## Dynamic Mechanical Analysis

for Plastics Engineering

Michael P. Sepe



Plastics Design Library

# Dynamic Mechanical Analysis

for Plastics Engineering



Michael P. Sepe

#### Copyright © 1998, Plastics Design Library. All rights reserved. ISBN 1-884207-64-2 Library of Congress Card Number 98-85284

Published in the United States of America, Norwich, NY by Plastics Design Library a division of William Andrew Inc.

Information in this document is subject to change without notice and does not represent a commitment on the part of Plastics Design Library. No part of this document may be reproduced or transmitted in any form or by any means, electronic or mechanical, including photocopying, recording, or any information retrieval and storage system, for any purpose without the written permission of Plastics Design Library.

Comments, criticisms and suggestions are invited, and should be forwarded to Plastics Design Library.

Plastics Design Library and its logo are trademarks of William Andrew Inc.

Please Note: Although the information in this volume has been obtained from sources believed to be reliable, no warranty, expressed or implied, can be made as to its completeness or accuracy. Design processing methods and equipment, environment and others variables effect actual part and mechanical performance. Inasmuch as the manufacturers, suppliers and Plastics Design Library have no control over those variables or the use to which others may put the material and, therefore, cannot assume responsibility for loss or damages suffered through reliance on any information contained in this volume. No warranty is given or implied as to application and to whether there is an infringement of patents is the sole responsibility of the user. The information provided should assist in material selection and not serve as a substitute for careful testing of prototype parts in typical operating environments before beginning commercial production.

Manufactured in the United States of America.

Plastics Design Library, 13 Eaton Avenue, Norwich, NY 13815 Tel: 607/337-5080 Fax: 607/337-5090 email: publishing@williamandrew.com

My first acquaintance with Mike Sepe in 1990 was through Karl Kirland, a senior editor at *Plastics World* magazine. *Plastics World* has now evolved into *Molding Systems* magazine and Karl has moved on to a senior editorial position at *Injection Molding* magazine. Mike remains true to his convictions and continues to educate users of plastics about the need for information that better reflects the real-world service life of a material. Dynamic Mechanical Analysis (DMA) testing provides such information.

Dynamic Mechanical Analysis for Plastics Engineering provides DMA data from Mike Sepe's own tests conducted in the materials lab at Dickten & Masch Manufacturing Co. All plastic materials have been tested using the same methods and therefore comparison of the results is very meaningful. In addition to providing performance data on a broad spectrum of plastics, Mike provides an excellent discussion of how to use DMA data and what it means, practically speaking, to the plastics engineer. After reading his manuscript, the versatility and necessity of using DMA data as a powerful engineering tool becomes apparent and clear.

Referring to Mike Sepe in a May 1990 article Karl Kirkland states, "the technical director of precision molders Dickten & Masch Manufacturing Co. went so far as to say 'We're hanging ourselves with those property sheets.' He joins a growing number of people who are challenging the validity of singlepoint, short-term materials property data to evaluate performance and to set the upper limits of a material in its end-use." As Plastics Design Library (PDL) continues its mission of providing information serving the practical needs of the technologist, we are very pleased to provide this new volume to the PDL Handbook Series. In addition to providing data which reflects the real world service life of materials, we are providing data which is truly comparable and not biased since all test results come from the same independent test laboratrory. In order to improve the ability to analyze the data, PDL offers a companion CD-ROM to the book which gives users the ability to compare curves and data according to their needs. The CD-ROM is an excellent product and I highly recommend it.

#### Some Notes about the Book and CD-ROM

In order to make the information most useful and accessible to users, PDL editors made a choice to present the DMA curves in full color. The use of color necessitated some compromises including the binding method used for the book. Special credit for the layout, typesetting and printing goes to Robert Hall and his staff at Paragon Communications.

The CD-ROM version of Dynamic Mechanical Analysis for Plastics Engineering provides an interactive tool for rapidly comparing the independent test data generated for this reference. Users can electronically access and compare data for different materials on one table or graph and print or export information to word processors, spreadsheets or other analysis tools.

| Table of Contentsi |         |                                                       |     |  |  |
|--------------------|---------|-------------------------------------------------------|-----|--|--|
|                    | Figures |                                                       |     |  |  |
|                    | Graphsx |                                                       |     |  |  |
| 1                  | Intr    | oduction                                              | 1   |  |  |
| 2                  | Pri     | nciples of Polymer Structure And Instrument Operation | 3   |  |  |
|                    | 2.1     | Data Presentation                                     | 6   |  |  |
|                    | 2.2     | Structural Characteristics of Polymers                | 7   |  |  |
| 3                  | Pro     | perties Measured By DMA                               | .11 |  |  |
|                    | 3.1     | Storage Modulus Versus Temperature                    | .11 |  |  |
|                    | 3.2     | The Meaning of Loss Modulus and Tan Delta             | .12 |  |  |
|                    | 3.3     | The Relationship of DMA to HDT and Vicat Softening    | .14 |  |  |
|                    | 3.4     | The Effect of Fillers                                 | .17 |  |  |
|                    | 3.5     | Polymer Blends                                        | .18 |  |  |
| 4                  | Tin     | e Dependent Behavior                                  | .21 |  |  |
|                    | 4.1     | The Equivalency of Temperature and Time               | .21 |  |  |
|                    | 4.2     | Creep and Stress Relaxation                           | .23 |  |  |
|                    | 4.3     | The Relationship of Time to Frequency                 | .25 |  |  |
|                    | 4.4     | Using the Master Curve for Practical Problem Solving  | .28 |  |  |
| 5                  | The     | Effects of Processing and Environment                 | .31 |  |  |
| 6                  | Cor     | clusions                                              | .35 |  |  |
|                    |         |                                                       |     |  |  |
| Appe               | ndix    | 1 - DMA Data Collection                               | .36 |  |  |
|                    | Ace     | tal resin                                             | .36 |  |  |
|                    |         | acetal homopolymer (POM)                              | .36 |  |  |
|                    |         | acetal copolymer (POM copolymer)                      | .38 |  |  |
|                    | Acr     | ylic resin                                            | .42 |  |  |
|                    |         | acrylic (PMMA)                                        | .42 |  |  |
|                    |         | acrylic copolymer                                     | .44 |  |  |
|                    | Pol     | yamide                                                | .44 |  |  |
|                    |         | amorphous nylon                                       | .44 |  |  |
|                    |         | nylon 12                                              | .46 |  |  |
|                    |         | nylon 6                                               | .48 |  |  |
|                    |         | nylon 612                                             | .58 |  |  |
|                    |         | nylon 66                                              | .62 |  |  |
|                    |         | nylon 6/66                                            | .74 |  |  |
|                    |         | nylon MXD6                                            | .78 |  |  |
|                    |         | nylon, aromatic copolymer                             | .78 |  |  |
|                    |         | nylon, partially aromatic                             | .80 |  |  |
|                    | Pol     | ycarbonate                                            | .80 |  |  |
|                    |         | polycarbonate (PC)                                    | .80 |  |  |
|                    | Pol     | yester                                                | .86 |  |  |
|                    |         | polybutylene terephthalate (polyester PBT)            | 86  |  |  |
|                    |         | polyethylene terephthalate (polyester PET)            | 90  |  |  |

### **Table of Contents**

| Polyimide                                                                   |     |
|-----------------------------------------------------------------------------|-----|
| polyetherimide (PEI)                                                        |     |
| Polyketone                                                                  |     |
| polyetheretherketone (PEEK)                                                 | 102 |
| Polyolefin                                                                  |     |
| polypropylene (PP)                                                          |     |
| polypropylene copolymer (PP copolymer)                                      | 114 |
| cyclic olefin copolymer                                                     | 116 |
| Polyphenylene ether                                                         |     |
| syrene modified polyphenylene ether (modified PPE)                          | 118 |
| Polysulfide                                                                 |     |
| polyphenylene sulfide (PPS)                                                 | 122 |
| Polysulfone                                                                 |     |
| polyethersulfone (PES)                                                      | 128 |
| Styrenic resin                                                              |     |
| acrylonitrile butadiene styrene (ABS)                                       | 130 |
| high impact polystyrene (HIPS)                                              | 140 |
| styrene acrylonitrile copolymer (SAN)                                       | 142 |
| Plastic alloy                                                               | 142 |
| acrylonitrile butadiene styrene/ nylon alloy (ABS/ nylon alloy)             | 142 |
| acrylic/ polycarbonate alloy (acrylic/ PC alloy)                            | 144 |
| polycarbonate/ acrylonitrile butadiene styrene alloy (PC/ ABS alloy)        | 144 |
| polycarbonate polybutylene terephthalate alloy (PC/ polyester PBT alloy)    | 146 |
| polycarbonate polyethylene terephthalate alloy (PC/ polyester PET alloy)    | 148 |
| polypropylene/ polystyrene alloy (PP/ PS alloy)                             | 154 |
|                                                                             |     |
| Appendix 2 - Data Sheet Properties For Materials in the DMA Data Collection | 158 |
| Glossary of Terms                                                           | 171 |

## Figures

| Figure 1.   | Relationship of stress and strain with time for a pure elastic system                                                                                                                                                 |     |  |
|-------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|--|
| Figure 2.   | Relationship of stress and strain with time for a purely viscous system                                                                                                                                               |     |  |
| Figure 3.   | Relationship of stress and strain with time for a viscoelastic system                                                                                                                                                 | 4   |  |
| Figure 4.   | The behavior of an elastic system under oscillatory stress. Stress and strain and in phase                                                                                                                            |     |  |
| Figure 5.   | The behavior of a viscous system under oscillatory stress. Stress and strain are 90° out of phase                                                                                                                     |     |  |
| Figure 6a.  | Relationship of the stress and strain vectors in a dynamic experiment.                                                                                                                                                |     |  |
| Figure 6b.  | Stress vectors resolved into the loss and storage components.                                                                                                                                                         | 5   |  |
| Figure 6c.  | Corresponding modulus vectors with loss vector transposed to form a right triangle                                                                                                                                    | 5   |  |
| Figure 7a.  | Storage and loss properties for an unfilled polycarbonate.                                                                                                                                                            | 7   |  |
| Figure 7b   | Expanded plot of storage and loss properties for polycarbonate at Tg.                                                                                                                                                 | 8   |  |
| Figure 8a.  | Storage and loss properties for unfilled nylon 6                                                                                                                                                                      | 8   |  |
| Figure 8b.  | Storage and loss properties for an unfilled nylon 6/12 showing the rapid rise in tan delta as the material softens                                                                                                    | 9   |  |
| Figure 9.   | Storage and loss properties for an epoxy circuit board material                                                                                                                                                       | 9   |  |
| Figure 10.  | Storage and loss properties for a thermoset elastomer.                                                                                                                                                                | 9   |  |
| Figure 11.  | Storage modulus vs. temperature for a 30% glass fiber-reinforced PET polyester                                                                                                                                        | .11 |  |
| Figure 12.  | Comparison of storage modulus properties for PET polyester, PBT polyester, nylon 6, and nylon 6/6, all with 30% glass fiber reinforcement.                                                                            |     |  |
| Figure 13.  | Generalized plot of the effects of structure on storage modulus properties                                                                                                                                            | .12 |  |
| Figure 14.  | Storage and loss properties for amorphous nylon. Tan delta does not resolve to a peak in the glass transition region but rises rapidly starting at $T_g$ .                                                            |     |  |
| Figure 15.  | Comparison of tan delta properties for PES and PEI from -50 to 160°C. The higher tendency for viscous flow is part of the reason for the superior impact resistance of PES.                                           | .14 |  |
| Figure 16.  | Storage and loss properties for an impact-modified acrylic. The low-temperature transition in the loss modulus curve is due to the rubbery impact modifier.                                                           | .14 |  |
| Figure 17.  | Storage and loss properties for a flame-retardant ABS/polycarbonate blend. The HDT values are shown on the storage modulus plot.                                                                                      |     |  |
| Figure 18.  | Storage and loss modulus plot for unfilled nylon 6 showing the two HDT values in relation to $T_g$ and the melting point.                                                                                             | .16 |  |
| Figure 19.  | Storage modulus versus temperature behavior showing the effect of filler content on the softening point for polycarbonate.                                                                                            | .16 |  |
| Figure 20.  | Storage modulus versus temperature behavior showing the effect of filler content on the properties of nylon 6                                                                                                         |     |  |
| Figure 20a. | Figure 20 showing the modulus levels for the HDT measured by ISO 75 Methods A, B, and C                                                                                                                               | .17 |  |
| Figure 21.  | Storage modulus versus temperature for an unfilled polycarbonate showing the two HDT values and the Vicat softening point.                                                                                            | .17 |  |
| Figure 22.  | Effect of filler type and level on the storage modulus properties of nylon 6                                                                                                                                          | .17 |  |
| Figure 23.  | Effect of filler type and level on the tan delta properties of nylon 6. Note the reduction in peak heights as the elastic contributions of the filler increase.                                                       |     |  |
| Figure 24.  | Effect of fiber length and coupling technology on the tan delta properties of a short glass and long glass PBT polyester. The long glass system has higher elastic properties using the same amount of reinforcement. | .18 |  |

## Figures

| Figure 25.  | Loss modulus versus temperature plots for various blends of PPO and high impact polystyrene.<br>The single $T_g$ indicates a miscible blend with $T_g$ rising as PPO content increases                                                                                                                 |    |
|-------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----|
| Figure 26.  | Loss modulus plots for PBT polyester, polycarbonate, and a PBT/PC blend. Two phases are detectable but the shift of $T_g$ 's toward one another indicates a semi-miscible blend                                                                                                                        |    |
| Figure 27.  | Storage modulus plot comparing an unfilled PBT with a PBT/PC blend                                                                                                                                                                                                                                     |    |
| Figure 28.  | Storage and loss modulus plots of a nylon 6/6 and a blend of nylon 6/6 and PPO. The lack of a shift in the $T_g$ of the nylon and the well-defined modulus plateau between transitions indicates an immiscible blend.                                                                                  | 20 |
| Figure 29.  | A linear plot of apparent modulus vs. time for a 100-hour creep test                                                                                                                                                                                                                                   | 21 |
| Figure 30.  | A semi-log plot of apparent modulus vs. time for the 100-hour creep test shown in Figure 29                                                                                                                                                                                                            | 21 |
| Figure 31.  | A log-log plot of apparent modulus vs. time for the 100-hour creep test shown in Figure 29                                                                                                                                                                                                             | 21 |
| Figure 32.  | Apparent modulus vs. time data for short-term creep tests conducted on a thermoset vinylester at multiple temperatures. The data is plotted in log-log format. The equivalency between time and temperature is shown for a thirty minute loading at 111°C and a temperature increase of 10°C           | 22 |
| Figure 33.  | Storage and loss properties for a 30% glass fiber-reinforced PEEK.                                                                                                                                                                                                                                     | 22 |
| Figure 34.  | Apparent modulus data at multiple temperatures superimposed over the storage modulus plot from Figure 33. The short-term time-dependent behavior parallels the temperature-dependent properties                                                                                                        | 22 |
| Figure 35.  | Comparison of storage modulus properties of ABS and polycarbonate. The more stable modulu and higher $T_g$ of the polycarbonate equate to superior time-dependent properties.                                                                                                                          | 23 |
| Figure 36a. | Raw apparent modulus data shown in Figure 32.                                                                                                                                                                                                                                                          | 24 |
| Figure 36b. | Master curve in process for a reference temperature of 100°C.                                                                                                                                                                                                                                          |    |
| Figure 36c. | Completed master curve for a reference temperature of 100°C24                                                                                                                                                                                                                                          |    |
| Figure 37.  | Comparison of first 125 hours of master curve prediction for a rigid thermoset polyurethane with three real-time 125-hour creep tests. Data is shown on linear scales                                                                                                                                  | 24 |
| Figure 38a. | Raw apparent modulus data from a stress relaxation test on polycarbonate.                                                                                                                                                                                                                              | 25 |
| Figure 38b. | Stress relaxation master curve for polycarbonate in Figure 38a using a reference temperature of 135°C.                                                                                                                                                                                                 | 25 |
| Figure 39.  | Loss modulus measurements at multiple frequencies for the glass transition region of a 50% long glass fiber-reinforced nylon 6. The $T_g$ shifts to slightly higher temperatures as the frequency increases.                                                                                           | 26 |
| Figure 40.  | Loss modulus measurements at multiple frequencies for a 40% long glass fiber-reinforced polypropylene.                                                                                                                                                                                                 | 26 |
| Figure 41.  | Storage modulus measurements at multiple frequencies for an unfilled polycarbonate.<br>Modulus increases with frequency. Frequency-dependent behavior is most pronounced<br>in the glass transition region.                                                                                            | 26 |
| Figure 42.  | Storage modulus measurements at multiple frequencies for a polycarbonate showing the effects of $T_g$ in greater detail.                                                                                                                                                                               | 27 |
| Figure 43.  | Loss modulus master curve vs. frequency for a 30% carbon fiber-reinforced nylon 6/6 at a reference temperature of 40°C.                                                                                                                                                                                | 27 |
| Figure 44.  | Loss modulus master curve vs. time for the material characterized in Figure 43. Time and frequency are related inversely and this plot is a mirror image of Figure 43. The time at peak is the relaxation time associated with the glass transition when the material is at the reference temperature. | 27 |
| Figure 45.  | Plot of peak frequency vs. reference temperature for the material characterized in Figures 43 and 44. The data points describe a straight line and the slope of the line is the activation energy of the glass transition.                                                                             | 27 |

v

| Figure 46a. | Tensile stress-strain curves for an unfilled polypropylene copolymer tested at strain rates of 5, 50, and 500 mm/min. Note the increase in modulus and peak stress and the decrease in ultimate elongation as strain rate increases                |    |
|-------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----|
| Figure 46b. | Tensile stress-strain curves for an unfilled polypropylene copolymer tested at strain rates of 5, 50, and 500 mm/min. The curves have been expanded to show the detail of the yield section of the test.                                           | 28 |
| Figure 47a. | A creep master curve for a 43% glass-reinforced nylon 6/6 generated at 50°C.                                                                                                                                                                       | 29 |
| Figure 47b. | A stress-strain curve for a 43% glass-reinforced nylon 6/6 generated at 50°C. The maximum strain is transposed to the modulus line in order to simulate the linear behavior characterized by the creep master curve.                               | 29 |
| Figure 48.  | Effects of melt temperature on the storage modulus properties of an unfilled polypropylene run in a cool mold.                                                                                                                                     | 31 |
| Figure 49.  | Effects of melt temperature on the storage modulus properties of an unfilled polypropylene run in a hot mold. Note that the modulus of the cold melt samples is reduced significantly in the hotter mold while the high melt product is unchanged. | 31 |
| Figure 50.  | The effects of fiber orientation on the storage modulus properties of a 30% glass fiber-reinforced polyurethane.                                                                                                                                   | 31 |
| Figure 51.  | Effect of mold temperature on the storage modulus properties of a 40% glass fiber reinforced PPS. The reduced modulus and lower glass transition temperature are the result of incomplete crystallization during molding                           | 32 |
| Figure 52.  | Tan delta properties for the samples from Figure 50. The reduced crystallinity results in a higher potential for viscous flow as the material passes through $T_g$ .                                                                               | 32 |
| Figure 53.  | Effects of short-term heat aging on the viscoelastic properties of 30% glass fiber reinforced PEEK. The increased storage modulus and decreased tan delta values indicate the occurrence of secondary crystallization.                             | 32 |
| Figure 54.  | The effect of moisture content on the storage modulus properties of an unfilled nylon 6                                                                                                                                                            | 33 |
| Figure 55.  | The effect of plasticizer loss on the storage and loss properties of a flexible PVC. The rise in $T_g$ results in the embrittlement of the compound                                                                                                | 33 |
| Figure 56.  | Effects of immersion in methyl ethyl ketone (MEK) on the storage properties of an unfilled PBT/polycarbonate blend. Properties are partially restored after a 30-day drying out period.                                                            | 33 |
| Figure 57.  | Effects of solvent immersion on tan delta properties of PBT/polycarbonate blend. The disappearance of the polycarbonate $T_g$ indicates that permanent damage was done to this phase of the blend.                                                 | 34 |

© Plastic Design Library

| Graph 1.  | Storage and loss properties for DuPont Delrin 500 unfilled acetal homopolymer (POM)                                                            | 36 |
|-----------|------------------------------------------------------------------------------------------------------------------------------------------------|----|
| Graph 2.  | Storage and loss properties for DuPont Delrin 577 20% glass fiber filled, UV stable acetal homopolymer (POM)                                   | 36 |
| Graph 3.  | Storage and loss properties for Ticona Celcon M90 unfilled acetal copolymer (POM copolymer)                                                    |    |
| Graph 4.  | Storage and loss properties for Ticona Celcon M90 unfilled acetal copolymer (POM copolymer) showing low temperature behavior                   | 38 |
| Graph 5.  | Storage and loss properties for Ticona Celcon TX90 unfilled, impact modified acetal copolymer (POM copolymer)                                  | 40 |
| Graph 6.  | Storage and loss properties for Ticona Celcon GC25A 25% glass fiber filled acetal copolymer (POM copolymer)                                    | 40 |
| Graph 7.  | Storage and loss properties for Ticona Celcon CFX-0108 25% glass fiber filled, UV stable acetal copolymer (POM copolymer)                      | 42 |
| Graph 8.  | Storage and loss properties for AtoHaas Plexiglas MI-7 unfilled, impact modified acrylic (PMMA)                                                | 42 |
| Graph 9.  | Storage and loss properties for DuPont Zylar ST94-580 unfilled, impact modified acrylic copolymer                                              | 44 |
| Graph 10. | Storage and loss properties for DuPont Zytel ST901 unfilled, impact modified amorphous nylon tested at 0.6% moisture content                   | 44 |
| Graph 11. | Storage and loss properties for EMS Grilamid TR55LX unfilled, amorphous, transparent nylon 12 tested dry as molded                             | 46 |
| Graph 12. | Storage and loss properties for EMS Grilamid TR55LX unfilled, amorphous, transparent nylon 12 tested at 1% moisture content                    | 46 |
| Graph 13. | Storage and loss properties for Allied Signal Capron 8202C unfilled, nucleated nylon 6 tested at 0.15% moisture content                        | 48 |
| Graph 14. | Storage and loss properties for Allied Signal Capron 8231G 6 - 14% glass fiber filled nylon 6 tested at 0.15% moisture content                 | 48 |
| Graph 15. | Storage and loss properties for Bayer Durethan BKV030 30% glass fiber filled nylon 6 tested at 0.47% moisture content                          | 50 |
| Graph 16. | Storage and loss properties for EMS Grilon PVN-3H 30% glass fiber filled nylon 6 tested at 0.4% moisture content                               | 50 |
| Graph 17. | Storage and loss properties for Allied Signal Capron 8233G 33% glass fiber filled nylon 6 tested at 0.3% moisture content                      | 52 |
| Graph 18. | Storage and loss properties for BASF Ultramid B3EG6 30% glass fiber filled nylon 6 tested at 0.5% moisture content                             | 52 |
| Graph 19. | Storage and loss properties for LNP Thermocomp PF1006HI 30% glass fiber filled, impact modified nylon 6 tested at 0.3% moisture content        | 54 |
| Graph 20. | Storage and loss properties for DSM Engineering Fiberfil J7-33 33% glass fiber filled, impact modified nylon 6 tested at 0.3% moisture content | 54 |
| Graph 21. | Storage and loss properties for Allied Signal Capron 8267G 40% glass fiber/ mineral filled nylon 6 tested at 0.3% moisture content             | 56 |
| Graph 22. | Storage and loss properties for Allied Signal Capron 8234G 44% glass fiber filled nylon 6 tested at 0.4% moisture content                      | 56 |
| Graph 23. | Storage and loss properties for Ticona Celstran N6G50 50% long glass fiber filled nylon 6 tested at 0.4% moisture content                      | 58 |
| Graph 24. | Storage and loss properties for DuPont Zytel 151 unfilled nylon 612                                                                            | 58 |
| Graph 25. | Storage and loss properties for DuPont Zytel 77G43L 43% glass fiber filled nylon 612 tested at 0.35% moisture content                          | 60 |

## Graphs

| Graph 26. | Storage and loss properties for LNP Thermocomp IF100-12 60% glass fiber filled nylon 612 tested at 0.4% moisture content               | 50 |
|-----------|----------------------------------------------------------------------------------------------------------------------------------------|----|
| Graph 27. | Storage and loss properties for DuPont Zytel 101L unfilled nylon 66 tested at 0.5% moisture content                                    | 52 |
| Graph 28. | Storage and loss properties for DuPont Zytel CFE4003 unfilled, impact modified nylon 66 tested at 0.5% moisture content                | 52 |
| Graph 29. | Storage and loss properties for DuPont Zytel ST801 unfilled, impact modified nylon 66 tested dry as molded                             | 54 |
| Graph 30. | Storage and loss properties for DuPont Zytel ST801 unfilled, impact modified nylon 66 tested at 0.6% moisture content                  | 54 |
| Graph 31. | Storage and loss properties for DuPont Zytel 70G13L 13% glass fiber filled nylon 66 tested at 0.2% moisture content                    | 56 |
| Graph 32. | Storage and loss properties for DuPont Zytel 70G33L 33% glass fiber filled nylon 66 tested at 0.4% moisture content                    | 56 |
| Graph 33. | Storage and loss properties for Ticona Celanese 1603-2 40% glass fiber filled nylon 66 tested at 0.5% moisture content                 | 58 |
| Graph 34. | Storage and loss properties for Ticona Celanese NFX-0102 40% glass bead filled nylon 66 tested at 0.6% moisture content                | 58 |
| Graph 35. | Storage and loss properties for DuPont Minlon 6122 40% mineral filled nylon 66 tested at 0.5% moisture content                         | 70 |
| Graph 36. | Storage and loss properties for DuPont Minlon 10B40 40% mineral filled nylon 66 tested at 0.2% moisture content                        | 70 |
| Graph 37. | Storage and loss properties for DuPont Zytel FE5128 43% glass fiber filled nylon 66 tested at 0.35% moisture content                   | 72 |
| Graph 38. | Storage and loss properties for DuPont Minlon 11C40 40% mineral filled, impact modified nylon 66 tested at 0.5% moisture content       | 12 |
| Graph 39. | Storage and loss properties for DuPont Minlon 12T 40% mineral filled, impact modified nylon 66 tested at 0.6% moisture content         | 14 |
| Graph 40. | Storage and loss properties for DuPont Zytel 82G33L 33% glass fiber filled, impact modified nylon 6/66 tested at 0.2% moisture content | 14 |
| Graph 41. | Storage and loss properties for DuPont Zytel 72G33L 33% glass fiber filled nylon 6/66 tested at 0.4% moisture content                  | /6 |
| Graph 42. | Storage and loss properties for LNP Verton RF700-10EM 50% long glass fiber filled nylon 6/66 tested at 1% moisture content             | /6 |
| Graph 43. | Storage and loss properties for Mitsubishi Gas Chemical Reny 1032 60% glass fiber filled nylon MXD6                                    | /8 |
| Graph 44. | Storage and loss properties for EMS Grivory 5H 50% glass fiber filled nylon, aromatic copolymer tested at 0.3% moisture content        | 78 |
| Graph 45. | Storage and loss properties for DuPont Zytel HTN51G35HSL 35% glass fiber filled nylon, partially aromatic                              | 30 |
| Graph 46. | Storage and loss properties for GE Plastics Lexan 141R unfilled polycarbonate (PC)                                                     | 30 |
| Graph 47. | Storage and loss properties for MRC Polymers PC429MMH1-200 unfilled polycarbonate (PC)                                                 | 32 |
| Graph 48. | Storage and loss properties for Bayer Makrolon T7435 unfilled, impact modified polycarbonate (PC)8                                     | 32 |
| Graph 49. | Storage and loss properties for GE Plastics Lexan 500 10% glass fiber filled polycarbonate (PC)                                        | 34 |
| Graph 50. | Storage and loss properties for GE Plastics Lexan 3412 20% glass fiber filled polycarbonate (PC)                                       | 34 |

.

#### viii

| Graph 51. | Storage and loss properties for GE Plastics Valox 325 unfilled polybutylene terephthalate (polyester PBT)                                   |
|-----------|---------------------------------------------------------------------------------------------------------------------------------------------|
| Graph 52. | Storage and loss properties for Ticona Celanex 2016 unfilled polybutylene terephthalate (polyester PBT)                                     |
| Graph 53. | Storage and loss properties for GE Plastics Valox 744 10% glass fiber filled, impact modified polybutylene terephthalate (polyester PBT)    |
| Graph 54. | Storage and loss properties for LNP Thermocomp PDXW96630 10% glass fiber filled, impact modified polybutylene terephthalate (polyester PBT) |
| Graph 55. | Storage and loss properties for GE Plastics Valox 420 30% glass fiber filled polybutylene terephthalate (polyester PBT)90                   |
| Graph 56. | Storage and loss properties for DuPont Rynite 530 30% glass fiber filled polyethylene terephthalate (polyester PET)90                       |
| Graph 57. | Storage and loss properties for Plastics Engineering Plenco 50030 30% glass fiber filled polyethylene terephthalate (polyester PET)         |
| Graph 58. | Storage and loss properties for Ticona Impet 330R 30% glass fiber filled polyethylene terephthalate (polyester PET)                         |
| Graph 59. | Storage and loss properties for DuPont Rynite FR530 30% glass fiber filled, flame retardant polyethylene terephthalate (polyester PET)94    |
| Graph 60. | Storage and loss properties for DuPont Rynite RE5211 30% glass fiber filled, color stable polyethylene terephthalate (polyester PET)94      |
| Graph 61. | Storage and loss properties for Allied Signal Petra 130 30% glass fiber filled, from recyclate polyethylene terephthalate (polyester PET)96 |
| Graph 62. | Storage and loss properties for DuPont Rynite 545 45% glass fiber filled polyethylene terephthalate (polyester PET)                         |
| Graph 63. | Storage and loss properties for DuPont Rynite 555 55% glass fiber filled polyethylene terephthalate (polyester PET)                         |
| Graph 64. | Storage and loss properties for GE Plastics Ultem 1000 unfilled polyetherimide (PEI) tested dry as molded                                   |
| Graph 65. | Storage and loss properties for GE Plastics Ultem 1000 unfilled polyetherimide (PEI) tested at 0.5% moisture content                        |
| Graph 66. | Storage and loss properties for GE Plastics Ultem 2300 30% glass fiber filled polyetherimide (PEI) tested dry as molded                     |
| Graph 67. | Storage and loss properties for GE Plastics Ultem 2300 30% glass fiber filled polyetherimide (PEI) tested at 0.5% moisture content          |
| Graph 68. | Storage and loss properties for Victrex PEEK 450G unfilled polyetheretherketone (PEEK)102                                                   |
| Graph 69. | Storage and loss properties for Exxon Escorene 1032 unfilled, homopolymer polypropylene (PP)104                                             |
| Graph 70. | Storage and loss properties for Polypropylene 400121 unfilled, homopolymer polypropylene (PP)104                                            |
| Graph 71. | Storage and loss properties for Polypropylene 400145 unfilled, homopolymer polypropylene (PP)106                                            |
| Graph 72. | Storage and loss properties for Montell PF062-2 20% glass fiber filled polypropylene (PP)106                                                |
| Graph 73. | Storage and loss properties for Montell PF072-3C 30% glass fiber filled polypropylene (PP)108                                               |
| Graph 74. | Storage and loss properties for Montell PF072-4C 40% glass fiber filled polypropylene (PP)108                                               |
| Graph 75. | Storage and loss properties for Ferro RPP40EA63UL 40% glass fiber filled, chemically coupled polypropylene (PP)                             |
| Graph 76. | Storage and loss properties for Ticona Celstran PPG40 40% long glass fiber filled polypropylene (PP)110                                     |

| Graph 77.  | Storage and loss properties for Ferro HPP40GR09BK 10% glass fiber, 30% talc filled polypropylene (PP)                                                 | 112 |
|------------|-------------------------------------------------------------------------------------------------------------------------------------------------------|-----|
| Graph 78.  | Storage and loss properties for Ferro TPP40AC45BK 40% talc filled polypropylene (PP)                                                                  |     |
| Graph 79.  | Storage and loss properties for Ferro MPP40FJ15NA 40% mica filled, chemically coupled polypropylene (PP)                                              |     |
| Graph 80.  | Storage and loss properties for Montell SB224-2C 20% glass fiber filled polypropylene copolymer (PP copolymer)                                        | 114 |
| Graph 81.  | Storage and loss properties for Ticona Topas 5513 unfilled cyclic olefin copolymer                                                                    |     |
| Graph 82.  | Storage and loss properties for Ticona Topas 6013 unfilled cyclic olefin copolymer                                                                    |     |
| Graph 83.  | Storage and loss properties for GE Plastics Noryl N225X flame retardant, moderate heat resistance syrene modified polyphenylene ether (modified PPE)  |     |
| Graph 84.  | Storage and loss properties for GE Plastics Noryl SE1X flame retardant, high heat resistance syrene modified polyphenylene ether (modified PPE)       |     |
| Graph 85.  | Storage and loss properties for GE Plastics Noryl SE1-GFN1 10% glass fiber filled, flame retardant syrene modified polyphenylene ether (modified PPE) | 120 |
| Graph 86.  | Storage and loss properties for GE Plastics Noryl GFN2 20% glass fiber filled syrene modified polyphenylene ether (modified PPE)                      | 120 |
| Graph 87.  | Storage and loss properties for GE Plastics Noryl GFN3 30% glass fiber filled syrene modified polyphenylene ether (modified PPE)                      | 122 |
| Graph 88.  | Storage and loss properties for Ticona Fortron 1140 40% glass fiber filled polyphenylene sulfide (PPS)                                                | 122 |
| Graph 89.  | Storage and loss properties for Phillips 66 Ryton R4 40% glass fiber filled, branched polyphenylene sulfide (PPS)                                     | 124 |
| Graph 90.  | Storage and loss properties for Phillips 66 Ryton BR90A 40% glass fiber filled, impact modified polyphenylene sulfide (PPS)                           | 124 |
| Graph 91.  | Storage and loss properties for Ticona Celstran PPSG50 50% long glass fiber filled polyphenylene sulfide (PPS)                                        | 126 |
| Graph 92.  | Storage and loss properties for Ticona Fortron 4184 50% glass fiber/ mineral filled polyphenylene sulfide (PPS)                                       | 126 |
| Graph 93.  | Storage and loss properties for Ticona Fortron 6165 65% glass fiber/ mineral filled polyphenylene sulfide (PPS)                                       | 128 |
| Graph 94.  | Storage and loss properties for Amoco Performance Polymers Radel AG220 20% glass fiber filled polyethersulfone (PES)                                  | 128 |
| Graph 95.  | Storage and loss properties for GE Plastics Cycolac T unfilled, high impact, general purpose acrylonitrile butadiene styrene (ABS)                    | 130 |
| Graph 96.  | Storage and loss properties for GE Plastics Cycolac GSM unfilled, high impact acrylonitrile butadiene styrene (ABS)                                   | 130 |
| Graph 97.  | Storage and loss properties for Dow Chemical Magnum 9010 unfilled, medium impact acrylonitrile butadiene styrene (ABS)                                | 132 |
| Graph 98.  | Storage and loss properties for GE Plastics Cycolac DFA-R unfilled, medium impact acrylonitrile butadiene styrene (ABS)                               | 132 |
| Graph 99.  | Storage and loss properties for Dow Chemical Magnum 941 unfilled, very high impact acrylonitrile butadiene styrene (ABS)                              | 134 |
| Graph 100. | Storage and loss properties for GE Plastics Cycolac KJW unfilled, flame retardant acrylonitrile butadiene styrene (ABS)                               | 134 |

| Graph 101. | Storage and loss properties for GE Plastics Cycolac VW300 unfilled, halogen free<br>flame retardant acrylonitrile butadiene styrene (ABS)                                                         |    |
|------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----|
| Graph 102. | Storage and loss properties for RTP 601 FR 10% glass fiber filled, flame retardant acrylonitrile butadiene styrene (ABS)                                                                          |    |
| Graph 103. | Storage and loss properties for RTP 605 30% glass fiber filled acrylonitrile butadiene styrene (ABS)13                                                                                            |    |
| Graph 104. | Storage and loss properties for RTP 607 40% glass fiber filled acrylonitrile butadiene styrene (ABS)13                                                                                            |    |
| Graph 105. | Storage and loss properties for Ticona Celstran ABS SS6 6% long stainless steel fiber<br>acrylonitrile butadiene styrene (ABS)                                                                    | 40 |
| Graph 106. | Storage and loss properties for Dow Chemical Styron 484 unfilled high impact polystyrene (HIPS)14                                                                                                 | 40 |
| Graph 107. | Storage and loss properties for Bayer Lustran SAN31 unfilled styrene acrylonitrile copolymer (SAN)14                                                                                              | 42 |
| Graph 108. | Storage and loss properties for Bayer Triax 1125 unfilled acrylonitrile butadiene styrene/<br>nylon alloy (ABS/ nylon alloy)14                                                                    | 42 |
| Graph 109. | Storage and loss properties for Cyro Cyrex RDG200 unfilled, impact modified acrylic/<br>polycarbonate alloy (acrylic/ PC alloy)14                                                                 | 44 |
| Graph 110. | Storage and loss properties for Bayer Bayblend FR1441 brominated flame retardant polycarbonate/ acrylonitrile butadiene styrene alloy (PC/ ABS alloy)                                             | 44 |
| Graph 111. | Storage and loss properties for Bayer Bayblend FR110 halogen free flame retardant polycarbonate/<br>acrylonitrile butadiene styrene alloy (PC/ABS alloy)                                          | 46 |
| Graph 112. | Storage and loss properties for GE Plastics Xenoy 6123 unfilled, impact modified polycarbonate polybutylene terephthalate alloy (PC/ polyester PBT alloy)14                                       | 46 |
| Graph 113. | Storage and loss properties for GE Plastics Xenoy 6240 10% glass fiber filled, impact modified polycarbonate polybutylene terephthalate alloy (PC/ polyester PBT alloy)14                         | 48 |
| Graph 114. | Storage and loss properties for Bayer Makroblend UT1018 unfilled, impact modified polycarbonate polyethylene terephthalate alloy (PC/ polyester PET alloy)                                        | 48 |
| Graph 115. | Storage and loss properties for MRC Polymers Stanuloy ST125 unfilled, from recyclate polycarbonate polyethylene terephthalate alloy (PC/ polyester PET alloy)                                     | 50 |
| Graph 116. | Storage and loss properties for MRC Polymers Stanuloy ST110WCS impact modified, from recyclate polycarbonate polyethylene terephthalate alloy (PC/ polyester PET alloy)                           | 50 |
| Graph 117. | Storage and loss properties for MRC Polymers Stanuloy ST150 unfilled, impact modified, from recyclate polycarbonate polyethylene terephthalate alloy (PC/ polyester PET alloy)                    | 52 |
| Graph 118. | Storage and loss properties for Bayer Makroblend UT403 unfilled, impact modified, UV stabilized, low viscosity polycarbonate polyethylene terephthalate alloy (PC/ polyester PET alloy)           | 52 |
| Graph 119. | Storage and loss properties for MRC Polymers Stanuloy ST170-30G 30% glass fiber filled, impact modified, from recyclate polycarbonate polyethylene terephthalate alloy (PC/ polyester PET alloy)1 | 54 |
| Graph 120. | Storage and loss properties for Montell Hivalloy GXPA064 35% glass fiber filled, impact modified polypropylene/ polystyrene alloy (PP/ PS alloy)1                                                 | 54 |
| Graph 121. | Storage and loss properties for Montell Hivalloy GXPA065 35% glass fiber filled, impact modified polypropylene/ polystyrene alloy (PP/ PS alloy)1                                                 | 56 |

Dynamic mechanical analysis (DMA) has emerged as one of the most powerful tools available for the study of the behavior of plastic materials. Simply stated, DMA measures the viscoelastic properties of materials. Since all polymers are viscoelastic in nature, this analytical method is perfectly suited to the task of evaluating the complex array of phenomena that polymeric materials present to us. Unfortunately, viscoelastic theory has been developed by the discipline of polymer physics and has been articulated in highly mathematical terms. While this work has been essential in promoting the understanding of the fundamental aspects of polymer structure, it has kept the tool of DMA confined to research and development circles. The early instrumentation was difficult to calibrate and use, and the meaning of the results was not always clear to professionals who worked outside the theoretical realm.

Over the last decade, DMA instrumentation has become more user friendly. With proper care, useful experiments can easily be run on a wide variety of materials and product shapes. At the same time, plastic materials are being used more than ever before in high-performance markets typically reserved for metals and ceramics. This has made it critical that designers and engineers understand the subtle aspects of polymer behavior. These subtle aspects are more likely to appear with extended service life and they relate directly to the phenomenon of viscoelasticity. Failure modes such as fatigue, creep rupture, excessive deformation, and environmental aging are all related to the viscoelastic properties of a plastic material. Fortunately, viscoelastic behavior can be readily measured and interpreted using dynamic mechanical analysis. The objective of this work is to describe the principles of dynamic mechanical analysis and present the results with an emphasis on the practical. Professionals working in the disciplines of design and engineering will discover a new tool for understanding polymer behavior. This understanding will improve the material selection process and assist in optimizing the cost/performance balance in both new and existing products made from plastic materials.

#### Test Method for DMA Data

All tests run to generate the DMA data were performed according to ASTM D4065-94 using a fixed frequency of oscillation of 1 Hz and a sample heating rate of 2°C/minute. Use of this heating rate allows the data to be directly related to deflection temperature under load (DTUL) data generated by ASTM D648 or ISO 75. All tests were initiated at -60°C and run through the T<sub>g</sub> for amorphous materials and up to the melting point for semi-crystalline materials. The mode of stress is flexure and the fixture configuration is a single cantilever beam.

#### 2 Principles of Polymer Structure And Instrument Operation

The complexity of polymer behavior relates ultimately to viscoelasticity. Most classical materials exhibit either elastic or viscous behavior in response to an applied stress. Elastic responses are typical in solid materials. When a stress is applied to an elastic system it deforms proportionally by a quantity identified as the strain. We can quantitatively express the relationship between the applied stress and the resulting strain as:

where t is the stress in shear,  $\gamma$  is the strain, and G is the shear modulus. The same equation can be written for other modes of stress such as tension. The response of an elastic system to applied stress is instantaneous and completely recoverable. We say that the system stores the energy and can return it to the system completely when the stress is removed. The above equation is familiar to us as Hooke's Law and a spring is used as the model for materials governed by this law. Figure 1 illustrates the behavior of an elastic system in time.

Viscous behavior is a characteristic of fluids, materials where the bond energies necessary for longrange translational order have been overcome. In these systems an applied stress results in a strain that increases proportionally with time until the stress is removed. The strain is not recoverable; when the stress is removed the deformation is completely retained. We say that the energy has been lost to the system. The model of a dashpot is frequently used as an analogy. Figure 2 shows this behavior graphically. Newton first defined the mathematical relationship between the applied stress and the resulting strain rate in a fluid and termed the resulting ratio the viscosity,

$$\tau = \eta \cdot \dot{\gamma}$$

where t is the stress,  $\dot{\gamma}$  is the strain rate, and  $\eta$  is the viscosity.

The large size and conformational variety of polymer molecules prevent these materials from forming the fully ordered systems that we normally associate with solid materials. By the same token, in the fluid state, the high degree of chain entanglement that is possible in these systems produces



Figure 1. Relationship of stress and strain with time for a pure elastic system.

behavior that departs significantly from that of classical Newtonian fluids. In both the solid and the fluid state, these materials exhibit a combination of elastic and viscous responses when placed under stress. In a solid plastic beam we can perform classical measurements of stress versus strain that allow us to calculate modulus. However, if we maintain a constant applied load, we find that the resulting strain is not constant; it continues to increase as a function of time. In engineering terms we refer to this as creep or cold flow and it is actually a manifestation of viscous flow in the apparently solid polymer. A counterpart to this behavior



Figure 2. Relationship of stress and strain with time for a purely viscous system.

is known as stress relaxation. Here the strain is held as the constant and the stress required to maintain that strain is measured as a function of time. In a viscoelastic system the stress decreases with time. Since modulus is defined as the ratio of stress to strain, it can be seen that the modulus calculation in viscoelastic systems must incorporate a time function and cannot be considered as an immutable property independent of the period over which the measurement is made. At a structural level, the polymer chains are slowly rearranging in response to the applied stress. Knowledge of the rate at which this occurs is critical to an accurate determination of a material's fitness-for-use in a particular application.

Similarly, we can perform viscosity determinations on a polymer in the fluid state by applying a known stress and measuring the resulting strain rate or rate of flow. In a Newtonian fluid the viscosity is a constant that is independent of the strain rate. However, if we measure the viscosity of a polymer fluid at various strain rates, we find that it changes, becoming lower at higher strain rates. At a structural level this effect is produced when the long, entangled polymer chains become oriented in the direction of flow and the entire system moves with reduced resistance. When the strain is suddenly removed the long chains re-entangle and the fluid exhibits aspects of elastic recovery.

To further complicate the picture, the balance between the elastic and viscous response changes for a given material as a function of temperature. In the solid state this balance is reflected in terms of load-bearing properties — time-dependent behavior such as creep and stress relaxation, as well as impact properties. In the fluid state, viscoelasticity provides information on molecular weight, molecular weight distribution, thermal stability, and crosslinking. The equation relating stress and strain in a viscoelastic system introduces the aspect of time dependency

$$t = G(t) \bullet \gamma$$

where G(t) is the stress relaxation modulus. The material initially responds in an elastic manner, then as a viscous fluid. When the stress is removed, the elastic portion recovers over an extended period of time. Figure 3 provides a generalized illustration of this compound behavior.



Figure 3. Relationship of stress and strain with time for a viscoelastic system.

Determining the proportion of the elastic and viscous components in a polymer, and the factors that cause that balance to change, is crucial to understanding how a material will perform in a given application environment. It can also provide valuable information regarding structure and composition. DMA accomplishes this resolution. While it is possible to perform dynamic mechanical measurements on solids and fluids, the focus of this work is improved material selection for end-use applications. Therefore, this work will concentrate on solid-state properties.

To this point, we have discussed the time-dependent aspects of material behavior. While the best



Figure 4. The behavior of an elastic system under oscillatory stress. Stress and strain and in phase.



Figure 5. The behavior of a viscous system under oscillatory stress. Stress and strain are 90° out of phase.

dynamic mechanical analyzers can be operated in a controlled stress or controlled strain mode, the primary value of the method is in the dynamic experiment. In this mode of operation, the DMA instrument applies an oscillatory stress with a controlled frequency. Dynamic modulus values using this method are a function of frequency rather than time. The stress function is sinusoidal. In a perfectly elastic system the applied stress and the resulting strain will be in phase as shown in Figure 4. For an ideal fluid the stress will lead the strain by 90° ( $\pi/2$ radians) as illustrated in Figure 5. A viscoelastic material will give some hybrid of these two responses. The stress and strain will be out of phase by some quantity known as the phase angle and commonly referred to as delta ( $\delta$ ). A small phase angle indicates high elasticity while a large phase angle is associated with highly viscous properties. The complex response of the material is resolved into the elastic or storage modulus (G') and the viscous or loss modulus (G") if the deformation is in the shear mode. If the deformation is in the tensile or flexural mode, then E' and E" are used. Table 1 provides a summary of the key terms.

#### Table 1 Key Viscoelastic Terms

| Complex Modulus<br>Elastic Modulus<br>Viscous Modulus | G*or E* = $\sigma^*/\gamma$<br>G' or E' = $\sigma'/\gamma = (\sigma^*/\gamma)\cos^2 G''$ or E'' = $\sigma''/\gamma = (\sigma^*/\gamma)\sin^2 \sigma^*/\gamma$ |
|-------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Complex Viscosity                                     | $n^* = G^*/\gamma$                                                                                                                                            |
| Loss Tangent                                          | tan $\delta = G''/G'$ or E''/E'                                                                                                                               |

When tensile, flexural, or shear modulus are measured by traditional methods, it is the complex modulus that is the result of the test. It is defined as the slope of the stress-strain curve in the linear region. The DMA resolves this complex modulus into the storage and loss component. The smaller the phase angle is, the closer the elastic modulus is to the complex modulus. It is convenient to think of the elastic and viscous component in the vector terms illustrated in Figure 6a-c. Figure 6a shows the relationship between the stress and strain vec-



Figure 6. (a) Relationship of the stress and strain vectors in a dynamic experiment. (b) Stress vectors resolved into the loss and storage components. (c) Corresponding modulus vectors with loss vector transposed to form a right triangle.

tors. Figure 6b shows the stress vectors resolved into their storage and loss component. The storage component is in phase with the strain. Figure 6c expresses the vectors in terms of the modulus. The transposed loss modulus shows that the complex modulus can be thought of as the hypotenuse of a right triangle and the storage and loss components as the two shorter legs that are perpendicular to each other. The tangent of the phase angle, often referred to as tan delta, can be used to deduce the shape of the right triangle. In the solid state, tan delta for a polymeric material rarely rises above 0.1 until the material approaches the softening temperature. A tan delta of 0.1 is analogous to a right triangle with a long side of 10 units and a short side of 1 unit. A triangle of these dimensions will have a hypotenuse 10.05 units long. This quantifies the relationship between the complex modulus measured by a classical stress-strain test and the elastic modulus measured by DMA. For the vast majority of the conditions at which DMA measurements are made on solid polymers, the complex modulus and the elastic modulus can be considered equivalent. Table 2 shows the relationship between tan delta and the degree of variation between the elastic and complex modulus.

A brief note about the frequency of the measurement is in order here. Many DMA instruments provide the experimenter with the option of operating the device in either the fixed frequency or the resonant frequency mode. Many older instruments offer only the resonant frequency option. In the resonant frequency method, the instrument finds the natural frequency of the material and this frequency varies with the rigidity of the sample. As the sample is heated and the modulus changes, the change is measured in terms of a reduction in the frequency, which is then converted to modulus values. In rigid systems the resonant frequency will typically fall between 15-30 Hz. While this method can be useful for making rapid and approximate determinations of transition temperatures, it is primarily designed for handling very stiff samples that are rarely encountered when working with polymer systems. In addition, there are two disadvantages to operat-ing in the resonant frequency mode. First, subtle transitions that may appear in a multi-phase system such as a polymer blend do not resolve well at high frequencies. Second, since viscoelastic properties are time dependent and therefore frequency dependent, a method that allows the frequency to change during the scan will be inherently less accurate than a method that controls the frequency as a constant. For this reason, the ASTM method written for dynamic mechanical analysis specifies a frequency of 1 Hz. This standard is adhered to in the data contained in the appendix. This ensures that results from different experimenters will not contain discrepancies based on the frequency-dependent behavior of the materials. In section 4.3 advanced methods using multiple fixed frequencies will be discussed.

# Table 2Effect of Tan Delta on VarianceBetween Complex And Storage Modulus

| Tan Delta | Variance (E*/E') |
|-----------|------------------|
| 0.00      | 1.00000          |
| 0.01      | 1.00005          |
| 0.03      | 1.00045          |
| 0.05      | 1.00125          |
| 0.10      | 1.00499          |
| 0.20      | 1.01980          |
| 0.30      | 1.04403          |
| 0.50      | 1.11803          |
| 0.75      | 1.25000          |
| 1.00      | 1.41421          |

#### 2.1 Data Presentation

The information from DMA tests can be configured in a variety of ways depending upon the design of the test. For solid materials, the most common experiment is a temperature sweep. A frequency and amplitude of oscillatory stress are selected and maintained as constants throughout the experiment. A heating routine is selected and the material temperature is raised from the desired starting temperature to an endpoint. Two types of heating routines are sanctioned by ASTM D-4065, the method governing dynamic mechanical analysis.

The first is a stairstep method where the sample temperature is raised in 5°C increments and allowed to equilibrate at each temperature for 3.5 minutes before performing the measurements. Since the sample thermocouple is typically 1 mm away from the face of the material, and the sample will have some thickness that may vary from 0.5-5 mm, this method is designed to overcome the problems associated with thermal lag between the measured temperature and the actual bulk temperature of the material. However, the method has the disadvantage of only providing a data point every 5°C. This may be adequate for instances where the objective of the test is an approximate storage modulus value, since interpolation is possible for applications where the temperature of interest falls between measurement points. However, for identifying exact transition temperatures, which appear as peaks in the loss modulus and tan delta curves, this method is less satisfactory than a continuous heating method.

Continuous heating routines using heating rates of 1-2°C are also permitted in the ASTM method. These typically provide 5-20 distinct data points per degree and allow for the study of materials where the temperature and the peak height of important transitions are critical. The heating rate of 2°C/minute is particularly useful since it is also the heating rate used in determining the heat deflection temperature (HDT) of plastic materials by ASTM D-648 or ISO 75. Most users of DMA data for engineering purposes come from a tradition of short-term property charts where the only attempt to address elevated temperature performance comes in the form of an HDT value. We will discuss the relationship between HDT values and DMA data in section 3.3. In order to allow the user to readily relate HDT values to DMA data, the data provided in the appendix is generated using a heating rate of 2°C/minute. The stairstep method is useful for more advanced tests that will be discussed in section 4. These involve evaluations at multiple frequencies or stress relaxation and creep tests where multiple measurements or long-time measurements must be made at a constant temperature.

The most common graphic presentation involves plotting the elastic or storage modulus (E' or G'), the viscous or loss modulus (E" or G"), and tan delta as a function of temperature. The deformation mode for the data provided in the appendix is flexure and therefore E' and E" are used. From an engineering standpoint, these are more useful values for evaluating solid-state performance while shear results are more significant for flexible systems such as uncured crosslinkable materials, adhesives, pastes, and melts. In addition, experience has shown that tensile and flexural modulus values are nearly equivalent for a homogeneous system. It is therefore possible to approximate tensile modulus values from the flexural modulus data provided. Conventionally, the y-axis data is plotted on a logarithmic scale. This can be particularly useful for amorphous polymers where the glass transition may reduce the storage modulus of the material by 2-3 orders of magnitude and obscure changes related to molecular weight that may occur above the glass transition. However, in semi-crystalline systems the changes in stor-age modulus are typically less than an order of magnitude until the material approaches the melting point. If the softening of the material is included in the plot, it can obscure the effects of the glass transition. In addition, logarithmic scales tend to obscure differences between materials in a comparative plot. For loss properties, logarithmic scales tend to diminish the visual impact of transitions. For data that focuses on solid-state performance, clarity is enhanced by utilizing a linear scale for all y-axis data, and this convention has been chosen for the graphs in the appendix.

#### 2.2 Structural Characteristics of Polymers

In order to make the best use of DMA data, it is useful to relate representative plots to the structural characteristics of different polymer families. Since this initial version of the database is devoted to rigid and semi-rigid thermoplastics, this discussion will focus on the two most important polymer families within this category — amorphous and semi-crystalline materials. Examples of a thermoplastic elastomer and a rigid crosslinked system will be reviewed for contrast.



Figure 7a. Storage and loss properties for an unfilled polycarbonate.

Figure 7a shows a typical DMA result for polycarbonate, an amorphous thermoplastic. The full-scale plot begins at -60°C and ends at 175°C. It can be seen that there is little change in the storage modulus between the initial temperature and 140°C. However, between 140-160°C the storage modulus drops by over two orders of magnitude and the material has lost its usefulness as a structural material. This abrupt change in physical properties is associated with the onset of short-range molecular motions known as the glass transition. The amorphous structure in a polymer is often likened to that of glass because there is structural rigidity without the presence of a well-organized intermolecular structure. In an amorphous polymer the glass transition can be thought of as a softening temperature.

Figure 7b expands the graph to show the glass transition in more detail. We can see that the loss modulus rises to a maximum as the storage modulus is in its most rapid rate of descent. The peak of the loss modulus is conventionally identified as the glass transition temperature ( $T_g$ ), even though the DMA plot clearly shows that the transition is a process that spans a temperature range. In most amorphous polymers the temperature range is relatively narrow, 25-40°C for materials that do not contain polymeric modifiers such as elastomeric toughening agents. The tan delta curve follows the





Figure 7b. Expanded plot of storage and loss properties for polycarbonate at T<sub>g</sub>.

loss modulus curve closely and provides a running tally on the ratio of the elastic and viscous phases in the polymer. At low temperatures leading up to the glass transition, tan delta is well below 0.1. The rapid rise in the tan delta curve coincides with the rapid decline in the storage modulus. Above 150°C the tan delta curve rises rapidly and reaches a peak above 2.0. In this region the contribution of the loss modulus to the complex modulus is equal to or greater than that of the storage modulus. Once the glass transition is complete, the loss modulus drops back to a level close to the pre-transition values. However, because of the drastic reduction in elastic properties, the tan delta values do not decline significantly. The low storage modulus indicates that the material is easily deformed by an applied load. More significantly, the high tan delta values mean that once the deformation is induced, the material will not recover its original shape. It is considered to be soft and pliable. The pattern observed here for polycarbonate is typical of all amorphous materials. The key difference lies in the glass transition temperature (Tg) and the storage modulus below  $T_{g}$ .

Figure 8a shows a DMA plot for nylon 6, a semicrystalline polymer. Semi-crystalline polymers are so named because the large extended chain molecules are not capable of achieving the perfect lattice order that is typical of the crystalline structure in lower molecular weight materials. We speak, therefore, in terms of degree of crystallinity. If the degree of crystallinity reaches 30-35% in a polymer matrix, then there is sufficient order to produce a material with an identifiable crystalline melting point. These materials are actually a mixture of amorphous and crystalline regions. Consequently, they exhibit both a melting point and a glass transition. The glass transition can be readily identified in the DMA plot. The storage modulus declines rapidly and the loss modulus and the tan delta curve rise to maximum values. However, because of the presence of a crystalline matrix, the material does not soften above the glass transition. The new mobility of the amorphous regions causes a reduction in the storage modulus, but the material exhibits useful solid-state properties until the material approaches the melting point, some 150°C above the glass transition. The diminished effect of



Figure 8a. Storage and loss properties for unfilled nylon 6.

the glass transition on the properties of the semicrystalline material can also be seen in the tan delta peak value. Instead of rising above 1.0 as in most amorphous materials, the peak height for this material barely exceeds 0.15. Nylon 6 gives a result that is typical for a semi-crystalline polymer. The primary differences between semi-crystalline materials are in the actual glass transition temperatures, melting points, and degree of storage modulus decline associated with the glass transition. The glass transition can be thought of as the softening point of the amorphous regions, and the melting point represents the solid-liquid transition for the semi-crystalline structure. Therefore, the reduction in the storage modulus through the glass transition can serve as a relative indicator of degree of crystallinity. We will see later that there are other modifications that increase the elastic properties of a material and decrease the effect of the glass transition on the storage modulus. Therefore, care must be taken in interpreting the structural details behind DMA data. Once the semicrystalline material approaches the melting point, the tan delta value



Figure 8b. Storage and loss properties for an unfilled nylon 6/12 showing the rapid rise in tan delta as the material softens.

will rapidly increase as the material changes from an elastic solid to a viscous fluid. Figure 8b shows a DMA plot for a nylon 6/12 heated above the melting point. The tan delta value above the melting point is great enough to dwarf the glass transition event. The onset temperature for the rapid increase in tan delta will agree closely with the melting point measured by calorimetric methods.

Crosslinked systems such as rigid thermosets produce DMA results that are somewhat unique to the type of matrix polymer. Epoxies and phenolics, for example, have distinct temperature-dependent behaviors that make them easily distinguishable. However, in general these materials all have a welldefined glass transition that produces the typical behavior of a declining storage modulus coincident with a rising loss modulus and tan delta. Figure 9 shows the storage and loss properties for an epoxy



Figure 9. Storage and loss properties for an epoxy circuit board material.

material used in printed circuit boards. Since the material is crosslinked, it has no melting point and in this respect it resembles an amorphous material. However, due to the crosslinking, the plateau modulus beyond the glass transition does not decline to near zero. Instead, the material will still exhibit useful load-bearing characteristics even 50-75°C above  $T_g$ . Note also that in crosslinked systems the tan delta values above  $T_g$  return to pre- $T_g$  levels.

Elastomers have glass transition temperatures below room temperature and their storage modulus properties are typically very low at ambient conditions. In this respect, they resemble a rigid amorphous material that has been heated above  $T_g$ . However, unlike the amorphous materials, elastomers exhibit relatively low tan delta properties above  $T_g$ , indicating that while little force is required to deform the material, recovery will be good once the applied load is removed. Intuitively this confirms our physical experience with elas-



Figure 10. Storage and loss properties for a thermoset elastomer.

tomeric compounds. When the temperature is lowered, the material passes through the glass transition and presents itself as a rigid system. If the material is a crosslinked elastomer then it will have a low but measurable modulus to very high temperatures while a thermoplastic elastomer will exhibit a second modulus decline associated with the melting point. This difference is most easily observed by plotting the storage modulus on a logarithmic scale. In addition, the tan delta values will be much higher for the melted thermoplastic system than for the crosslinked thermoset elastomer. Figure 10 shows a typical DMA result for a crosslinked elastomer.

#### 3.1 Storage Modulus Versus Temperature

From an engineering standpoint, the most useful and accessible information available from a DMA test is the plot of storage modulus versus temperature. As we have indicated above, it enables us to determine the basic structure of the polymer system. The ability to distinguish between a semicrystalline and an amorphous material is not unique to DMA. However, DMA may be the only technique that provides this structural information and at the same time provides quantitative data regarding the modulus of the material at any temperature of interest. At a time when new designs are subjected to extensive structural analysis, it is important that the analyst have accurate material property data available in order to make the best use of the computer programs. For most plastic materials, the only modulus values readily available are the room temperature values from the short-term property charts. Because the storage modulus is nearly equivalent to the complex modulus, it will be observed that the property chart values at room temperature will agree closely with the room temperature DMA values. However, the property chart provides no information about material behavior above or below this single point.

Even in those rare cases where a property like modulus is measured at three or four temperatures, interpolation or extrapolation to a particular temperature of interest can be difficult due to the presence of transitions and the resulting non-linear behavior. Table 3 gives flexural modulus values for a PET polyester at four temperatures, -40, 23, 93, and 149°C (-40, 73, 200, and 300°F). Accurate interpolation to a modulus at 77°C (170°F) will be difficult since the slope of the modulus-temperature relationship obviously changes significantly between room temperature and 300°F. Figure 11 shows the actual storage modulus plot as a function of temperature. It provides direct information on the modulus-temperature relationship, identifies the glass transition region, and eliminates the guesswork. In the 99% of the cases where only the single point at room temperature is available, any attempt to estimate properties at different temperatures is futile.



Figure 11. Storage modulus vs. temperature for a 30% glass fiber-reinforced PET polyester.

#### Table 3

#### Modulus Data For 30% Glass Fiber-Reinforced PET Polyester

#### Temperature (°C)/(°F) Flexural Modulus (GPa)/(psi)

| -40/-40 | 10.335/1,500,000 |
|---------|------------------|
| 23/73   | 8.960/1,300,000  |
| 93/200  | 3.580/ 520,000   |
| 149/300 | 2.690/ 390,000   |

Plots of storage modulus allow for the direct comparison of a variety of materials that may be considered as candidates for an application. While there are many considerations in selecting the correct plastic material for an application, load-bearing capability is typically an important criterion. If a part will experience a particular operating temperature, DMA plots provide a quantitative comparison of the elastic modulus at that temperature. More importantly, the DMA plots provide a picture of those temperature regions where material properties are very stable with temperature and those regions where rapid changes may occur that could render the product useless. Figure 12 provides a comparison of four glass fiber-reinforced semicrystalline thermoplastics that may be considered for a particular high-temperature application. All contain 30% glass fiber and are based on PBT polyester, PET polyester, nylon 6, and nylon 6/6. If the planned operating temperature of the application is 75°C (167°F) then the PET clearly has the advan-



Figure 12. Comparison of storage modulus properties for PET polyester, PBT polyester, nylon 6, and nylon 6/6, all with 30% glass fiber reinforcement.

tage in terms of load-bearing properties. However, all of these materials have relatively low glass transition temperatures and are in the middle of a rapid change in properties at this temperature. If occasional temperature excursions to 120°C are expected, then the degree of change in modulus as a function of the glass transition becomes a critical factor. At this higher temperature all the materials are through their transitions, and the nylon 6/6 has the highest modulus. Ultimately, the nylon 6 also has a higher elastic modulus after all of the transitions are complete. If the design engineer determines that the modulus loss associated with the glass transition is unacceptable, then a material with a  $T_g$ above 120°C can be selected in order to retain the highest possible modulus. DMA results are the best tool for such a search.

A generalized plot of storage modulus versus temperature is shown in Figure 13. The y-axis is logarithmic in this case in order to depict the full range of possible behavior exhibited by amorphous, semi-crystalline, and crosslinked polymers. This graph shows that above the glass transition there are key relationships between storage modulus and structure that can directly affect product performance. For amorphous thermoplastics the modulus increases with molecular weight. These measurements are made at very low modulus values when the polymer is essentially a viscous melt. Therefore, these determinations are difficult to make with a DMA designed for solid-state measurements and are best accomplished in an instrument designed to handle melts. In semi-crystalline resins the modulus above the glass transition increases with degree of crystallinity. This provides a very useful method for comparing polymer families, evaluating differences between materials within a given polymer family, and even determining structural changes in a specific grade of material subjected to different thermal histories during processing or end use. For crosslinked systems the relationship is found between post- $T_g$  modulus and the degree of crosslinking.

#### 3.2 The Meaning of Loss Modulus and Tan Delta

In section 2.2 we reviewed the key differences between semi-crystalline and amorphous thermoplastics as they manifest in DMA data. This section is designed to provide a more detailed interpretation of the loss properties of a polymer. As has been stated above, the loss modulus is the contribution of the viscous component in the polymer, that portion of the material that will flow under conditions of stress. In engineering terms we encounter this behavior as creep (cold flow) or as stress relaxation depending upon whether the application involves a constant stress or a constant strain. Tan delta is a ratio expressed as E"/E'. Since it is dimensionless, it provides a convenient means for comparing polymers where storage and loss modulus values may be subject to change because of alterations in composition, geometry, or processing conditions. Tan delta can be thought of as an index of viscoelasticity.



Figure 13. Generalized plot of the effects of structure on storage modulus properties.

In solid plastic materials, tan delta is typically below 0.1 and frequently below 0.03 when the material is below the glass transition. However, during a transition both the loss modulus and tan delta rise as the storage modulus goes into a rapid decline. In fact, the coincidence of these events is so pronounced that it is tempting to think of the loss modulus as the derivative of the storage modulus. However, this misses the true significance of the viscous flow properties in a plastic material. The rapid rise in the loss modulus indicates an increase in the structural mobility of the polymer, a relaxation process that permits motion along larger portions of the individual polymer chains than would be possible below the transition temperature. During the glass transition, which is the largest and most important of these relaxations, those regions within the polymer structure that are not either crystallized or crosslinked, become capable of an increased degree of freedom. Under an applied load this new mobility will take the form of organized movement or flow. The magnitude of the loss modulus and tan delta peaks varies with the severity of the decline in the storage modulus. Thus in an amorphous polymer, which loses 99%+ of its storage modulus as it passes through the glass transition, tan delta values will typically peak above 1.0 and often above 2.0. This means that during the glass transition the loss modulus equals or exceeds the storage modulus. Under these conditions, the material is soft and pliable and is no longer serviceable as a load-bearing material. In an unfilled semi-crystalline thermoplastic, where the modulus decline is typically 60-90%, tan delta values crest at 0.1-0.2, a full order of magnitude lower than for a fully amorphous system. While molecular mobility is increased, the crystalline network maintains a portion of the elasticity needed for structural applications.

Assigning an exact value to  $T_g$  has historically been the subject of some disagreement. If the primary concern is the practical effect of the transition on the load-bearing characteristics of the material, the onset of a sharp reduction in the storage modulus may be used. However for some material families such as polypropylene, unsaturated polyesters, and liquid crystal polymers, no well defined onset exists. Alternatively, the peak temperature of either the loss modulus or tan delta is used. Of these, the loss modulus provides the best agreement with determinations made by other thermal analysis methods and ASTM has recently codified this into D-4065. Once the glass transition is complete the decline in the storage modulus slows or even stops for a certain temperature interval. At the same time, the loss modulus returns to pre-Tg levels. However, as illustrated in section 2.2, the tan delta values do not. In some amorphous materials such as acrylics and amorphous nylons, no tan delta peak accompanies the loss modulus peak. Instead, the tan delta curve exhibits a sharp onset that coincides with the loss modulus peak temperature. Above this temperature the value rises rapidly. Figure 14 shows this behavior for an amorphous nylon. For semi-crystalline materials, the post-Tg tan delta values will also be higher, 2-4 times greater than they are below Tg. Then, as the semi-crystalline materials approach the melting point tan delta rises again, this time to values well above 1.0 as the material changes from solid to liquid. Because the values are so high compared to those achieved during the solid-state evaluation, this portion of the curve is usually omitted to make the glass transition more visible.

While the glass transition is the most important solid-solid transition in plastic materials, it is not the only significant event revealed by DMA. Any change in the mobility of the polymer structure will appear as a peak in the loss modulus and tan delta curves and a step reduction in the storage modulus. These secondary relaxations are typically due to the onset of rotational motion in the polymer and many of them occur at temperatures below the range of practical interest. In addition, the magnitude of these transitions is much smaller than that of the glass transition. Nevertheless, some of these



Figure 14. Storage and loss properties for amorphous nylon. Tan delta does not resolve to a peak in the glass transition region but rises rapidly starting at  $T_e$ .

events help to explain differences in impact performance. Short-range molecular mobility below room temperature, which appears as sub-ambient transitions in DMA tests, provides a mechanism for energy absorption that can manifest as improved toughness in a polymer. Figure 15 shows a comparison of tan delta curves for two high-performance amorphous polymers, polyethersulfone (PES) and polyetherimide (PEI). Both materials have similar chemical structures and comparable storage modulus properties as a function of temperature. However, in impact tests the polyethersulfone exhibits greater impact resistance and a more ductile failure mode. The tan delta curves for the two polymers show that the PES has a weak but measurable relaxation at 4°C while the low-temperature transition in the PEI occurs well above room temperature at 96°C. In addition, the tan delta values for the PES are consistently higher than for the PEI throughout the scan, particularly below room temperature. Therefore, at room temperature the PES polymer matrix is more mobile and the greater tendency for viscous flow results in increased toughness.



Figure 15. Comparison of tan delta properties for PES and PEI from -50 to 160°C. The higher tendency for viscous flow is part of the reason for the superior impact resistance of PES.

In some polymers, a low-temperature transition is due to the glass transition of a rubbery impact modifier. Figure 16 shows this phenomenon for a toughened acrylic. The loss modulus peak at 108.6°C is attributable to the acrylic while the broader transition that crests at -7.7°C is caused by the impact modifier. Similarly, ABS materials will display a high temperature glass transition for the styrene-acrylonitrile (SAN) backbone and a lowtemperature transition (near -90°C) for the butadiene rubber phase. Prior knowledge of the composition of a material is helpful in interpreting the transitions in a DMA plot.





#### 3.3 The Relationship of DMA To HDT and Vicat Softening

Professionals who come from an engineering discipline and who have experience with plastic materials have typically become accustomed to working with short-term properties. The heat deflection temperature (HDT) and Vicat softening test, both described by ASTM D-648, represent the only systematic attempts in standardized testing to characterize elevated temperature performance in plastic materials. While these tests describe particular responses to temperature under very specific sets of conditions, these single points are often used in the material selection process as maximum continuous use temperatures. The HDT test is essentially designed to evaluate the temperature at which a specific deformation occurs in a 3-point bending mode under a specific load. The load may either be 0.455 MPa (66 psi) or 1.82 MPa (264 psi). The sample and appropriate fixturing are immersed in an oil bath that serves as the heat transfer mechanism and the temperature of the fluid is raised at a constant rate of 2°C/minute. Since the HDT defines a temperature at which a given sample geometry exhibits a specific deformation, the test essentially measures the temperature at which a material

achieves a certain modulus. Takemori (1) has calculated the modulus values to be 800 MPa (116,000 psi) for the applied load of 1.82 MPa and 200 MPa (29,000 psi) for the applied load of 0.455 MPa. The new ISO 75 standard defines three stress levels for measuring the heat deflection temperature. Method A corresponds to the high-load conditions for ASTM D-648 while Method B uses the low-load conditions. Method C employs an applied load of 8 MPa (1160 psi). Under these conditions, the modulus-at-temperature is 3520 MPa (510,000 psi). This will significantly lower the measured HDT of filled semi-crystalline materials that fall below this modulus value either during the glass transition or in the early stages of the crystalline plateau. The Vicat softening point is determined by applying a specified pressure on a needle with a standardized surface area until a certain penetration is achieved. This test is used most often with amorphous materials where there is no well defined melting point and the softening process is relatively gradual.

Since the HDT test is a measurement of modulus at temperature, it should be possible to determine the HDT by locating the specific modulus values of 800 and 200 MPa on the storage modulus plot. For several reasons this technique does not always produce precise agreement with Takemori's modulus. First, there may be differences in part geometry, most notably in wall thickness, between the samples used for DMA testing and the samples used by the material supplier for HDT testing. Second, sample preparation methods have a significant effect on the HDT result (2). An injection molded specimen may contain molded-in stresses that



Figure 17. Storage and loss properties for a flame-retardant ABS/polycarbonate blend. The HDT values are shown on the storage modulus plot.

cause the sample to warp as it is heated. This warpage can be interpreted by the HDT test as deflection and this will produce a lower value. Third, the HDT often occurs in a region where the storage modulus is dropping by as much as 100 MPa/°C. This rapid change, combined with differences in the heat transfer mechanism between the oil bath of the HDT test and the air gap of a DMA instrument can lead to discrepancies. Fourth, the flexural modulus measured by the HDT test is the complex modulus while the DMA measures the elastic modulus. In amorphous materials, where the loss modulus contributes significantly to the complex modulus near Tg, the complex modulus will be considerably higher than the storage modulus and an allowance must be made for this discrepancy in correlating the HDT to the precise modulus calculated by Takemori. Finally, as we will see in section 4.3, the storage modulus is dependent upon the frequency at which the measurement is made. This frequency-dependent behavior is most noticeable in the glass transition region. The use of an oscillatory stress by DMA as opposed to a static load in the conventional HDT test can lead to some discrepancies.

Figure 17 shows test results for a flame-retardant alloy of polycarbonate/ABS. The property chart values of 100°C for the HDT at 66 psi and 95°C for the HDT at 264 psi are shown on the storage modulus curve. However, Bayblend FR110 reaches a modulus of 800 MPa at 108°C and a modulus of 200 MPa at 113°C. While this represents an error of 13°C for this material, the relationship between the deflection temperatures and the structural changes associated with  $T_g$  are unmistakable.

A general appreciation of the structural changes associated with the HDT are apparent from an examination of different DMA plots. Since the modulus of an amorphous material declines by over 99% as it passes through the glass transition, it is reasonable to expect that the temperatures at which the material achieves moduli of 800 and 200 MPa would be close together. Figure 17 confirms this and shows that the HDT of an amorphous material typically occurs in the middle of the decline in the storage modulus or on the high-modulus part of the curve just prior to the decline.



Figure 18. Storage and loss modulus plot for unfilled nylon 6 showing the two HDT values in relation to  $T_g$  and the melting point.

If we examine the tabular data for HDT in an unfilled semi-crystalline system, however, we find a great difference between the values measured at 0.455 MPa and 1.82 MPa. In nylon 6, for example, the HDT at 0.455 MPa is 175°C while the value at 1.82 MPa is only 65°C. Figure 18 clearly shows the mechanism behind this phenomenon. As the material enters the glass transition region, the modulus drops rapidly from 2.8 GPa (406,000 psi) to 0.56 GPa (81,200 psi) between 40-90°C. The loss modulus peak puts the Tg at 65°C. In this transition region, therefore, the modulus of the nylon 6 has passed through one HDT modulus threshold, but the crystalline structure of the material prevents it from falling through the second one. This second threshold is not reached until the material approaches the melting point. Therefore, in unfilled semi-crystalline systems, the low-load HDT is associated with the early stages of the crystal melting process while the high-load HDT is related to the glass transition. If we add a filler to an amorphous system, we do not appreciably change the threshold temperatures as can be seen in Figure 19. However, in a semi-crystalline system, the highload HDT increases significantly and becomes almost equivalent to the low-load HDT simply because the material is now rigid enough to remain above the 800 MPa threshold until the material is near the melting point. This is illustrated in Figure 20. Figure 20a shows the effect that the new ISO 75 Method C will have on materials like the 14% glass-reinforced nylon 6. By raising the stress level on the sample, the critical modulus value is increased to the point where it will now coincide with the glass transition temperature and not the softening point. To the user of short-term data, this will appear to be a substantial downgrading of the material properties. However, the DMA plot provides insight into the reasons for the apparent shift.

The Vicat softening temperature involves an actual penetration of the material as opposed to the deflection of a solid beam. The softening point, therefore, will be higher than the HDT. In an amorphous material, the HDT values will typically be 15-20°C below the Vicat softening point. Figure 21 shows a DMA plot for an unfilled polycarbonate with both HDT values and the Vicat softening point annotated on the storage modulus curve. Placing HDT values on a DMA curve shows that by the time a plastic material reaches its HDT, it has already lost 70-90% of its room-temperature modulus or is within a few degrees of doing so. This understanding during the material selection process will enable the engineer to select the appropriate material for an application with greater care and precision.



Figure 19. Storage modulus versus temperature behavior showing the effect of filler content on the softening point for polycarbonate.

#### **3.4 The Effect of Fillers**

In the discussion of HDT we have already alluded to the effect that fillers and reinforcements have on the viscoelastic characteristics of plastic materials. Fillers and reinforcements are typically inorganic materials such as talc or glass fiber with softening points well above the temperature at which organic polymers degrade. Even systems like carbon fiber



Figure 20. Storage modulus versus temperature behavior showing the effect of filler content on the properties of nylon 6.



Figure 20a. Figure 20 showing the modulus levels for the HDT measured by ISO 75 Methods A, B, and C.



Figure 21. Storage modulus versus temperature for an unfilled polycarbonate showing the two HDT values and the Vicat softening point.

or calcium carbonate which are based either entirely or in part on carbon, have extremely high thermal resistance. Most fillers and reinforcements, therefore, respond as purely elastic systems while the polymer and the filler/polymer interface are viscoelastic.

It is well documented that adding a filler or a reinforcement to a polymer increases the modulus of the system. However, DMA scans of unfilled materials and their filled counterparts show that the increase in room temperature properties is only a small part of the improvement. Figure 22 shows storage modulus plots of unfilled nylon 6 and four analogs that contain different amounts of filler and reinforcement. Fibrous glass acts as a true reinforcement and provides a more efficient energytransfer mechanism than a particulate mineral filler. The elastic contribution can be seen in the reduced effect that the glass transition has on the reduction in elastic modulus. Table 4 gives some key properties for the five materials.

Steady improvements result from increased use of glass fiber. However, substitution of mineral for glass fiber in the highly filled system produces a material with lower performance than the 14% glass-filled material when it is evaluated in terms of modulus retention above the glass transition. Note that the T<sub>g</sub> does not change significantly with filler content. Note also that all of the filled materials, when evaluated by HDT, appear to be virtually equivalent while the DMA results show a wide array of load-bearing capabilities. The changes observed above can be seen in the viscous proper-



Figure 22. Effect of filler type and level on the storage modulus properties of nylon 6.

#### Table 4

Combined HDT & DMA Data For Nylon 6

| Filler Type | HDT@    | Tg   | Pre-              | Post-             | %       |
|-------------|---------|------|-------------------|-------------------|---------|
| & Amt.      | 1.82    | (°C) | T <sub>g</sub> E' | T <sub>g</sub> E' | Decline |
|             | MPa(°C) |      | (GPa)             | (GPa)             |         |
| None        | 65      | 65   | 2.01              | 0.56              | 90.1    |
| None        | 65      | 65   | 2.81              | 0.50              | 80.1    |
| 14% Glass   | 200     | 69   | 4.46              | 1.98              | 55.6    |
| 33% Glass   | 210     | 70   | 7.87              | 3.99              | 49.3    |
| 44% Glass   | 210     | 71   | 10.04             | 5.13              | 48.9    |
| 40% Glass/  | 206     | 69   | 6.44              | 2.69              | 58.2    |
| Mineral     |         |      |                   |                   |         |

ties as well as the elastic ones. Figure 23 shows the tan delta curves for the five nylon compounds in Table 4. As the modulus decline associated with  $T_g$  decreases, the peak height of the tan delta curves is also reduced.

Polymer-filler systems with the same amount and type of filler can be compared in this manner. Figure 24 shows tan delta plots for two PBT polyesters reinforced with 30% glass fiber. One material uses conventional short fiber compounded with the polymer in an extruder while the other material makes use of long glass fibers that are coated individually with resin to improve the integrity of the fiber/polymer interface. The lower tan delta values throughout the scan, and in particular the lower peak height associated with the glass transition, reflects theimproved load-bearing properties of the long glass system. Fillers and reinforcements and



Figure 23. Effect of filler type and level on the tan delta properties of nylon 6. Note the reduction in peak heights as the elastic contributions of the filler increase.



Figure 24. Effect of fiber length and coupling technology on the tan delta properties of a short glass and long glass PBT polyester. The long glass system has higher elastic properties using the same amount of reinforcement.

the chemistries for establishing the polymer/filler interface may vary in quality. Comparisons of this kind permit an evaluation of competitive materials that may appear to be equivalent based on shortterm property evaluations.

#### **3.5 Polymer Blends**

Polymer blends have become important to many industries, particularly where a combination of a semi-crystalline and an amorphous component has produced a property synergism. Polyester/polycarbonate alloys are a good example. The amorphous polycarbonate provides good impact resistance while the polyester contributes good chemical resistance. While some synergy results from blending, some trade-offs also occur. These are made apparent through the use of DMA.

Three types of polymer blends are recognized. The first is a miscible blend, a compound where the two individual polymers combine to form a homogeneous mixture and the individual phases are indistinguishable. This is considered ideal for enhancement of impact properties, but often involves a sacrifice in heat resistance. A well-known example of a miscible blend is PPO/HIPS, commercially known as Noryl produced by General Electric. Figure 25 shows loss modulus plots for four grades of Noryl that incorporate different amounts of high-impact polystyrene (HIPS) and poly(phenylene oxide) (PPO). Pure PPO has a very high T<sub>g</sub> while pure HIPS has a much lower



Figure 25. Loss modulus versus temperature plots for various blends of PPO and high impact polystyrene. The single  $T_g$  indicates a miscible blend with  $T_g$  rising as PPO content increases.



Figure 26. Loss modulus plots for PBT polyester, polycarbonate, and a PBT/PC blend. Two phases are detectable but the shift of  $T_g$ 's toward one another indicates a semi-miscible blend.



Figure 27. Storage modulus plot comparing an unfilled PBT with a PBT/PC blend.

 $T_g$ . When they are blended a single  $T_g$  results. This  $T_g$  increases as the PPO content increases. These materials are generally quite tough and are not prone to phase separation under aggressive processing conditions.

Polyester/polycarbonate blends are a good example of a semi-miscible blend. In these cases there is some affinity between the two polymer phases, but a compatibilizer may be required to prevent phase separation and an additional impact modifier is often required to achieve the desired toughness. Figure 26 shows the loss modulus plots for a pure PBT polyester, a pure polycarbonate, and a blend of the two materials. The partial miscibility is indicated by the shift of the glass transitions closer together. While these materials are very tough, they tend to sacrifice load-bearing characteristics because of the high loss modulus properties over a broad temperature range between the two glass transitions. Figure 27 shows the storage modulus plot for an unfilled polycarbonate/PBT blend and a pure PBT. No welldefined plateau occurs in the modulus because of the overlap in glass transitions. By the time the material has passed through the polycarbonate glass transition, the modulus is extremely low as evidenced by the HDT of 116°C (240°F) at 66 psi. The presence of the PBT prevents the material from melting until it reaches 225°C (437°F), but the modulus of the blend above 130°C is lower than for the pure PBT.

Immiscible blends incorporate two polymers that normally have no affinity with each other. To be commercially successful, materials of this type rely heavily on chemical modifiers to promote adhesion between the phases and considerable levels of impact modifier to achieve even a modicum of toughness. Figure 28 shows both storage and loss modulus plots for a nylon 6/6 and a commercial alloy of nylon 6/6 and PPO. The lack of a shift in the glass transition temperatures indicates that this is an immiscible blend. While immiscible blends are often seen as less valuable than miscible or semi-miscible blends, they offer the advantage of a distinct plateau modulus between the glass transition temperatures of the two polymers. The corresponding decline in the loss modulus properties between the two Tg's indicates that a material of this type will have good load-bearing characteristics up to the point where the PPO goes through its glass transition. The storage modulus of the blend between T<sub>g</sub>'s is superior to that of the pure nylon

6/6 and shows that the PPO acts almost as a polymeric reinforcement in the nylon.

Since the balance of properties achieved by a blend are influenced considerably by the miscibility of the two phases, DMA characterization is particularly important in predicting the utility of a blend for particular applications. The relative strength of the glass transitions can also help determine the relative concentration of the two polymers and quantify the benefits of using the blend over a pure polymer. For example, some blends incorporate a relatively small amount of a high-cost polymer in a blend with a lower-cost material. By assigning the trade name of the high-priced material to the alloy, the supplier can command a price for the new grade that is not in proportion with the presence of the high-performance phase. DMA will distinguish between real and imagined benefits. In addition, accurate identification of the glass transition temperatures can help to identify particular polymers used in a blend. For example, many polyester/polycarbonate blends do not specify which type of polyester is used. However, whether the polyester is a PBT, a PET, or a PCT, will have a significant

effect upon processing considerations as well as fitness-for-use determinations. Since all three polyesters have different glass transition temperatures, DMA can assist in the identification process.



Figure 28. Storage and loss modulus plots of a nylon 6/6 and a blend of nylon 6/6 and PPO. The lack of a shift in the  $T_g$  of the nylon and the well-defined modulus plateau between transitions indicates an immiscible blend.

#### 4.1 The Equivalency of Temperature and Time

While the appendix of DMA data focuses on temperature-dependent behavior, useful comparisons of time-dependent properties can be made by referring to the property versus temperature results. In section 2 we discussed the importance of the time factor in evaluating the modulus of a viscoelastic material. Whether the evaluation is performed in the constant stress mode where strain increases with time, or the constant strain mode where stress decreases with time, the measured modulus of a viscoelastic system is dependent upon the time scale over which the measurement is made.

Up to this point we have focused on measurements of modulus as a function of temperature in a constant time frame, that is at a constant frequency. Frequency is the inverse of time and the two can be related by the equation

$$t = \frac{1}{2\pi f}$$

However, modern DMA instruments can also be programmed to operate in a constant stress or constant strain mode at isothermal conditions, allowing the measurement of modulus as a function of time at constant temperature. Figure 29 shows a plot of a 100-hour creep test (constant stress) with apparent modulus plotted as a function of time. Because the change in apparent modulus is very rapid in the early stages of the test and becomes



Figure 29. A linear plot of apparent modulus vs. time for a 100-hour creep test.



Figure 30. A semi-log plot of apparent modulus vs. time for the 100-hour creep test shown in Figure 29.



Figure 31. A log-log plot of apparent modulus vs. time for the 100-hour creep test shown in Figure 29.

more protracted at longer time frames, it is convention that this relationship is shown in a semi-logarithmic plot of apparent modulus versus time as in Figure 30. An alternate method of data presentation is to place both apparent modulus and time on a logarithmic scale as in Figure 31.

If this is done for short-term measurements at multiple temperatures, it is possible to observe graphically one of the most powerful laws governing viscoelastic behavior, the equivalency of time and temperature. Figure 32 shows a series of thirty-minute creep tests conducted on a crosslinked vinyl ester between 101-136°C at 5°C intervals. As expected, the initial or zero-time modulus declines as the temperature is increased.In addition, the modulus at any given temperature decreases as the


Figure 32. Apparent modulus vs. time data for short-term creep tests conducted on a thermoset vinyl ester at multiple temperatures. The data is plotted in log-log format. The equivalency between time and temperature is shown for a thirty minute loading at 111°C and a temperature increase of 10°C.

increasing strain is measured over the thirty-minute period of each test. We can quantify the equivalency of the relationship between time and temperature for this particular material over this specific temperature range using this data. For example, we can see that the modulus declines in thirty minutes at 111°C by an amount that is equivalent to the decline in the zero-time modulus if the temperature is raised from 111°C to 121°C. We can also see that this quantitative relationship changes due to the non-linear behavior of modulus with temperature. It is apparent that during this experiment the material has undergone a significant change in properties. The apparent modulus plots at the lower test temperatures are clustered together, an indication of relative stability. As the temperature is increased the zero-time modulus values begin to decline more rapidly. At the same time, the effect of time at any given temperature becomes more significant. This shows graphically that there is a correspondence between the effect of temperature and the effect of time. Near the end of the test, the zerotime values once again cluster together at a reduced level and the time-dependent effects also become less significant. If we were to examine a modulustemperature plot for this same temperature range we would see that the material has undergone a significant transition. The loss modulus and tan delta curves would show peaks typical of such a transition.

We can look at this time-temperature relationship in another way. Figure 33 shows the viscoelastic properties of a glass fiber-reinforced poly(ether ether ketone) (PEEK). The glass transition is readily identified by the sharp decline in the storage modulus and the rapid rise of the loss modulus and tan delta to a maximum. We can conduct a series of thirty-minute creep tests on a sample of the same material and plot the apparent modulus as a function of each temperature step on the same linear scale we used for the temperature scan. In Figure 34 we superimpose the apparent modulus from the creep test on the storage modulus from the temperature scan. Since the x-axis is temperature in this graph, the apparent modulus plots measured at each temperature appear as vertical lines. Short vertical lines indicate low levels of time-dependent defor-





Figure 34. Apparent modulus data at multiple temperatures superimposed over the storage modulus plot from Figure 33. The short-term timedependent behavior parallels the temperaturedependent properties.

mation while longer lines denote regions where significant creep occurs. Note that in the temperature region below  $T_g$  the storage modulus is very stable with respect to temperature. In this same region, the changes in apparent modulus at any given temperature are small and the decline in zero-time modulus at each successive temperature is also small. As the material approaches the glass transition, however, the changes in apparent modulus become more substantial. Even before the zerotime modulus values begin to decline appreciably, the time-dependent behavior is already showing signs of a relaxation that is occurring over an ever shorter time scale. Again there is an obvious correspondence between time-dependent behavior at constant temperature and temperature dependent behavior at constant time.

In qualitative terms, the storage modulus-temperature plot is a predictor of time-dependent behavior. If a projection of time-dependent behavior is sought, it can be estimated by selecting the appropriate temperature and then examining the behavior of the storage modulus as the temperature is increased above that reference point. Thus, if a material is to be used at a temperature, and above that temperature the modulus is very stable, then time-dependent deformation will be small. However, if a material is evaluated just below the glass transition, a large reduction in apparent modulus can be expected in a short period of time even if the material is very rigid at the beginning of the evaluation. Consequently, it is possible to make qualitative comparisons of creep resistance or stress decay between materials by examining the storage modulus-temperature curve. As a simple example, Figure 35 shows a modulus plot for two amorphous materials, ABS and polycarbonate. For any temperature we wish to select, the lower Tg of the ABS and the tendency for the modulus of the ABS to fall off more rapidly with temperature allows us to conclude that polycarbonate will have superior creep resistance in spite of the higher modulus of the ABS at room temperature.

## 4.2 Creep and Stress Relaxation

These qualitative determinations can be made quantitative by using a technique known as timetemperature superpositioning. This tool capitalizes on the principle that in viscoelastic materials a relaxation process that occurs rapidly at elevated temperatures will occur to the same degree over



Figure 35. Comparison of storage modulus properties of ABS and polycarbonate. The more stable modulus and higher  $T_g$  of the polycarbonate equate to superior time-dependent properties.

longer periods of time at lower temperatures. Consequently, there are two experimental options for observing the time-dependent behavior of a polymer. The conventional method involves directly measuring the time-dependent response over longer time periods. This is obviously time-consuming and in the current climate of rapid product development and compression in the time-to-market cycle, long-term testing is considered undesirable. However, the increased use of plastic materials in critical engineering applications makes it unwise to forgo the characterization of long-term behavior. The second option involves running the short-term experiment, whether it be constant stress (creep) or constant strain (stress decay), at progressively higher temperatures. The higher temperature data sets are then shifted to the right (to longer times) until they fall on the same line with the reference temperature. The resulting plot represents a prediction of timedependent behavior called a master curve. This analysis is carried out on data plotted as apparent modulus versus time on a logarithmic scale.

Figure 36a shows raw data from a creep experiment for the crosslinked vinyl ester shown previously in Figure 32. Temperatures between 101 and 136°C at 5°C increments were used and each step in the experiment took thirty minutes. A fifteen minute relaxation period was incorporated at the end of each stress period and an additional fifteen minutes was allocated between steps to allow the sample to equilibrate at each temperature step. Thus the entire test took ten hours to conduct. Figure 36b shows the master curve in its early stages of construction. At this point the first three temperature steps above the reference curve of 100°C have been moved into position so that they fall on the same line. As additional temperature steps are shifted, the curve is extended to increasingly longer times. Figure 36c shows the completed master curve extending to over 100,000 hours.

Whenever accelerated testing of this type is conducted, it is natural to inquire about the agreement of such results with actual long-term testing. Figure 37 shows a comparison of the first 125 hours of the master curve for a crosslinked polyurethane developed at room temperature with three conventional creep tests conducted on the same material using astandard tensile testing machine. The plot is placed on a linear scale in order to maximize the



Figure 36a. Raw apparent modulus data shown in Figure 32.



Figure 36b. Master curve in process for a reference temperature of 100°C.



Figure 36c. Completed master curve for a reference temperature of 100°C.

visual appearance of discrepancies. Even with this treatment, the DMA master curve shows excellent agreement with classical creep test results. The difference between the master curve and creep test #3 (E-3) is smaller than the random variation that exists between the triplicate creep tests.

Figure 38a shows the raw data for a stress relaxation test conducted on a polycarbonate. Figure 38b shows the completed master curve for a reference temperature of 135°C. Any test temperature can be used as a reference temperature for constructing a master curve. However, the extent of the projection will be limited by the number of tests run at temperatures higher than the reference temperature. In



Figure 37. Comparison of first 125 hours of master curve prediction for a rigid thermoset polyurethane with three real-time 125-hour creep tests. Data is shown on linear scales.



Figure 38a. Raw apparent modulus data from a stress relaxation test on polycarbonate.



Figure 38b. Stress relaxation master curve for polycarbonate in Figure 38a using a reference temperature of 135°C.

this case, twelve temperature steps comprising a fifteen-hour test provide a projection that extends to 30,000 hours.

