reduces to

�S D 2
X
s<s0

ZsZs0

4�Z0e
4

mv2
ln
1:526�v

Irss0

: (10.66)

In this form this result was found by Arista (1978) for the Fermi gas. Here the loga-
rithmic term increases monotonically with the beam velocity. However, the increase
is slower than that of the Bethe logarithm, ln.2mv2=I /.

10.4.2.3 Alignment

For perfect alignment, (10.62) leads to

�S D 2
X
s<s0

ZsZs0

4�Z0e
4

mv2

X
j

fj0 cos
!j0rss0

v
ln
2mv2

�!j0
: (10.67)

Note the oscillatory term cos.!j0rss0=v/. Consider a system with only one signif-
icant resonance !. In this case, �S will oscillate around zero as the ratio rss0=v

varies. For a dicluster the stopping cross section itself will have maximum and min-
imum values .S1 ˙ S2/

2, respectively.
For complete alignment, impact parameters are perfectly correlated. A negative

interference must, therefore, come from the time sequence of the two interactions
(Arista and Ponce, 1975). For a dicluster, the impulses exerted by the two atoms
act coherently for !r=v D 2��, � D 0; 1; 2 : : : . Note the adiabatic radius v=!,
mentioned in (10.50) above. Conversely, for !r=v D 2�.�C1=2/ the two impulses
are in antiresonance.

10.4.2.4 Harmonic Oscillator

It is useful to evaluate an example for a case where rigorous evaluation is uncom-
plicated. Such an example is a harmonic-oscillator target atom. The interaction be-
tween a single point charge and an oscillator has been presented in Sects. 4.5.3 and
A.4.3, Vol. 1.

Starting at (10.60) and inserting the matrix elements Fj0.q/ for the oscillator,
(A.181), Vol. 1, you arrive at

�S D 4�e4

mv2

X
s<s0

ZsZ
0
s�Lss0 ; (10.68)

where
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Fig. 10.6 Stopping ratio R versus Bethe parameter B D 2mv2=�!0 for a beam of proton di-
clusters oriented randomly (top) and aligned in the beam direction (bottom), interacting with a 3D
quantum oscillator with a resonance frequency !0. Numbers in the inset indicate the value of the
factor �0 D r

p
2m!0=�. From Sigmund and Schinner (2010)

�Lss0 D
1X
�D1

1

.� � 1/Š
Z 1

�2=B

dt t��2e�tu.r/ (10.69)

and u.r/ is given by (10.61).
With this, proximity is characterized by a dimensionless parameter

	j D r

q
2m!j0=� : (10.70)
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Fig. 10.7 H2 clusters penetrating through gold. Upper graph: Stopping numbers L for individual
shells and the sum. Lower graph: Stopping ratios of individual shells. Evaluated from (10.69) with
resonance frequencies and occupation numbers of individual shells taken from ICRU (2005)

Figure 10.6 shows stopping ratios R for a dicluster for a series of values of the
parameter 	0, (10.70). For small values of 	0, i.e., small internuclear distances r , the
stopping ratio is close to the united-atom valueR D 2. As r increases, R decreases,
and at the same time an oscillatory dependence on projectile speed develops, which
has been mentioned above and first predicted by Arista and Ponce (1975). These
oscillations are most pronounced when the molecule is oriented parallel to the beam
(lower graph).

Figure 10.7 shows the case of H2 diclusters in gold as an example. The upper
graph shows stopping numbers for individual shells, including the proximity cor-
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rection evaluated from the oscillator model, (10.69), whereas the lower graph shows
stopping ratios for individual shells.

It is seen that the dominating contribution to the stopping number—and, hence,
to the stopping cross section—stems from target electrons in the 5th and 6th shell
up to � 1MeV/u. At higher energies the contribution of inner-shell electrons in-
creases, just as in case of penetrating atomic ions. Conduction electrons contribute
significantly only at energies � 0:1MeV/u, but they eventually take over at energies
not covered in the graph where the Born approximation becomes questionable.

Conversely, the lower graph in Fig. 10.7 shows that stopping ratios> 1 are found
for 6s and 5d electrons and, for energies � 1MeV/u, for 5s and 5p electrons. As a
consequence, the overall enhancement of the stopping ratio is less than 10% over
a wide energy range, in agreement with recent measurements by Shubeita et al.
(2011), and contrary to early measurements reported by Brandt et al. (1974).

10.4.3 Classical Theory

Stopping measurements were reported with heavier ions such as N2 (Steuer et al.,
1982) and Cn (Baudin et al., 1994) in a velocity regime near the Bohr speed. In
this energy range the validity of the Born approximation is questionable. Moreover,
projectile screening becomes important.

Before going into an extension of the Bohr stopping model presented in Sect. 4.2,
Vol. 1, have a look at (10.63) together with (10.64). You will notice that these equa-
tions do not contain Planck’s constant � if you interpret !j0 as a classical resonance
frequency. This suggests that essentially the same interference term in the energy
loss ought to be derivable from Bohr theory as from the Born approximation.

To appreciate this, remind that in the simple Bethe limit, the stopping cross sec-
tion of an atom is determined by a logarithmic integral governed by a lower and an
upper limit in the wave number q, where qmin reflects Bohr’s adiabatic limit which
appears both in quantum and classical theory. The upper limit qmax, on the other
hand, reflects the maximum energy transfer to a target electron. The difference be-
tween the atomic stopping cross section and the interference term lies in the factor
2Z1Z2u.r/ in (10.60) with u.r/ defined by (10.61). Now, this reduces the effective
integration interval to q � 1=r , in agreement with (10.50). Thus, for random orien-
tation the contribution from close collisions to the proximity effect in energy loss is
unimportant.

With this, the following treatment will be rather concise. If you are interested in
the details, go to Problem 10.8.

10.4.3.1 Extension of Bohr Theory

Bohr theory was extended to clusters of point charges by Basbas and Ritchie (1982)
and to clusters of screened atoms by Jensen and Sigmund (2000).

According to (4.11), Vol. 1, the energy transfer in a single interaction between a
projectile and a harmonically-bound target electron with a resonant frequency !0
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can be written as

T D 1

2m

ˇ̌̌
ˇ
Z

dt F .t/ ei!0t

ˇ̌̌
ˇ
2

; (10.71)

where the time-dependent force F .t/ D �rV is determined by a potential

V.t/ D
Z

d3q
X
s

Vs.q/e
iq�.r�p�vt�rs/ ; (10.72)

and rs is the distance of the sth cluster atom from some reference point moving
with the cluster. p is the vectorial impact parameter taken from the reference point
and Vs.r/ a screened potential characterizing the interaction between the sth cluster
atom and a target electron.

From (10.71) you then find

T .p/ D .2�/2e2

2m

X
s;s0

Z
d3q

Z
d3q 0 .q � q0/Vs.q/Vs0.q0/

� eiq�.r�p�rs/e�iq0�.r�p�rs0 /ı.!0 � q � v/ı.q0 � v � q � v/: (10.73)

Integration over the impact plane yields

Sdist.v/ D
Z

d2p T .p/

D 8�4

mv

X
ss0

Z
d3q q2Vs.q/Vs0.q/eiq�.rs�rs0 /ı.!0 � q � v/ (10.74)

within the dipole limit, i.e., for distant interactions.
We may split (10.74) according to

Sdist.v/ D
X
s

Sdist;s.v/C
X
s¤s0

�Sdist;ss0.v/ ; (10.75)

where Sdist;s.v/ is the distant part of the stopping cross section for an isolated s-
projectile and

�Sss0.v/ D 8�4

mv

Z
d3q q2Vs.q/Vs0.q/eiq�.rs�rs0 /ı.!0 � q � v/; (10.76)

an interference term.

10.4.3.2 Random

For random orientation of the projectile we may take the average
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D
eiq�.rs�rs0 /

E
D sin.qrss0/

qrss0

; (10.77)

where rss0 D jrs � rs0 j. Averaging over the orientation of v leads to

hı.!0 � q � v/i D

1=2qv for q > !0=v
0 otherwise.

(10.78)

With this we arrive at

�Sss0 D 4�4

mv2rss0

Z q1

!0=v

4�q2 dq Vs.q/Vs0.q/ sin.qrss0/ ; (10.79)

where q1 is an unspecified upper limit for the integration. Equation (10.79) reduces
to the low-q part of the interference term in (10.71), as you may demonstrate by
solving Problem 10.9. As argued above, the upper limit q1 will be set to infinity.
Before actually doing so, let us look at the integral for screened-Coulomb interac-
tion. Following (4.16) we may set

Vs.r/ D �qse
2

r
� .Zs � qs/e

2

r
gs.r=as/ : (10.80)

Setting the screening function gs to

gs.r=a/ D e�r=a (10.81)

we find

Vs.q/ D �Zse
2

2�2
q2 C ˇs=a

2
s

q2.q2 C 1=a2s
; (10.82)

where ˇs D qs=Zs. With this we may write (10.79) in the form

�Sss0 D 2�ZsZs0

mv2
Iss0 (10.83)

with

Iss0 D
Z q1

!0=v

dq
q2

sin.qrss0/
.q2 C ˇs=a

2
s /.q

2 C ˇel l=a
2
s0/

.q2 C 1=a2s /.q
2 C 1=a2s0/

: (10.84)

This integral is conveniently evaluated numerically. Figure 10.8 shows exam-
ples. Except for a slightly oscillatory behaviour, the interference term decreases as
the ratio between the internuclear distance and the screening radius increases. The
integral is largest for bare ions and negligible for neutral ions. The four graphs differ
in the ratio aad=a, i.e. indicate increasing projectile speed.
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Fig. 10.8 The function Iss0 defined in (10.84) for a homonuclear molecule with rss0 D r , as D
as0 D a, aad D v=!0 the adiabatic radius. Charge fractions ˇ=Z in steps of 0.1 from bottom to
top. The upper limit in the integral has been set to infinity. From Jensen and Sigmund (2000)

10.4.3.3 Alignment

Going back to (10.76), consider now the case of a diatomic atom oriented along the
direction of motion so that

�S12.v/ D 8�4

mv

Z
d3q q2V1.q/V2.q/eiqxr12ı.!0 � qxv/ ; (10.85)

or

�Sdist;12.v/ D 8�4

mv
cos

!0r12

v

Z
d2q .q2 C !20=v

2/

V1.

q
q2 C !20=v

2/V2.

q
q2 C !20=v

2/; (10.86)

where the subscript indicates that this is only the part from distant interactions: If
you insert (10.82) you will find that the integral has the usual logarithmic diver-
gence, i.e., close collisions need separate attention in the aligned case.

A proper theory of the close-collision part of the stopping integral on the ba-
sis of the Bohr model, operating with free-Coulomb scattering of an electron on a
two-centre potential, has not been developed to the author’s knowledge. You can,
however, get a hint on what results may look like from studies of Steuer and Ritchie
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Fig. 10.9 Calculated stopping
ratio for N2 molecular ions in
carbon, aligned in the direc-
tion of motion and in charge
equilibrium for v=v0 D 1:20
and 2.28. From Steuer and
Ritchie (1989)

(1988, 1989), based on the Born approximation and screened-Coulomb potentials of
the type of (10.72). From Fig. 10.9 you may note the oscillatory behaviour expressed
by the factor cos.!0r12=v/ in (10.86).

10.4.4 Dielectric Theory

Chapter 5, Vol. 1, is devoted to the dielectric theory of stopping. This theory, which
was initiated in a classic paper by Fermi (1940), considers the stopping of a charged
particle as an aspect of electromagnetic field theory. The interaction between a pen-
etrating particle and the medium induces a polarization field. In electrostatics, such
a field is directed opposite to the field of the external charge. For a time-dependent
field, the inertia of the target electrons gives rise to a retardation which complicates
the matter. Stimulated by Fermi (1939, 1940), and others, early studies focused on
the relativistic velocity regime.

The polarization field, which was employed to estimate the influence of the stop-
ping medium on the charge state of an atomic ion in Sect. 1.5.1, offers an alternative
way to derive stopping cross sections: Instead of computing the energy transfer to
the constituents of the medium you may determine the force exerted on the projec-
tile by the induced field. This procedure was applied by Aa. Bohr (Bohr, 1948a) for
distant collisions. Lindhard (1954) generalized it to both distant and close collisions
by introducing a wave-number-dependent dielectric function. This was particularly
useful for a free electron gas, where stopping cross sections would diverge in the ab-
sence of a binding frequency. Lindhard’s evaluation demonstrated the correctness of
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Fig. 10.10 Schematic illustration of the displacement of target electrons during passage of a
charged particle. From Bohr (1948b)

Kramers’ assertion (Kramers, 1947) that the stopping cross section of a free electron
gas is characterized by the plasma frequency !P .

10.4.4.1 Qualitative Considerations

As pointed out by Fermi (1939, 1940), the polarization field induced by a swift point
charge gives rise to a gas-solid difference in the energy loss of a charged particle:
In condensed matter, the range of the Coulomb interaction may be much larger than
the interatomic distance. The polarization in the medium will reduce the local field
acting on the target electrons and hence give rise to reduced stopping. This density
effect is particularly pronounced at relativistic projectile velocities, as discussed in
Sect. 5.6.4, Vol. 1.

Bohr (1948b) has given a beautiful illustration of this polarization, which is
shown in Fig. 10.10. Electrons are displaced from their equilibrium positions mainly
within a cone with its top at the moving particle. The orientation of the displacement
shifts as a function of the distance from the trajectory. In the lateral direction the dis-
placement becomes negligible outside the adiabatic radius. Note in particular that
there is a pronounced asymmetry in the longitudinal direction.

In Sect. 5.3.3, Vol. 1, it has been shown that the density effect on the stopping
force is very small at nonrelativistic velocities. Therefore, a description of energy
loss of a point charge in terms of the polarization wake, while illuminating, does not
promise new features in addition to what we know from the conventional picture in
terms of energy transfer to individual atoms. Especially, in the limit of zero target
density, the results are identical, as was shown in Sect. 5.3.2, Vol. 1.

This is different in the context of penetration of composite particles, where the
induced field acts on each of the constituent particles. As an example, consider a
penetrating dicluster. In Sect. 10.2 the mutual repulsion between the two moving
atoms was treated in terms of Coulomb interaction in free space. This ignores the
effect of the induced field, in particular a possible orientation effect. Along the same
line, electrons bound to a moving point charge experience a modified electric field.
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For strongly bound electrons this may imply a Stark shift of the energy levels (Rozet
et al., 1987), while for weakly-bound electrons the ionization energy may change.

10.4.4.2 Energy Loss and Induced Field

Consider a cluster of point charges Zse; s D 1; 2; : : : ; n penetrating through a ho-
mogeneous medium. Then a given chargeZs0 experiences the following forces,

F s D ZseE
ind
ss C

X
s0¤s

ZseE
Coul
s0s C

X
s0¤s

ZsE
ind
s0s ; (10.87)

where ECoul
s0s

is the Coulomb field of charge s0 at the position of charge s and corre-
spondingly for E ind

s0s .
Summing up over s yields the total stopping force on the cluster,

F D
X
s

ZseE
ind
ss C

X
s0¤s

ZseE
ind
s0s ; (10.88)

where the Coulomb forces have cancelled, since ZseECoul
s0s

D �Zs0eECoul
ss0 .

The first term in (10.88) represents the incoherent superposition of the stopping
forces on the constituents of the cluster. The second term represents the proxim-
ity effect. Because of the asymmetry of the induced forces that you have seen in
Fig. 10.10, this sum will normally be nonvanishing.

Conversely, inspecting (10.87) you will recognize that Coulomb explosion will
be modified by the induced force.

10.4.4.3 General Relations

The fundamental equations for the induced field have been derived in Chap. 5,
Vol. 1. The scalar potential of the electromagnetic field follows from (5.19), Vol. 1,

ˆ.r ; t/ D
Z

d3kˆ.k;k � v/ ei.k�r�!t/ : (10.89)

with

ˆ.k; !/ D 4�

k2"l.k; !/
�ext.k; !/ ; (10.90)

where �ext.k; !/ represents the charge distribution of the projectile and "l.k; !/,
denoted as ".k; !/ in the following, is the longitudinal dielectric function.

Subtracting the Coulomb potential from (10.90) you find the induced potential

ˆind.k; !/ D 4�

k2

�
1

".k; !/
� 1

�
�ext.k; !/ : (10.91)
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Equations (10.90) and (10.91) assume linear response. The reader interested in
an extension to the next order in Z1 may have a look at Esbensen and Sigmund
(1990).

The relation to the stopping force was described in Sect. 5.2.3, Vol. 1. The result
for a point charge is

�dE
dx

D iZ21e
2

2�2v

Z
d 3k0

k2
k � v

�
1

".k;k � v/
� 1

�
: (10.92)

according to Lindhard (1954). For an arbitrary stiff charge distribution

�ext.r � vt/ D
Z

d3k �ext.k/ eik�.r�vt/ (10.93)

you may derive, correspondingly,

�dE
dx

D 4�i

v
.2�/3

Z
d3k
k2

k � v j�ext.k/j2
�

1

".k;k � v/
� 1

�
: (10.94)

For a cluster of atoms, s D 1; : : : ; n located at points rs relative to a reference points
we have

j�ext.k/j2 D
X
s

j�s.k/j2 C
X
s¤s0

��
s .k/�s0.k/ eik�.rs�rs0 /

D
X
s

j�s.k/j2 C 2
X
s<s0

��
s .k/�s0.k/ cos .k � .rs � rs0// (10.95)

For the special case of a dicluster of two equal point charges this leads to

dE

dx
D �ie2

2�2v

Z
d 3k

k2
.k � v/

�
1

".k;k � v/
� 1

�
� �Z21 CZ22 C 2Z1Z2 cos.k � r/

	
; (10.96)

an expression established by Arista (1978).

