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Preface

In recent years there has been an explosion of interest in the effects of noise in
cell biology. This has partly been driven by rapid advances in experimental tech-
niques, including high-resolution imaging and molecular-level probes. However, it
is also driven by fundamental questions raised by the ubiquity of noise. For exam-
ple, how does noise at the molecular and cellular levels translate into reliable or
robust behavior at the macroscopic level? How do microscopic organisms detect
weak environmental signals in the presence of noise? Have single-cell and more
complex organisms evolved to exploit noise to enhance performance? In light of the
above, there is a growing need for mathematical biologists and other applied math-
ematicians interested in biological problems to have some background in applied
probability theory and stochastic processes. Traditional mathematical courses and
textbooks in cell biology and cell physiology tend to focus on deterministic models
based on differential equations such as the Hodgkin–Huxley and FitzHugh–Nagumo
equations, chemical kinetic equations, and reaction–diffusion equations. Although
there are a number of well-known textbooks on applied stochastic processes, they
are written primarily for physicists and chemists or for population biologists. There
are also several excellent books on cell biology written from a biophysics perspec-
tive. However, these assume some background in statistical physics and a certain
level of physical intuition. Therefore, I felt that it was timely to write a textbook for
applied mathematicians interested in learning stochastic processes within the con-
text of cell biology, which could also serve as an introduction to mathematical cell
biology for statistical physicists and applied probabilists.

I started my interest in stochastic cell biology, as distinct from my work in math-
ematical neuroscience, around 8 years ago when I volunteered to teach a course in
biophysics for the mathematical biology graduate program at Utah. I was immedi-
ately fascinated by the molecular processes underlying the operation of a cell, par-
ticularly the mechanisms for transporting proteins and other macromolecules to the
correct subcellular targets at the correct times. Such an issue is particularly acute for
neurons, which are among the largest and most complex cells in biology. In healthy
cells, the regulation of protein trafficking within a neuron provides an important
mechanism for modifying the strength of synaptic connections between neurons,
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and synaptic plasticity is generally believed to be the cellular substrate of learning
and memory. On the other hand, various types of dysfunction in protein trafficking
appear to be a major contributory factor to a number of neurodegenerative diseases
associated with memory loss including Alzheimer’s disease.

In writing this book, I have gone back to my roots in theoretical physics, but
refracted through the lens formed by many years of working in applied mathe-
matics. Hence, the book provides extensive coverage of analytical methods such
as initial boundary value problems for partial differential equations, singular per-
turbation theory, slow/fast analysis and quasi-steady-state approximations, Green’s
functions, WKB methods and Hamilton–Jacobi equations, homogenization theory
and multi-scale analysis, the method of characteristics and shocks, and reaction–
diffusion equations. I have also endeavored to minimize the use of statistical me-
chanics, which is not usually part of a mathematician’s tool-kit and requires a cer-
tain level of physical intuition. It is not possible to avoid this topic completely, since
many experimental and theoretical papers in cell biology assume some familiarity
with terms such as entropy, free energy, and chemical potential. The reason is that
microscopic systems often operate close to thermodynamic equilibrium or asymp-
totically approach thermodynamic equilibrium in the long-time limit. This then im-
poses constraints on any model of the underlying stochastic process. In most cases,
one can understand these constraints by considering the Boltzmann–Gibbs distri-
bution of a macromolecule in thermodynamic equilibrium, which is the approach I
take in this book.

There are two complementary approaches to modeling biological systems. One
involves a high level of biological detail and computational complexity, which
means that it is usually less amenable to mathematical analysis than simpler re-
duced models. The focus tends to be on issues such as parameter searches and data
fitting, sensitivity analysis, model reductions, numerical convergence, and compu-
tational efficiency. This is exemplified by the rapidly growing field of systems bi-
ology. The other approach is based on relatively simple conceptual or “toy” mod-
els, which are analytically tractable and, hopefully, capture essential features of the
phenomena of interest. In this book I focus on the latter for pedagogical reasons
and because of my own personal tastes. In the introductory chapter, I summarize
some of the basic concepts in stochastic processes and nonequilibrium systems that
are used throughout the book, describe various experimental methods for probing
noise at the molecular and cellular levels, give a brief review of basic probabil-
ity theory and statistical mechanics, and then highlight the structure of the book.
In brief, the book is divided into two parts: Part I (Foundations) and Part II (Ad-
vanced Topics). Part I provides the basic foundations of both discrete and continu-
ous stochastic processes in cell biology. Its five chapters deal with diffusion, random
walks, and the Fokker–Planck equation (Chap. 2), stochastic ion channels (Chap. 3),
polymers and molecular motors (Chap. 4), biochemical signaling and adaptation
(Chap. 5), and gene expression and regulatory networks (Chap. 6). Part II covers
more advanced topics that build upon the ideas and techniques from Part I. Topics
include transport processes in cells (Chap. 7), self-organization of the cytoskeleton
(Chap. 8), self-organization in reaction–diffusion models (Chap. 9), WKB methods
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for escape problems (Chap. 10), and some more advanced topics in probability the-
ory (Chap. 11). The chapters are supplemented by additional background material
highlighted in gray boxes and numerous exercises that reinforce the analytical meth-
ods and models introduced in the main body of the text. I have attempted to make the
book as self-contained as possible. However, some introductory background in par-
tial differential equations, integral transforms, and applied probability theory would
be advantageous.

Finally, this book should come with a “government health warning.” That is,
throughout most of the book, I review the simplest mechanistic models that have
been constructed in order to investigate a particular biological phenomenon or illus-
trate a particular mathematical method. Although I try to make clear the assumptions
underlying each model, I do not carry out a comparative study of different models
in terms of the degree of quantitative agreement with experimental data. Therefore,
the reader should be cautioned that the models are far from the last word on a given
phenomenon, and the real biological system is usually way more complicated than
stated. However, it is hoped that the range of modeling and analytical techniques
presented in this book, when combined with efficient numerical methods, provides
the foundations for developing more realistic, quantitative models in stochastic cell
biology.

Salt Lake City, UT, USA Paul C. Bressloff

Supplementary material - available online:

Springer.com web page for the book:
www.springer.com/978-3-319-08487-9where there will be a password
protected solution manual in the near future.

Author website for supplementary material (updates, additional exercises, further
topics):
http://www.math.utah.edu/˜bresslof/#Books
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Chapter 1
Introduction

One of the major challenges in modern biology is to understand how the molecular
components of a living cell operate in a highly noisy environment. What are the
specific sources of noise in a cell? How do cells attenuate the effects of noise in
order to exhibit reliable behavior (robustness to noise)? In particular, how does
a stochastic genotype result in a reliable phenotype through development? How
does the noisy, crowded environment of a cell affect diffusive transport? How do
molecular machines convert chemical energy to work? What are the physical limits
of biochemical signaling, such as the sensitivity of biochemical sensors to environ-
mental signals? Under what circumstances can a cell exploit noise to enhance its per-
formance or the survival of its host organism? What is the role of self-organization
in the formation and maintenance of subcellular structures such as the cytoskele-
ton? The goal of this book is to use the theory of stochastic processes and non-
equilibrium systems to investigate these types of biological questions at the cellular
level; analogous questions also hold at the multicellular level but are not addressed
in this book since they would double its length! One can view the book either as an
introduction to stochastic processes using cell biology as the motivating application
or, conversely, as an introduction to mathematical cell biology with an emphasis on
stochastic processes. Irrespective of the particular perspective, it is clear that there is
a growing demand for mathematical biologists and other applied mathematicians to
have some training in topics that have traditionally been the purview of physicists,
chemists, and probabilists. This book provides the necessary background to tackle
research problems in mathematical biology that involve stochastic processes.

1.1 Stochastic Processes in Living Cells

In this first section, we introduce some of the basic concepts that are useful in
characterizing and analyzing noise in cells, starting at the level of individual macro-
molecules and building up to cellular structures. For an excellent general introduc-
tion to molecular and cell biology, we refer the reader to the book Molecular Biology
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2 1 Introduction

of the Cell by Alberts et al. [3]. For a more biophysics-oriented approach to cell
biology, see Physical Biology of the Cell by Phillips et al. [509] and Biophysics
by Bialek [44]. An extensive coverage of cell physiology with some examples of
stochastic processes can be found in the first volume of Mathematical Physiology by
Keener and Sneyd. Two standard references on the theory of stochastic processes,
with an emphasis on physical and chemical processes, are Handbook of Stochas-
tic Methods by Gardiner [204] and Stochastic Processes in Physics and Chemistry
by Van Kampen [651]. For a more kinetic-based treatment of nonequilibrium pro-
cesses, see A Kinetic View of Statistical Physics by Krapivsky et al. [354]. A book
on stochastic processes oriented towards population biology is An Introduction to
Stochastic Processes with Applications to Biology by Allen [4]. For a more math-
ematical formulation of discrete stochastic processes, see Probability and Random
Processes by Grimmett and Strirzaker [242], and for a more rigorous treatment of
stochastic differential equations (SDEs), see SDEs by Oksendal [483]. Finally, an
analytical treatment of stochastic processes with a detailed description of asymptotic
methods and large deviations can be found in the book Theory and Applications of
Stochastic Processes by Schuss [574].

1.1.1 Internal and External States of a Macromolecule

Consider a single macromolecule such as a motor protein, an enzyme, an ion chan-
nel, or a strand of DNA. Each macromolecule is subject to thermal fluctuations
arising from the continual bombardment by molecules in the surrounding environ-
ment, which could be the interior aqueous solution of the cell (cytosol) or the sur-
rounding plasma membrane. The size of molecular fluctuations is set by the basic
unit of thermal energy kBT , where T is the temperature (in degrees Kelvin K) and
kB ≈ 1.4×10−23JK−1 is the Boltzmann constant. A useful distinction at the molecu-
lar level is between internal conformational states of a macromolecule and external
states such as the position and momentum of the center of mass of the molecule.
Often the internal degrees of freedom are represented as a set of discrete states, and
the stochastic dynamics within this state space is described in terms of a continuous-
time Markov process [204]. That is, the state of the system takes values in some fin-
ite or countable set, and the time spent in each state has an exponential distribution.
Moreover, the continuous-time stochastic process has the Markov property, which
means that the future behavior of the system, both the remaining time in the current
state and the identity of the next state, depends only on the current state and not on
any prior history. A simple two-state continuous-time Markov process can be used
to model the opening and closing of an ion channel, for example, or the binding and
unbinding of a ligand molecule to a protein receptor (see Fig. 1.1a). More generally,
suppose that a macromolecule has m internal states labeled j = 1, . . . ,m. The prob-
ability Pj(t) that the molecule is in state j at time t evolves according to the system
of differential equations
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Fig. 1.1: Internal and external stochastic variables. (a) Internal open and closed states of an ion
channel. (b) Patch-clamp recording of a glycine receptor showing stochastic variations in current
due to the opening and closing of the ion channel. (Public domain figure downloaded from Wiki-
media Commons.) (c) Sample 3D trajectory of a Brownian particle

dPj

dt
=

m

∑
k=1

[
WjkPk(t)−Wk jPj(t)

]
, j = 1, . . . ,m,

where Wjkδ t is the probability that the molecule jumps to state j in an infinitesimal
time interval δ t, given that it is currently in state k; Wjk is called a state transition
rate. Such a Markov process is said to satisfy detailed balance if there exists a
stationary density Π j such that for each pair of reversible transitions ( jk)

WjkΠk =Wk jΠ j.

The detailed balance condition is stronger than that required merely for a stationary
distribution—there are Markov processes with stationary distributions that do not
have detailed balance. Detailed balance implies that, around any closed cycle of
states, there is no net flow of probability.

In contrast to discrete internal states, the evolution of external variables such as
the position of a macromolecule is modeled in terms of an SDE [204, 483], which is
often called a Langevin equation in the physics literature [651]. Mathematically
speaking, an SDE is a differential equation in which one or more of the terms
are a stochastic process, resulting in a solution that is itself a stochastic process.
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In the case of a macromolecule, the stochastic terms represent the effective forces
due to collisions of the macromolecule with molecules in the surrounding medium.
From this perspective, the external state of the macromolecule is described in terms
of slow variables, whereas the degrees of freedom of the surrounding medium are
treated as fast microscopic variables that are responsible for the stochastic nature of
the SDE. A classical example of an SDE is Brownian motion, which refers to the
random motion of a particle suspended in a fluid (see Fig. 1.1c). This phenomenon
is named after the botanist Robert Brown, who observed the erratic motion of pollen
grains suspended in water through a microscope, but was unable to determine the
mechanisms that caused this motion. Albert Einstein subsequently explained how
the motion that Brown had observed was a result of the pollen being moved by
individual water molecules, which served as a definitive confirmation that atoms
and molecules actually exist. An idealized mathematical representation of Brown-
ian motion is the Wiener process, whose evolution can be described in terms of in-
finitesimal increments that are independent random variables generated from a zero
mean Gaussian distribution whose variance scales as Δ t, where Δ t is the time step.
One of the characteristic features of a Wiener process is that in the limit Δ t → 0, the
time-dependent solution is continuous, but its time derivative is everywhere infinite,
reflecting the absence of a finite time scale. This means that the usual rules of cal-
culus break down and indicates that a Wiener process is an idealization of an actual
random physical process, which always has a finite intrinsic time scale such as the
time constant of second-order statistical correlations. Another important feature of
a Wiener process is that it is the single-particle realization of diffusion. This can be
seen from two perspectives. First, each realization of a Wiener process determines a
sample trajectory through state space. The associated probability density of sample
paths is the solution to a deterministic partial differential equation (PDE) known as
a Fokker–Planck equation (FPE). In the case of idealized Brownian motion, the FPE
is formally identical to the classical diffusion equation. Indeed, if one were to con-
sider a large number N of noninteracting Brownian particles, then, in the large-N
limit, the concentration of particles evolves deterministically according to the dif-
fusion equation. Second, if one were to discretize time and space, then a sample
trajectory of a Wiener process reduces to an unbiased random walk, which is well
known to be a discrete realization of a diffusing particle.

More generally, consider a molecule of mass m moving in one dimension under
the influence of an external force F(x). In the absence of thermal fluctuations, the
position of the molecule satisfies Newton’s law of motion

m
d2x
dt2 + γ

dx
dt

= F(x),

where γ is a damping or drag coefficient. It turns out that at the microscopic length
and velocity scales of molecular dynamics, the aqueous environment of a cell is
highly viscous so that inertial terms can be ignored—the particle rapidly reaches the
terminal velocity F(x)/γ . Under such circumstances, when the force due to thermal
fluctuations is modeled as a Wiener process, the FPE equation for the probability
density p(x, t) takes the form
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∂ p
∂ t

=−1
γ

∂
∂x

(F(x)p(x, t))+D
∂ 2 p(x, t)

∂x2 ,

where D determines the level of noise. Moreover, since the molecules responsible
for the fluctuating force are also responsible for the dissipation or damping, one
finds that D and γ are related according to the so-called Einstein relation

Dγ = kBT.

This is a specific example of what is known as a fluctuation–dissipation theorem,
since it relates the rate of relaxation to equilibrium to the size of thermal fluctuations.

A number of important cellular processes at the macromolecular level involve
a coupling between continuous external variables and discrete internal variables,
which is modeled using a stochastic hybrid system. Consider, for example, molec-
ular motors, which are proteins that convert chemical energy into mechanical work
[275]. A motor protein undergoes a cyclic sequence of conformational changes after
reacting with one or more molecules of a chemical such as adenosine triphosphate
(ATP), resulting in the release of chemical energy. This allows the motor to per-
form work by exerting a force conjugate to a given external variable, e.g., pulling a
load while moving along a protein filament—active intracellular transport. Another
example of a stochastic hybrid system is a voltage-gated or ligand-gated ion chan-
nel, in which the opening and closing of the channel depends on an external variable
such as membrane voltage or calcium concentration [322]. Moreover, the dynamics
of the given external variable itself depends on the internal state of the ion channel
or, more precisely, a population of ion channels.

1.1.2 Equilibrium and Nonequilibrium Systems

One of the fundamental features of a living cell is that it is an open system, i.e.,
it interacts with the surrounding environment through the exchange of energy and
matter (see Fig. 1.2). Moreover, a cell is maintained out of thermodynamic equi-
librium, which means that there are nonzero fluxes of energy, matter, and charge
flowing between the interior and exterior of the cell. In such cases, one has to model
the stochastic dynamics using a continuous-time Markov process or an SDE, for
example. Nevertheless, it is sometimes possible to approximate a subcellular sys-
tem such as an individual macromolecule as being in thermodynamic equilibrium,
provided that the rate of relaxation to local equilibrium is fast compared to other
processes of interest. (Note, however, that a macromolecule such as a motor pro-
tein can only operate if it is maintained out of thermodynamic equilibrium.) In such
cases one can exploit the powerful machinery of equilibrium statistical mechanics
[102, 317]. In particular, one can make use of the Boltzmann–Gibbs distribution.
Suppose that a macromolecule has a set of intrinsic states labeled by j and let E j

denote the (free) energy of the molecule in the jth state. Furthermore, assume that
the surrounding cellular environment maintains a constant temperature T . A basic
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cell interior

cell exterior

local eqilibrium at
temperature T

non-equilibrium
fluxes

plasma
membrane

Ej

Fig. 1.2: The cell is an open, nonequilibrium system that exchanges energy and matter with the
environment. However, a local subsystem such as an individual macromolecule may be in local
thermodynamic equilibrium at a temperature T . The probability of being in intrinsic state j with
energy E j is then determined by the Boltzmann–Gibbs distribution

result of equilibrium statistical mechanics is that the probability p j that the molecule
is in state j is given by the Boltzmann–Gibbs distribution (see Sect. 1.4):

p j =
1
Z

e−E j/kBT , Z = ∑
j

e−E j/kBT .

The so-called partition function Z ensures that ∑ j p j = 1. If we apply the
Boltzmann–Gibbs distribution to the steady-state probability Π j of detailed bal-
ance, we immediately see that the backward and forward transition rates satisfy the
condition

Wjk

Wk j
=

Π j

Πk
=

p j

pk
= e−(E j−Ek)/kBT .

That is, the ratio of the forward and backward transition rates depends on the energy
difference between the two states.

1.1.3 Populations of Molecules

Another important issue is how noise at the level of an individual molecule scales
up when one considers a population of possibly interacting molecules. If the popu-
lation is in thermodynamic equilibrium, then the Boltzmann–Gibbs distribution can
still be used, except that now E j is the total energy of the population in a given
microstate, which includes any contributions from molecular interactions within the
population. In the case of a large number of molecules, one can often describe the
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collective behavior of the population in terms of a small number of macroscopic
variables for which thermal fluctuations can be neglected. These macroscopic vari-
ables characterize the average or mean-field behavior of the population. Examples
include the concentration of molecules within a cellular compartment or the pres-
sure exerted by molecules on the cell membrane. It is also possible to construct
a mean-field theory for a population of N independent, identical macromolecules
operating out of thermodynamic equilibrium, with each described by a continuous-
time Markov process. That is, in the limit N → ∞, the fraction of the population in
a given state evolves according to a system of deterministic differential equations
(kinetic equations). Moreover, for finite N, one can track the stochastic fraction of
molecules in a given state using a so-called master equation. Let n = (n1,n2, . . . ,nm)
denote the number of molecules in each of m internal states with ∑m

j=1 n j = N. The
probability that the population is in the configuration state n at time t then evolves
according to a master equation of the form

dPn

dt
= ∑

n′
[Wnn′Pn′(t)−Wn′nPn(t)] .

Although it is generally difficult to analyze such a master equation, it is possible to
carry out a perturbation expansion of the master equation in terms of the system size
1/N (system-size expansion). For large but finite N, one can thus approximate the
stochastic dynamics of the population using a FPE or its equivalent Langevin equa-
tion [651]. However, now the stochastic variables are the fraction of molecules in a
given intrinsic state rather than the position of a single macromolecule undergoing
Brownian motion. The FPE then provides an estimate for the size of fluctuations
about the mean-field solutions.

In recent years, the system-size expansion of master equations has become a
major focus of work on genetic and other biochemical networks within a cell
[312, 408, 502, 521, 555]. In the case of classical chemical reactions, the num-
ber of molecules involved is huge (comparable to Avagadro’s number 6× 1023). In
such cases, it is sufficient to model the chemical reactions in terms of deterministic
kinetic equations based on the law of mass action: the rate of an elementary reac-
tion (a reaction that proceeds through only one step) is proportional to the product
of the concentrations of the participating molecules. In thermodynamic equilibrium,
the rates of the forward and backward reactions must be equal, which allows one to
express the ratio of the concentrations of reactants and products in terms of a con-
stant known as the dissociation constant Kd . An expression for Kd can be derived
from first principles using the Boltzmann–Gibbs distribution. However, the absolute
values of the transition rates (rather than their ratios) cannot be determined from the
theory of equilibrium systems. In contrast to classical chemical reactions, the num-
ber of molecular constituents involved in the transcription of DNA to produce a
protein is small (tens or hundreds of molecules). The low copy numbers mean that
fluctuations in the number of proteins produced are non-negligible and one has to
deal with the corresponding master equation. An immediate issue that stems from
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this is how noisy processes at the level of DNA (genotypes) result in the robust
development of single-cell and multicellular organisms (phenotypes).

