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Preface

Over the past several decades, advanced mathematics has quietly insinuated itself into many
facets of our day-to-day life. Mathematics is at the heart of technologies from cellular tele-
phones and satellite positioning systems to online banking and metal detectors. Arguably
no technology has had a more positive and profound effect on our lives than medical imag-
ing, and in no technology is the role of mathematics more pronounced or less appreci-
ated. X-ray tomography, ultrasound, positron emission tomography, and magnetic reso-
nance imaging have fundamentally altered the practice of medicine. At the core of each
modality is a mathematical model to interpret the measurements and a numerical algorithm
to reconstruct an image. While each modality operates on a different physical principle and
probes a different aspect of our anatomy or physiology, there is a large overlap in the math-
ematics used to model the measurements, design reconstruction algorithms, and analyze
the effects of noise. In this text we provide a tool kit, with detailed operating instructions,
to work on the sorts of mathematical problems that arise in medical imaging. Our treat-
ment steers a course midway between a complete, rigorous mathematical discussion and a
cookbook engineering approach.

The target audience for this book is junior or senior math undergraduates with a firm
command of multi-variable calculus, linear algebra over the real and complex numbers, and
the basic facts of mathematical analysis. Some familiarity with basic physics would also
be useful. The book is written in the language of mathematics, which, as I have learned,
is quite distinct from the language of physics or the language of engineering. Nonetheless,
the discussion of every topic begins at an elementary level and the book should, with a little
translation, be usable by advanced science and engineering students with some mathemati-
cal sophistication. A large part of the mathematical background material is provided in two
appendices.

X-ray tomography is employed as a pedagogical machine, similar in spirit to the elabo-
rate devices used to illustrate the principles of Newtonian mechanics. The physical princi-
ples used in x-ray tomography are simple to describe and require little formal background
in physics to understand. This is not the case in any of the other modalities listed nor in less
developed modalities like infrared imaging or impedance tomography. The mathematical
problems that arise in x-ray tomography and the tools used to solve them have a great deal

xix
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in common with those used in the other imaging modalities. This is why our title is Intro-
duction to the Mathematics of Medical Imaging instead of Introduction to the Mathematics
of X-Ray Tomography. A student with a thorough understanding of the material in this book
should be mathematically prepared for further investigations in most subfields of medical
imaging.

Very good treatments of the physical principles underlying the other modalities can be
found in Radiological Imaging by Harrison H. Barrett and William Swindell, [6], Prin-
ciples of Computerized Tomographic Imaging by Avinash C. Kak and Malcolm Slaney,
[76], Foundations of Medical Imaging by Cho, Jones, Singh, [22], Image Reconstruction
from Projections by Gabor T. Herman, [52], and Magnetic Resonance Imaging by E. Mark
Haacke, Robert W. Brown, Michael R. Thompson, Ramesh Venkatesan, [50]. Indeed these
books were invaluable sources as I learned the subject myself. My treatment of many topics
owes a great deal to these books as well as to the papers of Larry Shepp and Peter Joseph
and their collaborators. More advanced treatments of the mathematics and algorithms in-
troduced here can be found in The Mathematics of Computerized Tomography by Frank
Natterer, [95], and Mathematical Methods in Image Reconstruction by Frank Natterer and
Frank Wübbelling, [96].

The order and presentation of topics is somewhat nonstandard. The organizing principle
of this book is the evolutionary development of an accurate and complete model for x-ray
tomography. We start with a highly idealized mathematical model for x-ray tomography
and work toward more realistic models of the actual data collected and the algorithms
used to reconstruct images. After some preliminary material we describe a continuum,
complete data model phrased in terms of the Radon transform. The Fourier transform
is introduced as a tool, first to invert the Radon transform and subsequently for image
processing. The first refinement of this model is to take account of the fact that real data
are always sampled. This entails the introduction of Fourier series, sampling theory, and
the finite Fourier transform. After introducing terminology and concepts from filtering
theory, we give a detailed synthesis of the foregoing ideas by describing how continuum,
shift invariant, linear filters are approximately implemented on finitely sampled data. With
these preliminaries in hand, we return to the study of x-ray tomography, per se. Several
designs for x-ray computed tomography machines are described, after which we derive
the corresponding implementations of the filtered back-projection algorithm. At first we
assume that the x-ray beam is one dimensional and monochromatic. Subsequently we
analyze the effects of a finite width beam and various sorts of measurement and modeling
errors. The last part of the book is concerned with noise analysis. The basic concepts
of probability theory are reviewed and applied to problems in imaging. The notion of
signal-to-noise ratio (SNR) is introduced and used to analyze the effects of quantum noise
on images reconstructed using filtered back-projection. A maximum likelihood algorithm
for image reconstruction in positron emission tomography is described. The final chapter
introduces the idea of a random process. We describe the random processes commonly
encountered in imaging and an elementary example of an optimal filter. We conclude with
a brief analysis of noise in the continuum model of filtered back-projection.

The book begins with an introduction to the idea of using a mathematical model as a
tool to extract the physical state of system from feasible measurements. In medical imag-



Preface xxi

ing, the “state of the system” in question is the anatomy and physiology of a living human
being. To probe it nondestructively requires considerable ingenuity and sophisticated math-
ematics. After considering a variety of examples, each a toy problem for some aspect of
medical imaging, we turn to a description of x-ray tomography. This leads us to our first
mathematical topic, integral transforms. The transform of immediate interest is the Radon
transform, though we are quickly led to the Abel transform, Hilbert transform, and Fourier
transform. Our study of the Fourier transform is dictated by the applications we have in
mind, with a strong emphasis on the connection between the smoothness of a function and
the decay of its Fourier transform and vice versa. Many of the basic ideas of functional
analysis appear as we consider these examples. The concept of a weak derivative, which
is ubiquitous in the engineering literature and essential to a precise understanding of the
Radon inversion formula, is introduced. This part of the book culminates in a study of the
Radon inversion formula. A theme in these chapters is the difference between finite- and
infinite-dimensional linear algebra.

The next topics we consider are Fourier series, sampling, and filtering theory. These
form the basis for applying the mathematics of the Fourier transform to real-world prob-
lems. Chapter 8 is on sampling theory; we discuss the Nyquist theorem, the Shannon–
Whittaker interpolation formula, the Poisson summation formula, and the consequences of
undersampling. In Chapter 9, on filtering theory, we recast Fourier analysis as a tool for
image and signal processing. The chapter concludes with an overview of image processing
and a linear systems analysis of some basic imaging hardware. We then discuss the math-
ematics of approximating continuous time, linear shift invariant filters on finitely sampled
data, using the finite Fourier transform.

In Chapters 11 and 12 the mathematical tools are applied to the problem of image
reconstruction in x-ray tomography. These chapters are largely devoted to the filtered
back-projection algorithm, though other methods are briefly considered. After deriving
the reconstruction algorithms, we analyze the point spread function and modulation trans-
fer function of the full measurement and reconstruction process. We use this formalism to
analyze a variety of imaging artifacts. Chapter 13 contains a brief description of “algebraic
reconstruction techniques,” which are essentially methods for solving large, sparse systems
of linear equations.

The final topic is noise in the filtered back-projection algorithm. This part of the book
begins with an introduction to probability theory. Our presentation uses the language and
ideas of measure theory, in a metaphoric rather than a technical way. Chapter 15 con-
cludes with a study of specific probability distributions that are important in imaging. In
Chapter 16 we apply probability theory to a variety of problems in medical imaging. This
chapter includes the famous resolution-dosage fourth power relation, which shows that to
double the resolution in a CT image, keeping the SNR constant, the radiation dosage must
be increased by a factor of 16! The chapter ends with an introduction to positron emis-
sion tomography and the maximum likelihood algorithm. Chapter 17 introduces the ideas
of random processes and their role in signal and image processing. Again the focus is on
those processes needed to analyze noise in x-ray imaging. A student with a good grasp of
Riemann integration should not have difficulty with the material in these chapters.
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How to Use This Book

This chapter is strongly recommended for all readers.

The structure of this book: It is unlikely that you will want to read this book like a
novel, from beginning to end. The book is organized somewhat like a hypertext document.
Each chapter builds from elementary material to more advanced material, as is also the
case with the longer sections. The elementary material in each chapter (or section) depends
only on the elementary material in previous chapters. The more advanced material can be
regarded as “links” that you may or may not want to follow. Each chapter is divided into
sections, labeled c.s, where c is the chapter number and s, the section number. Many sec-
tions are divided into subsections, labeled c.s.ss, with ss the subsection number. Sections,
subsections, examples, exercises, and so on that are essential for later parts of the book are
marked with a star: �. These should not be skipped.

Sections, subsections, exercises, and so on that require more prerequisites than are
listed in the preface are marked with an asterisk: ∗. These sections assume a familiarity
with the elementary parts of functions of a complex variable or more advanced real anal-
ysis. The asterisk is inherited by the subparts of a marked part. The sections without an
asterisk do not depend on the sections with an asterisk. All sections with an asterisk can be
omitted without any loss in continuity. The book has two appendices. Appendix A contains
background material on a variety of topics ranging from very elementary things like num-
bers and their representation in computers to more advanced topics like spaces of function
and approximation theory. This material serves several purposes: It compiles definitions
and results used in the book, and provides a larger context for some material and references
for further study. Appendix B is a quick review of the definitions and theorems usually en-
countered in an undergraduate course in mathematical analysis. Many sections begin with
a box:

See: A.1, B.3, B.4, B.5.

containing a list of recommended background readings drawn from the appendices and
earlier sections.

For the student: This book is wide ranging, and it is expected that students with a variety
of backgrounds will want to use it. Nonetheless, choices needed to be made regarding
notation and terminology. In most cases I use notation and terminology that is standard in
the world of mathematics. If you come on a concept or term you do not understand, you

xxv



xxvi How to Use This Book

should first look in List of Notations at the beginning of the book and then in the Index
at the end. There are many exercises and examples scattered throughout the text. Doing
the exercises and working through the details of the examples will teach you a lot more
than simply reading the text. The book does not contain many problems involving machine
computation; nonetheless I strongly recommend implementing as many things as you can
using MATLAB�, Maple�, and so on.

The World Wide Web is a fantastic resource for medical imaging, with many sites
devoted to images and the physics behind imaging. At www.ctsim.org you will find an
excellent program, written by Dr. Kevin Rosenberg, that simulates the data collection,
processing and postprocessing done by variety of x-ray CT machines. The pictures you
will produce with ctsim are surely worth thousands of words! A list of additional imaging
Web sites can be found at the end of Chapter 11. I hope you enjoy this book and get
something out of it. I would be most grateful to hear about which parts of the book you
liked and which parts you feel need improvement. Contact me at: cle@math.upenn.edu.

For the instructor: Teaching from this book requires careful navigation. I have taught
several courses from the notes that grew into this book. Sometimes the students had a math-
ematical bent, sometimes a physical bent, and sometimes an engineering bent. I learned
that the material covered and its presentation must be tailored to the audience. For exam-
ple, proofs or outlines of proofs are provided for most of the mathematical results. These
should be covered in detail for math students and perhaps assigned as reading or skipped
for engineering students. How far you go into each topic should depend on how much time
you have and the composition of the class. If you are unfamiliar with the practicalities of
medical imaging I would strongly recommend that you read the fundamental articles [113],
[114], and [55] as well as the parts of [76] devoted to x-ray tomography.

In the following section I have provided suggestions for one- and two-semester courses
with either a mathematical or an engineering flavor (or student body). These guidelines
should make it easier to fashion coherent courses out of the wide range of material in the
text. Exercises are collected at the ends of the sections and subsections. Most develop
ideas presented in the text; only a few are of a standard, computational character. I would
recommend using computer demonstrations to illustrate as many of the ideas as possible
and assigning exercises that ask the students to implement ideas in the book as computer
programs. I would be most grateful if you would share your exercises with me, for inclusion
in future editions. As remarked previously, Dr. Kevin Rosenberg’s program ctsim, which
is freely available at www.ctsim.org, can be used to provide students with irreplaceable
hands-on experience in reconstructing images.

Some suggestions for courses: In the following charts material shaded in dark gray
forms the basis for classroom presentation; that shaded in medium gray can be assigned
as reading or used as additional material in class. The light gray topics are more advanced
enrichment material; if the students have adequate background, some of this material can be
selected for presentation in class. Students should be encouraged to read the sections in the
appendices listed in the boxes at the beginnings of the sections. I have not recommended
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spending a lot of class time on the higher-dimensional generalizations of the Fourier trans-
form, Fourier series, and so on. One is tempted to say that “things go just the same.” I
would instead give a brief outline in class and assign the appropriate sections in the book,
including some exercises, for home study.

1

1.1
1.1.1
1.1.2
1.2
1.2.1
1.2.2
1.2.3
1.2.4
1.3

2

2.1
2.1.1
2.1.2
2.2
2.3
2.3.1
2.3.2
2.4

3

3.1
3.1.1
3.2
3.3
3.4
3.4.1
3.4.2
3.4.3
3.5
3.5.1
3.5.2
3.5.3
3.6

4

4.1
4.2
4.2.1
4.2.2
4.2.3
4.2.4
4.2.5
4.2.6
4.3
4.3.1
4.3.2
4.4
4.4.1
4.4.2
4.4.3
4.4.4
4.5
4.5.1
4.5.2
4.5.3
4.5.4
4.5.5

5

5.1
5.1.1
5.1.2
5.1.3
5.2
5.2.1
5.2.2
5.2.3
5.2.4
5.3
5.3.1
5.3.2
5.4

6

6.1
6.2
6.2.1
6.2.2
6.2.3
6.2.4
6.2.5
6.3
6.3.1
6.3.2
6.4
6.4.1
6.5
6.6
6.6.1
6.6.2
6.7
6.8
6.9

7

7.1
7.2
7.2.1
7.2.2
7.3
7.3.1
7.3.2
7.3.3
7.3.4
7.4
7.4.1
7.4.2
7.5
7.5.1
7.5.2
7.5.3
7.5.4
7.6
7.7
7.7.1
7.8

8

8.1
8.1.1
8.1.2
8.2
8.2.1
8.2.2
8.2.3
8.3
8.4
8.5
8.6

9

9.1
9.1.1
9.1.2
9.1.3
9.1.4
9.1.5
9.1.6
9.1.7
9.1.8
9.1.9
9.1.10
9.1.11
9.2
9.2.1
9.2.2
9.3
9.3.1
9.3.2
9.4
9.4.1
9.4.2
9.5

10

10.1
10.2
10.2.1
10.2.2
10.2.3
10.3
10.3.1
10.4
10.4.1
10.4.2
10.4.3
10.5
10.6

11

11.1
11.2
11.3
11.3.1
11.3.2
11.3.3
11.3.4
11.3.5
11.4
11.4.1
11.4.2
11.4.3
11.4.4
11.4.5
11.5
11.6
11.7
11.8

12

12.1
12.1.1
12.1.2
12.1.3
12.2
12.2.1
12.2.2
12.3
12.3.1
12.3.2
12.4
12.4.1
12.4.2
12.4.3
12.5
12.6

13

13.1
13.2
13.3
13.4
13.4.1
13.4.2
13.5

15

15.1
15.1.1
15.1.2
15.1.3
15.1.4
15.1.5
15.2
15.2.1
15.2.2
15.2.3
15.2.4
15.2.5
15.3
15.3.1
15.3.2
15.3.3
15.4
15.4.1
15.4.2
15.5
15.6

16

16.1
16.1.1
16.1.2
16.2
16.2.1
16.2.2
16.2.3
16.2.4
16.2.5
16.4
16.4.1
16.4.2
16.4.3
16.4.4
16.5

For classes with a good background in
probability theory, the material in Chapters
12 and 13 after 12.1.1 could be replaced by
the indicated material in Chapters 15 and 16.
For this to work, the material in Section 15.2
should be largely review.

Color code:   

Material covered in class (dark)

Additional assigned reading (medium)

More advanced enrichment
material

4.6

(light)

Figure 1. An outline for a one-semester course with a mathematical emphasis.
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The chart in Figure 1 outlines a one semester course with an emphasis on the mathemat-
ical aspects of the subject. The dark gray sections assume a background in undergraduate
analysis and linear algebra. If students have better preparation, you may want to select
some of the light gray topics for classroom presentation.

If at all possible, I would recommend going through the section on generalized func-
tions, A.4.5, when introducing the concept of weak derivatives in Section 4.3. Much of
the subsequent red material assumes a familiarity with these ideas. As noted, if students
have a good background in measure and integration or probability, you may want to skip
the material after 12.1.1 and go instead to the analysis of noise, beginning in Chapter 14.

The chart in Figure 2 outlines a one semester course with an emphasis on the engineer-
ing aspects of the subject. For such a class the material in this book could be supplemented
with more applied topics taken from, for example, [76] or [6]. The proofs of mathematical
results can be assigned as reading or skipped.

1

1.1
1.1.1
1.1.2
1.2
1.2.1
1.2.2
1.2.3
1.2.4
1.3

2

2.1
2.1.1
2.1.2
2.2
2.3
2.3.1
2.3.2
2.4

3

3.1
3.1.1
3.2
3.3
3.4
3.4.1
3.4.2
3.4.3
3.5
3.5.1
3.5.2
3.5.3
3.6

4

4.1
4.2
4.2.1
4.2.2
4.2.3
4.2.4
4.2.5
4.2.6
4.3
4.3.1
4.3.2
4.4
4.4.1
4.4.2
4.4.3
4.4.4
4.5
4.5.1
4.5.2
4.5.3
4.5.4
4.5.5
4.6

5

5.1
5.1.1
5.1.2
5.1.3
5.2
5.2.1
5.2.2
5.2.3
5.2.4
5.3
5.3.1
5.3.2
5.4

6

6.1
6.2
6.2.1
6.2.2
6.2.3
6.2.4
6.2.5
6.3
6.3.1
6.3.2
6.4
6.4.1
6.5
6.6
6.6.1
6.6.2
6.7
6.8
6.9

7

7.1
7.2
7.2.1
7.2.2
7.3
7.3.1
7.3.2
7.3.3
7.3.4
7.4
7.4.1
7.4.2
7.5
7.5.1
7.5.2
7.5.3
7.5.4
7.6
7.7
7.7.1
7.8

8

8.1
8.1.1
8.1.2
8.2
8.2.1
8.2.2
8.2.3
8.3
8.4
8.5
8.6

9

9.1
9.1.1
9.1.2
9.1.3
9.1.4
9.1.5
9.1.6
9.1.7
9.1.8
9.1.9
9.1.10
9.1.11
9.2
9.2.1
9.2.2
9.3
9.3.1
9.3.2
9.4
9.4.1
9.4.2
9.5

10

10.1
10.2
10.2.1
10.2.2
10.2.3
10.3
10.3.1
10.4
10.4.1
10.4.2
10.4.3
10.5
10.6

11

11.1
11.2
11.3
11.3.1
11.3.2
11.3.3
11.3.4
11.3.5
11.4
11.4.1
11.4.2
11.4.3
11.4.4
11.4.5
11.5
11.6
11.7
11.8

12

12.1
12.1.1
12.1.2
12.1.3
12.2
12.2.1
12.2.2
12.3
12.3.1
12.3.2
12.4
12.4.1
12.4.2
12.4.3
12.5
12.6

Due to time constraints, it may be necessary to choose one of
9.4.1 or 9.4.2 and leave the material not covered in class as
a reading assignment.

Figure 2. An outline for a one-semester course with an engineering emphasis.

The chart in Figure 2 gives suggestions for a full-year course with a mathematical
emphasis. A full year should afford enough time to introduce generalized functions in
Section A.4.5. This should be done along with the material in Section 4.3. This allows
inclusion of Section 4.4.4, which covers the Fourier transform on generalized functions.
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1

1.1
1.1.1
1.1.2
1.2
1.2.1
1.2.2
1.2.3
1.2.4
1.3

2

2.1
2.1.1
2.1.2
2.2
2.3
2.3.1
2.3.2
2.4

3

3.1
3.1.1
3.2
3.3
3.4
3.4.1
3.4.2
3.4.3
3.5
3.5.1
3.5.2
3.5.3
3.6

4

4.1
4.2
4.2.1
4.2.2
4.2.3
4.2.4
4.2.5
4.2.6
4.3
4.3.1
4.3.2
4.4
4.4.1
4.4.2
4.4.3
4.4.4
4.5
4.5.1
4.5.2
4.5.3
4.5.4
4.5.5
4.6

5

5.1
5.1.1
5.1.2
5.1.3
5.2
5.2.1
5.2.2
5.2.3
5.2.4
5.3
5.3.1
5.3.2
5.4

6

6.1
6.2
6.2.1
6.2.2
6.2.3
6.2.4
6.2.5
6.3
6.3.1
6.3.2
6.4
6.4.1
6.5
6.6
6.6.1
6.6.2
6.7
6.8
6.9

7

7.1
7.2
7.2.1
7.2.2
7.3
7.3.1
7.3.2
7.3.3
7.3.4
7.4
7.4.1
7.4.2
7.5
7.5.1
7.5.2
7.5.3
7.5.4
7.6
7.7
7.7.1
7.8

8

8.1
8.1.1
8.1.2
8.2
8.2.1
8.2.2
8.2.3
8.3
8.4
8.5
8.6

9

9.1
9.1.1
9.1.2
9.1.3
9.1.4
9.1.5
9.1.6
9.1.7
9.1.8
9.1.9
9.1.10
9.1.11
9.2
9.2.1
9.2.2
9.3
9.3.1
9.3.2
9.4
9.4.1
9.4.2
9.5

10

10.1
10.2
10.2.1
10.2.2
10.2.3
10.3
10.3.1
10.4
10.4.1
10.4.2
10.4.3
10.5
10.6

11

11.1
11.2
11.3
11.3.1
11.3.2
11.3.3
11.3.4
11.3.5
11.4
11.4.1
11.4.2
11.4.3
11.4.4
11.4.5
11.5
11.6
11.7
11.8

12

12.1
12.1.1
12.1.2
12.1.3
12.2
12.2.1
12.2.2
12.3
12.3.1
12.3.2
12.4
12.4.1
12.4.2
12.4.3
12.5
12.6

13

13.1
13.2
13.3
13.4
13.4.1
13.4.2
13.5

15

15.1
15.1.1
15.1.2
15.1.3
15.1.4
15.1.5
15.2
15.2.1
15.2.2
15.2.3
15.2.4
15.2.5
15.3
15.3.1
15.3.2
15.3.3
15.4
15.4.1
15.4.2
15.5
15.6

16

16.1
16.1.1
16.1.2
16.2
16.2.1
16.2.2
16.2.3
16.2.4
16.2.5
16.4
16.4.1
16.4.2
16.4.3
16.4.4
16.5

17

17.1
17.2
17.2.1
17.2.2
17.2.3
17.2.4
17.3
17.3.1
17.3.2
17.3.3
17.3.4
17.3.5
17.4
17.4.1
17.4.2
17.4.3
17.5
17.6

A

A.1
A.1.1
A.1.2
A.1.3
A.1.4
A.2
A.2.1
A.2.2
A.2.3
A.2.4
A.2.5
A.2.6
A.3
A.3.1
A.3.2
A.3.3
A.4
A.4.1
A.4.2
A.4.3
A.4.4
A.4.5
A.4.6
A.5
A.5.1
A.5.2
A.6
A.6.1
A.6.2

B

B.1
B.2
B.3
B.4
B.5
B.6
B.7
B.8

The sections in the appendices, indicated in dark gray, should
be presented in class when they are referred to in the
boxes at the starts of sections. If at all possible, Section
A.4.5, on generalized functions, should be done while
doing Section 4.3, thus allowing the inclusion of 4.4.4.

Figure 3. An outline for a one-year course with a mathematical emphasis.
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The chart in Figure 3 gives suggestions for a full-year course with an engineering em-
phasis. As before, this material should be supplemented with more applied material coming
from, for example [76] or [6].

1

1.1
1.1.1
1.1.2
1.2
1.2.1
1.2.2
1.2.3
1.2.4
1.3

2

2.1
2.1.1
2.1.2
2.2
2.3
2.3.1
2.3.2
2.4

3

3.1
3.1.1
3.2
3.3
3.4
3.4.1
3.4.2
3.4.3
3.5
3.5.1
3.5.2
3.5.3
3.6

4

4.1
4.2
4.2.1
4.2.2
4.2.3
4.2.4
4.2.5
4.2.6
4.3
4.3.1
4.3.2
4.4
4.4.1
4.4.2
4.4.3
4.4.4
4.5
4.5.1
4.5.2
4.5.3
4.5.4
4.5.5
4.6

5

5.1
5.1.1
5.1.2
5.1.3
5.2
5.2.1
5.2.2
5.2.3
5.2.4
5.3
5.3.1
5.3.2
5.4

6

6.1
6.2
6.2.1
6.2.2
6.2.3
6.2.4
6.2.5
6.3
6.3.1
6.3.2
6.4
6.4.1
6.5
6.6
6.6.1
6.6.2
6.7
6.8
6.9

7

7.1
7.2
7.2.1
7.2.2
7.3
7.3.1
7.3.2
7.3.3
7.3.4
7.4
7.4.1
7.4.2
7.5
7.5.1
7.5.2
7.5.3
7.5.4
7.6
7.7
7.7.1
7.8

8

8.1
8.1.1
8.1.2
8.2
8.2.1
8.2.2
8.2.3
8.3
8.4
8.5
8.6

9

9.1
9.1.1
9.1.2
9.1.3
9.1.4
9.1.5
9.1.6
9.1.7
9.1.8
9.1.9
9.1.10
9.1.11
9.2
9.2.1
9.2.2
9.3
9.3.1
9.3.2
9.4
9.4.1
9.4.2
9.5

10

10.1
10.2
10.2.1
10.2.2
10.2.3
10.3
10.3.1
10.4
10.4.1
10.4.2
10.4.3
10.5
10.6

11

11.1
11.2
11.3
11.3.1
11.3.2
11.3.3
11.3.4
11.3.5
11.4
11.4.1
11.4.2
11.4.3
11.4.4
11.4.5
11.5
11.6
11.7
11.8

12

12.1
12.1.1
12.1.2
12.1.3
12.2
12.2.1
12.2.2
12.3
12.3.1
12.3.2
12.4
12.4.1
12.4.2
12.4.3
12.5
12.6

13

13.1
13.2
13.3
13.4
13.4.1
13.4.2
13.5

15

15.1
15.1.1
15.1.2
15.1.3
15.1.4
15.1.5
15.2
15.2.1
15.2.2
15.2.3
15.2.4
15.2.5
15.3
15.3.1
15.3.2
15.3.3
15.4
15.4.1
15.4.2
15.5
15.6

16

16.1
16.1.1
16.1.2
16.2
16.2.1
16.2.2
16.2.3
16.2.4
16.2.5
16.4
16.4.1
16.4.2
16.4.3
16.4.4
16.5

17

17.1
17.2
17.2.1
17.2.2
17.2.3
17.2.4
17.3
17.3.1
17.3.2
17.3.3
17.3.4
17.3.5
17.4
17.4.1
17.4.2
17.4.3
17.5
17.6

A

A.1
A.1.1
A.1.2
A.1.3
A.1.4
A.2
A.2.1
A.2.2
A.2.3
A.2.4
A.2.5
A.2.6
A.3
A.3.1
A.3.2
A.3.3
A.4
A.4.1
A.4.2
A.4.3
A.4.4
A.4.5
A.4.6
A.5
A.5.1
A.5.2
A.6
A.6.1
A.6.2

Either 9.4.1 or 9.4.2 should be presented in class with the
other assigned as reading. If at all possible, the material in
A.4.4 and A.4.5 should be presented in class. The medium gray
sections of Chapters 15 and 17 should be outlined
in class and assigned as reading. Section A.3.3 should be
presented when the material is called for in the text.

Figure 4. An outline for a one-year course with an engineering emphasis.
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DEFINITIONS: A
d= B the expression appearing on the right defines the symbol on the

left.

SETS: {A : P} d= the set of elements A satisfying property P.

CARTESIAN PRODUCT: A× B
d= the set of ordered pairs (a, b), where a belongs to the

set A and b to the set B.

REPEATED CARTESIAN PRODUCT: An d= the set of ordered n-tuples (a1, . . . , an), where
the ai belong to the set A.

THE NATURAL NUMBERS: �.

THE INTEGERS: �.

THE RATIONAL NUMBERS: �.

THE REAL NUMBERS: �.

THE COMPLEX NUMBERS: �.

MULTI-INDEX NOTATION: If j = ( j1, . . . , jn) is an n-vector of integers and x =
(x1, . . . , xn) is an n-vector, then

x j d= x j1
1 · · · x jn

n .

THE GREATEST INTEGER FUNCTION: For a real number x, [[[x]]] d= the largest integer
smaller than or equal to x .

INTERVALS: If a and b are real numbers with a ≤ b, then

(a, b)
d= {x ∈ � : a < x < b} an open interval,

[a, b)
d= {x ∈ � : a ≤ x < b} a half-open interval,

(a, b] d= {x ∈ � : a < x ≤ b} a half-open interval,

[a, b] d= {x ∈ � : a ≤ x ≤ b} a closed interval.

xxxi
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(−∞,∞)
d= �,

(a,∞)
d= {x ∈ � : a < x < ∞} an open positive half-ray,

[a,∞)
d= {x ∈ � : a ≤ x < ∞} a closed positive half-ray,

(−∞, b)
d= {x ∈ � : −∞ < x < b} an open negative half-ray,

(−∞, b] d= {x ∈ � : −∞ < x ≤ b} a closed negative half-ray.

THE EUCLIDEAN NORM: ‖(x1, . . . , xn)‖2
d=
√∑n

j=1 x2
j .

THE n-DIMENSIONAL UNIT SPHERE: Sn d= {x ∈ �n+1 : ‖x‖2 = 1}.
BALLS IN �n : If a ∈ �n and r is a positive number then

Br(a) = {x ∈ �n : ‖x − a‖ < r}.
The ball of radius r centered at (0, . . . , 0) is often denoted Br .

SEQUENCES: < · > angle brackets enclose the elements of a sequence, for example,
< xn > .

INNER PRODUCTS: 〈x, y〉 is the inner product of the vectors x and y.

KRONECKER DELTA: δi j
d= a square matrix with δii = 1 and δi j = 0 if i 	= j.

CONTINUOUS FUNCTIONS: �0(A)
d= the set of continuous functions defined on the set

A.

DIFFERENTIABLE FUNCTIONS: �k(A)
d= the set of k-times continuously differentiable

functions defined on the set A.

SMOOTH FUNCTIONS: �∞(A)
d= the set of infinitely differentiable functions defined

on the set A.

DERIVATIVES: If f is a function of the variable x then the first derivative is denoted,
variously by

f ′, ∂x f, or
d f

dx
.

The j th derivative is denoted by

f [ j ], ∂ j
x f, or

d j f

dx j
.

INTEGRABLE FUNCTIONS: L1(A)
d= the set of absolutely integrable functions defined

on the set A.
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SQUARE-INTEGRABLE FUNCTIONS: L2(A)
d= the set of functions, defined on the set

A, whose square is absolutely integrable.

“BIG OH” NOTATION: A function f is O(g(x)) for x near to x0 if there is an ε > 0 and
a constant M so that

| f (x)| ≤ Mg(x) if |x − x0| < ε.

“LITTLE OH” NOTATION: A function f is o(g(x)) for x near to x0 if

lim
x→x0

| f (x)|
g(x)

= 0.





Chapter 1

Measurements and Modeling

quantitative model of a physical system is expressed in the language of mathematics. A
qualitative model often precedes a quantitative model. For many years clinicians used
medical x-ray images without employing a precise quantitative model. X-rays were thought
of as high frequency ‘light’ with three very useful properties:

1. If x-rays are incident on a human body, some fraction of the incident radiation is
absorbed or scattered, though a sizable fraction is transmitted. The fraction absorbed
or scattered is proportional to the total density of the material encountered. The
overall decrease in the intensity of the x-ray beam is called attenuation.

2. A beam of x-ray light travels in a straight line.

3. X-rays darken photographic film. The opacity of the film is a monotone function of
the incident energy.

Taken together, these properties mean that using x-rays one can “see through” a human
body to obtain a shadow or projection of the internal anatomy on a sheet of film [Fig-
ure 1.1(a)].

This model was adequate given the available technology. In their time, x-ray images
led to a revolution in the practice of medicine because they opened the door to non-invasive
examination of internal anatomy. They are still useful for locating bone fractures, den-
tal caries, and foreign objects, but their ability to visualize soft tissues and more detailed
anatomic structure is limited. There are several reasons for this. The principal difficulty is
that an x-ray image is a two-dimensional representation of a three-dimensional object. In
Figure 1.1(b), the opacity of the film at a point on the film plane is inversely proportional
to an average of the density of the object, measured along the line joining the point to the
x-ray source. This renders it impossible to deduce the spatial ordering in the missing third
dimension.

1
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(a) A old-fashioned chest x-ray image.
(Image provided courtesy of Dr. David
S. Feigin, ENS Sherri Rudinsky, and Dr.
James G. Smirniotopoulos of the Uni-
formed Services University of the Health
Sciences, Dept. of Radiology, Bethesda,
MD.)

Object

X-ray source

Film plane

(b) Depth information is lost in a projection.

Figure 1.1. The world of old fashioned x-rays imaging.

A second problem is connected to the “detector” used in traditional x-ray imaging.
Photographic film is used to record the total energy in the x rays that are transmitted through
the object. Unfortunately film is rather insensitive to x rays. To get a usable image, a light
emitting phosphor is sandwiched with the film. This increases the sensitivity of the overall
“detector,” but even so, large differences in the intensity of the incident x-ray beam produce
small differences in the opacity of film. This means that the contrast between different soft
tissues is poor. Beyond this there are other problems caused by the scattering of x rays and
noise. Because of these limitations a qualitative theory was adequate for the interpretation
of traditional x-ray images.

A desire to improve upon this situation led Alan Cormack, [24], and Godfrey Hounsfield,
[64], to independently develop x-ray tomography or slice imaging. The first step in their
work was to use a quantitative theory for the attenuation of x-rays. Such a theory already
existed and is little more than a quantitative restatement of (1) and (2). It is not needed
for old fashioned x-ray imaging because traditional x-ray images are read “by eye,” and
no further processing is done after the film is developed. Both Cormack and Hounsfield
realized that mathematics could be used to infer three-dimensional anatomic structure from
a large collection of different two-dimensional projections. The possibility for making this
idea work relied on two technological advances:

1. The availability of scintillation crystals to use as detectors

2. Powerful, digital computers to process the tens of thousands of measurements needed
to form a usable image

A detector using a scintillation crystal is about a hundred times more sensitive than photo-
graphic film. Increasing the dynamic range in the basic measurements makes possible much



1.1. Mathematical Modeling 3

finer distinctions. As millions of arithmetic operations are needed for each image, fast com-
puters are a necessity for reconstructing an image from the available measurements. It is an
interesting historical note that the mathematics underlying x-ray tomography was done in
1917 by Johan Radon, [105]. It had been largely forgotten, and both Hounsfield and Cor-
mack worked out solutions to the problem of reconstructing an image from its projections.
Indeed, this problem had arisen and been solved in contexts as diverse as radio astronomy
and statistics.

This book is a detailed exploration of the mathematics that underpins the reconstruc-
tion of images in x-ray tomography. While our emphasis is on understanding these math-
ematical foundations, we constantly return to the practicalities of x-ray tomography. Of
particular interest is the relationship between the mathematical treatment of a problem and
the realities of numerical computation and physical measurement. There are many different
imaging modalities in common use today, such as x-ray computed tomography (CT), mag-
netic resonance imaging (MRI), positron emission tomography (PET), ultrasound, optical
imaging, and electrical impedance imaging. Because each relies on a different physical
principle, each provides different information. In every case the mathematics needed to
process and interpret the data has a large overlap with that used in x-ray CT. We con-
centrate on x-ray CT because of the simplicity of the physical principles underlying the
measurement process. Detailed descriptions of the other modalities can be found in [91],
[76], or [6].

Mathematics is the language in which any quantitative theory or model is eventually
expressed. In this introductory chapter we consider a variety of examples of physical sys-
tems, measurement processes, and the mathematical models used to describe them. These
models illustrate different aspects of more complicated models used in medical imaging.
We define the notion of degrees of freedom and relate it to the dimension of a vector space.
The chapter concludes by analyzing the problem of reconstructing a region in the plane
from measurements of the shadows it casts.

1.1 Mathematical Modeling

The first step in giving a mathematical description of a system is to isolate that system from
the universe in which it sits. While it is no doubt true that a butterfly flapping its wings
in Siberia in midsummer will affect the amount of rainfall in the Amazon rain forest a
decade hence, it is surely a tiny effect, impossible to accurately quantify. A practical model
includes the system of interest and the major influences on it. Small effects are ignored,
though they may come back, as measurement error and noise, to haunt the model. After
the system is isolated, we need to find a collection of numerical parameters that describe its
state. In this generality these parameters are called state variables. In the idealized world
of an isolated system the exact measurement of the state variables uniquely determines the
state of the system. It may happen that the parameters that give a convenient description
of the system are not directly measurable. The mathematical model then describes rela-
tions among the state variables. Using these relations, the state of the system can often
be determined from feasible measurements. A simple example should help clarify these
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abstract-sounding concepts.

Example 1.1.1. Suppose the system is a ball on a rod. For simplicity we assume that the
ball has radius zero. The state of the system is described by (x, y), the coordinates of the
ball. These are the state variables. If the rod is of length r and one end of it is fixed at the
point (0, 0), then the state variables satisfy the relation

x2 + y2 = r2. (1.1)

(x,y)

r

Lineland

Shadow of the ball

Light from below

Light from above

Figure 1.2. A rod of length r casts a shadow on lineland.

Imagine now that one-dimensional creatures, living on the x-axis {y = 0}, can observe
a shadow of the ball, cast by very distant light sources so that the rays of light are perpen-
dicular to the x-axis (Figure 1.2). The line creatures want to predict whether or not the ball
is about to collide with their world. Locating the shadow determines the x-coordinate of
the ball and using equation (1.1) gives

y = ±
√

r2 − x2.

To determine the sign of the y-coordinate requires additional information not available in
the model. On the other hand, this information is adequate if one only wants to predict if the
ball is about to collide with the x-axis. If the x-axis is illuminated by red light from above
and blue light from below, then a ball approaching from below would cast of red shadow
while a ball approaching from above would cast a blue shadow. With these additional data,
the location of the ball is completely determined.
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Ordered pairs of real numbers, {(x, y)}, are the state variables for the system in Ex-
ample 1.1.1. Because of the constraint (1.1), not every pair defines a state of this system.
Generally we define the state space to be values of state variables which correspond to ac-
tual states of the system. The state space in Example 1.1.1 is the circle of radius r centered
at (0, 0).

Exercises
Exercise 1.1.1. Suppose that in Example 1.1.1 light sources are located at (0,±R). What
is the relationship between the x-coordinate and the shadow?

Exercise 1.1.2. Suppose that in Example 1.1.1 the ball is tethered to (0, 0) by a string of
length r. What relations do the state variables (x, y) satisfy? Is there a measurement the
line creatures can make to determine the location of the ball? What is the state space for
this system?

Exercise 1.1.3. Suppose that the ball is untethered but is constrained to lie in the region
{(x, y) : 0 ≤ y < R}. Assume that the points {(x1, y1), (x2, y2), (x3, y3)} do not lie on
a line and have y j > R. Show that the shadows cast on the line y = 0 by light sources
located at these three points determine the location of the ball. Find a formula for (x, y) in
terms of the shadow locations. Why are three sources needed?

1.1.1 Finitely Many Degrees of Freedom

See: A.1, B.3, B.4, B.5.

The collection of ordered n-tuples of real numbers

{(x1, . . . , xn) : x j ∈ �, j = 1, . . . , n}
is called Euclidean n-space and is denoted by �n. We often use boldface letters x, y to
denote points in �n, which we sometimes call vectors. Recall that if x = (x1, . . . , xn) and
y = (y1, . . . , yn), then their sum x + y is defined by

x + y = (x1 + y1, . . . , xn + yn), (1.2)

and if a ∈ �, then ax is defined by

ax = (ax1, . . . , axn). (1.3)

These two operations make �n into a real vector space.

Definition 1.1.1. If the state of a system is described by a finite collection of real numbers,
then the system has finitely many degrees of freedom.
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Euclidean n-space is the simplest state space for a system with n degrees of freedom.
Most systems encountered in elementary physics and engineering have finitely many de-
grees of freedom. Suppose that the state of a system is specified by a point x ∈ �n. Then
the mathematical model is expressed as relations that these variables satisfy. These often
take the form of functional relations,

f1(x1, . . . , xn) = 0
...

...
fm(x1, . . . , xn) = 0.

(1.4)

In addition to conditions like those in (1.4) the parameters describing the state of a system
might also satisfy inequalities of the form

g1(x1, . . . , xn) ≥ 0
...

...
gl(x1, . . . , xn) ≥ 0.

(1.5)

The state space for the system is then the subset of �n consisting of solutions to (1.4) which
also satisfy (1.5).

Definition 1.1.2. An equation or inequality that must be satisfied by a point belonging to
the state space of a system is called a constraint.

Example 1.1.1 considers a system with one degree of freedom. The state space for this
system is the subset of �2 consisting of points satisfying (1.1). If the state variables satisfy
constraints, then this generally reduces the number of degrees of freedom.

A function f : �n → � is linear if it satisfies the conditions

f (x + y) = f (x)+ f (y) for all x, y ∈ �n and

f (ax) = a f (x) for all a ∈ � and x ∈ �n.
(1.6)

Recall that the dot or inner product is the map from �n × �n → � defined by

〈x, y〉 =
n∑

j=1

x j y j . (1.7)

Sometimes it is denoted by x · y. The Euclidean length of x ∈ �n is defined to be

‖x‖ = √〈x, x〉 =
⎡⎣ n∑

j=1

x2
j

⎤⎦
1
2

. (1.8)

From the definition it is easy to establish that

〈x, y〉 = 〈y, x〉 for all x, y ∈ �n,

〈ax, y〉 = a〈x, y〉 for all a ∈ � and x ∈ �n,

〈x1 + x2, y〉 = 〈x1, y〉 + 〈x2, y〉 for all x1, x2, y ∈ �n.

‖cx‖ = |c|‖x‖ for all c ∈ � and x ∈ �n.

(1.9)
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For y a point in �n, define the function f y(x) = 〈x, y〉. The second and third relations
in (1.9) show that f y is linear. Indeed, every linear function has a such a representation.

Proposition 1.1.1. If f : �n → � is a linear function, then there is a unique vector y f
such that f (x) = 〈x, y f 〉.
This fact is proved in Exercise 1.1.5. The inner product satisfies a basic inequality called
the Cauchy-Schwarz inequality.

Proposition 1.1.2 (Cauchy-Schwarz inequality). If x, y ∈ �n, then

|〈x, y〉| ≤ ‖x‖‖y‖. (1.10)

A proof of this result is outlined in Exercise 1.1.6. The Cauchy-Schwarz inequality
shows that if neither x nor y is zero, then

−1 ≤ 〈x, y〉
‖x‖‖y‖ ≤ 1;

this in turn allows us the define the angle between two vectors.

Definition 1.1.3. If x, y ∈ �n are both nonvanishing, then the angle θ ∈ [0, π ], between x
and y is defined by

cos θ = 〈x, y〉
‖x‖‖y‖ . (1.11)

In particular, two vector are orthogonal if 〈x, y〉 = 0.

The Cauchy-Schwarz inequality implies that the Euclidean length satisfies the triangle
inequality.

Proposition 1.1.3. For x, y ∈ �n, the following inequality holds:

‖x + y‖ ≤ ‖x‖ + ‖y‖. (1.12)

This is called the triangle inequality.

Remark 1.1.1. The Euclidean length is an example of a norm on �n. A real-valued function
N defined on �n is a norm provided it satisfies the following conditions:

NON-DEGENERACY:
N(x) = 0 if and only if x = 0,

HOMOGENEITY:
N(ax) = |a|N(x) for all a ∈ � and x ∈ �n,

THE TRIANGLE INEQUALITY:
N(x + y) ≤ N(x)+ N(y) for all x, y ∈ �n.
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Any norm provides a way to measure distances. The distance between x and y is defined
to be

dN (x, y)
d= N(x − y).

Suppose that the state of a system is specified by a point in �n subject to the constraints
in (1.4). If all the functions { f1, . . . , fm} are linear, then we say that this is a linear model.
This is the simplest type of model and also the most common in applications. In this case
the set of solutions to (1.4) is a subspace of �n. We recall the definition.

Definition 1.1.4. A subset S ⊂ �n is a subspace if

1. the zero vector belongs to S,

2. x1, x2 ∈ S, then x1 + x2 ∈ S,

3. if c ∈ � and x ∈ S, then cx ∈ S.

For a linear model it is a simple matter to determine the number of degrees of freedom.
Suppose the state space consists of vectors satisfying a single linear equation. In light of
Proposition 1.1.1, it can be expressed in the form

〈a1, x〉 = 0, (1.13)

with a1 a nonzero vector. This is the equation of a hyperplane in �n. The solutions to (1.13)
are the vectors in �n orthogonal to a1. Recall the following definition:

Definition 1.1.5. The vectors {v1, . . . , vk} are linearly independent if the only linear combi-
nation, c1v1+· · ·+ckvk, that vanishes has all its coefficients, {ci}, equal to zero. Otherwise
the vectors are linearly dependent.

The dimension of a subspace of �n can now be defined.

Definition 1.1.6. Let S ⊂ �n be a subspace. If there is a set of k linearly independent
vectors contained in S but any set with k + 1 or more vectors is linearly dependent, then
the dimension of S equals k. In this case we write dim S = k.

There is a collection of (n − 1) linearly independent n-vectors {v1, . . . , vn−1} so that
〈a1, x〉 = 0 if and only if

x =
n−1∑
i=1

civi .

The hyperplane has dimension n − 1, and therefore a system described by a single linear
equation has n − 1 degrees of freedom. The general case is not much harder. Suppose that
the state space is the solution set of the system of linear equations

〈a1, x〉 = 0
...

...
〈am, x〉 = 0.

(1.14)
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Suppose that k ≤ m is the largest number of linearly independent vectors in the collection
{a1, . . . , am}. By renumbering, we can assume that {a1, . . . , ak} are linearly independent,
and for any l > k the vector al is a linear combination of these vectors. Hence if x satisfies

〈ai , x〉 = 0 for 1 ≤ i ≤ k

then it also satisfies 〈al, x〉 = 0 for any l greater than k. The argument in the previous
paragraph can be applied recursively to conclude that there is a collection of n − k linearly
independent vectors {u1, . . . , un−k} so that x solves (1.14) if and only if

x =
n−k∑
i=1

ci ui .

Thus the system has n − k degrees of freedom.
A nonlinear model can often be approximated by a linear model. If f is a differentiable

function, then the gradient of f at x is defined to be

∇ f (x) =
(

∂ f

∂x1
(x), . . . ,

∂ f

∂xn
(x)
)
.

From the definition of the derivative it follows that

f (x0 + x1) = f (x0)+ 〈x1,∇ f (x0)〉 + e(x1), (1.15)

where the error e(x1) satisfies

lim
x1→0

|e(x1)|
‖x1‖ = 0.

In this case we write
f (x0 + x1) ≈ f (x0)+ 〈x1,∇ f (x0)〉. (1.16)

Suppose that the functions in (1.4) are differentiable and f j (x0) = 0 for j = 1, . . . ,m.
Then

f j (x0 + x1) ≈ 〈x1,∇ f j (x0)〉.
For small values of x1 the system of equations (1.4) can be approximated, near to x0, by a
system of linear equations,

〈x1,∇ f1(x0)〉 = 0
...

...
〈x1,∇ fm(x0)〉 = 0.

(1.17)

This provides a linear model that approximates the non-linear model. The accuracy of this
approximation depends, in a subtle way, on the collection of vectors {∇ f j(x)}, for x near
to x0. The simplest situation is when these vectors are linearly independent at x0. In this
case the solutions to

f j (x0 + x1) = 0, j = 1, . . . ,m,
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are well approximated, for small x1, by the solutions of (1.17). This is a consequence of
the implicit function theorem; see [119].

Often the state variables for a system are divided into two sets, the input variables,
(w1, . . . , wk), and output variables, (z1, . . . , zm), with constraints rewritten in the form

F1(w1, . . . , wk) = z1
...

...
Fm(w1, . . . , wk) = zm.

(1.18)

The output variables are thought of as being measured; the remaining variables must then
be determined by solving this system of equations. For a linear model this amounts to
solving a system of linear equations. We now consider some examples of physical systems
and their mathematical models.

Example 1.1.2. We would like to find the height of a mountain without climbing it. To that
end, the distance x between the point P and the base of the mountain, as well as the angle
θ, are measured (Figure 1.3). If x and θ are measured exactly, then the height, h, of the
mountain is given by

h(x, θ) = x tan θ. (1.19)

Measurements are never exact; using the model and elementary calculus, we can relate
the error in the measurement θ to the error in the computed value of h. Suppose that x is
measured exactly but there is an uncertainty �θ in the value of θ. Equation (1.16) gives the
linear approximation

h(x, θ +�θ)− h(x, θ) ≈ ∂h

∂θ
(x, θ)�θ.

As ∂θh = x sec2 θ, the height, hm, predicted from the measurement of the angle is given
by

hm = x tan(θ +�θ) ≈ x(tan θ + sec2 θ�θ).

The approximate value of the absolute error is

hm − h ≈ x
�θ

cos2 θ
.

The absolute error is a number with the same units as h; in general, it is not an inter-
esting quantity. If, for example, the true measurement were 10,000 m, then an error of size
1 m would not be too significant. If the true measurement were 2 m, then this error would
be significant. To avoid this obvious pitfall, we normally consider the relative error. In this
problem the relative error is

hm − h

h
= �θ

cos2 θ tan θ
= �θ

sin θ cos θ
.

Generally the relative error is the absolute error divided by the correct value. It is a dimen-
sionless quantity that gives a quantitative assessment of the accuracy of the measurement.
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P

x

hθ

Figure 1.3. Using trigonometry to find the height of a mountain.

If the angle θ is measured from a point too near to or too far from the mountain (i.e., θ
is very close to 0 or π/2), then small measurement errors result in a substantial loss of
accuracy. A useful feature of a precise mathematical model is the possibility of estimating
how errors in measurement affect the accuracy of the parameters we wish to determine. In
Exercise 1.1.13 we consider how to estimate the error entailed in using a linear approxima-
tion.

Example 1.1.3. In a real situation we cannot measure the distance to the base of the moun-
tain. Suppose that we measure the angles, θ1 and θ2, from two different points, P1 and P2,
as well as the distance x2 − x1 between the two points, as shown in Figure 1.4.

P1

P2 1

h

x2

x1

θ 2 θ

Figure 1.4. A more realistic measurement.

From the previous example we know that

h = x1 tan θ1,

h = x2 tan θ2.
(1.20)

Using these equations and elementary trigonometry, we deduce that

x1 = x2 − x1[
tan θ1
tan θ2

− 1
] , (1.21)
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which implies that

h = x1 tan θ1

= (x2 − x1)
sin θ1 sin θ2

sin(θ1 − θ2)
.

(1.22)

Thus h can be determined from θ1, θ2 and x2 − x1. With d = x2 − x1, equation (1.22)
expresses h as a function of (d, θ1, θ2). At the beginning of this example, (x1, θ1, x2, θ2, h)
were the state variables describing our system; by the end we used (d, θ1, θ2, h). The first
three are directly measurable, and the last is an explicit function of the others. The models
in this and the previous example, as expressed by equations (1.22) and (1.19), respectively,
are nonlinear models.

In this example there are many different ways that the model may fail to capture impor-
tant features of the physical situation. We now consider a few potential problems.

1. If the shape of a mountain looks like that in Figure 1.5 and we measure the distance
and angle at the point P , we are certainly not finding the real height of the mountain.
Some a priori information is always incorporated in a mathematical model.

P

Figure 1.5. Not exactly what we predicted!

2. The curvature of the earth is ignored. A more sophisticated geometric model is
needed to correct for such errors. This becomes a significant problem as soon as the
distances, x, x1, x2, are large compared to the distance to the horizon (about 25 km
for a 2-meter-tall person). The approximations used in the model must be adapted to
the actual physical conditions of the measurements.

3. The geometry of the underlying measurements could be quite different from the sim-
ple Euclidean geometry used in the model. To measure the angles θ1, θ2, we would
normally use a transit to sight the peak of the mountain. If the mountain is far away,
then the light traveling from the mountain to the transit passes through air of varying
density. The light is refracted by the air and therefore the ray path is not a straight
line, as assumed in the model. To include this effect would vastly complicate the
model. This is an important consideration in the similar problem of creating a map
of the sky from earth based observations of stars and planets.

Analogous problems arise in medical imaging. If the wavelength of the energy used
to probe the human anatomy is very small compared to the size of the structures that are
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present, then it is reasonable to assume that the waves are not refracted. For example, x-rays
can be assumed to travel along straight lines. For energies with wavelengths comparable to
the size of structures present in the human anatomy, this assumption is simply wrong. The
waves are then bent and diffracted by the medium, and the difficulty of modeling the ray
paths is considerable. This is an important issue in ultrasound imaging that remains largely
unresolved.

Example 1.1.4. Refraction provides another example of a simple physical system. Suppose
that we have two fluids in a tank, as shown in Figure 1.6, and would like to determine the
height of the interface between them. Suppose that the refractive indices of the fluids are
known. Let n1 be the refractive index of the upper fluid and n2 the refractive index of the
lower one. Snell’s law states that

sin(θ1)

sin(θ2)
= n2

n1
.

Let h denote the total height of the fluid; then

h

h

n

n

1 1

2

l

θ

θ

1

2 2

Figure 1.6. Using refraction to determine the height of an interface.

h1 + h2 = h.

The measurement we make is the total displacement, l, of the light ray as it passes through
the fluids. It satisfies the relationship

h1 tan(θ1)+ h2 tan(θ2) = l.

The heights h1 and h2 are easily determined from these three formulæ. The assumption
that we know n1 implies, by Snell’s law, that we can determine θ1 from a measurement of
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the angle of the light ray above the fluid. If n2 is also known, then using these observations
we can determine θ2 as well:

sin(θ2) = n1

n2
sin(θ1).

The pair (h1, h2) satisfies the 2 × 2 linear system(
1 1

tan(θ1) tan(θ2)

)(
h1

h2

)
=
(

h
l

)
. (1.23)

In Example 2.1.1 we consider a slightly more realistic situation where the refractive index
of the lower fluid in not known. By using more measurements, n2 can also be determined.

Exercises
Exercise 1.1.4. Prove the formulæ in (1.9).

Exercise 1.1.5. Let e j ∈ �n, j = 1, . . . , n denote the vector with a 1 in the j th place and
otherwise zero,

e1 = (1, 0, 0, . . . , 0), e2 = (0, 1, 0, . . . , 0), . . . , en = (0, . . . , 0, 1).

1. Show that if x = (x1, . . . , xn), then

x =
n∑

j=1

x j e j .

2. Use the previous part to prove the existence statement in Proposition 1.1.1; that is,
show that there is a vector y f so that f (x) = 〈x, y f 〉. Give a formula for y f .

3. Show that the uniqueness part of the proposition is equivalent to the statement “If
y ∈ �n satisfies

〈x, y〉 = 0 for all x ∈ �n,

then y = 0.” Prove this statement.

Exercise 1.1.6. In this exercise we use calculus to prove the Cauchy-Schwarz inequality.
Let x, y ∈ �n be nonzero vectors. Define the function

F(t) = 〈x + t y, x + t y〉.
Use calculus to find the value of t, where F assumes its minimum value. By using the fact
that F(t) ≥ 0 for all t, deduce the Cauchy-Schwarz inequality.

Exercise 1.1.7. Show that (1.12) is a consequence of the Cauchy-Schwarz inequality. Hint:
Consider ‖x + y‖2.
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Exercise 1.1.8. Define a real-valued function on �n by setting

N(x) = max{|x1|, . . . , |xn|}.
Show that N defines a norm.

Exercise 1.1.9. Let N be a norm on �n and define d(x, y) = N(x − y). Show that for any
triple of points x1, x2, x3, the following estimate holds:

d(x1, x3) ≤ d(x1, x2)+ d(x2, x3).

Explain why this is also called the triangle inequality.

Exercise 1.1.10. Let S ⊂ �n be a subspace of dimension k. Show that there exists a collec-
tion of vectors {v1, . . . , vk} ⊂ S such that every vector x ∈ S has a unique representation
of the form

x = c1v1 + · · · + ckvk .

Exercise 1.1.11. Let a be a nonzero n-vector. Show that there is a collection of n − 1
linearly independent n-vectors, {v1, . . . , vn−1}, so that x solves 〈a, x〉 = 0 if and only if

x =
n−1∑
i=1

civi

for some real constants {c1, . . . , cn−1}.
Exercise 1.1.12. Let {a1, . . . , ak} be linearly independent n-vectors. Show that there is a
collection of n − k linearly independent n-vectors, {v1, . . . , vn−k}, so that x solves

〈a j , x〉 = 0 for j = 1, . . . , k

if and only if

x =
n−k∑
i=1

civi

for some real constants {c1, . . . , cn−k}. Hint: Use the previous exercise and an induction
argument.

Exercise 1.1.13. If a function f has two derivatives, then Taylor’s theorem gives a formula
for the error e(y) = f (x + y) − [ f (x) + f ′(x)y]. There exists a z between 0 and y such
that

e(z) = f ′′(z)y2

2
;

see (B.13). Use this formula to bound the error made in replacing h(x, θ + �θ) with
h(x, θ) + ∂θh(x, θ)�θ. Hint: Find the value of z between 0 and �θ that maximizes the
error term.

Exercise 1.1.14. In Example 1.1.3 compute the gradient of h to determine how the absolute
and relative errors depend on θ1, θ2, and d.
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1.1.2 Infinitely Many Degrees of Freedom

See: A.3, A.5.

In the previous section we examined some simple physical systems with finitely many
degrees of freedom. In these examples, the problem of determining the state of the sys-
tem from feasible measurements reduces to solving systems of finitely many equations in
finitely many unknowns. In imaging applications the state of a system is usually described
by a function or functions of continuous variables. These systems have infinitely many
degrees of freedom. In this section we consider several examples.

l
lout

in
Hidden object

Particle trajectory

Figure 1.7. Particle scattering can be used to explore the boundary of an unknown region.

Example 1.1.5. Suppose that we would like to determine the shape of a planar region,
D, that cannot be seen. The object is lying inside a disk and we can fire particles at the
object. Assume that the particles bounce off according to a simple scattering process. Each
particle strikes the object once and is then scattered along a straight line off to infinity
(Figure 1.7). The outline of the object can be determined by knowing the correspondence
between incoming lines, lin, and outgoing lines, lout. Each intersection point lin ∩ lout lies
on the boundary of the object. Measuring {l j

out} for finitely many incoming directions {l j
in}

determines finitely many points {l j
in ∩ l j

out} on the boundary of D. In order to use this finite
collection of points to make any assertions about the rest of the boundary of D, more
information is required. If we know that D consists of a single piece or component, then
these points would lie on a single closed curve, though it might be difficult to decide in what
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order they should appear on the curve. On the other hand, these measurements provide a
lot of information about convex regions.

Definition 1.1.7.� A region D in the plane is convex if it has the following property: For
each pair of points p and q lying in D, the line segment pq is also contained in D. See
Figure 1.8.

D
p

q

(a) A convex region

p

q

(b) A non-convex region

Figure 1.8. Convex and non-convex regions.

Convex regions have many special properties. If p and q are on the boundary of D,
then the line segment pq lies inside of D. From this observation we can show that if
{p1, . . . , pN } are points on the boundary of a convex region, then the smallest polygon
with these points as vertices lies entirely within D [Figure 1.9(a)]. Convexity can also be
defined by a property of the boundary of D : For each point p on the boundary of D there is
a line l p that passes through p but is otherwise disjoint from D. This line is called a support
line through p. If the boundary is smooth at p, then the tangent line to the boundary is the
unique support line. A line divides the plane into two half-planes. Let l p be a support line to
D at p. Since the interior of D does not meet l p it must lie entirely in one of the half-planes
determined by this line [see Figure 1.9(b)]. If each support line meets the boundary of D
at exactly one point, then the region is strictly convex.
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(a) Joining the vertices ly-
ing on the boundary of a
convex region defines an
inscribed polygon.

A support  line

The half-space
containing 

D

.

D

(b) A support line and half-
space.

convex but
not strictly convex

region

Many support lines

A

(c) A triangle bounds a convex
region that is not strictly con-
vex.

Figure 1.9. Inscribed polygons and support lines.

Example 1.1.6. A triangle is the boundary of a convex region, with each edge of the triangle
a support line. As infinitely many points of the boundary belong to each edge, the region
bounded by a triangle in not strictly convex. On the other hand, through each vertex of
the triangle, there are infinitely many support lines. These observations are illustrated in
Figure 1.9(c).

Suppose that the object is convex and more is known about the scattering process:
for example, that the angle of incidence is equal to the angle of reflection. From a finite
number of incoming and outgoing pairs, {(l i

in, l i
out) : i = 1, . . . , N}, we can now determine

an approximation to D with an estimate for the error. The intersection points, pi = l i
in ∩ l i

out
lie on the boundary of the convex region, D. If we use these points as the vertices of a
polygon P in

N , then, as remarked previously, P in
N is completely contained within D. On the

other hand, as the angle of incidence equals the angle of reflection, we can also determine
the tangent lines {l pi } to the boundary of D at the points {pi }. These lines are support lines
for D. Hence by intersecting the half-planes that contain D, defined by these tangent lines,
we obtain another convex polygon, Pout

N , that contains D. Thus with these N -measurements
we obtain the both an inner and outer approximation to D :

P in
N ⊂ D ⊂ Pout

N .

An example is shown in Figure 1.10.
A convex region is determined by its boundary, and each point on the boundary is, in

effect, a state variable. Therefore, the collection of convex regions is a system with infinitely
many degrees of freedom. A nice description for the state space of smooth convex regions
is developed in Section 1.2.2. As we have seen, a convex region can be approximated
by polygons. Once the number of sides is fixed, then we are again considering a system
with finitely many degrees of freedom. In all practical problems, a system with infinitely
many degrees of freedom must eventually be approximated by a system with finitely many
degrees of freedom.

Remark 1.1.1. For a non-convex body, the preceding method does not work as the corre-
spondence between incoming and outgoing lines can be complicated: Some incoming lines
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may undergo multiple reflections before escaping, and in fact some lines might become
permanently trapped.

Figure 1.10. An inner and an outer approximation to a convex region.

Exercises
Exercise 1.1.15. Find state variables to describe the set of polygons with n-vertices in the
plane. For the case of triangles, find the relations satisfied by your variables. Extra credit:
Find a condition, in terms of your parameters, implying that the polygon is convex.

Exercise 1.1.16. Suppose that D1 and D2 are convex regions in the plane. Show that their
intersection D1 ∩ D2 is also a convex region.

Exercise 1.1.17.∗ Suppose that D is a possibly non-convex region in the plane. Define a
new region D′ as the intersection of all the half-planes that contain D. Show that D = D′
if and only if D is convex.

Exercise 1.1.18. Find an example of a planar region such that at least one particle trajectory
is trapped forever.

1.2 A Simple Model Problem for Image Reconstruction

The problem of image reconstruction in x-ray tomography is sometimes described as re-
constructing an object from its “projections.” Of course, these are projections under the
illumination of x-ray “light.” In this section we consider the analogous but simpler prob-
lem of determining the outline of a convex object from its shadows. As is also the case in
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medical applications, we consider a two-dimensional problem. Let D be a convex region
in the plane. Imagine that a light source is placed very far from D. Since the light source
is very far away, the rays of light are all traveling in essentially the same direction. We
can think of them as a collection of parallel lines. We want to measure the shadow that
D casts for each position of the light source. To describe the measurements imagine that
a screen is placed on the “other side” of D perpendicular to the direction of the light rays
(Figure 1.11). In a real apparatus sensors would be placed on the screen, allowing us to
determine where the shadow begins and ends.

D

shadow

Figure 1.11. The shadow of a convex region.

The region, D, blocks a certain collection of light rays and allows the rest to pass.
Locating the shadow amounts to determining the “first” and “last” lines in this family of
parallel lines to intersect D. To describe the object completely, we need to rotate the source
and detector through π radians, measuring, at each angle, where the shadow begins and
ends.

The first and last lines to intersect a region just meet it along its boundary. These lines
are therefore tangent to the boundary of D. The problem of reconstructing a region from
its shadows is mathematically the same as the problem of reconstructing a region from a
knowledge of the tangent lines to its boundary. As a first step in this direction we need a
good way to organize our measurements. To that end we give a description for the space of
lines in the plane.

1.2.1 The Space of Lines in the Plane�

A line in the plane is a set of points that satisfies an equation of the form

ax + by = c,
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where a2 + b2 	= 0. We could use (a, b, c) to parameterize the set of lines, but note that we
get the same set of points if we replace this equation by

a√
a2 + b2

x + b√
a2 + b2

y = c√
a2 + b2

.

The coefficients ( a√
a2+b2

, b√
a2+b2

) define a point ω on the unit circle, S1 ⊂ �2, and the

constant c√
a2+b2

can be any number. The lines in the plane are parameterized by a pair

consisting of a unit vector
ω = (ω1, ω2)

and a real number t. The line lt,ω is the set of points in �2 satisfying the equation

〈(x, y),ω〉 = t. (1.24)

The vector ω is perpendicular to this line (Figure 1.12).
It is often convenient to parameterize the points on the unit circle by a real number; to

that end we set
ω(θ) = (cos(θ), sin(θ)). (1.25)

Since cos and sin are 2π -periodic, it clear that ω(θ) and ω(θ + 2π) are the same point on

the unit circle. Using this parameterization for points on the circle, the line lt,θ
d= lt,ω(θ) is

the set of solutions to the equation

〈(x, y), (cos(θ), sin(θ))〉 = t.

Both notations for lines and points on the circle are used in the sequel.
While the parameterization provided by (t,ω) is much more efficient than that provided

by (a, b, c), note that the set of points satisfying (1.24) is unchanged if (t,ω) is replaced
by (−t,−ω). Thus, as sets,

lt,ω = l−t,−ω. (1.26)

It is not difficult to show that if lt1,ω1 = lt2,ω2 then either t1 = t2 and ω1 = ω2 or t1 = −t2
and ω1 = −ω2.

The pair (t,ω) actually specifies an oriented line. That is, we can use these data to
define the positive direction along the line. The vector

ω̂ = (−ω2, ω1)

is perpendicular to ω and is therefore parallel to lt,ω. In fact, ω̂ and −ω̂ are both unit vectors
that are parallel to lt,ω. The vector ω̂ is selected by using the condition that the 2×2 matrix,(

ω1 −ω2

ω2 ω1

)
,

has determinant +1. The vector ω̂ defines the positive direction or orientation of the line
lt,ω. This explains how the pair (t,ω) determines an oriented line. We summarize these
computations in a proposition.
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Proposition 1.2.1. The pairs (t,ω) ∈ � × S1 are in one-to-one correspondence with the
set of oriented lines in the plane.

t

θ

ω
θ + π /2

ω

lt,ω

^

Unit circle

Figure 1.12. Parameterization of oriented lines in the plane.

The vector ω is the direction orthogonal to the line and the number t is called the affine
parameter of the line; |t| is the distance from the line to the origin of the coordinate system.
The pair (t,ω) defines two half-planes

H+
t,ω = {x ∈ �2 | 〈x,ω〉 > t} and H−

t,ω = {x ∈ �2 | 〈x,ω〉 < t}; (1.27)

the line lt,ω is the common boundary of these half-planes. Facing along the line lt,ω in the
direction specified by ω̂, the half-plane H−

t,ω lies to the left.

Exercises
Exercise 1.2.1.� Show that lt,ω is given parametrically as the set of points

lt,ω = {tω + sω̂ : s ∈ (−∞,∞)}.
Exercise 1.2.2.� Show that if ω = (cos(θ), sin(θ)), then ω̂ = (− sin(θ), cos(θ)), and as a
function of θ :

ω̂(θ) = ∂θω(θ).

Exercise 1.2.3. Suppose that (t,ω) and (t1,ω1) are different points in � × S1 such that
lt1,ω1 = lt2,ω2 . Show that (t1,ω1) = (−t2,−ω2).
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Exercise 1.2.4. Show that

|t| = min{
√

x2 + y2 : (x, y) ∈ lt,ω}.
Exercise 1.2.5. Show that if ω is fixed, then the lines in the family {lt,ω : t ∈ �} are
parallel.

Exercise 1.2.6. Show that every line in the family {lt,ω̂ : t ∈ �} is orthogonal to every line
in the family {lt,ω : t ∈ �}.
Exercise 1.2.7. Each choice of direction ω defines a coordinate system on �2,

(x, y) = tω + sω̂.

Find the inverse, expressing (t, s) as functions of (x, y). Show that the area element in the
plane satisfies

dx dy = dt ds.

1.2.2 Reconstructing an Object from Its Shadows

Now we can quantitatively describe the shadow. Because there are two lines in each family
of parallel lines that are tangent to the boundary of D, we need a way to select one of them.
To do this we choose an orientation for the boundary of D; this operation is familiar from
Green’s theorem in the plane. The positive direction on the boundary is selected so that,
when facing in this direction the region lies to the left; the counterclockwise direction is,
by convention, the positive direction (Figure 1.13).

Fix a source position ω(θ). In the family of parallel lines {lt,ω(θ) : t ∈ �} there are two
values of t, t0 < t1, such that the lines lt0,ω(θ) and lt1,ω(θ) are tangent to the boundary of
D (Figure 1.13). Examining the diagram, it is clear that the orientation of the boundary at
the point of tangency and that of the oriented line agree for lt1,ω, and are opposite for lt0,ω.
Define h D, the shadow function of D, by setting

h D(θ) = t1 and h D(θ + π) = −t0. (1.28)

The shadow function is completely determined by values of θ belonging to an interval of
length π. Because ω(θ) = ω(θ+2π), the shadow function can be regarded as a 2π -periodic
function defined on the whole real line. The mathematical formulation of reconstruction
problem is as follows: Can the boundary of the region D be determined from h D?

As ω(θ) = (cos(θ), sin(θ)), the line lh D(θ),ω(θ) is given parametrically by

{h D(θ)(cos(θ), sin(θ))+ s(− sin(θ), cos(θ)) | s ∈ (−∞,∞)}.
To determine the boundary of D, it would suffice to determine the point of tangency of
lh D(θ),ω(θ) with the boundary of D; in other words, we would like to find the function s(θ)
so that for each θ,

(x(θ), y(θ)) = h D(θ)(cos(θ), sin(θ))+ s(θ)(− sin(θ), cos(θ)) (1.29)
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0

     shadow

D ω

t
1

t

Figure 1.13. The measurement of the shadow.

is a point on the boundary of D. For the remainder of this section we suppose that s is
differentiable.

The function s is found by recalling that, at the point of tangency, the direction of the
tangent line to D is ω̂(θ). For a curve in the plane given parametrically by differentiable
functions (x(θ), y(θ)), the direction of the tangent line is found by differentiating. At
a parameter value θ0 the direction of the tangent line is the same as that of the vector
(x ′(θ0), y′(θ0)). Differentiating the expression given in (1.29) and using the fact that ∂θω =
ω̂, we find that

(x ′(θ), y′(θ)) = (h ′
D(θ)− s(θ))ω(θ)+ (h D(θ)+ s′(θ))ω̂(θ). (1.30)

Since the tangent line at (x(θ), y(θ)) is parallel to ω̂(θ) it follows from (1.30) that

h ′
D(θ)− s(θ) = 0. (1.31)

This gives a parametric representation for the boundary of a convex region in terms of
its shadow function: If the shadow function is h D(θ), then the boundary of D is given
parametrically by

(x(θ), y(θ)) = h D(θ)ω(θ)+ h ′
D(θ)ω̂(θ). (1.32)

Note that we have assumed that D is strictly convex and the h D(θ) is a differentiable func-
tion. This is not always true; for example, if the region D is a polygon, then neither
assumption holds.

Let D denote a convex region and h D its shadow function. We can think of D �→ h D

as a mapping from convex regions in the plane to 2π -periodic functions. It is reasonable
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to enquire if every 2π -periodic function is the shadow function of a convex region. The
answer to this question is no. For strictly convex regions with smooth boundaries, we are
able to characterize the range of this mapping. If h is twice differentiable, then the tangent
vector to the curve defined by

(x(θ), y(θ)) = h(θ)ω(θ) + h ′(θ)ω̂(θ) (1.33)

is given by
(x ′(θ), y′(θ)) = (h ′′(θ)+ h(θ))ω̂(θ).

In our construction of the shadow function, we observed that the tangent vector to the curve
at (x(θ), y(θ)) and the vector ω̂(θ) point in the same direction. From our formula for the
tangent vector, we see that this implies that

h ′′(θ)+ h(θ) > 0 for all θ ∈ [0, 2π ]. (1.34)

This gives a necessary condition for a twice differentiable function h to be the shadow
function for a strictly convex region with a smooth boundary. Mathematically we are de-
termining the range of the map that takes a convex body D ⊂ �2 to its shadow function
h D, under the assumption that h D is twice differentiable. This is a convenient mathemati-
cal assumption, though in an applied context it is likely to be overly restrictive. The state
space of the “system” which consists of strictly convex regions with smooth boundaries is
parameterized by the set of smooth, 2π -periodic functions satisfying the inequality (1.34).
This is an example of a system where the constraint defining the state space is an inequality
rather than an equality.

Exercises
Exercise 1.2.8. Justify the definition of h D(θ+π) in (1.28) by showing that the orientation
of the boundary at the point of tangency with lt0,ω(θ) agrees with that of l−t0,ω(θ+π).

Exercise 1.2.9. Suppose that Dn is a regular n-gon. Determine the shadow function h Dh(θ).

Exercise 1.2.10. Suppose that D is a bounded, convex planar region. Show that the shadow
function h D is a continuous function of θ.

Exercise 1.2.11. Suppose that h is a 2π -periodic, twice differentiable function that satis-
fies (1.34). Show that the curve given by (1.33) is the boundary of a strictly convex region.

Exercise 1.2.12. How is the assumption that D is strictly convex used in the derivation
of (1.31)?

Exercise 1.2.13. If h is a differentiable function, then equation (1.33) defines a curve. By
plotting examples, determine what happens if the condition (1.34) is not satisfied.

Exercise 1.2.14. Suppose that h is a function satisfying (1.34). Show that the area of Dh is
given by the

Area(Dh) = 1

2

2π∫
0

[(h(θ))2 − (h ′(θ))2] dθ.
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Explain why this implies that a function satisfying (1.34) also satisfies the estimate

2π∫
0

(h ′(θ))2dθ <

2π∫
0

(h(θ))2 dθ.

Exercise 1.2.15. Let h be a smooth 2π -periodic function that satisfies (1.34). Prove that the
curvature of the boundary of the region with this shadow function, at the point h(θ)ω(θ)+
h ′(θ)ω̂(θ), is given by

κ(θ) = 1

h(θ)+ h ′′(θ)
. (1.35)

Exercise 1.2.16. Suppose that h is a function satisfying (1.34). Show that another para-
metric representation for the boundary of the region with this shadow function is

θ �→
⎛⎝−

θ∫
0

(h(s) + h ′′(s))sin(s) ds,

θ∫
0

(h(s) + h ′′(s))cos(s) ds

⎞⎠ .

Exercise 1.2.17. In this exercise we determine which positive functions κ defined on S1

are the curvatures of closed strictly convex curves. Prove the following result: A positive
function κ on S1 is the curvature of a closed, strictly convex curve (parameterized by its
tangent direction) if and only if

∞∫
0

sin(s) ds

κ(s)
= 0 =

∞∫
0

cos(s) ds

κ(s)
.

Exercise 1.2.18. Let D be a convex region with shadow function h D. For a vector v ∈ �2,
define the translated region

Dv = {x + v : x ∈ D}.
Find the relation between h D and h Dv . Explain why this answer is inevitable in light of the
formula (1.35) for the curvature.

Exercise 1.2.19. Let D be a convex region with shadow function h D. For a rotation A =(
cosφ − sin φ
sinφ cosφ

)
, define the rotated region

D A = {Ax : x ∈ D}.
Find the relation between h D and h D A .

Exercise 1.2.20.∗ If h1 and h2 are 2π -periodic functions satisfying (1.34) then they are
the shadow functions of convex regions D1 and D2. The sum h1 + h2 also satisfies (1.34)
and so is the shadow function of a convex region, D3. Describe geometrically how D3 is
determined by D1 and D2.

Exercise 1.2.21.∗ Suppose that D is non-convex planar region. The shadow function h D is
defined as before. What information about D is encoded in h D?
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1.2.3 Approximate Reconstructions

See: A.6.2.

In a realistic situation the shadow function is measured at a finite set of angles

{θ1, . . . , θm}.
How can the data, {h D(θ1), . . . , h D(θm)}, be used to construct an approximation to the
region D? We consider two different strategies; each relies on the special geometric prop-
erties of convex regions. Recall that a convex region always lies in one of the half-planes
determined by the support line at any point of its boundary. Since the boundary of D and
lh(θ),ω(θ) have the same orientation at the point of contact, it follows that D lies in each of
the half-planes

H−
h(θ j ),ω(θ j )

, j = 1, . . . ,m;
see (1.27). As D lies in each of these half-planes, it also lies in their intersection. This
defines a convex polygon

Pm =
m⋂

j=1

H−
h(θ j ),ω(θ j )

that contains D. This polygon provides one sort of approximation for D from the measure-
ment of a finite set of shadows. It is a stable approximation to D because small errors in
the measurements of either the angles θ j or the corresponding affine parameters h(θ j) lead
to small changes in the approximating polygon.

The difficulty with using the exact reconstruction formula (1.32) is that h is only known
at finitely many values, {θ j }. From this information it is not possible to compute the exact
values of the derivatives, h ′(θ j ). We could use a finite difference approximation for the
derivative to determine a finite set of points that approximate points on the boundary of D :

(x j , y j ) = h(θ j )ω(θ j )+ h(θ j )− h(θ j+1)

θ j − θ j+1
ω̂(θ j ).

If the measurements were perfect, the boundary of D smooth and the numbers {|θ j −θ j+1|}
small, then the finite difference approximations to h ′(θ j ) would be accurate and these points
would lie close to points on the boundary of D. Joining these points in the given order gives
a polygon, P ′, that approximates D. If {h ′(θ j } could be computed exactly, then P ′ would
be contained in D. With approximate values this cannot be asserted with certainty, though
P ′ should be largely contained within D.

This gives a different way to reconstruct an approximation to D from a finite set of
measurements. This method is not as robust as the first technique because it requires the
measured data to be differentiated. In order for the finite difference h(θ j )−h(θ j+1)

θ j−θ j+1
to be a good

approximation to h ′(θ j ), it is generally necessary for |θ j − θ j+1| to be small. Moreover,
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the errors in the measurements of h(θ j ) and h(θ j+1) must also be small compared to |θ j −
θ j+1|. This difficulty arises in solution of the reconstruction problem in x-ray CT; the exact
reconstruction formula calls for the measured data to be differentiated.

In general, measured data are corrupted by noise, and noise is usually non-differentiable.
This means that the measurements cannot be used directly to approximate the derivatives
of a putative underlying smooth function. This calls for finding a way to improve the ac-
curacy of the measurements. If the errors in individual measurements are random then
repeating the same measurement many times and averaging the results should give a good
approximation to the true value. This is the approach taken in magnetic resonance imag-
ing. Another possibility is to make a large number of measurements at closely spaced
angles {(h j , j�θ) : j = 1, . . . , N}, which are then averaged to give less noisy approx-
imations on a coarser grid. There are many ways to do the averaging. One way is to find
a differentiable function, H, belonging to a family of functions of dimension M < N that
minimizes the square error

e(H ) =
N∑

j=1

(h j − H ( j�θ))2.

For example, H could be taken to be a polynomial of degree M − 1, or a continuously
differentiable, piecewise cubic function. The reconstruction formula can be applied to H
to obtain a different approximation to D. The use of averaging reduces the effects of noise
but fine structure in the boundary is also blurred by any such procedure.

Exercises
Exercise 1.2.22. Suppose that the angles {θ j} can be measured exactly but there is an
uncertainty of size ε in the measurement of the affine parameters, h(θ j ). Find a polygon
Pm,ε that gives the best possible approximation to D and certainly contains D.

Exercise 1.2.23. Suppose that we know that |h ′′(θ)| < M, and the measurement errors
are bounded by ε > 0. For what angle spacing �θ is the error, using a finite difference
approximation for h ′, due to the uncertainty in the measurements equal to that caused by
the nonlinearity of h itself?

1.2.4 Can an Object Be Reconstructed from Its Width?

To measure the location of the shadow requires an expensive detector that can accurately
locate a transition from light to dark. It would be much cheaper to build a device, similar
to the exposure meter in a camera, to measure the length of the shadow region without
determining its precise location. It is therefore an interesting question whether or not the
boundary of a region can be reconstructed from measurements of the widths of its shadows.
Let wD(θ) denote the width of the shadow in direction θ. A moment’s consideration shows
that

wD(θ) = h D(θ)+ h D(θ + π). (1.36)
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Using this formula and Exercise 1.2.11, it is easy to show that wD does not determine D.
From Exercise 1.2.11 we know that if h D has two derivatives such that h ′′

D + h D > 0, then
h D is the shadow function of a strictly convex region. Let e be an odd smooth function [i.e.,
e(θ)+ e(θ + π) ≡ 0] such that

h ′′
D + h D + e′′ + e > 0.

If e 	≡ 0, then h D + e is the shadow function for D′, a different strictly convex region.
Observe that D′ has the same width of shadow for each direction as D; that is,

wD(θ) = (h D(θ) + e(θ))+ (h D(θ + π)+ e(θ + π)) = wD′(θ).

To complete this discussion, note that any function expressible as a series of the form

e(θ) =
∞∑
j=0

[a j sin(2 j + 1)θ + b j cos(2 j + 1)θ]

is an odd function. This is an infinite-dimensional space of functions. This implies that if
wD is the width of the shadow function for a convex region D, then there is an infinite-
dimensional set of regions with the same width of the shadow function. Consequently,
the simpler measurement is inadequate to reconstruct the boundary of a convex region.
Figure 1.14 shows the unit disk and another region that has constant shadow width equal to
2.

Figure 1.14. Two regions of constant width 2.

Exercises
Exercise 1.2.24. Justify the formula (1.36) for the shadow width.

Exercise 1.2.25. Show that the width function satisfies w′′
D + wD > 0.

Exercise 1.2.26. Is it true that every twice differentiable, π -periodic function, w satisfying
w′′ + w > 0 is the width function of a convex domain?
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Exercise 1.2.27. We considered whether or not a convex body is determined by the width
of its shadows in order use a less expensive detector. The cheaper detector can only measure
the width of the covered region. Can you find a way to use a detector that only measures
the length of an illuminated region to locate the edge of the shadow? Hint: Cover only half
of the detector with photosensitive material.

1.3 Conclusion

By considering examples, we have seen how physical systems can be described using math-
ematical models. The problem of determining the state of the system from measurements
is replaced by that of solving equations or systems of equations. It is important to keep in
mind that mathematical models are just models, indeed often toy models. A good model
must satisfy two opposing requirements: The model should accurately depict the system
under study while at the same time being simple enough to be usable. In addition, it must
also have accurate, finite-dimensional approximations.

In mathematics, problems of determining the state of a physical system from feasible
measurements are gathered under the rubric of inverse problems. The division of problems
into inverse problems and direct problems is often a matter of history. Usually a physical
theory that models how the state of the system determines feasible measurements preceded
a description of the inverse process: how to use measurements to determine the state of
the system. While many of the problems that arise in medical imaging are considered
to be inverse problems, we do not give a systematic development of this subject. The
curious reader is referred to the article by Joe Keller, [80], which contains analyses of many
classical inverse problems or the book Introduction to Inverse Problems in Imaging, [10].

The models used in medical imaging usually involve infinitely many degrees of free-
dom. The state of the system is described by a function of continuous variables. Ultimately
only a finite number of measurements can be made and only a finite amount of time is
available to process them. Our analysis of the reconstruction process in x-ray CT passes
through several stages. We begin with a description of the complete, perfect data situation.
The measurement is described by a function on the space of lines. By finding an explicit
inversion formula, we show that the state of the system can be determined from these mea-
surements. The main tool in this analysis is the Fourier transform. We next consider the
consequences of having only discrete samples of these measurements. This leads us to
sampling theory and Fourier series. In the next chapter we quickly review linear algebra
and the theory of linear equations, recasting this material in the language of measurement.
The chapter ends with a brief introduction to the issues that arise in the extension of linear
algebra to infinite-dimensional spaces.



Chapter 2

Linear Models and Linear Equations

Using measurements to determine the state of a system eventually reduces to the problem
of solving systems of equations. In almost all practical applications, we are eventually
reduced to solving systems of linear equations. This is true even for physical systems that
are described by non-linear equations. As we saw in Section 1.1.1, nonlinear equations may
be approximated by linear equations. A nonlinear equation is usually solved iteratively,
where the iteration step involves the solution of the approximating linear system.

Linear algebra is the mathematical tool most often used in applied subjects. There
are many reasons why linear equations and linear models are ubiquitous. As we will see
in this chapter, there is a complete mathematical theory for systems of linear equations.
Indeed, there are necessary and sufficient conditions for linear equations to have solutions
and a description of the space of solutions when they exist. More pragmatically, there are
efficient, generally applicable algorithms for solving systems of linear equations. This is
not true even for the simplest systems of nonlinear equations. On a more conceptual level,
for systems with some sort of intrinsic smoothness, a linear model often suffices to describe
small deviations from a known state.

In this chapter we review some basic concepts from linear algebra, in particular the
theory of systems of linear equations. This is not intended to serve as a text on finite-
dimensional linear algebra but rather to situate these familiar concepts in the context of
measurement problems. A more complete introduction to the theory of vector spaces is
presented in Appendix A.2. As the models that arise in medical imaging are not usually
finite dimensional, we briefly consider linear algebra on infinite-dimensional spaces. As a
prelude to our discussion of the Fourier transform, the chapter concludes with an introduc-
tion to complex numbers and complex vector spaces.

31
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2.1 Linear Equations and Linear Maps

See: A.2.

Suppose that the state of a system is described by the variables (x1, . . . , xn; y1, . . . , ym)
or, more concisely, by (x; y) with x ∈ �n and y ∈ �m. Here x is regarded as an input
variable and y is regarded as an output variable. The model for the system is expressed by
the system of linear equations,

a11x1 + a12x2+ · · · + a1nxn = y1

a21x1 + a22x2+ · · · + a2nxn = y2
...

...
...

am1x1 + am2x2+ · · · + amn xn = ym.

(2.1)

Before proceeding with our analysis, we first need to simplify the notation. It is very
cumbersome to have to work with complicated expressions like (2.1); instead we use stan-
dard matrix and vector notation. Let a denote the m×n array of numbers (ai j )i=1...m, j=1...n,
x an n-vector and y an m-vector. The system of equations (2.1) is concisely expressed as

ax = y, (2.2)

where ax denotes the matrix product. We briefly recall the properties of matrix multiplica-
tion. Let x1 and x2 be n-vectors; then

a(x1 + x2) = ax1 + ax2

and for any number c
a(cx1) = c(ax1).

In other words, the map from �n to �m defined by x �→ ax is linear. The state space for
the system is the graph of this linear transformation,

{(x; ax) : x ∈ �n}.
This is a linear subspace of �n × �m .

Let ai = (ai1, . . . , ain) denote the i th row of a. The equations in (2.1) can also be
rewritten

〈a1, x〉 = y1

...

〈am, x〉 = ym.

(2.3)

The inner product 〈ai , x〉 is interpreted as the outcome of the i th measurement when the
system is in the state described by x. The matrix a is called the measurement matrix. The
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state of the system is determined by x, which can take any value in �n. The question of
principal interest is the extent to which the measurements, y, determine the state, x. If the
rows of a are linearly dependent, then there is some index l and constants {ci} so that

al =
∑
i 	=l

ci ai .

By linearity this means that

〈al, x〉 =
∑
i 	=l

ci 〈ai , x〉.

In other words, the outcome of the lth measurement is already determined by the others.
It is not an independent measurement and, in pure mathematics, would be regarded as
redundant information. In applications, measurement error and noise make it useful to
repeat experiments, so such a measurement might very well be retained.

There is a final way to rewrite (2.1). If

a j =
⎛⎜⎝a1 j

...
amj

⎞⎟⎠
denotes the j th column of a, then (2.1) is equivalent to

x1a1 + · · · + xn an = y.

In this form it is clear that the set of possible outcomes of these measurements is the sub-
space of �m spanned by the columns of a. This subspace is called the range or image of the
linear transformation a. It is denoted by Im a.

There are three questions which require answers:

Q1: EXISTENCE: For a given m-vector y, does there exist an n-vector x that satisfies the
equations in (2.2)? In other words, is y in the image of a?

Q2: UNIQUENESS: When a solution exists is it unique? More generally, describe the
space of solutions.

Q3: STABILITY: How sensitive is the solution to small variations in the measurement ma-
trix a or the measured values y?

It is a somewhat unexpected, but important, fact that these issues are rather independent of
one another. For applications it is also necessary to have an algorithm to find approximate
solutions of (2.1) and criteria to select a solution when there is more than one.
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2.1.1 Solving Linear Equations

Suppose that x0 is a solution of the equation ax = 0 and x1 is a solution of the equation
ax1 = y. By linearity it follows that

a(cx0 + x1) = cax0 + ax1 = ax1 = y for any c ∈ �.

From the case y = 0 we conclude that the set of solutions to the equation

ax = 0

is a linear subspace; that is, if x0 and x1 solve this equation, then so does x0 + x1 as well as
cx0, for any number c. This subspace is called the null space or kernel of a. It is denoted
by ker(a) and always contains at least the zero vector 0 = (0, . . . , 0). If ker(a) is not just
the zero vector, then the available measurements are inadequate to distinguish the states of
the system. These observations answer question Q2.

Theorem 2.1.1. Let a be an m × n matrix. Suppose that x1 satisfies ax1 = y. Then every
other solution to this equation is of the form x1 + x0, where x0 ∈ ker(a). Moreover, every
vector of this form solves the equation ax = y.

The solution of the equation ax = y is unique only if the null space of a contains only the
zero vector or, in other words, the columns of a are linearly independent.

We now turn to question Q1. Suppose that a is an m × n matrix, x is an n-vector, and
y is an m-vector. Then ax is an m-vector and the inner product is given by

〈ax, y〉 =
m∑

i=1

n∑
j=1

ai j x j yi .

The transpose of the matrix a is the n×m matrix at whose i j -entry is a j i . From the previous
formula it follows that

〈ax, y〉 = 〈x, at y〉.
Suppose that b is a nonzero vector in the null space of the transpose, at and the equation,
ax = y has a solution. Using the preceding calculations, we see that

〈y, b〉 = 〈ax, b〉 = 〈x, at b〉 = 0.

The last equality follows from the fact that at b = 0. This gives a necessary condition for
existence of a solution to the equation ax = y. The vector y must satisfy the conditions

〈b, y〉 = 0,

for every solution of the homogeneous equation at b = 0. This also turns out to be sufficient.

Theorem 2.1.2. Let a be an m × n matrix and y an m-vector. The equation ax = y has a
solution if and only if

〈b, y〉 = 0

for every vector b ∈ ker(at ).
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The equation at b = 0 has nontrivial solutions if and only if the rows of a are linearly
dependent. This means that the outcomes of the measurements {〈ai , x〉 : i = 1, . . . ,m}
are not independent of one another. The condition for the solvability of ax = y is simply
that entries of y should satisfy the same relations as the measurements themselves.

Example 2.1.1. In the refraction problem considered in Example 1.1.4, we remarked that
the refractive index of the lower fluid n2 could be determined by an additional measurement.
Suppose that we shine a beam of light in at a different angle so that the upper angle is φ1

and the lower angle is φ2. This light beam is displaced by l2 as it passes through the fluid.
We now have three equations for the two unknowns:⎛⎝ 1 1

tan(θ1) tan(θ2)
tan(φ1) tan(φ2)

⎞⎠(h1

h2

)
=
⎛⎝h

l1

l2

⎞⎠ . (2.4)

In order for this equation to have a solution, the measurements (h, l1, l2) must satisfy the
condition ⎛⎝ 1

tan(θ1)
tan(φ1)

⎞⎠×
⎛⎝ 1

tan(θ2)
tan(φ2)

⎞⎠ ·
⎛⎝h

l1

l2

⎞⎠ = 0.

Here × is the vector cross product:

(x1, y1, z1)× (x2, y2, z2) = (y1z2 − z1y2, z1x2 − x1z2, x1 y2 − y1x2).

Since
sin(θ1)

sin(θ2)
= sin(φ1)

sin(φ2)
= n2

n1

and the angles θ1 and φ1 as well as (h, l1, l2) are assumed known, this solvability condition
gives a nonlinear equation that allows the determination of n2

n1
from the measured data.

Example 2.1.2. Suppose we have a collection of photon sources, labeled by 1 ≤ i ≤ n and
an array of detectors, labeled by 1 ≤ j ≤ m. The matrix P has entries 0 ≤ pi j ≤ 1 with
the i j -entry the probability that a particle emitted from source i is detected by detector j.
Since a given photon can be detected by at most one detector, it follows that

m∑
j=1

pi j ≤ 1 for i = 1, . . . n.

If d j , j = 1, . . . ,m is the number of photons detected at detector j and si , i = 1, . . . , n is
the number of photons emitted by source i then our model predicts that

P s = d. (2.5)

If m = n and the measurements are independent, then P is an invertible matrix. The mea-
surements d determine a unique vector s, satisfying (2.5). Since the model is probabilistic,
this should be regarded as an average value for the distribution of sources. If m > n,



36 Chapter 2. Linear Models and Linear Equations

then we have more measurements than unknowns, so any measurement errors or flaws in
the model could make it impossible to find a vector s so that P s = d. This is a frequent
situation in image reconstruction problems. We choose a way to measure the error, usu-
ally a non-negative function of the difference P s − d, and seek a vector s that minimizes
this error function. Finally, we may have more sources than detectors. The measurements
are then inadequate, in principle to determine their distribution. This is also a common
circumstance in image reconstruction problems and is resolved by making some a priori
assumptions about the allowable distribution of sources to obtain a determined (or even
over-determined) problem.

It is a consequence of Theorem 2.1.2 that there are essentially three types of linear
models for systems with finitely many degrees of freedom.

DETERMINED: The simplest case arises when the numbers of independent measurements
and parameters describing the state of the system are the same. This implies that
n = m and that the measurements uniquely determine the state of the system.
Mathematically we say that the matrix a is invertible. For a square matrix this is
equivalent to the statement that the homogeneous equation, ax = 0, has only the
trivial solution, x = 0. The inverse matrix is denoted by a−1; it is both a left and
a right inverse to a,

a−1a = Idn = aa−1.

Here Idn denotes the n × n identity matrix, that in

(Idn)i j =
{

1 if i = j,

0 if i 	= j.

From the mathematical point of view, the unique solution is obtained by setting

x = a−1 y.

In practical applications it is unusual to compute the inverse matrix explicitly.

OVER-DETERMINED: In this case we have more measurements than parameters (i.e., m >
n). If the model and measurements were perfect, then there would be a unique
x with ax = y. In general, neither is true and there does not exist any x ex-
actly satisfying this equation. Having more measurements than parameters can be
used to advantage in several different ways. In Example 2.1.1 we explain how to
use the conditions for solvability given in Theorem 2.1.2 to determine physical
parameters. Often, measurements are noisy. A model for the noise in the mea-
surements can be used to select a criterion for a best approximate solution. The
most common way to measure the error is to use the norm defined in (1.8), setting

e(x) = ‖ax − y‖2.

There are two reasons why this measure of the error is often employed: (1) It is a
natural choice if the noise is normally distributed; (2) the problem of minimizing
e(x) can be reduced to the problem of solving a system of linear equations.
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UNDERDETERMINED: Most problems in image reconstruction are underdetermined; that
is, we do not have enough data to uniquely determine a solution. In mathematical
tomography, a perfect reconstruction would require an infinite number of exact
measurements. These are, of course, never available. In a finite-dimensional
linear algebra problem, this is the case where m < n. When the measurements y
do not uniquely determine the state x, additional criteria are needed to determine
which solution to use. For example, we might use the solution to ax = y, which
is of smallest norm. Another approach is to assume that x belongs to a subspace
whose dimension is at most the number of independent measurements. Both of
these approaches are used in medical imaging.

The problem of stability, Q3, is considered in the next section.

Exercises
Exercise 2.1.1. Let a be an m × n matrix. Show that if ker a = ker at = 0, then n = m. Is
the converse true?

Exercise 2.1.2. Let a be an m × n matrix. Prove that

n = dim Im a + dim ker a.

Use the results in this section to conclude that

dim Im a = dim Im at .

In linear algebra texts, this is the statement that the “row rank” of a matrix equals its “col-
umn rank.” Conclude that a square matrix is invertible if and only if its null space equals
the zero vector.

Exercise 2.1.3. Let a : �n → �n be an invertible linear transformation. Show that a−1 is
also linear.

Exercise 2.1.4. Suppose that the state of a system is described by the vector x. The mea-
surements are modeled as inner products {〈ai , x〉 : i = 1, . . . ,m}. However, the measure-
ments are noisy and each is repeated mi times leading to measured values {y1

i , . . . , ymi
j }.

Define an error function by

e(x) =
m∑

i=1

mi∑
k=1

(〈ai , x〉 − yk
i )

2.

Show that e(x) is minimized by a vector x that satisfies the averaged equations

〈ai , x〉 = 1

mi

mi∑
k=1

yk
i .
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2.1.2 Stability of Solutions

Suppose that a is an n × n invertible matrix that models a measurement process. If x1

and x2 are two states of our system, then, because the model is linear, the difference in the
measurements can easily be computed:

y1 − y2 = ax1 − ax2 = a(x1 − x2).

When studying stability it is useful to have a measure for the “size” of a linear transforma-
tion.

Definition 2.1.1. Let a be an m × n matrix and let ‖ · ‖ denote the Euclidean norm. The
Euclidean operator norm of a is defined to be

|||a||| = max{‖ax‖ : x ∈ �n with ‖x‖ = 1}.
This method for measuring the size of linear transformations has many useful properties.
Let a1 and a2 by m × n-matrices and c a real number; then

|||ca1||| = |c||||a1|||,
|||a1 + a2||| ≤ |||a1||| + |||a2|||,

‖a1x‖ ≤ |||a1|||‖x‖ for all x ∈ �n.

(2.6)

Using the linearity of a and the last line in (2.6), we obtain the estimate

‖y1 − y2‖ ≤ |||a|||‖x1 − x2‖.
Therefore, nearby states lead to nearby measurements. The reverse may not be true. There
may exist states x1 and x2 that are not nearby, in the sense that ‖x1−x2‖ is large but ‖a(x1−
x2)‖ is small. Physically, the measurements performed are not sufficiently independent to
distinguish such pairs of states. In numerical analysis this is known as an ill conditioned
problem. Briefly, a small error in the measurement process can be magnified by applying
a−1 to the measurement vector. For an ill conditioned problem even a good algorithm for
solving linear equations can produce meaningless results.

Example 2.1.3. Consider the 2 × 2 system with

a =
(

1 0
1 10−5

)
.

The measurement matrix is invertible and

a−1 =
(

1 0
−105 105

)
.

If the actual data are y = (1, 1) but we make an error in measurement and measure, ym =
(1, 1 + ε), then the relative error in the predicted state is

‖a−1 ym − a−1 y‖
‖a−1 y‖ = ε105.

Even though the measurements uniquely determine the state of the system, a small error in
measurement is vastly amplified.
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As above a is an n × n matrix that models a measurement process. Let δa be an n × n
matrix representing an aggregation of the errors in this model. The uncertainty in the model
can be captured by using a + δa for the measurement matrix. The measurements may also
be subject to error and should be considered to have the form y + δ y. A more realistic
problem is therefore to solve the system(s) of equations

(a + δa)x = y + δ y. (2.7)

But what does this mean?
We consider only the simplest case where a is an n ×n, invertible matrix. Suppose that

we can bound the uncertainty in both the model and the measurements in the sense that we
have constants ε > 0 and η > 0 such that

‖δ y‖ < ε and |||δa||| < η.

In the absence of more detailed information about the systematic errors, “the solution”
to (2.7) could be defined as the set of vectors

{x : (a + δa)x = y + δ y for some choice of δa, δ y with ‖δ y‖ < ε, |||δa||| < η}.
This is a little cumbersome. In practice, we find a vector that satisfies

ax = y

and a bound for the error made in asserting that the actual state of the system is x.
To proceed with this analysis, we assume that all the possible model matrices, a + δa,

are invertible. If |||δa||| is sufficiently small, then this condition is satisfied. As a is invertible,
the number

μ = min
x 	=0

‖ax‖
‖x‖ (2.8)

is a positive. If |||δa||| < μ, then a + δa is also invertible. The proof of this statement is
given in Exercise 2.1.10. In the remainder of this discussion we assume that η, the bound
on the uncertainty in the model, is smaller than μ.

An estimate on the error in x is found in two steps. First, fix the model and consider
only errors in measurement. Suppose that ax = y and a(x + δx) = y + δ y. Taking the
difference of these two equations gives

aδx = δ y

and therefore δx = a−1δ y. Using (2.6), we see that

‖δx‖ ≤ |||a−1|||‖δ y‖.
This is a bound on the absolute error; it is more meaningful to bound the relative error
‖δx‖/‖x‖. To that end observe that

‖y‖ ≤ |||a|||‖x‖
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and therefore ‖δx‖
‖x‖ ≤ |||a||||||a−1|||‖δ y‖

‖y‖ . (2.9)

This is a useful inequality: It estimates the relative uncertainty in the state in terms of the
relative uncertainty in the measurements. The coefficient

ca = |||a||||||a−1||| (2.10)

is called the condition number of the matrix a. It is useful measure of the stability of a
model of this type.

To complete our analysis we need to incorporate errors in the model. Suppose that
x + δx solves

(a + δa)(x + δx) = y + δ y.

Subtracting this from ax = y gives

(a + δa)δx = δ y − δax.

Proceeding as before, we see that

‖δx‖
‖x‖ ≤ |||(a + δa)−1||||||a|||‖δ y‖

‖y‖ + |||(a + δa)−1||||||δa|||. (2.11)

If δa is very small (relative to μ), then

(a + δa)−1 = a−1(Id+δaa−1)−1

= a−1 − a−1δaa−1 + O([δa]2).
(2.12)

Here O([δa]2) is a linear transformation whose operator norm is bounded by a constant
times |||δa|||2. The second estimate in (2.6) implies that

|||(a + δa)−1||| � |||a−1||| + |||a−1δaa−1|||.
Ignoring quadratic error terms in (2.12), this gives the estimate

‖δx‖
‖x‖ � ca

[‖δ y‖
‖y‖ + |||δa|||

|||a|||
]
. (2.13)

Once again, the condition number of a relates the relative error in the predicted state to the
relative errors in the model and measurements.

This analysis considers a special case, but it indicates how gross features of the model
constrain the accuracy of its predictions. We have discussed neither the effects of using
a particular algorithm to solve the system of equations, nor round-off error. A similar
analysis applies to study these problems. Our discussion of this material is adapted from
[127]. In image reconstruction the practical problems of solving systems of linear equations
are considerable. It is not uncommon to have 10,000 equations in 10,000-unknowns. These
huge systems arise as finite-dimensional approximations to linear equations for functions



2.1. Linear Equations and Linear Maps 41

of continuous variables. The next section contains a short discussion of linear algebra in
infinite-dimensional spaces, a theme occupying a large part of this book.

Exercises
Exercise 2.1.5. Show that μ, defined in (2.8), equals |||a−1|||.
Exercise 2.1.6. Show that the condition number is given by the following ratio:

ca = maxx 	=0
‖ax‖
‖x‖

minx 	=0
‖ax‖
‖x‖

. (2.14)

This shows that the condition number of any matrix is at least one. Which matrices have
condition number equal to one?

Exercise 2.1.7. Suppose that a is a positive definite, symmetric matrix with eigenvalues
0 < λ1 ≤ · · · ≤ λn. Show that

ca = λn

λ1
.

If a is an arbitrary matrix with ker(a) = 0, show that

ca = √
ca∗a.

Exercise 2.1.8. Show that |||a||| = 0 if and only if a is the zero matrix. It therefore follows
from (2.6) that ||| · ||| defines a norm on the space of n × n-matrices. Let < ak > be a
sequence of matrices with entries (ak)i j . Show that

lim
k→∞ |||ak − b||| = 0

if and only if
lim

k→∞(ak)i j = bi j for all 1 ≤ i, j ≤ n.

Exercise 2.1.9. Let a1 and a2 be n × n matrices. Show that

|||a1a2||| ≤ |||a1||||||a2|||. (2.15)

Exercise 2.1.10. Use (2.15) to show that if a is an n × n matrix with |||a||| < 1, then the
sequence of matrices

ak = Id+
k∑

j=1

(−1) j a j

converges to a matrix b in the sense that

lim
k→∞ |||ak − b||| = 0.

Conclude that Id+a is invertible by showing that b = (Id+a)−1. Justify equation (2.12).
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2.2 Infinite-dimensional Linear Algebra

See: A.4 .

In the foregoing sections we considered the spaces �n and �n. These are examples of
finite-dimensional vector spaces. Recall that a set V is vector space if it has two operations
defined on it, addition and scalar multiplication that satisfy several conditions. Let v1 and
v2 denote two points in V . Then their sum is denoted by v1 + v2; if a is a scalar, then
the product of a and v ∈ V is denoted av. In our applications the scalars are either real
or complex numbers. The basic properties of complex numbers are reviewed in the next
section. In addition, there must be a zero vector 0 ∈ V such that v + 0 = v for all v ∈ V
and

a(v1 + v2) = av1 + av2, (a1 + a2)v = a1v + a2v, 0v = 0. (2.16)

The vector space V is finite dimensional if there is a finite set of elements {v1, . . . , vn} ⊂ V
so that every element is a linear combination of these elements. In other words, for each
vector v there are scalars {c1, . . . , cn} so that

v =
n∑

i=1

civi .

Vector spaces that are not finite dimensional are infinite-dimensional. Many familiar spaces
are infinite dimensional vector spaces.

Example 2.2.1. Let � denote polynomials in the variable x with real coefficients. An
element of � can be expressed as

p =
n∑

i=0

ci x
i ,

where the {ci} are real numbers. The usual rules for addition and scalar multiplication of
polynomials make � into a vector space. Since n is arbitrary, the dimension of � is not
finite.

Example 2.2.2. Let �0(�) be the set of continuous, real-valued functions defined on �.
Since sums and scalar multiples of continuous functions are continuous, this is also a vector
space. As it contains � as a subspace, it is not finite dimensional.

Example 2.2.3. Let L1([0, 1]) denote the set of real-valued functions defined on [0, 1]
whose absolute value is integrable. If f, g ∈ L1([0, 1]), then we define f + g by ( f +
g)(x) = f (x) + g(x). If a ∈ �, then we define a f by (a f )(x) = a f (x). Clearly, if
f ∈ L1([0, 1]), then so is a f. The zero function is the zero vector. If f, g ∈ L1([0, 1]),
then

1∫
0

| f (x) + g(x)| dx ≤
1∫

0

| f (x)| dx +
1∫

0

|g(x)| dx .

This shows that L1([0, 1]) is a vector space.
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As with finite-dimensional vector spaces, it is important to be able to measure lengths
and distances in infinite-dimensional vector spaces. This is usually done using a norm. A
norm on an infinite-dimensional vector space, V, is a function N : V → [0,∞) satisfy-
ing the properties enumerated in Remark 1.1.1, with the understanding that x and y are
arbitrary elements of V .

Example 2.2.4.� Let L1(�) denote the set of absolutely integrable functions defined on �.
The L1-norm is defined by

‖ f ‖L1 =
∞∫

−∞
| f (x)| dx .

Example 2.2.5.� Let X be a set and Fb(X) denote the vector space of bounded functions
defined on X. The sup-norm is defined by

‖ f ‖∞ = sup{| f (x)| : x ∈ X}.
The properties above are easily established for the sup norm.

Example 2.2.6. Let �0
b(�

n) denote the set of bounded, continuous functions on �n . The
sup norm also defines a norm on �0

b(�
n).

Example 2.2.7. If �0([0, 1]) denote the set of continuous functions on [0, 1], the function

‖ f ‖1 =
1∫

0

| f (x)| dx

defines a norm on this vector space.

The exact state of a system in medical imaging is usually described by a point in an
infinite-dimensional vector space. Let f describe the state of the system. Suppose that f
is real-valued function, defined on the real line and integrable over any finite interval. A
linear measurement of the state is often represented as an integral:

�( f )(x) =
∞∫

−∞
m(x, y) f (y) dy.

Here m(x, y) is a function on � × � that provides a model for the measurement process. It
can be thought of as an infinite matrix with indices x and y. A linear transformation of an
infinite-dimensional vector space is called a linear operator. A linear transformation that
can be expressed as an integral is called an integral operator.

Suppose that the function g is the output of the measurement process; to reconstruct f
means solving the linear equation

� f = g.

This is a concise way to write a system of infinitely many equations in infinitely many
unknowns. Theorems 2.1.1 and 2.1.2 contain the complete theory for the existence and
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uniqueness of solutions to linear equations in finitely many variables. In these theorems no
mention is made of norms; indeed, they are entirely algebraic in character. No such theory
exists for equations in infinitely many variables. It is usually a difficult problem to describe
either the domain or range of a linear transformation of an infinite-dimensional space. We
consider a few illustrative examples.

Example 2.2.8. A simple example of a linear operator is the indefinite integral

�( f )(x) =
x∫

0

f (y) dy.

If we use the vector space of continuous functions on � as the domain of �, then every
function in the range is continuously differentiable. Moreover the null space of � is the
zero function. Observe that the domain and range of � are fundamentally different spaces.
Because �( f )(0) = 0, not every continuously differentiable function is in the range of �.
The derivative is a left inverse to �. The fundamental theorem of calculus states that if f is
continuous, then

d

dx
◦ �( f )(x) = f (x).

On the other hand, it is not quite a right inverse because

�(
d f

dx
)(x) = f (x) − f (0).

The domain of � can be enlarged to include all locally integrable functions. These are
functions such that

x∫
0

| f (y)| dy < ∞

for every x ∈ �; this is again a vector space. Enlarging the domain also enlarges the range.
For example, the function |x| lies in the enlarged range of �,

|x| =
x∫

0

sgn(y) dy,

where sgn(y) = 1 if y ≥ 0 and −1 if y < 0. Even though |x| is not differentiable at x = 0,
it is still the indefinite integral of a locally integrable function. The formula

d|x|
dx

= sgn(x)

does not make sense at x = 0.
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Example 2.2.9. Changing the lower limit of integration to −∞ leads to a different sort
of linear transformation. Initially �∞ is defined for continuous functions f, vanishing for
sufficiently negative x by

�∞( f )(x) =
x∫

−∞
f (y) dy.

Once again the null space of �∞ consists of the zero function alone. The domain can be
enlarged to include locally integrable functions such that

lim
R→∞

0∫
−R

| f (y)| dy < ∞. (2.17)

If f is continuous, then we can apply the fundamental theorem of calculus to obtain

d

dx
◦ �∞( f ) = f.

If a function g belongs to the range of �∞, then

lim
x→−∞ g(x) = 0. (2.18)

There are once differentiable functions satisfying this condition that do not belong to the
range of �∞. For example,

f (x) = x cos x − sin x

x2
= d

dx

sin x

x

satisfies (2.18) but f does not satisfy (2.17). With the domain defined by (2.17), the precise
range of �∞ is rather difficult to describe.

This example illustrates how a integral operator may have a simple definition on a
certain domain, which by a limiting process can be extended to a larger domain. The
domain of such an operator is often characterized by a size condition like (2.17).

Example 2.2.10. A real physical measurement is always some sort of an average. If the
state of the system is described by a function f of a single variable x, then the average of
f over an interval of length 2δ is

�δ( f )(x) = 1

2δ

x+δ∫
x−δ

f (y) dy.

A natural domain for �δ is all locally integrable functions. To what extent is f determined
by �δ( f )? Suppose that f and g are two states; then, because the integral is linear,

�δ( f )− �δ(g) = �δ( f − g).
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The extent to which �δ( f ) determines f is characterized by the null space of �δ,

�δ = { f : �δ( f ) = 0}.
Proceeding formally, we can differentiate �δ( f ) to obtain

d�δ( f )

dx
= f (x + δ)− f (x − δ) (2.19)

If f ∈ �δ, then �δ( f ) is surely constant and therefore

f ∈ �δ ⇒ f (x + δ)− f (x − δ) = 0, for all x ∈ �.

In other words, f is periodic with periodic 2δ. The functions

{cos

(
π j x

δ

)
, sin

(
π j x

δ

)
: j ∈ {1, 2, 3, . . . }} (2.20)

are linearly independent and belong to �δ. This shows that the null space of �δ is infinite
dimensional.

In applications we often have additional information about the state of the system. For
example, we might know that

lim|x |→∞ f (x) = 0. (2.21)

A periodic function that tends to zero at infinity must be identically zero, so among such
functions the measurements �δ( f ) would appear to determine f completely. To prove this
statement we need to know somewhat more about f than (2.21). With a more quantitative
condition like

‖ f ‖p =
⎡⎣ ∞∫
−∞

| f (y)|p dy

⎤⎦
1
p

< ∞, (2.22)

for a p between 1 and 2, it is possible to show that �δ( f ) = 0 implies that f = 0 and
therefore the measurement �δ( f ) uniquely determines f. As we shall see, f cannot be
stably reconstructed from �δ( f ). A small error in measurement can lead to a very large
error in the reconstructed state.

For each p between 1 and infinity, the function f �→ ‖ f ‖p defines a norm on the space
of functions that satisfy (2.22). This is called the L p-norm. The first step in analyzing
linear transformations of infinite-dimensional spaces is the introduction of norms on the
domain and range. This was not necessary in finite dimensions but is absolutely essential
in the infinite-dimensional case. Using the the L1-norm on the domain, we can control the
sup norm in the output of the measurement process modeled by f �→ �δ( f ).

Example 2.2.11. Let f be a function we would like to determine and model the measure-
ment as �δ( f ). To control the dependence in the sup norm of �δ f, on f it suffices to
control the L1-norm of f,

|�δ f (t)| ≤ 1

2δ

t+δ∫
t−δ

| f (y)| dy ≤ 1

2δ

∞∫
−∞

| f (y)| dy.
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Because the measurement is linear, we see that if f1 and f2 are two functions, then

|�δ f1(t) − �δ f2(t)| ≤ 1

2δ

∞∫
−∞

| f1(y)− f2(y)| dy.

The length of the interval over which we average is an indication of the resolution in the
measurement. The smaller δ is, the more sensitive the measurement is to the size of the
difference, f1 − f2, measured in the L1-norm.

In medical image reconstruction there is a short list of important linear transformations:
the Fourier transform, the Radon transform, the Hilbert transform, and the Abel transform.
Our study of infinite dimensional linear algebra is directed toward understanding these
linear operators.

Exercises
Exercise 2.2.1. Show that the sup norm defined in Example 2.2.5 satisfies the properties of
a norm.

Exercise 2.2.2. Let �0([0, 1]) denote the continuous functions on [0, 1]. Show that f �→
‖ f ‖∞ defines a norm on this space. Suppose that < fk > is a sequence of functions
in �0([0, 1] and there exists a function f such that limk→∞ ‖ f − fk‖∞ = 0. Show that
f ∈ �0([0, 1]) as well.

Exercise 2.2.3. Is the conclusion of the previous exercise still correct if we use f �→ ‖ f ‖1,
defined in Example 2.2.7, to define the norm? Give a proof or a counterexample.

Exercise 2.2.4. Prove that the null space of � acting on �0(�) is the zero function.

Exercise 2.2.5. Show that the functions listed in (2.20) belong to ker �δ.

Exercise 2.2.6. Show that the functions listed in (2.20) are linearly independent.

2.3 Complex Numbers and Vector Spaces�

Thus far we have only considered real numbers and vector spaces over the real numbers.
We quickly introduce the complex numbers and the basic features of �n. Complex numbers
are essential to define the Fourier transform.

2.3.1 Complex Numbers

There is no real number that solves the algebraic equation

x2 = −1.

To remedy this we simply introduce a new symbol i, which is defined to be the square root
of −1, that is,

i2 = −1.

This is called the imaginary unit.
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Definition 2.3.1. The complex numbers are defined to be the collection of symbols

{x + iy : x, y ∈ �}
with the addition operation defined by

(x1 + iy1) + (x2 + iy2)
d= (x1 + x2)+ i(y1 + y2)

and multiplication defined by

(x1 + iy1)(x2 + iy2)
d= (x1x2 − y1y2)+ i(x1 y2 + x2 y1).

The set of complex numbers is denoted by �.

Note that addition and multiplication are defined in terms of the addition and multiplication
operations on real numbers. The complex number 0 = 0+i0 satisfies 0+(x+iy) = x+iy,
and the complex number 1 = 1 + i0 satisfies (1 + i0)(x + iy) = x + iy. We often use the
letters z or w to denote complex numbers. The sum is denoted by z + w and the product
by zw.

Proposition 2.3.1. A nonzero complex number has a multiplicative inverse. The addition
and multiplication defined for complex numbers satisfy the commutative, associative, and
distributive laws. That is, if z1, z2, z3 are three complex numbers, then

z1 + z2 = z2 + z1, (z1 + z2) + z3 = z1 + (z2 + z3),

z1z2 = z2z1, (z1z2)z3 = z1(z2z3),

z1(z2 + z3) = z1z2 + z1z3.

(2.23)

Definition 2.3.2. If z = x + iy then the real part of z is x and the imaginary part of z is y.
These functions are written symbolically as

Re z = x, Im z = y.

The set underlying the complex numbers is �2,

x + iy ↔ (x, y);
addition of complex numbers is the same as vector addition. Often the set of complex
numbers is called the complex plane. The Euclidean norm is used to define the absolute
value or norm of a complex number,

|x + iy| =
√

x2 + y2.

There is a useful operation defined on complex numbers called complex conjugation. If
z = x + iy, then its complex conjugate is z̄ = x − iy. In engineering texts the complex
conjugate of z is often denoted z∗.
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Exercise 2.3.2 shows that the multiplication defined previously has all of the expected
properties of a product. The real numbers sit inside the complex numbers as the set {z ∈
� : Im z = 0}. It is easy to see that the two definitions of addition and multiplication agree
on this subset. Complex conjugation is simply reflection across the real axis.

It is useful to understand the multiplication of complex numbers geometrically. For
this purpose we represent points in the complex plane using polar coordinates. The radial
coordinate is simply r = |z|. The ratio ω = z|z|−1 is a number of unit length and therefore
has a representation as ω = cos θ + i sin θ. The polar representation of z is

z = r(cos θ + i sin θ). (2.24)

The angle θ is called the argument of z, which is denoted by arg(z). It is only determined
up to multiples of 2π. If z and w are two complex numbers, then they can be expressed in
polar form as

z = r(cos θ + i sin θ), w = R(cosφ + i sinφ).

Computing their product we find that

zw =r R([cos θ cos φ − sin θ sin φ] + i(cos θ sinφ + sin θ cosφ])
=r R(cos(θ + φ)+ i sin(θ + φ)).

(2.25)

This is shown in Figure 2.1. In the second line we used the sum formulæ for the sine and
cosine. This shows us that complex multiplication of w by z can be understood geometri-
cally as scaling the length of w by |z| and rotating it in the plane through an angle arg(z).

 (cos θ, sin θ)

  (cos φ, sinφ)

    (cos(θ+φ) ,  sin(θ+φ) )rR

R

r

Figure 2.1. Multiplication of complex numbers.

Using the notion of distance on � defined previously we can define the concept of
convergence for sequences of complex numbers.
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Definition 2.3.3. Let < zn > be a sequence of complex numbers. The sequence converges
to z0 if

lim
n→∞ |zn − z0| = 0.

In this case z0 is called the limit of < zn > and we write

lim
n→∞ zn = z0.

Exercises
Exercise 2.3.1. Prove Proposition 2.3.1.

Exercise 2.3.2. Let z and w be complex numbers. Show that

(z + w) = z̄ + w̄, zw = z̄w̄,

zz̄ = |z|2. (2.26)

Using the second condition, show that if z 	= 0, then the complex number defined by

z−1 = z̄

|z|2

satisfies zz−1 = 1 = z−1z.

Exercise 2.3.3. Let < zn > be a sequence of complex numbers. Show that zn converges to
z0 if and only if Re zn converges to Re z0 and Im zn converges to Im z0.

2.3.2 Complex Vector Spaces

The collection of ordered n-tuples of complex numbers is denoted by �n. It is a vector
space with

(z1, . . . , zn)+ (w1, . . . , wn) = (z1 + w1, . . . , zn + wn).

Since the entries of the vectors are now complex numbers, we can define scalar multiplica-
tion for w ∈ � by

w · (z1, . . . , zn) = (wz1, . . . , wzn).

For this reason �n is called a complex vector space.The boldface letters w and z are often
used to denote vectors in �n.

Definition 2.3.4. A subset S of �n is a complex subspace provided that

1. the zero vector belongs to S,

2. if z,w ∈ S, then z + w ∈ S,

3. if w ∈ � and z ∈ S, then wz ∈ S.
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Example 2.3.1. The subset {(z, 0) : z ∈ �} is a complex subspace of �2. The subset
{(x, y) : x, y ∈ �} is not a complex subspace of �2.

The Euclidean norm on �n is defined by

‖(z1, . . . , zn)‖2 =
√√√√ n∑

j=1

|z j |2.

An inner product is defined by setting

〈(z1, . . . , zn), (w1, . . . , wn)〉 =
n∑

j=1

z j w̄ j .

The Euclidean norm can again be expressed in terms of the inner product:

‖z‖2
2 = 〈z, z〉.

The inner product has the following properties:

Proposition 2.3.2. If w ∈ � and z ∈ �n, then ‖wz‖ = |w|‖z‖. Moreover, if z,w ∈ �n,
then

〈z,w〉 = 〈w, z〉 (2.27)

and if w ∈ �, then

〈wz,w〉 = w〈z,w〉 and 〈z, ww〉 = w̄〈z,w〉. (2.28)

It also satisfies the Cauchy-Schwarz inequality

|〈z,w〉| ≤ ‖z‖2‖w‖2. (2.29)

The Euclidean inner product on �n is not symmetric, but rather Hermitian or conjugate
symmetric. It is often referred to as the Hermitian inner product.

Proof. We prove the Cauchy-Schwarz inequality; the proofs of the other parts of the proposition are
left as exercises. We may assume that s = 〈z,w〉 is not zero, for otherwise the statement is trivial.
The complex number ρ = s|s|−1 has norm one and

〈z, ρw〉 = |〈z,w〉|. (2.30)

Define a real-valued function of t ∈ � by setting

F(t) = ‖z + tρw‖2 = ‖z‖2 + 2t|〈z,w〉| + t2‖w‖2.

This is a nonnegative, quadratic function that assumes its minimum value at

t0 = −|〈z,w〉|
‖w‖2 .

Substituting, we find that

F(t0) = ‖z‖2‖w‖2 − |〈z,w〉|
‖w‖2

.

The Cauchy-Schwarz inequality follows from the fact that F(t0) ≥ 0.
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The theory of complex vector spaces is very similar to that of real vector spaces. The
concepts of linear functions, transformations, bases, matrices, and matrix multiplication
all carry over without change. We simply allow the scalars to be complex numbers. For
example, a function f from �n to � is linear if

f (z1 + z2) = f (z1)+ f (z2) for all z1, z2 ∈ �n,

f (wz) = w f (z) for all w ∈ � and z ∈ �n.
(2.31)

In this case every linear function has a representation in terms of the Hermitian inner prod-
uct,

f (z) = 〈z,w f 〉
for a unique vector w f . As is evident from (2.27) and (2.28), some small differences arise
when dealing with inner products on complex vector spaces.

Example 2.3.2. The space �n can be regarded as either a real on complex vector space. If it
is thought of as a complex vector space, then the vectors {e1, . . . , en} are a basis. Thinking
of it as a real vector space means that we only allow scalar multiplication by real numbers.
In this case n vectors do not suffice to define a basis. Instead we could use

{e1, . . . , en, ie1, . . . , ien}.
As a real vector space, �n has dimension 2n.

Exercises
Exercise 2.3.4. Prove Proposition 2.3.2.

Exercise 2.3.5. Prove that every linear function f on �n has a representation as 〈z,w f 〉
for a unique w f ∈ �n. Explain how to find w f .

Exercise 2.3.6. By restricting the scalar multiplication to real numbers, �n can be regarded
as a real vector space. Show that, as a real vector space, �n is isomorphic to �2n.

2.4 Conclusion

Finite-dimensional linear algebra is the most often applied part of mathematics. As we have
seen, there is a complete theory for the solvability of linear equations. The text by Peter D.
Lax, [82] provides an excellent introduction to the theoretical aspects of this subject. There
is also a huge literature on practical methods for solving linear equations. Trefethen and
Bau, [127], is a very nice treatise on the numerical side of the subject. Infinite-dimensional
linear algebra, which usually goes under the name of functional analysis or operator theory,
is a vast subject. An introduction that emphasizes the theory of integral equations can be
found in [131]. We return to problems associated with infinite-dimensional linear algebra
in Chapter 4. In the next chapter we give a mathematical model for the measurements made
in x-ray tomography. The system in question has infinitely many degrees of freedom and its
state is specified by a nonnegative function defined in �3. The measurements are modeled
as a linear transformation, called the Radon transform, applied to this function.



Chapter 3

A Basic Model for Tomography

We begin our study of medical imaging with a mathematical model of the measurement
process used in x-ray tomography. The model begins with a quantitative description of
the interaction of x-rays with matter called Beer’s law. In this formulation the physical
properties of an object are encoded in a function μ, called the attenuation coefficient. This
function quantifies the tendency of an object to absorb or scatter x-rays. Using this model,
idealized measurements are described as certain averages of μ. In mathematical terms, the
averages of μ define a linear transformation, called the Radon transform. These measure-
ments are akin to the determination of the shadow function of a convex region described
in Section 1.2. In Chapter 6 we show that if the Radon transform of μ could be measured
exactly, then μ could be completely determined from this data. In reality, the data collected
are a limited part of the mathematically “necessary” data, and the measurements are subject
to a variety of errors. In later chapters we refine the measurement model and reconstruction
algorithm to reflect more realistic models of the physical properties of x-rays and the data
that are actually collected.

This chapter begins with a model for the interaction of x-rays with matter. To explicate
the model we then apply it to describe several simple physical situations. After a short ex-
cursion into the realm of x-ray physics, we give a formal definition of the Radon transform
and consider some of its simpler properties. The last part of the chapter is more mathemat-
ical, covering the inversion of the Radon transform on radial functions, the Abel transform,
and a discussion of Volterra integral equations.

3.1 Tomography

Literally, tomography means slice imaging. Today this term is applied to many methods
used to reconstruct the internal structure of a solid object from external measurements. In
x-ray tomography the literal meaning persists in that we reconstruct a three-dimensional
object from its two-dimensional slices. Objects of interest in x-ray imaging are described
by a real-valued function defined on �3, called the attenuation coefficient. The attenuation
coefficient quantifies the tendency of an object to absorb or scatter x-rays of a given energy.
This function varies from point-to-point within the object and is usually taken to vanish

53
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Material Attenuation coefficient
in Hounsfield units

water 0
air −1000

bone 1086
blood 53

fat −61
brain white/gray −4

breast tissue 9
muscle 41

soft tissue 51

Table 3.1. Attenuation coefficients of human tissues for 100-keV x-rays, adapted from
[67].

outside it. The attenuation coefficient, like density, is nonnegative. It is useful for medi-
cal imaging because different anatomical structures have different attenuation coefficients.
Bone has a much higher attenuation coefficient than soft tissue and different soft tissues
have slightly different coefficients. For medical applications it is crucial that normal and
cancerous tissues also have slightly different attenuation coefficients.

While in this book we work almost exclusively with the attenuation coefficient, as de-
scribed previously, it is rarely used by radiologists. Instead the attenuation coefficient is
compared to the attenuation coefficient water and quoted in terms of a dimensionless quan-
tity called a Hounsfield unit. The normalized attenuation coefficient, in Hounsfield units is
defined by

Htissue = μtissue − μwater

μwater
× 1000.

Unlike the actual attenuation coefficient, this relative measure assumes both positive and
negative values. Table 3.1 lists typical normalized attenuation coefficients for different
parts of the body.

The attenuation coefficients of air (−1000) and bone ( 1100) define the range of values
present in a typical clinical situation. This means that the dynamic range of a clinical CT
measurement is about 2000 Hounsfield units. From the table it is apparent that the variation
in the attenuation coefficients of soft tissues is about 2% of this range. For x-ray CT to be
clinically useful this means that the reconstruction of the attenuation coefficient must be
accurate to about 10 Hounsfield units or less than a half a percent of its dynamic range.

Let μ be a function defined on �3. To define the slices of μ we need to fix a coordinate
system x = (x1, x2, x3). For each fixed value c of x3, the x3-slice of μ is the function of
two variables, fc, defined by

fc(x1, x2) = μ(x1, x2, c).
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A knowledge of the collection of functions { fc : c ∈ [a, b]} is equivalent to a knowledge
of μ for all points in the slab

{(x1, x2, x3) : −∞ < x1 < ∞, −∞ < x2 < ∞, a ≤ x3 ≤ b}.
While the choice of coordinates is arbitrary, having a fixed frame of reference is a crucial
element of any tomographic method. By convention the slices are defined by fixing the last
coordinate. In general, different coordinate systems lead to different collections of slices.
In actual practice the x-ray CT machine fixes the frame of reference.

Definition 3.1.1. Let D be a subset of �n. The characteristic function of D is defined by

χD(x) =
{

1 if x ∈ D,

0 if x /∈ D.

Remark 3.1.1. Evaluation of χD at x is a simple mathematical model for an experiment
that tries to decide whether or not the point x lies in the set D.

Example 3.1.1. Let D be a subset of �3; the function χD models an object with constant
attenuation coefficient. In this case the object is determined by its intersection with the
planes

Hc = {(x1, x2, c) : x1, x2 ∈ �}.
For each c we let Dc = D ∩ Hc. Figure 3.1 shows a two-dimensional slice of a three-
dimensional object.

x

x

1

2

Hc

D

x
3

Dc

Figure 3.1. A 2D slice of a 3D object.

Example 3.1.2. Suppose that the object is contained in the ball of radius 1 and its attenua-
tion coefficient is

μ(x) =
{

1 − ‖x‖ if ‖x‖ ≤ 1,

0 if ‖x‖ > 1.
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The slices of μ are the functions

fc(x1, x2) =
⎧⎨⎩1 −

√
x2

1 + x2
2 + c2 if

√
x2

1 + x2
2 + c2 ≤ 1,

0 if
√

x2
1 + x2

2 + c2 > 1.

Note in particular that if |c| > 1, then fc ≡ 0.

As these examples show, an important feature of a function is the set of points where
it is nonzero. From the point of view of measurement it is difficult to distinguish points
where a function is nonzero from points that are “arbitrarily close” to such points. Indeed,
to get a useful mathematical concept we need to add points that are “arbitrarily close” to
points where the function is nonzero. As the definition is the same in all dimensions we
give it for functions defined on �n.

Definition 3.1.2. Let f be a function defined on �n. A point x belongs to the support of f
if there is a sequence of points < xn > such that

1. f (xn) 	= 0,

2. limn→∞ xn = x.

This set is denoted by supp( f ).

Example 3.1.3. The support of the function f (x) = x is the whole real line, even though
f (0) = 0. The support of the function f (x, y) = xy is the whole plane, even though
f (0, y) = f (x, 0) = 0. The support of the function χ(0,1)(x) is [0, 1].
Example 3.1.4. If D is a subset of �n then the support of χD is the closure of D. This is the
collection of all points which are limits of sequences contained in D. A set that contains all
such limit points is called a closed set.

Definition 3.1.3. A function f defined in �n is said to have bounded support if there is an
R so that f (x) = 0 if ‖x‖ > R. In this case we say that the support of f is contained in
the ball of radius R.

For the purposes of medical imaging, air is usually assumed to be transparent to x-rays.
This means that the attenuation coefficient is set to zero at points outside of the patient. The
support of μ can therefore be determined by non-invasive measurements.

3.1.1 Beer’s Law and X-ray Tomography

We now turn our attention to a simple quantitative model for the interaction of x-rays with
matter. Sometimes x-rays are thought of as a flux of very high-energy, electromagnetic
radiation. The x-ray beam is described by a vector valued function I(x). The direction of
I at x is the direction of the flux at x and its magnitude,

I (x) = ‖I(x)‖
is the intensity of the beam. If d S is an infinitesimal surface element at x of area |d S|,
placed at right angles to I(x), then the energy-per-unit-time passing through d S is I (x)|d S|.
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More generally, the intensity of the beam passing through the infinitesimal area element d S,
located at x, with unit normal vector n(x), is

〈I(x), n(x)〉 |d S|.
The total intensity passing through a surface S is the surface integral∫

S

〈I(x), n(x)〉 d AS,

where d AS is the area element on S.
In other circumstances it is more useful to describe an x-ray beam as being composed of

a stream of discrete particles called photons. Each photon has a well defined energy, often
quoted in units of electron-volts. The energy E is related to electromagnetic frequency ν
by de Broglie’s Law:

E = hν;
h is Planck’s constant. While the photon description is more correct, quantum mechan-
ically, the two descriptions only differ significantly when the number of photons (or the
intensity of the beam) is small.

Our model for the interaction of x-rays with matter is phrased in terms of the continuum
model; it rests on three basic assumptions:

(1) NO REFRACTION OR DIFFRACTION: X-ray beams travel along straight lines that are
not “bent” by the objects they pass through.

(2) THE X-RAYS USED ARE MONOCHROMATIC: The waves making up the x-ray beam
are all of the same frequency.

(3) BEER’S LAW: Each material encountered has a characteristic linear attenuation coef-
ficient μ for x-rays of a given energy. The intensity, I of the x-ray beam satisfies
Beer’s law

d I

ds
= −μ(x)I . (3.1)

Here s is the arc-length along the straight-line trajectory of the x-ray beam.

Because x-rays have very high energies, and therefore very short wavelengths, assump-
tion (1) is a good approximation to the truth. Ordinary light is also electromagnetic radi-
ation, we experience the frequency of this radiation as the color of the light. The second
assumption is that the x-ray beam is “all of one color.” This is not a realistic assumption,
but it is needed to construct a linear model for the measurements. The implications of the
failure of this assumption are discussed later in this chapter. If we think of the x-ray beam
as a stream of photons, then the beam is monochromatic if all the photons in the beam have
the same energy E . The intensity I (x) then equals E N(x). Here N(x) is the photon flux,
or the number of photons per unit time crossing a surface at right angles to I(x). If the
beam is not monochromatic, then the relationship between the intensity and photon flux is
described by the spectral function which is introduced in Section 3.3.
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Beer’s law requires some explanation. Suppose that an x-ray beam encounters an ob-
ject. Beer’s law describes how the presence of the object affects the intensity of the beam.
For the moment suppose that we live in a one-dimensional world, with s a coordinate in
our world. Let I (s) be the intensity of the x-ray beam at s. For a one-dimensional problem
I would be quoted in units of electron-volts/s. Beer’s law predicts the change in intensity
due to the material lying between s and s + �s :

I (s +�s) − I (s) ≈ −μ(s)I (s)�s. (3.2)

Think now of the beam as being composed of a large number, N(s) photons/second, each
of the given energy E traveling along the same straight line. Then I (s) = E N(s) and
equation (3.2) implies that

N(s + �s) − N(s) ≈ −μ(s)N(s)�s.

This formulation suggests a probabilistic interpretation for Beer’s law: μ(s)�s can be
regarded as giving the probability that a photon incident on the material at coordinate s is
absorbed. We return to this in Section 16.1.2.

Using the assumption that x-rays travel along straight lines, Beer’s law is easily applied
to two- and three-dimensional problems. The two- or three-dimensional x-ray flux is mod-
eled as a collection of noninteracting, one-dimensional beams. As noted previously, the
x-ray flux at a point x is described by a vector I(x). In light of assumption (1) the direction
of I at x gives the direction of the straight line along which the beam is traveling. Suppose
that one of the x-ray beams is traveling along the line given parametrically by

{x0 + sv : s ∈ �}.
Here v is a unit vector in �3. The function

i(s) = I (x0 + sv)

gives the intensity of the beam at points along this line, and

m(s) = μ(x0 + sv)

gives the attenuation coefficient. Beer’s law states that

di

ds
= −m(s)i(s) or

d(log i)

ds
= −m(s).

Integrating this equation from s = a to s = b gives

log

[
i(b)

i(a)

]
= −

b∫
a

m(s) ds.
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Between the points x0 + av and x0 + bv, the intensity of the beam is attenuated by

exp

⎡⎣− b∫
a

m(s) ds

⎤⎦ .

Typical units for the intensity of an x-ray beam are electron-volts/(s×cm2 ) in three-
dimensions and electron-volts/(s×cm) in two-dimensions. Beer’s law describes how the
material attenuates each of these one-dimensional beams; it implicitly asserts that the at-
tenuation of x-rays is an isotropic process: It does not depend on the direction of the line
along which the x-ray travels. An application of Beer’s law to a two-dimensional situation
is considered next.

Example 3.1.5. Assume that we have a point source of x-rays of intensity I0 in the plane
[see Figure 3.2(a)]. The x-ray source is isotropic which means the outgoing flux is the same
in all directions.

(x,y)

r

(a) A point source of x-rays

Source

S

(b) The flux through a curve not enclosing
the source is zero.

Figure 3.2. Analysis of an isotropic point source.

Because the source is isotropic, the intensity of the beam is only a function of the
distance to the source. Let I (r) denote the intensity of the flux at distance r from the
source. By conservation of energy,

I0 =
∫

x2+y2=r2

I (r) ds = 2πr I (r). (3.3)

The intensity of the beam at distance r from the source is therefore

I (r) = I0

2πr
. (3.4)

The x-ray flux is modeled as beams traveling along the rays that pass through the source.
If I0 is measured in units of electron-volts/second, then I (r) has units electron-volts

cm×second .
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Fixing coordinates so that the source is placed at (0, 0), the x-ray flux at a point (x, y)
travels along the line from (x, y) to (0, 0) and is given by

I(x, y) = I (r)
(x, y)√
x2 + y2

= I0
r̂

2πr
,

where r̂ = (x, y)

r
, r =

√
x2 + y2.

(3.5)

If a curve S does not enclose the source, then conservation of energy implies that∫
S

I(x, y)r̂ · n̂ ds = 0; (3.6)

here n̂ is the outward normal vector to S. As the curve encloses no sources or sinks, the line
integral of the flux is zero: everything that comes into this surface has to go out.

For a point source the intensity of the rays diminish as you move away from the source;
this is called beam spreading. Beer’s law can be used to model this effect. Let μs denote
the attenuation coefficient that accounts for the spreading of the beam. As a guess we let
μs = 1/r and see that

d I

dr
= −1

r
I ⇒ d log I

dr
= −1

r
. (3.7)

Integrating equation (3.7) from an r0 > 0 to r gives

I (r) = I (r0)
r0

r
.

This agrees with (3.4). That we cannot integrate down to r = 0 reflects the non-physical
nature of a point source. In x-ray tomography it is often assumed that the attenuation of the
beam due to beam spreading is sufficiently small, compared to the attenuation due to the
object that it can be ignored. This is called a non-diverging source of x-rays.

In a real measurement, the x-ray source is turned on for a known period of time. The
total energy, Ii , incident on the object along a given line, l is known. The total energy, Io,
emerging from the object along l is then measured by an x-ray detector. Integrating Beer’s
law we obtain

log
Io

Ii
= −

∫
l

μ ds. (3.8)

Here ds is the arc length parameter along the straight line path l. A perfect measurement of
the ratio Io/Ii would therefore furnish the line integral of the attenuation coefficient along
the line l. Indeed we model the measurements made in x-ray tomography as precisely these
line integrals.

An ordinary x-ray image is formed by sending a beam of x-rays through an object, with
the detector a sheet of photographic film. Suppose that the x-rays travel along parallel lines,
passing through an object before arriving on a photographic plate, as shown in Figure 3.3.
By measuring the density of the exposed film, we can determine the intensity of the x-ray
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beam at the surface of the film. More absorbent parts of an object result in fewer x-rays
photons at the surface of the film. If the intensity of the incident beam is known, then the
density of the film can be used to determine the integrals of the attenuation coefficient along
this family of parallel lines.

X-ray source

Object

Detector

(a) One object.

X-ray source

Object

Object

Detector

(b) Two objects.

Figure 3.3. The failure of ordinary x-ray images to distinguish objects.

The result is a “projection” or shadow of the object. The shadows of the objects in
Figures 3.3(a) and (b) are the same, so it is not possible to distinguish between them using
this projection. Placing the x-ray source at a different angle gives a different measurement.
The measurement in Figure 3.4 distinguishes between the objects in Figures 3.3(a) and (b).

X-ray source

Object

Object

Detector

Figure 3.4. A different projection.

The principle is clear: The more directions from which you make measurements, the
more arrangements of objects you can distinguish. The goal of x-ray tomography is much
more ambitious; we would like to use these projections to reconstruct a picture of the slice.
This problem is similar to that considered in Example 1.1.5. However, it is much more
challenging to reconstruct a function from its averages along lines than to reconstruct the
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outline of an object from its shadows. To accomplish this in principle and in practice
requires a great deal more mathematics.

Exercises
Exercise 3.1.1. Suppose that we have an isotropic point source of x-rays in three-dimensions
of intensity I0. Find the formula for the intensity of the beams at a distance r from the
source. What are the units of I (r)?

Exercise 3.1.2. Verify (3.6) by direct computation.

Exercise 3.1.3. Describe an apparatus that would produce a uniform, non-divergent source
of x-rays.

3.2 Analysis of a Point Source Device

In this section we use Beer’s law to study a simple two-dimensional apparatus and analyze
what it measures. Figure 3.5 shows an apparatus with a point source of x-rays, an atten-
uating body and a photographic plate. We derive an expression for the flux at a point P
on the photographic plate in terms of the attenuation of the beam caused by the object as
well as beam spreading. The final expression involves the line integral of the attenuation
coefficient.

φ l

L

L+h

a

b

P

Source

φ

φ

Film

Figure 3.5. A point source device for measuring line integrals of the attenuation coefficient.

The geometry of our apparatus suggests the use of polar coordinates to label points
in the plane. Let r denote the distance from the source and φ the angle indicated in the
diagram. The attenuation coefficient for the absorbing body in Figure 3.5 is then a function
of (r, φ), denoted by μa(r, φ). The effect of beam spreading on the intensity of the flux is
analyzed in Example 3.1.5. The total attenuation coefficient is obtained by adding μs(r) =
r−1 to μa. For the beam of x-rays traveling along the line through the source, at angle φ,
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the differential equation describing the attenuation of the x-ray beam is

d I

dr
= −

(
μa(r, φ) + 1

r

)
I . (3.9)

The sum, μa + r−1, is an effective attenuation coefficient as it captures both the attenuation
due to the object and that due to beam spreading. The film is exposed by turning the source
on for a known period of time. In order to avoid introducing more notation, I is also used
to denote the total energy per unit length resulting from this exposure. The units for I in
this case would be electron-volts/cm.

Label the radius of the first point of intersection of the line at angle φ with the absorbing
body by aφ , and the last by bφ . The other distances describing the apparatus are labeled
by h, L , and L + h, respectively. Integrating equation (3.9) from r = r0 to the film plane
r = rφ gives

log
I (rφ, φ)

I (r0, φ)
= log

r0

rφ
−

bφ∫
aφ

μa(s, φ) ds.

Using

aφ = l

cos φ
, bφ = L

cos φ
, rφ = L + h

cosφ
,

we get

I (rφ, φ) = I0
cos φ

2π(L + h)
exp

[
−

bφ∫
aφ

μa(s, φ) ds

]
.

The density of the developed film at a point is proportional to the logarithm of the total
energy incident at that point; that is,

density of the film = γ × log(total energy intensity,) (3.10)

where γ is a constant. We now compute this energy. As the film plane is not perpendicular
to the direction of the beam of x-rays, we need to determine the flux across the part of the
film subtended by the angle �φ. It is given by

�F =
φ+�φ∫
φ

I (rφ, φ)r̂ · n̂ dσ, r̂ = −(sinφ, cos φ).

Here n̂ = (0,−1) is the outward, unit normal vector to the film plane and dσ is the arc
length element along the film plane. In polar coordinates it is given by

dσ = L + h

cos2 φ
dφ.
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Since �φ is small, we can approximate the integral by

�F ≈
φ+�φ∫
φ

I (rφ, φ)r̂ · n̂
L + h

cos2 φ
dφ ≈ I0

cos2 φ

2π(L + h)
exp

⎡⎢⎣− bφ∫
aφ

μa(s, φ) ds

⎤⎥⎦ L + h

cos2 φ
�φ.

(3.11)
The length of film subtended by the angle �φ is approximately

�σ = L + h

cos2 φ
�φ.

The energy density at the point Pφ, where the line making angle φ with the source,
meets the film plane, is �F divided by this length. Indeed, letting �φ tend to zero gives

d F

dσ
= I0 cos2 φ

2π(L + h)
exp

⎡⎢⎣− bφ∫
aφ

μa(s, φ) ds

⎤⎥⎦ .

According to (3.10), the density of the film at Pφ is therefore

γ log
d F

dσ
= γ

⎡⎢⎣log
I0 cos2 φ

2π(L + h)
−

bφ∫
aφ

μa(s, φ) ds

⎤⎥⎦ .

The first term comes from the attenuation due to beam spreading. Subtracting it from the
measurement gives the line integral of the attenuation coefficient of the absorbing body
along the ray at angle φ. Let δ(φ) denote the density of the film at Pφ, this formula can be
rewritten

−
bφ∫

aφ

μa(s, φ) ds = γ −1δ(φ)− log

[
I0 cos2 φ

2π(L + h)

]
.

On the right-hand side are quantities determined by measurement; the left-hand side is the
line integral of the attenuation coefficient. This formula expresses the measurements as a
linear function of the attenuation coefficient.

By varying the position of the source, we can measure the line integrals of the atten-
uation coefficient along another family of lines. If we move the source and film plane
together, around a circle enclosing the absorbent material, making the measurements de-
scribed previously for each position of the source, then we can measure the line integrals of
the attenuation coefficient for all lines that intercept the object (Figure 3.6). This brings us
to an essentially mathematical problem: Can a function be recovered from a knowledge of
its line integrals along all lines? We shall see that this can in principle be done. That it can
also be done in practice forms the basis for image reconstruction in an x-ray CT machine.
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Source positions

Figure 3.6. Collecting data from many views.

We now describe a idealized model for what is measured in x-ray tomography. As
remarked above the CT machine determines a coordinate system (x1, x2, x3) for �3. Let μ
denote the attenuation coefficient of an object. Suppose the support of μ lies in the cube
[−a, a] × [−a, a] × [−a, a]. For each c between ±a and each pair (t,ω) ∈ � × S1 we
measure integral of μ along the line

{(x1, x2, x3) : x3 = c and 〈(x1, x2),ω〉 = t},

that is,
∞∫

−∞
μ(tω + sω̂, c) ds.

We measure the line integrals of μ along all lines that lie in planes where x3 is constant.
Figure 3.7(a) is a density plot of a function that models the attenuation coefficient of a

slice of the human head. The densities in this plot are scaled so that the highest attenuation
(the skull) is white and the lowest (surrounding air) is black. A model of this sort is called
a mathematical phantom. Such models were introduced into medical image reconstruction
by Larry Shepp. These are discussed in greater detail in Section 11.2. The example shown
in Figure 3.7(a) is adapted from a paper by Shepp and Logan, [114]. Figure 3.7(b) depicts
the line integrals of this function. The horizontal axis is the angular variable, with θ cor-
responding to ω(θ) = (cos(θ), sin(θ)). The angle varies between 0 and 2π. The vertical
axis is the affine parameter. Again white corresponds to high densities and black to low
densities.
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(a) A density plot of the Shepp-Logan
phantom.

(b) The line integrals for the
function shown in (a).

Figure 3.7. The line integrals of the Shepp-Logan phantom.

In Chapter 6 we give a formula for determining a function defined in �2 from its inte-
grals on all lines in the plane. Of course, it is not possible to make an infinite number of
measurements. This means that we need a method for reconstructing an approximation to
a function from a finite collection of line integrals. In Chapter 11, beginning with the exact
reconstruction formula, we obtain algorithms for use with finitely many measurements.

Exercises

Exercise 3.2.1. Explain why the top and bottom of Figure 3.7(b) are identical.

Exercise 3.2.2. Why is Figure 3.7(b) black near the left and right edges?

Exercise 3.2.3. Explain the significance of the white bands in Figure 3.7(b).

3.3 Some Physical Considerations

Before proceeding with the mathematical development, we briefly revisit the assumptions
underlying our model for the attenuation of x-rays. This discussion previews topics consid-
ered in later chapters and is not essential to the remainder of this chapter. The x-ray source
is assumed to be monochromatic. In fact, the beam of x-rays is made up of photons having
a wide range of energies. The distribution of photon energies is described by its spectral
function, S. If �1 and �2 are nearby energies, then the energy in the beam due to photons
with energies lying in the interval [�1,�2] is about S(�1)(�2 − �1), or more precisely

�2∫
�1

S(�) d�.
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The graph of a typical spectral function is shown in Figure 3.8. The total energy output of
the source is given by

�i =
∞∫

0

S(� )d�.
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Figure 3.8. A typical x-ray source spectral function. (Spectral data provided by Dr. An-
drew Karellas, University of Massachusetts Medical School, Department of Radiology,
Worcester, Massachusetts.)

The attenuation coefficient of a given material is a complicated function of the energy,
monotonely decreasing as the energy increases. The attenuation coefficient is the sum total
of the results of several physical processes that x-rays undergo. A discussion of the physics
behind the attenuation coefficient can be found in [6]. Let μ(x,�) denote the attenuation
coefficient of the object at x for photons of energy �. Beer’s law, applied to the photons of
energy �, traveling along a line l states that the ratio Io(�)/Ii(�) of emitted flux to incident
flux at this energy is

Io(�)

Ii (�)
= exp

⎡⎣− ∫
l

μ(x,�) ds

⎤⎦ .

The incident flux at energy � is S(�) d� and therefore

Io(�) = S(�) d� exp

⎡⎣− ∫
l

μ(x,�) ds

⎤⎦ .
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Because low-energy (or soft) x-rays are attenuated more efficiently than high-energy (or
hard) x-rays, the distribution of energies in the output beam is skewed toward higher en-
ergies. In medical imaging, this is called beam hardening. Along a given line the spectral
function at energy � of the output beam is

Sout(�) = S(�) exp

⎡⎣− ∫
l

μ(x,�)ds

⎤⎦ .

Integrating Sout over the energy gives the measured output

�o =
∞∫

0

S(�) exp

⎡⎣− ∫
l

μ(x,�) ds

⎤⎦ d�.

As before, we would like to reconstruct μ or perhaps some average of this function over
energies. Mathematically this is a very difficult problem as the measurement, �o, is a
non-linear function of μ. We have avoided this problem by assuming that the x-ray beam
used to make the measurements is monochromatic. This provides the much simpler linear
relationship (3.8) between the measurements and the attenuation coefficient. In Chapter 12
we briefly consider the artifacts that result from using polychromatic x-rays and methods
used to ameliorate them.

The fact that the x-ray “beam” is not a continuous flux but is composed of discrete
particles produces random errors in the measurements. This type of error is called Poisson
noise, quantum noise, or photon noise. In Chapter 16 we analyze this effect, showing that
the available information in the data is proportional to the square root of the number of
photons used to make the measurement. The accuracy of the measurements is the ultimate
limitation on the number of significant digits in the reconstructed attenuation coefficient.
Table 3.1 lists the attenuation coefficients of different structures encountered in medical
CT. The attenuation coefficients of air (-1000) and bone (1086) define the range of values
present in a typical clinical situation. The dynamic range of a clinical CT measurement is
about 2000 Hounsfield units. From the table it is apparent that the variation in the atten-
uation coefficients of soft tissues is about 2% of this range. For x-ray CT to be clinically
useful this means that the reconstruction of the attenuation coefficient needs to be accurate
to less than a half a percent.

An obvious solution to this problem would be to increase the number of photons. Since
each x-ray photon carries a very large amount of energy, considerations of patient safety
preclude this solution. The number of x-ray photons involved in forming a CT image is
approximately 107/ cm2 . This should be compared with the 1011 to 1012/ cm2 photons,
needed to make a usable photographic image. In ordinary photography, quantum noise
is not a serious problem because the number of photons involved is very large. In x-ray
tomography, patient safety and quantum noise place definite limits on the contrast and
resolution of a CT image.
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3.4 The Definition of the Radon Transform

See: A.3, A.4.1.

The first step in determining a function from its integrals along all straight lines is to
organize this information in a usable fashion. We use the parameterization for the set of
oriented lines in the plane described in Section 1.2.1. Recall that for (t,ω) ∈ � × S1, lt,ω

is the set

{x ∈ �2 | 〈x,ω〉 = t},

with orientation determined by ω̂ (Figure 1.12).

Definition 3.4.1. Suppose that f is a function defined in the plane, which, for simplicity,
we assume is continuous with bounded support. The integral of f along the line lt,ω is
denoted by

� f (t,ω) =
∫

lt,ω

f ds

=
∞∫

−∞
f (sω̂ + tω)ds

=
∞∫

−∞
f (tω1 − sω2, tω2 + sω1) ds.

(3.12)

The collection of integrals of f along the lines in the plane defines a function on � × S1,
called the Radon transform of f.

Example 3.4.1. In this example we give a graphical description for the computation of the
Radon transform. Figure 3.9(a) shows the graph of a function f defined in the plane along
with some lines in the family

{〈x, (cos(
π

4
), sin(

π

4
))〉 = t}.

In Figure 3.9(b) we show graphs of f restricted to these lines. Behind the slices is the graph
of � f (t, (cos(π4 ), sin(π4 ))). The height of this curve at each point is just the area under the
corresponding slice of the graph of f.
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(a) The graph of f and a family of parallel lines in the
plane.

(b) Slices of f and its Radon transform for this
family of lines.

Figure 3.9. Graphical depiction of the Radon transform.

It is not necessary for f to be either continuous or of bounded support. The Radon
transform can be defined, a priori for a function, f whose restriction to each line is locally
integrable and

∞∫
−∞

| f (tω + sω̂) ds| < ∞ for all (t,ω) ∈ � × S1. (3.13)

With these conditions the improper integrals in (3.12) are unambiguously defined. Func-
tions that satisfy (3.13) are in the natural domain of the Radon transform. This is really
two different conditions:

1. The function is regular enough so that restricting it to any line gives a locally inte-
grable function.

2. The function goes to zero rapidly enough for the improper integrals to converge.

The function f ≡ 1 is not in the natural domain of the Radon transform because it does
not decay at infinity. The function f (x, y) = (x2 + y2)−1 is not in the natural domain of �
because the integrals in (3.13) diverge if t = 0. While an understanding of the domain of
Radon transform is a important part of its mathematical analysis. In applications to medical
imaging, functions of interest are usually piecewise continuous and zero outside of some
disk and therefore belong to the natural domain of �.

Functions in the range of the Radon transform have a special symmetry property.

Definition 3.4.2. A function h on � × S1 is an even function if

h(t,ω) = h(−t,−ω). (3.14)

We summarize the elementary properties of the Radon transform in a proposition.
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Proposition 3.4.1. The Radon transform is linear; that is, if f and g are functions in the
natural domain of the Radon transform, then

�(a f ) = a � f for all a ∈ � and

�( f + g) = � f + �g.
(3.15)

The Radon transform of f is an even function; that is,

� f (t,ω) = � f (−t,−ω). (3.16)

The Radon transform is monotone: if f is a non-negative function in the natural domain of
the Radon transform then

� f (t,ω) ≥ 0 for every (t,ω). (3.17)

Proof. The linearity is a consequence of the linearity of integration over a line. The second state-
ment follows from the fact that, as sets, lt,ω = l−t,−ω. The last statement follows from the analogous
property for the integral.

We now define some simple classes of functions and compute their Radon transforms.

Example 3.4.2. Let E be a subset of �2; the Radon transform of χE has a simple geometric
description.

�χE (t,ω) = the length of the intersection lt,ω ∩ E .

If E is a closed, bounded subset, then χE belongs to the natural domain of the Radon
transform. These functions model objects with constant attenuation coefficient.

In some cases it is possible to give a more explicit formula for �χE .

Definition 3.4.3. The ball in �n of radius r centered at a is denoted

Br(a) = {x : ‖x − a‖ < r}.
Often Br(0) is denoted by Br . Balls in �2 are often called disks.

Example 3.4.3. Consider the disk of radius 1 in �2. The function χB1 is a special case of
the general class considered in the previous example. The formula for the Radon transform
of χB1 is

�χB1(t,ω) =
{

2
√

1 − t2 if |t| ≤ 1,

0 if |t| > 1.

Note that |t| > 1 corresponds to lines lt,ω that do not intersect B1.

Definition 3.4.4. A function, f defined on �n is radial if its value only depends on the
distance to the origin. In this case there exists a function, F, of a single variable so that

f (x) = F(‖x‖).
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Example 3.4.4. The Radon transform of a radial function takes a simpler form. From ge-
ometric considerations it is clear that � f (t,ω) does not depend on ω. Fixing a convenient
direction—for example, ω = (1, 0)—we obtain

� f (t,ω) =
∞∫

−∞
f (t, s) ds

=
∞∫

−∞
F(
√

t2 + s2) ds.

(3.18)

Using the change of variable, r2 = t2 + s2, 2r dr = 2s ds, we obtain

� f (t,ω) = 2

∞∫
t

F(r)r dr√
r2 − t2

. (3.19)

Formula (3.19) expresses the Radon transform of a radial function as a one-dimensional
integral transform.

Our goal is the recovery of a function, f, from a knowledge of its Radon transform,
� f. Since � is a linear map, we might hope that there is a linear map �−1 from functions
on � × S1 to functions on �2 satisfying

�−1 ◦ � f = f.

The inverse map should also be given by an integral formula. This turns out to be the case,
but the derivation and analysis of this formula are rather involved. Because these spaces of
functions are infinite dimensional, finding the inverse is not just a problem in linear algebra.
The domain of �−1 is the range of �, and neither the domain of � nor of �−1 is easy to
describe explicitly. These issues are studied in Chapter 6. The remainder of this section is
devoted to further properties of the Radon transform and its inverse.

Naively, we would expect that in order for �−1 to exist it would be necessary that
� f (t,ω) = 0 for all pairs (t,ω) only if f ≡ 0. In fact, it is easy to construct examples of
functions that are not zero but have zero Radon transform.

Example 3.4.5. Define the function

f (x, y) =
{

1 if (x, y) = (0, 0),

0 if (x, y) 	= (0, 0).

Clearly, � f (t,ω) = 0 for all (t,ω).

From the point of view of measurement, this is a very trivial example. The next example
is somewhat more interesting.
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Example 3.4.6. Define a function f by setting f (x, y) = 1 if x ∈ [−1, 1] and y = 0 and
zero otherwise. Then � f (t,ω) = 0 if ω 	= (0,±1) and � f (0, (0,±1)) = 2. In this case
the Radon transform is usually zero, but for certain special lines it is not. Observe that if
we replace f by a function f̃ that is 1 on some other subset of � × 0 of total length 2, then
� f = � f̃ . This gives examples, which are not entirely trivial, where the Radon transform
does not contain enough information to distinguish between two functions.

The concept of a set of measure zero helps clarify these examples. We give a precise
definition.

Definition 3.4.5. A subset E ⊂ �n is said to be of n-dimensional measure zero if for any
ε > 0 there is a collection of balls Bri (x i) so that

E ⊂
∞⋃

i=1

Bri (x i)

and ∞∑
i=1

rn
i < ε.

Such a set carries no n-dimensional mass.

For example, a point is set of measure zero in the line, a line is a set of measure zero in
the plane, a plane is a set of measure zero in �3, and so on. From our perspective the basic
fact about sets of measure zero is the following: If f is a function defined in �n and the set
of points where f 	= 0 is a set of measure zero, then 1∫

�n

| f (x)| dx = 0.

Indeed if ϕ is any function in L1(�n), then∫
�n

f (x)ϕ(x) dx = 0.

As most linear models for realistic measurements are given by expressions of this sort,
it follows that no practical measurement can distinguish such a function from the zero
function.

Using the map (t, θ) �→ (t,ω(θ)), we can identify � × [0, 2π) with � × S1. A set in
� × S1 has measure zero if its preimage under this map does. With these concepts we can
state a basic result about the Radon transform.

Proposition 3.4.2. If f is a function defined in the plane supported on a set of measure
zero, then the set of values (t,ω) ∈ �×S1 for which � f (t,ω) 	= 0 is itself a set of measure
zero.

1Strictly speaking, we should use the Lebesgue integral when discussing the integral of a function which is
only nonzero on a set a measure zero. Such a function may fail to be Riemann integrable. See [43].
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As Example 3.4.6 shows, a function supported on a set of measure zero cannot, in
general, be reconstructed from its Radon transform. Since the Radon transform is linear, it
cannot distinguish functions which differ only on a set of measure zero. This is a feature
common to any measurement process defined by integrals. While it is important to keep in
mind, it does not lead to serious difficulties in medical imaging.

The support properties of f are reflected in the support properties of � f.

Proposition 3.4.3. Suppose that f is a function defined in the plane with f (x, y) = 0 if
x2 + y2 > R2. Then

� f (t,ω) = 0 if |t| > R. (3.20)

Proof. Any line lt,ω with |t| > R lies entirely outside of the support of f. From the definition it
follows that � f (t,ω) = 0 if |t| > R.

If f is known to vanish outside a certain disk, then we do not need to compute its Radon
transform for lines that are disjoint from the disk. It would be tempting to assert that the
converse statement is also true, that is, “If � f (t,ω) = 0 for |t| > R, then f (x, y) = 0 if
x2 + y2 > R2.” As the next set of examples shows, this is false. We return to this question
in Chapter 6.

Example 3.4.7. For each integer n > 1 define a function, in polar coordinates, by setting

fn(r, θ) = r−n cos(nθ).

These functions all blow up at r = 0 faster than r−1 and therefore do not belong to the
natural domain of �. This is because fn cannot be integrated along any line that passes
through (0, 0). On the other hand, since fn goes to zero as r → ∞ like r−n and n > 1,
the integrals defining � fn(t,ω) converge absolutely for any t 	= 0. We use the following
result:

Lemma 3.4.1. For each n > 1 and t 	= 0,ω ∈ S1 the integrals∫
lt,ω

fn(tω + sω̂) ds

converge absolutely and equal zero.

The proof of the lemma is at the end of this section. It already indicates the difficulty of
inverting the Radon transform. These functions are not in the natural domain of the Radon
transform because ∞∫

−∞
| fn(−s sin θ, s cos θ)| ds = ∞

for any value of θ. On the other hand, � fn(t,ω) = 0 for all t 	= 0. So in some sense, � fn

is supported on the set of measure zero {0} × S1.
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For each n we modify fn to obtain a function Fn in the natural domain of � such that
�Fn(t,ω) = 0 for all (t,ω), with |t| > 1. On the hand, the functions Fn do not vanish
outside the disk or radius 1. The modified functions are defined by

Fn(r, θ) =
{

fn(r, θ) for r > 1,

0 for r ≤ 1.

A line lt,ω with |t| > 1 lies entirely outside the unit disk. On such a line, the lemma applies
to show that

�Fn(t,ω) =
∫

lt,ω

fn ds = 0.

On the other hand, Fn is bounded in a neighborhood of (0, 0) and therefore �Fn(t,ω) is
defined for all (t,ω) ∈ � × S1. This shows that the Radon transform of a function may
vanish for all t with |t| > r without the function being zero outside disk of radius r .

Exercises
Exercise 3.4.1. Provide a detailed proof for Proposition 3.4.1.

Exercise 3.4.2. Find an explicit formula for the Radon transform of χB1(a), for any a ∈ �2.

Exercise 3.4.3. Compute the Radon transform of f (x, y) = xyχ[−1,1](x)χ[−1,1](y).

Exercise 3.4.4. Let f (x, y) = 1 if x2 + y2 = 1 and zero otherwise. Show that � f (t,ω) =
0 for all (t,ω) ∈ � × S1.

Exercise 3.4.5. Suppose that f and g are functions in the natural domain of the Radon
transform. Show that if f (x) ≥ g(x) for every x ∈ �2, then

� f (t,ω) ≥ �g(t,ω) for every (t,ω) ∈ S1 × �.

Exercise 3.4.6. Suppose that f is a function defined on �2 such that the set of points where
f is non-zero has measure zero. Show that if ϕ is a continuous function with bounded
support, then

∞∫
−∞

� f (s,ω)ϕ(t − s) ds = 0

for every t. Explain the relevance of this fact to medical imaging.

Exercise 3.4.7. ∗ Show that the set of points where χ� is non-zero is a set of measure zero.
Show that χ� is not a Riemann integrable function.

Exercise 3.4.8. Suppose that {x1, . . . , xn} are n distinct points on the unit circle. For i 	= j,
let li j denote the line segment joining x i to x j and ri j denote a real number. Show that if
ri j = r j i for all i 	= j, then there is function f supported on the line segments {li j } such
that ∫

li j

f ds = ri j for all i 	= j.
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Exercise 3.4.9. Show that a line segment has measure zero as a subset of the plane.

Exercise 3.4.10. Show that the x-axis has measure zero as a subset of the plane.

Exercise 3.4.11. Show that the set {(0,ω) : ω ∈ S1} has measure zero as a subset of
� × S1.

3.4.1 Appendix: Proof of Lemma 3.4.1*

The proof of the theorem makes use of the elementary theory of complex variables and is
not needed for the subsequent development of the book.

Proof. Let z = x + iy and observe that by Euler’s formula it follows that

fn = Re z−n .

This means that for t 	= 0

� fn(t,ω) = Re
∫

lt,ω

z−n ds,

where ds is the arc element along the line. The line (t,ω(θ)) can be represented as

z = (t + i s)eiθ , t ∈ �.

Using this complex parameterization, the Radon transform of fn can be reexpressed as a complex
contour integral:

� fn(t, θ) =
∞∫

−∞
fn((t + i s)eiθ ) ds = Re

⎡⎢⎣−ie−iθ
∫

Re(e−iθ z)=t

z−n dz

⎤⎥⎦ , (3.21)

where the arc length element, along the line, is written in complex notation as

ds = −ie−iθdz.

For n > 1
∫

z−n = (1 − n)−1z1−n; hence the theorem follows from (3.21).

3.4.2 The Back-Projection Formula

Even though the line integrals of a function are concrete data, it is difficult to use these
data directly to reconstruct the function. An obvious thing to try is averaging the values of
the � f over the lines that pass through a point. For a direction ω, the line in the family
{lt,ω : t ∈ �}, passing through a point x is given by t = 〈x,ω〉. Thus we could try setting

f̃ (x) = 1

2π

2π∫
0

� f (〈x,ω(θ)〉, θ) dθ. (3.22)

This is called the back-projection formula. While it is a reasonable guess, it does not give
the correct answer. Figure 3.10 shows the result of using back-projection to reconstruct a
simple black and white image. The object is recognizable but blurry.
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(a) A simple object. (b) The result of back-projecting
the object’s Radon transform.

Figure 3.10. Back-projection does not work.

To find the true inverse of the Radon transform requires an indirect approach passing
through the Fourier transform. The Fourier transform, while perhaps more familiar, is
a less transparent integral transform than the Radon transform. On the other hand, the
inverse of the Fourier transform is easier to obtain. In the next chapter we consider the
Fourier transform in some detail as it is of fundamental importance in the theory of image
reconstruction and signal processing.

3.4.3 Continuity of the Radon Transform∗

See: A.4.2, A.4.4.

The Radon transform is a linear transformation from functions defined in the plane to
even functions on the space of lines. In medical applications, the function � f is an ide-
alization for what is measured. Generally speaking, f is taken to be a bounded, though
possibly discontinuous, function that vanishes outside of the patient. Suppose that f van-
ishes outside the disk of radius L and f ≤ M. The lengths of the intersections of lt,ω with
the support of f are bounded above 2L , giving a crude estimate for � f :

|� f (t,ω)| =

∣∣∣∣∣∣∣
∫

lt,ω

f ds

∣∣∣∣∣∣∣ ≤ 2M L . (3.23)

How sensitive are the measurements to errors? This is a question about the continuity
properties of the map f �→ � f. The answer to this question is important, but in the final
analysis, it is not the correct question. What we really want to know is how sensitive the
reconstruction method is to measurement errors. In other words, we want to understand
the continuity properties of �−1. Since we have not yet constructed �−1, we consider the
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somewhat easier question of the continuity of �. That is, how sensitive are the measure-
ments to the data? We need to choose a way to measure the size of the errors in both
the data and the measurements. For the present we make the following choices: on the
measurements we use the maximum of the integrals in the affine parameter

‖� f (t,ω)‖1,∞ = max
ω∈S1

∞∫
−∞

|� f (t,ω)| dt; (3.24)

as a norm on the data we use the standard L1-norm

‖ f ‖1 =
∫
�2

| f (x)| dx.

A function for which ‖ f ‖1 < ∞ is called an absolutely integrable or L1-function. The set
of such functions is denoted by L1(�2).

Proposition 3.4.4. Suppose that f is an L1-function in the natural domain of the Radon
transform. Then

‖� f ‖1,∞ ≤ ‖ f ‖1. (3.25)

Proof. This proposition is a consequence of the triangle inequality, the change-of-variables formula,
and the Fubini theorem. For each ω ∈ S1 the triangle inequality implies that

∞∫
−∞

| � f (t,ω)| dt ≤
∞∫

−∞

∞∫
−∞

| f (tω + sω̂)| ds dt

=
∫
�2

| f (x, y)| dx dy.

(3.26)

In the second line we use the fact that (s, t) �→ tω + sω̂ is an orthogonal change of variables. Since
the last line is independent of ω, this proves the proposition.

Because the Radon transform is linear this estimate implies that for any pair of functions,
f, g, in the natural domain of �, we have the estimate

‖� f − �g‖1,∞ ≤ ‖ f − g‖1. (3.27)

The fact that it takes time to make measurements means that, in the course of acquiring
a full set of samples, the patient often moves. For a vector τ = (τ1, τ2), let fτ denote the
function f translated by the vector τ :

fτ (x, y) = f (x − τ1, y − τ2).