10.4.4.4 Fermi Gas

Starting with Arista (1978) numerous authors have evaluated integrals like (10.96),
either to study the effect of the chosen dielectric function or to model stopping in
real media. Calculations by Arista (1978) refer to the dielectric function of Lind-
hard (1954) which has been discussed in Sect. 5.7.3, Vol. 1. Approximate analytic
solutions were offered in the limits of high and low velocities, respectively. You are
welcome to study the high-speed limit by looking into Problem 10.11.
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Fig. 10.11 Relative enhancement in stopping cross section of a dicluster of two randomly oriented
point charges,R�1, in Fermi gas with �!P D 13:6 eV as a function of the internuclear distance
r12=a0 for v=v0 D1, 2, 5 and 10. From Arista (2000)

Fig. 10.12 Stopping ratio R for a cluster of 100 H2 molecules in a Fermi gas with rs D 1:6
versus projectile speed v=v0. Letters a. . . f indicate neutral fractions 0. . . 50% in steps of 10%.
From Arista (2000)

Figure 10.11, showing numerical results for four beam velocities, confirms that
enhancement factors tend to decrease with increasing internuclear distance except
at low projectile speed, where oscillatory effects must be expected.

Figure 10.12 shows calculated enhancement factors for a cluster of 100 H2
molecules in a Fermi gas with rs D 1:6, demonstrating that very large enhancement
factors must be expected at high enough projectile speeds. These calculations bear
relevance to experiments by Ray et al. (1992) with carbon clusters of low charge.
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For v=v0 � 5 and up to 25 atoms per cluster, enhancement factors up to R � 1:3

were found in those measurements.

10.4.4.5 Oscillator Gas

Although the Fermi gas is a popular model for calculations in the theory of stop-
ping, it is characterized by only one parameter, its density which, at the same time,
determines an effective binding frequency !P , the plasma frequency. In the Drude-
Lorentz model known from classical electrodynamics (Jackson, 1975), at least two
parameters enter, namely the plasma frequency and at least one resonance frequency
of an individual isolated oscillator. Varying the density and keeping the atomic res-
onance frequency constant would enable you to isolate the effect of the medium on
the proximity effect.

We cannot evaluate (10.96) on the basis of the Drude-Lorentz model, since the
absence of a k dependence in the dielectric function causes a divergence at large k.
We can, however, evaluate the interference term / Z1Z2, where the factor hcos k�ri
removes the divergence at large k. If you solve Problem 10.12, you will arrive at

�

�
dE
dx

�
D �4Z1Z2e

2!2P
v2

�
sin �
�

� Ci.�/
�
; (10.97)

where Ci represents the integral cosine (Abramowitz and Stegun, 1964) and

� D

q
!20 C !2P r

v
: (10.98)

In the limit of high projectile speed this reduces to

�

�
dE
dx

�
D �4Z1Z2e

2!2P
v2

Œ1 � 	 � ln �� : (10.99)

This is very similar to (10.63). You may note that the main difference is the replace-

ment of the transition frequency !j0 by a frequency
q
!20 C !2P , which indicates

the density effect known from Drude-Lorentz theory (Jackson, 1975).
You may be in doubt about the range of validity of the Drude-Lorentz estimate.

This problem is overcome by replacing the Drude-Lorentz function by its quantal
analog that has been established by Belkacem and Sigmund (1990) and described in
Sect. 5.5, Vol. 1.

Figure 10.13 shows stopping ratios evaluated with this model by Sigmund and
Schinner (2011). You may appreciate that the highest enhancement factor is pre-
dicted for the lowest target density over the entire energy range covered, and at
the highest density shown, for !2P =!

2
0 D 10, negative enhancement is found for

B D 2mv2=�!0 < 10.
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You will frequently find in the literature the claim that it is the wake force that
is the cause of the proximity effect in stopping. Evidently, the opposite is true: The
proximity effect in the stopping cross section of a molecular ion is biggest in the
absence of a wake, i.e., in vacuum (Sigmund and Schinner, 2011).

10.4.5 Large Clusters

10.4.5.1 Proximity Effect

As the number n of atoms in the cluster increases, the number of neighbours per
cluster atom and, hence, the proximity effect increases. If the projectile speed is
high enough to ensure a stopping ratio Rn > 1, Rn will tend to increase with n
until there are internuclear distances exceeding the adiabatic radius, whereafter one
expects Rn to saturate at some value nmax which must depend on the projectile
speed. Details depend on the adopted geometrical structure as well as the charge
distribution in the cluster.

Ray et al. (1992) performed measurements for hydrogen clusters HC
n with

n D 2 � 25 in carbon foils of different thicknesses over an energy range of 10–
120 keV/u. Measured stopping ratios ranged from � 0:7 to � 1:3. Calculations
were performed on the basis of the quantum harmonic oscillator model described in
Sect. 4.5.2, Vol. 1. Figure 10.14 confirms that the proximity effect increases with n
at high speed. The figure on the right shows qualitative agreement with one set of
measurements.

Similar calculations were performed by Abril et al. (1992) on the basis of dielec-
tric theory. This, as well as subsequent work by Pérez-Pérez et al. (1996) demon-
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Fig. 10.14 Stopping ratioRn for Hn cluster in carbon versus beam energy per proton. Left: Calcu-
lation for n D 3, 5, 7, 9 and 25. Right: Comparison of Rn with limiting values R1 extrapolated
from measured values. From Ray et al. (1992)

strated that the stopping ratio depends sensitively on the adopted dielectric function.
In particular, a pronounced difference was predicted in the energy dependence of
the stopping ratio between aluminium and carbon targets. No measurements have
yet been reported that would confirm or disprove such an effect.

Measurements with carbon clusters including fullerene were performed by Baudin
et al. (1994). No significant proximity effect was found for fullerene in an energy
range up to � 0:5 MeV/u, while moderate enhancements of up to 10% were found
for smaller carbon clusters with n 
 8. More recent experiments by Tomita et al.
(2010) with carbon clusters near the Bohr speed showed pronounced negative en-
hancements, as one would expect on the basis of graphs like Fig. 10.14.

A detailed analysis of such measurements is complex and involves the charge
state, Coulomb explosion, multiple scattering and the geometrical structure of the
incident cluster.

10.4.5.2 Nonlinearities

Penetration of a large cluster implies a major disturbance of the stopping medium.
This disturbance may well have a feedback on the penetration properties. This shows
up in the clearing-the-way effect, first observed by Yamamura (1988) in computer
simulations of sputtering, where it was found that Arn clusters with n D 10 � 200
and energies of 100 eV/atom penetrated about twice as deeply as single argon atoms.
The simple explanation was that at such low energies, target atoms recoiling from
nuclear collisions with the frontrunners of the cluster can move away from the point
of impact, so that backrunners meet a diluted target (Sigmund, 1989).
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Fig. 10.15 Ratio FM .q/=FA.q/ of charge fractions for 4.2 MeV NC

2 (FM .q/) and 2.1 MeV
NC (FA.q/) ions after penetrating through carbon foils of thickness 80–750 Å. From Maor et al.
(1985)

Much more pronounced nonlinearities are observed in radiation effects such as
track formation, displacement damage, sputtering and electron emission. Such phe-
nomena will be discussed in Volume 3 of this series.

10.5 Charge State

While it is obvious that the trajectories of the constituents of a cluster must de-
pend on the various charge states, evidence has evolved gradually that those charges
themselves are also affected by proximity effects.

10.5.1 Observations

Early observations appeared as by-products from studies of beam-foil spectroscopy
(Bickel, 1975), but in connection with studies of Coulomb explosion the need to
study charge states became evident (Gaillard et al., 1977, Breskin et al., 1979).

Maor et al. (1985) measured charge distributions of atomic nitrogen ions emerg-
ing from carbon foils for incident 4.2 MeV NC

2 and for incident NC atomic ions at
the same speed, i.e., at 2.1 MeV. They found that lower charges were more abundant
for molecular than for atomic bombardment. Foil thicknesses were chosen suffi-
ciently large so that charge equilibrium was ensured in case of atomic bombard-
ment. Notwithstanding, charge distributions depended on thickness for molecular
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Fig. 10.16 Relative average charge per emerging carbon atom for incident 2 MeV/atom Cn cluster
after penetration through 2.2 μg/cm2 carbon foil. From Brunelle et al. (1999)

projectiles, as is seen in Fig. 10.15. A trend toward equilibrium is seen as thick-
ness increases, and that equilibrium appears to be that found for bombardment with
atomic ions.

One may conclude that the presence of a nearby atomic ion lowers the equilib-
rium charge state, and that this effect diminishes gradually, as the ions move apart
as a consequence of Coulomb explosion and/or multiple scattering.

Similar measurements were performed by Brunelle et al. (1999) with carbon
clusters of varying size. Figure 10.16 demonstrates that the decrease in the mean
equilibrium charge per atomic C ion gets more pronounced with increasing cluster
size.

Amongst subsequent reported experimental studies I like to mention Chiba et al.
(2011) who, in coincidence measurements, determined a clear correlation between
the ejection angle of the fragments of incident CC

2 ions with the charge state and, in
this way, were able to correlate the initial internuclear distance with the exit charges
of the fragments.

10.5.2 Qualitative Considerations

All observations point at an increased fraction of emerging neutrals and, more gen-
erally, a shift of the charge spectrum toward lower charges. Initial attempts aimed
at an explanation in terms of a surface effect, but with the observation of significant
proximity effects in energy loss it became clear that the behaviour in the bulk could
not be neglected.
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Let us consider an atomic nitrogen ion at a velocity where the mean equilibrium
charge is 4. This implies that for penetration through a gas, two electrons tend to
occupy the K shell with a binding energy of 404 eV while a third electron may
occupy the 2s shell with a binding energy of 20 eV. Now consider an N2 molecule
at the same velocity and, for qualitative orientation, go to the united-atom limit, i.e.,
a silicon ion. Let us assume for a moment that there are 2 � 3 electrons. Then, two
would occupy the K shell with a binding energy of 1844 eV, another two the 2s shell
with a binding energy of 154 eV, and the last two would be in the 2p shell with
a binding energy of 104 eV. Clearly, the atomic ion has a much lower ionization
energy and hence a higher ionization cross section. Thus, the molecular ion will
tend to capture more electrons in order to lower its charge state. This argument must
exaggerate the actual phenomenon, but it indicates the direction of the effect.

10.5.3 Estimates

From an energetic point of view, a proximity effect in charge state must be expected
in penetration through both solid and gaseous matter, although reported measure-
ments that I am aware of all refer to solids.

10.5.3.1 United-Atom Limit

Keeping to the united-atom limit for a moment we may find an upper bound for the
effect by making recourse to the simple Thomas-Fermi formula for the equilibrium
charge state, (1.6) which, for an n-atomic cluster in the united-atom limit reads
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q=n D Z1

�
1 � e�v=.nZ1/

2=3v0

�
: (10.100)

This relation is shown in Fig. 10.17 for n D 1, 2, 4 and 8. In agreement with the
experimental finding the mean charge state decreases with increasing cluster size.
This upper limit exceeds the experimental result shown in Fig. 10.16 as had to be
expected.

10.5.3.2 Perturbation Limit

Consider an atomic ion 1 in charge equilibrium. According to the Bohr stripping
criterion, all states with orbital velocities exceeding the projectile speed > v are
occupied (with N electrons) and all those with velocities < v are empty.

Now let another atomic ion 2 be located in a distance R from ion 1. The pertur-
bation caused by this ion may be expressed by a potential �2.jr � Rj/, which will
cause a change in the energy levels of ion 1. In a single-electron picture, the �th
level will be lowered by an energy

�E� D �eh�j�.jr � Rj/j�i (10.101)

to first order in the perturbation.
Charge equilibrium is now achieved when the newly available states are occupied

with electrons. If we characterize these electron states by a density of states �1.v/ D
.d�=dE/v, the change in ion charge can be expressed by

�q1 D �1.v/�E.N/ ' �e�.R/�1.v/ ; (10.102)

where it has been assumed that R is large enough so that the variation of �2 over
the spatial extension of ion 1 is negligible. Estimates of this type have been used in
computer simulations of cluster penetration (Nardi et al., 2002).

10.5.3.3 Effective-Charge Estimate

Following Heredia-Avalos et al. (2001), consider an atomic ion 1 in an n-atomic
cluster moving with a constant speed v. The potential seen by an electron on atom
1 is given by

V.r/ D Z1e

r
C

nX
jD2

Vj

ˇ̌

r � Rj

ˇ̌�
; (10.103)

disregarding electron-electron interaction, where Vj .r/ is the effective interaction
potential of atom j which could be given by (4.19). Internuclear distances Rj are
large enough so that the screened core potential of the atoms j D 2; : : : ; n can be
neglected, so that

Vj .r/ ' qj e

r
e�r=aad ; (10.104)
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where aad D v=! according to (4.19), with ! denoting a characteristic resonance
frequency of the target. With this, we find

V.r/ D e

r

2
4Z1 C

nX
jD2

qj
rˇ̌

r � Rj

ˇ̌e�jr�Rj j=aad

3
5 ; (10.105)

Now, approximating ˇ̌
r � Rj

ˇ̌ ' Rj (10.106)

r ' hri ; (10.107)

we can introduce an effective nuclear charge Zj through

Z1e

r
D V.r/ D e

r

2
4Z1 C

nX
jD2

qj
hri
Rj

e�Rj =aad

3
5 (10.108)

or

Z1 D Z1 C
nX
jD2

qj
hri
Rj

e�Rj =aad ; (10.109)

where
qj D Zj

�
1 � e�v=.v0Z

2=3

j
/
�

(10.110)

in accordance with (1.6).
Writing similar relations for the remaining n� 1 atoms, you arrive at a system of

equations for Zj which determines the charges qj of the cluster constituents,

X
`

Z` D
X
`

Z` C
X
`¤j

qj
hr`i
Rj

e�Rj =aad : (10.111)

There are various options for evaluating this expression:

1. If Z` �Z` is a small correction, you may wish to insert Z` for Z` everywhere in
the correction term on the right-hand side, including the ionic radius hr`i.

2. If you leave Zj in (10.110) but otherwise replace Z` with Z`, you get a linear
system.

3. If you insert Z` everywhere in the correction term, the system gets highly non-
linear.

As an example, consider a homonuclear cluster and assume, additionally, that the
charge is uniformly divided amongst the cluster constituents. Then the second as-
sumption leads to

nZ1 D nZ1 C Z1

�
1 � e�v=.v0Z

2=3
1

/
�

hr1i
X
j¤`

1

R j̀

e�R j̀ =aad (10.112)
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Fig. 10.18 Average charge ratio q=Z1 versus target thickness for 2 MeV/atom NC

2 (left (Maor

et al., 1985)) and for 2 MeV/atom CC
n ions (right, (Brunelle et al., 1999)) in carbon compared with

calculations by Heredia-Avalos et al. (2001). From Heredia-Avalos et al. (2001)

or

Z1 D Z1

2
41 �

�
1 � e�v=.v0Z

2=3
1

/
�

hr1i1
n

X
j¤`

1

R j̀

e�R j̀ =aad

3
5

�1

: (10.113)

If you identify hr1i with the screening radius asc D aTF.1 � q1=Z1/, you may
recognize that Z1 ! Z1 for high projectile speeds v, even though the other terms
in the denominator increase monotonically.

Heredia-Avalos et al. (2001) used different input in the evaluation of their
scheme:

� Instead of (10.110), an empirical relation extracted from the effective stopping
charge (Ziegler et al., 1985) was utilized,

� For the screening radius, the expression a D 1
!P

q
v2 C v2F =3 was employed,

thus ensuring an acceptable behaviour at low projectile speeds.
� For the ionic radius an expression extracted from Brandt and Kitagawa (1982)

was inserted, and
� Z` was replaced by Z` in the correction term, i.e., the third option was applied.

Figure 10.18 shows results forNC
2 and CC

n clusters in carbon. Considering the over-
all simplicity of the model, the agreement achieved with experimental findings ap-
pears surprisingly good.
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10.5.3.4 Thomas-Fermi Estimate

According to the Thomas-Fermi atomic model, the electron density �.r/ is related
to the potential �.r/ as

�.r/ D A .�.r/� �/3=2 ; (10.114)

where �, the chemical potential, is a constant and

A D .2me/3=2

3�2�3
: (10.115)

For an isolated ion 1 this relation must be satisfied with �.r/ D �1.r/ and �.r/ D
�1.r/.

In the presence of a second ion 2, (10.114) reads

�1.r/C��1.r/ D A Œ�1.r/C �2.jr1 � Rj/� ��3=2 : (10.116)

To the first order in �2 this reduces to

��1.r/ ' 3

2
A .�1.r/ � �/1=2 �2.r/ (10.117)

or

��1.r/ ' 3

2
A2=3 Œ�1.r/�

1=3 �2 .jr � Rj/ : (10.118)

The number of additional electrons is then given by

��q1 D
Z

d3r��1.r/ D 3

2
A2=3

Z
d3r Œ�1.r/�

1=3 �2 .jr � Rj/

' 3me

.3�2/2=3�2
�2 .R/

Z
4�r2 dr Œ�1.r/�

1=3 : (10.119)

Setting

�1.r/ D Z1 � q1

4�a2
a

r
e�r=a (10.120)

you find

��q1 D A2
me

�2
a2.Z1 � q1/1=3�2.R/ (10.121)

with

A2 D 15 � 27=3�.2=3/
�2=3

: (10.122)

10.5.3.5 Dielectric Theory

Various aspects of the problem were discussed in a series of papers starting with
Miskovic et al. (2000). These studies are based on the energy criterion and inspired
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Fig. 10.19 Ring pattern showing the distribution in energy and angle of emerging protons from
2.0 MeV (left) and 3.5 MeV(right) 4HeHC ions incident on carbon foils of thickness 8.5 nm (left)
and 20 nm (right). From Cooney et al. (1981)

by the theory of Brandt and Kitagawa (1982). Properties of the material enter explic-
itly through the dielectric function. The initial approach operates with a spherical-
ball model of a cluster with an adopted minimum distance between atoms. A sig-
nificant influence of wake forces was found on equilibrium charge states (Miskovic
et al., 2001a). An interesting qualitative feature is the prediction of Li et al. (2002) of
an asymmetric distribution of the charge between leading and trailing cluster atoms
due to the wake force.

