
Peter Deu� hard · Susanna Röblitz

A Guide to
Numerical Modelling
in Systems Biology

Editorial Board
T. J. Barth

M. Griebel
D. E. Keyes

R. M. Nieminen
D. Roose

T. Schlick

12

Texts in Computational
Science and Engineering 12
Editors

Timothy J. Barth
Michael Griebel
David E. Keyes
Risto M. Nieminen
Dirk Roose
Tamar Schlick

More information about this series at
http://www.springer.com/series/5151

http://www.springer.com/series/5151

Peter Deuflhard • Susanna RRoblitz

A Guide to Numerical
Modelling in Systems
Biology

123

Peter Deuflhard
Zuse-Institut Berlin (ZIB)
Berlin, Germany

Susanna RRoblitz
Zuse Institute Berlin (ZIB)
Berlin, Germany

ISSN 1611-0994 ISSN 2197-179X (electronic)
Texts in Computational Science and Engineering
ISBN 978-3-319-20058-3 ISBN 978-3-319-20059-0 (eBook)
DOI 10.1007/978-3-319-20059-0

Library of Congress Control Number: 2015944536

Mathematics Subject Classification (2010): 65F20, 65F35, 65L05, 65L06, 65L09, 92-01, 92-08, 92C45,
92C42

Springer Cham Heidelberg New York Dordrecht London
© Springer International Publishing Switzerland 2015
This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of
the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology
now known or hereafter developed.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication
does not imply, even in the absence of a specific statement, that such names are exempt from the relevant
protective laws and regulations and therefore free for general use.
The publisher, the authors and the editors are safe to assume that the advice and information in this book
are believed to be true and accurate at the date of publication. Neither the publisher nor the authors or
the editors give a warranty, express or implied, with respect to the material contained herein or for any
errors or omissions that may have been made.

Printed on acid-free paper

Springer International Publishing AG Switzerland is part of Springer Science+Business Media
(www.springer.com)

www.springer.com

Preface

In recent years, systems biology has emerged as an interdisciplinary research
field combining biology with computer science and mathematics. Computational
models for complex biological processes are the general paradigm, predominantly
in terms of ordinary differential equations (ODEs). The main scientific tasks are
mathematical modelling of biochemical and physiological processes, numerical
simulation of the dynamics of biological networks, and identification of model
parameters via a comparison with measurement data.

Typical books on systems biology do not go into the necessary detail as far as
these topics are concerned. At best, they merely mention algorithmic approaches,
but without offering a deeper understanding. On the other hand, books on ODEs or
parameter identification are typically written for a mathematical community, nearly
unreadable for systems biologists or, more generally, for computational biologists.
As authors of the present book, we have worked hard to fill this gap: Our aim
has been to make the important mathematical issues readable and to focus on
systems biological needs. What came out is not a book on systems biology, but on
computational methods in systems biology.

Our book is based on university courses repeatedly given to students of bioin-
formatics who only had moderate knowledge of mathematics. The idea of the
courses had been to convey mathematical insight as far as it is indispensable
for systems biological modelling. Consequently, the book aims at teaching the
necessary mathematical prerequisites by means of many examples rather than by
theorems. This does not and cannot mean to avoid mathematical formulas as a
whole.

Throughout the text, numerical software is discussed in terms of its strengths and
weaknesses with respect to various systems biological issues. Web addresses are
included where the mentioned software can be downloaded.

Acknowledgements First of all, we want to thank our ZIB colleague Thomas Dierkes for his
patience and invaluable help in the preparation of the computational results for the GynCycle
model (Sect. 3.5.3). We also wish to thank our ZIB colleagues Rainald Ehrig and Claudia Stötzel
for their helpful groundwork. Moreover, we are indebted to Matthias König and Hermann-Georg

v

vi Preface

Holzhütter from Charité Berlin for their support in the example presented in Sect. 2.5.3 (Warburg
effect of tumor cells). Finally, we are grateful to Pooja Gupta for her careful reading of earlier
drafts of the manuscript.

Berlin, Germany Peter Deuflhard
May 2015 Susanna Röblitz

Contents

1 ODE Models for Systems Biological Networks . 1
1.1 Introduction .. 1

1.1.1 Problem Types in Systems Biology . 1
1.1.2 Example: Population Dynamics . 4
1.1.3 Example: Multiple Dose Administration of Drugs 7

1.2 ODE Systems from Chemical or Physiological Networks 9
1.2.1 Elementary Chemical Mechanisms . 10
1.2.2 Enzyme Kinetics . 14
1.2.3 Assembly of Large ODE Networks . 16

1.3 Mathematical Background for Initial Value Problems 19
1.3.1 Uniqueness of Solutions . 19
1.3.2 Sensitivity of Solutions . 22
1.3.3 Asymptotic Stability . 26
1.3.4 Singularly Perturbed Problems . 30

2 Numerical Simulation of ODE Models . 33
2.1 Basic Concepts . 33

2.1.1 Local Versus Global Discretization Error:
Theoretical Concepts. 34

2.1.2 Local Versus Finally Achieved Accuracy:
Algorithmic Concepts . 38

2.1.3 Stability Concepts for Discretizations. 41
2.1.4 Stiffness of ODE Problems . 46

2.2 Explicit Numerical Integration Methods . 48
2.2.1 Runge-Kutta Methods. 49
2.2.2 Extrapolation Methods . 52
2.2.3 Adams Methods . 57

2.3 Implicit Numerical Integration Methods . 60
2.3.1 Collocation Methods .. 60
2.3.2 BDF Method . 64

vii

viii Contents

2.4 Linearly Implicit One-Step Methods . 66
2.4.1 Rosenbrock-Wanner Methods . 67
2.4.2 Extrapolation Methods . 68

2.5 Choice of Numerical Integrator .. 72
2.5.1 A General Roadmap for Numerical Integrators 72
2.5.2 Different Numerical Behavior in Two Similar Problems. 81
2.5.3 Example: Warburg Effect in Tumor Cells . 84

3 Parameter Identification in ODE Models . 89
3.1 Least Squares Problem Formulation .. 90
3.2 Linear Least Squares Problems . 95

3.2.1 Normal Equations . 95
3.2.2 QR-Factorization .. 98
3.2.3 Generalized Inverses . 104

3.3 Nonlinear Least Squares Problems . 108
3.3.1 Local Newton Versus Gauss-Newton Approach 108
3.3.2 Globalization of Gauss-Newton Method . 112

3.4 Extension to ODE Models . 117
3.4.1 Function Evaluation via Numerical Integration 118
3.4.2 Jacobian Approximation via Parameter Sensitivities 119
3.4.3 Multiple Experiment Case . 121

3.5 Illustrative Examples . 123
3.5.1 Predator-Prey Model Revisited . 123
3.5.2 A Simple Rank-Deficient Problem . 126
3.5.3 A Complex Human Menstrual Cycle Problem 130

A Appendix . 139
A.1 Complex Exponential Function .. 139
A.2 Condition Numbers of Linear Algebra Problems .. 140
A.3 QR-Factorization with Column Pivoting . 143
A.4 Convergence of Newton and Gauss-Newton Methods. 147
A.5 Adaptive External Numerical Differentiation .. 152

Software . 157

References . 161

Index . 165

Outline

This book is divided into the following three chapters:

• Chapter 1: mathematical modelling of biochemical and physiological processes
• Chapter 2: numerical simulation of the dynamics of biological networks
• Chapter 3: identification of model parameters via a comparison with measure-

ment data

A few mathematically more challenging topics are postponed to an Appendix.
Throughout the text, numerical software is discussed in terms of its strengths and
weaknesses.

Chapter 1 works out the basics of mathematical modelling in systems biology.
The first section starts with a short overview about initial value problem types
that occur in systems biology – deliberately omitting periodic boundary value
problems that do occur quite often but are regarded as technically too complex
for the present elementary text. To start with, two simple model problems are
worked out in some detail: one from population dynamics and one on multiple
dose administration of drugs. Next, the assembly of large ODE networks from
simple chemical or physiological mechanisms is described. Reasons are given
why the so-called Michaelis-Menten kinetics is no longer needed in the numerical
simulation of such systems. For parts of reaction networks, where only the
properties “stimulating” or “inhibiting” are known, the formulation in terms of Hill
functions is given. Compartment models are introduced by an illustrative example.
Finally, necessary mathematical background material is presented as far as it seems
important for the class of applications in question. Main topics therein are the
uniqueness and sensitivity of solutions as well as asymptotic stability. As the book
is mainly addressed to students with only elementary knowledge of mathematics,
mathematical contents are typically explained by examples rather than by theorems.
Attention deliberately focuses on consequences for practical calculations.

Given possibly large ODE models for systems biological networks, Chap. 2
deals with their numerical simulation. For this purpose, various numerical integra-
tors for initial value problems are described in necessary detail. To begin with,
the focus is on the discrepancy between controllable local and not controllable

ix

x Outline

global discretization errors. Stability concepts for discretizations in general lead
to an elementary pragmatic understanding of the term “stiffness” of ODE systems.
In the remaining chapter, different families of integrators such as one-step methods,
extrapolation methods, and multistep methods are characterized. From a practical
point of view, they are divided into explicit, implicit, and linearly implicit methods
and discussed in terms of their structural strengths and weaknesses. The chapter
ends with a general roadmap about numerical integration methods; this roadmap is
understood as help in the decision about which integrator to use for which kind of
problem. For illustration purposes, two model problems are presented that seem
to be quite similar but require different numerical integrators: one of them stiff
and the other one non-stiff. Finally, a rather complex problem from tumor cell
biology including parameter studies is worked out where computational speed really
matters.

Chapter 3 deals with parameter identification, the most important question in
systems biology. The whole chapter is devoted to show why parameter identification
problems are not just usual optimization problems, but are inverse problems with a
statistical background. The arising subtle issues are often overlooked in the present
systems biological literature. Parameter identification problems in ODE models
typically arise as nonlinear least squares problems. They are solved by special
Gauss-Newton methods, which, in turn, require the numerical solution of linear
least squares problems at each iteration. For pedagogical reasons, the order of
presentation of these topics is reversed. First, linear least squares problems are
discussed, including the important issue of automatic detection of rank deficiencies
in matrix factorization. This topic reflects the important fact that not all data sets
are equally well suited to fit all parameters of a given model. Second, the class
of “adequate” nonlinear least squares problems is defined, both theoretically and
computationally, for which the local Gauss-Newton method converges. Globaliza-
tion via a damping strategy is presented. The case that non-convergence occurs is
treated in detail to find out which part originates from an insufficient model and
which one is from “bad” initial guesses for the Gauss-Newton iteration. In the final
section, all pieces of the three chapters are glued together to apply to the ODE
models, which are the general topic of the book. First, the notorious predator-prey
problem is revisited, which turns out to be quite standard. Next, in order to connect
the advocated computational ideas with modelling intuition, a simple illustrative
example is worked out in algorithmic detail. Lastly, a more complex parameter
identification problem related to a model of the human menstrual cycle is discussed
in detail.

The Appendix contains mathematical background material postponed to main-
tain the basic flow of the presentation throughout the text. Topics selected therein
are (i) the complex exponential function, (ii) condition numbers of linear algebra
problems, (iii) details about QR-factorization with column pivoting, and (iv)
convergence results for Gauss-Newton methods. These topics require a bit more
mathematical knowledge; interested readers may find hints on further reading.

In the final section, Software mentioned throughout the book is listed together
with web addresses, from which these codes can be downloaded.

Chapter 1
ODE Models for Systems Biological Networks

This chapter presents basics of mathematical modelling in systems biology. In
Sect. 1.1, a brief introduction to the topic is given, mainly in terms of examples such
as problems from population dynamics or from drug administration. In Sect. 1.2, the
assembly of large ODE networks from simple chemical and physiological mecha-
nisms, given in terms of chemical reaction modules, is described. Reasons are given,
why the so-called Michaelis-Menten kinetics is no longer needed in the numerical
simulation of such systems. For reaction diagram parts, where only the properties
“stimulating” or “inhibiting” are known, the formulation in terms of Hill functions
is presented. Finally, in Sect. 1.3, necessary mathematical background material is
collected as far as it seems important for the class of applications in question. Main
topics are the uniqueness and sensitivity of solutions as well as asymptotic stability.
Mathematical contents are typically explained by examples rather than by theorems,
while emphasis is laid on consequences for practical calculations.

1.1 Introduction

To start with, Sect. 1.1.1 gives a short overview about ODE initial value problem
types that occur in systems biology. Next, two simple model problems are worked
out in some detail, one from population dynamics (Sect. 1.1.2), one on multiple dose
administration of drugs (Sect. 1.1.3).

1.1.1 Problem Types in Systems Biology

Let us first give a brief list of problems that typically come up in systems biology.
In the subsequent Sects. 1.1.2 and 1.1.3 we will present a few elementary examples.

© Springer International Publishing Switzerland 2015
P. Deuflhard, S. Röblitz, A Guide to Numerical Modelling in Systems Biology, Texts
in Computational Science and Engineering 12, DOI 10.1007/978-3-319-20059-0_1

1

2 Introduction

Non-autonomous Initial Value Problems

This book predominantly focuses on initial value problems for systems of d ordinary
differential equations (ODEs)

y0 D f .t; y/; y.t0/ D y0 2 R
d (1.1)

for given initial values y0. The notation indicates that the time variable t appears
explicitly in the right-hand side f ; in this case we speak of a non-autonomous
problem. However, apart from special problems of drug administration where the
time point of administration enters crucially into the modelling, this case is the non-
standard case in systems biology.

Autonomous Initial Value Problems

Throughout the book we will mainly deal with the case, when the time variable t
does not explicitly enter into the right-hand side f . Then we have

y0 D f .y/; y.0/ D y0 2 R
d : (1.2)

A specialty of this type of problem is that for any given solution trajectory y.t/
satisfying (1.2) there exists a continuum of further solution trajectories z.t/ D y
.t � �/ with time shift � satisfying the same ODE

z0.t/ D y0.t � �/ D f .y.t � �// D f .z.t//

and the same initial condition

z.t0 C �/ D y.t0 C � � �/ D y.t0/ D y0 :

Due to this so-called translation invariance the initial point t0 can be chosen
arbitrarily, so that we are free to set t0 D 0 in (1.2).

Parameter Dependent Problems

In the majority of problems in systems biology, a (possibly large) number of
unknown parameters p D .p1; : : : ; pq/ enters in the form

y0 D f .y; p/; y.0/ D y0 2 R
d; p 2 R

q : (1.3)

Of course, one would like to identify such parameters by matching the above type
of model with given experimental data. The corresponding mathematical problem is

Introduction 3

far more subtle than often recognized in systems biology literature. Because of its
central importance in modelling, it will be carefully elaborated in Chap. 3 below.

Linear ODEs

In the non-autonomous case, a linear system may be written as

y0 D A.t/y C b.t/ y.t0/ D y0; A 2 R
d�d ;

where A.t/ denotes a time dependent .d; d/-matrix and b.t/ 2 R
d a corresponding

vector function. In the autonomous case, we will most often encounter the homoge-
neous situation b D 0 so that

y0 D A y; y.0/ D y0

in terms of some time-independent .d; d/-matrix. This kind of system plays a role
in stability analysis of general ODE systems, see Sect. 1.3.3.

Singularly Perturbed Systems

In the mathematical literature for systems biology, now and then so-called singularly
perturbed problems of the kind

y0 D f .y; z/; 0 D g.y; z/; (1.4)

arise. Such systems have been designed in the early days of computational science
to be able to solve them by standard explicit integrators. The approach is more or
less dispensable, since today efficient so-called stiff integrators are available that
solve such problems, see Sect. 1.3.4 for a more detailed discussion.

Delay or Retarded Differential Equations

Quite often processes do not just depend on the current state but also on the “history”
of the system. Such systems also arise as a phenomenological description, when not
enough information about a chain of intermediate processes is at hand.

In the simplest case such a differential system contains a retardation or delay
time � > 0 so that

y0 D f .y.t/; y.t � �// ; y.t/ D �.t/ for Œ��; 0� (1.5)

4 Introduction

with a given initial function �. In contrast to the standard ODE case we typically
have

y0.0�/ D �0.0/ ¤ f .y.0/; y.��// D y0.0C/ ;

i.e., the derivative of the solution is discontinuous at the initial point t D 0.
The discontinuity propagates along the trajectory, but is gradually smoothed. This
feature has to be taken into account in the numerical simulation! Typical for systems
biology is the fact, that the delay may depend on the solution, too, which means that
one should write �.y/ above instead of just � . Throughout the book we will not
go into too much detail of this problem type, but give a hint on available codes in
Sect. 2.5.1.

Periodic ODE Problems

In systems biological modelling, internal clocks or circadian rhythms play an
important role. The modelling of such processes leads to ODE problems of the kind
(mostly autonomous)

y0 D f .y/; y.T/ D y.0/ ; (1.6)

with unknown period T. In contrast to the initial value problems mentioned so
far, this problem is of boundary value type, which is more complex and beyond
the scope of this book. Interested readers may want to look up theoretical and
algorithmic details in the textbook [15, Section 7.3].

1.1.2 Example: Population Dynamics

This kind of mathematical model describes the dynamics of populations. Let p.t/
denote the number of individuals at time t and �t some finite time step. Then the
change of population p within time interval Œt; t C �t� will be

p.t C �t/ � p.t/ D g�t; g 2 R ;

which means that the longer the time interval, the greater the change will be. Note
that g > 0 represents growth, g < 0 decay. The typical derivation step now is
to write down the above relation as a difference equation and pass to the limit as
follows:

p.t C �t/ � p.t/

�t
D g

„ ƒ‚ …

difference equation

�t!0�! dp.t/

dt
D g

„ ƒ‚ …

differential equation

Introduction 5

This differential equation (ODE) may also be written as p0 D g. Note that here we
have tacitly applied some continuum hypothesis assuming that p.t/ 2 R

C, even
though p.t/ 2 N, since the number of individuals can be counted. In addition,
ODE models are based on the assumption of well-mixing, i.e. individuals are
homogeneously distributed in space such that spatial gradients can be neglected
in the model. We now turn to some special cases for the rate coefficient g D g.t; p/.

Exponential Growth

We start with the assumption of a constant fertility rate �0 (interpretation: the more
individuals, the higher the birth rate):

p0 D �p; p.0/ D p0 � 0 : (1.7)

This is a linear ODE, which can be solved to yield

p.t/ D p0 exp.�t/ :

The case of growth occurs with �0 > 0. In this case, there would be only members
of this species after some time in the corresponding local neighborhood – obviously
ignoring the limited nutrition basis or any other environmental constraints.

Saturation Model

The insufficiency of a purely linear model has already been pointed out 1838 by
P.-F. Verhulst [61], who suggested to modify the ODE in the form

p0 D �p.pmax � p/; p.0/ D p0 � 0; � > 0 : (1.8)

Obviously, this is a nonlinear ODE, often also called logistic equation. The
associated dynamics has two fixed or stationary points with p0 D 0, namely p � 0,
which can only occur for p0 D 0, and p � pmax, which is approached by any
trajectory with 0 < p0 � pmax. An illustration is given in Fig. 1.1.

As one of the rare examples, the initial value problem (1.8) can be solved
analytically by separation of variables (let t0 D 0, since we have an autonomous
ODE):

�

Z t

0

dt D
Z p

p0

dp

p.pmax � p/

�pmaxt D
Z p

p0

�

1

p
C 1

pmax � p

�

dp (partial fraction decomposition)

6 Introduction

Fig. 1.1 Logistic growth
(p0 D 1; � D 2; pmax D 5)

0 0.2 0.4 0.6 0.8 1
1

2

3

4

5

t

p

�pmaxt D .ln p � ln.pmax � p//
ˇ

ˇ
p

p0
D ln

p.pmax � p/

p0.pmax � p0/

After some short calculation we obtain the analytic solution

p.t/ D p0

pmax

p0 C .pmax � p0/ exp.��pmaxt/
(1.9)

This function is often also called the logistic law of growth. Note that for t D 0

one actually obtains the initial value p.0/ D p0. Moreover, one easily verifies that
p.t/ � pmax and limt!1 p.t/ D pmax, if 0 < p0 < pmax.

Predator-Prey Model

Consider the dynamics of a closed ecological system, in which two species interact,
predators (number N2) and prey (number N1); as an example, you may take fox for
the predator and hare for the prey. The behavior can be described by the model

N0
1 D N1.˛ � ˇN2/; N0

2 D �N2.� � ıN1/ (1.10)

with prescribed positive parameters ˛; ˇ; �; ı. This pair of first-order nonlinear
differential equations is known as Lotka-Volterra model, named after A. J. Lotka
and V. Volterra, who independently developed these equations already in 1925/1926,
see, e.g., the textbook [45] by J. D. Murray.

The nonlinear terms N1N2 enter, since the prey population would grow unbound-
edly, if the predator population were zero, while the predator population would die
out, if the prey population were zero. The meaning of the parameters is:

• ˛: prey reproduction rate (with unbounded nutrition resources),
• ˇ: rate at which prey is eaten by predators (per unit prey), which is equivalent to

mortality rate of prey per unit predator,

Introduction 7

0 5 10 15 20
0

0.5

1

1.5

time

N
1
 (prey) N

2
 (predator)

0.5 1 1.5
0

0.2

0.4

0.6

0.8

1

N
1

N
2

Solution over time. Phase plane plot.

(a) (b)

Fig. 1.2 Predator-prey model (1.10) for parameters ˛ D 1; ˇ D 2; � D 1; ı D 1; and initial
value .N1.0/; N2.0// D .1:25; 0:66/

• � : mortality rate of predators in the absence of prey,
• ı: reproduction rate of predators per unit prey.

A short calculation yields

dN1

dN2

D N1.˛ � ˇN2/

�N2.� � ıN1/
)
Z �� C ıN1

N1

dN1 D
Z

˛ � ˇN2

N2

dN2 :

Upon integrating both sides, we arrive at

�� ln.N1/ C ıN1 D ˛ ln.N2/ � ˇN2 C constant :

As a consequence, the quantity

H.N1; N2/ D �� ln.N1/ C ıN1 � ˛ ln.N2/ C ˇN2 D H.N1.0/; N2.0//

is an invariant along any trajectory. In Fig. 1.2, left, two oscillatory solution curves
N1.t/; N2.t/ are depicted. Figure 1.2, right, shows H.N1; N2/ D const in an .N1; N2/-
plane, also called phase plane, where a closed orbit arises for each initial value.

In Sect. 3.5.1 below we treat the identification of parameters from given data of
the Canadian lynx (predator) and snowshoe hare (prey).

1.1.3 Example: Multiple Dose Administration of Drugs

We follow the presentation in the illustrative book of D. S. Jones et al. [40] to show
how drug concentrations in body fluids can be described by differential equations.

8 Introduction

Fig. 1.3 Typical plasma
concentration of a drug in
multiple dose treatment

t0 t0 t0 t0

0c

cM

4320

r

time

c

Assume that the drug concentration c.t/ within the blood plasma can be described
by the following simple law:

c0 D �c=�:

In this linear ODE, the constant � , often called relaxation time, characterizes the
decay rate of the concentration

c.t/ D c0 exp.�t=�/ :

Suppose now that some prescribed constant dose c0 is administered regularly at
times tn D nt0; n D 0; 1; : : :. Then the concentration will grow in a sawtooth
pattern, which is illustrated in Fig. 1.3.

Let us now try to model this situation quantitatively. For that purpose, we
introduce the notation cn D c.tn/. Due to the above decay law, we get

c.t�n / D cn�1 exp .�t0=�/

and with the regular administration eventually

cn D c.t�n / C c0 D cn�1 exp .�t0=�/ C c0 :

For convenience of writing we introduce the quantity q D exp .�t0=�/ < 1 and thus
arrive at the recursion

cn D cn�1q C c0 ;

Chemical Reaction Networks 9

from which we obtain (check yourself)

cn D c0 .1 C q C q2 C : : : C qn/ D c0

1 � qnC1

1 � q

or, in the original notation,

cn D c0

1 � exp.�.n C 1/t0=�/

1 � exp.�t0=�/
:

In addition, we obtain the so-called concentration residue

rn D c.t�n�1/ D c0 exp.�t0=�/
1 � exp.�nt0=�/

1 � exp.�t0=�/
:

Taking the limit n ! 1, we observe that the concentration never exceeds

cmax D c0

1 � exp.�t0=�/
;

and that the residue approaches

r D cmax exp.�t0=�/ D c0

exp.t0=�/ � 1
:

Usually, the therapeutic goal is to reach cmax in only a few dose steps (t0=� large),
whereas r should be kept above a certain level (t0=� small). Obviously, these two
goals are in contradiction to each other. One strategy is to avoid the sawtooth build-
up by giving an initial large dose of c0 C r or cmax and thereafter again doses of
c0. The optimal treatment strategy, however, usually depends on several factors like
production costs and patterns of human behavior.

1.2 ODE Systems from Chemical or Physiological Networks

In systems biology, typical ODE systems originate from chemical kinetics. Apart
from these, so-called compartment models arise, which we will explain in Exam-
ple 1 below and, in a more realistic setting, subsequently in Sect. 2.5.3. In Sect. 1.2.1,
we start with isolated simple chemical mechanisms and their translation into ODE
models. Such models will comprise the building blocks of large networks whose
construction we will discuss in Sect. 1.2.3 below. In between, in Sect. 1.2.2, we
discuss some traditional model type for enzyme kinetics called Michaelis-Menten
kinetics, which is still around in the literature, but is no longer needed nowadays.

10 Chemical Reaction Networks

1.2.1 Elementary Chemical Mechanisms

Part of the presentation here closely follows Section 1.3 in the textbook [16].

Monomolecular Reaction

In chemical language, this reaction is written in terms of two chemical species A; B
as

A GGGA B

In a particle model we may denote nA;B as the number of particles of A; B. In
Boltzmann’s kinetic gas theory, which needs to be carefully discussed when applied
within the human body (under the assumptions of constant pressure, volume V , and
temperature T!), one obtains for the changes �nA;B of particle numbers nA;B within
some time interval �t

�nA � �nA�t; �nB D ��nA

where the second equation is the conservation of particles. In a continuum model,
the associated concentrations are defined as

cA D nA

V
; cB D nB

V
:

For ease of writing, one usually identifies the names for the concentrations with
the names of the corresponding chemical species, i.e. cA ! A; cB ! B etc. Upon
defining k as a reaction rate coefficient, we thus arrive at the ODEs

A0 D �kA; B0 D kA : (1.11)

If we set initial conditions

A.0/ D A0; B.0/ D 0 ;

then we can solve these simple equations analytically to obtain

A.t/ D A0 exp.�kt/; B.t/ D A0.1 � exp.�kt//

In passing we note that mass conservation still holds in the two equivalent forms

A0.t/ C B0.t/ D 0 , A.t/ C B.t/ D A.0/ C B.0/ D A0 : (1.12)

Chemical Reaction Networks 11

Bimolecular Reaction

In chemical language, this reaction reads

A C B
k1

GGGGGBF GGGGG

k2

C C D :

Using the same kinetic reaction principles as before, one is led to the ODE model
(again identifying species and concentration names)

A0 D B0 D �k1AB C k2CD; C0 D D0 D Ck1AB � k2CD : (1.13)

In passing we again note that conservation of mass holds:

A0 C B0 C C0 C D0 D 0: (1.14)

Important special cases of this mechanism to arise in systems biology are

• catalysis: B D C
• autocatalysis: B D C D D,

e.g., DNA replication: nucleotide C DNA GGGBF GGG 2 DNA

Stationary state. The equilibrium phase, also called the stationary state, is charac-
terized by

A0 D B0 D C0 D D0 D 0 :

From this we arrive at the classical law of mass action kinetics (often called the
Arrhenius law) :

AB

CD
D k2

k1

D exp

�

��E

RT

�

DW k21 (1.15)

where we have already inserted the Boltzmann formula with �E the activation
energy, which is the energy difference between reactants and products, R the
universal gas constant, and T the temperature (as above). If only the equilibrium
phase of this reaction is to be modeled, then the above equilibrium coefficient
k21 D k2=k1 is the only degree of freedom that is well-defined. In this case, a model
reduction is possible. A simple illustrative example for this phenomenon will be
worked out in Sect. 3.5.2.

12 Chemical Reaction Networks

General Reaction Scheme

For the sake of completeness, we mention that a reaction of the general type

mAA C mBB
k1

GGGGGBF GGGGG

k2

mCC C mDD

would give rise to the equilibrium relation (the general law of mass action kinetics)

AmA BmB

CmC DmD
D k2

k1

D exp

�

��E

RT

�

: (1.16)

A general reaction of the type

min
1 A1 C min

2 A2 C : : : C min
d Ad

k
GGGGA mout

1 A1 C mout
2 A2 C : : : C mout

d Ad

results in the reaction rate equation

y0 D k	

d
Y

iD1

y
min

i
i .t/

min
i Š

;

where

y D .A1; : : : ; Ad/T ; 	 D .mout
1 � min

1 ; : : : ; mout
d � min

d /T :

Remark 1 Often, the factorials in the above denominators are absorbed into the
constant k, giving rise to a reaction rate equation in the form

y0 D k	

d
Y

iD1

y
min

i
i .t/:

Both forms can be found in the literature; note that the value of the reaction rate
coefficient will vary accordingly.

Remark 2 Whenever the copy numbers of species involved in a chemical reaction
get small, random fluctuations come into play. In this case, the ODE models
based on mass action kinetics must be replaced by the chemical master equation
(CME). The CME is the fundamental equation of stochastic chemical kinetics. This
differential-difference equation (continuous in time and discrete in the state space)
describes the temporal evolution of the probability density function for the states of a
chemical system. The state of the system represents the copy numbers of interacting
species, which are changing according to a list of possible reactions. The solution of

Chemical Reaction Networks 13

the CME in higher dimensions is mathematical challenging and the topic of ongoing
research. A detailed discussion would go beyond the scope of this book.

Inhibitory or Stimulatory Impact

In quite a number of chemical reactions in biology detailed knowledge about the
individual reaction mechanisms is not available, but only some information of the
kind “inhibitory or stimulatory impact”. This qualitative insight is usually captured
quantitatively in terms of so-called Hill functions. Let S denote some input substrate
concentration and P the corresponding output product concentration. Then, in terms
of threshold values T; T�; TC and Hill coefficients n, the following modelling
schemes are in common use (see Fig. 1.4):

• Inhibitory processes. These are described by negative feedback Hill functions
(with the notation X D S=T)

h�.S; T; n/ D 1

1 C Xn
; P0 D p�h�.S; T; n/ ; (1.17)

where p� denotes some reaction rate coefficient.
• Stimulatory processes. These are described by positive feedback Hill functions

(with the notation X D S=T)

hC.S; T; n/ D Xn

1 C Xn
; P0 D pChC.S; T; n/ ; (1.18)

where pC is again some reaction rate coefficient.

0 0.5 1
0

0.2

0.4

0.6

0.8

1

S

h−

T

n=2
n=5
n=10

0 0.5 1
0

0.2

0.4

0.6

0.8

1

h+

S

T

n=2
n=5
n=10

0 0.5 1

0

0.2

0.4

0.6

0.8

1

S

h±

n=2

n=5

n=10

T
s

negative positive biphasic

(a) (b) (c)

Fig. 1.4 Hill functions for variable parameter n. Left: negative feedback (T D 0:5). Center:
positive feedback (T D 0:5). Right: switch behavior between mutually independent process
directions (T� D 0:2; TC D 0:8; Ts D 0:4)

14 Chemical Reaction Networks

• Switch processes. Whenever two process directions are mutually independent,
then they can be modeled by biphasic Hill functions

h˙.S; T�; TC; n/ D h�.S; T�; n/ C hC.S; TC; n/ ; (1.19)

which gives rise to the ODE parts

P0 D p˙h˙.S; T�; TC; n/ ;

with p˙ as reaction rate coefficient. The switch takes place at Ts D p
T�TC,

compare Fig. 1.4. In passing we note that

h�.S; T; n/ C hC.S; T; n/ D 1 :

Whenever the two process directions are mutually dependent, they should be
coupled multiplicatively, i.e.

h˙.S; T�; TC; n/ D h�.S; T�; n/ � hC.S; TC; n/ : (1.20)

1.2.2 Enzyme Kinetics

A special case of reaction mechanism is the case of enzyme kinetics, which we here
give in some detail, since this mechanism can be treated numerically in different
ways. This mechanism involves four chemical species: substrate S, product P,
enzyme E, and complex C. In chemical language, this kind of reaction scheme is
written as

E C S
k1

GGGGGBF GGGGG

k�1

C
k2

GGGA E C P :

The corresponding mathematical formulation in terms of an ODE system is:

S0 D �k1ES C k�1C

E0 D �k1ES C k�1C C k2C

C0 D k1ES � k�1C � k2C

P0 D k2C

Observe that all parameters above enter linearly, compare the remarks in Sect. 3.4 in
the context of parameter sensitivity analysis. As initial conditions we typically have

E.0/ D E0; S.0/ D S0; C.0/ D 0; P.0/ D 0 :

Chemical Reaction Networks 15

Fig. 1.5 Numerical
simulation of an enzyme
reaction (substrate S, product
P, enzyme E, complex C)

0 2 4 6
0

0.2

0.4

0.6

0.8

1

time

co
nc

en
tr

at
io

ns

S

C

E

P

As for mass conservation, we now have two chemical reactions:

E0 C C0 D 0) E C C D const D E0

S0 C C0 C P0 D 0) S C C C P D const D S0 :

Upon eliminating E D E0 � C and P D S0 � S � C from the above four ODEs, we
obtain a reduced model with only two ODEs

S0 D �k1.E0 � C/S C k�1C (1.21)

C0 D k1.E0 � C/S � .k�1 C k2/C (1.22)

to be completed by the two above initial conditions S.0/ D S0; C.0/ D 0. In
Fig. 1.5, we show the results of numerical simulations.
Michaelis-Menten kinetics. We continue with an analysis of the above enzyme
reaction mechanism by introducing the so-called quasi-steady state approximation,
in short: QSSA. In this framework, we set

C0 D 0 :

Insertion into the ODE (1.22) then yields

C.t/ D E0S.t/

Km C S.t/
; Km WD .k�1 C k2/=k1

16 Chemical Reaction Networks

where Km denotes the so-called Michaelis constant. Inserting this expression
into (1.21) leads to

S0.t/ D �k2E0

S.t/

Km C S.t/
: (1.23)

The ODE (1.23) is called Michaelis-Menten kinetics.
Generally speaking, the advent of modern stiff integrators (see Sects. 2.3 and 2.4)

has made the QSSA including the Michaelis-Menten kinetics superfluous. Neverthe-
less such models have survived even in recent literature, which is why they are also
accepted as possible mechanisms in the modelling language SBML [11].

1.2.3 Assembly of Large ODE Networks

The previous two sections have shown that there exists a one-to-one correspondence
between elementary chemical reactions and ODE schemes. In actual systems
biological modelling such small blocks will have to be assembled to large chemical
reaction networks. For this purpose, it is convenient to construct a so-called
chemical compiler that automatically generates the ODE system. (We deliberately
skip here the possible addition of further physiological mechanisms that give rise to
ODEs of different kind; they will need an extra treatment.)

Chemical Compiler

Such a programming tool generates the right-hand sides f of an ODE system (1.2)
from elementary pieces. This is a comparatively easy task, since the mechanisms of
Sect. 1.2.1 lead to known functions such as polynomials or Hill functions. Simulta-
neously, anticipating Sect. 1.3.2 below, the Jacobians fy; fp (with respect to variables
y and parameters p) will be needed. In the polynomial terms the parameters usually
enter linearly, which is why we explicitly advise users to avoid any Michelis-Menten
kinetics (see (1.23)) wherever possible, since they would give rise to parameters
entering nonlinearly. Of course, any additional right-hand sides originating from
other source terms should be treated aside. In particular, approximation of the
Jacobians fy; fp by numerical differentiation might be applicable, which requires
special software, see [5].

Such a compiler permits a user to concentrate on modelling questions without
getting too much involved with the arising ODE system. At the same time it helps
to reduce programming errors. That is why already in the 1980s FORTRAN codes
like CHEMKIN due to [41] or LARKIN due to [4, 22] have been developed, mainly
oriented towards physical chemistry. Nowadays, CHEMKIN is developed by the

Chemical Reaction Networks 17

Fig. 1.6 Compartment
model for the human
menstrual cycle. The model
maps the hypothalamic-
pituitary-gonadal (hpg) axis,
along which the various
hormones act

Hypothalamus

Pituitary

Ovary

E2,P4 (+/−)

GnRH (+)

LH, FSH (+)

company ReactionDesign,1 whereas an open-source version, named Cantera,2 is
developed by the group of Dave Goodwin at the California Institute of Technology.
More recent developments oriented towards systems biology are the SBML package
[46] to be combined with numerical codes like Copasi due to [39] or BioPARKIN
due to [25].

Compartment Modelling

This modelling technique is quite popular in computational biology. It consists
in splitting the system under consideration into separate compartments, which
are coupled by ODEs that describe the quantitative connections between these
parts of the model. Within each of the compartments, concentrations are assumed
to be uniformly distributed. Rather than discussing this technique abstractly, we
illustrate it below by a recent elaborate example. In addition, we present the results
of assembling chemical reaction mechanisms. Thus it may stand for a class of
typical examples in systems biology. Moreover, in Sect. 2.5.3, we work out a larger
compartment model concerning cancer cells.

Example 1 In [53], a model of the human menstrual cycle has been worked out
in detail. The selected compartments are: the hypothalamus, the pituitary, and the
ovaries, connected by the blood stream, as illustrated in Fig. 1.6.

In Fig. 1.7, part of the corresponding chemical model is presented in the usual
form of a reaction diagram. The species have been colored according to their
occurrence in different compartments. The full model comprises 33 chemical
species (and, of course, the same number of ODEs) as well as 76 chemical reactions
and physiological processes. For mere illustration purposes, we just give a selection
out of the rather large compiled ODE system.

Luteinizing Hormone (LH):

SynLH.t/ D .bLH
Syn C kLH

E2 � hC.E2.t/; TLH
E2 I nLH

E2 // � h�.P4.t/; TLH
P4 I nLH

P4 /

(1.24)

1http://www.reactiondesign.com/
2http://cantera.github.io/docs/sphinx/html/index.html

http://www.reactiondesign.com/
http://cantera.github.io/docs/sphinx/html/index.html

18 Chemical Reaction Networks

Lut1 Lut2Sc2OvFPrFSeF2PrA2PrA1

inactive GnRH−Rec
complex

complex
active GnRH−Rec

SeF1 Sc1 Lut3 Lut4

inactive
GnRH Receptors

GnRH Receptors
active

GnRH (G)

Progesterone (P4)

Estradiol (E2)

Inhibin B (IhB)

Inhibin A (IhA)

effective IhA (IhA)e

free LH receptors

LH(R)

LH receptor complex
(LH−R)

desensitized rec.

LH,des

pit

pituitary LH

(LH)blood

serum LH

pit(FSH)
pituitary FSH

blood(FSH)
serum FSH free FSH receptors

(R)FSH

FSH receptor complex
(FSH−R)

(R)

FSH,des(R)
desensitized rec.

(LH)

GnRH mass
(mass)

(s)
foll. LH sensitivity

(freq)
GnRH frequency

Fig. 1.7 Flowchart of a model for the human menstrual cycle. Dashed lines: transitions, elim-
ination, or chemical reactions. Solid lines with filled arrows: stimulatory effects (Hill functions
hC). Solid lines with unfilled arrows: inhibitory mechanisms (Hill functions h�). Compare this
flowchart with the ODEs presented below

RelLH.t/ D �

bLH
Rel C kLH

G-R � hC.G-R.t/ C Ago-R.t/; TLH
G-RI nLH

G-R/
� � LHpit.t/

(1.25)

d

dt
LHpit.t/ D SynLH.t/ � RelLH.t/ (1.26)

d

dt
LHblood.t/ D 1

Vblood
� RelLH.t/ � .kLH

on � RLH.t/ C kLH
cl / � LHblood.t/ (1.27)

LH receptor binding:

d

dt
RLH.t/ D kLH

recy � RLH;des.t/ � kLH
on � LHblood.t/ � RLH.t/ (1.28)

d

dt
LH-R.t/ D kLH

on � LHblood.t/ � RLH.t/ � kLH
des � LH-R.t/ (1.29)

d

dt
RLH;des.t/ D kLH

des � LH-R.t/ � kLH
recy � RLH;des.t/ (1.30)

We deliberately dropped the equations for the gonadotropin releasing hormone
(GnRH, already left out in Fig. 1.7), for the follicle stimulating hormone (FSH),

Mathematical Background 19

the physiological mechanisms for the development of various stages of follicles and
corpus luteum as well as the reaction mechanisms for estradiol (E2), progesterone
(P4) and the two inhibins (IhA,IhB). Readers interested in all details may want to
look up the original paper [53].