Once one considers noise at the level of more complex subcellular processes that
involve populations of reacting macromolecules, it is useful to distinguish between
intrinsic and extrinsic noise [164, 625]. Intrinsic noise refers to fluctuations due to
the inherent stochasticity of the macromolecules, whereas extrinsic noise refers to
fluctuations in the external environment (beyond the random molecular collisions
that generate the intrinsic noise). For example, given a population of ion channels,
intrinsic noise might correspond to fluctuations in the fraction of open ion channels
whereas extrinsic noise could be due to random variations in the membrane voltage
or calcium concentration. In the case of gene expression, intrinsic noise might refer
to fluctuations in the number of bound protein promoters that repress or activate
gene expression, whereas extrinsic noise could be due to fluctuations in the rates of
binding and unbinding.

1.1.4 Self-Organization

A significant concept in the theory of nonequilibrium systems is the notion of self-
organization. Within the context of cell biology, this plays an important role in
the formation and maintenance of cellular and subcellular structures such as those
shown in Box 1A. It is useful to distinguish between two types of mechanism for
the formation of these structures [441]: self-assembly and self-organization. The
former involves the aggregation of molecules such as proteins or lipids into a struc-
ture at thermodynamic equilibrium. On the other hand, the self-organization of non-
equilibrium systems involves the spontaneous formation of a macroscopic structure
based on the interactions between its microscopic components; there is no explicit
architectural blueprint for the emerging structure [477]. Although many cellular
structures appear static, a closer look reveals that they are highly dynamic systems,
continuously exchanging proteins and other molecules with the surrounding envi-
ronment. Self-organization can then occur when this is combined with nonlinear
interactions between the various components of the given cellular structure.

Probably the most studied example of a self-organizing structure in cells is the
cytoskeleton [275], which provides the structural integrity of the cell and plays a cru-
cial role in determining cell shape and polarity. It also forms the so-called spindle
apparatus during cell division or mitosis and drives cell motility. The cytoskeleton
consists of a network of biopolymers including F-actin and microtubules, which
undergo a continuous turnover of their subunits by net polymerization at one end
(the plus end) and net depolymerization at the other end (the minus end). Growth
and shrinkage of different components of the cytoskeleton are regulated by nonlin-
ear interactions with various proteins, resulting in a self-organizing structure that
can assume different forms from the same basic building blocks, depending on the
particular functional role [285, 442]. The self-organizing properties of microtubule
networks have been elegantly demonstrated in vitro by simply combining tubulin,
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microtubule motors, and ATP [467]. Depending on the relative concentrations of
motors and tubulin, structurally different patterns (i.e., random networks, vortices,
or asters) are formed. The outcome of the polymerization process is solely deter-
mined by the concentration of reactants and the kinetics of their interactions. More-
over, there are sharp transitions between distinct assembly patterns, and a diverse
range of initial conditions can result in the same assembly pattern. These are both
characteristic signatures of self-organization.

Another likely candidate for cellular self-organization is the set of organelles
forming the secretory pathway, namely, the endoplasmic reticulum (ER) and the
Golgi apparatus. Newly translated proteins enter the secretory pathway, where they
are sorted and transported to appropriate sites on the plasma membrane. One of
the significant features of the secretory pathway is that there is a constant active
exchange of molecules between the ER and Golgi apparatus, which have different
lipid and protein compositions [392, 393]. Such an exchange is mediated by motor-
driven vesicular transport. Vesicles bud from one compartment or organelle, car-
rying various lipids and proteins, and fuse with another compartment. Transport in
the anterograde direction has to be counterbalanced by retrograde transport in order
to maintain the size of the compartments and to reuse components of the transport
machinery. Since bidirectional transport would be expected to equalize the compo-
sition of both compartments, there has been considerable interest in understanding
the self-organizing mechanisms that allow such organelles to maintain their distinct
identities while constantly exchanging material.

The above two examples involve active transport processes. A different mecha-
nism for self-organization within cells (and between cells) is the interplay between
passive diffusion and nonlinear chemical reactions, as modeled using reaction–
diffusion equations. This builds upon the seminal work on morphogenesis by Tur-
ing [646], who established the principle that two nonlinearly interacting chemi-
cal species differing significantly in their rates of diffusion can amplify spatially
periodic fluctuations in their concentrations, resulting in the formation of a stable
periodic pattern. The so-called Turing mechanism has subsequently been applied to
a wide range of problems in cell and systems biology, as extensively reviewed by
Murray [461]. Given the fact that various cellular processes involve relatively few
molecules, it is important to understand how to incorporate the effects of intrinsic
fluctuations in the number of reacting molecules into a reaction–diffusion system.
This then raises the challenging mathematical problem of analyzing and simulating
stochastic PDEs.

Box 1A. A cellular parts list.

The interior of a cell is crowded with macromolecules and a vast array
of organelles. An organelle of a eukaryotic cell (cell with a nucleus)
is a compartmentalized structure separated from the cytoplasm by lipid
membrane. Some of the major organelles are listed below (see Fig. 1.3
and [3]).



10 1 Introduction
th

is
fig

ur
e

w
ill

be
pr

in
te

d
in

b/
w

Fig. 1.3: The crowded environment of a eukaryotic cell (Public domain figure
downloaded from Wikibooks)

1. Nucleus. The nucleus is a membrane-bound vesicle that contains the
DNA genome. It is the site of transcription from DNA to mRNA via
the action of polymerase; mRNA then exits the nucleus via nuclear
pores and is then translated in the cytoplasm to produce proteins.
Some of these proteins re-enter the nucleus as transcription factors
(Sect. 6.1). In a human cell, the DNA molecules range in length from
1.9 to 8.5 cm, whereas the nucleus that contains 46 copies is an ap-
proximately spherical compartment with diameter usually less than
8 mm. Thus, each DNA copy must be reduced in length by more than
a factor of 1,000. This is achieved using a hierarchical structure. First,
the DNA is wrapped around nucleosome “core particles” resulting in
the material chromatin. Fibers of the chromatin are then coiled and
looped until each chromosome is only a few micrometers long and less
than 1 mm thick. It follows that the nucleus itself is a highly crowded
environment.

2. Endoplasmic reticulum (ER). The ER is one of the major organelles
of the so-called secretory pathway. Proteins and lipids destined for the
plasma membrane enter the ER from the nucleus as they are translated
from mRNA by ER-associated ribosomes. The ER can be partitioned



1.2 Experimental Studies of Noise in Cells 11

into the rough ER (RER), which is rich in ribosomes, and the smooth
ER (SER), which has only a few sparse ribosomes and tends to form
a tubular structure. The ER is also an important intracellular store of
Ca2+ (Sect. 3.4).

3. Golgi apparatus. An important aspect of the secretory pathway is that
it is tightly regulated (Sect. 7.5). Proteins accumulate at specific exit
sites and leave the ER in vesicles that transfer the cargo to organelles
forming the Golgi network, where final packaging and sorting for tar-
get delivery is carried out. In most eukaryotic cells the Golgi network
is confined to a region around the nucleus known as the Golgi appara-
tus, whereas in neurons there are Golgi “outposts” distributed through-
out the dendrite.

4. Mitochondria. These are the major sites of ATP synthesis, which is the
main source of biochemical energy at the macromolecular level.

5. Lysosomes. These play a major role in the degradation of cellular com-
ponents and are filled with acids and degradative enzymes.

1.2 Experimental Studies of Noise in Cells

One of the major factors stimulating the recent interest in stochastic aspects of
cellular function has been the rapid advance in experimental techniques for imaging
and probing cells at the molecular level. Here we briefly review some of the methods
most relevant to the biological themes covered in subsequent chapters. More details
and examples can be found in Alberts et al. [3] and Phillips et al. [509].

1.2.1 FRAP and Single-Particle Tracking

A well-established experimental method for measuring protein mobility in cell
membranes is fluorescence recovery after photobleaching (FRAP) [17, 532] (see
Fig. 1.4). In this method, molecules of interest are tagged with a fluorophore such
as a genetically encoded fluorescent protein. A small area of the cell is quickly pho-
tobleached using an intense beam of light, and the rate of fluorescence recovery
in the excited spot is monitored over time. The recovery of the fluorescence signal
depends on a variety of factors, including protein mobility and its availability from
the area surrounding the bleached spot, the number of protein binding sites in the
bleached area, and the rate of dissociation of bleached molecules from these binding
sites. One of the limitations of FRAP is that its spatial resolution is limited by the
diffraction of light to hundreds of nanometers. Moreover, it only gives the average
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behavior of a population of molecules, so it cannot identify heterogeneous behavior
at the level of individual molecules. Finally, mathematical modeling is often needed
to help separate out the various factors contributing to recovery in order to measure
important biophysical quantities such as the diffusivity.

In recent years a powerful alternative method has been developed based on
single-particle tracking (SPT), in which one images the trajectory of a marker
attached to a diffusing molecule [363, 566, 570]. Various transport properties of
the particle are then derived through a statistical analysis of the trajectory, includ-

Fig. 1.4: Schematic illustration of fluorescence recovery after photobleaching (FRAP). (a) A mem-
brane bilayer is uniformly labeled with a fluorescent tag. (b) This label is selectively photobleached
by a small (30 μm) fast light pulse. (c) The intensity of the fluorescent signal within the bleached
area is monitored as the bleached dye diffuses out and new dye diffuses in (d). Eventually uniform
intensity is restored (Public domain figure downloaded from Wikipedia Commons)
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Fig. 1.5: Membrane receptor diffusion in neurons measured by single-particle tracking. (a) Super-
imposed image of the trajectory of 500 nm beads bound to glycine receptors (GlyRs) with the fluo-
rescent image (green) of green fluorescent protein (GFP)-tagged gephyrin. Periods of free diffusion
and confinement are indicated by blue and red lines, respectively. (b) Plots of the average mean-
squared displacement (MSD) function during periods of free diffusion (left panel) and confinement
(right panel) for GlyRs. Note the difference in both shape and amplitude of the MSDs. The curved
shape of the MSD is characteristic of movement in a confined space (Adapted from [111])

ing a measurement of the mean-square displacement (MSD). Visualization of the
diffusive behavior of single-membrane proteins in living cells has revealed that
these molecules undergo a variety of stochastic behaviors including normal and
anomalous diffusion and confinement within subcellular compartments. SPT also
provides information on the structure of the surrounding membrane and the molec-
ular interactions. The rapid increase in the range of applications of STP to cell
biology has been driven by major improvements in the visualization of trajecto-
ries combined with new strategies for labeling proteins with nanoprobes. However,
single-molecule approaches still have their own limitations, such as the shortness of
observation times and the possibility that identified molecules are not representative
of the population, which can lead to sampling errors. Hence, bulk methods such as
FRAP and single-molecule methods are complementary experimental approaches
to studying the molecular physiology of cells. Figure 1.5 illustrates one applica-
tion of SPT, namely, studying the role of lateral membrane diffusion in delivering
neurotransmitter receptors to synapses of a neuron [643].

1.2.2 Optical Tweezers or Traps

In recent years there have been spectacular advances in single-molecule techniques
for measuring the force-dependent dynamics of molecular motors, DNA, and other
macromolecules vital for cell function. In particular, the use of an optical tweezer
(or trap) allows piconewton forces to be applied to molecules over nanometer
length scales. The basic idea of an optical tweezer is to use radiation pressure from
individual photons emitted by a laser to generate forces on a micron-sized glass
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Fig. 1.6: Operation of an optical tweezer or trap. Experimental traces show kinesin-driven bead
movement and the corresponding optical trap displacement; the separation between bead and trap
was maintained at around 175 nm. The movement can be characterized in terms of a stochastic
sequence of steps of average length 8 nm. Inset: schematic representation of the experimental setup
(Adapted from [571])

bead. This then imparts a force on the macromolecule of interest via a velcro-like
link between the molecule and the glass bead. By applying known forces to the
bead, it is possible to study the mechanochemistry of the attached macromolecule
as a function of the applied force. An example of such an experiment is illustrated
in Fig. 1.6. Here a kinesin molecular motor attached to a silica bead moves along a
clamped microtubule filament [571]. The bead is placed inside an optical trap such
that the force on the bead is proportional to its displacement Δx from the center
of the trap. The applied force is maintained at a constant level by using feedback
to move the trap in sync with the bead so that Δx is kept constant. Such an exper-
iment can be used to determine the probability distribution of motor step lengths,
for example. Another common application of the optical tweezer involves attach-
ing the glass bead to one end of a DNA strand. This can then be used to determine
the force-extension curve of a DNA polymer, measure the force produced by RNA
polymerase (RNAP) during the transcription of DNA, or measure the force neces-
sary to pack viral DNA into the capsid (protein shell) of a bacteriophage (virus that
infects and replicates within bacteria).
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Fig. 1.7: Measuring intrinsic and extrinsic noise in gene expression. Two almost identical genes,
which encode red and green fluorescent proteins, are expressed from identical promoters and are
influenced identically by cell-specific factors, such as gene-regulatory signals. (a) Cells with equal
amounts of the two proteins appear yellow, indicating that the level of intrinsic noise is low. Noise
fluctuations of the two proteins in the same cell appear correlated over time. (b) If intrinsic noise is
significant, then the expression of the two genes becomes uncorrelated in individual cells, giving
rise to a cell population in which some cells express more of one fluorescent protein than the other.
(c) Plot of fluorescence in two strains (M22 and D22) of the bacterium Escherichia coli. Each
point represents the mean fluorescence intensities from one cell. Spread of points perpendicular to
the diagonal line on which the two fluorescent intensities are equal corresponds to intrinsic noise,
whereas the spread parallel to this line corresponds to extrinsic noise (Adapted from [164])

1.2.3 Two-Reporter Assays

As was mentioned in Sect. 1.1, there is an important distinction between intrinsic
and extrinsic noise. Elowitz et al. [164] developed a two-reporter assay that can
discriminate between the two within the context of gene expression. (A biochemical
assay is an experimental procedure for quantitatively measuring the presence or
amount of one or more target molecular constituents.) In this particular assay, two
almost identical fluorescent proteins are simultaneously expressed from two genes
that are controlled by identical regulatory sequences (the same promoter). Cells with
the same amount of each protein appear yellow, whereas cells expressing more of
one fluorescent protein than the other appear green or red (see Fig. 1.7a,b). In the
absence of intrinsic noise, the expression of the two-reporter proteins should be
strongly correlated. On the other hand, since the expression of the two reporters
is independent, any intrinsic stochasticity in gene expression will be manifested as
differences in expression levels within the same cell. By considering the spread of
the expression levels across a population of cells, it is possible to separate out the
noise contribution generated by the biochemical reaction steps that are intrinsic to
the process of gene expression from extrinsic environmental noise (Fig. 1.7c).
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Fig. 1.8: The cytoskeleton of a eukaryotic cell revealed by fluorescent imaging. Actin filaments are
shown in red, microtubules in green, and the nuclei are in blue (Public domain figure downloaded
from Wikipedia Commons)

1.2.4 Fluorescent Imaging

In fluorescent imaging a target structure such as a microtubule filament is labeled
with fluorophores. Incident photons of a given wavelength are absorbed by the flu-
orophores. The latter become energetically excited and emit light at a different
wavelength, which is then detected. The illumination light is separated from the
much weaker emitted fluorescence through the use of a spectral emission filter. The
use of selective labeling means that only the structures of interest are observed under
the microscope. Hence, one can measure the size and number of various structures
based on the strength of the fluorescent signal (see Fig. 1.8). One can also use time-
lapse microscopy to track changes in the shape or size of a cell, which is crucial for
understanding processes such as cell motility and cell polarization. Another imp-
ortant application of time-lapse fluorescent microscopy is to obtain statistical data
regarding the active intracellular transport of vesicles. By tagging proteins or mRNA
contained within the vesicle it is possible to monitor the bidirectional transport of
vesicles along the axons and dendrites of neurons (for example, see Fig. 1.9).

1.3 A Brief Introduction to Probability Theory

Since this is a book on stochastic processes, we thought that it would be helpful to
summarize some basic concepts in probability theory. A more abstract formulation
can be found in Chap. 11.
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Fig. 1.9: (a) Time-lapse fluorescent images of an actively transported vesicle (arrowhead) within
the dendrite of a hippocampal neuron. The vesicle contains fluorescently labeled mRNA for the
kinase CaMKII. Frames are sequential images taken every 20 s. The total distance covered was
5.85 mm and the average velocity over 160 s was 0.04–0.01 mm/s. (b) The distance traveled by
vesicles is given by a Gaussian-like histogram. If the neuron is depolarized by treating with KCl,
then the histogram is shifted towards anterograde (away from the cell body) movement (Adapted
from [544])

1.3.1 Random Variables

Let us start with the idea of a random variable X , which is an unknown quantity that
has one of a number of possible values with some relative likelihood. For example,
in the case of an unbiased die, the possible values of X are the integers 1–6 and the
probability of throwing any one of these is p= 1/6. From a frequentist interpretation
of probability, this means that in the limit that the number of throws N → ∞, the
fraction that will have the value four, say, is equal to 1/6. More, generally, suppose
that X = n with probability pn for n = 1, . . . ,K. Since X takes on discrete values it
is called a discrete random variable. Given that X must take on one of these values,
the total probability must be 1, that is,

K

∑
n=1

pn = 1.
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Two important statistical quantities are the average, mean, or expectation value of
X , which is defined by

E[X ]≡ 〈X〉=
K

∑
n=1

npn,

and the variance of X ,

var[X ]≡ 〈X2〉− 〈X〉2 =
K

∑
n=1

n2 pn− (
K

∑
n=1

npn)
2.

The standard deviation of X , denoted by σX , is defined to be σX =
√

var[X ] and
is a measure of how broad the probability distribution of X is. These ideas carry
over to the case of a continuous random variable X that can take any value on the
real line R. The relative likelihood of the different values of X is now given by a
probability density p(x) such that

Prob[a < x < b] =
∫ b

a
p(x)dx.

The total probability is again equal to 1, which can be expressed as the normalization
condition ∫ ∞

−∞
p(x)dx = 1.

Similarly, the mean and variance are defined according to

〈X〉=
∫ ∞

−∞
xp(x)dx,

and
var[X ] =

∫ ∞

−∞
x2 p(x)dx−〈X〉2.

In the following, we will focus on continuous random variables, although analogous
results hold for discrete random variables.

1.3.2 Conditional Probabilities and Correlations

Two random variables X and Y are said to be independent if the relative likelihood of
a particular value taken by one variable is unaffected by the particular value taken
by the other variable. This means that the joint probability density p(x,y) can be
written as the product of individual probability densities for each of the random
variables, p(x,y) = pX (x)pY (y), and
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Prob[a < X < b and c < Y < d] =
∫ b

a

∫ d

c
p(x,y)dydx

=

∫ b

a

∫ d

c
pX(x)pY (y)dydx =

(∫ b

a
pX(x)dx

)(∫ d

c
pY (y)dy

)

= Prob[a < X < b] ·Prob[c < Y < d].

It immediately follows that 〈XY 〉 = 〈X〉〈Y 〉. If, on the other hand, X and Y are
dependent, then p(x,y) cannot be decomposed into such a product. Nevertheless,
one can define a so-called marginal probability density for X , say, which applies
when there is no information about the value of Y :

pX (x) =
∫ ∞

−∞
p(x,y)dy.

Dependence suggests that if the value of Y is known, then the probability density for
X will be modified. The probability density for X = x given that Y = y is denoted by
the conditional probability density p(x|y). A basic result of conditional probability
densities is

p(x,y) = p(x|y)pY (y) = p(y|x)pX(x).

It follows that

p(y|x) = p(x|y)pY (y)∫ ∞
−∞ p(x|y)pY (y)dy

,

which is a statement of Bayes’ theorem [402]. Although we will mainly use the
frequency interpretation of probability in this book, we note that the Bayesian inter-
pretation is often used in statistical and information theoretic approaches to systems
biology (Sect. 6.5). For example, suppose that X represents some observable data
and Y represents a parameter of the system that produces the data. Then p(x|y) is
known as the likelihood function that a particular parameter value produces the ob-
served data and pY (y) is the Bayesian prior, which expresses what was known (or
thought to be known) about the parameter before the measurement. Finally, p(y|x)
is the updated posterior probability density for the parameter obtained by combining
the prior information with the information gained from the measurement.