All these studies address rather slow massive cluster ions, which by no means can
be expected to act as a small perturbation of the electronic structure of the target.
Considerable caution is indicated here, and even more with regard to further studies
(Miskovic et al., 2001b) addressing Na clusters with n up to 200 at v D 3v0.

10.6 Correlations

Coincidence measurements have revealed more detailed information about pene-
tration of molecules and clusters than what can be deduced from measurements of
energy loss or multiple scattering.
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10.6.1 Ring Patterns

Figure 10.19 shows two examples on similar systems but plotted differently. The two
graphs refer to swift 4HeHC diclusters incident on carbon films. Both graphs show
combined energy-angle distributions of emerging protons. The left graph shows a
ring pattern of the type of Fig. 10.3. You may notice a pair of peaks oriented along
the direction of motion, specified by by scattering angle zero. The two peaks have
different heights. Most pronounced is the peak at the smallest energy which repre-
sents trailing protons. The graph on the right shows equivalent information in a less
illuminating but more quantitative manner.

These graphs suggest that Coulomb explosion is the dominating process here.
Note, however, that such measurements are performed with very thin foils, were a
major portion of the Coulomb explosion takes place after the molecular fragments
have left the foil, while disturbing effects like multiple scattering, energy loss, wake
force, straggling and electron capture become inactive shortly after the fragments
have left the target. As a consequence, measurement of only the neutral component
of the emitted flux would show a less pronounced ring structure.

In view of the manifold of processes that determine ring patterns of the type
shown in Fig. 10.19, a comprehensive theoretical treatment needs to be based on
computer simulation (Plesser, 1982, Kemmler et al., 1985, Zajfman et al., 1990,
Zajfman, 1990, Denton et al., 2007, Miskovic et al., 2007), while analytical esti-
mates should assist in judging the relative importance of various effects. Neverthe-
less, attention has also been given to correlations and synergy between Coulomb
explosion, multiple scattering, energy loss and wake field (Kagan et al., 1978, Sig-
mund, 1992b,a, Sigmund et al., 1996, Miskovic et al., 2007).

10.6.2 Coulomb Explosion and Multiple Scattering

Coulomb explosion is a deterministic process, where the statistics is defined by
the initial conditions, i.e., the initial configuration in real and velocity space of the
impinging molecule, in particular its orientation relative to the beam direction. In the
absence of competing effects it will result in a ring pattern determined by the masses
and charges of the fragments and broadened by fluctuations in internal configuration
of the molecule at the point of incidence.

Multiple scattering, on the other hand, is a stochastic process which, in a homo-
geneous medium, gives rise to a broadening of the average straight-line trajectory
in the lateral direction. To this adds energy loss which gives rise to a broadening in
the longitudinal direction as well as slowing down.

For simplicity, consider a homonuclear dicluster, q1 D q2 D Z1. From (10.4)
you can easily extract that the speed of Coulomb explosion goes as



520 10 Molecules and Clusters

Fig. 10.20 Calculated inter-
nuclear distance of a 2 MeV
CO dicluster penetrating
through carbon. Dashed line:
Unscreened-Coulomb explo-
sion, no multiple scattering;
solid line: Screened-Coulomb
explosion without multiple
scattering; line with markers:
Screened-Coulomb explosion
plus multiple scattering. From
Kemmler et al. (1985)

dr
dt

'
8<
:
w21t=r0 w1t � r0

for
w1 w1t 	 r0 ;

(10.123)

where w1 D
q
2Z21e

2=�r0 for bare projectile ions with atomic number Z1, r0 is
the initial internuclear distance and � D M1=2 the reduced mass.

By piecewise fitting of the data shown in Fig. 7.9 by power laws you can approx-
imate the multiple scattering halfwidth by

Q̨1=2 D
8<
:
�=6 � ' 1

for
1:71

p
� � 	 1

(10.124)

with

Q̨1=2 D .Ea=
p
2Z1Z2e

2/˛1=2 (10.125)

� D �a2Nvt : (10.126)

If you wonder about the origin of the factor
p
2, go to Problem 10.13. Z2 denotes

the atomic number of the target material.
The lateral spread follows, then, from

d�
dt

� ˛1=2v (10.127)

We may then make a rough comparison,



10.6 Correlations 521

.dr=dt/CoulExpl

.d�=dt/Multiscat
'

8̂<
:̂
2:7Z1=Z2Nr

2
0a t small

for

0:23

q
M1v=Z

2
2e
2Nr0t t large :

(10.128)

Hence, the ratio of the two rates is constant initially but decreases gradually with
time. The ratio 1=r20aN will typically be> 1, and considering the numerical factor,
we may conclude that Coulomb explosion dominates initially except forZ1 � Z2,
i.e., light ions in heavy targets where scattering angles and cross sections become
large. Figure 10.20 shows the results of a computer simulation which confirms these
features.

Multiple scattering and Coulomb explosion interfere, since a scattering event
experienced by one fragment typically causes rotation of the axis and, hence, the
direction of Coulomb explosion. This gives rise to a change in the lateral motion of
the other fragment, even though that fragment has not been affected by the scattering
event. In other words, individual fragments will experience more scattering events,
so the angular and lateral profile will be broader than expected (Sigmund, 1992b).

If a dicluster is aligned in the direction of motion, the constituent atoms will un-
dergo small-angle scattering at very similar impact parameters. At least for homonu-
clear diclusters this will cause similar scattering angles or coherent scattering. This
effect results in a peak in the ring pattern in the forward or backward direction.

10.6.2.1 Transmission of Molecules

Poizat and Remillieux (1971) found that the flux of particles transmitted after bom-
bardment of a carbon foil by HC

2 molecular ions contained a small fraction of HC
2 .

This observation was found surprising, since it was assumed that incident molecules
would dissociate immediately after entering the foil, and that Coulomb explosion
would cause the fragments to move away from one another, so they would never
meet again.

Figure 10.21 shows results from extensive measurements by Cue et al. (1980).
Clearly, the fraction of transmitted molecules decreases with increasing dwelltime
x=v in the foil, but after an initial fast decay, all three curves get flatter.

Dwell times up to 10�14 s are equivalent with foil thicknesses of micron size.
Hence, experiments of this type trace a very different regime of molecular-ion bom-
bardment from what we have seen in Fig. 10.19. In particular, multiple scattering
must play an important role.

A qualitative interpretation (Gaillard et al., 1976, Cue et al., 1980) is indicated in
Fig. 10.22. Initially, fragments move apart under Coulomb explosion. Therefore, the
probability for two fragments to exit from a thin foil at the same spot is very small.
With increasing foil thickness, multiple scattering will give rise to a small region of
overlap. This causes a flatter survival curve.

This process has been simulated by several groups (Cue et al., 1980, Zajfman,
1990, Jakas and Capuj, 1995) by Monte Carlo codes allowing for Coulomb explo-
sion and multiple scattering as well as wake forces.
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Fig. 10.21 Measured trans-
mission yield of HC

2

molecules for bombardment
with HC

2 molecules in carbon
foils. From Cue et al. (1980)

Fig. 10.22 Schematic view of recombination of a dicluster: Dashed lines: Trajectories undergo-
ing Coulomb explosion only. Solid lines indicate the half-widths of an added multiple-scattering
profile. The shaded area indicates the regime where recombination becomes likely

An essential part of such simulations is the recombination probability which
hinges on the probability for the cluster to carry an electron at emergence. We know
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Fig. 10.23 Calculated effec-
tive charge Zg.R/ for charge
transfer for HC

2 . From Mc-
Carroll et al. (1970)

from Sect. 10.5 that the equilibrium charge may differ from that of an atomic projec-
tile. This is accounted for by Cue et al. (1980) by an effective-charge factor Zg.R/
in accordance with Nikolaev (1966). A calculated expression for HC

2 (McCarroll
et al., 1970) for the 1s� state is shown in Fig. 10.23 which indicates a substantial
proximity effect for R � 3a0.

For the configuration to be stable, the total energyEr C U.R/ must be negative,
where Er is the relative kinetic energy and U.R/ the binding energy in the given
state. If the total energy is positive, a neutral hydrogen atom will emerge. Thus, Cue
et al. (1980) asserted that H0 and HC

2 emission are related processes.
Simulated results (Gaillard et al., 1976, Cue et al., 1980, Zajfman, 1990, Jakas

and Capuj, 1995) show reasonable agreement with experiment. An example is
shown in Fig. 10.24.

10.6.3 Coulomb Explosion and Energy Loss

Consider a dicluster with atomic charges .q1; q2/ moving with velocity v. If you
neglect all interactions except Coulomb explosion, the velocity component of atom
1 in the beam direction will be given by
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Fig. 10.24 Comparison of
simulated and measured
transmission fraction of HC

2

molecules. Open symbols:
Measurements (Cue et al.,
1980); solid symbols: Simu-
lated (Gaillard et al., 1976);
solid line: Simulated (Cue
et al., 1980); dashed line:
Simulated (Zajfman, 1990).
From Zajfman (1990)

v.t/ D v C M2

M
w.t/ cos  (10.129)

as a function of time, where M D M1 CM2 and  the angle between the axis and
v. Averaging the kinetic energy E.t/ D .M1=2/v.t/

2 over all orientations you can
determine a mean energy change

h�E.t/i D

8̂<
:̂

1
3E

�
q1q2

r0

�2 �
x
r0

�2
t small

for
1
3
M2

M
q1q2

r0
t large

; (10.130)

where E is the initial energy and x D vt the travelled pathlength.
Note that h�Ei is a positive quantity. This must be so, since Coulomb explosion

converts potential energy into kinetic energy of the fragments. On a relative scale
this contribution decreases with increasing pathlength.

The situation is different for the straggling, where you find

D
.�E.t/ � h�E.t/i/2

E
D
8<
:
4
3
.q1q2=r0/

2 .x=r0/
2 t small

for
4Eh�Ei t large,

(10.131)

where h�Ei is given by (10.130).
This phenomenon has been studied experimentally by Fadanelli et al. (2005,

2006), who found a � 20% increase in�2 for 500 keV/u HC
2 as compared to HC. By
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Fig. 10.25 Fraction of
aligned proton pairs trans-
mitted through carbon foils
of various thicknesses for
incident HC

2 ions with energy
0.5 MeV/u. Alignment is de-
fined by a detector with an
opening angle of 0.04ı. Solid
dots are experimental data of
Susuki et al. (2000). From
Denton et al. (2007)

μ

analyzing the angular dependence it was possible to separate the effect of Coulomb
explosion from the proximity effect in energy loss. The authors conclude that the
two effects contribute almost equally to �2.

10.6.4 Wake Effects

The term wake potential is considered synonymous with induced potential in this
monograph. This implies that no wake exists as long as a particle travels through
vacuum. Be aware that this notation is not universal in the literature.

If you are unfamiliar with wake theory, it might be an advantage to have a look
at Appendix 10.9 before going on with the present section.

Graphs like Fig. 10.29 suggest to classify wake phenomena into two groups,

� Dynamic screening of the near-field of moving ions,
� Long-range effects due to the oscillating tail.

The first effect has great practical importance and is almost ubiquitous in experi-
ments with molecule and cluster beams. Its dominating feature is the reduction of
proximity effects which would be more pronounced in penetration through vacuum.
A characteristic example is the proximity effect in the energy loss which, according
to Fig. 10.13, is most pronounced for penetration through a dilute stopping medium
but decreases monotonically as the wake force increases with increasing electron
density. Many computer simulation codes for molecules and clusters incorporate an
estimate of the wake force. Therefore, dynamic screening is incorporated.

Identifying long-range effects of wake forces has been a challenge, and several
routes have been followed.
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Fig. 10.26 Two-foil experiment with 14MeV/u HC

2 ions. First foil: 4-8 μg/cm2 C; second foil:
20 μg/cm2 Al. Upper graph: Proton energy spectrum at 0ı. Lower graph: Intensity ratio between
trailing and leading peak versus free space between foils. From Kumbartzki et al. (1982)

10.6.4.1 Alignment

Figure 10.28 shows a deep trough in the potential surface behind a moving ion,
enabling the trailing ion in a dicluster to fall into it. This is equivalent with a torque
trying to align the cluster in the beam direction. Such an effect was suggested by
Eckardt et al. (1978) on the basis of measured energy losses.

The effect has been confirmed experimentally by Susuki et al. (2000) with 0.2–
0.5 MeV/u HC

2 ions. Aligned proton pairs were identified as pairs that entered a
detector with an opening angle of 0.04ı. Figure 10.25 shows experimental results
compared with computer simulations by Denton et al. (2007). You may note that in
comparison with the transmission yield in Fig. 10.21 the fraction of aligned pairs is
fairly large and it falls off rather slowly.

Amongst the simulated curves, the one label MS represents uncorrelated multi-
ple scattering as a reference standard. The curve including CE lies lower, because
Coulomb explosion acts against alignment. The curve including W demonstrates a
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slightly increased alignment due to the wake force, which appears to be unaffected
by energy loss and straggling. Correlated multiple scattering was not allowed for in
the code.

10.6.4.2 Ring Pattern

Kagan et al. (1978) presented a thorough analytical approach to the effect of the
wake force on ring patterns, which was reformulated in terms of kinetic equations
by Gorbunov et al. (1996). Kagan et al. (1978) note that unlike the uncorrelated
stopping force or the Coulomb force between the fragments of a dicluster, the wake
force—which does not obey Newton’s third law—exerts a torque on the cluster.
This gives rise to a rotation and thus is a contributing factor in the formation of
ring patterns like those shown in Fig. 10.19. In particular, this suggests that the
asymmetry between the forward and backward peak in the ring pattern is caused by
the wake potential.

The theory of Kagan et al. (1978) considers a dicluster of bare ions, the stopping
force is assumed to be proportional to the square of the atomic number, and the
equations of motion are solved in the small-t limit introduced in (10.130). Moreover,
with a view to the experiments on HHe mentioned above, it was found necessary to
take into account the fact that the centre-of-mass experiences a net deflection due
to a nonvanishing lateral component of the total wake force. Therefore, the theory
operates with three frames of reference, the laboratory frame, the c.m.s. frame, and
a frame in uniform motion with the initial velocity.

As it stands, the theory is deterministic and does not account for either multiple
scattering or energy-loss straggling. The basic idea has been reformulated in terms
of the classical Liouville equation by Gorbunov et al. (1996). Such a formulation
would allow to incorporate both multiple scattering and energy straggling, but also
this approach has remained unfinished. Therefore, comparisons with experiment
have not been possible.

10.6.4.3 Two Foils

The wavelength of the wake,
� D 2�v=! ; (10.132)

is typically much larger than the internuclear distance r0 of an impinging molecule.
One possibility to trace the influence of the wake force in the oscillatory part is to
increase the initial distance r0 between the constituent atoms of a dicluster. This can
be done in a double-foil experiment, where the first foil serves to initiate a Coulomb
explosion which can proceed in the vacuum between the two foils. The internuclear
distance r0 that determines the trajectories in the second foil can then be regulated
by varying the free space between the two foils.
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The trailing ion in a well-aligned dicluster experiences a wake force which may
be positive or negative, dependent on the distance from the leading ion. Therefore,
the energy loss of the trailing ion will be greater or smaller than that of the lead-
ing ion, respectively. The lateral component of the wake force—which determines
alignment—will likewise depend on the free space between the foils. Thus, the in-
tensity of the second peak will oscillate, while that of the leading peak will be inde-
pendent of the spacing between the foils. Figure 10.26 shows that at 14 MeV/u the
effect is rather weak (upper graph), but with the experimental accuracy achieved in
an experiment by Kumbartzki et al. (1982), oscillations become clearly visible.

Gorbunov et al. (1996) addressed this phenomenon on the basis of a Liouville
equation describing the motion of a dicluster in configuration and velocity space
Kagan et al. (1978), allowing for wake force and Coulomb explosion. Because of
the neglect of multiple scattering in the theory a comparison with experiment is not
promising and was indeed not reported.

10.7 Applications

The survey of applications of ion beams given in Volume 1 of this monograph fo-
cused on atomic ions. This is to briefly mention a few applications of molecular and
cluster beams.

10.7.1 Energy Deposition

Obviously, bombardment with a molecular or cluster beam results in an enhance-
ment of the energy deposited per volume in comparison with an otherwise identical
atomic beam at the same speed. As a first approximation this enhancement may
be taken to be proportional to the number of atoms in the target. Even greater en-
hancements may be due to proximity effects in stopping, while effects like Coulomb
scattering and clearing-the-way effect act in the opposite direction.

While comparing cluster bombardment as a function of the number n of atoms
in the cluster at constant v is the obvious choice from a physics point of view,
this is normally not the situation met by an experimentalist, who has access to one
or perhaps two accelerators with limited ranges of acceleration voltage. Here the
obvious comparison will be at constant beam energy E , since the initial charge
cannot differ substantially from one unit for stable clusters. This implies that for
large clusters you will compare different stopping regimes.