1.3 Mathematical Background for Initial Value Problems

From the vast mathematical background material concerning ODE initial value
problems we here want to select only such items that need to be understood when
modelling and simulating networks in systems biology. In the following we will treat
questions of uniqueness, sensitivities, condition numbers, and asymptotic stability.

1.3.1 Uniqueness of Solutions

Given an ODE model, it should be clear whether this model has a unique solution. If
this were not the case, then any “good” numerical integrator will run into difficulties.
That is why we discuss the topic here. Let y�.t/; t 2 Œt0; tCŒ denote a unique solution
existing over the half-open interval t0 � t < tC.

Uniqueness Criteria

As worked out in mathematical textbooks (see again, e.g., [16, Section 2.2]), there
are three cases that may occur, from which we select two that may come up in
systems biological modelling:

(a) The solution y� exists “forever”, i.e. tC D 1.
(b) The solution “blows up” after finite time, i.e. tC < 1.

Case (a) essentially requires that the right-hand side f satisfies a global Lipschitz
condition

k f .x/ � f .y/k � Lkx � yk for all x; y;

wherein the term ‘global’ means that it holds for all arguments x; y. Typically, this
so-called Lipschitz constant L is identified via the derivative of the right-hand side,
to be denoted by

fy.y/ D Dyf .y/ D @f

@y
:

20 Mathematical Background

The expression fy is often called the Jacobian (matrix) of the right-hand side. With
this definition the Lipschitz constant can be calculated as

L D sup
y

j fy.y/j ; (1.31)

where the maximum (supremum sup) is taken over all possible arguments y. This
seemingly only theoretical quantity will play an important role later in connection
with the definition of “stiffness” of ODEs, see Sect. 2.1.4. For illustration purposes,
we give two scalar examples of the above cases.

Example 2 (Case (a)) Consider an example similar to the monomolecular reac-
tion (1.11),

y0 D �ky; y.0/ D y0; k > 0 :

The right-hand side is linear so that jfy.y/j D k. There exists a global Lipschitz
constant L D k and thus a unique solution over all times, in the special case

y�.t/ D y0 exp.�kt/ :

As k > 0, the solution is bounded for all t � 0.

Example 3 (Case (b)) Consider the nonlinear example,

y0 D y2; y.0/ D 1 ;

similar to the bimolecular reaction (1.13). Here we obtain jfy.y/j D 2jyj, which
is only bounded, if we restrict the values of y. Thus we have only local Lipschitz
continuity of f . In fact, by solving this equation analytically (using separation of
variables), we see that there exists a unique solution

y�.t/ D 1

1 � t
; �1 < t < 1;

only up to some finite time tC D 1. In Fig. 1.8 we give the graph of the solution.

Remark 3 In systems biology, such a Lipschitz condition will typically only hold
locally, i.e. for restricted arguments y, which would formally allow for case (b) as
well. However, due to mass conservation (see the examples (1.12) or (1.14)) case
(b) can be excluded, since any bounded sum of positive terms assures that each term
is bounded. In actual modelling, some scientists ignore mass conservation – with
the danger that then solutions may “blow up”. In addition, note that in numerical
simulation things turn already to be bad when the solution only “nearly” blows up.
Such events occur, e.g., in the realistic example in Sect. 3.5.3, where there is no mass
conservation in the model.

Mathematical Background 21

Fig. 1.8 Solution graph for
Example 3

0.5 0.6 0.7 0.8 0.9 1

10
0

10
1

10
2

10
3

t

y

Phase Flow and Evolution

Suppose a linear system of equations were given, say Ax D b. If it has a unique
solution, say x�, then this can be written as x� D A�1b. The definition of the matrix
inverse A�1 is just a clean notation to indicate the uniqueness of the solution; by no
means should the linear equation be solved by first computing the matrix inverse
and then multiply it to the right-hand side b.

In a similar way, a notation to indicate that an ODE initial value problem has a
unique solution, say y�, has emerged. For an autonomous initial value problem

y0 D f .y/; y.0/ D y0 ; (1.32)

we write

y�.t/ D ˚ ty0

in terms of some phase flow (often just called flow) ˚ t satisfying a semigroup
property

˚ t�t1 ˚ t1 y0 D ˚ ty0; t1 2 Œ0; t� :

For a non-autonomous IVP

y0 D f .t; y/; y.t0/ D y0

the unique solution y� is defined via the evolution ˚ t;t0 as

y�.t/ D ˚ t;t0 y0 :

22 Mathematical Background

The evolution satisfies the semigroup property

˚ t;t1 ˚ t1;t0 y0 D ˚ t;t0 y0; t1 2 Œt0; t� : (1.33)

The notations ˚ ty0 and ˚ t;t0 y0 should not be misunderstood: these mappings are
nonlinear functions of the initial values y0. As in the case of the matrix inverse for
linear equations, these notations should not be regarded as a recipe to solve the given
ODE problem.

1.3.2 Sensitivity of Solutions

In a first step, we want to study the effect of a perturbation of the initial value y0 in
the form

y0 7! y0 C ıy0 :

Propagation Matrices

In the autonomous case, the question is how this deviation propagates along the
solution y.t/ D ˚ ty0. In order to study this propagation, let us start with Taylor’s
expansion with respect to the initial perturbation ıy0, i.e.

˚ t.y0 C ıy0/ � ˚ ty0 D Dy˚
tyjyDy0ıy0 C D2

y˚ tyjyDy0 Œıy0; ıy0� C : : : :

Upon dropping terms of second and higher order in ıy0, we arrive at some linearized
perturbation theory

˚ t.y0 C ıy0/ � ˚ ty0
:D Dy˚

tyjyDy0ıy0 DW ıy.t/ ;

wherein the notation
:D denotes the linearization. The thus defined perturbation ıy.t/

is given by the linear mapping

ıy.t/ D W.t/ıy0 (1.34)

in terms of the .d; d/-matrix

W.t/ WD Dy˚
tyjyDy0 D @y.t/

@y0

) W.0/ D Id

called the propagation matrix or Wronskian matrix. This matrix can be interpreted
as the sensitivity of the nonlinear mapping ˚ t with respect to the initial value y0.

Mathematical Background 23

Just like in the nonlinear case (1.33), we get some semigroup property

W.t � t1/W.t1/ D W.t/; t1 2 Œ0; t� : (1.35)

For non-autonomous IVPs, we merely modify the definition of the Wronskian
matrix by expanding the notation to

W.t; t0/ WD Dy˚
tyjyDy0 D @y.t/

@y.t0/
) W.t; t/ D Id for all t

and thus obtain the analogous linear relation

ıy.t/ D W.t; t0/ıy0 : (1.36)

The corresponding semigroup property reads

W.t; t1/W.t1; t0/ D W.t; t0/; t1 2 Œt0; t� : (1.37)

Variational Equation

Starting from (1.34) we may derive an ODE for the perturbation according to

ıy0 D W 0.t/ıy0 :

Upon recalling the definition of the propagation matrix, we find that

W 0.t/ D fy.˚
ty0/W.t/; W.0/ D Id : (1.38)

Insertion of this ODE above then yields

ıy0 D fy.˚
ty0/W.t/ıy0 D fy.˚

ty0/ıy

The thus arising linear ODE

ıy0 D fy.˚
ty0/ıy; ıy.0/ D ıy0 (1.39)

is called the variational equation. Note that this equation is non-autonomous due to
the time dependent argument in the derivative matrix fy. Its formal solution is (1.34),
which shows that the Wronskian matrix is just the flow (or evolution, respectively)
of the variational equation. Note that (1.38) is just the variational equation for the
Wronskian matrix itself.

For the non-autonomous case y0 D f .t; y/, we would obtain the modified
variational equation

ıy0 D fy.˚
ty0; t/ıy C ft.˚

ty0; t/; ıy.0/ D ıy0 : (1.40)

24 Mathematical Background

Analogously to the autonomous case, Eq. (1.36) supplies the solution of this non-
autonomous variational equation.

Condition Numbers

With the above preparations, we are now ready to define the condition of initial
value problems. Recall from introductory textbooks on Numerical Analysis (such
as [17]) that the condition of a problem is independent of any algorithm applied to
solve it. There are two basic possibilities depending on the focus of interest. For
notation, we introduce j � j as the modulus of the elements of a vector or matrix to
be well distinguished from k � k, the norm of a vector or matrix.

(a) Assume one is interested only in the solution y.t/ at a specific time t. Then
the pointwise condition number �0.t/ may naturally be defined as the smallest
number for which

jıy.t/j � �0.t/ � jıy0j : (1.41)

On the basis of (1.34), we thus arrive at the definition

�0.t/ D kW.t/k ; �0.0/ D 1 : (1.42)

(b) If one is interested in the entire course of the solution y.t/ on the whole time
interval Œ0; t�, then the interval condition number �Œ0; t� may be defined as the
smallest number for which

max
s2Œ0;t�

jıy.s/j � �Œ0; t� � jıy0j

which then implies

�Œ0; t� D max
s2Œ0;t�

�0.s/ : (1.43)

The above semigroup property (1.37) directly leads to the following relations:

(i) �Œ0; 0� D 1,
(ii) �Œ0; t1� � 1,

(iii) �Œ0; t1� � �Œ0; t2�; 0 � t1 � t2
(iv) �Œ0; t2� � �Œ0; t1� � �Œt1; t2�; 0 � t1 � t2

The role of the local condition number can be seen in the following example.

Example 4 For the famous Kepler problem, which describes the motion of two
bodies (say Earth-Moon) in a gravitational field, one may show that

�
Kepler
0 .t/ � t ; (1.44)

Mathematical Background 25

which is a mild increase. The situation is very different in molecular dynamics, see,
e.g., [16, Section 1.2], where one obtains

�
molecular dynamics
0 .t/ � exp.t=tcrit/; tcrit 	 100 fs D 10�13 s : (1.45)

This means that after some very small critical time tcrit the initial value problems
turn to get ill-posed. As a consequence, a different type of computational approach
is necessary, called conformation dynamics, more recently also Markov state
modelling, see, e.g., the survey article by P. Deuflhard and C. Schütte [21] and
references therein.

The just introduced two different condition numbers will be needed below in
Sect. 2.1.2, where we discuss error concepts in the numerical simulation, and in
the following Sect. 1.3.3.

Parameter Sensitivities

In the majority of problems in systems biology, parameter dependent systems arise
in the form

y0 D f .y; p/; y.0/ D y0 2 R
d; p 2 R

q :

Here we are naturally interested in the effect of perturbations

p 7! p C ıp :

with respect to p D .p1; : : : ; pq/. For this purpose we define the parameter
sensitivities

yp D @y

@p
2 R

d�q : (1.46)

Upon application of the chain rule of differentiation, this quantity can be seen to
satisfy a modified variational equation for each parameter component

y0
p D fy.y.t/; p/yp C fp; yp.0/ D 0 : (1.47)

Remark 4 The actual numerical solution of any of the variational equa-
tions (1.39), (1.40), or (1.47) requires to treat an extended ODE system including
the original ODE (1.32) to compute the argument within the Jacobians fy or fp,
respectively. For certain algorithmic details see Sect. 2.5.1 below.

26 Mathematical Background

t

y(t

g

t

y(t)

g

Fig. 1.9 Example 5 for an equilibrium solution g D sin.t/; t 2 Œ0; 1:5�. Left: asymptotically stable
problem (here: � D �16;
0 D 1). Right: inherently unstable problem (here: � D 3;
0 D 0:05)

1.3.3 Asymptotic Stability

In order to sharpen our mathematical intuition, we analyze the two types of
condition numbers as introduced in the previous section for a notorious scalar ODE
problem.

Example 5 Despite its simplicity this problem yields deep insight into the structure
of ODEs. Let � 2 R denote some parameter in the initial value problem

y0.t/ D g0.t/ C �.y � g.t//; y.0/ D g.0/ C ıy0 : (1.48)

The general solution may be written in the form

ıy.t/ WD y.t/ � g.t/ D exp.�t/ıy0 :

Obviously, there exists an equilibrium solution y.t/ D g.t/ for all t where g is
defined. In Fig. 1.9, we give two examples for the above model problem. Upon
varying the initial values y0, we may clearly distinguish two qualitatively different
situations, asymptotic stability versus inherent instability.

Mathematical Background 27

Condition numbers. Let us exemplify the two condition numbers defined above.
From definition (1.41) and (1.42) we immediately obtain the pointwise condition
number

�0.t/ D j exp.�t/j ;

from which (1.43) yields the interval condition number, say �Œ0; T� over an interval
Œ0; T�. There are three qualitatively different situations for the two characteristic
numbers:

(a) � < 0: Here we get

�0.t/ D exp.�j�jt/ t!1�! 0 ; �Œ0; T� D �0.0/ D 1;

i.e. any initial perturbation will decay over sufficiently large time intervals,
see Fig. 1.9, left; in this case, the equilibrium solution y D g is said to be
asymptotically stable;

(b) � D 0: here we obtain

�Œ0; T� D �0.T/ D 1; for all T � 0 ;

i.e. any initial perturbation is preserved;
(c) � > 0: here we get

�Œ0; T� D �0.T/ D exp.�T/
T!1�! 1 ;

i.e. any perturbation grows exponentially with time, the equilibrium solution
y D g is inherently unstable, see Fig. 1.9, right.

The same three cases also appear for complex valued � 2 C, if we replace � by <�

in (a), (b), (c) above.

Next, we want to study a characterization of the stability properties for two more
general cases.

Matrix Exponential

Suppose we have to solve the linear homogeneous autonomous initial value problem

y0 D Ay; y.0/ D y0 2 R
d : (1.49)

Its formal solution is often written in terms of the matrix exponential

y.t/ D exp.tA/y0 :

28 Mathematical Background

The careful reader will observe that the matrix exponential is just the Wronskian
matrix for the special case (1.49), i.e.

W.t/ D exp.tA/

In [57], a list of algorithms for the evaluation of exp.tA/y0 is collected. We want to
emphasize, however, that the matrix exponential, just like any phase flow in general,
should preferably be understood as a formal representation of the solution of (1.49),
not as a basis for actual computation.

The following property of the matrix exponential is most important. Let M be an
arbitrary nonsingular matrix. Then one can show that

exp.tMAM�1/ D M exp.tA/M�1 (1.50)

For principal reasons, we briefly outline the proof. Upon multiplying (1.49) by M,
we get

My0
„ƒ‚…

DWNy0

D MAM�1

„ ƒ‚ …

DWNA
My
„ƒ‚…

DNy
, Ny0 D NANy; Ny.0/ D My0 :

This yields the formal solution

Ny.t/ D exp.t NA/Ny.0/

and, after insertion of the definitions,

M exp.tA/y0 D exp.tMAM�1/My0 ;

which holds for every y0 so that (1.50) is proven.

Warning. Note that generally

exp.t.A C B// ¤ exp.tA/ exp.tB/ ;

unless the so-called commutator ŒA; B�� D AB � BA vanishes.

Stability of Linear Homogeneous Autonomous ODEs

For simplicity, let us assume now that A is diagonalizable. The results also hold
in the non-diagonalizable case, which, however, is skipped here, since it is rather
technical. In this case there exists a matrix M such that

NA D M diag.�1; : : : ; �d/M�1 :

Mathematical Background 29

Then, with Ny D My, the ODE y0 D Ay decomposes into d one-dimensional ODEs

Ny0
i D �i Nyi; i D 1; : : : ; d ; (1.51)

from which we obtain

Nyi.t/ D exp.t�i/Nyi.0/) jNyi.t/j D exp.t<.�i//jNyi.0/j :

This gives rise to the following classification:

(a) <.�i/ < 0) jNyi.t/j ! 0 for t ! 1,
i.e. the solution component Nyi dies out asymptotically,

(b) <.�i/ � 0) jNyi.t/j � jNyi.0/j,
i.e. the solution component Nyi remains bounded for all t � 0,

(c) <.�i/ > 0) jNyi.t/j > jNyi.0/j,
i.e. the solution component Nyi blows up for t ! 1.

Of course, for systems, different components of Ny may fall into different classes and
may be mixed via the transformation matrix M. Hence, we arrive at the following
stability criteria:

(a) The solution y is stable, if <.�i/ � 0 for all i.
(b) The solution y is asymptotically stable, if <.�i/ < 0 for all i.
(c) The solution is unstable, if the condition <.�i/ > 0 holds for at least one index

i; in this case, the instability will occur in at least one direction.

Stability of Nonlinear ODEs Around Fixed Points

We now consider general nonlinear autonomous ODEs. As shown above, linearized
perturbations ıy are governed by the variational equation (1.39). This equation is
linear, but non-autonomous, i.e. of the type

ıy0 D A.t/ıy; where A.t/ D fy.y.t//

with y.t/ the given solution to be studied. As a consequence, the above stability
classification does not apply. Counter-examples, where the eigenvalues of some
matrix A.t/ satisfy the above stability criterion for all t, but the perturbations ıy.t/
nevertheless blow up, can be found in the literature (see the notorious example of
H. O. Kreiss, e.g., [16, Remark 3.29]).

For this reason, a simpler approach studies the behavior of the solution around
some fixed point y� 2 R

d defined by f .y�/ D 0. Upon defining initial values

y.0/ D y� C ıy0

30 Mathematical Background

we arrive at the variational equation,

ıy0 D fy.y
�/ıy; ıy.0/ D ıy0 :

Obviously, in this case the Jacobian matrix A WD fy.y�/ is autonomous so that the
above stability theory applies.

Recall, however, that we have used a linearized perturbation analysis. Caution
against blind application of such a theory is strongly advised. For illustration, we
give the following warning example.

Example 6 We compare two simple nonlinear initial value problems.

(a) The ODE is given by

y0 D �y3 :

Its solution for arbitrary initial value y0 is

y.t/ D
�

1

y2
0

C 2t

��1=2
t!1�! 0 ;

i.e. the system returns from any given y0 to the fixed point y� D 0. Hence, it is
asymptotically stable.

(b) This time the ODE is given by

y0 D y3 :

Its solution is

y.t/ D
�

1

y2
0

� 2t

��1=2
t!t

C�! 1 ;

i.e. the system blows up at tC D 1=.2y2
0/. Hence, it is unstable.

Observe, however, that both systems have the same variational equation ıy0 D 0

around the fixed point y� D 0, which implies that ıy.t/ D const, even though the
qualitative behavior of the two ODEs is very different. Consequently, the linearized
perturbation analysis may be misleading in predicting the qualitative behavior of a
nonlinear initial value problem.

1.3.4 Singularly Perturbed Problems

Assume that a given ODE system has a solution y D .u; v/ that naturally splits into
a “slow” component u and a “fast” component v. Such a system may be written as

Mathematical Background 31

Fig. 1.10 Singular
perturbation problem:
Immediate approach from
arbitrary starting value v0.0/

to a point v0 on the manifold
g.u; v/ D 0

g(u, v) = 0

ε → 0+

v0

a two-component system of the kind

u0
" D f .u"; v"/; " v0

" D g.u"; v"/ (1.52)

where some “fast” time scale � D t=" with 0 < "
 1 has been introduced such
that

dv

d.�/
D dv

d.t="/
D "

dv

dt
D " v0

Assume further that

<.�.gv// < 0 (1.53)

and let " ! 0C. Then, in the quasi-steady state approach (abbreviated: QSSA), we
obtain the differential-algebraic equation (DAE)

u0
0 D f .u0; v0/; 0 D g.u0; v0/ (1.54)

for some two-component solution y0 D .u0; v0/. Due to (1.53) we may interpret the
limit in such a way that, for arbitrary starting value v0.0/, the solution component
v0 “immediately” approaches a near-by value on the constraint manifold. For
illustration, see Fig. 1.10.

With the availability of modern adaptive stiff integrators (see Chap. 2 below),
there typically is no visible performance difference between the numerical solution
of the ODE (1.52) and of the DAE (1.54). In fact, while the ODE system usually
has a unique solution, the DAE may not have a unique solution, unless further
assumptions hold. Instead of diving into theoretical details (to be found, e.g., in the
textbook [16] and references therein) we give an illustrative example from reaction
kinetics.

Example 7 This example treats a chemical network that models the thermal
decomposition of n-hexane. The system comprises 47 chemical reactions for 25
chemical species, i.e. there are d D 25 ODEs. Among the 25 species, chemical

32 Mathematical Background

insight may identify 13 species as chemically stable, while 12 are so-called “free
radicals”. Hence, in a first QSSA treatment of the kind (1.54) (reported in [18]),
one might be tempted to come up with 13 ODEs and 12 algebraic equations. In this
case there exists no unique solution – as can be proven mathematically precisely;
this result also came out by application of the stiff integrator LIMEX, which is
equipped with a special uniqueness monitor (skipped here). If only 7 of the radicals
are selected for the algebraic equations (after some trial and error), then a unique
solution exists. However, the computing times are the same as without any QSSA
preprocessing. These results are arranged in Table 1.1.

Table 1.1 Computing time comparison of two
QSSA approaches for an ODE system originat-
ing from 47 chemical reactions for d D 25

species (due to [18]). Chemical insight would
indicate a subset of 12 species regarded as “free
radicals”, which mathematically leads to a prob-
lem that does not have a unique solution

25 ODE’s 0.48 sec.

13 ODE’s, 12AE’s no unique solution exists

18 ODE’s, 7 AE’s 0.49 sec.

Chapter 2
Numerical Simulation of ODE Models

In the preceding chapter we had worked out how to establish possibly large ODE
models for systems biological networks. In the present chapter, we deal with their
numerical simulation. For this purpose, we describe various numerical integrators
for initial value problems in necessary detail. In Sect. 2.1, we present basic
concepts to characterize different discretization methods. We start with local versus
global discretization errors, first in theory, then in algorithmic realization. Stability
concepts for discretizations lead to an elementary pragmatic understanding of the
term “stiffness” of ODE systems. In the remaining part of the chapter, different
families of integrators such as Runge-Kutta methods, extrapolation methods, and
multistep methods are characterized. From a practical point of view they are
divided into explicit methods (Sect. 2.2), implicit methods (Sect. 2.3), and linearly
implicit methods (Sect. 2.4), to be discussed in terms of their structural strengths
and weaknesses. Finally, in Sect. 2.5, a roadmap of numerical methods is given
together with two moderate problems that look rather similar, but require different
numerical integrators. Moreover, we present a more elaborate example concerning
the dynamics of tumor cells; therein we show, what kind of algorithmic decisions
may influence the speed of computations.

2.1 Basic Concepts

Throughout this section we consider the numerical integration of in general
nonlinear ODE initial value problems. For ease of writing, we confine our interest
to autonomous problems

y0 D f .y/; y.0/ D y0 ; (2.1)

© Springer International Publishing Switzerland 2015
P. Deuflhard, S. Röblitz, A Guide to Numerical Modelling in Systems Biology, Texts
in Computational Science and Engineering 12, DOI 10.1007/978-3-319-20059-0_2

33

34 Basic Concepts

unless explicitly stated otherwise. In Sect. 2.1.1, we explain two concepts of
discretization errors at the simplest possible example, the classical Euler method.
These concepts show up in the control of local discretization errors and their relation
to the actually achieved final error, to be presented in Sect. 2.1.2. As the ODE
systems arising from systems biology are typically large and “stiff”, we derive
stability concepts in Sect. 2.1.3 that help to understand this term. For practical
applications, some rather pragmatic “definition” of stiffness is given in the final
Sect. 2.1.4.

2.1.1 Local Versus Global Discretization Error: Theoretical
Concepts

In this section, we discuss selected elementary discretization schemes in terms of the
timestep or step size � . We begin with the classical scheme discussed by Leonhard
Euler even before the invention of the concept of differential equations.

Classical (Explicit) Euler Method

The first idea of this scheme is to discretize the ODE (2.1) by using the geometric
tangent at the starting point

y1 D y0 C � f .y0/ (2.2)

The second idea is to repeat the first step recursively as (see Fig. 2.1)

ykC1 D yk C � f .yk/; k D 0; 1; 2; : : : : (2.3)

Fig. 2.1 Explicit Euler
method with constant step
size �

0
0

exact solution

explicit Euler method

y
0

y(4 τ)

y
4

τ 2τ 3τ 4τ

Basic Concepts 35

For ease of presentation, we here stick to a uniform discretization with a single
constant step size � in this section. For a non-uniform discretization we should rather
write

ykC1 D yk C �kf .yk/; k D 0; 1; 2; : : : : (2.4)

Local Discretization Error

At the simple Euler discretization scheme we can already explain the general
concepts of local and global discretization errors. After one discretization step, a
deviation y1 � y.�/ between the discrete and the continuous solution arises. In order
to reveal the dependence of this deviation on � , we use (2.1) in integrated form, i.e.

y.�/ D y0 C
Z �

0

f .y.s//ds : (2.5)

Then, together with (2.2), we are able to derive the relation

y1 � y.�/ D � f .y0/ �
Z �

0

f .y.s//ds :

Taylor expansion of the above integrand yields

f .y.s// D f . y.0/
„ƒ‚…

y0

/ C s fy.y0/ f .y0/
„ ƒ‚ …

Df 0.y0/

CO.s2/ :

Here we have used the convenient notation O.sp/ for terms of order at least p. Upon
inserting this expression into the integral above, the first right-hand term cancels and
we arrive at

y1 � y.�/ D �
Z �

0

Œsf 0.y0/ C O.s2/�ds D ��2

2
f 0.y0/ C

Z �

0

O.s2/ds :

As the integral term on the right-hand side is obviously O.�3/, we end up with a
local discretization error estimate of the type

ky1 � y.�/k � c � �2 ; (2.6)

where c is a constant containing information of the problem at hand (such as f 0.y0/).

36 Basic Concepts

Global Discretization Error

After N time steps according to (2.3) some global discretization error at fixed final
time T D N� will arise. Intuitively we obtain

kyN � y.T/k � C � N�2 D C � T� ; (2.7)

assuming N ! 1 as � ! 0. Obviously, in the transition from local to global error
we lose one order of � .

It should be mentioned that the constants c in (2.6) and C in (2.7) are different.
A rigorous proof of the result (2.7) can be found, e.g., in [16] and further references
therein. As it turns out, such a proof shows that the above constant C is only
bounded, if a Lipschitz condition of the kind

L� � const (2.8)

holds, where L is the Lipschitz constant introduced in (1.31) and const means some
small number, say, not much larger than 1. This is a severe restriction on the step
size � that holds for a large class of discretization methods and will come up at
several occasions throughout this book.

Implicit Euler Method

Once the classical discretization (2.2) had been known, the question arose whether
it might be useful to insert the tangent at the new value y1 by virtue of

y1 D y0 C � f .y1/ : (2.9)

Here the value y1 is only implicitly defined by some in general nonlinear system
of equations. That is why the above scheme is called implicit Euler discretization
and accordingly (2.2) the explicit Euler discretization. Again the scheme is repeated
recursively according to

ykC1 D yk C � f .ykC1/; k D 0; 1; 2; : : : :

Formally speaking, estimates for the local and global discretization error will just
repeat (2.6) and (2.7). The numerical solution of the algebraic equations (dimension
d) per each time step is certainly much more work than the corresponding
explicit Euler recursion. For so-called “stiff” problems, however, this additional
computational amount pays off, see Sect. 2.1.4 below.

Basic Concepts 37

Implicit Trapezoidal and Midpoint Rule

Once the door had been opened to modify the classical Euler method by introducing
the implicit structure, a symmetric right-hand side has been chosen such as

ykC1 D yk C �

2
.f .yk/ C f .ykC1// ; k D 0; 1; 2; : : : ; (2.10)

which is called the implicit trapezoidal rule. Another also symmetric modification
is the implicit midpoint rule

ykC1 D yk C � f

�

1

2
.yk C ykC1/

�

; k D 0; 1; 2; : : : ; (2.11)

We will come back to these elementary discretizations at various occasions.

General Case

The two introduced convergence concepts, even though merely exemplified at rather
simple discretizaton schemes, directly carry over to more general discretization
methods to be presented below in the remaining parts of Chap. 2. For so-called one-
step methods, the local discretization error has the typical structure

ky1 � y.�/k � cp � �pC1 (2.12)

in terms of some order p characteristic of the method, while the global error, again
under some condition of the kind (2.8), satisfies

kyN � y.T/k � Cp � N�pC1 D Cp � T�p : (2.13)

Note that p D 1 holds for the explicit as well as for the implicit Euler discretization,
while p D 2 holds for the implicit trapezoidal rule and the implicit midpoint rule;
this can be directly derived from the symmetry .yk; ykC1; �/ $.ykC1; yk; ��/.
In all cases, a reduction of � implies a reduction of both the local and the global
discretization error bounds.

Throughout the subsequent chapters we will restrict ourselves to the first
discretization step from y0 to y1, but tacitly include the total step from y0 to yN

via the successive recursions from yk to ykC1 for k D 0; 1; : : : :

Step-Size and Order Control

Efficient modern integrators will adapt their performance to problem dependent
information to choose “optimal” step sizes, say �k at step k, part of them also deliver

38 Basic Concepts

locally “optimal” orders pk. Note that not always the rule “the higher the order the
better” holds, since the above constants cp strongly influence the achievable step
sizes. In summary, order and step-size control are linked – see, e.g., the material
worked out in Sects. 2.2–2.4 for each of the discussed numerical integrators.

2.1.2 Local Versus Finally Achieved Accuracy: Algorithmic
Concepts

Throughout this section, let a prescribed fixed integration interval Œ0; T� be subdi-
vided according to

0 D t0 < t1 < : : : < tN D T ;

i.e. by N C 1 integration points, chosen to be non-uniformly distributed for the time
being. The local and global error concepts introduced in Sect. 2.1.1 above turn out
to have their correspondence in the numerical realization. For ease of notation, we
define the local discretization errors as ıyj D y.tj/�yj and require, in terms of some
suitable vector norm k � k, that

kıyjk � TOL ; (2.14)

where TOL is a user prescribed local error tolerance. Such errors can be controlled
by all modern numerical integrators, see Sects. 2.2–2.4 below. At time point tj,
let ıy.tj/ denote the accumulated error. At final time T one thus has the global
discretization error

kıy.T/k D ERR ; (2.15)

wherein the value ERR usually can not be prescribed or controlled by numerical
integrators. That is why it is of interest to study the relation between TOL and ERR
in theoretical terms.

Error Propagation

In order to study the relation between local and global error, we derive a linearized
theory of the error propagation, as illustrated in Fig. 2.2.
At some time step tj ! tjC1, we obtain the linearized relation

ıy.tjC1/
:D ıyjC1 C W.tjC1; tj/ıy.tj/ ; (2.16)

Basic Concepts 39

Fig. 2.2 Linearized local
error propagation, see (2.16)

tt

y

j

j+1j

W(t ,t) y(t)j+1

y(t)jδ

j+1δ

δj

wherein W.�; �/ denotes the Wronskian matrix introduced in Sect. 1.3.2 above (for
the non-autonomous case). By induction, starting with ıy0 D 0 and exploiting
the semigroup property (1.37), here as W.tjC2; tj/ D W.tjC2; tjC1/W.tjC1; tj/, we
arrive at

ıy.T/
:D

N
X

jD1

W.T; tj/ ıyj (2.17)

Taking norms, we get

ERR P�
N
X

jD1

kW.T; tj/k �
� TOL
‚…„ƒ

kıyjk � TOL
N
X

jD1

�Œtj; T� (2.18)

in terms of the interval condition numbers �Œ�; �� introduced in (1.43) above. Since
N depends on TOL, there is, in general, no linear relation between ERR and TOL.

Role of Interval Condition Number

Obviously, the key issue above is the structure of the interval condition number. If
we apply the theoretical characterization in terms of the Lipschitz constant L defined
in (1.31) and return, for simplicity, to a uniform grid with tj D j� , we arrive at the
theoretical estimate

�Œtj; T� � exp.L.T � tj// D exp.L.N � j/�/ (2.19)

and thus end up with the estimate

ERR P� TOL � exp.LT/ � 1

exp.L�/ � 1
(2.20)

40 Basic Concepts

Such an estimate will only be reasonable for those ODE problems whose dynamical
behavior can be characterized in terms of the Lipschitz constant; in Sect. 2.1.4
below, we will call such problems “non-stiff”. Suppose, however, we have an ODE
problem where

�Œtj; T� � const ; (2.21)

which means that local errors die out asymptotically and thus dominate global
errors. In mathematical analysis such problems are mostly called “dissipative”,
whereas in numerical analysis they are usually called “stiff”. Insertion of (2.21)
into (2.18) then yields

ERR P� const �N TOL : (2.22)

Total Error

Let the integration order p and the step size � be fixed. Then, from (2.13), we roughly
have the following global discretization error

ERR
:D CpT�p � �p :

Apart from the discretization errors, we will also have to deal with rounding errors.
On a computer with relative precision eps (�10�16 typically today) we roughly
obtain the contribution

ERR
:D �pNeps D �pepsT

�
� 1

�

with a constant �p depending on the discretization method. Note that for � ! 0

the discretization errors decrease, whereas the rounding errors increase, as shown
schematically in Fig. 2.3. For the total error ERRtotal D ERR C ERR there exists a
smallest achievable accuracy ERRmin at �opt.

Summary

In numerical integrators only local accuracies can be controlled by the user
prescribed error tolerance TOL. Global accuracy, say ERR, depends on the interval
condition, say �Œ0; T�, of the problem and can be tested by a few runs with different
parameters TOL.

Basic Concepts 41

Fig. 2.3 Total error as sum
of discretization error ERR
and rounding error ERR. The
limit accuracy ERRmin occurs
at �opt

0
0

ERR
min

τ

ERR

ERR+ERR

ERR

τ
opt

2.1.3 Stability Concepts for Discretizations

In Sect. 1.3.3 above, we had discussed the concept of asymptotic stability of
ODE initial value problems. Here, we now deal with the question of whether the
properties of the continuous problem are inherited to the discretized problems.
In order to understand the subsequent line of argument, the reader may want to
brush up his knowledge of the complex-valued exponential function by looking up
Appendix A.1.

Dahlquist Test Model

For linear autonomous systems we had found out in Sect. 1.3.3 that they boil down
to d simple scalar equations of the kind (1.51). That is why G. Dahlquist [12] had
suggested in 1956 to study the stability properties of discretizations by the test
problem (today named after him)

y0 D �y; y.0/ D 1; � 2 C : (2.23)

The analytical solution of this problem is

y.�/ D exp.��/ D exp.z/ where � � 0; z WD �� 2 C : (2.24)

The trick here is to formulate the stability problem in terms of the complex-valued
exponential function exp.z/, which we discuss in some detail in Appendix A.1.
From the relations (A.2) we may deduce the basic properties:

8

ˆ
ˆ
<

ˆ
ˆ
:

j exp.z/j � 1 , <.z/ � 0

j exp.z/j � 1 , <.z/ � 0

j exp.z/j D 1 , <.z/ D 0

(2.25)

42 Basic Concepts

stability
region

Im(z)

Re(z)

stability
region

Im(z)

Re(z)

Fig. 2.4 Complex half-plane as stability region. Left: continuous solution. Right: discrete solution
obtained by the implicit trapezoidal or the implicit midpoint rule

If we define the stability region by

S WD fz 2 C W jy1.z/j � 1g ; (2.26)

we may identify S for the continuous solution with the complex half-plane (see
Fig. 2.4, left)

C� WD fz 2 C W <.z/ � 0g (2.27)

Examples of Stability Regions

For illustration, we apply the four elementary discretization schemes of Sect. 2.1.1
to the Dahlquist model (2.23). For the explicit Euler scheme we obtain

y1 D y0 C � f .y0/ D y0 C ��y0 D 1 C ��;) y1 D 1 C z :

The corresponding stability region is shown in Fig. 2.5, left. In a similar way we get
for the implicit Euler scheme

y1 D y0 C � f .y1/ D y0 C ��y1 D 1 C ��y1;) y1 D 1

1 � z
:

The corresponding stability region is shown in Fig. 2.5, right. Finally, for the implicit
trapezoidal and the implicit midpoint rule, which are equivalent for linear problems,
we get

y1 D y0 C �.f .y1/ C f .y0//=2 D y0 C ��.y1 C y0/=2) y1 D 1 C z=2

1 � z=2
;

The corresponding stability region is shown in Fig. 2.4, right.

Basic Concepts 43

Im(z)

Re(z)−1

Im(z)

Re(z)1

Fig. 2.5 Stability regions. Left: explicit Euler scheme. Right: implicit Euler scheme (“superstabil-
ity”)

From Fig. 2.4, one might think that the discretizations based on the implicit
trapezoidal rule or the implicit midpoint rule are best, since they perfectly inherit
the stability region from the continuous solution. However, the continuous solution
has an additional desirable feature: For z ! 1 one obtains

j exp.z/j �!

8

ˆ
ˆ
<

ˆ
ˆ
:

1; if <.z/ > 0

1; if <.z/ D 0

0; if <.z/ < 0

If we compare this limit property for the elementary discretizations, we see that

jy1.z/j �!

8

ˆ
ˆ
<

ˆ
ˆ
:

1; for the explicit Euler scheme

1; for implicit trapezoidal or midpoint rule

0; for the implicit Euler scheme

From (A.3) we know that the limit z ! 1 for the complex exponential function
depends on the path taken to approach this point. Such a behavior cannot be
mimicked by polynomials or rational functions, where a unique limit independent
of the path of approach exists. Consequently, we cannot expect to be able to realize
all of the properties of the analytical solution by a single discretization. In view of
this insight, several stability concepts have been introduced to characterize desirable
features of different discretizations.

A-Stability

In view of the fact that C� D S for the continuous solution, this concept is defined
by requiring the weaker property

C� � S

44 Basic Concepts

0 5 10 15 20
0

0.5

1

1.5

time

N
1
 (prey) N

2
 (predator)

0.5 1 1.5
0

0.2

0.4

0.6

0.8

1

N
1

N
2

Numerical solution by implicit Euler method. Phase plane plot: shrinking of orbits.

(a) (b)

Fig. 2.6 Example of superstability: Predator-prey model (1.10) as in Fig. 1.2. Qualitatively wrong
solution by implicit Euler method with constant step size � D 0:1. Correct numerical solution see
Fig. 1.2

for discretizations. Looking at the above Figs. 2.4 and 2.5, we directly see that the
explicit Euler scheme is not A-stable, whereas the other three discretizations are.
Note, however, that the implicit Euler scheme has the undesirable feature to supply
decaying solutions even when the continuous solutions increase – associated with
those parts of S that cover part of the positive complex half-plane. This unwanted
property is called superstability and illustrated for the predator-prey model in
Fig. 2.6.

A(˛)-Stability

As it turns out, some discretizations exhibit only “almost” A-stability. In order
to quantify this feature, O. Widlund [62] in 1967 introduced some angle domain
(shown in Fig. 2.7)

C.˛/ WD fz 2 C I j arg.z/j � ˛g

and suggested the weakened concept of A(˛)-stability defined via

C.˛/ � S :

Observe that C.˛/ permits a characterization of the complex value z D �t, which
holds, given �, for all t > 0.

Clearly, since C.�=2/ D C�, it is tacitly understood that the larger ˛, the “more
stable” the method is. Such a statement, however, should be taken with care in view
of the limit feature mentioned above.

Basic Concepts 45

Fig. 2.7 Angle domain C.˛/

for the definition of weakened
stability concepts

Im(z)

Re(z)
α

L-Stability

This stability concept dates back to B.L. Ehle [27] in 1969. It additionally
incorporates the asymptotic behavior of a discretization scheme for z ! 1 by
requiring

C� � S and y1.1/ D 0 : (2.28)

In other words: A discretization method is L-stable, if it is A-stable and vanishes
at z D 1. Looking again back to our four sample discretizations, we observe: The
explicit Euler scheme is not L-stable, since it satisfies neither of the two conditions.
The implicit Euler scheme is L-stable, satisfying both conditions (but exhibits the
unwanted superstability!). The implicit trapezoidal and the implicit midpoint rule
are not L-stable, since jy1.1/j D 1, which violates the second condition above.
Even worse, the discrete values yk oscillate according to

yk ! .�1/k as z ! 1 :

This asymptotic behavior is consistent with the behavior (A.3) of the continuous
solution along the imaginary axis. It already shows up “close to” the imaginary axis
for “large” =z as k ! 1 via the occurrence of “spurious” oscillations, i.e. via
“numerical artifacts” that have may have nothing to do with the actual solution, see
Fig. 2.8. For this reason, these two discretizations should only be applied, if the
problem itself has eigenvalues close to the imaginary axis (and thus the solution
exhibits “real” oscillations). As a rule of thumb, whenever a problem is nonlinear,
then the implicit midpoint rule should be preferred over the implicit trapezoidal rule
– for reasons worked out, e.g., in [16, Section 6.3.2] and references therein.