Some useful models have been developed governing the mathematical description of the shift factors used to develop the master curves. These are valuable to the research scientist in developing theories of polymer structure, however the application of these various models to the shift factors for any given experiment has little effect on the actual results. In addition, theoreticians have shown that this technique is not quantitatively precise when the end point of the master curve is more than an order of magnitude greater than the end point of the individual steps. Nevertheless, experimentalists have demonstrated that excellent agreement between accelerated tests and long-term relaxation experiments is possible out to thousands of hours using individual steps of 20-60 minutes. Finally, much of the literature on this subject claims that the time-temperature superpositioning technique is only useful in amorphous systems and does not apply to semi-crystalline or multiphase systems. Once again, however, experi-ments have shown that these techniques work extremely well for these more complex systems.

In spite of the power and success of the master curve in predicting long-term time-dependent behavior, some precautions are necessary. Some of these considerations, such as corrections for changing temperature and density, result in minor changes in actual test results. These can be accounted for by incorporating into the analysis software material-specific data produced by other thermal analysis methods. Of much greater importance is the effect that irreversible structural changes can have on the accuracy of master curves. Events such as solid-state crystallization, postcuring, oxidative degradation, stress relief, or the melting of imperfect crystals can occur within the time frame of the short-term tests at elevated temperatures. However, these same events may never occur at the reference temperature. Incorporating the results of these structural changes into the long-term predictions can introduce serious error into the test results and accounts for poor results. These errors will be far more serious than subtle theoretical considerations based on correction factors and model selection.

## 4.3 The Relationship of Time To Frequency

As stated above, frequency and time are inversely related. Since viscoelastic responses are timedependent they will also be frequency-dependent. Multiple-frequency experiments, often referred to as frequency sweeps, are capable of generating data similar to that obtained through short-term creep experiments. In addition, multiple frequency experiments provide information on loss properties while creep experiments only supply data on the load-bearing component. Figures 39 and 40 show loss modulus versus temperature plots in the glass



Figure 39. Loss modulus measurements at multiple frequencies for the glass transition region of a 50% long glass fiber-reinforced nylon 6. The  $T_g$  shifts to slightly higher temperatures as the frequency increases.



Figure 40. Loss modulus measurements at multiple frequencies for a 40% long glass fiber-reinforced polypropylene.

transition region for a 50% glass fiber-reinforced nylon 6 and a 40% glass fiber-reinforced polypropylene, respectively. In Figure 39, the glass transition for the nylon 6 is well defined by the peaks in the loss modulus curves. The curves were generated at seven frequencies covering two orders of magnitude between 0.05 and 5.0 Hz. As the frequency is increased (time scale is decreased), the glass transition temperature increases slightly from 45-53°C. In Figure 40, the polypropylene glass transition is barely perceptible as a maximum in the loss modulus. Nevertheless, it can be seen that at 0.05 Hz the T<sub>g</sub> is below the initial temperature of the test (55°C) while at 5 Hz the peak is near 80°C. Thus, the polypropylene is much more sensitive than the nylon to the effects of the time scale of the measurement.

It is important to remember that the glass transition is a region where loss properties increase and storage properties decrease. The Tg can be thought of as the temperature at which the elastic modulus is declining at the maximum rate. Therefore, an increase in the Tg represents a retardation of viscous flow. We would expect, therefore, that the storage modulus of a polymer would increase as the frequency of the measurement increases since a higher frequency equates to a shorter measurement time frame. Figure 41 shows a multiple frequency sweep between 0.02-2.0 Hz for the storage modulus of a polycarbonate. The temperature range is 97-175°C. As expected, the storage modulus increases with increasing frequency. Below the glass transition, the effects are small. At 97°C the modulus only increases by 6% across the frequency range used in the experiment. Above the glass transition, the storage modulus also appears to be affected very little by frequency. However, in the glass transition region, the effect of the measurement frequency is pronounced. The time scale of the measurement has a profound effect on how the transition is perceived. The shift to higher apparent stiffness with increasing frequency correlates to the increase in Tg that is measured by the loss modulus. Figure 42 shows the same phenomenon for another grade of polycarbonate evaluated between 125-165°C. The smaller temperature range pro-



Figure 41. Storage modulus measurements at multiple frequencies for an unfilled polycarbonate. Modulus increases with frequency. Frequency-dependent behavior is most pronounced in the glass transition region.



Figure 42. Storage modulus measurements at multiple frequencies for a polycarbonate showing the effects of  $T_g$  in greater detail.

vides more detail. At 125°C the modulus increases by 5% across the two decades of frequency. However, the curves begin to separate at 135°C. At 145°C, when the modulus measured at 0.02 Hz has reached the rubbery plateau, the modulus at 2 Hz is over twenty times higher. At 2 Hz, the rubbery plateau is not attained until the test temperature reaches 155°C.

Loss modulus data can be superposed in the same manner as the apparent modulus data from the creep and stress relaxation experiments. If we focus the analysis on the glass transition region we can develop a quantitative relationship between temperature and relaxation time. Figures 43 and 44 show master curve plots of the loss modulus, E", as



**Figure 43.** Loss modulus master curve vs. frequency for a 30% carbon fiber-reinforced nylon 6/6 at a reference temperature of 40°C.



**Figure 44.** Loss modulus master curve vs. time for the material characterized in Figure 43. Time and frequency are related inversely and this plot is a mirror image of Figure 43. The time at peak is the relaxation time associated with the glass transition when the material is at the reference temperature.

a function of frequency and time (reciprocal frequency), respectively. These results are for a 30% carbon fiber-reinforced nylon 6/6 at a reference temperature of 40°C. Note that the two curves are mirror images of each other. Figure 44 is of particular interest since the time at the peak of the reference curve represents the relaxation time associated with the glass transition when the polymer is at 40°C. Lower reference temperatures will result in longer relaxation times while higher reference temperatures will give shorter relaxation times.



Figure 45. Plot of peak frequency vs. reference temperature for the material characterized in Figures 43 and 44. The data points describe a straight line and the slope of the line is the activation energy of the glass transition.



Figure 46a. Tensile stress-strain curves for an unfilled polypropylene copolymer tested at strain rates of 5, 50, and 500 mm/min. Note the increase in modulus and peak stress and the decrease in ultimate elongation as strain rate increases.

Figure 45 shows a plot of the log of the peak frequency of the glass transition versus reference temperature. This is equivalent to a classical Arrhenius plot of log of peak time versus reciprocal temperature. The actual points describe a straight line and the slope of the line is the activation energy of the glass transition.

While this type of information may appear to have its greatest use in the realms of research and development, there is practical significance as well. Materials with low activation energies such as polypropylene are very rate-sensitive; that is the viscoelastic balance is shifted significantly as a function of the rate at which stress is applied. This behavior is measurable in physical terms that are easily understood at the engineering level. If a classical tensile stress-strain test is conducted on a ratesensitive material like polypropylene, the peak stress and the modulus increase as a function of increasing strain rate. At the same time, the ultimate elongation, a relative measure of toughness, decreases with increasing strain rate. Figure 46a shows this behavior for the full scale of a series of tensile tests. Figure 46b expands the plot to show the detail of the yield section of the test. In Figure 46a it can be seen that the yield stress increases from 26 MPa (3770 psi) at 5 mm/minute to 36 MPa at 500 mm/minute. And while the elongation at yield is virtually unaffected, the ultimate elongation drops from 290% to less than 30%. The slope of the stress-strain plot in the linear region also increases with increasing strain rate. In engineering terms, the material behaves as a stronger, stiffer, and less impact resistant system at higher strain rates; the elastic properties are more dominant. At lower strain rates the material is weaker, more flexible, and tougher; the loss properties become more important. This shift in properties is related to the shift to a lower Tg at lower frequencies (lower strain rates) and a higher Tg at higher frequencies (higher strain rates). In an impact test, higher impact velocities will result in a more brittle failure mode while lower velocities will produce a more ductile break. Here again, the relationship between time and temperature is apparent. It is well known that impact testing at lower temperatures is more likely to produce a brittle failure while tests conducted at higher temperatures will result in a more ductile failure. Thus, reducing the test temperature has the same effect as increasing the strain rate (decreasing the time scale) of the experiment, while increasing the test temperature produces the same result as reducing the strain rate (increasing the time scale) of the test. Materials with higher activation energies, such as polycarbonate, will be less rate-sensitive.





## 4.4 Using the Master Curve for Practical Problem Solving

Once a master curve has been constructed, it can be converted to more readily usable terms. For a creep master curve, the apparent modulus versus time plot can be converted into a strain versus time plot by selecting a specific stress. For a stress relaxation master curve, the apparent modulus versus time plot can be changed to a stress versus time plot by selecting a specific strain. It is important to note, however, that these predictive curves will begin to lose accuracy if the selected stresses and strains fall outside the linear elastic region. For this reason, these predictions are best made in conjunction with a stress-strain plot generated at the reference temperature. Even for very rigid systems where the stress-strain plot is essentially linear up to the point of failure, ignoring the practical elongation limits of a material can lead to nonsensical results. As a simple example, refer back to the crosslinked vinyl ester in Figure 36c. The master curve shows a reduction in the apparent modulus of 80% over a 10,000 hour period. Let us assume that the stress-strain behavior of the material is completely linear to the point of failure and that ultimate elongation is 2.5%. An 80% reduction in apparent modulus corresponds to a five-fold increase in the total strain. Since the material can only tolerate an ultimate elongation of 2.5%, the initial elongation cannot exceed 0.5%. Stresses that produce an initial elongation greater than 0.5% will result in creep rupture prior to 10,000 hours. It will be possible to estimate the time to creep rupture from the master curve for initial strains exceeding this limit.

In cases where plastic deformation occurs before yielding or failure, stresses and strains that exceed the proportional limit will cause actual creep or stress relaxation behavior to deviate from the performance predicted by the master curve. Under these circumstances, the master curve will underpredict the time-dependent strain in a creep experiment and under-predict the rate of stress decay in a stress relaxation experiment. Accuracy can be



Figure 47a. A creep master curve for a 43% glass-reinforced nylon 6/6 generated at 50°C.





improved by transposing points in the plastic deformation region of the stress-strain curve to an extension of the tangent modulus line and treating the yield point in the curve as the point of failure for the material. Figure 47a and 47b provide an illustration of this technique. Figure 47a shows a creep master curve for a 43% glass-reinforced nylon 6/6 developed at 50°C. Figure 47b shows a stress-strain curve for the same material created at the same temperature. The stress-strain curve identifies the ultimate strain at 3%, however a significant portion of the stress-strain curve departs from linear behavior. If the strain at failure is transposed to the modulus line, the actual strain limit that can be used in conjunction with the master curve is only 1.3%. The maximum initial strain can then be calculated for any given time frame by taking the ratio of the creep moduli at time  $t_1$  and time  $t_0$  and multiplying it by the transposed strain limit. For example, at 10,000 hours the apparent modulus has declined from the initial value of 999,900 psi to 533,600 psi. If the final strain at 10,000 hours cannot exceed 1.3%. then the initial strain cannot exceed 0.69%. The maximum allowable strain can then be taken directly from the stress-strain curve as the point at which the material strain is 0.69%. This would be just below 8000 psi. Further improvements can be made in accuracy by developing stress-strain properties at three different strain rates that are two orders of magnitude apart as shown in Figure 46a. This permits the inclusion of a time function into the evaluation of the proportional limit, peak stress, and elongation at yield/failure.

Because dynamic mechanical analysis is such a sensitive structural probe, changes in properties brought about by processing and environmental exposure are readily observed. Most test specimens are injection molded, and orientation of the polymer flow front is an unavoidable consequence of the rapid flow of polymer into the mold cavity. If the material is cooled rapidly to freeze in this orientation, the increased stiffness of the resulting structure is measurable in the storage modulus. If the mold is cold, this frozen-in layer is thicker and contributes even more significantly to the bulk properties of the molded part. Figure 48 shows the effect of melt temperature on the properties of a polypropylene copolymer. The material has a melting point of 165°C. Molding the material just above the melting point produces a relatively rigid system. If the material is heated to 205°C, then the material takes longer to cool from the melt and the frozen-in orientation has time to relax. This produces a more flexible product. If the same molding is conducted with a mold temperature of 70°C instead of 30°C, as in Figure 49, the differences are still apparent but much less significant. The properties of the part molded with a melt temperature of 205°C are virtually unchanged while the part molded with a melt temperature of 170°C is significantly influenced by the slower cooling rate associated with the higher mold temperature.



Figure 48. Effects of melt temperature on the storage modulus properties of an unfilled polypropy-lene run in a cool mold.



Figure 49. Effects of melt temperature on the storage modulus properties of an unfilled polypropylene run in a hot mold. Note that the modulus of the cold melt samples is reduced significantly in the hotter mold while the high melt product is unchanged.



Figure 50. The effects of fiber orientation on the storage modulus properties of a 30% glass fiber-reinforced polyurethane.

Orientation of fillers, and particularly fibrous reinforcements, has a substantial effect on the storage modulus. Figure 50 shows a modulus plot for samples cut in the direction of flow and transverse to the direction of flow for a 30% glass fiber-reinforced polyurethane. The loss of fiber orientation reduces the room temperature modulus by 60% and the properties do not converge until the material is near the melting point.

Some semi-crystalline materials have backbone structures that require longer times in order to develop the full potential of the crystalline matrix. This additional time is provided by slowing the rate of cooling in the polymer, an adjustment achieved by raising the temperature of the mold into which the polymer is injected. Failure to use the correct mold temperature results in a system that is undercrystallized. Reductions in storage modulus and the glass transition temperature are typical consequences. In addition, the degree of decline in the storage modulus as the material passes through the glass transition will be exaggerated. In extreme cases modulus increases above Tg give evidence of solid-state crystallization as the polymer attempts to achieve the crystallinity that was supposed to have been established during the molding process. Figure 51 shows a storage modulus plot for poly(phenylene sulfide) (PPS) samples molded at five different mold temperatures. The most significant problems are apparent in the material molded at the lowest mold temperature. Room-temperature modulus is 35% below normal,  $T_g$  is reduced by 20°C, and the modulus drops to 1 GPa (145,000 psi) at the end of the glass transition before undergoing residual crystallization. As the mold temperature is increased, the room temperature properties improve, but the modulus reductions associated with  $T_{\sigma}$  are still excessive and residual crystallization is still apparent. At the highest mold temperature, the post-T<sub>g</sub> modulus is optimized, a direct result of achieving a high degree of crystallinity



**Figure 51.** Effect of mold temperature on the storage modulus properties of a 40% glass fiber-reinforced PPS. The reduced modulus and lower glass transition temperature are the result of incomplete crystallization during molding.



Figure 52. Tan delta properties for the samples from Figure 50. The reduced crystallinity results in a higher potential for viscous flow as the material passes through  $T_g$ .



Figure 53. Effects of short-term heat aging on the viscoelastic properties of 30% glass fiber-reinforced PEEK. The increased storage modulus and decreased tan delta values indicate the occurrence of secondary crystallization.

during the molding process. Figure 52 shows the tan delta properties associated with the five samples. The highest tan delta peak values and lowest peak temperatures are associated with the lowest degrees of crystallinity.

Prolonged heat aging can also produce changes in crystal structure. Figure 53 shows a semi-crystalline PEEK material in the as-molded state and after a brief exposure to temperatures near the HDT. Both the storage modulus and tan delta curves are shown. These illustrate that the material is stiffer both above and below the  $T_g$  after aging. The tan delta peak temperatures do not change, indicating that the  $T_g$  remains the same. However,

the lower tan delta peak height confirms that the material has undergone residual crystallization due to the high temperature exposure. Similar phenomena are detectable in almost all semi-crystalline systems. Post-curing of crosslinked thermoset polymers produces similar results.

Absorption of solvents and plasticizers can also produce structural changes detectable by DMA. Figure 54 shows the effect of absorbed moisture on the storage modulus of an unfilled nylon 6. As the moisture content increases, the room temperature modulus decreases. A plot of the loss modulus would show that the glass transition is being reduced by the presence of the moisture, the water acting as a plasticizer for the nylon. Note, however, that the modulus above  $T_g$  is unchanged. This is an indication that the moisture is absorbed preferentially by those regions of the nylon polymer that do not crystallize. The modulus attributable to the crystalline portion of the polymer is unaffected by the presence of the water. Figure 55 shows the storage and loss modulus plots for a plasticized PVC in its new state and after field exposure that had turned the product brittle. The loss of plasticizer in the field material had increased the Tg to the point where the product was no longer flexible at room temperature and the product began to crack under the effect of applied stresses.

Figure 56 shows the effects of the absorption of methyl ethyl ketone (MEK) on the storage modulus properties of a PBT polyester/polycarbonate alloy. After immersion for thirty days the material loses 70% of its room-temperature modulus and has little



Figure 54. The effect of moisture content on the storage modulus properties of an unfilled nylon 6.



Figure 55. The effect of plasticizer loss on the storage and loss properties of a flexible PVC. The rise in  $T_g$  results in the embrittlement of the compound.



Figure 56. Effects of immersion in methyl ethyl ketone (MEK) on the storage properties of an unfilled PBT/polycarbonate blend. Properties are partially restored after a 30-day drying out period.

usefulness as a load-bearing material. After drying out, some of the properties are restored but somedamage is still evident. Figure 57 shows the tan delta plots for the three materials. The asmolded material shows the two glass transitions, a shoulder near 70°C for the PBT and a strong peak near 150°C for the polycarbonate. Both transitions are absent after the thirty days of immersion. Upon drying out, the PBT glass transition once again appears, however the polycar-bonate  $T_g$  has not returned. This allows us to conclude that while the PBT may have absorbed some of the MEK, the effects were reversible. The polycarbonate, however, was chemically attacked by the MEK



Figure 57. Effects of solvent immersion on tan delta properties of PBT/polycarbonate blend. The disappearance of the polycarbonate  $T_g$  indicates that permanent damage was done to this phase of the blend.

and suffered permanent damage. The property recovery was solely due to the drying out of the PBT phase. These are a few of the major changes in structure brought about by processing and environmental conditions that can be interpreted by dynamic mechanical analysis. Dynamic mechanical analysis is a powerful tool for probing the fundamental structure of polymeric materials. At the same time, the technique produces valuable practical information on the temperaturedependent and time-dependent properties that are so essential to an informed material selection process. With the development of structural analysis programs for plastic materials, the need for accurate property profiles has become even greater. DMA data contributes significantly to the information gap that currently exists in the study of plastic materials.

## References

- 1. M. Takemori, SPE ANTEC, 24, 216. (1978)
- 2. J. Bozzelli & P. Tiffany, SPE ANTEC, 32, 120. (1986)
- 3. W. J. Sichina, SPE ANTEC, 34, 1139. (1988)



Graph 1: Storage and loss properties for DuPont Delrin 500 unfilled acetal homopolymer (POM).

Graph 2: Storage and loss properties for DuPont Delrin 577 20% glass fiber filled, UV stable acetal homopolymer (POM).



**Tabular Data Graphs** 

| Table 1: | Storage and loss properties for DuPont Delrin 500 unfilled acetal homopolymer (POM). (tabular data for |
|----------|--------------------------------------------------------------------------------------------------------|
|          | Graph 1)                                                                                               |

| Temperature | E'    | <b>E</b> " | Tan Delta | Temperature | E'     | <b>E</b> " | Tan Delta |
|-------------|-------|------------|-----------|-------------|--------|------------|-----------|
| (°C)        | (GPa) | (MPa)      |           | (°C)        | (GPa)  | (MPa)      |           |
| -60.00      | 4.768 | 245.8      | 0.05156   | 70.00       | 2.635  | 105.6      | 0.04009   |
| -55.00      | 4.674 | 226.4      | 0.04845   | 60.00       | 2.816  | 109.5      | 0.03889   |
| -50.00      | 4.554 | 209.7      | 0.04605   | 65.00       | 2.737  | 107.6      | 0.03931   |
| -45.00      | 4.392 | 190.1      | 0.04329   | 70.00       | 2.635  | 105.6      | 0.04009   |
| -40.00      | 4.227 | 173.4      | 0.04101   | 75.00       | 2.512  | 104.0      | 0.04142   |
| -35.00      | 4.082 | 156.3      | 0.03829   | 80.00       | 2.369  | 102.7      | 0.04338   |
| -30.00      | 3.957 | 141.7      | 0.03582   | 85.00       | 2.201  | 102.9      | 0.04676   |
| -25.00      | 3.855 | 133.1      | 0.03454   | 90.00       | 2.010  | 104.2      | 0.05186   |
| -20.00      | 3.781 | 129.9      | 0.03436   | 95.00       | 1.846  | 106.3      | 0.05762   |
| -15.00      | 3.719 | 128.3      | 0.03450   | 100.00      | 1.698  | 109.1      | 0.06427   |
| -10.00      | 3.659 | 128.2      | 0.03504   | 105.00      | 1.572  | 111.7      | 0.07104   |
| -5.00       | 3.597 | 128.7      | 0.03577   | 110.00      | 1.456  | 114.0      | 0.07830   |
| 0.00        | 3.535 | 129.6      | 0.03668   | 115.00      | 1.347  | 115.1      | 0.08545   |
| 5.00        | 3.476 | 130.9      | 0.03765   | 120.00      | 1.249  | 114.9      | 0.09196   |
| 10.00       | 3.417 | 132.0      | 0.03863   | 125.00      | 1.155  | 113.0      | 0.09785   |
| 15.00       | 3.368 | 132.7      | 0.03939   | 130.00      | 1.061  | 109.3      | 0.1030    |
| 20.00       | 3.324 | 132.5      | 0.03988   | 135.00      | 0.9720 | 104.2      | 0.1072    |
| 25.00       | 3.276 | 131.7      | 0.04021   | 140.00      | 0.8773 | 96.68      | 0.1102    |
| 30.00       | 3.216 | 129.3      | 0.04020   | 145.00      | 0.7876 | 87.98      | 0.1117    |
| 35.00       | 3.144 | 125.8      | 0.04000   | 150.00      | 0.7054 | 78.76      | 0.1116    |
| 40.00       | 3.073 | 121.8      | 0.03964   | 155.00      | 0.6304 | 69.58      | 0.1104    |
| 45.00       | 3.000 | 118.0      | 0.03932   | 160.00      | 0.5608 | 61.58      | 0.1098    |
| 50.00       | 2.940 | 114.6      | 0.03899   | 165.00      | 0.4890 | 54.19      | 0.1108    |
| 55.00       | 2.881 | 112.0      | 0.03886   | 170.00      | 0.4129 | 47.75      | 0.1156    |
| 60.00       | 2.816 | 109.5      | 0.03889   | 175.00      | 0.3329 | 42.56      | 0.1279    |
| 65.00       | 2.737 | 107.6      | 0.03931   | 180.00      | 0.1723 | 33.71      | 0.1964    |
|             |       |            |           |             |        |            |           |

| Table 2: | Storage and loss properties for DuPont Delrin 577 20% glass fiber filled, UV stable acetal homopolymer |
|----------|--------------------------------------------------------------------------------------------------------|
|          | (POM). (tabular data for Graph 2)                                                                      |

| Temperature<br>(°C) | E'<br>(GPa) | E"<br>(MPa) | Tan Delta | Temperature<br>(°C) | E'<br>(GPa) | E"<br>(MPa) | Tan Delta |
|---------------------|-------------|-------------|-----------|---------------------|-------------|-------------|-----------|
|                     |             |             |           |                     |             | . ,         |           |
| 65.00               | 4.690       | 152.6       | 0.03253   | 50.00               | 4.990       | 159.0       | 0.03187   |
| 70.00               | 4.551       | 150.9       | 0.03316   | 55.00               | 4.903       | 156.6       | 0.03195   |
| 75.00               | 4.382       | 150.0       | 0.03424   | 60.00               | 4.806       | 154.6       | 0.03218   |
| -60.00              | 7.082       | 293.6       | 0.04145   | 80.00               | 4.183       | 150.2       | 0.03590   |
| -55.00              | 6.971       | 268.1       | 0.03846   | 85.00               | 3.951       | 152.7       | 0.03865   |
| -50.00              | 6.834       | 246.9       | 0.03612   | 90.00               | 3.697       | 158.6       | 0.04290   |
| -45.00              | 6.664       | 225.3       | 0.03381   | 95.00               | 3.456       | 166.8       | 0.04825   |
| -40.00              | 6.493       | 204.8       | 0.03153   | 100.00              | 3.249       | 175.2       | 0.05394   |
| -35.00              | 6.342       | 186.1       | 0.02934   | 105.00              | 3.068       | 183.9       | 0.05994   |
| -30.00              | 6.213       | 172.1       | 0.02770   | 110.00              | 2.897       | 193.1       | 0.06665   |
| -25.00              | 6.101       | 164.0       | 0.02688   | 115.00              | 2.735       | 200.6       | 0.07337   |
| -20.00              | 6.001       | 162.0       | 0.02699   | 120.00              | 2.575       | 206.3       | 0.08011   |
| -15.00              | 5.920       | 162.2       | 0.02740   | 125.00              | 2.418       | 208.9       | 0.08643   |
| -10.00              | 5.856       | 164.1       | 0.02801   | 130.00              | 2.252       | 208.5       | 0.09260   |
| -5.00               | 5.795       | 164.8       | 0.02845   | 135.00              | 2.086       | 204.3       | 0.09796   |
| 0.00                | 5.743       | 165.7       | 0.02886   | 140.00              | 1.918       | 196.9       | 0.1026    |
| 5.00                | 5.690       | 166.8       | 0.02932   | 145.00              | 1.753       | 187.0       | 0.1067    |
| 10.00               | 5.632       | 166.8       | 0.02961   | 150.00              | 1.589       | 175.2       | 0.1103    |
| 15.00               | 5.572       | 168.7       | 0.03027   | 155.00              | 1.426       | 163.3       | 0.1146    |
| 20.00               | 5.518       | 169.0       | 0.03062   | 160.00              | 1.261       | 151.5       | 0.1202    |
| 30.00               | 5.391       | 169.4       | 0.03142   | 165.00              | 1.083       | 140.6       | 0.1298    |
| 35.00               | 5.296       | 169.0       | 0.03191   | 170.00              | 0.9024      | 129.3       | 0.1433    |
| 40.00               | 5,185       | 165.6       | 0.03194   | 175.00              | 0.6939      | 115.6       | 0.1667    |
| 45.00               | 5.080       | 162.5       | 0.03199   | 180.00              | 0.3255      | 73.48       | 0.2263    |



Graph 3: Storage and loss properties for Ticona Celcon M90 unfilled acetal copolymer (POM copolymer).

Graph 4: Storage and loss properties for Ticona Celcon M90 unfilled acetal copolymer (POM copolymer) showing low temperature behavior.



38

| Table 3: | Storage and loss properties for | r Ticona Celcor | n M90 unfilled | acetal copolymer | (POM copolymer). | (tabular data |
|----------|---------------------------------|-----------------|----------------|------------------|------------------|---------------|
|          | for Graph 3)                    |                 |                |                  |                  |               |

| Temperature<br>(°C) | E'<br>(GPa) | E"<br>(MPa) | Tan Delta | Temperature | E'<br>(GPa) | E"<br>(MPa) | Tan Delta |
|---------------------|-------------|-------------|-----------|-------------|-------------|-------------|-----------|
| ( 0)                | (Or u)      | (1011 u)    |           |             | (01 a)      | (MI a)      |           |
| -60.00              | 4.514       | 252.0       | 0.05583   | 55.00       | 2.344       | 107.7       | 0.04595   |
| -55.00              | 4.422       | 233.5       | 0.05281   | 60.00       | 2.245       | 106.0       | 0.04719   |
| -50.00              | 4.308       | 218.9       | 0.05081   | 65.00       | 2.124       | 104.5       | 0.04919   |
| -45.00              | 4.157       | 201.1       | 0.04837   | 70.00       | 1.981       | 103.0       | 0.05199   |
| -40.00              | 3.989       | 186.0       | 0.04662   | 75.00       | 1.832       | 102.4       | 0.05586   |
| -35.00              | 3.813       | 170.8       | 0.04479   | 80.00       | 1.688       | 101.4       | 0.06010   |
| -30.00              | 3.673       | 159.0       | 0.04330   | 85.00       | 1.556       | 101.1       | 0.06501   |
| -25.00              | 3.549       | 150.6       | 0.04242   | 90.00       | 1.436       | 101.3       | 0.07051   |
| -20.00              | 3.430       | 145.8       | 0.04251   | 95.00       | 1.330       | 101.9       | 0.07666   |
| -15.00              | 3.317       | 142.8       | 0.04304   | 100.00      | 1.232       | 102.6       | 0.08328   |
| -10.00              | 3.215       | 140.2       | 0.04362   | 105.00      | 1.138       | 102.7       | 0.09018   |
| -5.00               | 3.132       | 138.3       | 0.04417   | 110.00      | 1.051       | 101.8       | 0.09682   |
| 0.00                | 3.065       | 136.7       | 0.04461   | 115.00      | 0.9650      | 99.17       | 0.1028    |
| 5.00                | 3.004       | 134.9       | 0.04491   | 120.00      | 0.8830      | 95.19       | 0.1078    |
| 10.00               | 2.946       | 133.4       | 0.04527   | 125.00      | 0.8055      | 89.30       | 0.1109    |
| 15.00               | 2.890       | 131.4       | 0.04548   | 130.00      | 0.7320      | 83.23       | 0.1137    |
| 20.00               | 2.843       | 129.5       | 0.04557   | 135.00      | 0.6630      | 76.10       | 0.1148    |
| 25.00               | 2.782       | 126.2       | 0.04536   | 140.00      | 0.5999      | 69.11       | 0.1152    |
| 30.00               | 2.712       | 122.3       | 0.04508   | 145.00      | 0.5412      | 62.01       | 0.1146    |
| 35.00               | 2.640       | 118.2       | 0.04478   | 150.00      | 0.4830      | 54.78       | 0.1134    |
| 40.00               | 2.568       | 114.6       | 0.04463   | 155.00      | 0.4240      | 47.83       | 0.1128    |
| 45.00               | 2.498       | 111.7       | 0.04474   | 160.00      | 0.3532      | 41.24       | 0.1168    |
| 50.00               | 2.425       | 109.5       | 0.04517   |             |             |             |           |

| Table 4: | Storage and loss properties for Ticona Celcon M90 unfilled acetal copolymer (POM copolymer) showing low |
|----------|---------------------------------------------------------------------------------------------------------|
|          | temperature behavior. (tabular data for Graph 4)                                                        |

| Temperature<br>(°C) | E'<br>(GPa) | E"<br>(MPa) | Tan Delta | Temperature<br>(°C) | E'<br>(GPa) | E"<br>(MPa) | Tan Delta |
|---------------------|-------------|-------------|-----------|---------------------|-------------|-------------|-----------|
| -120.00             | 8.613       | 188.0       | 0.02182   | -25.00              | 3.538       | 115.4       | 0.03261   |
| -115.00             | 8.464       | 206.2       | 0.02437   | -20.00              | 3.444       | 111.8       | 0.03246   |
| -110.00             | 8.340       | 220.5       | 0.02644   | -15.00              | 3.358       | 109.6       | 0.03263   |
| -105.00             | 8.113       | 243.1       | 0.02996   | -10.00              | 3.287       | 107.4       | 0.03266   |
| -100.00             | 7.862       | 265.4       | 0.03376   | -5.00               | 3.225       | 105.7       | 0.03277   |
| -95.00              | 7.644       | 283.5       | 0.03708   | 0.00                | 3.162       | 103.7       | 0.03279   |
| -90.00              | 7.317       | 310.6       | 0.04245   | 5.00                | 3.102       | 103.1       | 0.03323   |
| -85.00              | 6.927       | 341.8       | 0.04935   | 10.00               | 3.043       | 102.0       | 0.03352   |
| -80.00              | 6.483       | 367.6       | 0.05670   | 15.00               | 2.984       | 101.7       | 0.03409   |
| -75.00              | 6.026       | 371.0       | 0.06156   | 20.00               | 2.921       | 100.7       | 0.03448   |
| -70.00              | 5.512       | 331.2       | 0.06009   | 25.00               | 2.854       | 98.81       | 0.03462   |
| -65.00              | 5.119       | 273.8       | 0.05349   | 30.00               | 2.782       | 96.79       | 0.03479   |
| -60.00              | 4.844       | 231.7       | 0.04784   | 35.00               | 2.703       | 94.67       | 0.03503   |
| -55.00              | 4.592       | 200.8       | 0.04371   | 40.00               | 2.612       | 92.95       | 0.03559   |
| -50.00              | 4.359       | 180.4       | 0.04139   | 45.00               | 2.520       | 91.42       | 0.03628   |
| -45.00              | 4.147       | 164.4       | 0.03963   | 50.00               | 2.439       | 90.04       | 0.03691   |
| -40.00              | 3.980       | 152.1       | 0.03820   | 55.00               | 2.353       | 88.78       | 0.03773   |
| -35.00              | 3.818       | 136.1       | 0.03566   | 60.00               | 2.249       | 88.33       | 0.03928   |
| -30.00              | 3.660       | 122.5       | 0.03345   | 65.00               | 2.120       | 88.40       | 0.04169   |



**Graph 5:** Storage and loss properties for Ticona Celcon TX90 unfilled, impact modified acetal copolymer (POM copolymer).

**Graph 6:** Storage and loss properties for Ticona Celcon GC25A 25% glass fiber filled acetal copolymer (POM copolymer).



© Plastic Design Library

Tabular Data Graphs

 Table 5:
 Storage and loss properties for Ticona Celcon TX90 unfilled, impact modified acetal copolymer (POM copolymer). (tabular data for Graph 5)

| Temperature<br>(°C) | E'<br>(GPa) | E"<br>(MPa) | Tan Delta | Temperature<br>(°C) | E'<br>(GPa) | E"<br>(MPa) | Tan Delta |
|---------------------|-------------|-------------|-----------|---------------------|-------------|-------------|-----------|
| 20.00               | 2.284       | 70.04       | 0.03067   | 25.00               | 2.223       | 65.32       | 0.02939   |
| -120.00             | 7.846       | 175.0       | 0.02230   | 30.00               | 2.159       | 60.61       | 0.02807   |
| -115.00             | 7.771       | 180.2       | 0.02319   | 35.00               | 2.097       | 57.48       | 0.02742   |
| -110.00             | 7.643       | 191.5       | 0.02506   | 40.00               | 2.037       | 55.21       | 0.02711   |
| -105.00             | 7.442       | 210.6       | 0.02830   | 45.00               | 1.979       | 54.02       | 0.02730   |
| -100.00             | 7.233       | 226.6       | 0.03132   | 50.00               | 1.921       | 53.54       | 0.02787   |
| -95.00              | 7.021       | 240.3       | 0.03423   | 55.00               | 1.858       | 53.63       | 0.02887   |
| -90.00              | 6.738       | 259.6       | 0.03853   | 60.00               | 1.781       | 54.07       | 0.03036   |
| -85.00              | 6.489       | 276.7       | 0.04264   | 65.00               | 1.687       | 55.30       | 0.03278   |
| -80.00              | 6.125       | 301.8       | 0.04927   | 70.00               | 1.578       | 56.97       | 0.03610   |
| -75.00              | 5.662       | 325.4       | 0.05748   | 75.00               | 1.461       | 59.75       | 0.04090   |
| -70.00              | 5.201       | 320.8       | 0.06168   | 80.00               | 1.352       | 62.82       | 0.04645   |
| -65.00              | 4.816       | 282.9       | 0.05875   | 85.00               | 1.247       | 66.47       | 0.05332   |
| -60.00              | 4.435       | 224.0       | 0.05049   | 90.00               | 1.142       | 70.39       | 0.06166   |
| -55.00              | 4.163       | 186.2       | 0.04472   | 95.00               | 1.049       | 73.81       | 0.07039   |
| -50.00              | 3.947       | 168.1       | 0.04260   | 100.00              | 0.9667      | 76.86       | 0.07951   |
| -45.00              | 3.748       | 160.5       | 0.04283   | 105.00              | 0.8838      | 78.36       | 0.08867   |
| -40.00              | 3.538       | 152.7       | 0.04316   | 110.00              | 0.8129      | 78.49       | 0.09657   |
| -35.00              | 3.321       | 139.3       | 0.04193   | 115.00              | 0.7441      | 76.20       | 0.1024    |
| -30.00              | 3.145       | 125.1       | 0.03977   | 120.00              | 0.6757      | 72.22       | 0.1069    |
| -25.00              | 2.988       | 114.1       | 0.03819   | 125.00              | 0.6118      | 67.22       | 0.1099    |
| -20.00              | 2.870       | 107.8       | 0.03756   | 130.00              | 0.5535      | 61.39       | 0.1109    |
| -15.00              | 2.755       | 102.8       | 0.03731   | 135.00              | 0.5008      | 55.58       | 0.1110    |
| -10.00              | 2.646       | 97.59       | 0.03687   | 140.00              | 0.4518      | 49.60       | 0.1098    |
| -5.00               | 2.557       | 91.30       | 0.03571   | 145.00              | 0.4055      | 44.05       | 0.1086    |
| 0.00                | 2.478       | 85.35       | 0.03444   | 150.00              | 0.3607      | 39.21       | 0.1087    |
| 5.00                | 2.412       | 79.99       | 0.03316   | 155.00              | 0.3155      | 34.97       | 0.1108    |
| 10.00               | 2.359       | 76.08       | 0.03226   | 160.00              | 0.2665      | 30.84       | 0.1157    |
| 15.00               | 2.321       | 73.24       | 0.03156   |                     |             |             |           |

 Table 6:
 Storage and loss properties for Ticona Celcon GC25A 25% glass fiber filled acetal copolymer (POM copolymer). (tabular data for Graph 6)

| Temperature | E'    | <b>E</b> " | Tan Delta | Temperature | E'    | <b>E</b> " | Tan Delta |
|-------------|-------|------------|-----------|-------------|-------|------------|-----------|
| (°C)        | (GPa) | (MPa)      |           | (°C)        | (GPa) | (MPa)      |           |
| -60.00      | 8.076 | 261.9      | 0.03242   | 55.00       | 5.844 | 170.1      | 0.02911   |
| -55.00      | 7.986 | 241.4      | 0.03023   | 60.00       | 5.715 | 172.2      | 0.03013   |
| -50.00      | 7.845 | 226.5      | 0.02887   | 65.00       | 5.554 | 178.0      | 0.03204   |
| -45.00      | 7.662 | 215.0      | 0.02805   | 70.00       | 5.366 | 187.8      | 0.03501   |
| -40.00      | 7.499 | 203.5      | 0.02713   | 75.00       | 5.159 | 197.5      | 0.03827   |
| -35.00      | 7.363 | 190.0      | 0.02581   | 80.00       | 4.951 | 206.1      | 0.04163   |
| -30.00      | 7.248 | 180.4      | 0.02489   | 85.00       | 4.744 | 216.2      | 0.04558   |
| -25.00      | 7.140 | 175.3      | 0.02455   | 90.00       | 4.554 | 227.3      | 0.04991   |
| -20.00      | 7.042 | 175.7      | 0.02494   | 95.00       | 4.372 | 238.0      | 0.05444   |
| -15.00      | 6.949 | 176.2      | 0.02535   | 100.00      | 4.203 | 247.8      | 0.05895   |
| -10.00      | 6.859 | 177.5      | 0.02588   | 105.00      | 4.036 | 256.3      | 0.06351   |
| -5.00       | 6.781 | 177.5      | 0.02618   | 110.00      | 3.870 | 262.7      | 0.06788   |
| 0.00        | 6.705 | 178.0      | 0.02655   | 115.00      | 3.703 | 266.4      | 0.07196   |
| 5.00        | 6.627 | 179.7      | 0.02712   | 120.00      | 3.541 | 266.6      | 0.07528   |
| 10.00       | 6.560 | 179.8      | 0.02740   | 125.00      | 3.378 | 263.8      | 0.07810   |
| 15.00       | 6.502 | 178.8      | 0.02750   | 130.00      | 3.211 | 258.2      | 0.08041   |
| 20.00       | 6.436 | 177.3      | 0.02755   | 135.00      | 3.041 | 251.2      | 0.08262   |
| 25.00       | 6.369 | 174.8      | 0.02745   | 140.00      | 2.861 | 243.4      | 0.08509   |
| 30.00       | 6.295 | 173.1      | 0.02749   | 145.00      | 2.692 | 237.6      | 0.08825   |
| 35.00       | 6.216 | 171.6      | 0.02760   | 150.00      | 2.536 | 233.3      | 0.09199   |
| 40.00       | 6.132 | 171.1      | 0.02790   | 155.00      | 2.318 | 221.4      | 0.09552   |
| 45.00       | 6.041 | 169.8      | 0.02812   | 160.00      | 1.975 | 198.3      | 0.1004    |
| 50.00       | 5.949 | 169.5      | 0.02849   |             |       |            |           |



**Graph 7:** Storage and loss properties for Ticona Celcon CFX-0108 25% glass fiber filled, UV stable acetal copolymer (POM copolymer).

Graph 8: Storage and loss properties for AtoHaas Plexiglas MI-7 unfilled, impact modified acrylic (PMMA).



 Table 7:
 Storage and loss properties for Ticona Celcon CFX-0108 25% glass fiber filled, UV stable acetale copolymer (POM copolymer). (tabular data for Graph 7)

| Temperature | E'    | <b>E</b> " | Tan Delta | Temperature | E'    | <b>E</b> " | Tan Delta |
|-------------|-------|------------|-----------|-------------|-------|------------|-----------|
| (°C)        | (GPa) | (MPa)      |           | (°C)        | (GPa) | (MPa)      |           |
| -60.00      | 9.056 | 310.8      | 0.03432   | 55.00       | 6.349 | 223.8      | 0.03526   |
| -55.00      | 8.981 | 293.3      | 0.03266   | 60.00       | 6.192 | 220.7      | 0.03564   |
| -50.00      | 8.850 | 276.5      | 0.03124   | 65.00       | 6.000 | 219.5      | 0.03658   |
| -45.00      | 8.691 | 265.3      | 0.03053   | 70.00       | 5.779 | 219.3      | 0.03795   |
| -40.00      | 8.509 | 251.3      | 0.02953   | 75.00       | 5.546 | 221.0      | 0.03984   |
| -35.00      | 8.315 | 234.5      | 0.02821   | 80.00       | 5.315 | 224.9      | 0.04231   |
| -30.00      | 8.158 | 221.3      | 0.02712   | 85.00       | 5.100 | 230.6      | 0.04522   |
| -25.00      | 8.020 | 213.4      | 0.02661   | 90.00       | 4.899 | 237.6      | 0.04850   |
| -20.00      | 7.898 | 213.7      | 0.02706   | 95.00       | 4.711 | 245.9      | 0.05220   |
| -15.00      | 7.778 | 215.9      | 0.02775   | 100.00      | 4.525 | 255.4      | 0.05645   |
| -10.00      | 7.680 | 217.8      | 0.02836   | 105.00      | 4.341 | 265.0      | 0.06105   |
| -5.00       | 7.595 | 220.8      | 0.02907   | 110.00      | 4.150 | 272.6      | 0.06569   |
| 0.00        | 7.468 | 227.5      | 0.03046   | 115.00      | 3.960 | 277.5      | 0.07009   |
| 5.00        | 7.356 | 231.8      | 0.03151   | 120.00      | 3.768 | 280.4      | 0.07441   |
| 10.00       | 7.263 | 235.8      | 0.03246   | 125.00      | 3.574 | 278.8      | 0.07801   |
| 15.00       | 7.180 | 238.6      | 0.03323   | 130.00      | 3.386 | 274.3      | 0.08101   |
| 20.00       | 7.088 | 240.7      | 0.03397   | 135.00      | 3.214 | 268.5      | 0.08354   |
| 25.00       | 7.010 | 241.5      | 0.03445   | 140.00      | 3.048 | 264.2      | 0.08668   |
| 30.00       | 6.931 | 240.9      | 0.03476   | 145.00      | 2.887 | 261.0      | 0.09040   |
| 35.00       | 6.837 | 239.3      | 0.03500   | 150.00      | 2.701 | 255.4      | 0.09454   |
| 40.00       | 6.719 | 236.2      | 0.03514   | 155.00      | 2.444 | 242.7      | 0.09928   |
| 45.00       | 6.596 | 231.4      | 0.03509   | 160.00      | 2.077 | 221.9      | 0.1069    |
| 50.00       | 6.478 | 227.4      | 0.03510   |             |       |            |           |

| Table 8 | Storage and loss properties for AtoHaas Plexiglas MI-7 unfilled, impact modified acrylic (PMMA). | (tabular |
|---------|--------------------------------------------------------------------------------------------------|----------|
|         | data for Graph 8)                                                                                |          |

| Temperature | E'    | <b>E</b> " | Tan Delta | Temperature | E'      | <b>E</b> " | Tan Delta |
|-------------|-------|------------|-----------|-------------|---------|------------|-----------|
| (°C)        | (GPa) | (MPa)      |           | (°C)        | (GPa)   | (MPa)      |           |
| -60.00      | 5.027 | 128.3      | 0.02551   | 35.00       | 2.894   | 208.1      | 0.07189   |
| -55.00      | 4.979 | 133.6      | 0.02682   | 40.00       | 2.789   | 197.6      | 0.07086   |
| -50.00      | 4.906 | 144.6      | 0.02948   | 45.00       | 2.690   | 187.8      | 0.06984   |
| -45.00      | 4.820 | 160.9      | 0.03339   | 50.00       | 2.593   | 178.0      | 0.06867   |
| -40.00      | 4.712 | 181.3      | 0.03847   | 55.00       | 2.487   | 168.1      | 0.06760   |
| -35.00      | 4.590 | 202.2      | 0.04406   | 60.00       | 2.365   | 158.6      | 0.06708   |
| -30.00      | 4.437 | 223.6      | 0.05038   | 65.00       | 2.227   | 152.1      | 0.06828   |
| -25.00      | 4.275 | 238.6      | 0.05582   | 70.00       | 2.073   | 148.9      | 0.07180   |
| -20.00      | 4.124 | 248.0      | 0.06013   | 75.00       | 1.911   | 149.0      | 0.07798   |
| -15.00      | 3.983 | 254.4      | 0.06386   | 80.00       | 1.748   | 152.0      | 0.08695   |
| -10.00      | 3.849 | 258.7      | 0.06721   | 85.00       | 1.588   | 158.6      | 0.09991   |
| -5.00       | 3.712 | 258.9      | 0.06974   | 90.00       | 1.420   | 170.5      | 0.1201    |
| 0.00        | 3.593 | 256.1      | 0.07129   | 95.00       | 1.232   | 188.8      | 0.1533    |
| 5.00        | 3.491 | 251.7      | 0.07211   | 100.00      | 1.016   | 212.5      | 0.2092    |
| 10.00       | 3.394 | 246.4      | 0.07261   | 105.00      | 0.7573  | 244.4      | 0.3229    |
| 15.00       | 3.288 | 239.5      | 0.07284   | 110.00      | 0.4378  | 262.2      | 0.6004    |
| 20.00       | 3.191 | 233.0      | 0.07302   | 115.00      | 0.1649  | 183.1      | 1.113     |
| 25.00       | 3.094 | 225.8      | 0.07298   | 120.00      | 0.05098 | 87.92      | 1.727     |
| 30.00       | 2.995 | 217.5      | 0.07261   | 125.00      | 0.01980 | 41.98      | 2.121     |



Graph 9: Storage and loss properties for DuPont Zylar ST94-580 unfilled, impact modified acrylic copolymer.

**Graph 10:** Storage and loss properties for DuPont Zytel ST901 unfilled, impact modified amorphous nylon tested at 0.6% moisture content.



**Tabular Data Graphs** 

 Table 9:
 Storage and loss properties for DuPont Zylar ST94-580 unfilled, impact modified acryliccopolymer. (tabular data for Graph 9)

| Temperature | E'    | <b>E</b> " | Tan Delta | Temperature | E'     | <b>E</b> " | Tan Delta |
|-------------|-------|------------|-----------|-------------|--------|------------|-----------|
| (°C)        | (GPa) | (MPa)      |           | (°C)        | (GPa)  | (MPa)      |           |
| -60.00      | 2.497 | 117.8      | 0.04717   | 30.00       | 2.001  | 100.0      | 0.05000   |
| -55.00      | 2.472 | 115.3      | 0.04662   | 35.00       | 1.973  | 100.1      | 0.05072   |
| -50.00      | 2.443 | 113.3      | 0.04635   | 40.00       | 1.940  | 100.3      | 0.05167   |
| -45.00      | 2.410 | 111.4      | 0.04623   | 45.00       | 1.908  | 101.2      | 0.05303   |
| -40.00      | 2.377 | 110.0      | 0.04627   | 50.00       | 1.872  | 102.5      | 0.05475   |
| -35.00      | 2.342 | 108.5      | 0.04632   | 55.00       | 1.825  | 104.8      | 0.05740   |
| -30.00      | 2.301 | 106.8      | 0.04642   | 60.00       | 1.768  | 108.5      | 0.06135   |
| -25.00      | 2.262 | 105.9      | 0.04680   | 65.00       | 1.700  | 115.1      | 0.06772   |
| -20.00      | 2.227 | 104.9      | 0.04711   | 70.00       | 1.620  | 122.7      | 0.07578   |
| -15.00      | 2.194 | 104.2      | 0.04750   | 75.00       | 1.529  | 130.7      | 0.08546   |
| -10.00      | 2.166 | 103.4      | 0.04774   | 80.00       | 1.431  | 138.9      | 0.09709   |
| -5.00       | 2.139 | 103.0      | 0.04814   | 85.00       | 1.322  | 147.9      | 0.1119    |
| 0.00        | 2.119 | 102.7      | 0.04845   | 90.00       | 1.194  | 157.5      | 0.1319    |
| 5.00        | 2.103 | 102.3      | 0.04866   | 95.00       | 1.037  | 169.0      | 0.1630    |
| 10.00       | 2.084 | 101.7      | 0.04877   | 100.00      | 0.8350 | 188.9      | 0.2264    |
| 15.00       | 2.065 | 101.0      | 0.04892   | 105.00      | 0.5571 | 237.5      | 0.4271    |
| 20.00       | 2.043 | 100.5      | 0.04919   | 110.00      | 0.2363 | 240.4      | 1.021     |
| 25.00       | 2.023 | 100.2      | 0.04954   |             |        |            |           |

 Table 10: Storage and loss properties for DuPont Zytel ST901 unfilled, impact modified amorphous nylon tested at 0.6% moisture content. (tabular data for Graph 10)

| Temperature | E'    | Е"    | Tan Delta | Temperature | E'      | <b>E</b> " | Tan Delta |
|-------------|-------|-------|-----------|-------------|---------|------------|-----------|
| (°C)        | (GPa) | (MPa) |           | (°C)        | (GPa)   | (MPa)      |           |
| -60.00      | 2.592 | 178.6 | 0.06890   | 45.00       | 1.714   | 66.11      | 0.03857   |
| -55.00      | 2.544 | 172.3 | 0.06770   | 50.00       | 1.692   | 64.31      | 0.03802   |
| -50.00      | 2.449 | 158.2 | 0.06459   | 55.00       | 1.670   | 62.49      | 0.03742   |
| -45.00      | 2.351 | 144.1 | 0.06131   | 60.00       | 1.643   | 60.73      | 0.03697   |
| -40.00      | 2.262 | 131.3 | 0.05802   | 65.00       | 1.607   | 59.32      | 0.03691   |
| -35.00      | 2.176 | 119.0 | 0.05469   | 70.00       | 1.571   | 57.75      | 0.03675   |
| -30.00      | 2.107 | 110.0 | 0.05220   | 75.00       | 1.541   | 56.19      | 0.03646   |
| -25.00      | 2.048 | 102.2 | 0.04987   | 80.00       | 1.517   | 54.89      | 0.03618   |
| -20.00      | 2.002 | 95.03 | 0.04747   | 85.00       | 1.498   | 53.96      | 0.03601   |
| -15.00      | 1.966 | 89.20 | 0.04537   | 90.00       | 1.482   | 54.02      | 0.03645   |
| -5.00       | 1.916 | 81.55 | 0.04257   | 95.00       | 1.464   | 55.49      | 0.03791   |
| 0.00        | 1.896 | 79.13 | 0.04175   | 100.00      | 1.441   | 58.80      | 0.04080   |
| 5.00        | 1.879 | 77.41 | 0.04120   | 105.00      | 1.406   | 65.28      | 0.04643   |
| 10.00       | 1.862 | 75.90 | 0.04077   | 110.00      | 1.345   | 78.51      | 0.05836   |
| 15.00       | 1.845 | 74.39 | 0.04033   | 115.00      | 1.217   | 104.6      | 0.08603   |
| 20.00       | 1.828 | 73.26 | 0.04007   | 120.00      | 0.9803  | 143.7      | 0.1466    |
| 25.00       | 1.811 | 72.13 | 0.03984   | 125.00      | 0.6776  | 177.7      | 0.2626    |
| 30.00       | 1.790 | 70.90 | 0.03960   | 130.00      | 0.3683  | 172.8      | 0.4701    |
| 35.00       | 1.766 | 69.62 | 0.03943   | 135.00      | 0.1446  | 119.8      | 0.8305    |
| 40.00       | 1.739 | 67.80 | 0.03898   | 140.00      | 0.03742 | 55.06      | 1.475     |



Graph 11: Storage and loss properties for EMS Grilamid TR55LX unfilled, amorphous, transparent nylon 12 tested dry as molded.

Graph 12: Storage and loss properties for EMS Grilamid TR55LX unfilled, amorphous, transparent nylon 12 tested at 1% moisture content.



 Table 11: Storage and loss properties for EMS Grilamid TR55LX unfilled, amorphous, transparent nylon 12 tested dry as molded. (tabular data for Graph 11)

| Temperature | E'    | <b>E</b> " | Tan Delta | Temperature | E'       | <b>E</b> " | Tan Delta |
|-------------|-------|------------|-----------|-------------|----------|------------|-----------|
| (°C)        | (GPa) | (MPa)      |           | (°C)        | (GPa)    | (MPa)      |           |
| -60.00      | 1.954 | 82.85      | 0.04239   | 40.00       | 1.709    | 67.76      | 0.03965   |
| -55.00      | 1.941 | 79.52      | 0.04097   | 45.00       | 1.703    | 68.09      | 0.03999   |
| -50.00      | 1.920 | 75.22      | 0.03917   | 55.00       | 1.685    | 67.93      | 0.04031   |
| -45.00      | 1.896 | 71.34      | 0.03762   | 70.00       | 1.653    | 66.91      | 0.04047   |
| -40.00      | 1.874 | 68.58      | 0.03660   | 80.00       | 1.621    | 67.09      | 0.04139   |
| -35.00      | 1.849 | 65.25      | 0.03529   | 85.00       | 1.592    | 68.56      | 0.04307   |
| -30.00      | 1.827 | 63.69      | 0.03486   | 90.00       | 1.547    | 72.75      | 0.04703   |
| -25.00      | 1.806 | 63.38      | 0.03510   | 95.00       | 1.455    | 85.54      | 0.05881   |
| -20.00      | 1.789 | 64.39      | 0.03599   | 100.00      | 1.246    | 120.9      | 0.09706   |
| -15.00      | 1.774 | 66.26      | 0.03736   | 105.00      | 0.9050   | 163.4      | 0.1808    |
| -10.00      | 1.759 | 68.53      | 0.03895   | 110.00      | 0.5663   | 170.1      | 0.3008    |
| -5.00       | 1.746 | 70.54      | 0.04040   | 115.00      | 0.3143   | 151.7      | 0.4833    |
| 0.00        | 1.735 | 71.89      | 0.04145   | 120.00      | 0.1499   | 110.1      | 0.7360    |
| 5.00        | 1.725 | 72.56      | 0.04205   | 125.00      | 0.06545  | 65.69      | 1.005     |
| 10.00       | 1.720 | 72.69      | 0.04226   | 130.00      | 0.02845  | 35.37      | 1.244     |
| 15.00       | 1.717 | 72.41      | 0.04218   | 135.00      | 0.01470  | 21.27      | 1.448     |
| 25.00       | 1.714 | 71.05      | 0.04145   | 140.00      | 0.009631 | 15.98      | 1.659     |
| 30.00       | 1.714 | 70.37      | 0.04106   |             |          |            |           |

 Table 12: Storage and loss properties for EMS Grilamid TR55LX unfilled, amorphous, transparent nylon 12 tested at 1% moisture content. (tabular data for Graph 12)

| Temperature<br>(°C) | E'<br>(GPa) | E"<br>(MPa) | Tan Delta | Temperature<br>(°C) | E'<br>(GPa) | E"<br>(MPa) | Tan Delta |
|---------------------|-------------|-------------|-----------|---------------------|-------------|-------------|-----------|
| -60.00              | 2.180       | 112.8       | 0.05176   | 40.00               | 1.806       | 57.01       | 0.03157   |
| -55.00              | 2.151       | 104.3       | 0.04850   | 45.00               | 1.793       | 55.86       | 0.03115   |
| -50.00              | 2.092       | 89.54       | 0.04280   | 50.00               | 1.780       | 54.76       | 0.03076   |
| -45.00              | 2.051       | 81.74       | 0.03986   | 55.00               | 1.765       | 53.68       | 0.03042   |
| -40.00              | 2.019       | 76.02       | 0.03765   | 60.00               | 1.746       | 52.63       | 0.03014   |
| -35.00              | 1.995       | 71.82       | 0.03600   | 65.00               | 1.722       | 52.12       | 0.03027   |
| -30.00              | 1.975       | 68.45       | 0.03466   | 70.00               | 1.685       | 53.06       | 0.03149   |
| -25.00              | 1.956       | 66.02       | 0.03375   | 75.00               | 1.615       | 60.16       | 0.03725   |
| -20.00              | 1.938       | 64.04       | 0.03304   | 80.00               | 1.474       | 83.20       | 0.05645   |
| -15.00              | 1.922       | 62.79       | 0.03267   | 85.00               | 1.277       | 119.9       | 0.09394   |
| -10.00              | 1.908       | 62.24       | 0.03262   | 90.00               | 1.062       | 149.6       | 0.1409    |
| -5.00               | 1.895       | 61.80       | 0.03261   | 95.00               | 0.8456      | 167.7       | 0.1984    |
| 0.00                | 1.884       | 61.48       | 0.03264   | 100.00              | 0.6342      | 173.0       | 0.2730    |
| 5.00                | 1.873       | 61.18       | 0.03266   | 105.00              | 0.4415      | 162.5       | 0.3682    |
| 10.00               | 1.865       | 60.83       | 0.03262   | 110.00              | 0.2839      | 140.3       | 0.4947    |
| 15.00               | 1.855       | 60.70       | 0.03272   | 115.00              | 0.1693      | 110.1       | 0.6512    |
| 20.00               | 1.844       | 60.41       | 0.03276   | 120.00              | 0.09186     | 75.71       | 0.8248    |
| 25.00               | 1.835       | 59.59       | 0.03248   | 125.00              | 0.04924     | 48.99       | 0.9954    |
| 30.00               | 1.826       | 58.67       | 0.03213   | 130.00              | 0.02668     | 31.76       | 1.191     |
| 35.00               | 1.816       | 57.86       | 0.03185   | 135.00              | 0.01661     | 21.95       | 1.322     |



Graph 13: Storage and loss properties for Allied Signal Capron 8202C unfilled, nucleated nylon 6 tested at 0.15% moisture content.

Graph 14: Storage and loss properties for Allied Signal Capron 8231G 6 - 14% glass fiber filled nylon 6 tested at 0.15% moisture content.



Tabular Data Graphs

 Table 13: Storage and loss properties for Allied Signal Capron 8202C unfilled, nucleated nylon 6 tested at 0.15% moisture content. (tabular data for Graph 13)

| Temperature | E'    | <b>E</b> " | Tan Delta | Temperature | E'     | <b>E</b> " | Tan Delta |
|-------------|-------|------------|-----------|-------------|--------|------------|-----------|
| (°C)        | (GPa) | (MPa)      |           | (°C)        | (GPa)  | (MPa)      |           |
| -60.00      | 2.992 | 96.64      | 0.03230   | 80.00       | 1.015  | 153.8      | 0.1516    |
| -55.00      | 2.977 | 92.55      | 0.03109   | 85.00       | 0.8253 | 120.2      | 0.1456    |
| -50.00      | 2.948 | 87.67      | 0.02974   | 90.00       | 0.7014 | 93.00      | 0.1326    |
| -45.00      | 2.919 | 83.46      | 0.02860   | 95.00       | 0.6209 | 72.86      | 0.1173    |
| -40.00      | 2.893 | 79.61      | 0.02752   | 100.00      | 0.5685 | 58.49      | 0.1029    |
| -35.00      | 2.866 | 75.12      | 0.02621   | 105.00      | 0.5336 | 48.35      | 0.09061   |
| -30.00      | 2.836 | 70.98      | 0.02503   | 110.00      | 0.5104 | 41.42      | 0.08114   |
| -25.00      | 2.804 | 67.85      | 0.02419   | 115.00      | 0.4945 | 36.78      | 0.07438   |
| -20.00      | 2.778 | 66.87      | 0.02407   | 120.00      | 0.4835 | 33.79      | 0.06989   |
| -15.00      | 2.754 | 67.41      | 0.02447   | 125.00      | 0.4757 | 31.94      | 0.06715   |
| -10.00      | 2.726 | 70.59      | 0.02589   | 130.00      | 0.4711 | 31.01      | 0.06581   |
| -5.00       | 2.699 | 75.11      | 0.02783   | 135.00      | 0.4681 | 30.87      | 0.06595   |
| 0.00        | 2.675 | 78.73      | 0.02943   | 140.00      | 0.4656 | 30.49      | 0.06548   |
| 5.00        | 2.658 | 80.72      | 0.03037   | 145.00      | 0.4623 | 29.93      | 0.06474   |
| 10.00       | 2.645 | 81.17      | 0.03068   | 150.00      | 0.4583 | 28.81      | 0.06286   |
| 15.00       | 2.636 | 80.53      | 0.03055   | 155.00      | 0.4532 | 27.61      | 0.06093   |
| 20.00       | 2.630 | 78.68      | 0.02991   | 160.00      | 0.4463 | 26.15      | 0.05859   |
| 25.00       | 2.623 | 77.62      | 0.02959   | 165.00      | 0.4372 | 24.91      | 0.05698   |
| 30.00       | 2.614 | 76.02      | 0.02908   | 170.00      | 0.4257 | 23.79      | 0.05588   |
| 35.00       | 2.599 | 76.55      | 0.02946   | 175.00      | 0.4126 | 22.87      | 0.05542   |
| 40.00       | 2.580 | 76.94      | 0.02983   | 180.00      | 0.3983 | 22.36      | 0.05614   |
| 45.00       | 2.557 | 77.38      | 0.03026   | 185.00      | 0.3823 | 21.98      | 0.05750   |
| 50.00       | 2.523 | 79.91      | 0.03167   | 190.00      | 0.3640 | 21.69      | 0.05960   |
| 55.00       | 2.454 | 89.53      | 0.03648   | 195.00      | 0.3419 | 21.50      | 0.06288   |
| 60.00       | 2.311 | 114.7      | 0.04965   | 200.00      | 0.3127 | 21.36      | 0.06833   |
| 65.00       | 2.040 | 160.0      | 0.07847   | 205.00      | 0.2739 | 21.23      | 0.07753   |
| 70.00       | 1.673 | 192.4      | 0.1151    | 210.00      | 0.2289 | 20.82      | 0.09098   |
| 75.00       | 1.300 | 186.0      | 0.1431    |             |        |            |           |

 Table 14: Storage and loss properties for Allied Signal Capron 8231G 6 - 14% glass fiber filled nylon 6 tested at 0.15% moisture content. (tabular data for Graph 14)

| Temperature | E'    | <b>E</b> " | Tan Delta | Temperature | E'     | <b>E</b> " | Tan Delta |
|-------------|-------|------------|-----------|-------------|--------|------------|-----------|
| (°C)        | (GPa) | (MPa)      |           | (°C)        | (GPa)  | (MPa)      |           |
| -60.00      | 5.035 | 115.7      | 0.02297   | 80.00       | 2.531  | 221.2      | 0.08740   |
| -55.00      | 5.006 | 109.0      | 0.02177   | 85.00       | 2.295  | 187.8      | 0.08184   |
| -50.00      | 4.977 | 103.6      | 0.02081   | 90.00       | 2.141  | 154.8      | 0.07230   |
| -45.00      | 4.952 | 98.48      | 0.01989   | 95.00       | 2.044  | 126.9      | 0.06206   |
| -40.00      | 4.918 | 93.88      | 0.01909   | 100.00      | 1.989  | 106.5      | 0.05355   |
| -35.00      | 4.883 | 89.70      | 0.01837   | 105.00      | 1.962  | 92.19      | 0.04698   |
| -30.00      | 4.850 | 85.04      | 0.01753   | 110.00      | 1.949  | 81.45      | 0.04179   |
| -25.00      | 4.825 | 80.91      | 0.01677   | 115.00      | 1.942  | 73.42      | 0.03782   |
| -20.00      | 4.801 | 77.33      | 0.01611   | 120.00      | 1.932  | 63.63      | 0.03293   |
| -15.00      | 4.789 | 74.22      | 0.01550   | 125.00      | 1.917  | 56.26      | 0.02935   |
| -10.00      | 4.780 | 72.31      | 0.01513   | 130.00      | 1.898  | 52.49      | 0.02765   |
| -5.00       | 4.769 | 71.76      | 0.01505   | 135.00      | 1.880  | 50.71      | 0.02698   |
| 0.00        | 4.746 | 72.25      | 0.01522   | 140.00      | 1.861  | 49.84      | 0.02679   |
| 5.00        | 4.749 | 73.73      | 0.01553   | 145.00      | 1.842  | 49.40      | 0.02682   |
| 10.00       | 4.742 | 74.51      | 0.01571   | 150.00      | 1.822  | 49.60      | 0.02722   |
| 15.00       | 4.733 | 75.17      | 0.01588   | 155.00      | 1.801  | 50.30      | 0.02793   |
| 20.00       | 4.721 | 76.77      | 0.01626   | 160.00      | 1.777  | 50.84      | 0.02861   |
| 25.00       | 4.705 | 78.79      | 0.01674   | 165.00      | 1.751  | 51.82      | 0.02959   |
| 30.00       | 4.688 | 81.03      | 0.01729   | 170.00      | 1.723  | 52.72      | 0.03060   |
| 35.00       | 4.661 | 84.15      | 0.01805   | 175.00      | 1.690  | 53.67      | 0.03176   |
| 40.00       | 4.627 | 88.61      | 0.01915   | 180.00      | 1.651  | 54.76      | 0.03318   |
| 45.00       | 4.583 | 94.37      | 0.02059   | 185.00      | 1.604  | 55.84      | 0.03481   |
| 50.00       | 4.522 | 104.3      | 0.02306   | 190.00      | 1.547  | 57.11      | 0.03692   |
| 55.00       | 4.414 | 122.2      | 0.02767   | 195.00      | 1.472  | 58.83      | 0.03996   |
| 60.00       | 4.206 | 158.8      | 0.03778   | 200.00      | 1.368  | 61.67      | 0.04510   |
| 65.00       | 3.825 | 215.8      | 0.05644   | 205.00      | 1.244  | 64.89      | 0.05218   |
| 70.00       | 3.335 | 251.0      | 0.07528   | 210.00      | 1.070  | 69.01      | 0.06454   |
| 75.00       | 2.868 | 246.9      | 0.08611   | 215.00      | 0.7880 | 73.23      | 0.09318   |



Graph 15: Storage and loss properties for Bayer Durethan BKV030 30% glass fiber filled nylon 6 tested at 0.47% moisture content.

Graph 16: Storage and loss properties for EMS Grilon PVN-3H 30% glass fiber filled nylon 6 tested at 0.4% moisture content.



| Temperature | E'    | <b>E</b> " | Tan Delta | Temperature | E'    | <b>E</b> " | Tan Delta |
|-------------|-------|------------|-----------|-------------|-------|------------|-----------|
| (°C)        | (GPa) | (MPa)      |           | (°C)        | (GPa) | (MPa)      |           |
| -60.00      | 8.264 | 181.6      | 0.02198   | 80.00       | 4.515 | 296.3      | 0.06562   |
| -55.00      | 8.240 | 173.0      | 0.02099   | 85.00       | 4.252 | 269.6      | 0.06340   |
| -50.00      | 8.201 | 164.9      | 0.02011   | 90.00       | 4.045 | 241.3      | 0.05965   |
| -45.00      | 8.146 | 157.5      | 0.01933   | 95.00       | 3.889 | 215.5      | 0.05540   |
| -40.00      | 8.096 | 149.5      | 0.01847   | 100.00      | 3.772 | 193.1      | 0.05118   |
| -35.00      | 8.042 | 141.8      | 0.01763   | 105.00      | 3.690 | 174.8      | 0.04737   |
| -30.00      | 7.991 | 134.0      | 0.01677   | 110.00      | 3.638 | 160.3      | 0.04406   |
| -25.00      | 7.948 | 127.2      | 0.01601   | 115.00      | 3.614 | 148.9      | 0.04121   |
| -20.00      | 7.915 | 122.6      | 0.01549   | 120.00      | 3.603 | 142.5      | 0.03954   |
| -15.00      | 7.884 | 120.2      | 0.01525   | 125.00      | 3.593 | 133.2      | 0.03708   |
| -10.00      | 7.855 | 119.9      | 0.01527   | 130.00      | 3.576 | 124.9      | 0.03493   |
| -5.00       | 7.831 | 120.2      | 0.01535   | 135.00      | 3.553 | 117.4      | 0.03303   |
| 0.00        | 7.818 | 122.8      | 0.01570   | 140.00      | 3.519 | 110.0      | 0.03125   |
| 5.00        | 7.797 | 127.7      | 0.01637   | 145.00      | 3.477 | 104.7      | 0.03012   |
| 10.00       | 7.768 | 133.9      | 0.01723   | 150.00      | 3.432 | 101.2      | 0.02948   |
| 15.00       | 7.733 | 140.5      | 0.01817   | 155.00      | 3.381 | 98.82      | 0.02923   |
| 20.00       | 7.695 | 147.6      | 0.01919   | 160.00      | 3.324 | 97.06      | 0.02920   |
| 25.00       | 7.636 | 158.1      | 0.02070   | 165.00      | 3.265 | 95.78      | 0.02933   |
| 30.00       | 7.560 | 170.1      | 0.02250   | 170.00      | 3.199 | 94.82      | 0.02964   |
| 35.00       | 7.463 | 183.9      | 0.02464   | 175.00      | 3.125 | 94.19      | 0.03014   |
| 40.00       | 7.352 | 198.2      | 0.02696   | 180.00      | 3.041 | 93.95      | 0.03090   |
| 45.00       | 7.199 | 215.4      | 0.02992   | 185.00      | 2.947 | 93.91      | 0.03186   |
| 50.00       | 6.976 | 237.2      | 0.03400   | 190.00      | 2.839 | 94.55      | 0.03331   |
| 55.00       | 6.641 | 267.8      | 0.04032   | 195.00      | 2.704 | 96.16      | 0.03556   |
| 60.00       | 6.170 | 306.8      | 0.04972   | 200.00      | 2.509 | 99.21      | 0.03954   |
| 65.00       | 5.654 | 327.5      | 0.05793   | 205.00      | 2.194 | 103.9      | 0.04737   |
| 70.00       | 5.208 | 326.6      | 0.06271   | 210.00      | 1.807 | 105.5      | 0.05841   |
| 75.00       | 4.835 | 316.5      | 0.06546   | 215.00      | 1.279 | 96.08      | 0.07528   |

 Table 16: Storage and loss properties for EMS Grilon PVN-3H 30% glass fiber filled nylon 6 testedat 0.4% moisture content. (tabular data for Graph 16)

| Temperature | E'    | Е"    | Tan Delta | Temperature | E'    | <b>E</b> " | Tan Delta |
|-------------|-------|-------|-----------|-------------|-------|------------|-----------|
| (°C)        | (GPa) | (MPa) |           | (°C)        | (GPa) | (MPa)      |           |
| -55.00      | 7.106 | 137.6 | 0.01937   | 80.00       | 3.729 | 243.4      | 0.06527   |
| -50.00      | 7.064 | 130.4 | 0.01846   | 85.00       | 3.478 | 221.9      | 0.06380   |
| -45.00      | 7.024 | 125.0 | 0.01780   | 90.00       | 3.283 | 197.8      | 0.06023   |
| -40.00      | 6.982 | 117.8 | 0.01687   | 95.00       | 3.131 | 174.4      | 0.05570   |
| -35.00      | 6.939 | 112.1 | 0.01615   | 100.00      | 3.021 | 154.3      | 0.05106   |
| -30.00      | 6.895 | 107.9 | 0.01566   | 105.00      | 2.938 | 138.4      | 0.04711   |
| -25.00      | 6.848 | 105.2 | 0.01537   | 110.00      | 2.875 | 125.5      | 0.04367   |
| -20.00      | 6.803 | 103.8 | 0.01526   | 115.00      | 2.827 | 114.5      | 0.04050   |
| -15.00      | 6.766 | 102.2 | 0.01511   | 120.00      | 2.793 | 105.4      | 0.03775   |
| -10.00      | 6.734 | 100.5 | 0.01493   | 125.00      | 2.768 | 98.45      | 0.03557   |
| -5.00       | 6.706 | 97.24 | 0.01450   | 130.00      | 2.754 | 93.55      | 0.03397   |
| 0.00        | 6.677 | 96.08 | 0.01439   | 135.00      | 2.741 | 89.55      | 0.03267   |
| 5.00        | 6.642 | 97.34 | 0.01466   | 140.00      | 2.732 | 87.46      | 0.03201   |
| 10.00       | 6.605 | 101.0 | 0.01530   | 145.00      | 2.722 | 85.87      | 0.03155   |
| 15.00       | 6.560 | 106.4 | 0.01622   | 150.00      | 2.706 | 85.85      | 0.03172   |
| 20.00       | 6.509 | 112.4 | 0.01727   | 155.00      | 2.678 | 81.56      | 0.03045   |
| 25.00       | 6.459 | 117.0 | 0.01811   | 160.00      | 2.637 | 78.89      | 0.02992   |
| 30.00       | 6.423 | 120.2 | 0.01872   | 165.00      | 2.584 | 77.73      | 0.03007   |
| 35.00       | 6.359 | 128.0 | 0.02013   | 170.00      | 2.524 | 77.17      | 0.03058   |
| 40.00       | 6.237 | 142.8 | 0.02290   | 175.00      | 2.460 | 77.68      | 0.03157   |
| 45.00       | 6.074 | 162.5 | 0.02675   | 180.00      | 2.386 | 78.19      | 0.03277   |
| 50.00       | 5.887 | 184.6 | 0.03136   | 185.00      | 2.304 | 79.45      | 0.03449   |
| 55.00       | 5.648 | 210.3 | 0.03723   | 190.00      | 2.195 | 82.80      | 0.03772   |
| 60.00       | 5.295 | 244.5 | 0.04618   | 195.00      | 2.041 | 86.80      | 0.04254   |
| 65.00       | 4.839 | 272.1 | 0.05624   | 200.00      | 1.843 | 90.30      | 0.04901   |
| 70.00       | 4.407 | 275.7 | 0.06255   | 205.00      | 1.594 | 92.62      | 0.05812   |
| 75.00       | 4.032 | 262.9 | 0.06521   | 210.00      | 1.241 | 93.23      | 0.07524   |



Graph 17: Storage and loss properties for Allied Signal Capron 8233G 33% glass fiber filled nylon 6 tested at 0.3% moisture content.

Graph 18: Storage and loss properties for BASF Ultramid B3EG6 30% glass fiber filled nylon 6 tested at 0.5% moisture content.



Tabular Data Graphs

 Table 17: Storage and loss properties for Allied Signal Capron 8233G 33% glass fiber filled nylon 6 tested at 0.3% moisture content. (tabular data for Graph 17

| Temperature | E'    | <b>E</b> " | Tan Delta | Temperature | E'    | <b>E</b> " | Tan Delta |
|-------------|-------|------------|-----------|-------------|-------|------------|-----------|
| (°C)        | (GPa) | (MPa)      |           | (°C)        | (GPa) | (MPa)      |           |
| -60.00      | 8.473 | 133.6      | 0.01577   | 85.00       | 4.462 | 297.5      | 0.06667   |
| -55.00      | 8.467 | 125.2      | 0.01479   | 90.00       | 4.225 | 254.0      | 0.06010   |
| -50.00      | 8.432 | 120.8      | 0.01433   | 95.00       | 4.061 | 214.5      | 0.05283   |
| -45.00      | 8.382 | 116.0      | 0.01384   | 100.00      | 3.949 | 182.5      | 0.04622   |
| -40.00      | 8.328 | 112.5      | 0.01351   | 105.00      | 3.875 | 158.3      | 0.04084   |
| -35.00      | 8.278 | 109.0      | 0.01317   | 110.00      | 3.838 | 143.5      | 0.03740   |
| -30.00      | 8.246 | 103.5      | 0.01255   | 115.00      | 3.816 | 136.9      | 0.03588   |
| -25.00      | 8.229 | 97.24      | 0.01182   | 120.00      | 3.800 | 131.0      | 0.03447   |
| -20.00      | 8.209 | 91.54      | 0.01115   | 125.00      | 3.787 | 125.4      | 0.03313   |
| -15.00      | 8.189 | 88.42      | 0.01080   | 130.00      | 3.781 | 122.2      | 0.03233   |
| -10.00      | 8.165 | 87.40      | 0.01070   | 135.00      | 3.787 | 121.6      | 0.03209   |
| -5.00       | 8.149 | 88.38      | 0.01085   | 140.00      | 3.799 | 121.0      | 0.03186   |
| 5.00        | 8.121 | 93.02      | 0.01145   | 145.00      | 3.796 | 118.0      | 0.03110   |
| 10.00       | 8.109 | 95.22      | 0.01174   | 150.00      | 3.771 | 111.9      | 0.02967   |
| 15.00       | 8.096 | 97.36      | 0.01202   | 155.00      | 3.728 | 108.2      | 0.02901   |
| 20.00       | 8.081 | 99.77      | 0.01235   | 160.00      | 3.676 | 106.7      | 0.02901   |
| 25.00       | 8.058 | 104.6      | 0.01298   | 165.00      | 3.617 | 106.6      | 0.02946   |
| 30.00       | 8.025 | 111.2      | 0.01386   | 170.00      | 3.551 | 107.0      | 0.03014   |
| 35.00       | 7.982 | 119.9      | 0.01502   | 175.00      | 3.479 | 108.0      | 0.03104   |
| 40.00       | 7.921 | 131.2      | 0.01656   | 180.00      | 3.397 | 109.3      | 0.03217   |
| 45.00       | 7.828 | 148.5      | 0.01897   | 185.00      | 3.302 | 111.5      | 0.03377   |
| 50.00       | 7.683 | 175.3      | 0.02282   | 190.00      | 3.183 | 115.4      | 0.03626   |
| 55.00       | 7.435 | 219.8      | 0.02956   | 195.00      | 3.026 | 120.8      | 0.03993   |
| 60.00       | 7.013 | 288.2      | 0.04111   | 200.00      | 2.805 | 127.9      | 0.04560   |
| 65.00       | 6.431 | 353.5      | 0.05498   | 205.00      | 2.537 | 135.2      | 0.05331   |
| 70.00       | 5.782 | 383.9      | 0.06639   | 210.00      | 2.156 | 145.0      | 0.06731   |
| 75.00       | 5.213 | 375.1      | 0.07195   | 215.00      | 1.515 | 154.2      | 0.1021    |
| 80.00       | 4.790 | 341.2      | 0.07122   |             |       |            |           |

 Table 18: Storage and loss properties for BASF Ultramid B3EG6 30% glass fiber filled nylon 6 tested at 0.5% moisture content. (tabular data for Graph 18)

| Temperature | E'    | <b>E</b> " | Tan Delta | Temperature | E'    | <b>E</b> " | Tan Delta |
|-------------|-------|------------|-----------|-------------|-------|------------|-----------|
| (°C)        | (GPa) | (MPa)      |           | (°C)        | (GPa) | (MPa)      |           |
| -60.00      | 7.390 | 103.2      | 0.01396   | 85.00       | 3.829 | 280.3      | 0.07320   |
| -55.00      | 7.361 | 98.19      | 0.01334   | 90.00       | 3.566 | 243.6      | 0.06830   |
| -50.00      | 7.323 | 94.60      | 0.01292   | 95.00       | 3.375 | 206.9      | 0.06130   |
| -45.00      | 7.289 | 88.82      | 0.01219   | 100.00      | 3.239 | 175.4      | 0.05415   |
| -40.00      | 7.242 | 83.38      | 0.01151   | 110.00      | 3.072 | 129.5      | 0.04215   |
| -35.00      | 7.188 | 77.54      | 0.01079   | 115.00      | 3.025 | 113.7      | 0.03759   |
| -30.00      | 7.140 | 72.21      | 0.01011   | 120.00      | 2.988 | 103.0      | 0.03447   |
| -25.00      | 7.100 | 67.64      | 0.009527  | 125.00      | 2.962 | 95.56      | 0.03227   |
| -20.00      | 7.071 | 63.53      | 0.008985  | 130.00      | 2.944 | 90.69      | 0.03081   |
| -15.00      | 7.056 | 59.84      | 0.008481  | 135.00      | 2.928 | 87.36      | 0.02984   |
| -10.00      | 7.040 | 58.16      | 0.008261  | 140.00      | 2.908 | 85.60      | 0.02944   |
| -5.00       | 7.022 | 57.83      | 0.008235  | 145.00      | 2.884 | 84.03      | 0.02914   |
| 0.00        | 7.002 | 58.61      | 0.008370  | 150.00      | 2.858 | 83.05      | 0.02906   |
| 5.00        | 6.982 | 59.45      | 0.008514  | 155.00      | 2.828 | 81.93      | 0.02897   |
| 10.00       | 6.956 | 60.93      | 0.008760  | 160.00      | 2.791 | 81.64      | 0.02925   |
| 15.00       | 6.935 | 61.48      | 0.008865  | 165.00      | 2.747 | 81.64      | 0.02972   |
| 20.00       | 6.914 | 62.00      | 0.008967  | 170.00      | 2.700 | 82.06      | 0.03039   |
| 25.00       | 6.892 | 64.20      | 0.009315  | 175.00      | 2.644 | 83.36      | 0.03153   |
| 30.00       | 6.850 | 69.67      | 0.01017   | 180.00      | 2.582 | 84.83      | 0.03286   |
| 35.00       | 6.786 | 79.76      | 0.01175   | 185.00      | 2.511 | 86.72      | 0.03453   |
| 40.00       | 6.689 | 96.45      | 0.01442   | 190.00      | 2.431 | 88.88      | 0.03656   |
| 45.00       | 6.543 | 121.2      | 0.01852   | 195.00      | 2.329 | 92.24      | 0.03961   |
| 50.00       | 6.365 | 152.1      | 0.02389   | 200.00      | 2.186 | 96.86      | 0.04431   |
| 60.00       | 5.783 | 243.3      | 0.04208   | 205.00      | 2.000 | 100.6      | 0.05032   |
| 65.00       | 5.371 | 286.2      | 0.05328   | 210.00      | 1.799 | 104.0      | 0.05782   |
| 70.00       | 4.940 | 308.9      | 0.06253   | 215.00      | 1.509 | 106.9      | 0.07091   |
| 75.00       | 4.513 | 313.5      | 0.06946   | 220.00      | 1.026 | 107.9      | 0.1055    |
| 80.00       | 4.144 | 305.2      | 0.07365   |             |       |            |           |



Graph 19: Storage and loss properties for LNP Thermocomp PF1006HI 30% glass fiber filled, impact modified nylon 6 tested at 0.3% moisture content.

Graph 20: Storage and loss properties for DSM Engineering Fiberfil J7-33 33% glass fiber filled, impact modified nylon 6 tested at 0.3% moisture content.



 Table 19: Storage and loss properties for LNP Thermocomp PF1006HI 30% glass fiber filled, impact modified nylon 6 tested at 0.3% moisture content. (tabular data for Graph 19)

| Temperature | E'    | Е"    | Tan Delta | Temperature | E'    | <b>E</b> " | Tan Delta |
|-------------|-------|-------|-----------|-------------|-------|------------|-----------|
| (°C)        | (GPa) | (MPa) |           | (°C)        | (GPa) | (MPa)      |           |
| -60.00      | 7.695 | 168.6 | 0.02191   | 80.00       | 3.950 | 314.4      | 0.07960   |
| -55.00      | 7.658 | 163.9 | 0.02141   | 85.00       | 3.694 | 282.3      | 0.07643   |
| -50.00      | 7.616 | 158.4 | 0.02080   | 90.00       | 3.505 | 248.1      | 0.07080   |
| -45.00      | 7.567 | 152.4 | 0.02015   | 95.00       | 3.361 | 218.1      | 0.06488   |
| -40.00      | 7.506 | 145.8 | 0.01942   | 100.00      | 3.264 | 191.1      | 0.05856   |
| -35.00      | 7.439 | 138.2 | 0.01857   | 105.00      | 3.193 | 166.0      | 0.05199   |
| -30.00      | 7.381 | 130.0 | 0.01762   | 110.00      | 3.151 | 147.5      | 0.04680   |
| -25.00      | 7.333 | 123.2 | 0.01680   | 115.00      | 3.128 | 133.3      | 0.04260   |
| -20.00      | 7.300 | 116.4 | 0.01595   | 120.00      | 3.112 | 122.5      | 0.03937   |
| -15.00      | 7.271 | 112.4 | 0.01546   | 125.00      | 3.094 | 112.1      | 0.03622   |
| -10.00      | 7.244 | 110.2 | 0.01522   | 130.00      | 3.075 | 104.0      | 0.03383   |
| -5.00       | 7.220 | 109.8 | 0.01521   | 135.00      | 3.054 | 98.01      | 0.03209   |
| 0.00        | 7.195 | 111.7 | 0.01552   | 140.00      | 3.024 | 93.68      | 0.03098   |
| 5.00        | 7.168 | 116.4 | 0.01624   | 145.00      | 2.988 | 90.42      | 0.03026   |
| 10.00       | 7.136 | 123.7 | 0.01733   | 150.00      | 2.948 | 88.14      | 0.02990   |
| 15.00       | 7.097 | 132.9 | 0.01872   | 155.00      | 2.906 | 86.56      | 0.02979   |
| 20.00       | 7.049 | 141.9 | 0.02013   | 160.00      | 2.861 | 85.60      | 0.02992   |
| 25.00       | 7.001 | 149.5 | 0.02135   | 165.00      | 2.811 | 85.09      | 0.03027   |
| 30.00       | 6.947 | 156.9 | 0.02259   | 170.00      | 2.758 | 84.48      | 0.03063   |
| 35.00       | 6.877 | 165.3 | 0.02404   | 175.00      | 2.699 | 84.11      | 0.03117   |
| 40.00       | 6.780 | 176.7 | 0.02607   | 180.00      | 2.632 | 83.72      | 0.03181   |
| 45.00       | 6.642 | 193.0 | 0.02906   | 185.00      | 2.558 | 83.60      | 0.03268   |
| 50.00       | 6.440 | 218.7 | 0.03396   | 190.00      | 2.469 | 84.20      | 0.03411   |
| 55.00       | 6.144 | 260.9 | 0.04247   | 195.00      | 2.367 | 85.22      | 0.03601   |
| 60.00       | 5.723 | 315.2 | 0.05508   | 200.00      | 2.237 | 87.37      | 0.03906   |
| 65.00       | 5.233 | 347.4 | 0.06639   | 205.00      | 2.046 | 92.02      | 0.04498   |
| 70.00       | 4.747 | 349.7 | 0.07367   | 210.00      | 1.801 | 96.12      | 0.05337   |
| 75.00       | 4.317 | 337.1 | 0.07811   | 215.00      | 1.489 | 98.47      | 0.06618   |
|             |       |       |           |             |       |            |           |

**Table 20:** Storage and loss properties for DSM Engineering Fiberfil J7-33 33% glass fiber filled, impact modified nylon 6 tested at 0.3% moisture content. (tabular data for Graph 20)

| Temperature | E'    | <b>E</b> " | Tan Delta | Temperature | E'    | <b>E</b> " | Tan Delta |
|-------------|-------|------------|-----------|-------------|-------|------------|-----------|
| (°C)        | (GPa) | (MPa)      |           | (°C)        | (GPa) | (MPa)      |           |
| -55.00      | 7.343 | 150.2      | 0.02046   | 80.00       | 4.357 | 329.3      | 0.07559   |
| -50.00      | 7.279 | 146.0      | 0.02006   | 85.00       | 4.031 | 310.4      | 0.07700   |
| -45.00      | 7.202 | 140.4      | 0.01949   | 90.00       | 3.764 | 281.0      | 0.07465   |
| -40.00      | 7.122 | 134.4      | 0.01888   | 95.00       | 3.535 | 244.1      | 0.06905   |
| -35.00      | 7.048 | 128.8      | 0.01827   | 100.00      | 3.352 | 207.8      | 0.06198   |
| -30.00      | 6.983 | 121.3      | 0.01738   | 105.00      | 3.212 | 179.2      | 0.05581   |
| -25.00      | 6.915 | 114.9      | 0.01662   | 110.00      | 3.104 | 157.1      | 0.05060   |
| -20.00      | 6.857 | 106.8      | 0.01557   | 115.00      | 3.019 | 139.9      | 0.04634   |
| -15.00      | 6.816 | 96.04      | 0.01409   | 120.00      | 2.950 | 126.6      | 0.04290   |
| -10.00      | 6.789 | 86.01      | 0.01267   | 125.00      | 2.892 | 116.5      | 0.04027   |
| -5.00       | 6.774 | 77.48      | 0.01144   | 130.00      | 2.838 | 108.8      | 0.03832   |
| 0.00        | 6.760 | 71.97      | 0.01065   | 135.00      | 2.791 | 102.6      | 0.03675   |
| 5.00        | 6.744 | 68.66      | 0.01018   | 140.00      | 2.746 | 97.64      | 0.03556   |
| 10.00       | 6.719 | 70.28      | 0.01046   | 145.00      | 2.700 | 93.77      | 0.03473   |
| 15.00       | 6.688 | 72.40      | 0.01082   | 150.00      | 2.656 | 90.65      | 0.03413   |
| 20.00       | 6.661 | 74.80      | 0.01123   | 155.00      | 2.609 | 87.69      | 0.03361   |
| 25.00       | 6.637 | 77.18      | 0.01163   | 160.00      | 2.560 | 85.24      | 0.03329   |
| 30.00       | 6.597 | 82.88      | 0.01256   | 165.00      | 2.508 | 82.89      | 0.03305   |
| 35.00       | 6.523 | 95.04      | 0.01457   | 170.00      | 2.452 | 81.22      | 0.03312   |
| 40.00       | 6.421 | 112.2      | 0.01748   | 175.00      | 2.394 | 79.51      | 0.03321   |
| 45.00       | 6.271 | 136.6      | 0.02179   | 180.00      | 2.329 | 78.31      | 0.03362   |
| 50.00       | 6.118 | 159.1      | 0.02600   | 185.00      | 2.257 | 77.65      | 0.03440   |
| 55.00       | 5.927 | 187.9      | 0.03171   | 190.00      | 2.172 | 77.67      | 0.03576   |
| 60.00       | 5.685 | 228.3      | 0.04016   | 195.00      | 2.073 | 78.10      | 0.03767   |
| 65.00       | 5.372 | 276.6      | 0.05150   | 200.00      | 1.936 | 80.01      | 0.04133   |
| 70.00       | 5.036 | 313.2      | 0.06220   | 205.00      | 1.718 | 83.91      | 0.04885   |
| 75.00       | 4.688 | 331.4      | 0.07069   | 210.00      | 1.431 | 89.15      | 0.06234   |



Graph 21: Storage and loss properties for Allied Signal Capron 8267G 40% glass fiber/ mineral filled nylon 6 tested at 0.3% moisture content.

Graph 22: Storage and loss properties for Allied Signal Capron 8234G 44% glass fiber filled nylon 6 tested at 0.4% moisture content.