Enhanced electronic energy deposition is of interest in inertial-confinement fu-
sion, i.e., the generation of high-temperature plasmas by particle bombardment
(Tahir et al., 1994). The choice of the atomic species Z1 and cluster size involves
an optimization between different trends:
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� In order to achieve a desired initial velocity v, increasing cluster size implies
increasing acceleration voltage,

� Above a certain threshold speed, the proximity effect in stopping increases with
increasing v,

� The stopping cross section of an isolated ion decreases above the stopping max-
imum,

� Coulomb explosion causes decreased energy deposition density with depth.

Since hydrogen is the stopping medium in such experiments, multiple scattering is
of minor significance.

Conversely, enhanced nuclear energy deposition is of interest in secondary ion
mass spectrometry (SIMS). This makes use of enhanced sputter yields for molecule
(Andersen and Bay, 1974) or cluster bombardment (Bouneau et al., 2002) as well
as enhanced ion fractions (Szymczak and Wittmaack, 1994). Applications initially
addressed biomolecular mass spectrometry (Mahoney et al., 1991), but from 2003
on the technique has been used more generally in mass spectrometry (Toyoda et al.,
2003) as well as in other areas such as etching and smoothing (Matsuo et al., 1996).

Bombardment with cluster ions is thought to optimize the density of energy de-
position, and hence the ion yield, at a given incident charge. This is important for
insulators, where charging up of the target needs to be minimized.

10.7.2 Coulomb Imaging

You may note from (10.2) that the initial internuclear distance r0 enters critically
into the final speed achieved by the fragments of a diatomic cluster, and hence the
angular and energy distribution observed in the detecting system. Therefore, mea-
sured Coulomb explosion patterns can be utilized to extract information on r0. If the
penetrated foil is just thin enough to ensure near-complete ionization of the imping-
ing ion, disturbing effects like multiple scattering, stopping and straggling as well
as wake effects can be ignored. The resulting emission pattern will then reflect the
initial structure, expanded by Coulomb explosion, and observed fluctuations reflect
the vibrational structure of the molecule in its initial state.

Similar considerations apply to more complex molecules, except that the possi-
bility of a simple analytical formulation of the relation between the initial configura-
tion and the final observation, as indicated in Sect. 10.2 drops rapidly to zero when
there are more than two atoms in the cluster. Therefore, the analysis of such ex-
periments is based on molecular-dynamics simulation applied to various presumed
structures and final selection by trial and error.

The first application was a determination of the structure of HC
3 by Gaillard

et al. (1978). On the basis of an equilateral triangular structure as a working hypoth-
esis it was easy to generalize (10.1) to a triatomic molecule (cf. Problem 10.15).
Measurements were reported from three laboratories with different apparatus, and it
was concluded that the results were compatible with the assumption of a triangular
structure.
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The experimental technique was developed by means of wire planes, thus en-
abling coincident detection of both position and velocities (Faibis et al., 1986) ap-
plied to a number of small molecules. Information can be gained on both geometri-
cal and vibrational structures (Vager et al., 1989).

10.8 Discussion and Outlook

As you may have noticed, the field of molecule and cluster penetration offers
challenges on both the experimental and the theoretical side. Initial motivations
came from experiments, in particular molecule transmission, cluster sputtering and
enhanced electronic stopping. Theory provided feedback on all these topics and
added predictions on wake phenomena. Fascinating experiments were designed that
demonstrated ring patterns and reduced charge states. Experiments with polyatomic
molecules enabled determination of the structures of molecular ions. Theory and
simulation are in reasonable agreement with experiment, with the exception of
wake-bound electronic states which have been predicted a long time ago but never
unambiguously identified.

On the applied side, it seems that Coulomb imaging—despite considerable
success—has not become a standard technique, simply because of its cost. Con-
versely, the use of large clusters has become accepted as a tool to deposit large
energy densities, not the least in surface analysis and fusion research.

10.9 Appendix: Polarization Wake

We have met the polarization wake repeatedly in this and previous chapters. The
present appendix presents a few pertinent results in some detail. Although recog-
nized early on as an important aspect of particle penetration (Bohr, 1948b, Neufeld
and Ritchie, 1955), massive interest in wake forces arose in connection with the
study of molecule and cluster penetration. Although the role of polarization wakes
in that topic may occasionally have been overemphasized, there is no question that
its significance deserves to be estimated.

10.9.1 Point Charge

In this section we shall have a look at wake potentials of a moving point charge
Z1e, evaluated within linear response theory on the basis of (10.89) and (10.90)
for a few representative dielectric functions. Results from this section have already
been mentioned in Sect. 1.5.1. With
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�ext.k; !/ D Z1e

.2�/3
ı.! � k � v/ (10.133)

you find
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Following Neufeld and Ritchie (1955) we introduce cylindric coordinates r D
.x;�/. After integration over the azimuth you find
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1
A ei�.x�vt/; (10.135)

where J0.z/ is a Bessel function in standard notation (Abramowitz and Stegun,
1964).

10.9.1.1 Drude-Lorentz Oscillator

If you are interested in the potential at large distances, you may approximate the di-
electric function by its long-wavelength limit k D 0. For a classical Drude-Lorentz
oscillator with a frequency !0,

".0; !/ D 1C !2P
!20 � !2 � i!	 (10.136)

according to Jackson (1975) or (5.54) in Volume 1, and hence

1

".0; !/
� 1 D !2P

!2 C i!	 � !02 (10.137)

with
!02 D !20 C !2P ; (10.138)

you find

ˆind.r; t/ D Z1e!
2
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Z 1
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k dk J0.k�/
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Z 1
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d�

ei�.x�vt/

.�2 C k2/.�2 C i	�=v � !02=v2/
: (10.139)
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Fig. 10.27 Poles of the inte-
grand in (10.139)

ik

−ik

ω′/v − iγ/v−ω′/v − iγ/v

The integral over d� is similar to one that has been evaluated in Sect. A.2.5,
Vol. 1. The location of the poles of the denominator is indicated in Fig. 10.27. For
x � vt > 0 the integrand approaches zero on a large semicircle in the upper half-
plane. For x � vt < 0 it approaches zero on a large semicircle in the lower half-
plane. Deforming the integration path into such a semicircle leaves the residues at
the respective poles.

For x � vt > 0 the pertinent pole is at � D ik. You then obtain

ˆind.r ; t/ D �Z1e!
2
P

v2

Z 1

0

dk

k2 C !02=v2
J0.k�/ e�k.x�vt/ : (10.140)

For x � vt < 0 the three poles in the lower half-plane of Fig. 10.27 deliver nonvan-
ishing residues. Here you find
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Thus, the induced potential consists of two parts,

ˆind.r ; t/ D ˆ
.1/
ind .r ; t/Cˆ

.2/
ind .r; t/ ; (10.142)
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2
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J0.k�/ e�kjx�vt j (10.143)

for all x � vt , and
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for x � vt < 0, where K0.z/ is a modified Bessel function in standard notation
(Abramowitz and Stegun, 1964).

All these results are due to Neufeld and Ritchie (1955), who considered the case
of !0 D 0, i.e., !0 D !P .

You may note that ˆ.2/ind .r ; t/ factorizes into an oscillatory function of x with
the wavelength v=2�!0 and a monotonically decreasing function of � with a decay
length v=!0. You may recognize the Bohr adiabatic radius. The calculation reported
here refers to the long-wavelength limit, i.e., (10.144) may become invalid as � gets
small. On the other hand there appears to be an undamped oscillatory dependence
on x � vt which has received much interest in the past.

Consider now the function ˆ.1/ind .r; t/ in a reference frame moving with the pro-
jectile. With the substitution k D �!0=v, you obtain

ˆ
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where x0 D x � vt . The integrand is =1 at � D 0 and falls off over a decay length
� v=!0r 0, where r 0 D

p
x02 C �2. Thus, a rough estimate leads to

ˆ
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2
P

!02r 0 : (10.146)

For a free electron gas, where!0 D !P , this is the negative of the Coulomb potential
of the bare ion. Thus, ˆ.1/ind .r ; t/ represents screening of the projectile potential to
within the adiabatic radius.

10.9.1.2 Quantum Oscillator

The spherical harmonic oscillator has served as a useful model for stopping calcula-
tions in Volume 1. Unlike in the case of the classical oscillator a restriction to long
wavelengths is not required. Within the Born approximation, the main part of the
theory can be carried out analytically.

The longitudinal nonrelativistic dielectric function (Belkacem and Sigmund,
1990) is given in (5.90),

"l.k; !/ D 1C m!2P
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j Š
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C 1

j!0 C ! C i�

�
; (10.147)

where !k D �k2=2m.
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Fig. 10.28 Induced potential for a medium of quantum oscillators for B D 2mv2=�!0 D 10
and !2

P =!
2
0 D 10; 1 and 0.1 (top to bottom). From Schinner and Sigmund (2012)

Wake potentials may be calculated by insertion of (10.147) into (10.134) and
evaluated numerically. Figure 10.28 shows induced potentials forB D 2mv2=�!0 D
10 for three densities, expressed by !2P =!

2
0 D 0:1; 1 and 10. Qualitative features

in
d

in
d

in
d
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Fig. 10.29 Induced potential (red dotted lines), Coulomb potential (blue dashed lines) and total
potential (solid black lines) at � D 0 for B D 2mv2=�!p D 10. Results for an ensemble of
oscillators for !2

p=!
2
0 D 10, 2, 0.5 and 0.1. From Schinner and Sigmund (2012)

found already for the Drude-Lorentz oscillator go again, such as the strong forward-
backward asymmetry, a periodic behaviour in the longitudinal direction behind the
projectile and an exponential decrease in the lateral direction. The amplitude of the
oscillations increases with increasing density, while the wavelength decreases.

Figure 10.29 shows induced potentials together with the Coulomb potential and
the total wake potential in the core (� D 0) at B D 2mv2=�!0 D 10 for four
electron densities expressed by the parameter !2P =!

2
0 . Two main effects are seen:

� As in the static case, the polarization causes screening of the Coulomb potential
near the projectile,

� A pronounced oscillatory potential develops further behind the projectile with a
wavelength of the order of the adiabatic radius v=!P , i.e., the effective interac-
tion radius in the lateral direction.

Both effects are most pronounced for !2P =!
2
0 	 1, i.e., for high electron densities.

Note in particular that the potential may significantly exceed the static Coulomb
interaction. At low densities the Coulomb interaction appears to be only lightly
disturbed by a weak oscillation with wavelengths of the order of v=!0.
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10.9.1.3 Fermi Gas

Models of the free electron gas have served as the main tool in the study of wake
fields and their applications, starting with Neufeld and Ritchie (1955) and, later,
Neelavathi et al. (1974), Vager and Gemmell (1976). Explicit calculations for a
Fermi gas became available from Echenique et al. (1979) on the basis of the
plasmon-pole approximation discussed in Sect. 5.4.5, Vol. 1.

Figure 10.30 shows results based on Lindhard’s dielectric function, discussed in
Sect. 5.7.3, Vol. 1 and specified in (5.154)–(5.157). Input parameters are similar to
those in Fig. 10.28. The Fermi gas is characterized by only one parameter. Hence,
these potentials are very similar except for the scale.

10.9.1.4 Implications

Wake phenomena are of interest in many connections, especially in the relativistic
regime but also the interaction of charged particles moving close and nearly parallel
to a plane surface (Winter, 2002). In the present context only their influence on the
penetration of molecules is considered.

It follows from Figs. 10.29 and 1.14 that the force on the projectile ions depends
on the orientation of the cluster. This must affect Coulomb explosion and multiple
scattering, although the effect is small for internuclear distances well below the
adiabatic radius.

There is an interesting relation between wake forces and energy loss. We have
seen in Chap. 5, Vol. 1, that the stopping force on a point charge is related to the work
performed against the induced field. Let us generalize this relation and consider the
work performed by a projectile characterized by some charge distribution

�.r ; t/ D �0.r � vt/ : (10.148)

The net force on the projectile is given by

F D
Z

d3r �.r; t/E ind.r ; t/ : (10.149)

For a dicluster we may approximate

�0.r/ D �1.jr � R1j/C �2.jr � R2j/ ; (10.150)

assuming straight superposition of two atomic charge densities. Then we have

F D F 11 C F 22 C F 12 C F 21 ; (10.151)

where

F �� D
Z

d3r ��.r ; t/E ind; ˚ .r ; t/ (10.152)
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Fig. 10.30 Induced potential for Fermi gas at 2mv2=�!p D 10 and rs D 1; 2; 4 (top to bot-
tom). From Schinner and Sigmund (2012)

or, in Fourier space,

F �� D �32�4i
Z

k d3k
k2".k;k � v/

��.k/��.k/ eik�.R��R� / : (10.153)
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0 D 10, 1 and 0.1

In (10.151), the first two terms represent stopping forces on isolated atomic ions 1
and 2, while the last two terms reflect the interference effect.

While the treatment presented in Sect. 10.4 produces the total energy loss of the
molecule, (10.151) identifies the change in stopping force of atom 1 due to the
presence of atom 2 and vice versa. This allows an estimate of the effect of the
polarization wake on Coulomb explosion.

10.9.2 Screened Ions

The influence of the ion charge on the wake potential has been studied by Schin-
ner and Sigmund (2012). The potential of the screened projectile charge has been
expressed by (4.16) with exponential screening and the screening radius

a D .1 � q1=Z1/ aTF D .1 � q1=Z1/ 0:8853a0=Z1=31 : (10.154)

Screening enters the integrand in (10.134) via the replacement

Z1

k2
! q1

k2
C Z1 � q1
k2 C 1=a2

: (10.155)
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This results in an additional factor

f .k; a; ˇ/ D k2a2 C q1=Z1

k2a2 C 1
: (10.156)

in the integrand.
The two upper graphs in Fig. 10.31 show induced potentials, Coulomb potential

and total potential for HeCC, HeC and He0 in a Fermi gas (left) and an oscillator
gas (right) both with !2p=!

2
0 D 10, i.e., high electron density. These graphs are

very similar, and they show that the magnitude of the induced field decreases with
decreasing charge. This implies that

� The screening of the Coulomb potential near the projectile by the polarization
charge is reduced as the ion charge gets smaller, and

� The oscillatory potential far behind the projectile gets suppressed.

These features are still visible for !2p=!
2
0 D 1 (lower graph left), whereas effects

due to the induced field are barely visible at low density,!2p=!
2
0 D 0:1 (lower graph

right).

Problems

10.1. Derive (10.2) and (10.4) from (10.1).

10.2. Determine the relative change .r.x=v/�r0/=r0 in internuclear distance during
passage through a foil with thickness x in the experiment described by Golovchenko
and Lægsgaard (1974).

10.3. Determine the scattering angle 0, where the two peaks in the energy spectrum
shown in Fig. 10.3 merge into one. Hint: When the molecule is oriented perpendic-
ular to the beam, each H atom receives a certain momentum perpendicular to the
beam.

10.4. Derive (10.56), following the procedure outlined in Sects. 4.3.2 and 4.3.4 of
Volume 1.

10.5. Follow the procedure in Sect. 10.4.2 to derive (10.57).

10.6. Consider (10.56) for an arbitrary angle � between r and v. If you aim at the
stopping cross section, you will have to sum over all j at some stage. Assume you
have carried out the summation over all degenerate states. This implies that the fac-
tor

ˇ̌
Fj0.q/

ˇ̌2
becomes independent of the direction of q. Under this assumption,

carry out the integration over the angular variables of q, and show that this is equiv-
alent with the replacement
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ı


!j0 � q � v

�
cos.q � r/

) J0

�
r sin �

q
q2 � !2j0=v

2
�

cos
�r!j0

v
cos�

�
(10.157)

in (10.56). [Hint: Use cylindric coordinates with v as the axis].
A derivation of this result, based on dielectric theory, was presented by Brandt

et al. (1974).

10.7. Derive (10.62) from (10.60) for random orientation, i.e., u.r/ D sin.qr/=.qr/.
Remind that Q D �

2q2=2m. Express the result in terms of the integral cosine
function

C i.�/ D �
Z 1

�

dt
cos t

t
: (10.158)

Apply appropriate expansions for small and large arguments and arrive at (10.66) to
the leading order.

10.8. Develop an expression for the stopping cross section of a diatomic molecule
by generalizing Bohr’s calculation, following Sects. 4.2.1 and 4.2.2 in Volume 1. If
you need help, consult Basbas and Ritchie (1982) Sect. IBID or Jensen and Sigmund
(2000) Sect. ILIA.

10.9. Show that (10.79) reduces to a part of (10.62) for Coulomb interaction, where
V.q/ D �Zj e2=2�2q2.

10.10. Derive (10.94).

10.11. Evaluate (10.96) for a beam of swift clusters of two protons oriented at ran-
dom, penetrating through a free electron gas, approximated as a static gas using the
dielectric function defined in (5.60) of Volume 1,

".k; !/ D 1C !2P
!2
k

� .! C i�/2
: (10.159)

If you need help, check Arista (1978).

10.12. Repeat Problem 10.11 for a Drude-Lorentz dielectric function

".!/ D 1C !2P
!20 � .! C i	/2

: (10.160)

Important: Evaluate only the interference term / Z1Z2.
Hint: First carry out the integral over k and subsequently use Cauchy’s theorem to
evaluate the integral over !.

10.13. Show that for a homonuclear dicluster with atomic number Z1, the relative
multiple scattering is found from the atomic multiple scattering distribution by re-
placing Z1 ! p

2Z1.
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10.14. Derive (10.130) and (10.131).