An important quantity that indicates the degree of mutual dependence of two
random variables is the correlation coefficient of X and Y , defined by

CXY =
〈XY 〉− 〈X〉〈Y 〉
√

var[X ]var[Y ]
.

The numerator is known as the covariance of X and Y and vanishes if X and
Y are independent. On the other hand, if X and Y are perfectly correlated
(X = cY,c> 0), then CXY = 1, and if they are perfectly anticorrelated (X = cY,c< 0),
then CXY =−1.
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1.3.3 Adding Random Variables

Suppose that N independent measurements of some quantity are made, which are
denoted by Xn, n = 1, . . . ,N. The random variables are said to be independent, iden-
tically distributed (i.i.d.) random variables and have the same mean μ and vari-
ance σ2. Averaging the results of these measurements generates a new random
variable

X =
N

∑
n=1

Xn

N
.

It follows that

〈X〉=
〈

N

∑
n=1

Xn

N

〉

=
1
N

N

∑
n=1

〈Xn〉= μ

and

var[X ] =

〈
N

∑
m=1

Xm

N

N

∑
n=1

Xn

N

〉

− μ2 =
1

N2

N

∑
m=1

N

∑
n=1
〈XmXn〉− μ2

=
1

N2

N

∑
m=1

[

〈X2
m〉+ ∑

n,n �=m

〈XmXn〉−Nμ2

]

=
1

N2

N

∑
m=1

[

σ2 + ∑
n,n �=m

〈Xm〉〈Xn〉− (N− 1)μ2

]

=
σ2

N
.

We thus obtain the well-known result that the standard deviation of the average
varies as σX ∼ N−1/2. This is an expression of the law of large numbers, which
states that the average of the results obtained from a large number of trials should
be close to the expected value and will tend to become closer as more trials are
performed.

A related result is the central limit theorem [242]. Suppose that {X1,X2, . . .} is a
sequence of i.i.d. random variables with 〈Xj〉= μ and var[Xj] = σ2 < ∞. Then as n
approaches infinity, the random variables

√
n(Sn−μ) with Sn =∑n

j=1 Xn/n converge
in distribution to a normal or Gaussian distribution N(0,σ2):

√
n

(
1
n

n

∑
j=1

Xj− μ

)
D→ N(0,σ2).

The Gaussian distribution N(μ ,σ2) is defined according to

N(μ ,σ2)(x) = p(x)≡ 1√
2πσ2

exp

(
− (x− μ)2

2σ2

)
.
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Convergence in distribution means that

lim
n→∞

Prob[
√

n(Sn− μ)≤ z] =
1√

2πσ2

∫ z

−∞
e−x2/2σ 2

dx.

1.3.4 Transformation of Random Variables

Suppose that we know the probability density pX (x) of a random variable X and we
construct a new random variable Y = g(X), where g is an invertible function. We
would like to determine the probability density PY (y). This can be achieved by con-
sidering the expectation value of a function f (Y ) in terms of pX(x) and performing
a change of variables. That is,

〈 f (Y )〉=
∫ x=b

x=a
f (g(x))pX (x)dx =

∫ y=g(b)

y=g(a)
f (y)pX (g

−1(y))
dx
dy

dy

=
∫ y=g(b)

y=g(a)
f (y)

pX (g−1(y))
g′(x)

dy =
∫ y=g(b)

y=g(a)
f (y)

pX (g−1(y))
g′(g−1(y))

dy.

It is possible that on transforming the limits of the integral, g(b) < g(a), which
means that the fraction is then negative. Therefore, the transformed probability
density is

pY (y) =
pX(g−1(y))
|g′(g−1(y))| .

1.3.5 Moments and Cumulants

Given a continuous random variable X with probability density p(x), the expectation
value of Xn, 〈Xn〉, is called the nth moment. The moments can be calculated using
the so-called characteristic function of X , which is defined by

G(k) =
∫ ∞

−∞
eikx p(x)dx.

It can be seen that G(k) is the Fourier transform of p(x). Taylor expanding G(k), we
have

G(k) =
∞

∑
n=0

G(n)(0)kn

n!
,

where G(n)(k) is the nth derivative of G(k). An alternative series expansion of G(k)
is obtained by noting that
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G(k) =
〈

eikx
〉
=

〈
∞

∑
n=0

(ikX)n

n!

〉

=
∞

∑
n=1

in〈Xn〉kn

n!
.

Equating the two series representations of G(k) shows that

〈X〉n = (−i)nG(n)(0).

A related quantity is the nth order cumulant of X , which we denote by κn. It is a
polynomial in the first n moments, which is defined by

κn = (−i)n dn

dkn lnG(k)

∣
∣
∣
∣
k=0

.

The first three cumulants are κ1 = 〈X〉, κ2 = var[X ], and

κ3 = 〈X3〉− 3〈X2〉〈X〉+ 2〈X〉3.

One useful feature of cumulants is that κn = 0 for all n≥ 3 in the case of the Gaus-
sian distribution. This implies that all higher moments of a Gaussian can be written
in terms of the mean 〈X〉 and variance σ2. A general formula for these moments can
be derived using standard results from Gaussian integration, and one finds that

〈(X−〈X〉)2n〉= 1√
2πσ2

∫ ∞

−∞
y2ne−y2/2σ 2

dy =
(2n− 1)!σ2n

2n−1(n− 1)!
,

and
〈(X−〈X〉)2n−1〉= 0

for n ≥ 1. It also turns out that the characteristic function of a Gaussian is also a
Gaussian, since

G(k) =
1√

2πσ2

∫ ∞

−∞
eikxe−x2/2σ 2

dx =
e−σ 2k2/2
√

2πσ2

∫ ∞

−∞
e−(x−iσ 2k)2/2σ 2

dx = e−σ 2k2/2.

(Technically speaking, the Gaussian integral is evaluated by completing the square
and then using analytical continuation in the complex k-plane.)

1.3.6 Stochastic Processes

One final point to make is that this book is concerned with stochastic processes,
which involve random variables evolving in time. Thus a random variable will
have an additional time label X → Xn,n ∈ Z+ for discrete-time processes and
X → X(t), t ∈ R

+ for continuous-time processes. Roughly speaking, one can treat
t (or n) as a parameter so that for fixed t, X(t) is a random variable in the sense
considered in this section. However, various objects such as the probability density
and characteristic function are now parameterized by t and we write p(x)→ p(x, t)
and G(k)→ G(k, t) etc.
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1.4 Statistical Mechanics and the Boltzmann–Gibbs
Distribution

Here we collect together some fundamental results in statistical mechanics that
commonly arise when considering stochastic processes within cells. We will in-
troduce quantities such as free energy, entropy, and chemical potential from the
perspective of the Boltzmann–Gibbs distribution of a macromolecule such as DNA
or a protein in thermodynamic equilibrium at temperature T , as illustrated in
Fig. 1.2. For a much more general and detailed treatment of statistical mechan-
ics from the physics perspective, see [102, 317]. A more biophysical approach
can be found in [295, 509]. Note that the only topics in the book where statis-
tical mechanics is needed are the equilibrium theory of polymers (Sect. 4.5), the
fluctuation–dissipation theorem (Sect. 5.2), receptor clustering (Sect. 5.3), informa-
tion transmission in gene networks (Sect. 6.5), and the translocation of polymers
through membranes (Sect. 7.3.4). Otherwise, one only needs to be familiar with the
definition of the Boltzmann–Gibbs distribution in Eqs. (1.4.1) and (1.4.5), so that
the remainder of this section could be skipped.

1.4.1 Boltzmann–Gibbs Distribution

Suppose that a macromolecule such as a protein or DNA has a set of internal mi-
crostates labeled by j and let E j denote the energy of the molecule in the jth state.
(These could include different folded or twisted configurations of the underlying
amino acid or nucleotide chain.) As we briefly mentioned in Sect. 1.1, a fundamen-
tal principle of equilibrium statistical mechanics is that the probability p j that the
molecule is in state j is given by the Boltzmann–Gibbs distribution

p j =
1
Z

e−E j/kBT , Z = ∑
j

e−E j/kBT , (1.4.1)

where T is the temperature of the surrounding cellular environment and Z is the
partition function. As a simple example, consider a molecule that can exist in two
states j = C,O with energies EC and EO, respectively. The associated probabilities
are

PO =
e−EO/kBT

e−EO/kBT + e−EC/kBT
=

1

1+ eΔE/kBT
, PC = 1−PO,

with ΔE = EO−EC the difference in energies between the two states. It follows that

PO

PC
= e−ΔE/kBT .
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Suppose that the system approaches thermodynamic equilibrium according to the
two-state Markov process

dPC

dt
=−αPC +β PO

dPO

dt
= αPC−β PO. (1.4.2)

This has the unique stable steady state

PO =
α

α +β
, PC =

β
α +β

. (1.4.3)

Such a steady state has to be consistent with equilibrium statistical mechanics,
which implies that the forward and backward transition rates have to satisfy the
condition

α
β

= e−ΔE/kBT . (1.4.4)

Examples of a two-state system include an ion channel that is either open or closed
and a protein receptor that is either bound or unbound to a ligand (see Sect. 3.1).

1.4.2 Free Energy and Entropy

The Boltzmann–Gibbs distribution also applies to continuous states of a molecule.
For example, consider a molecule moving in d = 1,2,3 dimensions under the in-
fluence of a conservative force—a force that can be written as f = −∇Φ(x) where
Φ(x) is some potential energy function. Examples include gravitational and elec-
trical potentials. Assuming that all other degrees of freedom are independent of x
(momentum, internal microstates), the equilibrium probability density with respect
to position x is given by

p(x) =
1
Z

e−Φ(x)/kBT , Z =

∫
e−Φ(x)/kBT dx. (1.4.5)

The situation becomes more interesting when one cannot assume separability be-
tween different degrees of freedom. In particular, suppose that the total energy of a
molecule is independent of its internal state j, but the number of internal states Ω(x)
depends on position. If p j(x) is the joint probability density of being at position x
and in internal state j, then the marginal probability density p(x) is given by

p(x) =∑
j

p j(x) =
1
Z ∑

j
e−Φ(x)/kBT =

1
Z

Ω(x)e−Φ(x)/kBT ,

with
Z =

∫

∑
j

e−Φ(x)/kBT dx =

∫
Ω(x)e−Φ(x)/kBT dx.
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If we now introduce the quantity

E(x) = Φ(x)− kBT lnΩ(x), (1.4.6)

then we can express p(x) in terms of the effective Boltzmann–Gibbs distribution

p(x) =
1
Z

e−E(x)/kBT , Z =

∫
e−E(x)/kBT dx.

Another major result from statistical mechanics is that one should treat E(x) as the
effective energy of the molecule in thermodynamic equilibrium. One defines E(x) to
be the free energy of the molecule and the term S = kB lnΩ(x) to be the entropy. An
immediate consequence of the above result is that the total force on the molecule is

ftot(x) =−∇E(x) =−∇Φ(x)+T∇S(x) = f (x)+T∇S(x). (1.4.7)

That is, there is an additional entropic force given by T∇S(x). The entropic force
has the following statistical mechanical interpretation: the total entropy of a closed
system cannot decrease (second law of thermodynamics), so that if a change in
position δx decreases the entropy of the molecule, ∇S(x) ·δx < 0, then this results
in the environment having to do work δW = −T∇S(x) · δx > 0 to counteract the
entropic force. Since the internal energy of the molecule does not change when it
is displaced, the work done is dissipated as heat (conservation of energy), resulting
in an increase in the environmental entropy, thus counterbalancing the decrease in
entropy of the molecule. (For simplicity, we are treating the molecule and its sur-
rounding environment as a closed system.) One important example of an entropic
force arises in the uncoiling of a flexible polymer (see Sect. 4.5).

1.4.3 Chemical Potential of a Solution

Another important consequence of entropic effects arises from changes in the num-
ber of microstates when a solute molecule is removed from a dilute solution. Sup-
pose that there are N solvent + solute molecules and n solute molecules with n�N.
For simplicity, let us represent the solution in terms of N boxes that can either be
occupied by a solute molecule or a solvent molecule (see Fig. 1.10). The number
of different configurations for given n,N is given by the combinatorial factor for
distributing n items in N boxes:

Ω(n) =
N!

n!(N− n)!
.
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Taking logs and using Stirling’s formula

logN!≈ N logN−N +
1
2

log(2πN),

we have the entropy

S(n) = kB[N lnN− n lnn− (N− n) ln(N− n)].

Thus there is an entropic contribution to the free energy of the solute of the form
−kBT lnS(n). Now suppose that one solute molecule is removed from solution by
binding to a protein receptor embedded in the cell membrane, for example. The
change in free energy consists of two contributions: the change in energy ε associ-
ated with binding to the receptor and the change in entropy of the solution due to
n→ n− 1. Thus the total change in free energy (for N � n) is

ΔE = ε +T
dS(n)

dn
≈ ε− kBT ln(n/N).

receptor solute molecule

Fig. 1.10: Lattice model of a receptor binding with a solute molecule

Typically, one transforms n/N to a volume concentration c and sets

ΔE = ε− μ , μ = μ0 + kBT ln(c/c0), (1.4.8)

where c0 is a reference concentration and μ0 is a constant. The quantity μ is called
the chemical potential of the solute. One application of the chemical potential is
to ligand-gated ion channels. Suppose that the ion channel receptor can be in two
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states: unbound by a ligand (C) and bound by a ligand (O). Using the Boltzmann–
Gibbs distribution for a two-state ion channel with EC = μ0,EO = ΔE implies that

PO =
e−(ε−μ+μ0)/kBT

1+ e−(ε−μ+μ0)/kBT
=

(c/c0)e−ε/kBT

1+(c/c0)e−ε/kBT
. (1.4.9)

This result can be used to determine the so-called dissociation constant that appears
in chemical mass-action kinetics (Sect. 3.1).

1.5 Organization of the Book

We now give a brief overview of the organizational structure of the book. It is
divided into two parts, with Chaps. 2–6 covering foundations and Chaps. 7–11
covering more advanced topics. Chapter 2 develops two microscopic theories of
diffusion in cells, one based on random walks and the other on overdamped Brow-
nian motion. The latter introduces the theory of continuous stochastic processes,
SDEs (Langevin equations), and the FPE. The important topics of first passage times
(FPTs) and diffusion-limited reactions are also described. Chapter 3 considers the
problem of stochastic ion channel gating, introducing the theory of biochemical re-
action kinetics and the law of mass action, discrete Markov processes, and master
equations. It is also shown how a discrete process can be approximated by a con-
tinuous process using a system-size expansion of the master equation. The resulting
FPE is then used to study some escape problems in bistable stochastic ion channel
models, including calcium-induced calcium release (CICR) and spontaneous action
potential (SAP) generation in neurons. Chapter 4 describes how random walks and
SDEs are used to model polymerization and molecular motors. Polymerization plays
a major role in the self-organization of cytoskeletal structures, whereas molecular
motors “walking” along polymer filaments are a major active component of intracel-
lular transport. Chapters 5 and 6 consider stochastic biochemical reaction networks.
Chapter 5 focuses on how cells sense biochemical cues in a noisy environment, ad-
dressing the fundamental physical limits of biochemical signaling and mechanisms
for amplifying and adapting signals. Applications to bacterial chemotaxis and active
mechanotransduction in hair cells are considered. Chapter 6 covers a wide range
of topics in stochastic gene expression, including transcriptional and translational
bursting, autoregulatory networks and transcription factors, genetic switches and
the lac operon, genetic oscillators and circadian rhythms, information transmission
by gene networks, and kinetic proofreading. Part I also provides background mate-
rial in applied mathematics that is particularly relevant to the themes of this book:
Fourier and Laplace transforms, the Dirac delta function, linear stability analysis,
Hopf bifurcations, and methods for solving linear PDEs such as separation of vari-
ables, eigenfunction expansions, and Green’s functions.
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Part II begins with Chap. 7 on passive (diffusion-driven) and active (motor-
driven) mechanisms for intracellular transport. Topics include anomalous diffusion
in the crowded cellular environment, diffusion in membrane channels and pores,
PDE models of active transport, molecular exclusion processes, and random in-
termittent search processes. Chapters 8 and 9 explore various examples of self-
organization in cells. First, the roles of polymerization in cellular length regulation,
cell mitosis, and cell motility are considered, and then reaction–diffusion models
are used to study intracellular protein concentration gradients, intracellular pattern
formation, and cell polarization. Finally, Chaps. 10 and 11 consider more advanced
topics in probability theory and stochastic processes relevant to cell biology. First, it
is shown how Wentzel–Kramers–Brillouin (WKB) methods and large deviation the-
ory can be used to obtain more accurate solutions of noise-induced escape problems
in bistable systems, compared to the diffusion approximation used in Part I. Sec-
ond, a more abstract formulation of probability theory is introduced, in particular,
the theory of discrete martingales, which plays an important role in the development
of numerical methods for simulating chemical reaction networks. At the end of each
chapter there is a set of exercises that further develops the mathematical models and
analysis introduced within the body of the text. Additional background material is
contained in gray boxes scattered throughout the text.

1.5.1 How to Use the Book

Part I can be used to teach a one semester advanced undergraduate or graduate
course on stochastic processes in cell biology. From a biological perspective, these
chapters cover the basic molecular components of the cell: ion channels, receptors,
biopolymers, molecular motors, biochemical signaling networks, and gene networks
(see Fig. 1.11). From a mathematical perspective, Part I develops the basic tech-
niques needed to analyze stochastic processes in cell biology. Here we briefly out-
line these methods (see Fig. 1.12).

Continuous Markov Processes. There are two complementary approaches to formu-
lating continuous stochastic process, one in terms of the sample paths generated by
an SDE or Langevin equation and the other in terms of the FP equation describing
the evolution of the probability density of possible paths. The former requires at
least a basic understanding of stochastic calculus, namely, the rules for integrating
an SDE in order to obtain an expression that can be used to generate moments of
the stochastic process (Sects. 2.2 and 2.6). In the case of linear SDEs one can also
use Fourier methods to determine the power spectrum, for example, which is im-
portant in quantifying the linear response properties of a noisy system (Sect. 2.2.5).
The FP equation is a deterministic PDE that generalizes the diffusion equation and
can be analyzed using standard methods in the theory of linear PDEs: separation
of variables, boundary value problems, transform methods, Green’s functions, and
eigenfunction expansions (Sect. 2.5). A less standard technique is needed to deal
with an FP equation for a Brownian particle moving in a periodic potential, which
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is important in the theory of molecular motors (Sects. 4.2 and 4.3). (It also arises in
studies of diffusion in narrow channels; see Sect. 7.3.)

Discrete Markov Processes. The probability distribution of a discrete Markov pro-
cess evolves according to a system of coupled ODEs known as a master equation.
In certain cases, the steady-state distribution can be solved by iterating a difference
equation, and the full time-dependent master equation can be solved using discrete
Fourier and Laplace transforms (Sects. 2.1, 3.2, 4.1, 6.2, 6.3). The resulting char-
acteristic function or generating function can be used to generate moments of the
distribution, in which case it is not necessary to determine the inverse transform.
However, in general it is not possible to obtain an exact solution of a master equa-
tion, and so some form of approximation scheme is needed. The most common
method is the so-called system-size expansion, which reduces the master equation
to an FP equation (Sects. 3.2, 6.3, 6.4). One possible limitation of the reduction is
that it assumes that the number of molecules involved is sufficiently large. Since
many biochemical networks involve small numbers of molecules, this can result in
significant errors. (A more accurate approximation scheme is to use WKB methods
(Chap. 10).)

FPTs and Escape Problems. Many quantities measured by experimentalists can be
interpreted mathematically in terms of the solution to a FPT problem—switching
times of bistable gene networks, dwell times of a molecular motor stepping along a
filament, release times of calcium sparks, firing times of neurons, etc. In the case of a
continuous Markov process, the distribution of FPTs satisfies a differential equation
that can be derived from the FP equation and then solved to determine the mean
FPT, for example; such methods can also be applied to discrete Markov processes
using a system-size expansion (Sects. 2.3, 3.3–3.5).

Statistical Mechanics and Information Theory. It is often possible to treat a molecule
within a cell as in local thermodynamic equilibrium so that its properties can be
characterized in terms of the Boltzmann–Gibbs distribution. How it interacts with
the surrounding environment then requires a basic understanding of free energy and
entropy. The ideas briefly introduced in Sect. 1.4 are further developed within the
context of polymers in Sect. 2.5 and applied to the analysis of receptor clustering
in Sect. 5.3. Another important application of statistical mechanical methods is to
information theory, which is concerned with measuring how effective some bio-
chemical or gene network is in transmitting information from the environment in
the presence of noise (Sect. 6.5).