Tabular Data Graphs

| Temperature | E'    | <b>E</b> " | Tan Delta | Temperature | E'    | <b>E</b> " | Tan Delta |
|-------------|-------|------------|-----------|-------------|-------|------------|-----------|
| (°C)        | (GPa) | (MPa)      |           | (°C)        | (GPa) | (MPa)      |           |
| -60.00      | 8.124 | 216.7      | 0.02668   | 85.00       | 3.533 | 294.7      | 0.08342   |
| -55.00      | 8.083 | 210.6      | 0.02606   | 90.00       | 3.283 | 252.1      | 0.07679   |
| -50.00      | 8.029 | 201.5      | 0.02510   | 95.00       | 3.101 | 212.0      | 0.06837   |
| -45.00      | 7.951 | 191.1      | 0.02403   | 100.00      | 2.978 | 180.4      | 0.06057   |
| -40.00      | 7.869 | 180.8      | 0.02297   | 105.00      | 2.897 | 158.6      | 0.05476   |
| -35.00      | 7.792 | 170.6      | 0.02189   | 110.00      | 2.837 | 141.8      | 0.04999   |
| -30.00      | 7.725 | 160.6      | 0.02079   | 115.00      | 2.791 | 128.5      | 0.04603   |
| -25.00      | 7.663 | 152.9      | 0.01995   | 120.00      | 2.756 | 119.0      | 0.04318   |
| -20.00      | 7.616 | 146.9      | 0.01929   | 125.00      | 2.730 | 112.9      | 0.04137   |
| -15.00      | 7.577 | 142.9      | 0.01887   | 130.00      | 2.706 | 109.4      | 0.04042   |
| -5.00       | 7.503 | 139.7      | 0.01862   | 135.00      | 2.682 | 105.8      | 0.03945   |
| 0.00        | 7.470 | 140.0      | 0.01874   | 140.00      | 2.654 | 100.0      | 0.03769   |
| 5.00        | 7.441 | 141.3      | 0.01899   | 145.00      | 2.619 | 95.14      | 0.03633   |
| 10.00       | 7.409 | 143.8      | 0.01941   | 150.00      | 2.577 | 91.89      | 0.03566   |
| 15.00       | 7.377 | 147.0      | 0.01992   | 155.00      | 2.531 | 89.76      | 0.03547   |
| 20.00       | 7.335 | 153.0      | 0.02086   | 160.00      | 2.473 | 88.91      | 0.03596   |
| 25.00       | 7.286 | 160.9      | 0.02208   | 165.00      | 2.417 | 87.99      | 0.03641   |
| 30.00       | 7.225 | 171.6      | 0.02375   | 170.00      | 2.362 | 87.06      | 0.03685   |
| 35.00       | 7.137 | 186.3      | 0.02610   | 175.00      | 2.311 | 86.07      | 0.03724   |
| 40.00       | 7.018 | 204.3      | 0.02911   | 180.00      | 2.246 | 86.24      | 0.03839   |
| 45.00       | 6.866 | 223.4      | 0.03253   | 185.00      | 2.175 | 86.35      | 0.03971   |
| 50.00       | 6.663 | 244.1      | 0.03664   | 190.00      | 2.092 | 86.91      | 0.04155   |
| 55.00       | 6.375 | 271.1      | 0.04254   | 195.00      | 1.994 | 87.89      | 0.04407   |
| 60.00       | 5.968 | 311.9      | 0.05227   | 200.00      | 1.864 | 89.53      | 0.04804   |
| 65.00       | 5.436 | 357.8      | 0.06584   | 205.00      | 1.674 | 91.66      | 0.05477   |
| 70.00       | 4.828 | 380.3      | 0.07879   | 210.00      | 1.452 | 91.88      | 0.06331   |
| 75.00       | 4.310 | 371.2      | 0.08614   | 215.00      | 1.171 | 89.20      | 0.07620   |
| 80.00       | 3.872 | 338.1      | 0.08733   |             |       |            |           |

 Table 21: Storage and loss properties for Allied Signal Capron 8267G 40% glass fiber/ mineral filled nylon 6 tested at 0.3% moisture content. (tabular data for Graph 21)

 Table 22: Storage and loss properties for Allied Signal Capron 8234G 44% glass fiber filled nylon 6 tested at 0.4% moisture content. (tabular data for Graph 22

| Temperature | E'    | <b>E</b> " | Tan Delta | Temperature | E'    | <b>E</b> " | Tan Delta |
|-------------|-------|------------|-----------|-------------|-------|------------|-----------|
| (°C)        | (GPa) | (MPa)      |           | (°C)        | (GPa) | (MPa)      |           |
| -60.00      | 10.79 | 144.1      | 0.01335   | 80.00       | 6.083 | 428.8      | 0.07049   |
| -55.00      | 10.77 | 139.8      | 0.01298   | 85.00       | 5.632 | 374.2      | 0.06644   |
| -50.00      | 10.76 | 138.0      | 0.01283   | 90.00       | 5.322 | 320.7      | 0.06026   |
| -45.00      | 10.72 | 136.5      | 0.01273   | 95.00       | 5.116 | 274.1      | 0.05357   |
| -40.00      | 10.67 | 135.1      | 0.01267   | 100.00      | 4.979 | 237.5      | 0.04771   |
| -35.00      | 10.64 | 129.1      | 0.01214   | 105.00      | 4.886 | 209.6      | 0.04290   |
| -30.00      | 10.62 | 123.4      | 0.01162   | 110.00      | 4.824 | 190.5      | 0.03950   |
| -25.00      | 10.60 | 118.5      | 0.01118   | 115.00      | 4.789 | 176.5      | 0.03686   |
| -20.00      | 10.57 | 114.4      | 0.01082   | 120.00      | 4.775 | 167.6      | 0.03510   |
| -15.00      | 10.55 | 112.0      | 0.01061   | 125.00      | 4.789 | 163.6      | 0.03417   |
| -10.00      | 10.53 | 112.6      | 0.01070   | 130.00      | 4.812 | 166.8      | 0.03466   |
| -5.00       | 10.50 | 116.6      | 0.01111   | 135.00      | 4.846 | 172.3      | 0.03555   |
| 0.00        | 10.47 | 121.0      | 0.01155   | 140.00      | 4.876 | 171.8      | 0.03522   |
| 5.00        | 10.44 | 127.6      | 0.01223   | 145.00      | 4.874 | 164.5      | 0.03376   |
| 10.00       | 10.40 | 133.4      | 0.01282   | 150.00      | 4.842 | 158.4      | 0.03270   |
| 15.00       | 10.36 | 139.8      | 0.01350   | 155.00      | 4.789 | 155.9      | 0.03255   |
| 20.00       | 10.30 | 147.7      | 0.01433   | 160.00      | 4.725 | 155.2      | 0.03284   |
| 25.00       | 10.24 | 154.9      | 0.01513   | 165.00      | 4.652 | 154.7      | 0.03326   |
| 30.00       | 10.15 | 164.2      | 0.01618   | 170.00      | 4.563 | 154.4      | 0.03384   |
| 35.00       | 10.04 | 174.5      | 0.01737   | 175.00      | 4.464 | 153.9      | 0.03447   |
| 40.00       | 9.930 | 186.2      | 0.01876   | 180.00      | 4.344 | 155.5      | 0.03580   |
| 45.00       | 9.782 | 200.7      | 0.02052   | 185.00      | 4.204 | 158.2      | 0.03764   |
| 50.00       | 9.581 | 223.0      | 0.02328   | 190.00      | 4.035 | 163.0      | 0.04040   |
| 55.00       | 9.239 | 263.9      | 0.02848   | 195.00      | 3.800 | 170.4      | 0.04484   |
| 60.00       | 8.798 | 334.3      | 0.03801   | 200.00      | 3.488 | 178.5      | 0.05119   |
| 65.00       | 8.134 | 412.6      | 0.05073   | 205.00      | 3.112 | 186.9      | 0.06007   |
| 70.00       | 7.416 | 456.4      | 0.06156   | 210.00      | 2.557 | 194.4      | 0.07609   |
| 75.00       | 6.683 | 463.1      | 0.06931   | 215.00      | 1.631 | 190.8      | 0.1174    |
|             |       |            |           |             |       |            |           |


Graph 23: Storage and loss properties for Ticona Celstran N6G50 50% long glass fiber filled nylon 6 tested at 0.4% moisture content.

Graph 24: Storage and loss properties for DuPont Zytel 151 unfilled nylon 612.



Tabular Data Graphs

| Table 23 | Storage and loss properties for Ticona Celstran N6G50 50% long glass fiber filled nylon 6 tested at 0.4% | 6 |
|----------|----------------------------------------------------------------------------------------------------------|---|
|          | moisture content. (tabular data for Graph 23)                                                            |   |

| Temperature | E'    | <b>E</b> " | Tan Delta | Temperature | E'    | <b>E</b> " | Tan Delta |
|-------------|-------|------------|-----------|-------------|-------|------------|-----------|
| (°C)        | (GPa) | (MPa)      |           | (°C)        | (GPa) | (MPa)      |           |
| -55.00      | 13.79 | 105.3      | 0.007636  | 80.00       | 9.061 | 423.2      | 0.04671   |
| -50.00      | 13.77 | 99.38      | 0.007218  | 85.00       | 8.720 | 413.7      | 0.04745   |
| -45.00      | 13.72 | 97.06      | 0.007076  | 90.00       | 8.409 | 391.5      | 0.04656   |
| -40.00      | 13.65 | 94.98      | 0.006956  | 95.00       | 8.127 | 360.3      | 0.04433   |
| -35.00      | 13.59 | 91.34      | 0.006723  | 100.00      | 7.881 | 328.3      | 0.04166   |
| -30.00      | 13.55 | 83.77      | 0.006182  | 105.00      | 7.677 | 299.9      | 0.03906   |
| -25.00      | 13.51 | 75.38      | 0.005578  | 110.00      | 7.501 | 274.9      | 0.03665   |
| -20.00      | 13.48 | 68.23      | 0.005063  | 115.00      | 7.363 | 257.2      | 0.03493   |
| -15.00      | 13.44 | 60.76      | 0.004520  | 120.00      | 7.240 | 239.2      | 0.03305   |
| -10.00      | 13.41 | 54.39      | 0.004055  | 125.00      | 7.117 | 222.7      | 0.03130   |
| -5.00       | 13.39 | 51.80      | 0.003869  | 130.00      | 7.006 | 209.1      | 0.02985   |
| 0.00        | 13.37 | 46.90      | 0.003508  | 135.00      | 6.901 | 197.7      | 0.02864   |
| 5.00        | 13.36 | 47.41      | 0.003549  | 140.00      | 6.800 | 188.7      | 0.02774   |
| 10.00       | 13.34 | 49.56      | 0.003716  | 145.00      | 6.701 | 182.7      | 0.02726   |
| 15.00       | 13.30 | 55.24      | 0.004155  | 150.00      | 6.597 | 178.0      | 0.02699   |
| 20.00       | 13.24 | 67.52      | 0.005100  | 155.00      | 6.482 | 175.5      | 0.02708   |
| 25.00       | 13.19 | 76.95      | 0.005836  | 160.00      | 6.372 | 173.0      | 0.02715   |
| 30.00       | 13.11 | 92.10      | 0.007023  | 165.00      | 6.256 | 172.2      | 0.02752   |
| 35.00       | 12.97 | 119.1      | 0.009188  | 170.00      | 6.147 | 170.2      | 0.02769   |
| 40.00       | 12.74 | 151.8      | 0.01192   | 175.00      | 6.020 | 170.6      | 0.02835   |
| 45.00       | 12.49 | 186.4      | 0.01493   | 180.00      | 5.878 | 171.9      | 0.02924   |
| 50.00       | 12.22 | 222.0      | 0.01817   | 185.00      | 5.720 | 173.2      | 0.03028   |
| 55.00       | 11.89 | 266.8      | 0.02243   | 190.00      | 5.510 | 178.4      | 0.03238   |
| 60.00       | 11.49 | 321.8      | 0.02801   | 195.00      | 5.237 | 184.7      | 0.03527   |
| 65.00       | 10.86 | 384.9      | 0.03546   | 200.00      | 4.793 | 196.5      | 0.04100   |
| 70.00       | 10.06 | 426.1      | 0.04236   | 205.00      | 4.253 | 205.2      | 0.04826   |
| 75.00       | 9.524 | 431.7      | 0.04533   | 210.00      | 3.455 | 220.8      | 0.06397   |

Table 24: Storage and loss properties for DuPont Zytel 151 unfilled nylon 612. (tabular data for Graph 24)

| Temperature | E'     | <b>E</b> " | Tan Delta | Temperature | E'      | <b>E</b> " | Tan Delta |
|-------------|--------|------------|-----------|-------------|---------|------------|-----------|
| (°C)        | (GPa)  | (MPa)      |           | (°C)        | (GPa)   | (MPa)      |           |
| -55.00      | 2.402  | 73.11      | 0.03044   | 85.00       | 0.7083  | 78.67      | 0.1110    |
| -50.00      | 2.379  | 70.47      | 0.02962   | 90.00       | 0.6206  | 62.35      | 0.1005    |
| -45.00      | 2.358  | 67.82      | 0.02876   | 95.00       | 0.5602  | 50.08      | 0.08938   |
| -40.00      | 2.338  | 64.76      | 0.02770   | 100.00      | 0.5163  | 40.90      | 0.07921   |
| -35.00      | 2.319  | 62.17      | 0.02681   | 105.00      | 0.4819  | 34.14      | 0.07083   |
| -30.00      | 2.301  | 60.45      | 0.02627   | 110.00      | 0.4539  | 29.25      | 0.06444   |
| -25.00      | 2.284  | 59.61      | 0.02609   | 115.00      | 0.4304  | 25.93      | 0.06024   |
| -20.00      | 2.270  | 59.55      | 0.02624   | 120.00      | 0.4095  | 23.62      | 0.05769   |
| -15.00      | 2.259  | 59.58      | 0.02638   | 125.00      | 0.3899  | 21.90      | 0.05618   |
| -10.00      | 2.250  | 59.98      | 0.02666   | 130.00      | 0.3716  | 20.71      | 0.05574   |
| -5.00       | 2.241  | 60.92      | 0.02719   | 135.00      | 0.3523  | 19.91      | 0.05653   |
| 0.00        | 2.231  | 61.52      | 0.02757   | 140.00      | 0.3334  | 19.17      | 0.05751   |
| 5.00        | 2.222  | 62.11      | 0.02796   | 145.00      | 0.3150  | 18.59      | 0.05901   |
| 10.00       | 2.213  | 62.00      | 0.02802   | 150.00      | 0.2976  | 18.15      | 0.06099   |
| 15.00       | 2.202  | 62.04      | 0.02817   | 155.00      | 0.2812  | 17.74      | 0.06307   |
| 20.00       | 2.196  | 61.29      | 0.02791   | 160.00      | 0.2660  | 17.44      | 0.06559   |
| 25.00       | 2.185  | 61.44      | 0.02812   | 165.00      | 0.2515  | 17.23      | 0.06850   |
| 30.00       | 2.168  | 63.38      | 0.02923   | 170.00      | 0.2379  | 17.10      | 0.07188   |
| 35.00       | 2.142  | 67.53      | 0.03153   | 175.00      | 0.2249  | 16.99      | 0.07554   |
| 40.00       | 2.106  | 72.14      | 0.03426   | 180.00      | 0.2108  | 16.93      | 0.08030   |
| 45.00       | 2.061  | 77.84      | 0.03777   | 185.00      | 0.1949  | 16.88      | 0.08662   |
| 50.00       | 1.997  | 85.32      | 0.04272   | 190.00      | 0.1773  | 16.76      | 0.09451   |
| 55.00       | 1.900  | 95.50      | 0.05027   | 195.00      | 0.1584  | 16.82      | 0.1062    |
| 60.00       | 1.761  | 105.7      | 0.06000   | 200.00      | 0.1362  | 16.89      | 0.1240    |
| 65.00       | 1.575  | 113.1      | 0.07181   | 205.00      | 0.1128  | 16.34      | 0.1449    |
| 70.00       | 1.331  | 118.4      | 0.08904   | 210.00      | 0.09335 | 15.62      | 0.1675    |
| 75.00       | 1.066  | 114.0      | 0.1070    | 215.00      | 0.06385 | 14.35      | 0.2252    |
| 80.00       | 0.8512 | 97.88      | 0.1150    |             |         |            |           |



Graph 25: Storage and loss properties for DuPont Zytel 77G43L 43% glass fiber filled nylon 612 tested at 0.35% moisture content.

Graph 26: Storage and loss properties for LNP Thermocomp IF100-12 60% glass fiber filled nylon 612 tested at 0.4% moisture content.



| Temperature | E'    | <b>E</b> " | Tan Delta | Temperature | E'    | <b>E</b> " | Tan Delta |
|-------------|-------|------------|-----------|-------------|-------|------------|-----------|
| (°C)        | (GPa) | (MPa)      |           | (°C)        | (GPa) | (MPa)      |           |
| -55.00      | 10.32 | 106.3      | 0.01030   | 80.00       | 6.570 | 310.0      | 0.04717   |
| -50.00      | 10.29 | 104.9      | 0.01020   | 85.00       | 6.295 | 280.7      | 0.04458   |
| -45.00      | 10.23 | 104.9      | 0.01025   | 90.00       | 6.076 | 251.7      | 0.04142   |
| -40.00      | 10.17 | 103.8      | 0.01020   | 95.00       | 5.916 | 229.0      | 0.03871   |
| -35.00      | 10.13 | 100.7      | 0.009942  | 100.00      | 5.782 | 208.9      | 0.03612   |
| -30.00      | 10.08 | 95.31      | 0.009452  | 105.00      | 5.669 | 192.1      | 0.03388   |
| -25.00      | 10.04 | 90.95      | 0.009060  | 110.00      | 5.581 | 180.1      | 0.03227   |
| -20.00      | 9.996 | 88.57      | 0.008860  | 115.00      | 5.511 | 174.5      | 0.03166   |
| -15.00      | 9.963 | 86.41      | 0.008673  | 120.00      | 5.440 | 169.9      | 0.03124   |
| -5.00       | 9.899 | 87.13      | 0.008802  | 125.00      | 5.363 | 164.8      | 0.03073   |
| 0.00        | 9.867 | 88.41      | 0.008960  | 130.00      | 5.271 | 162.3      | 0.03078   |
| 5.00        | 9.840 | 89.64      | 0.009110  | 135.00      | 5.164 | 158.0      | 0.03059   |
| 10.00       | 9.805 | 92.13      | 0.009396  | 140.00      | 5.039 | 155.4      | 0.03085   |
| 15.00       | 9.767 | 95.50      | 0.009778  | 145.00      | 4.901 | 152.9      | 0.03120   |
| 20.00       | 9.718 | 102.9      | 0.01059   | 150.00      | 4.736 | 151.1      | 0.03191   |
| 25.00       | 9.653 | 114.1      | 0.01182   | 155.00      | 4.566 | 149.3      | 0.03270   |
| 30.00       | 9.562 | 129.3      | 0.01352   | 160.00      | 4.384 | 148.9      | 0.03397   |
| 35.00       | 9.424 | 153.1      | 0.01625   | 165.00      | 4.207 | 148.9      | 0.03539   |
| 40.00       | 9.204 | 186.9      | 0.02031   | 170.00      | 4.034 | 150.0      | 0.03719   |
| 45.00       | 8.912 | 225.9      | 0.02535   | 175.00      | 3.863 | 151.9      | 0.03932   |
| 50.00       | 8.604 | 261.5      | 0.03040   | 180.00      | 3.684 | 154.6      | 0.04196   |
| 55.00       | 8.291 | 293.1      | 0.03536   | 185.00      | 3.486 | 158.8      | 0.04555   |
| 60.00       | 7.946 | 317.6      | 0.03997   | 190.00      | 3.267 | 164.6      | 0.05040   |
| 65.00       | 7.571 | 332.9      | 0.04398   | 195.00      | 3.009 | 174.0      | 0.05782   |
| 70.00       | 7.232 | 337.8      | 0.04672   | 200.00      | 2.672 | 181.3      | 0.06786   |
| 75.00       | 6.894 | 332.9      | 0.04828   | 205.00      | 2.396 | 187.1      | 0.07810   |

| Table 26: Storage and loss | properties for LNP Thermocomp IF100-12 60% glass fiber filled nylon 612 tested at 0.4 | 1% |
|----------------------------|---------------------------------------------------------------------------------------|----|
| moisture content.          | (tabular data for Graph 26)                                                           |    |

| Temperature | E'    | <b>E</b> " | Tan Delta | Temperature | E'    | <b>E</b> " | Tan Delta |
|-------------|-------|------------|-----------|-------------|-------|------------|-----------|
| (°C)        | (GPa) | (MPa)      |           | (°C)        | (GPa) | (MPa)      |           |
| -55.00      | 18.08 | 133.4      | 0.007381  | 80.00       | 12.77 | 509.3      | 0.03990   |
| -50.00      | 18.04 | 132.6      | 0.007350  | 85.00       | 12.43 | 484.6      | 0.03899   |
| -45.00      | 17.93 | 140.0      | 0.007807  | 90.00       | 12.10 | 457.3      | 0.03780   |
| -40.00      | 17.82 | 141.3      | 0.007929  | 95.00       | 11.75 | 425.2      | 0.03618   |
| -35.00      | 17.71 | 142.3      | 0.008035  | 100.00      | 11.42 | 395.9      | 0.03466   |
| -30.00      | 17.61 | 130.4      | 0.007406  | 105.00      | 11.10 | 372.0      | 0.03351   |
| -25.00      | 17.56 | 121.3      | 0.006907  | 110.00      | 10.78 | 354.7      | 0.03289   |
| -15.00      | 17.45 | 108.0      | 0.006185  | 115.00      | 10.48 | 342.9      | 0.03273   |
| -10.00      | 17.39 | 105.8      | 0.006082  | 120.00      | 10.18 | 335.0      | 0.03292   |
| -5.00       | 17.35 | 106.2      | 0.006125  | 125.00      | 9.880 | 329.8      | 0.03339   |
| 0.00        | 17.29 | 107.3      | 0.006204  | 130.00      | 9.576 | 327.4      | 0.03418   |
| 5.00        | 17.23 | 108.3      | 0.006283  | 135.00      | 9.268 | 325.7      | 0.03514   |
| 10.00       | 17.17 | 109.7      | 0.006389  | 140.00      | 8.948 | 323.8      | 0.03619   |
| 15.00       | 17.10 | 118.6      | 0.006938  | 145.00      | 8.609 | 323.6      | 0.03759   |
| 20.00       | 17.00 | 129.0      | 0.007590  | 150.00      | 8.270 | 321.5      | 0.03887   |
| 25.00       | 16.84 | 151.2      | 0.008980  | 155.00      | 7.908 | 320.3      | 0.04050   |
| 30.00       | 16.65 | 178.2      | 0.01070   | 160.00      | 7.530 | 318.4      | 0.04229   |
| 35.00       | 16.42 | 209.1      | 0.01273   | 165.00      | 7.150 | 314.7      | 0.04401   |
| 40.00       | 16.12 | 251.2      | 0.01559   | 170.00      | 6.775 | 311.8      | 0.04603   |
| 45.00       | 15.71 | 304.6      | 0.09139   | 175.00      | 6.409 | 308.3      | 0.04811   |
| 50.00       | 15.30 | 358.0      | 0.02340   | 180.00      | 6.038 | 306.8      | 0.05081   |
| 55.00       | 14.90 | 404.9      | 0.02718   | 185.00      | 5.644 | 305.3      | 0.05410   |
| 60.00       | 14.40 | 447.9      | 0.03112   | 190.00      | 5.218 | 306.7      | 0.05877   |
| 65.00       | 13.87 | 483.5      | 0.03485   | 195.00      | 4.781 | 314.4      | 0.06578   |
| 70.00       | 13.47 | 509.8      | 0.03786   | 200.00      | 4.187 | 325.5      | 0.07774   |
| 75.00       | 13.12 | 529.2      | 0.04035   | 205.00      | 3.734 | 323.6      | 0.08669   |



Graph 27: Storage and loss properties for DuPont Zytel 101L unfilled nylon 66 tested at 0.5% moisture content.

Graph 28: Storage and loss properties for DuPont Zytel CFE4003 unfilled, impact modified nylon 66 tested at 0.5% moisture content.



62

 Table 27: Storage and loss properties for DuPont Zytel 101L unfilled nylon 66 tested at 0.5% moisture content. (tabular data for Graph 27)

| Temperature | E'     | <b>E</b> " | Tan Delta | Temperature | E'     | <b>E</b> " | Tan Delta |
|-------------|--------|------------|-----------|-------------|--------|------------|-----------|
| (°C)        | (GPa)  | (MPa)      |           | (°C)        | (GPa)  | (MPa)      |           |
| -60.00      | 3.705  | 177.1      | 0.04780   | 95.00       | 0.7836 | 83.26      | 0.1063    |
| -55.00      | 3.671  | 170.3      | 0.04639   | 100.00      | 0.7302 | 70.01      | 0.09587   |
| -50.00      | 3.624  | 162.6      | 0.04487   | 105.00      | 0.6909 | 59.52      | 0.08614   |
| -45.00      | 3.572  | 155.6      | 0.04354   | 110.00      | 0.6616 | 51.28      | 0.07751   |
| -40.00      | 3.514  | 145.0      | 0.04126   | 115.00      | 0.6376 | 45.74      | 0.07173   |
| -35.00      | 3.459  | 135.4      | 0.03915   | 120.00      | 0.6179 | 41.21      | 0.06668   |
| -30.00      | 3.408  | 126.7      | 0.03718   | 125.00      | 0.5989 | 37.52      | 0.06266   |
| -25.00      | 3.360  | 118.3      | 0.03521   | 130.00      | 0.5831 | 34.44      | 0.05907   |
| -20.00      | 3.320  | 111.4      | 0.03356   | 140.00      | 0.5562 | 29.85      | 0.05367   |
| -15.00      | 3.288  | 106.4      | 0.03237   | 145.00      | 0.5437 | 28.48      | 0.05238   |
| -10.00      | 3.263  | 102.3      | 0.03136   | 150.00      | 0.5317 | 27.48      | 0.05167   |
| -5.00       | 3.236  | 99.20      | 0.03065   | 155.00      | 0.5206 | 26.76      | 0.05140   |
| 0.00        | 3.210  | 97.00      | 0.03022   | 160.00      | 0.5098 | 26.20      | 0.05140   |
| 5.00        | 3.188  | 95.48      | 0.02995   | 165.00      | 0.4990 | 25.67      | 0.05145   |
| 10.00       | 3.160  | 94.79      | 0.03000   | 170.00      | 0.4882 | 25.30      | 0.05183   |
| 15.00       | 3.131  | 94.57      | 0.03020   | 175.00      | 0.4770 | 25.08      | 0.05258   |
| 20.00       | 3.100  | 95.25      | 0.03072   | 180.00      | 0.4651 | 24.95      | 0.05363   |
| 25.00       | 3.060  | 97.75      | 0.03194   | 190.00      | 0.4419 | 24.63      | 0.05573   |
| 30.00       | 3.003  | 104.1      | 0.03465   | 195.00      | 0.4297 | 24.51      | 0.05704   |
| 40.00       | 2.806  | 128.9      | 0.04596   | 200.00      | 0.4175 | 24.39      | 0.05842   |
| 45.00       | 2.649  | 145.1      | 0.05477   | 205.00      | 0.4050 | 24.28      | 0.05996   |
| 50.00       | 2.464  | 158.9      | 0.06447   | 210.00      | 0.3923 | 24.23      | 0.06177   |
| 55.00       | 2.271  | 170.2      | 0.07497   | 215.00      | 0.3784 | 24.22      | 0.06400   |
| 60.00       | 2.059  | 179.1      | 0.08702   | 220.00      | 0.3641 | 24.15      | 0.06633   |
| 65.00       | 1.815  | 184.2      | 0.1015    | 225.00      | 0.3479 | 24.12      | 0.06935   |
| 70.00       | 1.540  | 181.7      | 0.1181    | 230.00      | 0.3292 | 23.98      | 0.07283   |
| 75.00       | 1.286  | 167.0      | 0.1299    | 235.00      | 0.3088 | 24.02      | 0.07780   |
| 80.00       | 1.091  | 143.6      | 0.1316    | 240.00      | 0.2855 | 24.28      | 0.08505   |
| 90.00       | 0.8547 | 99.68      | 0.1166    | 245.00      | 0.2560 | 24.50      | 0.09572   |

 Table 28
 Storage and loss properties for DuPont Zytel CFE4003 unfilled, impact modified nylon 66 tested at 0.5% moisture content. (tabular data for Graph 28)

| Temperature | E'     | <b>E</b> " | Tan Delta | Temperature | E'     | <b>E</b> " | Tan Delta |
|-------------|--------|------------|-----------|-------------|--------|------------|-----------|
| (°C)        | (GPa)  | (MPa)      |           | (°C)        | (GPa)  | (MPa)      |           |
| -60.00      | 2.854  | 121.6      | 0.04261   | 95.00       | 0.5054 | 60.04      | 0.1188    |
| -55.00      | 2.809  | 117.6      | 0.04187   | 100.00      | 0.4698 | 50.74      | 0.1080    |
| -50.00      | 2.764  | 114.9      | 0.04156   | 105.00      | 0.4426 | 43.45      | 0.09816   |
| -45.00      | 2.693  | 109.9      | 0.04082   | 110.00      | 0.4218 | 37.71      | 0.08939   |
| -40.00      | 2.606  | 104.0      | 0.03989   | 120.00      | 0.3910 | 29.82      | 0.07628   |
| -35.00      | 2.529  | 97.76      | 0.03866   | 125.00      | 0.3780 | 27.07      | 0.07161   |
| -30.00      | 2.463  | 91.70      | 0.03724   | 130.00      | 0.3661 | 25.07      | 0.06848   |
| -25.00      | 2.405  | 86.10      | 0.03580   | 135.00      | 0.3544 | 23.54      | 0.06643   |
| -20.00      | 2.357  | 81.31      | 0.03450   | 140.00      | 0.3442 | 22.45      | 0.06521   |
| -15.00      | 2.314  | 77.34      | 0.03343   | 145.00      | 0.3341 | 21.53      | 0.06445   |
| -10.00      | 2.277  | 74.04      | 0.03251   | 150.00      | 0.3256 | 20.85      | 0.06402   |
| -5.00       | 2.245  | 71.31      | 0.03176   | 155.00      | 0.3176 | 20.24      | 0.06371   |
| 0.00        | 2.215  | 68.62      | 0.03098   | 160.00      | 0.3102 | 19.70      | 0.06352   |
| 5.00        | 2.185  | 66.64      | 0.03050   | 170.00      | 0.2958 | 18.80      | 0.06358   |
| 10.00       | 2.154  | 65.57      | 0.03044   | 175.00      | 0.2884 | 18.40      | 0.06379   |
| 15.00       | 2.119  | 65.35      | 0.03084   | 180.00      | 0.2808 | 18.03      | 0.06422   |
| 20.00       | 2.082  | 65.97      | 0.03168   | 190.00      | 0.2645 | 17.31      | 0.06547   |
| 25.00       | 2.044  | 67.44      | 0.03300   | 195.00      | 0.2561 | 17.00      | 0.06639   |
| 30.00       | 1.996  | 70.34      | 0.03524   | 200.00      | 0.2478 | 16.68      | 0.06732   |
| 40.00       | 1.855  | 80.57      | 0.04344   | 205.00      | 0.2396 | 16.31      | 0.06809   |
| 45.00       | 1.746  | 88.84      | 0.05089   | 210.00      | 0.2313 | 16.04      | 0.06936   |
| 50.00       | 1.612  | 97.51      | 0.06049   | 215.00      | 0.2226 | 15.79      | 0.07091   |
| 55.00       | 1.458  | 105.9      | 0.07265   | 220.00      | 0.2131 | 15.79      | 0.07408   |
| 60.00       | 1.285  | 116.7      | 0.09085   | 225.00      | 0.2024 | 15.81      | 0.07815   |
| 70.00       | 0.9533 | 122.5      | 0.1285    | 230.00      | 0.1904 | 15.73      | 0.08261   |
| 75.00       | 0.8159 | 111.7      | 0.1369    | 235.00      | 0.1778 | 15.64      | 0.08793   |
| 80.00       | 0.7043 | 97.95      | 0.1391    | 240.00      | 0.1623 | 15.67      | 0.09658   |
| 90.00       | 0.5527 | 70.46      | 0.1275    | 245.00      | 0.1436 | 15.82      | 0.1102    |



Graph 29: Storage and loss properties for DuPont Zytel ST801 unfilled, impact modified nylon 66 tested dry as molded.

Graph 30: Storage and loss properties for DuPont Zytel ST801 unfilled, impact modified nylon 66 tested at 0.6% moisture content.



64

| Temperature | E'     | E"    | Tan Delta | Temperature | E'     | E"    | Tan Delta |
|-------------|--------|-------|-----------|-------------|--------|-------|-----------|
| (°C)        | (GPa)  | (MPa) |           | (°C)        | (GPa)  | (MPa) |           |
| -60.00      | 2.233  | 122.0 | 0.05467   | 100.00      | 0.5408 | 65.83 | 0.1217    |
| -50.00      | 2.079  | 111.4 | 0.05358   | 105.00      | 0.4733 | 55.28 | 0.1168    |
| -45.00      | 1.999  | 103.6 | 0.05184   | 110.00      | 0.4188 | 46.23 | 0.1104    |
| -40.00      | 1.922  | 94.32 | 0.04908   | 115.00      | 0.3791 | 39.01 | 0.1029    |
| -35.00      | 1.857  | 86.60 | 0.04664   | 120.00      | 0.3521 | 33.78 | 0.09591   |
| -30.00      | 1.800  | 80.27 | 0.04459   | 125.00      | 0.3324 | 29.95 | 0.09009   |
| -25.00      | 1.747  | 73.67 | 0.04217   | 130.00      | 0.3175 | 27.08 | 0.08529   |
| -20.00      | 1.703  | 67.37 | 0.03956   | 140.00      | 0.2935 | 22.80 | 0.07767   |
| -10.00      | 1.650  | 58.25 | 0.03529   | 145.00      | 0.2841 | 21.10 | 0.07426   |
| -5.00       | 1.635  | 55.67 | 0.03405   | 150.00      | 0.2751 | 19.73 | 0.07172   |
| 0.00        | 1.620  | 53.78 | 0.03319   | 155.00      | 0.2661 | 18.69 | 0.07023   |
| 5.00        | 1.607  | 52.42 | 0.03262   | 160.00      | 0.2582 | 17.89 | 0.06927   |
| 10.00       | 1.595  | 51.47 | 0.03227   | 165.00      | 0.2514 | 17.24 | 0.06859   |
| 15.00       | 1.587  | 50.97 | 0.03212   | 170.00      | 0.2449 | 16.76 | 0.06845   |
| 20.00       | 1.581  | 50.68 | 0.03204   | 175.00      | 0.2384 | 16.31 | 0.06839   |
| 25.00       | 1.572  | 50.46 | 0.03211   | 180.00      | 0.2314 | 15.86 | 0.06856   |
| 30.00       | 1.555  | 50.76 | 0.03264   | 190.00      | 0.2178 | 15.15 | 0.06959   |
| 40.00       | 1.505  | 54.47 | 0.03618   | 195.00      | 0.2108 | 14.84 | 0.07042   |
| 45.00       | 1.476  | 58.00 | 0.03930   | 200.00      | 0.2037 | 14.51 | 0.07124   |
| 50.00       | 1.442  | 63.30 | 0.04391   | 205.00      | 0.1964 | 14.23 | 0.07244   |
| 55.00       | 1.398  | 71.20 | 0.05094   | 210.00      | 0.1890 | 14.10 | 0.07462   |
| 60.00       | 1.351  | 80.01 | 0.05925   | 215.00      | 0.1814 | 14.07 | 0.07757   |
| 65.00       | 1.295  | 89.71 | 0.06927   | 220.00      | 0.1733 | 13.90 | 0.08021   |
| 70.00       | 1.224  | 100.6 | 0.08221   | 225.00      | 0.1648 | 13.74 | 0.08338   |
| 75.00       | 1.117  | 111.1 | 0.09945   | 230.00      | 0.1554 | 13.60 | 0.08755   |
| 80.00       | 0.9722 | 114.3 | 0.1176    | 240.00      | 0.1337 | 13.38 | 0.1000    |
| 90.00       | 0.7130 | 91.62 | 0.1285    | 245.00      | 0.1201 | 13.43 | 0.1119    |
| 95.00       | 0.6206 | 77.82 | 0.1254    | 250.00      | 0.1038 | 13.48 | 0.1299    |

 Table 30
 Storage and loss properties for DuPont Zytel ST801 unfilled, impact modified nylon 66 tested at 0.6% moisture content. (tabular data for Graph 30)

| Temperature | E'     | Е"    | Tan Delta | Temperature | E'     | Е"    | Tan Delta |
|-------------|--------|-------|-----------|-------------|--------|-------|-----------|
| (°C)        | (GPa)  | (MPa) |           | (°C)        | (GPa)  | (MPa) |           |
| -60.00      | 2.833  | 142.0 | 0.05012   | 95.00       | 0.4242 | 40.35 | 0.09511   |
| -55.00      | 2.772  | 139.6 | 0.05034   | 100.00      | 0.3962 | 34.56 | 0.08723   |
| -50.00      | 2.656  | 134.4 | 0.05060   | 105.00      | 0.3741 | 30.26 | 0.08087   |
| -45.00      | 2.528  | 123.6 | 0.04889   | 110.00      | 0.3561 | 26.98 | 0.07578   |
| -40.00      | 2.385  | 106.1 | 0.04449   | 115.00      | 0.3405 | 24.52 | 0.07200   |
| -35.00      | 2.284  | 94.01 | 0.04116   | 120.00      | 0.3272 | 22.72 | 0.06943   |
| -30.00      | 2.212  | 85.97 | 0.03887   | 125.00      | 0.3155 | 21.37 | 0.06772   |
| -25.00      | 2.154  | 79.35 | 0.03684   | 130.00      | 0.3049 | 20.28 | 0.06651   |
| -20.00      | 2.109  | 73.85 | 0.03501   | 140.00      | 0.2871 | 18.81 | 0.06552   |
| -15.00      | 2.072  | 68.97 | 0.03328   | 145.00      | 0.2792 | 18.23 | 0.06531   |
| -10.00      | 2.043  | 65.48 | 0.03205   | 150.00      | 0.2721 | 17.76 | 0.06525   |
| -5.00       | 2.020  | 63.84 | 0.03160   | 155.00      | 0.2656 | 17.33 | 0.06524   |
| 0.00        | 2.000  | 63.32 | 0.03166   | 160.00      | 0.2594 | 16.92 | 0.06521   |
| 5.00        | 1.977  | 63.86 | 0.03229   | 170.00      | 0.2479 | 16.24 | 0.06551   |
| 10.00       | 1.950  | 65.82 | 0.03376   | 175.00      | 0.2422 | 15.92 | 0.06576   |
| 15.00       | 1.919  | 68.96 | 0.03595   | 180.00      | 0.2353 | 15.61 | 0.06634   |
| 20.00       | 1.877  | 73.22 | 0.03902   | 185.00      | 0.2290 | 15.31 | 0.06686   |
| 25.00       | 1.825  | 77.96 | 0.04272   | 195.00      | 0.2153 | 14.79 | 0.06870   |
| 30.00       | 1.761  | 82.78 | 0.04701   | 200.00      | 0.2081 | 14.47 | 0.06955   |
| 40.00       | 1.589  | 92.40 | 0.05817   | 205.00      | 0.2007 | 14.17 | 0.07061   |
| 45.00       | 1.453  | 96.49 | 0.06639   | 210.00      | 0.1932 | 14.02 | 0.07259   |
| 50.00       | 1.309  | 99.55 | 0.07606   | 215.00      | 0.1851 | 13.98 | 0.07555   |
| 55.00       | 1.174  | 100.3 | 0.08548   | 220.00      | 0.1766 | 13.92 | 0.07882   |
| 60.00       | 1.049  | 98.50 | 0.09387   | 225.00      | 0.1675 | 13.80 | 0.08238   |
| 70.00       | 0.7668 | 87.65 | 0.1143    | 230.00      | 0.1575 | 13.70 | 0.08697   |
| 75.00       | 0.6507 | 77.43 | 0.1190    | 235.00      | 0.1465 | 13.60 | 0.09283   |
| 80.00       | 0.5674 | 66.98 | 0.1181    | 240.00      | 0.1344 | 13.57 | 0.1010    |
| 85.00       | 0.5054 | 56.98 | 0.1127    | 245.00      | 0.1209 | 13.65 | 0.1129    |



Graph 31: Storage and loss properties for DuPont Zytel 70G13L 13% glass fiber filled nylon 66 tested at 0.2% moisture content.

Graph 32: Storage and loss properties for DuPont Zytel 70G33L 33% glass fiber filled nylon 66 tested at 0.4% moisture content.



| Tomporatura | E'    | E"    | Tan Dalta | Tomporatura | E'    | <b>E</b> " | Tan Dalta |
|-------------|-------|-------|-----------|-------------|-------|------------|-----------|
| remperature | E     |       | Tan Dena  | Temperature | E     | E          | Tan Delta |
| (°C)        | (GPa) | (MPa) |           | (°C)        | (GPa) | (MPa)      |           |
| 85.00       | 2.198 | 175.8 | 0.07997   | 80.00       | 2.392 | 196.2      | 0.08202   |
| 90.00       | 2.064 | 156.7 | 0.07593   | 100.00      | 1.863 | 118.5      | 0.06359   |
| -60.00      | 4.581 | 118.6 | 0.02589   | 105.00      | 1.788 | 100.3      | 0.05610   |
| -55.00      | 4.575 | 115.9 | 0.02534   | 110.00      | 1.777 | 92.39      | 0.05198   |
| -50.00      | 4.559 | 111.7 | 0.02449   | 115.00      | 1.714 | 77.87      | 0.04544   |
| -45.00      | 4.533 | 106.6 | 0.02351   | 120.00      | 1.689 | 68.34      | 0.04048   |
| -40.00      | 4.511 | 102.8 | 0.02279   | 125.00      | 1.676 | 62.44      | 0.03725   |
| -35.00      | 4.478 | 96.27 | 0.02150   | 130.00      | 1.660 | 57.77      | 0.03479   |
| -30.00      | 4.447 | 90.35 | 0.02032   | 140.00      | 1.655 | 52.84      | 0.03193   |
| -25.00      | 4.424 | 85.73 | 0.01938   | 145.00      | 1.653 | 51.50      | 0.03115   |
| -20.00      | 4.399 | 82.31 | 0.01871   | 150.00      | 1.663 | 50.22      | 0.03019   |
| -15.00      | 4.383 | 80.98 | 0.01848   | 155.00      | 1.661 | 49.93      | 0.03006   |
| -10.00      | 4.364 | 80.42 | 0.01843   | 160.00      | 1.642 | 50.62      | 0.03083   |
| -5.00       | 4.345 | 80.84 | 0.01860   | 165.00      | 1.639 | 49.36      | 0.03012   |
| 0.00        | 4.324 | 81.25 | 0.01879   | 170.00      | 1.641 | 49.07      | 0.02991   |
| 5.00        | 4.300 | 82.02 | 0.01907   | 175.00      | 1.642 | 47.98      | 0.02922   |
| 10.00       | 4.276 | 83.07 | 0.01943   | 180.00      | 1.634 | 46.39      | 0.02838   |
| 15.00       | 4.242 | 86.22 | 0.02033   | 190.00      | 1.604 | 43.58      | 0.02717   |
| 20.00       | 4.210 | 90.30 | 0.02145   | 195.00      | 1.584 | 42.73      | 0.02698   |
| 30.00       | 4.099 | 106.5 | 0.02599   | 200.00      | 1.563 | 42.85      | 0.02742   |
| 35.00       | 4.007 | 118.1 | 0.02947   | 205.00      | 1.537 | 43.02      | 0.02798   |
| 40.00       | 3.914 | 128.0 | 0.03270   | 210.00      | 1.516 | 43.37      | 0.02862   |
| 45.00       | 3.787 | 138.8 | 0.03664   | 215.00      | 1.489 | 44.12      | 0.02963   |
| 50.00       | 3.650 | 148.7 | 0.04074   | 220.00      | 1.461 | 44.87      | 0.03072   |
| 55.00       | 3.496 | 157.8 | 0.04514   | 225.00      | 1.436 | 45.26      | 0.03151   |
| 60.00       | 3.312 | 171.3 | 0.05173   | 230.00      | 1.397 | 46.50      | 0.03329   |
| 65.00       | 3.082 | 190.0 | 0.06165   | 240.00      | 1.353 | 45.62      | 0.03371   |
| 70.00       | 2.824 | 204.9 | 0.07255   | 245.00      | 1.352 | 45.27      | 0.03348   |

 Table 31: Storage and loss properties for DuPont Zytel 70G13L 13% glass fiber filled nylon 66 tested at 0.2% moisture content. (tabular data for Graph 31)

 Table 32: Storage and loss properties for DuPont Zytel 70G33L 33% glass fiber filled nylon 66 tested at 0.4% moisture content. (tabular data for Graph 32)

| Temperature | E'    | <b>E</b> " | Tan Delta | Temperature | E'    | <b>E</b> " | Tan Delta |
|-------------|-------|------------|-----------|-------------|-------|------------|-----------|
| (°C)        | (GPa) | (MPa)      |           | (°C)        | (GPa) | (MPa)      |           |
| -55.00      | 8.850 | 104.7      | 0.01183   | 95.00       | 4.851 | 253.2      | 0.05220   |
| -50.00      | 8.819 | 103.6      | 0.01174   | 100.00      | 4.691 | 231.9      | 0.04942   |
| -45.00      | 8.774 | 103.7      | 0.01181   | 105.00      | 4.565 | 213.9      | 0.04686   |
| -40.00      | 8.733 | 102.7      | 0.01176   | 110.00      | 4.504 | 201.6      | 0.04477   |
| -35.00      | 8.702 | 99.83      | 0.01147   | 115.00      | 4.494 | 190.2      | 0.04233   |
| -30.00      | 8.671 | 96.26      | 0.01110   | 120.00      | 4.463 | 175.7      | 0.03936   |
| -25.00      | 8.638 | 92.62      | 0.01072   | 125.00      | 4.432 | 156.7      | 0.03535   |
| -20.00      | 8.606 | 86.17      | 0.01001   | 130.00      | 4.378 | 141.8      | 0.03238   |
| -15.00      | 8.574 | 81.58      | 0.009515  | 135.00      | 4.315 | 129.1      | 0.02992   |
| -10.00      | 8.551 | 75.17      | 0.008791  | 140.00      | 4.234 | 118.4      | 0.02797   |
| -5.00       | 8.539 | 69.51      | 0.008140  | 145.00      | 4.178 | 110.0      | 0.02633   |
| 0.00        | 8.522 | 65.31      | 0.007663  | 150.00      | 4.123 | 105.2      | 0.02552   |
| 5.00        | 8.503 | 61.81      | 0.007269  | 155.00      | 4.065 | 102.4      | 0.02519   |
| 10.00       | 8.476 | 61.67      | 0.007275  | 160.00      | 4.006 | 100.6      | 0.02510   |
| 15.00       | 8.431 | 66.98      | 0.007945  | 165.00      | 3.943 | 99.20      | 0.02516   |
| 20.00       | 8.366 | 76.66      | 0.009164  | 170.00      | 3.881 | 98.74      | 0.02544   |
| 25.00       | 8.286 | 87.32      | 0.01054   | 175.00      | 3.814 | 98.88      | 0.02592   |
| 35.00       | 8.111 | 109.8      | 0.01354   | 180.00      | 3.749 | 99.11      | 0.02644   |
| 40.00       | 7.971 | 130.9      | 0.01643   | 190.00      | 3.613 | 100.5      | 0.02782   |
| 45.00       | 7.854 | 147.4      | 0.01877   | 195.00      | 3.542 | 101.3      | 0.02860   |
| 50.00       | 7.673 | 171.5      | 0.02235   | 200.00      | 3.470 | 102.3      | 0.02949   |
| 55.00       | 7.424 | 203.6      | 0.02743   | 205.00      | 3.396 | 103.2      | 0.03039   |
| 60.00       | 7.096 | 242.8      | 0.03422   | 210.00      | 3.316 | 104.5      | 0.03152   |
| 65.00       | 6.747 | 272.1      | 0.04033   | 215.00      | 3.225 | 106.3      | 0.03295   |
| 70.00       | 6.391 | 290.6      | 0.04548   | 220.00      | 3.122 | 108.5      | 0.03474   |
| 75.00       | 6.026 | 299.5      | 0.04971   | 225.00      | 3.001 | 111.4      | 0.03711   |
| 85.00       | 5.343 | 288.0      | 0.05390   | 230.00      | 2.863 | 116.7      | 0.04076   |
| 90.00       | 5.065 | 272.8      | 0.05387   | 240.00      | 2.459 | 131.3      | 0.05338   |
| 00.00       | 0.000 |            |           | _ 10100     |       | - 3 - 10   |           |



Graph 33: Storage and loss properties for Ticona Celanese 1603-2 40% glass fiber filled nylon 66 tested at 0.5% moisture content.

Graph 34: Storage and loss properties for Ticona Celanese NFX-0102 40% glass bead filled nylon 66 tested at 0.6% moisture content.



Tabular Data Graphs

© Plastic Design Library

| Table 33: Storage and loss properties for Ticona Celanes | e 1603-2 40% glass fiber filled nylon 66 tested at 0.5% mois- |
|----------------------------------------------------------|---------------------------------------------------------------|
| ture content. (tabular data for Graph 33)                |                                                               |

| Temperature | E'    | <b>E</b> " | Tan Delta | Temperature | E'    | <b>E</b> " | Tan Delta |
|-------------|-------|------------|-----------|-------------|-------|------------|-----------|
| (°C)        | (GPa) | (MPa)      |           | (°C)        | (GPa) | (MPa)      |           |
| -60.00      | 11.97 | 101.6      | 0.01601   | 100.00      | 6 270 | 276 7      | 0.04227   |
| -00.00      | 11.97 | 131.0      | 0.01601   | 105.00      | 6.379 | 2/0./      | 0.04337   |
| -50.00      | 11.05 | 179.5      | 0.01506   | 105.00      | 6.234 | 243.6      | 0.03908   |
| -43.00      | 11.05 | 173.7      | 0.01400   | 115.00      | 6.131 | 217.1      | 0.03542   |
| -40.00      | 11.79 | 169.7      | 0.01439   | 115.00      | 6.060 | 198.1      | 0.03269   |
| -35.00      | 11.73 | 163.9      | 0.01397   | 120.00      | 6.008 | 185.1      | 0.03081   |
| -30.00      | 11.68 | 157.4      | 0.01348   | 125.00      | 5.969 | 174.9      | 0.02931   |
| -25.00      | 11.63 | 153.5      | 0.01320   | 130.00      | 5.943 | 168.0      | 0.02827   |
| -20.00      | 11.60 | 149.0      | 0.01285   | 140.00      | 5.900 | 158.9      | 0.02693   |
| -10.00      | 11.56 | 147.5      | 0.01276   | 145.00      | 5.873 | 158.4      | 0.02698   |
| -5.00       | 11.53 | 150.2      | 0.01303   | 150.00      | 5.831 | 157.1      | 0.02695   |
| 0.00        | 11.49 | 154.3      | 0.01343   | 155.00      | 5.776 | 151.2      | 0.02617   |
| 5.00        | 11.45 | 160.7      | 0.01403   | 160.00      | 5.709 | 146.4      | 0.02564   |
| 10.00       | 11.41 | 167.6      | 0.01469   | 165.00      | 5.635 | 143.9      | 0.02554   |
| 15.00       | 11.35 | 176.7      | 0.01557   | 170.00      | 5.558 | 142.6      | 0.02566   |
| 20.00       | 11.29 | 187.6      | 0.01663   | 175.00      | 5.474 | 142.6      | 0.02605   |
| 25.00       | 11.20 | 200.4      | 0.01789   | 180.00      | 5.388 | 142.5      | 0.02644   |
| 30.00       | 11.09 | 216.0      | 0.01947   | 190.00      | 5.214 | 141.7      | 0.02718   |
| 40.00       | 10.73 | 253.6      | 0.02363   | 195.00      | 5.123 | 141.3      | 0.02758   |
| 45.00       | 10.46 | 270.9      | 0.02591   | 200.00      | 5.030 | 141.1      | 0.02805   |
| 50.00       | 10.16 | 285.5      | 0.02809   | 205.00      | 4.931 | 141.3      | 0.02865   |
| 55.00       | 9.833 | 301.4      | 0.03066   | 210.00      | 4.829 | 141.2      | 0.02925   |
| 60.00       | 9.449 | 322.7      | 0.03416   | 215.00      | 4.721 | 141.6      | 0.02999   |
| 65.00       | 9.009 | 354.6      | 0.03936   | 220.00      | 4.603 | 142.7      | 0.03101   |
| 70.00       | 8.499 | 386.9      | 0.04552   | 225.00      | 4.471 | 144.0      | 0.03221   |
| 75.00       | 8.007 | 404.4      | 0.05051   | 230.00      | 4.320 | 146.2      | 0.03384   |
| 80.00       | 7.535 | 402.8      | 0.05345   | 240.00      | 3.934 | 159.6      | 0.04056   |
| 90.00       | 6.819 | 352.1      | 0.05164   | 245.00      | 3.675 | 170.1      | 0.04629   |
| 95.00       | 6.570 | 313.7      | 0.04775   | 250.00      | 3.336 | 182.0      | 0.05457   |

 Table 34: Storage and loss properties for Ticona Celanese NFX-0102 40% glass bead filled nylon 66 tested at 0.6% moisture content. (tabular data for Graph 34)

| Temperature | E'    | <b>E</b> " | Tan Delta | Temperature | E'     | <b>E</b> " | Tan Delta |
|-------------|-------|------------|-----------|-------------|--------|------------|-----------|
| (°C)        | (GPa) | (MPa)      |           | (°C)        | (GPa)  | (MPa)      |           |
| -60.00      | 5.595 | 171.0      | 0.03056   | 95.00       | 1.182  | 106.8      | 0.09035   |
| -50.00      | 5.467 | 151.8      | 0.02777   | 100.00      | 1.118  | 91.86      | 0.08213   |
| -45.00      | 5.384 | 143.4      | 0.02663   | 105.00      | 1.069  | 80.04      | 0.07490   |
| -40.00      | 5.296 | 138.7      | 0.02618   | 110.00      | 1.029  | 69.34      | 0.06738   |
| -35.00      | 5.214 | 134.0      | 0.02569   | 115.00      | 0.9975 | 60.55      | 0.06070   |
| -30.00      | 5.146 | 128.5      | 0.02497   | 120.00      | 0.9706 | 53.83      | 0.05546   |
| -25.00      | 5.091 | 125.1      | 0.02458   | 125.00      | 0.9452 | 49.22      | 0.05208   |
| -20.00      | 5.050 | 122.8      | 0.02431   | 130.00      | 0.9242 | 45.68      | 0.04942   |
| -15.00      | 5.008 | 121.9      | 0.02433   | 140.00      | 0.8860 | 40.62      | 0.04584   |
| -10.00      | 4.969 | 122.0      | 0.02455   | 150.00      | 0.8511 | 37.90      | 0.04452   |
| -5.00       | 4.923 | 121.7      | 0.02472   | 155.00      | 0.8335 | 37.19      | 0.04462   |
| 0.00        | 4.877 | 122.1      | 0.02504   | 160.00      | 0.8149 | 36.68      | 0.04501   |
| 5.00        | 4.827 | 123.3      | 0.02554   | 165.00      | 0.7966 | 36.28      | 0.04554   |
| 10.00       | 4.772 | 125.0      | 0.02619   | 170.00      | 0.7783 | 36.20      | 0.04652   |
| 15.00       | 4.712 | 128.4      | 0.02724   | 175.00      | 0.7598 | 36.06      | 0.04746   |
| 20.00       | 4.637 | 134.1      | 0.02892   | 180.00      | 0.7405 | 36.09      | 0.04874   |
| 25.00       | 4.547 | 142.0      | 0.03122   | 190.00      | 0.6983 | 35.88      | 0.05137   |
| 30.00       | 4.424 | 153.0      | 0.03458   | 195.00      | 0.6765 | 35.63      | 0.05267   |
| 40.00       | 4.067 | 178.7      | 0.04394   | 200.00      | 0.6550 | 35.36      | 0.05398   |
| 45.00       | 3.837 | 189.9      | 0.04949   | 205.00      | 0.6323 | 35.11      | 0.05553   |
| 50.00       | 3.583 | 199.6      | 0.05572   | 210.00      | 0.6112 | 34.76      | 0.05687   |
| 55.00       | 3.289 | 207.5      | 0.06309   | 215.00      | 0.5874 | 34.44      | 0.05863   |
| 60.00       | 2.948 | 217.0      | 0.07361   | 220.00      | 0.5621 | 34.08      | 0.06064   |
| 65.00       | 2.565 | 227.2      | 0.08863   | 225.00      | 0.5340 | 33.68      | 0.06307   |
| 70.00       | 2.187 | 226.2      | 0.1034    | 230.00      | 0.5038 | 33.71      | 0.06691   |
| 75.00       | 1.863 | 208.7      | 0.1120    | 240.00      | 0.4316 | 34.46      | 0.07986   |
| 80.00       | 1.608 | 182.0      | 0.1132    | 245.00      | 0.3872 | 35.04      | 0.09049   |
| 90.00       | 1.281 | 127.9      | 0.09983   | 250.00      | 0.3334 | 34.95      | 0.1049    |



Graph 35: Storage and loss properties for DuPont Minlon 6122 40% mineral filled nylon 66 tested at 0.5% moisture content.

Graph 36: Storage and loss properties for DuPont MinIon 10B40 40% mineral filled nylon 66 tested at 0.2% moisture content.



Tabular Data Graphs

| Temperature | E'    | E"    | Tan Delta | Temperature | E'     | <b>E</b> " | Tan Delta |
|-------------|-------|-------|-----------|-------------|--------|------------|-----------|
| (°C)        | (GPa) | (MPa) |           | (°C)        | (GPa)  | (MPa)      |           |
| -60.00      | 7.380 | 241.9 | 0.03277   | 100.00      | 1.911  | 175.9      | 0.09201   |
| -50.00      | 7.258 | 218.5 | 0.03010   | 105.00      | 1.799  | 149.5      | 0.08311   |
| -45.00      | 7.176 | 205.9 | 0.02869   | 110.00      | 1.716  | 129.1      | 0.07523   |
| -40.00      | 7.093 | 195.2 | 0.02752   | 115.00      | 1.652  | 114.1      | 0.06906   |
| -35.00      | 7.008 | 183.9 | 0.02624   | 120.00      | 1.602  | 103.3      | 0.06449   |
| -30.00      | 6.939 | 175.6 | 0.02531   | 125.00      | 1.563  | 95.61      | 0.06118   |
| -20.00      | 6.828 | 160.6 | 0.02352   | 130.00      | 1.530  | 91.19      | 0.05960   |
| -15.00      | 6.778 | 156.5 | 0.02309   | 140.00      | 1.467  | 86.42      | 0.05892   |
| -10.00      | 6.724 | 154.9 | 0.02304   | 145.00      | 1.434  | 83.86      | 0.05848   |
| -5.00       | 6.677 | 154.5 | 0.02314   | 150.00      | 1.398  | 81.28      | 0.05814   |
| 0.00        | 6.631 | 155.3 | 0.02343   | 155.00      | 1.359  | 78.88      | 0.05805   |
| 5.00        | 6.582 | 156.7 | 0.02380   | 160.00      | 1.319  | 76.90      | 0.05831   |
| 10.00       | 6.532 | 159.2 | 0.02438   | 165.00      | 1.278  | 74.53      | 0.05834   |
| 15.00       | 6.482 | 162.4 | 0.02505   | 170.00      | 1.236  | 73.35      | 0.05936   |
| 20.00       | 6.429 | 166.5 | 0.02590   | 175.00      | 1.193  | 73.25      | 0.06141   |
| 25.00       | 6.376 | 171.5 | 0.02689   | 180.00      | 1.149  | 70.76      | 0.06159   |
| 30.00       | 6.304 | 179.2 | 0.02842   | 190.00      | 1.060  | 67.56      | 0.06371   |
| 40.00       | 6.055 | 208.2 | 0.03439   | 195.00      | 1.016  | 66.09      | 0.06506   |
| 45.00       | 5.859 | 227.3 | 0.03879   | 200.00      | 0.9722 | 64.50      | 0.06634   |
| 50.00       | 5.610 | 250.6 | 0.04467   | 205.00      | 0.9284 | 62.76      | 0.06760   |
| 55.00       | 5.301 | 277.7 | 0.05240   | 210.00      | 0.8841 | 60.65      | 0.06860   |
| 60.00       | 4.931 | 307.5 | 0.06238   | 215.00      | 0.8389 | 58.94      | 0.07026   |
| 65.00       | 4.481 | 333.0 | 0.07434   | 220.00      | 0.7913 | 57.45      | 0.07260   |
| 70.00       | 3.957 | 350.6 | 0.08861   | 225.00      | 0.7396 | 55.39      | 0.07490   |
| 75.00       | 3.415 | 353.9 | 0.1037    | 230.00      | 0.6819 | 53.35      | 0.07824   |
| 80.00       | 2.941 | 330.8 | 0.1125    | 240.00      | 0.5457 | 49.76      | 0.09120   |
| 90.00       | 2.276 | 247.7 | 0.1088    | 245.00      | 0.4703 | 47.26      | 0.1005    |
| 95.00       | 2.063 | 208.0 | 0.1008    | 250.00      | 0.3785 | 43.19      | 0.1142    |

 Table 35: Storage and loss properties for DuPont Minlon 6122 40% mineral filled nylon 66 tested at 0.5% moisture content. (tabular data for Graph 35)

 Table 36: Storage and loss properties for DuPont Minlon 10B40 40% mineral filled nylon 66 tested at 0.2% moisture content. (tabular data for Graph 36)

| Temperature | E'    | <b>E</b> " | Tan Delta | Temperature | E'     | <b>E</b> " | Tan Delta |
|-------------|-------|------------|-----------|-------------|--------|------------|-----------|
| (°C)        | (GPa) | (MPa)      |           | (°C)        | (GPa)  | (MPa)      |           |
| -60.00      | 8.976 | 207.5      | 0.02311   | 100.00      | 2.931  | 278.4      | 0.09498   |
| -50.00      | 8.821 | 195.3      | 0.02214   | 105.00      | 2.717  | 231.9      | 0.08536   |
| -45.00      | 8.742 | 192.8      | 0.02205   | 110.00      | 2.562  | 194.8      | 0.07601   |
| -40.00      | 8.651 | 186.4      | 0.02155   | 115.00      | 2.455  | 165.6      | 0.06747   |
| -35.00      | 8.564 | 180.3      | 0.02106   | 120.00      | 2.367  | 143.5      | 0.06063   |
| -30.00      | 8.480 | 171.7      | 0.02025   | 125.00      | 2.294  | 126.3      | 0.05504   |
| -25.00      | 8.404 | 162.4      | 0.01932   | 130.00      | 2.236  | 111.2      | 0.04973   |
| -20.00      | 8.332 | 153.4      | 0.01841   | 140.00      | 2.125  | 92.28      | 0.04343   |
| -15.00      | 8.272 | 146.2      | 0.01767   | 145.00      | 2.068  | 86.59      | 0.04186   |
| -10.00      | 8.223 | 140.6      | 0.01710   | 150.00      | 2.013  | 82.90      | 0.04119   |
| -5.00       | 8.177 | 138.1      | 0.01689   | 155.00      | 1.961  | 79.93      | 0.04076   |
| 0.00        | 8.147 | 135.1      | 0.01658   | 160.00      | 1.911  | 77.81      | 0.04071   |
| 5.00        | 8.119 | 135.3      | 0.01667   | 170.00      | 1.817  | 74.68      | 0.04111   |
| 10.00       | 8.087 | 136.1      | 0.01683   | 175.00      | 1.770  | 73.38      | 0.04146   |
| 15.00       | 8.049 | 138.3      | 0.01718   | 180.00      | 1.723  | 72.08      | 0.04182   |
| 20.00       | 8.001 | 142.3      | 0.01778   | 185.00      | 1.674  | 70.67      | 0.04220   |
| 25.00       | 7.944 | 147.3      | 0.01854   | 190.00      | 1.625  | 69.43      | 0.04273   |
| 30.00       | 7.878 | 154.0      | 0.01954   | 195.00      | 1.575  | 67.97      | 0.04317   |
| 40.00       | 7.647 | 176.7      | 0.02311   | 200.00      | 1.525  | 66.83      | 0.04383   |
| 45.00       | 7.494 | 191.9      | 0.02561   | 205.00      | 1.476  | 65.53      | 0.04440   |
| 50.00       | 7.329 | 208.3      | 0.02842   | 210.00      | 1.428  | 64.22      | 0.04497   |
| 55.00       | 7.107 | 231.1      | 0.03253   | 215.00      | 1.381  | 63.27      | 0.04581   |
| 60.00       | 6.814 | 263.0      | 0.03860   | 220.00      | 1.331  | 62.45      | 0.04692   |
| 70.00       | 5.887 | 369.0      | 0.06270   | 225.00      | 1.277  | 61.75      | 0.04834   |
| 75.00       | 5.288 | 418.7      | 0.07919   | 230.00      | 1.222  | 61.00      | 0.04993   |
| 80.00       | 4.689 | 437.2      | 0.09324   | 240.00      | 1.100  | 60.95      | 0.05542   |
| 90.00       | 3.642 | 382.2      | 0.1050    | 245.00      | 1.021  | 62.27      | 0.06097   |
| 95.00       | 3.239 | 330.5      | 0.1020    | 250.00      | 0.9417 | 63.39      | 0.06733   |



Graph 37: Storage and loss properties for DuPont Zytel FE5128 43% glass fiber filled nylon 66 tested at 0.35% moisture content.

Graph 38: Storage and loss properties for DuPont Minlon 11C40 40% mineral filled, impact modified nylon 66 tested at 0.5% moisture content.



| Table 37: Storage and loss properties for DuPont Zytel FE5128 43% glass fiber filled nylon 66 tested at 0.35% mo | oisture |
|------------------------------------------------------------------------------------------------------------------|---------|
| content. (tabular data for Graph 37)                                                                             |         |

| Temperature | E'    | <b>E</b> " | Tan Delta | Temperature | E'    | <b>E</b> " | Tan Delta |
|-------------|-------|------------|-----------|-------------|-------|------------|-----------|
| (°C)        | (GPa) | (MPa)      |           | (°C)        | (GPa) | (MPa)      |           |
| -60.00      | 11.62 | 136.0      | 0.01171   | 100.00      | 6.106 | 282.3      | 0.04623   |
| -50.00      | 11.54 | 124.4      | 0.01078   | 105.00      | 5.964 | 254.1      | 0.04260   |
| -45.00      | 11.47 | 125.4      | 0.01093   | 110.00      | 5.863 | 225.4      | 0.03844   |
| -40.00      | 11.39 | 128.0      | 0.01124   | 115.00      | 5.800 | 204.3      | 0.03522   |
| -35.00      | 11.33 | 127.4      | 0.01124   | 120.00      | 5.760 | 189.2      | 0.03285   |
| -30.00      | 11.28 | 126.4      | 0.01121   | 125.00      | 5.732 | 175.5      | 0.03061   |
| -25.00      | 11.23 | 128.7      | 0.01146   | 130.00      | 5.712 | 164.9      | 0.02886   |
| -15.00      | 11.14 | 137.3      | 0.01232   | 140.00      | 5.687 | 157.4      | 0.02769   |
| -10.00      | 11.10 | 142.9      | 0.01287   | 145.00      | 5.661 | 150.7      | 0.02662   |
| -5.00       | 11.06 | 149.9      | 0.01355   | 150.00      | 5.611 | 143.4      | 0.02556   |
| 0.00        | 11.02 | 156.6      | 0.01420   | 155.00      | 5.546 | 139.7      | 0.02518   |
| 5.00        | 10.99 | 162.9      | 0.01483   | 160.00      | 5.473 | 138.0      | 0.02521   |
| 10.00       | 10.95 | 168.4      | 0.01538   | 165.00      | 5.398 | 137.5      | 0.02546   |
| 15.00       | 10.90 | 174.4      | 0.01599   | 170.00      | 5.323 | 137.1      | 0.02575   |
| 20.00       | 10.89 | 180.0      | 0.01658   | 175.00      | 5.250 | 137.2      | 0.02614   |
| 25.00       | 10.78 | 188.9      | 0.01752   | 180.00      | 5.174 | 137.8      | 0.02663   |
| 30.00       | 10.68 | 201.6      | 0.01887   | 190.00      | 5.013 | 139.6      | 0.02785   |
| 40.00       | 10.40 | 227.6      | 0.02188   | 195.00      | 4.930 | 141.0      | 0.02861   |
| 45.00       | 10.20 | 245.7      | 0.02409   | 200.00      | 4.845 | 142.6      | 0.02943   |
| 50.00       | 9.939 | 267.9      | 0.02696   | 205.00      | 4.758 | 144.1      | 0.03028   |
| 55.00       | 9.613 | 294.6      | 0.03065   | 210.00      | 4.667 | 145.8      | 0.03124   |
| 60.00       | 9.215 | 324.5      | 0.03522   | 215.00      | 4.569 | 147.9      | 0.03237   |
| 65.00       | 8.743 | 364.7      | 0.04172   | 220.00      | 4.466 | 149.9      | 0.03357   |
| 70.00       | 8.221 | 398.7      | 0.04850   | 225.00      | 4.351 | 152.7      | 0.03509   |
| 75.00       | 7.708 | 412.2      | 0.05349   | 230.00      | 4.212 | 156.4      | 0.03713   |
| 80.00       | 7.251 | 405.2      | 0.05589   | 240.00      | 3.893 | 167.0      | 0.04290   |
| 90.00       | 6.519 | 347.6      | 0.05332   | 245.00      | 3.677 | 176.6      | 0.04803   |
| 95.00       | 6.275 | 313.0      | 0.04988   | 250.00      | 3.430 | 184.8      | 0.05388   |

 Table 38: Storage and loss properties for DuPont Minlon 11C40 40% mineral filled, impact modified nylon 66 tested at 0.5% moisture content. (tabular data for Graph 38)

| Temperature | E'    | <b>E</b> " | Tan Delta | Temperature | E'     | <b>E</b> " | Tan Delta |
|-------------|-------|------------|-----------|-------------|--------|------------|-----------|
| (°C)        | (GPa) | (MPa)      |           | (°C)        | (GPa)  | (MPa)      |           |
| -60.00      | 3.281 | 193.9      | 0.03087   | 95.00       | 1.514  | 147.0      | 0.09714   |
| -55.00      | 6.252 | 186.0      | 0.02976   | 100.00      | 1.438  | 127.0      | 0.08835   |
| -50.00      | 6.203 | 176.3      | 0.02842   | 105.00      | 1.388  | 112.5      | 0.08109   |
| -45.00      | 6.150 | 169.1      | 0.02750   | 110.00      | 1.354  | 102.5      | 0.07569   |
| -40.00      | 6.095 | 161.7      | 0.02654   | 115.00      | 1.327  | 95.70      | 0.07214   |
| -35.00      | 6.043 | 156.8      | 0.02594   | 120.00      | 1.303  | 91.01      | 0.06983   |
| -30.00      | 5.997 | 153.5      | 0.02559   | 125.00      | 1.282  | 86.83      | 0.06771   |
| -25.00      | 5.960 | 150.7      | 0.02528   | 130.00      | 1.260  | 84.12      | 0.06676   |
| -20.00      | 5.934 | 147.5      | 0.02486   | 135.00      | 1.238  | 80.54      | 0.06505   |
| -15.00      | 5.918 | 145.2      | 0.02454   | 140.00      | 1.216  | 78.39      | 0.06447   |
| -10.00      | 5.906 | 142.9      | 0.02419   | 145.00      | 1.191  | 76.52      | 0.06423   |
| -5.00       | 5.892 | 139.9      | 0.02375   | 150.00      | 1.163  | 74.33      | 0.06389   |
| 0.00        | 5.874 | 137.5      | 0.02341   | 155.00      | 1.131  | 71.19      | 0.06296   |
| 5.00        | 5.851 | 136.5      | 0.02333   | 160.00      | 1.094  | 69.43      | 0.06346   |
| 10.00       | 5.824 | 137.0      | 0.02352   | 170.00      | 1.012  | 67.01      | 0.06621   |
| 15.00       | 5.788 | 139.4      | 0.02409   | 175.00      | 0.9692 | 64.70      | 0.06676   |
| 20.00       | 5.734 | 146.2      | 0.02550   | 180.00      | 0.9248 | 63.25      | 0.06840   |
| 25.00       | 5.642 | 160.3      | 0.02841   | 190.00      | 0.8341 | 59.42      | 0.07123   |
| 30.00       | 5.518 | 177.9      | 0.03224   | 195.00      | 0.7886 | 57.61      | 0.07306   |
| 40.00       | 5.145 | 212.9      | 0.04138   | 200.00      | 0.7427 | 56.11      | 0.07555   |
| 45.00       | 4.845 | 235.1      | 0.04854   | 205.00      | 0.6959 | 53.88      | 0.07743   |
| 50.00       | 4.556 | 262.8      | 0.05769   | 210.00      | 0.6472 | 51.87      | 0.08016   |
| 55.00       | 4.225 | 290.3      | 0.06871   | 215.00      | 0.5962 | 49.74      | 0.08342   |
| 60.00       | 3.766 | 321.9      | 0.08552   | 220.00      | 0.5440 | 47.44      | 0.08721   |
| 70.00       | 2.732 | 322.0      | 0.1179    | 225.00      | 0.4867 | 45.31      | 0.09309   |
| 75.00       | 2.315 | 289.3      | 0.1250    | 230.00      | 0.4259 | 42.88      | 0.1007    |
| 80.00       | 2.000 | 248.3      | 0.1242    | 240.00      | 0.3100 | 36.92      | 0.1191    |
| 90.00       | 1.622 | 173.7      | 0.1071    | 245.00      | 0.2426 | 32.85      | 0.1355    |



Graph 39: Storage and loss properties for DuPont Minlon 12T 40% mineral filled, impact modified nylon 66 tested at 0.6% moisture content.

Graph 40: Storage and loss properties for DuPont Zytel 82G33L 33% glass fiber filled, impact modified nylon 6/66 tested at 0.2% moisture content.



| Table 39: Storage and loss properties for DuPont Minlon 12T 40% mineral filled, in | mpact modified nylon 66 tested at |
|------------------------------------------------------------------------------------|-----------------------------------|
| 0.6% moisture content. (tabular data for Graph 39)                                 |                                   |

| 0.6%        | moisture co | ntent. (tabula | ar data for Graph 39) |             |        | ,          |           |
|-------------|-------------|----------------|-----------------------|-------------|--------|------------|-----------|
| Temperature | E'          | <b>E</b> "     | Tan Delta             | Temperature | E'     | <b>E</b> " | Tan Delta |
| (°C)        | (GPa)       | (MPa)          |                       | (°C)        | (GPa)  | (MPa)      |           |
| -60.00      | 6.225       | 233.5          | 0.03751               | 95.00       | 1.208  | 119.5      | 0.9898    |
| -50.00      | 6.092       | 214.7          | 0.03524               | 100.00      | 1.146  | 100.7      | 0.08785   |
| -45.00      | 5.976       | 199.8          | 0.03344               | 105.00      | 1.103  | 87.35      | 0.07921   |
| -40.00      | 5.871       | 187.0          | 0.03186               | 110.00      | 1.070  | 77.26      | 0.07218   |
| -35.00      | 5.773       | 174.5          | 0.03022               | 115.00      | 1.043  | 70.23      | 0.06731   |
| -30.00      | 5.682       | 162.0          | 0.02852               | 120.00      | 1.018  | 65.18      | 0.06399   |
| -25.00      | 5.606       | 151.8          | 0.02708               | 125.00      | 0.9950 | 61.31      | 0.06161   |
| -20.00      | 5.536       | 142.8          | 0.02580               | 130.00      | 0.9733 | 58.97      | 0.06059   |
| -15.00      | 5.483       | 135.7          | 0.02474               | 140.00      | 0.9259 | 55.60      | 0.06005   |
| -10.00      | 5.438       | 130.3          | 0.02397               | 145.00      | 0.8989 | 54.66      | 0.06080   |
| -5.00       | 5.398       | 125.8          | 0.02330               | 150.00      | 0.8716 | 53.67      | 0.06158   |
| 0.00        | 5.361       | 123.0          | 0.02295               | 155.00      | 0.8428 | 52.28      | 0.06203   |
| 5.00        | 5.322       | 121.4          | 0.02282               | 160.00      | 0.8107 | 51.01      | 0.06293   |
| 10.00       | 5.282       | 120.8          | 0.02287               | 165.00      | 0.7781 | 49.76      | 0.06395   |
| 15.00       | 5.236       | 121.4          | 0.02319               | 170.00      | 0.7445 | 48.29      | 0.06486   |
| 20.00       | 5.185       | 125.3          | 0.02416               | 175.00      | 0.7099 | 46.84      | 0.06598   |
| 25.00       | 5.113       | 133.7          | 0.02614               | 180.00      | 0.6752 | 45.42      | 0.06727   |
| 30.00       | 4.999       | 148.5          | 0.02971               | 190.00      | 0.6050 | 42.53      | 0.07029   |
| 40.00       | 4.581       | 190.9          | 0.04167               | 195.00      | 0.5698 | 41.18      | 0.07227   |
| 45.00       | 4.299       | 210.1          | 0.04889               | 200.00      | 0.5330 | 39.66      | 0.07440   |
| 50.00       | 4.007       | 229.2          | 0.05720               | 205.00      | 0.4974 | 38.36      | 0.07713   |
| 55.00       | 3.669       | 250.3          | 0.06822               | 210.00      | 0.4613 | 36.98      | 0.08017   |
| 60.00       | 3.291       | 270.5          | 0.08222               | 215.00      | 0.4246 | 35.52      | 0.08367   |
| 65.00       | 2.857       | 289.3          | 0.1013                | 220.00      | 0.3861 | 34.02      | 0.08812   |
| 70.00       | 2.387       | 289.5          | 0.1213                | 225.00      | 0.3454 | 32.68      | 0.09462   |
| 75.00       | 1.963       | 261.1          | 0.1330                | 230.00      | 0.3055 | 31.04      | 0.1016    |
| 80.00       | 1.650       | 219.1          | 0.1328                | 240.00      | 0.2273 | 27.57      | 0.1213    |
| 90.00       | 1.298       | 144.9          | 0.1116                | 245.00      | 0.1835 | 25.41      | 0.1385    |

Table 40: Storage and loss properties for DuPont Zytel 82G33L 33% glass fiber filled, impact modified nylon 6/66 tested at 0.2% moisture content. (tabular data for Graph 40)

| Temperature | E'    | <b>E</b> " | Tan Delta | Temperature | E'     | <b>E</b> " | Tan Delta |
|-------------|-------|------------|-----------|-------------|--------|------------|-----------|
| (°C)        | (GPa) | (MPa)      |           | (°C)        | (GPa)  | (MPa)      |           |
| -55.00      | 5.736 | 114.3      | 0.01992   | 85.00       | 3.120  | 204.5      | 0.06555   |
| -50.00      | 5.715 | 112.5      | 0.01968   | 90.00       | 2.997  | 187.6      | 0.06258   |
| -45.00      | 5.688 | 112.2      | 0.01973   | 95.00       | 2.873  | 166.4      | 0.05793   |
| -40.00      | 5.665 | 112.6      | 0.01988   | 100.00      | 2.755  | 144.7      | 0.05252   |
| -35.00      | 5.648 | 111.7      | 0.01978   | 105.00      | 2.685  | 129.7      | 0.04832   |
| -30.00      | 5.637 | 111.8      | 0.01982   | 110.00      | 2.627  | 117.1      | 0.04459   |
| -25.00      | 5.628 | 112.0      | 0.01990   | 115.00      | 2.584  | 107.0      | 0.04140   |
| -20.00      | 5.611 | 111.6      | 0.01989   | 120.00      | 2.546  | 99.23      | 0.03897   |
| -15.00      | 5.588 | 110.6      | 0.01979   | 125.00      | 2.503  | 93.02      | 0.03716   |
| -10.00      | 5.564 | 108.7      | 0.01954   | 130.00      | 2.461  | 87.93      | 0.03573   |
| -5.00       | 5.550 | 107.7      | 0.01941   | 135.00      | 2.424  | 83.75      | 0.03455   |
| 0.00        | 5.531 | 109.1      | 0.01973   | 140.00      | 2.388  | 80.70      | 0.03379   |
| 5.00        | 5.503 | 113.4      | 0.02060   | 145.00      | 2.348  | 78.05      | 0.03324   |
| 10.00       | 5.458 | 121.9      | 0.02233   | 150.00      | 2.305  | 75.85      | 0.03291   |
| 15.00       | 5.399 | 133.4      | 0.02471   | 155.00      | 2.253  | 74.02      | 0.03285   |
| 20.00       | 5.310 | 151.9      | 0.02860   | 160.00      | 2.207  | 71.82      | 0.03254   |
| 25.00       | 5.190 | 176.0      | 0.03392   | 165.00      | 2.161  | 70.04      | 0.03241   |
| 30.00       | 5.043 | 204.0      | 0.04045   | 170.00      | 2.114  | 68.68      | 0.03249   |
| 35.00       | 4.975 | 218.6      | 0.04393   | 175.00      | 2.065  | 67.64      | 0.03275   |
| 40.00       | 4.891 | 231.6      | 0.04734   | 180.00      | 2.007  | 67.02      | 0.03339   |
| 45.00       | 4.773 | 246.3      | 0.05161   | 185.00      | 1.943  | 66.65      | 0.03430   |
| 50.00       | 4.590 | 262.9      | 0.05729   | 190.00      | 1.874  | 66.27      | 0.03536   |
| 55.00       | 4.339 | 275.9      | 0.06358   | 195.00      | 1.784  | 66.80      | 0.03746   |
| 60.00       | 4.042 | 279.8      | 0.06924   | 200.00      | 1.681  | 67.49      | 0.04016   |
| 65.00       | 3.788 | 273.2      | 0.07212   | 205.00      | 1.509  | 70.88      | 0.04699   |
| 70.00       | 3.583 | 261.9      | 0.07311   | 210.00      | 1.217  | 72.06      | 0.05923   |
| 75.00       | 3.406 | 244.5      | 0.07180   | 215.00      | 0.9421 | 67.99      | 0.07224   |
| 80.00       | 3.248 | 224.8      | 0.06923   |             |        | 01100      |           |



Graph 41: Storage and loss properties for DuPont Zytel 72G33L 33% glass fiber filled nylon 6/66 tested at 0.4% moisture content.

Graph 42: Storage and loss properties for LNP Verton RF700-10EM 50% long glass fiber filled nylon 6/66 tested at 1% moisture content.



| Temperature | E'    | E"    | Tan Delta | Temperature | E'    | <b>F</b> " | Tan Delta |
|-------------|-------|-------|-----------|-------------|-------|------------|-----------|
| (°C)        | (GPa) | (MPa) | Tun Donu  | (°C)        | (GPa) | (MPa)      | Tan Delta |
| -55.00      | 8.565 | 126.2 | 0.01474   | 85.00       | 4.570 | 304.7      | 0.06667   |
| -50.00      | 8.549 | 121.3 | 0.01419   | 90.00       | 4.402 | 266.7      | 0.06058   |
| -45.00      | 8.532 | 116.7 | 0.01368   | 95.00       | 4.266 | 233.9      | 0.05483   |
| -40.00      | 8.500 | 113.5 | 0.01335   | 100.00      | 4.156 | 203.2      | 0.04889   |
| -35.00      | 8.461 | 110.4 | 0.01305   | 105.00      | 4.076 | 178.1      | 0.04370   |
| -30.00      | 8.426 | 107.1 | 0.01271   | 110.00      | 4.006 | 157.1      | 0.03921   |
| -25.00      | 8.406 | 101.8 | 0.01211   | 115.00      | 3.959 | 141.4      | 0.03573   |
| -20.00      | 8.399 | 96.00 | 0.01143   | 120.00      | 3.915 | 129.7      | 0.03314   |
| -15.00      | 8.390 | 91.80 | 0.01094   | 125.00      | 3.876 | 120.9      | 0.03119   |
| -10.00      | 8.380 | 89.30 | 0.01066   | 130.00      | 3.842 | 114.8      | 0.02987   |
| -5.00       | 8.368 | 87.99 | 0.01051   | 135.00      | 3.807 | 111.3      | 0.02925   |
| 0.00        | 8.354 | 89.07 | 0.01066   | 140.00      | 3.761 | 109.3      | 0.02906   |
| 5.00        | 8.338 | 90.66 | 0.01087   | 145.00      | 3.711 | 108.2      | 0.02916   |
| 10.00       | 8.314 | 94.08 | 0.01132   | 150.00      | 3.660 | 107.6      | 0.02938   |
| 15.00       | 8.266 | 104.2 | 0.01260   | 155.00      | 3.607 | 107.3      | 0.02975   |
| 20.00       | 8.188 | 119.8 | 0.01463   | 160.00      | 3.547 | 108.1      | 0.03046   |
| 25.00       | 8.108 | 134.8 | 0.01663   | 165.00      | 3.482 | 108.7      | 0.03123   |
| 30.00       | 8.030 | 151.1 | 0.01882   | 170.00      | 3.410 | 109.9      | 0.03222   |
| 35.00       | 7.924 | 174.6 | 0.02204   | 175.00      | 3.332 | 111.1      | 0.03334   |
| 40.00       | 7.781 | 203.0 | 0.02610   | 180.00      | 3.249 | 112.3      | 0.03455   |
| 45.00       | 7.586 | 240.1 | 0.03165   | 185.00      | 3.157 | 113.8      | 0.03606   |
| 50.00       | 7.309 | 289.6 | 0.03962   | 190.00      | 3.053 | 115.4      | 0.03781   |
| 55.00       | 6.929 | 345.5 | 0.04987   | 195.00      | 2.933 | 117.4      | 0.04002   |
| 60.00       | 6.463 | 400.6 | 0.06199   | 200.00      | 2.792 | 119.6      | 0.04285   |
| 65.00       | 5.955 | 416.4 | 0.06994   | 205.00      | 2.607 | 122.9      | 0.04713   |
| 70.00       | 5.494 | 403.0 | 0.07336   | 210.00      | 2.323 | 126.9      | 0.05466   |
| 75.00       | 5.081 | 369.8 | 0.07278   | 215.00      | 2.017 | 127.4      | 0.06317   |
| 80.00       | 4.790 | 336.8 | 0.07032   | 220.00      | 1.623 | 125.8      | 0.07756   |

 Table 41: Storage and loss properties for DuPont Zytel 72G33L 33% glass fiber filled nylon 6/66 tested at 0.4% moisture content. (tabular data for Graph 41)

 Table 42: Storage and loss properties for LNP Verton RF700-10EM 50% long glass fiber filled nylon 6/66 tested at 1% moisture content. (tabular data for Graph 42)

| Temperature | E'    | <b>E</b> " | Tan Delta | Temperature | E'    | <b>E</b> " | Tan Delta |
|-------------|-------|------------|-----------|-------------|-------|------------|-----------|
| (°C)        | (GPa) | (MPa)      |           | (°C)        | (GPa) | (MPa)      |           |
| -55.00      | 14.88 | 187.2      | 0.01258   | 80.00       | 8.614 | 421.9      | 0.04898   |
| -50.00      | 14.82 | 181.7      | 0.01226   | 85.00       | 8.291 | 388.5      | 0.04685   |
| -45.00      | 14.77 | 176.3      | 0.01193   | 90.00       | 8.025 | 351.9      | 0.04385   |
| -40.00      | 14.73 | 171.7      | 0.01166   | 95.00       | 7.817 | 315.9      | 0.04041   |
| -35.00      | 14.69 | 164.2      | 0.01118   | 100.00      | 7.669 | 283.6      | 0.03698   |
| -30.00      | 14.64 | 156.8      | 0.01071   | 105.00      | 7.573 | 261.3      | 0.03450   |
| -25.00      | 14.60 | 149.7      | 0.01025   | 110.00      | 7.500 | 241.4      | 0.03219   |
| -20.00      | 14.56 | 143.6      | 0.009866  | 115.00      | 7.442 | 225.4      | 0.03029   |
| -15.00      | 14.55 | 138.8      | 0.009545  | 120.00      | 7.397 | 215.4      | 0.02912   |
| -10.00      | 14.52 | 137.7      | 0.009481  | 125.00      | 7.348 | 207.3      | 0.02822   |
| -5.00       | 14.48 | 137.7      | 0.009510  | 130.00      | 7.294 | 200.0      | 0.02742   |
| 0.00        | 14.43 | 142.7      | 0.009892  | 135.00      | 7.235 | 193.8      | 0.02679   |
| 5.00        | 14.34 | 155.4      | 0.01084   | 140.00      | 7.166 | 189.4      | 0.02642   |
| 10.00       | 14.22 | 173.7      | 0.01222   | 145.00      | 7.086 | 186.0      | 0.02624   |
| 15.00       | 14.04 | 195.5      | 0.01392   | 150.00      | 6.994 | 183.9      | 0.02630   |
| 20.00       | 13.85 | 216.8      | 0.01565   | 155.00      | 6.894 | 181.5      | 0.02632   |
| 25.00       | 13.61 | 239.9      | 0.01763   | 160.00      | 6.781 | 180.9      | 0.02668   |
| 30.00       | 13.33 | 262.5      | 0.01969   | 165.00      | 6.660 | 179.9      | 0.02702   |
| 35.00       | 13.03 | 286.7      | 0.02201   | 170.00      | 6.529 | 179.1      | 0.02743   |
| 40.00       | 12.65 | 312.2      | 0.02468   | 175.00      | 6.385 | 179.5      | 0.02812   |
| 45.00       | 12.19 | 338.0      | 0.02773   | 180.00      | 6.228 | 179.0      | 0.02874   |
| 50.00       | 11.68 | 361.1      | 0.03091   | 185.00      | 6.053 | 179.7      | 0.02969   |
| 55.00       | 11.15 | 385.1      | 0.03453   | 190.00      | 5.866 | 180.5      | 0.03077   |
| 60.00       | 10.60 | 413.9      | 0.03904   | 195.00      | 5.663 | 181.3      | 0.03201   |
| 65.00       | 10.03 | 438.8      | 0.04375   | 200.00      | 5.441 | 182.9      | 0.03361   |
| 70.00       | 9.497 | 448.8      | 0.04726   | 205.00      | 5.202 | 183.7      | 0.03531   |
| 75.00       | 9.015 | 444.7      | 0.04933   |             |       |            |           |



Graph 43: Storage and loss properties for Mitsubishi Gas Chemical Reny 1032 60% glass fiber filled nylon MXD6.

**Graph 44:** Storage and loss properties for EMS Grivory 5H 50% glass fiber filled nylon, aromatic copolymer tested at 0.3% moisture content.



78

| Table 43: Storage and loss properties for Mitsubis | hi Gas Chemical Reny | / 1032 60% glass f | iber filled nylon MXD6. |
|----------------------------------------------------|----------------------|--------------------|-------------------------|
| (tabular data for Graph 43)                        |                      |                    |                         |

| Temperature<br>(°C) | E'<br>(GPa) | E"<br>(MPa) | Tan Delta | Temperature<br>(°C) | E'<br>(GPa) | E"<br>(MPa)    | Tan Delta |
|---------------------|-------------|-------------|-----------|---------------------|-------------|----------------|-----------|
| 80.00               | 17.07       | 167.5       | 0.009813  | 90.00               | 16.97       | 263.6          | 0.01562   |
| 85.00               | 17.07       | 206.2       | 0.009813  | 90.00               | 16.66       | 205.0          | 0.01362   |
| 60.00               | 19.70       | 02 72       | 0.01211   | 100.00              | 16.00       | 595.9          | 0.02577   |
| -00.00              | 10.75       | 92.72       | 0.004955  | 105.00              | 15.04       | 391.4<br>790.7 | 0.05067   |
| -55.00              | 10.77       | 94.97       | 0.005059  | 110.00              | 13.01       | 789.7          | 0.05262   |
| -50.00              | 10.75       | 91.77       | 0.004895  | 110.00              | 13.73       | 901.7          | 0.06570   |
| -45.00              | 18.72       | 96.39       | 0.005150  | 115.00              | 12.45       | 913.1          | 0.07332   |
| -40.00              | 18.67       | 100.1       | 0.005363  | 120.00              | 11.26       | 866.4          | 0.07696   |
| -35.00              | 18.61       | 101.9       | 0.005475  | 125.00              | 10.29       | 783.1          | 0.07610   |
| -30.00              | 18.56       | 106.0       | 0.005713  | 130.00              | 9.658       | 689.2          | 0.07135   |
| -25.00              | 18.50       | 110.9       | 0.005996  | 135.00              | 9.216       | 607.2          | 0.06588   |
| -20.00              | 18.43       | 116.2       | 0.006303  | 140.00              | 8.943       | 549.3          | 0.06142   |
| -15.00              | 18.35       | 118.1       | 0.006435  | 145.00              | 8.719       | 506.1          | 0.05804   |
| -10.00              | 18.25       | 120.5       | 0.006603  | 150.00              | 8.512       | 469.3          | 0.05514   |
| -5.00               | 18.12       | 122.7       | 0.006773  | 155.00              | 8.337       | 436.8          | 0.05240   |
| 0.00                | 18.03       | 117.8       | 0.006532  | 160.00              | 8.200       | 412.9          | 0.05035   |
| 5.00                | 17.98       | 119.5       | 0.006644  | 165.00              | 8.049       | 395.9          | 0.04918   |
| 10.00               | 17.91       | 114.6       | 0.006400  | 170.00              | 7.883       | 381.6          | 0.04841   |
| 20.00               | 17.85       | 107.5       | 0.006020  | 175.00              | 7.704       | 371.1          | 0.04817   |
| 25.00               | 17.81       | 107.5       | 0.006039  | 180.00              | 7.525       | 361.5          | 0.04803   |
| 30.00               | 17.73       | 107.6       | 0.006069  | 185.00              | 7.321       | 354.0          | 0.04836   |
| 35.00               | 17.67       | 110.0       | 0.006222  | 190.00              | 7.094       | 349.1          | 0.04921   |
| 40.00               | 17.60       | 113.9       | 0.006472  | 195.00              | 6.893       | 342.4          | 0.04967   |
| 45.00               | 17.51       | 115.9       | 0.006620  | 200.00              | 6.652       | 341.7          | 0.05137   |
| 50.00               | 17.45       | 120.8       | 0.006921  | 205.00              | 6.408       | 341.7          | 0.05332   |
| 55.00               | 17.37       | 119.2       | 0.006864  | 210.00              | 6.116       | 342.7          | 0.05603   |
| 60.00               | 17.32       | 125.1       | 0.007225  | 215.00              | 5.782       | 343.3          | 0.05938   |
| 65.00               | 17.30       | 132.6       | 0.007663  | 220.00              | 5.377       | 344.4          | 0.06405   |
| 70.00               | 17.19       | 137.0       | 0.007970  | 225.00              | 4.739       | 342.0          | 0.07217   |
| 75.00               | 17.19       | 150.1       | 0.008735  |                     |             |                |           |

 Table 44: Storage and loss properties for EMS Grivory 5H 50% glass fiber filled nylon, aromatic copolymer tested at 0.3% moisture content. (tabular data for Graph 44)

| Temperature | E'    | <b>E</b> " | Tan Delta | Temperature | E'    | <b>E</b> " | Tan Delta |
|-------------|-------|------------|-----------|-------------|-------|------------|-----------|
| (°C)        | (GPa) | (MPa)      |           | (°C)        | (GPa) | (MPa)      |           |
| -60.00      | 12.42 | 113.0      | 0.009102  | 80.00       | 9.505 | 496.9      | 0.05228   |
| -55.00      | 12.40 | 107.1      | 0.008639  | 85.00       | 8.827 | 573.1      | 0.06493   |
| -50.00      | 12.35 | 101.8      | 0.008238  | 90.00       | 8.108 | 609.4      | 0.07517   |
| -45.00      | 12.33 | 95.97      | 0.007785  | 95.00       | 7.400 | 594.8      | 0.08039   |
| -40.00      | 12.28 | 90.08      | 0.007333  | 100.00      | 6.883 | 551.9      | 0.08018   |
| -35.00      | 12.23 | 84.79      | 0.006931  | 105.00      | 6.433 | 496.6      | 0.07720   |
| -30.00      | 12.17 | 79.79      | 0.006555  | 110.00      | 6.088 | 442.6      | 0.07269   |
| -25.00      | 12.14 | 70.97      | 0.005849  | 115.00      | 5.832 | 396.7      | 0.06802   |
| -20.00      | 12.12 | 64.77      | 0.005344  | 120.00      | 5.628 | 357.9      | 0.06359   |
| -15.00      | 12.10 | 58.46      | 0.004833  | 125.00      | 5.453 | 320.3      | 0.05873   |
| -10.00      | 12.08 | 55.26      | 0.004575  | 130.00      | 5.314 | 288.6      | 0.05431   |
| -5.00       | 12.05 | 54.17      | 0.004494  | 135.00      | 5.202 | 263.2      | 0.05060   |
| 0.00        | 12.02 | 56.68      | 0.004717  | 140.00      | 5.120 | 243.1      | 0.04748   |
| 5.00        | 11.98 | 60.03      | 0.005009  | 145.00      | 5.048 | 224.5      | 0.04448   |
| 10.00       | 11.95 | 63.17      | 0.005284  | 150.00      | 4.971 | 217.0      | 0.04366   |
| 15.00       | 11.92 | 66.66      | 0.005591  | 155.00      | 4.890 | 208.6      | 0.04265   |
| 20.00       | 11.90 | 69.25      | 0.005821  | 160.00      | 4.812 | 203.5      | 0.04230   |
| 25.00       | 11.87 | 72.90      | 0.006143  | 165.00      | 4.727 | 200.2      | 0.04235   |
| 30.00       | 11.83 | 76.99      | 0.006505  | 170.00      | 4.634 | 197.7      | 0.04266   |
| 35.00       | 11.80 | 81.43      | 0.006903  | 175.00      | 4.541 | 194.9      | 0.04292   |
| 40.00       | 11.74 | 93.99      | 0.008003  | 180.00      | 4.442 | 193.0      | 0.04346   |
| 45.00       | 11.66 | 112.7      | 0.009665  | 185.00      | 4.334 | 191.0      | 0.04407   |
| 50.00       | 11.56 | 139.1      | 0.01203   | 190.00      | 4.220 | 184.9      | 0.04381   |
| 55.00       | 11.42 | 171.7      | 0.01504   | 195.00      | 4.098 | 186.5      | 0.04552   |
| 60.00       | 11.21 | 208.7      | 0.01862   | 200.00      | 3.975 | 184.6      | 0.04645   |
| 65.00       | 10.93 | 257.1      | 0.02352   | 205.00      | 3.851 | 182.7      | 0.04744   |
| 70.00       | 10.56 | 321.3      | 0.03043   | 210.00      | 3.719 | 181.5      | 0.04881   |
| 75.00       | 10.08 | 407.1      | 0.04041   | 215.00      | 3.579 | 181.3      | 0.05065   |



Graph 45: Storage and loss properties for DuPont Zytel HTN51G35HSL 35% glass fiber filled nylon, partially aromatic.