10.15. Assume a regular ring of n atomic ions with chargesZ1e and massesM1 at a
radius r.0/. Determine the ring radius r.t/ as a function of time as well as the final
velocity v.1/. What is the minimum area of the detector placed 1 m behind the
target, if you want to detect all emerging particles? Take, as an example, Z1 D 6,
n D 6 and E D 1 MeV/u.
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Chapter 11

Channeling and Blocking of Energetic Particles
in Crystals

Jens Ulrik Andersen1

Department of Physics and Astronomy, University of Aarhus
8000 Aarhus C, Denmark

Abstract

The development of channeling and blocking since the foundation of the field
was laid by Jens Lindhard in his classical paper in 1965 is discussed2, and the ques-
tion is asked whether this theory has passed the test of time. Have important aspects
of the theory been challenged? Where has the theory needed modification or exten-
sion? Are there still open questions to be solved?

A basic theoretical issue is the applicability of classical mechanics in the descrip-
tion. Lindhard showed that for particles heavy compared with the electron classical
orbital pictures may always be applied. However, for electrons and positrons there
are strong quantal features, like Bragg interference. The quantal description intro-
duced by Lindhard and co-workers has been used as the basis for a comprehensive
treatment of the channeling of MeV electrons and positrons and of channeling radi-
ation. At very high energies, GeV and TeV, the motion becomes classical, due to the
relativistic increase of the field seen by the particles in the reference frame following

1 Updated and slightly edited from J. U. Andersen’s contribution to Ion Beam Science. Solved and
Unsolved Problems. Part II P. Sigmund, editor. Published in Mat. Fys. Medd. Dan. Vid. Selsk.
52:2, 655-698 (2006)

2 If this is your first encounter with the field of channeling, it will be an advantage for you to have
easy access to Lindhard’s paper (Lindhard, 1965)

P. Sigmund, Particle Penetration and Radiation Effects Volume 2,
Springer Series in Solid-State Sciences 179, DOI: 10.1007/978-3-319-05564-0_11,
� Springer International Publishing Switzerland 2014
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,
., http://www.sdu.dk/Bibliotek/matfys  Reprinted with kind permission of the

Royal Danish Academy of Sciences and Letters.
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their longitudinal motion. Channeling radiation in this regime is still an active field
of research.

For channeling and blocking of ions, the concept of statistical equilibrium plays
a central part in Lindhard’s theory. The application of this concept has met with
two important challenges, the first based on computer simulations and the second
on experiments with the transmission of heavy ions through thin crystals. In both
cases the challenges have been met and new insight has been gained but there are
still problems to be solved. Channeling and blocking of ions have found very many
interesting applications, and a few problems and opportunities worth pursuing are
suggested.

11.1 Introduction

Channeling was discovered a few years before I in 1964 began my graduate studies
at the University of Aarhus, and I was lucky to be supervised by one of the pio-
neers in the field, John Davies, who brought the field to Aarhus. The local interest
was stimulated by many lively ‘Saturday meetings’ where new experimental devel-
opments were analysed and discussed. Most important was the strong involvement
of Jens Lindhard, who with an impressive intellectual effort provided a theoretical
foundation of the field in his famous paper from 1965 (Lindhard, 1965). Before
publication he presented the theory in a series of lectures, and I still remember these
as a thrilling experience. There had been earlier theoretical work on channeling, in-
cluding both computer simulations and analytical theory, but Lindhard’s theory far
surpassed this earlier work in depth of analysis, in generality of concepts, and in
breadth of coverage of the phenomena. Lindhard presented his theory at the first
of a series of International Conferences on Atomic Collisions in Solids (ICACS),
and later developments in channeling were usually reported at these meetings. Fig-
ure. 11.1 shows Lindhard at ICACS in Hamilton, 1979, in a characteristic pose,
using his pipe to make a point.

This is a brief review of the development of channeling during the following
about forty years, based very much on my personal experience. I shall emphasize
developments which I have found of particular interest and mainly refer to work
in which I have been involved and therefore know best. I shall try to give credit
where needed to pioneering efforts by other groups but many more would have
deserved to be mentioned. A main theme will be the further development of the
theory of channeling on the basis of Lindhard’s original paper. Have some of the
basic concepts been challenged? Where has the theory been extended and where are
new developments needed?

After an introduction of the basic features of channeling, the continuum potential
and the continuum model, the question of quantum versus classical mechanics is
considered. The quantum world of electron channeling and channeling radiation
was for many years at the centre of my interest. This is an aspect of channeling that
was hardly touched upon in Lindhard’s paper from 1965. He later published a paper
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Fig. 11.1 Jens Lindhard gesturing with his pipe; with Larry Howe and the author. ICACS, Hamil-
ton, Canada, 1979

on the quantum theory of channeling (Lervig et al., 1967), and I shall briefly discuss
how this paper has provided a basis for a comprehensive, quantitative description of
channeling radiation from MeV electrons and positrons. The physics at very high
energies (GeV or TeV) is an active area of its own.

For ion channeling the focus will be on a key concept in Lindhard’s theory. As
a student I was especially impressed by the powerful applications of the concept of
statistical equilibrium. Lindhard admired Gibbs’ work on statistical mechanics and
liked to quote Niels Bohr saying something like “this is how theory should be, at
first very general and mathematical but then with great predictive power”. Two at-
tacks on application of the hypothesis of statistical equilibrium in channeling will be
discussed, the first based on computer simulations and the second on experiments.
Because so fundamental concepts were challenged, the resolution of the problems
has given important new insights.

The field of channeling covers an enormous area of experience, and in this brief
review it has been necessary to be selective. I have listed a few references to re-
views covering in much more detail various aspects of channeling (Gemmell, 1974,
Gibson, 1975, Feldman et al., 1982, Davies, 1983, Andersen et al., 1983b, Sørensen
and Uggerhøj, 1987, Hofsäss, 1996, Krause and Datz, 1996, Cohen and Dauvergne,
2004, Uggerhøj, 2005). They may also be consulted for a more complete bibliogra-
phy.
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Fig. 11.2 From “Channeling in Crystals” by W. Brandt, Sci. Am. 218, 90 (1968)

11.2 Collision with String of Atoms

When Lindhard first saw the picture in Fig. 11.2 of an artist’s perception of the
passage of an ion through the open channels in a crystal lattice, his comment was:
“this is not channeling!”

It is important to distinguish channeling from transparency. For channeling along
a crystal axis, the motion is governed by correlated collisions with atoms aligned as
pearls on a string, as illustrated in Fig. 11.3. If many atoms contribute, the discrete
deflections may be replaced by the force corresponding to the continuum string
potential obtained by integration of the atomic interaction potential,

U.r/ D 1

d

Z
dz Vat.r ; z/ (11.1)

Here z is the coordinate parallel to the string of atoms and r D .x; y/ is the trans-
verse coordinate vector. At large distances r , contributions from atoms on several
strings must be included in the continuum potential.
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Fig. 11.3 Deflection of ion by
string of atoms dZ2, M2

Z1, M1, v

 

11.2.1 Continuum Model

In this continuum model there is a separation between the motion along the axis and
the transverse motion, which is governed by a transverse Hamiltonian,

H.P?; r/ D P 2?
2M1

C U.r/ (11.2)

with conservation of transverse energy E?. (For relativistic particles, M1 ! 	M1;
(Lervig et al., 1967)).

The string potential is repulsive and channeled ions are kept away from the
atomic strings. The allowed area .U.r/ < E?/ within one unit cell in the transverse
lattice of strings is denoted A.E?/, and the total area per string is A0 D .Nd/�1
where N is the number density of the crystal. As illustrated in Fig. 11.4, the motion
is only for very low transverse energy confined to a single unit cell in the transverse
lattice. In a classical statistical equilibrium at fixed E?, with constant density on
an energy shell in transverse phase space, the spatial density is in two dimensions
constant in the allowed area.

When the particle motion is restricted, the particle is said to be channeled. Chan-
neled particles do not have hard collisions with atoms and move through a gas of
loosely bound atomic electrons. For particle incidence parallel to an axis there is
therefore a very strong reduction in the yield of processes requiring a hard collision
with an atom, like nuclear reactions or backscattering. Also energy loss and capture
and loss of electrons are strongly modified.

11.2.2 Screened Potential

The Coulomb force between projectile and target nuclei is screened by electrons. A
great simplification is obtained with Thomas-Fermi scaling:

U.r/ D Z1Z2e
2

d
g.r=a/ : (11.3)

The distance is scaled with the Thomas-Fermi screening radius a, which for Z1 �
Z2 is given in terms of the Bohr radius a0 D 0:53Å by
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Fig. 11.4 Axial continuum
potential

a D 0:8853a0Z
�1=3
2 : (11.4)

A convenient approximation for analytical estimates is Lindhard’s standard potential
(Lindhard, 1965),

U.r/ D Z1Z2e
2

d
ln

 
.Ca/2

r2
C 1

!
; (11.5)

with C Š p
3. For distances r of order a, the potential is proportional to 1=r ,

changing to 1=r2 at larger distances. Another commonly used and more accurate
analytical approximation is the Molière potential. If the projectile charge is small
and the screening is due only to the target electrons, a very accurate potential can
be obtained from analytical approximations to the screened potential obtained from
Hartree-Fock calculations of electron densities (for example the Doyle-Turner po-
tential (Doyle and Turner, 1968) used often in calculations of electron diffraction
and electron channeling (Andersen et al., 1983b).

The question of the screening of the ion-atom potential is complex. It depends
both on the atomic numbers of projectile and target and on the velocity of the projec-
tile. According to the simple Bohr criterion, electrons bound to the ion with orbital
velocities smaller than the ion velocity are stripped off. A characteristic velocity,
separating between low velocities with nearly neutral projectiles and high velocities
with only few electrons remaining on the ion, is therefore the Thomas-Fermi-scaled
Bohr velocity,Z2=31 v0.

The simplest case is for particles with Z1 � Z2 in the limit of high velocities,
where the screening radius, a, is determined by target electrons, alone. If a few inner
electrons with hri � a remain on the projectile, giving it a net number of charges,
Q, we may write the continuum potential U .Q/ in terms of the potential U .1/ for a
proton as
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U .Q/.r/ Š QU .1/.r/ : (11.6)

The number of charges, Q, can change by capture and loss but for well-channeled
ions the cross sections are small and we may speak of ‘frozen charge states’ for not
too thick crystals (see Fig. 11.28 below).

In the opposite limit of high Z1 and low velocities the ion carries many elec-
trons, is nearly neutral, and the screening is due to electrons on both target and
projectile atoms. The screening is described fairly well by introduction of an effec-

tive atomic number,Z�1=3 D
�
Z
2=3
1 CZ

2=3
2

��1=2
, in the formula for the Thomas-

Fermi screening radius, (11.4) (Lindhard, 1965).
In the intermediate range, heavy ions at high velocity but carrying many elec-

trons, the situation is not clear and further studies would be desirable. As discussed
below, there is empirical evidence from blocking of fission fragments that in a high-
Z material there is only a small contribution from projectile electrons to the screen-
ing. On the other hand, observations of ‘cooling’ and ‘heating’ of heavy ion beams
transmitted through thin crystals give clear evidence of an influence of the ion charge
state on the interaction potential.

11.2.3 Lindhard’s Critical Angle

Channeling requires incidence nearly parallel to a crystal axis. A limit to the inci-
dence angle  is obtained from the expression for the string potential. The trans-
verse momentum of a particle with angle  is P? D p sin Š p , and hence the
kinetic energy in the transverse motion is E 2. The barrier for penetration into a
string is of order 2Z1Z2e2=d , (11.5), and hence the critical angle is of order of the
Lindhard angle,

 1 D
�
2Z1Z2e

2

Ed

�1=2
: (11.7)

For relativistic particles with total energy 	M1c
2, the kinetic energy in the trans-

verse motion is P 2?=2M1	 , and the formula (11.7) holds with the replacement
E ! pv=2 D 	M1v

2=2 (Lervig et al., 1967).
Lindhard introduced a rough distinction between ’channeled beam’ ( <  1)

and ‘random beam’ ( >  1). Transition from channeled to random is denoted
“dechanneling” and the reverse transition “feeding-in”. For random beam many as-
pects of the motion are like in an amorphous medium because there is no restriction
of the transverse motion. However, at very high energies the correlated scattering
with string atoms extends to angles much larger than the critical angle and this has
important consequences, for example for the multiple scattering and for radiation
from electrons and positrons.
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Fig. 11.5 Axial dip in close-
encounter yield

11.2.4 Thermal Vibrations

Thermal vibrations play an important role. On the time scale of the ion motion the
displacements of atoms can be considered static. The atomic recoil can be ignored
in the evaluation of the scattering angle and, except for questions of coherence in
electron channeling, we need not be concerned about the quantisation of atomic mo-
tion into phonons. The rms vibrational amplitude in two dimensions, �, is typically
of order 0.1 Å. When a particle can penetrate to a distance of order � from strings
it is able to hit atoms. With a Gaussian distribution of the thermal displacements
r , dP.r/ D exp.�r2=�2/dr2=�2, an ion with minimum distance of approach to
strings equal to �

p
ln 2 will have the probability for a head-on collision with an

atom reduced by a factor of two compared with a random target. A more precise
estimate of the critical angle is therefore

 c D
0
@U

�
�
p

ln 2
�

E

1
A
1=2

: (11.8)

With the standard potential in (11.5) we obtain

 c D  1

"
1

2
ln

 
.Ca/2

�2 ln 2
C 1

!#1=2
: (11.9)

The factor on  1 is close to unity.
The vibrational displacements also modify the continuum potential. Instead of

the logarithmic divergence at small r the thermally averaged potential UT has a
finite maximum at r D 0, close to U.�=

p
2/, but replacement of U by UT leads

only to a very small change in (11.9) (Andersen and Feldman, 1970).



11.3 Planar Channeling 557

Fig. 11.6 Blocking in the di-
rection of a string of particles
emitted from a lattice site

Crystal Blocking

11.2.5 Dip in Yield

The most dramatic consequence of channeling is the nearly complete extinction of
processes requiring a small impact parameter with a crystal atom, as illustrated in
Fig. 11.5. Particles incident at zero angle and at distance r from a string acquire a
transverse energy U.r/, and they can later hit a fraction exp.�r2=�2/ of the vibrat-
ing atoms. With the assumption of a rapid trend towards statistical equilibrium in
the allowed area (a uniform distribution), we therefore obtain

�min D 1

A0

Z
A0

2�r dr exp.�r2=�2/ D ��2=A0 : (11.10)

This minimum yield �min is of order 
 1%, only. Roughly, the result may be inter-
preted as immediate dechanneling of the ions which hit the surface inside a distance
� from a string. As discussed below, there are corrections, mainly due to effects of
crystal planes containing the axis, which increase the minimum yield by a factor
of order 2-3, the so-called Barrett factor first established in computer simulations
(Barrett, 1973b).

Since recoils can be ignored the particle trajectories can be calculated as motion
in a fixed potential. They are reversible in time if energy loss can be ignored, and
this has several important consequences. One is the equivalence between channeling
and blocking. Blocking occurs when charged particles are emitted from a lattice site
in an axial direction, as illustrated in Fig. 11.6. The emitted particles are blocked by
the string and prevented from exiting the crystal in the axial direction. Reversibility
implies that the width and minimum yield of the blocking dip are identical to those
for the channeling dip. Pioneering work on blocking was carried out especially by
Tulinov and his group in Moscow (Tulinov et al., 1965).

11.3 Planar Channeling

Also for particles incident on a crystal nearly parallel to a major crystallographic
plane the motion can be guided by a continuum potential, given by

V.x/ D Ndp

Z
dy dz Vat.x; y; z/ ; (11.11)
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Fig. 11.7 Planar channeling

dp

for a plane with spacing dp. The density of atoms in a plane is Ndp.
The critical angle for planar channeling is smaller by factor of order 3 than for ax-

ial channeling. The motion is one-dimensional oscillation, as illustrated in Fig. 11.7.
Planar channeling gives rise to a dip in yield with a narrower width and a higher
minimum yield than for axial channeling. Planar effects are therefore normally less
useful for applications. At very high energies, planar channeling in a bent crystal
can be used to bend beams of charged particles, as first suggested by Tsyganov
(Tsyganov, 1976b,a).

A special situation is the motion of particles nearly parallel to a set of close
packed strings in the plane. The planar channelling in this region, which Lindhard
called channeling by a string of strings, is weakened because the particles can pene-
trate the planes between the strings. As we shall discuss below, channeling by planes
is still important for the behaviour of axially channeled particles and it is a major
cause of the Barrett factor on minimum yields mentioned above.

11.4 Channeling of Electrons and Positrons

An important issue is the question whether classical mechanics can be applied to de-
scribe ion channeling. Lindhard carried out an elegant analysis analogous to Bohr’s
famous argument concerning the use of classical orbital pictures in binary Coulomb
scattering, which lead to the condition

� D 2Z1Z2e2

�v
> 1 : (11.12)

For correlated scattering on string atoms Lindhard showed that for particles heavy
compared with the electron the transverse motion is always classical. A particle scat-
tering off a string can be described by a wave packet with extension small enough to
give a well defined scattering angle and still large enough for the spread in direction
of the motion, deriving from the uncertainty principle, to be insignificant. Qualita-
tively, the reason is that the parameter Z2 in the above formula, giving the strength
of the scattering potential, is in effect increased by the concerted participation of
many string atoms.

Channeling of electrons and positrons was hotly debated in the late sixties
and early seventies. The essentially classical features of blocking of electrons and
positrons were demonstrated by Uggerhøj by observation of the emission of both
particles from radioactive 64Cu implanted into a copper crystal (Uggerhøj, 1966,
Uggerhøj and Andersen, 1968). The beautifully simple experiment is illustrated
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Fig. 11.8 Set-up for observation of the emission of electrons and positrons from 64Cu implanted
into a copper crystal (Uggerhøj and Andersen, 1968)

Fig. 11.9 Observed yields along an axis, compared with continuum model calculations (Uggerhøj
and Andersen, 1968)

in Figs. 11.8 and 11.9. The crystal is mounted in a goniometer, and two collima-
tors determine the emission direction for both electrons and positrons. As shown in
Fig. 11.9, there is a strong decrease in yield along the axis for positrons, similar to
observations for heavier particles like alpha particles. In contrast, there is a strong
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Fig. 11.10 Comparison of
classical calculations of a
{111} Au planar dip in yield
for 1-MeV positrons with a
quantum, so-called many-
beam calculation. The Bragg
angle is given by the positron
wavelength divided by twice
the planar spacing, �B D
=2dp , (Andersen et al.,
1971)

increase in the yield of electrons, as would be expected classically from the reversed
sign of the interaction with string atoms.