Part II can be used as a supplement to Part I, either as a reference or as a source
of projects that follow up the ideas and methods introduced in Part I. Chapters
7–9 focus on more spatial aspects of cell biology including transport processes
and self-organization: anomalous diffusion, membrane transport, cell mitosis, cell
motility, and cell polarization. Chapters 10 and 11 develop more advanced meth-
ods in stochastic processes: WKB approximation, large deviations, path integrals,
probability spaces, and martingales.
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Part I
Foundations



Chapter 2
Diffusion in Cells: Random Walks
and Brownian Motion

When one first encounters the concept of diffusion, it is usually within the context
of a conservation law describing the flux of many particles moving from regions
of high concentration to regions of low concentration at a rate that depends on the
local concentration gradient (Fick’s law). However, there are some limitations of
the standard macroscopic derivation of the diffusion equation. First, it does not take
into account microscopic features of the environment within which the particles
diffuse. This is crucial when considering diffusive processes within a cell, since
the interior of the cell is highly heterogeneous (see Box 1A). The same applies to
surface diffusion within the plasma membrane. Second, with the use of advanced
imaging techniques such as SPT (Sect. 1.2), it is possible to observe the movement
of individual molecules, which is highly stochastic, whereas the classical diffusion
equation describes the collective motion of many particles and is deterministic.

In this chapter, we consider two different microscopic theories of diffusion: ran-
dom walks and overdamped Brownian motion. Both approaches will be used to
model diffusion within the complex cellular environment in Chap. 7. We begin by
considering a discrete random walk on a 1D lattice, which is a simple example of
a discrete Markov process (Sect. 2.1). The probability distribution specifying the
likelihood that the walker is at a particular lattice site after n time steps evolves ac-
cording to a master equation. We show how the master equation can be solved using
discrete Fourier and Laplace transforms, which in probability theory are known as
characteristic functions and generating functions, respectively. The resulting solu-
tion is given by a binomial distribution, which reduces to a Gaussian distribution
in an appropriate continuum limit; the latter is the fundamental solution of the dif-
fusion equation. Background material on Laplace and Fourier transforms, and their
discrete analogs, is also provided. Random walk models and various generalizations
will later be used to model a variety of cellular processes, including molecular mo-
tors, polymerization of cytoskeletal filaments (Chap. 4), and anomalous diffusion
(Chap. 7).

We then consider an alternative microscopic theory of diffusion based on an
overdamped Brownian particle moving in a fluid-like environment (such as the
cytoplasm of a cell), which is modeled in terms of a Langevin equation or SDE
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36 2 Diffusion in Cells: Random Walks and Brownian Motion

(Sect. 2.2). The latter describes the motion of the particle subject to a combination
of external forces and a fluctuating force that is due to collisions with molecules
in the surrounding fluid; the fluctuating force is idealized as a Wiener process. So-
lutions of the Langevin equation represent random sample paths or trajectories of
the particle. We show how the probability density on the space of sample paths
evolves according to a Fokker–Planck (FP) equation, which is a generalization of
the diffusion equation applicable at the single-particle level. Other topics include
the distinction between additive and multiplicative noise, Ito vs. Stratonovich inter-
pretations of continuous stochastic processes, power spectra, and correlations. Note
that continuous stochastic processes and the FP equation will appear in many chap-
ters of the book. For in addition to describing diffusive-like motion of microscopic
particles in solution, it also frequently appears in diffusion approximations of dis-
crete Markov processes, where the continuous variable now represents the fraction
of open ion channels (Chap. 3), say, or the concentration of a gene product (Chap. 6).
A large-dimensional FP equation will be used to describe stochastic reaction–
diffusion systems in Chap. 9 and applied to self-organizing phenomena such as cell
polarization.

In Sect. 2.3 we introduce one of the most important characteristics of a diffusion
process, namely, the FPT to reach a given target or boundary. This is then used to
calculate the Smoluchowski reaction rate formula for diffusion-limited reactions,
under the assumption that when reacting molecules come within a certain distance
of each other they react immediately (Sect. 2.4). In Sect. 2.5 we tackle the general
problem of diffusion in bounded domains (boundary value problems). Here we in-
troduce some basic methods in the analysis of linear PDEs, including separation
of variables and transform methods, eigenfunction expansions, and Green’s func-
tions. Finally, in Sect. 2.6 we give an informal introduction to stochastic calculus
and numerical methods for simulating continuous stochastic processes.

2.1 Discrete-Time Random Walk

Consider a particle that hops at discrete times between neighboring sites on a one-
dimensional (1D) lattice with unit spacing [289, 651] (see Fig. 2.1). At each step,
the random walker moves a unit distance to the right with probability p or to the left
with probability q = 1− p. Let PN(r) denote the probability that the particle is at
site r at the Nth time step. The evolution of the probability distribution is described
by the discrete-time master equation

PN(r) = pPN−1(r− 1)+ qPN−1(r+ 1), r ∈ Z, N ≥ 1. (2.1.1)

If q = p = 1/2, then the random walk is symmetric or unbiased, whereas for p > q
(p < q) it is biased to the right (left). We will analyze this equation using transform
methods, since these can be generalized to more complex random walk models such
as continuous-time random walks (see Sect. 7.1.3). An introduction to continuous
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pq

r r+1r-1

Fig. 2.1: A random walk on a 1D lattice

and discrete transform methods can be found in Box 2A. The first step is to introduce
the characteristic function (discrete Fourier transform) for fixed N:

GN(k) =
∞

∑
r=−∞

eikrPN(r), k ∈ [−π ,π ]. (2.1.2)

The characteristic function generates moments of the random displacement variable
r according to

(
−i

d
dk

)m

GN(k)

∣
∣
∣
∣
k=0

=
∞

∑
r=−∞

rmPN(r) = 〈rm〉, (2.1.3)

where 〈rm〉 is the mth order moment of r. Multiplying both sides of the master
equation by eikr and summing over r gives

GN(k) = (peik + qe−ik)GN−1(k).

Assuming that the particle starts at the origin, P0(r) = δr,0 and G0(k) = 1, we have

GN(k) = u(k)N u(k) = peik + qe−ik.

Here u(k) is the discrete Fourier transform of the single-step hopping probability.
Finally, taking the inverse Fourier transform,

PN(r) =
1

2π

∫ π

−π
e−ikru(k)Ndk

=
1

2π

∫ π

−π
e−ikr

N

∑
m=0

(
N
m

)
pmqN−me−ik(N−2m)dk

=
N!

(
N + r

2

)
!

(
N− r

2

)
!

p(N+r)/2q(N−r)/2 (2.1.4)

when N + r is an even integer and zero otherwise. We have used the result
(see Box 2A)

∫ π

−π
e−ik(N−2m+r) dk

2π
= δN+r,2m.
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Fig. 2.2: Binomial distribution for N = 6 and p = q = 1/2. Also shown is a Gaussian fit of the
binomial distribution

The distribution (2.1.4) is known as the binomial distribution (see Fig. 2.2). In the
unbiased case p = q = 1/2, it gives the probability of a total of r heads in tossing a
fair coin N times and is known as the Bernoulli distribution.

Evaluating logPN(r) for large N using Stirling’s approximation

logN!≈ N logN−N +
1
2

log(2πN), (2.1.5)

and assuming p,q≈ 1/2, one finds that (see Ex. 2.1 for the unbiased case)

PN(r)∼ 1√
2πN

e−[r−N(p−q)]2/2N . (2.1.6)

Indeed, the Gaussian form of PN(r) in the long-time limit arises universally when-
ever the mean and variance of the displacement Δr = r−r′ in a single step are finite,
that is,

〈Δr〉 = ∑
Δ r

Δrp(Δr) < ∞, 〈Δr2〉= ∑
Δ r

(Δr)2 p(Δr)< ∞,

where p(Δr) is the probability of a step of length Δr. In the standard 1D random
walk, Δr = ±1 and p(1) = p, p(−1) = q. One way to see this is to note that u(k)
has the small-k series expansion
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u(k) = ∑
Δ r

eikΔ r p(Δr)

= 1+ ik〈Δr〉− 1
2

k2〈Δr2〉+ . . .

∼ eik〈Δ r〉− 1
2 k2〈[Δ r−〈Δ r〉]2〉.

Substituting this approximation into the first line of equation (2.1.4) using the fact
that the integral is dominated by the behavior in the region around k = 0 when N is
large, the resulting Gaussian integral yields the approximation

PN(r)∼ 1√
2πNσ2

e−(r−N〈Δ r〉)2/2Nσ 2
, (2.1.7)

with σ2 = 〈Δr2〉− 〈Δr〉2. This result is a consequence of the central limit theorem
[242] (see also Sect. 1.3).

Another useful quantity when analyzing random walks is the generating function
(discrete Laplace transform or one-sided z-transform):

Γ (r,z) =
∞

∑
N=0

zNPN(r). (2.1.8)

It is often simpler to evaluate the generating function in Fourier space,

Γ̂ (k,z)≡
∞

∑
r=−∞

eikrΓ (r,z) =
∞

∑
N=0

zNGN(k),

assuming that we can reverse the order of summations. Since GN(k) = u(k)N , we
can sum the resulting geometric series to obtain the result

Γ̂ (k,z) =
1

1− zu(k)
.

px

py

qy

qx

Fig. 2.3: A random walk on a 2D square lattice with px +qx + py +qy = 1
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The generating function is thus given by the inverse Fourier transform

Γ (r,z) =
∫ π

−π

e−ikr

1− zu(k)
dk
2π

.

It can be shown (see Ex. 2.2) that for r = 0 and p = q = 1/2 (unbiased random
walk),

Γ (0,z) = (1− z2)−1/2.

One immediate consequence of this result is that an unbiased 1D random walk is
recurrent, which means that the walker is certain to return to the origin; a random
walk is said to be transient if the probability of returning to the origin is less than
one. Recurrence follows from the observation that Γ (0,1)=∑∞

N=0 PN(0) is the mean
number of times that the walker visits the origin, and

lim
z→1−

Γ (0,z) = ∞

for the 1D random walk. Interestingly, although the 1D random walk is recurrent, the
mean time to return to the origin for the first time is infinite. This result can also be
established using transform methods and generating functions (see Ex. 2.11). An un-
biased random walk in 2D is also recurrent, but in 3D it is transient. An example
of a 2D random walk is illustrated in Fig. 2.3. Finally, note that discrete random
walks have also been used to describe the coiling of flexible polymers [53, 295]
(see Sect. 4.5).

Box 2A. Transform methods.

Throughout this book we will make extensive use of transform methods,
in particular, Laplace and Fourier integral transforms and their discrete
analogs. Here we provide a basic introduction to such methods (see also
[395]).

Laplace transforms. Let u(t) be a piecewise continuous function that is
of exponential order, that is,

u(t)≤ ceat , as t → ∞,

for constants a,c > 0. The Laplace transform of u is defined by

L u(s)≡ ũ(s) =
∫ ∞

0
u(t)e−stds, (2.1.9)

and one often writes L u= ũ. The Laplace transform operatorL is linear,
since

L (c1u1 + c2u2) = c1L u1 + c2L u2

for constants c1,c2. One of the important features of the Laplace trans-
form (and the Fourier transform) is that it converts differential operations
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in the time domain into multiplication operations in the transform do-
main. For example, setting u′ = du/dt etc.,

L u′(s) = sũ(s)− u(0) (2.1.10a)

L u′′(s) = s2ũ(s)− su(0)− u′(0), (2.1.10b)

which can be proved using integration by parts. It follows that Laplace
transforming an ordinary differential equation for u(t) yields an algebraic
equation for ũ(s). The most difficult step, once one has solved the alge-
braic equation, is to find the inverse Laplace transform to recover u(t).
The general formula for the inverse transform requires knowledge of con-
tour integration and takes the form

u(t) =L −1ũ(t) =
1

2π i

∫ a+i∞

a−i∞
ũ(s)est ds. (2.1.11)

The complex contour integral is taken over the infinite vertical line (the
Bromwich path) in the complex plane from a− i∞ to a+ i∞. The real
number a is chosen so that the Bromwich path lies to the right of any sin-
gularities (poles, branch points and cuts, essential points) of the function
ũ(s). The evaluation of the contour integral is often difficult. However,
many of the Laplace transforms encountered in this book can be found
in Table 2.1. One additional useful property of Laplace transforms is ex-
pressed by the convolution theorem.

Theorem 2.1. Let u and v be piecewise continuous for t ≥ 0 and of expo-
nential order. Then

L (u ∗ v)(s) = ũ(s)ṽ(s), (2.1.12)

where

u ∗ v(t)≡
∫ t

0
u(t− y)v(y)dy (2.1.13)

is the convolution of u and v. It immediately follows that L −1(ũṽ) = u∗v.

In the case of a discrete-time linear process, we can use a discrete
version of the Laplace transform (also known as a one-sided z-transform)

ũ(z) =
∞

∑
n=0

znun. (2.1.14)

Applying this to the first-order difference equation un = aun−1 for n ≥ 1
yields

ũ(z) = azũ(z)+ u0 =⇒ ũ(z) =
u0

1− az
= u0

∞

∑
n=0

anzn.
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The series converges provided that |az| < 1, in which case we immedi-
ately see that un = anu0. More generally, the inverse z-transform is given
by the complex integral around a closed contour C around the origin in
the z-plane that does not contain any singularities of ũ(z):

un =

∮

C

ũ(z)
zn+1

dz
2π i

. (2.1.15)

However, one often avoids using contour integration by simply Taylor
expanding the z-transform in powers of z and reading off the coefficient
of zn, as in the above example.
Fourier transforms. The Fourier transform of a function of one variable
u(x), x ∈ R, is defined by the equation

Fu(k)≡ û(k) =
∫ ∞

−∞
u(x)eikxdx. (2.1.16)

The corresponding inverse Fourier transform is

F−1û(x) =
1

2π

∫ ∞

−∞
û(k)e−ikxdk. (2.1.17)

An important issue is to determine the set of functions for which the
Fourier transform (and its inverse) is well defined. For example, if u is
integrable on R so that

∫ ∞
−∞ |u(x)|dx < ∞, then

|û(k)|=
∣∣
∣
∣

∫ ∞

−∞
u(x)eikxdx

∣∣
∣
∣≤
∫ ∞

−∞
|u(x)|dx < ∞,

and û exists. However, the latter may itself not be integrable. Therefore, in
the application of Fourier transforms, it is common to restrict u to a much
smaller class of functions such as the space of square-integrable functions
denoted by L2(R). A few important properties of the Fourier transform
are as follow. First, it converts derivatives into algebraic expressions, that
is,

Fu(n)(k) = (−ik)nû(k), (2.1.18)

where u(n) denotes the nth derivative of u, and assuming that u, and its
derivatives are continuous and integrable. There also exists a convolution
theorem.

Theorem 2.2. If u and v are in L2(R), then u ∗ v∈ L2(R) and

F (u ∗ v)(k) = û(k)v̂(k), (2.1.19)

where
(u ∗ v)(x)≡

∫ ∞

−∞
u(x− y)v(y)dy. (2.1.20)
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Proof. The theorem is established by interchanging the order of
integration:

F (u ∗ v)(k) =
∫ ∞

−∞

(∫ ∞

−∞
u(x− y)v(y)dy

)
eikxdx

=
∫ ∞

−∞

(∫ ∞

−∞
u(x−y)v(y)eikxdx

)
dy

=

∫ ∞

−∞

(∫ ∞

−∞
u(r)v(y)eikreikydr

)
dy

=

∫ ∞

−∞
u(r)eikrdr

∫ ∞

−∞
v(y)eikydy=û(k)v̂(k).

Yet another useful property is Parseval’s theorem

∫ ∞

−∞
|u(x)|2dx =

1
2π

∫ ∞

−∞
|û(k)|2dk. (2.1.21)

Just as one can define a discrete Laplace transform for discrete-time
processes, one can also introduce a discrete Fourier transform of spatial
processes such as a random walk, which are defined on a discrete lattice.
Therefore, suppose that u is a function on the space of integers Z. The
discrete Fourier transform of u is defined according to

(Fu)(k)≡ û(k) =
∞

∑
r=−∞

u(r)eikr, (2.1.22)

where k is now restricted to the finite domain (−π ,π). The intuition be-
hind this is that for |k| > π , the spatial oscillations cos(kr) and sin(kr)
probe the function on spatial scales smaller than a unit lattice spacing
where there is no information and are thus redundant. The inverse trans-
form is

u(r) =
∫ π

−π
û(k)e−ikr dk

2π
. (2.1.23)

This is straightforward to prove using the identities

∫ π

−π
eik(r−s) dk

2π
=

1
2π i(r− s)

[
eiπ(r−s)− e−iπ(r−s)

]
= 0 for r �= s,

and
∫ π
−π dk/2π = 1. That is, substituting for û(k) in the inverse transform

and revering the order of integration and summation,
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u(t) ũ(s) u(t) ũ(s)

1 s−1, s > 0 f (t)e−at f̃ (s+a)

eat 1
s−a , s > a δ (t−a) exp(−as)

tn n!
sn+1 , s > 0 H(t−a) f (t−a) f̃ (s)e−as

sin(at), cos(at) a
s2+a2 ,

s
s2+a2 s > 0 erf(

√
t) s−1(1+ s)−1/2, s > 0

sinh(at), cosh(at) a
s2−a2 ,

s
s2−a2 s > |a| t−1/2 exp(−a2/4t)

√
π/sexp(−a

√
s), s > 0

eat sin(bt) b
(s−a)2+b2 s > a 1− erf(a/2

√
t) s−1 exp(−a

√
s), s > 0

eat cos(bt) s−a
(s−a)2+b2 , s > a a

2t3/2 exp(−a2/4t)
√

π exp(−a
√

s), s > 0

Table 2.1: Some common Laplace transforms

∫ π

−π
û(k)e−ikr dk

2π
=
∫ π

−π

(
∞

∑
s=−∞

u(s)eiks

)

e−ikr dk
2π

=
∞

∑
s=−∞

u(s)
∫ π

−π
eik(s−r) dk

2π
=

∞

∑
s=−∞

u(s)δs,r = u(r).

Note that the discrete Fourier transform should be distinguished from a
Fourier series, which is an expansion of a periodic function of x in terms
of a countable set of Fourier components. In other words, in a Fourier
series k is unbounded but takes discrete values. Finally, consider a higher-
dimensional square lattice with points � = n1i+ n2j. The corresponding
discrete Fourier transform (for d = 2) is

(Fu)(k)≡ û(k) =
∞

∑
n1=−∞

∞

∑
n2=−∞

u(�)eik·�, (2.1.24)

with k the dual vector

k = k1i+ k2j, k1,k2 ∈ (−π ,π).

We will consider more general planar lattices (rhombic, hexagonal) and
discrete Fourier transforms in Sect. 9.1.
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2.1.1 Continuum Limit of a Random Walk

Having analyzed the discrete random walk, it is now possible to take an appropriate
continuum limit to obtain a diffusion equation in continuous space and time. First,
introduce infinitesimal step lengths δx and δ t for space and time and set PN(r) =
ρ(x, t)δx with x = rδx, t = Nδ t. Substituting into the master equation (2.1.1) gives
the following equation for the probability density ρ(x, t):

ρ(x, t) = pρ(x− δx, t− δ t)+ qρ(x+ δx, t− δ t)

≈ (p+ q)

[
ρ(x, t)− ∂ρ

∂ t
δ t

]
− (p− q)

∂ρ
∂x

δx+
(p+ q)

2
∂ 2ρ
∂x2 δx2,

where ρ has been Taylor expanded to first order in δ t and to second order in δx. Note
that p+ q = 1. Dividing through by δ t and taking the continuum limit δx,δ t → 0
such that the quantities V,D are finite, where

V = lim
δx,δ t→0

(p− q)
δx
δ t

, D = lim
δx,δ t→0

δx2

2δ t
,

yields the advection–diffusion equation with constant drift V and diffusivity D:

∂ρ(x, t)
∂ t

=−V
∂ [ρ(x, t)]

∂x
+D

∂ 2ρ(x, t)
∂x2 . (2.1.25)

Note that p = 0.5+ κδx and q = 0.5−κδx with κ = O(1). For the moment, we
will focus on the case of zero drift (V = 0), for which Eq. (2.1.25) reduces to the
standard diffusion equation.