Graph 46: Storage and loss properties for GE Plastics Lexan 141R unfilled polycarbonate (PC).



80

| Table 45 | Storage and loss properties for DuPont Zytel HTN51G35HSL 35% glass fiber filled nylon, partially aromati | ic |
|----------|----------------------------------------------------------------------------------------------------------|----|
|          | (tabular data for Graph 45)                                                                              |    |

| Temperature | E'    | <b>E</b> " | Tan Delta | Temperature | E'     | <b>E</b> " | Tan Delta |
|-------------|-------|------------|-----------|-------------|--------|------------|-----------|
| (°C)        | (GPa) | (MPa)      |           | (°C)        | (GPa)  | (MPa)      |           |
| -55.00      | 11.49 | 160.7      | 0.01398   | 120.00      | 10.31  | 182.7      | 0.01773   |
| -50.00      | 11.46 | 159.1      | 0.01389   | 125.00      | 10.22  | 239.2      | 0.02341   |
| -45.00      | 11.41 | 156.1      | 0.01368   | 130.00      | 9.964  | 352.8      | 0.03541   |
| -40.00      | 11.36 | 11.36      | 0.01352   | 140.00      | 8.714  | 622.6      | 0.07146   |
| -30.00      | 11.21 | 145.2      | 0.01295   | 150.00      | 7.134  | 597.8      | 0.08380   |
| -25.00      | 11.15 | 141.5      | 0.01269   | 155.00      | 6.452  | 539.6      | 0.08363   |
| -20.00      | 11.10 | 135.6      | 0.01221   | 160.00      | 5.920  | 481.9      | 0.08141   |
| -15.00      | 11.06 | 129.9      | 0.01175   | 165.00      | 5.510  | 421.5      | 0.07650   |
| -10.00      | 11.02 | 125.2      | 0.01136   | 170.00      | 5.207  | 366.2      | 0.07032   |
| -5.00       | 10.98 | 122.2      | 0.01113   | 180.00      | 4.799  | 282.0      | 0.05877   |
| 0.00        | 10.95 | 120.2      | 0.01098   | 185.00      | 4.656  | 252.2      | 0.05417   |
| 5.00        | 10.92 | 118.8      | 0.01088   | 190.00      | 4.520  | 227.2      | 0.05025   |
| 10.00       | 10.89 | 118.5      | 0.01088   | 195.00      | 4.391  | 207.2      | 0.04718   |
| 20.00       | 10.85 | 115.5      | 0.01065   | 200.00      | 4.267  | 192.7      | 0.04517   |
| 25.00       | 10.84 | 113.5      | 0.01048   | 205.00      | 4.145  | 182.6      | 0.04406   |
| 30.00       | 10.81 | 113.7      | 0.01051   | 210.00      | 4.018  | 174.8      | 0.04351   |
| 40.00       | 10.74 | 117.5      | 0.01094   | 215.00      | 3.883  | 169.0      | 0.04352   |
| 50.00       | 10.69 | 113.3      | 0.01060   | 220.00      | 3.740  | 164.4      | 0.04397   |
| 55.00       | 10.67 | 111.7      | 0.01048   | 225.00      | 3.589  | 160.5      | 0.04474   |
| 60.00       | 10.63 | 111.9      | 0.01052   | 240.00      | 3.057  | 151.2      | 0.04947   |
| 65.00       | 10.59 | 113.0      | 0.01067   | 245.00      | 2.871  | 148.6      | 0.05175   |
| 70.00       | 10.55 | 115.5      | 0.01096   | 250.00      | 2.694  | 146.3      | 0.05430   |
| 80.00       | 10.46 | 123.2      | 0.01178   | 255.00      | 2.462  | 145.9      | 0.05928   |
| 90.00       | 10.40 | 130.0      | 0.01251   | 260.00      | 2.088  | 152.6      | 0.07311   |
| 95.00       | 10.38 | 132.5      | 0.01276   | 270.00      | 1.601  | 135.0      | 0.08432   |
| 100.00      | 10.36 | 134.7      | 0.01300   | 275.00      | 1.154  | 122.3      | 0.1061    |
| 110.00      | 10.34 | 145.1      | 0.01403   | 280.00      | 0.7355 | 92.53      | 0.1259    |
| 115.00      | 10.33 | 157.5      | 0.01524   | 285.00      | 0.4295 | 62.67      | 0.1462    |

 
 Table 46: Storage and loss properties for GE Plastics Lexan 141R unfilled polycarbonate (PC). (tabular data for Graph 46)

| Temperature<br>(°C) | E'<br>(GPa) | E"<br>(MPa) | Tan Delta | Temperature<br>(°C) | E'<br>(GPa) | E"<br>(MPa) | Tan Delta |
|---------------------|-------------|-------------|-----------|---------------------|-------------|-------------|-----------|
| -60.00              | 3.004       | 87.18       | 0.02902   | 60.00               | 2.384       | 33.47       | 0.01404   |
| -55.00              | 2.980       | 83.78       | 0.02811   | 65.00               | 2.353       | 34.86       | 0.01482   |
| -50.00              | 2.943       | 80.57       | 0.02738   | 70.00               | 2.319       | 36.47       | 0.01573   |
| -45.00              | 2.901       | 78.27       | 0.02698   | 75.00               | 2.282       | 38.48       | 0.01686   |
| -40.00              | 2.843       | 74.55       | 0.02622   | 80.00               | 2.245       | 40.46       | 0.01802   |
| -35.00              | 2.791       | 71.35       | 0.02557   | 85.00               | 2.215       | 42.02       | 0.01897   |
| -30.00              | 2.739       | 68.23       | 0.02491   | 90.00               | 2.190       | 43.92       | 0.02005   |
| -25.00              | 2.685       | 64.67       | 0.02409   | 95.00               | 2.168       | 46.06       | 0.02125   |
| -20.00              | 2.643       | 61.86       | 0.02340   | 100.00              | 2.148       | 48.35       | 0.02250   |
| -15.00              | 2.614       | 58.84       | 0.02251   | 105.00              | 2.132       | 50.82       | 0.02384   |
| -10.00              | 2.592       | 55.44       | 0.02139   | 110.00              | 2.116       | 53.72       | 0.02539   |
| -5.00               | 2.573       | 51.80       | 0.02014   | 115.00              | 2.100       | 56.78       | 0.02704   |
| 0.00                | 2.560       | 48.50       | 0.01894   | 120.00              | 2.082       | 60.70       | 0.02916   |
| 5.00                | 2.550       | 45.75       | 0.01794   | 125.00              | 2.057       | 66.83       | 0.03249   |
| 10.00               | 2.541       | 43.26       | 0.01702   | 130.00              | 2.023       | 76.96       | 0.03804   |
| 15.00               | 2.537       | 40.58       | 0.01600   | 135.00              | 1.970       | 94.44       | 0.04795   |
| 20.00               | 2.530       | 38.07       | 0.01505   | 140.00              | 1.874       | 125.8       | 0.06715   |
| 25.00               | 2.519       | 35.88       | 0.01424   | 145.00              | 1.621       | 194.1       | 0.1198    |
| 30.00               | 2.507       | 34.35       | 0.01371   | 150.00              | 1.035       | 364.4       | 0.3547    |
| 35.00               | 2.493       | 33.02       | 0.01324   | 155.00              | 0.2082      | 293.3       | 1.432     |
| 40.00               | 2.474       | 32.08       | 0.01297   | 160.00              | 0.02897     | 51.96       | 1.789     |
| 45.00               | 2.454       | 31.82       | 0.01297   | 165.00              | 0.01517     | 19.91       | 1.312     |
| 50.00               | 2.433       | 31.88       | 0.01310   | 170.00              | 0.009014    | 15.04       | 1.671     |
| 55.00               | 2.411       | 32.41       | 0.01344   | 175.00              | 0.006980    | 13.41       | 1.921     |



Graph 47: Storage and loss properties for MRC Polymers PC429MMH1-200 unfilled polycarbonate (PC).

Graph 48: Storage and loss properties for Bayer Makrolon T7435 unfilled, impact modified polycarbonate (PC).



Tabular Data Graphs

| Table 47: Storage and loss properties | for MRC Polymers PC429MMH1-200 | unfilled polycarbonate (PC). (tabular data |
|---------------------------------------|--------------------------------|--------------------------------------------|
| for Graph 47)                         |                                |                                            |

| Temperature<br>(°C) | E'<br>(GPa) | E"<br>(MPa) | Tan Delta | Temperature<br>(°C) | E'<br>(GPa) | E"<br>(MPa) | Tan Delta |
|---------------------|-------------|-------------|-----------|---------------------|-------------|-------------|-----------|
| -55.00              | 2.673       | 69.46       | 0.02599   | 60.00               | 2.155       | 34.25       | 0.01589   |
| -50.00              | 2.649       | 68.83       | 0.02599   | 65.00               | 2.127       | 35.29       | 0.01659   |
| -45.00              | 2.613       | 67.05       | 0.02566   | 70.00               | 2.100       | 36.70       | 0.01748   |
| -40.00              | 2.564       | 63.12       | 0.02491   | 75.00               | 2.067       | 38.53       | 0.01864   |
| -35.00              | 2.516       | 59.28       | 0.02356   | 80.00               | 2.028       | 40.83       | 0.02014   |
| -30.00              | 2.478       | 56.52       | 0.02281   | 85.00               | 1.989       | 43.32       | 0.02178   |
| -25.00              | 2.445       | 54.14       | 0.02215   | 90.00               | 1.952       | 45.46       | 0.02328   |
| -20.00              | 2.418       | 52.34       | 0.02165   | 95.00               | 1.922       | 47.51       | 0.02472   |
| -15.00              | 2.394       | 50.83       | 0.02123   | 100.00              | 1.894       | 49.60       | 0.02620   |
| -10.00              | 2.377       | 49.04       | 0.02063   | 105.00              | 1.870       | 51.73       | 0.02767   |
| -5.00               | 2.364       | 46.98       | 0.01987   | 110.00              | 1.848       | 54.57       | 0.02953   |
| 0.00                | 2.353       | 44.76       | 0.01902   | 115.00              | 1.827       | 58.03       | 0.03175   |
| 5.00                | 2.341       | 42.28       | 0.01806   | 120.00              | 1.806       | 62.99       | 0.03489   |
| 10.00               | 2.331       | 40.07       | 0.01719   | 125.00              | 1.781       | 71.10       | 0.03993   |
| 15.00               | 2.323       | 38.12       | 0.01641   | 130.00              | 1.740       | 83.02       | 0.04772   |
| 20.00               | 2.318       | 36.34       | 0.01568   | 135.00              | 1.667       | 102.9       | 0.06175   |
| 25.00               | 2.310       | 34.99       | 0.01515   | 140.00              | 1.499       | 150.4       | 0.1004    |
| 30.00               | 2.295       | 33.96       | 0.01480   | 145.00              | 1.075       | 270.0       | 0.2522    |
| 35.00               | 2.276       | 33.33       | 0.01464   | 150.00              | 0.3479      | 338.6       | 0.9919    |
| 40.00               | 2.252       | 32.99       | 0.01465   | 155.00              | 0.03086     | 67.52       | 2.185     |
| 45.00               | 2.223       | 32.86       | 0.01478   | 160.00              | 0.01194     | 19.10       | 1.599     |
| 50.00               | 2.200       | 33.04       | 0.01502   | 165.00              | 0.007192    | 12.99       | 1.811     |
| 55.00               | 2.179       | 33.60       | 0.01542   |                     |             |             |           |

| Table 48: Storage and loss properties | for Bayer Makrolon | T7435 unfilled, | impact modified polycarbonate | e (PC). (tabular |
|---------------------------------------|--------------------|-----------------|-------------------------------|------------------|
| data for Graph 48)                    |                    |                 |                               |                  |

| Temperature | E'<br>(GPa) | E"<br>(MPa) | Tan Delta | Temperature | E'<br>(GPa)                          | E"<br>(MPa) | Tan Delta |
|-------------|-------------|-------------|-----------|-------------|--------------------------------------|-------------|-----------|
| ( 0)        | (01 a)      | (ivii a)    |           |             | $(\mathbf{O} \mathbf{I} \mathbf{a})$ | (1411 a)    |           |
| -55.00      | 2.348       | 58.79       | 0.02504   | 60.00       | 1.821                                | 43.35       | 0.02381   |
| -50.00      | 2.300       | 54.16       | 0.02355   | 65.00       | 1.801                                | 43.23       | 0.02401   |
| -45.00      | 2.256       | 50.05       | 0.02219   | 70.00       | 1.780                                | 43.02       | 0.02417   |
| -40.00      | 2.216       | 46.86       | 0.02114   | 75.00       | 1.759                                | 42.77       | 0.02432   |
| -35.00      | 2.181       | 43.63       | 0.02000   | 80.00       | 1.739                                | 42.46       | 0.02441   |
| -30.00      | 2.152       | 40.98       | 0.01904   | 85.00       | 1.720                                | 42.53       | 0.02473   |
| -25.00      | 2.129       | 39.00       | 0.01832   | 90.00       | 1.702                                | 42.89       | 0.02520   |
| -20.00      | 2.108       | 37.31       | 0.01770   | 95.00       | 1.686                                | 43.53       | 0.02581   |
| -15.00      | 2.090       | 36.18       | 0.01731   | 100.00      | 1.672                                | 44.53       | 0.02664   |
| -10.00      | 2.075       | 35.52       | 0.01712   | 105.00      | 1.657                                | 46.10       | 0.02782   |
| -5.00       | 2.061       | 35.11       | 0.01704   | 110.00      | 1.644                                | 48.09       | 0.02925   |
| 0.00        | 2.048       | 34.82       | 0.01700   | 115.00      | 1.630                                | 50.95       | 0.03126   |
| 5.00        | 2.035       | 35.00       | 0.01720   | 120.00      | 1.614                                | 54.63       | 0.03385   |
| 10.00       | 2.019       | 35.73       | 0.01770   | 125.00      | 1.597                                | 59.12       | 0.03702   |
| 15.00       | 2.003       | 36.42       | 0.01818   | 130.00      | 1.580                                | 64.96       | 0.04112   |
| 20.00       | 1.984       | 37.69       | 0.01899   | 135.00      | 1.555                                | 74.10       | 0.04766   |
| 25.00       | 1.963       | 39.25       | 0.02000   | 140.00      | 1.509                                | 89.00       | 0.05900   |
| 30.00       | 1.943       | 40.58       | 0.02089   | 145.00      | 1.398                                | 117.1       | 0.08385   |
| 35.00       | 1.924       | 41.30       | 0.02146   | 150.00      | 1.114                                | 179.5       | 0.1614    |
| 40.00       | 1.902       | 41.91       | 0.02203   | 155.00      | 0.6524                               | 288.3       | 0.4441    |
| 45.00       | 1.881       | 42.56       | 0.02263   | 160.00      | 0.1604                               | 201.1       | 1.266     |
| 50.00       | 1.858       | 42.79       | 0.02302   | 165.00      | 0.03839                              | 49.45       | 1.286     |
| 55.00       | 1.839       | 43.20       | 0.02349   | 170.00      | 0.01865                              | 21.11       | 1.133     |
|             |             |             |           |             |                                      |             |           |



Graph 49: Storage and loss properties for GE Plastics Lexan 500 10% glass fiber filled polycarbonate (PC).

Graph 50: Storage and loss properties for GE Plastics Lexan 3412 20% glass fiber filled polycarbonate (PC).



84

© Plastic Design Library

| Temperature | E'    | <b>E</b> " | Tan Delta | Temperature | E'      | <b>E</b> " | Tan Delta |
|-------------|-------|------------|-----------|-------------|---------|------------|-----------|
| (°C)        | (GPa) | (MPa)      |           | (°C)        | (GPa)   | (MPa)      |           |
| -60.00      | 3.786 | 88.57      | 0.02339   | 60.00       | 3.170   | 71.84      | 0.02266   |
| -55.00      | 3.771 | 86.19      | 0.02286   | 65.00       | 3.136   | 73.21      | 0.02334   |
| -50.00      | 3.736 | 84.56      | 0.02263   | 70.00       | 3.098   | 74.92      | 0.02419   |
| -45.00      | 3.707 | 82.92      | 0.02237   | 75.00       | 3.058   | 76.18      | 0.02491   |
| -40.00      | 3.654 | 82.12      | 0.02247   | 80.00       | 3.030   | 77.56      | 0.02559   |
| -35.00      | 3.603 | 82.04      | 0.02277   | 85.00       | 3.008   | 78.94      | 0.02624   |
| -30.00      | 3.550 | 81.28      | 0.02289   | 90.00       | 2.987   | 81.01      | 0.02712   |
| -25.00      | 3.504 | 80.80      | 0.02306   | 95.00       | 2.970   | 83.23      | 0.02802   |
| -20.00      | 3.532 | 83.94      | 0.02377   | 100.00      | 2.947   | 85.70      | 0.02908   |
| -15.00      | 3.441 | 80.62      | 0.02343   | 105.00      | 2.924   | 89.79      | 0.03071   |
| -10.00      | 3.422 | 80.94      | 0.02365   | 110.00      | 2.897   | 95.32      | 0.03291   |
| -5.00       | 3.395 | 80.66      | 0.02376   | 115.00      | 2.858   | 104.1      | 0.03643   |
| 0.00        | 3.382 | 80.55      | 0.02382   | 120.00      | 2.816   | 114.3      | 0.04058   |
| 5.00        | 3.359 | 79.09      | 0.02355   | 125.00      | 2.770   | 126.9      | 0.04580   |
| 10.00       | 3.347 | 78.42      | 0.02343   | 130.00      | 2.708   | 142.9      | 0.05276   |
| 15.00       | 3.331 | 77.71      | 0.02333   | 135.00      | 2.612   | 166.3      | 0.06368   |
| 20.00       | 3.324 | 77.23      | 0.02324   | 140.00      | 2.444   | 210.4      | 0.08611   |
| 25.00       | 3.311 | 76.20      | 0.02302   | 145.00      | 2.069   | 306.9      | 0.1485    |
| 30.00       | 3.296 | 74.88      | 0.02272   | 150.00      | 1.321   | 526.4      | 0.4006    |
| 35.00       | 3.279 | 73.42      | 0.02239   | 155.00      | 0.3377  | 390.8      | 1.164     |
| 40.00       | 3.262 | 72.33      | 0.02217   | 160.00      | 0.09130 | 96.08      | 1.050     |
| 45.00       | 3.244 | 71.35      | 0.02199   | 165.00      | 0.05103 | 37.02      | 0.7251    |
| 50.00       | 3.222 | 70.84      | 0.02198   | 170.00      | 0.03488 | 24 38      | 0.6991    |
| 55.00       | 3.201 | 71.23      | 0.02226   | 1.0.00      | 0.00100 | 21.00      | 0.0001    |

| Table 50: Storage and loss properties for GE Plastics Le | exan 3412 20% glass fiber filled polycarbonate (PC). (tabular |
|----------------------------------------------------------|---------------------------------------------------------------|
| data for Graph 50)                                       |                                                               |

| Temperature<br>(°C) | E'<br>(GPa) | E"<br>(MPa) | Tan Delta | Temperature<br>(°C) | E'<br>(GPa) | E"<br>(MPa) | Tan Delta |
|---------------------|-------------|-------------|-----------|---------------------|-------------|-------------|-----------|
| -60.00              | 5.561       | 0.07963     | 0.01432   | 60.00               | 5.005       | 0.03769     | 0.007531  |
| -55.00              | 5.537       | 0.07691     | 0.01389   | 65.00               | 4.978       | 0.03906     | 0.007847  |
| -50.00              | 5.503       | 0.07416     | 0.01348   | 70.00               | 4.944       | 0.04163     | 0.008420  |
| -45.00              | 5.460       | 0.07242     | 0.01327   | 75.00               | 4.909       | 0.04434     | 0.009032  |
| -40.00              | 5.409       | 0.07080     | 0.01309   | 80.00               | 4.879       | 0.04732     | 0.009704  |
| -35.00              | 5.357       | 0.06889     | 0.01286   | 85.00               | 4.850       | 0.04960     | 0.01023   |
| -30.00              | 5.310       | 0.06719     | 0.01265   | 90.00               | 4.832       | 0.05144     | 0.01065   |
| -25.00              | 5.273       | 0.06482     | 0.01229   | 95.00               | 4.822       | 0.05285     | 0.01096   |
| -20.00              | 5.244       | 0.06216     | 0.01185   | 100.00              | 4.816       | 0.05457     | 0.01133   |
| -15.00              | 5.219       | 0.05973     | 0.01144   | 105.00              | 4.812       | 0.05717     | 0.01188   |
| -10.00              | 5.196       | 0.05761     | 0.01109   | 110.00              | 4.809       | 0.06094     | 0.01267   |
| -5.00               | 5.176       | 0.05558     | 0.01074   | 115.00              | 4.807       | 0.06612     | 0.01375   |
| 0.00                | 5.158       | 0.05428     | 0.01052   | 120.00              | 4.807       | 0.07358     | 0.01531   |
| 5.00                | 5.142       | 0.05330     | 0.01037   | 125.00              | 4.807       | 0.08434     | 0.01754   |
| 10.00               | 5.126       | 0.05234     | 0.01021   | 130.00              | 4.805       | 0.1002      | 0.02085   |
| 15.00               | 5.117       | 0.05080     | 0.009927  | 135.00              | 4.785       | 0.1257      | 0.02627   |
| 20.00               | 5.111       | 0.04906     | 0.009598  | 140.00              | 4.724       | 0.1733      | 0.03669   |
| 25.00               | 5.106       | 0.04719     | 0.009242  | 145.00              | 4.502       | 0.2903      | 0.06452   |
| 30.00               | 5.099       | 0.04570     | 0.008963  | 150.00              | 3.673       | 0.6614      | 0.1806    |
| 35.00               | 5.089       | 0.04411     | 0.008668  | 155.00              | 1.675       | 1.090       | 0.6577    |
| 40.00               | 5.073       | 0.04194     | 0.008267  | 160.00              | 0.3494      | 0.3571      | 1.020     |
| 45.00               | 5.056       | 0.04017     | 0.007946  | 165.00              | 0.1571      | 0.1019      | 0.6482    |
| 50.00               | 5.041       | 0.03822     | 0.007583  | 170.00              | 0.1028      | 0.05405     | 0.5257    |
| 55.00               | 5.026       | 0.03750     | 0.007461  |                     |             |             |           |



Graph 51: Storage and loss properties for GE Plastics Valox 325 unfilled polybutylene terephthalate (polyester PBT).

Graph 52: Storage and loss properties for Ticona Celanex 2016 unfilled polybutylene terephthalate (polyester PBT).



| Table 51: Storage and loss properties for GE P | lastics Valox 325 unfilled polybutylene terephthalate (polyester PBT). |
|------------------------------------------------|------------------------------------------------------------------------|
| (tabular data for Graph 51)                    |                                                                        |

| Temperature | E'     | <b>E</b> " | Tan Delta | Temperature | E'      | <b>E</b> " | Tan Delta |
|-------------|--------|------------|-----------|-------------|---------|------------|-----------|
| (°C)        | (GPa)  | (MPa)      |           | (°C)        | (GPa)   | (MPa)      |           |
| -55.00      | 2.954  | 94.19      | 0.03189   | 85.00       | 0.5645  | 57.25      | 0.1014    |
| -50.00      | 2.919  | 88.62      | 0.03037   | 90.00       | 0.5037  | 45.13      | 0.08959   |
| -45.00      | 2.870  | 81.34      | 0.02834   | 95.00       | 0.4569  | 36.58      | 0.08007   |
| -40.00      | 2.825  | 75.46      | 0.02671   | 100.00      | 0.4181  | 30.67      | 0.07335   |
| -35.00      | 2.783  | 70.55      | 0.02534   | 105.00      | 0.3855  | 26.46      | 0.06863   |
| -30.00      | 2.744  | 66.26      | 0.02415   | 110.00      | 0.3586  | 23.45      | 0.06539   |
| -25.00      | 2.707  | 62.73      | 0.02317   | 115.00      | 0.3365  | 21.42      | 0.06365   |
| -20.00      | 2.667  | 60.34      | 0.02262   | 120.00      | 0.3179  | 20.05      | 0.06305   |
| -15.00      | 2.636  | 59.48      | 0.02256   | 125.00      | 0.3007  | 18.97      | 0.06308   |
| -10.00      | 2.605  | 59.56      | 0.02286   | 130.00      | 0.2861  | 18.24      | 0.06374   |
| -5.00       | 2.572  | 59.83      | 0.02326   | 135.00      | 0.2739  | 17.67      | 0.06453   |
| 0.00        | 2.541  | 60.39      | 0.02377   | 140.00      | 0.2613  | 17.22      | 0.06592   |
| 5.00        | 2.517  | 60.91      | 0.02420   | 145.00      | 0.2482  | 16.83      | 0.06779   |
| 10.00       | 2.485  | 61.36      | 0.02463   | 150.00      | 0.2360  | 16.53      | 0.07006   |
| 15.00       | 2.464  | 61.85      | 0.02510   | 155.00      | 0.2240  | 16.17      | 0.07219   |
| 20.00       | 2.438  | 62.52      | 0.02565   | 160.00      | 0.2126  | 15.86      | 0.07459   |
| 25.00       | 2.415  | 63.22      | 0.02618   | 165.00      | 0.2018  | 15.55      | 0.07704   |
| 30.00       | 2.391  | 64.32      | 0.02690   | 170.00      | 0.1899  | 15.58      | 0.08206   |
| 35.00       | 2.366  | 65.85      | 0.02784   | 175.00      | 0.1781  | 15.53      | 0.08720   |
| 40.00       | 2.331  | 68.28      | 0.02929   | 180.00      | 0.1676  | 15.33      | 0.09145   |
| 45.00       | 2.246  | 78.03      | 0.03475   | 185.00      | 0.1567  | 15.14      | 0.09659   |
| 50.00       | 2.059  | 102.0      | 0.04953   | 190.00      | 0.1458  | 15.00      | 0.1029    |
| 55.00       | 1.791  | 127.1      | 0.07097   | 195.00      | 0.1343  | 14.93      | 0.1111    |
| 60.00       | 1.522  | 137.9      | 0.09066   | 200.00      | 0.1218  | 14.98      | 0.1230    |
| 65.00       | 1.229  | 131.3      | 0.1069    | 205.00      | 0.1076  | 14.98      | 0.1392    |
| 70.00       | 0.9477 | 110.4      | 0.1165    | 210.00      | 0.08963 | 14.66      | 0.1636    |
| 75.00       | 0.7594 | 89.19      | 0.1174    | 215.00      | 0.06089 | 13.98      | 0.2304    |
| 80.00       | 0.6429 | 72.29      | 0.1124    |             |         |            |           |

 Table 52: Storage and loss properties for Ticona Celanex 2016 unfilled polybutylene terephthalate (polyester PBT). (tabular data for Graph 52)

| Temperature | E'    | <b>E</b> " | Tan Delta | Temperature | E'      | <b>E</b> " | Tan Delta |
|-------------|-------|------------|-----------|-------------|---------|------------|-----------|
| (°C)        | (GPa) | (MPa)      |           | (°C)        | (GPa)   | (MPa)      |           |
| -60.00      | 3.287 | 122.5      | 0.03727   | 80.00       | 0.9229  | 92.47      | 0.1002    |
| -55.00      | 3.268 | 116.9      | 0.03578   | 85.00       | 0.8353  | 73.51      | 0.08798   |
| -50.00      | 3.240 | 112.0      | 0.03458   | 90.00       | 0.7714  | 59.91      | 0.07766   |
| -45.00      | 3.203 | 105.6      | 0.03296   | 95.00       | 0.7240  | 50.61      | 0.06990   |
| -40.00      | 3.163 | 101.0      | 0.03193   | 100.00      | 0.6864  | 44.34      | 0.06459   |
| -35.00      | 3.116 | 96.82      | 0.03107   | 105.00      | 0.6545  | 40.50      | 0.06188   |
| -30.00      | 3.069 | 93.75      | 0.03055   | 110.00      | 0.6271  | 38.33      | 0.06113   |
| -25.00      | 3.027 | 91.42      | 0.03020   | 115.00      | 0.6026  | 37.15      | 0.06164   |
| -20.00      | 2.992 | 89.38      | 0.02987   | 120.00      | 0.5803  | 36.11      | 0.06223   |
| -15.00      | 2.962 | 87.66      | 0.02959   | 125.00      | 0.5583  | 34.10      | 0.06108   |
| -10.00      | 2.936 | 86.27      | 0.02939   | 130.00      | 0.5373  | 32.33      | 0.06017   |
| -5.00       | 2.912 | 85.66      | 0.02942   | 135.00      | 0.5160  | 30.74      | 0.05958   |
| 0.00        | 2.889 | 85.05      | 0.02944   | 140.00      | 0.4944  | 29.33      | 0.05932   |
| 5.00        | 2.867 | 84.33      | 0.02942   | 145.00      | 0.4726  | 28.00      | 0.05923   |
| 10.00       | 2.850 | 83.86      | 0.02943   | 150.00      | 0.4507  | 26.85      | 0.05957   |
| 15.00       | 2.829 | 83.43      | 0.02950   | 155.00      | 0.4282  | 26.27      | 0.06134   |
| 20.00       | 2.808 | 83.40      | 0.02971   | 160.00      | 0.4056  | 26.06      | 0.06427   |
| 25.00       | 2.784 | 83.77      | 0.03009   | 165.00      | 0.3828  | 26.11      | 0.06822   |
| 30.00       | 2.756 | 84.28      | 0.03058   | 170.00      | 0.3594  | 26.77      | 0.07449   |
| 35.00       | 2.724 | 85.34      | 0.03133   | 175.00      | 0.3337  | 28.47      | 0.08532   |
| 40.00       | 2.685 | 86.89      | 0.03236   | 180.00      | 0.3019  | 32.08      | 0.1063    |
| 45.00       | 2.634 | 89.98      | 0.03416   | 185.00      | 0.2612  | 36.39      | 0.1394    |
| 50.00       | 2.558 | 97.88      | 0.03827   | 190.00      | 0.2179  | 34.90      | 0.1602    |
| 55.00       | 2.379 | 119.9      | 0.05043   | 195.00      | 0.1818  | 29.36      | 0.1615    |
| 60.00       | 2.022 | 155.4      | 0.07703   | 200.00      | 0.1533  | 24.52      | 0.1600    |
| 65.00       | 1.615 | 165.2      | 0.1025    | 205.00      | 0.1300  | 20.95      | 0.1612    |
| 70.00       | 1.284 | 146.2      | 0.1139    | 210.00      | 0.1094  | 18.65      | 0.1705    |
| 75.00       | 1.063 | 119.0      | 0.1119    | 215.00      | 0.08590 | 17.24      | 0.2008    |



Graph 53: Storage and loss properties for GE Plastics Valox 744 10% glass fiber filled, impact modified polybutylene terephthalate (polyester PBT).

**Graph 54:** Storage and loss properties for LNP Thermocomp PDXW96630 10% glass fiber filled, impact modified polybutylene terephthalate (polyester PBT).



 Table 53: Storage and loss properties for GE Plastics Valox 744 10% glass fiber filled, impact modified polybutylene terephthalate (polyester PBT). (tabular data for Graph 53)

| Temperature | E'    | <b>E</b> " | Tan Delta | Temperature | E'     | <b>E</b> " | Tan Delta |
|-------------|-------|------------|-----------|-------------|--------|------------|-----------|
| (°C)        | (GPa) | (MPa)      |           | (°C)        | (GPa)  | (MPa)      |           |
| -60.00      | 3.421 | 103.5      | 0.03025   | 80.00       | 0.9424 | 114.6      | 0.1215    |
| -55.00      | 3.404 | 100.1      | 0.02942   | 85.00       | 0.7893 | 86.14      | 0.1091    |
| -50.00      | 3.362 | 92.28      | 0.02745   | 90.00       | 0.6957 | 66.20      | 0.09514   |
| -45.00      | 3.303 | 87.06      | 0.02636   | 95.00       | 0.6360 | 52.48      | 0.08252   |
| -40.00      | 3.248 | 84.26      | 0.02594   | 100.00      | 0.5928 | 43.56      | 0.07347   |
| -35.00      | 3.201 | 83.09      | 0.02596   | 105.00      | 0.5607 | 37.28      | 0.06649   |
| -30.00      | 3.156 | 82.36      | 0.02610   | 110.00      | 0.5326 | 32.73      | 0.06145   |
| -25.00      | 3.115 | 82.91      | 0.02661   | 115.00      | 0.5075 | 29.44      | 0.05802   |
| -20.00      | 3.076 | 83.59      | 0.02717   | 120.00      | 0.4827 | 27.15      | 0.05624   |
| -15.00      | 3.039 | 84.76      | 0.02789   | 125.00      | 0.4590 | 25.55      | 0.05568   |
| -10.00      | 3.003 | 85.74      | 0.02855   | 130.00      | 0.4368 | 24.21      | 0.05544   |
| -5.00       | 2.967 | 86.69      | 0.02922   | 135.00      | 0.4146 | 23.23      | 0.05604   |
| 0.00        | 2.940 | 86.78      | 0.02952   | 140.00      | 0.3938 | 22.28      | 0.05657   |
| 5.00        | 2.920 | 86.91      | 0.02977   | 145.00      | 0.3717 | 21.26      | 0.05720   |
| 10.00       | 2.902 | 86.67      | 0.02986   | 150.00      | 0.3509 | 20.48      | 0.05836   |
| 15.00       | 2.883 | 86.22      | 0.02991   | 155.00      | 0.3319 | 19.77      | 0.05958   |
| 20.00       | 2.864 | 85.73      | 0.02993   | 160.00      | 0.3132 | 19.19      | 0.06127   |
| 25.00       | 2.845 | 85.23      | 0.02996   | 165.00      | 0.2943 | 18.75      | 0.06370   |
| 30.00       | 2.821 | 84.94      | 0.03011   | 170.00      | 0.2774 | 18.28      | 0.06591   |
| 35.00       | 2.798 | 84.61      | 0.03024   | 175.00      | 0.2602 | 17.98      | 0.06912   |
| 40.00       | 2.783 | 84.17      | 0.03024   | 180.00      | 0.2440 | 17.71      | 0.07258   |
| 45.00       | 2.757 | 84.15      | 0.03052   | 185.00      | 0.2267 | 17.44      | 0.07694   |
| 50.00       | 2.710 | 86.10      | 0.03177   | 190.00      | 0.2105 | 17.14      | 0.08144   |
| 55.00       | 2.623 | 95.05      | 0.03624   | 195.00      | 0.1930 | 16.93      | 0.08774   |
| 60.00       | 2.363 | 130.1      | 0.05509   | 200.00      | 0.1749 | 17.05      | 0.09751   |
| 65.00       | 1.946 | 167.4      | 0.08607   | 205.00      | 0.1546 | 17.29      | 0.1119    |
| 70.00       | 1.549 | 170.4      | 0.1100    | 210.00      | 0.1333 | 17.13      | 0.1286    |
| 75.00       | 1.178 | 147.5      | 0.1252    | 215.00      | 0.1011 | 15.92      | 0.1575    |

**Table 54:** Storage and loss properties for LNP Thermocomp PDXW96630 10% glass fiber filled, impact modified polybutylene terephthalate (polyester PBT). (tabular data for Graph 54)

| Temperature | E'     | <b>E</b> " | Tan Delta | Temperature | E'      | Е"    | Tan Delta |
|-------------|--------|------------|-----------|-------------|---------|-------|-----------|
| (°C)        | (GPa)  | (MPa)      |           | (°C)        | (GPa)   | (MPa) |           |
| -60.00      | 3.407  | 117.9      | 0.03460   | 85.00       | 0.5185  | 55.93 | 0.1078    |
| -55.00      | 3.366  | 111.1      | 0.03299   | 90.00       | 0.4549  | 44.48 | 0.09777   |
| -50.00      | 3.307  | 108.3      | 0.03275   | 95.00       | 0.4123  | 36.94 | 0.08957   |
| -45.00      | 3.186  | 115.2      | 0.03618   | 100.00      | 0.3824  | 31.94 | 0.08352   |
| -40.00      | 3.032  | 120.5      | 0.03973   | 105.00      | 0.3584  | 28.42 | 0.07928   |
| -35.00      | 2.888  | 114.7      | 0.03973   | 110.00      | 0.3380  | 25.83 | 0.07644   |
| -30.00      | 2.775  | 105.1      | 0.03789   | 115.00      | 0.3196  | 23.87 | 0.07469   |
| -25.00      | 2.677  | 96.23      | 0.03595   | 120.00      | 0.3030  | 22.37 | 0.07385   |
| -20.00      | 2.587  | 89.76      | 0.03470   | 125.00      | 0.2867  | 21.09 | 0.07356   |
| -15.00      | 2.505  | 84.33      | 0.03367   | 130.00      | 0.2707  | 19.99 | 0.07385   |
| -10.00      | 2.444  | 79.80      | 0.03265   | 135.00      | 0.2550  | 18.96 | 0.07438   |
| -5.00       | 2.410  | 76.20      | 0.03162   | 140.00      | 0.2413  | 18.13 | 0.07514   |
| 0.00        | 2.384  | 72.48      | 0.03040   | 145.00      | 0.2281  | 17.37 | 0.07614   |
| 5.00        | 2.354  | 68.93      | 0.02929   | 150.00      | 0.2163  | 16.68 | 0.07710   |
| 10.00       | 2.327  | 66.64      | 0.02864   | 155.00      | 0.2045  | 16.06 | 0.07855   |
| 15.00       | 2.307  | 65.32      | 0.02832   | 160.00      | 0.1919  | 15.50 | 0.08079   |
| 20.00       | 2.277  | 64.29      | 0.02824   | 165.00      | 0.1807  | 15.17 | 0.08393   |
| 25.00       | 2.249  | 64.01      | 0.02846   | 170.00      | 0.1701  | 14.84 | 0.08728   |
| 30.00       | 2.223  | 63.85      | 0.02872   | 175.00      | 0.1586  | 14.52 | 0.09153   |
| 35.00       | 2.199  | 63.60      | 0.02892   | 180.00      | 0.1486  | 14.21 | 0.09566   |
| 40.00       | 2.170  | 63.83      | 0.02941   | 185.00      | 0.1380  | 13.97 | 0.1012    |
| 45.00       | 2.136  | 64.21      | 0.03007   | 190.00      | 0.1286  | 13.73 | 0.1068    |
| 50.00       | 2.078  | 65.85      | 0.03168   | 195.00      | 0.1179  | 13.53 | 0.1147    |
| 65.00       | 1.422  | 125.1      | 0.08802   | 200.00      | 0.1072  | 13.33 | 0.1244    |
| 70.00       | 1.038  | 119.7      | 0.1153    | 205.00      | 0.09595 | 13.21 | 0.1377    |
| 75.00       | 0.7762 | 95.56      | 0.1231    | 210.00      | 0.08334 | 13.33 | 0.1599    |
| 80.00       | 0.6176 | 72.51      | 0.1174    | 215.00      | 0.07080 | 13.05 | 0.1843    |



**Graph 55:** Storage and loss properties for GE Plastics Valox 420 30% glass fiber filled polybutylene terephthalate (polyester PBT).

**Graph 56:** Storage and loss properties for DuPont Rynite 530 30% glass fiber filled polyethylene terephthalate (polyester PET).



| Temperature | E'    | <b>E</b> " | Tan Delta | Temperature | E'    | <b>E</b> " | Tan Delta |
|-------------|-------|------------|-----------|-------------|-------|------------|-----------|
| (°C)        | (GPa) | (MPa)      |           | (°C)        | (GPa) | (MPa)      |           |
| 00.00       | = 100 | 110.0      | 0.01510   |             | 0.000 |            |           |
| -60.00      | 7.469 | 113.3      | 0.01518   | 80.00       | 3.836 | 233.1      | 0.06078   |
| -55.00      | 7.440 | 107.0      | 0.01438   | 85.00       | 3.557 | 193.0      | 0.05425   |
| -50.00      | 7.402 | 102.1      | 0.01379   | 90.00       | 3.360 | 161.5      | 0.04806   |
| -45.00      | 7.356 | 94.69      | 0.01287   | 95.00       | 3.224 | 138.7      | 0.04303   |
| -40.00      | 7.305 | 90.12      | 0.01234   | 100.00      | 3.125 | 123.6      | 0.03955   |
| -35.00      | 7.241 | 86.94      | 0.01201   | 105.00      | 3.046 | 114.1      | 0.03746   |
| -30.00      | 7.183 | 86.14      | 0.01199   | 110.00      | 2.980 | 108.3      | 0.03635   |
| -25.00      | 7.132 | 86.02      | 0.01206   | 115.00      | 2.926 | 105.4      | 0.03601   |
| -20.00      | 7.086 | 87.37      | 0.01233   | 120.00      | 2.878 | 102.5      | 0.03562   |
| -15.00      | 7.047 | 89.19      | 0.01266   | 125.00      | 2.837 | 99.70      | 0.03514   |
| -10.00      | 7.014 | 91.68      | 0.01307   | 130.00      | 2.799 | 98.28      | 0.03512   |
| -5.00       | 6.990 | 95.37      | 0.01364   | 135.00      | 2.762 | 98.44      | 0.03564   |
| 0.00        | 6.963 | 98.89      | 0.01420   | 140.00      | 2.721 | 96.70      | 0.03554   |
| 5.00        | 6.938 | 101.5      | 0.01464   | 145.00      | 2.675 | 94.07      | 0.03517   |
| 10.00       | 6.911 | 103.1      | 0.01492   | 150.00      | 2.629 | 91.83      | 0.03492   |
| 15.00       | 6.887 | 104.8      | 0.01522   | 155.00      | 2.575 | 87.76      | 0.03408   |
| 20.00       | 6.860 | 106.6      | 0.01554   | 160.00      | 2.506 | 84.46      | 0.03370   |
| 25.00       | 6.830 | 108.3      | 0.01586   | 165.00      | 2.426 | 82.41      | 0.03396   |
| 30.00       | 6.794 | 110.1      | 0.01621   | 170.00      | 2.349 | 80.68      | 0.03435   |
| 35.00       | 6.752 | 112.9      | 0.01672   | 175.00      | 2.269 | 79.64      | 0.03511   |
| 40.00       | 6.695 | 117.2      | 0.01751   | 180.00      | 2.188 | 78,78      | 0.03601   |
| 45.00       | 6.606 | 127.2      | 0.01926   | 185.00      | 2.106 | 78.14      | 0.03710   |
| 50.00       | 6.446 | 151.4      | 0.02350   | 190.00      | 2.019 | 77.96      | 0.03860   |
| 55.00       | 6.130 | 200.4      | 0.03270   | 195.00      | 1.928 | 77.99      | 0.04045   |
| 60.00       | 5.662 | 257.8      | 0.04555   | 200.00      | 1.829 | 78.58      | 0.04297   |
| 65.00       | 5.174 | 285.7      | 0.05521   | 205.00      | 1.719 | 80.24      | 0.04669   |
| 70.00       | 4.661 | 289.6      | 0.06213   | 210.00      | 1.601 | 85.09      | 0.05315   |
| 75.00       | 4.194 | 271.7      | 0.06476   | 215.00      | 1.474 | 89.04      | 0.06040   |

 Table 56: Storage and loss properties for DuPont Rynite 530 30% glass fiber filled polyethylene terephthalate (polyester PET). (tabular data for Graph 56)

| Temperature | E'    | Е"    | Tan Delta | Temperature | E'     | <b>E</b> " | Tan Delta |
|-------------|-------|-------|-----------|-------------|--------|------------|-----------|
| (°C)        | (GPa) | (MPa) |           | (°C)        | (GPa)  | (MPa)      |           |
| -60.00      | 9.344 | 216.3 | 0.02315   | 95.00       | 5.500  | 401.6      | 0.07301   |
| -50.00      | 9.242 | 209.5 | 0.02267   | 100.00      | 5.088  | 397.9      | 0.07821   |
| -45.00      | 9.162 | 209.3 | 0.02285   | 105.00      | 4.702  | 383.8      | 0.08162   |
| -40.00      | 9.082 | 209.1 | 0.02303   | 110.00      | 4.347  | 359.4      | 0.08266   |
| -35.00      | 9.013 | 208.5 | 0.02313   | 120.00      | 3.822  | 303.0      | 0.07929   |
| -30.00      | 8.942 | 207.7 | 0.02323   | 125.00      | 3.639  | 275.6      | 0.07571   |
| -25.00      | 8.873 | 207.7 | 0.02340   | 130.00      | 3.498  | 250.6      | 0.07165   |
| -20.00      | 8.804 | 208.5 | 0.02369   | 140.00      | 3.301  | 207.4      | 0.06283   |
| -15.00      | 8.738 | 210.0 | 0.02404   | 145.00      | 3.229  | 190.5      | 0.05898   |
| -10.00      | 8.677 | 211.9 | 0.02442   | 150.00      | 3.169  | 178.5      | 0.05634   |
| -5.00       | 8.617 | 214.4 | 0.02488   | 155.00      | 3.117  | 170.1      | 0.05456   |
| 0.00        | 8.558 | 217.4 | 0.02540   | 160.00      | 3.073  | 162.5      | 0.05289   |
| 5.00        | 8.495 | 222.4 | 0.02618   | 165.00      | 3.032  | 158.7      | 0.05232   |
| 10.00       | 8.438 | 225.7 | 0.02675   | 170.00      | 2.993  | 155.2      | 0.05186   |
| 15.00       | 8.388 | 227.1 | 0.02708   | 175.00      | 2.946  | 151.3      | 0.05137   |
| 20.00       | 8.333 | 229.7 | 0.02757   | 180.00      | 2.892  | 148.1      | 0.05120   |
| 25.00       | 8.269 | 232.2 | 0.02808   | 190.00      | 2.767  | 143.2      | 0.05177   |
| 30.00       | 8.204 | 234.2 | 0.02855   | 195.00      | 2.697  | 141.8      | 0.05256   |
| 40.00       | 8.055 | 235.5 | 0.02924   | 200.00      | 2.624  | 140.1      | 0.05340   |
| 45.00       | 7.967 | 238.1 | 0.02989   | 205.00      | 2.544  | 138.6      | 0.05449   |
| 50.00       | 7.861 | 243.3 | 0.03095   | 210.00      | 2.457  | 137.3      | 0.05586   |
| 55.00       | 7.726 | 251.9 | 0.03260   | 215.00      | 2.361  | 136.1      | 0.05765   |
| 60.00       | 7.566 | 266.4 | 0.03520   | 220.00      | 2.251  | 134.8      | 0.05988   |
| 65.00       | 7.396 | 282.6 | 0.03822   | 225.00      | 2.121  | 133.2      | 0.06280   |
| 70.00       | 7.189 | 303.5 | 0.04222   | 230.00      | 1.963  | 131.5      | 0.06698   |
| 75.00       | 6.934 | 328.5 | 0.04737   | 240.00      | 1.519  | 125.7      | 0.08277   |
| 80.00       | 6.633 | 355.0 | 0.05352   | 245.00      | 1.217  | 117.8      | 0.09684   |
| 90.00       | 5.906 | 393.1 | 0.06657   | 250.00      | 0.8478 | 105.6      | 0.1247    |



**Graph 57:** Storage and loss properties for Plastics Engineering Plenco 50030 30% glass fiber filled polyethylene terephthalate (polyester PET).

Graph 58: Storage and loss properties for Ticona Impet 330R 30% glass fiber filled polyethylene terephthalate (polyester PET).



© Plastic Design Library

**Tabular Data Graphs** 

 Table 57: Storage and loss properties for Plastics Engineering Plenco 50030 30% glass fiber filled polyethylene terephthalate (polyester PET). (tabular data for Graph 57)

| Temperature | E'    | <b>E</b> " | Tan Delta | Temperature | E'     | <b>E</b> " | Tan Delta |
|-------------|-------|------------|-----------|-------------|--------|------------|-----------|
| (°C)        | (GPa) | (MPa)      |           | (°C)        | (GPa)  | (MPa)      |           |
| -60.00      | 9.908 | 123.1      | 0.01243   | 100.00      | 6.569  | 459.8      | 0.07001   |
| -50.00      | 9.840 | 113.1      | 0.01149   | 105.00      | 5.896  | 449.6      | 0.07626   |
| -45.00      | 9.796 | 106.9      | 0.01091   | 110.00      | 5.321  | 417.0      | 0.07837   |
| -40.00      | 9.753 | 99.00      | 0.01015   | 115.00      | 4.862  | 376.7      | 0.07748   |
| -35.00      | 9.699 | 89.38      | 0.009215  | 120.00      | 4.503  | 335.2      | 0.07444   |
| -30.00      | 9.644 | 81.22      | 0.008421  | 125.00      | 4.229  | 296.5      | 0.07012   |
| -25.00      | 9.593 | 71.29      | 0.007432  | 130.00      | 4.026  | 263.7      | 0.06548   |
| -20.00      | 9.546 | 62.35      | 0.006532  | 140.00      | 3.744  | 209.6      | 0.05598   |
| -15.00      | 9.506 | 55.02      | 0.005788  | 145.00      | 3.677  | 192.9      | 0.05246   |
| -10.00      | 9.484 | 48.05      | 0.005066  | 150.00      | 3.628  | 179.9      | 0.04958   |
| -5.00       | 9.468 | 42.55      | 0.004495  | 155.00      | 3.598  | 172.4      | 0.04791   |
| 0.00        | 9.451 | 38.89      | 0.004115  | 160.00      | 3.561  | 162.6      | 0.04566   |
| 5.00        | 9.435 | 36.06      | 0.003821  | 170.00      | 3.449  | 151.4      | 0.04388   |
| 10.00       | 9.419 | 34.38      | 0.003650  | 175.00      | 3.387  | 147.9      | 0.04367   |
| 15.00       | 9.407 | 32.06      | 0.003408  | 180.00      | 3.297  | 147.7      | 0.04479   |
| 20.00       | 9.393 | 31.00      | 0.003300  | 190.00      | 3.149  | 146.4      | 0.04650   |
| 25.00       | 9.377 | 30.34      | 0.003235  | 195.00      | 3.071  | 146.1      | 0.04756   |
| 30.00       | 9.353 | 31.95      | 0.003416  | 200.00      | 2.995  | 145.5      | 0.04858   |
| 40.00       | 9.308 | 31.29      | 0.003362  | 205.00      | 2.896  | 146.1      | 0.05044   |
| 45.00       | 9.281 | 31.19      | 0.003361  | 210.00      | 2.796  | 146.1      | 0.05224   |
| 50.00       | 9.253 | 29.63      | 0.003202  | 215.00      | 2.690  | 145.7      | 0.05419   |
| 55.00       | 9.232 | 28.26      | 0.003061  | 220.00      | 2.566  | 145.6      | 0.05676   |
| 60.00       | 9.208 | 28.53      | 0.003099  | 225.00      | 2.419  | 145.5      | 0.06016   |
| 70.00       | 9.116 | 44.06      | 0.004833  | 230.00      | 2.237  | 145.1      | 0.06488   |
| 75.00       | 9.028 | 67.33      | 0.007458  | 235.00      | 2.022  | 143.7      | 0.07105   |
| 80.00       | 8.874 | 116.5      | 0.01313   | 240.00      | 1.728  | 142.0      | 0.08215   |
| 90.00       | 8.008 | 334.6      | 0.04180   | 245.00      | 1.287  | 122.9      | 0.09555   |
| 95.00       | 7.292 | 425.3      | 0.05835   | 250.00      | 0.8435 | 100.9      | 0.1198    |

 Table 58: Storage and loss properties for Ticona Impet 330R 30% glass fiber filled polyethylene terephthalate (polyester PET). (tabular data for Graph 58)

| Temperature | E'    | <b>E</b> " | Tan Delta | Temperature | E'     | <b>E</b> " | Tan Delta |
|-------------|-------|------------|-----------|-------------|--------|------------|-----------|
| (°C)        | (GPa) | (MPa)      |           | (°C)        | (GPa)  | (MPa)      |           |
| -60.00      | 9.672 | 191.4      | 0.01979   | 95.00       | 6.484  | 528.9      | 0.08159   |
| -50.00      | 9.596 | 178.9      | 0.01865   | 100.00      | 5.630  | 541.7      | 0.09625   |
| -45.00      | 9.527 | 175.7      | 0.01844   | 110.00      | 4.290  | 442.0      | 0.1030    |
| -40.00      | 9.448 | 173.5      | 0.01837   | 120.00      | 3.523  | 326.8      | 0.09276   |
| -35.00      | 9.369 | 170.4      | 0.01818   | 125.00      | 3.295  | 281.5      | 0.08544   |
| -30.00      | 9.294 | 168.2      | 0.01810   | 130.00      | 3.120  | 243.2      | 0.07793   |
| -25.00      | 9.234 | 164.3      | 0.01779   | 135.00      | 3.004  | 213.9      | 0.07121   |
| -20.00      | 9.179 | 161.4      | 0.01759   | 140.00      | 2.925  | 192.0      | 0.06565   |
| -15.00      | 9.125 | 159.5      | 0.01748   | 145.00      | 2.868  | 176.5      | 0.06153   |
| -10.00      | 9.072 | 159.1      | 0.01754   | 150.00      | 2.826  | 165.2      | 0.05848   |
| -5.00       | 9.021 | 160.0      | 0.01773   | 155.00      | 2.791  | 157.9      | 0.05656   |
| 0.00        | 8.977 | 160.3      | 0.01786   | 160.00      | 2.765  | 153.9      | 0.05565   |
| 5.00        | 8.940 | 161.0      | 0.01801   | 170.00      | 2.761  | 156.1      | 0.05656   |
| 10.00       | 8.906 | 162.1      | 0.01820   | 175.00      | 2.764  | 153.6      | 0.05559   |
| 15.00       | 8.876 | 163.5      | 0.01842   | 180.00      | 2.763  | 153.1      | 0.05540   |
| 20.00       | 8.846 | 165.0      | 0.01865   | 190.00      | 2.740  | 153.0      | 0.05582   |
| 30.00       | 8.775 | 168.6      | 0.01921   | 195.00      | 2.704  | 147.6      | 0.05458   |
| 40.00       | 8.680 | 171.3      | 0.01974   | 200.00      | 2.646  | 145.6      | 0.05503   |
| 45.00       | 8.633 | 171.7      | 0.01989   | 205.00      | 2.569  | 142.4      | 0.05545   |
| 50.00       | 8.588 | 172.3      | 0.02006   | 210.00      | 2.474  | 140.1      | 0.05663   |
| 55.00       | 8.544 | 173.5      | 0.02030   | 215.00      | 2.362  | 138.1      | 0.05847   |
| 60.00       | 8.489 | 177.1      | 0.02087   | 220.00      | 2.229  | 136.1      | 0.06106   |
| 65.00       | 8.432 | 180.3      | 0.02138   | 225.00      | 2.068  | 134.0      | 0.06481   |
| 70.00       | 8.367 | 187.7      | 0.02243   | 230.00      | 1.864  | 132.0      | 0.07079   |
| 75.00       | 8.282 | 204.2      | 0.02465   | 235.00      | 1.613  | 128.1      | 0.07948   |
| 80.00       | 8.138 | 242.1      | 0.02976   | 240.00      | 1.315  | 120.8      | 0.09192   |
| 85.00       | 7.840 | 329.1      | 0.04199   | 245.00      | 0.9493 | 108.8      | 0.1147    |
| 90.00       | 7.277 | 448.3      | 0.06163   | 250.00      | 0.5422 | 82.22      | 0.1520    |


**Graph 59:** Storage and loss properties for DuPont Rynite FR530 30% glass fiber filled, flame retardant polyethylene terephthalate (polyester PET).

**Graph 60:** Storage and loss properties for DuPont Rynite RE5211 30% glass fiber filled, color stable polyethylene terephthalate (polyester PET).



| Table 59: Storage and loss properties for DuPont Rynite FR530 30% glass fiber filled, flame retardant polyethylen |
|-------------------------------------------------------------------------------------------------------------------|
| terephthalate (polyester PET). (tabular data for Graph 59)                                                        |

| Temperature | E'    | <b>E</b> " | Tan Delta | Temperature | E'     | <b>E</b> " | Tan Delta |
|-------------|-------|------------|-----------|-------------|--------|------------|-----------|
| (°C)        | (GPa) | (MPa)      |           | (°C)        | (GPa)  | (MPa)      |           |
| -60.00      | 11.19 | 181.7      | 0.01624   | 100.00      | 6.799  | 499.1      | 0.07340   |
| -50.00      | 11.12 | 174.8      | 0.01573   | 105.00      | 6.420  | 492.3      | 0.07668   |
| -45.00      | 11.03 | 178.9      | 0.01622   | 110.00      | 6.042  | 471.3      | 0.07800   |
| -40.00      | 10.93 | 183.9      | 0.01682   | 115.00      | 5.697  | 442.1      | 0.07761   |
| -35.00      | 10.83 | 188.6      | 0.01742   | 120.00      | 5.392  | 408.0      | 0.07568   |
| -30.00      | 10.72 | 191.8      | 0.01789   | 125.00      | 5.127  | 373.1      | 0.07277   |
| -25.00      | 10.63 | 193.9      | 0.01824   | 130.00      | 4.903  | 342.0      | 0.06975   |
| -20.00      | 10.55 | 195.3      | 0.01851   | 140.00      | 4.557  | 296.7      | 0.06511   |
| -15.00      | 10.46 | 196.2      | 0.01875   | 145.00      | 4.414  | 283.1      | 0.06414   |
| -10.00      | 10.38 | 197.0      | 0.01898   | 150.00      | 4.280  | 275.8      | 0.06444   |
| -5.00       | 10.29 | 197.9      | 0.01923   | 155.00      | 4.152  | 274.9      | 0.06621   |
| 0.00        | 10.22 | 199.9      | 0.01957   | 160.00      | 4.021  | 280.3      | 0.06972   |
| 5.00        | 10.15 | 200.4      | 0.01973   | 165.00      | 3.882  | 292.6      | 0.07538   |
| 10.00       | 10.09 | 199.9      | 0.01981   | 170.00      | 3.722  | 311.4      | 0.08365   |
| 20.00       | 9.980 | 199.4      | 0.01998   | 175.00      | 3.526  | 333.4      | 0.09454   |
| 25.00       | 9.931 | 198.6      | 0.02000   | 180.00      | 3.297  | 343.0      | 0.1040    |
| 30.00       | 9.865 | 197.6      | 0.02003   | 190.00      | 2.864  | 280.4      | 0.09789   |
| 40.00       | 9.653 | 201.7      | 0.02089   | 195.00      | 2.697  | 244.8      | 0.09078   |
| 45.00       | 9.545 | 204.6      | 0.02143   | 200.00      | 2.552  | 216.1      | 0.08470   |
| 50.00       | 9.431 | 210.9      | 0.02236   | 205.00      | 2.422  | 191.3      | 0.07898   |
| 55.00       | 9.304 | 221.4      | 0.02380   | 210.00      | 2.304  | 171.0      | 0.07421   |
| 60.00       | 9.138 | 242.5      | 0.02654   | 215.00      | 2.190  | 155.5      | 0.07101   |
| 65.00       | 8.953 | 268.9      | 0.03003   | 220.00      | 2.071  | 146.0      | 0.07050   |
| 70.00       | 8.745 | 299.1      | 0.03420   | 225.00      | 1.948  | 140.3      | 0.07200   |
| 75.00       | 8.500 | 337.5      | 0.03970   | 230.00      | 1.799  | 136.1      | 0.07566   |
| 80.00       | 8.202 | 381.7      | 0.04654   | 240.00      | 1.410  | 127.1      | 0.09015   |
| 90.00       | 7.565 | 463.1      | 0.06123   | 245.00      | 1.151  | 119.5      | 0.1038    |
| 95.00       | 7.179 | 486.0      | 0.06770   | 250.00      | 0.8246 | 104.8      | 0.1272    |

 Table 60: Storage and loss properties for DuPont Rynite RE5211 30% glass fiber filled, color stable polyethylene terephthalate (polyester PET). (tabular data for Graph 60)

| Temperature | E'    | <b>E</b> " | Tan Delta | Temperature | E'    | <b>E</b> " | Tan Delta |
|-------------|-------|------------|-----------|-------------|-------|------------|-----------|
| (°C)        | (GPa) | (MPa)      |           | (°C)        | (GPa) | (MPa)      |           |
| -60.00      | 10.73 | 132.4      | 0.01234   | 90.00       | 9.047 | 322.6      | 0.03567   |
| -55.00      | 10.71 | 128.6      | 0.01201   | 95.00       | 8.397 | 457.5      | 0.05450   |
| -50.00      | 10.67 | 123.8      | 0.01160   | 100.00      | 7.554 | 553.9      | 0.07334   |
| -45.00      | 10.62 | 119.3      | 0.01123   | 105.00      | 6.708 | 582.1      | 0.08679   |
| -40.00      | 10.58 | 113.8      | 0.01076   | 110.00      | 5.927 | 555.9      | 0.09378   |
| -35.00      | 10.53 | 106.1      | 0.01008   | 115.00      | 5.310 | 501.1      | 0.09437   |
| -30.00      | 10.49 | 98.51      | 0.009390  | 120.00      | 4.872 | 444.2      | 0.09116   |
| -25.00      | 10.45 | 91.38      | 0.008748  | 125.00      | 4.549 | 393.1      | 0.08640   |
| -20.00      | 10.40 | 85.28      | 0.008198  | 130.00      | 4.320 | 349.5      | 0.08090   |
| -15.00      | 10.38 | 76.93      | 0.007414  | 140.00      | 4.036 | 276.0      | 0.06839   |
| -10.00      | 10.35 | 70.94      | 0.006854  | 150.00      | 3.871 | 224.8      | 0.05807   |
| -5.00       | 10.33 | 66.38      | 0.006428  | 155.00      | 3.811 | 207.1      | 0.05434   |
| 0.00        | 10.30 | 62.30      | 0.006049  | 160.00      | 3.757 | 193.2      | 0.05142   |
| 5.00        | 10.28 | 58.92      | 0.005734  | 165.00      | 3.714 | 182.3      | 0.04909   |
| 10.00       | 10.26 | 55.66      | 0.005426  | 170.00      | 3.669 | 176.0      | 0.04797   |
| 15.00       | 10.24 | 54.21      | 0.005293  | 175.00      | 3.624 | 172.7      | 0.04766   |
| 20.00       | 10.23 | 51.56      | 0.005041  | 180.00      | 3.575 | 169.8      | 0.04748   |
| 25.00       | 10.21 | 50.54      | 0.004948  | 190.00      | 3.459 | 165.6      | 0.04786   |
| 30.00       | 10.13 | 46.89      | 0.004625  | 200.00      | 3.314 | 163.0      | 0.04919   |
| 40.00       | 10.14 | 44.97      | 0.004434  | 205.00      | 3.232 | 162.9      | 0.05042   |
| 45.00       | 10.10 | 45.43      | 0.004496  | 210.00      | 3.140 | 162.9      | 0.05187   |
| 50.00       | 10.07 | 44.71      | 0.004441  | 215.00      | 3.035 | 163.1      | 0.05375   |
| 55.00       | 10.03 | 44.43      | 0.004430  | 220.00      | 2.917 | 163.9      | 0.05619   |
| 60.00       | 9.987 | 46.25      | 0.004631  | 225.00      | 2.778 | 166.1      | 0.05980   |
| 65.00       | 9.945 | 49.57      | 0.004985  | 230.00      | 2.610 | 168.8      | 0.06467   |
| 70.00       | 9.897 | 57.04      | 0.005763  | 235.00      | 2.398 | 172.4      | 0.07193   |
| 75.00       | 9.827 | 74.27      | 0.007558  | 240.00      | 2.130 | 175.9      | 0.08259   |
| 80.00       | 9.703 | 113.9      | 0.01174   | 250.00      | 1.303 | 166.3      | 0.1277    |



**Graph 61:** Storage and loss properties for Allied Signal Petra 130 30% glass fiber filled, from recyclate polyethylene terephthalate (polyester PET).

**Graph 62:** Storage and loss properties for DuPont Rynite 545 45% glass fiber filled polyethylene terephthalate (polyester PET).



Tabular Data Graphs

© Plastic Design Library

 Table 61: Storage and loss properties for Allied Signal Petra 130 30% glass fiber filled, from recyclate polyethylene terephthalate (polyester PET). (tabular data for Graph 61)

| Temperature | E'    | Е"    | Tan Delta | Temperature | E'     | <b>E</b> " | Tan Delta |
|-------------|-------|-------|-----------|-------------|--------|------------|-----------|
| (°C)        | (GPa) | (MPa) |           | (°C)        | (GPa)  | (MPa)      |           |
| -60.00      | 9.637 | 126.7 | 0.01315   | 100.00      | 5.066  | 474.5      | 0.09367   |
| -50.00      | 9.543 | 122.5 | 0.01283   | 105.00      | 4.567  | 451.6      | 0.09889   |
| -45.00      | 9.475 | 121.1 | 0.01278   | 110.00      | 4.157  | 414.2      | 0.09964   |
| -40.00      | 9.393 | 120.3 | 0.01281   | 115.00      | 3.823  | 371.7      | 0.09724   |
| -35.00      | 9.301 | 119.2 | 0.01282   | 120.00      | 3.547  | 329.4      | 0.09287   |
| -30.00      | 9.219 | 115.6 | 0.01254   | 125.00      | 3.339  | 289.9      | 0.08682   |
| -25.00      | 9.418 | 112.3 | 0.01228   | 130.00      | 3.186  | 256.6      | 0.08052   |
| -20.00      | 9.075 | 108.8 | 0.01198   | 140.00      | 2.991  | 205.0      | 0.06854   |
| -10.00      | 8.946 | 106.1 | 0.01186   | 145.00      | 2.930  | 186.0      | 0.06348   |
| -5.00       | 8.888 | 107.4 | 0.01209   | 150.00      | 2.883  | 171.5      | 0.05948   |
| 0.00        | 8.829 | 108.7 | 0.01231   | 155.00      | 2.846  | 161.3      | 0.05665   |
| 5.00        | 8.784 | 110.3 | 0.01255   | 160.00      | 2.817  | 155.2      | 0.05511   |
| 10.00       | 8.751 | 110.3 | 0.01260   | 165.00      | 2.786  | 147.7      | 0.05300   |
| 15.00       | 8.716 | 110.9 | 0.01273   | 170.00      | 2.741  | 142.0      | 0.05182   |
| 20.00       | 8.679 | 111.4 | 0.01283   | 175.00      | 2.689  | 138.1      | 0.05136   |
| 25.00       | 8.622 | 111.9 | 0.01298   | 180.00      | 2.631  | 135.3      | 0.05142   |
| 30.00       | 8.563 | 113.0 | 0.01319   | 190.00      | 2.508  | 131.2      | 0.05231   |
| 40.00       | 8.446 | 117.5 | 0.01391   | 195.00      | 2.439  | 129.8      | 0.05322   |
| 45.00       | 8.380 | 121.1 | 0.01445   | 200.00      | 2.367  | 128.3      | 0.05421   |
| 50.00       | 8.306 | 126.8 | 0.01527   | 205.00      | 2.287  | 126.8      | 0.05544   |
| 55.00       | 8.213 | 137.9 | 0.01679   | 210.00      | 2.172  | 126.1      | 0.05804   |
| 60.00       | 8.083 | 157.9 | 0.01954   | 215.00      | 2.060  | 124.0      | 0.06019   |
| 65.00       | 7.929 | 188.2 | 0.02373   | 220.00      | 1.932  | 122.0      | 0.06315   |
| 70.00       | 7.721 | 229.6 | 0.02974   | 225.00      | 1.780  | 119.4      | 0.06707   |
| 75.00       | 7.449 | 281.9 | 0.03785   | 230.00      | 1.592  | 115.8      | 0.07278   |
| 80.00       | 7.123 | 340.9 | 0.04787   | 240.00      | 1.078  | 101.1      | 0.09383   |
| 90.00       | 6.188 | 447.9 | 0.07240   | 245.00      | 0.7375 | 85.79      | 0.1164    |
| 95.00       | 5.618 | 474.6 | 0.08448   | 250.00      | 0.3659 | 55.79      | 0.1530    |

 Table 62: Storage and loss properties for DuPont Rynite 545 45% glass fiber filled polyethylene terephthalate (polyester PET). (tabular data for Graph 62)

| Temperature | E'    | <b>E</b> " | Tan Delta | Temperature | E'    | <b>E</b> " | Tan Delta |
|-------------|-------|------------|-----------|-------------|-------|------------|-----------|
| (°C)        | (GPa) | (MPa)      |           | (°C)        | (GPa) | (MPa)      |           |
| -60.00      | 14.28 | 202.7      | 0.01419   | 100.00      | 8.711 | 597.2      | 0.06856   |
| -50.00      | 14.30 | 190.0      | 0.01329   | 105.00      | 8.155 | 590.4      | 0.07240   |
| -45.00      | 14.26 | 188.4      | 0.01321   | 110.00      | 7.657 | 574.9      | 0.07508   |
| -40.00      | 14.18 | 190.8      | 0.01346   | 120.00      | 6.844 | 507.8      | 0.07420   |
| -35.00      | 14.11 | 191.7      | 0.01359   | 125.00      | 6.516 | 467.7      | 0.07177   |
| -30.00      | 14.04 | 193.1      | 0.01375   | 130.00      | 6.234 | 429.6      | 0.06892   |
| -25.00      | 13.93 | 197.7      | 0.01419   | 135.00      | 6.011 | 397.9      | 0.06619   |
| -20.00      | 13.80 | 200.7      | 0.01454   | 140.00      | 5.845 | 373.1      | 0.06384   |
| -15.00      | 13.69 | 203.5      | 0.01486   | 145.00      | 5.708 | 356.4      | 0.06243   |
| -10.00      | 13.58 | 202.3      | 0.01489   | 150.00      | 5.593 | 341.3      | 0.06103   |
| -5.00       | 13.49 | 204.1      | 0.01513   | 155.00      | 5.482 | 329.8      | 0.06016   |
| 0.00        | 13.41 | 201.5      | 0.01502   | 160.00      | 5.373 | 318.0      | 0.05919   |
| 5.00        | 13.33 | 200.1      | 0.01501   | 165.00      | 5.262 | 306.4      | 0.05822   |
| 10.00       | 13.26 | 197.4      | 0.01489   | 170.00      | 5.146 | 298.0      | 0.05791   |
| 15.00       | 13.18 | 196.1      | 0.01488   | 175.00      | 5.029 | 291.9      | 0.05804   |
| 20.00       | 13.10 | 193.8      | 0.01479   | 180.00      | 4.910 | 287.1      | 0.05846   |
| 25.00       | 13.03 | 193.7      | 0.01486   | 190.00      | 4.662 | 279.5      | 0.05996   |
| 30.00       | 12.95 | 193.6      | 0.01495   | 195.00      | 4.535 | 275.0      | 0.06064   |
| 40.00       | 12.80 | 194.5      | 0.01520   | 200.00      | 4.398 | 271.4      | 0.06171   |
| 45.00       | 12.70 | 198.3      | 0.01562   | 205.00      | 4.258 | 267.3      | 0.06278   |
| 50.00       | 12.58 | 203.9      | 0.01621   | 210.00      | 4.111 | 263.2      | 0.06403   |
| 60.00       | 12.21 | 240.9      | 0.01973   | 215.00      | 3.956 | 259.0      | 0.06546   |
| 65.00       | 11.95 | 278.7      | 0.02333   | 220.00      | 3.790 | 255.1      | 0.06729   |
| 70.00       | 11.61 | 324.5      | 0.02794   | 225.00      | 3.606 | 251.1      | 0.06963   |
| 75.00       | 11.26 | 369.5      | 0.03281   | 230.00      | 3.386 | 247.3      | 0.07304   |
| 80.00       | 10.83 | 424.7      | 0.03921   | 240.00      | 2.818 | 239.9      | 0.08515   |
| 90.00       | 9.809 | 541.0      | 0.05515   | 245.00      | 2.427 | 236.7      | 0.09756   |
| 95.00       | 9.257 | 584.5      | 0.06315   | 250.00      | 1.928 | 214.1      | 0.1110    |



**Graph 63:** Storage and loss properties for DuPont Rynite 555 55% glass fiber filled polyethylene terephthalate (polyester PET).

Graph 64: Storage and loss properties for GE Plastics Ultern 1000 unfilled polyetherimide (PEI) tested dry as molded.



| Temperature | E'    | <b>E</b> " | Tan Delta | Temperature | E'    | <b>E</b> " | Tan Delta |
|-------------|-------|------------|-----------|-------------|-------|------------|-----------|
| (°C)        | (GPa) | (MPa)      |           | (°C)        | (GPa) | (MPa)      |           |
| -60.00      | 18.00 | 86.75      | 0.004818  | 100.00      | 10.75 | 746.3      | 0.06940   |
| -50.00      | 17.96 | 79.41      | 0.004423  | 110.00      | 9.572 | 727.9      | 0.07605   |
| -45.00      | 17.91 | 80.24      | 0.004480  | 115.00      | 9.061 | 695.2      | 0.07672   |
| -40.00      | 17.84 | 84.71      | 0.004749  | 120.00      | 8.596 | 652.0      | 0.07585   |
| -35.00      | 17.79 | 85.96      | 0.004832  | 125.00      | 8.183 | 614.1      | 0.07504   |
| -30.00      | 17.73 | 94.77      | 0.005345  | 130.00      | 7.844 | 573.0      | 0.07305   |
| -25.00      | 17.63 | 105.5      | 0.005985  | 140.00      | 7.307 | 505.3      | 0.06916   |
| -20.00      | 17.51 | 117.6      | 0.006714  | 145.00      | 7.116 | 480.5      | 0.06752   |
| -15.00      | 17.39 | 130.4      | 0.007496  | 150.00      | 6.930 | 460.2      | 0.06640   |
| -10.00      | 17.27 | 143.1      | 0.008288  | 155.00      | 6.765 | 441.1      | 0.06520   |
| -5.00       | 17.15 | 153.1      | 0.008926  | 160.00      | 6.592 | 427.6      | 0.06488   |
| 0.00        | 17.04 | 159.9      | 0.009380  | 165.00      | 6.422 | 416.8      | 0.06490   |
| 5.00        | 16.95 | 165.7      | 0.009778  | 170.00      | 6.258 | 407.9      | 0.06518   |
| 10.00       | 16.85 | 173.8      | 0.01031   | 175.00      | 6.099 | 400.5      | 0.06566   |
| 20.00       | 16.66 | 191.1      | 0.01147   | 180.00      | 5.940 | 394.4      | 0.06640   |
| 25.00       | 16.52 | 202.9      | 0.01228   | 190.00      | 5.621 | 383.9      | 0.06830   |
| 30.00       | 16.34 | 218.7      | 0.01338   | 195.00      | 5.464 | 377.6      | 0.06910   |
| 40.00       | 15.96 | 243.0      | 0.01523   | 200.00      | 5.298 | 371.3      | 0.07009   |
| 45.00       | 15.76 | 256.0      | 0.01624   | 205.00      | 5.129 | 364.2      | 0.07100   |
| 50.00       | 15.56 | 273.9      | 0.01761   | 210.00      | 4.947 | 357.3      | 0.07224   |
| 55.00       | 15.34 | 301.2      | 0.01964   | 215.00      | 4.762 | 349.0      | 0.07329   |
| 60.00       | 15.06 | 340.7      | 0.02263   | 220.00      | 4.563 | 341.8      | 0.07490   |
| 65.00       | 14.72 | 394.6      | 0.02681   | 225.00      | 4.340 | 334.3      | 0.07704   |
| 70.00       | 14.32 | 457.2      | 0.03194   | 230.00      | 4.084 | 327.5      | 0.08019   |
| 75.00       | 13.85 | 522.5      | 0.03773   | 240.00      | 3.418 | 314.4      | 0.09198   |
| 80.00       | 13.30 | 593.6      | 0.04462   | 245.00      | 2.983 | 307.7      | 0.1032    |
| 90.00       | 12.09 | 705.5      | 0.05835   | 250.00      | 2.452 | 295.0      | 0.1203    |
| 95.00       | 11.44 | 736.3      | 0.06434   | 255.00      | 1.841 | 267.4      | 0.1453    |

 
 Table 64: Storage and loss properties for GE Plastics Ultern 1000 unfilled polyetherimide (PEI) tested dry as molded. (tabular data for Graph 64)

| Temperature | E'    | Е"    | Tan Delta | Temperature | E'      | <b>E</b> " | Tan Delta |
|-------------|-------|-------|-----------|-------------|---------|------------|-----------|
| (°C)        | (GPa) | (MPa) |           | (°C)        | (GPa)   | (MPa)      |           |
| -60.00      | 3.486 | 28.00 | 0.008030  | 95.00       | 2.702   | 82.77      | 0.03064   |
| -55.00      | 3.477 | 28.44 | 0.008180  | 100.00      | 2.670   | 81.26      | 0.03043   |
| -50.00      | 3.458 | 30.04 | 0.008687  | 105.00      | 2.639   | 79.18      | 0.03000   |
| -45.00      | 3.437 | 33.19 | 0.009657  | 110.00      | 2.612   | 76.25      | 0.02919   |
| -40.00      | 3.417 | 37.45 | 0.01096   | 115.00      | 2.587   | 73.09      | 0.02826   |
| -35.00      | 3.396 | 44.35 | 0.01306   | 120.00      | 2.562   | 69.77      | 0.02723   |
| -30.00      | 3.369 | 53.32 | 0.01583   | 125.00      | 2.540   | 65.79      | 0.02590   |
| -25.00      | 3.343 | 59.79 | 0.01788   | 130.00      | 2.157   | 62.38      | 0.02478   |
| -20.00      | 3.317 | 64.67 | 0.01949   | 140.00      | 2.475   | 55.30      | 0.02234   |
| -15.00      | 3.292 | 68.33 | 0.02075   | 145.00      | 2.454   | 51.98      | 0.02118   |
| -10.00      | 3.265 | 72.13 | 0.02209   | 150.00      | 2.433   | 49.08      | 0.02018   |
| -5.00       | 3.242 | 74.86 | 0.02309   | 155.00      | 2.411   | 46.58      | 0.01932   |
| 0.00        | 3.220 | 76.47 | 0.02375   | 160.00      | 2.388   | 45.02      | 0.01885   |
| 5.00        | 3.198 | 77.70 | 0.02429   | 165.00      | 2.364   | 44.13      | 0.01867   |
| 10.00       | 3.177 | 79.05 | 0.02489   | 170.00      | 2.337   | 44.27      | 0.01894   |
| 15.00       | 3.157 | 80.30 | 0.02544   | 175.00      | 2.307   | 46.21      | 0.02003   |
| 20.00       | 3.137 | 80.86 | 0.02578   | 180.00      | 2.275   | 49.55      | 0.02178   |
| 30.00       | 3.087 | 82.93 | 0.02687   | 190.00      | 2.208   | 63.98      | 0.02898   |
| 40.00       | 3.024 | 85.29 | 0.02821   | 195.00      | 2.168   | 75.93      | 0.03502   |
| 45.00       | 2.995 | 85.70 | 0.02861   | 200.00      | 2.112   | 89.55      | 0.04239   |
| 50.00       | 2.971 | 85.16 | 0.02866   | 205.00      | 2.023   | 103.5      | 0.05119   |
| 55.00       | 2.944 | 84.89 | 0.02884   | 210.00      | 1.869   | 121.1      | 0.06485   |
| 60.00       | 2.916 | 84.92 | 0.02912   | 215.00      | 1.595   | 177.4      | 0.1114    |
| 65.00       | 2.888 | 84.95 | 0.02942   | 220.00      | 1.136   | 337.1      | 0.2980    |
| 70.00       | 2.859 | 84.66 | 0.02962   | 225.00      | 0.5463  | 695.5      | 0.7311    |
| 75.00       | 2.830 | 84.52 | 0.02987   | 230.00      | 0.1226  | 203.1      | 1.669     |
| 80.00       | 2.797 | 84.55 | 0.03023   | 240.00      | 0.01765 | 25.54      | 1.446     |
| 90.00       | 2.733 | 83.73 | 0.03063   | 245.00      | 0.01205 | 16.47      | 1.366     |
|             |       |       |           |             |         |            |           |



Graph 65: Storage and loss properties for GE Plastics Ultem 1000 unfilled polyetherimide (PEI) tested at 0.5% moisture content.

Graph 66: Storage and loss properties for GE Plastics Ultem 2300 30% glass fiber filled polyetherimide (PEI) tested dry as molded.



 Table 65: Storage and loss properties for GE Plastics Ultern 1000 unfilled polyetherimide (PEI) tested at 0.5% moisture content. (tabular data for Graph 65)

| Temperature | E'    | <b>E</b> " | Tan Delta | Temperature | E'       | <b>E</b> " | Tan Delta |
|-------------|-------|------------|-----------|-------------|----------|------------|-----------|
| (°C)        | (GPa) | (MPa)      |           | (°C)        | (GPa)    | (MPa)      |           |
| ~~~~        |       |            |           |             |          |            |           |
| -60.00      | 3.489 | 25.41      | 0.007283  | 100.00      | 2.571    | 72.64      | 0.02825   |
| -50.00      | 3.470 | 25.48      | 0.007342  | 105.00      | 2.532    | 71.14      | 0.02810   |
| -45.00      | 3.460 | 26.28      | 0.007595  | 110.00      | 2.496    | 69.01      | 0.02765   |
| -40.00      | 3.443 | 28.02      | 0.008139  | 115.00      | 2.465    | 66.79      | 0.02710   |
| -35.00      | 3.418 | 30.53      | 0.008932  | 120.00      | 2.436    | 64.32      | 0.02641   |
| -30.00      | 3.393 | 33.23      | 0.009794  | 125.00      | 2.410    | 61.70      | 0.02561   |
| -25.00      | 3.369 | 36.15      | 0.01073   | 130.00      | 2.386    | 59.17      | 0.02480   |
| -20.00      | 3.347 | 38.72      | 0.01157   | 140.00      | 2.344    | 54.43      | 0.02322   |
| -15.00      | 3.322 | 41.53      | 0.01250   | 145.00      | 2.325    | 52.48      | 0.02257   |
| -10.00      | 3.293 | 44.72      | 0.01358   | 150.00      | 2.308    | 50.81      | 0.02201   |
| -5.00       | 3.262 | 48.19      | 0.01477   | 155.00      | 2.292    | 49.60      | 0.02164   |
| 0.00        | 3.226 | 51.57      | 0.01599   | 160.00      | 2.278    | 49.05      | 0.02153   |
| 5.00        | 3.203 | 53.22      | 0.01662   | 165.00      | 2.264    | 49.17      | 0.02172   |
| 10.00       | 3.182 | 54.20      | 0.01703   | 170.00      | 2.250    | 50.45      | 0.02243   |
| 20.00       | 3.144 | 55.62      | 0.01769   | 175.00      | 2.235    | 53.03      | 0.02373   |
| 25.00       | 3.130 | 55.72      | 0.01780   | 180.00      | 2.217    | 57.91      | 0.02612   |
| 30.00       | 3.109 | 56.53      | 0.01818   | 190.00      | 2.158    | 82.51      | 0.03824   |
| 40.00       | 3.045 | 60.46      | 0.01985   | 195.00      | 2.087    | 104.8      | 0.05021   |
| 45.00       | 3.014 | 62.09      | 0.02060   | 200.00      | 1.958    | 117.1      | 0.05981   |
| 50.00       | 2.984 | 63.39      | 0.02124   | 205.00      | 1.741    | 148.7      | 0.08542   |
| 55.00       | 2.954 | 64.86      | 0.02196   | 210.00      | 1.401    | 227.4      | 0.1626    |
| 60.00       | 2.919 | 66.38      | 0.02274   | 215.00      | 0.9731   | 362.1      | 0.3737    |
| 65.00       | 2.879 | 68.04      | 0.02364   | 220.00      | 0.4209   | 349.7      | 0.8381    |
| 70.00       | 2.836 | 69.76      | 0.02460   | 225.00      | 0.1026   | 161.6      | 1.583     |
| 75.00       | 2.793 | 71.09      | 0.02545   | 230.00      | 0.02942  | 48.94      | 1.661     |
| 80.00       | 2.748 | 72.44      | 0.02636   | 240.00      | 0.01233  | 15.92      | 1.291     |
| 90.00       | 2.657 | 73.72      | 0.02774   | 245.00      | 0.009863 | 13.48      | 1.367     |
| 95.00       | 2.614 | 73.44      | 0.02810   | 250.00      | 0.01005  | 12.52      | 1.245     |

 Table 66: Storage and loss properties for GE Plastics Ultern 2300 30% glass fiber filled polyetherimide (PEI) tested dry as molded. (tabular data for Graph 66)

| Temperature | E'    | <b>E</b> " | Tan Delta | Temperature | E'     | E"      | Tan Delta |
|-------------|-------|------------|-----------|-------------|--------|---------|-----------|
| (°C)        | (GPa) | (MPa)      |           | (°C)        | (GPa)  | (MPa)   |           |
| -60.00      | 9.705 | 0.003558   | 3.666E-4  | 100.00      | 8.636  | 0.08179 | 0.009471  |
| -50.00      | 9.697 | 0.006396   | 6.595E-4  | 105.00      | 8.596  | 0.08050 | 0.009365  |
| -45.00      | 9.672 | 0.009891   | 0.001023  | 110.00      | 8.561  | 0.07877 | 0.009201  |
| -40.00      | 9.641 | 0.01219    | 0.001264  | 115.00      | 8.525  | 0.07614 | 0.008932  |
| -35.00      | 9.611 | 0.01500    | 0.001560  | 120.00      | 8.489  | 0.07390 | 0.008705  |
| -30.00      | 9.595 | 0.01926    | 0.002008  | 125.00      | 8.456  | 0.07112 | 0.008410  |
| -25.00      | 9.572 | 0.02338    | 0.002443  | 130.00      | 8.424  | 0.06797 | 0.008068  |
| -20.00      | 9.540 | 0.02746    | 0.002878  | 140.00      | 8.364  | 0.06168 | 0.007375  |
| -15.00      | 9.510 | 0.03132    | 0.003293  | 145.00      | 8.334  | 0.05926 | 0.007111  |
| -10.00      | 9.477 | 0.03401    | 0.003589  | 150.00      | 8.303  | 0.05766 | 0.006945  |
| -5.00       | 9.438 | 0.03837    | 0.004065  | 155.00      | 8.266  | 0.05707 | 0.006904  |
| 0.00        | 9.400 | 0.04266    | 0.004539  | 160.00      | 8.231  | 0.05676 | 0.006897  |
| 5.00        | 9.368 | 0.04428    | 0.004726  | 165.00      | 8.192  | 0.05781 | 0.007057  |
| 10.00       | 9.347 | 0.04570    | 0.004889  | 170.00      | 8.151  | 0.06145 | 0.007539  |
| 20.00       | 9.301 | 0.04927    | 0.005298  | 175.00      | 8.105  | 0.06739 | 0.008315  |
| 25.00       | 9.271 | 0.05159    | 0.005565  | 180.00      | 8.060  | 0.07620 | 0.009455  |
| 30.00       | 9.231 | 0.05617    | 0.006085  | 190.00      | 7.963  | 0.1093  | 0.01373   |
| 40.00       | 9.112 | 0.06597    | 0.007241  | 195.00      | 7.892  | 0.1427  | 0.01808   |
| 45.00       | 9.068 | 0.06903    | 0.007612  | 200.00      | 7.764  | 0.1973  | 0.02542   |
| 50.00       | 9.035 | 0.07079    | 0.007835  | 205.00      | 7.479  | 0.2888  | 0.03863   |
| 55.00       | 9.001 | 0.07280    | 0.008088  | 210.00      | 6.769  | 0.4667  | 0.06904   |
| 60.00       | 8.967 | 0.07496    | 0.008360  | 215.00      | 5.414  | 0.9808  | 0.1817    |
| 65.00       | 8.922 | 0.07786    | 0.008727  | 220.00      | 3.545  | 1.324   | 0.3749    |
| 70.00       | 8.880 | 0.07975    | 0.008981  | 225.00      | 2.016  | 1.101   | 0.5486    |
| 75.00       | 8.838 | 0.08094    | 0.009158  | 230.00      | 0.9191 | 0.6795  | 0.7393    |
| 80.00       | 8.798 | 0.08187    | 0.009305  | 240.00      | 0.3382 | 0.1943  | 0.5745    |
| 90.00       | 8.719 | 0.08270    | 0.009485  | 245.00      | 0.2301 | 0.1292  | 0.5615    |
| 95.00       | 8.677 | 0.08269    | 0.009530  | 250.00      | 0.1667 | 0.09320 | 0.5592    |



**Graph 67:** Storage and loss properties for GE Plastics Ultern 2300 30% glass fiber filled polyetherimide (PEI) tested at 0.5% moisture content.

Graph 68: Storage and loss properties for Victrex PEEK 450G unfilled polyetheretherketone (PEEK).