The classical interpretation of these experiments was criticised and it was argued
that, as known from electron microscopy, the transmission of electrons through thin
crystals is dominated by coherent Bragg reflection. However, it was soon realized
that this quantisation of transverse momentum does not in itself imply the absence
of strong classical features. The decisive question is again whether the localization
of an electron to move close to a string or plane gives too much spread in direction
of motion via the uncertainty principle to allow a classical description by orbital
pictures. This is determined by the number of bound states in the transverse motion,
which becomes large for relativistic electrons (Andersen et al., 1977).

The phase space for bound states in a planar potential is larger for positrons,
which oscillate in the open space between planes, and hence channeling is more
classical for positrons than for electrons. Figure 11.10 shows a comparison between
classical calculations, without and with thermal vibrations, and a quantum calcula-
tion (13-beam) of a planar dip in yield of wide angle scattering for 1 MeV positrons
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in a thin gold crystal (Andersen et al., 1971). The dip has an essentially classical
envelope with fine structure from Bragg interference. A classical dip with wiggles
from interference was later measured for positron channelling in a thin Si crystal
(Pedersen et al., 1972).

11.5 Channeling Radiation

The discovery of channeling radiation should be accredited mainly to Kumakhov,
who was the first to derive the correct relativistic transformation (Kumakhov, 1976).
The simplest way is to consider first the emission of radiation in the so-called
rest system following the electron motion along a string or plane, and then make
a Doppler transformation to the laboratory system. The outcome is that the Bohr
relation between the photon frequency and the electron energy jump is modified
by approximately a factor 2	2 for emission in the forward direction. A line spec-
trum of planar channeling radiation was first presented by the Livermore group at
the ICACS conference in Hamilton, 1979 (Alguard et al., 1980), and shortly after-
wards we observed in Aarhus the first line spectra for axially channeled electrons
(Andersen et al., 1983b). As illustrated by the spectrum in Fig. 11.11, the lines of
channelling radiation are particularly sharp in diamond because of the very small
thermal vibrations in this material (Guanere et al., 1982).

For not too high energies (MeV) a quantum treatment must be applied, and a
systematic description can be based on the formalism developed by Lindhard and
co-workers (Lervig et al., 1967, Andersen et al., 1983b). Spin effects are not im-
portant and the Klein-Gordon equation for a spinless particle with total relativistic
energy E may be used as a starting point,

h
�i�r � e

c
A.R/

i2
c2 Cm2c4

�
 .R; : : : /

D ŒE �Hrad �Hlatt � V.R; : : : /�2  .R; : : : / : (11.13)

Here the termsHrad andHlatt are the independent Hamiltonians of the radiation field
and the crystal, while A represents the vector potential of the radiation field. The
trick is now to separate off a phase factor corresponding to the total momentum and
not just to its z component,

 .R : : : // D eiKzw.r ; z; : : : / with �
2K2c2 Cm2c4 D E2 : (11.14)

This gives an approximate equation of first order in the time-like parameter t D z=v.
Neglecting terms of second order, like @2=@z2 and V2, we obtain
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Fig. 11.11 Photon spectra
in the beam direction for
54 MeV electrons along
different planes in diamond.
Triangles show spectrum
for incidence in a random
direction (Guanere et al.,
1982)
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�
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(11.15)

He;r D �e
�
ˇAz C 1

	mc
A � p

�
:

The equation has the form of a non-relativistic Schrödinger equation in two dimen-
sions, and the wave function describes the transverse channeling state. The radiation
operatorHe;r can be treated as a perturbation, and also the interaction potential can
be simplified by a series of perturbation approximations. For example, the electronic
excitations are treated by a replacement of V by its expectation value hVi in the elec-
tronic ground state and a perturbation calculation of the inelastic transitions induced
by the difference V � hVi. Similarly, vibrational excitations of the lattice are treated
by the introduction of a thermally averaged potential, with Fourier components re-
duced by a Debye-Waller factor. In the final step, the potential is approximated by
the thermally averaged axial or planar continuum potential.

Measurements of axial channeling radiation for 4 MeV electrons along a Si [111]
direction are shown in Fig. 11.12 (Andersen et al., 1982). Four lines are clearly dis-
tinguished, from 2s-2p, 3d-2p, 2p-1s, and 3p-1s transitions. The angular dependence
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Fig. 11.12 Photon spectra vs angle of incidence to a h111i axis for 4 MeV electrons in a 0.5 μm
thick Si crystal (Andersen et al., 1982)

of the intensities reflects the overlap of the incoming plane wave with the initial
states of the transitions, i.e., the intensity is proportional to the square of a Fourier
component of the transverse wave function. The ridges at larger angles are from
free-to-bound transitions.

Radiative transitions between the bound levels give photon energies in the di-
rection of the axis equal to h� D 2	�ER, where ER is the energy level in the
reference system moving with the particle in the z direction, the so-called rest sys-
tem. Here the mass is unrelativistic and the potential is multiplied by a factor of 	
due to the Lorentz contraction of the spacing, d , of atoms on a string. Hence the
Hamiltonian is just multiplied by the factor 	 . The measurements are in Fig. 11.13
seen to be reproduced quite well by calculations. Transitions along three different
axes are included. The potential scales with 	=d , see (11.3), and hence measure-
ments for channeling along three different axes can be included in one graph with
scaled units. The agreement is quite good when an accurate potential (Doyle-Turner,
for example) is used.

The line spectrum of channeling radiation reveals the energy spectrum of bound
states, just like the Rydberg series revealed to Niels Bohr the discrete states of the
hydrogen atom. Observation of the energies combined with the perturbation calcu-
lations can give quite accurate information about crystal properties like the crystal
potential and the thermal vibrations (Datz et al., 1986, Hau et al., 1990). It is also
possible to calculate the coherence properties from up to third order perturbation
theory and reproduce the observed line widths (Andersen et al., 1983a, Hau and
Andersen, 1993a,b).

After a hectic period in the 1980s with many active groups, both in theory and in
experiments, the activity in low-energy channeling radiation has subsided, and today
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Fig. 11.13 Comparison be-
tween calculated transition
energies in the rest frame
and measurements, at varying
electron energy, E D �mc2,
and for axes with different
atomic spacing, d (Andersen
et al., 1982)

it is rare to see a paper in this field. Perhaps the field is too well established. Also,
the early promises of application of MeV electron beams in crystals as a radiation
source seem not to have materialized. In contrast, there has been a continued inter-
est in radiation phenomena in crystals for high-energy electrons (GeV). The physics
in this region is very different, with essentially classical motion of the electrons,
and other processes like creation of particle-antiparticle pairs have been studied.
Like the Bethe-Heitler bremsstrahlung spectrum for a random medium, the radia-
tion spectrum extends up to the kinetic energy of the particle, and the photon yield
can be very strongly enhanced. The production of hard photons for particle physics
is therefore an interesting application. The effective electrical field generating the
radiation corresponds to the continuum potential in the ‘rest system’, and since
it is proportional to the relativistic factor 	 it becomes huge at extreme relativis-
tic energies. This opens up for fundamental studies in strong-field electrodynamics
(Uggerhøj, 2005).

11.6 Dechanneling

Multiple scattering is strongly reduced for channeled particles. There remain force
fluctuations due to thermal vibrations and electronic scattering. One can derive a dif-
ferential equation for the distribution in transverse energy, g .E?; z/, as a function
of the depth z,

@

@z
g.E?; z/ D @

@E?
A.E?/D.E?/

@

@E?
g.E?; z/
A.E?/

: (11.16)
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This is a diffusion equation with diffusion functionD .E?/. The diffusion equation
may be derived from the more general master equation through a second order ex-
pansion in the small scattering angles. However this expansion is not unique! The
form in (11.16) is obtained with the additional requirement that the equation should
reproduce the stability of a full statistical equilibrium in phase space (Bonderup
et al., 1972). This is obviously fulfilled for (11.16) since in such an equilibrium the
density in transverse energy is proportional to the allowed area, g0 .E?/ �A .E?/.
Since the available area is constant at large E?, also g0 becomes constant. This is
special for two dimensions. For planar channeling an analogous equation can be
derived, with A .E?/ replaced by the half-period of oscillation, T .E?/ (at large
angles the time between crossings of planes).

In a perfect crystal, the diffusion is due to scattering by individual electrons and
to fluctuations in atomic scattering associated with thermal displacements. In an
amorphous target, nuclear multiple scattering dominates. The mean square multi-
ple scattering angle increases linearly with depth (apart from a logarithmic factor)
and, as a scaling length, Lindhard introduced the depth corresponding to an rms
scattering angle equal to  1,

ln; 1
D 2

�Nd 2Ln 
2
1

; (11.17)

where the logarithmic factor, Ln, is of order 5–10. This length is roughly propor-
tional to the energy of the particle and hence channeling can be stable over very
large thicknesses at high energies. At GeV energies, the dechanneling lengths are
macroscopic (centimeters) and planar channeling in bent crystals can be used for
beam bending without too much loss (Baurichter et al., 2000).

An example illustrating the accuracy of the description by diffusion is shown
in Fig. 11.14 (Kennedy et al., 1992). The calculations applied an accurate potential
and included dechanneling by electronic and thermal scattering in the diffusion ap-
proximation. The two scattering mechanisms complement each other. The thermal
fluctuations dominate at large transverse energies and, for example, cause the planar
shoulder to be smeared out rapidly. On the other hand, thermal scattering is very
weak for well channeled ions, and electronic scattering is therefore important for
the increase of the minimum yield with depth of penetration.

11.7 Applications

11.7.1 Dechanneling by Crystal Defects

When dechanneling by defects is included, the diffusion equation may not be suit-
able. Alternative approaches are solution of a master equation, which can include
large jumps in transverse energy (Gärtner et al., 1984), or brute force computer sim-
ulation.
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Fig. 11.14 Depth dependence
of backscattering for 2 MeV
He near a (110) plane in Si,
compared with dechanneling
calculation (Kennedy et al.,
1992)

The detection of crystal defects after ion implantation has probably been the
most important application of channeling. For example, it has been of decisive im-
portance in the development of ion implantation for doping of semiconductors. With
backscattering of MeV beams of protons or helium ions, the crystal perfection as a
function of depth can be measured, as illustrated in Fig. 11.15 (Feldman et al., 1982).
The energy scale for the backscattered particles can be converted into a depth scale,
as shown at the bottom. The spectrum for a beam aligned with an axis is shown for
a virgin crystal as well as for an implanted crystal, and the difference in the yield
can be ascribed to a combination of direct backscattering from defects and increased
backscattering from atoms in perfect parts of the crystal due to dechanneling. This
latter part is indicated by the dashed line and when it is subtracted the depth dis-
tribution of the damage is obtained. Methods for analysis of such spectra are today
readily available and, all in all, dechanneling is a very well developed field, except
for the integration of the influence of electron capture and loss by heavy ions to be
discussed later.
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Fig. 11.15 Illustration of the extraction of a damage profile from backscattering in aligned and
random directions (Feldman et al., 1982)

11.7.2 Localization of Impurities by Channeling and Blocking

Another important application of channeling has been the use of the strong dip in
yield of a close-encounter reaction to determine the location of impurity atoms in
a crystal lattice. An example is the determination of the lattice configuration of ni-
trogen implanted into silicon (Rasmussen and Nielsen, 1994). Nitrogen impurities
can be detected at low concentrations by a .p; ˛/ reaction. The observed yield of
this reaction together with the backscattering yield from the Si lattice is shown in
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Fig. 11.16 Angular distributions in yield of .p; ˛/ reaction and of backscattering from Si crystal
implanted with nitrogen. The lines are from calculations including dechanneling (Rasmussen and
Nielsen, 1994)

Fig. 11.17 Nitrogen dumb-
bell replacing substitutional
atom in Si lattice (Rasmussen
and Nielsen, 1994)

Fig. 11.16 for angular scans through the three major axes. The scans are averaged
over the azimuthal angle whereby perturbations by planar effects are largely elimi-
nated.

The data are consistent with the dumb-bell configuration illustrated in Fig. 11.17.
Two nitrogen atoms replace one silicon atom. The lines through the data points are
from calculations for such a configuration. The dumb-bells are oriented randomly
along the three equivalent h100i axes (edges of cube). Nitrogen is substitutional
along one axis and interstitial along the other two. This gives a superposition of 1/3
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Fig. 11.18 Planar angular
scans of .p; ˛/ and backscat-
tering yields for nitrogen im-
planted Si crystal, compared
with calculations including
dechanneling (Rasmussen and
Nielsen, 1994)

dip and 2/3 narrow peak. An accurate potential (Doyle-Turner) has been used and
dechanneling for a perfect lattice has been included. This is seen to give excellent
agreement with the data, both for the impurity and for the host lattice. As seen in
Fig. 11.18, also the observed structures for channeling along three different planes
were found to be in good agreement with the simulation (planar scans sometimes
give crucial information! (Nielsen et al., 1988)).

The equivalence of channeling and blocking implies that impurities can just as
well be localized by observation of blocking dips for charged particles emitted from
the impurity atoms. A very early example is Domeij’s observation of a strong block-
ing dip for ˛-particles from 222Rn implanted into a tungsten crystal (Domeij and
Björkqvist, 1965). The measurements on electrons and positrons discussed above
(Uggerhøj and Andersen, 1968) showed that information on lattice location can also
be obtained from observation of the blocking effects for these light particles. This is
very useful since beta emitting isotopes are ubiquitous in the periodic table. A pio-
neering effort on quantitative application of this method has been made by Hofsäss
(Hofsäss, 1996).
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Fig. 11.19 Fission fragment blocking dips for 16O!W at two bombarding energies (open circles)
compared with results for prompt fission (solid circles). The latter were simulated by scaling ac-
cording to (11.7) the dips obtained for elastic scattering of 40-MeV16O. The uppermost curve in
each subfigure was calculated for an exponential decay with the average recoil distance indicated.
The dip is nearly independent of recoil distance for average recoils longer than 1 Å. (Andersen
et al., 1976)

11.7.3 Crystal Blocking for Determination of Nuclear Lifetimes

In analogy to the lattice localization of impurities the blocking effect can be used to
determine how far from a lattice site the emission of charged particles takes place.
For a nuclear reaction proceeding by formation of a compound nucleus, one may
thereby determine the average recoil distance v?� , where v? is the component of
the compound nucleus velocity perpendicular to the axis and � is the compound
nucleus lifetime (Gibson, 1975).

Several groups have studied fission lifetimes with this technique. Since the early
seventies I have been working with a group mainly from Aarhus and from the Chalk
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River Nuclear Laboratories on development of this technique to study heavy ion
induced fission of heavy nuclei. Because the recoil is large in these reactions very
short times can be measured, down to about one attosecond. This is still very long on
the nuclear time scale and times of order 10�21 s are expected from statistical mod-
els at the very high excitation energies just after formation of a compound nucleus.
In a series of experiments with 12C, 16O, 19F projectiles on W and Ta crystals, we
found results consistent with this expectation. Very little narrowing of the dips was
found but there was an increase in the minimum yield compared with dips in elastic
scattering. As seen in Fig. 11.19, the results could be fitted with a superposition of
mostly fast fission without lifetime effects and a contribution from slow fission after
cooling down of the nucleus by emission of several neutrons (Andersen et al., 1976).
As for the lattice-location experiments discussed above, the axial dips are integrated
over the azimuthal angle to eliminate planar effects.

Recently we have continued the experiments with heavier projectiles. The idea
is to investigate the influence of viscosity on the nuclear mass flow at high inter-
nal temperatures. Results from other types of measurements, e.g., on the number
of neutrons emitted prior to fission and on emission of giant-dipole gamma rays
from the compound nucleus, have indicated that the lifetime can be rather long. The
first measurements with 170-180 MeV 32S projectiles gave fission blocking dips
which were virtually identical to dips in elastic backscattering, scaled in angle with
.Z1=E/

1=2 according to (11.7) (Karamian et al., 2003). This indicates that the life-
time of the fission is below about 1 as and there is no component larger than about
1% with much longer lifetime.

A comparison with elastic backscattering is a very useful zero-lifetime normal-
ization. However, it is actually somewhat surprising that the agreement is so close
since the fission fragments carry many electrons which should contribute to the
screening of the Coulomb interaction with tungsten nuclei. Also in earlier experi-
ments with oxygen projectiles the scaling was found to be quite accurate, as seen in
Fig. 11.19.