Although we have derived the diffusion equation from an unbiased random walk,
it is more typically interpreted in terms of an evolution equation for a conserved
quantity such as particle number rather than a probability density for a single ran-
dom walker. In order to link these two interpretations, consider N noninteracting,
identical diffusing particles and let u(x, t) = N p(x, t). For sufficiently large N, we
can treat u(x, t)dx as the deterministic number of particles in the infinitesimal in-
terval [x,x+ dx] at time t, with u(x, t) evolving according to the diffusion equation
written in the conservation form

∂u
∂ t

=−∂J
∂x

, J(x, t) =−D
∂u
∂x

, (2.1.26)

where J(x, t) is the Fickian flux of particles. Integrating the diffusion equa-
tion (2.1.26) over the interval [x,x + dx] and reversing the order of integration
and differentiation show that

d
dt

∫ x+dx

x
u(y, t)dy = J(x, t)− J(x+ dx, t),
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which is an expression of particle conservation. That is, the rate of change of the
number of particles in [x,x+ dx] is equal to the net flux crossing the endpoints of
the interval. Consider the initial value problem

∂u
∂ t

= D
∂u2

∂x2 , x ∈ R, t > 0; u(x,0) = f (x), x ∈ R,

where f (x) specifies the initial data. For simplicity, we assume that u, f ∈ L2(R),
that is, they are square-integrable. Taking Fourier transforms of the equation with
respect to x gives

∂ û(k, t)
∂ t

=−k2Dû(k, t),

which is an ODE in t with k treated as a parameter. Its solution is

û(k, t) = c(k)e−k2Dt ,

with the coefficient c(k) determined by the initial data. That is, Fourier transforming
the initial condition implies û(k,0) = f̂ (k) and, hence,

û(k, t) = f̂ (k)e−k2Dt .

Applying the convolution Theorem 2.2, we have

u(x, t) =
∫ ∞

−∞
K(x− y, t) f (y)dy,

where K(x, t) is the inverse Fourier transform of e−k2Dt :

K(x, t) =
1

2π

∫ ∞

−∞
e−ikxe−k2Dtdk =

1√
4πDt

e−x2/4Dt .

We thus obtain the result

u(x, t) =
1√

4πDt

∫ ∞

−∞
e−(x−y)2/4Dt f (y)dy. (2.1.27)

Note the above solution still holds if we relax the requirement f ,u ∈ L2(R). In
particular, if we take the initial condition f (x) = δ (x), where δ (x) is the Dirac delta
function (see Box 2B), then we obtain the so-called fundamental solution

u(x, t) =
1√

4πDt
e−x2/4Dt . (2.1.28)

(Strictly speaking, u(x, t) is a weak solution of the underlying diffusion equation
[554].) Also observe that the fundamental solution corresponds to the continuum
limit of the Gaussian distribution (2.1.7) for an unbiased random walk.
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Box 2B. The Dirac delta function

A heuristic definition of the Dirac delta function would be that it is a
“function” with the following properties:

δ (0) = ∞, δ (x) = 0 for all x �= 0,
∫

R

δ (x)dx = 1.

However, this definition is not compatible with the classical concept of
a function. A rigorous definition of the Dirac delta function requires the
theory of generalized functions or distributions [554]. However, an oper-
ational definition of the Dirac delta function can be constructed in terms
of the limit of a sequence of Heaviside functions. Let H(x) = 1 if x ≥ 0
and H(x) = 0 if x < 0. It follows from this definition that

Iε(x)≡ H(x+ ε)−H(x− ε)
2ε

=

{
1

2ε if − ε ≤ x < ε
0 otherwise

It can be seen that Iε(x) has the following properties, (see Fig. 2.4):

(i) For all ε > 0, ∫

R

Iε(x)dx =
1

2ε
× 2ε = 1.

(ii)

lim
ε→0

Iε(x) =

{
0 if x �= 0
∞ if x = 0

(iii) If ϕ(x) is a smooth function that vanishes outside a bounded interval
(a test function), then

∫

R

Iε(x)ϕ(x)dx =
1

2ε

∫ ε

−ε
ϕ(x)dx →

ε→0
ϕ(0).

−ε  ε

1/2ε ε 0

Fig. 2.4: Approximation of Dirac delta function
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The third property suggests that we can define the Dirac delta function
in terms of how it acts on test functions. Thus the Dirac delta function is
defined as a distribution with the following properties:

∫

R

δ (x)dx = 1,
∫

R

δ (x)ϕ(x)dx = ϕ(0).

One can also introduce a shifted Dirac delta function δy(x)≡ δ (x− y),

∫

R

δy(x)dx = 1,
∫

R

δy(x)ϕ(x)dx =
∫

R

δ (x− y)ϕ(x)dx = ϕ(y).

The Heaviside construction also suggests that we can formally write
H ′(x) = δ (x), although again this only really makes sense in terms of
test functions:
∫

R

H ′(x)ϕ(x)dx= [H(x)ϕ(x)]∞0 −
∫

R

H(x)ϕ ′(x)dx=−
∫ ∞

0
ϕ ′(x)dx=ϕ(0).

We have used integration by parts and the fact that ϕ(x) = 0 at x = ∞.
Finally, note that alternative representations of the Dirac delta function
include the Fourier integral,

δ (x) =
1

2π

∫ ∞

−∞
e−ikxdk, (2.1.29)

and the t → 0 limit of the fundamental solution (2.1.28),

δ (x) = lim
t→0

1√
4πDt

e−x2/4Dt . (2.1.30)

2.2 Continuous Stochastic Processes and the Fokker–Planck
(FP) Equation

So far we have considered one approach to modeling diffusive processes, which is
based on the continuum limit of a random walk; the resulting diffusion equation
can be interpreted at the macroscopic level in terms of an equation for particle con-
servation. In this section we consider an alternative approach to modeling diffusion
based on a microscopic particle moving in a fluid, such as the aqueous environment
found within the interior of a cell (the cytoplasm or cytosol). The motion of the
particle is modeled in terms of a continuous stochastic process evolving according
to a Langevin equation or SDE. The probability density of this stochastic process
satisfies a generalization of the diffusion equation known as the Fokker–Planck (FP)
equation.
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2.2.1 Derivation of the FP Equation from a Langevin Equation

Consider a microscopic particle such as a macromolecule moving within the cyto-
plasm of a cell that it is subject to some external force of size F . Collisions with
fluid molecules have two distinct effects. First, they induce an apparent diffusive or
Brownian motion of the particle, and second they generate an effective frictional
force that opposes motion induced by the external force. In the case of microscopic
particles, water acts as a highly viscous medium (low Reynolds number) so that any
particle quickly approaches terminal velocity and inertial effects can be ignored (see
also Box 5B). The effects of all collisions on the motion of the particle can then be
represented in terms of the Langevin equation or SDE [204]

Fig. 2.5: Sample path of a Wiener process

dX(t) =
F(X)

γ
dt +

√
2DdW (t) (2.2.1)

where X(t) is the stochastic position of the particle at time t, γ is a drag coefficient,
and W (t) is a so-called Wiener process whose differential dW (t) is a Gaussian ran-
dom variable with

〈dW (t)〉= 0, 〈dW (t)dW (t ′)〉= δ (t− t ′)dtdt ′, (2.2.2)
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where δ (t) is the Dirac delta function (Box 2B). Mathematically speaking, W (t)
is a continuous but everywhere non-differentiable function of time t (see Fig. 2.5).
For the moment, we simply view W (t) as a formal representation of the effects of
a fluctuating environment. A more mathematical treatment of W (t) and SDEs is
presented in Sect. 2.6, together with methods for numerically simulating an SDE
(see also the review by Higham [259]).

Suppose, for the moment, that F is a constant. Formally integrating Eq. (2.2.1)
with X(0) = 0 shows that

X(t) =Vt +
√

2D
∫ t

0
dW (t ′)

with V = F/γ the terminal velocity. Averaging with respect to the noise then
implies that

〈X(t)〉=Vt, 〈(X(t)−Vt)2〉= 2Dt.

That is,

〈(X(t)−Vt)2〉= 2D〈
∫ t

0
dW (t ′)

∫ t

0
dW (t ′′)〉= 2D

∫ t

0

∫ t

0
〈dW (t ′)dW (t ′′)〉

= 2D
∫ t

0

∫ t

0
δ (t ′ − t ′′)dt ′dt ′′ = 2D

∫ t

0
dt ′ = 2Dt.

Hence, the MSD about the deterministic trajectory varies as 2Dt, which suggests
identifying D as a diffusion coefficient. Moreover, X(t) is itself a Gaussian process
whose probability density p(x, t) is given by the Gaussian distribution (2.1.28)
assuming the initial condition p(x,0) = δ (x). Thus, the probability density of a
Brownian particle moving under the action of a constant force obeys an advection–
diffusion equation of the form (2.1.25). We would like to extend this framework to
the case of an x-dependent force, for which p(x, t) is known to satisfy a more general
Fokker–Planck (FP) equation.

We will consider a derivation of the FP equation applicable for a position-
dependent force F(x) along similar lines to Gardiner [204]. Since X(t) is a stochastic
variable, each simulation of the Langevin equation generates one sample out of the
set of all possible trajectories. This motivates an alternative way of thinking about
such a stochastic process, namely in terms of the conditional probability density
p(x, t|x0, t0) that the particle is at x at time t, given that it started at x0 at time t0.
Exploiting the fact that the stochastic process is Markovian, that is, X(t +Δ t) only
depends on the state at the previous time step X(t), it follows that p(x, t|x0, t0) satis-
fies the Chapman–Kolmogorov equation (Sect. 2.6)

p(x, t|x0, t0) =
∫ ∞

−∞
p(x, t|x′, t ′)p(x′, t ′|x0, t0)dx′ (2.2.3)
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for any t ′ ∈ [t0, t]. Such an equation is a defining property of a continuous Markov
process. Consider an infinitesimal version of this equation by taking t → t +Δ t,
t ′ → t and setting w(x, t;u,Δ t) = p(x+ u, t +Δ t|x, t):

p(x, t +Δ t) =
∫ ∞

−∞
w(x− u, t;u,Δ t)p(x− u, t)du,

where the initial argument (x0, t0) has been suppressed. Now suppose that over a
sufficiently small time window Δ t, large jumps u in position are highly unlikely, so
that u can be treated as a small variable (It is possible to relax this requirement - one
then obtains integral terms in the evolution equation for p(x, t) that represent finite
jumps between states, see also Ex. 2.3). Taylor expanding with respect to u gives

p(x, t +Δ t) = α0(x, t)p(x, t)− ∂x[α1(x, t)p(x, t)]+
1
2

∂ 2
xx[α2(x, t)p(x, t)]+ . . .

(2.2.4)

where
αn(x, t) =

∫ ∞

−∞
w(x, t;u,Δ t)undu.

The Langevin equation (2.2.1) can be used to calculate the coefficients αn. First,
rewrite Eq. (2.2.1) in the infinitesimal form

X(t +Δ t) = x+F(x)Δ t/γ +
√

2DΔW (t),

given that X(t) = x. This implies that the transition probability w can be written as

w(x, t;u,Δ t) = 〈δ (x+ u−X(t+Δ t))〉
= 〈δ (u−F(x)Δ t/γ−

√
2DΔW (t))〉,

=

∫ ∞

−∞
δ (u−F(x)Δ t/γ−

√
2DΔW (t))p(ΔW (t))

where p is the probability density of ΔW (t). Since

ΔW (t) =
∫ t+Δ t

t
dW (s)

it follows that ΔW (t) is a Gaussian random variable with zero mean and variance
Δ t; the corresponding probability density is

p(ΔW ) =

√
1

2πΔ t
e−ΔW2/2Δ t .

Hence, averaging with respect to ΔW (t),

w(x, t;u,Δ t) =

√
1

4πDΔ t
e−(u−F(x)Δ t/γ)2/4DΔ t .
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It follows that

α0 = 1, α1 = F(x)Δ t/γ, α2 = 2DΔ t +α2
1 ,

and αm = O(Δ t2) for m > 2. Substituting these results into Eq. (2.2.4) and taking
the limit Δ t → 0 finally leads to the Fokker–Planck (FP) equation

∂ p(x, t)
∂ t

=−1
γ

∂ [F(x)p(x, t)]
∂x

+D
∂ 2 p(x, t)

∂x2 . (2.2.5)

Note that in the limit D→ 0, the FP equation reduces to the so-called Liouiville
equation. The latter has a general solution of the form

p(x, t) =
∫

R

δ (x−φ(t,x0))ρ(x0)dx0,

where φ(t,x0) is the solution to the deterministic equation ẋ = F(x)/γ with initial
condition x(0) = x0 and ρ(x0) is a probability density over initial conditions. Thus
p(x, t) represents a distribution of deterministic trajectories with p(x,0) = ρ(x).

The 1D FP equation (2.2.5) can be rewritten as a probability conservation law
according to

∂ p(x, t)
∂ t

=−∂J(x, t)
∂x

, (2.2.6)

where

J(x, t) =
1
γ

F(x)p(x, t)−D
∂ p(x, t)

∂x
(2.2.7)

is the probability flux. An equilibrium steady-state solution corresponds to the con-
ditions ∂ p/∂ t = 0 and J ≡ 0. This leads to the first-order ODE for the equilibrium
density P(x): DP′(x)− γ−1F(x)P(x) = 0, which has the solution

P(x) =N e−Φ(x)/γD.

Here Φ(x) = −∫ x F(y)dy is a potential energy function and N is a normalization
factor (assuming that it exists). Comparison of the equilibrium distribution with the
Boltzmann–Gibbs distribution (1.4.5) (see Sect. 1.4) yields the Einstein relation

Dγ = kBT, (2.2.8)

where T is the temperature (in degrees Kelvin) and kB ≈ 1.4× 10−23 JK−1 is the
Boltzmann constant. This formula relates the variance of environmental fluctuations
to the strength of dissipative forces and the temperature. In the case of a sphere of
radius R moving in a fluid of viscosity η , Stoke’s formula can be used, that is,
γ = 6πηR. For water at room temperature, η ∼ 10−3 kgm−1 s−1 so that a particle
of radius R = 10−9 m has a diffusion coefficient D∼ 100μm2 s−1.

It is straightforward to generalize the Langevin equation (2.2.1) to higher dimen-
sions. Assuming for simplicity isotropic diffusion and friction, Eq. (2.2.1) becomes

dXi =
Fi(X)

γ
dt +

√
2DdWi(t), i = 1, . . . ,d (2.2.9)
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with
〈dWi(t)〉= 0, 〈dWi(t)dWj(t

′)〉= δi, jδ (t− t ′)dt dt ′. (2.2.10)

The corresponding multivariate FP equation is

∂ p(x, t)
∂ t

=−1
γ

∇ · [F(x)p(x, t)]+D∇2p(x, t) (2.2.11)

and the probability flux is given by the vector field

J(x, t) =
F(x)

γ
p(x, t)−D∇p(x, t). (2.2.12)

Here ∇ denotes the gradient operator, which in Cartesian coordinates x = (x,y,z)
(for d = 3) takes the form

∇ = i
∂
∂x

+ j
∂
∂y

+k
∂
∂ z

,

with i the unit vector in the x-direction. Similarly, ∇2 is the Laplacian operator

∇2 = ∇ ·∇ =
∂ 2

∂x2 +
∂ 2

∂y2 +
∂ 2

∂ z2 .

Note that the Langevin equation (2.2.1) or (2.2.9) represents diffusive-like motion
from the probabilistic perspective of a single microscopic particle moving in a fluid
medium. However, it is possible to reinterpret Eq. (2.2.5) or (2.2.11) as a deter-
ministic advection-diffusion equation for the concentration u(x, t) of many particles
(see also Sect. 2.1.1). That is, ignoring any interactions or correlations between the
particles, set u(x, t) = N p(x, t) where N is the total number of particles (assumed
large). Multiplying both sides of Eq. (2.2.5) by N then leads to the corresponding
Smoluchowski equation for u(x, t) with NJ(x, t) interpreted as the particle flux aris-
ing from a combination of advection and Fickian diffusion. One example is the
well-known Nernst–Planck equation for electrodiffusion (see Ex. 2.4). However,
the relationship between macroscopic and microscopic formulations is more com-
plicated when chemical reactions are included. Macroscopically, reactions are de-
scribed in terms of the deterministic law of mass action (see Sect. 3.1), whereas
microscopically they are modeled stochastically using a chemical master equation.
Differences between the two levels of modeling become significant when the num-
ber of interacting molecules becomes small [651]. From the macroscopic picture of
Fickian diffusion, the conservation equation ∂t u = −∇ · J can lead to two different
forms of the diffusion equation, depending on whether J(x, t) =−∇[D(x)u(x, t)] or
J(x, t) = −D(x)∇u(x, t). (These are equivalent when D is a constant.) In order to
distinguish between the two cases, it is necessary to incorporate details regarding
the microscopic dynamics using, for example, kinetic theory [77]. The situation is
even more complicated in anisotropic heterogeneous media, where it is no longer
possible to characterize the rate of diffusion in terms of a single coefficient. One
now needs to consider a diffusion tensor; see the example of active transport on
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microtubular networks in Sect. 7.4. Irrespective of the particular interpretation of
the FP equation (2.2.11), mathematically speaking, it is a deterministic PDE that
can be analyzed using the various methods outlined in Sect. 2.5 for the diffusion
equation.

2.2.2 Boundary Conditions for the FP Equation

In our study of a random walker in Sect. 2.1, we assumed that the domain was un-
bounded. However, diffusion of a particle within a cell is bounded and often re-
stricted to a subcellular compartment that has a complex geometry. Therefore, it is
necessary to specify the domain Ω ⊂ R

d over which the FPE is defined and to in-
troduce boundary conditions on ∂Ω , where ∂Ω denotes the boundary of Ω . First
consider the one-dimensional case (d = 1) with the FP equation (2.2.5) defined on
the finite interval x∈ [0,L]. This could represent the domain of a narrow ion channel
(see Sect. 7.3) or a microtubular filament along which a molecular motor transports
cargo (see Chap. 4). The two most common types of boundary condition at the ends
x = 0,L are the Dirichlet and Neumann boundary conditions. For example, at x = 0

p(0, t) = f (t) (Dirichlet) or J(0, t) = g(t) (Neumann), (2.2.13)

where J(x, t) is the probability flux (2.2.7) and f ,g are prescribed functions of time
t, which could be time-independent. A homogeneous Dirichlet boundary condition
( f ≡ 0) is often called an absorbing boundary condition, whereas a homogeneous
Neumann boundary condition (g≡ 0) is often called a no-flux or reflecting boundary
condition. The analogous boundary conditions in higher dimensions (d = 2,3) [see
Eq. (2.2.11)], are

p(x, t) = f (x, t) (Dirichlet) or J(x, t) ·n(x) = g(x, t) (Neumann) for all x ∈ ∂Ω ,
(2.2.14)

where n(x) is the unit outward normal to the boundary at x ∈ ∂Ω . It is also possible
to have mixed boundary conditions, in which ∂Ω = ∂ΩD ∪ ∂ΩN with Dirichlet
on ∂ΩD and Neumann on ∂ΩN (see Sect. 7.2). Alternatively, a boundary may be
partially absorbing, in which case we have the Robin boundary condition

p(x, t)+αJ(x, t) ·n(x) = 0, α > 0.

Consider the particular case of a homogeneous Neumann boundary condition.
Integrating the FP equation (2.2.11) over the domain Ω , and reversing the order
of integration and time differentiation, yields

d
dt

∫

Ω
p(x, t)dx =−

∫

Ω
∇ ·J(x, t)dx =−

∫

∂Ω
J(x, t) ·n(x)dx = 0, (2.2.15)

where we have used the divergence theorem [395] and imposed the boundary con-
dition. Hence, in the case of a FPE with reflecting boundaries, the total probability
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P =
∫

Ω p(x, t)dx is conserved, that is, dP/dt = 0, and the system typically con-
verges to a nontrivial stationary state. On the other hand, the total probability is
not conserved in the case of an absorbing boundary, which arises in FPT prob-
lems (Sect. 2.3). From the PDE perspective, there are well-established methods for
solving boundary value problems for the FPE, some of which will be illustrated in
Sect. 2.5 for the simpler diffusion equation.

2.2.3 The Ornstein–Uhlenbeck Process

Consider the SDE
dX =−kXdt +

√
2DdW (t), (2.2.16)

where W (t) is a Wiener process, and assume a fixed initial condition X(0) = X0.
(A Gaussian-distributed initial condition is considered in Ex. 2.5.) One way to solve
this equation is to perform the change of variables Y (t) = X(t)ekt . Then

dY (t) = Y (X(t + dt), t + dt)−Y(X , t) = Y (X + dX , t + dt)−Y(X , t)

= (X + dX)ek(t+dt)−Xekt = kXektdt + ektdX

= kXektdt + ekt [−kXdt +
√

2DdW ] =
√

2DektdW (t).