Tabular Data Graphs

| Temperature | E'    | E"      | Tan Delta | Temperature | E'     | <b>E</b> " | Tan Delta |
|-------------|-------|---------|-----------|-------------|--------|------------|-----------|
| (°C)        | (GPa) | (MPa)   |           | (°C)        | (GPa)  | (MPa)      |           |
| -60.00      | 9.470 | 0.01868 | 0.001973  | 95.00       | 8.302  | 0.1040     | 0.01253   |
| -50.00      | 9.461 | 0.01849 | 0.001954  | 100.00      | 8.259  | 0.1042     | 0.01262   |
| -45.00      | 9.437 | 0.02086 | 0.002210  | 105.00      | 8.222  | 0.1035     | 0.01259   |
| -40.00      | 9.408 | 0.02408 | 0.002560  | 110.00      | 8.190  | 0.1017     | 0.01242   |
| -35.00      | 9.382 | 0.02718 | 0.002897  | 115.00      | 8.162  | 0.09938    | 0.01218   |
| -30.00      | 9.361 | 0.03175 | 0.003392  | 120.00      | 8.139  | 0.09710    | 0.01193   |
| -25.00      | 9.329 | 0.03809 | 0.004083  | 125.00      | 8.115  | 0.09498    | 0.01171   |
| -20.00      | 9.296 | 0.04234 | 0.004554  | 130.00      | 8.091  | 0.09285    | 0.01148   |
| -15.00      | 9.261 | 0.04741 | 0.005120  | 140.00      | 8.048  | 0.08898    | 0.01106   |
| -10.00      | 9.225 | 0.05194 | 0.005630  | 145.00      | 8.026  | 0.08776    | 0.01093   |
| -5.00       | 9.188 | 0.05565 | 0.006057  | 150.00      | 8.008  | 0.08646    | 0.01080   |
| 0.00        | 9.156 | 0.05945 | 0.006493  | 155.00      | 7.988  | 0.08670    | 0.01085   |
| 5.00        | 9.120 | 0.06250 | 0.006852  | 160.00      | 7.968  | 0.08790    | 0.01103   |
| 10.00       | 9.089 | 0.06598 | 0.007260  | 165.00      | 7.949  | 0.09029    | 0.01136   |
| 15.00       | 9.056 | 0.06906 | 0.007627  | 170.00      | 7.928  | 0.09459    | 0.01193   |
| 20.00       | 9.017 | 0.07184 | 0.007967  | 175.00      | 7.906  | 0.1022     | 0.01293   |
| 25.00       | 8.987 | 0.07350 | 0.008179  | 180.00      | 7.880  | 0.1140     | 0.01446   |
| 30.00       | 8.958 | 0.07457 | 0.008325  | 190.00      | 7.781  | 0.1688     | 0.02170   |
| 40.00       | 8.888 | 0.07856 | 0.008839  | 195.00      | 7.621  | 0.2428     | 0.03186   |
| 45.00       | 8.848 | 0.08086 | 0.009139  | 200.00      | 7.175  | 0.4083     | 0.05694   |
| 50.00       | 8.805 | 0.08309 | 0.009436  | 205.00      | 6.164  | 0.7533     | 0.1224    |
| 55.00       | 8.760 | 0.08576 | 0.009791  | 210.00      | 4.714  | 1.131      | 0.2404    |
| 60.00       | 8.708 | 0.08815 | 0.01012   | 215.00      | 3.159  | 1.223      | 0.3880    |
| 65.00       | 8.652 | 0.09094 | 0.01051   | 220.00      | 1.720  | 1.052      | 0.6134    |
| 70.00       | 8.588 | 0.09436 | 0.01099   | 225.00      | 0.8035 | 0.6121     | 0.7617    |
| 75.00       | 8.522 | 0.09751 | 0.01144   | 230.00      | 0.4314 | 0.2846     | 0.6593    |
| 80.00       | 8.460 | 0.1000  | 0.01182   | 240.00      | 0.1930 | 0.1097     | 0.5685    |
| 90.00       | 8.346 | 0.1041  | 0.01247   | 245.00      | 0.1409 | 0.07787    | 0.5527    |

 Table 68: Storage and loss properties for Victrex PEEK 450G unfilled polyetheretherketone (PEEK). (tabular data for Graph 68)

| Temperature | E'    | <b>E</b> " | Tan Delta | Temperature | E'     | <b>E</b> " | Tan Delta |
|-------------|-------|------------|-----------|-------------|--------|------------|-----------|
| (°C)        | (GPa) | (MPa)      |           | (°C)        | (GPa)  | (MPa)      |           |
| -55.00      | 4.015 | 80.64      | 0.02008   | 140.00      | 3.050  | 100.3      | 0.03288   |
| -50.00      | 3.983 | 78.65      | 0.01975   | 145.00      | 2.963  | 128.8      | 0.04350   |
| -45.00      | 3.951 | 79.75      | 0.02019   | 150.00      | 2.720  | 200.1      | 0.07368   |
| -40.00      | 3.916 | 82.26      | 0.02101   | 160.00      | 1.528  | 286.9      | 0.1880    |
| -30.00      | 3.845 | 87.67      | 0.02280   | 170.00      | 0.7031 | 139.5      | 0.1983    |
| -25.00      | 3.812 | 90.67      | 0.02379   | 175.00      | 0.5352 | 92.78      | 0.1733    |
| -20.00      | 3.780 | 92.68      | 0.02452   | 180.00      | 0.4406 | 65.61      | 0.1489    |
| -15.00      | 3.752 | 93.88      | 0.02502   | 190.00      | 0.3457 | 39.10      | 0.1131    |
| -10.00      | 3.729 | 94.33      | 0.02530   | 195.00      | 0.3210 | 32.88      | 0.1024    |
| -5.00       | 3.707 | 93.69      | 0.02528   | 200.00      | 0.3026 | 28.91      | 0.09552   |
| 0.00        | 3.692 | 92.60      | 0.02508   | 205.00      | 0.2882 | 26.40      | 0.09158   |
| 5.00        | 3.680 | 91.36      | 0.02482   | 210.00      | 0.2759 | 24.58      | 0.08910   |
| 10.00       | 3.668 | 89.39      | 0.02437   | 220.00      | 0.2568 | 22.58      | 0.08796   |
| 15.00       | 3.657 | 87.09      | 0.02381   | 225.00      | 0.2491 | 22.05      | 0.08852   |
| 20.00       | 3.646 | 84.88      | 0.02328   | 230.00      | 0.2418 | 21.63      | 0.08946   |
| 30.00       | 3.622 | 80.13      | 0.02212   | 235.00      | 0.2353 | 21.15      | 0.08987   |
| 40.00       | 3.600 | 76.01      | 0.02111   | 240.00      | 0.2310 | 20.96      | 0.09072   |
| 45.00       | 3.588 | 73.24      | 0.02041   | 250.00      | 0.2209 | 20.29      | 0.09186   |
| 50.00       | 3.569 | 71.71      | 0.02009   | 255.00      | 0.2162 | 20.07      | 0.09284   |
| 55.00       | 3.546 | 70.98      | 0.02001   | 260.00      | 0.2144 | 20.36      | 0.09495   |
| 60.00       | 3.525 | 70.17      | 0.01991   | 265.00      | 0.2117 | 20.13      | 0.09509   |
| 70.00       | 3.477 | 68.99      | 0.01984   | 270.00      | 0.2081 | 20.05      | 0.09636   |
| 75.00       | 3.448 | 68.66      | 0.01991   | 280.00      | 0.2181 | 19.41      | 0.08899   |
| 80.00       | 3.415 | 68.67      | 0.02011   | 285.00      | 0.1964 | 19.73      | 0.1005    |
| 85.00       | 3.380 | 69.04      | 0.02043   | 290.00      | 0.1789 | 19.31      | 0.1079    |
| 90.00       | 3.344 | 69.55      | 0.02080   | 295.00      | 0.1720 | 18.81      | 0.1093    |
| 100.00      | 3.277 | 71.23      | 0.02173   | 300.00      | 0.1671 | 18.45      | 0.1104    |
| 105.00      | 3.249 | 72.23      | 0.02223   | 305.00      | 0.1586 | 18.01      | 0.1136    |
| 110.00      | 3.223 | 73.39      | 0.02277   | 310.00      | 0.1468 | 17.47      | 0.1190    |
| 115.00      | 3.199 | 75.03      | 0.02346   | 315.00      | 0.1341 | 16.92      | 0.1262    |
| 120.00      | 3.174 | 76.83      | 0.02420   | 320.00      | 0.1194 | 16.26      | 0.1362    |
| 130.00      | 3.123 | 83.16      | 0.02663   | 325.00      | 0.1017 | 15.44      | 0.1519    |



Graph 69: Storage and loss properties for Exxon Escorene 1032 unfilled, homopolymer polypropylene (PP).

Graph 70: Storage and loss properties for Polypropylene 400121 unfilled, homopolymer polypropylene (PP).



 Table 69: Storage and loss properties for Exxon Escorene 1032 unfilled, homopolymer polypropylene (PP). (tabular data for Graph 69)

| Temperature | E'    | <b>E</b> " | Tan Delta | Temperature | E'      | <b>E</b> " | Tan Delta |
|-------------|-------|------------|-----------|-------------|---------|------------|-----------|
| (°C)        | (GPa) | (MPa)      |           | (°C)        | (GPa)   | (MPa)      |           |
| -55.00      | 4.395 | 78.71      | 0.01791   | 55.00       | 1.096   | 82.77      | 0.07552   |
| -50.00      | 4.356 | 79.61      | 0.01827   | 60.00       | 0.9582  | 80.24      | 0.08375   |
| -45.00      | 4.305 | 81.45      | 0.01892   | 65.00       | 0.8353  | 76.40      | 0.09146   |
| -40.00      | 4.241 | 82.99      | 0.01957   | 70.00       | 0.7387  | 72.21      | 0.09776   |
| -35.00      | 4.162 | 85.59      | 0.02057   | 75.00       | 0.6596  | 68.01      | 0.1031    |
| -30.00      | 4.076 | 88.01      | 0.02159   | 80.00       | 0.5923  | 63.55      | 0.1073    |
| -25.00      | 3.977 | 91.68      | 0.02305   | 85.00       | 0.5392  | 59.33      | 0.1100    |
| -20.00      | 3.869 | 97.16      | 0.02511   | 90.00       | 0.4901  | 55.03      | 0.1123    |
| -15.00      | 3.742 | 107.2      | 0.02865   | 95.00       | 0.4523  | 51.43      | 0.1137    |
| -10.00      | 3.574 | 123.2      | 0.03449   | 100.00      | 0.4173  | 47.95      | 0.1149    |
| -5.00       | 3.367 | 140.9      | 0.04185   | 105.00      | 0.3845  | 44.61      | 0.1160    |
| 0.00        | 3.130 | 153.0      | 0.04887   | 110.00      | 0.3547  | 41.52      | 0.1171    |
| 5.00        | 2.882 | 155.3      | 0.05391   | 115.00      | 0.3262  | 38.49      | 0.1180    |
| 10.00       | 2.660 | 150.4      | 0.05655   | 120.00      | 0.2992  | 35.76      | 0.1195    |
| 15.00       | 2.436 | 141.0      | 0.05789   | 125.00      | 0.2701  | 33.02      | 0.1223    |
| 20.00       | 2.225 | 130.9      | 0.05883   | 130.00      | 0.2437  | 30.48      | 0.1251    |
| 25.00       | 2.031 | 121.4      | 0.05976   | 135.00      | 0.2171  | 28.12      | 0.1295    |
| 30.00       | 1.857 | 112.4      | 0.06053   | 140.00      | 0.1892  | 25.93      | 0.1371    |
| 35.00       | 1.709 | 104.5      | 0.06114   | 145.00      | 0.1571  | 23.45      | 0.1493    |
| 40.00       | 1.567 | 97.14      | 0.06197   | 150.00      | 0.1296  | 21.25      | 0.1640    |
| 45.00       | 1.418 | 90.80      | 0.06402   | 155.00      | 0.09789 | 18.62      | 0.1903    |
| 50.00       | 1.254 | 85.97      | 0.06859   |             |         |            |           |

 Table 70: Storage and loss properties for Polypropylene 400121 unfilled, homopolymer polypropylene (PP). (tabular data for Graph 70)

| Temperature<br>(°C) | E'<br>(GPa) | E"<br>(MPa) | Tan Delta | Temperature<br>(°C) | E'<br>(GPa) | E"<br>(MPa) | Tan Delta |
|---------------------|-------------|-------------|-----------|---------------------|-------------|-------------|-----------|
| -55.00              | 4.024       | 86.17       | 0.02142   | 55.00               | 1.104       | 83.51       | 0.07564   |
| -50.00              | 3.992       | 86.94       | 0.02178   | 60.00               | 0.9885      | 79.36       | 0.08029   |
| -45.00              | 3.946       | 89.73       | 0.02274   | 65.00               | 0.8666      | 75.72       | 0.08737   |
| -40.00              | 3.885       | 93.73       | 0.02413   | 70.00               | 0.7485      | 71.69       | 0.09578   |
| -35.00              | 3.815       | 97.98       | 0.02569   | 75.00               | 0.6349      | 67.70       | 0.1066    |
| -25.00              | 3.658       | 104.9       | 0.02868   | 80.00               | 0.5393      | 62.05       | 0.1151    |
| -20.00              | 3.569       | 109.8       | 0.03078   | 85.00               | 0.4572      | 56.15       | 0.1228    |
| -15.00              | 3.482       | 115.3       | 0.03312   | 90.00               | 0.3963      | 50.73       | 0.1280    |
| -10.00              | 3.377       | 124.1       | 0.03675   | 95.00               | 0.3536      | 46.47       | 0.1314    |
| -5.00               | 3.265       | 135.6       | 0.04153   | 100.00              | 0.3183      | 42.58       | 0.1338    |
| 0.00                | 3.124       | 150.5       | 0.04818   | 105.00              | 0.2884      | 39.18       | 0.1359    |
| 5.00                | 2.988       | 162.9       | 0.05450   | 110.00              | 0.2612      | 36.13       | 0.1383    |
| 10.00               | 2.867       | 170.6       | 0.05953   | 115.00              | 0.2361      | 33.45       | 0.1417    |
| 15.00               | 2.667       | 177.2       | 0.06645   | 120.00              | 0.2124      | 31.22       | 0.1470    |
| 20.00               | 2.453       | 176.6       | 0.07200   | 125.00              | 0.1894      | 28.75       | 0.1518    |
| 25.00               | 2.253       | 169.5       | 0.07523   | 130.00              | 0.1663      | 26.63       | 0.1602    |
| 30.00               | 2.046       | 156.8       | 0.07663   | 135.00              | 0.1440      | 24.52       | 0.1703    |
| 35.00               | 1.752       | 132.6       | 0.07567   | 140.00              | 0.1208      | 22.38       | 0.1853    |
| 40.00               | 1.527       | 113.2       | 0.07415   | 145.00              | 0.09692     | 20.12       | 0.2077    |
| 45.00               | 1.362       | 99.26       | 0.07290   | 150.00              | 0.07132     | 17.56       | 0.2464    |
| 50.00               | 1.225       | 89.64       | 0.07320   | 155.00              | 0.04185     | 13.97       | 0.3345    |



Graph 71: Storage and loss properties for Polypropylene 400145 unfilled, homopolymer polypropylene (PP).

Graph 72: Storage and loss properties for Montell PF062-2 20% glass fiber filled polypropylene (PP).



| Temperature | E'    | E"    | Tan Delta | Temperature | <b>E'</b> | <b>E</b> " | Tan Delta |
|-------------|-------|-------|-----------|-------------|-----------|------------|-----------|
| (°C)        | (GPa) | (MPa) |           | (°C)        | (GPa)     | (MPa)      |           |
| -55.00      | 4.367 | 115.9 | 0.02654   | 55.00       | 1.211     | 97.61      | 0.08058   |
| -50.00      | 4.344 | 115.3 | 0.02655   | 60.00       | 1.095     | 94.11      | 0.08592   |
| -45.00      | 4.301 | 116.5 | 0.02710   | 65.00       | 0.9839    | 91.20      | 0.09270   |
| -40.00      | 4.253 | 118.6 | 0.02789   | 70.00       | 0.8729    | 87.99      | 0.1008    |
| -35.00      | 4.196 | 120.6 | 0.02875   | 75.00       | 0.7662    | 83.14      | 0.1085    |
| -30.00      | 4.134 | 122.5 | 0.02963   | 80.00       | 0.6689    | 77.70      | 0.1162    |
| -25.00      | 4.068 | 124.0 | 0.03048   | 85.00       | 0.5873    | 71.57      | 0.1219    |
| -20.00      | 3.995 | 126.2 | 0.03160   | 90.00       | 0.5172    | 64.95      | 0.1256    |
| -15.00      | 3.928 | 129.3 | 0.03291   | 95.00       | 0.4553    | 57.96      | 0.1273    |
| -10.00      | 3.852 | 134.5 | 0.03492   | 100.00      | 0.4027    | 51.42      | 0.1277    |
| -5.00       | 3.778 | 142.8 | 0.03780   | 105.00      | 0.3554    | 45.38      | 0.1277    |
| 0.00        | 3.676 | 156.9 | 0.04268   | 110.00      | 0.3121    | 39.61      | 0.1269    |
| 5.00        | 3.563 | 173.2 | 0.04862   | 115.00      | 0.2722    | 34.29      | 0.1260    |
| 10.00       | 3.418 | 190.5 | 0.05574   | 120.00      | 0.2370    | 29.89      | 0.1261    |
| 15.00       | 3.228 | 204.0 | 0.06321   | 125.00      | 0.2031    | 26.20      | 0.1290    |
| 20.00       | 2.986 | 210.3 | 0.07043   | 130.00      | 0.1728    | 23.30      | 0.1349    |
| 25.00       | 2.645 | 207.3 | 0.07839   | 135.00      | 0.1426    | 20.72      | 0.1453    |
| 30.00       | 2.165 | 178.8 | 0.08257   | 140.00      | 0.1152    | 18.43      | 0.1600    |
| 35.00       | 1.812 | 140.9 | 0.07775   | 145.00      | 0.08798   | 16.28      | 0.1852    |
| 40.00       | 1.573 | 116.2 | 0.07389   | 150.00      | 0.05753   | 13.80      | 0.2402    |
| 45.00       | 1.439 | 107.7 | 0.07480   | 155.00      | 0.02596   | 11.01      | 0.4270    |
| 50.00       | 1.324 | 101.7 | 0.07679   |             |           |            |           |

 Table 72: Storage and loss properties for Montell PF062-2 20% glass fiber filled polypropylene (PP). (tabular data for Graph 72)

| Temperature<br>(°C) | E'<br>(GPa) | E"<br>(MPa) | Tan Delta | Temperature<br>(°C) | E'<br>(GPa) | E"<br>(MPa) | Tan Delta |
|---------------------|-------------|-------------|-----------|---------------------|-------------|-------------|-----------|
|                     |             |             |           |                     | (,          | (           |           |
| -60.00              | 6.484       | 84.53       | 0.01304   | 55.00               | 3.503       | 150.8       | 0.04304   |
| -55.00              | 6.463       | 83.39       | 0.01290   | 60.00               | 3.322       | 156.3       | 0.04705   |
| -50.00              | 6.433       | 83.31       | 0.01295   | 65.00               | 3.124       | 160.5       | 0.05136   |
| -45.00              | 6.400       | 84.74       | 0.01324   | 70.00               | 2.928       | 161.8       | 0.05525   |
| -40.00              | 6.353       | 86.86       | 0.01367   | 75.00               | 2.751       | 160.5       | 0.05835   |
| -35.00              | 6.294       | 90.38       | 0.01436   | 80.00               | 2.606       | 157.2       | 0.06031   |
| -30.00              | 6.228       | 93.75       | 0.01505   | 85.00               | 2.489       | 152.5       | 0.06128   |
| -25.00              | 6.142       | 99.75       | 0.01624   | 90.00               | 2.390       | 147.4       | 0.06168   |
| -20.00              | 6.036       | 108.0       | 0.01790   | 95.00               | 2.306       | 141.9       | 0.06153   |
| -15.00              | 5.916       | 117.6       | 0.01987   | 100.00              | 2.232       | 136.8       | 0.06127   |
| -10.00              | 5.775       | 128.5       | 0.02225   | 105.00              | 2.164       | 131.9       | 0.06096   |
| -5.00               | 5.537       | 141.6       | 0.02558   | 110.00              | 2.100       | 127.2       | 0.06057   |
| 0.00                | 5.274       | 148.8       | 0.02821   | 115.00              | 2.038       | 122.7       | 0.06019   |
| 5.00                | 5.039       | 149.0       | 0.02958   | 120.00              | 1.975       | 119.3       | 0.06043   |
| 15.00               | 4.640       | 146.1       | 0.03149   | 125.00              | 1.906       | 116.0       | 0.06087   |
| 20.00               | 4.467       | 145.1       | 0.03248   | 130.00              | 1.828       | 112.2       | 0.06142   |
| 25.00               | 4.327       | 144.7       | 0.03344   | 135.00              | 1.735       | 108.9       | 0.06279   |
| 30.00               | 4.192       | 143.9       | 0.03433   | 140.00              | 1.631       | 107.1       | 0.06568   |
| 35.00               | 4.080       | 143.4       | 0.03515   | 145.00              | 1.505       | 106.3       | 0.07063   |
| 40.00               | 3.971       | 143.6       | 0.03615   | 150.00              | 1.344       | 103.6       | 0.07707   |
| 45.00               | 3.835       | 144.3       | 0.03763   | 155.00              | 1 122       | 97 98       | 0.08731   |
| 50.00               | 3.674       | 146.9       | 0.04000   | 100.00              | 1.122       | 51.50       | 0.00751   |



Graph 73: Storage and loss properties for Montell PF072-3C 30% glass fiber filled polypropylene (PP).

Graph 74: Storage and loss properties for Montell PF072-4C 40% glass fiber filled polypropylene (PP).



Tabular Data Graphs

© Plastic Design Library

 Table 73: Storage and loss properties for Montell PF072-3C 30% glass fiber filled polypropylene (PP). (tabular data for Graph 73)

| Temperature<br>(°C) | E'<br>(GPa) | E"<br>(MPa) | Tan Delta | Temperature<br>(°C) | E'<br>(GPa) | E"<br>(MPa) | Tan Delta |
|---------------------|-------------|-------------|-----------|---------------------|-------------|-------------|-----------|
|                     |             |             |           |                     |             |             |           |
| -60.00              | 8.265       | 102.5       | 0.01240   | 50.00               | 4.434       | 187.9       | 0.04237   |
| -55.00              | 8.237       | 104.8       | 0.01272   | 55.00               | 4.198       | 191.3       | 0.04558   |
| -50.00              | 8.196       | 107.8       | 0.01315   | 60.00               | 3.958       | 196.6       | 0.04966   |
| -45.00              | 8.142       | 111.6       | 0.01371   | 65.00               | 3.727       | 202.7       | 0.05437   |
| -40.00              | 8.081       | 115.5       | 0.01430   | 70.00               | 3.502       | 205.9       | 0.05881   |
| -35.00              | 8.019       | 120.1       | 0.01498   | 75.00               | 3.299       | 205.2       | 0.06220   |
| -30.00              | 7.939       | 127.5       | 0.01606   | 80.00               | 3.126       | 202.4       | 0.06473   |
| -25.00              | 7.824       | 141.1       | 0.01804   | 85.00               | 2.976       | 197.8       | 0.06648   |
| -20.00              | 7.665       | 162.4       | 0.02118   | 90.00               | 2.842       | 192.6       | 0.06777   |
| -15.00              | 7.432       | 189.7       | 0.02552   | 95.00               | 2.714       | 187.3       | 0.06902   |
| -10.00              | 7.136       | 213.1       | 0.02986   | 100.00              | 2.596       | 180.7       | 0.06962   |
| -5.00               | 6.804       | 223.6       | 0.03286   | 105.00              | 2.484       | 174.5       | 0.07025   |
| 0.00                | 6.481       | 223.3       | 0.03445   | 110.00              | 2.368       | 168.8       | 0.07128   |
| 5.00                | 6.210       | 219.9       | 0.03541   | 115.00              | 2.255       | 163.1       | 0.07234   |
| 10.00               | 5.975       | 217.8       | 0.03645   | 120.00              | 2.143       | 158.5       | 0.07396   |
| 15.00               | 5.765       | 215.5       | 0.03738   | 125.00              | 2.018       | 154.1       | 0.07639   |
| 20.00               | 5.589       | 212.9       | 0.03810   | 130.00              | 1.880       | 148.1       | 0.07875   |
| 25.00               | 5.418       | 208.9       | 0.03855   | 135.00              | 1.710       | 139.3       | 0.08146   |
| 30.00               | 5.241       | 203.0       | 0.03873   | 140.00              | 1.523       | 131.4       | 0.08628   |
| 35.00               | 5.041       | 195.9       | 0.03885   | 145.00              | 1.319       | 122.3       | 0.09272   |
| 40.00               | 4.850       | 190.3       | 0.03924   | 150.00              | 1.064       | 108.9       | 0.1024    |
| 45.00               | 4.654       | 187.2       | 0.04024   | 155.00              | 0.7125      | 83.44       | 0.1172    |
| 10.00               |             | 10112       | 0.01021   | 100.00              | 0.1120      | 00.11       | 0.1172    |

 Table 74: Storage and loss properties for Montell PF072-4C 40% glass fiber filled polypropylene (PP). (tabular data for Graph 74)

| Temperature<br>(°C) | E'<br>(GPa) | E"<br>(MPa) | Tan Delta | Temperature<br>(°C) | E'<br>(GPa) | E"<br>(MPa) | Tan Delta |
|---------------------|-------------|-------------|-----------|---------------------|-------------|-------------|-----------|
| -60.00              | 1498.       | 22.26       | 0.01486   | 55.00               | 844.0       | 35.02       | 0.04149   |
| -55.00              | 1497.       | 21.68       | 0.01448   | 60.00               | 799.2       | 36.42       | 0.04557   |
| -50.00              | 1494.       | 21.49       | 0.01439   | 65.00               | 752.9       | 37.87       | 0.05030   |
| -45.00              | 1488.       | 21.47       | 0.01443   | 70.00               | 708.2       | 38.94       | 0.05499   |
| -40.00              | 1479.       | 21.73       | 0.01470   | 75.00               | 668.3       | 39.61       | 0.05927   |
| -35.00              | 1466.       | 22.62       | 0.01543   | 80.00               | 634.9       | 39.70       | 0.06253   |
| -30.00              | 1452.       | 23.72       | 0.01634   | 85.00               | 607.1       | 39.43       | 0.06495   |
| -25.00              | 1436.       | 25.41       | 0.01769   | 90.00               | 583.8       | 39.09       | 0.06696   |
| -20.00              | 1420.       | 27.29       | 0.01921   | 95.00               | 563.2       | 38.55       | 0.06845   |
| -15.00              | 1400.       | 30.33       | 0.02166   | 100.00              | 543.5       | 37.96       | 0.06984   |
| -10.00              | 1372.       | 34.00       | 0.02479   | 105.00              | 523.0       | 37.32       | 0.07135   |
| -5.00               | 1324.       | 37.97       | 0.02867   | 110.00              | 501.0       | 36.23       | 0.07232   |
| 0.00                | 1260.       | 39.61       | 0.03144   | 115.00              | 476.9       | 34.90       | 0.07317   |
| 5.00                | 1206.       | 38.99       | 0.03233   | 120.00              | 450.2       | 33.39       | 0.07417   |
| 10.00               | 1158.       | 38.00       | 0.03283   | 125.00              | 420.1       | 31.81       | 0.07572   |
| 15.00               | 1116.       | 37.35       | 0.03348   | 130.00              | 387.9       | 30.22       | 0.07790   |
| 20.00               | 1076.       | 36.73       | 0.03412   | 135.00              | 353.3       | 28.62       | 0.08103   |
| 25.00               | 1040.       | 35.96       | 0.03457   | 140.00              | 316.0       | 27.04       | 0.08557   |
| 30.00               | 1005.       | 34.99       | 0.03481   | 145.00              | 275.7       | 25.36       | 0.09200   |
| 35.00               | 973.4       | 34.17       | 0.03510   | 150.00              | 231.0       | 23.23       | 0.1006    |
| 40.00               | 943.6       | 33.62       | 0.03563   | 155.00              | 177.5       | 19.95       | 0.1124    |
| 45.00               | 914.8       | 33.56       | 0.03668   | 160.00              | 107.9       | 14.16       | 0.1313    |
| 50.00               | 882.4       | 34.02       | 0.03855   |                     |             |             |           |



Graph 75: Storage and loss properties for Ferro RPP40EA63UL 40% glass fiber filled, chemically coupled polypropylene (PP).

Graph 76: Storage and loss properties for Ticona Celstran PPG40 40% long glass fiber filled polypropylene (PP).



| (PP).       | (tabular dat | a for Graph / | (5)       |             |       |            |           |
|-------------|--------------|---------------|-----------|-------------|-------|------------|-----------|
| Temperature | E'           | <b>E</b> "    | Tan Delta | Temperature | E'    | <b>E</b> " | Tan Delta |
| (°C)        | (GPa)        | (MPa)         |           | (°C)        | (GPa) | (MPa)      |           |
| -55.00      | 10.71        | 111.1         | 0.01037   | 55.00       | 6.511 | 233.3      | 0.03582   |
| -50.00      | 10.77        | 110.9         | 0.01030   | 60.00       | 6.171 | 246.5      | 0.03995   |
| -45.00      | 10.74        | 116.8         | 0.01088   | 65.00       | 5.825 | 259.5      | 0.04455   |
| -40.00      | 10.65        | 123.9         | 0.01163   | 70.00       | 5.509 | 267.7      | 0.04860   |
| -35.00      | 10.54        | 131.1         | 0.01244   | 75.00       | 5.223 | 273.5      | 0.05237   |
| -30.00      | 10.41        | 139.3         | 0.01338   | 80.00       | 4.994 | 274.9      | 0.05505   |
| -25.00      | 10.28        | 149.2         | 0.01451   | 85.00       | 4.794 | 275.5      | 0.05747   |
| -20.00      | 10.12        | 162.0         | 0.01600   | 90.00       | 4.618 | 273.8      | 0.05928   |
| -15.00      | 9.945        | 179.4         | 0.01804   | 95.00       | 4.457 | 270.4      | 0.06066   |
| -10.00      | 9.710        | 199.5         | 0.02055   | 100.00      | 4.306 | 267.4      | 0.03209   |
| -5.00       | 9.434        | 216.3         | 0.02293   | 105.00      | 4.159 | 262.0      | 0.06300   |
| 0.00        | 9.138        | 225.3         | 0.02465   | 110.00      | 4.007 | 255.5      | 0.06378   |
| 5.00        | 8.841        | 227.9         | 0.02578   | 115.00      | 3.848 | 249.7      | 0.06489   |
| 10.00       | 8.555        | 227.9         | 0.02664   | 120.00      | 3.665 | 244.7      | 0.06678   |
| 15.00       | 8.281        | 227.3         | 0.02745   | 125.00      | 3.480 | 239.8      | 0.06890   |
| 20.00       | 8.024        | 226.6         | 0.02824   | 130.00      | 3.271 | 232.8      | 0.07118   |
| 25.00       | 7.836        | 225.0         | 0.02871   | 135.00      | 3.041 | 226.4      | 0.07445   |
| 30.00       | 7.674        | 223.5         | 0.02913   | 140.00      | 2.782 | 220.2      | 0.07916   |
| 35.00       | 7.495        | 221.1         | 0.02950   | 145.00      | 2.481 | 214.0      | 0.08627   |

150.00

155.00

2.115

1.631

203.0

178.5

0.09597

0.1095

 Table 75: Storage and loss properties for Ferro RPP40EA63UL 40% glass fiber filled, chemically coupled polypropylene (PP). (tabular data for Graph 75)

 Table 76: Storage and loss properties for Ticona Celstran PPG40 40% long glass fiber filled polypropylene (PP). (tabular data for Graph 76)

0.03012

0.03119

0.03291

| Temperature | E'<br>(GPa) | E"<br>(MPa) | Tan Delta | Temperature | E'<br>(CPa) | E"<br>(MPa) | Tan Delta |
|-------------|-------------|-------------|-----------|-------------|-------------|-------------|-----------|
| (0)         | (Or a)      | (ivii a)    |           |             | (Or a)      | (IVII a)    |           |
| -45.00      | 11.46       | 118.9       | 0.01038   | 60.00       | 6.646       | 264.1       | 0.03974   |
| -40.00      | 11.45       | 121.3       | 0.01059   | 65.00       | 6.365       | 271.2       | 0.04261   |
| -35.00      | 11.45       | 127.4       | 0.01113   | 70.00       | 6.117       | 275.4       | 0.04503   |
| -30.00      | 11.43       | 136.2       | 0.01192   | 75.00       | 5.908       | 277.0       | 0.04688   |
| -25.00      | 11.29       | 151.7       | 0.01344   | 80.00       | 5.727       | 277.2       | 0.04840   |
| -20.00      | 11.05       | 177.2       | 0.01604   | 85.00       | 5.558       | 277.4       | 0.04991   |
| -15.00      | 10.69       | 206.2       | 0.01929   | 90.00       | 5.395       | 276.0       | 0.05116   |
| -10.00      | 10.33       | 231.2       | 0.02239   | 95.00       | 5.242       | 275.4       | 0.05255   |
| -5.00       | 9.968       | 239.5       | 0.02403   | 100.00      | 5.095       | 274.2       | 0.05382   |
| 0.00        | 9.614       | 240.2       | 0.02498   | 105.00      | 4.952       | 271.5       | 0.05482   |
| 5.00        | 9.297       | 237.7       | 0.02557   | 110.00      | 4.809       | 269.3       | 0.05599   |
| 15.00       | 8.682       | 238.5       | 0.02748   | 115.00      | 4.651       | 268.8       | 0.05779   |
| 20.00       | 8.379       | 240.9       | 0.02875   | 120.00      | 4.491       | 267.7       | 0.05961   |
| 25.00       | 8.101       | 242.9       | 0.02999   | 125.00      | 4.325       | 266.9       | 0.06171   |
| 30.00       | 7.856       | 243.8       | 0.03103   | 130.00      | 4.114       | 259.8       | 0.06314   |
| 35.00       | 7.658       | 244.6       | 0.03194   | 135.00      | 3.860       | 254.8       | 0.06600   |
| 40.00       | 7.562       | 244.1       | 0.03228   | 140.00      | 3.557       | 251.9       | 0.07083   |
| 45.00       | 7.430       | 244.0       | 0.03285   | 145.00      | 3.200       | 247.5       | 0.07737   |
| 50.00       | 7.200       | 248.0       | 0.03444   | 150.00      | 2.737       | 239.1       | 0.08734   |
| 55.00       | 6.932       | 255.8       | 0.03690   | 155.00      | 2.020       | 213.1       | 0.1056    |

40.00

45.00

50.00

7.305

7.078

6.816

220.0

220.8

224.3



Graph 77: Storage and loss properties for Ferro HPP40GR09BK 10% glass fiber, 30% talc filled polypropylene (PP).

Graph 78: Storage and loss properties for Ferro TPP40AC45BK 40% talc filled polypropylene (PP).



 Table 77: Storage and loss properties for Ferro HPP40GR09BK 10% glass fiber, 30% talc filled polypropylene (PP). (tabular data for Graph 77)

| Temperature<br>(°C) | E'<br>(GPa) | E"<br>(MPa) | Tan Delta | Temperature<br>(°C) | E'<br>(GPa) | E"<br>(MPa) | Tan Delta |
|---------------------|-------------|-------------|-----------|---------------------|-------------|-------------|-----------|
| -60.00              | 8.906       | 113.8       | 0.01278   | 50.00               | 4.768       | 190.8       | 0.04001   |
| -55.00              | 8.885       | 113.2       | 0.01274   | 55.00               | 4.546       | 192.0       | 0.04224   |
| -50.00              | 8.846       | 115.0       | 0.01300   | 60.00               | 4.203       | 197.2       | 0.04694   |
| -45.00              | 8.790       | 117.6       | 0.01338   | 65.00               | 3.863       | 202.2       | 0.05235   |
| -40.00              | 8.719       | 121.0       | 0.01387   | 70.00               | 3.555       | 204.9       | 0.05765   |
| -35.00              | 8.636       | 124.7       | 0.01444   | 75.00               | 3.291       | 203.8       | 0.06195   |
| -30.00              | 8.543       | 130.6       | 0.01528   | 80.00               | 3.074       | 199.8       | 0.06501   |
| -25.00              | 8.452       | 134.0       | 0.01586   | 85.00               | 2.893       | 193.9       | 0.06704   |
| -20.00              | 8.343       | 140.7       | 0.01686   | 90.00               | 2.742       | 187.7       | 0.06844   |
| -15.00              | 8.209       | 149.8       | 0.01825   | 95.00               | 2.611       | 181.5       | 0.06951   |
| -10.00              | 8.048       | 163.2       | 0.02028   | 100.00              | 2.494       | 175.5       | 0.07037   |
| -5.00               | 7.814       | 185.6       | 0.02375   | 105.00              | 2.380       | 169.6       | 0.07124   |
| 0.00                | 7.496       | 212.2       | 0.02831   | 110.00              | 2.267       | 163.1       | 0.07195   |
| 5.00                | 7.106       | 230.2       | 0.03240   | 115.00              | 2.156       | 156.8       | 0.07273   |
| 10.00               | 6.728       | 234.7       | 0.03488   | 120.00              | 2.050       | 151.2       | 0.07374   |
| 15.00               | 6.353       | 230.9       | 0.03634   | 125.00              | 1.941       | 146.0       | 0.07518   |
| 20.00               | 6.016       | 223.3       | 0.03713   | 130.00              | 1.830       | 141.0       | 0.07704   |
| 25.00               | 5.727       | 214.0       | 0.03736   | 135.00              | 1.712       | 136.2       | 0.07958   |
| 30.00               | 5.485       | 205.2       | 0.03741   | 140.00              | 1.583       | 131.3       | 0.08297   |
| 35.00               | 5.295       | 198.6       | 0.03751   | 145.00              | 1.435       | 125.2       | 0.08721   |
| 40.00               | 5.140       | 194.6       | 0.03787   | 150.00              | 1.263       | 118.2       | 0.09353   |
| 45.00               | 4.970       | 191.8       | 0.03860   | 155.00              | 1.058       | 109.1       | 0.1032    |
|                     |             |             |           |                     |             |             |           |

 Table 78
 Storage and loss properties for Ferro TPP40AC45BK 40% talc filled polypropylene (PP). (tabular data for Graph 78)

| Temperature | E'    | <b>E</b> " | Tan Delta | Temperature | E'     | <b>E</b> " | Tan Delta |
|-------------|-------|------------|-----------|-------------|--------|------------|-----------|
| (°C)        | (GPa) | (MPa)      |           | (°C)        | (GPa)  | (MPa)      |           |
| -55.00      | 8.753 | 137.4      | 0.01570   | 55.00       | 3.288  | 204.1      | 0.06206   |
| -50.00      | 8.705 | 138.9      | 0.01596   | 60.00       | 2.935  | 204.0      | 0.06952   |
| -45.00      | 8.626 | 142.0      | 0.01646   | 65.00       | 2.582  | 202.9      | 0.07857   |
| -40.00      | 8.502 | 146.8      | 0.01727   | 70.00       | 2.256  | 197.8      | 0.08766   |
| -35.00      | 8.356 | 152.1      | 0.01820   | 75.00       | 1.996  | 190.0      | 0.09518   |
| -30.00      | 8.203 | 157.4      | 0.01918   | 80.00       | 1.787  | 180.1      | 0.1008    |
| -25.00      | 8.026 | 165.3      | 0.02060   | 85.00       | 1.601  | 169.2      | 0.1057    |
| -20.00      | 7.818 | 178.6      | 0.02285   | 90.00       | 1.446  | 158.6      | 0.1097    |
| -15.00      | 7.562 | 199.7      | 0.02641   | 95.00       | 1.311  | 148.0      | 0.1129    |
| -10.00      | 7.223 | 228.0      | 0.03157   | 100.00      | 1.193  | 138.7      | 0.1163    |
| -5.00       | 6.820 | 251.4      | 0.03687   | 105.00      | 1.085  | 130.2      | 0.1200    |
| 0.00        | 6.427 | 258.8      | 0.04027   | 110.00      | 0.9829 | 122.3      | 0.1244    |
| 5.00        | 6.067 | 256.2      | 0.04224   | 115.00      | 0.8877 | 114.4      | 0.1289    |
| 10.00       | 5.738 | 251.2      | 0.04378   | 120.00      | 0.7942 | 106.6      | 0.1343    |
| 15.00       | 5.425 | 246.9      | 0.04551   | 125.00      | 0.7054 | 98.95      | 0.1403    |
| 20.00       | 5.127 | 242.5      | 0.04730   | 130.00      | 0.6221 | 90.74      | 0.1459    |
| 25.00       | 4.858 | 237.9      | 0.04897   | 135.00      | 0.5424 | 82.68      | 0.1524    |
| 30.00       | 4.635 | 232.7      | 0.05020   | 140.00      | 0.4684 | 75.45      | 0.1611    |
| 35.00       | 4.398 | 225.7      | 0.05132   | 145.00      | 0.3990 | 67.65      | 0.1695    |
| 40.00       | 4.164 | 218.2      | 0.05239   | 150.00      | 0.3271 | 59.38      | 0.1815    |
| 45.00       | 3.911 | 211.0      | 0.05395   | 155.00      | 0.2497 | 49.19      | 0.1970    |
| 50.00       | 3.623 | 205.7      | 0.05677   |             |        |            |           |



Graph 79: Storage and loss properties for Ferro MPP40FJ15NA 40% mica filled, chemically coupled polypropylene (PP).

Graph 80: Storage and loss properties for Montell SB224-2C 20% glass fiber filled polypropylene copolymer (PP copolymer).



| Temperature<br>(°C) | E'<br>(GPa) | E"<br>(MPa) | Tan Delta | Temperature<br>(°C) | E'<br>(GPa) | E"<br>(MPa) | Tan Delta |
|---------------------|-------------|-------------|-----------|---------------------|-------------|-------------|-----------|
| -55.00              | 10.49       | 98.59       | 0.009401  | 55.00               | 4.466       | 251.5       | 0.05631   |
| -45.00              | 10.15       | 111.6       | 0.01099   | 60.00               | 4.036       | 257.7       | 0.06385   |
| -40.00              | 10.03       | 118.0       | 0.01176   | 65.00               | 3.585       | 260.8       | 0.07275   |
| -35.00              | 9.892       | 126.0       | 0.01273   | 70.00               | 3.210       | 260.3       | 0.08110   |
| -30.00              | 9.742       | 134.1       | 0.01376   | 75.00               | 2.894       | 252.8       | 0.08734   |
| -25.00              | 9.566       | 147.7       | 0.01544   | 80.00               | 2.617       | 240.7       | 0.09196   |
| -20.00              | 9.356       | 167.7       | 0.01792   | 85.00               | 2.416       | 231.4       | 0.09578   |
| -15.00              | 9.094       | 194.4       | 0.02137   | 90.00               | 2.218       | 219.6       | 0.09899   |
| -10.00              | 8.766       | 223.9       | 0.02554   | 95.00               | 2.040       | 207.2       | 0.1015    |
| -5.00               | 8.391       | 244.6       | 0.02915   | 100.00              | 1.875       | 195.3       | 0.1041    |
| 0.00                | 7.981       | 254.4       | 0.03188   | 105.00              | 1.722       | 183.9       | 0.1068    |
| 5.00                | 7.567       | 256.8       | 0.03393   | 110.00              | 1.575       | 173.4       | 0.1101    |
| 10.00               | 7.179       | 256.4       | 0.03572   | 115.00              | 1.431       | 163.3       | 0.1141    |
| 15.00               | 6.815       | 257.0       | 0.03771   | 120.00              | 1.300       | 153.8       | 0.1183    |
| 20.00               | 6.468       | 256.6       | 0.03967   | 125.00              | 1.169       | 145.5       | 0.1244    |
| 25.00               | 6.211       | 255.6       | 0.04115   | 130.00              | 1.043       | 137.0       | 0.1313    |
| 30.00               | 5.944       | 252.6       | 0.04249   | 135.00              | 0.9076      | 128.1       | 0.1412    |
| 35.00               | 5.680       | 248.7       | 0.04379   | 140.00              | 0.7648      | 117.4       | 0.1534    |
| 40.00               | 5.462       | 246.1       | 0.04506   | 145.00              | 0.6168      | 103.6       | 0.1680    |
| 45.00               | 5.205       | 244.8       | 0.04702   | 150.00              | 0.4625      | 84.97       | 0.1838    |
| 50.00               | 4.855       | 246.7       | 0.05082   | 155.00              | 0.2789      | 57.88       | 0.2077    |

 Table 80: Storage and loss properties for Montell SB224-2C 20% glass fiber filled polypropylene copolymer (PP copolymer). (tabular data for Graph 80)

| Temperature | E'    | <b>E</b> " | Tan Delta | Temperature | E'     | <b>E</b> " | Tan Delta |
|-------------|-------|------------|-----------|-------------|--------|------------|-----------|
| (°C)        | (GPa) | (MPa)      |           | (°C)        | (GPa)  | (MPa)      |           |
| -55.00      | 5.175 | 159.2      | 0.03076   | 55.00       | 2.849  | 151.4      | 0.05314   |
| -50.00      | 5.115 | 156.4      | 0.03058   | 60.00       | 2.668  | 155.8      | 0.05840   |
| -45.00      | 5.057 | 157.0      | 0.03104   | 65.00       | 2.472  | 162.1      | 0.06556   |
| -40.00      | 4.990 | 160.5      | 0.03217   | 70.00       | 2.298  | 167.4      | 0.07287   |
| -35.00      | 4.915 | 165.3      | 0.03363   | 75.00       | 2.161  | 169.6      | 0.07848   |
| -30.00      | 4.833 | 165.6      | 0.03427   | 80.00       | 2.038  | 166.2      | 0.08153   |
| -25.00      | 4.756 | 162.7      | 0.03420   | 85.00       | 1.919  | 159.8      | 0.08326   |
| -20.00      | 4.665 | 162.6      | 0.03485   | 90.00       | 1.812  | 153.1      | 0.08444   |
| -15.00      | 4.555 | 164.9      | 0.03621   | 95.00       | 1.710  | 145.9      | 0.08532   |
| -10.00      | 4.428 | 166.9      | 0.03770   | 100.00      | 1.614  | 138.5      | 0.08581   |
| -5.00       | 4.285 | 166.7      | 0.03891   | 105.00      | 1.523  | 131.4      | 0.08627   |
| 0.00        | 4.143 | 163.9      | 0.03956   | 110.00      | 1.436  | 124.9      | 0.08697   |
| 5.00        | 3.993 | 159.8      | 0.04003   | 115.00      | 1.349  | 118.9      | 0.08810   |
| 10.00       | 3.843 | 156.3      | 0.04068   | 120.00      | 1.262  | 113.6      | 0.09004   |
| 15.00       | 3.699 | 154.1      | 0.04166   | 125.00      | 1.191  | 111.8      | 0.09386   |
| 20.00       | 3.567 | 153.4      | 0.04301   | 130.00      | 1.097  | 106.1      | 0.09669   |
| 25.00       | 3.441 | 152.3      | 0.04426   | 135.00      | 0.9967 | 101.0      | 0.1013    |
| 30.00       | 3.367 | 152.4      | 0.04525   | 140.00      | 0.8901 | 95.73      | 0.1075    |
| 35.00       | 3.309 | 152.1      | 0.04598   | 145.00      | 0.7734 | 89.43      | 0.1156    |
| 40.00       | 3.233 | 151.2      | 0.04677   | 150.00      | 0.6356 | 81.37      | 0.1280    |
| 45.00       | 3.135 | 149.9      | 0.04782   | 155.00      | 0.4501 | 66.02      | 0.1467    |
| 50.00       | 2.994 | 149.6      | 0.04998   |             |        |            |           |



Graph 81: Storage and loss properties for Ticona Topas 5513 unfilled cyclic olefin copolymer.

Graph 82: Storage and loss properties for Ticona Topas 6013 unfilled cyclic olefin copolymer.



Table 81 Storage and loss properties for Ticona Topas 5513 unfilled cyclic olefin copolymer. (tabular data for Graph 81)

| Temperature<br>(°C) | E'<br>(GPa) | E"<br>(MPa) | Tan Delta | Temperature<br>(°C) | E'<br>(GPa) | E"<br>(MPa) | Tan Delta |
|---------------------|-------------|-------------|-----------|---------------------|-------------|-------------|-----------|
| -60.00              | 3.069       | 18.75       | 0.006108  | 60.00               | 2.715       | 30.88       | 0.01138   |
| -55.00              | 3.064       | 17.77       | 0.005800  | 65.00               | 2.699       | 31.25       | 0.01158   |
| -50.00              | 3.054       | 17.32       | 0.005671  | 70.00               | 2.684       | 31.46       | 0.01172   |
| -45.00              | 3.044       | 17.09       | 0.005615  | 75.00               | 2.665       | 32.20       | 0.01208   |
| -40.00              | 3.031       | 17.57       | 0.005795  | 80.00               | 2.644       | 33.39       | 0.01263   |
| -35.00              | 3.015       | 18.71       | 0.006205  | 85.00               | 2.617       | 35.57       | 0.01359   |
| -30.00              | 2.992       | 20.83       | 0.006960  | 90.00               | 2.586       | 38.59       | 0.01492   |
| -25.00              | 2.972       | 22.43       | 0.007547  | 95.00               | 2.554       | 43.02       | 0.01685   |
| -20.00              | 2.958       | 24.08       | 0.008141  | 100.00              | 2.521       | 48.77       | 0.01935   |
| -15.00              | 2.946       | 24.90       | 0.008453  | 105.00              | 2.487       | 55.88       | 0.02247   |
| -5.00               | 2.924       | 25.88       | 0.008852  | 110.00              | 2.449       | 66.17       | 0.02702   |
| 0.00                | 2.912       | 26.42       | 0.009074  | 115.00              | 2.407       | 79.81       | 0.03316   |
| 5.00                | 2.899       | 26.77       | 0.009234  | 120.00              | 2.352       | 98.39       | 0.04184   |
| 10.00               | 2.884       | 27.35       | 0.009484  | 125.00              | 2.264       | 125.2       | 0.05532   |
| 15.00               | 2.872       | 27.57       | 0.009597  | 130.00              | 2.088       | 163.4       | 0.07830   |
| 20.00               | 2.860       | 28.08       | 0.009819  | 135.00              | 1.720       | 225.4       | 0.1312    |
| 25.00               | 2.847       | 28.17       | 0.009896  | 140.00              | 1.116       | 327.6       | 0.2947    |
| 30.00               | 2.829       | 28.76       | 0.01017   | 145.00              | 0.3843      | 391.6       | 1.040     |
| 35.00               | 2.804       | 29.85       | 0.01065   | 150.00              | 0.03920     | 149.3       | 3.869     |
| 40.00               | 2.782       | 30.81       | 0.01108   | 155.00              | 0.004323    | 34.35       | 7.974     |
| 45.00               | 2.764       | 30.86       | 0.01117   | 160.00              | 0.003208    | 15.67       | 4.903     |
| 50.00               | 2.748       | 30.87       | 0.01123   | 165.00              | 6.664E-4    | 10.67       | 16.01     |
| 55.00               | 2.732       | 30.76       | 0.01126   | 170.00              | 0.001904    | 9.293       | 4.938     |

Table 82 Storage and loss properties for Ticona Topas 6013 unfilled cyclic olefin copolymer. (tabular data for Graph 82)

| Temperature | E'    | <b>E</b> " | Tan Delta | Temperature | E'       | <b>E</b> " | Tan Delta |
|-------------|-------|------------|-----------|-------------|----------|------------|-----------|
| (°C)        | (GPa) | (MPa)      |           | (°C)        | (GPa)    | (MPa)      |           |
| -60.00      | 2.987 | 23.69      | 0.007932  | 60.00       | 2.582    | 34.94      | 0.01353   |
| -55.00      | 2.982 | 22.96      | 0.007702  | 65.00       | 2.557    | 35.89      | 0.01403   |
| -50.00      | 2.971 | 23.14      | 0.007788  | 70.00       | 2.530    | 37.04      | 0.01464   |
| -45.00      | 2.953 | 23.91      | 0.008095  | 75.00       | 2.499    | 38.54      | 0.01542   |
| -40.00      | 2.931 | 24.94      | 0.008510  | 80.00       | 2.466    | 40.67      | 0.01649   |
| -35.00      | 2.914 | 25.51      | 0.008754  | 85.00       | 2.431    | 43.36      | 0.01784   |
| -30.00      | 2.896 | 26.01      | 0.008982  | 90.00       | 2.395    | 46.58      | 0.01945   |
| -25.00      | 2.880 | 26.61      | 0.009241  | 95.00       | 2.360    | 50.08      | 0.02122   |
| -20.00      | 2.864 | 27.27      | 0.009521  | 100.00      | 2.326    | 54.24      | 0.02331   |
| -15.00      | 2.848 | 27.86      | 0.009784  | 105.00      | 2.294    | 59.08      | 0.02576   |
| -10.00      | 2.832 | 28.48      | 0.01006   | 110.00      | 2.261    | 65.32      | 0.02889   |
| -5.00       | 2.816 | 28.74      | 0.01021   | 115.00      | 2.225    | 73.57      | 0.03307   |
| 0.00        | 2.800 | 29.08      | 0.01039   | 120.00      | 2.181    | 85.61      | 0.03925   |
| 5.00        | 2.783 | 29.49      | 0.01060   | 125.00      | 2.125    | 103.1      | 0.04854   |
| 10.00       | 2.767 | 29.96      | 0.01083   | 130.00      | 2.039    | 130.0      | 0.06375   |
| 15.00       | 2.749 | 30.69      | 0.01116   | 135.00      | 1.881    | 169.3      | 0.09002   |
| 20.00       | 2.732 | 31.17      | 0.01141   | 140.00      | 1.558    | 232.0      | 0.1490    |
| 25.00       | 2.716 | 31.65      | 0.01165   | 145.00      | 1.032    | 359.8      | 0.3499    |
| 30.00       | 2.701 | 31.93      | 0.01182   | 150.00      | 0.3582   | 421.2      | 1,192     |
| 35.00       | 2.686 | 32.27      | 0.01201   | 155.00      | 0.03407  | 121.2      | 3.602     |
| 40.00       | 2.666 | 32.91      | 0.01235   | 160.00      | 0.005770 | 30.23      | 5.237     |
| 45.00       | 2.646 | 33.22      | 0.01255   | 165.00      | 0.004901 | 15.14      | 3.096     |
| 50.00       | 2.626 | 33.71      | 0.01284   | 170.00      | 0.002557 | 10.46      | 4.222     |
| 55.00       | 2.605 | 34.24      | 0.01315   | 110100      | 51002001 | 10110      |           |



**Graph 83:** Storage and loss properties for GE Plastics Noryl N225X flame retardant, moderate heat resistance syrene modified polyphenylene ether (modified PPE).

**Graph 84:** Storage and loss properties for GE Plastics Noryl SE1X flame retardant, high heat resistance syrene modified polyphenylene ether (modified PPE).



 Table 83
 Storage and loss properties for GE Plastics Noryl N225X flame retardant, moderate heat resistance syrene modified polyphenylene ether (modified PPE). (tabular data for Graph 83)

| Temperature<br>(°C) | E'<br>(GPa) | E"<br>(MPa) | Tan Delta | Temperature<br>(°C) | E'<br>(GPa) | E"<br>(MPa) | Tan Delta |
|---------------------|-------------|-------------|-----------|---------------------|-------------|-------------|-----------|
| -60.00              | 3.250       | 66.71       | 0.02052   | 45.00               | 2.768       | 94.48       | 0.03414   |
| -55.00              | 3.240       | 66.73       | 0.02059   | 50.00               | 2.734       | 94.88       | 0.03471   |
| -50.00              | 3.224       | 67.67       | 0.02099   | 55.00               | 2.696       | 96.02       | 0.03561   |
| -45.00              | 3.205       | 69.52       | 0.02169   | 60.00               | 2.658       | 97.20       | 0.03657   |
| -40.00              | 3.180       | 71.83       | 0.02259   | 65.00               | 2.609       | 99.09       | 0.03798   |
| -35.00              | 3.151       | 74.68       | 0.02370   | 70.00               | 2.546       | 103.0       | 0.04045   |
| -30.00              | 3.119       | 77.58       | 0.02487   | 75.00               | 2.468       | 108.8       | 0.04409   |
| -25.00              | 3.086       | 80.66       | 0.02614   | 80.00               | 2.381       | 116.3       | 0.04887   |
| -20.00              | 3.055       | 83.20       | 0.02724   | 85.00               | 2.295       | 124.7       | 0.05433   |
| -15.00              | 3.026       | 85.62       | 0.02829   | 90.00               | 2.214       | 133.0       | 0.03007   |
| -10.00              | 3.001       | 87.08       | 0.02902   | 95.00               | 2.134       | 141.7       | 0.06638   |
| -5.00               | 2.980       | 88.34       | 0.02964   | 100.00              | 2.048       | 151.3       | 0.07386   |
| 0.00                | 2.962       | 89.57       | 0.03023   | 105.00              | 1.946       | 164.1       | 0.08436   |
| 5.00                | 2.945       | 90.36       | 0.03068   | 110.00              | 1.823       | 179.8       | 0.09864   |
| 10.00               | 2.929       | 90.86       | 0.03102   | 115.00              | 1.660       | 199.8       | 0.1204    |
| 15.00               | 2.914       | 90.79       | 0.03115   | 120.00              | 1.421       | 226.0       | 0.1592    |
| 20.00               | 2.898       | 90.81       | 0.03134   | 125.00              | 1.096       | 257.6       | 0.2360    |
| 25.00               | 2.878       | 91.33       | 0.03174   | 130.00              | 0.7490      | 293.6       | 0.3989    |
| 30.00               | 2.855       | 92.09       | 0.03225   | 135.00              | 0.4361      | 303.9       | 0.7630    |
| 35.00               | 2.830       | 93.00       | 0.03287   | 140.00              | 0.1705      | 217.8       | 1.406     |
| 40.00               | 2.801       | 93.85       | 0.03351   | 145.00              | 0.06888     | 107.8       | 1.593     |

| Table 84 | 4: Storage a | and loss prop  | erties for | GE P | lastics Noryl SE1 | X flame retardant, | high heat resis | stance syr | ene m | nodi | fied |
|----------|--------------|----------------|------------|------|-------------------|--------------------|-----------------|------------|-------|------|------|
|          | polyphen     | ylene ether (r | modified F | PE). | (tabular data for | Graph 84)          | -               |            |       |      |      |
| m        |              |                |            | -    |                   |                    |                 |            | -     | -    |      |

|             | -     |            | , ,       |             |         |            |           |
|-------------|-------|------------|-----------|-------------|---------|------------|-----------|
| Temperature | E'    | <b>E</b> " | Tan Delta | Temperature | E'      | <b>E</b> " | Tan Delta |
| (°C)        | (GPa) | (MPa)      |           | (°C)        | (GPa)   | (MPa)      |           |
| -60.00      | 3.002 | 49.44      | 0.01647   | 55.00       | 2.401   | 75.16      | 0.03130   |
| -55.00      | 2.992 | 48.36      | 0.01616   | 60.00       | 2.370   | 74.68      | 0.03151   |
| -50.00      | 2.977 | 48.71      | 0.01636   | 65.00       | 2.340   | 74.40      | 0.03180   |
| -45.00      | 2.957 | 50.96      | 0.01723   | 70.00       | 2.307   | 74.38      | 0.03225   |
| -40.00      | 2.932 | 54.76      | 0.01868   | 75.00       | 2.267   | 75.04      | 0.03311   |
| -35.00      | 2.905 | 59.17      | 0.02036   | 80.00       | 2.218   | 76.65      | 0.03456   |
| -30.00      | 2.877 | 63.91      | 0.02221   | 85.00       | 2.165   | 79.16      | 0.03657   |
| -25.00      | 2.849 | 68.65      | 0.02409   | 90.00       | 2.111   | 82.21      | 0.03894   |
| -20.00      | 2.820 | 72.43      | 0.02568   | 95.00       | 2.060   | 85.57      | 0.04155   |
| -15.00      | 2.790 | 75.39      | 0.02702   | 100.00      | 2.006   | 89.87      | 0.04480   |
| -10.00      | 2.764 | 77.62      | 0.02808   | 105.00      | 1.947   | 95.54      | 0.04906   |
| -5.00       | 2.735 | 79.73      | 0.02915   | 110.00      | 1.888   | 102.8      | 0.05444   |
| 0.00        | 2.710 | 81.32      | 0.03001   | 115.00      | 1.825   | 111.1      | 0.06085   |
| 5.00        | 2.686 | 82.55      | 0.03074   | 120.00      | 1.752   | 122.3      | 0.06982   |
| 10.00       | 2.664 | 82.84      | 0.03110   | 125.00      | 1.659   | 137.2      | 0.08267   |
| 15.00       | 2.649 | 82.10      | 0.03100   | 130.00      | 1.535   | 156.7      | 0.1021    |
| 20.00       | 2.633 | 81.16      | 0.03082   | 135.00      | 1.349   | 182.2      | 0.1350    |
| 25.00       | 2.606 | 80.63      | 0.03094   | 140.00      | 1.080   | 212.0      | 0.1964    |
| 30.00       | 2.566 | 79.18      | 0.03086   | 145.00      | 0.7539  | 247.8      | 0.3293    |
| 35.00       | 2.528 | 78.24      | 0.03095   | 150.00      | 0.4377  | 266.6      | 0.6106    |
| 40.00       | 2.496 | 77.35      | 0.03099   | 155.00      | 0.1766  | 201.2      | 1.144     |
| 45.00       | 2.463 | 76.79      | 0.03117   | 160.00      | 0.04533 | 91.35      | 2.025     |
| 50.00       | 2.433 | 75.95      | 0.03122   | 165.00      | 0.01317 | 38.53      | 2.929     |
|             |       |            |           |             |         |            |           |



Graph 85: Storage and loss properties for GE Plastics Noryl SE1-GFN1 10% glass fiber filled, flame retardant syrene modified polyphenylene ether (modified PPE).

**Graph 86:** Storage and loss properties for GE Plastics Noryl GFN2 20% glass fiber filled syrene modified polyphenylene ether (modified PPE).



| Table 85: Storage and loss properties for GE Plastics Noryl SE1-GFN1 10% glass fiber filled, flame retardant syrene |
|---------------------------------------------------------------------------------------------------------------------|
| modified polyphenylene ether (modified PPE). (tabular data for Graph 85)                                            |

| Temperature<br>(°C) | E'<br>(GPa) | E"<br>(MPa) | Tan Delta | Temperature<br>(°C) | E'<br>(GPa) | E"<br>(MPa) | Tan Delta |
|---------------------|-------------|-------------|-----------|---------------------|-------------|-------------|-----------|
| -60.00              | 4.062       | 37.48       | 0.009226  | 60.00               | 3.618       | 79.93       | 0.02209   |
| -55.00              | 4.053       | 37.32       | 0.009208  | 65.00               | 3.593       | 79.75       | 0.02219   |
| -50.00              | 4.041       | 37.29       | 0.009229  | 70.00               | 3.564       | 80.06       | 0.02247   |
| -45.00              | 4.028       | 38.97       | 0.009674  | 75.00               | 3.530       | 80.99       | 0.02294   |
| -40.00              | 4.011       | 41.45       | 0.01034   | 80.00               | 3.488       | 83.14       | 0.02384   |
| -35.00              | 3.993       | 44.33       | 0.01110   | 85.00               | 3.425       | 86.99       | 0.02532   |
| -30.00              | 3.971       | 47.52       | 0.01197   | 90.00               | 3.381       | 92.32       | 0.02731   |
| -25.00              | 3.952       | 51.12       | 0.01293   | 95.00               | 3.325       | 98.82       | 0.02972   |
| -20.00              | 3.936       | 54.91       | 0.01395   | 100.00              | 3.271       | 106.6       | 0.03258   |
| -15.00              | 3.917       | 57.82       | 0.01476   | 105.00              | 3.217       | 115.5       | 0.03590   |
| -10.00              | 3.895       | 61.01       | 0.01566   | 110.00              | 3.158       | 126.4       | 0.04001   |
| -5.00               | 3.875       | 63.69       | 0.01644   | 115.00              | 3.089       | 139.8       | 0.04526   |
| 0.00                | 3.849       | 67.11       | 0.01744   | 120.00              | 3.005       | 157.1       | 0.05229   |
| 5.00                | 3.825       | 70.15       | 0.01834   | 125.00              | 2.890       | 182.0       | 0.06299   |
| 10.00               | 3.804       | 73.01       | 0.01919   | 130.00              | 2.729       | 217.4       | 0.07969   |
| 15.00               | 3.785       | 75.16       | 0.01986   | 135.00              | 2.468       | 271.4       | 0.1100    |
| 20.00               | 3.772       | 76.28       | 0.02023   | 140.00              | 2.031       | 338.4       | 0.1668    |
| 25.00               | 3.759       | 76.99       | 0.02048   | 145.00              | 1.469       | 406.2       | 0.2768    |
| 30.00               | 3.744       | 77.40       | 0.02067   | 150.00              | 0.9070      | 467.7       | 0.5169    |
| 35.00               | 3.723       | 78.44       | 0.02107   | 155.00              | 0.3932      | 385.9       | 0.9853    |
| 40.00               | 3.699       | 79.62       | 0.02152   | 160.00              | 0.1246      | 182.2       | 1.464     |
| 45.00               | 3.676       | 80.48       | 0.02189   | 165.00              | 0.05089     | 75.52       | 1.483     |
| 50.00               | 3.658       | 80.51       | 0.02201   | 170.00              | 0.02978     | 38.69       | 1.299     |
| 55.00               | 3.640       | 80.27       | 0.02206   | 175.00              | 0.02101     | 25.15       | 1.197     |

| Table 86: Storage and loss properties for GE Plastics Noryl GFN2 20% glass fiber filled syrene modified | polyphenylene |
|---------------------------------------------------------------------------------------------------------|---------------|
| ether (modified PPE). (tabular data for Graph 86)                                                       |               |

| Temperature<br>(°C) | E'<br>(GPa) | E"<br>(MPa) | Tan Delta | Temperature<br>(°C) | E'<br>(GPa) | E"<br>(MPa) | Tan Delta |
|---------------------|-------------|-------------|-----------|---------------------|-------------|-------------|-----------|
| -60.00              | 5.226       | 31.54       | 0.006035  | 60.00               | 4.811       | 71.75       | 0.01491   |
| -55.00              | 5.215       | 30.39       | 0.005827  | 65.00               | 4.793       | 72.89       | 0.01521   |
| -50.00              | 5.199       | 31.34       | 0.006027  | 70.00               | 4.770       | 74.66       | 0.01565   |
| -45.00              | 5.183       | 32.36       | 0.006243  | 75.00               | 4.741       | 76.58       | 0.01615   |
| -40.00              | 5.172       | 33.31       | 0.006441  | 80.00               | 4.706       | 79.71       | 0.01694   |
| -35.00              | 5.160       | 34.71       | 0.006728  | 85.00               | 4.665       | 83.06       | 0.01781   |
| -30.00              | 5.144       | 37.21       | 0.007234  | 90.00               | 4.623       | 86.71       | 0.01876   |
| -25.00              | 5.127       | 39.26       | 0.007657  | 95.00               | 4.582       | 90.90       | 0.01984   |
| -20.00              | 5.109       | 42.13       | 0.008247  | 100.00              | 4.542       | 95.81       | 0.02109   |
| -15.00              | 5.094       | 44.58       | 0.008751  | 105.00              | 4.500       | 102.4       | 0.02275   |
| -10.00              | 5.081       | 46.93       | 0.009235  | 110.00              | 4.454       | 111.5       | 0.02504   |
| -5.00               | 5.064       | 49.42       | 0.009759  | 115.00              | 4.402       | 124.5       | 0.02827   |
| 0.00                | 5.044       | 51.72       | 0.01025   | 120.00              | 4.339       | 144.2       | 0.03323   |
| 5.00                | 5.023       | 54.38       | 0.01083   | 125.00              | 4.253       | 173.2       | 0.04072   |
| 10.00               | 5.003       | 56.44       | 0.01128   | 130.00              | 4.116       | 219.3       | 0.05328   |
| 15.00               | 4.984       | 57.89       | 0.01162   | 135.00              | 3.868       | 296.5       | 0.07666   |
| 20.00               | 4.974       | 57.97       | 0.01165   | 140.00              | 3.380       | 419.2       | 0.1241    |
| 25.00               | 4.960       | 58.90       | 0.01187   | 145.00              | 2.624       | 579.8       | 0.2213    |
| 30.00               | 4.943       | 61.02       | 0.01234   | 150.00              | 1.710       | 766.0       | 0.4490    |
| 35.00               | 4.918       | 64.11       | 0.01304   | 155.00              | 0.7557      | 680.6       | 0.9044    |
| 40.00               | 4.891       | 66.79       | 0.01366   | 160.00              | 0.2460      | 317.0       | 1.290     |
| 45.00               | 4.867       | 68.33       | 0.01404   | 165.00              | 0.1113      | 130.9       | 1.175     |
| 50.00               | 4.849       | 69.74       | 0.01438   | 170.00              | 0.06758     | 65.00       | 0.9614    |
| 55.00               | 4.830       | 70.61       | 0.01462   | 175.00              | 0.04792     | 40.28       | 0.8403    |



**Graph 87:** Storage and loss properties for GE Plastics Noryl GFN3 30% glass fiber filled syrene modified polyphenylene ether (modified PPE).

Graph 88: Storage and loss properties for Ticona Fortron 1140 40% glass fiber filled polyphenylene sulfide (PPS).



| Temperature | E'<br>(GPa)             | E"<br>(MPa) | Tan Delta | Temperature | E'     | E"<br>(MPa) | Tan Delta |
|-------------|-------------------------|-------------|-----------|-------------|--------|-------------|-----------|
| (0)         | ( <b>U</b> 1 <b>a</b> ) | (IVII a)    |           | (-0)        | (Gra)  | (IVIF a)    |           |
| -60.00      | 6.573                   | 0.06067     | 0.009231  | 60.00       | 6.179  | 0.09442     | 0.01528   |
| -55.00      | 6.567                   | 0.05807     | 0.008842  | 65.00       | 6.160  | 0.09290     | 0.01508   |
| -50.00      | 6.553                   | 0.05876     | 0.008967  | 70.00       | 6.138  | 0.09179     | 0.01496   |
| -45.00      | 6.533                   | 0.05997     | 0.009180  | 75.00       | 6.111  | 0.09168     | 0.01500   |
| -40.00      | 6.522                   | 0.06196     | 0.009500  | 80.00       | 6.080  | 0.09214     | 0.01516   |
| -35.00      | 6.512                   | 0.06507     | 0.009991  | 85.00       | 6.044  | 0.09410     | 0.01557   |
| -30.00      | 6.497                   | 0.06806     | 0.01048   | 90.00       | 6.004  | 0.09596     | 0.01598   |
| -25.00      | 6.480                   | 0.07062     | 0.01090   | 95.00       | 5.958  | 0.09974     | 0.01674   |
| -20.00      | 6.461                   | 0.07363     | 0.01140   | 100.00      | 5.908  | 0.1055      | 0.01786   |
| -15.00      | 6.443                   | 0.07667     | 0.01190   | 105.00      | 5.863  | 0.1122      | 0.01914   |
| -10.00      | 6.423                   | 0.08015     | 0.01248   | 110.00      | 5.817  | 0.1207      | 0.02074   |
| -5.00       | 6.402                   | 0.08458     | 0.01321   | 115.00      | 5.767  | 0.1318      | 0.02286   |
| 0.00        | 6.379                   | 0.08983     | 0.01408   | 120.00      | 5.711  | 0.1469      | 0.02572   |
| 5.00        | 6.358                   | 0.09372     | 0.01474   | 125.00      | 5.646  | 0.1671      | 0.02960   |
| 10.00       | 6.347                   | 0.09673     | 0.01524   | 130.00      | 5.565  | 0.1954      | 0.03510   |
| 15.00       | 6.342                   | 0.09807     | 0.01546   | 135.00      | 5.449  | 0.2408      | 0.04419   |
| 20.00       | 6.337                   | 0.09790     | 0.01545   | 140.00      | 5.252  | 0.3155      | 0.06007   |
| 25.00       | 6.323                   | 0.09897     | 0.01565   | 145.00      | 4.843  | 0.4385      | 0.09057   |
| 30.00       | 6.302                   | 0.1010      | 0.01603   | 150.00      | 4.081  | 0.6163      | 0.1511    |
| 35.00       | 6.278                   | 0.1016      | 0.01618   | 155.00      | 3.034  | 0.8509      | 0.2808    |
| 40.00       | 6.255                   | 0.1018      | 0.01627   | 160.00      | 1.803  | 1.034       | 0.5753    |
| 45.00       | 6.231                   | 0.1014      | 0.01627   | 165.00      | 0.6952 | 0.6990      | 1.008     |
| 50.00       | 6.211                   | 0.09924     | 0.01598   | 170.00      | 0.2585 | 0.3138      | 1.214     |
| 55.00       | 6.196                   | 0.09670     | 0.01561   | 175.00      | 0.1350 | 0.1474      | 1.091     |
|             |                         |             |           |             |        |             |           |

 Table 88: Storage and loss properties for Ticona Fortron 1140 40% glass fiber filled polyphenylene sulfide (PPS). (tabular data for Graph 88)

| Temperature | E'    | <b>E</b> " | Tan Delta | Temperature | E'    | <b>E</b> " | Tan Delta |
|-------------|-------|------------|-----------|-------------|-------|------------|-----------|
| (°C)        | (GPa) | (MPa)      |           | (°C)        | (GPa) | (MPa)      |           |
| -60.00      | 10.95 |            |           | 115.00      | 7.748 | 487.0      | 0.06286   |
| -55.00      | 10.96 |            |           | 120.00      | 6.969 | 482.4      | 0.06924   |
| -50.00      | 10.95 |            |           | 125.00      | 6.308 | 450.4      | 0.07140   |
| -45.00      | 10.94 |            |           | 130.00      | 5.759 | 404.6      | 0.07025   |
| -40.00      | 10.93 |            |           | 135.00      | 5.326 | 355.5      | 0.06674   |
| -35.00      | 10.93 |            |           | 140.00      | 4.983 | 310.7      | 0.06235   |
| -30.00      | 10.92 |            |           | 145.0       | 4.724 | 273.9      | 0.05797   |
| -25.00      | 10.90 |            |           | 150.00      | 4.517 | 243.6      | 0.05393   |
| -20.00      | 10.88 |            |           | 155.00      | 4.349 | 220.5      | 0.05071   |
| -15.00      | 10.86 |            |           | 160.00      | 4.204 | 203.0      | 0.04829   |
| -10.00      | 10.82 |            |           | 165.00      | 4.083 | 189.5      | 0.04641   |
| -5.00       | 10.82 |            |           | 170.00      | 3.984 | 179.8      | 0.04513   |
| 0.00        | 10.81 | 3.378      | 3.125E-4  | 175.00      | 3.901 | 172.2      | 0.04414   |
| 5.00        | 10.79 | 6.897      | 6.393E-4  | 180.00      | 3.835 | 167.0      | 0.04355   |
| 10.00       | 10.76 | 10.54      | 9.795E-4  | 185.00      | 3.783 | 164.4      | 0.04347   |
| 15.00       | 10.72 | 15.66      | 0.001461  | 190.00      | 3.735 | 162.9      | 0.04361   |
| 20.00       | 10.69 | 19.97      | 0.001868  | 200.00      | 3.660 | 158.4      | 0.04327   |
| 25.00       | 10.66 | 23.65      | 0.002218  | 205.00      | 3.624 | 156.4      | 0.04316   |
| 30.00       | 10.63 | 27.24      | 0.002562  | 210.00      | 3.584 | 155.0      | 0.04324   |
| 40.00       | 10.57 | 35.63      | 0.003370  | 215.00      | 3.540 | 154.4      | 0.04363   |
| 45.00       | 10.53 | 42.18      | 0.004005  | 220.00      | 3.491 | 153.7      | 0.04404   |
| 50.00       | 10.50 | 46.53      | 0.004433  | 225.00      | 3.413 | 152.3      | 0.04461   |
| 55.00       | 10.46 | 50.04      | 0.004782  | 230.00      | 3.381 | 152.7      | 0.04516   |
| 60.00       | 10.44 | 52.71      | 0.005051  | 240.00      | 3.230 | 150.1      | 0.04649   |
| 65.00       | 10.40 | 55.23      | 0.005310  | 250.00      | 3.014 | 148.5      | 0.04927   |
| 70.00       | 10.36 | 59.04      | 0.005699  | 255.00      | 2.895 | 148.0      | 0.05111   |
| 75.00       | 10.32 | 62.71      | 0.006079  | 260.00      | 2.813 | 146.4      | 0.05206   |
| 80.00       | 10.27 | 68.35      | 0.006659  | 265.00      | 2.728 | 149.5      | 0.05482   |
| 90.00       | 10.11 | 105.6      | 0.01044   | 270.00      | 2.471 | 153.0      | 0.06191   |
| 100.00      | 9.698 | 247.5      | 0.02553   | 275.00      | 2.225 | 156.3      | 0.07031   |
| 105.00      | 9.207 | 358.2      | 0.03892   | 280.00      | 2.168 | 153.8      | 0.07093   |
| 110.00      | 8.518 | 447.2      | 0.05251   | 290.00      | 1.504 | 132.6      | 0.08864   |

© Plastic Design Library



**Graph 89:** Storage and loss properties for Phillips 66 Ryton R4 40% glass fiber filled, branched polyphenylene sulfide (PPS).

**Graph 90:** Storage and loss properties for Phillips 66 Ryton BR90A 40% glass fiber filled, impact modified polyphenylene sulfide (PPS).



| Temperature | E'    | <b>E</b> " | Tan Delta | Temperature | E'    | <b>E</b> " | Tan Delta |
|-------------|-------|------------|-----------|-------------|-------|------------|-----------|
| (°C)        | (GPa) | (MPa)      |           | (°C)        | (GPa) | (MPa)      |           |
| -60.00      | 13.16 | 34.24      | 0.002602  | 115.00      | 9.514 | 558.1      | 0.05867   |
| -50.00      | 13.15 | 32.23      | 0.002450  | 120.00      | 8.767 | 555.6      | 0.06338   |
| -45.00      | 13.12 | 35.01      | 0.002669  | 130.00      | 7.569 | 482.2      | 0.06371   |
| -40.00      | 13.08 | 36.81      | 0.002815  | 140.00      | 6.741 | 390.7      | 0.05796   |
| -35.00      | 13.05 | 35.95      | 0.002756  | 145.00      | 6.420 | 350.5      | 0.05458   |
| -30.00      | 13.02 | 34.38      | 0.002640  | 150.00      | 6.150 | 316.7      | 0.05149   |
| -20.00      | 12.97 | 31.20      | 0.002406  | 155.00      | 5.924 | 288.5      | 0.04870   |
| -15.00      | 12.94 | 30.58      | 0.002364  | 160.00      | 5.725 | 266.0      | 0.04647   |
| -10.00      | 12.91 | 30.05      | 0.002327  | 165.00      | 5.549 | 247.5      | 0.04461   |
| -5.00       | 12.88 | 30.01      | 0.002329  | 170.00      | 5.387 | 234.0      | 0.04343   |
| 0.00        | 12.86 | 29.91      | 0.002327  | 180.00      | 5.105 | 215.2      | 0.04214   |
| 5.00        | 12.83 | 31.03      | 0.002419  | 190.00      | 4.880 | 204.4      | 0.04188   |
| 10.00       | 12.80 | 32.47      | 0.002537  | 195.00      | 4.778 | 201.1      | 0.04208   |
| 20.00       | 12.75 | 34.43      | 0.002701  | 200.00      | 4.682 | 198.6      | 0.04243   |
| 30.00       | 12.70 | 36.54      | 0.002877  | 205.00      | 4.589 | 196.7      | 0.04286   |
| 40.00       | 12.64 | 41.84      | 0.003310  | 210.00      | 4.499 | 194.6      | 0.04325   |
| 45.00       | 12.61 | 43.82      | 0.003475  | 215.00      | 4.408 | 192.9      | 0.04375   |
| 50.00       | 12.58 | 44.31      | 0.003521  | 220.00      | 4.311 | 191.7      | 0.04446   |
| 55.00       | 12.56 | 45.54      | 0.003626  | 230.00      | 4.094 | 189.6      | 0.04632   |
| 60.00       | 12.54 | 45.75      | 0.003649  | 240.00      | 3.829 | 189.1      | 0.04940   |
| 65.00       | 12.51 | 47.08      | 0.003763  | 245.00      | 3.668 | 188.8      | 0.05147   |
| 70.00       | 12.48 | 49.60      | 0.003974  | 250.00      | 3.476 | 188.9      | 0.05434   |
| 80.00       | 12.39 | 63.04      | 0.005090  | 255.00      | 3.286 | 189.4      | 0.05765   |
| 90.00       | 12.22 | 114.5      | 0.009366  | 260.00      | 3.192 | 186.5      | 0.05843   |
| 95.00       | 12.03 | 190.4      | 0.01584   | 265.00      | 3.124 | 188.2      | 0.06025   |
| 100.00      | 11.65 | 308.2      | 0.02647   | 270.00      | 2.820 | 197.5      | 0.07007   |
| 105.00      | 11.06 | 432.6      | 0.03913   | 280.00      | 2.488 | 201.7      | 0.08107   |
| 110.00      | 10.31 | 521.9      | 0.05065   | 290.00      | 1.180 | 141.0      | 0.1212    |

**Table 90:** Storage and loss properties for Phillips 66 Ryton BR90A 40% glass fiber filled, impact modified polyphenylene sulfide (PPS). (tabular data for Graph 90)

| Temperature | E'    | <b>E</b> " | Tan Delta | Temperature | E'    | <b>E</b> " | Tan Delta |
|-------------|-------|------------|-----------|-------------|-------|------------|-----------|
| (°C)        | (GPa) | (MPa)      |           | (°C)        | (GPa) | (MPa)      |           |
| -60.00      | 13.19 | 11.40      | 8.641E-4  | 115.00      | 9.514 | 619.1      | 0.06508   |
| -55.00      | 13.22 | 9.376      | 7.093E-4  | 120.00      | 8.816 | 586.8      | 0.06656   |
| -50.00      | 13.23 | 11.13      | 8.418E-4  | 130.00      | 7.611 | 463.6      | 0.06091   |
| -45.00      | 13.21 | 12.56      | 9.511E-4  | 135.00      | 7.124 | 404.4      | 0.05676   |
| -40.00      | 13.23 | 13.65      | 0.001031  | 140.00      | 6.716 | 354.7      | 0.05281   |
| -35.00      | 13.24 | 13.77      | 0.001040  | 145.00      | 6.371 | 314.1      | 0.04929   |
| -30.00      | 13.24 | 15.93      | 0.001203  | 155.00      | 5.824 | 255.7      | 0.04392   |
| -20.00      | 13.19 | 19.94      | 0.001512  | 160.00      | 5.600 | 236.3      | 0.04219   |
| -15.00      | 13.19 | 21.15      | 0.001603  | 165.00      | 5.398 | 222.1      | 0.04115   |
| -10.00      | 13.19 | 24.55      | 0.001861  | 170.00      | 5.213 | 212.0      | 0.04067   |
| -5.00       | 13.18 | 26.67      | 0.002024  | 180.00      | 4.873 | 200.0      | 0.04105   |
| 0.00        | 13.14 | 30.11      | 0.002291  | 185.00      | 4.713 | 197.1      | 0.04183   |
| 5.00        | 13.11 | 32.18      | 0.002455  | 190.00      | 4.563 | 194.8      | 0.04268   |
| 10.00       | 13.07 | 34.07      | 0.002607  | 195.00      | 4.425 | 193.8      | 0.04380   |
| 15.00       | 13.04 | 36.33      | 0.002787  | 205.00      | 4.175 | 192.0      | 0.04599   |
| 20.00       | 13.01 | 38.58      | 0.002966  | 210.00      | 4.057 | 191.8      | 0.04727   |
| 30.00       | 12.96 | 40.79      | 0.003147  | 215.00      | 3.949 | 191.2      | 0.04842   |
| 40.00       | 12.90 | 46.77      | 0.003625  | 220.00      | 3.836 | 190.5      | 0.04965   |
| 45.00       | 12.86 | 51.09      | 0.003973  | 230.00      | 3.608 | 188.7      | 0.05230   |
| 55.00       | 12.79 | 56.64      | 0.004430  | 240.00      | 3.357 | 186.3      | 0.05549   |
| 60.00       | 12.75 | 61.29      | 0.004807  | 245.00      | 3.224 | 184.9      | 0.05736   |
| 65.00       | 12.72 | 65.23      | 0.005128  | 250.00      | 3.082 | 183.9      | 0.05968   |
| 70.00       | 12.69 | 72.77      | 0.005735  | 255.00      | 2.933 | 182.8      | 0.06231   |
| 80.00       | 12.61 | 99.51      | 0.007893  | 260.00      | 2.921 | 177.4      | 0.06074   |
| 90.0        | 12.40 | 208.4      | 0.01681   | 265.00      | 2.767 | 183.5      | 0.06634   |
| 95.00       | 12.10 | 325.4      | 0.02690   | 270.00      | 2.517 | 182.2      | 0.07241   |
| 105.00      | 10.96 | 548.0      | 0.05003   | 280.00      | 1.750 | 171.2      | 0.09794   |
| 110.00      | 10.24 | 604.6      | 0.05905   | 290.00      | 1.194 | 140.2      | 0.1180    |
|             |       |            |           |             |       |            |           |



Graph 91: Storage and loss properties for Ticona Celstran PPSG50 50% long glass fiber filled polyphenylene sulfide (PPS).

Graph 92: Storage and loss properties for Ticona Fortron 4184 50% glass fiber/ mineral filled polyphenylene sulfide (PPS).



Tabular Data Graphs

 Table 91: Storage and loss properties for Ticona Celstran PPSG50 50% long glass fiber filled polyphenylene sulfide (PPS). (tabular data for Graph 91)

| Temperature | E'    | <b>E</b> " | Tan Delta | Temperature | E'    | <b>E</b> " | Tan Delta |
|-------------|-------|------------|-----------|-------------|-------|------------|-----------|
| (°C)        | (GPa) | (MPa)      |           | (°C)        | (GPa) | (MPa)      | iun bonu  |
| -60.00      | 15.59 |            |           | 120.00      | 11.87 | 567.1      | 0.04777   |
| -50.00      | 15.59 |            |           | 125.00      | 11.14 | 550.6      | 0.04941   |
| -45.00      | 15.60 |            |           | 130.00      | 10.49 | 518.0      | 0.04939   |
| -40.00      | 15.60 |            |           | 140.00      | 9.433 | 426.6      | 0.04523   |
| -30.00      | 15.56 |            |           | 145.00      | 9.050 | 382.2      | 0.04223   |
| -25.00      | 15.53 |            |           | 150.00      | 8.737 | 343.6      | 0.03933   |
| -20.00      | 15.50 |            |           | 160.00      | 8.231 | 286.8      | 0.03484   |
| -10.00      | 15.44 |            |           | 165.00      | 8.032 | 269.0      | 0.03350   |
| -5.00       | 15.43 |            |           | 170.00      | 7.862 | 258.2      | 0.03284   |
| 0.00        | 15.41 |            |           | 175.00      | 7.718 | 249.8      | 0.03237   |
| 5.00        | 15.38 |            |           | 180.00      | 7.586 | 243.2      | 0.03206   |
| 10.00       | 15.35 |            |           | 190.00      | 7.323 | 235.8      | 0.03220   |
| 15.00       | 15.31 |            |           | 195.00      | 7.203 | 234.6      | 0.03257   |
| 20.00       | 15.28 |            |           | 200.00      | 7.095 | 233.6      | 0.03292   |
| 25.00       | 15.26 | 4.484      | 2.939E-4  | 205.00      | 6.996 | 233.1      | 0.03332   |
| 30.00       | 15.23 | 7.613      | 4.999E-4  | 210.00      | 6.882 | 235.4      | 0.03421   |
| 40.00       | 15.15 | 19.92      | 0.001315  | 220.00      | 6.677 | 238.1      | 0.03566   |
| 50.00       | 15.08 | 28.60      | 0.001896  | 225.00      | 6.568 | 239.7      | 0.03650   |
| 55.00       | 15.05 | 32.94      | 0.002189  | 230.00      | 6.444 | 242.2      | 0.03758   |
| 60.00       | 15.02 | 38.36      | 0.002553  | 240.00      | 6.178 | 246.9      | 0.03996   |
| 65.00       | 14.99 | 40.73      | 0.002716  | 245.00      | 6.028 | 250.9      | 0.04162   |
| 70.00       | 14.99 | 43.75      | 0.002919  | 250.00      | 5.844 | 255.8      | 0.04377   |
| 80.00       | 14.95 | 54.95      | 0.003675  | 255.00      | 5.726 | 255.0      | 0.04452   |
| 90.00       | 14.87 | 99.04      | 0.006661  | 260.00      | 5.630 | 255.6      | 0.04540   |
| 95.00       | 14.75 | 161.2      | 0.01093   | 265.00      | 5.351 | 264.5      | 0.04944   |
| 100.00      | 14.48 | 267.3      | 0.01846   | 270.00      | 5.052 | 275.5      | 0.05453   |
| 105.00      | 14.00 | 396.5      | 0.02832   | 280.00      | 5.171 | 280.5      | 0.05425   |
| 110.00      | 13.35 | 499.5      | 0.03741   | 290.00      | 3.073 | 290.2      | 0.09529   |

 Table 92: Storage and loss properties for Ticona Fortron 4184 50% glass fiber/ mineral filled polyphenylene sulfide (PPS). (tabular data for Graph 92)

| Temperature | E'    | <b>E</b> " | Tan Delta | Temperature | E'    | <b>E</b> " | Tan Delta |
|-------------|-------|------------|-----------|-------------|-------|------------|-----------|
| (°C)        | (GPa) | (MPa)      |           | (°C)        | (GPa) | (MPa)      |           |
| -60.00      | 13.47 | 8.789      | 6.524E-4  | 115.00      | 10.06 | 543.7      | 0.05407   |
| -55.00      | 13.47 | 6.484      | 4.814E-4  | 120.00      | 9.302 | 579.2      | 0.06228   |
| -50.00      | 13.45 | 7.144      | 5.312E-4  | 125.00      | 8.568 | 577.2      | 0.06738   |
| -40.00      | 13.42 | 6.416      | 4.780E-4  | 135.00      | 7.373 | 503.4      | 0.06827   |
| -35.00      | 13.40 | 8.586      | 6.406E-4  | 140.00      | 6.889 | 453.2      | 0.06579   |
| -30.00      | 13.38 | 10.00      | 7.478E-4  | 145.00      | 6.491 | 402.5      | 0.06200   |
| -25.00      | 13.34 | 12.90      | 9.673E-4  | 150.00      | 6.173 | 359.7      | 0.05827   |
| -15.00      | 13.27 | 19.94      | 0.001502  | 160.00      | 5.707 | 296.2      | 0.05190   |
| -10.00      | 13.25 | 22.49      | 0.001697  | 165.00      | 5.533 | 274.2      | 0.04956   |
| -5.00       | 13.23 | 26.29      | 0.001987  | 170.00      | 5.388 | 258.0      | 0.04789   |
| 0.00        | 13.20 | 29.93      | 0.002268  | 175.00      | 5.260 | 245.5      | 0.04668   |
| 10.00       | 13.15 | 35.04      | 0.002666  | 185.00      | 5.047 | 230.4      | 0.04565   |
| 15.00       | 13.12 | 38.49      | 0.002935  | 190.00      | 4.954 | 226.6      | 0.04574   |
| 20.00       | 13.09 | 43.17      | 0.003299  | 195.00      | 4.868 | 223.5      | 0.04592   |
| 25.00       | 13.03 | 50.05      | 0.003840  | 200.00      | 4.788 | 220.8      | 0.04612   |
| 30.00       | 12.97 | 59.83      | 0.004613  | 210.00      | 4.624 | 215.9      | 0.04670   |
| 40.00       | 12.85 | 75.32      | 0.005863  | 215.00      | 4.536 | 213.2      | 0.04700   |
| 45.00       | 12.79 | 80.35      | 0.006282  | 220.00      | 4.443 | 211.8      | 0.04766   |
| 50.00       | 12.74 | 85.45      | 0.006709  | 225.00      | 4.342 | 210.7      | 0.04852   |
| 60.00       | 12.63 | 93.76      | 0.007425  | 240.00      | 3.980 | 211.0      | 0.05302   |
| 65.00       | 12.58 | 96.02      | 0.007633  | 245.00      | 3.832 | 211.9      | 0.05529   |
| 70.00       | 12.53 | 99.67      | 0.007954  | 250.00      | 3.663 | 213.6      | 0.05833   |
| 75.00       | 12.48 | 104.1      | 0.008341  | 260.00      | 3.316 | 216.6      | 0.06531   |
| 80.00       | 12.41 | 112.0      | 0.009023  | 265.00      | 3.244 | 215.2      | 0.06633   |
| 90.00       | 12.23 | 147.3      | 0.01205   | 270.00      | 3.009 | 223.1      | 0.07415   |
| 95.00       | 12.08 | 188.3      | 0.01560   | 275.00      | 2.722 | 222.9      | 0.08191   |
| 100.00      | 11.82 | 260.5      | 0.02205   | 280.00      | 2.146 | 214.2      | 0.09988   |
| 110.00      | 10.79 | 468.1      | 0.04339   | 290.00      | 2.073 | 212.7      | 0.1030    |



**Graph 93:** Storage and loss properties for Ticona Fortron 6165 65% glass fiber/ mineral filled polyphenylene sulfide (PPS).

**Graph 94:** Storage and loss properties for Amoco Performance Polymers Radel AG220 20% glass fiber filled polyethersulfone (PES).



 Table 93: Storage and loss properties for Ticona Fortron 6165 65% glass fiber/ mineral filled polyphenylene sulfide (PPS). (tabular data for Graph 93)

| Temperature | E'    | <b>E</b> " | Tan Delta | Temperature | E'    | Е"    | Tan Delta |
|-------------|-------|------------|-----------|-------------|-------|-------|-----------|
| (°C)        | (GPa) | (MPa)      |           | (°C)        | (GPa) | (MPa) |           |
| -60.00      | 17.69 |            |           | 120.00      | 11.87 | 602.9 | 0.05079   |
| -50.00      | 17.69 |            |           | 125.00      | 11.16 | 587.2 | 0.05264   |
| -40.00      | 17.60 |            |           | 130.00      | 10.52 | 557.1 | 0.05296   |
| -35.00      | 17.59 |            |           | 140.00      | 9.582 | 482.1 | 0.05031   |
| -30.00      | 17.56 |            |           | 145.00      | 9.220 | 446.5 | 0.04842   |
| -25.00      | 17.52 |            |           | 150.00      | 8.915 | 415.7 | 0.04663   |
| -20.00      | 17.47 |            |           | 160.00      | 8.428 | 367.4 | 0.04360   |
| -15.00      | 17.43 |            |           | 165.00      | 8.214 | 352.6 | 0.04293   |
| -10.00      | 17.39 |            |           | 170.00      | 8.042 | 341.9 | 0.04252   |
| -5.00       | 17.35 |            |           | 175.00      | 7.891 | 335.0 | 0.04245   |
| 0.00        | 17.29 |            |           | 180.00      | 7.754 | 330.3 | 0.04260   |
| 10.00       | 17.24 |            |           | 190.00      | 7.517 | 325.6 | 0.04331   |
| 20.00       | 17.14 |            |           | 195.00      | 7.406 | 325.3 | 0.04392   |
| 25.00       | 17.10 |            |           | 200.00      | 7.288 | 326.2 | 0.04477   |
| 30.00       | 17.04 |            |           | 210.00      | 7.043 | 328.8 | 0.04668   |
| 40.00       | 16.89 |            |           | 215.00      | 6.927 | 329.4 | 0.04756   |
| 45.00       | 16.82 |            |           | 220.00      | 6.809 | 330.8 | 0.04858   |
| 50.00       | 16.75 | 4.151      | 2.479E-4  | 225.00      | 6.679 | 332.7 | 0.04982   |
| 60.00       | 16.59 | 19.14      | 0.001154  | 230.00      | 6.540 | 334.7 | 0.05117   |
| 65.00       | 16.50 | 27.70      | 0.001679  | 240.00      | 6.230 | 339.8 | 0.05454   |
| 70.00       | 16.39 | 36.96      | 0.002255  | 245.00      | 6.057 | 342.3 | 0.05651   |
| 75.00       | 16.26 | 50.55      | 0.003109  | 250.00      | 5.875 | 345.0 | 0.05874   |
| 80.00       | 16.11 | 71.80      | 0.004456  | 260.00      | 5.577 | 346.8 | 0.06217   |
| 90.00       | 15.71 | 159.1      | 0.01013   | 265.00      | 5.303 | 358.1 | 0.06754   |
| 95.00       | 15.40 | 210.8      | 0.01564   | 270.00      | 4.944 | 364.8 | 0.07381   |
| 100.00      | 14.93 | 352.5      | 0.02361   | 275.00      | 4.518 | 370.8 | 0.08213   |
| 110.00      | 13.51 | 550.0      | 0.04071   | 280.00      | 4.817 | 358.4 | 0.07441   |
| 115.00      | 12.68 | 594.1      | 0.04687   | 290.00      | 3.455 | 346.9 | 0.1010    |

 
 Table 94: Storage and loss properties for Amoco Performance Polymers Radel AG220 20% glass fiber filled polyethersulfone (PES). (tabular data for Graph 94)

| Temperature | E'    | <b>E</b> " | Tan Delta | Temperature | E'      | <b>E</b> " | Tan Delta |
|-------------|-------|------------|-----------|-------------|---------|------------|-----------|
| (°C)        | (GPa) | (MPa)      |           | (°C)        | (GPa)   | (MPa)      |           |
| -60.00      | 5.842 | 66.05      | 0.01131   | 95.00       | 5.302   | 63.78      | 0.01203   |
| -50.00      | 5.805 | 62.51      | 0.01077   | 100.00      | 5.286   | 61.96      | 0.01172   |
| -45.00      | 5.784 | 61.87      | 0.01070   | 105.00      | 5.274   | 59.23      | 0.01123   |
| -40.00      | 5.761 | 62.82      | 0.01091   | 110.00      | 5.263   | 56.84      | 0.01080   |
| -35.00      | 5.728 | 64.14      | 0.01120   | 115.00      | 5.258   | 55.44      | 0.01054   |
| -30.00      | 5.696 | 66.63      | 0.01170   | 120.00      | 5.252   | 53.62      | 0.01021   |
| -25.00      | 5.669 | 69.31      | 0.01223   | 125.00      | 5.246   | 52.53      | 0.01001   |
| -20.00      | 5.647 | 71.12      | 0.01260   | 130.00      | 5.241   | 54.63      | 0.009852  |
| -15.00      | 5.624 | 73.72      | 0.01311   | 135.00      | 5.236   | 51.44      | 0.009824  |
| -10.00      | 5.604 | 76.26      | 0.01361   | 140.00      | 5.232   | 51.45      | 0.009834  |
| -5.00       | 5.586 | 78.22      | 0.01400   | 145.00      | 5.228   | 51.85      | 0.009919  |
| 0.00        | 5.572 | 79.71      | 0.01431   | 150.00      | 5.224   | 53.39      | 0.01022   |
| 5.00        | 5.561 | 80.21      | 0.01442   | 155.00      | 5.221   | 55.20      | 0.01057   |
| 10.00       | 5.553 | 79.50      | 0.01432   | 160.00      | 5.219   | 57.58      | 0.01103   |
| 15.00       | 5.548 | 78.23      | 0.01410   | 165.00      | 5.217   | 60.83      | 0.01166   |
| 20.00       | 5.544 | 76.21      | 0.01374   | 170.00      | 5.216   | 65.59      | 0.01258   |
| 25.00       | 5.542 | 74.29      | 0.01341   | 175.00      | 5.214   | 72.29      | 0.01387   |
| 30.00       | 5.540 | 72.47      | 0.01308   | 180.00      | 5.211   | 81.07      | 0.01556   |
| 40.00       | 5.524 | 68.98      | 0.01249   | 190.00      | 5.177   | 119.1      | 0.02300   |
| 45.00       | 5.509 | 69.40      | 0.01260   | 195.00      | 5.126   | 161.9      | 0.03159   |
| 50.00       | 5.491 | 70.40      | 0.01282   | 200.00      | 4.914   | 241.0      | 0.04905   |
| 55.00       | 5.475 | 70.50      | 0.01288   | 205.00      | 4.443   | 406.6      | 0.09163   |
| 60.00       | 5.457 | 69.93      | 0.01281   | 210.00      | 3.563   | 634.7      | 0.1784    |
| 65.00       | 5.440 | 69.37      | 0.01275   | 215.00      | 2.501   | 807.8      | 0.3239    |
| 70.00       | 5.417 | 68.56      | 0.01266   | 220.00      | 1.305   | 787.3      | 0.6065    |
| 75.00       | 5.396 | 67.47      | 0.01250   | 225.00      | 0.4851  | 464.1      | 0.9586    |
| 80.00       | 5.373 | 66.38      | 0.01235   | 230.00      | 0.2134  | 186.1      | 0.8706    |
| 90.00       | 5.322 | 65.10      | 0.01223   | 240.00      | 0.07436 | 55.60      | 0.7481    |


Graph 95: Storage and loss properties for GE Plastics Cycolac T unfilled, high impact, general purpose acrylonitrile butadiene styrene (ABS).