46 Basic Concepts

Fig. 2.8 Oscillatory behavior
of the discrete values yk

obtained via the implicit
trapezoidal rule with constant
stepsize � D 1 applied to
Dahlquists’s test equation
with � D �10

0 2 4 6 8
−1

−0.5

0

0.5

1

k

exact
ITR

L(˛)-Stability

Just like A(˛)-stability, a stability concept weakening L-stability exists as well,
accordingly called L(˛)-stability and defined via

C.˛/ � S and y1.1/ D 0 :

Again: the larger ˛, the better. Note, however, that the inclusion of the asymptotic
property y1.1/ D 0 makes this concept much more useful in assessing numerical
discretization schemes than mere A(˛)-stability. We will return to this concept
repeatedly.

2.1.4 Stiffness of ODE Problems

The stability analysis of the preceding Sect. 2.1.3 has been based on the simple
Dahlquist test model,

y0 D �y; y.0/ D 1 ;

where � 2 C plays a rather different role depending on whether the sign of <�

is positive or negative. However, if we calculate the Lipschitz constant L defined
in (1.31), which is essential for all proofs of uniqueness of ODE models, we obtain

L D j�j :

Basic Concepts 47

Hereby, the essential sign information is lost. Upon recalling the relation (2.8), we
come up with some step-size restriction of the kind

� P� 1

j�j
Things appear differently when seen through the glass of the pointwise condition
number defined in (1.42): For the Dahlquist model we get

�0.t/ D exp.<�t/ ;

which clearly maintains the necessary information of the sign of <�, as can be seen
in (2.25). Note that the interval condition number defined in (1.43) arises as

�Œ0; t� D
(

�0.t/; if <.�/ > 0

1; if <.�/ � 0

In view of (2.18), we now see that

ERR P� TOL �

8

ˆ
<

ˆ
:

exp<�T �1

exp<�� �1
; if <.�/ > 0

N; if <.�/ � 0

The above factor N may reduce to essentially around 1, if the exponent is “large
negative”, which is the case in strongly dissipative problems, where the global error
is equivalent to the local error. If we turn from the analytic solution of the Dahlquist
model to a discrete solution obtained by some selected discretization scheme, then
any step-size restrictions will show up via the condition z D �� 2 S in terms of
the stability region S. If, in addition, the stability region nicely models the stability
region of the analytic solution, then such a constraint will be reasonable. So we
fall back on the stability concepts of the Sect. 2.1.3. Summarizing, discretization
methods that mimic the stability behavior of the analytic solution of the Dahlquist
model will have a tolerable error propagation, whereas others do not.

Characterization of Stiffness

There are countless numbers of definitions of “stiffness” of ODE problems, see,
e.g., the textbook [16] and references therein. For computational scientists that are
not mathematicians, we offer the following rather pragmatic definition:
For stiff ODE problems, the additional computational amount of solving linear or
nonlinear equations within each (linearly) implicit discretization step pays off, since
the number of discretization steps is significantly reduced.

48 Explicit Numerical Integrators

Note that this “definition” is rather ad hoc and will depend on the required
accuracy and the selected discretization method. Practically speaking, if the nature
of the problem at hand is not clear in advance, one might start with an explicit
discretization; if the problem can be handled with “reasonably looking” compu-
tational step sizes, then we regard it to be non-stiff. If, however, “too strong”
step-size restrictions occur, so that “too many” time steps need to be taken, see
the theoretical restrictions (2.8) or (2.46), then we regard the problem to be stiff.
Note that any arising small step sizes would be appropriate in the transition phase
of an otherwise stiff problem, but awkward in the stationary phase. Upon observing
such an undesirable behavior one will switch to a (linearly) implicit discretization
method.

For a qualitative characterization of a given problem as stiff, one will examine
whether the trajectory asymptotically approaches some equilibrium point or some
stationary smooth solution. In this sense, most of the ODE models arising in systems
biology (including all of the problems mentioned in Sect. 1.2) are stiff and thus
deserve the numerical solution by some (linearly) implicit discretization method.

In order to develop some geometric intuition, we recall Fig. 1.9 above, where
we had illustrated stability versus inherent instability around some more general
stationary solution g.t/. For ease of understanding, let us again characterize these
two cases:

• An asymptotically unstable or “non-stiff” problem (Fig. 1.9, right) should be
attacked by some explicit numerical integrator, which will automatically choose
small step sizes � that are totally in order, since they reflect the dynamics of the
problem.

• An asymptotically stable or “stiff” problem (Fig. 1.9, left) should be attacked
by some (linearly) implicit numerical integrator, which will choose large step
sizes � that reflect the lack of dynamics of the stationary solution g.t/ at the
computational expense of solving nonlinear systems in each discretization step;
if any explicit numerical integrator were chosen in this case, extremely small
step sizes would automatically be selected that would blow up computing times
beyond any tolerable amount.

2.2 Explicit Numerical Integration Methods

In this section, we present three extensions of the explicit Euler method. The first
two ones are one-step methods, i.e. methods that only use information from the
present step to compute approximations for the next step; these include Runge-
Kutta methods in Sect. 2.2.1 (dating back to 1895) and extrapolation methods in
Sect. 2.2.2 (with origins back in 1910). The third one is a multistep method, i.e.
a method that exploits the history of a trajectory to compute the next step. Among
them we restrict our attention to Adams methods (dating back to 1855). Even though
all of these methods seem to be rather old, there are modern adaptive versions that

Explicit Numerical Integrators 49

should definitely be preferred for the numerical simulation of ODE models from
systems biology.

2.2.1 Runge-Kutta Methods

Already in 1895, C. Runge suggested an improvement over the classical Euler
scheme, which read

y1 D y0 C � f
�

y0 C �

2
f .y0/

�

Careful examination of this scheme reveals an order p D 2, compare defini-
tion (2.12) above, i.e. one order higher than that of the explicit Euler scheme. This
increase of order has been attained by introducing an explicit Euler step with �=2

as step size inside f .�/. In 1901, W. Kutta recognized the general nested structure to
increase the order: He suggested what nowadays is called an s-stage explicit Runge-
Kutta scheme

ki D f

0

@y0 C �

i�1
X

jD1

aijkj

1

A ; i D 1; : : : ; s

y1 D y0 C �

s
X

iD1

biki

Note the key feature that this scheme is recursive in the unknown directions ki. Any
Runge-Kutta method can be characterized by the coefficients .bi/; .aij/, in matrix
vector notation written as .b;A/, where b is an s-vector and A a lower triangular
.s; s/-matrix with zero diagonal entries – which represents the recursive structure of
the scheme.

Remark 5 When applied to non-autonomous systems with f .t; y/ as right-hand
sides, the above terms are to be replaced by terms of the kind

f

0

@t0 C ci�; y0 C �

i�1
X

jD1

aijkj

1

A where ci D
i�1
X

jD1

aij : (2.29)

Once he had detected the general structure, W. Kutta also worked out a rather
economic scheme of order p D 4, today named as the classical RK4 scheme:

k1 D f .y0/

k2 D f .y0 C �

2
k1/

50 Explicit Numerical Integrators

k3 D f .y0 C �

2
k2/

k4 D f .y0 C �k3/

y1 D y0 C �

�

1

6
k1 C 1

3
k2 C 1

3
k3 C 1

6
k4

�

Surprisingly, this ancient scheme is today still seen in modern computational
science! However, in the meantime of more than 100 years, much more efficient
higher order RK schemes have been worked out – see below.

Error Estimation and Step-Size Control

In order to simulate an ODE model reliably, the discretization error must be kept
below a prescribed accuracy threshold. As worked out in Sect. 2.1.1, we have to
deal with both local and global discretization errors. An estimation of the global
discretization error, which means the finally achieved accuracy, would require an
unreasonably large computational amount. The local discretization error, however,
can be estimated via the construction of so-called embedded Runge-Kutta methods.
In this approach, two RK methods with common coefficients A, but different
coefficients b and Ob are combined so that the scheme with b has order p, say, while
the one with Ob has order p � 1. After one step from t D 0 to t D � , the discretization
error can be approximated according to

ky1 � y.�/k 	 k
s
X

iD1

�.bi � Obi/kik DW
 (2.30)

A number of subtle considerations is necessary to back this device theoretically, see,
e.g., [16, Section 5.3].

If the error of the higher order RK method with coefficients .b;A/ is estimated,
the corresponding embedded RK method is usually written as RK (p-1)p, say RK
(7)8. In this case, formula (2.12) combined with (2.30) above yields

 	 ky1 � y.�/k � cp�pC1 : (2.31)

Suppose now we want to identify an “optimal” step size �� such that

� 	 ky1 � y.��/k :D cp.��/pC1 � TOL ;

where TOL is a user prescribed local error tolerance. Division of the two relations
then leads to the formula

�� D �
pC1

r

� � TOL

(2.32)

Explicit Numerical Integrators 51

where we have introduced some safety parameter � < 1, usually � D 0:9, with the
aim to (roughly) ensure that the thus selected step size would then actually lead to

� � TOL :

If several RK methods of different orders are realized, then the whole device can
be enriched by some order control, details of which we will present in Sect. 2.2.2
below in the context of some subset of RK methods.

Dense Output

If more output data are wanted than are supplied by the step-size control, then the
idea of an additional embedded RK method is again exploited; generalizing (2.31)
one requires that

ky1./ � y.�/k � cNp� NpC1 for 2 Œ0; 1� : (2.33)

The art is to find formulas that yield an order Np as high as possible. Efficient RK
methods usually include such a device, which also permits an extension to the
numerical treatment of delay differential equations; as an example we mention the
code RETARD due to E. Hairer.

Dormand-Prince Integrators

In recent decades, a whole “RK technology” for the construction of higher order
RK methods has emerged, see, e.g., [16, Section 4.2.2] and references therein to
the original literature. Given stage numbers s, the general principle is to determine
the coefficients .b;A/ such that the discretization errors are of prescribed order
p. This leads to a set of (underdetermined) nonlinear algebraic equations, rapidly
growing with increasing orders, see Table 2.1. Note that the number of conditions
only depends on the order p, not on the number s of stages, which only influences
the number .s2 C 1/=2 of independent coefficients to be determined. To solve these
equations, additional wishes may be fulfilled concerning, e.g., embedding with
more than two combined RK methods, economy of function evaluations as well
as reliability and robustness of step-size control devices.

Table 2.1 Number Np of algebraic equations for coefficients of Runge-Kutta methods
depending on order p

p 1 2 3 4 5 6 7 8 9 10 20

Np 1 2 4 8 17 37 85 200 486 1 205 20 247 374

52 Explicit Numerical Integrators

Starting around 1980, J. R. Dormand and P. J. Prince [26] have developed
a sequence of highly efficient explicit Runge-Kutta methods up to higher order,
putting all theoretical and algorithmic pieces together. Their presently most efficient
codes DOPRI5 and DOP853 have been economized with respect to number of
function evaluations, efficiency of step-size control, dense output etc. The code
DOP853 due to E. Hairer additionally realizes an automatic control of orders
among the embedded orders f8; 5; 3g.

2.2.2 Extrapolation Methods

In this section, we present certain discretization methods that formally are a subset
of explicit Runge-Kutta methods, but are constructed in a rather different way, along
which the cumbersome solution of the many algebraic equations, see Table 2.1, can
be avoided. For a general survey on extrapolation methods for (non-stiff and stiff)
ODE problems we refer to [14].

Basic Procedure

The general idea of extrapolation methods is to run a simple basic discretization
with successively reduced internal step sizes

�1 D �=n1 > �2 D �=n2 > : : : for given 1 � n1 < n2 < : : : 2 F

up to the next time point � . In this way, successively “better” approximations y1.�/

emerge that can be regarded as functions of � and written as y1.� I �1/; y1.� I �2/; : : :.
These approximations serve as nodal values for polynomial interpolation over
the nodes Œ�1; : : : ; �	�. The interpolation polynomials p.� j�1; : : : ; �	/ are then
evaluated at � D 0, which lies outside the interpolation interval, hence the name
extrapolation, see Fig. 2.9.

Theoretical basis for such a discretization is the existence of some “polynomial-
like” expansion

y1.� I �/ � y.�/ D g1.�/��1 C g2.�/��2 C g3.�/��3 C : : :

A closer examination of such expansions for a class of discretization methods
reveals that they would not converge, but can be replaced by asymptotic expansions
of the kind

y1.� I �/ � y.�/ D
N
X

jD1

gj.�/��j C GNC1.� I �/��NC1 ; (2.34)

Explicit Numerical Integrators 53

Fig. 2.9 Idea of
extrapolation: Evaluation of
the interpolation polynomial
p.� j�1; �2; �3/ at the limit
� D 0

y
1

σ
1

σ
2σ

3

σ

Table 2.2 Aitken-Neville
scheme for extrapolation
methods (here k D 3)

T11y

&
T21y ! T22

& &
T31y ! T32 ! T33

where a remainder term G takes care of the convergence properties. These expan-
sions serve the purpose needed for extrapolation methods. Proofs of their existence
including the boundedness of the remained terms are quite subtle and can be found
in the usual textbooks, see, e.g., [16, Section 4.3] and references therein.

Explicit Euler Discretization

Let us explain the method at the simplest possible example, when the explicit Euler
discretization is selected as the basic discretization. Starting with �0 D y0 the basic
scheme for internal step size �	 D �=n	 reads

�nC1 D �n C �	 f .�n/; n D 0; : : : ; n	 � 1; ! y1.� I �	/ D �n	 : (2.35)

Here the numbers n	 are chosen from some subdivision sequence F . For this basic
scheme, the existence of an asymptotic expansion (2.34) with �j D j can be shown.
We thus may extrapolate to the limit � D 0 using the Aitken-Neville algorithm
(e.g.,[17, Section 7.1.2]). Starting with y1.� I �i/ D Ti;1, this scheme reads in our
case

Ti;k D Ti;k�1 C Ti;k�1 � Ti�1;k�1

ni
ni�kC1

� 1
(2.36)

For an illustration see Table 2.2.

54 Explicit Numerical Integrators

For the discretization error after k extrapolation steps one obtains

"ik WD kTi;k � y.�/k :D kg0
k.0/k��i � � � �i�kC1 D �ikkg0

k.0/k� kC1 ; (2.37)

with the constant

�ik D .ni�kC1 � ni/
�1 :

Along these lines, an extrapolation method can be designed. But there exists a
“better” option to be described next.

Remark 6 Formally, this extrapolation method is a special explicit RK method with
stage number

s D
k
X

	D1

n	 ;

where k is the maximum index in the extrapolation table. Its minimum as achieved
for the harmonic subdivision sequence

FH D f1; 2; 3; 4; : : :g

The present codes actually realize this sequence.

Explicit Midpoint Rule

Already in 1910, C. Richardson had suggested to apply �2-extrapolation by
exploiting the symmetry of the explicit mid-point rule

�nC1 D �n�1 C 2�	 f .�n/ ; n D 1; 2; : : : :

Obviously, this recurrence cannot be realized without some value for �1. In other
words: it needs a starting step, a problem that Richardson had not been able to
solve.

It took until 1963 that W. B. Gragg in his thesis [29] was able to prove that a
simple explicit Euler starting step is enough to guarantee the existence of a quadratic
asymptotic expansion (2.34) with �j D 2j. Moreover, he showed that

• there exist two different quadratic asymptotic expansions for n	 either even or
odd and

• for an even subdivision sequence one additionally gains one order in � in the
approximation error.

Explicit Numerical Integrators 55

Gragg also suggested the special final step

y1.� I �	/ WD �n D 1

4
.�n�1 C 2�n C �nC1/; n D n	 even : (2.38)

This final step, which requires the additional evaluation of f .�n/, is not really crucial,
but useful for dense output, see below. Again this method is formally an explicit RK
method, so that minimizing the stage number leads one to implement the double
harmonic subdivision sequence (see [13])

n	 2 F2H D f2; 4; 6; 8; : : : : : :g :

Quadratic extrapolation. On this basis, one just needs to modify the Aitken-Neville
algorithm (2.36) in the form

Ti;k D Ti;k�1 C Ti;k�1 � Ti�1;k�1
�

ni
ni�kC1

�2 � 1

: (2.39)

Again one gets a triangular extrapolation tableau as shown in Table 2.2. For the
discretization error after k extrapolation steps one here obtains

"ik WD kTi;k � y.�/k :D kg0
k.0/k��2

i � � � �2
i�kC1 D �2

ikkg0
k.0/k�2kC1 ; (2.40)

with the same constant �ik as defined in (2.37).

Order and Step-Size Control

In order to characterize the linear versus quadratic asymptotic expansions, we write
�j D � j with � D 1 for the explicit Euler scheme and � D 2 for the explicit
mid-point rule. On the basis of the error formulas (2.37) and (2.40), the above
formula (2.32) readily suggests “optimal” step sizes for each column index k in
Table 2.2

��
k D � �kC1

s

� � TOL

kC1;k
; � < 1 : (2.41)

For strong algorithmic reasons one uses the subdiagonal error estimate

kC1;k WD kTkC1;k � TkC1;kC1k 	 kTkC1;k � y.�/k

Thus each column is associated with its own step size suggestion. As for the amount
of work, this is essentially only dependent on the row i in the tableau, so that we

56 Explicit Numerical Integrators

may denote it by Ai. In order to measure the work per unit step we define the
computationally available quantities

Wk WD AkC1

�k
� D AkC1

�
kC1;k

TOL

� 1
�kC1

:

With this set of values, we may find an “optimal” column index, say q, by requiring
the computable criterion

Wq D min
kD1;:::kmax

Wk (2.42)

Here a “greedy algorithm” argument has been used, see [17]. Once q is determined,
the step size �� D ��

q is taken as the basic step size for the next step. (In passing we
note that the same kind of idea is used to select an “optimal” order within embedded
explicit RK codes like DOP853.)

In addition to this order and step-size selection, the whole approximation table
Tik is exploited to monitor any unwanted deviation from an expected convergence
pattern, details are left to [14]. This abundance of information makes extrapolation
methods extremely robust in real life applications.

Dense Output

In general, extrapolation integrators adaptively select rather large step sizes due
to their efficient order and step-size control. If more output data are wanted, then
an extra tool is necessary. In connection with the explicit Euler or midpoint rule,
it is easy to add a Hermite interpolation tool, see [17, Section 7.1.2]. This cubic
interpolation is based on the information y0; f .y0/ and y1; f .y1/. The discrete values
y1 are anyway available at the end of each �-step; in order to get some accurate
value f .y1/, one will evaluate f after the extrapolation for y1; this does not increase
the overall computational amount, since this value can be stored to be used as
starting value for the next step. An efficient higher order technique for dense output
in explicit extrapolation methods has been work out by E. Hairer and A. Ostermann
in [32]; for the explicit midpoint rule, this technique requires a change of the
subdivision sequence away fromF2H, which is why we here do not pursue it. For the
purpose of systems biology, we are only interested to get a cheap way of evaluating
data at prescribed dense output points – an aim that can be achieved to sufficient
accuracy already with the cubic Hermite interpolation, given the adaptive step-size
and order control.

Note, however, that along this line backward dense output information is
available only after each �-step; consequently, such a tool is not sufficient to extend
the extrapolation method in the direction of delay differential equations, since there
the interpolation values are necessary during the discretization.

Explicit Numerical Integrators 57

Explicit Extrapolation Codes

An extrapolation code EULEX based on the explicit Euler scheme as basic
discretization has been exemplified in [14]; this code essentially served as a model
to explain the idea of an extrapolation method. Based on the explicit mid-point rule,
two implementations are quite popular, DIFEX1 due to [14], which includes the
above explained dense output option, and ODEX due to [34]; the two codes differ
only slightly in secondary details of the above order and step-size control and are
similarly efficient, both of them typically twice as fast as EULEX.

2.2.3 Adams Methods

In the two previous Sects. 2.2.1 and 2.2.2 we had presented one-step methods, i.e.
methods that only use information from t0 D 0 to compute an approximation y1 at
the next time step t1 D � . Already in 1855, J. C. Adams had the idea to exploit more
of the “history” of the trajectory.

General Scheme

Adams directly started from the integral form (2.5), which we repeat for conve-
nience as

y.�/ � y0 D
Z �

tD0

f .y.t// dt :

The idea is to replace the integrand f by a polynomial gk interpolating the k C 1

“previous” values

f .y1/; f .y0/; f .y�1/; : : : ; f .y�kC1/ :

This interpolation polynomial is unique and so we may write

f .y.t// ! gk.t/ D
k
X

jD0

Lj.t/f .yj�kC1/

where the Lj denote the Lagrange polynomials that depend on the interpolation
nodes only, see, e.g., [17, Section 7.1]. Insertion of this expression yields a
discretization scheme of the kind

y1 � y0 D � .ˇkf .y1/ C ˇk�1f .y0/ C ˇk�2f .y�1/ C : : : C ˇ0f .yk�1// (2.43)

58 Explicit Numerical Integrators

where the coefficients ˇk; : : : ; ˇ0 are uniquely determined by

ˇj D 1

�

Z �

tD0

Lj.t/ dt D
Z 1

D0

Lj.�/ d (2.44)

If ˇk D 0, the scheme is explicit, in which case the polynomial gk is of order k.

Remark 7 For readers with theoretical interest we briefly want to mention that
the above Adams method is not just an arbitrary candidate out of a large class of
possible multistep methods, but has an outstanding stability property. This stability
corresponds to the numerical solution of the trivial non-stiff ODE model y0 D 0,
obviously the special case of the Dahlquist test model for � D 0; it assures that the
obtained numerical solution dominates any possibly occurring “parasitic” numerical
artifacts. For more details see, e.g., [16, Section 7.3.1]. This goes with the fact that
Adams methods are only useful for non-stiff problems.

Discretization Error Estimate

Of course, to start such a scheme requires suitable starting values. Under certain
(unrealistic) assumptions on such starting values, a rough examination of these
schemes yields the discretization errors

y1 � y.�/ D O.�p/; p D
(

k; if ˇk D 0

k C 1; if ˇk ¤ 0
(2.45)

To start a scheme of order Np � 2, one must implement a start-up procedure

p D 1; 2; : : : ; Np � 1 :

The initial step is always an explicit Euler step. For the start-up procedure, the above
error behavior (2.45) changes from step to step, i.e. the order of discretization error
increases from step to step until it reaches the order level strived for.

PECE Methods

For ˇk ¤ 0 the scheme (2.43) is implicit and the order p is k C 1, i.e. one gains
one order in comparison with the explicit version. However, one now has to solve
a nonlinear system for the unknown y1. Originally, Adams had suggested to use
Newton’s method, while Moulton later suggested to use a fixed point iteration.
Today one realizes a variant named PECE method. In this approach, one starts with
the associated explicit Adams method to obtain some predictor yP

1 . This value is
then inserted into formula (2.43), wherein the value f .yP

1 / is evaluated (E) to supply
a corrector value yC

1 , which, in turn, requires the evaluation (E) of f .yC
1 /. This is the

Explicit Numerical Integrators 59

first step of a fixed point iteration, which would converge under some condition of
the kind

L� � const : (2.46)

This condition directly reminds one of the Lipschitz condition (2.8), which indicates
that this extension of the explicit Adams method, too, can only be expected to be
useful for non-stiff ODE problems.

For historical reasons, the explicit Adams methods are also called Adams-
Bashforth methods (dating back to 1883), whereas the implicit Adams methods
including the PECE methods are often named as Adams-Moulton methods.1

Order and Step-Size Control

The adaptive control of order and step size within any multistep method is much
more difficult than in the one-step case. We do not want to go too much into details
here, but refer interested readers to the textbook [16, Section 7.4]. For a potential
user of Adams methods, only a few general remarks seem to be appropriate:

• The coefficients ˇ0; : : : ; ˇk introduced in (2.43) can be calculated off-line, if
a uniform grid with constant step size � is realized, see (2.44). If, however,
some step-size control is realized, then this leads to a non-uniform grid, which,
in turn, changes the Lagrange polynomials Lj in every new integration step;
as a consequence, the coefficients need to be recomputed in the course of the
numerical computation whenever the grid changes. For this reason, the Lagrange
representation is replaced by some so-called Nordsieck implementation, which
allows an easier handling of varying grids.

• If one wants to vary the order, then an alternative implementation based on
Newton’s divided differences is preferred.

• Due to the fact that order and step-size control require different implementations,
Adams methods gain most of their efficiency on uniform grids and with constant
order, i.e. when the ODE to be solved exhibits some quite regular dynamics.
For the same reason, they are less reliable and robust in the efficient numerical
solution of problems with rapidly changing dynamics.

Adams Codes

A rather efficient modern adaptive PECE code is DEABM (abbreviating Adams-
Bashforth-Moulton) due to L. F. Shampine and H. A. Watts from 1979 or LSODE

1Moulton published his method not earlier than 1926, since it was regarded as a “military secret”
during World War I.

60 Implicit Numerical Integrators

(E stands for explicit) due to A. C. Hindmarsh [36] from 1980. All of these
implementations have a natural way of realizing a “dense output” option, since they
are based on interpolation.

2.3 Implicit Numerical Integration Methods

In this section, we present two types of efficient numerical stiff integrators, which
are extensions of the implicit Euler method. Their implicit structure requires the
numerical solution of nonlinear equations in each discretization step; this is realized
via Newton-type methods, which require a linear equation solve in each iteration
until convergence. It should be explicitly mentioned that solving these nonlinear
equations by some fixed point iteration would not be appropriate, since this would
assume some condition like (2.46), in contradiction to the intended treatment of stiff
equations. First, in Sect. 2.3.1, we discuss collocation methods, the most efficient
stiff integrators of implicit one-step or Runge-Kutta type. Next, in Sect. 2.3.2, we
elaborate the backward differentiation method (in short: BDF method), the optimal
candidate among multistep methods for stiff problems.

2.3.1 Collocation Methods

In Sect. 2.2.1, the general structure of explicit Runge-Kutta schemes has been
shown. In 1963, J. C. Butcher [10] extended these schemes in an interesting way.

Implicit Runge-Kutta Schemes

According to Butcher, an s-stage implicit Runge-Kutta scheme is denoted by

ki D f

0

@y0 C �

s
X

jD1

aijkj

1

A ; i D 1; : : : ; s

y1 D y0 C �

s
X

iD1

biki

In general, such a scheme is no longer recursive in the unknown directions ki, but
requires the solution of a system of s � d nonlinear equations for k1; : : : ; ks. Any
thus defined Runge-Kutta method can again be characterized by coefficients .b;A/,
where b is an s-vector, but nowA is a full .s; s/-matrix. In order to establish a general
RK method of order p, one has to solve Np algebraic equations (see Table 2.1) for
the s2 C s coefficients, which gives a lot more degrees of freedom than in the merely

Implicit Numerical Integrators 61

explicit RK case. The extension to the non-autonomous case with f .t; y/ again uses

ci D
s
X

jD1

aij; i D 1; : : : ; s ; (2.47)

see (2.29) in Remark 5 for explicit RK methods.

L-Stability Conditions

For the class of general RK methods, there exists a simple necessary condition for
L-stability (recall (2.28) above), which we briefly want to derive here. Insertion of
the Dahlquist test model y0 D �y; y.0/ D 1 into the above RK formulas yields (in
matrix-vector notation and with eT D .1; : : : ; 1/)

y1.z/ D 1 C zbT.I � zA/�1e D 1 C bT.
1

z
I � A/�1e :

Obviously, if the matrix A can be assumed to be nonsingular, then one ends up with
the result

y1.1/ D 1 � bTA�1e : (2.48)

This formula has an interesting consequence. Assume the vector b is equivalent to
any row (say j) of the matrix A, i.e. bT D eT

j A, then one gets

y1.1/ D 1 � eT
j AA�1e D 1 � eT

j e D 0 : (2.49)

In other words: If the vector b is equivalent to any row of the nonsingular matrix A
and the corresponding implicit RK method is A-stable, then it is L-stable. We will
make use of this property below.

Collocation Approach

Rather than constructing implicit RK methods via solving the many algebraic
equations for the coefficients, one may construct a subset of such methods, called
collocation methods, by some direct approach. Therein the continuous solution y.t/
is approximated by some polynomial function u.t/ with

u.0/ D y0; u.�/ D y1

62 Implicit Numerical Integrators

that satisfies the following collocation conditions:

u0.ci�/ D f .u.ci�//; i D 1; : : : ; s : (2.50)

The prescribed (normalized) collocation nodes

0 � c1 < : : : < cs � 1

characterize the method. Assuming such a polynomial exists, we may introduce a
Lagrange basis fL1; : : : ; Lsg with respect to the nodes ci. If we identify

ki D u0.ci�/; i D 1; : : : ; s ;

we may write the polynomial derivative as

u0.�/ D
s
X

jD1

kjLj./ : (2.51)

Upon integrating this relation, we obtain

u.ci�/ D y0 C �

Z ci

D0

u0.�/d D y0 C �

s
X

jD1

aijkj ;

where we have defined

aij D
Z ci

D0

Lj./d; i; j D 1; : : : ; s : (2.52)

Insertion of these definitions into the collocation conditions (2.50) verifies that
collocation methods are in fact special implicit RK methods. Moreover, we obtain

y1 D y0 C �

Z 1

D0

u0.�/d D y0 C �

s
X

jD1

bjkj ;

where we have defined

bj D
Z 1

D0

Lj./d; j D 1; : : : ; s : (2.53)

Thus we have all pieces of an implicit RK method together: With the choice of the
(normalized) collocation nodes c1; : : : ; cs we can define the Lagrange polynomials
L1; : : : ; Ls and thus via (2.52) and (2.53) the coefficients .b;A/.

Implicit Numerical Integrators 63

Discretization Error

The discrepancy between the ODE solution and the collocation polynomial is given
by

y.�/ � u.�/ D
Z 1

D0

f .y.�//d �
s
X

jD1

bjf .u.cj�// D O.�pC1/ : (2.54)

Obviously, this represents some quadrature error (see, e.g., [17, Section 9.2]) of
consistency order p.

In order to determine the maximally possible consistency order p, we arrive at
the Gauss-Legendre quadrature, see, e.g., [17, Section 9.3]. In this algorithm, the
collocation nodes are just the zeros of the Legendre polynomial Ps./; 2 Œ0; 1�,
which satisfy

0 < c1 < : : : < cs < 1 :

The corresponding Gauss collocation method exhibits the following properties:

• Consistency order p D 2s (maximum possible order).
• A-stability with S D C�.
• Asymptotic behavior jy1.1/j D 1 .

This class of methods has further intriguing properties, which are discussed in [16,
Section 6.3.4], but usually do not play a role in applications within systems biology.
Here we would prefer an L-stable discretization method. That is why, in view
of (2.49), a quadrature rule with cs D 1 is selected, also named Radau quadrature.
The remaining coefficients c1; : : : ; cs�1 are then the zeros of the Jacobi polynomial
P.0;1/

s�1 ./ so that

0 < c1 < : : : < cs�1 < 1 :

Under this sufficient assumption, the coefficient matrix A can be shown to be
nonsingular (proof skipped here).

The thus constructed Radau collocation method is characterized by the following
properties:

• consistency order p D 2s � 1,
• A-stability C� � S,
• asymptotic stability y1.1/ D 0.

Hence, this collocation method is L-stable, as desired.

64 Implicit Numerical Integrators

Radau Collocation Codes

A highly efficient code, named RADAU5, has been implemented by E. Hairer, see
[33], and can be downloaded from his homepage. This code, obviously realizing the
case s D 3; p D 5, uses a Newton-like iteration to solve the arising sd nonlinear
equations. In each of these iterations, the direct solution of the linear equations
is speeded up by factor of 5 exploiting the special structure of the arising matrix.
Since the method is of collocation type, there exists a natural interpolation u.�/

for all values 2 Œ0; 1�, which is the basis for a “dense output” option; in turn, this
opens the door to a possible application to delay or retarded differential equations,
see (1.5). The corresponding code RADAR5 due to N. Guglielmi and E. Hairer, see
[31], is a direct extension of RADAU5 for this class of problems.

2.3.2 BDF Method

In this multistep approach, we start from the differential equation in its original form
at time point t1 D � , i.e.

y0.�/ D f .y.�// (2.55)

and replace the unknown solution y by a polynomial gk interpolating the k C 1

“previous” values

y1; y0; y�1; : : : ; y�kC1

on the uniform grid t1; t0; t�1; : : : ; t�kC1 with stepsize � . This polynomial is uniquely
defined so that we may write

y.t/ ! gk.t/ D
k
X

jD0

Lj.t/yj�kC1

where the Lj denote the Lagrange polynomials that depend on the interpolation
nodes only, see, e.g., [17, Section 7.1]. Insertion of the expression

g0
k.�/ D

k
X

jD0

L0
j.�/yj�kC1 D 1

�

k
X

jD0

L0
j.0/yj�kC1

into (2.55) yields the discretization scheme

˛ky1 C : : : C ˛0y�kC1 D � f .y1/ (2.56)

Implicit Numerical Integrators 65

in terms of uniquely defined coefficients ˛j D L0
j.0/. This special implicit multistep

method has been suggested for stiff integration by C. W. Gear [28] in 1971. The
relation (2.56) may be interpreted as an interpolation formula for numerical differ-
entiation based on backward values, which gave the name backward differentiation
formula, briefly: BDF.

In each step of a k-order BDF method, a system of only d nonlinear equations
for y1 has to be solved; note that the dimension of the system is independent of the
order k. For k D 1 the implicit Euler method arises. The nonlinear systems must
be solved by some Newton-like method, since any fixed point iteration would not
be appropriate for stiff ODE problems. Consequently, several linear systems of the
kind (ignoring the specific argument by merely writing .�/)

�

˛kId � � fy.�/
�

�y D � f .�/ :

must be solved until convergence of the Newton-like iteration.

Stability Properties

Upon inserting the usual Dahlquist test model (2.23), the discretization (2.56) yields

y1.z/ D �˛k�1y0 C : : : C ˛0y�kC1

˛k � z
:

For z ! 1 we thus obtain

y1.1/ D 0

which clearly looks like an extension of one of the conditions for L-stability of one-
step methods. Of course, we would need A-stability in addition. However, stability
analysis of multistep discretizations is much more subtle than for one-step methods;
for the purpose of this book we do not dwell on the details. Important in our context
is the so-called second Dahlquist barrier (see, e.g., [16, Section 7.2.2]): It states that
multistep methods with order k > 2 cannot be A-stable, which rules out L-stability
for k > 2. As the coefficients are determined, we must be content with L(˛)-stability
as it comes out, see Table 2.3. Not shown in the table is that the method is not even
consistent for k > 6.

Due to the drastic deterioration of L(˛)-stability for increasing order, oscillatory
phenomena should be computed with order k � 2. There are well-known test
examples with oscillatory behavior where BDF methods of higher order slow down

Table 2.3 L(˛)-stability of
BDF methods. Observe the
second Dahlquist barrier

k 1 2 3 4 5 6

˛ 90ı 90ı �86ı �73ı �52ı �18ı

66 Linearly Implicit Numerical Integrators

significantly or even produce wrong results, see [14]. Recall that k D 1 alone is not
a really good idea, since the implicit Euler method is known to exhibit the unwanted
“superstability”.

Order and Step-Size Control

As for the Adams scheme, the BDF scheme, too, requires suitable starting values.
Under certain (unrealistic) assumptions on such starting values, a rough examination
supplies the discretization error

y1 � y.�/ D O.� kC1/; (2.57)

To start a scheme of order k, one must implement a start-up procedure

k D 1; 2; : : : ; k � 6 :

The starting step is always an implicit Euler step. With such a procedure, the above
discretization error bound changes from step to step.

Just as in the Adams case, algorithmic difficulties in the adaptive selection of
order and step sizes arise. The derivatives of the Lagrangian polynomials change
whenever the local step sizes change, leading to some non-equidistant grid. This
leads to the dilemma of implementation as either a Nordsieck variant or a divided
difference variant. By and large, the method gains its best efficiency when run with
constant step size and fixed order, which makes it a bit less robust than one-step stiff
integrators.

BDF Codes

Among the most popular and efficient BDF codes are: the code LSODI (I
stands for implicit) due to A. C. Hindmarsh [36]; the code LSODA (A stands for
automatic switching) which automatically switches between the (implicit) BDF and
the (explicit) Adams method; VODE due to [8], a variable step size/variable order
BDF code, or the most recent code DASSL due to L. Petzold [51]. Due to their
structure based on interpolation, a natural “dense output” option is usually available.

2.4 Linearly Implicit One-Step Methods

This section is devoted to efficient numerical stiff integrators that, in contrast to the
methods of the previous Sect. 2.3, merely require the numerical solution of a low
fixed number of linear equations per discretization step.

Linearly Implicit Numerical Integrators 67

General Idea

The key issue in numerical stiff integration is the correct treatment of asymptotic
stability of a given ODE model by step sizes that reflect the smoothness of the
“slow” part of the solution, not that of the “fast” transition part of the solution, in
cases where this is of less interest. In order to tackle this issue, one may subtract a
linear homogeneous term on both sides of the ODE thus obtaining

y0 � Jy
„ƒ‚…

implicit

D f .y/ � Jy
„ ƒ‚ …

explicit

DW f .y/; y.0/ D y0 : (2.58)

For stability reasons, the matrix J herein is either the Jacobian J D fy.y0/ or some
approximation of it. The idea is to discretize the linear part on the left side implicitly
(hence the name), but the “deflated” right-hand side f .y/ explicitly. Clearly, such
discretization schemes are computationally easier to realize than the fully implicit
schemes from the preceding Sect. 2.3.

2.4.1 Rosenbrock-Wanner Methods

In 1963, H. H. Rosenbrock suggested a linearly implicit extension of explicit RK
methods, which was later modified and improved by G. Wanner [33]. That is why
such schemes today are called Rosenbrock-Wanner (ROW) schemes:

�

I � �ˇii J

�

ki D �

2

4

i�1
X

jD1

.ˇij � ˛ij/ Jkj C f

�

y0 C �

i�1
X

jD1

aijkj

�

3

5 (2.59)

The fact that the first right-hand sum above ends at index i � 1 indicates that the
system is block-triangular, while the second sum is anyway explicit. If the ˇii are all
different, then a sequence of s linear systems with .d; d/-matrices I � �ˇiiJ must be
solved numerically. To simplify the linear algebra, very early the choice

ˇii D ˇ; i D 1; : : : ; s

has been suggested, which implies that only one matrix I � �ˇJ needs to be
decomposed throughout all stages.

In the above ROW methods, the identification J D fy.y0/ is strictly assumed.
As in general RK methods, the coefficients .˛ij/; .ˇij/ must be determined such
that NROW

p D NRK
p algebraic equations corresponding to order p must be satisfied,

see Table 2.4. If, however, the Jacobian J is replaced by an arbitrary Jacobian
approximation matrix W, then one speaks of W-methods. As a consequence, a larger
number NW

p of algebraic equations needs to be satisfied, see again Table 2.4.

68 Linearly Implicit Numerical Integrators

Table 2.4 Number of
algebraic conditions to be
satisfied by coefficients
.˛ij/; .ˇij/ of ROW- versus
W-methods

p 1 2 3 4 5 6 7

NROW
p 1 2 4 8 17 37 85

NW
p 1 3 8 21 58 166 498

ROW Codes

As in Runge-Kutta methods, a whole “ROW-technology” has evolved over the years
that led to a large number of implementations. In most cases, ROW methods of
low order have been developed, for reasons clear from Table 2.4. Construction
principles were, of course, the desirable L-stability and economy of evaluations
as well as matrix decompositions and forward/backward substitutions. Among the
most efficient codes of this kind are certainly

• ROS3PL with p D 3 and s D 4 due to J. Lang and D. Teleaga [43], an L-stable
ROW-method, which is robust against Jacobian perturbations (even though not a
full W-method),

• RODAS with p D 4 and s D 6 due to E. Hairer and G. Wanner [33]

All these codes are adaptive, which here means they possess an automatic step-size
control, but keep the order fixed. A “dense output” option can be naturally realized
within the embedding of the ROW methods.

2.4.2 Extrapolation Methods

As in the non-stiff case, the construction of a subset of linearly implicit Runge-Kutta
methods can be directly realized via extrapolation, thus avoiding the cumbersome
solution of the many algebraic equations for the coefficients. In such methods, one
merely has to apply some well chosen basic discretization scheme of lowest order
that is suitable for stiff integration. Higher orders are then obtained via the Aitken-
Neville algorithm. Order and step-size control is realized just as in the explicit
extrapolation methods. For ODE problems in systems biology, two kinds of schemes
are useful.

Linearly Implicit Euler Discretization

Starting from the basic idea in (2.58), one discretizes the linear part on the left by
the implicit Euler scheme, which leads to (for n D 0; 1; : : : and internal step size �)

�nC1 D .I � � J/�1
�

�n C � f .yn/
� D �n C � .I � � J/�1f .yn/ : (2.60)

Linearly Implicit Numerical Integrators 69

Table 2.5 Linearly implicit
Euler scheme with extrapo-
lation when subdivision FH

is chosen. L(˛)-stability of
subdiagonal elements TkC1;k

in the extrapolation tableau

k 1 2 3 � � � 7

˛ 90ı 90ı �89:77ı

Note that this is formally some W-method, since the matrix J is not required to be the
exact Jacobian fy.yn/, but will usually be selected as some Jacobian approximation
J 	 fy.y0/. In passing we note that for J D 0 we obtain the extrapolation method
based on the explicit Euler scheme. This basic scheme is run repeatedly with
successively smaller internal step sizes (compare Sect. 2.2.2 above)

�k D �=nk; nk 2 FH D f1; 2; 3; 4; : : :g :

This implies that nk linear systems need to be solved requiring the decomposition
of .d; d/-matrices I � �kJ and the corresponding number of forward/backward
substitutions.

