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Preface

In recent years there has been an explosion of interest in the effects of noise in
cell biology. This has partly been driven by rapid advances in experimental tech-
niques, including high-resolution imaging and molecular-level probes. However, it
is also driven by fundamental questions raised by the ubiquity of noise. For exam-
ple, how does noise at the molecular and cellular levels translate into reliable or
robust behavior at the macroscopic level? How do microscopic organisms detect
weak environmental signals in the presence of noise? Have single-cell and more
complex organisms evolved to exploit noise to enhance performance? In light of the
above, there is a growing need for mathematical biologists and other applied math-
ematicians interested in biological problems to have some background in applied
probability theory and stochastic processes. Traditional mathematical courses and
textbooks in cell biology and cell physiology tend to focus on deterministic models
based on differential equations such as the Hodgkin—Huxley and FitzZHugh—Nagumo
equations, chemical kinetic equations, and reaction—diffusion equations. Although
there are a number of well-known textbooks on applied stochastic processes, they
are written primarily for physicists and chemists or for population biologists. There
are also several excellent books on cell biology written from a biophysics perspec-
tive. However, these assume some background in statistical physics and a certain
level of physical intuition. Therefore, I felt that it was timely to write a textbook for
applied mathematicians interested in learning stochastic processes within the con-
text of cell biology, which could also serve as an introduction to mathematical cell
biology for statistical physicists and applied probabilists.

I started my interest in stochastic cell biology, as distinct from my work in math-
ematical neuroscience, around 8 years ago when I volunteered to teach a course in
biophysics for the mathematical biology graduate program at Utah. I was immedi-
ately fascinated by the molecular processes underlying the operation of a cell, par-
ticularly the mechanisms for transporting proteins and other macromolecules to the
correct subcellular targets at the correct times. Such an issue is particularly acute for
neurons, which are among the largest and most complex cells in biology. In healthy
cells, the regulation of protein trafficking within a neuron provides an important
mechanism for modifying the strength of synaptic connections between neurons,
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viii Preface

and synaptic plasticity is generally believed to be the cellular substrate of learning
and memory. On the other hand, various types of dysfunction in protein trafficking
appear to be a major contributory factor to a number of neurodegenerative diseases
associated with memory loss including Alzheimer’s disease.

In writing this book, I have gone back to my roots in theoretical physics, but
refracted through the lens formed by many years of working in applied mathe-
matics. Hence, the book provides extensive coverage of analytical methods such
as initial boundary value problems for partial differential equations, singular per-
turbation theory, slow/fast analysis and quasi-steady-state approximations, Green’s
functions, WKB methods and Hamilton—Jacobi equations, homogenization theory
and multi-scale analysis, the method of characteristics and shocks, and reaction—
diffusion equations. I have also endeavored to minimize the use of statistical me-
chanics, which is not usually part of a mathematician’s tool-kit and requires a cer-
tain level of physical intuition. It is not possible to avoid this topic completely, since
many experimental and theoretical papers in cell biology assume some familiarity
with terms such as entropy, free energy, and chemical potential. The reason is that
microscopic systems often operate close to thermodynamic equilibrium or asymp-
totically approach thermodynamic equilibrium in the long-time limit. This then im-
poses constraints on any model of the underlying stochastic process. In most cases,
one can understand these constraints by considering the Boltzmann—Gibbs distri-
bution of a macromolecule in thermodynamic equilibrium, which is the approach I
take in this book.

There are two complementary approaches to modeling biological systems. One
involves a high level of biological detail and computational complexity, which
means that it is usually less amenable to mathematical analysis than simpler re-
duced models. The focus tends to be on issues such as parameter searches and data
fitting, sensitivity analysis, model reductions, numerical convergence, and compu-
tational efficiency. This is exemplified by the rapidly growing field of systems bi-
ology. The other approach is based on relatively simple conceptual or “toy” mod-
els, which are analytically tractable and, hopefully, capture essential features of the
phenomena of interest. In this book I focus on the latter for pedagogical reasons
and because of my own personal tastes. In the introductory chapter, I summarize
some of the basic concepts in stochastic processes and nonequilibrium systems that
are used throughout the book, describe various experimental methods for probing
noise at the molecular and cellular levels, give a brief review of basic probabil-
ity theory and statistical mechanics, and then highlight the structure of the book.
In brief, the book is divided into two parts: Part I (Foundations) and Part II (Ad-
vanced Topics). Part I provides the basic foundations of both discrete and continu-
ous stochastic processes in cell biology. Its five chapters deal with diffusion, random
walks, and the Fokker—Planck equation (Chap. 2), stochastic ion channels (Chap. 3),
polymers and molecular motors (Chap.4), biochemical signaling and adaptation
(Chap.5), and gene expression and regulatory networks (Chap.6). Part II covers
more advanced topics that build upon the ideas and techniques from Part I. Topics
include transport processes in cells (Chap. 7), self-organization of the cytoskeleton
(Chap. 8), self-organization in reaction—diffusion models (Chap.9), WKB methods
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for escape problems (Chap. 10), and some more advanced topics in probability the-
ory (Chap. 11). The chapters are supplemented by additional background material
highlighted in gray boxes and numerous exercises that reinforce the analytical meth-
ods and models introduced in the main body of the text. [ have attempted to make the
book as self-contained as possible. However, some introductory background in par-
tial differential equations, integral transforms, and applied probability theory would
be advantageous.

Finally, this book should come with a “government health warning.” That is,
throughout most of the book, I review the simplest mechanistic models that have
been constructed in order to investigate a particular biological phenomenon or illus-
trate a particular mathematical method. Although I try to make clear the assumptions
underlying each model, I do not carry out a comparative study of different models
in terms of the degree of quantitative agreement with experimental data. Therefore,
the reader should be cautioned that the models are far from the last word on a given
phenomenon, and the real biological system is usually way more complicated than
stated. However, it is hoped that the range of modeling and analytical techniques
presented in this book, when combined with efficient numerical methods, provides
the foundations for developing more realistic, quantitative models in stochastic cell
biology.

Salt Lake City, UT, USA Paul C. Bressloff

Supplementary material - available online:

Springer.com web page for the book:
www . springer.com/978-3-319-08487- 9 where there will be a password
protected solution manual in the near future.

Author website for supplementary material (updates, additional exercises, further
topics):
http://www.math.utah.edu/~bresslof/#Books
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Chapter 1
Introduction

One of the major challenges in modern biology is to understand how the molecular
components of a living cell operate in a highly noisy environment. What are the
specific sources of noise in a cell? How do cells attenuate the effects of noise in
order to exhibit reliable behavior (robustness to noise)? In particular, how does
a stochastic genotype result in a reliable phenotype through development? How
does the noisy, crowded environment of a cell affect diffusive transport? How do
molecular machines convert chemical energy to work? What are the physical limits
of biochemical signaling, such as the sensitivity of biochemical sensors to environ-
mental signals? Under what circumstances can a cell exploit noise to enhance its per-
formance or the survival of its host organism? What is the role of self-organization
in the formation and maintenance of subcellular structures such as the cytoskele-
ton? The goal of this book is to use the theory of stochastic processes and non-
equilibrium systems to investigate these types of biological questions at the cellular
level; analogous questions also hold at the multicellular level but are not addressed
in this book since they would double its length! One can view the book either as an
introduction to stochastic processes using cell biology as the motivating application
or, conversely, as an introduction to mathematical cell biology with an emphasis on
stochastic processes. Irrespective of the particular perspective, it is clear that there is
a growing demand for mathematical biologists and other applied mathematicians to
have some training in topics that have traditionally been the purview of physicists,
chemists, and probabilists. This book provides the necessary background to tackle
research problems in mathematical biology that involve stochastic processes.

1.1 Stochastic Processes in Living Cells

In this first section, we introduce some of the basic concepts that are useful in
characterizing and analyzing noise in cells, starting at the level of individual macro-
molecules and building up to cellular structures. For an excellent general introduc-
tion to molecular and cell biology, we refer the reader to the book Molecular Biology

© Springer International Publishing Switzerland 2014 1
P.C. Bressloff, Stochastic Processes in Cell Biology, Interdisciplinary
Applied Mathematics 41, DOI 10.1007/978-3-319-08488-6_1



2 1 Introduction

of the Cell by Alberts et al. [3]. For a more biophysics-oriented approach to cell
biology, see Physical Biology of the Cell by Phillips et al. [S09] and Biophysics
by Bialek [44]. An extensive coverage of cell physiology with some examples of
stochastic processes can be found in the first volume of Mathematical Physiology by
Keener and Sneyd. Two standard references on the theory of stochastic processes,
with an emphasis on physical and chemical processes, are Handbook of Stochas-
tic Methods by Gardiner [204] and Stochastic Processes in Physics and Chemistry
by Van Kampen [651]. For a more kinetic-based treatment of nonequilibrium pro-
cesses, see A Kinetic View of Statistical Physics by Krapivsky et al. [354]. A book
on stochastic processes oriented towards population biology is An Introduction to
Stochastic Processes with Applications to Biology by Allen [4]. For a more math-
ematical formulation of discrete stochastic processes, see Probability and Random
Processes by Grimmett and Strirzaker [242], and for a more rigorous treatment of
stochastic differential equations (SDEs), see SDEs by Oksendal [483]. Finally, an
analytical treatment of stochastic processes with a detailed description of asymptotic
methods and large deviations can be found in the book Theory and Applications of
Stochastic Processes by Schuss [574].

1.1.1 Internal and External States of a Macromolecule

Consider a single macromolecule such as a motor protein, an enzyme, an ion chan-
nel, or a strand of DNA. Each macromolecule is subject to thermal fluctuations
arising from the continual bombardment by molecules in the surrounding environ-
ment, which could be the interior aqueous solution of the cell (cytosol) or the sur-
rounding plasma membrane. The size of molecular fluctuations is set by the basic
unit of thermal energy kg7, where T is the temperature (in degrees Kelvin K) and
kg ~ 1.4 x 10723JK~! is the Boltzmann constant. A useful distinction at the molecu-
lar level is between internal conformational states of a macromolecule and external
states such as the position and momentum of the center of mass of the molecule.
Often the internal degrees of freedom are represented as a set of discrete states, and
the stochastic dynamics within this state space is described in terms of a continuous-
time Markov process [204]. That is, the state of the system takes values in some fin-
ite or countable set, and the time spent in each state has an exponential distribution.
Moreover, the continuous-time stochastic process has the Markov property, which
means that the future behavior of the system, both the remaining time in the current
state and the identity of the next state, depends only on the current state and not on
any prior history. A simple two-state continuous-time Markov process can be used
to model the opening and closing of an ion channel, for example, or the binding and
unbinding of a ligand molecule to a protein receptor (see Fig. 1.1a). More generally,
suppose that a macromolecule has m internal states labeled j = 1,...,m. The prob-
ability P;(¢) that the molecule is in state j at time 7 evolves according to the system
of differential equations
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Fig. 1.1: Internal and external stochastic variables. (a) Internal open and closed states of an ion
channel. (b) Patch-clamp recording of a glycine receptor showing stochastic variations in current
due to the opening and closing of the ion channel. (Public domain figure downloaded from Wiki-
media Commons.) (¢) Sample 3D trajectory of a Brownian particle
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where W;; 6t is the probability that the molecule jumps to state j in an infinitesimal
time interval oz, given that it is currently in state k; Wi is called a state transition
rate. Such a Markov process is said to satisfy detailed balance if there exists a
stationary density IT; such that for each pair of reversible transitions (jk)

ijHk = ijHj.

The detailed balance condition is stronger than that required merely for a stationary
distribution—there are Markov processes with stationary distributions that do not
have detailed balance. Detailed balance implies that, around any closed cycle of
states, there is no net flow of probability.

In contrast to discrete internal states, the evolution of external variables such as
the position of a macromolecule is modeled in terms of an SDE [204, 483], which is
often called a Langevin equation in the physics literature [651]. Mathematically
speaking, an SDE is a differential equation in which one or more of the terms
are a stochastic process, resulting in a solution that is itself a stochastic process.
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In the case of a macromolecule, the stochastic terms represent the effective forces
due to collisions of the macromolecule with molecules in the surrounding medium.
From this perspective, the external state of the macromolecule is described in terms
of slow variables, whereas the degrees of freedom of the surrounding medium are
treated as fast microscopic variables that are responsible for the stochastic nature of
the SDE. A classical example of an SDE is Brownian motion, which refers to the
random motion of a particle suspended in a fluid (see Fig. 1.1c). This phenomenon
is named after the botanist Robert Brown, who observed the erratic motion of pollen
grains suspended in water through a microscope, but was unable to determine the
mechanisms that caused this motion. Albert Einstein subsequently explained how
the motion that Brown had observed was a result of the pollen being moved by
individual water molecules, which served as a definitive confirmation that atoms
and molecules actually exist. An idealized mathematical representation of Brown-
ian motion is the Wiener process, whose evolution can be described in terms of in-
finitesimal increments that are independent random variables generated from a zero
mean Gaussian distribution whose variance scales as Az, where At is the time step.
One of the characteristic features of a Wiener process is that in the limit Ar — 0, the
time-dependent solution is continuous, but its time derivative is everywhere infinite,
reflecting the absence of a finite time scale. This means that the usual rules of cal-
culus break down and indicates that a Wiener process is an idealization of an actual
random physical process, which always has a finite intrinsic time scale such as the
time constant of second-order statistical correlations. Another important feature of
a Wiener process is that it is the single-particle realization of diffusion. This can be
seen from two perspectives. First, each realization of a Wiener process determines a
sample trajectory through state space. The associated probability density of sample
paths is the solution to a deterministic partial differential equation (PDE) known as
a Fokker—Planck equation (FPE). In the case of idealized Brownian motion, the FPE
is formally identical to the classical diffusion equation. Indeed, if one were to con-
sider a large number N of noninteracting Brownian particles, then, in the large-N
limit, the concentration of particles evolves deterministically according to the dif-
fusion equation. Second, if one were to discretize time and space, then a sample
trajectory of a Wiener process reduces to an unbiased random walk, which is well
known to be a discrete realization of a diffusing particle.

More generally, consider a molecule of mass m moving in one dimension under
the influence of an external force F(x). In the absence of thermal fluctuations, the
position of the molecule satisfies Newton’s law of motion

d2x+ dfo()
mar Vg W

where 7y is a damping or drag coefficient. It turns out that at the microscopic length
and velocity scales of molecular dynamics, the aqueous environment of a cell is
highly viscous so that inertial terms can be ignored—the particle rapidly reaches the
terminal velocity F(x)/v. Under such circumstances, when the force due to thermal
fluctuations is modeled as a Wiener process, the FPE equation for the probability
density p(x,t) takes the form
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where D determines the level of noise. Moreover, since the molecules responsible
for the fluctuating force are also responsible for the dissipation or damping, one
finds that D and 7y are related according to the so-called Einstein relation

Dj/: kBT.

This is a specific example of what is known as a fluctuation—dissipation theorem,
since it relates the rate of relaxation to equilibrium to the size of thermal fluctuations.

A number of important cellular processes at the macromolecular level involve
a coupling between continuous external variables and discrete internal variables,
which is modeled using a stochastic hybrid system. Consider, for example, molec-
ular motors, which are proteins that convert chemical energy into mechanical work
[275]. A motor protein undergoes a cyclic sequence of conformational changes after
reacting with one or more molecules of a chemical such as adenosine triphosphate
(ATP), resulting in the release of chemical energy. This allows the motor to per-
form work by exerting a force conjugate to a given external variable, e.g., pulling a
load while moving along a protein filament—active intracellular transport. Another
example of a stochastic hybrid system is a voltage-gated or ligand-gated ion chan-
nel, in which the opening and closing of the channel depends on an external variable
such as membrane voltage or calcium concentration [322]. Moreover, the dynamics
of the given external variable itself depends on the internal state of the ion channel
or, more precisely, a population of ion channels.

1.1.2 Equilibrium and Nonequilibrium Systems

One of the fundamental features of a living cell is that it is an open system, i.e.,
it interacts with the surrounding environment through the exchange of energy and
matter (see Fig. 1.2). Moreover, a cell is maintained out of thermodynamic equi-
librium, which means that there are nonzero fluxes of energy, matter, and charge
flowing between the interior and exterior of the cell. In such cases, one has to model
the stochastic dynamics using a continuous-time Markov process or an SDE, for
example. Nevertheless, it is sometimes possible to approximate a subcellular sys-
tem such as an individual macromolecule as being in thermodynamic equilibrium,
provided that the rate of relaxation to local equilibrium is fast compared to other
processes of interest. (Note, however, that a macromolecule such as a motor pro-
tein can only operate if it is maintained out of thermodynamic equilibrium.) In such
cases one can exploit the powerful machinery of equilibrium statistical mechanics
[102, 317]. In particular, one can make use of the Boltzmann—Gibbs distribution.
Suppose that a macromolecule has a set of intrinsic states labeled by j and let E;
denote the (free) energy of the molecule in the jth state. Furthermore, assume that
the surrounding cellular environment maintains a constant temperature 7. A basic
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Fig. 1.2: The cell is an open, nonequilibrium system that exchanges energy and matter with the
environment. However, a local subsystem such as an individual macromolecule may be in local
thermodynamic equilibrium at a temperature 7. The probability of being in intrinsic state j with
energy E; is then determined by the Boltzmann—Gibbs distribution

result of equilibrium statistical mechanics is that the probability p; that the molecule
is in state j is given by the Boltzmann—Gibbs distribution (see Sect. 1.4):

1 _ ,
pj2237 ]/]C[;T7 Z:Zeij/kBT'
J

The so-called partition function Z ensures that 3 ;p; = 1. If we apply the
Boltzmann—Gibbs distribution to the steady-state probability II; of detailed bal-
ance, we immediately see that the backward and forward transition rates satisfy the
condition

Wie _ 1 _ pi

Wi I pk
That is, the ratio of the forward and backward transition rates depends on the energy
difference between the two states.

— ef(EjfEk)/kBT'

1.1.3 Populations of Molecules

Another important issue is how noise at the level of an individual molecule scales
up when one considers a population of possibly interacting molecules. If the popu-
lation is in thermodynamic equilibrium, then the Boltzmann—Gibbs distribution can
still be used, except that now E; is the total energy of the population in a given
microstate, which includes any contributions from molecular interactions within the
population. In the case of a large number of molecules, one can often describe the



1.1 Stochastic Processes in Living Cells 7

collective behavior of the population in terms of a small number of macroscopic
variables for which thermal fluctuations can be neglected. These macroscopic vari-
ables characterize the average or mean-field behavior of the population. Examples
include the concentration of molecules within a cellular compartment or the pres-
sure exerted by molecules on the cell membrane. It is also possible to construct
a mean-field theory for a population of N independent, identical macromolecules
operating out of thermodynamic equilibrium, with each described by a continuous-
time Markov process. That is, in the limit N — oo, the fraction of the population in
a given state evolves according to a system of deterministic differential equations
(kinetic equations). Moreover, for finite N, one can track the stochastic fraction of
molecules in a given state using a so-called master equation. Let n = (ny,n,...,ny)
denote the number of molecules in each of m internal states with 2;”:1 nj=N. The
probability that the population is in the configuration state n at time ¢ then evolves
according to a master equation of the form

% = % [Wnn/Pn’(t) - Wn’nPn(t)] :

Although it is generally difficult to analyze such a master equation, it is possible to
carry out a perturbation expansion of the master equation in terms of the system size
1/N (system-size expansion). For large but finite N, one can thus approximate the
stochastic dynamics of the population using a FPE or its equivalent Langevin equa-
tion [651]. However, now the stochastic variables are the fraction of molecules in a
given intrinsic state rather than the position of a single macromolecule undergoing
Brownian motion. The FPE then provides an estimate for the size of fluctuations
about the mean-field solutions.

In recent years, the system-size expansion of master equations has become a
major focus of work on genetic and other biochemical networks within a cell
[312, 408, 502, 521, 555]. In the case of classical chemical reactions, the num-
ber of molecules involved is huge (comparable to Avagadro’s number 6 x 10?%). In
such cases, it is sufficient to model the chemical reactions in terms of deterministic
kinetic equations based on the law of mass action: the rate of an elementary reac-
tion (a reaction that proceeds through only one step) is proportional to the product
of the concentrations of the participating molecules. In thermodynamic equilibrium,
the rates of the forward and backward reactions must be equal, which allows one to
express the ratio of the concentrations of reactants and products in terms of a con-
stant known as the dissociation constant K;. An expression for K; can be derived
from first principles using the Boltzmann—Gibbs distribution. However, the absolute
values of the transition rates (rather than their ratios) cannot be determined from the
theory of equilibrium systems. In contrast to classical chemical reactions, the num-
ber of molecular constituents involved in the transcription of DNA to produce a
protein is small (tens or hundreds of molecules). The low copy numbers mean that
fluctuations in the number of proteins produced are non-negligible and one has to
deal with the corresponding master equation. An immediate issue that stems from
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this is how noisy processes at the level of DNA (genotypes) result in the robust
development of single-cell and multicellular organisms (phenotypes).

Once one considers noise at the level of more complex subcellular processes that
involve populations of reacting macromolecules, it is useful to distinguish between
intrinsic and extrinsic noise [164, 625]. Intrinsic noise refers to fluctuations due to
the inherent stochasticity of the macromolecules, whereas extrinsic noise refers to
fluctuations in the external environment (beyond the random molecular collisions
that generate the intrinsic noise). For example, given a population of ion channels,
intrinsic noise might correspond to fluctuations in the fraction of open ion channels
whereas extrinsic noise could be due to random variations in the membrane voltage
or calcium concentration. In the case of gene expression, intrinsic noise might refer
to fluctuations in the number of bound protein promoters that repress or activate
gene expression, whereas extrinsic noise could be due to fluctuations in the rates of
binding and unbinding.

1.1.4 Self-Organization

A significant concept in the theory of nonequilibrium systems is the notion of self-
organization. Within the context of cell biology, this plays an important role in
the formation and maintenance of cellular and subcellular structures such as those
shown in Box 1A. It is useful to distinguish between two types of mechanism for
the formation of these structures [441]: self-assembly and self-organization. The
former involves the aggregation of molecules such as proteins or lipids into a struc-
ture at thermodynamic equilibrium. On the other hand, the self-organization of non-
equilibrium systems involves the spontaneous formation of a macroscopic structure
based on the interactions between its microscopic components; there is no explicit
architectural blueprint for the emerging structure [477]. Although many cellular
structures appear static, a closer look reveals that they are highly dynamic systems,
continuously exchanging proteins and other molecules with the surrounding envi-
ronment. Self-organization can then occur when this is combined with nonlinear
interactions between the various components of the given cellular structure.
Probably the most studied example of a self-organizing structure in cells is the
cytoskeleton [2775], which provides the structural integrity of the cell and plays a cru-
cial role in determining cell shape and polarity. It also forms the so-called spindle
apparatus during cell division or mitosis and drives cell motility. The cytoskeleton
consists of a network of biopolymers including F-actin and microtubules, which
undergo a continuous turnover of their subunits by net polymerization at one end
(the plus end) and net depolymerization at the other end (the minus end). Growth
and shrinkage of different components of the cytoskeleton are regulated by nonlin-
ear interactions with various proteins, resulting in a self-organizing structure that
can assume different forms from the same basic building blocks, depending on the
particular functional role [285, 442]. The self-organizing properties of microtubule
networks have been elegantly demonstrated in vitro by simply combining tubulin,
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microtubule motors, and ATP [467]. Depending on the relative concentrations of
motors and tubulin, structurally different patterns (i.e., random networks, vortices,
or asters) are formed. The outcome of the polymerization process is solely deter-
mined by the concentration of reactants and the kinetics of their interactions. More-
over, there are sharp transitions between distinct assembly patterns, and a diverse
range of initial conditions can result in the same assembly pattern. These are both
characteristic signatures of self-organization.

Another likely candidate for cellular self-organization is the set of organelles
forming the secretory pathway, namely, the endoplasmic reticulum (ER) and the
Golgi apparatus. Newly translated proteins enter the secretory pathway, where they
are sorted and transported to appropriate sites on the plasma membrane. One of
the significant features of the secretory pathway is that there is a constant active
exchange of molecules between the ER and Golgi apparatus, which have different
lipid and protein compositions [392, 393]. Such an exchange is mediated by motor-
driven vesicular transport. Vesicles bud from one compartment or organelle, car-
rying various lipids and proteins, and fuse with another compartment. Transport in
the anterograde direction has to be counterbalanced by retrograde transport in order
to maintain the size of the compartments and to reuse components of the transport
machinery. Since bidirectional transport would be expected to equalize the compo-
sition of both compartments, there has been considerable interest in understanding
the self-organizing mechanisms that allow such organelles to maintain their distinct
identities while constantly exchanging material.

The above two examples involve active transport processes. A different mecha-
nism for self-organization within cells (and between cells) is the interplay between
passive diffusion and nonlinear chemical reactions, as modeled using reaction—
diffusion equations. This builds upon the seminal work on morphogenesis by Tur-
ing [646], who established the principle that two nonlinearly interacting chemi-
cal species differing significantly in their rates of diffusion can amplify spatially
periodic fluctuations in their concentrations, resulting in the formation of a stable
periodic pattern. The so-called Turing mechanism has subsequently been applied to
a wide range of problems in cell and systems biology, as extensively reviewed by
Murray [461]. Given the fact that various cellular processes involve relatively few
molecules, it is important to understand how to incorporate the effects of intrinsic
fluctuations in the number of reacting molecules into a reaction—diffusion system.
This then raises the challenging mathematical problem of analyzing and simulating
stochastic PDEs.

Box 1A. A cellular parts list.

The interior of a cell is crowded with macromolecules and a vast array
of organelles. An organelle of a eukaryotic cell (cell with a nucleus)
is a compartmentalized structure separated from the cytoplasm by lipid
membrane. Some of the major organelles are listed below (see Fig. 1.3
and [3]).
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Fig. 1.3: The crowded environment of a eukaryotic cell (Public domain figure
downloaded from Wikibooks)

1. Nucleus. The nucleus is a membrane-bound vesicle that contains the
DNA genome. It is the site of transcription from DNA to mRNA via
the action of polymerase; mRNA then exits the nucleus via nuclear
pores and is then translated in the cytoplasm to produce proteins.
Some of these proteins re-enter the nucleus as transcription factors
(Sect. 6.1). In a human cell, the DNA molecules range in length from
1.9 to 8.5cm, whereas the nucleus that contains 46 copies is an ap-
proximately spherical compartment with diameter usually less than
8 mm. Thus, each DNA copy must be reduced in length by more than
a factor of 1,000. This is achieved using a hierarchical structure. First,
the DNA is wrapped around nucleosome ‘“‘core particles” resulting in
the material chromatin. Fibers of the chromatin are then coiled and
looped until each chromosome is only a few micrometers long and less
than 1 mm thick. It follows that the nucleus itself is a highly crowded
environment.

2. Endoplasmic reticulum (ER). The ER is one of the major organelles
of the so-called secretory pathway. Proteins and lipids destined for the
plasma membrane enter the ER from the nucleus as they are translated
from mRNA by ER-associated ribosomes. The ER can be partitioned
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into the rough ER (RER), which is rich in ribosomes, and the smooth
ER (SER), which has only a few sparse ribosomes and tends to form
a tubular structure. The ER is also an important intracellular store of
Ca®" (Sect.3.4).

3. Golgi apparatus. An important aspect of the secretory pathway is that
it is tightly regulated (Sect.7.5). Proteins accumulate at specific exit
sites and leave the ER in vesicles that transfer the cargo to organelles
forming the Golgi network, where final packaging and sorting for tar-
get delivery is carried out. In most eukaryotic cells the Golgi network
is confined to a region around the nucleus known as the Golgi appara-
tus, whereas in neurons there are Golgi “outposts” distributed through-
out the dendrite.

4. Mitochondria. These are the major sites of ATP synthesis, which is the
main source of biochemical energy at the macromolecular level.

5. Lysosomes. These play a major role in the degradation of cellular com-
ponents and are filled with acids and degradative enzymes.

1.2 Experimental Studies of Noise in Cells

One of the major factors stimulating the recent interest in stochastic aspects of
cellular function has been the rapid advance in experimental techniques for imaging
and probing cells at the molecular level. Here we briefly review some of the methods
most relevant to the biological themes covered in subsequent chapters. More details
and examples can be found in Alberts et al. [3] and Phillips et al. [509].

1.2.1 FRAP and Single-Particle Tracking

A well-established experimental method for measuring protein mobility in cell
membranes is fluorescence recovery after photobleaching (FRAP) [17, 532] (see
Fig. 1.4). In this method, molecules of interest are tagged with a fluorophore such
as a genetically encoded fluorescent protein. A small area of the cell is quickly pho-
tobleached using an intense beam of light, and the rate of fluorescence recovery
in the excited spot is monitored over time. The recovery of the fluorescence signal
depends on a variety of factors, including protein mobility and its availability from
the area surrounding the bleached spot, the number of protein binding sites in the
bleached area, and the rate of dissociation of bleached molecules from these binding
sites. One of the limitations of FRAP is that its spatial resolution is limited by the
diffraction of light to hundreds of nanometers. Moreover, it only gives the average
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behavior of a population of molecules, so it cannot identify heterogeneous behavior
at the level of individual molecules. Finally, mathematical modeling is often needed
to help separate out the various factors contributing to recovery in order to measure
important biophysical quantities such as the diffusivity.

In recent years a powerful alternative method has been developed based on
single-particle tracking (SPT), in which one images the trajectory of a marker
attached to a diffusing molecule [363, 566, 570]. Various transport properties of
the particle are then derived through a statistical analysis of the trajectory, includ-
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Fig. 1.4: Schematic illustration of fluorescence recovery after photobleaching (FRAP). (a) A mem-
brane bilayer is uniformly labeled with a fluorescent tag. (b) This label is selectively photobleached
by a small (30 um) fast light pulse. (¢) The intensity of the fluorescent signal within the bleached
area is monitored as the bleached dye diffuses out and new dye diffuses in (d). Eventually uniform
intensity is restored (Public domain figure downloaded from Wikipedia Commons)
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Fig. 1.5: Membrane receptor diffusion in neurons measured by single-particle tracking. (a) Super-
imposed image of the trajectory of 500 nm beads bound to glycine receptors (GlyRs) with the fluo-
rescent image (green) of green fluorescent protein (GFP)-tagged gephyrin. Periods of free diffusion
and confinement are indicated by blue and red lines, respectively. (b) Plots of the average mean-
squared displacement (MSD) function during periods of free diffusion (left panel) and confinement
(right panel) for GlyRs. Note the difference in both shape and amplitude of the MSDs. The curved
shape of the MSD is characteristic of movement in a confined space (Adapted from [111])

ing a measurement of the mean-square displacement (MSD). Visualization of the
diffusive behavior of single-membrane proteins in living cells has revealed that
these molecules undergo a variety of stochastic behaviors including normal and
anomalous diffusion and confinement within subcellular compartments. SPT also
provides information on the structure of the surrounding membrane and the molec-
ular interactions. The rapid increase in the range of applications of STP to cell
biology has been driven by major improvements in the visualization of trajecto-
ries combined with new strategies for labeling proteins with nanoprobes. However,
single-molecule approaches still have their own limitations, such as the shortness of
observation times and the possibility that identified molecules are not representative
of the population, which can lead to sampling errors. Hence, bulk methods such as
FRAP and single-molecule methods are complementary experimental approaches
to studying the molecular physiology of cells. Figure 1.5 illustrates one applica-
tion of SPT, namely, studying the role of lateral membrane diffusion in delivering
neurotransmitter receptors to synapses of a neuron [643].

1.2.2 Optical Tweezers or Traps

In recent years there have been spectacular advances in single-molecule techniques
for measuring the force-dependent dynamics of molecular motors, DNA, and other
macromolecules vital for cell function. In particular, the use of an optical tweezer
(or trap) allows piconewton forces to be applied to molecules over nanometer
length scales. The basic idea of an optical tweezer is to use radiation pressure from
individual photons emitted by a laser to generate forces on a micron-sized glass
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Fig. 1.6: Operation of an optical tweezer or trap. Experimental traces show kinesin-driven bead
movement and the corresponding optical trap displacement; the separation between bead and trap
was maintained at around 175 nm. The movement can be characterized in terms of a stochastic
sequence of steps of average length 8 nm. Inset: schematic representation of the experimental setup
(Adapted from [571])

bead. This then imparts a force on the macromolecule of interest via a velcro-like
link between the molecule and the glass bead. By applying known forces to the
bead, it is possible to study the mechanochemistry of the attached macromolecule
as a function of the applied force. An example of such an experiment is illustrated
in Fig. 1.6. Here a kinesin molecular motor attached to a silica bead moves along a
clamped microtubule filament [571]. The bead is placed inside an optical trap such
that the force on the bead is proportional to its displacement Ax from the center
of the trap. The applied force is maintained at a constant level by using feedback
to move the trap in sync with the bead so that Ax is kept constant. Such an exper-
iment can be used to determine the probability distribution of motor step lengths,
for example. Another common application of the optical tweezer involves attach-
ing the glass bead to one end of a DNA strand. This can then be used to determine
the force-extension curve of a DNA polymer, measure the force produced by RNA
polymerase (RNAP) during the transcription of DNA, or measure the force neces-
sary to pack viral DNA into the capsid (protein shell) of a bacteriophage (virus that
infects and replicates within bacteria).
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Fig. 1.7: Measuring intrinsic and extrinsic noise in gene expression. Two almost identical genes,
which encode red and green fluorescent proteins, are expressed from identical promoters and are
influenced identically by cell-specific factors, such as gene-regulatory signals. (a) Cells with equal
amounts of the two proteins appear yellow, indicating that the level of intrinsic noise is low. Noise
fluctuations of the two proteins in the same cell appear correlated over time. (b) If intrinsic noise is
significant, then the expression of the two genes becomes uncorrelated in individual cells, giving
rise to a cell population in which some cells express more of one fluorescent protein than the other.
(¢) Plot of fluorescence in two strains (M22 and D22) of the bacterium Escherichia coli. Each
point represents the mean fluorescence intensities from one cell. Spread of points perpendicular to
the diagonal line on which the two fluorescent intensities are equal corresponds to intrinsic noise,
whereas the spread parallel to this line corresponds to extrinsic noise (Adapted from [164])

1.2.3 Two-Reporter Assays

As was mentioned in Sect. 1.1, there is an important distinction between intrinsic
and extrinsic noise. Elowitz et al. [164] developed a two-reporter assay that can
discriminate between the two within the context of gene expression. (A biochemical
assay is an experimental procedure for quantitatively measuring the presence or
amount of one or more target molecular constituents.) In this particular assay, two
almost identical fluorescent proteins are simultaneously expressed from two genes
that are controlled by identical regulatory sequences (the same promoter). Cells with
the same amount of each protein appear yellow, whereas cells expressing more of
one fluorescent protein than the other appear green or red (see Fig. 1.7a,b). In the
absence of intrinsic noise, the expression of the two-reporter proteins should be
strongly correlated. On the other hand, since the expression of the two reporters
is independent, any intrinsic stochasticity in gene expression will be manifested as
differences in expression levels within the same cell. By considering the spread of
the expression levels across a population of cells, it is possible to separate out the
noise contribution generated by the biochemical reaction steps that are intrinsic to
the process of gene expression from extrinsic environmental noise (Fig. 1.7¢).
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Fig. 1.8: The cytoskeleton of a eukaryotic cell revealed by fluorescent imaging. Actin filaments are
shown in red, microtubules in green, and the nuclei are in blue (Public domain figure downloaded
from Wikipedia Commons)

1.2.4 Fluorescent Imaging

In fluorescent imaging a target structure such as a microtubule filament is labeled
with fluorophores. Incident photons of a given wavelength are absorbed by the flu-
orophores. The latter become energetically excited and emit light at a different
wavelength, which is then detected. The illumination light is separated from the
much weaker emitted fluorescence through the use of a spectral emission filter. The
use of selective labeling means that only the structures of interest are observed under
the microscope. Hence, one can measure the size and number of various structures
based on the strength of the fluorescent signal (see Fig. 1.8). One can also use time-
lapse microscopy to track changes in the shape or size of a cell, which is crucial for
understanding processes such as cell motility and cell polarization. Another imp-
ortant application of time-lapse fluorescent microscopy is to obtain statistical data
regarding the active intracellular transport of vesicles. By tagging proteins or mRNA
contained within the vesicle it is possible to monitor the bidirectional transport of
vesicles along the axons and dendrites of neurons (for example, see Fig. 1.9).

1.3 A Brief Introduction to Probability Theory

Since this is a book on stochastic processes, we thought that it would be helpful to
summarize some basic concepts in probability theory. A more abstract formulation
can be found in Chap. 11.
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Fig. 1.9: (a) Time-lapse fluorescent images of an actively transported vesicle (arrowhead) within
the dendrite of a hippocampal neuron. The vesicle contains fluorescently labeled mRNA for the
kinase CaMKII. Frames are sequential images taken every 20 s. The total distance covered was
5.85 mm and the average velocity over 160s was 0.04—0.01 mm/s. (b) The distance traveled by
vesicles is given by a Gaussian-like histogram. If the neuron is depolarized by treating with KCI,
then the histogram is shifted towards anterograde (away from the cell body) movement (Adapted
from [544])

1.3.1 Random Variables

Let us start with the idea of a random variable X, which is an unknown quantity that
has one of a number of possible values with some relative likelihood. For example,
in the case of an unbiased die, the possible values of X are the integers 1-6 and the
probability of throwing any one of these is p = 1 /6. From a frequentist interpretation
of probability, this means that in the limit that the number of throws N — oo, the
fraction that will have the value four, say, is equal to 1/6. More, generally, suppose
that X = n with probability p, forn =1,...,K. Since X takes on discrete values it
is called a discrete random variable. Given that X must take on one of these values,
the total probability must be 1, that is,

anzl'

n=1
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Two important statistical quantities are the average, mean, or expectation value of

X, which is defined by

K
EX] = (X) =) npa,
n=1
and the variance of X,
2 2 < 2 < 2
var[X] = (X?) — (X)? = Y n*pu— (3, npa)*.
n=1 n=1

The standard deviation of X, denoted by oy, is defined to be oy = y/var[X] and
is a measure of how broad the probability distribution of X is. These ideas carry
over to the case of a continuous random variable X that can take any value on the
real line R. The relative likelihood of the different values of X is now given by a
probability density p(x) such that

b
Probla < x < b] = / p(x)dx.

The total probability is again equal to 1, which can be expressed as the normalization
condition

/:op(x)dx: 1.

Similarly, the mean and variance are defined according to

oo

X = [ wpldx

and
var[X| = [mxzp(x)dx— (x)2.

In the following, we will focus on continuous random variables, although analogous
results hold for discrete random variables.

1.3.2 Conditional Probabilities and Correlations

Two random variables X and Y are said to be independent if the relative likelihood of
a particular value taken by one variable is unaffected by the particular value taken
by the other variable. This means that the joint probability density p(x,y) can be
written as the product of individual probability densities for each of the random

variables, p(x,y) = px (x)py (), and
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b rd
Prob[a<X<bandc<Y<d]:/ / p(x,y)dydx

= / / px(x)py (v dydx—( /a (X)dX> (/c dpy(y)dy>

= Prob[a < X < b]-Prob[c < Y < d|.

It immediately follows that (XY) = (X)(Y). If, on the other hand, X and Y are
dependent, then p(x,y) cannot be decomposed into such a product. Nevertheless,
one can define a so-called marginal probability density for X, say, which applies
when there is no information about the value of Y:

x) = [Zp(x7y)dy

Dependence suggests that if the value of Y is known, then the probability density for
X will be modified. The probability density for X = x given that Y =y is denoted by
the conditional probability density p(x|y). A basic result of conditional probability
densities is

p(x,y) = p(xly)py (v) = p(y[x) px (x).
It follows that

Py ()
PO = T o)y 00y

which is a statement of Bayes’ theorem [402]. Although we will mainly use the
frequency interpretation of probability in this book, we note that the Bayesian inter-
pretation is often used in statistical and information theoretic approaches to systems
biology (Sect. 6.5). For example, suppose that X represents some observable data
and Y represents a parameter of the system that produces the data. Then p(x|y) is
known as the likelihood function that a particular parameter value produces the ob-
served data and py(y) is the Bayesian prior, which expresses what was known (or
thought to be known) about the parameter before the measurement. Finally, p(y|x)
is the updated posterior probability density for the parameter obtained by combining
the prior information with the information gained from the measurement.

An important quantity that indicates the degree of mutual dependence of two
random variables is the correlation coefficient of X and Y, defined by

(XY) — (X)(¥)

Cor = var[X]var[Y]

The numerator is known as the covariance of X and Y and vanishes if X and
Y are independent. On the other hand, if X and Y are perfectly correlated
(X =cY,c>0), then Cxy = 1, and if they are perfectly anticorrelated (X =cY,c <0),
then Cxy = —1.
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1.3.3 Adding Random Variables

Suppose that N independent measurements of some quantity are made, which are
denoted by X;,, n =1,...,N. The random variables are said to be independent, iden-
tically distributed (i.i.d.) random variables and have the same mean u and vari-
ance o2. Averaging the results of these measurements generates a new random

variable N
X
X = —.
2y
n=1
It follows that
<X>—<§X”> LS )=
fr— —_— = — n) =
n=1 N anl
and
N x N x | NN
mm_<2 Y ) = XY k)
m=1 n=1 m=1n=1

N
= Zl (Xm) + % <Xan>—Nu2]
1 X c?
== |+ Y, <Xm><Xn>—(N—1)u2] =
m=1 n,n#m

We thus obtain the well-known result that the standard deviation of the average
varies as 0x ~ N /2. This is an expression of the law of large numbers, which
states that the average of the results obtained from a large number of trials should
be close to the expected value and will tend to become closer as more trials are
performed.

A related result is the central limit theorem [242]. Suppose that {X;,X5,...} isa
sequence of i.i.d. random variables with (X;) = y and var[X;] = 6> < . Then as n
approaches infinity, the random variables /n(S, — tt) with S,, = 27:1 X,,/n converge
in distribution to a normal or Gaussian distribution N (0, 62):

ﬁ(l i&—u) 2 N(0,0?).
nis

The Gaussian distribution N(u,6?) is defined according to

)2
N0t = pl) = s enp (-0 ).
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Convergence in distribution means that

1 2 2 /952
. _ < — —X /26
’}gl(}QProb[\/ﬁ(S,, ) <7 — /ﬂf: dx.

1.3.4 Transformation of Random Variables

Suppose that we know the probability density px (x) of a random variable X and we
construct a new random variable ¥ = g(X), where g is an invertible function. We
would like to determine the probability density Py (y). This can be achieved by con-
sidering the expectation value of a function f(Y) in terms of py(x) and performing
a change of variables. That is,

x=b B y=g(b) 1 dx
[, Fetnpstoax= [ iGipxe 0N
=) opx(g'(y) =) px (g ()
./y:g<a> VW) 2 _-/y:g<a> Yele ) .

(f(¥)) dy

It is possible that on transforming the limits of the integral, g(b) < g(a), which
means that the fraction is then negative. Therefore, the transformed probability
density is
-1
px(& "y
or(y) = /(71( )
lg'(g~ 1)

1.3.5 Moments and Cumulants

Given a continuous random variable X with probability density p(x), the expectation
value of X", (X"), is called the nth moment. The moments can be calculated using
the so-called characteristic function of X, which is defined by

oo

G(k) = /7 ep(x)d.

It can be seen that G(k) is the Fourier transform of p(x). Taylor expanding G(k), we
have

where G (k) is the nth derivative of G(k). An alternative series expansion of G(k)
is obtained by noting that
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Equating the two series representations of G(k) shows that
(X)" = (=i)'G""(0).

A related quantity is the nth order cumulant of X, which we denote by k;,. It is a
polynomial in the first » moments, which is defined by

o = (i) 2

InG(k)| .
dk" k=0

The first three cumulants are k; = (X), Kk, = var[X], and
i3 = (X7) = 3(X?)(X) +2(X)°.

One useful feature of cumulants is that x;, = 0 for all n > 3 in the case of the Gaus-
sian distribution. This implies that all higher moments of a Gaussian can be written
in terms of the mean (X) and variance 6. A general formula for these moments can
be derived using standard results from Gaussian integration, and one finds that

(2n—1)16?

2n 7y2/202d _
¢ Y )

_ 2n\ __ 1 -
(=™ = [

and
(X =) =0

for n > 1. It also turns out that the characteristic function of a Gaussian is also a
Gaussian, since

22
efck/z oo

1 oo
= —— e —_—
) V2ro? ,/,m V2ro? J-e

(Technically speaking, the Gaussian integral is evaluated by completing the square
and then using analytical continuation in the complex k-plane.)

ikxefxz/Zczdx _ 7(x7i62k)2/262dx _ efo'zkz/Z_

G(k e

1.3.6 Stochastic Processes

One final point to make is that this book is concerned with stochastic processes,
which involve random variables evolving in time. Thus a random variable will
have an additional time label X — X,,,n € Z" for discrete-time processes and
X — X(t),t € R™ for continuous-time processes. Roughly speaking, one can treat
t (or n) as a parameter so that for fixed ¢, X(¢) is a random variable in the sense
considered in this section. However, various objects such as the probability density
and characteristic function are now parameterized by 7 and we write p(x) — p(x,t)
and G(k) — G(k,1) etc.
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1.4 Statistical Mechanics and the Boltzmann—Gibbs
Distribution

Here we collect together some fundamental results in statistical mechanics that
commonly arise when considering stochastic processes within cells. We will in-
troduce quantities such as free energy, entropy, and chemical potential from the
perspective of the Boltzmann—Gibbs distribution of a macromolecule such as DNA
or a protein in thermodynamic equilibrium at temperature 7, as illustrated in
Fig. 1.2. For a much more general and detailed treatment of statistical mechan-
ics from the physics perspective, see [102, 317]. A more biophysical approach
can be found in [295, 509]. Note that the only topics in the book where statis-
tical mechanics is needed are the equilibrium theory of polymers (Sect.4.5), the
fluctuation—dissipation theorem (Sect. 5.2), receptor clustering (Sect. 5.3), informa-
tion transmission in gene networks (Sect. 6.5), and the translocation of polymers
through membranes (Sect. 7.3.4). Otherwise, one only needs to be familiar with the
definition of the Boltzmann—Gibbs distribution in Egs. (1.4.1) and (1.4.5), so that
the remainder of this section could be skipped.

1.4.1 Boltzmann—Gibbs Distribution

Suppose that a macromolecule such as a protein or DNA has a set of internal mi-
crostates labeled by j and let E; denote the energy of the molecule in the jth state.
(These could include different folded or twisted configurations of the underlying
amino acid or nucleotide chain.) As we briefly mentioned in Sect. 1.1, a fundamen-
tal principle of equilibrium statistical mechanics is that the probability p; that the
molecule is in state j is given by the Boltzmann—Gibbs distribution

1
pi= ze* ilksT 7 — Ze*Ej/kBT, (1.4.1)
j

where T is the temperature of the surrounding cellular environment and Z is the
partition function. As a simple example, consider a molecule that can exist in two
states j = C, O with energies E¢c and Ey, respectively. The associated probabilities
are

e—Eo/ksT 1

Po = e—Eo/ksT + e—Ec/ksT = 1+ eAE [kgT "’

Fc=1-Py,
with AE = Ey — E¢ the difference in energies between the two states. It follows that

Po — o AE/kgT
Pc '
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Suppose that the system approaches thermodynamic equilibrium according to the
two-state Markov process

arc

dPp
——_aP P —— —oaP-—BPH. 1.4.2
— oPc+BPo 5 = oFc BPo (1.4.2)

This has the unique stable steady state

Po (1.4.3)

a
= —-— PC = —.
a+p’ o+ B

Such a steady state has to be consistent with equilibrium statistical mechanics,

which implies that the forward and backward transition rates have to satisfy the

condition

o

— = AE/ksT (1.4.4)
B

Examples of a two-state system include an ion channel that is either open or closed

and a protein receptor that is either bound or unbound to a ligand (see Sect. 3.1).

1.4.2 Free Energy and Entropy

The Boltzmann—Gibbs distribution also applies to continuous states of a molecule.
For example, consider a molecule moving in d = 1,2,3 dimensions under the in-
fluence of a conservative force—a force that can be written as f = —V®(x) where
@(x) is some potential energy function. Examples include gravitational and elec-
trical potentials. Assuming that all other degrees of freedom are independent of x
(momentum, internal microstates), the equilibrium probability density with respect
to position X is given by

p(x) = %e*‘l‘(x)/"BT, Z= / e PX/ksT gy (1.4.5)

The situation becomes more interesting when one cannot assume separability be-
tween different degrees of freedom. In particular, suppose that the total energy of a
molecule is independent of its internal state j, but the number of internal states 2 (x)
depends on position. If p;(x) is the joint probability density of being at position x
and in internal state j, then the marginal probability density p(x) is given by

1 _ 1 -
p(x) = X pi(x) = 7 X e PBT = 20 (x)e” P,
J

with
Z= /Ze"p(")/kﬂdx: /.Q(x)e"p(x)/kBde.
J
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If we now introduce the quantity

E(x) = @(x) —kgT InQ(x), (1.4.6)
then we can express p(x) in terms of the effective Boltzmann-Gibbs distribution

p(x) = %Q*E(X)/]%’T’ 7 — /efE(x)/kBTdX.

Another major result from statistical mechanics is that one should treat E(x) as the
effective energy of the molecule in thermodynamic equilibrium. One defines E (x) to
be the free energy of the molecule and the term S = kg In Q2 (x) to be the entropy. An
immediate consequence of the above result is that the total force on the molecule is

fioi(x) = —=VE(x) = =V (x) + TVS(x) = f(x) + TVS(x). (1.4.7)

That is, there is an additional entropic force given by TVS(x). The entropic force
has the following statistical mechanical interpretation: the total entropy of a closed
system cannot decrease (second law of thermodynamics), so that if a change in
position 6x decreases the entropy of the molecule, VS(x) - dx < 0, then this results
in the environment having to do work 6W = —TVS(x) - 0x > 0 to counteract the
entropic force. Since the internal energy of the molecule does not change when it
is displaced, the work done is dissipated as heat (conservation of energy), resulting
in an increase in the environmental entropy, thus counterbalancing the decrease in
entropy of the molecule. (For simplicity, we are treating the molecule and its sur-
rounding environment as a closed system.) One important example of an entropic
force arises in the uncoiling of a flexible polymer (see Sect.4.5).

1.4.3 Chemical Potential of a Solution

Another important consequence of entropic effects arises from changes in the num-
ber of microstates when a solute molecule is removed from a dilute solution. Sup-
pose that there are N solvent + solute molecules and n solute molecules with n < N.
For simplicity, let us represent the solution in terms of N boxes that can either be
occupied by a solute molecule or a solvent molecule (see Fig. 1.10). The number
of different configurations for given n, N is given by the combinatorial factor for
distributing n items in N boxes:



26 1 Introduction

Taking logs and using Stirling’s formula
1
logN! = NlogN — N + 3 log(27N),

we have the entropy
S(n) = kg[NInN —nlnn— (N —n)In(N —n)].

Thus there is an entropic contribution to the free energy of the solute of the form
—kpTInS(n). Now suppose that one solute molecule is removed from solution by
binding to a protein receptor embedded in the cell membrane, for example. The
change in free energy consists of two contributions: the change in energy € associ-
ated with binding to the receptor and the change in entropy of the solution due to
n — n— 1. Thus the total change in free energy (for N > n) is

ds
AE =¢+ T% ~¢€—kgTIn(n/N).
n

o| |M el |8

' receptor @ solute molecule

Fig. 1.10: Lattice model of a receptor binding with a solute molecule

Typically, one transforms n/N to a volume concentration ¢ and sets
AE=¢e—u, p=pp+kgTlIn(c/co), (1.4.8)

where ¢ is a reference concentration and f is a constant. The quantity u is called
the chemical potential of the solute. One application of the chemical potential is
to ligand-gated ion channels. Suppose that the ion channel receptor can be in two
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states: unbound by a ligand (C) and bound by a ligand (O). Using the Boltzmann—
Gibbs distribution for a two-state ion channel with E¢c = o, Eg = AE implies that

e—(E—u+uo)/kpT (C/Co)e*b'/kBT
1 4e (Ertr)/keT 1 4 (c/co)ee/kT

Po (1.4.9)

This result can be used to determine the so-called dissociation constant that appears
in chemical mass-action kinetics (Sect. 3.1).

1.5 Organization of the Book

We now give a brief overview of the organizational structure of the book. It is
divided into two parts, with Chaps.2-6 covering foundations and Chaps.7-11
covering more advanced topics. Chapter 2 develops two microscopic theories of
diffusion in cells, one based on random walks and the other on overdamped Brow-
nian motion. The latter introduces the theory of continuous stochastic processes,
SDEs (Langevin equations), and the FPE. The important topics of first passage times
(FPTs) and diffusion-limited reactions are also described. Chapter 3 considers the
problem of stochastic ion channel gating, introducing the theory of biochemical re-
action kinetics and the law of mass action, discrete Markov processes, and master
equations. It is also shown how a discrete process can be approximated by a con-
tinuous process using a system-size expansion of the master equation. The resulting
FPE is then used to study some escape problems in bistable stochastic ion channel
models, including calcium-induced calcium release (CICR) and spontaneous action
potential (SAP) generation in neurons. Chapter 4 describes how random walks and
SDE:s are used to model polymerization and molecular motors. Polymerization plays
a major role in the self-organization of cytoskeletal structures, whereas molecular
motors “walking” along polymer filaments are a major active component of intracel-
lular transport. Chapters 5 and 6 consider stochastic biochemical reaction networks.
Chapter 5 focuses on how cells sense biochemical cues in a noisy environment, ad-
dressing the fundamental physical limits of biochemical signaling and mechanisms
for amplifying and adapting signals. Applications to bacterial chemotaxis and active
mechanotransduction in hair cells are considered. Chapter 6 covers a wide range
of topics in stochastic gene expression, including transcriptional and translational
bursting, autoregulatory networks and transcription factors, genetic switches and
the lac operon, genetic oscillators and circadian rhythms, information transmission
by gene networks, and kinetic proofreading. Part I also provides background mate-
rial in applied mathematics that is particularly relevant to the themes of this book:
Fourier and Laplace transforms, the Dirac delta function, linear stability analysis,
Hopf bifurcations, and methods for solving linear PDEs such as separation of vari-
ables, eigenfunction expansions, and Green’s functions.
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Part II begins with Chap.7 on passive (diffusion-driven) and active (motor-
driven) mechanisms for intracellular transport. Topics include anomalous diffusion
in the crowded cellular environment, diffusion in membrane channels and pores,
PDE models of active transport, molecular exclusion processes, and random in-
termittent search processes. Chapters 8 and 9 explore various examples of self-
organization in cells. First, the roles of polymerization in cellular length regulation,
cell mitosis, and cell motility are considered, and then reaction—diffusion models
are used to study intracellular protein concentration gradients, intracellular pattern
formation, and cell polarization. Finally, Chaps. 10 and 11 consider more advanced
topics in probability theory and stochastic processes relevant to cell biology. First, it
is shown how Wentzel-Kramers—Brillouin (WKB) methods and large deviation the-
ory can be used to obtain more accurate solutions of noise-induced escape problems
in bistable systems, compared to the diffusion approximation used in Part I. Sec-
ond, a more abstract formulation of probability theory is introduced, in particular,
the theory of discrete martingales, which plays an important role in the development
of numerical methods for simulating chemical reaction networks. At the end of each
chapter there is a set of exercises that further develops the mathematical models and
analysis introduced within the body of the text. Additional background material is
contained in gray boxes scattered throughout the text.

1.5.1 How to Use the Book

Part I can be used to teach a one semester advanced undergraduate or graduate
course on stochastic processes in cell biology. From a biological perspective, these
chapters cover the basic molecular components of the cell: ion channels, receptors,
biopolymers, molecular motors, biochemical signaling networks, and gene networks
(see Fig. 1.11). From a mathematical perspective, Part I develops the basic tech-
niques needed to analyze stochastic processes in cell biology. Here we briefly out-
line these methods (see Fig. 1.12).

Continuous Markov Processes. There are two complementary approaches to formu-
lating continuous stochastic process, one in terms of the sample paths generated by
an SDE or Langevin equation and the other in terms of the FP equation describing
the evolution of the probability density of possible paths. The former requires at
least a basic understanding of stochastic calculus, namely, the rules for integrating
an SDE in order to obtain an expression that can be used to generate moments of
the stochastic process (Sects. 2.2 and 2.6). In the case of linear SDEs one can also
use Fourier methods to determine the power spectrum, for example, which is im-
portant in quantifying the linear response properties of a noisy system (Sect. 2.2.5).
The FP equation is a deterministic PDE that generalizes the diffusion equation and
can be analyzed using standard methods in the theory of linear PDEs: separation
of variables, boundary value problems, transform methods, Green’s functions, and
eigenfunction expansions (Sect.2.5). A less standard technique is needed to deal
with an FP equation for a Brownian particle moving in a periodic potential, which
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is important in the theory of molecular motors (Sects. 4.2 and 4.3). (It also arises in
studies of diffusion in narrow channels; see Sect. 7.3.)

Discrete Markov Processes. The probability distribution of a discrete Markov pro-
cess evolves according to a system of coupled ODEs known as a master equation.
In certain cases, the steady-state distribution can be solved by iterating a difference
equation, and the full time-dependent master equation can be solved using discrete
Fourier and Laplace transforms (Sects. 2.1, 3.2, 4.1, 6.2, 6.3). The resulting char-
acteristic function or generating function can be used to generate moments of the
distribution, in which case it is not necessary to determine the inverse transform.
However, in general it is not possible to obtain an exact solution of a master equa-
tion, and so some form of approximation scheme is needed. The most common
method is the so-called system-size expansion, which reduces the master equation
to an FP equation (Sects. 3.2, 6.3, 6.4). One possible limitation of the reduction is
that it assumes that the number of molecules involved is sufficiently large. Since
many biochemical networks involve small numbers of molecules, this can result in
significant errors. (A more accurate approximation scheme is to use WKB methods
(Chap. 10).)

FPTs and Escape Problems. Many quantities measured by experimentalists can be
interpreted mathematically in terms of the solution to a FPT problem—switching
times of bistable gene networks, dwell times of a molecular motor stepping along a
filament, release times of calcium sparks, firing times of neurons, etc. In the case of a
continuous Markov process, the distribution of FPTs satisfies a differential equation
that can be derived from the FP equation and then solved to determine the mean
FPT, for example; such methods can also be applied to discrete Markov processes
using a system-size expansion (Sects. 2.3, 3.3-3.5).

Statistical Mechanics and Information Theory. It is often possible to treat a molecule
within a cell as in local thermodynamic equilibrium so that its properties can be
characterized in terms of the Boltzmann—Gibbs distribution. How it interacts with
the surrounding environment then requires a basic understanding of free energy and
entropy. The ideas briefly introduced in Sect. 1.4 are further developed within the
context of polymers in Sect.2.5 and applied to the analysis of receptor clustering
in Sect. 5.3. Another important application of statistical mechanical methods is to
information theory, which is concerned with measuring how effective some bio-
chemical or gene network is in transmitting information from the environment in
the presence of noise (Sect. 6.5).

Part II can be used as a supplement to Part I, either as a reference or as a source
of projects that follow up the ideas and methods introduced in Part I. Chapters
7-9 focus on more spatial aspects of cell biology including transport processes
and self-organization: anomalous diffusion, membrane transport, cell mitosis, cell
motility, and cell polarization. Chapters 10 and 11 develop more advanced meth-
ods in stochastic processes: WKB approximation, large deviations, path integrals,
probability spaces, and martingales.
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Foundations



Chapter 2

Diffusion in Cells: Random Walks
and Brownian Motion

When one first encounters the concept of diffusion, it is usually within the context
of a conservation law describing the flux of many particles moving from regions
of high concentration to regions of low concentration at a rate that depends on the
local concentration gradient (Fick’s law). However, there are some limitations of
the standard macroscopic derivation of the diffusion equation. First, it does not take
into account microscopic features of the environment within which the particles
diffuse. This is crucial when considering diffusive processes within a cell, since
the interior of the cell is highly heterogeneous (see Box 1A). The same applies to
surface diffusion within the plasma membrane. Second, with the use of advanced
imaging techniques such as SPT (Sect. 1.2), it is possible to observe the movement
of individual molecules, which is highly stochastic, whereas the classical diffusion
equation describes the collective motion of many particles and is deterministic.

In this chapter, we consider two different microscopic theories of diffusion: ran-
dom walks and overdamped Brownian motion. Both approaches will be used to
model diffusion within the complex cellular environment in Chap.7. We begin by
considering a discrete random walk on a 1D lattice, which is a simple example of
a discrete Markov process (Sect.2.1). The probability distribution specifying the
likelihood that the walker is at a particular lattice site after n time steps evolves ac-
cording to a master equation. We show how the master equation can be solved using
discrete Fourier and Laplace transforms, which in probability theory are known as
characteristic functions and generating functions, respectively. The resulting solu-
tion is given by a binomial distribution, which reduces to a Gaussian distribution
in an appropriate continuum limit; the latter is the fundamental solution of the dif-
fusion equation. Background material on Laplace and Fourier transforms, and their
discrete analogs, is also provided. Random walk models and various generalizations
will later be used to model a variety of cellular processes, including molecular mo-
tors, polymerization of cytoskeletal filaments (Chap.4), and anomalous diffusion
(Chap. 7).

We then consider an alternative microscopic theory of diffusion based on an
overdamped Brownian particle moving in a fluid-like environment (such as the
cytoplasm of a cell), which is modeled in terms of a Langevin equation or SDE
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(Sect. 2.2). The latter describes the motion of the particle subject to a combination
of external forces and a fluctuating force that is due to collisions with molecules
in the surrounding fluid; the fluctuating force is idealized as a Wiener process. So-
lutions of the Langevin equation represent random sample paths or trajectories of
the particle. We show how the probability density on the space of sample paths
evolves according to a Fokker—Planck (FP) equation, which is a generalization of
the diffusion equation applicable at the single-particle level. Other topics include
the distinction between additive and multiplicative noise, Ito vs. Stratonovich inter-
pretations of continuous stochastic processes, power spectra, and correlations. Note
that continuous stochastic processes and the FP equation will appear in many chap-
ters of the book. For in addition to describing diffusive-like motion of microscopic
particles in solution, it also frequently appears in diffusion approximations of dis-
crete Markov processes, where the continuous variable now represents the fraction
of open ion channels (Chap. 3), say, or the concentration of a gene product (Chap. 6).
A large-dimensional FP equation will be used to describe stochastic reaction—
diffusion systems in Chap. 9 and applied to self-organizing phenomena such as cell
polarization.

In Sect. 2.3 we introduce one of the most important characteristics of a diffusion
process, namely, the FPT to reach a given target or boundary. This is then used to
calculate the Smoluchowski reaction rate formula for diffusion-limited reactions,
under the assumption that when reacting molecules come within a certain distance
of each other they react immediately (Sect.2.4). In Sect. 2.5 we tackle the general
problem of diffusion in bounded domains (boundary value problems). Here we in-
troduce some basic methods in the analysis of linear PDEs, including separation
of variables and transform methods, eigenfunction expansions, and Green’s func-
tions. Finally, in Sect.2.6 we give an informal introduction to stochastic calculus
and numerical methods for simulating continuous stochastic processes.

2.1 Discrete-Time Random Walk

Consider a particle that hops at discrete times between neighboring sites on a one-
dimensional (1D) lattice with unit spacing [289, 651] (see Fig.2.1). At each step,
the random walker moves a unit distance to the right with probability p or to the left
with probability g = 1 — p. Let Py(r) denote the probability that the particle is at
site r at the Nth time step. The evolution of the probability distribution is described
by the discrete-time master equation

Py(r)=pPy_1(r—1)+gPyv_1(r+1), reZ, N>1. (2.1.1)

If ¢ = p = 1/2, then the random walk is symmetric or unbiased, whereas for p > ¢
(p < g) itis biased to the right (left). We will analyze this equation using transform
methods, since these can be generalized to more complex random walk models such
as continuous-time random walks (see Sect. 7.1.3). An introduction to continuous
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q p

FN A

r-1 r r+1

Fig. 2.1: A random walk on a 1D lattice

and discrete transform methods can be found in Box 2A. The first step is to introduce
the characteristic function (discrete Fourier transform) for fixed N:

Gy (k) = i e Py(r), ke|-m,nl. (2.1.2)

The characteristic function generates moments of the random displacement variable

r according to
d m
—i— | Gn(k
( ’dk) w(k)

where (r) is the mth order moment of r. Multiplying both sides of the master
equation by " and summing over r gives

oo

= Y "Py(r)= ("), (2.1.3)

k=0 r=—o0

Gn(k) = (pe* + ge ™)Gy_1 (k).
Assuming that the particle starts at the origin, Py(r) = 6,0 and Go(k) = 1, we have
Gy (k) = u(k)N  u(k) = pe* +ge*.

Here u(k) is the discrete Fourier transform of the single-step hopping probability.
Finally, taking the inverse Fourier transform,

1 & —ikr N
:ﬁ[ne u(k)N di

_ %/ﬂ o ikr i (Z) pqufmefik(Nfzm)dk
—T

m=0

PN(V)

N!
(N+r)/2 (N—r)/2
Nty (N, @14
2 ’ 2 ’

when N + r is an even integer and zero otherwise. We have used the result
(see Box 2A)

T (N— dk
[ﬂe ik(N 2m+r)ﬁ _ 6N+r72m-
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01
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Fig. 2.2: Binomial distribution for N = 6 and p = g = 1/2. Also shown is a Gaussian fit of the
binomial distribution

The distribution (2.1.4) is known as the binomial distribution (see Fig.2.2). In the
unbiased case p = g = 1/2, it gives the probability of a total of » heads in tossing a
fair coin N times and is known as the Bernoulli distribution.

Evaluating log Py(r) for large N using Stirling’s approximation

1
logN! ~ NlogN — N + 510g(27rN), (2.1.5)

and assuming p,q =~ 1/2, one finds that (see Ex. 2.1 for the unbiased case)

1
Py(r) ~ me*[f*NU’*W/ZN . (2.1.6)

Indeed, the Gaussian form of Py(r) in the long-time limit arises universally when-
ever the mean and variance of the displacement Ar = r—’ in a single step are finite,
that is,

(Ar) = ZArp(Ar) < oo, (Ar2> = Z(Ar)zp(Ar) < oo,
Ar Ar

where p(Ar) is the probability of a step of length Ar. In the standard 1D random
walk, Ar = £1 and p(1) = p,p(—1) = g. One way to see this is to note that u(k)
has the small-k series expansion
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u(k) = Y4 p(Ar)
Ar

1
=1 +ik(Ar) — Ek2<Ar2> +...

o oik(Ar) =32 ([Ar—(AnP)

Substituting this approximation into the first line of equation (2.1.4) using the fact
that the integral is dominated by the behavior in the region around k = 0 when N is
large, the resulting Gaussian integral yields the approximation

1 2 2
~ —(r—N(Ar))"/2No
Py(r) ZnNGZe , 2.1.7)

with 6% = (Ar?) — (Ar)?. This result is a consequence of the central limit theorem
[242] (see also Sect. 1.3).