Suppose that we attempt to measure the � f (t,ω) but the patient moves, a little, during the
measurement process. A better model for what is measured is {� fτ(ω)(t,ω)}, where, as
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indicated, {τ (ω)} are vectors in �2 describing the position of the patient as a function of ω.
The estimate (3.27) implies that

‖� f − � fτ‖1,∞ ≤ max
ω∈S1

‖ f − fτ (ω)‖1.

If on average f does not vary too quickly and the motions that arise are not too large then
this estimate shows that the “actual” measurements {� fτ (ω)(t,ω)} are close to the model
measurements {� f (t,ω)}. Since the functions that arise in imaging are not continuous, it
is important that while the average variation needs to be controlled, the pointwise variation
does not. This is illustrated by an example.

Example 3.4.8. Let f (x, y) = χ[−1,1](x)χ[−1,1](y). If τ 	= 0, then

max
x

| f (x)− f(τ,0)(x)| = 1.

On the other hand, for |τ | < 1, it is also true that∫
�2

| f (x)− f(0,τ )(x)| dx = 4τ.

Because of the averaging that occurs in the measurement process, it is often sufficient
to keep the measurement errors small in a norm like ‖ · ‖1,∞. This fact is explained in
Example 2.2.11.

As an application of functional analytic methods to the study of the Radon transform
we show that the estimate (3.25) allows the extension of the Radon transform beyond its
natural domain to L1(�2). To define this extension we observe that continuous functions
with bounded support are dense in the space L1(�2). This means that for f ∈ L1(�2), we
can choose a sequence < fn > of continuous functions, with bounded support so that

lim
n→∞‖ f − fn‖L1 = 0.

The Radon transform of f is the function on � × S1 defined as the limit of the sequence of
functions < � fn > with respect to the L1-norm. We let � f denote the limit. It also has
the property that, for all ω ∈ S1,

∞∫
−∞

|� f (t,ω)| dt ≤ ‖ f ‖L1 .

On the other hand, � f is no longer given by the formula (3.12) as it is not known, a priori
that these integrals converge. Fubini’s theorem implies that these integrals are finite for
almost every t.
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Exercises
Exercise 3.4.12. Prove that the sequence of functions < � fn > has a limit.

Exercise 3.4.13. Compute the Radon transform of

f = χ[0,1](x2 + y2)√
x2 + y2

.

Is f in the natural domain of �? What is ‖� f ‖1?

To close this chapter we study the Radon transform acting on radial functions. Inverting
the transform in this case is simpler, reducing to a special case of the Abel transform.

3.5 The Radon Transform on Radial Functions

The Radon transform of a radial function does not depend on ω. It is given in (3.19) as an
integral transform of a function of one variable. In this section, we suppress the dependence
of the Radon transform on ω. After changing variables, we see that � f is a special case of
an Abel transform. For 0 < α ≤ 1, the α-Abel transform of g is defined by

Aα g(t) = 1

�(α)

∞∫
t

g(s) ds

(s − t)1−α
;

the coefficient �(α) is the Gamma function, defined in Section A.3.3. The theory of the
Abel transform is outlined in Section 3.5.2. Among other things we show that

A−1
1
2

= −∂t [A 1
2
]. (3.28)

Suppose that f (x, y) = F(
√

x2 + y2); then changing variables shows that

� f (t) = √
π(A 1

2
(F√)(t2). (3.29)

Here F√ denotes the function r �→ F(
√

r). Using the formula for the inverse of the Abel
transform (3.28) that is derived in Section 3.5.2 and a change of variables, we can solve
equation (3.19) to obtain

F(r) = − 1

πr
∂r

⎡⎣ ∞∫
r

� f (t)t dt

(t2 − r2)1/2

⎤⎦ . (3.30)

The inversion formula involves the Radon transform itself followed by a derivative. Dif-
ferentiation is an unbounded operation, and this is where the subtlety in approximating the
inverse of Radon transform lies. It is a consequence of (3.30) and Exercise 3.5.10 that a
radial function f vanishes outside the disk of radius L if and only if � f (t) = 0 for |t| ≥ L .
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Example 3.5.1. The characteristic function of an annular region,

χAab (x) = χ[a2,b2](‖x‖2),

is a simple model for the sorts of functions encountered in medical imaging. It is piecewise
differentiable with jump discontinuities. Using formula (3.19), we easily compute �χAab:

�χAab (t) =

⎧⎪⎨⎪⎩
2[√b2 − t2 −√

a2 − t2] for |t| ≤ a,

2
√

b2 − t2 for a < |t| ≤ b,

0 for b < |t|.
(3.31)

Exercises
Exercise 3.5.1. Prove formula (3.29).

Exercise 3.5.2. Use formula (3.30) to compute the integrals

1∫
r

√
1 − t2

t2 − r2
tdt, for 0 ≤ r ≤ 1.

Exercise 3.5.3. Prove the formulæ in (3.31).

3.5.1 The Range of the Radial Radon Transform∗

The remainder of this chapter is of a more advanced character, assuming some familiarity
with elementary functional analysis. We study the Abel transforms and the range of the
Radon transform on radial functions. The chapter concludes with an analysis of Volterra
operators of the first kind. This is a class of operators which appear frequently in the study
of inverse problems. The following notation is standard in functional analysis.

Definition 3.5.1. The set of functions defined on �n with k continuous derivatives is de-
noted �k(�n).

Due to the simple structure of the inversion formula for radial functions, there are sim-
ple sufficient conditions for a function, ψ, to be the Radon transform of a bounded contin-
uous, radial function. The next proposition is an example of such a result.

Proposition 3.5.1. Let ψ ∈ �2(�) satisfy the following conditions:

1. ψ(t) = ψ(−t).

2. There is a constant M so that

|ψ(t)| ≤ M and |ψ ′(t)| ≤ M.

3. Both ψ and ψ ′ are absolutely integrable.
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Then there is a bounded, continuous function g(x) = G(‖x‖), in the natural domain of the
Radon transform, such that

�g = ψ.

Proof. For a function satisfying the preceding conditions we can integrate by parts to show that, for
r > 0,

g̃(r) =
∞∫

r

ψ(t)t dt√
t2 − r2

= −
∞∫

r

ψ ′(t)
√

t2 − r2 dt . (3.32)

As both integrals have the same limit as r tends to 0, this identity holds for r ≥ 0. It is not difficult
to prove that g̃ is differentiable. Set

G(r) = − 1

πr
∂r g̃(r) = − 1

π

∞∫
r

ψ ′(t) dt√
t2 − r2

(3.33)

and g(x, y) = G(
√

x2 + y2).
To show that G is bounded, we split the integral into two parts. If r ≥ 1, then

|G(r)| ≤ 1

π

⎡⎢⎣
√

2r∫
r

M dt√
t2 − r2

+ 1

r

∞∫
√

2r

|ψ ′(t)| dt

⎤⎥⎦
≤ C

⎡⎣M +
∞∫

0

|ψ ′(t)| dt

⎤⎦ .

(3.34)

If r < 1, a different argument is required. Because ψ is twice differentiable and even, there is a
constant M ′ so that

|ψ ′(t)| ≤ M ′|t|.
We then have the estimate

|G(r)| ≤ 1

π

⎡⎣ 1∫
r

M ′|t| dt√
t2 − r2

+
∞∫

1

|ψ ′(t)| dt

⎤⎦
≤ C ′

⎡⎣M ′ +
∞∫

0

|ψ ′(t)| dt

⎤⎦ .

(3.35)

The continuity of G is left as an exercise.
To show that g is absolutely integrable on lines, we interchange order of the integrations to

obtain

∞∫
0

|G(r)| dr ≤ 1

π

∞∫
0

t∫
0

|ψ ′(t)| dr dt√
t2 − r2

= 1

2

∞∫
0

|ψ ′(t)| dt .

(3.36)
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As G(r) is bounded and absolutely integrable it follows that the integrals in (3.19), defining �g,
converge absolutely. It is now an elementary calculation to show that �G = ψ.

Remark 3.5.1. Formula (3.33) gives an alternate form for the inverse of the Radon trans-
form if � f satisfies the hypotheses of the proposition. A characterization of the range of
the Radon transform similar to that in Proposition 3.5.1, though without the assumption of
spherical symmetry, was already given by Radon.

Exercises

Exercise 3.5.4. Prove that g̃, defined in (3.32), is a differentiable function.

Exercise 3.5.5. Prove that G(r) is a continuous function.

Exercise 3.5.6. Prove the fact, used in (3.36), that

t∫
0

dr√
t2 − r2

= π

2
.

Exercise 3.5.7. Give complete justifications for the statements that g is in the natural do-
main of the Radon transform and �g = ψ.

3.5.2 The Abel Transform∗

The Abel transform is a familiar feature of many problems involving measurement. It is
also an important example of a nontrivial integral transform that nonetheless admits an
explicit analysis. Formally, the inverse of the α-Abel transform is

A−1
α = −∂x A1−α. (3.37)

This formula is a consequence of the identity

s∫
x

dt

(t − x)α(s − t)1−α
= �(α)�(1 − α), (3.38)

which holds for 0 < α < 1. To derive the Abel inversion formula, we let

g(t) = Aα f = 1

�(α)

∞∫
t

f (s) ds

(s − t)1−α
. (3.39)
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Changing the order of the integration and using the preceding identity gives

1

�(1 − α)

∞∫
x

g(t) dt

(t − x)α
= 1

�(1 − α)�(α)

∞∫
x

∞∫
t

f (s) ds dt

(s − t)1−α(t − x)α

= 1

�(1 − α)�(α)

∞∫
x

s∫
x

f (s) dt ds

(s − t)1−α(t − x)α

=
∞∫

x

f (s) ds.

(3.40)

Taking the derivative, we obtain

f (x) = −∂x

[
1

�(1 − α)

∞∫
x

g(t) dt

(t − x)α

]
. (3.41)

In other words,
I = −∂x A1−α ◦Aα. (3.42)

The operator −∂x A1−α is a left inverse to Aα.
Our derivation of the inversion formula is a formal computation, assuming that the vari-

ous manipulations make sense for the given function f. The main points are the interchange
of the order of integrations in the second line of (3.40) and the application of the fundamen-
tal theorem of calculus in (3.41). If f is continuous and absolutely integrable, then these
steps are easily justified. For an L1-function f, it follows that

A1−α ◦Aα f =
∞∫

x

f (s) ds.

If f is also continuous, then this indefinite integral is differentiable and therefore

f = ∂x A1−α ◦Aα f.

It is not reasonable to use continuous functions to model the data of interest in medical
imaging. Piecewise continuous functions provide a more accurate description. A piecewise
continuous function of one variable can be represented as a sum

f (x) = fc(x)+
N∑

j=1

α jχ[a j ,b j ](x),

where fc(x) belongs to �0(�), and the other term collects the jumps in f. As noted,

A1−α ◦Aαχ[a,b](x) =
∞∫

x

χ[a,b](s) ds.
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If x 	= a or b, then this function is differentiable with derivative 0 or 1. In order to interpret
the formula at the exceptional points, we need to extend our notion of differentiability.

Definition 3.5.2. A locally integrable function f has a weak derivative if there is a lo-
cally integrable function f1 such that, for every continuously differentiable function, with
bounded support g, the following identity holds:

∞∫
−∞

f (x)g′(x) dx = −
∞∫

−∞
f1(x)g(x) dx . (3.43)

In this case f1 is called the weak derivative of f.

If f is a differentiable function, then formula (3.43), with f1 = f ′, is just the usual
integration by parts formula. The weak derivative of the indefinite integral of a piecewise
continuous function is the function itself. This shows that the inversion formula, properly
understood, is also valid for the sort of data that arise in imaging applications.

Remark 3.5.2. Often the α-Abel transform is defined by

	α f (t) = 1

�(α)

t∫
0

f (s) ds

(t − s)1−α
, for t ≥ 0.

As before, α is in the interval (0, 1]. Using (3.38), we can show, at least formally, that

	−1
α = ∂x	1−α. (3.44)

The derivation of (3.44) is left as an exercise.

Exercises
Exercise 3.5.8. Prove (3.38) by using the change of variables

t = λx + (1 − λ)s

and the classical formula

1∫
0

dλ

λα(1 − λ)1−α
= �(α)�(1 − α);

see [130].

Exercise 3.5.9. Let f be a piecewise continuous, L1-function and 0 < α ≤ 1. Show that if
Aα f (x) = 0 for x > R, then f (x) = 0 for x > R as well.

Exercise 3.5.10. Use Exercise 3.5.9 to prove the following uniqueness result for the Radon
transform. If f is a piecewise continuous, radial function in the natural domain of the
Radon transform and � f (t) = 0 for |t| > R, then f (r) = 0 if r > R.
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Exercise 3.5.11. Generalize the argument given in (3.39)– (3.40) to prove that

Aα ◦Aβ = Aα+β .

For what range of α and β does this formula make sense?

Exercise 3.5.12. For 0 < a < b compute ga,b = Aα(χ[a,b]) and verify by explicit calcula-
tion that χ[a,b] is the weak derivative of −A1−α(ga,b).

Exercise 3.5.13. Provide the detailed justification for the derivation of (3.42) for f a con-
tinuous L1-function.

Exercise 3.5.14. Suppose that f ∈ �1(�) and that f and f ′ are absolutely integrable.
Show that

Aα [−∂x A1−α] f = f.

Exercise 3.5.15. Suppose that f is an L1-function. Show that f is the weak derivative of

F(x) = −
∞∫

x

f (s) ds.

Exercise 3.5.16. Derive the inversion formula (3.44) for the operator 	α. What hypotheses
on f are needed to conclude that

∂x	1−α(	α f ) = f ?

How about
	α(∂x	1−α f ) = f ?

3.5.3 Volterra Equations of the First Kind∗

See: A.2.6, A.6.2.

The Abel transforms are examples of a class of integral operators called Volterra opera-
tors. These operators are infinite-dimensional generalizations of upper triangular matrices.
A linear transformation K is a Volterra operator of the first kind if it can be represented in
the form

K f (x) =
x∫

0

k(x, y) f (y) dy.

This differs a little from the form of the Abel transform as the integral there extends from x
to infinity, rather than 0 to x . The function k(x, y) is called the kernel function of the integral
operator K . The kernel functions for the Abel transforms are singular where x = y. In this
section we restrict ourselves to kernel functions that satisfy an estimate of the form

|k(x, y)| ≤ M,



3.5. The Radon Transform on Radial Functions 87

and analyze Volterra operators acting on functions defined on the interval [0, 1].
Volterra operators often appear in applications where one is required to solve an equa-

tion of the form
g = f + K f = (Id+K ) f.

Such equations turn out to be easy to solve. Formally, we would write

f = (Id+K )−1g.

Still proceeding formally, we can express (Id+K )−1 as an infinite series:

(Id+K )−1 f =
∞∑
j=0

(−1) j K j f. (3.45)

This is called the Neumann series for (Id+K )−1; it is obtained from the Taylor expansion
of the function (1 + x)−1 about x = 0 :

(1 + x)−1 =
∞∑
j=0

(−1) j x j .

Here K j f means the j -fold composition of K with itself. The sum on the right-hand
side of (3.45) is an infinite sum of functions, and we need to understand in what sense it
converges. That is, we need to choose a norm to measure the sizes of the terms in this
sum. A useful property of Volterra operators is that this series converges for almost any
reasonable choice of norm.

The basic estimates are summarized in the proposition.

Proposition 3.5.2. Let 1 ≤ p ≤ ∞. Suppose that |k(x, y)| ≤ M and f ∈ L p([0, 1]). Then
for x ∈ [0, 1] and j ≥ 1

|K j f (x)| ≤ M j x j−1

( j − 1)!‖ f ‖L p . (3.46)

Proof. If f ∈ L p([0, 1]) for a p ≥ 1, then f ∈ L1([0, 1]) and Hölder’s inequality implies that

‖ f ‖L1 ≤ ‖ f ‖L p .

In light of this, it suffices to prove (3.46) with p = 1. The proof is by induction on j. First consider
j = 1 :

|K f (x)| =
∣∣∣∣∣∣

x∫
0

k(x, y) f (y) dy

∣∣∣∣∣∣
≤

x∫
0

M| f (y)| dy

≤M‖ f ‖L1 .

(3.47)
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This verifies (3.46) for j = 1; assume it has been proved for j. Then

|K j+1 f (x)| =
∣∣∣∣∣∣

x∫
0

k(x, y)K j f (y) dy

∣∣∣∣∣∣
≤

x∫
0

M
M j y j−1

( j − 1)! ‖ f ‖L1 dy

≤ M j+1x j

j ! ‖ f ‖L1 .

(3.48)

This completes the induction step and thereby the proof of the proposition.

The proposition implies that (Id+K )−1 f − f converges pointwise uniformly, even if
f is only in L p([0, 1]). Indeed we have the pointwise estimate

|(Id+K )−1 f (x) − f (x)| ≤ M‖ f ‖L1

∞∑
j=0

M j x j

j ! = M‖ f ‖L1eMx . (3.49)

Proposition 3.5.3. If f ∈ L p([0, 1]), then the equation f = (Id+K )g has a unique
solution of the form g = f + f0, where f0 is a continuous function on [0, 1] that satisfies
the estimate

| f0(x)| ≤ M‖ f ‖L p eMx .

In applications sometimes we encounter equations of the form

f = Kg, (3.50)

where K is a Volterra operator of the first kind. A similar equation arose in the previous
section. Provided that k(x, y) is differentiable and k(x, x) does not vanish, this sort of
equation can be reduced to the type of equation considered in the last proposition. If (3.50)
is solvable, then f must, in some sense, be differentiable. We formally differentiate equa-
tion (3.50) to obtain

f ′(x) = k(x, x)g(x) +
x∫

0

kx(x, y)g(y) dy.

If K ′ denotes the Volterra operator with kernel function kx(x, y)/k(x, x), then this equation
can be rewritten

f ′(x)
k(x, x)

= (Id+K ′)g.

Applying our earlier result, we obtain the solution of the original equation in the form

g = (Id+K ′)−1

(
f ′(x)

k(x, x)

)
=
(

f ′(x)
k(x, x)

)
+

∞∑
j=1

(−1) j (K ′) j

(
f ′(x)

k(x, x)

)
. (3.51)
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In applications K describes a measurement process and f represents measurements.
In this context it can be quite difficult to approximate f ′ accurately. As a result, it is often
stated that a problem that involves solving an equation of the form (3.50) is ill posed. Small
errors in measurement can lead to substantial errors in the solution of this type of equation.
While it is reasonable to expect that we can control measurement errors in the sup norm,
it is usually not possible to control errors in the derivatives of measurements, even in an
L p-norm. The inverse problem is ill posed because K−1 is not continuous as a map from
�0([0, 1]) to itself.

Remark 3.5.3. Tikhonov regularization provides a general method for finding approximate
solutions to equation like (3.50), which is more stable than the exact solution. An exposition
of this method can be found in [49]. The material in this section is a small sample from the
highly developed field of integral equations. A good introductory treatment can be found
in [131] or [106].

Exercises
Exercise 3.5.17. Suppose that instead of assuming that k(x, y) is uniformly bounded we
assume that

x∫
0

|k(x, y)|q dy ≤ M

for a 1 < q < ∞ and all x ∈ [0, 1]. Show that estimates analogous to (3.46) hold for
f ∈ L p([0, 1]), where p = q(q − 1)−1.

Exercise 3.5.18. Using the previous exercise, show that the equation g = (Id+K ) f is
solvable for g ∈ L p([0, 1]).
Exercise 3.5.19. Volterra operators of the first kind are infinite-dimensional generalizations
of strictly upper triangular matrices. These are matrices ai j such that ai j = 0 if i ≤ j.
Suppose that A is an n × n strictly upper triangular matrix. Show that An = 0. Prove that
I + A is always invertible, and give a formula for its inverse.

3.6 Conclusion

The interaction of x-rays with matter is described, via Beer’s law, in terms of the attenuation
coefficient. The attenuation coefficient is a nonnegative function whose values reflect the
internal structure of an object. In this chapter we have introduced a simple model for the
measurements made in x-ray CT as the Radon transforms of the two-dimensional slices
of the attenuation coefficient. As is typical of realistic measurement processes, the Radon
transform is defined by an integral. As such it is not possible to distinguish functions that
differ on very small sets, called sets of measure zero.

In the final sections we showed how to invert the Radon transform on radial functions.
The inverse is the composition of an integral transform, essentially the Radon transform
itself, followed by a derivative. While the inversion formula for radial functions is quite
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useful for working out simple examples and getting a feel for the Radon transform as map-
ping of infinite-dimensional spaces, it is not used in practical imaging applications. In the
next several chapters we develop the mathematical tools needed to invert the Radon trans-
form and process images in medical applications. The workhorse, throughout the subject,
is the Fourier transform. In Chapter 6 we use the Fourier transform to derive a formula
for the inverse of the Radon transform. This formula is the starting point for deriving the
practical algorithms used in medical image reconstruction.



Chapter 4

Introduction to the Fourier
Transform

In this chapter we introduce the Fourier transform and review some of its basic properties.
The Fourier transform is the “Swiss army knife” of mathematical analysis; it is a sturdy
general-purpose tool with many useful special features. The Fourier transform makes pre-
cise the concept of decomposing a function into its harmonic components. In engineering
it is used to define the power spectrum and describe many filtering operations. Because it
has efficient numerical approximations, it forms the foundation for most image and signal
processing algorithms.

Using its properties as a linear transformation of infinite-dimensional, normed vector
spaces, we define the Fourier transform and its inverse for several different spaces of func-
tions. Among other things we establish the Parseval formula relating the energy content
of a function to that of its Fourier transform. We also study the connections between the
smoothness and decay of a function and that of its Fourier transform.

In marked contrast to the Radon transform, the theory of the Fourier transform is largely
independent of the dimension: The theory of the Fourier transform for functions of one
variable is formally the same as the theory for functions of 2, 3, or n variables. For sim-
plicity we begin with a discussion of the basic concepts for functions of a single variable,
though in some definitions, where there is no additional difficulty, we treat the general case
from the outset. The chapter ends with a recapitulation of the main results for functions of
n variables.

4.1 The Complex Exponential Function

See: 2.3, A.3.1.

The building block for the Fourier transform is the complex exponential function, eix .

91
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We also use the notation exp(i x) for this function. The basic facts about the exponential
function can be found in Section A.3.1. Recall that the polar coordinates (r, θ) correspond
to the point with rectangular coordinates (r cos θ, r sin θ). As a complex number this is

r(cos θ + i sin θ) = reiθ .

Multiplication of complex numbers is easy in the polar representation. If z = reiθ and
w = ρeiφ, then

zw = reiθ ρeiφ = rρei(θ+φ).

A positive number r has a real logarithm, s = log r, so that a complex number can also be
expressed in the form

z = es+iθ .

The logarithm of z is the complex number defined by

log z
d= s + iθ = log |z| + i tan−1

(
Im z

Re z

)
.

As exp(2π i) = 1, the imaginary part of the log z is only determined up to integer multiplies
of 2π.

Using the complex exponential we build a family of functions, {eixξ : ξ ∈ �}. Some-
times we think of x as the variable and ξ as a parameter and sometimes their roles are
interchanged. Thinking of ξ as a parameter, we see that eixξ is a 2π

ξ
-periodic function, that

is,

exp(i(x + 2π

ξ
)ξ) = exp(i xξ).

In physical applications eixξ describes an oscillatory state with frequency ξ
2π and wave-

length 2π
ξ
. The goal of Fourier analysis is to represent “arbitrary” functions as linear com-

binations of these oscillatory states. The units associated to the frequency and wavelength
are dictated by the intended application. If we are studying a function of time, then the
frequency is expressed in terms of cycles-per-unit time and the wavelength is a length of
time (e.g., measured in seconds). If we are studying a function of a spatial variable, then
the spatial frequency is expressed in terms of cycles-per-unit length and the wavelength is
an ordinary length (e.g., measured in centimeters).

An important feature of the exponential is that it satisfies an ordinary differential equa-
tion:

∂xeixξ = iξeixξ . (4.1)

This follows easily from (A.40). Loosely speaking, this formula says that eixξ is an eigen-
vector with eigenvalue iξ for the linear operator ∂x . A linear differential operator with
constant coefficients is defined by

D f =
m∑

j=0

a j∂
j
x f,
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where the coefficients, {a0, . . . , am}, are complex numbers. It is a simple consequence
of (4.1) that for each complex number ξ

Deixξ =
⎡⎣ m∑

j=0

a j (iξ)
j

⎤⎦ eixξ . (4.2)

This observation explains the centrality of the exponential function in the analysis of physi-
cal models: Many physical systems are described by linear, constant coefficient, differential
operators, and the complex exponentials “diagonalize” all such operators!

Exercises
Exercise 4.1.1. If a is a real number then it is a consequence of the fundamental theorem
of calculus that

x∫
0

eaydy = eax − 1

a
. (4.3)

Use the power series for the exponential to prove that this formula remains correct, even if
a is a complex number.

Exercise 4.1.2. Use the power series for the exponential to prove that (4.1) continues to
hold for ξ any complex number.

Exercise 4.1.3. Derive equation (4.2).

Exercise 4.1.4. Use the differential equation satisfied by ex to show that exe−x = 1. Hint:
Use the uniqueness theorem for solutions of ODEs.

Exercise 4.1.5. If Re a < 0, then the improper integral is absolutely convergent:

∞∫
0

eaxdx = −1

a
.

Using the triangle inequality (not the explicit formula), show that∣∣∣∣∣∣
∞∫

0

eaxdx

∣∣∣∣∣∣ ≤ 1

|Re a| .

Exercise 4.1.6. Which complex numbers have purely imaginary logarithms?

4.2 The Fourier Transform for Functions of a Single Variable

We now turn our attention to the Fourier transform for functions of a single real variable. As
the complex exponential itself assumes complex values, it is natural to consider complex-
valued functions from the outset. The theory for functions of several variables is quite
similar and is treated later in the chapter.
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4.2.1 Absolutely Integrable Functions

See: 2.3.2, A.4.1.

Let f be a function defined on �n. We say that f is locally absolutely integrable if∫
‖x‖<R

| f (x)| dx

is defined and finite for any R, and f is an absolutely integrable or L1-function if

‖ f ‖1 =
∫
�n

| f (x)| dx < ∞.

The set of L1-functions is a vector space. It would be natural to use ‖ · ‖1 to define a norm
on this vector space, but there is a small difficulty: If f is supported on a set of measure
zero, then ‖ f ‖1 = 0. In other words, there are nonzero L1-functions with “norm” zero. As
real measurements are usually expressible as integrals, two functions that differ on a set
of measure zero cannot be distinguished by any practical measurement. For example, the
functions χ[0,1] and χ[0,1) are indistinguishable from the point of view of measurements and
of course

‖χ[0,1] − χ[0,1)‖1 = 0.

The way to circumvent this technical problem is to declare that two L1-functions, f1

and f2, are the same whenever f1 − f2 is supported on a set of measure zero. In other
words, we identify two states that cannot be distinguished by any realistic measurement.
This defines a equivalence relation on the set of integrable functions. The normed vector
space L1(�n) is defined to be the set of L1-functions modulo this equivalence relation with
norm defined by ‖ · ‖1. This is a complete, normed linear space.

This issue arises whenever an integral is used to define a norm. Students unfamiliar
with this concept need not worry: As it plays very little role in imaging, we will usually
be sloppy and ignore this point, acting as if the elements of L1(�n) and similar spaces are
ordinary functions rather than equivalence classes of functions.

4.2.2 The Fourier Transform for Integrable Functions�

The natural domain for the Fourier transform is the space of L1-functions.

Definition 4.2.1. The Fourier transform of an L1-function f, defined on �, is the function
f̂ defined on � by the integral

f̂ (ξ) =
∞∫

−∞
f (x)e−ixξdx . (4.4)
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The utility of the Fourier transform stems from the fact that f can be “reconstructed”
from f̂ . A result that suffices for most of our applications is the following:

Theorem 4.2.1 (Fourier inversion formula). Suppose that f is an L1-function such that
f̂ is also in L1(�). Then

f (x) = 1

2π

∞∫
−∞

f̂ (ξ)eixξdξ. (4.5)

Remark 4.2.1. Formula (4.5) is called the Fourier inversion formula. It is the prototype of
all reconstruction formulæ used in medical imaging.

Proof. We give a proof of the inversion formula under the additional assumption that f is continu-
ous, this assumption is removed in Section 5.1. We need to show that

f (x) = 1

2π

∞∫
−∞

f̂ (ξ)eiξ x dξ.

Because f̂ is in L1(�), it is not difficult to show that

1

2π

∞∫
−∞

f̂ (ξ)eiξ x dξ = lim
ε→0+

1

2π

∞∫
−∞

f̂ (ξ)e−εξ2
eiξ x dξ

= lim
ε→0+

1

2π

∞∫
−∞

∞∫
−∞

f (y)e−εξ2
eiξ(x−y)dydξ.

(4.6)

For each positive ε, Fubini’s theorem implies that we can interchange the order of the integrations
in the last formula. Using Example 4.2.4 to compute the Fourier transform of the Gaussian, we get

lim
ε→0+

1

2π

∞∫
−∞

∞∫
−∞

f (y)e−εξ2
eiξ(x−y)dξdy = lim

ε→0+
1

2
√
επ

∞∫
−∞

f (y)e−
(x−y)2

4ε dy

= lim
ε→0+

1√
π

∞∫
−∞

f (x − 2
√
εt)e−t2

dt .

(4.7)

As f is continuous and integrable, it follows that the limit in the last line is

f (x)√
π

∞∫
−∞

e−t2
dt .

The proof is completed by observing that the integral or e−t2
equals

√
π.
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Remark 4.2.2. The Fourier transform and its inverse are integral transforms that are fre-
quently thought of as mappings. In this context it is customary to use the notation


( f ) =
∞∫

−∞
f (x)e−ixξ dx,


−1( f ) = 1

2π

∞∫
−∞

f (ξ)eixξdξ.

(4.8)

Observe that the operation performed to recover f from f̂ is almost the same as the

operation performed to obtain f̂ from f. Indeed, if fr (x)
d= f (−x), then


−1( f ) = 1

2π

( fr). (4.9)

This symmetry accounts for many of the Fourier transform’s remarkable properties. As the
following example shows, the assumption that f is in L1(�) does not imply that f̂ is as
well.

Example 4.2.1. Recall that χ[a,b)(x) equals 1 for a ≤ x < b and is otherwise zero. Its
Fourier transform is given by

χ̂[a,b)(ξ ) = e−iaξ − e−ibξ

iξ
. (4.10)

Example 4.2.2. Define the function

r1(x) =
{

1 for − 1 < x < 1,

0 for 1 < |x|. (4.11)

The Fourier transform of r1 is

r̂1(ξ) =
1∫

−1

e−iξ x dx = e−iξ x

−iξ

∣∣∣∣1−1

= 2 sin ξ

ξ
,

and ∞∫
−∞

|r̂1(ξ)| dξ = 2

∞∫
−∞

| sin ξ |
|ξ |

diverges. So while r1 is absolutely integrable, its Fourier transform r̂1 is not. The Fourier
transform of 1

2r1 is such an important function in image processing, it is called the “sinc”
function1:

sinc(x)
d= sin(x)

x
.

1This differs slightly from the definition used in engineering texts where sinc(x) is defined to be sin(πx)
πx .
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Figure 4.1. The sinc function.

A graph of the sinc function is shown in Figure 4.1.

Example 4.2.3. A family of functions arising in magnetic resonance imaging consists of
those of the form

f (x) = χ[0,∞)(x)e
iαx e−βx , α ∈ � and β > 0.

By simply computing the integral, we find that

f̂ (ξ) = 1

β + i(ξ − α)
.

Using the fact that eiαx = cos(αx)+ i sin(αx), it is not difficult to show that


(cos(αx)e−βxχ[0,∞)(x)) = β + iξ

β2 + α2 − ξ 2 + 2iξβ

and


(sin(αx)e−βxχ[0,∞)(x)) = α

β2 + α2 − ξ 2 + 2iξβ
.

(4.12)

Example 4.2.4. The Gaussian, e−x2
, is a function of considerable importance in image

processing and mathematics. Its Fourier transform was already used in the proof of the
inversion formula. For later reference we record its Fourier transform:


(e−x2
)(ξ) =

∞∫
−∞

e−x2
e−iξ x dx

=√
πe− ξ2

4 ,

(4.13)

or, more generally,


(e−ax2
)(ξ) =

√
π

a
e− ξ2

4a . (4.14)



98 Chapter 4. Introduction to the Fourier Transform

This is derived in Section 4.2.3. Note that e− x2
2 is an eigenvector of the Fourier transform,

with eigenvalue
√

2π. The Gaussian and its Fourier transform are shown in figure 4.2.
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(a) The Gaussian e−x2
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(b) Its Fourier transform
√
πe−

ξ2

4 .

Figure 4.2. The Gaussian and its Fourier transform.

Table 4.1 shows graphs of several functions and their Fourier transforms.

4.2.3 Appendix: The Fourier Transform of a Gaussian∗

For completeness we include a derivation of the Fourier transform of the Gaussian e−x2
. It uses

the Cauchy integral formula for analytic functions of a complex variable. The Fourier transform is
given by


(e−x2
)(ξ) =

∞∫
−∞

e−(x2+ixξ)dx

= e−
ξ2

4

∞∫
−∞

e−(x+iξ/2)2
dx .

(4.15)

The second integral is the complex contour integral of the analytic function e−z2
along the contour

Im z = ξ/2. Because e−z2
decays rapidly to zero as |Re z| tends to infinity, Cauchy’s theorem

implies that the contour can be shifted to the real axis without changing the value of the integral;
that is,

∞∫
−∞

e−(x+iξ/2)2
dx =

∞∫
−∞

e−x2
dx . (4.16)
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The function f f̂
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Table 4.1. Several Fourier transform pairs. Two plots on the same graph are the real and
imaginary parts of the function.
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To compute the last integral, observe that⎡⎣ ∞∫
−∞

e−x2
dx

⎤⎦2

=
∞∫

−∞
e−x2

dx

∞∫
−∞

e−y2
dy

=
2π∫

0

∞∫
0

e−r2
r drdθ

= 2π

∞∫
0

e−s ds

2

= π.

(4.17)

Polar coordinates are used in the second line; in the second to last line we let s = r2. Combining
these formulæ gives


(e−x2
) = √

πe−
ξ2

4 .

Exercises
Exercise 4.2.1. Show that if f is a continuous L1-function then

lim
ε→0+

1√
π

∞∫
−∞

f (x − 2
√
εt)e−t2

dt = f (x).

Exercise 4.2.2. Suppose that f is absolutely integrable. Show that f̂ is a bounded, contin-
uous function.

Exercise 4.2.3. Prove the identity (4.9).

Exercise 4.2.4. Prove formula (4.10). Show that for any numbers a < b there is a constant
M so that

|χ̂[a,b)(ξ )| ≤ M

1 + |ξ | .
Exercise 4.2.5. Prove the formulæ in (4.12) and show that


(e−β|x |eiαx) = 2β

β2 + (ξ − α)2
.

Exercise 4.2.6. Derive the formula for 
(e−ax2
) from the formula for 
(e−x2

).

Exercise 4.2.7. Show that for any k ∈ � ∪ {0} the function hk = (∂x − x)ke− x2
2 is an

eigenfunction of the Fourier transform. That is, 
(hk) = λkhk . Find λk. Hint: Integrate by
parts and use induction. Find formulæ for h1, h2, h3.

Exercise 4.2.8.∗ Give a detailed justification for (4.16).
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4.2.4 Regularity and Decay�

See: A.4.1, A.5.1, B.8.

It is a general principle that the regularity properties of a function, f, defined on �n are
reflected in the decay properties of its Fourier transform f̂ and, similarly, the regularity of
the Fourier transform is a reflection of the decay properties of f. Without any regularity,
beyond absolute integrability we have the following fundamental result:

Theorem 4.2.2 (The Riemann-Lebesgue lemma). If f is an L1-function, then its Fourier
transform f̂ is a continuous function that goes to zero at infinity. That is, for η ∈ �,

lim
ξ→η

f̂ (ξ) = f̂ (η) and lim
ξ→±∞ f̂ (ξ) = 0. (4.18)

Proof. The second statement is a consequence of the basic approximation theorem for L1-functions,
Theorem A.5.2. According to this theorem, given ε > 0 there is a step function F, given by

F(x) =
N∑

j=1

c jχ[a j ,b j )(x)

so that ∞∫
−∞

| f (x)− F(x)| < ε.

Estimating the difference of their Fourier transforms gives

|F̂(ξ) − f̂ (ξ)| =
∣∣∣∣∣∣

∞∫
−∞

(F(x)− f (x))e−ixξdx

∣∣∣∣∣∣
≤

∞∫
−∞

|F(x)− f (x)| dx

≤ ε.

(4.19)

Since ε is an arbitrary positive number, it therefore suffices to show that lim|ξ |→∞ F̂(ξ) = 0. The
Fourier transform of F is

F̂(ξ) =
N∑

j=1

c j χ̂[a j ,b j )(ξ)

=
N∑

j=1

c j
e−ib j ξ − e−ia j ξ

iξ
.

(4.20)
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The second line shows that there is a constant C so that

|F̂(ξ)| ≤ C

1 + |ξ | .

The continuity of f̂ (ξ) is left as an exercise.

To go beyond (4.18), we need to introduce quantitative measures of regularity and
decay. A simple way to measure regularity is through differentiation: The more derivatives
a function has, the more regular it is.

Definition 4.2.2. For k ∈ � ∪ {0}, the set of functions on � with k continuous derivatives
is denoted by �k(�). The set of infinitely differentiable functions is denoted by �∞(�).

Since the Fourier transform involves integration over the whole real, line it is important
to assume that these derivatives are also integrable. To quantify rates of decay, we compare
a function f to a simpler function such as a power of ‖x‖.
Definition 4.2.3. A function, f, defined on �n, decays like ‖x‖−α if there are constants C
and R so that

| f (x)| ≤ C

‖x‖α for ‖x‖ > R.

This is sometimes denoted by “ f = O(‖x‖−α) as ‖x‖ tends to infinity.”

Recall the integration by parts formula: Let f and g be differentiable functions on the
interval [a, b]. Then

b∫
a

f ′(x)g(x) dx = f (x)g(x)

∣∣∣∣x=b

x=a

−
b∫

a

f (x)g′(x) dx . (4.21)

To use integration by parts in Fourier analysis, we need an extension of this formula with
a = −∞ and b = ∞. For our purposes it suffices to assume that f g, f ′g and f g′ are
absolutely integrable. The integration by parts formula then becomes

∞∫
−∞

f ′(x)g(x)d x = −
∞∫

−∞
f (x)g′(x) dx . (4.22)

This formula follows by taking letting a and b tend to infinity in (4.21). That the integrals
converge is an immediate consequence of the assumption that f ′g and f g′ are absolutely
integrable. The assumption that f g is also absolutely integrable implies the existence of
sequences < an > and < bn > so that

lim
n→∞ an = −∞ and lim

n→∞ bn = ∞,

lim
n→∞ f g(an) = 0 and lim

n→∞ f g(bn) = 0.
(4.23)

Taking the limits in (4.21) along these sequences gives (4.22).
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Suppose that f is an L1-function with an absolutely integrable first derivative; that is,

∞∫
−∞

[| f (x)| + | f ′(x)|] dx < ∞.

Provided ξ 	= 0, we can use (4.22) to obtain a formula for f̂ :

f̂ (ξ) =
∞∫

−∞
f (x)e−ixξ dx

=
∞∫

−∞
f ′(x)

e−ixξ

iξ
dx .

(4.24)

That is,

f̂ (ξ) = f̂ ′(ξ)
iξ

.

Because f ′ is absolutely integrable, the Riemann-Lebesgue lemma implies that f̂ ′ tends to
zero as |ξ | tends to ∞. Combining our formula for f̂ with this observation, we see that f̂
goes to zero more rapidly than |ξ |−1. This should be contrasted with the computation of the
Fourier transform of r1. The function r̂1 tends to zero as |ξ | tends to infinity exactly like
|ξ |−1. This is a reflection of the fact that r1 is not everywhere differentiable, having jump
discontinuities at ±1.

If f has j integrable derivatives then, by repeatedly integrating by parts, we get addi-
tional formulæ for f̂ :

f̂ (ξ) =
[

1

iξ

] j

f̂ [ j ](ξ).

Again, because f [ j ] is absolutely integrable, f̂ [ j ] tends to zero as |ξ | → ∞. We state the
result of these computations as a proposition.

Proposition 4.2.1. Let j be a positive integer. If f has j integrable derivatives, then there
is a constant C so f̂ satisfies the estimate

| f̂ (ξ)| ≤ C

(1 + |ξ |) j
.

Moreover, for 1 ≤ l ≤ j, the Fourier transform of f [l] is given by

f̂ [l](ξ) = (iξ)l f̂ (ξ). (4.25)

The rate of decay in f̂ is also reflected in the smoothness of f.

Proposition 4.2.2. Suppose that f is absolutely integrable and j is a nonnegative inte-
ger. If f̂ (ξ)(1 + |ξ |) j is absolutely integrable, then f is continuous and has j continuous
derivatives.
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Proof. The hypotheses of the proposition show that we may use the Fourier inversion formula to
obtain

f (x) = 1

2π

∞∫
−∞

f̂ (ξ)eixξdξ.

In light of the hypothesis on f̂ , we may differentiate this formula up to j times obtaining formulæ
for derivatives of f as absolutely convergent integrals:

f [l](x) = 1

2π

∞∫
−∞

f̂ (ξ)[iξ ]l eixξdξ for 0 ≤ l ≤ j.

As [iξ ]l f̂ (ξ) is absolutely integrable for l ≤ j, this formula implies that f has j continuous deriva-
tives.

Remark 4.2.3. Note that if f has j integrable derivatives, then f̂ decays faster than |ξ |− j .
The exact rate of decay depends on how continuous f [ j ] is. On the other hand, the rate
of decay that corresponds to the hypothesis that f̂ (ξ)(1 + |ξ |) j be integrable is |ξ |−(1+ j+ε)

for any positive ε. So we appear to “lose” one order of differentiability when inverting the
Fourier transform. Both results are actually correct. The function r1 provides an example
showing the second result is sharp. It has a jump discontinuity, and its Fourier transform,
2 sinc(ξ), decays like |ξ |−1. To construct an example showing that the first result is sharp,
we begin with the case j = 0. By integrating the following examples, we obtain integrable
functions with integrable derivatives whose Fourier transforms decay slower than |ξ |−(1+ε),
for any fixed positive ε > 0.

Example 4.2.5. Let ϕ be a smooth, rapidly decaying odd function with Fourier transform
ϕ̂ that satisfies the following conditions:

1. −1 ≤ ϕ̂(ξ ) ≤ 1 for all ξ,

2. ϕ̂(0) = 0,

3. ϕ̂(ξ ) = 0 if |ξ | > 1.

For example, we could take

ϕ̂(ξ ) =
{

iξe
− 1

1−ξ2 if |ξ | < 1,

0 if |ξ | ≥ 1.

In fact, the details of this function are not important; only the listed properties are needed
to construct the examples. For each k ∈ � define the function

f̂k(ξ) =
∞∑

n=1

ϕ̂(ξ − nk)+ ϕ̂(ξ + nk)

n2
.
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For a given ξ, at most one term in the sum is nonzero. If k > 1, then f̂k is zero “most of
the time.” On the other hand, the best rate of decay that holds for all ξ is

| f̂k(ξ)| ≤ C

|ξ | 2
k

.

By using a large k, we can make this function decay as slowly as we like. Because
∑

n−2 <
∞, the Fourier inversion formula applies to give

fk(x) = ϕ(x)
∞∑

n=1

2 cos(nkx)

n2
.

The infinite sum converges absolutely and uniformly in x, and therefore fk is a continuous
function. Because ϕ decays rapidly at infinity, so does fk. This means that fk is an contin-
uous L1-function whose Fourier transform goes to zero like |ξ |− 2

k . These examples show
that the rate of decay of the Fourier transform of a continuous L1-function can be as slow
as one likes. The function, fk, is the smooth function ϕ, modulated by noise. The graphs in
figure 4.3 show the real parts of these functions; they are very “fuzzy.” The fact that these
functions are not differentiable is visible in figure 4.4. These graphs show f12 at smaller
and smaller scales. Observe that f12 does not appear smoother at small scales than at large
scales.
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Figure 4.3. Fuzzy functions.

The function

Fk(x) =
x∫

−∞
fk(y)dy

is continuously differentiable with an absolutely integrable derivative. It Fourier transform,
given by

F̂k(ξ) = f̂k(ξ)

iξ
,

decays at the rate |ξ |−(1+ 2
k ).
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These examples demonstrate that there are two different phenomena governing the rate
of decay of the Fourier transform. The function r1 is very smooth, except where it has
a jump. This kind of very localized failure of smoothness produces a characteristic |ξ |−1

rate of decay in the Fourier transform. In the L1-sense the function r1 is very close to
being a continuous function. In fact, by using linear interpolation we can find piecewise
differentiable functions very close to r1. These sort of functions frequently arise in medical
imaging. Each function fk is continuous but very fuzzy. The larger k is, the higher the
amplitude of the high-frequency components producing the fuzz and the slower the rate of
decay for f̂k . These functions are not close to differentiable functions in the L1-sense. Such
functions are typical of random processes used to model noise.
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Figure 4.4. The function f12 at smaller scales.

The foregoing results establish the connection between the regularity of f and the decay
of its Fourier transform. If, on the other hand, we know that f itself decays, then this is
reflected in increased regularity of its Fourier transform.

Proposition 4.2.3. Suppose that j is a positive integer and

∞∫
−∞

| f (x)|(1 + |x|) j dx < ∞,

then f̂ has j -continuous derivatives that tend to zero as |ξ | tends to infinity. In fact, for
0 ≤ k ≤ j,

∂k
ξ f̂ (ξ) =

∞∫
−∞

(−i x)k f (x)e−ixξ dx . (4.26)

Of course, (4.26) gives a formula for the Fourier transform of xk f (x) in terms of the
Fourier transform of f :


(xk f )(ξ) = i k∂k
ξ f̂ (ξ). (4.27)

A special case of this proposition arises if f vanishes outside a bounded interval. In this
case xk f (x) is absolutely integrable for any positive integer k, and therefore f̂ is an in-
finitely differentiable function. The derivatives tend to zero as |ξ | tends to infinity, but the
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rate of decay may be the same for all the derivatives; for example,

r̂1(ξ) = 2 sin ξ

ξ
.

Differentiating this function repeatedly gives a sum of terms, one of which tends to zero
exactly like |ξ |−1. This further confirms our principle that the rate of decay of the Fourier
transform is a reflection of the smoothness of the function.

Example 4.2.6. An important application of the Fourier transform is to study ordinary
differential equations with constant coefficients. Suppose that {a0, . . . , an} are complex
numbers. We would like to study the solutions of the differential equation

D f
d=

n∑
j=0

a j∂
j
x f = g.

Proceeding formally, taking the Fourier transform of both sides of (4.25) gives relation⎡⎣ n∑
j=0

a j (iξ)
j

⎤⎦ f̂ (ξ) = ĝ(ξ). (4.28)

The polynomial

PD(ξ) =
n∑

j=0

a j (iξ)
j

is called the characteristic polynomial for the differential operator D. If a complex number
ξ0 is a root of this equation [i.e., PD(ξ0) = 0], then the exponential function v0 = exp(iξ0x)
is a solution of the homogeneous equation Dv0 = 0.

If, on the other hand, PD has no real roots and g is absolutely integrable, then we can
divide in (4.28) to obtain

f̂ (ξ) = ĝ(ξ)

PD(ξ)
.

Using the Fourier inversion formula, we obtain a particular solution to the equation D f =
g,

f p(x) = 1

2π

∞∫
−∞

ĝ(ξ)eiξ x dξ

PD(ξ)
. (4.29)

The general solution is of the form f p + f0, where D f0 = 0. If PD has real roots, then a
more careful analysis is required; see [12].
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The Parseval Formula�

In the foregoing discussion we considered L1-functions. The Fourier transform is then
defined in terms of an absolutely convergent integral. As we observed, this does not imply
that the Fourier transform is itself absolutely integrable. In fact, it is quite difficult to
describe the range of 
 when the domain is L1(�). Using the L1-norm, there are also
discrepancies in the quantitative relationships between the smoothness of a function and
the rate of decay of its Fourier transform. A more natural condition when working with the
Fourier transform is square integrability.

Definition 4.2.4. A complex-valued function f, defined on �n, is L2 or square integrable
if

‖ f ‖2
L2 =

∫
�n

| f (x)|2dx < ∞.

The set of such functions, with norm defined by ‖ · ‖L2, is denoted L2(�n). With this norm
L2(�n) is a complete, normed linear space.

The norm on L2(�n) is defined by an inner product,

〈 f, g〉L2 =
∫
�n

f (x)g(x) dx.

This inner product satisfies the usual Cauchy-Schwarz inequality.

Proposition 4.2.4. If f, g ∈ L2(�n), then

|〈 f, g〉L2 | ≤ ‖ f ‖L2‖g‖L2 . (4.30)

Proof. The proof of the Cauchy-Schwarz inequality for L2(�n) is formally identical to the proof for
�n given in the proof of Proposition 2.3.2. The verification of this fact is left to the Exercises.

Recall that a normed linear space is complete if every Cauchy sequence has a limit.
The completeness of L2 is quite important for what follows.

Example 4.2.7. The function f (x) = (1 + |x|)− 3
4 is not absolutely integrable, but it is

square integrable. On the other hand, the function

g(x) = χ[−1,1](x)√|x|
is absolutely integrable but not square integrable.

An L2-function is always locally absolutely integrable. For a function of one variable
this means that for any finite interval, [a, b], the integral of | f | over [a, b] is finite. To
prove this we use the Cauchy-Schwarz inequality with g = 1 :

b∫
a

| f (x)| dx ≤ √|b − a|

√√√√√ b∫
a

| f (x)|2 dx ≤ √|b − a|‖ f ‖L2 .
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The reason square integrability is a natural condition is contained in the following the-
orem.

Theorem 4.2.3 (Parseval formula). If f is absolutely integrable and also square inte-
grable, then f̂ is square integrable and

∞∫
−∞

| f (x)|2 dx =
∞∫

−∞
| f̂ (ξ)|2 dξ

2π
. (4.31)

Though very typical of arguments in this subject, the proof of this result is rather abstract.
It can safely be skipped as nothing in the sequel relies upon it.

Proof. To prove (4.31), we use the Fourier inversion formula, Propositions 4.2.1 and 4.2.3, and the
following lemma.

Lemma 4.2.1. Suppose that f and g are integrable functions that are O(|x |−2) as |x | tend to
infinity. Then we have the identity

∞∫
−∞

f (x)ĝ(x) dx =
∞∫

−∞
f̂ (x)g(x) dx . (4.32)

The proof of the lemma is left as an exercise.
Suppose for the moment that f is an infinitely differentiable function with bounded support.

Proposition 4.2.1 shows that, for any positive k, f̂ is O(|ξ |−k) as |ξ | tends to infinity while Propo-

sition 4.2.3 shows that f̂ is smooth and similar estimates hold for its derivatives. Let g = [2π]−1 f̂ ;
the Fourier inversion formula implies that ĝ = f̄ . The identity (4.32) applies to this pair, giving

∞∫
−∞

| f (x)|2 dx = 1

2π

∞∫
−∞

| f̂ (ξ)|2 dξ,

thus verifying the Parseval formula for the special case of smooth functions with bounded support.
In Chapter 5 we show that, for any function satisfying the hypotheses of the theorem, there is a

sequence < fn > of smooth functions, with bounded support, such that

lim
n→∞‖ f − fn‖L1 = 0 and lim

n→∞‖ f − fn‖L2 = 0.

The argument given so far applies to the differences to show that

∞∫
−∞

| fn(x)− fm(x)|2 dx = 1

2π

∞∫
−∞

| f̂n(ξ)− f̂m(ξ)|2 dξ. (4.33)

The left-hand side tends to zero as m, n tend to infinity. Therefore, < f̂n > is also an L2-Cauchy
sequence converging to a limit in L2(�). As < fn > converges to f in L1(�), the sequence < f̂n >
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converges pointwise to f̂ . This implies that < f̂n > tends to f̂ in L2(�) as well. This completes
the proof of the theorem as

∞∫
−∞

| f (x)|2 dx = lim
n→∞

∞∫
−∞

| fn(x)|2 dx = lim
n→∞

1

2π

∞∫
−∞

| f̂n(ξ)|2dξ = 1

2π

∞∫
−∞

| f̂ (ξ)|2 dξ.

In many physical applications the square integral of a function is interpreted as the
total energy. Up to the factor of 2π, Parseval’s formula says that the total energy in f is
the same as that in f̂ . Often the variable ξ

2π is thought of as a frequency. Following the
quantum mechanical practice, higher frequencies correspond to higher energies. In this
context [2π ]−1| f̂ (ξ)|2 is interpreted as the power spectral density or energy density of f
at frequency ξ

2π . As we shall see, “noise” is essentially a high-frequency phenomenon, and
a noisy signal has a lot of energy at high frequencies. Figure 4.5(a) shows the real and
imaginary parts of the Fourier transform of e−(3−5i)xχ[0,∞) while Figure 4.5(b) shows the
power spectral density for this function.
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(a) The Fourier transform

(e−(3−5i)xχ[0,∞)).
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(b) The power spectral density
|
(e−(3−5i)xχ[0,∞))|2.

Figure 4.5. The Fourier transform of e−(3−5i)xχ[0,∞) and its power spectral density.
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Exercises
Exercise 4.2.9.� Let f be an L1-function. Show that f̂ is a continuous function. Extra
credit: Show that f̂ is uniformly continuous on the whole real line.

Exercise 4.2.10. If f g is absolutely integrable, show that sequences exist satisfying (4.23).

Exercise 4.2.11. Suppose that f ′g and f g′ are absolutely integrable. Show that the limits

lim
x→∞ f g(x) and lim

x→−∞ f g(x)

both exist. Does (4.22) hold even if f g is not assumed to be absolutely integrable?

Exercise 4.2.12. Prove that for any number j the j th-derivative ∂
j
ξ r̂1 has a term that decays

exactly like |ξ |−1.

Exercise 4.2.13. Show that f p, defined in Example 4.29 and its first n derivatives tend to
zero as |x| tends to infinity. Hint: The first (n−1) derivatives are easy; a different argument
is needed for the nth derivative.

Exercise 4.2.14. Show that the function ϕ defined in Example 4.2.5 is infinitely differen-
tiable.

Exercise 4.2.15. Give a detailed proof of Proposition 4.2.4. Explain the following state-
ment: “The Cauchy-Schwarz inequality is a statement about the two-dimensional sub-
spaces of a vector space.”

4.2.5 Fourier Transform on L2(�)

See: A.2.4, A.2.5, A.4.2.

The Parseval formula shows that the L2-norm is intimately connected to the Fourier
transform. When the L2-norm is used in both the domain and range, Parseval’s formula
says that 
 is a continuous linear transformation. This result indicates that it should be
possible to extend the Fourier transform to all functions in L2(�). This is indeed the case.
Let f ∈ L2(�). For each R > 0, define

f̂ R(ξ) =
R∫

−R

f (x)e−ixξdx . (4.34)

From Parseval’s formula it follows that, if R1 < R2, then

‖ f̂ R1 − f̂ R2‖2
L2 = 2π

∫
R1≤|x |≤R2

| f (x)|2 dx .

Because f is square integrable, the right-hand side of this formula goes to zero as R1 and
R2 tend to infinity. Hence if we measure the distance in the L2-norm, then the functions
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< f̂ R > are clustering closer and closer together as R → ∞. In other words, < f̂ R > is an
L2-Cauchy sequence. Because L2(�) is a complete, normed vector space, this implies that
< f̂ R > converges to a limit as R → ∞; this limit defines f̂ . The limit of a sequence in
the L2-norm is called a limit in the mean; it is denoted by the symbol LIM.

Definition 4.2.5. If f is a function in L2(�), then its Fourier transform is defined to be

f̂ = LIM
R→∞ f̂ R,

where f̂ R is defined in (4.34).

We summarize these observations in a proposition.

Proposition 4.2.5. The Fourier transform extends to define a continuous map from L2(�)
to itself. If f ∈ L2(�), then

∞∫
−∞

| f (x)|2 dx = 1

2π

∞∫
−∞

| f̂ (ξ)|2 dξ.

Proof. The continuity statement follows from the Parseval formula. That the Parseval formula holds
for all f ∈ L2(�) is a consequence of the definition of f̂ and the fact that

R∫
−R

| f (x)|2 dx = 1

2π

∞∫
−∞

| f̂ R(ξ)|2 dξ for R > 0.

While the Fourier transform extends to define a continuous map from L2(�) to itself, there
is a price to pay. The Fourier transform of a function in L2(�) cannot be directly defined
by a simple formula like (4.4). For a function like f in Example 4.2.7, the integral defining
f̂ is not absolutely convergent.

Example 4.2.8. The function

f (x) = 1√
1 + x2

is square integrable but not absolutely integrable. We use integration by parts to compute
f̂ R(ξ) :

f̂ R(ξ) = 2 sinc(Rξ)√
1 + R2

−
R∫

−R

xe−ixξ

iξ(1 + x2)
3
2

.

It is now a simple matter to obtain the pointwise limit as R tends to infinity:

f̂ (ξ) =
∞∫

−∞

xe−ixξ

iξ(1 + x2)
3
2

. (4.35)

In the Exercise 4.2.16 you are asked to show that f̂ R converges to f̂ in the L2-norm.
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A consequence of Parseval’s formula is the identity

∞∫
−∞

f (x)g(x) dx =
∞∫

−∞
f̂ (ξ)ĝ(ξ)

dξ

2π
. (4.36)

This is proved by applying (4.31) to f + tg and comparing the coefficients of powers t
on the left- and right-hand sides. Up to the factor of 2π, the Fourier transform preserves
the inner product. Recall that this is also a property of rotations of Euclidean space. Such
transformations of complex vector spaces are called unitary. Another consequence of the
Parseval formula is a uniqueness statement: A function in L2 is determined by its Fourier
transform.

Corollary 4.2.1. If f ∈ L2(�) and f̂ = 0, then f ≡ 0.

Remark 4.2.4. As noted in Section 4.2.1, it would be more accurate to say that the set of
points for which f 	= 0 has measure 0.

The Fourier transform of an L2-function is generally not absolutely integrable, so the
inversion formula, proved previously, does not directly apply. The inverse is defined in
much the same way as the Fourier transform itself.

Proposition 4.2.6 (Fourier inversion for L2(�)). For f ∈ L2(�) define

f R(x) = 1

2π

R∫
−R

f̂ (ξ)eixξdξ ;

then f = LIM
R→∞ fR.

The proof is left to the Exercises.

Symmetry Properties of the Fourier Transform�

We conclude this section by summarizing the basic properties of the Fourier transform
that hold for integrable or L2-functions. These properties are consequences of elementary
properties of the integral.

1. LINEARITY: The Fourier transform is a linear operation:


( f + g) = 
( f ) + 
(g), 
(α f ) = α
( f ), α ∈ �.

2. SCALING: The Fourier transform of f (ax), the function f dilated by a ∈ �, is given
by

∞∫
−∞

f (ax)e−iξ x dx =
∞∫

−∞
f (y)e− iξy

a
dy

a

= 1

a
f̂

(
ξ

a

)
.

(4.37)
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Figure 4.6. The effect of scaling on the Fourier transform.

Figure 4.6 shows the functions e−ax2
, for various values of a, along with their

Fourier transforms.

3. TRANSLATION: Let ft be the function f shifted by t [i.e., ft(x) = f (x − t)]. The
Fourier transform of ft is given by

f̂t(ξ) =
∞∫

−∞
f (x − t)e−iξ x dx

=
∫

f (y)e−iξ(y+t) dy

= e−iξ t f̂ (ξ).

(4.38)

Figure 4.7 shows the functions e−(x−t)2
, for various values of t, along with their

Fourier transforms.

4. REALITY: If f is a real-valued function, then its Fourier transform satisfies f̂ (ξ) =
f̂ (−ξ). This shows that the Fourier transform of a real-valued function is com-
pletely determined by its values for positive (or negative) frequencies.

Recall the following definitions.

Definition 4.2.6. A function f defined on �n is even if f (x) = f (−x). A function f
defined on �n is odd if f (x) = − f (−x).

5. EVENNESS: If f is real-valued and even, then f̂ is real-valued. If f is real-valued and
odd, then f̂ takes purely imaginary values. If f is even, then its Fourier transform
is also even. It is given by the formula

f̂ (ξ) = 2

∞∫
0

f (x) cos(ξ x) dx . (4.39)
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Figure 4.7. The effect of translation on the Fourier transform. The top and bottom graphs
on the right show the real and imaginary parts.

Exercises
Exercise 4.2.16. Prove that f̂ R, defined in (4.35), converges to f̂ in the L2-norm.

Exercise 4.2.17. Let f (x) = χ[1,∞)(x)x−1. Using the method of Example 4.2.8, compute
the Fourier transform of f. Verify the convergence, in the L2-norm, of f̂ R to f̂ .

Exercise 4.2.18.� Prove Proposition 4.2.6. Hint: Use the Parseval formula to estimate the
difference ‖ f − fR‖2

L2 .

Exercise 4.2.19. Let f, g ∈ L2(�) by considering the functions f + tg, where t ∈ � show
that the Parseval formula implies (4.36).

Exercise 4.2.20.� Prove Lemma 4.2.1 and show that (4.32) holds for any pair of functions
in L2(�).

Exercise 4.2.21. Verify the statement that if g = f̂ , then ĝ = f̄ .

Exercise 4.2.22. Show that a function f ∈ L2(�) is zero if and only if 〈 f, g〉 = 0 for every
g ∈ L2(�). Use this fact and the formula in Exercise 4.2.20 to show that 
(L2(�)) =
L2(�). Hint: If this were false, then there would exist a nonzero function g ∈ L2(�) such
that 〈g, f̂ 〉 = 0 for every f ∈ L2(�).

Exercise 4.2.23. Verify properties (4) and (5).

Exercise 4.2.24. Find a formula like (4.39) for the Fourier transform of an odd function.

Exercise 4.2.25.∗ Suppose that m is a bounded, locally integrable function. Show that the
map from L2(�) to itself defined by 	m( f ) = 
−1(m f̂ ) is continuous.
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4.2.6 A General Principle in Functional Analysis∗

In the previous section we extended the definition of the Fourier transform to L2(�) by
using the Plancherel formula and the completeness of L2(�). This is an example of a
general principle in functional analysis and explains, in part, why completeness is such an
important property for a normed linear space. As we will encounter this situation again, we
pause for a moment to enunciate this principle explicitly. Recall the following definition.

Definition 4.2.7. Let (V, ‖ · ‖) be a normed linear space. A subspace S of V is dense if for
every v ∈ V there is a sequence < vk >⊂ S such that

lim
k→∞

‖v − vk‖ = 0.

The general principle is that a bounded linear map, defined on a dense subset, extends
to the whole space.

Theorem 4.2.4. Let (V1, ‖ · ‖1) and (V2, ‖ · ‖2) be normed, linear spaces and assume that
V2 is complete. Suppose that S1 is a dense subspace of V1 and A is a linear map from S1 to
V2. If there exists a constant M such that

‖Av‖2 ≤ M‖v‖1, (4.40)

for all v in S1, then A extends to define a linear map from V1 to V2, satisfying the same
estimate.

Proof. Let v be an arbitrary point in V1 and let < vk > be a sequence contained in S1 converging
to v. Because A is linear and S1 is a subspace, (4.40) implies that

‖A(v j − vk)‖2 ≤ M‖v j − vk‖1.

This estimate shows that < Avk > is a Cauchy sequence in V2. From the completeness of V2
we conclude that this sequence has a limit u. Provisionally define Av = u. To show that Av is
well defined, we need to show that if < v′

k >⊂ S1 is another sequence converging to v, then
< Av′

k > also converges to u. Since the two sequences have the same limit, the difference ‖vk−v′
k‖1

converges to zero. The estimate (4.40) implies that

‖Avk − Av′
k‖2 ≤ M‖vk − v′

k‖1,

showing that the limit is well defined. The fact that the extended map is linear is left as an exercise.

Exercises
Exercise 4.2.26. Show that the extension of A defined in the proof of Theorem 4.2.4 is
linear.

Exercise 4.2.27. Show that the only dense subspace of a finite-dimensional normed linear
space is the whole space.
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4.3 Functions With Weak Derivatives

See: A.4.5, B.4.

In Section 4.2.5 we extended the definition of the Fourier transform to square integrable
functions. For an L2-function, f, the integral defining the Fourier transform, (4.4) may fail
to converge and so an indirect method was needed to define f̂ . This was accomplished
by thinking of the Fourier transform as a linear mapping from one space of functions to
another and using the continuity of this map, as expressed by the Parseval formula. In
elementary calculus, a function f is said to be differentiable at x if: (1) f is defined in an
interval containing x and (2) the limit of the difference quotients,

f ′(x) = lim
h→0

f (x + h)− f (x)

h
,

exists. For clarity, we sometimes say that f has a classical derivative at x . The function is
differentiable on an interval (a, b) if its derivative exists for each x in (a, b), and continu-
ously differentiable on (a, b) if f ′ is a continuous function on (a, b). When working with
measurements and with integral transforms, this definition proves to be inadequate. In this
section we extend the notion of differentiation in a manner consistent with our linear model
for a realistic measurement as a weighted average:

mg( f ) =
∞∫

−∞
f (x)g(x)dx .

With this model, a measurement of the derivative of f would be mg( f ′).
If f and g are differentiable functions that vanish outside a bounded interval, then the

integration by parts formula states that

∞∫
−∞

f ′(x)g(x) dx = −
∞∫

−∞
f (x)g′(x) dx . (4.41)

This formula says that, if g is differentiable, then mg( f ′) = −mg′( f ), which in turn sug-
gests a way to extend the notion of differentiation to some functions that do not have a
classical derivative. Suppose that f is a locally integrable function and there exists another
locally integrable function f1 such that, for every �1-function g that vanishes outside a
bounded interval, we have the identity

∞∫
−∞

f1(x)g(x) dx = −
∞∫

−∞
f (x)g′(x) dx . (4.42)
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From the perspective of any measurement defined by a �1-function with bounded support,
the function f1 looks like the derivative of f. If this condition holds, then we say that f has a
weak derivative and write f ′ = f1. In this context the function g is called a �1-test function.
It is clear that a function, differentiable in the ordinary sense, is weakly differentiable and
the two definitions of the derivative agree.

It is easy to see from examples that a weak derivative can exist even when f does not
have a classical derivative.

Example 4.3.1. The function

f (x) =

⎧⎪⎨⎪⎩
0 if |x| > 1,

|x + 1| if − 1 ≤ x ≤ 0,

|x − 1| if 0 < x ≤ 1

does not have a classical derivative at x = −1, 0, and 1. Nonetheless the function

f1(x) =

⎧⎪⎨⎪⎩
0 if |x| > 1,

1 if − 1 ≤ x ≤ 0,

−1 if 0 < x ≤ 1

is the weak derivative of f.

A classically differentiable function is continuous. Properly understood this is also true
of a function with a weak derivative. The subtlety is that if f is a function with a weak
derivative and h is a function that equals f, except possibly on a set of measure zero, then h
also has a weak derivative. In fact their weak derivatives are equal. The precise continuity
statement is as follows: If f has a weak derivative, then, after modification on a set of
measure zero, f is a continuous function. In the context of weak derivatives, we always
assume that the function has been so modified. With this understood, weak derivatives
satisfy the fundamental theorem of calculus. If f1 is the weak derivative of f, then for any
a < b we have that

f (b) − f (a) =
b∫

a

f1(x) dx . (4.43)

The proof of this statement is a bit more involved than we might expect. The basic idea is
to use a sequence of test functions in (4.41) that converge to χ[a,b]; see [43].

We also note that (4.42) does not uniquely determine the value of f1(x) at every x .
Suppose that f1 satisfies (4.42) for every �1-test function. If the set of points where f1(x)−
f̃1(x) 	= 0 is a set of measure zero then

∞∫
−∞

f1(x)g(x)dx =
∞∫

−∞
f̃1(x)g(x)dx, (4.44)

for every �1-test function. Thus it would be equally correct to say that f̃1 is the weak
derivative of f. From (4.44), it is clear that, from the point of view of measurement, this
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ambiguity in the definition of the weak derivative does not lead to problems. It should also
come as no surprise that the weak derivative does not share the properties of the classical
derivative that depend on pointwise evaluation. For example, the weak derivative does not
satisfy the mean value theorem: If a function f has a weak derivative f1, then there may or
may not exist a point c ∈ (a, b) so that f (b) − f (a) = f ′(c)(b − a). For instance, if f is
the function in Example 4.3.1, then f1 takes only the values ±1 in the interval (−1, 1). On
the other hand f ( 1

2) − f (− 1
2 ) = 0. In most of the applications we consider the functions

are classically differentiable except at a finite set of points.
An especially useful condition is for the weak derivative to belong to L2.

Definition 4.3.1. Let f ∈ L2(�) we say that f has an L2-derivative if f has a weak
derivative that also belongs to L2(�).

A function in L2(�) that is differentiable in the ordinary sense and whose classical
derivative belongs to L2(�) is also differentiable in the L2-sense. Its classical and L2-
derivatives are equal. If a function f has a classical derivative that is bounded, then the
mean value theorem implies that, for some constant M, we have the estimate:

| f (b) − f (a)|
|b − a| ≤ M.

Such an estimate is generally false for a function with a weak derivative. Using (4.43),
it is not difficult to show that a function with an L2-derivative satisfies a similar estimate.
Applying the Cauchy-Schwarz inequality to the right-hand side of (4.43) gives the estimate

| f (b)− f (a)| ≤ √|b − a|‖ f1‖L2 .

In other words,
| f (b)− f (a)|√|b − a| ≤ ‖ f1‖L2 .

A function for which this ratio is bounded is called a Hölder- 1
2 function. Such a function is

said to have a half a classical derivative.
The definition of weak derivative can be applied recursively to define higher-order weak

derivatives. Suppose a locally integrable function f has a weak derivative f ′. If f ′ also has

a weak derivative, then we say that f has two weak derivatives with f [2] d= ( f ′)′. More
generally, if f has j weak derivatives, { f ′, . . . , f [ j ]}, and f [ j ] has a weak derivative, then
we say that f has j + 1 weak derivatives. The usual notations are also used for weak
derivatives (i.e., f ′, f [ j+1], ∂ j

x f, etc.).
Weak differentiability is well adapted to the Fourier transform. Suppose that f is an

L1-function with a weak derivative that is also absolutely integrable. The functions f e−ixξ

and f ′e−ixξ are in L1(�), and therefore formula (4.22) applies to show that

∞∫
−∞

f (x)e−ixξ dx = 1

iξ

∞∫
−∞

f ′(x)e−ixξ dx .
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Thus the Fourier transform of the weak derivative is related to that of the original function
precisely as in the classically differentiable case.

The notion of weak derivative extends the concept of differentiability to a larger class
of functions. This approach can be used to define derivatives of objects more general than
functions called generalized functions. This topic is discussed in Appendix A.4.5; the
reader is urged to look over this section.

Exercises
Exercise 4.3.1. In Example 4.3.1, prove that f1 is the weak derivative of f.

Exercise 4.3.2. Suppose that f has a weak derivative and g equals f on the complement
of a set of measure zero. Show that g also has a weak derivative that equals that of f.

Exercise 4.3.3. Suppose that f has a continuous classical derivative and g has a weak
derivative. Show that f g has a weak derivative which is given by the usual product formula:

( f g)′ = f ′g + f g′.

Exercise 4.3.4. Show that if f has a weak derivative, then (after possible modification on
a set of measure zero) it is continuous.

Exercise 4.3.5. Give an example to show that, if f is a weakly differentiable function with
weak derivative f ′, and f assumes a local maximum value at x0, then f ′(x0) need not
equal zero.

Exercise 4.3.6. Suppose that f is a locally integrable function defined on �. What should
it mean for such a function to be weakly differentiable on the interval (a, b)? Does it make
sense to say that a function is weakly differentiable at a point?

Exercise 4.3.7. Show that if f has two weak derivatives, then it has one classical derivative.

Exercise 4.3.8. Show that the definition for higher-order weak derivatives is consistent: If
f has j weak derivatives and f [ j ] has k weak derivatives, then f has k+ j weak derivatives
and

f [k+ j ] = ( f [ j ])[k].

Exercise 4.3.9. Show that Proposition 4.2.1 remains true if f is assumed to have j abso-
lutely integrable, weak derivatives.

4.3.1 Functions With L2-Derivatives∗

If f ∈ L2(�) has an L2-derivative, then the Fourier transforms of f and f ′ are related just
as they would be if f had a classical derivative

f̂ ′(ξ) = iξ f̂ (ξ).

Moreover, the Parseval identity carries over to give

∞∫
−∞

| f ′(x)|2 dx = 1

2π

∞∫
−∞

|ξ |2| f̂ (ξ)|2 dξ.



4.3. Functions With Weak Derivatives 121

On the other hand, if ξ f̂ (ξ) is square integrable, then we can show that f has an L2-
derivative and its Fourier transform is iξ f̂ (ξ). This is what was meant by the statement
that the relationship between the smoothness of a function and the decay of the Fourier
transform is very close when these concepts are defined with respect to the L2-norm.

The higher L2-derivatives are defined exactly as in the classical case. If f ∈ L2(�)
has an L2-derivative, and f ′ ∈ L2 also has an L2-derivative, then we say that f has two
L2-derivatives. This can be repeated to define all higher derivatives. A simple condition for
a function f ∈ L2(�) to have j L2-derivatives is that there are functions { f1, . . . , f j } ⊂
L2(�) so that for every j -times differentiable function ϕ, vanishing outside a bounded
interval and 1 ≤ l ≤ j, we have that

〈 f, ϕ[l]〉L2 = (−1)l〈 fl, ϕ〉L2 .

The function fl is then the lth L2-derivative of f. Standard notations are also used for the
higher L2-derivatives (e.g., f [l], ∂ l

x f, etc.).
The basic result about L2-derivatives is as follows.

Theorem 4.3.1. A function f ∈ L2(�) has j L2-derivatives if and only if ξ j f̂ (ξ) is in
L2(�). In this case

f̂ [l](ξ) = (iξ)l f̂ (ξ); (4.45)

moreover,
∞∫

−∞
| f [l](x)|2 dx = 1

2π

∞∫
−∞

|ξ |2l| f̂ (ξ)|2 dξ. (4.46)

Exercises
Exercise 4.3.10. Suppose that f ∈ L2(�) has an L2(�)-derivative f ′. Show that if f
vanishes for |x| > R, then so does f ′.
Exercise 4.3.11. Prove that if f ∈ L2(�) has an L2-derivative, then f̂ ′(ξ) = iξ f̂ (ξ). Hint:
Use (4.36).

Exercise 4.3.12. Show that if f has an L2-derivative, then f̂ is absolutely integrable. Con-
clude that f is a continuous function.

Exercise 4.3.13. Use the result of Exercise 4.3.12 to prove that (4.43) holds under the
assumption that f and f ′ are in L2(�).

4.3.2 Fractional Derivatives and L2-Derivatives∗

See: A.4.5 .

In the previous section we extended the notion of differentiability to functions that do
not have a classical derivative. In the study of the Radon transform it turns out to be useful
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to have other generalizations of differentiability. We begin with a generalization of the
classical notion of differentiability.

The basic observation is the following: A function f has a derivative if the difference
quotients

f (x + h)− f (x)

h
have a limit as h → 0. In order for this limit to exist, it is clearly necessary that the ratios

| f (x + h)− f (x)|
|h|

be uniformly bounded, for small h. Thus the basic estimate satisfied by a continuously
differentiable function is that the ratios

| f (x) − f (y)|
|x − y|

are locally, uniformly bounded. The function f (x) = |x| shows that these ratios can be
bounded without the function being differentiable. However, from the point of view of
measurements, such a distinction is very hard to make.

Definition 4.3.2. Let 0 ≤ α < 1. We say that a function f, defined in an interval [a, b],
has an αth-classical derivative if there is a constant M so that

| f (x) − f (y)|
|x − y|α ≤ M, (4.47)

for all x, y ∈ [a, b]. Such a function is also said to be α-Hölder continuous.

The same idea can be applied to functions with L2-derivatives. Recall that an L2-
function has an L2-derivative if and only if ξ f̂ (ξ) ∈ L2(�). This is just the estimate

∞∫
−∞

|ξ |2| f̂ (ξ)|2 dξ < ∞.

By analogy to the classical case, we make the following definition.

Definition 4.3.3. A function f ∈ L2(�) has an αth L2-derivative if

∞∫
−∞

|ξ |2α| f̂ (ξ)|2dξ < ∞. (4.48)

For example, an L2-function, f has half an L2-derivative if

∞∫
−∞

| f̂ (ξ)|2|ξ | dξ < ∞.



4.4. Some Refined Properties of the Fourier Transform 123

There is no canonical way to define the “αth-L2-derivative operator.” The following
definition is sometimes useful. For α ∈ (0, 1), define the αth-L2-derivative to be

Dα f = LIM
R→∞

1

2π

R∫
−R

|ξ |α f̂ (ξ)eiξ x dξ.

This operation is defined precisely for those functions satisfying (4.48). Note that with
α = 1 this definition does not give the classical answer.

The relationship between these two notions of fractional differentiability is somewhat
complicated. As shown in the previous section, a function with one L2-derivative is Hölder-
1
2 . On the other hand, the function f (x) = √

x is Holder- 1
2 . That (

√
x)−1 is not square

integrable shows that having half a classical derivative does not imply that a function has
one L2-derivative.

Exercise
Exercise 4.3.14. Suppose that f satisfies the estimate in (4.47) with an α > 1. Show that
f is constant.

4.4 Some Refined Properties of the Fourier Transform

See: B.2, A.3.1.

In this section we consider some properties of the Fourier transform that are somewhat
less elementary than those considered so far. Several results in this section use elementary
facts from the theory of analytic functions of a complex variable. The first question we
consider concerns the pointwise convergence of the inverse Fourier transform.

4.4.1 Localization Principle

Let f be a function in either L1(�) or L2(�); for each R > 0 define

fR(x) = 
−1(χ[−R,R] f̂ )(x) = 1

2π

R∫
−R

f̂ (ξ)eixξdξ.

The function fR can be expressed directly in terms of f by the formula

fR(x) =
∞∫

−∞
f (y)

sin(R(x − y))

π(x − y)
dy. (4.49)
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Figure 4.8. The function sin(Rx)
x for several values of R.

If f is in L1(�), then (4.49) follows by inserting the definition of f̂ in the integral defining
fR and interchanging the order of the integrations. If f is L2(�), then (4.49) follows
from the formula in Exercise 4.2.20. Figure 4.8 shows sin(Rx)

x for several values of R. As
R increases the central peak becomes taller and narrower, while the tails become more
oscillatory.

If f̂ is absolutely integrable, then Theorem 4.2.1 shows that f (x) is the limit, as R →
∞ of fR(x). In fact, if f is well enough behaved near to x, then this is always the case,
whether or not f̂ (or for that matter f ) is absolutely integrable. This is Riemann’s famous
localization principle for the Fourier transform.

Theorem 4.4.1 (Localization principle). Suppose that f belongs to either L1(�) or L2(�).
If f vanishes in an open interval containing x0, then

lim
R→∞ fR(x0) = 0.

Proof. The proof of this result is not difficult. The same proof works if f is in L1 or L2. From (4.49)
we obtain

fR(x0) =
∞∫

−∞
f (y)

sin(R(x0 − y))

π(x0 − y)
dy

=
∞∫

−∞
[ei R(x0−y) − e−i R(x0−y)] f (y)

2π i(x0 − y)
dy.

(4.50)

Because f vanishes in an interval containing x0, it follows that f (y)(x0 − y)−1 is an L1-function.
The conclusion of the theorem is therefore a consequence of the Riemann-Lebesgue lemma.

Remark 4.4.1. In light of the linearity of the Fourier transform, this result holds for any
function f that can be written as a sum f = f1 + f2, where f p ∈ L p(�). The set of such
functions is denoted L1(�) + L2(�). This set is clearly a vector space.
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This result has a simple corollary that makes clearer why it is called the localization
principle. Suppose that f and g are functions in L1(�)+ L2(�) such that

1. limR→∞ gR(x0) = g(x0), and

2. f (x) = g(x) for x in an interval containing x0.

The second condition implies that f (x) − g(x) = 0 in an interval containing x0 and there-
fore

f (x0) = g(x0) = lim
R→∞ gR(x0)

= lim
R→∞

gR(x0)+ lim
R→∞

( fR(x0)− gR(x0))

= lim
R→∞

fR(x0).

(4.51)

In the second line we use Theorem 4.4.1. The Fourier inversion process is very sensitive to
the local behavior of f. It is important to note that this result is special to one dimension.
The analogous result is false for the Fourier transform in �n if n ≥ 2. This phenomenon is
carefully analyzed in [103]; see also Section 4.5.5.

Exercises
Exercise 4.4.1. Give a complete derivation for (4.49) with f either integrable or square
integrable.

Exercise 4.4.2. Suppose that f is a square integrable function which is continuously dif-
ferentiable for x ∈ (a, b). Show that for every x in this interval limR→∞ fR(x) = f (x).

4.4.2 The Heisenberg Uncertainty Principle∗

In this section we study relationships between the supp f and supp f̂ . The simplest such
result states that if a function has bounded support, then its Fourier transform cannot.

Proposition 4.4.1. Suppose supp f is contained the bounded interval (−R, R). If f̂ also
has bounded support then f ≡ 0.

Proof. The radius of convergence of the series
∑∞

0 (−i xξ) j/j ! is infinity, and it converges to e−ixξ ,
uniformly on bounded intervals. Combining this with the fact that f has bounded support, we
conclude that we may interchange the integration with the summation to obtain

f̂ (ξ) =
∞∫

−∞
f (x)e−iξ x dx

=
R∫

−R

∞∑
j=0

f (x)
(−i xξ) j

j ! dx

=
∞∑
j=0

1

j !(−iξ) j

R∫
−R

f (x)x j dx .

(4.52)
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Since ∣∣∣∣
R∫

−R

f (x)x j dx

∣∣∣∣ ≤ R j

R∫
−R

| f (x)| dx,

the terms of the series representing f̂ (ξ) are bounded by the terms of a series having an infinite
radius of convergence; the j th term is bounded by

(R|ξ |) j

j !
R∫

−R

| f (x)| dx .

Therefore, the series expansion for f̂ (ξ) also has an infinite radius of convergence. This argument
can be repeated to obtain the Taylor expansion of f̂ (ξ) about an arbitrary ξ0 :

f̂ (ξ) =
R∫

−R

e−i(ξ−ξ0)x f (x)eiξ0x dx

=
R∫

−R

∞∑
j=0

[−i(ξ − ξ0)x] j

j ! f (x)eiξ0x dx

=
∞∑

j=0

R∫
−R

[−i(ξ − ξ0)x] j

j ! f (x)eiξ0x dx

=
∞∑

j=0

[−i(ξ − ξ0)] j

j !
R∫

−R

f (x)x j eiξ0x dx .

(4.53)

If we let aξ0
j = ∫

f (x)x j eiξ0 xdx, then

f̂ (ξ) =
∞∑
0

aξ0
j
[−i(ξ − ξ0)] j

j ! .

As previously, this expansion is valid for all ξ.
Suppose there exists ξ0 such that ∂ j

ξ f̂ (ξ0) = 0 for all j = 0, 1, . . .. Then f̂ (ξ) ≡ 0 since all the

coefficients, aξ0
j = ∂

j
ξ f̂ (ξ0), equal zero. This proves the proposition.

Remark 4.4.2. The proof actually shows that if f is supported on a finite interval and all
the derivatives of f̂ vanishes at a single point, then f ≡ 0.

This result indicates that we cannot obtain arbitrarily good localization of a function in
both x-space and ξ -space simultaneously. A famous quantitative version of this statement
is the Heisenberg uncertainty principle, which we now briefly discuss using physical terms
coming from quantum mechanics and probability theory. The latter subject is discussed
in Chapter 15. In this context an L2-function f describes the state of a particle. The
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probability of finding the particle in the interval [a, b] is defined to be
∫ b

a | f (x)|2 dx . We
normalize so that the total probability is 1. By the Parseval formula,

∞∫
−∞

| f (x)|2 dx =
∞∫

−∞
| f̂ (ξ)|2 dξ

2π
= 1.

The expected value of the position of a particle is given by

E(x) =
∞∫

−∞
x| f (x)|2 dx .

By translating in x, we can normalize f to make E(x) zero. In physics, the Fourier trans-
form of f describes the momentum of a particle. The expected value of the momentum
is

E(ξ) =
∫

ξ | f̂ (ξ)|2 dξ

2π
.

By replacing f by eiξ0 x f for an appropriate choice of ξ0, we can also make E(ξ) = 0. With
these normalizations, the variance of the position and the momentum, (�x)2 and (�ξ)2,
are given by

(�x)2 =
∞∫

−∞
x2| f (x)|2 dx,

(�ξ)2 =
∞∫

−∞
ξ 2| f̂ (ξ)|2 dξ

2π
.

The Parseval formula implies that

(�ξ)2 =
∞∫

−∞
|∂x f (x)|2 dx .

The basic result is as follows

Theorem 4.4.2 (The Heisenberg uncertainty principle). If f and ∂x f belong to L2(�)
then

∞∫
−∞

|x|2| f (x)|2 dx

∞∫
−∞

|ξ |2| f̂ (ξ)|2 dξ

2π
≥ 1

4

⎡⎣ ∞∫
−∞

| f (x)|2
⎤⎦2

dx . (4.54)

Because the product of the variances has a lower bound, this means that we cannot
localize the position and the momentum of a particle, arbitrarily well at the same time. The
proof of this theorem is a simple integration by parts followed by an application of the
Cauchy-Schwarz inequality.
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Proof. If f decays sufficiently rapidly, we can integration by parts to obtain that

∞∫
−∞

x f fx dx = 1

2
(x f 2)

∣∣∣∣∞−∞
−

∞∫
−∞

1

2
f 2 dx

= −1

2

∞∫
−∞

f 2.

(4.55)

The Cauchy-Schwarz inequality implies that∣∣∣∣∣∣
∞∫

−∞
x f fx dx

∣∣∣∣∣∣ ≤
⎡⎣ ∞∫
−∞

x2| f |2 dx

⎤⎦ 1
2
⎡⎣ ∞∫
−∞

| fx |2 dx

⎤⎦ 1
2

.

Using (4.55), the Parseval formula and this estimate we obtain

1

2

∞∫
−∞

| f |2 dx ≤
⎡⎣ ∞∫
−∞

x2| f |2 dx

⎤⎦ 1
2
⎡⎣ 1

2π

∞∫
−∞

ξ2| f̂ |2 dx

⎤⎦ 1
2

. (4.56)

With the expected position and momentum normalized to be zero, the variance in the
position and momentum are given by

�x =
⎛⎝ ∞∫
−∞

x2 f 2

⎞⎠1/2

and �ξ =
⎛⎝ ∞∫
−∞

f 2
x

⎞⎠1/2

.

The estimate (4.56) is equivalent to �x ·�ξ ≥ 1
2 . If a, b are nonnegative numbers, then the

arithmetic-geometric mean inequality states that

ab ≤ a2 + b2

2
.

Combining this with the Heisenberg uncertainty principle shows that 1 ≤ (�x)2 + (�ξ)2.
That is,

∞∫
−∞

f 2dx ≤
∞∫

−∞
[x2 f 2 + f 2

x ] dx . (4.57)

The inequality (4.57) becomes an equality if we use the Gaussian function f (x) = e− x2
2 .

A reason why the Gaussian is often used to smooth measured data is that it provides the
optimal resolution (in the L2-norm) for a given amount of de-noising.

Exercise
Exercise 4.4.3. Show that both (4.54) and (4.57) are equalities if f = e− x2

2 . Can you show
that the only functions for which this is true are multiples of f ?
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4.4.3 The Paley-Wiener Theorem∗

In imaging applications we usually work with functions of bounded support. The question
naturally arises whether it is possible to recognize such a function from its Fourier trans-
form. There is a variety of theorems that relate the support of a function to properties of its
Fourier transform. They go collectively by the name of Paley-Wiener theorems.

Theorem 4.4.3 (Paley-Wiener Theorem I). An L2-function f satisfies f (x) = 0 for
|x| > L if and only if its Fourier transform f̂ extends to be an analytic function in the
whole complex plane that satisfies

∞∫
−∞

| f̂ (ξ + iτ)|2d ξ ≤ Me2L|τ | for all τ and

| f̂ (ξ + iτ)| ≤ MeL|τ |
√|τ |

(4.58)

Proof. The proof of the forward implication is elementary. The Fourier transform of f is given by
an integral over a finite interval,

f̂ (ξ) =
L∫

−L

f (x)e−ixξdx . (4.59)

The expression clearly makes sense if ξ is replaced by ξ + iτ, and differentiating under the integral
shows that f̂ (ξ + iτ ) is a analytic function. The first estimate follows from the Parseval formula
as f̂ (ξ + iτ ) is the Fourier transform of the L2-function f (x)e−τ x . Using the Cauchy-Schwartz
inequality, we obtain

| f̂ (ξ + iτ )| =
∣∣∣∣∣∣

L∫
−L

f (x)e−ixξ−xτdx

∣∣∣∣∣∣
≤ eL|τ |

√|τ |

√√√√√ L∫
−L

| f (x)|2 dx;
(4.60)

from which the estimate is immediate.
The proof of the converse statement is a little more involved; it uses the Fourier inversion

formula and a change of contour. We outline of this argument, the complete justification for the
change of contour can be found in [79]. Let x > L > 0. The Fourier inversion formula states that

f (x) = 1

2π

∞∫
−∞

f̂ (ξ)eixξ dξ.

Since f̂ (z)eixz is an analytic function, satisfying appropriate estimates, we can shift the integration
to the line ξ + iτ for any τ > 0,

f (x) = 1

2π

∞∫
−∞

f̂ (ξ + iτ )e−xτeixξdξ.
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In light of the first estimate in (4.58), we obtain the bound

| f (x)| ≤ Me(L−x)τ .

Letting τ tend to infinity shows that f (x) = 0 for x > L . A similar argument using τ < 0 shows
that f (x) = 0 if x < −L .

For later applications we state a variant of this result whose proof can be found in [79].

Theorem 4.4.4 (Paley-Wiener II). A function f ∈ L2(�) has an analytic extension F(x +
iy) to the upper half-plane (y > 0) satisfying

∞∫
−∞

|F(x + iy)|2 dx ≤ M,

lim
y↓0

∞∫
−∞

|F(x + iy)− f (x)|2 = 0

(4.61)

if and only if f̂ (ξ) = 0 for ξ < 0.

4.4.4 The Fourier Transform of Generalized Functions∗

See: A.4.5.

Initially the Fourier transform is defined for L1-functions, by an explicit formula (4.4).
It is then extended, in Definition 4.2.5, to L2-functions by using its continuity properties.
The Parseval formula implies that the Fourier transform is a continuous map from L2(�) to
itself; indeed it is an invertible, isometry. For an L2-function, the Fourier transform may not
defined by an integral; nonetheless the Fourier transform on L2(�) shares all the important
properties of the Fourier transform defined earlier for L1-functions.

It is reasonable to seek the largest class of functions to which the Fourier transform can
be extended. In turns out that the answer is not a class of functions, but rather the general-
ized functions (or tempered distributions) defined in Section A.4.5. In the discussion that
follows we assume a familiarity with this section. The definition of the Fourier transform
on generalized functions closely follows the pattern of the definition of the derivative of
a generalized function, with the result again a generalized function. To accomplish this
extension we need to revisit the definition of a generalized function. In Section A.4.5 we
gave the following definition:

Let �∞
c (�) denote infinitely differentiable functions defined on � that vanish outside of bounded

sets. These are called test functions.
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Definition 4.4.1. A generalized function on � is a linear function, l, defined on the set of test
functions such that there is a constant C and an integer k so that, for every f ∈ �∞

c (�), we have
the estimate

|l( f )| ≤ C sup
x∈�

⎡⎣(1 + |x |)k
k∑

j=0

|∂ j
x f (x)|

⎤⎦ . (4.62)

These are linear functions on �∞
c (�) that are, in a certain sense, continuous. The constants C

and k in (4.62) depend on l but not on f. The expression on the right-hand side defines a norm on
�∞

c (�), for convenience we let

‖ f ‖k = sup
x∈�

⎡⎣(1 + |x |)k
k∑

j=0

|∂ j
x f (x)|

⎤⎦ .

The observation that we make is the following: If a generalized function satisfies the
estimate

|l( f )| ≤ C‖ f ‖k

then it can be extended, by continuity, to any function f that is the limit of a sequence
< fn >⊂ �∞

c (�) in the sense that

lim
n→∞‖ f − fn‖k = 0.

Clearly, f ∈ �k(�) and ‖ f ‖k < ∞. This motivates the following definition:

Definition 4.4.2. A function f ∈ �∞(�) belongs to Schwartz class if ‖ f ‖k < ∞ for every
k ∈ �. The set of such functions is a vector space denoted by �(�).

From the definition it is clear that

�∞
c (�) ⊂ �(�). (4.63)

Schwartz class does not have a norm with respect to which it is a complete normed linear
space; instead a sequence < fn >⊂ �(�) converges to f ∈ �(�) if and only if

lim
n→∞‖ f − fn‖k = 0 for every k ∈ �.

With this notion of convergence, Schwartz class becomes a complete metric space, and the
distance is defined by

d�( f, g) =
∞∑
j=0

2− j ‖ f − g‖ j

1 + ‖ f − g‖ j
.

Remark 4.4.3. Of course, each ‖·‖k satisfies all the axioms for a norm. Nonetheless, in this
context they are called semi-norms because each one alone does not define the topology on
�(�).
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Let ϕ(x) ∈ �∞
c (�) be a nonnegative function with the following properties:

1. ϕ(x) = 1 if x ∈ [−1, 1],
2. ϕ(x) = 0 if |x| > 2.

Define ϕn(x) = ϕ(n−1x). It is not difficult to prove the following proposition.

Proposition 4.4.2. If f ∈ �(�), then fn = ϕn f ∈ �∞
c (�) converges to f in �(�). That is

lim
n→∞‖ fn − f ‖k = 0 for every k. (4.64)

The proof is left as an exercise.
From the previous discussion it therefore follows that every generalized function can

be extended to �(�). Because (4.64) holds for every k, if l is a generalized function and
f ∈ �(�), then l( f ) is defined as

l( f ) = lim
n→∞ l(ϕn f ).

To show that this makes sense, it is only necessary to prove that if < gn >⊂ �∞
c (�), which

converges to f in Schwartz class, then

lim
n→∞ l(gn − ϕn f ) = 0. (4.65)

This is an immediate consequence of the triangle inequality and the estimate that l satisfies:
There is a C and k so that

|l(gn − ϕn f )| ≤ C‖gn − ϕn f ‖k

≤ C[‖gn − f ‖k + ‖ f − ϕn f ‖k]. (4.66)

Since both terms on the right-hand side of the second line tend to zero as n → ∞, equa-
tion (4.65) is proved. In fact, the generalized functions are exactly the set of continuous
linear functions on �(�). For this reason the set of generalized functions is usually denoted
by �′(�).

Why did we go to all this trouble? How will this help extend the Fourier transform
to �′(�)? The integration by parts formula was the “trick” used to extend the notion of
derivative to generalized functions. The reason it works is that if f ∈ �(�), then ∂x f ∈
�(�) as well. This implies that l(∂x f ) is a generalized function whenever l itself is. The
Schwartz class has a similar property vis á vis the Fourier transform.

Theorem 4.4.5. The Fourier transform is an isomorphism of �(�) onto itself; that is, if
f ∈ �(�), then both 
( f ) and 
−1( f ) also belong to �(�). Moreover, for each k there is
a k ′ and constant Ck so that

‖
( f )‖k ≤ Ck‖ f ‖k′ for all f ∈ �(�). (4.67)

The proof of this theorem is an easy consequence of results in Section 4.2.4. We give
the proof for 
; the proof for 
−1 is essentially identical.
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Proof. Since f ∈ �(�) for any j, k ∈ � ∪ {0}, we have the estimates

|∂ j
x f (x)| ≤ ‖ f ‖k

(1 + |x |)k
. (4.68)

From Propositions 4.2.1 and 4.2.3, it follows that f̂ is infinitely differentiable and that, for any k, j,

sup
ξ∈�

|ξ |k |∂ j
ξ f̂ (ξ)| < ∞.

To prove this we use the formula

ξ k∂
j
ξ f̂ (ξ) =

∞∫
−∞

(i∂x)
k
[
(−i x) j f (x)

]
e−ixξdx .

Because f ∈ �(�) the integrand is absolutely integrable and, in fact, if m = max{ j, k}, then

|ξ k∂
j
ξ f̂ (ξ)| ≤ Ck,l‖ f ‖m+2; (4.69)

here Ck,l depends only on k and l. This completes the proof.

Instead of integration by parts, we now use this theorem and the identity

∞∫
−∞

f (x)ĝ(x) dx =
∞∫

−∞
f̂ (x)g(x) dx, (4.70)

to extend the Fourier transform to generalized functions. The identity follows by a simple
change in the order of integrations, which is easily justified if f, g ∈ �(�). It is now clear
how we should define the Fourier transform of a generalized function.

Definition 4.4.3. If l ∈ �′(�), then the Fourier transform of l is the generalized function l̂
defined by

l̂( f ) = l( f̂ ) for all f ∈ �(�). (4.71)

Theorem 4.4.5 implies that f̂ ∈ �(�) so that the right-hand side in (4.71) defines a gener-
alized function.

But why did we need to extend the definition of generalized functions from �∞
c (�)

to �(�)? The answer is simple: If 0 	= f ∈ �∞
c (�), then Proposition 4.4.1 implies that

f̂ /∈ �∞
c (�). This would prevent using (4.71) to define l̂ because we would not know that

l( f̂ ) made sense! This appears to be a rather abstract definition, and it is not at all clear that
it can be used to compute the Fourier transform of a generalized function. In fact, there are
many distributions whose Fourier transforms can be explicitly computed.

Example 4.4.1. If ϕ is an L1-function, then

l̂ϕ = lϕ̂ .
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If f ∈ �(�), then the identity in (4.70) holds with g = ϕ̂, as a simple interchange of
integrations shows. Hence, for all f ∈ �(�),

lϕ( f̂ ) =
∞∫

−∞
f (x)ϕ̂(x) dx = lϕ̂ ( f ).

This shows that the Fourier transform for generalized functions is indeed an extension of
the ordinary transform: If a generalized function l is represented by an integrable function
in the sense that l = lϕ, then the definition of the Fourier transform of l is consistent with
the earlier definition of the Fourier transform of ϕ.

Example 4.4.2. If f ∈ �(�), then

f̂ (0) =
∞∫

−∞
f (x) dx .

This shows that δ̂ = l1, which is represented by an ordinary function equal to the constant
1.

Example 4.4.3. On the other hand, the Fourier inversion formula implies that

∞∫
−∞

f̂ (ξ) dξ = 2π f (0)

and therefore l̂1 = 2πδ. This is an example of an ordinary function that does not have
a Fourier transform, in the usual sense, and whose Fourier transform, as a generalized
function, is not an ordinary function.

Recall that a sequence < ln >⊂ �′(�) converges to l in �′(�) provided that

l(g) = lim
n→∞ ln(g) for all g ∈ �(�). (4.72)

This is very useful for computing Fourier transforms because the Fourier transform is con-
tinuous with respect to the limit in (4.72). It follows from the definition that

l̂n(g) = ln(ĝ) (4.73)

and therefore
lim

n→∞ l̂n(g) = lim
n→∞ ln(ĝ) = l(ĝ) = l̂(g). (4.74)

Example 4.4.4. The generalized function lχ[0,∞)
can be defined as a limit by

lχ[0,∞)
( f ) = lim

ε↓0

∞∫
0

e−εx f (x) dx .
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The Fourier transform of le−εxχ[0,∞)
is easily computed using Example 4.4.1; it is


(le−εxχ[0,∞)
)( f ) =

∞∫
−∞

f (x) dx

ix + ε
.

This shows that


(lχ[0,∞)
)( f ) = lim

ε↓0

∞∫
−∞

f (x) dx

ix + ε
. (4.75)

In fact, it proves that the limit on the right-hand side exists!

We close this discussion by verifying that the Fourier transform on generalized func-
tions has many of the properties of the ordinary Fourier transform. Recall that if l is a
generalized function and f is an infinitely differentiable function that satisfies estimates

|∂ j
x f (x)| ≤ C j (1 + |x|)k,

for a fixed k, then the product f · l is defined by

f · l(g) = l( f g).

If l ∈ �′(�), then so are all of its derivatives. Using the definition, it is not difficult to find
formulæ for 
(l [ j ]) :


(l [ j ])( f ) = l [ j ]( f̂ ) = (−1) j l(∂ j
x f̂ ) = l( ̂(i x) j f ). (4.76)

This shows that

(l [ j ]) = (i x) j · l̂. (4.77)

A similar calculation shows that


((−i x) j · l) = l̂ [ j ]. (4.78)

Exercises
Exercise 4.4.4. Prove (4.63).

Exercise 4.4.5. Prove that d� defines a metric. Show that a sequence < fn > converges in
�(�) to f if and only if

lim
n→∞ d�( fn, f ) = 0.

Exercise 4.4.6. Prove Proposition 4.4.2.

Exercise 4.4.7. Prove (4.70). What is the “minimal” hypothesis on f and g so this formula
makes sense, as absolutely convergent integrals?

Exercise 4.4.8. Give a detailed proof of (4.69).
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Exercise 4.4.9. Prove, by direct computation, that the limit on the right-hand side of (4.75)
exists for any f ∈ �(�).

Exercise 4.4.10. If l1/x is the Cauchy principal value integral

l1/x( f ) = P.V.

∞∫
−∞

f (x) dx

x

then show that 
(l1/x) = lsgn x .

Exercise 4.4.11. Prove (4.78).

Exercise 4.4.12. The inverse Fourier transform of a generalized function is defined by

[
−1(l)](g) = l(
−1(g)).

Show that 
−1(l̂) = l = ̂
−1(l).

4.5 The Fourier Transform for Functions of Several Variables.

See: B.8.

The Fourier transform can also be defined for functions of several variables. This sec-
tion presents the definition and some of the elementary properties of the Fourier transform
for functions in L1(�n) and L2(�n). In most respects the higher-dimensional theory is quite
similar to the one-dimensional theory. A notable difference is discussed in Section 4.5.5.

Recall that we use lowercase, bold Roman letters x, y, and so on to denote points in
�n; that is,

x = (x1, . . . , xn) or y = (y1, . . . , yn).

In this case x j is called the j th-coordinate of x. The Fourier transform of a function of n-
variables is also a function of n-variables. It is customary to use the lowercase, bold Greek
letters, ξ or η, for points on the Fourier transform space with

ξ = (ξ1, . . . , ξn) or η = (η1, . . . , ηn).

The volume form on Fourier space is denoted dξ = dξ1 . . . dξn.

4.5.1 L1-case

As before, we begin with the technically simpler case of L1-functions.
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Definition 4.5.1. If f belongs to L1(�n), then the Fourier transform, f̂ of f, is defined by

f̂ (ξ) =
∫
�n

f (x)e−i〈ξ ,x〉dx for ξ ∈ �n. (4.79)

Since f is absolutely integrable over �n, the integral can be computed as an iterated
integral

∫
�n

f (x)e−i〈ξ ,x〉dx =
∞∫

−∞
· · ·

∞∫
−∞

f (x1, . . . , xn)e
−ix1ξ1dx1 · · · e−ixnξn dxn; (4.80)

changing the order of the one-dimensional integrals does not affect the result. When
thought of as a linear mapping, it is customary to use 
( f ) to denote the Fourier trans-
form of f.
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(b) Im ei〈(x,y),(1,1)〉

Figure 4.9. Real and imaginary parts of ei〈(x,y),(1,1)〉.

Using a geometric picture for the inner product leads to a better understanding of the
functions ei〈ξ ,x〉. To that end we write ξ in polar form as ξ = rω. Here r = ‖ξ‖ is the length
of ξ and ω its direction. Write x = x′ + tω, where x′ is orthogonal to ω, (i.e., 〈x ′,ω〉 = 0).
As 〈x,ω〉 = t, the function 〈x,ω〉 depends only on t. Thus

ei〈x,ξ〉 = eirt .

This function oscillates in the ω-direction with wavelength 2π
r . To illustrate this we give a

density plot in the plane of the real and imaginary parts of

ei〈x,ξ〉 = cos〈x, ξ 〉 + i sin〈x, ξ 〉
for several choices of ξ . In Figures 4.9 and 4.10 white corresponds to +1 and black corre-
sponds to −1. When using the Fourier transform to analyze functions of spatial variables,
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the vector [2π ]−1ξ is called the spatial frequency and its components have units of cycles-
per-unit length.

The Fourier transform at ξ = rω can be reexpressed as

f̂ (rω) =
∞∫

−∞

∫
L

f (x′ + tω)e−irt dx ′ dt. (4.81)

Here L is the (n − 1)-dimensional subspace of �n orthogonal to ω :
L = {x ′ ∈ �n : 〈x ′,ω〉 = 0}

and dx ′ is the (n − 1)-dimensional Euclidean measure on L .
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Figure 4.10. Real and imaginary parts of ei〈(x,y),(2,0)〉.

The Fourier transform is invertible; under appropriate hypotheses there is an explicit
formula for the inverse.

Theorem 4.5.1 (Fourier Inversion Formula). Suppose that f is an L1-function defined
on �n. If f̂ also belongs to L1(�n), then

f (x) = 1

[2π ]n

∫
�n

f̂ (ξ)eix·ξdξ . (4.82)

Proof. The proof is formally identical to the proof of the one dimensional result. As before, we
begin by assuming that f is continuous. The basic fact used is that the Fourier transform of a
Gaussian can be computed explicitly:


(e−ε‖x‖2
) =

[π
ε

] n
2

e−
‖x‖2

4ε . (4.83)
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Because f̂ is absolutely integrable,

1

[2π]n
∫

�n

f̂ (ξ )eix·ξ dξ = lim
ε↓0

1

[2π]n
∫

�n

f̂ (ξ )eix·ξ e−ε‖ξ‖2
dξ

= lim
ε↓0

1

[2π]n
∫

�n

∫
�n

f (y)e−i y·ξ d yeix·ξ e−ε‖ξ‖2
dξ .

(4.84)

The order of the integrations in the last line can be interchanged; using (4.83) gives

1

[2π]n
∫

�n

f̂ (ξ)eix·ξ dξ = lim
ε↓0

1

[2π]n
∫

�n

f (y)
[π
ε

] n
2

e−
‖x− y‖2

4ε d y

= lim
ε↓0

1

[2π] n
2

∫
�n

f (x − 2
√
ε t)e−‖t‖2

d t.
(4.85)

In the last line we use the change of variables y = x − 2
√
ε t. As f is continuous and absolutely

integrable, this converges to
f (x)

[2π] n
2

∫
�n

e−‖t‖2
d t.

Since ∫
�n

e−‖t‖2
d t = [2π] n

2 ,

this completes the proof of the theorem for continuous functions. As in the one-dimensional case,
an approximation argument is used to remove the additional hypothesis. The details are left to the
reader.

Exercises
Exercise 4.5.1. Prove formula (4.81).

Exercise 4.5.2. If g1(x), . . . , gn(x) belong to L1(�), show that

f (x1, . . . , xn) = g1(x1) · · · gn(xn) ∈ L1(�n).

Show that
f̂ (ξ1, . . . , ξn) = ĝ1(ξ1) · · · ĝn(ξn).

Use this to compute the Fourier transform of e−‖x‖2
.
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4.5.2 Regularity and Decay

See: B.8.

There is once again a close connection between the smoothness of a function and the
decay of its Fourier transform and vice versa. A convenient way to quantify the smoothness
of a function on �n is in terms of the existence of partial derivatives. Formulæ in several
variables that involve derivatives can rapidly become cumbersome and unreadable. Fortu-
nately there is a compact notation, called multi-index notation, giving n-variable formulæ
with the simplicity and readability of the one-variable case.

Definition 4.5.2. A multi-index is an ordered n-tuple of nonnegative integers usually de-
noted by a bold, lowercase Greek letter. For α = (α1, . . . , αn), a multi-index, set

α! = α1! · · · αn! and |α| = α1 + · · · + αn.

The function |α| is called the length of α. The following conventions are useful:

xα = xα1
1 xα2

2 · · · xαn
n and ∂α

x = ∂α1
x1
∂α2

x2
· · · ∂αn

xn
.

Example 4.5.1. The binomial formula has an n-dimensional analogue:

(x1 + · · · + xn)
k = k!

∑
{α : |α|=k}

xα

α! .

Example 4.5.2. If f is a k-times differentiable function on �n, then there is an n-dimensional
analogue of Taylor’s formula:

f (x) =
∑

{α : |α|≤k}

∂α
x f (0)xα

α! + Rk(x). (4.86)

Here Rk is the remainder term; it satisfies

lim
‖x‖→0

|Rk(x)|
‖x‖k

= 0.

As in the one-dimensional case, the most general decay result is the Riemann-Lebesgue
lemma.

Proposition 4.5.1 (Riemann-Lebesgue lemma). Let f be an L1-function on �n, then f̂
is a continuous function and lim|ξ |→∞ f̂ (ξ) = 0.
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The proof is very similar to the one-dimensional case and is left to the reader.
The smoothness of f is reflected in the decay properties of its Fourier transform. Sup-

pose that f is continuous and has a continuous partial derivative in the x j -direction that is
integrable, that is, ∫

�n

|∂x j f | dx < ∞.

For notational convenience we suppose that j = 1 and set x = (x1, x′). For any finite
limits R, R1, R2 we can integrate by parts in the x1-variable to obtain

R2∫
−R1

∫
‖x′‖<R

f (x1, x ′)e−i〈x,ξ〉dx ′ dx1 =
[

1

−iξ1

] [ ∫
‖x′‖<R

[ f (R2, x ′)e−i〈(R2,x′),ξ〉 − f (−R1, x ′)e−i〈(−R1,x′),ξ〉] dx ′−

R2∫
−R1

∫
‖x′‖<R

∂x1 f (x1, x ′)e−i〈x,ξ〉dx ′ dx1

]
.

(4.87)

Because ∂x1 f is integrable, the second integral on the right-hand side of (4.87) tends to

(∂x1 f ) as R, R1, R2 tend to ∞. The boundary terms are bounded by∫

�n−1

[| f (R2, x′)| + | f (−R1, x ′)|] dx ′.

As f is absolutely integrable, there exist sequences < Rk
1 >,< Rk

2 > tending to infinity so
that these (n − 1)-dimensional integrals tend to zero. This shows that 
(∂x1 f ) = iξ1
( f ).
The same argument applies to any coordinate, proving the following proposition.

Proposition 4.5.2. If f is a continuous L1-function with an absolutely integrable, contin-
uous j th-partial derivative, then


(∂x j f )(ξ) = iξ j 
( f )(ξ).

There is a constant Cn such that if f has a continuous, integrable gradient, then f̂ satisfies
the estimate:

| f̂ (ξ)| ≤
Cn

∫
�n

[| f | + ‖∇ f ‖] dx

(1 + ‖ξ‖) .

The integration by parts argument can be iterated to obtain formulæ for the Fourier
transform of ∂α

x f for any multi-index α.
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Proposition 4.5.3. Suppose that f is a continuous L1-function with a continuous, abso-
lutely integrable αth-partial derivative for any α with |α| ≤ k. Then there exists a constant
C so that

| f̂ (ξ)| ≤ C

(1 + ‖ξ‖)k
, (4.88)

and for each such α we have
∂̂α

x f (ξ) = (iξ)α f̂ (ξ).

The proposition relates the rate of decay of the Fourier transform to the smoothness of
f. As in the one-dimensional case, it has a partial converse.

Proposition 4.5.4. Suppose that f is an L1-function on �n such that, for a nonnegative
integer k, | f̂ (ξ)|(1 + ‖ξ‖)k is integrable. Then ∂α

x f exists, is continuous and tends to zero
at infinity, for any α with |α| ≤ k.

Proof. The proof is a consequence of the Fourier inversion formula. The decay hypothesis implies
that

f (x) = 1

[2π]n
∫

�n

f̂ (ξ)eix·ξ dξ .

The estimate satisfied by f̂ implies that this expression can be differentiated up to k times. Hence
the Fourier transform of ∂α

x f is (iξ)α f̂ (ξ ). Because 
(∂α
x f ) is an L1-function, the last statement

follows from the Riemann-Lebesgue lemma.

Remark 4.5.1. An estimate estimate similar to (4.88) that implies the hypothesis of the
proposition is

| f̂ (ξ)| = O(‖ξ‖−(n+k+ε))

for a positive ε. It is apparent that the discrepancy between this estimate and that in Propo-
sition 4.5.3 grows as the dimension increases. As in the one-dimensional case, more natural
and precise results are obtained by using weak derivatives and the L2-norm. As these re-
sults are not needed in the rest of the book, we will not pursue this direction. The interested
reader should consult [43].

In order to understand how decay at infinity for f is reflected in properties of f̂ , we
first suppose that f vanishes outside the ball of radius R. It can be shown without difficulty
that f̂ is a differentiable function, and its partial derivatives are given by

∂ξ j
f̂ (ξ) =

∫
BR

∂ξ j [ f (x)e−iξ ·x] dx =
∫
BR

f (x)(−i x j )e
−iξ ·x dx = 
(−i x j f )(ξ). (4.89)

Iterating (4.89) gives

∂α
ξ f̂ (ξ) = (−i)|α|

∫
�n

xα f (x)e−iξ ·x dx = (−i)|α|
(xα f )(ξ). (4.90)
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If, instead of assuming that f has bounded support we assume that (1 + ‖x‖)k f is inte-
grable, then a standard limiting argument shows that f̂ is k times differentiable and the αth
derivative is given by the right-hand side of (4.90).

Summarizing these computations, we have

Proposition 4.5.5. If (1+‖x‖)k f is absolutely integrable for a positive integer k, then the
Fourier transform of f has k continuous derivatives. The partial derivatives of f̂ are given
by

∂α
ξ f̂ (ξ) = (−i)|α|
(xα f )(ξ).

They satisfy the estimates

|∂α
ξ f̂ (ξ)| ≤

∫
�n

‖x‖|α|| f (x)| dx,

and tend to zero as ‖ξ‖ tends to infinity.

Exercises
Exercise 4.5.3. Suppose that f is in L1(�n). Show that there exist sequences < an >
tending to ±∞ so that

lim
n→∞

∫
�n−1

| f (an, x ′)| dx ′.

Exercise 4.5.4. Suppose that f is an integrable function that vanishes outside the ball
of radius R. Show that f̂ is a differentiable function and justify the interchange of the
derivative and the integral in (4.89).

Exercise 4.5.5. Suppose that f is an integrable function that vanishes outside the ball of
radius R. Show that f̂ is an infinitely differentiable function.

Exercise 4.5.6. Give the details of the limiting argument used to pass from (4.90) with f
of bounded support to the conclusion of Proposition 4.5.5.

Exercise 4.5.7. Prove the n-variable binomial formula.

Exercise 4.5.8. Explain the dependence on the dimension in the hypothesis of Proposi-
tion 4.5.4.

Exercise 4.5.9. Find a function f of n-variables so that

| f̂ (ξ)| ≤ C

(1 + ‖ξ‖)n

but f is not continuous.
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4.5.3 L2-Theory

See: A.4.2.

As in the one-dimensional case, the n-dimensional Fourier transform extends to L2-
functions. The basic result is the Parseval formula.

Theorem 4.5.2 (Parseval formula). If f is absolutely integrable and square integrable,
then ∫

�n

| f (x)|2 dx = 1

[2π ]n

∫
�n

| f̂ (ξ)|2 dξ . (4.91)

Remark 4.5.2. Again | f̂ (ξ)|2 is called the power spectral density of f at ξ .

The proof is quite similar to the one-dimensional case. It uses an approximation argu-
ment and the identity, valid for L1-functions with L1 Fourier transforms:∫

�n

f (x)ĝ(x) dx =
∫
�n

f (x)
∫
�n

e−ix · yg(y) d y dx =
∫
�n

f̂ (y)g(y) d y. (4.92)

The details are left to reader.
As in the single-variable case, the Fourier transform is extended to L2(�n) by continu-

ity. If we set

f̂ R(ξ) =
∫

‖x‖<R

f (x)e−iξ ·x dx,

then Parseval’s formula implies that

‖ f̂ R‖L2 ≤ ‖χBR f ‖L2 .

Because L2(�n) is complete and L2-functions with bounded support are dense in L2, it
follows from Theorem 4.2.4 that the Fourier transform of f can be defined as the L2-limit

f̂ = LIM
R→∞ f̂ R.

Moreover, the Parseval formula extends to all functions in L2(�n). This shows that the
Fourier transform is a continuous mapping of L2(�n) to itself: If < fn > is a sequence
with LIM

n→∞ fn = f, then

LIM
n→∞ f̂n = f̂ .

The L2-inversion formula is also a consequence of the Parseval formula.
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Proposition 4.5.6 (L2-inversion formula). Let f ∈ L2(�n) and define

fR(x) = 1

[2π ]n

∫
‖ξ‖<R

f̂ (ξ)eix·ξdξ ;

then f = LIM
R→∞

fR.

Proof. We need to show that limR→∞ ‖ fR − f ‖L2 = 0. Because the norm is defined by an inner
product, we have

‖ fR − f ‖2
L2 = ‖ fR‖2

L2 − 2 Re〈 fR , f 〉L2 + ‖ f ‖L2 .

The Parseval formula implies that

‖ fR‖2
L2 = 1

[2π]n
∫

‖ξ‖<R

| f̂ (ξ )|2 dξ and ‖ f ‖2
L2 = 1

[2π]n
∫

�n

| f̂ (ξ )|2 dξ .

The proof is completed by using the following lemma.

Lemma 4.5.1. Let g ∈ L2(�n), then

〈 fR , g〉 = 1

[2π]n
∫

‖ξ‖<R

f̂ (ξ )ĝ(ξ ) dξ . (4.93)

The proof of the lemma is a consequence of the Parseval formula; it is left as an exercise for the
reader. Using (4.93) gives

‖ fR − f ‖2
L2 = 1

[2π]n
∫

‖ξ‖≥R

| f̂ (ξ )|2 dξ .

This implies that LIM
R→∞ fR = f.

Remark 4.5.3. The extension of the Fourier transform to functions in L2(�n) has many nice
properties. In particular, the range of the Fourier transform on L2(�n) is exactly L2(�n).
However, the formula for the Fourier transform as an integral is purely symbolic. The
Fourier transform itself is only defined as a LIM; for a given ξ the pointwise limit

lim
R→∞

∫
‖x‖<R

f (x)−ix·ξ dx

may or may not exist.

We conclude this section with an enumeration of the elementary properties of the
Fourier transform for functions of n-variables. As before, these hold for L1- or L2-
functions and follow from elementary properties of the integral.

1. LINEARITY: The Fourier transform is a linear operation. If α ∈ �, then


( f + g) = 
( f ) + 
(g), 
(α f ) = α
( f ).



146 Chapter 4. Introduction to the Fourier Transform

2. SCALING: The Fourier transform of f (ax), a function dilated by a ∈ �, is given by∫
�n

f (ax)e−iξ ·xdx =
∫
�n

f (y)e−i ξ · y
a

d y
an

= 1

an
f̂ (

ξ

a
).

(4.94)

3. TRANSLATION: Let f t be the function f shifted by the vector t, f t(x) = f (x − t).
The Fourier transform of f t is given by

f̂ t(ξ) =
∫
�n

f (x − t)e−iξ ·x dx

=
∫
�n

f (y)e−iξ ·( y+t) d y

= e−iξ ·t f̂ (ξ).

(4.95)

4. REALITY: If f (x) is real valued, then f̂ (ξ) = f̂ (−ξ).

5. EVENNESS: If f is even and real valued, then f̂ is real valued, if f is odd and real
valued, then f̂ is purely imaginary valued.

Exercises
Exercise 4.5.10. Give the details of the proof of the n-dimensional Parseval formula.

Exercise 4.5.11. Show that (4.91) implies that∫
�n

f (x)g(x) dx =
∫
�n

f̂ (ξ)ĝ(ξ)
dξ

[2π ]n
.

Exercise 4.5.12. Prove Lemma 4.5.1.

Exercise 4.5.13. Verify properties (4) and (5).

Exercise 4.5.14. Prove that the Fourier transform of a radial function is also a radial func-
tion and formula (4.96).

4.5.4 The Fourier Transform on Radial Functions

See: A.3.3.

Recall that a function that only depends on ‖x‖ is said to be radial. The Fourier trans-
form of a radial function is also radial and can be given by a one-dimensional integral
transform.
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Theorem 4.5.3. Suppose that f (x) = F(‖x‖) is an integrable function; then the Fourier
transform of f is given by the one-dimensional integral transform

f̂ (ξ) = cn

‖ξ‖ n−2
2

∞∫
0

Jn−2
2
(r‖ξ‖)F(r)r

n
2 dr. (4.96)

Here cn is a constant depending on the dimension.

If Re(ν) > − 1
2 , then Jν(z), the order ν Bessel function is defined by the integral

Jν(z) =
(

z
2

)ν
�
(
ν + 1

2

)
�
(

1
2

) π∫
0

eiz cos(θ) sin2ν(θ) dθ.

Proof. The derivation of (4.96) uses polar coordinates on �n. Let x = rω, where r is a nonnegative
number and ω belongs to the unit (n − 1)-sphere, Sn−1. In these coordinates the volume form on
�n is

d x = rn−1drdVSn−1;
here dVSn−1 is the volume form on Sn−1. In polar coordinates, the Fourier transform of f is given
by

f̂ (ξ ) =
∞∫

0

∫
Sn−1

F(r)e−ir〈ω,ξ〉 dVSn−1rn−1 dr. (4.97)

It not difficult to show that the integral over Sn−1 only depends on ‖ξ‖, and therefore it suffices to
evaluate it for ξ = (0, . . . , 0, ‖ξ‖). Points on the (n − 1)-sphere can be expressed in the form

ω = sin θ(ω′, 0) + (0, . . . , 0, cos θ),

where ω′ is a point on the unit (n − 2)-sphere and θ ∈ [0, π]. Using this parameterization for Sn−1,
we obtain a formula for the volume form,

dVSn−1 = sinn−2 θ dVSn−2. (4.98)

Using these observations, the spherical integral in (4.97) becomes

∫
Sn−1

e−ir〈ω,ξ〉 dVSn−1 =
π∫

0

∫
Sn−2

e−ir‖ξ‖ cos θ sinn−2 θ dVSn−2dθ

= σn−2

π∫
0

e−ir‖ξ‖ cos θ sinn−2 θdθ.

(4.99)

The coefficient σn−2 is the (n − 2)-dimensional volume of Sn−2. Comparing this integral with the
definition of the Bessel function gives (4.96).
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Example 4.5.3. The Fourier transform of the characteristic function of the unit ball B1 ⊂
�n is given by the radial integral

χ̂B1(ξ) =
cn

‖ξ‖ n−2
2

1∫
0

Jn−2
2
(r‖ξ‖)r n

2 dr.

Using formula 6.561.5 in [45] gives

χ̂B1(ξ) =
cn

‖ξ‖ n
2

Jn
2
(‖ξ‖).

As ‖ξ‖ tends to infinity, the Bessel function is a oscillatory term times [√‖ξ‖]−1. Overall
we have the estimate

χ̂B1(ξ) ≤
C

(1 + ‖ξ‖) n+1
2

.

Exercises
Exercise 4.5.15. Prove that the spherical integral in (4.97) only depends on ‖ξ‖.
Exercise 4.5.16. Verify the parameterization of the (n − 1)-sphere used to obtain (4.98) as
well as this formula.

Exercise 4.5.17. Determine the constant cn in (4.96).

Exercise 4.5.18. Using (4.98) show that σn the n-volume of Sn is given by

σn = 2π
n+1

2

�
(

n+1
2

) .
Exercise 4.5.19. Using the connection between the one-dimensional integral transform
defined in (4.96) and the n-dimensional Fourier transform, find a formula for the inverse of
this transform. Hint: Use symmetry; this does not require any computation!

4.5.5 The Failure of Localization in Higher Dimensions

The localization principle is a remarkable feature of the 1-dimensional Fourier transform.
Suppose that f is an integrable function defined on �. According to the localization prin-
ciple, the convergence of the partial inverse

fR(x) = 1

2π

R∫
−R

f̂ (ξ)eixξdξ

to f (x) only depends on the behavior of f in an interval about x . This is a uniquely one-
dimensional phenomenon. In this section we give an example due to Pinsky showing the
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failure of the localization principle in three dimensions. A complete discussion of this
phenomenon can be found in [103].

Pinsky’s example is very simple; it concerns f = χB1, the characteristic function of
the unit ball. The Fourier transform of f was computed in Example 4.5.3; it is

f̂ (ξ) =
cJ 3

2
(‖ξ‖)

‖ξ‖ 3
2

.

In this example c denotes various positive constants. Using formula 8.464.3 in [45], this
can be reexpressed in terms of elementary functions by

f̂ (ξ) = c[‖ξ‖ cos(‖ξ‖) − sin(‖ξ‖)]
‖ξ‖3

.

Using polar coordinates, we compute the partial inverse:

fR(0) = c

[2π ]3

R∫
0

[
cos(r)− sin(r)

r

]
dr

= c

⎡⎣sin(R) −
R∫

0

sin(r)

r
dr

⎤⎦ .

(4.100)

In the second line the integral has a limit as R → ∞; however, sin(R) does not! Thus
fR(0) remains bounded as R tends to infinity but does not converge.

4.6 Conclusion

In this chapter we introduced the Fourier transform and considered some of its basic prop-
erties. Of particular importance in applications to imaging are the connections between the
smoothness of a function and the decay of its Fourier transform. These connections are
usually expressed as estimates satisfied by the Fourier transform. The Fourier transform is
an example of an invertible linear operator. We used the Parseval formula to extend the do-
main of definition of the Fourier transform beyond L1(�n), obtaining a bounded linear map
of L2(�n) to itself. The map is well defined even though the integral expression defining
f̂ (ξ) may not be meaningful. Many linear operators encountered in imaging applications
are defined in terms of the Fourier transform and computed using a fast approximate im-
plementation of it called the fast Fourier transform.

The other basic concept introduced in this chapter is that of a weak derivative. This is
an extension of the notion of differentiability defined using the integration by parts formula.
It provides a systematic extension of the theory of differentiation to functions that do not
have classical pointwise derivatives. As we shall see, such a theory is needed in order to
study the inverse of the Radon transform for the sort of data that arise in medical imaging.
The notion of weak derivative is also well adapted to measurements defined by averages.
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From this point of view it is not possible to distinguish between a function with classical
derivatives and a function with weak derivatives. In the next chapter we introduce the
convolution product as a generalization of a moving average. In part because of its intimate
connection to the Fourier transform, this operation is the tool used to defined most filters
employed in signal processing and medical imaging.

A text covering much of the material in this chapter and the next, with a similarly ap-
plied bent, is The Fourier Transform and Its Applications by R. N. Bracewell, [15]. The first
edition of Bracewell’s book, published in 1965, strongly influenced the early development
of algorithms in x-ray tomography. The reader interested in a more complete mathematical
treatment of the Fourier transform is directed to [79], for the one-dimensional case, and to
[120], for higher dimensions.



Chapter 5

Convolution

Suppose we would like to study a smooth function of one variable, but the available data
are contaminated by noise. For the purposes of the present discussion, this means that the
measured signal is of the form f = s + εn. Here ε is a (small) number and n is function
which models the noise. An example is shown in Figure 5.1.
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(a) A smooth function s
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(b) A typical noise function n
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(c) A realistic measurement s+
.25n

Figure 5.1. A smooth function gets corrupted by noise.

Noise is typically represented by a rapidly varying function that is locally of mean zero.
This means that, for any x, and a large enough δ, the average

1

δ

x+δ∫
x

n(y) dy

is small compared to the size of n. The more random the noise, the smaller δ can be taken.
On the other hand, since s is a smooth function, the analogous average of s should be close

151
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to s(x). The moving average of f is defined to be

�δ( f )(x) = 1

δ

x+δ∫
x

f (y) dy. (5.1)

If the noise is very random, so that δ can be taken small, then �δ( f ) should be close to s.
The results of applying this averaging process to the function shown in Figure 5.1(c) are
shown in Figure 5.2.
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(a) δ = .1
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(b) δ = .001
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(c) δ = .00001

Figure 5.2. The moving average �δ( f ) for various values of δ.

There is a somewhat neater and more flexible way to express the operation defined
in (5.1). Define the weight function

mδ(x) =
{

1
δ

for x ∈ [−δ, 0],
0 otherwise.

The moving average then becomes

�δ( f )(x) =
∞∫

−∞
f (y)mδ(x − y) dy. (5.2)

In this formulation we see that the value of �δ( f )(x) is obtained by translating the weight
function along the axis, multiplying it by f, and integrating. To be a little more precise, the
weight function is first reflected around the vertical axis [i.e., mδ(y) is replaced by mδ(−y)
and then translated to give mδ(−(y − x)) = mδ(x − y)]. At this stage it is difficult to
motivate the reflection step, beyond saying that in the end it leads to a simpler theory.

The weight function in (5.2) is just one possible choice. Depending on the properties
of the noise (or the signal), it might be advantageous to use a different weight function. For
w an integrable function, define the w-weighted moving average by

�w( f ) =
∞∫

−∞
f (y)w(x − y) dy. (5.3)
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f w f ∗w

Table 5.1. Examples of the convolution product

For this to be an “average” in the usual sense, w should be nonnegative with total integral
equal to one, though the operation f �→ �w( f ) is defined under much weaker conditions.
The main features of this operation are as follows: (1) It is linear in f , and (2) the weight
assigned to f (y) in the output �w( f )(x) depends only on the difference x − y. Many
operations of this type appear in mathematics and image processing.

It turns out that the simplest theory results from thinking of this as a bilinear operation
in the two functions f and w. The result, denoted by f ∗ w, is called the convolution
product. Several examples are shown in Tables 5.1 and 5.2. As we show in this chapter,
this operation has many of the properties of ordinary pointwise multiplication, with one
important addition: Convolution is intimately connected to the Fourier transform. Because
there are very efficient algorithms for approximating the Fourier transform and its inverse,
convolution lies at the heart of many practical filters. After defining the convolution product
for functions on �n and establishing its basic properties, we briefly turn our attention to
filtering theory.
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f w f ∗ w

Table 5.2. More examples of the convolution product

5.1 Convolution

See: A.5.1.

For applications to medical imaging we use convolution in one, two and three dimen-
sions. As the definition and formal properties of this operation do not depend on the di-
mension, we define it and consider its properties, once and for all, for functions defined on
�n.

Definition 5.1.1. If f is an L1-function defined on �n and g is a bounded, locally integrable
function then, the convolution product of f and g is the function on �n defined by the
integral

f ∗ g(x) =
∫
�n

f (x − y)g(y) d y. (5.4)

Remark 5.1.1. There are many different conditions under which this operation is defined.
If the product f (y)g(x − y) is an integrable function of y, then f ∗ g(x) is defined by
an absolutely convergent integral. For example, if g is bounded with bounded support,
then it is only necessary that f be locally integrable in order for f ∗ g to be defined. In
this chapter we use functional analytic methods to extend the definition of convolution to
situations where these integrals are not absolutely convergent. This closely follows the
pattern established to extend the Fourier transform to L2(�n).

We consider a couple of additional examples:
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Example 5.1.1. Let g(x) = cnr−nχBr (‖x‖); here Br is the ball of radius r in �n and c−1
n

is the volume of B1. For any locally integrable function f the value of f ∗ g(x) is given by

f ∗ g(x) =
∫
�n

f (x − y)g(y) d y

= cn

rn

∫
Br

f (x − y) d y.
(5.5)

This is the ordinary average of the values of f over points in Br(x).

Convolution also appears in the partial inverse of the Fourier transform. In this case the
weighting function assumes both positive and negative values.

Example 5.1.2. Let f belong to either L1(�) or L2(�). In Section 4.4.1 we defined the
partial inverse of the Fourier transform

SR( f )(x) = 1

2π

R∫
−R

f̂ (ξ)eixξ dξ. (5.6)

This can be represented as a convolution,

SR( f ) = f ∗ DR,

where

DR(x) = R sinc(Rx)

π
.

For functions in either L1 or L2 this convolution is given by an absolutely convergent
integral.

5.1.1 Basic Properties of the Convolution Product

The convolution product satisfies many estimates, the simplest is a consequence of the
triangle inequality for integrals:

‖ f ∗ g‖∞ ≤ ‖ f ‖L1‖g‖∞. (5.7)

We now establish another estimate that, via Theorem 4.2.4, extends the domain of the
convolution product.

Proposition 5.1.1. Suppose that f and g are integrable and g is bounded. Then f ∗ g is
absolutely integrable and

‖ f ∗ g‖L1 ≤ ‖ f ‖L1‖g‖L1 . (5.8)
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Proof. It follows from the triangle inequality that∫
�n

| f ∗ g(x)| d x ≤
∫

�n

∫
�n

| f (x − y)g(y)| d y d x

=
∫

�n

∫
�n

| f (x − y)g(y)| d x d y.
(5.9)

Going from the first to the second lines, we interchanged the order of the integrations. This is
allowed by Fubini’s theorem, since f (y)g(x − y) is absolutely integrable over �n × �n. Changing
variables in the x-integral by setting t = x − y, we get

‖ f ∗ g‖L1 ≤
∫
�n

∫
�n

| f (t)||g(y)| d t d y = ‖ f ‖L1‖g‖L1 .

For a fixed f in L1(�n) the map from bounded, integrable functions to L1(�n) defined
by C f (g) = f ∗ g is linear and satisfies (5.8). As bounded integrable functions are dense
in L1(�n), Theorem 4.2.4 applies to show that C f extends to define a map from L1(�n)
to itself. Because f is an arbitrary integrable function, convolution extends as a map from
L1(�n)× L1(�n) to L1(�n). Indeed, the linearity of the integral implies that

C f (g1 + g2) = C f (g1)+ C f (g2) and C f1+ f2(g) = C f1(g)+ C f2(g).

The following proposition summarizes these observations.

Proposition 5.1.2. The convolution product extends to define a continuous bilinear map
from L1(�n)× L1(�n) to L1(�n) that satisfies (5.8).

Remark 5.1.2. If f and g are both in L1(�n), then the integral defining f ∗ g(x) may not
converge for every x. The fact that f (y)g(x − y) is integrable over �n × �n implies that∫

�n

f (y)g(x − y) d y

might diverge, but only for x belonging to a set of measure zero. An inequality analogous
to (5.8) holds for any 1 ≤ p ≤ ∞. That is, if f ∈ L p(�n) and g ∈ L1(�n), then f ∗ g is
defined as an element of L p(�n), satisfying the estimate

‖ f ∗ g‖L p ≤ ‖ f ‖L p‖g‖L1 . (5.10)

The proof of this statement is left to the exercises.

Example 5.1.3. Some decay conditions are required for f ∗ g to be defined. If f (x) =
[√1 + |x|]−1, then

f ∗ f (x) =
∞∫

−∞

1√
1 + |y|

1√
1 + |x − y|dy = ∞ for all x .

If, for any positive ε, we let g = [√1 + |x|]−(1+ε); then f ∗ g is defined.
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The basic properties of integration lead to certain algebraic properties for the convolu-
tion product.

Proposition 5.1.3. The convolution product is commutative, distributive, and associative;
that is, if f1, f2, f3 belong to L1(�n), then the following identities hold:

f1 ∗ f2 = f2 ∗ f1,

f1 ∗ ( f2 + f3) = f1 ∗ f2 + f1 ∗ f3,

f1 ∗ ( f2 ∗ f3) = ( f1 ∗ f2) ∗ f3.

(5.11)

Remark 5.1.3. If convolution were defined without “reflecting” the argument of the second
function through the origin [i.e., if instead f ∗ g(x) = ∫

f (y)g(y − x) d y], then the
convolution product would not be commutative but would satisfy the identity f ∗ g(x) =
g ∗ f (−x).

Proof. We prove the first assertion; it suffices to assume that f2 is bounded, the general case, then
follows by taking limits and using (5.8). The definition states that

f1 ∗ f2(x) =
∫

�n

f1(y) f2(x − y) d y.

Letting t = x − y, this integral becomes∫
�n

f1(x − t) f2(t) d t = f2 ∗ f1(x).

The proofs of the remaining parts are left to the Exercises.

Convolution defines a multiplication on L1(�n) that is commutative, distributive, and
associative. The only thing missing is a multiplicative unit, which is a function i ∈ L1(�n),
so that f ∗ i = f for every f in L1(�n). It is not hard to see that such a function cannot
exist. For if

f (x) =
∫
�n

f (x − y)i(y) d y,

for every point x and every function f ∈ L1(�n), then i(x) must vanish for x 	= 0. But in
this case f ∗ i ≡ 0 for any function f ∈ L1(�n). In Section 5.3 we return to this point.

A reason that the convolution product is so important in applications is that the Fourier
transform converts convolution into ordinary pointwise multiplication.

Theorem 5.1.1. Suppose that f and g are L1-functions. Then


( f ∗ g) = 
( f )
(g). (5.12)
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Proof. The convolution, f ∗ g is an L1-function and therefore has a Fourier transform. Because
f (x − y)g(y) is an L1-function of (x, y), the following manipulations are easily justified:


( f ∗ g)(ξ) =
∫

�n

( f ∗ g)(x)e−i〈ξ ,x〉d x

=
∫
�n

∫
�n

f (x − y)g(y)e−i〈ξ ,x〉d y d x

=
∫
�n

∫
�n

f (t)g(y)e−i〈ξ ,( y+t)〉d t d y

= f̂ (ξ )ĝ(ξ ).

(5.13)

Remark 5.1.4. The conclusion of Theorem 5.1.1 remains true if f ∈ L2(�n) and g ∈
L1(�n). In this case f ∗ g also belongs to L2(�n). Note that ĝ is a bounded function, so
that f̂ ĝ belongs to L2(�n) as well.

Example 5.1.4. Let f = χ[−1,1]. Formula (5.12) simplifies the computation of the Fourier
transform for f ∗ f or even the j -fold convolution of f with itself:

f ∗ j f
d= f ∗ · · · ∗︸ ︷︷ ︸

j−times

f.

In this case

( f ∗ j f )(ξ) = [2 sinc(ξ)] j .

Example 5.1.5. A partial inverse for the Fourier transform in n dimensions is defined by

Sn
R( f ) = 1

[2π ]n

R∫
−R

· · ·
R∫

−R

f̂ (ξ)ei〈x,ξ〉dξ .

The Fourier transform of the function

Dn
R(x) =

[
R

π

]n n∏
j=1

sinc(Rx j )

is χ[−R,R](ξ1) · · · χ[−R,R](ξn), and therefore Theorem 5.1.1 implies that

Sn
R( f ) = Dn

R ∗ f.
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Exercises
Exercise 5.1.1. For f ∈ L1(�) define

fB(x) =
{

f (x) if | f (x)| ≤ B,

0 if | f (x)| > B.

Show that limB→∞ ‖ f − fB‖L1 = 0. Use this fact and the inequality (5.8) to show that the
sequence < fB ∗ g > has a limit in L1(�).

Exercise 5.1.2. Prove the remaining parts of Proposition 5.1.3. Explain why it suffices to
prove these identities for bounded integrable functions.

Exercise 5.1.3. Compute χ[−1,1] ∗ j χ[−1,1] for j = 2, 3, 4 and plot these functions on a
single graph.

Exercise 5.1.4. Prove that ‖ f ∗ g‖L2 ≤ ‖ f ‖L2‖g‖L1 . Hint: Use the Cauchy-Schwarz
inequality.

Exercise 5.1.5. ∗ For 1 < p < ∞ use Hölder’s inequality to show that ‖ f ∗ g‖L p ≤
‖ f ‖L p‖g‖L1 .

Exercise 5.1.6. Show that 
(Dn
R)(ξ) = χ[−R,R](ξ1) · · · χ[−R,R](ξn).

Exercise 5.1.7. Prove that the conclusion of Theorem 5.1.1 remains true if f ∈ L2(�n)
and g ∈ L1(�n). Hint: Use the estimate ‖ f ∗ g‖L2 ≤ ‖ f ‖L2‖g‖L1 to reduce to a simpler
case.

Exercise 5.1.8. Suppose that the convolution product were defined by

f ∗ g(x) =
∫

f (y)g(y − x) d y.

Show that (5.12) would not hold. What would replace it?

Exercise 5.1.9. Show that there does not exist an integrable function i so that i ∗ f = f for
every integrable function f. Hint: Use Theorem 5.1.1 and the Riemann-Lebesgue Lemma.

Exercise 5.1.10. A different partial inverse for the n-dimensional Fourier transform is de-
fined by

�R( f ) = 1

[2π ]n

∫
‖ξ‖≤R

f̂ (ξ)ei〈x,ξ〉dξ .

This can also be expressed as the convolution of f with a function Fn
R . Find an explicit

formula for Fn
R .

Exercise 5.1.11. Use the Fourier inversion formula to prove that

f̂ g(ξ) = 1

2π
f̂ ∗ ĝ(ξ). (5.14)

What assumptions are needed for f̂ ∗ ĝ to make sense?
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5.1.2 Shift Invariant Filters�

In engineering essentially any operation that maps inputs to outputs is called a filter. Since
most inputs and outputs are represented by functions, a filter is usually a map from one
space of functions to another. The filter is a linear filter if this map of function spaces is
linear. In practice many filtering operations are given by convolution with a fixed function.
If ψ ∈ L1(�n), then

Cψ(g) = ψ ∗ g

defines such a filter. A filter that takes bounded inputs to bounded outputs is called a stable
filter. The estimate (5.7) shows that any filter defined by convolution with an L1-function
is stable. Indeed the estimates in (5.10) show that such filters act continuously on many
function spaces.

Filters defined by convolution have an important physical property: They are shift in-
variant.

Definition 5.1.2. For τ ∈ �n the shift of f by τ is the function fτ , defined by

fτ (x) = f (x − τ ).

A filter, 	, mapping functions defined on �n to functions defined on �n is shift invariant if

	( fτ ) = (	 f )τ .

If n = 1 and the input is a function of time, then a filter is shift invariant if the action
of the filter does not depend on when the input arrives. If the input is a function of spatial
variables, then a filter is shift invariant if its action does not depend on where the input is
located.

Example 5.1.6. Suppose τ is a point in �n; the shift operation f �→ fτ defines a shift
invariant filter.

Proposition 5.1.4. A filter defined by convolution is shift invariant.

Proof. The proof is a simple change of variables:

Cψ( fτ )(x) =
∫
�n

ψ(x − y) f (y − τ ) d y

=
∫

�n

ψ(x − τ − w) f (w) dw

= Cψ( f )(x − τ ).

(5.15)

In going from the first to the second line, we used the change of variable w = y − τ .

In a certain sense the converse is also true: Any shift invariant, linear filter can be repre-
sented by convolution. What makes this a little complicated is that the function ψ may
need to be replaced by a generalized function.
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Beyond the evident simplicity of shift invariance, this class of filters is important for
another reason: Theorem 5.1.1 shows that the output of such a filter can be computed using
the Fourier transform and its inverse, explicitly

Cψ( f ) = 
−1(ψ̂ f̂ ). (5.16)

This is significant because, as noted previously, the Fourier transform has a very efficient,
approximate numerical implementation.

Example 5.1.7. Let ψ = 1
2χ[−1,1], the convolution ψ ∗ f is the moving average of f over

intervals of length 2. It can be computed using the Fourier transform by

ψ ∗ f (x) = 1

2π

∞∫
−∞

sinc(ξ) f̂ (ξ)eixξdξ.

Exercises
Exercise 5.1.12. For each of the following filters, decide if it is shift invariant or non-shift
invariant. Justify your answers.

1. Translation: 	τ ( f )(x)
d= f (x − τ )

2. Scaling: 	ε( f )(x)
d= 1

εn f
(

x
ε

)
3. Multiplication by a function: 	ψ( f )

d= ψ f

4. Indefinite integral from 0: �0( f )(x)
d= ∫ x

0 f (y) dy

5. Indefinite integral from −∞ : �−∞( f )(x)
d= ∫ x

−∞ f (y) dy

6. Time reversal: �r ( f )(x)
d= f (−x)

7. An integral filter: f �→ ∫∞
−∞ xy f (y) dy

8. Differentiation: ( f )(x) = f ′(x)

Exercise 5.1.13. Suppose that 	 and � are shift invariant. Show that their composition

	 ◦ �( f )
d= 	(�( f )) is also shift invariant.

5.1.3 Convolution Equations

Convolution provides a model for many measurement and filtering processes. For example,
suppose that f is the state of a system and, for a fixed function ψ, the result of measuring
f is modeled by the convolution g = ψ ∗ f. To recover the state of the system from this
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measurement, we must therefore solve this equation for f as a function of g. Formally this
equation is easy to solve; (5.13) implies that

f̂ (ξ) = ĝ(ξ)

ψ̂(ξ)
so f = 
−1

(
ĝ

ψ̂

)
.

There are several problems with this approach. The most obvious problem is that ψ̂
may vanish for some values of ξ . If the model were perfect, then, of course, ĝ(ξ) would
also have to vanish at the same points. In real applications this leads to serious problems
with stability. A second problem is that, if ψ is absolutely integrable, then the Riemann-
Lebesgue lemma implies that ψ̂(ξ) tends to 0 as ‖ξ‖ goes to infinity. Unless the mea-
surement g is smooth and noise free, it is not possible to exactly determine f by applying
the inverse Fourier transform to this ratio. In Chapter 9 we discuss how these issues are
handled in practice.

Example 5.1.8. The rectangle function defines a simple weight, ψε = (2ε)−1χ[−ε,ε]. Its
Fourier transform is given by

ψ̂ε(ξ) = sinc(εξ).

This function has zeros at ξ = ±(ε−1mπ), where m is any positive integer. These zeros are
isolated, so it seems reasonable that an integrable function f should be uniquely specified
by the averages ψε ∗ f, for any ε > 0. In fact it is, but f cannot be stably reconstructed
from these averages.

Example 5.1.9. Suppose, in the previous example, we also knew that f̂ vanishes if |ξ | >
π(2ε)−1. In this case the function sinc(εξ) has a positive lower bound on the support of f̂
and therefore it is allowable to use Fourier inversion to recover f from ψ ∗ f,

f (x) =
π
2ε∫

− π
2ε

f̂ (ξ)eixξdξ

2π sinc(εξ)
.

Exercises
Exercise 5.1.14. For a positive real number, a, define the function

ta(x) = a − |x|
a2

χ[−a,a](x),

and for two positive real numbers, a, b, define

ta,b(x) = 1

2
[ta(x) + tb(x)] .

Graph ta,b(x) for several different choices of (a, b). Show that, for appropriate choices of
a and b, the Fourier transform t̂a,b(ξ) does not vanish for any value of ξ.



5.2. Convolution and Regularity 163

Exercise 5.1.15. Define a function

f (x) = χ[−1,1](x)(1 − |x|)2.

Compute the Fourier transform of this function and show that it does not vanish anywhere.
Let f j = f ∗ j f (the j -fold convolution of f with itself). Show that the Fourier transforms,
f̂ j , are also nonvanishing.

Exercise 5.1.16. Explain the following statement: If ψ̂ vanishes or tends to zero as ξ tends
to infinity, then it is not possible to stably recover f from the averages ψ ∗ f.

Exercise 5.1.17. Show that an even, real-valued function ϕ, with bounded support, can be
expressed as ϕ = ψ ∗ ψ if and only if ϕ̂ is nonnegative.

5.2 Convolution and Regularity

Generally speaking, the averages of a function are smoother than the function itself. If f
is a locally integrable function and ϕ is continuous, with bounded support, then f ∗ ϕ is
continuous. Let τ be a vector in �n. Then

lim
τ→0

[ f ∗ ϕ(x + τ )− f ∗ ϕ(x)] = lim
τ→0

∫
�n

f (y)[ϕ(x + τ − y)− ϕ(x − y)] d y.

Because ϕ has bounded support, it follows that the limit on the right can be taken inside the
integral, showing that

lim
τ→0

f ∗ ϕ(x + τ ) = f ∗ ϕ(x).

This argument can be repeated with difference quotients to prove the following result.

Proposition 5.2.1. Suppose that f is locally integrable, ϕ has bounded support, and k
continuous derivatives. Then f ∗ ϕ also has k continuous derivatives. For any multi-index
α with |α| ≤ k, we have

∂α
x ( f ∗ ϕ) = f ∗ (∂α

x ϕ). (5.17)

Remark 5.2.1. This result is also reasonable from the point of view of the Fourier trans-
form. Suppose that ϕ has k integrable derivatives. Then Proposition 4.5.3 shows that

|ϕ̂(ξ)| ≤ C

(1 + ‖ξ‖)k
.

If f is either integrable or square integrable, then the Fourier transform of f ∗ ϕ satisfies
an estimate of the form

|
( f ∗ ϕ)(ξ)| ≤ C| f̂ (ξ)|
(1 + ‖ξ‖)k

.

This shows that the Fourier transform of f ∗ ϕ has a definite improvement in its rate of
decay over that of f and therefore f ∗ ϕ is commensurately smoother.
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Figure 5.3. Graphs of ϕε, with ε = .5, 2, 8.

5.2.1 Approximation by Smooth Functions

Convolution provides a general method for approximating integrable (or locally integrable)
functions by smooth functions. Beyond that, it gives a way to define approximate deriva-
tives of functions that are not differentiable. We begin with a definition:

Definition 5.2.1. For a function ϕ, defined on �n, and ε, a positive real number, define the
scaled function ϕε by

ϕε(x) = ε−nϕ(
x
ε
). (5.18)

While this notation is quite similar to that used, in Definition 5.1.2, for the translation
of a function, the meaning should be clear from the context. A one-dimensional example
is shown in Figure 5.3.

Let ϕ be an infinitely differentiable function with total integral one:∫
�n

ϕ(x) dx = 1.

If ϕ is supported in the ball of radius 1, then ϕε is supported in the ball of radius ε and also
has total integral one: Using the change of variables ε y = x gives∫

�n

ϕε(x) dx =
∫
�n

1

εn
ϕ(

x
ε
) dx =

∫
�n

ϕ(y) d y = 1. (5.19)

For small ε the convolution ϕε ∗ f is an approximation to f. Using (5.19), the difference
between f and ϕε ∗ f is expressed in a convenient form:

ϕε ∗ f (x)− f (x) =
∫

Bε(x)

[ f (y)− f (x)]ϕε(x − y) d y. (5.20)

The integral is over the ball of radius ε, centered at x. It is therefore reasonable to expect
that, as ε goes to zero, ϕε ∗ f converges, in some sense, to f.
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The fact that ϕ has total integral one implies that ϕ̂(0) = 1. This gives another route
for understanding the relationship between ϕε ∗ f and f as ε tends to 0. It follows from
Theorem 5.1.1 that


(ϕε ∗ f )(ξ) = ϕ̂ε(ξ) f̂ (ξ)

= ϕ̂(εξ) f̂ (ξ).
(5.21)

For each fixed ξ , the limit of 
(ϕε ∗ f )(ξ), as ε goes to zero, is f̂ (ξ). Because both noise
and fine detail are carried by the high-frequency components, convolution with ϕε tends to
average out the noise while, at the same time, blurring the fine detail. The size of ε deter-
mines the degree of blurring. This can be seen quantitatively in the Fourier representation.
Since ϕ̂(0) = 1 and ϕ̂ is a smooth function, we see that

ϕ̂(εξ) ≈ 1 for ‖ξ‖ << ε−1.

Hence, for low frequencies—that is ‖ξ‖ << ε−1,—the Fourier transform 
(ϕε ∗ f )(ξ)
closely approximates f̂ (ξ). On the other hand, ϕ̂(ξ) tends rapidly to zero as ‖ξ‖ → ∞,
and therefore the high-frequency content of f is suppressed in ϕε ∗ f. Using convolution to
suppress noise inevitably destroys fine detail.

Example 5.2.1. Consider the function of two variables f shown (as a density plot) in
Figure 5.4(a). The convolution of f with a smooth function is shown in Figures 5.4(b–c).
Near points where f is slowly varying, ϕε ∗ f is quite similar to f. Near points where f is
rapidly varying, this is not the case.

(a) A reconstruction of the
Shepp-Logan phantom; see
Figure 3.7.

(b) The function in (a) con-
volved with ϕε with a small ε.

(c) The function in (a) con-
volved with ϕε with a large ε.

Figure 5.4. Convolving f reduces the noise but blurs the detail.

Remark 5.2.2. In practice, infinitely differentiable functions can be difficult to work with.
To simplify computations, a finitely differentiable function may be preferred. For example,
given k ∈ �, define the function

ψk(x) =
{

ck(1 − x2)k if |x| ≤ 1,

0 if |x| > 1.
(5.22)
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The constant, ck, is selected so that ψk has total integral one. The function ψk has k − 1
continuous derivatives. If

ψk,ε(x) = ε−1ψk(
x

ε
)

and f is locally integrable, then < ψk,ε ∗ f > is a family of (k − 1) times differentiable
functions, which converge, in an appropriate sense to f.

Exercises
Exercise 5.2.1. Let f be an integrable function with support in the interval [a, b] and g an
integrable function with support in [−ε, ε]. Show that the support of f ∗ g is contained in
[a − ε, b + ε].
Exercise 5.2.2. For the functions ψk, defined in (5.22), find the constants ck so that

1∫
−1

ψk(x) dx = 1.

5.2.2 Some Convergence Results∗

We now prove some precise results describing different ways in which ϕε ∗ f converges
to f. For most of these results it is only necessary to assume that ϕ is an L1-function with
total integral one. The sense in which ϕε ∗ f converges depends on regularity and decay
properties of f. The square-integrable case is the simplest.

Proposition 5.2.2. Suppose that ϕ is an L1-function with∫
�n

ϕ(x) dx = 1.

If f ∈ L2(�n), then ϕε ∗ f converges to f in L2(�n).

Proof. The Plancherel formula implies that

‖ϕε ∗ f − f ‖L2 = 1

[2π] n
2
‖̂ϕε ∗ f − f̂ ‖L2 .

The Fourier transform of ϕε at ξ , computed using (4.37), is


(ϕε)(ξ) = ϕ̂(εξ ). (5.23)

From Theorem 5.1.1 we obtain

‖̂ϕε ∗ f − f̂ ‖L2 = ‖ f̂ (ϕ̂ε − 1)‖L2 .

The Lebesgue dominated convergence theorem, (5.23), and the fact that ϕ̂(0) = 1 imply that

lim
ε→∞‖ f̂ (ϕ̂ε − 1)‖L2 = 0.
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A similar result holds in the L1-case.

Proposition 5.2.3. Suppose that ϕ is an L1-function with∫
�n

ϕ(x) dx = 1.

If f belongs to L1(�n), then ϕε ∗ f converges to f in the L1-norm.

Proof. The proof of this result is quite different from the L2-case. Proposition 5.2.3 is proved with
the following lemma:

Lemma 5.2.1. If f belongs to L1(�n), then

lim
τ→0

‖ fτ − f ‖L1 = 0.

In other words, the translation operator, (τ , f ) �→ fτ is a continuous map of �n × L1(�n) to
L1(�n). The proof of this statement is left to the Exercises. The triangle inequality shows that

‖ϕε ∗ f − f ‖L1 =
∫

�n

∣∣∣∣∣∣
∫

�n

[ f (x − ε t) − f (x)]ϕ(t) d t

∣∣∣∣∣∣ d x

≤
∫

�n

|ϕ(t)|
⎡⎣ ∫

�n

| f (x − ε t)− f (x)| d x

⎤⎦ d t

=
∫

�n

|ϕ(t)|‖ fε t − f ‖L1 d t.

(5.24)

The last integrand is bounded by 2‖ f ‖L1 |ϕ(t)|, and therefore the limit, as ε goes to zero, can be
brought inside the integral. The conclusion of the proposition follows from the lemma.

Finally, it is useful to examine ϕε ∗ f (x) at points where f is smooth. Here we use a
slightly different assumption on ϕ.

Proposition 5.2.4. Let f be a locally integrable function and ϕ an integrable function with
bounded support and total integral one. If f is continuous at x, then

lim
ε↓0

ϕε ∗ f (x) = f (x).

Proof. As f is continuous at x, given η > 0, there is a δ > 0 so that

‖x − y‖ < δ ⇒ | f (x)− f (y)| < η. (5.25)

This implies that | f (y)| is bounded for y in Bδ(x). If ε is sufficiently small, say less than ε0, then the
support of ϕε is contained in the ball of radius δ and therefore ϕε ∗ f (x) is defined by an absolutely
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convergent integral. Since the total integral of ϕ is 1 we have, for an ε < ε0, that

|ϕε ∗ f (x) − f (x)| =

∣∣∣∣∣∣∣
∫
Bδ

ϕε(y)( f (x − y)− f (x)) d y

∣∣∣∣∣∣∣
≤
∫
Bδ

|ϕε(y)|| f (x − y)− f (x)| d y

≤
∫
Bδ

|ϕε(y)|η d y

≤ ‖ϕ‖L1η.

(5.26)

In the third line we use the estimate (5.25). Since η > 0 is arbitrary, this completes the proof of the
proposition.

Remark 5.2.3. There are many variants of these results. The main point of the proofs is
that ϕ is absolutely integrable. Many similar-looking results appear in analysis, though
with much more complicated proofs. In most of these cases ϕ is not absolutely integrable.
For example, the Fourier inversion formula in one dimension amounts to the statement that
ϕε ∗ f converges to f, where ϕ(x) = π−1 sinc(x). As we have noted several times before,
sinc(x) is not absolutely integrable.

We close this section by applying the approximation results to complete the proof of
the Fourier inversion formula. Thus far, Theorems 4.2.1 and 4.5.1 were proved with the
additional assumption that f is continuous.

Proof of the Fourier inversion formula, completed. Suppose that f and f̂ are absolutely integrable
and ϕε is as previously. Note that f̂ is a continuous function. For each ε > 0 the function ϕε ∗ f
is absolutely integrable and continuous. Its Fourier transform, ϕ̂(εξ ) f̂ (ξ ), is absolutely integrable.
As ε goes to zero, it converges locally uniformly to f̂ (ξ). Since these functions are continuous, we
can apply the Fourier inversion formula to conclude that

ϕε ∗ f (x) = 1

2π

∫
�n

ϕ̂(εξ) f̂ (ξ )i〈x,ξ〉dξ .

This is a locally uniformly convergent family of continuous functions and therefore has a continuous
limit. The right-hand side converges pointwise to

F(x) =
∫

�n

f̂ (ξ )i〈x,ξ〉dξ .

Proposition 5.2.3 implies that ‖ϕε ∗ f − f ‖L1 also goes to zero as ε tends to 0 and therefore F = f.
(To be precise we should say that after modification on a set of measure 0, F = f.) This completes
the proof of the Fourier inversion formula.
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Exercises

Exercise 5.2.3. Use Corollary A.5.1 to prove Lemma 5.2.1.

Exercise 5.2.4. Give the details of the argument, using Lemma 5.2.1, to show that if f is
an L1-function, then

lim
ε→0

∫
�n

ϕ(t)‖ fε t − f ‖L1 d t = 0.

Exercise 5.2.5. Use the method used to prove Proposition 5.2.4 to show that if f ∈ L p(�)
for a 1 ≤ p < ∞, then ϕε ∗ f converges to f in the L p-norm. Give an example to show
that if f is a bounded, though discontinuous function, then ‖ϕε ∗ f − f ‖∞ may fail to tend
to zero.

Exercise 5.2.6. Let ψε(x) = [2ε]−1χ[−ε,ε](x). Show by direct computation that if f ∈
L2(�), then ψε ∗ f converges to f in L2(�).

5.2.3 Approximating Derivatives and Regularized Derivatives

If either f or ϕ is a differentiable function then ϕ ∗ f is as well. In this section we assume
that ϕ is a bounded function with support in B1 and total integral one. If f has k continuous
derivatives in Bδ(x), then, for ε < δ the convolution ϕε ∗ f is k-times differentiable. For
each α with |α| ≤ k, Proposition 5.2.1 implies that

∂α
x (ϕε ∗ f )(x) = ϕε ∗ ∂α

x f (x).

Proposition 5.2.4 can be applied to conclude that

lim
ε→0

∂α
x (ϕε ∗ f )(x) = ∂α

x f (x).

On the other hand, if f is not a differentiable function but ϕ is, then

∂x j (ϕε ∗ f ) = (∂x jϕε) ∗ f

can be used to define regularized approximations to the partial derivatives of f. This can be
useful if f is the result of a noisy measurement of a smooth function that, for one reason or
another, must be differentiated. Precisely this situation arises in the reconstruction process
used in x-ray CT-imaging. We illustrate this idea with an example.
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(a) A noisy function smoothed by con-
volution with a triangle function, ε =
.1.
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(b) The regularized derivative of the
noisy function, ε = .1.

Figure 5.5. Using convolution to find a regularized approximate derivative.

Example 5.2.2. Let f be the noise corrupted version of cos(x) depicted in Figure 5.1(c).
To smooth f, we use the “triangle function”

tε(x) =
{

ε−|x |
ε2 if |x| ≤ ε,

0 if |x| > ε.

The derivative of f ∗tε is computed using the weak derivative of tε. The result of computing
f ∗ t.1 is shown in Figure 5.5(a), while f ∗ t ′.1 is shown in Figure 5.5(b). The difference
| − sin(x) − f ∗ t ′.1(x)| is quite small, provided x is not too close to a zero of the cosine.

Exercise
Exercise 5.2.7. ∗ For k a positive integer, suppose that f and ξ k f̂ (ξ) belong to L2(�). By
approximating f by smooth functions of the form ϕε ∗ f, show that f has k L2-derivatives.

5.2.4 The Support of f ∗ g

Suppose that f and g have bounded support. For applications to medical imaging it is
important to understand how the support of f ∗ g is related to the supports of f and g. To
that end we define the algebraic sum of two subsets of �n.

Definition 5.2.2. Suppose A and B are subsets of �n . The algebraic sum of A and B is
defined as the set

A + B = {a + b ∈ �n : a ∈ A, and b ∈ B}.
Using this concept, we can give a quantitative result describing the way in which con-

volution “smears” out the support of a function.
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Proposition 5.2.5. The support of f ∗ g is contained in supp f + supp g.

Proof. Suppose that x is not in supp f + supp g. This means that no matter which y is selected,
either f (y) or g(x − y) is zero. Otherwise, x = y + (x − y) would belong to supp f + supp g.
This implies that f (y)g(x − y) is zero for all y ∈ �n and therefore

f ∗ g(x) =
∫

�n

f (y)g(x − y) d y = 0

as well. Because supp f + supp g is a closed set, there is an η > 0 such that Bη(x) is disjoint from
supp f + supp g. The argument showing that f ∗ g(x) equals 0 applies to any point x′ in Bη(x) and
therefore proves the proposition.

If ϕ is a function supported in the ball of radius one, then ϕε is supported in the ball of
radius ε. According to Proposition 5.2.5, the support of ϕε ∗ f is contained in the set

{x + y : x ∈ supp f and y ∈ Bε}.
These are precisely the points that are within distance ε of the support of f, giving an-
other sense in which ε reflects the resolution available in ϕε ∗ f. Figure 5.6 shows a one-
dimensional example.

f

(a) supp f

g

(b) supp g

f * g

(c) supp f + supp g

Figure 5.6. The support of f ∗ g is contained in supp f + supp g.

Example 5.2.3. Suppose that ψ is a nonnegative function that vanishes outside the interval
[−ε, ε] and has total integral 1,

∞∫
−∞

ψ(x) dx = 1.

If f is a locally integrable function, then f ∗ψ(x) is the weighted average of the values of
f over the interval [x − ε, x + ε]. Note that ψ ∗ ψ also has total integral 1

∞∫
−∞

ψ ∗ ψ(x) dx =
∞∫

−∞

∞∫
−∞

ψ(y)ψ(x − y) dy dx

=
∞∫

−∞

∞∫
−∞

ψ(y)ψ(t) dt dy

= 1 · 1 = 1.

(5.27)
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In the second to last line we reversed the order of the integrations and set t = x − y.
Thus f ∗ (ψ ∗ψ) is again an average of f. Note that ψ ∗ψ(x) is generally nonzero for

x ∈ [−2ε, 2ε], so convolution with ψ ∗ ψ produces more blurring than convolution with
ψ alone. Indeed we know from the associativity of the convolution product that

f ∗ (ψ ∗ ψ) = ( f ∗ ψ) ∗ ψ,

so we are averaging the averages, f ∗ψ. This can be repeated as many times as we like. The
j -fold convolution ψ ∗ j ψ has total integral 1 and vanishes outside the interval [− jε, jε].
Of course, the Fourier transform of ψ ∗ j ψ is [ψ̂(ξ)] j , which therefore decays j times as
fast as ψ̂(ξ).

We could also use the scaled j -fold convolution δ−1ψ ∗ j ψ(δ−1x) to average our
data. This function vanishes outside the interval [− jδε, jδε] and has Fourier transform
[ψ̂(δξ)] j . If we choose δ = j−1, then convolution with this function will not blur details
any more than convolution with ψ itself but better suppresses high-frequency noise. By
choosing j and δ, we can control, to some extent, the trade-off between blurring and noise
suppression.

5.3 The δ-Function�

See: A.4.5.

The convolution product defines a multiplication on L1(�n) with all the usual properties
of a product except that there is no unit. If i were a unit, then i ∗ f = f for every function
in L1(�n). Taking the Fourier transform, this would imply that, for every ξ ,

î(ξ) f̂ (ξ) = f̂ (ξ).

This shows that î(ξ) ≡ 1 and therefore i cannot be an L1-function. Having a multiplicative
unit is so useful that engineers, physicists, and mathematicians have all found it necessary to
define one. It is called the δ-function and is defined by the property that for any continuous
function f

f (0) =
∫
�n

δ(y) f (y) d y. (5.28)

Proceeding formally, we see that

δ ∗ f (x) =
∫
�n

δ(y) f (x − y) d y

= f (x − 0) = f (x).

(5.29)

So at least for continuous functions, δ ∗ f = f.



5.3. The δ-Function� 173

It is important to remember that the δ-function is not a function. In the mathematics
literature the δ-function is an example of a distribution or generalized function. The basic
properties of generalized functions are introduced in Appendix A.4.5. In the engineering
and physics literature, the δ-function is sometimes called a unit impulse. In Section 4.4.4
the Fourier transform is extended to generalized functions (at least in the one-dimensional
case). The Fourier transform of δ is, as expected, identically equal to 1:


(δ) ≡ 1.

While (5.28) only makes sense for functions continuous at 0, the convolution of δ with an
arbitrary locally integrable function is well defined and satisfies δ ∗ f = f. This is not too
different from the observation that if f and g are L1-functions, then f ∗ g(x) may not be
defined at every point; nonetheless, f ∗ g is a well-defined element of L1(�n).

5.3.1 Approximating the δ-Function in One-Dimension

In both mathematics and engineering it is useful to have approximations for the δ-function.
There are two complementary approaches to this problem: One is to use functions like ϕε,
defined in (5.18), to approximate δ in x-space. The other is to approximate δ̂ in ξ -space.
To close this chapter we consider some practical aspects of approximating the δ-function
in one dimension and formalize the concept of resolution.

Suppose that ϕ is an even function with bounded support and total integral one. The
Fourier transform of ϕε is ϕ̂(εξ). Because ϕε vanishes outside a finite interval, its Fourier
transform is a smooth function and ϕ̂(0) = 1. As ϕ is a nonnegative, even function, its
Fourier transform is real valued and assumes its maximum at zero. In applications it is
important that the difference 1 − ϕ̂(εξ) remain small over a specified interval [−B, B]. It
is also important that ϕ̂(εξ) tend to zero rapidly outside a somewhat larger interval. As ϕ is
non-negative, ∂ξ ϕ̂(0) = 0; this means that the behavior of ϕ̂(ξ ) for ξ near to zero is largely
governed by the “second moment” of ϕ :

∂2
ξ ϕ̂(0) = −

∞∫
−∞

x2ϕ(x) dx .

We would like this number to be small. This is accomplished by putting more of the mass of
ϕ near to x = 0. On the other hand, the rate at which ϕ̂ decays as |ξ | → ∞ is determined by
the smoothness of ϕ. If ϕ = 1

2χ[−1,1], then ϕ̂ decays like |ξ |−1. Better decay is obtained by
using a smoother function. For the stability of numerical algorithms it is often important
that ϕ̂ is absolutely integrable. In one dimension this is the case if ϕ is continuous and
piecewise differentiable.

The other approach to constructing approximations to the δ-function is to approximate
its Fourier transform. We use a sequence of functions that are approximately 1 in an in-
terval [−B, B] and vanish outside a larger interval. Again a simple choice is χ[−B,B](ξ).
The inverse Fourier transform of this function is ψB(x) = π−1 B sinc(Bx). In this context
it is called a sinc pulse. Note that ψB assumes both positive and negative values. A sinc
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pulse is not absolutely integrable; the fact that the improper integral of ψB over the whole
real line equals 1 relies on subtle cancellations between the positive and negative parts of
the integral. Because ψB is not absolutely integrable, it is often a poor choice for approxi-
mating the δ-function. Approximating δ̂ by (2B)−1χ[−B,B] ∗ χ[−B,B](ξ) gives a sinc2 pulse,
(2B)−1ψ2

B(x), as an approximation to δ. This function has better properties: It does not
assume negative values, is more sharply peaked at 0, and is absolutely integrable. These
functions are graphed in Figure 5.7.
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(a) A sinc pulse.

2

4

6

8

10

−4 −3 −2 −1 1 2 3 4

(b) A sinc2 pulse.

Figure 5.7. Approximate δ-functions

Neither the sinc nor sinc2 has bounded support; both functions have oscillatory “tails”
extending to infinity. In the engineering literature these are called side lobes. Side lobes
result from the fact that the Fourier transforms of sinc and sinc2 have bounded support; see
Section 4.4.3. The convolutions of these functions with χ[−1,1] are shown in Figure 5.8. In
Figure 5.8(a) notice that the side lobes produce large oscillations near the jump. This is an
example of the Gibbs phenomenon. It results from using a discontinuous cutoff function
in the Fourier domain. This effect is analyzed in detail, for the case of Fourier series, in
Section 7.5.
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(a) sinc ∗χ[−1,1].
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(b) sinc2 ∗χ[−1,1].

Figure 5.8. Approximate δ-functions convolved with χ[−1,1].

Exercises
Exercise 5.3.1. Suppose that f is a continuous L1-function and ϕ is absolutely integrable
with

∫
�
ϕ = 1. Show that < ϕε ∗ f > converges pointwise to f.