The SDE for Y (t) can now be integrated to give

Y (t) =Y0 +
√

2D
∫ t

0
ekt′dW (t ′),

that is,

X(t) = X0e−kt +
√

2D
∫ t

0
e−k(t−t′)dW (t ′). (2.2.17)

Given the explicit solution for X , we can now evaluate the mean and variance using
properties of the Wiener process. First,

〈X(t)〉= X0e−kt +
√

2D
∫ t

0
e−k(t−t′)〈dW (t ′)〉= X0e−kt ,

since 〈dW 〉= 0. Similarly,

〈[X(t)−〈X(t)〉]2〉= 2D
∫ t

0
e−k(t−s)

∫ t

0
e−k(t−s′)〈dW (s)dW (s′)〉

= 2D
∫ t

0
e−2k(t−s)ds =

D
k
(1− e−2kt). (2.2.18)

Note that in the limit k→ 0, we recover the MSD of 1D Brownian motion. (The use
of a change of variables to solve a Langevin equation is also considered in Ex. 2.6.)

Equation (2.2.5) implies that the FP equation for the OU process is

∂ p(x, t)
∂ t

=
∂ [kxp(x, t)]

∂x
+D

∂ 2 p(x, t)
∂x2 . (2.2.19)
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Taking a fixed (deterministic) initial condition X(0) = x0, the initial condition of the
FP equation is

p(x,0) = δ (x− x0).

Introduce the characteristic function (Fourier transform)

Γ (z, t) =
∫ ∞

−∞
eizx p(x, t)dx.

Fourier transforming the FP equation shows that Γ satisfies the PDE (see Ex. 2.5):

∂Γ
∂ t

+ kz
∂Γ
∂ z

=−Dz2Γ . (2.2.20)

This can be solved using separation of variables (see Sect. 2.5) or the method of
characteristics (see Sect. 3.6). The result is

Γ (z, t) = exp

[
−Dz2

2k
(1− e−2kt)+ izx0e−kt

]
,

so that on applying the inverse Fourier transform (see Box 2A), we obtain the
probability density

p(x, t) =
1

√
2πD[1− e−2kt]/k

e−(x−x0e−kt )2/(2D[1−e−2kt ]/k). (2.2.21)

Note that

lim
t→∞

p(x, t) = ps(x)≡ 1
√

2πD/k
e−kx2/2D,

which is the stationary probability density.
Finally, note that the multivariate version of the OU process is given by

dXi =−
N

∑
j=1

Ai jXjdt +
N

∑
j=1

Bi jdWj(t), X(0) = x̄. (2.2.22)

The solution can be expressed formally in the matrix form (see Ex. 2.7)

X(t) = e−At x̄+
∫ t

0
e−A(t−t′)BdW(t ′).

It can then be shown that the covariance matrix Σ(t) with components

Σi j(t) = 〈[Xi(t)−〈Xi(t)〉][Xj(t)−〈Xj(t)〉]〉

satisfies the matrix equation

dΣ(t)
dt

=−AΣ(t)−Σ(t)AT +BBT .
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It follows that if A has distinct eigenvalues with positive real part, then Σ(t)→ Σ0

where Σ0 is the stationary covariance matrix satisfying the Riccati equation

AΣ0 +Σ0AT = BBT . (2.2.23)

The multivariate OU process will play an important role in the analysis of gene
networks (see Chap. 6).

2.2.4 Multiplicative Noise

So far we have assumed that the diffusion coefficient in the Langevin equa-
tion (2.2.1) is position-independent, that is, the noise term is additive. The situation
is considerably more involved when the term multiplying dW (t) depends on X(t),
that is, when the noise term is multiplicative. The scalar Langevin equation then
takes the form

dX(t) = A(X)dt +B(X)dW(t). (2.2.24)

The difficulty arises since, in order to construct a solution of the SDE, we have to
deal with stochastic integrals of the form

∫ t
0 A(X(t))dW (t). Here we give a heuris-

tic discussion of the issue—a more detailed discussion can be found in Sect. 2.6
(see also [204, 651]). Suppose for the moment that X(t) and W (t) are deterministic
functions of time, and we can apply the theory of Riemann integration. That is, we
partition the time interval [0,T ] into N equal intervals of size Δ t with NΔ t = t and
identify the value of the integral with the unique limit (assuming it exists)

lim
N→∞

N−1

∑
j=0

A([1−α]Xj +αXj+1)ΔWj

for 0 ≤ α < 1, where ΔWj = W (( j + 1)Δ t)−W ( jΔ t) and Xj = X( jΔ t). In the
deterministic case, the integral is independent of α . Unfortunately, this is no longer
true when we have a stochastic integral. One way to see this is to note that the ΔWj

are independent random variables. Hence, A is only statistically independent of ΔWj

when α = 0, which is the Ito definition of stochastic integration. On the other hand,
when α = 1/2 we have the Stratonovich version. It turns out that the form of the
corresponding FP equation also depends on α (see Sect. 2.6). In the Ito case,

∂ p(x, t)
∂ t

=−∂ [A(x)p(x, t)]
∂x

+
1
2

∂ 2B(x)p(x, t)
∂x2 , (2.2.25)

whereas in the Stratonovich case

∂ p(x, t)
∂ t

=−∂ [A(x)p(x, t)]
∂x

+
1
2

∂
∂x

B(x)
∂
∂x

[B(x)p(x, t)]. (2.2.26)



58 2 Diffusion in Cells: Random Walks and Brownian Motion

Example 2.1. Consider the Langevin equation with linear multiplicative noise inter-
preted in the sense of Ito:

dX = X(t)a(t)dt +X(t)b(t)dW(t). (2.2.27)

One way to solve this equation is to eliminate the multiplicative factor by perform-
ing the change of variables Y (t) = lnX(t). However, care must be taken when cal-
culating infinitesimals, since the normal rules of calculus no longer apply for Ito
stochastic variables; they do for Stratonovich variables. In particular, as shown in
Sect. 2.6, one has to take into account the fact that “dW 2 = dt”.

dY (t) = ln(X(t + dt))− lnX(t) = ln(X(t)+ dX(t))− lnX(t) = ln(1+ dX(t)/X(t))

=
dX(t)
X(t)

− dX(t)2

2X(t)2 = a(t)dt + b(t)dW(t)− 1
2
[a(t)dt + b(t)dW(t)]2

= a(t)dt + b(t)dW(t)− b(t)2

2
dt + o(dt).

Integrating this equation gives

Y (t) = Y0 +

∫ t

0

[
a(s)− 1

2
b(s)2

]
ds+

∫ t

0
b(s)dW (s),

and exponentiating

X(t) = X0 exp

(∫ t

0

[
a(s)− 1

2
b(s)2

]
ds+

∫ t

0
b(s)dW (s)

)
.

Some examples of 1D stochastic processes with multiplicative noise are considered
in Exs. 2.9 and 2.10.

2.2.5 Correlations and the Power Spectrum

A very useful quantity is the power spectrum of a stationary stochastic process X(t),
which is defined as the Fourier transform of the autocorrelation function CX (τ),

SX(ω) =

∫ ∞

−∞
eiωτCX (τ)dτ, CX (τ) = 〈X(t)X(t + τ)〉. (2.2.28)

Consider the covariance of two frequency components of X(t):

〈X̃(ω)X̃(ω ′)〉=
〈∫ ∞

−∞
eiωtX(t)dt

∫ ∞

−∞
eiω ′t′X(t ′)dt ′

〉

=

∫ ∞

−∞
eiωt
∫ ∞

−∞
eiω ′t′ 〈X(t)X(t ′)〉dt ′dt
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=

∫ ∞

−∞
eiωt
∫ ∞

−∞
eiω ′t′

[∫ ∞

−∞
e−iΩ(t−t′)SX(Ω)

dΩ
2π

]
dt ′dt

=

∫ ∞

−∞
SX(Ω)

[∫ ∞

−∞
ei(ω−Ω)t dt

][∫ ∞

−∞
ei(ω ′+Ω)t′dt ′

]
dΩ
2π

,

assuming that it is possible to rearrange the order of integration. Using the Fourier
representation of the Dirac delta function (Box 2B),

∫ ∞
−∞ eiωt dt = 2πδ (ω), we have

〈X̃(ω)X̃(ω ′)〉=
∫ ∞

−∞
SX(Ω) ·2πδ (ω−Ω) ·2πδ (ω ′+Ω)

dΩ
2π

which establishes a version of the Wiener–Khinchin theorem:

〈X̃(ω)X̃(ω ′)〉= 2πSX(ω)δ (ω +ω ′). (2.2.29)

The Fourier transform of a real-valued variable satisfies X̃(−ω) = X̃∗(ω) so

〈X̃(ω)X̃∗(ω ′)〉= 2πSX(ω)δ (ω−ω ′). (2.2.30)

In the case of linear SDEs, it is possible to calculate the spectrum explicitly using
the notion of a white noise process. Although the derivative of the Wiener process
W (t) does not exist, there is a sense in which the autocorrelation of the derivative
does exist, which provides a useful calculational tool. For example, consider the
Ornstein–Uhlenbeck process

dX(t) =−κX(t)+ dW(t).

Suppose that we formally rewrite this equation in terms of derivatives according to

dX
dt

+κX = ξ (t), (2.2.31)

where
〈ξ (t)〉= 0, 〈ξ (t)ξ (t ′)〉= δ (t− t ′).

The term ξ (t) is known as Gaussian white noise. In order to have a stationary OU
process, we take the initial time to be at t = −∞. The solution can be expressed
formally in terms of the integral solution

X(t) =
∫ ∞

−∞
G(τ)ξ (t− τ)dτ, (2.2.32)

where G(τ) is known as the causal Green’s function or linear response function with
the important property that G(τ) = 0 for τ < 0. In the case of the OU process

G(τ) = e−τκ H(τ),

where H(t) is the Heaviside function. The main point to emphasize is that al-
though ξ (t) is not a mathematically well-defined object, one still obtains correct
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answers when taking expectations. For example, it is clear that in the stationary
state 〈X(t)〉= 0 and (for s > 0)

〈X(t)X(t + s)〉=
∫ ∞

−∞

∫ ∞

−∞
G(τ)G(τ ′)〈ξ (t− τ)ξ (t + s− τ ′)〉dτdτ ′

=

∫ ∞

−∞

∫ ∞

−∞
G(τ)G(τ ′)δ (s+ τ− τ ′)dτdτ ′ =

∫ ∞

−∞
G(τ)G(τ + s)dτ

=

∫ ∞

0
e−κ(2τ+s)dτ =

1
2κ

e−κs.

This is the expected result for the autocorrelation function of the OU process.
One of the useful features of formally expressing a solution to a linear SDE in

the form (2.2.32) is that one can view the dynamical system as acting as a filter of
the white noise process. Applying the Wiener–Khinchin theorem to the white noise
autocorrelation function, we see that the spectrum is given by the Fourier transform
of a Dirac delta function, which is unity. However, once the noise has been passed
through a filter with linear response function G(t), the spectrum is no longer flat.
This follows from applying the convolution Theorem 2.2 of Box 2A to Eq. (2.2.32):

X̃(ω) = G̃(ω)ξ̃ (ω),

so
2πSX(ω)δ (ω−ω ′) = G̃(ω)G̃∗(ω ′)〈ξ̃ (ω)ξ̃ ∗(ω ′)〉.

Evaluating the various Fourier transforms, we have

G̃(ω) =
∫ ∞

−∞
eiωtG(t)dt =

∫ ∞

0
eiωte−κtdt =

1
κ− iω

and

〈ξ̃ (ω)ξ̃ ∗(ω ′)〉=
∫ ∞

−∞
eiωt
∫ ∞

−∞
e−iω ′t′ 〈ξ (t)ξ (t ′)〉dt ′ dt = 2πδ (ω−ω ′).

Hence,

SX(ω) =
1

κ2 +ω2 . (2.2.33)

The spectrum can be used to recover the variance by noting that

〈X(t)2〉=
∫ ∞

−∞

∫ ∞

−∞
〈X̃(ω)X̃(ω ′)〉eiωt eiω ′t dω

2π
dω ′

2π
=

∫ ∞

−∞
SX(ω)

dω
2π

.

Substituting for SX(ω) and using the identity

∫ ∞

−∞

dω
ω2 +κ2 =

π
κ
,
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we see that

〈X(t)2〉= 1
2κ

.

Finally, note that the formal method based on white noise is only applicable to SDEs
with additive noise. In the multiplicative case, one has to use stochastic calculus (see
Sect. 2.6). In this book, we will mainly express SDEs in terms of differentials and
Wiener processes, restricting the use of white noise to the analysis of spectra in
linear SDEs, as in Sects. 6.4 and 9.3.

2.3 First Passage Time Density and the Backward FP Equation

One of the most important ways of quantifying the efficiency of diffusive transport
is in terms of the FPT to reach a target [204, 523]. In the case of intracellular trans-
port, such a target could represent a substrate for a subsequent biochemical reaction
or an exit from some bounded domain such as a chemical synapse. Consider a par-
ticle whose position evolves according to the 1D Langevin equation (2.2.1) with
motion restricted to the bounded domain x ∈ [0,L]. (The FPT problem for a random
walk on a lattice is considered in Ex. 2.11.) Suppose that the corresponding FP equa-
tion (2.2.5) has a reflecting boundary condition at x = 0 and an absorbing boundary
condition at x = L:

J(0, t) = 0, p(L, t) = 0.

We would like to determine the stochastic time T (y) for the particle to exit the
right-hand boundary given that it starts at location y ∈ [0,L] at time t. As a first step,
we introduce the survival probability P(y, t) that the particle has not yet exited the
interval at time t:

P(y, t) =
∫ L

0
p(x, t|y,0)dx.

It follows that Prob[T (y) ≤ t] = 1− P(y, t) and we can define the FPT density
according to

f (y, t) =−∂P(y, t)
∂ t

=−
∫ L

0

∂
∂ t

p(x, t|y,0)dx.

Using the FP equation written in conservation form (2.2.6), we see that

f (y, t) =
∫ L

0

∂J(x, t|y,0)
∂x

dx = J(L, t|y,0)− J(0, t|y,0)) = J(L, t|y,0),

due to the reflecting boundary condition at x = 0. Thus the FPT density is equal to
the flux through the absorbing boundary at x = L. In certain simple cases, the flux
can be calculated explicitly, as illustrated in Ex. 2.12. However, for more general
cases, it is useful to derive explicit differential equations for moments of the FPT
density, in particular, the first moment or mean first passage time (MFPT).
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In order to derive an equation for the MFPT, it is necessary to use the so-called
backward FP equation. This can be derived from the Chapman–Kolmogorov equa-
tion (2.2.3) by differentiating both sides with respect to the intermediate time t ′:

0 =

∫ ∞

−∞
∂t′ p(x, t|x′, t ′)p(x′, t ′|x0, t0)dx′+

∫ ∞

−∞
p(x, t|x′, t ′)∂t′ p(x

′, t ′|x0, t0)dx′.

Using the fact that p(x′, t ′|x0, t0) satisfies a forward FP equation, ∂t′ [p(x
′, t ′|x0, t0)]

can be replaced by terms involving derivatives with respect to x′. Integrating by parts
with respect to x′ then leads to the result

0 =

∫ ∞

−∞

[
∂t′ p(x, t|x′, t ′)+A(x′)∂x′ p(x, t|x′, t ′)+D∂ 2

x′x′ p(x, t|x′, t ′)
]

p(x′, t ′|x0, t0)dx′

where A(x) = F(x)/γ . Since p is positive, it follows that the expression in square
brackets vanishes. Using time translation invariance,

∂t′ p(x, t|x′, t ′) = ∂t′ p(x,0|x′, t ′ − t) =−∂t p(x,0|x′, t ′ − t) =−∂t p(x, t|x′, t ′),

then yields the backward FP equation for p:

∂t p(x, t|x′, t ′) = A(x′)∂x′ p(x, t|x′, t ′)+D∂ 2
x′x′ p(x, t|x′, t ′). (2.3.1)

Taking x′ → y, t ′ = 0 and integrating with respect to x shows that P(y, t), and hence
f (y, t), also satisfies a backward FP equation:

∂P(y, t)
∂ t

= A(y)
∂P(y, t)

∂y
+D

∂ 2
P(y, t)
∂y2 . (2.3.2)

The MFPT τ(y) is defined according to

τ(y) = 〈T (y)〉 ≡
∫ ∞

0
f (y, t)tdt

=−
∫ ∞

0
t
∂P(y, t)

∂ t
dt =

∫ ∞

0
P(y, t)dt,

after integration by parts. Hence, integrating both sides of Eq. (2.3.2) shows that the
MFPT satisfies the ODE

A(y)
dτ(y)

dy
+D

d2τ(y)
dy2 =−1. (2.3.3)

Equation (2.3.3) is supplemented by reflecting and absorbing boundary conditions
for the backward FP equation:

τ ′(0) = 0, τ(L) = 0.
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It is straightforward to solve Eq. (2.3.3) by direct integration [204]. First, introduce
the integration factor

ψ(y) = exp

(
1
D

∫ y

0
A(y′)dy′

)
= exp(−V (y)/kBT ) ,

where D−1A(y) = (Dγ)−1F(y) = −(kBT )−1V ′(y) and V (y) is a potential energy.
Equation (2.3.3) becomes

d
dy

[
ψ(y)τ ′(y)

]
=−ψ(y)

D

so that

ψ(y)τ ′(y) =− 1
D

∫ y

0
ψ(y′)dy′,

where the boundary condition τ ′(0) = 0 has been used. Integrating once more with
respect to y and using τ(L) = 0 then gives

τ(y) =
∫ L

y

dy′

ψ(y′)

∫ y′

0

ψ(y′′)
D

dy′′. (2.3.4)

This formula will be the starting point for analyzing escape problem in Sect. 3.3.
In the case of pure diffusion (A(x) = 0), we have ψ(y) = 1 and τ(y) = (L2−

y2)/2D. It follows that for any finite L− y, τ(y)→ ∞ as L→ ∞. Thus, although 1D
diffusion is recurrent, i.e., the particle surely reaches the origin, the average time it
takes is infinite. (This can also be understood in terms of the scaling properties of
the FPT density.) Now suppose that L is finite and the particle starts at the left-hand
boundary. The corresponding MFPT is then τ = L2/D. Within the cytosol of cells,
macromolecules such as proteins tend to have diffusivities D < 1μm2 s−1, which
is due to effects such as molecular crowding. This implies that the mean time for a
diffusing particle to travel a distance 100μm is at least 104 s (a few hours), whereas
to travel a distance 1 mm is at least 106 s (10 days). Since neurons, for example,
which are the largest cells in humans, have axonal and dendritic protrusions that can
extend from 1 mm up to 1 m, the mean travel time due to passive diffusion becomes
prohibitively large, and an active form of transport becomes essential.

It is also possible to extend the above 1D analysis to the case where the particle
can exit from either end [204, 523]. It is often of interest to keep track of which end
the particle exits, which leads to the concept of a splitting probability. Let S0(x, t)
denote the probability that the particle exits at x′ = 0 after time t, having started at
the point x. Then

S0(x, t) =−
∫ ∞

t
J(0, t ′|x,0)dt ′

with

J(0, t|x,0) = A(0)p(0, t|x,0)−D
∂ p(y, t|x,0)

∂y

∣
∣
∣
∣
y=0

.
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Differentiating with respect to t and using the backward FP equation (2.3.1) gives

∂S0(x, t)
∂ t

= J(0, t|x,0) =−
∫ ∞

t

∂J(0, t ′|x,0)
∂ t ′

dt ′

= A(x)
∂S0(x, t)

∂x
+D

∂ 2S0(x, t)
∂x2 . (2.3.5)

The hitting or splitting probability that the particle exits at x′ = 0 (rather than x′ = L)
is Π0(x) = S0(x,0). Moreover, the probability that the particle exits after time t, con-
ditioned on definitely exiting through x′ = 0, is Prob(T0(x)> t) = S0(x, t)/S0(x,0),
where T0(x) is the corresponding conditional FPT. Since the conditional MFPT sat-
isfies

τ0(x) =−
∫ ∞

0
t
∂Prob(T0(x)> t)

∂ t
dt =

∫ ∞

0

S0(x, t)
S0(x,0)

dt.

Equation (2.3.5) is integrated with respect to t to give

A(x)
∂Π0(x)τ0(x)

∂x
+D

∂ 2Π0(x)τ0(x)
∂x2 =−Π0(x), (2.3.6)

with boundary conditions Π0(0)τ0(0) = Π0(L)τ0(L) = 0. Finally, taking the limit
t → 0 in Eq. (2.3.5) and noting that J(0,0|x,0) = 0 for x �= 0,

A(x)
∂Π0(x)

∂x
+D

∂ 2Π0(x)
∂x2 = 0, (2.3.7)

with boundary conditions Π0(0) = 1,Π0(L) = 0. A similar analysis can be carried
out for exit through the other end x′ = L such that Π0(x)+ΠL(x) = 1.