From theory, one knows that this discretization permits an asymptotic �-
expansion, see [16, Section 6.4.2]. This is the theoretical basis for some �-
extrapolation, see Table 2.2 for the corresponding triangular Aitken-Neville scheme
to compute elements Tik.

Stability properties. Insertion of the Dahlquist test model (2.23) confirms that all
elements Tik (with i � k) of the extrapolation tableau satisfy the necessary condition
(let z D �� and J D �)

Tik.z/ � 1

zi�kC1
! 0 for z ! 1 :

This is one of the necessary conditions for L-stability. In Table 2.5, we arrange the
L(˛)-results for the subdiagonal elements in the extrapolation tableau, which are
actually chosen for error as well as order and step-size control.

Dense output. As usual for adaptive extrapolation integrators, this one also selects
rather large step sizes due to its efficient order and step-size control. A cubic Hermite
interpolation tool has been constructed in [19] based on the information y0; f .y0/

and y1; f .y1/. In the DAE case, good approximations for f .y1/ are obtained via �-
extrapolation based on the values .�n � �n�1/=� for n 2 FH. An efficient higher
order technique has been worked out by E. Hairer and A. Ostermann [32].

70 Linearly Implicit Numerical Integrators

Linearly Implicit Midpoint Rule

As in the non-stiff case, we would prefer to construct some basic discretization
scheme that permits �2-extrapolation. This has been achieved by G. Bader and
P. Deuflhard [3]. As a symmetric extension of the explicit mid-point rule, they
introduced the linearly implicit midpoint rule according to

.I � � J/�nC1 � .I C � J/�n�1 D 2� f .yn/ (2.61)

to be started by a linearly implicit Euler step. Instead of an extension of the
Gragg final step (2.38), they introduced a different symmetric final step, which also
requires an additional evaluation of f .�n	 /,

y1.� I �	/ WD O�n	 D 1

2
.�n	C1

C �n	�1 /; n	 even : (2.62)

The reason for this final step will be explained below in the context of stability.
Stability properties. Insertion of the Dahlquist test model (2.23) yields

• for the odd indices

�2mC1 D 1

1 � z

�

1 C z

1 � z

�m�1

! .�1/m

z
! 0 ; (2.63)

• for the even indices

�2m D
�

1 C z

1 � z

�m

! .�1/m ! 0 ; (2.64)

• and for Bader’s symmetric final step

O�2m D 1

2
.�2mC1 C �2m�1/ ! .�1/m�1

z2
! 0 ;

which can be seen to perform some asymptotic smoothing.

In order to have the same asymptotic sign pattern for all smoothing steps, one
arrives at the sequence F˛ shown below. Clearly, with these specifications, the
asymptotic result

Tik.z/ � �1

z2
! 0 for z ! 1

is obtained, i.e. one has a uniform asymptotic pattern throughout the whole
extrapolation table. We are thus only left to study the L(˛)-stability pattern, which
is given in Table 2.6.

Linearly Implicit Numerical Integrators 71

Table 2.6 Linearly implicit mid-point rule with
extrapolation when subdivision sequence F˛ is cho-
sen. L(˛)-stability of subdiagonal elements TkC1;k

in the extrapolation table

k 1 2 3 4 5 6

p 1 3 5 7 9 11

˛ 90ı 90ı �88ı �86ı �87ı �87ı

Obviously, the stability properties including the final step are very satisfactory.
However, from the detailed study of the intermediate discretization steps we learned
that the asymptotic behavior (2.63) for the odd indices is satisfactory, while the
behavior (2.64) for the even indices is unsatisfactory. As a consequence, this
extrapolation method is recommendable mainly for “moderately stiff” problems,
which, however, represent the typical problems in systems biology.

Quadratic extrapolation. For a scheme as specified, the existence of an asymp-
totic �2-expansion has been shown in [3]; it gives rise to a �2-extrapolation for even
subdivision sequences. Additional conditions come from the above stability analysis
that lead to the sequence

�k D �=nk; nk 2 F˛ D f2; 6; 10; 14; 22; 34; 50g :

The index ˛ comes from the empirically introduced property nkC1=nk � ˛ WD 1:4.
These data enter into a triangular Aitken-Neville scheme with Tik for i � k as shown
in Table 2.2. Needless to say that, of course, an adaptive version is implemented,
see (2.41) for the step size control and (2.42) for the order control, the latter
requiring some subtle decision about what should be inserted as computational work
per discretization step.

Dense output. As in the other extrapolation integrators, a cubic Hermite inter-
polation polynomial can be constructed based on the information y0; f .y0/ and
y1; f .y1/. The idea is the same as for the explicit midpoint rule: at the end of each �-
step one evaluates f .y1/, which then can be recycled as f .y0/ in the next integration
step so that no additional function evaluation is needed (apart from the very last
step). Again we mention that the accuracy of this Hermite interpolation formula
in combination with the order and step-size control is enough for the purpose of
systems biology.

Linearly Implicit Extrapolation Codes

The adaptive extrapolation code EULSIM has been designed on the basis of the
linearly implicit Euler scheme (originally called Semi- IMplicit Euler scheme,
hence the name). The more elaborate extrapolation code LIMEX due to [19, 23]
is an extension that also applies to quasilinear differential-algebraic equations. For
“moderately stiff” ODE problems, which in systems biology are the most frequent

72 Roadmap for Numerical Integrators

case, the code METAN1 [3], based on the linearly implicit midpoint rule, typically
supersedes LIMEX. For an illustration, see Sect. 2.5.2. In both codes, dense output
options are available based on cubic Hermite interpolation. The code METAN1 also
found its way into the book on “Numerical Recipes” [52], p. 735.

2.5 Choice of Numerical Integrator

A code may fail; but it must not lie.
(Beresford N. Parlett)

In the sections above, a number of different methods including efficient codes have
been discussed to necessary detail. The present section is devoted to questions that
a user may have when deciding which of these codes to apply for his problem at
hand. In Sect. 2.5.1, we arrange methods and associated codes (written as CODES)
again; for download addresses see the final chapter Software at the end of the book.
In Sect. 2.5.2, we illustrate the choice of integrator at two moderate size examples
from systems biology, which look rather similar in terms of the differential equation
model, but behave differently in terms of the numerics. Finally, in Sect. 2.5.3, we
present a quite challenging large scale problem dealing with the so-called Warburg
effect of tumor cells.

2.5.1 A General Roadmap for Numerical Integrators

One-Step Methods

In the sections above we have discussed explicit one-step methods for non-stiff ODE
problems such as

• explicit Runge-Kutta methods in Sect. 2.2.1 (DOPRI5 , DOP853), and
• extrapolation methods in Sect. 2.2.2 (DIFEX1, ODEX) ,

as well as (linearly) implicit methods for stiff problems such as

• Radau collocation methods in Sect. 2.3.1 (RADAU5, RADAR5),
• Rosenbrock-Wanner methods in Sect. 2.4.1 (ROS3PL, RODAS), and
• extrapolation methods in Sect. 2.4.2 (LIMEX, METAN1).

All of these codes select a “locally optimal” step size on the basis of local
discretization error estimates, extrapolation methods also a “locally optimal” order,
codes like DOP853 an optimal order among the three orders 8,5,3. In parallel with
the dynamics of the ODE system, non-uniform grids are obtained with problem
dependent output points, typically much less than with uniform grids. If more
than the automatically computed output data are wanted, which is often called the
“dense” output option, then extra tools for interpolation are appropriate to avoid

Roadmap for Numerical Integrators 73

wasting computing time due to “too many” output points; such extra tools are
easily available in embedded RK methods as well as in collocation methods, while
extrapolation methods require an additional (computationally cheap) device based
on Hermite interpolation. Compared to multistep methods, implementations of these
methods exhibit only a small amount of overhead beyond f -evaluations. Generally
speaking, these methods are particularly efficient in ODE problems with strongly
varying dynamics, a feature that is especially true for extrapolation methods and
DOP853, since they additionally choose some “locally optimal” order.

Multistep Methods

From the class of multistep methods we have discussed

• (explicit) Adams methods for non-stiff ODE problems in Sect. 2.2.3 (LSODE,
DEABM),

• (implicit) BDF methods for stiff problems in Sect. 2.3.2 (LSODI, VODE, and
DASSL), and

• a multistep code that automatically switches between Adams and BDF method
(LSODA).

All of these codes realize some control of order and step size, but in a much
more restricted sense than in one-step methods. Efficient implementations for a
change of order are different from those for a change of step sizes. Generally
speaking, multistep methods gain their efficiency with quasi-uniform grids, a
property prohibitive for problems with strongly varying dynamics, but in favor of
smoothly varying dynamics; this goes with the intuition that a smooth dynamics
can gain efficiency from exploiting the “history” of the trajectory. For smooth
dynamics, the number of evaluations of the right-hand side f may be considerably
less compared to one-step methods. For the BDF method, an order restriction k � 2

is recommended when applied to oscillatory problems, which do occur in systems
biological networks. By their common construction principle via interpolation, both
Adams and BDF methods naturally generate “dense” output, see Sect. 2.2.1. In
comparison with one-step methods, they usually require much more computational
overhead which often outweighs the possibly lower number of f -evaluations.

Non-stiff Versus Stiff Integration

The question of whether a given ODE problem should be regarded as stiff or non-
stiff, stands at the beginning of each systems biological simulation. For a non-stiff
problem, an explicit method will do, which only requires evaluations of the right-
hand sides f and thus is faster per integration step than an implicit method. For a
stiff problem, implicit or a linearly implicit methods may pay off, which additionally
require the numerical solution of linear equations involving the Jacobian of the right-
hand side, but over significantly less integration points. For really stiff problems, an

74 Roadmap for Numerical Integrators

explicit method would suffer from severe step-size restrictions that would blow up
the overall computing time.
Qualitative insight. As for the practical classification “stiff/non-stiff” in a given
ODE problem, quite often some qualitative insight is helpful before starting
the simulation: stiff problems are typically characterized by the fact that they
asymptotically approach some steady state point. Then, generally speaking, an
implicit or linearly implicit method should be applied. However, even for such
problems, an explicit method might be preferable, if one is only interested in the
“transition” phase.
Rule of thumb. As for the theoretical distinction between stiff and non-stiff ODEs,
we have elaborated quite a bit on this question, but finally recommended a rather
pragmatic approach: ODE problems, wherein the extra computational amount
required for the arising nonlinear (or linear) equations pays off, are regarded as
stiff. Consequently, whenever a stiff/non-stiff characterization of an ODE problem
is unclear, the following rule of thumb is advised: start with an explicit method,
say DOPRI5, and only switch to an implicit or linearly implicit method, say
METAN1, if the explicit method seems to suffer from step-size restrictions that
seem “uninterpretable” in view of the underlying model.

For an illustration of stiff versus non-stiff ODE problems, the following example
may serve.

Example 8 (Gene expression) Let a gene expression be described by the scheme

gene
k1

GGGGGA mRNA
d1

GGGGGGA ;;

;
k2 � [mRNA]

GGGGGGGGGGGGGGGGA protein
d2

GGGGGGA ;;

wherein k1 is the constitutive transcription rate, k2 the translation rate, d1 the mRNA
degradation rate, and d2 the protein degradation rate. We assume that this gene
expression is unregulated, i.e. the gene is always on, which can be modelled by
setting its concentration g D Œgene� � 1. Let m D ŒmRNA� the concentration of
mRNA and p D Œprotein� the concentration of the protein. Thus one arrives at the
ODE initial value problem

m0 D k1 � d1m; m.0/ D 1; p0 D k2m � d2p; p.0/ D 0 :

Let the kinetic parameters be selected as k1 D 2; d1 D 1; k2 D 1; d2 D 0:01.
The steady state point is m� D k1=d1; p� D .k1k2/=.d1d2/. The numerical solution
is shown in Fig. 2.10. As can be observed, mRNA reaches its steady state much
faster than the protein. This implies that the problem can be regarded as stiff.
In Fig. 2.11, the step sizes chosen by a non-stiff integrator (here: DOPRI5) are
compared with those chosen by a stiff integrator (here: LIMEX).

Roadmap for Numerical Integrators 75

0 5 10
1

1.2

1.4

1.6

1.8

2

t

m
(t

)

0 100 200 300 400 500
0

50

100

150

200

t

p(
t)

mRNA dynamics protein dynamics

(a) (b)

Fig. 2.10 Numerical solution for Example 8. Note the different time-scales in the two plots: The
mRNA concentrations changes much more rapidly than the protein concentration

0 100 200 300 400 500
10

−4

10
−2

10
0

10
2

10
4

t

τ

Step sizes chosen by non-stiff integrator.

0 100 200 300 400 500
10

−4

10
−2

10
0

10
2

10
4

t

τ

Step sizes chosen by stiff integrator.

(a) (b)

Fig. 2.11 Example 8. Automatic step-size selection by two different integrators. Common local
error tolerance TOLD 10�6 . Left: Non-stiff integrator DOPRI5. “Unreasonable” step-size
restriction with many ups and downs in the steady state phase. Right: Stiff integrator LIMEX.
No step-size restriction in the steady state phase

Remark 8 For quite a while research has focused on the construction of methods
that automatically classify stiff versus non-stiff problems, switching between
explicit and implicit codes during the computation. An example of this type is the
quite popular multistep code LSODA that automatically switches between stiff
(BDF) and non-stiff (Adams) methods. There is, however, a principal difficulty:
The distinction is easy in an implicit method (here: BDF), since there Jacobian
information is available; but then, in a non-stiff problem, the bulk of the compu-
tational amount has already been spent so that not too much computing time can be
saved. The distinction is difficult in an explicit method (here: Adams), since there
the necessary information on the Jacobian matrix is missing.

76 Roadmap for Numerical Integrators

Computational Speed

Suppose the decision between non-stiff or stiff integrator has been made. Then the
choice among explicit or implicit integrators, respectively, must be made. The task
to find the “fastest” code for the problem at hand is not as easy as one might expect.
In published comparisons of computing times for different codes, the multistep
community quite often only gives the number of f -evaluations excluding overhead,
while the one-step community tends to present only total computing times, which
often depend on the selected computer.

Non-stiff integrators. For this class of methods, the total computing time (CPU
time) originates from the number Nf of f -evaluations (at a cost of Cf each) and the
overhead ˝ D !method � d, usually proportional to the dimension d of the ODE
system with a method dependent proportionality factor !method. Thus we arrive at

CPU D Cf � Nf C ˝ D Cf � Nf C !method � d :

As explained above, multistep (ms) and one-step (os) methods may be characterized
by the relations

Nms
f � Nos

f ; !os
 !ms :

Obviously, the distinguishing quantity will be

� D Cf =d ;

which can be interpreted as “evaluation time per component of the right-hand side
f ”. From it, we may derive the following rule of thumb:

• Whenever � is “not too large”, then some explicit Runge-Kutta or extrapolation
method should be chosen; in systems biology, this seems to be the most
frequently occurring case, since each component typically couples only with few
other components.

• If � is “large”, then one should prefer an Adams method.

If the expected dynamics is “strongly varying”, then a one-step method should be
taken anyway. Compared to the optimized explicit Runge-Kutta codes DOPRI5 and
DOP853, the two extrapolation codes DIFEX1 or ODEX typically are regarded
as slightly slower in standard non-stiff ODE problems, but slightly more robust in
challenging real life problems.

Stiff integrators. For implicit and linearly implicit integrators there is no such
simple complexity theory as in the non-stiff case. Here we have to additionally
count the number of matrix decompositions and of forward/backward substitutions.
This confuses the picture quite a bit. What remains valid is that the BDF method
as a multistep method also requires a much larger overhead than the one-step
competitors. Moreover, the linearly implicit one-step methods (Rosenbrock-Wanner
or extrapolation method) are much simpler than their implicit counterparts, which

Roadmap for Numerical Integrators 77

particularly pays off for large ODE systems, when the arising linear systems may
even be solved iteratively.

Accuracy

Recall from Sects. 2.1.1 and 2.1.2 that a user of a numerical integrator can only
prescribe a local error tolerance TOL, typically split into RTOL, a relative error
tolerance, and ATOL, an absolute error tolerance. Note that RTOL relies on an
efficient scaling (see the associated item below). The achieved global accuracy ERR
then depends on the condition of the problem. In real life problems, the condition
number is usually computationally unavailable. Hence, a user should develop some
“feeling” about the necessary error tolerance. As for the choice of the integrator,
the achieved accuracy will mostly be better, if less integration points are needed – a
feature that usually speaks for extrapolation methods.

Computational Parameter Sensitivity Analysis

In the class of problems envisioned here, the additional numerical integration of
the sensitivity equations will usually come up. From Sect. 1.3.2, we recall that the
sensitivity yp with respect to some parameter p (dropping the index) is described by
the equations

y0
p D fy.y.t/; p/yp C fp; yp.0/ D 0 :

As already mentioned in Remark 4, these equations must be solved simultaneously
with the original model equations y0 D f .y/ to obtain the argument inside fy.�/; fp.�/.
The most convenient way to realize the above variational equation is to generate the
exact formulas for fy and fp from some chemical compiler simultaneously with the
generation of the right hand side f (see Sect. 1.2.3).

If some stiff integrator is employed, then the Jacobian fy and the decomposition
of the matrix I �ˇ� fy.y0/ can be also included in the integration of the state variable
ODEs. Within any linearly implicit one-step method, the same idea as in (2.58)
works again in the form

y0
p � Jyp
„ ƒ‚ …

implicit

D .fy.y; p/ � J/yp C fp
„ ƒ‚ …

explicit

yp.0/ D 0 : (2.65)

An efficient implementation of this idea within the code LIMEX has been suggested
and worked out by M. Schlegel et al. [55], which pays off especially in large
ODE networks. For BDF methods, which require the iterative solution of nonlinear
equations, an especially adapted technique has been worked out by T. Maly and L.
Petzold [44].

78 Roadmap for Numerical Integrators

Discontinuity Treatment

In some applications, the right-hand sides f contain discontinuities at certain points.
In systems biology, such a situation typically occurs when different models are used
to describe different processes before or after some characteristic event (day-night,
say). If one ignores such points by just “overriding” them with a numerical inte-
grator, then usually the accuracy after these points will be poor. This phenomenon
occurs less marked, if the employed integrator is equipped with an automatic order
control that allows for sudden local drops of order (as in extrapolation methods).
In principle, however, this kind of difficulty should be tackled differently: The
integration should be terminated at these points and restarted thereafter; in this way,
the accuracy can be preserved. Note that this procedure is a structural disadvantage
for any multistep method, which requires a restart from order k D 1 up to the
locally optimal order after the discontinuity point. For this reason, certain one-step
procedures have been designed to realize some “quick start-up”.

Example 9 For the purpose of illustration, we consider an artificial example
constructed by R.D. Russell and L.F. Shampine [54]:

y00 D y � ty0 C tet � jtj.6 � 12t C 2t2 � 3t3/;

y.�1/ D e�1 � 2; y0.�1/ D e�1 C 7:

Here a discontinuity of y000 occurs at t D 0, known in advance. The unique solution
is

y.t/ D
(

et C t3 � t4; t � 0

et � t3 C t4; t � 0
:

After the point t D 0, accuracy will be reduced, if a numerical integrator without
order control is used, see Fig. 2.12. On the contrary, stop and restart of the
integration at t D 0 preserves the accuracy also beyond t D 0.

Dense Output

Such an option treats the case that more output points are wanted than automatically
delivered by the step-size (and possibly order) control. This situation may well occur
in systems biological modelling, there mainly for print-out. In addition, as worked
out in the next Chap. 3, this option may also be important for parameter identifica-
tion, when measurements are “too dense” compared with the step sizes selected by
the adaptive integrators. Suppose one stopped the integrator at each of these points,
then “too much” computational effort would be wasted. In particular, integrators
with adaptive order control would find the lowest possible orders as optimal, if the
distance between two neighboring points were “too small”. A dense output option

Roadmap for Numerical Integrators 79

−1 −0.5 0 0.5 1
0

0.05

0.1

0.15

0.2

0.25

t

τ k

Stepsizes in DOPRI5 without restart.

−1 −0.5 0 0.5 1
0

0.05

0.1

0.15

0.2

0.25

t

τ k

Stepsizes in DOPRI5 with restart.

−1 −0.5 0 0.5 1
10

−15

10
−10

10
−5

t

|y
k−

y(
t k)|

Error with DOPRI5 without restart.

−1 −0.5 0 0.5 1
10

−15

10
−10

10
−5

t

|y
k−

y(
t k)|

Error with DOPRI5 with restart.

(a) (b)

(c) (d)

Fig. 2.12 Example 9. Left: A discontinuity of y000 at t D 0 causes step size reduction and accuracy
loss. Right: Stop and restart of the integration at t D 0 preserves the accuracy also beyond t D 0

will usually leave the step-size control untouched and apply some interpolation
formula for the points in between the automatically selected points. Such an option
is easily implemented in multistep methods, Adams (Sect. 2.2.3) as well as BDF
(Sect. 2.3.2) methods, since they are both constructed via interpolation formulas. In
explicit RK methods, this option is conveniently realized via embedding techniques
(Sect. 2.2.1). In the implicit Radau methods, there is anyway a natural representation
of the whole trajectory via collocation. Extrapolation methods need to implement
an extra device based on cubic Hermite interpolation; higher order dense output
formulas have been worked out by E. Hairer and A. Ostermann [32].

Delay Differential Equations

As already mentioned in (1.5) in the introduction, the standard ODE system is
sometimes replaced by a delay system. In biological systems, the retardation or

80 Roadmap for Numerical Integrators

delay time � > 0 typically depends nonlinearly on the solution y, so that instead
of (1.5) one should better write

y0 D f .y.t/; y.t � �.y.t//// ; y.t/ D �.t/ for Œ��; 0�

with a given initial function �. Numerical integrators with a dense output option
also permit the treatment of delay or retarded differential equations (DDEs),
see (1.5). Among the explicit RK methods, we mention the code RETARD due to
E. Hairer, among the implicit RK methods the code RADAR5 due to N. Guglielmi
and E. Hairer [31]. In MATLAB, the solver dde23 due to L. F. Shampine [56] is
provided for DDEs with constant delays, a case rare in systems biology; this code
tracks discontinuities and integrates numerically by the explicit Runge-Kutta (2,3)
pair and an interpolant implemented within MATLAB’s ode23.

Reliability

A numerical integrator is said to be “reliable”, if the delivered solutions are
“accurate enough” compared with the condition of the problem at hand. For a basic
understanding of this issue recall Sects. 2.1.1 and 2.1.2 where the relation of local
and global accuracy has been discussed in some detail. From this discussion we
know that local discretization errors need to be estimated; these estimates then enter
into some adaptive control of step sizes (and possibly also orders). The finally
achieved accuracy additionally depends on the structure of the underlying ODE
system and the number of integration points. In this respect, one-step methods, in
particular extrapolation methods, have a natural advantage, since they require less
integration points than multistep methods.

Robustness

In the world of mathematical ODE modelling, this is the most important property:
a numerical integrator should solve a large class of given problems (no matter
how difficult) without much ado. Apart from the many details discussed above,
robustness typically requires additional heuristic strategies (e.g., avoid division by
zero, find a reasonable starting step size) and a careful implementation of software.

Scaling

Robustness typically requires a subtle application of scaling techniques within
the code, an intricate issue that we have not touched upon in this book. Apart
from any external scaling of variables prescribed by the user, robust codes often
realize some internal scaling. Such a device is necessary to assure that any relative
versus absolute error criterion works. Moreover, quite often “small” elements of the

Roadmap for Numerical Integrators 81

numerical sensitivity matrices are set to zero – a device only reasonable when the
term “small” is defined, which, in turn, is only reasonable, if scaled quantities are
treated.

2.5.2 Different Numerical Behavior in Two Similar Problems

In this section, we present two problems from systems biology that, at first glance,
look similar from the point of view of mathematical modelling. Both of them are
of moderate size. They may serve as typical examples for how to deal with larger
problems.

Human Menstrual Cycle Problem GYNCYCLE

This model, published in detail in [53], has already been presented above as
Example 1. In Fig. 1.6, the compartments of the model have been illustrated. In
Fig. 1.7, part of the corresponding chemical model has been presented in the usual
form of a reaction diagram. Thus one arrives at a mathematical model with d D 33

ODEs and 114 parameters, from which 63 degrees of freedom could be identified
by methods described in the subsequent Chap. 3.

Bovine Estrous Cycle Problem BOVCYCLE

This model has been inspired by the above human menstrual cycle model. In fact,
the endocrine mechanisms that regulate the bovine estrous cycle are rather similar
to those of the human menstrual cycle. A first version has been published in [7]. Our
subsequently presented computations refer to the more recent version [58], where
further details can be found. As for the selected compartments for the physiological
description, Fig. 1.6 can again serve as defining the terms. A subdiagram of the
chemical model is given in Fig. 2.13, to be compared with the more elaborate
human model in Fig. 1.7. Finally, a mathematical model with d D 15 ODEs and
60 parameters comes up.

Comparative Performance of Numerical Integrators

In Figs. 2.14 and 2.15, we show the comparative performance of several numerical
integrators. The documented local error tolerances TOL, see (2.14), range within
10�3; : : : ; 10�6, which is a reasonable range for typical problems from systems
biology. As for the performance, we study both the comparative CPU times required
on a Fujitsu Siemens Lifebook E8210 and the achieved global accuracies ERR,
see (2.15). The CPU time is a reasonable performance measure, whenever both

82 Roadmap for Numerical Integrators

LH Pituitary

FSH Pituitary

LH Blood

FSH Blood

Follicles

*

*

GnRH PituitaryGnRH Hypothalamus

Corpus Luteum

Oxytocin Enzymes

α FOI2FGP

Estradiol

Progesterone

Inhibin

Fig. 2.13 Flowchart of a model for the bovine estrous cycle. dashed lines: transitions, elimination,
or chemical reactions, solid lines with filled arrows: stimulatory effects (Hill functions hC), solid
lines with unfilled arrows: inhibitory mechanisms (Hill functions h�)

non-stiff and stiff integrators are compared. As for the norm used to define ERR,
we selected the scaled root mean square error, i.e.

ERR D

1

d

d
X

iD1

.yi.T/ � yi;ref.T//2

yi;scal.T/

!1=2

; (2.66)

wherein yref is the (highly accurate) computational result obtained with the extrapo-
lation code LIMEX for TOL = 10�12 and yscal is the scaling vector obtained during
the computation.

Small test set of integrators. First, in order come to a fast decision about
which numerical integrator to use, we test on a small subset of integrators that
includes both stiff and non-stiff ones. On the basis of what has been presented in
this chapter, let us select the non-stiff Runge-Kutta integrator DOPRI5, the stiff
extrapolation integrator METAN1, and the mixed multistep code LSODA with
automatic switching between a non-stiff Adams method and a stiff BDF method.
The comparative results are presented in Fig. 2.15. From these numbers, we may
gain the following insight:

• Problem BOVCYCLE is non-stiff, as can be seen from the small amount of
computing time of DOPRI5 versus METAN1.

Roadmap for Numerical Integrators 83

10
−6

10
−5

10
−4

10
−3

10
−3

10
−2

10
−1

10
0

TOL

C
P

U
 ti

m
e

[s
]

DOPRI5
METAN1
LSODA
LIMEX
SEULEX
RADAU5

CPU time for BOVCYCLE

10
−6

10
−5

10
−4

10
−3

10
−3

10
−2

10
−1

10
0

TOL

C
P

U
 ti

m
e

[s
]

DOPRI5
METAN1
LSODA
LIMEX
SEULEX
RADAU5

CPU time for GYNCYCLE

10
−6

10
−5

10
−4

10
−3

10
−6

10
−4

10
−2

10
0

TOL

E
R

R

DOPRI5
METAN1
LSODA
LIMEX
SEULEX
RADAU5

scaled root mean square error for BOV-
CYCLE

10
−6

10
−5

10
−4

10
−3

10
−6

10
−4

10
−2

10
0

E
R

R

DOPRI5
METAN1
LSODA
LIMEX
SEULEX
RADAU5

TOL

scaled root mean square error for GYN-
CYCLE

(a) (b)

(c) (d)

Fig. 2.14 Performance of six numerical integrators in two similar problems, to be compared with
Fig. 2.15. Left: Bovine estrous cycle problem BOVCYCLE. Right: Human menstrual cycle problem
GYNCYCLE. Top: CPU time. Bottom: Achieved global accuracy

• Vice versa, problem GYNCYCLE is stiff, just compare the higher CPU of
DOPRI5 versus METAN1.

• In the non-stiff problem, the accuracies of all three integrators are nearly the
same.

• In the stiff problem, the accuracies spread by a factor of roughly 10, with the
non-stiff integrator DOPRI5 surprisingly best, which yields to the insight that
this problem is only mildly stiff.

The number of steps selected by the automatic step-size controls (not presented in
detail here) is

• for BOVCYCLE: between 103 with LSODA, DOPRI5 and 102 with METAN1,
• for GYNCYCLE: between 104 with DOPRI5 and again 102 with METAN1.

In summary, Fig. 2.15 leads to the suggestion of using DOPRI5 in the non-stiff
problem BOVCYCLE, but LSODA or METAN1 in the stiff problem GYNCYCLE.

Larger test set of integrators. Sometimes, users want a comparison over a
larger test set of integrators. Therefore, beyond the three integrators DOPRI5,

84 Roadmap for Numerical Integrators

10
−6

10
−5

10
−4

10
−3

10
−3

10
−2

10
−1

10
0

TOL

C
P

U
 ti

m
e

[s
]

DOPRI5 METAN1 LSODA

CPU time for BOVCYCLE

10
−6

10
−5

10
−4

10
−3

10
−3

10
−2

10
−1

10
0

TOL

C
P

U
 ti

m
e

[s
]

DOPRI5 METAN1 LSODA

CPU time for GYNCYCLE

10
−6

10
−5

10
−4

10
−3

10
−6

10
−4

10
−2

10
0

TOL

E
R

R

DOPRI5 METAN1 LSODA

scaled root mean square error for BOV-
CYCLE

10
−6

10
−5

10
−4

10
−3

10
−6

10
−4

10
−2

10
0

TOL

E
R

R

DOPRI5 METAN1 LSODA

scaled root mean square error for GYN-
CYCLE

(a) (b)

(c) (d)

Fig. 2.15 Comparative performance of three numerical integrators in two similar problems. Left:
Bovine estrous cycle problem BOVCYCLE. Right: Human menstrual cycle problem GYNCYCLE.
Top: CPU time. Bottom: Achieved global accuracy

METAN1, LSODA above, we additionally include the three stiff integrators
LIMEX, SEULEX, RADAU5. The comparative results are given in Fig. 2.14. From
this larger data set, we conclude that the characterization “stiff versus non-stiff”
remains the same. Moreover, the data about the computing times and achieved
accuracies also remain essentially the same.

Remark 9 If, beyond the mere trajectory simulation, sensitivity analysis is wanted,
then the linearly implicit extrapolation codes LIMEX, METAN1 have a structural
advantage that also pays off as a gain in CPU time.

2.5.3 Example: Warburg Effect in Tumor Cells

This rather complex systems biological network has been worked out by M. König,
H.-G. Holzhütter, and N. Berndt [42] from Charité, Berlin. We here partially follow
their presentation. However, we focus on details of their numerical modeling, which
is the topic of this monograph. Readers interested in more biological details are

Roadmap for Numerical Integrators 85

Fig. 2.16 Schematic representation of cellular-scale model for energy metabolism (Courtesy M.
König)

referred to the original paper. The so-called Warburg effect means that solid tumor
cells, as opposed to normal cells, exhibit an extraordinarily high demand for glucose
even under aerobic conditions (i.e. in the presence of oxygen) with a substantial
part of glucose being converted into lactate. In their work, the authors address the
problem of whether zonation of the energy metabolism within a non-vascular tumor
could serve as a means to influence its growth capacity.

Two-Scale Modeling

The authors of [42] developed an elaborate model for inter- as well as intra-
cellular energy metabolism. Each cell is modeled via three compartments, the
mitochondrion, the cytosol, and the extracellular space. Within these compartments,
a kinetic model for 78 intracellular metabolites is realized. Figure 2.16 gives
an impression of the complex metabolism within a single tumor cell. The most
important processes are the tricarboxylic acid (TCA) cycle and the two central
ATP delivering pathways, i.e. the glycolytic (GLY) pathway and the oxidative
phosphorylation (OXP) pathway.

86 Roadmap for Numerical Integrators

Fig. 2.17 Schematic representation of tissue-scale model of tumor metabolism. Note that Fig. 2.16
is a zoom into Fig. 2.17 (Courtesy M. König)

The coupling between tumor cells and with their tissue environment is again
schematically described by a compartment model, see Fig. 2.17. The tumor as a
whole is supplied with nutrients and oxygen via the nearest blood vessel (on the
left of the figure). Exchangeable metabolites between the cells and the extracellular
space are glucose, lactate and oxygen, which are assumed to diffuse between
adjacent spatial layers – represented by double arrows in Fig. 2.17. In order to
model the continuous diffusion process within the discrete compartment setting, a
second-order finite difference approximation is used to replace the one-dimensional
diffusion equation (which would be a partial differential equation).

Numerical Simulation

The total model above was specified to contain a fixed number of 25 cells, 5
extracellular compartments per cell, 78 intracellular metabolites per cell, and 3
extracellular metabolites. These model equations have been carefully programmed
by hand to yield a system of 2328 ODEs. The project required repeated simulation
runs within a parameter study that involved external oxygen and glucose availability
or different metabolic strategies of energy production. This study required about
1000 simulation runs of the 2328 ODEs. Hence, computing time really matters here.

After first experiences of the authors with non-stiff integration, it quickly became
clear that the ODE system is stiff (mainly due to the equations for the respiratory
chain). First simulations with a stiff ODE code provided within a well-known
commercial package could only be performed for up to 5 cells, which already
required several minutes per run (to be multiplied by a factor of 1000 in the
parameter study!). Simulations for the large systems just failed due to excess of
storage requirement. The computational bottleneck turned out to be the solution
of the large linear systems at each time step. In order to cope with this difficulty,
the equations in the ODE system were reordered resulting in a banded structure
of the Jacobian matrix: Metabolites and compartments related to individual cells
were arranged within one block, as opposed to the original implementation that
distributed elements over the whole system matrix. As a consequence, a numerical

Roadmap for Numerical Integrators 87

band solver could be applied to solve the linear equations. Upon combining the
two FORTRAN codes LIMEX for stiff integration (see Sect. 2.4.2) and MUMPS,
a direct parallel sparse solver (due to [1, 2], here in band mode), the ODE system
could be integrated within around 10 sec. This brought the whole parameter study
within a tolerable region of computing time.

After the work reported in [42], the authors further developed their model so
that today the ODE system is about three times larger than the one in the original
publication and heavily relies on parameter studies. In order to further speed
up computations, the present even larger system is integrated with the package
RoadRunner, a .NET library for carrying out numerical simulations directly from
given SBML models. RoadRunner uses the (implicit) BDF integrator CVODE
[37, 38] (written in C) for differential equation solving and event handling. With
this change, the simulation times of the larger ODE system could be reduced to
about 3 sec. per run. Moreover, a modified scientific analysis now requires about
10.000 runs per parameter study.

If, however, sensitivity studies should be included, then the linearly implicit
extrapolation codes like LIMEX or METAN1 (see Sect. 2.4.2) would again enter
the game.

Chapter 3
Parameter Identification in ODE Models

In most systems biological models, a series of parameters enters that need to be
discussed. In the preceding Sect. 2.5.3, we presented an example, where simulations
for a large set of parameters have been performed and analyzed. This is the situation,
when no measurements are available. The present chapter deals with the case,
when measurements are available and can be used, in principle, to identify at least
part of the parameters. Such parameter identification problems in ODE models
typically arise as nonlinear least squares problems, see Sect. 3.1. They are solved
by Gauss-Newton methods, which require the numerical solution of linear least
squares problems within each iteration. For pedagogical reasons, the order of these
three topics is reversed in our presentation. Therefore, in Sect. 3.2, linear least
squares problems are discussed first including the important issue of automatic
detection of rank deficiencies in matrix factorization. Clearly, not all data sets
are equally well suited to fit all unknown parameters of a given model. Next,
in Sect. 3.3, the class of “adequate” nonlinear least squares problems is defined,
both theoretically and computationally, for which the local Gauss-Newton method
converges. Globalization via a damping strategy is presented. The case of possible
non-convergence is treated in detail to find out which part originates from an
insufficient model and which one from “bad” initial guesses for the Gauss-Newton
iteration. In Sect. 3.4, all pieces of the text presented so far are glued together
to apply to the ODE models, which are the general topic of the book. Finally,
in Sect. 3.5, three examples with increasing complexity are presented. First, the
notorious predator-prey problem is revisited, which turns out to be quite standard.
Next, in order to connect the advocated computational ideas with modelling
intuition, a simple illustrative example is worked out in algorithmic detail. Last,
a more complex parameter identification problem related to a model of the human
menstrual cycle is discussed in detail.

In order to connect the advocated computational ideas with modelling intuition,
a simple illustrative example is worked out in algorithmic detail.

© Springer International Publishing Switzerland 2015
P. Deuflhard, S. Röblitz, A Guide to Numerical Modelling in Systems Biology, Texts
in Computational Science and Engineering 12, DOI 10.1007/978-3-319-20059-0_3

89

90 Least Squares Problem

3.1 Least Squares Problem Formulation

Given some set of experimental data

.ti; yi/; ti 2 R; yi 2 R
d; i D 1; : : : ; M ;

assume that these data can be described by some underlying law such that

y.t/ D '.tI p/; yi D y.ti/:

Herein ' is a given model function that contains q unknown (model) parameters

p D .p1; : : : ; pq/ :

Usually, we have dM � q, so that replacing the data by the model would result in
some data compression, once the parameters are known. At first glance, one might
want to determine p in such a way that

yi D '.tiI p/; i D 1; : : : ; M;

or, in other words, that the residuals vanish, i.e.

fi WD yi � '.ti; p/ D 0; i D 1; : : : ; M: (3.1)

In general, however, this will be asking for too much, since both measurement errors
and model errors will play a role. Hence, the above relation (3.1) will need to be
replaced by some

fi D yi � '.ti; p/ 	 0; i D 1; : : : ; M :

Obviously, the question arises: What does “approximately zero” mean?

Gaussian Least Squares Problem

In this situation, the German mathematician C.-F. Gauss (1777–1855) suggested to
minimize the sum of squares

FTF D kFk2
2 D

M
X

iD1

kfik2 D min where F D .fi/ D .yi � '.ti; p//; fi 2 R
d :

For an illustration of such a minimization see Fig. 3.1.

Least Squares Problem 91

Fig. 3.1 Model compared
with data in Gaussian least
squares problem (d D 1)

0 5 10 15
−2

0

2

4

6

8

10

12

t

y
measurement values

model function

residuals

Linear Versus Nonlinear Least Squares Problems

Whenever the model function ' depends linearly on the parameters p (not on t!),
then we speak of linear least squares problems, which we will treat in Sect. 3.2.
Whenever this dependence is nonlinear, we speak of nonlinear least squares
problems, which we will treat in the subsequent Sect. 3.3. In systems biology, the
model function '.tI p/ is typically defined via a system of ODEs, a numerically more
challenging case, which we will work out to necessary detail in Sect. 3.4 further
below. The staircase of the presentations has its reason in the following structure:
The ODE case leads to nonlinear least squares problems; important algorithmic
features for the treatment of nonlinear least squares problems already come up in
the treatment of linear least squares problems.

Statistically Correct Formulation

The statistical assumption underlying the Gaussian least squares problem formula-
tion is only valid, if the ansatz is coupled with measurement tolerances 0 < ıyij <

1 such that

kD�1
tol Fk2

2 D
M
X

iD1

d
X

jD1

�

fij
ıyij

�2

D min (3.2)

with properly defined diagonal matrix Dtol in terms of given elements ıyij. If
an individual measurement is unavailable, then this can be formally included as
ıyij D 1, which means that the corresponding term in the sum is just dropped.
If measurements could be assumed to be exact, then this would formally show up
as ıyij D 0; this does, of course, not mean to divide by zero (!), but that special

92 Least Squares Problem

algorithms for equality constrained linear least squares problems must be applied
(interested readers may want to look up [15, Section 4.3]). However, this latter case
of exact measurements will practically not occur in systems biology.