Exercise 5.3.2. Suppose that ϕ is an integrable function on the real line with total integral
1 and f is an integrable function such that, for a k > 1,

| f̂ (ξ)| ≤ C

(1 + |ξ |)k
.

Use the Fourier inversion formula to estimate the error ‖ϕε ∗ f (x) − f (x)|.
Exercise 5.3.3. Suppose that ϕ is a smooth, non-negative function with bounded support,
and total integral 1 defined on �. Let δ > 0 be fixed. Show that, for any fixed ε > 0, there
exists a non-zero function f in L2(�) so that

‖ϕε ∗ f − f ‖L2 > δ‖ f ‖L2 .

Why does this observation not contradict Proposition 5.2.2?

5.3.2 Resolution and the Full-Width Half-Maximum

We now give a standard definition for the resolution present in a measurement of the form
ψ ∗ f. Resolution is a subtle and, in some senses, subjective concept. Crudely speaking the
resolution available in ψ ∗ f is determined by how well ψ approximates the δ-function.
A quantitative measure of resolution is mostly useful for purposes of comparison. The
definition presented here is just one of many possible definitions. We return to the problem
of quantifying resolution in Chapter 9.
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Suppose that ψ is a nonnegative function with a single hump similar to those shown in
Figure 5.3. The important features of this function are as follows:

1. It is nonnegative

2. It has a single maximum value, which it attains at 0

3. It is monotone increasing to the left of the maximum

and monotone decreasing to the right.

(5.30)

Definition 5.3.1. Let ψ satisfy the conditions in (5.30) and let M be the maximum value
it attains. Suppose that x1 < 0 < x2 are, respectively, the smallest and largest numbers so
that

ψ(x1) = ψ(x2) = M

2
.

The difference x2−x1 is called the full-width half-maximum of the function ψ. It is denoted
FWHM(ψ).
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(c) ψ(x + .4)+ψ(x − .4)

Figure 5.9. Illustration of the FWHM definition of resolution

If f is an input then the resolution available in the output, ψ ∗ f is defined to be the
FWHM(ψ). In principle, if FWHM(ψ1) < FWHM(ψ2), then f �→ ψ1 ∗ f should have
better resolution than f �→ ψ2 ∗ f. Here is a heuristic explanation for this definition.
Suppose that the input f is pair of unit impulses separated by distance d,

f (x) = δ(x) + δ(x − d).

Convolving ψ with f produces two copies of ψ,

ψ ∗ f (x) = ψ(x) + ψ(x − d).

If d > FWHM(ψ), then ψ ∗ f has two distinct maxima separated by a valley. If d ≤
FWHM(ψ), then the distinct maxima disappear. If the distance between the impulses is
greater than the FWHM(ψ), then we can “resolve” them in the filtered output. More gen-
erally, the FWHM(ψ) is considered to be the smallest distance between distinct “features”
in f which can be “seen” in ψ ∗ f. In Figure 5.9 we use a triangle function for ψ. The
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FWHM of this function is 1; the graphs show ψ and the results of convolving ψ with a pair
of unit impulses separated, respectively, by 1.2 > 1 and .8 < 1.

The FWHM definition of resolution is often applied to filters defined by functions that
do not satisfy all the conditions in (5.30) but are qualitatively similar. For example, the
characteristic function of an interval χ[−B,B] has a unique maximum value and is mono-
tone to the right and left of the maximum. The FWHM(χ[−B,B]) is therefore 2B. Another
important example is the sinc function. It has a unique maximum and looks correct near
to it. This function also has large side lobes that considerably complicate the behavior of
the map f �→ sinc ∗ f. The FWHM(sinc) is taken to be the full-width half-maximum of its
central peak; it is given by

FWHM(sinc) ≈ 3.790988534.

Exercises
Exercise 5.3.4. Numerically compute the FWHM(sinc2(x)). How does it compare to the
FWHM(sinc(x))?

Exercise 5.3.5. Suppose that

h j (x) =
[

sin(x)

x

] j

.

Using the Taylor expansion for the sine function show that, as j gets large,

FWHM(h j ) � 2

√
6 log 2

j
.

Exercise 5.3.6. Show that there is a constant C so that, for B > 0,

FWHM(sinc(Bx)) = C

B
.

Compute C to 4 decimal places.

Exercise 5.3.7. For a > 0, let ga(x) = e− x2

a2 . Compute FWHM(ga) and FWHM(ga ∗ gb).

5.4 Conclusion

The convolution product provides a flexible model for a wide range of measurement and
filtering processes with a very simple representation in terms of the Fourier transform. As
these models are expressed in terms of integrals over � or �n, we call them continuum
models. Because we have the tools of calculus at our disposal, continuum models are the
easiest to analyze. The very real problem of how to approximate such operations on dis-
cretely sampled data remains to be considered. Convolution provides a uniform approach
to approximating non-smooth functions by smooth functions and to studying the problem
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of convergence. Any process reducing the “noise” in a function also smears out the fine
detail. We introduced the full-width half-maximum definition of resolution as a means for
quantifying the amount of detail remaining in the smoothed approximants.

In the next chapter we derive the inversion formula for the Radon transform and find a
description for it as the composition of a shift invariant filter and the back-projection op-
eration. In Chapters 7–10 we introduce the techniques needed to make the transition from
continuum models to finite algorithms. This is done in two steps: We first introduce Fourier
series and sampling theory as tools for analyzing models with infinitely many discrete sam-
ples. In Chapter 10 we take the second step from models with infinitely many samples
to algorithmic implementations of shift invariant filters, which, of necessity, involve only
finite amounts of data.

More general linear operations can be expressed as families of convolutions; for exam-
ple,

	 f (x) =
∫
�n

a(x, x − y) f (y) d y.

This larger class of linear transforms can be used to model operations that are not shift in-
variant. Such models require considerably more computation to approximately implement
and are therefore replaced, whenever possible, by ordinary convolutions. Nonetheless,
many classes of operators of this sort are mathematically well understood. These go by the
names of pseudodifferential operators and Fourier integral operators. The interested reader
is referred to [123], [124], or [60].



Chapter 6

The Radon Transform

The Radon transform is at the center of the mathematical model for the measurements made
in x-ray CT. In this chapter we prove the central slice theorem, establishing a connection
between the Fourier and Radon transforms. Using it, we derive the filtered back-projection
formula, which provides an exact inverse for the Radon transform. This formula is the basis
of essentially all reconstruction algorithms used in x-ray CT today.

As its name suggests, the filtered back-projection formula is the composition of a one-
dimensional filter with the back-projection operation, defined in Section 3.4.2. The filtra-
tion step is built out of two simpler operations: the Hilbert transform and differentiation.
While differentiation is conceptually simple, it leads to difficulties when attempting to im-
plement the filtered back-projection formula on noisy, measured data. The Hilbert trans-
form is a nonlocal, bounded operation that is harder to understand intuitively but rather
simple to implement using the Fourier representation. We analyze it in detail.

This chapter begins by reviewing the definition of the Radon transform and establishing
properties of the Radon transform that are analogues of those proved for the Fourier trans-
form in the two preceding chapters. After analyzing the exact inversion formula, we con-
sider methods for approximately inverting the Radon transform that are relevant in medical
imaging. The chapter concludes with a short introduction to the higher-dimensional Radon
transform.

6.1 The Radon Transform

In Section 1.2.1 we identified � × S1 with the space of oriented lines in �2. The pair (t,ω)
corresponds to the line

lt,ω = {x : 〈ω, x〉 = t} = {tω + sω̂ : s ∈ �}.
Here ω̂ is the unit vector perpendicular to ω with the orientation determined by

det(ωω̂) > 0.

The variable t is called the affine parameter; it is the oriented distance of the line lt,ω to the
origin.

179
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Representing the point ω ∈ S1 as

ω(θ) = (cos θ, sin θ)

allows an identification of �× S1 with �×[0, 2π). With this identification dθ can be used
as a line element in the S1-direction. This is often denoted by dω in the sequel. The integral
of a function h over S1 × � is given by

2π∫
0

∞∫
−∞

h(t,ω(θ)) dt dθ,

which is often denoted
2π∫

0

∞∫
−∞

h(t,ω) dt dω.

Definition 6.1.1. The set L2(� × S1) consists of locally integrable, real-valued functions
for which the square integral,

‖h‖2
L2(�×S1)

=
2π∫

0

∞∫
−∞

|h(t,ω(θ))|2 dt dθ, (6.1)

is finite.

A function h on � × S1 is continuous if h(t, θ)
d= h(t,ω(θ)) is 2π -periodic in θ and

continuous as a function on �×[0, 2π ]. Similarly, h is differentiable if it is 2π -periodic and
differentiable on �×[0, 2π ] and ∂θh is also 2π -periodic. Higher orders of differentiability
have similar definitions.

Recall that the Radon transform of f at (t,ω) is defined by the integral

� f (t,ω) =
∞∫

−∞
f (tω + sω̂) ds.

For the moment we restrict our attention to piecewise continuous functions with bounded
support. Because lt,ω and l−t,−ω are the same line, the Radon transform is an even function

� f (−t,−ω) = � f (t,ω). (6.2)

The Radon transform has several properties analogous to those established for the Fourier
transform in Chapter 4. Suppose that f and g are functions with bounded supported. There
is a simple formula relating �( f ∗ g) to � f and �g.

Proposition 6.1.1. Let f and g be piecewise continuous functions with bounded support.
Then

�[ f ∗ g](t,ω) =
∞∫

−∞
� f (s,ω)�g(t − s,ω) ds. (6.3)
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Remark 6.1.1. Colloquially, we say that the Radon transform converts convolution in the
plane to convolution in the affine parameter.

Proof. The proof is a calculation. Fix a direction ω. Coordinates (s, t) for the plane are defined by
the assignment

(s, t) �→ sω̂ + tω.

This is an orthogonal change of variables, so the area element on �2 is given by ds dt . In these
variables the convolution of f and g becomes

f ∗ g(sω̂ + tω) =
∞∫

−∞

∞∫
−∞

f (aω̂ + bω)g((s − a)ω̂ + (t − b)ω) da db.

The Radon transform of f ∗ g is computing by switching the order of the integrations:

�( f ∗ g)(τ,ω) =
∞∫

−∞
f ∗ g(τω + sω̂) ds

=
∞∫

−∞

∞∫
−∞

∞∫
−∞

f (aω̂ + bω)g((s − a)ω̂ + (τ − b)ω) da db ds

=
∞∫

−∞

∞∫
−∞

∞∫
−∞

f (aω̂ + bω)g((s − a)ω̂ + (τ − b)ω) ds da db

=
∞∫

−∞
� f (b,ω)�g(τ − b,ω) db.

(6.4)

In the second to last line we interchanged the s-integration with the a and b integrations.

Remark 6.1.2. The smoothness of a function with bounded support is reflected in the decay
properties of its Fourier transform. From Proposition 6.1.1 it follows that the smoothness
of a function of bounded support is also reflected in the smoothness of its Radon transform
in the affine parameter. To see this suppose that f is a continuous function of bounded
support and ϕ is a radially symmetric function, with bounded support and k-continuous
derivatives. The convolution f ∗ ϕ has bounded support and k-continuous derivatives. The
Radon transform of ϕ is only a function of t; the Radon transform of the convolution,

�( f ∗ ϕ)(t,ω) =
∞∫

−∞
� f (τ,ω)�ϕ(t − τ) dτ,

is at least as smooth in t as �ϕ. Regularity of f is also reflected in smoothness of � f in
the angular variable, though it is more difficult to see explicitly; see Exercise 6.1.7.

For v a vector in �2 the translate of f by v is the function fv(x) = f (x − v). There is
a simple relation between the Radon transform of f and that of fv.
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Proposition 6.1.2. Let f be a piecewise continuous function with bounded support. Then

� fv(t,ω) = � f (t − 〈ω, v〉,ω). (6.5)

Using this formula, we can relate the Radon transform of f to that of its partial deriva-
tives.

Lemma 6.1.1. If f is a function with bounded support and continuous first partial deriva-
tives, then � f (t,ω) is differentiable in t and

�∂x f (t,ω) = ω1∂t � f (t,ω), �∂y f (t,ω) = ω2∂t � f (t,ω). (6.6)

Proof. We consider only the x-derivative; the proof for the y-derivative is identical. Let e1 = (1, 0).
The x-partial derivative of f is defined by

∂x f (x) = lim
h→0

fhe1(x)− f (x)
−h

.

From (6.5) and the linearity of the Radon transform, we conclude that

�

[
fhe1 − f

−h

]
(t,ω) = � f (t − hω1,ω) − � f (t,ω)

−h
.

The lemma follows by allowing h to tend to zero.

This result extends, by induction to higher partial derivatives.

Proposition 6.1.3. Suppose that f has bounded support and continuous partial derivatives
of order k. Then � f (t,ω) is k-times differentiable in t and, for nonnegative integers i, j
with i + j ≤ k, we have the formula

�
[
∂ i

x∂
j
y f
]
(t,ω) = ωi

1ω
j
2∂

i+ j
t � f (t,ω). (6.7)

Let A : �2 → �2 be a rigid rotation of the plane; that is, A is a linear map such that

〈Av, Aw〉 = 〈v,w〉 for all v,w ∈ �2.

If f is a piecewise continuous function with bounded support, then

f A(x) = f (Ax)

is as well. The Radon transform of f A is related to that of f in a simple way.

Proposition 6.1.4. Let A be an rigid rotation of �2 and f a piecewise continuous function
with bounded support. Then

� f A(t,ω) = � f (t, Aω). (6.8)
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Proof. The result follows from the fact that 〈Aω, Aω̂〉 = 〈ω, ω̂〉 = 0 and therefore

� fA(t,ω) =
∞∫

−∞
f (t Aω + s Aω̂) ds

= � f (t, Aω).

(6.9)

The results in this section are stated for piecewise continuous functions with bounded
supported. As discussed in Chapter 3, the Radon transform extends to sufficiently regular
functions with enough decay at infinity. A function belongs to the natural domain of the
Radon transform if the restriction of f to every line lt,ω is an absolutely integrable function.
If, for example, f is a piecewise continuous function, satisfying an estimate of the form

| f (x)| ≤ M

(1 + ‖x‖)1+ε
,

for an ε > 0, then f belongs to the natural domain of the Radon transform. The results
in this section extend to functions in the natural domain of �. The proofs in this case are
left to the reader. Using functional analytic methods, the domain of the Radon transform
can be further extended, allowing functions with both less regularity and slower decay.
An example of such an extension was presented in Section 3.4.3. We return to this in
Section 6.6.

Exercises
Exercise 6.1.1. Prove formula (6.5). The argument is similar to that used in the proof
of (6.3).

Exercise 6.1.2. Suppose that ϕ is a k-times differentiable function with bounded support
defined on �2. Show that �ϕ is a k-times differentiable of t.

Exercise 6.1.3. Give the details of the argument in the proof of Lemma 6.1.1, showing that
� f (t,ω) is differentiable in the t-variable.

Exercise 6.1.4. Show how to derive formula (6.7) from (6.6).

Exercise 6.1.5. The Laplace operator � is defined by � f = −(∂2
x f +∂2

y f ). Find a formula
for �[� f ] in terms of � f.

Exercise 6.1.6. Suppose that A : �2 → �2 is an arbitrary invertible linear transformation.
How is � f A related to � f ?

Exercise 6.1.7. Let Aθ denote the rotation through the angle θ. Setting ω(θ) = (cos θ, sin θ),
let � f (t, θ) = � f (t,ω(θ)) so that

� f Aφ (t, θ) = � f (t, θ + φ).

Using these formulæ show that

�
[
(y∂x − x∂y) f

]
(t, θ) = (∂θ �) f (t, θ).
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6.2 Inversion of the Radon Transform

Now we are ready to use the Fourier transform to invert the Radon transform.

6.2.1 The Central Slice Theorem�

The Fourier transform and Radon transform are connected in a very simple way. In medical
imaging this relationship is called the central slice theorem.

Theorem 6.2.1 (Central slice theorem). Let f be an absolutely integrable function in the
natural domain of �. For any real number r and unit vector ω, we have the identity

∞∫
−∞

� f (t,ω)e−itr dt = f̂ (rω). (6.10)

Proof. Using the definition of the Radon transform, we compute the integral on the left:

∞∫
−∞

� f (t,ω)e−itr dt =
∞∫

−∞

∞∫
−∞

f (tω + sω̂)e−itr ds dt . (6.11)

This integral is absolutely convergent, and therefore we may make the change of variables, x =
tω + sω̂. Checking that the Jacobian determinant is 1 and noting that

t = 〈x,ω〉,
the preceding integral therefore becomes

∞∫
−∞

∞∫
−∞

f (tω + sω̂)e−itr ds dt =
∫
�2

f (x)e−i〈x,ω〉r d x

= f̂ (rω).

(6.12)

This completes the proof of the central slice theorem.

For a given vector ξ = (ξ1, ξ2) the inner product, 〈x, ξ 〉 is constant along any line
perpendicular to the direction of ξ . The central slice theorem interprets the computation of
the Fourier transform at ξ as a two-step process:

1. First we integrate the function along lines perpendicular to ξ ; this gives us a function
of the affine parameter alone.

2. Compute the one-dimensional Fourier transform of this function of the affine param-
eter.
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Figure 6.1. According to the central slice theorem the 2D Fourier transform, f̂ (rω), is the
1D Fourier transform of � f (t,ω).

To understand this better, we consider an example. Let e1 = (1, 0) and e2 = (0, 1) and
(t,ω) = (x, e1). Since ê1 = e2, the Radon transform at (x, e1) is given by

� f (x, e1) =
∞∫

−∞
f (xe1 + ye2) dy

=
∞∫

−∞
f (x, y) dy.
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The Fourier transform of � f (x, e1) is

∞∫
−∞

� f (x, e1)e
−ir x dx =

∞∫
−∞

∞∫
−∞

f (x, y)e−ir x dy dx .

As 〈re1, (x, y)〉 = rx, this is the definition of f̂ (re1).
The operations in the central slice theorem are depicted in Figure 6.1. On the left we

have a function, f, of two variables depicted as slices along lines in a family, {〈x,ω〉 = t}.
Beyond the graph of f, the integrals of these functions of a single variable are plotted. This,
of course, is just the Radon transform � f (t,ω). To the right and below are the real and
imaginary parts of the Fourier transform, in t, of � f (t,ω). According to the central slice
theorem, this gives f̂ along the line, through 0, in the direction ω.

To simplify the formulæ that follow, we introduce notation for the one-dimensional
Fourier transform, in the affine parameter, of a function h(t,ω) defined on � × S1 :

h̃(r,ω)
d=

∞∫
−∞

h(t,ω)e−itr dt. (6.13)

If h(t,ω) belongs to L2(�) for a fixed ω, then the one-dimensional Parseval formula im-
plies that

∞∫
−∞

|h(t,ω)|2 dt = 1

2π

∞∫
−∞

|̃h(r,ω)|2 dr. (6.14)

The Parseval formula for the 2D-Fourier transform and the central slice theorem give a
Parseval formula for the Radon transform.

Theorem 6.2.2 (Parseval formula for the Radon transform). Suppose that f is in the
natural domain of the Radon transform and is square integrable. Then

∫
�2

| f (x)|2 dx = 1

[2π ]2

π∫
0

∞∫
−∞

|�̃ f (r,ω)|2|r | dr dω. (6.15)

Proof. We begin by assuming that f is also absolutely integrable. The central slice theorem applies
to show that

∫
�2

| f (x)|2 d x = 1

[2π]2
2π∫

0

∞∫
0

| f̂ (rω)|2r dr dω

= 1

[2π]2
π∫

0

∞∫
−∞

|�̃ f (r,ω)|2|r | dr dω.

(6.16)
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In the last line we use the fact that the evenness of � f implies that

�̃ f (r,ω) = �̃ f (−r,−ω). (6.17)

This proves (6.15) with the additional assumption. To remove this assumption we need to ap-
proximate f by absolutely integrable functions. Let ϕ be a nonnegative, infinitely differentiable,
radial function with support in the disk of radius 1 with total integral one. As usual, for ε > 0 set
ϕε(x) = ε−2ϕ(ε−1x). A smooth function with bounded support approximating f is given by

fε = [
χ[0,ε−1](r) f

] ∗ ϕε. (6.18)

For ε > 0 these functions satisfy the hypotheses of both Theorem 6.2.2 and the central slice theorem;
the preceding argument therefore applies to fε . The proof is completed by showing that

1

[2π]2
π∫

0

∞∫
−∞

|�̃ f (r,ω)|2|r | dr dω = lim
ε↓0

1

[2π]2
π∫

0

∞∫
−∞

|�̃ fε(r,ω)|2|r | dr dω, (6.19)

and that, as ε goes to 0, fε converges in L2(�2) to f. These claims are left as exercises for the
reader.

Remark 6.2.1. ∗ Formula (6.15) has two interesting consequences for the map f �→ � f
as a map between L2-spaces. It shows that � does not have an extension as a continuous
mapping from L2(�2) to L2(� × S1) and that �−1 also cannot be a continuous map from
L2(� × S1) to L2(�2). These assertions follow from the observation that

‖h‖2
L2(�×S1)

= 1

2π

2π∫
0

∞∫
−∞

|̃h(r,ω)|2 dr dω.

Because |r | varies between zero and infinity in (6.15), we see that there cannot exist con-
stants M or M ′ so that either estimate,

‖� f ‖L2(�×S1) ≤ M‖ f ‖L2(�2) or ‖� f ‖L2(�×S1) ≥ M ′‖ f ‖L2(�2)

is valid for f in a dense subset of L2(�2).

To express the Parseval formula as an integral over the space of oriented lines, we define
a half-derivative operator

D 1
2

� f (t,ω) = 1

2π

∞∫
−∞

�̃ f (r,ω)|r | 1
2 eirt dr.

The Parseval formula can then be rewritten as∫
�2

| f |2 dx dy = 1

2π

π∫
0

∞∫
−∞

|D 1
2

� f (t,ω)|2 dt dω. (6.20)
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This implies that in order for a function on the space of lines to be the Radon transform of
a square-integrable function, it must have a half-derivative in the affine parameter. Unlike
the Fourier transform, the Radon transform is not defined on all of L2(�2).

Exercises
Exercise 6.2.1. If f ∈ L2(�2) and fε is defined in (6.18), show that LIM

ε↓0
fε = f. Hint:

Use Proposition 5.2.2 to handle the convolution. Do not forget the χ[0,ε−1]-term!

Exercise 6.2.2. If f is in the natural domain of �and fε is defined in (6.18) prove (6.19).
Hint: Use Proposition 6.1.1 and the Plancherel formula.

6.2.2 The Radon Inversion Formula�

The central slice theorem and the inversion formula for the Fourier transform, (4.82) give
an inversion formula for the Radon transform.

Theorem 6.2.3 (Radon inversion formula). If f is an absolutely integrable function in
the natural domain of the Radon transform and f̂ is absolutely integrable, then

f (x) = 1

[2π ]2

π∫
0

∞∫
−∞

eir〈x,ω〉�̃ f (r,ω)|r | dr dω (6.21)

Proof. Because � f is an even function, it follows that its Fourier transform satisfies

�̃ f (r,ω) = �̃ f (−r,−ω). (6.22)

As f and f̂ are absolutely integrable, Theorem 4.5.1 applies to show that

f (x) = 1

[2π]2
∫
�2

f̂ (ξ )ei〈x,ξ〉dξ .

Reexpressing the Fourier inversion formula using polar coordinates gives

f (x) = 1

[2π]2
∫
�2

ei〈x,ξ〉 f̂ (ξ ) dξ

= 1

[2π]2
2π∫

0

∞∫
0

eir〈x,ω〉 f̂ (rω)r dr dω

= 1

[2π]2
2π∫

0

∞∫
0

eir〈x,ω〉�̃ f (r,ω)r dr dω

The central slice theorem is used in the last line. Using the relation (6.22) we can rewrite this to
obtain (6.21).
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Remark 6.2.2. As was the case with the Fourier transform, the inversion formula for the
Radon transform holds under weaker hypotheses than those stated in Theorem 6.2.3. Under
these hypotheses all the integrals involved are absolutely convergent and therefore do not
require any further interpretation. In imaging applications the data are usually piecewise
continuous, vanishing outside a bounded set. As we know from our study of the Fourier
transform, this does not imply that f̂ is absolutely integrable, and so the Fourier inversion
formula requires a careful interpretation in this case. Such data are square integrable, and
therefore it follows from the results in Section 4.5.3 that

f = LIM
ρ→∞

1

[2π ]2

π∫
0

ρ∫
−ρ

eir〈x,ω〉�̃ f (r,ω)|r | dr dω. (6.23)

In most cases of interest, at a point x, where f is continuous, the integral

1

[2π ]2

π∫
0

∞∫
−∞

eir〈x,ω〉�̃ f (r,ω)|r | dr dω

exists as an improper Riemann integral and equals f (x). Additional care is required in
manipulating these expressions.

Remark 6.2.3. Formula (6.21) allows the determination of f from its Radon transform.
This formula completes a highly idealized, mathematical model for x-ray CT-imaging:

• We consider a two-dimensional slice of a three-dimensional object, the physical pa-
rameter of interest is the attenuation coefficient f of the two-dimensional slice. Ac-
cording to Beer’s law, the intensity I(t,ω) of x-rays (of a given energy) traveling along
a line, lt,ω, is attenuated according the differential equation:

d I(t,ω)
ds

= − f I(t,ω).

Here s is arclength along the line.

• By comparing the intensity of an incident beam of x-rays to that emitted, we measure
the Radon transform of f :

� f (t,ω) = − log

[
Io,(t,ω)

Ii,(t,ω)

]
.

• Using formula (6.21), the attenuation coefficient f is reconstructed from the mea-
surements � f.

The most obvious flaw in this model is that, in practice, � f (t,ω) can only be measured
for a finite set of pairs (t,ω). Nonetheless, formula (6.21) provides a good starting point
for the development of more practical algorithms. Figure 6.2(a) shows the Shepp-Logan
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phantom; Figure 6.2(b) is its Radon transform. Figure 6.2(c) is the reconstruction of (a)
using (an approximation to) formula (6.21). Within the white ellipse, the reconstructed
image is nearly identical to the original. In Chapter 11 we present a detailed analysis of the
approximate algorithm used to make this image.

(a) A density plot of the Shepp-
Logan phantom.

(b) The line integrals for the
function shown in (a).

(c) The (approximate) inverse
Radon transform applied to the
data in (b).

Figure 6.2. Graphical depiction of the Radon transform.

6.2.3 Filtered Back-Projection�

We now undertake a detailed analysis of the Radon inversion formula. The inversion for-
mula can be understood as a two-step process:

1. The radial integral is interpreted as a filter applied to the Radon transform. The filter
acts only in the affine parameter; the output of the filter is denoted by

� � f (t,ω) = 1

2π

∞∫
−∞

�̃ f (r,ω)eirt |r | dr. (6.24)

2. The angular integral is then interpreted as the back-projection of the filtered Radon
transform. The function f is expressed as

f (x) = 1

2π

π∫
0

(� �) f (〈x,ω〉,ω) dω. (6.25)

For this reason the Radon inversion formula is often called the filtered back-projection
formula.

Back-projection is both conceptually and computationally simple, whereas the filtering
step requires a more careful analysis. If we were to omit the |r | factor, then it would follow
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from the one-dimensional Fourier inversion formula applied to �̃ f that f would be given
by

f (x) = 1

[2π ]2

π∫
0

∞∫
−∞

eir〈x,ω〉 f̂ (rω) dr dω

= 1

2π

π∫
0

� f (〈x,ω〉,ω) dω.

Note that the line in the family {lt,ω | t ∈ (−∞,∞)} passing through the point x is the one
with affine parameter t = 〈x,ω〉. The value at x obtained this way is half the average of the
Radon transform of f over all lines passing through this point. This is the back-projection
formula introduced in Section 3.4.2. By comparison with the true inversion formula (6.21),
it is now clear why the back-projection formula cannot be correct. In the true formula the
low-frequency components are suppressed by |r | whereas the high-frequency components
are amplified.

The actual filter is comprised of two operations. Recall that the Fourier transform
of the derivative of a function g is equal to the Fourier transform of g multiplied by iξ :
∂̂t g(ξ) = (iξ)ĝ(ξ). If, in the inversion formula (6.21), we had r instead of |r |, then the
formula would give

1

2π i

π∫
0

∂t � f (〈x,ω〉,ω) dω.

This is the back-projection of the t-derivative of � f. If f is real valued, then this function
is purely imaginary! Because differentiation is a local operation, this is a relatively easy
formula to understand. The subtlety in (6.21) therefore stems from the fact that |r | appears
and not r itself.

To account for the difference between r and |r |, we define another operation on func-
tions of a single variable, which is called the Hilbert transform. The signum function is
defined by

sgn(r) =

⎧⎪⎨⎪⎩
1 if r > 0,

0 if r = 0,

−1 if r < 0.

Definition 6.2.1. Suppose that g is an L2-function defined on �. The Hilbert transform of
g is defined by

�g = 
−1(sgn ĝ).

If ĝ is also absolutely integrable, then

�g(t) = 1

2π

∞∫
−∞

ĝ(r) sgn(r)eitr dr. (6.26)



192 Chapter 6. The Radon Transform

The Hilbert transform of g is the function whose Fourier transform is sgn ĝ. For any
given point t0, the computation of �g(t0) requires a knowledge of g(t) for all values of
t. Unlike differentiation, the Hilbert transform is not a local operation. Conceptually, the
Hilbert transform is the most difficult part of the Radon inversion formula. On the other
hand, because the Hilbert transform has a very simple expression in terms of the Fourier
transform, it is easy to implement efficiently.

We compute a couple of examples of Hilbert transforms.

Example 6.2.1. Let

f (x) = sin(x)

πx
.

Its Fourier transform is

f̂ (ξ) = χ[−1,1](ξ) =
{

1 if |ξ | ≤ 1,

0 if |ξ | > 1.

The Hilbert transform of f is expressed as a Fourier integral by

�

(
sin(x)

πx

)
= 1

2π

⎡⎣ 1∫
0

eixξdx −
0∫

−1

eixξdx

⎤⎦
=i

1 − cos(x)

πx
.

(6.27)

This pair of functions is graphed in Figure 6.3(a).

Example 6.2.2. The next example is of interest in medical imaging. It is difficult to do
this example by a direct calculation. A method to do this calculation, using the theory of
functions of a complex variable is explained in the final section of this chapter. Let

f (x) =
{√

1 − x2 for |x| < 1,

0 for |x| ≥ 1.

The Hilbert transform of f is given by

� ( f ) =

⎧⎪⎨⎪⎩
i x for |x| < 1,

i(x +√
x2 − 1) for x < −1,

i(x −√
x2 − 1) for x > 1.

(6.28)

Notice the very different character of � f (x) for |x| < 1 and |x| > 1. For |x| < 1, � f (x)
is a smooth function with a bounded derivative. Approaching ±1 from the set |x| > 1, the
derivative of � f (x) blows up. This pair of functions is graphed in Figure 6.3(b).
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(a) sin(x)
πx and its Hilbert transform.

−1

−0.5

0.5

1

−4 −2 2 4

f

f

H

(b) χ[−1,1]
√

1 − x2 and its Hilbert
transform.

Figure 6.3. Hilbert transform pairs.

From the differentiation formula for the Fourier transform, we conclude that

˜∂t � f (r) = ir�̃ f (r).

The Hilbert transform of ∂t � f is given by

�(∂t � f )(t,ω) = 1

2π

∞∫
−∞

˜∂t � f (r,ω) sgn(r)eitr dr

= 1

2π

∞∫
−∞

i |r |�̃ f (r,ω)eirt dr.

Since sgn(r)r = |r |, we can identify the filtration step in (6.25):

� � f (t,ω) = 1

i
�(∂t � f )(t,ω); (6.29)

putting this into (6.25), we obtain

f (x) = 1

2π i

π∫
0

�(∂t � f )(〈x,ω〉,ω) dω. (6.30)

The function f is reconstructed by back-projecting the Hilbert transform of 1
i ∂t � f.
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Remark 6.2.4. The Fourier transform of the function

F = 1

2
( f + � f )

vanishes for ξ < 0, and therefore F has an analytic extension to the upper half-plane;
see Theorem 4.4.4. This explains why the Hilbert transform is intimately connected to
the theory of analytic functions. Using the Fourier representation, it is easy to see that
F̂(ξ) = χ[0,∞)(ξ ) f̂ (ξ), and therefore, if y > 0, then

F(x + iy) = 1

2π

∞∫
0

f̂ (ξ)e−yξeixξdξ

is an absolutely convergent integral. The function F(x) is the boundary value of a analytic
function. A basic theorem in analytic function theory states that such a function cannot
vanish on an open interval; see [97]. This shows that if f has bounded support, then � f
cannot.

This observation has important implications in image reconstruction. Formula (6.30)
expresses f as the back-projection of −i�∂t � f. If f has bounded support, then so does
∂t � f and therefore −i�∂t � f does not. If x lies outside the support of f, then this means
that the integrand in (6.30) is, generally speaking, not zero. The integral vanishes due to
subtle cancellations between the positive and negative parts of −i�(∂t � f )(〈x,ω〉,ω). We
return to this question in Section 12.3.2. For more on the connection between the Hilbert
transform and analytic function theory, see Section 6.8.

Exercises
Exercise 6.2.3. Suppose that f is a differentiable function with bounded supported. Show
that �(∂t f ) = ∂t(� f ).

Exercise 6.2.4.∗ Use the previous exercise and a limiting argument to show that �(∂t f ) =
∂t(� f ) functions in L2(�) that have an L2-derivative.

Exercise 6.2.5. Suppose that f is an L2-function with bounded support such that f̂ (0) 	= 0.
Show that � f does not have bounded support. Hint: Use Proposition 4.2.3. Can you give
an estimate for the rate at which � f decays?

Exercise 6.2.6.∗ Show that in the previous problem it is not necessary to assume that f̂ (0) 	=
0.

Exercise 6.2.7.∗ Use the Schwarz reflection principle to prove the statement that if F(x+iy)
is an analytic function in y > 0 such that, for a < x < b,

lim
y↓0

F(x + iy) = 0,

then F ≡ 0.
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6.2.4 Inverting the Radon Transform, Two Examples

Before continuing our analysis of �−1, we compute the inverse of the Radon transform in
two examples.

Example 6.2.3. For our first example, we set f = χB1, the characteristic function of the
unit disk. Using the rotational symmetry, we check that

� f (t,ω) =
{

2
√

1 − t2 |t| ≤ 1

0 |t| > 1.
(6.31)

Note that � f satisfies

sup
h,t

∣∣∣∣� f (t + h)− � f (t)√|h|
∣∣∣∣ < ∞.

In other words, � f is a Hölder- 1
2 function of t.

To apply the filtered back-projection formula, we need to compute either ∂t � � f or
�∂t � f. It is instructive to do both. In Section 6.8 it is shown that

1

i
� � f (t,ω) =

⎧⎪⎨⎪⎩
2t for |t| < 1,

2(t +√
t2 − 1) for t < −1,

2(t −√
t2 − 1) for t > 1.

(6.32)

Even though this function is not differentiable at t = ±1, it does have an absolutely inte-
grable, weak derivative given by

1

i
∂t � � f (t,ω) =

{
2 − 2|t |√

t2−1
for |t| ≥ 1

2 for |t| < 1.
(6.33)

On the other hand, we could first compute the weak derivative of � f :

∂t � f (t,ω) =
{ −2t√

1−t2
|t| < 1

0 |t| > 1.

Unfortunately, this function does not belong to L2(�). Thus far we have only defined the
Hilbert transform for L2-functions. It is also possible to define the Hilbert transform of a
function in L p(�) for any 1 < p ≤ 2; see [79]. As∫

|∂t � f |p < ∞ for p < 2

the Hilbert transform of ∂t � f is still defined and can be computed using the complex
variable method described in Section 6.8. It is given by the formula

1

i
�(∂t � f )(t) =

{
2 − 2|t |√

t2−1
for |t| ≥ 1

2 for |t| < 1.
(6.34)
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Now we do the back-projection step. If x is inside the unit disk, then

|〈x,ω〉| ≤ 1.

At such points, the inverse of the Radon transform is quite easy to compute:

1

2π i

π∫
0

�(∂t � f )(〈x,ω〉,ω) dω = 1

2π

π∫
0

2 dω = 1.

This is precisely the value of f for ‖x‖ ≤ 1. On the other hand, if ‖x‖ > 1, then the needed
calculation is more complicated. Since f is radially symmetric, it suffices to consider
f (x, 0). If x > 1, then there is an angle 0 < θx < π

2 so that x cos θx = 1; the inversion
formula can be written

f (x, 0) = 1

2π

⎡⎣4

θx∫
0

(
1 − |x cos θ |√

x2 cos2 θ − 1

)
dθ − 2

π−θx∫
θx

dθ

⎤⎦ .

This is a much more complicated formula. From the point of view of computation, it is
notable that the Radon inversion formula now involves an unbounded integrand. It is, of
course, absolutely integrable, but difficult to numerically integrate.

The important lesson of this example is the qualitative difference in the filtered back-
projection formula between points inside and outside the unit disk. This fact has significant
consequences in medical imaging; see Section 12.3.2.

Example 6.2.4. Our next example is a bit smoother than the characteristic function of the
disk. Let r = √

x2 + y2 and define g by

g(x, y) =
{

1 − r2 |r | < 1,

0 |r | ≥ 1.

Again using the rotational symmetry, we obtain

�g(t,ω) =
{

4
3(1 − t2)3/2 |t| ≤ 1,

0 |t| > 1.

As a function of t, �g is classically differentiable, which is a “half” a derivative
smoother than g itself. It is a general fact that the Radon transform has better regular-
ity in the affine parameter than the original function by half a derivative. The derivative of
�g is

∂t �g(t,ω) =
{
−4t (1 − t2)1/2 |t| ≤ 1,

0 |t| > 1.

It satisfies

sup
h,t

∣∣∣∣∂t �g(t + h)− ∂t �g(t)

|h| 1
2

∣∣∣∣ < ∞
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and therefore ∂t �g is a Hölder- 1
2 function. The Hilbert transform of ∂t �g is

1

i
�(∂t �g)(t) =

{
2 − 4t2 |t| ≤ 1,

4[ 4|t|(t2 − 1)1/2 − (2t2 − 1) ] |t| > 1.

Once again we see that the back-projection formula for points inside the unit disk is, nu-
merically, a bit simpler than for points outside. While

√
t2 − 1 is continuous, it is not

differentiable at t = ±1. This makes the numerical integration in the back-projection step
more difficult for points outside the disk.

Exercises
Exercise 6.2.8. Prove that (6.33) gives the weak derivative of � � f defined in (6.32).

Exercise 6.2.9. Use Simpson’s rule to numerically integrate
√

1 − t2 from 0 to 1. Deter-
mine how the accuracy of the result depends on the mesh size and compare it to the accuracy
when instead 1 − t2 is integrated.

Exercise 6.2.10.∗ Give an algorithm to numerically integrate the function 1√
1−t2

from −1

to 1. Provide an estimate for the accuracy of your method.

Exercise 6.2.11.∗ Generalize the method in the previous exercise to functions of the form
f√

1−t2
, where f is differentiable on an interval containing [−1, 1].

6.2.5 Back-Projection∗

See: A.2.5.

The operation of back-projection has a nice mathematical interpretation. If (X, 〈·, ·〉X )
and (Y, 〈·, ·〉Y ) are inner product spaces and A : X → Y is a linear map, recall that the
adjoint of A, A∗ : Y → X is defined by the relations

〈Ax, y〉Y = 〈x, A∗ y〉Y for all x ∈ X and y ∈ Y.

If we use the L2-inner product for functions on �2 and the inner product for functions on
� × S1 compatible with the L2-norm defined in (6.1),

〈h, k〉�×S1 =
2π∫

0

∞∫
−∞

h(t,ω)k(t,ω) dt dω,

then back-projection is [4π ]−1 times the formal adjoint of the Radon transform. It is only a
formal adjoint because, as noted previously, the Radon transform does not extend to define
a continuous map from L2(�2) to L2(� × S1). The proof is a calculation; for the sake of
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simplicity, assume that f is a function of bounded support on �2 and h is a function of
bounded support on � × S1:

〈� f, h〉�×S1 =
2π∫

0

∞∫
−∞

� f (t,ω)h(t,ω) dt dω

=
2π∫

0

∞∫
−∞

∞∫
−∞

f (tω + sω̂)h(t,ω) ds dt dω.

(6.35)

Let x = tω + sω̂ so that
t = 〈x,ω〉.

Interchanging the ω- and the x-integrals, we obtain

〈� f, h〉�×S1 =
∫
�2

2π∫
0

f (x)h(〈x,ω〉,ω) dω dx

= 〈 f,�∗h〉�2 .

(6.36)

This verifies the assertion that back-projection is [4π ]−1 times the formal adjoint of the
Radon transform. The fact that �∗ 	= �−1 is a reflection of the fact that � is not a unitary
transformation from L2(�2) to L2(� × S1).

Using the identification of back-projection with the adjoint, along with the Parseval
formula, (4.5.2), we can derive an interesting relationship between ̂�∗ � f and f̂ .

Proposition 6.2.1. Suppose that f is an absolutely integrable and square-integrable func-
tion in the natural domain of the Radon transform. Then

r

4π
̂�∗ � f (rω) = f̂ (rω). (6.37)

Proof. The proof of this proposition uses the basic principle that, in an inner product space X, an
element x is zero if and only if 〈x, y〉X = 0 for all y belonging to a dense subset of X. Let f and g
be two functions satisfying the hypotheses of the proposition. From the definition of the adjoint, it
follows that

〈� f,�g〉�×S1 = 〈 f,�∗ �g〉�2 . (6.38)

Using the Parseval formula, we get the relations

〈 f,�∗ �g〉�2 = 1

[2π]2 〈 f̂ , ̂�∗ �g〉�2

= 1

[2π]2
2π∫

0

∞∫
0

f̂ (rω) ̂�∗ �g(rω)r dr dω,

(6.39)
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and

〈� f,�g〉�×S1 = 1

2π

2π∫
0

∞∫
−∞

�̃ f (r,ω)�̃g(r,ω) dr dω

= 1

π

2π∫
0

∞∫
0

f̂ (rω)ĝ(rω) dr dω.

(6.40)

In the last line we use the central slice theorem and the evenness of the Radon transform. Since
these formulæ hold for all f and g with bounded support, a dense subset of L2, it follows that

r

4π
̂�∗ �g(rω) = ĝ(rω). (6.41)

Proposition 6.2.1 leads to an alternate formula for �−1. In this approach, the back-
projection is done first. Then a filter, acting on functions defined on �2, is applied to
�∗ � f. If f is a piecewise continuous function of bounded support, then Proposition 6.2.1
states that

f̂ (rω) = r

4π
̂�∗ � f (rω).

If f̂ is absolutely integrable, then the Fourier inversion formula therefore implies that

f (x) = 1

[2π ]2

2π∫
0

∞∫
0

r

4π
̂�∗ � f (rω)ei〈rω,x〉r dr dω

= 1

[2π ]2

∫
�2

‖ξ‖
4π

̂�∗ � f (ξ)ei〈ξ ,x〉 dξ .

(6.42)

The Laplace operator on �2 is defined as the second-order differential operator

� f = (∂2
x f + ∂2

y f ).

As a constant coefficient differential operator, it can be expressed in terms of the Fourier
transform by

−� f (x) = 1

[2π ]2

∫
�2

‖ξ‖2 f̂ (ξ)ei〈ξ ,x〉 dξ .

This formula motivates a definition for the nonnegative powers of the Laplace operator. For
s ≥ 0 and f, a smooth function with bounded support, define

[−�]s f (x) = 1

[2π ]2

∫
�2

‖ξ‖2s f̂ (ξ)ei〈ξ ,x〉 dξ . (6.43)
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Using the Parseval formula, this operation can be extended to all functions in L2(�2) such
that ‖ξ‖s f̂ (ξ) is square integrable. With this definition for [−�]s, we can rewrite (6.42) as

4π f (x) = ([−�] 1
2 �∗(� f ))(x). (6.44)

Remark 6.2.5. Note that −��∗(� f ) = 4π [−�] 1
2 f. This gives an expression for [−�] 1

2 f
that, given � f, can be computed using entirely elementary operations; that is, back-projection
and differentiation. The functions f and [−�] 1

2 f have the same singularities. As edges
are discontinuities, this formula gives a straightforward way to find the edges in an image
described by a density function f. I thank Gunther Uhlmann for this observation.

Remark 6.2.6. Thus far we have produced a left inverse for the Radon transform. If f
is a function in the plane satisfying appropriate regularity and decay hypotheses then, for
example,

f = ([−�] 1
2 �∗)� f.

We have not said that if h is an even function on � × S1, then

h = �([−�] 1
2 �∗)h.

That is, we have not shown that ([−�] 1
2 �∗) is also a right inverse for �. Under some mild

hypotheses on h, this is in fact true. The proof of this statement involves characterizing
the range of the Radon transform and is beyond the scope of this book. Treatments of this
problem can found in [90], [83], and [95].

Exercises
Exercise 6.2.12. Let g be a continuous function with bounded support on � × S1. Show
that there is a constant C so that

|�∗g(x)| ≤ C

1 + ‖x‖ .
Show that if g is a nonnegative function that is not identically zero, then there is also a
constant C ′ > 0 so that

|�∗g(x)| ≥ C ′

1 + ‖x‖ .
Exercise 6.2.13. Explain how we arrived at the limits of integration in the second line
of (6.40).

Exercise 6.2.14. Using the definition, (6.43), show that

1. If s is a positive integer, then the two definitions of [−�]s agree.

2. For s and t nonnegative numbers,

[−�]s[−�]t = [−�]s+t . (6.45)

3. Conclude from the previous part that

−��∗ � f = [−�] 1
2 f.
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6.3 The Hilbert Transform

See: A.4.5, B.7 .

The filter � defined in (6.29) acts on functions of single variable and has a simple
Fourier representation:

� f (t) = 1

2π

∞∫
−∞

f̂ (r)|r |eirt dr.

As noted in the previous section, this filter can be expressed as a composition of two simpler
operations: differentiation and the Hilbert transform. For implementation on real measured
data, each operation presents its own difficulties. In one sense differentiation is a simple
operation because it is local; to compute ∂t f (t) we only need to know the values of f in
a small neighborhood of t. On the other hand, real data are corrupted with noise, and this
requires the data to be smoothed before they are differentiated. The Hilbert transform is
a nonlocal operation; to determine � f (t) we need to know the values of f for all t. The
difficulty here is that we can only compute integrals over finite intervals.

The Hilbert transform is defined by

� f = 
−1( f̂ (ξ) sgn(ξ)), which implies that �̂ f (ξ) = sgn(ξ) f̂ (ξ).

In general, the inverse Fourier transform of a product is a convolution; that is,


−1( f̂ ĝ) = f ∗ g.

Hence, if there existed a nice function h such that ĥ(ξ) = sgn(ξ), then the Hilbert transform
would be just h ∗ f. Unfortunately, the signum function is not the Fourier transform of a
nice function because it does not go to zero, in any sense, as |ξ | → ∞. In this section we
further analyze the Hilbert transform. We describe in what sense it is a convolution and
give different approaches to approximating it.

It is easy to approximate the Hilbert transform in the Fourier representation and the
L2-norm.

Theorem 6.3.1. Suppose that < φε > is a uniformly bounded family of locally integrable
functions that converges pointwise to sgn(ξ) as ε → 0. If f is square integrable, then the
Hilbert transform of f is given by the limit in the mean

� f (t) = LIM
ε↓0


−1(φε f̂ ).

Proof. The Parseval formula shows that

‖� f − 
−1(φε f )‖L2 = 1

2π

∞∫
−∞

|(sgn(ξ) − φε(ξ)) f̂ (ξ)|2 dξ.

As φε is uniformly bounded and converges to sgn, the conclusion follows from the Lebesgue dom-
inated convergence theorem.
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Remark 6.3.1. If f is sufficiently smooth, so that f̂ decays, then � f (t) is given by the
pointwise limit

� f (t) = lim
ε↓0

∞∫
−∞

φε(ξ) f̂ (ξ)eitξ dξ

2π
.

By using a particular family of functions < φε >, we can find a representation for �
as a convolution. Modify the signum function by setting

φε(ξ) = ĥε(ξ)
d= sgn(ξ)e−ε|ξ | for ε > 0.

This family satisfies the hypotheses of the theorem. The inverse Fourier transform of ĥε is

hε = i

π

t

t2 + ε2
.

This function behaves like 1/t as t goes to infinity, which is not fast enough for integrability,
but at least it goes to zero and has no singularities. For each ε > 0 we can therefore define
an approximate Hilbert transform:

�ε f = 
−1( f̂ ĥε) = f ∗ hε. (6.46)

6.3.1 The Hilbert Transform as a Convolution

Theorem 6.3.1 implies that if f is an L2-function, then hε ∗ f converges, in L2(�), to � f.
Letting ε go to 0, we see that hε converges pointwise to i[tπ ]−1. Formally, this seems to
imply that, if f is sufficiently smooth, then

� f (t) = i

π

∞∫
−∞

f (s) ds

t − s
. (6.47)

Because 1/|t| is not integrable in any neighborhood of 0, this expression is not an absolutely
convergent integral and therefore requires interpretation. It turns out that in the present
instance, the correct interpretation for this formula is as a Cauchy principal value:

� f (t) = i

π
P.V.( f ∗ 1

s
) = i

π
lim
ε→0

⎡⎣ −ε∫
−∞

+
∞∫
ε

f (t − s)

s
ds

⎤⎦ . (6.48)

The Cauchy principal value is finite, at least if f has bounded support and is smooth
enough. First note that if t lies outside the support of f, then the integral in (6.47) is
absolutely convergent. For t in the support of f, a more careful analysis is required. Since
the function 1/s is odd, we have ( −ε∫

−R

+
R∫

ε

)
ds

s
= 0.
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We can multiply this by f (t) and still get zero:( −ε∫
−R

+
R∫

ε

)
f (t)

ds

s
= 0.

Assuming that the support of f is contained in [− R
2 ,

R
2 ] and that t belongs to this interval,

then ( −ε∫
−∞

+
∞∫
ε

)
f (t − s)

s
ds =

( −ε∫
−R

+
R∫

ε

)[
f (t − s) − f (t)

s

]
ds. (6.49)

If f is once differentiable, then the integrand in (6.49) remains bounded as ε goes to 0 and
therefore

P.V.( f ∗ 1

s
)(t) =

R∫
−R

f (t − s) − f (t)

s
ds for t ∈ [− R

2
,

R

2
]. (6.50)

Indeed if, for some α > 0, f satisfies the α-Hölder condition,

| f (t) − f (s)|
|t − s|α ≤ M, (6.51)

then the integral in (6.49) is absolutely convergent.

Theorem 6.3.2. If f is a function with bounded support, satisfying (6.51) for an α > 0,
then

�( f ) = i

π
P.V.( f ∗ 1

s
).

Proof. Assume that f is supported in [− R
2 ,

R
2 ]. If t is outside this interval, then the limit of f ∗hε(t),

as ε goes to zero, is the absolutely convergent integral

i

π

∞∫
−∞

f (t − s)

s
ds.

To complete the proof of the theorem, we need to show that for t ∈ [− R
2 ,

R
2 ] we have

i

π
P.V.( f ∗ 1

s
)(t) = lim

ε↓0
hε ∗ f (t).

As hε is also an odd function, this difference is given by

i

π
P.V.( f ∗ 1

s
)(t) − lim

ε↓0
hε ∗ f (t) = i

π
lim
ε↓0

[( −ε∫
−R

+
R∫

ε

)[
ε2( f (t − s) − f (t))

s(s2 + ε2)

]
ds−

ε∫
−ε

s( f (t − s) − f (s))

s2 + ε2 ds

]
.

(6.52)
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It is left as an exercise to show that the second integral on the right-hand side of (6.52) tends to zero
as ε goes to zero. To handle the first term, we let εσ = s, obtaining

i

π
lim
ε↓0

⎡⎢⎣( −1∫
−Rε−1

+
Rε−1∫
1

)
( f (t − εσ ))− f (t))

σ (σ 2 + 1)
dσ

⎤⎥⎦ .

Because this integrand decays like σ−3 at infinity and is uniformly (in ε) integrable for σ near zero,
the limit as ε goes to zero can be taken inside the integral. As

lim
ε↓0

( f (t − εσ )− f (t)) = 0

this completes the proof of the theorem.

As a corollary we obtain a representation formula for � as an absolutely convergent
integral.

Corollary 6.3.1. If f is an α-Hölder continuous function with support in [− R
2 ,

R
2 ], then

for t in this interval

� f (t) = i

π

R∫
−R

f (t − s) − f (t)

s
ds. (6.53)

The cancellation due to the symmetric interval used in the definition of the principal
value is critical to obtain this result. There are other ways to regularize convolution with
1/t. For example, we could add an imaginary number to the denominator to make it non-
vanishing,

lim
ε↓0

i

π

R∫
−R

f (t − s)

s ± iε
ds.

A computation shows that

i

π

1

2

(
1

s + iε
+ 1

s − iε

)
= i

π

s

s2 + ε2
= hε(s).

This shows that the average of the two regularizations, (s ± iε)−1, results in the same
approximation as before. The difference of these two regularizations is

i

π
· 1

2

(
1

s + iε
− 1

s − iε

)
= 1

π

ε

s2 + ε2
,

which does not tend to zero as ε tends to zero. As an example, we “test” the characteristic
function of the interval χ[−1,1] by evaluating the limit at t = 0,

lim
ε↓0

∞∫
−∞

χ[−1,1](−s)
ε

s2 + ε2
ds = lim

ε↓0

1∫
−1

ε

s2 + ε2
ds = lim

ε↓0

1/ε∫
−1/ε

dt

t2 + 1
= π.
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So we see that, in general,

lim
ε↓0

i

π

∞∫
−∞

f (t − s) ds

s ± iε
	= � f (t).

The lesson is that care must be exercised in choosing a regularization for convolution with
1/t. Different regularizations lead to different results.

Remark 6.3.2. This discussion shows that there are at least three different approaches to
approximating the Hilbert transform and therefore the Radon inversion formula. On the
one hand, we can use the convolution formula for � and directly approximate P.V.( f ∗ 1

s ).
On the other hand, we can use the Fourier integral representation and instead approximate
sgn(ξ) as described in Theorem 6.3.1. For sufficiently smooth functions with bounded
support, we could use (6.53). Mathematically these approaches are equivalent; compu-
tationally they can lead to vastly different results. In most real applications the Fourier
representation is used because it is more efficient and does not involve regularizing a di-
vergent expression. Instead an integral over � must be approximated by an integral over a
finite interval.

Exercises
Exercise 6.3.1. Suppose that f and g are continuous functions with bounded support.
Show that

�( f ∗ g) = (� f ) ∗ g = f ∗ (�g).

Exercise 6.3.2. Suppose that f is an L2-function that satisfies an α-Hölder condition for
an 0 < α ≤ 1. Show that

lim
ε↓0

hε ∗ f = i

π
P.V.( f ∗ 1

s
).

Exercise 6.3.3. For f an α-Hölder continuous function, show that

lim
ε↓0

ε∫
−ε

s( f (t − s) − f (s))

s2 + ε2
= 0.

Exercise 6.3.4. Compute that Fourier transforms of f±(x) = (x ± iε)−1 for ε > 0.

Exercise 6.3.5. The following are linear operators defined in terms of the Fourier trans-
form. Reexpress these operators in terms of differentiations and the Hilbert transform. For
example, if A f is defined by

A f (x) = 1

2π

∞∫
−∞

ξ f̂ (ξ)eixξdξ,

then the answer to this question is

A f (x) = −i∂x f (x).

Do not worry about convergence.
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1.

A1 f (x) = 1

2π

∞∫
−∞

|ξ |3 f̂ (ξ)eixξdξ

2.

A2 f (x) = 1

2π

∞∫
−∞

(ξ 4 + |ξ | + 1) f̂ (ξ)eixξdξ

3. In this exercise take note of the lower limit of integration.

A3 f (x) = 1

2π

∞∫
0

f̂ (ξ)eixξdξ

Exercise 6.3.6. If f ∈ L2(�) then show that

∞∫
−∞

| f (x)|2 dx =
∞∫

−∞
|� f (x)|2 dx .

Exercise 6.3.7. This exercise addresses the spectral theory of the Hilbert transform.

1. Which real numbers are eigenvalues of the Hilbert transform? That is, for which real
numbers λ does there exist a function fλ in L2(�) so that

� f = λ f ?

Hint: Use the Fourier transform.

2. Can you describe the eigenspaces? That is, if λ is an eigenvalue of �, describe the
set of all functions in L2(�) that satisfy

� f = λ f.

3. Show that � ◦ � f = �(�( f )) = f for any f ∈ L2(�).

6.3.2 Mapping Properties of the Hilbert Transform∗

See: A.4.1.

The Hilbert transform has very good mapping properties with respect to most function
spaces. Using the Parseval formula, we easily establish the L2-result.
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Proposition 6.3.1. If f ∈ L2(�), then � f ∈ L2(�) and in fact

‖ f ‖L2 = ‖� f ‖L2 .

The Hilbert transform also has good mapping properties on other L p-spaces as well as
Hölder spaces, though the proofs of these results requires more advanced techniques.

Proposition 6.3.2. For each 1 < p < ∞, the Hilbert transform extends to define a
bounded map � : L p(�) → L p(�).

Proposition 6.3.3. Suppose that f is α-Hölder continuous for an α ∈ (0, 1) and vanishes
outside a bounded interval. Then � f is also α-Hölder continuous.

Notice that the case of α = 1 is excluded in this proposition. The result is false in
this case. There exist differentiable functions f such that � f is not 1-Hölder continuous.
Proofs of these propositions can be found in [110].

Exercise
Exercise 6.3.8. By using formula (6.53), which is valid for a Hölder continuous function
vanishing outside a bounded interval, prove Proposition 6.3.3.

6.4 Approximate Inverses for the Radon Transform

To exactly invert the Radon transform, we need to compute the Hilbert transform of a
derivative. The measured data is a function, gm, on the space of lines. Measured data are
rarely differentiable, and the exact Radon inverse entails the computation of ∂t gm . Indeed,
the Parseval formula, (6.15), implies that unless gm has a half an L2-derivative, then it
is not the Radon transform of an L2-function. Thus it is important to investigate how
to approximate the inverse of the Radon transform in a way that is usable with realistic
data. Each approximation of the Hilbert transform leads to an approximation of the Radon
inverse. Because the approximate inverses involve some sort of smoothing, they are often
called regularized inverses.

Recall that a convolution has the following useful properties with respect to derivatives:

∂x( f ∗ g) = ∂x f ∗ g = f ∗ ∂x g.

Using formula (6.46), we get an approximate inverse for the Radon transform:

f (x) ≈ 1

2π i

π∫
0

�ε(∂t � f )(〈x,ω〉,ω) dω

= 1

2π i

π∫
0

hε ∗ (∂t � f )(〈x,ω〉,ω) dω.

(6.54)
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Using the formula for hε and the fact that f ∗ ∂t g = ∂t f ∗ g, we get

f (x) ≈ 1

2π i

π∫
0

∞∫
−∞

� f (s,ω)∂t hε(〈x,ω〉 − s) ds

= 1

2π2

π∫
0

∞∫
−∞

[
� f (s,ω)

ε2 − (t − s)2

(ε2 + (t − s)2)2
ds

∣∣∣∣
t=〈x,ω〉

]
dω.

(6.55)

The expression in (6.55) has an important practical advantage: We have moved the t-
derivative from the potentially noisy measurement � f over to the smooth, exactly known
function hε. This means that we do not have to approximate the derivatives of � f.

In most applications, convolution operators, such as derivatives and the Hilbert trans-
form, are computed using the Fourier representation. Theorem 6.3.1 suggests approximat-
ing the filtering step, (6.24), in the exact inversion formula by cutting off the high-frequency
components. Let ψ̂(r) be a bounded, even function, satisfying the conditions

ψ̂(0) = 1,

ψ̂(r) = 0 for |r | > W.
(6.56)

For l a function on � × S1 define

�ψ(l)(t,ω) = 1

2π

∞∫
−∞

l̃(r,ω)eirt ψ̂(r)|r | dr, (6.57)

and

�−1
ψ l(x) = 1

2π

π∫
0

�ψ(l)(〈x,ω〉,ω) dω. (6.58)

For notational convenience let
fψ = �−1

ψ ◦ � f.

How is �−1
ψ f related to f ? The answer to this question is surprisingly simple. The

starting point for our analysis is Proposition 6.1.1, which says that if f and g are functions
on �2, then

�( f ∗ g)(t,ω) =
∞∫

−∞
� f (t − τ,ω)�g(τ,ω) dτ.

Using the convolution theorem for the Fourier transform, we see that

˜� f ∗ g(r,ω) = �̃ f (r,ω)�̃g(r,ω).
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Suppose now that g is a radial function so that �g is independent of ω. The filtered back-
projection formula for f ∗ g reads

f ∗ g(x) = 1

4π2

π∫
0

∞∫
−∞

�̃ f (r,ω)�̃g(r)eir〈x,ω〉|r | dr dω. (6.59)

Comparing (6.59) with the definition of fψ, we see that, if we can find a radial function
kψ, defined on �2, so that

�(kψ)(t,ω) = ψ(t),

then
fψ(x) = kψ ∗ f (x). (6.60)

The existence of such a function is a consequence of the results in Section 3.5. Because ψ̂
has bounded support, ψ is an infinitely differentiable function, with all derivatives bounded.
To apply Proposition 3.5.1, we need to know that ψ and ψ ′ are absolutely integrable. This
translates into a requirement that ψ̂ is sufficiently continuous. In this case, the function kψ
is given by the formula

kψ(ρ) = − 1

π

∞∫
ρ

ψ ′(t) dt√
t2 − ρ2

. (6.61)

This completes the proof of the following proposition.

Proposition 6.4.1. Suppose that ψ̂ satisfies the conditions in (6.56) and ψ is absolutely
integrable. Then

fψ(x) = kψ ∗ f (x),

where kψ is given by (6.61).

Remark 6.4.1. Replacing f by fψ produces a somewhat blurred image. Increasing the
support of ψ̂ leads, in general, to a more sharply peaked ψ and therefore a more sharply
peaked kψ . This reduces the blurring but also reduces the suppression of noise in the data.
This discussion is adapted from [113].

6.4.1 Addendum∗

See: A.3.3.

The analysis in the previous section is unsatisfactory in one particular: We explicitly ex-
clude the possibility that ψ̂W (r) = χ[−W,W ](r). The problem is that ψW (t) = sin(Wt)/(π t)
is not absolutely integrable and so the general inversion result for radial functions does not
apply. In this special case the integral defining kψ is a convergent, improper integral, which
can be computed exactly.
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We use the formula ∞∫
1

sin(xt) dt√
t2 − 1

= π

2
J0(x)

for the J0-Bessel function; see [93]. Putting this into the inversion formula and using the
fact that J ′

0 = −J1, we obtain

kW (x) = W

2πx
J1(W x).

The power series for J1(x) about x = 0 is

J1(x) = x

2

∞∑
k=0

(−1)k x2k

22kk!(k + 1)! ,

from which it follows easily that kW (x) is a smooth function of x2. The standard asymptotic
expansion for J1 as |x| tends to infinity implies that

|kW (x)| ≤ C

(1 + |x|) 3
2

and therefore the integrals defining �kW converge absolutely. As the Radon transform is
linear, we can extend the result of the previous section to allow functions of the form

ψ̂(r) = χ[−W,W ](r) + ψ̂c(r),

where ψc = 
−1ψ̂c satisfies the hypotheses of Proposition 3.5.1. In this case,

fψ = (kW + kψc) ∗ f. (6.62)

Exercise
Exercise 6.4.1. Justify the computations for the function ψ̂ = χ[−W,W ] leading up to for-
mula (6.62).

6.5 The Radon Transform on Data with Bounded Support

In medical imaging the data under consideration usually have bounded support. The Radon
transform of a function with bounded support satisfies an infinite set of moment conditions.
From the point of view of measurements, these can be viewed as consistency conditions.
Mathematically, this is a part of the problem of characterizing the range of the Radon
transform on data with bounded support. The general problem of describing the range of
the Radon transform is well beyond the scope of this text. The interested reader is referred
to [83], [90], or [95].
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Suppose that f is a function that vanishes outside the disk of radius R. As observed
previously, this implies that � f (t,ω) = 0 if |t| > R. For a nonnegative integer, n consider
the integral,

Mn( f )(ω) =
∫
�2

f (x)[〈x,ω〉]n dx. (6.63)

If f has bounded support, then these integrals are well defined for any n ∈ � ∪ {0}. If f
does not vanish outside a disk of finite radius, then, for sufficiently large n, these integral
may not make sense.

Changing coordinates with x = tω + sω̂, we can rewrite this integral in terms of � f ,

Mn( f )(ω) =
∫
�2

f (tω + sω̂)tn ds dt

=
∞∫

−∞
� f (t,ω)tn dt.

(6.64)

The function Mn( f )(ω) is called the nth moment of the Radon transform of f. If � f (t,ω)
vanishes for |t| > R, then this integral is well defined for all n. In Example 3.4.7 we
showed that there are functions, which do not have bounded support, for which the Radon
transform is defined and vanishes for large enough values of t. If f itself has bounded
support, then Mn( f )(ω) depends on ω in a very special way.

It is useful to express ω as a function of the angle θ,

ω(θ) = (cos(θ), sin(θ)).

Using the binomial theorem, we obtain

〈x,ω(θ)〉n = (x cos θ + y sin θ)n

=
n∑

j=0

(
n
j

)
(x cos θ) j (y sin θ)n− j

=
n∑

j=0

(
n
j

)
cos j θ sinn− j θx j yn− j .

Putting the sum into formula (6.63), we see that this integral defines a trigonometric poly-
nomial of degree n.

Mn( f )(θ) =
n∑

j=0

(
n
j

)
cos j θ sinn− j θ

∫∫
�2

f (x, y)x j yn− j dx dy

=
n∑

j=0

anj sin j θ cosn− j θ

(6.65)
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where

anj =
(

n
j

)∫∫
�2

f (x, y)x j yn− j dx dy.

If f has bounded support, then Mn( f )(θ) is a trigonometric polynomial of degree n. We
summarize these computations in a proposition.

Proposition 6.5.1. Suppose that f is a function with bounded support. Then

1. � f (t,ω) has bounded support.

2. For all nonnegative integers, n, there exist constants {an0, . . . , ann} such that

∞∫
−∞

� f (t,ω(θ))tndt =
n∑

j=0

anj sin j θ cosn− j θ.

The proposition suggests the following question: Suppose that h(t,ω) is a function on
� × S1 such that

1. h(t,ω) = h(−t,−ω),

2. h(t,ω) = 0 if |t| > R,

3. For each nonnegative integer n

mn(h)(θ) =
∞∫

−∞
h(t,ω(θ))tn dt

is a trigonometric polynomial of degree n,

4. h(t,ω) is a sufficiently smooth function of (t,ω).

Does there exist a function f in the domain of the Radon transform, vanishing outside of
the disk of radius R such that

h = R f ?

In other words, does h belong to the range of the Radon transform, acting on smooth func-
tions with bounded support? According to a theorem of Helgason and Ludwig, the answer
to this question turns out to be yes: however, the proof of this result requires techniques
beyond the scope of this text. Similar results were obtained earlier by Gelfand, Graev and
Vilenkin. Alan Cormack, inventor of the x-ray CT scanner, also had a version of this re-
sult. For a detailed discussion of this question, and its connections to x-ray tomography,
the reader is referred to [95]. More material can be found in [51], [83], [90], [44], [24], or
[36].

We model the data measured in CT imaging as the Radon transform of a piecewise
continuous function with bounded support. If we could make measurements for all (t,ω),



6.6. Continuity of the Radon Transform and Its Inverse∗ 213

then it probably would not be the exact Radon transform of such a function. This is because
all measurements are corrupted by errors and noise. In particular, the patient’s movements,
both internal (breathing, heart beat, blood circulation, etc.) and external, affect the mea-
surements. The measured data would therefore be inconsistent and may fail to satisfy the
aforementioned moment conditions.

6.6 Continuity of the Radon Transform and Its Inverse∗

In order for the measurement process in x-ray tomography to be stable, the map f �→
� f should be continuous in a reasonable sense. Estimates for the continuity of this map
quantify the sensitivity of the output, � f, of a CT scanner to changes in the input. The
less continuous the map, the more sensitive the measurements are to changes in the input.
Estimates for the continuity of inverse, h �→ �−1h, quantify the effect of errors in the
measured data on the quality of the reconstructed image. Because we actually measure the
Radon transform, estimates for the continuity of �−1 are more important for the problem
of image reconstruction. To discuss the continuity properties of either transform, we need
to select norms for functions in the domain and range. Using the L2-norms on both, the
Parseval formula, (6.15), provides a starting point for this discussion.

The Parseval formula says that if f ∈ L2(�2), then D 1
2

� f ∈ L2(�×S1). This estimate
has somewhat limited utility; as |r | vanishes at r = 0, we cannot conclude that � f is
actually in L2(� × S1). In medical applications the data have bounded support, and in this
case additional estimates are available. For the inverse transform, the Parseval formula says
that in order to control the L2-norm of the reconstructed image, we need to have control on
the half-order L2-derivative of the measured data. Due to noise this is, practically speaking,
not possible. After discussing the continuity properties of the forward transform for data
with bounded support, we consider the continuity properties of the approximate inverse
described in Section 6.4.

6.6.1 Data With Bounded Support

Functions with bounded support satisfy better L2-estimates.

Proposition 6.6.1. Let f ∈ L2(�2) and suppose that f vanishes outside the disk of radius
L . Then, for each ω, we have the estimate

∞∫
−∞

|� f (t,ω)|2 dt ≤ 2L‖ f ‖2
L2 . (6.66)

Proof. The proof of the proposition is a simple application of the Cauchy-Schwarz inequality. Be-
cause f vanishes outside the disk of radius L, we can express � f as

� f (t,ω) =
L∫

−L

f (tω + sω̂) ds.
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Computing the L2-norm of � f in the t-variable, we obtain

∞∫
−∞

| � f (t,ω)|2 dt =
L∫

−L

∣∣∣∣∣∣
L∫

−L

f (tω + sω̂) ds

∣∣∣∣∣∣
2

dt

≤ 2L

L∫
−L

L∫
−L

| f (tω + sω̂)|2 ds dt .

(6.67)

In the second line we used the Cauchy-Schwarz inequality.

The proposition shows that, if f vanishes outside a bounded set, then we control not
only the overall L2-norm of � f but the L2-norm in each direction, ω separately. Using the
support properties of f more carefully gives a weighted estimate on the L2-norm of � f.

Proposition 6.6.2. Let f ∈ L2(�2) and suppose that f vanishes outside the disk of radius
L . Then, for each ω, we have the estimate

∞∫
−∞

|� f (t,ω)|2 dt√
L2 − t2

≤ 2‖ f ‖2
L2 . (6.68)

Proof. To prove this estimate, observe that

f (x, y) = χ[0,L2](x2 + y2) f (x, y).

The Cauchy-Schwarz inequality therefore implies that, for |t| ≤ L, we have the estimate

| � f (t,ω)|2 =
∣∣∣∣∣∣

L∫
−L

f (tω + sω̂)χ[0,L2](s2 + t2) ds

∣∣∣∣∣∣
2

≤ 2

L∫
−L

| f (tω + sω̂)|2 ds

√
L2−t2∫
0

ds

= 2
√

L2 − t2

L∫
−L

| f (tω + sω̂)|2 ds.

(6.69)

Thus

L∫
−L

| � f (t,ω)|2 dt√
L2 − t2

≤
L∫

−L

2
√

L2 − t2
√

L2 − t2

L∫
−L

| f (tω + sω̂)|2 ds dt

= 2‖ f ‖2
L2 .

(6.70)
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A function in f ∈ L2(�2) with support in the disk of radius L can be approximated, in
the L2-norm, by a sequence of smooth functions < fn > . This sequence can also be taken
to have support in the disk of radius L . The Radon transforms of these functions satisfy the
estimates

∞∫
−∞

|� fn(t,ω)|2 dt ≤ 2L‖ fn‖2
L2

and

1

[2π ]2

π∫
0

∞∫
−∞

|�̃ fn(r,ω)|2|r | dr dω = ‖ fn‖2
L2(�2)

.

In a manner analogous to that used to extend the Fourier transform to L2-functions, we can
now extend the Radon transform to L2-functions with support in a fixed bounded set.

For bounded functions on � × S1 vanishing for |t| > L , a norm is defined by

‖h‖2
2,L = sup

ω∈S1

L∫
−L

|h(t,ω)|2 dt + 1

[2π ]2

π∫
0

∞∫
−∞

|̃h(r,ω)|2|r | dr dω.

The closure of �0([−L , L] × S1) in this norm is a Hilbert space that can be identified with
a subspace of L2([−L , L] × S1). For f, an L2-function with support in BL, � f is defined
as the limit of � fn in this norm. Evidently, the estimates, (6.66), (6.68), hold for � f. On
the other hand, the elementary formula for � f (t,ω) may not be meaningful as f may not
be absolutely integrable over lt,ω.

While it is well beyond the scope of this text, it is nonetheless true that a function on
� × S1 with support in the set |t| ≤ L and finite ‖ · ‖2,L-norm that satisfies the moment
conditions is the generalized Radon transform of function in L2(�2) with support in the
disk of radius L . A proof can be found in [51] or [95].

Exercises
Exercise 6.6.1. Suppose that f ∈ L2(�2) and that f vanishes outside the disk of radius L .
Show that ‖� f (·,ω1)−� f (·,ω2)‖L2(�) tends to zero as ω1 approaches ω2. In other words,
the map ω �→ � f (·,ω) is a continuous map from the circle into L2(�). This shows that, if
we measure errors in the L2-norm, then the Radon transform is not excessively sensitive to
small changes in the measurement environment.

Exercise 6.6.2. Suppose that < fn > is a sequence of smooth functions with support
in a fixed disk converging to f in L2(�2). For the terms in the approximating sequence,
< � fn >, the moments {mk(� fn)} satisfy the conditions in Proposition 6.5.1. Show that
for the limiting function, the moments {mk(� f )} are well defined and also satisfy these
conditions.
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6.6.2 Estimates for the Inverse Transform

The question of more immediate interest is the continuity properties of the inverse trans-
form. This is the more important question because we actually measure an approximation,
R fm to � f. It would appear that to estimate the error in the reconstructed image, we would
need to estimate

�−1 R fm − f = �−1(R fm − � f ). (6.71)

There are several problems that arise immediately. The most obvious problem is that R fm

may not be in the range of the Radon transform. If R fm(t,ω) does not have an L2-half-
derivative in the t-direction, that is,

2π∫
0

∞∫
−∞

|R̃ fm(r,ω)|2|r | dr dω = ∞,

then according to the Parseval formula, (6.15) R fm is not the Radon transform of a function
in L2(�2). In order to control the L2-error,

‖�−1(R fm − � f )‖L2(�2),

it is necessary that measurements have a half-derivative and the difference

‖D 1
2
(R fm − � f )‖L2(�×S1)

is small. This means that we need to control the high-frequency content of R fm; in prac-
tice this is not possible. While the mathematical problem of estimating the Radon inverse
is quite interesting and important, it has little bearing on the problem of practical image
reconstruction. A very nice treatment of the mathematical question is given in [95]. We
now turn our attention to understanding the continuity of the approximate inverses defined
in Section 6.4.

An approximate inverse is denoted by �−1
ψ , where ψ is a regularizing function. This is

an even function whose Fourier transform satisfies the conditions

ψ̂(0) = 1,

ψ̂(r) = 0 for |r | > W.
(6.72)

It is also assumed that the radial function kψ defined in (6.61) is in the domain of the Radon
transform and

�kψ = ψ.

In this case,
�−1

ψ � f = kψ ∗ f. (6.73)

Example 6.6.1. Let ψ̂ be the piecewise linear function

ψ̂(r) =

⎧⎪⎨⎪⎩
1 for |r | < W − C,
W−|r |

C for W − C ≤ |r | ≤ W,

0 for |r | > W.
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Radial graphs of ψ and kψ are shown in Figure 6.4.
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(b) kψ

Figure 6.4. Graphs of ψ̂ and kψ, with W = 40,C = 5.

The reconstructed image is
fψ = �−1

ψ R fm;
therefore, we need to estimate the difference f − fψ. As kψ ∗ f = �−1

ψ � f, we can rewrite
this difference as

f − fψ = ( f − kψ ∗ f )+ �−1
ψ (� f − R fm). (6.74)

The first term on the right-hand side is the error caused by using an approximate inverse. It
is present even if we have perfect data. Bounds for this term depend in an essential way on
the character of the data. If f is assumed to be a continuous function of bounded support,
then, by taking W very large, the pointwise error,

‖ f − kψ ∗ f ‖∞ = sup
x∈�2

| f (x)− kψ ∗ f (x)|

can be made as small as desired. It is more realistic to model f as a piecewise continuous
function. In this case the difference, | f (x)−kψ ∗ f (x)|, can be made small at points where
f is continuous. Near points where f has a jump, the approximate reconstruction may
display an oscillatory artifact. Figure 6.5 is a radial graph of the reconstruction of χB1(x)
using the regularizing function graphed in Figure 6.4.
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Figure 6.5. Radial graph of kψ ∗ χB1, with W = 40,C = 5.
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Robust estimates for the second term are less dependent on the precise nature of f. For
h a function on � × S1 with bounded support, the approximate inverse is given by

(�−1
ψ h)(x) = 1

4π2

π∫
0

∞∫
−∞

h̃(r,ω)eir〈x,ω〉ψ̂(r)|r | dr

= 1

2π

π∫
0

(gψ ∗t h)(〈x,ω〉,ω) dω.

(6.75)

Here gψ = 
−1(ψ̂(r)|r |) and ∗t indicates convolution in the t-variable.
A simple estimate for the sup norm of �−1

ψ h follows from the sup-norm estimate for a
convolution:

‖l ∗ k‖L∞ ≤ ‖l‖L∞‖k‖L1 .

Applying this estimate gives

‖�−1
ψ h‖L∞ ≤ ‖gψ‖L∞

2π

π∫
0

∞∫
−∞

|h(t,ω)| dt dω (6.76)

If ψ̂ is nonnegative, then

|gψ(t)| ≤ |gψ(0)| =
∞∫

−∞
|r |ψ̂(r) dr.

Assuming that 0 ≤ ψ̂(t) ≤ M and that it vanishes outside the interval [−W, W ] leads to
the estimate

‖gψ‖L∞ ≤ MW 2.

Combining this with (6.76) gives

‖�−1
ψ h‖L∞ ≤ MW 2

2π
‖h‖L1(�×S1). (6.77)

This estimate shows that the sup norm of the error in the approximate reconstructed image,
�−1

ψ (� f − R fm), can be controlled if the measurement errors can be controlled in the
L1-norm. It also shows that the error increases as W increases.

To summarize, the error in the approximate reconstruction is bounded by

| f − fψ | ≤ | f − kψ ∗ f | + ‖gψ‖L∞

2π
‖� f − R fm‖L1(�×S1). (6.78)

Recall that

(kψ) = ψ̂ and 
(gψ) = |r |ψ̂ .
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The function kψ is rapidly decreasing and sharply peaked if ψ̂ is smooth and W is taken
large. On the other hand, gψ cannot decay faster than O(t−2). This is a consequence of the
fact that |r |ψ̂(r) is singular at r = 0.

Exercises
Exercise 6.6.3. Prove that ‖l ∗ k‖L∞ ≤ ‖l‖L∞‖k‖L1 .

Exercise 6.6.4. Suppose that ψ̂ is a smooth function with bounded support such that
ψ̂(0) 	= 0 and let

gψ(t) = 1

2π

∞∫
−∞

ψ̂(ξ)|ξ |eitξdξ.

Show that there is a constant C > 0 so that the following lower bound holds for large
enough t :

|gψ(t)| ≥ C

1 + t2
. (6.79)

Exercise 6.6.5. Use the central slice theorem to give a formula for kψ as a Bessel transform
of ψ̂(r).

Exercise 6.6.6. Use Hölder’s inequality to show that

‖l ∗ k‖L∞ ≤ ‖l‖L2‖k‖L2 .

Use this estimate to prove that

‖�−1
ψ h‖L∞ ≤ ‖gψ‖L2(�)√

4π
‖h‖L2(�×S1).

Under the assumptions used previously to estimate ‖gψ‖L∞, show that

‖gψ‖L2 ≤
√

2

3
MW

3
2 .

6.7 The Higher-Dimensional Radon Transform∗

See: A.2.1.

For the sake of completeness, we briefly present the theory of the Radon transform in
higher dimensions. The parameterization of the affine hyperplanes in �n is quite similar to
that used for lines in �2. Let ω be a unit vector in �n (i.e., a point on Sn−1) and let t ∈ �.
Each affine hyperplane has a representation in the form

lt,ω = {x ∈ �n : 〈x,ω〉 = t}.



220 Chapter 6. The Radon Transform

As in the two-dimensional case, lt,ω = l−t,−ω and the choice of vector ω defines an orien-
tation on the hyperplane.

In order to define the Radon transform, it is useful to choose vectors {e1, . . . , en−1} so
that

〈ω, e j 〉 = 0 and 〈ei , e j 〉 = δi j for i, j = 1, . . . , n − 1.

The n-vectors 〈ω, e1, . . . , en−1〉 are an orthonormal basis for �n. Define new orthogonal
coordinates, (t, s1, . . . , sn−1), on �n by setting

x = tω +
n−1∑
j=1

s j e j .

The n-dimensional Radon transform is defined by

� f (t,ω) =
∫

lt,ω

f dσn−1 =
∫

�n−1

f (tω +
∑

s j e j ) ds1 · · · dsn−1.

As before, the Radon transform is an even function

� f (t,ω) = � f (−t,−ω).

With this definition, the n-dimensional analogue of the Central slice theorem is as fol-
lows:

Theorem 6.7.1 (Central slice theorem). If f is an absolutely integrable function on �n

then

�̃ f (r,ω) =
∞∫

−∞
� f (t,ω)e−irt dt = f̂ (rω). (6.80)

The central slice theorem and the Fourier inversion formula give the Radon inversion
formula.

Theorem 6.7.2 (The Radon inversion formula). Suppose that f is a smooth function with
bounded support on �n. Then

f (x) = 1

2(2π)n

∫
Sn−1

∞∫
−∞

�̃ f (r,ω)rn−1eir〈ω,x〉 dr dω. (6.81)

Remark 6.7.1. This formula holds in much greater generality. Under the hypotheses in the
theorem, all the integrals converge absolutely and the simplest form of the Fourier inversion
formula applies.
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This formula takes a very simple form if the dimension is odd: Set n = 2k + 1. In this
case the r-integral in (6.81) can be computed explicitly:

1

2π

∞∫
−∞

�̃ f (r,ω)rn−1eir〈ω,x〉 dr = (−1)k∂2k
t � f (t, 〈ω, x〉). (6.82)

Using this expression in (6.81), we obtain

f (x) = (−1)k

2(2π)2k

∫
Sn−1

(∂2k
t � f )(〈ω, x〉,ω) dω.

Thus in odd dimensions the inverse of the Radon transform is differentiation in t followed
by back-projection.

The Laplace operator on �n is defined by

��n f =
n∑

j=1

∂2
x j

f.

This differential operator is invariant under rotations so it follows that, for the coordinates
(t, s1, . . . , sn−1) introduced previously, we also have the formula

��n f = ∂2
t f +

n−1∑
j=1

∂2
s j

f. (6.83)

This formula allows us to establish a connection between �(��n f ) and � f.

Proposition 6.7.1. Suppose that f is a twice differentiable function of bounded support on
�n, then

�(��n f ) = ∂2
t � f. (6.84)

We close our discussion by explaining how the Radon transform can be applied to
solve the wave equation. Let τ denote the time variable and c the speed of sound. The
wave equation for a function u(x; τ) defined on �n × � is

∂2
τ u = c2��n u.

If u satisfies this equation, then it follows from the proposition that, for each ω ∈ Sn−1,
�u(t,ω; τ) satisfies the equation

∂2
τ �u = c2∂2

t �u.

Here �u(t,ω; τ) is the Radon transform of u(x; τ) in the x-variables with τ the time
parameter. In other words, the Radon transform translates the problem of solving the wave
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equation in n dimensions into the problem of solving a family of wave equations in one
dimension.

The one-dimensional wave equation is solved by any function of the form

v(t; τ) = g(ct + τ)+ h(ct − τ).

The initial data are usually v(t; 0) and vτ (t; 0); they are related to g and h by

g(ct) = 1

2

⎡⎣v(t; 0) + c

t∫
−∞

vτ (s; 0) ds

⎤⎦ ,

h(ct) = 1

2

⎡⎣v(t; 0) − c

t∫
−∞

vτ (s; 0) ds

⎤⎦ .

(6.85)

If u(x; 0) = u0(x) and uτ (x; 0) = u1(x), then we see that

�u(t,ω; τ) = g(ct + τ ;ω)+ h(ct − τ ;ω),

where

g(ct;ω) = 1

2

⎡⎣�u0(t;ω)+ c

t∫
−∞

�u1(s;ω) ds

⎤⎦ ,

h(ct;ω) = 1

2

⎡⎣�u0(t;ω)− c

t∫
−∞

�u1(s;ω) ds

⎤⎦ .

(6.86)

Using these formulæ along with (6.81), we can obtain an explicit formula for the solution
of the wave equation.

Exercises
Exercise 6.7.1. Prove the central slice theorem.

Exercise 6.7.2. Let n = 2k + 1 and suppose that f is a function for which

� f (t,ω) = 0 if |t| < R.

Prove that f (x) = 0 if ‖x‖ < R. Is this true in even dimensions?

Exercise 6.7.3. Prove formula (6.83) and formula 6.84.

Exercise 6.7.4. Prove Proposition (6.7.1). Hint: Integrate by parts.

Exercise 6.7.5. Use the simplified version of the Radon inversion formula available for
n = 3 to derive an explicit formula for the solution of the wave equation in three space
dimensions in terms of the initial data u0(x) and u1(x).
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6.8 The Hilbert Transform and Complex Analysis∗

Earlier in this chapter, we used several explicit Hilbert transforms. Here we explain how
these computations are done. We restrict our discussion to the case of square-integrable
functions. If f ∈ L2(�) with Fourier transform f̂ , then, as a limit-in-the-mean,

f (x) = 1

2π

∞∫
−∞

eixξ f̂ (ξ) dξ.

Define two L2-functions:

f+(x) = 1

2π

∞∫
0

eixξ f̂ (ξ) dξ,

f−(x) = 1

2π

0∫
−∞

eixξ f̂ (ξ) dξ.

(6.87)

Obviously, we have f = f+ + f− and � f = f+ − f−. This decomposition is useful
because the function f+(x) has an extension as an analytic function in the upper half-plane,
H+ = {x + iy : y > 0}:

f+(x + iy) = 1

2π

∞∫
0

ei(x+iy)ξ f̂ (ξ) dξ.

The Fourier transform of f+(x + iy) in the x-variable is just f̂ (ξ)χ[0,∞)(ξ)e−yξ . Since
yξ > 0, we see that f+(x + iy) is in L2(�) for each y ≥ 0. A similar analysis shows that
f− has an analytic extension to the lower half-plane, H− = {x + iy : y < 0}, such that
f−(x + iy) ∈ L2(�) for each y ≤ 0. Indeed, it is not hard to show that this decomposition
is unique. The precise statement is the following.

Proposition 6.8.1. Suppose that F(x + iy) is an analytic function in H+ such that for
y ≥ 0,

1. ∞∫
−∞

|F(x + iy)|2dx < M,

2.

lim
y↓0

∞∫
−∞

|F(x + iy)|2dx = 0,
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then F ≡ 0.

Proof. By Theorem 4.4.4, a function satisfying the L2-boundedness condition has the following
property:

F̂(· + iy) = f̂ (ξ)e−yξ ,

where f̂ (ξ) is the Fourier transform F(x). Moreover, f̂ (ξ) = 0 if ξ < 0. By the Parseval formula,

∞∫
−∞

|F(x + iy)|2 dx =
∞∫

0

| f̂ (ξ)|2e−2yξ dξ.

The second condition implies that f̂ (ξ) = 0 and therefore F ≡ 0.

If the functions f± can be explicitly determined, then � f can also be computed. If f
is a “piece” of an analytic function, then this determination is often possible. The following
example is typical.

Example 6.8.1. Let

f (x) =
{√

1 − x2 for |x| < 1,

0 for |x| ≥ 1.

The analytic function,
√

1 − z2, has a single valued determination in the complex plane
minus the subset of �, {x : |x| ≥ 1}. Denote this function by F(z). Of course, F(x) =
f (x) for x ∈ (−1, 1), and the restrictions of F to the upper and lower half-planes, F± are
analytic. Moreover, for |x| > 1 we easily compute that

lim
ε↓0

]F+(x + iε) + F−(x − iε)] = 0.

This would solve our problem but for the fact that F(x + iy) is not in L2 for any y 	= 0.
To fix this problem we need to add a correction term that reflects the asymptotic behavior
of F(z) for large z. Indeed, if we set

f±(z) = 1

2
[F±(z)± i z],

then a simple calculation shows that

f+(x) + f−(x) = f (x) for all real x

and that

f±(x ± iy) � 1

x
for large x

and therefore f±(x ± iy) ∈ L2(�) for all y > 0. This allows us to compute the Hilbert
transform of f :

� f (x) = f+(x) − f−(x) =

⎧⎪⎨⎪⎩
i x for |x| < 1,

i(x +√
x2 − 1) for x < −1,

i(x −√
x2 − 1) for x > 1.

(6.88)
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Exercise
Exercise 6.8.1. Compute the Hilbert transform of χ[−1,1](x). A good place to start is with
the formula � f = limε↓0 hε ∗ f ; see formula (6.48) in Section 6.3.

6.9 Conclusion

We have now completed our analysis of the Radon transform and its inverse. As we shall
see in Chapter 11, the filtered back-projection formula is basis for most practical algorithms
used in medical image reconstruction. It is built out of three basic operations: the Hilbert
transform, differentiation, and back-projection. The Hilbert transform is intimately tied
to the theory of analytic functions of a complex variable. Using this connection, we were
able to compute several examples and deduce certain properties of the Hilbert transform. Of
particular importance for medical imaging is the fact that the Hilbert transform of a function
with bounded support never has bounded support. As we saw in several examples, this
implies that the reconstruction process for piecewise continuous functions with bounded
support entails subtle cancellation between positive and negative parts of the filtered Radon
transform.

In addition to the exact inversion formula, we also considered several approaches to
finding approximations that could be used on realistic data. Using the convolution theorem
for the Radon transform, the approximate reconstruction formulæ were shown to produce
smeared-out versions of the original function. An important feature of both the exact and
approximate formulæ is that they can be meaningfully applied to a large class of inputs and
have good continuity properties.

At this point we have developed a complete though idealized model for the measure-
ment and reconstruction process used in x-ray CT. It is a continuum model that assumes
that the Radon transform of the attenuation coefficient can be measured for all (t,ω). In
the next chapter we introduce Fourier series and take the first serious step toward a dis-
crete model. Fourier series is an analogue of the Fourier transform for functions defined in
bounded intervals or bounded rectangles. Of particular note, for our latter applications, are
the facts that the Fourier coefficients are a sequence of numbers and the inversion formula
for the Fourier series is expressed as a sum rather than an integral.





Chapter 7

Introduction to Fourier Series

In applications data are never collected along the whole real line or from the entire plane.
Real data can only be collected from a bounded interval or planar domain. In order to use
the Fourier transform to analyze and filter this type of data, we can either:

• extend the data by cutting it off to equal zero outside of the set over which the data
was collected, or

• extend the data periodically.

If the data are extended “by zero” then the Fourier transform is available. If the data are ex-
tended periodically then the data do not vanish at infinity, and hence their Fourier transform
is not a function.

Fourier series provide a tool for the analysis of functions defined on finite intervals
in � or products of intervals in �n. The goal of Fourier series is to express an “arbitrary”
periodic function as a infinite sum of complex exponentials. Fourier series serve as a bridge
between continuum models, like that presented in the previous chapter, and finite models,
which can be implemented on a computer. The theory of Fourier series runs parallel to that
of the Fourier transform presented in Chapter 4. After running through the basic properties
of Fourier series in the one-dimensional case, we consider the problem of approximating a
function by finite partial sums of its Fourier series. This leads to a discussion of the Gibbs
phenomenon, which describes the failure of Fourier series to represent functions near to
jump discontinuities. The chapter concludes with a brief introduction to Fourier series in
�n.

7.1 Fourier Series in One Dimension�

See: A.5.1, B.2.

To simplify the exposition, we begin with functions defined on the interval [0, 1]. This
does not limit the generality of our analysis, for if g is a function defined on an interval
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[a, b], then setting f (x) = g(a+ (b−a)x) gives a function defined on [0, 1] that evidently
contains the same information as g.

Definition 7.1.1. Let f be a complex-valued, absolutely integrable function defined on
[0, 1]. The L1-norm of f is defined to be

‖ f ‖L1 =
1∫

0

| f (x)| dx < ∞.

The set of such functions, L1([0, 1]), is a complete normed, linear space with norm defined
by ‖ · ‖L1 .

Definition 7.1.2. The Fourier coefficients of a function f in L1([0, 1]) is the bi-infinite
sequence of numbers, < f̂ (n) >, defined by

f̂ (n) =
1∫

0

f (x)e−2π inx dx for n ∈ �. (7.1)

Example 7.1.1. If f (x) = cos(2πmx), then, using the formula cos(y) = 2−1(eiy + e−iy),
we easily compute that

f̂ (n) =
{

1
2 if n = ±m,

0 if n 	= ±m.

Example 7.1.2. Let 0 ≤ a < b < 1. Then the Fourier coefficients of χ[a,b](x) are

χ̂[a,b](n) =
b∫

a

e−2π inx dx

=
{
(b − a) if n = 0,
e−2π ina−e−2π inb

2π in if n 	= 0.

(7.2)

Example 7.1.3. Let f (x) = sin(πx), again using the expression for the sine in terms of
exponentials, we compute

f̂ (n) = −2

π

[
1

4n2 − 1

]
. (7.3)

A function f defined on the interval [0, 1] is even if

f (x) = f (1 − x)

and odd if
f (x) = − f (1 − x).

The symmetry properties of a function are reflected in its Fourier coefficients. These results
are summarized in a proposition.
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Proposition 7.1.1. Let f be an L1-function on [0, 1].
1. If f is real valued, then

f̂ (−n) = f̂ (n).

2. If f is real valued and even, then its Fourier coefficients are real.

3. If f is real valued and odd, then its Fourier coefficients are purely imaginary.

The proof of the proposition is left as an exercise.
To help study the reconstruction of function from its Fourier coefficients, we introduce

the partial sum operator.

Definition 7.1.3. Let f be an absolutely integrable function on [0, 1]. For each positive
integer N, define the Nth-partial sum of the Fourier series of f to be

SN( f ) =
N∑

n=−N

f̂ (n)e2π inx . (7.4)

The evaluation of SN ( f ) at x is denoted SN( f ; x). For each N the partial sum is a linear
operation

SN ( f + g) = SN ( f )+ SN (g) and SN (a f ) = aSN ( f ) for a ∈ �.

In applications we work with a fixed partial sum, so it is important to understand in
what sense SN( f ) is an approximation to f. The best we might hope for is that

lim
N→∞ SN ( f ; x) = f (x)

at every point x . At discontinuities of f, such a statement is unlikely to be true. In fact, it
can even fail at points where f is continuous. The pointwise convergence of Fourier series
is a subtle problem. For the simplest result we make a strong hypothesis about the rate of
decay of the Fourier coefficients.

Proposition 7.1.2 (Fourier inversion formula). If f is a continuous function defined on
[0, 1] such that the Fourier coefficients of f satisfy

∞∑
n=−∞

| f̂ (n)| < ∞, (7.5)

then f is represented, at every point, by its uniformly convergent Fourier series:

f (x) =
∞∑

n=−∞
f̂ (n)e2π inx , for all x ∈ [0, 1]. (7.6)
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Proof. The hypothesis (7.5) and the comparison test for infinite sums, Theorem B.2.2, implies that
the infinite sum in (7.6) is uniformly convergent for all real numbers. We need to show that it
converges to f. For 0 < r < 1, define the absolutely convergent series

Pr (x) =
∞∑

n=−∞
r |n|e2π inx = 1 + 2 Re

[ ∞∑
n=1

rne2π inx

]
. (7.7)

Using the second expression and the formula for the sum of a geometric series, we see that

Pr (x) = 1 − r2

1 − 2r cos(2πx)+ r2 .

For 0 ≤ r < 1 this formula implies that Pr (x) > 0. For each such r define

fr (x) =
1∫

0

Pr (x − y) f (y) dy.

From the representation of Pr as an infinite sum, we deduce that

fr (x) =
∞∑

j=−∞
f̂ (n)r |n|e2π inx .

In light of (7.5), the comparison test for infinite sums implies that

lim
r↑1

fr (x) =
∞∑

j=−∞
f̂ (n)e2π inx ,

with uniform convergence for x ∈ �. To complete the proof, we now show that limr↑1 fr (x) =
f (x).

For each r
1∫

0

Pr (x) dx = 1.

This fact and the positivity of Pr imply that

| fr (x)− f (x)| =
∣∣∣∣∣∣

1∫
0

Pr (x − y)( f (y)− f (x)) dy

∣∣∣∣∣∣
≤

1∫
0

Pr (x − y)| f (y)− f (x)| dy.

(7.8)

If x 	= 0, then
lim
r↑1

Pr (x) = 0.

In fact, if ε > 0 is fixed, then there is a 0 < δ so that

Pr (x) < ε if r > 1 − δ and ε < x < 1 − ε. (7.9)
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The concentration, as r tends to 1, of Pr (x) near x = 0 is evident in figure 7.1.

10

20

30

−0.4 −0.2 0.2 0.4

Figure 7.1. Graph of the function Pr for r = .5, .75 and .95.

To show that the difference f (x)− fr (x) becomes small, we break the integral into two pieces.
One piece is small because f is continuous at x; the other is small because f is bounded and Pr (t)
is small, if t is far enough from 0. Since f is continuous, given η > 0 there is an ε′ > 0 so that

|x − y| < ε′ implies that | f (x)− f (y)| < η.

There is also an M so that | f (y)| ≤ M for all y. Let ε = min{ε′, η}. From (7.9) it follows that there
is a δ > 0 so that r > 1 − δ implies that

| fr (x)− f (x)| ≤
1∫

0

Pr (x − y)| f (y)− f (x)| dy

=
∫

|x−y|<ε

Pr (x − y)| f (y)− f (x)| dy +
∫

|x−y|>ε

Pr (x − y)| f (y)− f (x)| dy

≤ η

∫
|x−y|<ε

Pr (x − y) dy + 2Mε

≤ (1 + 2M)η.

(7.10)

This estimate shows that limr↑1 fr (x) = f (x) and thereby completes the proof of the Proposition.
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Remark 7.1.1. The argument in the second part of the proof does not require f to be
everywhere continuous. It shows that, if f is bounded, then < fr (x) > converges to
f (x) at any point of continuity of f. This does not mean that the Fourier series of f also
converges to f at such a point. The hypothesis (7.5), on the Fourier coefficients of f,
implies that f is a continuous function. Exercise 7.3.16 outlines a proof of the Fourier
inversion formula, without the assumption that f is continuous.

As was the case with the Fourier integral, the Fourier coefficients of an absolutely
integrable function f may fail to satisfy (7.5). For example, let

f (x) =
{

1 if x ∈ [0, 1
2 ],

0 if x ∈ ( 1
2 , 1].

This function is piecewise smooth with jump discontinuities at 0 and 1
2 . A calculation shows

that

f̂ (n) =

⎧⎪⎨⎪⎩
0 if n is even and n 	= 0,
1
2 for n = 0,

1
π in if n is odd.

If the Fourier coefficients satisfy (7.5), then the partial sums, < SN( f ) >, converge
uniformly to f. Since each partial sum is a continuous function, it follows from an elemen-
tary result in analysis that the limit is also a continuous function. Because discontinuous
data are common in imaging applications, the difficulties of representing such functions in
terms of Fourier series is an important topic. It is considered, in detail, in Section 7.5.

Exercises
Exercise 7.1.1. Compute the Fourier coefficients of sin(2πmx).

Exercise 7.1.2. Find a more explicit formula for χ̂[ 1
4 ,

3
4 ].

Exercise 7.1.3. Compute the Fourier coefficients of cos(πx
2 ).

Exercise 7.1.4. Prove Proposition 7.1.1.

Exercise 7.1.5. Show that Pr , defined in (7.7), is nonnegative and has total integral 1 for
any 0 ≤ r < 1.

Exercise 7.1.6. Show that if ε > 0 is fixed, then there is a 0 < δ so that

Pr (x) < ε if r > 1 − δ and ε < x < 1 − ε. (7.11)

Exercise 7.1.7. Suppose that f is an L1-function defined on �. For each positive integer
N define

fN (x) = f (N x − (1 − x)N) for x ∈ [0, 1].
Show that if < mN > is a sequence such that limN→∞ πmN

N = ξ then

lim
N→∞ 2Ne

π imN
N f̂N (mN ) = f̂ (ξ).
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Exercise 7.1.8. Suppose that f is a function defined on [a, b]. Give definitions for such a
function to be even or odd.

Exercise 7.1.9. Use the concept of a set of measure zero to explain why it is unreasonable
to expect that SN( f ; x) will converge to f (x) at a point where f is discontinuous.

7.2 The Decay of Fourier Coefficients

See: A.4.1, B.2.

As with the Fourier transform, the rate of decay of the Fourier coefficients is deter-
mined by the smoothness of the function. The only general result on the decay of Fourier
coefficients for absolutely integrable functions is the Riemann-Lebesgue lemma.

Theorem 7.2.1 (Riemann-Lebesgue lemma). If f belongs to L1([0, 1]), then f̂ (n) → 0
as |n| → ∞.

Proof. Extending a function f by zero defines a function F in L1(�):

F(x) =
{

f (x) for x ∈ [0, 1],
0 for x /∈ [0, 1].

The Fourier transform of F is given by

F̂(ξ) =
1∫

0

f (x)e−ixξ dx,

and therefore the Fourier coefficients of f can be expressed in terms of F̂ by

f̂ (n) = F̂(2πn).

Using this relation and Theorem 4.2.2, applied to F̂, we conclude that

lim|n|→∞ f̂ (n) = 0.

The Fourier coefficients satisfy a simple estimate, which we record as a proposition.

Proposition 7.2.1. If f belongs to L1([0, 1]), then

| f̂ (n)| ≤ ‖ f ‖L1 for all n ∈ �. (7.12)
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The Riemann-Lebesgue lemma does not say that < f̂ (n)> goes to zero at some partic-
ular rate, say faster than < n−1/3 >. In fact, there is a theorem saying that for any bi-infinite
sequence, <an >, with

lim|n|→∞ an = 0,

there exists an integrable function, f, whose Fourier coefficients < f̂ (n)> satisfy | f̂ (n)| ≥
|an| for all n. This shows that Fourier coefficients can go to zero arbitrarily slowly; see
[79, section I.4]. To obtain more precise results, we need to make assumptions about the
regularity of f.

Exercises
Exercise 7.2.1. Explain why (7.12) is a “continuity” result for the map f �→< f̂ (n) > .

Exercise 7.2.2. Use summation by parts twice to show that

f (x) =
∞∑

n=2

cos(2πnx)

log n

represents a nonnegative, integrable function. In light of this, it is a remarkable fact that

∞∑
n=2

sin(2πnx)

log n

does not represent an absolutely integrable function!

7.2.1 Periodic Extension

The definition of the Fourier coefficients, (7.1), only requires that f be defined on the
interval [0, 1]. A function represented by a Fourier series is automatically defined for all
real numbers as a periodic function. This is clear if the sum in (7.6) converges uniformly.
The fact that

e2π in(x+1) = e2π inx for all n and x ∈ �

implies that the infinite sum defines a function on � that is continuous and 1-periodic; that
is,

f (x + 1) = f (x) for all x ∈ �.

This shows that, when discussing Fourier series, we should only consider a function on
[0, 1] to be continuous if both

lim
y→x

f (y) = f (x) for x ∈ (0, 1), and

lim
x→0+ f (x) = f (0) = f (1) = lim

x→1− f (x).

That is, we think of f as a 1-periodic function restricted to the interval [0, 1].
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On the other hand, a function defined on [0, 1) can be extended to define a 1-periodic
function. If x is in [1, 2), then we define

f (x)
d= f (x − 1);

now for x in [−2, 0) we can define

f (x)
d= f (x + 2), and so on.

It is clear that the values of f in [0, 1) uniquely specify a 1-periodic function on the whole
real line.

Definition 7.2.1. If a function, f, is defined on [0, 1), then its 1-periodic extension to � is
the function f̃ such that f̃ (x) = f (x) for x in [0, 1) and

f̃ (x + n) = f̃ (x) for all n ∈ �. (7.13)

The 1-periodic extension of f is also denoted by f.
If f is a continuous function on [0, 1] in the usual sense, then the condition f (0) =

f (1) is equivalent to the condition that the 1-periodic extension of f to � is continuous.

Example 7.2.1. The function f (x) = x is a continuous function on [0, 1] but its 1-periodic
extension, shown in Figure 7.2(a), is not.

0.2

0.4

0.6

0.8

1

−2 −1 1 2

(a) One period of x.

0.2

0.4

0.6

0.8

1

−2 −1 1 2

(b) The 1-periodic extension
of x.

Figure 7.2. Periodic extension may turn a continuous function into discontinuous function.

These considerations easily extend to the derivatives of f. Suppose that f is differen-
tiable on [0, 1]. This means that f has continuous derivative in (0, 1) and the following
limits exist:

f ′
+(0) = lim

x→0+
f (x) − f (0)

x
, where lim

x→0+ f ′(x) = f ′
+(0) and

f ′
−(1) = lim

x→1−
f (1) − f (x)

1 − x
, where lim

x→1− f ′(x) = f ′
−(1);

(7.14)
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f ′+(0) and f ′−(1) are right and left derivatives, respectively. The 1-periodic extension of
f has both left and right derivatives at each integer point. Using the definition, we see
that the left derivative at 1 is f ′−(1) while the right derivative is f ′+(0). The 1-periodic
extension has a continuous derivative provided that f ′+(0) = f ′−(1). Higher-order left and
right derivatives are defined recursively. In order for a k-times differentiable function f
defined on [0, 1] to be k-times differentiable as a 1-periodic function, it is necessary that

f [ j ]
+ (0) = f [ j ]

− (1) for j = 0, 1, . . . , k. (7.15)

Example 7.2.2. The 1-periodic extension, shown in Figure 7.3(b), of the function sin(πx)
is continuous but not differentiable.

0.2
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1

−3 −2 −1 1 2 3

(a) One period of sin(πx).

0.2

0.4

0.6

0.8

1

−3 −2 −1 1 2 3

(b) The 1-periodic extension of
sin(πx)

Figure 7.3. A continuous periodic extension may not be differentiable.

Exercises

Exercise 7.2.3. Let f be defined as the function f (x) = x for x in the interval [− 1
2 ,

1
2).

Plot its 1-periodic extension.

Exercise 7.2.4. Give precise definitions for the higher-order left and right derivatives of a
function.

Exercise 7.2.5. Show that if f is a k-times differentiable function defined on [0, 1] that
satisfies (7.15), then its 1-periodic extension is a �k-function on �.
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7.2.2 Fourier Coefficients of Differentiable Functions

Suppose that f is continuously differentiable on [0, 1]; for the moment we do not assume
that f (0) = f (1). Integrating by parts gives

f̂ (n) =
1∫

0

f (x)e−2π inx dx = 1

−2π in
f (x)e−2π inx

∣∣∣∣1
0

+ 1

2π in

1∫
0

f ′(x)e−2π inx dx

= f (1)− f (0)

−2π in
+ 1

2π in

1∫
0

f ′(x)e−2π inx dx .

(7.16)

In other words,

f̂ (n) = 1

2π in
[ f (0)− f (1)] + f̂ ′(n)

2π in
.

Since f is continuously differentiable in [0, 1], its first derivative is an integrable function.
By the Riemann-Lebesgue lemma, the Fourier coefficients of f ′ go to zero as n goes to
infinity. This shows that if f (0) 	= f (1), then f̂ (n) decays exactly as 1/n. The 1/n rate
of decay is characteristic of a function with a simple jump discontinuity. If f (0) = f (1),
then the Fourier coefficients of f are given by

f̂ (n) = f̂ ′(n)
2π in

,

which therefore go to zero faster than 1/n.
If f has (k − 1)-derivatives, as a 1-periodic function, then the integration by parts in

(7.16) can be repeated to obtain the following:

Theorem 7.2.2. If f belongs to �k([0, 1]) and

f+(0) = f−(1), f ′
+(0) = f ′

−(1), . . . , f (k−1)
+ (0) = f (k−1)

− (1),

then

f̂ (n) = f̂ (k)(n)

(2π in)k
for n 	= 0. (7.17)

The Riemann-Lebesgue lemma then implies that if f is k-times continuously differ-
entiable on [0, 1], periodic in the appropriate sense, then < f̂ (n) > decays faster than
< n−k > . This result has a partial converse.

Theorem 7.2.3. If f is in L1([0, 1]) and there is a constant C and an ε > 0, so that

| f̂ (n)| ≤ C

(1 + |n|)k+ε
,

then f is in �(k−1)([0, 1]) with f (0) = f (1), f ′+(0) = f ′−(1), . . . , f (k−1)
+ (0) = f (k−1)

− (1).
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Proof. Using the comparison test, Theorem B.2.2, the estimates on < f̂ (n) > imply that the series∑
f̂ (n)e2π inx and its j th derivatives, for 0 ≤ j ≤ k − 1, converge absolutely and uniformly.

Theorem A.4.1 implies that
∞∑

n=−∞
f̂ (n)e2π ix

represents a (k − 1)-times, continuously differentiable function and that we can differentiate, term
by term, to obtain

f [ j ](x) =
∞∑

n=−∞
(2π in) j f̂ (n)e2π inx .

See [111].

As before, formula (7.17) can be viewed as a formula for the Fourier coefficients of
f [ j ] in terms of those of f.

Corollary 7.2.1. If f has k integrable, derivatives on [0, 1] with f [ j ]
+ (0) = f [ j ]

− (1) for
0 ≤ j ≤ k − 1, then, for j ≤ k,

f̂ [ j ](n) = [2π in] j f̂ (n). (7.18)

For the case of the Fourier series, it is important that the derivatives are also periodic
functions.

Example 7.2.3. Let f (x) = x(1−x) for x ∈ [0, 1]. Then f (0) = f (1) but f ′(x) = 1−2x,
is not continuous as a 1-periodic function. The Fourier coefficients of f are

f̂ (n) =
{

1
6 , for n = 0,
−1

2π2n2 , for n 	= 0.
(7.19)

The Fourier coefficients of f ′ are

f̂ ′(n) =
{

0, for n = 0,
1

π in , for n 	= 0,
(7.20)

showing that f̂ ′(n) = (2π in) f̂ (n). Note the relationship between the smoothness of f, as
a 1-periodic function, and the decay of its Fourier coefficients.

Example 7.2.4. If we set

f (x) = x − n for x ∈ (n, n + 1],
then f does not have any periodic derivatives. The Fourier coefficients of f are given by

f̂ (n) =
{

1
2 for n = 0,

i
2πn for n 	= 0.

They display the 1
n -rate of decay, which is characteristic of functions with simple jump dis-

continuities. On the interval (0, 1), f ′(x) equals 1; note, however, that f̂ ′(n) 	= (2π in) f̂ (n),
for any n.
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7.3 L2-Theory

Theorem 7.2.3 is not the exact converse to Theorem 7.2.2, though it is closely analogous to
the results for the Fourier transform and reflects the subtlety of pointwise convergence for
Fourier series. Simpler statements are obtained by using the L2-norm. Recall that

L2([0, 1]) = { f :
1∫

0

| f (x)|2 dx < ∞};

with the norm defined on L2([0, 1]) by

‖ f ‖2 =
⎡⎣ 1∫

0

| f (x)|2dx

⎤⎦1/2

.

With this norm L2([0, 1]) is a complete normed linear space. An element of L2([0, 1]) is
called a square-integrable or square-summable function.

7.3.1 Geometry in L2([0, 1])
See: A.2.5.

The norm on L2([0, 1]) is defined by the inner product,

〈 f, g〉L2 =
∫

f (x)g(x) dx by ‖ f ‖2
2 = 〈 f, f 〉L2 .

The Cauchy-Schwarz inequality holds for functions in L2([0, 1]).
Theorem 7.3.1 (Cauchy-Schwarz inequality). If f, g are two functions in L2([0, 1]), then

|〈 f, g〉L2 | ≤ ‖ f ‖2‖g‖2. (7.21)

The proof is exactly as for the �n-case given in Section 2.3.2. A consequence of the
Cauchy-Schwarz inequality is that L2([0, 1]) is a subspace of L1([0, 1]). If f belongs to
L2([0, 1]), then

‖ f ‖L1 =
1∫

0

| f (x)| dx

≤
⎡⎣ 1∫

0

| f (x)|2 dx

⎤⎦
1
2
⎡⎣ 1∫

0

1 · dx

⎤⎦
1
2

.

(7.22)
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Because the L2-norm is defined by an inner product, it is possible to do many finite-
dimensional Euclidean geometric constructions in L2. As earlier, the Cauchy-Schwarz in-
equality implies that

|〈 f, g〉L2 |
‖ f ‖2‖g‖2

≤ 1.

We can therefore define an angle θ between f and g in L2([0, 1]) by setting

cos θ = |〈 f, g〉L2 |
‖ f ‖2‖g‖2

.

This angle is usually assumed to take values in [0, π
2 ]. Two functions f, g ∈ L2([0, 1]) are

orthogonal if the angle between them is π
2 ; that is,

〈 f, g〉L2 = 0.

For example,

〈e2π inx , e2π imx 〉L2 =
1∫

0

e2π i(n−m)x dx =
{

1 if n = m,

0 if n 	= m.
(7.23)

In other words, the functions {e2π inx | n ∈ �} are pairwise orthogonal and each has length
1.

If V is a subspace of �n, then the set of vectors orthogonal to V is also a subspace. It
is called the orthogonal complement of V and is usually denoted by V ⊥ :

V ⊥ = {z ∈ �n : 〈z, v〉 = 0 for every v ∈ V }.

Every vector in �n has a unique representation as

z = z0 + z1, where z0 ∈ V and z1 ∈ V ⊥. (7.24)

Define a map from �n to itself by setting

PV (z) = z0.

This is a linear map with range equal to V . It has several properties:

1. P2
V = PV .

2. If z ∈ V, then PV (z) = z.

3. If z ∈ V ⊥, then PV (z) = 0.
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Any linear map with the first property is called a projection. A map with all these properties
is called the orthogonal projection onto V . The vector PV (z) has a variational characteri-
zation: PV (z) is the vector in V that minimizes the distance, ‖z − v′‖, among all v′ in V .
This construction generalizes to L2.

If S ⊂ L2([0, 1]) is a subspace then we say that f is orthogonal to S if

〈 f, g〉L2 = 0 for every g ∈ S.

Definition 7.3.1. Let S be a subspace of L2([0, 1]). The orthogonal complement of S,
denoted S⊥, is the subspace of L2([0, 1]) consisting of all functions orthogonal to S,

S⊥ = {g ∈ L2([0, 1]) : 〈 f, g〉 = 0 for all f ∈ S}.
As in finite dimensions, a subspace S defines a linear map PS, satisfying the properties

enumerated previously. That is, P2
S = PS; for f ∈ S, PS( f ) = f ; and for f ∈ S⊥,

PS( f ) = 0. In finite-dimensional linear algebra the existence of orthogonal projections is
an algebraic fact; it requires no analysis. Using the variational characterization of PS( f ),
it can be shown, using estimates, that the orthogonal projection onto a closed subspace of
L2([0, 1]) always exists; see [42].

If f is an L2-function on [0, 1], then it is also absolutely integrable; hence its Fourier
coefficients are defined. In this case the Fourier coefficients of f go to zero sufficiently fast
to make

∑∞
−∞ | f̂ (n)|2 converge. Once again, we have a Parseval formula.

Theorem 7.3.2 (Parseval formula). If f belongs to L2([0, 1]), then

1∫
0

| f (x)|2dx =
∞∑

n=−∞
| f̂ (n)|2.

Proof. Again the theorem is simple to prove for a special class of L2-functions; in this instance, the
trigonometric polynomials,

� = {
N∑

j=−N

c j e
2π i j x : c j ∈ �, N ∈ �}.

If f belongs to �, then multiplying out the finite sum defining f f̄ gives

| f (x)|2 =
N∑

j,k=−N

c j c̄ke2π i( j−k)x . (7.25)

Integrating both sides of (7.25), using (7.23), gives

1∫
0

| f (x)|2dx =
N∑

j=−N

|c j |2.

This is the Parseval formula for f in �.
To complete the proof we need two additional facts. The first is that an arbitrary L2-function is

well approximated (in the L2-norm) by trigonometric polynomials.
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Lemma 7.3.1. If f belongs to L2([0, 1]) and ε > 0 is given, then there is a trigonometric polyno-
mial, g so that ‖ f − g‖L2 < ε.

The second is Bessel’s inequality. It states that among functions of the form

gN =
N∑

n=−N

cne2π inx

the N th-partial sum of the Fourier series of f minimizes the error,

‖ f − gN‖L2 .

The lemma is proved in Section 7.5.3 and Bessel’s inequality is proved in Section 7.3.3.
The definition of the Fourier coefficients implies that

0 ≤ ‖ f − SN ( f )‖2
L2 = ‖ f ‖2

L2 − ‖SN ( f )‖2
L2

and therefore
‖SN ( f )‖2

L2 ≤ ‖ f ‖2
L2 .

In particular, using the result for trigonometric polynomials and letting N tend to infinity, we deduce
that

∞∑
n=−∞

| f̂ (n)|2 ≤
1∫

0

| f (x)|2 dx . (7.26)

On the other hand, the triangle inequality gives the estimate

‖ f ‖L2 ≤ ‖ f − SN ( f )‖L2 + ‖SN ( f )‖L2 .

Bessel’s inequality, Lemma 7.3.1, and the result for trigonometric polynomials now show that, for
any ε > 0,

1∫
0

| f (x)|2 dx ≤
∞∑

n=−∞
| f̂ (n)|2 + ε.

Together these inequalities complete the proof of Parseval’s formula.

A bi-infinite sequence < an > is square summable if

‖ < an > ‖l2 =
√√√√ ∞∑

n=−∞
|an|2

is finite. The set of square summable sequences is denoted l2. With the norm ‖ · ‖l2 it is a
complete normed linear space. The Parseval formula states that the map from L2([0, 1]) to
l2 defined by f �→< f̂ (n) > is an isometry. It can be viewed as a criterion for a sequence
to be the Fourier coefficients of a square-summable function. For example, < |n|−1/2 >
cannot be the Fourier coefficients of an L2 function because

∞∑
n=1

1

n
= ∞.

The Parseval formula has a simple geometric interpretation.
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Theorem 7.3.3. The set of exponentials {e2π inx : n = −∞, . . . ,∞} is an orthonormal
basis for L2([0, 1]).
Remark 7.3.1. The Parseval formula should therefore be regarded as an infinite-dimensional
version of Pythagoras’ theorem.

Exercises
Exercise 7.3.1. Let V ⊂ �n be a subspace. Prove that V ⊥ is a subspace and formula (7.24).
Find an explicit formula for PV . Hint: Introduce orthonormal bases.

Exercise 7.3.2. Let V ⊂ �n be a subspace. Prove that PV (z) is the vector in V closest to
z.

Exercise 7.3.3. Let V, W ⊂ �n be subspaces; suppose that V ∩ W = {0} and dim V +
dim W = n. Show that every vector z ∈ �n has a unique representation z = v + w, where
v ∈ V and w ∈ W. Show that the linear map MV (z) = v is a projection. When is MV the
orthogonal projection onto V ?

Exercise 7.3.4. Let V be a one-dimensional subspace of �2. Show that there exist sub-
spaces, W, satisfying the hypotheses of Exercise 7.3.3 so that the ratio ‖MV z‖‖z‖−1 can
be made as large as you like.

Exercise 7.3.5. Let S ⊂ L2([0, 1]) be a subspace. Show that S⊥ is also a subspace.

Exercise 7.3.6. Let S ⊂ L2([0, 1]) be a subspace. Show that Id−PS is the orthogonal
projection onto S⊥

Exercise 7.3.7. Let S ⊂ L2([0, 1]) be a subspace. Show that for any f, g in L2([0, 1]), the
following identity holds:

〈PS f, g〉L2 = 〈 f, PSg〉L2 .

In other words, the orthogonal projection onto S, PS, is a self-adjoint operator. Show that
‖PS f ‖L2 ≤ ‖ f ‖, for every f ∈ L2([0, 1]).
Exercise 7.3.8. Suppose that S ⊂ L2([0, 1]) is the subspace defined as the scalar multiples
of a single function f. Find an explicit formula for PS .

Exercise 7.3.9. Prove Hölder’s inequality for l2: If < an > and < bn > are square
summable sequences, then∣∣∣∣∣

∞∑
n=−∞

anb̄n

∣∣∣∣∣ ≤
√√√√ ∞∑

n=−∞
|an|2

∞∑
n=−∞

|bn|2.

Exercise 7.3.10. Using the Parseval formula and the function in Example 7.2.4, prove that

∞∑
n=1

1

n2
= π2

6
. (7.27)

Exercise 7.3.11. Let < an > belong to l2. Show that there is a function f ∈ L2[0, 1] with
f̂ (n) = an, for all n.
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7.3.2 The L2-Inversion formula

For any f in L2([0, 1]), each partial sum, SN ( f ), is a very nice function; it is infinitely
differentiable and all of its derivatives are periodic. For a general function, f, in L2([0, 1])
and point x in [0, 1], we therefore do not expect that

f (x) = lim
N→∞ SN ( f ; x).

In fact, the partial sums may not converge pointwise to a limit at all.

Example 7.3.1. Define a sequence of coefficients by setting f̂ (n) = n− 3
4 for n > 0 and

zero otherwise. Because ∞∑
n=1

[n− 3
4 ]2 < ∞,

these are the Fourier coefficients of an L2-function. However,

∞∑
n=1

n− 3
4 = ∞.

The Fourier coefficients of an L2-function < f̂ (n)> do not generally go to zero fast enough
to make the series ∞∑

n=−∞
f̂ (n)e2π inx

converge pointwise.

This means that we need to find a different way to understand the convergence of the
Fourier series for L2-functions. Parseval’s formula implies that the Fourier series of an
L2-function converges to the function in the L2-norm.

Proposition 7.3.1 (L2-inversion formula). If f belongs to L2([0, 1]), then

lim
M,N→∞

‖ f −
N∑

j=−M

f̂ ( j)e2π i j x‖L2 = 0. (7.28)

Remark 7.3.2. As before, it is said that the Fourier series of f converges to f in the mean;
this is denoted

LIM
M,N→∞

N∑
j=−M

f̂ ( j)e2π i j x = f (x).

Proof. Given the Parseval formula, the proof is a simple computation:

‖ f −
N∑

j=−M

f̂ ( j)e2π i j x‖2
L2 = ‖ f ‖2

L2 −
N∑

j=−M

| f̂ ( j)|2. (7.29)
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From the Parseval formula it follows that

‖ f ‖2
L2 −

N∑
j=M

| f̂ ( j)|2 =
−(M+1)∑
j=−∞

| f̂ ( j)|2 +
∞∑

j=N+1

| f̂ ( j)|2. (7.30)

As the sum
∑∞

−∞ | f̂ ( j)|2 is finite, the right-hand side in (7.30) tends to zero as M and N tend to
infinity.

If we measure the distance between two functions in the L2 sense, then it is shown in
Proposition 7.3.1 that the distance between f and the partial sums of its Fourier series goes
to zero as N tends to ∞. This means that, in some average sense, < SN ( f ) > converges to
f. While not as simple as pointwise convergence, this concept is well adapted to problems
in which measurement is a serious consideration. Given a function f and a point x, the
difference

| f (x) − SN ( f ; x)|
cannot be exactly measured. A reasonable mathematical model for what actually can be
measured is an average of such differences. For example, we let

gε(y) =
{

0 if |x − y| > ε,
1

2ε if |x − y| ≤ ε.

Note that gε(y) ≥ 0 for all y and

1∫
0

gε(y) dy = 1;

the positive number ε reflects the resolution of the measuring apparatus. A reasonable
measure for the size of the error |SN( f ; x) − f (x)| is given by the average

1∫
0

| f (y)− SN( f ; y)|gε(y) dy ≤ ‖ f − SN ( f )‖2‖gε‖2 = 1√
2ε

‖ f − SN( f )‖2.

This estimate for the error is an application of (7.21). For a fixed resolution, we see that, as
N → ∞, the measured difference between f and SN( f ) goes to zero. Any function g in
L2([0, 1]) defines a measurement,

mg( f ) = 〈 f, g〉L2 .

In a precise sense any continuous, scalar-valued, linear measurement is of this form. For
any fixed function g,

lim
N→∞ mg(SN ( f )) = mg( f ).



246 Chapter 7. Introduction to Fourier Series

Exercises
Exercise 7.3.12. Prove (7.29).

Exercise 7.3.13. Given any function g ∈ L2([0, 1]), define a measurement by setting
mg( f ) = 〈 f, g〉L2 . Show that for any f ∈ L2([0, 1]),

lim
N→∞

mg(SN ( f )) = mg( f ).

7.3.3 Bessel’s Inequality

See: A.5.1.

A fundamental issue, both in proving theorems and applying mathematical techniques
to real-world problems, is that of approximation. In general, a function in L2([0, 1]) has an
infinite number of nonzero Fourier coefficients. This means that most functions cannot be
exactly represented by a finite sum of exponentials. As we can only handle a finite amount
of data, we often need to find the “best” way to approximate a function by a finite sum of
exponential functions. What is meant by the “best approximation” is determined by how
the error in the approximation is measured.

For each N we define the space of exponential polynomials of degree N to be

�N = {
N∑

n=−N

ane2π inx : an ∈ �}.

Let l denote a norm on a space of functions defined on [0, 1]. The norm defines a distance
by setting dl( f, g) = l( f − g). Each choice of a norm l gives an approximation problem:

Given a function f with l( f ) < ∞, find the function g f ∈ �N such that

dl( f, g f ) = min{dl( f, g) : g ∈ �N }.

That is, find the point in �N whose dl-distance to f is as small as possible. The
minimum value dl( f, g f ) is called the error in the approximation.

The ease with which such a problem is solved depends largely on the choice of l.
For most choices of norm this problem is very difficult to solve; indeed is not solvable in
practice. We usually have to settle for finding a sequence of approximants < gN > for
which the errors < dl( f, gN ) > go to zero at essentially the same rate as the optimal error.
A notable exception is L2. The following theorem gives the answer if the error is measured
in the L2-norm.
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Theorem 7.3.4 (Bessel’s inequality). Given a function f in L2([0, 1]) and complex num-
bers {a−N , . . . , aN }, the following inequality holds:

‖ f −
N∑

n=−N

f̂ (n)e2π inx‖2 ≤ ‖ f −
N∑

n=−N

ane2π inx‖2

with equality if and only if an = f̂ (n) for all n ∈ {−N, . . . , N}.

Proof. Using the relation

‖ f + g‖2
2 = 〈 f + g, f + g〉L2 = ‖ f ‖2

2 + 2 Re〈 f, g〉L2 + ‖g‖2
2,

we have

‖ f −
N∑

n=−N

ane2π inx‖2
2 − ‖ f −

N∑
n=−N

f̂ (n)e2π inx‖2
2 = ‖

N∑
n=−N

(an − f̂ (n))e2π inx‖2
2 ≥ 0.

The equality holds if and only if an = f̂ (n) for −N ≤ n ≤ N.

Another way to say this is that for every N, the partial sum SN ( f ) gives the best L2-
approximation to f among functions in �N . A consequence of the proof of Bessel’s in-
equality is that

〈 f − SN ( f ), g〉L2 = 0 for any g ∈ �N .

That is, the error f − SN ( f ) is orthogonal to the subspace �N . This gives another descrip-
tion of SN ( f ) as the L2-orthogonal projection of f onto the subspace �N .

Proposition 7.3.2. The map f �→ SN ( f ) is the L2-orthogonal projection onto �N .

Exercises
Exercise 7.3.14. Prove Proposition 7.3.2.

Exercise 7.3.15. For each of the norms

‖ f ‖p =
⎡⎣ 1∫

0

| f (x)|pdx

⎤⎦
1
p

, 1 < p < ∞

find the variational condition characterizing the function gN ∈ �N that minimizes the error
‖ f − gN‖p. Explain why these problems are very difficult to solve if p 	= 2.



248 Chapter 7. Introduction to Fourier Series

7.3.4 L2-Derivatives∗

See: A.4.3, A.4.5.

In Section 4.3 we introduced notions of weak and L2-derivatives for functions defined
on �. Here we consider what this means for functions defined on a finite interval. We could
once again use integration by parts to define a weak derivative, but, on a finite interval,
this is complicated by the presence of boundary terms. There are, in fact, several different
notions of weak differentiability for functions defined on a bounded interval. As we are
mostly interested in the relationship between L2-differentiability and the behavior of the
Fourier coefficients, we handle the boundary terms by regarding f as a 1-periodic function.
That is, we use the boundary condition f (0) = f (1).

Definition 7.3.2. An L2-function f is said to have a derivative in L2([0, 1]) if there is a
function g ∈ L2([0, 1]) such that

f (x) = f (0)+
x∫

0

g(s) ds for every x ∈ [0, 1]

and f (0) = f (1).

The definition can be applied recursively to define the class of functions with k L2-
derivatives.

Definition 7.3.3. A periodic function f ∈ L2([0, 1]) has k L2-derivatives if there are func-
tions f j ∈ L2([0, 1]) for j = 1, . . . k such that

•
f (0) = f (1) and f j (0) = f j (1) for j = 1, . . . , k − 1,

•
f (x) = f (0)+

x∫
0

f1(s) ds for every x ∈ [0, 1], (7.31)

•

f j−1(x) = f j−1(0)+
x∫

0

f j (s) ds for every x ∈ [0, 1] and j = 2, . . . , k. (7.32)

The function f j is the j th L2-derivative of f.

As before, the standard notations, f [ j ], ∂ j
x f, and so on, are used for L2-derivatives.

There is a close connection between having L2-derivatives and the behavior of the Fourier
coefficients.
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Theorem 7.3.5. A function f in L2([0, 1]) has k L2-derivatives if and only if

∞∑
n=−∞

(1 + |n|)2k| f̂ (n)|2 < ∞. (7.33)

In this case, we have

1∫
0

| f [ j ](x)|2 dx =
∞∑

n=−∞
|2πn|2 j | f̂ (n)|2 < ∞ and

f̂ [ j ](n) = [2π in] j f̂ (n) for j = 1, . . . , k.

(7.34)

Sketch of proof. If (7.33) holds, then Parseval’s formula implies that the sequences

< [2π in] j f̂ (n) >, j = 0, . . . , k

are the Fourier coefficients of the functions f0, f1, . . . , fk in L2([0, 1]). Integrating, formally it is
not difficult to show that these functions are the L2-derivatives of f. On the other hand, if f has
k L2-derivatives, then, using the alternate definition given in Exercise 7.3.17 and test functions
defined by trigonometric polynomials, we deduce that

f̂ [ j ](n) = [2π in] j f̂ (n) for j = 1, . . . , k. (7.35)

The estimate (7.33) is a consequence of these formulæ and Parseval’s formula.

As before, there is a relationship between the classical notion of differentiability and
having an L2-derivative. For clarity, let g denote the L2-derivative of f. It follows from the
definition that, for any pair of numbers 0 ≤ x < y ≤ 1, we have

f (y)− f (x) =
y∫

x

g(s) ds.

The Cauchy-Schwarz inequality applies to show that∣∣∣∣∣∣
y∫

x

g(s) ds

∣∣∣∣∣∣ ≤
√√√√√ y∫

x

1 · ds

√√√√√ y∫
x

|g(s)|2 ds

≤ √|x − y|‖g‖L2 .

(7.36)

If we put together this estimate with the previous equation, we have that

| f (x) − f (y)|√|x − y| ≤ ‖g‖L2 .

In other words, if a function of one variable has an L2-derivative, then it is Hölder- 1
2 .
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In (7.4) we defined the partial sums, SN ( f ), of the Fourier series of a function f.
If f has an L2-derivative, then it follows from Theorem 7.3.5 and the Cauchy-Schwarz
inequality that

∞∑
n 	=0

| f̂ (n)| ≤
√√√√ ∞∑

n=−∞
n2| f̂ (n)|2

√√√√∑
n 	=0

1

n2
< ∞. (7.37)

As we already know that a function with an L2-derivative is continuous, we can apply
Proposition 7.1.2 to conclude that the Fourier series of such a function converges pointwise
to the function. Indeed it is not difficult to estimate the pointwise error | f (x)− SN ( f ; x)|,

| f (x) − SN ( f ; x)| =
∣∣∣∣∣∣
∑
|n|>N

f̂ (n)e2π inx

∣∣∣∣∣∣
≤
∑
|n|>N

| f̂ (n)|

≤
√√√√∑

|n|>N

‖n f̂ (n)|2
√√√√∑

|n|>N

1

n2

≤ ‖ f ′‖L2

√
2

N
.

(7.38)

In the first line we used the inversion formula and in the last line the Parseval formula.

Exercises
Exercise 7.3.16. Show that the hypothesis, in Proposition 7.1.2, that f is continuous is
unnecessary by using the observation that < f̂ (n) > is a square-summable sequence and
therefore f ∈ L2([0, 1]). The conclusion needs to be modified to say that f can be modified
on a set of measure zero so that (7.6) holds.

Exercise 7.3.17. A different definition for the L2-derivative is as follows: A function f
defined on [0, 1] has an L2-derivative provided that there is a function f1 ∈ L2([0, 1]) so
that

1∫
0

f (x)ϕ ′(x) dx = −
1∫

0

f1(x)ϕ(x) dx (7.39)

for every 1-periodic, once differentiable function ϕ. Show that this definition is equivalent
to Definition 7.3.2.

Exercise 7.3.18. Suppose we use the condition in the previous exercise to define L2-
derivatives but without requiring the test functions ϕ be 1-periodic. That is, (7.39) should
hold for every once differentiable function ϕ, without assuming 1-periodicity. Show that
we do not get the same class of functions. What boundary condition must a function satisfy
to be differentiable in this sense?

Exercise 7.3.19. Provide the details for the derivations of the formulæ in (7.35).



7.4. General Periodic Functions 251

7.4 General Periodic Functions

Up to this point we have only considered functions of period 1. Everything can easily
be generalized to functions with arbitrary periods. A function, defined on the real line, is
periodic of period P, or P-periodic, if

f (x + P) = f (x).

A P-periodic function is determined by its values on any interval of length P. Conversely,
a function defined on an interval of length P has a well-defined P-periodic extension to �.
For an L1-function of period P , define the Fourier coefficients by

f̂ (n) =
P∫

0

f (x)e− 2π inx
P dx .

The various results proved previously have obvious analogues in this case:

1. INVERSION FORMULA: If f is continuous and
∑∞

n=−∞ | f̂ (n)| < ∞, then

f (x) = 1

P

∞∑
n=−∞

f̂ (n)e
2π inx

P .

2. PARSEVAL FORMULA: If f is in L2([0, P]), then

P∫
0

| f (x)|2 dx = 1

P

∞∑
n=−∞

| f̂ (n)|2.

3. CONVERGENCE IN THE MEAN: If f is in L2([0, P]), then

lim
M,N→∞

‖ f (x) − 1

P

N∑
j=−M

f̂ ( j)e
2π i j x

P ‖2
L2 = 0.

Exercise

Exercise 7.4.1. Derive these P-periodic formulæ from the case P = 1.
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7.4.1 Convolution and Partial Sums�

The notion of the convolution product can be adapted to periodic functions. If f and g are
P-periodic, bounded functions, then their convolution is the P-periodic function defined
by

f ∗ g(x) =
P∫

0

f (y)g(x − y) dy.

Evaluating these integrals requires a knowledge of g(s) for s ∈ [−P, P]; this is where the
P-periodicity of g is used. As in the case of the real line, convolution satisfies the estimate

‖ f ∗ g‖L1 ≤ ‖ f ‖L1‖g‖L1; (7.40)

here ‖ · ‖L1 is the L1-norm over [0, P]. Using this estimate, the convolution product is
extended to define a continuous map from L1([0, P])× L1([0, P]) to L1([0, P]). Its basic
properties are summarized in the following proposition:

Proposition 7.4.1. If f, g, and h are P-periodic, L1-functions, then f ∗ g is also P-
periodic. The periodic convolution has the usual properties of a multiplication:

f ∗ g = g ∗ f, f ∗ (g ∗ h) = ( f ∗ g) ∗ h, f ∗ (g + h) = f ∗ g + f ∗ h.

Periodic convolution and Fourier series are connected in the same way as convolution
and the Fourier transform.

Theorem 7.4.1. If f and g are P-periodic, L1-functions, then the Fourier coefficients of
f ∗ g are given by

̂f ∗ g(n) = f̂ (n)ĝ(n). (7.41)

The proof is an elementary computation.
There is also a definition of convolution for sequences. It is motivated by the result of

multiplying trigonometric polynomials. If f =∑N
j=−N a j e2π i j x and g =∑N

j=−N b j e2π i j x ,
then

f · g =
2N∑

l=−2N

⎡⎣ ∑
max{−N−l,−N}≤ j≤min{N,N+l}

a j bl− j

⎤⎦ e2π ilx . (7.42)

Definition 7.4.1. Let A =< an > and B =< bn > be square-summable, bi-infinite se-
quences. The convolution of A with B is the sequence defined by

[A � B]n =
∞∑

j=−∞
a j bn− j .

Hölder’s inequality for l2 implies that A � B is a bounded sequence; see Exercise 7.3.9.
If f and g are L2-functions, then f g is a L1-function. Using the notion of convolution

of sequences, we get a formula for the Fourier coefficients of the pointwise product f g.
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Proposition 7.4.2. If f, g are in L2([0, P]), then the Fourier coefficients of f g are given
by

f̂ g(n) = 1

P
f̂ � ĝ(n) = 1

P

∞∑
j=−∞

f̂ ( j)ĝ(n − j). (7.43)

Proof. For finite sums this result is (7.42). Without worrying about the limits of summation, we
obtain

f (x)g(x) = 1

P2

∞∑
j=−∞

f̂ ( j)e
2π i j x

P

∞∑
k=−∞

ĝ(k)e
2π ikx

P

= 1

P2

∞∑
j=−∞

∞∑
k=−∞

f̂ ( j)ĝ(k)e
2π i(k+ j)x

P

= 1

P

∞∑
l=−∞

⎡⎣ 1

P

∞∑
j=−∞

f̂ ( j)ĝ(l − j)

⎤⎦ e
2π ilx

P .

(7.44)

To get to the last line, we set l = j + k.
To complete the proof, we need to show that if f, g belong to L2, then

lim
N→∞

̂SN ( f )SN (g)(n) = f̂ g(n). (7.45)

Briefly, if f, g belong to L2, then the Cauchy-Schwarz inequality implies that f g is in L1. Moreover,

f g − SN ( f )SN (g) = ( f − SN ( f ))g + SN ( f )(g − SN (g)),

and therefore the triangle inequality and another application of the Cauchy-Schwarz inequality give

‖( f − SN ( f ))g + SN ( f )(g−SN (g))‖L1

≤ ‖( f − SN ( f ))g‖L1 + ‖SN ( f )(g − SN (g))‖L1

≤ ‖( f − SN ( f ))‖L2‖g‖L2 + ‖SN ( f )‖L2‖(g − SN (g))‖L2 .

(7.46)

This shows that SN ( f )SN (g) converges to f g in L1. The proof is completed by using Proposi-
tion 7.1.1 to verify (7.45).

Exercises
Exercise 7.4.2. Prove the estimate (7.40) and explain how to use it to extend the definition
of convolution to pairs of L1-functions.

Exercise 7.4.3. Prove Proposition 7.4.1.

Exercise 7.4.4. Prove Theorem 7.4.1.

Exercise 7.4.5. Show that for square-summable sequences A and B the convolution A � B
is a bounded sequence. Hint: Use the Cauchy-Schwarz inequality for l2.
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Exercise 7.4.6. Use Proposition 7.4.2 to show that if A and B are in l2, then

lim
n→±∞[A � B]n = 0.

Exercise 7.4.7. Prove formula (7.42).

Exercise 7.4.8. Give a complete proof of (7.43) by showing that

lim
N→∞

̂SN ( f )SN(g)(n) = f̂ g(n).

Exercise 7.4.9. A discrete analogue of the Hilbert transform is defined by

�̂ f (n) = sgn(n) f̂ (n).

Where sgn(n) = 1 if n > 0, sgn(0) = 0 and sgn(n) = −1 if n < 0. As before, it can
expressed as a principal value integral.

� f (x) = P.V.

∫ 2π

0
h(x − y) f (y)dy.

1. By considering the approximate Hilbert transforms defined by

�̂ε f (n) = e−ε|n| sgn(n) f̂ (n),

find the function, h, appearing in the above formula.

2. Show that if

f (x) =
∞∑

n=1

an sin(nx),

then

� f (x) = −i
∞∑

n=1

an cos(nx).

3. Let f ∈ L2([0, P]), and show that

lim
y→0

P∫
0

| f (x − y) − f (x)|2dx = 0. (7.47)

7.4.2 Dirichlet Kernel

The partial sums of the Fourier series can be expressed as a periodic convolution. Let

d̂N (n) =
{

1 if |n| ≤ N,

0 if |n| > N .

The N th-partial sum of the Fourier series of f is just the inverse Fourier transform of the
sequence < f̂ d̂N > .
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Definition 7.4.2. For each N, define the Dirichlet kernel

DN = 1

P

N∑
n=−N

e
2π inx

P = sin(
2π(N+ 1

2 )x
P )

P sin(πx
P )

. (7.48)

Figure 7.4 shows a graph of D3.

2

4

6

−0.6 −0.4 −0. 2 0 .2 0. 4 0 .6

Figure 7.4. Graph of the Dirichlet kernel, D3

It is clear from the definition that D̂N = d̂N . Theorem 7.4.1 shows that for f in
L1([0, P]),

SN( f ) = f ∗ DN . (7.49)

The zeroth Fourier coefficient of DN is 1; that is,

P∫
0

DN (x) dx = 1.

The Dirichlet kernel is oscillatory and assumes both positive and negative values. It is not
difficult to show that

lim
N→∞

P∫
0

|DN (x)| dx = ∞. (7.50)

This fact underlies the difficulties in analyzing the pointwise convergence of the partial
sums of the Fourier series. Even if f is a continuous function, it is not always true that

lim
N→∞ SN( f ; x) = f (x).

In the next several sections we explore these issues in detail. First we consider what hap-
pens to the partial sums of the Fourier series near a jump discontinuity. Then we find a
replacement for the partial sums that has better pointwise convergence properties.



256 Chapter 7. Introduction to Fourier Series

Exercises
Exercise 7.4.10. Prove formula (7.48) by using the formula for the sum of a geometric
series.

Exercise 7.4.11. Use the explicit formula for DN (x) to prove (7.50). Hint: Compare

P∫
0

|DN (x)| dx

to the harmonic series.

7.5 The Gibbs Phenomenon

See: B.2.

Let f be a function with a jump discontinuity at x0; that is, the left- and right-hand
limits

lim
x→x+

0

f (x) and lim
x→x−

0

f (x)

both exist but are not equal. Since the partial sums < SN ( f ) > are continuous functions,
it is a foregone conclusion that they cannot provide a good pointwise approximation to f
near x0. In fact, they do an especially poor job. What is notable is that the way in which
they fail does not depend very much on f and can be completely analyzed. We begin by
considering an example.

Example 7.5.1. Consider the 2π -periodic function

g(x) =
{

π−x
2 0 ≤ x ≤ π,

−π+x
2 −π ≤ x < 0

(7.51)

whose graph is shown in figure 7.5 along with two partial sums of its Fourier series.

From the graphs it is apparent that, even as N increases, the pointwise approximation
does not improve near the jump. In fact, the graphs of the partial sums, SN(g), “overshoot”
the graph of g near the discontinuity. The partial sums, SN (g), are highly oscillatory near
the jump. In the graphs it appears that the amount of overshoot does not decrease as N
increases. This collection of bad behaviors is called the Gibbs phenomenon. In the engi-
neering literature it is also called overshoot.
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7.5.1 An Example of the Gibbs Phenomenon

To analyze the Gibbs phenomenon, we first consider, in detail, the partial sums of the
function g defined in (7.51). This function has a jump discontinuity of size π at x = 0, and
its Fourier series is given by

g(x) =
∞∑

k=−∞
ĝ(k)eikx =

∞∑
k=1

sin kx

k
.

If x is not a multiple of 2π, then SN (g; x) converges to g(x); see Section 7.6. At x = 0 the
series converges to 0, which is the average of limx→0+ g(x) and limx→0− g(x).
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(a) A periodic function with a jump
discontinuity.
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(b) Fourier reconstruction with N =
16.
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(c) Fourier reconstruction with N =
64.

Figure 7.5. An example of the Gibbs phenomenon.

The partial sum, SN(g), can be reexpressed as

SN(g) =
N∑

k=1

sin kx

k
=

x∫
0

N∑
k=1

cos ky dy =
x∫

0

1

2

[
sin(N + 1

2 )y

sin 1
2 y

− 1

]
dy, (7.52)



258 Chapter 7. Introduction to Fourier Series

since

sin kx

k
=

x∫
0

cos ky dy.

We are looking for the maximum of the difference SN (g; x) − g(x). From elementary
calculus we know that at a point where the maximum occurs the derivative vanishes:

d

dx
[SN (g; x) − g(x)] = 0. (7.53)

Away from its jumps, g is a linear function of slope − 1
2; hence we are looking for points

where

S′
N (g; x) = −1

2
. (7.54)

Let xN denote the smallest, positive x where this holds. This is a reasonable place to look
for the worst behavior as it is the local maximum error closest to the jump. Evaluating
SN(g; xN )− g(xN ) then gives a lower bound for the maximum difference.

From equation (7.52), we have

S′
N (g; x) = 1

2

[
sin(N + 1

2 )x

sin 1
2 x

− 1

]
.

Equation (7.54) holds if

sin(N + 1

2
)x = 0.

The number

xN = π

N + 1
2

is the smallest positive solution of this equation. The partial sum at xN is given by

SN (g; π

N + 1
2

) = 1

2

π

N+ 1
2∫

0

[
sin(N + 1

2 )y

sin 1
2 y

− 1

]
dy

= 1

2

π

N+ 1
2∫

0

sin(N + 1
2)y

sin 1
2 y

dy − 1

2

π

N + 1
2

= 1

2

1∫
0

sin(tπ)

sin
(

1
2

tπ
N+ 1

2

) π dt

N + 1
2

− 1

2

π

N + 1
2

.

(7.55)
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In the last line we used the change of variable, y = tπ
N+ 1

2
. Using the Taylor expansion for

sin x gives

(N + 1

2
) sin

tπ

2(N + 1
2 )

= (N + 1

2
)

[
tπ

2(N + 1
2 )

− 1

6

(
tπ

2(N + 1
2)

)3

+ · · ·
]
.

Hence, as N → ∞, the denominator of the integrand converges to tπ
2 and the numerator

converges to sin tπ . Therefore, we have

lim
N→∞ SN (g; π

N + 1
2

) = 1

2

1∫
0

sin tπ
tπ
2

πdt =
1∫

0

sin tπ

t
dt. (7.56)

From the definition of g,

lim
N→∞

g(
π

N + 1
2

) = π

2
.

Evaluating the preceding integral numerically, we obtain that

lim
N→∞ SN(g; π

N + 1
2

) =
(π

2

)
1.178979744 · · · . (7.57)

This implies that

lim
N→∞

[SN (g; π

N + 1
2

)− g(
π

N + 1
2

)] = π

2
0.178979744 · · · . (7.58)

From the graphs in Figure 7.5 it is clear that, as N increases, the oscillations in the
partial sums become more and more concentrated near the jump. The preceding discussion
shows that the local maxima and minima of SN (g; x)−g(x) occur at the set of points {xN,k}
that satisfy

sin(N + 1

2
)xN,k = 0.

These are simply xN,k = (kπ)(N + 1
2 )

−1 for k ∈ �. The number of oscillations of a given
size is essentially independent of N, but the region in which they occur scales with N . The
oscillations in SN(g) are concentrated in a region of size N−1 around the jump. The graphs
in Figure 7.6 show the original function, its partial sums and its “Fejer means.” These are
the less oscillatory curves lying below the graphs of g and are explained in Section 7.5.3.
In these graphs we have rescaled the x-axis to illustrate that the Gibbs oscillations near the
discontinuity remain of a constant size.

In the next section we show that the phenomenon exhibited here is universal for the
partial sums of the Fourier series of piecewise differentiable but discontinuous functions.
Suppose that f is a piecewise differentiable function, with a jump discontinuity at the point
x0. This means that the left and right limits both exist,

lim
x→x−

0

f (x) = L and lim
x→x+

0

f (x) = R,



260 Chapter 7. Introduction to Fourier Series

but L 	= R. Suppose that L < R. Fixing any sufficiently small ε > 0, we show that

lim
N→∞ max

0<x−x0<ε
(SN( f ; x) − f (x)) = (G − 1)

R − L

2
.

The coefficient G is a universal constant defined by

G = 2

π

1∫
0

sinπ t

t
dt = 1.178979744 · · · . (7.59)

In fact, there is a sequence of points < xN > that converge to x0 so that the error |SN ( f ; xN )−
f (xN )| is about 9% of the size of the jump.
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(a) N = 24, magnification = 4.
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(b) N = 48, magnification = 8.
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(c) N = 96, magnification = 16.

Figure 7.6. Detail showing equi-oscillation property in Gibbs phenomenon.

7.5.2 The General Gibbs Phenomenon∗

We prove the theorem describing the Gibbs phenomenon for general piecewise differen-
tiable functions.

Theorem 7.5.1. Let f be a piecewise �1-function with jump discontinuities at {x1, . . . , xk}
of sizes {h1, . . . , hk}, that is,

h j = lim
x→x+

j

f (x) − lim
x→x−

j

f (x),
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and set
η j = sgn h j .

For any sufficiently small ε > 0, we have that

lim
N→∞

max
0<η j (x−x j )<ε

(SN ( f ; x) − f (x)) = (G − 1)
|h j |

2
for each j ∈ {1, . . . , k}.

The constant G is given by (7.59).

Proof. First we consider g j (x) = h j
π g(x − x j ), which is a scaled and translated version of g. From

the analysis of g, we have that

lim
N→∞ max

0<η j (x−x j )<ε
(SN (g j ; x)− g j (x)) = (G − 1)

|h j |
2

. (7.60)

In Section 7.6 it is shown that for i 	= j we have

lim
N→∞ max

0<|x−x j |<ε
|SN (gi ; x)− gi (x)| = 0.

Rewrite f as

f (x) = fc(x)+
k∑

j=1

h j

π
g(x − x j ), where fc(x) = f (x)−

k∑
j=1

h j

π
g(x − x j ).

Note that fc is a continuous and piecewise C1-function. In Exercise 7.5.2 it is shown that fc has an
L2-derivative, and it therefore follows from (7.37) that the Fourier series of fc converges uniformly
to fc. The jumps in the function f have been “transferred” to the sum of the g j s:

SN ( f ; x)− f (x) = SN ( fc; x)− fc(x)+
k∑

j=1

SN (g j ; x)−
k∑

j=1

g j (x).

Since limN→∞ SN ( fc; x) = fc(x) for every x, it follows from (7.60) that

lim
N→∞ max

0<η j (x−x j )<ε
(SN ( f ; x)− f (x)) = lim

N→∞ max
0<η j (x−x j )<ε

(SN (g j ; x)− g j (x)) = (G − 1)
|h j |

2
.

This completes the proof of the theorem.

Remark 7.5.1. The proof of the theorem shows that, near the jumps, the partial sums SN( f )
look like the partial sums of SN(g) near its jump. In (7.38) we showed that |SN ( fc; x) −
fc(x)| behaves like N− 1

2 for all x . This implies that SN( f ) has the same oscillatory artifacts
near the jump points as are present in SN(g). The Gibbs phenomenon places an inherent
limitation on the utility of the Fourier transform when working with discontinuous data.
In imaging applications, such function often arise. Taking higher and higher partial sums
does not lead, in and of itself, to a better reconstructed image near such points. In the
next section we describe a different partial inverse for the Fourier series that eliminates the
Gibbs phenomenon.
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Exercises
Exercise 7.5.1. In Section 7.6 it is shown that for x 	= 0, limN→∞ SN(g; x) = g(x).
Assuming this, use partial summation to show that there is a constant, M, that depends on
x so that

|SN (g; x) − g(x)| ≤ M

N
.

Explain why M must depend on x .

Exercise 7.5.2. Show that a piecewise differentiable, continuous periodic function has an
L2-derivative.

7.5.3 Fejer Means

The N th-partial sum is expressible as the convolution of f with the Dirichlet kernel:

SN( f ) = DN ∗ f.

What makes the convergence of the partial sums so delicate is the fact that the Dirichlet
kernel assumes both positive and negative values. This means that the convergence (or non-
convergence) of the partial sums relies on subtle cancellations (or their absence). There is
a general technique to obtain a more stable pointwise approximation of functions by finite
trigonometric sums that does not sacrifice too much of the favorable L2-approximation
properties of the partial sums.

Definition 7.5.1. The N th Fejer mean of the partial sums is the average of the first N + 1
partial sums,

CN ( f ; x) = S0( f ; x) + · · · + SN( f ; x)

N + 1
.

Definition 7.5.2. The N th Fejer kernel is the average of the first N + 1 Dirichlet kernels:

FN (x) = D0(x)+ · · · + DN (x)

N + 1
.

A calculation shows that for functions periodic of period P, the N th Fejer kernel is given by

FN (x) = 1

P(N + 1)

⎡⎣ sin
(
π(N+1)x

P

)
sin
(
πx
P

)
⎤⎦2

. (7.61)

A graph of F5 is shown in Figure 7.7.

It follows from (7.49) that
CN ( f ) = FN ∗ f.

The important difference between the Fejer kernel and the Dirichlet kernel is that the Fejer
kernel does not assume negative values. Fejer’s theorem is a consequence of this fact.
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Figure 7.7. Graph of the Fejer kernel, F5

Theorem 7.5.2 (Fejer’s theorem). If f is an absolutely integrable function that is contin-
uous at x, then

lim
N→∞ CN ( f ; x) = f (x).

Remark 7.5.2. As remarked previously, the analogous statement for the partial sums is
false.

Proof. The proof is very similar to the proof of the Fourier inversion formula. Note that the Fejer
kernel shares three properties with Pr :

1. The Fejer kernel is nonnegative.

2. For every N,
∫ 1

0 FN (x) dx = 1.

3. Given ε > 0, there is an M so that if N > M, then

FN (x) < ε for ε < x < 1 − ε. (7.62)

The proof of Fejer’s theorem follows from these properties.
The first two properties imply that

|CN ( f ; x)− f (x)| =
∣∣∣∣∣
∫ 1

0
FN (x − y)( f (y)− f (x)) dy

∣∣∣∣∣
≤
∫ 1

0
FN (x − y)| f (y)− f (x)| dy.

(7.63)

As f is continuous at x, given ε > 0, there is a δ > 0 so that

|y − x | < δ ⇒ | f (x)− f (y)| < ε.

Using the third property of the Fejer kernel, there is an M so that if N > M, then

FN (x) < ε provided δ < x < 1 − δ.
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We split the integral into two parts:

|CN ( f ; x)− f (x)|
≤
∫
|x−y|<δ

FN (x − y)| f (y)− f (x)| dy +
∫
|x−y|≥δ

FN (x − y)| f (y)− f (x)| dy

≤ ε

∫
|x−y|<δ

FN (x − y) dy +
∫
|x−y|≥δ

ε(| f (y)| + | f (x)|) dy

≤ ε(1 + | f (x)| + ‖ f ‖L1).

(7.64)

As ε > 0 is arbitrary, this completes the proof of the theorem.

Remark 7.5.3. The proof shows that if f is a continuous, periodic function, then CN ( f )
provides a uniformly accurate approximation. That is, given ε > 0, there is an N such that
|CN ( f ; x) − f (x)| < ε for all x ∈ [0, 1]. The smoother curves in Figure 7.6 are the Fejer
means of g. They are not nearly as oscillatory, near the jump points, as the partial sums. In
general, if a function f satisfies

m ≤ f (x) ≤ M for x ∈ [0, 1],
then for every N

m ≤ CN ( f ; x) ≤ M for x ∈ [0, 1],
as well.

A further computation shows that the Fourier coefficients of CN ( f ) are given by

ĈN ( f ; n) =
{[

1 − |n|
N+1

]
f̂ (n) for |n| ≤ N,

0 for |n| > N .
(7.65)

From this is not hard to see that ‖CN ( f ) − f ‖2 goes to zero as N → ∞, at worst, half as
fast as ‖S N

2
( f )− f ‖2; see Exercise 7.5.6.

Example 7.5.2. We quantitatively compare the L2-errors in the Fejer means with the L2-
errors in the partial sums for the function g, defined in (7.51). The comparisons, listed in
Table 7.1, show that ‖ f − SN ( f )‖2 is about half the size of ‖ f − CN ( f )‖2.

N ‖ f − SN ( f )‖L2 ‖ f − CN ( f )‖L2

4 .695306572 .942107038
8 .369174884 .570026118

12 .251193672 .411732444
16 .190341352 .323158176
20 .153218060 .266320768
24 .128210482 .226669996
28 .110220018 .197397242
32 .096656766 .174881126

Table 7.1. Comparison of the mean square errors
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Using the Fejer kernel, we can now prove the lemma used in the proof of the Parseval
formula.

Lemma 7.5.1. Let f ∈ L2([0, 1]) and fix an ε > 0. There is a trigonometric polynomial g
such that

‖ f − g‖L2 < ε.

Proof. In Corollary A.5.1 it is established that there is a continuous, periodic function g0 so that

‖ f − g0‖L2 <
ε

2
.

Fejer’s theorem implies that there is an N so that, for all x ∈ [0, 1],

|g − CN (g; x)| ≤ ε

2
.

With this N, we use the triangle inequality to obtain

‖ f − CN (g)‖L2 ≤ ‖ f − g‖L2 + ‖CN (g)− g‖L2 <
ε

2
+ ε

2
.

This completes the proof of the lemma.

Exercises
Exercise 7.5.3. Prove that if m ≤ f (x) ≤ M for x ∈ [0, 1], then m ≤ CN ( f ; x) ≤
M for x ∈ [0, 1] is as well.

Exercise 7.5.4. Prove the closed form expression for the Fejer kernel (7.61).

Exercise 7.5.5. Prove the formulæ (7.65) for the Fourier coefficients of FN .

Exercise 7.5.6. If f ∈ L2([0, 1]), show that

‖C2N ( f )− f ‖L2 ≤ 2‖SN ( f )− f ‖L2 .

Exercise 7.5.7. Show that the Fourier transform also suffers from the Gibbs phenomenon
by analyzing SR(χ[−1,1]) as R → ∞. The partial inverse SR is defined in (5.6).

Exercise 7.5.8. Explain why the kernel fB = 
−1([2B]−1χ[B,B] ∗ χ[B,B]) is the Fourier
transform analogue of the Fejer kernel. Hint: Express fB ∗ g in terms of the Fourier
transform of g.

7.5.4 Resolution in the Partial Sums of the Fourier Series

The Fejer means produce visually more appealing images near to jump points. However,
this is at the expense of reducing the overall resolution. From (7.65) it is apparent that
convolution with the Fejer kernel progressively attenuates the high frequencies, eventually
cutting them off entirely at n = ±(N + 1). Employing Fejer means to reduce the Gibbs
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effect near to jumps inevitably results in an overall decrease in the available resolution. A
calculation using Taylor’s formula shows that, as N tends to infinity,

FWHM(DN ) � .86

πN
(7.66)

whereas

FWHM(FN ) � 1.33

πN
. (7.67)

Here we are measuring the FWHM of the central peaks. Using the same number of Fourier
coefficients, the partial sum has about 3

2 times as much FWHM-resolution as the Fejer
mean.

Example 7.5.3. In the graphs in Figure 7.8 we have an interesting function that we recon-
struct first using a partial sum of its Fourier series and then with Fejer means. It is clear that
the oscillatory artifact has disappeared in the Fejer means reconstruction. The resolution of
the latter reconstruction is also evidently lower.

(a) A function (b) Partial sum (c) Fejer mean

Figure 7.8. Graphs comparing the partial sums and Fejer means.

The graphs in Figure 7.9 are expanded views of these functions between .1 and .3. Here
the loss of resolution in the Fejer means, at points away from the jump, is quite evident.

(a) A function (b) Partial sum (c) Fejer mean

Figure 7.9. Expanded view showing the loss of resolution in the Fejer means.
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Finally, in Figure 7.8, we compare the behavior of these approximations near the jump
discontinuity. Both the Gibbs oscillations and higher resolution in the partial sums are
again evident.

(a) A function (b) Partial sum (c) Fejer mean

Figure 7.10. Expanded view, near the jump, showing the Gibbs phenomenon in the partial
sums.

Exercise

Exercise 7.5.9. Derive (7.66) and (7.67).

7.6 The Localization Principle

Each Fourier coefficient is defined by an integral of f over its whole domain of definition
and therefore depends on the value of the function everywhere. Like the one-dimensional
Fourier transform, the Fourier series is very sensitive to the local behavior of a function.
This is the content of the following theorem.

Theorem 7.6.1 (The localization principle). Let f and g be L1-functions on [0, P]. Sup-
pose that for some x, SN (g; x) converges to g(x) as N → ∞. If there exists a positive ε so
that f (t) equals g(t) for t in an interval [x − ε, x + ε], then

lim
N→∞

SN( f ; x) = f (x).

Proof. In the following computations, recall that x is a fixed point. Let sN = DN ∗ f (x), and
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tN = DN ∗ g(x). By linearity, (sN − tN ) = DN ∗ ( f − g)(x), and we compute

DN ∗ ( f − g)(x) =
P∫

0

sin

(
π(2N + 1)(x − y)

P

)[
f (y)− g(y)

P sin
(
π(x−y)

P

)] dy

= Im

⎧⎨⎩
P∫

0

e
2π iN(x−y)

P e
iπ(x−y)

P

[
f (y)− g(y)

P sin
(
π(x−y)

P

)] dy

⎫⎬⎭
= Im

⎧⎨⎩e
π i(2N+1)x

P

P∫
0

e−
2π iNy

P

[
f (y)− g(y)

P sin
(
π(x−y)

P

)]e−
iπy
P dy

⎫⎬⎭ .

(7.68)

Since f (y) equals g(y) for y in [x −ε, x +ε], the expression in brackets in the last line is absolutely
integrable: ∫ ∣∣∣∣ f (y)− g(y)

sin
(

2π(x−y)
P

)e−
iπy
P

∣∣∣∣ dy < ∞.

Therefore, the last integral in (7.68) is the N th Fourier coefficient of an integrable function. By
the Riemann-Lebesgue lemma, it goes to zero as N → ∞. By the hypothesis, we know that
limN→∞ tN = g(x) = f (x). Rewrite this as

lim
N→∞ sN = lim

N→∞(sN − tN ) + lim
N→∞ tN .

Since sN − tN goes to zero as N → ∞, we are done.

This result shows that if an absolutely integrable function f is well behaved in the
neighborhood of a point x0, then SN ( f ; x0) converges to f (x0). Suppose that f is contin-
uously differentiable in an interval (x0 − ε, x0 + ε). Let ϕ be an infinitely differentiable
function that satisfies

ϕ(x) =
{

1 for |x − x0| < ε
2 ,

0 for |x − x0| > 3ε
4 .

If we set g equal to f ϕ, then g is a continuously differentiable, periodic function and

f (x) = g(x) for x ∈ (x0 − ε

2
, x0 + ε

2
).

Because g is continuously differentiable, it follows easily that

∞∑
n=−∞

|ĝ(n)| < ∞.

Therefore, we can apply (7.6) to conclude that

g(x) =
∞∑

n=−∞
ĝ(n)e2π inx , for any x .
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No matter how wildly f behaves outside the interval (x0 − ε, x0 + ε), the localization
principle states that

lim
N→∞

N∑
n=−N

f̂ (n)e2π inx0 = f (x0).

Notice that the asymptotic behavior of the sequence < f̂ (n) > is, in general, completely
different from that of < ĝ(n) > . This just makes the localization principle all the more
remarkable!

Exercise
Exercise 7.6.1. In the proof of Theorem 7.6, show that it is not necessary to assume that
f (t) equals g(t) in an interval containing x by explaining why it suffices to assume that

h(y) = f (y)− g(y)

x − y

is an integrable function.

7.7 Higher-Dimensional Fourier Series

The theory of Fourier series extends without difficulty to functions defined on the unit cube
in �n. For completeness we include statements of the basic results. Proofs can be found in
[42] or [120]. The Fourier coefficients are now labeled by vectors k ∈ �n; that is, vectors
of the form

k = (k1, . . . , kn), where k j ∈ � for j = 1, . . . , n.

If f is an absolutely integrable function defined on

[0, 1]n = [0, 1] × · · · × [0, 1]
n−times

then its Fourier coefficients are defined by

f̂ (k) =
∫

[0,1]n
f (x)e−2π i〈k,x〉dx.

Many aspects of the theory are quite similar in higher dimensions; however, the theory of
pointwise convergence is much more involved and has not yet been completely worked out.

If the Fourier coefficients of f tend to zero rapidly enough, then we have an inversion
formula:

Proposition 7.7.1. Suppose that f is an absolutely integrable function on [0, 1]n such that∑
k∈�n

| f̂ (k)| < ∞. (7.69)
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Then
f (x) =

∑
k∈�n

f̂ (k)e2π i〈k,x〉.

In general, the Fourier coefficients of an absolutely integrable function may not sat-
isfy (7.69). Indeed, as the dimension increases, this is a more and more restrictive condi-
tion. In order for the infinite sum ∑

k∈�n

1

(1 + ‖k‖)α

to converge, it is necessary to take α > n. The Riemann-Lebesgue lemma generalizes to n
dimensions.

Proposition 7.7.2 (Riemann-Lebesgue lemma). If f is an absolutely integrable function
on [0, 1]n , then

lim
‖k‖→∞

f̂ (k) = 0.

Once again the proof is effected by approximating L1-functions by an n-dimensional ana-
logue of step functions. In this generality there is, as before, no estimate on the rate at
which the Fourier coefficients go to zero.

As in the one-dimensional case, when working with Fourier series, we need to consider
f as a periodic function of period 1 in each variable. That is we extend f to all of �n by
using the condition

f (x) = f (x + k) for every k ∈ �n.

The inversion formula defines a function on all of �n with this property. As before, in the
context of Fourier series, a function is considered continuous if its periodic extension to �n

is continuous and differentiable if its periodic extension to �n is differentiable, etc.
If the Fourier coefficients do not satisfy (7.69), then the problem of summing the

Fourier series can be quite subtle. The question of the pointwise convergence for the partial
sums is considerably more complicated in higher dimensions than in one dimension. In the
one-dimensional case there is, in essence, only one reasonable way to define partial sums.
In n dimensions there are many different possible choices. The simplest way is to define
the N th partial sum to be

SN ( f ) =
N∑

k1=−N

· · ·
N∑

kn=−N

f̂ (k)e2π i〈k,x〉.

Because there is a very fast algorithm to do this calculation (at least for N a power of 2),
this is the usual meaning of “partial sums” of the Fourier series in applications. However,
it is by no means the only way to partially invert the higher-dimensional Fourier series. We
could equally well consider the sum over all vectors k such that ‖k‖ ≤ R. Let

�R( f ) =
∑

{k : ‖k‖<R}
f̂ (k)e2π i〈k,x〉
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denote this sum. While not as useful in applications, this partial inverse is easier to analyze.
From this analysis, it is known that the localization principle fails in higher dimensions. The
convergence of the Fourier series at x is sensitive to the behavior of f at points distant from
x. The relationship between SN ( f ) and �R( f ) has, so far, not been completely elucidated.
An analysis of �R( f ) is given in [103].

The Gibbs phenomenon also persists in higher dimensions but is, as expected, more
complicated to analyze. If a piecewise smooth function, f, has a simple jump along a
smooth hypersurface, S, then the behavior of the partial sums near x ∈ S is determined in
part by the size of the jump at x, as well as the curvature of S at x. Asymptotic formulæ
for �R( f ; x) are given in [103]. If S itself is not smooth, then even more complicated
phenomena arise. As the techniques involved are far beyond the scope of this text, we
content ourselves with giving an example of an SN -type partial sum for the Fourier series
of χ[−1,1](x)χ[−1,1](y). In Figure 7.11 note the Gibbs oscillations parallel to the edges of the
square and the “Gibbs shadow” near the corner. The absence of oscillations in the shadow
region is an extreme example of the effect of the curvature of the jump curve on the Gibbs
phenomenon.

Figure 7.11. Illustration of the 2D Gibbs phenomenon.

There is an obvious generalization of the notion convolution for periodic functions on
�n given by

f ∗ g(x) =
∫

[0,1]n
f (x − y)g(y) d y.

Periodic convolution in n dimensions is connected to the Fourier series just as in one di-
mension:

̂f ∗ g(k) = f̂ (k)ĝ(k) for all k ∈ �n. (7.70)
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We can also define the convolution of two sequences A =< ak >, B =< bk > indexed
by �n by setting

(A � B)k =
∑
j∈�n

ak− j b j .

The Fourier series of a pointwise product is then given by

f̂ g(k) = f̂ � ĝ(k). (7.71)

Exercises
Exercise 7.7.1. Let r1, . . . , rn be numbers between 0 and 1. Compute the Fourier coeffi-
cients of

f (x1, . . . , xn) = χ[−r1,r1](x1) · · ·χ[−rn ,rn ](xn).

Exercise 7.7.2. Show that ∑
k∈�n

1

(1 + ‖k‖)α

converges if α > n and diverges if α ≤ n. Hint: Compare this sum to an integral.

Exercise 7.7.3. Find the periodic function, DN,n, on �n for which

SN ( f ) = DN,n ∗ f.

Exercise 7.7.4. Find the periodic function, BR,n, on �n for which

�R( f ) = BR,n ∗ f.

7.7.1 L2-Theory

See: A.4.6.

As in the one-dimensional case, a much more complete theory is available for square-
integrable functions. The basic result is the Parseval formula.