The construction of the FPT density can also be extended to higher spatial dimen-
sions. Suppose that a particle evolves according to the Langevin equation (2.2.9) in
a compact domain Ω with boundary ∂Ω . Suppose that at time t = 0 the particle is
at the point y ∈ Ω and let T (y) denote the FPT to reach any point on the boundary
∂Ω . The probability that the particle has not yet reached the boundary at time t is
then

P(y, t) =
∫

Ω
p(x, t|y,0)dx,

where p(x, t|y,0) is the solution to the multivariate FP equation (2.2.11) with an ab-
sorbing boundary condition on ∂Ω . The FPT density is again f (y, t) =−dP(y, t)/dt
which, on using Eq. (2.2.11) and the divergence theorem, can be expressed as

f (y, t) =−
∫

∂Ω
[−A(x)p(x, t|y,0)+D∇p(x, t|y,0)] ·dσ
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with A = F/γ . Similarly, by constructing the corresponding backward FP equation,
it can be shown that the MFPT satisfies the equation

A(y) ·∇τ(y)+D∇2τ(y) =−1 (2.3.8)

with n ·∇τ(y) = 0 for y ∈ ∂Ω . Finally, note that an analogous formulation of FPTs
can be formulated for discrete Markov processes evolving according to a mas-
ter equation. (The particular case of a simple birth–death process is presented in
Sect. 6.6, within the context of a polymerization model of gene transcription.)

2.4 Diffusion-Limited Reaction Rates

2.4.1 Smoluchowski Reaction Rate

An important example of a FPT process arises in Smoluchowski rate theory for
diffusion-controlled reactions [124, 323, 523, 536, 603]. The simplest version of the
theory concerns the bimolecular reaction A+B→ AB for which the concentrations
evolve according to the following law of mass action (see Sect. 3.1):

d[AB]
dt

= k[A][B].

We assume that an A molecule and a B molecule react immediately to form the
complex AB when they encounter each other within a reaction radius, so that the
speed of reaction k is limited by their encounter rate via diffusion. (Note that k
has units of volume s−1. Concentrations are typically measured in molars M with
1molar = 1,000moles/m3 and 1mole≈ 6×1023 molecules (Avogadro’s number).)
One can then formulate the problem as an idealized first passage process, in which
one A molecule, say, is fixed and treated as the center of a spherical target domain
of reaction radius a, while the B molecules diffuse and are absorbed if they hit
the boundary of the target domain (see Fig. 2.6a). It is assumed that the density
of the particles is sufficiently small, so that reactions with other A molecules have
a negligible effect on the concentration of B molecules in a neighborhood of the
target molecule. The steady-state flux to the target (if it exists) is then identified as
the mean reaction rate k across many targets. Let Ω denote the target domain and
∂Ω its absorbing boundary. We then need to solve the diffusion equation for the
concentration c(x, t) of background molecules exterior to the domain Ω :

∂c(x, t)
∂ t

= D∇2c(x, t), c(x ∈ ∂Ω , t) = 0, c(x,0) = c0,
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subject to the far-field boundary condition c(x, t) = c0 for x→ ∞. The flux through
the target boundary is

J = D
∫

∂Ω
∇c ·dS.

Note the sign, which is due to the fact that the flux is from the exterior to the interior
of the target.

Let d denote the spatial dimension of the target. For d > 2, a diffusing particle
is transient, which means that there is a nonzero probability of never reaching the
target (see Sect. 2.1). Hence, the loss of reactants by target absorption is balanced
by their resupply from infinity. It follows that there exists a steady state in which
the reaction rate is finite. On the other hand, for d ≤ 2, reactants are sure to hit the
target (recurrent diffusion) and a depletion zone continuously develops around the
target so that the flux and reaction rate decay monotonically to zero with respect
to time. Although a reaction rate does not strictly exist, it is still useful to consider
the time-dependent flux as a time-dependent reaction rate. The two-dimensional
case is particularly important when considering interactions of molecules embedded
in the plasma membrane of a cell or the lipid bilayer surrounding an intracellular
compartment.

First consider the case of a spherical target of radius a (d = 3). Exploiting the
radial symmetry of the problem, it is possible to set u(r, t) = rc(r, t) such that the 3D
diffusion equation for c reduces to a 1D diffusion equation for u [523]:

∂u(r, t)
∂ t

= D
∂ 2u(r, t)

∂ r2

with u(r,0) = rc0, u(a, t) = 0 and u(r, t) = rc0 as r→ ∞. Laplace transforming this
equation gives sũ(r,s)− rc0 = Dũ′′(r,s), which has the solution

ũ(r,s) =
c0

s

[
r− ae−(r−a)

√
s/D
]
.

A

B

a

a

a

√Dt

c = 0

c = 1

quasi-staticb

Fig. 2.6: Diffusion-limited reaction rate. (a) Diffusing molecules B in a neighborhood of a fixed
target molecule A with reaction radius a. (b) Quasi-static approximation for calculating time-
dependent reaction rate
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Since the inverse Laplace transform of s−1[1− e−r
√

s/D] is the error function
erf(r/

√
4Dt) (see Table 2.1), where

erf(z) =
2√
π

∫ z

0
e−r2

dr,

one finds that

c(r, t) = c0

(
1− a

r

)
+

ac0

r
erf

[
r− a√

4Dt

]
.

It follows that the time-dependent flux is

J(t) = 4πa2D
∂c
∂ r

∣
∣
∣
∣
r=a

(2.4.1)

= 4πaDc0

(
1+

a√
πDt

)
→

t→∞
4πaDc0.

Hence, we obtain the Smoluchowski reaction rate k = 4πaD. As highlighted by
Redner [523], it is straightforward to generalize the steady-state result to other
three-dimensional targets by making a connection with electrostatics. That is, set-
ting φ(x) = 1−c(x)/c0 in steady state, it follows that φ satisfies Laplace’s equation
with φ = 1 on the target boundary and φ = 0 at infinity, so that φ is equivalent to
the electrostatic potential generated by a perfectly conducting object Ω held at unit
potential. Moreover, the steady-state reaction rate k = 4πDQ where Q is the total
charge on the surface of the conductor, which for a unit potential is equal to the
capacitance, Q = C. Thus, determining the reaction rate for a general 3D target is
equivalent to finding the capacitance of a perfect conductor with the same shape
(see also [107]).

Although it is possible to calculate the exact time-dependent flux for d ≤ 2, a
much simpler method is to use a quasi-static approximation [523]. Consider, for ex-
ample, a target disk of radius r = a. The region exterior to the disk is divided into
a near zone that extends a distance

√
Dt from the surface and a complementary far

zone (see Fig. 2.6b). In the near zone, it is assumed that diffusing particles have suf-
ficient time to explore the domain before being absorbed by the target so that the
concentration in the near zone can be treated as almost steady or quasi-static. Con-
versely, it is assumed that the probability of a particle being absorbed by the target is
negligible in the far zone, since a particle is unlikely to diffuse more than a distance√

Dt over a time interval of length t. Thus, c(r) ≈ c0 for r >
√

Dt + a. The near
zone concentration is taken to be a radially symmetric solution of Laplace’s equa-
tion, which for d = 2 is c(r) = A+B logr. Matching the solution to the boundary
conditions c(a) = 0 and c(a+

√
Dt) = c0 then gives (for

√
Dt � a)

c(r, t)≈ c0 log(r/a)

log(
√

Dt/a)
.

The corresponding time-dependent flux is

J(t)≈ 2πDc0

log(
√

Dt/a)
.
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2.4.2 Chemoreception

In the above example, we considered a binary reaction in which the target molecule
was a perfect absorber, that is, when a diffusing particle hits the target the reaction
occurs immediately. One application of diffusion-limited reactions is to chemore-
ception. In the case of a bacterium such as E. coli, the cell surface is covered
in receptors that detect signaling molecules in the surrounding environment (see
Fig. 2.7). Treating the cell as a perfect absorber assumes that there is a sufficient
number of receptors distributed on the cell surface and that binding of a signaling
molecule is instantaneous when it hits the surface. There are two major simplifi-
cations of such a model—(i) receptors tend to be nonuniformly distributed on the
cell surface and (ii) the rate of receptor/ligand binding kon is finite. We shall address
the second issue below. The role of receptor clustering in signal amplification will
be addressed in Sect. 5.3, where we discuss the biochemical networks involved in
bacterial chemotaxis.

Consider a spherical cell with M receptors distributed uniformly across its sur-
face. Assuming that the concentration c(r) of signaling molecules around the cell
has reached steady state, the number of molecules absorbed per unit time is

dn
dt

= Mkonc(a),

where a is the radius of the cell. From mass conservation this must be balanced by
the diffusive flux through any virtual sphere of radius r, r > a, centered about the
cell:

−4πr2J(r) = 4πr2D
dc
dr

= Mkonc(a),

which on integration yields

c(r)− c(a) =
∫ r

a

Mkonc(a)
4πDr2 dr =

Mkonc(a)
4πDr2

(
1
a
− 1

r

)
.

Finally, using the far-field condition c(∞) = c0, the concentration at the surface is

c(a) =
c0

1+Mkon/(4πDa)
.

Hence the net absorption rate is

k =
4πDaMkon

4πDa+Mkon
. (2.4.2)

In the limit Mkon → ∞ we recover the result for a perfect absorber with c(a)→ 0.
On the other hand, if Mkon � Da, then the depletion rate is so slow that c(a)≈ c0,
the background concentration.

Chemoreceptors allow motile E. coli to detect changes in concentration of a
chemoattractant (food source). E. coli propels itself by rotating its flagella. In or-
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a b

Fig. 2.7: Schematic diagram of (a) a polarized cell such as E. coli with a cluster of chemoreceptors
and (b) a spherical cell with a uniform distribution of receptors

der to move forward, the flagella rotate together counter clockwise (CCW) enabling
the bacterium to “swim” at low Reynolds number. However, when the flagella ro-
tation abruptly changes to clockwise, the bacterium “tumbles” in place and seems
incapable of going anywhere. Then the bacterium begins swimming again in some
new, random direction. Swimming is more frequent as the bacterium approaches a
chemoattractant (food). Tumbling, hence direction change, is more frequent as the
bacterium moves away from the chemoattractant. It is the complex combination of
swimming and tumbling that keeps them in areas of higher food concentrations. One
important issue is why E. coli has to move in order to detect changes in concentration
rather than simply comparing differences across its body length. The answer is that
there are limitations to the sensitivity of chemoreception due to thermal noise, which
means that typical concentration changes along a cell body of size 1 μm are below
the signal-to-noise ratio (SNR). This observation was first made in a classical paper
of Berg and Purcell [40], whose analysis will be presented in Sect. 5.1. One heuristic
way to estimate the sensitivity is to assume that a bacterium integrates signals from
chemoreceptors for a mean time τavg. Assuming a perfect absorber for simplicity,
the total number of signaling molecules absorbed is then N ∼ aDcτavg. Based on the
law of large numbers, we expect fluctuations in the number of molecules to vary as√

N. Hence,
δc
c
∼ δN

N
∼ 1
√

Dacτavg
. (2.4.3)

Taking D ∼ 10−5 cm2/s, a ∼ 1μm and a typical concentration c = 6 × 1011

molecules per cm3, we have Dac ∼ 600 s−1. Assuming that the bacterium inte-
grates for a time τavg ∼ 1.5 s, then δc/c∼ 1/30. Changes in c across 1 μm are just
too small to detect. However, since the speed of motion is v ∼ 10− 20μm/s, it is
possible to sample concentration changes of a length scale up to 30 times longer.
Note that there is a limit to how large a time τavg the bacterium can integrate a
chemical signal during a run, since rotational diffusion will interfere with the run’s
direction over longer time scales. The problem of rotational diffusion is discussed
in Ex. 2.13.
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2.5 Boundary Value Problems

As we have already highlighted, diffusion within the cell is bounded and often
restricted to some subcellular compartment with complex geometry. This means
that one has to solve an initial boundary value problem for the FPE on a bounded
domain Ω ⊂ R

d with d = 1,2,3. In this section we describe some methods for
solving initial boundary value problems in the more specific case of the diffusion
equation (see also [395, 554]). The same methods can be applied to the FP equa-
tion, although the analysis tends to be considerably more involved when the drift
term and diffusivity are space-dependent [204].

2.5.1 Eigenfunction Expansions

Let u = u(x, t) satisfy the initial boundary value problem

∂u
∂ t

= D∇2u, x ∈Ω , t > 0, (2.5.1)

u(x, t) = 0, x ∈ ∂Ω , t > 0, u(x,0) = f (x), x ∈Ω , (2.5.2)

where ∂Ω denotes the boundary of Ω . For the sake of illustration, we consider the
Dirichlet boundary condition u(x, t) = 0, x ∈ ∂Ω . However, the same methods can
be applied to the Neumann or no-flux boundary condition

J(x, t)≡−Dnx ·∇u(x, t) = 0, x ∈ ∂Ω , (2.5.3)

where nx is the unit normal to the boundary at x ∈ ∂Ω (with the convention that
it points outward from the domain Ω ). A standard method for solving this initial
boundary value problem is separation of variables. The first step is to substitute the
solution u(x, t) =U(x)T (t) into the diffusion equation to give

U(x)T ′(t) = DT (t)∇2U(x),

which we rewrite as
T ′(t)
DT (t)

=
∇2U(x)

U(x)
=−λ .

The essential idea of the method is that λ is a constant, since it cannot be both a
function of only t and only x. It follows that we can separate the PDE into a spatial
part and a temporal part according to

T ′(t) =−λ DT (t) (2.5.4a)

−∇2U(x) = λU(x), x ∈Ω , U(x) = 0, x ∈ ∂Ω , (2.5.4b)

where the Dirichlet boundary condition has been imposed on the spatial part.
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Equation (2.5.4b) is an example of a boundary value problem for the negative
Laplacian −∇2. For each value of λ for which Eq. (2.5.4b) has a nontrivial solu-
tion U(x), λ is called an eigenvalue and U(x) is the corresponding eigenfunction
(defined up to an arbitrary, nonzero, scalar multiplication). More formally, λ is an
element of the discrete spectrum of the linear operator−∇2 acting on the given solu-
tion domain, which is often taken to be the vector space of functions L2(Ω). It turns
out that the given Dirichlet problem has the following properties [554]:

1. The eigenvalues are real.
2. There are infinitely many eigenvalues that can be ordered as 0 < λ1 ≤ λ2 ≤ λ2 ≤

. . . with λn → ∞ as n→ ∞.
3. Eigenfunctions corresponding to distinct eigenvalues are orthogonal with respect

to the standard inner product on Ω , that is,

〈φn|φm〉 ≡
∫

Ω
φn(x)φm(x)dx = 0

when λn �= λm. The number of linearly independent eigenfunctions associated
with a degenerate eigenvalue is finite, so that a Schmidt orthogonalization pro-
cedure can be used to make them orthogonal to each other, which we assume
below.

4. The set of eigenfunction φn(x) is complete in the sense that any square-integrable
function F ∈ L2(Ω) can be uniquely represented by a generalized Fourier series

F(x) =
∞

∑
n=1

cnφn(x), cn =
〈F |φn〉
‖φn‖2 ,

where cn are the generalized Fourier coefficients and the norm is ‖φn‖ =√〈φn|φn〉. This means that the truncated Fourier series converges in the L2(Ω)
sense,

∫

Ω

(

f (x)−
N

∑
n=1

cnφn(x)

)2

dx→ 0 as N → ∞.

Note that the same properties hold when the Dirichlet boundary condition is re-
placed by the Neumann boundary condition, except that there now exists a zero
eigenvalue λ0 = 0 whose eigenfunction φ0(x) = constant. (This reflects the fact that
the diffusion equation has a nontrivial steady state in the case of a no-flux boundary
condition.)

Returning to Eq. (2.5.4), we immediately see that we can identify the constant
λ with one of the eigenvalues λn of −∇2. Solving the equation for T then shows
that we have an infinite set of solutions of the form un(x, t) = φn(x)e−Dλnt . Since
the diffusion equation is linear, we can apply the principle of superposition to write
down the general solution

u(x, t) =
∞

∑
n=1

cnφn(x)e−λnDt . (2.5.5)
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Finally, imposing the initial condition requires that

f (x) =
∞

∑
n=1

cnφn(x),

so that we can identify the cn as the generalized Fourier coefficients of f . That is,

cn =
1

‖φn‖2

∫

Ω
f (x)φn(x)dx. (2.5.6)

Substituting for cn into the general solution and taking the eigenfunctions to have
unit normalization (‖φn‖2 = 1) yields

u(x, t) =
∞

∑
n=1

(∫ L

0
f (y)φn(y)dy

)
e−n2π2Dt/L2

φn(x).

Formally switching the order of summation and integration (which is valid provided
that the functions are sufficiently well-behaved), the solution can be reexpressed in
the compact form

u(x, t) =
∫ L

0
K(x,y, t) f (y)dy, (2.5.7)

where

K(x,y, t) =
∞

∑
n=1

e−n2π2Dt/L2
φn(x)φn(y). (2.5.8)

Finally, taking the limit t → 0, we deduce the completeness relation

∞

∑
n=1

φn(x)φn(y) = δ (x− y). (2.5.9)

Example 2.2. Consider the following initial boundary value problem for the 1D dif-
fusion equation:

∂u
∂ t

= D
∂ 2u
∂x2 , 0 < x < L, t > 0.

u(0, t) = 0 = u(L, t), t > 0,

u(x,0) = f (x), 0 < x < L.

After performing separation of variables, we obtain the eigenvalue problem

−U ′′(x) = λU(x), 0 < x < L, U(0) =U(L) = 0.

The eigenvalues and eigenfunctions are thus

λn =
n2π2

L2 , φn(x) = sin
nπx

L
, n = 1,2, . . . .
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It follows that the general solution is given by

u(x, t) =
∞

∑
n=1

cne−n2π2Dt/L2
sin

nπx
L

.

Comparison with the initial data shows that the cn are the Fourier coefficients in the
series expansion of f (x),

f (x) =
∞

∑
n=1

cn sin
nπx

L
,

and thus

cn =

∫ L

0
f (ξ )sin

nπξ
L

dξ/
∫ L

0
sin2 nπx

L
dx.

Evaluating the denominator and substituting for cn into the general solution yields

u(x, t) =
2
L

∞

∑
n=1

(∫ L

0
f (ξ )sin

nπξ
L

dξ
)

e−n2π2Dt/L2
sin

nπx
L

.

Formally switching the order of summation and integration (which is valid provided
that the functions are sufficiently well-behaved), the solution can be reexpressed in
the compact form

u(x, t) =
∫ L

0
K(x,ξ , t) f (ξ )dξ ,

where

K(x,ξ , t) =
2
L

∞

∑
n=1

e−n2π2Dt/L2
sin

nπξ
L

sin
nπx

L
.

Some further examples of boundary value problems are considered in Exs. 2.13
and 2.14.

2.5.2 Green’s Functions and Steady-State Analysis

In order for the diffusion equation to have a nontrivial steady state (time-
independent solution), it is necessary to include inhomogeneous source terms
in the PDE and/or inhomogeneous boundary conditions. Therefore, consider the
steady-state equation in d = 1,2,3 dimensions

∇2u(x) =− f (x), x ∈Ω ⊂ R
d , u(x) = g(x), x ∈ ∂Ω . (2.5.10)

One way to analyze inhomogeneous equations is to use Green’s functions. The
Green’s function G(x,y) for the Dirichlet boundary value problem is defined by
the equation

∇2
yG(x,y) =−δ (x− y), x,y ∈Ω , G(x,y) = 0, y ∈ ∂Ω , (2.5.11)
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where δ (x) is the Dirac delta function in R
d . Hence, in Cartesian coordinates for

d = 3, δ (x) = δ (x)δ (y)δ (z). Once one has determined the Green’s function, the
solution of the inhomogeneous boundary value problem can be obtained from the
following Green’s identity:

∫

Ω

[
u(y)∇2

yG(x,y)−G(x,y)∇2
xu(y)

]
dy

=

∫

Ω
∇y · [u(y)∇yG(x,y)−G(x,y)∇yu(y)]dy.

Applying the steady-state equations to both terms on the left-hand side and using
the divergence theorem on the right-hand side shows that

−u(x)+
∫

Ω
G(x,y) f (y)dy =

∫

∂Ω
[u(y)∇yG(x,y)−G(x,y)∇yu(y)] ·ndy,

where n is the outward normal along the boundary ∂Ω . Imposing the boundary
conditions on u and G and rearranging yields the solution

u(x) =
∫

Ω
G(x,y) f (y)dy−

∫

∂Ω
∂nG(x,y)g(y)dy, (2.5.12)

where ∂nG denotes the normal derivative of G.
From the properties of the spectrum of the negative Laplacian listed in Sect. 2.5.1,

it follows that the Green’s function has a formal expansion in terms of the complete
set of orthonormal eigenfunctions:

G(x,y) =
∞

∑
n=1

φn(x)φn(y)
λn

. (2.5.13)

This is straightforward to establish, since

∇2
yG(x,y) = ∇2

y

(
∞

∑
n=1

φn(x)φn(y)
λn

)

=
∞

∑
n=1

φn(x)∇2
yφn(y)

λn
=−

∞

∑
n=1

φn(x)λnφn(y)
λn

=−
∞

∑
n=1

φn(x)φn(y) =−δ (x− y).