Another useful quantity when analyzing random walks is the generating function
(discrete Laplace transform or one-sided z-transform):

I(rz) =Y, "Py(r). 2.1.8)
N=0
It is often simpler to evaluate the generating function in Fourier space,

I'(k,z) = i e (rz) = i NGy (k),

F=-—o0 N=0

assuming that we can reverse the order of summations. Since Gy (k) = u(k)¥

can sum the resulting geometric series to obtain the result

, we

. 1
I'k,z) = ——.
(k,2) 1 —zu(k)
Py
I
Ox €1— -T—> Px
|
Qy

Fig. 2.3: A random walk on a 2D square lattice with py + ¢, +py +¢qy, =1
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The generating function is thus given by the inverse Fourier transform

T e*l’kr dk
)= <<%
(n2) Ln’ 1—zu(k) 27

It can be shown (see Ex.2.2) that for r = 0 and p = ¢ = 1/2 (unbiased random
walk),
ro,z)=1-z22)""2

One immediate consequence of this result is that an unbiased 1D random walk is
recurrent, which means that the walker is certain to return to the origin; a random
walk is said to be transient if the probability of returning to the origin is less than
one. Recurrence follows from the observation that I"(0, 1) = X%_, Py (0) is the mean
number of times that the walker visits the origin, and

lim I"(0,z) =

=1
for the 1D random walk. Interestingly, although the 1D random walk is recurrent, the
mean time to return to the origin for the first time is infinite. This result can also be
established using transform methods and generating functions (see Ex.2.11). An un-
biased random walk in 2D is also recurrent, but in 3D it is transient. An example
of a 2D random walk is illustrated in Fig.2.3. Finally, note that discrete random
walks have also been used to describe the coiling of flexible polymers [53, 295]
(see Sect.4.5).

Box 2A. Transform methods.

Throughout this book we will make extensive use of transform methods,
in particular, Laplace and Fourier integral transforms and their discrete
analogs. Here we provide a basic introduction to such methods (see also
[395]).

Laplace transforms. Let u(r) be a piecewise continuous function that is
of exponential order, that is,

u(t) < ce”, ast — oo,

for constants a,c > 0. The Laplace transform of u is defined by
Luls) = ils) = / u(t)eds, (2.1.9)
0

and one often writes .2 u = ii. The Laplace transform operator .Z is linear,
since
f(clul =F c2u2) =1 Lu+cr Luy

for constants cy,c. One of the important features of the Laplace trans-
form (and the Fourier transform) is that it converts differential operations
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in the time domain into multiplication operations in the transform do-
main. For example, setting u’' = du /dt etc.,

L (s) = sii(s) — u(0) (2.1.10a)
2" (s) = s%ii(s) — su(0) — ' (0), (2.1.10b)

which can be proved using integration by parts. It follows that Laplace
transforming an ordinary differential equation for u(¢) yields an algebraic
equation for (s). The most difficult step, once one has solved the alge-
braic equation, is to find the inverse Laplace transform to recover u(z).
The general formula for the inverse transform requires knowledge of con-
tour integration and takes the form

u(t) = 2 Vi) = ﬁ / " d(s)etds. (2.1.11)

The complex contour integral is taken over the infinite vertical line (the
Bromwich path) in the complex plane from a — ico to a + ieo. The real
number a is chosen so that the Bromwich path lies to the right of any sin-
gularities (poles, branch points and cuts, essential points) of the function
ii(s). The evaluation of the contour integral is often difficult. However,
many of the Laplace transforms encountered in this book can be found
in Table 2.1. One additional useful property of Laplace transforms is ex-
pressed by the convolution theorem.

Theorem 2.1. Let u and v be piecewise continuous for t > 0 and of expo-
nential order. Then

ZL(uxv)(s)=a(s)v(s), (2.1.12)

where .
uxv(t) E/ u(t —y)v(y)dy (2.1.13)

0
is the convolution of u and v. It immediately follows that £~ (V) = uxv.

In the case of a discrete-time linear process, we can use a discrete
version of the Laplace transform (also known as a one-sided z-transform)

i(z) = i Zup. (2.1.14)
n=0

Applying this to the first-order difference equation u, = au,—| forn > 1
yields

=

u
n=0

41
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The series converges provided that |az| < 1, in which case we immedi-
ately see that u, = a”up. More generally, the inverse z-transform is given
by the complex integral around a closed contour C around the origin in
the z-plane that does not contain any singularities of (z):

i(z) dz
Up = Ay (2.1.15)
However, one often avoids using contour integration by simply Taylor
expanding the z-transform in powers of z and reading off the coefficient
of z", as in the above example.
Fourier transforms. The Fourier transform of a function of one variable
u(x), x € R, is defined by the equation

=

Fu(k) = a(k) = / u(x)e™dx. (2.1.16)

—oo
The corresponding inverse Fourier transform is

1

FZx) = —
i(x) o

/ a(k)e "dk. 2.1.17)
An important issue is to determine the set of functions for which the
Fourier transform (and its inverse) is well defined. For example, if u is
integrable on R so that [ |u(x)|dx < e, then

/w u(x)e®dx

—oo

()] = < [ wldr <,

and 7 exists. However, the latter may itself not be integrable. Therefore, in
the application of Fourier transforms, it is common to restrict « to a much
smaller class of functions such as the space of square-integrable functions
denoted by L?(R). A few important properties of the Fourier transform
are as follow. First, it converts derivatives into algebraic expressions, that
is,

Fu" (k) = (—ik)"a(k), (2.1.18)

where 1" denotes the nth derivative of u, and assuming that u, and its
derivatives are continuous and integrable. There also exists a convolution
theorem.

Theorem 2.2. If u and v are in L*(R), then uxv € L*(R) and
F(ux*v)(k) =a(k)b(k), (2.1.19)

where

(wxv)(x) = /jou(x—y)v(y)dy. (2.1.20)
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Proof. The theorem is established by interchanging the order of
integration:

F(urv)(k) = [ Z < [ Zu(x— y)v(y)dy) e dx
_ /7 - < /7 B u(x—y)v(y)e”“dx) dy
_ / < / )e‘k’e‘kydr> dy

[t [ syt

Yet another useful property is Parseval’s theorem

0o 1 0o
[m|u(x)|2dx= ﬁ[w|ﬁ(k)|2dk. (2.1.21)

Just as one can define a discrete Laplace transform for discrete-time
processes, one can also introduce a discrete Fourier transform of spatial
processes such as a random walk, which are defined on a discrete lattice.
Therefore, suppose that u is a function on the space of integers Z. The
discrete Fourier transform of u is defined according to

=

(Fu)(k)=dik) =Y, u(r)e™, (2.1.22)

r=—oco

where k is now restricted to the finite domain (—, 7). The intuition be-
hind this is that for |k| > 7, the spatial oscillations cos(kr) and sin(kr)
probe the function on spatial scales smaller than a unit lattice spacing
where there is no information and are thus redundant. The inverse trans-
form is

w(r)= / " atkpe Ik (2.1.23)

- 21

This is straightforward to prove using the identities

dk 1 , .
lk(r s5) &R in(r—s) _ o—in(r—s)| _
/771 2n 27rl(r—s) {e ¢ } O forr#s,

and [” dk/2m = 1. That is, substituting for 4(k) in the inverse transform
and revering the order of integration and summation,
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i o dk i = 1 o dk
S —ikr _ E : iks —ikr
/,,,u(k)e 2 /,,, ( e ) ¢ 2

§=—00

= i u(s) /n eik(s_’)% = i u(s)8s,r = u(r).

§=—00 - §=—o00

Note that the discrete Fourier transform should be distinguished from a
Fourier series, which is an expansion of a periodic function of x in terms
of a countable set of Fourier components. In other words, in a Fourier
series k is unbounded but takes discrete values. Finally, consider a higher-
dimensional square lattice with points £ = n;i+ nyj. The corresponding
discrete Fourier transform (for d = 2) is

oo =

(Fu)k)=ak)= Y Y u(L)e**, (2.1.24)
N|=—%0N)=—0°
with Kk the dual vector
k:kli+k2j7 k17k2€(_ﬂ"77r)'

We will consider more general planar lattices (thombic, hexagonal) and
discrete Fourier transforms in Sect. 9.1.

(D) F10) (D) FI0)

1 s7hs>0 f)e ™ f(s+a)

ed! L s>a 6(t—a) exp(—as)

" S”’%, s>0 H(t—a)f(t—a) fls)e=
sin(at), cos(at) | =iz, oim $>0 erf(v/f) s 145712, 5>0
sinh(ar), cosh(ar) | 3%, 25 s>la| | 17'2exp(—a?/41) |\/m/sexp(—ar/s), >0
e sin(br) (S_a)ﬁ s>a 1 —erf(a/2/1) s~ lexp(—ay/s), s>0
e cos(bt) (S_fl)ﬁ, s>a |35 exp(—a®/4t) Vrexp(—ay/s), s>0

Table 2.1: Some common Laplace transforms
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2.1.1 Continuum Limit of a Random Walk

Having analyzed the discrete random walk, it is now possible to take an appropriate
continuum limit to obtain a diffusion equation in continuous space and time. First,
introduce infinitesimal step lengths dx and 8¢ for space and time and set Py(r) =
p(x,1)0x with x = réx,r = N§z. Substituting into the master equation (2.1.1) gives
the following equation for the probability density p (x,7):

p(x,2) = pp(x — 6x,t — 6t) + gp (x + dx,t — 6¢)

ap e  (pra)dp .,
= t)——=—6t|—(p—q)=—0x+——=—=96
r+a) pl)~ 28] - (-9 Lo+ LT TR 50,
where p has been Taylor expanded to first order in 67 and to second order in d.x. Note
that p 4+ g = 1. Dividing through by 8¢ and taking the continuum limit §x, 7 — 0
such that the quantities V, D are finite, where

ox 5x2
V= lim —q)=, D= lim —,
5)(,5[—)0(1) 9) ot 5x,5t—0 26t

yields the advection—diffusion equation with constant drift V and diffusivity D:

ot ox ox?

Note that p = 0.5+ kdx and ¢ = 0.5 — kdx with ¥ = O(1). For the moment, we
will focus on the case of zero drift (V = 0), for which Eq. (2.1.25) reduces to the
standard diffusion equation.

Although we have derived the diffusion equation from an unbiased random walk,
it is more typically interpreted in terms of an evolution equation for a conserved
quantity such as particle number rather than a probability density for a single ran-
dom walker. In order to link these two interpretations, consider N noninteracting,
identical diffusing particles and let u(x,7) = Np(x,t). For sufficiently large N, we
can treat u(x,t)dx as the deterministic number of particles in the infinitesimal in-
terval [x,x + dx] at time ¢, with u(x,) evolving according to the diffusion equation
written in the conservation form

du aJ du
= =30 Jwi)=-D, (2.1.26)

Ipet) __,olpnn)] [ 0%p(e) (2.1.25)

where J(x,7) is the Fickian flux of particles. Integrating the diffusion equa-
tion (2.1.26) over the interval [x,x + dx] and reversing the order of integration
and differentiation show that

d

x+dx
S undy =)~ T+ dn),
X
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which is an expression of particle conservation. That is, the rate of change of the
number of particles in [x,x 4 dx] is equal to the net flux crossing the endpoints of
the interval. Consider the initial value problem

du _ D&uz

> W,xER,t>O; u(x,0) = f(x), x e R,

where f(x) specifies the initial data. For simplicity, we assume that u, f € L*(R),
that is, they are square-integrable. Taking Fourier transforms of the equation with
respect to x gives
di(k,t)
ot

which is an ODE in ¢ with k treated as a parameter. Its solution is

= —k’Di(k,1),

ii(k,t) = c(k)e ™",

with the coefficient c(k) determined by the initial data. That is, Fourier transforming
the initial condition implies i(k,0) = f(k) and, hence,

a(k,t) = f(k)e ¥

Applying the convolution Theorem 2.2, we have

ux,t) = /;K(x =) f(y)dy,

where K (x,1) is the inverse Fourier transform of e <2
K(x,t) = o /°° kg kD g L2
’ 27 J V4nDt

We thus obtain the result

1
vV4nrDt

Note the above solution still holds if we relax the requirement f,u € L*>(R). In
particular, if we take the initial condition f(x) = §(x), where & (x) is the Dirac delta
function (see Box 2B), then we obtain the so-called fundamental solution

u(x,t) =

/ﬁ T e A () gy, (2.1.27)

1 —x% /4Dt
u(x,t) = ——e . 2.1.28
W= VoD (2.1.28)

(Strictly speaking, u(x,7) is a weak solution of the underlying diffusion equation
[554].) Also observe that the fundamental solution corresponds to the continuum
limit of the Gaussian distribution (2.1.7) for an unbiased random walk.
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Box 2B. The Dirac delta function

A heuristic definition of the Dirac delta function would be that it is a
“function” with the following properties:

5(0) = oo, &(x) =0 forall x£0, /R5(x)dx:1.

However, this definition is not compatible with the classical concept of
a function. A rigorous definition of the Dirac delta function requires the
theory of generalized functions or distributions [554]. However, an oper-
ational definition of the Dirac delta function can be constructed in terms
of the limit of a sequence of Heaviside functions. Let H(x) = 1 if x > 0
and H(x) = 0 if x < 0. It follows from this definition that

Ie(x) = “ 10 otherwise

H(x+¢&)—H(x—¢€) {% if —e<x<e
2¢e

It can be seen that I (x) has the following properties, (see Fig.2.4):

(i) For all € > 0,
1
/Rls(x)dx=£><2£:1.
(ii)
. [0 ifx#0
ilg})lg(x)_{oo ifx=0

(iii) If @(x) is a smooth function that vanishes outside a bounded interval
(a test function), then

[1e@owar= 5 [ otix =, 0(0)

_¢ e—0

1/2¢ e—»(

—€ €

Fig. 2.4: Approximation of Dirac delta function

47



48 2 Diffusion in Cells: Random Walks and Brownian Motion

The third property suggests that we can define the Dirac delta function
in terms of how it acts on test functions. Thus the Dirac delta function is
defined as a distribution with the following properties:

/R5(x)dx:1, /RS(x)(p(x)dx:(p(O).

One can also introduce a shifted Dirac delta function ,(x) = 8(x —y),

[a@ar=1. [ §(x)ewdr= [ 8(=p@dx=o0).
The Heaviside construction also suggests that we can formally write

H'(x) = 6(x), although again this only really makes sense in terms of
test functions:

| H @ewdx=H@eW]; - [ HEwe (dr=— [ ¢/(x)dx=9(0)

We have used integration by parts and the fact that ¢(x) =0 at x = oo.
Finally, note that alternative representations of the Dirac delta function
include the Fourier integral,

8(x) = % [ Ze’ik"dk, (2.1.29)

and the r — 0 limit of the fundamental solution (2.1.28),

1 2
1 —2 /4D
o(x) }gl& o te . (2.1.30)

2.2 Continuous Stochastic Processes and the Fokker-Planck
(FP) Equation

So far we have considered one approach to modeling diffusive processes, which is
based on the continuum limit of a random walk; the resulting diffusion equation
can be interpreted at the macroscopic level in terms of an equation for particle con-
servation. In this section we consider an alternative approach to modeling diffusion
based on a microscopic particle moving in a fluid, such as the aqueous environment
found within the interior of a cell (the cytoplasm or cytosol). The motion of the
particle is modeled in terms of a continuous stochastic process evolving according
to a Langevin equation or SDE. The probability density of this stochastic process
satisfies a generalization of the diffusion equation known as the Fokker—Planck (FP)
equation.
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2.2.1 Derivation of the FP Equation from a Langevin Equation

Consider a microscopic particle such as a macromolecule moving within the cyto-
plasm of a cell that it is subject to some external force of size F. Collisions with
fluid molecules have two distinct effects. First, they induce an apparent diffusive or
Brownian motion of the particle, and second they generate an effective frictional
force that opposes motion induced by the external force. In the case of microscopic
particles, water acts as a highly viscous medium (low Reynolds number) so that any
particle quickly approaches terminal velocity and inertial effects can be ignored (see
also Box 5B). The effects of all collisions on the motion of the particle can then be
represented in terms of the Langevin equation or SDE [204]

i ”w
05} i
B

i} J

Ar 15
08 1

=10 1 1 1 L
0 5 10 15 20 %
Fig. 2.5: Sample path of a Wiener process
F(X) o
dX(t) = Tdt +V2DdW () 2.2.1)

where X (¢) is the stochastic position of the particle at time ¢, y is a drag coefficient,
and W (z) is a so-called Wiener process whose differential dW (¢) is a Gaussian ran-
dom variable with

(dW(t)) =0, (@W(t)dW(t'))=6(t—1")drdt, (2.2.2)



50 2 Diffusion in Cells: Random Walks and Brownian Motion

where 6(¢) is the Dirac delta function (Box 2B). Mathematically speaking, W (¢)
is a continuous but everywhere non-differentiable function of time ¢ (see Fig.2.5).
For the moment, we simply view W (z) as a formal representation of the effects of
a fluctuating environment. A more mathematical treatment of W (¢) and SDEs is
presented in Sect. 2.6, together with methods for numerically simulating an SDE
(see also the review by Higham [259]).

Suppose, for the moment, that F is a constant. Formally integrating Eq. (2.2.1)
with X (0) = 0 shows that

X (1) :Vt+\/ﬁ/(:dW(t’)

with V = F/y the terminal velocity. Averaging with respect to the noise then
implies that

(X(1))y=Vr, ((X(t)—Vr)?) =2Dr.

That is,
(X ()= Vi)2) = 2D</Ot aw(¢') /Ot AW (")) = 2D/Ot /0, (W (¢ )dw ("))
= ZD/OI /OI 6(f' —1"ydt'at" = 2D /Ot dt' =2Dt.

Hence, the MSD about the deterministic trajectory varies as 2D¢, which suggests
identifying D as a diffusion coefficient. Moreover, X (¢) is itself a Gaussian process
whose probability density p(x,7) is given by the Gaussian distribution (2.1.28)
assuming the initial condition p(x,0) = &(x). Thus, the probability density of a
Brownian particle moving under the action of a constant force obeys an advection—
diffusion equation of the form (2.1.25). We would like to extend this framework to
the case of an x-dependent force, for which p(x,7) is known to satisfy a more general
Fokker—Planck (FP) equation.

We will consider a derivation of the FP equation applicable for a position-
dependent force F (x) along similar lines to Gardiner [204]. Since X (¢) is a stochastic
variable, each simulation of the Langevin equation generates one sample out of the
set of all possible trajectories. This motivates an alternative way of thinking about
such a stochastic process, namely in terms of the conditional probability density
p(x,t|xo,t0) that the particle is at x at time ¢, given that it started at x at time fo.
Exploiting the fact that the stochastic process is Markovian, that is, X (f + At) only
depends on the state at the previous time step X (¢), it follows that p(x,#|xq,#o) satis-
fies the Chapman—Kolmogorov equation (Sect. 2.6)

p(x,t|x0,t0)=/ plx,t|xX ) p(X ¢ |xo,t0)dx’ (2.2.3)
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for any ' € [to,]. Such an equation is a defining property of a continuous Markov
process. Consider an infinitesimal version of this equation by taking ¢ — 7 + At,
" — 1 and setting w(x,1;u,At) = p(x+u,t + At|x,1):

p(x,t—l—At):/ w(x —u,t;u,At)p(x —u,t)du,

where the initial argument (xg,#y) has been suppressed. Now suppose that over a
sufficiently small time window At, large jumps u in position are highly unlikely, so
that u can be treated as a small variable (It is possible to relax this requirement - one
then obtains integral terms in the evolution equation for p(x,) that represent finite
jumps between states, see also Ex. 2.3). Taylor expanding with respect to u gives

p(x7t+At) = O(O(x,t)p(x,t) - a)c[ocl (x,t)p(x,t)] + %a)gx[aZ(xat)p(xat)] +.
(2.2.4)

where

Oc,,(x,t)z/ w(x,t;u, At)u"du.

The Langevin equation (2.2.1) can be used to calculate the coefficients o,. First,
rewrite Eq. (2.2.1) in the infinitesimal form

X(t+At) =x+F(x)At/y+V2DAW (1),
given that X (r) = x. This implies that the transition probability w can be written as

w(x,t;u,At) = (6(x+u—X(t+ At)))
= (8(u—F(x)At/y—V2DAW (1)),
:/ S(u—F(x)At/y— V2DAW (1)) p(AW (1))

where p is the probability density of AW (¢). Since
t+At
AW (1) = / aw (s)
t

it follows that AW (¢) is a Gaussian random variable with zero mean and variance
At; the corresponding probability density is

1 2
AW _ —AW /ZAI'
PAW) =\ 524

Hence, averaging with respect to AW (¢),

1
W50, A1) = || e PG aoar
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It follows that
=1, oy =F(x)At]y, op=2DAt+03,

and o, = O(At?) for m > 2. Substituting these results into Eq. (2.2.4) and taking
the limit A# — O finally leads to the Fokker—Planck (FP) equation

ap(x,1) _la[F(x)p(x,l‘)] +D82p(x,l)'

ot Y dx dx?

(2.2.5)

Note that in the limit D — 0, the FP equation reduces to the so-called Liouiville
equation. The latter has a general solution of the form

plxn) = [ 8= 0(t.%0))px0)dxo

where ¢ (7,x0) is the solution to the deterministic equation x = F(x)/y with initial
condition x(0) = xp and p(xp) is a probability density over initial conditions. Thus
p(x,t) represents a distribution of deterministic trajectories with p(x,0) = p(x).

The 1D FP equation (2.2.5) can be rewritten as a probability conservation law
according to

dp(x,t) _ dJ(xt)

ot ox '’

(2.2.6)

where
ap(x,t)

= (2.2.7)

1
J(xat) = )—/F(x)p(x,t) -D
is the probability flux. An equilibrium steady-state solution corresponds to the con-
ditions dp/dt = 0 and J = 0. This leads to the first-order ODE for the equilibrium
density P(x): DP'(x) — y~'F(x)P(x) = 0, which has the solution

P(x) = Ne P07,

Here ®@(x) = — [*F(y)dy is a potential energy function and .4 is a normalization
factor (assuming that it exists). Comparison of the equilibrium distribution with the
Boltzmann—Gibbs distribution (1.4.5) (see Sect. 1.4) yields the Einstein relation

Dy = kgT, (2.2.8)

where T is the temperature (in degrees Kelvin) and kg =~ 1.4 x 10723 JK ! is the
Boltzmann constant. This formula relates the variance of environmental fluctuations
to the strength of dissipative forces and the temperature. In the case of a sphere of
radius R moving in a fluid of viscosity 1, Stoke’s formula can be used, that is,
y = 6xnR. For water at room temperature, ) ~ 10 3kgm™'s~! so that a particle
of radius R = 10~? m has a diffusion coefficient D ~ 100um?s~!.

It is straightforward to generalize the Langevin equation (2.2.1) to higher dimen-
sions. Assuming for simplicity isotropic diffusion and friction, Eq. (2.2.1) becomes

F(X
dX; = %dhu/zpdm(z), i=1,....d (2.2.9)
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with
(dWi(1)) =0, (dW;(1)dW;(t")) = & ;6(t —1t')drdr’. (2.2.10)
The corresponding multivariate FP equation is
t 1
apg’ ) = —7—/V- [F(x)p(x,1)] + DV2p(x,1) (2.2.11)

and the probability flux is given by the vector field
F
J(x,t) = %p(x,t) —DVp(x,t). (2.2.12)

Here V denotes the gradient operator, which in Cartesian coordinates x = (x,y,z)
(for d = 3) takes the form

.d .0 d

with i the unit vector in the x-direction. Similarly, V? is the Laplacian operator

2 9? 2 9?
Vi=Vev= dx? * dy? +azz'

Note that the Langevin equation (2.2.1) or (2.2.9) represents diffusive-like motion
from the probabilistic perspective of a single microscopic particle moving in a fluid
medium. However, it is possible to reinterpret Eq.(2.2.5) or (2.2.11) as a deter-
ministic advection-diffusion equation for the concentration u(x,) of many particles
(see also Sect. 2.1.1). That is, ignoring any interactions or correlations between the
particles, set u(x,t) = Np(x,t) where N is the total number of particles (assumed
large). Multiplying both sides of Eq.(2.2.5) by N then leads to the corresponding
Smoluchowski equation for u(x,t) with NJ(x,t) interpreted as the particle flux aris-
ing from a combination of advection and Fickian diffusion. One example is the
well-known Nernst—Planck equation for electrodiffusion (see Ex.2.4). However,
the relationship between macroscopic and microscopic formulations is more com-
plicated when chemical reactions are included. Macroscopically, reactions are de-
scribed in terms of the deterministic law of mass action (see Sect.3.1), whereas
microscopically they are modeled stochastically using a chemical master equation.
Differences between the two levels of modeling become significant when the num-
ber of interacting molecules becomes small [651]. From the macroscopic picture of
Fickian diffusion, the conservation equation dyu = —V - J can lead to two different
forms of the diffusion equation, depending on whether J(x,7) = —V[D(x)u(x,t)] or
J(x,t) = —D(x)Vu(x,t). (These are equivalent when D is a constant.) In order to
distinguish between the two cases, it is necessary to incorporate details regarding
the microscopic dynamics using, for example, kinetic theory [77]. The situation is
even more complicated in anisotropic heterogeneous media, where it is no longer
possible to characterize the rate of diffusion in terms of a single coefficient. One
now needs to consider a diffusion tensor; see the example of active transport on
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microtubular networks in Sect.7.4. Irrespective of the particular interpretation of
the FP equation (2.2.11), mathematically speaking, it is a deterministic PDE that
can be analyzed using the various methods outlined in Sect. 2.5 for the diffusion
equation.

2.2.2 Boundary Conditions for the FP Equation

In our study of a random walker in Sect. 2.1, we assumed that the domain was un-
bounded. However, diffusion of a particle within a cell is bounded and often re-
stricted to a subcellular compartment that has a complex geometry. Therefore, it is
necessary to specify the domain € C R¢ over which the FPE is defined and to in-
troduce boundary conditions on d€2, where dQ denotes the boundary of €. First
consider the one-dimensional case (d = 1) with the FP equation (2.2.5) defined on
the finite interval x € [0, L]. This could represent the domain of a narrow ion channel
(see Sect. 7.3) or a microtubular filament along which a molecular motor transports
cargo (see Chap. 4). The two most common types of boundary condition at the ends
x =0, L are the Dirichlet and Neumann boundary conditions. For example, at x =0

p(0,1) = f(¢) (Dirichlet) or J(0,¢) = g(¢t) (Neumann), (2.2.13)

where J(x,7) is the probability flux (2.2.7) and f, g are prescribed functions of time
t, which could be time-independent. A homogeneous Dirichlet boundary condition
(f =0) is often called an absorbing boundary condition, whereas a homogeneous
Neumann boundary condition (g = 0) is often called a no-flux or reflecting boundary
condition. The analogous boundary conditions in higher dimensions (d = 2,3) [see
Eq.(2.2.11)], are

p(x,t) = f(x,t) (Dirichlet) or J(x,#)-n(x) = g(x,¢) (Neumann) for all x € 9€2,
(2.2.14)

where n(x) is the unit outward normal to the boundary at x € d€. It is also possible
to have mixed boundary conditions, in which dQ = dQp U dQy with Dirichlet
on dQp and Neumann on dQy (see Sect.7.2). Alternatively, a boundary may be
partially absorbing, in which case we have the Robin boundary condition

p(x,t)+oJ(x,¢)-n(x)=0, o>0.

Consider the particular case of a homogeneous Neumann boundary condition.
Integrating the FP equation (2.2.11) over the domain €2, and reversing the order
of integration and time differentiation, yields

dt/pxt /Vth /th =0, (22.15)

where we have used the divergence theorem [395] and imposed the boundary con-
dition. Hence, in the case of a FPE with reflecting boundaries, the total probability



2.2 Continuous Stochastic Processes and the Fokker—Planck (FP) Equation 55

P = [, p(x,t)dx is conserved, that is, dP/dt = 0, and the system typically con-
verges to a nontrivial stationary state. On the other hand, the total probability is
not conserved in the case of an absorbing boundary, which arises in FPT prob-
lems (Sect. 2.3). From the PDE perspective, there are well-established methods for
solving boundary value problems for the FPE, some of which will be illustrated in
Sect. 2.5 for the simpler diffusion equation.

2.2.3 The Ornstein—-Uhlenbeck Process

Consider the SDE
dX = —kXdt+V2DdW (1), (2.2.16)

where W (t) is a Wiener process, and assume a fixed initial condition X (0) = Xj.
(A Gaussian-distributed initial condition is considered in Ex. 2.5.) One way to solve
this equation is to perform the change of variables Y (t) = X (¢)e¥. Then

dY(t)=Y(X(t+dt),t+dt)—Y(X,t) =Y (X +dX,t+dt) - Y(X,t)
= (X +dX)ek+) _ xel — kxeldr +eMdx
= kXeNdt 4 e¥ [ kX dt +V2DdW) = V2De" dW ().

The SDE for Y () can now be integrated to give
1 /
Y(1) = Yo+ 2D / e aw (t'),
0

that is,
4 !
X(t) = Xoe ™8 +V2D / e K=aw (t'). (2.2.17)
JO

Given the explicit solution for X, we can now evaluate the mean and variance using
properties of the Wiener process. First,

4 !
(X (1)) = Xoe ™ +v/2D / e W (1)) = Xoe !,
0
since (dW) = 0. Similarly,

(X (1) = (X(1)]*) = 2D / ki) / =) (dW (s)aw (s"))
JO 0
_op [ =95 = B (g _ 2
_21)/0 2K1=5) gy = (1 2kt (2.2.18)

Note that in the limit £ — 0, we recover the MSD of 1D Brownian motion. (The use
of a change of variables to solve a Langevin equation is also considered in Ex. 2.6.)
Equation (2.2.5) implies that the FP equation for the OU process is

dp(x,t)  dkxp(x,1)] d’p(x,t1)

Era E +D FIa (2.2.19)
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Taking a fixed (deterministic) initial condition X (0) = xo, the initial condition of the
FP equation is
p(x,0) = 8(x—xp).

Introduce the characteristic function (Fourier transform)
I(z,0) = / e p(x,1)dx.

Fourier transforming the FP equation shows that I" satisfies the PDE (see Ex. 2.5):

ar ar

“— +kz—= = -DT. 2.2.20

5 Tk 3z 4 ( )
This can be solved using separation of variables (see Sect.2.5) or the method of
characteristics (see Sect. 3.6). The result is

D 2
F(z1)=exp|—5—(1—e ) 4izge ™|,

2k

so that on applying the inverse Fourier transform (see Box 2A), we obtain the
probability density

1 o~ (r—x0e )2/ (2D[1 -2 /k) (2.2.21)

P = D e '

Note that

1 2
lim p(x,1) = ps(x) = ———=e* /2D
fimp(c) =) =

)

which is the stationary probability density.
Finally, note that the multivariate version of the OU process is given by

N N
dX; = —

AijXjdt + Y BijdW;(t), X(0)=x. (2.2.22)

Jj=1 j=1

The solution can be expressed formally in the matrix form (see Ex.2.7)
4 !
X(t) =e M+ / e ABAW(1).
0

It can then be shown that the covariance matrix X(¢) with components
Zij (1) = ([Xi(t) = KD [X; (1) = (X;(1))])
satisfies the matrix equation

dX(t)
dt

=—AX(t) - XZ(1)A" +BB’.
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It follows that if A has distinct eigenvalues with positive real part, then X(7) — X
where X is the stationary covariance matrix satisfying the Riccati equation

A+ AT =BBT. (2.2.23)

The multivariate OU process will play an important role in the analysis of gene
networks (see Chap. 6).

2.2.4 Multiplicative Noise

So far we have assumed that the diffusion coefficient in the Langevin equa-
tion (2.2.1) is position-independent, that is, the noise term is additive. The situation
is considerably more involved when the term multiplying dW (z) depends on X (¢),
that is, when the noise term is multiplicative. The scalar Langevin equation then
takes the form

dX (1) = A(X)dt +B(X)dW(r). (2.2.24)

The difficulty arises since, in order to construct a solution of the SDE, we have to
deal with stochastic integrals of the form [j A(X(¢))dW (¢). Here we give a heuris-
tic discussion of the issue—a more detailed discussion can be found in Sect.2.6
(see also [204, 651]). Suppose for the moment that X (¢) and W (¢) are deterministic
functions of time, and we can apply the theory of Riemann integration. That is, we
partition the time interval [0, 7] into N equal intervals of size Ar with NA7 =t and
identify the value of the integral with the unique limit (assuming it exists)

N-1

lim. ;)A([l —o)Xj+ oXjy1)AW,
for 0 < o < 1, where AW; = W((j+ 1)Ar) — W(jAt) and X; = X(jAt). In the
deterministic case, the integral is independent of ¢. Unfortunately, this is no longer
true when we have a stochastic integral. One way to see this is to note that the AW;
are independent random variables. Hence, A is only statistically independent of AW;
when o = 0, which is the Ifo definition of stochastic integration. On the other hand,
when o = 1/2 we have the Stratonovich version. It turns out that the form of the
corresponding FP equation also depends on ¢ (see Sect. 2.6). In the Ito case,

Ip(x,t) _ JAW)p(x,1)] | 19*B(x)p(x.1)
o ox * 2 ox2 ’ (2.2.25)

whereas in the Stratonovich case

Ip(x,t) _ AP0 +liB(x)ai[B(x)p(x,t)]. (22.26)

ot ox 2 dx
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Example 2.1. Consider the Langevin equation with linear multiplicative noise inter-
preted in the sense of Ito:

dX =X ()a(t)dt + X (1)b(t)dW (). (2.2.27)

One way to solve this equation is to eliminate the multiplicative factor by perform-
ing the change of variables Y () = InX (¢). However, care must be taken when cal-
culating infinitesimals, since the normal rules of calculus no longer apply for Ito
stochastic variables; they do for Stratonovich variables. In particular, as shown in
Sect. 2.6, one has to take into account the fact that “dW?2 = dt”.

dY (1) = In(X (¢ +dt)) — InX () = In(X (t) + dX (1)) — InX () = In(1 + dX (1) /X (¢))

2
— cif(gt)) _ 621;(8‘52 = a(t)dt + b(l‘)dW(l) — % [a(t)dt + b(l)dW(t)]z

b(r)*

=a(t)dt+b(t)dW(t) — —

dt + o(dt).
Integrating this equation gives
1 1 1
Y(t)=Yo —|—/ {a(s) — Eb(s)z} ds+/ b(s)dW (s),
0 0
and exponentiating
ot 1 't
X(t) = Xoexp </ [a(s) - Eb(s)z] ds+ / b(s)dW(s)) .
Jo Jo

Some examples of 1D stochastic processes with multiplicative noise are considered
in Exs. 2.9 and 2.10.

2.2.5 Correlations and the Power Spectrum

A very useful quantity is the power spectrum of a stationary stochastic process X (),
which is defined as the Fourier transform of the autocorrelation function Cx (1),

Sy (@) = /7 Ze"wfcx(r)dr, Cx (1) = (X(O)X (1 +7)). (2.2.28)

Consider the covariance of two frequency components of X (¢):

oo

X (0)X(0)) = < /7 " EOX (1) di / )

eiw'f’x(z')dﬂ>
= / el / e (X ()X (1))t dt
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:/ eia)t/ eia)'[/ |:/ eiQ(t[’)SX(Q)Q] dr' dt
o Jw Joo 2
:/ Sx (€2) [/ ei(“’g)’dt} {/ el + Q) dt} cii)

assuming that it is possible to rearrange the order of integration. Using the Fourier
representation of the Dirac delta function (Box 2B), [ e'®dt =216 (w), we have

N - dQ
which establishes a version of the Wiener—Khinchin theorem:
X (@)X (') =27Sx(0)8(0+ o). (2.2.29)

The Fourier transform of a real-valued variable satisfies X (—®) = X*(®) so
X(0)X*(@")) =2nSx(0)5(0 — ). (2.2.30)

In the case of linear SDE:zs, it is possible to calculate the spectrum explicitly using
the notion of a white noise process. Although the derivative of the Wiener process
W (z) does not exist, there is a sense in which the autocorrelation of the derivative
does exist, which provides a useful calculational tool. For example, consider the
Ornstein—Uhlenbeck process

dX (1) = —xX(t)+dW(t).
Suppose that we formally rewrite this equation in terms of derivatives according to

‘2—X+;<X E1), (2.2.31)

where
(E(0)=0, (E@)&()=6(—1).

The term &(7) is known as Gaussian white noise. In order to have a stationary OU
process, we take the initial time to be at t = —eo. The solution can be expressed
formally in terms of the integral solution

/ G(1)E(t — 1)dr, (2.2.32)

where G(7) is known as the causal Green’s function or linear response function with
the important property that G(7) = 0 for T < 0. In the case of the OU process

G(1) = e " H(1),

where H(t) is the Heaviside function. The main point to emphasize is that al-
though &(¢) is not a mathematically well-defined object, one still obtains correct
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answers when taking expectations. For example, it is clear that in the stationary
state (X (¢)) = 0 and (for s > 0)

X()X (1 +5)) / / G(D)G(T)E(t = 1)E (1 +5— 7)) dTdT
/ / )8(s+1—1')dtd7 —/::G(T)G(T-i-s)df
_/ K(2T45) g p — 21;< —Ks.

This is the expected result for the autocorrelation function of the OU process.

One of the useful features of formally expressing a solution to a linear SDE in
the form (2.2.32) is that one can view the dynamical system as acting as a filter of
the white noise process. Applying the Wiener—Khinchin theorem to the white noise
autocorrelation function, we see that the spectrum is given by the Fourier transform
of a Dirac delta function, which is unity. However, once the noise has been passed
through a filter with linear response function G(z), the spectrum is no longer flat.
This follows from applying the convolution Theorem 2.2 of Box 2A to Eq. (2.2.32):

X(0) = G(w)E(w),

SO
218y (0)8(0 — o) = G(0)G (') (E ()" ().

Evaluating the various Fourier transforms, we have

~ < y 1
G(w):[ e’“”G(t)dt:/O e'e Mdr = ,

K—10

and
(o / ’“”/ —i0' EWE W) dl dit =2m8 (0 — ).

Hence,
1

K2+ w?’
The spectrum can be used to recover the variance by noting that

oo oo ~ do do’ o do
— X X / it ta)t _/ by
|| X@x@)eere 25— [ sy

Substituting for Sy (@) and using the identity

/“ do T
e 02+ K2 K

Sx(w) = (2.2.33)
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we see that 1
2
X(1) = 5=

Finally, note that the formal method based on white noise is only applicable to SDEs
with additive noise. In the multiplicative case, one has to use stochastic calculus (see
Sect. 2.6). In this book, we will mainly express SDEs in terms of differentials and
Wiener processes, restricting the use of white noise to the analysis of spectra in
linear SDEs, as in Sects. 6.4 and 9.3.

2.3 First Passage Time Density and the Backward FP Equation

One of the most important ways of quantifying the efficiency of diffusive transport
is in terms of the FPT to reach a target [204, 523]. In the case of intracellular trans-
port, such a target could represent a substrate for a subsequent biochemical reaction
or an exit from some bounded domain such as a chemical synapse. Consider a par-
ticle whose position evolves according to the 1D Langevin equation (2.2.1) with
motion restricted to the bounded domain x € [0, L]. (The FPT problem for a random
walk on a lattice is considered in Ex. 2.11.) Suppose that the corresponding FP equa-
tion (2.2.5) has a reflecting boundary condition at x = 0 and an absorbing boundary
condition at x = L:
J(0,1) =0, p(L,t)=0.

We would like to determine the stochastic time 7' (y) for the particle to exit the
right-hand boundary given that it starts at location y € [0, L] at time . As a first step,
we introduce the survival probability P(y,) that the particle has not yet exited the
interval at time ¢:

L
P(y,t) = /O p(x,t]y,0)dx.

It follows that Prob[T (y) <t] = 1 — P(y,t) and we can define the FPT density

according to

IP(y,t L9
f(yat):_#:_/o Ep(xatbjao)dx'

Using the FP equation written in conservation form (2.2.6), we see that

L
1) = [ A g (2, 13.0) 1 0.110,0)) = (L. 11v.0),
due to the reflecting boundary condition at x = 0. Thus the FPT density is equal to
the flux through the absorbing boundary at x = L. In certain simple cases, the flux
can be calculated explicitly, as illustrated in Ex.2.12. However, for more general
cases, it is useful to derive explicit differential equations for moments of the FPT
density, in particular, the first moment or mean first passage time (MFPT).
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In order to derive an equation for the MFPT, it is necessary to use the so-called
backward FP equation. This can be derived from the Chapman—Kolmogorov equa-
tion (2.2.3) by differentiating both sides with respect to the intermediate time #':

0= | dupletld oo o) + |~ plthe )y pl o . to)

Using the fact that p(x','|x,%o) satisfies a forward FP equation, dy [p(x,1'|xo,%0)]
can be replaced by terms involving derivatives with respect to x’. Integrating by parts
with respect to x’ then leads to the result

0= / (O p(x,t]x ") + A(X) Dy p(x,t|x 1) +D8§x,p(x,t|x’,t’)} p(X ' |x0,10)dx

where A(x) = F(x)/y. Since p is positive, it follows that the expression in square
brackets vanishes. Using time translation invariance,

Ay p(x,t|xX 1) = dup(x,0x ;¢ —t) = =0, p(x,01x',t' —t) = = p(x,t]x, 1),
then yields the backward FP equation for p:
o p(x,t1xX,1") = A(X) 9y p(x,t|x',1') + D3 s p(x,t|¥ ,1). (2.3.1)

Taking X' — y, ' = 0 and integrating with respect to x shows that P(y,), and hence
f(y,1), also satisfies a backward FP equation:

IP(y,1) OP(y1) p2°P0x)

= =A0) 5 5 (2.3.2)

The MFPT 1(y) is defined according to

1) = (TO) = [ SO

:—/ 3]Py, dt / P(y,t)
0

after integration by parts. Hence, integrating both sides of Eq. (2.3.2) shows that the
MFPT satisfies the ODE

d d?
A(y)% 4D dTy(Zy) -1 23.3)

Equation (2.3.3) is supplemented by reflecting and absorbing boundary conditions
for the backward FP equation:
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It is straightforward to solve Eq. (2.3.3) by direct integration [204]. First, introduce
the integration factor

vo) =exp (5 [ 40 ) =exp(-VO) ),

where D'A(y) = (Dy)"'F(y) = —(kgT)~'V'(y) and V() is a potential energy.
Equation (2.3.3) becomes

= vy -4
so that 1
v (y) = 5 v()dy,

where the boundary condition 7/(0) = 0 has been used. Integrating once more with
respect to y and using T(L) = 0 then gives

_ L dy/ y W()’”) "
‘L'(y)—./y ll/(y’)/o N dy”. (2.3.4)

This formula will be the starting point for analyzing escape problem in Sect. 3.3.

In the case of pure diffusion (A(x) = 0), we have y(y) = 1 and 1(y) = (L* —
y?)/2D. 1t follows that for any finite L — y, T(y) — oo as L — co. Thus, although 1D
diffusion is recurrent, i.e., the particle surely reaches the origin, the average time it
takes is infinite. (This can also be understood in terms of the scaling properties of
the FPT density.) Now suppose that L is finite and the particle starts at the left-hand
boundary. The corresponding MFPT is then T = L?> /D. Within the cytosol of cells,
macromolecules such as proteins tend to have diffusivities D < 1pm?s~!, which
is due to effects such as molecular crowding. This implies that the mean time for a
diffusing particle to travel a distance 100 um is at least 10*s (a few hours), whereas
to travel a distance 1 mm is at least 10°s (10 days). Since neurons, for example,
which are the largest cells in humans, have axonal and dendritic protrusions that can
extend from 1 mm up to 1 m, the mean travel time due to passive diffusion becomes
prohibitively large, and an active form of transport becomes essential.

It is also possible to extend the above 1D analysis to the case where the particle
can exit from either end [204, 523]. It is often of interest to keep track of which end
the particle exits, which leads to the concept of a splitting probability. Let Sy (x,?)
denote the probability that the particle exits at X' = 0 after time #, having started at
the point x. Then

So(x,1) = — / 70,7 |x,0)dr’
t

with ]
J(0,1}x.0) = A(0)p(0,1[x,0) = D _P@éfy'w

y=0
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Differentiating with respect to ¢ and using the backward FP equation (2.3.1) gives

3 !
aS()(X,[) :J(O,t|x,0) _ _/ aj(ovt |x70)dt/
t

ot ot
7 dSo(x,1) 9280 (x,1)
=A@ =5 +D—— (2.3.5)

The hitting or splitting probability that the particle exits at x' = 0 (rather than x' = L)
is ITy(x) = So(x,0). Moreover, the probability that the particle exits after time #, con-
ditioned on definitely exiting through x’ = 0, is Prob(Ty(x) > 1) = So(x,1)/So(x,0),
where Tj(x) is the corresponding conditional FPT. Since the conditional MFPT sat-
isfies

= Prob(Ty(x) >1) (= Solx,1)
/0 ! at dr 0 So(x,O)dt

T(x) =

Equation (2.3.5) is integrated with respect to ¢ to give

A) 3170(;3610(36) n D(;ZUO(;J;TO (x)

= —ITy(x), (2.3.6)

with boundary conditions Iy (0)1y(0) = ITo(L)79(L) = 0. Finally, taking the limit
t — 0 in Eq. (2.3.5) and noting that J(0,0]x,0) = 0 for x # 0,

dIlp(x)

AT L p?Th®

ox?

=0, (2.3.7)

with boundary conditions I'ly(0) = 1,TIp(L) = 0. A similar analysis can be carried
out for exit through the other end x’ = L such that ITy(x) + IT;(x) = 1.

The construction of the FPT density can also be extended to higher spatial dimen-
sions. Suppose that a particle evolves according to the Langevin equation (2.2.9) in
a compact domain £ with boundary d€2. Suppose that at time ¢ = 0 the particle is
at the point y € Q and let T (y) denote the FPT to reach any point on the boundary
dQ. The probability that the particle has not yet reached the boundary at time ¢ is

then
1= [ plxily,0)dx
Q

where p(x,t]y,0) is the solution to the multivariate FP equation (2.2.11) with an ab-
sorbing boundary condition on 2. The FPT density is again f(y,?) = —dP(y,t)/dt
which, on using Eq. (2.2.11) and the divergence theorem, can be expressed as

1.0 == [ [=AGp(x.1ly,0)+ DVp(x.ly.0)] - do
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with A = F/y. Similarly, by constructing the corresponding backward FP equation,
it can be shown that the MFPT satisfies the equation

A(y)-Vt(y) +DV1t(y) = -1 (2.3.8)

with n-V1(y) = 0 for y € dQ. Finally, note that an analogous formulation of FPTs
can be formulated for discrete Markov processes evolving according to a mas-
ter equation. (The particular case of a simple birth—death process is presented in
Sect. 6.6, within the context of a polymerization model of gene transcription.)

2.4 Diffusion-Limited Reaction Rates

2.4.1 Smoluchowski Reaction Rate

An important example of a FPT process arises in Smoluchowski rate theory for
diffusion-controlled reactions [124, 323, 523, 536, 603]. The simplest version of the
theory concerns the bimolecular reaction A + B — AB for which the concentrations
evolve according to the following law of mass action (see Sect. 3.1):

d|AB]
dt

= k[A][B].

We assume that an A molecule and a B molecule react immediately to form the
complex AB when they encounter each other within a reaction radius, so that the
speed of reaction k is limited by their encounter rate via diffusion. (Note that k
has units of volume s~!. Concentrations are typically measured in molars M with
1 molar = 1,000 moles/ m?> and 1 mole ~ 6 x 1023 molecules (Avogadro’s number).)
One can then formulate the problem as an idealized first passage process, in which
one A molecule, say, is fixed and treated as the center of a spherical target domain
of reaction radius a, while the B molecules diffuse and are absorbed if they hit
the boundary of the target domain (see Fig.2.6a). It is assumed that the density
of the particles is sufficiently small, so that reactions with other A molecules have
a negligible effect on the concentration of B molecules in a neighborhood of the
target molecule. The steady-state flux to the target (if it exists) is then identified as
the mean reaction rate k across many targets. Let 2 denote the target domain and
dQ its absorbing boundary. We then need to solve the diffusion equation for the
concentration c(x,) of background molecules exterior to the domain £:

dc(x,r1)
ot

=DV%c(x,t), c(x€dQ,t)=0,c(x,0)=co,
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subject to the far-field boundary condition c¢(x,t) = ¢o for x — o. The flux through
the target boundary is

J:D/ Ve-ds.
20

Note the sign, which is due to the fact that the flux is from the exterior to the interior
of the target.

Let d denote the spatial dimension of the target. For d > 2, a diffusing particle
is transient, which means that there is a nonzero probability of never reaching the
target (see Sect.2.1). Hence, the loss of reactants by target absorption is balanced
by their resupply from infinity. It follows that there exists a steady state in which
the reaction rate is finite. On the other hand, for d < 2, reactants are sure to hit the
target (recurrent diffusion) and a depletion zone continuously develops around the
target so that the flux and reaction rate decay monotonically to zero with respect
to time. Although a reaction rate does not strictly exist, it is still useful to consider
the time-dependent flux as a time-dependent reaction rate. The two-dimensional
case is particularly important when considering interactions of molecules embedded
in the plasma membrane of a cell or the lipid bilayer surrounding an intracellular
compartment.

First consider the case of a spherical target of radius a (d = 3). Exploiting the
radial symmetry of the problem, it is possible to set u(r,z) = rc(r,¢) such that the 3D
diffusion equation for ¢ reduces to a 1D diffusion equation for u [523]:

du(r,t) Dazu(r,t)

ot or?

with u(r,0) = rcg, u(a,t) = 0 and u(r,t) = rco as r — . Laplace transforming this
equation gives sii(r,s) — rco = Dii’ (r,s), which has the solution

i(r,s) = « r—aef(rfa)VS/D} .

N
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Fig. 2.6: Diffusion-limited reaction rate. (a) Diffusing molecules B in a neighborhood of a fixed
target molecule A with reaction radius a. (b) Quasi-static approximation for calculating time-
dependent reaction rate
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Since the inverse Laplace transform of s~![1 —e™" &l D1'is the error function

erf(r/v/4Dt) (see Table 2.1), where

2 (7 e
erf(z) = ﬁ/o € dr,

ctrt) = (1= %) + “Lerr | L]

one finds that

It follows that the time-dependent flux is

J(t) = 4ma®D 9¢

> (2.4.1)

r=a

a
=4maDcy | 1+ — 4dmaDcy.
0 < vV nDt) 1—oo 0

Hence, we obtain the Smoluchowski reaction rate k = 4mwaD. As highlighted by
Redner [523], it is straightforward to generalize the steady-state result to other
three-dimensional targets by making a connection with electrostatics. That is, set-
ting ¢ (x) = 1 — ¢(x)/cg in steady state, it follows that ¢ satisfies Laplace’s equation
with ¢ = 1 on the target boundary and ¢ = 0O at infinity, so that ¢ is equivalent to
the electrostatic potential generated by a perfectly conducting object €2 held at unit
potential. Moreover, the steady-state reaction rate k = 4wDQ where Q is the total
charge on the surface of the conductor, which for a unit potential is equal to the
capacitance, Q = C. Thus, determining the reaction rate for a general 3D target is
equivalent to finding the capacitance of a perfect conductor with the same shape
(see also [107]).

Although it is possible to calculate the exact time-dependent flux for d <2, a
much simpler method is to use a quasi-static approximation [523]. Consider, for ex-
ample, a target disk of radius » = a. The region exterior to the disk is divided into
a near zone that extends a distance /Dt from the surface and a complementary far
zone (see Fig. 2.6b). In the near zone, it is assumed that diffusing particles have suf-
ficient time to explore the domain before being absorbed by the target so that the
concentration in the near zone can be treated as almost steady or quasi-static. Con-
versely, it is assumed that the probability of a particle being absorbed by the target is
negligible in the far zone, since a particle is unlikely to diffuse more than a distance
/Dt over a time interval of length 7. Thus, ¢(r) = ¢o for r > /Dt + a. The near
zone concentration is taken to be a radially symmetric solution of Laplace’s equa-
tion, which for d = 2 is ¢(r) = A+ Blogr. Matching the solution to the boundary
conditions ¢(a) = 0 and c(a + v/Dt) = ¢, then gives (for /Dt > a)

c(r) ~ colog(r/a)

~N — 7

log(v/Dt /a)
The corresponding time-dependent flux is

27'EDC()

(1)~ ————

log(vDr/a)
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2.4.2 Chemoreception

In the above example, we considered a binary reaction in which the target molecule
was a perfect absorber, that is, when a diffusing particle hits the target the reaction
occurs immediately. One application of diffusion-limited reactions is to chemore-
ception. In the case of a bacterium such as E. coli, the cell surface is covered
in receptors that detect signaling molecules in the surrounding environment (see
Fig.2.7). Treating the cell as a perfect absorber assumes that there is a sufficient
number of receptors distributed on the cell surface and that binding of a signaling
molecule is instantaneous when it hits the surface. There are two major simplifi-
cations of such a model—(i) receptors tend to be nonuniformly distributed on the
cell surface and (ii) the rate of receptor/ligand binding ko, is finite. We shall address
the second issue below. The role of receptor clustering in signal amplification will
be addressed in Sect. 5.3, where we discuss the biochemical networks involved in
bacterial chemotaxis.

Consider a spherical cell with M receptors distributed uniformly across its sur-
face. Assuming that the concentration ¢(r) of signaling molecules around the cell
has reached steady state, the number of molecules absorbed per unit time is
fl_? = Mkonc(a),
where a is the radius of the cell. From mass conservation this must be balanced by
the diffusive flux through any virtual sphere of radius r, r > a, centered about the
cell:

d
—4nr?J(r) = 47rr2Dd—C = Mkonc(a),
r
which on integration yields

) —ela) - [ M@, MEoc(a) (1 1>'

« 4nDr? ~ 4nDrr \a r

Finally, using the far-field condition c¢(ee) = ¢, the concentration at the surface is

(a) =
c(a) = .
1 + Mkon/(47Da)
Hence the net absorption rate is
dxnDaMky,
= 24.2
4nDa+ Mkoy, ( )

In the limit Mk, — o we recover the result for a perfect absorber with ¢(a) — 0.
On the other hand, if Mk, < Da, then the depletion rate is so slow that ¢(a) = ¢y,
the background concentration.

Chemoreceptors allow motile E. coli to detect changes in concentration of a
chemoattractant (food source). E. coli propels itself by rotating its flagella. In or-
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Fig. 2.7: Schematic diagram of (a) a polarized cell such as E. coli with a cluster of chemoreceptors
and (b) a spherical cell with a uniform distribution of receptors

der to move forward, the flagella rotate together counter clockwise (CCW) enabling
the bacterium to “swim” at low Reynolds number. However, when the flagella ro-
tation abruptly changes to clockwise, the bacterium “tumbles” in place and seems
incapable of going anywhere. Then the bacterium begins swimming again in some
new, random direction. Swimming is more frequent as the bacterium approaches a
chemoattractant (food). Tumbling, hence direction change, is more frequent as the
bacterium moves away from the chemoattractant. It is the complex combination of
swimming and tumbling that keeps them in areas of higher food concentrations. One
important issue is why E. coli has to move in order to detect changes in concentration
rather than simply comparing differences across its body length. The answer is that
there are limitations to the sensitivity of chemoreception due to thermal noise, which
means that typical concentration changes along a cell body of size 1 um are below
the signal-to-noise ratio (SNR). This observation was first made in a classical paper
of Berg and Purcell [40], whose analysis will be presented in Sect. 5.1. One heuristic
way to estimate the sensitivity is to assume that a bacterium integrates signals from
chemoreceptors for a mean time T,y,. Assuming a perfect absorber for simplicity,
the total number of signaling molecules absorbed is then N ~ aDcT,yy. Based on the
law of large numbers, we expect fluctuations in the number of molecules to vary as
\/N . Hence,

oc N SN N 1

c N v/Dactayg '

Taking D ~ 1075 cm?/s, a ~ 1um and a typical concentration ¢ = 6 x 10'!
molecules per cm’, we have Dac ~ 600s~!. Assuming that the bacterium inte-
grates for a time Tayg ~ 1.5, then 8c/c ~ 1/30. Changes in ¢ across 1 pum are just
too small to detect. However, since the speed of motion is v ~ 10 — 20umy/s, it is
possible to sample concentration changes of a length scale up to 30 times longer.
Note that there is a limit to how large a time T,y the bacterium can integrate a
chemical signal during a run, since rotational diffusion will interfere with the run’s
direction over longer time scales. The problem of rotational diffusion is discussed
in Ex.2.13.

(2.4.3)
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2.5 Boundary Value Problems

As we have already highlighted, diffusion within the cell is bounded and often
restricted to some subcellular compartment with complex geometry. This means
that one has to solve an initial boundary value problem for the FPE on a bounded
domain Q C R? with d = 1,2,3. In this section we describe some methods for
solving initial boundary value problems in the more specific case of the diffusion
equation (see also [395, 554]). The same methods can be applied to the FP equa-
tion, although the analysis tends to be considerably more involved when the drift
term and diffusivity are space-dependent [204].

2.5.1 Eigenfunction Expansions

Let u = u(x,r) satisfy the initial boundary value problem

%:szu, xeQ,1>0, (2.5.1)
u(x,t)=0, x€dR,t>0, u(x,0)=f(x), x€Q, (2.5.2)

where dQ2 denotes the boundary of Q. For the sake of illustration, we consider the
Dirichlet boundary condition u(x,t) = 0, x € dQ2. However, the same methods can
be applied to the Neumann or no-flux boundary condition

J(x,t) = —Dnyx-Vu(x,r) =0, x€9Q, (2.5.3)

where ny is the unit normal to the boundary at x € dQ (with the convention that
it points outward from the domain ). A standard method for solving this initial
boundary value problem is separation of variables. The first step is to substitute the
solution u(x,7) = U(x)T (¢) into the diffusion equation to give

U(x)T'(t) = DT (t)V*U (x),

which we rewrite as
T'() VUK

DT~ U(x)

The essential idea of the method is that A is a constant, since it cannot be both a
function of only ¢ and only x. It follows that we can separate the PDE into a spatial
part and a temporal part according to

T'(t) = —ADT(t) (2.5.4a)
~VU(x)=AU(x), x€Q, U(x)=0,x€Q, (2.5.4b)

where the Dirichlet boundary condition has been imposed on the spatial part.
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Equation (2.5.4b) is an example of a boundary value problem for the negative
Laplacian —V?. For each value of A for which Eq.(2.5.4b) has a nontrivial solu-
tion U(x), A is called an eigenvalue and U (x) is the corresponding eigenfunction
(defined up to an arbitrary, nonzero, scalar multiplication). More formally, A is an
element of the discrete spectrum of the linear operator —V? acting on the given solu-
tion domain, which is often taken to be the vector space of functions L>(Q). It turns
out that the given Dirichlet problem has the following properties [554]:

1. The eigenvalues are real.

2. There are infinitely many eigenvalues that can be ordered as 0 < A; < A, <A, <
...with A, — o0 as n — oo,

3. Eigenfunctions corresponding to distinct eigenvalues are orthogonal with respect
to the standard inner product on €, that is,

(Galon) = /Q 00 (X) 9 (x)dx = 0

when A4, # A,,. The number of linearly independent eigenfunctions associated
with a degenerate eigenvalue is finite, so that a Schmidt orthogonalization pro-
cedure can be used to make them orthogonal to each other, which we assume
below.

4. The set of eigenfunction ¢, (x) is complete in the sense that any square-integrable
function F € L*() can be uniquely represented by a generalized Fourier series

Fx)= 21¢ (), cn= j‘;"’ﬂﬁ

where ¢, are the generalized Fourier coefficients and the norm is ||¢,| =
\/(9,]¢,). This means that the truncated Fourier series converges in the L*(Q)
sense,

. N 2
./Q <f(x) - Z cn(l)n(x)) dx —0as N — .

n=1

Note that the same properties hold when the Dirichlet boundary condition is re-
placed by the Neumann boundary condition, except that there now exists a zero
eigenvalue Ay = 0 whose eigenfunction @ (x) = constant. (This reflects the fact that
the diffusion equation has a nontrivial steady state in the case of a no-flux boundary
condition.)

Returning to Eq. (2.5.4), we immediately see that we can identify the constant
A with one of the eigenvalues A, of —V2. Solving the equation for T then shows
that we have an infinite set of solutions of the form u,(x,) = ¢,(x)e "M, Since
the diffusion equation is linear, we can apply the principle of superposition to write
down the general solution

=

u(X,1) =Y cpfu(x)e M. (2.5.5)

n=1
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Finally, imposing the initial condition requires that

oo

f(x) =3 cnn(x),

n=1

so that we can identify the ¢, as the generalized Fourier coefficients of f. That is,

1
= ol /Q F(X) ¢ (x)dx. (2.5.6)

Substituting for ¢, into the general solution and taking the eigenfunctions to have
unit normalization (||¢,||> = 1) yields

u(x,1) = ( / F¥)0uly dy) R g (%),

Formally switching the order of summation and integration (which is valid provided
that the functions are sufficiently well-behaved), the solution can be reexpressed in
the compact form

u(x,t) / K(x,y,t)f(y)dy, 2.5.7)

where .
K(xy.1) = 3, e P/ g, (x)9, (y). (25.8)

n=1

Finally, taking the limit # — 0, we deduce the completeness relation

=

D On(x)0uly) = 8(x—y). (2.5.9)

n=1

Example 2.2. Consider the following initial boundary value problem for the 1D dif-
fusion equation:

du 2%u
E_DW’ O0<x<L,t>0.
u(0,6) =0=u(L,t), t>0,

u(x,0)=f(x), 0<x<L.
After performing separation of variables, we obtain the eigenvalue problem
~U"(x)=AU(x), 0<x<L, U(0)=U(L)=0.

The eigenvalues and eigenfunctions are thus
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It follows that the general solution is given by

i 22572 . ATX
1))=Y cpe TP sin——.
L

n=1

Comparison with the initial data shows that the ¢, are the Fourier coefficients in the
series expansion of f(x),

d . NmXx
= sin —
(x) n;l Cn L I

c,,:/()Lf(é)sin%dﬁ//jsm2

Evaluating the denominator and substituting for ¢, into the general solution yields

u(x,t) = %rg (/()Lf(é)sin%d‘ﬁ)e"zﬂth/Lzsin%c.

Formally switching the order of summation and integration (which is valid provided
that the functions are sufficiently well-behaved), the solution can be reexpressed in
the compact form

and thus

o) = [ Ke £ €,

where

—=sin—.

i 2D nn§ nux
~ LML

Some further examples of boundary value problems are considered in Exs.2.13
and 2.14.

2.5.2 Green’s Functions and Steady-State Analysis

In order for the diffusion equation to have a nontrivial steady state (time-
independent solution), it is necessary to include inhomogeneous source terms
in the PDE and/or inhomogeneous boundary conditions. Therefore, consider the
steady-state equation in d = 1,2, 3 dimensions

Vau(x) = —f(x), x€QCRY u(x)=gx),xcoQ. (2.5.10)

One way to analyze inhomogeneous equations is to use Green’s functions. The
Green’s function G(x,y) for the Dirichlet boundary value problem is defined by
the equation

2
ViG(x,y) =—6(x—y), xy€Q, G(x,y)=0, ye€dQ, (2.5.11)
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where §(x) is the Dirac delta function in R?. Hence, in Cartesian coordinates for
d =3, 6(x) = 8(x)6(y)6(z). Once one has determined the Green’s function, the
solution of the inhomogeneous boundary value problem can be obtained from the
following Green’s identity:

| [u)V36(x.¥) ~ G(x.y) Vau(y)] dy
= [ V- )V, G(xy) - Gx ) Vu(y)] dy.

Applying the steady-state equations to both terms on the left-hand side and using
the divergence theorem on the right-hand side shows that

X+ [ Gy = [ [u(y)VG(x.y) = Glx.y)Vou(y)] -ndy.

where n is the outward normal along the boundary dQ. Imposing the boundary
conditions on u and G and rearranging yields the solution

=/<H&wf@My—/ 0nG(x,y)g(y)dy, (2.5.12)
Q JoQ

where d,G denotes the normal derivative of G.

From the properties of the spectrum of the negative Laplacian listed in Sect. 2.5.1,
it follows that the Green’s function has a formal expansion in terms of the complete
set of orthonormal eigenfunctions:

v (x)¢a(y)
_;—77—. (2.5.13)

This is straightforward to establish, since

< On(X)Pn(y)
V2G(x,y) = V§ <’§1 7 )
- ¢n(x)vz¢n(Y) - ¢n(x)kn¢n(Y)
=; ﬁ __E Ton
- il(pn(xm(y) ——5(x—y).

We have reversed the order of summation and integration and used the completeness
relation (2.5.9). Note that the definition of the Green’s function has to be slightly
modified in the case of Neumann boundary conditions, since there exists a zero
eigenvalue. The so-called generalized or modified Neumann Green’s function has
the eigenfunction expansion

& Oa(X)Pn(y)
_%—7Tf (2.5.14)
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Since the completeness relation (2.5.9) has to be extended to include the constant
normalized eigenfunction ¢y(x) = 1/4/|€2|, where || denotes the volume of the
bounded domain €2, we see that the Neumann Green’s function satisfies

ViG(x,y) —8(x—y). (2.5.15)

1
12|

One of the significant features of the Dirichlet or Neumann Green’s function G(X,y)
in two and three dimensions is that it is singular in the limit x — y. Moreover, these
singularities take the specific form

G(x,y) ~In(|x—y) (in2D), G(x,y) ~ |xlTy| (in 3D). (2.5.16)

The nature of these singularities is established in Box 2C.

Box 2C. The 2D and 3D Green’s function for the steady-state diffu-
sion equation.

Let us begin by considering Laplace’s equation in R?:
VZu(x) =0, xcR>.

Since there are no boundaries, this equation is symmetric with respect
to rigid body translations and rotations in the plane. This implies that if
u(x) is a solution to Laplace’s equation, then so are v(x) = u(x —a) and
w(x) = u(Rgx). Here a is a constant vector and Ry is the 2 x 2 rotation
matrix about the origin

R, = ()~

This suggests that we look for a radially symmetric solution u = u(r).
Introducing polar coordinates, Laplace’s equation becomes
d’u  1du
—+—-——=0, 0<r<ee.
dr:  rdr "

The radially symmetric solution is thus of the form
u(r) =Coln(r) +C

for constants Cp,Cy. Similarly, radially symmetric solutions in R? satisfy
Laplace’s equation

d*u_ 2du _

— + - =0, O )
dr’  rdr ’ Sr<ee
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which has the solution o
u(r)=—>+Cr.

For convenience, choosing C; = 0, Co = 1/4r (in 3D), and Cp = —1 /27

(in 2D), we obtain the fundamental solution of the Laplace equation

K(x)= —%ln|x| (in2D), K(x)= (in 3D) .

1
4r|x|

The fundamental solution satisfies Laplace’s equation everywhere except
the origin, where it is singular. It turns out that K satisfies the equation

V2K (x) = —8(x).

We will show this for the 3D case.
Let f € L?>(IR?) be a function that vanishes at eo. Define the function

)= [ Koc-nrway=g- [ S0y

am Jrs [x—y|

We will prove that V>u = — f and hence V2K = —§. First, it is convenient
to rewrite the expression for u as

f( y)
u(x) = 4717 v dy.