Proposition 7.7.3 (Parseval formula). An L1-function f belongs to L2([0, 1]n) if and only
if its Fourier coefficients are square summable. In this case we have∫

[0,1]n
| f (x)|2 dx =

∑
k∈�n

| f̂ (k)|2.

The sense in which the Fourier series converges can also be made precise in this case.
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Proposition 7.7.4 (L2-Inversion formula). If f belongs to L2([0, 1]n), then the partial
sums of the Fourier series of f converge to f in the L2-norm. That is,

lim
N→∞

‖ f − SN ( f )‖L2 = 0. (7.72)

As in one dimension, the partial sums may fail to converge pointwise.
By defining L2-partial derivatives, we generalize the theory of L2-derivatives to higher

dimensions. In this case we use the integration by parts formulation.

Definition 7.7.1. A function f in L2([0, 1]n) has an L2-partial derivative in the x j -direction
if there is a function f j in L2([0, 1]n) such that, for every periodic, once differentiable
function ϕ, we have ∫

[0,1]n
f (x)∂x jϕ(x) dx = −

∫
[0,1]n

f j (x)ϕ(x) dx.

The restriction to periodic test functions is important. More generally, we can define higher
L2-derivatives.

Definition 7.7.2. A function f ∈ L2([0, 1]n) has m L2-derivatives if for each multi-index α

with |α| ≤ m there is a function fα ∈ L2([0, 1]n) such that for every m-times differentiable
periodic test function ϕ we have∫

[0,1]n
f (x)∂α

x ϕ(x) dx = (−1)|α|
∫

[0,1]n
fα(x)ϕ(x) dx.

As before, the standard notations are used to denote the L2-derivatives (i.e., ∂α
x f ).

The existence of L2-derivatives is intimately tied to the rate of decay of the Fourier
coefficients.

Proposition 7.7.5. A function f in L2([0, 1]n) has m L2-derivatives if and only if∑
k∈�n

‖k‖2m | f̂ (k)|2 < ∞.

In this case ∫
�n

|∂α
x f (x)|2 dx =

∑
k∈�n

|kα f̂ (k)|2

and
∂̂α

x f (k) = (i k)α f̂ (k),

for every multi-index α with |α| ≤ m.
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As noted previously, in higher dimensions, a faster rate of decay is needed to conclude
that the Fourier coefficients are absolutely summable. In one dimension we showed that
a function with one L2-derivative is continuous. In dimension n, slightly more that n

2 L2-
derivatives are required for this conclusion.

Functions that are defined on products of intervals [a1, b1] × · · · × [an, bn] can be
rescaled to be defined on [0, 1]n and can therefore be expanded in Fourier series as well.
We leave the details of this discussion to the interested reader. While intervals are the
only connected subsets of the real line, higher-dimensional spaces have a rich array of
such subsets. The Fourier series in higher dimensions is only defined for functions that are
defined on products of intervals. For example, we cannot directly apply Fourier series to
study functions defined in the unit disk. The analysis of functions defined in other sorts
of regions requires more sophisticated mathematical techniques. The interested reader is
referred to [43].

Exercises
Exercise 7.7.5. Prove (7.70) and (7.71).

Exercise 7.7.6. Let [n/2] be the largest integer smaller than n/2. Show that a periodic
function with [n/2] + 1 L2-derivatives is a continuous function. Hint: Use the Cauchy-
Schwarz inequality.

Exercise 7.7.7. If f is in L2([0, 1]n), show that

lim
N→∞ ‖ f −�N ( f )‖L2 = 0.

7.8 Conclusion

Fourier series is a tool for analyzing functions defined on finite intervals in � or finite rect-
angles in �n. As with the Fourier transform, the rate of decay of the Fourier coefficients
is related to the smoothness of the function. In the Fourier series case it is the smooth-
ness of the periodic extension that determines the rate of decay of the Fourier coefficients.
The Fourier coefficients of a function of a single variable with simple jump discontinuities
display a characteristic 1

n rate of decay.
The partial sum operator SN provides an approximation to a function f as a exponential

polynomial,

SN ( f ; x) =
N∑

j=−N

f̂ ( j)e2π i j x .

If the error is measured in the L2-norm, then SN ( f ) is the best approximation to f among
exponential polynomials of degree N . The Parseval formula implies that SN ( f ) converges
to f in the L2-norm. The story of pointwise convergence is more complicated. Even if
f is continuous, the sequence < SN( f ; x) > may not converge to f (x). If f has a jump
discontinuity, then the behavior of the partial sums is governed by the Gibbs phenomenon.
Near to a jump discontinuity the partial sums are oscillatory, overshooting the graph of f
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by about 9% of the height of the jump. The size of the overshoot does not diminish as N
tends to infinity, but does concentrate in an interval around the jump of size N−1. The Fejer
means, CN ( f ) were introduced as a way to reduce the Gibbs phenomenon. Moreover, if f
is continuous at x, then CN ( f ; x) converges to f (x). For a fixed N, the Fejer mean CN ( f )
has about 2

3 the FWHM-resolution of the partial sum SN ( f ).
In a realistic situation a function, f, of a continuous variable is measured at a discrete

sequence of points, < x j > . In the simplest model for such a measurement the function is
evaluated at these points, so that the measurements are simply the values < f (x j ) > . In
the next chapter we consider what these measurements say about the function at points not
in the sample set. The answer we find is neatly expressed in the language of the Fourier
transform and Fourier series.





Chapter 8

Poisson Summation, Sampling and
Nyquist’s Theorem

See: A.6.1, A.5.2.

In Chapters 4 through 7, we developed the mathematical tools needed to describe func-
tions of continuous variables and methods to analyze and reconstruct them. This chapter
continues the transition from the world of pure mathematics to its application to problems
in image reconstruction. In the first sections of this chapter, we imagine that our “image”
is a function, f, of a single real variable, x . In a purely mathematical context, x is a real
number that can assume any value along a continuum of numbers. The function also takes
values in a continuum, either in �,�, or perhaps �n. In practical applications we can only
evaluate f at a finite set of points {x j }. This is called sampling. As most of the processing
takes place in digital computers, both the points {x j } and the measured values { f (x j )} are
forced to lie in the preassigned, finite set of numbers known to the computer. This is called
quantization. The reader is urged to review Section A.1, where these ideas are discussed in
some detail.

Except for a brief discussion of quantization, this chapter is about the consequences of
sampling. We examine the fundamental question: How much information about a function
is contained in a finite or infinite set of samples? Central to this analysis is the Poisson
summation formula. This formula is a bridge between the Fourier transform and the Fourier
series. While the Fourier transform is well suited to an abstract analysis of image or signal
processing, it is the Fourier series that is actually used to do the work. The reason is
quite simple: The Fourier transform and its inverse require integrals over the entire real
line, whereas the Fourier series is phrased in terms of infinite sums and integrals over
finite intervals, both of which are eventually approximated by finite sums. Indeed, we
also introduce the finite Fourier transform, an analogue of the Fourier transform for finite
sequences. This chapter covers the next step from the abstract world of the infinite and the
infinitesimal to the real world of the finite and discrete.

277
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8.1 Sampling and Nyquist’s Theorem�

See: A.5.2, B.1.

Recall that our basic model for a measurement is the evaluation of a function at a point.
A set of points {x j } contained in an interval (a, b) is discrete if no subsequence converges
to a point in (a, b). Evaluating a function on a discrete set of points is called sampling.
Practically speaking, a function can only be evaluated at points where it is continuous.
From the perspective of measurement, the value of a function at points of discontinuity is
not well defined.

Definition 8.1.1. Suppose that f is a function defined in an interval (a, b) and {x j } is a
discrete set of points in (a, b). The points {x j } are called the sample points. The values
{ f (x j )} are called the samples of f at the points {x j }.

In most applications the discrete set is of the form {x0 + j l | j ∈ �}, where l is a
fixed positive number. These are called equally spaced samples; the number l is called the
sample spacing. The reciprocal l−1 of l is called the sampling rate. Sampling theory studies
the problem of reconstructing functions of a continuous variable from a set of samples and
the relationship between these reconstructions and the idealized data.

8.1.1 Bandlimited Functions and Nyquist’s Theorem

A model for measurement, more realistic than pointwise evaluation, is the evaluation of a
convolution f ∗ ϕ. Here ϕ is an L1 weight function that models the measuring apparatus.
For most reasonable choices of weight function, f ∗ϕ is a continuous function, so its value
is well defined (from the point of view of measurement) at all x . As the Fourier transform
of f ∗ ϕ is f̂ ϕ̂, the Riemann-Lebesgue lemma, Theorem 4.2.2, implies that ϕ̂ tends to
zero as |ξ | tends to infinity. This means that the measuring apparatus attenuates the high-
frequency information in f. In applications we often make the assumption that there is “no
high-frequency information” or that is has been filtered out.

Definition 8.1.2. Let f be a function defined on �. If its Fourier transform, f̂ , is supported
in a finite interval, then f is a bandlimited function. If f̂ is supported in [−L , L], then f
is an L-bandlimited function.

Definition 8.1.3. Let f be a function defined on �. If its Fourier transform, f̂ , is supported
in a finite interval, then f is said to have finite bandwidth. If f̂ is supported in an interval
of length W, then f is said to have bandwidth W.

A bandlimited function is always infinitely differentiable. If f is either L1 or L2, then
f̂ is in L1 and the Fourier inversion formula states that

f (x) = 1

2π

∫ L

−L
f̂ (ξ)eixξdξ. (8.1)
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As the integrand is supported in a finite interval, the integral in (8.1) can be differentiated
as many times as we like. This, in turn, shows that f is infinitely differentiable. If f is in
L2, then so are all of its derivatives.

Nyquist’s theorem states that a bandlimited function is determined by a set of uniformly
spaced samples, provided that the sample spacing is sufficiently small.

Theorem 8.1.1 (Nyquist’s theorem). If f is a square integrable function and

f̂ (ξ) = 0 for |ξ | > L ,

then f is determined by the samples { f (πn
L ) : n ∈ �}.

Remark 8.1.1. As the proof shows, f is determined by any collection of uniformly spaced
samples with sample spacing πn

L , i.e.{ f (x0 + πn
L )} for any x0 ∈ �.

Proof. If we think of f̂ as a function defined on the interval [−L, L], then it follows from (8.1) that
the numbers {2π f (πn

L )} are the Fourier coefficients of f̂ . The inversion formula for Fourier series
then applies to give

f̂ (ξ) =
(π

L

)
LIM
N→∞

[
N∑

n=−N

f (
nπ

L
)e−

nπ iξ
L

]
if |ξ | < L . (8.2)

For the remainder of the proof we use the notation

(π
L

) ∞∑
n=−∞

f (
nπ

L
)e−

nπ iξ
L

to denote this LIM. The function defined by this infinite sum is periodic of period 2L; we can use it

to express f̂ (ξ) in the form

f̂ (ξ) =
(π

L

)[ ∞∑
n=−∞

f (
nπ

L
)e−

nπ iξ
L

]
χ[−L ,L](ξ). (8.3)

This proves Nyquist’s theorem, for a function in L2(�) is determined by its Fourier transform.

The exponentials e±i Lx have period 2π
L and frequency L

2π . If a function is L-bandlimited,
then L

2π is the highest frequency appearing in its Fourier representation. Nyquist’s theorem
states that we must sample such a function at the rate L

π
; that is, at twice its highest fre-

quency. As we shall see, sampling at a lower rate does not provide enough information to
completely determine f.

Definition 8.1.4. The optimal sampling rate for an L-bandlimited function, L
π
, is called the

Nyquist rate. Sampling at a lower rate is called undersampling, and sampling at a higher
rate is called oversampling.
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If this were as far as we could go, Nyquist’s theorem would be an interesting result
of little practical use. However, the original function f can be explicitly reconstructed
using (8.3) in the Fourier inversion formula. To justify our manipulations, we assume that
f tends to zero rapidly enough so that

∞∑
n−∞

| f (
nπ

L
)| < ∞. (8.4)

With this understood, we use (8.3) in (8.1) to obtain

f (x) = 1

2π

∫ ∞

−∞
χ[−L ,L](ξ) f̂ (ξ)eiξ x dξ

= 1

2π

π

L

∫ L

−L

∞∑
n=−∞

f (
nπ

L
)eixξ− nπ iξ

L dξ

= 1

2L

∞∑
n=−∞

f (
nπ

L
)

∫ L

−L
eixξ− nπ iξ

L dξ

=
∞∑

n=−∞
f (

nπ

L
) sinc(Lx − nπ).

This formula expresses the value of f, for every x ∈ �, in terms of the samples { f ( nπ
L ) :

n ∈ �} :
f (x) =

∞∑
n=−∞

f (
nπ

L
) sinc(Lx − nπ). (8.5)

Remark 8.1.2. If f belongs to L2(�), then f̂ is also square integrable. This, in turn,
implies that

∑∞
−∞ | f (L−1nπ)|2 is finite. Using the Cauchy-Schwarz inequality for l2,

we easily show that the sum on the right-hand side of (8.5) converges locally uniformly.
The Fourier transform of a bandlimited function is absolutely integrable. The Riemann-
Lebesgue lemma therefore implies that a bandlimited function is bounded and tends to
zero as |x| goes to infinity. Indeed, a bounded, integrable function is also square integrable.
Note, however, that a square-integrable, bandlimited function need not be absolutely inte-
grable.

Exercises
Exercise 8.1.1. Suppose that f is an L-bandlimited function. Show that it is determined
by the set of samples { f (x0 + πn

L ) : n ∈ �}, for any x0 ∈ �.

Exercise 8.1.2. Explain why, after possible modification on a set of measure zero, a band-
limited L2-function is given by (8.1).

Exercise 8.1.3. Show that a bounded integrable function defined on � is also square inte-
grable.
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Exercise 8.1.4. Give an example of a bandlimited function in L2(�) that is not absolutely
integrable.

Exercise 8.1.5. Suppose that f is a bandlimited function in L2(�). Show that the infinite
sum in (8.5) converges locally uniformly.

8.1.2 Shannon-Whittaker Interpolation

See: A.5.2.

The explicit interpolation formula, (8.5), for f in terms of its samples at { nπ
L | n ∈ �}

is sometimes called the Shannon-Whittaker interpolation formula. In Section A.5.2 we
consider other methods for interpolating a function from sampled values. These formulæ
involve finite sums and only give exact reconstructions for a finite-dimensional family
of functions. The Shannon-Whittaker formula gives an exact reconstruction for all L-
bandlimited functions. Since it requires an infinite sum, it is mostly of theoretical sig-
nificance. In practical applications only a finite part of this sum can be used. That is, we
would set

f (x) ≈
N∑

n=−N

f (
nπ

L
) sinc(Lx − nπ).

Because

sinc(Lx − nπ) � 1

n

and
∑

n−1 = ∞, the partial sums of the series in (8.5) may converge to f (x) very slowly.
In order to get a good approximation to f (x), we would therefore need to take N very
large. This difficulty can be often be avoided by oversampling.

Formula (8.5) is only one of an infinite family of similar interpolation formulæ . Sup-
pose that f is an (L−η)-bandlimited function for an η > 0. Then it is also an L-bandlimited
function. This makes it possible to use oversampling to obtain more rapidly convergent in-
terpolation formulæ . To find such formulæ select a function ϕ such that

1. ϕ̂(ξ ) = 1 for |ξ | ≤ L − η

2. ϕ̂(ξ ) = 0 for |ξ | > L

A function of this sort is often called a window function.
From (8.2) it follows that

f̂ (ξ) =
(π

L

) ∞∑
n=−∞

f (
πn

L
)e− nπ iξ

L for |ξ | < L . (8.6)

Since f̂ is supported in [η − L , L − η] and ϕ̂ satisfies condition (1), it follows that

f̂ (ξ) = f̂ (ξ)ϕ̂(ξ).
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Using this observation and (8.2) in the Fourier inversion formula gives

f (x) = 1

2π

∫ ∞

−∞
f̂ (ξ)ϕ̂(ξ)eiξ x dξ

= 1

2π

π

L

∞∑
n=−∞

f (
nπ

L
)

∫ L

−L
ϕ̂(ξ )eixξ− nπ iξ

L dξ

= 1

2L

∞∑
n=−∞

f (
nπ

L
)ϕ(x − nπ

L
).

(8.7)

This is a different interpolation formula for f ; the sinc-function is replaced by [2L]−1ϕ.
The Shannon-Whittaker formula, (8.5), corresponds to the choice ϕ̂ = χ[−L ,L].

Recall that more smoothness in the Fourier transform of a function is reflected in faster
decay of the function itself. Using a smoother function for ϕ̂ therefore leads to a more
rapidly convergent interpolation formula for f. There is a small price to pay for using a
different choice of ϕ̂. The first issue is that ϕ, given by

ϕ(x) = 1

2π

∫ ∞

−∞
ϕ̂(ξ )eixξdξ,

may be more difficult to accurately compute than the sinc function. The second is that we
need to sample f above the Nyquist rate. In this calculation, f is an (L − η)-bandlimited
function, but we need to use a sample spacing

π

L
<

π

L − η
.

On the other hand, a little oversampling and additional computational overhead often leads
to superior results.
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(a) Window functions in
Fourier space.
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(b) The corresponding interpo-
lation functions.

Figure 8.1. Window functions in Fourier space and their inverse Fourier transforms.
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Example 8.1.1. We compare the Shannon-Whittaker interpolant to the interpolant obtained
using a second order smoothed window, with 25% oversampling. The second-order win-
dow is defined by

s2(ξ) =

⎧⎪⎨⎪⎩
1 if |ξ | ≤ 1,

128|ξ |3 − 432|ξ |2 + 480|ξ | − 175 if 1 < |ξ | < 5
4 ,

0 if |ξ | ≥ 5
4 .

(8.8)

It has one continuous derivative and a weak second derivative, its inverse Fourier transform
is


−1(s2)(x) = 768

[
cos(x) − cos(5x/4)

πx4

]
− 96

[
sin(5x/4) + sin(x)

πx3

]
.

Figure 8.1(a) shows the two window functions, and Figure 8.1(b) shows their inverse
Fourier transforms. Observe that 
−1(s2) converges to zero as x tends infinity much faster
than the sinc function.

The graphs in Figure 8.2 compare the results of reconstructing non-bandlimited func-
tions using the Shannon-Whittaker interpolant and that obtained using (8.7) with ϕ̂ a suit-
ably scaled version of s2. The sample spacing for the Shannon-Whittaker interpolation is
.1, for the “oversampled” case we use .08. The original function is shown in the first col-
umn; the second column shows both interpolants; and the third column is a detailed view
near to ±1. This is a point where the original function or one of its derivatives is discon-
tinuous. Two things are evident in these graphs: The error in the oversampled interpolant
tends to zero much faster as x tends to infinity, and the smoother the function, the easier it
is to interpolate.

Exercises
Exercise 8.1.6. Use the Shannon-Whittaker formula to reconstruct the function

f (x) = sin(Lx)

πx

from the samples { f ( nπ
L )}.

Exercise 8.1.7. How should the Shannon-Whittaker formula be modified if, instead of
{ f (πn

L ) : n ∈ �}, the samples { f (x0 + πn
L ) : n ∈ �} are collected?

Exercise 8.1.8. Show that for each n ∈ �, function, sinc(Lx − nπ) is L-bandlimited.
The Shannon-Whittaker formula therefore expresses an L-bandlimited function as a sum
of such functions.

Exercise 8.1.9. The Fourier transform of

f (x) = 1 − cos(x)

2πx

is f̂ (ξ) = i sgn ξχ[−1,1](ξ). Use the Shannon-Whittaker formula to reconstruct f from the
samples { f (nπ)}.
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(a) χ[−1,1]. (b) Its reconstructions. (c) Detail near the sin-
gularity.

(d) χ[−1,1](1 − x2). (e) Its reconstructions. (f) Detail near the sin-
gularity.

(g) χ[−1,1](1 − x2)2. (h) Its reconstructions. (i) Detail near the sin-
gularity.

Figure 8.2. Shannon-Whittaker and generalized Shannon-Whittaker interpolation for sev-
eral functions

8.2 The Poisson Summation Formula

What happens if we do not have enough samples to satisfy the hypotheses of Nyquist’s the-
orem? For example, what if our signal is not bandlimited? Functions that describe images
in medical applications generally have bounded support, so they cannot be bandlimited and
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therefore we are always undersampling (see Chapter 4, Proposition 4.4.1). To analyze the
effects of undersampling, we introduce the Poisson summation formula. It gives a relation-
ship between the Fourier transform and the Fourier series.

8.2.1 The Poisson Summation Formula

Assume that f is a continuous function that decays reasonably fast as |x| → ∞. We
construct a periodic function out of f by summing the values of f at its integer translates.
Define f p by

f p(x) =
∞∑

n=−∞
f (x + n). (8.9)

This is a periodic function of period 1, f p(x + 1) = f p(x). If f is absolutely integrable on
�, then it follows from Fubini’s theorem that f p is absolutely integrable on [0, 1].

The Fourier coefficients of f p are closely related to the Fourier transform of f :

f̂ p(m) =
∫ 1

0
f p(x)e

−2π imx dx

=
∫ 1

0

∞∑
n=−∞

f (x + n)e−2π imx dx =
∞∑

n=−∞

∫ n+1

n
f (x)e−2π imx dx

=
∫ ∞

−∞
f (x)e−2π imx dx = f̂ (2πm).

The interchange of the integral and summation is easily justified if f is absolutely inte-
grable on �.

Proceeding formally, we use the Fourier inversion formula for periodic functions, The-
orem 7.1.2, to find Fourier series representation for f p,

f p(x) =
∞∑

n=−∞
f̂ p(n)e

2π inx =
∞∑

n=−∞
f̂ (2πn)e2π inx .

Note that { f̂ p(n)} are the Fourier coefficients of the 1-periodic function f p whereas f̂ is
the Fourier transform of the absolutely integrable function f defined on all of �. To justify
these computations, it is necessary to assume that the coefficients { f̂ (2πn)} go to zero
sufficiently rapidly. If f is smooth enough, then this will be true. The Poisson summation
formula is a precise formulation of these observations.

Theorem 8.2.1 (Poisson summation formula). If f is an absolutely integrable function
such that

∞∑
n=−∞

| f̂ (2πn)| < ∞
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then, at points of continuity of f p, we have

∞∑
n=−∞

f (x + n) =
∞∑

n=−∞
f̂ (2πn)e2π inx . (8.10)

Remark 8.2.1. The hypotheses in the theorem are not quite optimal. Some hypotheses are
required, as there are examples of absolutely integrable functions f such that both sums,

∞∑
n=−∞

| f (x + n)| and
∞∑

n=−∞
| f̂ (2πn)|

converge but (8.10) does not hold. A more detailed discussion can be found in [79].

Using the preceding argument and rescaling, we easily find the Poisson summation
formula for 2L-periodic functions:

∞∑
n=−∞

f (x + 2nL) = 1

2L

∞∑
n=−∞

f̂ (
πn

L
)e

π inx
L . (8.11)

Suitably scaled, the hypotheses are the same as those in Theorem 8.2.1.
As an application of (8.10) we can prove an x-space version of Nyquist’s theorem.

Suppose that f equals 0 outside the interval [−L , L] (i.e., f is a space-limited function).
For each x ∈ [−L , L], only the n = 0 term on the left-hand side of (8.11) is nonzero. The
Poisson summation formula states that

f (x) = 1

2L

∞∑
n=−∞

f̂ (
πn

L
)e

π inx
L for x ∈ [−L , L].

Therefore, if f is supported in [−L , L], then it can be reconstructed from the samples of
its Fourier transform

{ f̂ (
πn

L
) | n ∈ �}.

This situation arises in magnetic resonance imaging (MRI). In this modality, we directly
measure samples of the Fourier transform of the image function. That is, we measure
{ f̂ (n�ξ)}. On the other hand, the function is known, a priori, to be supported in a fixed,
bounded set [−L , L]. In order to reconstruct f without introducing errors, we need to take

�ξ ≤ π

L
. (8.12)

Thus, if we measure samples of the Fourier transform of a space-limited function, then
Nyquist’s theorem places a constraint on the sample spacing in the Fourier domain. An
extensive discussion of sampling in MRI can be found in [50]. Figure 8.3 shows the result,
in MRI, of undersampling the Fourier transform. Note that portions of the original image
have been “folded over” at the top and right-hand side of the reconstructed image.
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Figure 8.3. Aliasing artifacts produced by undersampling in magnetic resonance imaging.
(Image courtesy of Dr. Felix Wehrli.)

It most applications we sample a function rather than its Fourier transform. The analysis
of undersampling in this situation requires the dual Poisson summation formula. Let f be
a function such that the sum ∞∑

−∞
f̂ (ξ + 2nL)

converges. Considering

f̂ p(ξ) =
∞∑
−∞

f̂ (ξ + 2nL)

and its Fourier coefficients in the same manner as previously we obtain the following:

Theorem 8.2.2 (The dual Poisson summation formula). If f is a function such that f̂ is
absolutely integrable and

∞∑
n=−∞

| f (
πn

L
)| < ∞

then, at a point of continuity of f̂ p,

∞∑
n=−∞

f̂ (ξ + 2nL) =
(π

L

) ∞∑
n=−∞

f (
πn

L
)e− nπ iξ

L . (8.13)

Exercises
Exercise 8.2.1. Give the details for the proof of Theorem 8.2.2. You may assume that f is
smooth and rapidly decreasing.

Exercise 8.2.2. Explain formula (8.12).
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Exercise 8.2.3.∗ This exercise requires a knowledge of the Fourier transform for general-
ized functions (see Section 4.4.4). Suppose that f is a periodic function of period 1. The
generalized function l f has a Fourier transform that is a generalized function. Using the
dual Poisson summation formula, show that

l̂ f = 2π
∞∑

n=−∞
f̂ (n)δ(2πn − ξ); (8.14)

here { f̂ (n)} are the Fourier coefficients defined in (7.1).

Exercise 8.2.4.∗ What is the analogue of formula (8.14) for a 2L-periodic function?

8.2.2 Undersampling and Aliasing�

Using the Poisson summation formula, we analyze the errors introduced by undersampling.
Whether or not f is an L-bandlimited function, the Shannon-Whittaker formula defines an
L-bandlimited function:

FL(x) =
∞∑

n=−∞
f (

nπ

L
) sinc(Lx − nπ).

As sinc(0) = 1 and sinc(nπ) = 0, for nonzero integers it follows that FL interpolates f at
the sample points,

FL(
nπ

L
) = f (

nπ

L
) for n ∈ �.

Reversing the steps in the derivation of the Shannon-Whittaker formula, and applying for-
mula (8.13) we see that Fourier transform of FL is given by

F̂L(ξ) =
∞∑

n=−∞
f̂ (ξ + 2nL)χ[−L ,L](ξ). (8.15)

If f is L-bandlimited then for all ξ, we have

f̂ (ξ) = F̂L(ξ).

On the other hand, if f is not L-bandlimited, then

f̂ (ξ)− F̂L(ξ) =
{

f̂ (ξ) if |ξ | > L ,

−∑n 	=0 f̂ (ξ + 2nL) if |ξ | ≤ L .
(8.16)

The function FL or its Fourier transform F̂L encodes all the information present in the
sequence of samples. Formula (8.16) shows that there are two distinct sources of error in
FL . The first is truncation error; as FL is L-bandlimited, the high-frequency information in
f is no longer available in FL . The second source of error arises from the fact that the high-
frequency information in f reappears at low frequencies in the function FL . This latter
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type of distortion is called aliasing. The high-frequency information in the original signal
is not simply “lost” but resurfaces, corrupting the low frequencies. Hence FL faithfully
reproduces neither the high-frequency nor the low-frequency information in f.

Aliasing is familiar in everyday life: If we observe the rotation of the wheels of a
fast-moving car in a movie, it appears that the wheels rotate very slowly. A movie image is
actually a sequence of samples (24 frames/second). This sampling rate is below the Nyquist
rate needed to accurately reproduce the motion of the rotating wheel.

Example 8.2.1. If a car is moving at 60 mph and the tires are 3 ft in diameter, then the
angular velocity of the wheels is

ω = 58
1

3

rotations

second
.

We can model the motion of a point on the wheel as (r cos((581
3 )2π t), r sin((581

3 )2π t).
The Nyquist rate is therefore

2 · 58
1

3

frames

second
� 117

frames

second
.

Sampling only 24 times per second leads to aliasing. As 581
3 = 101

3 + 2 ∗ 24, the aliased
frequencies are ±(101

3 ).

The previous example is useful to conceptualize the phenomenon of aliasing but has
little direct bearing on imaging. To better understand the role of aliasing in imaging we
rewrite FL in terms of its Fourier transform,

FL(x) = 1

2π

L∫
−L

f̂ (ξ)eixξdξ + 1

2π

L∫
−L

∑
n 	=0

f̂ (ξ + 2nL)eixξdξ.

The first term is the partial Fourier inverse of f. For a function with jump discontinuities
this term produces Gibbs oscillations. The second term is the aliasing error itself. In many
examples of interest in imaging, the Gibbs artifacts and the aliasing error are about the
same size. What makes either term a problem is slow decay of the Fourier transform of f.
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(a) Partial Fourier inverse.
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(b) Pure aliasing contribution.

Figure 8.4. The two faces of aliasing, d = .05.
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Example 8.2.2. In Figure 8.4 the two contributions to f − FL are shown separately, for the
rectangle function f = χ[−1,1]. Figure 8.4(a) shows the Gibbs contribution; Figure 8.4(b)
shows the “pure aliasing” part. Figure 8.5 shows the original function, its partial Fourier
inverse, 
−1( f̂ χ[−L ,L]), and its Shannon-Whittaker interpolant. The partial Fourier inverse
is the medium weight line. The curve slightly to the right of this line is the Shannon-
Whittaker interpolant. In this example, the contributions of the Gibbs artifact and the pure
aliasing error are of about the same size and have same general character. It is evident that
the Shannon-Whittaker interpolant is more distorted than the partial inverse of the Fourier
transform, though visually they are quite similar.
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0. 2 0 .4 0. 6 0 .8 1 1. 2

Figure 8.5. Partial Fourier inverse and Shannon-Whittaker interpolant.

Example 8.2.3. For comparison, consider the continuous function g(x) = χ[−1,1](x)(1 −
x2) and its reconstruction using the sample spacing d = .1. In Figure 8.6(a) it is just barely
possible to distinguish the original function from its approximate reconstruction. The worst
errors occur near the points ±1, where g is finitely differentiable. Figure 8.6(b) shows the
graph of the difference, g − GL (note the scale along the y-axis).
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(a) The Shannon-Whittaker interpola-
tion.

−0.01

0.01

−2 −1 1 2

(b) The difference.

Figure 8.6. What aliasing looks like for a continuous, piecewise differentiable function,
d = 0.1.

Example 8.2.4. As a final example we consider the effect of sampling on a “fuzzy func-
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tion.” Here we use a function of the sort introduced in Example4.2.5. These are continu-
ous functions with “sparse,” but slowly decaying, Fourier transforms. Figure 8.7(a) is the
graph of such a function, and Figure 8.7(b) shows the Shannon-Whittaker interpolants with
d = .1, .05, and .025. For a function of this sort, Shannon-Whittaker interpolation appears
to produce smoothing.
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(a) A fuzzy function.
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(b) Shannon-Whittaker interpolants.

Figure 8.7. What aliasing looks like for a fuzzy function, d = .1, .05, .025.

Remark 8.2.2.� The functions encountered in imaging applications are usually spatially
limited and therefore cannot be bandlimited. However, if a function f is smooth enough,
then its Fourier transform decays rapidly and therefore, by choosing L sufficiently large,
the difference, f̂ − F̂L can be made “small.” If this is so, then the effective support of
f̂ is contained in [−L , L], and f is an effectively bandlimited function. Though effec-
tive support is an important concept in imaging, it does not have a precise definition. In
most applications it does not suffice to have f̂ itself small outside of [−L , L]. Usually the
sampling rate must be large enough so that the aliasing error,∑

n 	=0

f̂ (ξ + 2nL),

is also small. This is a somewhat heuristic principle because the meaning of small is dic-
tated by the application.

Examples 8.2.2 and 8.2.3 illustrate what is meant by effective bandlimiting. Neither
function is actually bandlimited. No matter how large L is taken, a Shannon-Whittaker
interpolant for f, in Example 8.2.2, displays large oscillatory artifacts. In most applications
this function would not be considered effectively L-bandlimited, for any L . However, it
should be noted that, away from the jumps, the Shannon-Whittaker interpolant does a good
job reconstructing f. For most purposes, the function g would be considered effectively
bandlimited, though the precise effective bandwidth would depend on the application.

To diminish the effects of aliasing, an analogue signal may be passed through a “low-
pass filter” before it is sampled. In general terms, a lowpass filter is an operation that
attenuates the high-frequency content of a signal without introducing too much distortion
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into the low-frequency content. In this way the sampled data accurately represent the low-
frequency information present in the original signal without corruption from the high fre-
quencies. An ideal lowpass filter removes all the high-frequency content in a signal outside
of given band, leaving the data within the passband unchanged. An ideal lowpass filter
replaces f with the signal fL, defined by the following properties:

f̂ L(ξ) = f̂ (ξ) if |ξ | ≤ L ,

f̂ L(ξ) = 0 if |ξ | ≥ L .
(8.17)

The samples { fL(
nπ
L )} contain all the low frequency-information in f without the aliasing

errors. Using the Shannon-Whittaker formula to reconstruct a function, with these samples,
gives fL for all x . This function is just the partial Fourier inverse of f,

fL(x) = 1

2π

L∫
−L

f̂ (ξ)eixξdξ,

and is still subject to unpleasant artifacts like the Gibbs phenomenon.
A realistic measurement consists of samples of a convolution ϕ ∗ f, with ϕ a function

with total integral one. If it has support in [−η, η], then the measurement at nπ
L is the

average,

ϕ ∗ f (
nπ

L
) =

∫ η

−η

f (
nπ

L
− x)ϕ(x) dx .

Hence “measuring” the function f at x = nπ
L is the same thing as sampling the convolution

ϕ ∗ f at nπ
L . The Fourier transform of ϕ goes to zero as the frequency goes to infinity; the

smoother ϕ is, the faster this occurs. As the Fourier transform of ϕ ∗ f is

̂ϕ ∗ f (ξ) = ϕ̂(ξ ) f̂ (ξ),

the measurement process itself attenuates the high-frequency content of f. On the other
hand,

ϕ̂(0) =
∫ ∞

−∞
ϕ(x) dx = 1

and therefore ̂ϕ ∗ f resembles f̂ for sufficiently low frequencies. Most measurement pro-
cesses provide a form of lowpass filtering.

The more sharply peaked ϕ is, the larger the interval over which the “measurement
error,”

̂ϕ ∗ f (ξ)− f̂ (ξ) = (1 − ϕ̂(ξ )) f̂ (ξ)

can be controlled. The aliasing error in the measured samples is∑
n 	=0

ϕ̂(ξ + 2nL) f̂ (ξ + 2nL).

By choosing ϕ to be smooth, this can be made as small as we like. If ϕ is selected so that
ϕ̂(nL) = 0 for n ∈ � \ {0}, then the Gibbs-like artifacts that result from truncating the
Fourier transform to the interval [−L , L] can also be eliminated.



8.2. The Poisson Summation Formula 293

Remark 8.2.3. A detailed introduction to wavelets that includes interesting generalizations
of the Poisson formula and the Shannon-Whittaker formula can be found in [58].

Exercises
Exercise 8.2.5. Derive formula (8.15) for F̂L .

Exercise 8.2.6. Compute the Fourier transform of g(x) = χ[−1,1](x)(1 − x2).

Exercise 8.2.7. What forward velocity of the car in Example8.2.1 corresponds to the ap-
parent rotational velocity of the wheels? What if the car is going 40 mph?

Exercise 8.2.8. Sometimes in a motion picture or television image the wheels of a car
appear to be going clockwise, even though the car is moving forward. Explain this by
giving an example.

Exercise 8.2.9. Explain why the artifact produced by aliasing looks like the Gibbs phe-
nomenon. For the function χ[−1,1], explain why the size of the pointwise error, in the
Shannon-Whittaker interpolant, does not go to zero as the sample spacing goes to zero.

Exercise 8.2.10. Experiment with the family of functions

fα(x) = χ[−1,1](x)(1 − x2)α

to understand effective bandlimiting. For a collection of α ∈ [0, 2], see whether there
is a Gibbs-like artifact in the Shannon-Whittaker interpolants and, if not, at what sample
spacing is the Shannon-Whittaker interpolant visually indistinguishable from the original
function (over [−2, 2]).
Exercise 8.2.11. The ideal lowpass filtered function, fL, can be expressed as a convolution

fL(x) = f ∗ kL(x).

Find the function kL . If the variable x is “time,” explain the difficulty in implementing an
ideal lowpass filter.

Exercise 8.2.12. Suppose that ϕ is a non-negative, even, real valued function such that
ϕ̂(0) = 1; explain why the interval over which | f̂ (ξ)− ̂ϕ ∗ f (ξ)| is small is controlled by

∞∫
−∞

x2ϕ(x) dx .

Exercise 8.2.13. Show that if

ψ(x) = ϕ ∗ χ[− π
L , πL ](x),

then ψ̂(nL) = 0 for all n ∈ � \ {0}.
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8.2.3 Subsampling

Subsampling is a way to take advantage of aliasing to “demodulate” a bandlimited signal
whose Fourier transform is supported in a set of the form [−ω−B,−ω+B] or [ω−B, ω+
B]. In this context ω is called the carrier frequency and 2B the bandwidth of the signal.
This situation arises in FM radio as well as in MR imaging. For simplicity, suppose that
there is a positive integer N so that

ω = N B.

Let f be a function whose Fourier transform is supported in [ω − B, ω + B]. If we
sample this function at the points { nπ

B , : n ∈ �} and use formula (8.5) to obtain FL,
then (8.13) implies that

F̂L(ξ) = f̂ (ω + ξ). (8.18)

The function FL is called the demodulated version of f ; the two signals are very simply
related:

f (x) = e−iωx FL(x).

From the formula relating f and FL, it is clear that if FL is real valued, then, in general,
the measured signal, f, is not. A similar analysis applies to a signal with Fourier transform
supported in [−ω − B,−ω + B].

Exercises
Exercise 8.2.14. Suppose that ω is not an integer multiple of B and that f is a signal whose
Fourier transform is supported in [ω−B, ω+B]. If FL is constructed as previously from the
samples { f ( nπ

B )}, then determine F̂L . What should be done to get a faithfully demodulated
signal by sampling? Keep in mind that normally ω >> B.

Exercise 8.2.15. Suppose that f is a real-valued function whose Fourier transform is sup-
ported in [−ω− B,−ω+ B] ∪ [ω− B, ω+ B]. Assuming that ω = N B and f is sampled
at { nπ

B }, how is F̂L related to f̂ ?

8.3 Periodic Functions and the Finite Fourier Transform�

See: 2.3.2.

We now adapt the discussion of sampling to the context of periodic functions. In this
case a natural finite analogue of the Fourier series plays a role analogous to that played,
in the study of sampling for functions defined on �, by the Fourier series itself. We begin
with the definition and basic properties of the finite Fourier transform.
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Definition 8.3.1. Suppose that < x0, . . . , xm−1 > is a sequence of complex numbers. The
finite Fourier transform of this sequence is the sequence < x̂0, . . . , x̂m−1 > of complex
numbers defined by

x̂k = 1

m

m−1∑
j=0

x j e
− 2π i jk

m . (8.19)

Sometimes it is denoted by


m(< x0, . . . , xm−1 >) = (< x̂0, . . . , x̂m−1 >).

Using the formula for the sum of a geometric series and the periodicity of the exponen-
tial function, we easily obtain the formulæ

m−1∑
j=0

exp

(
2π i j

m
(k − l)

)
=
{

m k = l,

0 k 	= l.
(8.20)

These formulæ have a nice geometric interpretation: The set of vectors

{(1, e
2π ik

m , e
4π ik

m , . . . , e
2(m−1)π ik

m ) : k = 0, . . . ,m − 1}
is an orthogonal basis for �m . These vectors are obtained by sampling the functions
{e2π ikx : k = 0, . . . ,m − 1} at the points { j

m : j = 0, . . . ,m − 1}.
The computations in (8.20) show that the inverse of the finite Fourier transform is given

by

x j =
m−1∑
k=0

x̂ke
2π i jk

m . (8.21)

The formulæ (8.19) and (8.21) defining the sequences < x̂k > and < x j >, respectively,
make sense with k or j any integer. In much the same way, as it is often useful to think of
a function defined on [0, L] as an L-periodic functions, it is useful to think of < x j > and
< x̂k > as bi-infinite sequences satisfying

x j+m = x j and x̂k+m = x̂k . (8.22)

Such a sequence is called an m-periodic sequence.
The summation in (8.21) is quite similar to that in (8.19); the exponential multipliers

have been replaced by their complex conjugates. This means that a fast algorithm for
computing 
m automatically provides a fast algorithm for computing 
−1

m . Indeed, if m
is a power of 2, then there is a fast algorithm for computing both 
m and 
−1

m . Either
transformation requires about 3m log2 m computations, which should be compared to the
O(m2) computation generally required to multiply an m-vector by an m × m-matrix. This
algorithm, called the fast Fourier transform or FFT, is outlined in Section 10.5.

We now return to our discussion of sampling for periodic functions. Let f be an L-
periodic function with Fourier coefficients < f̂ (n) > .



296 Chapter 8. Sampling

Definition 8.3.2. A periodic function f is called N -bandlimited if f̂ (n) = 0 for all n with
|n| ≥ N .

In this case, the inversion formula for Fourier series implies that

f (x) = 1

L

N−1∑
n=1−N

f̂ (n)e
2π inx

L .

This is a little simpler than the continuum case since f already lies in the finite-dimensional
space of functions spanned by

{e 2π inx
L : 1 − N ≤ n ≤ N − 1}.

Suppose that f is sampled at { j L
2N−1 : j = 0, . . . , 2N − 2}. Substituting the Fourier

representation of f into the sum defining the finite Fourier transform gives

2N−2∑
j=0

f (
j L

2N − 1
)e− 2π ik j

2N−1 =
2N−2∑

j=0

1

L

N−1∑
n=1−N

f̂ (n) exp

(
2π in j L

(2N − 1)L
− 2π ik j

2N − 1

)

= 1

L

N−1∑
n=1−N

f̂ (n)
2N−2∑

j=0

exp

(
2π i j

2N − 1
(n − k)

)
=2N − 1

L
f̂ (k), k ∈ {1 − N, 2 − N, . . . , N − 2, N − 1}.

(8.23)

The relations in (8.20), with m replaced by 2N − 1, are used to go from the second to
the third line. This computation shows that if f is an N -bandlimited function, then, but
for an overall multiplicative factor, the finite Fourier transform of the sequence of samples
< f (0), . . . , f ( (2N−2)L

2N−1 ) > computes the nonzero Fourier coefficients of f itself. From the

periodicity of 
2N−1(< f (0), . . . , f ( (2N−2)L
2N−1 ) >) it follows that


2N−1(< f (0), . . . , f (
(2N − 2)L

2N − 1
) >) =

< f̂ (0), f̂ (1), . . . , f̂ (N − 1), f̂ (1 − N), . . . , f̂ (−2), f̂ (−1) > .

(8.24)

The inversion formula for the finite Fourier transform implies the periodic analogue of
Nyquist’s theorem.

Theorem 8.3.1 (Nyquist’s theorem for periodic functions). If f is an L-periodic function
and f̂ (n) = 0 for |n| ≥ N, then f can be reconstructed from the equally spaced samples
{ f ( j L

2N−1 ) : j = 0, 1, . . . , (2N − 2)}.
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From equation (8.23) and the Fourier inversion formula, we derive an interpolation
formula analogous to (8.5):

f (x) = 1

L

N−1∑
n=1−N

f̂ (n)e
2π inx

L

= 1

L

N−1∑
n=1−N

L

2N − 1

2N−2∑
j=0

f (
j L

2N − 1
)e− 2π in j

2N−1 e
2π inx

L

= 1

2N − 1

2N−2∑
j=0

f (
j L

2N − 1
)

N−1∑
n=1−N

e− 2π in j
2N−1 e

2π inx
L

= 1

2N − 1

2N−2∑
j=0

f (
j L

2N − 1
)
sinπ(2N − 1)( x

L − j
2N−1 )

sinπ( x
L − j

2N−1 )

(8.25)

Even if f is not bandlimited, the last line in (8.25) defines an N -bandlimited function,

FN (x) = 1

2N − 1

2N−2∑
j=0

f (
j L

2N − 1
)
sin π(2N − 1)( x

L − j
2N−1 )

sinπ( x
L − j

2N−1 )
.

As before, this function interpolates f at the sample points

FN (
j L

2N − 1
) = f (

j L

2N − 1
), j = 0, 1, . . . , (2N − 2).

The Fourier coefficients of FN are related to those of f by

F̂N (k) =
∞∑

n=−∞
f̂ (k + n(2N − 1)) = f̂ (k)+

∑
n 	=0

f̂ (k + n(2N − 1)) 1− N ≤ k ≤ N − 1.

If f is not N -bandlimited, then FN has aliasing distortion: High-frequency data in f distort
the low frequencies in FN . Of course, if f is discontinuous, then FN also displays Gibbs
oscillations.

Exercises
Exercise 8.3.1. Prove (8.20). Remember to use the Hermitian inner product!

Exercise 8.3.2. Explain formula (8.24). What happens if f is not N -bandlimited?

Exercise 8.3.3.� As an m-periodic sequence, < x0, . . . , xm−1 > is even if

x j = xm− j for j = 1, . . . ,m

and odd if
x j = −xm− j for j = 1, . . . ,m.

Show that the finite Fourier transform of a real-valued, even sequence is real valued and the
finite Fourier transform of a real-valued, odd sequence is imaginary valued.
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Exercise 8.3.4. Suppose that f is an N -bandlimited, L-periodic function. For a subset
{x1, . . . , x2N−1} of [0, L) such that

x j 	= xk if j 	= k,

show that f can be reconstructed from the samples

{ f (x j ) : j = 1, . . . , 2N − 1}.
From the point of view of computation, explain why equally spaced samples are preferable.

Exercise 8.3.5. Prove that FN interpolates f at the sample points:

FN (
j L

2N − 1
) = f (

j L

2N − 1
), j = 0, 1, . . . , 2N − 2.

Exercise 8.3.6. Find analogues of the generalized Shannon-Whittaker formula in the peri-
odic case.

8.4 Quantization Errors

See: A.1.

In the foregoing sections it is implicitly assumed that we have a continuum of numbers
at our disposal to make measurements and do computations. As digital computers are used
to implement the various filters, this is not the case. In Section A.1.2 we briefly discuss
how numbers are actually stored and represented in a computer. For simplicity we consider
a base 2, fixed-point representation of numbers. Suppose that we have (n + 1) bits and let
the binary sequence (b0, b1, . . . , bn) correspond to the number

(b0, b1, . . . , bn) ↔ (−1)b0

∑n−1
j=0 b j+12 j

2n
. (8.26)

This allows us to represent numbers between −1 and +1 with a maximum error of 2−n.
There are several ways to map the continuum onto (n + 1)-bit binary sequences. Such a
correspondence is called a quantization map. In essentially any approach, numbers greater
than or equal to 1 are mapped to (0, 1, . . . , 1), and those less than or equal to −1 are
mapped to (1, 1, . . . , 1). This is called clipping and is very undesirable in applications. To
avoid clipping, the data are usually scaled before they are quantized.

The two principal quantization schemes are called rounding and truncation. For a num-
ber x between −1 and +1, its rounding is defined to be the number of the form in (8.26)
closest to x . If we denote this by Qr (x), then clearly

|Qr (x) − x| ≤ 1

2n+1
.
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There exist finitely many numbers that are equally close to two such numbers; for these
values a choice simply has to be made. If

x = (−1)b0

∑n−1
j=−∞ b j+12 j

2n
, where b j ∈ {0, 1},

then its (n + 1)-bit truncation corresponds to the binary sequence (b0, b1, . . . , bn). If we
denote this quantization map by Qt(x), then

0 ≤ x − Qt (x) ≤ 1

2n
.

We use the notation Q(x) to refer to either quantization scheme.
Not only are measurements quantized, but arithmetic operations are as well. The usual

arithmetic operations must be followed by a quantization step in order for the result of an
addition or multiplication to fit into the same number of bits. The machine uses

Q(Q(x) + Q(y)) and Q(Q(x) · Q(y))

for addition and multiplication, respectively. The details of these operations depend on
both the quantization scheme and the representation of numbers (i.e., fixed point or floating
point). We consider only the fixed point representation. If Q(x), Q(y) and Q(x) + Q(y)
all lie between −1 and +1, then no further truncation is needed to compute the sum. If
Q(x) + Q(y) is greater than +1, we have an overflow and if the sum is less than −1 an
underflow. In either case the value of the sum is clipped. On the other hand, if

Q(x) = (−1)b0

∑n−1
j=0 b j+12 j

2n
and Q(y) = (−1)c0

∑n−1
j=0 c j+12 j

2n
,

then

Q(x)Q(y) = (−1)b0+c0

∑n−1
j,k=1 b j+1ck+12 j+k

22n
.

This is essentially a (2n + 1)-bit binary representation and therefore must be re-quantized
to obtain an (n + 1)-bit representation. Because all numbers lie between +1 and −1,
overflows and underflows cannot occur in fixed-point multiplication.

It is not difficult to find numbers x and y between −1 and 1 so that x+y is also between
−1 and 1 but

Q(x + y) 	= Q(x) + Q(y).

This means that quantization is not a linear map!

Example 8.4.1. Using truncation as the quantization method and three binary bits, we see
that Q( 3

16) = 0 but Q( 3
16 + 3

16) = 1
4 .

Because it is nonlinear, quantization is difficult to analyze. An exact analysis requires
entirely new techniques. Another approach is to regard the error e(x) = x − Q(x) as quan-
tization noise. If {x j } is a sequence of samples, then {e j = x j − Q(x j )} is the quantization
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noise sequence. For this approach to be useful, we need to assume that the sequence {e j }
has good statistical properties (e.g., it is of mean zero and the successive values are not
highly correlated). If the original signal is sufficiently complex, then this is a good approx-
imation. However, if the original signal is too slowly varying, then these assumptions may
not hold. This approach is useful because it allows an analysis of the effect on the signal-
to-noise ratio of the number of bits used in the quantization scheme. It is beyond the scope
of this text to consider these problems in detail; a thorough treatment and references to the
literature can be found in Chapter 9 of [100].

8.5 Higher-Dimensional Sampling

In imaging applications, we usually work with functions of two or three variables. Let f be
a function defined on �n and let {xk} be a discrete set of points in �n. As before, the values
{ f (xk)} are the samples of f at the sample points {xk}. Parts of the theory of sampling
in higher dimensions exactly parallel the one-dimensional theory, though the problems of
sampling and reconstruction are considerably more complicated.

As in the one-dimensional case, samples are usually collected on a uniform grid. In this
case it is more convenient to label the sample points using vectors with integer coordinates.
As usual, boldface letters are used to denote such vectors, that is,

j = ( j1, . . . , jn), where ji ∈ �, i = 1, . . . , n.

Definition 8.5.1. The sample spacing for a set of uniformly spaced samples in �n is a
vector h = (h1, . . . , hn) with positive entries. The index j corresponds to the sample point

x j = ( j1h1, . . . , jnhn).

A set of values, { f (x j )}, at these points is a uniform sample set.

A somewhat more general definition of uniform sampling is sometimes useful: Fix n
orthogonal vectors {v1, . . . , vn}. For each j = ( j1, . . . , jn) ∈ �n, define the point

x j = j1v1 + · · · jnvn. (8.27)

The set of points {x j : j ∈ �n} defines a uniform sample set. This sample set is the result
of applying a rotation to a uniform sample set with sample spacing (‖v1‖, . . . , ‖vn‖). As in
the one-dimensional case, the definitions of sample spacing and uniform sampling depend
on the choice of coordinate system. A complication in several variables is that there are
many different coordinate systems that naturally arise.

Example 8.5.1. Let (h1, . . . , hn) be a vector with positive coordinates. The set of points

{( j1h1, . . . , jnhn) : ( j1, . . . , jn ∈ �n}
is a uniform sample set.
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Example 8.5.2. Let (r, θ) denote polar coordinates for �2; they are related to rectangular
coordinates by

x = r cos θ, y = r sin θ.

In CT imaging we often encounter functions that are uniformly sampled on a polar grid.
Let f (r, θ) be a function on �2 in terms of polar coordinates and let ρ > 0 and M ∈ � be
fixed. The set of values

{ f ( jρ,
2kπ

M
) : j ∈ �, k = 1, . . . M}

consists of uniform samples of f, in polar coordinates; however, the points

{( jρ cos

(
2kπ

M

)
, jρ sin

(
2kπ

M

)
)}

are not a uniform sample set as defined previously.

In more than one dimension there are many different, reasonable notions of finite band-
width, or bandlimited data. If D is any convex subset in �n containing 0, then a function is
D-bandlimited if f̂ is supported in D. The simplest such regions are boxes and balls.

Definition 8.5.2. Let B = (B1, . . . , Bn) be an n-tuple of positive numbers. A function f
defined in �n is B-bandlimited if

f̂ (ξ1, . . . , ξn) = 0 if |ξ j | > B j for j = 1, . . . , n. (8.28)

Definition 8.5.3. A function f defined in �n is R-bandlimited if

f̂ (ξ1, . . . , ξn) = 0 if ‖ξ‖ > R (8.29)

The Nyquist theorem and Shannon-Whittaker interpolation formula carry over easily
to B-bandlimited functions. However, these generalizations are often inadequate to handle
problems that arise in practice. The generalization of Nyquist’s theorem is as follows:

Theorem 8.5.1 (Higher-dimensional Nyquist theorem). Let B = (B1, . . . , Bn) be an n-
tuple of positive numbers. If f is a square-integrable function that is B-bandlimited, then
f can be reconstructed from the samples

{ f (
j1π

B1
, . . . ,

jnπ

Bn
) : ( j1, . . . , jn) ∈ �n}.

This result is “optimal.”

In order to apply this result to an R-bandlimited function, we would need to collect the
samples:

{ f (
j1π

R
, . . . ,

jnπ

R
) : ( j1, . . . , jm) ∈ �n}.

As f̂ is known to vanish in a large part of [−R, R]n, this would appear to be some sort of
oversampling.
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Neither Theorem 8.1.1 nor Theorem 8.5.1 say anything about nonuniform sampling. It
is less of an issue in one dimension. If the vectors, {v1, . . . , vn} are linearly independent
but not orthogonal, then formula (8.27) defines a set of sample points {x j }. Unfortunately,
Nyquist’s theorem is not directly applicable to decide whether or not the set of samples
{ f (x j ) : j ∈ �n} suffices to determine f. There are many results in the mathematics
literature that state that a function whose Fourier transform has certain support properties
is determined by its samples on appropriate subsets, though few results give an explicit
interpolation formula like (8.5). The interested reader is referred to [66] and [102].

The Poisson summation formula also has higher-dimensional generalizations. If f is a
rapidly decreasing function, then

f p(x) =
∑
j∈�n

f (x + j)

is a periodic function. The Fourier coefficients of f p are related to the Fourier transform of
f in much the same way as in one dimension:

f̂ p(k) =
∫

[0,1]n
f p(x)e

−2π i〈x,k〉dx

=
∫
�n

f (x)e−2π i〈x,k〉dx

= f̂ (2π i k).

(8.30)

Applying the Fourier series inversion formula with a function that is smooth enough and
decays rapidly enough shows that∑

j∈�n

f (x + j) =
∑
k∈�n

f̂ (2π i k)e2π i〈x,k〉. (8.31)

This is the n-dimensional Poisson summation formula.
The set of sample points is sometimes determined by the physical apparatus used to

make the measurements. As such, we often have samples { f (yk)}, of a function, on a non-
uniform grid { yk}. To use computationally efficient methods, it is often important to have
samples on a uniform grid {x j }. To that end, approximate values for f, at these points, are
obtained by interpolation. Most interpolation schemes involve averaging the known values
at nearby points. For example, suppose that { yk1

, . . . , ykl
} are the points in the nonuniform

grid closest to x j and there are numbers {λi}, all between 0 and 1, so that

x j =
l∑

i=1

λi yki
.

A reasonable way to assign a value to f at x j is to set

f (x j )
d=

l∑
i=1

λi f (yki
).
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This sort of averaging is not the result of convolution with an L1-function and does not pro-
duce smoothing. The success of such methods depends critically on the smoothness of f. A
somewhat more robust and efficient method for multi-variable interpolation is discussed in
Section 11.8. Another approach to nonuniform sampling is to find a computational scheme
adapted to the nonuniform grid. An example of this is presented in Section 11.5.

Exercises
Exercise 8.5.1. Prove Theorem 8.5.1.

Exercise 8.5.2. Find an n-dimensional generalization of the Shannon-Whittaker interpola-
tion formula (8.5).

Exercise 8.5.3. Give a definition of oversampling and a generalization of formula (8.7) for
the n-dimensional case.

Exercise 8.5.4. For a set of linearly independent vectors {v1, . . . , vn}, find a notion of V -
bandlimited so that a V -bandlimited function is determined by the samples { f (x j ) : j ∈
�n} where x j = j1v1 + · · · + jnvn. Show that your result is optimal.

Exercise 8.5.5. Using the results proved earlier about Fourier series, give hypotheses on
the smoothness and decay of f that are sufficient for (8.31) to be true.

8.6 Conclusion

Data acquired in medical imaging are usually described as samples of a function of contin-
uous variables. Nyquist’s theorem and the Poisson summation formula provide a precise
and quantitative description of the errors, known as aliasing errors, introduced by sampling.
The Shannon-Whittaker formula and its variants give practical methods for approximating
(or reconstructing) a function from a discrete set of samples. The finite Fourier transform,
introduced in Section 8.3, is the form in which Fourier analysis is finally employed in ap-
plications. In the next chapter we reinterpret (and rename) many of the results from earlier
chapters in the context and language of filtering theory. In Chapter 10, we analyze how the
finite Fourier transform provides an approximation to the both the Fourier transform and
Fourier series and use this analysis to approximately implement (continuum) shift invariant
filters on finitely sampled data. This constitutes the final step in the transition from abstract
continuum models to finite algorithms.





Chapter 9

Filters

Building on the brief introduction to shift invariant filters in Section 5.1.2, this chapter
discusses basic concepts in filtering theory. As noted before, a filter is the engineering
term for any process that maps an input or collection of inputs to an output or collection
of outputs. As inputs and outputs are generally functions of a variable (or variables), in
mathematical terms, a filter is nothing more or less than a map from one space of functions
to another space of functions. A large part of our discussion is devoted to linear filters,
recasting our treatment of the Fourier transform in the language of linear filtering theory.

In the first part of the chapter we introduce engineering vocabulary for concepts already
presented from a mathematical standpoint. In imaging applications the functions of interest
usually depend on two or three spatial variables. The measurements themselves are, of
necessity, also functions of time, though this dependence is often suppressed or ignored.
In most of this chapter we consider filters acting on inputs that are functions of a single
variable. There are three reasons for doing this: (1) The discussion is simpler; (2) this
development reflects the origins of filtering theory in radio and communications; and (3)
filters acting on functions of several variables are usually implemented “one variable at a
time.” Most linear filters are expressed, at least formally, as integrals. The fact that higher-
dimensional filters are implemented one variable at a time reflects the fact that higher-
dimensional integrals are actually computed as iterated, one-dimensional integrals, that is,

∫
[a1,b1]×[a2,b2]

f (x, y) dx dy =
b1∫

a1

⎡⎣ b2∫
a2

f (x, y) dy

⎤⎦ dx .

In Section 9.4 we present some basic concepts of image processing and a filtering theoretic
analysis of some of the hardware used in x-ray tomography.

305
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9.1 Basic Definitions

See: A.3, A.4.1, A.4.4.

Most of the tools and concepts of filtering theory have already been discussed in Chap-
ters 4–8. In this section we present some standard engineering terminology and revisit
mathematical concepts in light of their applications in filtering theory. Much of the termi-
nology in filtering theory is connected to the intended application. A single mathematical
concept, when connected to a filter, has one name if the filter is used to process radio sig-
nals and a different name if the filter is used in imaging. In this section the input is usually
denoted by x . It is often a function of a single variable denoted by t. Functional notation,
similar to that used for linear transformations, is often used to denote the action of a filter;
that is, a filter 	 takes the input, x, to the output, 	 x .

9.1.1 Examples of Filters

In applications we rarely consider “arbitrary” filters. Before beginning an analysis of filters,
we consider some typical examples acting on functions of a single variable.

Example 9.1.1. The operation of scaling defines a filter 	 given by

	x(t) = ax(t);
here a is a positive number often called the amplification factor.

Example 9.1.2. Shifting an input in time defines a filter. Let τ denote a constant and define

	τ x(t) = x(t − τ).

Example 9.1.3. Multiplying a input by a function defines a filter. Let ψ denote a function
and define

�ψx(t) = ψ(t)x(t).

Example 9.1.4. Convolution with a function defines a filter. Let ϕ be a function and define

�ϕx(t) =
∞∫

−∞
ϕ(t − s)x(s) ds.

Example 9.1.5. If x is an input depending on a single variable, then differentiation defines
a filter

x(t) = dx

dt
(t).

Example 9.1.6. The Fourier transform, 
 : x → x̂, is a filter, as is its inverse.
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From the last three examples it is clear that some filters can only be applied to certain
kinds of inputs (e.g., inputs that are sufficiently regular for  and inputs that decay suf-
ficiently rapidly for �ϕ and 
). An important difference between the mathematical and
engineering approaches to filtering lies in the treatment of the spaces of inputs and outputs.
Before a mathematician starts to discuss a map from one space of functions to another, he
or she likes to have well-defined domain and target spaces, often equipped with norms. By
contrast, engineers often describe a process or write down a formula without stipulating the
exact nature of the inputs or the expected properties of the outputs. Of course, the imple-
mentation of the filter requires that real inputs produce meaningful outputs. For this to be
so, the filter must be continuous in an appropriate sense, though it is unusual for this to be
made explicit.

All the examples considered so far are linear filters; in mathematical language these
are linear transformations or linear operators. But for the vagueness about the domain and
range, the definition of a linear filter is identical to the definition of a linear transformation:

Definition 9.1.1. A linear filter 	 is an operation mapping inputs, taking values in a vector
space, to outputs, taking values in a vector space, that satisfies the following conditions:

1. If x1 and x2 are a pair of inputs, then

	(x1 + x2) = 	(x1) + 	(x2).

2. If x is an input and α is a scalar, then

	(αx) = α 	(x).

In order to be clear about this distinction, we consider some examples of nonlinear
filters.

Example 9.1.7. The squaring operation, �x(t) = (x(t))2, is a nonlinear filter. This filter is
the basis of AM radio demodulation.

Example 9.1.8. Suppose that the input is a pair of functions, (x1, x2), and the output is
their product

�(x1, x2)(t) = x1(t)x2(t).

A simple calculation shows that this is a nonlinear filter:

�(x1 + y1, x2 + y2)(t) = (x1(t) + y1(t))(x2(t) + y2(t)) 	=
x1(t)y1(t)+ x2(t)y2(t) = �(x1, x2)(t)+ �(y1, y2)(t).

(9.1)

Example 9.1.9. An electrical diode is a circuit element that only passes current moving in
one direction. Its action is modeled by the formula

�x(t) = χ[0,∞)(x(t))x(t).

In electrical engineering this filter is called a rectifier.
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Example 9.1.10. The process of quantization is defined by a nonlinear filter. Suppose that
for each t the binary representation of x(t) is given by

x(t) = [sgn x(t)]
∞∑

j=−∞
b j (x(t))2

j .

One scheme used for quantization is called truncation. We let

�N,M x(t) = [sgn x(t)]
N∑

j=−M

bj (x(t))2
j .

Example 9.1.11. The function x might represent an input that we would like to measure,
and 	 x is the result of our measurement. The measurement process itself defines the filter
	, which can either be linear or nonlinear. A simple linear model for measurement is
evaluation of a weighted average,

	l x(t) =
∞∫

−∞
ψ(t − s)x(s) ds.

On the other hand, many “detectors” become saturated when the signal is too strong. A
model for such a device might be

	nl x(t) =
∞∫

−∞
ψ(t − s)G[x(s)] ds.

Here G is a nonlinear function that models the saturation of the detector; for example,

G(x) =

⎧⎪⎨⎪⎩
x if |x| < T,

T if x ≥ T,

−T if x ≤ −T .

A slightly different model is given by 	′
nl x(t) = G[(	l x)(t)].

We close this section with a few examples of filters of a rather different character in
that the input and output are functions on different spaces.

Example 9.1.12. Suppose that f is a function defined on �2 in the natural domain of the
Radon transform. The map f �→ � f defines a filter where the input is a function on �2

and the output is a function on � × S1.

Example 9.1.13. Let τ be a fixed positive number. For a function x defined on � we define
the filter �τ that associates to x the sequence of samples of x at the points {nτ : n ∈ �},

�τ x =< x(nτ) : n ∈ � > .

This filter maps functions defined on � to functions defined on �.
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Example 9.1.14. The Shannon-Whittaker interpolation formula defines a filter that goes in
the opposite direction. To a bi-infinite sequence < an > we associate the function of the
real variable t given by

	τ (< an >)(t) =
∞∑

n=−∞
an sinc(t − nτ).

Exercises
Exercise 9.1.1. Show that the filters in Examples 9.1.1– 9.1.6 are linear.

Exercise 9.1.2. Show that Examples 9.1.7– 9.1.10 are nonlinear.

9.1.2 Linear filters

See: A.4.5, A.4.6.

As a filter is a map from a space of functions to a space of functions, it should come as
no surprise that linear filters are, in general, much easier to analyze than nonlinear filters.
This analysis often begins by expressing the action of the filter as an integral:

	 x(t) =
∞∫

−∞
a(t, s)x(s) ds. (9.2)

The function a(t, s) is called the kernel function; it describes completely the action of the
filter on an “arbitrary” input.

Example 9.1.15. Let � denote the linear filter that maps a function defined on � to its
anti-derivative. The kernel function for � is

a(t, s) =
{

1 if 0 ≤ s ≤ t,

0 if s > t,

so that

�(x)(t) =
∞∫

−∞
a(t, s)x(s) ds =

t∫
−∞

x(s) ds.

Sometimes the action of a filter is expressed as an integral even though the integral does
not, strictly speaking, make sense. For example, the Hilbert transform is often “defined”
by the convolution integral

�x(t) = i

π

∞∫
−∞

x(s)

t − s
ds.
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The kernel function for the Hilbert transform would appear to be i/[π(t − s)]. Because this
function is not locally integrable, this integral is not unambiguously defined and therefore
requires interpretation. As discussed in Section 6.3, the Hilbert transform is actually the
Cauchy principal value (P.V.) of this integral. In this case the kernel of � is really the
generalized function on �2 given by P.V.[i/π(t − s)].

When a filter is described by a formula, we need to be careful that the formula makes
sense for the inputs one has in mind. For example, if an input x does not have bounded
support, then an integral of the form

	 x =
∞∫

−∞
a(t, s)x(s) ds

only makes unambiguous sense if a(t, s)x(s) is an absolutely integrable function of s. A
meaning can often be assigned to such expressions even when the integrals involved are not
absolutely convergent. The Fourier transform provides a good illustration. The operation
x �→ x̂ is initially defined for absolutely integrable functions by the formula

x̂(t) =
∞∫

−∞
x(s)e−ist ds;

the kernel function is a(t, s) = e−ist . The Parseval formula allows an extension of the
Fourier transform to L2-functions. This operation is well defined as a map from L2(�) to
itself even though the integral may not exist. Using the Parseval formula and duality, the
Fourier transform can be further extended to generalized functions. For these extensions of
the Fourier transform the preceding integral is a formal expression, which means it is not
defined as a limit of Riemann sums.

Perhaps the simplest general class of filters are the multiplication filters. If ψ is a
function, then the operation

�ψ : x(t) �→ ψ(t)x(t)

defines a filter. This operation makes sense for very general types of inputs. In applications
the multiplier ψ is sometimes taken to equal one for t in an interval and zero for t outside
a larger interval. In this case Mψ windows the input. If ψ1 and ψ2 are two functions, then
we have the relations

�ψ1(�ψ2(x)) = �ψ1ψ2(x) = �ψ2(�ψ1(x)).

In other words, the order in which multiplication filters are applied does not affect the
outcome. Mathematically we say that multiplication filters commute. The next section
treats another class of filters that have this property.

9.1.3 Shift Invariant Filters and the Impulse Response

Shift invariant filters were defined in Section 5.1.2. Recall that a linear filter 	 is shift
invariant if for all real numbers τ we have the identity

	(xτ ) = (	 x)τ , where xτ (t) = x(t − τ).
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In Section 5.1.2 it is shown that a filter defined by convolution, as in Example 9.1.4, is linear
and shift invariant. We now give a formal argument to show that any linear, shift invariant
filter can be expressed as a convolution. Suppose that 	 is such a filter with kernel function
a(t, s). Changing variables gives the following equalities:

	(xτ )(t) =
∞∫

−∞
a(t, s)xτ (s) ds =

∞∫
−∞

a(t, s)x(s − τ) ds =
∞∫

−∞
a(t, σ + τ)x(σ ) dσ.

On the other hand,

(	 x)τ (t) = 	(x)(t − τ) =
∞∫

−∞
a(t − τ, σ )x(σ ) dσ.

Since 	 is shift invariant, 	xτ must equal (	x)τ for every τ and every input; that is,

∞∫
−∞

a(t, σ + τ)x(σ ) dσ =
∞∫

−∞
a(t − τ, σ )x(σ ) dσ for all τ ∈ �, (9.3)

and all inputs x . The only way this can be true is if

a(t, σ + τ) = a(t − τ, σ ) for all t, σ, τ ∈ �.

Setting σ = 0 gives
a(t, τ ) = a(t − τ, 0).

In other words, the kernel function a(t, s), which describes the action of 	, only depends
on the difference t − s. Setting k(t) = a(t, 0), we can express 	x as a convolution:

	 x(t) =
∞∫

−∞
k(t − s)x(s) ds = k ∗ x(t). (9.4)

Combining this argument with Proposition 5.1.2 gives the following:

Proposition 9.1.1. A linear filter is shift invariant if and only if it can be represented as a
convolution.

Often the δ-function is thought of as the input to a linear system. In electrical engi-
neering the δ-function is called the unit impulse. If 	 is shift invariant with kernel function
k(t − s), then

	 δ(t) = k ∗ δ(t) = k(t).

Definition 9.1.2. The response of a linear, shift invariant filter to the unit impulse is called
the impulse response of the filter.



312 Chapter 9. Filters

The terms unit impulse and impulse response are common in electrical engineering. In
imaging applications the δ-function is called a “point source.” The output 	δ describes
how the filter spreads out a point source and therefore k is called the point spread function,
or PSF.

We stress the fact that

The δ-“function” is not a function. (9.5)

We need to exercise care when working with δ; for example, its square δ2 has no well-
defined meaning.

We consider some simple examples of filters and their impulses responses:

Example 9.1.16. Let 	η be the moving average

	η(x)(t) = 1

2η

x+η∫
x−η

x(s) ds.

The impulse response is [2η]−1χ[−η,η].

Example 9.1.17. Define a linear shift invariant filter by setting

	ϕ(x) = ∂2
t

∞∫
−∞

ϕ(t − s)x(s) ds.

The impulse response is ϕ ′′.

Example 9.1.18. Define a linear shift invariant filter by setting

	d(x) = x(t) − x(t − d)

2
.

The impulse response is 1
2 [δ(t) − δ(t − d)].

The kernel function, which completely determines the action of 	, is itself determined
by the output of 	 when the input is a unit impulse. This fact can be applied in the follow-
ing way: Suppose that we are confronted by an unknown physical system that is, however,
known to be linear and shift invariant. If we can accurately measure the response of this
system to a δ-function, then we have a complete model for the system. In actual applica-
tions the δ-function is approximated by a highly localized, energetic input. For example, in
an acoustical measurement a unit impulse might be approximated by a very short duration
spark or explosion. In optical imaging a point source might be a bright, tiny light source,
while in x-ray imaging the δ-function might be approximated by a small lead sphere. If the
input is an approximate δ-function, then the measured output provides an approximation to
the impulse response.
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Mathematically, if ϕ is a nonnegative function of a single variable that satisfies the
conditions

∞∫
−∞

ϕ(t) dt = 1 and

{
ϕ(0) = 1,

ϕ(t) = 0, if |t| > 1,
(9.6)

then the family of functions

ϕε(t) = 1

ε
ϕ

(
t

ε

)
, ε > 0

gives an approximation to the δ-function (see Section 5.3). If ϕε can be used as an input to
	, then, for small ε,

kε(t) = 	ϕε(t)

provides an approximation to the impulse response of 	 . Whether or not ϕε can be used as
an input to 	 usually depends on its smoothness.

Example 9.1.19. Let 	 f = ∂t f ; then the function χ− 1
2 ,

1
2
(t) is not a good input and the

corresponding scaled family does not provide a usable approximation for the impulse re-
sponse. On the other hand, the continuous, piecewise differentiable function

ϕ(t) =
{

1 − |t| for |t| < 1,

0 for |t| ≥ 1

has a weak derivative and

ϕ ′
ε =

⎧⎪⎨⎪⎩
1
ε2 for − ε < t < 0,

− 1
ε2 for 0 ≤ t < ε,

0 otherwise

is often used as an approximation to δ′.

Exercises
Exercise 9.1.3. The identity filter is defined as the filter that takes an input to itself,

Id x(t) = x(t).

Show that the impulse response of the identity filter is δ(t).

Exercise 9.1.4.∗ Closely related to the δ-function is the Heaviside function. It is defined by

H (x) =
{

0 if x < 0,

1 if 0 ≤ x .
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Formally H is the indefinite integral of the δ-function

H (x) =
x∫

−∞
δ(y) dy.

With this interpretation it is clear that the Fourier transform of H should be


(H )(ξ) = 1

iξ
.

Because ξ−1 is not locally integrable, this requires interpretation. By considering H as the
limit

H (x) = lim
ε↓0

H (x)e−εx ,

show that, as a generalized function,


(H )(ξ) = lim
ε↓0

1

iξ + ε
.

Show that the filter defined by
	 x(t) = H (t)x(t)

is represented in the Fourier domain as a convolution by

	 x(t) = 
−1(Ĥ ∗ x̂)
d= lim

ε↓0

1

2π

∞∫
−∞

x̂(η)eitηdη

ε + i(ξ − η)
.

9.1.4 Harmonic Components

We often assume that the input x has a Fourier transform, x̂ . If the Fourier transform is
written in terms of polar coordinates in the complex plane,

x̂(ξ) = |x̂(ξ)|eiφ(ξ),

then |x̂(ξ)| is called the amplitude of the input at frequency ξ/2π and the real number φ(ξ)
is called the phase. Because the complex exponential is 2π -periodic, that is

eiα = ei(α+2nπ) for any n ∈ �,

there is an ambiguity in the definition of the phase. The rule used to choose the phase
depends on the context. Often we fix an interval of length 2π,—for example, [−π, π) or
[0, 2π),—and then insists that φ(ξ) belong to this interval. A different method is to take
the phase to be a continuous function of ξ. The latter approach may run into difficulties if
x̂ vanishes.
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Example 9.1.20. Suppose that x(t) = eit2
. Using the first approach, the phase φ1(t) is

computed by finding an integer n so that

0 ≤ t2 − 2πn < 2π;

the phase is then φ1(t) = t2 − 2πn. In the second approach the phase is simply φ2(t) = t2.

(a) An image described by fa . (b) An image described by fb.

(c) The image obtained as

−1(mbeiφa ).

(d) The image obtained as

−1(maeiφb ).

Figure 9.1. An experiment that indicates that among images the important information
resides in the phase of the Fourier transform.

It is reasonable to inquire where the “information” in the Fourier transform lies. Is
it more important to get the amplitude or phase correct? The answer is highly dependent
on the intended application. In many imaging applications it turns out that accurate phase
information is more important than the amplitude. In Figure 9.1 we replicate a striking
experiment from [68]. Figures 9.1(a) and (b) are two, very different, gray scale images,
described by the functions fa and fb. Let

f̂a = maeiφa and f̂b = mbeiφb .

Figure 9.1(c) shows the image obtained as the inverse Fourier transform of mbeiφa , while
Figure 9.1(d) is obtained by Fourier inverting maeiφb .
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(a) The image defined by

−1(m1eiφa ).

(b) The image defined by

−1(m2eiφa ).

(c) The image obtained as

−1(m3eiφa ).

(d) The image obtained as

−1(m4eiφa ).

Figure 9.2. Reconstructing an image with a variety of magnitudes for the Fourier trans-
form.

How are we to understand these results? The correct interpretation seems to be that
the general character of the magnitude of the Fourier transform of a function representing
a natural scene is largely independent of the actual scene. This is a statement about the
Fourier transforms of a very specific set of functions and not a general fact about the Fourier
transforms of functions of two variables.

Roughly speaking, the magnitude of the Fourier transform of an image is an even
function assuming its maximum at 0 and decaying like ‖ξ‖−1. To demonstrate this we
reconstruct images using the phase of f̂a and several choices for the magnitude. In Fig-
ure 9.2(a) the magnitude is m1 = (1 + |ξ1| + |ξ2|)− 1

2 ; in Figure 9.2(b) the magnitude is
m2 = (1 + |ξ1| + |ξ2|)−2; in Figure 9.2(c) we use m3 = (1 + ||ξ1| − 20| + ||ξ2| − 30|)−1;
and finally in Figure 9.2(d) we use

m4(ξ) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
ξ1 > 0, ξ2 > 0(1 + |ξ1 − 30| + |ξ2 − 40|)−1,

ξ1 > 0, ξ2 < 0(1 + |ξ1 − 30| + |ξ2|)−1,

ξ1 < 0, ξ2 > 0(1 + |ξ1| + |ξ2 − 40|)−1,

ξ1 < 0, ξ2 < 0(1 + |ξ1| + |ξ2|)−1.

Clearly, the reconstructions in (c) and (d) are the worst. The magnitude used in (c) does
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not assume its maximum at 0, whereas that used in (d) does not have the symmetries of the
Fourier transform of a real-valued function (i.e., | f (ξ)| = | f (−ξ)|). None of these images
is as good as Figure 9.1(c), indicating that | f̂b| is a better approximation to | f̂a| than any of
the functions m1 through m4.

Physically we think of the Fourier transform as giving a decomposition of an input into
its harmonic components. The actual operation of the Fourier transform is somewhat at
variance with an intuitive understanding of this concept. Returning to the one-dimensional
case, the determination of x̂(ξ), for one value of ξ, requires a knowledge of the input x, for
all times. The number |x̂(ξ)| measures the “amount” of the input, x at frequency ξ

2π , while
arg x̂(ξ) gives the phase of this component. Intuitively, we think of an input as having an
“instantaneous frequency.” For example, if x equals cos(ωt) for t in an interval [t1, t2], then
we would probably say that the frequency of x, in that time interval, is ω

2π . The idealized
signal, xi , equals cos(ωt) for all t, its Fourier transform is the generalized function

x̂i(ξ) = π [δ(ξ − ω)+ δ(ξ + ω)].
This formula can be heuristically justified by putting x̂i into the Fourier inversion formula.
A more realistic model for a signal “at frequency ω

2π ” is

xr (t) = ψ(t)cos(ωt),

where ψ equals 1 over an interval [t1, t2] and is zero outside a larger interval. The Fourier
transform of the real signal is

x̂r (ξ) = 1

2
[ψ̂(ξ − ω)+ ψ̂(ξ + ω)].

If ψ = 1 over a long interval and vanishes smoothly outside it, then |ψ̂ | is sharply peaked
at zero and decreases rapidly as |ξ | → ∞. If ψ is shifted by an amount t0, then its Fourier
transform is multiplied by exp(i t0ξ). Hence the phase of x̂r indicates where the signal is
nonzero. If ψ is an even function, supported on a long interval, then the Fourier transform
of xr is a good approximation to that of xi .

Thus far we have used the Fourier transform and Fourier series as tools. The Fourier
transform of a function has been viewed as an indicator of the qualitative features of the
original function, without much significance of its own or, as a convenient way to repre-
sent convolution operators. In many applications it is not the function itself but its Fourier
transform that contains the information of interest. This is the case if x describes the state
of a system that is composed of collection of resonant modes. In nuclear magnetic reso-
nance (NMR) spectroscopy a complicated molecule is caused to vibrate and emit a radio
frequency signal x . This signal is composed of a collection of exponentially damped vibra-
tions. Figure 9.3(a) shows a typical measurement of x as a function of time. The useful
information in x is extracted by taking the magnitude of the Fourier transform, as shown
in Figure 9.3(b). The locations of the peaks determine the frequencies of the different vi-
brational modes and their widths give a measure of the damping. This information can, in
turn, be used to deduce the structure of the molecule.
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(a) The signal x as a function of time. (b) The magnitude of x̂ .

Figure 9.3. Using magnetic resonance to determine the vibrational modes of a molecule.
(Images courtesy of Dr. Walter Bauer, Universität Erlangen-Nürnberg, Institut für Organ-
ische Chemie.)

Spectral analysis of this sort is used throughout science and engineering; it provides
a different perspective on the meaning of the Fourier transform. In magnetic resonance
spectroscopy the signal decays exponentially, so little error results from cutting it off af-
ter a finite time and computing the Fourier transform of the time limited signal. In other
applications, the input does not decay in any reasonable sense and is regarded instead as
a periodic input. Such inputs are analyzed using Fourier series. In the world of real mea-
surements and computation, where everything is done with finite data sets, the practical
distinctions between the Fourier transform and Fourier series disappear, though these dis-
tinctions remain important in the design of algorithms and the interpretation of results.

Exercises
Exercise 9.1.5. Find an example of a continuous, complex-valued function x̂(ξ) such that
the phase cannot be defined as a continuous function of ξ.

Exercise 9.1.6. Suppose that ψ equals 1 over a large interval [t1, t2] and vanishes smoothly
outside a slightly larger interval. How is the phase of ψ̂ related to t1 and t2?

Exercise 9.1.7. By considering the functions

xω,α = e−αt eiωtχ[0,∞)(t),

explain why the location of the peak in |x̂ω,α | locates the resonance and the width of the
peak determines the rate of damping. Here ω is a real number and α is a positive real
number.

Exercise 9.1.8. For positive real numbers {α j } and real numbers {ω j } let

x = χ[0,∞)(t)
N∑

j=1

a j e
−α j t eiω j t .
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Compute x̂ and explain the physical significance of |x̂ |. Hint: Consider what happens as
the α j tend to zero.

Exercise 9.1.9. Why might it be preferable to use a window function that goes smoothly
from 1 to 0?

Exercise 9.1.10. Is the Fourier transform a shift invariant filter?

Exercise 9.1.11. For an input measured over a finite interval [t1, t2], the Fourier series can
be used to decompose the signal into harmonic components. This would appear to solve the
problems entailed using the Fourier transform; however, it introduces a different problem.
Explain what it is.

Exercise 9.1.12. For an input represented by

x(t) = r(t)eiφ(t)

the instantaneous frequency is often defined to be φ′(t). When is this a reasonable defini-
tion? What are some of its limitations?

9.1.5 The Transfer Function

See: A.2.3.

The action of a shift invariant filter is expressed as a convolution in equation (9.4).
Suppose that both the impulse response k and the input x have Fourier transforms. The
Fourier transform of the output of such a filter is then the product these Fourier transforms:

̂k ∗ x(ξ) = k̂(ξ)x̂(ξ).

Definition 9.1.3. If 	 is the shift invariant filter defined by convolution with k, then k̂, the
Fourier transform of k, is called the transfer function of the filter. In imaging applications
k̂ is called the modulation transfer function, or MTF.

If the input to 	 is the exponential xξ = eitξ , then (at least formally)

	xξ (t) =
∞∫

−∞
eisξk(t − s) ds = k̂(ξ)eitξ .

The transfer function describes the action of 	 on the harmonic component with frequency
ξ

2π . If we write the transfer function in polar coordinates,

k̂(ξ) = A(ξ)eiθ(ξ),

where A(ξ) is a nonnegative real number and θ(ξ) is a real number, then A(ξ) is called the
amplitude of the response and eiθ(ξ) is called the phase shift,


(k ∗ x) = A(ξ)|x̂(ξ)|ei(θ(ξ)+φ(ξ)).
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If A(ξ) > 1, then the filter amplifies the component of the input at frequency ξ
2π , and if

A(ξ) < 1, it attenuates the component of the input at this frequency. The phase of the
output at frequency ξ

2π is shifted by θ(ξ),

φ(ξ) �→ φ(ξ)+ θ(ξ).

The description of a shift invariant filter in terms of its transfer function is called the fre-
quency space description.

In terms of its transfer function and the inverse Fourier transform the output, 	x is
given by

	 x(t) = 
−1(k̂ x̂)(t) = 1

2π

∞∫
−∞

k̂(ξ)x̂(ξ)eixξdξ. (9.7)

This representation is one reason that linear, shift invariant filters play such a large role in
applications. The Fourier transform and its inverse have very efficient approximate imple-
mentations that lead to very efficient approximate implementations of linear, shift invariant
filters. The Fourier transform converts a shift invariant filter into a multiplication filter.

The impulse response of a filter can be a generalized function. Even when this is so, the
transfer function may be an ordinary function. In this case, the frequency space description
of the filter is much simpler to use than its spatial domain description. We consider some
examples.

Example 9.1.21. The Hilbert transform, �, defines a shift invariant filter. As noted previ-
ously, the impulse response of � is the generalized function P.V.

[
i
π t

]
. The transfer func-

tion is the ordinary function sgn ξ. The frequency space representation of � is

�x(t) = 1

2π

∞∫
−∞

sgn(ξ)x̂(ξ)eixξdξ.

Example 9.1.22. The filter defined by 	τ x(t) = x(t − τ) has impulse response δτ and
transfer function e−iτξ . Its frequency space representation is

	τ x(t) = 1

2π

∞∫
−∞

e−iτξ x̂(ξ)eitξdξ.

Example 9.1.23. The filter defined by the first derivative x(t) = x ′(t) has impulse re-
sponse δ′ and transfer function iξ. Its frequency space representation is

x(t) = 1

2π

∞∫
−∞

iξ x̂(ξ)eitξdξ.

Example 9.1.24. If a(t) is a non-constant function, then the filter defined by ax(t) =
a(t)x ′(t) is not shift invariant. The kernel function of this is filter is a(t)δ′(t − s).
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Example 9.1.25. Suppose that 	 is a filter that maps an input x to an output y such that x
and y are related by a constant coefficient, linear differential equation

m∑
j=0

a j
d j x

dt j
=

n∑
j=0

b j
d j y

dt j
. (9.8)

Assuming that both x and y have Fourier transforms, we can take the Fourier transform of
this relation to obtain ⎡⎣ m∑

j=0

a j (iξ)
j

⎤⎦ x̂(ξ) =
⎡⎣ n∑

j=0

b j (iξ)
j

⎤⎦ ŷ(ξ). (9.9)

Still proceeding formally, we see that

	̂x(ξ) =
[∑m

j=0 a j (iξ) j
]

[∑n
j=0 b j (iξ) j

] x̂(ξ). (9.10)

This relation might require interpretation if the denominator has real zeros. At least for-
mally, the transfer function of 	 is the rational function on the right-hand side of (9.10).
The filter may also fail to be shift invariant if y = 	x is defined as a solution to (9.9) with
boundary conditions specified at a finite point. If boundary conditions are specified at ±∞,
then 	 is again shift invariant.

For the moment, let us take for granted that the Fourier transform can be efficiently ap-
proximated and consider the relationship between the computations required to implement
a shift invariant filter and a general linear filter. A general linear filter is represented as an
integral:

	 x(t) =
∞∫

−∞
a(t, s)x(s) ds.

As discussed in Chapter 8, a input is usually sampled at a finite set of points {s1, . . . , sN };
that is, we measure {x(s j )}. Suppose that we would like to approximate 	 x(ti ) for N
points {t1, . . . , tN }. A reasonable way to do this is to approximate the integral defining 	
by a Riemann sum

	 x(ti ) ≈
N∑

j=1

a(ti , s j )x(s j )(s j − s j−1).

Examining this formula we see that the action of the filter has been approximated by the
product of the N × N matrix, ai j = a(ti , s j ), and the N vector, (x(s1), . . . , x(sN )). For a
general N × N matrix, this computation requires O(N2) arithmetic operations to perform.

The analogous computation for a shift invariant filter, in the frequency space descrip-
tion, is the approximate determination of the pointwise product, k̂(ξ)x̂(ξ). This is done by
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evaluating k̂(ξ j) and x̂(ξ j ) for N values of ξ and then computing the products {k̂(ξ j )x̂(ξ j )}.
The matrix analogue is multiplying the vector (x̂(ξ1), . . . , x̂(ξN )) by the diagonal matrix

ki j = k̂(ξi)δi j .

This requires O(N) arithmetic operations. As we shall see, the approximate computation
of the Fourier transform requires O(N log2 N) operations, provided that N is a power of 2.
In applications N = 210 is not unusual; in this case

N2 = 220, N log2(N) ≈ 213,
N2

N log2 N
≈ 102.

Exercises
Exercise 9.1.13. A multiplication filter has a frequency space description as a convolution.
If ψ is a function such that ψ̂ is absolutely integrable, show that

�ψx(t) = 
−1(ψ̂ ∗ x̂)(t).

Exercise 9.1.14. Let ψ be a smooth function and let  denote the shift invariant filter
x = ∂t x . Compute the difference

�ψ − �ψ.

Exercise 9.1.15. Suppose that a, b, c are real numbers such that −aξ 2 + ibξ + c 	= 0
for any real value of ξ. We define the following operation on continuous functions with
bounded support: Let f be such a function then define 	 f to be the function g that solves
the second-order ordinary differential equation

ag′′ + bg′ + cg = f

such that

lim|t |→∞ g(t) = 0. (9.11)

Show that f �→ 	 f defines a linear, shift invariant filter. What is the transfer function of
this filter? Suppose that instead of (9.11) we use the conditions

g(0) = 0, g′(0) = 0

to uniquely determine a solution to the preceding O.D.E. Let 	0 f denote this solution.
Show that 	0 is not a shift invariant filter.
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9.1.6 Cascades of Filters

See: A.2.3, A.2.6.

Suppose that {	1, . . . ,	k} are linear filters. The output of one can be used as the input
to another, this is the filtering analogue of the composition of linear maps,

x → 	1 x → 	2(	1 x) → · · · → 	k(	k−1(. . . (	1 x) . . . )) = 	k ◦ · · · ◦ 	1 x .

In this way, complex filtering operations are built up out of simpler pieces. A filter built
in this way is called a cascade of filters. For general linear filters the order in which the
operations are performed is quite important. In Section 9.1.5 we saw that the action of
a linear filter is analogous to multiplying a vector by a matrix. Cascading filters is then
analogous to matrix multiplication. It is a familiar fact from linear algebra that if A and B
are non-diagonal matrices, then generally

AB 	= B A.

For general linear filters 	1 and 	2, it is also the case that

	1 ◦ 	2 	= 	2 ◦ 	1.

The shift invariant case, which is analogous to multiplication of a vector by a diagonal
matrix, is much simpler. If the filters {	 j } have impulses responses {h j }, then the cascade
	k ◦ · · · ◦ 	1 is given by

x �→ (hk ∗ · · · ∗ h1) ∗ x .

This is again a shift invariant filter with impulse response hk ∗ · · · ∗ h1. From the commu-
tativity of the convolution product, f ∗ g = g ∗ f, it follows that the result of applying a
cascade of shift invariant, linear filters is, in principle, independent of the order in which
the component filters are applied. In actual practice, where the actions of the filters can
only be approximated, this is often not the case. Different orders of processes can produce
substantially different outputs.

Example 9.1.26. Suppose that
	1 x(t) = ∂t x(t)

and

	2 x(t) =
∞∫

−∞
ϕ(t − s)x(s) ds,

where ϕ is a differentiable function, vanishing outside a bounded interval. The two possible
compositions are

	1 ◦	2 x(t) =
∞∫

−∞
∂tϕ(t − s)x(s) ds,
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and

	2 ◦	1 x(t) =
∞∫

−∞
ϕ(t − s)∂s x(s) ds.

To implement the first case we need to approximate the convolution ϕt ∗ x, whereas in the
second case we first need to approximate ∂t x and then the convolution ϕ∗xt . Because of the
difficulties in approximating the derivative of an input, the composition 	1 ◦	2 is easier to
implement than 	2 ◦	1 .

Example 9.1.27. If 	1 is shift invariant and 	2 is not, then generally 	1 ◦	2 	= 	2 ◦	1 .
As an example, let 	1 x = ∂t x and

	2 x(t) =
∞∫

−∞
(s + t)x(s) ds.

A direct computation shows that

	1 ◦	2 x(t) =
∞∫

−∞
x(s) ds

whereas integrating by parts gives

	2 ◦	1 x(t) = −
∞∫

−∞
x(s) ds.

The transfer function for the cascade of filters defined by the impulse response h =
hk ∗ · · · ∗ h1 is the product of the transfer functions

ĥ(ξ) = ĥk(ξ) · · · ĥ1(ξ).

In the implementation of a cascade, using the Fourier representation, it is important to
account for the limitations of finite precision arithmetic when selecting the order in which
to multiply the terms in the transfer function. By grouping terms carefully, we can take
advantage of cancellations between large and small factors, thereby avoiding overflows or
underflows.

Exercise
Exercise 9.1.16. Assuming that x and xt are absolutely integrable, prove the formulæ in
Example 9.1.27.
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9.1.7 Causal Filters

In the context of time-dependent inputs, there is a special subclass of filters called causal
filters.

Definition 9.1.4. A filter is causal if the output, at a given time, depends only on the be-
havior of the input at earlier times. For a linear filter this means that

	 x(t) =
t∫

−∞
a(t, s)x(s) ds.

A linear, shift invariant filter is causal if and only if its impulse response k vanishes for
t < 0.

This condition is important when working with time-dependent inputs if a filter must
be implemented in “real time.” In the context of image processing this distinction is often
less important because an image is represented as a function of spatial variables. To avoid
aliasing in the data acquisition step, it is useful to attenuate the high-frequency components
before the input is sampled. This lowpass filtering must often be realized by a causal filter.
The transfer function of a causal filter has an important analytic property.

Proposition 9.1.2. If the filter 	 defined by 	 x = k ∗ x is causal, then the k̂ has a complex
analytic extension to the lower half-plane.

Proof. The hypothesis that 	 is causal implies that k(t) = 0 for t < 0 and therefore

k̂(ξ) =
∞∫

0

k(t)e−itξdt .

If we replace ξ by z = ξ + iσ, with σ < 0, then

Re[−i t (ξ + iσ)] = tσ < 0

in the domain of the integration. Thus, if σ < 0, then

k̂(z) =
∞∫

0

k(t)e−it zdt

=
∞∫

0

k(t)eσ t e−itξdt;
(9.12)

the real exponential in the integrand is decaying. Differentiating under the integral sign shows that
∂z̄ k̂ = 0 in the lower half-plane.

Exercises
Exercise 9.1.17. Prove that a linear, shift invariant filter is causal if and only if its impulse
response k vanishes for t < 0.

Exercise 9.1.18. Among the Examples 9.1.1–9.1.10 which are causal and which are not?
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9.1.8 Bandpass Filters

Filtering theory frequently employs certain idealized filters. A basic example is the band-
pass filter. It is defined in the Fourier representation by

�[α,β]x = 
−1[χ[α,β](|ξ |)x̂(ξ)],
with 0 ≤ α < β. The filtered signal contains the part of the input with absolute frequencies
in the band [[2π ]−1α, [2π ]−1β]. This is called the passband of the filter. Computing the
inverse Fourier transform, we see that �[α,β] is represented as a convolution with

b[α,β](t) = 2 Re

[
e−i t (α+β)

2
sin t (β−α)

2

π t

]
.

Because the sine function is nonzero for positive and negative arguments, an ideal bandpass
filter is never causal! If the passband is of the form [0, β], then the filter is called an ideal
lowpass filter. An ideal highpass filter has a transfer function of the form 1 − χ[0,β](|ξ |).
Example 9.1.28. Let x denote a time signal and x̂ its Fourier transform. The action of an
ideal lowpass filter �[0,β] with passband [0, β] is given by

�[0,β]x(t) = 1

2π

β∫
−β

x̂(ξ)eitξdξ.

This is a “partial inverse” for the Fourier transform; its point spread function is given by

hβ(t) = β sinc(βt)

π
.

In Section 7.5, we described the Gibbs phenomenon. This phenomenon also occurs
for the partial inverse of the Fourier integral. If the function x has a jump discontinuity
at t0 and is otherwise smooth, then the lowpass filtered functions {�[0,β]x(t)} oscillate for
t near to t0 and the size of these oscillations does not decrease as β tends to infinity. On
the other hand, the oscillations are concentrated in a region of size β−1 around the jump
in x . The underlying cause of these oscillations is the fact that the point spread functions
{hβ(t)} are integrable but not absolutely integrable. As in the case of the Fourier series,
these oscillations can be damped by using a smooth approximation to χ[−β,β] to define the
transfer function of an approximate lowpass filter. In imaging applications, a filter that
attenuates the high frequencies and passes low frequencies with little change is called an
apodizing filter. Its transfer function is called an apodizing function. We consider two
examples of such filters.

Example 9.1.29. A simple example is an analogue of the Fejer mean. Instead of χ[−β,β] we
use the “tent” function

t̂β(ξ) = 1

β
χ[− β

2 ,
β
2 ] ∗ χ[− β

2 ,
β
2 ](ξ).
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Figure 9.4 shows a graph of t̂4. This function is continuous, piecewise linear and satisfies

t̂β(0) = 1, t̂β(ξ) = 0 if |ξ | ≥ β.

Its point spread function is easily computed using the convolution theorem for the Fourier
transform:

tβ(t) = 1

β

[
sin
(
βt
2

)
π t

]2

.
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Figure 9.4. Transfer function for a tent filter.

Example 9.1.30. A second example is called the Hanning window. Its transfer function is

ĥβ(ξ) =
{

cos2
(

πξ
2β

)
if |ξ | < β,

0 if |ξ | > β.

−4
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20

−3 −2 −1 1 2 3

Figure 9.5. Point spread functions for lowpass filters.
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This function is even smoother than the tent function, having a continuous first deriva-
tive. To compute its point spread function, we use the identity

cos2(x) = cos(2x) + 1

2
,

obtaining

hβ(t) =
[

π

2β2

]
sin(tβ)

t

[(
π

β

)2

− t2

] .
This function decays like t−3 as t tends to infinity and is therefore absolutely integrable.
The point spread functions for the three lowpass filters are shown in Figure 9.5. The tallest
peak corresponds to the ideal lowpass filter, the middle is the tent function, and the shortest
comes from the Hanning window.

Exercises
Exercise 9.1.19. Show that a highpass filter cannot be causal.

Exercise 9.1.20. The function χ[0,∞)(ξ ) defines the transfer function of a filter �+ that
removes all negative frequency components. Show that

�+ = 1

2
(Id+�);

here � is the Hilbert transform.

Exercise 9.1.21. If E is a subset of the real numbers, define the generalized bandpass filter
with passband E by setting

�E x(t) = 1

2π

∞∫
−∞

χE (ξ)x̂(ξ) dξ.

Prove the following statement about generalized bandpass filters: If E is a subset of � and
the convolution h ∗ x is defined, then

�E (h ∗ x) = (�E h) ∗ x = h ∗ (�E x) = (�Eh) ∗ (�E x). (9.13)

9.1.9 The Inverse Filter

Let k denote the impulse response of a shift invariant filter 	, 	 x = k ∗ x . Suppose that x
is an input that we would like to determine and k ∗ x is the output of a measurement device.
How can x be reconstructed given only the available measurements? What is required is a
filter that undoes the action of 	 . Such a filter is called an inverse filter. For some types of
filters it is very clear that it is not possible to recover the input from the filtered output. For
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example, if we apply the bandpass filter B[α,β] to x, then all the information about the input
at frequencies outside the passband is irrevocably lost. In other cases the Fourier transform
suggests a way to try to recover x from the knowledge of the filtered output k ∗ x . In the
Fourier representation, the inverse filter should be given by

	−1 : k ∗ x −→ 
−1

[
̂k ∗ x

k̂

]
. (9.14)

From the examples we have studied, it is clear that this formula often does not define a
useful operation.

If k is function that goes to zero as |t| → ∞ in a reasonable way, for example, k is
absolutely integrable, then k̂ goes to 0 as |ξ | → ∞. This means that the process of dividing
by k̂ takes the measured data and increasingly amplifies the high-frequency components. If
the measured data behaved like the convolution, k ∗ x, then this would not be a problem:
The high frequencies in the input will have been attenuated. In a real situation there is
noise; the measurement is then modeled as k ∗ x + n, where n is the noise. The noise part
is not the result of sending an input through the measurement device. In this case


(k ∗ x + n)

k̂
(ξ) = x̂(ξ)+ n̂(ξ)

k̂(ξ)
.

The high-frequency content in the noise is amplified by this attempt to reverse the measure-
ment process. One way to try to avoid this problem is to cut off the transfer function of the
inverse filter outside a bounded interval. If k̂(ξ) 	= 0 for ξ ∈ [−a, a], then an approximate
inverse filter is given by


−1[ rect[−a,a](ξ)
k̂(ξ)

x̂]. (9.15)

This gives a perfect reconstruction for data whose Fourier transform vanishes outside of
[−a, a] and otherwise suppresses the amplification of high-frequency noise.

Though real inputs are rarely bandlimited, they are usually considered to be effectively
bandlimited. This means that all the “useful information” in the input is contained in a
finite frequency band [−a, a]; that is, the effective support of the Fourier transform of
the input is [−a, a]. The effective bandwidth in the measurement is then 2a. Frequency
components in the measurement from outside this band are regarded as coming from noise.
By having estimates for the spectral properties of the data, the measuring apparatus and
the noise, we can formulate quantitative criteria for the effective bandwidth of the data (see
Remark 8.2.2).

Another problem is that k̂ might vanish at finite frequencies.

Example 9.1.31. For each integer l define

rectl(x) = lχ[− 1
2l ,

1
2l ](x);
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the filter defined by rectl averages an input over an interval of length l−1. The Fourier
transform of rectl is

r̂ectl(ξ) =
1/(2l)∫

−1/(2l)

le−iξ x dx = − l

iξ
[e− iξ

2l − e
iξ
2l ] = sinc

(
ξ

2l

)
.

This function vanishes at the points {4πlm}, where m ∈ � \ {0}. If there were no noise,
then the Fourier transform of rectl ∗x would also vanish at the zeros of r̂ectl, and dividing
̂rectl ∗x by r̂ectl would reproduce the input. In practice, this is not a good idea, as division

by r̂ectl infinitely amplifies anything supported on its zero set. One approach would be to
simply cut off [rectl(ξ)]−1 outside of an interval [−a, a] contained in (−4πl, 4πl). If the
effective support of the data is larger than [−4πl, 4πl], then a less drastic approach would
be to modify [
(rectl)(ξ)]−1 in intervals containing the zeros of r̂ectl; for example, we
could let


(rectl)ε(ξ) =

⎧⎪⎨⎪⎩

(rectl)(ξ) if |
(rectl)(ξ)| > ε,

ε if 0 < 
(rectl)(ξ) ≤ ε,

−ε if − ε ≤ 
(rectl)(ξ) ≤ 0.

An approximate inverse filter is then given by


−1

[
x̂


(rectl)ε

]
.

An even better idea is to combine the two approaches, repairing the transfer function near
its zeros and cutting it off entirely outside the effective support of the data.

Designing an inverse filter is largely an engineering problem. A formula such as (9.14)
provides a starting point. As the model is never exact, and the measured data always con-
tain noise, this is generally not a bounded operation and must therefore be approximated.
The fine detail in an input is contained in the high-frequency components of its Fourier
transform. A measurement process usually involves averaging, which suppresses this in-
formation. This is reflected in the various definitions of the resolution available in the
output of a filter considered in Section 9.1.10. The implementation of an inverse filter is
constrained, on the one hand, by a desire to retain as much of this high-frequency informa-
tion as possible and, on the other hand, by the presence of noise. A characteristic feature
of noise is its irregularity, which is reflected in the slow decay of its Fourier transform (see
Example 4.2.5). Finding an “optimal” approximation for the inverse filter begins by mod-
eling the noise in the input and the measurement process but ultimately requires empirical
adjustment of the parameters.

Example 9.1.32. Suppose that x is an L-bandlimited input. Nyquist’s theorem says that
in order to perfectly reconstruct the input, we must sample x at equally spaced points that
are no further apart than π

L . Of course, a real measurement is an average and not a point
evaluation. Let ε > 0, and define the averaging function

hε(t) = 1

2ε
χ[−1,1](

t

ε
).
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Observe that if x is L-bandlimited, then so is hε ∗ x . To see this we compute the Fourier
transform:

̂hε ∗ x = ĥε(ξ)x̂(ξ). (9.16)

If we sample the filtered function at the points { nπ
L | n ∈ �}, then we can reconstruct ̂hε ∗ x

using (8.2):

̂hε ∗ x(ξ) = χ[−L ,L](ξ)
∞∑

n=−∞
hε ∗ x(

nπ

L
)e− nπ iξ

L . (9.17)

On the other hand,

ĥε(ξ) = sinc

(
εξ

2

)
has its first zero at ξ0 = 2π/ε. If ε is chosen so that

2π

ε
≥ L ,

then it follows from (9.16) that ̂hε ∗ x can be divided by ĥε, leading to an exact reconstruc-
tion of x̂ . The estimate for ε can be rewritten

ε

2
<

π

L
.

For an exactly L-bandlimited function, ε = 2π
L works but does not give a stable method for

reconstructing the original input from the measurements. This is because the function ĥε

vanishes at ξ = ±L . Notice also that the consecutive intervals

[nπ

L
− ε

2
,

nπ

L
+ ε

2
] and [(n + 1)π

L
− ε

2
,
(n + 1)π

L
+ ε

2
]

overlap. A more stable algorithm results if we take ε = π
L . In this case the consecutive

intervals do not overlap, and therefore the values of x that are averaged to determine the
consecutive measurements hε ∗x( nπ

L ) and hε ∗x( (n+1)π
L ) do not overlap. The smallest value

that ĥ π
L

attains on [−L , L] is

ĥ π
L
(L) = 2

π
� 0.63661977 . . . .

This example shows that a bandlimited function can be exactly and stably reconstructed
from “realistic” measurements, provided the resolution of the measuring device is suffi-
ciently high.

Example 9.1.33. The Hilbert transform, �, is a filter that has a well-behaved inverse. In
fact, � is its own inverse. In the Fourier representation,

�x = 1

2π

∞∫
−∞

sgn ξ x̂(ξ)eixξdξ.

The assertion that � = �−1 follows from the equation sgn ξ · sgn ξ = 1.
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Exercise
Exercise 9.1.22. Keeping in mind the Gibbs phenomenon, explain why (9.15) might be
a poor choice for an approximate inverse filter. Suggest a modification likely to produce
better results.

9.1.10 Resolution

In applications it is important to have a notion of resolution. This is not a purely mathemat-
ical concept and may be defined in a variety of ways. Let 	 denote a filter. The resolution
in the output of 	 is given as a length, R	. This length has a variety of interpretations:

1. The size of the smallest feature that is discernible in the output,

2. The minimum separation between just discernible features,

3. The extent to which a pointlike object is spread out by the filter.

Whichever interpretation is used, the resolution increases as R	 decreases. In Section 5.3.2
we discussed the full-width half-maximum definition of resolution. In this section we con-
sider several other definitions applicable to linear, shift invariant filters.

Suppose that x is an input and 	 is a linear, shift invariant filter with point spread
function k and transfer function k̂. If |k̂| is nonvanishing and stays uniformly away from
zero as |ξ | → ∞, then the input can be reconstructed by performing a bounded operation:

x = 
−1

[

(	 x)

k̂

]
.

In this case the output 	x = k ∗ x has the same resolution as the input. For the remainder
of this section we therefore suppose that both k and k̂ are ordinary functions that tend to
zero as their arguments go to infinity. We now give several definitions for the resolution in
the output of a linear shift invariant filter.

FULL-WIDTH κ -MAXIMUM: This is a family of definitions that apply to filters whose
point spread functions assume their maxima at zero and decay as |t| → ∞. The
case κ = 1

2 is the full-width half-maximum definition considered previously. Let
M = k(0) denote the maximum value attained by k. For a number 0 < κ < 1,
let t−(κ) < 0 < t+(κ) denote the largest negative and smallest positive values
(respectively), where k(t) = κM. The full-width κ-maximum of the filter 	 is
defined to be

�	,κ = t+(κ)− t−(κ).

The numbers �	,κ increase as κ decreases; hence this definition of resolution is
more stringent for smaller values of κ. In imaging applications it is very common
to see resolution quoted in units of “full width tenth maximum,” (i.e., the number
�	, .1).
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Example 9.1.34. An extreme case is the rectangle function (2d)−1χ[−d,d]. The
corresponding filters 	d average the input over an interval of length of 2d. In
these cases

�	d ,κ = 2d

for all values of κ.

Example 9.1.35. A less extreme case is provided by the tent functions

td(t) =

⎧⎪⎨⎪⎩
0 if |t| ≥ d,

t + d if − d < t < 0,

d − t if 0 ≥ t < d.

Letting Td denote the corresponding filters, we see that

�Td ,κ = 2(1 − κ)d.

FIRST ZERO: If the point spread function of a filter vanishes, then the locations of the first
positive and negative zeros can be used to give another definition of resolution.
This is just the previous definition with κ = 0. Suppose that k is the point spread
function of a filter 	 and it vanishes at positive and negative values. Let t− < 0
be the largest negative zero and t+ > 0 be the smallest positive zero. Define

�	,0 = t+ − t−.

Example 9.1.36. Let Fβ denote the Fejer mean filter with transfer function t̂β and
point spread function

tβ(t) = 1

β

[
sin
(
βt
2

)
π t

]2

;

see Example 9.1.29. The ideal lowpass filter with passband [0, β] has point spread
function

dβ(t) = β sinc(βt)

π
.

We see that

�Fβ ,0 = 2π

β
and �Dβ,0 = π

β
.

By this measure, the output of Dβ has twice the resolution of the output of Fβ.
This should be compared with the computations of the full-width half-maxima
given in Section 5.3.2.

EQUIVALENT WIDTH: Suppose that 	 is a filter with point spread function k that assumes
its maximum value at 0 and is an integrable function. We then define the equiva-
lent width resolution of 	 to be

�	,ew =

∞∫
−∞

k(t) dt

k(0)
= k̂(0)

k(0)
.
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satisfactory definition by adding a parameter 0 < ε < 1. Let ξ− be the largest
negative value of ξ so that |k̂(ξ)| < ε|k̂(0)| and let ξ+ be the smallest positive
value of ξ so that |k̂(ξ)| ≤ ε|k̂(0)|. Define the ε-Nyquist width to be

�	,ny,ε = π

min{|ξ+|, |ξ−|} .

With this definition, we see that

�Dβ,ny, 1
2
= π

β
while �Fβ,ny, 1

2
= 2π

β
,

which is in better agreement with our intuitive notion of resolution.

Exercises
Exercise 9.1.23. Determine the resolution, according to each definition, for the lowpass
filters defined in Section 9.1.8.

Exercise 9.1.24. Suppose that k is the point spread function of a filter. For 0 < β, define
kβ(t) = β−1k(β−1t). For each definition of resolution, how is the resolution of the filter
defined by kβ related to that defined by k?

9.1.11 The Resolution of a Cascade of Filters

In Section 9.1.10 we discussed a variety of definitions for the resolution available in the
output of a linear, shift invariant filter. If 	1 and 	2 are such filters, it is reasonable to
inquire how the resolution of 	1 ◦	2 is related to the resolution of the components. The
answers depend on the type of filter and the definition of resolution.

FULL-WIDTH κ -MAXIMUM: For values of κ between 0 and 1 and general filters, it is
difficult to relate �	1 ◦ 	2,κ to �	1,κ and �	2,κ . For the special case of filters with
Gaussian point spread functions, there is a simple relation. For each a > 0, set

ga(t) = e−at2

and let �a denote the filter with this point spread function. A simple calculation
shows that

��a ,κ =
√− log κ

a
.

Using the fact that


(ga)(ξ) =
√
π

a
e− ξ2

4a ,

we obtain the relation

��a◦�b,κ =
√
�2

�a ,κ
+�2

�b,κ
. (9.18)
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FIRST ZERO: If k1 and k2, the point spread functions of filters 	1 and 	2, have the addi-
tional properties that

• k1 and k2 are even functions, and

• each function is positive in an interval (−t j , t j ) and vanishes outside this
interval,

then
�	1 ◦ 	2,0 = �	1,0 + �	2,0. (9.19)

This follows from the fact that the point spread function of 	1 ◦	2 is k1 ∗ k2 and
the support properties of convolutions given in Proposition 5.2.5.

EQUIVALENT WIDTH: If k1 and k2, the point spread functions of filters 	1 and 	2, are
nonnegative and assume their maximum values at 0, then

�	1 ◦ 	2,ew ≥ √
�	1,ew�	2,ew.

The proof of this estimate uses the mean value theorem for integrals, Theorem B.6.4. We
can suppose that k1(0) = k2(0) = 1 as this does not affect the equivalent width. Because
both functions are nonnegative, the MVT for integrals applies to give numbers t1 and t2
such that

k1 ∗ k2(0) =
∞∫

−∞
k1(t)k2(−t) dt = k1(t1)

∞∫
−∞

k2(−t) dt = k2(t2)

∞∫
−∞

k1(t) dt .

On the other hand,

∞∫
−∞

k1 ∗ k2(t) dt =
∞∫

−∞
k1(t) dt

∞∫
−∞

k2(t) dt .

Thus

�	1 ◦ 	2,ew =

∞∫
−∞

k1 ∗ k2(t) dt

k1 ∗ k2(0)

=

∞∫
−∞

k1(t) dt
∞∫

−∞
k2(t) dt√

k1(t1)k2(t2)
∫

k1dt
∫

k2 dt

=
√

�	1,ew�	2,ew

k1(t1)k2(t2)
.

(9.20)

The proof is completed by observing that k1(t1)k2(t2) ≤ 1.
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ε-NYQUIST WIDTH: The simplest and most general relation holds for the 0-Nyquist width.
If k̂1 and k̂2 are the transfer functions for filters 	1 and 	2, then the transfer
function of 	1 ◦	2 is k̂1k̂2. Since k̂1(ξ)k̂2(ξ) 	= 0 if and only if each factor is
nonvanishing, it follows that

�	1 ◦ 	2,ny,0 = max{�	1,ny,0,�	2,ny,0}. (9.21)

For ε > 0 there is a somewhat less precise result:

max{�	1,ny,ε2,�	2,ny,ε2} ≤ �	1 ◦ 	2,ny,ε2 ≤ max{�	1,ny,ε,�	2,ny,ε}. (9.22)

Exercises
Exercise 9.1.25. Prove (9.18).

Exercise 9.1.26. Provide the details of the proof (9.19).

Exercise 9.1.27. Suppose that for j = 1, 2 the point spread functions k j are positive in an
interval (−t j−, t j+) where t j− < 0 < t j+ and vanish otherwise. Show that

�	1 ◦ 	2,0 ≥ �	1,0 +�	2,0.

Exercise 9.1.28. Prove (9.21) and (9.22).

9.2 Filtering Periodic Inputs

In the previous section we considered the fundamentals of filtering for inputs that are repre-
sented as functions of a real variable. To use the Fourier representation we need to assume
that the inputs under consideration have Fourier transforms. For example, the inputs might
be bounded and supported in a bounded interval, or perhaps in L2(�). For many applica-
tions these hypotheses are not appropriate. A case of particular interest is that of periodic
inputs. An input x, defined for t ∈ �, is L-periodic if x(t + L) = x(t). If, on the other
hand, x is defined only in the interval [0, L), then it can be extended to � as an L-periodic
function.

In this section we briefly consider the modifications needed to analyze linear, shift
invariant filters acting on periodic functions. A filter 	 is “L-periodic” if it carries L-
periodic functions to L-periodic functions. For τ ∈ �, the shift operation

x �→ x(t − τ) = xτ (t)

is evidently an L-periodic filter. An L-periodic filter, 	, is shift invariant if 	(xτ ) =
(	 x)τ .

Recall that if f and g are L-periodic, then their periodic convolution is also L-periodic.
The “L-periodic” unit impulse, δL, is given formally as the sum

δL =
∞∑

j=−∞
δ(t + j L).
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If 	 is an L-periodic, shift invariant, linear filter, then it is determined by its impulse
response, k, which is given by

k(t) = 	(δL).

The impulse response can be either an ordinary function or a generalized function. As
before, 	 has a representation as periodic convolution with its impulse response,

	 f (t) =
L∫

0

k(t − s) f (s) ds.

Instead of the Fourier transform, the Fourier series now provides a spectral representa-
tion for a shift invariant filter. In this case the “transfer function” is the bi-infinite sequence
< k̂(n) >, defined for n ∈ � by applying the filter directly to the complex exponentials

	(e
2π int

L ) = k̂(n)e
2π int

L .

If k is an ordinary function, then this agrees with the usual definition for its Fourier coef-
ficients. If k is a periodic generalized function, then this formula still makes sense. For-
mula (7.41) implies that the Fourier coefficients of 	 x = k ∗x are given by < k̂(n)x̂(n) >,
and therefore the Fourier space representation of 	 is

	 x(t) = 1

L

∞∑
n=−∞

k̂(n)x̂(n)e
2π int

L . (9.23)

As in the case of the real line, a composition of linear, shift invariant, L-periodic filters
is again a filter of the same type. It is also true that linear, shift invariant, L-periodic filters
commute. As before, we need to exercise caution when implementing cascades and choose
an ordering that avoids numerical difficulties.

Example 9.2.1. A periodic function of period L has an expansion as a Fourier series

f (t) = 1

L

∞∑
j=−∞

f̂ ( j)e
2π i j t

L .

Recall that the N th-partial sum operator is defined by

SN ( f ; t) = 1

L

N∑
j=−N

f̂ ( j)e
2π i j t

L .

The N th-partial sum operator is a shift invariant filter given by convolution with

dN (t) =
sin
(

2π(2N+1)t
L

)
L sin

(
π t
L

) .

The impulse response of SN is dN (t).
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Example 9.2.2. An L-periodic analogue of the Hilbert transform is defined by

�L x(t) = lim
ε↓0

⎡⎢⎣ −ε∫
− L

2

+
L
2∫

ε

⎤⎥⎦ cos
(
πs
L

)
2 sin

(
πs
L

) f (t − s) ds

=P.V.

L
2∫

− L
2

cos
(
πs
L

)
2 sin

(
πs
L

) f (t − s) ds.

(9.24)

Example 9.2.3. The transfer function for the Hilbert transform is given by

ĥ(n) =

⎧⎪⎨⎪⎩
1 n > 0,

0 n = 0,

−1 n < 0.

By convention, ĥ(0) = 0. The Hilbert transform, in the Fourier representation, is given by

�L x(t) = 1

L

[ ∞∑
n=1

x̂(n)e
2π int

L −
−1∑

n=−∞
x̂(n)e

2π int
L

]
.

Example 9.2.4. The bandpass filter with passband [a, b] is defined in the Fourier represen-
tation by the transfer function

k̂(n) =
{

1 |n| ∈ [a, b],
0 k /∈ [a, b].

Example 9.2.5. As noted previously, for each N the N th-partial sum of the Fourier series
SN( f ) defines a shift invariant, linear filter. It is a bandpass filter with passband [0, N ]. Its
transfer function is therefore

d̂N (n) =
{

1 for |n| ≤ N,

0 for |n| ≥ N .

Exercises
Exercise 9.2.1. Show that the shift 	τ x(t) = x(t −τ) defines an L-periodic shift invariant
filter. What is its transfer function?

Exercise 9.2.2. Suppose that k1 and k2 are the impulse responses of a pair of L-periodic,
shift invariant filters. Show that the impulse response of the composition is k1 ∗ k2. What is
the transfer function?
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Exercise 9.2.3. Show that the first derivative x �→ ∂t x defines an L-periodic shift invariant
filter. What is its transfer function?

Exercise 9.2.4. The time reversal filter is defined by 	 x(t) = x(−t). It certainly carries
L-periodic functions to L-periodic functions. Is it shift invariant?

Exercise 9.2.5. The “periodizing” map defined by

x �→
∞∑

j=−∞
x(t + j L)

defines a filter that maps functions on � to L-periodic functions. Show that, in an ap-
propriate sense, this is a shift invariant filter. What are its impulse response and transfer
function?

Exercise 9.2.6. Show that the filters defined in Examples 9.2.2 and 9.2.3 agree.

Exercise 9.2.7. Show that the Fejer means CN ( f ) (see Definition 7.5.1) are periodic, linear
shift invariant filters. For each N, what are the impulse response and transfer function?

Exercise 9.2.8.∗ Give a definition for a periodic, generalized function.

9.2.1 Resolution of Periodic Filters

Let 	 denote a shift invariant, linear L-periodic filter with point spread function k. Some
of the definitions of resolution given in Section 9.1.10 can be adapted to the context of
periodic filters and inputs. The full-width κ-maximum definitions carry over in an obvious
way, at least for point spread functions with a well-defined maximum at zero. We can also
use the first zero definition for point spread functions that vanish. The equivalent width
definition can be adapted if we use the integral of k over a single period:

�	,ew =

L∫
0

k(t) dt

k(0)
= k̂(0)

k(0)
.

Applying the Nyquist criterion for periodic functions, we can also define the ε-Nyquist
width for an L-periodic filter. Let < k̂(n) > denote the Fourier coefficients of k and
suppose that 0 < ε < 1. If

|k̂( j)| ≥ ε|k̂(0)| for | j | ≤ N

but either |k̂(N + 1)| < ε|k̂(0)| or |k̂(−(N + 1))| < ε|k̂(0)|, then the ε-Nyquist width of
	 is defined to be

�	,ny,ε = L

2N + 1
.
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9.2.2 The Comb Filter and Poisson Summation∗

See: A.4.5.

In Chapter 8 we saw that the result of sampling an input defined on � is to pass from
the realm of the Fourier transform to the realm of the Fourier series. Sampling is not, in any
reasonable sense, a shift invariant operation. It is rather a generalized multiplication filter
that can be analyzed using a formalism quite similar (actually dual) to that used to analyze
shift invariant filters. To that end, recall the properties of the δ-function:

• x ∗ δ(L) = ∫
x(t)δ(L − t) dt = x(L)

• δ̂(ξ ) = 1

• δ̂L(ξ) =
∫
δ(t − L)eiξ t dt = eiξ L

Multiplying the delta function by a continuous function x gives

xδ(t − L) = x(L)δ(t − L).

Repeating this for a sum of shifted delta functions gives

x
∞∑

n=−∞
δ(t − nL) =

∞∑
n=−∞

x(nL)δ(t − nL).

This gives a model for a sequence of samples as a train of impulses located at the sample
points. Sampling is therefore defined as multiplication by the generalized function

CL(t) =
∞∑

n=−∞
δ(t − nL).

This generalized function is sometimes called a Comb filter. The fact that sampling is mod-
eled as multiplication by a generalized function is a reflection of the non-physical nature
of pointwise evaluation of a function. Real sampling processes always involve averaging a
function over an interval of positive length.

Integrating the output of the comb filter gives

∞∫
n=−∞

x(t)
∞∑

n=−∞
δ(t − nL) =

∞∑
n=−∞

x(nL).

Parseval’s formula, for L2 functions f and g, is∫
f (t)g(t) dt = 1

2π

∫
f̂ (ξ)ĝ(ξ) dξ. (9.25)
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On the other hand, the Poisson summation formula states that
∞∑

n=−∞
f (nL) = 1

L

∞∑
n=−∞

f̂ (
2πn

L
). (9.26)

The δ-function is not a function, but arguing by analogy and comparing (9.25) to (9.26)
gives

∞∫
−∞

x(t)CL(t) dt = 1

2π

∞∫
−∞

x̂(ξ)ĈL(ξ) dξ.

Thus the Fourier transform of the comb filter is also a generalized function:


[
∞∑

n=−∞
δ(t − nL)] = 1

L

∞∑
n=−∞

δ(ξ − 2πn

L
).

As the comb filter is defined as the product of x and CL, it has a Fourier representation as
a convolution:


(x · CL)(ξ) = x̂ ∗ ĈL(ξ) = 1

L

∞∑
n=−∞

x̂(ξ − 2πn

L
).

This formula is another way to write the Poisson summation formula.
The operation of sampling, which is done in the time domain, is frequently followed

by windowing in the frequency domain and then reconstruction or interpolation, done in
the time domain. As this is a composition of a multiplication filter and a shift invariant
filter, it is not itself shift invariant; nonetheless there is a very simple formula for the kernel
function of the composite operation. Let L denote the time domain sample spacing and ϕ̂
the frequency domain windowing function. The sampling step takes

�l : x −→
∞∑

n=−∞
x(nl)δ(t − nL);

the output of the windowing and reconstruction steps is

�� : �l(x) −→ 
−1

[
ϕ̂(ξ )


( ∞∑
n=−∞

x(nl)δ(t − nL)

)]
.

Using the formula for the inverse Fourier transform of a product gives

�� ◦ �l(x) = ϕ ∗
[ ∞∑

n=−∞
x(nl)δ(t − nL)

]
=

∞∑
n=−∞

x(nl)ϕ(t − nL). (9.27)

This is the generalized Shannon-Whittaker formula, (8.7). Formula (9.27) shows that the
kernel function for �� ◦ �l is the generalized function

a���l (t, s) =
∞∑

n=−∞
ϕ(t − nL)δ(nL − s).
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In a more realistic model for measurement, the samples {x(nL)} are replaced by the
samples of an average {ψ ∗ x(nL)}. Here ψ models the sampling device. The output of the
composite filter becomes

∞∑
n=−∞

ϕ(t − nL)ψ ∗ x(nL).

This modification is easily incorporated into the kernel function for �� ◦ �l . Letting �ψ

denote convolution with ψ, the kernel function for �� ◦ �l ◦ �ψ is

a���lψ =
∞∑

n=−∞
ϕ(t − nL)ψ(nL − s). (9.28)

That the kernel function for �� ◦ � ◦ �ψ is an ordinary function reflects the more realistic
models for sampling and interpolation embodied in this filter.

Exercises
Exercise 9.2.9. Show that

∞∫
−∞

a���l (t, s)x(s) ds = (�� ◦ �l f )(x).

Exercise 9.2.10. While the filter �� ◦ �l ◦ �ψ is fairly realistic, it still involves an infinite
sum. A further refinement is to collect only a finite number of samples. Let χ denote a
function with bounded support.

1. Find the kernel function for the filter

x �→ �� ◦ �l ◦ �ψ(χx).

2. Find the kernel function for the filter

x �→ �� ◦ �l ◦ (χ�ψ x).

9.3 Higher-Dimensional Filters

See: A.4.6.

In imaging applications the data are not usually a function of a time variable but rather
a function of several spatial variables. Typically they are functions defined on �2 and
�3. The theory of filtering functions of several variables is formally quite similar to that
for functions of a single variable, though a concept like causality has no useful analogue.
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The material in this section and the following is not required for our subsequent study of
algorithms in x-ray CT. These algorithms are expressed, from the outset, as compositions
of one-dimensional filtering operations.

A linear filter acting on functions of n variables is usually represented as an integral

	 f (x) =
∫
�n

a(x, y) f (y) d y. (9.29)

As before, a(x, y) is called the kernel function defining the filter 	; it may be an ordinary
function or a generalized function.

Example 9.3.1. The identity filter is the filter that carries a function to itself. It is usually
denoted by Id, so that (Id f )(x) = f (x). The kernel function for the identity acting on
functions of n variables is δ(x− y), where δ is the n-dimensional delta function; see (5.28).

Example 9.3.2. Suppose that f (x) is a function of n variables and τ ∈ �n is a fixed vector.
The “shift by τ” is the filter defined by

	τ f (x) = f (x − τ ) = fτ (x).

The kernel function for 	τ is δ(x − y − τ ).

Recall that a filter 	 acting on functions of n variables is shift invariant if

	 fτ = (	 f )τ

for all inputs f and vectors τ ∈ �n. A shift invariant filter is expressible as convolution.

Proposition 9.3.1. Let 	 be a shift invariant filter acting on functions defined on �n. If
k(x) = 	 δ(x) is the impulse response and f is an “arbitrary” input, then

	 f (x) =
∫
�n

k(x − y) f (y) d y.

As in the one-dimensional case, the impulse response may be a generalized function,
in which case this formula requires careful interpretation. The Fourier transform of the
impulse response, k̂, is called the transfer function (in electrical engineering). In imaging
it is called the modulation transfer function. It provides a frequency space description for
the action of a shift invariant filter:

	 f (x) = 1

[2π ]n

∫
�n

k̂(ξ) f̂ (ξ)ei〈x,ξ〉dξ .

Suppose that f is a function of n variables with Fourier transform f̂ . The are many
ways to define the bandwidth for a function of several variables. The simplest definition
would be to say that f is R-bandlimited is f̂ (ξ) = 0 for ξ with ‖ξ‖ > R. If the “important”
information in f̂ is contained in the ball of radius R, then we would say that f is effectively
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R-bandlimited. Though we usually use this definition, another possible definition would be
to say that f is R-bandlimited if f̂ (ξ1, . . . , ξn) = 0 whenever max{|ξ j | : j = 1, . . . , n} >
R. Indeed, any choice of norm for �n leads to a definition of bandwidth.

Let x = (x1, . . . , xn) be coordinates for �n. The simplest functions on �n are functions
that can be expressed as products of functions on �1. In filtering theory such a function is
called separable. If

k(x) = k1(x1) · · · kn(xn)

is the impulse response of a filter 	, then 	 is said to be a separable filter. The transfer
function of a separable filter is also a product:

k̂(ξ) = k̂1(ξ1) · · · k̂n(ξn).

Example 9.3.3. Because the frequency, in n dimensions is a vector, a “lowpass” filter
in n dimensions can be defined in many different ways. The transfer function sR(ξ) =
χ[0,R](‖ξ‖) defines a filter that removes all harmonic components whose frequencies have
length greater than R/2π. Another possibility is to use

m R(ξ) =
n∏

j=1

χ[0,R](|ξ j |).

This filter removes harmonic components whose frequency in any coordinate direction
exceeds R/2π. These functions define shift invariant filters

SR( f ) = 
−1(sR(ξ) f̂ (ξ)), MR( f ) = 
−1(m R(ξ) f̂ (ξ)).

Their impulse responses (in two dimensions) are shown in Figure 9.6. The filter MR is
separable, whereas the filter SR is not.

(a) Impulse response for SR . (b) Impulse response for MR .

Figure 9.6. Impulse responses for two-dimensional lowpass filters.



346 Chapter 9. Filters

Each of the filters in Example 9.3.3 defines a partial inverse to the Fourier transform, in
the sense that either SR f or MR f converges to f as R tends to infinity. Figure 9.7 shows
the results of applying these filters to the characteristic function of a square,

χ[−1,1]2(x) = χ[−1,1](x1)χ[−1,1](x2).

As the data have jump discontinuities, the filtered image exhibits Gibbs artifacts. Note the
ringing artifact parallel to the edges of the square and also its absence in the “Gibbs shadow”
formed by the vertex. This is an indication of the fact that the detailed analysis of the Gibbs
phenomenon is more complicated in higher dimensions than it is in one dimension. Note
also that the Gibbs artifact is a little more pronounced in (a).

(a) SR applied to χ[−1,1]2 . (b) MR applied to χ[−1,1]2 .

Figure 9.7. Lowpass filters in two dimensions.

Example 9.3.4. A filter can also act selectively in different directions. For example, a
lowpass filter in the x1-direction is defined by the transfer function χ[0,R](|ξ1|). Given a unit
vector ω ∈ Sn−1, the transfer function χ[0,R](|〈ω, ξ 〉|) removes all harmonic components
whose frequency in the ω-direction exceeds R/2π.

Complex, higher-dimensional filtering operations are often assembled out of simpler
pieces. If 	1 and 	2 are linear filters then their composite, 	1 ◦	2 is as well. While,
in general, 	1 ◦A2 	= 	2 ◦	1, shift invariant filters do commute. If ki , i = 1, 2 are the
impulse responses of shift invariant filters 	i , i = 1, 2, then the impulse response of the
cascade 	1 ◦	2 is

k1 ∗ k2 = k2 ∗ k1.

The transfer function is the product k̂1(ξ)k̂2(ξ).

Exercises
Exercise 9.3.1. Prove Proposition 9.3.1, assuming that f is a smooth function with bounded
support.

Exercise 9.3.2. Prove that if 	1 and 	2 are shift invariant filters then 	1 ◦	2 = 	2 ◦	1 .
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9.3.1 Isotropic Filters

A linear transformation U : �n → �n is a rigid rotation if

‖U x‖ = ‖x‖ (9.30)

for all vectors x ∈ �n. Fixing an orthogonal coordinate system for �n, the rigid rotations
are defined by matrices U, which satisfy the matrix equation

U tU = Id = UU t .

Here U t denotes the transpose of the matrix U. This collection of matrices is denoted O(n).
The rigid rotations of �2 are given by the matrices

O(2) =
{(

cos θ sin θ
− sin θ cos θ

)
,

(− sin θ cos θ
cos θ sin θ

)
for θ ∈ [0, 2π)

}
.

A linear transformation U defines an operation on functions by setting

fU (x) = f (U x).

Definition 9.3.1. A filter 	 acting on functions on �n is isotropic if it commutes with all
rotations; that is,

	 fU (x) = (	 f )U (x) = 	 f (U x).

An isotropic filter can be linear or nonlinear. For example, the filter that takes a function
f to its absolute value, | f |, is a nonlinear isotropic filter. Linear, shift invariant isotropic
filters have a very simple characterization.

Proposition 9.3.2. A linear, shift invariant filter 	 is isotropic if and only if its impulse
response (or transfer function) is a radial function.

Proof. Let k = 	 δ denote the impulse response of 	 . From the results in Section 4.5.4 it follows
that k is a radial function if and only if k̂ is a radial function. If k is a radial function, then there is a
function κ such that

k(x) = κ(‖x‖).
Let U be a rigid rotation. Then

	 fU (x) =
∫

�n

κ(‖x − y‖) f (U y) d y

=
∫

�n

κ(‖U(x − y)‖) f (U y) d y

= 	 f (U(x)).

(9.31)

The substitution y′ = U y is used to go from the second line to the last line. This shows that a radial
impulse response defines an isotropic filter.
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The converse statement is even easier because δU = δ, as follows by formally changing vari-
ables in the integral defining δU :∫

�n

δ(U x) f (x) d x =
∫
�n

δ(x) f (U−1x) d x = f (0).

The definition of an isotropic filter implies that

k(x) = 	 δ(x) = 	 δU (x) = 	 δ(U x) = kU (x) for all U ∈ O(n).

This shows that k(x) only depends on ‖x‖.
Example 9.3.5. If ψ is a smooth, nonnegative function with support contained in the ball
of radius ε and total integral 1, then the formula

	ψ f (x) =
∫
�n

ψ(x − y) f (y) d y

defines a smoothing filter. Its transfer function is ψ̂(ξ). As∫
�n

ψ(x) dx = 1,

it follows that ψ̂(0) = 1. As ψ is smooth and vanishes outside a bounded set, its Fourier
transform tends to zero as ‖ξ‖ → ∞. Thus 	ψ is an approximate lowpass filter. As in one
dimension, filters like 	ψ provide models for measuring devices. If ψ is a radial function,
then the filter 	ψ is isotropic.

Exercises
Exercise 9.3.3. Suppose that 	1 and 	2 are isotropic filters. Show that 	1 ◦	2 is as well.

Exercise 9.3.4. Show that the squared length of the gradient

	 f =
n∑

j=1

(
∂ f

∂x j

)2

is an isotropic filter.

Exercise 9.3.5. Show that the following filters are not isotropic:

	∞ f = max{
∣∣∣∣ ∂ f

∂x j

∣∣∣∣ : j = 1, . . . , n},

	1 f =
n∑

j=1

∣∣∣∣ ∂ f

∂x j

∣∣∣∣ . (9.32)
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9.3.2 Resolution

The discussion of resolution for one-dimensional filters in Section 9.1.10 can be repeated
almost verbatim for higher-dimensional, isotropic filters. If the filter is not isotropic, then
the situation is more complicated. For example, let 	 be a filter acting on functions of n
variables with impulse response, a. Suppose that a achieves its maximum at 0 and decays
to zero as ‖x‖ tends to infinity. The set of points

FWHM(a) = {x : a(x) = 1

2
|a(0)|},

where a assumes half its maximum value, is a hypersurface, the half-maximum hypersur-
face. If a is a radial function, then this hypersurface is a sphere centered at zero and the
FWHM resolution in the output of 	 can be defined as the radius of this sphere. If a is
not a radial function, then there are many possible ways to assign a single number that
quantifies the resolution in the output of 	 . A conservative assessment of the resolution in
a non-isotropic filter is to use the largest distance between two points on the half maximum
hypersurface. This is called the diameter of this hypersurface.

Example 9.3.6. Figure 9.8 shows level curves for the impulse responses of the filters SR

and MR.

−2

−1

1

2

−2 −1 1 2

(a) Half-maximum curve for the
isotropic filter SR .

−1. 5

−0. 5

0. 5

1. 5

−1. 5 −0.5 0.5 1.5

(b) Half-maximum curve for the non-
isotropic filter MR .

Figure 9.8. Half-maximum curves for two-dimensional lowpass filters.

Definition 9.3.2. Let 	 be a linear, shift invariant filter with impulse response a. Sup-
pose that |a| assumes it maximum at 0 and tends to zero as ‖x‖ tends to infinity. The
hypersurface FWHM(a) may have several components. Let FWHM(a)0 be the component
bounding a region that contains 0. The full-width half-maximum of 	 is defined to be the
diameter of FWHM(a)0.

Generalizing the other definitions is left as an exercise for the curious reader. It should
be kept in mind that the output of a non-isotropic filter generally has different resolution in
different directions.
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Exercises
Exercise 9.3.6. Generalize the definitions of resolution given for 1-dimensional filters in
Section 9.1.10 to shift invariant filters acting on functions defined on �n.

Exercise 9.3.7. Compute the FWHM resolution of the filters SR and MR.

9.4 Some Applications of Filtering Theory

In this section we apply filtering concepts to the study two subjects of direct relevance
to medical imaging. The first subject we consider is image processing. This is a wide-
ranging and growing field that, among other things, encompasses image reconstruction,
image compression, and various sorts of enhancement or noise reduction. We give an
overview of elementary methods for enhancing images, finding edges and reducing noise,
seen as a subdiscipline of higher-dimensional filtering theory. In the second part of this
section, we apply filtering concepts to analyze several pieces of hardware used in x-ray
imaging. The material in this section is not required for the later chapters in the book.

9.4.1 Image Processing

(a) An “image.” (b) The real part of its Fourier
transform.

Figure 9.9. The Fourier transform of an image is not usually an image.

We consider methods for postprocessing images to improve their sharpness, reduce noise,
and correct for other sorts of distortion. In this context “images” are mathematical rep-
resentations of pictures of things in the natural world. The goal of much of this sort of
processing is to make the information in pictures more accessible to the human visual sys-
tem. Another related aim is to help machines to “see.” In the sense that we are now using
the word image, the Fourier transform of an image is usually not an image, as it is not gen-
erally recognizable as a “picture” of anything. This distinction is illustrated in Figure 9.9.
Image processing operations and the language used to describe them closely mirror these
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origins and intents. While the filters described in this section can be applied to any suffi-
ciently regular function of the correct number of variables, the interpretation of the output
is closely tied to a priori assumptions about the inputs.

The sort of image processing discussed in this section is an important component of
medical imaging, though these operations are more important in the “postprocessing” phase
rather than in the measurement and image formation processes, which are our main topics.
We present this material both because of its importance to medical imaging per se and
because of its rich mathematical content. It shows how particular aims shape the design and
implementation of filters. Our presentation is adapted from the very extensive treatment of
this subject in [68].

Basic Concepts and Operations

We first introduce basic image processing operations and examples of filters that imple-
ment them. Many image processing operations are nonlinear. For simplicity we con-
sider planar images that are represented by scalar functions of two variables. The value
f (x1, x2) represents the “gray level” or density of the image at (x1, x2). With this inter-
pretation it is reasonable to assume that f takes only nonnegative values. Similar con-
siderations apply to color images, which are usually represented by a triple of functions
[r(x1, x2), g(x1, x2), b(x1, x2)]. These functions represent the intensities of three “indepen-
dent” colors at (x1, x2).

A visual output device, such as a monitor or printer, is required to pass from a functional
description of an image (i.e., f ) to a picture, in the ordinary sense. Such a device has a fixed
size and dynamic range. Mappings must be specified between the coordinates used in the
parameterization of f and coordinates in the output device as well as between the values f
assumes and gray levels (or colors) available in the output. In the first part of this section
we consider filtering operations defined on functions of continuous variables; at the end
we briefly discuss the problems of sampling continuous images and implementation of the
filters.

The basic operations we consider fall into several classes:

Coordinate transformations: Images are sometimes distorted because of systematic
modeling (or measurement) errors. In this connection it is useful to make a distinction
between the “image plane” and the “measurement plane.” In this paragraph the image
plane is the plane in which the image itself lies; let (y1, y2) denote orthogonal coordinates
in this plane. This means that if f (y1, y2) is displayed as a gray level image in the y1y2-
plane, then the image appears undistorted. The measurement plane refers to the coordinates
defined by the apparatus used to measure the image; let (x1, x2) denote coordinates in this
plane. Suppose that f (x1, x2), for (x1, x2) lying in a subset D of �2, are measurements
of an image. The parameters (x1, x2) in the measurement plane may differ from the coor-
dinates in the image plane. Displaying f (x1, x2) in the x1x2-plane would then result in a
distorted image. This is called geometric distortion. Figure 9.10 shows an image displayed
in image plane rectangular coordinates and image plane polar coordinates.
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(a) f displayed in the x1x2-
plane.

(b) 	pr f displayed in the im-
age plane.

Figure 9.10. Removing geometric distortion.

Suppose that the measuring device is calibrated in polar coordinates with (x1, x2) cor-
responding to the point in the image plane with Cartesian coordinates

y1 = x1 cos x2, y2 = x1 sin x2. (9.33)

Displaying f in the x1x2-plane results in a distorted image [see Figure 9.10(a)]. Define a
filter 	pr with

(	pr f )(y1, y2) = f

(√
y2

1 + y2
2 , tan−1

[
y2

y1

])
.

The filtered image is shown in Figure 9.10(b). This is a linear filter whose output is the
image parameterized by Cartesian coordinates in the image plane. The actual calibra-
tion of the measuring equipment determines the choice of branch of tan−1 . The value of
(	pr f )(y1, y2) is not defined if (y1, y2) = (0, 0); notwithstanding that, the inverse trans-
formation, (9.33), is defined in the whole “polar coordinate plane.” It is, however, not one
to one.

The example illustrates most of the features of the general case. Let (x1, x2) be coor-
dinates in the measurement plane, and suppose that these differ from those in the image
plane. Denote the latter coordinates by (y1, y2). The two coordinate systems are function-
ally related with

x1 = g(y1, y2), x2 = h(y1, y2),

defined for (y1, y2) belonging to a subset, Di , in the image plane. This defines a mapping �
from Di to Dm = �(Di), a subset of the measurement plane. Let f (x1, x2) for (x1, x2) ∈ D
denote the measurements of an image; then

(	� f )(y1, y2) = f ◦�(y1, y2) = f (g(y1, y2), h(y1, y2)) (9.34)

defines a filter that maps the portion of the measured image lying over Dm ∩ D to an image
defined in the corresponding part of Di . As with the example of polar coordinates, this
transformation may not be defined in the the entire image plane and there may be choices
involved in the definition of the map � : (y1, y2) �→ (g(y1, y2), h(y1, y2)). This operation
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defines a linear filter that is usually not translation invariant. The kernel function for 	� is
the generalized function

a�(y1, y2; x1, x2) = δ(x1 − g(y1, y2), x2 − h(y1, y2)),

here δ is the two-dimensional delta function. Let g(y1, y2), h(y1, y2) be a pair of functions
defined in a subset D ⊂ �2. Setting

�(y1, y2) = (g(y1, y2), h(y1, y2))

defines a map of D into a subset D′ = �(D) of �2. Whether or not � is a change of coor-
dinates, formula (9.34) defines a linear filter carrying functions defined on D′ to functions
defined on D.

Exercises
Exercise 9.4.1. Find conditions on (g, h) that imply that 	� is translation invariant.

Exercise 9.4.2. Suppose that the image is a transparency lying in the y1y2-plane; f (y1, y2)
describes the amount of incident light transmitted through the point (y1, y2). Suppose that
the measurement is made by projecting the transparency onto a screen that lies in the plane
y2 = y3 using a light source that produces light rays orthogonal to the y1y2-plane.

1. Using (x1, x2) = (y1,
√

2y3) as coordinates for the measurement plane, find an ex-
pression for the amount of light incident at each point of the measurement plane (see
Section 3.2).

2. Why are these good coordinates for the measurement plane?

3. Find a filter that removes the geometric distortion resulting from the projection.

Exercise 9.4.3. Let � = (g, h) be a pair of functions defined in D ⊂ �2 and let D′ =
�(D). What are necessary and sufficient conditions on � for the filter A� to be invertible
as a map from functions defined on D′ to functions defined on D?

In the remainder of this section the measurement plane and image plane are assumed
to agree.

Noise reduction: Images can be corrupted by noise. There are two main types of noise:
uniform noise and binary noise. In the first case the noise is uniformly distributed and
locally of mean zero, whereas binary noise consists of sparsely, but randomly, distributed
large errors. It is often caused by sampling or transmission errors. In this section tech-
niques are described for reducing the effects of uniform noise; binary noise is discussed in
Section 9.4.1. Because uniform noise is locally of mean zero, replacing f by a weighted
average generally has the effect of reducing the noise content.

A shift invariant filter of this type can be defined by convolution with a nonnegative
weight function ϕ, satisfying the usual condition:∫

�2

ϕ dx1 dx2 = 1. (9.35)
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Let 	ϕ f = ϕ ∗ f be the convolution filter defined by ϕ. If ϕ has support in a small
ball, then the output of 	ϕ f at (x1, x2) only depends on values of f (y1, y2) for (y1, y2),
near to (x1, x2) and the filter acts in a localized manner. If the noise has a directional
dependence, then this can be incorporated into ϕ. If, for example, the noise is isotropic,
then it is reasonable to use a radial function.

The frequency space representation of such a filter is

	ϕ f = 
−1
[
ϕ̂ f̂
]
. (9.36)

As ϕ is integrable, its Fourier transform tends to zero as ‖ξ‖ tends to infinity. This means
that 	ϕ is an approximate lowpass filter. If ϕ̂ is any function satisfying the conditions

ϕ̂(0, 0) = 1,

lim
ξ→∞ ϕ̂(ξ ) = 0, (9.37)

then (9.36) defines an approximate lowpass filter. Even if the inverse Fourier transform,
ϕ, assumes negative values, the effect of 	ϕ is to reduce uniform noise. In this generality
there can be problems interpreting the output as representing an image. The filtered output,
	ϕ f, may assume negative values, even if f is pointwise positive; to represent 	ϕ f as an
image, it is necessary to remap its range to the allowable range of densities. This operation
is discussed later in the paragraph on contrast enhancement (page 358). If ϕ̂ vanishes
outside a bounded set, then ϕ cannot have bounded support (see Proposition 4.4.1). From
the representation of 	ϕ f as a convolution, it follows that the value of 	ϕ f at a point
(x1, x2) would depend on values of f at points distant from (x1, x2).

As observed previously, reduction of the available resolution is an undesirable side-
effect of lowpass filtering. In an image this appears as blurring. Using statistical properties
of the noise, an “optimal filter” can be designed that provides a balance between noise
reduction and blurring. This is discussed in Chapter 17. The noise might be locally uniform
but non-uniform across the image plane. In this case it might be better to use a nonshift
invariant filter to reduce the effects of noise. A heuristic, used in image processing to retain
detail in a filtered image, is to represent an image as a linear combination of the lowpass
filtered output and the original image. That is, instead of using either 	ϕ f or f alone, we
use

μ	ϕ f + (1 − μ) f, (9.38)

where 0 ≤ μ ≤ 1. If the noise is nonuniform across the image plane, then μ could be taken
to depend on (x1, x2).

Sharpening: An image may be blurred during acquisition; it is sometimes possible to
filter the image and recapture some of the fine detail. In essence, this is an inverse filtering
operation. The measured image is modeled as 	 f, where f denotes the “original” image
and 	 models the measurement process. If 	 is a shift invariant, linear filter, then the
methods discussed in Section 9.1.9 can be applied to try to approximately invert 	 and
restore details present in f that were “lost” in the measurement process. In general, this
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leads to an amplification of the high frequencies, which can, in turn, exacerbate problems
with noise.

The fine detail in an image is also “high-frequency information.” A slightly different
approach to the de-blurring problem is to simply remove, or attenuate, the low-frequency
information. In the frequency domain representation, such a filter is given by

	ϕ f = 
−1
[
ϕ̂ f̂
]
,

where, instead of (9.37), ϕ̂ satisfies

ϕ̂(0) = 0,

lim
ξ→∞ ϕ̂(ξ) = 1. (9.39)

If the function ϕ̂ − 1 has an inverse Fourier transform, ψ, then this filter has spatial repre-
sentation as

	ϕ f = f − ψ ∗ f.

In other words, Aϕ is the difference between the identity filter and an approximate lowpass
filter; hence it is an approximate highpass filter.

Edge detection: Objects in an image are delimited by their edges. Edge detection is
the separation of the boundaries of objects from other, more slowly varying features of
an image. The rate at which a smooth function varies in direction ω is measured by its
directional derivative

ω f (x) = d

dt
f (x + tω)

∣∣
t=0 = 〈∇ f, ω〉.

Here
∇ f = (∂x1 f, ∂x2 f )

is the gradient of f. The Euclidean length of ∇ f provides an isotropic measure of the
variation of f (i.e., it is equally sensitive to variation in all directions). Thus points where
‖∇ f ‖ is large should correspond to edges. An approach to separating the edges from other
features is to set a threshold, tedge, so that points with ‖∇ f (x)‖ > tedge are considered to
belong to edges. A filtered image, showing only the edges, would then be represented by

	1 f (x) = χ(tedge,∞)(‖∇ f (x)‖). (9.40)

While this is a nonlinear filter, it is shift invariant, and the approximate computation of ∇ f
can be done very efficiently using the fast Fourier transform.

This approach is not robust as the gradient of f is also large in highly textured or
noisy regions. If D is a region in the plane with a smooth boundary and f = χD, then
∇ f (x) = 0 if x /∈ bD. From the point of view of sampling, it may be quite difficult to
detect such a sharply defined edge. These problems can be handled by smoothing f before
computing its gradient. Let ϕ denote a smooth, nonnegative function, with small support
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satisfying (9.35). In regions with a lot of texture or noise, but no boundaries, the gradient
of f varies “randomly” so that cancellation in the integral defining

∇(ϕ ∗ f ) = ϕ ∗ ∇ f

should lead to a relatively small result. On the other hand, along an edge, the gradient of
f is dominated by a component in the direction orthogonal to the edge. Therefore, the
weighted average, ϕ ∗ ∇ f, should also have a large component in that direction. Con-
volution smears the sharp edge in χD over a small region, and therefore points where
‖∇(ϕ ∗ χD)‖ is large are more likely to show up in a sample set. This give a second
approach to edge detection implemented by the filter

	2 f (x) = χ(tedge,∞)(‖∇(ϕ ∗ f )(x)‖). (9.41)

Once again, f �→ ∇ϕ ∗ f is a linear shift invariant filter that can be computed efficiently
using the Fourier transform. In order not to introduce a preference for edges in certain
directions, a radial function should be used to do the averaging.

The second filter helps find edges in regions with noise or texture but may miss edges
where the adjoining gray levels are very close. In this case it might be useful to compare
the size of the gradient to its average over a small region. In this approach the ‖∇ f ‖ (or
perhaps ‖∇ϕ ∗ f ‖) is computed and is then convolved with a second averaging function to
give ψ ∗ ‖∇ f ‖ (or ψ ∗ ‖∇ϕ ∗ f ‖). A point x then belongs to an edge if the ratio

‖∇ f (x)‖
(ψ ∗ ‖∇ f ‖)(x)

exceeds a threshold τedge. A filter implementing this idea is given by

	3 f (x) = χ(τedge,∞)

( ‖∇ f (x)‖
ψ ∗ ‖∇ f ‖(x)

)
. (9.42)

Once again, the filter is nonlinear, but its major components can be efficiently implemented
using the Fourier transform. The image produced by the output of these filters shows only
the edges.

There is a related though somewhat more complicated approach to edge detection that
entails the use of (minus) the Laplace operator,

−� f = ∂2
x1

f + ∂2
x2

f,

as a way to measure the local variability of f. (We call this −� for consistency with earlier
usages of this symbol.) There are three reasons for this approach: (1) The Laplace operator
is rotationally invariant; (2) the singularities of the function � f are the same as those of f ;
and (3) there is some evidence that animal optical tracts use a filtering operation of this sort
to detect edges. The first statement is easily seen in the Fourier representation:


(−� f )(ξ1, ξ2) = −(ξ 2
1 + ξ 2

2 ) f̂ (ξ1, ξ2).
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The point of (2) is that the sharp edges of objects are discontinuities of the density function
and will therefore remain discontinuities of � f. This property requires more advanced
techniques to prove; see [43]. For the reasons discussed previously, the Laplace operator is
often combined with a Gaussian smoothing operation,

�σ f (x) =
∫∫
�2

e− |x− y|2
σ f (y) d y

to get
	σ f = −��σ f.

The transfer function of 	σ is

âσ (ξ1, ξ2) = −πσ(ξ 2
1 + ξ 2

2 )e
− σ(ξ2

1 +ξ2
2 )

4

and its impulse response response is

aσ (x1, x2) = 4

σ 2
(x2

1 + x2
2 − σ )e− x2

1+x2
2

σ .

These are radial functions; the graphs of a radial section are shown in Figure 9.11. Note
that the impulse response assumes both positive and negative values.
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(b) The impulse response.

Figure 9.11. Radial graphs of the transfer function and impulse response for 	.25.

It is not immediately obvious how to use the output of 	σ to locate edges. This is
clarified by considering the special case of a sharp edge. Applying 	σ to the function
χ[0,∞)(x1) gives

	σ χ[0,∞)(x1, x2) = 2cx1√
σ

e− x2
1
σ ;

here c is a positive constant. The zero crossing of 	σ χ[0,∞) lies on the edge; nearby are
two sharp peaks with opposite signs. Figure 9.12 shows a cross section in the output
of Aσ χ[0,∞) orthogonal to the edge. The parameter σ takes the values .01, .1, .25 and 1;
smaller values correspond to sharper peaks.
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Figure 9.12. Output of Laplacian edge detection filters.

This example suggests that the absolute value of the output of filter 	σ can be used to
locate edges. An edge shows up as a black arc (the zero crossings) flanked by two nearly
parallel white arcs. A different approach is to define

�σ f (x) = 1

2

[
sgn((	σ f )(x)) + 1

]
.

The preceding example indicates that �σ f should be 0 on one side of an edge and 1 on
the other. The image produced by �σ f is then a “schematic” showing the outlines of the
objects with all the fine detail removed. An edge image can be combined with the original
image, as in (9.38) to obtain a composite image with fine detail and slowly varying features
as well as enhanced contrast between objects.

Exercise
Exercise 9.4.4. Let U be a 2 × 2 matrix defining a rigid rotation. If f is a function defined
in the plane, then set

fU (x1, x2) = f (U (x1, x2)).

Show that
‖∇ fU (0, 0)‖ = ‖∇ f (0, 0)‖.

Explain the statement “∇ f provides an isotropic measure of the variation of f.”

Contrast enhancement: The equipment used to display an image has a fixed dynamic
range. Suppose that the gray values that can be displayed are parameterized by the interval
[dmin, dmax]. To display an image, a mapping needs to be fixed from the range of f to
[dmin, dmax]. That is, the values of f need to be scaled to fit the dynamic range of the output
device. Suppose that f assumes values in the interval [m, M]. Ordinarily, the scaling map
is a monotone map γ : [m, M] → [dmin, dmax]. This map is usually nonlinear and needs to
be adapted to the equipment being used. By choosing γ carefully, different aspects of the
image can be emphasized or enhanced.
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Suppose that there is a region R in the image where f varies over the range [a, A]. If
A − a is very small compared to M − m, then a linear scaling function,

γ (t) = dmax
t − m

M − m
+ dmin

M − t

M − m
,

would compress the information in R into a very small part of [dmin, dmax]. In the output this
region would have very low contrast and so the detail present there would not be visible.
The contrast in R can be enhanced by changing γ to emphasize values of f lying in [a, A],
though necessarily at the expense of values outside this interval. For example, a piecewise
linear scaling function

γa A(t) =

⎧⎪⎨⎪⎩
dmin if t < a,

dmax
t−a
A−a + dmin

A−t
A−a if a ≤ t ≤ A,

dmax if t > A

would make the detail in R quite apparent. On the other hand, detail with gray values
outside of [a, A] is entirely lost.

(a) Low-contrast display. (b) High-contrast display.

Figure 9.13. The effect of rescaling gray values in the Shepp-Logan phantom.

In Figure 9.13 an example of a CT-phantom is shown with two different choices of γ.
In medical imaging this is called windowing or thresholding. Another method used to make
information present in an image more apparent in a visual display is to map the gray values
to colors. In either case, no more information is actually “there,” but, due to the physiology
of human vision, it becomes more apparent.

Discretized Images

So far, an “image” has been represented by a real-valued function of a pair of continuous
variables. In image processing, functions describing images are usually sampled on a dis-
crete set of points and quantized to take values in a finite set. In this section we briefly
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discuss sampling of images and implementation of filters on the sampled data. As before,
we restrict our attention to two-dimensional images. The sample set in imaging is usually
a uniform rectangular grid,

{( jh1, kh2) : j, k ∈ �},
where h1 and h2 are positive numbers. The individual rectangles with corners

{[( jh1, kh2), (( j + 1)h1, kh2), ( jh1, (k + 1)h2), (( j + 1)h1, (k + 1)h2)] : j, k ∈ �}
are called “picture elements” or pixels. To simplify the discussion, we do not consider
questions connected with quantization and work instead with the full range of real numbers.

Suppose that the function f describing the image is supported in the unit square,
[0, 1] × [0, 1]. If the image has bounded support, then this can always be arranged by
scaling. The actual measurements of the image consist of a finite collection of samples,
collected on a uniform rectangular grid. Let M and N denote the number of samples in the
x1- and x2-directions, respectively. The simplest model for measurements of an image is
the set of samples

f j k = f (
j

M
,

k

N
) for 0 ≤ j ≤ M − 1, 0 ≤ k ≤ N − 1.

The discussion of higher-dimensional sampling presented in Section 8.5 is directly ap-
plicable in this situation. In particular, Nyquist’s theorem provides lower bounds on the
sampling rates in terms of the bandwidth, needed to avoid aliasing. Because the band-
width (or effective bandwidth) can vary with direction, aliasing can also have a directional
component. The so-called moiré effect is the result of undersampling a directional peri-
odic structure. The figure shown in 9.14(a) is sampled in the vertical direction by selecting
every third pixel leading to aliasing, which appears as the moiré effect in Figure 9.14(b).
Figure 9.14(c) shows the result of selecting every third pixel in both directions.

(a) The original image. (b) The result of sampling in
the y-direction.

(c) The result of sampling in
the both directions.

Figure 9.14. The moiré effect is directional aliasing.

As was the case with one-dimensional inputs, lowpass filtering, prior to sampling, re-
duces aliasing artifacts due to undersampling. Most practical measurements involve some
sort of averaging and therefore the measurement process itself incorporates a lowpass filter.
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A shift invariant measurement process is modeled as samples of a convolution ϕ ∗ f. In
either case the samples are the result of evaluating some function. For the remainder of this
section we consider the sample set to be the values of a function at the sample points.

Suppose that { f j k} are samples of an image. To use these samples to reconstruct an
image, the image plane is divided into rectangles. With the samples above the jkth pixel,
denoted p jk, is the rectangle

p jk = {(x1, x2) : j

M
≤ x1 <

j + 1

M
,

k

N
≤ x2 <

k + 1

N
}.

A simple way to use the samples to define an image is to set

f̃ (x1, x2) =
M−1∑
j=0

N−1∑
k=0

f j kχp jk (x1, x2). (9.43)

In this image, each pixel has a constant gray level. More sophisticated methods, using
interpolation, can be used to get a smoother-looking result.

Coordinate transformations: Filters that employ changes of coordinate are difficult to
implement on sampled data. Suppose that � = (g(x1, x2), h(x1, x2)) is a map defined on
a domain D′ whose image is contained in the unit square. As previously, let {( j

M , k
N )}

denote the sample points in [0, 1]2 and {( l
M ′ ,

m
N ′ )} uniformly spaced sample points in D′. If

f is defined everywhere in [0, 1]2, then there is no difficulty sampling the values of 	� f,
obtaining the samples

(	� f )lm = { f (�(
l

M ′ ,
m

N ′ )}.
If f has already been sampled, then a problem immediately presents itself: The images
of sample points in D′, {�( l

M ′ ,
m
N ′ )} are unlikely to belong to the set {( j

M , k
N )}. Several

strategies can be used to approximate 	� on sampled data. The easiest approach is to use
the piecewise constant image function, f̃ , defined in (9.43), setting

(	� f )lm
d= f̃ (�(

l

M ′ ,
m

N ′ )).

Another, more exact approach is to use some sort of “nearest neighbor” interpolation.
This is a three-step process:

• For each ( l
M ′ ,

m
N ′ ) in D′, find the sample points in [0, 1]2 “nearest” to �( l

M ′ ,
m
N ′ ).

Denote these points {xlm
1 , . . . , xlm

jlm
}.

• Assign weights {wlm
q } to these point according to some measure of their distance to

�( l
M ′ ,

m
N ′ ). The weights are usually nonnegative and add up to 1.

• Define (	� f )lm as a weighted average:

(	� f )lm =
jlm∑

q=1

wlm
q f (xlm

q ).
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A definition of “nearest neighbors” and a scheme for assigning weights is needed to imple-
ment this procedure.

Exercise
Exercise 9.4.5. Explain how the first procedure used to define (	� f )lm can be interpreted
as an interpolation scheme.

Linear, shift invariant filters: Suppose that a is the impulse response of a linear shift
invariant, two-dimensional filter 	 . Its action in the continuous domain is given by

	 f (x1, x2) =
∫∫
�2

a(x1 − y1, x2 − y1) f (y1, y2) dy1 dy2.

A Riemann sum approximation for this filter, at sample points, is

	 f (
j

M
,

k

N
) ≈ 	s f j k

d=
M−1∑
l=0

N−1∑
m=0

a( j−l)(k−m) flm
1

M N
, (9.44)

where a jk = a( j
M , k

N ). The finite Fourier transform gives an efficient way to implement the
discrete convolution on the right-hand side of (9.44).

In image processing, many operations on sampled data are naturally defined by sums
like those on the right-hand side of (9.44) with only a small number of nonzero coefficients.
Highly localized operations of this sort are directly implemented using this sum. A filter
with this property is called a local operation. In this context the array of coefficients (a jk)
is called the filter mask. A local operation has a small filter mask. The mask can be
represented as a matrix showing the nonzero elements, with a specification of the index
corresponding to the “center” of the matrix.

Example 9.4.1. A standard method to reduce uniform noise in a uniformly sampled image
is to average the nearest neighbors. A simple example of such a filter is

(�a f ) j k = 1

1 + 4a
[ f j k + a( f( j−1)k + f( j+1)k + f j (k−1) + f j (k+1))].

Its mask is nicely expressed as a matrix, showing only the nonzero elements, with the center
of the matrix corresponding to (0, 0):

sa
jk = 1

1 + 4a

⎛⎝0 a 0
a 1 a
0 a 0

⎞⎠ .

Example 9.4.2. Partial derivatives can be approximated by finite differences. The x1-partial
derivative has three different, finite difference approximations:

FORWARD DIFFERENCE: ∂x1 f ( j
M , k

N ) ≈ M[ f ( j+1
M , k

N )− f ( j
M , k

N )] d= 
f
1 f ( j, k)
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BACKWARD DIFFERENCE: ∂x1 f ( j
M , k

N ) ≈ M[ f ( j
M , k

N )− f ( j−1
M , k

N )] d= b
1 f ( j, k)

SYMMETRIC DIFFERENCE: ∂x1 f ( j
M , k

N ) ≈ 2M[ f ( j+1
M , k

N )− f ( j−1
M , k

N )] d= s
1 f ( j, k)

Let d f
jk, db

jk, ds
jk denote the corresponding filter masks. Each has only two nonzero entries

in the k = 0 row; as 1 × 3 matrices they are

d f
j0 =(M,−M, 0),

db
j0 =(0, M,−M),

ds
j0 =(− M

2
, 0,

−M

2
).

(9.45)

In each, the center entry corresponds to (0, 0). Using any of these approximations requires
O(M N) operations to approximate ∂x1 f as compared to O(M N log2 M) operations, if M
is a power of 2 and the FFT is used. For large M, the finite difference approximation is
more efficient.

Example 9.4.3. Suppose that M = N . A standard finite difference approximation for the
Laplace operator is −� ≈ b

1 ◦
f
1 +b

2 ◦
f
2 . Let �s denote this finite difference operator.

Its filter mask is the 3 × 3 matrix

[�s] j k = N2

⎛⎝0 1 0
1 −4 1
0 1 0

⎞⎠ .

The center of the matrix corresponds to (0, 0).

An important theoretical feature of the smoothing and edge detection filters defined in
the previous section is that they are isotropic. An-isotropy is an unavoidable consequence
of sampling, even if the sample spacings are equal in all directions. The coordinates axes
become preferred directions in a uniformly sampled image. The direct implementation of
an isotropic, shift invariant filter then leads to an an-isotropic filter.

Example 9.4.4. The Laplace operator provides an example of this phenomenon. Let �s

denote the finite difference approximation to −� defined in Example 9.4.3. The direct
implementation of this filter on an N ×N -grid of data points require about 10N2 operation.
The an-isotropy of this operator is quite apparent in the Fourier representation, wherein

(�s f ) j k = (
−1
2 < d̂mn · f̂mn >) j k.

Here 
−1
2 is the inverse of the two-dimensional finite Fourier transform and < d̂mn > are

the Fourier coefficients of �s thought of as an (N +2)×(N +2)-periodic matrix. A simple
calculation shows that

d̂mn = (2N2)[cos

(
2πl

N + 2

)
+ cos

(
2πm

N + 2

)
− 2]

= (−4N2)[π
2(l2 + m2)

(N + 2)2
− 2π4l4

3(N + 2)4
− 2π4m4

3(N + 2)4
+ O(l6 + m6)].

(9.46)
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The fourth-order terms are not radial. In Proposition 9.3.2 it is shown that a linear, shift in-
variant filter is isotropic if and only if its transfer function is radial (that is, can be expressed
as a function of ξ 2

1 + ξ 2
2 ). An implementation of the Laplace operator in the Fourier repre-

sentation, obtained by directly sampling ξ 2
1 + ξ 2

2 , the transfer function for �, is isotropic.
For large N this implementation requires considerably more computation than the non-
isotropic, finite difference approximation.

Binary noise: Suppose that f j k with 0 ≤ j, k ≤ N − 1 represents a discretized image.
Due to transmission or discretization errors, for a sparse, “random” subset of indices, the
values { f j1k1 , . . . , f jmkm } are dramatically wrong. This kind of noise is called binary noise.
As it is not, in any sense, of “mean zero,” it is not attenuated by lowpass filtering. A
different approach is needed to correct such errors. Rank value filtering is such a method.
These are filters that compare the values that f j k assumes at nearby pixels.

A simple example is called the median filter. Fix a pair of indices jk. A pixel plm is a
neighbor of p jk if max{|l − j |, |m − k|} ≤ 1. With this definition of neighbor, each pixel
has nine neighbors, including itself. The values of flm for the neighboring pixels are listed
in increasing order. The fifth number in this list is called the median value; denote it by
m jk. The median filter, � f, replaces f j k by m jk. This removes wild oscillations from the
image and otherwise produces little change in the local variability of f j k. Other schemes
replace f j k by the maximum, minimum, or average value. Any of these operations can be
modified to leave the value of f j k unchanged unless it differs dramatically, in the context
of the neighboring pixels, from the median.

This concludes our very brief introduction to image processing. Complete treatments
of this subject can be found in [81] or [68].

Exercises
Exercise 9.4.6. Show that the median filter is shift invariant.

Exercise 9.4.7. Show that the median filter is nonlinear.

Exercise 9.4.8. Suppose that the image { f j k} contains a sharp edge so f j k = 1 for values on
one side and 0 for values on the other side. A point is on the edge if it has neighbor whose
value differs by ±1. Considering the different possible orientations for an edge, determine
the effect of the median filter at points on an edge.

Exercise 9.4.9. Let {a0(t), . . . , an(t)} be non-constant functions on �. The differential op-
erator

 f =
n∑

j=0

a j (t)
d j f

dt j

is a non–shift invariant filter. Compare implementations of this filter on sampled data ob-
tained using the discrete Fourier transform and finite difference operators to approximate
the derivatives. Which is more efficient?
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9.4.2 Linear Filter Analysis of Imaging Hardware

A very important question in the design of an imaging device is its resolution. There are two
rather different limitations on the resolution. The first derives from the physical limitations
of real measuring devices, and the second arises from the sampling and processing done
to reconstruct an image. From the point of view of signal processing, a precise result is
Nyquist’s theorem, which relates the sample spacing to the bandwidth of the sampled data.
In imaging applications the data are spatially limited, so they cannot be bandlimited. We
therefore introduced the concept of effective support as the frequency band where “most”
of the energy in the data lies. In this section we use linear filtering theory to analyze the
distortion of the data that results from using real, physical measuring devices. These are
limitations that are present in the measurements before any attempt is made to process the
data and reconstruct the image. In this section we use geometric optics to model x-rays as
a diverging flux of particles in much the same spirit as in Section 3.2. In this discussion we
have borrowed heavily from [6], where the reader can find, inter alia, a careful discussion
of γ -ray detectors, x-ray sources, and collimators.

The Transfer Function of the Scanner

In this section we consider a three-dimensional situation, beginning with the simple setup
in Figure 9.15. A source of radiation is lying in the source plane with a distribution f (r)
[i.e., f (r) dr is the number of photons per unit time emitted by an area on the source of
size dr located at position r]. The source output is assumed to be independent of time.