The image space of the mapping F has dimension m � M � d, where equality
holds, if measurements are available for all variables at all points. For ease of
presentation, we will subsequently quite often use the simpler “one index” version
with fi 2 R

1, i.e. d D 1.

Typical Measurement Tolerances

Typical choices for the components ıyi are (dropping the second index, as stated
above):

(a) absolute measurement errors

ıyi D ıyabs ;

wherein the common factor ıyabs does not need to be included in the problem
formulation, since it would just cancel throughout the computation; hence, if no
explicit weighting is included, then this is automatically equivalent to having
imposed an absolute error concept;

(b) relative measurement errors arise whenever the tolerances satisfy

ıyi D jyij TOL ;

where the common factor TOL again does not need to be included in the
problem formulation, since it would cancel;

(c) Poisson distribution errors, e.g., in photodetectors or alike, where all data yi are
positive, give rise to

ıyi D p
yi :

Without an explicit inclusion of such tolerances the whole problem formulation may
be wrong in view of the statistical background! Only for ease of writing, we will
subsequently mostly drop any kind of weighting.

Inequality Constraints for Parameters

Quite often, parameters are restricted due to inequality constraints, most often as
positivity constraints. Any such constraints are tractable via nonlinear transforma-
tions, say � W u ! p. In Table 3.1, we give a list of possibilities. In order to illustrate
the case, we give a small example below.

Example 10 (Arrhenius law) Assume that m D 21 measurements (d D 1; m D M)

.Ti; Ki/ i D 1; : : : ; m

Least Squares Problem 93

Table 3.1 Possible
transformations to treat
inequality constraints for
parameters

Constraint Transformation �.u/

p > 0 p D exp.u/, see, e.g., formula (3.3)

A � p � B p D A C B�A
2

.1 C sin u/

p � C p D C C
�

1 � p
1 C u2

�

p � C p D C �
�

1 � p
1 C u2

�

of reaction rate coefficients K versus temperature T are given. The underlying
chemical model is the Arrhenius law (compare (1.15))

K.T/ D A � exp

�

��E

RT

�

; (3.3)

where R D 8:3145 J
mol�K denotes the universal gas constant, A the unknown pre-

exponential factor, and �E the unknown activation energy. So the parameter vector
is p D .A; �E/ and hence q D 2. Compared with Fig. 3.1, the temperature T
takes the role of time t and K the one of y. As the model function K.T/ depends
nonlinearly on the parameter �E, we have a nonlinear least squares problem. Its
solution, i.e. model versus data, is depicted in Fig. 3.2, left.

If, however, we take the log of both sides of (3.3), we arrive at the model

y.t/ WD log K.T/ D log A � 1

RT
�E : (3.4)

Herein the unknown parameters are p D .log A; �E/, again with q D 2.
Consequently, we transform the data to

.Ti; yi/ i D 1; : : : ; m :

720 740 760 780 800 820

0

0.2

0.4

0.6

0.8

1

1.2
x 10−3

T

K

720 740 760 780 800 820

−12

−11

−10

−9

−8

−7

−6

T

lo
g

K

Fig. 3.2 Example 10. Arrhenius law (d D 1; q D 2) (Data from [17, Exercises 3.7 and 3.8]). Left:
Nonlinear least squares problem. Right: Linear least squares problem

94 Least Squares Problem

The model function y.T/ depends only linearly on both parameters, which means
that we have a linear least squares problem. The corresponding solution, model
versus data, is represented graphically in Fig. 3.2, right.

Non-Gaussian Formulations

Choices other than the Gaussian least squares formulation are:

(a) l1-minimization:

kFk1 D
m
X

iD1

jfij D min ;

which is often said to be less sensitive to statistical outliers; this approach is
equivalent to a linear programming problem, which requires a much larger
amount of computing effort;

(b) l1-minimization:

kFk1 D max
iD1;:::m

jfij D min ;

also named Chebyshev fit, which leads to a dual linear programming problem
and again requires much more computational effort.

We will, however, restrict our attention to the Gaussian least squares formulation
throughout the book.

Bayesian Approach

All of the above formulations, Gaussian or non-Gaussian, treat parameters p as
fixed constants; this is sometimes called the frequentist approach. In contrast, the
Bayesian approach treats the unknown parameters as random variables. In this
setting, the conditional probabilities of the parameters p given data y read

P.pjy/ D P.yjp/P.p/

P.y/
: (3.5)

This is the famous Bayes’ theorem. Herein the conditional probability of the data y
given parameters p, the likelihood P.yjp/, is given by the formula

P.yjp/ D exp

0

@�1

2

M
X

iD1

d
X

jD1

�

fij
ıyij

�2

1

A ;

Linear Least Squares Problems 95

wherein the quantities ıyij play the role of user prescribed standard deviations
of the measurements, assumed to be normally distributed. Obviously, maximizing
the likelihood is equivalent to minimizing (3.2), the sum of squares in the above
exponent. As can be seen in formula (3.5), the denominator value P.y/ is just
a normalization constant. In order to determine the so-called posterior P.pjy/,
information about the so-called prior P.p/ will be necessary. This usually requires
an a-priori assumption. Throughout this book, we take the frequentist point of
view. Readers interested in details about the Bayesian point of view may want
to look up the rather recent survey [60] by J. Vanlier et al. or, from a deeper
mathematical point of view, the elaborate article [59] by A. M. Stuart. Present
algorithmic realizations based on Markov chain Monte Carlo (MCMC) techniques
suffer from high computational costs and are therefore not suited for the large ODE
networks that we envision in our book.

3.2 Linear Least Squares Problems

In this section, we assume that the model function ' depends linearly on the
parameters p D .p1; : : : ; pq/ so that we may write

'.tI p/ D a1.t/p1 C : : : C aq.t/pq

wherein a1.t/; : : : ; aq.t/ W R ! R
d are given functions. In short-hand notation of

linear algebra we may then express the linear least squares problem as

ky � Apk2 D min ; (3.6)

where y D .y1; : : : ; ym/ characterizes the measurements and A D .aj.ti// is an
.m; q/-matrix with m � q. In what follows, we will identify the norm k � k with the
Euclidean norm k � k2, unless explicitly stated otherwise.

3.2.1 Normal Equations

As a prerequisite to determine the solution of the above minimization problem (3.6)
let us first define the orthogonal complement of a subspace U � V by

U? D fw 2 Vj hw; ui D 0 for all u 2 Ug ;

wherein the inner product h�; �i is understood to be the Euclidean inner product.
Given some vector v 2 V , the vector u 2 U � V that minimizes kv � uk is just the
orthogonal projection of v onto U. For illustration, view Fig. 3.3, left, wherein for
schematic representation we have V D R

2, while U is the linear subspace given by

96 Linear Least Squares Problems

the straight line. Hence we may write:

kv � uk D min
u02U

kv � u0k ” v � u 2 U?: (3.7)

From this geometric insight we may immediately derive the solution of (3.6). For
this purpose, we define the range of the .m; q/-matrix A by

R.A/ D fAx; x 2 R
qg � R

m�qC1 :

With this definition Fig. 3.3, right, is the direct analogue of Fig. 3.3, left. Hence, by
virtue of (3.7), we are immediately led to

ky � Apk D min , y � Ap 2 R.A/? (3.8)

From this insight, we obtain

hy � Ap; Api D hAT.y � Ap/; pi D 0 , AT.y � Ap/ D 0 :

The thus arising q equations

ATAp D ATy (3.9)

are called the normal equations. They are uniquely solvable, if the .q; q/-matrix ATA
is nonsingular, which is equivalent to the condition that the .m; q/-matrix A has full
column rank q (for m > q).

v

u’

v−u’ U

Apθ

(A)

Ap−yy

R

Fig. 3.3 Left: General orthogonal projection. Right: Geometric solution of linear least squares
problem. Note that cos D kApk=kyk

.

Linear Least Squares Problems 97

Algorithm

In order to solve the above Eqs. (3.9) we first observe that the .q; q/-matrix ATA is
symmetric positive semi-definite. Under the assumption that the .m; q/-matrix A has
full column rank q, it is even symmetric positive definite (in short: spd). Thus we
are naturally led to the following algorithmic steps:

(a) Cholesky factorization ATA D LLT ,
where L is a lower triangular matrix, which is nonsingular, if rank.A/ D q,

(b) computation of the right-hand side: d D ATy,
(c) forward/backward substitution Lz D d; LT p D z.

The main computational costs of this algorithm are:

• computation of ATA W � 1
2
q2m,

• Cholesky factorization of ATA W � 1
6
q3,

which, for m � q, sum up to total costs of

� 1

2
q2m operations : (3.10)

However, this algorithm ignores an important aspect, since we know from (A.7) that

cond2.A
TA/ D cond2.A/2 : (3.11)

In fact, a typical feature of least squares problems is that cond.A/ � 1, so that this
algorithmic approach drastically deteriorates the condition of the originally stated
problem.

Example 11 This illustrative Example is notorious in the literature. Let A denote
the following .3; 2/-matrix and ATA the corresponding .2; 2/-matrix:

A D
0

@

1 1

" 0

0 "

1

A ; ATA D
�

1 C "2 1

1 1 C "2

�

The matrix A has full rank, if " > eps, where eps denotes the relative machine
precision defined by the floating point operation fl.1C"/ D 1 for j"j � eps. Suppose,
however, we have

eps < " � p
eps :

98 Linear Least Squares Problems

Then we obtain the rounded matrices

fl.A/ D
0

@

1 1

" 0

0 "

1

A ; fl.ATA/ D
�

1 1

1 1

�

;

which means that fl.A/ still has full rank, whereas fl.ATA/ is strictly singular. Hence,
the normal equations are not solvable! This effect is also clearly reflected in the
condition numbers (see Appendix A.2)

cond2.A
TA/ D 2 C "2

"2
� 2

eps
; cond2.A/

:D
p

2

"
<

p
2

eps
(3.12)

3.2.2 QR-Factorization

An alternative algorithmic approach starts from the fact that the Euclidean norm k�k
is invariant under orthogonal transformation. To see this, let Q denote an orthogonal
.m; m/-matrix, i.e. with QQT D Im, so that

ky � Apk2 D .y � Ap/TQQT.y � Ap/ D kQT.y � Ap/k2 :

The basic idea is to construct some orthogonal matrix Q such that the rectangular
matrix A is transformed to some upper triangular shape

A D Q

�

R
0

�

, QTA D
�

R
0

�

; (3.13)

where R is an upper triangular .q; q/-matrix. Suppose now that such a factorization
has been realized and split the vector according to QTy D .�1; �2/

T . Then the linear
least squares problem can be solved via

ky � Apk2 D kQT.y � Ap/k2 D
�

�

�

�

�

�1 � Rp
�2

��

�

�

�

2

D k�1 � Rpk2 C k�2k2 � k�2k2 :

Obviously, the unknown parameter p should be chosen such that the first term
vanishes. Under the assumption that rank.A/ D q, which implies rank.R/ D q, the
triangular matrix is invertible and the solution is uniquely determined by

Rp D �1 , p D R�1�1 : (3.14)

Linear Least Squares Problems 99

Thus we arrive at the minimal residual

kFk2 D ky � Apk2 D k�2k2 :

In passing we note that, unlike the normal equation approach, the QR-factorization
approach is numerically stable, since cond2.Q/ D 1 implies cond2.A/ D cond2.R/.

As a standard, the QR-factorization is realized via Householder reflections with
column pivoting, details of which are elaborated in Appendix A.3.

Example 12 Let us return to the matrix A defined in Example 11 above. In the QR
approach we obtain the rounded intermediate results

QQT D 1p
2

0

@

�p
2 �p

2" 0

" �1 1

�" 1 1

1

A ; QR D
0

@

�1 �1

0
p

2"

0 0

1

A

For " > eps, the triangular linear system (3.14) is numerically uniquely solvable,
compare (3.12).

Rank Decision

From (3.9) we know that the linear least squares problem is only uniquely solvable,
if the .m; q/-matrix A has full column rank q. Unlike the normal equation algorithm,
the QR-factorization supplies a cheap possibility to “identify” the rank. In this
approach, the rank of A will be the same as the one for the arising matrix R. In
general, the question of how to “determine” the rank of a matrix is all but trivial.
Strictly speaking, singular value decomposition should be exploited: Let

�1 � : : : �q � 0

denote the singular values of the matrix A, ordered according to their size. If �q > 0,
then (A.6) tells that the condition number can be expressed as

cond2.A/ D �1

�q
:

100 Linear Least Squares Problems

If �q D 0, then the rank of A is formally defined by

�� > 0; ��C1 D 0 , � D rank.A/ :

In actual computation, however, the relative accuracy "A of the matrix A will have
to come in, see Appendix A.3. A system is then said to be computationally solvable,
whenever

cond2.A/ D �1

�q
<

1

"A
, �q > �1 "A : (3.15)

In this spirit, some numerical rank will be defined via

�� > �1 "A; ��C1 � �1 "A , � D rankSVD.A/ : (3.16)

In order to realize this definition numerically, we would need to implement singular
value decomposition for the whole linear least squares solution. This is usually
regarded as “overkill”.

As shown in Appendix A.3, the QR-factorization by Householder transforma-
tions with column pivoting generates an upper triangular matrix R D .rij/ whose
diagonal elements are ordered according to

jr11j � : : : � jrqqj � 0 : (3.17)

If jrqqj > 0, we may define some subcondition number

sc.A/ D jr11j
jrqqj ;

The name originates from the fact that

sc.A/ � cond2.A/:

This quantity naturally arose from a subtle elementwise error propagation analysis
and was defined by P. Deuflhard and W. Sautter [20]. For the subcondition number
similar properties as for the condition number hold:

(a) sc.A/ � 1

(b) sc.˛A/ D sc.A/; ˛ 2 R
1; ˛ ¤ 0

(c) sc.A/ D 1 , A ¤ 0 singular

Example 13 For illustration, we return to Example 11 and compare

cond2.R/
:D p

2=" <
p

2="A ; sc.R/ D 1=.
p

2 "/ < 1=.
p

2 "A/ ;

Linear Least Squares Problems 101

which shows that the (much cheaper computable) subcondition number differs only
by a factor of 2 from the condition number.

Based on the subcondition number, a system is said to be computationally
solvable, whenever (see [15] and references therein)

sc.A/ D jr11j
jrqqj <

1

"A
, jrqqj > jr11j"A : (3.18)

Computational experience in practical applications shows that the difference
between the two criteria (3.15) and (3.18) is marginal. In addition, the inequalities

1

"A
< sc.A/ � cond2.A/

imply that “numerically singular” due to QR-factorization is always “numerically
singular” due to SVD, but not vice versa.

The extension to define some reduced numerical rank will naturally be

jr��j > jr11j"A; jr�C1;�C1j � jr11j"A , � D rankQR.A/ : (3.19)

Note that the rank decision devices (3.16) and (3.19) are not as closely connected
as (3.15) and (3.18).

Generally speaking, an “exact” rank � cannot be determined, among other
reasons due to the not precisely known accuracy "A. If the matrix comes from pure
linear algebra, then mostly the machine precision eps comes in via "A D eps. In
Sect. 3.4 below, the matrix will arise as a Jacobian that is elementwise computed
via the solution of a system of ODEs, the sensitivity equations; as a consequence,
the accuracy "A will there be the discretization error for these ODEs, always much
larger than the machine precision.

Influence of Row and Column Scaling

The criteria for both computational solvability and rank decision are based on
the values of the diagonal elements of the upper triangular matrix R. As a
consequence of the QR-factorization worked out in Appendix A.3, these values
depend nonlinearly on row as well as column scaling. As for row scaling, recall
from (3.2) that

Dtol D diag.ıy1; : : : ; ıym/ > 0

needs to be chosen to ensure that the problem at hand is correctly formulated
in terms of statistics. As for column scaling, this is induced by scaling different

102 Linear Least Squares Problems

physical units of the parameters, say

Dscal D diag.p1;scal; : : : ; pq;scal/ > 0 :

Hence, in actual computation, the linear least squares problem (3.6) should always
be envisioned in its scaled form as

kD�1
tol .ADscalD

�1
scalp � y/k D k NANp � Nyk D min (3.20)

where

NA D D�1
tol ADscal; Ny D D�1

tol y; Np D D�1
scalp :

In this setting, the QR-factorization will be performed on the weighted input NA˘

(including the rank decision, see above) to obtain the scaled parameters Np, from
which finally the parameters

p D ˘TDscal Np

are obtained. For the variation of the scaled variable components we get

ı Nyi D ı
yi

ıyi
D ıyi

ıyi
D 1; i D 1; : : : ; m;

i.e. all scaled variables have the same statistical standard deviation with respect to
some reasonably defined underlying statistical distribution. This justifies to use the
condition number cond. NA/ (or the subcondition number sc. NA/, respectively) as a
measure of errors only of the matrix NA, ignoring those in the right hand-side Ny.

Algorithm for Rank-Deficient Case

Suppose that, based on the decision (3.19), the remainder “small” part of the
decomposed matrix has been dropped, see (A.9), so that we have

QTA˘ D
�

R S
0 0

�

; QTy D .�1; �2/T : (3.21)

We are therefore left to solve the underdetermined system

kAp � yk2
2 D kŒR; S� ˘Tp � �1k2

2 C k�2k2
2 D min :

Among the various efficient possibilities, we here select the QR OQ-factorization due
to G. Peters and J.H. Wilkinson [50] because of its simple interpretation. Its basic

Linear Least Squares Problems 103

idea is to construct Householder transformations OQ applied from the right in such a
way that

ŒR; S� OQT OQ ˘T p D �1 , Œ OR; 0� OQ ˘Tp D �1 :

Suppose we decompose Op WD OQ˘Tp D .Op1; Op2/
T so that we have kOpk D kpk. With

this factorization, the minimization problem now reads

k OR Op1 � �1k2 C kOp2k2 D min :

The upper triangular matrix OR differs from R only in its diagonal elements Orkk.
Consequently, an order comparable to (A.11) no longer holds, so that a subcondition
number based on the diagonal elements Orkk would no longer be a valid concept.
These diagonal elements satisfy the inequality

Orkk � rkk ; k D 1; : : : ; �

which guarantees that OR is nonsingular. Hence, the shortest linear least squares
solution is uniquely defined as

Op1 D OR�1�1; Op2 D 0 :

The storage scheme is similar to Fig. A.1, only the diagonal elements rkk D ˛k are
replaced by Orkk D Ǫk.

Model Reduction

The above algorithm conveniently permits to shed some light into linear dependen-
cies of the original parameters p. If we go back to the original meaning of the matrix

A D @'

@p
, we see that the above factorization implies

@'.tiI p/

@Op2

	 0 ; i D 1; : : : ; M : (3.22)

In words: In the light of the given measurements, the model function ' does
not depend on the parameters Op2, which are linear combinations of the original
parameters p. From this interpretation, we may derive some model reduction
technique. For this purpose, let us define

OI� D diag.1; : : : ; 1; 0; : : : 0/; OI?
� D Iq � OI� D diag.0; : : : ; 0; 1; : : : 1/ :

104 Linear Least Squares Problems

Hence,

OI� Op D Op1; OI?
� Op D Op2 : (3.23)

Assume now that the original parameters were dependent as

OI?
�

OQ˘Tp D 0 ; (3.24)

then the shortest solution condition Op2 D 0 would be automatically satisfied. This
would suggest some reduction of the number of parameters from q to � < q.

3.2.3 Generalized Inverses

Suppose we have to solve a linear system Ap D y for a .q; q/-matrix A. Under the
assumption that A is nonsingular, we are used to write the solution as p D A�1y – of
course, understood to be a formal notation only, not meant to be naively realized in
actual computation! The inverse is defined by the formal properties

A�1A D I; AA�1 D I : (3.25)

Suppose now that we have to solve a linear least squares problem for some given
.m; q/-matrix A

kAp � yk D min; � D rank.A/ � q < m :

In this case we would again like to have a formal definition of some generalized
inverse AC such that the solution can be formally written in a unique manner as

p D ACy :

Let us study the situation in terms of the rank � of the matrix A.

Full Rank

Assume first that � D q. Then ATA is nonsingular and the unique least squares
solution can be written as

ATAp D ATy , p D .ATA/�1AT

„ ƒ‚ …

DAC

y ;

Linear Least Squares Problems 105

where a definition of the generalized inverse naturally pops up. Again, the formal
representation p D ACy is understood to be independent of the algorithm actually
used to solve the problem, which in our case would better be the QR-approach than
the normal equations approach.

Rank Deficiency

Next, let � < q. In this case, a “unique” solution no longer exists. To see this, let us
introduce the nullspace N .A/ of the matrix A by

N .A/ D fz 2 R
q W Az D 0g:

Then for any solution p further solutions p C z; z 2 N .A/ exist, since

ky � Apk D ky � A.p C z/k; z 2 N .A/

In other words: The solutions form a .q � �/-dimensional subspace

L.y/ D fp 2 R
q W ky � Apk D ming D p� C N .A/ :

Unlike the solutions, the residual is unique, which means that it is the same for all
solutions p 2 L.y/, since

r.p/ D y � Ap D y � A.p� C z/ D y � Ap� � Az D y � Ap� D r.p�/ : (3.26)

This means that all different solutions have exactly the same “data fit” and cannot
be distinguished by mere comparison with the given data! Though this insight is
crucial for any modelling, it is nevertheless quite often ignored by researchers.

From the subspace L.y/, one usually selects the “shortest” solution

p� D ACy

by the condition

kp�k � kpk for all p 2 L.y/ :

The geometrical situation is represented in Fig. 3.4.

106 Linear Least Squares Problems

Fig. 3.4 “Shortest” solution
p� out of the solution set
L.y/ D p� C N .A/ in terms
of the nullspace projection
operator P? W Rd ! N .A/

as defined in the text

*

(A)

(y)
P p

p

Pp
p

L

N

Moore-Penrose Axioms

In the full rank as well as in the rank-deficient case the four axioms due to [49]
hold:

(i) .ACA/T D ACA
(ii) .AAC/T D AAC

(iii) ACAAC D AC
(iv) AACA D A

These four axioms uniquely define the generalized inverse AC – for a proof see the
original paper [49] or, e.g., the textbook [17]. Let us further define the matrices

P WD ACA; NP WD AAC : (3.27)

From axioms (i) and (ii) we see that

PT D P; NPT D NP :

From axioms (iii) and (iv) we get

P2 D .ACA/.ACA/ D ACA D P; NP2 D .AAC/.AAC/ D AAC D NP :

This means that the two matrices P and NP are projection matrices. Their orthogonal
complements

P? D I � P; NP? D I � NP

satisfy

AC NP? D AC.I � AAC/ D 0; P?AC D .I � ACA/AC D 0 : (3.28)

Nonlinear Least Squares Problems 107

The matrix NP performs a splitting of the residual space, since, in the here introduced
notation,

r.p�/ D y � Ap� D y � AACy D .I � NP/y D NP?y :

The matrix P performs a splitting of the solution space L.y/, since for any p 2 L.y/

p� D AC.Ap C r/ D .AAC/p C ACr D Pp C AC NP?y D Pp :

From this it is easy to verify that p� is shorter than any other solution, since

kp�k2 D kPpk2 � kPpk2 C kP?pk2 D kpk2 ; p 2 L.y/ :

Of course, upon including column scaling Dscal into the consideration, this property
will be replaced by

kD�1
scalp

�k � kD�1
scalpk :

Note that here column pivoting does not play a role, since the norm k � k is invariant
under permutation.

Remark 10 In the notation of the preceding Sect. 3.2.2, some straightforward
calculation yields the connection with the QR OQ-factorization in the form

NP D AAC D QOI�QT ; P D ACA D ˘ OQT OI�
OQ˘T : (3.29)

Obviously, both projectors have rank �. As a consequence, the relation (3.24) for
model reduction can be written in the form

P?p D ˘ OQT.0; Op2/
T D 0 : (3.30)

Linear Equality Constraints

The QR-factorization as worked out in Appendix A.3 can be easily modified in
such a way that also linear equality constraints with ıyi D 0 can be tackled. In this
limiting case, there still exist projections P; P? in the domain space of the matrix A,
but no longer any projections NP in the image space of A. Interested readers may find
details in [15, Section 4.1.2].

108 Nonlinear Least Squares Problems

3.3 Nonlinear Least Squares Problems

We return to the original problem (3.2), but drop all double indices and all
(necessary!) measurement tolerances for ease of presentation. Here we merely study
the nonlinear least squares problem

F.p/TF.p/ D kF.p/k2 D min (3.31)

in terms of some nonlinear mapping F W D R
q ! R

m with q < m � M � d,
explicitly written as

F.p/ D ŒF1.p/; : : : ; FM.p/�T with Fi.p/ D yi � '.ti; p/ ;

if all components have been measured, i.e. m D dM; otherwise only part of the
above components are inserted. The problem is to find a solution p� such that

kF.p�/k2 D min
p

kF.p/k2:

Whenever

F.p�/ D 0; (3.32)

then the problem is said to be compatible. As in the linear case, this occurrence is
rather rare, while “nearly compatible” problems are quite usual – a term to be made
more precise below.

3.3.1 Local Newton Versus Gauss-Newton Approach

We next turn to the numerical solution of such problems. To start with, we define
the corresponding Jacobian .m; q/-matrix, as

F0.p/ D

0

B

B

@

@
@p1

F1.p/ � � � @
@pq

F1.p/

:::
:::

@
@p1

Fm.p/ � � � @
@pq

Fm.p/

1

C

C

A

D �

0

B

B

@

@
@p1

'.t1I p/ � � � @
@pq

'.t1I p/

:::
:::

@
@p1

'.tMI p/ � � � @
@pq

'.tMI p/

1

C

C

A

If we write g.p/ D 1
2
F.p/TF.p/ D min, then g0.p/ can be calculated

componentwise as

g0.p/ D F0.p/TF.p/

Nonlinear Least Squares Problems 109

As a sufficient condition for p� to be a local minimum we thus get

g0.p�/ D F0.p�/TF.p�/ D 0 and g00.p�/ positive definite

So we might approach the problem solution by applying the Newton method to solve
the following system of q nonlinear equations

G.p/ WD F0.p/TF.p/ D 0 : (3.33)

Local Newton Method

Rather than working on the nonlinear least squares problem (3.31), this method
tries to solve the gradient system of nonlinear equations (3.33) by successive
linearization, i.e. by an iterative sequence of linear equations. This approach
requires the Jacobian .q; q/-matrix

G0.p/ D F0.p/TF0.p/ C F00.p/TF.p/ ;

wherein the term F00.p/ is a tensor so that the product F00.p/TF.p/ represents some
larger amount of computational work.

The basic idea is to approximate G by the linear part of its Taylor series expansion
in a neighborhood around a starting guess p0, i.e.

G.p/ D G.p0/ C G0.p0/.p � p0/ C O.kp � p0k2/

Then the first iterate can be computed according to

G0.p0/�p0 D �G.p0/; p1 D p0 C �p0

Upon repeating this procedure (assuming the Jacobians G0.p/ are nonsingular fora
ll arising arguments p), we arrive at the Newton iteration

�pk D �G0.pk/�1G.pk/; pkC1 D pk C �pk; k D 0; 1; : : : (3.34)

This iteration is known to converge quadratically in a sufficiently small neighbor-
hood of a unique solution point, which is why (3.34) is named local Newton method.

Local Gauss-Newton Method

In this approach, we start from the observation that in the compatible case, i.e. when
F.p�/ D 0, one has G0.p�/ D F0.p�/TF0.p�/ so that the undesirable evaluation
of the tensor term F00.p/TF.p/ might be omitted in some neighborhood of p�. The
same argument might also hold in the “almost compatible” case, i.e. when F.p�/

110 Nonlinear Least Squares Problems

is “small” (in some sense specified in Appendix A.4). With this simplification, we
arrive at the iteration

F0.pk/TF0.pk/�pk D �F0.pk/TF.pk/; pkC1 D pk C �pk; k D 0; 1; : : : :

By comparison with the preceding Sect. 3.2, we detect that this corresponds to
solving an iterative sequence of linear least squares problems of the kind

kF0.pk/�pk C F.pk/k D min; k D 0; 1; : : : :

This is why this iteration is usually called the Gauss-Newton iteration.1 In view of
the above Sect. 3.2.3 we may write it as

�pk D �F0.pk/CF.pk/; pkC1 D pk C �pk; k D 0; 1; : : : (3.35)

in terms of some generalized inverse. Thus we automatically include the treatment
of the rank-deficient case as well. From (A.26) in Appendix A.4 we take that this
method converges locally in the sense that

k�pkk � !

2
k�pk�1k2 C �.pk�1/k�pk�1k : (3.36)

Herein the first term represents the quadratic convergence part as in Newton’s
method, while the second term with the incompatibility factor � represents some
asymptotic linear convergence of the Gauss-Newton method. Obviously, a necessary
condition for local convergence is that

�.p/ < 1 in some neighborhood of a solution point p� ; (3.37)

see Appendix A.4 for details of the interpretation. This property defines the term
adequate nonlinear least squares problems. In summary:

The Gauss-Newton method converges for adequate nonlinear least squares
problems in a sufficiently small neighborhood of a solution point p�.

That is why (3.35) is called local Gauss-Newton method.

Termination Criterion

On the basis of the statistical interpretation of the Gauss-Newton method, it is
suggested to terminate the iteration as soon as linear convergence dominates the
iteration process: iteration beyond that point would just lead to an accuracy far
below reasonable in comparison between model and data. Following [15] and in

1In the statistics community the Gauss–Newton method is often named scoring method.

Nonlinear Least Squares Problems 111

view of (3.47), the criterion

k�p
kC1k � PTOL (3.38)

is applied in terms of some user prescribed error tolerance PTOL. After termination
in the linear convergence phase, the finally achieved accuracy will then be

kpkC1 � p�k 	 �.pk/

1 � �.pk/
k�pkk : (3.39)

This criterion prevents codes from turning inefficient, if unaware users require a too
stringent error tolerance threshold PTOL. (Of course, the norms are understood to
be scaled norms.)

Model Reduction

Suppose we are in the rank-deficient setting. Let us partition the transformed
parameters Op according to (3.23) so that

OI��Op D �Op1; OI?
� �Op D �Op2 : (3.40)

Upon transferring (3.22) to the nonlinear case where now A is the Jacobian matrix

F0.p/ D �@'

@p
, we again see that

@'.tiI p/

@Op2

	 0 ; i D 1; : : : ; M : (3.41)

Once more, this indicates that the model function ' does not depend on the
parameters Op2 or, alternatively, that the already obtained value of Op2 is already
determined to sufficient accuracy so that the decision �Op2 D 0 makes sense. Upon
transferring the result (3.24) from linear least squares problems to the nonlinear case
we obtain

OI?
�

OQk˘
T
k �pk D 0 ; (3.42)

which indicates a locally linear dependence of the original parameters, which could
also indicate some globally nonlinear dependence.

“Simplified” Gauss-Newton Method

Now and then, computational scientists are tempted to “save computing cost” by
keeping the initial pseudo-inverse, i.e. setting F0.p/C D F0.p0/C throughout the

112 Nonlinear Least Squares Problems

algorithm, just as in the simplified Newton method. However, unlike the simplified
Newton method, such a simplified Gauss-Newton method would actually solve the
wrong nonlinear least squares problem

kF0.p0/F0.p0/CF.p/k D min , F0.p0/CF.Np/ D 0 with solution Np ¤ p�:

Optimization Methods

The same undesirable effect as above comes up, if certain “derivative-free” opti-
mization routines are applied. In this case, too, the wrong problem is often solved.
In fact, one should always keep in mind that nonlinear least squares problems are
very special optimization problems with a statistical background to be carefully
observed!

3.3.2 Globalization of Gauss-Newton Method

In order to get rid of the restriction that the initial guess p0 must be “sufficiently
close” to the solution point p�, globalization techniques are usually applied, which
are able to tackle a larger set of problems.

Levenberg-Marquardt Method

This is probably the most popular globalization method.2 Just like Newton’s method,
this approach starts from some linearization around the current iterate, say pk, with,
for the time being, arbitrary correction �z:

F.pk C �zk/
:D F.pk/ C F0.pk/�zk;

The basic idea now is that linearization only holds in a “small” neighborhood.
Therefore it is restricted to some neighborhood of pk defined by

k�zkk � ık ;

where the iterative trust region parameters ık are chosen appropriately. By appli-
cation of iterative Lagrange multipliers �k > 0, we get the modified minimization
problem

kF.pk/ C F0.pk/�zkk2 C �kk�zkk2 D min :

2Also called Tikhonov-Phillips regularization in the general context of inverse problems.

Nonlinear Least Squares Problems 113

By taking formal derivatives, we arrive at the Levenberg-Marquardt iteration

.F0.pk/TF0.pk/ C �kIq/�zk D �F0.pk/TF.pk/ ; k D 0; 1; : : : :

As there are connections between the parameters �k and ık, the choice of one of
them is sufficient. Properties of this iteration are:

(a) For �k ! 0, the Levenberg-Marquardt iteration merges into the local Gauss-
Newton iteration, which may, also for the rank-deficient case, formally be
written as

F0.p/C D lim
�!0

.F0.p/TF0.p/ C � I/�1F0.p/T : (3.43)

Recall that the Gauss-Newton method converges for “adequate” nonlinear least
squares problems only, as has been described in Appendix A.4. Hence, if the
solution is locally unique and adequate, the Levenberg-Marquardt method will
work, too, if only the parameters approach 0 when the iterates approach p�.

(b) For �k > 0, the matrix .F0.pk/TF0.pk/ C �kIq/ is always regular, which is the
reason for the popularity of the method. This case arises, too, if there is not
enough data available to identify the model parameters. In other words, the
method is “masking” the possible occurrence of a non-uniqueness of solutions.
This information, however, is of utmost importance in any scientific modelling:
If the computed “solution” for a parameter is not unique, it cannot be trusted in
situations other than the one just used to identify it.

(c) The Levenberg-Marquardt iteration has a tendency to terminate numerically at
some point Np, where the gradient of the functional g.p/ is “small”, i.e.

g0.Np/ D F0.Np/TF.Np/ 	 0 : (3.44)

Note, however, that the final iterate Np might be just a “stationary” point rather
than a solution point.

Summarizing, the method always offers a “numerical solution”, which may be the
reason, why it is so popular. However, this might even occur, when there is no close-
by solution point at all! Thus the method is prone to lead to misinterpretations in
terms of the underlying scientific model.

Global Gauss-Newton Method

Basic theoretical features of this method are worked out in Appendix A.4. Here we
want to essentially deal with the details necessary to be known by scientists using the
corresponding algorithms. From (A.29), the global Gauss-Newton iteration reads

pkC1 � pk D �k�pk; �pk D �F0.pk/CF.pk/; k D 0; 1; : : : (3.45)

114 Nonlinear Least Squares Problems

The factors 0 < �k � 1 are chosen according to some adaptive damping strategy
(for an explanation see [15]) such that the monotonicity criterion

k�pkC1k � k�pkk; where �pkC1 D �F0.pk/CF.pk C �k�pk/ (3.46)

is met; herein �pk are the ordinary Gauss-Newton corrections, �pkC1 the simplified
Gauss-Newton corrections, which are only computed for the purpose of comparison
within the above test. In order to improve convergence, some rank strategy may also
be applied, for details see [15]. In passing, we take from (A.31) that

k�pkC1k � !

2
k�pkk2 ; (3.47)

i.e. the simplified Gauss-Newton corrections mimic the quadratic asymptotic con-
vergence behavior of Newton’s method.

Iteration Exits

There is a variety of exits from the Gauss-Newton method, which reflect the intricate
complexity of nonlinear least squares problems. This complexity should by no
means be underestimated, because otherwise the whole scientific modelling may
be of minor value.

In the full rank case � D q, the following two exits may occur:

(a) For adequate problems, the damping factors �k approach the value 1 as soon
as the iterates are “sufficiently close” to a solution point p�. In this case, the
final accuracy of the solution may be detailed by an a-posteriori perturbation
analysis described below.

(b) For inadequate problems, the damping factors approach a value �k 	 1=�

without convergence. In this case, the model should be improved; for details
see [15] and references therein.

In the rank-deficient case � < q, there is no “unique” solution, even though the
iteration may converge. Then, apart from the numerical output solution p�, there
exists some local solution subset that can be characterized by

p 2 fp D p� C P?z for arbitrary z 2 R
qg : (3.48)

To see this, just linearize the mapping F.p/ around p�, i.e.

F.p/ D F.p�/ C F0.p�/.p � p�/ C O.kp � p�k2/ :

Nonlinear Least Squares Problems 115

Now, restrict p according to (3.48) and use F0.p�/P? D 0 from (3.28), which then
implies

F.p/ D F.p�/ C O.kp � p�k2/ : (3.49)

This relation is the nonlinear extension of property (3.26) for linear least squares
problems. In other words: Even though the solution may turn out to be non-unique,
the observable nonlinear residuals F.p/ are essentially unique for all solution points,
i.e. they supply the same kind of possibly “nice” plots when comparing data and
model.

Example 14 (Verhulst population model [61]) This example deals with fitting a
model to human population data, see [45]. The growth of the human population
might be modelled by polynomials and exponential functions. Those models imply
unbounded growth in the future. Concerning the worldwide population, however,
taking into account widespread available contraception, enforced size of families,
epidemic diseases, wars, and so on, unbounded population growth seems to be
unrealistic even though the world population continues to increase alarmingly. More
elaborate models that include adjustments to such exponential growth are available.
Verhulst [61] proposed that a self-limiting process should operate when population
becomes too large. For N.t0/ D N0 he suggested

N.t/ D N0K exp.r.t � t0//

K C N0.exp.r.t � t0// � 1/
;

where r and K are positive constants (compare (1.9) with a slightly different
parameterization). This relation is called logistic growth in a population. Obviously,
N.t/ ! K as t ! 1. K is the carrying capacity of the environment, which is
usually determined by the available sustaining resources, while r is a measure of the
rate at which it is reached. For N0 < K=2, the form of N.t/ has a typical sigmoid
character, which is commonly observed in population data, compare Table 3.2 for
the dynamics of the US population.

With initial guess

p0 D .N0; K; r/0 D .1; 12; 0:021/:

and t0 D 1900, PTOL = 10�12, the global Gauss-Newton method converges
within 11 iteration steps (Fig. 3.5a). In Fig. 3.5b, we observe the typical scissors

Table 3.2 Real data (years 1700–2000) and hypothetic data (years 2050, 2100) for the US
population

Year 1750 1820 1922 1960 1974 1987 2000 2050 2100

N 0.5 1 2 3 4 5 6.3 10 11.2

116 Nonlinear Least Squares Problems

1700 1800 1900 2000 2100 2200 2300
0

5

10

15

year

po
pu

la
tio

n

data
initial guess
final iterate

(a)

0 5 10
10

−15

10
−10

10
−5

10
0

k

ordinary GN corrections
simplified GN corrections

(b)

Fig. 3.5 Example 14. Verhulst population model. Left: Fit of model curve to data before and after
parameter estimation. Right: Typical scissors between ordinary (��) and simplified (��2) Gauss-
Newton corrections as derived in (A.32). In this example one would get � D 0:24

opening between ordinary and simplified Gauss-Newton corrections as stated in
formulas (A.32).

A-Posteriori Perturbation Analysis

The above incompatibility factor has an interpretation in terms of statistics. In least
squares problems, the minimization formulation is only reasonable, if small pertur-
bations of the measured data lead to acceptable perturbations of the parameters, i.e.,
if the solution p� is stable under small perturbations, say ıF.p�/. Then standard
linear perturbation analysis yields the parameter perturbations

ıp�
L WD �F0.p�/CıF.p�/ :

For a nonlinear perturbation analysis, the convergence theory given in [6, 15] can
be applied to yield

p0 WD p�
old ; p�

new WD p�
old C ıp�

NL

with the estimate

ıp�
NL 	 ıp�

L

1 � �.p�/
: (3.50)

Clearly, stability of the underlying statistical model can only be guaranteed for
adequate nonlinear least squares problems. Note that this componentwise estimate
may replace the normwise estimate (3.39).

3.4 Extension to ODE Models 117

Summary

In the frame of the Gauss-Newton or scoring method, a reliable numerical solution
is required to pass the following three checks:

(a) full rank condition for the final Jacobian, defined via (3.18),
(b) statistical well-posedness via �.p�/ < 1, see (3.37),
(c) a-posteriori perturbation analysis (3.50).

Experience as well as statistical analysis tells that whenever the ordinary Gauss-
Newton method with full rank Jacobian fails to converge due to �.�/ � 1, then one
should improve the model.

Nonlinear Equality Constraints

There also exists a Gauss-Newton variant for nonlinear least squares problems with
nonlinear equality constraints, which realizes a QR-factorization for linear equality
constraints, see [15, Section 4.1.2]. In this case it is of utmost importance that the
projectors P.y/ remain bounded so that all the algorithmic details can be easily
translated from the unconstrained case to the constrained case. Interested readers
may want to look up [15, Section 4.3].