Since V2f(x —y) = ng(x -Y)

1
VZu(x) = /R3 mVif(x—y)dy.

We would like to integrate by parts, but since K(y) is singular at y = 0,
we first have to isolate the origin by surrounding it with a small sphere
B,(0) of radius r. That is, we write

1
& :/ +/ )—V2 —y)dy=1I,+J..
24 [ o e day T

Here R*\B,(0) denotes R* excluding the sphere around the origin. Using
spherical polar coordinates,

0| < max V2f|/

—dy = mafo/ d
b ¥ VitlJy PP
max|V2f| 2

> —0asr—0.
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Recalling that f vanishes at infinity, we can integrate J, by parts twice.
First,

Ir= %/I[@\Br(O) [Vy. (ﬁvyf(x_y)) y| B Vo= )}

1/ <1 1)

— V, [ —V,f(x—y)— f(x—y)V,— | &

i S \Jy] 2 &Y =S &5 Vor fdy
1

1
+— —y)V:—dy.
an /R3\Br(0)f(x y) Yyl y

Using the fact that V§(1 /ly|) = 0 in R3\B,(0), and applying the diver-
gence theorem, we have

1 1 |
:4n/aB, <|y| yf(X_Y)_f(X_Y)Vym>-nydy.

The first integral vanishes in the limit » — 0, since

1

dnr

\Y% —y) ndy| < V,fl = 0.
[y o T/ x=3) mdy| < rmax |V,

On the other hand, since Vy(1/]y|) = —y/|y|> and n, = —y/r, the second
integral yields

an g ~y)d 0.
4m /¢93,(0)f(x V. Myl YT a2 /93 (O)f(X y)dy — f(x) as r—

We conclude that I, — 0 and J, — —f(x) as r — 0, which implies that
V2u = —f and V2K = —§. A similar analysis can be carried out in 2D
using the logarithmic fundamental solution. Finally, given the properties
of the fundamental solution K(x), we can construct the Green’s function
for a boundary value problem in terms of K(x) and a non-singular or
regular part that satisfies Laplace’s equation everywhere, that is,

G(x,y) =K(x—y) +R(x,y).

We will use this result in Sect. 7.2, when considering narrow escape prob-
lems and diffusion to small targets.

2.6 Appendix: An Informal Introduction to Stochastic Calculus

In this appendix we present an informal introduction to stochastic calculus, fol-
lowing along the lines of Jacobs [298]. A more detailed treatment can be found
in Gardiner [204], and a rigorous mathematical account can be found in [483].
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The basic approach is to treat a continuous-time stochastic process as the limit of
a discrete-time process. That is, an SDE prescribes how a stochastic variable X (¢)
changes in each infinitesimal time step df. Determining changes over finite times
then requires evaluating an associated stochastic integral. In order to make sense of
this, we discretize time into small, but finite, intervals of duration A¢ and consider a
corresponding stochastic difference equation for X,, = X (nAt). A more abstract for-
mulation of probability theory and discrete-time stochastic processes is presented in
Chap. 11.

2.6.1 What Is a Continuous Stochastic Process?

Suppose that an experiment is carried out over a time interval of length 7 and has a
given set of possible outcomes €2. In the case of tracking a single molecule diffusing
in the cell membrane, €2 could be the set of all possible trajectories. On the other
hand, in the case of an ion channel, 2 could specify whether the channel is open
or closed. Each time the experiment is run, one obtains a particular realization of
a continuous-time stochastic process (or random function) X (®,7) with ® € Q. (If
the time interval is sampled at discrete times, then one has a discrete-time stochastic
process or random sequence.) For fixed o, X(®,t) = X, (¢) is a function of time
corresponding to a particular trajectory in state space, which is specified by the
parameter @. On the other hand, fixing time ¢ yields a family of random variables
X(w,7) = X;(®) that are parameterized by 7. In the case of diffusion X;(®) is a
continuous random variable, whereas for an ion channel X; (®) is a discrete random
variable (see Sect. 1.3). For concreteness, we will focus on the continuous case. In
physical and biological applications, the explicit dependence on the events @ and
the nature of the underlying probability space are ignored, and one simply writes
X = X (t). The cumulative distribution function of the stochastic process is defined
according to

P(x,t) = prob[X (r) < x]. (2.6.1)

Using the frequency interpretation of probability, this represents the fraction of trials
for which the trajectory through state space does not exceed the value x at time
t. One can then define the corresponding probability density (assuming it exists)
according to

plx,t) = @ (2.6.2)

Moreover, as in classical probability theory, we can introduce joint cumulative dis-
tributions and densities

P(xl,...,xn;tl,...,tn) :Prob[X(tl) le,...,X(l‘n) an]
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and P ( )
P(xi,....,xp3t1,.. .ty
DXL, X3, ty) = Tx . on )

A further extension is the conditional probability density, which takes the form (for
n=2)

p (x 1,1 )
Thus, p(x2,%2|x1,t) is the probability density for X (z;) conditioned on X (¢;) = x;.

Given a probability density p, one can define various moments of the stochastic
process. Some important examples are the mean

pxa,t2|xi,t1) = (2.6.3)

=3

x(t) = (X(1)) = / xp(x,t)dx, (2.6.4)
and the two-point autocorrelation function
(X)X (1)) = [ [ x102p (X1, X251, 12)dxi dxs. (2.6.5)

A related quantity is the covariance given by

C(t1,0) = (X (t1) —x(11)) (X (12) = x(r2))) = ((X(11)X (12)))- (2.6.6)

The equal-time covariance C(t,7) is the corresponding variance. Double brackets
are often used to denote cumulants of the stochastic process. The latter are defined
using a generating function:

<exp (—i/otX(t/)dt’)> > (2.6.7)

_exp[i ("'!)m /Ot,,./Ol<<X(t1)X(t2)...X(tn)>>dt1dt2...dtn .

=1 M

An important concept in stochastic processes is stationarity: a stochastic process
X (¢) is stationary if every joint probability distribution for finite » is invariant under
a global time shift:

P(xl,xz,...,xn;tl —I—T,l‘z—l—T,...,l‘n—l—T) :P(xl,x2,...,xn;tl,tz,...,tn)
for arbitrary 7. It follows that P(x,z) is time-independent and the covariance
C(t.t'y=C(t—1).

A very important type of stochastic process is a Markov process, which is defined
by the property that the conditional probability density satisfies

P(xn;tn|x17- .. axi’l*l;tl;' .. 7tn71) - p(xnvtn|xn71;tn71)- (268)
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In other words, given (x,_1,%,—1), the process has no “memory” of values at earlier
times. It follows that a Markov process is fully determined by the two functions
p(xy,t1) and p(xy,t2|x1,11 ). For example,

p(x1,x0,x3311,12,13) = p(x3,13|x1,X2511,12) p(x1, %2311, 12)
(x3,13]x1, %2511, 12) p(x2, 12 |x1, 21 ) p (X1, 1)
(x3,13|x2,12) (22, 12| X1, 11 ) p(x1,11). (2.6.9)

T T

However, the functions p(xi,#;) and p(xy,f|x1,#;) cannot be chosen arbitrarily,
since they must obey two important identities. The first is obtained by integrating
p(x1,x51,12) = p(x2,talx1,t1) p(x1,t1)

with respect to x1:

=

p(xZ,tz) :/ p(xz,t2|x1,tl)p(xl,tl)dxl. (2.6.10)

The other is obtained by integrating Eq. (2.6.9) with respect to x;, assuming that
Hh<th<ts:

oo

p(x1,x3:11,13) = p(x1,11) / p(x3,13|x2,12) p(x2,12]x1, 11 ) dxs.

—oo

Since p(x1,x33t1,t3) = p(x3,83]x1,81)p(x1,¢1), this reduces to the Chapman—
Kolmogorov equation

P(X3,t3|X1,t1):/ p(x3,83]x2,12) p(x2, 12 ]x1, 11 ) doxs. (2.6.11)

2.6.2 Ito Stochastic Integrals

Suppose that the time interval [0, 7] is divided into N increments of size At = T /N
and set 7, = nAt. Consider the stochastic difference equation

AX () = X (tp1) — X (1) = AW,

where AW,, n =0,...,N — 1, are independent and identically distributed Gaussian
variables with zero mean and variance 02 = At:

P(AW) = ﬁe*w)z/w. (2.6.12)

(Note that a sequence of random variables is independent and identically distributed
(i.i.d.) if each random variable has the same probability distribution as the others
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and all are mutually independent.) Iterating the difference equation starting from
X(0) =0 yields

X, = X (nAr) = ZAW

Using the fact that the sum of Gaussian random variables is also a Gaussian,
it follows that the probability density for X, is a Gaussian. Thus, we only need
to determine its mean and variance. Since the AW; are all independent, we have

n—1 n—1
(Xa) = D (AW;) =0, Var(X, 2 Var(AW;) = nAt,
J=0 Jj=0

and |
2
P(X,) = —ean /(ZnAt) .
% V2rnAt
We can now construct a corresponding continuous-time process by taking the limit
N — oo such that At — 0 with NAT =T fixed. In particular,

= lim S AW, = /dW = w(T),

N—yoo =0
where W (T') is identified as a Wiener process—a Gaussian process with indepen-
dent and stationary increments. (For the moment, we will not worry about the pre-
cise meaning of convergence and limits of stochastic variables—this will be ad-
dressed below.) X (7)) is still a Gaussian, whose mean and variance are obtained by
taking the limit N — oo of the results for X,,. We deduce that W () has the Gaussian
probability density

1 (12
P(w(1)) = \/2_7rte /2t

Now consider the modified stochastic difference equation
Xn+1 — Xy = f(tn)AWn

where f(t) is a deterministic function of time. Once again X,, is a Gaussian random
variable, with
n—1 n—1 )
(Xa) = X (f(1))AW;) =0, Z Var(f(1;)AW;) = 3, f(1;)*At.
j=0

j=0

Taking the continuum limit along identical lines to the previous case yields the
continuous-time Gaussian variable

N—1 T
X(1) = lim Zf(tj)AWjE/O F(O)aw (1), (2.6.13)
f) :
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with zero mean and variance

_ /0 " (s)%ds. (2.6.14)

Substituting for X (T') into this equation gives

</de/de>/f2ds

which can be captured by the rule
(dW (t)dW (s)) = 6(t — s)dt ds. (2.6.15)

However, care must be taken with this rule when 6 (¢ — s) appears inside an integral
having ¢ or s as one of its limits. For example, consider the double stochastic integral

/OT [ /0 ¥ (S)dW(S)] g(1)dw (1) = lim Nf L;; F(tm) AW,

oo
n

8(tn) AW,,.

We see that there are no terms in the double sum on the right-hand side that have a
product of Wiener increments in the same time interval. Thus, taking the expectation

of both sides,
<./0T [/of <S>dW<s>} g(t)dW<r>> 0.

Hence, we require

/otf (5)8(t = s)d / 1) = £(0). (2.6.16)

Following the previous examples, let us turn to a discretized version of the general
SDE for X (¢),
dX =a(X,t)dt+b(X,t)dW(t), (2.6.17)

which takes the form
X1 — Xn = a(X, tn) At + (X, 1,) AW,,. (2.6.18)

Iterating this equation starting from a fixed X (0) = xo yields

N—1 N—1
Xv=x0+ D, a(Xn,tn)At+ Y, b(X, 1) AW,
n=0 n=0

The continuum limit then gives the stochastic integral equation

—xo+/ dt—l—/ b(X W(t), (2.6.19)
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with the final term defined as the Ito stochastic integral
T N-1
/ BX(0),)AW (1) = lim 3, b(X,1,)AW,. (2.6.20)
0 =0

The integral equation is not very useful for generating an explicit solution for X (¢).
However, from the definition of the Ito stochastic integral, it immediately follows
that

</0Tb(X(t),t)dW(t)> =0, (2.6.21)

since X, is a function of previous Wiener increments AW,,_1,...,AWj so it is uncor-
related with AW,,. The stochastic difference equation (2.6.18) is the starting point
for developing numerical schemes for solving an SDE. However, if one is inter-
ested in carrying out explicit calculations, it is usually more useful to go to the
associated FPE for the probability density. In order to derive the FP equation from
the corresponding SDE, we first need to consider the object (dW)?.

In terms of Wiener increments,

T N—1
/O @w(t))* = lim Y (AW,)%.

N—re0 =0

Taking the expectation of both sides and using the fact that each AW, is an i.i.d.
gives

JO

</ .T(dW(t))2> - /()T<(dW(t))2> = /OT dt=T. (2.6.22)

What about the variance? Using the Gaussian probability density (2.6.12), it is sim-
ple to show that
Var[(AW)?] = 2(At)? = 2T% /N>

Hence,
T ) N-1 ) N-1 )
Var {/O (dW (1)) } :Al/grlOVar ,ZE)(AW”) :A]/lglorgbvar[(AWn) ]
277
= lim — =0
N—eo N

We thus obtain the surprising result that the integral of (dW)? is deterministic and
thus equal to its mean:

T T
/ (dW(1)> =T = / dr. (2.6.23)
0 0

In other words, we can set (dW)2 = dt inside integrals, a result known as Ito’s
rule (see below). Using the higher moments of Gaussians, it can also be shown that
dW™ = 0 for m > 2. We now consider a result from stochastic calculus, which will
be useful when discussing numerical simulations, in particular Milstein’s method
(see Sect.2.6.6).
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Example 2.3. ftf) W (t")dW (¢'). Consider the discrete sum

N—1
Sp=Y WAW,
n=0
1 2 2 2
=3 26 (W +AW,)* =W, — (AW,)?]
n=

N—1

W) - W) -3 3 (AW,)2

n=0

N =

where Wy = W (fy) and Wy_; = W (¢). We now calculate the mean and variance of
the last term. First,

<NZ1(AW,,)2> = Nf (AW,)?) = Nf(ml — 1)) =1—1y.

n=0

Second,

N—1 2
< [z aw)y (t_m)z] >
n=0
N-1 N—1
= < N (AW +2 Y (AW, (AW)? —2(t —10) Y, (AW,)* + (t—to)2‘| >

n=0 n<m n=0
Since AW, and AW,, are independent Gaussian random variables for n # m, we have

<(AWH)2(AWM)2> = (tn+1 _tn)(tm+l _tm)a

and the fourth moment of a Gaussian is given by

((AW)Y) = 3(AW,)2) = 3(tys1 — )™

Hence,

N-1
<2 (AW,) > 22 ) +2 tasl — (t — t0)][(tms1 — tm) — (t —10)]
n=0

—ZZth 2 50as N — oo,

We deduce that

[W(2)? —=W(10)> — (t —10)]. (2.6.24)

| —

/IW(t’)dW(t/) =

fo
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2.6.3 Ito’s Formula and the Fokker—Planck Equation

The result dW (¢)*> = dt has important implications for how one carries out a change
of variables in stochastic calculus. This is most directly established by consider-
ing the SDE for an arbitrary function f(X(¢)) with X(¢) evolving according to
Eq.(2.6.17):
df(X(1)) = f(X(1) +dX (1)) = f(X(2))
1
= f/(X(0)dX (1) + 21" (X (1))dX (1) +
= f(X(")[a(X,t)dt + b(X,0)dW (1)] + 5 f”( (1)b(X,1)%dW (1)?,

where all terms of higher order than dr have been dropped. Now using dW (¢)* = dt,
we obtain the following SDE for f, which is known as Ito’s formula:

1
1K) = [ae(0.0) /0 0) + 30077 (K0 | b0, X )W 1),
(2.6.25)
Hence, changing variables in Ito calculus is not given by ordinary calculus unless f
is a constant or a linear function.
We can now use Ito’s formula to derive the FP equation for an Ito SDE. First,

(df(X (1))

= (ax @) x0) + 36X 0.0 (X))

= [ Jatwns @+ 3ot plasias,
7/f {__ (v )px1)) + ;;Z(b(x,t)zp(x,t))] dx, (2.6.26)

after integration by parts, where p(x,t) is the probability density of the stochastic
process X (¢) under the initial condition X (fy) = xo. However, we also have

dfxX@®)) _ <df(X(t)) >

dt dt
d
= S
-/ f(x)% plxt)dx. (2.6.27)

Comparing Egs. (2.6.26) and (2.6.27) and using the fact that f(x) is arbitrary, we
obtain the Ito version of the FP equation

2
2 plen) = 3 p0) + 5 gz B (2629)
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2.6.4 Multiplicative Noise and Stratonovich Integrals

It turns out that there is more than one way to define a stochastic difference equation
driven by an incremental Wiener process and thus more than one way to obtain an
SDE in the continuum limit. This issue only arises in the case of multiplicative noise,
that is, when the term multiplying dW (¢) depends on the state variable X (¢). Recall
that in the Tto integral Eq. (2.6.20), it is the value of b(x,t) at the start of the nth time
step that multiplies AW,,, so that there are no contributions of the form (A Wn)z. An
alternative definition of a stochastic integral is the Stratonovich integral

fTb(X(t), 1AW (1) = lim 2 b( Xt X )AW,,, (2.6.29)
0

N—roo =0

where we have used ¢ to distinguish it from the Ito integral. Now b depends on the
value X, at the end of the nth time step, which means there will be an extra term
involving (AW, )?. In order to compare the Ito and Stratonovich integrals, suppose
that X, evolves according to the stochastic difference equation (2.6.18). Thus, in the
continuum limit, X (¢) is the solution to an Ito SDE. Suppose that we Taylor expand
the nth term in the sum defining the Stratonovich integral about the point X,, and set
by =b(Xp,t):

X1 + X, AX, b, 1 [(AX,\? 9%b,
bl ——— ity | =bp+— =
( 2 ’”) n+28x+2<2)8x2+
Substituting for AX,, using Eq.(2.6.18) and dropping terms that are higher order
than At shows that

Xoi1 + X, an db, b2 9°b, by db,
p| =b s =z At — AW,.
< 2 ’t”) ”+<2 ox T8 o ) AT 2 o AT

Applying this result to the sum appearing in the definition of the Stratonovich inte-
gral, Eq. (2.6.29), and again dropping higher-order terms in At yields the result

X1+ X, N=1'p, db,
Zb< )Awn_szWnJrz > I —= (AW,

Finally, taking the continuum limit with dW (¢)? = dt, we have

?{)T b(X (1),0)dW (1) = /OT b(X (1),1)dW (1) + % /OT w;@((z),ﬂd;.

(2.6.30)

Now suppose that ¥ (¢) is a stochastic process evolving according to the Stratonovich
SDE
dY =a(Y,t)dt+b(Y,t)dW(r). (2.6.31)
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This means that the integral equation satisfied by Y (¢) is based on the Stratonovich
integral, that is,

= Yo+ / s)ds + 7( b(Y W (). (2.6.32)

Using Eq.(2.6.30), we can rewrite the solution in terms of an Ito integral
according to

Y t):yo—l—/ot [a(Y(s),s) ;ab(ay ) ]ds—l—/ b(Y W (s).
(2633)

The latter is the solution to an equivalent Ito SDE of the form

dy = [a(Y(t),t)—i—b( (2) )ab(a(y) )}dwb( (1),0)dW(t). (2634

Finally, given that we know the FP equation corresponding to an Ito SDE, we can
immediately write down the FP equation corresponding to the Stratonovich SDE
(2.6.31):

P00 == 5 a0p00) + 5 5 (B0 S BOP0]) . 2639

2.6.5 Ito Integration and Convergence

So far we have not been specific about the form of convergence used to take the
continuum limit of a discrete sum of random variables in order to define a stochastic
integral. Following Gardiner [204], we now revisit some results on Ito calculus using
the notion of convergence in the mean-square. That is, we define a random variable
X to be the limit of a sequence of random variables {X;,X>, ..., X, } if

lim (|X — X, |*) = (2.6.36)

n—yoo

that is, for any € > 0, there exists an integer N = N(g) such that for all n > N,
{|X —X,|*) < €. Given this definition of convergence, a stochastic process X (r)
is said to be mean-square integrable on the interval (0,7) if there exists a random
process Z(t) such that the following limit exists:

lim <(z,, - z(r))2> —0, (2.6.37)

n—oeo

where .
Zy=AtY X(jAt), nAt=t.
j=0

We then formally write Z(t) = [} X (s)ds
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Suppose that G(t) is a non-anticipating function, that is, G(t) is statistically
independent of W (s) — W (¢) for all s > ¢, where W (¢) is a Wiener process. We will

show that
/ G(")[dw (¢ / G(t

in the mean-square sense, that is, Eq. (2.6.37) holds with

Z_ZG,AW,, Z(t /G

j=0

where G; = G(jAtr) and AW; =W ((j+ 1)At) — W(jAt). Consider

2
I = lim < >
n—soo

_hm<2c;2 (AW} — A1) +2 Y GiGj (AW} — At) (AW} — At)>

n—
w i>j

> Gi(AW} - Ar)
J

Note that G? is statistically independent of (AWJ-2 — At)? and G,'G]-(AWJ-2 —At) is
statistically independent of (AW? — At) for j < i. Using the Gaussian nature of AW,

we have
(AWE) = At,  ((AW? — Ar)?) =247
Thus we find that
1_211m262m =0,

n—soo

assuming that G(¢) is bounded. Thus, for Ito integrals dW (¢)? acts like dt.

2.6.6 Simulation of Stochastic Differential Equations

Consider the scalar SDE
dX = a(X)dt +b(X)dW(r), (2.6.38)

where W (¢) is a Wiener process. As with ordinary differential equations, the sim-
plest numerical scheme is to use a direct Euler method. That is, given the solution
X(¢) at time ¢, the solution at time ¢ + Az is given by X (f +A) = X (¢t) + AX, where
AX is determined explicitly by the equation

AX = a(X (1)) At +b(X (1)) AW, (2.6.39)
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for a Gaussian random variable AW with zero mean and variance equal to At.
Iterating this process using a random number generator to choose a new value of
AW at each time step At results in an approximation of a sample path of the stochas-
tic process X (¢). Repeating the simulation over many independent trials up to a time
T then generates a histogram of values of X (T'), which can be used to determine
an approximation of the probability density for X (7') and to estimate the mean and
variance. The direct Euler method is easily extended to multivariate SDEs and those
with nonautonomous coefficients a, b.

The accuracy of Euler’s method increases with decreasing step size At, and the
approximate sample path converges in mean-square to the true sample path in the
limit Ar — 0. For a rigorous discussion of estimating the accuracy of a stochastic
numerical algorithm see the book by Kloeden and Platen [338]. Here we give a
heuristic definition of the numerical error (see also [204, 298]). Suppose that the
time interval (0,7) is divided into N infinitesimal subintervals of size T =T /N, so
that the stochastic process X (¢) is sampled at the times 7, with n =0,...,7y. Let
x, = X(7,) be the exact solution on a given sample path and y, the corresponding
numerical approximation of the solution on the same sample path. At the nth time
step let e, = x,, —y, and define the error at time T to be the root mean-square (RMS)
value

E(T)= <elz\,>. (2.6.40)
In the case of the direct Euler method,
E(T)~1'/?,

and the Euler method is said to be accurate to 7'/2 or that the order of convergence is
71/2_(In general the order of convergence will depend on how we define the numer-
ical error, that is, the particular measure of convergence. We will restrict ourselves
to mean-square convergence.) One practical method for checking the accuracy of a
numerical simulation of a given sample path is to repeat the simulation after halving
the time step At. Suppose that 7 = NAt¢ and the sample path is generated by the
N random increments AW,, n =0,...,N — 1. If we then halve the time step, then
in order to generate an approximation to the same sample path, it is necessary to
produce a set of 2N Gaussian random numbers AW,,,, m=1,...2N, such that

AWay + AWapi1 = AW,, n=0,....N—1.

Given the values AW,,, this can be realized by generating N random variables r,, with
zero mean and variance Az /2, and setting

AWZn = Tn, AW2n+l =AW, — ry.

One can thus successively halve the time step until errors are within acceptable
bounds for the given application. The method can also be used to estimate the rate
of convergence.
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2.6.7 Milstein’s Method

The direct Euler method is a low-order numerical method for SDEs due to the fact
that in approximating an SDE one needs to take into account the fact that dW (¢) is of
order v/dt. Suppose that we rewrite the scalar SDE (2.6.38) as the integral equation

X(t)=X(t0) + ta(X(s))ds—l— /ltb(X(s))dW(s). (2.6.41)

fo

We recover Euler’s method by taking 7 = fy + At, with X (¢p) known, and approxi-
mating the functions a, b in the interval s € (#,#y + At) according to

a(X(s)) = a(X (1)), bX(s) = b(X(t))-

In order to obtain a more accurate approximation, we apply Ito’s formula (2.6.25)
to the functions a and b. For example,

N

b(X(5)) = b(X (1)) + |

J1o

X)W X)) + 5B ) a8
+ tSb(X(s/))b’(X(s’))dW(s’) (2.6.42)

and similarly for a(X(s)). Iterating these equations by successively applying Ito’s
formula to a(X (s")) and so forth generates an approximation of a(X (s)) and b(X (s))
in terms of a(X(t)),b(X(t)), higher-order derivatives of a(x),b(x) evaluated at
Xo, and a remainder. Substituting such an expansion of a(X(s)) and b(X(s)) into
Eq. (2.6.41) generates a higher-order numerical scheme. The Milstein method is the
next higher-order approximation to the stochastic integral Eq. (2.6.41) after Euler’s
method. It is obtained by substituting

S
a(X(s)) ~a(X (1)), b(X(s)) = b(X(10)) +b(X (10))b' (X (t0)) t aw(s')
0
into Eq. (2.6.41) forr = 1y + At and s € (f9,p + Ar). This yields the following equa-
tion for AX:

AX = a(X (1)) /t O s b(X (1)) /t T W (s)
1 ’ t0+At0 S
+ b (1) (X (1)) / AW (s)dW (s').

fo fo

The double integral can be evaluated using Eq. (2.6.24). That is,
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to+At

fo+A?
[ ©aw(s) = [ W) - W)W ()

0

_ / W ()W (5) — W(to)W (10 + A1)

J

S

[W (to + At)? — W (to)* — At] — W (o)W (to + Ar)

[(AW)? — Ad).

l\)l>—‘l\)|>—‘

Hence, we arrive at the Milstein algorithm
1
AX = a(X(t())) — zb(X(t()))b/(X(l‘())) At + b(X(l())AW
1
+5b(X (10) )b (X (10))AW?. (2.6.43)

It turns out that this algorithm has order Ar accuracy, which improves upon the /At
accuracy of Euler’s method.

The complexity of Milstein’s method increases when there are multiple noise
sources. Consider the multivariate SDE

dXi:Cll( ( dt"’ ZBU )dW/()
j=1

where W;(t) are independent Wiener processes. The Milstein approximation of this
equation takes the form

AX; = a;At + ZB,,AW,Jr 2
J.k=1

to+At s ,
3 5,25 ax / [ aw (1 yawe(s).

m=1

Unfortunately, only when j = k does the double integral reduce to a simple expres-
sion involving the discrete stochastic increments AW; along the lines of the scalar
case. However, it can be shown that the symmetrized integral is also reducible ac-
cording to

to+At s
/ U AW (s)aw; (s') + dWi(s)dWi(s))] = AWAW; — & 5(t — to)-
t t

It follows that when the matrix G satisfies the set of relations (commutative noise)

Mo 9By M 9B
B, 2ok _ g 270 2.6.44
mg,[ mj axm mg,l mk axm ( )

for all i,j,k, the double integral can be symmetrized and Milstein’s algorithm
becomes
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M 1 M M dBy
AX; = a;At + ZB,']-AWj—l-E D Zij# AW; AW
j=1 jk=1 |m=1 m
1 & | & 9By
—= > 1Y Byj=L| At
2j7k:1 Ll X

2.6.8 Runge—Kutter and Implicit Methods

One limitation of the Milstein method is that it requires an evaluation of the first
derivative of the function 5(X) or its higher-dimensional matrix version. In a simi-
lar fashion to deterministic equations, one can use a Runger—Kutta method to elim-
inate the need to evaluate any derivatives. A first-order method that builds upon the
Milstein algorithm has been developed by Platen [338]. It is based on using the

approximation |
b(X)b'(X) = E[b(X) —b(X)),

where
X =X +adt+bVAt.

Substituting into Eq. (2.6.43) yields the Milstein—Platen method

_ Lo - 2_
AX = aAt+bAW + - m[b(x) b(X)][(AW)? — At]. (2.6.45)

Similarly, for a multivariate process, one substitutes into the Milstein method the
approximation

M OBy (X, 1 1 .
lemj(XJ) ak}((m )%m[Bij(X(k))—Bij(X)]

with
Xi(k) =Xi+aAt+ B,‘k\/E.

Another issue that numerical methods for solving SDEs share with their determinis-
tic counterparts is instability. This refers to a rapid, exponential increase in numer-
ical error, which can occur spontaneously even though the algorithm appears to be
converging to a numerically accurate solution prior to the instability. This feature
is a particular problem for “stiff” differential equations, that is, those that have two
or more disparate time scales. Often an instability can be fixed by using an implicit
rather than an explicit method. For example, consider a simple Euler scheme for a
single variable,

X(t+Ar)=X(t)+AX()=X(1)+a(X(1),1)At+b(X(t),1)AW(1).
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The implicit version is obtained by replacing X (¢) with X (¢ 4+ Ar) in the functions
a,b:

Xt+A)=Xt)+AX(t)=X(t)+aX(t+A1),0) At +b(X(t+A),1) AW (2).

This is clearly an implicit equation for X (z + At), which can be solved numerically
using the Newton—Raphson method.

Finally, note that we have focused on the speed and accuracy of numerical meth-
ods for generating sample paths of a SDE. Convergence to a sample path is known
as strong convergence. If one is only interested in properties of the corresponding
probability density such as the mean and variance, then these properties are deter-
mined by averaging over many sample paths. For a given numerical method, the
rate of convergence to the mean or variance tends to differ from the rate of strong
convergence and is thus referred to as weak convergence.

2.7 Exercises

Problem 2.1 (1D random walk). Consider the probability distribution for a 1D
unbiased random walk

Using Stirling’s formula
1
logN! ~ NlogN — N+ 3 In(27N),
derive the Gaussian approximation

1 _2
Pu(r) ~ =™ /2,

This result includes a factor of 1/2 in order to take into account the fact that r is
even (odd) when N is even (odd).

Problem 2.2 (Random walk on a lattice). Consider a random walker on a 1D lat-
tice with sites £ and displacement distribution p(£). The probability P,(¢) that the
walker is at site £ + ¢ after n steps, starting at £, satisfies the recurrence relation

Pu(0) =Y p(t—0")\P1(£).
-
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(For a homogeneous random walk, ¢ is arbitrary so we can set £y = 0.) Define the
generating function I" (¢, z) according to

r(t,z) =" Z"P.(0).

n>0

(a) Show that the generating function satisfies the equation

I(l,z)=80+zy p(l -0\ z).
6/

(b) Introduce the discrete Fourier transform

F(k,z) =Y e*r(,z)
4

and define the structure function of the walk to be
A(k) =Y e p().
[

From part (a), show that
[(k,z) = 1+ 22 (k)T (k,z),

so that 1
k) = ——.
&2 =T m
(c) For a standard RW with p(¢) = (6, + 67,—1)/2, we have A (k) = cos(k). Using
the inverse transform

U
reg) =5 [ e M (k).

and the result of part (b), evaluate the integral to show that
ro,z)=1-z2)""2

Hint: make the change of variables t = tan(k/2).
(d) For a general structure function

1 T efikf
s = %.[ﬂ T~k

divergence of the integral is only possible if A (ko) = 1 for some k = kq. If this
holds then the integral will be dominated by the region around ko. Show e’ = 1
for all £ such that p(£) > 0 and hence A (k) = A (k — ko). It follows that the local
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behavior of 1 — A (k) near ky is the same as the local behavior of 1 — A (k) around
the origin. Show that for small k and an unbiased RW, 3, £p(¢) = 0, we have

Hence, deduce that an unbiased 1D RW is recurrent when the MSD per step is
finite.

Problem 2.3 (Chapman-Kolmogorov equation). Consider a stationary stochastic
process X (r) with initial condition X (0) = 0. Setting p(x,¢|x',t') = p(x —x',r — '),
the Chapman-Kolmogorov equation takes the form

p(x,t) = /7:P(x—y,t— 7)p(y, 7)dy.

(a) Using Fourier transforms, show that the CK equation is satisfied if the charac-
teristic function G(k,) has the general form In G(k,t) = tg(k) for some function
g(k).

(b) Suppose that the probability density of the continuous process evolves according
to the equation

oo

dp

2 = | _we=y)lp0nt) = p(xr)ldy,
where w is a transition probability per unit time. That is, we have a jump process
for a continuous random variable. Using Fourier transforms, obtain the solution

_ L/ . - AR /
plx,t) = o /wexp[ zkx+tlww(x) [e 1]dx dk.

Hence determine g(k) for this process.

Problem 2.4 (Electrodiffusion). The flow of ions through channels in the cell
membrane is driven by the combination of concentration gradients and electric
fields. If interactions between the ions are ignored, then each ion can be treated as
an independent Brownian particle moving under the influence of the electric force
—gV @, where ¢ is the electrical potential and g is the charge on the ion. Multiply-
ing the corresponding FP equation by the number N of ions and using an Einstein
relation, we obtain the Nernst—Planck equation

de(x,t)
ot

_ V. - _ ac
=-V.J, J(x,1) D(Vc—l—kBTV(p),

where ¢ denotes ion concentration. Treating an ion channel as a quasi-one-
dimensional domain, this reduces to the 1D equation

de(x,r)  dJ _ [ 9c, gc 9¢
—8t = a, J(x,t)— D(a—FkB—Tx .
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(a) Suppose that the cell membrane extends from x = 0 (inside) to x = L (outside)
and denote the extracellular and intracellular ion concentrations by c, and c;, re-
spectively. Solve the 1D steady-state Nernst—Planck equation to show that there
is zero flux through the membrane if the potential difference V = ¢; — ¢, across
the membrane is given by the Nernst potential

vkl (Ce>.
q Ci

(b) Now suppose that there is a constant nonzero flux J of ions through the chan-
nel, and assume for simplicity that the electric field is uniform, that is, d¢ /dx =
—V /L. Solving the steady-state Nernst-Planck equation with boundary condi-
tions ¢(0) = ¢;,¢(L) = c,, derive the Goldman-Hodgkin—Katz equation for the
current density:

B QqZ_V ci—ceexp(—qV /kgT)
-~ LkgT 1—exp(—qV/kgT)

Check that the Nernst potential is recovered when J = 0.

(c) Consider two ion species with opposite charges g; = —g>» = g. Applying part
(b) to the current for each ion species, derive an expression for the membrane
voltage V at which the total ionic current is zero.

Problem 2.5 (Ornstein—-Uhlenbeck process). Consider the Ornstein—Uhlenbeck
process
dX = —kXdt +/DdW (1),

where W (¢) is a Wiener process.

(a) Using the solution of the SDE,
X (1) = X(0) *’“+\/_/ K= aw (1),

show that if the initial condition X (0) is Gaussian distributed with zero mean
and variance 6 then

X (1)) = (X(0))e ™™, Var[X(1)] = 0% 2 + % (1 — e

(b) The FP equation for the OU process is

Ip(t) _ dlkxp(x,)] D 9?p(x.1)
ot ox 2 oxr

Taking the fixed (deterministic) initial condition X (0) = xo, the initial condition
of the FP equation is
p(x,0) = 6(x —x).
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Introducing the characteristic function (Fourier transform)

I'(z,t) :/ e p(x,1)dx,

show that

8t + kz— aZ —EZ I.

Use separation of variables to obtain a solution of the form
2
[(z,1) = To(ze )e P /%

with Iy determined by the initial condition for p. Hence, obtain the result
D 2
I'(z,t) = exp [—%(1 2 izxge M|

(c) The probability density p(x,t) can be obtained from I'(z,) using the inverse
Fourier transform

1 r~ .
)= — T (z,t)dz.
p(x,1) 27:/,003 (z,t)dz

Substituting for I' using part (e), show that p(x,7) is a Gaussian with mean and
variance

D
- 1 _ —2kt .

(d) Show that the solution to the steady-state FP equation is

(X(1)) = x0e™™,  VarlX ()] =

ps(x) = (2D k)~ 2e7R /2P

and that this is consistent with the time-dependent solution in the limit # — oo.
Problem 2.6 (Additive noise). Solve the SDE

dX = —at*Xdt +dW(1).
(a) Performing the change of variables Y (1) = X (t)e"“3/ 3, show that
AY() = Y(X(t +dt),+dt) —Y(X(1),1) = Baw (1),

How was the change of variables chosen?
(b) Use part (a) to obtain the solution

() e~ 0 /3+/ alrP—s3 /3dW()

(c) Determine the mean (X (7)) and variance var[X (¢)]. In particular show that the
variance is a dimensionless function of at>.
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Problem 2.7 (Multivariate Ornstein—-Uhlenbeck process). Consider the multi-

variate SDE
N N
A,']'det + 2 B,’dej (t),

Jj=1 Jj=1

dX; = —

where W;(r) form a set of independent Wiener process:
(dWi(1)) =0, (dWi(0)dW;(1")) = 8;;6(t —1").

Assume a deterministic initial condition X;(0) = ;.

(a) Show that the solution in vector form is given by
! /
X(t) =e MR+ / e A BAW(1).
0

(b) Introduce the correlation function C(t,s) = (X(t), X7 (s)) with components

Cij(1,8) = (Xi(0),X;(s)) = (Xi(1) — Xi())][X;(s) — (X;(s))])-
Using part (a), show that

-min(z,s) e—A(t*l/)BBTeiAT(‘L[/)dﬂ'

C(z,s) = /

JO

(c) Introduce the covariance matrix X(r) = C(¢,¢) with components
Zij (1) = ([Xi(r) = Xi()][X; (1) = (Xj(1))])-
Derive the matrix equation

dx(t)
dt

=—AZ(1)—Z(1)AT +BB.

Hence, show that if A has distinct eigenvalues with positive real part, then
X(t) — Xy where X is the stationary covariance matrix satisfying

AX,+ AT =BB’.

Problem 2.8 (1D Fokker-Planck equation with space-dependent variance).
Consider the 1D FPE with a space-dependent variance due to multiplicative noise:

oP 1 9?
Frie Eﬁ[D(x)P]’

with x € [—1, 1] and reflecting boundary conditions.

(a) Determine the steady-state probability density for general D(x).
(b) Calculate the steady-state probability density when D(x) = k(a + |x|) for k >
0,a > 1. What happens when @ — oo?
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Problem 2.9 (FPE with multiplicative noise). Write down the (Ito) FP equation
for the SDE
dX = adt + bxdW,

for positive constants a,b and X € [0, 1] with reflecting boundary conditions.

(a) Solve the steady-state FP equation up to a normalization factor.

(b) Calculate the steady-state density for y = 1/x and determine the normalization
factor—use the change of random variables formula from Sect. 1.3.

(c) Determine (1 /x) as a function of a and b.

Problem 2.10 (Power spectrum). Consider the Langevin equation for a noise-
driven, damped harmonic oscillator:

d*’x  dx
— b y— +kX(1) =2DE(t
m— o + v TkX(1) =2DE (1),

where &(7) is a Gaussian white noise process with zero mean and covariance

(E@E)) =6(—1).

(a) Plot the spectrum of X (¢) as a function of the angular frequency @ for wy =
Vk/m=1,2D/m =1 and various values of 8 = y/m. What happens in the
limit B — 0? What is the significance of wg?

(b) The solution to the Langevin equation can be formally written as

X = [ G@Ea-va.

where G(7) is the causal Green’s function. Determine the real and imaginary
parts of the Fourier transform G(®) and plot them as a function of @ for the
same parameters as part (a).

Problem 2.11 (FPT for random walks on a lattice). Consider a random walker on
a 1D lattice with sites ¢ and displacement distribution p(¢). The probability B,(¢)
that the walker is at site ¢ after n steps starting at ¢y = O satisfies the recurrence
relation (see Ex.2.2)

Pu(0) =Y p(t—L)P 1 (£).
-

Let F,(¢) denote the probability of arriving at site £ for the first time on the nth step,
given that the walker started at /o = 0.

(a) Py(¢) and F;,(¢) are related according to the recurrence relation
n
Pu(€) = 8,0800+ D, Fn(0)Pi—m(0), n>0.
m=1

Explain what this relation means physically.
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(b) Show that the corresponding generating functions are related according to

Ip(l,z) — Oy,
e = gl

where

Ip(0z) = Y. 2'P(l), Tr(l,z) =Y "Fu(l).

n>0 n>0
Hence, use Ex. 2.2¢ to show that for a standard, unbiased RW
I7(0,2) =1—V1-2%

(c) Let R(¢) denote the probability that site £ is ever reached by a walker starting at
é() =0:
R(0) =Y Fu(0) <1.
n=1

Use part (b) to show that R(0) = 1 for an unbiased RW (recurrent rather than
transient) while the MFPT 7(0) to return to the origin is infinite, where

T@Ziﬁmy

Problem 2.12 (FPT for a Brownian particle in a semi-infinite domain). Consider
a Brownian particle restricted to a semi-infinite domain x € [0,0) with an absorbing
boundary condition at x = 0. The FP equation is given by

2
8p:D8p

E _sz’ O<.?C<°°7

with p(0,7) = 0.
(a) Check that the solution of the FP equation for the initial condition x(0) = xg is

1 2 1 2
o —(x—xq)* /4Dt —(x+x0)= /4Dt
X,1) = ——e ——e .
plxt) vV4nrDt VanrDt

(Such a solution can be derived using the method of images, in which one imag-
ines initially placing a fictitious Brownian particle at the image point x = —xj.)
(b) Show that for large times where /Dt > x¢, the probability density can be ap-
proximated by
1 X0 (24:3)/4m1
X,t) ~ —¢€ 0 .
pixt) VanDt Dt
(c) Calculate the FPT density f(xo,?) to reach the origin starting from xy by calcu-
lating the flux through the origin using part (a):

Ip(x,t|x0,0)

f()C(),l) =D ox X:O.
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Hence show that when /Dt > xj, we have the asymptotic behavior

X0
f(xoaf)'“m~

Deduce that the MFPT to reach the origin is infinite.

Problem 2.13 (Rotational diffusion). Consider a Brownian particle undergoing

diffusion on the circle 8 € [—m,x]. This could represent the orientation of a bac-

terium during a single run (see Sect. 2.4). The corresponding FP equation for p(0,¢)
ap 9’p

. . _ 1 _ !
5 =Pz —m<0<m plmi1)=p(m),p(-m1)=p(n1),

where D is the rotational diffusion coefficient.

(a) Using separation of variables the initial condition p(68,0) = 6(0), show that the
solution of the FP equation is

(b) If ¢ is sufficiently small then p(0,t) is strongly localized around the origin 8 = 0.
This means that the periodic boundary conditions can be ignored and we can
effectively take the range of 8 to be —eo < 8 < 0. That is, performing the rescal-
ings x = /¢ and T = €%t, show that p(8,¢) can be approximated by a Gaussian
p(x,t) and deduce the small-time approximation

(%) =2Dt, t< m?/D.

(c¢) What happens in the limit t — co?

Problem 2.14 (Diffusion in a sphere). Consider the diffusion equation in a spheri-
cal cell of radius R:

du(x,t)

5 = DV2u(x,t), 0<|x| <R,

with boundary condition u(|x| = R,#) = u; and initial condition u(x,0) = uy with
uo,u; constants.

(a) Assume a radially symmetric solution v(r,#) = u(r,#) — u; so that

v(rt) 9% 2 Jv
o Par P

0<r<R,
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with v(R,#) = 0 and v(r,0) = up — u;. Use separation of variables v(r,t) =
V(r)T(t) to derive the general solution

hd 1
v(rr) = z c,,e*’D”z”z/Rz— sin(nzr/R).
n=1 r

Hint: in order to solve the boundary value problem for V (r), perform the change
of variables V (r) = rV (r).

(b) Setting 7 = 0 in the general solution and using v(r,0) = ug — u;, determine the
coefficients c¢,,. Hint: you will need to use the identity

R
/ sin(nzr/R) sin(mr/R)dr = ’;5,1,,”.
0

(c) Determine an approximation for the concentration u(0,7) at the center of the
sphere by taking the limit » — 0, with 7~ ! sin(6r) — 6. Keeping only the leading
order exponential term (n = 1), show that the time 7 for the center to reach a
concentration ™, u; < u* < ug, is approximately

R* | 2(up—
T= In (1o ul).
Dr? u* —uy

Problem 2.15 (Computer simulations: Langevin equation). Use the algorithms
of Sect. 2.6.6 to solve the following problems in MatLab.

(a) Consider the Ornstein—Uhlenbeck process
dX(t) = —AX(t)dt+dW(), X(0)=xo,

where W (z) is a Wiener process. Use direct Euler to simulate 1,000 trajectories
on the time interval [0, 1] for A = 1/2, At = 0.01 and xo = 1. Compare the mean
and covariance of the trajectories with the theoretical values of Ex.2.6]

(b) Use Milstein’s method to simulate the following SDE on the time interval [0, 1]

dX (1) = —AX(1)dt + uX ()dW(t), X(0) = xo

for A =0.1,u = 0.1, and xo = 1. Compare the cases Ar = 0.1, Ar = 0.001, and
At = 107>, Check that the histogram of values at # = 1 is similar to the histogram
obtained by simulating the exact solution

X (1) =xoexp [(—A — p?/2)t+uw(r)] .



Chapter 3
Stochastic Ion Channels

Ion channels are pore-forming membrane proteins that gate the flow of ions across
the cell membrane and the membrane of various intracellular organelles [261, 322].
More than 300 different types of ion channels have been identified across different
cell types, which are primarily classified by the nature of their gating and the species
of ions passing through the open gates. For example, the opening and closing of
voltage-gated ion channels depends on the voltage gradient across the plasma mem-
brane, while ligand-gated ion channels are open or closed by the binding of ligands
to the channel. Both types are particularly prominent components of the nervous
system, where voltage-gated ion channels underlie the generation of action poten-
tials and ligand-gated (neurotransmitter activated) ion channels mediate conduction
across synapses. They also play a key role in a wide variety of biological processes
that involve rapid changes in cells, such as cardiac, skeletal, and smooth muscle con-
traction, epithelial transport of nutrients and ions, T-cell activation, and pancreatic
beta-cell insulin release. Ion channels are thus a frequent target of drug therapies.
There also exist mechanically gated ion channels, which allow sound, pressure, or
movement to cause a change in the excitability of specialized sensory cells and sen-
sory neurons. The stimulation of a mechanoreceptor causes mechanically sensitive
ion channels to open and produce a transduction current that changes the membrane
potential of the cell—a process known as mechanotransduction. An important ex-
ample of mechanotransduction will be considered in Sect. 5.4, where we describe
models of active process in hair cells of the inner ear.

Electrophysiological models of a cell typically assume that the number of ion
channels is sufficiently large so that one can determine the average transmembrane
currents based on the opening probabilities of individual channels, which is an ap-
plication of the law of large numbers. However, the resulting deterministic equa-
tions cannot account for spontaneous events driven by ion channel fluctuations such
as SAPs in a neuron. Another example is the spontaneous release of calcium from
the sarcoplasmic reticulum of cardiac cells, which is thought to be related to delayed
after depolarizations, which are, in turn, believed to initiate fatal cardiac arrhythmias
[401, 414]. Furthermore, the stochastic opening and closing of high-conductance
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K*—Ca?" channels is thought to be responsible for the highly stochastic bursting
patterns of isolated pancreatic 3 cells [586].

In this chapter, we consider stochastic models of ion channel gating, which can
be used to study various spontaneous electrophysiological events when coupled to
a continuous variable such as membrane voltage or calcium concentration. We be-
gin by describing the chemical kinetics underlying the opening and closing of a
single ion channel, distinguishing between voltage-gated and ligand-gated channels
(Sect. 3.1). In the latter case we describe the Monod—Wyman—Changeux (MWC)
model of cooperative binding. We then construct the master equation for an en-
semble of independent two-state ion channels and show how it can be reduced to a
FPE using a diffusion approximation (Sect. 3.2). We introduce the notion of a quasi-
potential for steady-state solutions of the master equation and FP equation. We high-
light the fact that the diffusion approximation yields a different quasi-potential from
the full master equation, which can lead to exponential errors in the steady-state so-
lution. We then address the important problem of bistability, whereby the fraction of
open ion channels can exists in two distinct stable states in the deterministic limit.
We use the diffusion approximation to analyze noise-induced transitions between
these two states in terms of a first passage time problem, and derive an Arrhenius
formula for the mean time to escape that depends on the corresponding FP quasi-
potential (Sect. 3.3). (The more general theory of noise-induced escape, based on the
WKB approximation of solutions to jump Markov processes, will be developed in
Chap. 10. The WKB approach yields a much better estimate of quasi-potentials and
MFPTs compared to the diffusion approximation.) Two examples of bistability are
then considered: spontaneous Ca>* release in oocytes (eggs) and cardiac myocytes
(Sect. 3.4) and the generation of SAPs in excitable neurons (Sect. 3.5). In the latter
case, the stochastic model takes the form of a stochastic hybrid system in which
the piecewise deterministic dynamics of the membrane voltage is coupled to a jump
Markov process describing the opening and closing of the ion channels. Finally, in
Sect. 3.6 we consider the problem of diffusive escape from a compartment through
a stochastic gate, which has been used to model diffusion in the plasma membrane.

3.1 Single Ion Channel Kinetics

3.1.1 Voltage-Gated Ion Channels

The major players in the generation of action potentials are voltage-gated sodium
(Na™) and potassium (K™) channels. Consider a simple two-state model of a K
channel that can exist either in a closed state (C) or an open state (O). Transitions
between the two states are governed by a continuous-time discrete Markov process

C(closed) Of(ﬁv> O(open) 3.1.1)

B(v)
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with transition rates a(v),(v) depending on the membrane voltage v. For the
moment, we assume that the voltage is fixed; the coupling of ion channel kinet-
ics with voltage dynamics will be considered in Sect. 3.5. In order to understand
what such a process means, let Z(¢) be a discrete random variable taking values
Z € {C,0} and set P,(t) = Prob[Z(t) = z]. From conservation of probability,

Pe(t)+Po(t) = 1.

The transition rates then determine the probability of jumping from one state to the
other in a small interval Az:

At = Prob [Z(t + Ar) = O|Z(t) = C|, At =Prob[Z(t + At) = C|Z(r) = O).

It follows that there are two possible ways for the ion channel to enter or leave the
closed state:

Pc(t 4 At) = Prob[C — C|Pc(t) + Prob[O — C|Po(t)
=[1 — aAt])Pc(t) + BAtPy(1).

Writing down a similar equation for the open state, dividing by At, and taking the
limit Az — 0 leads to the pair of equations

arc

dP,
=—aPc+BPy =2 =aP-—BP, 12
7 oPc+BPo o ok BPFo, (3.1.2)

which are equivalent, since Py(z) + P (¢) = 1.
Equation (3.1.2) has the unique stable steady state

o B

P:—7 P:—
T o+ B T u+p

(3.1.3)
Such a steady state has to be consistent with equilibrium statistical mechanics. For
a single ion channel maintained at a fixed temperature 7', the open and closed prob-
abilities are determined by the Boltzmann—Gibbs distribution (see Sect. 1.4). In
particular, we find that Pp = Pre AE / kT \where AE = Eo — Ec is the difference in
free energy between the open and closed states. It follows that

& e AE[kgT (3.1.4)

B

with AE a function of membrane voltage. Typically,
AE(v) = qv,

where the constant g is determined by the displacement of charge when the ion
channel changes its conformational state. Now suppose that there are N identical,
independent two-state ion channels evolving according to the simple Markov pro-
cess (3.1.2). In the limit N — oo we can reinterpret Pc and Py as the mean fraction
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Fig. 3.1: Schematic diagram of the opening/closing of a single sodium ion channel described by a
3-state model. The reduced 2-state model ignores the inactivated state

of closed and open ion channels within the population, and fluctuations can be
neglected. After setting Pp = x and Pc = 1 — x, we obtain the kinetic equation

@:—ﬁx—l—a(l—x). (3.1.5)
dt

The above two-state model is a simplification of more detailed Markov models,
in which there can exist inactivated states and multiple subunits [600]. For example,
the Na™ channel inactivates as well as activates (see Fig.3.1). (An example of an
ion channel with multiple internal states is considered in Ex.3.1.) Moreover, both
K* and Na™ channels consist of multiple subunits, each of which can be in an open
state, and the channel only conducts when all subunits are open. For example, sup-
pose that a channel consists of two identical, independent subunits, each of which
can be open or closed, and that an ionic current can only flow through the chan-
nel if both the subunits are open. Let S; denote the state in which j subunits are
open.The transitions between the different states of the ion channel are governed by
the reaction scheme

20 o
So=8 = Sz,
B 2B

where o, 3 are the rates of opening and closing of a single subunit. The factors of
two take into account the fact that the state Sy (S2) has two closed (open) states
either of which can open (close). The corresponding kinetic equations for a large
number of identical, independent channels are

d d
% - 2 oy — 2B, (3.1.6)

Bxl _Zax(); dr
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where x; is the fraction of channels in state j and xo +x1 +x2 = 1. The steady-state
solution satisfies x§; = Bx}/(2¢t) and x5 = ox}/(23), which implies

Xl <1+%+%>_1

ﬁZ * ZO‘B * aZ
@B e 4T @rpr

(a+p)* (a+p)*

It is straightforward to show that the steady-state solution is stable by linearizing
the kinetic equations. (Linear stability analysis for general ODEs is presented in
Box 4B. That is, setting y; = x; —x} and using 3; y; = 0, we have

Hence,

x5 =

dyo _ dys

y
I B (yo+y2) —2ayo, o o(yo+y2) —2By2

Introducing the vector y = (yg,y2)", this pair of equations can be rewritten in the

matrix form J 5 5
y (B -2a -

The linear ODE has solutions of the form y = ve* with (A,v) satisfying the eigen-
value equations
Av = Av.

This only has nontrivial solutions if A — AI is not invertible, where I is the unit
matrix. We thus obtain the characteristic equation

O0=detA—Al) = (A+B+20)(A+a+2B)—af.
Rearranging, we have
(A+a+B)A+2[a+B])=0,

andso A = Ay, with A} = —(a+ ) and A, = —2(a+ ). Since A4, » < 0, it follows
that y(t) — 0 as t — o and the steady state is stable.

One of the interesting features of models of ion channels with two or more sub-
units is that the kinetic equations can often be reduced to a lower-dimensional set
of equations due to the existence of a stable invariant manifold—solutions that start
in the manifold cannot leave it and other solutions exponentially converge to the in-
variant manifold. In the case of the two-subunit model, this can be shown by direct
substitution. That is, setting

xo=(1—n)? x;=2n(1-n), x,=n (3.1.7)
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and substituting into the kinetic equations (3.1.6) gives
d d
—2(1— n)—n =2Bn(1 —n)—2a(l —n)?, meE = 20i(1 —n) —2Bn?,
dt dt
which are both satisfied provided that

dn

2= o(l—n)—Bn. (3.1.8)
Thus, if the initial state can be expressed in terms of the single variable n according
to equations (3.1.7), then the solution remains in this one-dimensional space with
the dynamics described by the single kinetic equation (3.1.8). Moreover, the stabil-
ity of the unique steady state implies that the invariant manifold is stable. Since the
conducting state of each ion channel corresponds to S, (both subunits in the open
state), it follows that the fraction of conducting ion channels at time ¢ is 7%(¢). Thus
the expected conductance of an ion channels is proportional to 2. Such a result gen-
eralizes to more complex ion channel models such as Hodgkin—Huxley (see Ex. 3.2
and Sect. 3.5).

3.1.2 Ligand-Gated Ion Channel

Another very important class of ion channel involves receptor-ligand binding rather
than voltage as a gating mechanism. Ligand-gated ion channels are exemplified by
neurotransmitter receptors at chemical synapses, where the binding of freely diffus-
ing ligands to a receptor induces a change in conformational state that increases the
chance of opening the ion channel. Changes in state of the receptor can be modeled
in terms of a set of chemical reactions. Given any chemical reaction (or sequence
of reactions) there is a general principle known as the law of mass action that de-
termines the form of the kinetic equations describing the evolution of the molecular
concentrations. The law states that the rate of an elementary reaction (a reaction
that proceeds through only one step) is proportional to the product of the concen-
trations of the participating molecules. In thermodynamic equilibrium, the rates of
the forward and backward reactions must be equal, which allows one to express the
ratio of the concentrations of reactants and products in terms of a constant known as
the dissociation constant K;. An expression for K; can be derived from first princi-
ples using the Boltzmann—Gibbs distribution of statistical mechanics (see Sect. 1.4).
However, the absolute values of the transition rates (rather than their ratios) can-
not be determined from the theory of equilibrium systems. Instead one has to apply
some version of Kramers reaction rate theory in order to determine noise-induced
transitions between minima of an underlying free energy landscape that represents
molecular interactions [204, 253] (see Sect. 3.3). For the moment, we will focus on
equilibrium states of the ion channels (see also Chap. 7 of [509]).
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We begin by returning to the simple two-state model of an ion channel that was
briefly considered in Sect. 1.4. That is, we assume that the ion channel is always
open when a single receptor binding site is occupied by a ligand and is always closed
when the binding site is unoccupied. The corresponding receptor—ligand reaction is

R+L=LR,

where R denotes an unbound receptor, L is a ligand, and LR is a the receptor-ligand
complex. Applying the law of mass action to receptor-ligand binding gives

LR] 1

RIIL] ~ Ka'
Assuming that the total number of receptors is fixed, [R] + [LR] = [Riot], we have

[LR] 1

(Ro) = [LRD[L] K4’

which on rearranging gives
LR L
LR 1 (3.1.9)
[Riot]  [L] +Kqa
Comparison with the Boltzmann—Gibbs distribution of equation (1.4.9), with Pp =
[LR]/[Riot] and [L] = ¢/ co, establishes that the dissociation constant is

e/kpT
KdZG/B,

where € is the binding energy. The fraction of bound receptors increases linearly
with [L] at low ligand concentrations but saturates at high concentrations for which
[L] > Ky.

A sharper dependence on [L] can be obtained if there is some form of cooperative
binding [518]. The latter refers to situations in which a receptor has multiple binding
sites, which can influence each other. An extreme example is when a receptor has n
binding sites such that mutual interactions force all of the binding sides to be either
simultaneously occupied or simultaneously empty. This can be represented by the
reaction scheme

Ro+nL=R,,

where R\ denotes a receptor with empty binding sites and R,, denotes a receptor with
all sites filled. The law of mass action shows that at equilibrium

R, 1

[L]"[Ro] Ky’

where K, is an effective dissociation rate. Note that since the forward reaction in-
volves n ligands, one has to include the factor [L]". Again setting [R,] + [Ro] = [Riot]
and rearranging gives
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Fig. 3.2: Cooperative binding model. Plot of fraction of open receptors as a function of ligand
concentration for various n, where n is the number of binding sites

LR L]"
LR _ I (.1.10)
[Riot]  [L]" + K
The dependence of the fraction of open ion channels as a function of [L] and n is
illustrated in Fig.3.2. Note that ligand-gated ion channels can also exist in more

than two conformational states, as considered in Ex. 3.3.

3.1.3 Monod-Wyman—Changeux Model

The above model of receptor-ligand binding is unrealistic in at least two aspects.
First, the binding to multiple sites is not all-or-none, that is, a fraction of sites can be
occupied at any one time. Second, it is possible for the ion channel to be either open
or closed in each binding state—changes in binding state shift the balance between
open and closed. A more realistic model of a ligand-gated ion channel with co-
operative binding has been developed for the nicotinic acetylcholine receptor, which
is found at the neuromuscular junction. It is analogous to the classical MWC model
of dimoglobin [451]. The nicotinic receptor has two binding sites for acetylcholine
and the equilibrium between the open and closed state of the channel is shifted
to the open state by the binding of acetylcholine. A schematic illustration of the
different receptor states together with a reaction diagram is shown in Fig. 3.3. In the
diagram 7 denotes a closed receptor with j occupied sites and R; denotes a receptor
in the corresponding open state. Also shown is the equilibrium constant (inverse of
the dissociation constant) for each of the reversible reactions. In particular, K7 and
Ky are the equilibrium constants for binding of an acetylcholine molecule to an
individual site of a closed and an open receptor, respectively. The additional factor
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of 2 takes into account the fact that there are two unoccupied sites in the forward
reaction Tp — 17, whereas the additional factor of 1/2 takes into account the fact that
there are two occupied sites in the backward reaction 7> — 71 (and similarly for R;).
Finally, Y; is the equilibrium constant associated with the opening and closing of a
receptor with j occupied sites.

Applying the law of mass action to each of the reversible reactions leads to the
following set of equations for the concentrations:

Ri]

m (.1.11a)
] R
wml - Ry (3.1.11b)
L] Ry C
T =Kr/2, LR =Kg/2 (3.1.11c)

We are interested in the fraction of receptors that are in the open state, which is

- [Ro] + [R1] + [Ry]
Popen = [RO] + [Rl] + [RZ] + [T()] + [Tl] + [TZ] .

Equations (3.1.11b,c) can be used to express [7;] and [R;] in terms of [Tp] and [Ry:

(1] =2K7[L][To], [T2] = (Kr[L])*[To], [Ri]=2Kr[L][Ro], [Ra]=(Kr[L])*[Ro).

‘0 o0q
B DO =
o pg b Tk
e 9e

CLOSED OPEN

Fig. 3.3: The MWC model of nicotinic acetylcholine receptor with two binding sites. (a) Schematic
illustration of different conformational states distinguished by the number of occupied binding sites
and whether the ion channel is open or closed. (b) Reaction diagram
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Substituting these results into the formula for popen and using (3.1.11a) gives

- Yo(1 + Kg[L])
Popen = Yo(T+ Kr[L)? + (1 + Kr[L])?°

(3.1.12)

We now observe that when [L] = 0,

1

O = —
Popen( ) T 1/Y07
whereas when [L] is large

1
S T4 (Ko [KR) (1Y)

Popen([L])

It follows that if the open receptor has a higher affinity for binding acetylcholine than
the closed receptor (Kg > K7), then popen([L]) > Popen(0). An interesting feature
of MWC type models is that activation of the receptor, as specified by popen, is
a sigmoidal function of ligand concentration [L]. Thus binding is effectively co-
operative even though there are no direct interactions between binding sites. Finally,
note that it is straightforward to generalize the MWC model to the case of n binding
sites (see Exs. 3.4 and 3.5). Defining the fraction of open receptors according to

Deven = > o[R)]
o —olRj]+ X507}

the law of mass action gives

- Yo(1+ Kg[L])"
Poper = Yo (1 + KelL])" + (1+ Kr [L])"

(3.1.13)

The MWC model has emerged as a general mechanism for receptor-ligand interac-
tions within a diverse range of applications, including ion channel gating, chemo-
taxis, and gene regulation (see the review [425] and Sect. 5.3).

3.2 Master Equation for an Ensemble of Ion Channels

Now suppose that there are a finite number N of identical, independent two-state
ion channels evolving according to the simple Markov process (3.1.2). In order to
take into account fluctuations in the case of finite N, it is necessary to keep track
of the probability P(n,t) that there are n open channels at time ¢, 0 <n < N. (If
there are n open channels, then it immediately follows that there are N — n closed
channels, so we don’t need to keep track of the latter as well.) Consider a time
interval [r,7 + Ar] with Az sufficiently small so that only one channel has a significant
probability of making a C — O or O — C transition. There are four possible events
that can influence P(n,t) during this interval, two of which involve transitions into
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the state of n open ion channels, and two of which involve transitions out of the state.
Collecting these terms and taking the limit Az — O leads to the master equation

%P(’“) =o(N—n+1)P(n—1,1)+B(n+1)P(n+1,) (3.2.1)
—[a(N —n)+ Bn]P(n,t).

The first term on the right-hand side represents the probability flux that one of
N — (n—1) closed channels undergoes the transition C — O, whereas the second
term represents the probability flux that one of n+ 1 open channels undergoes the
transition O — C. The last two terms represent transitions n — n=£ 1. Define the
mean number of open channels at time ¢ by

N
= nP(n,1).
n=0

By differentiating both sides of this equation with respect to ¢ and using the master
equation (3.2.1) we recover the kinetic equation (3.1.5) with x =7/N (see Ex. 3.6).

The two-state ion channel model is an example of a birth—death process described
by a master equation of the general form

%P(n,t) — 0 (= DPi—1,0)+0_(n+ DPn+1,0)  (3.2.2)
— [0 (n) + o_(n)]P(n,t).

In the case of the simple ion channel model with constant transition rates o, 3, we
have

or(n)=(N-n)a, wo_(n)=np. (3.2.3)

However, as we shall see later, more general ion channel models can have transition
rates @4 (n) that are nonlinear functions of n. In the latter case, multiplying both
sides of the more general master equation (3.2.2) by n/N and summing over n gives

d(n/N)
dt

— (@ (n/N)) — (2_(n/N), (3.2.4)

where @y (n) = NQ. (n/N) and the brackets (...) denote a time-dependent ensem-
ble averaging over realizations of the stochastic dynamics, that is,

A(n/N)) ZP n,t)A(n/N)

for any function of state A(n/N). If the transition rates in (3.2.2) are nonlinear func-
tions of n, then there is coupling between different order moments resulting in a
moment closure problem. That is, (24 (n/N)) # Q. ((n)/N) for finite N. However,
in the thermodynamic limit N — oo, statistical correlations can be ignored so that
one can take the mean-field limit

(Q+(n/N)) = Qs ((n/N)).
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This then yields a deterministic equation for the fraction x of open ion channels:

dx

The steady-state solution P;(n) of the master equation (3.2.2), assuming it exists,
satisfies J(n) = J(n+ 1) with
J(n) = o_(m)P(n) — w4 (1= 1)P(n—1).

Using the fact that n is a nonnegative integer, that is, Ps(n) = 0 for n < 0, it follows
that J(n) = 0 for all n. Hence, by iteration,

oo (m—1)

P(n)=P0) ] o () (3.2.6)

with

N n m— -1
P(0) = <1+21Ulw;(—(m)l)> '

In the particular case of the transition rates (3.2.3), we have

Py(n) = Ps(0) {%] n'(NLLn)' (3.2.7)

After calculating P;(0), we obtain the binomial distribution

_a'pN Tt NI - N!

) = G B v =yt Pl P (3.2.8)

where pg = a/(a + ). The mean and variance of the binomial distribution can be
obtained using generating functions. That is,

N
F(z) = Z‘Oszs(m)

N
N! n N—
= —_— 1— n
= (zpo+1—po)~.
It follows that
(n)y =T"(1) = Npo(zpo+ 1 —po)N " .., =Npo,
and

(n(n—1)) =T"(0) = N(N = 1)pg(zpo+1—po)" 2| __, = N(N = 1)pg.
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Hence, the mean and variance of the binomial distribution are

(n) =Npo, Var[n] =N(N—1)p5+Npo—N>po=Npo(1—po).  (3.29)

3.2.1 Diffusion Approximation of a Birth-Death Master Equation

A useful diffusion approximation of the birth—death master equation (3.2.2) for large
but finite N can be obtained by carrying out a Kramers—Moyal or system-size expan-
sion to second order in N~! [204, 651], which was originally applied to ion channel
models by Fox and Lu [191]. This yields a Fokker—Planck (FP) equation describing
the evolution of the probability density of a corresponding continuous stochastic
process that is the solution to an SDE. A rigorous analysis of the diffusion approxi-
mation has been carried out by Kurtz [360] (see also Chap. 11). First, introduce the
rescaled variable x = n/N and transition rates NQ4 (x) = w4 (Nx). Equation (3.2.2)
can then be rewritten in the form

P0) _ NG, (= 1N)p(x— 1N, + Q. (x4 1/N)p(r+ 1/N.1)

dt
= (824 (x) + Q- (x))p(x,1)].