Very recently we have continued these experiments at Oak Ridge National Labs
with even heavier projectiles (Andersen et al., 2008). The analysis indicates a clear
narrowing of the fission dips compared with the scaled dip in elastic scattering. This
is quite exciting because the time delay must be very long on the nuclear time scale,
of order 10�18 s, and a large fraction of the fission events must experience this delay.
In Fig. 11.20 the results for bombardment of a thin W crystal with 58Ni ions are
compared with a calculated dip for an exponential decay with average displacements
of about 8 pm. The elastic dips (lower half of figure) are seen to be in excellent
agreement with the calculation for zero displacement, including a small increase
in minimum yield ascribed to crystal defects and a correction for mosaic spread
in the epitaxially grown crystals. The fission dips in the upper half of the figure
are compared with elastic dips scaled according to (11.7). The lifetime effect is
very clear. The measured dips are in excellent agreement with dips calculated for
exponential decay with average recoil about 8 pm, corresponding to a lifetime of
order 1 as. The lifetime cannot be explained in the Bohr-Wheeler picture of multiple-
chance fission of a compound nucleus, and it is instead interpreted as a signal of
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Fig. 11.20 Blocking dips in fission and elastic scattering for 330-MeV (a,d), 350-MeV (b,e), and
375-MeV (c,f) 58Ni in W, compared with calculations. The dotted curves include exponential
distributions of recoil displacements from a h111i row, with average values (a) 8 pm, (b) 9 pm,
and (c) 8 pm (Andersen et al., 2008)

very high viscosity of the nuclear mass flow in the fission process. The physical
picture of the united nucleus must be closer to a drop of syrup rather than of water.
These results may also be important for the interpretation of recent very surprising
observations of long fission lifetimes for super-heavy compound nuclei created in
heavy-ion reactions (Drouart et al., 2005).

The observations shown in Figs. 11.19 and 11.20 are also interesting from a
methodological point of view. They give a clear demonstration of the power of the
technique to determine not only average displacements but also the distribution of
displacements. The observations in Fig. 11.20 show that small displacements from a
lattice site are most easily detected by the narrowing of the width of the blocking (or
channeling) dip, rather than by the increase of the minimum yield. The surprising
accuracy of the scaling of the elastic dips is a problem which deserves theoretical
and perhaps also further experimental study.

11.8 Restricted Equilibrium in Axial Channeling

All through the history of channeling, computer simulation has played a prominent
role. The earliest ideas were inspired by simulation of the penetration of low-energy
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ions through crystals (Robinson and Oen, 1963), and simulation is still a very valu-
able tool for interpretation of experiments. Probably the most advanced code was
developed by John Barrett at Oak Ridge, and he made important contributions to
the theory of channeling on the basis of the simulations. An example is the obser-
vation that the minimum yield in the axial channeling dip is underestimated by a
factor of two to three, the so-called Barrett factor (Barrett, 1973b). His search for an
explanation of this factor led him to publish a paper with the title: “Breakdown of
the Statistical-Equilibrium Hypothesis in Channeling” (Barrett, 1973a).

The basic observation is illustrated in Fig. 11.21. The lines indicate simulated
(transverse) trajectories of ions incident on a crystal parallel to an axis and hitting
the surface close to a string. In the transverse motion, the ions are accelerated away
from this string and their transverse energy, 
 � E?, is given for each picture. The
strings are indicated by dots, and the figure shows that the flux of ions tends to
be focussed onto other strings. This focussing clearly violates the assumption of a
rapid trend towards statistical equilibrium on an energy shell in the transverse phase
space.

This paper appeared to be a heavy blow to Lindhard’s theory of channeling, in
which, as noted above, arguments based on statistical equilibrium play a key role.
The problem must be rooted in a restriction in phase space hindering the establish-
ment of a full equilibrium. Typically, such a hindrance is associated with a symmetry
and a corresponding conservation law, like for instance conservation of angular mo-
mentum for a system with rotational symmetry. For axial channeling, the symmetry
is the regular arrangement of the strings in a two-dimensional lattice, and the con-
servation law is the conservation of transverse energy with respect to planes for ions
moving nearly parallel to the planes.

This is illustrated in Fig. 11.22a, showing a stereogram of a small angular region
around a h100i direction in a cubic lattice (Uguzzoni et al., 1992). The major planes
containing the axis are indicated, and the circle shows the boundary for axial chan-
neling at the angle  1. Well outside the circle, planar channeling takes place inside
the full drawn lines parallel to the plane, but close to the axis planar channeling is
replaced by the so-called string-of-strings channeling with a critical angle that de-
creases with decreasing angle to the axis. The regions of channeling with respect
to the strongest planes are hatched. Very close to the axis, the concept of planar
channeling loses its meaning entirely.

Planar channeling divides the transverse phase space into regions with poor com-
munication. An ion in the hatched region remains there on a depth scale determined
by planar dechanneling and, vice versa, an ion outside the hatched area is prevented
from entering this area by scattering on strings. Figure 11.22b illustrates how we
can understand Barrett’s results from this division. An ion starting its trajectory very
close to a string is blocked from the regions of phase space corresponding to planar
channeling. As indicated by the two small stereograms embedded in the figure, the
blocked angular region depends on the position in the transverse plane. In the ac-
cessible, restricted phase space, we may assume a rapid trend towards equilibrium.
Compared with a full equilibrium, the probability for getting very close to a string
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Fig. 11.21 Projection onto (111) plane of trajectories of 3-MeV protons moving nearly parallel to
[111] direction in tungsten at 1200 K (Barrett, 1973a)

again is then higher by the ratio of the four dimensional volume of the full phase
space to the volume of the restricted phase space.

These ideas were supported by simulations and appear to account quite well for
a major part of the Barrett factor (Uguzzoni et al., 2000). There is an additional
contribution from strong thermal fluctuations in the first collision with a string at
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Fig. 11.22 (a)Stereogram
indicating regions of planar
channeling near a h100i axis
in Si, for a particle in region
A. (b) Transverse plane for Si
[100]. The blocked angular
regions are indicated for
two regions A and B, and
a trajectory for a particle
moving out radially from a
string is shown (Uguzzoni
et al., 1992)

Fig. 11.23 Reversibility of
string collision

 

the crystal surface, which determines the transverse energy of the ions giving the
minimum yield. Thus the first attack on the concept of statistical equilibrium in
channeling was repelled and in the process new insight was gained.

11.9 Cooling and Heating in Ion Transmission through Crystals

The second attack on statistical equilibrium in channeling was of an even more
fundamental nature. As noted above, it is an important constraint in the derivation
of the diffusion equation for dechanneling that a constant density in phase space
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Fig. 11.24 Geometry for transmission experiment (Assmann et al., 1999)

should be an equilibrium. The phase space is now not limited to a transverse-energy
shell but extends out to angles much larger than the critical angle. The requirement
follows from basic symmetries of the multiple scattering.

Consider for example the thermal scattering of an ion colliding with a string, as
illustrated in Fig. 11.23. If the energy loss in the collision is ignored, the trajectory
is reversible, and this implies that thermal scattering leading from E? to E 0

? has
the same probability as scattering from E 0

? to E?. It is easy to see that the same
symmetry must hold for changes in transverse energy due to electronic collisions.
Until recently, it was believed that the only deviations from this general rule were
due to energy loss of the projectile and that they must be small. The observations to
be described in the following therefore came as a great surprise.

The set up shown in Fig. 11.24 was designed by Assmann et al. to give a sensitive
test of the equilibrium hypothesis for heavy ions transmitted through a thin crystal
(Assmann et al., 1999, Grüner et al., 2003). By scattering of a heavy-ion beam in
a thin foil, a thin Si crystal was illuminated with a beam with large angular diver-
gence, and behind the crystal the angular distribution of the ions was measured with
a position sensitive detector. An isotropic beam with uniform intensity gives a con-
stant distribution in transverse phase space inside the crystal, and if this distribution
is stable, the beam should remain isotropic after the passage of the crystal.

The results shown in Fig. 11.25 are dramatically different. To the left are the
two-dimensional intensity distributions and to the right the azimuthally averaged
intensity as a function of the angle to the axis. For carbon ions there is a strong
accumulation of flux near the axis and the planes, denoted cooling (reduction of
transverse energy). The transmission of Cu ions is an intermediate case, with cool-
ing along the axis and the strongest planes but a depletion of the flux (‘heating’)
along the weaker planes. For transmission of the heavier iodine ions, there is almost
exclusively heating, and for the heaviest Au ions there is strong heating along all
channeling directions.
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Fig. 11.25 Flux distributions of heavy ions after transmission through (001) Si crystal. To the right
circularly averaged intensities; (a) C recoils at 18 MeV after 8.7 μm; (b) Cu recoils at 46 MeV after
8.7 μm; (c) scattered I ions at 121 MeV after 2.9 μm; and (d) scattered Au ions at 92 MeV after
2.9 μm. The angular range is ˙2:2ı (Assmann et al., 1999)
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Fig. 11.26 h100i Si string potentials for C5C and C6C ions, in the point-charge approximation,
see (11.6). The horizontal line indicates the transverse energy of an ion capturing an electron at rc

and losing it at rl (Assmann et al., 1999)

The explanation must involve a phenomenon breaking the reversibility of trajec-
tories, and the effects are far too strong to be caused by energy loss. Instead it was
proposed that capture and loss of electrons by the penetrating ions may be responsi-
ble. For highly stripped ions with net chargeQ the effective continuum potential is
proportional toQ, (11.3) withZ1e ! Q. Electron capture then leads to a reduction
of the transverse potential energy and electron loss to an increase. If, on the average,
electron capture takes place at smaller distances from strings than electron loss there
will be a net cooling effect, and this is indeed predicted to be the case at very high
velocities, from the known impact-parameter dependencies of capture and loss in
this limit.

The mechanism is illustrated in Fig. 11.26. A C6C ion is moving away from a
string with transverse energy close to 1100 eV. At the distance rc it captures an
electron and loses the transverse energy U .1/.rc/. Later at a distance rl the electron
is lost again and the transverse energy U .1/.rl/ is gained. The cycle has led to a net
loss of transverse energy, i.e. to cooling.

These phenomena clearly offer an opportunity to study the impact parameter de-
pendence of capture and loss processes. In particular for heavy ions carrying many
electrons these processes are not well understood. However, for such ions the influ-
ence of the ion charge state on the interaction potential cannot be described in the
simple manner expressed in (11.3). It is also a challenge to integrate capture and
loss processes into the formalism for calculation of dechanneling, although there
has been promising progress (Malyshevsky, 2005).
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Fig. 11.27 Electronic-stopping cross section at velocity v D 1:5 � 108 cm/s versus the atomic
number of the projectile, derived from the range of a perfectly channeled ion along a h110i direc-
tion in tungsten (Eriksson et al., 1967)

11.10 Secondary Processes

We shall now turn to aspects of channeling which Lindhard denoted secondary phe-
nomena, i.e., phenomena which are influenced by channeling but do not in turn
affect the steering of the ions very much.

11.10.1 Energy Loss for Channeled Particles

The most prominent example is stopping. Studies of ion ranges, both computer sim-
ulations and range measurements, played a very important part in the discovery of
channeling (see, for example, the introduction to Eriksson et al. (1967). The energy
loss to atomic recoils, the so-called nuclear energy loss, is reduced most by chan-
neling, and very long ranges of low-energy heavy ions were observed for incidence
parallel to an axis in a crystal.

The selection by channeling of large impact parameters with atoms makes it pos-
sible to study the electronic energy loss at low velocities where nuclear energy loss
dominates. A nice example is illustrated in Fig. 11.27 (Eriksson et al., 1967). The os-
cillatory dependence of the electronic stopping cross section, Se, on Z1 stems from
the so-called Ramsauer-Townsend effect. The cross section for electron scattering
on the penetrating ion may be written as a sum over angular momenta and at low ve-
locity the s-wave cross section dominates. With increasing strength of the scattering
potential, the s-wave phase shift increases, and the cross section has strong minima
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when the phase shift passes through multiples of 2� (Finnemann, 1968, Briggs and
Pathak, 1973). The oscillations were first seen in the stopping in amorphous foils
but the elimination of atomic recoils and the confinement of electronic scattering to
the thin electron gas far from atoms make the oscillations much more prominent.

At high velocities the slowing down is mainly due to electronic energy loss. For
small Z1 it may be obtained by a quantum perturbation calculation. The resulting
Bethe formula may be written as an integral over impact parameters, leading to a
logarithm of the ratio of an adiabatic radius divided by half the reduced wavelength
of the electrons in the ion rest frame,

�dE
dx

D NSe D 4�Z21e
4

mv2
NZ2 ln

�
v= N!
�̄=2

�
(11.18)

The observations of a reduced electronic energy loss for a substantial fraction of
MeV protons penetrating several micron thick crystals demonstrated convincingly
that channeling is not a simple transparency effect for low energy ions.

Asymptotically for large v the expression in (11.18) has equal contributions from
large and small impact parameters (equipartition). Therefore the energy loss is at
high velocities reduced by about a factor of two for the best channeled particles
(Lindhard, 1965). As demonstrated by Esbensen and Golovchenko (1976), the the-
ory simplifies in the high-velocity limit, and excellent agreement with measurements
of the energy loss for relativistic channeled particles in thin Si and Ge crystals was
obtained (Esbensen et al., 1978). Also the shape of the energy distribution for chan-
neled particles could be accounted for when fluctuations of large energy transfers in
single collisions with electrons were taken into account (Landau distribution).

Many other experiments and calculations on the stopping of channeled ions have
been published (Cohen and Dauvergne, 2004) but still the full potential of such
studies for testing the stopping power theory has in my view not been realized. An
attempt at a detailed comparison with standard stopping theory for swift heavy ions
is discussed in the following.

In the experiment 15.3 MeV/u Br33C ions were passed through a very thin
Si crystal and both the emergent charge state and the energy-loss spectrum was
measured with a magnetic spectrometer (Andersen et al., 1996). As illustrated in
Fig. 11.28, the 33C ions with only the K-shell electrons remaining undergo very
little capture or loss of electrons when the ions are incident along a h110i axis. This
phenomenon of ‘frozen charge state’ was first observed and applied by Datz and co-
workers in Oak Ridge in their pioneering experiments on channeling of high-energy,
heavy ions (Krause and Datz, 1996). It is important for the analysis of the energy
loss because the complication of a fluctuating charge state is removed.

The energy spectra for exiting 33C and 32C ions are shown in Fig. 11.29.
For reference, also the energy spectrum for ions incident in a random (i.e., non-
channelling) direction is shown, and the energy loss is given as a fraction of the
random energy loss (4.9 MeV for 1 μm Si). Nearly all the 33C ions have an energy
loss much smaller than for random incidence, reflecting that nearly all the ions are
channeled. The spectrum for the much fewer 32+ ions contains two parts, well chan-
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Fig. 11.28 Charge-state distributions for a random (squares) and a h110i aligned (triangles) beam
of 15.3 MeV/u Br33C ions after passage of a 1 μm Si crystal (Andersen et al., 1996)

neled ions which have captured a valence electron, with an energy spectrum similar
to that for 33C ions, and poorly channeled ions which have entered the crystal close
to a string and scattered to angles of order  1, with energy loss similar to or even
larger than random. There is also a small component of such ions in the 33+ spec-
trum but it is strongly enhanced for 32+ ions because the capture probability is much
higher for random than for channeled ions (Fig. 11.28).

For the analysis of the energy loss, the well channeled ions have been divided
into three groups. For fixed trajectory, the straggling in energy loss is small. This
can be seen from the width of the random energy loss peak which has about equal
contributions from charge-exchange straggling and Bohr straggling (fluctuations in
hard collisions). For channeled particles there is only the Bohr straggling and it is
reduced due to the lower electron density. In contrast to the situation for relativistic
particles discussed above, the width of the energy loss distribution therefore comes
mainly from the distribution in transverse energy and the associated variation of the
allowed area in the transverse plane. If the spatial variation of the energy loss rate is
known, the energy distribution can be calculated and compared with the measure-
ment.

The analysis was based on a simple description of the energy loss as consisting of
three parts, the energy transfers to K-, L-, and M-shell electrons. The corresponding
oscillator strengths and excitation frequencies could be estimated rather accurately,
and the dependence of the energy loss on transverse energy was then calculated.
Compared with the Bethe-Bloch formula given above there are two important cor-
rections for heavy ions. First Bohr’s kappa, see (11.12) with Z2 D 1, is larger than
unity and the classical counterpart, the Bohr formula, should be applied instead,
with the reduced electron wavelength replaced by the classical collision diameter.
Second, there may be a significant, so-called Barkas correction which is of third
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Fig. 11.29 Energy-loss of transmitted 32C and 33C ions for a beam of 15.6 MeV/u79Br33C

ions. Spectra for random (stipled lines) and h110i (solid lines) alignment are shown as functions
of the energy loss relative to the average random loss of �E D 4:9MeV for the 1 μm thick Si
target (Andersen et al., 1996)

order in Z1. It is about 5%, only, for the present case. Good agreement with the
measurement was obtained. The dependence of the stopping on transverse energy
turns out to come partly from the spatial variation of the density of valence (M-
shell) electrons, partly from the adiabatic cut-off of energy loss to the L-shell at
large impact parameters with atoms.
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Fig. 11.30 (a) The charge state fraction 32C=.32C C 33C/ for channeled ions with energy loss
in the windows I, II, and III in Fig. 11.29, as a function of the ion energy. (b) Data in (a) after
subtraction of a smooth background (Andersen et al., 1996)

11.10.2 Crystal as Special Target for Atomic Processes

Studies of energy loss are just one example of the use of crystals as special targets
for measurements on atomic processes (Krause and Datz, 1996). For channeled ions,
the target is essentially a gas of the valence electrons. This has been utilized to study
capture processes like radiative electron capture and dielectronic electron capture.

An example from the experiment on Br33C ions discussed above is illustrated in
Fig. 11.30. The ratio between the numbers of 32C and 33C ions within the energy
window I+II+III in Fig. 11.29 is here plotted as a function of the bombarding energy.
The peak in Fig. 11.30b, obtained after subtraction of a smooth background from
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other capture processes, occurs at a velocity where the energy of a valence electron
in the ion frame of reference matches the K-shell binding energy minus twice the
L-shell binding. An electron can then be captured with simultaneous excitation of
a K-shell electron. The width of the resonance comes from the spread of electron
velocities in the electron gas.