Gauss-Newton Codes

The described global Gauss-Newton method with error oriented convergence
criterion has been implemented in the codes NLSQ-ERR for unconstrained
and NLSCON for equality constrained (including unconstrained) nonlinear least
squares problems. For details, we refer the reader to [15].

3.4 Extension to ODE Models

At this point, we are now ready to put all pieces together that we need to identify
parameters in systems biological models. These pieces include

• the automatic construction of parameter dependent ODE models from biochemi-
cal or physiological mechanisms (see Chap. 1, Sect. 1.2),

• computational simulation of the models by numerical integration (see Chap. 2,
Sect. 2.5, for an educated choice of integrators), and

• Gauss-Newton methods for the arising nonlinear least squares problems (see this
Chapter, Sects. 3.1–3.3), which, up to now, have only been presented for algebraic
models.

118 Nonlinear Least Squares Problems

In what follows, we will work out the modifications necessary for their applica-
tion to ODE models as they arise in systems biology. The methods are implemented
in the corresponding code BioPARKIN [24, 25].

3.4.1 Function Evaluation via Numerical Integration

Suppose we are given a system of ODEs

y0 D f .y; p/; y.0/ D y0; y 2 R
d; p 2 R

q (3.51)

that depends on unknown parameters p D .p1; : : : ; pq/. The aim is to identify these
parameters such that the solution y.tI p/ matches given experimental data

.t1; y1; ıy1/; : : : ; .tM; yM; ıyM/; tj 2 R; yj; ıyj 2 R
d ;

where y1; : : : ; yM 2 R
d are the given measurements and ıy1; : : : ; ıyM 2 R

d the
corresponding measurement tolerances, see (3.2). Even though these tolerances are
crucial for each parameter fitting problem, we will drop them in this section for ease
of presentation. Quite often part of the components of y; ıy are missing, since no
measurements are available; this case, too, we drop for ease of notation.

In order to generate the Gauss-Newton method, we first need to set up the
nonlinear least squares problem

kF.p/k2 D min; F.p/ D

0

B

@

y1 � y.t1; p/
:::

yM � y.tM; p/

1

C

A 2 R
m; m � M � d : (3.52)

The computational evaluation of y.t1I p/; : : : ; y.tMI p/ requires the numerical solu-
tion of the ODE (3.51), making sure that output data are available at the measure-
ment points t1; : : : ; tM . As discussed at the end of Sect. 2.2.1 as well as in Sect. 2.5.1,
one may need to apply the dense output mode of the selected numerical integrator.
The numerical integration will be controlled by some relative local error tolerance
TOL. Recall from Sect. 2.1.2 that only the local error can be controlled, but not
the global error. Ignoring this difference for the moment, we may formally write
that, instead of the exact mapping F.p/, we evaluate some perturbed mapping OF.p/

related to F in the form

OF.p/ WD F.p/.1 C �/ ; j� j � TOL or k OF.p/ � F.p/k � kF.p/k TOL
(3.53)

Remark 11 The here advocated approach is also known as single shooting
approach, since it involves only a continuous single trajectory y.t/; t 2 Œt1; tM�.

3.4 Extension to ODE Models 119

Already in 1981, H. G. Bock [5, 6] had suggested and worked out a multiple
shooting variant that works with a number of subtrajectories and additionally
requires continuity conditions at the interfaces. This approach requires more array
storage, which is prohibitive for large systems, but exhibits improved convergence
properties with respect to the applied Gauss-Newton method. As the ODEs in
systems biology are usually stiff, the single shooting approach will do.

3.4.2 Jacobian Approximation via Parameter Sensitivities

Apart from the mapping F.p/, we need a sufficiently accurate approximation of
the Jacobian matrix F0.p/ to realize the Gauss-Newton method. Recall that, in
contrast to Newton’s method, which can compensate for a lack of Jacobian accuracy
(e.g., in the “simplified” Newton method), the Gauss-Newton method requires more
accuracy to solve the correct problem (which is why there is no “simplified” Gauss-
Newton method, see Sect. 3.3.1). In our case the Jacobian matrix has the form

F0.p/ D �

0

B

@

s1.t1/ : : : sq.t1/
:::

:::
:::

s1.tM/ : : : sq.tM/ ;

1

C

A

wherein the elements si.tj/ are the parameter sensitivities at the measurement points,
as already introduced in Sect. 1.3.2. We here write them in terms of the .d; q/-matrix

S D .s1; : : : ; sq/ where si.t/ D @y.t/

@pi
2 R

d :

From (1.47) we know that these quantities satisfy the parameter variational
equations

s0
i D fy.y.t/I p/si C fpi ; si.0/ D 0 : (3.54)

For the numerical approximation of the values si.T/, three options are in common
use that we will no discuss in some detail. Recall from (3.53) that TOL is the relative
accuracy required in the numerical integrator.

(a) Direct numerical integration of compiled variational equations. Assume some
chemical compiler (see Sect. 1.2.3) has been used to implement f (say, by means
of SBML); then it can be conveniently extended to generate the terms fy; fp
automatically. Once the parameter variational equations have been explicitly
generated, they can be solved numerically in a standard way. Recall that
Eqs. (3.54) must be solved simultaneously with the original model equations
y0 D f .y; p/ to obtain the argument inside fy.�/; fp.�/. This option is realized in

120 Nonlinear Least Squares Problems

the software package BioPARKIN. It is usual to prescribe a relative integration
error tolerance TOLsens >TOL.

(b) Internal differentiation. If no easy access to the analytical form of the derivatives
fy; fp is at hand, these terms may be approximated by internal finite differences
(see, e.g., H.G. Bock [5]), which means

fy.�/ 	 f .y C ıy; p/ � f .y; p/

ıy

for appropriately chosen terms ıy. One may also realize the finite difference
approximation via the chain rule as a directional derivative

fy.y; p/yp 	 f .y C ıp yp; p/ � f .y; p/

ıp
for some “small” ıp > 0:

This kind of implementation can be directly written inside the program for
the evaluation of f , possibly also with the help of an automatic differentiation
tool like ADOL, see, e.g., [30]. The choice of the deviation ıp > 0 needs
careful handling. Note that this approach does not need to implement the
parameter variational equations, but requires extra effort to get the internal
differentiation. In this option, the achieved relative error tolerance comes out
to be TOLsens �TOL.

(c) External numerical differentiation. This option is most popular, since it does
neither require the construction of the parameter variational equations nor an
extra treatment like in the internal differentiation just above. Rather, it goes
directly back to the definition of the parameter sensitivities (let Œ0; T� denote the
integration interval)

si.T/ D @y

@pi

ˇ

ˇ

ˇ

T
	 y.TI p C ıpi/ � y.TI p/

ıpi
; (3.55)

where the two terms in the numerator are just the numerical results from
numerical integration of the ODEs for the parameter values p C ıpi or p,
respectively. Again, an efficient choice of the deviations ıpi requires subtle
consideration. A detailed analysis including an adaptive ıp-strategy is given in
Appendix A.5. It shows that in this option the accuracy of the FD approximation
of F0.p/ is at best TOLsens � p

TOL, to be compared with the accuracy of
the F-evaluation � TOL. The accuracy change from TOL to

p
TOL indicates

that the number of significant digits is roughly halved; for illustration, observe
that we typically use TOLD 10�8 for the numerical integrators, which leads top

TOL D 10�4.
Despite its popularity, this option is less reliable in view of the Gauss-

Newton method. Theoretically speaking, this lack of accuracy spoils the precise
description of the subspace in the case of rank-deficiency. Practically speaking,
the implemented Gauss-Newton iteration may in this case quite often deteriorate

3.4 Extension to ODE Models 121

to some erratic non-Gauss-Newton iteration – see, e.g., the tests presented in
Sect. 3.5.3 below.

Remark 12 For the cut-off parameter
A needed for a Jacobian rank decision
or a determination of the subcondition number of the Jacobian approximation
(compare (3.18) in Sect. 3.2.2 and (A.13) in Appendix A.3) we thus obtain

A � TOLsens; A WD F0.p/; sc.A/ � scmax � 1=TOLsens : (3.56)

Parameter Transformation

For the sake of completeness, we finally mention the treatment of inequality
constraints. In view of Table 3.1, let pi D �.ui/ denote some scalar mapping. In
this case, the parameter sensitivities are calculated by the chain rule as

@y

@ui
.t/ D @y

@pi

dpi

dui
D si.t/ � �0.ui/ : (3.57)

Differentiability After Discretization

Once approximations of the terms F.p/ and F0.p/ are available, the adaptive Gauss-
Newton method can be realized as elaborated above in Sects. 3.3.1 and 3.3.2.
However, as the mappings F and F0 are obtained from discretization, subtle
considerations are necessary to assure that sufficient differentiability is guaranteed.
For further details and references see, e.g., [48].

3.4.3 Multiple Experiment Case

In many applications, the parameter identification problem at hand does not lead to a
unique solution with full rank and � < 1. In this situation, several experiments with
different internal parameters may be coupled with the aim of achieving a common
higher rank solution. This is called the “multiple experiment” case. Two types of
examples are quite common:

(a) different temperatures T1; : : : ; Tn: For this case, we refer to the modified
Arrhenius law, which for selected parameters p states (dropping any indices)

p D A � T˛ � exp.��E

RT
/ : (3.58)

Herein A is the pre-exponential factor, �E the activation energy, T the temper-
ature, and R the universal gas constant. The additional factor T˛ makes the law
“modified” in comparison with the usual Arrhenius law. As in Example 10, we

122 Nonlinear Least Squares Problems

may take the logarithm of both sides of (3.58) and thus arrive at the different
parameterization with new parameters .u1; u2; u3/ defined by virtue of

u D ln p D ln A C ˛ ln T � �E

RT
DW u1 C u2 ln T � u3

T
: (3.59)

We remind the reader that this transformation also assures that the original
parameters p remain positive throughout the Gauss-Newton iteration. From this
we get

dp

p
D du1 C ln T du2 � 1

T
du3 (3.60)

and thus

@y

@u
D s.t/ � p DW Ns.t/ :

Note that things simplify a lot, if the parameters p arise linearly in the reaction
terms, see the argument against the explicit Michaelis-Menten kinetics (1.23)
in Sect. 1.2.1 above. From this formula, we then obtain

@y

@u1

D @y

@p

du

du1

D Ns.t/; @y

@u2

D Ns.t/ � ln T;
@y

@u3

D Ns.t/=T

which means that we merely need to compute the sensitivities Ns.t/. The total
Jacobian matrix has the block structure

F0.u/ D

0

B

@

F0.uI T1/; F0.uI T1/ � ln T1; F0.uI T1/=T1

:::
:::

:::

F0.uI Tn/; F0.uI Tn/ � ln Tn; F0.uI T1/=Tn

1

C

A ;

which shows that only the first block column needs to be computed, while the
other two ones are obtained just by multiplication with a scalar factor. Note
that (3.60) also indicates that the parameter A should be computed to relative
accuracy, while the parameters ˛; E should be computed to absolute accuracy;
such a treatment then results in relative accuracy for the parameter p.

(b) different initial values y1
0; : : : ; yn

0: In this case, the Jacobian matrix has the block
structure

F0.p/ D

0

B

@

F0.pI y1
0/

:::

F0.pI yn
0/

1

C

A 2 R
mn�q ;

which means it is an .nm; q/-matrix. Such a structure would come up with any
internal parameter.

3.5 Illustrative Examples 123

3.5 Illustrative Examples

In order to illustrate different aspects of the quite subtle parameter identification
task, we now add three illustrative examples of increasing complexity. Herein the
first problem realizes a full-rank Gauss-Newton iteration, whereas the two further
examples realize rank-deficient Gauss-Newton iterations.

3.5.1 Predator-Prey Model Revisited

In Sect. 1.1.2 above we had already introduced a model for two animal species, a
predator and a prey. Here we take data from the Canadian lynx as predator and its
primary prey, the snowshoe hare. Since it is impossible to count the exact number
of hares in Canada in any given year, this information must be gained by capturing a
small number of individuals and then estimating the actual number out in the wild.
For over 300 years, the Hudson Bay Company has been involved in the fur trade
in Canada. Detailed company records list the number of snowshoe hare pelts and
the number of lynx pelts collected by hunters and trappers every year since the late
1700s. A small sample of this data is presented in Table 3.3. It is assumed that the
numbers reflect a fixed portion of the total population of these animals. Although
this assumption is of questionable accuracy, the data nevertheless represent one of
the very few long term records available.

Let us revisit the model equations (1.10), which read

N0
1 D N1.˛ � ˇN2/; N0

2 D �N2.� � ıN1/:

As we have shown in Sect. 1.1.2, the solutions are closed orbits, which introduces
the phase shift as an additional degree of freedom. With this insight in mind, we aim
to compare two different strategies for parameter identification:

• Case (P): We fix the initial values N1.0/ D 30 and N2.0/ D 4 according to the
given data and estimate the model parameters ˛; ˇ; � and ı.

• Case (P+I): We estimate the model parameters ˛; ˇ; � and ı together with the
initial values N1.0/ and N2.0/.

In both cases, we choose the initial guesses

.˛0; ˇ0; �0; ı0/ D .0:5; 0:02; 1; 0:02/

to start the Gauss-Newton iteration. In case (P+I) we additionally choose

.N0
1 ; N0

2 / D .30; 4/:

For the required relative final accuracy of the iteration we set PTOL D 10�4.

124 Nonlinear Least Squares Problems

Table 3.3 Predator-prey
model. Numbers of hares
(prey) and lynxes (predator)
in the years 1900–1920
recorded by the Hudson Bay
Company

Year Hares (in thousands) Lynx (in thousands)

1900 30 4

1901 47:2 6:1

1902 70:2 9:8

1903 77:4 35:2

1904 36:3 59:4

1905 20:6 41:7

1906 18:1 19

1907 21:4 13

1908 22 8:3

1909 25:4 9:1

1910 27:1 7:4

1911 40:3 8

1912 57 12:3

1913 76:6 19:5

1914 52:3 45:7

1915 19:5 51:1

1916 11:2 29:7

1917 7:6 15:8

1918 14:6 9:7

1919 16:2 10:1

1920 24:7 8:6

Table 3.4 Case (P): Iteration
history for the global
Gauss-Newton method

k kF.pk/k k�pkk �k Rank

0 0.2721094e+02 0.352e-01 4

1 0.2695615e+02 0.351e-01 0.010 4

2 0.1326815e+02 0.469e-01 0.754 4

3 0.9471190e+01 0.443e-01 0.380 4

4 0.4933404e+01 0.161e-01 0.892 4

5 0.4239676e+01 0.451e-03 1.000 4

6 0.4236244e+01 0.298e-03 1.000 4

7 0.4236228e+01 0.911e-05 1.000 4

8 0.4236228e+01 0.482e-09 1.000 4

Case (P)

As documented in Table 3.4, the solution of the corresponding nonlinear least
squares problem is obtained within 8 Gauss-Newton iterations, all of them with

3.5 Illustrative Examples 125

1900 1905 1910 1915 1920
0

20

40

60

80

100

120

140

year

N
1

data
initial guess
final estimate

(a)

1900 1905 1910 1915 1920
0

20

40

60

80

100

year

N
2

data
initial guess
final estimate

(b)

Fig. 3.6 Case (P): Measurements and model simulations for initial guess and final Gauss-Newton
iterate. Left (a): Prey population N1.t/. Right (b): Predator population N2.t/

Table 3.5 Case (P+I):
Iteration history for the global
Gauss-Newton method

k kF.pk/k k�pkk �k Rank

0 0.2721094e+02 0.201e+00 6

1 0.2695044e+02 0.201e+00 0:010 6

2 0.1037774e+02 0.120e+00 1:000 6

3 0.5679340e+01 0.195e+00 1:000 6

4 0.5020657e+01 0.144e+00 0:252 6

5 0.4206913e+01 0.127e-01 1:000 6

6 0.3767798e+01 0.150e-01 1:000 6

7 0.3763365e+01 0.200e-02 1:000 6

8 0.3763063e+01 0.177e-05 1:000 6

full rank 4. The final iterate came out as

p� D .˛�; ˇ�; ��; ı�/ D .0:547534; 0:028119; 0:843175; 0:026558/ :

The finally achieved accuracy was 2:87 � 10�7, indicating that the parameter values
have been determined up to 7 decimal digits. The incompatibility factor came
out as � D 0:031. For the final iterate the subcondition number turned out to
be sc.F0.p�// D 90:9, which confirms that the solution is unique. In Fig. 3.6, a
comparison of measurements and model for both the initial guess and the final
iterate is given.

Case (P+I)

As documented in Table 3.5, the solution of the corresponding nonlinear least
squares problem is again obtained within 8 Gauss-Newton iterations, this time with

126 Nonlinear Least Squares Problems

1900 1905 1910 1915 1920
0

20

40

60

80

100

120

140

year

N
1

data
initial guess
final estimate

(a)

1900 1905 1910 1915 1920
0

20

40

60

80

100

year

N
2

data
initial guess
final estimate

(b)

Fig. 3.7 Case (P+I): Measurements and model simulations for initial guess and final Gauss-
Newton iterate. Left (a): Prey population N1.t/. Right (b): Predator population N2.t/

full rank 6. The final iterate came out as

p� D .˛�; ˇ�; ��; ı�; N1.0/�; N2.0/�/

D .0:481599; 0:024847; 0:925125; 0:027508; 34:910103; 3:868005/ :

The finally achieved accuracy is 3:01 � 10�4, indicating that the parameter values
have been determined up to 4 decimal digits. The incompatibility factor came out as
� D 0:13, for the final iterate the subcondition turned out to be sc.F0.p�// D 400:0,
which here, too, confirms that the solution is unique. In fact, by leaving N1.0/ and
N2.0/ open, a better fit than in case (P) is achieved. The least-squares functional
was further reduced from kF.p�/k D 4:24 in case (P) to kF.p�/k D 3:76 in case
(P+I). In the absence of any modelling error, this would point to a measurement
error in the values N1;2.0/, with N1.0/ D 34:9 thousands and N2.0/ D 3:9

thousands probably being the “true” values. However, model (1.10) represents a
strong simplification. Certain mechanisms are missing, which is the main reason
for the mismatch between data and simulation results. Nevertheless, the overall
dynamical interactions between hares and lynxes are captured quite nicely by the
model, as illustrated in Fig. 3.7.

3.5.2 A Simple Rank-Deficient Problem

Here we want to illustrate the importance of possible rank-deficiency in the course
of the above presented Gauss-Newton iteration. For this purpose, we revisit the
bimolecular reaction from Sect. 1.2.1, which reads

A C B
k1

GGGGGBF GGGGG

k2

C C D :

3.5 Illustrative Examples 127

The corresponding ODE system (1.13) has been shown to be

A0 D B0 D �k1AB C k2CD; C0 D D0 D Ck1AB � k2CD ;

wherein the rate coefficients k1; k2 have the role of the two parameters p1; p2 to
be identified from a comparison with measurements. For initial values and rate
coefficients we set

A.0/ D 2; B.0/ D 1; C.0/ D 0:5; D.0/ D 0; k1 D 0:1; k2 D 0:2 :

From (1.15) we recall that in the chemical equilibrium phase classical mass
action kinetics holds, which can be described by a single parameter, the Arrhenius
coefficient

k21 D k2

k1

D 2:0 : (3.61)

With this insight in mind, we choose two different sets of measurements:

• Case (T+E): measurement data cover both transient and equilibrium phase.
• Case (E): measurement data cover equilibrium phase only.

In order to generate “measurements”, we integrate the above ODE system by means
of the explicit Runge-Kutta integrator DOPRI5 (see Sect. 2.2.1) with relative and
absolute accuracies RTOLD 10�8, ATOLD 10�6 and interpret the values computed
for the adaptive time points as measurement data. In both cases, we choose the initial
guesses

.k0
1; k0

2/ D .0:2; 0:5/

to start the Gauss-Newton iteration. The required relative final accuracy of the
iteration has been set to PTOL D 10�4.

Case (T+E)

As documented in Table 3.6, the solution of the corresponding nonlinear least
squares problem is obtained within 5 Gauss-Newton iterations, all of them with
full rank 2. The final iterate came out as

p� D .k�
1 ; k�

2 / D .0:10000001; 0:19999997/) k�
21 D 1:9999994 :

Obviously, this recovers the original kinetic parameter values to 7 decimal digits
in agreement with the output value of the final achieved accuracy 1:8 � 10�7. In
passing we note the (rounded) results for the incompatibility factor � D 0:008 and
for the subcondition number sc.F0.p�// D 6:3 for the final iterate, which confirms

128 Nonlinear Least Squares Problems

Table 3.6 Case (T+E): Iteration history for global Gauss-Newton method

k kF.pk/k k�pkk �k Rank

0 4.81e-02 3.55e-01 2

1 2.55e-02 1.75e-01 0:389 2

2 1.04e-02 4.22e-02 1:000 2

3 9.16e-04 1.90e-03 1:000 2

4 8.00e-06 1.99e-05 1:000 2

5 3.21e-07 1.54e-09 1:000 2

0 10 20 30
0

0.5

1

1.5

2

time

co
nc

en
tr

at
io

n

A B C D
(a)

0 10 20 30
0

0.5

1

1.5

2

time

co
nc

en
tr

at
io

n

A B C D
(b)

Fig. 3.8 Case (T+E): Comparison of measurements and model. Left (a): Model simulation for
initial guess .k0

1; k0
2/. Right (b): Model simulation for final parameter .k�

1 ; k�

2 /

Table 3.7 Case (E): Iteration history for local Gauss-Newton method (within global GN
algorithm). Due to the occurrence of rank-deficiency, a unique solution cannot be expected

k kF.pk/k k�pkk �k Rank

0 3.85e-02 2.96e-02 1

1 2.40e-03 1.85e-03 1:000 1

2 1.11e-05 7.67e-06 1:000 1

3 6.67e-06 6.75e-11 1:000 1

the expectation of a unique solution. In Fig. 3.8, a comparison of measurements and
model for both the initial guess and the final iterate is given.

Case (E)

As documented in Table 3.7, a solution of the corresponding nonlinear least squares
problem is obtained within 3 local Gauss-Newton iterations, here, however, all of
them with deficient rank 1. This means that we cannot expect to have obtained a
unique solution.

3.5 Illustrative Examples 129

0 10 20 30
0

0.5

1

1.5

2

time

co
nc

en
tr

at
io

n
A B C D

(a)

0 10 20 30
0

0.5

1

1.5

2

time

co
nc

en
tr

at
io

n

A B C D
(b)

Fig. 3.9 Case (E): Comparison of measurements and model. Left (a): Simulation of model for
initial guess .k0

1; k0
2/. Right (b): Simulation of model for final Gauss-Newton iterate .k��

1 ; k��

2 /

The final parameter iterate came out as

p�� D .k��
1 ; k��

2 / D .0:24155702; 0:48312906/) k��
21 D 2:0000622 :

Again, we note the rounded incompatibility factor (here for the rank-deficient Gauss
Newton iteration) � D 0:004. The final subcondition number (for full rank 2) came
out to be sc.F0.p�// D 4:5 � 106, by the way only slightly less than the condition
number cond F0.p�/ D 5:6 � 106 (computed here only for comparison reasons). In
view of the numerical integration accuracy, the Jacobian accuracy value "A D 10�4

has been set, compare Sect. 3.2.2. With this specification, the rule (3.18) gives rise to
the observed rank deficiency. In Fig. 3.9, a comparison of measurements and model
for both the initial guess and the final iterate is presented.

Clearly, the invested kinetic parameters .k1; k2/ D .0:1; 0:2/ have not been
recovered. Nevertheless, although the obtained result .k��

1 ; k��
2 / is totally “off the

track”, the rank-deficient Gauss-Newton method is able (i) to deliver a “nice
fit”, see Fig. 3.9b, and (ii) to recover the Arrhenius coefficient k21. The latter
occurrence is in direct agreement with formula (3.30), as a careful examination
would reveal (skipped here, too technical). However, it is important to understand
that the obtained computational results cannot serve as interpretable values beyond
the equilibrium phase.

Summary

For unaware observers it is certainly puzzling that both “solutions”, p� D .k�
1 ; k�

2 /

as well as p�� D .k��
1 ; k��

2 /, yield the same “perfectly matching” plots compared
with data set (E). However, this is in agreement with the analysis given in (3.49):
both solutions are minimal points in a parabolic “valley”

F.p/ D F.p�/ C O.kp � p�k2/ ; F.p/ D F.p��/ C O.kp � p��k2/ :

130 Nonlinear Least Squares Problems

k
1

0 0.1 0.2 0.3 0.4 0.5 0.6

k
2

0

0.1

0.2

0.3

0.4

0.5

0.6(a)

k
1

0 0.1 0.2 0.3 0.4 0.5 0.6

k
2

0

0.1

0.2

0.3

0.4

0.5

0.6(b)

Fig. 3.10 Gauss-Newton iterations in the parameter plane. Unique solution point p D .0:1; 0:2/

marked as (o). Straight line represents subspace S according to (3.62). Left (a): Case (T+E). Full
rank iteration p0 ! p� D p. Unique solution recovered. Right (b): Case (E). Rank deficient
iteration p0 ! p�� 2 S. Observe the orthogonality of the iteration path towards the subspace

For further illustration, Fig. 3.10 shows the two cases in a .k1; k2/-plane. Starting
from the same initial guess p0, both final iterates p� and p�� are contained in the
subset

S WD f.k1; k2/ j k2 � 2:0 k1 D 0g ; (3.62)

which was determined by the algorithm via the rank decision device within the
QR OQ-decomposition of the Jacobian F0.p/. In passing, recall that, by algorithmic
construction, the Gauss-Newton corrections are orthogonal to the nullspace of the
Jacobians, which, assuming not too much Jacobian variation close to the solution
point p��, means also roughly orthogonal to S.

Remark 13 Note that the above occurrence in the rank-deficient case is in perfect
agreement with the model reduction based on chemical insight as presented in
Sect. 1.2.1 above. In [35] the question of identifiability of parameters in nonlinear
dynamical models has also been treated in detail. In contrast to the presently
advocated techniques, that article tries to implement an interactive technique that
does not exploit any of the information coming from the Gauss-Newton method or
its local realization via some rank-deficient QR-factorization. Here, however, the
model reduction has been automatically realized by the algorithm itself.

3.5.3 A Complex Human Menstrual Cycle Problem

In this final section, we want to present more general parameter identification
techniques assumed to be helpful when treating a wider class of complex problems.
For this purpose, we revisit Example 1 (Sect. 1.2.1), which models the human

3.5 Illustrative Examples 131

menstrual cycle. The underlying compartment model is shown in Fig. 1.6, a
flowchart of part of the chemical reaction network is depicted in Fig. 1.7, a subset of
ODEs for the hormone LH is written down directly after that figure. Details of the
whole model have been published in [53]. The model leads to a system of 33 ODEs
with 114 parameters, which is of moderate size compared to other applications, see,
e.g., the model presented in Sect. 2.5.3. From the data given in [53], 63 degrees of
freedom (in parameter space) had been identified using the techniques described in
the present book. After the publication of that model with the identified parameters,
new data became available from an EU project.3 The problem to be presented here
deals with the question of whether the published model would match the additional
data, too. The notation follows the one in Sect. 1.2.1. All computations have been
performed with the software package ZIB_RubyExt.

Before starting we want to emphasize that in this model mass conservation
has not been implemented, so that in intermediate tests or iterations “blow-up” of
numerical solutions may well occur (compare Remark 3 in Sect. 1.3.1 above).

Input Data

The new data were collected from 40 individual women.4 Four different hormones
were measured, namely LH (luteinizing hormone), FSH (follicle stimulating hor-
mone), E2 (estradiol), and P4 (progesterone). Measurements took place roughly
every second day. In order to be able to present the individual data in common, their
LH peaks were aligned. In total, roughly 2500 data points arose. These so-called
raw data can be seen in Fig. 3.13, left column.

In addition, we generated about 300 averaged data according to the rule

Nzi.tj/ WD 1

Nij

Nij
X

nD1

zn
i .tj/ ; (3.63)

where Nij denotes the number of individual measurements zn
i of hormone i at day

tj. Once the averages have been calculated, the corresponding standard deviations
were computed via the usual formula

�2
zi
.tj/ WD 1

Nij � 1

Nij
X

nD1

�

zn
i .tj/ � Nzi.tj/

�2
: (3.64)

Both raw and averaged data only cover essentially one menstrual cycle, so they
do not reflect any periodicity. In order to enforce a periodic solution, we would need

3PAEON: Model Driven Computation of Treatments for Infertility Related Endocrinological
Diseases.
4Data courtesy due to Dorothea Wunder, CHUV Lausanne.

132 Nonlinear Least Squares Problems

to solve a periodic boundary value problem, which, however, is beyond the scope of
this book – see (1.6) in Sect. 1.1.1. As an ad-hoc strategy, we artificially expanded
the new data by merely copying them for two or three more periods, each of them
28 days (as in the data from [53]). Such a strategy will only work, if the periodic
orbits are dynamically stable, which we may assume in the physiological example at
hand. So we expect a short transient phase that very soon ends up in some periodic
motion.

Selection of “Most Sensitive” Parameters via Sensitivity Analysis

After establishing the ODE model, a typical second step in modelling is the
computation of the parameter sensitivities yp.t/, as described in Sect. 1.3.2, e.g.,
via formula (1.47) for the variational equations

y0
p D fy.y.t/; p/yp C fp; yp.0/ D 0 : (3.65)

In the context of our present problem, we selected only the four measured hormones
(LH, FSH, E2, P4) from the 33 components of y. As for the numerical integration
of these ODEs, we experimentally selected a relative local error tolerance for the
numerical integrators of TOLD 10�8. Accuracies less stringent led to a less reliable
behavior of the Gauss-Newton algorithm.

A rather popular procedure is to find out the “most sensitive” parameters with
respect to the four species on the basis of a sensitivity analysis. As a prerequisite,
one has to scale the elements of the sensitivity matrices (e.g., as suggested in [25])
according to

�

yp
�

i;j jscal D @yi

@pj

maxfjpjj; thres.pj/g
maxfmaxt jyi.t/j; thres.yi/g ; (3.66)

wherein thres are user specified threshold values for each associated element. In
reality, we actually inspected all 114 sensitivities interactively, which is some task!
From this set, the ones with the largest absolute scaled sensitivities were selected to
yield the 13 “most sensitive” parameters. Luckily, in our case the selection generated
the same set for all four hormones (which need not be in all cases!). In Fig. 3.11,
the results for P4 are depicted together with the 13 SBML parameter IDs; for their
biological interpretations see Table 3.8.

Generally speaking, sensitivities are a rather popular means to clear up the role
of individual parameters within a model at hand. However, they do not contain any
information about measurement points or measurement data. Nor do they indicate
any linear dependencies among the parameters. As a consequence, the list of “most
sensitive” parameters concluded from sensitivity analysis alone may be both too
long and too short, as documented in Table 3.8 below. This is reflected in the fact
that the Gauss-Newton iterations for these 13 parameters failed to converge, both
over raw and over averaged data.

3.5 Illustrative Examples 133

Fig. 3.11 Scaled parameter
sensitivities for P4
(progesterone), one of the
four measured quantities,
with respect to a common set
of 13 parameters selected as
the “most sensitive” ones.
Figure generated by
BioPARKIN. The somewhat
cryptic notation for the
parameters is a consequence
of the use of SBML, for their
biological interpretation see
Table 3.8

Table 3.8 List of 15 parameters selected as “most sensitive” ones. The first 13 parameters
(between the first and second internal lines) were selected by sensitivity analysis, see Fig. 3.11.
The five parameters with asterisks (*) were selected from QR-factorization, see Fig. 3.12; three of
them already appear in the list from sensitivity analysis, whereas the two additional parameters
(below the second internal line) are missing in the list derived from sensitivity analysis

ID Name Original value Meaning

p_001_009� TLH
G-R 0.003 nmol/L Threshold of GnRH on LH release

p_001_010 nLH
G-R 5 Hill exponent

p_013_002� SFLH-R 2.726 IU/L Scaling of LH receptor complex

p_013_003 nAF3
AF2 3.689 Hill exponent (preferably integer!)

p_029_001 f0 16/d Mean frequency of GnRH pulse generator

p_030_001� a0 0.0056 nmol Amount of GnRH released by one pulse

p_030_002 Tmass,1
E2 220 pg/mL Threshold of E2 for stimulation of GnRH mass

p_030_003 nmass,1
E2 2 Hill exponent

p_030_004 Tmass,2
E2 9.6 pg/mL Threshold of E2 for inhibition of GnRH mass

p_030_005 nmass,2
E2 1 Hill exponent

p_031_001 kG
on 322.18 L/(d nmol) Binding rate of GnRH to its receptor

p_031_002 kG
off 644.35/d Breakup rate of GnRH receptor complex

p_031_003 kG
degr 0.447/d Degradation rate of GnRH

p_001_001� bLH
syn 7310 IU/d Basal LH synthesis rate constant

p_006_002� TIhA 95.81 IU/mL Threshold of inhibin A in FSH synthesis

Selection of “Most Sensitive” Parameters via QR-Factorization of F0.p0/

Having learned that sensitivity analysis is not enough to find the “most sensitive”
parameters, we now turn to the parameter selection via the QR-factorization of

134 Nonlinear Least Squares Problems

Fig. 3.12 Diagonal elements
jr11j; jr22j : : : ; from
QR-factorization of F0.p0/ for
both raw and averaged data.
From the qualitative behavior,
we selected the first five
common parameters for both
cases (see asterisks in
Table 3.8)

the Jacobian matrix F0.p0/, which also contains the sensitivities – however, now
with row and column scaling according to (3.20), which is different from the
above variant (3.66), but assures that the problem is statistically well-stated. In
the present problem setting, the guess p0 will naturally just be the original set
of parameter values from the model in [53]. In Fig. 3.12, the absolute values of
the diagonal elements, jr11j; jr22j; : : :, from the QR-factorization are depicted based
on sensitivities for both raw and averaged data. In both cases there are visible
distinctions at ranks 3, 5 and 7 separating some subsets of “most sensitive” and
“less sensitive” parameters. As a compromise between 3 (lower chance for obtaining
a good fit) and 7 (higher computational costs) we decided to select 5 parameters.
The thus selected five “most sensitive parameters” and their ranking are the same
for both raw and averaged data. They are listed in Table 3.11; for their biological
meaning and names we refer to Table 3.8. In a first attempt, we realized Gauss-
Newton iterations for this parameter selection.

Identification of Five Preselected Parameters

In the Gaussian least squares problem formulation (3.2) we set the measurement
tolerances equal to the standard deviation of the data as defined in (3.64),

ıyji WD �zi.tj/ :

In what follows, we present the results of an identification of the five preselected
parameters via Gauss-Newton methods, comparing the results for both raw and
averaged data. For convenience and illustration purposes, the Jacobian approxi-
mation was realized via external differentiation as described in Sect. 3.4.2. In our
computer runs, the choice of the relative deviation ıpi turned out to be really critical.
We present the “best” runs, for a relative parameter accuracy PTOLD 10�4 and

3.5 Illustrative Examples 135

Table 3.9 Raw data:
Convergence history for the
identification of the five
selected parameters. Final
computational estimate of
incompatibility factor
� D 0:131

k kF.pk/k k�pkk �k Rank

0 0.5208387e+02 0.215e+00 5

1 0.5208275e+02 0.212e+00 0:010 5

2 0.5576308e+02 0.143e+00 1:000 5

3 0.5669474e+02 0.254e-01 1:000 5

4 0.5654622e+02 0.115e+00 0:189 5
:
:
:

32 0.5179592e+02 0.257e-03 1:000 5

33 0.5180611e+02 0.216e-03 1:000 5

34 0.5180080e+02 0.559e-04 1:000 5

a deviation � � pscal with � D 10�5, larger values gave either bad or even no
convergent results. This is in agreement with the warnings about the unreliable
Jacobian accuracy obtained by the external differentiation as expressed in Sect. 3.4.2
above.

Raw data. In this setting we have 7635 points for the triple data set. The solution
of the corresponding nonlinear least squares problem was obtained within 34 Gauss-
Newton iteration steps. As can be (partly) seen in Table 3.9, full rank 5 occurred
throughout the iteration. As at least two consecutive damping factors � D 1:00

came out finally, an estimate for the incompatibility factor � D 0:131 could be
computed, see (A.32). As shown in Fig. 3.13, nearly no improvement was obtained,
which might mean (in this reduced parameter subspace) that the parameters from
[53] also match the new data. The finally achieved fit of model and data is presented
in Fig. 3.13, left column. The fit as a whole looks quite nice.
Averaged data. As described above, we also generated average data, which led to
336 data points. The solution of the corresponding nonlinear least squares problem
was obtained within 45 Gauss-Newton steps. A subset of the convergence history is
given in Table 3.10. Throughout the iteration, full rank 5 occurred, just as in the case
of the raw data. However, the computational estimate of the incompatibility factor
appeared as � D 0:293, quite different from the raw data value.

A comparison between the fit for the raw and the averaged data in Fig. 3.13 shows
no significant differences between the two results, which is confirmed by similar
final iterates listed in Table 3.11.

Parameter Identification over All Parameters

A more complete picture can be gained, if one is willing to spend more computing
time. As mentioned above, the triple periodic set of averaged data gave rise to 336
data points. On this basis, we numerically solved 111 variational equations together
with the original 33 parameter dependent ODEs, which resulted in 33� .111C1/ D
3696 ODEs – obviously much more than in the attempts before with only 5
parameters. For the relative accuracy of the Jacobian matrix A D F0.p/ we applied

136 Nonlinear Least Squares Problems

Fig. 3.13 Raw data (left column) versus averaged data (right column) extended over three
periods: Gauss-Newton iteration over five parameters. Initial guess (green) versus final iterate (red)
for the four measured hormones LH, FSH, E2, and P4

3.5 Illustrative Examples 137

Table 3.10 Averaged data:
Convergence history for the
identification of the five
selected parameters.
Computational estimate of
incompatibility factor
appeared to be � D 0:293

k kF.pk/k k�pkk �k Rank

0 0.3437805e+02 0.204e+00 5

1 0.3438139e+02 0.202e+00 0:010 5

2 0.3843399e+02 0.953e-01 1:000 5

3 0.4046375e+02 0.870e-01 1:000 5
:
:
:

43 0.3422895e+02 0.389e-03 1:000 5

44 0.3423697e+02 0.196e-03 1:000 5

45 0.3422478e+02 0.356e-04 1:000 5

Table 3.11 Parameter values in the first and final Gauss-Newton iterates for different runs (for the
selection see the asterisks in Table 3.8). Note that the parameters differ by a factor of 107, which
explains why scaling issues are important in the algorithmic realization

Final iterate p� Final iterate p� Final iterate p�

ID Initial guess p0 [53] (raw data, 5 par.) (avg. data, 5 par.) (avg. data, 111 par.)

p_001_009 0.003 0.000413 0.000421 0.000239

p_013_002 2.726 1.979 1.958 2.003

p_030_001 0.0056 0.00686 0.00696 0.00438

p_001_001 7310 4984 4925 7708

p_006_002 95.81 91.59 92.44 72.85

the adaptive strategy (A.38) as worked out in Appendix A.5 based on the relative
error tolerance TOL D 10�8 for the numerical integrator. Upon keeping in mind
that there is an unknown constant O.1/ involved, we set the threshold for the
subcondition number

sc.A/ � scmax WD 1p
10 TOL

	 3200 ; :

In the absence of knowledge about the constant in (3.56), we tested several values
of scmax between 1000 and 7000. The best results were obtained with scmax D 5500,
which are shown below in Fig. 3.14. For lower values of scmax, the Gauss-Newton
method did not converge (termination with � < 1); for values above, the Gauss-
Newton method converged in a subspace (� D 1), but led to a poorer match.

The convergence history of the corresponding Gauss-Newton iteration is docu-
mented in Table 3.12; as can be seen, the choice of scmax led to an initial rank of
only 10, while during the 42 iterations a maximum rank 41 appeared in-between
as well as a final rank 20 with convergence in a stationary point. The estimated
incompatibility factor in the 20-dimensional final subspace came out as � D 0:729,
which shows that the whole model is close to being incompatible already in this
selected subspace.