Treating x, 0 < x < 1, as a continuous variable and Taylor expanding terms on the
right-hand side to second order in N~! leads to the FP equation

X 2
WD - S AP + gy o BPE]  (210)
with
A(x) = Q4 (x) —Q_(x), Bx)=Q;(x)+Q2_(x). (3.2.11)

In the particular case of the two-state ion channel model with transition rates (3.2.3),
we have

Ax)=a—(a+B)x, Bx)=o+(B—o)x.
The FP equation takes the form of a conservation equation

dp _ dJ
F=-5 (3.2.12)

where J(x,7) is the probability flux,

J(x,1) = — === [B(x)p(x,1)] + A(x) p(x,1). (3.2.13)
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The FP equation is supplemented by the no-flux or reflecting boundary conditions
at the ends x = 0, 1 and a normalization condition,

1
J(0,1) = J(1,1) =0, /O plx,t)dx=1. (3.2.14)

The FP equation has a unique steady-state solution obtained by setting J(x,7) = 0
for all 0 < x < 1. The resulting first-order ODE can be solved to give a steady-state
probability density of the form

WefNW(x)
PFP(X) = B(x) N (3215)
with the so-called quasi-potential
L, [fAX) L, ) - ()

Here ./ is a normalization factor.

Recall from Sect. 2.2 that the solution to the FP equation (3.2.10) determines
the probability density function for a corresponding stochastic process X (¢), which
evolves according to the SDE or Langevin equation [204]

dX = A(X)dt + ﬁb(x)dW(z), (3.2.17)

with b(x)? = B(x). Here W (t) denotes a Wiener process with dW (¢) distributed
according to a Gaussian process with mean and covariance

(@W (1)) =0, (dW(1)dW(s)) = 8(t — s)drds. (3.2.18)

Note that the noise term in (3.2.17) is multiplicative, since it depends on the current
state X (¢). It is well known that there is an ambiguity in how one integrates multi-
plicative noise terms, which relates to the issue of Ito versus Stratonovich versions
of stochastic calculus [204] (see Sect.2.6). However, for this particular example,
based on the reduction of a master equation, the explicit form of the correspond-
ing FP equation (3.2.10) ensures that the noise should be interpreted in the sense
of Tto. In the limit N — oo, we recover the deterministic equation (3.2.5) with x(¢)
converging to the unique stable fixed point

X =a/(oa+p). (3.2.19)

One can thus view the SDE as describing a stochastic path in phase space that in-
volves Gaussian-like fluctuations of order 1/+/N about the deterministic trajectory.
Substituting X — x* = Y /+/N into the SDE (3.2.17) and formally Taylor expanding
to lowest order in 1/+/N yields the so-called linear noise approximation

dY = —kYdt +b(x*)dW (1), (3.2.20)
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with
_ 1 % * 206[3
k=-A(X)=a+p, bx")=+Bx)=,—.
a+f
This takes the form of an Ornstein—Uhlenbeck equation [204] [see equation
(2.2.16)]. Hence, in the stationary limit ¢ — oo,

Since Y (1) = VN(X (t) —x*), X (t) = n(t) /N, and x* = py, we recover the results of
(3.2.9).

How does the resulting steady-state density given by (3.2.15) with quasi-potential
(3.2.16) compare to the steady-state solution of the corresponding master equation
(3.2.2) in the large N limit? In order to answer this question, let us consider the
particular transition rates (3.2.3). Taking logarithms of both sides of equation (3.2.7)
and using Stirling’s formulalog(n!) ~ nlogn —n yield a steady-state density similar
in form to (3.2.15) but with a different quasi-potential:

P(x) = K(x)e NP, (3.2.21)
with K(x) = O(1) and
®(x) = —xlog(at/B) +xlog(x) + (1 —x)log(1 — x)

_FQ()
_/ In on (x,)dx. (3.2.22)

Since @(x) # ¥(x), we see that the steady-state probability density under the dif-
fusion approximation can deviate significantly from the effective potential obtained
directly from the master equation. However, this discrepancy is not much of an is-
sue for the simple two-state system, since the underlying kinetic equation has a
unique fixed point. Indeed, both potentials have the same global minimum at x = x*,
@' (x*) = V'(x*) = 0. Moreover, we find that V" (x*) = @"(x*). Since N is large,
we can make the Gaussian approximation

P(x) = p(x*)exp [—N(D(x*) —N(D”(x*)(x—x*)z/Z] ,

and similarly for Prp(x). Under this approximation, the mean and variance of the
fraction of open channels are given by
L (=AY 1 x(1-x)

n
L _ _ 3.2.23
N T Tarp N2 NO"(x*) N (3.2.23)

and we obtain the same results using the Gaussian approximation of Prp(x). Thus
the diffusion approximation accounts well for the Gaussian-like fluctuations around
a globally stable fixed point.
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On the other hand, it can lead to exponentially large errors when there are mul-
tiple stable fixed points. The diffusion approximation still accounts for the effects
of fluctuations well within the basin of attraction of a locally stable fixed point, but
there is now a small probability that there is a noise-induced transition to the basin of
attraction of another fixed point. Since the probability of such a transition is usually
of order e~ ™ with T = O(1), except close to the boundary of the basin of attraction,
such a contribution cannot be analyzed accurately using standard Fokker—Planck
methods [651]. These exponentially small transitions play a crucial role in allow-
ing the system to approach the unique stationary state (if it exists) in the asymptotic
limit # — eo. In other words, for bistable or multistable systems, the limits # — e and
N — oo do not commute [19, 252, 653]. Later on we will consider two examples of
bistability in a population of ion channels: (i) stochastic calcium release in oocytes
and cardiac myocytes (Sect. 3.4) and (ii) membrane voltage fluctuations underlying
the initiation of SAPs (Sect. 3.5). In the first case, there is bistability in the fraction x
of open ion channels arising from the fact that the transition rates in the birth—death
process are nonlinear functions of x. This is due to a feedback mechanism involving
CICR. On the other hand, bistability in the membrane voltage of a neuron occurs
under the assumption that the kinetics of sodium ion channels is relatively fast and
potassium kinetics are frozen. In Ex. 3.7, we consider another well-known example
of a two-state chemical reaction that exhibits bistability, namely, an autocatalytic
reaction [518].

3.3 Population Channel Bistability and Mean Escape Times

If a population of ion channels exhibits bistability in the deterministic limit
N — oo, then a quantity of considerable interest is the mean time for a noise-induced
transition from one fixed point to the other when N is finite. We will show how to
estimate the escape time using the diffusion approximation of the underlying birth—
death master equation (3.2.2) given by the FP equation (3.2.10). First, it is conve-
nient to rewrite the deterministic kinetic equation (3.2.5) for the fraction of open ion

channels in the form i JU
x
o =A(x) = I (3.3.24)

where U (x) is a deterministic potential, which is distinct from the quasi-potentials
@(x) and ¥ (x). The minima and maxima of the potential U (x) correspond to stable
and unstable fixed points of the deterministic dynamics, respectively. Suppose that
there are two stable fixed points x. separated by an unstable fixed point xy (see
Fig.3.4), and consider the mean time to escape from x_ to x,; an almost identical
calculation holds for the transition x; — x_. Since the system will rapidly approach
the state x4 once it has passed the maximum at xo, the major contribution to the
escape time will be due to the fluctuation-driven transition from x_ to xo. We can
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X4

fraction of open ion channels x

Fig. 3.4: Double-well potential U (x) for a population of two-state ion channels exhibiting bistabil-
ity in the deterministic limit. Two stable fixed points x. are separated by an unstable fixed point x(

model this process by supplementing the FP equation (3.2.10) with an absorbing
boundary condition at x = xp:

p(X(),t) =0.

Let T (x) denote the stochastic time for the particle to exit the right-hand boundary at
X, given that it starts at location x € [0, xg] at time # = 0. As a first step, we introduce
the survival probability P(x,7) that the particle has not yet exited at time ¢:

X0
]P(x,t):/ p(x,t]x,0)dx’. (3.3.25)
0

It follows that Prob[T (x) < ¢] = 1 — P(x,r) and we can define the FPT density
according to

flx,t) = —%. (3.3.26)

Following along similar lines to the analysis of first passage times in Sect. 2.3, it can
be shown that the FPT density satisfies a backward FP equation of the form

2
:A(X)WJF%;_ (x,1). (3.3.27)

dP(x,t)
ot

A quantity of particular interest is the MFPT 7(x) defined according to

() = (T(x)) = /0 NNy (3.3.28)

:_/0 8]P’ét )d _/Ow P(x,t)dt,
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after integration by parts. Hence, integrating both sides of equation (3.3.27) shows
that the MFPT satisfies the ODE

dt(x)  B(x)d*t(x)
dx 2N dx?

A(x) =—1. (3.3.29)

Equation (3.3.29) is supplemented by reflecting and absorbing boundary conditions
for the backward FP equation:

7(0)=0, t(x)=0. (3.3.30)

It is straightforward to solve equation (3.3.29) by direct integration [204] (see also
Sect. 2.3). First, introducing an integration factor and integrating once gives

—N¥(x')
—N¥(x) ./ :_N/xe dx
e 7 (x) 0 BO) X,
where W (x) is the quasi-potential (3.2.16), and we have used the boundary condition
7'(0) = 0. Integrating once more with respect to x and using 7(xg) = 0 then gives
x/ efNW()C”)

_ 0 NY(X) // AR
T(x)—N/x e dx o B0 dx". (3.3.31)

There is now a standard procedure for approximating this double integral based on
Kramers reaction rate theory [204, 253].
For simplicity, let us first consider the FP equation with constant diffusivity

dplxt) 0 I*p(x,1)
=—-—=1A t D————
0~ 2 ap(n) + 0225,
where A(x) = —U’(x) and U (x) is given by a double-well potential with minima at

x4+ and a maximum at xo with 0 <x_ < xo9 < x4 (see Fig.3.4). The MFPT to reach
a point x beyond xy, starting from x_, is

to= 5 [Py [ e vy
D Jx_ 0

If the central peak of U(x) around xq is large and D is small, then VD g

sharply peaked around xj. On the other hand, e U/ g very small near xy so
f(j‘, e V")/Dgx’ is slowly varying around X’ = xo. Hence, jg, e VW")/Dgy" is ap-
proximately constant for values of x’ such that eV@)/D is well above zero. We can
thus approximate the MFPT by a product of two independent integrals

S Ux" eU(ﬂ')/Ddx//:| [/x eU(ﬂ)/Ddx/:| _
D 0 Jx_
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The first integral is dominated by a small region around x = x_, whereas the second
is dominated by a small region around x = x¢. Thus, the integrals are insensitive to
the values of the limits and we can take

r ll) U‘” eU(x”)/Ddx//} [/‘” eU(x’)/Ddx/:| _

Taylor expanding U (x”) to second order about x = x_ with U’(x_) = 0, we obtain
the Gaussian integral

/°° e UW)/D gt o /°° e UG )10 ) x 22 g | 2D uteyp
oo oo U"(x-)

Similarly, expanding U (x') to second order about x = xj,

/°° UW/D g A, / " lUG0) 0" )| x0)2/2/D g — [ 2D ua)/p
Jow |U" (x0)]

J —oo

Combining these results, we finally arrive at the classical Arrhenius formula

2r olU(x0)~U(x-)]/D (3.3.32)
|U”(X())|U”(x7) ' o

Note that the transition rate A = 1/7_ (inverse MFPT) from x_ to x; varies
exponentially with the barrier height U (xo) — U (x_), thatis, A_ ~ e~ [Vx0)=UG)l/D,
Similarly, the transition rate from the active state x to x_ satisfies

Ay~ e~ U(x0)=U(x4)l/D
It follows that the ratio of the forward and backward transition rates is
A UG -UG)D
— = KkelV\= A (3.3.33)
Ay

where K is a constant that is independent of U (xg). The exponential dependence on
the energy difference AE = U (x_) — U(x4) is consistent with equilibrium thermo-
dynamics. For the sake of illustration, suppose that we idealize the above stochastic
process as a two-state Markov process involving transitions between two discrete
states O+ (corresponding to x = x4) with rates

10) Lo
7Z +.

This is identical in form to the two-state ion channel model evolving according to
(3.1.2). Hence, at equilibrium
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where Py is the steady-state probability of being in state O4.. Equilibrium thermody-
namics requires that Py are given by a Boltzmann—Gibbs distribution (see Sect. 1.4)
so that P, = Z le U+/k8T \where Z is a normalization factor. We deduce that

Ao P+
= — =

- U-—Uy]/kgT
Ay P '

Comparison with the previous results shows that D = kgT'. Note that this simplified
model cannot account for the prefactor k and its precise form is still a matter of
some debate.

Returning to equation (3.3.31), we can adapt the classical Arrhenius formula
(3.3.32) with —¥(x) an effective potential function and B(x)/2N a state-dependent
diffusivity. Note that ¥(x) has the same stationary points as U (x) so it is also given
by a double-well potential. The result is (Ex. 3.8),

! 2n NI (x0) ¥ (x-)]
T(x_) ~ . 3.3.34
") B T ) (3339

Since the argument of the exponential is positive, it follows that the rate of escape
is exponentially small for large N. Similarly, the MFPT for the reverse transition
X4 — X_ 18

! 2r NI (x0)— (1]
() ~ 0) W), 3.3.35
W B e (3:33)

From our discussion of the diffusion approximation of the steady state, we might
expect that a more accurate estimate of the MFPT can be obtained by replacing the
quasi-potential ¥ (x) by the quasi-potential @(x) of equation (3.2.22). This is indeed
found to be the case, except one also has to modify the prefactor:

T(x_) = 21 NP (o)~ P(x-)], (3.3.36)
Q. (x2) /@ (x0)| D" (x-)

Equation (3.3.36) can be derived using a WKB approximation of the master equa-
tion (3.2.2). Such an approach has been used increasingly to analyze escape prob-
lems in chemical and biological systems [152, 163, 174, 252, 264, 341]. The details
of the calculation for a general birth—death process are presented in Chap. 10.

3.4 Stochastic Models of Ca’t Release

Calcium (Ca*") is one of the most important and well studied cellular signaling
molecules. From a modeling perspective, it attracts a great deal of interest due to
the fact that calcium signaling often involves complex spatiotemporal dynamics, in-
cluding oscillations and waves. For reviews on the modeling of calcium dynamics
within cells, see Chap. 7 of Keener and Sneyd [322], Falcke [179], and Chap. 4
of Bressloff [66]. In vertebrates, most of the Ca?" is stored in bones, from where
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it can be released by hormonal stimulation to maintain a high extracellular Ca>*
concentration (around 1 mM). On the other hand, active ion pumps and exchang-
ers maintain the cytoplasmic Ca>* concentration at relatively low levels (around
10-100nM). The resulting steep concentration gradient across the plasma mem-
brane means that cells are able to increase their cytoplasmic Ca>* concentration
rapidly by opening either voltage-gated or ligand-gated Ca>" ion channels. Here we
will consider another major mechanism for controlling intracellular Ca>" based on
the action of protein receptors embedded in the surface membrane of intracellular
stores. Some of the main features of such receptors are as follows:

1. Cells can regulate their cytoplasmic Ca>* concentration via the intracellular sup-
ply of Ca*" from internal stores such as the endoplasmic reticulum (ER) and
mitochondria. Inositol (1,4,5)-trisphosphate (IP3) receptors and Ryanodine (Ry)
receptors distributed throughout the ER, for example, mediate the release of Ca>*
into the cytoplasm, whereas Ca>" ion pumps maintain the relatively high Ca>*
concentration within the ER. The Ry receptor plays a critical role in excitation—
contraction coupling in skeletal and cardiac muscle cells, but is also found in
non-muscle cells such as neurons. One important feature of Ry receptors is that
they can undergo CICR, in which elevated cytoplasmic Ca>" activates Ry recep-
tors that release further Ca®>", which then activates other Ry receptors, resulting
in a nonlinear regenerative feedback mechanism. The IP3 receptor is similar in
structure to the Ry receptor, but is found predominantly in non-muscle cells and
is sensitive to the second messenger IP3. The binding of an extracellular ligand
such as a hormone or a neurotransmitter to a metabotropic receptor results in
the activation of a G-protein and the subsequent activation of phospholipase C
(PLC). This then cleaves phosphatidylinositol biphosphate (PIP,) into diacyl-
glycerol (DAG) and IP3. The water-soluble IP3 is free to diffuse throughout the
cell cytoplasm and bind to IP3 receptors located on the ER membrane, which
then open and release Ca>* from the ER. The opening and closing of an IP; re-
ceptor is also modulated by the concentration of cytoplasmic Ca®*, so it too can
undergo CICR.

2. Another mechanism for controlling cytoplasmic Ca* is through buffering (bind-
ing) to large proteins. It is estimated that at least 99 % of the total cytoplasmic
Ca®" is bound to buffers. A summary of the basic extracellular and intracellular
mechanisms for controlling cytoplasmic Ca*>* is shown in Fig. 3.5.

3. One of the most dramatic consequences of CICR is the propagation of intra-
cellular Ca®>" waves mediated primarily by the opening of IP3 receptors. These
waves were first observed in nonneuronal cells such as Xenopus laevis oocytes
[376, 499], where the resulting changes in Ca?* concentration across the whole
cell provided a developmental signal.

4. Many cell types exhibit spontaneous localized Ca’" release events known as
sparks or puffs [103, 104]. The fluorescent imaging of Ca>* puffs and sparks
has established that Ca>" release is a stochastic process that occurs at spatially
discrete sites consisting of clusters of IP3Rs and RyRs, respectively. Ca>* puffs
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Fig. 3.5: Calcium signaling. The entry of Ca>* from outside the cell is mediated by voltage-
gated (VGCC) and ligand-gated (LGCC) calcium channels. Stimulation of metabotropic glutamate
receptors (mGluRs) produces IP3 second messengers that bind to IP3 receptors (IP3Rs), which
subsequently release Ca>* from the endoplasmic reticulum. Both IP3Rs and Ryanodine receptors
(RyRs) are sensitive to Ca>*, resulting in calcium-induced calcium release (CICR). The latter can
sometimes result in the propagation of a Ca?* wave along the dendrites

are found in Xenopus laevis oocytes and have an amplitude ranging from around
50-600 nM, a spatial spread of approximately 6 um and a typical duration of
1 s [498, 499, 692]. For sufficiently high levels of IP; concentration, the am-
plification of Ca?>* puffs by CICR can lead to the formation of Ca’>" waves
[498, 499, 692]. Calcium sparks, which are thought to be the building blocks of
the large regenerative Ca>" signal that controls contraction in cardiac and skele-
tal muscle cells, arise from the opening of clusters of RyRs by local CICR. The
frequency of calcium spark events is sensitive to changes in membrane poten-
tial, although they rarely induce calcium waves due to shorter duration and less
spatial spread.

3.4.1 Stochastic Model of Ca®>* Puffs in a Cluster of IP3Rs

Stochastic models of Ca*" puffs typically treat a cluster of IP3Rs as a set of N chan-
nels that open and close independently, but are indirectly coupled by the common
cytoplasmic Ca%t concentration [178, 180, 590, 618]. Models differ in the level of
detail regarding individual receptors. The first deterministic kinetic model of Ca*-
gated IP3Rs was proposed by De Young and Keizer [696], in their study of agonist-
induced Ca’* oscillations. This model assumes that the IP3 receptor consists of
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Fig. 3.6: IP3 receptor model. (a) Reaction diagram of the De Young—Keizer model [696] of an IP3
receptor subunit. The state of the subunit is denoted by S;;x, where i = 0,1 denotes whether the
IP5 binding site is unoccupied (i = 0) or occupied (i = 1), and j, k denote the corresponding status
of the activating and inactivating Ca>* binding sites, respectively. Although there are 24 separate
single-step reactions, the model only has ten independent rate constants. This is a consequence of
equilibrium thermodynamics and two additional constraints: (i) the rate constants are taken to be
independent of whether or not the Ca?* activating binding site is occupied and (ii) the kinetics of
Ca”* activation are assumed to be independent of IP3 binding and Ca?* inactivation. (b) Schematic
diagram of fluxes in the Li—Rinzel model [388]. Here ¢ and p denote the concentration of Ca’t
and IP3 in the cytoplasm, and c, is the concentration in the endoplasmic reticulum (ER). Both p
and ¢, are held fixed

three equivalent receptor subunits, all of which have to be in a conducting state in
order to generate a Ca>* flux. Each subunit is taken to have an IP3 binding site, an
activating Ca®" binding site, and an inactivating Ca>* binding site; the conducting
state corresponds to the state in which all subunits have the first two binding sites
occupied but the third unoccupied (see Fig.3.6a). Although the De Young—Keizer
model is simple to describe, it involves a relatively large number of variables that
have to be coupled to the Ca®* and IP3 concentrations. A simplified version of the
model was subsequently developed by Li and Rinzel [388]. They exploited the fact
that the binding of IP3 and activating Ca>" are fast relative to inactivating Ca>* and
used a quasi-steady-state (QSS) argument to reduce the eight-state subunit model to
a model that simply keeps track of whether or not the inactivating Ca*>" binding site
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of a subunit is occupied. There is then a single gating variable
h = X000 + X010 + X100 + X110,

where x; j; denotes the fraction of subunits in state S; j (see Fig. 3.6a). Thus, 13 is the
fraction of receptors in a cluster not inactivated by Ca>". One finds that / evolves
according to an equation of the form (Ex.3.9)

dh

o =% (p)(1 —=h) = Bu(p)ch, (3.4.1a)

where c is the cytoplasmic Ca>* concentration and p is the IP3 concentration (which
is assumed fixed). It is assumed that there are three fluxes contributing to the change
in Ca®* concentration:
dc

I = Jip + Jleak — Ip2; (3.4.1b)
where Jpp is the flux through the cluster of IP3 receptors, Jieax is a leakage flux from
the ER to the cytoplasm, and Jp; is the flux pumped back into the ER (see Fig. 3.6b).
The expressions for the various fluxes are

Vi 2

= = 34.2
ara G4

Jip = fle,p)*hPlee—c],  Jieak = Volce —c],  Jp

where c, is the fixed Ca" concentration in the ER, vy, v| are constants, and

f(c,p)_< P )< < > Kj =k j/kj. (3.4.3)

p+K; c+Ks

The function f(c,p) can be derived from the QSS reduction of the De Young—
Keizer model, which shows that the fraction of open subunits is xj19 = f(c,p)h
(Ex.3.9). The cubic terms reflect the existence of three subunits. Parameter values
of the model can be found in [388]. Note that the simplified model resembles the
Hodgkin—Huxley model of a neuron, which will be introduced in Sect.3.5 [see
equation (3.5.6)] after replacing Ca>* concentration ¢ by membrane voltage v and
c. by a reversal potential.

We now describe a stochastic version of the Li—Rinzel model for a cluster of
IP3Rs due to Shuai and Jung [590]. For stochastic versions of the full De Young—
Keizer model, see, for example, [178, 180, 243, 618]. The deterministic equations
(3.4.1) describe the mean behavior of a large cluster of Ca?* channels, just as
the Hodgkin—Huxley equations for membrane voltage apply to a large number of
voltage-gated ion channels. If the number of channels is relatively small, then it is
necessary to take into account thermally driven fluctuations in the opening and clos-
ing of individual channels. In the case of the Li—Rinzel model, one only needs to
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consider the state of the Ca?*-inactivating binding site of each subunit. The latter is
modeled as the two-state Markov process
Oy

At 2o (3.4.4)
Bn(c)

where A (A*) denotes the unbound (bound) state. Suppose that there are N inde-
pendent IP3Rs, each with three independent subunits labeled i = 1,2,3 that are de-
scribed by the above two-state Markov process. Let N;(¢) (i = 1,2,3) denote the
number of receptors at time ¢ that have the ith subunit in state A. Under the adiabatic
assumption that the Ca>* concentration ¢ evolves much more slowly than the state
transitions of the channels, we can write down a master equation for the probability
P(n;,t) = Prob[N;(t) = nj|N;(0) = ng] according to

P il
d (dnt ) _ (N = ni+ 1) oyP(n; — 1,1) + (ni+ 1)cBpP(ni+ 1,1) (3.4.5)
— (micBp+ (N —ni) o) P(nit), i=1,2,3.

As with voltage-gated ion channels (see Sect. 3.5), we have a stochastic hybrid sys-
tem, since the A — A* transition rate depends on the Ca>* concentration c¢(t), which
evolves according to a piecewise deterministic equation of the form (3.4.1b). The
latter, in turn, couples to the discrete stochastic variables N;(¢) through the flux

Ni(t)
-~ (3.4.6)

=

I
—

Jip = f(c(t),p)[ce —c(t)]
Finally, for large N, one can obtain a further simplification by carrying out a
Kramers—Moyal expansion of the master equation (3.4.5) along identical lines to
Sect. 3.2. This yields the following SDE for H;(t) = N;(t)/N with H; treated as a
continuous stochastic variable:
1
dH; = OCh(l — Hi) — CﬁhH,' + —b(H,)dVV, (3.4.7)

VN

where

b(H;) = \/ou(1 — H;) + cPuH;,

and W;(¢) is an independent Wiener process with
(dW;(1)) =0, (dW;(t)dW;(t")) = 8(t —t')dtdt'§; ;.

Shuai and Jung [590] simulated the stochastic Li—Rinzel model in order to inves-
tigate the effects of noise on Ca>" oscillations in a space-clamped model. They as-
sumed that the deterministic system (3.4.1) was monostable at low and high IP3 con-
centrations and exhibited limit cycle oscillations (occurring via a Hopf bifurcation,
see Box 4B) at intermediate concentrations. They showed that noise can enlarge
the range of IP3 concentrations over which oscillations occur—an effect known
as coherence resonance. They also found a broad distribution of puff amplitudes,
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lifetimes, and interpuff intervals. In particular, at low IP3 concentrations, the am-
plitude distribution is a monotonically decaying function, whereas at higher con-
centrations it is unimodal. This suggests that Ca>* puffs become more significant
as IP3 concentration is increased and hence could impact the spontaneous genera-
tion of Ca’* waves. This issue was investigated numerically by Falcke [178] using
a stochastic version of the De Young—Keizer model that was incorporated into a
reaction—diffusion model of spatially distributed channel clusters. He showed that
there is indeed a transition from Ca’* puffs to waves as the IP3 concentration is
increased. At low concentrations, only puffs occur, since there is not enough Ca>*
released to stimulate neighboring clusters, which means that the response is purely
local. However, as IP3 concentration increases, global Ca’* waves can emerge from
local nucleation sites of high Ca®>" concentration. At intermediate levels of IPs,
global events are rare and waves only progress a short distance before dying out.
On the other hand, for higher IP; concentrations, global waves occur regularly with
a well-defined period. Again this oscillatory-like behavior can occur in parameter
regimes for which the deterministic model is non-oscillatory.

3.4.2 Stochastic Model of Ca®>* Sparks in Cardiac Myocytes

We now turn to a stochastic model of Ca>* sparks in cardiac myocytes [263], which
includes details of the geometry of Ca’>" release units, in particular, the narrow
junctional gap known as the diadic space that separates the sarcoplasmic reticulum
(SR) from the plasma membrane (see Fig. 3.7). (In smooth muscle cells the SER is
referred to as the sarcoplasmic reticulum.) In a typical myocyte, there could be up
to 10,000 Ca>" release units, each one containing a cluster of around N = 50 RyRs
on the surface of the SR. The cluster of RyRs is apposed to L-type Ca>" channels
located on so-called t-tubules, which are invaginations of the plasma membrane into
the myocyte. (The Ca>* channels are not involved in the spontaneous generation
of Ca>* sparks so are ignored in the model.) The diadic space separating the SR
from the t-tubules is a region of the mytoplasm (intracellular fluid of myocytes),
which is approximately cylindrical in shape with height 10 nm and radius 100nm.
Since the diadic space is a small enclosed volume, it supports an elevation in Ca>*
concentration relative to the bulk mytoplasm following the release of Ca** from an
RyR. Such a local elevation plays a crucial role in the CICR that results in a Ca>*
spark. The SR in a neighborhood of the RyRs is known as the junctional SR (JSR),
which may have a different Ca’* concentration from the bulk or network SR (NSR).

We present the model in nondimensional form; details of model approximations
and estimates of experimentally based model parameters can be found in [263].
First, the diadic space is modeled as a single compartment with Ca>* concentration
c satisfying the current conservation equation

dc
TDE = Jryr —JD. (3.4.8)
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Here 7p is a time constant, Jryr is the total Ca’" current through the RyRs, and Jp
is the diffusive current from the diadic space to the bulk mytoplasm. The latter is
modeled as the Fickian current

Jp =c—cm, (3.4.9)

where ¢,, is the bulk mytoplasm Ca’* concentration. The total current through the
RyRs is taken to be proportional to the number n of open RyRs times the Ca>"
concentration cg; in the JSR:

JRyR = CsrX, X= (3.4.10)

n
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Fig. 3.7: Schematic diagram of a Ca®* release unit in a cardiac myocyte. It is divided into four
compartments: the network SR, the junctional SR, the diadic space, and the bulk mytoplasm. See
text for details

with N the total number of RyRs in the cluster. Each RyR has Ca’>* binding sites,
which can be activating or deactivating. When an RyR is in an activated state it is
promoted to a mode where it continuously opens and closes according to a Markov
process, with a mean open time of 1 ms [699]. The opening of an RyR channel re-
sults in an extra Ca>* current flowing into the diadic space, which increases the rate
at which Ca®* binds to the other RyRs via CICR, thus creating a positive feedback
loop. This feedback loop provides a mechanism for bistability. Note that the RyRs
also contain inactivating Ca>" binding sites, but these do not play a role in initiating
a Ca’* spark so are not included in the model. For simplicity, the RyRs are modeled
using a two-state Markov process involving a single closed state and a single open
state (see also [324]):

ki (c
C(closed) %) O(open), (3.4.11)
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with transition rates

- 1
¢ J—— (3.4.12)

k = _
+(€) kToc®+1’ To

Here 17, is the mean open time of a RyR, o is the number of Ca>" ions that are
needed to open a RyR, and k determines the proportion of time the RyRs are open. It
is assumed that the RyRs are gated independently of each other. They are, however,
indirectly coupled via the Ca?* concentration in the diadic space. The time constant
Tp of diffusive flux from the diadic space is several orders of magnitude smaller than
the mean open time 7, of a RyR, that is, 7p ~ 3us whereas 7, ~ 1 ms. Therefore,
the Ca’* concentration in the diadic space can be taken to be in quasi-equilibrium,
7 — 0, so that

C=cCp+ Corx. (3.4.13)

It follows that the transition rate can be reexpressed as a function of the fraction of
open channels and the Ca" concentration in the SR, ki = ki (cm + csex).

Now consider N independent RyRs within a Ca®* release unit, each described
by the above two-state Markov process. Let N(¢) be the number of open channels at
time 7 and set P(n,7) = Prob[N(¢) = n|N(0) = ng|. The distribution P(n,t) evolves
according to the birth—death master equation (3.2.2) with transition rates @ (n/N) :
n—n+tl:

(em+csx)®
k((cm+cgx)®+1)’

o4 (x) =N(1—x) o_(x) = Nx. (3.4.14)
For the moment, it is assumed that ¢, and ¢y are fixed so that @, can be treated as
a function of x alone. (Later the dynamics of ¢, following initiation of a Ca>* spark
will also be taken into account.) The units of time are fixed by setting 7, = 1. In the
deterministic limit N — oo, we obtain the kinetic equation (3.2.5), which takes the
explicit form

dx 0 (em+eax)®
o= Qi (x)—Q_(x)=(1 x)k((cm—i—csrx)“ Y x. (3.4.15)

It can be shown that, for physiologically reasonable parameter values, this equation
exhibits bistability [263], that is, there exists a pair of stable fixed points x+ sepa-
rated by an unstable fixed point xo. The fixed point x_ ~ O represents a quiescent
state, whereas the other fixed point x ; represents a Ca>" spark in which a significant
fraction of RyRs are in the active mode and can be interpreted as a burst phase.
Noise-induced transitions from x_ to x determine the distribution of inter-spark
intervals, just as noise-induced transitions from x to x_ determine the distribution
of spark lifetimes. Hence, estimating the mean time for the occurrence of a spark
event reduces to the problem of calculating the MFPT to reach x., starting from a
neighborhood of x_, by crossing x¢. This calculation was carried out in Sect. 3.3 for
a general birth—death master equation using a diffusion approximation and can be
made more accurate using WKB methods (see Chap. 10). The latter approach yields
equation (3.3.36) for the mean time 7 to initiate a Ca>t spark starting from the
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Fig. 3.8: Stochastic model of calcium sparks. (a,b) Monte Carlo simulations of the proportion x of
RyRs in the open state and the transitions of one of the RyRs in the cluster. (¢) The mean spark time
as a function of the number N of receptors in the cluster. The line is the asymptotic calculation and
the points are from a Monte Carlo simulation. As the number of receptors in the cluster increases,
the spark time increases and the error in asymptotic calculation decreases. The mean spark length
also increases rapidly with SR concentration cg.. The model parameters are o0 = 4, ¢;,, = 0, and
k = 0.2. (Adapted from Hinch [263])

quiescent state x_ after substituting for the transition rates using equation (3.4.14).
Similarly, the mean duration 7 of a spark, which corresponds to the mean time
to transition back from x to x_, is given by equation (3.3.36) under the mapping
x_ — x,. It turns out that in the case of Ca>" release, the quiescent state x_ is
in an O(1/N) neighborhood of the boundary x = 0, so that the prefactor of the
MFPT has to be modified accordingly (see [263, 264] for details). Nevertheless, the
leading order exponential is unchanged. Hinch compared the theoretical prediction
with Monte Carlo simulations of the full system for various cg;, and the results are
shown in Fig.3.8. One can see that the spark time increases with the number of
receptors in the cluster and the mean spark length increases rapidly with cg;.
Irrespective of the particular method used to solve the FPT problem, it was as-
sumed above that the concentration ¢, in the JSR is held fixed. This is a reasonable
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Fig. 3.9: Sketch of nullclines in the deterministic planar Ca>* spark model with x denoting the
fraction of open RyRs and cgg the Ca”* concentration in the junctional SR. The ¢y, nullcline is a
monotonically decreasing function x(cs, ), whereas the x-nullcline is cubic-like with three branches
x4+ (csr) and xo(csr). (Note that the branch x_(cgr) ~ 0; we have moved it away from the vertical
axis for the sake of illustration.) In the given diagram there is a single, stable fixed point on the
left-hand branch. In the stochastic version of the model a Ca>* spark initiates a jump to the right-
hand branch x; (cs). This is followed by a stochastic trajectory in which the slow variable ¢, (¢)
moves down the nullcline until it undergoes a noise-induced transition back to the left-hand branch
before the knee at x = x.. In the deterministic case, the return transition occurs at the knee (dashed
curve)

approximation when considering the initiation of a Ca®>" spark. However, following
Ca’* release from the RyRs, the Ca>* concentration c,; slowly changes according to

dc,

Tsr? = —Cyx+ ksr[CO - Csr]- (3.4.16)

where Ty > T, > Tp. The first term on the right-hand side is the loss of Ca?t
through the RyRs, whereas the second term is the influx Jsg of Ca®t from the
NSR with fixed Ca’" concentration co (see Fig.3.7). The variation of ¢y means that
one has to modify the analysis of the time to terminate the Ca>* spark. Following
Hinch [263], this can be achieved by combining the theory of stochastic transitions
with the classical phase-plane analysis of slow—fast excitable systems (see [322] and
Sect. 3.5). That is, (3.4.15) and (3.4.16) form an excitable system with the fraction
x of open RyRs acting as the fast variable and c acting as the slow variable. In
Fig. 3.9 we sketch the nullclines of the deterministic system in a parameter regime
where there is a single, stable fixed point (x*,c%.). In the full stochastic model, the
initiation of a Ca®>" spark induces a transition to the right-hand x-nullcline according
to x_(ci.) = x4 (ck.). The slow variable then moves down the right-hand nullcline
x4 (csr) according to the equation
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Fig. 3.10: Distribution of spark durations for clusters containing (a) 10 RyRs and (b) 40 RyRs.
The results of Monte Carlo simulations are plotted as a histogram, whereas the solid line is the
analytical result calculated using stochastic phase-plane analysis. Additional parameters are ¢y =
3.5, and kg = 0.3. Adapted from Hinch [263]]

dcg,

Tsr? = —CsrXy (Csr> + ksr [CO - Csr]- (3.4.17)

That is, although x is a stochastic variable, it fluctuates much faster than the dynam-
ics of ¢g SO one can substitute a time-averaged value of x in (3.4.16).

Suppose that ¢, (¢) is the solution of (3.4.17) with ¢5,(0) = %, that is, the Ca>*
spark occurs at ¢ = 0. In principle, the spark can terminate at any time ¢ > 0 due to
fluctuations in the number of open RyRs. Using a separation of time scales, we can
estimate the rate of transition A back to the left-hand branch at time ¢ by solving the
FPT problem using a diffusion approximation with ¢y, (¢) fixed. Since A depends on
csr, We have a time-dependent transition rate A (f) = A (cg(f)). One can now calcu-
late the distribution of spark durations 7. Let P(T) = Prob(7 > ) and introduce
the spark duration probability density p(7) = —dP/dt. The probability that a spark
terminates in an infinitesimal time interval 67 is A(7)87, so that

P(t+01)=P(1)(1—A(1)07).
Dividing both sides by 67 and taking the limit 67 — 0 gives

dp
E = _)L(T)P(T)u

which can be integrated to yield P(7) = exp (— [y A(r)dt). Note that by definition
P(0) = 1. It follows that

p(7) = A(T)exp (—./Ofl(t)dt) . (3.4.18)

An illustration of the distribution of spark durations is shown in Fig. 3.10; the results
are consistent with experimental data of Wang et al. [670].
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Finally, note that one of the major simplifications of the Hinch model [263] is
that the background Ca?* concentrations in the mytoplasm (c,,) and the network
SR (cpsr) are held fixed. It thus fails to capture the collective behavior of a large
population of Ca>" release units (CaRUs), which are coupled via global changes
in these background concentrations (assuming diffusion can be neglected on the
relevant time-scales). This has motivated the development of a whole-cell model
of calcium-induced calcium release in cardiac myocytes, based on a system of .4
globally-coupled CaRUs [682, 683].

3.5 Membrane Voltage Fluctuations and Spontaneous
Action Potentials

Conductance-based models of the Hodgkin—Huxley type have been used to describe
many important features of the electrophysiology of neurons and other secretory
cells [322]. It is typically assumed that the number of voltage-gated ion channels is
sufficiently large so that one can determine the average transmembrane ionic cur-
rents based on the opening probabilities of individual channels, which is an appli-
cation of the law of large numbers. However, the resulting deterministic equations
cannot account for spontaneous events driven by ion channel fluctuations. In this
section, we describe how to couple the voltage dynamics to the stochastic open-
ing and closing of a finite number of ion channels and show how such fluctua-
tions can initiate a SAP. However, it is first useful to review the classical theory of
conductance-based models of neural excitability.

3.5.1 Conductance-Based Model of Neural Excitability

A neuron typically consists of a cell body (or soma) where the nucleus containing
DNA is located, a branching output structure known as the axon and a branching
input structure known as the dendritic tree (see Fig. 3.11). Neurons mainly commu-
nicate with each other by sending electrical impulses or spikes (action potentials)
along their axons. (Some neurons are also coupled diffusively via gap junctions.)
These axons make contacts on the dendrites of other neurons via microscopic junc-
tions known as synapses. The basic components of synaptic processing induced by
the arrival of an action potential are shown in the inset of Fig.3.11. Depolariza-
tion of the presynaptic axon terminal causes voltage-gated Ca>* channels within
an active zone to open. The influx of Ca?* produces a high concentration of Ca?*
near the active zone, which in turn causes vesicles containing neurotransmitter to
fuse with the presynaptic cell membrane and release their contents into the synaptic
cleft (exocytosis). The released neurotransmitter molecules then diffuse across the
synaptic cleft and bind to specific receptors on the postsynaptic membrane. These
receptors cause ion channels to open, thereby changing the membrane conductance
and membrane potential of the postsynaptic cell.
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Fig. 3.11: Basic structure of a neuron. [Inset shows a synaptic connection from an upstream or
presynaptic neuron and a downstream or postsynaptic neuron.] See text for details

The opening of synaptic ion channels results in the flow of electrical current
along the dendritic tree of the stimulated neuron. If the total synaptic current from
all of the activated synapses forces the electrical potential within the cell body to
cross some threshold, then the neuron fires a spike. The standard biophysical model
for describing the dynamics of a single neuron with somatic membrane potential v
is based upon conservation of electric charge:

Cd—v = —lcon + U + Lext, (3.5.1)

dt
where C is the cell capacitance, I.on is the membrane current, u denotes the sum
of synaptic currents entering the cell body, and I.x; describes any externally injected
currents. Ions can diffuse in and out of the cell through ion-specific channels embed-
ded in the cell membrane. Ion pumps within the cell membrane maintain concentra-
tion gradients, such that there is a higher concentration of Na* and Ca®>* outside the
cell and a higher concentration of K™ inside the cell. The membrane current through
a specific channel varies approximately linearly with changes in the potential v rela-
tive to some equilibrium or reversal potential, which is the potential at which there is
a balance between the opposing effects of diffusion and electrical forces. Summing
over all channel types, the total membrane current (flow of positive ions) leaving the

cell through the cell membrane is

Ieon = Y 8s(v—Vj), (3.5.2)
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where g; is the conductance due to channels of type s and V; is the corresponding
reversal potential. In the case of a channel selective to a single ion, V; satisfies the
Nernst equation (see Ex. [2.4])

v, = kel (—[O,MS,’de]s) , (3.5.3)
q [inside]s

where ¢ is the charge of the ion, kp is the Boltzmann constant, T is temperature (in
degrees Kelvin), and [outsidels, [inside|s denote the extracellular and intracellular
concentrations of the given ion. Typical values for the common ion species are Vi ~
=75 mV, VNa = 50 mV, Vg, = 150 mV, and Vo =& —60 mV (which is close to the
resting potential of the cell).

The generation and propagation of an action potential arises from nonlinearities
associated with active membrane conductances. Recordings of the current flowing
through single channels indicate that channels fluctuate rapidly between open and
closed states in a stochastic fashion, as described in Sect. 3.1. Nevertheless, most
models of a neuron use deterministic descriptions of conductance changes, under the
assumption that there are a large number of approximately independent channels of
each type. It then follows from the law of large numbers that the fraction of channels
open at any given time is approximately equal to the probability that any one channel
is in an open state. The conductance g, for ion channels of type s is thus taken to be
the product g; = g,P; where g; is equal to the density of channels in the membrane
multiplied by the conductance of a single channel and P is the fraction of open
channels. The voltage dependence of the probabilities P in the case of a delayed-
rectifier K™ current and a fast Na™ current was originally obtained by Hodgkin and
Huxley [265] as part of their Nobel prize winning work on the generation of action
potentials in the squid giant axon. The delayed-rectifier K™ current is responsible for
terminating an action potential by repolarizing a neuron. One finds that opening of
the K™ channel requires structural changes in 4 identical and independent subunits
so that Py = n* where n is the probability that any one gate subunit has opened. In
the case of the fast Na™ current, which is responsible for the rapid depolarization
of a cell leading to action potential generation, the probability of an open channel
takes the form Py, = m>h where m? is the probability that an activating gate is open
and £ is the probability that an inactivating gate is open. Depolarization causes m to
increase and A to decrease, whereas hyperpolarization has the opposite effect.

The dynamics of the gating variables m,n,h are usually formulated in terms of
a simple kinetic scheme that describes voltage-dependent transitions of each gating
subunit between open and closed states. More specifically, for each X € {m,n,h}

X

= o (4)(1-X) — Br(X, (3:5.4)

where o (v) is the rate of the transition closed — open and Bx(v) is the rate of
the reverse transition open — closed [see equation (3.2.5)]. Equation (3.5.4) can be
rewritten in the alternative form

dx

’r =X.(v) - X, with X € {m,n,h}, (3.5.5)

TX (V)
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where
1

orx (v) + Bx (v)’
It follows that the conductance variables m, n, and h approach the asymptotic values
Mes(V), Nee(v), and he.(v) exponentially with time constants 7,,(v), 7,(v), and 7,(v),
respectively. From basic thermodynamic arguments, the opening and closing rates
are expected to be exponential functions of the voltage. Hodgkin and Huxley [265]

fitted exponential-like functions to the experimental data obtained from the squid
axon:

% (v) = Xo(v) = ax (v)Tx (v).

_ 0.1(v+40) -
o T = exp[~0.1(v -+ 40)] o, = 0.07exp[—0.05(v + 65)],
0.01(v+55)
- = 4.0exp[—0.
T T exp[—0.1(v+55)] B = 4.0exp[—0.556(v + 65)],
P = ; B. = 0.125exp[—0.125(v + 65)].

1 +exp[—0.1(v+353)]

All potentials are measured in mV, all times in ms, and all currents in gA per cm?.

The corresponding asymptotic functions X..(v) and time constants Ty (v) are plotted
in Fig.3.12.

We can now write down the Hodgkin—Huxley model for the generation of an ac-
tion potential, which takes the membrane current to be the sum of a leakage current,
a delayed-rectifier K™ current, and a fast Na™ current,

d
cd—: = F(vm,n,h) + Iext, (3.5.6)
with
Fvym,n,h) = —gNam3h(v —VNa) — gKn4(v —Vk)—gL(v—W). (3.5.7)
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Fig. 3.12: Voltage-dependent steady-state levels of activation and inactivation (left panel) and
voltage-dependent time constants (right panel) for the Hodgkin—Huxley model
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The maximal conductances and reversal potentials used in the original model are
gL = 0.003 ms/mm?, gx = 0.36 mS/mm?, gn, = 1.2 mS/mm?, Vi, = —54.387
mV, Vx = =77 mV, and VN, = 50 mV. Note that the leakage current groups to-
gether various voltage-independent processes such as the currents carried by ion
pumps that maintain the concentration gradients. The variables m,n,h evolve ac-
cording to equation (3.5.4). The temporal evolution of the variables v, f,m, n, h dur-
ing a single action potential is shown in Fig. 3.13. Injection of a depolarizing current
induces a rapid increase in the m variable describing activation of the Na™ current.
Since the slower h variable is initially around 0.6, there is a large influx of Na™ ions,
producing a sharp downward spike in the membrane current and a rapid depolariza-
tion through positive feedback. However, the rise in the membrane potential causes
the Na™* conductance to inactivate by driving h towards zero. In addition, the depo-
larization activates the K+ conductance, resulting in a subsequent hyperpolarization.

1
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go h 05
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<
< -5 0
0 5 10 15 0 5 10 15
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Fig. 3.13: The dynamics of v, f,n,m, h in the Hodgkin—Huxley model during the firing of an action
potential induced by a current injection at f = 5 ms

3.5.2 Neural Excitability and Phase-Plane Analysis

In order to understand the basic mechanism of neural excitability, we consider a
simplified version of the Hodgkin—Huxley model, namely, the Morris—Lecar model
[454], which takes the form of a planar dynamical system

ij—: =a(v) fna(v) +wfk(v) —g(v) = f(v,w) (3.5.82)
dw  we(v)—w

T o) =egg(v,w), (3.5.8b)
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where w represents the fraction of open K™ channels, fi(v) = gi(vi —v), g(v) =
go(v—vp), and

ok (v)

o (v) + B (v)

a(v) = —%Nalv)

= o) B T

Here

Ona (v) = e TRa) B (v) = 1, o (v) = KT = By (v) 71
The fraction of Nat channels (or Ca>* channels in the original formulation of the
model) is assumed to be in QSS. The generation of action potentials can be ana-

lyzed using a slow/fast analysis of the deterministic system, under the assumption
that the dynamics of w is slow relative to that of v, that is, € < 1. The fast variable
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Fig. 3.14: Deterministic phase-plane dynamics of the ML model. Nullclines: v = 0 (gray) and
w = 0 (black). Black streamlines represent deterministic trajectories. Green/blue curves represent
an action potential in the limit of slow w

v has a cubic-like nullcline (along which v = 0) and the slow variable has a mono-
tonically increasing nullcline (along which w = 0) (see Fig.3.14). It is assumed
that the nullclines have a single intersection point at (v*,w*). This corresponds to
a fixed point of the system, which we identify with the resting state. A schematic
diagram of the phase plane is shown in Fig.3.15. For a finite range of values of w,
there exist three solutions v = v(w) of the equation f(v,w) = 0, which we denote by
V_(w),Vo(w), and V4 (w). Whenever these solutions coexist, we have the ordering
V_(w) < Vo(w) < Vy(w). Let W, denote the minimal value of w for which V_(w)
exists and let W* denote the maximal value of w for which V, (w) exists.

Suppose that the fixed point is located on the left-hand branch close to the mini-
mum of the cubic. It is straightforward to show that the fixed point is linearly stable
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by evaluating the eigenvalues of the corresponding Jacobian. Moreover, the system
is excitable in the sense that sufficiently large perturbations of the resting state re-
sult in a time-dependent trajectory taking a prolonged excursion through state space
before returning to the resting state (see Fig. 3.15). Such a trajectory rapidly transi-
tions to the right branch V., after which it slowly moves upward in a neighborhood
of the branch before reaching the maximum. It then rapidly transitions back to the
left branch V_ followed by slow returns to the resting state along this branch. The
time-dependent plot of the variable v can be interpreted as an action potential. Since
the resting state is linearly stable, small perturbations simply result in small ex-
cursions that decay exponentially in time. Hence, there is effectively a threshold
phenomenon in which subthreshold perturbations result in a simple return to the
resting state, whereas super-threshold perturbations generate an action potential.

f(v,w)=0

V_(w)

* action potential

Fig. 3.15: Schematic diagram illustrating the trajectory of a single action potential in the phase
plane for the ML equations. The unique rest point is stable. Inset shows the action potential as a
function of time

A more mathematical description of the above events can be developed in terms
of singular perturbation theory [173, 322, 548]. Due to the separation of time scales
with € < 1, the fast variable v rapidly adjusts whenever it can to maintain the quasi-
equilibrium f(v,w). This can be captured by introducing the slow time scale T = &f
such that (3.5.8) become

d d
eﬁ = f(v,w), d_v: =gvw). (3.5.9)
Now setting € = 0 and assuming that v is moving along the stable branches V. (w)
of f(v,w) = 0, the dynamics of the recovery variable reduces to

dw

yrie g(Ve(w),w) =Gx(w). (3.5.10)
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In the case of rapid transitions between the left and right branches, the dynamics
with respect to the fast time scale can be approximated by setting € = 0 in (3.5.8),

dv

dw
— = =0
dt

— = 3.5.11
o), (3510
Thus, on this time scale, w is constant and v converges to a stable solution of
f(v,w) = 0. Suppose that the system starts from a super-threshold initial condi-
tion (v, wp) such that vy > Vp(wy). After rapidly reaching the right branch, it takes

a finite time to reach the upper “knee” of the nullcline f(v,w) and is obtained by

integrating (3.5.10):
Wo o dw
T, ./WO G (3.5.12)
On the other hand, the time taken to return to the resting state along the left branch
is infinite, since G_(w) vanishes at the fixed point.

In the above we have focused on so-called type II excitability in which there
is a globally attracting resting state. This should be contrasted with another form
of excitability exhibited by the ML model, which is called type I excitability [173].
From a dynamical systems perspective, the latter is associated with a saddle node on
a limit cycle (SNLC), also known as a saddle node on an invariant circle (SNIC).
This is illustrated in Fig. 3.16, which shows three fixed points corresponding to a
stable node (the resting state), a saddle, and an unstable node. The stable node and
saddle lie on a closed curve consisting of the unstable manifold of the saddle. Under
a saddle-node bifurcation the saddle and unstable node annihilate resulting in the

>V

Fig. 3.16: Sketch of type I excitability in the deterministic ML model. Nullclines: v = 0 (solid) and
w = 0 (dashed). There are three fixed points: a stable node (&), a saddle (S), and an unstable node
(U). The fixed points S and N lie on a closed curve (thick black) that is the unstable manifold of S.
Under a change of parameters, the fixed points S and N can annihilate via a saddle-node bifurcation
resulting in the transition to a limit cycle oscillator
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formation of a limit cycle oscillator; this bifurcation scenario is distinct from the
onset of oscillations typical of type II excitability, which occur via a Hopf bifurca-
tion (see Box 3B). Below the SNIC bifurcation point, an action potential will occur
if the resting state is perturbed beyond the stable manifold of the saddle. In the fol-
lowing we will focus on the effects of stochastic ion channels on type II excitability.

3.5.3 Stochastic Conductance-Based Model

Let us now consider a conductance-based model of a neuron, in which the stochastic
opening of ion channels generates a stochastic ionic current that drives the mem-
brane voltage. It is then possible that ion channel noise induces SAPs, which can
have a large effect on a neuron’s function [678]. If SAPs are too frequent, a neuron
cannot reliably perform its computational role. Hence, ion channel noise imposes
a fundamental limit on the density of neural tissue. Smaller neurons must function
with fewer ion channels, making ion channel fluctuations more significant and more
likely to cause a SAP. In order to investigate SAPs, we will consider a stochastic
version of the ML model [476] consisting of N sodium and M potassium channels:

av n m

—=F(V =— V)+—=/k(V)—glV). 3.5.13
dr ( 7m7n) NfNa( )+MfK( ) g( ) ( )

We assume that each channel can either be open or closed and can switch between

each state according to the kinetic scheme

o;(v)
C 0, i=NaK (3.5.14)
Bi(v)

(Note that a more detailed biophysical model would need to treat each ion channel
as a cluster of subunits rather than a single unit [224]. In other words, the Markov
chain of events associated with opening and closing of an ion channel would involve
transitions between more than two internal states; see Sect. 3.1.)

The Na™ channels open and close rapidly relative to the voltage and K+ dy-
namics. We are particularly interested in how fluctuations affect the initiation of an
action potential due to the opening of a finite number of Nat channels. Therefore,
we imagine freezing the slow K channels, so that they effectively act as a leak
current, and simplify the sodium channels by treating each as a single activating
subunit. The stochastic membrane voltage then evolves according to the piecewise
deterministic equation

av

T =F(Vam) = 1 f(V)=g(V), (3.5.15)

N

where f(V) = fna(V), 8(V) = —geft[Vesr — V] — I represents the sum of effective
leakage currents and external inputs I, and n(¢) is the number of open sodium
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channels. The right-hand side of (3.5.15) is negative for large V and positive for
small V, which implies that the voltage V is confined to some bounded domain
[V1,V3]. Note that (3.5.15) only holds between jumps in the number of open ion
channels, with the latter described by the master equation (3.2.1). The stochastic
process defined by (3.5.14) and (3.5.15) is an example of a stochastic hybrid sys-
tem with piecewise deterministic dynamics. There has been a lot of recent inter-
est in such systems, particularly within the context of conductance-based models
[74, 81, 321, 476, 491, 600, 663]. They also arise in models of polymerization
(Sect. 4.1), biochemical chemotaxis (Sect.5.3), gene networks (Sect. 6.4), and ac-
tive motor transport (Sect. 7.4). The associated probability density p(v,n,t), which
is defined according to

p(v,n,t)dv =Prob[n(t) =n,v <V(t) <v+4dv],

given an initial condition V(0) = Vi, n(0) = ny, satisfies the differential Chapman—
Kolmogorov (CK) equation

‘3_1: - _% K%f(v) _g(v)) p} + a4 (vn—1)pv,n—1,) (3.5.16)

+o_(vyn+1)p,n+1,t) — [0r(v,n) + 0_(v,n)]p(v,n,1),

with
o+ (vn) =a(v)(N—n), wo_(v,n)=Ppv)n. (3.5.17)

The first term on the right-hand side of (3.5.16) generates the deterministic dy-
namics for a given n — see the discussion of the Liouiville equation in Sect.2.2.1
— whereas the other terms represent the transitions between discrete states of the
Markov chain. If the continuous process were an SDE, then there would be an addi-
tional n-dependent diffusion term on the right-hand side. Techniques for analyzing
differential CK equations will be developed in Sect. 7.4, 7.6, and 10.1.

In order to investigate action potential initiation, we will make the following
approximations:

(i) For sufficiently large N, we approximate the jump Markov process for the ion
channels by a continuous Markov process using a diffusion approximation as
outlined in Sect. 3.2;

(i1) The transitions between different discrete states are much faster than the volt-
age dynamics so that, for fixed v, the number of open ion channels is close to
the quasi-equilibrium x* = a(v) = o(v)/ (e (v) + B(v)). This limiting case was
originally considered by Chow and White [116].

Under approximation (i), the voltage dynamics can be described by an SDE of the

form (see (3.2.20))

av = [f(V)(a(V) FY(0)/VN)—g(V)|dr,  dY = —k(V)Ydt +b(V)aW (1),
(3.5.18)
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with
2a(V)B(V)
a(V)+B(V)

Thus the stochastic voltage is coupled to a fast Ornstein—Uhlenbeck process Y (7).
In the case of fast sodium channel kinetics (approximation (ii)), we have o, =
O(1/¢) for some dimensionless parameter 0 < £ < 1. (The time scale is fixed by
taking the relaxation time of the voltage to be of O(1).) It follows that k(V) =
O(1/€) and b(V) = O(1/+/€). Hence, we can take Y (¢) to be in quasi-equilibrium
for a given V (fast ion channels), that is, Y (t)dt ~ k(V)~'b(V)dW (¢). This then
yields a scalar SDE for the voltage:

k(V)=a(V)+B(V), b(V)=

AV = [F(V)a(V) — g(V)]di + %G(V) FV)aW (), (3.5.19)
where
bv) 20(V)B(V)
k(V) a(V)+B(V)\ a(V)+B(V)

In deriving (3.5.19), we have effectively taken a zero correlation limit of an
Ornstein—Uhlenbeck process. It can be shown that the multiplicative noise term
should be interpreted in the sense of Stratonovich [204, 321]. However, for large N
this yields an O(1/N) correction to the drift term in the FP equation, which can be
dropped. We thus obtain the FP equation

o(V) = (3.5.20)

dp(vt) 0 1 92
% —5[A(V)P(VJ)]JFﬂw[B(V)P(VJ)]v (3.5.21)
with
AW) = f()av) —g(v), BE)=[o)f). (3.5.22)
The FP equation is supplemented by reflecting boundary conditions at v = Vi, V5:
J(Vy,t) =J(Va,t) =0, (3.5.23)
with L9
Jwt) =AWw)p(vt) — ﬁxB(v)p(v,t). (3.5.24)

Note that equation (3.5.21) is identical in form to (3.2.10) except we now have a
stochastic process with respect to membrane voltage rather than fraction of open
ion channels; the latter is slaved to the voltage.

A key property that one would like to calculate is the mean time to fire an action
potential (MFPT) as a function of the stimulus current /. In the absence of noise, the
system evolves according to the deterministic equation

dvi
dt

Av)= ——————f(v)—g(v)=— (3.5.25)
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Fig. 3.17: Plot of deterministic potential U(v) as a function of voltage v for different values of
the external stimulus current /. Parameter values are N = 10, vy, = 120 mV, vegg = —62.3 mV,
gNa = 4.4 ms/cm?, ger = 2.2 ms/cm?, B = 0.8 57!, and o (v) = Bexp[(v+1.2)/9]

where U (v) is a deterministic potential. In Fig. 3.17, we plot U (v) as a function of v
for various values of the external input current and the particular transition rates

o(v) = PBexp (Z(VV——zvl)) , B = constant.

The minima and maxima of the potential correspond to stable and unstable fixed
points of the deterministic dynamics, respectively. It can be seen that below a thresh-
old current I, I < I, there exist two stable fixed points v+ (minima) separated by
an unstable fixed point at vo (maximum), that is, the system exhibits bistability.
The left-hand fixed point represents the resting state, whereas the right-hand fixed
point corresponds to an excited state. Thus, in the bistable regime the determinis-
tic system requires an external perturbation in order to generate an action potential
starting from the resting state. On the other hand, for the stochastic system it is
possible that fluctuations in the opening and closing of Na*t ion channels induce a
transition from the resting state to the excited state by crossing over the potential
hill at vg. Of course, once such an event occurs, one has to take into account the K+
dynamics in order to incorporate the effects of repolarization that return the system
to the resting state. If one includes the slow opening and closing of these channels,
then the underlying deterministic system becomes excitable rather than bistable. For
simplicity, we will assume that this does not significantly affect the noise-induced
initiation of an action potential. It turns out that such an assumption breaks down
if fluctuations in the opening and closing of K™ channels become significant [476]
(see Sect. 10.1).
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The calculation of the mean time to escape from the resting state using the diffu-
sion approximation proceeds along identical lines to Sect. 3.3. After taking v — x,
we obtain equation (3.3.34) with the FP quasi-potential ¥ = @pp determined by
equations (3.2.16) and (3.5.22):

TAWY) *f)aly) —g(y)
Dp(x) = —2 / =2 / SO (3.5.26)
Keener and Newby [321] explicitly calculated the MFPT and compared it with
Monte Carlo simulations of the full stochastic model whose probability density
evolves according to the CK equation (3.5.17). A summary of their findings is shown
schematically in Fig. 3.18. The main observation is that although the Gaussian-like
diffusion approximation does well in the superthreshold regime (I > 1), it devi-
ates significantly from the full model results in the subthreshold regime (I < L),
where it overestimates the mean time to spike. This is related to the fact that the

diffusion approximation
1010

< I>1*

108

full model

MFPT t (ms)

1
50 100
applied current | (mA)

Fig. 3.18: Schematic diagram comparing MFPT calculated using the diffusion approximation with
the MFPT of the full system obtained using Monte Carlo simulations. The scales of the axes are
based on numerical results carried out in [321] for N = 10

quasi-potential of the steady-state density under the diffusion approximation gen-
erates exponentially large errors in the MFPT. Thus more advanced asymptotic
methods are required such as the WKB approximation [321]. The application of
WKB methods to FPT problems is developed in Chap. 10.
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3.6 Stochastic Gating Model of Confinement

An interesting problem is the escape of particles from a bounded domain via the
random opening and closing of one or more channels embedded in the boundary of
the domain (see Fig. 3.19). One important application is to modeling the escape of
diffusing proteins from a corral in the plasma membrane (see Sect. 7.1). Consider, in
particular, the spatially homogeneous stochastic gating model of Brown and collab-
orators [79, 380], in which diffusion within the domain is relatively fast so that the
molecules are well mixed and one can ignore spatial effects. Let P,(¢) be the prob-
ability that there are n free particles within the domain at time 7. Denote the state
of the stochastic gate at time 7 to be the binary random variable p(¢) with p(r) =1
(u(r) = 0) corresponding to the open (closed) state. The opening and closing of the
stochastic gate is governed by the two-state Markov process

dP?

7T V-2 + 1+ P,

AP

S =P P, (3.6.1)

where Z)(t) and & (t)) are the probabilities that the gate is open and closed, re-
spectively, at time ¢, and 4 are the transition rates between the two states. Particles
can only transfer between the exterior and interior of the domain when the gate is
open, in which case the rates of outflux and influx are y and k. Note that k£ will
depend linearly on the concentration of particles outside the domain. The probabil-
ity distribution P, () evolves according to the nonautonomous birth—death master
equation

dP,
dt

= [.L(l) [kPnfl(t) + (l’l + 1)YPn+1(l) - (k+ ’)/l’l)P,,(l)] (3-6-2)

with n > 0 and P_;(¢) = 0. The positive terms on the right-hand side represent the
various transitions into the state (n) whereas the negative terms represent the various
transitions from the state (). The initial condition is P,(0) = 6, ,,; i.e., at timer =0
there are ng free particles within the domain. First, suppose that the gate is always
open so that (3.6.2) reduces to the autonomous master equation

‘Z” = kPo1 (1) + (n+ 1) YPas1 () = (k+ yn) Po(0). (3.63)

The mean concentration of particles in the domain, x(¢) = (n(¢))/V, where V is the
volume of the domain, evolves according to the simple kinetic equation

dx

This has a steady-state solution n = Vx =k/7.
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N
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Fig. 3.19: Escape from a domain with a single stochastic gate

Equation (3.6.3) is a rare example of a master equation that can be solved exactly,
and one finds that P,(¢) is given by a Poisson distribution. The simplest way to see
this is to introduce the generating function

G(z,1) = Y, Z"Pul(t),

m>0
and substitute into (3.6.3):
G G
- —1)—=k(z—1)G.
5 TYe—Do-=k-1)

This is a linear first-order PDE with nonconstant coefficients. A standard method
for solving such equations is the method of characteristics [554]. The basic idea is
to construct characteristic curves z = z(¢) along which G(¢) = G(z(z),?) satisfies

dG 0G  dzdG

dt — dt dt 9z’
such that the evolution of G is consistent with the original PDE. This then yields the
characteristic equations

dz dG
=), Z=kz-10G.
" Y(z—1), 5 (z—=1)G

Solving for z(z),
Z(t) =1+ se”

where s parameterizes the initial data. Then

dd_ct; =kse"G, G(t)=F(s)exp (kse" /y)

for some function F’ determined by the initial data. In order to determine the solution
G(z,t) we eliminate s in terms of z, which gives

G(z,t) =F([z—1]e ")exp(k(z—1)/7). (3.6.4)
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Since G(1,7) = 1, werequire F(0) = 1. Moreover, given the initial condition P,(0) =
8.ny» We have G(z,0) = 20 and F(z) = (1 +z)"0e %/ It follows that

G(z.1) = [1 +e (g — 1)|oek(i=")D/7 (3.6.5)

Note that the method of characteristics provides an alternative method for solving
equation (2.2.20) for the characteristic function of the Ornstein—Uhlenbeck process
(see Ex.3.10). More importantly, the method can also be applied to nonlinear first-
order equations of the general form

0 d
a(x,t,p)a—l; —l—b(x,t,p)a—i =c(x,1,p)p, (3.6.6)

for sufficiently smooth functions a, b, c. These so-called quasilinear equations crop
up in many models of transport processes and support nontrivial solutions such as
shock waves and rarefaction waves [554]. An application to molecular motors will
be developed in Sect. 7.5.

Returning to the stochastic gating model, we Taylor expand G(z,t) in powers of z
and find that for np = 0 (bounded domain is initially empty), we have (see Ex. 3.11),

n
P.(1) :e*“ﬂ{(l—?, Alr) = 5(1 —e ), (3.6.7)
which is a time-dependent Poisson distribution of rate A (7). It immediately follows
that
(n(6) = A1), varfn(t)] = ().