Graph 96: Storage and loss properties for GE Plastics Cycolac GSM unfilled, high impact acrylonitrile butadiene styrene (ABS).



**Tabular Data Graphs** 

| Temperature | E'    | <b>E</b> " | Tan Delta | Temperature | E'       | <b>E</b> " | Tan Delta |
|-------------|-------|------------|-----------|-------------|----------|------------|-----------|
| (°C)        | (GPa) | (MPa)      |           | (°C)        | (GPa)    | (MPa)      |           |
| -60.00      | 2.704 | 75.31      | 0.02785   | 40.00       | 2.284    | 67.82      | 0.02970   |
| -55.00      | 2.693 | 74.04      | 0.02749   | 45.00       | 2.263    | 66.94      | 0.02958   |
| -50.00      | 2.677 | 73.03      | 0.02728   | 50.00       | 2.234    | 66.90      | 0.02994   |
| -45.00      | 2.656 | 72.96      | 0.02747   | 55.00       | 2.197    | 67.78      | 0.03085   |
| -40.00      | 2.627 | 73.35      | 0.02792   | 60.00       | 2.151    | 69.97      | 0.03253   |
| -35.00      | 2.595 | 73.77      | 0.02843   | 65.00       | 2.095    | 74.08      | 0.03536   |
| -30.00      | 2.562 | 74.42      | 0.02905   | 70.00       | 2.025    | 80.90      | 0.03996   |
| -25.00      | 2.531 | 74.86      | 0.02957   | 75.00       | 1.949    | 90.17      | 0.04627   |
| -20.00      | 2.503 | 75.35      | 0.03010   | 80.00       | 1.880    | 100.6      | 0.05350   |
| -15.00      | 2.477 | 75.67      | 0.03054   | 85.00       | 1.821    | 112.3      | 0.06164   |
| -10.00      | 2.458 | 76.02      | 0.03093   | 90.00       | 1.754    | 127.5      | 0.07267   |
| -5.00       | 2.440 | 75.99      | 0.03115   | 95.00       | 1.674    | 146.2      | 0.08729   |
| 0.00        | 2.423 | 76.00      | 0.03136   | 100.00      | 1.554    | 176.3      | 0.1135    |
| 5.00        | 2.410 | 75.44      | 0.03130   | 105.00      | 1.340    | 228.3      | 0.1705    |
| 10.00       | 2.399 | 74.35      | 0.03099   | 110.00      | 0.9082   | 344.3      | 0.3799    |
| 15.00       | 2.385 | 72.94      | 0.03059   | 115.00      | 0.2788   | 321.5      | 1.162     |
| 20.00       | 2.368 | 71.75      | 0.03030   | 120.00      | 0.03338  | 83.65      | 2.510     |
| 25.00       | 2.349 | 70.89      | 0.03018   | 125.00      | 0.01104  | 28.37      | 2.569     |
| 30.00       | 2.326 | 69.92      | 0.03006   | 130.00      | 0.008161 | 18.34      | 2.247     |
| 35.00       | 2.303 | 68.82      | 0.02988   |             |          |            |           |

 Table 96: Storage and loss properties for GE Plastics Cycolac GSM unfilled, high impact acrylonitrile butadiene styrene (ABS). (tabular data for Graph 96)

| Temperature | E'    | <b>E</b> " | Tan Delta | Temperature | E'       | <b>E</b> " | Tan Delta |
|-------------|-------|------------|-----------|-------------|----------|------------|-----------|
| (°C)        | (GPa) | (MPa)      |           | (°C)        | (GPa)    | (MPa)      |           |
| -60.00      | 2.904 | 75.98      | 0.02616   | 40.00       | 2.415    | 71.59      | 0.02965   |
| -55.00      | 2.887 | 75.23      | 0.02606   | 45.00       | 2.390    | 71.65      | 0.02999   |
| -50.00      | 2.866 | 75.49      | 0.02634   | 50.00       | 2.352    | 72.70      | 0.03091   |
| -45.00      | 2.839 | 76.21      | 0.02684   | 55.00       | 2.308    | 74.59      | 0.03232   |
| -40.00      | 2.814 | 76.92      | 0.02734   | 60.00       | 2.258    | 77.23      | 0.03421   |
| -35.00      | 2.782 | 77.29      | 0.02778   | 65.00       | 2.197    | 81.23      | 0.03697   |
| -30.00      | 2.746 | 77.30      | 0.02815   | 70.00       | 2.122    | 87.74      | 0.04134   |
| -25.00      | 2.707 | 77.32      | 0.02856   | 75.00       | 2.035    | 97.33      | 0.04783   |
| -20.00      | 2.672 | 76.91      | 0.02879   | 80.00       | 1.942    | 110.5      | 0.05691   |
| -15.00      | 2.639 | 76.77      | 0.02909   | 85.00       | 1.847    | 126.4      | 0.06842   |
| -10.00      | 2.606 | 76.91      | 0.02951   | 90.00       | 1.743    | 144.3      | 0.08280   |
| -5.00       | 2.580 | 77.07      | 0.02988   | 95.00       | 1.607    | 169.6      | 0.1056    |
| 0.00        | 2.555 | 77.16      | 0.03020   | 100.00      | 1.406    | 214.5      | 0.1527    |
| 5.00        | 2.533 | 77.50      | 0.03060   | 105.00      | 1.064    | 303.4      | 0.2855    |
| 10.00       | 2.513 | 77.03      | 0.03065   | 110.00      | 0.4964   | 401.8      | 0.8137    |
| 15.00       | 2.494 | 75.93      | 0.03044   | 115.00      | 0.07417  | 159.6      | 2.160     |
| 20.00       | 2.478 | 74.82      | 0.03019   | 120.00      | 0.01721  | 44.07      | 2.560     |
| 25.00       | 2.463 | 73.75      | 0.02994   | 125.00      | 0.009361 | 21.65      | 2.313     |
| 30.00       | 2.449 | 72.50      | 0.02960   | 130.00      | 0.01372  | 19.85      | 1.623     |
| 35.00       | 2.433 | 71.75      | 0.02949   |             |          | 0          |           |



Graph 97: Storage and loss properties for Dow Chemical Magnum 9010 unfilled, medium impact acrylonitrile butadiene styrene (ABS).

Graph 98: Storage and loss properties for GE Plastics Cycolac DFA-R unfilled, medium impact acrylonitrile butadiene styrene (ABS).



**Tabular Data Graphs** 

| Temperature | E'    | E"    | Tan Delta | Temperature | E'      | E"    | Tan Delta |
|-------------|-------|-------|-----------|-------------|---------|-------|-----------|
| (°C)        | (GPa) | (MPa) |           | (°C)        | (GPa)   | (MPa) |           |
| -60.00      | 3.054 | 88.37 | 0.02894   | 35.00       | 2.590   | 83.53 | 0.03225   |
| -55.00      | 3.041 | 85.40 | 0.02808   | 40.00       | 2.569   | 82.01 | 0.03192   |
| -50.00      | 3.024 | 84.07 | 0.02780   | 45.00       | 2.545   | 80.80 | 0.03175   |
| -45.00      | 3.002 | 83.28 | 0.02774   | 50.00       | 2.519   | 79.62 | 0.03161   |
| -40.00      | 2.974 | 83.04 | 0.02793   | 55.00       | 2.494   | 78.73 | 0.03156   |
| -35.00      | 2.938 | 82.20 | 0.02798   | 60.00       | 2.464   | 78.43 | 0.03183   |
| -30.00      | 2.903 | 82.15 | 0.02830   | 65.00       | 2.426   | 79.92 | 0.03294   |
| -25.00      | 2.875 | 82.94 | 0.02885   | 70.00       | 2.379   | 83.70 | 0.03519   |
| -20.00      | 2.850 | 83.68 | 0.02937   | 75.00       | 2.318   | 91.02 | 0.03926   |
| -15.00      | 2.821 | 84.80 | 0.03006   | 80.00       | 2.249   | 101.8 | 0.04526   |
| -10.00      | 2.786 | 86.03 | 0.03087   | 85.00       | 2.172   | 115.6 | 0.05326   |
| -5.00       | 2.750 | 87.85 | 0.03194   | 90.00       | 2.084   | 132.3 | 0.06349   |
| 0.00        | 2.715 | 89.39 | 0.03293   | 95.00       | 1.976   | 153.5 | 0.07772   |
| 5.00        | 2.682 | 90.08 | 0.03359   | 100.00      | 1.823   | 182.1 | 0.09992   |
| 10.00       | 2.656 | 90.16 | 0.03394   | 105.00      | 1.574   | 230.4 | 0.1464    |
| 15.00       | 2.638 | 89.83 | 0.03405   | 110.00      | 1.126   | 354.7 | 0.3158    |
| 20.00       | 2.625 | 88.49 | 0.03371   | 115.00      | 0.3726  | 420.5 | 1.138     |
| 25.00       | 2.615 | 86.80 | 0.03319   | 120.00      | 0.04247 | 113.9 | 2.688     |
| 30.00       | 2.604 | 85.16 | 0.03271   | 125.00      | 0.01325 | 34.23 | 2.582     |
|             |       |       |           |             |         |       |           |

 Table 98: Storage and loss properties for GE Plastics Cycolac DFA-R unfilled, medium impact acrylonitrile butadiene styrene (ABS). (tabular data for Graph 98)

| Temperature | E'    | <b>E</b> " | Tan Delta | Temperature | E'       | <b>E</b> " | Tan Delta |  |
|-------------|-------|------------|-----------|-------------|----------|------------|-----------|--|
| (°C)        | (GPa) | (MPa)      |           | (°C)        | (GPa)    | (MPa)      |           |  |
| -60.00      | 3.188 | 61.88      | 0.01941   | 40.00       | 2.655    | 71.48      | 0.02692   |  |
| -55.00      | 3.170 | 60.88      | 0.01920   | 45.00       | 2.624    | 72.64      | 0.02768   |  |
| -50.00      | 3.141 | 61.33      | 0.01952   | 50.00       | 2.588    | 74.04      | 0.02861   |  |
| -45.00      | 3.105 | 62.29      | 0.02006   | 55.00       | 2.545    | 76.06      | 0.02989   |  |
| -40.00      | 3.071 | 62.93      | 0.02050   | 60.00       | 2.486    | 79.23      | 0.03187   |  |
| -35.00      | 3.033 | 63.67      | 0.02099   | 65.00       | 2.415    | 83.90      | 0.03474   |  |
| -30.00      | 2.997 | 64.52      | 0.02153   | 70.00       | 2.336    | 90.55      | 0.03876   |  |
| -25.00      | 2.967 | 65.07      | 0.02193   | 75.00       | 2.250    | 100.8      | 0.04480   |  |
| -20.00      | 2.940 | 66.00      | 0.02245   | 80.00       | 2.168    | 114.1      | 0.05262   |  |
| -15.00      | 2.913 | 66.65      | 0.02288   | 85.00       | 2.088    | 130.2      | 0.06234   |  |
| -10.00      | 2.888 | 67.03      | 0.02321   | 90.00       | 2.000    | 149.9      | 0.07496   |  |
| -5.00       | 2.857 | 67.46      | 0.02361   | 95.00       | 1.882    | 178.4      | 0.09479   |  |
| 0.00        | 2.831 | 67.92      | 0.02399   | 100.00      | 1.694    | 223.3      | 0.1319    |  |
| 5.00        | 2.807 | 68.53      | 0.02442   | 105.00      | 1.340    | 311.5      | 0.2326    |  |
| 10.00       | 2.790 | 68.46      | 0.02454   | 110.00      | 0.7260   | 445.8      | 0.6166    |  |
| 15.00       | 2.772 | 68.37      | 0.02466   | 115.00      | 0.1189   | 233.7      | 1.980     |  |
| 20.00       | 2.752 | 68.45      | 0.02487   | 120.00      | 0.01914  | 55.89      | 2.920     |  |
| 25.00       | 2.732 | 68.99      | 0.02525   | 125.00      | 0.008859 | 23.48      | 2.650     |  |
| 30.00       | 2.712 | 69.60      | 0.02566   | 130.00      | 0.007652 | 17.71      | 2.344     |  |
| 35.00       | 2.686 | 70.37      | 0.02620   |             |          |            |           |  |



**Graph 99:** Storage and loss properties for Dow Chemical Magnum 941 unfilled, very high impact acrylonitrile butadiene styrene (ABS).

Graph 100: Storage and loss properties for GE Plastics Cycolac KJW unfilled, flame retardant acrylonitrile butadiene styrene (ABS).



Tabular Data Graphs

© Plastic Design Library

| Temperature | E'    | <b>E</b> " | Tan Delta | Temperature | E'      | <b>E</b> " | Tan Delta |
|-------------|-------|------------|-----------|-------------|---------|------------|-----------|
| (°C) (GPa)  | (GPa) | (MPa)      |           | (°C)        | (GPa)   | (MPa)      |           |
| -60.00      | 2.672 | 71.14      | 0.02662   | 35.00       | 2.228   | 65.86      | 0.02956   |
| -55.00      | 2.654 | 70.18      | 0.02644   | 40.00       | 2.206   | 64.80      | 0.02937   |
| -50.00      | 2.629 | 69.22      | 0.02633   | 45.00       | 2.183   | 64.15      | 0.02939   |
| -45.00      | 2.597 | 69.45      | 0.02674   | 50.00       | 2.157   | 64.08      | 0.02970   |
| -40.00      | 2.562 | 70.83      | 0.02764   | 55.00       | 2.126   | 64.86      | 0.03051   |
| -35.00      | 2.526 | 72.42      | 0.02866   | 60.00       | 2.089   | 66.39      | 0.03178   |
| -30.00      | 2.492 | 73.61      | 0.02953   | 65.00       | 2.046   | 69.05      | 0.03375   |
| -25.00      | 2.460 | 74.16      | 0.03014   | 70.00       | 1.989   | 73.61      | 0.03700   |
| -20.00      | 2.435 | 74.38      | 0.03055   | 75.00       | 1.921   | 80.62      | 0.04196   |
| -15.00      | 2.411 | 74.33      | 0.03083   | 80.00       | 1.847   | 89.77      | 0.04859   |
| -10.00      | 2.384 | 74.32      | 0.03118   | 85.00       | 1.771   | 100.6      | 0.05682   |
| -5.00       | 2.361 | 73.94      | 0.03132   | 90.00       | 1.694   | 113.0      | 0.06672   |
| 0.00        | 2.340 | 73.27      | 0.03132   | 95.00       | 1.606   | 128.9      | 0.08024   |
| 5.00        | 2.324 | 72.09      | 0.03102   | 100.00      | 1.492   | 153.6      | 0.1030    |
| 10.00       | 2.310 | 70.97      | 0.03072   | 105.00      | 1.311   | 198.7      | 0.1516    |
| 15.00       | 2.298 | 69.93      | 0.03043   | 110.00      | 0.9668  | 309.6      | 0.3208    |
| 20.00       | 2.283 | 68.87      | 0.03017   | 115.00      | 0.3797  | 382.5      | 1.014     |
| 25.00       | 2.266 | 67.97      | 0.03000   | 120.00      | 0.05547 | 131.6      | 2.377     |
| 30.00       | 2.249 | 66.90      | 0.02975   |             | 5100011 | 10110      | 2.011     |

 Table 100:
 Storage and loss properties for GE Plastics Cycolac KJW unfilled, flame retardant acrylonitrile butadiene styrene (ABS). (tabular data for Graph 100)

| Temperature | E'    | <b>E</b> " | Tan Delta | Temperature | E'       | <b>E</b> " | Tan Delta |
|-------------|-------|------------|-----------|-------------|----------|------------|-----------|
| (°C)        | (GPa) | (MPa)      |           | (°C)        | (GPa)    | (MPa)      |           |
| -60.00      | 2.730 | 81.80      | 0.02996   | 40.00       | 2.121    | 76.21      | 0.03593   |
| -55.00      | 2.704 | 77.96      | 0.02883   | 45.00       | 2.092    | 75.44      | 0.03605   |
| -50.00      | 2.676 | 74.56      | 0.02786   | 50.00       | 2.066    | 75.15      | 0.03637   |
| -45.00      | 2.648 | 71.84      | 0.02713   | 55.00       | 2.035    | 75.39      | 0.03704   |
| -40.00      | 2.623 | 70.54      | 0.02690   | 60.00       | 1.999    | 76.40      | 0.03821   |
| -35.00      | 2.597 | 70.55      | 0.02716   | 65.00       | 1.957    | 78.49      | 0.04011   |
| -30.00      | 2.567 | 71.63      | 0.02791   | 70.00       | 1.903    | 82.66      | 0.04345   |
| -25.00      | 2.534 | 73.76      | 0.02911   | 75.00       | 1.837    | 89.54      | 0.04875   |
| -20.00      | 2.504 | 76.23      | 0.03044   | 80.00       | 1.751    | 101.0      | 0.05768   |
| -15.00      | 2.469 | 79.78      | 0.03231   | 85.00       | 1.651    | 116.8      | 0.07076   |
| -10.00      | 2.427 | 83.05      | 0.03421   | 90.00       | 1.541    | 134.7      | 0.08741   |
| -5.00       | 2.381 | 85.23      | 0.03579   | 95.00       | 1.404    | 156.4      | 0.1114    |
| 0.00        | 2.331 | 86.03      | 0.03690   | 100.00      | 1.202    | 186.0      | 0.1548    |
| 5.00        | 2.284 | 85.80      | 0.03757   | 105.00      | 0.8795   | 246.4      | 0.2805    |
| 10.00       | 2.242 | 84.97      | 0.03791   | 110.00      | 0.4207   | 323.8      | 0.7738    |
| 15.00       | 2.206 | 83.34      | 0.03779   | 115.00      | 0.07096  | 144.2      | 2.045     |
| 20.00       | 2.180 | 81.70      | 0.03747   | 120.00      | 0.01494  | 41.50      | 2.779     |
| 25.00       | 2.171 | 80.54      | 0.03710   | 125.00      | 0.006301 | 19.84      | 3.153     |
| 30.00       | 2.158 | 79.00      | 0.03661   | 130.00      | 0.003579 | 13.68      | 3.827     |
| 35.00       | 2.145 | 77.72      | 0.03623   |             |          |            |           |

© Plastic Design Library

135



Graph 101: Storage and loss properties for GE Plastics Cycolac VW300 unfilled, halogen free flame retardant acrylonitrile butadiene styrene (ABS).

Graph 102: Storage and loss properties for RTP 601 FR 10% glass fiber filled, flame retardant acrylonitrile butadiene styrene (ABS).



Tabular Data Graphs

 Table 101:
 Storage and loss properties for GE Plastics Cycolac VW300 unfilled, halogen free flame retardant acrylonitrile butadiene styrene (ABS). (tabular data for Graph 101)

| Temperature | E'    | <b>E</b> " | Tan Delta | Temperature | E'       | <b>E</b> " | Tan Delta |
|-------------|-------|------------|-----------|-------------|----------|------------|-----------|
| (°C)        | (GPa) | (MPa)      |           | (°C)        | (GPa)    | (MPa)      |           |
| -55.00      | 2.991 | 64.73      | 0.02164   | 40.00       | 2.415    | 66.55      | 0.02755   |
| -50.00      | 2.965 | 64.79      | 0.02185   | 45.00       | 2.378    | 68.13      | 0.02865   |
| -45.00      | 2.938 | 64.59      | 0.02199   | 50.00       | 2.345    | 69.47      | 0.02963   |
| -40.00      | 2.910 | 64.36      | 0.02212   | 55.00       | 2.311    | 70.96      | 0.03070   |
| -35.00      | 2.873 | 64.50      | 0.02245   | 60.00       | 2.270    | 73.07      | 0.03220   |
| -30.00      | 2.831 | 65.23      | 0.02304   | 65.00       | 2.218    | 76.16      | 0.03434   |
| -25.00      | 2.790 | 66.33      | 0.02378   | 70.00       | 2.157    | 80.39      | 0.03727   |
| -20.00      | 2.749 | 67.23      | 0.02446   | 75.00       | 2.080    | 87.53      | 0.04208   |
| -15.00      | 2.710 | 67.42      | 0.02488   | 80.00       | 1.982    | 99.35      | 0.05012   |
| -10.00      | 2.673 | 66.82      | 0.02500   | 85.00       | 1.857    | 118.1      | 0.06360   |
| -5.00       | 2.636 | 66.34      | 0.02516   | 90.00       | 1.714    | 142.5      | 0.08313   |
| 0.00        | 2.600 | 66.01      | 0.02539   | 95.00       | 1.540    | 173.2      | 0.1125    |
| 5.00        | 2.565 | 66.17      | 0.02580   | 100.00      | 1.270    | 214.7      | 0.1692    |
| 10.00       | 2.531 | 66.59      | 0.02631   | 105.00      | 0.8634   | 276.2      | 0.3204    |
| 15.00       | 2.502 | 67.15      | 0.02684   | 110.00      | 0.3097   | 300.2      | 0.9769    |
| 20.00       | 2.486 | 66.96      | 0.02693   | 115.00      | 0.03681  | 91.30      | 2.487     |
| 25.00       | 2.474 | 67.10      | 0.02712   | 120.00      | 0.008901 | 28.22      | 3.174     |
| 30.00       | 2.465 | 66.72      | 0.02707   | 125.00      | 0.004458 | 16.26      | 3.647     |
| 35.00       | 2.447 | 66.56      | 0.02720   |             |          |            |           |
|             |       |            |           |             |          |            |           |

 Table 102:
 Storage and loss properties for RTP 601 FR 10% glass fiber filled, flame retardant acrylonitrile butadiene styrene (ABS). (tabular data for Graph 102)

| Temperature<br>(°C) | E'<br>(GPa) | E"<br>(MPa) | Tan Delta | Temperature<br>(°C) | E'<br>(GPa) | E"<br>(MPa) | Tan Delta |
|---------------------|-------------|-------------|-----------|---------------------|-------------|-------------|-----------|
| -60.00              | 4.266       | 80.77       | 0.01893   | 45.00               | 3.699       | 71.16       | 0.01924   |
| -55.00              | 4.246       | 78.31       | 0.01844   | 50.00               | 3.667       | 72.98       | 0.01990   |
| -50.00              | 4.223       | 76.68       | 0.01816   | 55.00               | 3.627       | 76.19       | 0.02100   |
| -45.00              | 4.196       | 75.51       | 0.01800   | 60.00               | 3.574       | 81.80       | 0.02289   |
| -40.00              | 4.145       | 74.82       | 0.01805   | 65.00               | 3.501       | 91.93       | 0.02626   |
| -35.00              | 4.116       | 75.05       | 0.01823   | 70.00               | 3.403       | 110.4       | 0.03246   |
| -30.00              | 4.078       | 74.98       | 0.01839   | 75.00               | 3.276       | 140.7       | 0.04296   |
| -25.00              | 4.041       | 75.27       | 0.01863   | 80.00               | 3.126       | 181.3       | 0.05800   |
| -20.00              | 4.010       | 75.62       | 0.01886   | 85.00               | 2.940       | 232.1       | 0.07896   |
| -15.00              | 3.978       | 75.83       | 0.01906   | 90.00               | 2.682       | 300.5       | 0.1121    |
| -10.00              | 3.946       | 75.95       | 0.01925   | 95.00               | 2.326       | 390.3       | 0.1678    |
| -5.00               | 3.908       | 76.34       | 0.01953   | 100.00              | 1.919       | 461.4       | 0.2404    |
| 0.00                | 3.876       | 76.21       | 0.01966   | 105.00              | 1.551       | 518.4       | 0.3343    |
| 5.00                | 3.848       | 75.94       | 0.01973   | 110.00              | 1.070       | 591.0       | 0.5531    |
| 10.00               | 3.825       | 75.09       | 0.01963   | 115.00              | 0.3923      | 430.2       | 1.099     |
| 15.00               | 3.814       | 73.74       | 0.01933   | 120.00              | 0.1179      | 152.5       | 1.292     |
| 20.00               | 3.806       | 72.32       | 0.01900   | 125.00              | 0.05652     | 61.30       | 1.084     |
| 25.00               | 3.792       | 70.92       | 0.01870   | 130.00              | 0.03595     | 34.62       | 0.9629    |
| 30.00               | 3.775       | 69.97       | 0.01854   | 135.00              | 0.02591     | 24.51       | 0.9459    |
| 35.00               | 3.758       | 69.82       | 0.01858   | 140.00              | 0.02001     | 20.09       | 1.004     |
| 40.00               | 3.734       | 70.06       | 0.01877   |                     |             |             |           |



Graph 103: Storage and loss properties for RTP 605 30% glass fiber filled acrylonitrile butadiene styrene (ABS).

Graph 104: Storage and loss properties for RTP 607 40% glass fiber filled acrylonitrile butadiene styrene (ABS).



| Table 103: | Storage and loss properties for RTP 605 30% glass fiber filled acrylonitrile butadiene styrene (ABS). |
|------------|-------------------------------------------------------------------------------------------------------|
|            | (tabular data for Graph 103)                                                                          |

| Temperature<br>(°C) | E'<br>(GPa) | E"<br>(MPa) | Tan Delta | Temperature<br>(°C) | E'<br>(GPa) | E"<br>(MPa) | Tan Delta |
|---------------------|-------------|-------------|-----------|---------------------|-------------|-------------|-----------|
| -60.00              | 7.985       | 0.06789     | 0.008502  | 40.00               | 7.354       | 0.09596     | 0.01305   |
| -55.00              | 7.965       | 0.06675     | 0.008380  | 45.00               | 7.337       | 0.09557     | 0.01303   |
| -50.00              | 7.935       | 0.06708     | 0.008453  | 50.00               | 7.309       | 0.09833     | 0.01345   |
| -45.00              | 7.897       | 0.06781     | 0.008587  | 55.00               | 7.277       | 0.1008      | 0.01386   |
| -40.00              | 7.855       | 0.06842     | 0.008710  | 60.00               | 7.242       | 0.1047      | 0.01445   |
| -35.00              | 7.816       | 0.06853     | 0.008768  | 65.00               | 7.200       | 0.1108      | 0.01538   |
| -30.00              | 7.778       | 0.07011     | 0.009013  | 70.00               | 7.150       | 0.1203      | 0.01683   |
| -25.00              | 7.743       | 0.07222     | 0.009327  | 75.00               | 7.085       | 0.1365      | 0.01926   |
| -20.00              | 7.704       | 0.07459     | 0.009682  | 80.00               | 7.009       | 0.1618      | 0.02309   |
| -15.00              | 7.661       | 0.07659     | 0.01000   | 85.00               | 6.926       | 0.2027      | 0.02927   |
| -10.00              | 7.616       | 0.07949     | 0.01044   | 90.00               | 6.828       | 0.2608      | 0.03819   |
| -5.00               | 7.575       | 0.08245     | 0.01088   | 95.00               | 6.691       | 0.3456      | 0.05164   |
| 0.00                | 7.538       | 0.08546     | 0.01134   | 100.00              | 6.435       | 0.4841      | 0.07523   |
| 5.00                | 7.505       | 0.08838     | 0.01178   | 105.00              | 5.786       | 0.7541      | 0.1304    |
| 10.00               | 7.477       | 0.09111     | 0.01218   | 110.00              | 4.207       | 1.325       | 0.3155    |
| 15.00               | 7.451       | 0.09316     | 0.01250   | 115.00              | 1.613       | 1.485       | 0.9255    |
| 20.00               | 7.428       | 0.09458     | 0.01273   | 120.00              | 0.3670      | 0.5360      | 1.460     |
| 25.00               | 7.407       | 0.09511     | 0.01284   | 125.00              | 0.1513      | 0.1824      | 1.205     |
| 30.00               | 7.388       | 0.09573     | 0.01296   | 130.00              | 0.08729     | 0.08335     | 0.9546    |
| 35.00               | 7.370       | 0.09585     | 0.01301   | 135.00              | 0.06013     | 0.05062     | 0.8419    |
|                     |             |             |           |                     |             |             |           |

 Table 104:
 Storage and loss properties for RTP 607 40% glass fiber filled acrylonitrile butadiene styrene (ABS). (tabular data for Graph 104)

| Temperature<br>(°C) | E'<br>(GPa) | E"<br>(MPa) | Tan Delta | Temperature<br>(°C) | E'<br>(GPa) | E"<br>(MPa) | Tan Delta |
|---------------------|-------------|-------------|-----------|---------------------|-------------|-------------|-----------|
| -60.00              | 9.178       | 0.08437     | 0.009192  | 40.00               | 8.459       | 0.1231      | 0.01455   |
| -55.00              | 9.198       | 0.08011     | 0.008709  | 45.00               | 8.423       | 0.1246      | 0.01480   |
| -50.00              | 9.119       | 0.07907     | 0.008671  | 50.00               | 8.385       | 0.1264      | 0.01507   |
| -45.00              | 9.076       | 0.07571     | 0.008342  | 55.00               | 8.348       | 0.1280      | 0.01533   |
| -40.00              | 9.048       | 0.07480     | 0.008267  | 60.00               | 8.311       | 0.1303      | 0.01568   |
| -35.00              | 9.015       | 0.07594     | 0.008423  | 65.00               | 8.273       | 0.1347      | 0.01628   |
| -30.00              | 8.970       | 0.07849     | 0.008751  | 70.00               | 8.226       | 0.1427      | 0.01735   |
| -25.00              | 8.927       | 0.08095     | 0.009068  | 75.00               | 8.162       | 0.1591      | 0.01950   |
| -20.00              | 8.887       | 0.08344     | 0.009389  | 80.00               | 8.078       | 0.1875      | 0.02321   |
| -15.00              | 8.844       | 0.08830     | 0.009985  | 85.00               | 7.979       | 0.2295      | 0.02876   |
| -10.00              | 8.804       | 0.09250     | 0.01051   | 90.00               | 7.867       | 0.2895      | 0.03681   |
| -5.00               | 8.760       | 0.09760     | 0.01114   | 95.00               | 7.713       | 0.3722      | 0.04826   |
| 0.00                | 8.713       | 0.1039      | 0.01193   | 100.00              | 7.470       | 0.5030      | 0.06734   |
| 5.00                | 8.664       | 0.1106      | 0.01277   | 105.00              | 6.969       | 0.7381      | 0.1059    |
| 10.00               | 8.620       | 0.1155      | 0.01340   | 110.00              | 5.668       | 1.258       | 0.2222    |
| 15.00               | 8.582       | 0.1175      | 0.01369   | 115.00              | 3.025       | 1.899       | 0.6304    |
| 20.00               | 8.556       | 0.1191      | 0.01392   | 120.00              | 0.7770      | 0.9729      | 1.254     |
| 25.00               | 8.537       | 0.1191      | 0.01395   | 125.00              | 0.2791      | 0.3312      | 1.186     |
| 30.00               | 8.517       | 0.1202      | 0.01411   | 130.00              | 0.1486      | 0.1423      | 0.957     |
| 35.00               | 8.493       | 0.1219      | 0.01435   |                     |             |             |           |



Graph 105: Storage and loss properties for Ticona Celstran ABS SS6 6% long stainless steel fiber acrylonitrile butadiene styrene (ABS).

Graph 106: Storage and loss properties for Dow Chemical Styron 484 unfilled high impact polystyrene (HIPS).



Tabular Data Graphs

| Table 105: Storage and loss properties for Ticona Celstran ABS SS6 6% long stainless steel fiber acrylonitrile |
|----------------------------------------------------------------------------------------------------------------|
| butadiene styrene (ABS). (tabular data for Graph 105)                                                          |

| Temperature | E'    | <b>E</b> " | Tan Delta | Temperature | E'      | <b>E</b> " | Tan Delta |
|-------------|-------|------------|-----------|-------------|---------|------------|-----------|
| (°C)        | (GPa) | (MPa)      |           | (°C)        | (GPa)   | (MPa)      |           |
| -60.00      | 3.060 | 79.02      | 0.02583   | 40.00       | 2.564   | 82.53      | 0.03219   |
| -55.00      | 3.035 | 78.17      | 0.02576   | 45.00       | 2.539   | 81.63      | 0.03216   |
| -50.00      | 3.005 | 78.48      | 0.02611   | 50.00       | 2.512   | 80.77      | 0.03215   |
| -45.00      | 2.971 | 79.04      | 0.02661   | 60.00       | 2.461   | 79.54      | 0.03232   |
| -40.00      | 2.931 | 79.33      | 0.02707   | 65.00       | 2.429   | 80.09      | 0.03297   |
| -35.00      | 2.897 | 79.66      | 0.02750   | 70.00       | 2.391   | 82.05      | 0.03431   |
| -30.00      | 2.865 | 80.23      | 0.02800   | 75.00       | 2.349   | 85.58      | 0.03644   |
| -25.00      | 2.839 | 80.79      | 0.02846   | 80.00       | 2.292   | 92.76      | 0.04048   |
| -20.00      | 2.810 | 82.06      | 0.02920   | 85.00       | 2.222   | 104.4      | 0.04699   |
| -15.00      | 2.783 | 84.13      | 0.03023   | 90.00       | 2.145   | 119.6      | 0.05575   |
| -10.00      | 2.760 | 85.40      | 0.03095   | 95.00       | 2.055   | 138.2      | 0.06723   |
| -5.00       | 2.739 | 86.62      | 0.03162   | 100.00      | 1.933   | 160.5      | 0.08305   |
| 0.00        | 2.723 | 87.26      | 0.03204   | 105.00      | 1.749   | 186.2      | 0.1065    |
| 5.00        | 2.710 | 87.51      | 0.03229   | 110.00      | 1.454   | 224.9      | 0.1548    |
| 10.00       | 2.696 | 87.80      | 0.03256   | 115.00      | 1.038   | 281.3      | 0.2712    |
| 15.00       | 2.683 | 87.34      | 0.03255   | 120.00      | 0.6099  | 335.5      | 0.5511    |
| 20.00       | 2.670 | 86.58      | 0.03243   | 125.00      | 0.2157  | 232.7      | 1.081     |
| 25.00       | 2.653 | 85.35      | 0.03218   | 130.00      | 0.06596 | 90.99      | 1.380     |
| 30.00       | 2.627 | 84.16      | 0.03204   | 135.00      | 0.03047 | 40.54      | 1.330     |
| 35.00       | 2.593 | 83.17      | 0.03207   |             |         |            |           |

 
 Table 106:
 Storage and loss properties for Dow Chemical Styron 484 unfilled high impact polystyrene (HIPS). (tabular data for Graph 106)

| Temperature<br>(°C) | E'<br>(GPa) | E"<br>(MPa) | Tan Delta | Temperature<br>(°C) | E'<br>(GPa) | E"<br>(MPa) | Tan Delta |
|---------------------|-------------|-------------|-----------|---------------------|-------------|-------------|-----------|
| -60.00              | 2.153       | 62.97       | 0.02925   | 30.00               | 1.845       | 54.86       | 0.02972   |
| -55.00              | 2.140       | 60.35       | 0.02820   | 35.00               | 1.821       | 54.96       | 0.03017   |
| -50.00              | 2.118       | 57.98       | 0.02737   | 40.00               | 1.800       | 55.05       | 0.03059   |
| -45.00              | 2.097       | 56.80       | 0.02708   | 45.00               | 1.784       | 55.08       | 0.03088   |
| -40.00              | 2.076       | 55.92       | 0.02693   | 50.00               | 1.767       | 55.37       | 0.03134   |
| -35.00              | 2.057       | 55.01       | 0.02675   | 55.00               | 1.745       | 55.69       | 0.03192   |
| -30.00              | 2.038       | 53.84       | 0.02641   | 60.00               | 1.722       | 56.51       | 0.03281   |
| -25.00              | 2.018       | 53.11       | 0.02631   | 65.00               | 1.693       | 58.00       | 0.03426   |
| -20.00              | 1.999       | 52.76       | 0.02639   | 70.00               | 1.660       | 60.22       | 0.03628   |
| -15.00              | 1.980       | 52.84       | 0.02669   | 75.00               | 1.618       | 64.12       | 0.03963   |
| -10.00              | 1.961       | 52.91       | 0.02698   | 80.00               | 1.565       | 71.47       | 0.04566   |
| -5.00               | 1.941       | 53.36       | 0.02750   | 85.00               | 1.497       | 83.17       | 0.05556   |
| 0.00                | 1.922       | 53.86       | 0.02803   | 90.00               | 1.395       | 104.2       | 0.07467   |
| 5.00                | 1.907       | 54.46       | 0.02856   | 95.00               | 1.230       | 138.4       | 0.1125    |
| 10.00               | 1.896       | 54.68       | 0.02884   | 100.00              | 0.9723      | 191.1       | 0.1967    |
| 15.00               | 1.888       | 54.75       | 0.02900   | 105.00              | 0.5715      | 288.5       | 0.5064    |
| 20.00               | 1.879       | 54.73       | 0.02913   | 110.00              | 0.1586      | 224.8       | 1.424     |
| 25.00               | 1.866       | 54.82       | 0.02938   | 115.00              | 0.04131     | 79.31       | 1.920     |



Graph 107: Storage and loss properties for Bayer Lustran SAN31 unfilled styrene acrylonitrile copolymer (SAN).

Graph 108: Storage and loss properties for Bayer Triax 1125 unfilled acrylonitrile butadiene styrene/ nylon alloy (ABS/ nylon alloy).



**Tabular Data Graphs** 

 
 Table 107:
 Storage and loss properties for Bayer Lustran SAN31 unfilled styrene acrylonitrile copolymer (SAN). (tabular data for Graph 107)

| Temperature | E'    | <b>E</b> " | Tan Delta | Temperature | E'     | <b>E</b> " | Tan Delta |
|-------------|-------|------------|-----------|-------------|--------|------------|-----------|
| (°C)        | (GPa) | (MPa)      |           | (°C)        | (GPa)  | (MPa)      |           |
| -60.00      | 3.837 | 29.93      | 0.007800  | 30.00       | 3.414  | 42.41      | 0.01242   |
| -55.00      | 3.824 | 30.33      | 0.007930  | 35.00       | 3.392  | 42.72      | 0.01260   |
| -50.00      | 3.812 | 31.05      | 0.008146  | 40.00       | 3.364  | 43.59      | 0.01296   |
| -45.00      | 3.788 | 32.37      | 0.008546  | 45.00       | 3.334  | 45.02      | 0.01350   |
| -40.00      | 3.757 | 34.15      | 0.009091  | 50.00       | 3.306  | 46.83      | 0.01417   |
| -35.00      | 3.728 | 35.62      | 0.009556  | 55.00       | 3.280  | 49.13      | 0.01498   |
| -30.00      | 3.703 | 36.79      | 0.009936  | 60.00       | 3.250  | 52.13      | 0.01604   |
| -25.00      | 3.676 | 37.84      | 0.01029   | 65.00       | 3.212  | 56.69      | 0.01765   |
| -20.00      | 3.654 | 38.67      | 0.01058   | 70.00       | 3.161  | 64.22      | 0.02032   |
| -15.00      | 3.631 | 39.35      | 0.01084   | 75.00       | 3.089  | 77.67      | 0.02514   |
| -10.00      | 3.605 | 39.69      | 0.01101   | 80.00       | 2.998  | 100.2      | 0.03342   |
| -5.00       | 3.577 | 40.44      | 0.01131   | 85.00       | 2.897  | 128.9      | 0.04449   |
| 0.00        | 3.550 | 40.83      | 0.01150   | 90.00       | 2.791  | 161.9      | 0.05800   |
| 5.00        | 3.529 | 40.61      | 0.01151   | 95.00       | 2.640  | 210.9      | 0.07989   |
| 10.00       | 3.503 | 41.31      | 0.01179   | 100.00      | 2.366  | 282.9      | 0.1196    |
| 15.00       | 3.476 | 41.91      | 0.01206   | 105.00      | 1.832  | 413.6      | 0.2260    |
| 20.00       | 3.452 | 42.04      | 0.01218   | 110.00      | 0.9367 | 621.7      | 0.6671    |
| 25.00       | 3.435 | 42.00      | 0.01223   | 115.00      | 0.1564 | 328.6      | 2.113     |

 Table 108:
 Storage and loss properties for Bayer Triax 1125 unfilled acrylonitrile butadiene styrene/ nylon alloy (ABS/ nylon alloy). (tabular data for Graph 108)

| Temperature | E'    | <b>E</b> " | Tan Delta | Temperature | E'      | <b>E</b> " | Tan Delta |
|-------------|-------|------------|-----------|-------------|---------|------------|-----------|
| (°C)        | (GPa) | (MPa)      |           | (°C)        | (GPa)   | (MPa)      |           |
| -60.00      | 2.005 | 99.12      | 0.04944   | 80.00       | 1.087   | 94.34      | 0.08678   |
| -55.00      | 1.997 | 96.70      | 0.04842   | 85.00       | 0.9944  | 83.84      | 0.08431   |
| -50.00      | 1.979 | 91.87      | 0.04643   | 90.00       | 0.9101  | 76.10      | 0.08362   |
| -45.00      | 1.954 | 87.11      | 0.04458   | 95.00       | 0.8247  | 72.96      | 0.08847   |
| -40.00      | 1.931 | 82.94      | 0.04296   | 100.00      | 0.7315  | 75.97      | 0.1039    |
| -35.00      | 1.909 | 79.07      | 0.04142   | 105.00      | 0.6149  | 87.85      | 0.1430    |
| -30.00      | 1.890 | 75.62      | 0.04002   | 110.00      | 0.4681  | 110.5      | 0.2364    |
| -25.00      | 1.873 | 73.09      | 0.03903   | 115.00      | 0.2810  | 108.1      | 0.3854    |
| -20.00      | 1.861 | 70.81      | 0.03805   | 120.00      | 0.1629  | 62.50      | 0.3834    |
| -15.00      | 1.850 | 69.05      | 0.03733   | 125.00      | 0.1137  | 35.31      | 0.3104    |
| -10.00      | 1.839 | 67.53      | 0.03672   | 130.00      | 0.08952 | 23.85      | 0.2663    |
| -5.00       | 1.829 | 66.07      | 0.03612   | 135.00      | 0.07496 | 17.41      | 0.2323    |
| 0.00        | 1.819 | 64.93      | 0.03569   | 140.00      | 0.06678 | 13.81      | 0.2068    |
| 5.00        | 1.809 | 63.99      | 0.03536   | 145.00      | 0.06189 | 11.49      | 0.1857    |
| 10.00       | 1.800 | 63.12      | 0.03507   | 150.00      | 0.05874 | 10.25      | 0.1744    |
| 15.00       | 1.788 | 62.53      | 0.03498   | 155.00      | 0.05633 | 9.637      | 0.1711    |
| 20.00       | 1.777 | 62.15      | 0.03498   | 160.00      | 0.05414 | 9.286      | 0.1715    |
| 25.00       | 1.762 | 61.80      | 0.03507   | 165.00      | 0.05199 | 9.053      | 0.1741    |
| 30.00       | 1.748 | 61.89      | 0.03540   | 170.00      | 0.05001 | 8.886      | 0.1777    |
| 35.00       | 1.736 | 62.25      | 0.03585   | 175.00      | 0.04794 | 8.747      | 0.1825    |
| 40.00       | 1.721 | 63.60      | 0.03696   | 180.00      | 0.04581 | 8.636      | 0.1885    |
| 45.00       | 1.696 | 66.47      | 0.03918   | 185.00      | 0.04359 | 8.538      | 0.1959    |
| 50.00       | 1.661 | 71.90      | 0.04330   | 190.00      | 0.04123 | 8.499      | 0.2062    |
| 55.00       | 1.608 | 80.85      | 0.05028   | 195.00      | 0.03878 | 8.543      | 0.2203    |
| 60.00       | 1.530 | 92.98      | 0.06077   | 200.00      | 0.03611 | 8.796      | 0.2436    |
| 65.00       | 1.428 | 103.4      | 0.07239   | 205.00      | 0.03344 | 8.669      | 0.2592    |
| 70.00       | 1.312 | 107.2      | 0.08177   | 210.00      | 0.03041 | 8.213      | 0.2701    |
| 75.00       | 1.193 | 103.4      | 0.08668   | 215.00      | 0.02658 | 7.977      | 0.3002    |
|             |       |            |           |             |         |            |           |



Graph 109: Storage and loss properties for Cyro Cyrex RDG200 unfilled, impact modified acrylic/ polycarbonate alloy (acrylic/ PC alloy).

Graph 110: Storage and loss properties for Bayer Bayblend FR1441 brominated flame retardant polycarbonate/ acrylonitrile butadiene styrene alloy (PC/ ABS alloy).



**Tabular Data Graphs** 

<sup>©</sup> Plastic Design Library

 Table 109:
 Storage and loss properties for Cyro Cyrex RDG200 unfilled, impact modified acrylic/ polycarbonate alloy (acrylic/ PC alloy). (tabular data for Graph 109)

| Temperature | E'    | <b>E</b> " | Tan Delta | Temperature | E'       | <b>E</b> " | Tan Delta |
|-------------|-------|------------|-----------|-------------|----------|------------|-----------|
| (°C)        | (GPa) | (MPa)      |           | (°C)        | (GPa)    | (MPa)      |           |
| -55.00      | 2.910 | 93.13      | 0.03200   | 55.00       | 2.024    | 96.01      | 0.04743   |
| -50.00      | 2.869 | 95.92      | 0.03343   | 60.00       | 1.976    | 93.02      | 0.04708   |
| -45.00      | 2.834 | 98.94      | 0.03491   | 65.00       | 1.921    | 91.53      | 0.04765   |
| -40.00      | 2.792 | 102.1      | 0.03659   | 70.00       | 1.862    | 91.71      | 0.04926   |
| -35.00      | 2.748 | 106.2      | 0.03865   | 75.00       | 1.797    | 93.82      | 0.05222   |
| -30.00      | 2.699 | 110.5      | 0.04093   | 80.00       | 1.728    | 97.62      | 0.05651   |
| -25.00      | 2.648 | 114.5      | 0.04325   | 85.00       | 1.654    | 103.2      | 0.06240   |
| -20.00      | 2.598 | 118.1      | 0.04544   | 90.00       | 1.572    | 111.9      | 0.07121   |
| -15.00      | 2.551 | 120.8      | 0.04733   | 95.00       | 1.472    | 125.6      | 0.08534   |
| -10.00      | 2.507 | 122.5      | 0.04888   | 100.00      | 1.336    | 148.8      | 0.1114    |
| -5.00       | 2.467 | 123.6      | 0.05010   | 105.00      | 1.127    | 179.9      | 0.1597    |
| 0.00        | 2.432 | 124.1      | 0.05101   | 110.00      | 0.8704   | 197.4      | 0.2269    |
| 5.00        | 2.398 | 123.9      | 0.05168   | 115.00      | 0.6346   | 181.8      | 0.2866    |
| 10.00       | 2.363 | 123.0      | 0.05204   | 120.00      | 0.4647   | 141.2      | 0.3038    |
| 15.00       | 2.329 | 121.7      | 0.05226   | 125.00      | 0.3552   | 104.4      | 0.2940    |
| 20.00       | 2.291 | 119.6      | 0.05222   | 130.00      | 0.2799   | 80.15      | 0.2864    |
| 25.00       | 2.252 | 117.2      | 0.05205   | 135.00      | 0.2218   | 64.21      | 0.2895    |
| 30.00       | 2.216 | 114.6      | 0.05172   | 140.00      | 0.1732   | 55.49      | 0.3205    |
| 35.00       | 2.181 | 111.3      | 0.05103   | 145.00      | 0.1161   | 54.18      | 0.4679    |
| 40.00       | 2.144 | 107.5      | 0.05014   | 150.00      | 0.04564  | 45.67      | 1.008     |
| 45.00       | 2.108 | 103.7      | 0.04921   | 155.00      | 0.007851 | 21.00      | 2.692     |
| 50.00       | 2.068 | 99.73      | 0.04822   |             |          |            |           |

 
 Table 110:
 Storage and loss properties for Bayer Bayblend FR1441 brominated flame retardant polycarbonate/ acrylonitrile butadiene styrene alloy (PC/ ABS alloy). (tabular data for Graph 110)

| Temperature<br>(°C) | E'<br>(GPa) | E"<br>(MPa) | Tan Delta | Temperature<br>(°C) | E'<br>(GPa) | E"<br>(MPa) | Tan Delta |
|---------------------|-------------|-------------|-----------|---------------------|-------------|-------------|-----------|
| -60.00              | 2.946       | 78.87       | 0.02677   | 45.00               | 2.426       | 57.95       | 0.02389   |
| -55.00              | 2.930       | 76.66       | 0.02617   | 50.00               | 2.401       | 57.36       | 0.02389   |
| -50.00              | 2.903       | 75.23       | 0.02592   | 55.00               | 2.373       | 57.05       | 0.02404   |
| -45.00              | 2.874       | 74.30       | 0.02585   | 60.00               | 2.339       | 56.95       | 0.02435   |
| -40.00              | 2.828       | 73.42       | 0.02596   | 65.00               | 2.298       | 57.58       | 0.02506   |
| -35.00              | 2.785       | 73.23       | 0.02630   | 70.00               | 2.248       | 59.27       | 0.02637   |
| -30.00              | 2.750       | 72.94       | 0.02652   | 75.00               | 2.189       | 62.66       | 0.02863   |
| -25.00              | 2.717       | 72.46       | 0.02667   | 80.00               | 2.126       | 67.96       | 0.03197   |
| -20.00              | 2.689       | 71.79       | 0.02670   | 85.00               | 2.061       | 75.80       | 0.03677   |
| -15.00              | 2.662       | 71.14       | 0.02672   | 90.00               | 1.994       | 86.69       | 0.04347   |
| -10.00              | 2.637       | 70.65       | 0.02679   | 95.00               | 1.917       | 103.1       | 0.05377   |
| -5.00               | 2.616       | 69.63       | 0.02661   | 100.00              | 1.814       | 126.4       | 0.06966   |
| 0.00                | 2.598       | 68.05       | 0.02619   | 105.00              | 1.675       | 147.6       | 0.08813   |
| 5.00                | 2.582       | 66.75       | 0.02585   | 110.00              | 1.499       | 164.5       | 0.1097    |
| 10.00               | 2.569       | 65.79       | 0.02561   | 115.00              | 1.246       | 203.4       | 0.1634    |
| 15.00               | 2.554       | 64.58       | 0.02529   | 120.00              | 0.8093      | 282.8       | 0.3507    |
| 20.00               | 2.530       | 63.13       | 0.02495   | 125.00              | 0.2716      | 267.3       | 0.9939    |
| 25.00               | 2.517       | 62.35       | 0.02477   | 130.00              | 0.03711     | 78.32       | 2.119     |
| 30.00               | 2.495       | 61.25       | 0.02455   | 135.00              | 0.01259     | 25.00       | 1.985     |
| 35.00               | 2.473       | 60.04       | 0.02428   | 140.00              | 0.009185    | 15.95       | 1.737     |
| 40.00               | 2.450       | 58.92       | 0.02405   | 145.00              | 0.009178    | 15.29       | 1.684     |



Graph 111: Storage and loss properties for Bayer Bayblend FR110 halogen free flame retardant polycarbonate/ acrylonitrile butadiene styrene alloy (PC/ ABS alloy).

**Graph 112:** Storage and loss properties for GE Plastics Xenoy 6123 unfilled, impact modified polycarbonate polybutylene terephthalate alloy (PC/ polyester PBT alloy).



| Table 111: | Storage and loss properties for Bayer Bayblend FR110 halogen free flame retardant polycarbonate/ |
|------------|--------------------------------------------------------------------------------------------------|
|            | acrylonitrile butadiene styrene alloy (PC/ ABS alloy). (tabular data for Graph 111)              |

| acry        | lonitrile but | adiene styrer | ne alloy (PC/ ABS a | alloy). (tabular data for | Graph 111) |            |           |
|-------------|---------------|---------------|---------------------|---------------------------|------------|------------|-----------|
| Temperature | E'            | <b>E</b> "    | Tan Delta           | Temperature               | E'         | <b>E</b> " | Tan Delta |
| (°C)        | (GPa)         | (MPa)         |                     | (°C)                      | (GPa)      | (MPa)      |           |
| -60.00      | 3.001         | 72.50         | 0.02416             | 40.00                     | 2.483      | 70.63      | 0.02844   |
| -55.00      | 2.980         | 70.99         | 0.02382             | 45.00                     | 2.451      | 69.65      | 0.02841   |
| -50.00      | 2.957         | 70.43         | 0.02382             | 50.00                     | 2.425      | 68.56      | 0.02827   |
| -45.00      | 2.925         | 70.75         | 0.02419             | 55.00                     | 2.399      | 67.60      | 0.02817   |
| -40.00      | 2.888         | 71.70         | 0.02482             | 60.00                     | 2.370      | 67.43      | 0.02845   |
| -35.00      | 2.850         | 73.10         | 0.02565             | 65.00                     | 2.333      | 67.70      | 0.02901   |
| -30.00      | 2.818         | 74.20         | 0.02633             | 70.00                     | 2.285      | 69.77      | 0.03053   |
| -25.00      | 2.795         | 75.04         | 0.02684             | 75.00                     | 2.223      | 74.22      | 0.03339   |
| -20.00      | 2.774         | 74.96         | 0.02702             | 80.00                     | 2.148      | 81.27      | 0.03784   |
| -15.00      | 2.750         | 75.28         | 0.02738             | 85.00                     | 2.058      | 92.67      | 0.04502   |
| -10.00      | 2.728         | 75.74         | 0.02777             | 90.00                     | 1.955      | 109.7      | 0.05608   |
| -5.00       | 2.705         | 75.67         | 0.02797             | 95.00                     | 1.811      | 138.5      | 0.07644   |
| 0.00        | 2.683         | 75.26         | 0.02805             | 100.00                    | 1.583      | 180.9      | 0.1143    |
| 5.00        | 2.662         | 74.91         | 0.02814             | 105.00                    | 1.159      | 238.2      | 0.2059    |
| 10.00       | 2.641         | 74.50         | 0.02821             | 110.00                    | 0.5818     | 326.9      | 0.5646    |
| 15.00       | 2.620         | 74.07         | 0.02828             | 115.00                    | 0.1005     | 170.5      | 1.705     |
| 20.00       | 2.598         | 73.35         | 0.02824             | 120.00                    | 0.02169    | 41.24      | 1.900     |
| 25.00       | 2.574         | 72.84         | 0.02830             | 125.00                    | 0.01234    | 19.26      | 1.561     |
| 30.00       | 2.549         | 71.87         | 0.02819             | 130.00                    | 0.01018    | 15.66      | 1.539     |
| 35.00       | 2.519         | 71.46         | 0.02837             |                           |            |            |           |

 Table 112:
 Storage and loss properties for GE Plastics Xenoy 6123 unfilled, impact modified polycarbonate polybutylene terephthalate alloy (PC/ polyester PBT alloy). (tabular data for Graph 112)

| Temperature | E'    | <b>E</b> " | Tan Delta | Temperature | E'      | <b>E</b> " | Tan Delta |
|-------------|-------|------------|-----------|-------------|---------|------------|-----------|
| (°C)        | (GPa) | (MPa)      |           | (°C)        | (GPa)   | (MPa)      |           |
| -60.00      | 2.814 | 125.0      | 0.04442   | 80.00       | 1.038   | 94.27      | 0.09086   |
| -55.00      | 2.773 | 122.7      | 0.04426   | 85.00       | 0.9232  | 82.26      | 0.08910   |
| -50.00      | 2.723 | 118.5      | 0.04353   | 90.00       | 0.8390  | 73.02      | 0.08703   |
| -45.00      | 2.639 | 105.4      | 0.03992   | 95.00       | 0.7765  | 67.08      | 0.08638   |
| -40.00      | 2.574 | 94.29      | 0.03663   | 100.00      | 0.7204  | 62.76      | 0.08712   |
| -35.00      | 2.510 | 87.52      | 0.03486   | 105.00      | 0.6678  | 60.41      | 0.09047   |
| -30.00      | 2.452 | 83.40      | 0.03401   | 110.00      | 0.6206  | 59.82      | 0.09639   |
| -25.00      | 2.403 | 80.86      | 0.03364   | 115.00      | 0.5737  | 60.57      | 0.1056    |
| -20.00      | 2.362 | 78.23      | 0.03312   | 120.00      | 0.5255  | 62.93      | 0.1198    |
| -15.00      | 2.331 | 76.93      | 0.03301   | 125.00      | 0.4731  | 66.50      | 0.1406    |
| -10.00      | 2.305 | 76.12      | 0.03302   | 130.00      | 0.4135  | 71.25      | 0.1724    |
| -5.00       | 2.283 | 75.97      | 0.03327   | 135.00      | 0.3449  | 75.78      | 0.2199    |
| 0.00        | 2.261 | 75.68      | 0.03347   | 140.00      | 0.2679  | 75.05      | 0.2803    |
| 5.00        | 2.238 | 75.14      | 0.03357   | 145.00      | 0.1979  | 64.93      | 0.3282    |
| 10.00       | 2.215 | 74.42      | 0.03360   | 150.00      | 0.1453  | 47.46      | 0.3267    |
| 15.00       | 2.200 | 73.41      | 0.03337   | 155.00      | 0.1153  | 33.37      | 0.2893    |
| 20.00       | 2.185 | 72.07      | 0.03298   | 160.00      | 0.09708 | 24.50      | 0.2523    |
| 25.00       | 2.171 | 70.76      | 0.03259   | 165.00      | 0.08533 | 19.90      | 0.2332    |
| 30.00       | 2.156 | 69.28      | 0.03213   | 170.00      | 0.07673 | 17.39      | 0.2266    |
| 35.00       | 2.138 | 68.09      | 0.03185   | 175.00      | 0.06988 | 15.87      | 0.2272    |
| 40.00       | 2.113 | 67.24      | 0.03182   | 180.00      | 0.06410 | 15.06      | 0.2350    |
| 45.00       | 2.081 | 67.15      | 0.03228   | 185.00      | 0.05883 | 14.73      | 0.2504    |
| 50.00       | 2.032 | 70.12      | 0.03452   | 190.00      | 0.05361 | 14.67      | 0.2736    |
| 55.00       | 1.930 | 81.42      | 0.04220   | 195.00      | 0.04843 | 14.67      | 0.3029    |
| 60.00       | 1.762 | 98.78      | 0.05607   | 200.00      | 0.04332 | 14.19      | 0.3276    |
| 65.00       | 1.570 | 109.4      | 0.06968   | 205.00      | 0.03762 | 13.60      | 0.3616    |
| 70.00       | 1.356 | 110.3      | 0.08139   | 210.00      | 0.03158 | 13.14      | 0.4161    |
| 75.00       | 1.177 | 104.4      | 0.08867   | 215.00      | 0.02525 | 12.60      | 0.4992    |



**Graph 113:** Storage and loss properties for GE Plastics Xenoy 6240 10% glass fiber filled, impact modified polycarbonate polybutylene terephthalate alloy (PC/ polyester PBT alloy).

Graph 114: Storage and loss properties for Bayer Makroblend UT1018 unfilled, impact modified polycarbonate polyethylene terephthalate alloy (PC/ polyester PET alloy).



| Table 113: | Storage and loss properties for GE Plastics Xenoy 6240 10% glass fiber filled, impact modified polycarbon- |
|------------|------------------------------------------------------------------------------------------------------------|
|            | ate polybutylene terephthalate alloy (PC/ polyester PBT alloy). (tabular data for Graph 113)               |

| Temperature | E'    | <b>E</b> " | Tan Delta | Temperature | E'     | <b>E</b> " | Tan Delta |
|-------------|-------|------------|-----------|-------------|--------|------------|-----------|
| (°C)        | (GPa) | (MPa)      |           | (°C)        | (GPa)  | (MPa)      |           |
| -60.00      | 3.992 | 162.4      | 0.04068   | 80.00       | 2.177  | 150.0      | 0.06890   |
| -55.00      | 3.921 | 158.2      | 0.04033   | 85.00       | 2.032  | 136.8      | 0.06735   |
| -50.00      | 3.852 | 151.8      | 0.03940   | 90.00       | 1.927  | 126.8      | 0.06581   |
| -45.00      | 3.764 | 137.9      | 0.03663   | 95.00       | 1.826  | 119.3      | 0.06533   |
| -40.00      | 3.690 | 124.0      | 0.03361   | 100.00      | 1.732  | 114.1      | 0.06587   |
| -35.00      | 3.626 | 116.6      | 0.03216   | 105.00      | 1.639  | 111.4      | 0.06800   |
| -30.00      | 3.559 | 108.4      | 0.03045   | 110.00      | 1.544  | 111.1      | 0.07194   |
| -25.00      | 3.505 | 103.1      | 0.02943   | 115.00      | 1.446  | 113.8      | 0.07872   |
| -20.00      | 3.459 | 97.94      | 0.02831   | 120.00      | 1.340  | 118.8      | 0.08868   |
| -15.00      | 3.427 | 92.15      | 0.02689   | 125.00      | 1.229  | 126.3      | 0.1028    |
| -10.00      | 3.407 | 88.17      | 0.02588   | 130.00      | 1.105  | 136.7      | 0.1237    |
| -5.00       | 3.386 | 85.66      | 0.02530   | 135.00      | 0.9633 | 149.4      | 0.1552    |
| 0.00        | 3.367 | 83.85      | 0.02490   | 140.00      | 0.8041 | 157.5      | 0.1960    |
| 5.00        | 3.359 | 82.83      | 0.02466   | 145.00      | 0.6433 | 146.9      | 0.2284    |
| 10.00       | 3.348 | 81.56      | 0.02436   | 150.00      | 0.5160 | 115.0      | 0.2227    |
| 15.00       | 3.342 | 80.36      | 0.02404   | 155.00      | 0.4313 | 81.07      | 0.1879    |
| 20.00       | 3.332 | 79.46      | 0.02385   | 160.00      | 0.3781 | 58.33      | 0.1543    |
| 25.00       | 3.325 | 79.00      | 0.02376   | 165.00      | 0.3407 | 46.56      | 0.1366    |
| 30.00       | 3.313 | 78.46      | 0.02368   | 170.00      | 0.3111 | 40.39      | 0.1298    |
| 35.00       | 3.300 | 78.22      | 0.02371   | 175.00      | 0.2870 | 36.12      | 0.1258    |
| 40.00       | 3.284 | 78.42      | 0.02388   | 180.00      | 0.2669 | 32.83      | 0.1230    |
| 45.00       | 3.268 | 80.06      | 0.02450   | 185.00      | 0.2494 | 30.84      | 0.1236    |
| 50.00       | 3.230 | 84.68      | 0.02621   | 190.00      | 0.2326 | 29.85      | 0.1283    |
| 55.00       | 3.134 | 101.6      | 0.03241   | 195.00      | 0.2150 | 29.15      | 0.1356    |
| 60.00       | 2.966 | 129.8      | 0.04375   | 200.00      | 0.1966 | 28.47      | 0.1448    |
| 65.00       | 2.769 | 150.5      | 0.05436   | 205.00      | 0.1764 | 27.75      | 0.1573    |
| 70.00       | 2.554 | 158.7      | 0.06214   | 210.00      | 0.1530 | 27.01      | 0.1765    |
| 75.00       | 2.350 | 158.6      | 0.06750   | 215.00      | 0.1308 | 25.74      | 0.1969    |

 Table 114:
 Storage and loss properties for Bayer Makroblend UT1018 unfilled, impact modified polycarbonate polyethylene terephthalate alloy (PC/ polyester PET alloy). (tabular data for Graph 114)

| Temperature | E'    | <b>E</b> " | Tan Delta | Temperature | E'      | <b>E</b> " | Tan Delta |
|-------------|-------|------------|-----------|-------------|---------|------------|-----------|
| (°C)        | (GPa) | (MPa)      |           | (°C)        | (GPa)   | (MPa)      |           |
| -60.00      | 2.369 | 125.3      | 0.05288   | 80.00       | 1.685   | 76.84      | 0.04562   |
| -55.00      | 2.343 | 120.8      | 0.05156   | 85.00       | 1.522   | 127.4      | 0.08381   |
| -50.00      | 2.308 | 117.0      | 0.05067   | 90.00       | 1.171   | 180.8      | 0.1546    |
| -45.00      | 2.273 | 113.3      | 0.04984   | 95.00       | 0.8187  | 151.2      | 0.1847    |
| -40.00      | 2.235 | 108.9      | 0.04876   | 100.00      | 0.6072  | 103.3      | 0.1701    |
| -35.00      | 2.201 | 104.6      | 0.04751   | 105.00      | 0.4894  | 73.86      | 0.1509    |
| -30.00      | 2.171 | 99.86      | 0.04600   | 110.00      | 0.4194  | 60.47      | 0.1442    |
| -25.00      | 2.143 | 94.97      | 0.04431   | 115.00      | 0.3780  | 54.62      | 0.1445    |
| -20.00      | 2.119 | 90.38      | 0.04266   | 120.00      | 0.3650  | 52.89      | 0.1449    |
| -15.00      | 2.098 | 85.97      | 0.04098   | 125.00      | 0.3649  | 54.08      | 0.1482    |
| -10.00      | 2.080 | 82.42      | 0.03963   | 130.00      | 0.3657  | 57.15      | 0.1563    |
| -5.00       | 2.062 | 79.42      | 0.03851   | 135.00      | 0.3612  | 63.45      | 0.1757    |
| 0.00        | 2.046 | 77.12      | 0.03769   | 140.00      | 0.3347  | 74.06      | 0.2214    |
| 5.00        | 2.032 | 75.09      | 0.03695   | 145.00      | 0.2630  | 88.81      | 0.3383    |
| 10.00       | 2.021 | 72.83      | 0.03604   | 150.00      | 0.1574  | 75.95      | 0.4829    |
| 15.00       | 2.014 | 70.27      | 0.03489   | 155.00      | 0.09708 | 42.29      | 0.4352    |
| 20.00       | 2.010 | 67.40      | 0.03353   | 160.00      | 0.07438 | 26.21      | 0.3522    |
| 25.00       | 2.004 | 64.46      | 0.03216   | 165.00      | 0.06364 | 20.05      | 0.3151    |
| 30.00       | 1.995 | 61.61      | 0.03089   | 170.00      | 0.05749 | 17.26      | 0.3003    |
| 35.00       | 1.979 | 58.89      | 0.02976   | 175.00      | 0.05370 | 15.76      | 0.2935    |
| 40.00       | 1.961 | 56.24      | 0.02868   | 180.00      | 0.05116 | 15.11      | 0.2954    |
| 45.00       | 1.944 | 53.93      | 0.02775   | 185.00      | 0.04918 | 14.87      | 0.3024    |
| 50.00       | 1.922 | 51.93      | 0.02703   | 190.00      | 0.04718 | 14.70      | 0.3116    |
| 55.00       | 1.901 | 50.47      | 0.02655   | 195.00      | 0.04516 | 14.37      | 0.3182    |
| 60.00       | 1.879 | 49.38      | 0.02628   | 200.00      | 0.04306 | 13.93      | 0.3234    |
| 65.00       | 1.851 | 49.40      | 0.02669   | 205.00      | 0.04091 | 13.54      | 0.3310    |
| 70.00       | 1.814 | 51.53      | 0.02841   | 210.00      | 0.03871 | 13.24      | 0.3421    |
| 75.00       | 1.759 | 59.09      | 0.03359   | 215.00      | 0.03637 | 12.95      | 0.3561    |
|             |       |            |           |             |         |            |           |



Graph 115: Storage and loss properties for MRC Polymers Stanuloy ST125 unfilled, from recyclate polycarbonate polyethylene terephthalate alloy (PC/ polyester PET alloy).

Graph 116: Storage and loss properties for MRC Polymers Stanuloy ST110WCS impact modified, from recyclate polycarbonate polyethylene terephthalate alloy (PC/ polyester PET alloy).



| Table 115: | Storage and loss properties for MRC Polymers Stanuloy ST125 unfilled, from recyclate polycarbonate poly- |
|------------|----------------------------------------------------------------------------------------------------------|
|            | ethylene terephthalate alloy (PC/ polyester PET alloy). (tabular data for Graph 115)                     |

| Temperature E' E" Tan Delta |       | Temperature | E'      | <b>E</b> " | Tan Delta |       |        |
|-----------------------------|-------|-------------|---------|------------|-----------|-------|--------|
| (°C)                        | (GPa) | (MPa)       |         | (°C)       | (GPa)     | (MPa) |        |
|                             | 0.550 | 100.0       |         |            |           |       |        |
| -55.00                      | 2.778 | 129.0       | 0.04644 | 90.00      | 1.145     | 210.3 | 0.1848 |
| -50.00                      | 2.730 | 130.3       | 0.04772 | 95.00      | 0.4963    | 192.1 | 0.3875 |
| -45.00                      | 2.638 | 133.5       | 0.05061 | 100.00     | 0.2365    | 82.86 | 0.3500 |
| -40.00                      | 2.533 | 127.2       | 0.05022 | 105.00     | 0.1581    | 44.35 | 0.2804 |
| -35.00                      | 2.432 | 109.0       | 0.04481 | 110.00     | 0.1219    | 32.36 | 0.2654 |
| -30.00                      | 2.355 | 93.01       | 0.03950 | 115.00     | 0.1001    | 27.34 | 0.2732 |
| -25.00                      | 2.295 | 82.16       | 0.03581 | 120.00     | 0.08941   | 26.27 | 0.2938 |
| -20.00                      | 2.248 | 73.69       | 0.03278 | 125.00     | 0.09499   | 29.14 | 0.3067 |
| -15.00                      | 2.213 | 65.08       | 0.02941 | 130.00     | 0.1012    | 33.01 | 0.3262 |
| -10.00                      | 2.187 | 58.59       | 0.02679 | 135.00     | 0.09639   | 34.86 | 0.3617 |
| -5.00                       | 2.166 | 54.37       | 0.02510 | 140.00     | 0.08481   | 32.34 | 0.3813 |
| 0.00                        | 2.148 | 51.48       | 0.02396 | 145.00     | 0.07414   | 25.51 | 0.3440 |
| 5.00                        | 2.134 | 49.19       | 0.02305 | 150.00     | 0.06646   | 20.38 | 0.3066 |
| 10.00                       | 2.122 | 47.36       | 0.02232 | 155.00     | 0.06124   | 17.36 | 0.2835 |
| 15.00                       | 2.111 | 45.51       | 0.02156 | 160.00     | 0.05790   | 15.49 | 0.2675 |
| 20.00                       | 2.103 | 43.94       | 0.02089 | 165.00     | 0.05555   | 14.35 | 0.2584 |
| 25.00                       | 2.092 | 42.34       | 0.02024 | 170.00     | 0.05400   | 13.84 | 0.2564 |
| 30.00                       | 2.076 | 41.23       | 0.01986 | 175.00     | 0.05224   | 13.55 | 0.2593 |
| 40.00                       | 2.016 | 39.48       | 0.01958 | 180.00     | 0.04987   | 13.34 | 0.2675 |
| 45.00                       | 1.993 | 39.94       | 0.02004 | 190.00     | 0.04501   | 12.75 | 0.2832 |
| 50.00                       | 1.972 | 40.44       | 0.02051 | 195.00     | 0.04183   | 12.31 | 0.2944 |
| 55.00                       | 1.944 | 40.89       | 0.02104 | 200.00     | 0.03851   | 11.80 | 0.3065 |
| 60.00                       | 1.914 | 41.49       | 0.02168 | 205.00     | 0.03419   | 11.40 | 0.3336 |
| 65.00                       | 1.881 | 42.11       | 0.02239 | 210.00     | 0.02982   | 11.01 | 0.3693 |
| 70.00                       | 1.844 | 43.20       | 0.02342 | 215.00     | 0.02425   | 10.56 | 0.4358 |
| 75.00                       | 1.799 | 45.28       | 0.02517 | 220.00     | 0.01840   | 10.09 | 0.5489 |
| 80.00                       | 1.727 | 52.44       | 0.03037 | 225.00     | 0.01214   | 9.601 | 0.7924 |

 
 Table 116:
 Storage and loss properties for MRC Polymers Stanuloy ST110WCS impact modified, from recyclate polycarbonate polyethylene terephthalate alloy (PC/ polyester PET alloy). (tabular data for Graph 116)

| Temperature | E'    | <b>E</b> " | Tan Delta | Temperature | E'       | <b>E</b> " | Tan Delta |  |
|-------------|-------|------------|-----------|-------------|----------|------------|-----------|--|
| (°C)        | (GPa) | (MPa)      |           | (°C)        | (GPa)    | (MPa)      |           |  |
| -60.00      | 3.038 | 98.88      | 0.03254   | 90.00       | 1.777    | 83.79      | 0.04714   |  |
| -55.00      | 3.004 | 96.87      | 0.03225   | 95.00       | 1.693    | 77.32      | 0.04568   |  |
| -50.00      | 2.945 | 95.73      | 0.03250   | 100.00      | 1.622    | 70.40      | 0.04341   |  |
| -45.00      | 2.870 | 89.02      | 0.03102   | 105.00      | 1.565    | 66.16      | 0.04227   |  |
| -40.00      | 2.811 | 81.16      | 0.02888   | 110.00      | 1.515    | 65.46      | 0.04321   |  |
| -35.00      | 2.746 | 72.30      | 0.02633   | 115.00      | 1.467    | 68.61      | 0.04678   |  |
| -30.00      | 2.693 | 66.33      | 0.02463   | 120.00      | 1.421    | 76.12      | 0.05357   |  |
| -25.00      | 2.651 | 61.79      | 0.02330   | 125.00      | 1.371    | 87.61      | 0.06390   |  |
| -20.00      | 2.615 | 58.00      | 0.02218   | 130.00      | 1.303    | 104.0      | 0.07985   |  |
| -15.00      | 2.586 | 54.68      | 0.02114   | 135.00      | 1.193    | 133.0      | 0.1115    |  |
| -10.00      | 2.560 | 51.64      | 0.02017   | 140.00      | 0.9880   | 189.2      | 0.1919    |  |
| -5.00       | 2.539 | 49.09      | 0.01933   | 145.00      | 0.6213   | 276.1      | 0.4476    |  |
| 0.00        | 2.524 | 46.96      | 0.01861   | 150.00      | 0.1804   | 188.7      | 1.056     |  |
| 5.00        | 2.511 | 45.18      | 0.01799   | 155.00      | 0.05256  | 56.69      | 1.076     |  |
| 10.00       | 2.497 | 43.85      | 0.01756   | 160.00      | 0.03133  | 24.03      | 0.7662    |  |
| 15.00       | 2.484 | 42.75      | 0.01721   | 165.00      | 0.02407  | 16.36      | 0.6798    |  |
| 20.00       | 2.470 | 41.44      | 0.01678   | 170.00      | 0.01990  | 14.11      | 0.7092    |  |
| 25.00       | 2.452 | 40.34      | 0.01645   | 175.00      | 0.01641  | 13.22      | 0.8060    |  |
| 30.00       | 2.435 | 39.16      | 0.01608   | 180.00      | 0.01478  | 13.23      | 0.8955    |  |
| 40.00       | 2.386 | 38.24      | 0.01603   | 190.00      | 0.01008  | 13.68      | 1.358     |  |
| 45.00       | 2.360 | 38.22      | 0.01620   | 195.00      | 0.007842 | 13.65      | 1.741     |  |
| 50.00       | 2.331 | 38.88      | 0.01668   | 200.00      | 0.005975 | 13.28      | 2.225     |  |
| 55.00       | 2.299 | 40.11      | 0.01745   | 205.00      | 0.004180 | 12.82      | 3.071     |  |
| 60.00       | 2.262 | 42.04      | 0.01859   | 210.00      | 0.002693 | 12.23      | 4.554     |  |
| 65.00       | 2.216 | 45.01      | 0.02031   | 215.00      | 0.001451 | 11.58      | 7.999     |  |
| 70.00       | 2.158 | 50.99      | 0.02362   | 220.00      | 8.644E-4 | 11.08      | 12.84     |  |
| 75.00       | 2.090 | 62.60      | 0.02996   | 225.00      | 6.301E-4 | 10.41      | 16.52     |  |
| 80.00       | 1.996 | 80.31      | 0.04023   | 230.00      | 0.003972 | 6.852      | 1.986     |  |

151



Graph 117: Storage and loss properties for MRC Polymers Stanuloy ST150 unfilled, impact modified, from recyclate polycarbonate polyethylene terephthalate alloy (PC/ polyester PET alloy).

Graph 118: Storage and loss properties for Bayer Makroblend UT403 unfilled, impact modified, UV stabilized, low viscosity polycarbonate polyethylene terephthalate alloy (PC/ polyester PET alloy).



| Temperature | E'    | ' E" Tan Delta |         | Temperature | E'      | <b>E</b> " | Tan Delta |
|-------------|-------|----------------|---------|-------------|---------|------------|-----------|
| (°C)        | (GPa) | (MPa)          |         | (°C)        | (GPa)   | (MPa)      |           |
| -55.00      | 2.731 | 105.6          | 0.03865 | 85.00       | 1.748   | 80.30      | 0.04597   |
| -50.00      | 2.694 | 106.8          | 0.03966 | 90.00       | 1.475   | 161.8      | 0.1099    |
| -45.00      | 2.633 | 109.0          | 0.04139 | 95.00       | 1.076   | 163.6      | 0.1520    |
| -40.00      | 2.545 | 104.1          | 0.04091 | 100.00      | 0.8231  | 108.7      | 0.1321    |
| -35.00      | 2.460 | 89.85          | 0.03652 | 105.00      | 0.6805  | 73.45      | 0.1079    |
| -30.00      | 2.396 | 77.12          | 0.03219 | 110.00      | 0.5960  | 62.88      | 0.1055    |
| -25.00      | 2.349 | 68.47          | 0.02914 | 115.00      | 0.5425  | 55.58      | 0.1024    |
| -20.00      | 2.308 | 61.29          | 0.02655 | 120.00      | 0.5375  | 53.41      | 0.09935   |
| -15.00      | 2.272 | 55.24          | 0.02431 | 125.00      | 0.5223  | 54.58      | 0.1045    |
| -10.00      | 2.243 | 49.36          | 0.02200 | 130.00      | 0.5028  | 61.11      | 0.1215    |
| -5.00       | 2.221 | 44.75          | 0.02015 | 135.00      | 0.4926  | 76.67      | 0.1557    |
| 0.00        | 2.203 | 41.65          | 0.01891 | 140.00      | 0.4417  | 110.0      | 0.2494    |
| 5.00        | 2.187 | 39.43          | 0.01803 | 145.00      | 0.2584  | 128.4      | 0.4995    |
| 10.00       | 2.173 | 37.41          | 0.01722 | 150.00      | 0.1046  | 60.22      | 0.5749    |
| 15.00       | 2.164 | 35.67          | 0.01649 | 155.00      | 0.06659 | 28.58      | 0.4289    |
| 20.00       | 2.157 | 34.27          | 0.01589 | 160.00      | 0.05235 | 20.35      | 0.3887    |
| 25.00       | 2.152 | 33.06          | 0.01536 | 165.00      | 0.04383 | 16.60      | 0.3787    |
| 30.00       | 2.141 | 32.00          | 0.01494 | 170.00      | 0.03891 | 14.72      | 0.3782    |
| 35.00       | 2.122 | 31.11          | 0.01466 | 175.00      | 0.03571 | 13.58      | 0.3803    |
| 40.00       | 2.095 | 30.84          | 0.01472 | 180.00      | 0.03323 | 13.08      | 0.3937    |
| 45.00       | 2.074 | 31.08          | 0.01499 | 185.00      | 0.03081 | 12.91      | 0.4191    |
| 50.00       | 2.057 | 31.71          | 0.01542 | 190.00      | 0.02843 | 12.75      | 0.4484    |
| 55.00       | 2.039 | 32.41          | 0.01590 | 195.00      | 0.02604 | 12.49      | 0.4795    |
| 60.00       | 2.018 | 33.18          | 0.01644 | 200.00      | 0.02365 | 12.14      | 0.5132    |
| 65.00       | 1.993 | 34.24          | 0.01718 | 205.00      | 0.02129 | 11.76      | 0.5523    |
| 70.00       | 1.963 | 35.86          | 0.01827 | 210.00      | 0.01884 | 11.39      | 0.6043    |
| 75.00       | 1.924 | 38.77          | 0.02015 | 215.00      | 0.01619 | 10.99      | 0.6792    |
| 80.00       | 1.865 | 46.48          | 0.02492 | 220.00      | 0.01351 | 10.60      | 0.7850    |

 Table 117:
 Storage and loss properties for MRC Polymers Stanuloy ST150 unfilled, impact modified, from recyclate polycarbonate polyethylene terephthalate alloy (PC/ polyester PET alloy). (tabular data for Graph 117)

 
 Table 118:
 Storage and loss properties for Bayer Makroblend UT403 unfilled, impact modified, UV stabilized, low viscosity polycarbonate polyethylene terephthalate alloy (PC/ polyester PET alloy). (tabular data for Graph 118)

| Temperature | E'    | <b>E</b> " | Tan Delta | Temperature | E'      | <b>E</b> " | Tan Delta |  |
|-------------|-------|------------|-----------|-------------|---------|------------|-----------|--|
| (°C)        | (GPa) | (MPa)      |           | (°C)        | (GPa)   | (MPa)      |           |  |
| -60.00      | 2.598 | 102.3      | 0.03937   | 80.00       | 1.905   | 93.63      | 0.04917   |  |
| -55.00      | 2.576 | 97.09      | 0.03768   | 85.00       | 1.659   | 135.4      | 0.08166   |  |
| -50.00      | 2.555 | 93.35      | 0.03654   | 90.00       | 1.398   | 137.0      | 0.09802   |  |
| -45.00      | 2.525 | 89.04      | 0.03526   | 95.00       | 1.194   | 118.1      | 0.09888   |  |
| -40.00      | 2.495 | 85.48      | 0.03424   | 100.00      | 1.051   | 95.28      | 0.09064   |  |
| -35.00      | 2.467 | 82.13      | 0.03328   | 105.00      | 0.9580  | 82.78      | 0.08642   |  |
| -30.00      | 2.440 | 79.01      | 0.03238   | 110.00      | 0.8915  | 78.80      | 0.08840   |  |
| -25.00      | 2.416 | 75.78      | 0.03136   | 115.00      | 0.8537  | 75.54      | 0.08848   |  |
| -20.00      | 2.392 | 72.99      | 0.03052   | 120.00      | 0.8320  | 76.31      | 0.09172   |  |
| -15.00      | 2.372 | 71.10      | 0.02998   | 125.00      | 0.7991  | 81.42      | 0.1019    |  |
| -10.00      | 2.352 | 69.60      | 0.02959   | 130.00      | 0.7529  | 94.29      | 0.1253    |  |
| -5.00       | 2.331 | 68.27      | 0.02929   | 135.00      | 0.6615  | 124.0      | 0.1877    |  |
| 0.00        | 2.308 | 66.93      | 0.02900   | 140.00      | 0.4765  | 174.8      | 0.3684    |  |
| 5.00        | 2.290 | 64.42      | 0.02813   | 145.00      | 0.2104  | 133.8      | 0.6368    |  |
| 10.00       | 2.279 | 60.92      | 0.02674   | 150.00      | 0.1080  | 54.55      | 0.5043    |  |
| 15.00       | 2.272 | 56.40      | 0.02482   | 155.00      | 0.07880 | 30.69      | 0.3893    |  |
| 20.00       | 2.269 | 51.73      | 0.02280   | 160.00      | 0.06442 | 22.33      | 0.3466    |  |
| 25.00       | 2.265 | 46.87      | 0.02070   | 165.00      | 0.05606 | 18.88      | 0.3369    |  |
| 30.00       | 2.255 | 43.48      | 0.01928   | 170.00      | 0.05074 | 17.47      | 0.3444    |  |
| 35.00       | 2.236 | 42.29      | 0.01891   | 175.00      | 0.04645 | 16.53      | 0.3558    |  |
| 40.00       | 2.219 | 41.46      | 0.01868   | 180.00      | 0.04358 | 15.87      | 0.3642    |  |
| 45.00       | 2.204 | 40.95      | 0.01858   | 185.00      | 0.04101 | 15.52      | 0.3784    |  |
| 50.00       | 2.189 | 40.67      | 0.01858   | 190.00      | 0.03851 | 15.28      | 0.3967    |  |
| 55.00       | 2.171 | 40.87      | 0.01883   | 195.00      | 0.03584 | 14.95      | 0.4173    |  |
| 60.00       | 2.150 | 41.72      | 0.01941   | 200.00      | 0.03323 | 14.58      | 0.4389    |  |
| 65.00       | 2.123 | 43.22      | 0.02036   | 205.00      | 0.03098 | 14.23      | 0.4595    |  |
| 70.00       | 2.086 | 46.81      | 0.02244   | 210.00      | 0.02845 | 13.85      | 0.4868    |  |
| 75.00       | 2.025 | 58.43      | 0.02886   | 215.00      | 0.02610 | 13.47      | 0.5161    |  |



**Graph 119:** Storage and loss properties for MRC Polymers Stanuloy ST170-30G 30% glass fiber filled, impact modified, from recyclate polycarbonate polyethylene terephthalate alloy (PC/ polyester PET alloy).