Another process which should be mentioned in this connection is resonant co-
herent excitation, sometimes called the Okorokov effect (Okorokov, 1965). Here
a Fourier component of the periodic field from strings of atoms is used to excite
a bound electron. Channeling is again used to avoid close collisions and thereby
to maintain a well defined atomic state during the interaction. The excitation can
be observed either by detection of radiative de-excitation outside the crystal or by
observation of the emergent charge state distribution as a function of bombarding
energy. At velocities where a multiple of the frequency of collisions with atoms on a
string matches a transition frequency in the ion, the atomic excitation gives rise to an
increase in the rate of electron loss and hence to an increase in the charge state. The
effect was first observed unambiguously at Oak Ridge (Moak et al., 1979). Recently,
mainly a Japanese group working at the high-energy accelerator laboratory RIKEN
has been active in this area, extending the observations to heavier ions carrying a
few electrons (Nakai et al., 2005).

11.11 Concluding Remarks

The physics of channeling is rich in interesting, sometimes quite surprising phe-
nomena, and channeling and blocking have very many applications. I have reviewed
some of the aspects of channeling which I have found it most exciting to work on,
and I hope that the reader will experience some of this excitement. With the rapid
development of computers, simulation has become increasingly important in the
interpretation of experiments, but the analytical theory founded by Jens Lindhard
remains the basis for our qualitative understanding of the phenomena.

Channeling is a mature field but there are still challenging problems to attack. The
basic binary scattering is described by a screened Coulomb potential and, except for
simple, limiting cases, there is considerable uncertainty in the representation of the
combined screening by target and projectile electrons. I have mentioned two cases
where this uncertainty is a problem. One is the application of blocking to measure
nuclear lifetimes. It is important to be able to compare blocking dips for reaction
products and for elastically scattered projectile ions, and this requires an accurate
scaling of the critical angle for blocking with the atomic number of the blocked
ions. Another example is the analysis of ‘heating’ and ‘cooling’ phenomena in the
penetration of energetic heavy ions through thin crystals where a precise description
of the dependence of the interaction potential on the ion charge state is needed.

Channeling of ions in crystals makes it possible to study the impact parameter
dependence of atomic processes. The simplest example is energy loss, and studies
of the modified stopping under channeling conditions played an important role in



References 585

the discovery of channeling. Usually the question has been what we can learn about
the ion channeling from the energy loss spectrum. One may turn the question around
and ask what we have learned about energy loss processes from channeling observa-
tions and what we can learn. I have argued that if experiments and calculations are
planned with this question in mind there may be scope for new investigations of the
energy loss of channeled ions. New opportunities are also offered by the recently
discovered ‘cooling’ and ‘heating’ of ion beams transmitted through thin crystals,
phenomena which are very sensitive to the impact parameter dependence of the cap-
ture and loss of electrons.

References

Alguard M.J., Swent R.L., Pantell R.H., Datz S., Barrett J.H., Berman B.L. and
Bloom S.D. (1980): Radiation from channeled leptons. Nucl Instrum Methods
170, 7–13

Andersen J.U., Andersen S.K. and Augustyniak W.M. (1977): Electron channeling.
Mat Fys Medd Dan Vid Selsk 39 no. 10, 1–58. URL http://www.sdu.dk/
Bibliotek/matfys

Andersen J.U., Augustyniak W.M. and Uggerhøj E. (1971): Channeling of
positrons. Phys Rev B 3, 705–711

Andersen J.U., Bonderup E., Lægsgaard E., Marsh B.B. and Sørensen A.H. (1982):
Axial channeling radiation from MeV electrons. Nucl Instrum Methods 194,
209–224

Andersen J.U., Bonderup E., Lægsgaard E. and Sørensen A.H. (1983a): Incoher-
ent scattering of electrons and linewidth of planar-channeling radiation. Physica
Scripta 28, 308–330

Andersen J.U., Bonderup E. and Pantell R.H. (1983b): Channeling radiation. Ann
Rev Nucl Part Sci 33, 453–504

Andersen J.U., Chevallier J., Ball G.C., Davies W.G., Forster J.S., Geiger J.S.,
Davies J.A., Geissel H. and Kanter E.P. (1996): Dielectronic recombination and
energy loss for He-like 79Br ions channeled in a thin single crystal of Si. Phys
Rev A 54, 624–635

Andersen J.U., Chevallier J., Forster J.S., Karamian S.A., Vane C.R., Beene J.R.,
Galindo-Uribarri A., del Campo J.G., Gross C.J., Krause H.F. et al. (2008): At-
tosecond lifetimes in heavy-ion induced fission measured by crystal blocking.
Phys Rev C 78, 064609

Andersen J.U. and Feldman L.C. (1970): Comparison of average-potential models
and binary-collision models of axial channeling and blocking. Phys Rev B 1,
2063–2069

Andersen J.U., Lægsgaard E., Nielsen K.O., Gibson W.M., Forster J.S., Mitchell
I.V. and Ward D. (1976): Time evolution of heavy-ion-induced fission studied by
crystal blocking. Phys Rev Lett 36, 1539–1542



586 11 Channeling and Blocking

Assmann W., Huber H., Karamian S.A., Grüner F., Mieskes H.D., Andersen J.U.,
Posselt M. and Schmidt B. (1999): Transverse cooling or heating of channeled
ions by electron capture and loss. Phys Rev Lett 83, 1759

Barrett J.H. (1973a): Breakdown of the statistical-equilibrium hypothesis in chan-
neling. Phys Rev Lett 31, 1542

Barrett J.H. (1973b): Monte Carlo channeling calculations. Phys Rev B 3, 1527–
1547

Baurichter A., Biino C., Clément M., Doble N., Elsener K., Fidecaro G., Freund
A., Gatignon L., Grafteröm P., Gyr M. et al. (2000): Channeling of high-energy
particles in bent crystals - Experiments at the CERN SPS. Nucl Instrum Methods
B 164-165, 27–43

Bonderup E., Esbensen H., Andersen J.U. and Schiøtt H.E. (1972): Calculations on
axial dechanneling. Radiat Eff 12, 261–266

Briggs J. and Pathak A. (1973): Momentum transfer cross sections and the Z1 os-
cillations in stopping power. J Phys C 6, L153 – L157

Cohen C. and Dauvergne D. (2004): High energy ion channeling. Principles and
typical applications. Nucl Instrum Methods 225, 40–71

Datz S., Berman B.L., Dahling B.A., Hynes M.V., Park H., Kephart J.O., Klein
R.K. and Pantell R.H. (1986): On the dependence of electron planar channeling
radiation upon lattice vibration amplitude. Nucl Instrum Methods B 13, 19–22

Davies J.A. (1983): The channeling phenomenon - and some of its applications.
Physica Scripta 28, 294–302

Domeij B. and Björkqvist K. (1965): Anisotropic emission of ˛-particles from a
monocrystalline source. Phys Lett 14, 127

Doyle P.A. and Turner P.S. (1968): Relativistic Hartree-Fock X-ray and electron
scattering factors. Acta Cryst A 24, 390–397

Drouart A., Charvet J.L., Dayras R., Nalpas L., Volant C., Chbihi A., Rodriguez
C.E., Frankland J.D., Morjean M., Chevallier M. et al. (2005): Evidence of
Z D 120 compound nucleus formation from lifetime measurements in the
238U+Ni reaction at 6. 62 MeV/nucleon. In Proc. Int. Symposium on Exotic
Nuclei, Peterhof 2004, 192–197. World Scientific

Eriksson L., Davies J.A. and Jespersgaard P. (1967): Range measurements in ori-
ented tungsten single crystals (0. 1-1. 0 MeV). I. Electronic and nuclear stopping
powers. Phys Rev 161, 219–234

Esbensen H., Fich O., Golovchenko J.A., Madsen S., Nielsen H., Schiøtt H.E., Ug-
gerhøj E., Vraast-Thomsen C., Charpak G., Majewski S. et al. (1978): Random
and channeled energy loss in thin germanium and silicon crystals for positive and
negative 2-15-GeV/c pions, kaons, and protons. Phys Rev B 18, 1039–1054

Esbensen H. and Golovchenko J.A. (1976): Energy loss of fast channeled particles.
Nucl Phys A 298, 382–396

Feldman L.C., Mayer J.W. and Picraux S.T. (1982):Materials Analysis by Ion Chan-
neling. Academic Press, New York

Finnemann J. (1968): En redegørelse for resultaterne af beregninger over spred-
ning af elektroner med lav energi på afskærmede Coulombfelter. Master’s thesis,
Aarhus University



References 587

Gärtner K., Hehl K. and Schlotzhauer G. (1984): Axial dechanneling : II. Point
defects. Nucl Instrum Methods B 4, 55–62

Gemmell D.S. (1974): Channeling and related effects in motion of charged particles
through crystals. Rev Mod Phys 46, 129–227

Gibson W.M. (1975): Blocking measurements of nuclear decay times. Ann Rev
Nucl Sci 25, 465–508

Grüner F., Assmann W., Bell F., Schubert M., Andersen J.U., Karamian S.,
Bergmaier A., Dollinger G., Gorgens L., Günther W. et al. (2003): Transverse
cooling and heating in ion channeling. Phys Rev B 68, 174104

Guanere M., Sillou D., Spighel M., Cue N., Gaillard M.J., Kirsch R.G., Poizat J.C.,
Remmillieux J., Berman B.L., Cattillon P. et al. (1982): Sharp-line and broad-
continuum radiation from electrons channeled in diamond. Nucl Instrum Methods
194, 225–228

Hau L.V. and Andersen J.U. (1993a): Channeling radiation beyond the continuum
model: The phonon ‘Lamb shift’ and higher-order corrections. Phys Rev A 47,
4007–4032

Hau L.V. and Andersen J.U. (1993b): Line shifts of channeling raditation from MeV
electrons. Radiat Eff 25, 75–80

Hau L.V., Lægsgaard E. and Andersen J.U. (1990): Thermal vibrations in Si studied
by channeling-radiation spectroscopy. Nucl Instrum Methods B 48, 244–247

Hofsäss H. (1996): Emission channeling. Hyperfine Interactions 97-98, 247–283
Karamian S.A., Forster J.S., Andersen J.U., Assmann W., Broude C., Chevallier J.,

Geiger J.S., Grüner F., Khodyrev V.A., Malaguti F. et al. (2003): Fission lifetimes
of Th nuclei measured by crystal blocking. Europ Phys J A 17, 49–56

Kennedy E.F., Nielsen B.B. and Andersen J.U. (1992): Planar channeling dips in
backscattering yield. Nucl Instrum Methods B 67, 236–240

Krause H.F. and Datz S. (1996): Channeling heavy ions through crystalline lattices.
Adv At Mol Opt Phys 37, 139–180

Kumakhov M.A. (1976): On the theory of electromagnetic radiation of charged par-
ticles in a crystal. Phys Lett A 57, 17–18

Lervig P., Lindhard J. and Nielsen V. (1967): Quantal treatment of directional effects
for energetic charged particles in crystal lattices. Nucl Phys A 96, 481

Lindhard J. (1965): Influence of crystal lattice on motion of energetic charged par-
ticles. Mat Fys Medd Dan Vid Selsk 34 no. 14, 1–64

Malyshevsky V.S. (2005): Transverse cooling or heating of channeled ions by elec-
tron capture and loss. Phys Rev B 72, 094109

Moak C.D., Datz S., Crawford O.H., Krause H.F., Dittner P.F., del Campo J.G.,
Biggerstaff J.A., Miller P.D., Hvelplund P. and Knudsen H. (1979): Resonant
coherent excitation of channeled ions. Phys Rev A 19, 977–993

Nakai Y., Ikeda T., Kanai Y., Kambara T., Fukinishi N., Komaki K., Kondo C.,
Azuma T. and Yamazaki Y. (2005): Resonant coherent excitation of 2s electron
of Li-like Fe ions to the n D 3 states. Nucl Instrum Methods B 230, 90–95

Nielsen B.B., Andersen J.U. and Pearton S.J. (1988): Lattice location of deuterium
interacting with the boron acceptor in silicon. Phys Rev Lett 60, 321–324



588 11 Channeling and Blocking

Okorokov V.V. (1965): The coherent excitation of nuclei moving through a crystal.
Yad Fiz 2, 1009. Engl. Translation: Sov. J. Nucl. Phys. 2, 719 (1966)

Pedersen M.J., Andersen J.U. and Augustyniak W.M. (1972): Channeling of
positrons. Radiat Eff 12, 47–52

Rasmussen F.B. and Nielsen B.B. (1994): Microstructure of the nitrogen pair in
crystalline silicon studied by ion channeling. Phys Rev B 49, 16353–16360

Robinson M.T. and Oen O.S. (1963): Computer studies of the slowing down of
atoms in crystals. Phys Rev 132, 2385–2398

Sørensen A.H. and Uggerhøj E. (1987): Channeling and channeling radiation. Na-
ture 325, 311–318

Tsyganov E.N. (1976a): Estimates of cooling and bending processes for charged
particle penetration through a monocrystal. Fermilab TM 684

Tsyganov E.N. (1976b): Some aspects of the mechanism of a charge particle pene-
tration through a monocrystal. Fermilab TM 682

Tulinov A.F., Kulikauskas V.S. and Malov M.M. (1965): Proton scattering from a
tungsten single crystal. Phys Lett 18, 304–307

Uggerhøj E. (1966): Orientation dependence of the emission of positrons and elec-
trons from 64Cu embedded in single crystals. Phys Lett 22, 382–383

Uggerhøj E. and Andersen J.U. (1968): Influence of lattice structure on motion of
positrons and electrons through single crystals. Can J Physics 46, 543–550

Uggerhøj U.I. (2005): The interaction of relativistic particles with strong crystalline
fields. Rev Mod Phys 77, 1131–1171

Uguzzoni A., Andersen J.U. and Ryabov V. (1992): Thermal fluctuations in surface
transmission for axial channeling. Nucl Instrum Methods B 67, 231–235

Uguzzoni A., Gärtner K., Lulli G. and Andersen J.U. (2000): The minimum yield
in channeling. Nucl Instrum Methods B 164-165, 53–60



Author and Subject Index

Aaron et al. (1961), 63, 91
Aberth et al. (1965), 263, 276
Abrahamson et al. (1961), 244, 276
Abrahamson (1963a), 244, 245, 276
Abrahamson (1963b), 244, 246, 276
Abramowitz and Stegun (1964), 23, 39, 253,

256, 276, 405, 409, 429, 430, 456, 473,
495, 508, 531, 533, 541

Abril et al. (1992), 509, 541
Abrines and Percival (1966a), 74, 91
Abrines and Percival (1966b), 75, 91
Abufager et al. (2005), 72, 91
Adams and Foiles (1990), 249, 276
Adivi and Bolorizadeh (2004), 72, 91
Afrosimov et al. (1972), 263, 264, 276
Akhiezer and Davidov (1979), 382, 409
Alder and Wainwright (1959), 463, 473
Alexander and Gazdik (1960), 345, 409
Alguard et al. (1980), 561, 585
Allis and Morse (1931), 408, 409
Allison (1958), 28, 39, 46, 91, 100, 103, 143
Almbladh et al. (1976), 371, 372, 409
Alonso and Gould (1982), 76, 91
Amdur and Mason (1956), 245, 276
Amsel et al. (2003), 313, 315–317, 321, 322,

325, 326, 334, 335
Andersen and Bay (1974), 529, 541
Andersen and Bøttiger (1971), 316, 317, 335
Andersen and Feldman (1970), 556, 585
Andersen and Sigmund (1965), 467, 473
Andersen et al. (1966), 462, 473
Andersen et al. (1971), 560, 561, 585
Andersen et al. (1974), 315, 335
Andersen et al. (1976), 570, 571, 585
Andersen et al. (1977), 560, 585
Andersen et al. (1982), 562–564, 585
Andersen et al. (1983a), 563, 585

Andersen et al. (1983b), 551, 554, 561, 585
Andersen et al. (1996), 580–583, 585
Andersen et al. (2008), 571, 572, 585
Andersen (1979), 464, 473
Andersen (1987), 463, 473
Andersen (1991), 351, 409
Anne et al. (1988), 316, 335
Apagyi and Nagy (1987), 368, 371, 409
Arbo et al. (2002), 393, 409
Arbó et al. (1999), 114, 143
Arista and Brandt (1981), 393, 409
Arista and Lifschitz (1999), 172, 190
Arista and Lifschitz (2004), 172, 190
Arista and Ponce (1975), 496, 498, 541
Arista and Sigmund (2007), 172, 190
Arista (1978), 493, 496, 506, 540, 541
Arista (2000), 491, 493, 507, 541
Arista (2002), 170, 172, 190
Arista (2006), 25, 26, 34, 39
Ashley et al. (1986), 396, 397, 409
Ashworth et al. (1990), 458, 473
Assmann et al. (1999), 576–578, 585
Azevedo et al. (2000), 168, 185, 190
Bailey and Townsend (1921), 368, 409
Balashova et al. (1990), 185, 190
Baroody (1964), 438, 473
Barrett et al. (1980), 333, 335
Barrett (1968), 462, 473
Barrett (1973a), 573, 574, 586
Barrett (1973b), 557, 573, 586
Basbas and Ritchie (1982), 493, 495, 499, 540,

541
Bates and Dalgarno (1952), 61, 63, 91
Bates (1958), 54, 91
Baudin et al. (1994), 499, 510, 541
Baurichter et al. (2000), 565, 586
Bednyakov et al. (1986), 332, 335

P. Sigmund, Particle Penetration and Radiation Effects Volume 2,
Springer Series in Solid-State Sciences 179, DOI: 10.1007/978-3-319-05564-0,
� Springer International Publishing Switzerland 2014

589



590 Author and Subject Index

Beeler and Besco (1964), 462, 473
Belkacem and Sigmund (1990), 508, 533, 541
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