In the more general case ng # 0, the mean and variance can be calculated from the
formulae

2
o) = 29E0] (2 0) -ty = L9

z=1

Calculating these derivatives yields

(n(1)) = (no —k/7)e " +k/y, varln(t)] = (n(t)) —noe ™"

Let us now turn to the full stochastic gating model, in which the state of the gate is
given by the stochastic variable p(¢) so that there are two levels of stochasticity: the
stochastic process of exchange of particles when the gate is open and the random
opening and closing of the gate itself. For a given realization @ € £2 of the stochastic
gate (a given trajectory u(z) through state space), we can repeat the analysis of the
autonomous master equation (3.6.3), except that

e " o (1) = e Tond
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It follows that different realizations of u(z) will yield different values of the mean
and variance. Hence, a more useful characterization of the statistics is obtained by
averaging .4 (¢) with respect to all possible stochastic realizations of the gate, which
is denoted by (./4"),. The latter can be performed using a method originally devel-
oped by Kubo [358] in the study of spectral line broadening in a quantum system
and subsequently extended to chemical rate processes with dynamical disorder by
Zwanzig [707]. Following Kubo [358], consider the SDE

dX

—_— == )X (¢t

pra G120
where 1 (¢) is a discrete random variable that switches between =1 and u =0
according to (3.6.1). This is a simple example of a stochastic hybrid system (see
Sect. 3.5). Introduce the probability densities p;(x,t) with p;(x,f)dx = Prob[u(t) =
1,x<X(t) <x+dx],l =0,1, and initial conditions

pi(x,0) = 6(x— 1)IT,.

Here IT;, [ = 0, 1, are the stationary probability distributions of the two-state Markov

process (3.6.1):
Y+ Y-

, Iy = .
Y+t Y- Y+ T Y-
These densities evolve according to the equation

I =

) P

D1 IEP) g (3.6.82)
ot ox

)

_apto = Y_p1—7YiDo. (3.6.8b)

We now make the observation that p(x,f) = po(x,?) + pi(x,t) is the probability
density for the stochastic process X (¢), which has the formal solution

X(t) = N (1) = e Vhor)d!

together with the constraint that the initial state of the gate 11 (0) is a random variable
distributed according to the stationary distributions Il ;. Thus, finding the mean
of A(t) with respect to the stochastic process (z) is equivalent to finding the
conditional means

ml(t):/ xpi(x,t)dx, 1=0,1,
0

and setting

(A () =mo(t) +ma(r).



3.7 Exercises 151

In order to determine mq (t), take first moments of equations (3.6.8a,b). This
yields the matrix equation

() () =137 ) o

which has the solution
mi(t)\ _ e (Ih
mo (l) H() ’

A similar analysis can be carried out for second moments. One thus finds that the
u-averaged mean and variance are

(mu = (no—k/Y){A ) +k/7. (3.6.10)
vary[n] = (n)y = no(A )+ (r0—k/7)* (A )u = (A)3) (3.6.11)
where
T
(A (1)), = G) exp [—t (7_7”’ _)Z*)} (g(l)) (3.6.12)

for ¢ = 1,2. The averages (.#'9), ¢ = 1,2, approach zero as time increases; hence
the steady-state mean and variance are both equal to k/7y. There have been a number
of extensions of the stochastic gating model. These include taking into account the
effects of membrane proteins binding to scaffolding proteins within a corral [68]
and the analysis of the narrow escape problem for a particle that can switch between
different conformational states and can only exit a domain in one of these states
[531].

3.7 Exercises

Problem 3.1 (Chain of ion channel states). The time course of the opening and
closing of some ion channels seems to follow a power law rather than an exponential
law at large times. One way to understand such power law behavior is to consider
an ion channel with N closed states such that the transition to an open state can only
take place from state 1 at one end of a chain

b4 YN—
0&122.. =N

Bi By-1

(a) Write down the corresponding set of kinetic equations. Hence, show that when
Y» = B, = 1 for all n and o = 1, we obtain the discrete diffusion equation along
a chain with a reflecting boundary at n = N and an absorbing boundary at n = 0:
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i _ -,

d[ _p2 pla

dpn

sznfl"*'pmrl_zpm I <n<N,
dpy

W—PN—I_PNa

where pj,(t) is the probability that the channel is in state n at time 7.
(b) Given the initial condition p,(0) = 6,1, show that in the large N limit, the exact
solution is

Pn (t) = 672t [In71(2t) - In+1(2t)]a

where I,(z) is the modified Bessel function of integer order:

4k

T
I _ einkezcos
" (Z) ./—n: 21

Hint: use discrete Fourier transforms to solve the discrete diffusion equation on
the infinite lattice (Box 2A) and then use the method of images to write down
the solution for a semi-infinite lattice (by analogy with Ex.2.12).

(c) When 2t >> n, the modified Bessel function has the asymptotic expansion

I,(21) = S PR
"2 = 7= — ]

Use this to show that, for large ¢,

- n
pa(t) A3

(d) Define F(t) to be the total probability of finding the system in a closed state:
F(r) =", palt).
n=1
Show that dF /dt = —p; and, hence, F(t) ~ (1) ~"/? for large N, .

Problem 3.2 (Ion channel with multiple subunits). Consider an ion channel with
k identical open subunits, each of which can be open or closed, and a current only
passes if all k subunits are open.

(a) Let S; denote the state in which j subunits are open and let o, 3 denote the
rates of opening and closing of a single subunit. Write down the corresponding
reaction scheme

(b) Derive the kinetic equations for x;, which is the fraction of channels in state j
such that 2’;:0 xj=1.
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(c) By direct substitution, show that
k!
(k—)!

is an invariant manifold of the dynamics, provided that

xXj= n-f(l — n)kij

%:a(l—n)—ﬁn.

Problem 3.3 (Ligand-gated ion channel). Consider the following second-order ki-
netic scheme for a ligand-gated ion channel:

r(7)

= (G

rn

N e

4 r3

0

Here C and C| are the closed forms of the receptor, O is the open (conducting) form,
and the r; are voltage-independent transition rates. The transition rate r| for C — C;
depends on the concentration of ligand 7. Suppose that we make the following
approximations: (i) the transmitter concentration .7 occurs as a pulse 6 (7 —fo) for a
release event occurring at time ¢ = fy, that is, r1 (7)) = r16(t —1y); (ii) the fraction
of channels in state C is taken to be fixed at unity—this is reasonable if the number
of channels in state C is much larger than the number of channels in states C; or O.

(a) Write down the kinetic equations for the fraction of receptors in the states C;
and O, which are denoted by z and s, respectively.

(b) Solve the resulting pair of inhomogeneous linear equations assuming that z(0) =
$(0) = 0. In particular show that the fraction of open channels is given by

-1
@) =rr (L) e orn _emoimy s g
T T ) )
with 7 = 1/(r2—|—r3), T = 1/}’4.
(c) Show that in the limit 7) — T; = T, this reduces to the so-called alpha function

s(t) = rirs(t —to)e U705 >,

Such a response function is often used to model the response of synaptic recep-
tors following the release of neurotransmitter.

Problem 3.4 (MWC model). Generalize the MWC model of a ligand-gated ion
channel from two binding sites to n binding sites. Let R;, T, j = 0,1,...,n, denote
the global states (open or closed) with j ligands bound to the allosteric site. Also
define K7 and Ky to be the equilibrium constants for binding of an acetylcholine
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molecule to an individual site of a closed and open receptor, respectively. Finally,
take Y; to be the equilibrium constant associated with the opening and closing of a
receptor with j occupied sites. Defining the fraction of open receptors according to

Do — i—o[R/]
o oolRj]+ X075

use the law of mass action to derive the sigmoidal function

- Yo(1 + Kg[L))"
Poren = Yo(T + Ke[L)" + (1 + Kr[L])"

Hint: care needs to be taken in working out the combinatorial factors multiplying
K7 and Kp in the reaction diagram.

Problem 3.5 (MWC model and the Boltzmann-Gibbs distribution). Rederive
the result for the MWC model in Ex. 3.4 using the Boltzmann—Gibbs distribution
(Sect. 1.4). Use the following observations. A microstate is specified by the number
of occupied binding sites m, 0 < m < n, and whether the channel is open or closed.
The free energy of a given microstate is

El =mle, — o —kgTIn(c/co)],

where g is the binding energy when the channel is open (r = R) or closed (r =T)
and the chemical potential u = py — kT In(c/cp) takes into account that ligands are
being taken out of solution (see Sect. 1.4). Evaluate the partition function

- n! *Er/kBT
Z_rngm!(n—m)!e S

and hence determine popen. Explain the presence of the combinatorial factor in the
definition of Z.

Problem 3.6 (Master equation for an ensemble of ion channels). Consider the
master equation for the two-state ion channel model:

%P@JﬁuﬂN—n+UF@—Lﬂ+ﬁ@+UPm+Lﬂ

— [ot(N —n) + Bn]P(n,t).

(a) By multiplying both sides by n and summing over n, derive the following kinetic
equation for the mean 72 = Y_ nP(n,t):

dii

ﬁ:aw—m—m.

(b) Derive a corresponding equation for the variance 62 = (n?) — (n)2. That is, mul-
tiply both sides of the master equation by n”> and sum over n to determine an
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equation for the second moment and then use part (a). Show that the variance
decays exponentially at a rate 2(a + ) to the steady-state value

o
g OB

" (a+B)

and hence deduce that fluctuations become negligible in the large N limit.

(c) Compare the results obtained from the master equation with the analysis based
on the linear noise approximation.

(d) Construct the master equation for an ensemble of N identical, independent chan-
nels each of which has two subunits. That is, determine an equation for the evo-
lution of the probability distribution Py, »,(f) that there are n; ion channels with
J open subunits such that N = ng +n; +np.

Problem 3.7 (Bistability in an autocatalytic reaction). Consider the following
nonlinear, autocatalytic reaction scheme for a protein that can exists in two states X
andY:

k
Xkéy, X +2r 83y,
2

Let [X] and [Y] denote the concentrations of the molecule in each of the two states
such that [X] 4 [Y] = Yo fixed. The kinetic equation for [Y] is

% = —lo[Y] + ki [X] + KV IX),

where V is cell volume.

(a) Lety = [Y]/Yior. Show that after an appropriate rescaling of time, the correspond-
ing kinetic equation for y is

Yy -y 1)+ A1),
where (= k3Y2,/ka, A = ki /ko. Determine the existence and stability of the
fixed points for y. Plot the bifurcation diagram with u treated as a bifurcation
parameter and A = 0.03. Hence, show that the system is bistable over a range of
values of .

(b) Suppose that there are N molecules, that is, N = VYo, where V is cell volume.
Construct the master equation for the probability P(n,t) that there are n(t) = n
molecules in state Y at time ¢.

(c) Using equation (3.2.6), show that the steady-state distribution is

W A 1



156 3 Stochastic Ion Channels

Plot P(n) as a function of n (treated as a continuous variable over the range
[0,400]) for N = 400, u = 4.5, and u = 6 with A = 0.03. Comment on the
location of the peaks in terms of fixed points of the deterministic system.

(d) Derive the corresponding FPE using a Kramers—Moyal expansion and determine
the steady-state solution. Calculate the steady-state solution and compare with
the exact solution of part (c) for N = 40 and N = 400.

Problem 3.8 (Mean time to escape). Consider the model of bistability in a popu-
lation of two-state ion channels analyzed in Sect. 3.3 (see also Fig. 3.4). The FPT to
escape from the state x_ is
X0 ¥ NP ()
NY (X €
‘L'(x,) :N‘/xf [ ( >dXI‘/O deﬂ,

_ [FAK)
‘P(x)—./o B(x’)dx'

By following the steps in the derivation of the Arrhenius formula (3.3.32), show that
the rate of escape is given by

=~ S |ES e e [ ]

with the quasi-potential

Problem 3.9 (De Young—Keizer model). Carry out the reduction of the De Young—
Keizer model discussed in Sect.3.4.1.

(a) First write down the kinetic equations for the four states without calcium bound
to the inactivating site (Sooo0,S010,5100,5110), using the reaction diagram of
Fig.3.6a.

(b) Perform the QSS approximation by setting all time derivatives to zero and drop-
ping all slow transitions involving binding/unbinding of the calcium inactivating
binding site, that is, set k1o = k+4 = 0. Show that

K5h th
X100 = ——— — X000, X010 = —— — X000,
100 ¢+ Ks 000 010 P+ K 000

where K; = k_;/k; and
X000 + X010 + X100 + X110 = h.

Hence, determine xqpo and x 9.

(c) Show that the corresponding QSS solutions for the states with calcium bound to
the inactivating site (Soo1,S011,5101,5111) are obtained from (b) by taking K; —
K3 and h — 1 — h. Note that

X001 +Xo11 +X101 +Xx111 =1—h.
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(d) Finally, add together the four kinetic equations of part (a) and substitute for the
X;jk using their QSS solutions. Hence derive the equation

dh _ (kaKoKi+ k72PK4)Ch n k_op+k_4K3 (1—h)
dt KiKr(p+Ky) p+Ks '

Problem 3.10 (Method of characteristics). Recall that the characteristic function
for the Ornstein—Uhlenbeck process satisfies the linear PDE (see Ex. 2.5)

or or D,
ke = 22T
8t+zaz 2°

Use the method of characteristics to obtain a solution of the form
2
F(Z,l) _ I—O(Zefkt)esz /4k
and show how I is related to the initial condition for p.

Problem 3.11 (Gating model of confinement). Consider the gating model of con-
finement within a corral that was introduced in Sect. 3.6. If the gate is always open,
then the generating function for stochastic confinement is given by

G(z,t) =1 _|_efyt(z_ 1)]noek(lfe*7”)(z*1)/y.
(a) Suppose that ny = 0 (domain is initially empty). Show that P,(¢) is given by a
time-dependent Poisson process with rate
k
At)y==(1—¢"
(1) y( )

by Taylor expanding G(z,t) as a function of z.
(b) Now suppose that ng # 0. Determine the mean and variance using the formulae

2
<n(t)>=aGa(?t) ; <(n2<t)—n<t))>=a§—§§’t)

z=1

z=1

Problem 3.12 (Computer simulations: two-state ion channels). In this problem
we investigate the diffusion approximation of the master equation (3.2.1) for an
ensemble of two-state ion channels:

%P(n,t) — a(N=n+ 1P —1,0)+B(n+1)P(n+1,1)
— [0t(N —n) + Bn]P(n,t).

Take oo =1, =2, and N = 100.
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(a) Numerically solve the master equation using Euler’s direct method for ¢ € [0, 1]
and Ar = 0.01. Plot the histogram of P,(T) for T = 1 and compare with the
steady-state distribution (3.2.8).

(b) Use the Gillespie algorithm of Sect. 6.8 to generate sample paths for the number
n(t) of open ion channels for ¢ € [0, 10]. The two reactions are n — n+ 1 at arate
(N —n) and n — n— 1 at arate Bn. By averaging over sample paths, compare
the histogram of n(T) with the distribution P,(T') for T = 1.

(c) Use Euler’s direct method (see Sect. 2.6.6) to simulate the Langevin equation

1
dX(t)=|o(1 -X) - BX]dt+ —=+va(l —=X)+pXdW (1),
(1) = [e(1 = X) - BX] ;s (1=X)+BXdw(1)
obtained by carrying out a Kramers—Moyal expansion of the master equation.
Here X (¢) is the fraction of open ion channels at time . Construct a histogram
of X(T) for T = 1 and compare with the results of part (b). Repeat for N = 10
and N = 1,000 and comment on the differences.

Problem 3.13 (Computer simulations: noise-induced escape). Consider the sim-
plified stochastic conductance-based model given by equation (3.5.15):

dVv. n
Cmﬁ = ﬁgNa[VNa - V] +geff[veff - V] +1.

The transition rates for the opening and closing of the Na channels are
oy = Pexp[(v+1.2)/9](N—n), - =pfn.

Take the parameter values N = 10, C,,, = 20 uF fem?, VNa = 120 mV, Ve = —62.3
mV, gna = 4.4 mS/cm?, gefr = 2.2 mS/cm?, and B = 0.8 s~ 1.

(a) Adapt the Gillespie algorithm (Sect. 6.8) to simulate sample trajectories of the
above stochastic hybrid system. That is, use Gillespie to determine the random
sequence of times at which a jump occurs and whether the number of channels
increases or decreases by unity at each jump. In between jumps, solve the equa-
tion for V given the current state 7.

(b) Pick a value of current I (in mA) for which the deterministic system is bistable.
Taking the initial condition to be the stable rest state, determine the first time for
the system to reach the unstable fixed point. Repeat over many trials in order to
estimate the MFPT of escape. Compare with the Arrhenius formula (3.3.34) for
N =10and N = 100.



Chapter 4
Polymers and Molecular Motors

The cytoskeleton within the cytoplasm plays important roles in maintaining the
structural integrity of a cell, intracellular transport, cell motility, and cell divi-
sion. In eukaryotes, the cytoskeleton consists of three types of protein filaments—
microtubules, intermediate filaments, and actin filaments (see Fig.4.1). Actin fila-
ments are the thinnest structures (around 6 nm) whose basic building block is the
globular protein G-actin. These can assemble into a long filamentous chain known
as F-actin, which has the superficial appearance of two interlocked strands. Actin fil-
aments are relatively flexible and strong. (The degree of flexibility of a polymer can
be characterized in terms of the so-called persistence length &,,, which characterizes
the length scale over which correlations in the orientation of the polymer persist. If
Ep > L, where L is the total length of the polymer, then the polymer is said to be
rigid, whereas if £, < L, then it acts like a random coil.) Actin dynamics plays a
major role in cell motility, where one end (the + or barbed end) elongates due to
polymerization while the other end (the — or pointed end) contracts due to a combi-
nation of depolymerization and myosin motors (Sect. 8.3). F-actin also serves as a
tensile platform for myosin motors involved in the pulling action of muscle contrac-
tion. Actin filaments are themselves assembled into two general types of structures:
bundles called filopodia that consist of parallel arrays of filaments and cross-linked
networks called lamellipodia. Microtubules are hollow cylinders around 23 nm in
diameter, which typically consist of 13 protofilaments, each of which is a polymer
made up of heterodimers of alpha and beta tubulin. Microtubules project radially
from organizing centers known as centrosomes and play a key role in cell division
via the mitotic spindle (Sect. 8.2). Finally, intermediate filaments average 10 nm in
diameter, are more strongly bound than F-actin, and act to maintain the structural
integrity of a cell. Actin and tubulin filaments are assembled via the polymerization
of subunits, which change their chemical state when incorporated into a filament.
For example, actin monomers contain an ATP molecule that rapidly hydrolyzes
to adenosine diphosphate (ADP) following polymerization. Similarly, the B unit
of the tubulin heterodimer contains a guanosine triphosphate (GTP) molecule that
hydrolyzes to guanosine diphosphate (GDP) after polymerization. These chemical
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protofilament |
B-tubulin

Fig. 4.1: Cell cytoskeletal filaments. (a) Computer reconstruction of the atomic structure of an
actin filament with 13 subunits by Thomas Splettstoesser using open source software PyMol. (b)
Schematic illustration of helical structure of a microtubule. Public domain figures downloaded
from Wikipedia Commons

transformations can lead to more complex phenomena than observed in simple poly-
mers, such as treadmilling and dynamical instabilities.

Another major function of actin and microtubular polymer filaments is that they
act as effective 1D tracks for the active movement of molecular motor proteins.
Diffusion inside the cytosol or within the plasma membrane of a cell is a means by
which dissolved macromolecules can be passively transported without any input of
energy. However, there are two main limitations of passive diffusion as a mechanism
for intracellular transport:

(i) It can take far too long to travel the long distances necessary to reach targets
within a cell, which is particularly acute in the case of the axons and dendrites
of neurons.

(ii) Diffusive transport tends to be unbiased, making it difficult to target resources
to specific areas within a cell.

Active intracellular transport can overcome these difficulties so that movement
is both faster and direction specific, but does so at a price. Active transport cannot
occur under thermodynamic equilibrium, which means that energy must be con-
sumed by this process, typically via the hydrolysis of ATP. The main types of ac-
tive intracellular transport involve the molecular motors kinesin and dynein carry-
ing resources along microtubular filament tracks and myosin V motors transporting
cargo along actin filaments. As we have already highlighted, microtubules and actin
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Fig. 4.2: (a) The kinesin molecule consists of two motor units (analogous to feet) that are linked
together via a common stalk that attaches to cargo to be transported. (b) Previous studies had
shown that the kinesin molecule moves along the microtubule in steps of 8 nm. Kinetic analysis of
the dwell time between steps shows that there is an alternation of displacement from one step to the
other, supporting a hand-over-hand model rather than an inchworm model. In the latter case, both
feet would move only in 8-nm steps as the kinesin molecule’s center of mass moves. However, if
the kinesin molecule moves in a hand-over-hand motion, then the “rear” foot should take a 16-nm
step forward during one cycle and then O nm during the next cycle. (Adapted from Yildiz et al.
[695].)

filaments are polarized polymers with biophysically distinct (+) and (—) ends. It
turns out that this polarity determines the preferred direction in which an individual
molecular motor moves. For example, kinesin moves towards the (+) end whereas
dynein moves towards the (—) end of a microtubule. Each motor protein undergoes a
sequence of conformational changes after reacting with one or more ATP molecules,
causing it to step forward along a filament in its preferred direction (see Fig.4.2).
Thus, ATP provides the energy necessary for the molecular motor to do work in the
form of pulling its cargo along a filament in a biased direction. When modeling ac-
tive transport, one usually neglects the dynamics of microtubules and actin filaments
and simply treats them as static 1D tracks with periodic structure. On the other hand,
the regulation of polymerization and depolymerization by molecular motors plays
an important role in the formation and maintenance of certain cytoskeletal structures
such as the mitotic spindle (Chap. 8).
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The movement of molecular motors such as kinesin occurs over several length
and time scales [309, 325, 348, 391]. In the case of a single motor there are at least
three regimes:

(a) The mechanochemical energy transduction process that generates a single step
of the motor. In the case of dimeric or double-headed kinesin, a single step is of
length 8 nm and the total conformational cycle takes around 10 ms.

(b) The effective biased random walk along a filament during a single run, in which
the motor takes multiple steps before dissociating from the filament. For exam-
ple, kinesin takes around 100 steps in a single run, covering a distance of around
1 um. Walking distances can be substantially increased if several molecular mo-
tors pull the cargo.

(c) The alternating periods of directed motion along the filament and diffusive or
stationary motion when the motor is unbound from the filament. In the unbound
state a motor diffuses in the surrounding aqueous solution with a diffusion co-
efficient of the order 1 um?s~!. However, molecular crowding tends to confine
the motor so that it stays close to its detachment point. In the case of multiple
molecular motors transporting cargo, the resulting complex can exhibit bidirec-
tional motion [244, 359, 577, 677].

Advances in experimental techniques have generated considerable information
about the structural properties of molecular motors and their dynamics. For example,
optical traps (Sect. 1.2) have been used to measure how changes in ATP concentra-
tion affect the force—displacement properties of both kinesin [571, 658] and dynein
[201, 335]. A sketch of typical results obtained for kinesin is shown in Fig. 4.3. Such
data can be incorporated into models at levels (b) and (c). On the other hand, infor-
mation about the energetics of the various conformational states and the rates of
transitions between them are not yet sufficient to develop detailed biophysical mod-
els of motors. Hence, it is not possible to generate realistic velocity—force curves,
for example, without considerable data fitting. Thus much of the work on molecular
motors at the smallest scale (a) is of a more qualitative nature, in which one tries to
understand the basic principles that allow nanoscale machines to do useful work in
the presence of thermal noise—so-called Brownian ratchet models.

In addition to intracellular transport, molecular motors perform many other func-
tions within a cell:

(1) Muscle contraction and cell locomotion due to the collective action of multi-
ple myosin II motor heads (cross bridges) interacting with actin filaments (see
Chap. 15 of Keener and Sneyd [322])

(i) The reversible action of rotary motor ATP synthase, which either produces ATP
using ion gradients or acts as an ion pump fueled by ATP hydrolysis [166]

(iii) The swimming and tumbling of bacteria such as E. coli driven by flagella rotary
motors (see Sect.5.3)
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Fig. 4.3: Sketch of results from optical trap measurements of kinesin. (a) Variation of velocity
with load for high and low ATP concentrations. (b) Variation of velocity with ATP concentration
for low and high loads. (Redrawn from Visscher et al. [658].)

(iv) Transcription of RNA from DNA via RNAP [669] (Sect. 6.6)

(v) The action of viral DNA packaging motors that inject viral genomic DNA into
the protein shell (capsid) of a bacteriophage (a virus that infects and replicates
within bacteria) as part of its replication cycle [697]

In this chapter we introduce some basic stochastic models of polymerization and
of molecular motors, involving both discrete and continuous Markov processes. The
dynamics of polymers will figure significantly in Chap. 8 on the self-organization of
the cytoskeleton, whereas the role of molecular motors in active intracellular trans-
port will be considered in Chap.7. For a comprehensive introduction to the me-
chanics of motor proteins and the cytoskeleton, see the book by Howard [275]. We
begin by considering a simple 1D stochastic model of polymerization and depoly-
merization, which neglects molecular details such as the structure of heterodimers
and helical protofilaments (Sect.4.1). The model takes the form of a birth—death
process that keeps track of the addition or removal of monomers from one or both
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ends of the polymer. We also consider two models of microtubule catastrophe, a
two-state model of growth and shrinking phases and a more detailed model of the
effects of ATP hydrolysis and cap formation.

In Sect.4.2 we introduce the theory of Brownian ratchets by considering the
FPE for a Brownian particle moving in a periodic ratchet (asymmetric) potential.
We show that the mean velocity of the Brownian particle is zero, which implies that
such a potential cannot provide a mechanism for a molecular motor to do useful
work against an applied load. One mechanism for breaking the periodicity is to rec-
tify the motion, as exemplified by polymerization ratchets and translocation ratchets;
energy is provided by the binding of a molecule to the polymer or protein. Polymer-
ization ratchets play a major role in cell motility (Sect.8.4) and cell polarization
(Sect. 9.5), where the force exerted by an actin filament extrudes the cell membrane
in a particular direction. On the other hand, the translocation ratchet is used to model
the transport of a polymer through a membrane pore. On one side of the membrane,
proteins known as chaperones, which are too large to pass through the pore, bind
the polymer and thus rectify its motion through the pore (see also Sect. 7.3).

In Sect.4.3 we describe a qualitative model of processive molecular motors
such as kinesin and dynein that is based on a two-state Brownian ratchet (flash-
ing ratchet). The basic idea is that the motor has to negotiate a periodic potential
energy landscape based on its interactions with the microtubule filaments and the
form of the landscape depends on the conformational state of the motor. (The idea
of representing a molecular motor in terms of several conformational states that
depend on interactions with a filament was first introduced by Huxley in his theoret-
ical study of muscles [290].) We show that useful work can be generated provided
that the transition rates between the different conformational states do not satisfy
detailed balance, which is achieved via the hydrolysis of ATP. We end by briefly
describing an alternative, kinetic approach to modeling the stepping of molecular
motors, based on a discrete Markov process. The state transition diagram includes
both jumps between conformational states and jumps between neighboring sites on
the filament.

We further develop the theory of molecular motors in Sect. 4.4, where we con-
sider three examples of the collective motion of an ensemble of molecular motors:
(i) the tug-of-war (ToW) model of bidirectional vesicular transport by opposing
groups of processive motors; (ii) the motor-assisted extraction of membrane nan-
otubes; (iii) a model of interacting motors attached to a rigid cytoskeletal backbone.
We show how the last two models support collective oscillations consistent with
those seen experimentally. We also review the Hopf bifurcation theorem and linear
stability analysis, since the Hopf bifurcation is the underlying mechanism for the
emergence of these collective oscillations. Finally, in the appendix (Sect.4.5) we
provide a brief introduction to the statistical mechanics of polymers, building upon
the theory briefly summarized in Sect. 1.4. We focus on how entropic forces arise
from the uncoiling of a polymer, since it leads to a reduction in the number of pos-
sible configurational states. Some of the ideas will later be used to study the effects
of entropic forces on polymer translocation through a membrane pore and diffusion
through narrow channels (Sect. 7.3).
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4.1 Polymerization

4.1.1 Simple Model of a Single Polymer Filament

Consider, for simplicity, monomers binding or unbinding at the + end of a single-
stranded filament (see Fig.4.4 and Ex.4.1). (For an extension to multi-stranded
filaments see [614] and Ex.4.2.) Suppose that the minimum length of the polymer
is either a single monomer or a critical nucleus of M monomers, which for the
moment is considered stable. Let n, n > 0, denote the number of monomers added
to this critical nucleus and take the rate of monomer binding and unbinding to be
7 and &, respectively. The probability P,(¢) that the filament contains n additional
monomers at time ¢ satisfies the master equation

dp,
o =¢eP1(t) +wP—1(t) — [e+ @W|Py(t), n>0 (4.1.1)

supplemented by the reflecting boundary condition

ddito :EPI(Z‘)—TL'P()(Z‘), 4.1.2)

and the normalization condition ¥, P,(¢) = 1. We are assuming that there is an un-

limited supply of monomers. First, note that if we multiply both sides of Eq. (4.1.1)

by n and sum over n, then we obtain a mean-field equation for the mean change in

length (n) =Y., nP,, namely,
d(n)
—— =n—-¢e+EeR. 4.1.3

7 +ehy (4.1.3)
If the master equation has a stationary solution, then
ePyy1+nP1—[e+ 7P, =0, n>0, eP =nph.

Since the binding/unbinding rates are n-independent, the solution is of the form
P, = CA". Substituting this into the stationary equation for n > 0 gives

eA™ 4 gA ! e+ 2]A" =0, n>0,

which reduces to the quadratic equation
2 7T
A+rA—(14r) =0, r= -
This has the solutions A = 1 or A = r. The normalization condition CY,,. A" =1

requires that A < 1 so that there exists a unique stationary solution provided that
r/e < 1. Solving for C using the normalization condition then gives
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nucleus

Fig. 4.4: Simple model of F-actin undergoing polymerization at one end

T T

P, = (1——) (—) n>0. (4.1.4)
€ €
It also follows that d(n) /dr = 0.

So far we have considered a stochastic model of a single filament. Each model
simulation generates a sample path of the stochastic behavior, and statistics can be
extracted by running many trials. An alternative picture is to consider a large popu-
lation of N identical filaments. Suppose that each filament is in the same initial state.
For sufficiently large N, we expect the number X,,(z) of filaments having additional
length n to be X, () = NP,(t). Since the transition rates are n-independent, we can
simply multiply the master equation by N to obtain corresponding kinetic equations
for the X,, with 3> X,,(f) = N. As we have discussed in the context of chemical re-
actions, the kinetic equations for a population of filaments are deterministic. If one
wanted to take into account fluctuations due to intrinsic noise, then one would have
to consider the master equation for the probability distribution P(My, M|, ..., My,1)
where M,, is the number of filaments in state 7.

The deterministic population model has been extended to take into account the
disappearance and production of critical nuclei of size M [156, 282]. Taking X, to
denote the fraction of filaments of length #n, the kinetic equations are

dx,
dt” =X, 1(t) + X 1(t) — [+ 7)Xu(t), n>M 4.1.5)
and
dx,
d—;” = eXp1 (1) — (T + €)Xy (1) + o, (4.1.6)

where nuclei can disappear (convert back to M monomers) at a rate € and are pro-
duced at arate 0. Assuming a fixed background monomer concentration a, the bind-
ing and production rates are taken to be

T =ma, ©=cya", 4.1.7)

with 0y, Ty independent of a. One no longer has a conservation condition for the
total number of filaments. However, if /€ < 1, then one can still construct a steady-
state solution of the form X,, = C(x/¢€)". Substituting into the steady-state solution
for n = M, we have

Ce (g)MH —C(e+m) (S)M+ c=0,
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which implies that C = (o /¢)(e/n)M and

L IC R T

It immediately follows that the mean filament length L in the population is

%(n—M)Xn Y n(n/e)

L=M4"M_ M0 _M+1”/7:/8.
> Xu Y. (m/e)"
n=M n=0

Hence, the mean length diverges as & — € from below.

It is also possible to analyze the stability of the steady state in the case that the
polymers have a maximum size n = J. After dividing the kinetic equation by € and
rescaling time, we obtain the matrix equation

dX

2 _mx

0 +s,
where X = (X, Xpr11,---,X7)7, s = (6/€,0,...,0)T and M is the tridiagonal
matrix

—(14r) 1 0 0--0
ro—(1+r) 1 0.0

M — 0 r —(14+r1---0
0 e 07 1

This linear system has a general solution of the form

J-M+1
X(1) =X+ z Vje)tf",
=1

where X is the steady-state solution and 0,A;, j = 1,J+ 1 — M are the eigenval-
ues of M. We can now use same basic results from linear algebra. First, since M
is tridiagonal with M,, ,,; 1M, 1, = r > 0, it follows that the eigenvalues are real
and simple. In particular, none of the eigenvalues A; vanish. The Gershgorin disk
theorem can then be used to establish that none of the eigenvalues A; are positive
definite and are thus negative definite. The theorem states that the eigenvalues of the
tridiagonal matrix M are contained in the union of disks D,, in the complex A-plane
with
D, = {M’ _Mnn| < z |Mnk|}'
k#n

The first disk D; has center at A = —(1+ r) and radius 1, whereas all the disks
Dy,...,Dj_1 have centers at A = —(1+r) and radii 1+ r. All of these lie in the
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left-half complex plane. Finally, D; has a center at A = —1 and radius r, which also
lies the left-half complex plane provided that r < 1.

Now suppose that actin monomers can bind or unbind at both ends with rates k%,
and kfﬁ», as shown in Fig. 4.5. The binding rate is multiplied by a fixed background
monomer concentration a. (The spatial effects of a nonuniform monomer concen-
tration are considered by Edelstein-Keshet and Ermentrout [157]; see also Ex.4.3.)
The difference between the two ends is due to the fact the ATP-actin quickly hy-
drolyzes to ATD-actin so that the tip consists of ATP-actin and the tail consists
of ATD-actin. Rather than writing down the master equation for the system, let us
consider the equations for the mean number of monomers n+ added at each end.
Assuming that the filament is sufficiently long, we have

dny dn_ _ _

7 = k;rna — kiff? 7 = konél — koff' (419)
It is clear that the & end grows provided that a > a, where a =k ;/ko,. If af ~
a_ , then both ends shrink or grow simultaneously. On the other hand, if a} <a < a
then the plus end grows at the same time the minus end shrinks. Finally, adding the
pair of Eq. (4.1.9) shows that

dn
— = kona — k.
dt on off s
with n = ny +n_, kofr = k:)rff + kg, and koy = kjn + k,,- Hence, if the monomer
concentration a = ag, where
+ —
_ koff+k0ff — kOff
a=—F—"- =7
kon + kon

)
on

@ \‘\koﬁ Kon % O

Fig. 4.5: Model of F-actin undergoing polymerization at both ends

then the total filament length remains constant even though monomers are constantly
moving along its length—treadmilling.
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4.1.2 Microtubule Catastrophes

An interesting aspect of microtubules is that they undergo periods of persistent mi-
crotubule growth interrupted by occasional switching to rapid shrinkage know
as “microtubule catastrophe” [443]. Microtubules grow by the attachment of
GTP-tubulin complexes at one end. In order to maintain growth, the end of the
microtubule must consist of a “cap” of consecutive GTP-tubulin monomers. How-
ever, each polymerized complex can hydrolyze into GDP-tubulin such that if all
the monomers in the cap convert to GDP, then the microtubule is destabilized, and
there is rapid shrinkage due to detachment of the GTP-tubulin monomers. The com-
petition between attachment of GTP-tubulin and hydrolysis from GTP to GTD is
thought to be the basic mechanism of alternating periods of growth and shrinkage.

Two-State Model

One approach to modeling catastrophe is based on an effective two-state model, in
which the microtubule exists either in a growing phase or a shrinking phase and

X(t)

(ii)

/\/AV/\\/\/ VARYSIVAYYYA

time t

Fig. 4.6: Schematic diagram illustrating two phases of microtubule growth depending on the sign
of the mean growth rate V. (i) For V > 0 the microtubule undergoes unbounded growth. (ii) For
V <0 the frequency of catastrophes increases so that there is bounded growth. The mean length as
a function of time is shown by gray curves

there are stochastic transitions between the two states based on a Markov process
[50, 146]. The microscopic details of cap formation and hydrolysis are not modeled
explicitly. It is assumed that one end of a microtubule is fixed and the position of
the other end is taken to be a stochastic variable X (¢), which can also be identified
as the variable length of the microtubule. Let Py (x,1) be the probability density that
at time ¢ the end of the microtubule is at X(¢) = x and it is in either the growing
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phase (+) or the shrinking phase (—). The Dogterom-Leibler model of microtubule
catastrophe takes the form [146]

dP. dP.
a—::—V+a—;—k+P++k7P7 (41103)
JP_ JP_
W—ny—kfpf‘f'kjLPjL. (4110b)

Here vy and v_ are the average speeds of growth and shrinking and k4 are the
transition rates between the two states. Both v and k_ are assumed to vary linearly
with the tubulin concentration c at the tip of the microtubule, k— = kc, v = cu; the
concentration c is taken to be fixed. We can determine a condition for the existence
of a steady state by adding Egs. (4.1.10a) and (4.1.10b) and setting d,P+ = 0. This
shows that
dP; oP_
Tox T ox

and thus v Py —v_P_ = constant. Assuming a semi-infinite domain for x, normal-
izability of Py implies that the constant must be zero and, hence, P = P/vy with P
satisfying the equation

dP k. k \%4
)[R k] py = Yo,
dx Vo vy D
where
V _ k, Vy — kJrV,
ki +k_

is the mean speed of microtubular growth (based on the steady-state solution of the
two-state Markov process describing the switching between growth and shrinking
phases) and

vy

okt

is an effective diffusivity. It immediately follows that there exists a steady-state so-
lution, P(x) = P(0)e"*/P 0 < x < oo, if and only if V < 0. In the regime V > 0,
catastrophe events are relatively rare and the microtubule continuously grows with
mean speed V, whereas, for V < 0, the catastrophe events occur much more fre-
quently so that there is a balance between growth and shrinkage that results in a
steady-state distribution of microtubule lengths (see Fig. 4.6).

Model of Hydrolysis and Caps

Another approach to modeling microtubule dynamics is to include a simplified des-
cription of hydrolysis and cap formation that involves only a few model parameters
[11, 185, 186]. Here we will describe in some detail the model of Antal et al. [11].
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The microtubule is taken to consist of a mixture of GTP-tubulin complexes (GTP-T)
and GTD-tubulin complexes (GTD-T). A given configuration is represented by a
string of + and — symbols corresponding to GTP-T and GTD-T, respectively. Three
basic processes are considered:

1. Attachment: Growth of a microtubule occurs via the attachment of a GTP-T
monomer at one end, with the attachment rate depending on the identity of the
current monomer at the tip. That is,

|...4+) = |...++)atrate A, |...—) = |...—+)atrate pA,

with p < 1.

2. Conversion: Once incorporated into the microtubule, each GTP-T can indepen-
dently convert by hydrolysis to GTD-T:

[...+...) = |...—...) atrate I.

3. Detachment: Shrinkage of a microtubule occurs via the detachment of a GTD-T
monomer from the end of the microtubule

[...=)y = |...)atrate u.

In general, one finds that there are two phases in the parameter space (4, U, p),
one corresponding to a growing phase with average growth rate V(A,u,p) and
the other to a bounded phase. The two phases are separated by a phase boundary
U = (A, p) along which V = 0. Following Antal et al. [11], we will develop the
stochastic analysis of the model by considering various limiting cases.

Unconstrained Growth. First, suppose that there is unrestricted growth (1 = 0)
and the attachment rate is independent of the end monomer (p = 1). The speed
of growth is then simply V = A. The kinetic equation for the mean number x of

GTP-T monomers in the chain is
dx B
dt

—X.

The probability p,,(¢) that there are m GTP-T monomers at time ¢ evolves according
to a birth—death master equation (6.2.1):

dpm

P — -+ 1) () + 2pm1(6) = (h - m)p(0).

This is identical in form to Eq. (3.6.3), which means that p,,(¢) is given by the time-
dependent Poisson distribution

)= A =A(1—e), 4.1.11)
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GTP-T region
GTD-T region
k
«—>
/
A
cap

Fig. 4.7: Schematic diagram illustrating a cap of GTP-T monomers and additional islands of
GTP-T

and

(m(1)) = varm()] = A(1 —e ™).

Cap Length. The conversion of GTP-T to GTD-T means that more recently attached
monomers around the tip region are more likely to be GTP-T, whereas monomers
in the tail are predominantly GTD-T. The cap is defined to be the region from the
end of the microtubule to the first GTD-T monomer (see Fig.4.7). Let m; be the
probability that the cap is of length k and consider the associated master equation

dm
d_l‘]{:k(ﬂkfl_nk)_kﬂk'i' z T, 4.1.12)

s>k+1

for k > 0 and m_; = 0. We are assuming each GTP-T monomer in the cap is equally
likely to hydrolyze. Thus, the last term on the right-hand side represents the prob-
ability that a cap of length greater than k hydrolyzes at the k + 1th site. Adding the
first k — 1 equations gives (in steady state)

mA2m+...+k—D)m_ 1+ Am_ =N +No+ ...+ N,

where Ny = ¥~ 7. Using the fact that N; = Ny +m 1 +... + 7 for j <k, we see
that

k
Tp—1 = - Ng.
k=1 = 7Nk
From the identity N;,_| — Ny = m_, it follows that
A
Ny=—F=N;_1.
k= A et

Iterating this equation and using Ny = 1 give

o MT(+2)
T Tk+1+2)
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where I'(z) is the gamma function
I'(z)= / e ds, (4.1.13)
0

with
I'(1+A) 1

Fk+1+A) (k+A)(k—14+A)...(1+A1)

Thus, the stationary cap length distribution is

(k+ 1A (1+2)
F(k+2+A)

= (4.1.14)

We can now calculate the mean cap length using

<k> = Zkﬂk: zk[Nk_Nk+1] = ZN/(: -1+ sz'

k>1 k>1 k>1 k>0

Given the solution for N; and the properties of confluent hypergeometric functions
F(a,c;x) (see Box 4A), we have

(k) = —1+F(1,2+ 1:4) = —1+ Ae*A *y(2, ),

where ¥(a, x) is the incomplete gamma function. Finally, using the asymptotic result
T
Y(A,A) — ,/ﬁ)t’le”l, A>1,

(k) = \/7A)2. (4.1.15)

we see that

Thus a growing microtubule with A GTP-T monomers has a cap size that scales

as \/I

Box 4A. Hypergeometric series.

The confluent hypergeometric function is defined according to the infinite
series

F(a,c;x) = i (a).x"

= (c)nn! ’

where we have used the Pochhammer symbol

(a)p=ala+1)(a+2)...(a+n—1), (a)=1.
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The congruent hypergeometric function has the integral representation

c 1
F(a,c;x) = mfo ex’t“’l(l _t)67a71dt

for Re[c] > Re[a] > 0. An important special case is

1 1
F(l,l—i—l;x):/ ex’(l—t)lfldt:ex/ e ™t du
0 0

= xx’l/ eyt du
0
=Aex *y(A,x),

where y(A,x) is the incomplete gamma function.

Constrained Growth. There are two mechanisms for slowing the growth rate; con-
version from GTP-T to GTD-T at the tip resulting in a reduced rate of attachment
(for p < 1) and detachment of GTD-T at the tip (1 > 0). First, consider the effect of
having p < 1 but no detachment. In determining the rate of growth, it is now nec-
essary to keep track of the hydrolysis state of the end monomer. Thus, the kinetic
equation for the number of GTP-T monomers in the chain becomes
dx

— = —x+pAm+A(1 —m),
dt
where 7 is the probability that there is no cap. Extending Eq. (4.1.12) to the case
p <1 gives

d o

— = —pAmy+ (1 — mp).

i pATo+( 0)

This pair of equations yields the steady-state solution

The steady-state speed of growth of the microtubule is

1+ A
1+pA’

V(p,A) = pAng+A(1l —ng) = pA

Let us now calculate the probability distribution of microtubule lengths P(L,#). Let
X(L,t) and Y (L,t) denote the conditional probabilities that the length equals L and
the end monomer is GTP-T and GTD-T, respectively. These probabilities evolve
according to
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dxc(ll;ut) =AX(L—1,8)+pAY(L—1,t)— (1+A)X(L),
dy(L,t)
yr =X(L)—pAY(L).

Adding this pair of equations and using P =X +7,

%[t"t) =AX(L—1,t)+ pAY(L—1,t) — AX(L) — pAY(L).

For sufficiently long filaments, the state of the last monomer does not depend on
polymer length so that

X(L)=(1—-m)P(L), Y(L)=mP(L).
Substituting into the equation for dP/dt gives

dP(L,t)

7 =V(p,A)[P(L—1,t)— P(L,t)]. (4.1.16)
This represents a Poisson process with rate V so that

vt v,

P(La) = e,

4.1.17)

and
(L)y=Vt, var[L]=Vr.

Finally, consider the general case ¢ > 0 and p < 1. The probability that there is no
cap (the end monomer is GTD-T) evolves as

dm
d_to = —pAmy+ (1 — m) — LA,

where .4y = Pr{+—)}, and the corresponding speed of growth is
V(A,u,p) =pAmy+A(l —my) — ump.

The difficulty in analyzing the general case is due to fact one has to solve an infinite
hierarchy of higher-order correlations in order to determine .4). However, progress
can be made in certain limiting cases [11]. For example, suppose that A, u < 1 so
that rate of conversion GTP-T — GTD-T is much faster than the other processes.
Consequently, hydrolysis occurs as soon as a monomer attaches, that is, my ~ 1.
Hence, the growth phase occurs when pA > u and

V=pA—u.
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On the other hand, when A >> 1, there is a high probability that the end monomer is
GTP-T so that my ~ 4. Consequently, the steady-state distribution is

1
SR Py T
and : Iy
v d=phA+p
1+pA+pu

4.2 Brownian Motion in a Periodic Potential

One qualitative method for modeling the stepping of molecular motors is based on
the theory of Brownian ratchets (see the extensive review by Reimann [529]). Here,
we develop the theory by considering the classical problem of how to solve the
FPE for a Brownian particle in a periodic potential. Therefore, consider the 1D FP
equation

Ip 1L VW -Flp 9%
dr O\ kT ox oxz |’

4.2.1)

where V(x) is an L-periodic potential, V(x+ L) = V (x) for all x, and Fj is a con-
stant external force (see Fig. 4.8). We begin by describing the standard Stratonovich-
based calculation of the mean velocity [253, 529, 612, 701] and show that it is zero
when Fy = 0, i.e., the motor cannot do any useful work. We then consider one mech-
anism for breaking periodicity that is based on rectification. An alternative mech-
anism, involving ATP hydrolysis and the breaking of detailed balance, will be the

V(x)

_> X
V(x)—Fox <—

F0>0

Fig. 4.8: Brownian particle moving in a periodic potential V (x). In the absence of tilt (Fp = 0) the
mean velocity in the long-time limit is zero. On the other hand, in the presence of a tilt (Fy # 0),
the net motion of the particle is in the direction of the force
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subject of Sect.4.3. The first step is to introduce the effective potential or free en-
ergy ¥ (x) = V(x) — Fyx and to note that ¥”(x) is periodic even though ¥ is not.
Next we define the reduced probability density and currents

plx,t) =Y, plx+nLt), Jlx)= Y J(x+nL,) (4.2.2)
n=—oo n=-—oo
with
_ 1 / Jap
J(x,t)— D() |:kB—T/7/ (x)p+ a] .
It immediately follows that
L
Plx+Lo1) = plx.i), / plx)dx= 1. (4.2.3)
0

The periodicity of #’(x) implies that if p(x,¢) is a solution of the FP equation, then
so is p(x+nL,t). (Note that p(x,?) itself is not periodic; otherwise it would not be
possible to satisfy the normalization condition [ p(x,f)dx = 1.) The principle of
superposition for a linear PDE then shows that p satisfies the FP equation

dp(x,t) N dJ(x,1)
ot ox

=0, (4.2.4)

with
) 1 op
J(x,t)=—Do | —=7"(x)p+ = 425
(50) = =00 | o 009+ 2L @25)
and periodic boundary conditions at x = 0, L. There exists a stationary solution py
of the reduced FP equation with constant flux J such that

d ( v /ksT # o vt
-~ (e p()(x)) =5 . 4.2.6)

(The full FP equation does not have a nontrivial steady state, since p(x,7) — 0 as
t — oo.) Integrating this equation from x to x + L and using periodicity yield the
stationary solution

. Jo (x)
po(x) = ma 4.2.7)
where
1 ) x+L
() = e VT / &7 O)/kaT gy, 4.2.8)
0 Jx

Finally, Jy is determined by imposing the normalization condition on p.

A quantity of particular interest is the ensemble averaged velocity v with vdt =
(dX (¢)). It turns out that this is equal to the rate of change of the ensemble averaged
position [529]. Recall that the solution of the FP equation (4.2.1), p(x,7), is the
probability density on the sample space €2 of solutions to the Langevin equation
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_ F() — V’(x)

dx(t) +/2DodW (1),

where 7 is the drag coefficient with Doy = kgT. (We assume some fixed initial con-
dition X (0) = x¢). The connection between the two paradigms can be expressed as

plxt) = (8(x—X(1))),

where for fixed (x,), {...) denotes averaging with respect to realizations of the
Wiener process. (This should be contrasted with the definition (x(¢)) = [xp(x,)dx.)
Taking differentials of both sides with respect to time gives

dp(x,t)dt = —(8'(x—X(1))dX (1)),
and, since dyp = —dyJ(x,t), implies that
J(x,t)dt = (6(x— X (2))dX (1)).
Integrating both sides with respect to x yields the result

(X (1)) = [ [ ZJ(x,t)dx} dr. (4.2.9)

The right-hand side of Eq. (4.2.9) can be rewritten as

- { /7 Zx xJ(x,t)dx} di = [ /7 Zxa,p(x,t)dx} di = @d;.

We deduce the important result that [529]

d{x(t
(dX (1)) = %dt.
Equation (4.2.9) thus implies that
oo L .
v :/ J(x,t)dx :/ J(x,1)dx. (4.2.10)
oo 0

Since v = Lfo for constant current, it follows that
1 — e Fol/ksT

L——m.
Jo' A (x)dx

4.2.11)

It can be seen that there is no net motion in a purely periodic potential, since the
numerator vanishes when Fy = 0. Moreover the net direction of motion for Fy # 0
is in the direction of the applied force. Note that in the case of a space-dependent
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V'

Fig. 4.9: Brownian particle moving in a periodic ratchet potential V (x)

diffusion coefficient D(x), the above analysis is easily extended with .4"(x) now
given by [82]

W)= e Wt [T L vt gy,

Jx )

The result that there is no net motion in a periodic potential (F' = 0) can be counter-
intuitive when considering ratchet potentials as shown in Fig. 4.9, since one might
think that it is more difficult to move backward and cross the steep slope.

4.2.1 Polymerization Ratchet

One interesting application of ratchet potentials is to the so-called polymeriza-
tion ratchet [507], which is a simplified model of the role of actin polymerization
in changing the shape of a cell’s membrane during cell motility [444, 447] (see
Sect. 8.3). Suppose that a section of cell membrane wall is undergoing Brownian

actin filament

>
a 4/ )
k_
O membrane

[

» X

Fig. 4.10: (a) Cartoon of polymerization ratchet model. (b) Simplified ratchet model
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motion in the presence of a resistive force F due to stretching (see Fig. 4.10a). This
motion is rectified by the addition of actin monomers to the end of an actin polymer
filament, whenever the gap x between membrane wall and filament is sufficiently
large. Assume that in the absence of a load force, actin monomers are added at a rate
k+m and lost at a rate k_, where m is the background concentration of monomers.
First, consider the limiting case in which the mean time between attachments is suf-
ficiently large so that the Brownian particle reaches thermal equilibrium. This means
that the probability density for a gap of size x is given by the Boltzmann—Gibbs dis-
tribution (Sect. 1.4):

F o~ Fx/keT
kgT '

An estimate of the mean polymerization velocity is then

plx) =

v=alkymP(x>a)—k_],
where a is the size of a monomer and

P(x>a)= /wp(x)dx = ¢ Fa/ksT

Finally, using detailed balance,

kim _ AGir
T ¢ ’

where AG is the binding energy, we have
v=ak_ |eAG-Fal/ksT _ 1] (4.2.12)

which suggests that growth stops when the resistive force ' becomes sufficiently
large such that F > Fg, where the stall force Fs = AG/a. A sketch of the velocity-
load curve for typical values of k. ,m,k_, and a is shown in Fig.4.11.

Let us now turn to the diffusion-limited case, which has been analyzed by Peskin
et al. [507] using a Fokker—Planck description of the process shown in Fig.4.10a.
Here, we will consider a reduced model, consisting of a Brownian particle moving
in a ratchet potential (see Fig. 4.10b). This is obtained by ignoring spontaneous un-
binding of monomers (k— = 0) and assuming that as soon as the distance between
the polymer and the wall is equal to a, a new monomer is immediately inserted,
resulting in a sudden drop in energy by an amount AG. However, it is possible to re-
verse direction by jumping over a free energy barrier of height A G—this represents
the dislodging of a monomer due to wall motion.

The analysis of the reduced model proceeds along similar lines to the general
motion of a Brownian particle in a tilted potential with

Y (x)=Fx—nAG, na<x<(n+1)a.
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Fa/kgT

Fig. 4.11: Sketch of typical velocity—force curve based on Eq. (4.2.9)

However, one now needs to take into account the discontinuities in V (x) at the points
x = na, integer n. Thus, Eq. (4.2.6) still holds, but care must be taken when integrat-
ing this equation with respect to x € (0,a]. That is, it is necessary to introduce the
matching condition

lim po(x)e” ™ = lim po(x)e” ™.
x—at x—a~
One finds that (see Ex.4.5)
2Dg /2 Fa
_ =0 i = 4.2.13
¢ (- -a T iT (4.2.13)

with
eAG/kBT -1
= SACFalkT 1 4.2.14)
Note that v — 0 as Fa — AG, since &/ — oo. On the other hand, in the regime
AG > Fa and kgT > Fa,
v&2 2Dy /a.

This latter result can be understood as follows: in the absence of a force F', the mean
time for a diffusive displacement of size a is T = a* /2Dy so that the mean speed is
v=a/T.

4.2.2 Translocation Ratchet

Following gene expression, many proteins have to translocate into or across a cel-
lular membrane. Examples include translocation through nuclear pores and through
pores in the endoplasmic reticulum. It has been suggested that translocation may be
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driven by a Brownian ratchet [212, 507, 592]. The basic mechanism is illustrated
in Fig.4.12. Once the protein chain enters a pore, thermal fluctuations cause it to
diffuse back and forth through the pore without any net displacement. However,
suppose that the protein has ratchet sites that are equally spaced along the chain
with nearest neighbor separation 8. In the case of a perfect ratchet, it is assumed
that once a ratchet site has passed through the pore it cannot reenter the pore, that
is, it is reflected. On the other hand, for an imperfect ratchet there is a certain prob-
ability  of reflection. The latter could be due to the binding of a macromolecule
(chaperonin) to the ratchet site on the distal side of the pore.

Consider a translocation ratchet and let p(x,¢) be the probability density that
X(t) = x, where X(¢), 0 < X(t) < 0, is the position of the first ratchet site to the
right of the pore exit. Let F' be the net force resisting translocation of the protein.
The corresponding FP equation takes the form

dp dJ DF ap
— 4+ === J=——p—D——. 4.2.15
o Tax [T @215
The corresponding boundary conditions for a perfect ratchet are
J(0,¢)=J(8,1), p(6,t)=0. (4.2.16)

The periodic flux condition expresses the fact that as soon as one ratchet site crosses
x = 0, another site appears at x = 0, with x = § treated as an absorbing boundary.
The steady-state solution satisfies the constant flux condition

DF
pZf —

——p— =Jo.
kBTp ox 0

Multiplying both sides by D~'ef*/%sT integrating from x to &, and using the ab-
sorbing boundary condition yields

(x) = kBD]ZO [eF(‘S”‘)/"BT — 1} .

kot [l chaperonin

translocation pore

Fig. 4.12: Cartoon of a translocation ratchet
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Imposing the normalization condition fol p(x)dx =1 then determines Jy according to

Joo6% 1 Fé
= - 1-0], 0=-—.
0] kT

It follows that the average speed of the perfect translocation ratchet is [507]

2D o’
V= 5.]0 = —=

T 4.2.17)

Now suppose that each ratchet site can exist in two states that are in equilibrium
kOl‘l
So = S1,
off

with only S| ratcheted. Hence Sy passes freely through the pore in both directions,
whereas S is reflected. The probability of being in the ratcheted state is then

kOIl

= ——.
k0n+k0ff

The only modification of the perfect ratchet equations is that the absorbing boundary
condition is replaced by [507]

p(6) =(1—m)p(0). (4.2.18)

Repeating the above calculation yields the modified velocity (see Ex.4.6)

2
y=8Jy= %D e“’? 1/2 (4.2.19)
—ke®-1) ©

Note that one major simplification of the above model is that it treats the translo-
cating polymer as rigid. However, a polymer such as a protein or DNA tends to
be highly coiled (small persistence length) so that one has to take into account an
effective entropic force, reflecting the fact that a free polymer has many more con-
figurational states than one that is threaded through a pore [117, 462, 493, 615]. The
statistical mechanics of a polymer is considered in Sect. 4.5 and the application to
translocation through a pore is developed in Sect. 7.3.4.

4.3 Brownian Ratchet Model of a Processive Molecular Motor

In performing a single step along a filament track, a molecular motor cycles through
a sequence of conformational states before returning to its initial state (modulo the
change in spatial location). Suppose that there is a total of M conformational states
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I\ NG\ Va(x)
I
Vi(x)

_>x

Fig. 4.13: Brownian ratchet model of a molecular motor that can exist in two internal states with
associated [-periodic ratchet potentials V;(x) and V5 (x). State transition rates are denoted by ;
and @,

®4

in a single cycle labeled i = 1,...,M. Given a particular state i, the motor is mod-
eled as an overdamped, driven Brownian particle moving in an asymmetric periodic
(ratchet) potential V;(x). A periodic potential is said to be symmetric if there exists
Ax such that

Vi(—x) = Vi(x+ Ax)

for all x, otherwise it is asymmetric. The asymmetry of the potentials reflects the fact
that cytoskeletal filaments are polarized. The Langevin equation for the location of
the particle X (¢), assuming that it remains in a given conformational state, is

/
/(X
dXz——V’( )

dt +dwi(t), (4.3.20)
with (dW;(¢)) = 0 and (dW;(t)dW;(t")) = 2D&; j6(t —t')dt dt’. The corresponding
FP equation is
dpi(x,t) _ dJi(x,1)
o ox '
where p;(x,?) is the probability density that the motor particle is in internal state i
and at location x at time 7 and J;(x,¢) is the probability flux

4.3.21)

Ji(x,t) = ?l/ {— ! (x) — kBTaa } pi(x,1), (4.3.22)

where Dy = kpT . If the state transitions between the conformational states are now
introduced according to a discrete Markov process, then it is necessary to add source
terms to the FP equation:

api(x,t 8] X,t)
pa(t ) _|_2 wlj P/ (x,1) (Dji(x)pi(xut)]v
J#i

where @;(x) is the rate at which the motor switches from state j to state i.
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In order to develop the basic theory, consider the simple case of two internal
states N = 2 following along the lines of [309, 495, 508, 516]. Then

api(x,1) n aJy(x,t)

o1 Pl (X)p1(x,1) + @ (x) pa(x,1) (4.3.23a)
J aJ
pza(;c,t) i za(;%t) = 0, (X)p1(x,1) — 02 (x) pa (x,1). (4.3.23b)

Note that adding the pair of equations together and setting p = p; + p2, J =J;1 + /2
leads to the conservation equations d;p + dyJ = 0. An example of /-periodic ratchet
potentials Vi (x),V,(x) is shown in Fig.4.13, with [ the basic step length of a cycle
along the filament track. The analysis of the two-state model proceeds along similar
lines to the one state model considered in Sect. 4.2. That is, set

pilt)="Y pilx+nlt), Ji(x1) 2 Ji(x+nl,t). (4.3.24)
N=—00 Nn=—o0
The total probability flux can then be written as

Ip(x,1)

N 1
Jt) = = Vi) (et) 4 VEpale) + kT

Consider the steady-state solution for which there is a constant total flux Jy so that

V)51 () + VAW p2() + kT 22 oy

Defining A (x) = p(x)/p(x), this equation can be rewritten as

Vie(x) p(x) + kg T% = —Jyy, (4.3.25)

where
Verl) = [ [AOVIO)+ (1 = 20)¥0)] dy (43.26)

Suppose that the system is in thermodynamic equilibrium. The state transition
rates and steady-state probabilities then satisfy the detailed balance condition (see
Sect. 1.4)

01X _ viw-vawikr _ P20 (43.27)
m(x) pr(x)
Therefore,
1
A = e e

and, in particular, A (x) reduces to an /-periodic function. It follows that Veg(x) in
Eq. (4.3.25) is also an [-periodic potential and hence there is no net motion in a par-
ticular direction (in the absence of an external force or tilt) (see Sect. 4.2). In conclu-
sion, in order for a molecular motor to sustain directed motion that can pull against

(4.3.28)
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an applied load, we require a net positive supply of chemical energy that maintains
the state transition rates away from detailed balance—this is the role played by ATP.
Therefore, consider the situation in which transitions between the two states oc-
cur as a result of chemical reactions involving ATP hydrolysis. Denoting the two
conformational states of the motor by M1, M, the scheme is taken to be [495]

ATP + M| = M, + ADP+ P

o
ADP+ P+ M; 2 M, + ATP
4l

B
My = M,
B2

with o, ¥;, B x-dependent. The first reaction pathway involves ATP hydrolysis with
chemical free energy gain Au and a corresponding transition from state 1 to state
2, the second involves hydrolysis in the opposite direction, while the third involves
thermal state transitions without any change in chemical free energy. Basic chemical
kinetics implies that

A _ivaran/ieT N (Vi—Va- A keT
o P2
Bt _ cvi-va)jksr (4.3.29)
B2
It follows that the net transition rates between the two conformational states are
) = e V2t AT | oy eVi=Va=AW) ks | g o(Vi=V2)/ksT (4.3.30)
wm=00+pn+Pb. (4.3.31)

Clearly detailed balance no longer holds. In general, it is now necessary to determine
the steady-state solution of the pair of Eq. (4.3.23) numerically. Given such a solu-
tion, the efficiency of the motor doing work against a load F' may be determined
as follows. First the flux (4.3.22) has an additional term of the form Fp;(x,t)/y.
The mechanical work done per unit time against the external force is then W = Fv
where v = LJj is the velocity of the motor. On the other hand, the chemical energy
consumed per unit time is Q = rAu, where r is the steady-state rate of ATP con-
sumption:

r= /Ol[(al(X)—Yl(x))ﬁl(x)— (al(x)—YZ(x))ﬁz(x)]dx,

The efficiency of the motor is then defined to be [309] n = Fv/rAp.

A major mathematical challenge is to determine how the effective speed of the
molecular motor depends on the asymmetries of the potentials and/or the transition
rates. (If these functions are symmetric, then there is no net polarization and the
speed is zero.) In the weak diffusion limit, analytical tools from PDE theory and
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transport processes have been used to prove the existence of a steady-state solution
of Eq.(4.3.23) in a bounded domain with no-flux boundary conditions. Moreover,
for certain classes of potential function and transition rates, the steady-state density
localizes to one end or other of the domain—the so-called motor-effect [108, 5006,
662]. A simple heuristic argument for directed motion can be given [309, 516] by
considering the switch between an asymmetric ratchet potential V; (x) and a uniform
potential V;, (x) = const for which pure diffusion occurs (see Fig. 4.14). Suppose that
the motor starts at a minimum of the potential V; (x) and is excited to state 2. In this
state it undergoes diffusion, which generates a Gaussian probability density with a
width \/ﬁ at time ¢. The motor should spend sufficient time 7, in state 2 so that it
has a reasonable chance to jump down to the well of the next minimum on the right
and yet not enough time to jump too far to the left. This suggests that 7, ~ a*>/D
where a is the width of the steep part of the potential. The motor also needs just
enough time in state 1 in order to move down the shallow part of the potential to the
next minimum. If the width of the shallow part is b and the maximum potential is V|,
then the net drift is V; /yb. Assuming that the drift induced by the force dominates
diffusion in state 1, we have 7| ~ bzy/ V1 < 1. Such a condition violates detailed
balance. One way to measure the deviation from detailed balance is to introduce the
quantity

Q(x) = (x) — a)z(x)e[vl (x)sz(x)]/kBT. (4332)

One finds that the mean velocity v depends on the amplitude (x) and whether
it is homogeneous (x-independent) or localized as shown in Fig.4.14. In the
homogeneous case, the motor speed is a unimodal function of the amplitude

Va(x)

Vi(x)

1 Y O W

Fig. 4.14: Simplified Brownian ratchet model in which V; (x) is a periodic ratchet potential and
Va(x) is constant. Also shown is an example of a localized function €2(x) that signals regions
where there is a breakdown of detailed balance
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localized perturbation

homogeneous perturbation

velocity v

amplitude of perturbation Q

Fig. 4.15: Schematic diagram of the mean velocity v (for zero external force) of a two-state Brow-
nian ratchet as a function of €2, which measures the departure from equilibrium and is related to
the fuel concentration. (Redrawn from [309].)

Qo = max, |Q(x)|, with the maximum at £y ~ 1/7; and v — 0 as €2y — o=. On the
other hand the speed is monotonically increasing for a localized perturbation (see
Fig.4.15).

The Brownian ratchet is one important example of a stochastic system with a
nonequilibrium steady state (NESS). An NESS has a number of characteristics that
distinguish it from an equilibrium state: irreversibility, breakdown of detailed bal-
ance, and free energy dissipation. In particular, it is a steady state in which there
are constant nonzero fluxes or currents. For a recent review of the theory and appli-
cations of NESSs see Zhang et al. [255, 701]. Although Brownian ratchet models
provide important insights into the mechanisms underlying molecular motor dynam-
ics, they have certain limitations. First, as we have already highlighted, it is difficult
to obtain analytical solutions of the full equations in order to construct velocity—
force curves, for example. Second, there is currently not enough experimental data
regarding the potentials V;(x) and transition rates ;;(x) to sufficiently constrain
models. Moreover, a large number of model parameters are needed to specify these
functions, making data fitting problematic.