In a parallel plane, at distance s1 from the source plane, is an object that is described
by a transmittance function g(r ′). The fraction of the incident photons transmitted by an
area dr ′ located at the point r ′ in the object plane is given by g(r ′)dr ′. Usually g(r ′) takes
values between 0 and 1. It is sometimes useful to think of g as the probability that a photon
incident at r ′ will be transmitted. The object plane is sometimes thought of as a thin slice
of a three-dimensional object. If the width of the slice is ε, then the transmittance is related
to the attenuation coefficient in Beer’s law by

g(r ′) = 1 − exp[−
∫ ε

0
μ ds].

Here μ is an attenuation coefficient and the integral is along the line perpendicular to object
plane through the point r ′. Finally, a detector lies in a second parallel plane, at distance s2

from the object plane. For the moment assume that the detector is perfect (i.e., everything
incident on the detector is measured). Later, a more realistic detector will be incorporated
into the model. To analyze the source-object-detector geometry, first assume that the object
is transparent; that is, g(r ′) = 1.

It is convenient to use a different systems of coordinates in each plane, r, r ′, r ′′. As
previously, dr, dr ′, and dr ′′ denote the corresponding area elements. A point source is
isotropic if the flux through an area A on the sphere of radius ρ, centered on the source,
is proportional to the ratio of A to the area of the whole sphere 4πρ2. The constant of
proportionality is the intensity of the source. The solid angle � subtended by a region D,
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Figure 9.15. Arrangement of an imaging device with a source, object, and detector.

relative to a point p, is defined by projecting the region onto the sphere of radius 1 centered
at p, along lines through the center of the sphere. If D′ is the projected image of D, then
the solid angle it subtends is defined to be

� = area of the region D′.

From the definition it is clear that the solid angle assumes values between 0 and 4π.
To find the flux through a region, D, due to a planar distribution of isotropic sources

with density f (r), we need to find the contribution of each infinitesimal area element dr.
If �(D, r) is the solid angle subtended at r by D, then the contribution of the area element
centered at r to the flux through D is f (r) dr�(D, r)/4π. In our apparatus we are mea-
suring the area element on a plane parallel to the source plane. As shown in Figure 9.16,
the solid angle subtended at a point r in the source plane by an infinitesimal area dr ′′ at r ′′
in the detector plane is

cos θdr ′′

R2
, where R = s1 + s2

cos θ
.

Therefore, the infinitesimal solid angle is

d� = cos3 θ

(s1 + s2)2
dr ′′.

If no absorbing material is present, a detector at r ′′ of planar area dr ′′ absorbs d�/4π of
the emitted radiation. If the intensity of the source at r is f (r) dr, then we get

f (r) dr
d�

4π
= f (r)

cos3 θ

4π(s1 + s2)2
dr dr ′′

as the measured flux. Notice that θ is a function of r and r ′′.
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Figure 9.16. Computing the solid angle.

Now we include the effect of an absorbing material. The measured flux at r ′′ is an
integral along the source plane given by

h(r ′′) = 1

4π(s1 + s2)2

∫
source

cos3 θ(r, r ′′) f (r)g(r ′(r, r ′′)) dr . (9.47)

Here h(r ′′) is the measured photon flux density at the detector point r ′′. We see that r ′ is
a function of r and r ′′. To obtain this relation, we can think of the two-dimensional plane
containing the three vectors r, r ′, and r ′′, as in Figure 9.17. Since we have similar triangles,
we see that

r ′ − r
s1

= r ′′ − r ′

s2
,

or
r ′ = s2

s1 + s2
r + s1

s1 + s2
r ′′ = ar ′′ + br,

where
a = s1

s1 + s2
, b = s2

s1 + s2
= 1 − a.

Now equation (9.47) reads

h(r ′′) = 1

4π(s1 + s2)2

∫
cos3 θ f (r)g(ar ′′ + br) dr. (9.48)

In a transmission imaging problem, the source function f (r) is assumed to be known.
Relation (9.48) states that the output along the detector plane is a linear filter applied to
f. It is more or less a convolution of the known source function f (r) with the unknown
transmittance function g(r ′). In a transmission imaging problem we are trying to determine
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Figure 9.17. The similar triangle calculation.

g(r ′). As it stands, formula (9.48) is not quite in the form of a convolution for two reasons:
(1) θ(r, r ′′) is not a function of r − r ′′, and (2) there are two coordinates systems, one in
the source and one in the detector plane. Letting

r ′′
0 = −br

a
,

we express everything in the coordinates of the detector plane. Let f̃ be the scaled source
function and g̃ be the scaled transmission function given by

f̂ (r ′′
0) = f (−ar ′′

0/b), g̃(r ′′
0) = g(ar ′′

0)

Now the measurement is expressed as

h(r ′′) = (a

b

)2 1

4π(s1 + s2)2

∫
f̃ (r ′′

0)g̃(r
′′ − r ′′

0) cos3 θdr ′′
0.

But for the cos3 θ-term, this would be a convolution. In many applications, the angle θ is
close to 0 and therefore the cosine term can be approximated by 1. With this approximation,
a shift invariant linear system relates the source and transmittance to the measured output,

h(r ′′) = (a

b

)2 1

4π(s1 + s2)2

∫
f̃ (r ′′

0)g̃(r
′′ − r ′′

0) dr ′′
0. (9.49)

This formula is not only useful for the analysis of transmission imaging but is also use-
ful in nuclear medicine. Instead of a known x-ray source, we imagine that f (r) describes
an unknown distribution of radioactive sources. In this context we could use a pinhole
camera to form an image of the source distribution. Mathematically, this means that g is
taken to equal 1 in a tiny disk and zero everywhere else. Let us consider this situation
geometrically: Only lines drawn from source points to detector points that pass through the
support of g contribute to the image formed in the detector plane. If the support of g is a
single point, then the image formed would be a copy of f scaled by the ratio s1/s2. This is
because each point r ′′ in the detector plane is joined to a unique point r(r ′′) in the source
plane by a line passing through the support of g. Note however that the intensity of the
image at a point r ′′ is proportional to |r ′′ − r(r ′′)|−2 (see Figure 9.18).

Now suppose that the support of g is the disk B0(d) for a very small d. The image
formed at a point r ′′ in the detector plane is the result of averaging the source intensities
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Figure 9.18. A pinhole camera.

over the disk in the source plane visible from the point r ′′ through the pinhole, B0(d). Of
course the actual image is a weighted average. The result of a positive diameter pinhole is
a blurred image.

Exercises
Exercise 9.4.10. Find a more accurate model for the “output” of a pinhole camera by letting
g(r ′) = δ(r ′) in (9.48).

Exercise 9.4.11. Find a formula for the output of a pinhole camera with

g(r ′) = χD(r
′)

using the simplified formula (9.49).

The Resolution of an Imaging System

We now estimate the resolution of the transmission imaging system described in Sec-
tion 9.4.2 using the FWHM criterion. We consider the problem of resolving two spots
in the object plane. The source is assumed to have constant intensity over a disk of di-
ameter dfs; in this case f is the characteristic function of a disk f (r) = χB1(2|r|/dfs). In
this section B1 denotes the disk of radius 1 centered at (0, 0). The source is projected onto
the detector plane, passing it through an object composed of two identical opaque spots
separated by some distance. Mathematically, it is equivalent to think of the object as being
entirely opaque but for two disks of perfect transmittance separated by the same distance.
It is clear that the outputs of the two configurations differ by a constant. For the calculation
the object is modeled as the sum of two δ-functions,

g(r ′) = δ(r ′ − r ′
1)+ δ(r ′ − r ′

2).

Of course this is not a function taking values between 0 and 1. This situation is approxi-
mated by a transmittance given by

gε = χB1

( |r ′ − r ′
1|

ε

)
+ χB1

( |r ′ − r ′
2|

ε

)
,



370 Chapter 9. Filters

dfs

d fsb/a

o

s s

o

1 2

Figure 9.19. The image of two dots.

letting ε tend to zero and rescaling the output by ε−2 so that the total measured intensity is
constant. The limiting case is mathematically equivalent to using the sum of δ-functions as
the transmittance.

The image of a single tiny spot on the object plane located at r ′
1 is given by for-

mula (9.49):

h(r ′′, r ′
1) = 1

4π(s1 + s2)2

∫
χB1

(
2r

dfs

)
δ(ar ′′ + br − r ′

1) dr

= 1

4π(s1 + s2)2

1

b2
χB1

(
2|ar ′′ − r ′

1|
bdfs

)
= 1

4π(s1 + s2)2

1

b2
χB1

(
2|r ′′ − (r ′

1/a)|
bdfs/a

)

The image is a disk centered at r ′
1/a with radius bdfs/a. This is the impulse response of

the source-detector pair. The FWHM for the point spread function of this system is just the
diameter of the image disk,

d ′′
fs = b

a
dfs.

According to this definition, two points sources in the object plane are resolvable if their
images are completely non-overlapping, which might appear to be overly stringent.

We would actually like to know the minimum separation in the object plane for two
point sources to be resolvable. This distance is found by projecting to the object plane,

δ′fs = bdfs = s2

s1 + s2
dfs.

If s2 = 0 then δ′fs = 0. If the object is sitting on the detector, then no matter how close the
two point sources are, they can be distinguished. As s1 → 0, δ′fs → dfs, so the resolution is
better for objects closer to the detector.

This simple model is completed by including a detector response function. Suppose that
k(r ′′) is the impulse response of the detector. The complete imaging system with source f,
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transmittance g, and detector response k is given by

h(r ′′) =
(a

b

)2 1

4π(s1 + s2)2

∫ ∫
f̃ (r ′′

0)g̃(r
′′
1 − r ′′

0)k(r
′′ − r ′′

1) cos3 θdr ′′
0 dr ′′

1.

This models what is called an “imaging detector,” such as photographic film or an array
of scintillation counters and photo-multiplier tubes. Setting r ′′ = 0 gives a model for a
“counting detector.” Such a detector only records the number of incident photons, making
no attempt to record the location on the detector where the photon arrives. In this case
k(r ′′) is the probability that the detector responds to a photon arriving at r ′′.

We now consider the sensitivity of the detector. The bigger the area on the detector sub-
tended by the image, the more photons we count. By taking s2 = 0, the object is in contact
with the detector. This gives the best resolution but, for a pair of infinitesimal objects, no
measurable data. There is a trade-off between the resolution of the image and the sensitivity
of the detector. A larger detector captures more photons but gives less information about
where they came from. In general, it is a very difficult problem to say which configuration
is optimal. Probablisitic models for the source and detector are frequently employed in the
analysis of this sort of problem (see Sections 16.1.1 and 17.4.3).

We consider the question of optimizing the placement of the object when both the
source and detector are Gaussian. This means that

f̂ is proportional to exp

[
−π

( |ξ |
ρ f

)2
]
,

k̂ is proportional to exp

[
−π

( |ξ |
ρ ′′

d

)2
]
.

Such a source is said to have a Gaussian focal spot. When referred back to the object plane,
we get the following modulation transfer function:

MTF = exp

[
−π |ξ |2

(
1

(λρ ′′
d )

2
+ (λ− 1)2

λ2ρ2
f

)]
. (9.50)

The parameter λ = s1+s2
s1

is the magnification factor. In this context the optimal config-
uration is the one that distorts the object the least; this is the one for which the Gaussian
in (9.50) decays as slowly as possible. For this family of functions this corresponds to

1

(λρ ′′
d )

2
+ (λ− 1)2

λ2ρ2
f

assuming its minimum value. Differentiating and setting the derivative equal to zero, we
find that

λopt = 1 + (ρ f /ρ
′′
d

)2
.

Note that a large spot corresponds to ρ f → 0 and a poor detector corresponds to ρ ′′
d → 0.
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Collimators

In the previous section, we discussed a simple geometry for a source, object, and detector.
The object was simplified to be two dimensional. In medical imaging applications, we can
think of the object as being made of many slices. The analysis presented in the previous
section indicates that the spreading of the x-ray beam causes distortion in the projected im-
age, which depends on how far the object is from the source. As illustrated in Figure 9.20,
the images of points in the plane P1 are spread out more than the images of points in P3. A
diverging beam magnifies objects more in the slices closer to the source than those in slices
farther away. We could try reducing this effect by making the distance from the source to
the detector much larger than the size of object. This has the undesirable effect of greatly
attenuating the x-ray beam incident on the detector.

source
X- ray

Detector 

P1

Object

P2 P3

Figure 9.20. Beam spreading.

To control beam spreading distortion, we can reject x-rays arriving from certain di-
rections by using a collimator. Collimators are an essential part of most x-ray imaging
systems. In simple terms, a collimator is a cylindrical (or conical) hole bored through x-ray
absorbing material. There are two physical parameters describing a collimator:

Db: the diameter of the hole, Lb: the height of sides,

called the bore diameter and bore length (see Figure 9.21). Often collimators are used
in arrays. In this case, each collimator is better modeled as narrow pipe made of x-ray
absorbing material. In our discussion it is assumed that only photons that pass through the
collimator bore reach the detector.

This is also a three-dimensional analysis. The collimator is circularly symmetric about
its axis, which implies that the response to a point source depends only on the distance, z,
from the point source to the front of the collimator and the distance, rs, from the source to
the axis of the collimator.

The impulse response of a collimator can be deduced from the the analysis in Sec-
tion 9.4.2. The effect of the collimator on a x-ray beam is identical to the effect of two
concentric pinholes of diameter Db, cut into perfectly absorbing plates, lying in parallel



9.4. Some Applications of Filtering Theory 373

PQ rs

Lb

Db

0
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b
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Figure 9.21. The geometry of a collimator.

planes a distance Lb apart. Let f (r) model the x-ray source, g1(r ′) the lower pinhole, and
g2(r ′′) the upper pinhole. From Section 9.4.2, we have that the photon flux incident on the
upper plate is

h(r ′′) = 1

4π(Lb + z)2

∫
f (r)g1(ar ′′ + br) dr;

where

a = z

Ld + z
, b = Lb

Lb + z
.

The flux incident on the detector (through the upper pinhole) is therefore∫
h(r ′′)g2(r

′′) dr ′′ = 1

4π(Lb + z)2

∫ ∫
f (r)g1(ar ′′ + br)g2(r

′′) dr ′′dr .

It is assumed that the angle θ the beam makes with the detector plane is approximately 0
and therefore cos θ ≈ 1.

Now suppose that the source is a point source, P, located a distance rs from the axis of
the collimator [i.e., f (r) = δ(r − r s)] and g1 is the characteristic function of a disk:

g1(r
′) = χB1

(
2|r ′|
Db

)
.

For the sort of collimator considered here, g2 is the same:

g2(r ′′) = χB1

(
2|r ′′|
Db

)
.

The output of our detector is

p(r s; z) = 1

4π(Lb + z)2

∫
χB1

(
2|r ′′|
Db

)
χB1

(
2a|r ′′ + br s/a|

Db

)
dr ′′.
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Lb

Db

P

z

(a)

sr
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Q

/2

z+Lb /2

Lb /2
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Figure 9.22. Evaluating the point spread function of a collimator.

This integral is exactly the area of the intersection of the two disks, as shown in Fig-
ure 9.21(b). The larger circle is the projection of the lower circle from the source point
onto the upper plate. The 1/z2 scaling accounts for beam spreading.

In two special regions, p(r s; z) is easy to determine. First, if |r s| < 1
2 Db, as in Fig-

ure 9.22(a), then the projected circle covers the upper circle; hence p(r s; z) is the area of
the smaller disk; that is,

p(r s; z) = π

(
Db

2

)2

.

On the other hand, if P lies far enough from the origin, then the two circles do not
meet. The location of the first such point, Q, is found using similar triangles:

Lb

2
: Db

2
= Lb

2
+ z : rs ⇒ r s = Db

2

(
Lb + 2z

Lb

)
;

see Figure 9.22(b). Hence if |rs | > Db
2

(
Lb+2z

Lb

)
, the area of the intersection is zero and

p(r s; z) = 0. Figure (9.23) show the graph of p(|r s|; z) for a fixed value of z.
To approximate the FWHM, we approximate p by a piecewise linear function. Let δ(z)

be the resolution, defined to be

δ(z) = FWHM(p(·; z)) = Db
(Lb + 2z)

Lb
.

As z increases, the resolution gets worse, as observed in Section 9.4.2. If the object is
sitting right on the collimator face (i.e., z = 0), then δ(0) = Db, which is just the diameter
of the collimator bore.

The other parameter of interest for a detector is its sensitivity. The sensitivity of a
detector is important as it determines how intense a source is needed to make a usable
image. To analyze the sensitivity, we use a uniform planar source instead of the point
source used in the resolution analysis. Imagine that a uniform radioactive source is spread
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Figure 9.23. The graph of p(r s; z), for a fixed z.

on a plane at distance z from the face of the collimator. The intensity of the “standard
source” is 1μC/ cm2 . For a typical radioactive material, this translates into a photon flux
of 3.7 × 104/ cm2 · s. The sensitivity of the measuring device is given by the number of
photons arriving at the detector. For the collimator described previously, we obtain

S = 3.7 × 104

4π(Lb + z)2

∫∫
χB1

(
2r ′′

Db

)
χB1

(
2|ar ′′ + br|

Db

)
dr dr ′′

= 3.7 × 104

4π(Lb + z)2

π D2
b

4b2

π D2
b

4

= 3.7 × 104

64

π D4
b

L2
b

.

The sensitivity does not depend on z; this is the consequence of using a uniform source of
infinite extent.

With Lb and z fixed, the resolution, δ is proportional to Db, while the sensitivity is
proportional to D4

b . Thus we see that

S is proportional to δ4.

To form a usable image, the required dosage is roughly proportional to 1/S. This shows
that

dosage is proportional to δ−4.

To increase the resolution by a factor of 2 (i.e., δ → 1
2δ), the dosage must be increased by

a factor of 16.

Exercises
Exercise 9.4.12. Find the transfer function for a collimator with a cylindrical bore. This
can be modeled as two concentric, transparent disks of radii Db1 and Db2 lying in parallel
planes a distance L apart.
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Exercise 9.4.13. What is the effect of the collimator in the previous exercise if Db1 < Db2?
How about if Db1 > Db2?

9.5 Conclusion

Most of this chapter is devoted to the analysis of shift invariant, linear filters. Many actual
filtering operations are not shift invariant, but, for computational reasons, are approximated
by such filters. The theory of shift invariant filters is very simple because, in the Fourier
representation, a shift invariant filter becomes a multiplication filter. This has a variety of
theoretical and practical consequences. Primary among them are the facts that (1) a pair of
shift invariant filters commute, (2) an approximate inverse filter (if it exists) is easily con-
structed, and (3) because the (approximate) Fourier transform and its inverse have efficient
implementations, so does any shift invariant filter. This describes in a nutshell why shift
invariant filters are so special and so important in applications.

Two important functions are defined by a shift invariant linear filter: its impulse re-
sponse (or point spread function) and its transfer function (or modulation transfer function).
The first is the output of the filter when the input is a unit impulse, and the second is its
Fourier transform. These functions completely describe the action of the filter. By using a
short-duration, intense pulse as an input, an approximation to the impulse response can be
measured. Using these functions, we defined various notions of the resolution available in
the output. The definitions of resolution are fairly simple for filters acting on functions of a
single variable and become more complicated in higher dimensions. In all but the simplest
cases, quantitative measures of resolution are only meaningful for purposes of comparison.

In the next chapter we take the final step in the long path from continuum models to
finite algorithms that approximately implement them. The main point is to understand
the relationship between the finite Fourier transform of the samples of a function and that
function’s Fourier transform. After analyzing this problem, we detail the implementation
of an “arbitrary,” linear shift invariant filter.
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Implementing Shift Invariant Filters

See: A.5.2, A.6.1.

In practical applications we cannot measure an input continuously; rather it is sampled
at a discrete sequence of points. The models for physical systems presented thus far are
in the language of functions of continuous variables, so the question then arises as to how
such models can be utilized in a real situation. In this section we analyze the transition
from continuous parameter, shift invariant linear filters to their approximate realizations on
finitely sampled data. For brevity we refer to this as “implementing” a shift invariant filter,
with the understanding that such implementations are, of necessity, approximate. The main
tool is the finite Fourier transform, and the main thing to understand is the sense in which it
provides an approximation to the continuum Fourier transform. The one-dimensional case
is treated in detail; higher-dimensional filters are considered briefly.

In this section x denotes an input and � a shift invariant linear filter with impulse
response h and transfer function ĥ. We assume that x is sampled at the discrete set of
equally spaced points

{t0 + jτ | j ∈ �}.
The positive number τ is the sample spacing. In certain situations the physical measuring
apparatus makes it difficult to collect equally spaced samples. In such situations the data
are often interpolated to create an equally spaced set of samples for further analysis. This
is done, even though it introduces a new source of error, because algorithms for equally
spaced samples are so much simpler than those for unequal sample spacing.

In terms of the continuous parameters t and ξ, there are two different representations
for �: the spatial domain representation as a convolution

�x(t) = h ∗ x(t) =
∞∫

−∞
h(t − s)x(s) ds, (10.1)

377
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and the frequency domain representation as a Fourier integral

�x(t) = 1

2π

∞∫
−∞

ĥ(ξ)x̂(ξ)eitξdξ. (10.2)

Each representation leads to a different discretization scheme. For several reasons, the fre-
quency domain representation is usually employed: Certain filters, like the Hilbert trans-
form or differentiation, are difficult to represent as convolutions, since their impulse re-
sponses are generalized functions. For most shift invariant filters, usage of the fast Fourier
transform algorithm (FFT) makes the frequency domain computation vastly more efficient
than the spatial domain computation. The structure of the Cooley-Tukey FFT algorithm is
outlined in an appendix to this chapter.

10.1 Sampled Data

Sampling a function entails evaluating it at points. From the point of view of measure-
ments, a function only has a well-defined value at points of continuity, and therefore it is
assumed throughout most of this analysis that both the signal x and the impulse response
of the filter h are continuous functions. This is not a serious restriction for, as discussed in
Chapter 8, real measurements are modeled as the evaluation of an average, which is usually
continuous. With τ the sample spacing in the spatial domain, let

hs( j) = h( jτ) for j ∈ �,

denote samples of the impulse response and

xs( j) = x( jτ) for j ∈ �,

samples of the input as a functions of an integer variable. The spatial domain representation
of the filter can be approximated by using a Riemann sum

�x( jτ) = h ∗ x( jτ)

≈
∞∑

k=−∞
hs( j − k)xs(k)τ

= τhs � xs( j).

(10.3)

In the last line of (10.3), hs � xs denotes the discrete convolution operation, defined in
Section 7.4. A Riemann sum is just one possible approximation for the convolution; if
the integrand is smooth, a higher-order, numerical integration method might give superior
results (see Section A.6.1).

For the first step of the analysis it is assumed that x is absolutely integrable and that
an infinite sequence of samples is collected. In imaging applications the data are usually
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supported in a bounded interval, so this is not an unreasonable assumption. The sequence
of samples has a sample Fourier transform

x̂s(ξ) = τ

∞∑
j=−∞

xs( j)e−i jτξ , (10.4)

which is a 2π
τ

-periodic function.
The sample Fourier transform is connected to discrete convolution in a simple way:

τ ̂hs � xs(ξ) = τ 2
∞∑

j=−∞
hs � xs( jτ)e−i jτξ

= τ 2
∞∑

j=−∞

∞∑
k=−∞

h(( j − k)τ )e−i( j−k)τξ x(kτ)e−ikτξ

= ĥs(ξ)x̂s(ξ).

(10.5)

In other words, the sample Fourier transform of the sequence τhs � xs is simply ĥs x̂s .
The dual Poisson summation formula, (8.13), relates x̂s to x̂ :

x̂s(ξ) =
∞∑

j=−∞
x̂(ξ + 2π j

τ
). (10.6)

On the other hand, formula (10.4) is a Riemann sum for the integral defining x̂ . Compar-
ing (10.6) to (10.4), it is apparent that careful consideration is needed to understand in what
sense x̂s is an approximation to x̂ . When the input is π

τ
-bandlimited, Nyquist’s theorem

implies that
x̂(ξ) = x̂s(ξ)χ[− π

τ ,
π
τ ](ξ).

If the transfer function for the filter � is also supported in this interval, then

�x(t) = 1

2π

π
τ∫

− π
τ

x̂s(ξ)ĥs(ξ)e
itξdξ.

This indicates that, for this application, the windowed function

x̂s(ξ)χ[− π
τ ,

π
τ ](ξ)

should always be regarded as an approximation for x̂ . The accuracy of this approximation
depends on the high-frequency behavior of x̂ and the sample spacing.

From the Fourier inversion formula it follows that

hs � xs(l)τ = 1

2π

π
τ∫

− π
τ

ĥs(ξ)x̂s(ξ)e
ilτξ dξ. (10.7)
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Thus if x and h both are π
τ

-bandlimited, then

h ∗ x(lτ) = τhs � xs(l) for all l ∈ �,

and the discrete convolution of the sampled sequences consists of samples of the contin-
uous convolution. In any case, the integral on the right-hand side of (10.7) gives another
approximation to h ∗ x( jτ):

h ∗ x(lτ) ≈ 1

2π

π
τ∫

− π
τ

ĥs(ξ)x̂s(ξ)e
ilτξdξ. (10.8)

An important variant on (10.8) is to use the exact transfer function ĥ for the filter (which is
often known) instead of the sample Fourier transform, ĥs; this gives a different approxima-
tion

h ∗ x(lτ) ≈ 1

2π

π
τ∫

− π
τ

ĥ(ξ)x̂s(ξ)e
ilτξdξ. (10.9)

Provided ĥ is an ordinary function, this approximation is valid even if h is a generalized
function.

Equations (10.3), (10.8), (10.9), and the relation

x̂(ξ) ≈ x̂s(ξ)χ[− π
τ ,

π
τ ](ξ) (10.10)

form the foundation for the implementation of linear shift invariant filters on sampled data.

Remark 10.1.1 (Important remark). In imaging applications the input is usually zero
outside a finite interval, which implies that it cannot be bandlimited (see Section 4.4.3).
The sample spacing is chosen to attain a certain degree of resolution in the final result.
From (10.6) we see that in order for x̂s to provide a good approximation to x̂ over the inter-
val [−π

τ
, π

τ
], it is necessary for x to be effectively π

τ
-bandlimited. In the present application

this means that the aliasing error,∑
j 	=0

x̂(ξ − 2π j

τ
) for ξ ∈ [−π

τ
,
π

τ
],

must be uniformly small. This is a stronger condition than simply requiring |x̂(ξ)| to be
small if |ξ | is greater than π

τ
. To ensure that the aliasing error is small, an input is usually

passed through a lowpass filter before it is sampled. In any case, once the input is sampled,
the sample spacing fixes the usable bandwidth in all subsequent computations to be 2π

τ
. It

should be noted that this does not mean that the data itself had an effective bandwidth of
2π
τ
.
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10.2 Implementing Periodic Convolutions

See: 2.3.2, 8.3.

The finite Fourier transform was introduced in Section 8.3. In this section we estab-
lish some further properties of this operation and explain how it is used to implement shift
invariant periodic filters. This material is quite elementary but essential for a correct un-
derstanding of the implementation of (10.1) with finitely sampled data.

10.2.1 Further Properties of the Finite Fourier Transform

Just as a function defined on the finite interval [0, L] defines an L-periodic function, recall
that a finite sequence can be extended to define a periodic, bi-infinite sequence. The N -
periodic extension of < x0, . . . , xN−1 > is defined by

x j+lN = x j for 0 ≤ j ≤ N − 1, l ∈ �.

Periodic sequences can be convolved.

Definition 10.2.1. Given two N -periodic sequences, < x >,< y >, their periodic convo-
lution is defined by

(x � y)k =
N−1∑
j=0

x j yk− j for k = 0, . . . , N − 1.

The periodic convolution of sequences is related to the finite Fourier transform in pre-
cisely the same way the periodic convolution of functions is related to the Fourier coeffi-
cients.

Proposition 10.2.1. Let < x > and < y > be sequences of length N . Then


N (x � y) = N < x̂0 ŷ0, . . . , x̂N−1 ŷN−1 >. (10.11)

Proof. The proof follows by changing the order of summations:


N (x � y)k = 1

N

N−1∑
j=0

(x � y) j e
− 2π i jk

N

= 1

N

N−1∑
l=0

(

N−1∑
j=0

xl y j−l)e
− 2π i jk

N .

(10.12)

Letting j −l = m in the last summation and using the periodicity of both < y > and the exponential
function gives


N (x � y)k = 1

N

N−1∑
l=0

xle
− 2π ilk

N

N−1∑
m=0

yme−
2π imk

N = Nx̂k ŷk . (10.13)
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A periodic finite convolution can therefore be computed using the finite Fourier transform
and its inverse.

Corollary 10.2.1. Let < x > and < y > be a sequences of length N . Their periodic
convolution, x � y is given by

x � y = N
−1
N (< x̂0 ŷ0, . . . , x̂N−1 ŷN−1 >). (10.14)

If N = 2k, then this is the most efficient way to do such calculations. The computation
of the FFT and its inverse require about 6N log2 N operations; multiplying the two FFTs
requires N operations. Altogether it requires 6N log2 N + N operations to compute x � y
using the FFT. This should be compared to the N(2N − 1) operations needed to do this
calculation directly.

10.2.2 The Approximation of Fourier Coefficients

We now consider in what sense the finite Fourier transform of a sequence of samples ap-
proximates the Fourier coefficients of the sampled function. Let x be a function defined on
[0, 1]. In this section we let N = 2M + 1. Set

x j = x

(
j

2M + 1

)
, j = 0, . . . , 2M,

and let < x̂ j > denote the finite Fourier transform of this sequence. The sequence < x̂ j >
is defined by a Riemann sum for an integral:

x̂k = 1

2M + 1

2M∑
j=0

x j e
− 2π i jk

2M+1 ≈
1∫

0

x(t)e−2π ikt dt = x̂(k). (10.15)

It is therefore reasonable to expect that x̂k provides some sort of approximation for the kth
Fourier coefficient of x . Ones needs to be careful, because, for any integer l, this sum is
also a Riemann sum for the integral defining x̂(k + l(2M + 1)). In fact, the approximation
in (10.15) is accurate for values of k between −M and M, but its accuracy rapidly dete-
riorates as |k| exceeds M. Recall that formula (8.19) defines x̂k for all values of k as an
2M + 1-periodic sequence. In particular, we have

x̂−k = x̂2M+1−k for k = M + 1, M + 2, . . . , 2M,

so what we mean is that for M < k ≤ 2M + 1, the finite Fourier coefficient x̂2M+1−k is
a good approximation for the Fourier coefficient x̂(−k). This is sometimes expressed by
saying that the output of the finite Fourier transform, when indexed by frequency, should be
interpreted to be

< x̂0, x̂1, . . . , x̂M , x̂−M , x̂1−M , . . . , x̂−1 > .

If |k| ≤ M, then the sum in (10.15) is actually a quadrature formula for the integral.
In fact, for a given number of samples, this finite sum provides an essentially optimal
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approximation to the integral. If x(t) is a periodic function with n continuous periodic
derivatives, then, for |k| ≤ M, we have an estimate of the form:

|xk − x̂(k)| ≤ C f,M M−n. (10.16)

Here C f,M is a constant depending on f and M, which tends to zero as M tends to infinity.
A complete analysis of this question can be found in [35]

On the other hand, even for a very smooth function, if |k| > M, then x̂k is likely to be a
poor approximation to x̂(k). Given our remarks above, an approximation to the partial sum
of the Fourier series of x should be given by

SM(x; t) ≈
M∑

j=0

x̂ j e
2π i j t +

2M∑
j=M+1

x̂ j e
2π i( j−(2M+1))t . (10.17)

Because the samples are uniformly spaced, additional cancellations take place in this finite
sum. The finite sum in (10.17) is almost as accurate an approximation to x(t) as the partial
sum, SM(x; t), of the Fourier series with this number of terms. If x is sufficiently smooth,
and M is large enough for SM(x; t) to be a good approximation to x, then formula (10.17)
can be used to accurately interpolate values of x between the sample points.

Using a naive interpretation of x̂ j as an approximation to x̂( j), for all j, leads to another
exponential polynomial that interpolates x at the sample points:

px (t) =
2M∑
j=0

x̂ j e
2π i j t . (10.18)

Unlike (10.17), formula (10.18) does not provide a good approximation to x away from the
sample points. This is easily seen in an example.

Example 10.2.1. The function sin(3t) is sampled at 11 points, and the finite Fourier trans-
form of this sequence is used for the coefficients in formula (10.18). Figure 10.1 shows
the real part of this function along with sin(3t). As expected, the two functions agree at
the sample points, but away from the sample points, the function defined in (10.18) does a
very poor job of approximating sin(3t). Using formula (10.17) with 11 sample points gives
an exact reconstruction of sin(3t), further justifying the interpretation for the finite Fourier
transform given previously.
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Figure 10.1. Bad interpolation using formula (10.18); px is the more oscillatory function.

Using the same reasoning, it follows that if x is a function defined on [0, L] and we
collect 2M + 1-equally spaced samples,

x j = x

(
j L

2M + 1

)
for j = 0, . . . , 2M,

then

x̂k = 1

2M + 1

2M∑
j=0

x

(
j L

2M + 1

)
e− 2π i jk

2M+1

= 1

L

2M∑
j=0

x

(
j L

2M

)
e− 2π i j Lk

(2M+1)L
L

2M + 1

(10.19)

and therefore

x̂k ≈
{

1
L x̂(k) if 0 ≤ k ≤ M,
1
L x̂(k − (2M + 1)) if M + 1 ≤ k ≤ 2M.

(10.20)

Exercise
Exercise 10.2.1. Why does the polynomials px defined in (10.18) satisfy

px

(
j

2M + 1

)
= x

(
j

2M + 1

)
for j = 0, . . . , 2M?

10.2.3 Approximating Periodic Convolutions

The action of a shift invariant filter � on a 1-periodic function is defined in terms of its
impulse response h (another 1-periodic function) by the periodic convolution

�x(t) =
1∫

0

x(s)h(t − s) ds.



10.2. Implementing Periodic Convolutions 385

Let

ĥ(k) =
1∫

0

h(t)e−2π ikt dt

denote the Fourier coefficients of the impulse response. The Fourier representation of this
filter is

�(x)(t) =
∞∑

k=−∞
x̂(k)ĥ(k)e2π ikt . (10.21)

If < x j > are the samples < x
(

j
2M+1

)
>, then (10.20) and (10.21) imply that a finite sum

approximation to �x at the sample point j
2M+1 is given by

�x(
j

2M + 1
) ≈

M∑
k=0

x̂k ĥ(k)e
2π i jk
2M+1 +

2M∑
k=M+1

x̂k ĥ(k − (2M + 1))e
2π i jk
2M+1 .

In this approximation we have used samples of the exact transfer function of �. A different
approximation can be obtained by using the finite Fourier transform of the sample sequence
< h(0), h( 1

2M+1), . . . , h( 2M
2M+1) > .

Example 10.2.2. The Hilbert transform is defined in the Fourier representation by the trans-
fer function

ĥk =

⎧⎪⎨⎪⎩
1 k > 0,

0 k = 0,

−1 k < 0.

A finite frequency approximation to the Hilbert transform is given by

�x(
j

2M + 1
) ≈

M∑
k=1

x̂ke
2π i jk
2M+1 −

2M∑
k=M+1

x̂ke
2π i jk
2M+1 .

Exercises
Exercise 10.2.2. Suppose that x is supported on [a, b] and we collect the samples x j =
x(a + j b−a

N ) for j = 0, . . . , N − 1. How is the finite Fourier transform of the sequence
< x0, . . . , xN−1 > related to samples of the Fourier transform of x?

Exercise 10.2.3. The direct computation of the sums defining 
N requires O(N2) arith-
metic operations. An algorithm for computing 
N is “fast” if it uses O(Nα) operations for
an α < 2. Explain why a fast algorithm for computing 
N also gives a fast algorithm for
computing 
−1

N .

Exercise 10.2.4. What is the smallest N = 2k so that the FFT computation of x � y is more
efficient than the direct computation?
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Exercise 10.2.5. Explain why (10.20) agrees with Nyquist’s theorem for periodic functions.

Exercise 10.2.6. For x a once differentiable, periodic function, compare the approxima-
tions to x̂(k) obtained by sampling the integrands to approximate the following integrals:

x̂(k) =
∫ 1

0
x(t)e−2π ikt dt,

x̂(k) = 1

2π ik

∫ 1

0
x ′(t)e−2π ikt dt.

(10.22)

10.3 Implementing Filters on Finitely Sampled Data

In this section � denotes a shift invariant filter with impulse response h acting on functions
defined on �. The input x is assumed to have bounded support, and this means that it
can be represented in terms of either the Fourier transform or the Fourier series. Indeed
both representations are used in this section. Since it is important to distinguish which is
intended, we introduce the following provisional notation for Fourier coefficients: For x
thought of as an L-periodic function its kth Fourier coefficient is denoted

x̂(L)(k) =
L∫

0

x(t)e− 2π ikt
L dt.

For a function x vanishing outside [0, L], we have the relation

x̂(L)(k) = x̂(
2πk

L
).

This section treats the details of using the finite Fourier transform to implement a shift
invariant filter on finitely sampled data.

Let x be a function defined on � with support in [0, 1] and h the impulse response of a
filter �, so that

�x = h ∗ x .

In general, h is not assumed to have support in [0, 1]. Suppose that x is sampled at the
points { j

N : j = 0, . . . , N − 1}; it is implicit that the remaining “uncollected” samples are
zero. A Riemann sum gives an approximate value for h ∗ x at the sample points:

h ∗ x(
k

N
) ≈

N−1∑
j=0

h(
k − j

N
)x(

j

N
)

1

N
. (10.23)

To do this calculation for k ∈ {0, . . . , N − 1} requires a knowledge of 2N − 1 values of h,

{h(1 − N

N
), h(

2 − N

N
), . . . , h(

0

N
), . . . , h(

N − 1

N
)}.
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In order to use the finite Fourier transform to compute the discrete convolution on
the right-hand side of (10.23), this sum must be interpreted as a periodic convolution of
two sequences of length 2N − 1. This means that the sequence of samples of x must be
augmented to get a sequence of length 2N − 1. This is done by adding (N − 1)-zeros to
the end in a process called zero padding. The zero padded sequence is

xs =< x(0), x(
1

N
), · · · , x(

N − 1

N
), 0, 0, · · · , 0︸ ︷︷ ︸

N−1

> .

This is consistent with the interpretation of x as a function defined on � with support
contained in [0, 1]. Formula (10.20) relates x̂s, the finite Fourier transform of xs, to the
Fourier coefficients of x(L N ),

x̂s(k) ≈
{

N
2N−1 x̂(L N )(k) for 0 ≤ k ≤ N − 1

N
2N−1 x̂(L N )(k − 2N + 1) for N ≤ k ≤ 2N − 2.

(10.24)

Here L N = 2N−1
N and x(L N ) is x restricted to the interval [0, L N ].

If we define

hs =< h(
0

N
), . . . , h(

N − 1

N
), h(

1 − N

N
), . . . , h(

−1

N
) >,

then
N−1∑
j=0

h(
k − j

N
)x(

j

N
)

1

N
= 1

N
hs � xs(k). (10.25)

Of course, hs and xs are regarded as (2N − 1)-periodic sequences so that

hs(−1) = hs(2N − 2), hs(−2) = hs(2N − 3), and so on.

Using (10.14) and (10.25), this can be rewritten in terms of the finite Fourier transform as

h ∗ x(
k

N
) ≈

N−1∑
j=0

h(
k − j

N
)x(

j

N
)

1

N

= 2N − 1

N

−1

2N−1(< ĥs(0)x̂s(0), . . . , ĥs(2N − 2)x̂s(2N − 2) >)(k).

(10.26)

A different derivation of (10.26) follows by thinking of x and h as being defined on �

with x effectively bandlimited to [−Nπ, Nπ ]. We use a Riemann sum approximation for
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the partial Fourier inverse to obtain

h ∗ x(
k

N
) ≈ 1

2π

Nπ∫
−Nπ

ĥ(ξ)x̂(ξ)ei k
N ξdξ

≈ 1

2π

N−1∑
j=1−N

x̂

(
2π j N

2N − 1

)
ĥ

(
2π j N

2N − 1

)
exp

(
2π i j N

2N − 1
· k

N

)(
2πN

2N − 1

)
≈ 2N − 1

N

−1

2N−1(< ĥs(0)x̂s(0), . . . , ĥs(2N − 2)x̂s(2N − 2) >)(k).

(10.27)

The last line is a consequence of (10.24) and the fact that

x̂(L N )(k) = x̂

(
2πk N

2N − 1

)
.

For latter applications it is useful to have formulæ for the approximate Fourier imple-
mentation of a linear, shift invariant filter � without scaling the data to be defined on [0, 1].
We sample x at a sequence of equally spaced points and add N − 1 zeros to get

xs =< x(t0), x(t0 + τ), . . . , x(t0 + (N − 1)τ ), 0, . . . , 0 > .

Let < x̂s > be the finite Fourier transform of xs and < ĥs > the finite Fourier transform of

hs =< h(0), . . . , h((N − 1)τ ), h((1 − N)τ ), . . . , h(−τ) > .

The approximate value of �x(t0 + kτ), given by a Riemann sum and computed using the
finite Fourier transform, is

h ∗ x(t0 + kτ) ≈
N−1∑
j=0

xs( j)hs(k − j)τ

= τ(2N − 1)
−1
2N−1(< x̂s(0)ĥs(0), . . . , x̂s(2N − 2)ĥs(2N − 2) >)(k).

(10.28)

In many applications the sequence < ĥs(0), . . . , ĥs(2N − 2) > appearing in (10.28)
is not computed as the finite Fourier transform of the sample sequence hs. Instead, it is
obtained by directly sampling the transfer function ĥ. This is because the transfer function
may be an ordinary function that can be computed exactly, even when the impulse response
is a generalized function. The finite Fourier transform of the sequence hs is given by

ĥs(k) = 1

2N − 1

2N−2∑
j=0

h((1 − N)τ + jτ)e− 2π i jk
2N−1

= 1

τ(2N − 1)

2N−2∑
j=0

h((1 − N)τ + jτ)e−i jτ 2πk
τ (2N−1) τ.

(10.29)
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The discussion is Section 10.2 shows that ĥs should be interpreted as

ĥs(k) ≈
⎧⎨⎩

1
τ (2N−1) ĥ

(
2πk

τ (2N−1)

)
if 0 ≤ k ≤ N − 1,

1
τ (2N−1) ĥ

(
2π(k−2N+1)

τ (2N−1)

)
if N ≤ k ≤ 2N − 2.

(10.30)

So that there should be no confusion, note that here ĥ denotes the Fourier transform of h,
as a function (or generalized function) defined on �. This shows that the correct samples
of ĥ to use in (10.28) are

ĥ ′
k = 1

τ(2N − 1)
ĥ

(
2πk

τ(2N − 1)

)
, for k ∈ {−(N − 1), . . . , (N − 1)}, (10.31)

regarded as a (2N − 1)-periodic sequence. This agrees with the second line in (10.27).
With the sequence < ĥ ′

k > defined as these samples of ĥ, formula (10.28) provides another
approximation to h ∗ x(t0 + jτ):

h ∗ x(t0 + kτ) ≈ τ(2N − 1)
−1
2N−1(< x̂s(0)ĥ

′
0, . . . , x̂s(2N − 2)ĥ ′

2N−2 >)(k). (10.32)

The two formulæ, equation (10.28) and equation (10.32), generally give different results.
Which result is preferable is often an empirical question.

The formulæ obtained previously always involve sequences of odd length. To use the
fast Fourier transform these sequences must be augmented to get even-length sequences.
The sample sequence of the input is padded with zeros until we reach a power of 2. The
same can be done for the impulse response sample sequence, or this sequence can be aug-
mented with further samples of the impulse response itself. If the latter approach is used,
then care must be exercised with the indexing so that the two sample sequences are com-
patible (see Exercise 10.3.3). If the transfer function is sampled in the Fourier domain, then
samples of its Fourier transform are added, symmetrically about zero frequency, until we
reach a power of 2. To accomplish this we need to have either one more sample at a positive
frequency than at negative frequency or vice versa. We simply need to make a choice.

We have given a prescription for approximating h ∗ x(x0 + jτ) for j ∈ {0 . . . , N}.
There is no reason, in principle, why h ∗ x(x0 + jτ) cannot be approximated by the same
method for j ∈ {0, . . . , M} for an M larger than N . One simply needs to pad the samples
of x with 2M − N − 1 zeros and use 2M − 1 samples of h (or ĥ).

Exercises
Exercise 10.3.1. From formula (10.27) it is clear that 
−1

2N−1 provides an approximation
to the inverse Fourier transform. Formula (10.28) is a Riemann sum approximation to the
convolution. By replacing the sample sequence {xs( j)} by {xws( j) = w( j)xs( j)}, one can
approximate other integration schemes such as the trapezoidal rule or Simpson’s rule. How
should the weights {w( j)} be selected so that

2N − 1

N

−1

2N−1(< ĥs(0)x̂ws(0), . . . , ĥs(2N − 2)x̂ws(2N − 2) >)(k)
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provides a trapezoidal rule or Simpson’s rule approximation to the integral

∞∫
−∞

h

(
k

N
− t

)
x(t)dt?

Implement these algorithms using MATLAB, Maple, or another similar program. Do the
higher order integration schemes produce better or worse results? Can you explain this?

Exercise 10.3.2. If x is a real-valued, even function with support in [−1, 1], then its Fourier
transform is real valued. On the other hand, the finite Fourier transform of the zero padded
sequence

< x(−1), x(−1 + τ), . . . , x(1 − τ), x(1), 0, . . . , 0 >

is generally not real valued. Explain why not and give a different way to zero pad the
sequence < x(−1), x(−1 + τ), . . . , x(1 − τ), x(1) > so that its finite Fourier transform is
real valued. Hint: See Exercise 8.3.3.

Exercise 10.3.3. Suppose that x is a function supported in [0, 1] and N is an integer with
2k−1 < 2N − 1 < 2k . Let xs be the sequence of length 2k :

xs =< x(0), x(
1

N
), . . . , x(

N − 1

N
), 0, 0, · · · , 0︸ ︷︷ ︸

2k−N

> .

Let h denote the impulse response of a filter � that we would like to approximate using the
finite Fourier transform

�x(
j

N
) ≈ 2k

N

−1

2k (< ĥs x̂s >)( j),

where < ĥs > is defined as the finite Fourier transform of a sequence of 2k samples of h.
Which samples of h should we use? Suppose instead of ĥs we would like to use samples
of ĥ; which samples should we use?

Exercise 10.3.4. What is the connection between x̂s in (10.24) and in (10.4). For 0 ≤ k ≤
N − 1 use (10.6) to obtain a formula for the error in (10.24):

|x̂s(k)− N

2N − 1
x̂(L N )(k)|.

10.3.1 Zero Padding Reconsidered

Padding the sequence of samples of x with N −1 zeros is a purely mechanical requirement
for using the finite Fourier transform to evaluate a discrete convolution: The finite sum
in (10.25) must be seen as a periodic convolution of two sequences of equal length. There
is also an analytic interpretation for zero padding. For each positive integer m define the
function

x(m)(t) =
{

x(t) for t ∈ [0, 1],
0 for t ∈ (1,m].
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Let

x̂(ξ) =
∞∫

−∞
x(t)e−itξ dt

be the Fourier transform of x thought of as a function defined on the whole real line, but
supported in [0, 1].

Fix a sample spacing τ > 0 in the spatial domain and collect Nm = m
τ
+ 1 samples of

x(m),
x(m,s) =< x(0), x(τ ), . . . , x((Nm − 1)τ ) > .

Of course the samples x(m,s)(k) are zero for k > τ−1. The finite Fourier transform of
this sequence is a sequence x̂(m,s) of length Nm . Formula (10.20) implies that the correct
interpretation of this sequence, as an approximation to x̂, is

x̂(m,s)(k) ≈ 1

m
x̂(m)(k) for k ≤ Nm

2

x̂(m,s)(k) ≈ 1

m
x̂(m)(k − Nm) for k >

Nm

2
.

(10.33)

On the other hand

x̂(m)(k) =
m∫

0

x(m)(t)e
− 2π ikt

m dt = x̂(
2πk

m
)

and therefore

x̂(m,s)(k) ≈ 1

m
x̂(

2πk

m
) for k ≤ Nm

2
,

x̂(m,s)(k) ≈ 1

m
x̂(

2π(k − Nm)

m
) for k >

Nm

2
.

(10.34)

As k varies from 0 to m
τ
, the sequence < x̂m,s(k) > consists of approximate samples of x̂

for ξ ∈ [−π
τ
, π

τ
]. Once again, showing that the usable bandwidth in the sampled data is

determined by the sample spacing. Note, however, that the sample spacing in the Fourier
domain is 2π

m . This shows that the effect of adding additional zeros to a sequence of sam-
ples of a function with bounded support is to decrease the effective mesh size in the Fourier
domain. Practically speaking, the additional values in the finite Fourier transform (approx-
imately) interpolate additional values of x̂ .

Example 10.3.1. A graph of the function f = (1 − t2) sin(10π t)χ[−1,1](t) is shown in
Figure 10.2(a), and the imaginary part of its Fourier transform in Figure 10.2(b). The
imaginary part of the finite Fourier transform of f using 256 sample points in the interval
[−1, 1] is shown in Figure 10.3(a), while the imaginary part of the finite Fourier transform
of f after padding with zeros to get a sequence of length 1024 is shown in Figure 10.3(b).
This shows that padding a sequence with zeros leads to a finer mesh size in the Fourier
domain. The additional values of the finite Fourier transform appearing in Figure 10.3(b)
closely approximate the exact Fourier transform of f.
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(a) The graph of f.
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(b) The graph of f̂ .

Figure 10.2. A function f = (1 − t2) sin(10π t)χ[−1,1](t) and its Fourier transform.
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(a) The FFT of f using 256
samples.
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(b) The FFT of f with zero
padding.

Figure 10.3. The effect of zero padding on the approximation to f̂ by the finite Fourier
transform.

10.4 Higher-Dimensional Filters

Similar considerations apply to implement shift invariant, linear filters acting on inputs that
depend on more than one variable. As in the one-dimensional case, convolutions are usually
computed using a Fourier representation. As there is no essential difference between the
two-dimensional and n-dimensional cases, we consider the general case. Suppose that x
is an input, with bounded support, depending continuously on n real variables. A uniform
sample set in �n is specified by a vector of positive numbers h = (h1, . . . , hn), whose
coordinates are the sample spacings in the corresponding coordinate directions. In one
dimension the sample points and samples are labeled by an integer; in n dimensions it is
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more convenient to use n-tuples of integers. The integer vector j = ( j1, . . . , jn) ∈ �n

labels the sample point
x j = ( j1h1, . . . , jnhn)

and the sample
f j = f (x j ).

The subsequent development in this book is largely independent of the material in this
section.

10.4.1 Riemann Sum Approximations

Let a denote the impulse response of a shift invariant filter, 	, acting on a function of n
variables,

	 x(t) =
∫
�n

x(s)a(t − s) ds.

An n-dimensional integral is computed by rewriting it as iterated, one-dimensional inte-
grals,

	 x(t) =
∞∫

−∞
· · ·

∞∫
−∞

x(s1, . . . , sn)a(t1 − s1, . . . , tn − sn)ds1 · · · dsn.

The iterated integrals can, in turn, be approximated by iterated Riemann sums. Using the
uniformly spaced samples defined by h to define a partition, the integral is approximated
by

	 x(t) ≈
∞∑

j1=−∞
· · ·

∞∑
jn=−∞

x( j1h1, . . . , jnhn)a(t1 − j1h1, . . . , tn − jnhn)h1 · · · hn.

At sample points this can be rewritten using the more economical notation, introduced
previously, as

	 x(t k) ≈ h1 · · · hn

∑
j∈�n

x j ak− j . (10.35)

In the sequel a sample of the output, 	 x(t j ) is denoted by (	 x) j .
Because the input is assumed to have bounded support, these sums can be replaced by

finite sums. By translating the coordinates, it can be assumed that < x j > is only nonzero
for j belonging to the set

�M = { j : 1 ≤ ji ≤ Mi , i = 1, . . . , n}, (10.36)

here M = (M1, . . . , Mn). Altogether there are M1 · · · Mn potentially nonzero samples. The
Riemann sum for (	 x)k becomes

(	 x)k ≈ [h1 · · · hn]
M1∑

j1=1

· · ·
Mn∑

jn=1

x j ak− j . (10.37)
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If < ak > is nonzero for most values of k and the numbers {M j } are powers of 2, then this is
computed most efficiently using the Fourier representation. Computing the sum in (10.37),
for all indices that satisfy (10.36), requires a knowledge of ak for all indices in the set

�2M = { j : 1 − Mi ≤ ki ≤ Mi , i = 1, . . . , n}. (10.38)

To use the Fourier transform to compute (10.37), the set of samples {x j }, defined for j ∈
�M, must be augmented so that x j is defined for all indices in �2M . As x is assumed to
vanish outside the sample set, this is done by adding the samples

{x j = 0 for j ∈ �2M \ �M}.
As in one dimension, this is called zero padding. In n dimensions this amounts to adding
about (2n − 1)M1 · · · Mn zero samples.

10.4.2 The Finite Fourier Transform in n Dimensions

The n-dimensional finite Fourier transform is defined by iterating the one-dimensional
transform. Suppose that < x j > is a collection of numbers parameterized by the set of
indices

�N = { j : 0 ≤ ji ≤ Ni − 1, i = 1, . . . , n}. (10.39)

The finite Fourier transform of < x j > is the indexed set of numbers < x̂k > defined by

x̂k = 1

N1 · · · Nn

N1−1∑
j1=0

· · ·
Nn−1∑
jn=0

x j e
− 2π i j1k1

N1 · · · e− 2π i jn kn
Nn . (10.40)

The formula defines x̂k for all k ∈ �n as a periodic sequence, periodic of period N j in the
j th index. Thus < x̂k > is also naturally parameterized by �N . When it is important to
emphasize the index set, this transform is denoted by 
N(< x j >).

For 1 ≤ l ≤ n, let l
N denote the one-dimensional, N -point Fourier transform acting
only in the lth index,

(l
Nl < x j >)k = 1

Nl

Nl−1∑
j=0

xk1 ...kl−1 j kl+1 ...kn e− 2π i jkl
Nl . (10.41)

The n-dimensional finite Fourier transform can be computed as an iterated sum. In the
notation introduced previously,


N(< x j >) = n
Nn ◦ · · · ◦ 1
N1(< x j >). (10.42)

Suppose that < a j > and < b j > are sequences parameterized by �N . These sequences
can be extended to all of �n be requiring that they be periodic, of period N j in the j th index,
for j = 1, . . . , n. A convolution operation is defined for such periodic sequences by setting

a � bk =
∑
j∈�N

a j bk− j .
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As in the one-dimensional case, convolution is intimately connected to the finite Fourier
transform:


N(a � b)k = N1 · · · Nn < â · b̂ > . (10.43)

Here < â · b̂ > is the sequence whose kth-element is the ordinary product âkb̂k. This
relation is the basis for computing convolutions using the finite Fourier transform,

a � b = N1 · · · Nn
−1
N < âk · b̂k > (10.44)

Exercises
Exercise 10.4.1. If l 	= m, show that

l
Nl ◦ m
Nm = m
Nm ◦ l
Nl .

Exercise 10.4.2. Prove (10.42).

Exercise 10.4.3. If M is a power of 2, then the M-point Fourier transform can be computed
using O(M log2 M) arithmetic operations. Show that if each M j , j = 1, . . . , n is a
power of 2, then the “length (M1, . . . , Mn),” n-dimensional, finite Fourier transform can
be computed using O(M1 log2 M1 · · · Mn log2 Mn) arithmetic operations. Can you give a
better estimate?

Exercise 10.4.4. Find a formula for the inverse of the n-dimensional, finite Fourier trans-
form.

Exercise 10.4.5. Prove the identity (10.43).

10.4.3 The Fourier Representation for Shift Invariant Filters

If the sequence < x j > is obtained as uniformly spaced samples of a function x, defined
on �n, then the finite Fourier transform has an interpretation as an approximation to x̂,
the Fourier transform of x . Let h denote the sample spacing and M = (M1, . . . , Mn) the
number of samples in each coordinate direction. The sample set and its Fourier transform
are parameterized by �M . Because < x̂k > is periodic, it is also possible to parameterize it
using the indices

�′
M = {k : −1 − Mi

2
≤ ki ≤ Mi − 1

2
},

where we assume that the {Mi} are odd numbers. For an index k ∈ �′
M the relationship

between x̂k and x̂ is easily expressed as

x̂k ≈ 1

h1 · · · hn
x̂(

2πk1

M1h1
, . . . ,

2πkn

Mnhn
). (10.45)

The usable bandwidth of the sample set, [− π
h1
, π

h1
] × · · · × [− π

hn
, π

hn
], depends only on the

sample spacing. The number of samples in each direction is then determined by the size of
the support of x .
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In light of (10.35) and (10.44), the finite Fourier transform can be used to approximate
the output of a linear, shift invariant filter. Let �M denote the indices satisfying (10.36) and
�2M the augmented index set satisfying (10.38). The samples of x are denoted {xs( j) :
j ∈ �M} and the samples of a by {as( j) : j ∈ �2M}. In order to compute as � xs, the
samples of x have to be zero padded to be defined on �2M . Both sequences should then be
considered to be periodic with period 2M j − 1 in the j th index. If h is the vector of sample
spacings, then

	 x( j1h1, . . . , jnhn) ≈ [h1 · · · hn](as � xs) j

= [h1(2M1 − 1) · · · hn(2Mn − 1)]
−1
2M(< âs x̂s >) j .

(10.46)

As in the one-dimensional case, a slightly different way to approximate shift invariant
filters is to bypass the impulse response and sample the transfer function directly. Again
this is because the transfer function is often an ordinary function, even when the impulse
response is not. Using (10.45), the discussion leading up to (10.31) can be adapted to show
that the correct samples of â to use in (10.46) are

âs( j) = 1

h1(2M1 − 1) · · · hn(2Mn − 1)
â

(
2π j1

h1(2M1 − 1)
, . . . ,

2π jn
h1(2Mn − 1)

)
,

for 1 − Mi ≤ ji ≤ Mi − 1, i = 1, . . . , n.
(10.47)

Exercises
Exercise 10.4.6. Show that (10.46) gives a Riemann sum approximation to the Fourier
representation of a ∗ f ( j1h1, . . . , jnhn).

Exercise 10.4.7. Give a detailed justification for (10.47).

Exercise 10.4.8. The Laplace operator is defined in two dimensions as

� f = ∂2
x1

f + ∂2
x2

f.

The transfer function for this operator is −(ξ 2
1 + ξ 2

2 ). The Laplace operator can also be
approximated by finite differences; for example,

� f (x1, x2) ≈ f (x1 + h, x2)− 2 f (x1, x2)+ f (x1 − h, x2)

h2
+

f (x1, x2 + h)− 2 f (x1, x2)+ f (x1, x2 − h)

h2
.

(10.48)

Compare the Fourier domain approximations obtained from sampling the transfer function
directly and using the Fourier representation of the finite difference formula.

Exercise 10.4.9. In the previous exercise, what is the impulse response of the finite differ-
ence approximation to �?
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10.5 Appendix: The Fast Fourier Transform

If N = 2q , then there is a very efficient way to compute the finite Fourier transform of a sequence
of length N. The fast algorithm for the finite Fourier transform is the Cooley-Tukey or fast Fourier

transform algorithm, usually referred to as the FFT. Let ζ = e
2π i
N be the primitive N th-root of unity,

and let ζ j = ζ j . This makes the notation simpler in what follows. The finite Fourier transform of
< x0, x1, . . . , xN−1 > is given by

x̂k = 1

N

N−1∑
j=1

xke−
2π i jk

N = 1

N

N−1∑
j=1

x j ζ̄
k
j ,

which can be expressed as a matrix multiplying a vector:⎛⎜⎜⎜⎜⎝
x̂0
x̂1
x̂2
...

x̂N−1

⎞⎟⎟⎟⎟⎠ = 1

N

⎛⎜⎜⎜⎜⎝
1 1 · · · · · · 1
1 ζ̄1 ζ̄2 · · · ζ̄N−1

1 ζ̄ 2
1 ζ̄ 2

2 · · · ζ̄ 2
N−1

1 · · · · · ·
1 ζ̄ N−1

1 ζ̄ N−1
2 · · · ζ̄ N−1

N−1

⎞⎟⎟⎟⎟⎠
⎛⎜⎜⎜⎜⎝

x0
x1
x2
...

xN−1

⎞⎟⎟⎟⎟⎠ .

Denote this matrix by CN . We now show that for N = 2q , the number of calculations involved
in multiplying CN times a vector can be reduced to 3Nq. For even modest values of q this is a
much smaller number than N(2N − 1). This reduction comes from several observations about the
structure of the matrix CN .

If A is a square matrix with complex entries ai j , then the adjoint of A, denoted A∗, is the matrix
whose i j th-entry is ā j i . The matrix A is unitary if

A−1 = A∗.

The matrix √
NCN

is a unitary matrix. This is a consequence of formulæ (8.19) and (8.21). In matrix notation we have

√
NC∗

N

√
NCN = I.

The inverse of CN therefore has essentially the same form as C∗
N . A fast algorithm for multiplication

by CN should also give a fast algorithm for multiplication by C−1
N . In other words, if we can compute


N efficiently, then we can also compute 
−1
N efficiently.

The following identities among the N th and (2N)th roots of unity lead to the fast Fourier

transform algorithm. Let μ = e
2π i
2N be the primitive (2N)th root of unity; as previously, μ j = μ j .

The following identities are elementary:

e
2π i2kj

2N = e
2π ik j

N , e
2π ik( j+N)

N = e
2π ik j

N and e
2π i(2k+1) j

2N = e
2π ik j

N e
2π i j
2N .

These identities can be rewritten as

μ2k
j = ζ k

j , ζ k+N
j = ζ k

j and μ2k+1
j = μ j ζ

k
j . (10.49)
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From the definition of CN , the (2k + 1)st and (2k + 2)th rows of C2N are given by

(2k + 1)st : (1, μ̄2k
1 , · · · , μ̄2k

2N−1)

(2k + 2)th : (1, μ̄2k+1
1 , · · · , μ̄2k+1

2N−1).

Comparing these with the kth row of CN and using the relations in (10.49), rows of C2N can be
expressed in terms of the rows of CN as follows:

(2k + 1)st : (1, μ̄2k
1 , · · · , μ̄2k

N−1, μ̄
2k
N , · · · , μ̄2k

2N−1) = (1, ζ̄ k
1 , · · · , ζ̄ k

N−1, 1, ζ̄ k
1 , · · · , ζ̄ k

N−1)

and,

(2k + 2)th : (1, μ̄2k+1
1 , · · · , μ̄2k+1

N−1 , μ̄
2k+1
N , · · · , μ̄2k+1

2N−1)

= (1, ζ̄ k
1 μ̄1, ζ̄

k
2 μ̄2 · · · , ζ̄ k

N−1μ̄N−1, μ̄N , ζ̄ k
1 μ̄N+1 · · · , ζ̄ k

N−1μ̄2N−1).

In terms matrices, C2N is essentially obtained by multiplying two copies of CN by another
simple matrix:

C2N = C#
N UN .

Define the 2N × 2N matrix

C#
N =

⎛⎜⎜⎜⎜⎝
r1 0
0 r1
...

...
rN 0
0 rN

⎞⎟⎟⎟⎟⎠ ,

where the {ri } are the rows of CN and the vector 0 = (0, . . . , 0︸ ︷︷ ︸
N

),

CN =
⎛⎜⎝r1

...
rN

⎞⎟⎠ .

The matrix UN is defined by

UN =
(

I I
D1

N D2
N

)
,

where

D1
N =

⎛⎜⎜⎜⎜⎝
1

μ̄1 0
μ̄2

0
. . .

μ̄N−1

⎞⎟⎟⎟⎟⎠ and D2
N =

⎛⎜⎜⎜⎜⎝
μ̄N

μ̄N+1 0
μ̄N+2

0
. . .

μ̄2N−1

⎞⎟⎟⎟⎟⎠ .

The important feature of UN is that it has exactly two nonzero entries per row. If N = 2q then this
argument applies recursively to C#

N to give a complete factorization.

Theorem 10.5.1. If N = 2q, then CN = E1 E2 · · · Eq , where each row of the N × N matrix Ei has
two nonzero entries.
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It is not difficult to determine exactly which entries in each row of the matrices E j are nonzero.
For an arbitrary N-vector x = (x1, . . . , xN ), the computation of E j x can be done using exactly
N(2 multiplications + 1 addition). Using this factorization and the knowledge of which entries of
the E j are nonzero, we can reduce the number of operations needed to compute the matrix product
�→ CN x to 3q N = 3N log2 N. Indeed the combinatorial structures of the matrices {E j } are quite
simple, and this has led to very efficient implementations of this algorithm. Each column of E j also
has exactly two nonzero entries, and therefore the factorization of CN gives a factorization of C∗

N :

C∗
N = E∗

q E∗
q−1 . . . E∗

1 .

Example 10.5.1. We can factor the matrix 4C4 as

4C4 =
⎛⎜⎝1 1 0 0

0 0 1 1
1 −1 0 0
0 0 1 −1

⎞⎟⎠
⎛⎜⎝1 0 1 0

0 1 0 1
1 0 −1 0
0 −i 0 i

⎞⎟⎠ . (10.50)

For a more complete discussion of the fast Fourier transform, see [100].

10.6 Conclusion

If x is a function defined on � with bounded support, then the finite Fourier transform
of a set of equally spaced samples of x can be interpreted as approximate samples of the
Fourier transform of x . The sample spacing determines, via the Nyquist criterion, the usable
bandwidth available in the sampled data. To implement a shift invariant linear filter on a
finite sample set consisting of N samples < x0, . . . , xN−1 >, the sample sequence must be
augmented by padding it with at least N − 1 zeros. If � is a shift invariant filter and we
add k ≥ N − 1 zeros, then �x, at sample points, is approximated by a finite-dimensional
linear transformation of the form

�x ≈ τ(N + k)
−1
N+k�h
N+k(< x0, . . . , xN−1, 0, . . . , 0 >).

Here 
N+k is the finite Fourier transform on sequences of length N + k, τ is the sample
spacing and �h is a diagonal matrix. The entries of �h are either samples of the transfer
function of H or obtained as the finite Fourier transform of N + k samples of the impulse
response of �. If N + k is a power of 2, then the linear transformation 
N+k has a very fast
implementation.

In the next chapter we discuss how data are actually collected in a variety of x-ray CT
machines. Gross features in the design of the a CT machine determine how the Radon
transform of the attenuation coefficient is actually sampled. Using the results in this chap-
ter we derive several implementations of approximate filtered back-projection algorithms
on finitely sampled data. Since we consider two-dimensional slices of the attenuation co-
efficient this would appear to be a two-dimensional filtering problem. In fact, the filtration
and back-projection steps are usually defined as one-dimensional filters that are applied in
succession.





Chapter 11

Reconstruction in X-Ray
Tomography

At long last we are returning to the problem of reconstructing images in x-ray tomography.
Recall that if f is a function defined on �2 that is bounded and has bounded support, then
its Radon transform, � f, is a function on the space of oriented lines. The oriented lines in
�2 are parameterized by pairs (t,ω) ∈ � × S1, with

lt,ω ↔ {x : 〈x,ω〉 = t}.

The positive direction along lt,ω is defined by the unit vector ω̂ orthogonal to ω with
det(ω ω̂) = +1. The Radon transform of f is the function defined on � × S1 by

� f (t,ω) =
∞∫

−∞
f (tω + sω̂) ds.

Exact inversion formulæ for the Radon transform are derived in Chapter 6. These formulæ
assume that � f is known for all lines. In a real x-ray CT machine, � f is approximately
sampled at a finite set of points. The goal is to construct a function defined on a discrete set
that is, to the extent possible, samples or averages of the original function f. In this chapter
we see how the Radon inversion formulæ lead to methods for approximately reconstructing
f from realistic measurements. We call such a method a reconstruction algorithm.

In this chapter we derive the reconstruction algorithms used in most modern CT scan-
ners. After a short review of the basic setup in x-ray tomography, we describe the principal
designs used in modern CT scanners. This, in turn, determines how the Radon transform
of the attenuation coefficient is sampled. We next derive algorithmic implementations of
the filtered back-projection formula for parallel beam, fan beam, and spiral CT scanners.
A large part of our discussion is devoted to an analysis of the filtration step and its efficient
implementation.

401
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11.1 Basic Setup in X-Ray Tomography

Before deriving and analyzing the reconstruction algorithms, we review the setup in x-ray
CT and fix the notation for the remainder of the chapter. Beer’s law is the basic physical
principle underlying x-ray tomography. To an object D in �3 there is associated an atten-
uation coefficient μ(x). This is a nonnegative function that describes the probability that
an x-ray photon of a given energy which encounters the object at the point x is absorbed
or scattered. Beer’s law is phrased as a differential equation describing the change in the
intensity of a (one-dimensional) “beam,” composed of many photons, traveling along a
line  in �3. If � ∈ S2 is the direction of  and x0 is a point on  , then the line is given
parametrically by

 = {s� + x0 : s ∈ �}.
Let I (s) denote the intensity of the photon beam at the point s� + x0. Beer’s law states
that

d I

ds
(s) = −μ(s� + x0)I (s).

If D is a bounded object, then  ∩ D is contained in an interval of parameter values: s ∈
[a, b]. In the simplest model for x-ray tomography, the incoming intensity I (a) is known
and the outgoing intensity I (b) is measured. Beer’s law then relates the ratio I (a)/I (b) to
the line integral of μ:

log

[
I (a)

I (b)

]
=

b∫
a

μ(s� + x0) ds. (11.1)

Originally tomography referred to methods for nondestructively determining the inter-
nal structure of two-dimensional slices of a three-dimensional object. Indeed the Greek
root τoμή means cut or slice [see [6, pp. 8–9]]. Though the term has come to refer to any
method for determining the internal structure of a three-dimensional object from external
measurements, we largely adhere to the earlier meaning. Suppose that a coordinate system
(x1, x2, x3) for �3 is fixed. The data collected in x-ray CT are approximations to the Radon
transforms of the two-dimensional “slices” of the function μ, in the x3-direction. These are
the functions

fc(x1, x2) = μ(x1, x2, c),

obtained by fixing the last coordinate. In the preceding formulation, this corresponds to
taking

x0 =(tω, c) and � = (ω̂, 0) where, t, c ∈ � and

ω, ω̂ ∈ S1 = {(x1, x2, 0) : x2
1 + x2

2 = 1}. (11.2)

For a fixed c, the integrals in (11.1) are nothing but the Radon transform of fc. With these
measurements the function fc can therefore be reconstructed.

A real x-ray CT machine only measures a finite number of line integrals. In a simple
model for the actual measurements there is a finite set of values, {c1, . . . , cn} such that
the Radon transforms of the functions, { fc1, . . . , fcn } are sampled along a finite set of lines
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{lt j ,ω j : j = 1, . . . , P}. The design of the machine determines which line integrals are mea-
sured. This chapter considers algorithms for reconstructing a single two-dimensional slice.
The problem of using the slices to reassemble a three-dimensional object is not treated in
any detail. Note, however, the important fact that the CT machine itself determines a frame
of reference, fixing, for example, the “x3-direction.” Once the machine is calibrated, the
positions in space that correspond to the different slices and the lines within a slice are
known in advance. As we shall see, the design of the machine also singles out a particular
coordinate system in the space of oriented lines.

x1

x
2

x
3

Beam profile 

a = Slice thickness2Δ
C

Figure 11.1. A three-dimensional x-ray beam.

A real x-ray beam is not one dimensional but three dimensional. Let C denote the cross
section of the beam at right angles to its direction. The cross section is often approximately
rectangular:

C ≈ [−a, a] × [−�,�],

where the second factor lies in the x3-direction. The width of the second factor 2� is
called the slice thickness; this parameter is usually adjustable at the time the measurements
are made. In circa 2002 commercial CT machines, the slice thickness varies between 2
and 10 mm. The beam intensity also varies continuously within C, falling off to zero at
the edge. As a practical matter, a larger cross section increases the energy in the beam,
which, as we shall see, improves the signal-to-noise ratio in the measurements. On the
other hand, poorer spatial resolution is also a consequence of a larger cross section. In
our initial discussion of the reconstruction algorithms, we model the measurements as line
integrals of a slice, fc(x1, x2) = μ(x1, x2, c). In other words, we assume that the x-ray
beam is one dimensional. In Sections 12.1 and 12.2 we consider consequences of the finite
beam width in the plane of the slice. A linear model for the effect of the third dimension is
to replace line integrals of fc by line integrals of a weighted average of these functions in
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the x3-variable:
�∫

−�

wssp(c − b) fb db. (11.3)

The function wssp is called the slice selectivity profile or SSP; it encodes information about
the resolution of the CT scan in the x3-direction. Except for our short discussion of spiral
scan CT in Section 11.7, the third dimension is rarely mentioned in this and the following
chapter.

Let (x, y) denote Cartesian coordinates in the slice x3 = c, which is heretofore fixed.
The two-dimensional object we would like to image lies in DL, the disk of radius L , cen-
tered at (0, 0) in this plane. In this chapter the x-ray source is assumed to be monochromatic
of energy � and the object is described by its x-ray attenuation coefficient f at this energy.
As the object lies in DL, f is assumed to vanish outside this set. Our goal is to use samples
of � f to approximately determine the values of f on a uniform reconstruction grid,

�τ = {(x j , yk) = ( jτ, kτ) : j, k ∈ �},
in the (x, y)-plane. Here τ > 0 denotes the sample spacing, which is selected to reflect
the resolution available in the data. In circa 2002 commercial machines the resolution also
varies between 2 and 10 mm.

The reconstruction grid can also be thought of as dividing the plane into a grid of
squares of side τ. Each square is called a picture element or pixel. As each slice is really
a three-dimensional slab, and hence each square is really a cuboid, the elements in the
reconstruction grid are often called volume elements or voxels (see Figure 11.2). The value
reconstructed at a point (x j , yk) ∈ �τ should be thought of as a weighted average of f
over the voxel containing this point. Of course, f is only reconstructed at points of �τ

lying in [−L , L] × [−L , L] ⊃ DL . We assume that f is bounded and regular enough for
its Radon transform to be sampled. As the actual measurements involve averaging μ with
a continuous function, this is not a restrictive assumption.

Voxel

Pixel

τ

2Δ

Figure 11.2. The reconstruction grid.
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In most of this section it is assumed that measurements are made with infinite precision
and that the full set of real numbers is available. Real measurements have errors and are
quantized to fit into a finite number of bits. The measurements approximate samples of the
Radon transform of a nonnegative function assuming values in a known range and supported
in a known set. A good estimate for the range of measured values is therefore known in
advance. Say that the measurements lie in an interval [0, M]. If b bits are used in the
quantization of the measurements, then the smallest increment available in the measured
data is 2−b M. The number of bits used to quantize the data therefore determines the size
of the smallest difference in density that might be discernible in the reconstructed image.
In medical imaging this is usually referred to as the contrast available in the reconstructed
image. This numerical resolution reflects the precision of the measurements themselves and
the computations used to process them. It should not be confused with spatial resolution,
which depends on the sample spacing and the point spread function of the reconstruction
algorithm. The accuracy of the measurements is determined by the accuracy and sensitivity
of the detectors and the stability of the x-ray source. A detailed discussion of x-ray sources
and detectors can be found in [22] or [6].

11.2 The Reconstruction Problem

We now review the inversion formulæ derived earlier and consider how they might be ap-
proximated in a real computation. These formulæ are consequences of the Fourier inversion
formula and central slice theorem; the later states that

�̃ f (r,ω) =
∞∫

−∞
� f (t,ω)e−irt dt = f̂ (rω).

Writing the Fourier inversion formula in polar coordinates gives

f (x, y) = 1

[2π ]2

2π∫
0

∞∫
0

f̂ (rω)eir〈(x,y),ω〉rdrdω

= 1

[2π ]2

π∫
0

∞∫
−∞

f̂ (rω)eir〈(x,y),ω〉|r | drdω.

(11.4)

Directly approximating the Fourier inversion formula is one approach to reconstructing f.
Note that the polar variable r is allowed to assume negative values with the understanding
that if r < 0, then

rω = |r |(−ω).

Using the central slice theorem gives

f (x, y) = 1

[2π ]2

π∫
0

∞∫
−∞

�̃ f (r,ω)|r |eir〈(x,y),ω〉dr dω. (11.5)
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Interpreting the r integral as a linear, shift invariant filter acting in the t-variable,

�(� f )(t,ω) = 1

2π

∞∫
−∞

�̃ f (r,ω)|r |eirt dr

= −i�∂t � f (t,ω),

(11.6)

leads to the filtered back-projection formula

f (x, y) = 1

2π

π∫
0

�(� f )(〈(x, y),ω〉,ω) dω. (11.7)

Of course, these formulæ are entirely equivalent from the mathematical point of view.
However, approximating mathematically equivalent formulæ can lead to very different al-
gorithms. As previously, τ is the uniform spacing in the reconstruction grid. The object is
assumed to lie within the disk of radius L . The number of grid points on the x or y-axis is
therefore 2K + 1, where

K =
⌊

L

τ

⌋
+ 1.

Here �s denotes the largest integer less than or equal to s. Our immediate goal is to ap-
proximately reconstruct the set of values

{ f ( jτ, kτ) : −K ≤ j, k ≤ K }.
In order to distinguish the reconstructed values from the actual samples, the reconstructed
values are denoted by

{ f̃ ( jτ, kτ) : −K ≤ j, k ≤ K }.
While f is known to be zero on grid points lying outside DL, the reconstructed values at
these points are generally non-zero. As remarked previously, real measurements have an
interpretation as weighted averages of � f over the cross section of the x-ray beam. In our
initial derivations of the reconstruction algorithms, we overlook this point; the effects of
finite beam width are easily incorporated, and we do so in the next chapter.

A good reconstruction algorithm is characterized by accuracy, stability, and efficiency.
An accurate algorithm is often found by starting with an exact inversion formula and mak-
ing judicious approximations. In x-ray CT, stability is the result of lowpass filtering and
the continuity properties of the exact inversion formula. Whether an algorithm can be im-
plemented efficiently depends on its overall structure as well as the hardware available to
do the work. An x-ray CT-machine is not a general-purpose computer, but rather a highly
specialized machine designed to do one type of computation quickly and accurately. Such
a machine may have many processors, allowing certain parts of the algorithm to be “paral-
lelized.” As we shall soon see, the measuring hardware naturally divides the measurements
into a collection of views or projections. The most efficient algorithms allow the data from
a view to be processed as soon as it is collected.
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In the early days of imaging, machines were calibrated by making measurements of
composite objects with known attenuation coefficients. These objects are called phantoms.
The problem with this approach is that it mixes artifacts caused by physical measurement
errors with those caused by algorithmic errors. A very important innovation in medical
imaging was introduced by Larry Shepp. In order to isolate the algorithmic errors, he
replaced the (physical) phantom with a mathematical phantom.

Figure 11.3. A mathematical phantom.

Instead of using real measurements of a known object, Shepp suggested that one give a
mathematical description of a phantom to create simulated and controlled data. In this way,
algorithmic errors could be separated from measurement errors. A mathematical phantom
is created as follows: First a simplified model of a slice of the human head (or other ob-
ject) is described as an arrangement of ellipses and polygons. Each region is then assigned
a density or attenuation coefficient (see figure 11.3). Next the continuous model is digi-
tized by superimposing a regular grid and replacing the piecewise continuous densities by
their averaged values over the squares that make up the grid. Finally, measurements are
simulated by integrating the digitized model over a collection of strips, arranged to model
a particular measurement apparatus. The robustness of an algorithm to different sorts of
measurement errors (e.g., noise, beam hardening, patient motion, miscalibration, etc.) can
be tested by incorporating these errors into the simulated measurements.

By using mathematical phantoms, the consequences of algorithmic errors can be sep-
arated from those of measurements errors. A priori, you know exactly what is being mea-
sured and can therefore compare the reconstructed image to a known, exact model. Math-
ematical phantoms are very useful in the study of artifacts caused by sampling errors and
noise as well as for comparison of different algorithms. Of course, the fundamental ques-
tion is how well the algorithms perform on actual measurements. In many of the examples
in this and the next chapter, we apply an algorithm to a mathematical phantom.
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11.3 Scanner Geometries

The structure of a reconstruction algorithm is dictated by which samples of � f are avail-
able. Before discussing algorithms, we therefore need to consider what kind of measure-
ments are actually made. In broad terms there are two types of x-ray CT-machine, using
two dimensional slices: (a) parallel beam scanner [see Figure 11.4(a)], (b) divergent beam
scanner [see Figure 11.5]. The earliest scanner was a parallel beam scanner. This case
is considered first because the geometry and algorithms are simpler to describe. Because
the data can be collected much faster, most modern machines are divergent or fan beam
scanners. Algorithms for these machines are a bit more involved and are treated later. The
most recent machines (circa 2002) use a spiral scan, so that the actual measurements are
not samples of the Radon transforms of two dimensional slices. We briefly discuss this
modality in Section 11.7.

In a parallel beam scanner approximate samples of � f are measured in a finite set of
directions, {ω(k�θ) for k = 0 . . . , M}, where

�θ = π

M + 1
and ω(k�θ) = (cos(k�θ), sin(k�θ)).

In terms of the angular variable, θ the samples are equally spaced. The measurements made
in a given direction are then samples of � f at a set of equally spaced affine parameters,

{ jd + d0 : j = −N, . . . , N},

where d is the sample spacing in the affine parameter and N = Ld−1 and d0 is a fixed
offset. Such an offset is sometimes used, though in the foregoing analysis we take d0 = 0.

Detectors

X-ray source

L-L 

θ d

(a) A parallel beam scanner.

 L

L

t

θ
0 π

−

(b) The parallel beam sample
space.

Figure 11.4. A parallel beam scanner and sample set.



11.3. Scanner Geometries 409

Parallel beam data therefore consist of the samples

{� f ( jd,ω(k�θ)) : j = −N, . . . , N, k = 0, . . . , M}. (11.8)

Because of the symmetry of the Radon transform,

� f (−t,−ω) = � f (t,ω), (11.9)

measurements are only required for angles lying in [0, π). Sometimes it is useful to make
measurements over a full 360◦; the extra measurements can then be averaged as a way to
reduce the effects of noise and systematic errors.

The individual measurements are called rays. A view, for a parallel beam machine,
consists of the samples of � f (t,ω) for a fixed ω. These are the integrals of f along the
collection of equally spaced parallel lines,

{l jd,ω(k�θ) : j = −N, . . . , N}.
In (t,ω)-space, parallel beam data consist of equally spaced samples on the vertical lines
shown in Figure 11.4(b).

The other type of scanner in common use is called a divergent beam or fan beam scan-
ner. A point source of x-rays is moved around a circle centered on the object being mea-
sured. The source is pulsed at a discrete sequence of angles, and measurements of � f
are collected for a finite family of lines passing through the source. In a machine of this
type, data are collected by detectors that are usually placed on a circular arc. There are two
different designs for fan beam machines that, for some purposes, need to be distinguished.
In a third-generation machine the detectors are placed on a circular arc centered on the
source. The detectors and the source are rotated together. In a fourth-generation machine
the detectors are on a fixed ring, centered on the object. Only the source is rotated, again
around a circle centered on the object, within the ring of detectors. These designs are shown
schematically in Figure 11.5.

For a fan beam machine it is useful to single out the central ray. For a third-generation
machine this is the line that passes through the source and the center of rotation. The central
ray is well defined no matter where the source is positioned. Since all the rays that are
sampled pass through a source position, the natural angular parameter, for this geometry, is
the angle, φ, between a given ray and the central ray. Suppose that the source is at distance
D and the central ray makes an angle ψ with the positive x-axis. The affine parameter for
the line passing through the source, making an angle φ with the central ray, is given by

t = D sin(φ) (11.10)

[see Figure 11.6(a)]. The angular parameter of this line is

θ = ψ + φ − π

2
; (11.11)

recall that positive angles are measured counterclockwise.
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(a) A third-generation scanner.
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D

(b) A fourth-generation scanner.

Figure 11.5. The two different divergent beam geometries.
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In a third-generation machine the source is placed at a finite number of equally spaced
angles,

ψk ∈ { 2πk

M + 1
: k = 0, . . . , M},

and data are collected along a set of lines through the source, equally spaced in the φ-
parameter,

φ j ∈ { jπ

N
: j = −P, . . . , P}.

Third-generation, fan beam data are the set of samples

{� f (D sin(
jπ

N
),ω

(
jπ

N
+ 2πk

M + 1
− π

2

)
) : j = −P, . . . , P, k = 0, . . . , M}.

The maximum and minimum values ± Pπ
N , for the angle φ, are determined by the necessity

of sampling all lines that meet an object lying in DL, as shown in Figure 11.5(a). The
samples lie on the sine curves shown in Figure 11.6(b). A view for a third-generation
machine is the set of samples from the rays passing through a given source position.

φ

θ
ψ t

D

(a) Angular parameters for a fan beam ma-
chine.

t

θ

L

 L

  D

D

−

−

(b) Sample set for a fan beam machine.

Figure 11.6. Parameters for a fan beam machine.

For a fourth-generation machine the source moves and the detectors remain fixed. Each
time the source emits a pulse of x rays, a sample can in principle, be collected by any
detector that can “see” the source. In practice, data are collected for rays that pass through
the target area, as shown in Figure 11.5(b). In this way the data are grouped into views
according to the detector position, not the source position.

For many purposes third- and fourth-generation machines can be treated together. In-
deed we can still use the coordinates in Figure 11.6(a) to parameterize the data, with the
following small changes: The detectors now lie on the circle of radius D and ψ denotes
the angle from the positive x-axis to the “central ray,” which is now a line joining (0, 0)
to a fixed detector. A view for a fourth-generation machine consists of the rays passing
through a given detector. The parameter φ measures the angle between lines through a
detector and its central ray. With this understood, the sample set and data collected are
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essentially the same for third- and fourth-generation machines. At a basic level, third-
and fourth-generation scanners are quite similar, though they differ in many subtle points.
These differences are considered in greater detail in Section 12.4.

The measurements are integrals of a nonnegative function f. In the engineering and
medical literature, we sometimes see these raw measurements represented directly in (t,ω)
or (ψ, φ)-space. Such a diagram is called a sinogram. A sinogram is a gray scale plot where
the density of image at (t,ω) is a monotone function of the measured value � f (t,ω). Sino-
grams are difficult for a human observer to directly interpret. As they contain all the in-
formation available in the data set; they may be preferable for machine-based assessments.

Figure 11.7. An example of a sinogram from a fan beam machine. The affine parameter is
along the vertical axis and the angle is along the horizontal axis. The angle ranges from 0
to 2π. Black corresponds to 0 and white to the largest value assumed by � f.

Exercises

Exercise 11.3.1. For a third-generation, fan beam machine, the set of angles {φk} could
be selected so that the sample spacing in the affine parameter is constant. To get a sample
spacing d in the affine parameter, what set of angles {φk} should be used?

Exercise 11.3.2. Explain why the sinogram in Figure 11.7 appears to have a reflectional
symmetry around its center.

Exercise 11.3.3. The sinogram in Figure 11.7 comes from measurements made on the
Shepp-Logan head phantom. Find two features of the sinogram suggesting that this is an
image of a head.
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11.4 Reconstruction Algorithms for a Parallel Beam Machine

See: A.6.1.

We now consider reconstruction algorithms for a parallel beam machine. A good first
step in the derivation of an algorithm is to assume that we can measure all the data from a
finite set of equally spaced angles. In this case the data would be

{� f (t,ω(k�θ)) : k = 0, . . . , M, t ∈ [−L , L]},
where �θ = π

M+1 . With these data we can apply the central slice theorem to compute
angular samples of the two-dimensional Fourier transform of f,

f̂ (rω(k�θ)) =
∞∫

−∞
� f (t,ω(k �θ))e−irt dt.

Remark 11.4.1. Recall that in this chapter the polar variable r can be either positive or
negative; if r < 0, then

f̂ (rω(θ)) = f̂ (|r |ω(θ + π)). (11.12)

11.4.1 Direct Fourier Inversion

Formula (11.4) suggests using the two-dimensional Fourier inversion formula directly, to
reconstruct f. Using a Riemann sum in the angular direction gives

f (x, y) ≈ 1

4π(M + 1)

M∑
k=0

∞∫
−∞

f̂ (rω(k �θ))eir〈(x,y),ω(k�θ)〉|r | dr.

Our actual measurements are the samples {� f ( jd,ω(k�θ))} of � f (t,ω(k�θ)). Since the
sample spacing in the t-direction is d, the usable bandwidth in the sampled data is 2π

d . In
light of the results in Section 10.2, these samples can be used to compute approximations
to the following samples of the Fourier transform of f,

f̂ (r jω(k �θ)) r j ∈ {0,±η,±2η, . . . ,±Nη}, where η = 1

N

π

d
= π

L
.

This is a set of equally spaced samples of f̂ in the polar coordinate system. The accuracy
of these approximations depends on the effective support of f̂ .

Approximating the inverse Fourier transform directly in polar coordinates would entail
O((2M + 2)(N + 1)) operations to compute the approximate inverse of the Fourier trans-
form for a single point (x, y). As the number of points in the reconstruction grid is O(K 2),
the number of computations needed to reconstruct the image at every grid point is

O(M N K 2).
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For realistic data this is a very large number. The size of this computation can be vastly
reduced by using the fast Fourier transform algorithm (FFT).

(a) The phase. (b) The magnitude.

Figure 11.8. The phase and magnitude of the Fourier transform of the Shepp-Logan phan-
tom.

The two-dimensional fast Fourier transform is only usable if samples of f̂ are known
on a uniform grid in a rectangular coordinate system. Our data,

{ f̂ (r jω(k�θ))},
are samples of f̂ on a uniform grid in a polar coordinate system. To use the two-dimensional
FFT, the data must first be interpolated to get simulated measurements on a uniform, rect-
angular grid. Using nearest neighbor, linear interpolation, the amount of computation
required to do this is a modest O(K 2) calculations. Assuming that K is a power of 2,
the FFT leading to f̃ (x j , yk) would require O((K log2 K )2) calculations. The full recon-
struction of f̃ , at the grid points, from the parallel beam data, would therefore require
O(K 2(log2 K )2 + 2M N log2 N) computations. The 2M N log2 N term comes from using
the one-dimensional FFT to compute < f̂ (r jω(k�θ)) > from < � f ( jd,ω(k�θ)) > .
For realistic values of M and N, this is a much smaller number than what was computed
for a direct inversion of the Fourier transform. Indeed, this algorithm is the fastest algo-
rithm for implementation on a general-purpose computer. However, with real data, simple
linear interpolation leads to unacceptably large errors in the approximation of f̂ . This is
largely due to the fact that f̂ is a complex valued function with a rapidly oscillating phase.
Figure 11.8 shows the phase and magnitude of the Fourier transform of the Shepp-Logan
phantom. Note that both the phase and magnitude are highly oscillatory, explaining why it
is difficult to accurately interpolate f̂ . A more sophisticated scheme of this sort is presented
in Section 11.8.
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Exercises
Exercise 11.4.1. The magnitude of the Fourier transform shows a pronounced oscillation
in the radial direction. Can you explain this?

Exercise 11.4.2. Explain how to use zero padding to obtain a approximation to f̂ (rω) on
a finer grid in the r-variable. Is this justified in the present instance? Is there any way to
reduce the sample spacing in the angular direction?

11.4.2 Filtered Back-Projection

Formula (11.7) organizes the approximate inversion in a different way. The Radon trans-
form is first filtered,

� � f (t,ω) = −i�∂t � f (t,ω),

and then back-projected to find f at (x, y). The operation � f �→ � � f is a one-dimensional,
linear shift invariant filter. On a parallel beam scanner, the data for a given ω define a single
view and are collected with the source-detector array in a fixed position. Once the data from
a view have been collected, they can be filtered. In this way, a large part of the processing
is done by the time all the data for a slice has been collected. Supposing, as before, that
sampling only occurs in the angular variable, then the data set for a parallel beam scanner
would be the samples

{� f (t,ω(k�θ)) : k = 0, . . . , M}.
In a filtered back-projection algorithm, each view, � f (t,ω(k�θ)), is filtered immedi-

ately after it is measured, giving � � f (t,ω(k�θ)). When all the data have been collected
and filtered, the image is approximately reconstructed by using a Riemann sum approxi-
mation to the back-projection:

f̃ (x, y) = 1

2(M + 1)

M∑
k=0

� � f (〈(x, y),ω(k�θ)〉,ω(k �θ)); (11.13)

here use is made of the symmetry (11.17). Assuming that all the necessary values of � � f
are known, the back-projection step requires O(M K 2) operations to determine f̃ on the
reconstruction grid, �τ . This step is also highly parallelizable: With O(K 2) processors the
back-projection could be done simultaneously for all points in �τ in O(M) cycles. The
serious work of implementing this algorithm is in deciding how to approximate the filter �
on data that are sampled in both t and ω.

In real applications the approximation to the transfer function of � is chosen to be an
approximation to |r |. Denote the approximate transfer function by φ̂ and define

Qφ f (t,ω) = 1

2π

∞∫
−∞

�̃ f (r,ω)φ̂(r)eirt dr.

In order for Qφ to approximate �, its modulation transfer function φ̂ should provide an
“approximation” to |r | over the effective support of the data. Exactly what is meant by
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this statement is a subject of considerable discussion. For example, as |r | is an even, real-
valued function φ̂ should also be. In order to have a stable algorithm and suppress noise, it
is important for φ̂ to tend to zero as |r | tends to infinity. In the end, whether or not a given
choice of φ provides a “good” approximation is largely an empirical question.

Once φ is chosen, the filtered Radon transform is given by

Qφ f (t,ω) =
∞∫

−∞
� f (s,ω)φ(t − s) ds

= 1

2π

∞∫
−∞

�̃ f (r,ω)φ̂(r)eirt dr.

(11.14)

With “complete data” the approximate reconstruction, defined by φ, would be

fφ(x, y) = 1

2π

π∫
0

Qφ f (〈(x, y),ω〉,ω) dω. (11.15)

Approximating the integrals in (11.14) on the sampled data, in either the spatial or fre-
quency representation, and using a Riemann sum approximation for the back-projection
gives an approximate reconstruction, f̃φ, at points (xm, yl) ∈ �τ ,

f̃φ(xm, yl) = d

2(M + 1)

M∑
k=0

N∑
j=−N

� f ( jd,ω(k �θ))φ(〈(xm , yl),ω(k �θ)〉− jd). (11.16)

Under the constraints mentioned previously, we try to choose the function φ to opti-
mize some aspect of this reconstruction. As always, there are trade-offs among efficiency,
resolution, and noise reduction. The function φ is often regarded as a parameter that can be
adjusted to achieve certain aims. In the imaging literature, φ̂ is often expressed as a product

φ̂(r) = A(r)|r |.

Here A is a function that tends to zero as |r | → ∞; it is called an apodizing function.
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(a) Simple bandlimiting. (b) The Hamming filter.

(c) The Hanning filter.

Figure 11.9. Filtered back-projection reconstructions of the Shepp-Logan phantom using
different apodizing functions.

Example 11.4.1. In this example we show the results of using different apodizing function
in the filtered back-projection algorithm. Figure 11.9 shows the results of applying the
filtered back-projection to the Shepp-Logan phantom using three standard filters, while
Figure 11.10 shows the differences between these images. In absolute terms the differences
are very small, and the gray levels in the difference images have been rescaled to show the
fine detail in these images.

In Figure 11.9(a), the apodizing function is χ[−B,B](r); this is called simple bandlim-
iting. In Figure 11.9(b), A(r) = (.3 + .7 cos

(
πr
B

)
)χ[−B,B](r), the “Hamming filter,” and

in Figure 11.9(c), A(r) = cos2( πr
2B )χ[−B,B](r), the “Hanning filter.” Notice that the band-

limited image is sharper than either the Hamming or Hanning image. All three images have
very pronounced oscillatory artifacts in the exterior of the largest ellipse. From the differ-
ence image it is clear that each filter produces different artifacts. The Hamming image also
shows a very pronounced Gibbs artifact in the interior of the large ellipse that is not present
in the other images.
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(a) Hamming−Hanning. (b) Hamming−bandlimit.

(c) Hanning−bandlimit.

Figure 11.10. The differences of the images in Figure 11.9 rescaled to show details.

Remark 11.4.2 ( Important notational remark). In the sequel, the notation fφ refers to
an approximate reconstruction of f using “complete data” like that in (11.15), whereas f̃φ
refers to a discretization of this integral, as in (11.16).

This family of reconstruction formulæ has an important feature that follows from the
fact that the quantity

〈(x, y),ω(k �θ)〉 − jd

is the signed distance from the line l jd,ω(k �θ) to the point (x, y) The algorithm defined by
φ can be expressed as

f̃φ(x, y) = d

2(M + 1)

M∑
k=0

N∑
j=−N

� f ( jd,ω(k �θ))φ(dist[(x, y), l jd,ω(k �θ)]).

This is also a feature of the exact reconstruction formula. We now consider the details of
implementing (11.16) on parallel beam data.
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Exercise
Exercise 11.4.3. Show that

� � f (−t,−ω) = � � f (t,ω). (11.17)

11.4.3 Linearly Interpolated Filters

From formula (11.16) it would appear that the computation of f̃φ(xm, yl), for a point
(xm, yl) ∈ �τ , requires a knowledge of the values

{φ(〈(xm, yl),ω(k �θ)〉− jd) for

−N ≤ j ≤N, −K ≤ l,m ≤ K and 0 ≤ k ≤ M}. (11.18)

The discrete filtering operation could still be done as soon as all of the data from a view,
{� f ( jd,ω(k �θ)) : −N ≤ j ≤ N}, are collected. But from (11.18), it would appear that a
different filter function is required for each point in �τ . In other words, the filter step would
have to be repeated O(K 2) times for each view! Ramachandran and Lakshminarayanan
found a computational shortcut so that the filter operation would only have to be done once
for each view. Their idea was to fix values of φ at the sample points, {φ( jd) : −N ≤ j ≤
N} and then linearly interpolate φ to the intermediate values.

We first consider what this means and why it reduces the computational load in the
implementation of the filtered back-projection algorithm so dramatically. The function φ is
defined to be linear between the sample points hence for any α ∈ [0, 1],

φ(α(k + 1)d + (1 − α)(kd))
d= αφ((k + 1)d)+ (1 − α)φ(kd).

Since

α(k + 1)d + (1 − α)(kd)− jd = α(k + 1 − j)d + (1 − α)(k − j)d,

we have the relations

φ(α(k + 1)d + (1 − α)(kd)− jd) = αφ((k + 1 − j)d)+ (1 − α)φ((k − j)d). (11.19)

For each (xm, yl) ∈ �τ and direction ω(k �θ) there is an integer nklm ∈ [−N, N ] such that

nklmd < 〈(xm, yl),ω(k �θ)〉 ≤ (nklm + 1)d.

Thus there is a number αklm ∈ [0, 1] so that

〈(xm, yl),ω(k �θ)〉 = αklm(nklm + 1)d + (1 − αklm)nklmd.

The trivial but crucial observation is that (11.19) implies that, for any integer j,

〈(xm, yl),ω(k �θ)〉 − jd = αklm [(nklm + 1)d − jd] + (1 − αklm)[nklmd − jd]. (11.20)
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If φ is linearly interpolated between sample points, then

Qφ f̃ (〈(xm, yl),ω(k �θ)〉,ω(k �θ)) = αklm Qφ f̃ ((nklm + 1)d,ω(k �θ))

+ (1 − αklm)Qφ f̃ (nklmd,ω(k �θ)).
(11.21)

In other words, Qφ f̃ (〈(xm, yl),ω(k �θ)〉,ω(k �θ)) is a weighted average of Qφ f̃ at a pair
of sample points. The interpolation can even be done as part of the back-projection step:

f̃φ(xm, yl) =
1

2(M + 1)

M∑
k=0

[
αklm Qφ f̃ ((nklm + 1)d,ω(k �θ))+ (1 − αklm)Qφ f̃ (nklmd,ω(k �θ))

]
.

(11.22)

As a practical matter, the sampling angles and reconstruction grid are essentially fixed and
therefore the coefficients, {αklm, nklm} can be evaluated once and stored in tables.

The filtered back-projection algorithm, using a linearly interpolated filter, is the follow-
ing sequence of steps:

STEP 1: For each view (fixed k), approximately compute the filtered Radon transform,
Qφ f̃ ( jd,ω(k �θ)) at sample points. The Riemann sum approximation is

Qφ f̃ ( jd,ω(k �θ)) = d
N∑

n=−N

� f (nd,ω(k �θ))φ(( j − n)d).

STEP 2: Back-project using (11.22), with linearly interpolated values for

Qφ f̃ (〈(xm, yl),ω(k �θ)〉,ω(k �θ)),

to determine the values of f̃φ(xm, yl) for (xm, yl) ∈ �τ .

Step 1 can be done a view at a time; it requires a knowledge of φ( jd) for −(2N − 1) ≤
j ≤ (2N − 1). The calculation of Qφ f̃ ( jd,ω) is a discrete convolution that is usually
computed using the FFT.

As noted previously, the coefficients used in the back-projection step can be computed
in advance and this step can also be parallelized. The interpolation used in the filtered
back-projection is interpolation of a slowly varying, real-valued function and is much less
delicate than that needed to do direct Fourier reconstruction. Empirically it leads to an
overall blurring of the image but does not introduce complicated oscillatory artifacts or
noise. Approximately M K 2 calculations are required once the values {Qφ f̃ ( jd,ω(k �θ))}
are computed. Using an FFT, the computation of Qφ requires about M N log2 N -steps
and using a direct convolution about M N2-steps. The FFT is clearly faster, but the back-
projection step already requires a comparable number of calculations to that needed for a
direct convolution.
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Remark 11.4.3. In their original work, Ramachandran and Lakshminarayanan used the
apodizing function defined by simple bandlimiting so that

φ( jd) = 1

2π

B∫
−B

|r |eir jd dr.

In medical applications this is usually called the Ram-Lak filter.

Exercises

Exercise 11.4.4. How should formula (11.16) be modified if sampling is done around the
full circle (i.e., θ varies between 0 and 2π )?

Exercise 11.4.5. Compute {φ( jd)} for the Ram-Lak filter with B = π
d .

11.4.4 The Shepp-Logan Analysis of the Ram-Lak Filters

See: B.5.

Ramachandran and Lakshminarayanan introduced the linear interpolation method de-
scribed in the previous section as a way to reduce the computational burden of the filtered
back-projection algorithm. Initially it was assumed that using linear interpolation to define
φ would result in a significant loss in accuracy. However, that turned out not to be the case.
Shepp and Logan explained the “surprisingly” high quality of the Ram-Lak reconstructions
by analyzing the filter defined by

φ(0) = 4

πd2
, φ(kd) = −4

πd2(4k2 − 1)
, (11.23)

with φ linearly interpolated between sample points. This function has a tall narrow peak at
zero and a long negative tail. Figure 11.11 shows φ with d = .28 along with the impulse
response for an approximation to � obtained in Section 6.4.
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Figure 11.11. The piecewise linear impulse response for the Shepp-Logan filter and a
continuous approximation.

The transfer function of the Shepp-Logan filter is given by

φ̂(r) = |r || sinc

(
rd

2

)
|3. (11.24)

Formula (11.24) is derived in an appendix to this section. From the Taylor series of sinc x,

sinc x = 1 − x2

3! + x4

5! + · · · ,

we obtain that

φ̂(r) = |r | [1 + O(r2d2)
]3

= |r |[1 + O(d2r2)].

By choosing d small enough, φ̂ can be made close to |r | over any fixed interval. Hence the
Shepp-Logan filter function is even and resembles |r | for “small” values of r. Here small
is in comparison to effective bandwidth of the computation, which equals π

d . The relative
error at π

d ,

|φ̂(πd )− π
d |

π
d

=
[

2

π

]3

≈ 1

4
,

is also not excessive. The transfer function does not have bounded support but decays
like |r |−2. Nonetheless, φ̂ has the general features described previously for a good filter
function.

Earlier approaches to image reconstruction in x-ray CT used χ[0, πd ](|r |) as the apodizing
function and did not use linear interpolation. In this case the point spread function is given
by

π

d

sin(π t
d )

π t
− 1 − cos(π t

d )

π t2
.
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Note that this function decays like t−1 as t → ∞. This is because the jump discontinuities
in the transfer function at ±π

d determine the asymptotics of the inverse Fourier transform
as t tends to infinity.

Formally, the impulse response of the exact filter is a constant times ∂t P.V. t−1, which
decays like t−2 at infinity. Another desirable consequence of linear interpolation is that φ
decays at the same rate. If ψ̂, the Fourier transform of a function, behaves like |r | near zero
and is otherwise smooth, with absolutely integrable derivatives, then ψ decays at infinity
like t−2. The inverse Fourier transform, ψ, is computed by twice integrating by parts:

ψ(t) = 1

2π

⎡⎣ 0∫
−∞

+
∞∫

0

⎤⎦ ψ̂(r)eitr dr

= eitr

2π i t
ψ̂(r)

∣∣∣∣0−∞
+ eitr

2π i t
ψ̂(r)

∣∣∣∣∞
0

− 1

2π

⎡⎣ 0∫
−∞

+
∞∫

0

⎤⎦ eitr

i t
ψ̂ ′(r)dr

= eitr

2π t2
ψ̂ ′(r)

∣∣∣∣0−∞
+ eitr

2π t2
ψ̂ ′(r)

∣∣∣∣∞
0

− 1

2π

⎡⎣ 0∫
−∞

+
∞∫

0

⎤⎦ eitr

t2
ψ̂ ′′(r)dr

= ψ̂ ′(0−)− ψ̂(0+)
2π t2

+ o(
1

t2
) = −1

π t2
+ o(

1

t2
).

The last line is a consequence of the fact that ψ̂ ′(0−) = −1 and ψ̂ ′(0+) = 1.

The transfer function in the Shepp-Logan example is not smooth away from 0 but does
have two weak derivatives. This suffices for the argument given previously to apply, and
therefore, as t tends to infinity,

φ(t) = −1

π t2
+ o(

1

t2
).

So not only does the transfer function of the Shepp-Logan filter resemble |r | near r = 0,
but the point spread function also resembles that of −i∂t � near infinity. This explains, in
part, why linear interpolation leads to filters that provide a good approximation to the exact
filtration step in the filtered back-projection formula. The Shepp-Logan analysis applies to
a large class of filters defined by selecting values for φ at the sample points and linearly
interpolating in between. We close this section with an example showing the output of the
Shepp-Logan filter applied to the Radon transform of the characteristic function of a disk.
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Figure 11.12. Shepp-Logan filters applied to � f.

Example 11.4.2. Let f be the characteristic function of the disk of radius 1 centered on
(0, 0). Its Radon transform is

� f (t,ω) = 2
√

1 − t2χ[−1,1](t).

Graphs of Qφ f are shown in Figure 11.12 with d = .1, .04, .02, .005. For comparison,
the exact filtered function, −i�∂t � f, computed in (6.33) is also shown. Apart from small
intervals around t = ±1, the two functions are almost indistinguishable.

Exercises
Exercise 11.4.6. Show that φ̂ has a weak second derivative away from r = 0.

Exercise 11.4.7. Give an argument showing that φ(t) = O(t−2) as t tend to infinity that
does not use the Fourier transform. Hint: Use (11.23).

Appendix: The Transfer Function for Linearly Interpolated Filters∗.

How is the Fourier transform of the interpolated filter function found? This is a nice application of
the theory of generalized functions (see Sections A.4.5 and 4.4.4). We follow the derivation in [74].
Let the sample spacing be d, and suppose that the samples φn = φ(nd) are specified. The function
φ is defined at intermediate points by interpolation. To compute φ̂, φ is written as a convolution,
allowing for different interpolation schemes.
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Let P denote the generalized function

P(t) = d
∞∑

n=−∞
φnδ(t − nd)

and I a function with support in the interval [−d, d] and total integral 1. The filter function is defined
at intermediate points by setting

φ(t) = I ∗ P(t).

If

I (t) = 1

d

(
1 − |t|

d

)
χ[0,d](|t|),

then φ is a linearly interpolated filter, while

I (t) = 1

d
χ[− d

2 ,
d
2 ](|t|)

produces a piecewise constant interpolant. The Fourier transform of P is the
(

2π
d

)
-periodic function

P̂(r) =
∞∑

n=−∞
dφne−indr

(see Exercise 8.2.3).
Using the convolution theorem for the Fourier transform gives

φ̂(r) = P̂(r) Î (r).

For a linearly interpolated filter,

Î (r) = sinc2
[

rd

2

]
.

Piecewise constant interpolation gives

Î (r) = sinc

[
rd

2

]
.

Linear interpolation gives a smoother point spread function that is reflected in the faster rate of
decay of the corresponding transfer function. In the Shepp-Logan example, the transfer function
can be rewritten as

φ̂ = 2

d
| sin(

rd

2
)| · sinc2

[
rd

2

]
with the sinc2-factor the result of using linear interpolation.

Exercises
Exercise 11.4.8. For the Shepp-Logan example, (11.23), give the details of the computation of
P̂(r).
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Exercise 11.4.9. Suppose that a filter function is defined at sample points by

φn = 1

2π

π
d∫

− π
d

|r |eirnd dr.

What is P̂(r)? Does the corresponding point spread function decay like O(t−2) as t tends to infinity?

Exercise 11.4.10. Find conditions that the sequence of values < φn > must satisfy in order for the
argument in the previous section to apply to show that φ̂(r) behaves like |r | for small r and φ(t)
behaves like t−2 for large t .

11.4.5 Sample Spacing in a Parallel Beam Machine

In a parallel beam scanner with filtered back-projection as the reconstruction algorithm,
there are three different sample spacings. We discuss how these parameters are related; our
discussion is adapted from [76]. Assume that the attenuation coefficient is supported in the
disk of radius L and that the measurements are samples of � f. The finite width of the x-ray
beam, which has been ignored thus far, has significant implications for this analysis. We
return to this question in Section 12.3.

The sample spacings are as follows:

(1) The reconstruction grid sample spacing, τ : The reconstruction is usually done in a
square, say [−L , L] × [−L , L], which is divided into a (2K + 1) × (2K + 1) grid,
τ = L K−1.

(2) Spacing between consecutive projection angles: �θ = π
M+1 .

(3) The sample spacing in the affine parameter is d = L N−1. There are 2N + 1 samples
of each projection.

2K+1

  L
2K+1 L−

(a) The reconstruction grid.

π

Δθ

π
π

Δθ
d

d
L

(b) Sampling in frequency space.

Figure 11.13. How to choose sample spacings.
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A priori each of these numbers could be chosen independently; in practice once one is
fixed, it is possible to determine reasonable values for the others. The data are effectively
bandlimited, and the sample spacings are chosen to reflect the essential bandwidth of the
data. The sample spacing in the affine parameter is d = L

N . From Nyquist’s theorem, it
follows that, in order to avoid aliasing in this measurement, the effective bandwidth of the
object (or at least its Radon transform) should be 2π

d . This implies that f̂ (rω) should be
essentially supported in the disk of radius of π

d . Along each radial line, l0,ω(k �θ), the Fourier

transform, f̂ , is sampled at N points and therefore the sample spacing in this direction
is about π

L . The widest sample spacing of f̂ in the angular direction, at least within the

effective support of f̂ is therefore �θ π
d [see Figure 11.13(b)]. A reasonable criterion is to

choose parameters so that the worst angular resolution, in the Fourier domain, is equal to
the resolution in the radial direction. This means that

�θ
π

d
= π

L
, implying that M + 1 = π

2
(2N + 1).

We are sampling a function supported in the square [−L , L]×[−L , L] and then using a
filtered back-projection algorithm to reconstruct the image. To use filtered back-projection,
we must zero pad the measured data. As a periodic function, the (zero padded) data are
defined by its values in the square [−2L , 2L] × [−2L , 2L] and then extended periodically.
Taking account of the zero padding, we have essentially 4N × 4N samples of the Fourier
transform of this function, and therefore we should use an equal number of grid points in
the square with side length 4L . This implies that we should take K � N, so that τ ≈ d.
With K ≈ N we are not sacrificing any resolution that is in our measurements, nor are
we interpolating by using partial sums of the Fourier series. A slightly different way to
view this question is to choose the sample spacing in the reconstruction grid so that the
number of measurements equals the number of nontrivial reconstruction points. There are
approximately πK 2 grid points in the circle of radius L . About 2M N samples of � f are
collected. Using M ≈ πN, from before, implies that K should be approximately

√
2N, so

that τ ≈ d√
2
.

A careful analysis of this question requires a knowledge of the “full” point spread
function, which incorporates the measurement process, sampling, and reconstruction algo-
rithm. This is complicated by the observation that the map from the “input” f to the output
{ f̃ (xm, yl)} is not, in any reasonable sense, a shift invariant filter and so it does not have a
point spread function, per se. We return to this question after we have considered various
physical limitations of the measurement process. This problem is sufficiently complicated
that a final determination for the various parameters must be done empirically. A circa 2002
commercial fan beam scanner uses 1500 to 2500 views per slice with about 1500 rays/view.
This is in reasonably good agreement with the previous computation. The reconstruction is
done on a 512 × 512 or 1024 × 1024 grid.
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Exercise

Exercise 11.4.11. Explain why the effective bandwidth of a function f and the effective
bandwidth of its Radon transform � f (t,ω), in the t variable, are the same. By effective
bandwidth we mean the effective bandwidth of the data itself, not the effective bandwidth
of the subsequent computations implied by the sampling rate.

11.5 Filtered Back-Projection in the Fan Beam Case

We now consider reconstruction algorithms for a fan beam scanner. A view for a parallel
beam scanner consists of measurements of � f for a family of parallel lines, and therefore
the central slice theorem applies to give an approximation to the Fourier transform of the
attenuation coefficient along lines passing through the origin. A view, for either type of fan
beam scanner, consists of samples of � f for a family of lines passing through a point, and
so the central slice theorem is not directly applicable. There are two general approaches
to reconstructing images from the data collected by a fan beam machine: (1) Re-sort and
interpolate to obtain the data needed to apply the parallel beam algorithms discussed ear-
lier, (2) work directly with the fan beam geometry and find algorithms well adapted to it.
Herman, Lakshminarayanan, and Naparstek first proposed an algorithm of the second type
in [55]. Our derivation of this algorithm closely follows the presentation in [76]. In this
section, ξ is used for the Fourier variable so as to avoid confusion with the Euclidean radius
function that is denoted by r. This section may be omitted without any loss in continuity, as
we use the parallel beam formula in the analyses of imaging artifacts presented in the next
chapter.

11.5.1 Fan Beam Geometry

It is convenient to use a different parameterization for the lines in the plane from that used
earlier. As before, (t, θ) denotes parameters for the line with oriented normal ω(θ) at dis-
tance t from the origin. To simplify the notation, we use � f (t, θ) to denote � f (t,ω(θ)).
Consider the geometry shown in Figure 11.14. Here S denotes the intersection point of the
lines defining a view. It lies a distance D from the origin. The central ray [through S and
(0, 0)] makes an angle β with the positive y-axis. The other lines through S are parameter-
ized by the angle, γ, they make with the central ray. These parameters define coordinates
on a subset of the space of oriented lines. They are related to the (t, θ) variables by

θ = γ + β and t = D sin γ ; (11.25)

we call (β, γ ) fan beam coordinates.
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S

θ

t

D

γ
β

θ= γ+β
Figure 11.14. Fan beam geometry.

We now derive the continuous form of the approximate reconstruction formula used in
fan beam algorithms. This is the analogue of the formula,

fφ(x, y) = 1

2π

π∫
0

L∫
−L

� f (t, θ)φ(x cos θ + y sin θ − t) dt dθ, (11.26)

with φ the filter function, used for a parallel beam scanner. In (11.26) the weighting of
different lines in the filtering operation depends only on their distance from the point (x, y).
This general form is retained for the moment, though by the end of the calculation we end
up with approximations that do not satisfy this condition. It is convenient to use polar
coordinates, (r, ϕ) in the reconstruction plane,

(x, y) = (r cos ϕ, r sin ϕ).

So as not to confuse it with the polar angle or the parallel beam filter function, we let κ
denote the filter function. This function is assumed to be smooth and decaying at infinity.
In polar coordinates (11.26) becomes

fκ(r, ϕ) = 1

2

2π∫
0

L∫
−L

� f (t, θ)κ(r cos(θ − ϕ)− t) dt dθ. (11.27)

Our goal is to reexpress the reconstruction formula in fan beam coordinates, as a filtered
back-projection. Because of the geometry of the fan beam coordinates, this is not quite
possible. Instead the final formula is a weighted, filtered back-projection.
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−

(a) Physical parameters in a fan beam scanner.

γ
φ,β)
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β
D

S
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φ β−φ
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'

(b) Variables for the reconstruction formula.

Figure 11.15. Quantities used in the fan beam, filtered back-projection algorithm.

Using the relations in (11.25) to reexpress this integral in fan beam coordinates gives

fκ(r, ϕ) = 1

2

2π∫
0

γL∫
−γL

� f (D sin γ, β + γ )κ(r cos(β + γ − ϕ)− D sin γ )D cos γ dγ dβ.

The function f is supported in the disk of radius L . The limits of integration in the γ -
integral, ±γL, are chosen so that the lines corresponding to the parameters

{(β, γ ) : β ∈ [0, 2π), −γL ≤ γ ≤ γL}
include all those intersecting DL . The total angle 2γL is called the fan angle. The data actu-
ally collected with a fan beam machine are an approximation to uniformly spaced samples
in the (β, γ )-coordinates. To simplify the notation we introduce

P f (β, γ )
d= � f (D sin γ, β + γ ).

In terms of these data, the formula reads

fκ(r, ϕ) = 1

2

2π∫
0

γL∫
−γL

P f (β, γ )κ(r cos(β + γ − ϕ)− D sin γ )D cos γ dγ dβ.

From the trigonometric identity

cos(a + b) = cos(a) cos(b)− sin(a) sin(b)

it follows that

r cos(β + γ − ϕ)− D sin γ = r cos(β − ϕ) cos γ − [r sin(β − ϕ)+ D] sin γ. (11.28)
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Let l(r, ϕ, β) be the distance from S to the point (x, y) and let γ ′ be the angle between the
ray SO and the ray S(x, y). As S is outside the reconstruction grid, the function l(r, ϕ, β)
is strictly positive for points of interest, with

l cos γ ′ = D + r sin(β − ϕ), (11.29)

l sin γ ′ = r cos(β − ϕ). (11.30)

As functions of (r, ϕ, β), the distance, l and the angle γ ′ are given by

l(r, ϕ, β) =
√
[D + r sin(β − ϕ)]2 + [r cos(β − ϕ)]2,

γ ′(r, ϕ, β) = tan−1 r cos(β − ϕ)

D + r sin(β − ϕ)
.

Using (11.28) and (11.30), the argument of κ can be rewritten

r cos(β + γ − ϕ)− D sin γ = l(r, ϕ, β) sin(γ ′(r, ϕ, β) − γ ). (11.31)

With these substitutions, the expression for fκ becomes

fκ(r, ϕ) = 1

2

2π∫
0

γL∫
−γL

P f (β, γ )κ(l(r, ϕ, β) sin(γ ′(r, ϕ, β) − γ ))D cos γ dγ dβ. (11.32)

Using a slightly different functional form for the filter function κ leads to a much simpler
formula. In the next section we explicitly incorporate the condition that κ̂(ξ ) ≈ |ξ | for
small values of |ξ |.

Exercise
Exercise 11.5.1. Describe the subset of the space of lines parameterized by (β, γ ) in (11.25).

11.5.2 Fan Beam Filtered Back-Projection

Let χε be a family of functions of bounded support so that

lim
ε→0

χε = 1 for all ξ.

Tracing backward to (11.27) shows that the exact reconstruction of a function supported in
DL is obtained as the limit

f (r, ϕ) = lim
ε→0

1

4π

2π∫
0

γL∫
−γL

P f (β, γ )D cos γ

⎡⎣ ∞∫
−∞

eil sin(γ ′−γ )ξ |ξ |χε(ξ)dξ

⎤⎦ dγ dβ.

The β-integral is essentially a weighted back-projection and is innocuous. For the analysis
of the γ and ξ integrals, we let h(γ ) be a bounded function with bounded support and set

H (γ ′) = lim
ε→0

1

4π

γL∫
−γL

h(γ )D cos γ

⎡⎣ ∞∫
−∞

eil sin(γ ′−γ )ξ |ξ |χε(ξ)dξ

⎤⎦ dγ dβ.
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We change coordinates in the ξ -integral, letting

η =
[

l sin(γ ′ − γ )

γ ′ − γ

]
ξ,

to obtain

H (γ ′) = lim
ε→0

1

4π

γL∫
−γL

∞∫
−∞

h(γ )

[
γ ′ − γ

l sin(γ ′ − γ )

]2

|η|χε

(
η

[
γ ′ − γ

l sin(γ ′ − γ )

])
ei(γ ′−γ )η dη dγ.

The function h(γ ) has bounded support, and therefore the order of integration can be
interchanged. As an iterated integral,

H (γ ′) = 1

4π

∞∫
−∞

γL∫
−γL

h(γ )

[
γ ′ − γ

l sin(γ ′ − γ )

]2

|η|ei(γ ′−γ )ηdγ dη.

This is an exact formula for the filtering step expressed in fan beam coordinates. An ap-
proximation to this integral, different from (11.32), is given by

Hε(γ
′) = 1

2

γL∫
−γL

h(γ )

[
γ ′ − γ

l sin(γ ′ − γ )

]2

κε(γ
′ − γ ) dγ,

where

κε(γ ) = 1

2π

∞∫
−∞

|η|χε(η)e
iηγ dη.

From this calculation it follows that a reasonable approximation to f (r, ϕ) is given by

fκ(r, ϕ) = 1

2

2π∫
0

γL∫
−γL

P f (β, γ )

[
γ ′ − γ

l sin(γ ′ − γ )

]2

κ(γ ′ − γ )D cos γ dγ dβ,

where, as before, κ should be chosen so that κ̂(ξ ) � |ξ | over the effective bandwidth (in
the γ -variable) of P f (β, γ ). This formula can be rewritten as

fg(r, ϕ) =
2π∫

0

1

l2(r, ϕ, β)

γL∫
−γL

P f (β, γ )g(γ ′ − γ )D cos γ dγ dβ,

where

g(γ ) = 1

2

(
γ

sin γ

)2

κ(γ ).
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The weight factor, which comes from the geometry of the fan beam variables, is included in
the definition of the filter function. To interpret this formula as a weighted back-projection,
set

Qg f (β, γ ′) =
∫

P ′ f (β, γ − γ ′)g(γ ) dγ and

fg(r, ϕ) =
2π∫

0

1

l2(r, ϕ, β)
Qg f (β, γ ′) dβ.

(11.33)

Here P ′ f (β, γ ) = P f (β, γ )D cos γ and

γ ′(r, ϕ, β) = tan−1

[
r cos(β − ϕ)

D + r sin(β − ϕ)

]
.

11.5.3 Implementing the Fan Beam Algorithm

Using (11.33), we can describe an algorithm for image reconstruction, well adapted to the
geometry of a fan beam scanner. The fan beam data are

P f (β j , nα), where β j = 2π j

M + 1
, j = 0, . . . , M

and n takes integer values. The image is reconstructed in three steps.

STEP 1: Replace the measurements by weighted measurements; that is, multiply by the
factor D cos nα to obtain

P ′ f (β j , nα) = P f (β j , nα)D cos nα

STEP 2: Discretely convolve the weighted projection data P ′ f (β j , nα) with g(nα) to gen-
erate the filtered projection at the sample points:

Qg f̃ (β j , nα) = α[P ′ f (β j , ·) � g](nα),
where g(nα) = 1

2

(
nα

sin nα

)2

κ(nα).

The filter function κ is selected according to the criteria used in the selection of φ
for the parallel beam case: It should be real, even, and decay at infinity. For ξ in
the effective support of the data, κ̂(ξ ) ≈ |ξ |.

STEP 3: Perform a weighted back-projection of each filtered projection:

f̃g(xm, yl) ≈ �β

M∑
k=0

1

l2(xm, yl, βk)
Qg f (βk, γ

′(xm, yl, βk)).

As before, the values {Qg f̃ (βk, γ
′(xm, yl, βk))} were not computed in the previ-

ous step. They are obtained by using interpolation from the values, {Qg f (βk, nα)},
which were computed.
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If the values of the functions

{l(xm, yl, βk), γ
′(xm, yl, βk)}

as well as the interpolation coefficients are precomputed, then the computational load of this
algorithm is the same order of magnitude as that of the parallel beam, linearly interpolated
algorithm. Note that, as before, steps 1 and 2 can be performed as soon as the data from
a given view have been collected and the back-projection step can also be parallelized.
For a third-generation machine, a view is defined by the source position, so the filter step
can begin almost immediately. For a fourth-generation machine, a view is defined by a
detector position; hence the filtering step must wait until all the data for first view have been
collected. Once this threshold is reached, the filtering can again be effectively parallelized.

Example 11.5.1. Using the filter function defined by Shepp and Logan for g(nα) gives

gSL(nα) =
{

2
πα2 if n = 0,

−2
π sin2 nα

n2

4n2−1 if 	= 0.
(11.34)

The graph of this function with α = .21 is shown in Figure 11.16(a).

Example 11.5.2. In their original paper, Herman, Lakshminarayanan, and Naparstek used
a slightly different function defined by

gHLN(nα) =
{

1
8α2 if n = 0 or even,

− 1
2π2 sin2(nα)

if n is odd.
(11.35)

The graph of this function for α = .21 is shown in Figure 11.16(b).

−5

5

10

−2 −1 1 2

(a) The impulse response for a Shepp-Logan fan
beam filter.

−1

1

2

−2 −1 1 2

(b) The impulse response for the HLN fan beam
filter.

Figure 11.16. The impulse responses for two fan beam filter functions.
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11.5.4 Data Collection for a Fan Beam Scanner

In the preceding derivation of the algorithm, it is assumed that data are collected for β ∈
[0, 2π). This means that every projection is measured twice, as two pairs of fan beam
coordinates (β1, γ1) and (β2, γ2) define the same line if and only if

γ1 = −γ2,

β1 − γ1 = β2 − γ2 + π ⇒ β1 = β2 + 2γ1 + π
(11.36)

[see Figure 11.17(a)]. With a parallel beam machine it suffices to collect data for θ ∈
[0, π), similarly, for a fan beam machine we do not need to have measurements for all
β ∈ [0, 2π). However, some care is required in collecting and processing smaller data sets.
The Radon transform satisfies

� f (t, θ) = � f (−t, π + θ).

In fan beam coordinates this is equivalent to

P f (β, γ ) = P f (β + 2γ + π,−γ ).

Sampling P f on the range

β ∈ [0, π ] and − γL ≤ γ ≤ γL

and using t = D sin γ and θ = β + γ gives the diagram, in (t, θ) space, shown in figure
11.17(b). The numbers show how many times a given projection is measured for (β, γ ) in
this range. Some points are measured once, some twice, and some not at all.
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β2

β1

γ1

   D D

γ2

−

(a) Symmetry in (γ, β)-coordinates.
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(b) Data collection in (t, θ)-
coordinates.
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(c) Data collection in (γ, β)-
coordinates.

Figure 11.17. Collecting data for fan beam scanners.

In order to gather a complete data set, it is necessary for β to go from 0 to π + 2γL .
Of course, even more values are now sampled twice. The preceding algorithm can be
used with measurements gathered over such a range; however, care must be taken to count
each projection exactly once. This can be done by multiplying the projection data by a
windowing function. For example, we could use

wβ(γ ) =
{

0 0 ≤ β ≤ 2γL + 2γ,

1 otherwise.

As usual, a sharp cutoff produces its own artifacts, so it is preferable to use a smoother
window. The window should be continuous and satisfy the conditions

(a) wβ1(γ1)+ wβ2(γ2) = 1, for pairs (β1, γ1), (β2, γ2) satisfying (11.36),

(b) wβ(γ ) ≥ 0.
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Given the known regularity of the data, a window function with a bounded, though not
necessarily continuous, first derivative usually suffices. An example is given by

wβ(γ ) =

⎧⎪⎪⎨⎪⎪⎩
sin2

[
πβ

4(γL−γ )

]
0 ≤ β ≤ 2γL − 2γ,

1 2γL − 2γ ≤ β ≤ π − 2γ,

sin2
[
π
4
π+2γL−β

γ+γL

]
π − 2γ ≤ β ≤ π + 2γL .

11.5.5 Rebinning

It is also possible to re-sort the fan beam data into collections of approximately parallel
projections, interpolate, and then use a parallel beam algorithm. One such method is called
rebinning. It requires that �β = α, from which it follows that

P f (mα, nα) = � f (D sin nα,ω((n + m)α)).

If n + m = q, then these are samples belonging to a single “parallel beam” view. Since
sin(n + 1)α− sin nα depends on n, these samples are not equally spaced in the t-direction.
Equally spaced samples of the parallel projections can be obtained by interpolating in this
direction. The interpolated data set could then be processed using a standard parallel beam
algorithm to reconstruct the image.

Another possibility is to select angles < γ−P, . . . , γP > so that

D(sin(γ j )− sin(γ j−1)) = �t, for j = 1 − P, . . . , P.

The fan beam data {P f (β j , γk)} are then equally spaced in the t-direction. Interpolating
in the β-parameter gives data that again approximate the data collected by a parallel beam
machine. Beyond the errors introduced by interpolations, these algorithms cannot be paral-
lelized effectively. This is because all the data from a slice need to be collected before the
interpolation and rebinning can begin.

11.6 Some Mathematical Remarks∗

In the foregoing sections we consider algorithms for approximately reconstructing an un-
known function f from finitely many samples of its Radon transform {� f (t j ,ωk)}. It is
reasonable to enquire what is the “best” we can do in approximating f from such data and,
if g is the “optimal solution,” then what does f − g “look like.” A considerable amount of
work has been done on these two questions. We briefly describe the results of Logan and
Shepp; see [89] and [88].

Assume that f is an L2-function that is supported in the disk of radius 1. It is assumed
that the complete projection � f (t,ω j ) is known for n-distinct directions. Logan and Shepp
examine the following problem: Find the function g ∈ L2(B1) such that

� f (t,ω j ) = �g(t,ω j ), j = 0, . . . , n − 1, (11.37)
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which minimizes

Var(g) =
∫
B1

(g(x, y) − ḡ)2 dx dy, where

ḡ = 1

π

∫
B1

g(x, y) dx dy.
(11.38)

Briefly, find the function g with the specified projection data and minimum L2-variation
from its mean. In light of the fact that many imaging artifacts are highly oscillatory, the so-
lution to this variational problem is a reasonable candidate for the “optimal reconstruction”
from finitely many (complete) projections.

In [89] it is shown that this problem has a unique solution of the form

g(x, y) =
n−1∑
j=0

α j (〈(x, y),ω j 〉),

where, as indicated, {α0(t), . . . , αn−1(t)} are functions of one variable. An explicit solution,
as Fourier series for the {α j } is obtained in the case that the angles are equally spaced. In
the general case, an algorithm is provided to determine these Fourier coefficients. In the
process of deriving the formula for the optimal function, necessary and sufficient conditions
are found for n-functions {r j (t)} to satisfy

r j (t) = � f (t,ω(
jπ

n
)), j = 0, . . . , n − 1

for some function f ∈ L2(B1). These are complicated relations satisfied by the sine-series
coefficients of the functions {r j (cos τ)}.

In [88] the question of how large n must be taken to get a good approximation is con-
sidered. The precise answer is rather complicated. Roughly speaking, if the Fourier trans-
form of f is essentially supported in a disk of radius n − n

1
3 , then, at least for n large,

n-projections suffice to find a good approximation to f. Moreover the error e = f − g is a
“high-frequency” function in the sense that∫

‖ξ‖<n−n
1
3

|ê(ξ)|2 dξ1 dξ2 ≤ λn

∫
B1

| f (x, y)|2 dx dy.

The coefficient λn tends to zero as n tends to infinity. These results are precise versions of a
heuristic principle in image reconstruction: A nonzero function f for which � f (t,ω) = 0
for “many” values of (t,ω) is necessarily highly oscillatory. This is a reflection of the
general experience that, with a good reconstruction algorithm, the error f − f̃φ is a highly
oscillatory function.
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11.7 Spiral Scan CT

Second-, third-, and fourth-generation CT machines collect data one slice at a time. For this
reason we could simply ignore the x3-variable and reconstruct each two-dimensional slice
separately. In the early 1990s a new design, called spiral or helical scan CT, was intro-
duced. To understand this modality we need to consider the earlier modalities in somewhat
greater detail. In this section we only describe a continuum model for the measurements
and the techniques used to process them. In a real machine these data are sampled and
discrete algorithms, similar to those described previously, are used to reconstruct an image.
For simplicity we consider only a third-generation machine, which is referred to, in this
section, as a “conventional scanner.” Our discussion is adapted from [26]. This section can
be omitted without any loss in continuity.
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(a) Schematic diagram of a spiral scan CT machine.
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(b) The source position as seen by the patient
on the moving table.

Figure 11.18. The geometry of spiral scan CT machines.

11.7.1 Interpolation methods

The x-ray source and detectors are mounted on a gantry that rotates in a plane called the
slice plane P. The patient is placed on a table at right angles to the slice plane [see Fig-
ure 11.18(a)]. With a conventional scanner, data for a slice are measured with the table
held stationary and the source-detector gantry rotating. Let P(β, γ, z′) denote the (contin-
uum) fan beam projection data for the slice with x3 = z′. After these data are collected, the
source-detector gantry stops, the table is translated by an fixed amount �z perpendicular to
P, and P(β, γ, z′ + �z) is measured. This process is repeated as many times as is needed
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to collect all the required slices, giving the data set

third = {P(β, γ, z′ + m�z) : β ∈ [0, 2π), −γL ≤ γ ≤ γL, m = 1, 2, . . . , M}.
For each value of m, samples of P(β, γ, z′ + m�z) can be used to reconstruct an approx-
imation to the slice μ(x, y, z′ + m�z). Because of the mechanical realities of starting and
stopping the gantry’s rotation and moving the patient table, this method for collecting data
is rather slow. Patient motion can be a significant problem in clinical applications of x-ray
CT. To reduce its effect, it is necessary to find faster methods for acquiring the data.

One such method is spiral scan CT. In this modality the source-detector gantry rotates
continuously while the patient is continuously pulled through the source-detector ring. The
continuum model for what is measured is the set of projections

spiral = {P(β, γ, z(β)) : β ∈ [βmin, βmax], −γL ≤ γ ≤ γL}.
Here β is a real number, not restricted to lie in [0, 2π); it should be thought of as the
total accumulated rotation angle of the source. The function z(β) is the x3-coordinate of
slice plane when the source has rotated through the angle β. Usually the table moves at a
constant speed so that z(β) = cβ + z′. From the perspective of the patient on the table, the
source traces a spiral in 3-space

{(D cos β, D sin β, z(β)) : β ∈ [−βmin, βmax]}
[see Figure 11.18(b)]. Mathematically, the data set spiral does not suffice to reconstruct
even a single two-dimensional slice of the μ. This is not surprising as it is a function of
only two variables. However, using interpolation, we can approximate slice data for a
single slice and use the reconstruction algorithms derived in the previous section to obtain
an approximation for μ(x, y, z).

There are many possible ways to define interpolated data, Pintrp, from the measurements
made in a spiral scan machine. We describe only the simplest; others are considered in [26].
Throughout this section we assume that the table moves at a constant linear speed and the
gantry rotates at a constant angular speed such that

∂βz = c.

The simplest approach is to simulate data for a single slice in which β ranges through
2π radians by using measurements for β ranging through 4π radians. Suppose we would
like to simulate fan beam data for the slice where

x3 = z0 = z(β0).

We use the measurements

{P(β, γ, z0 + c(β − β0) : β ∈ [β0 − 2π, β0 + 2π ], −γL ≤ γ ≤ γL}
to create an interpolated data set

{Pintrp(β, γ, z0) : β ∈ [β0, β0 + 2π ], −γL ≤ γ ≤ γL}.
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This can be accomplished, using linear interpolation, by setting

Pintrp(β, γ, z0) =
(
β − β0

2π

)
P(β, γ, z0 + c(β − β0))+(

2π + β0 − β

2π

)
P(β − 2π, γ, z0 + c(β − 2π − β0)),

(11.39)

for β ∈ [β0, β0 + 2π)]. The fan beam filtered back-projection algorithm can be applied to
Pintrp(β, γ, z0) to obtain an approximate reconstruction for μ(x, y, z0).

This approach has some problems. The most obvious problem is that the interpolated
data are inconsistent. This is inevitable because for each value of β, projection data are
obtained from a different function. This problem is most pronounced for the first and last
scans: The interpolation scheme defines

Pintrp(β0, γ , z0) = P(β0 − 2π, γ, z0 − 2πc) and

Pintrp(β0 + 2π, γ, z0) = P(β0, γ , z0).
(11.40)

These two functions of γ may be quite different, whereas if this were projection data from a
single function, they would be identical. Inconsistency in the data produces artifacts in the
reconstructed images that appear as streaks. The severity of this problem is proportional to
c : the faster the table moves, the more the individual measurements vary.

If the table is stationary during the acquisition of a slice, then the slice thickness,
2�mm, is determined by the width of the x-ray beam and size of the detector. Indeed the
slice selectivity profile, defined in (11.3), is very close to a rectangle of width 2�mm. In a
spiral scan machine, the x-ray beam and detector still have thickness 2�mm, but the data
for a single “slice” are obtained with the x3-coordinate of the source ranging over an interval
of width (4πc)mm. Naively, the slice thickness could be estimated to be (2�+ 4πc)mm.
A more careful analysis shows that the interpolation scheme weights the data for values of
β close to β0 more heavily than the data near the β0 ± 2π. Nonetheless, the intuition that
the effective slice thickness increases with c is correct.

For a spiral scan machine the slice selectivity profile is no longer a rectangle. It depends
on a variety of parameters, including the beam width, the interpolation scheme, as well as
a new parameter called the pitch. If the table moves at a speed of v mm

s and the rotational
period of the gantry is ρ seconds, then the pitch is the dimensionless number defined to be

p = v

2�
× ρ.

It is the multiple of the slice thickness that the source moves in one full rotation of the
gantry. If the pitch is less than 1, then the anatomy involved with the measurement at β
overlaps that involved with the measurement at β + 2π. If the pitch is greater than 1, then
these slabs do not overlap. A smaller pitch leads to less inconsistency in the data and to a
narrower effective slice. It also increases the time needed to scan a large region somewhat
defeating the original purpose of the spiral scan machine. There are evidently trade-offs
among scan time, slice thickness, and data consistency. This is discussed in detail in [132]
and [94].
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In our discussion of fan beam algorithms, we observed that, due to the symmetry of
the Radon transform, measurements of P(β, γ, z0) for β ranging from β0 to β0 + π + 2γL

are sufficient to apply the fan beam filtered back-projection algorithm. Using this fact,
interpolation schemes employing spiral scan measurements for β ranging over an interval
of length 2(π + 2γL) have been developed. Using a smaller range of angles reduces both
the effective slice thickness and the inconsistencies in the interpolated data. These methods
require more complicated weighting schemes. Several such methods are described in [26].

We close this brief account of spiral scan machines with an observation about the place-
ment of slices. In a conventional scanner, data are collected for a discrete sequence of slices
{z′ + m�z : m = 1, 2, . . . , M} and nothing is measured “in between.” In a spiral scan
machine, data are acquired for a “continuously” varying collection of slices. With the in-
terpolation methods described previously, we are free to select the center, z0, of the slice.
In this way we can reconstruct images from more slices than would be available in a con-
ventional machine. This has been found to improve the visualization of three-dimensional
structures as well as the sensitivity of the CT scanner to small high-contrast objects. This
is considered in detail in [94].

11.7.2 3d-Reconstruction Formulæ

In addition to the interpolation methods described previously, which use spiral scan data to
simulate conventional scanner data, there are other methods that use a three-dimensional
data set directly to reconstruct an image. This approach requires entirely different recon-
struction algorithms. In the most recent machines there are several rows of detector arrays
set side by side on the gantry. For each position of the source-detector gantry, these ma-
chines collect samples of line integrals of μ for lines lying in a two-dimensional family;
this is called cone beam data. The mathematical basis for much of the recent work on 3d-
reconstruction methods is Grangeat’s formula, which relates the “cone-beam” transform to
the 3-dimensional Radon transform, treated in Section 6.7. We close this section by giving
this formula.

The cone beam transform is a map from functions on �3 to functions on �3×S2 defined
by the integral:

D f (y, θ) =
∞∫

0

f (y + tθ)dt. (11.41)

Note that the integral runs from 0 to ∞. Because the x-ray source lies outside the object
being imaged, the data collected in any x-ray CT machine can be modeled as samples of
the cone beam transform, with source points y lying along a curve in �3. In the section
above we considered the case where the source moves along a helix surrounding the object
being imaged.

If θ and ω are orthogonal unit vectors, then we define

∇θ D f (y,ω) = ∂t D f (y, tθ +
√

1 − t2ω) �t=0 . (11.42)
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Recall that the 3d-Radon transform of f is the function on � × S2 defined by

R f (s,ω) =
∫

{x: x·ω=s}
f (x)d A. (11.43)

The basis for the 3d-reconstruction formulæ is:

Theorem 11.7.1 (Grangeat’s formula). If f is a compactly supported function defined in
�3, and y ∈ �3 satisfies y · θ = s, then

∂s R f (s, θ) =
∫

θ⊥∩S2

∇θ D f (y,ω)dω. (11.44)

As everything is rotationally invariant it suffices to prove this theorem for θ = (0, 0, 1).
Once this is understood, the proof of the theorem is a simple calculation, which we leave
to the reader. This formula is a very good starting pointing for deriving inversion formulæ,
as the inverse of the 3d-Radon transform is given by

f (x) = −1

8π2

∫
S2

∂2
s R f (x · θ, θ)d AS2 . (11.45)

A discussion of these methods is beyond the scope of this text; the interested reader is
directed to [77], [65], [46], [96] or [78]. The first reference is a monograph devoted to the
problems of reconstruction in cone beam machines.

11.8 The Gridding Method∗

The algorithms described previously are generally known as filtered back-projections. Let
f denote the function we would like to reconstruct and f̂ its Fourier transform. If the
numbers of samples collected in the radial and angular directions are O(N) and the re-
construction is performed on an N × N grid, then these methods require O(N3) arithmetic
operations. Sampling f̂ on a uniform rectangular grid allows the use of a fast direct Fourier
inversion to obtain an approximation to f in O([N log2 N ]2) operations. Neither a parallel
beam, nor fan beam machine collects data that are easily converted to uniformly spaced
samples of f̂ . In this section we discuss the gridding method, which is a family of efficient
methods for passing from realistic data sets to uniformly spaced samples of a function sim-
ply related to f̂ . These methods work in any number of dimensions, so we describe this
method in �n for any n ∈ �.

Let f denote a function defined on �n that is supported in a cube

D = [−M, M] × · · · ×
n−times

[−M, M],

and f̂ its Fourier transform. Suppose that samples of f̂ are collected on a discrete set
{ yl : l = 1, . . . , L}, and we wish to determine approximate values of f on another discrete
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set {x j : j = 1, . . . , J }. The sort of approximation to f (x j ) we are considering uses the
data to approximate the inverse Fourier transform by a sum of the form:

f (x j ) ≈ 1

(2π)n

L∑
l=1

f̂ (y j )e
ix j · yl cl . (11.46)

The gridding method is a technique for efficiently evaluating sums like that appearing in
equation (11.46). The accuracy of this sum as an approximation for f (x j ) depends, in a
very subtle way on the choice of the coefficients {cl}. The accuracy in going from (11.46)
to its faster, gridding approximation is much easier to control.

This sum can be thought of as a Riemann sum for the inverse Fourier transform:

f (x) = 1

(2π)n

∫
�n

f̂ (y)ei y·xd y. (11.47)

This interpretation suggests that we should efficiently divide up the space containing the
sample points { yl} into disjoint polyhedra {Pl}, and then, for each l, define the coefficient cl

to be the n-dimensional volume of |Pl |. This is a reasonable thing to try, but in fact, using
these “geometrically defined” coefficients does not usually give a very accurate approxi-
mation to f (x j ). The value of a Fourier integral is largely determined by the cancellations
that occur due to the oscillatory nature of the integrand. If the samples of f̂ are uniformly
spaced, then, using the obvious choice of coefficients: cl = c, for all l, these cancellations
also occur between the terms of the finite sum, and we obtain a very accurate approximation
to the integral. See Section 10.2.2.

When the samples are not uniformly spaced, then, using the geometrically defined co-
efficients does not allow these cancellations to occur, and the sum does not, in general,
provide an accurate approximation to f (x j ). The problem of “optimally” selecting the co-
efficients is not, as of 2007, in any real sense, solved, see [48]. For the remainder of this
chapter we simply assume that the coefficients {cl} are fixed. As noted above, the grid-
ding method is just a technique for accelerating the evaluation of sums like that appearing
in (11.46), for {x j } lying on a uniformly spaced grid.

Suppose that w is a function that is positive on the support of f, and that its Fourier
transform ŵ is a function with small effective support. Suppose, moreover that we can
efficiently evaluate both w and ŵ. The basis of the gridding method is the following obser-
vation: Define the function

f̃ (x) = 1

(2π)n

L∑
l=1

f̂ (y j )e
ix · yl cl . (11.48)

The Fourier coefficients of the function w · f̃ (x) are given by

̂w · f̃ (k) = 1

(2π)n

L∑
l=1

f̂ (yl)ŵ(k − yl)cl . (11.49)
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Using this sum to evaluate the Fourier transform ̂w · f̃ (ξ k), for {ξ k} lying on a uniform
grid, we can use the fast (inverse) Fourier transform to evaluate an accurate approximation
to {w · f̃ (x j )}, for {x j } on the dual, uniform grid. If the (effective) support of ŵ is small
enough then, using a small number of operations, we can accurately evaluate the sums
in (11.49). Thus the total amount of computation needed to evaluate w(x j ) · f̃ (x j ) can
be made much smaller than that needed to directly evaluate the sums in equation (11.46)
for j = 1, . . . , J. To determine { f̃ (x j )} we need to divide the computed values, {w(x j ) ·
f̃ (x j )}, by {w(x j )}. This does not change the number of operations in a significant way,
but explains why we need to assume that the values {w(x j )} are bounded away from zero.

Let Sdata = { yl : l = 1, . . . , L} denote a set of points in �n; the data that are available
are approximations to the samples { f̂l ≈ f̂ (yl) : l = 1, . . . , L}. Suppose that these points
lie in a cube

E = [−B, B] × · · · ×
n−times

[−B, B]

in Fourier space. In order for this (or any other) method to provide good results, it is
necessary that the actual Fourier transform of f be small outside of E (i.e., 2B should

equal or exceed the effective bandwidth of f ). The goal is to compute the values of ̂w · f̃
on a uniformly spaced grid in E and use the FFT to reconstruct w · f̃ ≈ w · f.

Let d = B/N denote the sample spacing (equal in all directions) in E . Use the bold
letters j, k to denote points in �n. The subset Sunif ⊂ �n indexes the sample points in E
with (k1, . . . , kn) = k ∈ Sunif if

−N ≤ ki ≤ N, i = 1, . . . , n,

then
Sunif " k ↔ (dk1, . . . , dkn) ∈ E .

From the discussion in Section 8.2.1 it follows that the effective field of view of our sampled
Fourier data is 2π/d. That is, in order to avoid spatial aliasing, d must be chosen small
enough so that the function f is (essentially) supported in

G = [−π

d
,
π

d
] × · · · ×

n−times
[−π

d
,
π

d
].

If the set of sample points { yl} is a sufficiently dense subset of E, and d, the sample spacing
in the Fourier domain, satisfies M ≤ π/d, then spatial aliasing does not occur. The sample
points in G are also indexed by Sunif with

Sunif " k ↔ π

B
k ∈ G.

Here we use the fact that d N equals B.
Let ŵ be a function defined in �n effectively supported in the cube

W = [−Kd, K d] × · · · ×
n−times

[−Kd, Kd]
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whose inverse Fourier transform does not vanish in G. As we eventually need to divide by
w, it is important that w(x) is actually larger than a fixed positive constant for x in the field
of view. We use the sum in (11.49) to compute

̂w · f̃ (dk) := 1

(2π)n

L∑
l=1

ŵ(dk − yl) f̂lcl ≈ ŵ ∗ f̂ (dk). (11.50)

Supposing that ŵ decays rapidly enough so that, for the accuracy we are seeking to achieve,
we can regard ŵ as being supported in W, this calculation requires O(K n) operations for
each point k ∈ Sunif. The efficient evaluation of these sums requires an efficient method for
computing (or the a priori determination of) the values of {ŵ(dk − yl) : dk − yl ∈ W },
needed for each index k.

After zero padding to obtain a power of 2, the FFT can be used to compute approximate
values of g j = w · f̃ ( j π

B ). The gridding method is completed by setting

f j = g j

w( j π
B )

.

If N is a power of 2, then this step requires O((N log2 N)n) operations. As noted above,
f j is an very accurate approximation to the following trigonometric sum

f j ≈ 1

(2π)n

L∑
l=1

f̂l e
i yl ·x j c j . (11.51)

Indeed, aliasing is the only possible source of error in using the gridding method to compute
this sum. 1

Two considerations limit how large K can be taken. The amount of computation needed
to do the gridding step is O((K N)n). For example, if n = 2, this is O(K 2 N2). The amount
of computation needed for the filtered back-projection algorithms is O(N3). For the grid-
ding method to remain competitive, we see that K <<

√
N . The second constraint comes

from the requirement that w(x) 	= 0 for points, x in the cube D. From our discussion of
the Fourier transform, we know that the smaller the support of ŵ, the larger the set around
zero in which w is nonvanishing. Thus K needs to be chosen small enough so that w is
nonvanishing throughout D. A very nice discussion of these methods appears in [47]. An
analysis of the errors entailed in this method is presented in [112], along with examples
using different choices of ŵ.

As noted above, the main source of error in using non-uniformly spaced Fourier data,
in the manner described in this section, comes from the choice of the coefficients {cl}
in (11.46). Implicit in this approach is the idea that we should try to minimize the L2-error,
‖ f − f̃ ‖L2(G). This has been the standard approach in imaging for many years. Recent
work of Donoho, Candes, and others indicates that this may not be the optimal way to
use the measured data { f̂ (yl)}. They have introduced very different approaches to image

1I thank Jeremy Magland for pointing out this interpretation.
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Figure 11.19. A three dimensional rendering of an x-ray CT micrograph made in a EVS�

CT microscope. The resolution in this image is 15 microns. (This image kindly provided
by Dr. Felix Wehrli. The EVS scanner was purchased by the Laboratory for Structural
NMR Imaging at Hospital of the University of Pennsylvania on a shared instrumentation
grant from the National Institutes of Health.)

reconstruction where, for example, one might look amongst functions h that satisfy the
constraints imposed by the measurements:

ĥ(yl) = f̂ (yl) for l = 1, . . . , L , (11.52)

for a function of minimal L1-norm, or perhaps minimal total variation norm. Though it
requires considerably more computation, using such an approach has been found, in some
circumstances, to produce much better images than those obtained using an L2-notion of er-
ror. This approach, sometimes called “compressive sampling” and “L1-magic” is described
in [18, 19].

11.9 Conclusion

At the end of the 1960s it was quite a remarkable idea that slices through a human body
could be reconstructed using what amounted to a large collection of carefully measured,
tiny x-ray images. The secret, of course, was mathematics. The original approach of
Hounsfield was a variant of the algebraic reconstruction method, which is described in
Chapter 13. It did not give very good images. An example of a reconstruction obtained us-
ing this method is given in Figure 13.7. Next, a method using (unfiltered) back-projection
was tried, which also produced rather poor images. Finally, the Radon inversion formula
was rediscovered and with it the possibility of accurately reconstructing images from pro-
jection data. The earliest images also had many artifacts caused by aliasing, the Gibbs
phenomenon, miscalibration of the detectors, unstable x-ray sources, beam hardening, ge-
ometric miscalibration of the gantry, and so on. X-ray CT is now a highly developed field
in medical imaging; the algorithms we discuss were mostly developed before 1980. A very
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nice exposition of the different sorts of practical algorithms which can be derived from
exact reconstruction formulæ is given in [85].

(a) Section of a human brain scanned in a GE�
scanner circa 2002. (This image kindly provided
by Dr. David Hackney of the Hospital of the Uni-
versity of Pennsylvania.)

(b) An anatomical section of the a very sim-
ilar slice. (This image provided courtesy of
Dr. Bergman of the Virtual Hospital. It is
copyrighted material used with permission of
the author and the University of Iowa’s Virtual
Hospital, www.vh.org.)

Figure 11.20. A slice of the human brain made with a 2002 GE� scanner and an anatomical
section of a similar slice.

The filtered back-projection algorithms derived in this chapter have been standard in
commercial CT-machines for over two decades. Much of the research in this field is now
directed toward postprocessing the reconstructed images to locate organ boundaries and
do quantitative measurements of anatomical structures. The need to reduce scan times has
recently led to the development of spiral scan, cone beam, and fast electron beam machines.
In a cone beam machine, each measurement consists of samples of the Radon transform
from a two-dimensional family of lines. The fast electron beam machine is sometimes
called a “fifth-generation scanner.” It collects essentially the same data as a spiral scan
machine but operates under entirely different engineering principles, leading to even shorter
scan times. Electron beam CT is described in [14] and [13]. These newer machines have,
in turn, led to a resurgence of interest in algorithm development with a new emphasis on
fully three-dimensional algorithms.

In figures 11.19 and 11.20 we show two modern images produced using x-ray tomog-
raphy. Figure 11.19 shows a three-dimensional rendering of a section of human trabecular
bone made with an EVS� x-ray CT microscope. The CT microscope is a “cone beam”
machine; it uses the Feldkamp algorithm to reconstruct images; see [40]. Figure 11.20(a)
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is a cross section of the human brain made using a GE� scanner. Figure 11.20(b) shows
an anatomic section of a nearby slice in a human brain. These images demonstrate the
remarkable capabilities of circa 2002 CT imaging.

The mathematics used to reconstruct images in x-ray CT is applicable (and actually ap-
plied) to reconstruction problems for any “nondiffracting” imaging modality (e.g., positron
emission tomography and magnetic resonance imaging). Much of the mathematical tech-
nology is also used in the study of “diffracting” modalities such as ultrasound, impedance
tomography, and infrared imaging. The “inverse problems” for these latter modalities are
nonlinear, and to date they lack complete mathematical solutions. In consequence of this
fact, these modalities have not yet come close to attaining their full potential. A chal-
lenge for tomorrow is the exact solutions of the idealized reconstruction problems for these
modalities. The report of the National Academy of Sciences, Mathematics and Physics of
Emerging Biomedical Imaging provides an excellent overview of the open problems and
state of mathematical research in medical image reconstruction; see [23].

The World Wide Web provides a remarkable set of resources for the student of medical
imaging. I list here a very small selection of Web sites devoted to this topic. The addresses
were correct as of August 2002.

1. The visible human project:
http://www.nlm.nih.gov/research/visible/visible_human.html
2. The radiological anatomy browser:
http://rad.usuhs.mil/rad/radbrowser2/index2.html
3. The Radiology home page contains links to many other
radiology sites:
http://home.earthlink.net/˜terrass/radiography/medradhome.html
4. Neuroland, contains links to many sites with
neuroradiology images: http://neuroland.com/neuro_images/

In the next chapter we consider a more realistic model for the measurements as averages
of the Radon transform of the attenuation coefficient over the cross section of the x-ray
beam. We then compute the point spread functions for both the continuum approximations
to the filtered back-projection formula and their implementations on sampled data. We then
analyze the effects on the reconstructed image of various sorts of systematic measurement
errors, concluding with a short discussion of beam hardening.





Chapter 12

Imaging Artifacts in X-Ray
Tomography

In the previous chapter we derived finite algorithms to approximately reconstruct a function
of two variables with bounded support from finitely many samples of its Radon transform.
For a variety of reasons this is still a highly idealized situation. In this chapter we analyze
these algorithms with a more realistic model for the measurement process. The first issue
we address is the fact that the x-ray beam has a finite (two-dimensional) width. There is
a simple linear model for this effect as weighted averaging in the affine parameter. More
careful investigation reveals that this is a nonlinear phenomenon that leads to the nonlinear
partial volume effect. Averaging in the affine parameter is a form of lowpass filtering,
which is, in turn, important for the analysis of the aliasing that results from sampling the
Radon transform.

We next derive the total point spread function (PSF) for the measurement and recon-
struction process first without and then with sampling. Once the measurements are sampled
in the affine parameter, the reconstruction process is no longer shift invariant, so it is not
described by a single point spread function. The width of the central peak of the PSF pro-
vides an indication of the resolution available in the reconstructed image. We analyze the
effects of the beam width and sample spacing on the shape of the PSF. Using the PSF, we
consider the consequences for the reconstructed image of various sorts of measurement er-
rors. At the end of the chapter we consider beam hardening; this results from the fact that
the x-ray beam is not monochromatic. Beam hardening is another fundamentally nonlinear
phenomenon.

12.1 The Effect of a Finite Width X-Ray Beam

Up to now, we have assumed that an x-ray beam is just a line with no width and that the
measurements are integrals over such lines. What is really measured is better approximated
by averages of such integrals. We now consider how the finite width of the x-ray beam
affects the measured data. Our treatment closely follows the discussion in [113].
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12.1.1 A Linear Model for Finite Beam Width

A simple linear model for the effect of finite beam width is to replace the Radon transform
of f by a weighted average of the Radon transform. For a weight function w, define

�W f (t,ω) =
∞∫

−∞
w(u)� f (t − u,ω) du.

Such an average is called a strip integral. The weight is a nonnegative function that models
both the distribution of energy across the x-ray beam and the detector used to make the
measurements (see figure 12.1). This function is sometimes called the beam profile, though
of course the actual beam profile must incorporate the third dimension as well.

w

u

s

X-ray source

X-ray beam

wd

u

Output of finite width x-ray
beam integated to give 

-directionu

R  fW

Figure 12.1. The finite size of the x-ray source and detector means real measurements are
modeled by strip integrals.

The relationship between � f and �W f is a consequence of the convolution theorem
for the Radon transform. In the imaging literature it is due to Shepp and Logan.

Theorem 12.1.1 (Shepp and Logan). The weighted Radon transform �W f is the Radon
transform of the convolution, f ∗ k, where k is the radial function

k(x, y) = − 1

πρ
∂ρ

⎡⎣ ∞∫
ρ

w(u)u√
u2 − ρ2

du

⎤⎦
ρ=

√
x2+y2

.
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Remark 12.1.1. If w has bounded support then the integrand of k is zero for sufficiently
large ρ; hence k(

√
x2 + y2) also has bounded support. Similarly, if k has bounded support,

then so does w.

Proof. The theorem is an immediate consequence of Proposition 6.1.1. The function �W f
is the convolution in the t-parameter of � f with w. If k is a function on �2 such that
�k = w, then the proposition states that

�W f = �( f ∗ k).

Since w is independent of ω, it follows that k must also be a radial function. The formula
for k is the Radon inversion formula for radial functions derived in Section 3.5.

Example 12.1.1. Some simple examples of (w, k)-pairs are

w1(u) =
{

1
2δ u ∈ [−δ, δ],
0 |u| > δ,

k1(ρ) =
{

1
2πδ

1√
δ2−ρ2

0 ≤ ρ < δ,

0 ρ ≥ δ,

and

w2(u) =
{

1
πδ2 (δ

2 − u2)1/2 |u| < δ,

0 |u| > δ,
k2(ρ) =

{
1

πδ2 0 ≤ ρ < δ,

0 ρ ≥ δ.

A consequence of finite strip width is that the actual measurements are samples of the
Radon transform of f ∗ k, which is a somewhat smoothed version of f. Indeed,

˜�W f (r,ω) = ŵ(r)�̃ f (r,ω), (12.1)

and therefore the finite strip width leads to lowpass filtering of � f in the affine parameter.
This has the desirable effect of reducing the aliasing artifacts that result from sampling.
In x-ray tomography this is essentially the only way to lowpass filter the data before it
is sampled. Of course, this averaging process also leads to a loss of resolution; so the
properties of the averaging function w need to be matched with the sample spacing. As
we saw in Section 9.1.9, the effects of such averaging can, to some extent, be removed;
nonetheless algorithms are often evaluated in terms of their ability to reconstruct samples
of f ∗ k rather than f itself.

As mentioned previously, the beam profile, w, models the effects of the source and
detector together. This function is built out of two pieces: the detector response function,
wd, and the source function, ws. If I (u) describes the intensity of the (two-dimensional)
x-ray beam incident on the (one-dimensional) detector at the point u, then the output of the
detector is modeled as

∞∫
−∞

wd(u)I (u) du.
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If the function ws models the x-ray source, then the energy of the source, in the interval
[a, b], is given by

b∫
a

ws(u) du.

If the source and detector are fixed in space, relative to one another, then the combined
effect of this source-detector pair is modeled by the pointwise product w = ws · wd . This
is the geometry in a third-generation, fan beam scanner. In some parallel beam scanners
and fourth-generation scanners, the detectors are fixed and the source moves. In this case
a model for the source-detector pair is the convolution w = ws ∗ wd . The detector is often
modeled by a simple function like w1 or w2 defined in Example 12.1.1, while the source

is often described by a Gaussian, ce− u2
σ . In this case the x-ray source is said to have a

Gaussian focal spot. In any case the beam width is usually taken to equal the FWHM of w.

Remark 12.1.2. A thorough treatment of the problem of modeling x-ray sources and de-
tectors is given in [6].

Exercises
Exercise 12.1.1. Explain why the source-detector pair is modeled as ws ·wd, if the source
and detector are fixed relative to one another, and as wd ∗ ws if they move. Assume that
the x-rays are non-diverging. In particular, explain how relative motion of the source and
detector leads to a convolution.

Exercise 12.1.2. A real x-ray beam is three dimensional. Suppose that the third dimension
is modeled as in (11.3) by the slice selectivity profile wssp. Give a linear model for what is
measured, analogous to the Shepp-Logan result, that includes the third dimension.

Exercise 12.1.3. What is the physical significance of the total integral of w?

12.1.2 A Nonlinear Model for Finite Beam Width

Unfortunately, the effect of finite beam width is a bit more complicated than described in
the previous section. If we could produce a one-dimensional x-ray beam, then what we
would measure would actually be

Io = Ii exp[−� f (t,ω)],
where Ii is the intensity of the x-ray source and Io is the measured output. For a strip, what
is actually measured is therefore better modeled by

Io

Ii
≈

∞∫
−∞

w(u) exp[−� f (t − u,ω)] du.
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Thus the measurement depends nonlinearly on the attenuation coefficient. If w is very
concentrated near u = 0 and

∫
w(u) du = 1 then

log
Io

Ii
≈

∞∫
−∞

w(u)� f (t − u,ω) du.

To derive this expression, we use the Taylor expansions:

ex = 1 + x + x2

2
+ x3

6
+ O(x4), log(1 + x) = x − x2

2
+ x3

3
+ O(x4). (12.2)

This analysis assumes that the oscillation of � f (t − u,ω) over the support of w is small.
We begin by factoring out exp(−� f ):

∞∫
−∞

w(u) exp(−� f (t − u,ω)) du

= exp(−� f (t,ω))

∞∫
−∞

w(u) exp[� f (t,ω)− � f (t − u,ω)] du. (12.3)

Using the the Taylor expansion for ex gives
∞∫

−∞
w(u) exp(−� f (t − u,ω)) du

= exp(−� f (t,ω))

[ ∞∫
−∞

w(u)[1 + (� f (t,ω)− � f (t − u,ω))+

O((� f (t − u,ω)− � f (t,ω))2)] du

]

= exp(−� f (t,ω))

[
1 −

∞∫
−∞

w(u)(� f (t − u,ω) − � f (t,ω)) du+

O

(∫
w(u)[� f (t − u,ω)− � f (t,ω)]2 du

)]
.

Taking −log, using the Taylor expansion for log(1 + x) and the assumption that
∫
w(u) =

1, gives

log
Io

Ii
≈
∫

w(u)� f (t − u,ω) du + O

(∫
w(u)[� f (t − u,ω)− � f (t,ω)]2 du

)
.

(12.4)
The leading order error is proportional to the mean square oscillation of � f weighted by
w.
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12.1.3 The Partial Volume Effect

If the variation of � f (t,ω) is large over the width of the strip, then the error term dom-
inates in (12.4). In practice, this happens if part of the x-ray beam intercepts bone and
the remainder passes through soft tissue. In imaging applications this is called the partial
volume effect. To illustrate this we consider a simple special case. Suppose that the inten-
sity of the x-ray beam is constant across a strip of width 1. Half the strip is blocked by a
rectangular object of height 1 with attenuation coefficient 2, and half the strip is empty. If
we assume that w(u) = χ[0,1](u), then

− log

⎡⎣ ∞∫
−∞

w(u) exp[−� f (t − u,ω)] du

⎤⎦ = − log

[
1 + e−2

2

]
� 0.5662,

whereas ∞∫
−∞

w(u)� f (t − u,ω) du = 1.

In Table 12.1 we give the linear and non-linear computations for an absorbent unit square
with two attenuation coefficients μ0, μ1 each occupying half (see figure 12.2).

10

X-ray beam

μ μ

Figure 12.2. Absorbing square.

An even more realistic example is provided by a long rectangle of absorbing material
with a small inclusion of more absorbent material, as shown in Figure 12.3. The graphs in
Figure 12.4 show the relative errors with μ0 = 1 and μ1 ∈ {1.5, 2, 2.5, 3}. This is a model
for a long stretch of soft tissue terminating at a piece of bone.

μ 0μ 1

x

1−
X-ray
beamx

Figure 12.3. Rectangle with a small inclusion.
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μ0 μ1 Non- Linear Relative
linear error

0 .01 .00499 .005 2%
0 .1 .0488 .05 2.4%
0 .5 .2191 .25 12.4%
0 1 .3799 .5 24%
0 2 .5662 1 43%
.3 .4 .34875 .35 3.5%
.3 1.3 .6799 .8 15%
1 2 1.38 1.5 8%

Table 12.1. Errors due to the partial volume effect

0.01

0.02

0.03

0.04

0.2 0..4 0.6 0..8 1

3

2.5

2

1.5

Figure 12.4. Relative errors with small inclusion. An error of 2% is significant in a medical
imaging context.

The artifact caused by the partial volume effect is the result of the discrepancy between
the nonlinear data that are actually collected and the linear model for the data collection,
used in the derivation of the reconstruction algorithms. The algorithm assumes that what
is collected are samples of � f k(t,ω); because of the nonlinear nature of the measurement
process, this is not so. Even if we could measure a projection for all relevant pairs (t,ω),
our algorithm would not reconstruct f k exactly but rather some further nonlinear transfor-
mation applied to f. In real images the partial volume effect appears as abnormally bright
spots or streaks emanating a hard object (see Figure 12.5).
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Figure 12.5. The partial volume effect is responsible for the streaks indicated by the arrows.
The large white blob is highly absorbent contrast material in the patient’s stomach. (This
image provided by Dr. Peter Joseph.)

12.2 The Point Spread Function Without Sampling

See: 6.4.

Later in this chapter we analyze artifacts that arise in image reconstruction using real-
istic data and a reasonable model for the source-detector pair. The explanation for a given
artifact is usually found by isolating the features of the image that produce it. At the center
of this discussion are the point spread and modulation transfer functions (PSF and MTF),
characterizing the measurement and reconstruction process. Once the data are sampled,
the measurement process is no longer translation invariant and therefore it is not described
by a single PSF. Instead, for each point (x, y) there is a function �(x, y; a, b) so that the
reconstructed image at (x, y) is given by

f�(x, y) =
∫
�2

�(x, y; a, b) f (a, b) da db.

Because the filter it defines is not shift invariant, strictly speaking � is not a point spread
function. Following the standard practice in engineering, we also call � a point spread
function, though it must be remembered that there is a different PSF for each source loca-
tion (a, b).

Our derivation of � is done in two steps. First we find a PSF that incorporates a model
for the source-detector pair and the filter used in the filtered back-projection step. This
part is both translation invariant and isotropic. Afterward we incorporate the effects of
sampling the measurements to obtain an expression for �(x, y; a, b). Only the parallel
beam geometry is considered; our presentation follows [74]. The results for the fan beam
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geometry are similar but a little more complicated to derive; see [72] and [70]. In this
chapter we illustrate the effects of sampling, averaging and various sorts of measurement
errors by using a variety of mathematical phantoms as well as real measured data.

12.2.1 Point Sources

As a function of (x, y), �(x, y; a, b) is the output of the measurement-reconstruction pro-
cess applied to a unit point source at (a, b), which is modeled by

δ(a,b)(x, y) = δ((x, y) − (a, b)).

To facilitate the computation of �, is it useful to determine the Radon transform of this
generalized function, which should itself be a generalized function on � × S1. Since δ(a,b)
is δ(0,0) translated by (a, b), it suffices to determine �δ(0,0). Let ϕε be a family of smooth
functions converging to the δ(0,0) in the sense that ϕε ∗ f converges uniformly to f, for
f a continuous function with bounded support. The convolution theorem for the Radon
transform, Proposition 6.1.1, says that

�(ϕε ∗ f )(t,ω) = �ϕε ∗t � f (t,ω).

Since the left-hand side converges to � f, as ε → 0, it follows that

�δ(0,0)(t,ω) = lim
ε→0

�ϕε(t,ω) = δ(t).

Using Proposition 6.1.2, we obtain the general formula

�δ(a,b)(t,ω) = δ(t − 〈ω, (a, b)〉). (12.5)

Exercise
Exercise 12.2.1. Derive (12.5) by using the family of functions

ϕε(x, y) = 1

ε2
χ[0,ε2](x2 + y2).

12.2.2 The PSF without Sampling

See: A.3.3.

For the purposes of this discussion we use the simpler, linear model for a finite width
x-ray beam. Let w be a nonnegative function with total integral 1. Our model for a mea-
surement is a sample of

�W f (t,ω) =
∞∫

−∞
w(u)� f (t − u,ω).
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If all the relevant data

{�W f (t,ω) : t ∈ [−L , L],ω ∈ S1}

were available, then the filtered back-projection reconstruction, with filter function φ,
would be

fφ,w(x, y) = (�∗Qφ �W f )(x, y).

Here �∗ denotes the back-projection operation and

Qφg(t,ω) =
∞∫

−∞
g(t − s,ω)φ(s) ds

= 1

2π

∞∫
−∞

g̃(r,ω)φ̂(r)eirt dr.