138 Nonlinear Least Squares Problems

Fig. 3.14 Averaged data over three periods: Gauss-Newton iteration over all 111 parameters.
Initial guess (green) versus final iterate (red) for the four measured hormones. Comparison of
initial and final iterate: Note the better fits in LH, E2, P4 at the expense of a slightly worse fit in
FSH; in particular, the rather satisfactory fit to the basal levels of LH and P4 is physiologically
important

Table 3.12 Gauss-Newton
convergence history over
about 300 averaged data and
111 parameters. The
computational estimate of the
incompatibility factor
appeared to be � D 0:729

k kF.pk/k k�pkk �k Rank

0 0.3437805e+02 0.218e-01 10

1 0.3432499e+02 0.216e-01 0:010 11

2 0.3405855e+02 0.175e-01 0:063 11

3 0.3390497e+02 0.114e-01 0:309 23
:
:
:

37 0.2421932e+02 0.264e-01 0:422 41

38 0.2356051e+02 0.105e-01 0:904 36

39 0.2366233e+02 0.164e-01 0:446 36

40 0.2322512e+02 0.177e-01 0:382 29

41 0.2366426e+02 0.988e-02 1:000 20

42 0.2431996e+02 0.518e-02 1:000 20

A Appendix

A.1 Complex Exponential Function

Throughout the book, in particular in Sect. 2.1.3, the exponential function with
complex argument plays an important role in connection with the Dahlquist test
model (2.23). Let z 2 C be a complex variable such that z D a C ib; a; b 2 R and i
the imaginary unit with i2 D �1, then

jzj2 D a2 C b2; a D <z; b D =z

For the complex exponential function, the following notations are equivalent:

exp.z/ D ez D eaCib D ea � eib :

For purely imaginary argument ib, the famous Euler formula holds

eib D cos.b/ C i sin.b/) jeibj2 D cos2.b/ C sin2.b/ D 1 : (A.1)

From this, we immediately see that

jezj D ea

8

ˆ
ˆ
<

ˆ
ˆ
:

< 1; if a < 0

D 1; if a D 0

> 1; if a > 0

(A.2)

© Springer International Publishing Switzerland 2015
P. Deuflhard, S. Röblitz, A Guide to Numerical Modelling in Systems Biology, Texts
in Computational Science and Engineering 12, DOI 10.1007/978-3-319-20059-0

139

140 Condition of LSQ Problem

In Sect. 2.1.3 we are mainly interested in the asymptotic properties of the complex
exponential function for z ! 1. This is rather different from the behavior with real
arguments, as may be seen here:

ez z!1�!

8

ˆ
ˆ
<

ˆ
ˆ
:

0; if a ! �1
Œ�1; 1� C iŒ�1; 1�; if a D 0; b ! 1
1; if a ! 1

(A.3)

Obviously, the limit depends on the path along which one approaches the complex
point z D 1, which is why in complex analysis this is called an essential
singularity. In particular, observe that the path along the imaginary axis passes
through oscillations with increasing frequencies b.

A.2 Condition Numbers of Linear Algebra Problems

Generally speaking, computational scientists (including computational systems
biologists!) should be able to distinguish between the condition of a problem as
opposed to the stability of an algorithm. For this reason, we recall some material
from [17, chapter 2] here, which is of particular importance in connection with rank
decision, see Sect. 3.2.2 and Appendix A.3.

Absolute and Relative Condition Number

Given some in general nonlinear mapping r D f .e/ evaluating the result r for given
input values e. Then

kf .Qe/ � f .e/k P� �abskQe � ek for Qe ! e

kf .Qe/ � f .e/k
kf .e/k P� �rel

kQe � ek
kek for Qe ! e

Whenever f is differentiable, we may thus write the absolute condition number as

�abs D kf 0.e/k

and the relative condition number as

�rel D kek
kf .e/kkf 0.e/k:

Condition of LSQ Problem 141

For illustration, let us apply this definition to the simple case of a system of linear
equations.

Condition of Linear Equation Systems

Let be given the linear system

Ap D y; A 2 R
q�q; rank.A/ D q:

Here input values are A; y. The mapping p D f .A; y/ D A�1y describes the
dependence of the result p on input data A and y. Application of the above definition
for perturbations with respect to y then yields

�abs D kA�1k; �rel D kyk
kA�1ykkA�1k D kApk

kpk kA�1k � kAkkA�1k

The same upper bound would arise for perturbations with respect to the matrix A,
so that the condition number

cond.A/ WD kAkkA�1k; .if A is invertible/ (A.4)

can be taken as a measure of the effect of perturbations of A; y to perturbations of
the result p.

Example 15 We want to emphasize that the condition number of any problem is
only half of the story. For instance, assume that you have to solve a linear equation
Ax D b in terms of the .2; 2/-matrix

A D
�

1 1

0

�

:

The condition number of this matrix is

cond2.A/ � 1

:

Suppose now we have to solve the system for the two different right-hand sides

b1 D .1; 0/; b2 D .1; 1/

which would give rise to the two solutions

x1 D .1; 0/; x2 D 1

.
 � 1; 1/ � 1

.�1; 1/ :

142 Condition of LSQ Problem

Obviously, for
 ! 0, the first solution remains unchanged, whereas the second one
would blow up. In other words: The condition number describes the behavior of the
second solution, but not that of the first one, i.e. it is merely a worst case quantity,
which must be carefully analyzed in concrete situations.

Eigenvalues and Singular Values

In order to extend the condition number of a quadratic matrix to the case of a
rectangular matrix, we need some facts about eigenvalues and singular values. For
simplicity, we assume all matrices to be complex-valued.

• � 2 C is an eigenvalue of A 2 C
q�q if and only if there exists x 2 C

q such that
Ax D �x.

• AT has the same eigenvalues as A.
• �k is an eigenvalue of Ak; k D 1; 2; : : :

• If A is invertible, then �.AAT/ D �.ATA/.
• For any .m; q/-matrix A, there exists a decomposition of the kind

A D U˙VT ; ˙ D diag.�1; : : : ; �q/ ; (A.5)

where U; V are orthogonal matrices of proper dimension and �1; : : : ; �q are the
singular values.

• �i.A/ D p

�i.ATA/ � 0

• kAk2 D �1; kA�1k2 D �q , if A is nonsingular.

Condition Number of a Rectangular Matrix

Let A 2 R
m�q, then

cond.A/ WD maxkxkD1 kAxk
minkxkD1 kAxk D �1

�q
2 Œ1; 1�: (A.6)

Assume now that rank.A/ D q. Then

cond2.A/2 D
�

�1

�q

�2

D �max.ATA/

�min.ATA/
D cond2.A

TA/: (A.7)

Condition of Linear Least Squares Problems

The argument based merely on the relation (3.11) is not precise enough. For a
more careful analysis, we need the condition number of the full linear least squares
problem, which we want to derive now. Assume (3.9) with rank.A/ D q. In order to

QR-Factorization 143

study the effect of perturbations of the right hand side y, the normal equations can
be formally solved to yield the mapping

p D f .y/ D .ATA/�1ATy :

From this, we obtain the relative condition number (see above)

�rel;y D kyk2

kpk2

kf 0.y/k2 D kAk2k.ATA/�1ATk2kyk2

kAk2kpk2

D cond2.A/
kyk2

kAk2kpk2

� cond2.A/
kyk2

kApk2

D cond2.A/

cos
;

where we have used the definition of the angle from Fig. 3.3, right. In order to
study perturbations with respect to A, we define the mapping

p D f .A/ D .ATA/�1ATy ;

from which, after some calculation (see, e.g., [17, Theorem 3.11]), we may derive
the corresponding relative condition number

�rel;A D kAk2

kpk2

kf 0.A/k2 � cond2.A/ C cond2.A/2 tan :

In both condition numbers, attention will focus on the “large residual” case

 ! �=2) 1
 tan � 1

cos
:

In this case, the algorithm via the normal equations is stable, but the problem itself
is ill-conditioned! Hence, for principal reasons, the numerical solution of the normal
equations will not be the right way to tackle linear least squares problems.

A.3 QR-Factorization with Column Pivoting

In order to solve linear least squares problems via QR-factorization, we are only left
with determining appropriate orthogonal transformations.

Householder Transformations

For reasons to become apparent below, we select Householder matrices

H D I � ˇvvT ; ˇ D 2=.vTv/ ;

144 QR-Factorization

wherein v 2 R
d and dimension d can be chosen. For these .d; d/-matrices the

following properties hold:

(a) H is symmetric, i.e. HT D H,
(b) H is orthogonal, i.e. HHT D HTH D I,
(c) H is scaling invariant, i.e. H.v/ D H.�v/; � ¤ 0

To start with, we show how to transform a given arbitrary vector y 2 R
d to a multiple

of the unit vector e1, i.e.

Hy D y � 2
vT y

vTv
v D ˛e1 H) j˛j D kyk2; v D �.y � ˛e1/ ; (A.8)

where the � is arbitrary, see property (c) above. Hence, we may set � D 1 and get

v D y � ˛e1 D .y1 � ˛; y2; : : : ; yd/T :

In order to avoid cancellation of leading digits in the first component, we dispose
about the sign of ˛ by setting ˛ D � sign y1kyk2. So we end up with a change of
only the single component y1 to v1, while the other components remain unchanged
and can just be left on the storage y2; : : : ; yd.

QR-Factorization

We now extend this procedure in such a way that the given .m; q/-matrix A is
transformed into an upper triangular matrix R D .rij/. We aim at a columnwise
application, which means an application from the left:

HA D .I � ˇvvT /A D A � ˇvwT where wT D vTA

For step k D 1; : : : ; q, let Hk D diag.Ik�1; H0
k/, where H0

k are Householder
submatrices that only change the right lower corner matrices of the transformed
matrices A.k/. Then we obtain the following explicit pattern (merely represented by
asterisks)

A.k/ D Hk

0

B

B

B

B

B

B

B

B

B

B

B

B

@

� � � � � � � � � � � � � � � � �
: : :

:::

� � � � � � � � � � �
� � � � � �
:::

:::
:::

:::
:::

:::

� � � � � �

1

C

C

C

C

C

C

C

C

C

C

C

C

A

D

0

B

B

B

B

B

B

B

B

B

B

B

B

@

� � � � � � � � � � � � � � � � �
: : :

:::

� � � � � � � � � � �
� � � � � �
0

:::
:::

:::
:::

:::

0 � � � � �

1

C

C

C

C

C

C

C

C

C

C

C

C

A

QR-Factorization 145

Fig. A.1 QR-factorization
by product of Householder
matrices: storage scheme

vvvv

A

1 2 3 4

1

2

3

4

+

α

α

α

α

R

By comparison with (A.8) we see that each subcolumn k is transformed into some
˛ke1 with a unit vector e1 of the proper length. Hence, the diagonal elements of the
matrix R arise as

rkk D ˛k; k D 1; : : : ; q :

After q steps we arrive at

QTA D .HqHq�1 � � � H2H1/A D
�

R
0

�

Note that the product Q D H1 � � � Hq is orthogonal, but not symmetric, even though
each factor matrix H is symmetric, since QT D Hq � � � H1.

In actual implementation, only the upper triangular matrix R, the successively
shorter vectors v1; : : : ; vq and the diagonal elements ˛1; : : : ; ˛q need to be stored.
This can be done on the space of the original matrix A, see Fig. A.1

Computational cost. For this QR-factorization algorithm, we have the following
main computational tasks in each subcolumn k

(a) one matrix vector multiplication (vTA),
(b) one outer product update (vwT),
(c) one matrix subtraction,

which is � 4mk operations. Over all columns k D 1; : : : ; q, this sums up to total
computational costs of

� 2q2m operations:

Compared with (3.10) for the normal equations algorithm, this is a factor of 4 more
– but numerically stable!

146 QR-Factorization

Column Pivoting

Following a suggestion due to Businger/Golub [9], the QR-decomposition is slightly
modified. Suppose we are in step k of the Householder transformation and have the
partitioning

A.k�1/ D
�

R S
0 T.k/

�

: (A.9)

Let T.k/
j denote column j 2 fk; : : : ; qg of T.k/. Now, select that column of T.k/ with

maximum 2-norm, i.e. let

kT.k/k� WD max
j

kT.k/
j k

in terms of the special norm k � k� that is particularly suited for the here considered
algorithm; next, shift this column into position k. After the shift, the following
relation holds:

jrkkj D kT.k/
k k D kT.k/k� : (A.10)

Consequently, after application of this procedure for all k, the arising diagonal
elements of R are ordered in such a way that

jr11j � : : : � jrqqj � 0 : (A.11)

For the algorithmic implementation of the possible reordering, merely a single
additional integer vector of length q must be stored, see Fig. A.1. Formally speaking,
we have to replace (3.13) by

A˘ D Q

�

R
0

�

, QTA D
�

R
0

�

˘T ; (A.12)

wherein ˘ denotes some permutation matrix satisfying

˘ ˘T D ˘T˘ D Iq :

Rank Decision

This column ordering device is the basis for a cheap rank decision for the
given matrix A. With (A.10) this definition of rank deficiency has its algorithmic
counterpart as

QTA˘ D
�

R S
0 T.�C1/

�

; kT.�C1/k� � "A kAk� ; (A.13)

Gauss-Newton Method 147

wherein the cut-off parameter "A, a measure of the relative accuracy of the matrix
A, requires careful consideration. For further computation, the remainder matrix
is set to zero, i.e. T.�C1/ ! 0. On this basis, one applies another orthogonal
transformation, this time from the right side, to finally obtain

QTA˘ OQT D
� OR 0

0 0

�

; (A.14)

For details of the algorithm see Sect. 3.2.2.

A.4 Convergence of Newton and Gauss-Newton Methods

In systems biology, Gauss-Newton methods arise in the context of parameter
identification, see Sect. 3.3. Their corresponding convergence theory is easier to
understand, if the one for Newton’s method is presented before. A mathematical
convergence theory for both Newton and Gauss-Newton methods, especially derived
in view of adaptive algorithms, may be found in the research monograph [15]. Here
we merely give some brief account of the underlying ideas.

Newton Method

Consider a system of q nonlinear equations F.p/ D 0 for q unknown variables
p1; : : : ; pq to be solved. Then the local Newton iteration reads

pkC1 � pk D �pk D �F0.pk/�1F.pk/ 2 R
q; k D 0; 1; : : : : (A.15)

Of course, we have to assume that the Jacobian .n; n/-matrices F0.p/ are nonsingular
in some sufficiently large neighborhood of the solution point p�. The question is
to find out, under which conditions and at which rate this iteration converges. For
linear problems, this iteration converges in one single step. For nonlinear problems,
we have to define how to measure “nonlinearity”. In a first step, some Lipschitz
condition is imposed. Among the various ways to phrase such a condition, we pick
out the following one:

kF0.z/�1.F0.y/ � F0.p//.y � p/k � !ky � pk2 : (A.16)

The thus defined Lipschitz constant ! is independent of any affine transformation
of the nonlinear mapping, say F ! G D AF, i.e. independent of any choice of a
nonsingular matrix A, since

G0.z/�1.G0.y/ � G0.p// D F0.z/�1A�1A.F0.y/ � F0.p// D F0.z/�1.F0.y/ � F0.p//:

That is why this Lipschitz condition is called “affine invariant”.

148 Gauss-Newton Method

In a second step, we recur to the mean value theorem for vector-valued functions,
F.p C h/ � F.p/ D h

R 1

0
F0.p C sh/ ds, which implies

F.y/�F.p/�F0.p/.y�p/ D
Z 1

sD0

�

F0.p C s.y � p// � F0.p/
�

.y�p/ ds : (A.17)

On this basis we may conclude (for well-defined p; y; z)

kF0.z/�1.F.y/ � F.p/ � F0.p/.y � p//k

D
�

�

�

�

Z 1

sD0

F0.z/�1
�

F0.p C s.y � p// � F0.p/
�

.y � p/ds

�

�

�

�

�
Z 1

sD0

kF0.z/�1
�

F0.p C s.y � p// � F0.p/
�

.y � p/dsk

� !ky � pk2

Z 1

sD0

sds D !

2
ky � pk2 :

Upon identifying y D z D pk; p D pk�1 we finally arrive at the famous quadratic
convergence result

kpkC1 � pkk � !

2
kpk � pk�1k2 : (A.18)

Obviously, this method converges in the frame of this estimate, if

!

2
kpk � pk�1k < 1 for k D 1; 2; : : : :

For the initial iterates, this means that

kp1 � p0k D k�p0k <
2

!
: (A.19)

We see that this assumption is always satisfied for linear problems, since there ! D
0. For ! > 0, we obtain

kpkC1 � pkk < kpk � pk�1k < : : : < kp1 � p0k <
2

!
:

Summarizing, the Newton method (A.15) converges locally, see (A.19), and
quadratically, see (A.18), to a unique solution point p�.

Two algorithmic questions arise in connection with the local Newton method: (a)
How can I recognize that the iteration runs within the local convergence domain? (b)
What should be done, if this is definitely not the case? The answer to these question
is given by an extension to the global Newton method.

Gauss-Newton Method 149

Globalization. In order to expand the domain of convergence of the local Newton
method (A.15), a usual device is to realize some damping of the Newton corrections
�pk in the following way:

pkC1 � pk D �k�pk; �pk D �F0.pk/�1F.pk/; k D 0; 1; : : : : (A.20)

The damping factors 0 < �k � 1 are selected by means of the affine invariant
monotonicity criterion

k�pkC1k2 � k�pkk2; where �pkC1 D �F0.pk/�1F.pk C �k�pk/ ; (A.21)

i.e. the ordinary Newton corrections �pk are compared with the simplified Newton
corrections �pkC1. By a subtle adaptive damping strategy, global convergence can
be obtained under certain additional theoretical assumptions. Needless to say that
the same techniques are also useful to assure that the local Newton method will stay
in the convergence domain, as in this case the damping factors �k D 1 are selected
by the algorithm. For more details, especially about a theoretically backed strategy
for choosing the damping factors, readers are again referred to the textbook [15].

Gauss-Newton Method

Suppose now that we have to solve the nonlinear least squares problem kF.p/k2 D
min. From (3.35), we recall the local Gauss-Newton iteration as

pkC1 � pk D �pk D �F0.pk/CF.pk/ 2 R
q; k D 0; 1; : : : (A.22)

where F0.p/C denotes the Moore-Penrose pseudo-inverse of the possibly rank-
deficient Jacobian .m; q/-matrix. In a first step, the above Lipschitz condition (A.16)
is replaced by the generalized Lipschitz condition

kF0.z/C.F0.y/�F0.p//.y�p/k � !ky�pk2 for y�p 2 R.F0.p/C/ : (A.23)

The mean value theorem is still applicable and supplies the result (A.17) as above.
With these preparations, we again study the convergence of the iterates, where

we use the notation of the generalized projectors

P.p/ D F0.p/CF0.p/; NP WD F0.p/F0.p/C : (A.24)

and their orthogonal complements P?.p/; NP?.p/:

kpkC1 � pkk D kF0.pk/CF.pk/k
D kF0.pk/C �F.pk/ � F.pk�1/ � F0.pk�1/.pk � pk�1/

�

150 Gauss-Newton Method

CF0.pk/CF.pk�1/ � F0.pk/CF0.pk�1/F0.pk�1/CF.pk�1/k
� kF0.pk/C �F.pk/ � F.pk�1/ � F0.pk�1/.pk � pk�1/

� k
CkF0.pk/C NP?.pk�1/F.pk�1/k

Obviously, the first term above can be treated as in the Newton case to yield

kF0.pk/C �F.pk/ � F.pk�1/ � F0.pk�1/.pk � pk�1/
� k � !

2
kpk � pk�1k2 :

The second term differs from the Newton case. Since F0.pk�1/C NP?.pk�1/ D 0, we
may write

kF0.pk/C NP?.pk�1/F.pk�1/k D k �F0.pk/C � F0.pk�1/C� NP?.pk�1/F.pk�1/k

and are thus led to introduce the additional assumption

kF0.pk/C NP?.pk�1/F.pk�1/k � �.pk�1/kpk � pk�1k (A.25)

for some incompatibility factor �.p/. So we arrive at the convergence estimate

kpkC1 � pkk �
�!

2
kpk � pk�1k C �.pk�1/

�

kpk � pk�1k : (A.26)

Note that this is no longer “quadratic” convergence. Obviously, the Gauss-Newton
iterates converge in the frame of the estimate, if we assume that �.p/ � N� < 1 so
that

!

2
kpk � pk�1k C �.pk�1/ � !

2
kpk � pk�1k C N� < 1

can be achieved for k D 1; 2; : : :. For the initial iterates, this means that we need to
require

kp1 � p0k D k�p0k <
2.1 � N�/

!
: (A.27)

We see that this assumption is always satisfied for linear problems, since there we
have ! D 0 and N� D 0. For the nonlinear case, we obtain

kpkC1 � pkk < kpk � pk�1k < : : : < kp1 � p0k <
2.1 � N�/

!
:

Summarizing, the Gauss-Newton method (A.22) converges locally, see (A.27).
However, in general its asymptotic convergence rate is not quadratic as in the
ordinary Newton method, but linear, see (A.26), whenever a local solution point
p� exists. More precisely, this local convergence only holds for a restricted class of

Gauss-Newton Method 151

nonlinear least squares problems. To identify this class, the following definition is
helpful.

Definition Adequate nonlinear least-squares problems are characterized by the
condition

�.p�/ < 1 : (A.28)

Note that this definition is more precise than the formerly used vague term “nearly
compatible”. In order to better understand the definition, let us study a few
examples.

• Linear least squares problems: We have F0.p/ D A, so that we obtain

! D 0; �.p/ D N� D 0 ;

which implies �p2 D 0 and therefore p1 D p�, i.e. convergence within one
iteration.

• Systems of nonlinear equations (m D q): Let us assume that all Jacobian matrices
are nonsingular so that we have F0.p/C D F0.p/�1. Upon using the projection
properties (3.28) we get

kF0.p/C NP?.p/F.p/k D 0) �.p/ D 0 :

Hence, we obtain quadratic convergence for the case of Newton’s method.
• Compatible nonlinear least squares problems: Whenever F.p�/ D 0, we easily

derive that

�.p�/ D 0 :

In this case, under certain continuity assumptions, there is always some neigh-
borhood of the solution point such that N� < 1. Of course, we usually cannot
compute �.p�/, but will find convenient estimates of �.pk/ in the course of the
iteration, see (A.32) below.

For incompatible problems, we have to carefully observe the factor �.p/ along the
iterates, which is why it is called incompatibility factor: Whenever �.pk/ < 1 is
observed at all iterates pk, then we assume that also �.p�/ < 1 and therefore call the
nonlinear least squares problem adequate. For inadequate problems with �.p�/ � 1,
H.G. Bock [6] proved that the point p� is no longer a local minimum of kF.p/k.

In summary, the Gauss-Newton method converges locally linearly for adequate
and locally quadratically for compatible nonlinear least-squares problems. Algorith-
mically, its convergence will be monitored within the corresponding globalization.

152 Gauss-Newton Method

Globalization. In order to expand the domain of convergence of the local Gauss-
Newton method (A.22), an adaptive damping strategy is applied as in Newton’s
method:

pkC1 � pk D �k�pk; �pk D �F0.pk/CF.pk/; k D 0; 1; : : : (A.29)

The damping factors 0 < �k � 1 are chosen such that an “affine invariant”
monotonicity criterion

k�pkC1k � k�pkk; where �pkC1 D �F0.pk/CF.pk C �k�pk/ (A.30)

holds, wherein the ordinary Gauss-Newton corrections �pk are compared with
the simplified Gauss-Newton corrections �pkC1. Under additional mathematical
assumptions global convergence can be achieved for adequate nonlinear least
squares problems. As in Newton’s method, the local Gauss-Newton iteration is
monitored to stay in its convergence domain, whenever the damping factors �k

remain to be selected as the value 1.
Computational characterization of adequateness. As soon as damping factors

�k D 1 occur at least twice consecutively before the final iterate in the damping
strategy [15], then computational estimates for the theoretical quantities ! and �

become available. For estimating the Lipschitz constant !, the GN iteration can be
further analyzed via

k�pkC1k � !

2
k�pkk2) ! � 2k�pkC1k

k�pkk2
	 ! (A.31)

For estimating the incompatibility factor �, the convergence results (A.26)
and (A.31) applied to indices k; k C 1 yield

� 	 k�pkC1k
k�pkk ; �2 	 k�pkC1k

k�pkk : (A.32)

An illustration of this feature is given in Fig. 3.5b. For a mathematical derivation of
the above formulas interested readers are again referred to [15].

A.5 Adaptive External Numerical Differentiation

In this part we study the approximation quality of finite difference methods for the
derivative F0.p/, where p 2 R

q are parameters of an ODE model y0 D f .y; p/.
Assume we want to approximate some column i of the derivative

@F

@pi
	 F.p C �i pi;scal ei/ � F.p/

�i
; �i ¤ 0 ; (A.33)

A.5 Adaptive External Numerical Differentiation 153

where ei denotes the coordinate unit vector, pi;scal the i-th component of the scaling
vector pscal, and �i the common relative deviation for the whole column i. In order
to simplify notation, we drop all indices and set � 2 R in the following elementary
analysis. For the estimate to follow, let us introduce a Jacobian Lipschitz condition
(different from (A.17), but in a similar spirit):

k.F0.Np/ � F0.p//.Np � p/k � !kNp � pk2

With this assumption, we obtain an estimate for the discretization error with the
exact F as

kF.p C �/ � F.p/ � F0.p/�k �
Z 1

sD0

k �F0.p C s�/ � F0.p/
�

�k ds � !

2
�2 :

(A.34)

For the perturbed mapping OF.p/, however, we have to recall the finite difference
error (3.53), here used in the form

k OF.p/ � F.p/k � kF.p/k TOL (A.35)

in terms of the local discretization error tolerance TOL applied in the numerical
integrator. Upon combining (A.34) and (A.35) and applying the triangle inequality
twice, we arrive at

k OF.p C �/ � OF.p/ � F0.p/�k � !

2
�2 C 2kF.p/k TOL :

For the approximation quality by finite differences we hence obtain

O�.�/ WD
�

�

�

OF.p C �/ � OF.p/

�
� F0.p/

�

�

� � !

2
� C 2

kF.p/k TOL

�

Taking the derivative of the upper bound we arrive at the condition for the inner
extremum

!

2
� 2

kF.p/k TOL

�2
D 0 :

From this we get the “optimal” values

�opt D 2

rkF.p/k
!

p
TOL ; O�.�opt/ � 2

p

!kF.p/kp
TOL : (A.36)

154 Gauss-Newton Method

The change from TOL in (A.35) to
p

TOL in (A.36) indicates that the number of
significant digits in the FD approximation of F0 is roughly halved, compared to those
in F.

Note that this optimality result can also be interpreted as an exact balance
between the F-evaluation error (left below) and the discretization error for F0 (right
below), which would yield

2 kF.p/k TOL D !

2
�2 :

Geometrically speaking, the quantity ! represents some “curvature” around the
point where the FD approximation is wanted.

Normwise Adaptive Strategy

With this insight, we now aim at finding an “adaptive choice” of the deviation
parameter � based on computationally available quantities. Of course, the term O�.�/

is computationally unavailable. But, following an idea in [17, Exercise 4.7], we try
with the quantity

�.�/ WD k OF.p C �/ � OF.p/k
kF.p/k :

A short calculation using the above upper bounds again leads to

�.�/ � 2TOL C !

2kF.p/k�2 C kF0.p/k
kF.p/k � :

Upon using that TOL
 � � p
TOL we obtain the first order estimate

�.�/
:D kF0.p/k

kF.p/k � DW c1� � p
TOL :

Hence, we may derive

�.�/

�.�opt/

:D �

�opt
:

If we set the ad-hoc choice �.�opt/ D p
10 TOL, as suggested in [17, Exercise 4.7],

we obtain an estimate Œ�opt� from an actually applied � as

Œ�opt�
:D �.�opt/

�.�/
� D

p
10 TOL

�.�/
� � p

TOL : (A.37)

A.5 Adaptive External Numerical Differentiation 155

Componentwise Adaptive Strategy

In the algorithmic realization, we must take into account that the above derivation
should be performed for each component OFi; i D 1; : : : ; M, since the balance
between the FD error and the discretization error will be needed for each component.
As a consequence we would obtain computational estimates

Œ�opt;i� WD
p

10 TOL

�i.�/
� � p

TOL ; i D 1; : : : ; M

wherein we have set

�i.�/ WD j OFi.p C �/ � OFi.p/j
OFi;scal.p/

; i D 1; : : : ; M

with

OFi;scal.p/ WD max.j OFi.p C �/j; j OFi.p/j/ > 0 :

In passing we note that the above term �i.�/ is invariant under rescaling of the
component OFi. Upon recalling that the above suggestions Œ�opt;1�; : : : ; Œ�opt;M� would
arise for each column of the Jacobian separately, we see that we thus obtain
a suggested full matrix of relative deviations of the same size M � q as the
Jacobian matrix F0.p/. For reasons of implementation, however, we prefer only one
suggestion per column, which means that we need to average somehow.

Among several averaging techniques considered in detail, the following one due
to U. Nowak [47] turned out to be most robust. In this technique, the M values
�1.�/; : : : ; �M.�/ are replaced by the root mean square

�.�/ WD
v

u

u

t
1

M

M
X

iD1

�2
i .�/ :

Insertion into the normwise form (A.37) then yields

Œ�opt� D
p

10 TOL

�.�/
� � p

TOL (A.38)

The above recursive formula is implemented in the code NLSCON, which is a
subroutine within BioPARKIN.

156 Gauss-Newton Method

Fig. A.2 Left: “Small” curvature !. Too large steps for the FD approximation still produce only
small discretization error. Right: “Large” curvature !. Too large steps for the FD approximation
produce large discretization error

In order to understand why this formula is robust, let us look at a simple example:
As shown in Fig. A.2, the discretization error is differently affected, if the curvature
! is either large or small.

Software

Numerical Algorithms

For the numerical algorithms described in this book there exist public domain soft-
ware packages, which can be downloaded via internet. Here comes an incomplete
(!) list including their present internet addresses:

Explicit Numerical Integrators for Non-stiff Initial Value Problems

DOPRI5, DOP853, ODEX Runge-Kutta codes based on formulas of Dor-
mand/Prince and extrapolation code based on explicit midpoint rule, with control
of step size (and order).
http://www.unige.ch/~hairer/software.html

DIFEX1 extrapolation code based on explicit midpoint rule, with order and step-
size control.
http://www.zib.de/en/numerik/software/codelib/ivpode.html

LSODE Multistep codes based on Adams method with control of step size and
order (slightly restricted to maintain quasi-uniform grids, if possible).
http://people.sc.fsu.edu/~jburkardt/f77_src/odepack/odepack.html

VODE Multistep codes based on Adams method with variable order and step-size
control.
http://www.netlib.org/ode/vode.f

Implicit Numerical Integrators for Stiff Initial Value Problems

DASSL Multistep code based on the BDF discretization with control of order and
step size.
http://www.netlib.org/ode/ddassl.f

© Springer International Publishing Switzerland 2015
P. Deuflhard, S. Röblitz, A Guide to Numerical Modelling in Systems Biology, Texts
in Computational Science and Engineering 12, DOI 10.1007/978-3-319-20059-0

157

http://www.unige.ch/~hairer/software.html
http://www.zib.de/en/numerik/software/codelib/ivpode.html
http://people.sc.fsu.edu/~jburkardt/f77_src/odepack/odepack.html
http://www.netlib.org/ode/vode.f
http://www.netlib.org/ode/ddassl.f

158 Software

CVODE Solver for stiff and nonstiff ODE systems given in explicit form. The
methods used in CVODE are variable-order, variable-step multistep methods.
For nonstiff problems, CVODE includes the Adams-Moulton formulas, with
the order varying between 1 and 12. For stiff problems, CVODE includes the
Backward Differentiation Formulas (BDFs) in so-called fixed-leading coefficient
form, with order varying between 1 and 5. For either choice of formula, the
resulting nonlinear system is solved (approximately) at each integration step.
CVODE is part of a software family called SUNDIALS.
http://computation.llnl.gov/casc/sundials/description/description.html

LSODI, LSODA Multistep codes based on BDF method with control of step size
and order (slightly restricted to maintain quasi-uniform grids, if possible). A
means Automatic switching between the explicit Adams and the implicit BDF
code.
http://people.sc.fsu.edu/~jburkardt/f77_src/odepack/odepack.html

RADAU5 implicit collocation code based on the Radau discretization with order
and step-size control.
http://www.unige.ch/~hairer/software.html

Linearly Implicit Numerical Integrators for Stiff Initial Value Problems

LIMEX Extrapolation code based on linearly implicit Euler discretization with
order and step-size control.
http://www.zib.de/en/numerik/software/codelib/ivpode.html

METAN1 Extrapolation code based on linearly implicit midpoint rule with order
and step-size control.
http://www.zib.de/en/numerik/software/codelib/ivpode.html

RODAS, ROS3PL Rosenbrock-Wanner codes based on linearly implicit Runge-
Kutta methods with step-size control.
http://www.unige.ch/~hairer/software.html

Numerical Integrators for Delay-Differential Equations

RETARD Explicit Runge-Kutta code, extension of DOPRI5 with step-size
control.
http://www.unige.ch/~hairer/software.html

RADAR5 Implicit Runge-Kutta code, an extension of RADAU5 with step-size
control.
http://www.unige.ch/~hairer/software.html

http://computation.llnl.gov/casc/sundials/description/description.html
http://people.sc.fsu.edu/~jburkardt/f77_src/odepack/odepack.html
http://www.unige.ch/~hairer/software.html
http://www.zib.de/en/numerik/software/codelib/ivpode.html
http://www.zib.de/en/numerik/software/codelib/ivpode.html
http://www.unige.ch/~hairer/software.html
http://www.unige.ch/~hairer/software.html
http://www.unige.ch/~hairer/software.html

Software 159

Parameter Identification Algorithms

NLSCON A Gauss-Newton method for nonlinear least squares problems with
nonlinear equality constraints.
http://www.zib.de/en/numerik/software/codelib/nonlin.html

Software Packages

The task of numerical modelling in system biology will be of increasing complexity
in the time to come. Therefore a number of elaborate software packages have been
developed in recent years to assist the modelling process.

SBML Systems Biology Markup Language [11, 46].
http://www.sbml.org/

Copasi This is a software environment for “simulation and analysis of bio-
chemical networks and their dynamics” [39]. For the numerical simulation, they
suggest LSODA. For parameter identification, they provide a list of optimization
routines, but none that analyzes the statistical background, as comparable to our
Chap. 3.
http://www.copasi.org/

BioPARKIN (for: Biology-related PARamater identification in large KINetic
networks) A software package for parameter identification problems in systems
biology. This code can load models in the SBML format, which has become
the standard in systems biology. Model construction in terms of adding or
deleting ODEs is not (yet) possible in BioPARKIN. For this purpose, there
exist numerous well established software tools, e.g., CellDesigner, see: http://
www.celldesigner.org/. However, the user can edit mathematical expressions for
kinetic rate laws, as well as numerical values for parameters and initial values.
Numerical integration of the model system is standardly performed with LIMEX
(see above), since this code especially offers advantages in connection with
the solution of the variational equations for parameter sensitivities. Parameter
identification is performed with the Gauss-Newton code NLSCON (see above).
The code offers several unique features that are especially useful for biological
modelling, such as breakpoint handling, or identifiability statements. The pack-
age is publicly available for download under

https://github.com/CSB-at-ZIB/BioPARKIN.

Further information, including a brief tutorial, can be found under

http://bioparkin.zib.de.

ZIB_RubyExt A software package for parameter identification problems in ODE
systems. This program wraps the FORTRAN routines NLSCON and LIMEX to
Ruby, a dynamic, open source programming language.

http://www.zib.de/en/numerik/software/codelib/nonlin.html
http://www.sbml.org/
http://www.copasi.org/
http://www.celldesigner.org/
http://www.celldesigner.org/
https://github.com/CSB-at-ZIB/BioPARKIN
http://bioparkin.zib.de

160 Software

https://github.com/CSB-at-ZIB/ZIB_RubyExt
https://www.ruby-lang.org/en/

RoadRunner RoadRunner is a .NET library for carrying out deterministic simu-
lation of SBML models. The library has been extensively tested and is available
for all major operating systems. Apart from a .NET core, RoadRunner also relies
on native libraries for: SBML support, conservation analysis, integration and
steady state analysis.
http://roadrunner.sourceforge.net/RoadRunner/Welcome.html

libRoadRunner A high performance and portable simulation engine for systems
and synthetic biology, libRoadRunner can run on many platforms including Win-
dows, Mac OS, and Linux. libRoadRunner is a major rewrite of the original C#
roadRunner by Bergmann and Sauro. The same original functionality however
remains, including the original C API, the structural analysis code, sensitivity
and steady state analyses, but with significant improvements to performance,
back-end design, better event handling, new C++ API and stochastic simulation
support. The use of LLVM (Low Level Virtual Machine), designed for real-time
optimization and dynamic compilation of application software, allows for very
fast simulations.
http://libroadrunner.org/

https://github.com/CSB-at-ZIB/ZIB_RubyExt
https://www.ruby-lang.org/en/
http://roadrunner.sourceforge.net/RoadRunner/Welcome.html
http://libroadrunner.org/

References

1. Amestoy, P., Duff, I., Koster, J., L’Excellent, J.Y.: A fully asynchronous multifrontal solver
using distributed dynamic scheduling. SIAM J. Matrix Anal. Appl. 23(1), 15–41 (2001)

2. Amestoy, P.R., Buttari, A., Duff, I.S., Guermouche, A., L’Excellent, J.Y., Uçar, B.: MUMPS.
In: Padua, D. (ed.) Encyclopedia of Parallel Computing. Springer, New York (2011)

3. Bader, G., Deuflhard, P.: A semi-implicit mid-point rule for stiff systems of ordinary differen-
tial equations. Numer. Math. 41, 373–398 (1983)

4. Bader, G., Nowak, U., Deuflhard, P.: An advanced simulation package for large chemical
reaction systems. In: Aiken, R.C. (ed.) Stiff Computation, pp. 255–264. Oxford University
Press, New York/Oxford (1985)

5. Bock, H.G.: Numerical treatment of inverse problems in chemical reaction kinetics. In: Ebert,
K.H., Deuflhard, P., Jäger, W. (eds.) Modelling of Chemical Reaction Systems, pp. 102–125.
Springer, Berlin/Heidelberg/New York (1981)

6. Bock, H.G.: Randwertproblemmethoden zur Parameteridentifizierung in Systemen nichtlin-
earer Differentialgleichungen. Ph.D. thesis, Universität zu Bonn (1985)

7. Boer, H.M.T., Stötzel, C., Röblitz, S., Deuflhard, P., Veerkamp, R.F., Woelders, H.: A
simple mathematical model of the bovine estrous cycle: follicle development and endocrine
interactions. J. Theor. Biol. 278, 20–31 (2011)

8. Brown, P.N., Byrne, G.D., Hindmarsh, A.C.: VODE: a variable-coefficient ODE solver. SIAM
J. Sci. Stat. Comput. 10, 1038–1051 (1989)

9. Businger, P., Golub, G.H.: Linear least squares solutions by Householder transformations.
Numer. Math. 7, 269–276 (1965)

10. Butcher, J.C.: Coefficients for the study of Runge-Kutta integration processes. J. Aust. Math.
Soc. 3, 185–201 (1963)

11. Cornish-Bowden, A.: The systems biology markup language (SBML): a medium for represen-
tation and exchange of biochemical network models. Bioinformatics 19, 524–531 (2003)

12. Dahlquist, G.: Convergence and stability in the numerical integration of ordinary differential
equations. Math. Scand. 4, 33–53 (1956)

13. Deuflhard, P.: Order and stepsize control in extrapolation methods. Numer. Math. 41, 399–422
(1983)

14. Deuflhard, P.: Recent progress in extrapolation methods for ordinary differential equations.
SIAM Rev. 27, 505–535 (1985)

15. Deuflhard, P.: Newton Methods for Nonlinear Problems. Affine Invariance and Adaptive
Algorithms. Springer International, Heidelberg, New York (2002)

16. Deuflhard, P., Bornemann, F.: Scientific Computing with Ordinary Differential Equations.
Texts in Applied Mathematics, vol. 42. Springer, New York (2002)

© Springer International Publishing Switzerland 2015
P. Deuflhard, S. Röblitz, A Guide to Numerical Modelling in Systems Biology, Texts
in Computational Science and Engineering 12, DOI 10.1007/978-3-319-20059-0

161

162 References

17. Deuflhard, P., Hohmann, A.: Numerical Analysis in Modern Scientific Computing: An
Introduction. Texts in Applied Mathematics, vol. 43, 2nd edn. Springer, New York (2003)

18. Deuflhard, P., Nowak, U.: Efficient numerical simulation and identification of large chemical
reaction systems. Ber. Bunsenges 90, 940–946 (1986)

19. Deuflhard, P., Nowak, U.: Extrapolation integrators for quasilinear implicit ODEs. In:
Deuflhard, P., Engquist, B. (eds.) Large Scale Scientific Computing, pp. 37–50. Birkhäuser,
Boston/Basel/Stuttgart (1987)

20. Deuflhard, P., Sautter, W.: On rank-deficient pseudoinverses. Lin. Alg. Appl. 29, 91–111 (1980)
21. Deuflhard, P., Schütte, C.: Molecular conformation dynamics and computational drug design.