The above motivates an alternative approach to modeling molecular motors,
based on a discrete Markov process [165, 348, 390, 391]. The basic idea is to take the
transition rate functions to be localized at a discrete set of spatial positions x = xy,
k=1,...,K, and to replace the continuum diffusion and drift terms by hopping
rates between nearest lattice sites. The resulting discrete Brownian ratchet model
can be mapped on to a stochastic network of KM states as shown in Fig.4.16. The
stochastic dynamics is now described by a master equation, an example of which is
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AX

Fig. 4.16: State transition diagram for a discrete Brownian ratchet that cycles through M =3
internal states and makes a single step of length Ax

APy (t
—ZZ( ) = z [Pkn(t)ka;kn — Pkm(t)Wkn;km] +Pk+l,l(t)WkM;k+171 (4.3.33)
n#m

+ Bt m(OWitik—1.m — Pt (OWi 1kt — Pt (0O Wi 1,141,

where Py (t) = pm(xx,t) and for “vertical” transitions Wiy = @pn(xg). In this
example steps along the filament (power strokes) only occur between states m = 1
and m = M. One can then use methods developed by Derrida [137] to calculate
the effective diffusion and velocity of a particle whose state probability evolves

10 :
Dwell [
time i
® [ATP] =1 uM
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Fig. 4.17: Mean dwell times of myosin V as a function of external load at different ATP con-
centrations. The symbols correspond to the experimental data of Mehta et al. [433], whereas the
solid lines are theoretical predictions from a discrete stochastic model analyzed by Kolomeisky
and Fisher [347]. (Figure adapted from Kolomeisky and Fisher [347].)
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according to such a master equation. One of the advantages of the discrete models
is that the relatively small number of parameters makes it easier to fit to experimental
data such as shown in Fig. 4.3 [348]. This is illustrated in Fig. 4.17, which shows the
results of fitting a discrete model to data on the ATP dependence of myosin V dwell
times, that is, the times between successive steps.

4.4 Collective Effects of Multiple Molecular Motors

In many cases, molecular motors work in groups rather than in isolation [245].
For example, the number of myosin motors involved in muscle contraction can be
around 10'°, the number of dynein motors responsible for the beating of cilia or
flagella is roughly 10*, and up to ten coordinated motors can be involved in the in-
tracellular transport of vesicles. A useful characterization of the collective behavior
in motor assemblies distinguishes between rowers and porters [379]. Rowers spend
most of their time unbound from their cytoskeletal filaments so they need to operate
as part of a large assembly in order to produce sufficiently high velocities. This is
exemplified by various classes of myosin motor. On the other hand, porters such as
kinesin need to be more carefully coordinated, since the presence of other motors
can impede the motion of any individual motor within the assembly. A variety of
theoretical models have shown that there are interesting collective effects in motor
ensembles, including bidirectional motion, spontaneous oscillations, hysteresis, and
the formation of self-organizing structures (see also Chap. 8).

4.4.1 Intracellular Cargo Transport by Multiple Motors

Often intracellular cargo such as a vesicle is transported by multiple motors form-
ing a motor/cargo complex. Here we will consider a simple model of a motor/cargo
complex, in which there is only a single type of motor, kinesin, say responsible for
transport [340]. Suppose that there are N identical motors irreversibly attached to
the cargo particle, but which can bind to and unbind from the filament along which
they move. Thus, the number n of motor molecules that are bound to the filament
can vary between n = 0 and n = N. Hence, there are N + 1 different states of the
cargo particle corresponding to the unbound state with n = 0 and to N bound states
with n =1,2,...,N. Each of these bound states contains N!/(N — n)!n! substates
corresponding to the different combinations of connecting n motor molecules to the
filament. The dynamics of the motor complex depends on properties of individual
motors combined with the observation that an applied force is shared equally be-
tween the motors.
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(a) When bound to a microtubule, the velocity of a single molecular motor
decreases approximately linearly with the force applied against the move-
ment of the motor [658]. Thus, each motor is assumed to satisfy the linear
force—velocity relation

ve(l —F/F) for F < F;
v(F) = { VZ& —F?FS; for F > F;, 4.1
where F is the applied force, Fy is the stall force satisfying v(Fy) = 0, vy is
the forward motor velocity in the absence of an applied force in the preferred
direction of the particular motor, and v}, is the backward motor velocity when
the applied force exceeds the stall force.
(b) The binding rate is independent of the applied force, whereas the unbinding rate
is taken to be an exponential function of the applied force:
F

n(F)=7r, y(F)=fye™, (4.4.2)

where Fy; is the experimentally measured force scale on which unbinding occurs.
The force dependence of the unbinding rate is based on measurements of the
walking distance of a single motor as a function of load [571], in agreement
with Kramers’ rate theory [253] (see Sect. 3.3).

(c) Now suppose that the externally applied load or force F acts on a motor/cargo
complex with n independent molecular motors. If the motors are not directly
coupled to each other, then they act independently and share the load. It follows
that a single motor feels the force F/n. Hence, the velocity of the cargo when
there are n bound motors is

vy =Vv(F /n).

Moreover, Eq. (4.4.2) implies that the population binding and unbinding rates
take the form

Y =ny(F/n), m=(N—n)f. (44.3)

One can model transitions between the different internal states of the cargo com-
plex using a birth—death master equation (see Fig. 4.18). Let P,(¢) be the probability
that there are n bound motors at time ¢. Then

dP,
T Yot 1Pt + Tu1Pot — (Yo + 700) P (4.4.4)
Vn n
Ae A e A
< Y w__“ w__“
Tih

Fig. 4.18: Model of cooperative motor transport
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There are a number of quantities that characterize properties of the transport process.
We begin by calculating the steady-state distribution of bound motors, which satis-
fies the equation J,, = J;, 4| with

Jn = ')/nPn - n-nflpnfl-
Since 7 is nonnegative, we have P, = 0 for all n < 0, which means that J,, = 0 for
all n > 0. Hence,
Yn+1Pn+1 = ﬂan
so that by iteration,
n—1 i
P=R]]—, (4.4.5)
i—0 Yi+1

with Py determined from the normalization ¥_, P, = 1. The correctly normalized
probability distribution of the bound states is then

. P
"T1-Ry

It follows that the mean number of bound motors in steady state is

N
nb,
Ny = 4.4.6
b,gl—%’ (440
and the mean cargo velocity is
N
Pa
£ = —_— 4.4.7
Veff ,; Vn 1—-p, ( )

The steady-state distribution of the number of bound motors also yields an explicit
expression for the effective cargo detachment rate. In steady state, the effective cargo
attachment and detachment rates satisfy

’yeff(l _PO) = ﬂeffP07

where 1 — P is the probability that the cargo is bound to the filament via at least one
motor. The effective binding rate is m.gr = 7, since attachment is established as soon
as one motor binds to the filament. Thus

Yo = mh _ nh
TR 1-R
Using
n .
P =PI[==, n>1

i=1 Yi+1
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and1 —Py=P + 2{;’;11 P,+1, we have

N—1 n

-1
1+y Hﬂ] . (4.4.8)

Yett =11
n=1i=1 Yi+l

Explicit formulae can be obtained in the absence of a load force, for which y;, = ny
and m, = (N —n)7 (see Ex.4.7). For example, the steady-state distribution is

N! z\" a\ 7V
P=pp———(Z)  p=(1+Z
O(N—n)!n!<7f) 0 ( +Y>

/Y
1+7/7

and

Ny ~N

for large N.

4.4.2 Tug-of-War Model

Using SPT (Sect. 1.2), trajectories of individual motor—cargo complexes can be
recorded and shown to exhibit many random turning events [244, 359, 577, 677].
This immediately raises the issue of how bidirectional transport is achieved, given
that motors such as kinesin and dynein are unidirectional. Recall that microtubules
are polarized filaments with biophysically distinct + and — ends and the polarity
determines the preferred direction of motion of individual motors: kinesin (dynein)
moves towards the + (—) end. There is considerable debate in the literature re-
garding the most likely mechanism for bidirectional transport. Several different sce-
narios have been proposed including those shown in Fig.4.19: (a) an asymmetric
tug-of-war model involving the joint action of multiple kinesin and dynein motors
pulling in opposite directions; (b) a symmetric ToW model where all the motors are
of the same type, but they are distributed on microtubules of opposite polarity; (c)
a hopping model, in which the whole motor—cargo complex hops between micro-
tubules of opposite polarity. Yet another suggested mechanism (not shown) is some
form of coordination complex that controls the switching between different motor
species. It might be possible to apply statistical methods to SPT data which, when
combined with knowledge of the individual motor dynamics, could identify the un-
derlying mechanism(s) for bidirectional transport [14]. However, as far as we are
aware, the debate continues! For the sake of illustration, we will focus on the first
two models here.

It has been hypothesized that the experimentally observed bidirectional motion
of molecular motors could be due to the joint action of multiple kinesin and dynein
motors pulling in opposite directions. Suppose that a certain vesicular cargo is trans-
ported along a one-dimensional track via N, right-moving (anterograde) motors and
N_ left-moving (retrograde) motors (see Fig.4.19). At a given time ¢, the internal
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Fig. 4.19: Molecular motor-assisted models of bidirectional transport. (a) Asymmetric tug-of-war
model: opposing groups of motors (e.g., dynein and kinesin) compete to transport along a single
polarized microtubule track. (b) Symmetric tug-of-war model: groups of motors of the same direc-
tional preference are distributed among two parallel microtubules of opposite polarity. (¢) Hopping
model in which a motor—cargo complex jumps between microtubules of opposite polarity

state of the cargo—motor complex is fully characterized by the numbers n and n_ of
anterograde and retrograde motors that are bound to a microtubule and thus actively
pulling on the cargo. Assume that over the time scales of interest all motors are per-
manently bound to the cargo so that 0 < ny < Ni. The ToW model of Muller et al.
[456, 457] assumes that the motors act independently other than exerting a load on
motors with the opposite directional preference. (However, some experimental work
suggests that this is an oversimplification, i.e., there is some direct coupling between
motors [150].) Thus the properties of the motor complex can be determined from
the corresponding properties of the individual motors together with a specification
of the effective load on each motor.

The ToW model can be constructed as a generalization of the cooperative motor
model. At the single-motor level, Egs. (4.4.1) and (4.4.2) still hold, except that the
value of parameters such as the stall force will differ for kinesin and dynein. How-
ever, even in the absence of an externally applied load, there is now an effective force
on one class of motor due to the opposing action of the other class. Let F, denote
the net load on the set of anterograde motors, which is taken to be positive when
pointing in the retrograde direction. If the molecular motors are not directly coupled
to each other, then a single anterograde motor feels the force F, /n_, whereas a sin-
gle retrograde motor feels the opposing force —F;/n,. At the population level, the
binding and unbinding rates for the two types of motor are

¥(nj) = nygiee o ming) = (N; —n)y ==+, (4.4.9)

The cargo force F, is determined self-consistently by the condition that all the mo-
tors move with the same cargo velocity v.. Suppose that N, > N_ so that the net
motion is in the anterograde direction, which is taken to be positive. In this case,
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the forward motors are stronger than the backward motors so that ny Fyy > n_F;_.
Equation (4.4.1) implies that

ve =V (1 =F./(nyFyy)) = —vp_ (1 = F./(n_F;_)). (4.4.10)

This generates a unique solution for the load F, and cargo velocity v,:

F.(ny,n ) =(FniFy + (1 — F)n_F;_), (4.4.11)
where
_F v
- motsVy , (4.4.12)
ansfvff +nyFovp
and

ve(ng,n_) = iy = n-Fye . (4.4.13)
nyFoy [viy+n_F_[vy_
The corresponding expressions when the backward motors are stronger, ny Fyy <
n_Fy_, are found by interchanging v, and vj,.

The original study of [456, 457] considered the stochastic dynamics associated
with transitions between different internal states (ni,n_) of the motor complex,
without specifying the spatial position of the complex along a 1D track. This de-
fines a Markov process with a corresponding master equation for the time evolution
of the probability distribution P(n,n_,t). They determined the steady-state prob-
ability distribution of internal states and found that the motor complex exhibited at
least three different modes of behavior (see Fig.4.20), which were consistent with
experimental studies of motor transport using SPT (Sect. 1.2); the transitions be-
tween these modes of behavior depend on motor strength, which primarily depends
upon the stall force.

(i) The motor complex spends most of its time in states with approximately zero
velocity.

(i) The motor complex alternates between fast backward and forward movements,
so that there is a bimodal velocity distribution with peaks close to the single-
motor velocities of 1 ums~!.

(iii) The motor complex exhibits fast backward and forward movement interrupted
by stationary pauses, which is consistent with experimental studies of bidirec-

tional transport. The velocity distribution now has three peaks.

One of the useful features of the ToW model is that it allows various biophysical
signaling mechanisms to be incorporated into the model [472, 473, 514]. This will
be exploited in Sect. 7.6.4, when we use the ToW model to study the effects of local
chemical signaling on intracellular cargo transport.

ATP Signaling. Experimentally, it is found that [ATP] primarily affects the stall
force, forward motor velocity, and unbinding rate (see for example Fig.4.3).
There are a number of models of the [ATP] and force-dependent motor param-
eters that closely match experiments for both kinesin [183, 449, 571, 658] and
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Fig. 4.20: Motility states for the symmetric tug-of-war model consisting of N =4 plus and N =4
minus motors. The three columns correspond to the three listed motility states (i), (ii), and (iii),
respectively. The fop row shows a typical trajectory for given motility state, whereas the bottom row
shows a histogram of the distribution of velocities. The different motility behavior is obtained by
taking different stall forces Fy and unbinding rates &: (i) Fs = 2pN,& = 0.4s~!, (ii) Fs = 6pN, gy =
1s~!, (iii) Fs =4.75 pN,& =0.4 s~1. These and other single-motor parameter values are based on
experimental data from kinesin 1: detachment force F; = 3pN, binding rate 7 = 5s~!, forward
velocity vy = 1um s~!, and backward velocity v, = 6nm s71 (Adapted from Muller et al. [457])

dynein [201, 335]. We give some examples of [ATP]-dependent parameters. First,
the forward velocity can be modeled using Michaelis—Menten kinetics:

ATP :M 4.4.14
vy([ATP]) ATPI T K, (4.4.14)

where /" = 1ums™!, K, = 79.23uM for kinesin and v{** = 0.7ums "', K, =
38 uM for dynein. (The backward velocity of both kinesin and dynein is small, v;, ~
4+0.006ums !, so that the [ATP] dependence can be neglected.) The binding rate is
determined by the time necessary for an unbound motor to diffuse within range of
the microtubule and bind to it, which is assumed to be independent of [ATP]. The
unbinding rate of a single motor under zero load can be determined using the [ATP]-
dependent average run length L; ([ATP]) = L}’ /([ATP] + K,). The mean time to
detach from the microtubule is v¢([ATP]) /L ([ATP]) so that

V([ATP] 4 K,)

Y([ATP]) = L7 ([ATP| £ K,)’

(4.4.15)
where Lj'* = 0.86um, K, = 3.13uM for kinesin and ;" = 1.5um, K, = 1.5uM
for dynein. Finally, a model for the [ATP]-dependent stall force of kinesin is

(" — FY)[ATP]
Ks+ [ATP]

Fy([ATP]) = F + (4.4.16)
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where F? = 5.5pN, F* = 8pN, K, = 100uM for kinesin and F = 0.22pN,
F"% =1.24pN, K; = 480uM for dynein.

Tau Signaling. The second signaling mechanism involves microtubule-associated
proteins (MAPs). These molecules bind to microtubules and effectively modify the
free energy landscape of motor—microtubule interactions [622]. For example, tau is
a MAP found in the axon of neurons and is known to be a key player in Alzheimer’s
disease [351]. Experiments have shown that the presence of tau on the microtubule
can significantly alter the dynamics of kinesin, specifically by reducing the rate
at which kinesin binds to the microtubule [655]. It has also been shown that, at
the low tau concentrations affecting kinesin, dynein is relatively unaffected by tau.
Thus tau signaling can be incorporated into the ToW model by considering a tau
concentration-dependent kinesin binding rate of the form [474]

~Max
T

(1) (4.4.17)

- 1+ e Y0-7)’

where 7 is the dimensionless ratio of tau per microtubule dimer and 7% = 557!,
The remaining parameters are found by fitting the above function to experimental
data [655], so that 7o = 0.19 and y = 100.

4.4.3 Collective Extraction of Membrane Nanotubes

Another example of collective motor activity occurs in the extraction of a mem-
brane nanotube or tether from a vesicle. Membrane nanotubes play an important
role in lipid and protein exchange between various organelles of the early secre-
tory pathways such as the ER and Golgi apparatus (see also Sect. 8.4) [609, 636].
They have also been observed in vitro, where the dynamical clustering of several
molecular motors at the tip of a nanotube is required to pull it from the host vesicle
[92, 352, 377]. The basic experimental setup involves a unilamellar vesicle coated
with kinesin proteins, which are permanently attached to the membrane via their
tail domains, and can bind/unbind to microtubules via their motor domains. The
initial membrane tension 7y of the vesicle is determined by fixing the osmotic pres-
sure difference between the interior and exterior of the vesicle. The kinesin-coated
vesicle is sedimented on a network of microtubules fixed on a glass surface. Under
suitable conditions, a membrane nanotube is formed when the kinesin motors bind
microtubules and walk towards the plus end, deforming the vesicle membrane. Two
types of behaviors are observed following formation of a nanotube. In the majority
of cases, the membrane tubes simply stall at a certain length, whereas in the remain-
ing cases the length of a tubed oscillates between two values; the oscillations are
characterized by a slow growth phase and a fast retraction phase.
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Fig. 4.21: Sketch of the extraction of a membrane nanotube from a vesicle by the collective action
of kinesin molecular motors. A side view shows the different regions (vesicle, tube, and tip). The
inset represents a scaled-up version of the tip region, where V is the velocity of the tube and of
bound motors at the tip, Vj is the zero-load velocity of bound kinesins, and k,,, k;, are the unbinding
rate at zero load and the binding rate of kinesins onto MTs, respectively

The basic mechanism by which kinesin motors are thought to pull a membrane
nanotube is sketched in Fig.4.21. First, motors distributed along the nanotube bind
to and unbind from the microtubule at rates k; and k,, respectively, and the bound
motors move with a speed Vp. The values of V) and k, are based on single-motor
properties in the absence of an external load. Typical parameter values are k, =
557!, k,=0.55s"!, and Vo = 0.6ums ! [649]. Each motor also feels a drag force due
to its motion relative to the membrane nanotube, with the latter moving at speed V.
Although the drag on a single motor is small, the cumulative effect on all of the
motors can be significant. Motors at the tip of the nanotube exert a normal force
that can pull the nanotube out from the vesicle. However, since the speed of kinesin
motors decreases with applied load, the motors at the tip move more slowly than
those moving along the tube, resulting in an accumulation of motors at the tip which
provide the necessary force to generate and sustain the tube.

We now describe a dynamical model of motor-assisted tube extraction due to
Leduc et al. [92, 377]. It is first necessary to state a few results regarding the
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mechanical properties of vesicular membranes, in order to determine the applied
force F required to pull a tube of length L from a vesicle. (For a detailed description
of cell mechanics, see [53].) The extraction of a single tube from a spherical vesicle
of area Ay means that the area increases by some amount 64, while the volume re-
mains constant. This then generates an increase in membrane tension 7. The excess
area 0Ag /Ao =rL/ 2R(2) where r is the radius of the tube and Ry is the initial radius
of the sphere (typically Ry ~ 10um). For a given membrane tension 7 and bending
rigidity x, one finds that [509] (see Ex. 4.8)

F = f(t)=2nv2kt, r=r(1)=+/K/21. (4.4.18)

The relationship between F' and L can now be determined by specifying how the
membrane tension varies with the excess area. There are two distinct regimes. At
low vesicle tensions, T depends exponentially on the excess area, reflecting the
thermodynamics of membrane fluctuations, which leads to the following force-

displacement relation:
L 2F F
—=—In{— 4.4.19
L=pm(g). (44.19)

where L, = kBTR(z) /4mKry is the characteristic length scale at which the increase in
F becomes significant, ry = (1), and Fy = f(1p). For the given experimental con-
ditions, the force increase was noticeable at tube lengths greater than about 30 um
[377]. If the vesicle is initially already under sufficient tension (7y ~ 1074 Nm’l),
then membrane stretching dominates (elastic regime) and the vesicle tension in-
creases linearly with the excess area. The force—displacement relation now takes the

form 5
L F F
—=— (=] -1 4.4.20
L FO[(FO) ] 4420

where L, = R3Fs /(83 k2K,) is the characteristic length in the elastic regime (with
K, the elastic rigidity).

Given the force—displacement function F = F (L), one can now derive dynamical
equations for the extraction of a nanotube based on the force-balance equation (see
also Sects. 8.2 and 8.3):

Fy—F(L)+Fp=0, (4.4.21)

where Fy is the force exerted by motors at the tip and Fp is the net drag force
on the tube. All the forces must balance, since inertial terms can be neglected in
the low Reynolds number regime (see also Box 5B). It turns out that the dominant
contribution to the drag force is the accumulative effect of drag due to each of the
motors moving with velocity Vy — L’ relative to the membrane, where L' = dL/dr.
Thus
kgT
FDzéL(VO_LI)a é :pr7
where £ is the motor friction coefficient per unit length, D is the diffusivity, pj, is
the density of bound motors along the tube, and we have used the Einstein relation.
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One finds that friction only becomes significant in regimes where |L'| > Vj, for
which the force-balance equation becomes

gLfl—f = Fy —F(L). (4.4.22)

The motor force Fy; arises from the collective action of the cluster of bound motors
at the tip. If n;, is the number of motors at the tip and each independently applies
a force f,, then Fy; = n;f,. The motors at the tip move with a load-dependent
velocity V. Assuming a linear force—velocity relation, we have

F
V:V()(l— M),
nbfv

with f; the stall force of an individual motor. Finally, setting L' = V, the force bal-
ance equation (4.4.22) becomes

ELL = (1 -V /Vo)npfs — F(L) = (1 = L'/Vo)np fs — F (L),
which can be rearranged to give

dL_ nb_F(L)/fs

i 0—nb+ oL/ S, (4.4.23)

Equation (4.4.23) implies that there are two limiting cases. When the number n;, of
motors at the tip is sufficiently large, the force on each motor is negligible so that it
moves at speed Vg and L' — Vj. On the other hand, when the motors are not able to
sustain a force (n;, — 0), the tube retracts according to

dL  F(L)
dr — EL

In order to complete the dynamical description of the system, it is necessary to
take into account the dynamics of the bound motors at the tip, that is, the time
dependence of n;,. The latter satisfies the conservation equation

dny,
— =Jp — kyny, 4.4.24
dt b np ( )

where k, is the rate of unbinding from the microtubule and Jj, is the flux of motors
entering the tip region (expressed in the reference frame of the tube); the rate at
which tip motors rebind the microtubule can be neglected. Using Kramers rate the-
ory (Sect. 3.3), the unbinding rate of a motor can be related to the force f,, it exerts
according to

k, = koefma/kBT = koexp ([1 —L'/Vo] I{SC;‘) , (4.4.25)
B
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where a is a characteristic length scale of the width of the energy barrier between
bound and unbound states (@ =~ 1 nm). The flux Jj, is given by

Jp=Vo—L")ps,

which depends on the motor density per unit length p; and the latter is assumed
to be uniform for simplicity. Assuming that the rates of binding and unbinding are
relatively fast, p;, can be related to the total density py of motors coating unit area
of membrane according to the equilibrium condition

kp,
ky+ko

Py = 27rrpo

Using Eq. (4.4.18) to relate r to the tube force F (L), we have

an’xpy  kp
= . 4.4.26
Po="FT) & +ko (4.4.26)
Finally, substituting for L’ in Eq. (4.4.25) and using & = p,kpT /D gives
kgT (VoL/D) + F (L
ku_koexp<pb 5T (Vol./D) + F )f“’). (4.4.27)
fsnp + ppkT (VoL/D) kgT

Following [92], it is convenient to nondimensionalize Eqs. (4.4.23) and (4.4.24)
and to reexpress them in terms of the variables (np,F) rather than (np,L); the
force—displacement relations are invertible. First, introduce the so-called proces-
sivity length I, = Vi /ko, where ky is the load-free unbinding rate, and then perform
the rescalings

L—)L/lp, F—)F/Fo, n;,—)nbfg/Fo, t — kot.

In terms of the nondimensionalized variables, the force—displacement relation is
written as L = Bg(F) with B = L . /I,,. Thus, in the thermodynamic regime g(F) =
2F In(F) and in the elastic regime g(F) = F(F? — 1). Moreover, Eq. (4.4.27) may
be expressed in the nondimensional form

_ Y8(F)/F+F fa
k, = exp (—nb+ 12 (F)/F kBT) , (4.4.28)

with

ksTVi an’xfil,
=B 0, 0="m 7 Po
Df; F; kp, +ko
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Equations (4.4.24) and (4.4.23) now become

dny, Y F+ys(F)/F vg(F)/F+F fia

di " F oyt ye(F)JF ex <—nb+yg(F)/F kBT> np (4.4.29a)
dF _ np —F

ar A ) (4.4.29b)

with

A(F):{ %]1.

Equations (4.4.29) have a single fixed point (ii,, F) with i, = F and

0 _ falkT

that is,

F =1/ yoe*fsa/kBT.

Since the tube length L > 0 and when L = 0 the membrane tension T = 7y and F = Fj
(in physical variables), it follows that F (L) > Fy and thus F > 1 (in dimensionless
variables). This implies that a nanotube can only be extracted if }/()e’fS“/ k8T > 1, so
that the density of coating pg has to exceed a minimum value pp,;, given by

Fg ky + ko
An2l, fre FalsT  f,

Pmin =

One can now analyze the stability of the fixed point (assuming it exists), by lin-
earizing equation (4.4.29) about the fixed point and determining the eigenvalues
of the resulting Jacobian. There are four dimensionless parameters in Eq. (4.4.24),
namely, 3,7, %, and f = fsa/kgT. It is convenient to consider the equivalent set of
parameters p = p,,/po, f,B and & = yB/v = kgTVy/(Df;). Fixing &y, one finds
that the fixed point is stable provided that f < 1, whereas if f > 1, then there are
biophysically realistic parameter regimes in which the fixed point undergoes a Hopf
bifurcation along the lines outlined in Box 4B [92, 377], resulting in the occurrence
of a stable periodic orbit or limit cycle as observed experimentally. This is illustrated
in Fig. 4.22, which shows a bifurcation diagram in the (p, 3)-plane for f =2.03 and
&y = 4.1 x 107* [92]. A region of oscillatory behavior occurs, consistent with the
hypothesis that the collective behavior of a cluster of molecular motors is pulling
the nanotube at the tip. As the tube grows, the membrane tension increases so that
the tip motors have to exert a stronger force in order to maintain elongation of the
tube. However, once the tension is too high, the incoming flux of motors to the tip is
not sufficient to generate a large enough cluster to generate the necessary force, and
the tube starts to shrink. This relaxation allows the reformation of a large enough
cluster to start growing the nanotube again.
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Fig. 4.22: Spontaneous oscillations in the model of nanotube extraction given by Eq. (4.4.29). (a)
Bifurcation diagram showing different dynamical regimes in the (3, p)-plane for f = 2.03 and
&y = 4.1 x 10~*. (b) Sketch of oscillations in the tube length and the number n;, of bound motors
at the tip for pyin/po = 7.3, f = 2.03 and & = 4.1 x 10~* and B = 1.73. (Redrawn from [92].)

Box 4B. The Hopf bifurcation.

Any differential equation describing the dynamics of some biological sys-
tem will depend on one or more parameters (. This can be made explicit
by writing
% =f(x(¢);u), xeR* ueR™

For simplicity, suppose that only one parameter is varied and set m = 1.
The dynamical system is said to have a bifurcation at the critical value
U = . if there is a change in the (topological) structure of trajectories
as U crosses U.. (For a detailed introduction to bifurcation theory see
the book Elements of Applied Bifurcation Theory by Kuznetsov [366].)
In the case of local bifurcations, this means that there is a change in the
number and/or stability of equilibria or fixed points. A Hopf bifurcation
occurs when a fixed point changes stability as u crosses U resulting in
the emergence of a small amplitude limit cycle. If the limit cycle is stable
and surrounds an unstable fixed point, then the Hopf bifurcation is said
to be supercritical, whereas if the limit cycle is unstable and surrounds
a stable fixed point, then it is said to be subcritical. Before stating the
general conditions for the occurrence of a Hopf bifurcation in a planar
system (n = 2), it is useful to consider an explicit example:

dx _

dt

d
pux+ oy+ox(x* +y?), d—i = —wx+uy+oy(x*>+y*), (4.4.30)
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with 0 = £1. This pair of equations has a single fixed point at the origin.
Transforming to polar coordinates by setting x = rcos0,y = rsin 0, we
have

dr 2

— = (o} —=-0

o =rutor), — ;
with r > 0. It immediately follows that all nonzero solutions rotate clock-
wise at the same angular frequency ®. Suppose that 6 = —1. If u <0,

then 7 < 0 for all r > 0 and trajectories converge to the fixed point at
the origin, which is stable. On the other hand, if u > 0 then 77 < 0 for
r € (y/H,%) and 7 > 0 for r € (0,/1r). Hence, the origin is now an un-
stable fixed point, whereas there is a stable periodic orbit at » = /L (see
Fig. 4.23). In other words, the system undergoes a supercritical Hopf bi-
furcation at the critical value 4 = u. = 0. Similarly, if c = 41 then the
fixed point undergoes a subcritical Hopf bifurcation with an unstable limit
cycle existing for u < 0.

\\y y y
@ / | @
\\
< p=0 ©>0

0

Fig. 4.23: Supercritical Hopf bifurcation. Phase portraits for system x = pux+y—
x(x® +¥%) and y = —x + puy — y(x> +y?) for the three cases u < 0, =0, and yu > 0

Hopf bifurcation theorem (2D). Consider the planar dynamical system

dx .
i fl,ysp),  y=glx,y:u)

for the single parameter . Suppose that there exists a fixed point at
(x,y) = (0,0), say. Linearizing about the origin gives the linear system

7(0)=2w(}),

where A (L) is the Jacobian

Ap) =
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Let the eigenvalues of the Jacobian be given by the complex conjugate

pair A(u),A(u) = a(u) £ if(u). Furthermore, suppose that at a certain
value u = . (with . = 0, say), the following conditions hold:

1. (0) =0, B(0) = @ # 0 with sign(w) = sign[d,;£(0,0;0)].

2. %‘uﬂl # 0 (transversality condition) .
u=0

3. The so-called first Liapunov coefficient /; doesn’t vanish, /; # 0
(genericity condition), where

1
I = 1_6(fxxx +fxyy + &xxy +gyyy)
1
+ Too (foylfex + fiy] — &ayl8ax + 8yy] — frx8ax + fry&yy),

with fi, = 0,9, £(0,0;0) etc.

Then a unique curve of periodic solutions bifurcates from the origin
as U crosses zero. The amplitude of the limit cycle grows like /|| and
the period tends to 27t/ as || — 0. Suppose for the sake of illustration
that o/ () > 0 and set 6 = sign({}).

a b

2 2
supercritical subcritical
r1 ri
O oO——————-------
-1 0 1 2 3 -3 -2 -1 0 1
u u
Fig. 4.24: Bifurcation diagrams for (a) supercritical (c = —1) and (b) subcritical

(0 = +1) Hopf bifurcations in the same dynamical system as Fig. 4.23

If 0 = —1, then the fixed point is asymptotically stable for u < 0 and
unstable for © > 0. Moreover, there is a unique and stable periodic orbit
that exists for y > 0, corresponding to the case of a supercritical Hopf
bifurcation (see Fig. 4.24a).

If 0 = +1, then the fixed point is asymptotically stable for u < 0 and
unstable for 4 > 0. Moreover, an unstable limit cycle exists for u < 0,
and we have a subcritical Hopf bifurcation (see Fig. 4.24b).

205
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Finally, sufficiently close to the bifurcation point, the dynamical system is
locally topologically equivalent to the normal form given by Eq. (4.4.30).

There is also an n-dimensional version of the Hopf bifurcation theorem
for n > 3. In particular, suppose that the n X n Jacobian matrix has a pair
of complex conjugate eigenvalues A (), A (1) = or(u) +if(u) and all
other eigenvalues have negative real parts, Re[A;(u)] <0 for j=3,...,n.
It can then be shown that the system converges to a family of smooth
two-dimensional invariant manifolds W, (trajectories starting in W, stay
within W,) and the above Hopf bifurcation theorem then applies to the
effective dynamics on W, (Fig.4.25).

Y Y Y

| — | — | —

S //@/%2

C
4

\ 4u 4u
u<0 n=0 u>0
Fig. 4.25: Hopf bifurcation in 3D

Linear stability analysis [221]. In the statement of the Hopf bifurcation
theorem, the (local) stability of a fixed point was determined in terms of
the eigenvalues of the Jacobian. We now explain this in more detail. Let
us return to a planar dynamical system written as

dx dx
— = fi(x1,x2), =2 = fi(x1,x2),

dt dt
where we have suppressed the bifurcation parameter. Introduce the vector
notation x = (x1,x2)7, £ = (f1,/>)7, and suppose that x = x* is a fixed
point for which f(x) = 0. Set y = x — x* and Taylor expand the ODEs to
first order in y:

d_tj = d_tj = fi(x¥] +y1,%5 +y2) ij(x17x2)+k§2a—xlj((xuxz)yk-i- h.o.t.

Imposing the fixed point conditions and dropping the higher-order terms
then yields the linear equation

%(xT,xE). (4.4.31)

y

dt
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Trying a solution of the form y = ver generates the eigenvalue equation
Av = Av.

This will have a nontrivial solution provided that A — AT is non-invertible,
where I is the 2 X 2 unit matrix, which means that the pair of eigenvalues
is a solutions to the characteristic equation

Det[A — AT] = 0. (4.4.32)
This yields a quadratic equation for A, which can be factorized as
A—=41)(A—21) =0,

where the roots A, , are the eigenvalues. If these eigenvalues are distinct,
then the general solution to the linear ODE can be written as

y(t)= Y cjvje
=12

for constant coefficients c;, where v; is the unit eigenvector correspond-
ing to A;.

Expanding the factorized equation and using the fact that Tr[A] = A; +
A and Det[A] = 41 A, gives

A? — Tr[A]A + Det[A] = 0.

- % [Tr[A] +\/Tr[A]P — 4Det[A]} . 4.4.33)

It follows from the above analysis that the fixed point x* will be stable
provided that Re[A; 2] < 0, since the perturbations y; () = v;e*" — 0 as
t — 0. Using Eq. (4.4.33), the condition for linear stability is Tr[A] < 0.
Moreover, reintroducing the bifurcation parameter (, the first two condi-
tions for a Hopf bifurcation at 4 = . can be expressed as

Thus

Tr[A(u:)] =0, Det[A(uc)] > 0. (4.4.34)
Then A; 2(U) = Liay with @y = /Det[A(.)].
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4.4.4 Rigidly Linked Molecular Motors

As our final example of a motor assembly, consider the case where N motors are
rigidly coupled to a common backbone, which is connected to a fixed cytoskeletal
structure via a spring K [307, 308] (see Fig.4.26). Each motor is treated as a two-
state Brownian ratchet, such that the motor sees an asymmetric, /-periodic potential
Vi (x) when bound to a cytoskeletal filament and a flat potential V, when unbound.
The motors switch between the two states with position-dependent transition rates
o) 2 (x), which do not satisfy detailed balance due to ATP hydrolysis. Cooperativity
arises due to the global motion of the backbone relative to the filament, which simul-
taneously modifies the positions of all the motors. Such a configuration mimics the
experimental protocol known as a motility assay as well as the coupling of myosin
motor cross bridges in muscles.

Suppose that the displacement of the backbone at time ¢ is Y (¢) and the center
of masses of the motors is separated by a uniform spacing g on the backbone. It
follows that the position of the nth motor at time t is x,,(t) = ¥ (¢) + ng. Each motor
is either in the bound state (¢ = 1) or the unbound state (o = 2) and the energy of
the nth motor in state o is Vg (x,(7)). However, since Vi (x+1) = V5 (x) for all x, we
need only specify the position of the motor using the cyclic coordinate &, () = x,(¢)
mod [ with 0 < &, < I. Let P5(&,t) be the probability that there exists a motor in
state o at cyclic position & at time 7. It follows that

N
P(E0) = Pi(§or) + Pl g (& =&
g M—
Y
" i L
Vi(x) [ e N
\. o
X <

A

I

Fig. 4.26: Ensemble of molecular motors coupled rigidly to a moving backbone. See text for details
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A major simplification occurs if the periodic spacing g of the motors is incommen-
surate with the period [ of the filament track, that is, [/g is an irrational number.
In the limit N — oo, the motor positions &, form a dense subset on [0,/] such that
P(x,t) — 1/1. The equations of motion for P5 are [307]

oP oP

a_tl + va—g =—w1P+ ;P (4‘4353)
P, P, .

= + v% =W P — P, (4.4.35b)

where v = dY /dt is the velocity of the backbone and the transition rates satisfy
Eq. (4.3.32), that is,

Q&)=w(&)— a)z(g)e[vl(é))*Vz]/kBT'

It is convenient to set (&) = Q6(E) and J; 0(£)dE = 1. For concreteness, @, is
a constant and (&) is determined by taking 0(&) to be a periodic sequence of
square pulses of width d (see Fig. 4.26). Finally, the velocity v is determined by the
force-balance equation

[
Fox = uv(t) + KY (1) + /O (PLO:V: + Pad Va)dE (4.4.36)

where Fyy is an externally applied force (per motor). The first term on the right-hand
side is a frictional force with damping coefficient u, the second term is the elastic
force from the spring with elastic modulus NK, and the third term is the force due
to the potentials.

For an incommensurate system with P, = [~! — Py, and a soft spring (K = 0),
there exists a steady state that satisfies the pair of equations

P
vog = — (0 + )Py + @ (4.4.37)
& I
and (since V; is constant)
!
Fext = .LLV+/0 P135V1d§- (4.4.38)

Let us nondimensionalize the system by fixing the length and time units such that
1,q,@, = O(1) and suppose that v < 1. The solution for P; may then be expanded
as a Taylor series in v:

P§) = Y VP (E).
n=0
Substituting into Eq. (4.4.37) gives

() PO(E) = — 1
(1

T @) @439

0) gy 1
R P i S
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Substituting the Taylor expansion of P; into Eq. (4.4.38) then yields
Foa— FO = (u+ FO)y 3 v F 0 for U7 / P VidE.  (4.4.40)
n=2
It follows from Eq. (4.3.32) that

1
/T 41+ Q0(E)/an(E)

Hence, if detailed balance holds (£2 = 0), then from the periodicity of the potentials,

(0) _ -1
P =" wemw

kBT

FO — _ /agln 1+e Vi(&)-V2 /KBT:| dE =0.

One also finds that F(1) > 0, that is, there is an effective increase in friction so v =0
in the absence of an external force. On the other hand, when detailed balance is
broken, two important features arise [307]:

(i) If Q # 0 and the potential V; (&) is asymmetric, then F(©) # 0 and the system
can do work against an external load as previously found for a single motor. One
subtle point is that we still have F’ (0) = 0 if the transition rates are homogeneous,
which differs from the single-motor case.

(ii) If Q #0, then F M) may become negative as an emergent feature of cooperativ-
ity. This can overcome the effects of external damping, resulting in a nonzero
velocity in the absence of an external force. Note that in contrast to a single
motor, it is no longer necessary for asymmetric potentials or transition rates.

In order to explore feature (ii) in more detail, suppose that both the potential
Vi(€) and 8(&) are symmetric functions, with 6 (&) determining the deviation from
detailed balance. The perturbation analysis implies that P(”)(f) is symmetric for
even n and antisymmetric for odd n [see Eq.(4.4.39)]. Since taking a derivative
converts a symmetric function to an antisymmetric one and vice versa, we see from
Eq. (4.4.40) that F () = 0 for all even . Therefore, we have

Fo = (u+F DY+ FO) 1 007). (4.4.41)

This represents the normal form of an imperfect pitchfork bifurcation. First consider
the case Fex¢ = 0. Suppose that F M) is a monotonically decreasing function of
such that y+F (1) = 0 at a critical value Q = Q.. Then for Q2 < £, the only solution
is v =0 and the system does not move. However, at the critical point 2 = Q,,
the zero velocity state loses stability and two new stable solutions vi emerge via
spontaneous symmetry breaking, with vy ~ /€ — . close to the bifurcation point
(see Fig.4.27a). One can also determine the relationship between an external force
and velocity for different values of €2 as illustrated in Fig. 4.27b.

Now suppose that the spring constant K of the spring connecting the backbone to
the cytoskeleton is nonzero. It is now possible for the system to exhibit spontaneous
oscillations [309]. In order to show this, consider the linear stability of the zero
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velocity steady-state solution of Egs. (4.4.35) and (4.4.36) of zero external force.
The steady-state solution is given by

A =RE) =1 2y —v= L [R@anEE.

1
Lan(8)+ (&)

Linearize about the steady-state solution by setting

Pi(&,1) =R(E)+p(&)e™, Y(1)=Yo+ye,

[
o

0.4
Fext=0
03 0.01
o)
s E:
< o2 3
01}
~0.01
0F- | |
0 0.1 0.2 0.3 02  -01 0 0.1 02
/ey i[o%

Fig. 4.27: Ensemble of molecular motors coupled rigidly to a moving backbone. (a) There exists
a critical amplitude 2 = €., where 2 measures the size of the deviation from detailed balance,
beyond which the motor assembly has a nonzero velocity in the absence of an external force.
(b) Sketch of force-velocity curves for different amplitudes £ and a symmetric potential V; (x)
of height U and periodicity /, illustrating spontaneous symmetry breaking. For the dimensionless
parameter values d/I = 0.1 and ua@,!?/U = 0.1 one finds that Q./@w, ~ 0.026. (Redrawn from
Julicher and Prost [307].)

and v(r) = 9,Y (t) = Aye, we find

Ap(8) +AyR'(§) = —(n(§) + @())p(8)

1
0= My+1<y+/0 pEVI(E)dE.
Expressing p(&) in terms of y and eliminating y yields the eigenvalue equation

K[ REVIE
2 h TT @) re® (4442

The zero velocity state is stable if ReA < 0. An instability will occur if there exists
a critical value Q = Q.(K) for which A = iw. Note that if K = 0, then the left-
hand side is real, which implies that A is real and destabilization of the zero velocity
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state cannot occur via a Hopf bifurcation. On the other hand, if K > 0, then a Hopf
bifurcation can occur resulting in a limit cycle oscillation with frequency @ (K) (see
Box 4B). An amplitude equation for spontaneous oscillations close to the bifurca-
tion point can be obtained using Fourier analysis and perturbation theory [308] (see
Ex.4.9).

4.5 Appendix: Statistical Mechanics of Polymers

In the bulk of the book, we treat F-actin and microtubules as rigid or semirigid
polymer filaments. These provide one-dimensional tracks for active intracellular
transport by molecular motors and self-organize through polymerization into the
various structures of the cytoskeleton responsible for cell mitosis and cell motility
(Chap. 8). We will neglect statistical mechanical effects in these applications. On
the other hand, biopolymers such as DNA and proteins are much more flexible rel-
ative to their lengths, which means one has to take into account the wide range of
different configurations that can occur through bending and folding of the polymers,
as well as the associated energetics. The statistical mechanics of polymers will be
important when considering translocation of biopolymers through membrane pores
(Sect. 7.3). The examples in this section also help illustrate some of the basic prin-
ciples of statistical mechanics.

Example 4.1 (Random walk model of a polymer (1D)). Consider a simple 1D model
of a flexible polymer. The polymer is represented as a sequence of links of length a
that either point in the positive or negative x-direction with equal probability. One
can thus treat a given configuration or microstate of the polymer as a sample tra-
jectory of an unbiased random walk on a 1D lattice with spacing a (see Ex.4.10).
Suppose that there are N links in the chain and one end of the chain is fixed at the
origin. Let n denote the number of links pointing in the positive x-direction. It fol-
lows that the other end of the chain (end-to-end distance) is at x = (2n — N)a. We
will assume that N is sufficiently large so that x and n can be treated as continuous
variables. If we ignore any energy contributions from the elastic stretching, bending,
or twisting of the polymer, then the energy @ of any configuration is zero. However,
stretching the polymer by pulling on the free end at x is resisted by an entropic
force. In order to show this, we note that the number of configurations or internal
microstates for fixed n or x is given by the combinatorial factor (see also Sect. 1.4)

N!

Taking logs and using Stirling’s formula (2.1.5) we have the entropy

S(n) =kg[NInN —nlnn — (N — n) In(N — n)], 4.5.2)
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Fig. 4.28: Random walk model of a 1D polymer. The links have been displaced in the vertical
direction for illustrative purposes

which can be reexpressed in terms of x according to

x+Na x+Na Na—x Na—x
=k InN — 1 — 1 . 4.5.
S(x) B<N nN % n{ 2 } % n[ " ]) (4.5.3)
The entropic force is then
Fo )_TdS(x) _ kT , 1+x/Na 45.4)
) = Ty T T 2a 1—x/Na|’ o

Assuming that x < Na, we can Taylor expand to first order in x to obtain Hooke’s
law for an elastic spring:

kgT
Sext(x) = _I%X'

The minus sign means that the polymer resists stretching, since the force is in the
negative x-direction. The origin of the entropic force is that when a polymer is
stretched it becomes less random, in the sense that there are less configurations
for larger x. In order to maintain the displacement x, the environment has to exert an

opposing force f = — fyer. Inverting Eq. (4.5.4), we obtain the force—displacement
relation

(4.5.5)

X fa
Example 4.2 (Freely-jointed chain model of a polymer (3D)). Suppose that we rep-
resent a polymer in 3D as a chain of N segments; each of which is described by a
vector aj with |aj| = a the length of the segment and the direction of a; representing
the orientation of the segment (see Fig. 4.29). One end of the polymer is fixed at the
origin, so that the end-to-end displacement of the chain is given by r = 23\’:1 aj.
Suppose that the orientations of the segments are random in the sense that, averag-
ing over a large population of identical polymers, we have (a; -a;) = 0 for all i # j.
A fixed force f is applied to the free end of the polymer in the z-direction using
an external load, for example. The configuration of the polymer is specified by the
spherical polar angles (6;,¢;) of the N links, j = 1,...,N, with 0 < 6; < 7 and
0 < ¢; < 2m. The total energy of the system consisting of the polymer in a given
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z

Fig. 4.29: Freely jointed chain model of a 3D polymer. A load maintains a constant force f in the
z direction

configuration and the applied load is E = — Y'Y i—1fa cos(0;), which is the work done
by the load in moving links in a direction perpendicular to the (x,y)-plane. The
Boltzmann—Gibbs distribution with ©® = (6y,...,0y) and @ = (¢y,...,¢n) is

N
p(@, (D) ; (fa/kBT) 1C059 - = l_‘[e(fa/kBT)COSQj7 (457)
Z i
with the partition function obtained by integrating over all solid angles, dQ =
[T, sin6,d6;d¢;:
7= / (fa/ksT) X c0s; 4 0) (4.5.8)
2
= H { / / el/a/ksT)eos0) sin 9,d6;d¢; | =z, 4.5.9)
j=i /o Jo '
where
2w
7 = / / sin cU/e/5T)¢0s0 49 1
o Jo

2
:2n/ elfa/ksT)cos0 g0 9
Jo

— 27-[/1 elfalksT)x gy — Msinh (ﬁ) .
—1 fa kBT

It follows from the above analysis that the Boltzmann—Gibbs distribution can be
factorized into a product of distributions for the N independent links,

N ~
H (6;.6,), p1(6.0;) = Z; Telfa/ksT)cos6; (4.5.10)
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In order to derive a force—displacement relation, it is necessary to determine the
mean displacement of the polymer in the z direction, L, =r-e;:

N
(L) = / [a Zlcos 0;
j=

2n T
=Na/ / cos 0p1(0,0)sin 0d0d.
JO JO

p(O,D)dQ

The integral can be evaluated by noting that

2
B 170 0

which implies that

(L) = NkBnglel — Na [coth (kf;—aT) - k]f—ﬂ . 4.5.11)

In the small force limit, this reduces to Hooke’s law:

f=kL;), k=3kgT/Na*. (4.5.12)

One possible point of confusion is that in Example 4.1, the position x of the poly-
mer was treated as deterministic, whereas in this case L, is fluctuating. The two
pictures are consistent once one notes that for a large polymer (large N) fluctuations
in the end-to-end distance are negligible, which is a consequence of the law of large
numbers.

Example 4.3 (The Ising model of a polymer). The next level of complexity in the
statistical mechanical modeling of polymers is to incorporate elastic effects such
as bending, stretching, and twisting. Here we will consider a simplified model,
which is equivalent to the classical Ising model of magnetic spins [102]. Let us
return to the example of a 1D polymer consisting of N links of length a. Denote
the state of each link by the binary variable o; with 6; = 1 (0 = —1) if the link
points in the positive (negative) x-direction. Suppose that an external load maintains
a constant force f in the positive x-direction. The total extension of the polymer is
x= aZIJVZI 0;. In contrast to the random walk model, suppose that when two neigh-
boring links point in opposite directions, they contribute an extra 2ykgT of energy,
where ¥ is some cooperativity parameter. (This could represent an effective bending
energy.) Then the total energy of the polymer plus load for a given configuration
o = (Gl,...,GN) is

N N-1
Elo]=—fa) o;—vksT Y, 0j0j1. (4.5.13)
j=1 j=1
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The corresponding Boltzmann—Gibbs distribution is

plo) =z le Elol/keT (4.5.14)
and the partition function is

Z=F o 3 Tt I 0o (4.5.15)
o1==%1 oy==1

with oo = fa/kgT. The partition function can be treated as a generating function for
the displacement x, that is,

(x) = kﬂ%lnz[ 1= a%Z[a]. (4.5.16)

A well-known result from statistical mechanics is that the 1D Ising model can be
solved exactly. In particular, one can derive an exact expression for Z using transfer
matrices [102]. First rewrite Z in the more suggestive form

z=Y%..% [ea<ol+oz>/2+yclaz} [ea<oz+os>/z+maz] . {ea(wol)/zwml} ,

S1 SN

We can view each term on the right-hand side as the element of a matrix T with
matrix elements labeled by o1, 0», etc., that is, 75,6, = e?(01102)/2+70102 Hence,

T— Tiw T . e tY eV
T\ To ) \e Ve )

In terms of the transfer matrix T

Z = z e 2T0102T0'20'3 e TO-NO-I = "[‘I‘[’I‘I\]]7
0] ON

where we have used the standard rules of matrix multiplication. It can then be shown
that for large N, Z ~ A, where 1, is the larger eigenvalue of T,

Ay =¢? [cosha + V/sinh?a + e*47} .

Finally, substituting the result into Eq. (4.5.16) shows that the mean extension is

Nasinho
V/sinh?a + e 4

Note that this reduces to the force-extension relation (4.5.6) of the random walk
model in the limit Y — 0. The Ising model will be used to model receptor clustering
in Sect. 5.3.

)=
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Example 4.4 (Persistence Length of a Polymer). In the above models there is a fun-
damental length scale, namely, the length a of each link, which is called the Kuhn
length. Roughly speaking, one can view the Kuhn length as the length over which a
polymer is essentially straight. In order to consider properties of polymers on length
scales smaller than the Kuhn length, which are important for strong deformations,
it is more convenient to consider a continuum model of a polymer. One now treats
a polymer as a continuous curve in 3D space, parameterized by arc length s (see

t(s)

t(u)
Fig. 4.30: Persistence length of a polymer represented as a continuous curve
Fig.4.30). The Kuhn length a of the freely jointed chain model can then be related
to the persistence length &, of the continuous model, with the latter defined accord-

ing to the correlation length over which tangent—tangent correlations decay along
the chain:

(t(s) - t(u) = F /e, (4.5.17)

For example, the DNA of viruses such as A-phage has a contour length of 16.6 um
and a persistence length of £, ~ 50 nm at room temperature. One can derive a rela-
tionship between a and £, by considering the mean square of the end-to-end vector

r= /OLt(s)ds.

One finds that

(r?) = <./0.Lt(s)ds-./0.Lt(u)du> = ./O.Lds/oLdu (t(s) - t(u))
- 2/()Lds./S.Ldue’(”"’)/‘§l’ ~ 2./(;Lds/()wdxe*x/5p —2LE,,

for L > &,,. Carrying out an analogous calculation for the freely jointed chain, we
have

(r?) =< A Zak> =2 (aj )

=1 k= jh=1
=Na*+ (a;-a) = Na*,
J#k

since (a;-a;) = 0 for j # k. Comparison of the two models shows that a = 2&,.
Note that the continuous model is the starting point for a more detailed analysis of
the elastic properties of polymers using the theory of elastic beams or rods [53].
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4.6 Exercises

Problem 4.1 (Single-stranded polymer). Consider the kinetic equations for a
single-stranded polymer:

dX,
dt” =X, 1 (t) + X1 (1) — [+ 7|Xu(t), n>0
and X
0
— =X (t) — nXo(t
=0 = £y (1) — mXo(0)

where Xj is the concentration of monomer and X,,,n > 0, is the concentration of
filaments of length n + 1.

(a) Derive the steady-state solution
T n
X, = ( —) Xo.
)

Hence, show that the steady-state concentrations satisfy the equilibrium law of
mass action for the reversible reaction

o
Xn +Xo f Xn+1a

with © = mpXp.
(b) Show that the average length of polymers (not counting the monomers) is

(n) =1+ K =

= X, K—1

Yo (n+ DX, K T
)

and that the total concentration of subunits is

& XoK?
A= X, = ——.
2 %= ey

Problem 4.2 (Double-stranded polymer). Consider a double-stranded filament
consisting of two protofilaments whose ends can take on two basic types of con-
figuration as shown in Fig.4.31. Let P,(a,0) denote the probability that the spatial
separation of the protofilament tips is a + nd, where d is the length of a monomer,
and let P,(0,d — a) denote the probability that the spatial separation is nd +d — a
(cases (a) and (b) of Fig.4.31). The corresponding configurations are labeled by
(a+nd,0) and (0,d — a+ nd). The dissociation constants associated with the re-
versible binding of a monomer will depend on which configuration it binds to and
whether or not it binds to the longer or shorter protofilament. Let AF;, be the change
in free energy due to the removal of a monomer from solution, let 2/A Fj,;/d be the
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lateral binding energy when the added monomer overlaps the other protofilament by
an amount /, and denote the binding energy due to attachment of a monomer to the
end of a protofilament by AFjqng. There are then four possible reactions involving
the binding of an additional monomer, with the following dissociation constants:

wi

Kl = — Ce(ZAFlata/‘H’AFiong+AFm>/kBT
ui

Ky = 22 — ((ARu(1-0/d)+AFong+AFy) [ksT
us

K3 = ﬁ — Ce(ZAﬁat+AFiong+AFm>/kBT
us

K= % — Ce(AFlonngAFm)/kBT,

where uj, w; are forward and backward reaction rates and c is a fixed concentration
of monomers in solution.

(a) Sketch the type of polymer configuration that binds an additional monomer in
each of the four reactions, i.e., determine whether the configuration is (a+nd,0)
or (0,d — a+ nd) and determine the allowed values of n for each case.

(b) Construct a reaction diagram and show that at steady state

u+ws
uz+w

a0 = ( )"Po<a,0>

u+ws\"
P0d-a= (42 Roa-a
up+wn
Py(0.d—a)= ———2Py(a.0
0( 9 Cl) M2+W1 O(au )7

which is supplemented by the normalization condition

=

Y [Pu(a,0) + Py(0,d —a)] = 1.

n=0
a n monomers b n monomers
—
> d-a
ll—l L 1

Fig. 4.31: Different configurations of a double-stranded filament. (a) One of the protofilaments has
a tip at a distance nd 4 a from the other protofilament with n > 0. (b) One of the protofilaments has
a tip at a distance nd + d — a from the other protofilament with n > 0. The identity of the longer
protofilament is not important
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(c) Using part (b) and assuming

u+w
B=—T<1,
uz+w
sum the geometric series to show that
1-5 o(1-B) Uy +wo
Py(a) = Pyd—a)= here a0 = .
0@) = g Pld—a) == wherea =

(d) The mean growth velocity V is defined as the mean rate of growth of the popu-
lation of polymers due to polymerization minus the mean rate of shrinkage due
to depolymerization. Using this definition, derive the following formula for V:

V =du+ (d— a)u1Py(a) + aupPy(d — a) — dw[l — Py(a) — Py(d — a)]
— (d — a)w1Py(d — a) — awrPy(a,0).

Hence, show that

Uiy —wiwz

V=dlu—wp+(1-p)—————|.
B =B o

Problem 4.3 (Spatial polymerization of a filament). Suppose that a polymer fil-
ament is placed in a cylinder with uniform cross section A. Suppose that the
monomers within the tube can undergo diffusion along the axis of the tube, which
is taken to be the x-axis. Let x4 (¢) denote the positions of the + ends of the fil-
ament within the tube. The apparent velocities of these ends due to polymeriza-
tion/depolymerization are

dx

d_t+ = vy = llkhalxy, 1) — k]
dx_ - -
—r = v = kgl — k.

The ends of the filament act as sources or sinks for the monomer, so that the
monomer concentration a(x,#) along the axis satisfies the inhomogeneous diffusion
equation

da da’ 1
5 zDﬁ —y0(x—xp)vy —O6(x—x_)v_], y= n

(a) Derive the diffusion equation by considering conservation of monomer passing
through an infinitesimal volume AAx centered about either end of the filament.
Explain the minus sign in the definition of v_.

(b) Suppose that the tube is infinitely long and

a(x,t) — o, x— too.
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Look for a traveling wave solution in which the filament maintains a fixed length
L and v4 = v, where v is the speed of the wave. That is, set x; =vf,v_ =vt —L
and go to a moving frame z = x — vt with a(x,7) = <7(z) such that
do/  d*of
—V—=D—- 13} L)—6(z)].
VoL DT I8+ 1) - 8(:)

Explicitly solve this equation by matching the solution at the points z = —L,0.
In particular, show that

A(—L)=o, 0)=a—1+e /P,

(c) Substituting for .27 in the expressions for v and setting v = v_ = v, determine
v and L. Show that a physical solution only exists if

+ —
o> koff + koff.
kon =+ kon

Problem 4.4 (Computer simulations: polymerization).

(a) Use Euler’s direct method to solve the ODE corresponding to the master equa-

tion (4.1.1) for polymerization at one end:

dp,

- = Py 1(t)+nP_1(t) — [e+T|P,(2), n>0
with P,(0) = 8,10, € = 0.7, 1 = 0.4. Take r = [0,2].

(b) Use the Gillespie algorithm (Sect. 6.8) to generate sample paths for the length
N(t) of the polymer. The two reactions are n — n+ 1 atrate T and n — n — 1 at
rate €. By averaging over sample paths, compare the histogram of N(T') with the
distribution P,(T) for T =2.

(c) Does the histogram of N(T') appear to converge to a stationary distribution for
large T and € = 0.7, # = 0.4? What about the case € = 0.4, 1 =0.7?

Problem 4.5 (Polymerization ratchet). Consider a Brownian particle moving in
the ratchet potential
F(x)=Fx—nAG, na<x<(n+1)a.

Following the analysis of Sect. 4.2, we obtain the equation

d V(x)/kgT 5 _ Jo ¥ (x)/kpT
dx (e po(X)) o _Doe )

for the stationary distribution po(x) = X5 _ .. po(x + na).
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(a) Integrate the above equation from 0T to x, 0 < x < a, and impose the matching
condition
lim po(x)e”™ = lim po(x)e” ™
x—at x—a~

together with periodicity po(a™) = po(0™"). Hence show that

 JokgT

po(x) = FDo [%efo/kBT—l ,

with
eAG/ksT _

= o(AG-Fa)fkgT _ "
(b) Explain the matching condition used in part (a).

(c) Determine the constant flux Jy using the normalization condition 1 = Jo Po(x)dx.
Hence show that the speed of growth v = Jya is given by

F’a ~Fa/kgT Fa]™
V—DOW{ﬂ(l—e )_I{B_T .

(d) Show that in the regime AG > Fa and kgT > Fa,

va2Dy/a.

Problem 4.6 (Translocation ratchet). The FP equation for the translocation ratchet
takes the form
dp  dJ DF D ap

ot " ox T T ker? T U ox

Suppose that each ratchet site can exist in two states that are in equilibrium

kUl"l
So — Sl N
off

with only S ratcheted. The FP equation is then supplemented by the boundary con-
ditions

J(0,1) =J(8,1), p(8) = (1-m)p(0), ”:kmk+nkoﬁ»'

Show that the velocity of translocation is

2D /2

) e?—1
[—K(E®—1)

V:5Jo

-
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Problem 4.7 (Cooperative model of motor transport). Consider the cooperative
model of motor transport in the absence of a load force, for which the cargo attach-
ment and detachment rates are given by

Y =nY, 7T,=(N-—n)m.

(a) Show that the steady-state distribution is

N! m\" ﬂo)N
P=P——|— ), P=(1+4— .
"N =n)tn! (7’0) ’ ( %

(b) By constructing the generating function G(s) = Y_ &P, /(1 — By), derive an
expression for the mean number of bound motors using N, = G'(0) and show
that for large N,

N ~ T/ % .
1+7'E()/}/()

Problem 4.8 (Energetics of membrane tethering). Consider a membrane nan-
otube of length L and radius r, pulled from a spherical vesicle of radius R by an
applied force F (see Fig.4.21). For simplicity, assume that the membrane is in the
elastic regime. In order to compute the force F and radius », we need to consider the
energetics associated with bending and stretching the membrane. First, membranes
with higher curvature require more bending energy and the rate at which energy
changes with curvature is given by the bending stiffness k. Treating the system as
the union of a sphere, cylinder, and hemisphere (at the tip), respectively, the total
bending energy is

L
Epend = 12K+ nK;.

The energy associated with changing the area by an amount AA = A — A, where
A =4nR?>+2nrL and Ay = 47R3, is

K, AA?

Egtreteh = 7 A_v
0

where K, is the elastic rigidity. Another contribution to the total energy arises from
the pressure difference A p between the inside and outside of the vesicle multiplied
by the volume:

4
E,=—Ap (§7rR3 - 717Lr2) :
The total energy of the system is thus
Eot = Ebend + Estreteh + Ep —FL,

where FL is the work done by the load. (Note the contributions to the area and
volume from the hemispherical tip region have been neglected.)
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(a) In order to determine the equilibrium shape of the vesicle + tube, minimize Ejo
with respect to the three variables r,R, L.
(b) Using the fact that the membrane tension in the elastic regime satisfies

derive the Laplace—Young relation A p = 27 /R from the condition d Eot/dR = 0.
This then justifies neglecting the Ap terms in the equations dE/dr = 0 and
dE/dL = 0 since r < R. Hence, derive the equations

F =2nVv2xt, r=/Kx/21.

(c) Using part (b) and the approximation
TRT+Ki— 'L
~ 10 2R(2) )

derive the following force—displacement relation in the elastic regime:

L F|/F\?
L_e_FOKFO) _1], (4.6.18)

where L, = R(Z)F()3/(87r3 x’K,) and F = Fy when T = 1.

Problem 4.9 (Spontaneous oscillations of collective molecular motors). Con-
sider the system of rigidly linked molecular motors shown in Fig.4.26. Assuming
that the system is incommensurate, that is, [ /g is an irrational number and the po-
tential V; is a constant, Eq. (4.4.35) reduces to the form
8P1 8P1 (0))
- — =—(w P =
5 +v8§ ( 1+(Dz)1+l,
where Pj(&,7) is the probability density that there is a bound molecular motor at £,

and the force-balance equation (4.4.36) for the displacement Y () of the backbone
becomes

Fex = wo(1) + KY (¢ / POVIdE, v(t) =V (r).
(a) Let
Pi(&.1)=R(E)+0(E.1), R(E)=1"m/(0n+a),
and assume a T -periodic solution of the form

Z Q zka)t v(t) _ Z vkeisz’

k£0 k£0
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where @ =27 /T, and set Foxe = 0. Show that the coefficients QO (€) satisfy

6k,l m / / _
0(8) = = T i [On(E) + BuoR B)] . (&) = an(@) + anll)

(b) Suppose that the velocity v(r) < 1 (relative to typical length and time scales of
the system), so that one can perform a perturbation analysis about the steady
state, (P1(&) = R(&), Y(r) = Yy, v = 0), with respect to the Fourier coefficients
vg. Introduce the perturbation expansion

(&) =00 E Wi+ 02 (E)vvm+...
! Im

and substitute into the differential equation for the coefficients Qy (). Derive the
recursion relation

(n) _ O oy +1 (n—1)
Qk,kl,...,kn (&) - ; —(X(é) + ia)ka‘ng’kl“'”k"*l (é)

for n > 1 with

0
04'(&) =~ 5z i &)

(c) Show that the force-balance equation with Fex = O can be Taylor expanded as
1 2
0= ZFk(l )vl + sz(lrivlvm +...,
l Im

with

(1 _ ﬁ_/’R’(é)V{((i)

Fu _6k’l<u+iwk Jo a(é)—i—iwkd& ’
and forn > 1

l
F o= [ Q00 (IVI(E)dE.

Note that F; 1(11 ) (w) =0 recovers the instability condition of the steady state, which
occurs at a critical frequency ® = @,.

(d) Use parts (b) and (c) to prove that Fy, ., = O unless k =k + ...+ k,. Close
to the bifurcation point (0 = @,,v = 0), the dominant terms in the Fourier ex-
pansion are vy and vi,. Dropping higher-order terms v.,,n > 2, use the force-
balance equation to show that vy, v, satisty the pair of equations

0=F v +GPv v+ Gy, 0=Fy) v+ EA,
where v_| =V and

2) _ p(2) (2) 3) _ p(3) (3) (3)
G = Fy TR G = LRI o TR o SN RRE
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Deduce that the amplitude of the spontaneous oscillation satisfies
v = _Fl(ll)/G(3)’ GB) — g0 _ F2(121)G(2)/F2(21)'

Since |v1|? is real, setting the imaginary part of Fl(l1 ) /G to zero determines .

Problem 4.10 (Random walk model of a 1D polymer). Consider a 1D random
polymer consisting of N links, each of which is described by a vector a; = *ae,
with equal probability p = 1/2, where e, is the unit vector in the x-direction (see
Fig.4.28). One end of the polymer is fixed at x = 0. Formulate this model as a ran-
dom walk problem, with the number of segments N analogous to the number of time
steps and the end-to-end displacement analogous to position on a 1D lattice after the
Nth step. Hence, show that the probability distribution of R, where 21}’:1 a; = Re, is
approximately given by '

1
PN(R) ~ z—mve*Rz/ZNaZ.



Chapter 5

Sensing the Environment: Adaptation
and Amplification in Cells

One important requirement of sensory eukaryotic cells and single-cell organisms
such as bacteria is detecting weak signals in noisy extracellular environments. As we
briefly discussed in Sect. 2.4.2 within the context of bacterial chemoreception, there
are fundamental limits to the strength of signal that can be detected. However, even
if a weak signal is detected, it is necessary for some form of amplification to oc-
cur in order that the signal is not lost in subsequent stages of processing within the
cell. Moreover, it is advantageous for a cell to be able to shift its response so that it
always operates in a regime of maximal gain, that is, it is able to respond to small
changes in signal irrespective of the mean strength of the signal—a process known
as adaptation. In this chapter we explore these issues in more detail. We begin by
considering the Berg—Purcell limit of biochemical signaling [40] and a subsequent
modification of the original result that applies outside the diffusion-limited regime
(Sect.5.1). In Sect. 5.2 we review an alternative approach to estimating the preci-
sion of biochemical sensors that is based on the fluctuation—dissipation theorem of
statistical mechanics. In Sect. 5.3 we return to the problem of bacterial chemotaxis,
which is a canonical system used to explore the sensitivity of biochemical sensors
to environmental signals. We describe some of the biochemical signaling networks
responsible for amplification via receptor clustering (cooperativity) and for adap-
tation. We also analyze some simple PDE models of bacterial chemotaxis. Finally,
in Sect. 5.4, we consider how amplification and adaptation occur in hair cells of
the inner ear via active mechanotransduction. Here the interactions between the me-
chanical properties of transduction elements, the action of myosin motors, and Ca>*
signaling allow a hair cell to operate close to a Hopf bifurcation point for the on-
set of spontaneous oscillations. This, in turn, provides the basis for active signal
processing such as amplification and frequency tuning.