(12.6)

Because �W f is defined by convolving � f with w in the t-parameter, it is a simple com-
putation to see that

fφ,w(x, y) = �∗Qφ∗w � f, (12.7)

where φ ∗w is a one-dimensional convolution.
Using the central slice theorem in (12.6) gives

fφ,w(x, y) = 1

[2π ]2

∞∫
0

2π∫
0

f̂ (rω)φ̂(r)ŵ(r)eir〈(x,y),ω〉dr dω. (12.8)

As φ̂(r) ≈ |r | for small r, it is reasonable to assume that φ̂(0) = 0 and define ψ̂(r) by the
equation

φ̂(r) = |r |ψ̂(r).

Substituting this into (12.8) we recognize r dr dω as the area element on �2, to get

fφ,w(x, y) = 1

[2π ]2

∫
�2

f̂ (ξ)ψ̂(‖ξ‖)ŵ(‖ξ‖)ei〈(x,y),ξ〉dξ . (12.9)

The MTF for the operation f �→ fφ,w is therefore

�̂0(ξ) = ψ̂(‖ξ‖)ŵ(‖ξ‖). (12.10)

It is important to keep in mind that the Fourier transforms on the right-hand side of (12.10)
are one dimensional, while that on the left is a two-dimensional transform.
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The PSF is obtained by applying the inverse Fourier transform to the MTF:

�0(x, y) = 1

[2π ]2

∫
�2

ψ̂(‖ξ‖)ŵ(‖ξ‖)ei〈(x,y),ξ〉dξ

= 1

2π

∞∫
0

ψ̂(r)ŵ(r)J0(rρ)r dr,

(12.11)

where ρ = ‖(x, y)‖ denotes the radius function in the spatial variables. Sampling is not
included in this model; however, if [−B, B] is the effective passband of ψ̂, then Nyquist’s
theorem implies that d = π

B is a reasonable proxy for the sample spacing. In the following
examples we examine the relationship between the beam width and this proxy for sample
spacing. If we replace the beam width, δ, by αδ (w(u) �→ α−1w(α−1u)) and the sample
spacing, d, by βd (φ(t) �→ φ(β−1t)), then the PSF becomes

1

2πα2

∞∫
0

ψ̂(
β

α
r)ŵ(r)J0(r

ρ

α
)r dr.

Hence, for a given beam profile and filter function, and up to an overall scaling in ρ,
the qualitative properties of the PSF depend only on the ratio δ

d , which is the number of
samples per beam width. In most of the examples that follow we use values of δ and d with
ratios between .5 and 2.

Example 12.2.1. For the first example we consider the result of using a sharp cutoff in
frequency space. The apodizing function for the filter is ψ̂(r) = χ[− π

d , πd ](r), with the beam
profile function

wδ = 1

2δ
χ[−δ,δ].

The MTF is given by

�̂0(ξ) = sinc(δ‖ξ‖)χ[− π
d , πd ](‖ξ‖).

Figure 12.6(a) shows the PSFs with d = 1, δ = .5, 1, and 2; Figure 12.6(b) shows the
corresponding MTFs.

Notice the large oscillatory side lobes when the effective sample spacing is greater than
the beam width (i.e., δ = .5). Using a filter of this type may lead to severe Gibbs artifacts;
that is, a sharp edge in the original image produces large oscillations, parallel to the edge
in the reconstructed image. On the other hand, the width of the central peak in the PSF
grows as the width of w increases. This is indicative of the lower resolution available in
the measured data. With two samples per beam width (δ = 2), the PSF is no longer peaked
at zero. In the imaging literature this depression of the PSF near zero is called the volcano
effect.
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Figure 12.6. Examples of PSF and MTF with bandlimiting regularization.

Example 12.2.2. We consider the family of examples with wδ as in the previous example
and smoother apodizing function

ψ̂ε(r) = e−ε|r |;
the MTF is given by

�̂0(δ,ε)(ξ) = sinc(δ‖ξ‖)e−ε‖ξ‖.
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4
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(a) Limiting PSFs.

−0. 2

0

0. 2

0. 4

0. 6

0. 8

1

10 20 30 40

(b) Limiting MTFs.

Figure 12.7. Limits for the PSF and MTF in the filtered back-projection algorithm.

If ε = 0 (no regularizing function) or δ = 0 (1-dimensional x-ray beam) then the
integrals defining �0 exist as improper Riemann integrals,

�0(δ,0)(ρ) = 1

2πδ
· χ[0,δ)(ρ)√

δ2 − ρ2
, �0(0,ε)(ρ) = ε

2π
· 1

[ε2 + ρ2] 3
2

.
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The graphs of these functions are shown Figure 12.7(a); the dotted curve shows �0(.5,0) and
the solid line is �0(0,.5). Figure 12.7(b) shows the corresponding MTFs. The PSF in the
ε = 0 case displays an extreme version of the volcano effect.
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(b) Their MTFs.

Figure 12.8. Examples of PSF and MTF with exponential regularization.

Graphs of �0(δ,ε)(ρ) for several values of (δ, ε) are shown in Figure 12.8(a). The MTFs
are shown in Figure 12.8(b). The values used are (.25, .05), (.125, .05), (.125, .125), and
(.125, .3); smaller values of ε produce a sharper peak in the PSF. For ε << δ the PSF
resembles the limiting case, ε = 0, with a crater near ρ = 0.

Example 12.2.3. As a final example we consider the Shepp-Logan filter. The regularizing
filter has (one-dimensional) transfer function

φ̂(r) = |r |
∣∣∣∣sinc

(
dr

2

)∣∣∣∣3 .
Using the same model for the source-detector pair as before gives the total MTF:

�̂0(δ,d)(ξ) = sinc(δ‖ξ‖)
∣∣∣∣sinc

(
d‖ξ‖

2

)∣∣∣∣3 .
Recall that the Shepp-Logan filter is linearly interpolated and d represents the sample spac-
ing. Here 2δ is the width of the source-detector pair. Graphs, in the radial variable of the
PSFs and corresponding MTFs, for the pairs (.125, .05), (.125, .125), and (.125, .3) are
shown in Figure 12.9. Again smaller values of d produce a more sharply peaked PSF.
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Figure 12.9. Examples of PSF and MTF with Shepp-Logan regularization.

It is apparent in the graphs of the PSFs with exponential and Shepp-Logan regulariza-
tion that these functions do not have long oscillatory tails and so the effect of convolving
a piecewise continuous, bounded function with �0 should be an overall blurring, without
oscillatory artifacts. Such artifacts are absent because the MTF decays smoothly and suf-
ficiently rapidly to zero. The PSFs obtained using a sharp cutoff in frequency have long
oscillatory tails, which, in turn, produce Gibbs artifacts in the reconstructed images. Oscil-
latory artifacts can also result from sampling. This is considered in the following section.
From both (12.11) and (12.12) it is clear that the roles of the beam profile w and the filter
function φ are entirely interchangeable in the unsampled PSF. This is no longer the case
after sampling is done in the t-parameter.

Examining the graphs of the PSFs, it appears that, once the beam width is fixed, the
full-width half-maximum of the PSF is not very sensitive to the sample spacing. However,
smaller sample spacing produces a sharper peak, which should, in turn, lead to less blurring
in the reconstructed image. From the limiting case shown in Figure 12.7(a), it is clear that
the resolution is ultimately limited by the beam width. Since the PSF tends to infinity, the
FWHM definition of resolution is not applicable. Half of the volume under the PSF (as a
radial function on �2) lies in the disk of radius d/2, indicating that the maximum available
resolution, with the given beam profile, is about half the width of the beam. This is in good
agreement with experimental results, which show that two samples per beam width lead to
a better reconstruction, and little improvement is seen beyond four samples per beam width;
see [74] or [75]. To measure the resolution of a CT machine or reconstruction algorithm, it
is customary to use a “resolution phantom.” This is an array of disks of various sizes with
various spacings. An example is shown in Figure 12.10.
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(a) A resolution phantom. (b) Its reconstruction using a fan beam algorithm.

Figure 12.10. Resolution phantoms are used to measure the actual resolution of a CT
scanner and/or reconstruction algorithm.

Exercises

Exercise 12.2.2. Using the formula for �δ(a,b), derive the alternate expression for �0(x, y):

�0(x, y) = 1

2π

π∫
0

∞∫
−∞

w(〈(x, y),ω〉) − s)φ(s)dsdω. (12.12)

Exercise 12.2.3. By considering the decay properties of the MTFs in Examples 12.2.2
and 12.2.3, explain why one does not expect the PSFs to have slowly decaying, oscillatory
tails.

Exercise 12.2.4. Using the graphs in the preceding examples, 12.2.1, 12.2.2 and 12.2.3,
determine the FWHM of each of the PSFs for which it makes sense. For which cases is the
FWHM definition of resolution inapplicable? What definition of resolution would be more
meaningful in these cases?

Exercise 12.2.5. When replacing the beam width δ by αδ, why do we replace w(u) with
α−1w(α−1u)? When replacing the sample spacing d by βd, why do we replace φ(t) with
φ(β−1t)?
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12.3 The PSF with Sampling

(a) Reconstruction using parallel beam data. (b) Reconstruction using fan beam data.

Figure 12.11. Reconstructions of the Shepp-Logan phantom using filtered back-projection
algorithms.

Real measurements entail both ray and view sampling. For a parallel beam machine, ray
sampling refers to sampling in the t-parameter and view sampling to the ω- (or θ) param-
eter. For the sake of simplicity, these effects are usually considered separately. We take
this route, first finding the kernel function incorporating ray sampling and then view sam-
pling. Each produces distinct artifacts in the reconstructed image. As ray sampling is not
a shift invariant operation, the measurement and reconstruction process can no longer be
described by a single PSF but instead requires a different integrand for each point in the
reconstruction grid. For the purpose of comparison, the PSFs are often evaluated at the
center of reconstruction grid [i.e., (0, 0)], though it is also interesting to understand how
certain artifacts depend on the location of the source. Both aliasing artifacts and the Gibbs
phenomenon are consequences of slow decay in the Fourier transform, which is typical of
functions that change abruptly. We therefore would expect to see a lot of oscillatory artifacts
produced by inputs with sharp edges. To test algorithms, we typically use the characteris-
tic functions of disks or polygons placed at various locations in the image. Figure 12.11
shows reconstructions of the Shepp-Logan phantom, Figure 11.3 made with filtered back-
projection algorithms. Note the oscillatory artifacts parallel to sharp boundaries as well as
the patterns of oscillations in the exterior region.

12.3.1 Ray Sampling

Suppose that d is the sample spacing in the t-parameter and that the image is reconstructed
using a linearly interpolated filter. The choice of interpolation scheme is important because
it affects the rate of decay for the MTF (see the appendix to Section 11.4.4). For the
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purposes of this section, we suppose that sampling is only done in the affine parameter so
that

{�W f ( jd,ω) : j = −N, . . . , N}
is collected for all ω ∈ S1. With φ the filter function, the reconstructed image is

f̃φ,w(x, y) = 1

2π

2π∫
0

Qφ,w f̃ (〈(x, y),ω〉,ω) dω, (12.13)

where

Qφ,w f̃ (t,ω) = d
∞∑

j=−∞
φ(t − jd)�W f ( jd,ω).

For the derivation of the PSF, we let f = δ(a,b), as noted previously:

�W f ( jd,ω) = w( jd − 〈(a, b),ω〉).
The linear interpolation is easier to incorporate in the Fourier representation. If

φ̂p(r) =
∞∑

j=−∞
φ( jd)e−i j dr ,

then, as shown in Section 11.4.4,

φ̂(r) = sinc2

(
rd

2

)
φ̂p(r).

The Fourier transform of Qφ,w f̃ in the t-variable is given by

˜Qφ,w f̃ (r,ω) = d sinc2

(
rd

2

)
φ̂p(r)

∞∑
j=−∞

w( jd − 〈(a, b),ω〉)e−i j dr . (12.14)

To evaluate the last sum, we can use the dual Poisson summation formula, (8.13), obtaining

d
∞∑

j=−∞
w( jd − 〈(a, b),ω〉)e−i j dr = e−i〈(a,b),rω〉

∞∑
j=−∞

ŵ(r + 2π j

d
)e−i 2π j

d 〈(a,b),ω〉. (12.15)

For this computation to be valid we need to assume that both w and ŵ decay sufficiently
rapidly for the Poisson summation formula to be applicable. In particular, w must be
smoother than the functions, wδ, used in Example 12.2.2.

Using the Fourier inversion formula to express Qφ,w f̃ in (12.13) gives the kernel func-
tion,

�(x, y; a, b) = 1

[2π ]2

∞∫
0

2π∫
0

sinc2

(
rd

2

)
φ̂p(r)e

i〈(x−a,y−b),rω〉×
[ ∞∑

j=−∞
ŵ(r + 2π j

d
)e−i 2π j

d 〈(a,b),ω〉
]

dr dω.

(12.16)
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It is apparent that � is not a function of (x − a, y − b). The symmetry in the roles played
by φ and w has also been lost. The infinite sum in (12.16) leads to aliasing errors, a sharper
beam profile producing larger errors. This infinite sum defines a 2π

d -periodic function of r.
In terms of the rate of decay, the principal difference between the integrand in (12.11) and
that in (12.16) is that the decay coming from ŵ(‖ξ‖) is lost in (12.16).

Example 12.3.1. We first consider simple bandlimiting with the apodizing filter defined by
ψ̂d(r) = χ[− π

d , πd ](r) and the rectangular windows defined by wδ. In this case we can find

an explicit formula for φ̂p. At the sample points we have

φd( jd) =
{

π
2d2 if j = 0,
(−1) j−1
π j 2d2 if j 	= 0.

From the definition it follows that

φ̂p(r) = π

2d2
− 4

πd2

∞∑
j=1

cos(2 j − 1) rd

(2 j − 1)2
. (12.17)

The function on the right-hand side of (12.17) has a simple formula: It is a 2π
d -periodic

function with

φ̂p(r) = |r |
d

for |r | < π

d
. (12.18)

Though the functions, wδ, are too singular to apply the Poisson summation argument, the
sums on the left-hand side of (12.15) are finite. The MTF for this combination of filtering,
sample spacing, and beam profile is

�̂δ,d(ξ ; a, b) =d sinc2

(‖ξ‖d

2

)
φ̂p(‖ξ‖)‖ξ‖−1×

∞∑
j=−∞

wδ( jd − 〈(a, b),
ξ

‖ξ‖〉)e
−i j d‖ξ‖.

(12.19)

For example, if d = 1, δ = .5 and (a, b) = (0, 0), then only the j = 0 term is nonzero and
this reduces to

�̂.5,1(ξ ; 0, 0) = sinc2

(‖ξ‖
2

)
φ̂p(‖ξ‖)‖ξ‖−1.

The graphs in Figure 12.12(a) are radial graphs of the PSFs for (a, b) = (0, 0) with d = 1
and δ = .5, 1 and 2. The graphs in Figure 12.12(b) show the corresponding MTFs. It
is important to remember that the overall filtering operation is not shift invariant and the
kernel function �δ,d depends in a nontrivial way on (a, b). Contour plots illustrating this
fact are shown in Figure 12.13.
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(b) The MTFs with d = 1, δ = .5, 1, 2.

Figure 12.12. Sampled PSFs and MTFs at (0, 0) using bandlimiting, a rectangular beam
profile, and linear interpolation.

The graphs in Figure 12.12 should be compared with the unsampled versions in Fig-
ure 12.6. Somewhat paradoxically, the side lobes of the sampled PSF are not much larger
than those of the unsampled PSF. This is because the linear interpolation used to define φ
between sample points leads to a smoother MTF, which decays like ‖ξ‖−3. For δ = .5 the
side lobes in the sampled PSF are smaller! In this case the unsampled MTF has a jump dis-
continuity at π, which explains the sinc-like behavior in the PSF. The linear interpolation
is also evident in the graphs in Figure 12.12(a). As the beam width increases (hence more
samples per beam width), the peak of the PSF broadens and it displays a more pronounced
volcano effect.

We conclude this example with contour plots of �1,1(x, y; a, b) for several values of
(a, b). The plots in Figure 12.13 were computed using a finite approximation to the in-
verse Fourier transform and rectangular partial sums. Figure 12.13(a) is a contour plot of
�1,1(x, y; 0, 0). Near to the principal peak the contours are circles; closer to the bound-
ary of the plot the radial symmetry starts to break down. This is a consequence of the
rectangular partial sums used in the numerical computation. Such sums are used in actual
reconstructions, and we also see artifacts with a similar rectangular symmetry. These ar-
tifacts are not caused by noise, measurement error, or even by sampling, per se but rather
by the precise nature of the approximation to the inverse Fourier transform used in the
numerical algorithms. Figures 12.13(b–d) show �1,1(x, y; a, b) for three other values of
(a, b). Each plot shows a very pronounced peak centered at (a, b). As none of these plots
displays even an approximate radial symmetry, it is clear that they are not the result of
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translating �1,1(x, y; 0, 0). Note finally that the Gibbs oscillation is most pronounced for
(a, b) = (0, 0).
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(a) Plot of �1,1(x, y; 0, 0).
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(b) Plot of �1,1(x, y; 1, 2).
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(c) Plot of �1,1(x, y;−3,−4).
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(d) Plot of �1,1(x, y; 0, 4).

Figure 12.13. Contour plots of the ray sampled kernel function using a rectangular beam
profile, and simple bandlimiting with linear interpolation. These plots show that once sam-
pling is done in the affine parameter, the measurement-reconstruction process is no longer
shift invariant.

Example 12.3.2. In this example we use wδ convolved with a Gaussian for the beam profile.
The window function wδ models the detector, while the Gaussian models the x-ray source.
A Gaussian focal spot of “width” h/

√
2 is described by the function

sh(u) = 1

πh2
e−( u

h )
2

.

For our examples we fix h = 1
2 and δ = 1. The total beam profile is then

w(u) = 1

2

1∫
−1

s 1
2
(u − v) dv,
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with

ŵ(r) = sinc(r)e
−
(

r2
16

)
.

We use the Shepp-Logan regularizing filter, for which

φ̂p(r) = |r · sinc

(
rd

2

)
|.

As before, the issue here is the relationship between d, the sample spacing, and the width
of w. Colloquially, we ask for the number of samples per beam width. With the given
parameters, the FWHM(w) is very close to 2.
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(d) The corresponding MTFs

Figure 12.14. The effect of ray sampling on the PSF.

While the overall filtering operation is no longer isotropic, the function �(x, y; 0, 0)
is radial; Figures (12.14)(a–c) show this function (of ρ) with various choices for d, with
and without the effects of ray sampling. The dotted line is the unaliased PSF and the solid
line the aliased. As before, smaller values of d give rise to sharper peaks in the PSF. The
corresponding MTFs are shown in Figure 12.14(d).
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The graphs on the right-hand side of Figure 12.14(d) include the effect of aliasing,
while those on the left are the unaliased MTFs; as d decreases, the passband of the MTF
broadens. With this choice of beam profile and regularizing filter, once there is at least
one sample per beam width, the resolution, measured by FWHM, is not affected much by
aliasing. Though it is not evident in the pictures, these PSFs also have long oscillatory tails.
The small amplitude of these tails is a result of using a smooth, rapidly decaying apodizing
function.

Exercises

Exercise 12.3.1. When doing numerical computations of �, it is sometimes helpful to use
the fact that

d
∞∑

j=−∞
w( jd − 〈(a, b),ω〉)e−i j dr

is a periodic function. Explain this observation and describe how it might figure in a prac-
tical computation. It might be helpful to try to compute this sum approximately using both
representations in (12.15).

Exercise 12.3.2. Verify (12.18) by a direct computation.

Exercise 12.3.3. Continue the computations begun in Example 12.3.1, and draw plots of
�δ,d(x, y; a, b) for other values of (a, b) and (δ, d). Note that �δ,d is no longer a radial
function of (x, y), so a two-dimensional plot is required. Repeat this experiment with the
beam profile and apodizing function used in Example 12.3.2.

12.3.2 View Sampling

We now turn to artifacts that result from using finitely many views and begin by consider-
ing the reconstruction of a mathematical phantom made out of constant density elliptical
regions. In Figure 12.15 note the pattern of oscillations in the exterior region along lines
tangent to the boundary of ellipse and the absence of such oscillations in the interior. A
somewhat subtler observation is that the very pronounced, coherent pattern of oscillations
does not begin immediately but rather at a definite distance from the boundary of the el-
lipse. This phenomenon is a consequence of sampling in the angular parameter and the
filtering operations needed to invert the Radon transform approximately. Our discussion of
these examples closely follows that in [114].
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Figure 12.15. Filtered back-projection reconstruction of elliptical phantom.

Example 12.3.3. Suppose the object, E, is of constant density 1 with boundary the locus

of points x2

a2 + y2

b2 = 1. The line integral of f = χE along a line lt,θ is simply the length of
the intersection of the line with E (see Figure 12.16). Let s±(t, θ) denote the s-parameters
for the intersection points of the line lt,θ with the boundary of E . The distance between
these two points |s+(t, θ) − s−(t, θ)| is � f (t,ω(θ)). Plugging the parametric form of the
line into the equation for the ellipse and expanding gives

s2(
sin2 θ

a2
+ cos2 θ

b2
)+ 2st sin θ cos θ(

1

b2
− 1

a2
)+ t2 cos2 θ

a2
+ t2 sin2 θ

b2
− 1 = 0.

Rewrite the equation as

p(t, θ)s2 + q(t, θ)s + r(t, θ) = 0,

where p, q and r are the corresponding coefficients. The two roots are given by

s± = −q ±√q2 − 4ps

2p
;

the distance between the two roots is therefore

s+ − s− =
√

q2 − 4ps

p
.

This gives the formula for � f :

� f (t,ω(θ)) =
{

2β(θ)
√
α(θ)2 − t2 |t| ≤ α(θ),

0 |t| > α(θ),
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where

α(θ) =
√

a4 cos2(θ)+ b4 sin2(θ)

a2 cos2(θ)+ b2 sin2(θ)
,

β(θ) =
√

(a2 cos2(θ)+ b2 sin2(θ))(b2 cos2(θ)+ a2 sin2(θ))

a4 cos2(θ)+ b4 sin2(θ)
.

Both α and β are smooth, nonvanishing functions of θ.

s+

s

a  a

t
θ

  b

b

−

−

−

Figure 12.16. Parameters describing the Radon transform of χE .

Doing the exact filtration,

� � f (t,ω(θ)) = 1

i
�∂t � f (t,ω(θ)),

gives

� � f (t,ω(θ)) =
{

2β(θ) |t| ≤ α(θ),

2β(θ)(1 − |t |√
t2−α2(θ)

) |t| > α(θ).

In an actual reconstruction this filter is regularized. Let Qφ f denote the approximately
filtered measurements, with filter function φ. Approximating the back-projection with a
Riemann sum gives

f̃φ(x, y) ≈ 1

2(M + 1)

M∑
k=0

Qφ f (〈(x, y),ω(k �θ)〉,ω(k �θ)).

For points inside the ellipse,

f̃φ(x, y) ≈ 1

2(M + 1)

M∑
k=0

β(k �θ).
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This is well approximated by the Riemann sum because β is a smooth bounded func-
tion. For points outside the ellipse, there are three types of lines that appear in the back-
projection:

1. Lines that pass through E

2. Lines that are distant from E

3. Lines outside E that pass very close to the boundary of E

The first two types of lines are not problematic. However, for any point in the exterior of
the ellipse, the back-projection involves lines that are exterior to the ellipse but pass very
close to it. This leads to the oscillations apparent in the reconstruction along lines tangent to
the boundary of the regions. This is a combination of the Gibbs phenomenon and aliasing.
To compute an accurate value for f̃φ at an exterior point requires delicate cancellations
between the moderate positive and sometimes large negative values assumed by Qφ f. For
points near enough to the boundary of E, there is a sufficient density of samples to obtain
the needed cancellations. For more distant points, the cancellation does not occur and the
pattern of oscillations appears. In the next paragraph we derive a “far field” approximation
to the reconstruction of such a phantom. This gives, among other things, a formula for the
radius where the oscillatory artifacts first appear. In [72] such a formula is derived for a
fan beam scanner. Using the approach of [72], we derive a similar formula for the parallel
beam case. Also apparent in Figure 12.15 is an oscillation very near and parallel to the
boundary of E ; this is the usual combination of the Gibbs phenomenon and aliasing caused
by ray sampling.

Figure 12.17. Filtered back-projection reconstruction of square phantom.

Example 12.3.4. A striking example of this phenomenon can be seen in the reconstruc-
tion of a rectangular region. If f is the characteristic function of the square with vertices
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{(±1,±1)}, then for |θ | < π
4 ,

� f (t,ω(θ)) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
0 if |t| > cos θ + sin θ,
cos θ+sin θ−t

cos θ sin θ
if cos θ − sin θ < t < cos θ + sin θ,

2
cos θ if sin θ − cos θ < t < cos θ − sin θ,
cos θ+sin θ+t

cos θ sin θ
if − (cos θ + sin θ) < t < sin θ − cos θ.

The function � f (t,ω(θ)) is periodic of period π
2 in the θ parameter. If θ 	= 0, then

� f (t, θ) is a continuous, piecewise differentiable function in θ, whereas

� f (t, (1, 0)) = χ[−2,2](t)

has a jump discontinuity. Note the pronounced oscillatory artifact in the exterior of the
square along lines tangent to the sides of the square in Figure 12.17. As before, there is
also a Gibbs oscillation in the reconstructed image, parallel to the boundary of the square.
This image should be compared to Figure 7.11, which illustrates the Gibbs phenomenon for
two-dimensional Fourier series. Unlike Figure 7.11, the oscillatory artifact near the corner
(in the “Gibbs shadow”) is as large as that parallel to the edges, indicating that it is not
simply the Gibbs phenomenon for the partial sums of the Fourier series.

Exercises
Exercise 12.3.4. Derive the formula for � f and � � f in Example 12.3.3.

Exercise 12.3.5. Compute −i�∂t � f for Example 12.3.4.

A Far Field Approximation for the Reconstructed Image

In this section we obtain an approximate formula for the reconstruction of a small radially
symmetric object at points far from the object. Let φ denote a linearly interpolated filter
function and w a function describing the source-detector pair. If f is the data, then the
approximate, filtered back-projection reconstruction is given by

fφ,w(x, y) = 1

2π

π∫
0

Qφ,w f (〈(x, y),ω〉,ω) dω,

where

Qφ,w f (t,ω) =
∞∫

−∞
�W f (s,ω)φ(t − s) ds.

Here �W f denotes the w-averaged Radon transform of f. We now consider the effect of
sampling in the ω-parameter, leaving t as a continuous parameter. Equation (12.7) shows
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that, in this case, φ and w are interchangeable; the effects of finite beam width and regu-
larizing the filter are both captured by using φ ∗ w as the filter function. We analyze the
difference between fφ,w(x, y) and the Riemann sum approximation

f̃φ,w(x, y) = 1

4π

M∑
j=0

Qφ,w f (〈(x, y),ω( j �θ)〉,ω( j �θ))�θ.

For simplicity, we restrict attention to functions of the form

f (a,b)(x, y) = f ((x, y)− (a, b)),

where f is a radial function. The averaged Radon transform of f is independent of ω; to
simplify the notation, we suppress the ω-dependence, writing

�W f (t), Qφ,w f (t)

and therefore

�W f (a,b)(t,ω) = �W f (t − 〈(a, b),ω〉),
Qφ,w f (a,b)(t,ω) = Qφ,w f (t − 〈(a, b),ω〉) (12.20)

as well. From equation (12.20) we obtain

f (a,b)
φ,w (x, y) = 1

2π

π∫
0

Qφ,w f (〈(x, y) − (a, b),ω〉) dω.

Letting (x − a, y − b) = R(cos ϕ, sin ϕ) and ω(θ) = (cos θ, sin θ) gives

f (a,b)
φ,w (x, y) = 1

2π

π∫
0

Qφ,w f (R cos(θ − ϕ)) dθ

with Riemann sum approximation

f̃ (a,b)
φ,w (x, y) = 1

2π

M∑
j=0

Qφ,w f (R cos( j �θ − ϕ))�θ. (12.21)

The objects of principal interest in this analysis are small and hard. The examples pre-
sented in the previous paragraph indicate that we should concentrate on the reconstruction
at points in the exterior of the object. The function f (a,b)

φ,w is an approximation to f ∗ k,
where k is the inverse Radon transform of w. If w has bounded support and φ provides a
good approximation to −i∂t �, then f (a,b)

φ,w should be very close to zero for points outside
the support of f ∗ k. Indeed, if w has small support, then so does k, and therefore the sup-
port of f ∗ k is a small enlargement of the support of f itself. We henceforth assume that,
for points of interest,

f (a,b)
φ,w (x, y) ≈ 0 (12.22)
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and therefore any significant deviation of f̃ (a,b)
φ,w (x, y) from zero is an error.

If f is the characteristic function of a disk of radius r, then Qφ,w f (t) falls off rapidly
for |t| >> r. There is a j0 so that

j0�θ − ϕ <
π

2
,

( j0 + 1)�θ − ϕ ≥ π

2
.

(12.23)

If we let �ϕ = π
2 − j0�θ + ϕ then 0 < �ϕ ≤ �θ and

f̃ (a,b)
φ,w (x, y) = 1

2π

M∑
j=0

Qφ,w f (R sin( j �θ −�ϕ))�θ.

As the important terms in this sum are those with | j | close to zero, we approximate the sine
function by using

sin( j �θ −�ϕ) ≈ j �θ −�ϕ,

obtaining

f̃ (a,b)
φ,w (x, y) ≈ 1

2π

∞∑
j=−∞

Qφ,w f (R( j �θ −�ϕ))�θ.

The limits of summation have also been extended from −∞ to ∞. The error this introduces
is small as φ(t) = O(t−2).

The Poisson summation formula can be used to evaluate the last expression; it gives

f̃ (a,b)
φ,w (x, y) ≈ 1

2π R

∞∑
j=−∞

˜Qφ,w f

(
2π j

R �θ

)
e− 2π i j �ϕ

�θ .

From the central slice theorem,

˜Qφ,w f (ρ) = φ̂(ρ)ŵ(ρ) f̂ (ρ).

Assuming that φ̂(0) = 0 and that w is a even function gives the simpler formula

f̃ (a,b)
φ,w (x, y) ≈ 1

π R

∞∑
j=1

φ̂ · ŵ · f̂

(
2π j

R�θ

)
cos

(
2π j �ϕ

�θ

)
. (12.24)

In order for this sum to be negligible at a point whose distance to (a, b) is R, the angular
sample spacing, �θ, must be chosen so that the effective support of φ̂ · ŵ · f̂ is contained
in (

− 2π

R�θ
,

2π

R�θ

)
.

This explains why the oscillatory artifacts only appear at points that are at a definite distance
from the object: For small values of R the sum itself is very small. For large enough R the
product φ̂ · ŵ · f̂ is evaluated at small arguments and the sum may become large.
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Suppose, for example, that R�θ is such that all terms in this sum but the first are
negligible. Then

f̃ (a,b)
φ,w (x, y) ≈ 1

π R
φ̂ · ŵ · f̂

(
2π

‖(x, y) − (a, b)‖�θ

)
cos

(
2π�ϕ

�θ

)
. (12.25)

The cosine factor produces an oscillation in the sign of the artifact whose period equals
�θ. This is apparent in Figures 12.18 and 12.19. The amplitude of the artifact depends on
the distance to the object through the product φ̂ · ŵ · f̂ . This allows us to relate the angular
sample spacing, needed to obtain an artifact free reconstruction in a disk of given radius, to
the source-detector function w. For simplicity suppose that

w(u) = 1

2δ
χ[−δ,δ](u) so that ŵ(ρ) = sinc(ρδ).

The first zero of ŵ occurs at ρ = ±π
δ
, which suggests that taking

�θ <
2δ

R

is a minimal requirement to get artifact-free reconstructions in the disk of radius R. This
ignores the possible additional attenuation of the high frequencies resulting from φ̂, which
is consistent with our desire to get a result that is independent of the sample spacing in the
t-parameter. The estimate for �θ can be rewritten as

π R

2δ
<

π

�θ
.

The quantity on the right-hand side is the number of samples, M + 1, in the ω-direction.
As 2δ is the width of the source, Nyquist’s theorem implies that the maximum spatial
frequency available in the data is about (4δ)−1. If we denote this by ν, then the estimate
reads

2π Rν < M + 1.

Essentially the same result was obtained in Section 11.4.5, with much less effort! The
difference in the analyses is that, in the earlier discussion, it was assumed that the data are
effectively bandlimited to [−π

2δ ,
π
2δ ]. Here this bandlimiting is a consequence of the lowpass

filtering that results from averaging over the width of the x-ray beam.
It is important to note that the artifacts that result from view sampling are present

whether or not the data are sampled in the t-parameter. These artifacts can be reduced
by making either φ or w smoother. This is in marked contrast to the result obtained for ray
sampling. In that case the aliasing errors are governed solely by w and cannot be reduced
by changing φ. If f describes a smooth object, so that f̂ decays rapidly, then it is unlikely
that view sampling aliasing artifacts will appear in the reconstruction region.

Example 12.3.5. To better understand formula (12.25), we consider (a, b) = (0, 0) and
f (x, y) = χB 1

10
(x, y). For simplicity we use w = 1

2χ[−1,1] for the beam profile and the
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Shepp-Logan filter with d = .25. We consider the right-hand side of 12.25 with �θ =
2π
8 and 2π

32 . The three-dimensional plots in Figures 12.18(a) and 12.19(b) of the functions
defined in (12.21) give an idea of how the artifacts appear in a reconstructed image. Notice
that the sign of the error reverses along a circle. The two-dimensional graphs in these
figures are sections of the three-dimensional plots along lines of constant ϕ. These graphs
allow for a quantitative appreciation for the size of the errors and their dependence on �θ.

(a) 3D plot.
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(b) Sections along radii.

Figure 12.18. View sampling artifacts with �θ = 2π
32 .

(a) 3D plot.
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(b) Sections along radii.

Figure 12.19. View sampling artifacts with �θ = 2π
8 .
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(a) Parallel beam. (b) Fan beam.

Figure 12.20. Examples comparing view aliasing in parallel beam and fan beam scanners.
The view sampling artifact is the pattern of light and dark radial lines beginning about four
diameters from the circle.

Remark 12.3.1. In [72] a similar analysis is presented for a fan beam machine. The results
are similar though a bit more complicated. The artifacts produced by view sampling in
a fan beam machine differ in one important way: In a parallel beam machine the pattern
of oscillations is circularly symmetric and depends on the distance from the center of a
radially symmetric object. For a fan beam machine the pattern displays a similar circular
symmetry, but the center of the circle no longer agrees, in general, with the center of the
object (see Figure 12.20).

Exercises
Exercise 12.3.6. Given that we use the Poisson summation formula to derive (12.24), why
is it allowable to use w(u) = (2δ)−1χ[−δ,δ](u) in this analysis?

Exercise 12.3.7. Show that the PSF for a filtered back-projection reconstruction, incorpo-
rating the beam width function w and sampling in the ω-parameter, is

�(x, y; a, b) = �θ

2π

M∑
j=0

φ ∗w(〈(x − a, y − b),ω( j �θ)〉).

Note that this operation is shift invariant.

Exercise 12.3.8. Using the result of the previous exercise, compute the MTF for a filtered
back-projection algorithm, incorporating the beam width function w and sampling in the
ω-parameter.

12.4 The Effects of Measurement Errors

The artifacts considered in the previous sections are algorithmic artifacts, resulting from
the sampling and approximation used in any practical reconstruction method. The final
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class of linear artifacts we consider is the effects of systematic measurement errors. This
should be contrasted to the analysis in Chapter 16 of the effects of random measurement
errors or noise. Recall that the measurements made by a CT machine are grouped into
views and each view is comprised of a collection of rays. We now consider the conse-
quences of having a bad ray in a single view, a bad ray in every view, and a single bad view.
These analyses illustrate a meta-principle, called the smoothness principle, often invoked
in medical imaging:

The filtered back-projection algorithm is very sensitive to er-
rors that vary abruptly from ray to ray or view to view but
relatively tolerant of errors that vary gradually.

This feature of the algorithm is a reflection of the fact that the filter function, φ̂(r), approx-
imates |r | and therefore attenuates low frequencies and amplifies high frequencies. Our
discussion is adapted from [115], [70], and [71]. Many other errors are analyzed in these
references.

For this analysis we suppose that the measurements, made with a parallel beam scanner,
are the samples

{P(t j ,ω(k �θ)) : k = 0, . . . , M, j = 1, . . . , N}

of �W f (t,ω). The coordinates are normalized so that the object lies in [−1, 1] × [−1, 1].
The angular sample spacing is

�θ = π

M + 1

and the rays are uniformly sampled at

t j = −1 + ( j − 1

2
)d.

If φ is the filter function, which is specified at the sample points and linearly interpolated
in between, then the approximate reconstruction is given by

f̃φ(x, y) = 1

N(M + 1)

M∑
k=0

N∑
j=1

P(t j ,ω(k �θ))φ(x cos(k �θ)+y sin(k �θ)−t j ). (12.26)

For purposes of comparison, we use the Shepp-Logan filter

φ(0) = 4

πd2
, φ( jd) = −4

πd2(4 j 2 − 1)
.
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12.4.1 A Single Bad Ray

Ray 184

Ray 367

jΔθ

Ray 1

(a) Ray numbering scheme for the j th view. (b) Reconstruction with a few bad rays.

Figure 12.21. The numbering scheme for rays and views used in the examples in this
section and a reconstruction of the Shepp-Logan phantom with a few isolated bad rays.

The first effect we consider is an isolated measurement error in a single ray, from a single
view. Suppose that P(t j0,ω(k0�θ)) differs from the “true” value by ε. As formula (12.26)
is linear, this measurement error produces a reconstruction error at (x, y) equal to

� f̃φ(x, y) = εφ(x cos(k0 �θ)+ y sin(k0 �θ) − t j0)

N(M + 1)

= ε

N(M + 1)
φ(dist((x, y), lt j0 ,ω(k0�θ))). (12.27)

The effect of this error at (x, y) only depends on the distance from (x, y) to the “bad ray,”
lt j0 ,ω(k0�θ). In light of the form of the function φ, the error is worst along the ray itself,
where it equals

εN

π(M + 1)
.

Example 12.4.1. In this example we use the Shepp-Logan phantom with 180 views and
367 rays in each view. The rays are numbered so that ray number 184 passes through
the center of the image. The labeling of views and rays is shown in Figure 12.21(a).
Figure 12.21(b) shows a reconstruction of the Shepp-Logan phantom with errors in sev-
eral rays. We list rays in the form ( j, θ), where j is the ray number and θ is in de-
grees. We introduce an error in two adjacent rays to get a clearer picture of the arti-
fact. Rays (220, 30), (221, 30), (250, 90), and(251, 90) each have a 10% error, while rays
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(190, 180), (191, 180) have a %20 error and rays (110, 135) and (111, 135) have a 30%
error.

12.4.2 A Bad Ray in Each View

A bad ray might result from a momentary surge in the output of the x-ray tube. If, on
the other hand, a single detector in the detector array is malfunctioning, then the same ray
in each view will be in error. Let εk denote the error in P(t j0,ω(k �θ)). In light of the
linearity of (12.26), the error at (x, y) is now

� f̃φ(x, y) =
M∑

k=0

εkφ(x cos(k �θ) + y sin(k �θ)− t j0)

N(M + 1)
. (12.28)

If (x, y) = r(cos ϕ, sin ϕ) in polar coordinates and ε = εk for all k, then

� f̃φ(x, y) =
M∑

k=0

εφ(r cos(ϕ − k �θ)− t j0)

N(M + 1)

≈ ε

πN

π∫
0

φ(r cos(ϕ − s)− t j0) ds.

(12.29)

Because the function φ is sharply peaked at zero and

∞∫
−∞

φ(s) ds = 0,

this artifact is worst for points where r = t j0 and 0 < ϕ < π. At other points the integrand is
either uniformly small or the integral exhibits a lot of cancellation. Due to the periodicity,
of the integrand, in ϕ it is clear that the largest error occurs where r = t j0 and ϕ = π

2 .
The reason the error is only large in half the circle is that samples are only collected for
0 ≤ θ ≤ π. If data are collected over the full circle, then the result of an error ε in the j0th
ray is approximately

� f̃φ ≈ ε

2πN

2π∫
0

φ(r cos(s) − t j0) ds. (12.30)

If the data are collected over half the circle then [4π ]−1� f̃φ is the average error for points
on the circle of radius r. Figure 12.22 shows graphs of the average error as a function of r
with t j0 = 0, .25, .5, and .75. The integral in (12.30) is difficult to numerically evaluate if
φ is a linearly interpolated function. Instead we have used the approximate filter function

φ(t) = d2 − t2

(d2 + t2)2
,
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which was introduced in Section 6.4. These graphs bear out the prediction that the error is
worst where r = t j0; moreover, the sharpness of the peak also depends on t j0.

2

4

6

8

10

1

Figure 12.22. Radial graphs of the average error with systematic bad rays at different affine
parameters.

Since all the bad rays have the same affine parameter, t j0, they are all tangent to the
circle, centered at (0, 0) of radius t j0. In [115] it is shown that the average error along this
circle is given approximately by

ε
√

N

π2√t j0

if t j0 >> 0 and
εN

π
if t j0 = 0.

(a) Errors in rays 200 and 201. (b) Errors in rays 90 and 91.

Figure 12.23. Reconstructions of the Shepp-Logan phantom with projection data having
errors in a pair of rays in every view. Note the semicircular artifacts.



486 Chapter 12. Imaging Artifacts in X-Ray Tomography

Example 12.4.2. The setup is the same as in Example 12.4.1. The images in Figure 12.23
show reconstructions of the Shepp-Logan phantom with an error in a pair of adjacent rays
in every view. In Figure 12.23(a), rays 200 and 201 have an error that is at most 1% in
every view. In Figure 12.23(b), rays 90 and 91 have an error that is at most 2% in every
view.

Exercises
Exercise 12.4.1. Explain why the error is only large in a semi-circle if samples are collected
for 0 ≤ θ ≤ π.

Exercise 12.4.2. Prove that [4π ]−1� f̃φ(r) represents the average error on the circle of
radius r if data are collected for 0 ≤ θ ≤ π.

12.4.3 A Bad View

In a third-generation machine a single bad detector would result in the situation analyzed
in the previous section: The measurement of the same ray would be erroneous in every
view. This is because a view, for a third-generation machine, is determined by the source
position. In a fourth-generation scanner, a miscalibrated detector could instead result in
every ray from a single view being in error. This is because a view is determined, in a
fourth-generation machine, by a detector.

We now analyze the effect on the reconstruction of having an error in every measure-
ment from a single view. As before, we assume the image is reconstructed using the parallel
beam algorithm. Suppose that ε j is the error in the measurement P(t j ,ω(k0 �θ)); then the
reconstruction error at (x, y) is

� f̃φ(x, y) = 1

N(M + 1)

N∑
j=1

ε jφ(〈(x, y),ω(k0�θ)〉 − t j ).

If the error ε j = ε for all rays in the k0th view, then the error can be approximated by an
integral

� f̃φ(x, y) ≈ ε

2(M + 1)

1∫
−1

φ(〈(x, y),ω(k0 �θ)〉 − t) dt. (12.31)

As before, the facts that φ is even and has total integral zero make this artifact most severe
at the points 〈(x, y), ω(k0�θ)〉 = ±(1 − d) and least severe along the line

〈(x, y),ω(k0�θ)〉 = 0.

This is the “central ray” of the k0th view. From the properties of φ, we conclude that the
worst error

max(� f̃φ) ∝ εd

8π(M + 1)
φ(0) = εN

2π(M + 1)
.
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On the other hand, for points near to (0, 0) the error is approximately

ε

2(M + 1)

1+δ∫
−1+δ

φ(t) dt,

where δ is the distance between (x, y) and the central ray of the bad view. The integral
from (−1+ δ) to (1− δ) is approximated by 2

π(1−δ)
and the integral from (1− δ) to (1+ δ)

is O(δ); hence

� f̃φ(x, y) ≈ ε

π(M + 1)

1

1 − δ
.

Example 12.4.3. The setup is again as in Example 12.4.1. The values of the projections
in view 0 have all been divided by 2. Indeed, the preceding estimate is overly cautious,
and the change in the image produced by such errors in a single view is hardly discernible.
Figure 12.24(a) shows the Shepp-Logan phantom with these systematic errors in view 0.
Figure 12.24(b) is the difference of the image in (a) and the reconstruction obtained with-
out errors in the data. It shows that the error is most pronounced where, as predicted,
〈(x, y),ω〉 ≈ ±1. The gray scale in Figure 12.24(b) has been compressed in order to make
these vertical lines visible. This example indicates that even a large, smoothly varying er-
ror has very little effect on the reconstructed image. This is consistent with the smoothness
principle.

(a) The reconstruction of the Shepp-Logan phan-
tom with every projection in view 0 divided by 2.

(b) The difference of the image in (a) and the re-
construction without systematic errors in the data.

Figure 12.24. The error produced in the reconstruction with a single bad view.

Remark 12.4.1. Many other artifacts have been analyzed in [115] and [71]. We have se-
lected examples that have a simple mathematical structure and illustrate the usage of the
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tools developed in the earlier chapters. Due to the success in analyzing these artifacts, they
are largely absent from modern CT images.

Exercises
Exercise 12.4.3. Justify the approximation as an integral in (12.31).

Exercise 12.4.4. Describe the qualitative properties of the measurement error that would
result from a momentary surge in the x-ray source in a fourth-generation CT-scanner.

Exercise 12.4.5. Suppose that every measurement is off by ε. Show that the reconstructed
image has a error

� f̃φ(x, y) ≈ ε

π
√

1 − x2 − y2
.

12.5 Beam Hardening

We close our discussion of imaging artifacts with a very short discussion of beam hard-
ening. Because it is nonlinear, beam hardening is qualitatively quite different from the
foregoing phenomena. It is, instead, rather similar to the partial volume effect. Beam hard-
ening is caused by the fact that the x-ray beam is not monochromatic and the attenuation
coefficient depends, in a nontrivial way, on the energy of the incident beam. Recall that an
actual measurement is the ratio Ii/Io, where Ii is the total energy in the incident beam and
Io is the total energy in the output. The energy content of the x-ray beam is described by
its spectral function, S(�); it satisfies

Ii =
∞∫

0

S(�) d�.

If a (thin) x-ray beam is directed along the line lt,ω, then the measured output is

Io,(t,ω) =
∞∫

0

S(�) exp

⎡⎣− ∞∫
−∞

f (sω̂ + tω;�) ds

⎤⎦ d�.

Here f (x;�) is the attenuation coefficient, with its dependence on the energy explicitly
noted. A typical spectral function is shown in Figure 3.8. Due to this nonlinear distortion,
the raw measurements are not the Radon transform of f ; in the imaging literature it is often
said that such measurements are inconsistent.

Suppose that D is a bounded object whose attenuation coefficient, f (�), only depends
on the energy. Even in this case, the function

log

[
Ii

Io,(t,ω)

]
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is not a linear function of length of the intersection of the line lt,ω with D. If T denotes the
length of this line segment, then

log

[
Ii

Io,(t,ω)

]
= H f (T )

d= log

[∫
S(�)e−T f (�) d�∫

S(�) d�

]
. (12.32)

Because S(�) and f (�) are nonnegative functions, it is immediate that H f (T ) is a strictly
decreasing function. This implies that the inverse function, H−1

f , is well defined. Thus by
measuring or computing H f (T ), for T in the relevant range, its inverse function can be
tabulated. The attenuation coefficient of water, fw(�), as well as Hw(T ) − H ′

w(0)T, for a
typical spectral function, are shown in Figure 12.25(a–b).

Using H−1
f , the Radon transform of χD can be determined from x-ray attenuation mea-

surements

�χD(t,ω) = H−1
f

(
log

[
Ii

Io,(t,ω)

])
. (12.33)

The region D could now be reconstructed using the methods described previously for ap-
proximately inverting the Radon transform.
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(a) Log-log plot of the attenuation coefficient
of water. The unit along the horizontal axis
is MeV, the vertical axis is cm−1. (The data
for this figure are from the National Insti-
tute of Standards and Technology Web site
http://physics.nist.gov/PhysRefData/ XrayMass-
Coef/cover.html.)
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(b) A plot of the difference between the linear and
nonlinear models for the attenuation of an x-ray
beam, with average energy 70 keV, caused by water.
(I am very grateful to Dr. Peter Joseph for doing the
computations for and providing this figure.)

Figure 12.25. Beam hardening through water.

The attenuation coefficients of the soft tissues in the human body are close to that of
water, and their dependence on the energy is similar. If fw(�) is the attenuation coefficient
of water, then this amounts to the statement that the ratio

ρ = f (x;�)

fw(�)
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is nearly independent of the energy. Let Hw denote the function defined in (12.32) with
f = fw. For slices that contain little or no bone the function, H−1

w can be used as in (12.33)
to correct for beam hardening. This substantially reduces the inconsistencies in the mea-
surements and allows the usage of the Radon formalism to reconstruct ρ.

The measurement is reexpressed in terms of ρ by

Io,(t,ω) =
∞∫

0

S(�) exp

⎡⎣− fw(�)

∞∫
−∞

ρ(sω̂ + tω) ds

⎤⎦ d�.

Applying H−1
w to these measurements gives the Radon transform of ρ,

H−1
w

(
log

[
Ii

Io,(t,ω)

])
=

∞∫
−∞

ρ(sω̂ + tω) ds.

The function ρ is a nonnegative function that reflects the internal structure of the slice in
much the same way as a monoenergetic attenuation coefficient. Having materials of very
different densities in a slice leads to a much more difficult beam hardening problem—one
that is, as of this writing, not completely solved. In x-ray CT this is principally the result
of bones intersecting the slice.

Beam hardening causes dark streak artifacts, similar in appearance to those in Fig-
ure 12.5 (caused by the non-linear partial volume effect). The analysis of this problem
is beyond the scope of this text. In [73] an effective algorithm is presented to substan-
tially remove these artifacts. Another method, requiring two sets of measurements with
x-ray beams having different spectral functions, is described in [3]. The discussion in this
section is adapted from [73], which contains many additional illustrative examples.

Exercises
Exercise 12.5.1. What is H ′

f (T )?

Exercise 12.5.2. Prove that H f (T ) is a strictly monotone decreasing function.

Exercise 12.5.3. Find a Taylor series expansion for H−1
f .

12.6 Conclusion

We began our analysis of x-ray CT in Chapter 3 with a continuum model for the mea-
surements as the Radon transform of a two-dimensional slice of the attenuation coefficient.
With this model the reconstruction problem was simply that of inverting the Radon trans-
form. The filtered back-projection formula derived in Chapter 6 is a complete solution to
this problem. A more realistic model for the measurements was then introduced as samples
of the Radon transform. We were then faced with the problem of approximately imple-
menting the filtered back-projection formula on finitely sampled data. After studying the
general problem of implementing shift invariant filters, we obtained finite reconstruction
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algorithms for x-ray CT in Chapter 11. As part of this discussion we saw how the actual
imaging hardware determines the samples that are collected, which, in turn, dictates the
structure of the reconstruction algorithm.

Assuming that the x-ray beam is one dimensional and monochromatic, the model for
the measured data used in Chapter 11 is still highly idealized. In this chapter we introduced
a more realistic model for the measurements as strip integrals and obtained point spread
functions for the measurement and reconstruction process. We then used the reconstruction
formulæ to analyze the consequences of various measurement errors on the reconstructed
image. The chapter concludes with a brief discussion of beam hardening, a consequence
of the fact that the x-rays available for medical tomography are not monochromatic. The
introduction of the mathematical phantom and the mathematical analysis of algorithmic
and modeling errors were essential steps in the reduction of imaging artifacts.

(a) A brain section made in 1976 with an
EMI� scanner using a filtered back-projection
algorithm. (This image provided by Dr. Peter
Joseph.)

(b) A similar brain section made in 2002 with a
GE� scanner also using a filtered back-projection
algorithm. (This image provided by Dr. David
Hackney.)

Figure 12.26. Technological improvements and mathematical analysis have led to enor-
mous improvements in CT images.

Figure 12.26(a) shows a CT image of a slice of the head from a 1970s era machine.
Note the enormous improvement in the image from 2002 of a similar slice, shown in Fig-
ure 12.26(b). The detailed anatomy of the brain, which is only hinted at in Figure 12.26(a),
is readily apparent in the 2002 image. For example, we can see the folds in the cerebral
cortex as well as the difference between white and gray matter. While most of the improve-
ment in the 2002 image is due to finer sampling and better detectors, some improvement is
the result of improved algorithms. For example, in the 1970s image the boundary between
the brain and skull is blurred, while it is sharply delineated in the more recent image. This
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blurring, caused by beam hardening, is corrected in the later image.
In the next chapter we introduce algebraic reconstruction techniques that provide al-

ternative methods for reconstructing an image. This approach employs a model for the
measurements as averages of the Radon transform of a function but does not attempt to ap-
proximate the filtered back-projection formula. Rather it phrases the reconstruction prob-
lem as a very large, sparse system of linear equations. These methods are less sensitive to
the details of the measurement process.

The last topic we consider is the role of random phenomena in x-ray tomography. The
theory of probability and random processes provides a language to discuss noise and other
nondeterministic sources of error. The main source of noise in x-ray tomography is called
quantum noise; it is due to the fact that the x-ray beam is not a continuous flux of energy but
instead a flux of finitely many photons. Indeed, the output of an x-ray source is also mod-
eled as a random process, and therefore the measurements made in x-ray CT are themselves
nondeterministic. Probability theory also provides a definition for the signal-to-noise ra-
tio, which quantifies the amount of usable information in measurements and reconstructed
images.

On the one hand, the model for x-ray CT presented thus far has been very successful:
The images produced in real clinical applications provide accurate, high-resolution rep-
resentations of the internal anatomy without exposing the patients to excessive levels of
radiation. On the other hand, the models for the measurements used to derive the recon-
struction algorithms are still somewhat metaphoric, and this makes it difficult to use the
output of the reconstruction algorithm for quantitative analysis. Due to effects like beam
hardening and quantum noise, it remains a challenge to describe precisely the physical
quantity that is actually reconstructed in x-ray CT.



Chapter 13

Algebraic Reconstruction
Techniques

Algebraic reconstruction techniques (ARTs) are techniques for reconstructing images that
have no direct connection to the Radon inversion formula. Instead these methods use a lin-
ear model for the measurement process so that the reconstruction problem can be posed as
a system of linear equations. Indeed the underlying mathematical concepts of ART can be
applied to approximately solve many types of large systems of linear equations. This chap-
ter contains a very brief introduction to these ideas. We present this material for historical
reasons and to expose the reader to other approaches to medical image reconstruction. An
extensive discussion of these methods can be found in [52]. The material presented in this
chapter in not used in the sequel.

As before, boldface letters are used to denote vector or matrix quantities, while the
scalar entries of a vector or matrix are denoted in regular type with subscripts. For example,
r is a matrix, {r i } its rows (which are vectors), and ri j its entries (which are scalars).

13.1 Algebraic Reconstruction

The main features of the Radon transform of interest in ART are as follows: (1) The map
f �→ � f is linear, and (2) for a function defining a simple object with bounded support,
� f has a geometric interpretation. The first step in an algebraic reconstruction technique
is the choice of a finite collection of basis functions,

{b1(x, y), . . . , bJ (x, y)}.
Certain types of a priori knowledge about the expected data and the measurement process
itself can be “encoded” in the choice of the basis functions. At a minimum, it is assumed
that the attenuation coefficients we are likely to encounter are well approximated by func-
tions in the linear span of the basis functions.

493
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If f is a two-dimensional slice of an attenuation coefficient, then for some choice of
constants {x j }, the difference

f −
J∑

j=1

x j b j

should be small, in an appropriate sense. For medical imaging, it is reasonable to require
that the finite sum approximate f in that the gray scale images that they define “look simi-
lar” (see Section 9.4). It is also important that

� f ≈
J∑

j=1

x j �b j .

A third criterion is to choose basis function for which �b j can be efficiently approximated.
The pixel basis is a piecewise constant family of functions often used in ART. Suppose

that the support of f lies in the square [−1, 1] × [−1, 1]. The square is uniformly sub-
divided into a K × K grid. When using ART methods, it is convenient to label the sub-
squares sequentially one after another, as in Figure 13.1(a). The elements of the K × K
pixel basis are defined by

bK
j (x, y) =

{
1 if (x, y) ∈ j th − square,

0 otherwise.

If x j is the average of f in the j th-square, then

f̄ K =
J∑

j=1

x j b
K
j

provides an approximation to f in terms of the pixel basis. It is easy to see that the {bK
j } are

orthogonal with respect to the usual inner product on L2(�2) and that f̄ K is the orthogonal
projection of f into the span of the {bK

j }.
For f a continuous function with bounded support, the sequence < f̄ K > converges

uniformly to f as K → ∞. If f represents an image, in the usual sense of the word,
then as K → ∞ the image defined by f̄ K also converges to that defined by f. The Radon
transform is linear and therefore

� f̄ K =
J∑

j=1

x j �bK
j .

Another advantage of the pixel basis is that �bK
j (t, ω) is, in principle, very easy to compute,

being simply the length of the intersection of lt,ω with the j th square.
The pixel basis is a good example to keep in mind. It has been used in many research

papers on ART as well as in commercial applications. Expressing a function as a linear
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combination of basis functions is, in fact, the same process used in our earlier analysis of the
Radon inversion formula. The only difference lies in the choice of basis functions. In ART
methods we typically use a localized basis like the {bK

j }, where each function has support
in a small set. For our analysis of the Radon transform we adopted the basis provided
by the exponential functions, {eiξ ·x}. These basis functions are well localized in frequency
space but are not localized in physical space. The exponential basis is useful because it
diagonalizes the linear transformations used to invert the Radon transform. On the other
hand, it suffers from artifacts like the Gibbs phenomenon, which are a consequence of its
non-localized, oscillatory nature. Wavelet bases are an attempt to strike a balance between
these two extremes; they are localized in space but also have a fairly well-defined frequency.
A good treatment of wavelets can be found in [58].

Returning now to our description of ART, assume that {b j } is a localized basis, though
not necessarily the pixel basis. As before, the measurements are modeled as samples of
� f. The samples are labeled sequentially by i ∈ {1, . . . , I }, with � f sampled at

{(t1, ω1), (t2, ω2), . . . , (tI , ωI )}.
Unlike the filtered back-projection (FBP) algorithm, ART methods are insensitive to the
precise nature of the data set. The measurement matrix models the result of applying the
measurement process to the basis functions. One way to define the measurement matrix is
as the line integrals:

ri j = �b j (ti , ωi), i = 1, . . . , I ; (13.1)

see Figure 13.1(a). Using the definition of r in (13.1), the entries of p, the vector of
measurements, are defined to be

pi = � f (ti , ωi), i = 1, . . . , I .

The reconstruction problem is now phrased as a system of I equations in J unknowns:

J∑
j=1

ri j x j = pi for i = 1, . . . , I (13.2)

or more succinctly, r x = p. A further flexibility of ART methods lies in the definition
of the measurement matrix. As we shall see, simplified models are often introduced to
compute its components.

The easiest type of linear system to solve is one defined by a diagonal matrix. In the
Fourier approach to image reconstruction, the FFT is used to reduce the reconstruction
problem to a diagonal system of equations. This explains why it was not necessary to
address explicitly the problem of solving linear equations. The difficulty of using ART
comes from the size of the linear system (13.2). If the square is divided into J = 128 ×
128 � 16, 000 subsquares, then, using the pixel basis, there are 16, 000 unknowns. A
reasonable number of measurements is 150 samples of the Radon transform at each of
128 equally spaced angles, so that I � 19, 000. That gives a 19, 000 × 16, 000 system of
equations. Even today, it is not practical to solve a system of this size directly. Indeed, as is
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typical in ART, this is an overdetermined system, so it is unlikely to have an exact solution.
Consulting Figure 13.1, it is apparent that for each i there are about K values of j such that
ri j 	= 0. A matrix with “most” of its entries equal to zero is called a sparse matrix. Since
K � √

I , ri j is a sparse matrix. Localized bases are used in ART methods because it is
essential for the measurement matrix to be sparse.

j

K+1

K

r

Ray i

ij

5431

K

(a) Using one-dimensional rays.

r

Strip i

K+1

K

ij

5431

K
j

(b) Using two-dimensional strips.

Figure 13.1. Two definitions of the measurement matrix using a pixel basis.

With the pixel basis and a one-dimensional x-ray beam, the “exact” measurement ma-
trix would be

ri j = length of the intersection of the i th ray with the j th pixel.

If the x-ray beam has a one-dimensional cross section, then these rays above are replaced
by strips. The value of ri j could then be the area of intersection of the i th-strip with the
j th-pixel [see Figure 13.1(b)]. A more complicated beam profile could also be included
by weighting different parts of the strips differently. In either case, the calculation of ri j

requires a lot of work. Much of the literature on ART discusses the effects of using various
schemes to approximate the measurement matrix. A very crude method, which was actually
used in the earliest commercial machines, is to set ri j = 1 if the center of the j th-pixel is
contained in the i th-strip and 0 otherwise. For such a simple scheme, the values of ri j

can be computed at run time and do not have to be stored. An undesirable consequence
of crudely approximating ri j is that it leads to inconsistent systems of equations. If the
measurement matrix is not an accurate model for the measurement process, then, given the
overdetermined character of (13.2), we neither expect an actual vector of measurements to
satisfy

rx = p, (13.3)

for any choice of x, nor that a solution of this equation gives a good approximation to the
actual attenuation coefficient. A practical ART method needs to strike a balance between
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the computational load of accurately computing r and the inconsistencies that result from
crude approximations.

An approach for handling inconsistent or overdetermined problems is to look for a
vector x̃ that minimizes an error function,

e(r x̃ − p).

The most common choice of error function is Euclidean (or l2) norm of the difference,

e2(r x − p) = ‖e(rx − p)‖2.

In this chapter ‖ · ‖ refers to the Euclidean norm. Minimizing e2(r x − p) leads to the
least squares method. This method is often reasonable on physical grounds, and from
the mathematical standpoint it is a very simple matter to derive the linear equations that
an optimal vector, x̃, satisfies. Using elementary calculus and the bilinearity of the inner
product defining the norm gives the variational equation:

d

dt
〈r(x̃ + tv)− p, r(x̃ + tv)− p〉

∣∣∣∣
t=0

= 0 for all vectors v.

Expanding the inner product gives

t2〈rv, rv〉 + 2t〈rv, r x̃ − p〉 + 〈r x̃ − p, r x̃ − p〉.
Hence, the derivative at t = 0 vanishes if and only if

2〈rv, r x̃ − p〉 = 2〈v, r t (r x̃ − p)〉 = 0.

Since v is an arbitrary vector, it follows that

r t r x̃ = r t p. (13.4)

These are sometimes called the normal equations. If r has maximal rank, then r t r is
invertible, which implies that the minimizer is unique. We might consider solving this
system of equations. However, for realistic imaging data, it is about a 104 × 104 system,
which again is too large to solve directly. Moreover, the matrix r t r may fail to be sparse
even though r is.

Exercises
Exercise 13.1.1. If f is a continuous function with bounded support, show that f̄ K con-
verges uniformly to f as K → ∞.

Exercise 13.1.2. Let f = χ[−a,a](x)χ[−b,b](y). By examining f̄ K , show that there is no
Gibbs phenomenon for the pixel basis. In what sense does f̄ K converge to f ?

Exercise 13.1.3. Suppose that f is a piecewise continuous function. Find norms N1, N2 so
that N1( f̄ K − f ) and N2(� f̄ K − � f ) tend to zero as K → ∞.

Exercise 13.1.4. Prove directly that if r has maximal rank, then the normal equations have
a unique solution.
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13.2 Kaczmarz’s Method

Most of the techniques used in numerical linear algebra are iterative. Instead of attempting
to directly solve an equation like (13.4), we use an algorithm that defines a sequence, <
x(k) >, of vectors that get closer and closer to a solution (or approximate solution). The
principal method used in ART derives from the Kaczmarz method or method of projections.
The idea can be explained using a very simple example. Consider the 2 × 2 system of
equations:

r11x1 + r12x2 = p1,

r21x1 + r22x2 = p2.

For i = 1, 2 ri1x1 + ri2x2 = pi defines a line li in the plane. The solution for this system of
equations is the point of intersection of these two lines. The method of projections is very
simple to describe geometrically:

1. Choose an arbitrary point and call it x(0).

2. Orthogonally project x(0) onto l1, and denote the projected point by x(0,1). Orthogo-
nally project x(0,1) onto l2, denote the projected point by x(0,2). This completes one

iteration. Set x(1) d= x(0,2).

3. Go back to (2), replacing x(0) with x(1), and so on.

This algorithm is illustrated in Figure 13.2(a).

l 1

l 2

(0)

(0,1)

(0,2)

(1,1)(1,2) xxx

x

x

x(1)
=

x(2)=

(a) Convergence in infinitely many steps.

l1

l2

(0)

x(0,2)

x

x(0,1)

=x(1)

(b) Convergence in one iteration.

Figure 13.2. The method of projections for a 2 × 2 system.

The algorithm gives a sequence < x( j ) > which, in case the lines intersect, converges,
as j → ∞ to the solution of the system of equations. If the two lines are orthogonal,
a single iteration is enough (see Figure 13.2(b)). However, the situation is not always so
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simple. Figure 13.3(a) shows that the algorithm does not converge for two parallel lines—
this corresponds to an inconsistent system that has no solution. Figure 13.3(b) depicts an
over-determined, inconsistent 3 × 2 system; the projections are trapped inside the triangle
but do not converge as j → ∞.

l1

l 2

(i,1)

(i,2)

x

x

x (0)

(a) Two parallel lines.

l 2

1l

l 3

3

4

5
6

7

8

1

2

9

(b) Overdetermined system.

Figure 13.3. Examples where the projection algorithm does not converge.

The equations that arise imaging applications can be rewritten in the form

r i · x = pi , i = 1, . . . , I,

where r i is the i th-row of the measurement matrix, r . Each pair (r i , pi ) defines a hyper-
plane in �J :

{x : r i · x = pi }.
Following exactly the same process used previously gives the basic Kaczmarz iteration:

1. Choose an initial vector x(0).

2. Orthogonally project x(0) into r1 · x = p1 → x(0,1);
orthogonally project x(0,1) into r2 · x = p2 → x(0,2);

...

orthogonally project x(0,I−1) into r I · x = pI → x(0,I ) d= x(1).

3. Go back to (2), replacing x(0) with x(1), and so on.

To do these computations requires a formula for the orthogonal projection of a vector
into a hyperplane. The vector r i is orthogonal to the hyperplane r i ·x = pi . The orthogonal
projection of a vector y onto r i · x = pi is found by subtracting a multiple of r i from y.
Let y(1) = y − αr i . Then α must satisfy

pi = y(1) · r i = y · r i − αr i · r i .
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ikik

x

x

z

(k)

(k+1)

r x = p.

Figure 13.4. One step in the Kaczmarz algorithm.

Solving this equation gives

α = y · r i − pi

r i · r i
.

The explicit algorithm is therefore

x(k) �→ x(k) − x(k) · r1 − p1

r1 · r1
r1 = x(k,1),

x(k,1) �→ x(k,1) − x(k,1) · r2 − p2

r2 · r2
r2 = x(k,2),

...

x(k,I−1) �→ x(k,I−1) − x(k,I−1) · r I − pI

r I · r I
r I = x(k+1).

Does the sequence < x(k) > converge and, if so, to what does it converge? As was
apparent in the trivial cases considered previously, the answer depends on the situation.
The fundamental case to consider is when the system rx = p has a solution. In this case
< x(k) > does converge to a solution. This fact is very important, even though this case
is unusual in imaging. For underdetermined systems, Tanabe has shown that this sequence
converges to the solution xs, closest to the initial vector, x(0); see [122].

Theorem 13.2.1. Let < r i > be a sequence of vectors in �J . If the system of equations

r i · x = pi , i = 1, . . . , I,

has a solution, then the Kaczmarz iteration converges to a solution.

Proof. For the proof of this theorem it is more convenient to label the iterates sequentially

x(1), x(2) . . . , x(k), . . .

instead of
x(0,1), . . . , x(0,I ), x(1,0), . . . , x(1,I ), . . . .

Thus x( j,k) ↔ x( j I+k).
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Let z denote any solution of the system of equations. To go from x(k) to x(k+1) entails projecting
into a hyperplane r ik · x = pik (see Figure 13.4). The difference x(k) − x(k+1) is orthogonal to this
hyperplane. As both x(k+1) and z lie in this hyperplane, it follows that

〈x(k) − x(k+1), x(k+1) − z〉 = 0.

The Pythagorean theorem implies that

‖x(k+1) − z‖2 + ‖x(k) − x(k+1)‖2 = ‖x(k) − z‖2 ⇒ ‖x(k+1) − z‖2 ≤ ‖x(k) − z‖2. (13.5)

The sequence < ‖x(k) − z‖2 > is nonnegative and decreasing; hence, it converges to a limit. This
shows that < x(k) > lies in a ball of finite radius, and so the Bolzano-Weierstrass theorem implies
that it has a convergent subsequence x(k j ) → x∗.

Observe that each index k j is of the form l j + nI, where l j ∈ {0, . . . , I − 1}. This means
that, for some l, there must be an infinite subsequence, {k ji }, so that k ji = l + ni I. All the vectors
{x(k ji ) : i = 1, 2, . . . } lie in the hyperplane {rl · x = pl}. As a hyperplane is a closed set, this
implies that the limit,

x∗ = lim
m

x(k jm ),

also belongs to the hyperplane rl · x = pl .
On the other hand, it follows from (13.5) and the fact that ‖x(k) − z‖ converges that

lim
j→∞‖x(k j +1) − x(k j )‖ = 0.

Thus x(k j +1) also converges to x∗. The definition of the Kaczmarz algorithm implies that x(k j +1) ∈
{x : r l+1 · x = pl+1}. As previously, this shows that x∗ is in this hyperplane as well. Repeating this
argument I times, we conclude that

x∗ ∈ {r i · x = pi }, for all i = 1, . . . I.

That is, x∗ is a solution of the original system of equations. To complete the proof, we need to
show that the original sequence, < x(k) >, converges to x∗. Recall that ‖x(k) − z‖ tends to a limit
as k → ∞ for any solution z. Let z = x∗. Then ‖x(k) − x∗‖ → λ. For the subsequence {k j }, it
follows that

lim
j→∞‖x(k j ) − x∗‖ = 0.

Thus λ = 0 and limk→∞ x(k) = x∗.

As it generally requires an infinite number of iterates to find the solution, the result is
largely of theoretical interest. In fact, in medical imaging applications only a few complete
iterations are actually used. One reason is that the size of the system prevents using more.
More important, it is an empirical fact that the quality of the reconstructed image improves
for a few iterates but then begins to deteriorate. This is thought to be a consequence of noise
in the data and inconsistencies introduced by approximating the measurement matrix. The
image in Figure 13.5(a) is obtained using one iteration, while three iterations are used for
Figure 13.5(b). Note the absence of Gibbs artifacts parallel to the sides of the squares,
though view sampling artifacts are still apparent.

With an algorithm of this type it is easy to take advantage of the sparseness of r. For
each i, let ( j i

1, . . . , j i
ki
) be a list of the indices of nonzero entries in row i. Knowing the
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(a) One iteration. (b) Three iterations.

Figure 13.5. Examples of reconstructions using ART.

locations of the nonzero entries greatly reduces the amount of computation needed to find
r i · x(k,i) as well as r i · r i . Note also that in passing from x(k,i) to x(k,i+1), only entries at
locations where r(i+1) j 	= 0 are changed. This makes these methods practical even for the
very large, sparse systems that arise in imaging applications.

If the equation has more than one solution, then using the Kaczmarz iteration with
initial vector 0 gives the least squares solution.

Lemma 13.2.1. If x(0) = 0, then x∗ is the solution of (13.2) with minimal l2-norm.

Proof. Suppose that A : �J → �I with I ≤ J, a matrix of maximal rank. The solution to Ax = y
with minimal l2-norm is given by At u, where u is the unique solution to AAt u = y. To see this, let
x0 be any solution to Ax = y, and let v ∈ ker A be such that ‖x0 + v‖2 is minimal. The minimal
norm solution is the one perpendicular to ker A so that

0 = d

dt
〈x0 + v + tw, x0 + v + tw〉

∣∣∣∣
t=0

= 2〈x0 + v,w〉, for all w ∈ ker A.

The assertion follows from the fact that the range of At is the orthogonal complement of ker A (see
Theorem 2.1.2).

Suppose in our application of the Kaczmarz method we use an initial vector x(0) = r t u for
some u. From the formula for the algorithm, it follows that all subsequent iterates are also of this
form. Hence x∗ = r t u for some u and it satisfies rr t u = p. By the previous claim, x∗ is the least
squares solution. Taking u = 0 gives x(0) = 0, and this completes the proof of the lemma.

This lemma and its proof are taken from [53].
In Chapter 12 it is shown that many reconstruction artifacts appear as rapid oscillations;

hence it is of interest to find a solution with the smallest possible variation. The minimal
norm solution is often the minimal “variance” solution as well. Set

e = (1, . . . , 1).
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Then

μx = 〈e, x〉
J

is the average value of the coordinates of x. The variance is then defined to be

σ 2
x = ‖x − μxe‖2.

Proposition 13.2.1. If e =∑
αi r i for some αi , then the minimum variance solution is also

the minimum norm solution.

Proof. If x is a solution of rx = p, then

‖x − 1

J
〈e, x〉e‖2 = ‖x‖2 − 2

〈e, x〉2

J
+ 〈e, x〉2

J

= ‖x‖2 − 1

J

∑
αi 〈r i , x〉

= ‖x‖2 − 1

J

∑
αi pi .

The second line follows from the fact that x is assumed to satisfy 〈r i , x〉 = pi for all i . Hence the
‖x‖2 and its variance differ by a constant. This shows that minimizing the variance is equivalent to
the minimizing the Euclidean norm. If x(0) = 0, then the lemma shows that the Kaczmarz solution
has minimal Euclidean norm and therefore also minimal variance.

Exercise
Exercise 13.2.1. Prove the assertion, made in the proof, that if x(0) = r t u, for some vector
u then this is true of all subsequent iterates as well.

13.3 A Bayesian Estimate

A small modification of the ART algorithm leads to an algorithm that produces a Bayesian
estimate for an optimal solution to (13.2). Without going into the details, in this approach
we have prior information that the solution should be close to a known vector v0. Instead
of looking for a least squares solution to the original equation, we try to find the vector that
minimizes the combined error function:

�ρ(x)
d= ρ‖r x − p‖2 + ‖x − v0‖2.

Here ρ is a fixed, positive number. It calibrates the relative weight given to the measure-
ments versus the prior information. If ρ = 0, then the measurements are entirely ignored;
as ρ → ∞, less and less weight is given to the prior information. In many different mea-
surement schemes it is possible to use the measurements alone to compute the average
value, μx, of the entries x. If we set

v0 = μx e,
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then the prior information is the belief that the variance of the solution should be as small
as possible.

The vector xρ that minimizes �ρ(x) can be found as the minimal norm solution of a
consistent system of linear equations. In light of Theorem 13.2.1 and Lemma 13.2.1, this
vector can then be found using the Kaczmarz algorithm. The trick is to think of the error

u = rx − p

as an independent variable. Let

(
u
z

)
denote an I + J -column vector and E the I × I

identity matrix. The system of equations we use is

[E ρr]

(
u
z

)
= ρ [ p − rv0] . (13.6)

Theorem 13.3.1. The system of equations (13.6) has a solution. If

(
uρ

zρ

)
is its minimal

norm solution, then xρ = zρ + v0 minimizes the function �ρ(x).

Proof. That (13.6) has solutions is easy to see. For any choice of x, setting

u = ρ [ p − r z − rv0]

gives a solution to this system of equations. A minimal norm solution to (13.6) is orthogonal to the
null space of [E ρr]. This implies that it belongs to the range of the transpose; that is,

zρ = ρr t uρ . (13.7)

On the other hand, a vector xρ minimizes �ρ if and only if it satisfies the variational equation:

ρr t (r xρ − p) = v0 − xρ. (13.8)

The relation, (13.7), between uρ and zρ implies that

ρ(r zρ − p) = −(uρ + ρrv0)

and therefore
ρr t (r zρ − p) = −zρ − ρr t rv0.

This, in turn, shows that
ρr t (r xρ − p) = −zρ = v0 − xρ.

Thus xρ satisfies the variational equation (13.8) and therefore minimizes �ρ.

Because (13.6) is consistent, the Kaczmarz method applied to this system, starting with
the zero vector, converges to the minimum norm solution of (13.8), which therefore also
minimizes �ρ. This algorithm is easy to describe explicitly in terms of u and x. The initial
vector is (

u(0)

x(0)

)
=
(

0
v0

)
.
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Suppose we have found u(k,i) and x(k,i). Then

u(k,i+1) = u(k,i) + c(k,i)ei ,

x(k,i+1) = x(k,i) + ρc(k,i)r i ,

where c(k,i) = ρ(pi − 〈r i , x(k,i)〉)− u(k,i)
i

1 + ρ2‖r i‖2
.

(13.9)

Here {ei , i = 1, . . . , I } is the standard basis for �I . This theorem and its proof are taken
from [52].

Exercises
Exercise 13.3.1. Suppose that the measurements are obtained using a parallel beam scan-
ner. Explain how to compute an approximation to the average value μx . How would you
try to minimize the effects of measurement error?

Exercise 13.3.2. Explain (13.7) and derive the variational equation (13.8). Show that any
vector that satisfies (13.8) also minimizes �ρ.

Exercise 13.3.3. If I and J are comparable and the pixel basis is used, how does the
amount of computation, per iteration, required in (13.9) compare to that required in the
normal Kaczmarz algorithm?

13.4 Variants of the Kaczmarz Method

There are many ways to modify the basic Kaczmarz algorithm to obtain algorithms that
give better results in a few iterations or reduce the effects of noise and modeling error. We
give a small sample of this large subject.

13.4.1 Relaxation Parameters

i=  pir.

x(k)

< 2
x

= 1

= 2

λ

λ
(k)

1 < λ(k)

(k)

λ(k)0 < < 1

Figure 13.6. The range of values for the relaxation parameter.

The systems of equations encountered in medical imaging are often overdetermined
and inconsistent because the data are noisy or the measurement matrix is only computed
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approximately. All these problems call for some kind of smoothing to be included in the
algorithm. A common way to diminish noise and speed up convergence is to use relaxation
parameters. Instead of applying the full correction, a scalar multiple is used. To that end,
the ART algorithm is modified by putting in factors, {λk}, to obtain

x(k,i) → x(k,i) − λk
x(k,i) · r i − pi

r i · r i
r i .

The {λk} are called relaxation parameters.
If λk = 0, then x(k,i+1) = x(k,i), while λk = 1 gives the original algorithm. If 0 <

λk < 1, then x(k,i+1) is on the same side of the hyperplane as x(k,i). If 1 < λk < 2, then
x(k+1) is on the opposite side of the hyperplane. If λk = 2, then x(k,i+1) is the reflection
of x(k,i) in the hyperplane. So long as 0 < a ≤ λk ≤ b < 2, for all k, and the system of
equations has a solution, the modified algorithm also converges to a solution. If x(0) = r t u,
then the limit is again the L2-minimum norm solution. Proofs of these facts are given in
[52]. By making the sequence < λk > tend to zero, a limit can be obtained even though the
system of equations has no solution. Using algorithms of this type, we can find approximate
solutions that are optimal for several different criteria; see [20] and [52]. As explained in
these papers, the choice of relaxation parameters is largely empirical, with some choices
suppressing noise and other choices improving the contrast in the final image.

Another trick used in actual reconstruction algorithm stems from the following observa-
tion. Two adjacent rays produce measurement vectors r i , r i+1 that are very nearly parallel
and therefore 〈r i , r i+1〉

‖r i‖ · ‖r i+1‖ ≈ 1.

Going from i to i + 1 will, in general, lead to a very small change in the approximate
solution; small corrections often get lost in the noise and round-off error. To speed up the
convergence, the successive hyperplanes are ordered to be as close to orthogonal as possi-
ble. The quality of the image produced by a few iterations is therefore likely to be improved
by ordering the hyperplanes so that successive terms of the iteration come from hyperplanes
that are not close to parallel. This is sometimes accomplished by “randomly” ordering the
measurements, so that the expected correlation between successive measurements is small.

13.4.2 Other Related Algorithms

There are many variants of the sort of iteration used in the Kaczmarz method. For example,
we can think of

�x (k,i)
j = x (k,i)

j − x (k,i−1)
j = pi − r i · x(k,i−1)

r i · r i
ri j

as a correction that is applied to the j th-entry of our vector but defer applying the correc-
tions until we have cycled once through all the equations. Define

δx (k,i)
j = pi − r i · x(k)

r i · r i
ri j .
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After this quantity is computed for all pairs 1 ≤ i ≤ I , and 1 ≤ j ≤ J, the approximate
solution is updated:

x (k+1)
j = x (k)

j + 1

N j

∑
i

δx (k,i)
j

= x (k)
j + 1

N j

∑
i

pi − r i · x(k)

r i · r i
ri j .

Here N j is the number of i for which ri j 	= 0. This is the number of iterates in which the
value of x j actually changes. In this algorithm we use the average of the corrections. This
type of an algorithm is sometimes called a simultaneous iteration reconstruction technique
or SIRT. A slight variant of the last algorithm that is used in real applications is to set

x (k+1)
j = x (k)

j +
∑

i

[
ri j

pi−r i ·x(k)∑N
j=1 ri j

]
∑N

j=1 ri j

.

The denominator,
∑

j ri j , equals the length of the intersection of the i th ray with the image

region. Using
∑N

j=1 ri j instead of
∑N

j=1 r2
i j is done for dimensional reasons and because it

appears to give superior results.
Note, finally, that a density function is normally assumed to be nonnegative. Bases used

in ART methods usually consist of nonnegative functions, and therefore the coefficients of
a density function should also be nonnegative. This observation can be incorporated into
ART algorithms in various ways. The simplest approach is to replace the final coefficients
with the maximum of the computed value and 0. It is also possible to do this at each step
of the algorithm, replacing the entries of x(k,i) with the maximum of x (k,i)

l and 0 for each
1 ≤ l ≤ J. Beyond this, ART methods can be used to find vectors that satisfy a collection
of inequalities, rather than equations. Such algorithms are described in [52].

13.5 Conclusion

ART algorithms provide a flexible alternative to filtered back-projection. Unlike FBP, they
are insensitive to the details of the data set. Through the usage of relaxation parameters,
noisy or inconsistent data can also be effectively handled. Though most present day ma-
chines use some form of filtered back-projection, Godfrey Hounsfield used an ART algo-
rithm in the first commercial CT scanner. Figure 13.7 is an 80 × 80 reconstruction of a
brain section made with the original EMI scanner using an ART algorithm; it should be
compared to Figure 11.19(a). A comprehensive discussion of these methods, along with
references to the extensive literature, is given in [52].

In the next three chapters we introduce the language and concepts of probability theory.
These concepts are applied to study a variety of problems in medical imaging. Among
them we derive Beer’s law and give probabilistic models for x-ray sources and detectors.
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We also estimate the signal-to-noise ratio in an image reconstructed using the filtered back-
projection algorithm. In the last section of Chapter 16 we describe the maximum likelihood
method for reconstructing images in positron emission tomography. The iteration used in
this approach is quite similar to that used in the Kaczmarz method. A description of the
usage of ART techniques in this context is given in [54].

Figure 13.7. A very early x-ray CT image made using the EMI scanner and an ART
algorithm. Note the dark edge just inside the skull. This is an artifact of the reconstruction
algorithm called the false subarachnoid space. The controversy over whether this dark
edge was anatomical or an artifact lasted for several years. (This image provided by Dr.
Peter Joseph.)



Chapter 14

Magnetic Resonance Imaging

14.1 Introduction

Nuclear magnetic resonance (NMR) is a subtle quantum mechanical phenomenon that has
played a major role in the revolution in medical imaging over the last 30 years. Before
being used in imaging, NMR was employed by chemists to do spectroscopy, and remains
a very important technique for determining the structure of complex chemical compounds
like proteins. There are many points of contact between these technologies, and problems
of interest to mathematicians. Spectroscopy is an applied form of spectral theory. NMR
imaging is connected to Fourier analysis, and more general Fourier Integral Operators. The
problem of selective excitation in NMR is easily translated into a classical inverse scattering
problem, and in this formulation, is easily solved.

In this chapter, we give a rapid introduction to nuclear magnetic resonance imaging.
While the physical basis for this technique is purely quantum mechanical, i.e., the fact that
the protons in hydrogen atoms are spin-1

2 particles, there is an entirely classical model that
is adequate to understand most applications of NMR in medical imaging. This is called the
Bloch phenomenological equation, and it forms the foundation of our presentation. X-ray
tomography is based upon a much simpler physical phenomenon: the scattering and ab-
sorption of x-ray photons, and therefore offers very few mechanisms for creating contrast
between different tissue types, and essentially no mechanism for imaging metabolic pro-
cesses. NMR is based on subtle and complex physical phenomena, which allows for a great
variety of different contrast mechanisms.

In our treatment, little attention is paid to either NMR spectroscopy, or the quan-
tum description of NMR. Those seeking a more complete introduction to these subjects
should consult the monographs of Abragam, [1], Levitt [84], or Ernst, Bodenhausen and
Wokaun, [38], for spectroscopy, and those of Callaghan, [17], Haacke, et al. [50], and Bern-
stein, et al. [9], for imaging. All six books consider the quantum mechanical description of
the these phenomena.

509
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14.2 Nuclear Magnetic Resonance

A proton is a spin- 1
2 particle. This means that it has both an intrinsic angular momen-

tum, J p and magnetic moment, μp. These are �3-valued quantum mechanical observables,
which transform, under the action of SO(3), by the standard 3-dimensional representation.
The Wigner-Eckert theorem therefore implies that these observables are proportional, i.e.,
there is a constant, γp, such that

μp = γp J p. (14.1)

This constant is called the gyromagnetic ratio. If one could somehow contrive to have a sta-
tionary proton in a uniform magnetic field, B0, then the quantum mechanical expectation,
< J p >, of the angular momentum would satisfy the ordinary differential equation:

d < J p >

dt
=< μp > ×B0. (14.2)

In light of equation (14.1), this implies that the expectation of μp satisfies

d < μp >

dt
= γp < μp > ×B0. (14.3)

This equation shows that < μp > precesses about the direction of B0 with a characteristic
angular frequency, ω0 = γp‖B0‖. A vector v precesses about a vector w if v rotates at a
fixed angle about the axis determined by w, see Figure 14.1. This precessional motion, at
a precisely determined angular frequency, is the resonance phenomenon that characterizes
NMR. The frequency ω0 is called the Larmor frequency; it depends on the strength of the
background field.

w

v

Figure 14.1. Precession of the vector v about the vector w.
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Of course one cannot obtain a stationary isolated proton, so this constant has never
been measured experimentally. What can actually be measured are resonances for protons
contained in nuclei of molecules. The electron cloud in a molecule affects the magnetic
field at the nuclei, leading to small shifts in the observed resonances. This phenomenon
is one of the basic ingredients needed to use NMR spectroscopy to determine molecular
structure. For hydrogen protons in water molecules

γ ≈ 42.5764 × 106 cycles

sec · Tesla
. (14.4)

The Tesla is a unit of magnetic induction; for purposes of comparison, the strength of the
earth’s magnetic field is about 5 × 10−5 Tesla. For hydrogen protons in other molecules,
the gyromagnetic ratio is expressed in the form (1 − σ )γ . The coefficient σ is called the
chemical shift. It is typically between 10−6 and 10−4. In the sequel we use γ to denote the
gyromagnetic ratio of a hydrogen proton in a water molecule.

The strength of a standard magnet used in a hospital MR imaging device is in the
1-3 Tesla range, and spectrometers typically use magnets in the 5-15 Tesla range. For
imaging magnets, the resonance frequencies are in the 40-120 MHz range. That this is
the standard FM band turns out to be a great piece of luck for medical applications. The
quantum mechanical energy (E = hν) at these frequencies is too small to break chemical
bonds, and so the radiation used in MR is fundamentally “safe” in ways that X-rays are not.
Technologically, it is also a relatively simple frequency band to work in.

14.3 The Bloch Phenomological Equation

In most NMR imaging applications one is attempting to determine the distribution of water
molecules in an extended object. Let (x, y, z) denote orthogonal coordinates in the region
occupied by the sample, and ρ(x, y, z) denote the density of water molecules at (x, y, z).
The nuclear spins in a complex, extended object interact with one another. If the object is
placed within a magnetic field B0 (no longer assumed to be homogeneous) then the spins
become polarized leading to a net bulk equilibrium magnetization M0. The strength of M0

is determined by thermodynamic considerations: there is a universal constant C so that

M0(x, y, z) = C

TK
ρ(x, y, z)B0(x, y, z). (14.5)

Here TK is the absolute (or Kelvin) temperature. At room temperature, in a 1 Tesla field,
roughly 1 in 106 moments are aligned with B0. Thus M0 is a tiny perturbation of B0, which
would be very difficult to directly detect.

Felix Bloch introduced a phenomenological equation, which describes the interactions
of the bulk magnetization, resulting from the nuclear spins, with one another, and with an
applied field. If B is a magnetic field of the form B0(x, y, z) + ˜B(x, y, z; t), with the
time dependent parts much smaller than B0, then the bulk magnetization, M, satisfies the
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equation

d M(x, y, z; t)

dt
=γ M(x, y, z; t) × B(x, y, z; t) − 1

T2
M⊥(x, y, z; t)+

1

T1
(M0(x, y, z) − M ||(x, y, z; t)).

(14.6)

Here M⊥ is the component of M, perpendicular to B0, (called the transverse component),
and M || is the component of M, parallel to B0, (called the longitudinal component). The
first term γ M(x, y, z; t)× B(x, y, z; t) comes from the direct interaction of the spins with
the magnetic field. If B(x, y, z; t) is actually time independent, then this equation pre-
dicts that the magnetization vector, M(x, y, z; t) will precess about B(x, y, z) at frequency
γ ‖B(x, y, z)‖.

The other terms in equation (14.6) are called relaxation terms. The term with coefficient
1
T1

describes how the spins become polarized by the fixed background field B0, and the

term with coefficient 1
T2

describes the decays of components of M perpendicular to B0. If
B has no time dependent component, then this equation predicts that the sample becomes

polarized with the transverse part of M decaying as e− t
T2 , and the longitudinal component

approaching the equilibrium field as 1 − e− t
T1 . In Bloch’s model, the spins at different

points do not directly interact. Instead, the relaxation terms describe averaged interactions
with “spin baths.” This simple model is adequate for most imaging applications. Indeed,
for many purposes, it is sufficient to use the Bloch equation without the relaxation terms.
See [11] and [126].

Typically, B0, the background field, is assumed to be a strong uniform field, B0 =
(0, 0, b0), and B takes the form

B = B0 + G + B1, (14.7)

where G is a gradient field. Usually the gradient fields are “piecewise time independent”
fields, small relative to B0. By piecewise time independent field we mean a collection of
static fields that, in the course of the experiment, are turned on, and off. The B1 component
is a time dependent radio frequency field, nominally at right angles to B0. It is usually taken
to be spatially homogeneous, with time dependence of the form:

B1(t) =
⎛⎝Re[(α(t)+ iβ(t))eiω0 t ]

Im[(α(t)+ iβ(t))eiω0 t ]
0

⎞⎠ , (14.8)

here ω0 = γ b0.
If B1 = G = 0 and α(t) = β(t) ≡ 0, then the solution operator for the Bloch equation,

without relaxation terms, is

U (t) =
⎡⎣cosω0t − sinω0t 0

sin ω0t cos ω0t 0
0 0 1

⎤⎦ . (14.9)

This is just the “resonance rotation” at time t, about the B0-field.
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14.4 The Rotating Reference Frame

In light of (14.9) it is convenient to introduce the rotating reference frame. Let

U (t)−1 = W (t) =
⎡⎣ cosω0t sinω0t 0
− sinω0t cosω0t 0

0 0 1

⎤⎦ ; (14.10)

to define the rotating reference frame we replace M with m where

m(x, y, z; t) = W (t)M(x, y, z; t). (14.11)

It is a classical result of Larmor, that if M satisfies (14.6), then m satisfies

dm(x, y, z; t)

dt
=γ m(x, y, z; t) × Beff(x, y, z; t) − 1

T2
m⊥(x, y, z; t)+

1

T1
(M0(x, y, z) − m||(x, y, z; t)),

(14.12)

where
Beff = W (t)B − (0, 0,

ω0

γ
).

If G, in (14.7), is much smaller than B and quasi-static, then one may usually ig-
nore the components of G that are orthogonal to B0. In this case we often use the no-
tation G = (∗, ∗, l(x, y, z)), with ∗s indicating field components that may be ignored.
In imaging applications one usually assumes that the components of G depend linearly
on (x, y, z) with the ẑ-component given by 〈(x, y, z), (g1, g2, g3)〉. The constant vector
g = (g1, g2, g3) is called the gradient vector. With B0 = (0, 0, b0) and B1 given by (14.8),
we see that Beff can be taken to equal (0, 0, 〈(x, y, z), g〉)+ (α(t), β(t), 0). In the remain-
der of this chapter we work in the rotating reference frame and assume that Beff takes this
form.

If G = 0 and β(t) ≡ 0, then, in the rotating reference frame, the solution operator for
the Bloch equation, without relaxation terms, is

V (t) =
⎡⎣1 0 0

0 cos θ(t) sin θ(t)
0 − sin θ(t) cos θ(t)

⎤⎦ , (14.13)

where

θ(t) =
t∫

0

α(s)ds. (14.14)

This is simply a rotation about the x-axis through the angle θ(t). If B1 	= 0 for t ∈ [0, τ ],
then the magnetization is rotated through the angle θ(τ). Thus RF-excitation can be used
to move the magnetization out of its equilibrium state. As we shall soon see, this is crucial
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for obtaining a measurable signal. The equilibrium magnetization is a tiny perturbation
of the very large B0-field and is therefore in practice not directly measurable. Only the
precessional motion of the transverse components of M produces a measurable signal.
More general B1-fields, i.e. with both α and β non-zero, have more complicated effects
on the magnetization. In general the angle between M and M0 at the conclusion of the
RF-excitation is called the flip angle.

Now suppose that B1 = 0 and G = (∗, ∗, l(x, y, z)), where l(·) is a function. As noted
above, the ∗s indicate field components that may be ignored. The solution operator V now
depends on (x, y, z), and is given by

V (x, y, z; t) =
⎡⎣cos γ l(x, y, z)t − sin γ l(x, y, z)t 0

sin γ l(x, y, z)t cos γ l(x, y, z)t 0
0 0 1

⎤⎦ (14.15)

This is precession about B0 at an angular frequency that depends on the local field strength
b0 + l(x, y, z). If both B1 and G are simultaneously non-zero, then, starting from equilib-
rium, the solution of the Bloch equation, at the conclusion of the RF-pulse, has a nontrivial
spatial dependence. In other words, the flip angle becomes a function of the spatial vari-
ables. We return to this in Section 14.6.

Exercises

1. Prove Larmor’s theorem: If M(t) satisfies (14.6) and m(t) is given by (14.11), then
m(t) satisfies (14.12).

2. Suppose that B(x, y, z) = (0, 0, b0) + G, where G = (lx, ly, lz), with coordinates
depending on (x, y, z). Use Taylor’s theorem to expand ‖B‖ = ‖B0 + G‖. Explain
why it is reasonable to ignore components of G orthogonal to B0, if b0 = 1.5T and
‖G‖ = .001T.

14.5 A Basic Imaging Experiment

With these preliminaries we can describe the basic measurements in magnetic resonance
imaging. The sample is polarized, and then an RF-field, of the form given in (14.8), (with
β ≡ 0) is turned on for a finite time T . This is called an RF-excitation. For the purposes
of this discussion we suppose that the time is chosen so that θ(T ) = 90◦. As B0 and B1

are spatially homogeneous, the magnetization vectors within the sample remain parallel
throughout the RF-excitation. At the conclusion of the RF-excitation, M is orthogonal
to B0. With the RF turned off, the vector field M(t) precesses about B0, in phase, with
angular velocity ω0. The transverse component of M decays exponentially. If we normalize
the time so that t = 0 corresponds to the conclusion of the RF-pulse, then

M(x, y, z; t) = Cω0ρ(x, y, z)[e− t
T2 ei(ω0t+φ), (1 − e− t

T1 )]. (14.16)
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In this formula and in the sequel we follow the standard practice in MR of expressing
the magnetization as a pair consisting of a complex and a real number: [Mx + i My, Mz].
The complex part, Mx + i My, is the transverse magnetization and Mz is the longitudinal
magnetization. Here φ is a fixed real phase.

Recall Faraday’s Law: A changing magnetic field induces an electro-motive-force
(EMF) in a loop of wire according to the relation

EMFloop = d�loop

dt
. (14.17)

Here �loop denotes the flux of the field through the loop of wire. The transverse components
of M are a rapidly varying magnetic field, which, according to Faraday’s law, induce a
current in a loop of wire. In fact, by placing several coils near to the sample we can
measure a complex valued signal of the form:

S0(t) = C ′ω2
0eiω0 t

∫
sample

ρ(x, y, z)e− t
T2(x,y,z) b1rec(x, y, z)dxdydz. (14.18)

Here b1rec(x, y, z) quantifies the sensitivity of the detector to the precessing magnetization
located at (x, y, z). The fact that the transverse relaxation rate depends on spatial location
is the source of a very important contrast mechanism in MR-imaging called T2-weighting.

For the moment we ignore the spatial dependence of T2 and assume that T2 is just a
constant. With this simplifying assumption we see that it is easy to obtain a measurement
of the integral of ρb1rec. By using a carefully designed detector, b1rec can be taken to be a
constant, and therefore we can determine the total spin density within the object of interest.
For the rest of this section we assume that b1rec is a constant. Note that the size of the mea-
sured signal is proportional to ω2

0, which is, in turn, proportional to ‖B0‖2. This explains,
in part, why it is so useful to have a very strong background field. Even with a 1.5T magnet
the measured signal is still quite small, in the micro-watt range, see [62, 63].

Let l(x, y, z) = 〈(x, y, z), (gx , gy, gz)〉. Suppose that at the end of the RF-excitation,
we instead turn on G. It follows from (14.15) that, in this case, the measured signal would
be approximately:

Sl(t) ≈ C ′b1rece− t
T2 ω2

0eiω0 t
∫

sample

ρ(x, y, z)eitγ 〈(x,y,z),(gx ,gy,gz)〉dxdydz. (14.19)

Up to a constant, e−iω0 t e
t

T2 Sl(t) is simply the Fourier transform of ρ at k = −tγ (gx, gy, gz).
By sampling in time and using a variety of different linear functions l, we can sample the
Fourier transform of ρ in neighborhood of 0. This suffices to reconstruct an approximation
to ρ.

The signal in MR is usually sampled at uniformly spaced sample times, j�t : j =
1, . . . , N . If g = ‖(gx , gy, gz)‖, then this translates into uniformly spaced samples in fre-
quency space, with sample spacing given by:

�k = γ g�t. (14.20)
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Since we are sampling in the frequency domain, the sample spacing is determined, accord-
ing to Nyquist’s theorem, by the size of the object we are trying to image. As follows from
the Poisson summation formula, if the sample spacing is �k, then the maximum size of
object that can be reconstructed, without aliasing errors, is

L = 2π

�k
. (14.21)

This is an idealized model for the measurement process. The fact that the human body
is electrically conductive leads to Johnson noise in the measurements, with the size of the
noise signal proportional to the bandwidth of the measured data and the volume of the sam-
ple. The measurement apparatus itself also produces noise. From the Riemann Lebesgue

lemma, it follows that e
t

T2 Sl(t) is decaying. On the other hand, the noise is of constant
mean amplitude. This places a practical limit on how long the signal can be sampled,
which translates into a maximum absolute frequency in Fourier space that can reliably be
measured. Finally this limits the resolution attainable in the reconstructed image.

The approach to imaging described above captures the spirit of the methods used in real
applications. It is however, not representative in several particulars. It is unusual to sample
the 3-dimensional Fourier transform of ρ. Rather, a specially shaped RF-pulse is used in
the presence of nontrivial field gradients, to excite the spins in a thin 2-dimensional slice of
the sample. The spins slightly outside this slice remain in the equilibrium state. This means
that any measured signal comes predominately from the excited slice. This process is called
selective excitation. In the next section we explain a technique used to design RF-pulses
that produce a selective excitation. It is also much more common to sample the Fourier
domain in a rectilinear fashion, rather than in the radial fashion described above. This
makes it possible to use the “fast Fourier transform” algorithm to reconstruct the image,
vastly reducing the computational requirements of the reconstruction step.

Imagine that we collect samples of ρ̂(k) on a uniform rectangular grid

{( jx�kx , jy�ky, jz�kz) : − Nx

2
≤ jx ≤ Nx

2
,− Ny

2
≤ jy ≤ Ny

2
,− Nz

2
≤ jz ≤ Nz

2
}.

Since we are sampling in the Fourier domain, the Nyquist sampling theorem implies that
the sample spacings determine the spatial field-of-view from which we can reconstruct
an artifact free image: in order to avoid aliasing artifacts, the support of ρ must lie in a
rectangular region with side lengths [�k−1

x ,�k−1
y ,�k−1

z ], see [50, 5]. In typical medical
applications the support of ρ is much larger in one dimension than the others and so it
turns out to be impractical to use the simple data collection technique described above.
Instead the RF-excitation takes place in the presence of non-trivial gradient fields, which
allows for a spatially selective excitation: the magnetization in one region of space obtains
a transverse component, while that in the complementary region is left in the equilibrium
state. In this we can way collect data from an essentially two dimensional slice. This is
described in the next section.
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Exercises

1. Why is the measured signal in (14.18) proportional to ω2
0.

2. Explain why the sample spacing determines the field of view, and why the maximum
frequency sampled limits the resolution available in the measured data.

14.6 Selective Excitation

As remarked above, practical imaging techniques do not excite all the spins in an object
and directly measure samples of the 3d Fourier transform. Rather the spins lying in a slice
are excited and samples of the 2d Fourier transform are then measured. This process is
called selective excitation and may be accomplished by applying the RF-excitation with a
gradient field turned on. With this arrangement, the strength of the static field, B0 + G,
varies with spatial position, hence the response to the RF-excitation does as well. Suppose
that G = (∗, ∗, 〈(x, y, z), g〉) and set f = [2π ]−1γ 〈(x, y, z), g〉. This is called the offset
frequency as it is the amount by which the local resonance frequency differs from the reso-
nance frequency, ω0 of the unperturbed B0-field. The result of a selective RF-excitation is
described by a magnetization profile m∞( f ), this is a unit 3-vector valued function of the
offset frequency. A typical case would be

m∞( f ) =
{
[0, 0, 1] for f /∈ [ f0 − δ, f1 + δ]
[sin θ, 0, cos θ] for f ∈ [ f0, f1]. (14.22)

Here δ > 0 allows for a smooth transition between the spins which are flipped and those
left in their equilibrium state. The magnetization is flipped through an angle θ, in regions
of space where the offset frequency lies in [ f0, f1], and is left in the equilibrium state
otherwise.

Typically the excitation step takes a few milliseconds and is much shorter than either T1

or T2; therefore one generally uses the Bloch equation, without relaxation, in the analysis of
selective excitation. In the rotating reference frame the Bloch equation, without relaxation,
takes the form

dm( f ; t)

dt
=
⎡⎣ 0 2π f −γβ
−2π f 0 γ α
γβ −γ α 0

⎤⎦m( f ; t). (14.23)

The problem of designing a selective pulse is non-linear. Indeed, the selective excitation
problem can be rephrased as a classical inverse scattering problem: one seeks a function
α(t)+ iβ(t) with support in an interval [t0, t1] so that, if m( f ; t) is the solution to (14.23)
with m( f ; t0) = [0, 0, 1], then m( f ; t1) = m∞( f ). If one restricts attention to flip angles
close to 0, then there is a simple linear model that can be used to find approximate solutions.

If the flip angle is close to zero, then m3 ≈ 1 throughout the excitation. Using this
approximation, we derive the low flip angle approximation to the Bloch equation, without
relaxation:

d(m1 + im2)

dt
= −2π i f (m1 + im2)+ iγ (α + iβ). (14.24)
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From this approximation we see that

α(t)+ iβ(t) ≈ 
(m∞
1 + im∞

2 )(t)

γ i
, where 
(h)(t) =

∞∫
−∞

h( f )e−2π i f td f. (14.25)

For an example like that in (14.22), with θ close to zero, and f0 = − f1, we obtain

α + iβ ≈ i sin θ sin f1t

πγ t
. (14.26)

A pulse of this sort is called a sinc-pulse. A sinc-pulse is shown in Figure 14.2(a), the result
of applying it in Figure 14.2(b).
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(a) Profile of a 90◦-sinc pulse.
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(b) The magnetization profile produced by the
pulse in (a).

Figure 14.2. A selective 90◦-pulse and profile designed using the linear approximation.

A more accurate pulse can be designed using the Shinnar-Le Roux algorithm; see [101,
117]. The problem of selective pulse design can be reformulated as a classical inverse
scattering problem for the Zakharov-Sabat, or AKNS 2× 2 system. This was discovered in
the late 1980s by Alberto Grünbaum, J.F. Carlson, David Rourke, and others. For a modern
treatment of this approach and an efficient, accurate algorithm see [34, 92]. An inverse
scattering 90◦-pulse is shown in Figure 14.3(a) and the response in Figure 14.3(b).
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(a) Profile of a 90◦ inverse scattering pulse.
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(b) The magnetization profile produced by the
pulse in (a).

Figure 14.3. A selective 90◦-pulse and profile designed using the inverse scattering ap-
proach.

14.7 Spin-warp Imaging

In Section 14.5 we showed how NMR measurements could be used to measure the 3d
Fourier transform of ρ. In this section we consider a more practical technique, that of
measuring the 2d Fourier transform of a “slice” of ρ. Applying a selective RF-pulse, as
described in the previous section, we can flip the magnetization in a region of space z0 −
�z < z < z0 + �z, while leaving it in the equilibrium state outside a slightly larger
region. Observing that a signal near the resonance frequency is only produced where the
magnetization has a non-zero transverse component, we can now measure samples of the
2d Fourier transform of the slice averaged spin density:

ρz0
(x, y) = 1

2�z

z0+�z0∫
z0−�z

ρ(x, y, z)dz. (14.27)

If �z is sufficiently small, then ρz0
(x, y) ≈ ρ(x, y, z0).

In order to be able to use the fast Fourier transform algorithm (FFT) to do the re-
construction, it is very useful to sample ρ̂z0

on a uniform grid. To that end we use the
gradient fields as follows: After the RF-excitation we apply a gradient field of the form
Gph = (∗, ∗,−g2 y + g1x), for a certain period of time, Tph. This is called a phase encod-
ing gradient. At the conclusion of the phase encoding gradient, the transverse components
of the magnetization from the excited spins has the form

m||(x, y) ∝ e−2π i(ky y−kx x)ρz0
(x, y), (14.28)

where (kx , ky) = [2π ]−1γ Tph(−g1, g2). At time Tph we turn off the y-component of Gph

and reverse the polarity of the x-component. At this point we begin to measure the signal,
obtaining samples of ρ̂(k, ky) where k varies from −kx max to kx max . By repeating this pro-
cess with the strength of the y-phase encoding gradient being stepped through a sequence
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of uniformly spaced values, g2 ∈ {n�gy}, and collecting samples at a uniformly spaced set
of times, we collect the set of samples

{̂ρz0
(m�kx , n�ky) : − Nx

2
≤ m ≤ Nx

2
, − Ny

2
≤ n ≤ Ny

2
}. (14.29)

The reconstruction algorithm is simply the inverse FFT applied to the sampled data; it
produces an approximation to ρz0

, within the field of view. Because the reconstruction
algorithm is unitary it is intrinsically stable.

The gradient Gfr = (∗, ∗,−g1x), left on during signal acquisition, is called a frequency
encoding gradient. While there is no difference mathematically between the phase encod-
ing and frequency encoding steps, there are significant practical differences. This approach
to sampling is known as spin-warp imaging; it was introduced in [32]. The steps of this ex-
periment are summarized in a pulse sequence timing diagram, shown in Figure 14.4. This
graphical representation for the steps followed in a magnetic resonance imaging experiment
is ubiquitous in the literature.

Figure 14.4. Pulse timing diagram for spin-warp imaging. During the positive lobe of the
frequency-encoding gradient, the analog-to-digital converter (ADC) collects samples of the
signal produced by the rotating transverse magnetization.

As noted above, to avoid aliasing artifacts, the sample spacings �kx and �ky must be
chosen so that the excited portion of the sample is contained in a region of size �k−1

x ×
�k−1

y . This is called the field-of-view or FOV. Since we can only collect the signal for a
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finite period of time, the Fourier transform ρ̂(kx , ky) is sampled at frequencies lying in a
rectangle with vertices (±kx max ,±ky max ), where

kx max = Nx�kx

2
, ky max = Ny�ky

2
. (14.30)

The maximum frequencies sampled effectively determine the resolution available in the
reconstructed image. Heuristically, this resolution limit equals half the shortest measured
wavelength:

�x ≈ 1

2kx max
= F OVx

Nx
�y ≈ 1

2ky max
= F OVy

Ny
. (14.31)

Whether one can actually resolve objects of this size in the reconstructed image depends
on other factors such as the available contrast and the signal-to-noise ratio (SNR).

Spin-warp imaging is a simple example of the many possible approaches to collecting
data in an MR-scanner. Different ways of sampling k-space lead to different types of
contrast in the reconstructed image. This flexibility makes it possible to examine many
different aspects of anatomy and physiology using MR-imaging. A thorough discussion of
this topic is given in [9].

14.8 Contrast and Resolution

The single most distinctive feature of MRI is its extraordinarily large innate contrast. For
two soft tissues, it can be on the order of several hundred percent. By comparison, contrast
in X-ray imaging is a consequence of differences in the attenuation coefficients for two
adjacent structures and is typically on the order of a few percent.

We have seen in the preceding sections that the physical principles underlying MRI are
radically different from those of X-ray computed tomography in that the signal elicited is
generated by the spins themselves in response to an external perturbation. The contrast
between two regions, A and B, with signals SA, SB respectively, is defined as

CAB = SA − SB

SA
. (14.32)

If the only contrast mechanism were differences in the proton spin density of various tis-
sues, then contrast would be on the order of 5-20%. In reality, it can be several hundred
percent. The reason for this discrepancy is that the MR signal is acquired under non-
equilibrium conditions. At the time of excitation, the spins have typically not recovered
from the effect of the previous cycle’s RF pulses, nor is the signal usually detected imme-
diately after its creation. indexcontrast to noise ratio

Typically, in spin-warp imaging, a spin-echo is detected as a means to alleviate spin
coherence losses from static field inhomogeneity. A spin echo is the result of applying an
RF-pulse that has the effect of taking (m1,m2,m3) to (m1,−m2,−m3). As such a pulse
effects a 180◦ rotation of the ẑ-axis, it is also called a π -pulse. If, after such a pulse, the
spins continue to evolve in the same environment then, following a certain period of time,
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the transverse components of the magnetization vectors throughout the sample become
aligned. Hence a pulse of this type is also called a refocusing pulse. The time when all the
transverse components are rephased is called the echo time, T E .

The spin-echo signal amplitude for an RF pulse sequence π
2 −τ−π−τ, repeated every

TR, seconds is approximately given by:

S(t = 2τ) ≈ ρ(1 − e−TR/T1)e−T E/T2 . (14.33)

This is a good approximation as long as T E << TR and T2 << TR in which case the trans-
verse magnetization decays essentially to zero between successive pulse sequence cycles.
In equation (14.33), ρ is voxel spin density and the echo time T E = 2τ. Empirically, it
is known that tissues differ in at least one of the intrinsic quantities, T1, T2 or ρ. It there-
fore suffices to acquire images in such a manner that contrast is sensitive to one particular
parameter. For example, a “T2-weighted” image would be acquired with T E ∼ T2 and
T R >> T1 and, similarly, a “T1-weighted” image with T R < T1 and T E << T2, with
T1, T2 representing typical tissue proton relaxation times. Figure 14.5 shows two images
obtained with the same scan parameters except for T R and T E illustrating the fundamen-
tally different image contrasts that are achievable.

(a) (b)

Figure 14.5. Dependence of image contrast on pulse sequence timing parameters: a) T1-
weighted; b) proton density-weighted.

It is noteworthy that object visibility is not just determined by the contrast between
adjacent structures but is also a function of the noise. It is therefore useful to define the
contrast-to-noise ratio as

C N RAB = CAB

σeff
(14.34)

where σeff is the effective standard deviation of the signal. We have previously shown that
the limiting resolution is given by kmax , the largest spatial frequency sampled; see (14.31).
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In reality, however, the actual resolution is always lower. For example spin-spin (T2) relax-
ation causes the signal to decay during the acquisition. In spin-warp imaging this causes
the high spatial frequencies to be further attenuated.

A further consequence of finite sampling is a ringing or Gibbs artifact that is most
prominent at sharp intensity discontinuities. In practice, these artifacts are mitigated by
applying an appropriate apodizing filter to the data. Figure 14.6 shows a portion of a brain
image obtained at two different resolutions. In Figure 14.6(b), the total k-space area cov-
ered was 16 times larger than for the acquisition of the image in b). Artifacts from finite
sampling and blurring of fine detail such cortical blood vessels are clearly visible in the
low-resolution image. SNR, according to equation (16.36), is reduced in the latter image
by a factor of 4.

Figure 14.6. Effect of k-space coverage on spatial resolution in axial image of the brain:
the field of view in both images 20 cm and all scan parameters were the same except that
a) was acquired with Nx = Ny = 128 and Nx = Ny = 512.

14.9 Conclusion

This section gives the merest hint of the remarkable richness of the phenomenon of nuclear
magnetic resonance and its applications in medicine, chemistry and physics. The interested
reader is referred to the excellent texts, listed at the end of introduction to this chapter, for
more complete discussions of various aspects of this subject. This chapter was adapted
from [37] and [33].





Chapter 15

Probability Theory and Random
Variables

Up to this point, we have only considered deterministic models. These are models where a
known input produces a definite output. We now begin to discuss probability theory, which
is the language of noise analysis. But what is noise? There are two essentially different
sources of noise in the mathematical description of a physical system or measurement pro-
cess. The first step in building a mathematical model is to isolate a physical system from
the world in which it sits. Once such a separation is fixed, the effects of the outside world
on the state of the system are often modeled, a posteriori, as noise. In our model for CT
imaging it is assumed that every x-ray that is detected is produced by our x-ray source. In
reality, there are many other sources of x-rays that might also impinge on our detectors.
Practically speaking, it is not possible to give a complete description of all such external
sources, but sometimes it is possible to describe them probabilistically.

Many physical processes are inherently probabilistic, and that is the second source of
noise. In CT imaging the interaction of an x-ray “beam” with an object is a probabilistic
phenomenon. The beam is, in fact, a collection of discrete photons. Whether or not a
given photon, entering an object on one side, reemerges on the other side, traveling in
the same direction, depends on the very complicated interactions this photon has with the
microscopic structure of the object it passes through. These individual interactions cannot
be modeled in a useful way. If μ is the attenuation coefficient and I (t) is the incident flux
of photons at t, then Beer’s law says that the change in the flux, I (t + �t) − I (t), over a
small distance �t is

I (t +�t) − I (t) ≈ −μ�t I (t)

or

I (t +�t) = (1 − μ�t)I (t).

This can be interpreted as the statement that an incident photon has probability (1 −μ�t)
of being emitted. Beer’s law describes the average behavior of a photon and is useful only
if the x-ray beam is composed of a large number of photons.

525
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For a given measurement it is not possible to quantify the exact discrepancy between the
measured value and that predicted by Beer’s law. Instead we have a probabilistic descrip-
tion that describes the statistics of this discrepancy. Suppose that N transmitted photons
are measured; we can think of the measurement as having two parts:

N = Nd + v,

where Nd is a deterministic quantity (i.e., the part predicted by Beer’s law) and v is a
random “variable” that models the noise in the system. A good probabilistic model for the
noise component aids in interpretation of the measurements. Even the model of an x-ray
beam as a constant flux of photons is an approximation to the truth; the actual output of an
x-ray source also has a useful probabilistic description.

In this chapter we review some of the basic concepts of measure theory and probability
theory. It is not intended as a development of either subject ab ovo, but merely a presenta-
tion of the main ideas so that we can discuss noise in image reconstruction and later random
processes. These concepts are presented using the mathematical framework provided by
measure theory. Historically, probability theory preceded measure theory by many decades
but was found, in the early twentieth century, to lack rigorous foundations. Kolmogorov
discovered that measure theory provided the missing foundations. It is not necessary to
have a background in measure theory; we use it as a language to give precise definitions of
the concepts used in probability theory and later to pass to random processes. Many of the
examples in this chapter are elementary so that readers not interested in technical details
can still get a flavor of these subjects. Those with a good background in probability theory
can safely skip to Section 15.3, where we introduce the probability distributions needed in
imaging applications. An introduction to probability can be found in [27], an introduction
to random processes in [30] or [57], and an introduction to measure theory in [42] or [109].

15.1 Measure Theory∗

Mathematical probability theory is a subset of measure theory. This is the branch of math-
ematics that gives a framework in which to study integration. For concreteness we discuss
probability theory from the point of view of doing an “experiment.” We are then interested
in quantifying the likelihood that the experiment has a particular outcome.

15.1.1 Allowable Events

In measure theory we work with a measure space. This is a pair (X,�), where X is the
underlying space and � is a collection of subsets of X called a σ -algebra. From the point
view of probability theory, X is called the sample space; it is the set of all possible outcomes
of the experiment. Subsets of X are collections of possible outcomes, which in probability
theory are called events. The subsets of X belonging to � are allowable events. These are
the events that can be assigned a well-defined probability of occurring. A simple physical
example serves to explain, in part, why it may not be possible to assign a probability of
occurrence to every event (i.e., to every subset of X ).
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Example 15.1.1. Suppose that the experiment involves determining where a particle strikes
a line. The sample space X is the real line �. For each n ∈ �, the measuring device can
determine whether on not the particle fell in [n, n + 1) but not where in this interval the
particle fell. For each n, the event

An = the particle fell in [n, n + 1)

is therefore an allowable event. On the other hand, the event “the particle fell in [.3, .7)” is
not an allowable event, as the measurements cannot determine whether or not this occurs.
For the set of allowable events, we take arbitrary unions of the subsets {An : n ∈ �}.
Example 15.1.2. Perhaps the simplest, interesting experiment is that of “flipping a coin.”
This is an experiment that has two possible outcomes, which we label H and T . The sample
space is

X1 = {H, T }.
The possible events are

• We get a head.

• We get a tail.

• We get a head or a tail.

These events correspond to the subsets of X1:

{H }, {T }, {H, T }.
Example 15.1.3. Suppose that instead of flipping a coin once, the experiment involves flip-
ping a coin two times. The possible outcomes are sequences of length two in the symbols
H and T :

X2 = {(H, H ), (H, T ), (T, H ), (T, T )}.
If the experiment involves flipping a coin N times, then the sample space consists of all
sequences of length N using the symbols H and T . We denote this space by X N ; for each
N the sample space is a finite set. The set of allowable events is usually taken to be all the
subsets of X N ; we denote this collection by �N .

As suggested by Example 15.1.1, the collection, �, of allowable events provides a
mathematical framework for describing the operation of a measuring apparatus. It has the
following axiomatic properties:

1. X ∈ �, this is the statement that X is the collection of all possible outcomes.

2. If A ∈ � and B ∈ �, then A ∪ B ∈ �; in other words, if the events A and B are
each allowable, then the event “A or B” is also allowable.

3. If A ∈ �, then X \ A ∈ �; in other words, if the event “A occurs” is allowable, then
the event “A does not occur” is also allowable.
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4. If we have a countable collection of allowable events A j ∈ �, then

∞⋃
j=1

A j ∈ �

as well.

Applying (2) recursively, we conclude that if {A1, . . . , An} belong to �, then so does their
union A1 ∪ · · · ∪ An . Condition (4) is the limit of this statement as n goes to infinity. It is
a technical condition that is essential to have a good mathematical theory of integration. It
is important when taking limits of sequences. Subsets belonging to � are called allowable
events or measurable sets. A collection of subsets of a space that satisfies these axioms is
called a σ -algebra.

As a consequence of these axioms, we need to introduce the notion of the empty set. It
is the subset of X that contains no elements and is denoted by ∅. The empty set is a subset
of any set. The need for the empty set arises because (2) and (3) imply that if A and B
are allowable events, then so is A ∩ B. However, if A and B have no points in common,
then A ∩ B = ∅. It is a linguistic device, encapsulating the idea that the experiment has no
outcome. As we shall see, this “event” always has probability zero of occurring.

Definition 15.1.1. If A and B are allowable events such that A ∩ B = ∅, then A and B are
said to be mutually exclusive events.

Example 15.1.4. The list given in Example 15.1.2 is not quite all of �1, but rather

�1 = {∅, {H }, {T }, {H, T }}.

Example 15.1.5. Some examples of allowable events for the case X N defined previously
are as follows:

• All N flips produce heads.

• Half the flips are tails.

• If k ≤ N, then the kth flip is a head.

• At most N/3 flips are heads.

Example 15.1.6. Suppose that the result of our experiment is a real number; then X is �.
Allowable events might include the following:

• {x} for an x ∈ �, the outcome of the experiment is the number x .

• [0,∞), the outcome of the experiment is a nonnegative number.

• (1, 2), the outcome of the experiment is a number between 1 and 2.
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In many practical situations the sample space is the real line �. In these cases the σ -
algebra is often taken to be the Borel sets.

Definition 15.1.2. The smallest collection of subsets of � that includes all intervals and is
a σ -algebra is called the Borel sets.

The Borel sets are discussed in [42].

Exercises
Exercise 15.1.1. Show that the collection of allowable events, �, in Example 15.1.1 has
the following description: For A in �, either A = ∅ or there are, possibly bi-infinite,
sequences < ai > and < bi > of integers so that

· · · < ai < bi < ai+1 < bi+1 < · · ·
and

A =
∞⋃

j=−∞
[a j , b j ).

Exercise 15.1.2. Show that the collection of sets defined in Example 15.1.1 along with the
empty set is a σ -algebra.

Exercise 15.1.3. Show that the space X N in Example 15.1.3 has 2N elements. How many
allowable events are there; that is, how large is �N ?

Exercise 15.1.4. Let A ⊂ X. Then the complement of A in X is the subset of X defined by

Ac = X \ A = {x ∈ X : x /∈ A}.
Show that if A, B ⊂ X, then

(A ∪ B)c = Ac ∩ Bc.

Conclude that if A, B ∈ �, then A ∩ B ∈ � as well.

Exercise 15.1.5. Suppose that X is a set and � is a σ -algebra of subsets of X. Show that
the empty set belongs to �.

Exercise 15.1.6. Suppose that � is a σ -algebra of subsets of � that contains all closed
intervals {[a, b]}. Show that it also contains all open and half-open intervals

{(a, b), (a, b], [a, b) : a ≤ b}.

15.1.2 Measures and Probability

See: B.6, B.7.

So far we have no notion of the probability that an event occurs. Since events are
subsets of X, what is required is a way to measure the size of a subset. Mathematically,
this is described by a real-valued function ν defined on the set of allowable events. This
function is called a probability measure if it has the following properties:
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1. ν(A) ≥ 0 for all A ∈ �, that is an allowable event occurs with nonnegative proba-
bility.

2. ν(X) = 1, so that X is the list of all possible outcomes.

3. If A, B ∈ � and A ∩ B = ∅, then

ν(A ∪ B) = ν(A) + ν(B).

This is called additivity for mutually exclusive events.

3′. If we have a list of events Ai ∈ �, for i ∈ � such that Ai ∩ A j = ∅ for i 	= j , then

ν

⎛⎝ ∞⋃
j=1

A j

⎞⎠ =
∞∑
j=1

ν(A j ).

Conditions (2) and (3) imply that ν(A) ≤ 1 for any A ∈ �. A triple (X,�, ν) consisting
of a space X, with a σ -algebra of subsets �, and a probability measure ν : � → [0, 1], is
called a probability space. In the sequel we often use

Prob(A)
d= ν(A)

to denote the probability of the event A. Note that (2) and (3) imply that Prob(∅) = 0.
Applying (3) recursively shows that if {A1, . . . , An} are mutually exclusive events, then

ν(A1 ∪ · · · ∪ An) = ν(A1)+ · · · + ν(An).

Condition (3′) is the limit of this condition as n tends to infinity; as such it can be seen
as a continuity condition imposed on ν. It is called countable additivity. This condition is
needed in order to have a good mathematical theory of integration. It turns out that many
interesting functions that satisfy these conditions cannot be extended to all the subsets
of X in a reasonable way. For example, there is no way to extend the naive notion of
length to every subset of the real line and satisfy these axioms. Subsets that do not belong
to � are called nonmeasurable. A simple example of a nonmeasurable set is given in
Example 15.1.1. In most cases nonmeasurable sets are very complicated and do not arise
naturally in applications.

Example 15.1.7. For the case of a single coin toss, the allowable events are

�1 = {∅, {H }, {T }, {H, T }}.
The function ν1 : �1 → [0, 1] is fixed once we know the probability of H. For say that
ν1(H ) = p. Because ν1(H ∪T ) = 1 and H and T are mutually exclusive events, it follows
that ν1(T ) = 1 − p. Clearly, ν(∅) = 0.
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Example 15.1.8. For the case of general N, the allowable events are all collections of
sequences a = (a1, . . . , aN ), where a j ∈ {H, T } for j = 1, . . . , N . The most general
probability function on �N is defined by choosing numbers {pa : a ∈ X N } so that

0 ≤ pa ≤ 1

and ∑
a∈X N

pa = 1. (15.1)

If A ∈ �N is an event, then
ν(A) =

∑
a∈A

pa.

In most instances we use a much simpler measure to define the probability of events in
�N . Instead of directly assigning a probability to each sequence of length N, we use the
assumption that an H occurs (at any position in the sequence) with probability p and a T
with probability 1 − p. We also assume that outcomes of the various flips are independent
of one another. With these assumptions we can show that

νp,N ({a}) = pma (1 − p)N−ma , (15.2)

where ma is the number of Hs in the sequence a.

Example 15.1.9. Suppose that X = �, with � the Borel sets. For any a < b, the half-open
interval [a, b) is an allowable event. Let f be a nonnegative, continuous function defined
on X with total integral 1:

∞∫
−∞

f (t) dt = 1.

Define the probability of the event [a, b) to be

Prob([a, b)) =
b∫

a

f (t) dt.

We can show that this defines a function on � satisfying the properties enumerated previ-
ously, see [42] or [57].

Example 15.1.10. In the situation described in Example 15.1.1, X equals �. Choose a
bi-infinite sequence {an : n ∈ �} of nonnegative numbers such that

∞∑
n=−∞

an = 1

and define
ν([n, n + 1)) = an for n ∈ �.
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This means that an is the probability that the particle fell in [n, n + 1). This function is
easily extended to define a measure on the allowable events defined in Example 15.1.1.
Again note that it is not possible to assign a probability to the event “the particle fell in
[.3, .7)” as our measurements are unable to decide whether or not this happens.

Example 15.1.11. Suppose that X is the unit disk in the plane, and let � be the Lebesgue
measurable subsets of X. These are the subsets whose surface area is well defined. The
outcome of the experiment is a point in X. For a measurable set A, define the probability
of the event “the point lies in A” to be

Prob(A) = area(A)

π
.

In a reasonable sense, this means that each point in X is equally likely to be the outcome of
the experiment. Note that if the set A consists of a single point {(x, y)}, then Prob(A) = 0.

How is the notion of probability introduced previously related to the outcomes of ex-
periments? Consider the case of flipping a coin; what does it mean to say that heads occurs
with probability p and tails occurs with probability 1 − p? Suppose we flip a coin N
times, and let H (N) and T (N) be the number of heads and tails, respectively. One possible
interpretation of the statement Prob({H }) = p is that

lim
N→∞

H (N)

N
= p.

This is sometimes called a time average: We perform a sequence of identical, independent
experiments and take the average of the results. We expect that the average over time will
approach the theoretical probability. Another way to model the connection between the
outcomes of experiments and probability theory is to consider ensemble averages. For the
example of coin tossing, imagine that we have N identical coins. We flip each coin once;
again let H (N) be the number of heads. If

lim
N→∞

H (N)

N
= p,

then we say that heads occurs, for this coin, with probability p.
The existence of either of these limits means that the process of flipping coins has some

sort of statistical regularity. It is a simple matter to concoct sequences < H (N) > for which
the ratio H (N)/N does not converge to a limit. It is, in essence, an experimental fact that
such sequences are very unlikely to occur. The relationship between experimental science
and the theory of probability is a complex philosophical issue. E. T. Jaynes beautifully
described the two major schools of thought in his seminal paper1:

1Quotation taken from: Information Theory and Statistical Mechanics, by E. T. Jaynes, in Physical Review,
vol. 106 (1957), p. 622.



15.1. Measure Theory∗ 533

The “objective” school of thought regards the probability of an event as an objec-
tive property of that event, always capable in principle of empirical measurement
by observation of frequency ratios in a random experiment. In calculating a proba-
bility distribution the objectivist believes that he is making predictions which are in
principle verifiable in every detail, just as those of classical mechanics. The test of
a good probability distribution p(x) is: does it correctly represent the observable
fluctuations of x?

On the other hand the “subjective” school of thought regards probabilities as ex-
pressions of human ignorance; the probability of an event is merely a formal ex-
pression of our expectation that the event will or did occur, based on whatever
information is available. To the subjectivist, the purpose of probability is to help
us in forming plausible conclusions in cases where there is not enough information
available to lead to certain conclusions; thus detailed verification is not expected.
The test of a good subjective probability distribution is does it correctly represent
our state of knowledge as to the value of x?

Exercises
Exercise 15.1.7. Prove that if (X,�, ν) is any probability space, then ν(∅) = 0.

Exercise 15.1.8. In Example 15.1.11, explain why Prob({(x, y)}) = 0.

Exercise 15.1.9. Show that the probability measure defined in (15.2) satisfies (15.1).

Exercise 15.1.10. In Example 15.1.11, let Ar denote the circle of radius r centered at 0.
Compute Prob(Ar ).

Exercise 15.1.11. In Section 3.4 we defined a “set of measure zero.” What is the proba-
bilistic interpretation of such a set?

15.1.3 Integration

See: B.6.

Using the measure defined on a probability space, (X,�, ν), we can define a notion of
integration. The first step is to define a class of functions that might be integrable. Such a
function is called a measurable function.

Definition 15.1.3. Let (X,�, ν) be a probability space. A real-valued function, f, defined
on X is measurable if, for every t ∈ �, the set {x ∈ X : f (x) ≤ t} belongs to �.

A fundamental consequence of axiom (3′) for a σ -algebra is the fact that a pointwise con-
vergent sequence of measurable functions is also measurable.

For an arbitrary subset A, define the indicator function of A to be

χA(x) =
{

1 if x ∈ A,

0 if x /∈ A.
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Earlier in the book this function would have been called the characteristic function of the
set A. In probability theory, characteristic function has a different meaning, so here we use
(the also standard terminology), indicator function.

Example 15.1.12. If A is an element of �, then χA is a measurable function.

Example 15.1.13. If X is the real line and � is the collection of Borel sets, then any
continuous function is measurable.

For the indicator function of a set A in �, it is clear that the only reasonable way to
define its integral is to let ∫

X

χA(x) dν(x)
d= ν(A).

As ν(X) = 1, this defines
∫
χA dν as the average of χA over X.

Definition 15.1.4. A function f is called a simple function if there are sets A j ∈ �, j =
1, . . . ,m, and real constants {a j } so that

f =
N∑

j=1

a jχA j .

It is not difficult to show that a simple function is measurable. Since the integral should
be linear, it is clear that we must define∫

X

N∑
j=1

a jχA j (x) dν(x)
d=

N∑
j=1

a jν(A j ).

While this formula is intuitively obvious, it requires proof that it makes sense. This is
because a simple function can be expressed as a linear combination of indicator functions
in different ways. If, as functions,

N∑
j=1

a jχA j =
M∑

k=1

bkχBk , (15.3)

then it is necessary to show that

N∑
j=1

a jν(A j ) =
M∑

k=1

bkν(Bk).

This is left as an exercise for the reader.
Suppose that f is a bounded, measurable function. Fix a positive integer N . For each

j ∈ �, define the measurable set

AN, j
d= f −1

(
[ j

N
,

j + 1

N
)

)
. (15.4)
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Since f is a bounded function, the function

FN =
∞∑

j=−∞

j

N
χAN, j (15.5)

is a simple function with the following properties:

1.
0 ≤ f (x) − FN (x) ≤ N−1, for all x,

2. ∫
X

FN (x)dν(x) =
∞∑

j=−∞

j

N
ν(AN, j ),

3.
FN (x) ≤ FN+1(x), for all x .

In other words, a bounded measurable function can be approximated by simple functions
for which the integral is defined. This explains, in part, why we introduce the class of
measurable functions. For a bounded, nonnegative, measurable function, the ν-integral is
defined by ∫

X

f (x) dν(x) = lim
N→∞

∫
X

FN (x) dν(x).

Condition (3) implies that
∫

FN dν is an increasing function of N so this limit exists. By
approximating nonnegative, measurable functions f in a similar way, the definition of the
integral can be extended to this class. If f is a nonnegative measurable function, then its
integral over X is denoted by ∫

X

f (x) dν(x).

The integral may equal +∞. If f is measurable, then the functions

f+(x) = max{0, f (x)}, f−(x) = max{0,− f (x)}
are also measurable. If either

∫
X

f±dν is finite, then the integral of f is defined to be

∫
X

f (x) dν(x)
d=
∫
X

f+(x) dν(x) −
∫
X

f−(x) dν(x).

Definition 15.1.5. Let (X,�, ν) be a probability space. A measurable function f is inte-
grable if both of the integrals ∫

X

f±(x) dν(x)
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are finite. In this case∫
X

f (x) dν(x)
d=
∫
X

f+(x) dν(x) −
∫
X

f−(x) dν(x).

This the Lebesgue integral.

A more complete discussion of Lebesgue integration can be found in [42] or [109]. For
our purposes, certain formal properties of the integral are sufficient. Let f, g be measurable
functions and a a real number. Then the integral defined by ν is linear in the sense that∫

X

( f + g) dν =
∫
X

f dν +
∫
X

g dν and

∫
X

a f dν = a
∫
X

f dν.
(15.6)

These conditions imply that if {A j } is a collection of pairwise disjoint subsets belonging to
� and {a j } is a bounded sequence of numbers, then the function

f (x) =
∞∑
j=1

a jχA j (x)

is an integrable function with ∫
X

f dν =
∞∑

j=1

a jν(A j ).

Note that here we consider infinite sums, whereas previously we only considered finite
sums.

Example 15.1.14. Let (X N ,�N , νp,N ) be the probability space introduced in the Exam-
ple 15.1.8. Since �N contains all subsets of X N , any function on X N is measurable. Using
the properties of the integral listed previously, it is not difficult to show that if f is a function
on X N , then ∫

X N

f (x) dνp,N (x) =
∑

a∈X N

f (a)νp,N (a).

For a finite probability space, an integral reduces to a finite sum.

Example 15.1.15. If f is a nonnegative, continuous function on � with∫
�

f (x) dx = 1,
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then we can define a probability measure on the Borel sets by setting

ν(A) =
∫
A

f (x) dx =
∫
�

χA(x) f (x) dx .

With this definition, it is not difficult to show that for any bounded, measurable function g
we have ∫

�

g(x) dν(x) =
∫
�

g(x) f (x) dx .

Example 15.1.16.� Suppose that F is a nonnegative function defined on � that satisfies the
following conditions:

1. F is a monotone nondecreasing function: x < y implies that F(x) ≤ F(y).

2. F is continuous from the right: For all x, F(x) = limy→x+ F(y).

3. limx→−∞ F(x) = 0, limx→∞ F(x) = 1.

Such a function defines a measure on the Borel subsets of �. The measure of a half-ray is
defined to be

νF ((−∞, a]) d= F(a),

and the measure of an interval (a, b] is defined to be

νF ((a, b]) d= F(b)− F(a).

Note that if (a, b] is written as a disjoint union,

(a, b] =
∞⋃

j=1

(a j , b j ],

then

F(b)− F(a) =
∞∑

j=1

F(b j )− F(a j ). (15.7)

This condition shows that the νF -measure of an interval (a, b] is well defined.
If a1 < b1 ≤ a2 < b2 ≤ · · · , then the measure of the union of intervals is defined, by

countable additivity, to be

νF

⎛⎝ ∞⋃
j=1

(a j , b j ]
⎞⎠ =

∞∑
j=1

F(b j )− F(a j ).
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The measure of an arbitrary Borel set is defined by approximating it by intersections of
unions of intervals. The measure νF is called the Lebesgue-Stieltjes measure defined by F.
The νF -integral of a function g is usually denoted

∞∫
−∞

g(x) d F(x).

It is called the Lebesgue-Stieltjes integral defined by F.
A similar construction can be used to define measures on �n. Here F is assumed to be

a nonnegative function that is monotone, nondecreasing, and continuous from the right in
each variable separately, satisfying

lim
x j→−∞ F(x1, . . . , x j , . . . , xn) = 0 for j = 1, . . . , n.

The measure of (−∞, a1] × · · · × (−∞, an] is defined to be

νF ((−∞, a1] × · · · × (−∞, an]) = F(a1, . . . , an).

By appropriately adding and subtracting, we define the measure of a finite rectangle. For
example, if n = 2, then

νF ((a1, b1] × (a2, b2]) = F(b1, b2)+ F(a1, a2)− F(a2, b1)− F(a1, b2). (15.8)

A discussion of Lebesgue-Stieltjes integrals can be found in [29].

Example 15.1.17. Let X equal � and let < an > be a bi-infinite sequence of nonnegative
numbers such that ∞∑

j=−∞
a j = 1.

We let � be the collection of all subsets of � and define the measure ν by letting

ν(A) =
∑

{n : n∈A}
an.

Any function g is measurable and∫
�

g(x) dν(x) =
∞∑

n=−∞
ang(n).

Exercises
Exercise 15.1.12. Suppose that (X,�, ν) is a probability space and A, B ∈ � are two
allowable events. Show that

ν(A ∪ B) = ν(A) + ν(B)− ν(A ∩ B).

Explain why this is reasonable from the point of view of probability.
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Exercise 15.1.13. Show that if A ∈ �, then χA is a measurable function.
Exercise 15.1.14. For the σ -algebra � defined in Example 15.1.1, what are the measurable
functions?
Exercise 15.1.15. If X = � and � is the collection of Borel sets, show that any continuous
function on X is measurable.
Exercise 15.1.16. Prove that if f is a measurable function, then the sets AN, j defined
in (15.4) belong to � for every j and N .

Exercise 15.1.17. For FN defined in (15.5), show that∫
X

FN (x) dν(x) ≤
∫
X

FN+1(x) dν(x).

Exercise 15.1.18. If f is a bounded function, then for each N, there exists an MN so that

AN, j = ∅
if | j | ≥ MN .

Exercise 15.1.19. Show that if f is a measurable function such that | f (x)| ≤ M for all
x ∈ X, then ∫

X

f (x) dν(x) ≤ M.

What can be concluded from the equality condition in this estimate?

Exercise 15.1.20. With � defined in Example 15.1.1 and ν defined in Example 15.1.10,
which functions are integrable and what is the integral of an integrable function?
Exercise 15.1.21. Give the details for the extension of the definition of the integral to
nonnegative measureable functions, which may not be bounded.
Exercise 15.1.22. If (X,�, ν) is a probability space, {A j } ⊂ � are pairwise disjoint sub-
sets, and < a j > is a bounded sequence, then show that

∞∑
j=1

|a j |ν(A j ) < ∞.

Exercise 15.1.23. Suppose that F is a differentiable function with nonnegative derivative
f. Show that F defines a Lebesgue-Stieltjes measure and

∞∫
−∞

g(x) d F(x) =
∞∫

−∞
g(x) f (x) dx . (15.9)

Exercise 15.1.24. Suppose that F has a weak derivative f. Does (15.9) still hold?
Exercise 15.1.25. Let F(x) = 0 for x < 0 and F(x) = 1 for x ≥ 0. For a continuous
function, g, what is

∞∫
−∞

g(x) d F(x)?
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15.1.4 Independent Events

Suppose that a coin is flipped several times in succession. The outcome of one flip should
not affect the outcome of a successive flip; nor is it affected by an earlier flip. They are
independent events. This is a general concept in probability theory.

Definition 15.1.6. Let (X,�, ν) be a probability space. Two allowable events, A and B,
are called independent if

Prob(A ∩ B) = Prob(A)Prob(B). (15.10)

Earlier we said that two events A and B were mutually exclusive if A ∩ B = ∅. In this
case,

Prob(A ∪ B) = Prob(A) + Prob(B).

Note the difference between these concepts.

Example 15.1.18. Let X N = {(a1, a2, . . . , aN ) : ai ∈ {H, T }} be the sample space for
flipping a coin N times. Suppose that Prob(H ) = p and Prob(T ) = 1 − p. If successive
flips are independent, then formula (15.10) implies that

Prob((a1, a2, . . . , aN )) =
N∏

i=1

Prob(ai ) = pma (1 − p)N−ma .

To prove this, observe that the event a1 = H is the set {(H, a2, . . . , aN ) : a j ∈ {H, T }};
it has probability p because it evidently only depends on the outcome of the first flip.
Similarly, the event a1 = T has probability 1 − p. Indeed, for any fixed j,

Prob(a j = H ) = p and Prob(a j = T ) = 1 − p.

The event Ak = {ai = H, i = 1, . . . k and a j = T, j = k + 1, . . . , N} can be
expressed as an intersection:[

k⋂
i=1

{ai = H }
]⋂⎡⎣ N⋂

j=k+1

{a j = T }
⎤⎦ .

Since this is an intersection of independent events, it follows that

Prob(Ak) = pk(1 − p)N−k .

A similar argument applies if we permute the order in which the heads and tails arise.
For each integer 0 ≤ k ≤ N, define the event

Hk = {a : k of the ai are H }.
An element of Hk is a sequence of length N consisting of k H’s and (N−k) T’s. Since every
sequence in Hk occurs with this probability, we can compute Prob(Hk) by determining the
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number of different sequences that contain k H’s and (N − k) T’s. This equals the number
of ways to choose k numbers out of {1, . . . , N}, which is(

N
k

)
= N !

k!(N − k)! ;

hence,

Prob(Hk) =
(

N
k

)
pk(1 − p)N−k .

Exercises
Exercise 15.1.26. Suppose that we perform the experiment of flipping a coin N times.
The outcome is the number of heads. The sample space for this experiment is X =
{0, 1, . . . , N}. Show that for each 0 ≤ p ≤ 1 the function defined on X by

Prob({k}) =
(

N
k

)
pk(1 − p)N−k

defines a probability measure on X.

Exercise 15.1.27. Suppose that we perform the experiment of flipping a coin N times.
Suppose that the probability that the i th flip is a head equals pi and that all the flips are
independent. What is the probability of getting exactly k heads in N flips? Find a plausible
physical explanation for having different probabilities for different flips while maintaining
the independence of the successive flips.

Exercise 15.1.28. Suppose that the probability that a coin lands on heads is p. Describe an
experiment to decide whether or not successive flips are independent.

15.1.5 Conditional Probability

Another important notion in probability theory is called conditional probability. Here we
suppose that we have a probability space (X,�, ν) and that B ∈ � is an event such that
Prob(B) > 0. Assume we know that the event B occurs. The conditional probability of an
event “A ∈ � given B” is defined to be

Prob(A|B) = Prob(A ∩ B)

Prob(B)
.

Notice Prob(B|B) = 1, as it must since we know that B occurs. We can also define the
probability of B given A:

Prob(B|A) = Prob(A ∩ B)

Prob(A)
.

They are related by Bayes’s law

Prob(B|A) = Prob(A|B)Prob(B)

Prob(A)
.



542 Chapter 15. Probability and Random Variables

If A and B are independent events, then

Prob(A|B) = Prob(A).

This shows that the terminology is consistent, for if A is independent of B, then the fact
that B occurs can have no bearing on the probability of A occurring.

Example 15.1.19. In our coin tossing experiment, we could consider the following ques-
tion: Suppose that we know that k heads turn up in N flips. What is the probability that
a1 = T ? That is, what is Prob(a1 = T |Hk)? It is clear that

Prob({a1 = T } ∩ Hk) = Prob(k of (a2, . . . aN ) are H and a1 = T )

= (1 − p)

(
N − 1

k

)
pk(1 − p)N−1−k .

(15.11)

On the other hand,

Prob(Hk) =
(

N
k

)
pk(1 − p)N−k ;

hence,

Prob(a1 = T |Hk) = 1 − k

N
.

Example 15.1.20. Let X equal � and � be the Borel sets. A nonnegative, measurable
function f with

∞∫
−∞

f (t) dt = 1

defines a probability measure

ν f (A) =
∞∫

−∞
f (t)χA(t) dt.

Let B ∈ � be a set for which ν f (B) > 0. Then the conditional probability of A given B is
given by

Prob(A|B) = ν f (A ∩ B)

ν f (B)
=

∫
A∩B

f (t) dt∫
B

f (t) dt
.

Exercises
Exercise 15.1.29. In the setup of Example 15.1.19, calculate the conditional probability
Prob(a1 = H |Hk).
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Exercise 15.1.30. Let (X,�, ν) be a probability space and B an element of � such that
ν(B) > 0. Define a function on � by setting

νB(A) = Prob(A|B).

Show that νB defines a probability measure on (X,�).

Exercise 15.1.31. What is the significance of Prob(A|B) = 0?

15.2 Random Variables∗

The sample space for the coin tossing experiment is X N . For many questions X N contains
more information than is needed. For example, if we are interested only in the number
of heads, then we could use the simpler sample space {0, 1, . . . , N}. The event {k} ⊂
{0, 1, . . . , N} corresponds to the event Hk ⊂ X N . The sample space {0, . . . , N} contains
strictly less information than X N , but for the purpose of counting the number of heads, it
is sufficient. It is often useful to employ the simplest possible sample space.

Another way to think of the sample space {0, . . . , N} is as the range of a function
defined on the “full” sample space X N . Define the function χH on X1 = {H, T } by

χH (H ) = 1, χH (T ) = 0.

Similarly, on X N define

χH
N (a) =

N∑
i=1

χH (ai ),

where a = (a1, . . . , aN ). The set {0, . . . , N} is the range of this function. The event that k
heads arise is the event {a : χH

N (a) = k}; its probability is

Prob(Hk) = ν({a : χH
N (a) = k}) =

(
N
k

)
pk(1 − p)N−k . (15.12)

The expression on the right-hand side of (15.12) can be thought of as defining a probability
measure on the space {0, . . . , N} with

Prob({k}) =
(

N
k

)
pk(1 − p)N−k .

Let (X,�,Prob) be a probability space. Recall that a real-valued function f is mea-
surable if for every t ∈ � the set f −1((−∞, t]) belongs to �. A complex-valued function
is measurable if its real and imaginary parts are measurable.

Definition 15.2.1. A real-valued, measurable function defined on the sample space is called
a random variable. A complex-valued, measurable function is a complex random variable.

Example 15.2.1. The function χH
N is a random variable on X N .
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Example 15.2.2. Let X be the unit interval [0, 1], � the Borel sets in [0, 1], and ν([a, b]) =
b − a. The function f (x) = x is a measurable function. It is therefore a random variable
on X. For each k ∈ � the function e2π ikx is measurable and is therefore a complex random
variable.

Thinking of the sample space X as all possible outcomes of an experiment, its points
give a complete description of the possible states of the system under study. With this
interpretation, we would not expect to be able to completely determine which x ∈ X is the
outcome of an experiment. Instead we expect to be able to measure some function of x .
This is the way that random variables enter in many practical applications.

Example 15.2.3. Consider a system composed of a very large number, N, of gas particles
contained in a fixed volume. The sample space, X = �6N , describes the position and mo-
mentum of every particle in the box. To each configuration in X we associate a temperature
T and a pressure P. These are real-valued, random variables defined on the sample space.
In a realistic experiment we can measure T and P, though not the actual configuration of
the system at any given moment.

Given the probabilistic description, (X,�, ν), for the state of a system and a random
variable χ, which can be measured, it is reasonable to enquire what value of χ we should
expect to measure. Because ν(X) = 1, the integral of a function over X is a weighted
average. In probability theory this is called the expected value.

Definition 15.2.2. Let (X,�, ν) be a probability space and χ a random variable. Define
the expected value or mean of the random variable χ by setting

μχ = E[χ] d=
∫
X

χ(x) dν(x).

If either χ± has integral +∞, then χ does not have an expected value.

Remark 15.2.1. In the literature < χ > is often used to denote the expected value of χ.
We avoid this notation as we already use < · > to denote sequences. In this text μ is also
used to denote the attenuation coefficient. The meaning should be clear from the context.

Because the expected value is an integral and an integral depends linearly on the inte-
grand, the expected value does as well.

Proposition 15.2.1. Suppose that (X,�, ν) is a probability space and the random vari-
ables χ and ψ have finite expected values. Then so does their sum and

E[χ + ψ] = E[χ] + E[ψ].
Example 15.2.4. We can ask how many heads will occur, on average, among N tosses.
This is the expected value of the function χH

N :

E[χH
N ] =

N∑
k=0

k Prob({χH
N = k}) =

N∑
k=0

k

(
N
k

)
pk(1 − p)N−k = pN .
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This expected value can be also be expressed as the integral over X N :

E[χH
N ] =

∫
X N

χH
N (a) dνp,N (a).

Example 15.2.5. Suppose we play a game: We get one dollar for each head and lose one
dollar for each tail. What is the expected outcome of this game? Note that the number of
tails in a sequence a is χT

N (a) = N − χH
N (a). The expected outcome of this game is the

expected value of χH
N − χT

N . It is given by

E[χH
N − χT

N ] = E[2χH
N − N ] = 2E[χH

N ] − E[N ] = 2pN − N = (2p − 1)N .

If p = 1
2 , then this is a fair game: The expected outcome is 0. If p > 1

2 , we expect to make
money from this game.

Example 15.2.6. Suppose that X is the unit disk and the probability measure is d A/π. The
distance from the origin, r = √

x2 + y2, is a measurable function. Its expected value is

E[r] =
∫
X

r
d A

π
= 1

π

2π∫
0

1∫
0

r2 dr dθ = 2

3
.

In other words, if a point is picked randomly in the unit disk, its expected distance from
(0, 0) is 2/3.

Exercises
Exercise 15.2.1. Derive the result found in Example 15.2.4.

Exercise 15.2.2. Instead of making or losing one dollar for each toss, we could adjust the
amount of money for each outcome to make the game in Example 15.2.5 into a fair game.
For a given p, find the amount we should receive for each head and pay for each tail to
make this a fair game.

Exercise 15.2.3. In Example 15.2.6, what are E[x] and E[y]?
Exercise 15.2.4. Let X be the unit circle in �2 with

ν(A) =
∫
A

dθ

2π
.

The exponential functions {e2π ikθ } are complex random variables. What is E[e2π ikθ ] for
k ∈ �?
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15.2.1 Cumulative Distribution Function

Associated to a real-valued, random variable is a probability measure on the real line. The
cumulative distribution function for χ is defined to be

Pχ(t)
d= Prob({x : χ(x) ≤ t}).

A cumulative distribution function has several basic properties:

1. It is monotone increasing and continuous from the right.

2. limt→−∞ Pχ (t) = 0.

3. limt→∞ Pχ(t) = 1.

A function satisfying these conditions defines a Lebesgue-Stieltjes probability measure on
� with

νχ((a, b]) = Pχ (b) − Pχ (a);
see Example 15.1.16. This measure is defined on the Borel subsets.

Often the cumulative distribution function can be expressed as the integral of a nonneg-
ative function

Pχ(t) =
t∫

−∞
pχ (s) ds.

The function pχ is called the density or distribution function for χ. In terms of the distri-
bution function,

Prob(a ≤ χ ≤ b) =
b∫

a

pχ (t) dt.

Heuristically pχ (t) is the “infinitesimal” probability that the value of χ lies between t and
t + dt. Since probabilities are nonnegative, this implies that

pχ (t) ≥ 0 for all t.

The third property of the cumulative distribution implies that

∞∫
−∞

pχ (t) dt = 1.

The expected value of χ can be computed from the distribution function:

E[χ] =
∫
X

χ(x) dν(x) =
∞∫

−∞
tpχ (t) dt.
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Notice that we have replaced an integration over the probability space X by an integration
over the range of the random variable χ. Often the sample space X and the probability
measure ν on X are not explicitly defined. Instead we just speak of a random variable
with a given distribution function. The “random variable” can then be thought of as the
coordinate on the real line; its cumulative distribution defines a Lebesgue-Stieltjes measure
on �.

Example 15.2.7. A random variable χ is said to be Gaussian with mean zero if

Pχ (t) = 1√
2πσ

t∫
−∞

exp

[
− x2

2σ 2

]
dx .

If χ describes the outcome of an experiment, then the probability that the outcome lies in
the interval [a, b] is

Prob(a ≤ χ ≤ b) = 1√
2πσ

b∫
a

exp

[
− x2

2σ 2

]
dx .

Notice that we have described the properties of this random variable without defining the
space X on which it is defined.

Let χ be a random variable. The kth moment of χ exists if∫
X

|χ |k dν < ∞.

If χ has a distribution function pχ , then this is equivalent to the condition that

∞∫
−∞

|tk |pχ (t) dt < ∞.

The kth moment of χ is then defined to be

E[χ k] =
∫
X

χ k(x) dν(x).

In terms of the distribution function,

E[χ k] =
∞∫

−∞
tk pχ (t)dt.

A more useful quantity is the kth-centered moment given by E[(χ − μχ)
k]. The centered

moments measure the deviation of a random variable from its mean value. The moments
of a random variable may not be defined.
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Example 15.2.8. Suppose that a real-valued random variable, χ, has cumulative distribu-
tion

Pχ (t) = 1

π

t∫
−∞

dx

1 + x2
.

Neither the expected value of χ nor of |χ | exists because

1

π

∞∫
−∞

|x|
1 + x2

dx = ∞.

Exercises
Exercise 15.2.5. Let χ be a random variable. Prove that Pχ is a monotone increasing
function.

Exercise 15.2.6. For each N, what is the cumulative distribution function for the random
variables χH

N defined on X N ? Do these random variables have distributions functions?

Exercise 15.2.7. Suppose that (X,�, ν) is a probability space and χ is a nonnegative
random variable. Show that E[χ] ≥ 0.

Exercise 15.2.8. Suppose that (X,�, ν) is a probability space and χ is a random variable
for which there exists a number c so that

Prob(χ = c) > 0.

Show that χ does not have a distribution function.

Exercise 15.2.9. Suppose that (X,�, ν) is a probability space and χ is a nonnegative
random variable with E[χ] = α. Show that for t > 0,

Prob(χ ≥ t) ≤ α

t
. (15.13)

The estimate in (15.13) is called the Chebyshev inequality.

Exercise 15.2.10. Give a heuristic justification for the following statement: “If χ is a ran-
dom variable with distribution function 1

π(1+x2)
, then its expected value is zero.” Why is

this statement not strictly correct?

Exercise 15.2.11. Suppose that χ is a random variable with distribution function pχ . For a
function f such that f (χ) is also a random variable with a finite expected value, show that

E[ f (χ)] =
∞∫

−∞
f (t)pχ (t) dt.
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15.2.2 The Variance

Of particular interest in applications is the second centered moment, or variance of a ran-
dom variable. It is defined by

σ 2
χ

d= E[(χ − μχ)
2].

The variance is a useful measure of how frequently a random variable differs from its mean.
It can be expressed in terms of the expectations of χ and χ2:

σ 2
χ = E[(χ − E[χ])2]
= E[χ2] − 2E[χ]2 + E[χ]2

= E[χ2] − E[χ]2.

(15.14)

As the expected value of nonnegative random variable, the variance is always nonnegative.
The positive square root of the variance σχ is called the standard deviation. Zero stan-
dard deviation implies that, with probability one, χ is equal to its mean. In experimental
applications the variance is used to quantify the relative uncertainty in the data.

Definition 15.2.3. If a measurement is described by a random variable χ, then the signal-
to-noise ratio in the measurement is defined to be

SNR(χ)
d= μχ

σχ

.

A larger signal-to-noise ratio indicates a more reliable result.

The expectation E[|χ − μχ |k], for any positive number k, could also be used as a
measure of the deviation of a random variable from its mean. The variance occurs much
more frequently in applications because it is customary and computations involving the
variance are much simpler than those for k not equal to 2.

Example 15.2.9. In the coin tossing example,

E[(χH
N )2] =

N∑
k=0

k2

(
N
k

)
pk(1 − p)N−k = pN [p(N − 1)+ 1]

Using (15.14), the variance is

E[(χH
N − E[χH

N ])2] = pN [p(N − 1) + 1] − p2 N2 = p(1 − p)N .

If p = 0, the standard deviation is zero and the coin always falls on tails. A coin is fair if
p = 1

2 . A fair coin has the largest standard deviation, 1
4 N .

Example 15.2.10. Suppose that χ is a random variable with mean μ and variance σ 2. Then

Prob(|χ − μ| ≥ t) ≤ σ 2

t2
. (15.15)
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This is also called Chebyshev’s inequality. The proof uses the observation

{x : |χ(x) − μ| ≥ t} = {x : |χ(x) − μ|2 ≥ t2}
and therefore

Prob(|χ − μ|) ≥ t) =
∫

{x : |χ(x)−μ|2≥t2}

dν

≤
∫

{x : |χ(x)−μ|2≥t2}

|χ − μ|2
t2

dν

≤ σ 2

t2
.

(15.16)

This indicates why the variance is regarded as a measure of the uncertainty in the value of
a random variable.

Exercises
Exercise 15.2.12. Why does E[χ −μχ ] provide a poor measure of the deviation of χ from
its mean?

Exercise 15.2.13. Let χ be a Gaussian random variable with distribution function

pχ (t) = 1√
2πσ

exp

[
−(t − a)2

2σ 2

]
.

What are E[χ] and σχ?

Exercise 15.2.14. In (15.16), justify the transitions from the first to the second and the
second to the third lines.

Exercise 15.2.15.� Deduce from (15.15) that

Prob(|χ − μ| < t) ≥ 1 − σ 2

t2
.

15.2.3 The Characteristic Function

Another important function of a random variable χ is the expected value of e−2π iλχ .

Definition 15.2.4. Let χ be a random variable. The function of λ ∈ � defined by

Mχ (λ) = E[e−2π iλχ ] =
∫
X

e−2π iλχ(x)dν(x)

is called the characteristic function of χ.
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If the cumulative distribution for χ has a density function pχ , Then

Mχ (λ) =
∞∫

−∞
e−2π iλt pχ (t) dt.

Up to the factor of 2π, this is the Fourier transform of the density function. As the density
function is a nonnegative integrable function, its Fourier transform is continuous and, by
the Riemann-Lebesgue lemma, it tends to zero as |λ| → ∞.

As we saw in Chapter 4, rapid decay of the density function at infinity makes the char-
acteristic function differentiable. Its derivatives at λ = 0 determine the moments of χ.
They are given by [−∂λ

2π i

]k

Mχ (λ)
∣∣
λ=0 = E[χ k].

Using the Taylor series for the exponential and computing formally gives

E[e−2π iλχ ] =
∞∑
j=0

[−2π iλ] j

j !
∞∫

−∞
t j pχ (t) dt

=
∞∑
j=0

[−2π iλ] j

j ! E[χ j ].
(15.17)

For this reason the E[e−2π iλχ ] is sometimes called the generating function for the moments
of χ. Note that the expected value of e−2π iλχ always exists, while the moment themselves
may not.

Example 15.2.11. In the coin tossing example, the characteristic function is

E[e−2π iλχH
N ] =

N∑
k=0

e−2π iλk

(
N
k

)
pk(1 − p)N−k

= (1 − p)N
N∑

k=0

(
N
k

) [
e−2π iλ p

1 − p

]k
= (1 − p)N

(
1 + e−2π iλ p

1 − p

)N = (1 − p(1 − e−2π iλ))N .

Notice again that we do not integrate over the space X N , where the random variable χH
N

is defined, but rather over the range of χH
N . This again shows the utility of replacing a

complicated sample space by a simpler one when doing calculations with random variables.

What happens to the distribution function if a random variable is shifted or rescaled?
Suppose χ is a random variable and a new random variable is defined by

ψ = χ − μ

σ
.
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This is often done for convenience; for example, if μ = μχ and σ = σχ, then ψ is random
variable with mean zero and variance one. The cumulative distribution function is

Prob(ψ ≤ t) = Prob(
χ − μ

σ
≤ t) = Prob(χ ≤ σ t + μ).

If pχ is the distribution function for χ, then the distribution function for ψ is

pψ(t) = σ pχ (σ t + μ) and Mψ(λ) = e
2π iλμ

σ Mχ (
λ

σ
). (15.18)

Exercises
Exercise 15.2.16. Show that E[e−2π iλχ ] is defined for any random variable χ.

Exercise 15.2.17. What is the characteristic function of the Gaussian random variable de-
fined in Exercise 15.2.13?

Exercise 15.2.18. Derive the formulæ in (15.18).

15.2.4 A Pair of Random Variables

Often we have more than one random variable. It is then important to understand how these
random variables are related. Suppose that χ1 and χ2 are random variables defined on the
same space X. By analogy to the cumulative distribution for a single random variable, we
define the joint cumulative distribution function of χ1 and χ2 by

Prob(χ1 ≤ s and χ2 ≤ t) = ν({χ−1
1 (−∞, s]} ∩ {χ−1

2 (−∞, t]}).
This function is monotone nondecreasing and continuous from the right in each variable
and therefore defines a Lebesgue-Stieltjes measure νχ1,χ2 on �2 (see Example 15.1.16).
The measure of a rectangle is given by the formula

νχ1,χ2((a, b] × (c, d]) =Prob(χ1 ≤ b, and χ2 ≤ d)+ Prob(χ1 ≤ a, and χ2 ≤ c)−
Prob(χ1 ≤ a, and χ2 ≤ d)− Prob(χ1 ≤ b, and χ2 ≤ c)

(15.19)

If there is a function pχ1,χ2 defined on �2 such that

Prob(χ1 ≤ s, and χ2 ≤ t) =
s∫

−∞

t∫
−∞

pχ1,χ2(x, y) dy dx,

then we say that pχ1,χ2 is the joint distribution function for the pair of random variables
(χ1, χ2).

It is clear that

Prob(χ1 ≤ s, and χ2 ≤ ∞) = Prob(χ1 ≤ s) and

Prob(χ2 ≤ s, and χ1 ≤ ∞) = Prob(χ2 ≤ s).
(15.20)
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This is reasonable because the condition χi ≤ ∞ places no restriction on χi . This is ex-
pressed in terms of the distribution functions by the relations

s∫
−∞

∞∫
−∞

pχ1,χ2(x, y) dy dx =
s∫

−∞
pχ1(x) dx,

s∫
−∞

∞∫
−∞

pχ1,χ2(x, y) dx dy =
s∫

−∞
pχ2(y) dy.

(15.21)

The joint distribution function therefore, is not independent of the distribution functions for
individual random variables. It must satisfy the consistency conditions:

pχ2(y) =
∞∫

−∞
pχ1,χ2(x, y) dx and pχ1(x) =

∞∫
−∞

pχ1,χ2(x, y) dy.

Recall that two events A and B are independent if

Prob(A ∩ B) = Prob(A)Prob(B),

Similarly, two random variables, χ1 and χ2, are independent if

Prob(χ1 ≤ s and χ2 ≤ t) = Prob(χ1 ≤ s)Prob(χ2 ≤ t).

In terms of their distribution functions, this is equivalent to

pχ1,χ2(x, y) = pχ1(x)pχ2(y).

The expected value of a product of random variables, having a joint distribution func-
tion, is given by

E[χ1χ2] =
∞∫

−∞

∞∫
−∞

xy · pχ1,χ2(x, y) dx dy (15.22)

Whether or not χ1 and χ2 have a joint distribution function, this expectation is an integral
over the sample space, and therefore E[χ1χ2] satisfies the Cauchy-Schwarz inequality.

Proposition 15.2.2. Let χ1 and χ2 be a pair of random variables defined on the same
sample space with finite second moments. Then

|E[χ1χ2]| ≤
√

E[|χ1|2]E[|χ2|2]. (15.23)

It is useful to have a simple way to quantify the degree of independence of a pair of
random variables.
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Definition 15.2.5. The covariance of χ1 and χ2 is defined by

Cov(χ1, χ2)
d= E[(χ1 − μχ1)(χ2 − μχ2)] = E[χ1χ2] − E[χ1]E[χ2],

and correlation coefficient by

ρχ1χ2

d= Cov(χ1, χ2)

σχ1σχ2

.

These are the fundamental measures of independence. If χ1 is measured in units u1 and
χ2 is measured in units u2, then the covariance has units u1 · u2. The correlation coefficient
is a more useful measure of the independence of χ1 and χ2 because it is dimensionally
independent; it is a pure number taking values between ±1 (see Exercise 15.1.3).

If χ1, χ2 are independent, then

E[χ1χ2] =
∞∫

−∞
ypχ2(y) dy

∞∫
−∞

xpχ1(x) dx

= E[χ1]E[χ2].
(15.24)

In this case, the covariance, Cov(χ1, χ2), is equal to zero. This is a necessary but not
sufficient condition for two random variables to be independent.

Example 15.2.12. Zero covariance does not imply the independence of two random vari-
ables. We illustrate this point with a simple example. Let X = [0, 1] and dν = dx . Two
random variables are defined by

χ1 = cos 2πx, χ2 = sin 2πx .

Their means are clearly zero, E[χ1] = E[χ2] = 0. They are also uncorrelated:

Cov(χ1, χ2) =
1∫

0

cos 2πx sin 2πx dx = 0.

On the other hand, we compute the probability

Prob(0 ≤ | sin 2πx| ≤ 1√
2

and
1√
2
≤ | cos 2πx| ≤ 1).

From the identity cos2 θ + sin2 θ = 1, the first condition is equivalent to the second one.
Using the graph of sin 2πx , we can easily check that

Prob(0 ≤ | sin 2πx| ≤ 1√
2

and
1√
2

≤ | cos 2πx| ≤ 1) = Prob(0 ≤ | sin 2πx| ≤ 1√
2
)

= 1

2
.

(15.25)
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But the product is

Prob(0 ≤ | sin 2πx| ≤ 1√
2
)Prob(

1√
2

≤ | cos 2πx| ≤ 1) = 1

2
· 1

2
= 1

4
.

Hence these are not independent variables.

Random variables are, in many ways, like ordinary variables. The properties of a single
real-valued, random variable are entirely specified by its cumulative distribution, which,
in turn, defines a measure on the real line. Indeed nothing is lost by thinking of a single
random variable χ as being the coordinate on �. If f is a function, then f (χ) is a new
random variable and it bears the same relation to χ as f (x) bears to x; for example,

E[ f (χ)] =
∞∫

−∞
f (x)pχ (x) dx

and

Prob(a ≤ f (χ) ≤ b) =
∫

f −1([a,b])

pχ (x) dx .

So long as we are only interested in random variables that are functions of χ, we can think
of our sample space as being the real line.

Two functions defined on the plane are thought of as being independent if they behave
like x, y-coordinates. That is, one is in no way a function of the other. This is the essence
of the meaning of independence for random variables: One is not a function of the other,
with probability 1. Independence is a very strong condition. If χ1, χ2 are independent, then

E[ f (χ1)g(χ2)] = E[ f (χ1)]E[g(χ2)] (15.26)

for any functions f and g such that this makes sense. To work with a pair of random
variables, we use �2 as the underlying sample space. If the variables are independent, then
νχ1,χ2 is the induced product measure, νχ1 × νχ2 (see Appendix B.8). As with ordinary
functions, there are degrees of dependence between two random variables. If χ1 and χ2 are
random variables that are not independent, then it does not mean that one is a function of
the other or that there is a third random variable, χ3, so that χ1 = f (χ3) and χ2 = g(χ3).
When working with random variables, it is often useful to replace them by coordinates or
functions of coordinates on a Euclidean space.

Example 15.2.13. Let X N be the sample space for N coin tosses. As noted previously,
we usually assume that the results of the different tosses in the sequence are independent
of one another. In Example 15.1.18 we showed that the probability that a sequence has k
heads and N − k tails is pk(1− p)N−k . The corresponding measure on X N is denoted νp,N .
To translate this example into the language of random variables, we define the functions
χ j : X N → {0, 1} by letting

χ j (a) =
{

1 if a j = H,

0 if a j = T .
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With the probability defined by νp,N , these random variables are pairwise independent.
Observe that χ j is only a function of a j so the various χ j are also functionally independent
of one another. Using a different probability measure, we could arrange to have σχiχ j 	= 0,
so that the {χ j } are no longer independent as random variables.

Example 15.2.14. As a nice application of the characteristic function formalism, intro-
duced in Section 15.2.3, we compute the distribution function for the sum of a pair of
independent random variables. Suppose χ1, χ2 are independent random variables with dis-
tribution functions pχ1 , pχ2 , respectively. What is the distribution function for χ1 + χ2? It
is calculated as follows:

Mχ1+χ2(λ) = E[e−2π iλ(χ1+χ2)] = E[e−2π iλχ1 e−2π iλχ2 ]
= E[e−2π iλχ1 ]E[e−2π iλχ2 ]
= Mχ1(λ)Mχ2(λ).

The second line comes from the fact that χ1 and χ2 are independent. On the other hand,
Mχ (λ) = p̂χ (2πλ), hence p̂χ1+χ2 = p̂χ1 p̂χ2 . This implies that

pχ1+χ2 = pχ1 ∗ pχ2

and therefore

Prob(χ1 + χ2 ≤ t) =
t∫

−∞
pχ1+χ2(s) ds

=
t∫

−∞

∞∫
−∞

pχ1(s − y)pχ2(y) dy ds

=
∞∫

−∞

t−y∫
−∞

pχ1(x) dx pχ2(y) dy.

(15.27)

Exercises
Exercise 15.2.19. Suppose that (X,�, ν) is a probability space and χ1 and χ2 are random
variables. Express E[χ1χ2] as an integral over X.

Exercise 15.2.20. Give a geometric explanation for formula (15.19). When a joint distri-
bution function exists, show that νχ1,χ2((a, b] × (c, d]) reduces to the expected integral.

Exercise 15.2.21. Suppose that χ1 and χ2 are random variables with finite mean and vari-
ance. Show that −1 ≤ ρχ1χ2 ≤ 1.

Exercise 15.2.22. In the situation of the previous exercise, show that |ρχ1χ2 | = 1 if and
only if χ2 = aχ1 + b for some constants a, b. More precisely,

Prob(χ2 = aχ1 + b) = 1.
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Exercise 15.2.23. Prove the expectation version of the Cauchy-Schwarz inequality, (15.2.2).