Graph 120: Storage and loss properties for Montell Hivalloy GXPA064 35% glass fiber filled, impact modified polypropylene/ polystyrene alloy (PP/ PS alloy).



| Table 119: | Storage and loss properties for MRC Polymers Stanuloy ST170-30G 30% glass fiber filled, impact modified, from    |
|------------|------------------------------------------------------------------------------------------------------------------|
|            | recyclate polycarbonate polyethylene terephthalate alloy (PC/ polyester PET alloy). (tabular data for Graph 119) |

| Temperature | E'    | <b>E</b> " | Tan Delta | Temperature | E'      | <b>E</b> " | Tan Delta |
|-------------|-------|------------|-----------|-------------|---------|------------|-----------|
| (°C)        | (GPa) | (MPa)      |           | (°C)        | (GPa)   | (MPa)      |           |
| -55.00      | 6.575 | 98.75      | 0.01502   | 90.00       | 4.804   | 329.0      | 0.06850   |
| -50.00      | 6.558 | 96.84      | 0.01477   | 95.00       | 4.284   | 325.9      | 0.07607   |
| -45.00      | 6.519 | 96.03      | 0.01473   | 100.00      | 3.947   | 309.8      | 0.07850   |
| -40.00      | 6.443 | 95.16      | 0.01477   | 105.00      | 3.665   | 310.7      | 0.08479   |
| -35.00      | 6.369 | 90.50      | 0.01421   | 110.00      | 3.467   | 287.5      | 0.08292   |
| -30.00      | 6.303 | 83.14      | 0.01319   | 115.00      | 3.443   | 264.3      | 0.07676   |
| -25.00      | 6.249 | 77.49      | 0.01240   | 120.00      | 3.444   | 261.9      | 0.07605   |
| -20.00      | 6.210 | 72.87      | 0.01173   | 125.00      | 3.395   | 285.3      | 0.08404   |
| -15.00      | 6.171 | 70.02      | 0.01135   | 130.00      | 3.274   | 337.7      | 0.1032    |
| -10.00      | 6.138 | 67.12      | 0.01093   | 135.00      | 2.938   | 453.7      | 0.1546    |
| -5.00       | 6.107 | 63.41      | 0.01038   | 140.00      | 2.158   | 694.2      | 0.3229    |
| 0.00        | 6.081 | 59.37      | 0.009765  | 145.00      | 1.039   | 613.7      | 0.5920    |
| 5.00        | 6.058 | 56.03      | 0.009249  | 150.00      | 0.4889  | 264.0      | 0.5389    |
| 10.00       | 6.038 | 54.03      | 0.008948  | 155.00      | 0.3261  | 126.9      | 0.3890    |
| 15.00       | 6.022 | 52.44      | 0.008708  | 160.00      | 0.2479  | 86.11      | 0.3474    |
| 20.00       | 6.008 | 50.77      | 0.008450  | 165.00      | 0.1945  | 70.95      | 0.3648    |
| 25.00       | 5.994 | 49.33      | 0.008231  | 170.00      | 0.1565  | 63.51      | 0.4060    |
| 30.00       | 5.979 | 48.54      | 0.008119  | 175.00      | 0.1281  | 56.53      | 0.4414    |
| 35.00       | 5.956 | 48.89      | 0.008209  | 180.00      | 0.1080  | 51.05      | 0.4729    |
| 40.00       | 5.931 | 49.46      | 0.008340  | 185.00      | 0.09148 | 47.22      | 0.5162    |
| 45.00       | 5.906 | 49.52      | 0.008384  | 190.00      | 0.07779 | 43.40      | 0.5581    |
| 50.00       | 5.885 | 49.58      | 0.008425  | 195.00      | 0.06653 | 39.42      | 0.5926    |
| 55.00       | 5.862 | 50.10      | 0.008546  | 200.00      | 0.05705 | 35.45      | 0.6214    |
| 60.00       | 5.836 | 50.98      | 0.008735  | 205.00      | 0.04909 | 31.64      | 0.6445    |
| 65.00       | 5.805 | 53.04      | 0.009136  | 210.00      | 0.04247 | 28.08      | 0.6611    |
| 70.00       | 5.768 | 56.84      | 0.009856  | 215.00      | 0.03693 | 24.81      | 0.6719    |
| 75.00       | 5.714 | 64.63      | 0.01131   | 220.00      | 0.03157 | 21.90      | 0.6936    |
| 80.00       | 5.607 | 99.03      | 0.01767   | 225.00      | 0.02551 | 19.15      | 0.7508    |
| 85.00       | 5.352 | 218.5      | 0.04085   |             |         |            | 011000    |

 Table 120:
 Storage and loss properties for Montell Hivalloy GXPA064 35% glass fiber filled, impact modified polypropylene/ polystyrene alloy (PP/ PS alloy). (tabular data for Graph 120)

| Temperature | erature E' E" Tan Delta |       | Tan Delta | Temperature | E'     | <b>E</b> " | Tan Delta |
|-------------|-------------------------|-------|-----------|-------------|--------|------------|-----------|
| (°C)        | (GPa)                   | (MPa) |           | (°C)        | (GPa)  | (MPa)      |           |
| -60.00      | 5.773                   | 196.1 | 0.03397   | 50.00       | 2.443  | 157.1      | 0.06429   |
| -55.00      | 5.723                   | 194.5 | 0.03398   | 55.00       | 2.265  | 156.2      | 0.06893   |
| -50.00      | 5.654                   | 192.3 | 0.03401   | 60.00       | 2.072  | 158.3      | 0.07642   |
| -45.00      | 5.535                   | 189.8 | 0.03428   | 65.00       | 1.860  | 159.9      | 0.08600   |
| -40.00      | 5.396                   | 186.4 | 0.03455   | 70.00       | 1.653  | 160.8      | 0.09732   |
| -35.00      | 5.247                   | 183.9 | 0.03505   | 75.00       | 1.466  | 159.4      | 0.1088    |
| -30.00      | 5.103                   | 182.3 | 0.03572   | 80.00       | 1.312  | 155.7      | 0.1187    |
| -25.00      | 4.975                   | 178.5 | 0.03587   | 85.00       | 1.180  | 150.5      | 0.1276    |
| -20.00      | 4.856                   | 175.9 | 0.03623   | 90.00       | 1.065  | 145.0      | 0.1361    |
| -15.00      | 4.737                   | 176.1 | 0.03717   | 95.00       | 0.9609 | 138.9      | 0.1446    |
| -10.00      | 4.625                   | 178.0 | 0.03849   | 100.00      | 0.8618 | 133.1      | 0.1544    |
| -5.00       | 4.491                   | 182.2 | 0.04058   | 105.00      | 0.7662 | 129.4      | 0.1689    |
| 0.00        | 4.343                   | 187.9 | 0.04328   | 110.00      | 0.6586 | 127.9      | 0.1943    |
| 5.00        | 4.181                   | 193.6 | 0.04631   | 115.00      | 0.5397 | 118.6      | 0.2198    |
| 10.00       | 4.011                   | 197.8 | 0.04931   | 120.00      | 0.4415 | 93.15      | 0.2110    |
| 15.00       | 3.837                   | 199.2 | 0.05191   | 125.00      | 0.3741 | 73.29      | 0.1959    |
| 20.00       | 3.644                   | 197.3 | 0.05413   | 130.00      | 0.3220 | 60.54      | 0.1880    |
| 25.00       | 3.451                   | 192.9 | 0.05591   | 135.00      | 0.2789 | 51.11      | 0.1832    |
| 30.00       | 3.248                   | 186.3 | 0.05737   | 140.00      | 0.2434 | 44.24      | 0.1818    |
| 35.00       | 3.036                   | 177.5 | 0.05847   | 145.00      | 0.2111 | 39.10      | 0.1853    |
| 40.00       | 2.826                   | 168.5 | 0.05963   | 150.00      | 0.1786 | 34.61      | 0.1937    |
| 45.00       | 2.627                   | 161.2 | 0.06137   | 155.00      | 0.1492 | 30.70      | 0.2058    |



Graph 121: Storage and loss properties for Montell Hivalloy GXPA065 35% glass fiber filled, impact modified polypropylene/ polystyrene alloy (PP/ PS alloy).

| Table 121: | Storage and loss properties for Montell Hivalloy GXPA065 35% glass fiber filled, impact modified |
|------------|--------------------------------------------------------------------------------------------------|
|            | polypropylene/ polystyrene alloy (PP/ PS alloy). (tabular data for Graph 121)                    |

| Temperature | E'    | <b>E</b> " | Tan Delta | Temperature | E'     | <b>E</b> " | Tan Delta |
|-------------|-------|------------|-----------|-------------|--------|------------|-----------|
| (°C)        | (GPa) | (MPa)      |           | (°C)        | (GPa)  | (MPa)      |           |
| -60.00      | 5.106 | 199.2      | 0.03902   | 50.00       | 2.165  | 141.7      | 0.06543   |
| -55.00      | 5.047 | 198.4      | 0.03931   | 55.00       | 1.999  | 142.8      | 0.07147   |
| -50.00      | 4.964 | 194.6      | 0.03620   | 60.00       | 1.829  | 145.8      | 0.07973   |
| -45.00      | 4.848 | 187.5      | 0.03868   | 65.00       | 1.644  | 149.2      | 0.09073   |
| -40.00      | 4.733 | 180.8      | 0.03819   | 70.00       | 1.467  | 150.8      | 0.1028    |
| -35.00      | 4.615 | 176.5      | 0.03824   | 75.00       | 1.302  | 150.2      | 0.1154    |
| -30.00      | 4.496 | 175.8      | 0.03910   | 80.00       | 1.155  | 147.4      | 0.1276    |
| -25.00      | 4.374 | 173.5      | 0.03966   | 85.00       | 1.034  | 144.1      | 0.1393    |
| -20.00      | 4.274 | 169.3      | 0.03961   | 90.00       | 0.9226 | 138.0      | 0.1496    |
| -15.00      | 4.180 | 166.6      | 0.03986   | 95.00       | 0.8254 | 131.7      | 0.1595    |
| -10.00      | 4.070 | 168.1      | 0.04130   | 100.00      | 0.7379 | 125.6      | 0.1702    |
| -5.00       | 3.923 | 173.5      | 0.04423   | 105.00      | 0.6517 | 121.4      | 0.1863    |
| 0.00        | 3.767 | 179.0      | 0.04753   | 110.00      | 0.5590 | 119.5      | 0.2137    |
| 5.00        | 3.615 | 182.2      | 0.05040   | 115.00      | 0.4557 | 112.0      | 0.2458    |
| 10.00       | 3.472 | 182.4      | 0.05252   | 120.00      | 0.3680 | 88.60      | 0.2407    |
| 15.00       | 3.314 | 180.2      | 0.05436   | 125.00      | 0.3091 | 69.16      | 0.2237    |
| 20.00       | 3.146 | 176.2      | 0.05601   | 130.00      | 0.2642 | 56.90      | 0.2154    |
| 25.00       | 2.977 | 170.4      | 0.05724   | 135.00      | 0.2272 | 48.18      | 0.2121    |
| 30.00       | 2.822 | 164.1      | 0.05817   | 140.00      | 0.1959 | 41.47      | 0.2117    |
| 35.00       | 2.653 | 156.4      | 0.05894   | 145.00      | 0.1687 | 36.36      | 0.2156    |
| 40.00       | 2.487 | 148.9      | 0.05990   | 150.00      | 0.1433 | 32.32      | 0.2255    |
| 45.00       | 2.327 | 143.5      | 0.06168   | 155.00      | 0.1190 | 28.63      | 0.2407    |

|                        |                |                  |             |        | Graph 1                        | Graph 2                                 | Graph 3 & 4                               | Graph 5                                   | Graph 6                                   | Graph 7                                 | Graph 8                         | Graph 9                         |
|------------------------|----------------|------------------|-------------|--------|--------------------------------|-----------------------------------------|-------------------------------------------|-------------------------------------------|-------------------------------------------|-----------------------------------------|---------------------------------|---------------------------------|
| Material Family        |                |                  |             |        | acetal<br>homopolymer<br>(POM) | acetal<br>homopolymer<br>(POM)          | acetal<br>copolymer<br>(POM<br>copolymer) | acetal<br>copolymer<br>(POM<br>copolymer) | acetal<br>copolymer<br>(POM<br>copolymer) | acetal copoly-<br>mer (POM copolymer)   | acrylic<br>(PMMA)               | acrylic<br>copolymer            |
| Description            |                |                  |             |        | unfilled                       | 20% glass<br>fiber filled,<br>UV stable | unfilled                                  | unfilled,<br>impact<br>modified           | 25% glass fiber filled                    | 25% glass<br>fiber filled,<br>UV stable | unfilled,<br>impact<br>modified | unfilled,<br>impact<br>modified |
| Supplier               |                |                  |             |        | DuPont                         | DuPont                                  | Ticona                                    | Ticona                                    | Ticona                                    | Ticona                                  | AtoHaas                         | Novacor                         |
| Material<br>Trade Name |                |                  |             |        | Delrin 500                     | Delrin 577                              | Celcon M90                                | Celcon TX90                               | Celcon<br>GC25A                           | Celcon<br>CFX-0108                      | Plexiglas MI-7                  | Zylar<br>ST94-580               |
| Test Notes             | Test condition | Test<br>Specimen | Test Method | (Unit) |                                |                                         |                                           |                                           |                                           |                                         |                                 |                                 |

| melt volume rate                     |                                                         |                       | ISO 1133,<br>DIN 53735, CAMPUS | ml/10min | 12 {190°C,<br>2.16 kg} |                       |                     |      | IVER 1                        |                              |                              |
|--------------------------------------|---------------------------------------------------------|-----------------------|--------------------------------|----------|------------------------|-----------------------|---------------------|------|-------------------------------|------------------------------|------------------------------|
| melt flow rate                       |                                                         |                       | ASTM D1238                     | g/10min  |                        | 6 {1.05 kg,<br>190°C} |                     |      |                               |                              |                              |
| water absorption at saturation       | test temperature:<br>21-25°C;<br>relative humidity: 50% | 50 x 50 x 1 mm        | ISO 62, CAMPUS                 | %        | 0.9                    |                       | 0.8 (ASTM<br>D 570) |      | 0.27 (at 24 h,<br>ASTM D 570) | 0.3 (at 24 h,<br>ASTM D 570) | 0.1 (at 24 h,<br>ASTM D 570) |
| moisture absorption<br>at saturation | test temperature:<br>21-25°C;<br>relative humidity: 50% | 50 x 50 x 1 mm        | ISO 62, CAMPUS                 | %        | 0.22                   |                       |                     |      |                               |                              |                              |
| density                              | test temperature:<br>21-25°C                            | >=10 x >=10 x<br>4 mm | ISO 1183, CAMPUS               | g/m^3    | 1420                   |                       |                     |      |                               |                              |                              |
| specific gravity                     |                                                         |                       | ASTM D792                      |          |                        |                       | 1.41                | 1.39 | 1.58                          | 1.17                         | 1.05                         |
| flammability UL94 at<br>1.6 mm       |                                                         | 125 x 13 mm           | UL 94, CAMPUS                  |          | НВ                     |                       | НВ                  | HB   | НВ                            | 1. Starter                   |                              |

## MECHANICAL PROPERTIES (AT 23°C /50% R.H.)

| tensile modulus<br>(secant, 1 mm/min)      | test temperature; 21-25°C<br>relative humidity: 50%;<br>strain rate: 1 mm/min;<br>elongation: 0.05-0.25%;<br>atmosphere according to<br>ISO 291 | ISO 3167<br>multipurpose<br>test specimen     | ISO 527-1,<br>ISO 527-2,<br>CAMPUS,<br>DIN 53457 | МРа   | 3200              | 5700 (ASTM<br>D638) |                   |                    |                    |                   | 1900<br>(ASTM D638) |
|--------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------|--------------------------------------------------|-------|-------------------|---------------------|-------------------|--------------------|--------------------|-------------------|---------------------|
| stress at yield (50 mm/min                 | test temperature: 21-25°C<br>relative humidity: 50%;<br>strain rate: 50 mm/min;<br>atmosphere according to<br>iSO 291                           | - 545                                         | ISO 527-1,<br>ISO 527-2,<br>CAMPUS,<br>DIN 53455 |       | 72                |                     |                   |                    |                    |                   |                     |
| strain at yield (50 mm/min)                | -                                                                                                                                               | -                                             | -                                                | %     | 15                |                     |                   |                    |                    | 0.512             |                     |
| tensile strength at break<br>(5 mm/min)    | test temperature: 21-25°C<br>relative humidity: 50%;<br>strain rate: 5 mm/min;<br>atmosphere according to<br>ISO 291                            |                                               | ŝ                                                | MPa   |                   | 57 (ASTM<br>D638)   |                   |                    |                    | 48<br>{ASTM D638} | 26.9<br>(ASTM D638) |
| strain at break (5 mm/min)                 |                                                                                                                                                 | •                                             | *                                                | %     | 30<br>{50 mm/min} | 10 (ASTM<br>D638)   | 60 (ASTM<br>D638) | 100 (ASTM<br>D638) | 3.5 (ASTM<br>D638) |                   | 80<br>(ASTM D638)   |
| Charpy impact strength (23°C)              | test temperature:<br>23°C; relative humidi-<br>ty: 50%; atmosphere<br>according to ISO 291                                                      | 80 x 10 x 4<br>mm                             | ISO 179/1eU,<br>CAMPUS                           | kJ/m2 | NB                |                     | 1                 |                    |                    |                   |                     |
| Charpy impact strength<br>(-30°C)          | test temperature:<br>-30°C                                                                                                                      | •                                             |                                                  | ÷     |                   |                     |                   |                    |                    |                   |                     |
| Charpy notched impact<br>strength (23°C)   | test temperature:<br>23°C;<br>relative humidity:<br>50%; atmosphere<br>according to ISO 291                                                     | 80 x 10 x 4<br>mm,<br>V notch,<br>r = 0.25 mm | ISO 179/1eA,<br>CAMPUS                           |       | 9                 |                     |                   |                    |                    |                   |                     |
| Charpy notched impact<br>strength (-30 °C) | test temperature:<br>-30°C                                                                                                                      | (a)                                           |                                                  | -     | 7                 |                     |                   |                    |                    |                   |                     |
| notched Izod impact<br>strength (23°C)     |                                                                                                                                                 | 3.2 mm thick                                  | ASTM D256                                        | J/m   | 1                 | 31                  | 69                | 96                 | 59                 | 32                | 235                 |
| flexural modulus                           |                                                                                                                                                 |                                               | ASTM D790                                        | MPa   |                   | 5000                | 2584              | 1929               | 7579               | 2618              | 2100                |
| flexural strength                          |                                                                                                                                                 |                                               | ASTM D790                                        | MPa   |                   | 74                  | 90                | 65                 | 158                | 99                | 57.2                |

| melting temperature                                           |                              |                       |                               | °C     | 177 | 178 (ASTM<br>D3418) | 324                |                    | ST 182             |                    |                   |
|---------------------------------------------------------------|------------------------------|-----------------------|-------------------------------|--------|-----|---------------------|--------------------|--------------------|--------------------|--------------------|-------------------|
| heat deflection<br>temperature at 0.45 MPa                    |                              | 80 x 10 x<br>4 mm     | ISO 75-1, ISO 75-2,<br>CAMPUS | *      | 170 | 174 (ASTM<br>D648)  | 158 (ASTM<br>D648) | 150 (ASTM<br>D648) | 166 (ASTM<br>D648) |                    |                   |
| heat deflection<br>temperature at 1.8 MPa                     |                              |                       | ×                             | -      | 115 | 147 (ASTM<br>D648)  | 110 (ASTM<br>D648) | 101 (ASTM<br>D648) | 163 (ASTM<br>D648) | 85<br>(ASTM D648)  | 69<br>{ASTM D648} |
| Vicat B softening<br>temperature                              | load: 50N; note:<br>50°C/h   | >=10 x >=10 x<br>4 mm | ISO/DIN 306,<br>CAMPUS        |        | 160 |                     |                    |                    |                    | 97<br>(ASTM D1525) | 97<br>(ASTM D1525 |
| coefficient of linear thermal<br>expansion (flow direction)   | test temperature:<br>23-55°C | >=10 x >=10 x<br>4 mm | ASTM E831,<br>CAMPUS          | E-4/°C | 1.2 | 0.81 {ASTM<br>D696} |                    |                    |                    |                    |                   |
| coefficient of linear thermal<br>expansion (normal direction) | test temperature:<br>23-55°C | >=10 x >=10 x<br>4 mm | ASTM E831.<br>CAMPUS          | E-4/°C |     |                     |                    |                    |                    | 1 A 3.0            |                   |
| expansion (normal direction)                                  | 23-55°C                      | 4 mm                  | CAMPUS                        | E-4/°C |     |                     |                    |                    |                    |                    |                   |

### 159

| Graph 10                                          | Graph 11 & 12                              | Graph 13                                 | Graph 14                   | Graph 15               | Graph 16                  | Graph 17                  | Graph 18               | Graph 19                                         | Graph 20                                         | Graph 21                              | Graph 22                  | Graph 23                          |                        |
|---------------------------------------------------|--------------------------------------------|------------------------------------------|----------------------------|------------------------|---------------------------|---------------------------|------------------------|--------------------------------------------------|--------------------------------------------------|---------------------------------------|---------------------------|-----------------------------------|------------------------|
| amorphous<br>nylon                                | nylon 12                                   | nylon 6                                  | nylon 6                    | nylon 6                | nylon 6                   | nylon 6                   | nylon 6                | nylon 6                                          | nylon 6                                          | nylon 6                               | nylon 6                   | nylon 6                           | Material Family        |
| unfilled,<br>impact modi-<br>fied, super<br>tough | unfilled, amor-<br>phous, trans-<br>parent | unfilled,<br>nucleated,<br>low viscosity | 14% glass<br>fiber filled, | 30% glass fiber filled | 30% glass<br>fiber filled | 33% glass<br>fiber filled | 30% glass fiber filled | 30% glass<br>fiber filled,<br>impact<br>modified | 33% glass<br>fiber filled,<br>impact<br>modified | 40% glass<br>fiber/ mineral<br>filled | 44% glass<br>fiber filled | 50% long<br>glass fiber<br>filled | Description            |
| DuPont                                            | EMS                                        | Allied Signal                            | Allied Signal              | Bayer                  | EMS                       | Allied Signal             | BASF                   | LNP                                              | DSM Engineering                                  | Allied Signal                         | Allied Signal             | Ticona                            | Supplier               |
| Zytel ST901                                       | Grilamid<br>TR55LX                         | Capron 8202C                             | Capron<br>8231G            | Durethan<br>BKV030     | Grilon<br>PVN-3H          | Capron<br>8233G           | Ultramid<br>B3EG6      | Thermocomp<br>PF1006HI                           | Fiberfil J7-33                                   | Capron<br>8267G                       | Capron<br>8234G           | Celstran<br>N6G50                 | Material<br>Trade Name |
| {dry as molded}                                   | (conditioned)                              | {dry as<br>molded}                       | {dry as molded}            | (dry as molded)        | {dry as molded}           | {dry as<br>molded}        |                        | {dry as molded}                                  | (dry as molded)                                  | (dry as molded)                       | (dry as molded)           | (dry as molded)                   | Test Notes             |

#### PHYSICAL PROPERTIES

|              | 50<br>(275°C, 5 kg) |              |           |      | 70<br>(275°C, 5 kg) |           | 50<br>(275°C, 5 kg) |                              |                              |           |           |      | melt volume rate                     |
|--------------|---------------------|--------------|-----------|------|---------------------|-----------|---------------------|------------------------------|------------------------------|-----------|-----------|------|--------------------------------------|
|              |                     |              |           |      |                     |           |                     |                              | Figure                       |           |           |      | melt flow rate                       |
|              | 2.5                 | 9.3          | 8.2       | 7    | 7                   | 6.7       | 6.6                 | 1.1 (at 24 h,<br>ASTM D 570) | 0.8 (at 24 h,<br>ASTM D 570) | 4         | 5.6       |      | water absorption<br>at saturation    |
|              | 1                   | 2.6          | 2.3       | 2.1  | 2                   | 1.9       | 2.1                 |                              |                              | 1.5       | 1.6       |      | moisture absorption<br>at saturation |
|              | 1040                | 1130         | 1230      | 1360 | 1350                | 1390      | 1360                |                              |                              | 1480      | 1490      |      | density                              |
| 1.11         |                     |              |           |      | " Second y          |           |                     | 1.37                         | 1.33                         |           |           | 1.56 | specific gravity                     |
| HB (0.86 mm) | HB (0.8 mm)         | V-2 {0.7 mm} | HB {3 mm} | НВ   | HB {0.8 mm}         | HB (3 mm) | HB (0.8 mm)         |                              |                              | HB {3 mm} | HB (3 mm) |      | flammability UL94 at<br>1.6 mm       |

## MECHANICAL PROPERTIES (AT 23°C /50% R.H.)

|                        | 1900               | 3760              | 5960  | 9700 | 9500             | 10300 | 9500  |                    |                    | 8970 | 13500 | 15640<br>(ASTM D638) | tensile modulus<br>(secant, 1 mm/min)     |
|------------------------|--------------------|-------------------|-------|------|------------------|-------|-------|--------------------|--------------------|------|-------|----------------------|-------------------------------------------|
|                        | 70                 | 90                |       |      | 195              |       |       |                    |                    |      |       |                      | stress at yield (50 mm/min)               |
|                        | 6                  | 4                 |       |      | 3                |       |       |                    |                    |      |       |                      | strain at yield (50 mm/min)               |
| 62<br>{ASTM D638}      |                    |                   | 140   | 180  |                  | 195   | 185   | 151<br>(ASTM D638) | 138<br>{ASTM D638} | 132  | 230   | 249<br>(ASTM D638)   | tensile strength at break<br>(5 mm/min)   |
| 120<br>{ASTM D638}     | >50<br>(50 mm/min) | 12<br>{50 mm/min} | 3.5   | 3    | 4<br>{50 mm/min} | 3.5   | 3.5   | 4<br>(ASTM D638)   | 4<br>{ASTM D638}   | 3.6  | 2     | 2.1<br>{ASTM D638}   | strain at break (5 mm/min)                |
|                        | NB                 |                   |       |      | 75               |       | 95    |                    |                    |      |       |                      | Charpy impact strength<br>(23°C)          |
|                        | NB                 |                   |       |      | 65               |       | 80    |                    |                    |      |       |                      | Charpy impact strength<br>(-30°C)         |
|                        | 9                  |                   |       |      | 11               | 14    | 15    |                    |                    | 8    |       |                      | Charpy notched impact<br>strength (23°C)  |
|                        | 8                  |                   | 12.5  |      | 8                |       | 11    |                    | 1.                 |      |       |                      | Charpy notched impact<br>strength (-30°C) |
| 1026<br>{6.4 mm thick} |                    |                   |       |      |                  |       | 2.54  | 171                | 267                |      |       | 459                  | notched Izod impact<br>strength (23°C)    |
| 2000                   |                    |                   | 5     |      |                  |       |       | 6890               | 7579               |      |       | 13298                | flexural modulus                          |
| 86                     |                    |                   | 1-1-1 |      |                  |       | 30.22 | 220                | 207                |      |       | 372                  | flexural strength                         |

|                    | (Tg: 120°C) | 220 | 220  | 222 | 222                    | 220  | 220  |                    |                    | 220  | 220  |                    | melting temperature                                       |
|--------------------|-------------|-----|------|-----|------------------------|------|------|--------------------|--------------------|------|------|--------------------|-----------------------------------------------------------|
| 120<br>{ASTM D648} | 90          | 190 | 217  | 215 |                        | 218  | 220  |                    | 171<br>{ASTM D648} | 217  | 219  |                    | heat deflection<br>temperature at 0.45 MPa                |
| 115<br>{ASTM D648} | 80          | 75  | 195  | 200 | 205 {105°C<br>@ 8 MPa} | 207  | 210  | 210<br>(ASTM D648) | 60<br>(ASTM D648)  | 200  | 212  | 213<br>(ASTM D648) | heat deflection<br>temperature at 1.8 MPa                 |
|                    | 103         |     |      |     | 212                    |      | 220  |                    |                    |      |      |                    | Vicat B softening<br>temperature                          |
| 0.7<br>{ASTM D696} | 0.9         |     | 0.39 |     | 0.2                    | 0.21 | 0.23 |                    | States (           | 0.3  | 0.32 |                    | coefficient of linear thermal expansion (flow direction)  |
|                    | 0.9         |     | 0.78 |     | 1.1                    | 0.7  | 0.65 |                    |                    | 0.67 | 0.79 | 2                  | coefficient of linear thermal expansion (normal direction |

|                        |                |                  |             |        | Graph 24               | Graph 25                  | Graph 26                  | Graph 27                  | Graph 28                        | Graph 29 & 30                   | Graph 29 & 30                   | Graph 31                        |
|------------------------|----------------|------------------|-------------|--------|------------------------|---------------------------|---------------------------|---------------------------|---------------------------------|---------------------------------|---------------------------------|---------------------------------|
| Material Family        |                |                  |             |        | nylon 612              | nylon 612                 | nylon 612                 | nylon 66                  | nylon 66                        | nylon 66                        | nylon 66                        | nylon 66                        |
| Description            |                |                  |             |        | unfilled               | 43% glass<br>fiber filled | 60% glass<br>fiber filled | unfilled                  | unfilled,<br>impact<br>modified | unfilled,<br>impact<br>modified | unfilled,<br>impact<br>modified | 13% glass<br>fiber filled       |
| Supplier               |                |                  |             | _      | DuPont                 | DuPont                    | LNP                       | DuPont                    | DuPont                          | DuPont                          | DuPont                          | DuPont                          |
| Material<br>Trade Name |                |                  |             |        | Zytel 151              | Zytel 77G43L              | Thermocomp<br>IF100-12    | Zytel 101L                | Zytel<br>CFE4003                | Zytel ST801                     | Zytel ST801                     | Zytel 70G13L<br>general purpose |
| Test Notes             | Test condition | Test<br>Specimen | Test Method | (Unit) | (tested dry as molded) | (dry as molded)           | {dry as molded}           | (tested dry<br>as molded) | {dry as molded}                 | (tested dry<br>as molded)       | {conditioned}                   | {dry as molded}                 |

| melt volume rate                     |                                                         |                       | ISO 1133,<br>DIN 53735, CAMPUS | ml/10min |              |                     |      |              |   |             |             |                     |
|--------------------------------------|---------------------------------------------------------|-----------------------|--------------------------------|----------|--------------|---------------------|------|--------------|---|-------------|-------------|---------------------|
| melt flow rate                       |                                                         |                       | ASTM D1238                     | g/10min  | P. C. S.     |                     |      |              |   |             |             |                     |
| water absorption at saturation       | test temperature:<br>21-25°C;<br>relative humidity: 50% | 50 x 50 x 1 mm        | ISO 62, CAMPUS                 | %        | 3            | 1.7<br>(ASTM D 570) |      | 8.5          | X | 6.7         |             | 7.1<br>(ASTM D 570) |
| moisture absorption<br>at saturation | test temperature:<br>21-25°C;<br>relative humidity: 50% | 50 x 50 x 1 mm        | ISO 62, CAMPUS                 | %        | 1.3          |                     |      | 2.8          |   | 2.2         |             |                     |
| density                              | test temperature:<br>21-25°C                            | >=10 x >=10 x<br>4 mm | ISO 1183, CAMPUS               | g/m^3    | 1060         |                     |      | 1140         |   | 1080        | 1080        |                     |
| specific gravity                     |                                                         |                       | ASTM D792                      |          |              | 1.42                | 1.49 |              |   |             | 10.00       | 1.22                |
| flammability UL94 at<br>1.6 mm       |                                                         | 125 x 13 mm           | UL 94, CAMPUS                  |          | V-2 {0.8 mm} | HB (0.7 mm)         | 1    | V-2 {0.8 mm} |   | HB {0.8 mm} | HB {0.8 mm} | HB {0.7 mm}         |

# MECHANICAL PROPERTIES (AT 23°C /50% R.H.)

| tensile modulus<br>(secant, 1 mm/min)     | test temperature: 21-25°C,<br>relative humidity: 50%;<br>strain rate: 1 mm/min;<br>elongation: 0.05-0.25%;<br>atmosphere according to<br>ISO 291 | ISO 3167<br>multipurpose<br>test specimen     | ISO 527-1,<br>ISO 527-2,<br>CAMPUS,<br>DIN 53457 | MPa   | 2700              |                    |                    | 3300              |                     | 2000              | 1200               |                    |
|-------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------|--------------------------------------------------|-------|-------------------|--------------------|--------------------|-------------------|---------------------|-------------------|--------------------|--------------------|
| stress at yield (50 mm/min                | test temperature: 21-25°C;<br>relative humidity: 50%;<br>strain rate: 50 mn/min;<br>atmosphere according to<br>(SO 291                           | -                                             | ISO 527-1,<br>ISO 527-2,<br>CAMPUS,<br>DIN 53455 |       | 61                |                    |                    | 85                |                     | 50                | 43                 |                    |
| strain at yield (50 mm/min)               | -                                                                                                                                                |                                               |                                                  | %     | 7                 |                    |                    | 4.4               |                     | 6                 | 38                 |                    |
| tensile strength at break<br>(5 mm/min)   | test temperature: 21-25°C,<br>relative humidity: 50%;<br>strain rate: 5 mm/min;<br>atmosphere according to<br>ISO 291                            | 1                                             | ù.                                               | MPa   |                   | 193<br>(ASTM D638) | 214<br>(ASTM D638) |                   | 51.4<br>(ASTM D638) |                   |                    | 121<br>{ASTM D638} |
| strain at break (5 mm/min)                | -                                                                                                                                                |                                               |                                                  | %     | 17<br>{50 mm/min} | 3<br>{ASTM D638}   | 1<br>(ASTM D638)   | 17<br>{50 mm/min} | 33<br>(ASTM D638)   | 41<br>(50 mm/min) | >50<br>{50 mm/min} | 3<br>(ASTM D638)   |
| Charpy impact strength<br>(23°C)          | test temperature:<br>23°C; relative humidi-<br>ty: 50%; atmosphere<br>according to ISO 291                                                       | 80 x 10 x 4<br>mm                             | ISO 179/1eU,<br>CAMPUS                           | kJ/m2 | NB                |                    |                    | NB                |                     | NB                | NB                 |                    |
| Charpy impact strength<br>(-30°C)         | test temperature:<br>-30°C                                                                                                                       |                                               | а.<br>С                                          | ×     | NB                |                    |                    | NB                |                     | NB                | NB                 |                    |
| Charpy notched impact<br>strength (23°C)  | test temperature:<br>23°C;<br>relative humidity:<br>50%; atmosphere<br>according to ISO 291                                                      | 80 x 10 x 4<br>mm,<br>V notch,<br>r = 0.25 mm | ISO 179/1eA,<br>CAMPUS                           |       | 5                 |                    |                    | 6                 |                     | 85                | 110                |                    |
| Charpy notched impact<br>strength (-30°C) | test temperature:<br>-30°C                                                                                                                       | 51#1                                          | 5# C                                             | ж.    | 5                 |                    |                    | 4                 |                     | 18                | 18                 |                    |
| notched Izod impact<br>strength (23°C)    |                                                                                                                                                  | 3.2 mm thick                                  | ASTM D256                                        | J/m   |                   | 155                | 171                |                   | 160                 |                   |                    | 48                 |
| flexural modulus                          |                                                                                                                                                  |                                               | ASTM D790                                        | MPa   |                   | 10340              | 15847              |                   | 1973                |                   |                    | 4830               |
| flexural strength                         |                                                                                                                                                  |                                               | ASTM D790                                        | MPa   |                   | 269                | 317                |                   |                     |                   |                    | 165                |

| melting temperature                                           |                              |                       |                               | °C     | 218  | 217<br>(ASTM D3418) |                    | 263 | 260<br>(ASTM D3418) | 263 | 262<br>(ASTM D3418) |
|---------------------------------------------------------------|------------------------------|-----------------------|-------------------------------|--------|------|---------------------|--------------------|-----|---------------------|-----|---------------------|
| heat deflection<br>temperature at 0.45 MPa                    |                              | 80 x 10 x<br>4 mm     | ISO 75-1, ISO 75-2,<br>CAMPUS | *      | 180  | 215<br>(ASTM D648)  | 223<br>{ASTM D648} | 235 |                     | 219 |                     |
| heat deflection<br>temperature at 1.8 MPa                     |                              |                       | 240                           | .*     | 90   | 210<br>{ASTM D648}  | 218<br>(ASTM D648) | 80  | 54<br>{ASTM D648}   | 66  | 243<br>(ASTM D648)  |
| Vicat B softening<br>temperature                              | load: 50N; note:<br>50°C/h   | >=10 x >=10 x<br>4 mm | ISO/DIN 306,<br>CAMPUS        |        | 181  |                     |                    | 238 | Mar                 | 213 |                     |
| coefficient of linear thermal<br>expansion (flow direction)   | test temperature:<br>23-55°C | >=10 x >=10 x<br>4 mm | ASTM E831,<br>CAMPUS          | E-4/°C | 1.31 | 0.22<br>{ASTM D696} |                    | 1.2 |                     | 1.7 | 0.27<br>(ASTM D696) |
| coefficient of linear thermal<br>expansion (normal direction) | test temperature:<br>23-55°C | >=10 x >=10 x<br>4 mm | ASTM E831,<br>CAMPUS          | E-4/°C | 1.31 |                     |                    | 1.2 |                     | 1.5 | 123                 |

## 161

| Graph 32               | Graph 33                  | Graph 34                 | Graph 35           | Graph 36               | Graph 37               | Graph 38                                  | Graph 39                                  | Graph 40                                         | Graph 41               | Graph 42                          | Graph 43                   | Graph 44                                   |                        |
|------------------------|---------------------------|--------------------------|--------------------|------------------------|------------------------|-------------------------------------------|-------------------------------------------|--------------------------------------------------|------------------------|-----------------------------------|----------------------------|--------------------------------------------|------------------------|
| nylon 66               | nylon 66                  | nylon 66                 | nylon 66           | nylon 66               | nylon 66               | nylon 6/66                                | nylon 66                                  | nylon 6/66                                       | nylon 6/66             | nylon 6/66                        | nylon MXD6                 | nylon,<br>aromatic<br>copolymer            | Material Family        |
| 33% glass fiber filled | 40% glass<br>fiber filled | 40% glass<br>bead filled | 40% mineral filled | 40% mineral filled     | 43% glass fiber filled | 40% mineral<br>filled, impact<br>modified | 40% mineral<br>filled, impact<br>modified | 33% glass<br>fiber filled,<br>impact<br>modified | 33% glass fiber filled | 50% long<br>glass fiber<br>filled | 60% glass<br>fiber filled  | 50% glass<br>fiber filled,<br>food contact | Description            |
| DuPont                 | Ticona                    | Ticona                   | DuPont             | DuPont                 | DuPont                 | DuPont                                    | DuPont                                    | DuPont                                           | DuPont                 | LNP                               | Mitsubishi Gas<br>Chemical | EMS                                        | Supplier               |
| Zytel 70G33L           | Celanese<br>1603-2        | Celanese<br>NFX-0102     | Minlon 6122        | Minlon 10B40           | Zytel FE5128           | Minlon 11C40                              | Minlon 12T                                | Zytel 82G33L                                     | Zytel 72G33L           | Verton<br>RF700-10EM              | Reny 1032                  | Grivory 5H                                 | Material<br>Trade Name |
| (tested dry as molded) | {dry as<br>molded}        |                          |                    | (tested dry as molded) |                        | (tested dry as molded)                    | {dry as molded}                           | {dry as molded}                                  | (dry as molded)        | {dry as molded}                   | (dry as molded)            | (conditioned)                              | Test Notes             |

### PHYSICAL PROPERTIES

|             |                              |             |             |             | 1           |        |                     | 80 (275°C,<br>21.6 kg) | melt volume rate                     |
|-------------|------------------------------|-------------|-------------|-------------|-------------|--------|---------------------|------------------------|--------------------------------------|
|             |                              |             | 174 044 1   | 1.5.173     |             |        |                     |                        | melt flow rate                       |
| 6           | 0.9 (at 24 h,<br>ASTM D 570) | 5           | 5.7         |             |             |        | 1.3<br>(ASTM D 570) | 4.5                    | water absorption<br>at saturation    |
| 1.9         |                              | 1.6         | 1.8         |             |             | S. the |                     | 1.3                    | moisture absorption<br>at saturation |
| 1400        |                              | 1500        | 1460        |             |             |        |                     | 1560                   | density                              |
|             | 1.47                         |             |             | 1.34        | 1.38        | 1.57   | 1.77                | 1.37.3                 | specific gravity                     |
| HB (0.8 mm) | НВ                           | HB (0.8 mm) | HB (0.8 mm) | HB (0.8 mm) | HB {0.8 mm} | 1.59   | НВ                  | HB (0.8 mm)            | flammability UL94 at<br>1.6 mm       |

## MECHANICAL PROPERTIES (AT 23°C /50% R.H.)

|        |                    |         | 5800 | 6000 |                   |                    |                    |                    | 23324<br>(ASTM D638) | 17000 | tensile modulus<br>(secant, 1 mm/min)     |
|--------|--------------------|---------|------|------|-------------------|--------------------|--------------------|--------------------|----------------------|-------|-------------------------------------------|
|        |                    |         |      |      |                   |                    |                    |                    |                      |       | stress at yield (50 mm/min)               |
|        |                    |         |      |      |                   |                    |                    |                    |                      |       | strain at yield (50 mm/min)               |
| 195    | 221<br>{ASTM D638} |         | 89   | 87   | 79<br>(ASTM D638) | 153<br>(ASTM D638) | 186<br>(ASTM D638) | 255<br>(ASTM D638) | 274<br>{ASTM D638}   | 210   | tensile strength at break<br>(5 mm/min)   |
| 3      | 3<br>{ASTM D638}   |         | 3.7  | 10   | 20<br>{ASTM D638} | 4<br>(ASTM D638)   | 4<br>{ASTM D638}   | 3<br>(ASTM D638)   | 1.8<br>{ASTM D638}   | 3     | strain at break (5 mm/min)                |
| 90     |                    |         | 36   | 120  |                   |                    |                    |                    |                      | 85    | Charpy impact strength (23°C)             |
| 75     |                    |         | 26   | 80   |                   |                    |                    |                    |                      | 80    | Charpy impact strength<br>(-30°C)         |
| 12     |                    |         | 3    | 6    |                   |                    |                    |                    |                      | 14    | Charpy notched impact<br>strength (23°C)  |
| 10     |                    |         | 3    | 5    |                   |                    |                    |                    |                      | 13    | Charpy notched impact<br>strength (-30°C) |
| 121.53 | 139                | 1 2 2 2 |      |      | 129               | 225                | 123                | 320                |                      | 1     | notched Izod impact<br>strength (23°C)    |
|        | 10400              |         |      |      | 4585              | 7585               | 8965               | 15847              | 20874                |       | flexural modulus                          |
|        | 338                | 1000    |      |      |                   | 230                | 290                | 400                | 376                  |       | flexural strength                         |

| melting temperature                                       | 260                    |                    |                    | 233 (ASTM<br>D3418) | 233 (ASTM<br>D3418) | 259 (ASTM<br>D3418) | 255  | 260  | 7          | 257              | 260 |
|-----------------------------------------------------------|------------------------|--------------------|--------------------|---------------------|---------------------|---------------------|------|------|------------|------------------|-----|
| heat deflection<br>temperature at 0.45 MPa                |                        |                    |                    |                     |                     | 225<br>{ASTM D648}  | 220  | 240  | 7<br>D648} | 257<br>(ASTM D64 |     |
| heat deflection<br>temperature at 1.8 MPa                 | 235 (165°C<br>@ 8 MPa) | 226<br>(ASTM D648) | 243<br>(ASTM D648) | 220<br>(ASTM D648)  | 220<br>(ASTM D648)  | 75<br>{ASTM D648}   | 147  | 210  | 3<br>D648) | 253<br>(ASTM D64 | 254 |
| Vicat B softening<br>temperature                          | 245                    |                    |                    |                     |                     |                     | 235  | 247  |            | 2                |     |
| coefficient of linear therma<br>expansion (flow direction | 0.15                   |                    |                    |                     |                     | 0.54<br>{ASTM D696  | 0.86 | 0.67 | 120-22     |                  |     |
| coefficient of linear therm<br>expansion (normal directio | 0.9                    |                    |                    |                     |                     |                     | 0.86 | 0.88 |            |                  |     |

|                        |                |                  |             |        | Graph 45                                      | Graph 46                                          | Graph 47                         | Graph 48                        | Graph 49                                          | Graph 50                                     | Graph 51                                            | Graph 52                                            |
|------------------------|----------------|------------------|-------------|--------|-----------------------------------------------|---------------------------------------------------|----------------------------------|---------------------------------|---------------------------------------------------|----------------------------------------------|-----------------------------------------------------|-----------------------------------------------------|
| Material Family        |                |                  |             |        | nylon, partially<br>aromatic                  | polycarbonate<br>(PC)                             | polycarbonate<br>(PC)            | polycarbonate<br>(PC)           | polycarbonate<br>(PC)                             | polycarbonate<br>(PC)                        | polybutylene<br>terephthalate<br>(polyester<br>PBT) | polybutylene<br>terephthalate<br>(polyester<br>PBT) |
| Description            |                |                  |             |        | 35% glass<br>fiber filled,<br>heat stabilized | unfilled, medi-<br>um viscosity,<br>release agent | unfilled,<br>recycled<br>content | unfilled,<br>impact<br>modified | 10% glass<br>fiber filled,<br>medium<br>viscosity | 20% glass<br>fiber filled,<br>high viscosity | unfilled,<br>general<br>purpose                     | unfilled,<br>non blooming<br>flame<br>retardant     |
| Supplier               |                |                  |             |        | DuPont                                        | GE Plastics                                       | MRC Polymers                     | Bayer                           | GE Plastics                                       | GE Plastics                                  | GE Plastics                                         | Ticona                                              |
| Material<br>Trade Name |                |                  |             |        | Zytel<br>HTN51G35HSL                          | Lexan 141R                                        | PC429MMH1-<br>200                | Makrolon<br>T7435               | Lexan 500                                         | Lexan 3412                                   | Valox 325                                           | Celanex 2016                                        |
| Test Notes             | Test condition | Test<br>Specimen | Test Method | (Unit) | {dry as molded}                               |                                                   | 1976                             |                                 |                                                   |                                              |                                                     |                                                     |

| melt volume rate                     |                                                         |                       | ISO 1133,<br>DIN 53735, CAMPUS | ml/10min |                      | 12 (300°C,<br>1.2 kg) | Stark! |                               | 8 {300°C,<br>1.2 kg} | 6 {300°C,<br>1.2 kg} | 14 (250°C,<br>2.16 kg) |  |
|--------------------------------------|---------------------------------------------------------|-----------------------|--------------------------------|----------|----------------------|-----------------------|--------|-------------------------------|----------------------|----------------------|------------------------|--|
| melt flow rate                       |                                                         |                       | ASTM D1238                     | g/10min  |                      | 0.35                  |        | 0.15 (at 24 h,<br>ASTM D 570) | 0.31                 | 0.29                 | 0.34                   |  |
| water absorption at saturation       | test temperature:<br>21-25°C;<br>relative humidity: 50% | 50 x 50 x 1 mm        | ISO 62, CAMPUS                 | %        |                      |                       |        |                               |                      |                      | 0.08                   |  |
| moisture absorption<br>at saturation | test temperature:<br>21-25°C;<br>relative humidity: 50% | 50 x 50 x 1 mm        | ISO 62, CAMPUS                 | %        |                      | 1200                  |        |                               | 1250                 | 1350                 | 1310                   |  |
| density                              | test temperature:<br>21-25°C                            | >=10 x >=10 x<br>4 mm | ISO 1183, CAMPUS               | g/m^3    | 1.09                 |                       |        | 1.2                           |                      |                      | 1.44                   |  |
| specific gravity                     |                                                         |                       | ASTM D792                      |          |                      | V-2 {1.14 mm}         |        |                               | V-0 (1.5 mm)         |                      | HB {1.47}              |  |
| flammability UL94 at<br>1.6 mm       |                                                         | 125 x 13 mm           | UL 94, CAMPUS                  |          | 12100 (ASTM<br>D638) | 2350                  | 1.2.5  | 2067 (ASTM<br>D638)           | 3300                 | 6000                 | 2400                   |  |

## MECHANICAL PROPERTIES (AT 23°C /50% R.H.)

| tensile modulus<br>(secant, 1 mm/min)     | test temperature: 21-25°C,<br>relative humidity: 50%;<br>strain rate: 1 mm/min;<br>elongation: 0.05-0.25%;<br>atmosphere according to<br>ISO 291 | ISO 3167<br>multipurpose<br>test specimen     | ISO 527-1,<br>ISO 527-2,<br>CAMPUS,<br>DIN 53457 | MPa   |                    | 63                 |                   |                    |     |    | 55                 |                   |
|-------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------|--------------------------------------------------|-------|--------------------|--------------------|-------------------|--------------------|-----|----|--------------------|-------------------|
| stress at yield (50 mm/min)               | test temperature: 21-25°C,<br>relative humidity: 50%;<br>strain rate: 50 mm/min;<br>atmosphere according to<br>ISO 291                           | 24                                            | ISO 527-1,<br>ISO 527-2,<br>CAMPUS,<br>DIN 53455 | *)    |                    | 6                  |                   |                    |     |    | 3.5                |                   |
| strain at yield (50 mm/min)               | 943                                                                                                                                              |                                               | 4                                                | %     | 214 (ASTM<br>D638) |                    | 57 (ASTM<br>D638) | 56 (ASTM<br>D638)  | 45  | 90 |                    |                   |
| tensile strength at break<br>(5 mm/min)   | test temperature: 21-25°C,<br>relative humidity: 50%;<br>strain rate: 5 mm/min;<br>atmosphere according to<br>ISO 291                            | (H)                                           | ×                                                | MPa   | 2.4 (ASTM<br>D638) | >50 {50<br>mm/min} | 90 (ASTM<br>D638) | 110 (ASTM<br>D638) | 7   | 2  | >50 (50<br>mm/min) | 20 (ASTM<br>D638) |
| strain at break (5 mm/min)                | 0ec                                                                                                                                              | 90                                            |                                                  | %     |                    |                    |                   |                    | NB  | 30 |                    |                   |
| Charpy impact strength<br>(23°C)          | test temperature:<br>23°C; relative humidi-<br>ty: 50%; atmosphere<br>according to ISO 291                                                       | 80 x 10 x 4<br>mm                             | ISO 179/1eU,<br>CAMPUS                           | kJ/m2 |                    |                    |                   |                    |     |    |                    |                   |
| Charpy impact strength<br>(-30°C)         | test temperature:<br>-30°C                                                                                                                       | (#)                                           |                                                  | ×     |                    |                    |                   |                    | 9   |    | 4                  |                   |
| Charpy notched impact<br>strength (23°C)  | test temperature:<br>23°C;<br>relative humidity:<br>50%; atmosphere<br>according to ISO 291                                                      | 80 x 10 x 4<br>mm,<br>V notch,<br>r = 0.25 mm | ISO 179/1eA,<br>CAMPUS                           |       |                    |                    |                   |                    |     |    | 4                  |                   |
| Charpy notched impact<br>strength (-30°C) | test temperature:<br>-30°C                                                                                                                       | ( <b>H</b> . )                                |                                                  | *     |                    |                    | 748               | 742                |     |    |                    | 32                |
| notched Izod impact<br>strength (23°C)    |                                                                                                                                                  | 3.2 mm thick                                  | ASTM D256                                        | J/m   | 10300              |                    | 2136              | 2101               | 100 |    |                    | 3286              |
| flexural modulus                          |                                                                                                                                                  |                                               | ASTM D790                                        | MPa   |                    |                    | 90                | 83                 |     |    |                    | 106               |
| flexural strength                         |                                                                                                                                                  |                                               | ASTM D790                                        | MPa   |                    |                    |                   |                    |     |    |                    |                   |

| melting temperature                                           |                              |                       |                               | °C     |   |     |                    |                     |      |     |      |                   |
|---------------------------------------------------------------|------------------------------|-----------------------|-------------------------------|--------|---|-----|--------------------|---------------------|------|-----|------|-------------------|
| heat deflection<br>temperature at 0.45 MPa                    |                              | 80 x 10 x<br>4 mm     | ISO 75-1, ISO 75-2,<br>CAMPUS | 4      | 1 | 136 | 132 (ASTM<br>D648) | 130 (ASTM<br>D648)  | 140  | 144 | 110  | 70 (ASTM<br>D648) |
| heat deflection<br>temperature at 1.8 MPa                     |                              |                       | -                             | .41    |   | 125 | 121 (ASTM<br>D648) | 121 (ASTM<br>D648)  | 132  | 139 | 50   |                   |
| Vicat B softening<br>temperature                              | load: 50N; note:<br>50°C/h   | >=10 x >=10 x<br>4 mm | ISO/DIN 306,<br>CAMPUS        | *      |   | 141 |                    | 145 (ASTM<br>D1525) | 141  | 147 | 175  |                   |
| coefficient of linear thermal expansion (flow direction)      | test temperature:<br>23-55°C | >=10 x >=10 x<br>4 mm | ASTM E831,<br>CAMPUS          | E-4/°C |   | 0.7 |                    |                     | 0.4  | 0.3 | 0.13 |                   |
| coefficient of linear thermal<br>expansion (normal direction) | test temperature:<br>23-55°C | >=10 x >=10 x<br>4 mm | ASTM E831,<br>CAMPUS          | E-4/°C |   |     |                    |                     | 11.1 |     | 0.13 |                   |

| - | 00  |
|---|-----|
| - | 6.1 |
|   | 0.0 |
|   |     |

| Graph 53                                  | Graph 54                                         | Graph 55                      | Graph 56                      | Graph 57                      | Graph 58                      | Graph 59                                         | Graph 60                                   | Graph 61                                     | Graph 62                      | Graph 63                      | Graph 64 & 65                    | Graph 66 & 67            |                        |
|-------------------------------------------|--------------------------------------------------|-------------------------------|-------------------------------|-------------------------------|-------------------------------|--------------------------------------------------|--------------------------------------------|----------------------------------------------|-------------------------------|-------------------------------|----------------------------------|--------------------------|------------------------|
| polybutylene<br>terephthalate             | polybutylene<br>terephthalate                    | polybutylene<br>terephthalate | polybutylene<br>terephthalate | polybutylene<br>terephthalate | polybutylene<br>terephthalate | polybutylene<br>terephthalate                    | polybutylene<br>terephthalate              | polybutylene<br>terephthalate                | polybutylene<br>terephthalate | polybutylene<br>terephthalate | polyetherimide<br>(PEI)          | epolyetherimide<br>(PEI) | Material Family        |
| 10% mineral<br>filled, impact<br>modified | 10% glass<br>fiber filled,<br>impact<br>modified | 30% glass fiber filled        | 30% glass fiber filled        | 30% glass fiber filled        | 30% glass<br>fiber filled     | 30% glass<br>fiber filled,<br>flame<br>retardant | 30% glass<br>fiber filled,<br>color stable | 30% glass<br>fiber filled,<br>from recyclate | 45% glass<br>fiber filled     | 55% glass<br>fiber filled     | unfilled,<br>general<br>purpose* | 30% glass fiber filled   | Description            |
| GE Plastics                               | LNP                                              | GE Plastics                   | DuPont                        | Plastics Eng                  | Ticona                        | DuPont                                           | DuPont                                     | Allied Signal                                | DuPont                        | DuPont                        | GE Plastics                      | GE Plastics              | Supplier               |
| Valox 744                                 | Thermocomp<br>PDXW96630                          | Valox 420                     | Rynite 530                    | Plenco 50030                  | Impet 330R                    | Rynite FR530                                     | Rynite<br>RE5211                           | Petra 130                                    | Rynite 545                    | Rynite 555                    | Ultern 1000                      | Ultern 2300              | Material<br>Trade Name |
|                                           |                                                  |                               |                               | 1.5.                          |                               |                                                  |                                            |                                              |                               |                               |                                  |                          | Test Notes             |

|      | 12 (250°C,<br>2.16 kg) | 5 {280°C,<br>2.16 kg} | 142                           |      | 6 (280°C,<br>2.16 kg |      |             | 5  | 5 (280°C,<br>5 kg | 13 (360°C,<br>5 kg) | 6 (360°C,<br>5 kg) | melt volume rate                     |
|------|------------------------|-----------------------|-------------------------------|------|----------------------|------|-------------|----|-------------------|---------------------|--------------------|--------------------------------------|
|      | 100 M                  |                       |                               |      |                      |      |             |    |                   |                     | C. There is        | melt flow rate                       |
|      | 0.26                   |                       | 0.07 (at 24 h,<br>ASTM D 570) |      | 0.77                 | 0.6  |             |    |                   | 1.25                | 0.9                | water absorption<br>at saturation    |
|      | 0.06                   | 0.2                   |                               |      | 0.17                 | 0.16 |             |    |                   | 0.7                 | 0.5                | moisture absorption<br>at saturation |
|      | 1530                   | 1560                  |                               |      | 1670                 | 1590 |             |    | 1800              | 1270                | 1510               | density                              |
| 1.36 | Bert Pro               |                       | 1.58                          | 1.58 | 2001                 | 1.8  |             |    |                   |                     |                    | specific gravity                     |
| НВ   | HB {0.8 mm}            | HB {0.8 mm}           |                               | НВ   | V-0 (0.8 mm)         |      | HB (0.75 mm | HE | 3 {0.8 mm}        | V-0 {0.41 mm        | V-0 {0.25 mm}      | flammability UL94 at<br>1.6 mm       |

## MECHANICAL PROPERTIES (AT 23°C /50% R.H.)

|      | 9300   | 11000 |                    |                    | 12000 |       | 10200 | 15500 (ASTM<br>D638) | 19500  | 3200               | 9500 | tensile modulus<br>(secant, 1 mm/min)     |
|------|--------|-------|--------------------|--------------------|-------|-------|-------|----------------------|--------|--------------------|------|-------------------------------------------|
|      |        |       |                    |                    |       |       |       |                      |        | 105                |      | stress at yield (50 mm/min)               |
|      | - 20   |       |                    |                    | 1919  |       |       |                      |        | 6                  |      | strain at yield (50 mm/min)               |
|      | 115    | 158   | 168 (ASTM<br>D638) | 168 (ASTM<br>D638) | 135   | 173   | 155   | 186 (ASTM<br>D638)   | 196    |                    | 165  | tensile strength at break<br>(5 mm/min)   |
|      | 2      | 2.5   |                    | 2 (ASTM<br>D638)   | 2     | 2     | 3.5   | 2.1 {ASTM<br>D638}   | 2      | >50 {50<br>mm/min} | 2    | strain at break (5 mm/min)                |
|      |        | 65    |                    |                    | 40    | 48    |       |                      | 50     |                    |      | Charpy impact strength (23°C)             |
|      |        | 45    |                    |                    | 33    | 42    |       |                      | 45     |                    |      | Charpy impact strength<br>(-30°C)         |
|      | 45     | 11    |                    |                    | 8.5   | 9.5   |       |                      | 12     | 4                  |      | Charpy notched impact<br>strength (23°C)  |
|      | 45     | 11    | 12.717             |                    | 8.5   | 9     |       |                      | 12     |                    | 10.7 | Charpy notched impact<br>strength (-30°C) |
| 53.4 |        |       | 80                 | 80                 |       | 90    |       |                      | Ser. 1 |                    | 1941 | notched Izod impact<br>strength (23°C)    |
| 2687 | E SARA |       | 8957               | 9646               |       | 12700 |       | 17900                |        |                    | 32   | flexural modulus                          |
|      |        |       | 245                | 245                |       | 225   |       | 283                  |        |                    |      | flexural strength                         |

|                    |      |      | 254  |                    |                    | 254  | 255  | 245 | 255                    |     | 1. 19 | melting temperature                                      |
|--------------------|------|------|------|--------------------|--------------------|------|------|-----|------------------------|-----|-------|----------------------------------------------------------|
| 163 (ASTM<br>D648) | 1.16 | 225  | 245  |                    |                    | 246  | 245  | 240 |                        | 200 | 215   | heat deflection<br>temperature at 0.45 MPa               |
| 65 (ASTM<br>D648)  |      | 205  | 224  | 224 (ASTM<br>D648) | 224 (ASTM<br>D648) | 224  | 224  | 210 | 229 {190°C @<br>8 MPa} | 190 | 210   | heat deflection<br>temperature at 1.8 MPa                |
|                    | 10.7 | 215  | 228  |                    |                    | 218  | 230  |     | 230                    | 211 | 213   | Vicat B softening<br>temperature                         |
|                    | 1211 | 0.25 | 0.3  |                    |                    | 0.25 | 0.21 |     | 0.11                   |     |       | coefficient of linear therma expansion (flow direction)  |
|                    | 1.50 |      | 1.22 |                    |                    |      | 0.74 |     | 2. 73                  |     | 1     | coefficient of linear therma expansion (normal direction |

| Test Notes             | Test condition | Test<br>Specimen | Test Method | (Unit) |                                     |                          |                          |                          |                                             |                           |                           |                                                     |
|------------------------|----------------|------------------|-------------|--------|-------------------------------------|--------------------------|--------------------------|--------------------------|---------------------------------------------|---------------------------|---------------------------|-----------------------------------------------------|
| Material<br>Trade Name |                |                  |             |        | PEEK 450G                           | Escorene<br>1032         | Polypropylene<br>400121  | Polypropylene<br>400145  | PF062-2                                     | PF072-3C                  | PF072-4C                  | RPP40EA63UL                                         |
| Supplier               |                |                  |             |        | Victrex                             | Exxon                    |                          |                          | Montell                                     | Montell                   | Montell                   | Ferro                                               |
| Description            |                |                  |             |        | unfilled                            | unfilled,<br>homopolymer | unfilled,<br>homopolymer | unfilled,<br>homopolymer | 20% glass<br>fiber filled,<br>low viscosity | 30% glass<br>fiber filled | 40% glass<br>fiber filled | 40% glass<br>fiber filled,<br>chemically<br>coupled |
| Material Family        |                |                  |             |        | polyethere-<br>therketone<br>(PEEK) | polypropylene<br>(PP)    | polypropylene<br>(PP)    | polypropylene<br>(PP)    | polypropylene<br>(PP)                       | polypropylene<br>(PP)     | polypropylene<br>(PP)     | polypropylene<br>(PP)                               |
|                        | 4              |                  |             |        | Graph 68                            | Graph 69                 | Graph 70                 | Graph 71                 | Graph 72                                    | Graph 73                  | Graph 74                  | Graph 75                                            |

| melt volume rate                     |                                                         |                       | ISO 1133,<br>DIN 53735, CAMPUS | ml/10min |              |                       |                        |                       | Charles I.              |  |
|--------------------------------------|---------------------------------------------------------|-----------------------|--------------------------------|----------|--------------|-----------------------|------------------------|-----------------------|-------------------------|--|
| melt flow rate                       |                                                         |                       | ASTM D1238                     | g/10min  |              | 5 (230°C,<br>2.16 kg) | 18 (230°C,<br>2.16 kg) | 2 (230°C,<br>2.16 kg} | 1.8 (230°C,<br>2.16 kg) |  |
| water absorption<br>at saturation    | test temperature:<br>21-25°C;<br>relative humidity: 50% | 50 x 50 x 1 mm        | ISO 62, CAMPUS                 | %        |              |                       |                        |                       |                         |  |
| moisture absorption<br>at saturation | test temperature:<br>21-25°C;<br>relative humidity: 50% | 50 x 50 x 1 mm        | ISO 62, CAMPUS                 | %        |              |                       |                        |                       |                         |  |
| density                              | test temperature:<br>21-25°C                            | >=10 x >=10 x<br>4 mm | ISO 1183, CAMPUS               | g/m^3    |              |                       |                        |                       |                         |  |
| specific gravity                     |                                                         |                       | ASTM D792                      |          | 1.3          | 0.9                   | 1.04                   | 1.13                  | 1.22                    |  |
| flammability UL94 at<br>1.6 mm       |                                                         | 125 x 13 mm           | UL 94, CAMPUS                  |          | V-0 {3.2 mm} |                       |                        |                       |                         |  |

## MECHANICAL PROPERTIES (AT 23°C /50% R.H.)

| tensile modulus<br>(secant, 1 mm/min)     | test temperature: 21-25°C,<br>relative humidity: 50%;<br>strain rate: 1 mm/min;<br>elongation: 0.05-0.25%;<br>atmosphere according to<br>ISO 291 | ISO 3167<br>multipurpose<br>test specimen     | ISO 527-1,<br>ISO 527-2,<br>CAMPUS,<br>DIN 53457 | MPa   |                    |      |                    |                    |                    |  |
|-------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------|--------------------------------------------------|-------|--------------------|------|--------------------|--------------------|--------------------|--|
| stress at yield (50 mm/min                | test temperature: 21-25°C,<br>relative humidity: 50%;<br>strain rate: 50 mm/min;<br>atmosphere according to<br>ISO 291                           |                                               | ISO 527-1,<br>ISO 527-2,<br>CAMPUS,<br>DIN 53455 |       |                    |      |                    |                    |                    |  |
| strain at yield (50 mm/min)               |                                                                                                                                                  |                                               | ÷                                                | %     |                    |      |                    |                    |                    |  |
| tensile strength at break<br>(5 mm/min)   | test temperature: 21-25 °C<br>relative humidity: 50%:<br>strain rate: 5 mm/min;<br>atmosphere according to<br>ISO 291                            | -it                                           |                                                  | MPa   | 92 (ASTM<br>D638)  |      | 79 (ASTM<br>D638)  | 97 (ASTM<br>D638)  | 103 (ASTM<br>D638) |  |
| strain at break (5 mm/min)                | Sal C                                                                                                                                            | -ii                                           | 7                                                | %     | 4.9 (ASTM<br>D638) |      | 2.9 (ASTM<br>D638) | 2.7 (ASTM<br>D638) | 2.2 (ASTM<br>D638) |  |
| Charpy impact strength<br>(23°C)          | test temperature:<br>23°C; relative humidi-<br>ty: 50%; atmosphere<br>according to ISO 291                                                       | 80 x 10 x 4<br>mm                             | ISO 179/1eU,<br>CAMPUS                           | kJ/m2 |                    |      |                    |                    |                    |  |
| Charpy impact strength<br>(-30°C)         | test temperature:<br>-30°C                                                                                                                       |                                               | 2                                                |       |                    |      | 1.34               |                    |                    |  |
| Charpy notched impact<br>strength (23°C)  | test temperature:<br>23°C;<br>relative humidity:<br>50%; atmosphere<br>according to ISO 291                                                      | 80 x 10 x 4<br>mm,<br>V notch,<br>r = 0.25 mm | ISO 179/1eA,<br>CAMPUS                           | (a)   |                    |      |                    |                    |                    |  |
| Charpy notched impact<br>strength (-30°C) | test temperature:<br>-30°C                                                                                                                       |                                               | ÷.                                               | (4)   |                    |      |                    |                    |                    |  |
| notched Izod impact<br>strength (23°C)    |                                                                                                                                                  | 3.2 mm thick                                  | ASTM D256                                        | J/m   | 83                 | 37   | 79                 | 151                | 112                |  |
| flexural modulus                          |                                                                                                                                                  |                                               | ASTM D790                                        | MPa   | 3660               | 1309 | 4100               | 6300               | 7030               |  |
| flexural strength                         |                                                                                                                                                  |                                               | ASTM D790                                        | MPa   |                    |      | 117                | 155                | 169                |  |

| melting temperature                                           |                              |                       |                               | °C     |                    |                    |  |                    |                    |                    |  |
|---------------------------------------------------------------|------------------------------|-----------------------|-------------------------------|--------|--------------------|--------------------|--|--------------------|--------------------|--------------------|--|
| heat deflection<br>temperature at 0.45 MPa                    |                              | 80 x 10 x<br>4 mm     | ISO 75-1, ISO 75-2,<br>CAMPUS | 140    |                    | 100 {ASTM<br>D648} |  | 160 (ASTM<br>D648) | 160 (ASTM<br>D648) | 160 (ASTM<br>D648) |  |
| heat deflection<br>temperature at 1.8 MPa                     |                              |                       | -                             | 1.61   | 160 (ASTM<br>D648) | 54 (ASTM<br>D648)  |  | 149 (ASTM<br>D648) | 151 (ASTM<br>D648) | 151 (ASTM<br>D648) |  |
| Vicat B softening<br>temperature                              | load: 50N; note:<br>50°C/h   | >=10 x >=10 x<br>4 mm | ISO/DIN 306,<br>CAMPUS        | -      |                    |                    |  |                    |                    |                    |  |
| coefficient of linear thermal expansion (flow direction)      | test temperature:<br>23-55°C | >=10 x >=10 x<br>4 mm | ASTM E831,<br>CAMPUS          | E-4/°C | 0.47               |                    |  |                    |                    |                    |  |
| coefficient of linear thermal<br>expansion (normal direction) | test temperature:<br>23-55°C | >=10 x >=10 x<br>4 mm | ASTM E831,<br>CAMPUS          | E-4/°C |                    |                    |  |                    |                    |                    |  |
|                                                               |                              |                       |                               |        |                    |                    |  |                    |                    |                    |  |

| Graph 76                          | Graph 77                               | Graph 78              | Graph 79                                     | Graph 80                   | Graph 81                   | Graph 82                   | Graph 83                                             | Graph 84                                                     | Graph 85                                                      | Graph 86                                     | Graph 87                                     | Graph 88                       |                        |
|-----------------------------------|----------------------------------------|-----------------------|----------------------------------------------|----------------------------|----------------------------|----------------------------|------------------------------------------------------|--------------------------------------------------------------|---------------------------------------------------------------|----------------------------------------------|----------------------------------------------|--------------------------------|------------------------|
| polypropylene<br>(PP)             | polypropylene<br>(PP)                  | polypropylene<br>(PP) | polypropylene<br>(PP)                        | polypropylene<br>copolymer | cyclic olefin<br>copolymer | cyclic olefin<br>copolymer | syrene<br>modified<br>polyphenylene<br>ether         | syrene<br>modified<br>polyphenylene<br>ether                 | syrene<br>modified<br>polyphenylene<br>ether                  | syrene<br>modified<br>polyphenylene<br>ether | syrene<br>modified<br>polyphenylene<br>ether | polyphenylene<br>sulfide (PPS) | Material Family        |
| 40% long<br>glass fiber<br>filled | 10% glass<br>fiber, 30% talc<br>filled | 40% talc filled       | 40% mica<br>filled,<br>chemically<br>coupled | 20% glass<br>fiber filled  | unfilled                   | unfilled                   | flame retar-<br>dant,<br>moderate heat<br>resistance | flame retar-<br>dant, high<br>heat resis-<br>tance, unfilled | 10% glass fiber<br>filled, halogen<br>free flame<br>retardant | 20% glass fiber filled                       | 30% glass fiber filled                       | 40% glass fiber filled         | Description            |
| Ticona                            | Ferro                                  | Ferro                 | Ferro                                        | Montell                    | Ticona                     | Ticona                     | GE Plastics                                          | GE Plastics                                                  | GE Plastics                                                   | GE Plastics                                  | GE Plastics                                  | Ticona                         | Supplier               |
| Celstran<br>PPG40                 | HPP40GR09BK                            | PP40AC45BK            | MPP40FJ15NA                                  | SB224-2C                   | Topas 5513                 | Topas 6013                 | Noryl N225X                                          | Noryl SE1X                                                   | Noryl SE1-<br>GFN1                                            | Noryl GFN2                                   | Noryl GFN3                                   | Fortron 1140                   | Material<br>Trade Name |
|                                   |                                        |                       |                                              |                            |                            |                            |                                                      |                                                              |                                                               | Constant's                                   |                                              | E. L. Brief                    | Test Notes             |

|      |                         |                         |                          |                         | N    |                               | 9 (280°C,<br>5 kg) |              |             |             | 1.           | melt volume rate                     |
|------|-------------------------|-------------------------|--------------------------|-------------------------|------|-------------------------------|--------------------|--------------|-------------|-------------|--------------|--------------------------------------|
| See. | 3.2 (230°C,<br>2.16 kg) | 5.5 {230°C,<br>2.16 kg} | 10.4 (230°C,<br>2.16 kg) | 1.5 {230°C,<br>2.16 kg} | 1-11 |                               |                    |              |             |             |              | melt flow rate                       |
| 19.5 |                         | 1.2                     |                          |                         |      | 0.07 (at 24 h,<br>ASTM D 570) | 0.23               | 0.22         | 0.14        | 0.2         |              | water absorption<br>at saturation    |
| 2 43 |                         |                         |                          |                         |      |                               | 0.1                |              |             | 0,1         |              | moisture absorption<br>at saturation |
| 1220 |                         |                         |                          |                         |      |                               | 1110               | 1160         | 1210        | 1280        | 1640         | density                              |
|      | 1.26                    | 1.26                    | 1.22                     | 1.05                    | 20   | 1.09                          |                    |              |             |             |              | specific gravity                     |
|      |                         |                         |                          | 1.3                     |      | V-0                           | V-1 {1.5 mm}       | V-1 {1.5 mm} | HB (1.5 mm) | HB (1.5 mm) | V-0 (0.4 mm) | flammability UL94 at<br>1.6 mm       |

## MECHANICAL PROPERTIES (AT 23°C /50% R.H.)

| 9100 |                  |                  |                  |                    |                   | 2500              | 4000 | 6000 | 8000 | 14500 | tensile modulus<br>(secant, 1 mm/min)     |
|------|------------------|------------------|------------------|--------------------|-------------------|-------------------|------|------|------|-------|-------------------------------------------|
|      |                  |                  |                  |                    |                   | 55                |      |      |      |       | stress at yield (50 mm/min)               |
|      |                  | 18.4             |                  |                    |                   | 5                 |      |      |      |       | strain at yield (50 mm/min)               |
| 115  |                  |                  |                  | 61 (ASTM<br>D638)  | 55 (ASTM<br>D638) |                   | 70   | 90   | 105  | 160   | tensile strength at break<br>(5 mm/min)   |
| 2    | 4 (ASTM<br>D638) | 8 (ASTM<br>D638) | 2 (ASTM<br>D638) | 3.7 {ASTM<br>D638} |                   | 10 (50<br>mm/min} | 5    | 2.5  | 2    | 1.6   | strain at break (5 mm/min)                |
| 53   |                  |                  |                  |                    |                   |                   | 30   | 25   |      | 35    | Charpy impact strength (23°C)             |
| 62   |                  |                  |                  |                    |                   |                   | 30   | 25   |      |       | Charpy impact strength<br>(-30°C)         |
| 23   |                  |                  |                  |                    |                   | 15                |      |      |      | 9     | Charpy notched impact<br>strength (23°C)  |
| 24   |                  | 1                |                  |                    |                   | 7                 |      |      |      | 1.2   | Charpy notched impact<br>strength (-30°C) |
|      | 52.9             | 24               | 16.6             | 150                | 320               |                   |      |      |      |       | notched Izod impact<br>strength (23°C)    |
| 1    | 4065             | 3445             | 6890             | 3480               | 2377              |                   |      |      |      |       | flexural modulus                          |
|      |                  |                  |                  | 86                 | 76                |                   |      |      |      | 2017  | flexural strength                         |

| 162 (Tg: -5°C          |                    |                    |                    |                    |        |                    |     |     |     |      | 285 {Tg:<br>100°C}     | melting temperature                                           |
|------------------------|--------------------|--------------------|--------------------|--------------------|--------|--------------------|-----|-----|-----|------|------------------------|---------------------------------------------------------------|
|                        | 155 (ASTM<br>D648) | 129 (ASTM<br>D648) | 143 (ASTM<br>D648) | 157 (ASTM<br>D648) |        | 118 (ASTM<br>D648) |     | 135 | 145 |      |                        | heat deflection<br>temperature at 0.45 MPa                    |
| 154 {132°C @<br>8 MPa} | 133 (ASTM<br>D648) | 75 (ASTM<br>D648)  | 109 (ASTM<br>D648) | 127 (ASTM<br>D648) |        | 107 (ASTM<br>D648) | 1   | 130 | 132 | 140  | 260 {196°C @<br>8 MPa} | heat deflection<br>temperature at 1.8 MPa                     |
| -                      | 1.0                |                    |                    |                    | 1.19   |                    | 130 | 140 | 135 | 145  |                        | Vicat B softening<br>temperature                              |
|                        |                    |                    |                    |                    |        |                    | 0.7 | 0.5 | 0.4 | 0.25 |                        | coefficient of linear thermal expansion (flow direction)      |
|                        |                    |                    |                    |                    | 1.1215 |                    | 0.9 |     | 0.1 | 0.7  |                        | coefficient of linear thermal<br>expansion (normal direction) |
|                        |                |                  |             |        | Graph 89                               | Graph 90                                         | Graph 91                          | Graph 92                              | Graph 93                              | Graph 94                   | Graph 95                                        | Graph 96                                    |
|------------------------|----------------|------------------|-------------|--------|----------------------------------------|--------------------------------------------------|-----------------------------------|---------------------------------------|---------------------------------------|----------------------------|-------------------------------------------------|---------------------------------------------|
| Material Family        |                |                  |             |        | polyphenylene<br>sulfide (PPS)         | polyphenylene<br>sulfide (PPS)                   | polyphenylene<br>sulfide (PPS)    | polyphenylene<br>sulfide (PPS)        | polyphenylene<br>sulfide (PPS)        | polyethersul-<br>fone(PES) | acrylonitrile<br>butadiene<br>styrene (ABS)     | acrylonitrile<br>butadiene<br>styrene (ABS) |
| Description            |                |                  |             |        | 40% glass<br>fiber filled,<br>branched | 40% glass<br>fiber filled,<br>impact<br>modified | 50% long<br>glass fiber<br>filled | 50% glass<br>fiber/ mineral<br>filled | 65% glass<br>fiber/ mineral<br>filled | 20% glass<br>fiber filled  | unfilled, high<br>impact,<br>general<br>purpose | unfilled, high<br>impact                    |
| Supplier               |                |                  |             |        | Phillips 66                            | Phillips 66                                      | Ticona                            | Ticona                                | Ticona                                | Amoco Perfor.              | GE Plastics                                     | GE Plastics                                 |
| Material<br>Trade Name |                |                  |             |        | Ryton R4                               | Ryton BR90A                                      | Celstran<br>PPSG50                | Fortron 4184                          | Fortron 6165                          | Radel AG220                | Cycolac T                                       | Cycolac GSN                                 |
| Test Notes             | Test condition | Test<br>Specimen | Test Method | (Unit) |                                        |                                                  |                                   |                                       |                                       |                            |                                                 |                                             |

| melt volume rate                     |                                                         |                       | ISO 1133,<br>DIN 53735, CAMPUS | ml/10min |      |              |              |                               | 26 (220°C,<br>10 kg) | 8 (220°C,<br>10 kg) |
|--------------------------------------|---------------------------------------------------------|-----------------------|--------------------------------|----------|------|--------------|--------------|-------------------------------|----------------------|---------------------|
| melt flow rate                       |                                                         |                       | ASTM D1238                     | g/10min  |      |              |              |                               |                      |                     |
| water absorption<br>at saturation    | test temperature:<br>21-25°C;<br>relative humidity: 50% | 50 x 50 x 1 mm        | ISO 62, CAMPUS                 | %        | 1.   |              |              | 0.45 (at 24 h,<br>ASTM D 570) | 1                    | 1                   |
| moisture absorption<br>at saturation | test temperature:<br>21-25°C;<br>relative humidity: 50% | 50 x 50 x 1 mm        | ISO 62, CAMPUS                 | %        |      |              |              |                               | 0.2                  | 0.2                 |
| density                              | test temperature:<br>21-25°C                            | >=10 x >=10 x<br>4 mm | ISO 1183, CAMPUS               | g/m^3    |      | 1800         | 1970         |                               | 1040                 | 1050                |
| specific gravity                     |                                                         |                       | ASTM D792                      |          | 1.65 |              | 114          | 1.51                          | 122                  |                     |
| flammability UL94 at<br>1.6 mm       |                                                         | 125 x 13 mm           | UL 94, CAMPUS                  |          | V-0  | V-0 {0.8 mm} | V-0 {0.8 mm} | V-0 {0.8 mm}                  | HB (1.4 mm)          | HB {1.47 mn         |

## MECHANICAL PROPERTIES (AT 23°C /50% R.H.)

|                                           |                                                                                                                                                  |                                               |                                                  |       | -                  |    |       |       |                     |                   |      |
|-------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------|--------------------------------------------------|-------|--------------------|----|-------|-------|---------------------|-------------------|------|
| tensile modulus<br>(secant, 1 mm/min)     | test temperature: 21-25°C,<br>relative humidity: 50%;<br>strain rate: 1 mm/min;<br>elongation: 0.05-0.25%;<br>atmosphere according to<br>ISO 291 | ISO 3167<br>multipurpose<br>test specimen     | ISO 527-1,<br>ISO 527-2,<br>CAMPUS,<br>DIN 53457 | MPa   |                    |    | 16600 | 19000 | 5690 (ASTM<br>D638) | 2100              | 2100 |
| stress at yield (50 mm/min)               | test temperature: 21-25°C;<br>relative humidity: 50%;<br>strain rate: 50 mm/min;<br>atmosphere according to<br>ISO 291                           | ×                                             | ISO 527-1,<br>ISO 527-2,<br>CAMPUS,<br>DIN 53455 |       |                    |    |       |       |                     | 44                | 45   |
| strain at yield (50 mm/min)               | -                                                                                                                                                | -                                             | ( <b>#</b> ).                                    | %     | 1                  |    |       |       |                     |                   |      |
| tensile strength at break<br>(5 mm/min)   | test temperature: 21-25°C,<br>relative humidity: 50%;<br>strain rate: 5 mn/min;<br>atmosphere according to<br>ISO 291                            |                                               | (a)                                              | MPa   | 121 (ASTM<br>D638) |    | 155   | 120   | 109 (ASTM<br>D638)  |                   |      |
| strain at break (5 mm/min)                |                                                                                                                                                  | *                                             | (a)                                              | 96    | 0.9 (ASTM<br>D638) |    | 1.4   | 1.2   | 3.2 (ASTM<br>D638)  | 15 (50<br>mm/min} |      |
| Charpy impact strength<br>(23°C)          | test temperature:<br>23°C; relative humidi-<br>ty: 50%; atmosphere<br>according to ISO 291                                                       | 80 x 10 x 4<br>mm                             | ISO 179/1eU,<br>CAMPUS                           | kJ/m2 |                    |    | 29    | 20    |                     |                   |      |
| Charpy impact strength<br>(-30°C)         | test temperature:<br>-30°C                                                                                                                       | Ψ.                                            | :(#)                                             | (w)   |                    |    | 29    | 20    |                     |                   |      |
| Charpy notched impact<br>strength (23°C)  | test temperature:<br>23°C;<br>relative humidity:<br>50%; atmosphere<br>according to ISO 291                                                      | 80 x 10 x 4<br>mm,<br>V notch,<br>r = 0.25 mm | ISO 179/1eA,<br>CAMPUS                           |       |                    |    | 7     | 7     |                     | 15                | 20   |
| Charpy notched impact<br>strength (-30°C) | test temperature:<br>-30°C                                                                                                                       | -                                             | (#s                                              | (4)   |                    |    | 7     | 7     |                     |                   |      |
| notched Izod impact<br>strength (23°C)    |                                                                                                                                                  | 3.2 mm thick                                  | ASTM D256                                        | J/m   | 69                 |    |       |       | 59                  |                   |      |
| flexural modulus                          |                                                                                                                                                  |                                               | ASTM D790                                        | MPa   | 11000              | 11 |       |       | 6550                |                   |      |
| flexural strength                         |                                                                                                                                                  |                                               | ASTM D790                                        | MPa   | 179                |    |       |       | 162                 |                   |      |

| melting temperature                                           |                              |                       | 14                            | °C     |                     |      | 285 (Tg:<br>100°C)     | 285 (Tg:<br>100°C)     |                    |      |     |
|---------------------------------------------------------------|------------------------------|-----------------------|-------------------------------|--------|---------------------|------|------------------------|------------------------|--------------------|------|-----|
| heat deflection<br>temperature at 0.45 MPa                    |                              | 80 x 10 x<br>4 mm     | ISO 75-1, ISO 75-2,<br>CAMPUS | (#)    |                     |      |                        |                        |                    | 87   | 89  |
| heat deflection<br>temperature at 1.8 MPa                     | ×                            |                       |                               | 360    | >260 (ASTM<br>D648) |      | 260 {217°C<br>@ 8 MPa} | 260 (218°C<br>@ 8 MPa) | 204 (ASTM<br>D648) | 74   | 75  |
| Vicat B softening<br>temperature                              | load; 50N; note:<br>50°C/h   | >=10 x >=10 x<br>4 mm | ISO/DIN 306,<br>CAMPUS        | •      |                     |      |                        |                        |                    | 94   | 96  |
| coefficient of linear thermal<br>expansion (flow direction)   | test temperature:<br>23-55°C | >=10 x >=10 x<br>4 mm | ASTM E831,<br>CAMPUS          | E-4/°C |                     | 1.09 |                        |                        | 3.1 (ASTM<br>D696) | 0.85 | 0.8 |
| coefficient of linear thermal<br>expansion (normal direction) | test temperature:<br>23-55°C | >=10 x >=10 x<br>4 mm | ASTM E831,<br>CAMPUS          | E-4/°C |                     |      |                        |                        |                    |      |     |

| Graph 97                                    | Graph 98                                    | Graph 99                                    | Graph 100                                   | Graph 101                                                    | Graph 102                                        | Graph 103                                   | Graph 104                                   | Graph 105                                   | Graph 106                            | Graph 107                                     | Graph 108                                             | Graph 109                                                   |                        |
|---------------------------------------------|---------------------------------------------|---------------------------------------------|---------------------------------------------|--------------------------------------------------------------|--------------------------------------------------|---------------------------------------------|---------------------------------------------|---------------------------------------------|--------------------------------------|-----------------------------------------------|-------------------------------------------------------|-------------------------------------------------------------|------------------------|
| acrylonitrile<br>butadiene<br>styrene (ABS)                  | acrylonitrile<br>butadiene<br>styrene (ABS       | acrylonitrile<br>butadiene<br>styrene (ABS) | acrylonitrile<br>butadiene<br>styrene (ABS) | acrylonitrile<br>butadiene<br>styrene (ABS) | high impact<br>polystyrene<br>(HIPS) | tyrene<br>acrylonitrile<br>copolymer<br>(SAN) | acrylonitrile<br>butadiene<br>styrene/ nylon<br>alloy | acrylic/ poly-<br>carbonate<br>alloy (acrylic/<br>PC alloy) | Material Family        |
| unfilled<br>medium<br>impact                | unfilled<br>medium<br>impact                | unfilled, very<br>high impact               | unfilled, flame<br>retardant                | unfilled, halo-<br>gen free flame<br>retardant,<br>indoor UV | 10% glass<br>fiber filled,<br>flame<br>retardant | 30% glass fiber filled                      | 40% glass<br>fiber filled                   | 6% long<br>stainless<br>steel fiber         | unfilled                             | unfilled,<br>general<br>purpose               | unfilled,<br>easy flow,<br>high impact                | unfilled,<br>impact<br>modified                             | Description            |
| Dow Chemical                                | GE Plastics                                 | Dow Chemica                                 | GE Plastics                                 | GE Plastics                                                  | RTP                                              | RTP                                         | RTP                                         | Ticona                                      | Dow Chemical                         | Bayer                                         | Bayer                                                 | Cyro                                                        | Supplier               |
| Magnum 9010                                 | Cycolac<br>DFA-R                            | Magnum 941                                  | Cycolac KJW                                 | Cycolac<br>VW300                                             | 601 FR                                           | 605                                         | 607                                         | Celstran ABS<br>SS6                         | Styron 484                           | Lustran<br>SAN31                              | Triax 1125                                            | Cyrex<br>RDG200                                             | Material<br>Trade Name |
| 1                                           |                                             |                                             |                                             |                                                              |                                                  |                                             |                                             |                                             |                                      | 1946                                          | {dry as molded}                                       |                                                             | Test Notes             |

|                          |      | 6 - T                    |      | *22 (220°C,<br>10 kg)* |                               | 14                           |                               |                            |             |                      |                     | -    | melt volume rate                     |
|--------------------------|------|--------------------------|------|------------------------|-------------------------------|------------------------------|-------------------------------|----------------------------|-------------|----------------------|---------------------|------|--------------------------------------|
| *7.0 {230°C,<br>3.8 kg}* |      | "2.2 (230°C,<br>3.8 kg)" |      | 125                    |                               | 1.54                         |                               |                            |             | 1                    |                     |      | melt flow rate                       |
|                          |      |                          |      | 1                      | 0.20 {at 24 h,<br>ASTM D 570} | 0.16 (at 24 h,<br>ASTM D 570 | 0.12 (at 24 h,<br>ASTM D 570) | 0 (at 24 h,<br>ASTM D 570) |             | 0.25 (ASTM<br>D 570) | 4.2 (ASTM<br>D 570} |      | water absorption<br>at saturation    |
|                          |      |                          |      | 0.2                    |                               |                              |                               |                            |             |                      | 1.6 (ASTM<br>D 570) |      | moisture absorption<br>at saturation |
|                          |      |                          |      | 1200                   |                               |                              |                               |                            |             | 1 122                |                     |      | density                              |
| 1.04                     | 1.04 | 1.04                     | 1.23 | 1                      | 1.29                          | 1.28                         | 1.38                          | 1.11                       | 1.04        | 1.07                 | 1.06                | 1.15 | specific gravity                     |
| HB                       | НВ   | НВ                       | V-0  | V-0                    |                               |                              |                               |                            | HB (3.1 mm) |                      | НВ                  | 6.0  | flammability UL94 at<br>1.6 mm       |

### MECHANICAL PROPERTIES (AT 23°C /50% R.H.)

| 2415 (ASTM<br>D638) | 2300 (ASTM<br>D638) | 2000 (ASTM<br>D638) | 2100 (ASTM<br>D638) | 2500  |                  |                  |                  |                     | 1648 (ASTM<br>D638) | 3280 (ASTM<br>D638 | 1890 (ASTM<br>D638) | 2250 (ASTM<br>D638) | tensile modulus<br>(secant, 1 mm/min)     |
|---------------------|---------------------|---------------------|---------------------|-------|------------------|------------------|------------------|---------------------|---------------------|--------------------|---------------------|---------------------|-------------------------------------------|
|                     |                     |                     |                     | 36    |                  |                  |                  |                     |                     |                    |                     |                     | stress at yield (50 mm/min)               |
|                     |                     |                     |                     |       |                  |                  |                  |                     |                     |                    |                     |                     | strain at yield (50 mm/min)               |
| 36 (ASTM<br>D638)   |                     |                     |                     |       |                  |                  |                  | 43.4 (ASTM<br>D638) | 24 (ASTM<br>D638)   | 72 (ASTM<br>D638   | 47 (ASTM<br>D638)   | 55 (ASTM<br>D638)   | tensile strength at break<br>(5 mm/min)   |
| 45 (ASTM<br>D638)   |                     |                     |                     | Sec.  | 2 {ASTM<br>D638} | 1 {ASTM<br>D638} | 1 (ASTM<br>D638) | 0 {ASTM<br>D638}    | 52 {ASTM<br>D638}   | 3.0 (ASTM<br>D638) | 70 (ASTM<br>D638)   | 56 (ASTM<br>D638)   | strain at break (5 mm/min)                |
|                     |                     |                     |                     | NB    |                  |                  |                  |                     |                     |                    |                     |                     | Charpy impact strength<br>(23°C)          |
| 1000                |                     |                     |                     |       |                  | 24               |                  |                     |                     |                    |                     |                     | Charpy impact strength<br>(-30°C)         |
|                     |                     |                     |                     | 8     |                  |                  |                  |                     |                     |                    |                     |                     | Charpy notched impact<br>strength (23°C)  |
|                     |                     | 1.4.2               |                     |       |                  |                  |                  |                     |                     | a sere             |                     |                     | Charpy notched impact<br>strength (-30°C) |
| 210                 | 210                 | 641                 | 210                 | 1     | 64               | 69.4             | 64               | 64.1                | 112                 | 32                 | 850                 | 1388                | notched Izod impact<br>strength (23°C)    |
| 2480                | 2500                | 2030                | 2300                | J. A. | 4134             | 6890             | 8957             | 2825                | 1910                | 3450               | 2140                | 2250                | flexural modulus                          |
| 72                  | 80                  | 62                  | 70                  |       | 86               | 131              | 138              | 78.6                | 43                  | 75.9               |                     |                     | flexural strength                         |

|                     |                   | No constant         |                   |    |                    |                    |                    |                   |                     |                     |                   |                    | melting temperature                                         |
|---------------------|-------------------|---------------------|-------------------|----|--------------------|--------------------|--------------------|-------------------|---------------------|---------------------|-------------------|--------------------|-------------------------------------------------------------|
| 94 (ASTM<br>D648)   | 94 (ASTM<br>D648) | 93 (ASTM<br>D648)   |                   |    | 104 (ASTM<br>D648) | 115 (ASTM<br>D648) | 118 (ASTM<br>D648) | 12-10             | 87 {ASTM<br>D648}   |                     | 94 (ASTM<br>D648) | 123 (ASTM<br>D648) | heat deflection<br>temperature at 0.45 MPa                  |
| 79 (ASTM<br>D648)   | 84 {ASTM<br>D648} | 79 (ASTM<br>D648)   | 88 (ASTM<br>D648) |    | 101 (ASTM<br>D648) | 110 (ASTM<br>D648) | 115 (ASTM<br>D648) | 87 (ASTM<br>D648) | 74 (ASTM<br>D648)   | 96.1 {ASTM<br>D648} |                   | 101 (ASTM<br>D648) | heat deflection<br>temperature at 1.8 MPa                   |
| 108 (ASTM<br>D1525) | 1.5.1             | 107 (ASTM<br>D1525) | · · · · ·         | 91 |                    |                    |                    | 1.1.1.1           | 101 (ASTM<br>D1525) | 110 (ASTM<br>D1525) |                   |                    | Vicat B softening<br>temperature                            |
|                     |                   |                     | 100               |    |                    |                    |                    | 1                 |                     | 0.68 (ASTM<br>D696) |                   |                    | coefficient of linear therma expansion (flow direction)     |
| -                   |                   |                     |                   | 1  |                    |                    |                    | de la             |                     | The second          |                   |                    | coefficient of linear therma<br>expansion (normal direction |

| Test Notes             | Test condition | Test<br>Specimen | Test Method | (Unit) |                                                  |                                                  | 2                               |                                                  |                                 |                               |                                        |                                                    |
|------------------------|----------------|------------------|-------------|--------|--------------------------------------------------|--------------------------------------------------|---------------------------------|--------------------------------------------------|---------------------------------|-------------------------------|----------------------------------------|----------------------------------------------------|
| Material<br>Trade Name |                |                  |             |        | Bayblend<br>FR1441                               | Bayblend<br>FR110                                | Xenoy 6123                      | Xenoy 6240                                       | Makroblend<br>UT1018            | Stanuloy<br>ST125             | Stanuloy<br>ST110WCS                   | Stanuloy<br>ST150                                  |
| Supplier               |                |                  |             |        | Bayer                                            | Bayer                                            | GE Plastics                     | GE Plastics                                      | Bayer                           | MRC Polymers                  | MRC Polymen                            | MRC Polymen                                        |
| Description            |                |                  |             |        | brominated<br>flame<br>retardant                 | halogen free<br>flame<br>retardant               | unfilled,<br>impact<br>modified | 10% glass<br>fiber filled,<br>impact<br>modified | unfilled,<br>impact<br>modified | unfilled, from recyclate      | "impact<br>modified,<br>from recyclate | unfilled,<br>impact<br>modified, from<br>recyclate |
| Material Family        |                |                  |             |        | polycarbon-<br>ate/ acryloni-<br>trile butadiene | polycarbon-<br>ate/ acryloni-<br>trile butadiene | polycarbonate<br>polybutylene   | polycarbonate<br>polybutylene                    | polycarbonate<br>polyethylene   | polycarbonate<br>polyethylene | polycarbonate<br>polyethylene          | polycarbonate<br>polyethylene                      |
|                        |                |                  |             |        | Graph 110                                        | Graph 111                                        | Graph 112                       | Graph 113                                        | Graph 114                       | Graph 115                     | Graph 116                              | Graph 117                                          |

| melt volume rate                     |                                                         |                       | ISO 1133,<br>DIN 53735, CAMPUS | ml/10min |      | 20 (240°C,<br>5 kg) |      |     | 14. T. (1) |                |  |
|--------------------------------------|---------------------------------------------------------|-----------------------|--------------------------------|----------|------|---------------------|------|-----|------------|----------------|--|
| melt flow rate                       |                                                         |                       | ASTM D1238                     | g/10min  |      |                     |      |     |            |                |  |
| water absorption<br>at saturation    | test temperature:<br>21-25°C;<br>relative humidity: 50% | 50 x 50 x 1 mm        | ISO 62, CAMPUS                 | %        |      | 0.7                 |      |     | 1.000      |                |  |
| moisture absorption<br>at saturation | test temperature:<br>21-25°C;<br>relative humidity: 50% | 50 x 50 x 1 mm        | ISO 62, CAMPUS                 | 9/6      |      | 0.2                 |      |     |            |                |  |
| density                              | test temperature:<br>21-25°C                            | >=10 x >=10 x<br>4 mm | ISO 1183, CAMPUS               | g/m^3    |      | 1190                | 1.14 |     |            |                |  |
| specific gravity                     |                                                         |                       | ASTM D792                      |          | 1.18 |                     | 1.24 | 1.3 | 1.22       | Contraction of |  |
| flammability UL94 at<br>1.6 mm       |                                                         | 125 x 13 mm           | UL 94, CAMPUS                  |          | V-0  | V-0                 | НВ   |     | НВ         |                |  |

## MECHANICAL PROPERTIES (AT 23°C /50% R.H.)

| tensile modulus<br>(secant, 1 mm/min)     | test temperature: 21-25°C<br>relative humidity: 50%;<br>strain rate: 1 mm/min;<br>elongation: 0.05-0.25%;<br>atmosphere according to<br>ISO 291 | ISO 3167<br>multipurpose<br>test specimen     | ISO 527-1,<br>ISO 527-2,<br>CAMPUS,<br>DIN 53457 | МРа   | 2700 (ASTM<br>D638) | 2600               |                    |                    |                    | 1                 |  |
|-------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------|--------------------------------------------------|-------|---------------------|--------------------|--------------------|--------------------|--------------------|-------------------|--|
| stress at yield (50 mm/min                | test temperature: 21-25°C<br>relative humidity: 50%;<br>strain rate: 50 mm/min;<br>atmosphere according to<br>ISO 291                           | ×                                             | ISO 527-1,<br>ISO 527-2,<br>CAMPUS,<br>DIN 53455 | ×     |                     | 60                 |                    |                    |                    |                   |  |
| strain at yield (50 mm/min)               |                                                                                                                                                 | μ.                                            | 5.m.)                                            | %     |                     | 4                  | 1.3                |                    |                    |                   |  |
| tensile strength at break<br>(5 mm/min)   | test temperature: 21-25°C<br>relative humidity: 50%;<br>strain rate: 5 mm/min;<br>atmosphere according to<br>(SO 291                            |                                               | ÷.                                               | МРа   | 50 (ASTM<br>D638)   |                    |                    | 62 (ASTM<br>D638)  | 52 (ASTM<br>D638)  | 57 (ASTM<br>D638) |  |
| strain at break (5 mm/min)                |                                                                                                                                                 |                                               |                                                  | %     | 60 (ASTM<br>D638)   | >50 {50<br>mm/min} | 130 (ASTM<br>D638) | 4.0 (ASTM<br>D638) | 165 (ASTM<br>D638) | 80 (ASTM<br>D638) |  |
| Charpy impact strength<br>(23°C)          | test temperature:<br>23°C; relative humidi-<br>ty: 50%; atmosphere<br>according to ISO 291                                                      | 80 x 10 x 4<br>mm                             | ISO 179/1eU,<br>CAMPUS                           | kJ/m2 |                     |                    |                    |                    |                    |                   |  |
| Charpy impact strength<br>(-30°C)         | test temperature:<br>-30°C                                                                                                                      | ÷:                                            | 2#2                                              |       |                     |                    |                    |                    |                    |                   |  |
| Charpy notched impact<br>strength (23°C)  | test temperature:<br>23°C;<br>relative humidity:<br>50%; atmosphere<br>according to ISO 291                                                     | 80 x 10 x 4<br>mm,<br>V notch,<br>r = 0.25 mm | ISO 179/1eA,<br>CAMPUS                           | *     |                     |                    |                    |                    |                    |                   |  |
| Charpy notched impact<br>strength (-30°C) | test temperature:<br>-30°C                                                                                                                      | *                                             | (00)                                             |       |                     |                    |                    |                    |                    |                   |  |
| notched Izod impact<br>strength (23°C)    |                                                                                                                                                 | 3.2 mm thick                                  | ASTM D256                                        | J/m   | 500                 |                    | 801                | 187                | 961                | 801               |  |
| flexural modulus                          |                                                                                                                                                 |                                               | ASTM D790                                        | MPa   | 2600                |                    | 2000               | 2755               | 2070               | 2139              |  |
| flexural strength                         |                                                                                                                                                 |                                               | ASTM D790                                        | MPa   | 96                  |                    | 76                 | 96                 | 75                 | 83                |  |

| melting temperature                                           |                              |                       |                               | °C     |                     |      |                    |                    |                    |                    |  |
|---------------------------------------------------------------|------------------------------|-----------------------|-------------------------------|--------|---------------------|------|--------------------|--------------------|--------------------|--------------------|--|
| heat deflection<br>temperature at 0.45 MPa                    |                              | 80 x 10 x<br>4 mm     | ISO 75-1, ISO 75-2,<br>CAMPUS |        | 110 (ASTM<br>D648)  | 100  | 116 (ASTM<br>D648) | 177 (ASTM<br>D648) | 115 (ASTM<br>D648) | 135 (ASTM<br>D648) |  |
| heat deflection<br>temperature at 1.8 MPa                     |                              | *                     |                               |        | 100 (ASTM<br>D648)  | 90   | 87 (ASTM<br>D648)  | 121 (ASTM<br>D648) | 88 (ASTM<br>D648)  | 115 (ASTM<br>D648) |  |
| Vicat B softening<br>temperature                              | load: 50N; note:<br>50°C/h   | >=10 x >=10 x<br>4 mm | ISO/DIN 306,<br>CAMPUS        |        | 110 (ASTM<br>D1525) | 108  |                    |                    |                    |                    |  |
| coefficient of linear thermal<br>expansion (flow direction)   | test temperature:<br>23-55°C | >=10 x >=10 x<br>4 mm | ASTM E831,<br>CAMPUS          | E-4/ºC |                     | 0.76 | 0.5                | 0.52               |                    |                    |  |
| coefficient of linear thermal<br>expansion (normal direction) | test temperature:<br>23-55°C | >=10 x >=10 x<br>4 mm | ASTM E831,<br>CAMPUS          | E-4/°C |                     | 0.8  | 0.5                | 0.52               |                    |                    |  |
|                                                               |                              |                       |                               |        |                     |      |                    |                    |                    |                    |  |

| Graph 118                                                       | Graph 119                                                       | Graph 120                                               | Graph 121                                                |  | the second second |             |  |                        |
|-----------------------------------------------------------------|-----------------------------------------------------------------|---------------------------------------------------------|----------------------------------------------------------|--|-------------------|-------------|--|------------------------|
| polycarbonate<br>polyethylene                                   | polycarbonate<br>polyethylene                                   | polypropylene<br>polystyrene<br>alloy (PP/ PS<br>alloy) | polypropylene/<br>polystyrene<br>alloy (PP/ PS<br>alloy) |  |                   |             |  | Material Family        |
| unfilled, impac<br>modified, UV<br>stabilized, low<br>viscosity | G0% glass fibe<br>filled, impact<br>modified, from<br>recyclate | 35% glass<br>fiber filled,<br>impact<br>modified        | 35% glass<br>fiber filled,<br>impact<br>modified         |  |                   |             |  | Description            |
| Bayer                                                           | MRC Polymers                                                    | Montell                                                 | Montell                                                  |  |                   | 1. 1. 1. 1. |  | Supplier               |
| Makroblend<br>UT403                                             | Stanuloy<br>ST170-30G                                           | Hivalloy<br>GXPA064                                     | Hivalloy<br>GXPA065                                      |  |                   |             |  | Material<br>Trade Name |
| 1.1.1                                                           |                                                                 |                                                         |                                                          |  |                   |             |  | Test Notes             |

|      |  |  |   | 15.00 |  | melt volume ra                   | ate      |
|------|--|--|---|-------|--|----------------------------------|----------|
| 1    |  |  |   |       |  | melt flow rate                   | 0        |
| S.P  |  |  |   |       |  | water absorption                 | ion<br>n |
|      |  |  |   |       |  | moisture absorp<br>at saturation | n        |
|      |  |  |   |       |  | density                          |          |
| 1.22 |  |  | 1 |       |  | specific gravit                  | ity      |
| НВ   |  |  |   |       |  | flammability UL9<br>1.6 mm       | 94 at    |

## MECHANICAL PROPERTIES (AT 23°C /50% R.H.)

|                    |        |            |      | tensile modulus<br>(secant, 1 mm/min)     |
|--------------------|--------|------------|------|-------------------------------------------|
|                    |        |            |      | stress at yield (50 mm/min)               |
|                    |        |            |      | strain at yield (50 mm/min)               |
| 55 (ASTM<br>D638)  |        |            |      | tensile strength at break<br>(5 mm/min)   |
| 151 (ASTM<br>D638) | 198.14 |            |      | strain at break (5 mm/min)                |
|                    |        |            |      | Charpy impact strength (23°C)             |
| Berk               |        |            |      | Charpy impact strength<br>(-30°C)         |
|                    |        |            |      | Charpy notched impact<br>strength (23°C)  |
|                    |        |            | 12   | Charpy notched impact<br>strength (-30°C) |
| 800                |        |            |      | notched izod impact<br>strength (23°C)    |
| 2330               |        | V_ 3.5     | 1.44 | flexural modulus                          |
| 88                 |        | 12 10 12 1 |      | flexural strength                         |

| 1.5                | 122500 |  | melting temperature                                        |
|--------------------|--------|--|------------------------------------------------------------|
| 134 (ASTM<br>D648) |        |  | heat deflection<br>temperature at 0.45 MPa                 |
| 120 (ASTM<br>D648) |        |  | heat deflection<br>temperature at 1.8 MPa                  |
|                    |        |  | Vicat B softening<br>temperature                           |
|                    |        |  | coefficient of linear thermal expansion (flow direction)   |
|                    |        |  | coefficient of linear thermal expansion (normal direction) |

171

- ABS See acrylonitrile butadiene styrene polymer.
- **ABS nylon alloy** See acrylonitrile butadiene styrene polymer nylon alloy.
- ABS PC alloy See acrylonitrile butadiene styrene polymer polycarbonate alloy.
- ABS resin See acrylonitrile butadiene styrene polymer.
- **absorption** Taking up of matter in bulk by other matter, as in desolving a gas by a liquid.
- **acetal resins** Thermoplastics prepared by polymerization of formaldehyde or its trioxane trimer. Acetals have high impact strength and stiffness, low friction coefficient and permeability, good dimensional stability and dielectric properties, and high fatigue strength and thermal stability. Acetals have poor acid and UV resistance and are flammable. Processed by injection and blow molding and extrusion. Used in mechanical parts such as gears and bearings, automotive components, appliances, and plumbing and electronic applications. Also called acetals.
- acetals See acetal resins.
- acrylate styrene acrylonitrile polymer Acrylic rubber-modified thermoplastic with high weatherability. ASA has good heat and chemical resistance, toughness, rigidity, and antistatic properties. Processed by extrusion, thermoforming, and molding. Used in construction, leisure, and automotive applications such as siding, exterior auto trim, and outdoor furniture. Also called ASA.
- acrylic resins Thermoplastic polymers of alkyl acrylates such as methyl methacrylates. Acrylic resins have good optical clarity, weatherability, surface hardness, chemical resistance, rigidity, impact strength, and dimensional stability. They have poor solvent resistance, resistance to stress cracking, flexibility, and thermal stability. Processed by casting, extrusion, injection molding, and thermoforming. Used in transparent parts, auto trim, household items, light fixtures, and medical devices. Also called polyacrylates.
- acrylonitrile butadiene styrene polymer ABS resins are thermoplastics comprised of a mixture of styrene-acrylonitrile copolymer (SAN) and SAN-grafted butadiene rubber. They have high impact resistance, toughness, rigidity and processability, but low dielectric strength, continuous service temperature, and elongation. Outdoor use requires protective coatings in some cases. Plating grades provide excellent adhesion to metals. Processed by extrusion, blow molding, thermoforming, calendaring and injection molding. Used in household appliances, tools, nonfood packaging, business machinery, interior automotive parts, extruded sheet, pipe and pipe fittings. Also called ABS, ABS resin, acrylonitrile-butadiene-styrene polymer.
- acrylonitrile butadiene styrene polymer nylon alloy A thermoplastic processed by injection molding, with properties similar to ABS but higher elongation at yield. Also called ABS nylon alloy.
- acrylonitrile butadiene styrene polymer polycarbonate alloy A thermoplastic processed by injection molding and extrusion, with properties similar to ABS. Used in automotive applications. Also called ABS PC alloy.