© Springer International Publishing Switzerland 2014 227
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5.1 Physical Limits of Biochemical Signaling due to Noise

We begin by presenting the original derivation of the Berg—Purcell limit for the pre-
cision with which the external concentration ¢ of some ligand such as a chemoat-
tractant can be inferred from the time-averaged occupancy of a single receptor em-
bedded in the cell membrane [37, 40]. Let us denote the time-dependent state of the
receptor by n(r) with n(t) = 1 (n(r) = 0) if the receptor’s binding site is occupied
(unoccupied) by a single ligand molecule. In thermodynamic equilibrium at some
given concentration ¢, the time-averaged occupation 7 is
c

n_c—i—Kd’ (5.1.1)
where K is the dissociation constant for ligand binding/unbinding (see Sect.3.1).
After a molecule is bound to the receptor, the probability of detachment in an inter-
val dt is dt / T, where T}, is the inverse of the unbinding rate. Suppose that the binding
site is treated as a circular disk of radius a. From the analysis of diffusion-limited
reactions in Sect. 2.4, we know that the diffusive flux into the dic is 4Dac, where
D is the ligand diffusivity. At equilibrium the rate at which a molecule binds to the

receptor must balance the rate of escape:
n
— =4(1 —n)Dac. (5.1.2)
Tp

In particular, since 77 = 1/2 when ¢ = Ky, it follows that

1
4DaKd '

T, = (5.1.3)

The information about the surrounding concentration ¢ available to the cell is the
function n(r) sampled over a time interval T,y,. Let

1 t0+7avg
ne = / n(r)dt (5.1.4)
Tavg t

be the cell’s estimate of 71, with 7y the time when sampling begins. It follows from
equation (5.1.1) that the corresponding estimate of c is

Ny

K. (5.1.5)

Cy =
1—n,

We would like to determine the error in such an estimate. From the definition of

ns, we have
10+ Tavg l()+TdVé
/ / dtdt
avg to fo
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which implies that
2 l Tavg Tavg ' '
(n) = —— / / C(t —1')drdr', (5.1.6)
Tag Jo Jo

where C(7) is the correlation function
C(t) = (n(t)n(t+1)). (5.1.7)

It is assumed that the stochastic process is stationary so that C only depends on the
time difference and the expression for (1n2) is independent of the initial time . The
correlation function satisfies the differential equation

ac

o5 = —Cl1)+ (A—C(r)—L—. (5.1.8)

I=p

In order to derive this equation, one imagines making a large number N of mea-
surements n(tp)n(fy + ) over a random set of initial sampling times #,. Since
n(to)n(ty + ) = 1 only if n(ty) = n(ty + 7) = 1, otherwise n(fy)n(fy + 7) = 0, one
can keep track of changes in the number of nonzero pair-wise measurements when
T — T+ d7, which leads to equation (5.1.8) [40]. Integrating this equation and re-
quiring that C(0) = 71 gives

C(T) — 7’_l2 +7’_l(1 _ ﬁ)ef‘r‘/(liﬁ)‘[b' (519)

Substituting for C(7) into equation (5.1.6) yields the result

(n2) :TZL/TM /Tavg [ﬁ2+ﬁ(1—ﬁ)e*"*”‘/“*ﬁ)’b drdt’
e Jo Jo

=i+ —ii(1 — 1)1

Tavg

Given the unbiased estimate (n.) = 71, we see that the RMS error dn in our estimate

of 71 satisfies
on 1 5 5 2
_— = — — % = 1 —n 2
T =V == [ -are,

which, combined with equation (5.1.2), reduces to

1) 1—n
R (. o (5.1.10)
n 2DacTyyg

If we now use the small noise approximation

= = 6:
c dinc (1—n) K "T1oa

3

oc dcén  K; 1-n 1 o6n
n
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oc / 2
¢ 4Dac(1 — 1) Tayg | ©-111)

Equations (5.1.10) and (5.1.11) express the fundamental limits of Berg and Purcell
[40]. If the binding site is modeled as a sphere rather than a disk, then there is a
different geometric factor so 4Dac — 2mwaDc.

One of the simplifying assumptions of the above derivation is that reactions are
diffusion-limited. That is, as soon as a ligand molecule comes into contact with the
receptor, it is absorbed. In other words, the rates of binding and unbinding k+ — oo
with k_ /k+ = K. Berg and Purcell argued that their result also holds for reactions
that are not diffusion-limited (finite k) since, if a ligand molecule fails to bind,
then it will rapidly keep re-colliding with the receptor until it does eventually bind.
Such a process can be captured by rescaling the radius a. However, this ignores the
possibility that after unsuccessfully binding, the specific ligand molecule diffuses
back into the bulk, and a different ligand molecule subsequently binds. Similarly,
a ligand molecule that has just dissociated from the receptor could either rapidly
rebind or diffuse away into the bulk. Recently, a detailed study of the Berg—Purcell
problem outside the diffusion-limited regime has been carried out by Kaizu et al.
[314], who show that there are now two contributions to the RMS error:

we deduce that

oc 1 2
— = . 5.1.12
c \/27rDac(1 — 1) Tavg + kyc(1 =) Tavg ( )

The first term recovers the fundamental limit of Berg and Purcell applied to a sphere
rather than a circular disk, whereas the second term takes into account the variability
that results from the receptor-ligand binding kinetics; the latter vanishes in the limit
k+ — oo. Interestingly, a similar result has been obtained by Bialek and Setayeshgar
[45] using a very different approach, which is based on the fluctuation—dissipation
(FD) theorem of statistical mechanics:

oc 1 2
- . 5.1.13
c \/nDacTavg + kyc(1 —71) Tavg ( )

The contribution to uncertainty from binding kinetics agrees with the Kaizu et al. re-
sult [314], but the contribution from diffusion differs from both the latter and Berg—
Purcell. One possible explanation for this discrepancy is that the FD theorem only
takes into account linear correlations. On the other hand, the FD theorem provides a
relatively simple, intuitive method for addressing the physical limits of biochemical
signaling and will be discussed at length in the next section.
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5.2 Fluctuation—Dissipation Theorem

The fluctuation—dissipation (FD) theorem is based on the assumption that the re-
sponse of a system in thermodynamic equilibrium to a small applied force is the
same as its response to a spontaneous fluctuation. Suppose that x(¢) represents the
linear response of the system to a small external input A(t), such that

x(t) = /: G(t)h(t —t)dt, G(t)=0for7<0, (5.2.1

where G(t) is the linear response function. In a mechanical system x(z) would repre-
sent a physical displacement and /4 an applied force, whereas in a magnetic system
x(r) would represent magnetization and % an applied magnetic field. In the latter
case, G(¢) is known as the magnetic susceptibility. Let X (¢) represent the corre-
sponding response of the system to thermal fluctuations. The FD theorem states that
the power spectrum Sx (@) (definedin Sect. 2.2.5) is related to the Fourier transform
of the linear response function G(t) according to

2kpgT
()

Sx(w) = Im[G()]. (52.2)
(The FD theorem can be derived from first principles using statistical physics and
the observation that at equilibrium (X) = JdE/dh, where E is the free energy of the
system; see Box 5A.) For example, applying the FD theorem to the OU process
(Sect.2.2.3) with G(®) = [k — iwy] ™!, we find that

2kBT’)/

(5.2.3)

Comparison with the calculated expression for Sy (®) in equation (2.2.33) recovers
the Einstein relation D = kpT'y.

Box SA. Derivation of the fluctuation—dissipation theorem.

We sketch a proof of the FD theorem for a system close to thermody-
namic equilibrium using the Boltzmann—Gibbs distribution introduced
in Sect. 1.4 (see also [102]). Imagine that a constant external force & is
applied to the system over the time interval (—e,0] and then suddenly
switched off at time r = 0. Let E; be the energy of a microstate in the
absence of the force and E; — hA; be the energy of the state for & # 0,
where A is some function of state. Since the system has had an infinite
time to relax to equilibrium prior to = 0, we know that before the force
is switched off the mean (A(0)) is given by
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B ZjAje*B(Ej*hAj) 1

(A(0)) = Wa B= e

Let A(z|) be the value of A at time ¢, which evolves in the absence of
the applied force from one of the initial microstates A ;(0) at time ¢ = 0.
Averaging over these initial states and using the fact that £ is infinitesimal,
we have

_ . S A(t]j)e PEi—hA)
A(r) = (A(t]))) = jz( l]);(EjhAj)
j

_ZA@]f)e PEI (14 BRA(0) +..)
T xe PE(14 BrA;(0) +...)

%je PEIAGL)) (1+Bha,(0) - ﬁh—z";if}‘}:m))
~ 5 e PE
= (A(1)) + BR[(A(1)A(0)) — (A(1))(A(0))].

In other words, the relaxation to equilibrium can be related to the auto-
correlation function C(z) of spontaneous fluctuations 6A(z):

A(t) — (A) = (5A(1)SA(0)) = C(t).

Let G(z) be the linear response function. It follows that we can also
represent the relaxation to equilibrium according to

A(t)— (A) = ﬁ Z G(D)h(t — 7).

Using the particular piecewise constant form for 4,

A1) — (A) = h /, " G(v)dr,

which implies that

G(t)=— %Et)H(t).

Fourier transforming this equation gives

G(ﬂ)) =-f /0“’ C(t)eiw’dt =—B+iop /OooC(t)eiw’dt_
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Taking the imaginary part of this equation,

ImG(w) = ®BRe /()wC(t)ei“”dt = %ﬁ [/mc(t)ei“” —|—/OwC “‘”] dt

w_2[3 [/ ‘“”4-/ C(— “‘”} dt = %ﬁ/:oc(t)e"“”dt
- S(),

where S(®) is the power spectrum.

Im® Im o
A A
_Sk/‘g— » Re o
N K
8/-\\— » Re o ¢
- €

Fig. 5.1: Contours in the complex frequency plane @

Another version of the FD theorem. This can be obtained by comparing
two formulae for the total power. First, integrating equation (2.2.29) with
respect to @ and @’ shows that

- - do do' *° do
//X X (@) 0 2n_[wSX(w)%'

On the other hand, integrating (5.2.2) with respect to ® gives

= do * Im[G(®)] do

Recall that G(7) is a causal Green’s function, which means that G(t) =0
for T < 0. It follows from G(7) = [, G(®)e ®*dw/2x that G(w)
is analytic in the upper-half complex w-plane. This also means that
G*(w) = G(—w) is analytic in the lower-half complex plane. Hence, we
can rewrite the integral of Im[G(w)] as a sum of contour integrals

I Im[(?(w)]d_w_iyg W_wd_w_iyg Glle) it

o 2t 2ifs, o 2n 2ile o 21’
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where ¢ (%) is closed in the upper-half (lower-half) complex plane
(see Fig.5.1). From the calculus of residues, we then have

20 _1&0).

* Im[G(w)] do 1
[m o 2t 2

We thus obtain another version of the FD theorem
(X(0)%) = kgT G(0). (5.2.4)
In the case of the OU equation, G(0) = x~! and

K 1

—(X(0)%) = kgT

S (X(0)%) = kT,

which is an expression of the equipartition theorem of statistical mechan-

ics: in equilibrium each degree of freedom has a mean energy of kg7 /2.

The FD theorem has traditionally been applied to mechanical and other physical
systems within the context of statistical physics. More recently, however, Bialek
and colleagues have used the FD theorem to explore a number of important issues
in biochemical signaling, including the identification of fundamental physical limits
on the sensitivity of biochemical sensors such as receptors [45, 46, 630]. Following
[45], consider the simple problem of signaling molecules binding to a single site of
a receptor. Ignoring fluctuations, the fractional occupancy of the site, n(t), evolves
according to the first-order kinetic equation

d

d_’Z = ke[l —n(t)] —k_n(t), (5.2.5)
where ¢ is the background concentration of the ligand. The equilibrium law of
mass action requires that the rate constants are related through detailed balance (see
Sects. 1.4 and 3.1),

’ic _ eF/kBT’

where F is the free energy associated with binding. Now suppose that thermal noise
induces small fluctuations in the binding energy, 6 F, and in the associated rate con-
stants, k. Taking logs of the detailed balance equation shows that the fluctuations

are related according to
Sk. k. OF

ki k- kgT’

Linearizing (5.2.5) about the equilibrium solution

= —t (5.2.6)
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gives
% = —(kyc+k_)én+c(1—n)dky —ndk_.
Combining this with the detailed balance constraint yields the linear equation
ydd—b;n = —Kkén+ OF, (5.2.7)
with ksT ksT
Y= kel —7) K= (kpc+k_)y= A7) (5.2.8)

This has an identical structure to the OU equation but now describes the change
in fractional occupation in response to fluctuations in binding free energy rather
than the change in position of a particle in response to fluctuating forces in solu-
tion. There is an effective damping coefficient y and an effective spring constant x.
Applying the FD theorem to this system using equations (5.2.3) and (5.2.8) imme-
diately gives

2k c(1—7)

Sp(w) = m = ((8n)%)

21,
1+ (w7,)?’

where, from equation (5.2.4),

 kgT

((8n)?) =a(l—n),
and 7. = (kyc+k_)~'. The power spectrum is said to have a Lorentzian form and
is equivalent to an exponential decay of correlations:

= do

(Bn(0)5n(1)) = [ e s, (@) 32

—oo

(8n?)e 11/, (5.2.9)
This is easy to check by noting that
oo oo 0 .
/ e:wte—\t\/rcdt _ / ezwteft/rcdt +/ elwtet/rfdt
oo 0 —oco
_ /w eiwze—t/r(,dt + /w e—ia)te—z/‘ccdt
0 0

S 2
=2Re / e/ e~!/% 4t — 2Re T
Jo

T +io 1+ 02t

In summary, the above application of the FD theorem recovers results that could
also be obtained using a linear noise approximation of the underlying master equa-
tion along analogous lines to the two-state ion channel model of Sect.3.2. The
advantage of the FD theorem is that it makes no assumptions about the underlying
microscopic theory (e.g., master equation), other than that the system operates close
to thermodynamic equilibrium. It also provides a powerful framework for coupling



236 5 Sensing the Environment: Adaptation and Amplification in Cells

chemical reactions with diffusion. In particular, Bialek and Setayeshgar [45] de-
rived an extension of the Berg—Purcell result presented in Sect. 5.1 by coupling the
receptor model with diffusion of ligand. Taking the receptor to be at position Xy and
setting ¢ = ¢(x,t), we have

Z—’Z = ke c(x0,1)[1 — n(t)] — k_n(t), (5.2.10)
and
de(x,1) o dn(t)
> =DV-¢(x,t) — 8(x —Xp) I (5.2.11)

The last term on the right-hand side of (5.2.11) takes into account the transfer of a
single ligand molecule when it binds to the receptor. The next step is to linearize the
equations about the steady-state solution (71, ¢), where ¢ is the uniform background
concentration. Using a combination of temporal and spatial Fourier transforms, it
can be shown that (see Ex.5.1)

n(®)  kpc(1—n) 1
SF(w) kT —io[l +XZ(0)]+kc+k’ (5.2.12)
where 3
1 d’k
20) =401 [ G s 5219

In bacterial chemotaxis, the receptor occupancy is averaged over a sufficiently
long time interval so that high-frequency components of the spectrum are elimi-
nated, and we can thus make the approximation X(®) — X(0), with

a 1 &k
(e k2 dk
—47'Ek+(l—n) 0 mw
_ ki (1—7)
~ 2nDa

In evaluating the integral we have used spherical polar coordinates and taken the
upper bound of the wavenumber k = vk - k to be k = 7 /a, where a is the size of the
receptor. We then have an effective damping coefficient y and an effective spring
constant K given by

kT

y=[0+Z0)]nw, x=(kictk)n, N=

An application of the FD theorem together with equations (5.2.3) and (5.2.14) shows

that
O e(l—a[1+E0)]
$0(@) = G O+ tyethyr LA

21,
1+ (w7,)?’
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where
1+ X(0) - 1—ﬁ+ﬁ(1—ﬁ)

kic+k k- 2nDac
We have used equation (5.2.6) and the formula for X(0). The RMS error is then

given by
2(1—n)? (1 —7)?
i ravg k Tayg nDaéTan'

Using the identity (1 —72)/k_ii = 1/ck; and 6¢ = ¢dn/[ii(1 —7i)], we finally obtain
equation (5.1.13).

(5.2.15)

c =

5.3 Bacterial Chemotaxis

We briefly considered the chemotaxis of E. coli in Sect. 2.4.2, within the context of
diffusion-limited reactions and sensitivity to chemical gradients. Here we consider
the role of biochemical signaling networks in bacterial chemotaxis. E. coli is one
of the most studied organisms in systems biology, exhibiting a number of important

— run attractant
source

run tumbl no chemical positive
- @@= umble gradient chemotaxis
c cw
rotation
ligand ® CCw
rotation
inactive flagellar active

receptor motor receptor \ /
®

Fig. 5.2: Bacterial chemotaxis. (a) A schematic showing the motion of a bacterium that consists
of a series of runs and tumbles. (b) The sequence of runs and tumbles can be altered by an exter-
nal chemical gradient so that the motion is biased towards (away from) an attractant (a repellant).
(¢) The switching of a flagellar motor from counterclockwise to clockwise rotation, resulting in a
switch from running to tumbling, is controlled by a signaling pathway in which unbinding of a lig-
and (attractant molecule) from a chemoreceptor in the cell membrane leads to the phosphorylation
of CheY, which subsequently binds to the motor and induces the switch
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signaling mechanisms including signal amplification, adaptation, and robustness to
noise. For an excellent discussion of some of the issues covered here see Chap. 4
of Bialek [44] and the reviews [628, 645]. Many bacteria, including E. coli, possess
flagella, which are helical polymer filaments that are turned by molecular motors
embedded in the cell’s membrane. (The axial-asymmetric helical structure of flag-
ella provides a mechanism for swimming at low Reynolds number; see Box 5B.)
When all of the flagellar motors are rotating CCW, the helical filaments bundle to-
gether and efficiently drive the bacterium in a straight line comprising a single run.
On the other hand, if the motors reverse direction, the flagellar bundle flies apart
and the bacterium rotates in a random fashion called a tumble. This is illustrated in
Fig.5.2a. Over longer time scales the motion of the bacterium looks like a sequence
of straight line trajectories arranged at random angles to each other (see Fig. 5.2b).
Tuning of the swimming behavior by environmental signaling molecules allows the
bacterium to swim either towards a food source (chemoattractant) or away from
a noxious toxin (chemorepellant). These signaling molecules bind to chemorecep-
tors in the cell membrane that induce dephosphorylation of a downstream signaling
molecule CheY which tends to switch the flagellar motors from clockwise to CCW
rotation (see Fig.5.2c¢).

Box 5B. Swimming at low Reynolds number.

Reynolds number. The flagellar-based swimming mechanism of E. coli
is one strategy for moving in a fluid at low Reynolds number. In order
to understand what this means, it is necessary to consider a little fluid
mechanics [38, 122, 517]. Consider a flat body such as a spoon moving
in a fluid such as air or water. Roughly speaking, the force necessary to
keep the object moving at a constant speed v is F ~ uAdv/dy, where
A is the surface area of the spoon and v(y) is the velocity of different
cross sections of fluid at a perpendicular distance y from the object. The
constant u is known as the viscosity of the fluid. (The linear relationship
between F and the velocity gradient is characteristic of a Newtonian fluid
such as air or water.) Suppose that / is a characteristic size of the object.
Using dimensional analysis, the viscous force pAdv/dy will scale as plv,
whereas the inertial force mdv/dt due to the fluid’s momentum will scale
as pI?v? where p is the density of the fluid. The ratio of these two forces is
characterized by a single dimensionless parameter known as the Reynolds
number (Re):
pl*v? _ply
ulv. p
When Re > 1 inertial forces dominate, whereas viscous forces dom-
inate when Re < 1. Using typical length and velocity scales for humans
and bacteria swimming in water, one finds that Re ~ 10* for humans and

Re = (5.3.1)
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Re ~ 1073 — 107 for bacteria. Note that the Reynolds number can also be
obtained from the Navier—Stokes equation, which is the governing equa-
tion in fluid dynamics and is associated with conservation of momentum.
In the case of an incompressible fluid (V - v = 0), the Navier—Stokes equa-
tion is

av
P ot
The terms on the left-hand side represent pressure and viscous terms,
and the terms on the right-hand side correspond to inertial terms. After
non-dimensionalizing the Navier—Stokes equation, the right-hand side is
multiplied by Re, so that for Re< 1, the Navier—Stokes equation reduces
to the time-independent equation

—Vp+uViv= +p(v-V)v.

uViv=Vp. (5.3.2)

Scallop theorem. One of the immediate consequences of swimming at
low Reynolds number is that the net forces acting on a body must at all
times be zero, since they cannot be counterbalanced by an inertial force
(mass times acceleration). Consider, for example, a microscopic swim-
mer that moves by changing its shape. Clearly the sum of all internal
forces must be zero, i.e., the organism cannot “bootstrap” its own mo-
tion. However, changing its shape elicits reactive resistive forces from the
fluid which themselves have to sum to zero. It turns out that the sequence
of shape changes is uniquely determined by the requirement that the re-
sistive forces cancel and can result in net motion of the swimmer. The
requirement that there is net motion then constrains the allowed sequence
of motions, as illustrated by the so-called scallop theorem formulated by
Purcell [517]. Consider a scallop that moves in water at high Re by slowly
opening and rapidly closing its shell. The latter action expels a jet of wa-
ter that propels the scallop in the opposite direction, whereas the drag
associated by reopening can be reduced by opening slowly. In contrast,
at low Reynolds number, the flow of water into and out of the scallop
over one cycle would be the same, regardless of the speed, implying that
a scallop would make no net progress at low Re. This theorem reflects the
fact that the Navier—Stokes equation in the limit Re— O is time reversal
symmetric, that is, it doesn’t change under the transformations ¢ — —t
and v — —v. The motion is independent of the speed and is determined
by the sequence of body configurations. Since the opening and closing of
a scallop’s shell is time reversible, there is no net progress at low Re. The
helical structure of flagella motors clearly breaks time reversal symmetry
and thus allows E. coli to generate net motion at low Re.

How to swim at low Re. We now give a more abstract mathematical de-
scription of how to achieve net motion at low Re due to Shapere and
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Wilczek [583] (see also [122]). Consider a cyclic sequence of shape
changes of a microscopic swimmer at low Re in a Newtonian fluid. Let
S(z) denote the shape of the swimmer at time ¢ at the actual orientation
and location in space. S() can be decomposed in terms of a displacement
and orientation operator % (t) acting on a shape function So(¢), where
{So} denotes the set of all possible shapes at a fixed location and ori-
entation. This is illustrated in Fig.5.3, which shows two shapes Sy(0)
and Sy(z) determined by a fixed local coordinate system (x,y). The ac-
tual physically located shape S(z) is obtained by displacing and rotating
the local coordinate system by the rigid body transformation Z(z). For
example, suppose that S(o) is a simply connected shape in R3, which is
treated as a map from the two-sphere S? to R? with ¢ € S?. Then % can
be represented as a 4 x 4 matrix

Rd
“=(5%)
where R is a standard 3 x 3 rotation matrix and d = (dl,dz,d3)T rep-
resents displacements of the global Cartesian coordinates (X,Y,Z). The
operator % operates on the 4-vector (So(c),1)” with So(c) € R3. It fol-
lows that under the rigid body transformation, So(c) — RSo(0) +d. It
should be noted that the physical shape S(¢) is independent of the choice
of local coordinates used to define the shapes Sp—changing the local co-
ordinate system changes Z(t) and hence A(t), but the sequence of mo-

tions is invariant under these transformations. Introduce a matrix A(z) for
infinitesimal motions according to

» X

Fig. 5.3: Representing a shape S(¢) in physical space (X,Y) by a shape So(¢) at a
fixed location and orientation, which is then shifted and reoriented by a rigid body
transformation Z(t)
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A%
- = Z()A(t).

This can be formally integrated to give

A&(t) = Texp ( /0 ’A(/)dﬂ) .

Here T denotes the time-ordering operator. That is, on Taylor expanding
the exponential, we obtain a series of multiple integrals involving prod-
ucts of the operators A(z) at different times. The time-ordered product
means that operators at later times appear to the right of operators at ear-
lier times—in general the operators don’t commute:

t t t ot
Texp < / A(t’)dt’) =1+ / A(r)dr' + / / A(AEdr'dl" + ...
0 0 0 J0

Finally, one can express A(z) in a time-independent manner by setting
A(t)dt = A[So(¢)]dSo such that

So(t)
B(t) = Texp < / A[So]dS()) .
So(0)
In the case of a cyclic sequence of shape changes, the net rotation and
displacement per cycle period A is

B(A) = Texp ( ?{ A[So]dso) :

Of course, in order to calculate this explicitly one still has to solve the
fluid dynamics equations at low Re to determine A[Sy]. Various examples
can be found in [583].

5.3.1 Receptor Clustering and Signal Amplification

The main components of the signaling transduction pathways involved in E. coli
chemotaxis are shown in Fig. 5.4 [628, 645]. Each chemoreceptor forms a complex
with kinase CheA via an adaptor protein CheW—a protein kinase is an enzyme that
modifies other proteins by chemically adding phosphate groups to them (phosphory-
lation). The autophosphorylation (self-activation) of CheA is suppressed (enhanced)
when a chemoattractant (chemorepellant) binds to the associated receptor. In the ac-
tivated state, CheA transfers a phosphate group to the motor regulator CheY thus
counteracting dephosphorylation by CheZ. The phosphorylated form of CheY then
diffuses away and binds with a flagellar motor, which then increases the motor’s
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clockwise bias and hence the cell’s probability of tumbling. As with other biological
sensory systems, the bacterial chemotaxis pathway allows the cell to adapt to persis-
tent chemical stimuli. Adaptation is mediated by the methylation and demethylation
of the chemoreceptors by the enzymes CheR and CheB*, where CheB* is the phos-
phorylated form of CheB that is also targeted by the activated form of CheA (see
Sect.5.3.2).

There are more than 10,000 chemoreceptors in a single E. coli cell, and they
tend to form clusters around the cell pole. As first hypothesized by Bray et al. [62]
and later confirmed experimentally [436, 605], one important function of receptor
clustering is signal amplification due to cooperativity, analogous to cooperativity
between multiple binding sites on a ligand-gated ion channel (see Sect. 3.1). Let us
first consider a single chemoreceptor, which can bind to a single ligand molecule.
Suppose that the kinase activity of the chemoreceptor (via CheA) has two discrete
states, active (a) and inactive (i), and that the equilibrium constants for ligand bind-
ing/unbinding are different in the two states. We thus have a version of the MWC
model with n = 1. It immediately follows (see equation (3.1.13)) that the steady-
state probability of being in the active state is

YO(l +Ka[L])
Yo(1+Ky[L]) + (1 + Ki[L])’

Pa= (5.3.3)

where Y is the equilibrium constant for i = a and K;,K, are the equilibrium

constants for ligand binding in the inactive and active states, respectively, with
K, < K;. From equilibrium thermodynamics we know that ¥y = e 4£/k7  where
AE = E, — E; is the free energy difference between the active and inactive states in
the absence of a ligand. Given equation (5.3.3), we can also define an effective free
energy difference AE between the two states that is “averaged” with respect to the
binding state by setting

1

Pa = AE T

A comparison with (5.3.3) shows that

14 Ki[L]

TR (5.3.4)

AE([L]) = AE +kpT In

Since K; > K,, increasing the ligand concentration [L] increases the effective free
energy and thus decreases the probability of being in the active state.

There are two basic models of receptor clustering. One involves dividing the
receptors into a set of independent subclusters. Within each subcluster, all the re-
ceptors are tightly coupled and always in the same state (active or inactive), which
is uncorrelated with the collective state of any other subcluster. However, the bind-
ing state of each receptor within a subcluster varies independently as in the single
receptor case. This all-or-none activation state of a subcluster is precisely the MWC
model introduced in Sect. 3.1. In the case of N receptors in a subcluster we obtain
an equation of the form (3.1.13) for the probability p,. Another way to derive such
an equation is to note that the effective free energy for N globally coupled receptors
is Ey = NAE and p, = (1 + eEN/kBT)’l. On using (5.3.4), we have
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Fig. 5.4: Schematic diagram of major signaling pathways in E. coli chemotaxis. See text for details

_ {1 +exp (N (AE+kBT1nLL+—I%>)} 71
Yo(1 + Ka[L])V

chemoreceptors

= 535
Yol + KaL))V + (1 + KLV (5.3.5)
If K, < [L]~! < K;, then we obtain a Hill function of order n:
Yo
=—— 5.3.6
Py Y kL) (5.3.6)
where K = K;. It follows that

dpa __ [ ]n71 Y
d[L]

n
v ke~ g

This suggests that maximal sensitivity will occur if the system is kept in a regime
where p, ~ 0.5.

An alternative model of receptor clustering is to take the receptors to be dis-
tributed on some form of lattice with nearest neighbor interactions [151]. Let
m =1,...,N be a receptor label and denote the state of the mth receptor by a,,
with a,, = 1 (active) or a,, = 0 (inactive). Leta = (ay,...,ay) denote a given cluster
state and take the corresponding free energy to be

H(a)=—J Y (2am—1)(2a,—1)+AE(|L Zam (5.3.7)

(m,n)

The first term on the right-hand side represents interactions between nearest neigh-
bor pairs on the lattice, denoted by (n,m), with J, J > 0, a coupling strength. Such
coupling favors neighboring receptors to be in the same activation state (1 or 0).
The second term takes into account the internal energetics of individual receptors.
In steady state the probability P(a) of the cluster state a is given by

P(a):%e kel 7 — Ze (2)/ksT
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The second model of receptor clustering is identical in structure to the Ising model
of a 1D polymer considered in example 4.3 of Sect. 4.5. The latter is obtained under
the transformations 2a,, — | — o,, = £1 and AE — — o, where G,, is the orientation
of the mth polymer link and o represents an external force. An exact solution for
the mean number of active receptors can then be obtained along identical lines to
the derivation of the force—extension relation for the polymer (see Ex.5.2):

1 1 sinhAE([L])
a=— am ) ==|1—-
N <§ > 2L sinntaE((L) 4

< <
counter > >
clockwise CheY* CheY*

\ lT A

-« <
clockwise CheY* CheY* %)

Fig. 5.5: Model of motor as a sensor of CheY. See text for details. Redrawn from [44]

(5.3.8)

It turns out that the flagellar motors are very sensitive to changes in the concentra-
tion of the phosphorylated form of CheY. Since ligand binding to chemoreceptors
reduces the level of phosphorylation, this provides another mechanism for signal
amplification. In Fig.5.5, we show a model for the modulation of motor rotation
bias due to binding of phosphorylated CheY (denoted by CheY*) [44]. Each flag-
ellar motor is a rotary engine with a ring-like structure. The CheY molecules bind
independently to multiple sites distributed around the ring with the binding affinity
greater when the motor is rotating clockwise (CW) rather than CCW, that is, the
associated equilibrium constants satisfy Kcw > Kccw. When all sites are empty the
equilibrium is biased towards CCW rotation. However, as more sites become occu-
pied the equilibrium shifts to CW rotation. It follows that increasing the concentra-
tion of CheY* will favor the latter state. From the perspective of binding reactions,
this model is also identical to the MWC model of a ligand-gated ion channel with n
binding sites (Sect.4.1). That is, we can map the open (R) and closed (T) states of
the ion channel to the CW and CCW states of the molecular motor. Taking ¥; to be
the equilibrium constant for the switching between the CW and CCW states with all
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sites empty, we see that the probability Pow that the motor is in the CW state is (see
equation (3.1.13))

Y()(l + chc)"
1+ ch)” + (1 + KCCWC)n

Pew = ¢ ( (5.3.9)

where ¢ denotes the concentration of CheY*.

5.3.2 Adaptation in Signal Transduction Pathways

A sudden increase in the concentration of a chemoattractant results in a decrease in
the cell’s tumbling frequency, but over a longer time scale the frequency recovers
to its prestimulus level [39]. This frequency adaptation occurs over a wide range of
stimulus strengths. At the molecular level, adaptation is mediated by the enzymes
CheR and CheB*, which are responsible for the methylation and demethylation of
chemoreceptors. The level of methylation v, say, can be incorporated into the re-
ceptor clustering models by taking the difference in free energies between the active
and inactive receptor states to depend on Vv, that is, AE = AE(V). As highlighted
by Barkai and Leibler [20], the level of parameter fine-tuning that would be needed
to account for the observed adaptation is unrealistic given the presence of noise.
Therefore, they proposed a robust adaptation mechanism that doesn’t need any fine-
tuning. The basic idea is to assume that the relatively slow process of demethyla-
tion (CheB*) counteracts the shift in tumbling frequency induced by changes in the
level of kinase activity (CheA*). More specifically, the Barkai—Leibler model as-
sumes the following: (i) the rate of catalysis of the methylation enzyme CheR is at
its maximum so independent of any concentrations; (ii) the action of the demethy-
lation enzyme CheB* on active receptors is given by a Hill function of index n = 1.

Thus,
dv Iga
Y Fla)=Th—
a P =T Ksta

where I p are maximum catalytic rates and a is the average receptor activity. In
general, this is a nonlinear equation for v since a is a function of v via its depen-
dence on AE(Vv).

In order to illustrate how adaptation occurs, let us return to the MWC model.
Equation (5.3.5) shows that the average receptor activity a is a function of the level
of methylation v according to

(5.3.10)

a=a([L],v) = [1 +exp (N (AE(V) +kBT1n11Jr+—II;i[[LL]]>)] B . (5311

Suppose that there is a fixed background ligand concentration [L] = Ly and denote
the equilibrium receptor activity by ag. This must also correspond to the steady-state
solution of (5.3.10) with F(ag) = 0:
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KpIr
ay= ———
0 1—‘3—1—‘R,

which is independent of ligand concentration. (The fixed point is globally stable as
F'(a) < 0 and da/dv > 0.) Given this solution for ag, equation (5.3.11) implies
that ag = a(v,Ly), which can be inverted to yield the steady-state methylation level
vo = v(ao,Lp). Now suppose that there is a sudden change in ligand concentration,
[L] = L,. The average receptor activity rapidly changes to give the new equilibrium
solution for vy fixed,

A

adaptation shifts
response curve

output

>
(Lo L] input

Fig. 5.6: Tllustration of the Barkai-Leibler adaptation mechanisms. A sudden change in input (lig-
and concentration) [L]p — [L] induces a fast response from receptor activity state A to state B.
Over longer time scales, the response curve shifts to a higher attractant concentration as the sys-
tem adapts its methylation level until it reaches the adapted state C with the same activity as the
prestimulus state A. As a result of the response curve shift, the high response sensitivity of adapted
state C in the new environment is identical to that of state A. Redrawn from [645]

apg— ay = a(Ll, V()).

Suppose that ap ~ 1/2 so the system initially operates in the sensitive region of the
response curve, whereas a; is outside this domain (see Fig. 5.6). However, over a
longer time scale, the methylation level adapts according to equation (5.3.10) so
that a; — ag with vp — v = v(ap,L;) (see Fig.5.6). The linear response of the
Barkai—Leibler model to a small oscillatory input is considered in Ex.5.3.

5.3.3 Bacterial Chemotaxis as a Velocity-Jump Process

One of the challenges in modeling bacterial chemotaxis is understanding how
extracellular biochemical signals are transduced into behavioral changes at the
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macroscopic level illustrated in Fig. 5.2b. Early models tend to be phenomenologi-
cal in nature, representing the dynamics of cells in terms of an advection—diffusion
equation for the cell density n(x,t), in which the velocity is taken to depend on the
concentration gradient of some chemotactic substance [311, 326]. For example,

% =V-(DVn—ny(c)V), (5.3.12)
where c is the concentration of the extracellular signal and the function y(c) is
known as a sensitivity function. Often the above equation is coupled to a reaction—
diffusion equation for the evolution of ¢, which may itself depend on n if cells se-
crete their own chemoattractant. An alternative, stochastic formulation of bacterial
motion has been developed in terms of a so-called velocity jump process, in which
the velocity of the cell can randomly jump according to a discrete or continuous
Markov process [6, 140, 262, 486, 487]. For example, let p(x, v,#) denote the prob-
ability density of cells at position x € R? and velocity v € R at time 7. Then p
evolves according to an equation of the form

%p(x,v,t) +v-Vp(x,v,t) = —Ap(x,v,t) + ?L/T(v,v')p(x,v’,t)dv'. (5.3.13)
Here A is a constant turning rate, with 1 /A measuring the mean run length between
velocity jumps. For simplicity the time spent in the tumbling state is neglected. The
kernel T (v,v') is the conditional probability of a velocity jump from v’ to v given
that a jump occurs. If motion is restricted to 1D, then there are just two velocity
states v and equation (5.3.13) reduces to the much simpler pair of equations

dp+ dp+

T_FVW =—-Api+Ap_, (5.3.14a)
dp-  dp-
LoV ap -2, (5.3.14b)

where p(x,t) are the probability densities of a cell being at (x,7) and moving to
the right (+) and left (—), respectively, and v is the speed. This pair of equations is
identical in form to the Dogterom—Leibler model of microtubule catastrophe [146]
introduced in Sect. 4.1 [see equation (4.1.10)]. For constant v and A, it can be re-
duced to a damped wave equation for the total density p = p. + p_ known as the
telegraph equation [223, 311, 487] (see Ex.5.4).

In order to model 1D chemotaxis, it is necessary to introduce some bias into the
stochastic switching (tumbling) between the velocity states v that depends on the
extracellular concentration gradient c. One phenomenological way to achieve this is
to assume that the rate of tumbling depends on the time derivative of the concen-
tration ¢(¢) = ¢(x(t)) along the bacterial trajectory according to some function r(¢),
where ¢ = +vdc/dx [44]. This yields the pair of equations
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J J 1 , 1 /

% —l—v% = —Er(vc (x))p+(x,1) + Er(—vc (x))p—(x,1) (5.3.15a)
op-  dp- 1, 1 ,

% - v% = Er(vc (x))p+(x,1) — Er(—vc (x))p—(x,1). (5.3.15b)

We are assuming that when the bacterium tumbles there is an equal probability of
moving in either direction and that tumbling is instantaneous—experimentally it is
an order of magnitude faster than a typical run length. Another simplification is to
take the tumble rate to depend on instantaneous values of the concentration gradient
rather than a time-averaged change in concentration. The steady-state probability
densities satisfy the pair of equations

v8p+ 1
ox 2

(v ()P () — v () (x)

and
222 L s 0) - v o o

Adding these two equations gives

which implies that the difference p (x) — p—(x) = constant. Assuming that —eo <
x < oo, normalizability of the probability densities requires this constant to be zero.
Hence, p4 (x) = p(x)/2 with p(x) satisfying the single equation

dp _ 1 / /
V55 [r(—vc' (x)) — r(vc' (x))] p(x).

Under the linear approximation r(z) ~ r(0) + #(0)z, we have
r(dvcd (x)) =~ r(0) £ 7 (0)vc (x),

and 5
va—i =~/ (0) (x)p(x).

This has the straightforward solution
L 0)e)

where Z is a normalization factor. If the signaling molecules correspond to a
chemoattractant, then the rate of tumbling decreases in the direction for which ¢ > 0,
that is, #/(0) < 0, and maxima of the steady-state solution (5.3.16) coincide with
maxima of the concentration ¢(x). Conversely, /(0) > 0 for a chemorepellant and
maxima of P(x) coincide with minima of the concentration.
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Erban and Othmer [170] have developed a more detailed 1D model of chemotaxis
that incorporates aspects of the biochemical signal transduction pathways described
in earlier parts of this section. For simplicity, they assume that there are two internal
state variables of a bacterium, yy,y,, which evolve according to the equations

dy1 (1) dy(t)
dt dt

gl =g(c(x(1)) =) —»2(1), ™ =g(e(x(r)) —y2(2).  (5.3.17)
Here x(t) is the current position of a cell and the function g represents signal am-
plification based on a sigmoid, say, g(c) = ¢/(c+ Ky). For a constant signal ¢ = ¢y,
we have the asymptotic solutions
lim y; (1) =0, limys () = g(co),

which implies that the variable y; adapts perfectly to a constant background signal.
Finally, the turning rate is taken to be a linear function of y;, A = A9 — By, where Ay
is the basal switching frequency for a fully adapted cell and f3 is a positive constant.
As a further simplification, suppose that 7, =0 and g(c¢) = c so thaty; (t) = c(x(t)) —
y2(t) = —z(t). It follows that A = A9 + Bz and

05 = clalt) ~32lt) ~ i (6(0) G = ~2l0) F e GO

depending on the sign of the velocity. Now let p4(x,z,7) denote the probability
density for being at position x and in internal state z at time ¢ with velocity +v. The
resulting 1D model of chemotaxis takes the form [170]

Ip+ dpy 9 [(

o ox Tz

dp_ dp_ d
s (2w o] = o palpe—p ) 638

2 —vc’<x>) p+] (o4 B3)—pi+p]  (53.180)

(%)

Equations (5.3.18) can be analyzed by constructing moment equations and car-
rying out an appropriate truncation in order to solve the resulting closure problem
[170]. First, introduce the following macroscopic variables:

n(x,r) = /[ +(x,2,0) + p(x,2,1)]dz (5.3.19a)
/ p+(x,2,8) — p_(x,z,1)]dz (5.3.19b)
ni(x,1) = / 2p (ra,t) + p(v,2.0))dz (5.3.19)

/ Aps (5 2,1) — p(x,2,1)]dz (5.3.19d)
/ [p+(x,2,8) — p—(x,2,t)]dz. (5.3.19)
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Here n(x,1) is the total probability density (summed over internal states and the two
velocity states), j(x,) is the macroscopic particle flux, and the other macroscopic
variables involve first and second moments with respect to the slow internal variable
z. Multiplying equations (5.3.18) by 1 or z, integrating with respect to z, and adding
or subtracting the resulting equations leads to the following hierarchy of moment
equations (see Ex.5.5):

dn  dj
TR (5.3.202)
dj ,0n . . .
o0 TV gy = "2 2B, (5.3.20b)
dni  dji N
o P = CWi-, (5.3.20¢)
% + VZ% ==’ (n— QA +15 ) j1 — 2B 2. (5.3.20d)

As they stand, these do not form a closed system of equations, since (n,ny, j, ji)
couple to the second-order flux j,, which will itself couple to higher-order moments.
However, it is possible to achieve moment closure by assuming j, = 0. This can be
justified rigorously provided that the concentration gradient is sufficiently shallow
[170].

Equations (5.3.20) with j, = 0 can be used to determine various statistics of the
motion. For the sake of illustration, suppose that the concentration gradient is a
constant ¢/ (x) = ¢o. Assuming the normalization [ n(x,7)dx = 1, the mean position
% and MSD o2 are defined according to

(1) = /R wn(xn)dx,  62(f) = /R (x— %)n(x, 1)dx. (5.3.21)

Multiplying equation (5.3.20a) by x or by (x — £)? and integrating with respect to x
gives

dx do?

— = — =2j1 —2%j 5.3.22
7 J1—2Xjo, ( )

where
jo= [ #itends, = [ #htends mo= [ emnde (5323)
R JR R

A closed set of first-order differential equations for (jo,n10,j10) can be obtained
by integrating equations (5.3.20b)—(5.3.20d) with respect to x. Similarly, a closed
set of equations for the triplet (j1,n11,j11) can be derived by multiplying equa-
tions (5.3.20b)—(5.3.20d) by x and then integrating with respect to x. One finds that
each of the two dynamical systems converges to a stable fixed point so that in the
limit t — o [170],
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2 T 2 2 4 213
x(1) = Pram 2, o)== Pran 1,
A{)+2/’LOT2

7 (o+230)

The details of the calculation are left to Ex.5.5.

In summary, the large-time behavior of a bacterium undergoing chemotaxis in
a shallow concentration gradient is characterized by constant drift and diffusion.
This is a special case of a more general result that, under an appropriate rescaling of
space and time, wave-like (hyperbolic) equations for chemotaxis such as the general
velocity-jump process of equation (5.3.13) can be approximated in the long-time
limit by an advection—diffusion (parabolic) equation, provided that the concentration
gradient is sufficiently shallow [262, 486]. We will encounter analogous results for
PDE models of motor-driven transport in Sect. 7.4.

(5.3.24)

5.4 Hair Cells and Active Mechanotransduction

Most sensory cells have to amplify their signals in order to separate them from
background noise (see also Sect.5.1). For example, photoreceptors enhance their
responses to photon excitation a thousandfold by using a biochemical cascade [44].
On the other hand, hair cells of the vertebrate inner ear use a mechanical active
process to amplify their inputs [286, 412, 422]. When sound reaches the cochlea—
a spiraled, hollow, conical chamber of bone in the inner ear along which waves
propagate—it elicits mechanical vibrations that stimulate hair cell receptors. These
receptors transduce the vibrations into an electrical signal via mechanotransduc-
tion, simultaneously performing work that amplifies the mechanical signal resulting
in positive feedback. The hair cells of all vertebrates share a similar structure and
transduce mechanical stimuli according to the same basic mechanism [287]. On the
top of each hair cell is a cluster of 20-300 actin-based cylindrical structures called
stereocilia, which is known as the hair bundle (see Fig. 5.7). The stereocilia develop

Fig. 5.7: Electron micrograph showing stereocilia of an inner hair cell of the bullfrog (Public
domain figure downloaded from Wikipedia Commons)
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Fig. 5.8: Schematic illustration of a hair cell, illustrating how a mechanical stimulus deflects the
bundle of stereocilia surmounting the cell resulting in the opening of mechanosensitive ion chan-
nels and the influx of K and subsequent influx of Ca>*. This can lead to the firing of an action
potential (AP) (Public domain figure downloaded from Wikipedia Commons)

in such a way that there is a specific variation of their lengths across the hair bundle
giving the latter a beveled shape (see Fig. 5.8). The mechanical stimulus induced by
sound reaching the ear deflects the hair bundles, with their component stereocilia
bending at their base. This deflection causes a shearing motion between neighbor-
ing stereocilia, which is detected by mechanosensitive ion channels located near the
stereociliary tips. This transduction is mediated by cadherin-based adhesive tip links
that couple adjacent stereocilia and can open the ion channels under tension. This
allows K" to enter the hair cell. The resulting depolarization opens voltage-gated
Ca** channels and the intracellular Ca>* concentration rises. This in turn opens
Ca**-sensitive K* channels through which K* can flow out of the cell and the cell
returns to rest. The given sequence of events can result in an action potential being
produced by the hair cell.
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One major feature of the hair bundle is that the tension of the tip link can be
adjusted by myosin motors that walk up and down the stereocilia [607, 610], which
then allows the hair cell to adapt to a sustained deflection of the hair bundle. It
is thought that, at least in the case of nonmammalian tetrapods (four-legged verte-
brates), the interaction of the molecular motors with the mechanical properties of the
hair bundle forms the basis of active processes in the inner ear, which include signal
amplification, enhanced frequency selectivity, and spontaneous oscillatory acous-
tic emissions. Moreover, from a dynamical systems perspective, these characteris-
tics emerge naturally if the transduction process operates near a Hopf bifurcation
[90, 109, 423, 465, 657]. In this section we review some of the models that have
been developed to explore active processes in hair cells.

a
channel
e stimulus stimulus
tip link force force
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= 60
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Fig. 5.9: Gating-spring model of mechanotransduction. (a) Schematic diagram of two stereocilia
connected by a tip link that is attached to a transduction ion channel. Deflection of the bundle by
a positively directed stimulus force bends the stereocilia, stretches the tip link, and consequently
opens the ion channel, allowing K and Ca>* to enter the cytoplasm and depolarize the hair cell.
(b) Simplified mechanical model of coupled stereocilia. (¢) Sketch of force—displacement curve
similar to one found experimentally in hair cells of the bullfrog [423]. A region of negative spring
stiffness can be seen
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5.4.1 Gating-Spring Model

Our starting point is a gating-spring model of mechanotransduction in hair cells,
as reviewed in [418]. Suppose that the hair bundle is modeled as a collection of N
elastic units in parallel. Each unit consists of a mobile element of width AA that is
attached to two fixed walls by a pair of springs in series (see Fig.5.9b), which is
a simplified model of the mechanical properties of a pair of linked stereocilia (see
Fig. 5.9a). The left spring represents the tip link or gating spring (gs) and is attached
to the element via a hinge or trapdoor, whereas the right spring (sp) represents the
stereociliary pivots. Assume, for the moment, that the trapdoor is closed. Let x be
the distance of the mobile element from the left-hand wall and denote the lengths of
the gating spring and pivots by ags and agp, respectively. If the distance between the
walls is A, then
ags=x, asp=A—AA—x.

Suppose that each spring has an equilibrium length (no tension) denoted by ags and
dgp. It follows that we can express the displacements form equilibrium of the two
springs as

Adgs = Ags — Tgs = X — Xgs, Adgp = agp — Asp = — (X — Xp),

with Xgs = dgs and X, = A — AA —dsp. When the trapdoor is open, it is assumed that
the left spring’s length is reduced by an amount 8, so that Aags — Aags — 6. Now
suppose that an external force f in the positive x-direction is applied to a single unit
and that we have Hookean springs with spring constants kg and kp, respectively.
The displacement x is then determined by the force-balance equations

[ = fe(x) = kgsAags — kspAagy = ks (x — Xgs) + ksp(x — Xsp)
—K(x—%), (5.4.1)

for the closed trapdoor and

= folx) = kes(Aags — 6) — kpAasp = kgs(x —Xgs — ) + kgp(x — Xp)
= K(x—%) — kgs, (5.4.2)

for the open trap door, where K = kg + ksp and X = [kgsXgs + ksp¥sp] /K. (Note that
the applied force is opposed by stretching the left spring and compressing the right
spring.)

Having looked at the mechanical properties of the springs, we now have to in-
corporate the stochastic opening and closing of the trapdoor. This is achieved by
treating the gating-spring unit as a two-state system in thermodynamic equilib-
rium, so that the probability of being in an open or closed state is given by a
Boltzmann—Gibbs distribution (Sect. 1.4). That is P.(x) = 1 — P,(x), with P,(x) =
(1+e2EM/ksTY=1 and AE (x) is the energy difference between the open and closed
states. There are two contributions to this energy difference. First, there is an
increase AEy in the configuration energy of the trapdoor when it jumps to the
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open state. Second, there is a change in the potential energy stored by the left spring
when it shifts by an amount 8, which is given by —0kgs(x — Xgs). Hence,

1
- 1+ ef[ékgs(x*ng)*AEO]/kBT '

P,(x) (5.4.3)

Now let us consider N identical gating-spring units in parallel. Since they are in
parallel, each unit experiences the same applied force f/N.If N is sufficiently large,
then fluctuations in the fraction of open and closed gates can be ignored. It follows
that we have the force-balance equation

J=7@) =N [fo(x)Po(x) + fe(x)Pe(x)]
=N [(K(x —X) — kgs6)P,(x) + K (x —X) P (x)]
=N [K(x—X) — kgs 6Py (x)]
Shkgs
1 + e [Bkes(x—Tgs)~AEq]/kgT | °
Nz
1 4+ e—2lx—x0)/kpT’

=N |K(x—%) —

= Kiotx + fo — (5.4.4)
where Kiot = NK, fo = —NKZ, z = Okgs, and xo = Xgs + AEp/z. Fitting the model
to experimental data from bullfrog hair cells yields the following example set of
parameter values [422]: N = 65, Kiot = 10> uNm~!, z = 0.72 pN, fo = 25 pN, and
xp = —2.2 nm. If one plots the force—displacement function f(x) for these values at
room temperature, one obtains the curve shown in Fig. 5.9c. It can be seen that for
sufficiently large displacements in the positive or negative x directions, the system
acts like an ordinary spring, that is, it has approximately constant stiffness. However,
within +20nm of the resting position, the stiffness d f/dx varies significantly with
displacement. Even more striking is that, within 10 nm of the resting position, the
stiffness slope is negative and displacement of the bundle in a particular direction
requires a force in the opposite direction—the hair bundle is said to have channel
compliance. It is important to note that no active processes have been included in
the model, since there is no net consumption of energy. However, when the force—
displacement characteristics of the form shown in Fig. 5.9¢ are combined with the
action of myosin motors, the active features of hair cells can be reproduced [422,
424] (see Sect. 5.4.2).

Before considering active processes, however, we briefly consider what happens
when N is small so that fluctuations in the number of open ion channels cannot
be ignored. From the analysis of Sect. 3.2, we know that the probability Py(n|x)
of there being n open channels for a given displacement x is given by a binomial
distribution of the form (3.2.8):

N!

Py(nf2) = R (1 = B "

It follows that the mean and variance of the number of open channels are
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(n) =NP,(x), 6% =NPy(x)(1—Py(x)).

For a given displacement x, the necessary force on the hair bundle can be written as
[see equation (5.4.4)],

f(x) = folx) —zn,

force (pN)

80
displacement
(nm)

—

100 ms

Fig. 5.10: Possible mechanism for spontaneous oscillations of a hair bundle. (a) Shifts in the force—
displacement curve due to the action of myosin motors. See text for details. (b) Hair bundle acts
like a relaxation oscillator with fast jumps (i — ii and iii — iv) alternating with slow shifts in the
fixed point due to adaptation (ii — iii and iv — ). (c) Sketch of variation of displacement x with
time (Redrawn from Martin et al. [422])

where fy(x) = NK(x—X) and n is the stochastic number of open ion channels. Thus
Jo(x) is the force needed to hold bundle at x when all the channels are closed. We
can now determine the mean and variance of the force:

(f = fo) = —z(n) = =NzPy(x),

and
Var[f — fo] = 226 = NZ?P,(x)(1 — P,(x)).

5.4.2 Channel Compliance, Myosin Motors and Spontaneous
Oscillations

The channel compliance (negative stiffness) of the hair bundle implies that the bun-
dle can operate in a bistable regime for sufficiently small applied forces. However,
the force—displacement curve can be shifted by the Ca>*-regulated action of myosin
molecular motors that move up and down a stereocilium, altering the stiffness of the
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tip link [422, 424]. The myosin motors adapt the response of the hair bundle so that
if a negative (positive) displacement has been maintained for some time, the force—
displacement curve of Fig. 5.9¢ is shifted to the left and downward (to the right and
upward). This has the effect of moving the negative stiffness region toward the offset
point. One possible mechanism for Ca>* regulation of myosin is that Ca>* simply
reduces the probability that myosin motors bind to actin filaments, thus allowing the
transduction element to lose tension [287]. Alternatively, Ca*>" could alter the equi-
librium between different bound conformational states of the motor. It has also been
suggested that Ca>* might regulate hair bundle dynamics in a myosin-independent
fashion [109, 287]. For example, the energy associated with binding of Ca’>* di-
rectly to the channel or to an associated protein could reduce the open probability.
However, the myosin-dependent mechanism is currently thought to be more likely.

As shown by Martin et al. [422], the above adaptation mechanism can also re-
sult in spontaneous oscillations, which is illustrated in Fig.5.10. Suppose that the
bundle occupies a negative displacement equilibrium when f = 0 (black curve in
Fig. 5.10a). The ion channels are then in a low open probability state and the Ca>*
concentration is kept at a low level by Ca?* pumps. This upregulates the myosin
motors, resulting in an increased stiffness of the tip link and a leftward shift of
the force—displacement curve (dashed curve in Fig. 5.10a). A sufficient shift leads
to the disappearance of the negative fixed point (i) and the system jumps to the
corresponding positive fixed point (ii). The ion channels are now in a high open
probability state, Ca>* flows into the cell and downregulates the myosin motors,
and the force—displacement curve shifts in a rightward direction. Eventually, the
positive fixed point (iii) disappears (gray curve in Fig. 5.10a), and the system jumps
back to a negative fixed point (iv). The cycle then repeats itself resulting in a peri-
odic solution (see Figs. 5.10b,c). Since the jumps are much faster than adaptation,
the hair bundle acts like a relaxation oscillator, analogous to the conductance-based
models of a neuron considered in Sect. 3.5. (Indeed, it is possible to linearly trans-
form equations (5.4.5) and (5.4.7) for fixed C to obtain equations similar in structure
to those of the FitzHugh—Nagumo model [121].) It is thought that these oscillations
are responsible for the spontaneous acoustic emissions observed in nonmammalian
vertebrates. For example, Martin et al. [422] measured the power spectrum (see
equation 2.2.5) of spontaneous oscillations emitted by the hair bundle of a bullfrog
hair cell and found a sharp peak at around 8 Hz and a half-width of around 3 Hz; the
spectral broadening is a result of thermal noise. The typical range of spontaneous
oscillation frequencies is 5-50 Hz. The existence of spontaneous oscillations pro-
vides a possible mechanism for signal amplification and frequency tuning, namely,
a nonlinear resonance effect when the stimulus frequency is sufficiently close to
the natural frequency of spontaneous oscillations and the system operates close to a
Hopf bifurcation point [90, 109, 158, 423, 465, 657].

For the sake of illustration, we will consider a dynamical model of spontaneous
oscillations in hair bundles based on the combined action of Ca** and myosin
motors on the gating-spring model [424, 465] (see also Ref. [657]). Neglecting
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inertial effects, the position of a single gating-spring element evolves according to
the equation

d
5 d—f = N [kgs (6 — 201 — BPo(x)) + k] + Foxy (5.4.5)

where & is a friction coefficient, Fey is an external force, and 6 is scaled by a ge-
ometrical factor that takes into account the gain of stereociliary shear motion. The
open probability is given by a slightly modified version of equation (5.4.3):

1

€ gs (X=X,

P,(x)

Following the idea that myosin motors modify the tension in the tip link of a chan-
nel, the effective equilibrium position xs of the gating spring is maintained by Ny,
myosin motors pulling against the force f(x) = kgs(x —xpr) — 6Py(x). That is, we
identify xj; with the position of the motor cluster. The dynamics of the cluster is
assumed to satisfy a linear force—velocity relation with slope &y:

Md:;—;v[ :ngs [x—xM—5P0(x)] —Npr(C). (5.4.7)
Here the force exerted by the motors is taken to be proportional to the force f gen-
erated by a single motor and the probability p that a motor is bound to an active
filament. The active force produced by the molecular motors corresponds to the
motors climbing up the stereocilia, dxys /dt < 0, which increases the tension of the
gating springs and thus increases the open probability P, of the ion channels. The
binding probability p = p(C) is assumed to be a monotonically decreasing func-
tion of the intracellular Ca®* concentration C. Ignoring nonlinearities in p(C), the
binding probability can be written as p(C) ~ po — p1C with pg; > 0, provided that
C < po/pi. Finally, the intracellular Ca** dynamics is modeled as

T% =—(C—Cy) +[Cy — Co)Py(x), (5.4.8)
where the decay term represents the effects of Ca>™ pumps and the other term on
the right-hand side is the total flux through the open ion channels. When all the
channels are closed, C returns to the background concentration Cy. A crucial aspect
of the model is a separation of time scales—the channel kinetics are assumed to be
much faster than the Ca%t dynamics, which are themselves assumed to be faster
than the bundle and motor dynamics.

Since T < &, &y (fast Ca>* dynamics), one can use a slow—fast analysis and set
T = 0. This yields an effective planar dynamical system for (x,x)s) given by equa-
tions (5.4.5) and (5.4.7) with p(C) = po — p1CmPs(x) for Cyp = 0. (Vilfan and Duke
[657] also use a slow—fast decomposition but treat the motors as the slow system
by fixing x,, and consider the planar dynamics of (x,C).) One can then determine
the existence and stability of fixed points for Fex; = 0 and derive conditions for the
occurrence of a Hopf bifurcation along the lines of Box 3B. Nadrowski et al. [465]
constructed a bifurcation diagram in terms of two parameters: the maximal force
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Fig. 5.11: Bifurcation diagram of hair bundle model given by equations (5.4.5)—(5.4.8) for 7 =0.
Different dynamical regimes are shown as a function of the maximal motor force fi.x and the
strength S of Ca>* feedback on motor activity. There are two monostable domains where either
most of the ion channels are closed or most are open. The shaded region indicates where stable
oscillations exist, and Hopf bifurcations occur along the boundary of this region. For smaller fpax
(towards the bistable region) the Hopf bifurcation is subcritical, whereas for larger fi.x (away
from the bistable regime) the Hopf bifurcation is supercritical. (The black dot indicates the point
Sfmax = 50.3pn, § = 0.65 where stochastic simulations produced the best quantitative agreement
with experiments; see text for details.) Other parameter values are as follows: & = 2.8 uNsm™!,
&y =10 uNsm~!, N =50, Njy = 3,000, § = 61 nm, kg = 15 uNm™', ksp = 12 uNm~! uNm~',
Co=0,AG=10kgT, T =300 K (Redrawn from Nadrowski et al. [465])
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Fig. 5.12: Stochastic version of hair bundle model. (a) Power spectrum for spontaneous oscilla-
tions. (b) Real and imaginary parts of linear response function in response to sinusoidal forcing at
an amplitude of 1pN. Parameter values given by black dot in Fig.5.11 and 7c = 1 ms (Redrawn
from Nadrwoski et al. [465])
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Jfmax = YNmfpo exerted by the molecular motors and the dimensionless strength
S = Cypi1/po of the negative Ca’" feedback. The final term on the right-hand
side of (5.4.7) becomes — fimax(1 — SP,(x)). The bifurcation diagram is sketched
in Fig.5.11 and consists of different dynamical regimes as indicated. In particular
spontaneous oscillations occur at intermediate values of the maximal force and the
strength of Ca®*t feedback; in other regions the system is either in a monostable or
bistable regime (see Ex. 5.6).

One simplification of the above model is that it ignores the effects of noise.
Nadrowski et al. [465] also considered a stochastic version of the model by
introducing white noise terms 1,7y, and 7¢ on the right-hand side of equa-
tions (5.4.5), (5.4.7), and (5.4.8), respectively. The Gaussian random variables are
taken to have zero mean and autocorrelations

(n(1)n(0)) =2kpTES (1) (5.4.9a)
(M (1)nna(0)) = 2kpTyrEn 6(1) (5.4.9b)
(Me(H)ne(0)) =2N1Cy, P, (1 — P,)1cd(1). (5.4.9¢)

The major source of noise for the hair bundle is Brownian motion in the surrounding
fluid, and one can use the Einstein relation to determine the noise strength in terms of
the friction coefficient £. Although the motors also undergo Brownian motion, there
are additional sources of noise due to the random binding and binding to filament
tracks. This leads to an effective temperature Tjs ~ 1.57T . Finally, the main source of
noise for Ca>* dynamics is the random opening and closing of ion channels, which
can be described by a binomial distribution as outlined at the end of Sect. 5.4.1.
Assuming the channel kinetics relaxation time 7¢ is very fast, one can approximate
the channel noise by white noise (see also Chap. 3). Simulations of the stochastic
model for 7c = 1ms, fimax = 50.3pn, and S = 0.65 (indicated by the black dot in the
bifurcation diagram of Fig.5.11) generates a spectrum of spontaneous oscillations
that agrees quantitatively with experiments. An example of a spectrum obtained by
Nadrowski et al. [465] is sketched in Fig. 5.12, together with the corresponding real
and imaginary parts of the linear response function in the frequency domain.

5.4.3 Active Amplification Close to a Hopf Bifurcation

A number of theoretical studies have suggested that many of the active properties
of a hair bundle can be reproduced by assuming that it operates close to a Hopf
bifurcation [90, 109, 158, 422]. This is also consistent with the dynamical model
of spontaneous oscillations considered by Nadrowski et al. [465] (see Fig.5.11), al-
though certain care needs to be taken since the Hopf bifurcation may be subcritical,
so that there is a rapid transition to a large amplitude relaxation oscillator. Following
Refs. [90, 158], we now consider the generic behavior of a forced oscillator close
to a supercritical Hopf bifurcation. Let it denote some bifurcation parameter of the
system, which could be related to the activity of myosin motors or the concentration
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of intracellular Ca>* in the case of a hair bundle. Suppose that the system is in a sta-
ble stationary state for tt < 0, whereas it exhibits spontaneous oscillations for yt >0
due to a supercritical Hopf bifurcation at the critical value u,. = 0. Recall from Box
3B that close to a Hopf bifurcation, the dynamics of an unforced oscillator with nat-
ural frequency @y can be represented (after an appropriate change of variables) by
the normal form (4.4.30):

dx d
o~k woy — x(x* +7), d—f = —wpx+ py — y(x* +5?),

which can be recast in complex form by setting z = x + iy:

dz

o = (u—ion)z— |z|%z. (5.4.10)

Now suppose that we drive the oscillator with a forcing term ae’®, and look for
solutions of the form z = Ae/(“"*+9)_ Substituting into the complex version of the
normal form gives

(iA(w — ay) — pA+A%) e =a.

The relevant quantity in terms of amplification is the amplitude of the response, so
taking the modulus of both sides we have

A —2UA 4 (U + (0 — )?]A? = &°. (5.4.11)

Solving this equation for fixed stimulus strength a, we can plot the amplitude A as
a function of the stimulus frequency. The results are shown in Fig. 5.13 for various
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0.001
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Fig. 5.13: Amplitude in response to a stimulus of strength a and frequency w for u = 0.2
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input amplitudes a. It can be seen that when a is small, there is significant amplifica-
tion and sharp frequency tuning around the resonant frequency @y. The amplitude
response curves are qualitatively similar to those seen experimentally [287, 423].
At the resonant frequency (@ = ay), the amplitude equation reduces to the simpler
form

A’ —pnA=a,

which establishes that at the Hopf bifurcation point where u = 0, we have
A~a'l3.

This is a highly compressive nonlinearity that boosts weak signals much more
strongly than strong signals. On the other hand, if the stimulus frequency differs sig-
nificantly from @y, then the cubic term in the amplitude equation can be neglected,
and the system operates in a linear regime for which

a
0—ay’

A~

and there is a 90° phase lag. Finally, note that in order for the above nonlinear
resonance to be realized by hair bundles, there has to be some feedback mechanism
that keeps the system close to Hopf bifurcation point for a range of different natural
frequencies—a process known as self-tuning [90, 158].

5.5 Exercises

Problem 5.1 (Physical limits of biochemical signaling). Consider a receptor at
position x¢ with a single binding site. Let n(¢) denote the fractional occupancy of
the site and ¢(x,¢) the concentration of diffusing ligand. Binding and diffusion are
coupled according to equations (5.2.10) and (5.2.11).