Exercise 15.2.24. Prove the statement in Example 15.2.13, that χ j and χk are independent
random variables if j 	= k.

Exercise 15.2.25. Suppose that χ is a random variable with distribution function pχ . Let
f and g be functions. Show that Prob( f (χ) ≤ a, g(χ) ≤ b) can be expressed in the form

Prob( f (χ) ≤ a, g(χ) ≤ b) =
∫

E f,g

pχ (x) dx,

where E f,g is a subset of �.

Exercise 15.2.26. Suppose that χ1 and χ2 are random variables on X. Recast the indepen-
dence of χ1 and χ2 as a statement about the independence of certain events.

Exercise 15.2.27. Suppose that χ1 and χ2 are independent random variables and f, g are
functions. Show that f (χ1) and g(χ2) are also independent random variables.

Exercise 15.2.28. Suppose that χ1 and χ2 are random variables and that f and g are func-
tions. Does

E[χ1χ2] = E[χ1] · E[χ2]
imply that

E[ f (χ1)g(χ2)] = E[ f (χ1)] · E[g(χ2)]?
Give a proof or counterexample.

Exercise 15.2.29. A probability measure is defined on �2 by

Prob(A) = 1

π

∫∫
A

exp[−(x2 + y2)] dx dy.

Are the functions x + y and x − y independent random variables? How about x and x + y?

Exercise 15.2.30. Suppose that (χ1, χ2) is a pair of independent random variables with
means (μ1, μ2) and variances (σ 2

1 , σ
2
2 ). Show that

μχ1+χ2 = μ1 + μ2 and σ 2
χ1+χ2

= σ 2
1 + σ 2

2 . (15.28)

Exercise 15.2.31. Suppose that (χ1, χ2) is a pair of random variables with means (μ1, μ2),
variances (σ 2

1 , σ
2
2 ), and covariance σ12. Find formulæ for μχ1+χ1 and σ 2

χ1+χ2
.

Exercise 15.2.32. In Example 15.2.13, find a probability measure on the space of N flips,
X N so that Cov(χi , χ j ) 	= 0.



558 Chapter 15. Probability and Random Variables

15.2.5 Several Random Variables

The concepts introduced in the previous section can be generalized to cover the case of
two or more random variables. Suppose that {χ1, . . . , χm} is a collection of m real-valued,
random variables. Their joint cumulative distribution is a function on �m defined by

Pχ1,...,χm (t1, . . . , tm) = Prob(χ1 ≤ t1 and . . . and χm ≤ tm)

= ν

⎛⎝ m⋂
j=1

{χ−1
j ((−∞, t j ])}

⎞⎠ .
(15.29)

This function is monotone nondecreasing and continuous from the right in each variable
separately and therefore defines a Lebesgue-Stieltjes measure on �m . If there is a function
pχ1,...,χm (t1, . . . , tm) so that

Pχ1,...,χm (t1, . . . , tm) =
t1∫

−∞
· · ·

tm∫
−∞

pχ1,...,χm (s1, . . . , sm)ds1 · · · dsm ,

then pχ1,...,χm is called the joint distribution function for this collection of random variables.

Definition 15.2.6. A collection {χ1, . . . , χm} of random variables is independent if

Prob(χ1 ≤ t1 and . . . and χm ≤ tm) =
m∏

j=1

Prob(χ j ≤ t j ).

If there is a joint distribution function, pχ1,...,χm , then this is equivalent to

pχ1,...,χm (t1, . . . , tm) =
m∏

j=1

pχ j (t j ).

Once again, it is useful to have a statistical measure of independence. The expected
value of the products E[χ jχk] is an m × m matrix called the correlation matrix, and the
difference

Cov(χ j , χk) = E[χ jχk] − E[χ j ]E[χk]
is called the covariance matrix. The dimensionless version is the normalized correlation
matrix defined by

ρχ j ,χk = Cov(χ j , χk)

σχ jσχk

.

If {χ1, . . . , χm} are random variables, then there is a nice formalism for computing cer-
tain conditional probabilities. For example, suppose we would like to compute the proba-
bility of the event

χ1 ≤ t1, . . . , χk ≤ tk given that χk+1 = sk+1, . . . , χm = sm . (15.30)
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To find the distribution function, the event {χk+1 = sk+1, . . . , χm = sm} is thought of as
the limit of the events {|χk+1 − sk+1| ≤ ε, . . . , |χm − sm | ≤ ε} as ε → 0. The limiting
distribution function does not exist unless the event {χ j = s j for j = k + 1, . . . ,m} has
nonzero “infinitesimal probability;” that is,

pχk+1,...,χm (sk+1, . . . , sm) 	= 0.

To obtain a simple formula, we also require that the density function pχk+1,...,χm be contin-
uous at (sk+1, . . . , sm). The probability in the limiting case is then given by

P(χ1 ≤ t1, . . . , χk ≤ tk |χk+1 = sk+1, . . . , χm = sm) =
tk∫

−∞
· · ·

t1∫
−∞

pχ1,...,χm (x1, . . . , xk, sk+1, . . . , sm) dx1 · · · dxk

pχk+1,...χm (sk+1, . . . , sm)
. (15.31)

The joint density for the random variables {χ1, . . . , χk}, given that

χ j = s j for j = k + 1, . . . ,m,

is therefore
pχ1,...,χm (x1, . . . , xk, sk+1, . . . , sm)

pχk+1,...,χm (sk+1, . . . , sm)
. (15.32)

Exercises
The properties of a finite collection of random variables are developed in the following
exercises.

Exercise 15.2.33. Show that if {χ1, . . . , χm} are independent random variables, then for
each pair i 	= j the variables χi and χ j are independent. Is the converse statement true (i.e.,
does pairwise independence imply that a collection of random variables are independent)?

Exercise 15.2.34. Suppose that the random variables {χ1, . . . , χm} are pairwise indepen-
dent. Show that Cov(χ j , χk) = 0.

Exercise 15.2.35. Let {χ1, . . . , χm} be random variables with joint distribution function
pχ1,...,χm . Show that

pχ1,...,χm−1(t1, . . . , tm−1) =
∞∫

−∞
pχ1,...,χm (t1, . . . , tm−1, s) ds.

Exercise 15.2.36. Show that if {χ1, . . . , χm} have a joint distribution function and 1 ≤ i1 <
· · · < ik ≤ m, then {χi1 , . . . , χik } also have a joint distribution function. Give a formula for
the joint distribution function of {χi1 , . . . , χik }.
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Exercise 15.2.37. Suppose that {χ1, . . . , χm} are independent random variables with means
{μ1, . . . , μm} and variances {σ 2

1 , . . . , σ
2
m}. Let

χ̄ = χ1 + · · · + χm

m
.

Show that

μχ̄ = μ1 + · · · + μm

m
and σ 2

χ̄ = σ 2
1 + · · · + σ 2

m

m2
. (15.33)

Does this formula remain valid if we only assume that Cov(χi , χ j ) = 0?

Exercise 15.2.38. Suppose that {χ1, . . . , χm} are independent random variables with distri-
bution functions {pχ1 , . . . , pχm }. What is the distribution function of χ1 + · · · + χm? Hint:
Show that the characteristic function of the sum is the product Mχ1 · · · Mχm .

Exercise 15.2.39. Suppose that {χ1, . . . , χm} are random variables on a probability space
(X,�, ν) and let ci j = E[χiχ j ] be their correlation matrix. Show that this matrix is
nonnegative definite; that is, if (x1, . . . , xm) ∈ �m, then

m∑
i=1

m∑
j=1

ci j xi x j ≥ 0.

Hint: Express this as the expectation of a nonnegative random variable.

Exercise 15.2.40. Fill in the details in the derivation of the formula (15.32) for the density
function of the conditional probability,

P(χ1 ≤ t1, . . . , χk ≤ tk |χk+1 = sk+1, . . . , χm = sm).

15.3 Some Important Random Variables

In medical imaging and in physics there are three fundamental probability distributions.
We now introduce them and discuss some of their properties.

15.3.1 Bernoulli Random Variables

A Bernoulli random variable is specified by two parameters, p ∈ [0, 1] and N ∈ �. The
variable χ assumes the values {0, 1, . . . , N} with probabilities given by

Prob(χ = k) =
(

N
k

)
pk(1 − p)N−k . (15.34)

The number of heads in N independent coin tosses is an example of a Bernoulli random
variable. Sometimes these are called binomial random variables.

Recall that in the coin tossing experiment we defined a function χH
N such that

χH
N ((a1, . . . , aN )) = number of heads in a.

There is a similar model for a γ -ray detector. The model is summarized by the following
axioms:
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• Each photon incident on the detector is detected with probability p.

• Independence axiom: The detection of one photon is independent of the detection of
any other.

Let χ denote the number of photons detected out of N arriving at the detector. The proba-
bility that k out of N incident photons are detected is given by (15.34). We see that

Expected value: E[χ] = pN,

Variance: σ 2 = E[(χ − Np)2] = p(1 − p)N .

If p = 1, then we have a perfect detector; hence there is no variance. There is also no
variance if p = 0. In the latter case the detector is turned off.

Suppose we know the detector (i.e., p is known from many experiments). The number
N characterizes the intensity of the source. We would like to know how many photons
were emitted by the source. If we measure M photons, a reasonable guess for N is given
by pN = M . Of course, we do not really believe this because the variance is, in general,
not zero. What this means is that, if all our assumptions are satisfied, and we repeat the
measurement many times, then the average value of the measurements should approach
pN .

15.3.2 Poisson Random Variables

A Poisson random variable χ assumes the values {0, 1, 2, . . .} and is characterized by the
following probability distribution: Prob(χ = k) = λk

k! e−λ, where λ is a positive number.
This defines a probability measure on the nonnegative integers since

∞∑
k=0

λk

k! e−λ = eλe−λ = 1.

The expected value is given by

E[χ] =
∞∑

k=0

k
λk

k! e−λ = λ.

The constant λ is called the intensity. Poisson random variables are used to model many
different situations. Some examples are as follows:

• The arrival of patients at a doctor’s office

• The number of telephone calls passing through a switch

• The number of radioactive decays occurring in a large quantity of a radioactive ele-
ment, in a fixed amount of time

• The generation of x-rays
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The variance is given by

σ 2
χ = E[(χ − E[χ])2] = λ.

Notice that the variance is equal to the expected value. This has an interesting consequence:
The signal-to-noise ratio for a Poisson random variable is given by

expected value

standard deviation
= λ√

λ
= √

λ.

Hence, the intensity of a Poisson random variable measures the relative noise in the system.

Exercise
Exercise 15.3.1. Derive the formulæ for the mean and standard deviation of a Poisson
random variable.

15.3.3 Gaussian Random Variables

The final class of distributions we discuss is Gaussian random variables, which have al-
ready been discussed briefly. Gaussian random variables are determined by their first and
second moments and have many special properties as a consequence of this fact. They are
very important in the context of measurement because the average of a large collection of
independent random variables is approximately Gaussian, almost no matter how the indi-
vidual variables are distributed. This fact, known as the central limit theorem, is treated in
the next section.

A random variable χ is Gaussian if and only if its cumulative distribution is given by

Prob(χ ≤ t) = 1√
2πσ

t∫
−∞

exp
[−(x − μ)2

2σ 2

]
dx

for μ a real number and σ a positive real number. Integrating gives formulæ for the mean
and variance:

E[χ] = μ, E[(χ − μ)2] = σ 2.

For a Gaussian random variable the probability that χ lies between μ − σ and μ + σ is
about 2/3. From the definition it is clear that the distribution function of a Gaussian random
variable is determined by its mean and variance. A Gaussian random variable is said to be
normalized if its mean is 0 and its variance 1.

The characteristic function of a Gaussian random variable is

Mχ(λ) = e2π iμλe− σ2(2πλ)2
2 .

Higher moments are easily computed using the fact that if

f (t) = 1√
t
= 1√

2πσ

∞∫
−∞

exp
[−t

(x − μ)2

2σ 2

]
dx,
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then
E[(χ − μ)2k] = (−1)k2kσ 2k f [k](1).

Thus

E[(χ − μ)k] =
{

0 if k is odd,

1 · 3 · · · (k − 1)σ k if k is even.

Two random variables, χ1, χ2, are jointly Gaussian if their joint density function is
given by

pχ1,χ2(x, y)

= 1

2πσχ1σχ2

exp

[
1

1 − ρ2

[(x − μχ1

σχ1

)2 − 2ρ
( x − μχ1

σχ1

)( y − μχ2

σχ2

)+ ( y − μχ2

σχ2

)2]];
(15.35)

where

μχi = E[χi ], are real numbers,

σχi = are positive numbers,

ρ = E[(χ1 − μχ1)(χ2 − μχ2)]
σχ1σχ2

, is a real number between −1 and +1.

The number ρ is called the normalized correlation coefficient; it is a dimensionless measure
of the independence of χ1 and χ2. Once again, the joint distribution function of a pair
of Gaussian random variables is determined by the second-order statistics of the pair of
variables, {E[χi ], E[χiχ j ] : i, j = 1, 2}.
Proposition 15.3.1. Let χ1 and χ2 be Gaussian random variables. Then they are indepen-
dent if and only if they are uncorrelated.

Proof. If a pair of random variables has a joint density function, then they are independent if and
only if

pχ1,χ2(x, y) = pχ1(x)pχ2(y). (15.36)

From the form of the joint density of a pair of Gaussian variables, it is clear that (15.36) holds if and
only if ρ = 0.

More generally, a collection of m random variables, {χ1, · · · , χm}, is Gaussian if and
only if the density of the joint distribution function has the form

pχ1,...,χm (t1, . . . , tm) =
√

det ai j

[2π ]m
exp

⎡⎣−1

2

m∑
i, j=1

ai j (ti − μi )(t j − μ j )

⎤⎦ . (15.37)

Here (ai j ) is assumed to be a symmetric, positive definite matrix. That is, for some c > 0

ai j = a j i and
m∑

i, j=1

ai j xi x j ≥ c
m∑

j=1

x2
j .



564 Chapter 15. Probability and Random Variables

Proposition 15.3.2. If {χ1, . . . , χm} are jointly Gaussian random variables with the joint
density function given in (15.37), then

E[χi ] = μi ,

where ai j is the inverse of Cov(χi , χ j ).

Evidently, the joint distribution of a collection of Gaussian random variables is again
determined by the second-order statistics. This proposition can also be viewed as an exis-
tence theorem. Given a collection of numbers {μ1, . . . , μm} and a positive definite matrix
(ri j ), there is a collection of Gaussian random variables {χ1, . . . , χm} with

E[χi ] = μi and Cov(χi , χ j ) = ri j . (15.38)

In practical situations, if all that is known about a collection of random variables is their
means and covariance, then it is often assumed that they are Gaussian.

Suppose that {χ1, · · · , χm} is a collection of independent Gaussian random variables.
If {a j } are constants, then the linear combination

χa =
m∑

j=1

a jχ j

is also a Gaussian random variable. The easiest way to see this is to compute the character-
istic function of χa. From Exercise 15.2.38 it follows that

Ma(λ) = (a1 · · · am)Mχ1(λ) · · · Mχm (λ). (15.39)

Because a sum of quadratic functions is a quadratic function, this implies that

pχa = 1√
2πσa

exp
[−(x − μa)

2

2σ 2
a

]
,

for some constants μa, σa.

Exercises
Exercise 15.3.2. Suppose that χ1 and χ2 are jointly Gaussian random variables. Show that
for any constants a, b, the linear combination aχ1+bχ2 is also a Gaussian random variable.
Compute its mean and standard deviation.

Exercise 15.3.3. Using formula (15.39), find an expression for the mean and variance of
χa in terms of the means and variances of the {χ j }.
Exercise 15.3.4. Suppose that χ1 and χ2 are jointly Gaussian random variables. Show that
there is an invertible matrix (

a b
c d

)
so that aχ1 + bχ2 and cχ1 + dχ2 are independent, Gaussian random variables.
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Exercise 15.3.5. Suppose that real numbers, {μ1, . . . , μm}, and a positive definite m × m
matrix, (ri j ) are given. Find a sample space X, a probability measure on X, and random
variables {χ1, . . . , χm} defined on X that are jointly Gaussian, satisfying (15.38).

Exercise 15.3.6. Suppose that {χ1, . . . , χm} are jointly Gaussian random variables with
means {μ1, . . . , μm}. Show that they are pairwise independent if and only if

Cov(χi , χ j ) = δi jσ
2
χi
.

Exercise 15.3.7. Suppose that {χ1, . . . , χm} are jointly Gaussian random variables. Show
that they are independent if and only if they are pairwise independent.

15.4 Limits of Random Variables

Often we take limits of random variables as some parameter tends to infinity. In this sec-
tion we consider several basic examples. We do not treat the problem of convergence of
the random variables themselves but only the behavior, under limits, of their distribution
functions. The former, more difficult, problem is treated in [30] or [41]. We begin our
discussion with the most important general convergence result, the central limit theorem.

15.4.1 The Central Limit Theorem

In applications random variables are often assumed to be Gaussian. This is, of course, not
always true, but the following theorem explains why it is often a reasonable approximation.

Theorem 15.4.1 (Central limit theorem). Let {χ1, χ2, . . . , } be a sequence of independent
identically distributed random variables with mean μ and variance σ 2. Let

Zn = χ1 + · · · + χn − nμ

σ
√

n
= √

n
χ̄n − μ

σ
,

where χ̄n = (χ1 + · · · + χn)/n. The sequence of distribution functions for the variables
< Zn > tends to a normalized Gaussian as n → ∞. That is,

lim
n→∞ Prob(Zn ≤ t) =

t∫
−∞

e− x2
2

dx√
2π

.

The hypothesis that the variables are independent is quite important. To get a sensible
limit we must subtract the mean of χ1 + · · · + χn and divide by

√
n. Also notice that

there is an implicit hypothesis: The second moments of the {χi} are assumed to exist.
Notwithstanding these hypotheses, this is a remarkable result. It says that the distribution
function of the average of a large collection of independent random variables approaches a
Gaussian, no matter how the individual random variables are distributed.
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Before proving the theorem, we derive an interesting consequence. Is there any reason
to expect that the average of a collection of measurements will converge to the theoretical
mean value? Assume that the individual measurements are independent random variables
{χi}, each with finite mean μ and variance σ. Since they are the result of performing the
same experiment over and over, they can also be assumed to be identically distributed. As
before, we set

χ̄n = χ1 + · · · + χn

n

and observe that

Prob(|χ̄n − μ| ≤ ε) = Prob(
∣∣ χ̄n − μ

σ/
√

n

∣∣ ≤ ε
√

n

σ
)

≥ Prob(|Zn| < N)

for any N such that ε
√

n/σ > N . Hence

lim
n→∞ Prob(|χ̄n − μ| ≤ ε) ≥

N∫
−N

e− x2
2√

2π
.

As this holds for any N, we conclude that limn→∞ Prob(|χ̄n − μ| ≤ ε) = 1. This is called
the weak law of large numbers. If we recall that each χ j is a function on the sample space
(X,�, ν), the weak law of large numbers says that for any ε > 0, the average,

χ1(x) + · · · + χn(x)

n
,

will eventually be within ε of μ, for almost every x ∈ X. That is, if we do many indepen-
dent trials of the same experiment and average the results, there is good reason to expect
that this average will approach the theoretical mean value. This explains, in part, the im-
portance of the assumption that the individual trials of an experiment are independent of
one another.

The weak law of large numbers says that, in a weak sense, the sequence of random
variables

χ̄n = χ1 + · · · + χn

n

converges to the random variable that is a constant equal to the common mean value. There
are many theorems of this type, where we consider different ways of measuring conver-
gence. The central limit theorem itself is such a statement; it asserts that the sequence of
random variables {Zn} converges to a normalized Gaussian in distribution. That is, the
cumulative distribution for Zn converges to the cumulative distribution of the normalized
Gaussian. Other results of this type can be found in [30] and [29].

We now turn to the proof of the central limit theorem.
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Proof. Let p be the (common) density function for {χi − μ}. The hypotheses imply that

∞∫
−∞

p(x) dx = 1,

∞∫
−∞

x p(x) dx = 0,

∞∫
−∞

x2 p(x) dx = σ 2. (15.40)

For simplicity, we assume that the characteristic function of χi −μ has two derivatives at the origin.
Using the Taylor expansion and the relations (15.40) gives

p̂(ξ) = 1 − σ 2ξ2

2
+ o(ξ2).

Let qn be the density function for the shifted and scaled random variables, {(χi − μ)/σ
√

n}. It is
given by qn(x) = σ

√
n · p(σ

√
nx), and therefore

Prob(
χ j − μ

σ
√

n
≤ t) =

t∫
−∞

qn(x) dx .

The Fourier transform of qn and its Taylor expansion are

q̂n(ξ) = p̂(
ξ

σ
√

n
),

q̂n(ξ) = 1 − ξ2

2n
+ o(

ξ2

n
).

Since {(χi −μ)/(σ
√

n)} are independent random variables, the characteristic function of their sum,

Zn = χ1 − μ

σ
√

n
+ χ2 − μ

σ
√

n
+ · · · + χn − μ

σ
√

n
,

is just the product of the characteristic functions of each:

p̂Zn(ξ) = E[e−iξ Zn ] = E[e−iξ
χ1−μ

σ
√

n ] · · · E[e−iξ χn−μ
σ
√

n ]

= [q̂n(ξ)]n = [
1 − ξ2

2n
+ o(

ξ2

n
)
]n
.

The last term is negligible, as n → ∞; therefore,

p̂Zn(ξ) =
[
1 − ξ2

2n
+ o(

ξ2

n
)
]n → e−

ξ2

2 .

Thus, by the Fourier inversion formula, the density function of Zn converges to the Gaussian:


−1[ p̂Zn ] →
∞∫

−∞
eiξ x e−

ξ2

2
dx√
2π

= 1√
2π

e−
x2
2 ;

see Section 4.2.3.
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15.4.2 Other Examples of Limiting Distributions

See: A.3.3.

The central limit theorem is often applied to obtain approximate formulæ for a (non-
Gaussian) distribution function as a parameter gets large. In this section we begin with such
an example and then consider limiting distributions for other limits of random variables.

Example 15.4.1. Denote by X∞ the set of all infinite sequences of heads and tails. Let

Prob(H ) = p, Prob(T ) = 1 − p.

We assume that this holds for all flips, and each flip is independent of the others. Let χi be
the random variable defined by

χi ((a1, . . . , an, . . .)) =
{

1 if ai = H,

0 if ai = T .

These are independent identically distributed random variables with expected value and
variance given by

E[χi ] = p, σ 2
χi

= p(1 − p).

The central limit theorem implies that

Prob(Zn ≤ t) →
t∫

−∞
e− x2

2
dx√
2π

as n → ∞,

where
Zn = χ1 + χ2 + · · · + χn − np√

np(1 − p)
.

We use this fact to approximate the Bernoulli distribution. The probability for the Bernoulli
distribution is given by

Prob(χ1 + · · · + χn ≤ k) =
k∑

j=0

(
n
j

)
p j (1 − p)n− j .

Let k = [√np(1 − p)t + np]. The central limit theorem implies that

Prob(χ1 + · · · + χn ≤ k) ≈
t∫

−∞
e− x2

2
dx√
2π

.

The combinatorial quantity, on the left, is rather complicated to compute, whereas the right
side is the integral of a very smooth, rapidly decaying function. It is often more useful
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to have a rapidly convergent integral approximation rather than an exact combinatorial
formula. Note that this approximation is useful even for moderately sized n. The graphs
in Figures 15.1 and 15.2 show the distribution functions for Bernoulli distributions with
p = .1, .5 and n = 10, 30, 60 along with the Gaussians having the same mean and variance.
The Bernoulli distribution is only defined for integral values; for purposes of comparison it
has been linearly interpolated in the graphs. Note the more rapid convergence for p = .5.
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Figure 15.1. Comparisons of Bernoulli and Gaussian distribution functions with p = .1.
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Figure 15.2. Comparisons of Bernoulli and Gaussian distribution functions with p = .5.

Example 15.4.2. We now consider a different limit of the Bernoulli distribution. This
distribution is used to model the number of radioactive decays occurring in a fixed time
interval. Suppose there are N particles and each has a probability p of decaying in a fixed
time interval, [0, T ]. If we suppose that the decay of one atom is independent of the decay
of any other and let χ denote the number of decays occurring in [0, T ], then

Prob(χ = k) =
(

N
k

)
pk(1 − p)N−k .

The number of decays is therefore a Bernoulli random variable. An actual sample of any
substance contains O(1023) atoms. In other words, N is a huge number, which means that
p must be a very small number. Suppose that we let N → ∞ and p → 0 in such a way
that Np → λ̄ for some constant λ̄ > 0. It is not difficult to find the limit of the Bernoulli
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distribution under these hypotheses. Assuming that Np = λ̄, we get that(
N
k

)( λ̄
N

)k(
1 − λ̄

N

)N−k = N(N − 1) · · · (N − (k − 1))

k!
(
1 − λ̄

N

)N
/
(N

λ̄
− 1

)k

= 1

k!
Nk(1 − 1/N) · · · (1 − (k − 1)/N)

Nk(1/λ̄− 1/N)k

(
1 − λ̄

N

)N
.

Since (1 − α
N )N → e−α , as N → ∞, we have that(

N
k

)( λ̄
N

)k(
1 − λ̄

N

)N−k → λ̄ke−λ̄

k! .

This explains why the Poisson process provides a good model for radioactive decay. The
parameter λ̄ is a measure of the intensity of the radioactive source.

Example 15.4.3. As a final example, we consider the behavior of a Poisson random variable
as the intensity gets to be very large. The probability density for a Poisson random variable
χ with intensity λ is the generalized function

pχ =
∞∑

k=0

δ(x − k)
λke−λ

k! .

This density function has a variety of defects from the point of view of applications, among
them the following: (1) It is combinatorially complex; (2) it is not a function, but rather a
generalized function. We are interested in the behavior of Prob(χ = k) as λ becomes very
large with |k − λ| reasonably small compared to λ. Recall that the mean of χ is λ and the
standard deviation is

√
λ. This means that the

Prob(λ− m
√
λ ≤ χ ≤ λ+ m

√
λ)

is very close to 1 for reasonably small values of m (e.g., m = 3, 4, 5, etc.). Let

pλ(k) = λke−λ

k! .

To obtain an asymptotic form for pλ(k), we use Stirling’s formula. It implies that for
large values of k, k! = √

2πkkke−k(1 + O( 1
k )); see Section A.3.3 or [130]. Using this

approximation for large k gives

pλ(k) ≈ 1√
2πλ

[
λ

k

]k+ 1
2

ek−λ. (15.41)

To find a useful asymptotic formula, we set k = λ+ x with the understanding that xλ−1 <
< 1. In terms of x, [

λ

k

]k+ 1
2

= e(λ+x+ 1
2 ) log(1+ x

λ )

≈ e−[x+ x2
2λ ].

(15.42)
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In the second line we use the Taylor polynomial for log(1+ y). Putting this into the formula
for pλ shows that

pλ(k) ≈ e− (k−λ)2

2λ√
2πλ

, (15.43)

provided that |λ− k|/√λ remains bounded and λ is large.
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Figure 15.3. Comparisons of Poisson and Gaussian distribution functions.

Once again, we see that the Gaussian distribution provides a limiting form for a ran-
dom variable. Using formula (15.43), we can approximately compute expected values for
functions of χ. If λ is large and f is a reasonably well-behaved function, then

E[ f (χ)] ≈ 1√
2πλ

m
√
λ∫

−m
√
λ

f (t)e− (t−λ)2
2λ dt.

Here m is chosen to make the error as small as needed provided only that it remains small
compared to λ

1
4 . Figure 15.3 shows the graphs of the Poisson and Gaussian distributions

for λ = 10, 50, and 100.

Exercise
Exercise 15.4.1. Use Example 15.2.11 to show that if χ is a Poisson random variable with
E[χ] = λ, then

E[e−2π iχξ ] = e−λ(1−e−2π iξ ).

15.5 Statistics and Measurements

We close our discussion of probability theory by considering how these ideas apply in a
simple practical situation. Suppose that χ is a real-valued, random variable that describes
the outcome of a experiment. By describing the outcome of the experiment in these terms,
we are acknowledging that the measurements involved in the experiment contain errors. At
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the same time, we are asserting that the experimental errors have a statistical regularity in
that they are distributed according to a definite but a priori unknown law. Let pχ denote the
density function for χ so that, for any a < b,

Prob(a ≤ χ ≤ b) =
b∫

a

pχ (x) dx . (15.44)

Often we know that pχ belongs to a family of distributions. For example, if χ is
the number of radioactive decays that occur in a fixed time interval, then we know χ is
a Poisson random variable and is therefore determined by its intensity, λ = E[χ]. On
the other hand, the general type of distribution may not be known in advance. For most
practical applications we would be satisfied with estimates for the mean and variance of χ :

μχ = E[χ] and σ 2
χ = E[(χ − μχ)

2].
The mean represents the idealized outcome of the experiment, while the variance quanti-
fies the uncertainty in the measurements themselves. Let < χi > denote a sequence of
independent random variables that are all distributed according to (15.44). This is a model
for independent trials of an experiment. If the experiment is performed N times, then the
probability that the results lie in a rectangle [a1, b1] × · · · [aN , bN ] is

Prob(a1 < χ1 ≤ b1, . . . , aN < χN ≤ bN ) =
b1∫

a1

· · ·
bN∫

aN

pχ (x1) · · · pχ (xN ) dx1 · · · dxN .

(15.45)
Our discussion of experimental errors is strongly predicated on the assumption that the
various trials of the experiment are independent.

Let χ̄N denote the average of the first N trials: χ̄N = χ1+···+χN
N . Because the trials are

independent, formula (15.33) gives the mean and variance of χ̄N :

μχ̄N = μ and σ 2
χ̄N

= σ 2

N
. (15.46)

The various laws of large numbers imply that χ̄N converges to the constant function, μ
in a variety of different senses. Since the variables in question have finite variance, the
Chebyshev inequality, (15.15), gives the estimate

Prob(|χ̄N − μ| < ε) = 1 − Prob(|χ̄N − μ| ≥ ε) ≤ 1 − σ 2

Nε2
. (15.47)

This explains a sense in which the variance is a measure of experimental error. Indeed, the
central limit theorem implies that, for large N,

Prob(−ε ≤ χ̄N − μ ≤ ε) ≈ 1√
2π

√
Nε
σ∫

−
√

Nε
σ

e− x2
2 dx .
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This is all very interesting, but it does not really address the question of how to estimate
μ and σ 2 using the actual outcomes {x1, . . . , xN } of N trials of our experiment. An estimate
for μ is an estimate for the idealized outcome of the experiment, whereas an estimate for
σ 2 provides an estimate for the uncertainty in our results. These questions are properly
questions in estimation theory, which is a part of statistics, a field distinct from probability
per se. We consider only very simple answers to these questions. Our answers are motivated
by (15.46) and (15.47). The results of N trials defines a point in x ∈ �N , so our answer is
phrased in terms of functions on �N . As an estimate for μ we use the sample mean,

m(x) = x1 + · · · + xN

N
,

and for σ 2, the sample variance,

S2(x) = 1

N − 1

N∑
i=1

(xi − m(x))2.

The sample mean is exactly what we would expect; the sample variance requires some
explanation. We might expect that we should define S2 by subtracting μ from the measure-
ments, but of course, we do not know μ, and that is why we subtract m instead. We also
might have expected a factor 1/N instead of 1/(N − 1); however, due to the nonlinearity
of S2, this would lead to an estimate of σ 2 whose expected value is not σ 2. An estimate
with the wrong expected value is called a biased estimate.

Since �N parameterizes the outcomes of N -independent trials, we think of it as a prob-
ability space, with the cumulative distribution defined in (15.45). With this interpretation,
the expected value and variance of m are given by

E[m] = μ and E[(m − μ)2] = σ 2

N
. (15.48)

Hence an estimate for σ 2 leads to an estimate for the error in asserting that m(x) equals μ.
For example, Chebyshev’s inequality gives

Prob(|m(x)− μ| < ε) ≥ 1 − σ 2

Nε2
.

It is important to recognize that in a situation of this sort, the best that we can hope for is a
statement to the effect that |m(x)− μ| < ε with a specified probability.

Expanding the square to compute E[S2] gives

E[S2] = 1

N − 1
E

[
N∑

i=1

x2
i − 2m

N∑
i=1

xi + m2

]
= 1

N − 1

N∑
i=1

E[x2
i − m2]. (15.49)

In the Exercises it is shown that

E[m2] = σ 2

N
+ (N − 1)μ2

N
, (15.50)
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from which it follows that

E[S2] = 1

N − 1
[N(σ 2 + μ2)− (σ 2 + (N − 1)μ2)] = σ 2.

This explains the factor N − 1: With this factor the expected valued of S2 is the true
variance. Finally, we would like to compute the variance in S2,

E[(S2 − σ 2)2] = (N − 1)2

N3
E[(χ − μ)4] − (N − 1)(N − 3)σ 4

N3
. (15.51)

The variance of S2 depends on the fourth moment of the original random variable χ. If χ
is a Gaussian random variable, then E[(χ − μ)4] = 3σ 4 and therefore

E[(S2 − σ 2)2] = 2σ 4(N − 1)

N2
.

If the variance is large, then m provides a much better estimate for μ than S2 for σ 2.

In the final analysis, these formulæ are unsatisfactory in that they all involve σ 2, which
we do not know. To use these formulæ with any confidence therefore requires an a priori es-
timate for σ 2. By this we mean an upper bound for σ 2 derived from principles unconnected
to the measurements themselves.

We have only made a tiny scratch in the surface of estimation theory, a subject with
a very interesting interplay of probability and empirical experience. Underlying its ap-
plication to real experiments are deep, philosophical assumptions about the nature of the
universe we live in. Our treatment of this subject is adapted from [4] and [30]. The former
reference is a very good and complete introduction to the application of probability and
statistics to experimental science.

Exercises
Exercise 15.5.1. Show that

E[m2] = σ 2

N
+ (N − 1)μ2

N
.

Exercise 15.5.2. Derive the formula for E[(S2 − σ 2)2].
Exercise 15.5.3. What are E[(m−μ)2] and E[(S2−σ 2)2] if χ is a Poisson random variable
with intensity λ?

15.6 Conclusion

Probability theory is an essential tool in the interpretation of experimental results and mea-
sure theory provides a language to make the intuitively appealing concepts of probability
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theory meaningful. The following chart summarizes the correspondence between the basic
vocabularies of the two subjects:

Measure Theory Probability Theory

X space sample space

� σ − algebra allowable events

ν measure probability

χ measurable function random variable

Mχ Fourier transform characteristic function.

Probability theory has manifold applications to medical imaging. The basic physical
processes, such as radioactive decay, x-ray production, and attenuation, are most usefully
described as random variables. In our discussion of imaging up to this point, we have
used a deterministic model for the measurement process. In truth, each measurement is a
sample of a random variable. Thus far we have largely ignored this fact, focusing instead
on reconstruction errors that result from the practical necessity of sampling functions of
continuous variables.

Randomness in a measurement process is usually called noise. The signal-to-noise ra-
tio is a probabilistically defined assessment of the quality of measured data. The presence
of noise in the x-ray tomography limits the amount of useful information available in the
reconstructed image. Probability theory allows for quantitative descriptions of uncertainty
and information content. In the next chapter we use this language to assess the conse-
quences of the randomness of the physical processes involved in x-ray tomography on the
quality and interpretation of the reconstructed image.





Chapter 16

Applications of Probability in
Medical Imaging

In this chapter we consider several applications of the theory of probability to medical
imaging. We begin with probabilistic models for x-ray generation and detection and a
derivation of Beer’s law. In the next section we analyze the propagation of noise through
the filtered back-projection algorithm. This leads to relations between the signal-to-noise
ratio and the sample spacing. Using the connection between the sample spacing and spatial
resolution, this, in turn, gives a relationship between the dosage of radiation and the resolu-
tion at a fixed signal-to-noise ratio. In the last section we briefly describe positron emission
tomography and the maximum likelihood algorithm for reconstructing images. This algo-
rithm is a probabilistic alternative to filtered back-projection that may give superior results
if the measurements are very noisy.

16.1 Applications of Probability Theory to X-Ray Imaging

In this section we present simple probabilistic models for an x-ray detector and a source-
detector pair. We also give a probabilistic derivation of Beer’s law.

16.1.1 Modeling a Source-Detector Pair

Suppose that we have a Poisson source with intensity λ̄ and a Bernoulli detector. This
means that each incident photon has probability p, 0 ≤ p ≤ 1 of being detected and
each detection event is independent of any other. What is the statistical description of the
output of such a source-detector pair? The probability of observing k photons, given that
N photons arrive, is a conditional probability:

Pd(k|N) =

⎧⎪⎨⎪⎩
(

N

k

)
pk(1 − p)N−k k = 0, · · · , N,

0 k > N .

577
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On the other hand, the source is described by

Ps(χ = N) = λ̄N e−λ̄

N ! .

The probability that the detector observes k photons, Po(d = k), is therefore

Po(d = k) =
∞∑

N=k

Ps(N)Pd (k|N)

=
∞∑

N=k

(
N
k

)
pk(1 − p)N−k λ̄

N e−λ̄

N !

= e−λ̄
∞∑

N=k

1

k!(N − k)!(λ̄p)k(λ̄(1 − p))N−k

= (λ̄p)k

k! e−λ̄e−λ̄(1−p) = (λ̄p)k

k! e−λ̄p.

(16.1)

Hence the source-detector pair is again a Poisson random variable with the intensity scaled
by the probability of detection. This is a general feature of Poisson and Bernoulli random
variables: If a Poisson random variable is the “input” to a Bernoulli random variable, then
the output is again a Poisson random variable.

16.1.2 Beer’s Law

It has been asserted several times that Beer’s law is essentially a prescription for the behav-
ior of the mean value of a random variable. In this section we consider Beer’s law from
this perspective. In our analysis we consider a “beam” of N photons traveling, through a
material, along an interval [a, b] contained in a line l. Let χN be a random variable that
equals the numbers of photons that are emitted. The attenuation coefficient μ is a non-
negative function defined along this line. Suppose that �s is a very small number (really
an infinitesimal). We assume that the individual photons are independent and the transmis-
sion of a particle through a thin slab of material is a Bernoulli random variable with the
following properties:

1. A single particle that is incident upon the material at point s has a probability
(1−μ(s)�s) of being emitted and therefore probability μ(s)�s of being absorbed.

2. Each particle is independent of each other particle.

3. Disjoint subintervals of [a, b] are independent.

To derive Beer’s law, we subdivide [a, b] into m subintervals

Jk = [a + (k − 1)(b − a)

m
, a + k(b − a)

m
), k = 1, . . . ,m.
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In order for a particle incident at a to emerge at b, it must evidently pass through every
subinterval. The probability that a particle passes through Jk is approximately

pk,m ≈ (1 − μ(a + k(b − a)

m
)
b − a

m
).

By hypothesis (3) it follows that the probability that a particle incident at a emerges at b is
the product of these probabilities:

pab,m ≈
m∏

k=1

pk,m . (16.2)

This is an approximate result because we still need to let m tend to infinity.
If μ is a constant, μ0, then it is an elementary result that the limit of this product, as

m → ∞, is e−μ0(b−a). Hence a single particle incident at a has a probability e−μ0(b−a) of
emerging at b. The independence of the individual photons implies that the probability that
k out of N photons emerge is

P(k, N) =
(

N
k

)
e−kμ0(b−a)(1 − e−μ0(b−a))N−k .

If N photons are incident, then number of photons expected to emerge is therefore

E[χN ] = e−μ0(b−a)N;
see Example 15.2.4. The variance, computed in Example 15.2.9, is

σ 2
χN

= Ne−μ0(b−a)(1 − e−μ0(b−a)).

For this experiment the signal-to-noise ratio of χN is

SNR(χN ) =
√

N

(
e−μ0(b−a)

1 − e−μ0(b−a)

)
.

This is an important result: The quality of the measurements can be expected to increase as
the

√
N . Moreover, the greater the fraction of photons absorbed, the less reliable the mea-

surements. This has an important consequence in imaging: Measurements corresponding
to rays that pass through more (or harder) material have a lower SNR than those passing
through less (or softer) material.

In general, the attenuation coefficient is not a constant, and we therefore need to com-
pute the limit in (16.2). After taking the logarithm, this is easily done:

log pab,m =
m∑

k=1

log

(
(1 − μ(a + k(b − a)

m
)
b − a

m

)
. (16.3)
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The Taylor expansion for the logarithm implies that

log pab,m = −
m∑

k=1

[
μ(a + k(b − a)

m
)
b − a

m

]
+ O(m−1). (16.4)

As m tends to infinity, the right-hand side of (16.4) converges to

−
b∫

a

μ(s) ds.

Hence the probability that a particle incident at a emerges at b is

pμ = exp

⎡⎣− b∫
a

μ(s) ds

⎤⎦ .

Arguing exactly as before, we conclude that if N photons are incident then the probability
that k ≤ N emerge is

P(k, N) =
(

N
k

)
pk
μ(1 − pμ)

N−k (16.5)

and therefore the expected number to emerge is

E[χN ] = N exp

⎡⎣− b∫
a

μ(s) ds

⎤⎦ , (16.6)

exactly as predicted by Beer’s law! The variance is

Var(χN ) = pμ(1 − pμ)N (16.7)

so the signal-to-noise ratio is

SNR(χN ) =
√

N

(
pμ

1 − pμ

)
.

In medical imaging, N, the number of incident photons, is also a random variable. It is
usually assumed to satisfy a Poisson distribution. In the previous section it is shown that
having a Poisson random variable as the “input” to a Bernoulli process leads to Poisson
random variable. This is considered in Exercise 16.1.3.

Exercises
Exercise 16.1.1. In Example 15.4.2 we considered a different limit for a Bernoulli distri-
bution from that considered in this section and got a different result. What is the underlying
physical difference in the two situations?
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Exercise 16.1.2. Suppose that the probability that k out of N photons are emitted is given
by (16.5) and that each emitted photon is detected with probability q. Assuming that there
are N (independent) incident photons, show that the probability that k are detected is

Pdet(k, N) =
(

N
k

)
(pμq)k(1 − pμq)N−k . (16.8)

Exercise 16.1.3. Suppose that the number of x-ray photons emitted is a Poisson random
variable with intensity N, and the Bernoulli detector has a probability q of detecting each
photon. Show that the overall system of x-ray production, attenuation, and detection is a
Poisson random variable with intensity pμq N .

Exercise 16.1.4. Suppose that the process of absorption of x-ray photons through a slab is
modeled as a Poisson random variable. If the expected number of emitted photons is given
by Beer’s law, what is the variance in the number of emitted photons? Is this a reasonable
model?

16.2 Noise in the Filtered Back-Projection Algorithm

In Chapter 11 we determined the point spread function of the measurement and recon-
struction process for a parallel beam scanner. It is shown in examples that if there are two
samples per beam width, then the resolution in the reconstructed image is essentially equal
to the full-width half-maximum of the beam profile function. A second conclusion of that
analysis is that the effects of aliasing, resulting from ray sampling, are well controlled by
using the Shepp-Logan filter and a Gaussian focal spot. Decreased sample spacing sharp-
ens the peak of the PSF and does not produce oscillatory side lobes. Finally, the effect of
view sampling is an oscillatory artifact, appearing at a definite distance from a hard object.
The distance is proportional to �θ−1. This analysis, and considerable empirical evidence,
shows that by decreasing �θ we can obtain an “artifact-free” region of any desired size.

In this section we consider how noise in the measurements obtained in a CT scanner
propagates through a reconstruction algorithm. The principal source of noise in CT imag-
ing is quantum noise. This is a consequence of the fact that x-rays “beams” are really
composed of discrete photons, whose number fluctuates in a random way. The output of
an x-ray source is usually modeled as Poisson random variable, with the intensity equal
to the expected number of photons per unit time. Recall that the signal-to-noise ratio for
a Poisson random variable is the square root of the intensity. Because each x-ray photon
carries a lot of energy, safety considerations limit the number of photons that can be used to
form an image. This is why quantum noise is an essentially unavoidable problem in x-ray
imaging. Matters are further complicated by the fact that the x-ray photons have different
energies, but we do not consider this effect; see [6].

In most of this section we assume that the absorption and detection processes are
Bernoulli. As shown in Section 16.1.2 (especially Exercise 16.1.3), the complete system
of x-ray production, absorption, and detection is modeled as a Poisson random variable.
In x-ray CT, the actual measurement is the number of photons emerging from an object
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along a finite collection of rays, Nout(t j , ω(k �θ)). This number is compared to the num-
ber of photons that entered, Nin(t j , ω(k �θ)). Both of these numbers are Poisson random
variables, and Beer’s law is the statement that

E[Nout(t j , ω(k�θ))] = E[Nin(t j , ω(k�θ))] exp
[−�W f (t j , ω(k�θ))

]
.

Here f is the attenuation coefficient of the object and �W f is the Radon transform av-
eraged with the beam profile. We use the signal-to-noise ratio as a measure of the useful
information in the reconstructed image.

16.2.1 A Simple Model with Sampled Data

In this section we consider sampled data with uncertainty in the measurements. The vari-
ance in the value of the reconstruction of each pixel is estimated in terms of the variance
of the noise. Let {P(tk, θ j )} denote approximate samples of the Radon transform of an
attenuation coefficient f. In this section the spatial coordinates are normalized so that f is
supported in [−1, 1] × [−1, 1]. The Radon transform is sampled at M + 1 equally spaced
angles,

{ j�θ : j = 0, . . . , M} with �θ = π

M + 1
.

The sample spacing in the affine parameter is denoted by d. Given the normalization of the
spatial coordinates,

N = 2

d

is the number of samples in the t-direction. With φ a choice of filter function, the filtered
back-projection formula gives

f̃φ(x, y) = d

2(M + 1)

M∑
j=0

∞∑
k=−∞

P(tk, θ j )φ(〈(x, y),ω( j�θ)〉 − tk). (16.9)

The basic constraint on the filter function φ is that

φ̂(ξ ) ≈ |ξ | for |ξ | < �, (16.10)

where � represents the effective bandwidth of the measured data.
The measurement is modeled as the “true value” plus noise. The noise is modeled as a

collection of random variables {ηkj }, so that the measurements are

Qkj = P(tk,ω( j�θ))+ σηkj .

The statistical assumptions made on the noise are

E[ηkj ] = 0, E[ηkjηlm] = δklδ jm. (16.11)
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The condition on the mean implies that there are no systematic errors in the measurements.
The second assumption asserts that the errors made in different measurements are uncorre-
lated. This is a reasonable assumption, though is not realistic to assume that variance is the
same for all measurements. The mean and variance of the individual measurements are

E[Qkj ] = P(tk,ω( j�θ)) and E[(Qkj− < Qkj >)2] = σ 2.

Given these measurements, the reconstructed image is

f̆φ(x, y) = d

2(M + 1)

M∑
j=0

∞∑
k=−∞

Qkjφ(〈(x, y),ω( j�θ)〉 − tk). (16.12)

Remark 16.2.1 (Important notational remark). In the remainder of this section, the no-
tation f̆φ refers to a reconstruction using noisy data, as in (16.12). This allows us to dis-
tinguish such approximate reconstructions from the approximate reconstruction, f̃φ, made
with “exact” data.

Since E[Qkj ] = P(tk,ω( j�θ)), the expected value of the output is

E[ f̆φ(x, y)] = d

2(M + 1)

M∑
j=0

∞∑
k=−∞

E[Qkj ]φ(〈(x, y),ω( j�θ)〉 − tk) = f̃φ(x, y).

The variance at (x, y) is

E[( f̆φ(x, y) − f̃φ(x, y))2] = E[ f̆ 2
φ (x, y)] − f̃ 2

φ (x, y).

Expanding the square in the reconstruction formula gives

f̆ 2
φ =

(
d

2(M + 1)

)2 [ M∑
j=0

∞∑
k=−∞

(P(tk,ω( j�θ))+ σηkj )φ(〈(x, y),ω( j�θ)〉 − tk)

]2

=
(

d

2(M + 1)

)2 [ M∑
j=0

∞∑
k=−∞

P(tk,ω( j�θ))φ(〈(x, y),ω( j�θ)〉 − tk)

]2

+ 2σ

(
d

2(M + 1)

)2∑
j,k

∑
l,m

P(tk,ω( j�θ))φ(〈(x, y),ω( j�θ)〉 − tk)×

φ(〈(x, y,ω(m�θ)〉 − tl)ηl,m

+ σ 2

(
d

2(M + 1)

)2∑
j,k

∑
l,m

φ(〈(x, y),ω( j�θ)〉 − tk)×

φ(〈(x, y),ω(m�θ)〉 − tl)η j,kηl,m .

Using the hypothesis that the noise for different measurements is uncorrelated leads to

E[ f̆ 2
φ ] = f̃ 2

φ + σ 2

[
d

2(M + 1)

]2 M∑
j=0

∞∑
k=−∞

φ2(〈(x, y),ω( j�θ)〉 − tk), (16.13)
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and therefore

σ 2
φ = σ 2

[
d

2(M + 1)

]2 M∑
j=0

∞∑
k=−∞

φ2(〈(x, y),ω( j�θ)〉 − tk). (16.14)

For each fixed j , the sum on k is an approximation to the integral of φ2,

d
∞∑

k=−∞
φ2(〈(x, y),ω( j�θ)〉 − tk) ≈

∫ ∞

−∞
φ2(t) dt.

Therefore,

σ 2
φ ≈ σ 2 d

4(M + 1)

∫ ∞

−∞
φ2(t) dt = σ 2

2N(M + 1)

∫ ∞

−∞
φ2(t) dt. (16.15)

The noise variance per pixel is therefore proportional to the integral of the square of the
filter function. Note that this variance is independent of the point in image. This is a
consequence of assuming that the variance in the number of measured photons is constant.

Parseval’s theorem says that∫ ∞

−∞
φ2(t) dt = 1

2π

∫ ∞

−∞
|φ̂(ξ )|2 dξ,

and therefore if φ satisfies (16.10), then∫ ∞

−∞
φ2(t) dt ≈ 1

π

∫ �

0
ξ 2 dξ = �3

3π
.

The ratio σφ/σ is called the noise amplification factor. Its square is given approximately
by

σ 2
φ

σ 2
≈ �3

6πN(M + 1)
.

From Nyquist’s theorem, � ≈ N/2, so we see that

σ 2
φ

σ 2
≈ N2

48π(M + 1)
.

In order to have the resolution in the angular direction equal that in the radial direction, we
need to take (M + 1) ≈ 2πd−1 and therefore

σ 2
φ

σ 2
≈ N

48π
= 1

24π2d
(16.16)

This is an estimate of the noise amplification for a single pixel. Our discussion is adapted
from [114].
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16.2.2 A Computation of the Variance in the Measurements

In the previous section we considered the effect of additive noise, assuming that the vari-
ance is the same in all the measurements. This is not a reasonable assumption because
the variance in the number of photons counted is proportional to the number of measured
photons. This is true whether the number of detected photons is modeled as a Bernoulli ran-
dom variable (deterministic source) or a Poisson random variable (Poisson source). These
numbers can vary quite a lot due to difference thicknesses and absorbencies encountered
along different rays. Using the same geometry as in the previous calculation (a parallel
beam scanner with sample spacing d for the affine parameter), we derive an estimate for
Var(Qkj ) from the assumption that the number of photons counted is a Poisson random
variable. The computation of the variance is complicated by the fact that the input to the
reconstruction algorithm is not the number of measured photons, but rather

log

(
Nin

Nout

)
.

The nonlinearity of the log renders the estimation of the variance in Qkj a nontrivial calcu-
lation.

Let Nθ (kd) denote the number of photons measured for the ray lkd,ω(θ). The idealized
measurement would give

Pθ (kd) =
∫

lkd,ω(θ)

f ds.

For each ray the number of measured photons is a Poisson random variable. Let N̄θ (kd)
denote the expected value E[Nθ (kd)]. For simplicity we assume that Nin, the number of
incident photons in each beam, is a deterministic fixed, large number. Beer’s law is the
statement that

N̄θ (kd) = Nine−Pθ (kd).

Because Nθ (kd) is a Poisson random variable, its probability distribution is determined
by its expected value,

Prob(Nθ (kd) = l) = [N̄θ (kd)]le−N̄θ (kd)

l! , (16.17)

and its variance is
Var(Nθ (kd)) = N̄θ (kd). (16.18)

The SNR of an individual measurement is therefore

E[Nθ (kd)]
σNθ (kd)

=
√

N̄θ (kd).

This is characteristic of Poisson random variables: The signal-to-noise ratio is proportional
the square root of the expected value.
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16.2.3 The Variance of the Radon Transform

Let Pm
θ (kd) denote the measured value of Pθ (kd):

Pm
θ (kd) = log

(
Nin

Nθ (kd)

)
.

The expected value of the measurement is given by

E[Pm
θ (kd)] = E[log Nin − log Nθ (kd)] = E[Nin] − E[log Nθ (kd)], (16.19)

where

E[log Nθ (kd)] =
∞∑

l=0

Ln(l)[N̄θ (kd)]le−N̄θ (kd)

l! .

Because log 0 is infinity, we define Ln(0) = 0 in this summation. Unfortunately, there is
no simple closed form for this expression. Since the logarithm is not a linear function,

E[log Nθ (kd)] 	= log E[Nθ (kd)].
Using Taylor’s formula, we derive an expression for the difference,

E[log Nθ (kd)] − log E[Nθ (kd)].
Let y be a nonnegative random variable with density function p, with

ȳ =
∞∫

−∞
yp(y) dy and σ 2 =

∞∫
−∞

(y − ȳ)2 p(y) dy.

Assuming that ȳ is a large number and that p is sharply peaked around its mean,

E[log y] =
∫ ∞

0
(log y)p(y) dy

=
∫ ∞

−ȳ
log(x + ȳ)p(x + ȳ) dx

=
∫ ∞

−ȳ

[
log ȳ + log(1 + x

ȳ
)

]
p(x + ȳ) dx

≈ log ȳ +
∫ ȳ

−ȳ

[
x

ȳ
− 1

2

( x

ȳ

)2 + · · ·
]

p(x + ȳ) dx

≈ log ȳ − 1

2ȳ2
σ 2.

(16.20)

To apply this computation, we approximate the distribution function for a Poisson ran-
dom variable, which is, in fact, a sum of δ-functions, by a smooth Gaussian distribution.
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As shown in Section 15.4.3, the distribution of a Poisson random variable with intensity
λ >> 1 is well approximated by

pλ(x) = 1√
2πλ

e− (x−λ)2
2λ .

For large λ, the standard deviation,
√
λ, is much smaller than λ. So long as λ is large, the

approximation of E[log y] in (16.20) is applicable.
Using our assumption that N̄θ (kd) is a large number and that

σ 2
θ,k = N̄θ (kd),

the foregoing computation gives the estimate

E[log Nθ (kd)] ≈ log E[Nθ (kd)] − σ 2
θ,k

2E[Nθ (kd)] = log N̄θ (kd)− 1

2N̄θ (kd)
.

Using this approximation in equation (16.19) gives

E[Pm
θ (kd)] ≈ log

(
Nin

N̄θ (kd)

)
= Pθ (kd). (16.21)

The variance is

Var(Pm
θ (kd)) = E[(Pm

θ (kd)− Pθ (kd))2]
= E[(log

(
Nθ (kd)

Nin

)
− log

(
N̄θ (kd)

Nin

)
)2]

= E[(log

(
Nθ (kd)

N̄θ (kd)

)
)2].

(16.22)

Assuming that the x-ray source is deterministic, the variance in the measurements is inde-
pendent of the source intensity. The variance is approximated as before by

Var(Pm
θ (kd)) ≈

ȳ∫
−ȳ

[
log

(
1 + x

ȳ

)]2

p(x + ȳ) dx, (16.23)

which is easily seen to give

Var(Pm
θ (kd)) ≈ 1

N̄θ (kd)
. (16.24)

This verifies the claim that the variance in a measurement of � f is inversely proportional
to the number of photons measured. This computation assumes that the number of incident
photons Nin is a fixed number.

Exercises
Exercise 16.2.1. Compute the variance in Pm

θ (kd) assuming that the source is also a Pois-
son random variable with intensity Nin.

Exercise 16.2.2. Derive (16.24) from (16.23).
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16.2.4 The Variance in the Reconstructed Image

Assuming that the measurement errors in different rays are uncorrelated, we now find a
more accurate computation for the variance in the reconstructed image. The reconstructed
image is given by (16.9) with the actual measurements in place of the idealized values:

f̆φ = πd

(M + 1)

M∑
j=0

∑
k

Pm
θi
(kd)φ(〈(x, y),ω( j�θ)〉 − kd).

As the errors have mean zero, the linearity of the reconstruction formula implies that

E[ f̆φ(x, y)] = f̃φ(x, y).

The variance of the reconstructed image is given by

Var( f̆φ(x, y)) =
(

πd

M + 1

)2 M∑
j=0

∑
k

1

N̄θi (kd)
φ2(〈(x, y),ω( j�θ)〉 − kd).

This is quite similar to what was obtained before with the small modification that the con-
tribution to the variance of each projection is weighted according to the expected number
of measured photons, 1/N̄θi . The thicker parts of the object contribute more to the variance.

Using the formula
N̄θi (kd) = Nine−Pθ (kd),

the variance can be rewritten

Var( f̆φ(x, y)) =
(

πd

M + 1

)2 1

Nin

M∑
j=0

∑
k

ePθ j (kd)
φ2(〈(x, y),ω( j�θ)〉 − kd).

At the center of the image, the variance is therefore

Var( f̆φ(0, 0)) ≈
(

πd

M + 1

)2∑
k

M∑
j=0

φ2(−kd)

N̄θi (kd)
.

Assuming that the object is radially symmetric, with constant attenuation coefficient m,
implies that

N̄θ j (kd) = Nine−2m
√

1−(kd)2

for all j. Replacing the sum with an integral gives

Var( f̆φ(0, 0)) ≈ π2d

(M + 1)Nin

∫ 1

−1
φ2(t)e2m

√
1−t2

dt. (16.25)
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The graphs in Figure 16.1 show Var( f̆φ(0, 0)) as functions of m and 1/d. In Figure 16.1(a)
formula 16.25 is used, while in Figure 16.1(b) formula 16.15 is used, with

σ 2 =
1∫

0

e2m
√

1−t2
dt

the average. Note that for larger m the constant variance estimate is much smaller.
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(a) Image variance from 16.25 as a function of
m and 1/d.
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(b) Image variance from 16.15 as a function of
m and 1/d.

Figure 16.1. Comparison of the image variance using different models for the variance in
the measurements.

Exercises
Exercise 16.2.3. Find a formula for Var( f̆φ(x, y)) for other points in the disk. Graph the
result for fixed values of (d,m).

Exercise 16.2.4. Find a formula for Cov( f̆φ(0, 0), f̆φ(x, y)). Graph the result for fixed
values of (d,m).

16.2.5 Signal-to-Noise Ratio, Dosage and Contrast

We now compute the signal-to-noise ratio at the center of a homogeneous disk of radius R
and attenuation coefficient m. From the previous section we have

N̄0 = Nine−2m R,

E[ f̆φ(0, 0)] ≈ f̃φ(0, 0).

Approximating the integral in (16.25) gives

Var( f̃φ(0, 0)) ≈ π2d

M Nine−2m R

∫ ∞

−∞
φ2(t) dt.

Using the Parseval formula and the assumption that φ̂(ξ ) ≈ χ[0,�](|ξ |)|ξ |, we obtain

Var( f̃φ(0, 0)) ≈ πd�3

6M Nine−2m R
.
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The resolution δ ∝ �−1; hence the signal-to-noise ratio is

SN R ∝
√
δ2M Nine−m Rme− 1

2 m R.

Let D denote the dosage of radiation absorbed by the center pixel in units of rad/cm3.
The photon density passing through the center pixel is proportional to M Nine−μ0 R. Assum-
ing that the pixel size is proportional to the resolution, the number photons absorbed is
proportional to δM Nine−μ0 R. If the thickness of the slice is also proportional to the resolu-
tion, then

D ∝ δM Nine−m R

δ3
.

Using this in the formula for the signal-to-noise ratio leads to

SNR ∝
√
δ4 Dme− 1

2 m R. (16.26)

This shows that the signal-to-noise ratio has a harsh dependence on the thickness and den-
sity of the object (i.e., me− 1

2 m R decays rapidly as m R increases). It also demonstrates the
“fourth-power law” relating resolution to dosage: In order to increase the resolution by a
factor of 2 (i.e., δ → 1

2δ), keeping the signal-to-noise ratio constant, we need to increase
the dosage by a factor of 16!

What is the importance of the signal-to-noise ratio? In a real physical measurement
such as that performed in x-ray CT, the measured quantity assumes values in a definite
range. In medical applications the attenuation coefficient, quoted in Hounsfield units, takes
values between −1000 (air) and 1000 (bone) (see Table 3.1). The structures of interest
are usually soft tissues, and these occupy a tiny part of this range, about −50 to 60, or
5%. The signal-to-noise ratio in the measurements determines the numerical resolution
or accuracy in the reconstructed attenuation coefficient. In imaging this is called contrast.
Noise in the measurements interferes with the discrimination of low-contrast objects (that
is, contiguous objects with very similar attenuation coefficients). In clinical applications
the image is usually viewed on a monitor and the range of grays or colors available in the
display is mapped to a certain part of the dynamic range of the reconstructed attenuation
coefficient. If, for example, the features of interest lie between 0 and 100 Hounsfield units,
then everything below 0 is mapped to white and everything above 100 to black. If the
attenuation coefficient is reconstructed with an accuracy of 1

2%, then a difference of 10
Hounsfield unit is meaningful and, by scaling the range of displayed values, should be
discernible in the output. If, on the other hand, the measured values are only accurate
to 2% or 40 Hounsfield units, then the scaled image will have a mottled appearance and
contain little useful information.

The accuracy of the reconstruction should not be confused with the spatial resolution.
In prosaic terms the accuracy is the number of significant digits in the values of the recon-
structed attenuation coefficient. The reconstructed values approximate spatial averages of
the actual attenuation coefficient over a pixel or, if the slice thickness is included, voxel of
a certain size. The spatial resolution is a function of the dimensions of a voxel. This, in
turn, is largely determined by the beam width, sample spacing in the affine parameter, and
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FWHM of the reconstruction algorithm. Increasing the resolution is essentially the same
thing as decreasing the parameter δ in (16.26). If the dosage is fixed, then this leads to a de-
crease in the SNR and a consequent decrease in the contrast available in the reconstructed
image. Joseph and Stockham give an interesting discussion of the relationship of contrast
and resolution in CT images; see [75].

Remark 16.2.2. Our discussion of SNR is adapted from [6].

16.3 Signal-to-Noise in Magnetic Resonance Imaging

In this brief section we discuss the computation of the signal-to-noise ratio in magnetic
resonance imaging. In this modality the measurements are a collection of complex num-
bers, nominally samples of the Fourier transform of the spin-density weighted by a variety
of contrast mechanisms, {ρ̂(m�kx , n�ky)}. The measurements of the real and imaginary
parts of ρ̂ are independent; the noise in each measurement is modeled as white noise, fil-
tered by the measuring harware. Thus we model the measured signal as

S(t) = ρ̂(kx(t), ky(t))+ νx(t)+ iνy(t), (16.27)

where νx , νy are independent Gaussian random variables, of mean zero.
At a given spatial resolution, image quality is largely determined by the signal-to-noise

ratio (SNR), and the contrast between the different materials making up the imaging ob-
ject. SNR in MRI is defined as the voxel signal amplitude, in the reconstructed image,
divided by the noise standard deviation. The reconstruction process in MRI is essentially
the inverse Fourier transform, and is modeled as a unitary transformation, U, from the finite
dimensional space of measurements to the space of discretized images. This means that the
noise in the measurements is transformed by the reconstruction process to a noise process
nx + iny in the reconstructed image:

nx + iny = U (νx + iνy) (16.28)

Because the reconstruction algorithm is unitary nx and ny are again independent Gaussian
random variables with the same variance and mean as νx and νy respectively.

Ignoring contributions from quantization, for example, due to limitations of the analog-
to-digital converter, the noise in the measured signal can be ascribed to random thermal
fluctuations in the receive circuit, see [31]. The variance is given by

σ 2
thermal = 4kB T R� f, (16.29)

where k is Boltzmann’s constant, T is the absolute temperature, R is the effective resistance
(resulting from both receive coil, Rc and object, Ro), and � f is the receive bandwidth.
Both Rc and Ro are frequency dependent, with Rc ∝ ω

1
2 , and Ro ∝ ω; recall that ω =

γ ‖B0‖ is the Larmor frequency. Their relative contributions to overall circuit resistance
depend in a complicated manner on coil geometry, and the imaging object’s shape, size and
electrical conductivity; see [21]. Hence, at high magnetic field, and for large objects, as in
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most medical applications, the resistance from the object dominates and the noise scales
linearly with frequency. Since the signal is proportional to ω2, in MRI, the SNR increases
in proportion to the field strength.

As the reconstructed image is complex valued, it is customary to display the magnitude
rather than the real component. Doing so, however, has some consequences on the noise
properties. In regions where the signal is much larger than the noise, the Gaussian approx-
imation is valid. However, in regions where the signal is low, rectification causes the noise
to assume a Raleigh distribution. Mean and standard deviation can be calculated from the
joint probability distribution:

P(nx, ny) = 1

2πσ 2
e−(n2

x+n2
y)/2σ 2

, (16.30)

where nx and ny are the noise in the real and imaginary parts of ρ. When the signal is large
compared to noise, one finds that the variance σ 2

m = σ 2. In the other extreme of nearly zero
signal, one obtains for the mean:

Ŝ = σ
√
π/2 ∼= 1.253σ (16.31)

and, for the variance:
σ 2

m = 2σ 2(1 − π/4) ∼= 0.655σ 2. (16.32)

Of particular practical significance is the SNR dependence on the imaging parameters.
The voxel noise variance is reduced by the total number of samples collected during the
data acquisition process, i.e.,

σ 2
m = σ 2

thermal/N, (16.33)

where N = Nx Ny in a 2d spin-warp experiment. Incorporating the contributions to thermal
noise variance, other than bandwidth, into a constant

u = 4kB T R, (16.34)

we obtain for the noise variance:

σ 2
m = u� f

Nx Ny Navg
. (16.35)

Here Navg is the number of signal averages collected at each phase-encoding step. We
obtain a simple formula for SNR per voxel of volume �V :

SN R = Cρ̃�V

√
Nx Ny Navg

u� f
= Cρ̃�x�ydz

√
Nx Ny Navg

u� f
, (16.36)

where �x,�y are defined in (14.31), dz is the thickness of the slab selected by the slice-
selective RF pulse, and ρ̃ denotes the spin density weighted by effects determined by the
(spatially varying) relaxation times T1 and T2 and the pulse sequence timing parameters.
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Figure 16.2 shows two images of the human brain obtained from the same anatomic loca-
tion but differing in SNR.

Figure 16.2. T1-weighted sagittal images through the midline of the brain: Image b) has
twice the SNR of image a) showing improved conspicuity of small anatomic and low-
contrast detail. The two images were acquired at 1.5 Tesla field strength using 2D spin-
warp acquisition and identical scan parameters, except for Navg, which was 1 in a) and 4 in
b).

Remark 16.3.1. Section 16.3 is adapted from [37]. An extensive discussion of noise anal-
ysis in MR-imaging can be found in [61].

16.4 Image Reconstruction in Positron Emission Tomography

In this section we consider the image reconstruction problem in positron emission tomog-
raphy or PET. This modality has many features in common with x-ray tomography. Line
integrals of a nonnegative function again provide a simple model for the data that are col-
lected. Indeed a filtered back-projection algorithm is often used to reconstruct images in
this modality. The actual measurements are again better described as Poisson random vari-
ables. In PET the number of photons that are used to form an image is much smaller than in
x-ray CT, and therefore quantum noise is a bigger problem. Shepp and Vardi introduced a
probabilistic method for image reconstruction in PET using the maximum likelihood algo-
rithm. We begin with a brief description of the physics underlying PET and then describe
the likelihood function and the maximum likelihood algorithm. This material is a nice
application of probabilistic concepts. Our treatment closely follows the original paper of
Shepp and Vardi, [116]. The review article, [86] gives an up-to-date, circa 2002, account of
image reconstruction in emission tomography as well as a very extensive list of references.
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16.4.1 Positron Emission Physics

A positron is an anti-electron, or the anti-particle of the electron. It has the same mass as
the electron and opposite charge. When an electron and a positron meet, they annihilate
each other, producing two 511-keV γ -ray photons; this is called a annihilation event. If the
total momentum of the incoming pair is zero, then the outgoing γ -rays travel in opposite
directions. If the incoming pair of particles has nonzero total momentum, then, in order
to conserve momentum, the trajectories of the outgoing γ -rays are not quite oppositely
directed (see Figure 16.3).

+

_

Incoming electron

Incoming positron

Annihilation event

Outgoing γ-ray

Outgoing γ-ray

(a) The annihilation of an electron-positron pair
with zero momentum.

+

_

Incoming electron

Incoming positron

Annihilation event

Outgoing γ-ray

Outgoing γ-ray

(b) The annihilation of an electron-positron
pair with nonzero momentum

Figure 16.3. The annihilation of an electron-positron pair.

In medical applications the total momentum of the incoming electron-positron pairs is
small; we assume that the total incoming momentum is zero. The outgoing γ -rays therefore
travel in opposite directions along a line where the annihilation event took place. The
direction taken by the outgoing γ -rays is a uniformly distributed random variable. As ω(θ)
and ω(θ + π) = −ω(θ) define the same direction, the correspondence

θ ↔ ±ω(θ), θ ∈ [0, π),

conveniently parameterizes the directions of lines in the plane. If χθ denotes this random
variable, then for 0 ≤ a < b < π

Prob(a ≤ χθ ≤ b) = b − a

π
.

Several organic elements (oxygen, carbon, nitrogen) have short-lived isotopes that de-
cay via positron emission. We call this a decay event. In medical applications a positron
emitting organic substance is injected into the patient. This is metabolized and taken up
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selectively by certain structures in the body. After a short time (and for a short time) the
distribution of the radioactive substance in the patient is described by a nonnegative func-
tion ρ. The goal of PET is to reconstruct this function by counting γ -ray photons outside
the patient’s body. Because the distribution of positron emitters is a result of metabolism,
PET can be used to study metabolic processes, in marked contrast to x-ray CT. As with
x-ray CT, a slicing method is often used to reconstruct ρ. We now describe several models
for the measurements made in a single two-dimensional slice. We use coordinates (x, y)
for this slice.

The number of decays in a fixed time, originating from a small region B inside the
object, is a Poisson random variable with intensity proportional to∫∫

B

ρ(x, y) dx dy.

Ideally, the object would be encircled by (a continuum of) γ -ray detectors (see Figure 16.4).
As the annihilation event resulting from a decay event produces a pair of oppositely directly
γ -rays, the detector is designed to look for pairs of incoming γ -rays that arrive at essentially
the same time. We call these coincidence events. The γ -rays move at the speed of light; if r,
the radius of the detector circle, is 1 meter, then the difference in arrival times at the detector
circle for a pair of γ -rays, coming from a single decay event, is less than 4 nanoseconds.

Detector ring

r

Annihilation event

1

2
ω

ω
Random direction

Figure 16.4. An idealized positron emission detector.

Suppose, for given pair of directions (ω1,ω2), the measuring apparatus counts n(ω1,ω2)
coincidence events. We use the notation  ω1,ω2 to denote the line segment joining the points
rω1 and rω2 on the detector circle. Forgetting attenuation effects, the number of decays
should be proportional to the integrated intensity of the source along lω1,ω2, which is given
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by

r

1∫
0

ρ(srω1 + (1 − s)rω2) ds. (16.37)

In this simple model n(ω1,ω2) provides a measurement of the Radon transform of ρ. Sev-
eral physical phenomena serve to confound this interpretation. As we know from our study
of x-ray tomography, the human body attenuates radiation by scattering and absorption.
The integral in (16.37) should therefore be modified to account for attenuation. If lt,ω is a
line passing through the object and meeting the detector at rω1 and rω2, then the probabil-
ity that a decay at a point sω̂ + tω, traveling along lt,ω, is detected at rω1 is

exp

⎡⎣− r∫
s

μ(uω̂ + tω) du

⎤⎦ .

The probability that the oppositely directly γ -ray is detected at rω2 is

exp

⎡⎣− s∫
−r

μ(uω̂ + tω) du

⎤⎦ .

These two probabilities are different, indicating that many decay events do not produce
coincidence events at the detector ring.

Assuming that the two detection events are independent, the probability that the coin-
cidence event is detected is the product

exp

⎡⎣− r∫
s

μ(uω̂ + tω) du

⎤⎦× exp

⎡⎣− s∫
−r

μ(uω̂ + tω) du

⎤⎦ = exp

⎡⎣− r∫
−r

μ(uω̂ + tω) du

⎤⎦
= exp[−�μ(t,ω)].

(16.38)

This is independent of the location of the decay event along lt,ω. Using the nonstandard
notation �μ(ω1,ω2) to denote the integral of the μ along the line from rω1 to rω2, we see
that the number of coincidence events observed at this pair of detectors is predicted to be

exp[−�μ(ω1,ω2)]
∫

 ω1,ω2

ρ ds. (16.39)

If μ is known, then, at least in principle, ρ could be reconstructed from this collection
of measurements. In actual practice a filtered back-projection is often used to reconstruct
an approximation to ρ. The difficulty with this approach is that the data are very noisy.
A different approach would be to embrace the probabilistic character of both radioactive
decay and γ -ray detection. A model of this type is described in the next section.
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16.4.2 A Probabilistic Model for PET

As before, we have a nonnegative function ρ defined in a bounded region D in the plane.
Imagine that D is divided into a collection of disjoint boxes {B j : j = 1, . . . , N}. The
number of decay events occurring (in a fixed time) in box j is a Poisson random variable
n j with intensity

λ j =
∫∫
B j

ρ(x, y) dx dy. (16.40)

The random variables {n1, . . . , nN } are independent. These random variables are, in prin-
ciple, unobservable and

E[n j ] = λ j . (16.41)

Define the vector of intensities
λ = (λ1, . . . , λN ).

Box Bj

Detector
tube Tk

Figure 16.5. The object is divided into boxes, and each pair of detectors defines a tube.

Instead of a continuum of (infinitesimal) detectors, we imagine a finite collection of
detectors of finite size placed in a ring surrounding D. Each pair of detectors defines the
tube bounded by the lines joining their outer edges. Let {Tk : k = 1, . . . , M} be a listing
of these tubes (see Figure 16.5). For each pair ( j, k), let p jk be the probability that a decay
event in box B j results in a coincidence event detected in tube Tk . The transition matrix
(p jk) is computed from the geometry of the detector array; it can incorporate models for



598 Chapter 16. Applications of Probability

attenuation and other physical phenomena. Observe that

p j =
M∑

k=1

p jk

is the probability that a decay in box j is detected at all. As noted previously, many decays
may not produce a coincidence event, and therefore generally each p j is less than 1.

Let n∗
k be the number of coincidence events counted in detector tube k with

n∗ = (n∗
1, . . . , n∗

M)

the vector of measurements. The reconstruction problem in PET is to estimate λ, the vector
of intensities, from n∗. For each choice of λ there is a well-defined probability of observing
n∗. This can be thought of as a conditional probability, which is denoted by

�(λ) = P(n∗|λ).
This is called the likelihood function; we give an explicit formula for it in the next section.
A maximum likelihood estimate is a vector λ̂ such that

�(λ̂) = max
{λ : λ j≥0 ∀ j }

{�(λ)}.

Among the models we are considering, λ̂ provides the model that is most consistent with
our measurements. An algorithm for finding λ̂ is called a maximum likelihood algorithm.
This approach to image reconstruction is likely to succeed if n∗ lies close to the mean,
which is likely if the actual distribution function is highly peaked. For Poisson random
variables the (relative) width of the peak decreases as the intensity increases.

Example 16.4.1. Let n be a single Poisson random variable whose (unknown) intensity we
would like to estimate. If the intensity of the variable is λ, then the likelihood function is

P(n|λ) = λne−λ

n! .

If we measure n∗ counts, then the maximum likelihood estimate for λ is

λ̂ = n∗. (16.42)

It simplifies the discussion to assume that p j = 1 for all j. In fact, this has little effect
on the final result. If we let n′

j denote the number of decays in box j that are detected,
then, as is shown in Section 16.1.1, this is again a Poisson random variable and

p′
j k = p jk

p j

is the conditional probability that a decay in box j is detected in tube k. Indeed if λ′
j denotes

the intensity of the random variable defined as “decays in box j that are detected,” then

λ′
j = p jλ j (16.43)
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and
P(n∗|λ) = P ′(n∗|λ′).

This shows that if λ̂ is a maximum likelihood estimate for λ, then λ̂
′
, a maximum likelihood

estimate for λ′, satisfies (16.43). Since we assume that the {p′
j } are known, finding λ̂

′
also

determines λ̂. The details of this argument can be found in [118]. Henceforth we assume
that p j = 1 for all j. We now turn to a description of the maximum likelihood algorithm.

16.4.3 The Maximum Likelihood Algorithm

Let n jk denote the number of events counted in tube k resulting from a decay event in box
j. These are mutually independent Poisson random variables. If λ j is the intensity of the
Poisson source in box j, then

E[n jk] = λ j k = λ j p jk .

Indeed the observed counts {n∗
k} are themselves independent Poisson random variables.

This follows from the fact that the {n jk} are mutually independent Poisson random variables
and therefore

n∗
k =

N∑
j=1

n jk

are as well; see Exercise 16.4.1. The expected value of n∗
k is given by

λ∗
k = E[n∗

k] =
N∑

j=1

λ j p jk . (16.44)

This suggests one possible approach to estimating λ̂: Use the measured values {n∗
k} for {λ∗

k}
to obtain the system of linear equations

N∑
j=1

λ j p jk = n∗
k, k = 1, . . . , M.

Unfortunately, this is usually an ill-conditioned system and the data n∗ are noisy, so a less
direct approach is often preferable.

With these preliminaries we can write down the likelihood of observing n∗ for given λ.
Let 	n∗ consists of all N × M matrices (n jk) with

n∗
k =

N∑
j=1

n jk.

For a fixed λ and (n jk) in 	n∗ , the product∏
j = 1, . . . , N
k = 1, . . . , M

e−λ jkλ
n jk

j k

n jk!
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is the probability that this collection of decay events produced the measured data. The
likelihood function is the sum of these probabilities over all possible ways of getting the
measured data:

�(λ) =
∑

(n jk )∈	n∗

∏
j = 1, . . . , N
k = 1, . . . , M

e−λ jkλ
n jk

j k

n jk! . (16.45)

While this is a very complicated function, it is nonetheless possible to compute ex-
plicitly the first and second derivatives of l(λ) = log �(λ). The first partial derivatives are
given by

∂l

∂λ j
= −1 +

M∑
k=1

[
n∗

k p jk∑N
n=1 λn pnk

]
.

A derivation using the properties of Poisson random variables is given in [116]. It is now a
simple computation to show that

∂2l

∂λi∂λ j
= −

M∑
k=1

n∗
k pik p jk[∑N

n=1 λn pnk

]2 .

From this formula we conclude that

N∑
i, j=1

∂2l

∂λi∂λ j
xi x j = −

M∑
k=1

n∗
kc2

k , (16.46)

where

ck =
∑N

j=1 x j p jk∑N
j=1 λ j p jk

.

As the components of n∗ are nonnegative, this shows that the Hessian of l is a negative
semidefinite quadratic form; hence l is a concave function. This implies that all maxima of
l are global maxima.

There are many ways to find the maximum of a concave function. The algorithm pro-

posed by Shepp and Vardi is the following. We begin with an initial guess λ̂
0

with all

components positive. If λ̂
old

denotes our current guess, then define

λ̂new
j = λ̂old

j

M∑
k=1

[
n∗

k p jk∑N
n=1 λ̂

old
n pnk

]
for j = 1, . . . , N . (16.47)

We multiply each component of λ̂
old

by 1 plus the corresponding component of the gradient
of l. Notice that the denominator in (16.47) cannot vanish unless the numerator does as
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well. In this case we define 0
0 to be zero. A nonnegative input leads to a nonnegative

output; moreover,
N∑

j=1

λ̂new
j =

M∑
k=1

n∗
k .

This means that the true number of counts is preserved in the iterative step, which agrees
well with (16.44). Shepp and Vardi go on to prove that

�(λ̂
new

) ≥ �(λ̂
old
),

with strict inequality unless �(λ̂
old
) is the maximum. This iteration has a limit λ̂

∞
that

provides a maximum likelihood estimate for λ. For the details of these arguments the reader
is referred to [116].

Exercises
Exercise 16.4.1. Suppose that χ1 and χ2 are independent Poisson random variables with
intensities λ1 and λ2, respectively. Show that χ1 +χ2 is also a Poisson random variable and
compute E[χ1 + χ2]. Hint: See Exercise 15.4.1.

Exercise 16.4.2. Suppose that we make a measurement of a single Poisson random variable
and are attempting to determine its intensity using maximum likelihood. If the intensity is
λ, then the probability of measuring n counts is

P(n|λ) = λne−λ

n! .

If we measure n∗ counts, prove that λ̂ = n∗.
Exercise 16.4.3.∗ Derive the formulæ for the first and second partial derivatives of l. The
derivation of the formula for the first derivatives should not be done as a direct calculation.

Exercise 16.4.4. Deduce (16.46) from the formula for the second derivatives of l.

Exercise 16.4.5. Suppose that f is a concave function defined on �n. Show that all maxima
of f are global maxima and that if f assumes it maximum at both x0 and x1, then it also
assumes its maximum at the points {t x0 + (1 − t)x1 : t ∈ [0, 1]}.
Exercise 16.4.6. Show that if λ̂

new = λ̂
old
, then

∂l

∂λ j
(λ̂

new
) = 0.

16.4.4 Determining the Transition Matrix

To complete our discussion of the maximum likelihood approach to image reconstruction
in PET, we need to specify the transition matrix. This is something of an art. Conceptu-
ally simple definitions for (p jk) may be difficult to compute, while simple but unintuitive
choices are found, empirically, to give satisfactory results.
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Recall that p jk is the probability that a decay in box j is detected in tube k. This means
that the two detectors that define this tube both observe a γ -ray at the “same” time. We
first describe a continuum model. The “detectors” are parameterized by points (ω1,ω2)
in S1 × S1. These points also parameterize the oriented line segments lying in D. The
segment  ω1,ω2 is oriented from rω1 to rω2. We have to exclude the subset of S1 × S1,
where ω1 = ω2. A subset C of S1 × S1 is even if

(ω1,ω2) ∈ C (⇒ (ω2,ω1) ∈ C.

Let B be a subset of D and C an even subset of S1 × S1. Let 	BC denote the set of
lines passing though B with endpoints in C. We could define the probability that a decay
occurring in D is detected by a pair of detectors lying in C as

pbad
BC = area(	BC)

4π2
.

This is not a good model because it does not incorporate the hypothesis that the direction
taken by the outgoing γ -rays is uniformly distributed.

To incorporate the uniform distribution of directions, we proceed somewhat differently.
Let x be a point in D. For an even subset of pairs C, let �C,x be the subset of [0, π) defined
by

θ ∈ �C,x if the line with direction ω(θ) passing through x is in C. (16.48)

The probability that a decay event at x is detected by a pair of detectors in C is defined to
be

punif(x,C) = 1

πr2

|�C,x|
π

,

where |�C,x| is the Lebesgue measure of �C,x. This model incorporates the uniform dis-
tribution but ignores attenuation effects. To include attenuation, each line through x is
weighted according to the likelihood that both γ -rays are detected. As shown in (16.38),
the probability that a decay at x is detected by a pair in C should therefore be

punif,μ(x,C) = 1

πr2

⎡⎢⎣ 1

π

∫
�C,x

exp [−�μ(〈x,ω(θ)〉,ω(θ))] dθ

⎤⎥⎦ .

By integrating these distributions, either model can be used to define a transition matrix.
These matrices are given by

p jk =
∫
B j

punif(x, Tk)dx and pμ
j k =

∫
B j

punif,μ(x, Tk) dx.

Here Tk is identified with the even subset of S1 × S1 corresponding to the endpoints of
lines lying in Tk . The functions punif and punif,μ are difficult to compute and therefore
simpler models are often employed. For example, we could set p jk equal to the probability
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that a decay at the center of B j is detected in Tk . We could even incorporate a probabilistic
description of the incoming momenta of the pairs into the definition of the transition matrix.
Empirically it was found in [116] that the final result is not too sensitive to the definition of
(p jk) in that several reasonable choices produced similar reconstructions.

Remark 16.4.1. Single Photon Emission CT or SPECT is a related technique in medical
imaging. Instead of two collinear photons, the radioactive compounds used in this modality
produce a single γ -ray which is then detected by a collimated detector. The reconstruction
problem in this modality is considerably more difficult and involves inverting the attenuated
x-ray transform. The mathematical solution of this problem was only achieved by Roman
Novikov in 2001! The interested reader should see [86] for a discussion of SPECT and the
papers of Novikov for a discussion of the attenuated x-ray transform, [98], [99].

Exercises
Exercise 16.4.7. What line lt,ω corresponds to  ω1,ω2?

Exercise 16.4.8. For a point x ∈ D, what is the distribution function for the direction in
which a decay occurs implied by pbad?

Exercise 16.4.9. How should (p jk) be defined if the incoming momenta are Gaussian dis-
tributed with expected mean magnitude pm 	= 0?

16.5 Conclusion

In this chapter we presented a few simple applications of probability theory to problems
in medical imaging. Beer’s law, the basic physical principle underlying the measurement
model in x-ray tomography, was shown to have a probabilistic origin. We also replaced
our earlier deterministic description of the measurements with a probabilistic model. By
describing the measurements as random variables, we were able to establish relationships
between noise in the measurements and uncertainty in the reconstructed images. Of partic-
ular importance is the relationship between the dosage of radiation the patient receives and
the resolution of the reconstructed image.

Because the variance in the measurements is inversely proportional to the number of
measured photons, reducing the width of the beam has an adverse effect on the signal-to-
noise ratio in the measurements. This, in turn, reduces the contrast available in the recon-
structed image. A consequence of these analyses is that an assessment of the resolution in
an image is only meaningful if it is coupled with an estimate of the signal-to-noise ratio.
Because of safety considerations, the ultimate image quality achievable in x-ray tomogra-
phy is probably limited by the noise inherent in the measurements themselves.

In the next and final chapter we define random processes that are parameterized families
of random variables. This extension of the formalism of probability theory is necessary
when studying continuum models. Among other things it provides a method to analyze the
output of a linear filter when the input is contaminated by noise. It is also useful for the
design of “optimal” filters. These are filters that remove noise as well as possible, under
given assumptions about the signal and the noise.





Chapter 17

Random Processes∗

To model noise in measurement and filtering processes requires concepts more general than
that of a random variable. This is because we need to discuss the results of passing a noisy
signal through a linear filter. As was the case in chapter 9, it is easier to present this material
in terms of functions of a single variable, though the theory is easily adapted to functions of
several variables. After giving the basic definitions, we consider some important examples
of random processes and analyze the effect of a linear shift invariant filter on random inputs.
The chapter concludes with an analysis of noise in the continuum model for filtered back-
projection. Our discussion of random processes is very brief, aimed squarely at the goal of
analyzing the effects of noise in the filtered back-projection algorithm.

17.1 Random Processes in Measurements

To motivate this discussion, we think of the familiar example of a radio signal. A radio
station broadcasts a signal sb(t) as an electromagnetic wave. A receiver detects a signal
sr (t), which we model as a sum

sr (t) = F(sb)(t) + n(t).

Here F is a filtering operation that describes the propagation of the broadcast signal. For
the purposes of this discussion we model F as attenuation; that is, F(sb) = λsb for a
0 < λ < 1. The other term is noise. In part, the noise records “random” aspects of the life
history of the broadcast signal that are not modeled by F. Beyond that it is an aggregation
of other signals that happen to be present at the carrier frequency of the broadcast signal.
The existence of the second part is easily verified by tuning an (old) radio to a frequency
for which there is no local station. Practically speaking, it is not possible to give a formula
for the noise. Because we cannot give an exact description of the noise, we instead describe
it in terms of its statistical properties.

We begin with the assumption that the noise is a bounded function of t. What can be
done to specify the noise further? Recall the ensemble average definition of the probability
of an event as the average of the results of many “identical experiments.” In the radio
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example, imagine having many different radios, labeled by a set 	. For each α ∈ 	 we let
sr,α(t) be the signal received by radio α at time t. The collection of radios 	 is the sample
space. The value of sr,α at a time t is a function on the sample space—in other words, a
random variable. From the form given previously we see that

sr,α(t) = λsb(t) + nα(t).

The noise can then be described in terms of the statistical properties of the random variables
{nα(t)} for different values of t. We emphasize that the sample space is 	, the collection
of different receivers; the time parameter simply labels different random variables defined
on the sample space. A family of random variables, defined on the same sample space,
parameterized by a real variable, is called a random process or, more precisely, a continuous
parameter random process.

Once the sample space 	 is equipped with a σ -algebra � and a probability measure ν,
we can discuss the statistics of the noise. For example, at each time t the random variable
nα(t) has an expected value

E[nα(t)] =
∫
	

nα(t) dν(α).

In many applications we assume that the noise has mean zero (i.e., E[nα(t)] = 0 for all t).
This means that if we make many different independent measurements and average them,
we should get a good approximation to λsr (t). The correlation between the noise at one
moment in time and another is given by

E[nα(t1)nα(t2)] =
∫
	

nα(t1)nα(t2) dμ(α).

How should the sample space be described mathematically? In an example like this,
the usual thing is to use the space of all bounded functions as the index set. That is, any
bounded function is a candidate for the noise in our received signal. In principle, the prob-
abilistic component of the theory could then be encoded in the choice of a σ -algebra and
probability measure on the space of bounded functions. The probability measure is rarely
made explicit. Instead we specify the cumulative joint distributions of the noise process at
finite collections of times. This means that for any k ∈ �, any k times (t1, . . . , tk), and any
k values (v1, . . . , vk), the joint probability that

nα(t j ) ≤ v j for j = 1, . . . , k

is specified. If the joint distributions satisfy the usual consistency conditions (see Exer-
cise 15.2.35), then a result of Kolmogorov states that there is a probability measure on 	,
inducing the joint distributions, with σ -algebra chosen so that all the sets

{α ∈ 	 : nα(t j ) ≤ v j }
are measurable. In this chapter we give a brief introduction to the basic concepts of ran-
dom processes. Our treatment, though adequate for our applications to imaging, is neither
complete nor rigorous. In particular we do not establish the existence of random processes
as outlined previously. Complete treatments can be found in [29] or [128].
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17.2 Basic Definitions

See: B.8.

Let (X,�, ν) be a probability space; as noted above a random process is an indexed
family of random variables defined on a fixed probability space. There are two main types
of random processes. If the index set is a subset of integers, for examplethe natural numbers
�, then the process is a discrete parameter random process. Such a random process is a
sequence {χ1, χ2, . . . , } of random variables defined on X. A continuous parameter random
process is a collection of random variables, {χt} indexed by a continuous parameter. Often
the whole real line is used as the index set, though one can also use a finite interval or a
half ray. For each t, χt is a random variable, that is a measurable function on X. We can
think of χ as a function of the pair (w; t) where w ∈ X. For a fixed w ∈ X, the map t �→
χt(w) is called a sample path for this random process. Depending on the context, sample
paths are denoted using either standard functional notation χ(t), or subscript notation χt .
The dependence on the point in X is suppressed unless it is required for clarity. In the
continuous parameter case, a rigorous treatment of this subject requires hypotheses about
the regularity properties of the random variables as functions of t, see [29] or [128].

It would appear that the first step in the discussion of a random process should be the
definition of the measure space and a probability measure defined on it. As noted previ-
ously, this is rarely done. Instead the random process is defined in terms of the properties of
the random variables themselves. In the continuous time case, for each k and every k-tuple
of times t1 ≤ · · · ≤ tk the cumulative distributions

Pt1,...,tk (s1, . . . , sk) = Prob(χt1 ≤ s1, χt2 ≤ s2, . . . , χtk ≤ sk)

are specified. In favorable circumstances, these distributions are given by integrals of den-
sity functions:

Pt1,...,tk(s1, . . . , sk) =
s1∫

−∞
· · ·

sk∫
−∞

pt1,...,tk (x1, · · · , xk) dx1 · · · dxk,

The distributions must satisfy the usual consistency conditions:

pt1,...,tk (x1, . . . , xk) =
∞∫

−∞
pt1,...,tk+1(x1, . . . , xk, xk+1) dxk+1,

ptτ (1),...,tτ (k) (xτ (1), . . . , xτ (k)) = pt1,...,tk (x1, . . . , xk),

(17.1)

where τ is any permutation of {1, . . . , k}.
In the discrete case the joint distribution functions are specified for any finite subset of

the random variables. That is, for each k ∈ � and each k-multi-index i = (i1, . . . , ik), the
cumulative distribution

Pi (s1, . . . , sk) = Prob(χi1 ≤ s1, χi2 ≤ s2, . . . , χik ≤ sk)
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is specified. The {Pi} also need to satisfy the consistency conditions for joint cumulative
distributions. If {χi} is a discrete parameter random process, we say that the terms of
the sequence are independent if for any choice of distinct indices {i1, . . . , ik} the random
variables {χi1 , . . . , χik } are independent.

The cumulative distribution functions Pt1,...,tk (s1, . . . , sk) (or Pi(s1, . . . , sk)) are called
the finite-dimensional distributions of the random process. A basic result of Kolmogorov
states that if finite-dimensional distributions are specified that satisfy the compatibility con-
ditions, then there is a probability space (X,�, ν) and a random process χt defined on it
that induces the given finite-dimensional distributions. We take this result for granted; for
a proof see [29] or [128].

Some examples of random processes should help to clarify these ideas.

Example 17.2.1. Let X be the set of all bounded sequences of real numbers, that is,

X = {a = (a1, a2, . . .), ai ∈ � with lim sup
i→∞

|ai | < ∞}.

Define a discrete parameter, random process {χ1, χ2, . . .} by setting

χi (a) = ai .

To describe the measure theoretic aspects of this process, we choose a probability measure,
ν on �. For all i define

Prob(χi ≤ t) =
t∫

−∞
dν.

Supposing further that the {χi} are independent random variables, we can compute the joint
distributions: For each k ∈ �, multi-index {i1, . . . , ik} and (s1, . . . , sk) ∈ �k, we have

Prob(χi1 ≤ s1, . . . , χik ≤ sk) =
t1∫

−∞
dν · · ·

tk∫
−∞

dν.

These properties serve to characterize the random process, though the proof that a σ -algebra
and measure exist on X inducing these joint distribution functions is by no means trivial.

Example 17.2.2. Another example is the set of infinite sequences of coin flips. The sample
space X is a set of all possible infinite sequences of heads and tails. As previously, define

χi (a) =
{

1 if ai = H,

0 if ai = T .

The {χi} are then taken to be independent random variables with

Prob(χi = 0) = 1 − p, Prob(χi = 1) = p.

Such a process is called a Bernoulli random process because each χi is Bernoulli random
variable.
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Example 17.2.3. An example of a continuous time random process is provided by setting
X = �0(�+), the set of continuous functions on �+ that vanish at 0. For each t ∈ �+ we
have the random variable χt defined at w ∈ X by

χt (w) = w(t);
χt is the evaluation of the function w at time t . As before, it is difficult to give a direct
description of the σ -algebra and measure on X. Instead the process is described in terms of
its joint distribution functions. We need to specify

Prob(χt1 ≤ s1, χt2 ≤ s2, . . . , χtk ≤ sk)

for all k ∈ � and all pairs of real k-tuples, ((t1, . . . , tk), (s1, . . . , sk)).
An important special case of this construction is given by

Prob(χt1 ≤ s1, χt2 ≤ s2, . . . , χtk ≤ sk) =
sk∫

−∞
· · ·

s1∫
−∞

e− x2
1

2t1√
2π t1

k∏
j=2

e
− (x j −x j−1)

2

2(t j−t j−1)√
2π(t j − t j−1)

dx1 · · · dxk,
(17.2)

if t1 < t2 < · · · < tk . This process is called Brownian motion. For each t the random
variable χt is Gaussian, and for any finite set of times, (t1, . . . , tk) the random variables
{χt1, . . . , χtk } are jointly Gaussian. We return to this example later.

Exercises
Exercise 17.2.1. Show that the cumulative distributions defined in Example 17.2.1 satisfy
the consistency conditions.

Exercise 17.2.2. In many applications we need to approximate a random process by a
finite-dimensional sample space. Suppose that in Example 17.2.1 we consider finite, real
sequences of length N . The sample space is then �N . The random variables {χ1, . . . , χN }
are defined on this space. Find a probability measure on �N that gives the correct joint
distributions functions for these variables. Are there others that would also work?

17.2.1 Statistical Properties of Random Processes

In practical applications a random process is described by its statistical properties. The
simplest are the mean

μχ(t) = E[χt ]
and variance

σ 2
χ(t) = E[(χt − μχ(t))

2].
A measure of the relationship of χ at two different times is the autocorrelation function:

Rχ (t1, t2) =< χt1χt2 > .
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As before, the covariance is defined by

Cov(χt1, χt2) = Rχ (t1, t2)− < χt1 >< χt2 >

= E[(χt1 − μχ(t1))(χt2 − μχ(t2))]. (17.3)

The normalized correlation coefficient is

ρ(t1, t2) = Cov(χt1, χt2)

σχ(t1)σχ(t2)
.

If the cumulative joint distribution for χt1 and χt2 has a distribution function, then

Rχ (t1, t2) =
∞∫

−∞

∞∫
−∞

xypt1,t2(x, y) dx dy.

Using the Cauchy-Schwarz inequality and (17.1), we deduce that

Rχ (t1, t2) =
∫∫
�2

xypt1,t2(x, y) dx dy

≤ [∫∫
�2

x2 pt1,t2(x, y) dx dy
]1/2[∫∫

�2

y2 pt1,t2(x, y) dx dy
]1/2

= [ ∞∫
−∞

x2 pt1(x) dx
]1/2[ ∞∫

−∞
y2 pt2(y) dy

]1/2
.

Hence, we have the estimate

|Rχ (t1, t2)| ≤
√

E[χ2
t1]E[χ2

t2 ]. (17.4)

Exercise
Exercise 17.2.3. Show how to derive (17.4) using the formalism of a probability space (i.e.,
by integrating over X with respect to dν).

17.2.2 Stationary Random Processes

A important notion is that of a stationary random process. Heuristically a noise process is
stationary if it does not matter when you start looking; the noise is always “the same.”

Definition 17.2.1. Let χt be a continuous parameter random process. It is a stationary
process if

1. Prob(χt ≤ λ) is independent of t .
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2. For any τ ∈ �,

Prob(χt1 ≤ r, χt2 ≤ s) = Prob(χ(t1+τ ) ≤ r, χ(t2+τ ) ≤ s).

2′. Similarly, for any collection of (t1, . . . , tk), (s1, . . . , sk) and τ we have

Prob(χt1 ≤ s1, . . . , χtk ≤ sk) = Prob(χ(t1+τ ) ≤ s1, . . . , χ(tk+τ ) ≤ sk).

If χt is a stationary random process, then

Rχ (t1, t2) = E[χt1χt2] = E[χ0χ(t2−t1)]. (17.5)

Setting rχ (τ) = E[χ0χτ ], it follows that

Rχ (t1, t2) = rχ (t2 − t1).

On the other hand, the fact that Rχ (t1, t2) is a function of t2 − t1 does not imply that χt

is a stationary process. A process satisfying this weaker condition is called a weak sense
stationary random process. For a weak sense stationary process,

rχ (τ) ≤ E[χ2
0 ] = rχ (0). (17.6)

This coincides well with intuition. If something is varying in a “random” but stationary
way, then it is unlikely to be better correlated at two different times than at a given time.

17.2.3 Spectral Analysis of Stationary Processes∗

The reason for introducing the autocorrelation function is that it allows the use of Fourier
theory to study weak sense stationary processes.

Definition 17.2.2. If χt is a weak sense stationary random process and rχ is integrable (or
square integrable), then its Fourier transform,

Sχ(ξ) =
∞∫

−∞
rχ (τ)e

−iτξdτ,

is called the spectral density function for the process χ.

The autocorrelation function is not always integrable but, as shown in the proof of
Proposition 17.2.1, it is a “nonnegative definite function.” If it is also continuous, then it
follows from a theorem of Bochner that its Fourier transform is well defined as a measure
on �. This means that, while Sχ may not be well defined at points, for any [a, b] the integral

1

2π

b∫
a

Sχ(ξ) dξ
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is meaningful. This measure is called the spectral density measure. The integral defines
the power contained in the process in the interval [a, b]. A sufficient condition for rχ to be
continuous is that t �→ χt is continuous in the L2-sense:

lim
t−s→0

E[(χt − χs)
2] = 0. (17.7)

The proposition enumerates the important properties of rχ and Sχ .

Proposition 17.2.1. Let rχ , be the autocorrelation function of a real, weak sense stationary
random process. Suppose that rχ is continuous and has Fourier transform Sχ . Then the
following statements hold:

1. rχ is real valued.

2. The autocorrelation is an even function: rχ (τ) = rχ (−τ).

3. Sχ is a real-valued even function.

4. Sχ is nonnegative.

5. The total power of the process is the variance:

rχ (0) = E[χ2
t ] =

1

2π

∞∫
−∞

Sχ(ξ) dξ.

Proof. By definition, we have

rχ (τ ) = E[χtχ(t+τ )] = E[χ(t−τ )χt ] = rχ (−τ ).

Hence rχ is even; Proposition 4.2.6 then implies that Sχ is also even. To show that the spectral
density function is real valued, take the conjugate of Sχ :

S̄χ (ξ) =
∞∫

−∞
rχ (τ )e

iξτ dτ =
∞∫

−∞
rχ(−τ )eiξτ dτ = Sχ (ξ).

The fourth fact is not obvious from the definition. This follows because the autocorrelation
function rχ is a nonnegative definite function. This means that for any vectors (x1, . . . , xN ) and
(τ1, . . . , τN ), we have that

N∑
i, j=1

rχ (τi − τ j )xi x j ≥ 0.

In other words, the symmetric matrix ai j = rχ (τi − τ j ) is nonnegative definite.
This inequality is a consequence of the fact that the expected value of a nonnegative random

variable is nonnegative. If χt is any real-valued, continuous time random process with finite mean
and covariance, then

0 ≤ E[
∣∣∣∣∣

N∑
1

xiχτi

∣∣∣∣∣
2

] =
N∑

i, j=1

xi x j E[χτi χτ j ] =
N∑

i, j=1

xi x j Rχ (τi , τ j ).
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Hence,
∑N

i, j=1 Rχ (τi , τ j )xi x j is nonnegative. For a weak sense stationary process, Rχ (τ1, τ2)
equals rχ(τ1 − τ2) and thus

N∑
i, j=1

rχ (τi − τ j )xi x j ≥ 0.

The Bochner theorem states that a continuous function is the Fourier transform of a positive
measure if and only if it is nonnegative definite. Hence, the fact that rχ is nonnegative definite
implies that Sχdξ is a nonnegative measure; that is,

b∫
a

Sχ (ξ) dξ =
b∫

a

∞∫
−∞

rχ (τ )e
−iτξdτ ≥ 0;

see [79]. Fact (5) follows from the Fourier inversion formula.

If f is a real-valued, bounded, integrable function, then we see that its “autocorrelation
function,”

r f (t) =
∞∫

−∞
f (t) f (t + τ) dt

is well defined. Computing the Fourier transform of r f gives

r̂ f (ξ) =
∞∫

−∞

∞∫
−∞

f (t) f (t + τ)e−iξτdt dτ = | f̂ (ξ)|2.

These computations are not immediately applicable to a random process but hold in a time-
averaged, probabilistic sense.

Let χt be a real-valued, weak sense stationary random process. For each T > 0 define

χ̂T (ξ) =
T∫

−T

χt e
−itξdt.

We compute the expected value of |χ̂T (ξ)|2,

E[|χ̂T (ξ)|2] = E

⎡⎣ T∫
−T

χt e
−itξdt

T∫
−T

χseisξds

⎤⎦
=

T∫
−T

T∫
−T

rχ (t − s)e−i(t−s)ξdt ds.

(17.8)
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Letting τ = t − s, we obtain

E[|χ̂T (ξ)|2] =
2T∫

−2T

(2T − |τ |)rχ (τ)e−iτξ dτ

= (2T )

2T∫
−2T

(
1 − |τ |

2T

)
rχ(τ)e

−iτξ dτ.

(17.9)

Proposition 17.2.2. If χt is a real-valued, weak sense stationary random process and rχ is
integrable, then

Sχ(ξ) = lim
T→∞

1

2T
E[|χ̂T (ξ)|2]. (17.10)

Proof. Under the hypotheses, the Lebesgue-dominated convergence theorem applies to show that
the limit can be taken inside the integral in the second line of (17.9), giving the result.

This proposition justifies the description of Sχ as the power spectral density of the
process. Given a point w in the sample space, t �→ χt (w) is a sample path. A reasonable
definition for the autocorrelation function of a single sample path is

rw(τ) = lim
T→∞

1

2T

T∫
−T

χt (w)χ(t+τ )(w) dt.

This is sometimes called the time autocorrelation function. For a given choice of w, this
limit may or may not exist. It turns out that for many interesting classes of random pro-
cesses this time average exists, defines a random variable on X, and, with probability 1,
does not depend on the choice of path. In fact,

Prob(rw = rχ ) = 1.

Exercises
Exercise 17.2.4. Derive (17.5).

Exercise 17.2.5. Prove (17.6).

Exercise 17.2.6. Derive the first line of (17.9).

Exercise 17.2.7. Suppose that χt is a random process so that E[|χt |] is independent of t.
Show either χt ≡ 0, with probability 1, or

∞∫
−∞

|χt | dt = ∞,

with probability 1.
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17.2.4 Independent and Stationary Increments

Many processes encountered in imaging applications are not themselves stationary but sat-
isfy the weaker hypothesis of having stationary increments.

Definition 17.2.3. Let χt be a continuous parameter random process such that for any finite
sequence of times t1 < t2 < · · · < tn, n ≥ 3 the random variables

χt2 − χt1, χt3 − χt2, . . . , χtn − χtn−1

are independent. Such a process is said to have independent increments. If, moreover,
the probability Prob(χt − χs ≤ λ) depends only on t − s, then the process has stationary
increments.

A weaker condition is that a process have uncorrelated increments; that is,

E[(χt2 − χs2)(χt1 − χs1) = E[(χt2 − χs2)]E[(χt1 − χs1)],
provided that [t2, s2] ∩ [t1, s1] = ∅. If E[|χt −χs |2] only depends on t − s, then the process
is said to have wide sense stationary increments.

Example 17.2.4. Brownian motion is a random process, parameterized by [0,∞), that
describes, among other things, the motion of tiny particles in a fluid. It is defined as a
process χt with independent increments, such that for every s, t the increment χt − χs is a
Gaussian random variable with

E[χt − χs] = 0 and E[(χt − χs)
2] = σ 2|t − s|2.

This process is often normalized by fixing χ0 = a ∈ �, with probability 1. A very impor-
tant fact about Brownian motion is that it is essentially the only process with independent
increments whose sample paths are continuous, with probability 1. Brownian motion is
frequently called the Wiener process.

Exercise
Exercise 17.2.8. Show that if a Gaussian process has E[χt ] = 0 and uncorrelated incre-
ments, then it has independent increments.

17.3 Examples of Random Processes

For many applications in medical imaging a small collection of random processes suffice.
Several have already been defined; a few more are described in this section.

17.3.1 Gaussian Random Process

A Gaussian random process is a family {χt} (or sequence of random variables {χi}) that, for
each t (or i), is a Gaussian random variable. The finite-dimensional distributions are also
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assumed to be Gaussian. As we saw in Section 15.3.3, the joint distributions for Gaussian
random variables are determined by their means and covariance matrix. This remains true
of Gaussian processes, and again the converse statement is also true. Suppose that T is the
parameter space for a random process and that there are real-valued functions μ(t) defined
on T and r(s, t) defined on T × T . The function r is assumed to satisfy the following
conditions:

1. For any pair s, t ∈ T r(s, t) = r(t, s), and

2. If {t1, . . . , tm} ⊂ T, then the matrix [r(ti , t j )] is nonnegative definite.

There exists a Gaussian random process {χt : t ∈ T } such that

E[χt ] = μ(t) and E[χsχt ] = r(s, t).

If we are only concerned with the second-order statistics of a random process, then we are
free to assume that the process is Gaussian.

Brownian motion, defined in Example 17.2.4, is an important example of a Gaussian
process. As remarked there, we can fix χ0 = 0 with probability 1. Since E[χt − χs] = 0
for all t, s it follows that

E[χt ] = 0 for all t ∈ [0,∞).

The autocorrelation function can now be computed using the hypothesis

E[(χt − χs)
2] = σ 2|t − s|. (17.11)

Let 0 < s < t. Then, as χ0 = 0 with probability 1,

E[χsχt ] = E[(χs − χ0)(χt − χ0)].
This can be rewritten as

E[χsχt ] = E[(χs − χ0)
2] + E[(χs − χ0)(χt − χs)]

= σ 2|s| = σ 2 min{|s|, |t|}. (17.12)

In passing from the first line to the second, we use the independence of the increments
and (17.11). Thus Brownian motion is not a weak sense stationary process.

17.3.2 The Poisson Counting Process

The Poisson counting process is another example of a process with independent, stationary
increments. This process is a family of random variables {χt} defined for t ≥ 0 that take
values in {0, 1, 2, . . .}. The Poisson counting process has a nice axiomatic characterization.
For convenience, let

P(k, t)
d= Prob(χt = k).

Here are the axioms phrased in terms of counting emitted particles:
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INDEPENDENT INCREMENTS: The number of particles emitted in [t1, t2] is independent
of the number in [t3, t4] if [t1, t2] ∩ [t3, t4] = ∅.

SHORT TIME BEHAVIOR: The probability that one particle is emitted in a very short time
interval is given by P(1,�t) = λ�t + o(�t) for some constant λ, where o(�t)
denotes a term such that lim�t→0 o(�t)/�t = 0. As a consequence, P(1, 0) = 0.

STATIONARY INCREMENTS: The process has stationary increments:

Prob(χt − χs = k) = Prob(χ(t+τ ) − χ(s+τ ) = k), ∀τ ≥ 0, 0 ≤ s ≤ t.

We can now estimate the probability that two particles are emitted in a short interval
[0,�t]: In order for this to happen, there must be a 0 < τ < �t such that one particle
is emitted in [0, τ ] and one is emitted in (τ,�]. The hypothesis of independent stationary
increments and the short time behavior imply that

P(2,�t) ≤ max
τ∈(0,�t)

P(1, τ )P(1,�t − τ) = O((�t)2).

From the independent, stationary increments axiom, we have that

P(0, t +�t) = P(0, t)P(0,�t).

For any time �t it is clear that
∞∑

k=0

P(k,�t) = 1.

Arguing as before we can show that, for sufficiently small �t, we have the estimates
P(k,�t) ≤ [P(1,�t)]k . Combining these observations leads to

P(0,�t) + P(1,�t) = 1 + o(�t). (17.13)

Hence

P(0,�t) = 1 − λ�t + o(�t), (17.14)

P(0, t +�t) = P(0, t)P(0,�t) = P(0, t)[1 − λ�t + o(�t)]. (17.15)

Letting �t → 0, we have

lim
�t→0

P(0, t +�t)− P(0, t)

�t
= P(0, t)(−λ�t + o(�t))

�t
= −λP(0, t).

This provides a differential equation for P(0, t):

d P

dt
(0, t) = −λP(0, t), with P(0, 0) = 1.

The solution of this equation is
P(0, t) = e−λt .
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The probabilities {P(k, t)} for k > 1 are obtained recursively. For each t ≥ 0 and
j ≤ k suppose that

P( j, t) = (λt) j

j ! e−λt .

The hypothesis of independent, stationary increments implies that

P(k + 1,t +�t)

= P(k + 1, t)P(0,�t) + P(k, t)P(1,�t) +
k−1∑
j=0

P( j, t)P(k + 1 − j,�t)

= P(k, t)P(1,�t) + P(k + 1, t)P(0,�t) + o(�t).
(17.16)

We use the induction hypothesis to conclude that the sum is o(�t) as �t tends to zero.
From equations (17.14) and (17.16) we obtain

P(k+1, t+�t)−P(k+1, t) = P(k, t)(λ�t+o(�t))+P(k+1, t)[P(0,�t)−1]+o(�t),

which leads to
d P

dt
(k + 1, t) = λP(k, t)− λP(k + 1, t). (17.17)

As P(k, 0) is zero, we obtain that

P(k + 1, t) = (λt)k+1

(k + 1)!e
−λt .

For each t , {χt } is a Poisson random variable with intensity λt . As the intensity changes
with time it follows that this cannot be a stationary random process. The expected value
and the variance are

E[χt ] = λt, (17.18)

E[(χt − λt)2] = λt, (17.19)

as follows from the formulæ in Section 15.3.2.
Suppose we know that one particle is emitted in an interval [0, T ]. What is the proba-

bility distribution for the time the particle is emitted? This is a question about conditional
probability. We formulate it as follows, for 0 ≤ t ≤ T :

Prob(χt = 1|χT = 1) = Prob(χt = 1, and χT = 1)

Prob(χT = 1)

= Prob(χt = 1, χT − χt = 0)

Prob(χT = 1)
.

Using the distributions obtained previously, we see that this equals

Prob(χt = 1|χT = 1) = P(1, t)P(0, T − t)

P(1, T )
= λte−λt e−λ(T−t)

λT e−λT
= t

T
.
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This says that each time in [0, T ] is equally probable. The Poisson counting process is
used to describe radioactive decay. If it is known that one decay was observed in a certain
interval, then the time of decay is uniformly distributed over the interval. This is why it is
said that the time of decay is completely random.

Next we compute the autocorrelation function E[χtχs] using the identity

E[(χt − χs)
2] = E[χ2

t − 2χtχs + χ2
s ]

= E[χ2
t ] − 2E[χtχs] + E[χ2

s ].
From the stationary increments property and χ0 = 0, it follows that

E[(χt − χs)
2] = E[χ(t−s) − χ0)

2] = E[χ2
(t−s)].

Assume that t ≥ s. Then

E[χ2
(t−s)] =

∞∑
k=0

k2 Prob(χ(t−s) = k)

=
∞∑

k=0

1

k!k
2[(λ(t − s))ke−λ(t−s)] = λ(t − s) + λ2(t − s)2.

The autocorrelation is now easily obtained:

E[χtχs] = 1

2
(E[χ2

t ] + E[χ2
s ] − E[(χt − χs)

2]) = λmin(t, s) + λ2ts.

The Poisson counting process is also not a weak sense stationary process. Substituting
E[χ(t)] = λt gives

Cov(χt , χs) = λmin(t, s).

Exercises
Exercise 17.3.1. Deduce from the axioms that P(k,�t) ≤ [P(1,�t)]k for small enough
�t. Using the final form of P(k, t), give an estimate, in terms of λ, for how small �t must
be taken for these estimates to hold for all k > 1.

Exercise 17.3.2. Prove that P(k, t) satisfies (17.17).

17.3.3 Poisson Arrival Process

Let χt be a continuous parameter, Poisson counting process. Strictly speaking, a continuous
parameter Poisson process is a function of two variables (t, w), where w is a point in the
sample space. Several interesting processes, with the same underlying sample space, can be
built out of the counting process. We now describe the Poisson arrival process. Let T1(w)
be the time the first particle arrives, and T2(w) the second arrival time and, recursively,
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Tn(w) the nth arrival time. This is called the Poisson arrival process. Taking differences
gives a further process:

Z1 = T1,

Z2 = T2 − T1,
...

Zi = Ti − Ti−1.

The hypothesis that the original process {χt} has independent increments implies that
{Zi} are independent random variables. They are identically distributed because the count-
ing process has stationary increments. The original process is a function of a continuous
parameter that takes integer values. The arrival process and its increments are sequences of
random variables indexed by positive integers taking continuous values.

We now work out the distribution functions for these two processes. The probability
that the first particle arrives after time t equals the probability that χt is zero:

Prob(Z1 > t) = Prob(χt = 0) = e−λt .

Hence,

Prob(Z1 ≤ t) = 1 − e−λt =
t∫

−∞
λe−λsχ[0,∞](s) ds. (17.20)

The density function of Z1, hence that of Zi for each i , is λe−λtχ[0,∞](t). The expected
value of Z1 is

E[Z1] =
∞∫

0

tλe−λt dt = 1

λ
.

For radioactive decay this says that the expected length of time before the first decay is
1/λ, which agrees well with intuition. The more intense a radioactive source is, the less
time we expect to wait for the first decay. The variance and standard deviation are

E[Z2
1] =

∞∫
0

t2λe−λtdt = 2

λ2
⇒ σ 2

Z1
= E[Z2

1] − E[Z1]2 = 1

λ2
.

The arrival time, Tn, is the sum of the differences of arrival times (i.e., Tn = Z1 +· · ·+
Zn). Thus each Tn is a sum of independent, identically distributed random variables. The
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E[e−iξ Zn ] is

p̂(ξ) =
∞∫

−∞
e−iξ tλe−λtχ[0,∞](t) dt

= λ

∞∫
0

e−t (iξ+λ)dt

= λ

λ+ iξ
.

It therefore follows from Exercise 15.2.38 that E[e−iξTn ] is given by

E[e−iξTn ] = E[e−iξ Z1 ] · · · E[e−iξ Zn ] = [ p̂(ξ)]n.

Using a complex contour integral, the Fourier inversion of [ p̂(ξ)]n is obtained:

∞∫
−∞

λn

(λ+ iξ)n
eiξ t dξ =

{
0 t < 0,

1
(n−1)!λe−λt(λt)n−1 t ≥ 0.

The probability distribution for Tn is therefore

Prob(Tn ≤ t) =
t∫

0

λe−λt(λt)n−1

(n − 1)! = 1

(n − 1)!
λt∫

0

e−τ τ n−1dτ.

Recall that the Gamma function is defined by

�(x) =
∞∫

0

e−ssx−1ds.

That the �-function satisfies

�(n + 1) = n! for any n > 0, (17.21)

implies that
lim

t→∞ Prob(Tn ≤ t) = 1.

Indeed this gives another proof of (17.21)! Since the {Zi} are identically distributed, inde-
pendent random variables, the central limit theorem applies to show

lim
n→∞ Prob

(
Tn − n/λ√

n/λ
≤ t

)
→

t∫
−∞

e− x2
2

dx√
2π

.
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Exercises
Exercise 17.3.3. Prove that the {Zn} are independent, identically distributed random vari-
ables.

Exercise 17.3.4. What is E[Tn] for each n ∈ �?

17.3.4 Fourier Coefficients for Periodic Processes∗

Suppose that χt is a weak sense stationary random process with finite variance and corre-
lation function rχ . A process is said to be mean square T -periodic if

E[|χt+T − χt |2] = 0 for all t.

Since χt has finite variance, with probability 1, the sample paths have finite square integral
over the interval [0, T ], with probability 1:

E

⎡⎣ T∫
0

|χt |2 dt

⎤⎦ =
⎡⎣ T∫

0

E[|χt |2] dt

⎤⎦ = T rχ (0).

Because the process is weak sense stationary, E[|χt |2] is constant. In light of these esti-
mates, the Fourier coefficients

ζk = 1

T

T∫
0

χt e
− 2π ikt

T dt, k ∈ �

are defined, with probability 1. These are complex-valued functions defined on the same
sample space as χt . The integral can be understood as a limit of finite sums; using standard
measure theory we can show that the {ζk} are measurable functions on the sample space.
Hence {ζk} defines a complex, discrete parameter random process.

We first consider the autocorrelation function of the original process.

Proposition 17.3.1. If χt is a mean square T -periodic, weak sense stationary random
process, then rχ (τ) is T -periodic.

Proof. We need to show that rχ (τ + T ) = rχ (τ ) for any τ. The proof is a simple computation:

rχ (τ + T ) = E[χ0χτ+T ]
= E[χTχτ+T ] + E[(χ0 − χT )χτ+T ]
= rχ (τ )+ E[(χ0 − χT )χτ+T ].

(17.22)

The Cauchy-Schwarz inequality, (15.2.2) gives the estimate

E[(χ0 − χT )χτ+T ] ≤
√

E[(χ0 − χT )2]E[(χτ+T )2] = 0.

The right hand side is zero because χt is mean square T -periodic. This completes the proof of the
proposition.
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Since rχ is T -periodic and bounded by rχ (0), it has a Fourier series expansion

rχ =
∞∑

k=−∞
rke

2π ikτ
T .

Here equality is in the “limit in the mean” sense; see Proposition 7.3.1 and

rk = 1

T

T∫
0

rχ (τ)e
− 2π ikτ

T dτ.

According to the Parseval formula, the coefficients satisfy

∞∑
k=−∞

|rk |2 = 1

T

T∫
0

|rχ(τ)|2 dτ.

Using the definition of the autocorrelation function gives the formula

rk = E[χ0ζk], (17.23)

which brings us to the main result of this section:

Proposition 17.3.2. The random variables {ζk} are pairwise uncorrelated (i.e., E[ζkζl] = 0
if k 	= l) and

E[|ζk |2] = rk . (17.24)

Remark 17.3.1. It is natural to use E[ f ḡ] when working with complex-valued random
variables so that this quadratic form defines an hermitian inner product.

Proof. Once again, the proof is a simple computation interchanging an expectation with integrals
over [0, T ] :

E[ζkζl ] = 1

T 2 E

⎡⎣ T∫
0

χt e
− 2π ikt

T dt

T∫
0

χse
2π iks

T ds

⎤⎦
= 1

T 2

T∫
0

T∫
0

[
e−

2π ikt
T e

2π iks
T rχ (t − s)

]
dt ds

= rk

T

T∫
0

e
2π i(l−k)t

T dt .

(17.25)

The passage from the second to the third lines is a consequence of the T -periodicity of rχ . The
proposition follows as the integral in last line of (17.25) is δkl T .
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Thus a mean square T -periodic, weak sense stationary process leads to a discrete pa-
rameter process of uncorrelated variables. The final question we address is the convergence
of the Fourier series ∞∑

k=−∞
ζke

2π ikt
T . (17.26)

Given that the χt is mean square periodic, it is reasonable to examine the convergence in
L2([0, T ]).
Proposition 17.3.3. The Fourier series in (17.26) converges to χt in L2([0, T ]) with prob-
ability 1 if and only if

lim
N→∞

N∑
k=−N

rk = rχ (0).

Proof. We need to compute the expected value of

T∫
0

∣∣∣∣∣χt −
∞∑

k=−∞
ζke

2π ikt
T

∣∣∣∣∣
2

dt .

Once again, this reduces to interchanging an expectation with an ordinary integral. We begin by
considering a finite partial sum:

E

⎡⎣ T∫
0

∣∣∣∣∣χt −
N∑

k=−N

ζke
2π ikt

T

∣∣∣∣∣
2

dt

⎤⎦ = E

⎡⎣ T∫
0

|χt |2dt − T
N∑

k=−N

|ζk|2
⎤⎦

= T (rχ (0)−
N∑

k=−N

rk).

(17.27)

The definition of rχ and equation (17.24) are used to go from the first to the second line. As

T∫
0

∣∣∣∣∣χt −
N∑

k=−N

ζke
2π ikt

T

∣∣∣∣∣
2

dt

is a decreasing, nonnegative sequence of functions on the sample space, the limit, as N tends to
infinity, can be taken inside the expectation to give:

E

⎡⎣ T∫
0

∣∣∣∣∣χt −
∞∑

k=−∞
ζke

2π ikt
T

∣∣∣∣∣
2

dt

⎤⎦ = T (rχ (0)−
∞∑

k=−∞
rk). (17.28)

The statement of the proposition follows easily from this equation.

Another way to state the conclusion of the proposition is that the series in (17.26)
represents χt , in the mean, with probability 1 if and only if rχ is represented pointwise by
its Fourier series at 0. This, in turn, depends on the regularity of rχ (τ) for τ near to zero.
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Remark 17.3.2. This material is adapted from [30], where a thorough treatment of eigen-
function expansions for random processes can be found.

Exercises
Exercise 17.3.5. Prove (17.23).

Exercise 17.3.6. Provide the details of the computations in (17.27).

17.3.5 White Noise∗

See: A.4.5, A.4.6.

In applications it is often assumed that the noise component is modeled by white noise.
This is a mean zero random process that is uncorrelated from time to time. The continuous
parameter version of this process turns out to be rather complicated. In this section we use
elementary facts about generalized functions. We begin with a discussion of the discrete
parameter case.

A random process {χn}, indexed by �, is called a white noise process if

E[χn] = 0, E[|χn|2] < ∞ for all n, and

E[χmχn] = 0 if m 	= n.
(17.29)

A white noise process is simply an orthogonal collection of random variables on the sam-
ple space where the inner product is defined by E[ f ḡ]. The Fourier coefficients of a weak
sense stationary, mean square periodic process therefore define a (complex-valued) dis-
crete, white noise process.

In the continuous parameter case we would like to do the same thing. White noise
should be defined to be a random process, Wt , which is weak sense stationary and satisfies

E[Wt ] = 0, rW (τ ) = E[Wt Wt+τ ] = σ 2δ(τ).

These properties are intuitively appealing because they imply that the noise is completely
uncorrelated from one time to another. On the other hand, its variance, σW = √

rW (0), is
infinite. The power spectral density is given by

SW (ξ) =
∞∫

−∞
σ 2δ(τ)e−iξτ dτ = σ 2.

Thus white noise has the same amount of power at every frequency. The problem is that
there is no real-valued random process with these properties. For example, it makes no
sense to ask for the value of Prob(Wt ≤ λ).
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However, this concept is constantly used, so what does it mean? White noise is, in a
sense, a random process whose sample paths are generalized functions. We cannot speak
of the value of the process at any given time, in much the same way that the δ-function does
not have a well-defined value at 0. On the other hand, if f is continuous, then

∞∫
−∞

f (t)δ(t) dt = f (0)

makes perfect sense. Similarly, we can give a precise meaning to time averages of white
noise. If f is a continuously differentiable function, then

W f =
b∫

a

f (t)Wt dt

makes sense as a random variable; it has the “expected” mean and variance:

E[W f ] =
b∫

a

f (t)E[Wt ] dt = 0 and E[W 2
f ] = σ 2

b∫
a

f 2(t) dt.

In a similar way ,it makes sense to pass white noise through an sufficiently smoothing,
linear filter. It is much more complicated to make sense of nonlinear operations involving
white noise.

The sample paths for a white noise process are usually described as the derivatives of
the sample paths of an ordinary continuous time random process. Of course, the sample
paths of a random process are not classically differentiable, with probability 1, so these
derivatives must be interpreted as weak derivatives. We close this section by formally
constructing a white noise process as the distributional derivative of Brownian motion.

Let {χt : t ≥ 0} denote Brownian motion and recall that

E[χt ] = 0 and E[χsχt ] = σ 2 min{s, t}.
Formally, we set Wt = ∂tχt . Commuting the derivative and the integral defining the expec-
tation gives

E[Wt ] = E[∂tχt ] = ∂t E[χt ] = 0;
hence Wt has mean zero. To compute the variance, we again commute the derivatives and
the expectation to obtain

E[Wt Ws] = ∂t∂s E[χtχs] = ∂t∂sσ
2 min{s, t}.

The rightmost expression is well defined as the weak derivative of a function of two vari-
ables:

∂t∂sσ
2 min{s, t} = 2σ 2δ(t − s). (17.30)
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To prove (17.30), we let ϕ be a smooth function with bounded support in [0,∞)× [0,∞).
The weak derivative in (17.30) is defined by the condition

∞∫
0

∞∫
0

∂t∂s min{s, t}ϕ(s, t) ds dt =
∞∫

0

∞∫
0

min{s, t}∂t∂sϕ(s, t) ds dt,

for every test function ϕ. Writing out the integral on the right-hand side gives

∞∫
0

∞∫
0

min{s, t}∂t∂sϕ(s, t) ds dt =
∞∫

0

∞∫
s

s∂t∂sϕ(s, t) dt ds +
∞∫

0

∞∫
t

t∂s∂tϕ(s, t) ds dt

= −
∞∫

0

s∂sϕ(s, s) ds −
∞∫

0

t∂tϕ(t, t) dt

= 2

∞∫
0

ϕ(s, s) ds.

(17.31)

The last line follows by integration by parts, using the bounded support of ϕ to eliminate the
boundary terms. At least formally, this shows that the first (weak) derivative of Brownian
motion is white noise.

Exercises
Exercise 17.3.7. Give a detailed justification for the computations in (17.31).

Exercise 17.3.8. Show that the first derivative of the Poisson counting process is also,
formally, a white noise process. What do the sample paths for this process look like?

17.4 Random Inputs to Linear Systems

See: B.8.

In the analysis of linear filters, the input and output are often interpreted as the sum of
a deterministic part plus noise. The noise is modeled as a random process, and therefore
the output is also a random process. We often wish to understand the statistical properties
of the output in terms of those of the input. In this connection it is useful to think of a
continuous parameter, random process as a function of two variables χ(t;w), with w a
point in the sample space, X, and t a time. In this section we use functional notation, χ(t)
[or χ(t;w)], for sample paths and let ν denote a probability measure on X inducing the
finite-dimensional distributions of the random process χ.
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The output of a shift invariant filter H with the impulse response function h, for such a
random input, is again a random process on the same sample space. It is given formally by

ϒ(t;w) = H (χ(t;w)) =
∞∫

−∞
h(t − s)χ(s;w) ds.

Such an expression is useful if it makes sense with probability 1. The statistics of the output
process ϒ are determined by the impulse response and the statistics of the input process.
The expected value of the output of a linear system is an iterated integral:

E[ϒ(t)] =
∫
X

ϒ(t;w) dν(w)

=
∫
X

∞∫
−∞

h(t − s)χ(s;w) ds dν(w).

Under reasonable hypotheses (e.g., χ is bounded and h is integrable), the order of the two
integrations can be interchanged. Interchanging the order of the integrations gives

E[ϒ(t)] =
∞∫

−∞

∫
X

h(t − s)χ(s;w) dν(w) ds

=
∞∫

−∞
h(t − s)E[χ(s)] ds.

The expected output of a linear filter applied to a random process is the result of applying
the linear filter to the expected value of the random process. Some care is necessary, even
at this stage. If E[χ(s)] is a constant μχ, then the expected value of ϒ is

E[ϒ(t)] = μχ

∞∫
−∞

h(t − s) ds = μχ

∞∫
−∞

h(s) ds = μχ ĥ(0).

For this to make sense, we should assume that
∫ |h(s)| < ∞. If the input random process

χ is stationary, then the output process Hχ is as well.

Exercise
Exercise 17.4.1. Suppose that χ is a stationary random process and H is a linear shift
invariant filter for which Hχ makes sense (with probability 1). Show that Hχ is also a
stationary process.
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17.4.1 The Autocorrelation of the Output

To analyze shift invariant, linear systems we used the Fourier transform. In this case, it
cannot be used directly since a random process does not have a Fourier transform in the
ordinary sense. Observe that for any positive number k

E[
∞∫

−∞
|χ(s)|k ds] =

∞∫
−∞

E[|χ(s)|k ] ds.

For a stationary process, these integrals diverge unless E[|χ(s)|k] ≡ 0, which would imply
that the process equals zero, with probability 1! The sample paths of a nontrivial, station-
ary process do have Fourier transforms (which are also functions) with probability 1. To
get around this difficulty, we consider the autocorrelation function. It turns out that the
autocorrelation function for a stationary process is frequently square integrable.

For a continuous time process, the autocorrelation function Rχ is defined by

Rχ (t1, t2) = E[χ(t1)χ(t2)].

Recall that the process is weak sense stationary if there is a function rχ so that the autocor-
relation function is given by

Rχ (t1, t2) = rχ (t1 − t2).

Given two random processes, χ,ϒ, on the same underlying probability space, the cross-
correlation function is defined to be

Rχ,ϒ (t1, t2) = E[χ(t1)ϒ(t2)].

For two stationary processes, Rχ,ϒ is only a function of t2 − t1. If we define

rχ,ϒ(τ) = E[χ(t)ϒ(t + τ)],

then
Rχ,ϒ(t1, t2) = rχ,ϒ(t1 − t2).

Now suppose that H is a linear shift invariant filter, with impulse response h, and that
χ is a random process for which Hχ makes sense, with probability 1. The autocorrelation
of the output process is

RHχ (t1, t2) = E[Hχ(t1)Hχ(t2)]

= E[
∞∫

−∞
h(t1 − s1)χ(s1) ds1

∞∫
−∞

h(t2 − s2)χ(s2) ds2]. (17.32)
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The expected value is itself an integral; interchanging the order of the integrations leads to

RHχ (t1, t2) = E[
∞∫

−∞
h(t1 − s1)χ(s1;w) ds1

∞∫
−∞

h(t2 − s2)χ(s2;w) ds2]

=
∞∫

−∞

∞∫
−∞

h(t1 − s1)h(t2 − s2)E[χ(s1;w)χ(s2;w)] ds1 ds2

=
∞∫

−∞

∞∫
−∞

h(t1 − s1)h(t2 − s2)Rχ (s1, s2) ds1 ds2

= [h(2) ∗ Rχ ](t1, t2),

where h(2)(x, y)
d= h(x)h(y). Hence, RHχ is expressible as a two-dimensional convolution

with Rχ .
For the case of a weak sense stationary process, the result is simpler. Recall that

Rχ (t1, t2) = rχ (t1 − t2).

Letting τi = ti − si , i = 1, 2, we obtain

RHχ (t1, t2) =
∞∫

−∞

∞∫
−∞

h(τ1)h(τ2)rχ (τ1 − τ2 + t2 − t1) dτ1 dτ2.

Thus the output is also weak sense stationary with

rHχ (τ) =
∞∫

−∞

∞∫
−∞

h(s + t)h(t)rχ (s − τ) dt ds.

In Proposition 17.2.1, the properties of the power spectral density of a stationary ran-
dom process are enumerated. Using the formula for rHχ , we compute the spectral power
density of the output in terms of the spectral power density of the input, obtaining

SHχ(ξ) = |ĥ(ξ)|2Sχ(ξ). (17.33)

This is consistent with the “determinate” case, for if x is a finite energy signal, with y = H x
and ŷ = ĥ x̂, we have

|ŷ(ξ)|2 = |ĥ(ξ)|2|x̂(ξ)|2. (17.34)

Note that the total power of the input is given by

E[χ2] = rχ (0) = 1

2π

∞∫
−∞

Sχ(ξ) dξ,
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which we compare with the power in the output,

E[(Hχ)2] = rHχ (0) = 1

2π

∞∫
−∞

|ĥ(ξ)|2Sχ(ξ) dξ.

The input and output variances are given by

σ 2
χ = 1

2π

∞∫
−∞

Sχ(ξ) dξ − μ2
χ

1

2π
σ 2

Hχ =
∞∫

−∞
|ĥ(ξ)|2Sχ(ξ) dξ − |ĥ(0)|2μ2

χ .

(17.35)

To compute the power or variance of the output requires a knowledge of both the spectral
density function Sχ of the process as well as the transfer function of the filter.

Exercises

Exercise 17.4.2. If χ and ϒ are stationary processes, show that Rχ,ϒ(t1, t2) only depends
on t2 − t1.

Exercise 17.4.3. Derive (17.33).

17.4.2 Thermal or Johnson Noise

Current is the flow of electrons through a conductor. The electrons can be thought of
as discrete particles that, at normal room temperature, move in a random way through
the conductor. Even with no applied voltage, the randomness of this motion produces
fluctuations in the voltage measured across the conductor. The thermal motion of electrons
produces noise, known as Johnson noise, in essentially any electrical circuit. While not
an important source of noise in CT imaging, Johnson noise is the main source of noise in
MRI. The intensity of this noise is related to the impedance of the electrical circuit. To
understand this dependence, we examine the result of using a white noise voltage source as
the input to the simple electrical circuit shown in Figure 17.1.
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R

V1(t)

V2(t)   V(t)

L

Figure 17.1. An RL circuit.

Thermodynamic considerations show that the expected power through the circuit, due
to the thermal fluctuations of the electrons, is

E[L I 2

2
] = kT

2
, (17.36)

where T is the absolute temperature and k is Boltzmann’s constant. The voltage source
V (t) is a white noise process with intensity σ. This means that the spectral density of the
noise is constant with

SV (ξ) = σ 2.

Using Kirchoff’s laws, it is not difficult to show that the transfer function for the current
through this circuit is

ĥ(ξ) = 1

R + i Lξ
;

see [8]. Since the input is a random process, the output current, I (t), is also a random
process. According to (17.33), its spectral density function is

SI (ξ) = σ 2 1

R2 + (Lξ)2
.

This allows the computation of E[I 2],

E[I 2] = 1

2π

∞∫
−∞

σ 2 dξ

R2 + (Lξ)2
= σ 2

2RL
. (17.37)

Comparing this result with the (17.36) gives the intensity of the white noise process:

σ 2 = 2RkT .

This result and its generalizations are also known as Nyquist’s theorem. At room temper-
ature (about 300◦K) with a resistance R = 106 Ohms, the intensity of the Johnson noise
process is

σ 2 ≈ 4 × 10−15(volt)2s.
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Of course, in a real physical system the spectrum of the thermal noise cannot be flat,
for this would imply that the noise process contains an infinite amount of energy. It is an
empirical fact that the spectrum is essentially flat up to a fairly high frequency. Instead
Johnson noise is describes as a random process, χ, with

Sχ(ξ) = σ 2χ[0,B](|ξ |),

or briefly, as bandlimited white noise. The integral over � in (17.37) is then replaced by
an integral from −B to B. If B is reasonably large, then the result is nearly the same. The
total power of the (bandlimited) Johnson noise is therefore

Stot ≈ RkT B

π
.

In many practical applications, the spectrum of the noise is bandlimited because the data
are bandlimited. The formula for Stot shows that any attempt to increase the bandwidth of
the data increases the total power of the Johnson noise commensurately.

Remark 17.4.1. Our treatment of Johnson noise is adapted from [28].

Exercise
Exercise 17.4.4. If the input is B-bandlimited white noise, what is the exact formula for
E[I 2]?

17.4.3 Optimal Filters

As a final application of these ideas, we consider the design of a noise reducing filter that
is “optimal” in some sense. Let the signal x be modeled as

x(t) = s(t) + n(t),

where s stands for the signal and n, the noise. The signal and noise are assumed to be
uncorrelated, weak sense stationary, finite variance random processes:

E[s(t1)n(t2)] = 0 for all t1 and t2. (17.38)

We would like to design a linear, shift invariant filter H that minimizes the error in the
detected signal in the sense that expected mean square error, E[|s−H x|2(t)], is minimized.
In this case both s and H x are weak sense stationary processes, and therefore the value of
the error is independent of t.

The solution of the minimization problem is characterized by an orthogonality condi-
tion,

E[(H x − s)(t1)x(t2)] = 0, for all t1, t2. (17.39)
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We give a formal derivation of this condition. Suppose that h is the impulse response of
an optimal filter and that k is an “arbitrary” impulse response. The optimality condition
implies that

d

dλ
E[|(s − (h + λk) ∗ x)(t1)|2]

∣∣
λ=0 = 0, for any t1.

Expanding the square and differentiating in t gives

E[((h ∗ x − s)k ∗ x)(t1)] = 0 for any k and t1. (17.40)

Given that the various convolutions make sense, the derivation up to this point has been
fairly rigorous. Choose a smooth, nonnegative function ϕ with bounded support and total
integral 1. For any t2, taking

kε(t) = 1

ε
ϕ

(
t − (t1 − t2)

ε

)
gives a sequence of very smooth test functions that “converge” to δ(t −(t1− t2)). Assuming
that the limit makes sense, (17.40) implies that

0 = lim
ε↓0

E[((h ∗ x − s)kε ∗ x)(t1)] = E[(h ∗ x − s)(t1)x(t2)], (17.41)

which is the desired orthogonality condition. By using finite sums to approximate k ∗ x,
the condition in (17.40) is easily deduced from (17.39).

Using (17.38), the orthogonality condition can be rewritten in terms of s and n as

0 = E[(h ∗ s(t1)+ h ∗ n(t1)− s(t1))(s(t2)+ n(t2))]
= E[h ∗ s(t1)s(t2)+ h ∗ n(t1)n(t2)− s(t1)s(t2)]

=
∞∫

−∞
E[s(τ )s(t2)]h(t1 − τ) dτ +

∞∫
−∞

E[n(τ )n(t2)]h(t1 − τ) dτ − E[s(t1)s(t2)].

Let rs and rn be the autocorrelation functions for the signal and noise, respectively. Letting
t = τ − t2 and σ = t1 − t2 gives

∞∫
−∞

rs(t)h(σ − t) dt +
∞∫

−∞
rn(t)h(σ − t) dt = rs(σ ).

This is a convolution equation, so taking the Fourier transform gives the relation

Ss(ξ)ĥ(ξ)+ Sn(ξ)ĥ(ξ) = Ss(ξ).

Recalling that the spectral density function is nonnegative, we may divide to obtain the
transfer function for the optimal filter:

ĥ(ξ) = Ss(ξ)

Ss(ξ)+ Sn(ξ)
= 1

1 + Sn(ξ)/Ss(ξ)
≈
{

1 Sn(ξ)/Ss(ξ) << 1,

0 Sn(ξ)/Ss(ξ) >> 1.
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This shows how we can use the power spectrum of the noise and a probabilistic de-
scription of the signal to design an optimal filter. This example is called the Wiener filter;
it is a very simple example of an optimal filter. There are many variants on this approach
using different classes of filters and different kinds of random processes. Kalman and Bucy
found a different approach to the problem of optimal filtering. More complete treatments
of this subject can be found in [30] or [16].

Exercises
Exercise 17.4.5. Prove that if H defines the optimal filter, then

E[|H x|2] = E[s H x]. (17.42)

Exercise 17.4.6. Using (17.42), compute the expected mean squared error for the optimal
filter, H :

E[|H x − s|2] = rs(0) −
∞∫

−∞
h(t)rs(t) dt. (17.43)

Exercise 17.4.7. Using the Parseval formula and (17.43) prove that

E[|H x − s|2] = 1

2π

∞∫
−∞

Ss(ξ)Sn(ξ) dξ

Ss(ξ)+ Sn(ξ)
.

Exercise 17.4.8. If the signal and noise have nonzero cross-correlation of the form

rsn(τ ) = E[s(t)n(t + τ)],
show that the orthogonality condition for the optimal filter becomes

∞∫
−∞

rs(t)h(σ − t) dt +
∞∫

−∞
rn(t)h(σ − t) dt = rs(σ )+ rsn(σ ).

Find the transfer function for the optimal filter in this case.

17.5 Noise in the Continuum Model for Filtered Back-Projection

Using the techniques introduced in this chapter, we study the propagation of noise through
the continuum model for the filtered back-projection algorithm. In Section 16.2 we did
analogous computations for the finite filtered back-projection algorithm. Computations in
a continuum model are often easier and provide a good cross check for the earlier discrete
computations. Let f be a function supported in the disk of radius L . We begin our anal-
ysis by assuming that � f can be measured for all (t,ω) ∈ [−L , L] × S1 and that f is
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approximately reconstructed using filtered back-projection,

fφ(x, y) = 1

2π

π∫
0

L∫
−L

� f (〈(x, y),ω〉 − s,ω)φ(s) ds dω. (17.44)

To simplify the notation in this section, we omit explicit reference to the beam width func-
tion. The results in Section 12.2.2 show that this does not reduce the generality of our
results.

The uncertainty in the measurements can be modeled in two different ways. On the one
hand, we can imagine that f itself is corrupted by noise, so that the measurements are of the
form �( f + ni). Here ni is a random process, represented by functions on �2, that models
the uncertainty in the input f. On the other hand, f can be considered to be determinate,
but the measurements themselves are corrupted by noise. In this case the measurements are
modeled as � f + nm. Here nm is a random process, represented by functions on � × S1,
that models the uncertainty in the measurements. Of course, the real situation involves a
combination of these effects. We analyze these sources of error, assuming that f itself is
zero.

The first case is easy to analyze, as we can simply apply the results in Section 17.4.
The map from f to fφ is a shift invariant linear filter with MTF given by

�̂(ξ) = ψ̂(‖ξ‖),
where

φ̂(r) = |r |ψ̂(r).

Assume that ni(x, y) is a stationary random process with mean zero for each (x, y) in �2.
Denote the autocorrelation function by

ri (x, y) = E[ni(0, 0)ni (x, y)].
Its Fourier transform Si(ξ) is the power spectral density in the input noise process. The
power spectral density of the output is given by (17.33),

So(ξ) = Si(ξ)|�̂(ξ)|2.
The total noise power in the output is therefore

Stot = 1

[2π ]2

2π∫
0

∞∫
0

Si(rω)|ψ̂(r)|2r dr dω. (17.45)

A useful, though not too realistic example, is to assume that ni is a white noise process with
Si(ξ) = σ 2. If φ is the Shepp-Logan filter with

φ̂(r) = |r |
∣∣∣∣sinc

(
dr

2

)∣∣∣∣3 ,
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then the total noise in the output, which equals the variance ro(0), is

Stot = C
σ 2

d2
, (17.46)

where C is a positive constant. The reconstruction algorithm amplifies the uncertainty in f
by a factor proportional to d−2.

The other possibility is that the noise is measurement noise. In this case nm is a function
on � × S1. Using an angular coordinate, we can think of nm as a function of (t, θ) that is
2π -periodic. We assume that the noise process is weak sense stationary, so that

E[nm(t1, θ1)nm(t2, θ2)] = rm(t1 − t2, θ1 − θ2),

where rm(τ, θ) is also 2π -periodic in θ. The filtered back-projection algorithm applied to
the noise gives

nmφ(x, y) = 1

4π

π∫
0

∞∫
−∞

nm(〈(x, y),ω〉 − s,ω)φ(s) ds dω.

For convenience, we have replaced the finite limits of integration with infinite limits. Be-
cause the noise is bounded and the Shepp-Logan filter is absolutely integrable, this does
not significantly affect the outcome.

The autocorrelation of the noise in the output is

E[nmφ(x, y)nmφ(0, 0)] =
1

[2π ]2

π∫
0

π∫
0

∞∫
−∞

∞∫
−∞

rm(〈(x, y),ω(θ1)〉 + s2 − s1, θ1 − θ2)φ(s1)φ(s2) ds1 ds2 dθ1 dθ2.

(17.47)

Without further information this expression is difficult to evaluate. We make the hypothesis
that the measurement noise is white (i.e., the errors in one ray are uncorrelated with the
errors in another). This means that

rm(τ, θ) = σ 2δ(τ)δ(θ),

where, strictly speaking θ should be understood in this formula as θ mod 2π. That the
errors from ray to ray are weakly correlated is not an unreasonable hypothesis; however, the
analysis in Section 16.1.2, particularly equation (16.7), shows that the variance is unlikely
to be constant. These assumptions give

E[nmφ(x, y)nmφ(0, 0)] = σ 2

[2π ]2

π∫
0

∞∫
−∞

φ(s1)φ(s1 − 〈(x, y),ω(θ1)〉) ds1 dθ1. (17.48)
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Because φ is an even function and φ̂(0) = 0, this can be reexpressed as a two-dimensional
inverse Fourier transform

E[nmφ(x, y)nmφ(0, 0)] = σ 2

[2π ][4π ]2

π∫
0

∞∫
−∞

|φ̂(r)|2
|r | eir〈(x,y),ω〉|r | dr dω. (17.49)

The power spectral density in the output is therefore

So(ξ) = σ 2

8π

|φ̂(‖ξ‖)|2
‖ξ‖ .

Using the same filter as before, the total noise power in the output is

Stot = C ′ σ
2

d3
, (17.50)

where again C ′ is a positive constant. The total noise power in the measurements is am-
plified by a factor proportional to d−3. Recalling that the resolution is proportional to d, it
follows that, as the resolution increases, errors in measurement have a much greater affect
on the reconstructed image than uncertainty in f itself. In either case the noise is assumed
to have mean zero so a nonzero f would only change the variance computations by a
bounded function of d. As the number of pixels in the reconstruction grids is O(d−2), this
result agrees with equation (16.16), where we computed the noise power per pixel. Note
finally that with either sort of noise, the variance tends to infinity as d goes to zero. This
substantiates our claim that noise necessitates the use of regularization in the reconstruction
process. This discussion is adapted in part from [69].

Exercise
Exercise 17.5.1. Repeat the computations in this section with f a nonzero input.

17.6 Conclusion

We have now completed our journey, starting with very simple mathematical models of
very simple physical systems and ending with a rather comprehensive model for the mea-
surement and reconstruction processes in x-ray tomography. Along the way we have intro-
duced many of the mathematical techniques that are applied in the full spectrum of imaging
modalities. Of necessity, much has been omitted and some topics have only been outlined.
Nonetheless, it is my hope that a good command of the material in this book be adequate
preparation for reading much of the current research literature in medical imaging. Let me
know what you think!



Appendix A

Background Material

In applied subjects, mathematics needs to be appreciated in three rather distinct ways: (1) in
the abstract context of perfect and complete knowledge generally employed in mathematics
itself; (2) in a less abstract context of fully specified, but incompletely known functions—
this is the world of mathematical approximation; and (3) in a realistic context of partially
known functions and noisy, approximate data, which is closer to the real world of mea-
surements. With these different perspectives in mind, we discuss some of the mathematical
concepts underlying image reconstruction and signal processing. The bulk of this material
is usually presented in undergraduate courses in linear algebra, analysis, and functional
analysis. Instead of a giving the usual development, which emphasizes mathematical rigor
and proof techniques, we present this material from an engineering perspective. Many of
the results are proved in exercises, and examples are given to illustrate general phenomena.
This material is intended to provide background material and recast familiar material in a
more applied framework; it should be referred to as needed.

A.1 Numbers

We begin by discussing numbers, beginning with the abstract concepts of numbers and their
arithmetic properties. Representations of numbers are then considered, leading to a com-
parison between abstract numbers and the way numbers are actually used in computation.

A.1.1 Integers

Mathematicians think of numbers as a set that has two operations, addition and multipli-
cation, that satisfy certain properties. The mathematical discussion of this subject always
begins with the integers. We denote the set of integers by � and the set of positive integers
(the whole or natural numbers) by �. There are two operations defined on the integers: ad-
dition, +, and multiplication, ×. Associated to each of these operations is a special number:
For addition that number is 0 it is defined by the property

n + 0 = 0 + n = n for every integer n.

639
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For multiplication that number is 1 and it is defined by the property

n × 1 = 1 × n = n for every integer n.

The important axiomatic properties of addition and multiplication are as follows:

COMMUTATIVE LAW: n + m = m + n, n × m = m × n, for every m, n ∈ �

ASSOCIATIVE LAW: (n + m) + p = n + (m + p), (n × m) × p = n × (m × p), for
every m, n, p ∈ �

DISTRIBUTIVE LAW: (m + n)× p = m × p + n × p for every m, n, p ∈ �.

These rules are familiar from grade school, and we use them all the time when we do
computations by hand.

In mathematics numbers are treated in an axiomatic way. Neither a representation of
numbers nor an algorithm to perform addition and multiplication has yet to be considered.
We normally use the decimal representation, when working with numbers “by hand.” To
define a representation of numbers, we first require some special symbols; for the decimal
representation we use the symbols 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, which represent the numbers
zero through nine. We also introduce an additional symbol, −, to indicate that a number is
smaller than zero. The decimal representation of a positive integer is a string of numbers

amam−1 . . . a1a0 where 0 ≤ a j ≤ 9, for j = 0, . . . ,m.

What does this string of numbers mean? By definition,

amam−1 . . . a1a0
d=

m∑
j=0

a j 10 j .

What appears on the right-hand side of this formula is a mathematical number; what ap-
pears on the left is its decimal or base 10 representation. A negative number is represented
by prepending the minus sign −am . . . a0. For each positive integer k > 1 there is an anal-
ogous representation for integers called the base-k or k-ary expansion.

Algorithms for addition and multiplication require addition and multiplication tables.
To do addition in base 10, we need to know how to do the sums a + b for 0 ≤ a, b ≤ 9;
then we use “carrying” to add larger numbers. To do multiplication in base 10, we need
to know how to do the products a × b for 0 ≤ a, b ≤ 9. The normal human mind has
no difficulty remembering these base 10 addition and multiplication tables. In the early
days of computing this was a large burden to place on a machine. It was found to be much
easier to build a machine that uses a base 2 or binary representation to store and manipulate
numbers. In the binary representation an integer is represented by a string of zeros and
ones. By definition,

bmbm−1 . . . b1b0 =
m∑

j=0

b j 2
j , where b j ∈ {0, 1} for j = 0, . . . ,m.
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The analogous algorithms for adding and multiplying in base 2 only require a knowledge
of a + b, a × b for 0 ≤ a, b ≤ 1, which is a lot less to remember. On the other hand, you
need to do a lot more carrying to add or multiply numbers of a given size.

Even in this very simple example we see that there is a trade-off in efficiency of com-
putation between the amount of memory utilized and the number of steps needed to do a
certain computation. There is a second reason why binary representations are preferred for
machine computation. For a machine to evaluate a binary digit, it only needs to distinguish
between two possible states. This is easy to do, even with inexpensive hardware. To eval-
uate a decimal digit, a machine would need to distinguish between 10 different possible
states. This would require a much more expensive machine. Finally, there is the issue of
tradition. It might be cheaper and more efficient to use base 3 for machine computation,
but the mere fact that so many base 2 machines already exist make it highly unlikely that
we will soon have to learn to do arithmetic in base 3.

Because we have a conceptual basis for numbers, there is no limit to size of the numbers
we can work with. Could a given number N be the largest number we can “handle?” It
would be hard to see why, because if we could handle N, then we could certainly N + 1.
In fact, this is essentially the mathematical proof that there is no largest integer. The same
cannot be said of a normally programmed computer; it has numbers of maximum and
minimum size with which it can work.

Exercises
Exercise A.1.1. Write algorithms to do addition and multiplication using the decimal rep-
resentation of numbers.

Exercise A.1.2. Adding the symbols A, B,C, D, E, F to represent the decimal numbers
10, 11, 12, 13, 14, 15 leads to the base 16 or hexadecimal representation of numbers. Work
out the relationship between the binary and hexadecimal representations. Write out the
addition and multiplication tables in hexadecimal.

A.1.2 Rational Numbers

The addition operation also has an inverse operation which we call subtraction: Given a
number n, there is a number −n that has the property n + (−n) = 0. We are so used to this
that it is difficult to see this as a “property,” but note that, if we are only permitted to use
integers, then the multiplication operation does not have an inverse. This can be thought of
in terms of solving equations: Any equation of the form

x + m = n,

where m, n ∈ �, has an integer solution x = n − m. On the other hand, for many choices
of m, n ∈ � the equation

n × x = m (A.1)

does not have an integer solution.
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Again we learned in grade school how to handle this problem: We introduce fractions
and then (A.1) has the solution

x = m

n
.

This is just a symbolic formula, and its meaning is a good deal more subtle than the meaning
of x = n − m. First, if n = 0, then it means nothing. If n 	= 0 and p is another nonzero
integer, then the solution of the equation

p × n × x = p × m (A.2)

is the same as the solution to (A.1). This means that the number represented by the symbol
p×m
p×n is the same as the number represented by the symbol m

n . We now introduce rational
numbers, �, as the set of symbols

{m

n
: m, n ∈ �},

with the understanding that

1. The denominator n is nonzero and

2. As numbers m

n
= p

q

if
m × q = p × n. (A.3)

We have defined the set of rational numbers and now have to define the operations of
addition and multiplication on them. Thus far, all we know is how to add and multiply
integers. Our definitions for addition and multiplication of rational numbers have to be
given in terms of these operations. Multiplication is relatively easy:

m

n
× p

q
d= m × p

n × q
.

To define addition we use the familiar concept of a common denominator and set

m

n
+ p

q
d= m × q + n × p

n × q
. (A.4)

The formula only involves operations that we have already defined, though it is not imme-
diately obvious that this is actually an operation on numbers and not merely an operation
on symbols. Equation (A.1) can now be solved for any m, n ∈ � as long as n 	= 0. In fact,
we get a little more for our effort; the equations

p × x = q

can be solved for any rational numbers q and p 	= 0.
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There are two different ways to represent rational numbers: (1) as fractions or (2) as
k-ary expansions analogous to those used for integers. Decimal representations of the form

am . . . a0a−1 . . . a−n
d=

m∑
j=−n

a j 10− j , where 0 ≤ a j ≤ 9

represent rational numbers. It is easy to see that only fractions of the form

n

10k
for n, k ∈ �,

have such a finite decimal representation. For some purposes the representation as fractions
is more useful; it is certainly more efficient. For example, using a fraction, we have an exact
representation of the number 1/3; using long division, we find that

1

3
=

∞∑
j=1

3

10 j
.

In other words, to exactly represent 1/3 as a decimal requires infinitely many decimal
places. Thus far we have not even defined infinite sums, but from the engineering point of
view it is clear what this means.

Because the representation as fractions is not unique and because of the need to find
common denominators for addition, fractions are not well adapted to machine computation.
In a computer rational numbers are represented as strings of zeros and ones. Such a string
of zeros and ones is called a binary string. Depending on the application, different numbers
can be assigned to a given binary string. One way to assign a number to a binary string with
2N + 2 entries or bits is to set

aN+1aN . . . a−N
d= (−1)aN+1 2N

N∑
j=−N

a j 2
j .

This called a fixed-point representation. With this choice, the spacing between consecu-
tive numbers is 1 and the maximum and minimum numbers that can be represented are
±(22N+1 − 1). This allows the representation of large numbers but sacrifices accuracy. If
we knew in advance that all our numbers would lie between −1 and +1 then we could use
the same 2N + 2 bits to get more accurate representations for a smaller range of numbers
by instead assigning the number

(−1)aN+1
1

2N

N∑
j=−N

a j 2
j

to this binary string. Here the minimum spacing between numbers is 2−2N .
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Floating-point numbers represents a compromise between these two extremes. The
string of binary digits is divided into two parts, an exponent and a fractional part. Writing
the string as bsese0 . . . em f1 . . . fn, with m + n = 2N, the corresponding number is

(−1)bs 2
[
(−1)es

∑m
j=0 e j 2 j

] n∑
k=1

fk2−k .

Using a floating-point representation, we can represent a much larger range of numbers. If,
for example, we let m = n = N, then with 2N + 2 bits we can represent numbers between
±22N . The accuracy of the representation is proportional to the size of the number. For
numbers between 2k−1 and 2k the minimum spacing is 2k−N . In applications this is a rea-
sonable choice to make. Suppose a number x is the result of a measurement and its value
is determined within �x . The number �x is called the absolute error; usually it is not a
very interesting number. The ratio �x

x is more useful; it is is called the relative error. In a
floating-point representation the relative accuracy of the representation is constant through-
out the range of representable numbers. On the other hand, it places subtle constraints on
the kinds of computations that can accurately be done. For example, subtracting numbers
of vastly different sizes does not usually give a meaningful result.

Since we only have finitely many digits, computations done in a computer are essen-
tially never exact. It is therefore very important to use algorithms that are not sensitive to
repeatedly making small errors of approximation. In image reconstruction this is an impor-
tant issue as the number of computations used to reconstruct a single image is usually in
the millions. For a thorough discussion of treatment of numbers in machine computation,
see [127].

Exercises
Exercise A.1.3. Show that the condition in (A.3) is the correct condition to capture the
elementary concept that two fractions represent the same number.

Exercise A.1.4. Show that formula (A.4) defines an operation on rational numbers. That
is, if m

n = m′
n′ and p

q = p′
q ′ , then

m × q + n × p

n × q
= m ′ × q ′ + n′ × p′

n′ × q ′

as rational numbers.

Exercise A.1.5. Find the exact binary representation of 1/3.

Exercise A.1.6. What would it mean to represent a number in base 1? What numbers can
be represented this way? Find as many problems with base 1 as you can. (Thanks to Dr.
Fred Villars for suggesting this question.)

Exercise A.1.7. Describe binary algorithms for addition, subtraction, multiplication, and
division.
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A.1.3 Real Numbers

In practice we can never use anything beyond rational numbers; indeed for machine com-
putation we have at most a finite collection of numbers at our disposal. We could take
the attitude that there is no point in considering numbers beyond rational numbers. Some
people do, but it vastly limits the mathematical tools at our disposal. From a mathematical
perspective, the rational numbers are inadequate. For example, there is no rational number
solving the equation

x2 = 2.

In other words, there are “holes” in the rational numbers. Calculus relies on the concept
of a continuum, so it is necessary to fill these holes. It is well beyond the scope of this
book to give an axiomatic development for the real numbers. Instead we assume that the
real numbers exist and describe the essential difference between the real numbers and the
rational numbers: The real numbers are complete. To define this concept this we need to
define the limit of a sequence of numbers. Recall the absolute value function

|x| =
{

x for x ≥ 0,

−x for x < 0.

The distance between two numbers x and y is defined to be

d(x, y)
d= |x − y|.

It is easy to see that this has the three basic properties of a distance:

NONDEGENERACY: d(x, y) ≥ 0 and d(x, y) = 0 if and only if x = y

SYMMETRY: d(x, y) = d(y, x)

THE TRIANGLE INEQUALITY: d(x, y) ≤ d(x, z) + d(z, y)

The third condition is called the triangle inequality by analogy with the familiar fact from
Euclidean geometry: The length of one side of a triangle is less than the sum of the lengths
of the other sides. We use the standard notation � to denote the set of real numbers. The
following definitions are useful when discussing sets of real numbers.

Definition A.1.1. A subset S of the real numbers is bounded from below if there is a number
m so that

m ≤ x, for all x ∈ S,

and bounded from above if there is a number M such that

x ≤ M, for all x ∈ S.

If a set is bounded from above and below, then we say it is bounded.

Definition A.1.2. If a subset S of � is bounded from below then, we define the infimum
of S, inf S, as the largest number m such that m ≤ x for all x ∈ S. If S is bounded from
above, we define the supremum of S, sup S to be the smallest number M such that x ≤ M
for all x ∈ S.
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Sequences

A sequence of real numbers is an ordered list of numbers. A sequence can be either finite
or infinite. In this section we consider only infinite sequences. Frequently the terms of
a sequence are labeled or indexed by the positive integers x1, x2, x3, . . . . The notation
< xn > refers to a sequence indexed by n. A sequence is bounded if there is a number M
so that

|xn| ≤ M

for all choices of the index n. It is monotone increasing if xn ≤ xn+1 for all n. The definition
of limit and the completeness axiom for the real numbers follow:

LIMITS: If < xn > is a sequence of real numbers, then we say that < xn > converges
to x if the distances, d(xn, x) can be made arbitrarily small by taking the index
sufficiently large. More technically, given a positive number ε > 0 we can find an
integer N so that

d(xn, x) < ε provided n > N .

In this case we say the “limit of the sequence < xn > is x” and write

lim
n→∞ xn = x .

COMPLETENESS AXIOM: If < xn > is a monotone increasing, bounded sequence of real
numbers, then < xn > converges to limit; that is, there exists a real number x such
that limn→∞ xn = x .

From the completeness axiom it is easy to show that bounded, monotone decreasing se-
quences also converge. The completeness axiom is what distinguishes the real numbers
from the rational numbers. For example, it is not difficult to construct a bounded, monotone
sequence of rational numbers < xn > that get closer and closer to

√
2; see Exercise A.1.10.

That is, d(xn,
√

2) can be made as small as we like by taking n sufficiently large. But
√

2
is not a rational number, showing that < xn > cannot converge to a rational number. The
rational numbers are not complete!

Using the completeness axiom, it is not difficult to show that every real number has a
decimal expansion. That is, given a positive real number x, we can find a (possibly infinite)
sequence < am, am−1, · · · > of numbers such that 0 ≤ a j ≤ 9 and

x = lim
N→∞

⎡⎣ m∑
j=−N

a j 10 j

⎤⎦ .

In this context the index set for the sequence < a j > is the set of integers less than or
equal to m. If x has only finitely many nonzero terms in its decimal expansion, then, by
convention, we set all the remaining digits to zero. To study infinite decimal expansions, it
is useful to have a formula for the sum of a geometric series.
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Proposition A.1.1. If r ∈ � and N ∈ �, then

N∑
j=0

r j = r N+1 − 1

r − 1
. (A.5)

If |r | < 1, then the limit of this sum exists as N → ∞; it is given by

∞∑
j=0

r j = 1

1 − r
. (A.6)

Because the digits in the decimal expansion are restricted to lie between zero and nine,
we can estimate the error in replacing x by a finite part of its decimal expansion:

0 ≤ x −
m∑

j=−N

a j 10 j ≤
∞∑

j=N+1

9

10 j
= 1

10N
,

which agrees with our intuitive understanding of decimal representations. It tells us that real
numbers can be approximated, with arbitrary accuracy by rational numbers. The addition
and multiplication operations can therefore be extended by continuity to all real numbers:
Suppose that < xn > and < yn > are sequences of rational numbers converging to real
numbers x and y. Then

x + y
d= lim

n→∞(xn + yn) and x × y lim
n→∞

d= xn × yn.

Arguing in a similar way, we can show that any positive number x has a binary repre-
sentation; this is a (possibly infinite) binary sequence < bn, bn−1, · · · > such that

x = lim
N→∞

⎡⎣ n∑
j=−N

b j 2
j

⎤⎦ .

A finite part of the binary expansion gives an approximation for x that satisfies

0 ≤ x −
n∑

j=−N

b j 2
j ≤ 1

2N
.

This introduction to real numbers suffices for our applications; a very good and complete
introduction to this subject can be found in [27].

Remark A.1.1. As it serves no further pedagogical purpose to use × to indicate multipli-
cation of numbers, we henceforth follow the standard notation of indicating multiplication
of numbers by juxtaposition: If a, b are numbers, then ab is the product of a and b.
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Exercises
Exercise A.1.8. Prove (A.5).

Exercise A.1.9. Show that completeness axiom is equivalent to the following statement: If
S is a subset of � that is bounded from above, then sup S exists.

Exercise A.1.10. Define the sequence by letting x0 = 2 and

x j+1 = x j

2
+ 1

x j
for j > 0.

Show that < xn > is a bounded, monotone decreasing sequence of rational numbers and
explain why its limit must be

√
2. Extra credit: Show that there is a constant C such that

|x j −
√

2| < C2−2 j
.

This shows that < xn > converges very quickly to
√

2.

Exercise A.1.11. Show that the definitions of addition and multiplication of real numbers
as limits make sense. That is, if < xn > and < x ′

n > both converge to x and < yn > and
< y′

n > both converge to y, then

lim
n→∞ xn + yn = lim

n→∞ x ′
n + y′

n and lim
n→∞ xn × yn = lim

n→∞ x ′
n × y′

n.

A.1.4 Cauchy Sequences

In the previous section we discussed the properties of convergent sequences of numbers.
Suppose that < xn > is a sequence of numbers. How do we decide if it has a limit or
not? The definition of completeness only considers bounded monotone sequences; many
convergent sequences are not monotone. In light of this it would be useful to have a more
flexible criterion for a sequence to have a limit. If < xn > converges to x∗, then, as n
gets large, xn gets closer to x∗. As an inevitable consequence, the distances between the
terms of the sequence, {|xn − xm |}, must become small as both m and n get large. In order
to converge, the terms of the sequence must cluster closer and closer to each other as the
index gets large. A sequence with this latter property is called a Cauchy sequence.

Definition A.1.3. A sequence of real numbers < xn > is called a Cauchy sequence if given
ε > 0 there is an N so that

|xn − xm | < ε whenever both m and n are larger than N . (A.7)

The fundamental importance of this concept is contained in the following theorem.
This is sometimes called the Cauchy criterion.

Theorem A.1.1 (Cauchy criterion). A sequence of real numbers converges if and only if
it is a Cauchy sequence.
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The proof can be found in [27].
If we imagine “observing” a convergent sequence of numbers, then it seems unlikely

that one could directly observe its limit. On the other hand, the clustering described in the
Cauchy criterion is something that is readily observed.

Example A.1.1. Let xn = n−1. If n < m, then

|xn − xm | ≤ 1

n
.

This shows that xn is a Cauchy sequence.

Example A.1.2. Suppose that < xn > is a sequence and it is known that for any ε > 0
there is an N so that |xn − xn+1| < ε if n > N . This does not imply that the sequence
converges. For the sequence defined by

xn =
n∑

j=1

1

j
,

the differences xn+1 − xn = (n + 1)−1 go to zero as n tends to infinity. However, < xn >
is unbounded as n tends to infinity. This shows that it is not enough for the successive
terms of a sequence to be close together. The Cauchy criterion requires that the differences
|xn − xm | be small for all sufficiently large values of m and n.

Exercises
Exercise A.1.12. Suppose that < xn > is a sequence of real numbers such that

lim
N→∞

N∑
j=1

|x j − x j+1| < ∞.

Show that limn→∞ x j exists.

Exercise A.1.13. Show that a convergent sequence satisfies the Cauchy convergence crite-
rion.

A.2 Vector Spaces

We now discuss the linear structure of Euclidean space, linear transformations, and different
ways to measure distances and angles. Geometrically, � is usually represented by a straight
line; the numbers are coordinates for this line. We can specify coordinates on a plane
by choosing two intersecting straight lines, and coordinates in space are determined by
choosing three lines that intersect in a point. Of course, we can continue in this way. We
denote the set of ordered pairs of real numbers by

�2 = {(x, y) : x, y ∈ �}
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and the set of ordered triples by

�3 = {(x, y, z) : x, y, z ∈ �}.
These are known as the Euclidean 2-space and 3-space, respectively. From a mathematical
perspective, there is no reason to stop at 3; for each n ∈ � we let �n denote the set of
ordered n-tuples (x1, x2, . . . , xn) of real numbers. This is called the Euclidean n-space,
or just n-space for short. From a physical perspective, we can think of n-space as giving
(local) coordinates for a system with n-degrees of freedom. The physical space we occupy
is 3-space; if we include time, then this gives us 4-space. If we are studying the weather,
then we would want to know the temperature, humidity, and barometric pressure at each
point in space-time, so this requires 7 parameters (x, y, z, t, T, H, P). More complicated
and complete physical models are often described as spaces with more dimensions.

A.2.1 Euclidean n-Space

All the Euclidean n-spaces have the structure of linear or vector spaces. This means that
we know how to add two n-tuples of real numbers

(x1, . . . , xn) + (y1, . . . , yn) = (x1 + y1, . . . , xn + yn)

and multiply an n-tuple of real numbers by a real number

a · (x1, . . . , xn) = (ax1, . . . axn).