- acrylonitrile copolymer A thermoplastic prepared by copolymerization of acrylonitrile with small amounts of other unsaturated monomers. Has good gas barrier properties and chemical resistance. Processed by extrusion, injection molding, and thermoforming. Used in food packaging.
- acrylonitrile-butadiene-styrene polymer See acrylonitrile butadiene styrene polymer.
- adsorption Retention of a substance molecule on the surface of a solid or liquid.
- amorphous nylon Transparent aromatic polyamide thermoplastics. Produced by condensation of hexamethylene diamine, isophthalic and terephthalic acid.
- amorphous polymer Amorphous polymers are polymers having noncrystalline or amorphous supramolecular structure or morphology. Amorphous polymers may have some molecular order but usually are substantially less ordered than crystalline polymers and subsequently have inferior mechanical properties. Materials in this class do not have a detectable melting point. Examples are PVC, acrylic, and polycarbonate.
- **aromatic polyester estercarbonate** A thermoplastic block copolymer of an aromatic polyester with polycarbonate. Has higher heat distortion temperature than regular polycarbonate.
- aromatic polyesters Engineering thermoplastics prepared by polymerization of aromatic polyol with aromatic dicarboxylic anhydride. They are tough with somewhat low chemical resistance. Processed by injection and blow molding, extrusion, and thermoforming. Drying is required. Used in automotive housings and trim, electrical wire jacketing, printed circuit boards, and appliance enclosures.
- **aromatic polymer** Aromatic polymers are polymers, the backbone of which consist of repeating aromatic ring units. Aromatic rings in a unit may be single, fused, or joined by a chemical bond, bridging atom, or a group of atoms. Aromatic rings are 6 carbon rings containing three double bonds and are typified by benzene. Some hydrogen atoms in these rings may be substituted by other atoms or atom groups.
- ASA See acrylate styrene acrylonitrile polymer.
- ASTM D256 An American Society for Testing of Materials (ASTM) standard method for determination of the resistance to breakage by flexural shock of plastics and electrical insulating materials, as indicated by the energy extracted from standard pendulumtype hammers in breaking standard specimens with one pendulum swing. The hammers are mounted on standard machines of either Izod or Charpy type. Note: Impact properties determined include Izod or Charpy impact energy normalized per width of the specimen. Also called ASTM method D256-84. See also impact energy.

#### ASTM method D256-84 See ASTM D256.

ASTM D412 An American Society for Testing of Materials (ASTM) standard methods for determining tensile strength, tensile stress, ultimate elongation, tensile set and set after break of rubber at low, ambient and elevated temperatures using straight, dumbbell and cut-ring specimens. ASTM D638 An American Society for Testing of Materials (ASTM) standard method for determining tensile strength, elongation and modulus of elasticity of reinforced or unreinforced plastics in the form of sheet, plate, moldings, rigid tubes and rods. Five (I-V) types, depending on dimensions, of dumbbell-shaped specimens with thickness not exceeding 14 mm are specified. Specified speed of testing varies depending on the specimen type and plastic rigidity. Note: Tensile properties determined include tensile stress (strength) at yield and at break, percentage elongation at yield or at break and modulus of elasticity. Also called ASTM method D638-84. See also *tensile strength*.

#### ASTM D638, type IV See ASTM D638.

#### ASTM method D638-84 See ASTM D638.

#### ASTM method D648 See ISO 75.

ASTM D671 An American Society for Testing of Materials (ASTM) standard test method for determination of the flexural fatigue strength of rigid plastics subjected to repeated flexural stress of the same magnitude in a fixed-cantilever type testing machine, designed to produce a constant-amplitude-of-force on the test specimen each cycle. The test results are presented as a plot (S-N curve) of applied stress vs. number of stress cycles required to produce specimen failure by fracture, softening, or reduction in stiffness by heating caused by internal friction (damping). The stress corresponding to the point when the plot becomes clearly asymptotic to a horizontal (constant-stress) line is reported as fatigue strength in pascals, along with corresponding number of cycles. Also called ASTM D671-71B.

### ASTM D671-71B See ASTM D671.

- **ASTM D696** An American Society for Testing of Materials (ASTM) standard test method for the measurement of the coefficient of linear thermal expansion of plastics by using a vitreous silica dilatometer. The test is carried out under conditions excluding any significant creep or elastic strain rate and effects of moisture, curing, loss of plasticizer, etc. The specimen is placed at the bottom of the outer dilatometer tube and the tube is immersed in a liquid bath at a desired temperature.
- **ASTM D746** An American Society for Testing of Materials (ASTM) standard method for determining brittleness temperature of plastics and elastomers by impact. The brittleness temperature is the temperature at which 50% of cantilever beam specimens fail on impact of a striking edge moving at a linear speed of 1.8-2.1 m/s and striking the specimen at a specified distance from the clamp. The temperature of the specimen is controlled by placing it in a heat-transfer medium, the temperature of which (usually sub-freezing) is controlled by a thermocouple.
- **ASTM D785** An American Society for Testing of Materials (ASTM) standard test method for determination of indentation hardness of plastics by a Rockwell tester. The hardness number is derived from the net increase in the depth of impression as the load on a ball indenter is increased from a fixed minor load (10 kgf) to a major load and then returned to the minor load. This number consists of the number of scale divisions (each corresponding to 0.002 mm vertical movement of the indentor) and scale symbol. Rockwell scales, designated by a single capital letter of English alphabet, vary depending on the diameter of the indentor and the major load.

- ASTM D1708 An American Society for Testing of Materials (ASTM) standard method for determining tensile properties of plastics using microtensile specimens with maximum thickness 3.2 mm and minimum length 38.1 mm, including thin films. Tensile properties include yield strength, tensile strength, tensile strength at break, elongation at break, etc. determined per ASTM D638.
- **ASTM D2240** An American Society for Testing of Materials (ASTM) standard method for determining the hardness of materials ranging from soft rubbers to some rigid plastics by measuring the penetration of a blunt (type A) or sharp (type D) indenter of a durometer at a specified force. The blunt indenter is used for softer materials and the sharp indenter for more rigid materials.
- ASTM D3763 An American Society for Testing of Materials (ASTM) standard method for determination of the resistance of plastics, including films, to high-speed puncture over a broad range of test velocities using load and displacement sensors.
  Note: Puncture properties determined include maximum load, deflection to maximum load point, energy to maximum load point and total energy. Also called ASTM method D3763-86. See also *impact energy*.

ASTM method D3763-86 See ASTM D3763.

### B

bending properties See flexural properties.

bending strength See flexural strength.

bending stress See flexural stress.

**bisphenol A polyester** A thermoset unsaturated polyester based on bisphenol A and fumaric acid.

breaking elongation See elongation.

- **brittle temperature** Temperature at which a material transforms from being ductile to being brittle, i.e., the critical normal stress for fracture is reached before the critical shear stress for plastic deformation.
- **bursting strength** Bursting strength of a material, such as plastic film, is the minimum force per unit area or pressure required to produce rupture. The pressure is applied with a ram or a diaphragm at a controlled rate to a specified area of the material held rigidly and initially flat but free to bulge under the increasing pressure.

## С

CA See cellulose acetate.

CAB See cellulose acetate butyrate.

carbon black A black colloidal carbon filler made by the partial combustion or thermal cracking of natural gas, oil, or another hydrocarbon. There are several types of carbon black depending on

- **cellulose acetate** Thermoplastic esters of cellulose with acetic acid. Have good toughness, gloss, clarity, processability, stiffness, hardness, and dielectric properties, but poor chemical, fire and water resistance and compressive strength. Processed by injection and blow molding and extrusion. Used for appliance cases, steering wheels, pens, handles, containers, eyeglass frames, brushes, and sheeting. Also called CA.
- cellulose acetate butyrate Thermoplastic mixed esters of cellulose with acetic and butyric acids. Have good toughness, gloss, clarity, processability, dimensional stability, weatherability, and dielectric properties, but poor chemical, fire and water resistance and compressive strength. Processed by injection and blow molding and extrusion. Used for appliance cases, steering wheels, pens, handles, containers, eyeglass frames, brushes, and sheeting. Also called CAB.
- cellulose propionate Thermoplastic esters of cellulose with propionic acid. Have good toughness, gloss, clarity, processability, dimensional stability, weatherability, and dielectric properties, but poor chemical, fire and water resistance and compressive strength. Processed by injection and blow molding and extrusion. Used for appliance cases, steering wheels, pens, handles, containers, eyeglass frames, brushes, and sheeting. Also called CP.
- cellulosic plastics Thermoplastic cellulose esters and ethers. Have good toughness, gloss, clarity, processability, and dielectric properties, but poor chemical, fire and water resistance and compressive strength. Processed by injection and blow molding and extrusion. Used for appliance cases, steering wheels, pens, handles, containers, eyeglass frames, brushes, and sheeting.
- chain scission Breaking of the chainlike molecule of a polymer as a result of chemical, photochemical, etc. reaction such as thermal degradation or photolysis.
- **Charpy impact energy** The energy required to break a notched specimen, for metals in accordance with ASTM E23, equal to the difference between the energy in the striking member of the impact apparatus at the instant of impact with the specimen and the energy remaining after complete fracture of the specimen.
- **chemical saturation** Absence of double or triple bonds in a chain organic molecule such as that of most polymers, usually between carbon atoms. Saturation makes the molecule less reactive and polymers less susceptible to degradation and crosslinking. Also called chemically saturated structure.
- chemical unsaturation Presence of double or triple bonds in a chain organic molecule such as that of some polymers, usually between carbon atoms. Unsaturation makes the molecule more reactive, especially in free-radical addition reactions such as addition polymerization, and polymers more susceptible to degradation, crosslinking and chemical modification. Also called polymer chain unsaturation.
- chemically saturated structure See chemical saturation.
- chlorendic polyester A chlorendic anhydride-based unsaturated polyester.

- chlorinated polyvinyl chloride Thermoplastic produced by chlorination of polyvinyl chloride. Has increased glass transition temperature, chemical and fire resistance, rigidity, tensile strength, and weatherability as compared to PVC. Processed by extrusion, injection molding, casting, and calendering. Used for pipes, auto parts, waste disposal devices, and outdoor applications. Also called CPVC.
- chlorosulfonated polyethylene rubber Thermosetting elastomers containing 20- 40% chlorine. Have good weatherability and heat and chemical resistance. Used for hoses, tubes, sheets, footwear soles, and inflatable boats.

coefficient of friction See kinetic coefficient of friction.

coefficient of friction, kinetic See kinetic coefficient of friction.

coefficient of friction, static See static coefficient of friction.

- compatibilizer A chemical compound used to increase the compatibility or miscibility and to prevent the separation of the components in a plastic composition, such as the compatibility of a resin and a plasticizer or of two polymers in a blend. Block copolymers bearing blocks similar to the polymers in the blend are often used as compatibilizers in the latter case.
- **concentration units** The units for measuring the content of a distinct material or substance in a medium other than this material or substance, such as solvent. **Note:** The concentration units are usually expressed in the units of mass or volume of substance per one unit of mass or volume of medium. When the units of substance and medium are the same, the percentage is often used.
- **conditioning** Process of bringing the material or apparatus to a certain condition, e.g., moisture content or temperature, prior to further processing, treatment, etc. Also called conditioning cycle.

conditioning cycle See conditioning.

- continuous maximum service temperature Maximum temperature at which a material can perform reliably in a long-term application.
- **copolymer** Copolymers are polymers prepared by polymerization of two or sometimes more monomers. Copolymers are called random when different repeating units are in random order, block when they are arranged in blocks consisting of different repeating units, alternating when they alternate, and graft when some monomers are polymerized and grafted to the existing polymer.
- **covulcanization** Simultaneous vulcanization of a blend of two or more different rubbers to enhance their individual properties such as ozone resistance. Rubbers are often modified to improve covulcanization.
- CP See cellulose propionate.
- CPVC See chlorinated polyvinyl chloride.
- **cracking** Appearance of external and/or internal cracks in the material as a result of stress that exceeds the strength of the material. The stress can be external and/or internal and can be caused by a variety of adverse conditions: structural defects, impact, aging, corrosion, etc. or a combination of thereof. Also called cracks. See also *processing defects*.

#### cracks See cracking.

- crazes See crazing.
- **crazing** Appearance of thin cracks on the surface of the material or, sometimes, minute frost-like internal cracks, as a result of stress that exceeds the strength of the material, impact, terperature changes, degredation, ect. Also called crazes.
- creep Time-dependent increase in strain in material, occuring under stress.
- crosslinked polyethylene Polyethylene thermoplastics partially photochemically or chemically crosslinked. Have improved tensile strength, dielectric properties, and impact strength at low and elevated temperatures.
- **crosslinking** Reaction of formation of covalent bonds between chainlike polymer molecules or between polymer molecules and lowmolecular compounds such as carbon black fillers. As a result of crosslinking polymers, such as thermosetting resins, may become hard and infusible. Crosslinking is induced by heat, UV or electron-beam radiation, oxidation, etc. Crosslinking can be achieved ether between polymer molecules alone as in unsaturated polyesters or with the help of multifunctional crosslinking agents such as diamines that react with functional side groups of the polymers. Crosslinking can be catalysed by the presence of transition metal complexes, thiols and other compounds.

crystal polystyrene See general purpose polystyrene.

- **crystalline melting point** The temperature of melting of the crystallite phase of a crystalline polymer. It is higher than the temperature of melting of the surrounding amorphous phase.
- crystallinity Content of crystalline phase, usually as percentage.

CTFE See polychlorotrifluoroethylene.

cycle time See processing time.

cyclic compounds A broad class of organic compounds consisting of carbon rings that are saturated, partially unsaturated or aromatic, in which some carbon atoms may be replaced by other atoms such as oxygen, sulfur and nitrogen.

## D

- DAP See diallyl phthalate resins.
- **dart impact energy** The mean energy of a free-falling dart that will cause 50% failures after 50 tests to a specimen directly stricken by the dart. The energy is calculated by multiplying dart mass, gravitational acceleration and drop height. Also called falling dart impact energy, dart impact strength, falling dart impact strength.
- dart impact strength See dart impact energy.

deflection temperature under load See heat deflection temperature.

**deformation under load** The dimensional change of a material under load for a specified time following the instantaneous elastic deformation caused by the initial application of the load.

- **degradation** Loss or undesirable change in the properties, such as color, of a material as a result of aging, chemical reaction, wear, exposure, etc. See also *stability*.
- diallyl phthalate resins Thermosets supplied as diallyl phthalate prepolymer or monomer. Have high chemical, heat and water resistance, dimensional stability, and strength. Shrink during peroxide curing. Processed by injection, compression and transfer molding. Used in glass-reinforced tubing, auto parts, and electrical components. Also called DAP.
- diffusion Spontaneous slow mixing of different substances in contact without influence of external forces.
- **DIN 53453** A German Standards Institute (DIN) standard specifying conditions for the flexural impact testing of molded or laminated plastics. The bar specimens are either unnotched or notched on one side, mounted on two-point support and struck in the middle (on the unnotched side for notched specimens) by a hammer of the pendulum impact machine. Impact strength of the specimen is calculated relative to the cross-sectional area of the specimen as the energy required to break the specimen equal to the difference between the energy in the pendulum at the instant of impact and the energy remaining after complete fracture of the specimen. Also called DIN 53453 impact test.

#### DIN 53453 impact test See DIN 53453.

**DIN 53456** A German Standards Institute (Deutsches Institut fuer Normen, DIN) standard test method for determining ball indentation hardness of plastics. The indentor is forced into the specimen under the action of the major load, the position of the indentor having been fixed beforehand as a zero point by the application of a minor load. The hardness is calculated as the ratio of the major load to the area of indentation.

DIN 53461 See ISO 75.

DMA See dynamic mechanical analysis.

drop dart impact See falling weight impact energy.

drop dart impact energy See falling weight impact energy.

drop dart impact strength See falling weight impact energy.

drop weight impact See falling weight impact energy.

drop weight impact energy See falling weight impact energy.

drop weight impact strength See falling weight impact energy.

durometer A hardness See Shore hardness.

DTUL See heat deflection temperature.

- **durometer hardness** Indentation hardness of a material as determined by either the depth of an indentation made with an indentor under specified load or the indentor load required to produced specified indentation depth. The tool used to measure indentation hardness of polymeric materials is called durometer, e.g., Shore-type durometer.
- dynamic mechanical analysis A technique that employs a lowstrain, oscillatory stress in order to quantify the viscoelastic behavior of materials. Commonly referred to as DMA.

## E

#### ECTFE See ethylene chlorotrifluoroethylene copolymer.

- **elasticity** Property whereby a solid material changes its shape and size under action of opposing forces, but recovers its original configuration when the forces are removed.
- elastomer A large class of polymers that can be stretched at room temperature to at least twice their original length and, after having been stretched and the stress removed, return with force to approximately their original length in a short time. This class includes natural and synthetic rubbers, i.e., elastomers that can be vulcanized, and thermoplastic elastomers. They are characterized by a combination of low modulus and good elastic recovery. Polymeric materials of this type are above the glass transition in the temperature range at which they are useful.
- **elongation** The increase in gauge length of a specimen in tension, measured at or after the fracture, depending on the viscoelastic properties of the material. **Note:** Elongation is usually expressed as a percentage of the original gauge length. Also called tensile elongation, elongation at break, ultimate elongation, breaking elongation, elongation at rupture. See also *tensile strain*.
- elongation at break The increase in distance between two gauge marks, resulting from stressing the specimen in tension, at the exact point of break. See also *elongation*.
- elongation at rupture See elongation, elongation at break.
- **elongation at yield** The increase in distance between two gauge marks resulting from stressing the specimen in tension to the yield point. See also *elongation*.
- EMAC See ethylene methyl acrylate copolymer.
- embrittlement A reduction or loss of ductility or toughness in materials such as plastics resulting from chemical or physical damage.
- endurance limit The maximum stress below which a material can endure an infinite number of loading-unloading cycles of specified type without failure or, in practice, a very large number of cycles. Also called fatigue endurance limit.

EPDM See EPDM rubber.

- **EPDM rubber** Sulfur-vulcanizable thermosetting elastomers produced from ethylene, propylene, and a small amount of nonconjugated diene such as hexadiene. Have good weatherability and chemical and heat resistance. Used as impact modifiers and for weather stripping, auto parts, cable insulation, conveyor belts, hoses, and tubing. Also called EPDM.
- **epoxides** Organic compounds containing three-membered cyclic group(s) in which two carbon atoms are linked with an oxygen atom as in an ether. This group is called an epoxy group and is quite reactive, allowing the use of epoxides as intermediates in preparation of certain fluorocarbons and cellulose derivatives and as monomers in preparation of epoxy resins. Also called epoxy compounds.

epoxies See epoxy resins.

epoxy compounds See epoxides.

**epoxy resins** Thermosetting polyethers containing crosslinkable glycidyl groups. Usually prepared by polymerization of bisphenol A and epichlorohydrin or reacting phenolic novolaks with epichlorohydrin. Can be made unsaturated by acrylation. Unmodified varieties are cured at room or elevated temperatures with polyamines or anhydrides. Bisphenol A epoxy resins have excellent adhesion and very low shrinkage during curing. Cured novolak epoxies have good UV stability and dielectric properties. Cured acrylated epoxies have high strength and chemical resistance. Processed by molding, casting, coating, and lamination. Used as protective coatings, adhesives, potting compounds, and binders in laminates and composites. Also called epoxies.

EPR See ethylene propene rubber.

ETFE See ethylene tetrafluoroethylene copolymer.

- ethylene An alkene (unsaturated aliphatic hydrocarbon) with two carbon atoms,  $CH_2=CH_2$ . A colorless, highly flammable gas with sweet odor. Autoignition point 543°C. Derived by thermal cracking of hydrocarbon gases or from synthesis gas. Used as monomer in polymer synthesis, refrigerant, and anesthetic. Also called ethene.
- ethylene acrylic rubber Copolymers of ethylene and acrylic esters. Have good toughness, low temperature properties, and resistance to heat, oil, and water. Used in auto and heavy equipment parts.

ethylene copolymers See ethylene polymers.

- ethylene methyl acrylate copolymer Thermoplastic copolymers of ethylene with <40% methyl acrylate. Have good dielectric properties, toughness, thermal stability, stress crack resistance, and compatibility with other polyolefins. Transparency decreases with increasing content of acrylate. Processed by blown film extrusion and blow and injection molding. Used in heat-sealable films, disposable gloves, and packaging. Some grades are FDA-approved for food packaging. Also called EMAC.
- ethylene polymers Ethylene polymers include ethylene homopolymers and copolymers with other unsaturated monomers, most importantly olefins such as propylene and polar substances such as vinyl acetate. The properties and uses of ethylene polymers depend on the molecular structure and weight. Also called ethylene copolymers.
- ethylene propene rubber Stereospecific copolymers of ethylene with propylene. Used as impact modifiers for plastics. Also called EPR.
- ethylene tetrafluoroethylene copolymer Thermoplastic alternating copolymer of ethylene and tetrafluoroethylene. Has good impact strength, abrasion and chemical resistance, weatherability, and dielectric properties. Processed by molding, extrusion, and powder coating. Used in tubing, cables, pump parts, and tower packing in a wide temperature range. Also called ETFE.
- ethylene vinyl alcohol copolymer Thermoplastics prepared by hydrolysis of ethylene-vinyl acetate polymers. Have good barrier properties, mechanical strength, gloss, elasticity, weatherability, clarity, and abrasion resistance. Barrier properties and processibility improve with increasing content of ethylene due to lower absorption of moisture. Ethylene content of high barrier grades range from 32 to 44 mole %. Processed by extrusion, coating, blow and blow film molding, and thermoforming. Used as packaging films and container liners. Also called EVOH.

ethylene-acrylic acid copolymer A flexible thermoplastic with water and chemical resistance and barrier properties similar to those of low-density polyethylene and enhanced adhesion, optics, toughness, and hot tack properties, compared to the latter. Contains 3-20% acrylic acid, with density and adhesion to polar substrates increasing with increasing acrylic acid content. FDA-approved for direct contact with food. Processed by extrusion, blow and film methods and extrusion molding, and extrusion coating. Used in rubberlike small parts like pipe caps, hoses, gaskets, gloves, hospital sheeting, diaper liners, and packaging film.

EVOH See ethylene vinyl alcohol copolymer.

**extenders** Relatively inexpensive resin, plasticizer or filler such as carbonate used to reduce cost and/or to improve processing of plastics, rubbers or nonmetallic coatings.

## F

falling dart impact See falling weight impact energy.

falling dart impact energy See dart impact energy.

falling dart impact strength See falling weight impact energy.

falling weight impact See falling weight impact energy.

falling weight impact energy The mean energy of a free-falling dart or weight (tup) that will cause 50% failures after 50 tests to a directly or indirectly stricken specimen. The energy is calculated by multiplying dart mass, gravitational acceleration and drop height. Also called falling weight impact strength, falling weight impact, falling dart impact energy, falling dart impact strength, falling dart impact, drop dart impact energy, drop dart impact strength.

falling weight impact strength See falling weight impact energy.

fatigue endurance limit See endurance limit.

fatigue life Number of loading-unloading cycles of a specified type that material specimen can endure before failing in a fatigue test. Also called cycles to failure.

FEP See fluorinated ethylene propylene copolymer.

filler A relatively inert substance added to plastics to reduce their cost and/or improve physical properties such as impact strength. In contrast to reinforcement, filler particles are usually nonfibrous, small, and do not improve the tensile strength. The fillers are added to the plastics at fairly high percentages (>5 vol.%). The most important fillers are mineral and glass fillers. Based on their use, the fillers are also classified as extenders and reinforcing fillers.

fireproofing agent See flame retardant.

**flame retardant** A substance that reduce the flammability of materials such as plastics or textiles in which it is incorporated. There are inorganic flame retardants such as antimony trioxide  $(Sb_2O_3)$  and organic flame retardants such as brominated polyols. The mechanisms of flame retardants vary depending on the nature of material and flame retardant. For example, some flame retardants yield a substantial volume of coke on burning, which prevents

oxygen from reaching inside the material and blocks further combustion. Also called fireproofing agent, flame retardant chemical additives, ignition resistant chemical additives.

flame retardant chemical additives See flame retardant.

**flammability UL rating** A vertically oriented sample with a thickness of 0.125 inches is exposed to a Bunsen burner flame for 10 s. If burning ceases within 30 s, a second 10 s application of flame is required. Cotton is placed under the sample to catch flame drippings. If the average burning time is lower than 5 s and drips do not ignite the cotton, the material is self- extinguishing, rating V-0. If the time is lower than 25 s and drips do not ignite the cotton is self- extinguishing, rating V-1; and if the cotton is ignited, the material is self-extinguishing, rating V-2. If the sample burns slower than 1.5 in/min than the rating is HB.

flaw See processing defects.

- **flexural fatigue** Progressive localized permanent structural change occurring in a material subjected to cyclic flexural stress that may culminate in cracks or complete fracture after a sufficient number of cycles.
- **flexural modulus of elasticity** The ratio, within the elastic limit, of the applied stress on a test specimen in flexure to the corresponding strain in the outermost fibers of the specimen.
- **flexural properties** Properties describing the reaction of physical systems to flexural stress and strain. Also called bending properties.
- flexural strength The maximum stress in the extreme fiber of a specimen loaded to failure in bending. Note: Flexural strength is calculated as a function of load, support span and specimen geometry. Also called modulus of rupture in bending, modulus of rupture, bending strength.
- **flexural stress** The maximum stress in the extreme fiber of a specimen in bending. **Note:** Flexural stress is calculated as a function of load at a given strain or at failure, support span and specimen geometry. Also called bending stress.
- flexural yield strength The maximum stress in the bended specimen at the yield point, i.e., when the deflection increases without an increase in the load. For metals, it is measured according to ASTM E290 and related standards. Note: Flexural yield strength is calculated if the specimen does not break.
- **flexure** Condition of a specimen under bending loading in which the points originally lying on any straight line are displaced to form a plane curve.
- **fluorinated ethylene propylene copolymer** Thermoplastic copolymer of tetrafluoroethylene and hexafluoropropylene. Has decreased tensile strength and wear and creep resistance, but good weatherability, dielectric properties, fire and chemical resistance, and friction. Decomposes above 204°C (400°F), releasing toxic products. Processed by molding, extrusion, and powder coating. Used in chemical apparatus liners, pipes, containers, bearings, films, coatings, and cables. Also called FEP.

fluoro rubber See fluoroelastomers.

fluoroelastomers Fluorine-containing synthetic rubber with good chemical and heat resistance. Used in underhood applications

such as fuel lines, oil and coolant seals, and fuel pumps, and as a flow additive for polyolefins. Also called fluoro rubber.

fluoroplastics See fluoropolymers.

- **fluoropolymers** Polymers prepared from unsaturated fluorine-containing hydrocarbons. Have good chemical resistance, weatherability, thermal stability, antiadhesive properties and low friction and flammability, but low creep resistance and strength and poor processibility. The properties vary with the fluorine content. Processed by extrusion and molding. Used as liners in chemical apparatus, in bearings, films, coatings, and containers. Also called fluoroplastics.
- fluorosilicones Polymers with chains of alternating silicon and oxygen atoms and trifluoropropyl pendant groups. Most are rubbers.
- FMQ See methylfluorosilicones.
- **fracture mechanics** A method of fracture analysis that can determine the stress required to induce fracture instability in a structure containing a crack of known size and shape. Also called linear elastic fracture mechanics.
- **furnace black** The most common type of carbon black made by burning vaporized heavy oil fractions in a furnace with 50% of the air required for complete combustion. It comes in high abrasion, fast extrusion, high modulus, general purpose, semireinforcing, conducting, high elongation, reinforcing and fastextruding grades among others. Furnace black is widely used as a filler and pigment in rubbers and plastics. It reinforces, increases the resistance to UV light and reduces static charging.

## G

gas black See channel black.

- general purpose polystyrene General purpose polystyrene is an amorphous thermoplastic prepared by homopolymerization of styrene. It has good tensile and flexural strengths, high light transmission and adequate resistance to water, detergents and inorganic chemicals. It is attached by hydrocarbons and has a relatively low impact resistance. Processed by injection molding and foam extrusion. Used to manufacture containers, health care items such as pipettes, kitchen and bathroom housewares, stereo and camera parts and foam sheets for food packaging. Also called crystal polystyrene.
- **glass bead** Glass beads range in size from 5 to 5000 um, but normally are about 30 um in diameter. They improve the flexural modulus, abrasion resistance, compressive strength, mold flow, and corrosion resistance of plastics; reduce mold shrinkage and cycle time. The beads are made from various kinds of glass including A type and borosilicate and can be surface modified with silane coupling agents to improve adhesion to the polymer matrix. Used in housewares, machine parts, bearings, molds, and auto parts.
- **glass filler** Glass fillers are a widely used family of fillers in the form of beads, hollow spheres, flakes, or milled particles. They increase dimensional stability, chemical resistance, moisture resistance, and thermal stability of plastics.

glass transition temperature  $(T_g)$  The temperature at which an amorphous polymer (or the amorphous regions in a partially crystalline polymer) changes from a hard and relatively brittle condition to a viscous or rubbery condition. In this temperature region, many physical properties, such as hardness, britleness, thermal expansion, and specific heat, undergo significant, rapid changes. **Note:** In dynamic mechanical analysis (DMA), the peak of the loss modulus is conventionally identified as the glass transition temperature, even though the DMA plot clearly shows that the transition is a process that spans a temperature range.

## H

hard clays Sedimentary rocks composed mainly of fine clay mineral material without natural plasticity, or any compacted or indurated clay.

HDPE See high density polyethylene.

HDT See heat deflection temperature.

heat deflection point See heat deflection temperature.

**heat deflection temperature** The temperature at which a material specimen (standard bar) is deflected by a certain degree under specified load. At this temperature, a material achieves a specific modulus which is defined by the applied stress and the sample geometry. Also called heat distortion temperature, heat distortion point, heat deflection point, deflection temperature under load, DTUL, tensile heat distortion temperature, HDT. See also *ISO 75*.

heat distortion point See heat deflection temperature.

heat distortion temperature See heat deflection temperature.

high density polyethylene A linear polyethylene with density 0.94-0.97 g/cm<sup>3</sup>. Has good toughness at low temperatures, chemical resistance, and dielectric properties and high softening temperature, but poor weatherability. Processed by extrusion, blow and injection molding, and powder coating. Used in houseware, containers, food packaging, liners, cable insulation, pipes, bottles, and toys. Also called HDPE.

high impact polystyrene See impact polystyrene.

high molecular weight low density polyethylene Thermoplastic with improved abrasion and stress crack resistance and impact strength, but poor processibility and reduced tensile strength. Also called HMWLDPE.

HIPS See impact polystyrene.

HMWLDPE See high molecular weight low density polyethylene.

## I

ignition resistant chemical additives See flame retardant.

impact energy The energy required to break a specimen, equal to the difference between the energy in the striking member of the impact apparatus at the instant of impact and the energy remaining after complete fracture of the specimen. Also called impact strength. See also ASTM D256, ASTM D3763.

- **impact polystyrene** Impact polystyrene is a thermoplastic produced by polymerizing styrene dissolved in butadiene rubber. Impact polystyrene has good dimensional stability, high rigidity and good low temperature impact strength, but poor barrier properties, grease resistance and heat resistance. Processed by extrusion, injection molding, thermoforming and structural foam molding. Used in food packaging, kitchen housewares, toys, small appliances, personal care items and audio products. Also called IPS, high impact polystyrene, HIPS, impact PS.
- **impact property tests** Names and designations of the methods for impact testing of materials. Also called impact tests. See also impact toughness.
- impact PS See impact polystyrene.
- impact strength See impact energy.

impact tests See impact property tests.

- **impact toughness** Property of a material indicating its ability to absorb energy of a high-speed impact by plastic deformation rather than crack or fracture. See also *impact property tests*.
- intermittent maximum service temperature Maximum temperature at which a material can perform reliably in a short-term application.
- **ionomers** Thermoplastics containing a relatively small amount of pendant ionized acid groups. Have good flexibility and impact strength in a wide temperature range, puncture and chemical resistance, adhesion, and dielectric properties, but poor weatherability, fire resistance, and thermal stability. Processed by injection, blow and rotational molding, blown film extrusion, and extrusion coating. Used in food packaging, auto bumpers, sporting goods, and foam sheets.
- IPS See impact polystyrene.
- ISO 2039-2 An International Organization for Standardization (ISO) standard test method for determination of indentation hardness of plastics by Rockwell tester using Rockwell M, L, and R hardness scales. The hardness number is derived from the net increase in the depth of impression as the load on a ball indenter is increased from a fixed minor load (98.07 N) to a major load and then returned to the minor load. This number consists of the number of scale divisions (each corresponding to 0.002 mm vertical movement of the indentor) and scale symbol. Rockwell scale vary depending on the diameter of the indentor and the major load. For example, scale R corresponds to the ball diameter 12.7 mm and major load 588.4 N. Also called *ISO 2039-B*.
- ISO 2039-B See ISO 2039-2.
- ISO 75 An International Organization for Standardization (ISO) standard test method for determination of heat deflection temperature (HDT) and deflection temperature under load (DTUL). HDT is a relative measure of a material's ability to perform for a short time at elevated temperatures while supporting a load. The test measures the effect of temperature on stiffness: a standard test specimen is given a defined surface stress and the temperature is raised at a uniform rate. Alternate test methods for HDT and DTUL are DIN 53461 and ASTM D648.

In both ISO and ASTM standards, a loaded test bar is placed in a silicone oil filled heating bath. The surface stress on the specimen is either: low - for ASTM and ISO both 0.45 MPa; high for ASTM 1.82 MPa and for ISO 1.80 MPa. The force is allowed to act for 5 minutes; this waiting period may be omitted when testing materials that show no appreciable creep during the initial 5 minutes. After 5 minutes the original bath temperature of 23°C is raised at a uniform rate of 2°C/minute.

The deflection of the test bar is continuously observed: the temperature at which the deflection reaches 0.32 mm (ISO) or 0.25 mm (ASTM), is reproted as 'deflection temperature under load' or 'heat deflection temperature. Although not mentioned in either test standard, it has become common practice to use the acronym DTUL for ASTM values and HDT for ISO values. Depending upon the applied surface stress, the letters A or B are added to HDT: HDT/A for a load of 1.80 MPa; HDT/B for a load of 0.45 MPa.

isophthalate polyester An unsaturated polyester based on isophthalic acid.

Izod See Izod impact energy.

Izod impact See Izod impact energy.

**Izod impact energy** The energy required to break a specimen equal to the difference between the energy in the striking member of the Izod-type impact apparatus at the instant of impact and the energy remaining after complete fracture of the specimen. Also called Izod impact, Izod impact strength, Izod.

Izod impact strength See Izod impact energy.

# J

J See joule.

**joule** A unit of energy in SI system that is equal to the work done when the point of application of a force of one newton (N) is displaced through distance of one meter (m) in the direction of the force. The dimension of joule is N m. Also called J.

## K

kinetic coefficient of friction The ratio of tangential force, which is required to sustain motion without acceleration of one surface with respect to another, to the normal force, which presses the two surfaces together. Also called coefficient of friction, coefficient of friction, kinetic.

## L

LCP See liquid crystal polymers.

LDPE See low density polyethylene.

linear expansion coefficient The change in specimen length result-

ing from a specified change in temperature per specimen length at a reference temperature per said change in temperature.

- **linear low density polyethylene** Linear polyethylenes with density 0.91-0.94 g/cm<sup>3</sup>. Has better tensile, tear, and impact strength and crack resistance properties, but poorer haze and gloss than branched low-density polyethylene. Processed by extrusion at increased pressure and higher melt temperatures compared to branched low-density polyethylene, and by molding. Used to manufacture film, sheet, pipe, electrical insulation, liners, bags and food wraps. Also called LLDPE, LLDPE resin.
- **linear polyethylenes** Linear polyethylenes are polyolefins with linear carbon chains. They are prepared by copolymerization of ethylene with small amounts of higher alfa-olefins such as 1butene. Linear polyethylenes are stiff, tough and have good resistance to environmental cracking and low temperatures. Processed by extrusion and molding. Used to manufacture film, bags, containers, liners, profiles and pipe.
- **liquid crystal polymers** Thermoplastic aromatic copolyesters with highly ordered structure. Have good tensile and flexural properties at high temperatures, chemical, radiation and fire resistance, and weatherability. Processed by sintering and injection molding. Used to substitute ceramics and metals in electrical components, electronics, chemical apparatus, and aerospace and auto parts. Also called LCP.

LLDPE See linear low density polyethylene.

LLDPE resin See linear low density polyethylene.

- **loss modulus** In a dynamic experiment, that portion of the stressstrain response which is out of phase with the applies stress. The loss modulus is related to that portion of the polymer structure that undergoes viscous flow when a load is applied. **Note:** Loss modulus versus temperature curves are commonly reported in dynamic mechanical analysis (DMA) tests.
- **low density polyethylene** A branched-chain thermoplastic with density 0.91-0.94 g/cm<sup>3</sup>. Has good impact strength, flexibility, transparency, chemical resistance, dielectric properties, and low water permeability and brittleness temperature, but poor heat, stress cracking and fire resistance and weatherability. Processed by extrusion coating, injection and blow molding, and film extrusion. Can be crosslinked. Used in packaging and shrink films, toys, bottle caps, cable insulation, and coatings. Also called LDPE.

## Μ

macroscopic properties See thermodynamic properties.

- mechanical loss Loss in energy, dissipated as heat, that result when a material is subjected to an oscillatory load or displacement.
- mechanical properties Properties describing the reaction of physical systems to stress and strain.
- melamine resins Thermosetting resins prepared by condensation of formaldehyde with melamine. Have good hardness, scratch and fire resistance, clarity, colorability, rigidity, dielectric properties, and tensile strength, but poor impact strength. Molding grades are filled. Processed by compression, transfer, and injection

molding, impregnation, and coating. Used in cosmetic containers, appliances, tableware, electrical insulators, furniture laminates, adhesives, and coatings.

- **melt index** The amount, in grams, of a thermoplastic polymer which can be forced through an orifice of 0.0825 in. diameter when subjected to a force of 2160 gf in 10 min at 190 C.
- **melt strength** Denotes the viscous flow of a polymer melt under tensile stress.
- **melt viscosity** Intrinsic viscosity of a molten plastic material as determined in a capillary rheometer.
- **melt volume index** The volume of plastic extruded in 10 min at a given load on a specified die.
- methylfluorosilicones Silicone rubbers containing pendant fluorine and methyl groups. Have good chemical and heat resistance. Used in gasoline lines, gaskets, and seals. Also called FMQ.
- **methylphenylsilicones** Silicone rubbers containing pendant phenyl and methyl groups. Have good resistance to heat, oxidation, and radiation, and compatibility with plastics.
- methylsilicone Silicone rubbers containing pendant methyl groups. Have good heat and oxidation resistance. Used in electrical insulation and coatings. Also called MQ.
- methylvinylfluorosilicone Silicone rubbers containing pendant vinyl, methyl, and fluorine groups. Can be additionally crosslinked via vinyl groups. Have good resistance to petroleum products at elevated temperatures.
- methylvinylsilicone Silicone rubbers containing pendant methyl and vinyl groups. Can be additionally crosslinked via vinyl groups. Vulcanized to high degrees of crosslinking. Used in sealants, adhesives, coatings, cables, gaskets, tubing, and electrical tape.
- **mica** Mica is a crystalline platy filler made by wet or dry grinding of muscovite or phlogopite, minerals consisting mainly of aluminum and potassium orthosilicates, or by chemical reaction between potassium fluorosilicate and alumina. Used as a filler in thermosetting resins to impart good dielectric properties and heat resistance, and in thermoplastics such as polyolefins to improve dimensional stability, heat resistance, and mechanical strength. Mica fillers also reduce vapor permeability and increase wear resistance. Mica fillers having increased flake size or platiness increase flexural modulus, strength, heat deflection temperature, and moisture resistance. Surface modified grades of mica are available for specialty applications.
- micron A unit of length equal to 1E-06 meter. Its symbol is Greek small letter  $mu(\mu)$  or mum.
- microtensile specimen A small specimen as specified in ASTM D1708 for determining tensile properties of plastics. It has maximum thickness 3.2 mm and minimum length 38.1 mm. Tensile properties determined with this specimen include yield strength, tensile strength, tensile strength at break and elongation at break.
- migration A mass-transfer process in which the matter moves from one place to another usually in a slow and spontaneous fashion. In plastics and coatings, migration of pigments, fillers, plasticizers and other ingredients via diffusion or floating to the surface or through interface to other materials results in various defects called blooming, chalking, bronzing, flooding, bleeding, etc.

- mineral filler Mineral fillers are a large subclass of inorganic fillers comprised of ground rocks or natural or refined minerals. Some fillers, so-called commodity minerals, are relatively inexpensive and are used mostly as extenders. A good example of these is ground limestone. Other fillers, so-called specialty minerals, are usually reinforcing fillers. These are inherently small particle size fillers, such as talc, and surface chemically modified fillers.
- **miscibility** Miscibility is the ability of a liquid or gas to dissolve uniformly in another liquid or gas. In polymers, miscibility is the compatibility of different polymers in a polymer blend. In miscible blends, the different polymers behave as a single material, in immiscible blends, the different polymers maintain their distinct identities and require additional ingredients to maintain the integrity of the blend.
- modified polyphenylene ether Thermoplastic polyphenylene ether alloys with impact polystyrene. Have good impact strength, resistance to heat and fire, but poor resistance to solvents. Processed by injection and structural foam molding and extrusion. Used in auto parts, appliances, and telecommunication devices. Also called MPE, MPO, modified polyphenylene oxide.

modified polyphenylene oxide See modified polyphenylene ether.

- **modulus** The ratio of stress to corresponding strain below the elastic limit of a material.
- **modulus of elasticity** The ratio of unit stress to the unit if deformation of an elastic material below the proportional limit.

modulus of rupture in bending See flexural strength.

**molding defects** Structural and other defects in material caused inadvertently during molding by using wrong tooling, process parameters or ingredients. Also called molding flaw. See also *design*, *etc.* Usually preventable.

molding flaw See molding defects.

- **molecular weight** The sum of the atomic weights of all atoms in a molecule. Also called MW.
- molecular weight distribution The relative amounts of polymeric molecules of different weights in a specimen. Note: The molecular weight distribution can be expressed in terms of the ratio between weight- and number-average molecular weights. Also called polydispersity, MWD, molecular weight ratio.

molecular weight ratio See molecular weight distribution.

- MPE See modified polyphenylene ether.
- MPO See modified polyphenylene ether.
- MQ See methylsilicone.
- MW See molecular weight.
- MWD See molecular weight distribution.

### Ν

- **neoprene rubber** Polychloroprene rubbers with good resistance to petroleum products, heat, and ozone, weatherability, and toughness.
- **nitrile rubber** Rubbers prepared by free-radical polymerization of acrylonitrile with butadiene. Have good resistance to petroleum products, heat, and abrasion. Used in fuel hoses, shoe soles, gaskets, oil seals, and adhesives.
- **no-flow point** The temperature at which gelation (crosslinking) of a plastic material reaches a degree of no flow in a capillary rheometer.
- **nonelastomeric thermoplastic polyurethanes** See rigid thermoplastic polyurethanes.
- **nonelastomeric thermosetting polyurethane** Curable mixtures of isocyanate prepolymers or monomers. Have good abrasion resistance and low-temperature stability, but poor heat, fire, and solvent resistance and weatherability. Processed by reaction injection and structural foam molding, casting, potting, encapsulation, and coating. Used in heat insulation, auto panels and trim, and housings for electronic devices.
- **notch effect** The effect of the presence of specimen notch or its geometry on the outcome of a test such as an impact strength test of plastics. Notching results in local stresses and accelerates failure in both static and cycling testing (mechanical, ozone cracking, etc.).

notched Izod See notched Izod impact energy.

notched Izod impact See notched Izod impact energy.

**notched Izod impact energy** The energy required to break a notched specimen equal to the difference between the energy in the striking member of the Izod-type impact apparatus at the instant of impact and the energy remaining after complete fracture of the specimen. **Note:** Energy depends on geometry (e.g., width, depth, shape) of the notch, on the cross-sectional area of the specimen and on the place of impact (on the side of the notch or on the opposite side). In some tests notch is made on both sides of the specimen Also called notched Izod impact strength, notched Izod impact, notched Izod.

notched Izod impact strength See notched Izod impact energy.

- nylon Thermoplastic polyamides often prepared by ring-opening polymerization of lactam. Have good resistance to most chemicals, abrasion, and creep, good impact and tensile strengths, barrier properties, and low friction, but poor resistance to moisture and light. Have high mold shrinkage. Processed by injection, blow, and rotational molding, extrusion, and powder coating. Used in fibers, auto parts, electrical devices, gears, pumps, appliance housings, cable jacketing, pipes, and films.
- nylon 11 Thermoplastic polymer of 11-aminoundecanoic acid having good impact strength, hardness, abrasion resistance, processability, and dimensional stability. Processed by powder coating, rotational molding, extrusion, and injection molding. Used in electric insulation, tubing, profiles, bearings, and coatings.
- nylon 12 Thermoplastic polymer of lauric lactam having good impact strength, hardness, abrasion resistance, and dimensional stability. Processed by powder coating, rotational molding, extrusion, and injection molding. Used in sporting goods and auto parts.

nylon 46 Thermoplastic copolymer of 2-pyrrolidone and caprolactam.

- nylon 6 Thermoplastic polymer of caprolactam. Has good weldability and mechanical properties but rapidly picks up moisture which results in strength losses. Processed by injection, blow, and rotational molding and extrusion. Used in fibers, tire cord, and machine parts.
- **nylon 610** Thermoplastic polymer of hexamethylenediamine and sebacic acid having decreased melting point and water absorption and good retention of mechanical properties. Processed by injection molding and extrusion. Used in fibers and machine parts.
- nylon 612 Thermoplastic polymer of 1,12-dodecanedioic acid and hexamethylenediamine having good dimensional stability, low moisture absorption, and good retention of mechanical properties. Processed by injection molding and extrusion. Used in wire jackets, cable sheath, packaging film, fibers, bushings, and housings.
- nylon 66 Thermoplastic polymer of adipic acid and hexamethylenediamine having good tensile strength, elasticity, toughness, heat resistance, abrasion resistance, and solvent resistance but low weatherability and color resistance. Processed by injection molding and extrusion. Used in fibers, bearings, gears, rollers, and wire jackets.
- nylon 6/66 Thermoplastic polymer of adipic acid, caprolactam, and hexamethylenediamine having good strength, toughness, abrasion and fatigue resistance, and low friction but high moisture absorption and low dimensional stability. Processed by injection molding and extrusion. Used in electrical devices and auto and mechanical parts.
- **nylon MXD6** Thermoplastic polymer of m-xylyleneadipamide having good flexural strength and chemical resistance but decreased tensile strength.

## 0

olefin resins See polyolefins.

olefinic resins See polyolefins.

**olefinic thermoplastic elastomers** Blends of EPDM or EP rubbers with polypropylene or polyethylene, optionally crosslinked. Have low density, good dielectric and mechanical properties, and processibility but low oil resistance and high flammability. Processed by extrusion, injection and blow molding, thermoforming, and calendering. Used in auto parts, construction, wire jackets, and sporting goods. Also called TPO.

**OPP** See oriented polypropylene.

oriented polypropylene A grade of polypropylene film hot stretched uniaxially or biaxially (usually longitudinally or longitudinally and transversely, respectively) to orient polymer molecules in the direction of stretching. Oriented films have enhanced mechanical properties. They will shrink in the direction of stretching when reheated, e.g., during heat sealing. Also called OPP.

### Р

Pa See pascal.

PABM See polyaminobismaleimide resins.

- paraffinic plasticizer Plasticizers for plastics comprising liquid or solid long-chain alkanes or paraffins (saturated linear or branched hydrocarbons).
- **pascal** An SI unit of measurement of pressure equal to the pressure resulting from a force of one newton acting uniformly over an area of one square meter. Used to denote the pressure of gases, vapors or liquids and the strength of solids. Also called Pa.
- PBI See polybenzimidazoles.
- PBT See polybutylene terephthalate.
- PC See polycarbonates.
- PCT See polycyclohexylenedimethylene terephthalate.
- **PCTG** See glycol modified polycyclohexylenedimethylene terephthalate.
- PE copolymer See polyethylene copolymer.
- PEEK See polyetheretherketone.
- PEI See polyetherimides.
- PEK See polyetherketone.
- **perfluoroalkoxy resins** Thermoplastic polymers of perfluoroalkoxyethylenes having good creep, heat, and chemical resistance and processibility but low compressive and tensile strengths. Processed by molding, extrusion, rotational molding, and powder coating. Used in films, coatings, pipes, containers, and chemical apparatus linings. Also called PFA.
- **PES** See polyethersulfone.
- **PET** See polyethylene terephthalate.
- **PETG** See polycyclohexylenedimethylene ethylene terephthalate.
- PFA See perfluoroalkoxy resins.
- phase transition See phase transition properties.
- phase transition point The temperature at which a phase transition occurs in a physical system such as material. Note: An example of phase transition is glass transition. Also called phase transition temperature, transition point, transition temperature.
- phase transition properties Properties of physical systems such as materials associated with their transition from one phase to another, e.g., from liquid to solid phase. Also called phase transition.

phase transition temperature See phase transition point.

phenolic resins Thermoset polymers of phenols with excess or deficiency of aldehydes, mainly formaldehyde, to give resole or novolak resins, respectively. Heat-cured resins have good dielectric properties, hardness, thermal stability, rigidity, and compressive strength but poor chemical resistance and dark color. Processed by coating, potting, compression, transfer, or injection molding and extrusion. Used in coatings, adhesives, potting compounds, handles, electrical devices, and auto parts.

PI See polyimides.

plasticizer A substance incorporated into a material such as plastic or rubber to increase its softness, processability and flexibility via solvent or lubricating action or by lowering its molecular weight. Plasticizers can lower melt viscosity, improve flow and increase low-temperature resilience of material. Most plasticizers are nonvolatile organic liquids or low-melting-point solids, such as dioctyl phthalate or stearic acid. They have to be nonbleeding, nontoxic and compatible with material. Sometimes plasticizers play a dual role as stabilizers or crosslinkers.

plastics See polymers.

PMMA See polymethyl methacrylate.

PMP See polymethylpentene.

polyacrylates See acrylic resins.

- **polyallomer** Crystalline thermoplastic block copolymers of ethylene, propylene, and other olefins. Have good impact strength and flex life and low density.
- **polyamide thermoplastic elastomers** Copolymers containing soft polyether and hard polyamide blocks having good chemical, abrasion, and heat resistance, impact strength, and tensile properties. Processed by extrusion and injection and blow molding. Used in sporting goods, auto parts, and electrical devices. Also called polyamide TPE.

polyamide TPE See polyamide thermoplastic elastomers.

- **polyamides** Thermoplastic aromatic or aliphatic polymers of dicarboxylic acids and diamines, of amino acids, or of lactams. Have good mechanical properties, chemical resistance, and antifriction properties. Processed by extrusion and molding. Used in fibers and molded parts. Also called PA.
- **polyaminobismaleimide resins** Thermoset polymers of aromatic diamines and bismaleimides having good flow and thermochemical properties and flame and radiation resistance. Processed by casting and compression molding. Used in aircraft parts and electrical devices. Also called PABM.
- **polyarylamides** Thermoplastic crystalline polymers of aromatic diamines and aromatic dicarboxylic anhydrides having good heat, fire, and chemical resistance, property retention at high temperatures, dielectric and mechanical properties, and stiffness but poor light resistance and processibility. Processed by solution casting, molding, and extrusion. Used in films, fibers, and molded parts.
- **polyarylsulfone** Thermoplastic aromatic polyether-polysulfone having good heat, fire, and chemical resistance, impact strength, resistance to environmental stress cracking, dielectric properties, and rigidity. Processed by injection and compression molding and extrusion. Used in circuit boards, lamp housings, piping, and auto parts.
- **polybenzimidazoles** Mainly polymers of 3,3',4,4'-tetraminonbiphenyl (diaminobenzidine) and diphenyl isophthalate. Have

good heat, fire, and chemical resistance. Used as coatings and fibers in aerospace and other high-temperature applications. Also called PBI.

- **polybutylene terephthalate** Thermoplastic polymer of dimethyl terephthalate and butanediol having good tensile strength, dielectric properties, and chemical and water resistance, but poor impact strength and heat resistance. Processed by injection and blow molding, extrusion, and thermoforming. Used in auto body parts, electrical devices, appliances, and housings. Also called PBT.
- **polycarbodiimide** Polymers containing -N=C=N- linkages in the main chain, typically formed by catalyzed polycondensation of polyisocyanates. They are used to prepare open-celled foams with superior thermal stability. Sterically hindered polycarbodiimides are used as hydrolytic stabilizers for polyester-based ure-thane elastomers.

polycarbonate See polycarbonates.

**polycarbonate polyester alloys** High-performance thermoplastics processed by injection and blow molding. Used in auto parts.

polycarbonate resins See polycarbonates.

- **polycarbonates** Polycarbonates are thermoplastics prepared by either phosgenation of dihydric aromatic alcohols such as bisphenol A or by transesterification of these alcohols with carbonates, e.g., diphenyl carbonate. Polycarbonates consist of chains with repeating carbonyldioxy groups and can be aliphatic or aromatic. They have very good mechanical properties, especially impact strength, low moisture absorption and good thermal and oxidative stability. They are self-extinguishing and some grades are transparent. Polycarbonates have relatively low chemical resistance and resistance to stress cracking. Processed by injection and blow molding, extrusion, thermoforming at relatively high processing temperatures. Used in telephone parts, dentures, business machine housings, safety equipment, nonstaining dinnerware, food packaging, etc. Also called polycarbonate, PC, polycarbonate resins.
- **polychlorotrifluoroethylene** Thermoplastic polymer of chlorotrifluoroethylene having good transparency, barrier properties, tensile strength, and creep resistance, modest dielectric properties and solvent resistance, and poor processibility. Processed by extrusion, injection and compression molding, and coating. Used in chemical apparatus, low-temperature seals, films, and internal lubricants. Also called CTFE.

### polycyclohexylenedimethylene ethylene terephthalate

- Thermoplastic polymer of cyclohexylenedimethylenediol, ethylene glycol, and terephthalic acid. Has good clarity, stiffness, hardness, and low-temperature toughness. Processed by injection and blow molding and extrusion. Used in containers for cosmetics and foods, packaging film, medical devices, machine guards, and toys. Also called PETG.
- **polycyclohexylenedimethylene terephthalate** Thermoplastic polymer of cyclohexylenedimethylenediol and terephthalic acid having good heat resistance. Processed by molding and extrusion. Also called PCT.

polydispersity See molecular weight distribution.

polyester resins See polyesters.

183

**polyester thermoplastic elastomers** Copolymers containing soft polyether and hard polyester blocks having good dielectric strength, chemical and creep resistance, dynamic performance, appearance, and retention of properties in a wide temperature range but poor light resistance. Processed by injection, blow, and rotational molding, extrusion casting, and film blowing. Used in electrical insulation, medical products, auto parts, and business equipment. Also called polyester TPE.

#### polyester TPE See polyester thermoplastic elastomers.

- **polyesters** A broad class of polymers usually made by condensation of a diol with dicarboxylic acid or anhydride. Polyesters consist of chains with repeating carbonyloxy group and can be aliphatic or aromatic. There are thermosetting polyesters, such as alkyd resins and unsaturated polyesters, and thermoplastic polyesters such as PET. The properties, processing methods and applications of polyesters vary widely. Also called polyester resins.
- **polyetheretherketone** Semi-crystalline thermoplastic aromatic polymer having good chemical, heat, fire, and radiation resistance, toughness, rigidity, bearing strength, and processibility. Processed by injection molding, spinning, cold forming, and extrusion. Used in fibers, films, auto engine parts, aerospace composites, and electrical insulation. Also called PEEK.
- **polyetherimides** Thermoplastic cyclized polymers of aromatic diether dianhydrides and aromatic diamine. Have good chemical, creep, and heat resistance and dielectric properties. Processed by extrusion, thermoforming, and compression, injection, and blow molding. Used in auto parts, jet engines, surgical instruments, industrial apparatus, food packaging, cookware, and computer disks. Also called PEI.
- **polyetherketone** Thermoplastic having good heat and chemical resistance. Thermal stability. Used in advanced composites, wire coating, filters, integrated circuit boards, and bearings. Also called PEK.
- **polyethersulfone** Thermoplastic aromatic polymer having good heat and fire resistance, transparency, dielectric properties, dimensional stability, rigidity, and toughness, but poor solvent and stress cracking resistance, processibility, and weatherability. Processed by injection, blow, and compression molding and extrusion. Used in high temperature applications electrical devices, medical devices, housings, and aircraft and auto parts. Also called PES.
- **polyethylene copolymer** Thermoplastics polymers of ethylene with other olefins such as propylene. Processed by molding and extrusion. Also called PE copolymer.
- **polyethylene terephthalate** Thermoplastic polymer of ethylene glycol with terephthalic acid. Has good hardness, wear and chemical resistance, dimensional stability, and dielectric properties. High-crystallinity grades have good tensile strength and heat resistance. Processed by extrusion and injection and blow molding. Used in fibers, food packaging (films, bottles, trays), magnetic tapes, and photo films. Also called PET.
- **polyimides** Thermoplastic aromatic cyclized polymers of trimellitic anhydride and aromatic diamine. Have good tensile strength, dimensional stability, dielectric and barrier properties, and creep, impact, heat, and fire resistance, but poor processibility. Processed by compression and injection molding, powder sintering, film casting, and solution coating. Thermoset uncyclized

polymers are heat curable and have good processability. Processed by transfer and injection molding, lamination, and coating. Used in jet engines, compressors, sealing coatings, auto parts, and business machines. Also called PI.

#### polymer chain unsaturation See chemical unsaturation.

- **polymers** Polymers are high-molecular-weight organic or inorganic compounds the molecules of which comprise linear, branched, crosslinked or otherwise shaped chains of repeating molecular groups. Synthetic polymers are prepared by polymerization of one or more monomers. The monomers are low-molecular-weight substances with one or more reactive bonds or functional groups. Also called resins, plastics.
- **polymethyl methacrylate** Thermoplastic polymer of methyl methacrylate having good transparency, weatherability, impact strength, and dielectric properties. Processed by compression and injection molding, casting, and extrusion. Used in lenses, sheets, airplane canopies, signs, and lighting fixtures. Also called PMMA.
- **polymethylpentene** Thermoplastic stereoregular polyolefin obtained by polymerizing 4-methyl-1-pentene based on dimerization of propylene; having low density, good transparency, rigidity, dielectric and tensile properties, and heat and chemical resistance. Processed by injection and blow molding and extrusion. Used in laboratory ware, coated paper, light fixtures, auto parts, and electrical insulation. Also called PMP.

#### polyolefin resins See polyolefins.

- **polyolefins** Polyolefins are a broad class of hydrocarbon-chain elastomers or thermoplastics usually prepared by addition (co)polymerization of alkenes such as ethylene. There are branched and linear polyolefins and some are chemically or physically modified. Unmodified polyolefins have relatively low thermal stability and a nonporous, nonpolar surface with poor adhesive properties. Processed by extrusion, injection molding, blow molding and rotational molding. Polyolefins are used more and have more applications than any other polymers. Also called olefinic resins, olefin resins, polyolefin resins.
- **polyphenylene ether nylon alloys** Thermoplastics having improved heat and chemical resistance and toughness. Processed by molding and extrusion. Used in auto body parts.
- **polyphenylene sulfide** High-performance engineering thermoplastic having good chemical, water, fire, and radiation resistance, dimensional stability, and dielectric properties, but decreased impact strength and poor processibility. Processed by injection, compression, and transfer molding and extrusion. Used in hydraulic components, bearings, electronic parts, appliances, and auto parts. Also called PPS.
- polyphenylene sulfide sulfone Thermoplastic having good heat, fire, creep, and chemical resistance and dielectric properties. Processed by injection molding. Used in electrical devices. Also called PPSS.
- **polyphthalamide** Thermoplastic polymer of aromatic diamine and phthalic anhydride. Has good heat, chemical, and fire resistance, impact strength, retention of properties at high temperatures, dielectric properties, and stiffness, but decreased light resistance and poor processibility. Processed by solution casting, molding, and extrusion. Used in films, fibers, and molded parts. Also called PPA.

- **polypropylene** Thermoplastic polymer of propylene having low density and good flexibility and resistance to chemicals, abrasion, moisture, and stress cracking, but decreased dimensional stability, mechanical strength, and light, fire, and heat resistance. Processed by injection molding, spinning, and extrusion. Used in fibers and films for adhesive tapes and packaging. Also called PP.
- **polypyrrole** A polymer of pyrrole, a five-membered heterocyclic substance with one nitrogen and four carbon atoms and with two double bonds. The polymer can be prepared via electrochemical polymerization. Polymers thus prepared are doped by electrolyte anion and are electrically conductive. Polypyrrole is used in lightweight secondary batteries, as electromagnetic interference shielding, anodic coatings, photoconductors, solar cells, and transistors.
- **polystyrene** Polystyrenes are thermoplastics produced by polymerization of styrene with or without modification (e.g., by copolymerization or blending) to make impact resistant or expandable grades. They have good rigidity, high dimensional stability, low moisture absorption, optical clarity, high gloss and good dielectric properties. Unmodified polystyrenes have poor impact strength and resistance to solvents, heat and UV radiation. Processed by injection molding, extrusion, compression molding, and foam molding. Used widely in medical devices, housewares, food packaging, electronics and foam insulation. Also called polystyrenes, PS, polystyrol.

#### polystyrenes See polystyrene.

### polystyrol See polystyrene.

- **polysulfones** Thermoplastics, often aromatic and with ether linkages, having good heat, fire, and creep resistance, dielectric properties, transparency, but poor weatherability, processibility, and stress cracking resistance. Processed by injection, compression, and blow molding and extrusion. Used in appliances, electronic devices, auto parts, and electric insulators. Also called PSO.
- **polytetrafluoroethylene** Thermoplastic polymer of tetrafluoroethylene having good dielectric properties, chemical, heat, abrasion, and fire resistance, antiadhesive properties, impact strength, and weatherability, but decreased strength, processibility, barrier properties, and creep resistance. Processed by sinter molding and powder coating. Used in nonstick coatings, chemical apparatus, electrical devices, bearings, and containers. Also called PTFE.

polyurethane resins See polyurethanes.

polyurethanes Polyurethanes (PUs) are a broad class of polymers consisting of chains with a repeating urethane group, prepared by condensation of polyisocyanates with polyols, e.g., polyester or polyether diols. PUs may be thermoplastic or thermosetting, elastomeric or rigid, cellular or solid, and offer a wide range of properties depending on composition and molecular structure. Many PUs have high abrasion resistance, good retention of properties at low temperatures and good foamability. Some have poor heat resistance, weatherability and resistance to solvents. PUs are flammable and can release toxic substances. Thermoplastic PUs are not crosslinked and are processed by injection molding and extrusion. Thermosetting PUs can be cured at relatively low temperatures and give foams with good heat insulating properties. They are processed by reaction injection molding, rigid and flexible foam methods, casting and coating. PUs are used in load bearing rollers and wheels, acoustic clamping materials, sporting goods, seals and gaskets, heat insulation, potting and encapsulation. Also called

PUR, PU, urethane polymers, urethane resins, urethanes, polyurethane resins.

- **polyvinyl chloride** Thermoplastic polymer of vinyl chloride, available in rigid and flexible forms. Has good dimensional stability, fire resistance, and weatherability, but decreased heat and solvent resistance and high density. Processed by injection and blow molding, calendering, extrusion, and powder coating. Used in films, fabric coatings, wire insulation, toys, bottles, and pipes. Also called PVC.
- **polyvinyl fluoride** Crystalline thermoplastic polymer of vinyl fluoride having good toughness, flexibility, weatherability, and lowtemperature and abrasion resistance. Processed by film techniques. Used in packaging, glazing, and electrical devices. Also called PVF.
- **polyvinylidene chloride** Stereoregular thermoplastic polymer of vinylidene chloride having good abrasion and chemical resistance and barrier properties. Vinylidene chloride (VDC) content always exceeds 50%. Processed by molding and extrusion. Used in food packaging films, bag liners, pipes, upholstery, fibers, and coatings. Also called PVDC.
- **polyvinylidene fluoride** Thermoplastic polymer of vinylidene fluoride having good strength, processibility, wear, fire, solvent, and creep resistance, and weatherability, but decreased dielectric properties and heat resistance. Processed by extrusion, injection and transfer molding, and powder coating. Used in electrical insulation, pipes, chemical apparatus, coatings, films, containers, and fibers. Also called PVDF.

PP See polypropylene.

**PPA** See polyphthalamide.

PPS See polyphenylene sulfide.

**PPSS** See polyphenylene sulfide sulfone.

pressure Stress exerted equally in all directions., processing pressure

process characteristics See processing parameters.

process conditions See processing parameters.

process media See processing agents.

process parameters See processing parameters.

process pressure See processing pressure.

process rate See processing rate.

process speed See processing rate.

process time See processing time.

process velocity See processing rate.

processing additives See processing agents.

processing agents Agents or media used in the manufacture, preparation and treatment of a material or article to improve its processing or properties. The agents often become a part of the material. Also called process media, processing aids, processing additives.

processing aids See processing agents.

processing defects Structural and other defects in material or article caused inadvertently during manufacturing, preparation and treatment processes by using wrong tooling, process parameters, ingredients, part design, etc. Usually preventable. Also called processing flaw, defects, flaw. See also cracking.

processing flaw See processing defects.

- processing methods Method names and designations for material or article manufacturing, preparation and treatment processes. Note: Both common and standardized names are used. Also called processing procedures.
- **processing parameters** Measurable parameters such as temperature prescribed or maintained during material or article manufacture, preparation and treatment processes. Also called process characteristics, process conditions, process parameters.
- processing pressure Pressure maintained in an apparatus during material or article manufacture, preparation and treatment processes. Also called process pressure. See also *pressure*.

processing procedures See processing methods.

- processing rate Speed of the process in manufacture, preparation and treatment of a material or article. It usually denotes the change in a process parameter per unit of time or the throughput speed of material in a unit of weight, volume, etc. per unit of time. Also called process speed, process velocity, process rate.
- **processing time** Time required for the completion of a process in the manufacture, preparation and treatment of a material or article. Also called process time, cycle time. See also *time*.
- propylene An alkene (unsaturated aliphatic hydrocarbon) with three carbon atoms, CH<sub>2</sub>=CHCH<sub>3</sub>. A colorless, highly flammable gas. Autoignition temperature 497°C. Derived by thermal cracking of ethylene or from naphtha. Used as monomer in polymer and organic synthesis. Also called propene.
- PS See polystyrene.
- **PSO** See polysulfones.
- PTFE See polytetrafluoroethylene.
- PU See polyurethanes.
- PUR See polyurethanes.
- PVC See polyvinyl chloride.
- **PVDC** See polyvinylidene chloride.
- **PVDF** See polyvinylidene fluoride.
- PVF See polyvinyl fluoride.
- **PVT relationship** Pressure-(P) volume-(V) temperature-(T) relationship of Boyle's law stating that the product of the volume of a gas times its pressure is a constant at a given temperature, PV/T=R, where R is Boltzmann constant.

## R

relative humidity The ratio of the actual vapor pressure of the air to the saturation vapor pressure. Also called RH.

resins See polymers.

- resorcinol modified phenolic resins Thermosetting polymers of phenol, formaldehyde, and resorcinol having good heat and creep resistance and dimensional stability.
- RH See relative humidity.
- rigid thermoplastic polyurethanes Rigid thermoplastic polyurethanes are not chemically crosslinked. They have high abrasion resistance, good retention of properties at low temperatures, but poor heat resistance, weatherability and resistance to solvents. Rigid thermoplastic polyurethanes are flammable and can release toxic substances. Processed by injection molding and extrusion. Also called rigid thermoplastic urethanes, nonelastomeric thermoplastic polyurethanes.
- rigid thermoplastic urethanes See rigid thermoplastic polyurethanes.

Rockwell A See Rockwell hardness.

Rockwell E See Rockwell hardness.

**Rockwell hardness** A number derived from the net increase in the depth of impression as the load on an indenter is increased from a fixed minor load (10 kgf) to a major load and then returned to the minor load. This number consists of the number of scale divisions (each corresponding to 0.002 mm vertical movement of the indentor) and scale symbol. Rockwell scales, designated by a single capital letter of English alphabet, vary depending on the diameter of the indentor and the major load. For example, scale A indicates the use of a diamond indentor and major load 60 kgf, E - 1/8" ball indentor and 100 kgf, K - same ball and 150 kgf, M - 1/4" ball and 100 kgf, R - 1/2" ball and 60 kgf. The hardness increases in the order of R, M, K, E, and A scales. Also called Rockwell A, Rockwell E, Rockwell K, Rockwell M, Rockwell R.

Rockwell K See Rockwell hardness.

Rockwell M See Rockwell hardness.

Rockwell R See Rockwell hardness.

### S

SAN See styrene acrylonitrile copolymer.

SAN copolymer See styrene acrylonitrile copolymer.

SAN resin See styrene acrylonitrile copolymer.

**semi-crystalline polymers** Polymers in which a portion of the structure is organized into crystals. These materials have useful loadbearing properties above the glass transition temperature and exhibit a well-defined melting point. Examples are polyethylene, nylon 6/6, and acetal.

- service life The period of time required for the specified properties of the material to deteriorate under normal use conditions to the minimum allowable level with material retaining its overall usability.
- shelf life Time during which a physical system, such as a material, retains its storage stability under specified conditions. Also called storage life.
- Shore A See Shore hardness.
- Shore D See Shore hardness.
- Shore hardness Indentation hardness of a material as determined by the depth of an indentation made with an indentor of the Shoretype durometer. The scale reading on this durometer is from 0, corresponding to 0.100" depth, to 100 for zero depth. The Shore A indenter has a sharp point, is spring-loaded to 822 gf, and is used for softer plastics. The Shore B indenter has a blunt point, is spring-loaded to 10 lbf, and is used for harder plastics. Also called Shore D, Shore A, durometer A hardness.
- silicone There are rigid thermoplastic and liquid silicones and silicone rubbers consisting of alternating silicone and oxygen atom chains with organic pendant groups, prepared by hydrolytic polymcondensation of chlorosilanes, followed by crosslinking. Silicone rubbers have good adhesion, flexibility, dielectric properties, weatherability, barrier properties, and heat and fire resistance, but decreased strength. Rigid silicones have good flexibility, weatherability, soil repelling properties, dimensional stability, but poor solvent resistance. Processed by coating, casting, and injection compression, and transfer molding. Used in coatings, electronic devises, diaphragms, medical products, adhesives, and sealants. Also called siloxane.

siloxane See silicone.

- SMA See styrene maleic anhydride copolymer.
- SMA PTB alloy See styrene maleic anhydride copolymer PBT alloy.
- **softening point** Temperature at which the material changes from rigid to soft or exhibits a sudden and substantial decrease in hardness. Also called softening temperature, softening range.
- softening range See softening point.
- softening temperature See softening point.
- **solubility** A capacity of one substance to be fully dissolved in another without any phase separation, e.g., precipitation. Usually expressed as a percentage of dissolved substance.
- **solubility coefficient** The volume of a gas that can be dissolved by a unit volume of solvent at a fixed pressure and temperature.
- stability The ability of a physical system, such as a material, to resist a change or degradation under exposure to outside forces, including mechanical force, heat and weather. See also *degradation*.
- static coefficient of friction The ratio of the force that is required to start the friction motion of one surface against another to the force, usually gravitational, acting perpendicular to the two surfaces in contact. Also called coefficient of friction, static.
- storage modulus In a dynamic experiment, that portion of the stressstrain response which is in phase with the applied stress. The

storage modulus is related to that portion of the polymer structure that fully recovers when an applied stress is removed. **Note:** Storage modulus versus temperature curves are commonly reported in dynamic mechanical analysis (DMA) tests.

- strain The per unit change, due to force, in the size or shape of a body referred to its original size or shape. Note: Strain is nondimensional but is often expressed in unit of length per unit of length or percent.
- stress The intensity at a point in a body of the forces or components of force that act on a given plane through the point. The ratio of an applied load to the original cross sectional area of a sample.Note: Stress is expressed in terms of a force per unit area such as pounds per square inch (psi) or newtons per square meter.
- stress cracking Appearance of external and/or internal cracks in the material as a result of stress that is lower than its short-term strength.
- stress pattern Distribution of applied or residual stress in a specimen, usually throughout its bulk. Applied stress is a stress induced by an outside force, e.g., by loading. Residual stress or stress memory may be a result of processing or exposure. The stress pattern can be made visible in transparent materials by polarized light.
- stress relaxation Time-dependent decrease in stress in a solid material under a constant strain as a result of changes in internal or external conditions.
- styrene acrylonitrile copolymer SAN resins are thermoplastic copolymers of about 70% styrene and 30% acrylonitrile with higher strength, rigidity and chemical resistance than polystyrene. Characterized by transparency, high heat deflection properties, excellent gloss, hardness and dimensional stability. Have low continuous service temperature and impact strength. Processed by injection molding, extrusion, injection-blow molding and compression molding. Used in appliances, housewares, instrument lenses for automobiles, medical devices, and electronics. Also called styrene-acrylonitrile copolymer, SAN, SAN resin, SAN copolymer.
- styrene butadiene block copolymer Thermoplastic amorphous block polymer of butadiene and styrene having good impact strength, rigidity, gloss, compatibility with other styrenic resins, water resistance, and processibility. Used in food and display containers, toys, and shrink wrap.
- styrene butadiene copolymer Thermoplastic polymers of butadiene and >50% styrene having good transparency, toughness, and processibility. Processed by extrusion, injection and blow molding, and thermoforming. Used in film wraps, disposable packaging, medical devices, toys, display racks, and office supplies.
- styrene maleic anhydride copolymer Thermoplastic copolymer of styrene with maleic anhydride having good thermal stability and adhesion, but decreased chemical and light resistance. Processed by injection and foam molding and extrusion. Used in auto parts, appliances, door panels, pumps, and business machines. Also called SMA.
- styrene maleic anhydride copolymer PBT alloy Thermoplastic alloy of styrene maleic anhydride copolymer and polybutylene terephthalate having improved dimensional stability and tensile strength. Processed by injection molding. Also called SMA PTB alloy.

styrene plastics See styrenic resins.

styrene polymers See styrenic resins.

styrene resins See styrenic resins.

styrene-acrylonitrile copolymer See styrene acrylonitrile copolymer.

- styrenic resins Styrenic resins are thermoplastics prepared by freeradical polymerization of styrene alone or with other unsaturated monomers. The properties of styrenic resins vary widely with molecular structure, attaining the high performance level of engineering plastics. Processed by blow and injection molding, extrusion, thermoforming, film techniques and structural foam molding. Used heavily for the manufacture of automotive parts, household goods, packaging, films, tools, containers and pipes. Also called styrene resins, styrene polymers, styrene plastics.
- styrenic thermoplastic elastomers Linear or branched copolymers containing polystyrene end blocks and elastomer (e.g., isoprene rubber) middle blocks. Have a wide range of hardnesses, tensile strength, and elongation, and good low-temperature flexibility, dielectric properties, and hydrolytic stability. Processed by injection and blow molding and extrusion. Used in coatings, sealants, impact modifiers, shoe soles, medical devices, tubing, electrical insulation, and auto parts. Also called TES.
- **syndiotactic** A polymer molecule in which pendant groups and atoms attached to the main chain are arranged in a symmetrical and recurring fashion relative to it in a single plane.

# Т

- **talc** Talc is a filler made by dry or wet grinding of mineral magnesium silicate. Talc improves stiffness, dimensional stability, flexural modulus, creep resistance, flow, surface smoothness, moisture resistance, tensile strength, and wear resistance of plastics. It also increases heat deflection temperature and decreases vapor permeability. Can be used as a film antiblock agent. Used mainly in polypropylene but also in thermoplastic and unsaturated polyesters and epoxy resins at low levels. Surface-modified grades are available.
- tan delta Mathematically expressed as the loss modulus divided by the storage modulus, the tangent of the phase angle between an applied stress and the strain response in a dynamic experiment.
  Note: Tan delta versus temperature curves are commonly reported in dynamic mechanical analysis (DMA) tests.
- **temperature** Property which determines the direction of heat flow between objects. **Note:** The heat flows from the object with higher temperature to that with lower.
- **tensile elongation** The increase in distance between 2 gage marks that result from stressing the specimen in tension to fracture. Usually elongation is expressed as a percentage of the original gage length. **Note:** Elongation is affected by specimen geometry (length, width, thickness of gage section and adjacent regions) and test procedure, such as alignment and speed of pulling. See also *elongation*.

tensile heat distortion temperature See heat deflection temperature.

- tensile impact energy Kinetic energy dissipated on break of a specimen in a tensile impact test. In the test, one end of the specimen is attached to a swinging pendulum while another is gripped in a crosshead that travels with pendulum. The specimen is ruptured by tensile stress as the crosshead strikes an anvil and is arrested.
- tensile properties Properties describing the reaction of physical systems to tensile stress and strain. See also *tensile property tests*.
- tensile property tests Names and designations of the methods for tensile testing of materials. Also called tensile tests. See also *tensile properties*.
- tensile strain The relative length deformation exhibited by a specimen in tension. See also *elongation*.
- tensile strength The maximum tensile stress that a specimen can sustain in a test carried to failure. Note: The maximum stress can be measured at or after the failure or reached before the fracture, depending on the viscoelastic behavior of the material. Also called tensile ultimate strength, ultimate tensile strength, UTS, tensile strength at break, ultimate tensile stress. See also ASTM D638.
- tensile strength at break The maximum load per original minimum cross-sectional area of the plastic specimen in tension within the gage length when the maximum load corresponds to the break point. Note: For plastics- when the maximum load corresponds to the yield point, this property is called tensile strength at yield. See also *tensile strength*.
- **tensile stress** The stress is perpendicular and directed to the opposite plane on which the forces act.
- tensile strength at yield The maximum load per original minimum cross-sectional area of the plastic specimen in tension within the gage length, when the maximum load corresponds to the yield point. Note: When maximum load corresponds to the break point, this property is called tensile strength at break.

tensile tests See tensile property tests.

- tensile ultimate strength The maximum tensile stress subjected to the test specimen during the tensile test. The value can be identical with the tensile stress at break.
- **tensile yield point** The first engineering stress in a tensile test, in which stresses and strains are determined for a material that exhibits the phenomenon of discontinuous yielding, at which an increase in strain occurs without an increase in stress. For materials that do not exhibit a yield point, yield strength serves the same purpose as yield point.
- tensile yield strength The engineering stress determined at the intersection of the tensile stress-strain curve with a line drawn in the diagram with a slope equal to the modulus of elasticity, and offset by the specified strain. The percent offset (0.2% is the most common in USA) must be stated for values to be meaningful.
- terephthalate polyester Thermoset unsaturated polymer of terephthalic anhydride.
- TES See styrenic thermoplastic elastomers.
- test methods Names and designations of material test methods. Also called testing methods

**test variables** Terms related to the testing of materials such as test method names.

testing methods See test methods.

- tetrafluoroethylene propylene copolymer Thermosetting elastomeric polymer of tetrafluoroethylene and propylene having good chemical and heat resistance and flexibility. Used in auto parts.
- thermal expansion Expanding of physical matter (solid body, liquid, gas) as a result of heating.
- **thermal expansion coefficient** The change in volume per unit volume resulting from a change in temperature of the material. The mean coefficient of thermal expansion is commonly referenced to room temperature.
- thermal properties Properties related to the effects of heat on physical systems such as materials and heat transport. The effects of heat include the effects on structure, geometry, performance, aging, stress-strain behavior, etc.
- **thermal stability** The resistance of a physical system, such as a material, to decomposition, deterioration of properties or any type of degradation in storage under specified conditions.
- **thermodynamic properties** A quantity that is either an attribute of the entire system or is a function of position, which is continuous and does not vary rapidly over microscopic distances, except possibility for abrupt changes at boundaries between phases of the system. Also called macroscopic properties.
- thermoplastic Thermoplastics are resin or plastic compounds which, after final processing, are capable of being repeatedly softened by heating and hardened by cooling by means of physical changes. There is a large number of thermoplastic polymers belonging to various classes such as polyolefins and polyamides.
- thermoplastic polyesters A class of polyesters that can be repeatedly made soft and pliable on heating and hard (flexible or rigid) on subsequent cooling.
- thermoplastic polyurethanes A class of polyurethanes including rigid and elastomeric polymers that can be repeatedly made soft and pliable on heating and hard (flexible or rigid) on subsequent cooling. Also called thermoplastic urethanes, TPUR, TPU.

thermoplastic urethanes See thermoplastic polyurethanes.

- thermoset Thermosets are resin and plastic compounds which, after final processing, are substantially infusible and insoluble. During processing, thermosets undergo a chemical reaction that results in the formation of a three dimensional covalent bond. Thermosets are often liquids at some stage in their manufacture or processing and are cured by heat, oxidation, radiation, or other means often in the presence of curing agents and catalysts. Curing proceeds via polymerization and/or cross- linking. Cured thermosets cannot be resoftened by heat. There is a large number of thermosetting polymers belonging to various classes such as alkyd, epoxy and phenolic resins.
- **thermosetting elastomer** A large class of polymers that can be stretched at room temperature to at least twice their original length and, after having been stretched and the stress removed, return with force to approximately their original length in a short

time. To attain this elastic property the rubbers must be crosslinked or vulcanized, usually by heating in the presence of various crosslinking agents and catalysts. There are natural and synthetic rubbers. The most important synthetic rubber families are olefinic rubbers, dienic rubbers (nitrile, butadiene, neoprene), silicone rubbers, and urethane rubbers. Used often as impact modifiers/fillers in plastics.

- **toughness** Property of a material indicating its ability to absorb energy by plastic deformation rather than crack or fracture.
- TPO See olefinic thermoplastic elastomers.
- TPU See thermoplastic polyurethanes.
- TPUR See thermoplastic polyurethanes.
- **transition** A structural relaxation in a material brought on by the onset of molecular motion. It is accompanied by a sudden decline in the elastic properties of the material and a momentary increase in the loss properties. The most important of these transitions is the glass transition.

transition point See phase transition point.

transition temperature See phase transition point.

## U

UHMWPE See ultrahigh molecular weight polyethylene.

ultimate elongation See elongation.

ultimate tensile strength See tensile strength.

ultimate tensile stress See tensile strength.

ultrahigh molecular weight polyethylene Thermoplastic linear polymer of ethylene with molecular weight in the millions. Has good wear and chemical resistance, toughness, and antifriction properties, but poor processibility. Processed by compression molding and ram extrusion. Used in bearings, gears, and sliding surfaces. Also called UHMWPE.

units See units of measurement.

- units of measurement Systematic and non-systematic units for measuring physical quantities, including metric and US pound-inch systems. Also called units.
- **urea resins** Thermosetting polymers of formaldehyde and urea having good clarity, colorability, scratch, fire, and solvent resistance, rigidity, dielectric properties, and tensile strength, but decreased impact strength and chemical, heat, and moisture resistance. Must be filled for molding. Processed by compression and injection molding, impregnation, and coating. Used in cosmetic containers, housings, tableware, electrical insulators, countertop laminates, adhesives, and coatings.

urethane polymers See polyurethanes.

urethane resins See polyurethanes.

urethane thermoplastic elastomers Block polyether or polyester polyurethanes containing soft and hard segments. Have good tensile strength, elongation, adhesion, and a broad hardness and service temperature ranges, but decreased moisture resistance and processibility. Processed by extrusion, injection molding, film blowing, and coating. Used in tubing, packaging film, adhesives, medical devices, conveyor belts, auto parts, and cable jackets. Also called TPU.

#### urethanes See polyurethanes.

UTS See tensile strength.

## V

Vicat softening point The temperature at which a flat-ended needle of prescribed geometry (typically with a cross sectional area of 1 square millimeter) will penetrate a thermoplastic specimen to a certain depth (usually 1 mm) under a specified load using a uniform rate of temperature rise. Note: Vicat softening point is determined according to ASTM D1525 test for thermoplastics such as polyethylene which have no definite melting point. Also called Vicat softening temperature.

Vicat softening temperature See Vicat softening point.

- vinyl ester resins Thermosetting acrylated epoxy resins containing styrene reactive diluent. Cured by catalyzed polymerization of vinyl groups and crosslinking of hydroxy groups at room or elevated temperatures. Have good chemical, solvent, and heat resistance, toughness, and flexibility, but shrink during cure. Processed by filament winding, transfer molding, pultrusion, coating, and lamination. Used in structural composites, coatings, sheet molding compounds, and chemical apparatus.
- vinyl resins Thermoplastics polymers of vinyl compounds such as vinyl chloride or vinyl acetate. Have good weatherability, barrier properties, and flexibility, but decreased solvent and heat resistance. Processed by molding, extrusion, and coating. Used in films and packaging.
- vinyl thermoplastic elastomers Vinyl resin alloys having good fire and aging resistance, flexibility, dielectric properties, and toughness. Processed by extrusion. Used in cable jackets and wire insulation.
- vinylidene fluoride hexafluoropropylene copolymer Thermoplastic polymer of vinylidene fluoride and hexafluoropropylene having good antistick, dielectric, and antifriction properties and chemical and heat resistance, but decreased mechanical strength and creep resistance and poor processibility. Processed by molding, extrusion, and coating. Used in chemical apparatus, containers, films, and coatings.
- vinylidene fluoride hexafluoropropylene tetrafluoroethylene terpolymer Thermosetting elastomeric polymer of vinylidene fluoride, hexafluoropropylene, and tetrafluoroethylene having good chemical and heat resistance and flexibility. Used in auto parts.
- viscoelasticity The dual response of a material under an applied load where part of the material returns to its original shape when the load is removed while the other part undergoes permanent deformation.

- viscosity The internal resistance to flow exhibited by a fluid, the ratio of shearing stress to rate of shear. A viscosity of one poise is equal to a force of one dyne/square centimeter that causes two parallel liquid surfaces one square centimeter in area and one centimeter apart to move past one another at a velocity of one cm/second.
- vulcanizate Rubber that had been irreversibly transformed from predominantly plastic to predominantly elastic material by vulcanization (chemical curing or crosslinking) using heat, vulcanization agents, accelerants, etc.
- vulcanizate crosslinks Chemical bonds formed between polymeric chains in rubber as a result of vulcanization.

### W

warpage See warping.

warping Dimensional distortion or deviation from the intended shape of a plastic or rubber article as a result of nonuniform internal stress, e.g., caused by uneven heat shrinkage. Also called warpage.

water swell Expansion of material volume as a result of water absorption.