(a) By linearizing these equations about the uniform steady state (7,¢) and using
detailed balance, show that

ydd_(Stn = —xdn+ki[1—ilydc(xp,t) + OF,
with
T o
Y= el —7) k= (kyC+ko)y,
and
déc(x,t) don(t)

= DV?5c(x,1) — 8(x —xo)

ot dt
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(b) By Fourier transforming the diffusion equation with respect to space and time,
with

Se(k, @) = / Tt / Prei® M 5e(x,1),  Sn(w) = / " O (1)t

show that
. ek
oc(x, 0) = i0Zp(0)dn(w), Z(w)= [ 55— (2m)3

(¢) Hence, derive the result

on(w) 1 1
SF(0)  y—io[l+2(0)]+kictk '
)-

where X(0) =k (1 —7)XZ(w

Problem 5.2 (Ising model of receptor clustering.). Consider the Ising model of
receptor clustering with partition function

Z= ze /T :—12 2a, —1)(2a,— 1)+ F([L Zam

(5)-- 22

and the analysis of the Ising model in Sect. 4.5, show that the mean level of kinase
activity per receptor is

Using the identity

sinhF ([L])

@=111-
\/sinth([L]) +e ¥

)

with
1+ Ki[L)

Given that K; > K, describe how (a) changes as [L] increases from 0 to ee.

Problem 5.3 (Linear response in the Barkai-Leibler model). Consider the
Barkai—Leibler model of adaptation in bacterial chemotaxis. The methylation level

evolves as 4 r
\% Ba
—=F =Igr—
dr (a) R Ksta’
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where I p are maximum catalytic rates and the average receptor activity a is given
by the MWC model (with kgT = 1):

a=a([L],v) = [l—i—exp <N <AE(V)+1H11++—II§£[[ZL‘]])>}I.

Let ag, vp be the steady state at a background ligand concentration Ly. Suppose that
there is a small oscillatory modulation of the ligand concentration

[L)(1) = Loeeo),

where A is the amplitude, A < 1, and o is the modulation frequency. Finally, assume
that K,[L] < 1 < K;[L] so that

14 Ki[L]

In——
EY AT

~In([L]/K;).

(a) Linearizing about the steady state (ag, Vo), show that

dA
d_tv = F'(ap)Aa,

with Av =v — v,
Aa=a—ap=Nay(l—ag)[aAv —Acos(wt)],
and oo = AE'(vp).

(b) Setting _ _
Av =Re[A,e'], Aa=Rel|A,'"],

use part (a) to solve for the complex amplitudes A,,;,A,:

A= 0 g py = Oy
0+ o, 10+ Wy
where
ca=Nay(1—ap), cm=0a"', @, =—aF (ag)Nao(l —ap).

(c) The linear response of receptor activity can be characterized by the amplitude
|A,| and phase ¢, = 7t /2 +tan"' (v/Vy,). Plot |A,|/|Aa|max and ¢ /7 as a function
of V/Vy. (A typical value of v,, is around 5 x 1073 Hz.)

Problem 5.4 (Telegraph equation). Consider the simple velocity-jump process

dp+ dpy _

o +VW =—Aps+Ap_,
dp-  dp-
o T Voy AP+ Ar-

for constant v, A.
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(a) By adding and subtracting the pair of equations, derive corresponding equations
for the total probability density p = p4 + p— and the flux j = v[p_ — p_]. Elim-
inate j by cross-differentiating in order to derive the telegraph equation

9’p 917 29217
PR T

(b) By performing the change of variables u(x,7) = p(x,t)e*, show that u satisfies
another version of the telegraph equation

82 2 28 u
o2 — A ox2

Problem 5.5 (Moment equations for a 1D model of bacterial chemotaxis). Con-
sider the 1D model of chemotaxis given by equations (5.3.18).

(a) Show how multiplying equations (5.3.18) by 1 or z, integrating with respect
to z, and adding or subtracting the resulting equations leads to the hierarchy
of moment equations (5.3.20) for the macroscopic variables defined by equa-
tions (5.3.19).

(b) In parts (b)—(d) set j, = 0 and ¢’ (x) = ¢ in equations (5.3.20). Taking first and
second moments of equation (5.3.20a) with respect to x, derive equation (5.3.22).

(c) Taking the zeroth moments of equations (5.3.20b—d), derive a system of first-
order equations for the triplet (jo,n19,j10) and show that there exists a unique
stable fixed point for which

. ﬁVZCOTz
f0 AO“FZA«OZTQ.

(d) Similarly, taking the first moment of equations (5.3.20b—d), derive a system
of first-order equations for the triplet (ji,n11,11) and show that there exists
a unique stable fixed point for which

v? 2BviehT
2j1—2%jo=| 5+ + 22— .
i=20= (G sy

(e) Use parts (b)—(d) to obtain the asymptotic drift and diffusion coefficient of equa-
tion (5.3.24).

Problem 5.6 (Dynamical model of hair cell oscillations). Consider the stochas-
tic version of the planar model of hair cell oscillations given by equations (5.4.5)
and (5.4.7) in the QSS limit of fast Ca** dynamics:

5% = =N [kep(x —xps — 8Po(x) /7) + kspx] + 71 (1)

and
éM —ngs [x XM — 6P0( )/’)/]_fmax(l—SR)(x))+nM(t)v
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with the open channel probability Py(x) given by equation (5.4.6) and Gaussian
white noise terms satisfying

(n(1)n(0)) =2kpTES(t)
(M (£)Nm (0)) = 2k T Em S (1)

for Tyy = 1.5T.

(a) First consider the zero-noise case. Investigate the existence and stability of any
fixed points as a function of fi,.x for the parameter values given in Fig.5.11 in
the two cases (a) S = 0.5 and (b) S = 1.0. Show that the results are consistent
with the bifurcation diagram shown in Fig. 5.11.

(b) Using the numerical methods outlined in Sect. 2.6.6, simulate the stochastic ver-
sion of the model for fi,.x = 50.3pn and S = 0.65, and plot the power spectrum.

Problem 5.7 (Biochemical amplification in photoreceptors.). One of the remark-
able features of a photoreceptor in the retina is that it can detect individual photons
(particles) of light. This is mediated by a single rhodopsin molecule that is activated
by the photon and generates a current via a signaling cascade. Since the lifetime of
the active state of rhodopsin is stochastic, how does the molecule produce a reliable
single-photon response? One possible mechanism for enhanced reliability is based
on the observation that rhodopsin is inactivated in a series of phosphorylation steps
[322].

(a) Suppose that a rhodopsin molecule is activated at time ¢ = 0 and that the rate of
decay to the inactive state is k. The probability Py(¢) that it is still active at time
t satisfies the equation
dPy
dt
with Py(0) = 1. The probability density that the molecule is active for exactly a
time ¢ is then kPy(r). Let the mean and variance of the activation time be y and
o, respectively. Show that o/u = 1.
(b) Now suppose that upon light activation, rhodopsin starts in the state Ry and un-
dergoes a sequence of phosphorylation steps according to the reaction scheme

= _kPOa

ki k k— kn—1 . . .
Ry = R = Ry--- iy R, 5 inactive rhodopsin,

where R; is the state with j sites phosphorylated. The rhodopsin is inactivated as
soon as a maximum of z sites are phosphorylated. Write down the correspond-
ing set of kinetic equations for the probability Pi(¢), k = 0,...,n— 1, that the
molecule is in state k at time ¢.

(c) Assume that each state R; elicits the same response. The relevant quantity is then
the probability density that the molecule exits the state R,_; exactly at time ¢,
which is given by kP,_(¢). By Fourier transforming the kinetic equations with
respect to time ¢, show that
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° . dwo
Poi(t)=| ——F—e'—.
n-1(1) .L (k+io)" 2=

Using the identity

/wtn—lefkte—iwtdt _ (n=1)
0 (k+io)"

determine P, (t), and then calculate
U= k/ P,_i(0)dt, o> = k/ P (0)2dt — u?,
0 0

Hence, deduce that
(o] 1

TN
This establishes that increasing the number of phosphorylation steps n increases
the reliability of the single photon response.



Chapter 6

Stochastic Gene Expression and Regulatory
Networks

Genetically identical cells exposed to the same environmental conditions can show
significant variation in molecular content and marked differences in phenotypic
characteristics. This intrinsic variability is linked to the fact that many cellular events
at the genetic level involve small numbers of molecules (low copy numbers). We
have already encountered intrinsic noise effects within the context of stochastic ion
channels (Chap. 3) and biochemical signaling (Chap.5). Although stochastic gene
expression was originally viewed as having detrimental effects on cellular function,
with potential implications for disease, it is now seen as being potentially advan-
tageous. For example, intrinsic noise can provide the flexibility needed by cells to
adapt to fluctuating environments or respond to sudden stresses and can also support
a mechanism by which population heterogeneity is established during cell differen-
tiation and development. Since the demonstration of a functional role for stochastic
gene expression in A-phage [13], there has been an explosion of studies focused
on investigating the origins and consequences of noise in gene expression (see the
reviews [312, 408, 502, 521, 555, 644]). This typically involves establishing the
molecular mechanisms of noise generation at the single gene level and then build-
ing on this knowledge to test and predict its effects on larger regulatory networks.
Gene regulation refers to the cellular processes that control the expression of pro-
teins, dictating under what conditions specific proteins should be produced from
their parent DNA. This is particularly crucial for multicellular organisms, where all
cells share the same genomic DNA, yet do not all express the same proteins. That
is, selective gene expression allows the cells to specialize into different phenotypes
(cell differentiation), resulting in the development of different tissues and organs
with distinct functional roles.

In this chapter we explore the effects of noise on gene expression and protein
synthesis. We begin by reviewing the basic steps in gene expression (Sect. 6.1). We
then analyze transcription and translation in some simple unregulated networks and
show how translational bursts in the production of protein can occur (Sect.6.2).
Various simple gene regulatory networks are analyzed in Sect. 6.3 using the lin-
ear noise (diffusion) approximation (see also Sect. 3.2) and Fourier (spectral) meth-
ods. Important examples of nonlinear feedback regulatory networks such as genetic
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switches and genetic oscillators are studied in Sect. 6.4, including the lac operon
and the genetic circuits of the circadian clock. We also discuss some methods for
analyzing the effects of noise on biochemical oscillators. The efficacy of gene net-
works in transmitting information in the presence of molecular noise is investigated
in Sect. 6.5, where some basic concepts such as Shannon information and mutual
information are introduced. We then look at some models of kinetic proofreading,
which is a mechanism for increasing the fidelity of molecular recognition during
protein synthesis, for example, and other cellular processes such as T-cell activation
in immunology (see Sect. 6.7). Finally, the stochastic simulation algorithm (SSA)
introduced by Gillespie to simulate sample trajectories of a gene or biochemical
network is described in Sect. 6.8.

6.1 Basics of Gene Expression

In Fig. 6.1a we show the two main stages in the expression of a single gene accord-
ing to the central dogma.

1. Transcription (DNA — RNA). The first major stage of gene expression is the
synthesis of a messenger RNA (mRNA) molecule with a nucleotide sequence
complementary to the DNA strand from which it is copied—this serves as the
template for protein synthesis. Transcription is mediated by a molecular ma-
chine known as RNA polymerase (RNAP). In the case of eukaryotes, transcrip-
tion takes place in the cell nucleus, whereas subsequent protein synthesis takes
place in the cytoplasm, which means that the mRNA has to be exported from the
nucleus as an intermediate step.

2. Translation (RNA — protein). The second major stage is synthesis of a protein
from mRNA. Translation is mediated by a macromolecule known as a ribosome,
which produces a string of amino acids (polypeptide chains), each specified by
a codon (represented by three letters) on the mRNA molecule. Since there are
four nucleotides (A, U, C, G), there are 64 distinct codons, e.g., AUG and CGG,
most of which code for a single amino acid. The process of translation consists
of ribosomes moving along the mRNA without backtracking (from one end to
the other, technically known as the 5’ end to the 3’ end) and is conceptually
divided into three major stages (as is transcription): initiation, elongation, and
termination. Each elongation step invokes translating or “reading” of a codon and
the binding of a freely diffusing transfer RNA (tRNA) molecule that carries the
specific amino acid corresponding to that codon. Once the chain of amino acids
has been generated a number of further processes occur in order to generate a
correctly folded protein.

The above simplified picture ignores a major feature of cellular processing,
namely, gene regulation. Individual cells frequently have to make “decisions,” that
is, to express different genes at different spatial locations and times and at differ-
ent activity levels. One of the most important mechanisms of genetic control is
transcriptional regulation, that is, determining whether or not an mRNA molecule
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Fig. 6.1: Transcriptional regulation due to the binding of a repressor or activator protein to a pro-
moter region along the DNA. (a) Unregulated transcription of a gene Y following binding of RNA
polymerase to the promoter region. The resulting mRNA exits the nucleus and is then translated by
ribosomes to form protein Y. (b) Increased transcription due to the binding of an activator protein
X to the promoter. An activator typically transitions between inactive and active forms; the active
form X* has a high affinity to the promoter binding site. An external chemical signal can regulate
transitions between the active and inactive states. (¢) Transcription can be stopped by a repressor
protein X binding to the promoter and blocking the binding of RNA polymerase

is made. The control of transcription (switching on or off a gene) is mediated
by proteins known as transcription factors (see Fig.6.1b, c). Negative control
(or repression) is mediated by repressors that bind to a promoter region along the
DNA where RNAP has to bind in order to initiate transcription—it thus inhibits
transcription. On the other hand, positive control (activation) is mediated by activa-
tors that increase the probability of RNAP binding to the promoter. The presence of
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transcription factors means that cellular processes can be controlled by extremely
complex gene networks, in which the expression of one gene produces a repressor
or activator, which then regulates the expression of the same gene or another gene.
This can result in many negative and positive feedback loops, the understanding of
which lies at the heart of systems biology [5]. In addition to transcriptional reg-
ulation, there are a variety of other mechanisms that can control gene expression
including mRNA and protein degradation and translational regulation.

6.1.1 Intrinsic Versus Extrinsic Noise Sources

Following Swain et al. [164], it is useful to distinguish between contributions aris-
ing from fluctuations that are inherent to a given system of interest (intrinsic noise)
from those arising from external factors (extrinsic noise). In the model of gene ex-
pression shown in Fig. 6.1, intrinsic noise is due to fluctuations generated by the
binding/unbinding of a repressor or activator and mRNA and protein production
and decay—these can be significant due to the small number of molecules involved.
Extrinsic noise sources are defined as fluctuations and population variability in the
rate constants associated with these events. The classification of a noise source as
intrinsic rather than extrinsic is context-dependent, so that intrinsic noise at one
level can act as extrinsic noise at another level. Gene-intrinsic noise refers to the
variability generated by molecular-level noise in the reaction steps that are intrinsic
to the process of gene expression. Network-intrinsic noise is generated by fluctua-
tions and variability in signal transduction and includes gene-intrinsic noise in the
expression of regulatory genes. Cell-intrinsic noise arises from gene-intrinsic noise
and network-intrinsic noise, as well as fluctuations and variability in cell-specific
factors, such as the activity of ribosomes and polymerases, metabolite concentra-
tions, cell size, cell age, and stage of the cell cycle.

An operational definition of gene-intrinsic noise is the difference in the expres-
sion of two almost identical genes from identical promoters in single cells averaged
over a large cell population. This definition is based on the assumptions that the two
genes are affected identically by fluctuations in cell-specific factors and that their
expression is perfectly correlated if these fluctuations are the only source of pop-
ulation heterogeneity. The contribution of gene-intrinsic noise can then be investi-
gated experimentally using two-reporter assays (see Sect. 1.2). These assays evalu-
ate, in single cells, the difference in the abundances of two equivalent reporters, such
as red and green fluorescent protein, expressed from identical promoters, located
at equivalent chromosomal positions. This allows measurements of noise fluctua-
tions generated by the biochemical reaction steps that are intrinsic to the process of
gene expression, and how this is affected by mutations or gene deletions. There are,
however, some potential limitations. For example, contributions from extrinsic fac-
tors, such as imperfect timing in replication and intracellular heterogeneity, might
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be measured as gene-intrinsic noise. Moreover, because increased variability in reg-
ulatory signals might cause cells to adapt distinct expression states, the measured
population-average gene-intrinsic noise and the extrinsic regulatory noise might not
always be independent.

6.1.2 Biological Significance of Stochasticity

Stochasticity in gene expression is generally believed to be detrimental to cell func-
tion, because fluctuations in protein levels can corrupt the quality of intracellular
signals, negatively affecting cellular regulation. One possible benefit of randomness,
however, is that it can provide a mechanism for phenotypic and cell-type diversifi-
cation:

1. Stochasticity in gene expression that generates phenotypic heterogeneity is ex-
pected to be particularly beneficial to microbial cells that need to adapt efficiently
to sudden changes in environmental conditions. Fluctuations in gene expression
provide a mechanism for ‘sampling’ distinct physiological states and could there-
fore increase the probability of survival during times of stress, without the need
for genetic mutation. A classical example is the infection of E. coli by a bac-
terial virus known as lambda phage. Infection is governed by a particular ly-
sis/lysogeny decision circuit, in which only a fraction of infecting phage chooses
to lyse (break down) the cell. The remainder become dormant lysogens, in which
the bacteriophage nucleic acid is integrated into the host bacterium’s genome,
awaiting bacterial stress signals to enter the production phase of their life cycle.

2. Switching between phenotypic states with different growth rates might be an im-
portant factor in the phenomenon of persistent bacterial infections after treatment
with antibiotics. Although most of the population is rapidly killed by the treat-
ment, a small genetically identical subset of dormant ‘persistor’ cells can survive
an extended period of exposure. When the drug treatment is removed, the surviv-
ing persistors randomly transition out of the dormant state, causing the infection
to reemerge.

3. The primary purpose of the Saccharomyces cerevisiae (yeast) galactose-
utilization network is to increase the uptake and metabolism of galactose. It
involves several positive feedback loops that generate bistability in the network,
which endow cells (and their progeny) with long-term epigenetic memory of
past galactose-consumption states. It has been suggested that the existence of a
negative feedback loop (which appear spurious from a deterministic perspective)
reduces this memory by increasing the rate at which cells randomly switch be-
tween different phenotypic states that are associated with different expression of
the galactose-utilization genes. As a result, the biological function of negative
feedback might be to prevent cells from being trapped in suboptimal phenotypic
states.
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4. Stochasticity may also play a constructive role in development and cellular dif-
ferentiation in higher organisms. For example, during Drosophila melanogaster
development, stochastic fluctuations in the turnover of two proteins, Notch and
Delta, might underlie the random emergence of neural precursor cells from an
initial homogeneous cell population.

6.2 Unregulated Transcription and Translation

The key steps in transcription are binding of RNAP (P) to the relevant promoter
region of DNA (D) to form a closed complex (PD.), the unzipping of the two strands
of DNA to form an open complex (PD,), and finally promoter escape, when RNAP
reads one of the exposed strands

k+ kopen kescape ..
P+D k: PD. 5 PDy =& transcription.

Once the RNAP is reading the strand, the promoter is unoccupied and ready
to accept a new polymerase. The binding/unbinding of polymerase is very fast,
k+ > kopen so that the first step happens many times before formation of an open
complex. Hence, one can treat the RNAP as in quasi-equilibrium with the promoter
characterized by an equilibrium constant Kp = k. /k_. The rate of transcription will
thus be proportional to the fraction of bound RNAP, k. /(k+ + k—). The production
of mRNA from a typical gene in E. coli occurs at a rate around 10 per minute, while
the average lifetime of mRNA due to degradation is around a minute. This implies
that on average there are ten mRNA molecules per cell. Generation of the mRNA
molecule occurs at a rate of 50 nucleotides per second. Hence, a typical gene of
around 1,000 nucleotides will be transcribed in about 20s. Thus, there are around
three RNAP per gene at any one time, suggesting the number fluctuations will be
significant.

First, suppose that we ignore any regulation of the promoter as in Fig. 6.1a, and
collapse the various stages of transcription into a single step with mRNA production
rate k. Letting 7y denote the rate of mRNA degradation and m(¢) the number of
mRNA molecules at time ¢, we have the reaction

k
m—m+1, m—Lsm—1

with corresponding kinetic equation for the concentration x = m /€2, where 2 is cell
volume

E:k—'yx

Clearly, given that m is of order 10, the law of mass action breaks down and we have
to consider the corresponding birth—death master equation
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dpm(t

%() = —Qkpu(t) + Qkpy—1(t) — Ympp(t) + y(m~+ 1) pyy1 () (6.2.1)
for m > 0 and P_; = 0. This is identical to the autonomous version (3.6.3) of the
master equation for a stochastic gating model (Sect. 3.6). We immediately deduce
that the resulting probability density is given by the Poisson distribution (3.6.7).
Hence, in the limit # — o> we obtain a stationary Poisson process with

A’m
_ efk

Pm = A =Qk/y. (6.2.2)

m!’

It follows that
(m)y=2, var[m]=A.

This is an important result because both the mean and variance in the number of
mRNA molecules can be measured experimentally. One commonly used measure
of the level of noise in a regulatory network is the so-called Fano factor:

(m?) — (m)?
CONE

For the unregulated process, the Fano factor is one.

Fano factor = (6.2.3)

6.2.1 Translational Bursting

In addition to transcription, other steps in the central dogma are also subject to
variability including protein translation, which often occurs in bursts [36, 89, 199,
427]. One could add the translation step (mRNA — protein) to the previous model.
However, it is simpler to proceed by exploiting the fact that a single mRNA molecule
has a much shorter lifetime than a protein. First, consider a single mRNA molecule
with a degradation rate 7y, which starts synthesizing a protein at time ¢+ = 0. Let
po(n,t) (pc(n,t)) denote the probability that there are n proteins at time ¢ and the
mRNA has not (has) decayed. Neglecting protein degradation, we have the master
equation

d

pocgf 4 - —¥po(n;1) +rlpo(n —1,1) = po(n,1)] (6.2.4a)
dpe(n,

pcgf - =7po(n.1), (6.2.4b)

where r is the rate of protein production and po(—1,¢) = 0. Let

P(n) = lim p.(n,t).

{300

Note that limy_,. po(n,1) = 0 due to the decay of mRNA. Integrating Eq. (6.2.4b)
with respect to time gives
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P(n) =y /O po(n.)dr,

since p.(n,0) = 0. In order to compute py(n,t), integrate Eq. (6.2.4a) with respect
to time using po(n,t) = &,

—8,0=—P(n) + §[P<n —1)—P(n)).

Setting n = 0 gives
Y

PO)=

For n > 1, we have the recurrence relation

n
P(n) = ——P(n—1) = P(n) = ( 4 > r
r+vy r+y) r+vy
An important quantity is the so-called burst size b, which is the mean number of
proteins produced per mRNA. Using generating functions it can be shown that (see
Ex.6.1)
b=-.
Y
The idea of a translational burst refers to the observation that a single mRNA gen-
erates a burst of protein production before it decays (see Fig. 6.2a).

Now suppose that there are m mRNA molecules and that translation of each
mRNA proceeds independently. The probability of producing N proteins due to
bursts from each mRNA molecule can be expressed as a multiple convolution [509].
For example, if m = 2, then

N
P(N) = ;)P(n)P(N —n),
and N N
Ps(N) = ZE)P(n) Y P(n)P(N—n—n').
n= n'=0

Assume that the number of proteins is sufficiently large so that we can approximate
the sums by integrals, for example,

N
P(N) = /0 P(n)P(N — n)dn.

The advantage of the integral formulation is that one can use Laplace transforms
and the convolution theorem. Thus, setting

Puls) = /0 " Po(n)e " dn,
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Fig. 6.2: Effects of noise in gene expression. (a) Schematic illustration of translational bursting.
Each arrow represents a burst event where an mRNA transcript releases a burst of proteins of av-
erage size b, and proteins decay between bursts. (b) Illustration of how negative feedback in an
autoregulatory network reduces the mean number of proteins but also reduces the size of fluctua-
tions

we have
B(s) = [ﬁ(s)]m.

Calculating B,,(s) and then inverting yields the result (see Ex. 6.1)

wor= () (mk3) o

For n,b > 1, we can make the approximation

b n
_ efnln(1+b*1) e /b
1+b ’

which leads to the gamma distribution for n with m fixed:

nmflefn/b

Pu(n) = F(n;m,b™') = o (m)

(6.2.5)

From properties of the gamma distribution, we immediately note that for a given
number of mRNA molecules,

(n) =mb, var(n) =mb’.

Hence, under the various approximations the Fano factor is of the order of the burst
size b. Finally, an estimate for m is m ~ k/7y where k is the rate of production of
mRNAs and 7y is the frequency of the cell cycle (assuming that it is higher than the
rate of protein degradation).
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An alternative approach to analyzing protein bursting is to start from the
Chapman—Kolmogorov (CK) equation [199]

ap(x,t) 0

5 = 3y lr()] +k/oxw(x —x)p( 1)dx, (6.2.6)

where p(x,7) is the probability density for x protein molecules (treating x as a con-
tinuous variable) at time ¢, and

w(x) = %efx/b — 0 (x). (6.2.7)

The first term on the right-hand side of the CK equation represents protein degra-
dation, where the second term represents the production of proteins from exponen-
tially distributed bursts. The gamma distribution (6.2.5) with n — x is obtained as
the stationary solution of the CK equation, which can be established using Laplace
transforms (Ex. 6.2). It is also possible to incorporate autoregulatory feedback into
the CK equation by allowing the burst rate to depend on the current level of protein
x, which acts as its own transcription factor [199]:

ap(x, 0 x o /
P(g); t) - a[YoXP(X)] +k/0 w(x—x")e(x)p(x',1)dx'. (6.2.8)

One possible form of the response function c(x) is a Hill function

kS

C(x):m7

with s > 0 (s < 0) corresponding to negative (positive) feedback. In this case, the
stationary density takes the form (Ex. 6.2)

p(x) :Aﬂ”(lﬁ'&')*lefx/b[l + (x/k)s]fm/s'

A more general mathematical analysis of bursting in discrete and continuous models
can be found in [407].

6.3 Simple Models of Gene Regulation

One of the simplest gene regulatory networks consists of a gene that can be in one
of two states, active or inactive (see Fig. 6.3). In the active state the gene produces
protein X at a rate r, which subsequently degrades at a rate ¥, whereas no protein is
produced in the inactive state. For simplicity, the stages of transcription and trans-
lation are lumped together so we do not keep track of the amount of mRNA. More-
over, the transcription factor Y that switches on the gene is independent of protein
X, that is, there is no feedback. Since the rate of activation k. will be proportional
to the concentration c of Y in the nucleus, this simple network can be viewed as an
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input/output device that converts the input signal c to an output signal given by the
concentration x of protein X. Moreover, if X is a green fluorescent protein, then the
output response can be measured. In Sect. 6.5, we will consider how effective such
a feedforward networks is in transmitting information in the presence of molecular
noise, following the work of Tkacik et al. [631, 632, 634, 665]. Here we will focus
on calculating the level of noise.

6.3.1 Transcriptional Bursting in a Two-State Model
The reaction scheme of the regulatory network shown in Fig. 6.3 is

ki
I=A Lip-Lso,
where A and / denote the active and inactive states of the gene. We first consider the
case in which the number of X proteins is sufficiently large so that we can represent
the dynamics in terms of a continuous-valued protein concentration x [318]. The
latter evolves according to the (piecewise) deterministic equation

% =rn(t) — yx, (6.3.1)
where the discrete random variable n(t) represents the current state of the gene with
n(t) = 1 (active) or n(r) = 0 (inactive). We thus have another example of a stochastic
hybrid system. Let p;(x,) denote the probability density of the protein concentra-
tion for n(r) = j, j =0, 1. We then have the differential Chapman—Kolmogorov (CK)
equation

I

k. k

T [T e >y

Fig. 6.3: Simple example of a two-state gene regulatory network. The promoter transitions between
an active state (bound by a transcription factor protein ¥ and RNA polymerase) and an inactive state
with rates k. The active state produces protein X at a rate r and protein X degrades at a rate y
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o) 0
% = 5 (=1xpo(x, 1)) +k-p1(x,1) = ki po(x,1) (6.3.22)
o) 0
% - _a([}’— ’yx]pl (X,[)) +k+p()(x7t) - k*pl (.XJ), (632]3)

supplemented by the no-flux boundary conditions Js(x) = 0 at x = 0,7/, where
Jo(x) = —yxpo(x) and J; (x) = [r — yx]p1 (x). In the limit that the switching between
active and inactive states is much faster than the protein dynamics, the probability
that the gene is active rapidly converges to the steady state k. /(ky +k_), and we
obtain the deterministic equation

dx rk4

a s

— 7. (6.3.3)

Following [318], we will characterize the long-time behavior of the system in terms
of the steady-state solution, which satisfies

a(—yxpo(x)) =k_pi1(x) —kypo(x) (6.3.4a)
% ([r—yxlp1(x)) = kypo(x) —k_p1(x). (6.3.4b)

The no-flux boundary conditions imply that py(r/y) = 0 and p;(0) = 0. First, note
that we can take x € [0,7/7] and impose the normalization condition

r/y
| o+ prlar =1,

Integrating Eq. (6.3.4) with respect to x then leads to the constraints

TP -
po(x)dx ===~ pi(x)dy =2

Adding Egs. (6.3.4a) and (6.3.4b) we can solve for py(x) in terms of p;(x) and then
generate a closed differential equation for p;(x). We thus obtain a solution of the
form (see Ex. 6.3),

po(x) = C (1) T (r— ) pi(x) = C () T (r— )Y (6.3.5)

for some constant C. Imposing the normalization conditions then determines C as

-1
C=y [ M Bk fr k)|

where B(c, ) is the beta function:

B(a,B) = /Olszu —0Bar,
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Finally, setting r/y = 1, the total probability density p(x) = po(x) + p1(x) is given
by [318]
ka/fl(l _x)kf/yfl

B(ky/v,k-/7)

(6.3.6)

plx

02 04 06 08 10
X X

Fig. 6.4: Steady-state protein density p(x) for a simple regulated network in which the promoter
transitions between an active and inactive state at rates k4. (a) Case ki /k > 1: there is a graded
density that is biased towards x = 0, 1 depending on the ratio k. /k_. (b) Case k. /k < 1: there is a
binary density that is concentrated around x = 0, 1 depending on the ratio k, /k_

In Fig. 6.4, we plot p(x), 0 < x < 1 for various values of K+ = k+/7. It can be
seen that when the rates k4. of switching between the active and inactive gene states
are faster than the rate of degradation k, then the steady-state density is unimodal
(graded), whereas if the rate of degradation is faster, then the density tends to be
concentrated around x = 0 or x = 1, consistent with a binary process. In other words,
if switching between promoter states is much slower than other processes, then one
can have transcriptional contribution to protein bursting [318]. This scenario tends to
occur in eukaryotic gene expression, for which the presence of nucleosomes and the
packing of DNA—nucleosome complexes into chromatin generally make promoters
inaccessible to the transcriptional machinery. Hence, transitions between open and
closed chromatin structures, corresponding to active and repressed promoter states,
can be quite slow.

Finally, note that a model identical in form to the above has also been applied
to gene expression dynamics in a randomly varying environment [599]. In the lat-
ter case, x represents the concentration of mRNA and 7y is the rate of degradation.
The rate kK of mRNA production takes on two values, depending on a binary-valued
environmental input n(¢), with k = ko if n(r) = 0 and k = k; if n(¢) = 1. The envi-
ronment randomly switches between its two states at the rates k4. Equations (6.3.2)
thus become
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d d
% = _a([k() - YX]PO(XJ)) +k*p1('x7t) _k+p0(x7t) (6373)
d d
P2 (e~ )+ kepo(et) —kopier). (637b)

where p;(x,t) is the probability density for mRNA concentration x given the envi-
ronmental input is n(¢) = j,j = 0, 1. The analysis of the steady-state density pro-
ceeds as before and one finds [599]

po(x) = C(yx—k0)71+k+/3’(k1 — yx)k—/V’ pi(x) = C(yx_ko)m/Y(kl _ },x)71+6k,3/y8
(6.3.8)

for some constant C. Imposing the normalization conditions, then determines C as

-1
C = |k — k)™ 1Bk, Sk )]

It follows from the analog of Fig. 6.4 that if the mRNA degradation rate is faster
than the rate of environmental fluctuations, then the steady-state density of mRNA
tracks the state of the environment with p(x) localized around x = 0 (x = 1) when
k_ > ky (ki > k_). Stochastic switching has been suggested as a survival strategy
used by populations of yeast cells in fluctuating environments [1].

6.3.2 Protein Fluctuations and the Linear Noise Approximation

In the above analysis, we considered the distribution of proteins arising from a single
gene, in which the only source of noise came from the random switching of the
promoter. We now want to estimate the size of protein fluctuations in a population
of nmax genes that takes into account intrinsic noise effects due to a finite number of
proteins. Let n; denote the number of active genes and n, the number of proteins.
Setting x; = (n;)/Q, where Q is the system size, the various reactions and the
corresponding rate equations based on mass action (valid in the limit £2 — o) are
as follows:

1. Gene activation and inactivation

ky ("max7"1 )

ni — ni+1, nlﬂnl—l

with
dx1
dt

2. Protein production and degradation

= ki (Xmax — X1) —k_x1.

m yn
n2—1>n2+1, n2—2>n2—1
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with

In order to take into account the effects of intrinsic noise, it is necessary to turn to
the associated master equation. Let P = P(ny,n,t) denote the probability that there
are n; active genes and n; proteins at time 7. Then

dP
o= ky(nmax —n1 + 1)P(np — 1,na,8) + k_(ny + 1)P(n; + 1,n2,1)
—|—}’n1P(1’l1,I’l2— lvt)+’)/(n2+ 1)P(}’ll,n2+ lvt)

— [kt (Rmax — n1) + k_ny +rny + yna] P(ny,na,1). (6.3.9)

Since the transition rates are linear in n; and n,, one could determine the means
and variances by taking moments. However, this method is not applicable to master
equations with nonlinear transition rates. Therefore, we will follow the approxima-
tion method introduced in Sect. 3.2, whereby the master equation is reduced to a
Fokker-Planck (FP) equation by carrying out a system-size expansion. The result-
ing FP equation can then be linearized about a stable fixed point of the deterministic
rate equations, resulting in a multivariate OU process that can be used to calcu-
late means and variances [162, 164, 625]. One of the useful features of the linear-
noise approximation is that it can be applied systematically, once the mass-action
kinetic equations are expressed in the general form (6.3.17) as described in Box
6A. For the given regulatory network, there are two chemical species (N = 2) and
four single-step reactions (R = 4). For a = 1,2 (gene activation and inactivation),
we have S; 1 = ;1,82 = — 01, f1(X) = ky (¥max —x1), and f>(X) = k_x;. Express-
ing the master equation as (6.3.18) and carrying out a diffusion approximation then
leads to the FP equation (6.3.20) with drift terms

V1 (X) = k+ (xmax —xl) — k,xl, Vz(X) =TrX; —Yx2
and a diagonal diffusion matrix D with nonzero components
Di1 = ki (Xmax —x1) +k—x1, Dy =rxi+ yx2.

In the deterministic limit, we recover the kinetic equations expressed as

dx;

d_tl = Vi(x).

It immediately follows that there is a unique fixed point given by
k+ r

* *

—k+ y Xmax y

X =
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Linearizing the corresponding Langevin equation about this fixed point by setting
X;(t) = x* + Q7 1/2Y;(r) then yields the OU process (6.3.25) for ¥;, which takes the
explicit form

dy, = —(k++k,)Y1dl+dW1, dy, = [rYl —’)/Yz]dt—Fsz, (6.3.10)
with W (¢) and W (¢) independent Wiener processes satisfying

(dWy(t)dWy (') = [kt (Xmax — X]) +k_x]]8(t —t")dtdt’ = 2k_x}8(t —t')drdl’,
(dWs(1)dWa(t')) = [rx} + yxb)8(t —t')dtdt’ = 2rx S (t —t')dtdt' .

Introducing the stationary covariance matrix
Zij = ([Yie) = Mi@)N[Y; (1) = (¥ ()])

one sees that ¥;(¢) is a Gaussian process with zero mean and covariances determined
from the matrix equation
AZ+3AT = D, (6.3.11)

A— —(ky+k-) O . D= 2k _x] 0* '
r 4 0 2rxj

Finally, solving the matrix equation (6.3.11) for the covariance gives the Fano fac-
tors (see Ex. 6.4):

with

var[n] k_

(m) ke tho L= (1) /max. (6.3.12a)
varm] _ Y var[n ]
(n2) =1 <n2>k+—|—k7+y ()2 (6.3.12b)

Note that (n;) = Qx and var[n;] = QX;;. We immediately see that the presence of
a transcription factor increases the Fano factor of the protein above one.

An alternative approach to analyzing the multivariate OU process derived from
the linear noise approximation is to Fourier transform the corresponding multivari-
ate Langevin equation (6.3.10) and calculate the spectrum of the protein concentra-
tion [328, 624]. First, since we are ultimately interested in protein number fluctua-
tions, we rescale the Langevin equation by setting An; = /QY; =n;— (n;) and use
the white noise formulation (see Sect. 2.2.5):

dAnl

dA
= (ke k) Any 4y, 92 vAny — YA, +m, (6.3.13)

dt
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with 1 (¢) and 12 (¢) independent Gaussian white noise processes satisfying

(O (1)) = [k (tmax — () + k- ()8 — ') = 2k (n1)3(¢ — 1),
(MM )) = [Fim) + ¥{n2))8( — 1) = 2r(m)3(c 1),

Fourier transforming the linear equations (6.3.13) with

Anj(t) / An] 7”‘”6;

yields
—iwAny = —(ky +k_)An +11, —i®@Any =rAn; —yAnp + . (6.3.14)

It follows that

_ ril L 2
(ky +k-—io)(y—iw) y—io
From the spectral analysis of Sect.2.2.5, we have

(M(0)f1(0") =2k (n1)-2n8(0+0"), (M(0)h(0))=2rn) 218 (0+0").

Hence, the spectrum of the protein fluctuations, defined by (Ezz(a))ﬂg(a)’ ) =
S (w)6(w+ '), is

r2(2k7<n1)) 2r{ny)
S = . 6.3.15
2() (02 + (ks +k)2) (02 +72)  @?+y2 ( )
It follows that
do do'
_ —iot *l(})[
var[ny] = ((Any)? / / (Anay(@)Any(o'))e 7o
_ /7 msz(a))ﬁ.

The integral can be evaluated using partial fractions and the identity

/"" do @
w0+ a? a’



286 6 Stochastic Gene Expression and Regulatory Networks

which gives

_r(m) rk_(n) 1 1
vl = = e -7 <?_ k++k>
_ r{ny) 4 r(m)/y k-
Y k++k—+’y(k++k*)

= (m2) + (r/V)zm/@O(l —(n1)/Nmax). (6.3.16)

This agrees with Eq. (6.3.12b). Finally, note that there are two contributions to the
size of protein fluctuations. First, there is the output noise (np) arising from the
production of a finite number of proteins in which the variance equals the mean,
reflecting a pure Poisson process. The second contribution arises from the random
switching of the promoter and is proportional to the binomial variance p;(1— p;)
where p; = (n1)/nmax is the mean fraction of active genes. For further applications
of frequency domain analysis to feedforward gene networks see Exs. 6.5 and 6.6.

Box 6A. Linear noise approximation.

Suppose that the mass-action kinetics of a general biochemical or gene
network is written in the form

dxi & .
= Y Siafa(x), i=1,...,N (6.3.17)
a=1

where a labels a single-step reaction and S is the so-called N x R stochio-
metric matrix for N molecular species and R reactions. Thus S;, specifies
the change in the number of molecules of species i in a given reaction a.
The functions f, are known transition intensities or propensities. Given
this notation, the corresponding master equation is

dP(n,t)
dt

=Q i (ﬁﬂzsw = 1) fu(n/Q)P(n,1), (6.3.18)

a=1 \i=1

where (2 represents the system size. Typically, £ is the volume of the
well-mixed compartment where reactions occur or the total number of
molecules in cases where there is number conservation. Here E S is a
step or ladder operator such that for any function g(n),

ESug(ny,...,ni,...,nx) = g(n1,...,ni — Sia, ... ,ny). (6.3.19)
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A diffusion approximation of the master equation can now be ob-
tained along identical lines to Sect.3.2 (see also [162]). That is, set
fa(n/Q)P(n,t) — f,(x)p(x,?) and use the fact that

ﬁ]E*Smh(x) =h(x—S,/Q)
i=1

Yoo 1 X 9°h(x _
:h(X)—Q 1215‘1'“%4-@ 21SiaSjaT(§-x3+0(Q 3).
i= i = i

Carrying out a Taylor expansion of the master equation to second order
thus yields the multivariate FP equation

9p_ g“ Vi(x)p(x,1) n 13 97Dii(x)p(x,1)
ot ; Ix; 20, oxidx; '

i=1 i,j=1

(6.3.20)

where
R R
Vi(x) =Y Siafa(x), Dij(x) = SiaSjafa(X). (6.3.21)
a=1 a=1

The FP equation (6.3.20) corresponds to the multivariate Langevin equa-
tion

1 R
dX; = Vi(X)dt + N ; Bio(X)dW,(1), (6.3.22)
where W, () are independent Wiener processes and D = BB, that is,

Bia = Sia V fa (X) (6323)

Now suppose that the deterministic system, written as

dx;
d—; =V;(x),

has a unique stable fixed point x* for which V;(x*) = 0 and introduce the
Jacobian matrix A with

Vi

Aj==—| .
! 8x]' X=x*

(6.3.24)
The Langevin equation suggests that, after a transient phase, the stochas-
tic dynamics is characterized by Gaussian fluctuations about the fixed
point. Substituting X;(t) = x + Y;(t)/V/Q into the Langevin equa-
tion (6.3.20) and keeping only lowest order terms in Gl yields the
Ornstein—Uhlenbeck (OU) process
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N R
dY; =Y AjjYidt + Y Bia(x*)dW,(t). (6.3.25)
j=1 a=1

Introducing the stationary covariance matrix

Zij = (i) — @) [Y;(1) = V()]

it immediately follows from the analysis of the multivariate OU process
(see Ex.2.7), that
AX+3AT = —BB'. (6.3.26)

6.3.3 Autoregulatory Network

So far we have considered a simple feedforward regulatory network. However, much
of the complexity in gene networks arises from feedback, in which proteins in-
fluence their own synthesis directly or indirectly by acting as transcription factors
within a regulatory network. A common example is autoregulation, in which a gene
is directly regulated by its own gene product [625] (see Fig. 6.5a). A simple kinetic
model of negative autoregulatory feedback is

ax

ar —yx1 +F(x2), % = rxX1 — YpX2, (6.3.27)

where x(¢) and x,(¢) denote the concentrations (or number) of mRNA and protein
molecules at time 7. The parameters v, ¥, represent the degradation rates, r repre-
sents the translation rate of proteins, and F(y) represents the nonlinear feedback
effect of the protein on the transcription of mRNA. A typical choice for F in the
case of a repressor is the Hill function

k

L — 6.3.28
1 /K (03.28)

F(y)

We will assume that the network acts in a regime where the Hill function is approx-
imately linear with F(y) = ko — ky. The analysis of intrinsic noise proceeds along
similar lines to regulated gene transcription.
Let P = P(m,n,t) denote the probability that there are m mRNA and n proteins
at time . Then
dP

== QkoP(m—1,n,t)+ [kn+y(m+1)|P(m+1,n,t)

+rmP(m,n—1,t)+y,(n+1)P(m,n+1,t)

— [Qko + (kn+ ym) 4+ rm+ y,n) P(m,n,t). (6.3.29)
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In order to carry out a linear noise approximation, we first rewrite the kinetic equa-
tions in the general form (6.3.17) with two chemical species (N = 2) and four single-
step reactions (R =4). For a = 1,2 (mRNA production and degradation/repression),
we have S; 1 = 8;1,Si2 = =81, f1(X) = ko, and f>(X) = kxp + yx;. Expressing the
master equation as (6.3.18) and carrying out a diffusion approximation then leads to
the FP equation (6.3.20) with drift terms

Vi (X) =ko—kxo — YX1, Vz(X) =T1X1— YpX2

e e UVa N\t
— 7

gene X

Fig. 6.5: Negative autoregulatory network. A gene X is repressed by its own protein product

and a diagonal diffusion matrix D with nonzero components
Dy =ko+kxy+7yx1, Dyp=rx+ YpX2.
There is a unique fixed point of the deterministic dynamics (in the linear regime)

* kO’YP * ro
X1 —_— Xy = —X1.

oYYtk Y

Linearizing the corresponding Langevin equation about this fixed point by setting
X;(t) = xF + Q7 '/2Y;(r) then yields the OU process (6.3.25) for ¥;. Introducing the
stationary covariance matrix

Zij = ([Yi(r) = G()]Y;(e) = (¥;(e)])

one sees that ¥;(¢) is a Gaussian process with zero mean and covariances determined
from the matrix equation
AZ+3A"=-D (6.3.30)

Ao (Y —k D_ kxs + yx} 0 .
r=Y%)’ 0 X =+ YpX5

with
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Solving the matrix equation (6.3.30) yields (see Ex. 6.7)

* * r
=2 = U (1 ¢ )xz, 222=x2+y—2127

1+n\" 1+b¢ 2
where L
-
b__7 n_ﬁ’ q)__
Y Y Tp

Here b is the burst size, n is the ratio of degradation rates, and ¢ describes the
strength of the negative feedback. It follows that the Fano factor for proteins is

varn] b 9
T =l (1 1+b¢>. (6.3.31)

The above analysis establishes the negative feedback can reduce fluctuations in pro-
tein number (see Fig. 6.2b). That is, in the absence of feedback (¢ = 0), the Fano
factor is 1 +5/(1 + 1), which is clearly larger than the case ¢ > 0. Also note that
when 11 < 1 and b > 1, we recover the result obtained from the protein translation
model of Sect.6.2.

6.4 Genetic Switches and Oscillators

Once feedback and nonlinearities are included in gene networks, a rich repertoire of
dynamics can occur. Here we briefly consider two important classes of dynamical
gene networks, namely, switches and oscillators.

6.4.1 Mutual Repressor Model of a Genetic Switch

Considerable insight into genetic switches has been obtained by constructing a syn-
thetic version of a switch in E. coli, in which the gene product of the switch is a
fluorescent reporter protein [206]. This allows the flipping of the switch to be ob-
served by measuring the fluorescent level of the cells. The underlying gene circuit
is based on a mutual repressor model (see Fig. 6.6). It consists of two repressor
proteins whose transcription is mutually regulated. That is, the protein product of
one gene binds to the promoter of the other gene and represses its output. For sim-
plicity, the explicit dynamics of transcription and translation are ignored so that we
only model the mutual effects of the proteins on protein production. Denoting the
concentrations of the proteins by x(¢),y(¢), the resulting kinetic equations are

dx r dy r
— =— —_— = =- —_— 6.4.1
- "Tiin @ Phirke (©.4.1)
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Here 7 is the rate of protein degradation, r is the rate of protein production in the
absence of repression, and K is a binding constant for the repressors. As in the model
of autoregulation, negative feedback is modeled in terms of a Hill function with Hill
coefficient n. It is convenient to rewrite the equations in nondimensional form by

measuring x and y in units of K ~1/7 and time in units of y L
du o dv o
— =yt — =y 6.4.2
dt u+1+v”’ dt v+1—|—u"’ ( )

with o = rK!/" /7. Analysis of the fixed point solutions of this pair of equations
establishes that the mutual repressor model acts as a bistable switch. For simplicity,
consider the case n = 2 (protein dimerization). The fixed point equation for u is

-1
=oa|l+ @
U= =
14 u? ’

which can be rearranged to yield a product of two polynomials:
(u* — ou+ 1) +u—a) =0.

The cubic is a monotonically increasing function of u and thus has a single root
given implicitly by

"77’-&’

|_> ® _—I— gene Y
.

gene X

L ® <-“Ll_‘<-

Fig. 6.6: Mutual repressor model of a genetic switch. A gene X expresses a protein X that represses
the transcription of gene Y and the protein Y represses the transcription of gene X

— a —
U= i V.
This solution is guaranteed by the exchange symmetry of the underlying equations.
The roots of the quadratic are given by

1
u:UiEE[OC:I: 052—4},

with v = U=. It immediately follows that there is a single fixed point when ¢ < 2 and
three fixed points when o > 2. Moreover, linear stability analysis establishes that
the symmetric solution is stable when o < 2 and undergoes a pitchfork bifurcation
at the critical value o, = 2 where it becomes unstable and a pair of stable fixed
points emerge.
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Given that the deterministic system is bistable, one can now investigate the ef-
fects of intrinsic noise by constructing a master equation along the lines of Sect. 6.3.
We will construct the master equation for a slightly simplified mutual repressor
model consisting of a single promoter site; if a dimer of one protein is bound to the
site then this represses the expression of the other [328, 470]. Thus the promoter can
be in three states O}, j = 0, 1,2: no dimer is bound to the promoter (Op); a dimer of
protein X is bound to the promoter (O;); a dimer of protein Y is bound to the pro-
moter (O;). Suppose that the number of proteins X and Y are n and m, respectively.
The state transition diagram for the three promoter states is then

—1
o X 0,""=" 0,
n(n—1)x Bx

where K is a rate and 3 is a nondimensional dissociation constant. Protein X (Y)
is produced at a rate o when the promoter is in the states Op 1 (Op2), and both
proteins are degraded at a rate y in all three states. Let p(n,m,t), j =0,1,2, be the
probability that there are n (m) proteins X (¥) and the promoter is in state j at time
t. The master equation for p = (po, p1,p2)7 is given by

d .
Epj(r“m?t) = _ Z Z [5n7n'6m7m’Ajk+ 6j7kWr{m,n’m' Pk(l’l/,ml,l), (6.4.3)
J=0,12n" m'
where
—nn—1)—-mm—-1) B B
A=k nn—1) —B 0 , (6.4.4)
m(m—1) 0o -B

and

2 nmnm’pon m' t)

=Y[(n+1)po(n+1,m,t)+ (m+1)po(n,m+1,t) — (n+m)po(n,m,t)]
+a(po(n—1,m,t) + po(n,m—1,t) —2po(n,m,t)) (6.4.5a)

2 nmnm’pl n m t)

=Y+ Dpi(n+1,m,t) + (m~+1)pi(n,m+1,t) — (n+m)pi(n,m,1)]
+o(pi(n—1,m,t) = pi(n,m,t)) (6.4.5b)

2 nmnm’p1 n m t)

= ’}/[(n'i_ 1)p2(n—|— 17m7t) + (m+ 1)p2(n,m—|— 17t) - (n—i—m)pz(n,m,t)]
+a(p2(n7m_17t)_p2(n7m7t))' (645C)
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Kepler and Elston [328] consider two approximations of the master equation,
one based on a system-size expansion of the W/ terms with respect to the mean
number N = o//y of proteins when the promoter is in state Oy and the other based
on a QSS approximation. The latter assumes that the rates of protein production and
degradation are much slower than the rates of switching between promoter states.
First, introduce the rescaling r — ¢y and set x = n/N, y = m/N. The master equation
for the resulting probability densities p(x,y,t) takes the form

J 1 .
Epj(xuyut) = Z |:EAJk+N5];kW]:| pk(xuyut)v (646)
j=0,1,2

where € = y3/xo? and b = By*/a? are dimensionless parameters,

—x(x—1/N)—y(y—1/N) b b
A= x(x—1/N) b 0 |, (6.4.7)
y(y—1/N) 0 —b

and W/ are differential shift operators

WO = (N~ 1)t (AN 1) y+ (Ve BN _2) (648w
Wl — (eax/zv _ 1) X (eay/N _ 1) v+ (ef%—/N . 1) (6.4.8b)
W2 — (eax/N - 1)x+ (e"y/N - 1)y+ (e*ay/N - 1) . (6.4.8¢)

The latter are a way of representing a Taylor expansion. That is, for any smooth
function f(x),

flxxAx) = f(x) £ (0)Ax+ f"(x)Ax* /21 % ...

2
- (1 4+ Axdp+ Az—)f%fj: .. ) Flx) = eF4%% f(x).

If the promoter transitions are fast and the expected number of protein molecules
is large, then there are two small parameters in the model, € and 1/N. Taking the
limits € — 0 and N — o in either order, one obtains the kinetic equations (see also
Ex.6.8)

dx dy . - 1
E _f(xvy)a dt _f(yax)v with f(xvy) - by22 X. (649)
+x

One finds that the deterministic system is bistable for 0 < b < b, =4/9 (see Fig. 6.7).
At the critical point b = b, there is a saddle-node bifurcation in which a sta-
ble/unstable pair annihilate so that for b > b, there is a single stable fixed point.
There are then two approximations of the full master equation that can be used to
explore the effects of noise-induced transitions in the bistable regime, depending on
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whether one considers the system-size expansion in 1/N for fixed € or the QSS ex-
pansion in € for fixed N. For the sake of illustration, we focus on the former. Taylor
expanding the differential operators W/ and keeping only the leading order terms
yields the multivariate differential Chapman—Kolmogorov (CK) equation [328, 470]

dpj _ 9Fi(x)pj 9IG;(y)p; 1

L - A; 6.4.10
= — FR 8}(}‘1‘2 k(%) Pr ( )
with
Fx)=1-x, Fx)=1-x, Bk =-x
and
—x>—y> b b
A= x? b 0 |. (6.4.12)
y? 0 —b
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Fig. 6.7: Phase-plane dynamics of mutual repressor model analyzed by Kepler and Elston [328]
and Newby [470] with b = 0.15. The black curve shows the y-nullcline and the gray curve shows
the x-nullcline. The open circles show the stable fixed points; the filled circle shows the unstable
saddle. The irregular curve shows a stochastic trajectory leaving the lower basin of attraction to
reach the separatrix

The CK equation (6.4.10) describes an effective stochastic hybrid system in which
the concentration of proteins X and Y play the role of the piecewise determinis-
tic continuous variables, and the state of the promoter is the discrete variable that
evolves according to a continuous-time Markov process. We have previously en-
countered stochastic hybrid systems in our analysis of voltage-gated ion channels
(Sect. 3.5). One could now use a QSS approximation to obtain a Fokker—Planck



6.4 Genetic Switches and Oscillators 295

(FP) equation for the total probability density p(x,y,t) = ¥, p;(x,y,t) along
the lines outlined in Sect. 7.4 (see also Kepler and Elston [328]). However, a diffu-
sion approximation of the full master equation based on an FP representation can
generate exponential errors in the mean time of noise-induced escape from the basin
of attraction of one of the metastable fixed points (see also Sects.3.4 and 3.5). A
more accurate estimate can be obtained using large deviation theory and the WKB
methods outlined in Chap. 10, as has been shown for the mutual repressor model by
Newby [470].

6.4.2 The lac Operon

The idea of a genetic switch was first proposed over 40 years ago by Jacob and
Monod [296], in their study of the /ac operon. When there is an abundance of glu-
cose, E. coli uses glucose exclusively as a food source irrespective of whether or not
other sugars are present. However, when glucose is unavailable, E. coli can feed on
other sugars such as lactose, and this occurs via the lac operon switch that induces
the expression of various genes. A variety of mathematical models of the lac operon

lactose

glucose
cell exterior N
+
— ‘\ R
.. }+
Eepressoa [ CAP j

+
lactose ——— > allolactose

lac permease

Fig. 6.8: Feedback control circuit of the /ac operon. See text for details

have been developed over the years [239, 240, 557, 688, 693, 694]. Here we briefly
describe a simplified model presented in Chap. 10 of Keener and Sneyd [322]. The
basic feedback control mechanism is illustrated in Fig. 6.8. There are two control
sites on the lac operon: (see Fig. 6.9), a repressor site that blocks RNAP from bind-
ing to the promoter site and a preceding control site to which a dimeric catabolic
activator protein (CAP) molecule can bind provided it forms a complex with cyclic
AMP (cAMP). Bound CAP promotes the binding of RNAP to the promoter region.
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When there is sufficient glucose in the cell exterior, the action of cAMP is inhibited
so that CAP cannot bind and the lac operon is repressed. On the other hand, when
glucose is removed, the CAP-cAMP complex can bind to the activator site and ac-
tivate the lac operon. The latter consists of several genes that code for the proteins
responsible for lactose metabolism. One of these proteins is lac permease, which
allows the entry of lactose into the cell that is enhanced by a positive feedback loop.
The feedback mechanism involves another protein, 3-galactosidase, which converts
lactose into allolactose. Allolactose can bind to the repressor protein and prevent its
binding to the repressor binding site. This further activates the lac operon, resulting
in the further production of allolactose and increased entry of lactose via the lac
permease.

Suppose that the CAP dynamics is ignored, so that we can focus on the positive
feedback loop indicated in Fig. 6.8 by solid arrows. Let A denote the concentration
of allolactose and similarly for lactose (L), the permease (P), the protein product
B-galactosidase (B), mRNA (M), and the repressor (R). Let pon and poge denote the
probabilities that the operon is on and off, respectively, with pon + pofr = 1. Ignoring
the effect of the CAP site, we have the simple kinetic scheme

dpon
dt

= k*r(l - pon) — kR" pon,

where R* is the concentration of repressor in the activated state. Each activated
repressor protein interacts with two molecules of allolactose to become inactivated,
so from mass-action kinetics,

dR*

i k_qR — k,A’R*,

where the binding/unbinding of a single repressor molecule to the operon has a
negligible effect on the total concentration R = R+ R*. The next simplification is
to take these reactions to be much faster than those associated with gene expression
so that po, and R* take the steady-state values

Rr 1
R=—2"1 _ pp=——
1+K,A2° " 14+ KR

with K, = k,/k_, and K, = k,/k_,. Combining these two results gives the steady-
state probability
1 +K,A?
B 7 S =TI (A).
1+ KrRT + KaA2

It follows that the concentration of mRNA is determined by the equation

Pon

=2 = oy (A) — M, (6.4.13a)
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where oy and 7y are the rates of mRNA production and degradation. This is the
first of the model equations. The next two equations represent the dynamics of the
enzymes directly produced by the on-state of the operon, namely, permease and
B-galactosidase:

repressor

—>  lac operon
off

Al

CAP RNA polymerase

—>»  lac operon

— -

Fig. 6.9: Repressor and CAP sites for the lac operon

dpP
= opM — P, (6.4.13b)
daB
E = ogM — YBB (6413C)

Note that although both enzymes are produced by different parts of the same mRNA,
the effective production rates differ due to different times of production (perme-
ase is produced after §-galactosidase) and the time delay associated with permease
migrating to the cell membrane. The final two equations specify the dynamics of
lactose and allolactose based on Michaelis—Menten kinetics (see Box 6B). Let L,
be a fixed concentration of lactose exterior to the cell. Lactose enters the cell at a
Michaelis—Menten rate proportional to the permease concentration P, where it is
converted to allolactose via the enzymatic action of 3-galactosidase; the latter also
breaks down allolactose into glucose and galactose. Thus

dL L, L
— =0y P — ouB —y L 6.4.13d
a - ke *raL ™ ( )
dA L A
— = — BB — YAA. 6.4.13
M4BT Ba KigA M ( e)

Keener and Sneyd [322] show that for physiologically based parameter values, the
system of Eq. (6.4.13) exhibits bistability in the interior lactose concentration as a
function of the exterior lactose concentration L,. Note that the stochastic analysis
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outlined in Sect. 6.4.1 for the mutual repressor model could be extended to the more
complicated model of the lac operon in order to investigate the effects of intrinsic
noise on the bistable switch.

6.4.3 Genetic Oscillator Network

There are numerous examples of gene circuits that support oscillations. Here we
consider a relaxation oscillator consisting of an activator that increases its own pro-
duction and that of a repressor, which in turn represses the production of the activa-
tor (see Fig.6.10). Let x denote the concentration of the activator and y denote the
concentration of the repressor. The resulting kinetic equations take the form

& I (x/K2)?

di = T R GKa R T T UK+ OKE O
2

dy ! (/Kq) (6.4.14b)

ar T TR T T (K

where ¥, 7, are the degradation rates of the two proteins, roy, 7o, are protein pro-
duction rates when respective promoters are not bound by transcription factors, and
1y, 1y are the enhanced production rates when the promoter sites are activated. (It is
assumed that when the promoter of gene X is repressed, production of protein X is
blocked.) The production terms are based on the equilibrium binding probabilities
of the X and Y promoter domains. The Hill coefficient n = 2 arises because the tran-
scription factors bind as dimers. In the case of the unbound promoter A of activator
gene X, the binding reactions are

X+A=A", 2V¥+A=A",

where A* denote the activated and repressed promoter states. In terms of the equi-
librium law of mass action (see Sects. 1.4 and 4.1), the concentrations of the various
reactants and products satisfy

AT 1 ] 1

XAl K YAl K
with the dissociation constant K; taken to be the same for both binding reactions.

Denoting the total concentration of promoter domains of gene X by Ty = [A] +
[AT]+[A7], we have

[AT] X7 [A] [r?)

Ti—[AY]-[A7] Ko Thi—[Af]-[AT]  Kai

These can be solved to give the equilibrium probabilities that the X promoter domain
is activated or repressed:
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[A7] ([x1/Ka)? A7l _ ([Y]/Ka)®

T 1+(X]/K)?+(YI/K)? Ta 1+ ([X]/Ka)? +([Y]/Ka)*

A similar analysis of the single binding reaction

2X+R=R",

where R, R™ are the unbound and activated states of the Y gene promoter, yields

R __(IX)/Ka)

T 1+([X]/Kq)?’

where Ty is the total concentration of the Y gene promoter.
As in the case of the genetic switch, it is useful to nondimensionalize the equa-
tions by taking time to be in units of }/y’l and concentrations in units of Kj;:

dx Rox + Rx?

== - 6.4.15
- Py (6.4.152)
dy Roy —l—Ryx2

A VO A 6.4.15b
a = T e ( )

S ®
l |_> v l gene Y

— gene X -<J
L @ «*

Fig. 6.10: Activator—repressor model of a genetic oscillator. A gene X expresses a protein X that
activates the transcription of genes X and Y and protein Y represses the transcription of gene X

where Y= ¥/ % and Rox = rox/7, etc. If y < 1, then we have a slow—fast system with
the repressor acting as the slow variable. The existence of a relaxation oscillator can
then be established using phase-plane analysis.

6.4.4 The Circadian Clock and Molecular Noise

The circadian rhythm plays a key physiological role in the adaptation of living or-
ganisms to the alternation of night and day [214, 492]. Experimental studies of a
wide range of plants and animals has established that in almost all cases, autoregu-
latory feedback on gene expression plays a central role in the molecular mechanisms
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underlying circadian rhythms [335, 501]. Based on experimental data, a variety of
models of increasing complexity have been developed, which show how regulatory
feedback loops in circadian gene networks generate sustained oscillations under
conditions of continuous darkness [188, 222, 381, 382, 602, 648]. The resulting cir-
cadian oscillator has a natural period of approximately 24 h, which can be entrained
to the external light—dark cycle. Given that the circadian rhythm is controlled by
gene networks, this immediately raises the issue regarding the extent to which such
oscillations are robust to intrinsic noise arising from small numbers of molecules
[21, 187, 189, 227]. Here we review the analysis of Gonze et al. [228], who con-
sidered the effects of molecular noise on a minimal model of the circadian clock
in the fungus Neurospora [382]. A schematic diagram of the basic model is shown
in Fig.6.11. A clock gene X (frg in Neurospora, per in Drosophila) is transcribed
to form mRNA (M), which exits the nucleus and is subsequently translated into
cytoplasmic clock protein (X¢). The resulting protein either degrades or enters the
nucleus (Xy) where it inhibits its own gene expression.

The governing equations for the concentrations m,xc,xy of mRNA, cytosolic
protein, and nuclear protein, respectively, are

dm K" m

el e N 6.4.16
it “Ki+xl, Kl +m (6.4.162)
dxc Xc

= m— —k k 6.4.16b
o YPKp-i-xc 1Xc +koxy ( )

ddL;V = kyxe — koxy. (6.4.16¢)

Here k is the unregulated rate of transcription, r is the rate of translation, and 7,7,
are the rates of mRNA and protein degradation; degradation is assumed to obey
Michaelis—Menten kinetics. The negative regulation of transcription is taken to be
cooperative with a Hill coefficient of n. Finally, the rate constants k;,k, character-
ize the transport of protein into and out of the nucleus. It can be shown that the
above model exhibits limit cycle oscillations in physiologically reasonable parame-
ter regimes and thus provides a molecular basis for the sustained oscillations of the
circadian clock under constant darkness [382]. In order to explore the robustness
of such oscillations to molecular noise, it is necessary to turn to a master equation
formulation of the gene network. One can then approximate the master equation by
an FP equation as outlined in Box 6A, but now one has to linearize the FP equation
about a limit cycle rather than a fixed point.

As in previous examples of gene regulation, it is convenient to rewrite this system
of equations in the form of Eq. (6.3.17), which involves a sum over R = 6 single-step
reactions labeled by a, whose transition rates f,(x) and stochiometric coefficients
Sia are listed in the table below with x = (m,xc,xN)T [228]. Given this decom-
position, one can now write down the FP equation obtained under the diffusion
approximation [see also Eq. (6.3.20)]:
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Fig. 6.11: Minimal model for a negative autoregulation network underlying circadian rhythms.
Transcription of a clock gene (X) produces mRNA (M), which is transported outside the nucleus
and then translated into cytosolic clock protein (X¢). The protein is either degraded or transported
into the nucleus (X ) where it exerts negative feedback on the gene expression

S Vix)p(x,r) | 1 & 9*Dy(x)p(x.1)

ap
E - _i:Zi 8xl~ E ij=1 8xl~8xj ’

(6.4.17)

where €2 is the total number of molecules that can be present in the system, say,

R R
Vi(x) = Y Siafa(x), Dij(x) = SiaSjafa(X). (6.4.18)
a=1 =

a=1

From Table 6.1, we deduce that
Vi(x) = fi(x) — f2(x), Va(x) = f3(x) — fa(x) — f5(x) + fo(x), V3(x) = f5(x) — fo(x),
and

Dii(x) = =(fi(x)+ fo(x), Din=Dy =Di3=D3 =0,

D (x) = = (f3(x) + fa(x) + f5(x) + f6(x))

N = N =

Da3(x) = D33 (x) = —%(fs(x) +f6(x)), D33(x)= %(fs(x) + fo(x)).

In the deterministic limit €2 — oo, we recover the deterministic model (6.4.16),
which can be rewritten in the more compact form

dx;
%:Vi(x), i=1,2,3. (6.4.19)
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Reaction Transition rate Transition

Kﬂ
X—>X+M flfk M—M+1

+XN
M—0 = M—->M-1

= yK,,,+m

M—=Xc+M fz=rm Xe = Xc+1
Xc—0 fi=1re— Xe—Xc—1
c =P R xe e X
Xc — Xy f5:k1XC Xe—Xe—1, Xy > Xy +1
Xy — Xc fo =koxy Xe—Xe+1, Xy > Xy —1

Table 6.1: Single-step reactions of the minimal circadian clock gene network

One way to investigate the effects of molecular noise on the circadian clock is
to linearize the FP equation about the limit cycle solution, analogous to the linear
noise approximation for Gaussian-like fluctuations about fixed points (see Box 6A).
However, the linear noise approximation requires that perturbations remain small
for all times, which is not the case for limit cycles, since they are marginally stable
with respect to phase shifts around the limit cycle. Therefore, one needs to separate
out the effects of longitudinal and transverse fluctuations of the limit cycle [56, 578].
The basic intuition is that Gaussian-like transverse fluctuations are distributed in a
tube of radius 1/ V/Q, whereas the phase around the limit cycle undergoes Brown-
ian diffusion. Thus, consider the Langevin equation corresponding to the FP equa-
tion (6.4.17):

dX;(t) = Vi(X(1))dt + — ZDU W;(t), (6.4.20)

where 7 is the nu