These two operations are compatible in that

a · (x1, . . . , xn)+ a · (y1, . . . , yn) = a · (x1 + y1, . . . , xn + yn)

= (a(x1 + y1), . . . , a(xn + yn)).

An ordered n-tuple of numbers is called an n-vector or vector. The first operation is called
vector addition (or just addition), and the second operation is called scalar multiplication.
For most values of n there is no way to define a compatible notion of vector multiplication.
There are five cases where this can be done: if n = 1 (real numbers), n = 2 (complex
numbers), n = 3 (cross product), n = 4 (quaternions), and n = 8 (Cayley numbers). It
is often convenient to use a single letter to denote an n-tuple of numbers. In this book
boldface, Roman letters are used to denote vectors; that is,

x = (x1, . . . , xn).

Provisionally we also use a · x to denote scalar multiplication. The compatibility of vector
addition and scalar multiplication is then written as

a · (x + y) = a · x + a · y.



A.2. Vector Spaces 651

There is a special vector all of whose entries are zero denoted by 0 = (0, . . . , 0). It
satisfies

x + 0 = x = 0 + x

for any vector x. It is also useful to single out a collection of n coordinate vectors. Let
e j ∈ �n denote the vector with all entries zero but for the j th-entry, which equals 1. For
example, if n = 3, then the coordinate vectors are

e1 = (1, 0, 0), e2 = (0, 1, 0), e3 = (0, 0, 1).

These are called coordinate vectors because we can express any vector as a sum of these
vectors. If x ∈ �n, then

x = x1 · e1 + · · · + xn · en =
n∑

j=1

x j · e j . (A.8)

The n-tuple of numbers (x1, . . . , xn) are then the coordinates for the vector x. The set of
vectors {e1, . . . , en} is also called the standard basis for �n.

The linear structure singles out a special collection of real-valued functions.

Definition A.2.1. A function f : �n → � is linear if it satisfies the following conditions:
For any pair of vectors x, y ∈ �n and a ∈ �,

f (x + y) = f (x)+ f (y),

f (a · x) = a f (x).
(A.9)

In light of (A.8), it is clear that a linear function on �n is completely determined by the
n values { f (e1), . . . , f (en)}. For an arbitrary x ∈ �n, (A.8) and (A.9) imply

f (x) =
n∑

j=1

x j f (e j ).

On the other hand, it is easy to see that given n numbers {a1, . . . , an}, we can define a linear
function on �n by setting

f (x) =
n∑

j=1

a j x j .

We therefore have an explicit knowledge of the collection of linear functions.
What measurements are required to determine a linear function? While it suffices, it is

not actually necessary to measure { f (e1), . . . , f (en)}. To describe what is needed requires
a definition.

Definition A.2.2. If {v1, . . . , vn} is a collection of n vectors in �n with the property that
every vector x can be represented as

x =
n∑

j=1

a j · v j , (A.10)

for a set of scalars {a1, . . . , an}, then we say that these vectors are a basis for �n. The
coefficients are called the coordinates of x with respect to this basis.
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Note that the standard bases, defined previously, satisfy (A.10).

Example A.2.1. The standard basis for �2 is e1 = (1, 0), e2 = (0, 1). The vectors v1 =
(1, 1), v2 = (0, 1) also define a basis for �2. To see this, we observe that

e1 = v1 − v2 and e2 = v2;
therefore, if x = x1 · e1 + x2 · e2, then

x = x1 · (v1 − v2)+ x2 · v2 = x1 · v1 + (x2 − x1) · v2.

Proposition A.2.1. A collection of n vectors, {v1, . . . , vn} in �n defines a basis if and only
if the only n-tuple, (a1, . . . , an) for which

n∑
j=1

a j · v j = 0

is the zero vector.

The proposition implies that the coefficients appearing in (A.10) are uniquely determined
by x.

If f is a linear function, then the proposition shows that the values

{ f (v1), . . . , f (vn)},
for any basis {v1, . . . , vn}, suffice to determine f. On the other hand, given any set of n
numbers, {a1, . . . , an}, we can define a linear function f by setting

f (v j ) = a j for 1 ≤ j ≤ n (A.11)

and extending by linearity. This means that if

x =
∑
j=1

b j · v j ,

then

f (x) =
n∑

j=1

b j a j . (A.12)

From the standpoint of measurement, how are vectors in �n distinguished from one
another? Linear functions provide an answer to this question. Let {v1, . . . , vn} be a basis
and for each 1 ≤ j ≤ n we define the linear function f j by the conditions

f j (v j ) = 1, f j (vi ) = 0 for i 	= j.

Suppose that for each j we can build a machine whose output is f j (x). Two vectors x and
y are equal if and only if f j (x) = f j (y) for 1 ≤ j ≤ n.
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Exercises
Exercise A.2.1. Prove Proposition A.2.1.

Exercise A.2.2. Show that the function defined in (A.11) and (A.12) is well defined and
linear.

Exercise A.2.3. Let f : �n → � be a nonzero linear function. Show that there is a basis
{v1, . . . , vn} for �n such that

f (v1) = 1 and f (v j ) = 0 for 2 ≤ j ≤ n.

A.2.2 General Vector Spaces

As is often the case in mathematics, it is useful to introduce an abstract concept that en-
compasses many special cases. The Euclidean spaces introduced in the previous sections
are examples of vector spaces.

Definition A.2.3. Let V be a set; it is a real vector space if it has two operations:

ADDITION: Addition is a map from V × V → V . If (v1, v2) is an element of V × V, then
we denote this by (v1, v2) �→ v1 + v2.

SCALAR MULTIPLICATION: Scalar multiplication is a map from � × V → V . If a ∈ �

and v ∈ V, then we denote this by (a, v) �→ a · v.
The operations have the following properties:

COMMUTATIVE LAW: v1 + v2 = v2 + v1

ASSOCIATIVE LAW: (v1 + v2)+ v3 = v1 + (v2 + v3)

DISTRIBUTIVE LAW: a · (v1 + v2) = a · v1 + a · v2

Finally, there is a special element 0 ∈ V such that

v + 0 = v = 0 + v and 0 = 0 · v;
this vector is called the zero vector.

We consider some examples of vector spaces.

Example A.2.2. For each n ∈ �, the space �n with the addition and scalar multiplication
defined previously is a vector space.

Example A.2.3. The set of real-valued functions defined on � is a vector space. We define
addition of functions by the rule ( f +g)(x) = f (x)+g(x); scalar multiplication is defined
by (a · f )(x) = a f (x). We denote the space of functions on � with these operations by 
.

Example A.2.4. If f1 and f2 are linear functions on �n, then define f1 + f2 as previously:

( f1 + f2)(x) = f1(x)+ f2(x) for all x ∈ �n

and (a · f )(x) = a f (x). A sum of linear functions is a linear function, as is a scalar
multiple. Thus the set of linear functions on �n is also a vector space. This vector space is
called the dual vector space; it is denoted by (�n)′.
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Example A.2.5. For each n ∈ � ∪ {0}, let �n denote the set of real-valued polynomial
functions, of degree at most n. Since the sum of two polynomials of degree at most n is
again a polynomial of degree at most n, as is a scalar multiple, it follows that �n is a vector
space.

Many natural mathematical objects have a vector space structure. Often a vector space
is subset of a larger vector space.

Definition A.2.4. Let V be a vector space; a subset U ⊂ V is a subspace if, whenever
u1, u2 ∈ U, then u1 + u2 ∈ U and for every a ∈ �, a · u1 ∈ U as well. Briefly, a subset
U is a subspace if it is a vector space with the addition and scalar multiplication it inherits
from V .

Example A.2.6. The subset of �2 consisting of the vectors {(x, 0) : x ∈ �} is a subspace.

Example A.2.7. Let f : �n → � be a linear function; the set {v ∈ �n : f (v) = 0} is a
subspace. This subspace is called the null space of the linear function f.

Example A.2.8. The set of polynomials of degree at most 2 is a subspace of the set of
polynomials of degree at most 3.

Example A.2.9. The set of vectors {v ∈ �n : f (v) = 1} in not a subspace.

Example A.2.10. If g : (x, y) → � is defined by g(x, y) = x2 − y, then the set of vectors
{(x, y) ∈ �2 : g(x, y) = 0} is not a subspace.

Definition A.2.5. Let {v1, . . . , vm} be a collection of vectors in a vector space V . A vector
of the form

v = a1 · v1 + · · · + am · vm

is called a linear combination of the vectors {v1, . . . , vm}. The linear span of these vectors
is the set of all linear combinations

span(v1, . . . , vm)
d= {a1 · v1 + · · · + am · vm : a1, . . . am ∈ �}.

Example A.2.11. The linear span of a collection of vectors {v1, . . . , vm} ⊂ V is a subspace
of V .

A basic feature of a vector space is its dimension. This is a precise mathematical
formulation of the number of degrees of freedom. The vector space �n has dimension n.
The general concept of a basis is needed to define the dimension.

Definition A.2.6. Let V be a vector space; a set of vectors {v1, . . . , vn} ⊂ V is said to be
linearly independent if

n∑
j=1

a j · v j = 0

implies that a j = 0 for j = 1, . . . , n. This is another way of saying that it is not possible
to write one of these vectors as a linear combination of the others. A finite set of vectors
{v1, . . . , vn} ⊂ V is a basis for V if

1. The vectors are linearly independent.
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2. Every vector in V is a linear combination of these vectors; that is,

span(v1, . . . , vn) = V .

The definition of a basis given earlier for the vector spaces �n is a special case of this
definition. If a vector space V has a basis then every basis for V has the same number of
elements. This fact makes it possible to define the dimension of a vector space.

Definition A.2.7. If a vector space V has a basis consisting of n vectors, then the dimension
of V is n. We write

dim V = n.

If {v1, . . . , vn} is a basis for V, then for every vector v ∈ V there is a unique point
(x1, . . . , xn) ∈ �n such that

v = x1 · v1 + · · · + xn · vn. (A.13)

A vector space V of dimension n has exactly the same number of degrees of freedom as �n.
In fact, by choosing a basis we define an isomorphism between V and �n. This is because
if v ↔ (x1, . . . , x2) and v′ ↔ (y1, . . . , yn) in (A.13), then

v + v′ = (x1 + y1) · v1 + · · · + (xn + yn) · vn

and for a ∈ �

a · v = (ax1) · v1 + · · · + (axn) · vn.

From this point of view, all vector spaces of dimension n are the same. The abstract concept
is still useful. Vector spaces often do not come with a natural choice of basis. Indeed
the possibility of changing the basis—that is changing the identification of V with �n—
is a very powerful tool. In applications we try to choose a basis that is well adapted to
the problem at hand. It is important to note that many properties of vector spaces are
independent of the choice of basis.

Example A.2.12. The vector space 
 of all functions on � does not have a basis; that
is, we cannot find a finite collection of functions such that any function is a linear com-
bination of these functions. The vector space 
 is infinite dimensional. The study of
infinite-dimensional vector spaces is called functional analysis; we return to this subject in
Section A.3.

Example A.2.13. For each n the set {1, x, . . . , xn} is a basis for the �n. Thus the dim �n =
n + 1.

Exercises
Exercise A.2.4. Show that 
, defined in Example A.2.3, is a vector space.

Exercise A.2.5. Show that the set of polynomials {x j : 0 ≤ j ≤ n} is a basis for �n.
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Exercise A.2.6. Show that the set of polynomials {x j (1 − x)n− j : 0 ≤ j ≤ n} is a basis
for �n.

Exercise A.2.7. Show that if a vector space V has a basis, then any basis for V has the
same number of vectors.

Exercise A.2.8. Let V be a vector space with dim V = n and let V ′ denote the set of linear
functions on V . Show that V ′ is also a vector space with dim V ′ = n.

A.2.3 Linear Transformations and Matrices

The fact that both �n and �m have linear structures allows us to single out a special class
of maps between these spaces.

Definition A.2.8. A map F : �n → �m is called a linear transformation if for all pairs
x, y ∈ �n and a ∈ � we have

F(x + y) = F(x)+ F(y),

F(a · x) = a · F(x).
(A.14)

Comparing the definitions, we see that a linear function is just the m = 1 case of a
linear transformation. For each n ∈ � there is a special linear transformation of �n to
itself, called the identity map. It is defined by x �→ x and denoted by Idn .

If {v1, . . . , vn} is a basis for �n, then a linear transformation is determined by the values
{F(v1), . . . , F(vn)}. If x = a j · v1 + · · · + an · vn, then (A.14) implies that

F(x) =
n∑

j=1

a j · F(v j ).

In this section, linear transformations are denoted by bold, uppercase, Roman letters (e.g.,
A, B). The action of the linear transform A on the vector x is denoted Ax. Connected to a
linear transformation A : �n → �m are two natural subspaces.

Definition A.2.9. The set of vectors {x ∈ �n : Ax = 0} is called the kernel or null space
of the linear transformation A; we denote this subspace by ker A.

Definition A.2.10. The set of vectors {Ax ∈ �m : x ∈ �n} is called the image of the linear
transformation A; we denote this Im A.

The kernel and image of a linear transformation are basic examples of subspaces of a
vector space that are defined without reference to a basis. There is, in general, no natural
choice of a basis for either subspace.

Bases and Matrices

As previously, let {v1, . . . , vn} be a basis for �n. If we also choose a basis {u1, . . . , um} for
�m, then there is a collection of mn-numbers {ai j } so that for each j,

A(v j ) =
m∑

i=1

ai j ui .



A.2. Vector Spaces 657

Such a collection of numbers, labeled with two indices, is called a matrix. Once bases for
the domain and range of A are fixed, the matrix determines and is determined by the linear
transformation. If

x = x1 · v1 + · · · + xn · vn,

then the coefficients (y1, . . . , ym) of Ax with respect to {uk} are given by

yi =
n∑

j=1

ai j x j for i = 1, . . . ,m.

If A : �n → �n, then we usually select a single basis {v j } and use it to represent vectors
in both the domain and range of A. Often it is implicitly understood that the bases are the
standard bases.

Example A.2.14. If {v1, . . . , vn} is a basis for �n, then Idn(v j ) = v j . The matrix for Idn,
with respect to any basis is denoted by

δi j =
{

1 if i = j,

0 fi i 	= j.

Once a pair of bases is fixed, then we can identify the set of linear transformations from
�n to �m with the collection of m × n-arrays (read m by n) of numbers. If we think of (ai j )
as a rectangular array of numbers, then the first index, i, labels the rows and the second
index, j, labels the columns. ⎛⎜⎝a11 . . . a1n

...
...

am1 . . . amn

⎞⎟⎠ (A.15)

A vector in �n can be thought of as either a row vector—that is, an 1 × n matrix—or a
column vector—that is, an n × 1 matrix. An m × n matrix has n columns consisting of
m × 1 vectors,

a = (a1 . . . an),

or m rows consisting of 1 × n vectors

a =
⎛⎜⎝a1

...
am

⎞⎟⎠ .

Precisely how we wish to think about a matrix depends on the situation at hand.
We can define a notion of multiplication between column vectors and matrices.

Definition A.2.11. Let a be an m × n matrix with entries ai j , 1 ≤ i ≤ m, 1 ≤ j ≤ n, and
x be an n-vector with entries x j , 1 ≤ j ≤ n. Then we define the product a · x to be the
m-vector y with entries

yi =
n∑

j=1

ai j x j , i = 1, . . . ,m.
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Concisely this is written y = a · x. In this section we use lowercase, bold Roman letters to
denote matrices (e.g., a, b).

Proposition A.2.2. Let a be an m × n matrix, x1, x2 two n-vectors, and a a real number.
Then

a · (x1 + x2) = a · x1 + a · x2and a · (a · x) = a · (a · x).

These conditions show that the map x �→ a · x is a linear transformation of �n to �m .

Matrix Multiplication

We can also define multiplication between matrices with compatible dimensions. Let a be
an m × n matrix and b be an l × m matrix. If (ai j ) are the entries of a and (bpq) the entries
of b, then the entries of their product c = b · a are given by

cpj
d=

m∑
i=1

bpi ai j .

This shows that we can multiply an l × m matrix by an m × n matrix and the result is an
l × n matrix. If a and b are both n × n matrices, then both products a · b, b · a are defined.
In general, they are not equal. We say that matrix multiplication is noncommutative. The
product of an m × n matrix and an n-vector is the special case of multiplying an m × n
matrix by n × 1 matrix; as expected, the result if an m × 1 matrix or an m-vector.

The matrix product is associative; that is, if a is an m × n matrix, b an l × m matrix,
and c a k × l matrix, then

(c · b) · a = c · (b · a).

If x is an n-vector, then a · x is an m-vector so b · (a · x) is also defined. The matrix
product b · a defines a linear transformation from �n to �l . The associative law for the
matrix product shows that

(b · a) · x = b · (a · x).

The Change-of-Basis Formula

Suppose that {v1, . . . , vn} and {u1, . . . , un} are both bases for �n. The definition of a basis
implies that there are n × n matrices a = (ai j ) and b = (bi j ) so that

vi =
n∑

j=1

a j i · u j and ui =
n∑

j=1

b j i · v j .

These are called change-of-basis matrices. If x ∈ �n, then there are vectors (a1, . . . , an)
and (b1, . . . , bn) so that

x =
n∑

j=1

a j · v j and also x =
n∑

j=1

b j · u j .
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Substituting our expression for the {v j } in terms of the {u j } gives

x =
n∑

j=1

a j ·
[

n∑
k=1

akj · uk

]
n∑

k=1

⎡⎣ n∑
j=1

akj a j

⎤⎦ · uk .

(A.16)

Comparing (A.16) with our earlier formula, we see that

bk =
n∑

j=1

akj a j for k = 1, . . . , n.

This explains why a is called the change-of-basis matrix.
Suppose that A : �n → �m is a linear transformation and we select bases {v1, . . . , vn}

and {u1, . . . , um} for �n and �m, respectively. Let (ai j ) denote the matrix of this linear
transformation with respect to this choice of bases. How does the matrix change if these
bases are replaced by a different pair of bases? We consider what it means for “(ai j ) to be
the matrix representing A with respect to the bases {v j } and {ui }” by putting into words
the computations performed previously: Suppose that x is a vector in �n with coordinates
(x1, . . . , xn) with respect to the basis {v j }. Then the coordinates of y = Ax with respect to
{ui} are

yi =
n∑

j=1

ai j x j , i = 1, . . . ,m.

The fact to keep in mind is that we are dealing with different representations of fixed (ab-
stract) vectors x and Ax.

Suppose that {v′
j } and {u′

i} are new bases for �n and �m, respectively, and let (bl j ) and
(cki ) be change-of-basis matrices; that is,

v′
j =

n∑
l=1

bl j · vl and ui =
m∑

k=1

cki · u′
k .

Let a′
i j be the matrix of A with respect to {v′

j } and {u′
i}. If (x ′

1, . . . , x ′
n) are the coordinates

of x with respect to {v′
j } and (y′

1, . . . , y′
m) the coordinates of Ax with respect to {u′

i}, then

y′
i =

n∑
j=1

a′
i j x

′
j .

Formula (A.16) tells us that

x j =
n∑

l=1

b jlx
′
l
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and therefore

yi =
n∑

j=1

ai j

[
n∑

l=1

b jl x
′
l

]

=
n∑

l=1

⎡⎣ n∑
j=1

ai j b jl

⎤⎦ x ′
l

(A.17)

gives the expression for Ax with respect to the {ui }. To complete our computation, we only
need to reexpress Ax with respect to the basis {u′

i }. To that end, we apply (A.16) one more
time to obtain that

y′
i =

m∑
k=1

cik yk.

Putting this into (A.17) and reordering the sums, we obtain that

y′
i =

n∑
j=1

[
m∑

k=1

n∑
l=1

cikaklbl j

]
x ′

j .

This shows that

a′
i j =

m∑
k=1

n∑
l=1

cikakl bl j .

Using a, a′, b, c to denote the matrices defined previously, we can rewrite these expres-
sions more concisely as⎛⎜⎝x1

...
xn

⎞⎟⎠ = b ·
⎛⎜⎝x ′

1
...

x ′
n

⎞⎟⎠ ,

⎛⎜⎝ y1
...

ym

⎞⎟⎠ = c ·
⎛⎜⎝ y′

1
...

y′
m

⎞⎟⎠ , a′ = c · a · b. (A.18)

The reader should be aware that this formula differs slightly from that usually given in
textbooks; this is because b changes from (x ′

1, . . . , x ′
n) to (x1, . . . , xn) whereas c changes

from (y′
1, . . . , y′

m) to (y1, . . . , ym).

Exercises
Exercise A.2.9. Show that that if A : �n → �m and B : �m → �l are linear transfor-
mations, then the composition B ◦ A(x)

d= B(A(x)) is a linear transformation from �n to
�l .

Exercise A.2.10. Let A : �n → �m be a linear transformation. Show that ker A is a
subspace of �n.

Exercise A.2.11. Let A : �n → �m be a linear transformation. Show that Im A is a
subspace of �m .
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Exercise A.2.12. Suppose that we use a basis {v1, . . . , vn} for the domain and {u1, . . . , un}
for the range. What is the matrix for Idn?

Exercise A.2.13. Prove Proposition A.2.2.

Exercise A.2.14. If

a =
(

0 0
1 0

)
and b =

(
0 1
0 0

)
,

then show that a · b 	= b · a.

Exercise A.2.15. Show that if a is the matrix of a linear transformation A : �n → �m and
b is the matrix of a linear transformation B : �m → �l , then b · a is the matrix of their
composition B ◦ A : �n → �l .

Exercise A.2.16. Show that ∂x : �n → �n is a linear transformation. It is defined without
reference to a basis. Find the basis for ∂x in terms of the basis {1, x, . . . , xn}. Find bases
for ker ∂x and Im ∂x .

Exercise A.2.17. Show that the space of linear transformations from �n to �m is a vector
space with addition defined by

(A + B)x
d= Ax + Bx for all x ∈ �n

and scalar multiplication defined by

(a · A)(x)
d= a · (Ax).

Let {v1, . . . , vn} and {u1, . . . , um} be bases for �n and �m, respectively. For 1 ≤ i ≤ m
and 1 ≤ j ≤ n define the linear transformations l i j by letting

l i j (v j ) = ui and li j (vk) = 0 if k 	= j.

Show that the {l i j : 1 ≤ i ≤ m, 1 ≤ j ≤ n} is a basis for this vector space. This shows
that the space of linear transformations from �n to �m is isomorphic to �mn.

Remark A.2.1 (Important notational remark). From this point on, we no longer use “·”
to denote the operations of scalar multiplication or multiplication of a vector by a matrix.
That is, for x ∈ �n, a ∈ �, the notation ax indicates scalar multiplication and, for a and b
matrices, ab is the matrix product of a and b.

A.2.4 Norms and Metrics

In the previous section we concentrated on algebraic properties of vector spaces. In appli-
cations of linear algebra to physical problems, it is also important to have a way to quantify
errors. To that end, we now introduce notions of distance for vector spaces. Measurement
of distance in a vector space usually begins with a notion of length. Taking advantage of
the underlying linear structure, the distance between two vectors x and y is then defined as
the length of x − y.
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There are many reasonable ways to measure length in �n. The most common way to
define the length of (x1, . . . , xn) is to set

‖(x1, . . . , xn)‖2 =
√√√√ n∑

j=1

x2
j .

This is called the Euclidean length. Two other reasonable definitions of length are

‖(x1, . . . , xn)‖1 =
n∑

j=1

|x j |,

‖(x1, . . . , xn)‖∞ = max{|x1|, . . . , |xn |}.
(A.19)

What makes a notion of length reasonable? There are three basic properties that a reason-
able notion of length should have. Let N denote a real-valued function defined on a vector
space V ; it defines a reasonable notion of length if it satisfies the following conditions:

NONDEGENERACY: For every v ∈ V, N(v) ≥ 0 and N(v) = 0 if and only if v = 0.
In other words, every vector has nonnegative length and only the zero vector has
zero length.

HOMOGENEITY: If a ∈ � and v ∈ V, then N(av) = |a|N(v). If we scale a vector, its
length gets multiplied by the scaling factor.

THE TRIANGLE INEQUALITY: If v, v′ ∈ V, then

N(v + v′) ≤ N(v)+ N(v ′). (A.20)

Definition A.2.12. A function N : V → � that satisfies these three conditions is called a
norm. A vector space V with a norm is called a normed vector space.

The functions defined in (A.19) satisfy these conditions and therefore define norms.

Example A.2.15. If p is a real number, larger than or equal to 1, then the function

‖(x1, . . . , xn)‖p
d=
⎡⎣ n∑

j=1

|x j |p

⎤⎦
1
p

(A.21)

defines a norm on �n. If p = ∞ then we define

‖(x1, . . . , xn)‖∞ d= max{|x1|, . . . , |xn |}. (A.22)

This is called the sup norm.

Using a norm N, we can define a notion of distance between two vectors by setting

d(x, y) = N(x − y).

For any choice of norm, this function has the following properties:
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NONDEGENERACY: d(x, y) ≥ 0 with equality if and only if x = y.

SYMMETRY: d(x, y) = d(y, x).

THE TRIANGLE INEQUALITY: For any 3 points x, y, z, we have that

d(x, z) ≤ d(x, y)+ d(y, z).

Any function d : �n × �n → � with these properties is called a metric. While any norm
defines a metric, there are metrics on �n that are not defined by norms.

A metric gives a way to measure distances and therefore a way to define the conver-
gence of sequences.

Definition A.2.13. Suppose that d(·, ·) is a metric defined by a norm and that < x j >⊂ �n

is a sequence of vectors. The sequence converges to x in the d-sense if

lim
j→∞

d(x j , x) = 0.

Given a notion of distance, it is also possible to define Cauchy sequences.

Definition A.2.14. Suppose that d is a metric on �n and < xn > is a sequence. It is a
Cauchy sequence with respect to d if, for any ε > 0, there exists an N so that

d(xn, xm) < ε provided that m and n > N .

The importance of this concept is contained in the following theorem.

Theorem A.2.1. Let d be a metric on �n defined by a norm. A sequence < xn > converges
in the d-sense if and only if it is a Cauchy sequence.

If a norm is used to define a distance function, then it is reasonable to enquire if the
convergence properties of sequences depend on the choice of norm. The next proposition
implies that they do not.

Proposition A.2.3. Suppose that ‖ · ‖ and ‖ · ‖′ are two norms on �n. Then there is a
positive constant C so that

C−1‖x‖′ ≤ ‖x‖ ≤ C‖x‖′ for all x ∈ �n.

The proof is left as an exercise.
The choice of which norm to use in a practical problem is often dictated by physical

considerations. For example, if we have a system whose state is described by a point
in �n and we allow the same uncertainty in each of our measurements, then it would be
reasonable to use the sup norm (i.e., ‖ · ‖∞). If, on the other hand, we can only tolerate
a certain fixed aggregate error, but it is not important how this error is distributed among
the various measurements, then it would be reasonable to use ‖ · ‖1 to define the norm. If
the errors are expected to follow a Gaussian distribution, then we would usually use the
Euclidean norm.
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There are also computational considerations that can dictate the choice of a norm. If
a is an m × n matrix with m > n, then the system of linear equations ax = y is over-
determined. For most choices of y it has no solution. A way to handle such equations
is to look for a vector such that the “size” of the error ax − y is minimized. To do this,
we need to choose a norm on �m to measure the size of the error. It turns out that among
all possible choices the Euclidean norm leads to the simplest minimization problems. The
vector x̄ such that ‖ax̄ − y‖2 is minimal is called the least squares solution.

Matrix and Operator Norms

In Exercise A.2.17 it is shown that the space of linear transformations from �n to �m is a
vector space. When discussing numerical methods for solving linear equations, it is very
useful to have a way to measure the size of a linear transformation that is connected to its
geometric properties as a map. We can use norms on the domain and range to define a
notion of size for a linear transformation A : �n → �m . Let ‖ · ‖ be a norm on �n and ‖ · ‖′
be a norm on �m . The operator norm of A (with respect to ‖ ·‖ and ‖ ·‖′), denoted by |||A|||,
is defined by

|||A||| d= max
x∈�n\{0}

‖Ax‖′
‖x‖ . (A.23)

This norm gives a measure of how much A changes the lengths of vectors. For all x ∈ �n

we have the estimate
‖Ax‖′ ≤ |||A|||‖x‖. (A.24)

The estimate (A.24) implies that a linear transformation from �n to �m is always continu-
ous. This is because Ax1 − Ax2 = A(x1 − x2). Thus we see that

‖Ax1 − Ax2‖′ = ‖A(x1 − x2)‖ ≤ |||A|||‖x1 − x2‖. (A.25)

There are other ways to define norms on linear transformations. If we fix bases in the
domain and range,then a norm defined �mn can be used to define a norm on the set of linear
transformations from �n to �m . If (ai j ) is the matrix of a linear transformation A, then we
can, for example, define

|||A|||p =
⎡⎣ m∑

i=1

n∑
j=1

|ai j |p

⎤⎦ 1
p

.

These norms are not as closely connected to the geometric properties of the map. If p 	= 2,
then it is not generally true that ‖Ax‖p ≤ |||A|||p‖x‖p. Results like that in Exercise A.2.23
are also generally false for these sorts of norms. In physical applications a linear transfor-
mation or matrix often models a measurement process: If x describes the state of a system,
then Ax is the result of performing measurements on the system. The appropriate notion
of size for A may then be determined by the sorts of errors which might arise in the model.
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Exercises
Exercise A.2.18. Suppose that x, y, z ∈ �n and that d(x, y) = ‖x − y‖2. If

d(x, z) = d(x, y)+ d(y, z),

then show that the three points lie along a line in the indicated order. Is this true if we use
‖ · ‖p with p 	= 2 to define the metric?

Exercise A.2.19. Prove Proposition A.2.3. Hint: Use the fact that ‖ax‖ = |a|‖x‖.
Exercise A.2.20. Let ‖·‖ and ‖·‖′ be two norms on �n and d, d ′ the corresponding metrics.
Show that a sequence < x j > converges to x in the d-sense if and only if it converges in
the d ′-sense. This shows that the notion of limits on Euclidean spaces is independent of the
choice of norm. Hint: Use Proposition A.2.3.

Exercise A.2.21. Suppose that w1, w2 are positive numbers. Show that

Nw((x1, x2)) =
√
w1x2

1 + w2x2
2

defines a norm on �2. What physical considerations might lead to using a norm like Nw

instead of the standard Euclidean norm?

Exercise A.2.22. Use estimate (A.25) to show that if a sequence < xn > converges to x in
�n then < Axn > also converges to Ax in �m . This is just the statement that A : �n → �m

is continuous.

Exercise A.2.23. Let A : �n → �m and B : �m → �l . Choose norms ‖ · ‖, ‖ · ‖′, and
‖ · ‖′′ for �n,�m, and �l, respectively and let ||| · |||n→m, ||| · |||m→l and ||| · |||n→l denote the
operator norms they define. Show that

|||B ◦ A|||n→l ≤ |||A|||n→m |||B|||m→l .

Exercise A.2.24. Let A : �n → �n have matrix (ai j ) with respect to the standard basis.
Show that

‖Ax‖2 ≤ |||a|||2‖x‖2.

A.2.5 Inner Product Structure

The notions of distance considered in the previous section do not allow for the measurement
of angles between vectors. Recall the formula for the dot product in �2,

x · y = x1 y1 + x2 y2 = ‖x‖2‖y‖2 cos θ,

where θ is the angle between x and y. We can generalize the notion of the dot product to n
dimensions by setting

x · y =
n∑

j=1

x j y j .

In this book the dot product is usually called an inner product and is denoted by 〈x, y〉.
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Proposition A.2.4. If x, y, z are vectors in �n and a ∈ �, then

〈x, y〉 = 〈y, x〉,
〈(x + y), z〉 =〈x, z〉 + 〈y, z〉 and

〈ax, y〉 =a〈x, y〉 = 〈x, a y〉.
(A.26)

The inner product is connected with the Euclidean norm by the relation

〈x, x〉 = ‖x‖2
2.

Most of the special properties of the Euclidean norm stem from this fact. There is a very
important estimate which also connects these two objects called the Cauchy-Schwarz in-
equality:

|〈x, y〉| ≤ ‖x‖2‖y‖2. (A.27)

It is proved in Exercise A.2.26. It implies that

−1 ≤ 〈x, y〉
‖x‖2‖y‖2

≤ 1. (A.28)

In light of (A.28) we can define the angle θ between two nonzero vectors in �n by the
formula

cos θ = 〈x, y〉
‖x‖2‖y‖2

.

An important special case is an angle of 90◦, which is the case if 〈x, y〉 = 0. The vectors
x and y are said to be orthogonal.

Suppose that {v1, . . . , vn} is a basis for �n. In order to make practical use of this basis,
it is necessary to be able to determine the coordinates of a vector with respect to it. Suppose
that x is a vector. We would like to find scalars {a j } so that

x =
n∑

j=1

a jv j .

Expressing the basis vectors and x in terms of the standard basis, x = (x1, . . . , xn) and
v j = (v1 j , . . . , vnj ), this can be reexpressed as a system of linear equations,

n∑
j=1

vi j a j = xi for i = 1, . . . , n.

In general, this system can be quite difficult to solve; however, there is a special case when
it is easy to write down a formula for the solution.

Suppose that the basis vectors are of Euclidean length 1 and pairwise orthogonal; that
is,

‖v j‖2 = 1 for j = 1, . . . , n and 〈vi , v j 〉 = 0 if i 	= j.
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Such a basis is called an orthonormal basis. The standard basis is an orthonormal ba-
sis. If {v j } is an orthonormal basis, then the coordinates of x with respect to {v j } can be
computing by simply evaluating inner products,

a j = 〈x, v j 〉;

hence

x =
n∑

j=1

〈x, v j 〉v j . (A.29)

A consequence of (A.29) is that, in any orthonormal basis {v j }, the Pythagorean theorem
holds:

‖x‖2
2 =

n∑
j=1

|〈x, v j 〉|2. (A.30)

An immediate consequence of (A.30) is that the individual coordinates of a vector, with
respect to an orthonormal basis, are bounded by the Euclidean length of the vector. Or-
thonormal bases are often preferred in applications because they display stability properties
not shared by arbitrary bases.

Example A.2.16. If ε 	= 0, then the vectors v = (1, 0) and uε = (1, ε) are a basis for �2.
If ε is small, then the angle between these vectors is very close to zero. The representation
of (0, 1) with respect to {v, uε} is

(0, 1) = 1

ε
uε − 1

ε
v.

The coefficients blow up as ε goes to zero. For non-orthonormal bases, it can be difficult
to estimate the sizes of the coefficients in terms of the length of the vector.

The Gram-Schmidt Method

The problem then arises of how to construct orthonormal bases; this problem is solved using
the Gram-Schmidt method. Beginning with an arbitrary basis {u1, . . . , un}, the Gram-
Schmidt method produces an orthonormal basis. It has the special property that for each
1 ≤ j ≤ n the linear span of {u1, . . . , u j } is the same as the linear span of {v1, . . . , v j }.
This method is important for both theoretical and practical applications.

We describe the Gram-Schmidt method as an algorithm:

STEP 1: Replace u1 with the vector

v1 = u1

‖u1‖2
.

The span of v1 clearly agrees with that of u1.
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STEP 2: For a 1 ≤ j < n, suppose that we have found orthonormal vectors {v1, . . . , v j }
such that the linear span of {v1, . . . , v j } is the same as that of {u1, . . . , u j }. Set

v′
j+1 = u j+1 +

j∑
k=1

αkvk,

where αk = −〈u j+1, vk〉. A calculation shows that

〈v′
j+1, vk〉 = 0 for 1 ≤ k ≤ j.

STEP 3: Since {ui } is a basis and {v1, . . . , v j } are in the linear span of {u1, . . . , u j }, it
follows that v′

j+1 	= 0; thus we can set

v j+1 = v′
j+1

‖v′
j+1‖2

.

STEP 4: If j = n, we are done; otherwise, return to Step 2.

This algorithm shows that there are many orthonormal bases.

Linear Functions and Inner Products

The inner product also gives a way to represent linear functions. A vector y ∈ �n defines a
linear function l y by the rule

l y(x) = 〈x, y〉. (A.31)

Proposition A.2.5. The linear function l y is zero if and only if y = 0. Moreover,

l y1+y2
= l y1

+ l y2
,

and if a ∈ �, then la y1
= al y1

.

The proposition shows that the map y �→ l y defines an isomorphism between �n

and (�n)′. The map is clearly linear; because l y = 0 if and only if y = 0, it follows
[from (A.34)] that the image of the map is all of (�n)′. In other words, every linear function
on �n has a representation as l y for a unique y ∈ �n.

Let A : �n → �m be a linear transformation. If y ∈ �m, then x �→ 〈Ax, y〉 is a linear
function on �n. This means that there is a vector z ∈ �n such that

〈Ax, y〉 = 〈x, z〉, for all x ∈ �n.

We denote this vector by At y. It is not difficult to show that the map y �→ At y is a linear
transformation from �m to �n.
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Proposition A.2.6. If A : �n → �m has matrix (ai j ) with respect to the standard bases,
then At has matrix (a j i) with respect to the standard bases,

(At y)i =
m∑

j=1

a j i y j .

The linear transformation At : �m → �n is called the transpose (or adjoint) of A. Note
that while the matrices representing A and its transpose are simply related, the transpose is
defined without reference to a choice of basis:

〈Ax, y〉m = 〈x, At y〉n

for all x ∈ �n and y ∈ �m . In order to avoid confusion, we have used 〈·, ·〉n (respectively,
〈·, ·〉m ) to denote the inner product on �n (respectively, �m).

We close this section by placing these considerations in a slightly more abstract frame-
work.

Definition A.2.15. Let V be a vector space, a function b : V × V → �, that satisfies the
conditions b(v, v) ≥ 0 with b(v, v) = 0 if and only if v = 0, and for all v,w, z ∈ V and
a ∈ �

b(v,w) = b(w, v),

b(v + w, z) =b(v, z) + b(w, z) and

b(av,w) =ab(v,w) = b(v, aw)

(A.32)

defines an inner product on V . A function with the properties in (A.32) is called a bilinear
function.

Example A.2.17. Let A : �n → �n be a linear transformation with ker A = {0}. Then

〈x, y〉	 = 〈Ax, A y〉
defines an inner product on �n.

Example A.2.18. Let �n be the real-valued polynomials of degree at most n. Then

bn(p, q) =
1∫

−1

p(x)q(x) dx

defines an inner product on �n.

Exercises
Exercise A.2.25. Suppose that A : �n → �m and B : �m → �l . Show that

(B ◦ A)t = At ◦ Bt .

Express this relation in terms of the matrices for these transformations with respect to the
standard bases.
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Exercise A.2.26. Calculus can be used to proved (A.27). Let x and y be vectors in �n and
define the function

f (t) = 〈x + t y, x + t y〉 = ‖x + t y‖2
2.

This function satisfies f (t) ≥ 0 for all t ∈ �. Use calculus to locate the value of t where
f assumes it minimum. By evaluating f at its minimum and using the fact that f (t) ≥ 0,
show that (A.27) holds.

Exercise A.2.27. Let b be an inner product on a vector space V . Using the idea outlined in
Exercise A.2.26, show that

|b(v1, v2)| ≤
√

b(v1, v1)b(v2, v2).

Exercise A.2.28. Show that the Gram-Schmidt procedure can be applied to an arbitrary
vector space with an inner product.

Exercise A.2.29. Apply the Gram-Schmidt process to the basis {1, x, x2} with the inner
product given in Example A.2.18 to find an orthonormal basis for �2.

Exercise A.2.30. Prove Proposition A.2.4.

Exercise A.2.31. If a is an m × n matrix and x ∈ �n, then we can use the inner product to
express the matrix product ax. Show that if we write a in terms of its rows

a =
⎛⎜⎝a1

...
am

⎞⎟⎠ ,

then

ax =
⎛⎜⎝〈a1, x〉

...
〈am, x〉

⎞⎟⎠ . (A.33)

Exercise A.2.32. If a is an m × n matrix and b an n × l matrix, then we can use the inner
product to express the matrix product ab. Show that if we write a in terms of its rows

a =
⎛⎜⎝a1

...
am

⎞⎟⎠ ,

and b in terms of its columns
b = (b1, . . . , bl),

then the i j entry of ab is given by 〈ai , b j 〉.
Exercise A.2.33. Prove formula (A.29).

Exercise A.2.34. Prove Proposition A.2.5.

Exercise A.2.35. Prove Proposition A.2.6.

Exercise A.2.36. Show that 〈x, y〉A is an inner product. Why do we need to assume that
ker A = {0}?
Exercise A.2.37. Prove that bn defined in Example A.2.18 is an inner product.
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A.2.6 Linear Transformations and Linear Equations

Linear transformations give a geometric way to think about linear equations. A system of
m linear equations in n unknowns is given by

n∑
j=1

ai j x j = yi for i = 1, . . . ,m.

The matrix a defines a linear transformation A : �n → �m . The null space of A is none
other than the set of solutions to the homogeneous equation

ax = 0.

The system of equations
ax = y

has a solution if and only if y belongs to the image of A. Theorem 2.1.2 relates the dimen-
sions of the null space and image of A; they satisfy the relation

dim ker A + dim Im A = n. (A.34)

If A : �n → �n and dim ker A = 0, then formula (A.34) implies that dim Im A = n
and therefore for every y ∈ �n there is a unique x ∈ �n such that

Ax = y.

A linear transformation with this property is called invertible; we let A−1 denote the inverse
of A. It is also a linear transformation. A linear transformation and its inverse satisfy the
relations

A−1 A = Idn = AA−1.

If (ai j ) is the matrix of A with respect to a basis and (bi j ) is the matrix for A−1, then these
relations imply that

n∑
j=1

bi j a jk = δik =
n∑

j=1

ai j b jk. (A.35)

From a purely mathematical standpoint, the problem of solving the linear equation Ax =
y is simply a matter of computing the matrix representing A−1. Cramer’s rule gives an
explicit formula for A−1, though it is very unusual to solve linear equations this way. The
direct computation of A−1 is computationally expensive and usually unstable. Less direct,
computationally more stable and efficient methods are usually employed.

Definition A.2.16. An n × n matrix (ai j ) is called upper triangular if

ai j = 0 if j < i.

A system of equations is upper triangular if its matrix of coefficients is upper triangular.
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Upper triangular systems are easy to solve. Suppose that (ai j ) is an upper triangular
matrix with all of its diagonal entries {aii } nonzero. The system of equations ax = y
becomes

n∑
j=i

ai j x j = yi for i = 1, . . . , n.

It is easily solved using the back-substitution algorithm:

STEP 1: Let xn = a−1
nn yn.

STEP 2: For a 1 < j < n, assume we know (x j+1, . . . , xn) and let

x j+1 = y j+1 −∑n
k= j+1 a( j+1)kxk

a( j+1)( j+1)
.

STEP 3: If j = n, we are done; otherwise, return to Step 2.

Another important class of matrices has orthonormal rows (and columns).

Definition A.2.17. A matrix a = (ai j ) is orthogonal if

n∑
j=1

ai j akj =
{

1 if i = k,

0 if i 	= k.

In terms of matrix multiplication, this condition is expressed by

aat = Idn = at a.

Hence a matrix is orthogonal if at is the inverse of a.

Let a be an orthogonal matrix and let {a j : i = 1, . . . n} denote its columns thought of
n × 1 vectors. The solution to the equation ax = y is given by

x j = 〈a j , y〉 for j = 1, . . . , n.

We have found two classes of linear equations that are computationally simple to solve.
Using the Gram-Schmidt algorithm, we can prove the following statement:

Theorem A.2.2. Suppose that a is an invertible n × n matrix. Then there exists an upper
triangular matrix r and an orthogonal matrix q such that

a = qr .

Once a matrix is expressed in this form, the system of equations ax = y is easily
solved in two steps: Multiplying by q t gives the upper triangular system rx = q t y, which
is then solved by back substitution. There is an enormous literature devoted to practical
implementations of this and similar results. A good starting point for further study is [127].
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Exercises
Exercise A.2.38. Show that if ai j is an upper triangular matrix with aii = 0 for some i,
then there is a nonzero vector (x1, . . . , xn) such that

n∑
j=i

ai j x j = 0.

In other words, the homogeneous equation has a nontrivial solution.

Exercise A.2.39. Let a be an invertible upper triangular matrix. Show that a−1 is also
upper triangular.

Exercise A.2.40. Show that if a and b are upper triangular matrices, then so is ab.

Exercise A.2.41. Prove Theorem A.2.2.

A.3 Functions, Theory, and Practice

The idea of a function is familiar from calculus. A real-valued function on � is a rule for
assigning to each x ∈ � a unique value y ∈ �. Usually we write something like y = f (x).
In this context, what is meant by a “rule?” The simplest functions are described by explicit
formulæ involving a variable and arithmetic operations. For example,

f1(x) = 1,

f2(x) = 2 + x3,

f3(x) = 7 + 3x + 6x3 + 17x9

3 + 4x2 + 5x4
.

(A.36)

The functions we get this way are called rational functions; these are functions that can
be expressed as ratios of polynomials. These functions have the following considerable
virtue: If we “know” what x is and we can “do” arithmetic, then we can actually compute
(in finite time) the value of f (x). Other than expressing the numbers themselves, no infinite
processes are required to evaluate a rational function. This is a concept we consider in some
detail, so we give it a name.

Definition A.3.1. A function f is a real computable function if its value can be determined
for any real number by doing a finite number of feasible operations.

For more on this concept, see [39].
What are the “feasible operations?” Feasible operations are those that require only the

ability to do arithmetic and to determine if a number is nonnegative. These are the opera-
tions that can be done approximately by a computer. We can give an analogous definition
for computable functions defined on �n or on subsets of �n, n ≥ 1.

Rational functions are computable functions, but there are other types of computable
functions. If [a, b] ⊂ � is an interval, that is,

[a, b] = {x ∈ � : a ≤ x ≤ b},
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then we define the characteristic function of an interval by the rule

χ[a,b](x) =
{

1 if x ∈ [a, b],
0 if x /∈ [a, b].

Again, if we know the exact value of x, then to compute χ[a,b](x) we only need to perform
feasible operations: checking if 0 ≤ x − a and 0 ≤ b − x .

Proposition A.3.1. Suppose that f and g are computable functions. Then f + g, f g, f −
g, f/g and f ◦ g, are also computable functions.

The set of computable functions is, in essence, the set of functions that are actually
available for computational purposes. They are the functional analogue of floating-point
numbers. However, it is very easy to define functions, quite explicitly, that do not fall into
this class. The function f (x) = x3 is a computable function and it is one to one. That is,
f (x1) = f (x2) implies that x1 = x2. For every real number y there is a unique x so that
f (x) = y. This means there is a function g that inverts f ; that is, g( f (x)) = x . Of course,
this is just the cube root function. Much less evident is how to compute g(y) for a given
value of y; g is not a computable function.

A function can also be defined implicitly via a functional relation. For example, we can
think of y as a function of x defined by the relation

x2 + y2 = 1.

Evaluating y as a function of x entails solving this equation. Formally, we can write

y±(x) = ±
√

1 − x2.

The relation actually defines two functions, which is not a serious difficulty; however, to
compute either y+(x) or y−(x) requires the ability to calculate a square root. In this case
there is a trick that effectively avoids the computation of the square root. If

x(t) = 1 − t2

1 + t2
and y(t) = 2t

1 + t2
,

then
x(t)2 + y(t)2 = 1.

Both of the functions x(t) and y(t) are computable and so we see that, at the expense of
expressing both x and y in terms of an auxiliary variable, t we are able to solve x2 +
y2 = 1. For only slightly more complicated equations in two variables it is known that no
such trick exists. Solving nonlinear equations in one or several variables usually leads to
noncomputable functions.

Probably the most important examples of noncomputable functions are the solutions
of linear, ordinary differential equations. For example, the sin x, cos x, exp x all arise in
this context as well as the Bessel functions, Legendre functions, and so on. Such functions
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are called transcendental functions. For many purposes these functions are regarded as
completely innocuous. They are, however, not computable, except for very special values
of x . The reason that these functions are not greeted with horror is that they are all well
approximated by computable functions in a precise sense: For each of these functions
there are computable approximations and estimates for the differences between the actual
functions and their approximations. In fact, as machine computation is always approximate,
it is not necessary (or even desirable) to evaluate functions exactly. It is only necessary to
be able to evaluate functions to within a specified error.

Exercises
Exercise A.3.1. Prove Proposition A.3.1.

Exercise A.3.2. Give a definition for computable functions of several variables. Show that
linear functions are computable functions. Show, moreover, that the solution x of a system
of linear equations

ax = y

is a computable function of y.

A.3.1 Power Series

Many of the functions encountered in applications can be represented as infinite sums of
computable functions. Power series is the most important general class of such functions.
This class is the infinite sum generalization of polynomials.

Definition A.3.2. Let < a j > be a sequence of complex numbers. The power series with
these coefficients is the infinite series

∞∑
j=0

a j z
j ; (A.37)

z is a complex number.

As it stands, a power series is a formal expression. The theory of convergence of power
series is relatively simple. Roughly speaking, a power series converges for a complex
argument z provided that lim j→∞ |a j z j | = 0. The exact result is given in the following
theorem.

Theorem A.3.1. Suppose that r ≥ 0 and

lim
j→∞

|a j |r j = 0. (A.38)

Then the power series (A.37) converges absolutely for all complex numbers z with |z| < r.

The supremum of the numbers that satisfy (A.38) is called the radius of convergence
of the power series; we denote it by rconv. For values of z with |z| < rconv, the power series
converges absolutely; if |z| = rconv, then the question of convergence or divergence of the
series is again quite subtle.
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Example A.3.1. If a j = j−1, then rconv = 1. For |z| < 1 the series

∞∑
j=1

z j

j

converges absolutely. If z = 1, then the series diverges, while if z = −1, the series
converges.

Example A.3.2. Suppose that a j = j j . Then for any number r > 0 we have that

a jr
j = ( jr) j .

If jr > 2, then a jr j > 2 j , and this shows that the radius of convergence of the power series
with these coefficients is 0. In general, if the coefficients grow too quickly, then the series
does not converge for any nonzero value of z. While such series do not, strictly speaking,
define functions, they often appear in applications as asymptotic expansions for functions;
see [25].

In the set
Bconv = {z : |z| < rconv}

the series (A.37) defines a function of z with many of the properties of polynomials. Let

f (z) =
∞∑
j=0

a j z
j , (A.39)

and suppose that rconv, the radius of convergence is positive. Formally differentiating gives
a new power series,

f1(z) =
∞∑
j=1

ja j z
j−1.

It is not difficult to show that the radius of convergence of this series is also rconv and, in fact,
f ′(z) = f1(z), see [2]. This can, of course, be repeated over and over. These observations
are summarized in the following theorem.

Theorem A.3.2. Suppose that rconv > 0, the radius of convergence of the power se-
ries (A.39), is positive. The function it defines in Bconv is infinitely differentiable. For
each k ≥ 0,

f [k](z) =
∞∑
j=k

a j j ( j − 1) . . . ( j − k + 1)z j−k

also has radius of convergence rconv. Note in particular that

f [k](0) = k!ak .
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Example A.3.3. The functions sin(z), cos(z), exp(z) are defined as the solutions of differ-
ential equations. The sine and cosine satisfy

f ′′ + f = 0,

while the exponential solves
f ′ − f = 0.

Assuming that these functions have power series expansions, we find, by substituting into
the differential equations, that

sin(x) =
∞∑
j=0

(−1) j x2 j+1

(2 j + 1)! ,

cos(x) =
∞∑
j=0

(−1) j x2 j

(2 j)! ,

exp(x) =
∞∑
j=0

x j

j ! .

(A.40)

Here we have use the facts that sin(0) = 0 and cos(0) = 1. From these formulæ it is not
difficult to see that the radii of convergence of these series are infinite and that each of
these functions satisfies the appropriate differential equation. A power series is defined for
complex numbers; substituting z = i x into the series for exp, we learn that

exp(i x) = cos(x) + i sin(x). (A.41)

This is a very useful fact both theoretically and for computation; it is called Euler’s formula.

A shown in Exercise A.3.5 the exponential is positive and monotone increasing on the
real line. Thus exp has an inverse function l(y), defined for positive real numbers y; it
satisfies

exp(l(y)) = y and l(exp(x)) = x .

Note that l(1) = 0. This function is called the logarithm (or natural logarithm). Following
standard practice, we use the notation log(y) for l(y). As the derivative of exp is non-
vanishing, its inverse is also differentiable. Using the chain rule, we obtain that

log′(y) = 1

y
. (A.42)

This differential equation and log(1) = 0 imply that log(y) can be expressed as an integral:

log(y) =
y∫

1

ds

s
. (A.43)
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Because the log is not defined at 0, this function does not have a convergent power series
expansion about x = 0. Nonetheless, the log has a representation as the definite integral of
a computable function. Using numerical integration, it is therefore not difficult to evaluate
log y, with any specified accuracy.

While a function defined as an infinite sum is not in general a computable function, a
power series is computable to any given precision. Suppose that f is a power series with
a positive radius of convergence rconv. If we specify an ε > 0 and an argument z with
|z| < rconv, then there is a N such that

| f (z)−
N∑

j=0

a j z
j | < ε.

If we have a formula for the coefficients {a j }, as is usually the case, then we can compute
N as a function of ε and |z|/rconv.

Example A.3.4. The series defining the sine and cosine are alternating series; this means
that∣∣∣∣∣∣sin(x) −

N∑
j=0

(−1) j x2 j+1

(2 j + 1)!

∣∣∣∣∣∣ ≤ |x|2N+3

(2N + 3)! and

∣∣∣∣∣∣cos(x) −
N∑

j=0

(−1) j x2 j

(2 j)!

∣∣∣∣∣∣ ≤ |x|2N+2

(2N + 2)! ;

(A.44)
see (B.3). Because sin(x) = (−1)k sin(x + kπ), it suffices to consider values of x between
−π/2 and π/2. For such x, to compute sin(x) with a error less than ε > 0 requires an N
that satisfies

π2N+3

22N+3(2N + 3)! < ε.

Using this formula we obtain Table A.1. This gives an effective algorithm to compute the
sine (or cosine) to a given accuracy. In actual applications, computing the partial sums of
the power series is not used because much faster algorithms can be obtained by using the
multiple angle formulæ.

N Maximum error

4 10−4

6 10−8

8 10−12

10 10−16

Table A.1. Errors approximating sin(x) by partial sums of its Taylor series

Exercises
Exercise A.3.3. Using Euler’s formula, deduce that

cos(x) = eix + e−ix

2
, sin(x) = eix − e−ix

2i
. (A.45)
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Exercise A.3.4. Using the uniqueness theorem for ordinary differential equations, prove
that for real numbers x and y,

exp(x + y) = exp(x) exp(y), exp(−x) = [exp(x)]−1. (A.46)

The function g(x) = exp(i x) satisfies the ODE g′ − ig = 0, and therefore the rela-
tions (A.46) hold with x and y replaced by i x and iy. Deduce the multiple angle formulæ

cos(x + y) = cos(x) cos(y)− sin(x) sin(y), sin(x + y) = sin(x) cos(y)+ sin(y) cos(x).
(A.47)

Exercise A.3.5. Show that exp(x) is positive if x is real, and conclude that the derivative
of exp is also positive on the real axis. Show that exp has an inverse function defined on
(0,∞).

Exercise A.3.6. Euler’s formula shows that a complex number has a polar representation
in the form z = reiθ , where r and θ are real numbers; compare with (2.24). If w = ρeiφ,
show that

zw = rρei(θ+φ). (A.48)

Exercise A.3.7. Using the integral formula, (A.43), prove that

log(xy) = log(x) + log(y). (A.49)

Exercise A.3.8. Show that the log has a convergent power series expansion about y = 1
given by

log(1 + t) = −
∞∑
j=1

(−t) j

j
.

For what values of t does this series converge?

A.3.2 The Binomial Formula

The elementary binomial formula gives the expansion for (x + y)n, where n is a positive
integer,

(x + y)n =
n∑

j=0

(
n
j

)
x j yn− j . (A.50)

The coefficients are the binomial coefficients given by(
n
j

)
= n!

j !(n − 1)! .

One of the earliest uses of power series was the generalization of this formula to ar-
bitrary values of n. If n is not a positive integer, the result is an infinite series. For a real
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number α we have the formula

(x + y)α = yα

[
1 + α

(
x

y

)
+ α(α − 1)

2!
(

x

y

)2

+ · · · + α(α − 1) . . . (α − k + 1)

k!
(

x

y

)k

+ . . .

]
. (A.51)

The infinite sum converges so long as |x/y| < 1. This formula can be used to compute
approximations to the roots of numbers. Choose y to be the smallest number of the form
kn, k ∈ � that is larger than x . The general formula then gives

x
1
n = (kn + x − kn)

1
n = k

[
1 − 1

n

(
1 − x

kn

)
+ n − 1

2n2

(
1 − x

kn

)2 − . . .

]
.

Again, in principle, we have an usable algorithm for computing the roots of positive num-
bers to any desired accuracy. In practice, there are more efficient algorithms than those
arising from the power series representation.

By directly multiplying the power series for the exponential function, we can show
that (A.46) holds for any pair of complex numbers. This gives a way to compute roots of
complex numbers. Let z = reiθ . Then (A.46) and (A.48) imply that

ζn = r
1
n ei θn

is an nth root of z. Using (A.41), we can rewrite this as

ζn = r
1
n

[
cos

(
θ

n

)
+ i sin

(
θ

n

)]
.

This reduces the problem of approximating roots of complex numbers to problems we have
already solved. Note that if r = exp(x) for x a real number, then

r
1
n = exp

( x

n

)
,

gives another way to approximate roots of real numbers. It reduces the problem of approx-
imating roots to that of approximating the log function.

If x is a large real number, then exp(−x) is a very small, positive number; it is given as
an infinite sum by

exp(−x) = 1 − x + x2

2! − x3

3! + x4

4! − . . . ,

whereas

exp(x) = 1 + x + x2

2! + x3

3! + x4

4! + . . . .

Note that the numbers that appear in these two sums are identical; only the signs are dif-
ferent. The first sum is a very small positive number, and the second a very large positive
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number. This means that there is a lot of subtle cancellation occurring in the first sum.
Because of the cancellations, it is difficult to use floating-point arithmetic to accurately
compute such a sum. A more accurate computation of exp(−x) is obtained by first com-
puting an approximation y � exp(x) and then setting exp(−x) � y−1. We can compute
the relative error. First suppose

y = ex + ε;
then a calculation shows that

1

y
− e−x = εe−x

y
.

This shows that the relative error we make in setting e−x equal to y−1 is

|y−1 − e−x |
e−x

= |ε|
y

� |ε|e−x = |y − ex |
ex

.

Thus if we compute ex with a given relative error, then the relative error in using y−1 for
e−x is the same.

A.3.3 Some Higher Transcendental Functions

Functions not expressible as rational functions of powers, the exponential and logarithm
functions, are called higher transcendental functions. The �-function is probably the most
important such function. We briefly describe its properties and then consider the J -Bessel
functions. This section uses elementary ideas from the theory of analytic functions; see [2].

The Gamma Function

Perhaps the most important higher transcendental function is the Gamma function. For
complex numbers z with Re z > 0 it is defined by the formula

�(z) =
∞∫

0

e−t t z−1dt. (A.52)

From the formula it is clear that � is an analytic function in the right half-plane. The
�-function satisfies a functional equation.

Proposition A.3.2. For any z with Re z > 0 the Gamma function satisfies the relation

�(z + 1) = z�(z). (A.53)

The proof is a simple integration by parts. Using the functional equation recursively, it
follows that for any n ∈ � the �-function satisfies

�(z + n) = z(z + 1) · · · (z + n − 1)�(z).
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Using these relations, the �-function can be extended to be a meromorphic function on the
whole complex plane with poles at the non-positive integers. For z with −n < Re z, �(z)
is defined by

�(z) = �(z + n)

z(z + 1) · · · (z + n − 1)
.

In many applications it is important to understand the behavior of � for real arguments
tending to infinity. Stirling’s formula states that for x in �

�(x) = √
2πx x− 1

2 e−x(1 + O(
1

x
)). (A.54)

We give an outline of the derivation of Stirling’s formula. It is a special case of
Laplace’s method for obtaining asymptotics for functions of the form

f (x) =
∫

exφ(s)ψ(s) ds.

The idea is very simple: Only the global maxima of the function in the exponent φ con-
tribute, asymptotically, to f (x) as x tends to infinity. A fuller account of this method can
be found in [104].

We begin by setting t = s(x − 1) in (A.52) to obtain

�(x) = (x − 1)x

∞∫
0

e(x−1)(log s−s)ds.

The function in the exponent log s − s has a unique maximum at s = 1 where it assumes
the value −1. This implies that for any small δ > 0 we have the asymptotic formula

∞∫
0

e(x−1)(log s−s)ds =
1+δ∫

1−δ

e(x−1)(log s−s)ds + O(e−(x−1)(1+ δ2
2 )). (A.55)

The second derivative of log s − s at s = 1 is −1, which means that the function

v =
{ √

(2(u − log(1 + u)) for u > 0,

− √
(2(u − log(1 + u)) for u < 0

is smooth and invertible in an open interval around u = 0. Using v as the variable of
integration, the integral becomes

1+δ∫
1−δ

e(x−1)(log s−s)ds = e−(x−1)

δ′′∫
−δ′

e−(x−1)v2
h ′(v) dv.
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Here δ′ and δ′′ are positive numbers.
As h ′(v) is a smooth function and h ′(0) = 1, it is not difficult to prove that as x tends

to infinity,
δ′′∫

−δ′

e−(x−1)v2
h ′(v) dv = 1√

x − 1

∞∫
−∞

e−τ 2
dτ(1 + O(

1

x
)). (A.56)

Collecting the pieces gives

�(x) = x x

[
1 − 1

x

]x √
2πe1−x

√
x − 1

(1 + O(
1

x
))

= √
2πx (x− 1

2 )e−x(1 + O(
1

x
)).

(A.57)

As a special case, Stirling’s formula gives an asymptotic formula for n! as n tends to infin-
ity:

n! = �(n + 1) ≈ √
2πn

[n

e

]n
.

Exercises
Exercise A.3.9. Prove the functional equation (A.53). Deduce that

�(z + n) = z(z + 1) · · · (z + n − 1)�(z).

Show that for a positive integer n, �(n + 1) = n!
Exercise A.3.10. For m a non-positive integer, compute the limit

lim
z→m

(z − m)�(z).

Exercise A.3.11. Prove formula (A.55).

Exercise A.3.12. Prove that v is a smooth, invertible function of u for u in an interval about
0 and that if u = h(v), then h ′(0) = 1.

Exercise A.3.13. Fill in the details of the last step in the derivation of Stirling’s formula.

Exercise A.3.14.∗ Prove that if x and y are positive real numbers, then

1∫
0

t x−1(1 − t)y−1dt = �(x)�(y)

�(x + y)
. (A.58)
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Bessel Functions

For a complex number ν, a Bessel function of order ν is any nonzero solution of the ordi-
nary differential equation

d2 f

dz2
+ 1

z

d f

dz
+
[

1 − ν2

z2

]
f = 0. (A.59)

The J-Bessel functions, of integral and half-integral orders, are important in Fourier analy-
sis. If ν ∈ � \ {−2,−3, . . . }, then Jν(z) is defined by the power series

Jν(z) =
[ z

2

]ν ∞∑
k=0

(−1)k z2k

22kk!�(ν + k + 1)
. (A.60)

The infinite sum converges in the whole complex plane. If ν is not an integer, then Jν(z) is
defined for z with | arg(z)| < π by setting

zν = eν log z for z ∈ � \ (−∞, 0];
here log z is taken to be real for positive real values of z. Graphs of J0 and J 1

2
are shown

in Figure A.1.
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Figure A.1. Some J -Bessel functions.

The J -Bessel functions have a variety of integral representations. Their connection
with Fourier analysis is a consequence of the formula

Jν(z) =
[

z
2

]ν
�
(
ν + 1

2

)
�
(

1
2

) π∫
0

eiz cos θ sin2ν θdθ, (A.61)

valid if Re(ν) > − 1
2 . Up to a multiplicative factor, the J -Bessel function is also the one-

dimensional, Fourier transform of a function:
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Jν(z) =
[

z
2

]ν
�
(
ν + 1

2

)
�
(

1
2

) 1∫
−1

(1 − x2)ν−
1
2 eizx dx for Re ν > −1

2
. (A.62)

Each J -Bessel function has a simple asymptotic formula as |z| tends to infinity:

Jν(z) =
√

2

π z

[
cos(z − πν

2
− π

4
)− (ν2 − 1

4
) sin(z − πν

2
− π

4
)+ O(

1

z2
)

]
, | arg z| < π.

(A.63)
This formula is proved using (A.61) and the method of stationary phase. Indeed the Bessel
functions have complete asymptotic expansions. Several additional facts are outlined in
the exercises. A thorough treatment of Bessel functions is given in [129]. Many useful
relations and definite integrals involving Bessel functions can be found in [45].

Exercises
Exercise A.3.15. Show that the function defined in (A.60) satisfies (A.59).

Exercise A.3.16. Show that the function defined in (A.61) satisfies (A.59).

Exercise A.3.17. Show how to deduce (A.62) from (A.61).

Exercise A.3.18. Derive the power series expansion, (A.60), from (A.62). Hint: Write the
exponential as a power series and use (A.58).

Exercise A.3.19. Bessel functions with half-integral order can be expressed in terms of
trigonometric functions. Show that

1. J 1
2
(z) =

√
2
πz sin z

2. J 3
2
(z) =

√
2
πz

[
sin z

z − cos z
]

Exercise A.3.20. Show that
d

dz
J0(z) = −J1(z).

Exercise A.3.21. Use the Parseval formula to compute

∞∫
−∞

|Jν(x)|2|x|−2νdx

for ν a nonnegative integer or half-integer.

Exercise A.3.22. By considering the differential equation (A.59), for large real z, explain
the asymptotic expansion of the Bessel function. In particular, why is the rate of decay of
Jν independent of ν?
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A.4 Spaces of Functions∗

In mathematics functions are usually grouped together into vector spaces, according to
their smoothness properties or rates of decay. Norms or metrics are defined on these vector
spaces which incorporate these properties.

A.4.1 Examples of Function Spaces

A basic example is the space �0([0, 1]); it is the set of continuous functions defined on the
interval [0, 1]. A function f belongs to �0([0, 1]) if, for every x ∈ [0, 1] limy→x f (y) =
f (x), at the endpoints we need to use one-sided limits:

lim
y→0+ f (y) = 0, lim

y→1− f (y) = f (1).

A scalar multiple of a continuous function is continuous, as is a sum of two continuous
functions. Thus the set �0([0, 1]) is a vector space. Define a norm on this vector space by
setting

‖ f ‖�0
d= sup

x∈[0,1]
| f (x)|.

Notice that the expression on the right is defined for any bounded function defined on [0, 1].

A sequence of functions < fn > converges in this norm to a function f provided that

lim
n→∞‖ fn − f ‖�0 = 0.

It is a nontrivial result in analysis that if < fn > converges to f, in this sense, then f is
also a continuous function. This norm is called the uniform norm or sup norm; convergence
in this norm is called uniform convergence. The vector space �0([0, 1]) is complete with
respect to this norm.

For each k ∈ �, we let �k([0, 1]) denote the space of functions defined on [0, 1] with
k continuous derivatives. We define a norm on this space by setting

‖ f ‖�k =
k∑

j=0

‖ f [ j ]‖�0 . (A.64)

This norm defines a notion of convergence for k-times differentiable functions. As before, if
a sequence < fn > converges to f in this sense, then f is also a function with k continuous
derivatives. The basic result in analysis used to study these function spaces is as follows:

Theorem A.4.1. Let < fn > be a sequence of k-times differentiable functions defined on
[a, b]. If < fn > converges uniformly to f and for each j between 1 and k the sequence of
derivatives < f [ j ]

n > converges uniformly to a function g j , then f is k-times continuously
differentiable and

f [ j ] = g j for j = 1, . . . , k.
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A proof of this theorem is given in [111].
Let �∞([0, 1]) denote the vector space of functions, defined on [0, 1] with infinitely

many continuous derivatives. The expression on the right-hand side of (A.64) makes no
sense if k = ∞. In fact, there is no way to define a norm on the vector space �∞([0, 1]).
We can, however, define a metric on �∞([0, 1]) by setting

d( f, g) =
∞∑
j=0

2− j ‖ f − g‖� j

1 + ‖ f − g‖� j
.

A sequence of functions < fn >⊂ �∞([0, 1]) converges to f if

lim
n→∞ d( fn, f ) = 0.

Analogous spaces are defined with [0, 1] replaced by other sets; for example, �0(�n) or
�∞(S1 × �).

The foregoing examples are defined by considering the smoothness properties of func-
tions. Other types of spaces are defined by considering rates of decay at infinity and blow-
up at finite points. For example, the space L2([0, 1]) consists of functions for which

‖ f ‖2 =

√√√√√ 1∫
0

| f (x)|2 dx < ∞.

Such a function is said to be square integrable. It is not necessary for f to be continuous
in order for it to belong to L2([0, 1]), only that this integral makes sense. The function
|x − 1

2 |−
1
4 is not even bounded, but it belongs to L2([0, 1]) because∫

1√
|x − 1

2 |
dx < ∞.

Example A.4.1. Let 0 ≤ a < b < 1. Then the functions χ[a,b] belong to L2([0, 1]). Note
the following:

χ[a,b](x) − χ(a,b)(x) =
{

1 if x = a or b,

0 otherwise.

The L2-norm cannot detect the difference between these two functions

‖χ[a,b] − χ(a,b)‖2 = 0.

This is a general feature of norms defined by integrals: They do not distinguish functions
that differ on very small sets. The technical term for these very small sets is sets of measure
zero. This property does not create significant difficulties but is important to keep in mind.
Indeed, this is also a feature of physical measurements and explains, in part, the relevance
of integral norms in practical applications.
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Once again, if < fn >⊂ L2([0, 1]) is a sequence of functions that converge to a func-
tion f in the sense that

lim
n→∞‖ fn − f ‖2 = 0,

then f also belongs to L2([0, 1]). This type of convergence is often called convergence in
the mean; we use the special notation

LIM
n→∞ fn = f.

The behavior of L2-convergent sequences is quite different from that of �0-convergent
sequences. Examples best illustrate this point.

Example A.4.2. Let fn(x) = xn, if x ∈ [0, 1). Then

lim
n→∞ fn(x) = 0,

whereas limn→∞ fn(1) = 1. For each x, fn(x) converges, but the limit function

f (x) =
{

0 if 0 ≤ x < 1,

1 if x = 1

is not continuous. This means that ‖ fn − f ‖�0 cannot go to zero as n → ∞. On the other
hand,

1∫
0

|xn|2 dx = 1

2n + 1
,

and therefore limn→∞ ‖ fn −0‖2 = 0. So the sequence < fn > converges in the L2-norm to
the function that is identically zero. The pointwise limit, f, cannot be distinguished from
the zero function by the L2-norm. Note also the related fact: The L2-convergence of a
sequence < fn > to a function f does not require that limn→∞ fn(x) = f (x) for all x .

Example A.4.3. Define a sequence of functions

fn(x) =

⎧⎪⎨⎪⎩
0 for x ∈ [0, n−1

2n ],
nx − n−1

2 for x ∈ ( n−1
2n , n+1

2n ),

1 for x ∈ [ n+1
2n , 1].

Each of these functions is continuous, and it is not difficult to show that

f (x) = lim
n→∞ fn(x) =

{
0 for x ∈ [0, 1

2 ),

1 for x ∈ ( 1
2 , 1].

Once again, the limit function is not continuous, and it is easy to see that

‖ fn − f ‖�0 = 1

2
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for every n ∈ �. On the other hand, it is also not hard to show that

lim
n→∞

1∫
0

| fn(x) − f (x)|2 dx = 0.

Spaces of functions are generally infinite dimensional. Introducing a basis for a finite-
dimensional, real vector space establishes an isomorphism between that vector space and
�n, for some n. In Exercise A.2.3 it is shown that the notion of convergence for a sequence
in �n is independent of the choice of norm. This is not true for infinite-dimensional vector
spaces. There are many non-isomorphic vector spaces, and different norms lead to different
convergent sequences. By analogy to the norms, ‖ · ‖p defined on �n, the L p-norms are
defined for functions defined on [0, 1] by setting

‖ f ‖L p =
⎡⎣ 1∫

0

| f (x)|p dx

⎤⎦
1
p

. (A.65)

If 1 ≤ p, then this defines a norm; the restriction on p is needed to establish the triangle
inequality,

‖ f + g‖p ≤ ‖ f ‖p + ‖g‖p. (A.66)

We can also let p = ∞ by defining

‖ f ‖∞ = max{| f (x)| : x ∈ [0, 1]}.
Define the vector space L p([0, 1]) to be those locally integrable functions f such that

‖ f ‖p < ∞. The various L p-spaces are related by a fundamental inequality.

Theorem A.4.2 (Hölder’s inequality). Let 1 ≤ p ≤ ∞, and define q by

q =

⎧⎪⎨⎪⎩
p

p−1 if p 	= 1,∞,

1 if p = ∞,

∞ if p = 1.

(A.67)

If f ∈ L p([0, 1]) and g ∈ Lq([0, 1]), then

1∫
0

| f (x)g(x)| dx ≤ ‖ f ‖L p‖g‖Lq . (A.68)

In particular, the product f g belongs to L1([0, 1]).
The analogous result holds with [0, 1] replaced by �.

Exercise A.4.2 shows that a sequence of functions < fn > that belongs to L2([0, 1])
also belongs to L1([0, 1]). The next example shows that a bounded sequence in L2([0, 1])
need not have a limit in L2-norm even though it does have a limit in the L1-norm.
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Example A.4.4. Define a sequence of functions

fn(x) =
{

n if x ∈ [0, 1
n2 ],

0 if n ∈ ( 1
n2 , 1].

Note that if x 	= 0, then limn→∞ fn(x) = 0; on the other hand, for all n ∈ � we have

‖ fn‖2 = 1.

This shows that this sequence is bounded in L2([0, 1]) but does not converge to anything.
Note that limn→∞ ‖ fn‖1 = 0 and therefore < fn > does converge to zero in the L1-norm.

Exercises
Exercise A.4.1. In Example A.4.2, find the maximum value of the difference | f (x)− fn(x)|
for each n and show that this does not go to zero as n → ∞.

Exercise A.4.2. Use Hölder’s inequality to show that if f ∈ L p([0, 1]) and 1 ≤ p′ < p,
then f ∈ L p′

([0, 1]) as well. Hint: Take g = 1.

Exercise A.4.3. Show that the function

fα(x) = 1

xα

belongs to L p([0, 1]) if α < p−1 and does not belong to L p([0, 1]) if α ≥ p−1.

A.4.2 Completeness

In the finite-dimensional case we introduced the concept of a Cauchy sequence as a way
of describing which sequences should converge. The real power of this idea only becomes
apparent in the infinite-dimensional context.

Definition A.4.1. Let (V, ‖ · ‖) be a normed vector space. A sequence < vn >⊂ V is a
Cauchy sequence if, for any ε > 0, there exists an N so that

‖vn − vm‖ < ε provided that m and n > N .

Reasoning by analogy, the Cauchy sequences are the ones that “should converge.” Be-
cause there are many different norms that can be used on an infinite-dimensional space, this
is a subtle question.

Example A.4.5. Let V be the continuous functions on [0, 1] and use for a norm

‖ f ‖1 =
1∫

0

| f (x)| dx .
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Define a sequence < fn >⊂ V by setting

fn(x) =

⎧⎪⎨⎪⎩
0 for 0 ≤ x ≤ 1

2 − 1
n ,

n(x − 1
2 ) for 1

2 − 1
n ≤ x ≤ 1

2 ,

1 for 1
2 ≤ x ≤ 1.

The distances between the terms of the sequence satisfy the estimates

‖ fn − fm‖1 ≤ 1

2
(

1

n
+ 1

m
).

This implies that < fn > is a Cauchy sequence. Pointwise, < fn > converges to

f =
{

0 for 0 ≤ x < 1
2 ,

1 for 1
2 ≤ x ≤ 1.

Indeed it is not difficult to show that

lim
n→∞‖ fn − f ‖1 = 0.

The only difficulty is that f is not a continuous function. This is an example of a Cauchy
sequence that does not converge.

This sort of example leads to the following definition.

Definition A.4.2. A normed vector space (V, ‖ · ‖) is said to be complete if every Cauchy
sequence < vn >⊂ V converges to a limit in V .

Note that completeness is a property of a normed vector space. It makes no sense to
say “the set of continuous functions on [0, 1] is complete.” Rather, we must say that “the
set of continuous functions on [0, 1], with the sup norm is complete.” Completeness is an
important property for a normed linear space, and most of the spaces we consider have this
property.

Theorem A.4.3. For 1 ≤ p ≤ ∞, the normed linear spaces L p([0, 1]) (or L p(�n)) are
complete. For any nonnegative integer k, the normed linear spaces �k([0, 1]) (or �k(�n))
are complete.

Exercise
Exercise A.4.4. In Example A.4.5, show that < fn > is not a Cauchy sequence in the
sup-norm.
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A.4.3 Linear Functionals

For finite-dimensional vector spaces the concept of a linear function is given by purely
algebraic conditions (A.9). For infinite-dimensional vector spaces more care is required
because linear functions may not be continuous.

Example A.4.6. Let V be the set of once differentiable functions on [0, 1]. Instead of using
the usual �1-norm, we use the �0-norm. With this choice of norm a sequence of functions
< fn >⊂ V converges to f ∈ V if

lim
n→∞‖ fn − f ‖�0 = 0.

Suppose < fn > is a sequence that converges to 0 in this sense and that l : V → � is a
linear function. If l is continuous, then

lim
n→∞ l( fn) = 0.

Define a function on V by setting

l( f ) = f ′(
1

2
).

The usual rules of differentiation show that this is a linear function. It is, however, not
continuous. Define a sequence of functions in V by letting

fn(x) =
{

0 if x /∈ ( n−1
2n , n+3

2n ),
1√
n
(1 − [n(x − 1

2n )]2)2 if x ∈ ( n−1
2n , n+3

2n ).

It is not difficult to show that fn ∈ V for each n and that

fn(x) ≤ 1√
n

for x ∈ [0, 1].

This shows that < fn > converges to f ≡ 0 in the sense defined previously. However, a
calculation gives that

l( fn) = f ′
n(

1

2
) = −3

2

√
n.

In other words, limn→∞ l( fn) = −∞, even though < fn > converges to zero. If we use
the �1-norm instead, then l is indeed a continuous linear function. The reason this does not
contradict the previous example is that the sequence < fn > does not converge to zero in
the �1-norm.

In light of this example, it is clear that additional care is needed in the study of linear
functions on infinite-dimensional vector spaces.
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Definition A.4.3. Let V be a vector space with norm ‖ · ‖. A linear function l : V → � is
called a linear functional if it is continuous with respect to the norm. That is, if < fn > is
sequence in V and, for an f in V,

lim
n→∞‖ f − fn‖ = 0,

then
lim

n→∞ l( fn) = l( f ).

We denote the set of linear functionals by V ′; as before, it is a vector space called the dual
vector space. It has a naturally defined norm given by

‖l‖′ = sup
V" f 	=0

|l( f )|
‖ f ‖ . (A.69)

For the normed vector spaces of greatest interest there is a complete description of the
dual vector space. Let 1 ≤ p ≤ ∞, and let q be defined by (A.67). Choose a function
g ∈ Lq([0, 1]); then Hölder’s inequality implies that for every f ∈ L p([0, 1]) the function
f g is integrable and ∣∣∣∣∣∣

1∫
0

f (x)g(x) dx

∣∣∣∣∣∣ ≤ ‖ f ‖L p‖g‖Lq .

The real-valued function

lg( f ) =
1∫

0

f (x)g(x) dx (A.70)

is therefore well defined for all f ∈ L p([0, 1]). The elementary properties of the integral
imply that it is linear and Hölder’s inequality implies that it is continuous. Suppose that
< fn >⊂ L p([0, 1]), which converges in the L p-sense to f. We see that

|lg( fn)− l( f )| = |lg( fn − f )| ≤ ‖ fn − f ‖L p‖g‖Lq .

This shows that limn→∞ lg( fn) = lg( f ).
In fact, all linear functionals on these normed vector spaces are of this form.

Theorem A.4.4 (Riesz representation theorem 1). If 1 ≤ p < ∞ and q is given
by (A.67), then Lq([0, 1]) is the dual space to L p([0, 1]). That is, every continuous lin-
ear function on L p([0, 1]) is given by lg for some g ∈ Lq([0, 1]).
Remark A.4.1. Note that the case p = ∞ is excluded in Theorem A.4.4. The space
L∞([0, 1]) turns out to be considerably more complicated, as a normed vector space, than
L p([0, 1]) for 1 ≤ p < ∞. As the details of this space are not needed in the sequel, we do
not pursue the matter further.

Starting with n-tuples of numbers and the ‖ · ‖p-norm defined in (A.21) leads to yet
another collection of infinite-dimensional spaces.
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Definition A.4.4. For 1 ≤ p ≤ ∞, let l p denote the collection of sequences < a j > such
that

‖ < a j > ‖p =
⎡⎣ ∞∑

j=1

|a j |p

⎤⎦
1
p

< ∞. (A.71)

These are complete normed vector spaces.

Example A.4.7. The space l1 consists of sequences that have absolutely convergent sums;
that is, < a j >∈ l1 if and only if

∞∑
j=1

|a j | < ∞.

If p < p′, then it is clear that l p ⊂ l p′
. There is also a version of the Hölder inequality.

Let 1 ≤ p ≤ ∞ and q by given by (A.67); for < a j >∈ l p and < b j >∈ l ,q the sequence
< a j b j >∈ l1 and

∞∑
j=1

|a j b j | ≤ ‖ < a j > ‖p‖ < b j > ‖q . (A.72)

This inequality shows that if b =< b j >∈ lq, then we can define a bounded linear func-
tional on l p by setting

lb(a) =
∞∑
j=1

a j b j .

This again gives all bounded functionals provided p is finite.

Theorem A.4.5 (Riesz representation theorem 2). If 1 ≤ p < ∞ and q is given by (A.67)
then lq is the dual space to l p. That is, every continuous linear function on l p is given by lb

for some b ∈ lq .

Exercise
Exercise A.4.5. Prove that l p ⊂ l p′

.

A.4.4 Measurement, Linear Functionals, and Weak Convergence

Suppose that the state of a system is described by a function f ∈ L p([0, 1]). In this case the
measurements that we can make are often modeled as the evaluation of linear functionals.
That is, we have a collection of functions {g1, . . . , gk} ⊂ Lq([0, 1]) and our measurements
are given by

m j ( f ) =
1∫

0

f (x)g j (x) dx, j = 1, . . . , k.
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From the point of view of measurement, this suggests a different, perhaps more reasonable,
notion of convergence. Insofar as these measurements are concerned, a sequence of states
< fn > would appear to converge to a state f if

lim
n→∞

1∫
0

fn(x)g j (x) dx =
1∫

0

f (x)g j (x) dx, for j = 1, . . . k. (A.73)

Since we are only considering finitely many measurements on an infinite-dimensional state
space, this is clearly a much weaker condition than the condition that < fn > converge to
f in the L p-sense.

Of course, if < fn > converges to f in the L p-sense, then, for any g ∈ Lq([0, 1]),
limn→∞ lg( fn) = lg( f ). However, the L p-convergence is not required for (A.73) to hold.
It is an important observation that the condition

lim
n→∞

1∫
0

fn(x)g(x) dx =
1∫

0

f (x)g(x) dx for every function g ∈ Lq([0, 1])

is a weaker condition than L p-convergence.

Definition A.4.5. Suppose that (V, ‖·‖) is a normed vector space and < vn > is a sequence
of vectors in V . If there exists a vector v ∈ V such that for every continuous linear function
l we have that

lim
n→∞ l(vn) = l(v),

then we say that vn converges weakly to v. This is sometimes denoted by

vn ⇁ v.

From the point of view of measurement, weak convergence is often the appropriate
notion. Unfortunately, it cannot be defined by a norm, and a sequence does not exert very
much control over the properties of its weak limit. For example, it is not in general true that

lim
n→∞‖vn‖ = ‖v‖

for a weakly convergent sequence. This is replaced by the statement

If vn ⇁ v, then lim sup
n→∞

‖vn‖ ≥ ‖v‖. (A.74)

Example A.4.8. The sequence of functions < fn > defined in Example A.4.4 is a sequence
with

‖ fn‖L2 = 1

for all n. On the other hand, if x ∈ (0, 1], then

lim
n→∞ fn(x) = 0.
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These two facts allow the application of standard results from measure theory to conclude
that

lim
n→∞

1∫
0

fn(x)g(x) dx = 0,

for every function g ∈ L2([0, 1]). In other words, the sequence < fn > converges weakly
to zero even though it does not converge to anything in the L2-sense.

Example A.4.9. Let < an >⊂ l2 be the sequence defined by

an( j) =
{

1 if j = n,

0 if j 	= n.

Since an( j) = 0 if j < n, it is clear that if < an > were to converge to a, in the l2-sense,
then a = 0. On the other hand, ‖an‖l2 = 1 for all n, and this shows that an cannot converge
in the l2-sense. Finally, if b ∈ l2, then

〈an, b〉l2 = b(n).

Because ‖b‖l2 < ∞, it is clear that

lim
n→∞ b(n) = 0

and therefore an converges weakly to 0.

Exercise
Exercise A.4.6. Suppose that < fn >⊂ L2([0, 1]) and < fn > has a weak limit. Show
that it is unique.

A.4.5 Generalized Functions on �

Within mathematics and also in its applications, the fact that many functions are not dif-
ferentiable can be a serious difficulty. Within the context of linear analysis, generalized
functions or distributions provide a very comprehensive solution to this problem. Though
it is more common in the mathematics literature, we avoid the term distribution, because
there are so many other things in imaging that go by this name. In this section we outline
the theory of generalized functions and give many examples. The reader wishing to attain
a degree of comfort with these ideas is strongly urged to do the Exercises at the end of the
section.

Let �∞
c (�) denote infinitely differentiable functions defined on � that vanish outside

of bounded sets. These are sometimes called test functions.
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Definition A.4.6. A generalized function on � is a linear function, l, defined on the set of
test functions such that there is a constant C and an integer k so that, for every f ∈ �∞

c (�),
we have the estimate

|l( f )| ≤ C sup
x∈�

⎡⎣(1 + |x|)k
k∑

j=0

|∂ j
x f (x)|

⎤⎦ . (A.75)

These are linear functions on �∞
c (�) that are, in a certain sense, continuous. The

constants C and k in (A.75) depend on l but do not depend on f. The expression on the
right-hand side defines a norm on �∞

c (�). For convenience, we let

‖ f ‖k = sup
x∈�

⎡⎣(1 + |x|)k
k∑

j=0

|∂ j
x f (x)|

⎤⎦ .

If f ∈ �∞
c (�), then it easy to show that ‖ f ‖k is finite for every k ∈ � ∪ {0}.

A few examples of generalized functions should help clarify the definition.

Example A.4.10. The most famous generalized function of all is the Dirac δ-function. If
is defined by

δ( f ) = f (0).

It is immediate from the definition that f �→ δ( f ) is linear and

|δ( f )| ≤ ‖ f ‖0,

so the δ-function is a generalized function. For j ∈ � define

δ( j )( f ) = ∂ j
x f (0).

Since differentiation is linear, these also define linear functions on �∞
c (�) that satisfy the

estimates
|δ( j )( f )| ≤ ‖ f ‖ j .

Hence these are also generalized functions.

Example A.4.11. Let ϕ be a function that is integrable on any finite interval and such that

Cϕ =
∞∫

−∞
|ϕ(x)|(1 + |x|)−k ≤ ∞

for some nonnegative integer k. Any such function defines a generalized function

lϕ( f ) =
∞∫

−∞
f (x)ϕ(x) dx .
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Because f has bounded support, the integral converges absolutely. The linearity of the
integral implies that f �→ lϕ( f ) is linear. To prove the estimate, we observe that

| f (x)| ≤ ‖ f ‖k

(1 + |x|)k

and therefore

|lϕ( f )| ≤
∞∫

−∞
‖ f ‖k

|ϕ(x)|
(1 + |x|)k

dx = Cϕ‖ f ‖k .

Thus lϕ is also a generalized function. In particular, every function in �∞
c (�) defines a gen-

eralized function, so that, in a reasonable sense, a generalized function is a generalization
of a function!

Example A.4.12. Recall that the Cauchy principal value integral of g is defined, when the
limit exists, by

P.V.

∞∫
−∞

g(x) dx = lim
ε↓0

⎡⎣ −ε∫
−∞

g(x) dx +
∞∫
ε

g(x) dx

⎤⎦ ,

A generalized function is defined by

l1/x( f ) = P.V.

∞∫
−∞

f (x) dx

x
.

Because 1/x is not integrable in any neighborhood of 0, the ordinary integral f (x)/x is not
defined. The principal value is well defined for any test function and defines a generalized
function. To prove this, observe that, for any ε > 0,

−ε∫
−1

f (x) dx

x
+

1∫
ε

f (x) dx

x
=

−ε∫
−1

( f (x) − f (0)) dx

x
+

1∫
ε

( f (x) − f (0)) dx

x
.

This is because 1/x is an odd function and the region of integration is symmetric about
0. The ratio ( f (x) − f (0))/x is a smooth bounded function in a neighborhood of 0 and
therefore the limit exists as ε → 0. This shows that

l1/x( f ) =
1∫

−1

( f (x) − f (0)) dx

x
+
∫

|x |≥1

f (x) dx

x
.

It is left as an exercise to show that

|l1/x( f )| ≤ C‖ f ‖1. (A.76)
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As noted in Example A.4.11, the map f �→ l f identifies every function in �∞
c (�)

with a unique generalized function. If the world were very simple, then every generalized
function would be of this form for some locally integrable function. But this is not true! It
is not hard to show that the δ-function is not of this form: Suppose that δ = lϕ for some
locally integrable function ϕ. We can show that ϕ must vanish for all x 	= 0; this is because
δ( f ) only depends on f (0). But an integrable function supported at one point has integral
0 so

lϕ( f ) = 0

for all f ∈ �∞
c (�).

Recall that our goal is to extend the notion of differentiability. The clue to how this
should be done is given by the integration by parts formula. Let f and g be test functions.
Then ∞∫

−∞
∂x f (x)g(x) dx = −

∞∫
−∞

f (x)∂x g dx . (A.77)

Thinking of f as a generalized function, this formula can be rewritten as

l∂x f (g) = l f (−∂x g). (A.78)

The right-hand side of (A.77) defines a generalized function, which we identify as the
derivative of the l f , [

∂xl f

]
(g)

d= −l f (∂x g). (A.79)

This equation is really just notation, but the underlying idea can be used to define the
derivative of any generalized function.

Proposition A.4.1. If l is a generalized function defined on �, then

l ′( f ) = l(∂x f )

is also a generalized function.

Proof. Because ∂x maps �∞
c (�) to itself, the linear function l ′ is well defined; we only need to

prove that it satisfies an estimate of the form (A.75). As l is a generalized function, there is a C and
k so that

|l( f )| ≤ C‖ f ‖k .

From the definition of l ′ it is clear that

|l ′( f )| ≤ C‖∂x f ‖k .

The proof is completed by showing that

‖∂x f ‖k ≤ ‖ f ‖k+1.

This is left as an exercise.
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With this proposition we can now define the derivative of a generalized function. It
is very important to keep in mind that the derivative of a generalized function is another
generalized function! To distinguish this concept of derivative from the classical one, the
derivative of a generalized function is called a weak derivative.

Definition A.4.7. Let l be a generalized function. The weak derivative of l is the general-
ized function l [1] defined by

l [1]( f )
d= −l(∂x f ). (A.80)

If l = l f for a smooth function f, then l [1] = l∂x f , so this definition extends the
usual definition of derivative. Because every generalized function is differentiable and its
weak derivative is another generalized function, it follows that every generalized function is
twice differentiable. Indeed, arguing recursively, it follows that every generalized function
is infinitely differentiable. Let {l [ j ]} denote the successive weak derivatives of l. It is left as
an exercise for the reader to prove the general formula

l [ j ]( f )
d= (−1) j l(∂ j

x f ). (A.81)

Example A.4.13. The weak derivative of the δ-function is just −δ(1), as already defined in
Example A.4.10. The definition states that

δ[1]( f ) = −δ(∂x f ) = −∂x f (0).

It is clear that the weak derivative of δ[1] is δ(2) and so on.

Example A.4.14. Let ϕ = χ[0,∞). Since ϕ is bounded and piecewise continuous, it defines
a generalized function. This function also has a classical derivative away from 0 but is not
even continuous at 0. Nonetheless, it has a weak derivative as a generalized function. To
find it, we apply the definition

l [1]χ[0,∞)
( f ) = −lχ[0,∞)

(∂x f )

= −
∞∫

0

∂x f (x) dx = f (0).
(A.82)

This shows that l [1]χ[0,∞)
= δ. This is an example of an ordinary function, whose weak deriva-

tive, as a generalized function, is not represented by an ordinary function. However, we
have accomplished exactly what we set out to do, because now χ[0,∞) has a derivative.

Example A.4.15. If f is a smooth function, with bounded support, then the previous ex-
ample generalizes to shows that

l [1]f χ[0,∞)
= f (0)δ + l(∂x f )χ[0,∞)

. (A.83)

The set of generalized functions is a vector space. If l and k are generalized functions,
then so is the sum

(l + k)( f )
d= l( f )+ k( f )
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as well as scalar multiples

(al)( f )
d= a(l( f )) for a ∈ �.

Differentiation is a linear operation with respect to this vector space structure; that is,

(l + k)[1] = l [1] + k[1] and (al)[1] = al [1].

The notion of weak convergence is perfectly adapted to generalized functions.

Definition A.4.8. A sequence {ln} of generalized functions converges weakly to a general-
ized function l if, for every test function f,

lim
n→∞ ln( f ) = l( f ).

Weak derivatives of generalized functions behave very nicely under weak limits.

Proposition A.4.2. If < ln > is a sequence of generalized functions that converge weakly
to a generalized function l, then, for every j ∈ �, the sequence of generalized functions
< l [ j ]

n > converges weakly to l [ j ].

Generalized functions seem to have many nice properties, and they provide a system-
atic way to define derivatives of all functions, though the derivatives are, in general, not
functions. Multiplication is the one basic operation that cannot be done with generalized
functions. Indeed, it is a theorem that there is no way to define a product on generalized
functions so that l f ·lg = l f g. However, if f is a test function and l is a generalized function,
then the product f · l is defined; it is

( f · l)(g)
d= l( f g).

This product satisfies the usual Leibniz formula

( f · l)[1] = f · l [1] + ∂x f · l. (A.84)

This is generalized slightly in Exercise A.4.16.
We close this brief introduction to the idea of a generalized function with a proposition

that gives a fairly concrete picture of the “general” generalized function as a limit of simple
examples.

Proposition A.4.3. If l is a generalized function, then there is a sequence of test functions
< fn > such that l is the weak limit of the sequence of generalized functions < l fn > .

In other words, any generalized function is the weak limit of generalized functions
defined by integration.

Example A.4.16. Let ϕ be a smooth nonnegative function with support in (−1, 1) normal-
ized so that ∞∫

−∞
ϕ(x) dx = 1.

For each n ∈ �, define ϕn(x) = nϕ(nx); then δ is the weak limit of lϕn .
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The generalized functions considered in this section are usually called tempered dis-
tributions in the mathematics literature. This is because they have “tempered growth” at
infinity. A more systematic development and proofs of the results in this section can be
found in [7]. A very complete treatment of this subject including its higher-dimensional
generalizations is given in [59].

Exercises
Exercise A.4.7. Show that if ϕ = e|x |, then lϕ is not a generalized function.

Exercise A.4.8. Prove (A.76).

Exercise A.4.9. Suppose that f ∈ �∞
c (�). Show that

‖∂x f ‖k ≤ ‖ f ‖k+1.

Exercise A.4.10. Prove (A.81).

Exercise A.4.11. Compute the derivative of l1/x .

Exercise A.4.12. Let ϕ(x) = (1 − |x|)χ[−1,1](x) and, for n ∈ �, set

ϕn(x) = nϕ(nx).

Prove that lϕn converges to δ. Show by direct computation that l [1]ϕn
converges to δ[1].

Exercise A.4.13. Prove (A.83).

Exercise A.4.14. Prove Proposition A.4.2.

Exercise A.4.15. Prove (A.84).

Exercise A.4.16. Let l be a generalized function and f ∈ �∞(�) a function with tempered
growth. This means that there is a k ∈ � and constants {C j } so that

|∂ j
x f (x)| ≤ C j (1 + |x|)k .

Show that ( f · l)(g)
d= l( f g) defines a generalized function.

Exercise A.4.17. Show that any polynomial is a function of tempered growth. Show that a
smooth periodic function is a function of tempered growth.

A.4.6 Generalized Functions on �n

The theory of generalized function extends essentially verbatim to functions of several
variables. We give a very brief sketch. For each nonnegative integer k, define a norm on
�∞

c (�n) by setting

‖ f ‖k = sup
x∈�n

⎡⎣(|1 + ‖x‖)k
∑

α |α|≤k

|∂α
x f (x)|

⎤⎦ .

Here α is an n-multi-index—that is an n-tuple of nonnegative integers, α = (α1, . . . , αn)
with

∂α
x

d= ∂α1
x1

· · · ∂αn
xn

and |α| d= α1 + · · · + αn.
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Definition A.4.9. A linear function l : �∞
c (�n) → � is a generalized function if there

exists a k ∈ � ∪ {0} and a constant C so that

|l( f )| ≤ C‖ f ‖k .

As before, the set of generalized functions is a vector space. A sequence of generalized
functions, < ln >, converges weakly to a generalized function l provided that

lim
n→∞ ln( f ) = l( f ) for every f ∈ �∞

c (�n).

Example A.4.17. The Dirac δ-function is defined in n dimensions by

δ( f ) = f (0).

It satisfies the estimate |δ( f )| ≤ ‖ f ‖0 and is therefore a generalized function.

Example A.4.18. If ϕ is a locally integrable function of tempered growth, that is, there is a
k ≥ 0 and a constant so that

|ϕ(x)| ≤ C(1 + ‖x‖)k,

then

lϕ( f ) =
∫
�n

ϕ(x) f (x) dx

satisfies
|lϕ( f )| ≤ C ′‖ f ‖n+1+k . (A.85)

This shows that lϕ is a generalized function.

If α is an n-multi-index, and f ∈ �∞
c (�n) then ∂α

x f is also in �∞
c (�n) and satisfies the

estimates
‖∂α

x f ‖k ≤ ‖ f ‖k+|α|.

As before, this allows us to extend the notion of partial derivatives to generalized functions.

Definition A.4.10. If l is a generalized function, then, for 1 ≤ j ≤ n, the weak j th partial
derivative of l is the generalized function defined by

[∂x j l]( f )
d= (−1)l(∂x j f ). (A.86)

Since ∂x j l is a generalized function as well, it also has partial derivatives. To make
a long story short, for an arbitrary multi-index α the weak αth partial derivative of the
generalized function l is defined by

[∂α
x l]( f )

d= (−1)|α|l(∂α
x f ). (A.87)
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If f, g ∈ �∞
c (�n), then the n-dimensional integration by parts formula states that∫

�n

[∂x j f (x)]g(x) dx = −
∫
�n

[∂x j g(x)] f (x) dx. (A.88)

Applying this formula recursively gives the integration by parts for higher-order derivatives:∫
�n

[∂α
x f (x)]g(x) dx = (−1)|α|

∫
�n

[∂α
x g(x)] f (x) dx. (A.89)

It therefore follows that if f ∈ �∞
c (�n), then the definition of the weak partial derivatives

of l f is consistent with the classical definition of the partial derivatives of f in that

∂α
x l f = l∂α

x f for all α. (A.90)

Finally, we remark that every generalized function on �n is a weak limit of “nice”
generalized functions.

Proposition A.4.4. If l is a generalized function on �n, then there is a sequence of functions
< fn >⊂ �∞

c (�n) so that

l(g) = lim
n→∞ l fn (g) for all g ∈ �∞

c (�n).

Exercises
Exercise A.4.18. Prove that if f ∈ �∞

c (�n) and j ≤ k, then

|∂α
x f (x)| ≤ ‖ f ‖k

(1 + ‖x‖)k

provided |α| ≤ k.

Exercise A.4.19. Prove (A.85).

Exercise A.4.20. Let f ∈ �∞
c (�2). Show that

l( f ) =
∞∫

−∞
f (x, 0) dx

defines a generalized function.

Exercise A.4.21. Prove that (A.86) defines a generalized function.

Exercise A.4.22. Show that the right-hand side of (A.87) defines a generalized function.

Exercise A.4.23. By writing the integrals over �n as iterated one-dimensional integrals,
prove (A.88). Deduce (A.89).
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Exercise A.4.24. Prove (A.90).

Exercise A.4.25. Let ϕ(x, y) = χ[0,∞)(x) · χ[0,∞)(y). Show that

∂x∂ylϕ = δ.

Exercise A.4.26. Let ϕ(x, y) = 1
4χ[−1,1](x)χ[−1,1](y) and ϕn(x, y) = n2ϕ(nx, ny). Prove

that
lim

n→∞ lϕn ( f ) = δ( f ) for every f ∈ �∞
c (�2).

A.5 Functions in the Real World

In Section A.4 we considered functions from the point of view of a mathematician. In this
approach, functions are described by abstract properties such as differentiability or integra-
bility. Using these properties, functions are grouped together into normed vector spaces.
The principal reason for doing this is to study the mapping properties of linear transforma-
tions. It is a very abstract situation because we do not, even in principle, have a way to
compute most of the functions under consideration: They are described by their properties
and not defined by rules or formulæ. This level of abstraction even leads to difficulties
in the mathematical development of the subject. In practice we can only approximately
measure a function, in most circumstances, at a finite collection of arguments. What me-
diates between these two very different views of functions? This is a question with many
different answers, but the basic ideas involve the concepts of approximation, sampling, and
interpolation.

A.5.1 Approximation

The basic problem of approximation theory is to begin with a function from an abstract
class (for example, continuous functions) and approximate it, in an appropriate sense, by
functions from a more concrete class (for example, polynomials). We begin with the basic
theorem in this subject.

Theorem A.5.1 (The Weierstrass approximation theorem). Given a function f ∈ �0([0, 1])
and an ε > 0, there is a polynomial p such that

‖ f − p‖�0 < ε. (A.91)

The relationship of polynomial functions to continuous functions is analogous to that of
finite decimal expansions to real numbers. For the purposes of approximate computations
(even with a specified error), it suffices to work with polynomials. This theorem is the
prototype for many other such results.

A very useful result for L p-spaces uses approximation by step functions. Recall that if
E is an subset of �, then its characteristic function is defined by

χE (x) =
{

1 if x ∈ E,

0 if x /∈ E .
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Definition A.5.1. A function f is called a step function if there is a finite collection of
intervals {[ai , bi ) : i = 1, . . . , N} and constants {ci} so that

f (x) =
N∑

i=1

ciχ[ai ,bi )(x).

Step functions are computable functions.

Theorem A.5.2 (L p-Approximation theorem). Suppose that 1 ≤ p < ∞, f ∈ L p(�)
and ε > 0 is given. There exists a step function F such that

‖ f − F‖L p < ε. (A.92)

Note that p = ∞ is excluded; the theorem is false in this case. The proof of this theorem
uses the definition of the Lebesgue integral and the structure of Lebesgue measurable sets.
It is beyond the scope of this text but can be found in [42]. Theorem A.5.2 has a very useful
corollary.

Corollary A.5.1. Suppose that 1 ≤ p < ∞, f ∈ L p(�) and ε > 0 is given. There exists
a continuous function G such that

‖ f − G‖L p < ε. (A.93)

Proof. Theorem A.5.2 gives the existence of a step function F so that ‖ f − F‖L p < ε/2. This
means that it suffices to find a continuous function G so that

‖F − G‖L p <
ε

2
.

In light of Exercise A.5.1, there is a sequence a = a0 < a1 < · · · < am = b and constants {c j } so
that

F(x) =
m∑

j=1

c jχ[a j−1,a j )(x).

Such a function is easily approximated, in the L p-norm, by continuous, piecewise linear functions.
Fix an η > 0 so that

2η < min{ai − ai−1 : i = 1, . . . ,m}.
For each 1 ≥ j < m define the piecewise linear function

l j (x) =
{

0 if |x − a j | > η,

c j
x−(a j−η)

2η + c j−1
(a j+η−x)

2η if |x − a j | ≤ η.

For j = 0 or m we let

l0(x) =
{

0 if |x − a0| > η,

c j
x−(a0−η)

2η if |x − a0| ≤ η,
lm(x) =

{
0 if |x − am | > η,

cm
(am+η−x)

2η if |x − am | ≤ η.
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A continuous, piecewise linear function is defined by

G =
m∑

j=0

l j (x)+
m∑

j=1

χ[a j−1+η,a j−η)(x).

The L p-norm of the difference F − G is estimated by

‖F − G‖p
L p ≤ 2η

m+1∑
j=0

|c j − c j−1|p.

Here c−1 = cm+1 = 0. As η can be made arbitrarily small, this proves the corollary.

While the precise statements of these three results are quite different, their structures
are identical: In each case we have a normed vector space (V, ‖ · ‖) and a subspace S ⊂ V
consisting of computable functions. The theorems assert that, if the norm ‖ · ‖ is used to
measure the error, then the set S is dense in V . Neither theorem addresses the problem
of finding the approximating function, though the usual proofs of these theorems provide
algorithms, at least in principle. Analogous statement hold with � replaced by �n or finite
intervals.

Polynomial Approximation

Let us return to the problem of polynomial approximation for continuous functions. We can
ask a more precise question: How well can a given continuous function f be approximated
by a polynomial of degree n? Let �n denote the polynomials of degree at most n and define

En( f )
d= min{‖ f − p‖�0 : p ∈ �n}. (A.94)

Weierstrass’s theorem implies that for any f ∈ �0([0, 1]),
lim

n→∞ En( f ) = 0.

This suggests two questions:

1. Is there an element pn ∈ �n for which

‖ f − pn‖�0 = En( f )?

2. Is there an estimate for the rate at which En( f ) goes to zero?

The answer to the first question yes: If f is a continuous function, then there is a unique
polynomial pn ∈ �n such that

‖ f − pn‖�0 = En( f ).

The answer to the second question turns out to depend on the smoothness of f.
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Theorem A.5.3 (Jackson’s theorem). If f ∈ �k([0, 1]) for a k ∈ �, then

En( f ) ≤ C

nk
.

The smoother the function, the faster the sequence of “best” approximating polynomi-
als converges to it. These facts suggest another question: Can the “best” approximating
polynomial be found? The answer, at present, is no. We might then ask if another ap-
proximation qn ∈ �n can be found such that ‖ f − qn‖�0 goes to zero at about same rate
as En( f ). The answer to this question is yes, but it is generally quite complicated to do.
The interested reader is referred to [108]. Later we give an effective method for finding a
sequence {qn} such that ‖ f − qn‖�0 goes to zero at nearly the optimal rate.

We close our discussion of approximation in the �0-norm with a formula for an ap-
proximating sequence of polynomials that works for any continuous function.

Theorem A.5.4 (Bernstein’s formula). Let f ∈ �0([0, 1]) and define the polynomial of
degree n by

Bn( f ; x) =
n∑

j=0

f

(
j

n

)(
j
n

)
x j (1 − x)n− j .

This sequence converges to f in the �0-norm; that is,

lim
n→∞‖Bn( f )− f ‖�0 = 0.

If f is once differentiable, then there is a constant M so that

|Bn( f ; x) − f (x)| ≤ M√
n
.

Bernstein’s formula gives a sequence of polynomials that always works and gives some-
what better results if the function is smoother. However, even for very smooth functions,
the Bernstein polynomials do not behave like the best approximants.

Infinite-Dimensional Gram-Schmidt

The difficulties encountered with finding the best polynomial approximations are mostly a
result of using the �0-norm to measure the error. A much easier approximation problem
results from measuring the error in the L2-norm. Indeed, allowing a slightly more general
norm does not introduce any additional difficulties. Let w be a nonnegative, integrable
function defined on [0, 1], and define the L2-norm with weight w to be

‖ f ‖2,w =
1∫

0

| f (x)|2w(x) dx .



A.5. Functions in the Real World 711

so that
cos(kθ) = Tk(cos(θ)).

Show that the polynomials {Tk} satisfy the relations

1∫
−1

Tk(x)Tl(x) dx√
1 − x2

= 0 if j 	= k.

Hint: Use the change of variables x = cos(θ). These polynomials are called the Chebyshev
polynomials. They have many remarkable properties and are often used in approximation
theory; see [107]. Note that setting y = 1

2(1 + x) maps [−1, 1] into [0, 1] and

y(1 − y) = 1 − x2

4
.

A.5.2 Sampling and Interpolation

Suppose that we have a system whose state is described by a function f of a variable t. The
simplest way to model a measurement is as evaluation of this function. That is, we have a
sequence of “times” < t j > and the measurement consists of evaluating f at these times.
The sequence < f (t j ) > is called the samples of f at the times < t j > . The sample times
are usually labeled in a monotone fashion; that is,

t j < t j+1.

The differences �t j = t j − t j−1 are called the sample spacings. If they are all equal to
a single value �t, then we say f is uniformly sampled with sample spacing �t. In a real
application we can measure at most finitely many samples, and of course we can only
measure them with finite precision. Nonetheless, in analyzing measurement processes it
is often useful to assume that we can evaluate f along an infinite sequence and that the
measurements are exact.

A question of primary interest is to decide what the samples < f (t j ) > tell us about
the value of f for times t not in our sample set. The answer depends on the sample spacing
and a priori knowledge of the smoothness of f. Such information is usually incorporated
implicitly into a model. Suppose that we sample a differentiable function f (t) at the points
{t j }. Let t lie between t j and t j+1. Then the mean value theorem implies that there is a point
τ ∈ (t j , t j+1) such that

f (t) = f (t j )+ f ′(τ )(t − t j ).

If the points are close together and the derivative is continuous, then

f ′(τ ) � f (t j )− f (t j+1)

t j − t j+1
.
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Defining

F(t) = f (t j )+
[

f (t j )− f (t j+1)

t j − t j+1

]
(t − t j ), for t ∈ [t j , t j+1], (A.95)

gives a continuous, piecewise linear function with F(t j ) = f (t j ), for all j. In general, F is
not differentiable. We say that F is a piecewise linear function, interpolating f at the points
< t j > . For a smooth function the error ‖ f − F‖�0 goes to zero as the sample spacing
goes to zero. However, the approximating function is not differentiable. This means that
we cannot use F effectively to compute approximate values of f ′, and the graph of F has
“corners” even though the graph of f is smooth.

If we know that f is a polynomial, then a finite number of samples determines f
completely. If f is a polynomial of degree 0—in other words, a constant—then a single
sample determines f. If the degree is 1, then 2 samples are required, and if the degree is
n, then n + 1 samples suffice. Indeed there are simple explicit formulæ to reconstruct a
polynomial from such data. For example, if the sample points are < t1, t2 >, then a linear
polynomial is reconstructed as follows:

f (t) = f (t1)
t − t2
t1 − t2

+ f (t2)
t − t1
t2 − t1

.

More generally, if f is of degree n and the sample points are < t1, . . . , tn+1 >, then

f (t) =
n+1∑
j=1

f (t j )

∏
k 	= j (t − tk)∏
k 	= j (t j − tk)

. (A.96)

The expression on the right-hand side of (A.96) is called the Lagrange interpolation for-
mula.

If f is a continuous function that we sample at the n + 1 points < t j >, then we can
define an nth-degree polynomial using (A.96):

F(t) =
n+1∑
j=1

f (t j )

∏
k 	= j (t − tk)∏
k 	= j (t j − tk)

. (A.97)

This polynomial has the property that F(t j ) = f (t j ) for j = 1, . . . , n+1. We say that F is
the nth-degree polynomial interpolant for f at the points < t1, . . . , tn+1 > . The question
of principal interest is how well F(t) approximates f (t) for t 	= t j . Perhaps somewhat sur-
prisingly, the answer to this question is that, in general, F does a very poor job. Figure A.2
shows graphs of the function f (t) = |t − 1

2 | along with degree 2, 6, and 12 polynomial
interpolants found using equally spaced samples. Note that, as the degree increases, the
polynomial provides a worse and worse approximation to f, away from the sample points.
For this reason it is unusual to use a high-degree polynomial to interpolate the values of a
function. This does not contradict the results of the previous subsection on the existence of
accurate, high degree polynomial approximations to continuous functions. It only demon-
strates that such approximations cannot, in general, be found by simply interpolating.
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Figure A.2. Polynomial interpolants for |x − 1
2 |.

How then can good approximations to sampled functions be found? One answer lies
in using functions which are piecewise polynomials of low degree. We consider only the
simplest case. Suppose that f is a differentiable function on [0, 1] and that we sample it at
the points Tn =< 0 = t0, . . . , tn = 1 > . Using a piecewise cubic polynomial, we can find
a function F that interpolates f at the sample points and is itself twice differentiable.

Definition A.5.2. For Tn a set of points as previously, define S(Tn) to be the subset of
�2([0, 1]) consisting of functions g with the property that, for each i ∈ {0, n − 1}, the
restriction of g to the interval [ti , ti+1] is given by a cubic polynomial. Such a function is
called a cubic spline with nodes t0 < · · · < tn.

The basic approximation result is the following.

Theorem A.5.7. Given n + 3 numbers { f0, . . . , fn} and {α0, α1}, there is a unique cubic
spline F ∈ S(Tn) such that

F(ti ) = fi for i = 0, . . . , n,

F ′(0) = α0 and F ′(1) = α1.
(A.98)

The theorem tells us that once we fix values for the derivatives at the points 0 and 1,
there is a unique cubic spline that interpolates f at the given sample points. The values
< f (t j ) > do not determine the cubic spline interpolant for f ; the numbers α0, α1 also
need to be specified. If we know or can reasonably approximate f ′(0) and f ′(1), then
these give reasonable choices for α0 and α1. If these data are not known, then another
common way to pick a cubic spline, interpolating f, is to require that F ′′(0) = F ′′(1) = 0.
This is sometimes called the natural cubic spline interpolating < f (ti ) > .

The problem of finding cubic splines is easily reduced to a system of linear equations.
We give this reduction for the case considered in the theorem with the additional assumption
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that ti − ti−1 = h for all i. Let fi = f (ti ). To define the basic building blocks, set

ci(t) =
[
(t − ti+1)

2

h2
+ 2(t − ti)(t − ti+1)

2

h3

]
fi+[

(t − ti )2

h2
− 2(t − ti+1)(t − ti)2

h3

]
fi+1+

(t − ti)(t − ti+1)
2

h2
ai + (t − ti+1)(t − ti)2

h2
ai+1.

(A.99)

Evaluating this function gives

ci (ti+1) = ci+1(ti+1) = fi+1,

c′
i (ti+1) = c′

i+1(ti+1) = ai+1.
(A.100)

In other words, for any choice of values {a1, . . . , an−1}, these functions piece together to de-
fine a continuously differentiable function, interpolating the values of f. To find the spline
with these properties, we need to select these coefficients so that the resultant function also
has a continuous second derivative. Evaluating the second derivatives and comparing at the
adjacent endpoints, we derive the relations

ai + 4ai+1 + ai+2 = 3

h
( fi+2 − fi), for i = 0, . . . , n − 2.

This is an invertible, “tridiagonal”system of linear equations for {a1, . . . , an−1}. After solv-
ing for these coefficients, setting

F(t) = ci (t) for t ∈ [ti , ti+1], i = 0, n − 1,

gives the desired spline.
Splines have many desirable properties. They are the interpolants that have, in a certain

sense, the minimal oscillation among all twice differentiable functions that interpolate the
given values. If f is twice differentiable, then the first derivative of the spline derived
previously is also a good approximation to f ′. This discussion is adapted from that given
in [108] and [87].

Exercise
Exercise A.5.3. Explain why formula (A.96) gives the correct answer if f is known to be
a polynomial of degree n.

A.6 Numerical Techniques for Differentiation and Integration

In calculus we learn a variety of rules for computing derivatives and integrals of functions
given by formulæ. In applications we need to have ways to approximate these operations for
measured data. We briefly review some elementary method for numerically approximating
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integrals and derivatives. First we consider the problems of approximating integration and
differentiation for exactly known functions and then the same questions for noisy sampled
data.

If f is a Riemann integrable function defined on [0, 1], then its integral can be defined
as the following limit:

1∫
0

f (t) dt = lim
N→∞

N∑
j=1

1

N
f

(
j

N

)
.

Using this sum for a fixed value of N gives a way to approximate an integral, called a
Riemann sum approximation. For functions with more smoothness, there are better ap-
proximations. If f is differentiable, then its derivative is also defined as a limit

f ′(t) = lim
�t→0

f (t +�t) − f (t)

�t
.

Using this formula with positive values of �t leads to approximations for the derivative
called finite differences.

If f is a continuous function and we set

mN = max
0≤ j≤N−1

max
t∈[ j

N , j+1
N ]

| f (t) − f ( j/N)|,

then ∣∣∣∣∣∣
1∫

0

f (t) dt −
N−1∑
j=0

1

N
f

(
j

N

)∣∣∣∣∣∣ ≤ mN .

To find the analogous estimate for the approximate derivative, we let

MN = max
|s−t |≤ 1

N

| f ′(t) − f ′(s)|;

then, applying the mean value theorem, we see that∣∣∣∣∣ f (t + 1
N )− f (t)

N−1
− f ′(t)

∣∣∣∣∣ ≤ MN .

Comparing these formulæ we see that the accuracy of the approximate integral is controlled
by the size of mN , while that of the approximate derivative is controlled by MN . If f is
differentiable, then mN ∝ N−1; whereas this implies no estimate for MN . In order to know
that MN ∝ N−1, we would need to know that f is twice differentiable. This indicates why,
in principle, it is harder to approximate derivatives than integrals.

For real data, approximate integration is usually simpler and more accurate than ap-
proximate differentiation. The reason for this lies in the nature of noise. Suppose that f
represents the “actual” state of our system. We often aggregate various (possibly unknown)
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sources of error and uncertainty into a single function n, which we call noise. What are
then measured are actually samples of f + n.

Intuitively, noise is a random process, so it goes up and down unpredictably; such a
function is typically not differentiable. This means that |n(t + �t) − n(t)| may well be
large compared to �t. On the other hand, if we have a good enough model, then the noise
term should be equally likely to be positive or negative, even on small time scales. This
implies that averages of n over small intervals should often be small. Symbolically,∣∣∣∣n(t +�t) − n(t)

�t

∣∣∣∣ >>1, whereas∣∣∣∣∣∣ 1

�

t+�t∫
t

n(s) ds

∣∣∣∣∣∣ <<1.

(A.101)

A.6.1 Numerical Integration

In addition to the (right) Riemann sum formula,

RN ( f ) = 1

N

N∑
j=1

f (
j

N
),

there are two other commonly used formulæ for numerical integration: the trapezoidal rule
and Simpson’s rule. Suppose that f is a continuous function on [0, 1]; the trapezoidal
approximation to the integral of f with N + 1 points is given by

TN ( f ) = 1

2N
( f (0)+ f (1)) + 1

N

N−1∑
j=1

f

(
j

N

)
. (A.102)

If f is twice differentiable, then we have the error estimate∣∣∣∣∣∣TN ( f )−
1∫

0

f (t) dt

∣∣∣∣∣∣ ≤ maxt∈[0,1] | f ′′(t)|
12N2

. (A.103)

Simpson’s rule also uses the midpoints; it is given by

SN( f ) = 1

6N

⎡⎣ f (0)+ f (1)+ 2
N−1∑
j=1

f

(
j

N

)
+ 6

N−1∑
j=0

f

(
2 j + 1

2N

)⎤⎦ . (A.104)

Though Simpson’s rule only requires about twice as much computation, it gives a much
smaller error if f is four times differentiable. The error estimate is∣∣∣∣∣∣SN( f )−

1∫
0

f (t) dt

∣∣∣∣∣∣ ≤ maxt∈[0,1] | f [iv](t)|
2880N4

. (A.105)
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N |SN − π
8 | |RN − π

8 |
16 .0025504 .0064717
64 .0003176 .0008113

128 .0001122 .0002870
144 .0000940 .0002405

Table A.2. Comparison of absolute errors in different approximations to the integral of√
x(1 − x)

It is important to note that the error estimate for the trapezoidal rule assumes that f
is twice differentiable and for Simpson’s rule that f is four times differentiable. If this is
not true, then these “higher-order” integration schemes do not produce such precise results.
For real data, higher-order schemes are often not used because the noise present in the data
has the effect of making the integrand nondifferentiable. This means that the higher rates
of convergence are not realized. These approximate integration techniques are examples
of relatively elementary methods. Each method for approximating functions leads, via in-
tegration, to a method for approximating integrals. These go under the general rubric of
quadrature methods. What distinguishes these methods, at least theoretically, is the set of
functions for which the approximate formula gives the correct answer. The Riemann sum
is correct for constant functions; the trapezoidal rule gives an exact result for linear func-
tions, and Simpson’s rule gives the exact answer for cubic polynomials. A more complete
discussion of this rich and important subject can be found in [56].

Example A.6.1. We consider the results of using Riemann sums and Simpson’s rule to
approximately compute

1∫
0

√
x(1 − x) dx = π

8
.

This function is not differentiable at the endpoints of the interval. Table A.2 shows the
absolute errors in approximating this integral by Riemann sums and Simpson’s rule for
several values of N . Since this function vanishes at the endpoints, the trapezoidal rule and
the Riemann sum give the same result. While Simpson’s rule gives a better result for a
given number of samples, it improves much more slowly than it would if the integrand
had four derivatives. The ratios of the error and the expected rates of decay (i.e., N−4 for
Simpson’s rule and N−1 for Riemann sums) are summarized in Table A.3. As this table
shows, the order of convergence for Simpson’s rule is much slower than it would be if f
had the requisite four derivatives.

Example A.6.2. We now consider these integration schemes applied to a “random” piece-
wise linear function taking values between −1 and +1. The graph of such a function is
shown in Figure A.3.
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N N4|SN − π
8 | N |RN − π

8 |
16 167 .104
48 2596 .06
80 9304 .05
112 21571 .04
144 40426 .034

Table A.3. Comparison of rates of convergence to the “expected” rates of decay in different
approximations to the integral of

√
x(1 − x)

N |RN − I | |RN − I |N |TN − I | |TN − I |N2

16 .254 .41 .063 16
40 .017 .69 .068 109
56 .021 1.15 .069 216
80 .007 .64 .069 441

Table A.4. Rates of convergence and errors for approximations to the integral of a random
function

−1

−0. 5

0. 5

1

0. 2 0 .4 0. 6 0 .8 1

Figure A.3. A random piecewise linear function.

In Table A.3 we give the errors made using Riemann sums and the trapezoidal rule for
various values of N, as well as these errors rescaled by the theoretical rate of decrease for
sufficiently differentiable data. Here I = −.06972... is the actual value of the integral.
Note that in absolute terms, the result from the trapezoidal rule does not improve as we
increase N . Relative to the expected error, things are consequently degenerating rapidly.

Exercises
Exercise A.6.1. The log function is defined by an integral

log(x) =
x∫

1

ds

s
.
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By using numerical integration techniques, approximate values for log(x) can be obtained.
For the Riemann sum, trapezoidal rule, and Simpson’s rule, how large a value of N is
needed to compute log(2) with 10 digits of accuracy?

Exercise A.6.2. Use the functional equation log(xy) = log(x) + log(y) to devise an ef-
ficient method for approximately computing the logarithms of numbers between .01 and
100.

A.6.2 Numerical Differentiation

If f is a differentiable function, defined on [0, 1] sampled at the points { j
N : j = 0, . . . , N},

then we can use a finite difference formula to approximate the derivatives of f at the points
in the sample set. We could use the left difference, right difference, or centered difference
to obtain approximations to f ′( j

N ); if j 	= 0, N, then

LEFT DIFFERENCE: Dl f ( j
N ) = f ( j

N )− f ( j−1
N )

N−1

RIGHT DIFFERENCE: Dr f ( j
N ) = f ( j+1

N )− f ( j
N )

N−1

CENTERED DIFFERENCE: Dc f ( j
N ) = f ( j+1

N )− f ( j−1
N )

2N−1

For a twice differentiable function, Taylor’s formula gives the error estimates

|Dr f (
j

N
)− f ′(

j

N
)| ≤ M2

N
, |Dl f (

j

N
)− f ′(

j

N
)| ≤ M2

N
, (A.106)

where M2 is proportional to the maximum of | f [2](x)|. If f is three time differentiable,
then

|Dc f (
j

N
)− f ′(

j

N
)| ≤ M3

N2
, (A.107)

where M3 is proportional to the maximum of | f [3](x)|.
There are other ways to assign approximate values to < f ′( j

N ) > given sampled
data < f ( j

N ) >. For example, a cubic spline FN , interpolating these values, is a twice
differentiable function. A reasonable way to approximate the derivatives of f is to use
< F ′

N (
j
N ) > . Since FN is defined for all x ∈ [0, 1], we can even use F ′

N (x) as an approx-
imate value for f ′(x) for any x ∈ [0, 1]. If f is twice differentiable and FN is the cubic
spline defined using the endpoint data,

a0 = Dr f (0), aN = Dl f (1),

then < FN > converges to f in �1([0, 1]). That is,

lim
N→∞

[‖ f − FN‖�0 + ‖ f ′ − F ′
N‖�0] = 0.

For sufficiently large N, F ′
N (x) is a good approximation to f ′(x) for any x ∈ [0, 1]. The

rate of convergence depends on the size of the second derivatives of f. Fourier series and
integrals provide other ways to approximate the derivatives of a function.
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N .25 .5 .75

10 -7.41 16.36 3.35
100 -68.8 82.7 -8.3

1000 296.2 143.4 -280.5

Table A.5. Finite differences for a random piecewise linear function

We close this section by considering approximation of derivatives in a more realistic
situation. Suppose that we are trying to sample a function f. Ordinarily, we model the
actual data as samples of f + εn, where n is a “random” noise function. Here we scale
things so the |n(t)| ≤ 1 for all t; ε is then the amplitude of the noise. The noise is a random
function in two different senses. In the first place we cannot say with certainty what the
function is, so we usually think of this function as being randomly selected from some
family. It is also random in the sense that functions in these families do not vary smoothly.
Thus for n a fixed member of the family, the value of n(t) at a given time t is itself random.
For instance, we could use the family of piecewise constant functions, or the family of all
piecewise linear functions as models for the noise. The graphs of such a function is shown
in Figure A.4.

If the sampled data is of the form < f ( j
N ) + εn( j

N ) >, then the right difference ap-
proximation to the first derivative is

f ′(
j

N
) � Dr f (

j

N
) + εN [n( j + 1

N
)− n(

j

N
)].

Due to the random nature of the noise (in the second sense), there is no reason why the
difference n( j+1

N )−n( j
N ) should be small. The contribution of noise to the error in approx-

imating f ′( j
N ) can only be bounded by 2εN . In order to get a good approximate value for

f ′, using a finite difference, it would be necessary to choose N, so that Nε remains small.

Example A.6.3. Table A.3 shows the finite differences for the random, piecewise linear
function shown in Figure A.4. The differences are evaluated at the points x ∈ {.25, .5, .75}
with the indicated values of N .

−0.5

0.5

1

1

−1

Figure A.4. A fairly random function.
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In the foregoing example, the measurement process is modeled as functional evalua-
tion. Actual measurements are always some sort of an average; to measure the value of a
function at a single moment of time would require infinite energy. Random functions often
have small averages, so this fact actually works in our favor when trying to approximate
derivatives. The simplest model for an average is a uniform average: Instead of evaluating
a function at the arguments { j

N }, we actually measure its average over an interval [ j
N , j+δ

N ].
Our samples are therefore

f j = δ−1

j+δ
N∫

j
N

[ f (s) + n(s)] ds.

The finite difference then gives

f j+1 − f j

N−1
= δ−1

j+δ
N∫

j
N

( f (s + N−1)− f (s)) ds

N−1
+ εN

δ

j+δ
N∫

j
N

[n(s+ N−1)−n(s)] ds. (A.108)

Using the mean value theorem, it follows that for each s ∈ [ j
N , j+δ

N ] there is an ξs in this
interval so that

f (s + N−1)− f (s)

N−1
= f ′(ξs).

Thus the first term in (A.108) is a weighted average of values of f ′ over the interval
[ j

N , j+δ
N ].

Because of the randomness of n, there is no reason for the differences [n(s + N−1) −
n(s)] to be small; however, for a large enough δ, the individual averages,

1

δ

j+δ
N∫

j
N

n(s) ds,
1

δ

j+1+δ
N∫

j+1
N

n(s) ds,

should themselves be small. This would, in turn, make the second term in (A.108) small.
This illustrates a familiar dichotomy between noise reduction and resolution: By increasing
δ we can diminish the effect of the noise, both in the measured values of f and in the
finite difference approximations to f ′. On the other hand, increasing δ also smears out the
values of f ′. The price for reducing the noise component of a measurement is decreasing
its resolution.

Example A.6.4. Using the same function considered in Example A.6.3, we compute the
finite differences for averaged data. In order to be able to make comparisons we fix N−1 =
.1 and consider the results obtained with δ ∈ {.1, .02, .01, .005}. The data in Table A.6 bear
out the prediction that averaging the data diminishes the effects of noise on the computation
of finite differences, with longer averaging intervals generally producing a larger effect.
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However, there is also some failure of this to occur. This is because the experiment is
performed on a “random” piecewise linear function, which is, in some sense, not especially
random.

δ .25 .5 .75

0 -7.41 16.36 3.35
.1 .269 .593 2.57
.02 5.97 1.64 .281
.01 3.99 .174 5.2

.005 6.74 -1.129 5.50

Table A.6. Finite differences for an averaged, random piecewise linear function

Exercises
Exercise A.6.3. Show how to use Taylor’s formula to derive (A.106) and (A.107) these
error estimates and give formulæ for M2 and M3.

Exercise A.6.4. Show that for the function f (t) = |t| and all t, the centered differences
converge as N → ∞. Is this limit always equal to f ′(t)?



Appendix B

Basic Analysis

This appendix contains some of the basic definitions and results from analysis that are used
in this book. Many good treatments of this material are available; for example, [27], [111],
or [121].

B.1 Sequences

A sequence is an ordered list of objects. As such it can be described by a function defined
on a subset of the integers of the form {M, M + 1, . . . , N − 1, N}. This set is called the
index set. If both M and N are finite, then the sequence is finite. If M = −∞ and N is
finite or M is finite and N = ∞, then it is an infinite sequence. If the index set equals �,
then the sequence is bi-infinite. In this section and throughout most of the book, the term
sequence usually refers to an infinite sequence. In this case the index set is usually taken
to be the positive integers �. For example, a sequence of real numbers is specified by a
function

x : � −→ �.

With this notation the nth term of the sequence would be denoted x(n). It is not customary
to use functional notation but rather to use subscripts to label the terms of a sequence. The
nth term is denoted by xn and the totality of the sequence by < xn > . This distinguishes a
sequence from the unordered set consisting of its elements, which is denoted {xn}.

Given a sequence < xn >, a subsequence is defined by selecting a subset of {xn} and
keeping them in the same order as they appear in < xn > . In practice, this amounts to
defining a monotone increasing function from � to itself. We denote the value of this
function at j by n j . In order to be monotone increasing, n j < n j+1, for every j in �.
The j th term of the subsequence is denoted by xn j , and the totality of the subsequence by
< xn j > . As an example, consider the sequence xn = (−1)nn; setting n j = 2 j defines the
subsequence xn j = (−1)2 j 2 j.

Definition B.1.1. A sequence of real numbers, < xn >, has a limit if there is a number L
such that, given any ε > 0, there exists an integer N > 0, such that

|xn − L| < ε whenever n > N .

723
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A sequence with a limit is called a convergent sequence: we then write

lim
n→∞ xn = L .

When a limit exists it is unique. A sequence may fail to have limit, but it may have a subse-
quence that converges. In this case the sequence is said to have a convergent subsequence.
For example, xn = (−1)n is not convergent, but the subsequence defined by n j = 2 j is.

The computation of limits is facilitated by the rules for computing limits of algebraic
combinations of convergent sequences.

Theorem B.1.1 (Algebraic rules for limits ). Suppose that < xn >,< yn > are conver-
gent sequences of real numbers. Then

lim
n→∞ axn exists and equals a lim

n→∞ xn, for all a ∈ �,

lim
n→∞(xn + yn) exists and equals lim

n→∞ xn + lim
n→∞ yn,

lim
n→∞(xn yn) exists and equals ( lim

n→∞ xn)( lim
n→∞ yn),

provided lim
n→∞ yn 	= 0, then lim

n→∞
xn

yn
exists and equals

limn→∞ xn

limn→∞ yn
.

(B.1)

In this theorem the nontrivial claim is that the limits exist; once this is established it is easy
to show what the limits must be.

A problem of fundamental importance is to decide whether or not a sequence has a
limit. A sequence < xn > is bounded if there is a number M such that

|xn| < M for all n.

A sequence is non-increasing if

xn ≥ xn+1 for all n,

and nondecreasing if
xn ≤ xn+1 for all n.

The completeness axiom of the real numbers states that a bounded non-increasing or non-
decreasing sequence of real numbers has a limit. If a bounded sequence is neither non-
decreasing nor non-increasing, then the only general theorem about convergence is the
Bolzano-Weierstrass theorem.

Theorem B.1.2 (Bolzano-Weierstrass theorem). A bounded sequence of real numbers
has a convergent subsequence.

Note that this theorem does not assert that any bounded sequence converges but only that
any bounded sequence has a convergent subsequence.

The following two lemmas are very useful for studying limits of sequences.
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Lemma B.1.1 (Squeeze lemma). If < xn >,< yn >,< zn > are sequences of real
numbers such that

xn ≤ yn ≤ zn

and xn and zn are convergent with

L = lim
n→∞ xn = lim

n→∞ zn,

then yn converges with
lim

n→∞ yn = L .

Lemma B.1.2. If xn ≥ 0 for n in � and < xn > is a convergent sequence, then

lim
n→∞ xn ≥ 0.

In the preceding discussion it is assumed that the limit is known in advance. There is a
criterion, due to Cauchy, that states that a given sequence has a limit but makes no reference
to the limit itself.

Theorem B.1.3 (Cauchy criterion for sequences). If < xn > is a sequence of real num-
bers such that, given ε > 0 there exists an N for which

|xn − xm | < ε whenever both n and m are greater than N,

then the sequence is convergent.

A sequence satisfying this condition is called a Cauchy sequence.

B.2 Series

A series is the sum of an infinite sequence; it is denoted by

∞∑
n=1

xn.

Definition B.2.1. A series converges if the sequence of partial sums

sk =
k∑

n=1

xn,

converges. In this case
∞∑

n=1

xn
d= lim

k→∞ sk .

If a series does not converge ,then it diverges.
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Definition B.2.2. A series converges absolutely if the sum of the absolute values

∞∑
n=1

|xn|

converges.

The following theorem lists the elementary properties of convergent series.

Theorem B.2.1 (Theorem on series). Suppose that < xn >,< yn > are sequences. If the

series
∞∑

n=1
xn,

∞∑
n=1

yn converge, then

∞∑
n=1

(xn + yn) converges and
∞∑

n=1

(xn + yn) =
∞∑

n=1

xn +
∞∑

n=1

yn,

If a ∈ �

∞∑
n=1

axn = a
∞∑

n=1

xn,

If xn ≥ 0 for all n, then
∞∑

n=1

xn ≥ 0.

(B.2)

There are many criteria, used to determine if a given series converges. The most im-
portant is the comparison test.

Theorem B.2.2 (Comparison Test). Suppose that < xn >,< yn > are sequences such

that, for all n, |xn| ≤ yn. If
∞∑

n=1
yn converges, then so does

∞∑
n=1

xn. If 0 ≤ yn ≤ xn and
∞∑

n=1
yn

diverges, then so does
∞∑

n=1
xn.

Since this test calls for a comparison, we need to have examples of series that are known
to converge or diverge. The simplest case is a geometric series. This is because there is a
formula for the partial sums:

k∑
n=0

ak = ak+1 − 1

a − 1
.

From this formula we immediately conclude the following:

Theorem B.2.3 (Convergence of geometric series). A geometric series converges if and
only if |a| < 1.

The root and ratio tests are special cases of the comparison test where the series is
comparable to a geometric series.
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Theorem B.2.4 (Ratio test). If < xn > is a sequence with

lim sup
n→∞

∣∣∣∣xn+1

xn

∣∣∣∣ = α,

then the series ∞∑
n=1

xn

{
converges if α < 1

diverges if α > 1.

The test gives no information if α = 1.

We also have the following:

Theorem B.2.5 (Root test). If < xn > is a sequence with

lim sup
n→∞

|xn| 1
n = α,

then the series ∞∑
n=1

xn

{
converges if α < 1

diverges if α > 1.

The test gives no information if α = 1.

If α < 1 in the ratio or root tests, then the series converge absolutely.
Another test is obtained by comparing a series to an integral.

Theorem B.2.6 (Integral test). If f is a non-negative, monotone decreasing, integrable
function defined for x ≥ 1, then

∞∑
n=1

f (n) converges if and only if lim
n→∞

n∫
1

f (x) dx exists.

From this test it follows that the series
∑∞

n=1
1

n p converges if and only if p > 1. If
a series is shown to converge using any of the foregoing tests, then the series converges
absolutely. We give a final test that sometimes gives the convergence of a non-absolutely
convergent series.

Theorem B.2.7 (Alternating series test). Suppose that < xn > is a sequence such that
the sign alternates, the limn→∞ xn = 0, and |xn+1| ≤ |xn|. Then

∞∑
n=1

xn

converges and ∣∣∣∣∣
∞∑

n=1

xn −
N∑

n=1

xn

∣∣∣∣∣ ≤ |xN+1|. (B.3)
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Note that this test requires that the signs alternate, the sequence of absolute values is
monotonely decreasing, and the sequence tends to zero. If any of these conditions are not
met, the series may fail to converge.

A useful tool for working with integrals is the integration by parts formula; see Propo-
sition B.6.1. This formula has a discrete analogue, called the summation by parts formula,
which is important in the study of non-absolutely convergent series.

Proposition B.2.1 (Summation by parts formula). Let < xn > and < yn > be sequences
of numbers. For each n, let

Yn =
n∑

k=1

yk;

then
N∑

n=1

xn yn = xN YN −
N−1∑
n=1

(xn+1 − xn)Yn. (B.4)

Using this formula, it is often possible to replace a conditionally convergent sum by an
absolutely convergent sum.

Example B.2.1. Let α = e2π ix , where x /∈ �, so that α 	= 1. For any such α, the series

∞∑
n=1

αn

√
n

converges. To prove this, observe that

Bn =
n∑

k=1

αk = αn+1 − 1

α − 1

is a uniformly bounded sequence and

1√
n
− 1√

n + 1
≤ 1

n
3
2

.

The summation by parts formula gives

N∑
n=1

αn

√
n

=
(

1√
N

− 1√
N + 1

)
BN −

N−1∑
n=1

(
1√
n
− 1√

n + 1

)
Bn.

The boundary term on the right goes to zero as N → ∞, and the sum is absolutely conver-
gent. This shows how the summation by parts formula can be used to convert a condition-
ally convergent sum into an absolutely convergent sum.
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B.3 Limits of Functions and Continuity

The next thing we consider is the behavior of functions defined on intervals in �. Suppose
that f is defined for x ∈ (a, c)∪ (c, b). This is called a punctured or deleted neighborhood
of c.

Definition B.3.1. We say that the function f has limit L , as x approaches c if, given ε > 0,
there exists δ > 0 such that

| f (x) − L| < ε provided 0 < |x − c| < δ;
we write

lim
x→c

f (x) = L .

Note that in this definition nothing is said about the value of f at c. This has no bearing
at all on whether or not the limit exists.

Definition B.3.2. If f (c) is defined and we have that

lim
x→c

f (x) = f (c),

then we say that f is continuous at c. If f is continuous for all x ∈ (a, b), then we say that
f is continuous on (a, b).

In addition to the ordinary limit, we also define one-sided limits. If f is defined in
(a, b) and there exists an L such that, given ε > 0 there exists δ > 0 such that

| f (x) − L| < ε provided 0 < x − a < δ, then lim
x→a+ f (x) = L .

If instead

| f (x) − L| < ε provided 0 < b − x < δ, then lim
x→b− f (x) = L .

The rules for dealing with limits of functions are very similar to the rules for handling
limits of sequences

Theorem B.3.1 (Algebraic rules for limits of functions). Suppose that f, g are defined
in a punctured neighborhood of c and that

lim
x→c

f (x) = L , lim
x→c

g(x) = M.

Then

lim
x→c

(a f (x)) exists and equals aL for all a ∈ �,

lim
x→c

( f (x) + g(x)) exists and equals L + M,

lim
x→c

( f (x)g(x)) exists and equals L M,

provided M 	= 0, lim
x→c

f (x)

g(x)
exists and equals

L

M
.

(B.5)
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From this we deduce the following results about continuous functions:

Theorem B.3.2 (Algebraic rules for continuous functions). If f, g are continuous at c,
then so are a f, f + g, f g. If g(c) 	= 0, then f/g is also continuous at c.

For functions there is one further operation that is very important: composition.

Theorem B.3.3 (Continuity of compositions). Suppose that f (x), g(y) are two functions
such that f (x) is continuous at x = c and g(y) is continuous at y = f (c). Then the
composite function, g ◦ f (x), is continuous at x = c.

Definition B.3.3. A function defined on an interval [a, b] is said to be uniformly continuous
if, given ε > 0, there exists δ > 0 such that

| f (x) − f (y)| < ε, for all x, y ∈ [a, b] with |x − y| < δ.

The basic proposition is as follows:

Proposition B.3.1. A continuous function on a closed, bounded interval is uniformly con-
tinuous.

Using similar arguments, we can also prove the following:

Proposition B.3.2 (Max-min theorem for continuous functions). If f is continuous on
a closed bounded interval, [a, b], then there exists x1 ∈ [a, b] and x2 ∈ [a, b] that satisfy

f (x1) = sup
x∈[a,b]

f (x), f (x2) = inf
x∈[a,b]

f (x).

As a final result on continuous functions, we have the Intermediate value theorem

Theorem B.3.4 (Intermediate value theorem). Suppose that f is continuous on [a, b] and
f (a) < f (b). Then for each y ∈ ( f (a), f (b)) there exists c ∈ (a, b) such that f (c) = y.

B.4 Differentiability

A function defined in a neighborhood of a point c is said to be differentiable at c if the
function

g(x) = f (x) − f (c)

x − c
,

defined in a punctured neighborhood of c, has a limit as x → c. This limit is called the
derivative of f at c; we denote it by f ′(c). A function that is differentiable at every point
of an interval is said to be differentiable in the interval. If the derivative is itself continuous,
then the function is said to be continuously differentiable. As with continuous functions,
we have algebraic rules for differentiation.
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Proposition B.4.1 (Rules for differentiation). Suppose that f, g are differentiable at c;
then so are a f, ( f + g), f g. If g(c) 	= 0, then so is f/g. The derivatives are given by

(a f )′(c) = a( f ′(c)),
( f + g)′(c) = f ′(c)+ g′(c),

( f g)′(c) = f ′(c)g(c)+ f (c)g′(c),(
f

g

)′
(c) = f ′(c)g(c)− f (c)g′(c)

g(c)2
.

(B.6)

We can also differentiate a composition.

Proposition B.4.2 (The chain rule). If f (x) is differentiable at x = c and g(y) is differ-
entiable at y = f (c), then g ◦ f (x) is differentiable at x = c; the derivative is

g ◦ f ′(c) = g′( f (c)) f ′(c).

It is often useful to be able to compare the sizes of two functions f, g near a point c
without being too specific. The big O and little o notations are often used for this purpose.

Definition B.4.1. The notation

f (x) = O(g(x)) near to c

means that there exists an M and an ε > 0 such that

| f (x)| < Mg(x) provided |x − c| < ε,

whereas

f (x) = o(g(x)) near to c

means that

lim
x→c

| f (x)|
g(x)

= 0.

For example, a function f is differentiable at c if and only if there exists a number L
for which

f (x) = f (c)+ L(x − c) + o(|x − c|).
Of course, L = f ′(c). This implies that a function that is differentiable at a point is also
continuous at that point. The converse statement is false: A function may be continuous
at a point without being differentiable; for example, f (x) = |x| is continuous at 0 but not
differentiable.
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B.5 Higher-Order Derivatives and Taylor’s Theorem

If the first derivative of function, f ′, is also differentiable, then we say that f is twice
differentiable. The second derivative is denoted by f ′′. Inductively, if the kth derivative is
differentiable, then we say that f is (k + 1) times differentiable. The kth derivative of f
is denoted by f [k]. For a function that has n derivatives, there is a polynomial that agrees
with f to order n − 1 at a point.

Theorem B.5.1 (Taylor’s Theorem). Suppose that f has n derivatives in an interval
[a, b]. If x, c ∈ (a, b), then

f (x) =
n−1∑
j=0

f [ j ](c)(x − c) j

j ! + Rn(x), (B.7)

where
Rn(x) = O(|x − c|n).

Formula (B.7) is called Taylor’s formula with remainder term. There are many different
formulæ for the remainder term Rn. One from which all the others can be derived is given
by

Rn(x) = 1

(n − 1)!
x∫

c

f [n](t)(x − t)n−1dt. (B.8)

The n = 1 case of Taylor’s theorem is the mean value theorem.

Theorem B.5.2 (Mean value theorem). Suppose that f is continuous on [a, b] and dif-
ferentiable on (a, b). Then there exists a c ∈ (a, b) such that

f (b)− f (a) = f ′(c)(b − a).

B.6 Integration

The inverse operation to differentiation is integration. Suppose that f is a bounded function
defined on a finite interval [a, b]. An increasing sequence P = {a = x0 < x1 < · · · <
xN = b} defines a partition of the interval. The mesh size of the partition is defined to be

|P| = max{|xi − xi−1| : i = 1, . . . , N}.
To each partition we associate two approximations of the area under the graph of f , by the
rules

U ( f, P) =
N∑

j=1

sup
x∈[x j−1,x j ]

f (x)(x j − x j−1),

L( f, P) =
N∑

j=1

inf
x∈[x j−1,x j ]

f (x)(x j − x j−1).

(B.9)
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These are called the upper and lower Riemann sums. Observe that for any partition P we
have the estimate

U ( f, P) ≥ L( f, P). (B.10)

If P and P ′ are partitions with the property that every point in P is also a point in P ′,
then we say that P ′ is a refinement of P and write P < P ′. If P1 and P2 are two partitions,
then, by using the union of the points in the two underlying sets, we can define a new
partition P3 with the property that

P1 < P3 and P2 < P3.

A partition with this property is called a common refinement of P1 and P2. From the defi-
nitions it is clear that if P < P ′, then

U ( f, P) ≥ U ( f, P ′) and L( f, P) ≤ L( f, P ′). (B.11)

Definition B.6.1. A bounded function f defined on an interval [a, b] is Riemann integrable
if

inf
P

U ( f, P) = sup
P

L( f, P).

In this case we denote the common value, called the Riemann integral, by

b∫
a

f (x) dx .

Most “nice” functions are Riemann integrable. For example we have the following
basic result.

Theorem B.6.1. Suppose that f is a piecewise continuous function defined on [a, b]. Then
f is Riemann integrable and

b∫
a

f (x) dx = lim
N→∞

N∑
j=1

f (a + j

N
(b − a))

b − a

N
.

The proof of this theorem is not difficult and relies primarily on the uniform continuity
of a continuous function on a closed, bounded interval and (B.11). The sums appearing in
this theorem are called right Riemann sums, because the function is evaluated at the right
endpoint of each interval. The left Riemann sums are obtained by evaluating at the left
endpoints. The formula for the integral holds for any Riemann integrable function but is
more difficult to prove in this generality. The integral is a linear map from integrable
functions to the real numbers.
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Theorem B.6.2. Suppose that f and g are Riemann integrable functions. Then f + g and
f g are integrable as well. If c ∈ �, then

b∫
a

( f (x) + g(x)) dx =
b∫

a

f (x) dx +
b∫

a

g(x) dx and

b∫
a

c f (x) dx = c

b∫
a

f (x) dx .

Theorem B.6.3. Suppose that f is Riemann integrable on [a, b] and that c ∈ [a, b]. Then
f is Riemann integrable on [a, c] and [c, b]; moreover,

b∫
a

f (x) dx =
c∫

a

f (x) dx +
b∫

c

f (x) dx . (B.12)

There is also a mean value theorem for the integral, similar to Theorem B.5.2.

Theorem B.6.4. Suppose that f is a continuous function and w is a nonnegative integrable
function. There exists a point c ∈ (a, b) so that

b∫
a

f (x)w(x) dx = f (c)

b∫
a

w(x) dx .

The mean theorem provides a different formula for the remainder term in Taylor’s the-
orem.

Corollary B.6.1. Suppose that f has n-derivatives on an interval [a, b] and x, c are points
in (a, b). Then there exists a number d, between x and c, so that

f (x) =
n−1∑
j=0

f [ j ](c)(x − c) j

j ! + f [n](d)(x − c)n

n! . (B.13)

Most elementary methods for calculating integrals come from the fundamental theo-
rem of calculus. To state this result we need to think of the integral in a different way. As
described previously, the integral associates a number to a function defined on a fixed in-
terval. Suppose instead that f is defined and Riemann integrable on [a, b]. Theorem B.6.3
states that, for each x ∈ [a, b], f is Riemann integrable on [a, x]. The new idea is to use
the integral to define a new function on [a, b] by setting

F(x) =
x∫

a

f (y) dy.

This function is called the indefinite integral or anti-derivative of f. In this context we often
refer to

∫ b
a f (x) dx as the definite integral of f.
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Theorem B.6.5 (The Fundamental theorem of calculus). If f is a continuous function
on [a, b] then F is differentiable and F ′ = f. If f is differentiable and f ′ is Riemann
integrable then

b∫
a

f ′(x)dx = f (b)− f (a).

There are two further basics tools needed to compute and manipulate integrals. The
first is called integration by parts, it is a consequence of the product rule for derivatives;
see Proposition B.4.1.

Proposition B.6.1 (Integration by parts). If f, g ∈ �1([a, b]) then

b∫
a

f ′(x)g(x) dx = f (b)g(b)− f (a)g(a)−
b∫

a

f (x)g′(x) dx .

The other formula follows from the chain rule, Proposition B.4.2.

Proposition B.6.2 (Change of variable). Let g be a monotone increasing, differentiable
function defined [a, b] with g(a) = c, g(b) = d and let f be a Riemann integrable function
on [c, d]. The following formula holds:

g(b)∫
g(a)

f (y) dy =
b∫

a

f (g(x))g′(x) dx .

B.7 Improper Integrals

In the previous section we defined the Riemann integral for bounded functions on bounded
intervals. In applications both of these restrictions need to be removed. This leads to
various notions of improper integrals. The simplest situation is that of a function f defined
on [0,∞) and integrable on [0, R] for every R > 0. We say that the improper integral,

∞∫
0

f (x) dx

exists if the limit,

lim
R→∞

R∫
0

f (x) dx, (B.14)

exists. In this case the improper integral is given by the limiting value. By analogy with
the theory of infinite series, there are two distinct situations in which the improper integral
exists. If the improper integral of | f | exists, then we say that f is absolutely integrable on
[0,∞).
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Example B.7.1. The function (1+ x2)−1 is absolutely integrable on [0,∞). Indeed we see
that if R < R′, then

0 ≤
R′∫

0

dx

1 + x2
−

R∫
0

dx

1 + x2
=

R′∫
R

dx

1 + x2

≤
R′∫

R

dx

x2

≤ 1

R
.

(B.15)

This shows that

lim
R→∞

R∫
0

dx

1 + x2

exists.

Example B.7.2. The function sin x
x is a bounded continuous function; it is integrable on

[0,∞) but not absolutely integrable. The integral of sin x
x over any finite interval is finite.

Using integration by parts, we find that

R∫
1

sin xdx

x
= cos x

x

∣∣∣∣R
1

−
R∫

1

cos xdx

x2
.

Using this formula and the previous example, it is not difficult to show that

lim
R→∞

R∫
0

sin xdx

x

exists. On the other hand because

R∫
1

dx

x
= log R,

it is not difficult to show that
R∫

0

| sin x|dx

x

grows like log R and therefore diverges as R tend to infinity.
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There are similar definitions for the improper integrals

0∫
−∞

f (x) dx and

∞∫
−∞

f (x) dx .

The only small subtlety is that we say that the improper integral exists in the second case
only when both the improper integrals,

0∫
−∞

f (x) dx and

∞∫
0

f (x) dx,

exist separately. Similar definitions apply to functions defined on bounded intervals (a, b)
that are integrable on any subinterval [c, d]. We say that the improper integral

b∫
a

f (x) dx

exists if the limits

lim
c→a+

e∫
c

f (x) dx and lim
c→b−

c∫
e

f (x) dx

both exist. Here e is any point in (a, b); the existence or nonexistence of these limits is
clearly independent of which (fixed) point we use. Because improper integrals are defined
by limits of proper integrals, they have the same linearity properties as integrals. For ex-
ample,

Proposition B.7.1. Suppose that f and g are improperly integrable on [0,∞). Then f + g
is as well and ∞∫

0

( f (x) + g(x)) dx =
∞∫

0

f (x) dx +
∞∫

0

g(x) dx,

for a ∈ �, a f is improperly integrable and

∞∫
0

a f (x) dx = a

∞∫
0

f (x) dx .

The final case that requires consideration is that of a function f defined on a punctured
interval [a, b) ∪ (b, c] and integrable on subintervals of the form [a, e] and [ f, c], where
a ≤ e < b and b < f ≤ c. If both limits

lim
e→b−

e∫
a

f (x) dx and lim
f →b+

c∫
f

f (x) dx
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exist, then we say that f is improperly integrable on [a, b]. For example, the function
f (x) = x− 1

3 is improperly integrable on [−1, 1]. On the other hand, the function f (x) =
x−1 is not improperly integrable on [−1, 1] because

lim
e→0+

1∫
e

dx

x
= ∞ and lim

f →0−

f∫
−1

dx

x
= −∞.

There is a further extension of the notion of integrability that allows us to assign a
meaning to

1∫
−1

dx

x
.

This is called the principal value integral or Cauchy principal value integral. The observa-
tion is that for any ε > 0

−ε∫
−1

dx

x
+

1∫
ε

dx

x
= 0,

so the limit of this sum of integrals exists as ε goes to zero.

Definition B.7.1. Suppose that f is defined on the punctured interval [a, b) ∪ (b, c] and is
integrable on any subinterval [a, e], a ≤ e < b or [ f, c], b < f ≤ c. If the limit

lim
ε→0

b−ε∫
a

f (x) dx +
c∫

b+ε

f (x) dx

exists, then we say that f has a principal value integral on [a, c]. We denote the limit by

P.V.

c∫
a

f (x) dx .

For a function that is not (improperly) integrable on [a, b], the principal value integral
exists because of cancellation between the divergences of the two parts of the integral. The
approach to the singular point is symmetric; both the existence of the limit and its value
depend crucially on this fact.

Example B.7.3. We observed that the function x−1 has a principal value integral on [−1, 1]
and its value is zero. To see the importance of symmetry in the definition of the principal
value integral, observe that

−ε∫
−1

dx

x
+

1∫
2ε

dx

x
= − log 2
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and
−ε∫

−1

dx

x
+

1∫
ε2

dx

x
= − log ε.

In the first case we get a different limit and in the second case the limit does not exist.

The material in this chapter is usually covered in an undergraduate course in mathe-
matical analysis. The proofs of these results and additional material can be found in [27],
[111], and [121].

B.8 Fubini’s Theorem and Differentiation of Integrals∗

This section contains two results of a more advanced character than those considered in the
previous sections of this appendix. This material is included because these results are used
many times in the main body of the text.

There is a theory of integration for functions of several variables closely patterned on
the one -variable case. A rectangle in �n is a product of bounded intervals

R = [a1, b1)× · · · × [an, bn).

The n-dimensional volume of R is defined to be

|R| =
n∏

j=1

(b j − a j ).

Suppose that f is a bounded function with bounded support in �n. A partition of the support
of f is a collection of disjoint rectangles {R1, . . . , RN } such that

supp f ⊂
N⋃

j=1

R j .

To each partition P of supp f we associate an upper and lower Riemann sum:

U ( f, P) =
N∑

j=1

sup
x∈R j

f (x)|R j |, L( f, P) =
N∑

j=1

inf
x∈R j

f (x)|R j |.

As before, f is integrable if

inf
P

U ( f, P) = sup
P

L( f, P).

In this case the integral of f over �n is denoted by∫
�n

f (x) dx.
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Let Br denote the ball centered at zero of radius r. If χBr | f | is integrable for every r
and

lim
r→∞

∫
�n

χBr | f |(x) dx

exists, then we say that f is absolutely integrable on �n. It is not difficult to extend the
definition of absolute integrability to unbounded functions. Let f be a function defined on
�n and set

ER = f −1([−R, R]).
Suppose that for every positive number R the function χER f is absolutely integrable on �n.
If the limit

lim
R→∞

∫
�n

χER | f |(x) dx

exists, then we say that f is absolutely integrable and let∫
�n

f (x) dx = lim
R→∞

∫
�n

χER f (x) dx.

Suppose that n = k + l for two positive integers k and l. Then �n = �k × �l . Let w

be coordinates for �k and y coordinates for �l . Assume that for each w in �k the function
f (w, ·) on �l is absolutely integrable and the function

g(w) =
∫
�l

f (w, y) d y

is an integrable function on �k . The integral of g over �k is an iterated integral of f ; it
usually expressed as ∫

�n

g(x) dx =
∫
�k

∫
�l

f (w, y) dw d y.

It is reasonable to enquire how is the integral of g over �k is related to the integral of f
over �n. Fubini’s theorem provides a comprehensive answer to this question.

Theorem B.8.1 (Fubini’s theorem). Let f be a function defined on �n and let n = k + l
for positive integers k and l. If either of the iterated integrals∫

�k

∫
�l

| f (w, y)| dw d y or
∫
�l

∫
�k

| f (w, y)| d y dw

is finite, then the other is as well. In this case f is integrable over �n and∫
�k

∫
�l

f (w, y) dw d y =
∫
�n

f (x) dx =
∫
�l

∫
�k

f (w, y) d y dw (B.16)
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Informally, the order of the integrations can be interchanged. Note that we assume that
f is absolutely integrable in order to conclude that the order of integrations of f can be
interchanged. There are examples of functions defined on �2 so that both iterated integrals,

∞∫
−∞

∞∫
−∞

f (x, y) dx dy and

∞∫
−∞

∞∫
−∞

f (x, y) dy dx

exist but are unequal, and f is not integrable on �2. A proof of Fubini’s theorem can be
found in [121] or [43].

The second problem we need to consider is that of differentiation under the integral
sign. For a positive number ε, let f be a function defined on �n × (a − ε, a + ε). Suppose
that for each y in (a − ε, a + ε), the function f (·, y) is absolutely integrable on �n, and
for each x in �n, the function f (x, ·) is differentiable at a. Is the function defined by the
integral

g(y) =
∫
�n

f (x, y) dx

differentiable at a? In order for this to be true, we need to assume that the difference quo-
tients

f (x, a + h)− f (x, a)

h
satisfy some sort of uniform bound. The following theorem is sufficient for our applica-
tions.

Theorem B.8.2. With f as before, if there exists an absolutely integrable function F so
that for every h with |h| < ε, we have the estimate∣∣∣∣ f (x, a + h)− f (x, a)

h

∣∣∣∣ ≤ F(x),

then

g(y) =
∫
�n

f (x, y) dx

is differentiable at a and

g′ =
∫
�n

∂y f (x, y) dx.

This theorem is a consequence of the Lebesgue dominated convergence theorem.
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[96] Frank Natterer and Frank Wübbeling, Mathematical Methods in Image Reconstruc-
tion, SIAM Monogr. Math. Model. Comput. 5, SIAM, Philadelphia, 2001.

[97] Zeev Nehari, Conformal Mapping, Dover, New York, 1952.

[98] R.G. Novikov, An inversion formula for the attenuated X-ray transformation, Ark.
Mat. 40 (2002), 145–167.

[99] , On the range characterization for the two-dimensional attenuated x-ray
transformation, Inverse Problems 18 (2002), 677–700.

[100] Alan V. Oppenheim and Ronald W. Schafer, Digital Signal Processing, Prentice
Hall, 1975.

[101] John Pauly, Patrick Le Roux, Dwight Nishimura, and Albert Macovski, Parameter
relations for the Shinnar-Le Roux selective excitation pulse design algorithm, IEEE
Trans. on Med. Imaging 10 (1991), 53–65.

[102] Isaac Pesenson, A sampling theorem on homogeneous manifolds, Trans. of the Amer.
Math. Soc. 352 (2000), 4257–4269.

[103] Mark A. Pinsky and Michael E. Taylor, Pointwise Fourier inversion: a wave equa-
tion approach, The Journal of Fourier Analysis and Applications 3 (1997), 647–703.
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complex exponential
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of generalized functions, 701
uniform, 686
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complex , 92
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fan beam scanner, 408
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bandpass, 326
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linear, 307
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non-linear, 307
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stable, 160
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finite difference, 715, 719
finite Fourier transform, 295

n dimensions, 394
finite-dimensional distributions, 608
Fourier coefficients, 228
Fourier series

higher-dimensional, 269
inversion formula, 229, 251
inversion formula in higher dimensions,

270
localization principle, 267
partial sums, 229
partial sums in higher dimensions, 271

Fourier transform
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definition �n , 137
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differential equations, 107
functional notation 
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generalized functions, 133
in the affine parameter, 186
inversion formula �1, 95
inversion formula for L2(�1), 113
inversion formula, �n , 138
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fractional derivative
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classical, 122

frequency, 92
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Fubini’s theorem, 741
full width half maximum

higher dimensions, 349
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function
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focal spot, 371, 454
Fourier transform, 98
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generalized function, 131, 697
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geometric distortion, 351
geometric series, 726
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Hölder’s inequality, 689
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filter, 417
window, 327
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Heisenberg uncertainty principle, 127
Herman, Gabor, 428
Hermitian
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symmetry, 52

Hilbert transform
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definition, 192

homogeneous equation, 671
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Hounsfield, Godfrey, 3
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ill conditioned, 38
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inconsistent measurements, 488
independent events, 540
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independent random variables, 553
indicator function, 534
infimum, 645
inner product, 665, 669
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integrable
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function on probability space, 536
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integral
Cauchy principal value, 738
definite, 735
improper, 735
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integral test, 727
integration by parts, 102, 735
intermediate value theorem, 730
interpolation

generalized Shannon-Whittaker, 282
polynomial, 712
spline, 713

Jackson’s theorem, 708
Johnson noise, 631
joint distribution, 552
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kernel, 656
kernel function, 87, 309

Lagrange interpolation, 712
Lagrange interpolation formula, 712
Lakshminarayanan, A.V., 421, 428
Laplace operator, 183, 199

fractional powers, 199
Laplace’s method, 682
Larmor frequency, 510
Larmor’s theorem, 513
law of large numbers, 566
least squares solution, 497
likelihood function, 598
limit in the mean, 244
limits, 646

complex sequences, 50
for functions, 729
infinite sums, 726
one sided, 729
real sequences, 724
rules for computation, 724

linear
dependence, 8
equation, 32
function, 6
function, �n , 651
independence, 8
subspace, 8

linear combination, 654
linear equations

finite dimensions, 34
linear functional, 693
linear model, 8
linear operator, 43

linear span, 654
linear system

determined, 36
over-determined, 36
underdetermined, 37

linear transformation, 656
image, 33, 656
kernel, 34, 656
null space, 34
range, 33

linearly independent, 655
little o and big O notation, 731
logarithm

complex, 92
natural, 678

magnetic resonance imaging, 509
magnetization

equilibrium , 511
longitudinal component, 512
transverse component, 512

mathematical phantom, 66, 407
matrix, 657

change-of-basis, 659
invertible, 671
measurement, 495
multiplication, 658
nonnegative definite, 613
sparse, 496
upper triangular, 671

matrix transpose, 669
maximum likelihood

algorithm, 601
estimator, 598

mean
of a random variable, 544

mean value theorem, 732
for integrals, 734

measurable
set, 528

measure
Lebesgue-Stieltjes, 538
probability, 530
space, 526
zero, 73

measureable
function, 533

mesh size, 732
method of projections, 499
metric, 663
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modulation transfer function, 319, 344
moiré effect, 361
moment conditions, 210
moments

of a random variable, 547
of Radon transform, 211

MRI, 509
sampling in, 286

MTF, see modulation transfer function
multi-index notation, 140
multiplication

scalar, 650
mutually exclusive events, 528

Naparstek, A., 428
Neumann series, 87
noise

quantization, 299
quantum, 581
what is, 525

noncommutative product, 658
nonlinear partial volume effect, 458
nonmeasurable set, 530
norm, 8, 662

L1, 94
L1([0, 1]), 228
L2, 108
L2([0, 1]), 239
l2, 243
p norm, 662
Euclidean, 662
sup, 662, 686
uniform, 686

normal equations, 497
nuclear magnetic resonance, 510
null space, 656
numbers

binary representation, 641
decimal representation, 640
fixed point, 643
floating point, 644
mathematical, 640

Nyquist
higher-dimensional sampling theorem, 301
noise theorem, 633
rate, 280
sampling theorem, 279
sampling theorem for periodic functions,

297
width, 335

odd function, 114
finite interval, 229

odd sequence, 298
offset frequency, 517
operator norm, 38, 664
oriented hyperplanes, 220
oriented line, 21
orthogonal complement, 241
orthogonal matrix, 672
orthogonal projection, 241
orthogonal vectors, 666
oversampling, 280
overshoot, 256

parallel beam scanner, 408
Parseval formula

Fourier series, 241, 251
Fourier series in higher dimensions, 272
Fourier transform, 109

partition, 732
passband, 292, 326
periodic convolution

sequences, 381
periodic extension

for functions, 235
for functions on �n , 270
for sequences, 381

PET, see positron emission tomography
phantom, 407

Shepp-Logan, 66
phase, 314, 315
phase encoding, 519
phase shift, 320
photon flux, 57
picture element, 361
pixel, 361, 404
point source, 312

two dimensions, 59
point spread function, 312
Poisson summation formula, 286

n-dimensions, 302
dual, 287

polar representation, 49
polynomial

Chebyshev, 711
polynomial approximation

Bernstein polynomials, 708
positron, 594
positron emission tomography, 596
power series, 675
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power spectral density, 110, 144
precession, 510
prior information, 504
probability, 530
probability density, 546
probability measure, 530
probability space, 530
PSF, see point spread function
punctured neighborhood, 729
Pythagoras theorem

infinite-dimensional, 243

QR factorization, 672
quantization, 298

radial function, 71
Radon inversion formula

�2, 188
�n , 221

Radon transform, 69
adjoint, 198
and the Laplace operator, 221
and the wave equation, 222
convolution property, 181
definition in higher dimensions, 220
inverse for radial functions, 80
inversion formula in higher dimensions,

220
natural domain, 70, 183
Parseval formula, 187
radial function, 72

Radon, Johan, 3
Ramachandran, G.N., 421
random process, 606

Bernoulli, 608
continuous parameter, 607
discrete parameter, 607
independent, 608
stationary, 611
weak sense stationary, 611

random variable, 543
Bernoulli, 560
binomial, 560
complex, 543
Gaussian, 547, 562
Poisson, 562

random variables
independent, 558

rank value filtering, 364
rate of decay, 102

ratio test, 727
ray, 409
real computablefunction, 673
real part, 48
reconstruction algorithm, 401
reconstruction grid, 404
rectifier, 307
regularized inverse, 207
relative error, 11, 39, 644
relaxation parameters, 506
relaxation terms, 512
resonance rotation, 512
Riemann sum, 715

left, 733
lower, 733
right, 733
upper, 733

Riemann-Lebesgue lemma, 101
n-variables, 141
Fourier series, 233
Fourier series in higher dimension, 270

Riesz representation theorem
for L p , 693
for l p , 694

root test, 727
rotating reference frame, 513

sample mean, 573
sample path, 607
sample points, 278
sample space, 526
sample spacing, 278, 711
sample variance, 573
sampling, 711
sampling rate, 278
Schwartz class, 131
semi-norm, 131
sequence, 723

bi-infinite, 723
periodic, 295
square summable, 243

series, 726
sets of measure zero, 73

and functions, 94
shadow function, 23
Shepp, Larry, 407
shift

invariant filter, 160, 311
of a function, 160

shift invariant filter
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implementing, 377
side lobes, 174
signal-to-noise ratio, 549
simple function, 534
Simpson’s rule, 717
sinc function, 97

FWHM, 177
sinc pulse, 174
sinc2 pulse, 174
sinogram, 412
SIRT, 507
slice selectivity profile, 404
smoothness principle, 482
spatial frequency, 92

n dimensions, 138
SPECT, 603
spectral density, 612
spectral function, 488
spin warp imaging, 520
spin-echo, 522
splines, 713

natural cubic, 713
square integrable, 687
squeeze lemma, 725
standard basis, 651
standard deviation, 549
state space, 5
state variables, 3
stationary increments, 615

wide sense, 615
step function, 706
Stirling’s formula, 682
strictly convex, 17
strip integral, 452
subsequence, 723
subset of �

bounded, 645
subspace, 8, 654

complex, 50
summation by parts formula, 728
sup norm, 43
support

effective, 291
of a function, 56

support line, 17
supremum, 645

Taylor’s formula, 732
n-dimensions, 140
remainder term, 732

Taylor’s theorem, 732
tempered distributions, 702
tempered growth, 702, 703
Tesla, 511
test function, 118, 697
thermal noise, 631
time average, 532
tomography, 55
transfer function, 319, 344
transpose, 34, 669
trapezoidal rule, 716
triangle inequality, 645
truncation error, 289

undersampling, 280
uniform continuity, 730
uniform sampling, 711
unit impulse, 173, 312
usable bandwidth, 380

variance, 549
vector, 650

addition, 650
notation for, 650

vector space
complete normed, 691
complex, 50
dual, 654, 693
infinite dimensional, 655
normed, 662
real, 653

view
fourth generation machine, 412
parallel beam, 409
third generation fan beam, 411

volcano effect, 462
Volterra operator, 87
voxel, 404

wave equation, 221
wavelength, 92
weak convergence, 695

for generalized functions, 701
of higher dimensional generalized func-

tions, 703
weak derivative, 85, 118, 700

partial, 703
weak limit, 701
Weierstrass approximation theorem, 705
white noise, 625
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Wiener filter, 635
Wiener process, 615
window function, 281

x-ray beam
intensity, 57

zero padding, 387
higher dimensional, 394

zero vector, 42, 653