In: Hill, J., Moore, R. (eds.) Applied Mathematics Entering the 21st Century. Invited Talks
from the ICIAM 2003 Congress, pp. 91–119. SIAM, Philadelphia (2004)

22. Deuflhard, P., Bader, G., Nowak, U.: LARKIN—a software package for the numerical
simulation of LARge systems arising in chemical reaction KINetics. In: Ebert, K.H.,
Deuflhard, P., Jäger, W. (eds.) Modelling of Chemical Reaction Systems, pp. 38–55. Springer,
Berlin/Heidelberg/New York (1981)

23. Deuflhard, P., Hairer, E., Zugck, J.: One–step and extrapolation methods for differential–
algebraic systems. Numer. Math. 51, 501–516 (1987)

24. Dierkes, T., Wade, M., Nowak, U., Röblitz, S.: BioPARKIN – biology-related parameter
identification in large kinetic networks. ZIB-Report 11–15, Zuse Institute Berlin (ZIB) (2011).
http://opus4.kobv.de/opus4-zib/frontdoor/index/index/docId/1270

25. Dierkes, T., Röblitz, S., Wade, M., Deuflhard, P.: Parameter identification in large kinetic
networks with BioPARKIN. arXiv:1303.4928 (2013)

26. Dormand, J.R., Prince, P.J.: A family of embedded Runge-Kutta formulae. J. Comput. Appl.
Math. 6, 19–26 (1980)

27. Ehle, B.L.: On Padé approximations to the exponential function and A-stable methods for the
numerical solution of initial value problems. Research Report CSRR 2010, Department of
AACS, University of Waterloo, Ontario (1969)

28. Gear, C.W.: Numerical Initial Value Problems in Ordinary Differential Equations. Prentice-
Hall, Englewood Cliffs (1971)

29. Gragg, W.B.: Repeated extrapolation to the limit in the numerical solution of ordinary
differential equations. Ph.D. thesis, University of California, San Diego (1963)

30. Griewank, A., Corliss, G.F. (eds.): Automatic Differentiation of Algorithms: Theory, Imple-
mentation, and Application. SIAM, Philadelphia (1991)

31. Guglielmi, N., Hairer, E.: Implementing Radau II-A methods for stiff delay differential
equations. Computing 67, 1–12 (2001)

32. Hairer, E., Ostermann, A.: Dense output for extrapolation methods. Numer. Math. 58, 419–439
(1990)

33. Hairer, E., Wanner, G.: Solving Ordinary Differential Equations II. Stiff and Differential-
Algebraic Problems, 2nd edn. Springer, Berlin/Heidelberg/New York (1996)

34. Hairer, E., Nørsett, S.P., Wanner, G.: Solving Ordinary Differential Equations I. Nonstiff
Problems, 2nd edn. Springer, Berlin/Heidelberg/New York (1993)

35. Hengl, S., Kreutz, C., Timmer, J., Maiwald, T.: Data-based identifiability analysis on nonlinear
dynamical models. Bioinformatics 23, 2612–2618 (2007)

36. Hindmarsh, A.C.: LSODE and LSODI, two new initial value ordinary differential equations
solvers. ACM SIGNUM Newsl. 15, 10–11 (1980)

37. Hindmarsh, A.C., Serban, R.: User documentation for cvode v2.7.0. Technical Report
UCRL-SM-208108, Center for Applied Scientific Computing, Lawrence Livermore National
Laboratory (2012)

38. Hindmarsh, A.C., Brown, P.N., Grant, K.E., Lee, S.L., Serban, R., Shumaker, D.E., Woodward,
C.S.: SUNDIALS: suite of nonlinear and differential/algebraic equation solvers. ACM Trans.
Math. Softw. 31(3), 363–396 (2005)

39. Hoops, S., Sahle, S., Gauges, R., Lee, C., Pahle, J., Simus, N., Singhal, M., Xu, L., Mendes,
P., Kummer, U.: COPASI – a COmplex PAthway SImulator. Bioinformatics 22, 3067–3074
(2006)

http://opus4.kobv.de/opus4-zib/frontdoor/index/index/docId/1270

References 163

40. Jones, D.S., Plank, M.J., Sleeman, B.D.: Differential Equations and Mathematical Biology.
Mathematical and Computational Biology, 2nd edn. Chapman & Hall/CRC, Boca Raton (2010)

41. Kee, R.J., Miller, J.A., Jefferson, T.H.: CHEMKIN: a general-purpose, problem-independent,
transportable, FORTRAN chemical kinetics code package. Technical Report SAND 80–8003,
Sandia National Laboratory, Livermore (1980)

42. König, M., Holzhütter, H.G., Berndt, N.: Metabolic gradients as key regulators in zonation
of tumor energy metabolism: a tissue-scale model-based study. Biotechnol. J. 8, 1058–1069
(2013)

43. Lang, J., Teleaga, D.: Towards a fully space-time adaptive FEM for magnetoquasistatics. IEEE
Trans. Magn. 44(6), 1238–1241 (2008)

44. Maly, T., Petzold, L.: Numerical methods and software for sensitivity analysis of differential-
algebraic systems. Appl. Numer. Math. 20, 57–79 (1996)

45. Murray, J.D.: Mathematical Biology I: An Introduction. Interdisciplinary Applied Mathemat-
ics, vol. 17, 3rd edn. Springer, Heidelberg, New York (2008)

46. Novère, N.L., et al.: Biomodels database: a free, centralized database of curated, published,
quantitative kinetic models of biochemical and cellular systems. Nucleic Acids Res. 34, D689–
D691 (2006)

47. Nowak, U.: Adaptive finite difference approximation of Jacobian matrices. private communi-
cation, software NLSCON (1991)

48. Nowak, U., Deuflhard, P.: Numerical identification of selected rate constants in large chemical
reaction systems. Appl. Numer. Math. 1, 59–75 (1985)

49. Penrose, R.: A generalized inverse for matrices. Proc. Camb. Philos. Soc. 51, 406–413 (1955)
50. Peters, G., Wilkinson, J.: The least squares problem and pseudoinverses. Comput. J. 13, 309–

316 (1970)
51. Petzold, L.R.: A description of DASSL: a differential/algebraic system solver. In: Scientific

Computing, pp. 65–68. North-Holland, Amsterdam/New York/London (1982)
52. Press, W.H., Teukolsky, S.A., Vetterling, W.T., Flannery, B.P. (eds.): Numerical Recipes in

Fortran 77, 2nd edn. Cambridge University Press, Cambridge (1992)
53. Röblitz, S., Stötzel, C., Deuflhard, P., Jones, H., Azulay, D.O., van der Graaf, P., Martin, S.: A

mathematical model of the human menstrual cycle for the administration of GnRH analogues.
J. Theor. Biol. 321, 8–27 (2013)

54. Russell, R.D., Shampine, L.: A collocation method for boundary value problems. NM 19, 1–28
(1972)

55. Schlegel, M., Marquardt, W., Ehrig, R., Nowak, U.: Sensitivity analysis of linearly-implicit
differential-algebraic systems by one-step extrapolation. Appl. Numer. Math. 48(1), 83–102
(2004)

56. Shampine, L.F., Thompson, S.: Solving DDEs in MATLAB. Appl. Numer. Math. 37, 441–458
(2001)

57. Sidje, R.B.: Expokit: a software package for computing matrix exponentials. ACM Trans.
Math. Softw. 24, 130–156 (1998)

58. Stötzel, C., Plöntzke, J., Heuwieser, W., Röblitz, S.: Advances in modeling of the bovine
estrous cycle: synchronization with pgf2˛. Theriogenology 78(7), 1415–1428 (2012)

59. Stuart, A.M.: Inverse problem: a Bayesian perspective. Acta Numer. 19, 451–559 (2010)
60. Vanlier, J., Tiemann, C.A., Hilbers, P.A.J., van Riel, N.A.W.: Parameter uncertainty in

biochemical models described by ordinary differential equations. Math. Biosci. 246, 305–314
(2013)

61. Verhulst, P.F.: Notice sur la loi que la population suit dans son accroissement. Corr. Math. et
Phys. 10, 113–121 (1838)

62. Widlund, O.: A note on unconditionally stable linear multistep methods. BIT 17, 65–70 (1967)

Index

Absolute errors, 92
Adams codes, 59
Adams methods

general scheme, 57
order control, 59
step-size control, 59

Aitken-Neville algorithm, 53, 68
Arrhenius law, 11, 92

modified, 121
A-stability, 43
A(˛)-stability, 44
Asymptotic expansion, 52, 54

Bader final step, 70
Bayesian approach, 94
BDF codes, 66
BDF method

order control, 66
stability properties, 65
step-size control, 66

Bimolecular reaction, 11, 126
BioPARKIN, 17
Boltzmann formula, 11
Bovine estrous cycle, 82

Chemical compiler, 16, 77, 119
Chemical kinetics, 9
Chemical master equation, 12
CHEMKIN, 16
Cholesky factorization, 97
Circadian rhythms, 4
Collocation method, 61

discretization error, 63

Gauss, 63
Radau, 63

Column pivoting, 146
Column scaling, 101, 107
Compartment model, 9, 17, 85, 86
Complex exponential function, 41, 139

asymptotic behavior, 43, 140
Euler formula, 139

Condition number
absolute, 140
initial value problem, 24

interval, 24, 39, 47
pointwise, 24, 27, 47

Kepler problem
pointwise, 24

linear equations, 141
linear least squares problems, 142
matrix, 99
rectangular matrix, 142
relative, 140

Conformation dynamics, 25
Copasi, 17

Dahlquist barrier
second, 65

Dahlquist test model, 41, 46, 61, 65, 69, 70
DASSL, 66, 73
Data compression, 90
DEABM, 59, 73
Delay differential equations, 3, 51, 64

codes, 79
Dense output, 78, 118

Adams methods, 60
BDF method, 66

© Springer International Publishing Switzerland 2015
P. Deuflhard, S. Röblitz, A Guide to Numerical Modelling in Systems Biology, Texts
in Computational Science and Engineering 12, DOI 10.1007/978-3-319-20059-0

165

166 Index

explicit Runge-Kutta methods, 51
extrapolation method

explicit midpoint rule, 56
linearly implicit Euler, 69
linearly implicit midpoint rule, 71

DIFEX1, 57, 72, 76
Discontinuity treatment, 78
Discretization error

global, 36, 38
local, 35, 38
propagation, 38

DOP853, 52, 56, 72, 76
DOPRI5, 52, 72, 76
Dormand-Prince integrators, 51

Eigenvalues, 142
Enzyme kinetics, 14
Essential singularity, 140
Euler method

classical, 34
explicit, 34, 48, 53
implicit, 36
linearly implicit, 68

EULEX, 57
EULSIM, 71
Evolution, 21
Exponential growth, 5
Extrapolation codes

explicit, 57
linearly implicit, 71

Extrapolation method
basic principle, 52
explicit Euler, 53
explicit midpoint rule, 54
linearly implicit Euler, 68
linearly implicit midpoint rule, 70
order control, 55
step-size control, 55

Frequentist approach, 94

Gauss-Newton method
a-posteriori perturbation analysis

linear, 116
nonlinear, 116

damping strategy, 114
finally achieved accuracy, 111
global, 113, 152
iteration exits, 114
local, 109, 149
monotonicity criterion, 114

“simplified”, 111
termination criterion, 110

Gragg final step, 55

Hill functions, 13, 18, 82
biphasic, 14

Householder transformations, 143
Human menstrual cycle, 17, 18, 131

Implicit trapezoidal rule, 37
Incompatibility factor, 110, 150, 151
Inequality constraints, 92, 121
Inherently unstable, 26, 27
Inhibitory impact, 13
Initial value problems

autonomous, 2
non-autonomous, 2
parameter dependent, 2, 25
retarded, 3
singularly perturbed, 3

Internal clocks, 4

Jacobi polynomial, 63

l1-minimization, 94
l
1

-minimization, 94
LARKIN, 16
Least squares problem

linear, 95
nonlinear, 108
statistically correct formulation, 91

Legendre polynomial, 63
Levenberg-Marquardt method, 112
LIMEX, 71, 72
Linear equality constraints, 107
Linear least squares

deficient rank, 105
full rank, 104

Linear ODEs
autonomous, 3, 28

homogeneous, 3
non-autonomous, 3

Linear programming, 94
Lipschitz condition, 36, 59, 147

global, 19
local, 20

Logistic growth, 6, 115
Lotka-Volterra model, 6
LSODA, 66, 73, 75
LSODE, 60, 73

Index 167

LSODI, 66, 73
L(˛)-stability, 46
L-stability, 45

Markov state modelling, 25
Mass action kinetics, 11, 12, 127
Mass conservation, 10, 20
Matrix commutator, 28
Matrix exponential, 27
METAN1, 72
Michaelis-Menten kinetics, 15, 16, 122
Midpoint rule

explicit, 54
implicit, 37
linearly implicit, 70

Model reduction, 11, 103, 107, 111
Molecular dynamics, 25
Monomolecular reaction, 10
Moore-Penrose axioms, 106
Multiple dose administration, 7
Multiple experiment case, 121
Multiple shooting, 119
Multistep methods, 73

start-up procedure, 58, 66

Newton method, 109
global, 149
local, 147

NLSCON, 117
Non-uniform discretization, 35
Nonlinear equality constraints, 117
Nonlinear least squares problem

adequate, 110, 151
compatible, 108

Normal equations, 96
Nullspace, 105

ODEX, 57, 72, 76
One-step methods, 37, 72
Orthogonal complement, 95

Parameter dependencies
linear, 103
nonlinear, 111

Parameter sensitivities, 25, 77, 119, 132,
133

scaling, 132
Parameter study, 86
PECE methods, 58
Periodic ODE problems, 4, 131

Permutation matrix, 146
Perturbation theory, 22
Phase flow, 21
Poisson distribution errors, 92
Population dynamics, 4, 115
Positivity constraints, 92
Predator-prey model, 6, 123
Projection matrices, 106
Propagation matrix, 22

QR-factorization, 99, 144
QSSA, 15, 31, 32
Quasi-steady state approximation, 15

RADAR5, 64, 72, 80
RADAU5, 64, 72
Radau collocation codes, 64
Radau method, 63
Range, 96
Rank decision, 99

QR-factorization, 101
singular value decomposition, 99
SVD, 100

Relative errors, 92
Reliability, 80
RETARD, 80
RK4, 49
Robustness, 80
RODAS, 68, 72
ROS3PL, 68, 72
Rosenbrock-Wanner (ROW) codes, 68
Rosenbrock-Wanner (ROW) methods, 67
Rounding errors, 40
Row scaling, 101
Runge-Kutta methods

embedded, 50
explicit, 52
implicit, 61
linearly implicit, 67
step-size control, 50

Runge-Kutta scheme
explicit, 49
implicit, 60

Saturation model, 5
SBML, 16, 17
Scoring method, 110
Semigroup property

autonomous, 21
non-autonomous, 22
Wronskian

168 Index

autonomous, 23
non-autonomous, 23, 24, 39

Sensitivity analysis, 22
for parameter dependent problems, 25

Single shooting, 118
Singular values, 142
Stability, 28

around fixed points, 29
Stability properties

LIMEX, 69
Stability region, 47

definition, 42
explicit Euler scheme, 43
implicit Euler scheme, 43
implicit trapezoidal rule, 42
solution, 42

Stationary state, 11
Statistical standard deviation, 102
Step-size restriction, 36, 47, 48, 74
Stiff integrators, 3
Stiffness characterization, 47, 73
Stimulatory impact, 13
Subcondition number, 100, 137
Subdivision sequence, 53

double harmonic, 55

harmonic, 54
Switch processes, 14
Symmetry, 37

Taylor’s expansion, 22
Total error, 40
Translation invariance, 2

Uniform discretization, 35
Uniqueness of solutions, 19

Variational equation, 23
around fixed point, 30
for autonomous ODEs, 23
for non-autonomous ODEs, 23
for parameter dependent problems, 25, 77,

132
VODE, 66, 73

Wronskian matrix, 22

Editorial Policy

1. Textbooks on topics in the field of computational science and engineering will be
considered. They should be written for courses in CSE education. Both graduate
and undergraduate textbooks will be published in TCSE. Multidisciplinary topics
and multidisciplinary teams of authors are especially welcome.

2. Format: Only works in English will be considered. For evaluation purposes,
manuscripts may be submitted in print or electronic form, in the latter case,
preferably as pdf- or zipped ps-files. Authors are requested to use the LaTeX style
files available from Springer at: http://www.springer.com/authors/book+authors/
helpdesk?SGWID=0-1723113-12-971304-0 (Click on �! Templates �!
LaTeX �! monographs)
Electronic material can be included if appropriate. Please contact the publisher.

3. Those considering a book which might be suitable for the series are strongly
advised to contact the publisher or the series editors at an early stage.

General Remarks

Careful preparation of manuscripts will help keep production time short and ensure
a satisfactory appearance of the finished book.

The following terms and conditions hold:

Regarding free copies and royalties, the standard terms for Springer mathematics
textbooks hold. Please write to martin.peters@springer.com for details.

Authors are entitled to purchase further copies of their book and other Springer
books for their personal use, at a discount of 33.3% directly from Springer-Verlag.

http://www.springer.com/authors/book+authors/helpdesk?SGWID=0-1723113-12-971304-0
http://www.springer.com/authors/book+authors/helpdesk?SGWID=0-1723113-12-971304-0

Series Editors

Timothy J. Barth
NASA Ames Research Center
NAS Division
Moffett Field, CA 94035, USA
barth@nas.nasa.gov

Michael Griebel
Institut für Numerische Simulation
der Universität Bonn
Wegelerstr. 6
53115 Bonn, Germany
griebel@ins.uni-bonn.de

David E. Keyes
Mathematical and Computer Sciences
and Engineering
King Abdullah University of Science
and Technology
P.O. Box 55455
Jeddah 21534, Saudi Arabia
david.keyes@kaust.edu.sa

and

Department of Applied Physics
and Applied Mathematics
Columbia University
500 W. 120th Street
New York, NY 10027, USA
kd2112@columbia.edu

Risto M. Nieminen
Department of Applied Physics
Aalto University School of Science
and Technology
00076 Aalto, Finland
risto.nieminen@tkk.fi

Dirk Roose
Department of Computer Science
Katholieke Universiteit Leuven
Celestijnenlaan 200A
3001 Leuven-Heverlee, Belgium
dirk.roose@cs.kuleuven.be

Tamar Schlick
Department of Chemistry
and Courant Institute
of Mathematical Sciences
New York University
251 Mercer Street
New York, NY 10012, USA
schlick@nyu.edu

Editor for Computational Science
and Engineering at Springer:
Martin Peters
Springer-Verlag
Mathematics Editorial IV
Tiergartenstrasse 17
69121 Heidelberg, Germany
martin.peters@springer.com

Texts in Computational Science and Engineering

1. H. P. Langtangen, Computational Partial Differential Equations. Numerical
Methods and Diffpack Programming, 2nd Edition.

2. A. Quarteroni, F. Saleri, P. Gervasio, Scientific Computing with MATLAB and
Octave, 4th Edition.

3. H. P. Langtangen, Python Scripting for Computational Science, 3rd Edition.

4. H. Gardner, G. Manduchi, Design Patterns for e-Science.

5. M. Griebel, S. Knapek, G. Zumbusch, Numerical Simulation in Molecular
Dynamics.

6. H. P. Langtangen, A Primer on Scientific Programming with Python, 4th Edition.

7. A. Tveito, H. P. Langtangen, B. F. Nielsen, X. Cai, Elements of Scientific
Computing.

8. B. Gustafsson, Fundamentals of Scientific Computing.

9. M. Bader, Space-Filling Curves.

10. M.G. Larson, F. Bengzon, The Finite Element Method: Theory, Implementation,
and Practice.

11. W. Gander, M.J. Gander, F. Kwok, Scientific Computing. An Introduction using
Maple and MATLAB.

12. P. Deuflhard, S. Röblitz, A Guide to Numerical Modelling in Systems Biology.

For further information on these books please have a look at our mathematics catalogue at
the following URL: www.springer.com/series/5151

Monographs in Computational Science and Engineering

1. J. Sundnes, G.T. Lines, X. Cai, B.F. Nielsen, K.-A. Mardal, A. Tveito, Computing
the Electrical Activity in the Heart.

For further information on this book, please have a look at our mathematics catalogue at the
following URL: www.springer.com/series/7417

Lecture Notes in Computational Science and Engineering

1. D. Funaro, Spectral Elements for Transport-Dominated Equations.

2. H.P. Langtangen, Computational Partial Differential Equations. Numerical
Methods and Diffpack Programming.

3. W. Hackbusch, G. Wittum (eds.), Multigrid Methods V.

www.springer.com/series/5151
www.springer.com/series/7417

4. P. Deuflhard, J. Hermans, B. Leimkuhler, A.E. Mark, S. Reich, R.D. Skeel
(eds.), Computational Molecular Dynamics: Challenges, Methods, Ideas.

5. D. Kröner, M. Ohlberger, C. Rohde (eds.), An Introduction to Recent Devel-
opments in Theory and Numerics for Conservation Laws.

6. S. Turek, Efficient Solvers for Incompressible Flow Problems. An Algorithmic
and Computational Approach.

7. R. von Schwerin, Multi Body System SIMulation. Numerical Methods, Algo-
rithms, and Software.

8. H.-J. Bungartz, F. Durst, C. Zenger (eds.), High Performance Scientific and
Engineering Computing.

9. T.J. Barth, H. Deconinck (eds.), High-Order Methods for Computational
Physics.

10. H.P. Langtangen, A.M. Bruaset, E. Quak (eds.), Advances in Software Tools
for Scientific Computing.

11. B. Cockburn, G.E. Karniadakis, C.-W. Shu (eds.), Discontinuous Galerkin
Methods. Theory, Computation and Applications.

12. U. van Rienen, Numerical Methods in Computational Electrodynamics. Linear
Systems in Practical Applications.

13. B. Engquist, L. Johnsson, M. Hammill, F. Short (eds.), Simulation and
Visualization on the Grid.

14. E. Dick, K. Riemslagh, J. Vierendeels (eds.), Multigrid Methods VI.

15. A. Frommer, T. Lippert, B. Medeke, K. Schilling (eds.), Numerical Challenges
in Lattice Quantum Chromodynamics.

16. J. Lang, Adaptive Multilevel Solution of Nonlinear Parabolic PDE Systems.
Theory, Algorithm, and Applications.

17. B.I. Wohlmuth, Discretization Methods and Iterative Solvers Based on
Domain Decomposition.

18. U. van Rienen, M. Günther, D. Hecht (eds.), Scientific Computing in Electrical
Engineering.

19. I. Babuška, P.G. Ciarlet, T. Miyoshi (eds.), Mathematical Modeling and
Numerical Simulation in Continuum Mechanics.

20. T.J. Barth, T. Chan, R. Haimes (eds.), Multiscale and Multiresolution Methods.
Theory and Applications.

21. M. Breuer, F. Durst, C. Zenger (eds.), High Performance Scientific and
Engineering Computing.

22. K. Urban, Wavelets in Numerical Simulation. Problem Adapted Construction
and Applications.

23. L.F. Pavarino, A. Toselli (eds.), Recent Developments in Domain Decomposi-
tion Methods.

24. T. Schlick, H.H. Gan (eds.), Computational Methods for Macromolecules:
Challenges and Applications.

25. T.J. Barth, H. Deconinck (eds.), Error Estimation and Adaptive Discretization
Methods in Computational Fluid Dynamics.

26. M. Griebel, M.A. Schweitzer (eds.), Meshfree Methods for Partial Differential
Equations.

27. S. Müller, Adaptive Multiscale Schemes for Conservation Laws.

28. C. Carstensen, S. Funken, W. Hackbusch, R.H.W. Hoppe, P. Monk (eds.),
Computational Electromagnetics.

29. M.A. Schweitzer, A Parallel Multilevel Partition of Unity Method for Elliptic
Partial Differential Equations.

30. T. Biegler, O. Ghattas, M. Heinkenschloss, B. van Bloemen Waanders (eds.),
Large-Scale PDE-Constrained Optimization.

31. M. Ainsworth, P. Davies, D. Duncan, P. Martin, B. Rynne (eds.), Topics in
Computational Wave Propagation. Direct and Inverse Problems.

32. H. Emmerich, B. Nestler, M. Schreckenberg (eds.), Interface and Transport
Dynamics. Computa- tional Modelling.

33. H.P. Langtangen, A. Tveito (eds.), Advanced Topics in Computational Partial
Differential Equations. Numerical Methods and Diffpack Programming.

34. V. John, Large Eddy Simulation of Turbulent Incompressible Flows. Analytical
and Numerical Results for a Class of LES Models.

35. E. Bänsch (ed.), Challenges in Scientific Computing - CISC 2002.

36. B.N. Khoromskij, G. Wittum, Numerical Solution of Elliptic Differential
Equations by Reduction to the Interface.

37. A. Iske, Multiresolution Methods in Scattered Data Modelling.

38. S.-I. Niculescu, K. Gu (eds.), Advances in Time-Delay Systems.

39. S. Attinger, P. Koumoutsakos (eds.), Multiscale Modelling and Simulation.

40. R. Kornhuber, R. Hoppe, J. Périaux, O. Pironneau, O. Wildlund, J. Xu (eds.),
Domain Decomposition Methods in Science and Engineering.

41. T. Plewa, T. Linde, V.G. Weirs (eds.), Adaptive Mesh Refinement – Theory and
Applications.

42. A. Schmidt, K.G. Siebert, Design of Adaptive Finite Element Software. The
Finite Element Toolbox ALBERTA.

43. M. Griebel, M.A. Schweitzer (eds.), Meshfree Methods for Partial Differential
Equations II.

44. B. Engquist, P. Lötstedt, O. Runborg (eds.), Multiscale Methods in Science
and Engineering.

45. P. Benner, V. Mehrmann, D.C. Sorensen (eds.), Dimension Reduction of Large-
Scale Systems.

46. D. Kressner, Numerical Methods for General and Structured Eigenvalue
Problems.

47. A. Boriçi, A. Frommer, B. Joó, A. Kennedy, B. Pendleton (eds.), QCD and
Numerical Analysis III.

48. F. Graziani (ed.), Computational Methods in Transport.

49. B. Leimkuhler, C. Chipot, R. Elber, A. Laaksonen, A. Mark, T. Schlick, C.
Schütte, R. Skeel (eds.), New Algorithms for Macromolecular Simulation.

50. M. Bücker, G. Corliss, P. Hovland, U. Naumann, B. Norris (eds.), Automatic
Differentiation: Applications, Theory, and Implementations.

51. A.M. Bruaset, A. Tveito (eds.), Numerical Solution of Partial Differential
Equations on Parallel Computers.

52. K.H. Hoffmann, A. Meyer (eds.), Parallel Algorithms and Cluster Computing.

53. H.-J. Bungartz, M. Schäfer (eds.), Fluid-Structure Interaction.

54. J. Behrens, Adaptive Atmospheric Modeling.

55. O. Widlund, D. Keyes (eds.), Domain Decomposition Methods in Science and
Engineering XVI.

56. S. Kassinos, C. Langer, G. Iaccarino, P. Moin (eds.), Complex Effects in Large
Eddy Simulations.

57. M. Griebel, M.A Schweitzer (eds.), Meshfree Methods for Partial Differential
Equations III.

58. A.N. Gorban, B. Kégl, D.C. Wunsch, A. Zinovyev (eds.), Principal Manifolds
for Data Visualization and Dimension Reduction.

59. H. Ammari (ed.), Modeling and Computations in Electromagnetics: A Volume
Dedicated to Jean-Claude Nédélec.

60. U. Langer, M. Discacciati, D. Keyes, O. Widlund, W. Zulehner (eds.), Domain
Decomposition Methods in Science and Engineering XVII.

61. T. Mathew, Domain Decomposition Methods for the Numerical Solution of
Partial Differential Equations.

62. F. Graziani (ed.), Computational Methods in Transport: Verification and
Validation.

63. M. Bebendorf, Hierarchical Matrices. A Means to Efficiently Solve Elliptic
Boundary Value Problems.

64. C.H. Bischof, H.M. Bücker, P. Hovland, U. Naumann, J. Utke (eds.), Advances
in Automatic Differentiation.

65. M. Griebel, M.A. Schweitzer (eds.), Meshfree Methods for Partial Differential
Equations IV.

66. B. Engquist, P. Lötstedt, O. Runborg (eds.), Multiscale Modeling and Simula-
tion in Science.

67. I.H. Tuncer, Ü. Gülcat, D.R. Emerson, K. Matsuno (eds.), Parallel Computa-
tional Fluid Dynamics 2007.

68. S. Yip, T. Diaz de la Rubia (eds.), Scientific Modeling and Simulations.

69. A. Hegarty, N. Kopteva, E. O’Riordan, M. Stynes (eds.), BAIL 2008 –
Boundary and Interior Layers.

70. M. Bercovier, M.J. Gander, R. Kornhuber, O. Widlund (eds.), Domain Decom-
position Methods in Science and Engineering XVIII.

71. B. Koren, C. Vuik (eds.), Advanced Computational Methods in Science and
Engineering.

72. M. Peters (ed.), Computational Fluid Dynamics for Sport Simulation.

73. H.-J. Bungartz, M. Mehl, M. Schäfer (eds.), Fluid Structure Interaction II –
Modelling, Simulation, Optimization.

74. D. Tromeur-Dervout, G. Brenner, D.R. Emerson, J. Erhel (eds.), Parallel
Computational Fluid Dynamics 2008.

75. A.N. Gorban, D. Roose (eds.), Coping with Complexity: Model Reduction and
Data Analysis.

76. J.S. Hesthaven, E.M. Rønquist (eds.), Spectral and High Order Methods for
Partial Differential Equations.

77. M. Holtz, Sparse Grid Quadrature in High Dimensions with Applications in
Finance and Insurance.

78. Y. Huang, R. Kornhuber, O. Widlund, J. Xu (eds.), Domain Decomposition
Methods in Science and Engineering XIX.

79. M. Griebel, M.A. Schweitzer (eds.), Meshfree Methods for Partial Differential
Equations V.

80. P.H. Lauritzen, C. Jablonowski, M.A. Taylor, R.D. Nair (eds.), Numerical
Techniques for Global Atmospheric Models.

81. C. Clavero, J.L. Gracia, F. Lisbona (eds.), BAIL 2010 – Boundary and Interior
Layers, Computational and Asymptotic Methods.

82. B. Engquist, O. Runborg, Y.R. Tsai (eds.), Numerical Analysis and Multiscale
Computations.

83. I.G. Graham, T.Y. Hou, O. Lakkis, R. Scheichl (eds.), Numerical Analysis of
Multiscale Problems.

84. A. Logg, K.-A. Mardal, G. Wells (eds.), Automated Solution of Differential
Equations by the Finite Element Method.

85. J. Blowey, M. Jensen (eds.), Frontiers in Numerical Analysis - Durham 2010.

86. O. Kolditz, U.-J. Gorke, H. Shao, W. Wang (eds.), Thermo-Hydro-Mechanical-
Chemical Processes in Fractured Porous Media - Benchmarks and Examples.

87. S. Forth, P. Hovland, E. Phipps, J. Utke, A. Walther (eds.), it Recent Advances
in Algorithmic Differentiation.

88. J. Garcke, M. Griebel (eds.), Sparse Grids and Applications.

89. M. Griebel, M. A. Schweitzer (eds.), Meshfree Methods for Partial Differential
Equations VI.

90. C. Pechstein, Finite and Boundary Element Tearing and Interconnecting
Solvers for Multiscale Problems.

91. R. Bank, M. Holst, O. Widlund, J. Xu (eds.), Domain Decomposition Methods
in Science and Engineering XX.

92. H. Bijl, D. Lucor, S. Mishra, C. Schwab (eds.), Uncertainty Quantification in
Computational Fluid Dynamics.

93. M. Bader, H.-J. Bungartz, T. Weinzierl (eds.), Advanced Computing.

94. M. Ehrhardt, T. Koprucki (eds.), Advanced Mathematical Models and Numer-
ical Techniques for Multi-Band Effective Mass Approximations.

95. M. Azaïez, H. El Fekih, J.S. Hesthaven (eds.), Spectral and High Order
Methods for Partial Differential Equations ICOSAHOM 2012.

96. F. Graziani, M.P. Desjarlais, R. Redmer, S.B. Trickey (eds.), Frontiers and
Challenges in Warm Dense Matter.

97. J. Garcke, D. Pflüger (eds.), Sparse Grids and Applications – Munich 2012.

98. J. Erhel, M. Gander, L. Halpern, G. Pichot, T. Sassi, O. Widlund (eds.),
Domain Decomposition Methods in Science and Engineering XXI.

99. R. Abgrall, H. Beaugendre, P.M. Congedo, C. Dobrzynski, V. Perrier,
M. Ricchiuto (eds.), High Order Nonlinear Numerical Methods for
Evolutionary PDEs - HONOM 2013.

100. M. Griebel, M.A. Schweitzer (eds.), Meshfree Methods for Partial Differential
Equations VII.

101. R. Hoppe (ed.), Optimization with PDE Constraints – ESF Networking
Program ‘OPTPDE’.

102. S. Dahlke, W. Dahmen, M. Griebel, W. Hackbusch, K. Ritter, R. Schneider,
C. Schwab, H. Yserentant (eds.), Extraction of Quantifiable Information from
Complex Systems.

103. A. Abdulle, S. Deparis, D. Kressner, F. Nobile, M. Picasso (eds.), Numerical
Mathematics and Advanced Applications - ENUMATH 2013.

104. T. Dickopf, M.J. Gander, L. Halpern, R. Krause, L.F. Pavarino (eds.), Domain
Decomposition Methods in Science and Engineering XXII.

For further information on these books please have a look at our mathematics catalogue at the following

URL: www.springer.com/series/3527

www.springer.com/series/3527

	Preface
	Contents
	Outline
	1 ODE Models for Systems Biological Networks
	1.1 Introduction
	1.1.1 Problem Types in Systems Biology
	Non-autonomous Initial Value Problems
	Autonomous Initial Value Problems
	Parameter Dependent Problems
	Linear ODEs
	Singularly Perturbed Systems
	Delay or Retarded Differential Equations
	Periodic ODE Problems

	1.1.2 Example: Population Dynamics
	Exponential Growth
	Saturation Model
	Predator-Prey Model

	1.1.3 Example: Multiple Dose Administration of Drugs

	1.2 ODE Systems from Chemical or Physiological Networks
	1.2.1 Elementary Chemical Mechanisms
	Monomolecular Reaction
	Bimolecular Reaction
	General Reaction Scheme
	Inhibitory or Stimulatory Impact

	1.2.2 Enzyme Kinetics
	1.2.3 Assembly of Large ODE Networks
	Chemical Compiler
	Compartment Modelling

	1.3 Mathematical Background for Initial Value Problems
	1.3.1 Uniqueness of Solutions
	Uniqueness Criteria
	Phase Flow and Evolution

	1.3.2 Sensitivity of Solutions
	Propagation Matrices
	Variational Equation
	Condition Numbers
	Parameter Sensitivities

	1.3.3 Asymptotic Stability
	Matrix Exponential
	Stability of Linear Homogeneous Autonomous ODEs
	Stability of Nonlinear ODEs Around Fixed Points

	1.3.4 Singularly Perturbed Problems

	2 Numerical Simulation of ODE Models
	2.1 Basic Concepts
	2.1.1 Local Versus Global Discretization Error: Theoretical Concepts
	Classical (Explicit) Euler Method
	Local Discretization Error
	Global Discretization Error
	Implicit Euler Method
	Implicit Trapezoidal and Midpoint Rule
	General Case
	Step-Size and Order Control

	2.1.2 Local Versus Finally Achieved Accuracy: Algorithmic Concepts
	Error Propagation
	Role of Interval Condition Number
	Total Error
	Summary

	2.1.3 Stability Concepts for Discretizations
	Dahlquist Test Model
	Examples of Stability Regions
	A-Stability
	A(α)-Stability
	L-Stability
	L(α)-Stability

	2.1.4 Stiffness of ODE Problems
	Characterization of Stiffness

	2.2 Explicit Numerical Integration Methods
	2.2.1 Runge-Kutta Methods
	Error Estimation and Step-Size Control
	Dense Output
	Dormand-Prince Integrators

	2.2.2 Extrapolation Methods
	Basic Procedure
	Explicit Euler Discretization
	Explicit Midpoint Rule
	Order and Step-Size Control
	Dense Output
	Explicit Extrapolation Codes

	2.2.3 Adams Methods
	General Scheme
	Discretization Error Estimate
	PECE Methods
	Order and Step-Size Control
	Adams Codes

	2.3 Implicit Numerical Integration Methods
	2.3.1 Collocation Methods
	Implicit Runge-Kutta Schemes
	L-Stability Conditions
	Collocation Approach
	Discretization Error
	Radau Collocation Codes

	2.3.2 BDF Method
	Stability Properties
	Order and Step-Size Control
	BDF Codes

	2.4 Linearly Implicit One-Step Methods
	General Idea
	2.4.1 Rosenbrock-Wanner Methods
	ROW Codes

	2.4.2 Extrapolation Methods
	Linearly Implicit Euler Discretization
	Linearly Implicit Midpoint Rule
	Linearly Implicit Extrapolation Codes

	2.5 Choice of Numerical Integrator
	2.5.1 A General Roadmap for Numerical Integrators
	One-Step Methods
	Multistep Methods
	Non-stiff Versus Stiff Integration
	Computational Speed
	Accuracy
	Computational Parameter Sensitivity Analysis
	Discontinuity Treatment
	Dense Output
	Delay Differential Equations
	Reliability
	Robustness
	Scaling

	2.5.2 Different Numerical Behavior in Two Similar Problems
	Human Menstrual Cycle Problem GynCycle
	Bovine Estrous Cycle Problem BovCycle
	Comparative Performance of Numerical Integrators

	2.5.3 Example: Warburg Effect in Tumor Cells
	Two-Scale Modeling
	Numerical Simulation

	3 Parameter Identification in ODE Models
	3.1 Least Squares Problem Formulation
	
	Gaussian Least Squares Problem
	Linear Versus Nonlinear Least Squares Problems
	Statistically Correct Formulation
	Typical Measurement Tolerances
	Inequality Constraints for Parameters
	Non-Gaussian Formulations
	Bayesian Approach

	3.2 Linear Least Squares Problems
	3.2.1 Normal Equations
	Algorithm

	3.2.2 QR-Factorization
	Rank Decision
	Influence of Row and Column Scaling
	Algorithm for Rank-Deficient Case
	Model Reduction

	3.2.3 Generalized Inverses
	Full Rank
	Rank Deficiency
	Moore-Penrose Axioms
	Linear Equality Constraints

	3.3 Nonlinear Least Squares Problems
	3.3.1 Local Newton Versus Gauss-Newton Approach
	Local Newton Method
	Local Gauss-Newton Method
	Termination Criterion
	Model Reduction
	``Simplified'' Gauss-Newton Method
	Optimization Methods

	3.3.2 Globalization of Gauss-Newton Method
	Levenberg-Marquardt Method
	Global Gauss-Newton Method
	Iteration Exits
	A-Posteriori Perturbation Analysis
	Summary
	Nonlinear Equality Constraints
	Gauss-Newton Codes

	3.4 Extension to ODE Models
	3.4.1 Function Evaluation via Numerical Integration
	3.4.2 Jacobian Approximation via Parameter Sensitivities
	Parameter Transformation
	Differentiability After Discretization

	3.4.3 Multiple Experiment Case

	3.5 Illustrative Examples
	3.5.1 Predator-Prey Model Revisited
	Case (P)
	Case (P+I)

	3.5.2 A Simple Rank-Deficient Problem
	Case (T+E)
	Case (E)
	Summary

	3.5.3 A Complex Human Menstrual Cycle Problem
	Input Data
	Selection of ``Most Sensitive'' Parameters via Sensitivity Analysis
	Selection of ``Most Sensitive'' Parameters via QR-Factorization of F(p0)
	Identification of Five Preselected Parameters
	Parameter Identification over All Parameters

	A Appendix
	A.1 Complex Exponential Function
	A.2 Condition Numbers of Linear Algebra Problems
	Absolute and Relative Condition Number
	Condition of Linear Equation Systems
	Eigenvalues and Singular Values
	Condition Number of a Rectangular Matrix
	Condition of Linear Least Squares Problems

	A.3 QR-Factorization with Column Pivoting
	Householder Transformations
	QR-Factorization
	Column Pivoting
	Rank Decision

	A.4 Convergence of Newton and Gauss-Newton Methods
	Newton Method
	Gauss-Newton Method

	A.5 Adaptive External Numerical Differentiation
	Normwise Adaptive Strategy
	Componentwise Adaptive Strategy

	Software
	Numerical Algorithms
	Explicit Numerical Integrators for Non-stiff Initial Value Problems
	Implicit Numerical Integrators for Stiff Initial Value Problems
	Linearly Implicit Numerical Integrators for Stiff Initial Value Problems
	Numerical Integrators for Delay-Differential Equations
	Parameter Identification Algorithms

	Software Packages

	References
	Index