We have reversed the order of summation and integration and used the completeness
relation (2.5.9). Note that the definition of the Green’s function has to be slightly
modified in the case of Neumann boundary conditions, since there exists a zero
eigenvalue. The so-called generalized or modified Neumann Green’s function has
the eigenfunction expansion

G(x,y) =
∞

∑
n=1

φn(x)φn(y)
λn

. (2.5.14)
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Since the completeness relation (2.5.9) has to be extended to include the constant
normalized eigenfunction φ0(x) = 1/

√|Ω |, where |Ω | denotes the volume of the
bounded domain Ω , we see that the Neumann Green’s function satisfies

∇2
yG(x,y) =

1
|Ω | − δ (x− y). (2.5.15)

One of the significant features of the Dirichlet or Neumann Green’s function G(x,y)
in two and three dimensions is that it is singular in the limit x→ y. Moreover, these
singularities take the specific form

G(x,y)∼ ln(|x− y) (in 2D) , G(x,y)∼ 1
|x− y| (in 3D). (2.5.16)

The nature of these singularities is established in Box 2C.

Box 2C. The 2D and 3D Green’s function for the steady-state diffu-
sion equation.

Let us begin by considering Laplace’s equation in R
2:

∇2u(x) = 0, x ∈ R
2.

Since there are no boundaries, this equation is symmetric with respect
to rigid body translations and rotations in the plane. This implies that if
u(x) is a solution to Laplace’s equation, then so are v(x) = u(x− a) and
w(x) = u(Rθ x). Here a is a constant vector and Rθ is the 2× 2 rotation
matrix about the origin

Rθ =

(
cos(θ ) −sin(θ )
sin(θ ) cos(θ )

)
.

This suggests that we look for a radially symmetric solution u = u(r).
Introducing polar coordinates, Laplace’s equation becomes

d2u
dr2 +

1
r

du
dr

= 0, 0 < r < ∞.

The radially symmetric solution is thus of the form

u(r) =C0 ln(r)+C1

for constants C0,C1. Similarly, radially symmetric solutions in R
3 satisfy

Laplace’s equation

d2u
dr2 +

2
r

du
dr

= 0, 0 < r < ∞,
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which has the solution

u(r) =
C0

r
+C1.

For convenience, choosing C1 = 0, C0 = 1/4π (in 3D), and C0 =−1/2π
(in 2D), we obtain the fundamental solution of the Laplace equation

K(x) =− 1
2π

ln |x| (in 2D) , K(x) =
1

4π |x| (in 3D) .

The fundamental solution satisfies Laplace’s equation everywhere except
the origin, where it is singular. It turns out that K satisfies the equation

∇2K(x) =−δ (x).

We will show this for the 3D case.

Let f ∈ L2(R3) be a function that vanishes at ∞. Define the function

u(x) =
∫

R3
K(x− y) f (y)dy =

1
4π

∫

R3

f (y)
|x− y|dy.

We will prove that ∇2u=− f and hence ∇2K =−δ . First, it is convenient
to rewrite the expression for u as

u(x) =
1

4π

∫

R3

f (x− y)
|y| dy.

Since ∇2
x f (x− y) = ∇2

y f (x− y),

∇2u(x) =
∫

R3

1
|y|∇

2
y f (x− y)dy.

We would like to integrate by parts, but since K(y) is singular at y = 0,
we first have to isolate the origin by surrounding it with a small sphere
Br(0) of radius r. That is, we write

∇2u(x) =
[∫

Br(0)
+

∫

R3\Br(0)

)
1

4π |y|∇
2
y f (x− y)dy≡ Ir + Jr.

Here R3\Br(0) denotes R3 excluding the sphere around the origin. Using
spherical polar coordinates,

|Ir| ≤
max |∇2

y f |
4π

∫

Br(0)

1
|y|dy = max |∇2

y f |
∫ r

0
ρdρ

=
max |∇2

y f |
2

r2 → 0 as r→ 0.



2.6 Appendix: An Informal Introduction to Stochastic Calculus 77

Recalling that f vanishes at infinity, we can integrate Jr by parts twice.
First,

Jr =
1

4π

∫

R3\Br(0)

[
∇y ·
(

1
|y|∇y f (x− y)

)
−∇y

1
|y| ·∇y f (x− y)

]
dy

=
1

4π

∫

R3\Br(0)
∇y ·
(

1
|y|∇y f (x− y)− f (x− y)∇y

1
|y|
)

dy

+
1

4π

∫

R3\Br(0)
f (x− y)∇2

y
1
|y|dy.

Using the fact that ∇2
y(1/|y|) = 0 in R

3\Br(0), and applying the diver-
gence theorem, we have

Jr =
1

4π

∫

∂Br(0)

(
1
|y|∇y f (x− y)− f (x− y)∇y

1
|y|
)
·nydy.

The first integral vanishes in the limit r→ 0, since

1
4πr

∣
∣
∣
∣

∫

∂Br(0)
∇y f (x− y) ·nydy

∣
∣
∣
∣≤ r max |∇y f | → 0.

On the other hand, since ∇y(1/|y|) =−y/|y|3 and ny =−y/r, the second
integral yields

1
4π

∫

∂Br(0)
f (x−y)∇y

1
|y| ·nydy=

1
4πr2

∫

∂Br(0)
f (x−y)dy→ f (x) as r→ 0.

We conclude that Ir → 0 and Jr →− f (x) as r → 0, which implies that
∇2u = − f and ∇2K = −δ . A similar analysis can be carried out in 2D
using the logarithmic fundamental solution. Finally, given the properties
of the fundamental solution K(x), we can construct the Green’s function
for a boundary value problem in terms of K(x) and a non-singular or
regular part that satisfies Laplace’s equation everywhere, that is,

G(x,y) = K(x− y)+R(x,y).

We will use this result in Sect. 7.2, when considering narrow escape prob-
lems and diffusion to small targets.

2.6 Appendix: An Informal Introduction to Stochastic Calculus

In this appendix we present an informal introduction to stochastic calculus, fol-
lowing along the lines of Jacobs [298]. A more detailed treatment can be found
in Gardiner [204], and a rigorous mathematical account can be found in [483].
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The basic approach is to treat a continuous-time stochastic process as the limit of
a discrete-time process. That is, an SDE prescribes how a stochastic variable X(t)
changes in each infinitesimal time step dt. Determining changes over finite times
then requires evaluating an associated stochastic integral. In order to make sense of
this, we discretize time into small, but finite, intervals of duration Δ t and consider a
corresponding stochastic difference equation for Xn = X(nΔ t). A more abstract for-
mulation of probability theory and discrete-time stochastic processes is presented in
Chap. 11.

2.6.1 What Is a Continuous Stochastic Process?

Suppose that an experiment is carried out over a time interval of length T and has a
given set of possible outcomes Ω . In the case of tracking a single molecule diffusing
in the cell membrane, Ω could be the set of all possible trajectories. On the other
hand, in the case of an ion channel, Ω could specify whether the channel is open
or closed. Each time the experiment is run, one obtains a particular realization of
a continuous-time stochastic process (or random function) X(ω , t) with ω ∈ Ω . (If
the time interval is sampled at discrete times, then one has a discrete-time stochastic
process or random sequence.) For fixed ω , X(ω , t) = Xω(t) is a function of time
corresponding to a particular trajectory in state space, which is specified by the
parameter ω . On the other hand, fixing time t yields a family of random variables
X(ω , t) = Xt(ω) that are parameterized by t. In the case of diffusion Xt(ω) is a
continuous random variable, whereas for an ion channel Xt(ω) is a discrete random
variable (see Sect. 1.3). For concreteness, we will focus on the continuous case. In
physical and biological applications, the explicit dependence on the events ω and
the nature of the underlying probability space are ignored, and one simply writes
X = X(t). The cumulative distribution function of the stochastic process is defined
according to

P(x, t) = prob[X(t)≤ x]. (2.6.1)

Using the frequency interpretation of probability, this represents the fraction of trials
for which the trajectory through state space does not exceed the value x at time
t. One can then define the corresponding probability density (assuming it exists)
according to

p(x, t) =
∂P(x, t)

∂x
. (2.6.2)

Moreover, as in classical probability theory, we can introduce joint cumulative dis-
tributions and densities

P(x1, . . . ,xn;t1, . . . , tn) = Prob[X(t1)≤ x1, . . . ,X(tn)≤ xn].
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and

p(x1, . . . ,xn;t1, . . . , tn) =
∂ nP(x1, . . . ,xn; t1, . . . , tn)

∂x1 . . .∂xn
.

A further extension is the conditional probability density, which takes the form (for
n = 2)

p(x2, t2|x1, t1) =
p(x1,x2; t1, t2)

p(x1, t1)
. (2.6.3)

Thus, p(x2, t2|x1, t1) is the probability density for X(t2) conditioned on X(t1) = x1.
Given a probability density p, one can define various moments of the stochastic

process. Some important examples are the mean

x(t) = 〈X(t)〉=
∫ ∞

−∞
xp(x, t)dx, (2.6.4)

and the two-point autocorrelation function

〈X(t1)X(t2)〉=
∫ ∞

−∞

∫ ∞

−∞
x1x2 p(x1,x2; t1, t2)dx1dx2. (2.6.5)

A related quantity is the covariance given by

C(t1, t2) = 〈(X(t1)− x(t1))(X(t2)− x(t2))〉 = 〈〈X(t1)X(t2)〉〉. (2.6.6)

The equal-time covariance C(t, t) is the corresponding variance. Double brackets
are often used to denote cumulants of the stochastic process. The latter are defined
using a generating function:

〈
exp

(
−i
∫ t

0
X(t ′)dt ′)

)〉
(2.6.7)

= exp

[
∞

∑
n=1

(−i)m

m!

∫ t

0
. . .

∫ t

0
〈〈X(t1)X(t2) . . .X(tn)〉〉dt1dt2 . . .dtn

]

.

An important concept in stochastic processes is stationarity: a stochastic process
X(t) is stationary if every joint probability distribution for finite n is invariant under
a global time shift:

P(x1,x2, . . . ,xn;t1 + τ, t2 + τ, . . . , tn + τ) = P(x1,x2, . . . ,xn; t1, t2, . . . , tn)

for arbitrary τ . It follows that P(x, t) is time-independent and the covariance
C(t.t ′) =C(t− t ′).

A very important type of stochastic process is a Markov process, which is defined
by the property that the conditional probability density satisfies

p(xn, tn|x1, . . . ,xn−1;t1, . . . , tn−1) = p(xn, tn|xn−1, tn−1). (2.6.8)
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In other words, given (xn−1, tn−1), the process has no “memory” of values at earlier
times. It follows that a Markov process is fully determined by the two functions
p(x1, t1) and p(x2, t2|x1, t1). For example,

p(x1,x2,x3;t1, t2, t3) = p(x3, t3|x1,x2;t1, t2)p(x1,x2;t1, t2)

= p(x3, t3|x1,x2;t1, t2)p(x2, t2|x1, t1)p(x1, t1)

= p(x3, t3|x2, t2)p(x2, t2|x1, t1)p(x1, t1). (2.6.9)

However, the functions p(x1, t1) and p(x2, t2|x1, t1) cannot be chosen arbitrarily,
since they must obey two important identities. The first is obtained by integrating

p(x1,x2;t1, t2) = p(x2, t2|x1, t1)p(x1, t1)

with respect to x1:

p(x2, t2) =
∫ ∞

−∞
p(x2, t2|x1, t1)p(x1, t1)dx1. (2.6.10)

The other is obtained by integrating Eq. (2.6.9) with respect to x2, assuming that
t1 < t2 < t3:

p(x1,x3;t1, t3) = p(x1, t1)
∫ ∞

−∞
p(x3, t3|x2, t2)p(x2, t2|x1, t1)dx2.

Since p(x1,x3; t1, t3) = p(x3, t3|x1, t1)p(x1, t1), this reduces to the Chapman–
Kolmogorov equation

p(x3, t3|x1, t1) =
∫ ∞

−∞
p(x3, t3|x2, t2)p(x2, t2|x1, t1)dx2. (2.6.11)

2.6.2 Ito Stochastic Integrals

Suppose that the time interval [0,T ] is divided into N increments of size Δ t = T/N
and set tn = nΔ t. Consider the stochastic difference equation

ΔX(tn)≡ X(tn+1)−X(tn) = ΔWn,

where ΔWn, n = 0, . . . ,N− 1, are independent and identically distributed Gaussian
variables with zero mean and variance σ2 = Δ t:

P(ΔW ) =
1√

2πΔ t
e−(ΔW)2/2Δ t . (2.6.12)

(Note that a sequence of random variables is independent and identically distributed
(i.i.d.) if each random variable has the same probability distribution as the others



2.6 Appendix: An Informal Introduction to Stochastic Calculus 81

and all are mutually independent.) Iterating the difference equation starting from
X(0) = 0 yields

Xn ≡ X(nΔ t) =
n−1

∑
j=0

ΔWj.

Using the fact that the sum of Gaussian random variables is also a Gaussian,
it follows that the probability density for Xn is a Gaussian. Thus, we only need
to determine its mean and variance. Since the ΔWj are all independent, we have

〈Xn〉=
n−1

∑
j=0

〈ΔWj〉= 0, Var(Xn) =
n−1

∑
j=0

Var(ΔWj) = nΔ t,

and

P(Xn) =
1√

2πnΔ t
e−X2

n /(2nΔ t).

We can now construct a corresponding continuous-time process by taking the limit
N → ∞ such that Δ t → 0 with NΔT = T fixed. In particular,

X(T ) = lim
N→∞

N−1

∑
j=0

ΔWj ≡
∫ T

0
dW (t)≡W (T ),

where W (T ) is identified as a Wiener process—a Gaussian process with indepen-
dent and stationary increments. (For the moment, we will not worry about the pre-
cise meaning of convergence and limits of stochastic variables—this will be ad-
dressed below.) X(T ) is still a Gaussian, whose mean and variance are obtained by
taking the limit N → ∞ of the results for Xn. We deduce that W (t) has the Gaussian
probability density

P(w(t)) =
1√
2πt

e−w(t)2/2t .

Now consider the modified stochastic difference equation

Xn+1−Xn = f (tn)ΔWn,

where f (t) is a deterministic function of time. Once again Xn is a Gaussian random
variable, with

〈Xn〉=
n−1

∑
j=0

〈 f (t j)ΔWj〉= 0, Var(Xn) =
n−1

∑
j=0

Var( f (t j)ΔWj) =
n−1

∑
j=0

f (t j)
2Δ t.

Taking the continuum limit along identical lines to the previous case yields the
continuous-time Gaussian variable

X(T ) = lim
N→∞

N−1

∑
j=0

f (t j)ΔWj ≡
∫ T

0
f (t)dW (t), (2.6.13)



82 2 Diffusion in Cells: Random Walks and Brownian Motion

with zero mean and variance

Var(X(T )) =
∫ T

0
f (s)2ds. (2.6.14)

Substituting for X(T ) into this equation gives
〈∫ T

0
f (t)dW (t)

∫ T

0
f (s)dW (s)

〉
=
∫ T

0
f (s)2ds,

which can be captured by the rule

〈dW (t)dW (s)〉 = δ (t− s)dt ds. (2.6.15)

However, care must be taken with this rule when δ (t− s) appears inside an integral
having t or s as one of its limits. For example, consider the double stochastic integral

∫ T

0

[∫ t

0
f (s)dW (s)

]
g(t)dW(t)≡ lim

N→∞

N−1

∑
n=0

[
n−1

∑
m=0

f (tm)ΔWm

]

g(tn)ΔWn.

We see that there are no terms in the double sum on the right-hand side that have a
product of Wiener increments in the same time interval. Thus, taking the expectation
of both sides, 〈∫ T

0

[∫ t

0
f (s)dW (s)

]
g(t)dW (t)

〉
= 0.

Hence, we require

∫ t

0
f (s)δ (t− s)ds = 0,

∫ t

0
f (s)δ (s)ds = f (0). (2.6.16)

Following the previous examples, let us turn to a discretized version of the general
SDE for X(t),

dX = a(X , t)dt + b(X , t)dW(t), (2.6.17)

which takes the form

Xn+1−Xn = a(Xn, tn)Δ t + b(Xn, tn)ΔWn. (2.6.18)

Iterating this equation starting from a fixed X(0) = x0 yields

XN = x0 +
N−1

∑
n=0

a(Xn, tn)Δ t +
N−1

∑
n=0

b(Xn, tn)ΔWn.

The continuum limit then gives the stochastic integral equation

X(T ) = x0 +

∫ T

0
a(X(t), t)dt +

∫ T

0
b(X(t), t)dW (t), (2.6.19)
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with the final term defined as the Ito stochastic integral

∫ T

0
b(X(t), t)dW(t) = lim

N→∞

N−1

∑
n=0

b(Xn, tn)ΔWn. (2.6.20)

The integral equation is not very useful for generating an explicit solution for X(t).
However, from the definition of the Ito stochastic integral, it immediately follows
that 〈∫ T

0
b(X(t), t)dW(t)

〉
= 0, (2.6.21)

since Xn is a function of previous Wiener increments ΔWn−1, . . . ,ΔW0 so it is uncor-
related with ΔWn. The stochastic difference equation (2.6.18) is the starting point
for developing numerical schemes for solving an SDE. However, if one is inter-
ested in carrying out explicit calculations, it is usually more useful to go to the
associated FPE for the probability density. In order to derive the FP equation from
the corresponding SDE, we first need to consider the object (dW )2.

In terms of Wiener increments,

∫ T

0
(dW (t))2 = lim

N→∞

N−1

∑
n=0

(ΔWn)
2.

Taking the expectation of both sides and using the fact that each ΔWn is an i.i.d.
gives 〈∫ T

0
(dW (t))2

〉
=

∫ T

0
〈(dW (t))2〉=

∫ T

0
dt = T. (2.6.22)

What about the variance? Using the Gaussian probability density (2.6.12), it is sim-
ple to show that

Var[(ΔW )2] = 2(Δ t)2 = 2T 2/N2.

Hence,

Var

[∫ T

0
(dW (t))2

]
= lim

N→∞
Var

[
N−1

∑
n=0

(ΔWn)
2

]

= lim
N→∞

N−1

∑
n=0

Var
[
(ΔWn)

2]

= lim
N→∞

2T 2

N
= 0.

We thus obtain the surprising result that the integral of (dW )2 is deterministic and
thus equal to its mean: ∫ T

0
(dW (t))2 = T =

∫ T

0
dt. (2.6.23)

In other words, we can set (dW )2 = dt inside integrals, a result known as Ito’s
rule (see below). Using the higher moments of Gaussians, it can also be shown that
dW m = 0 for m > 2. We now consider a result from stochastic calculus, which will
be useful when discussing numerical simulations, in particular Milstein’s method
(see Sect. 2.6.6).
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Example 2.3.
∫ t

t0
W (t ′)dW (t ′). Consider the discrete sum

Sn =
N−1

∑
n=0

WnΔWn

=
1
2

N−1

∑
n=0

[
(Wn +ΔWn)

2−W 2
n − (ΔWn)

2]

=
1
2
[W (t)−W(t0)]

2− 1
2

N−1

∑
n=0

(ΔWn)
2,

where W0 = W (t0) and WN−1 = W (t). We now calculate the mean and variance of
the last term. First,

〈
N−1

∑
n=0

(ΔWn)
2

〉

=
N−1

∑
n=0

〈
(ΔWn)

2〉=
N−1

∑
n=0

(tn+1− tn) = t− t0.

Second,

〈[
N−1

∑
n=0

(ΔWn)
2− (t− t0)

2

]2〉

=

〈[
N−1

∑
n=0

(ΔWn)
4 + 2 ∑

n<m
(ΔWn)

2(ΔWm)
2− 2(t− t0)

N−1

∑
n=0

(ΔWn)
2 +(t− t0)

2

]〉

.

Since ΔWn and ΔWm are independent Gaussian random variables for n �=m, we have

〈
(ΔWn)

2(ΔWm)
2〉= (tn+1− tn)(tm+1− tm),

and the fourth moment of a Gaussian is given by

〈
(ΔWn)

4〉= 3
〈
(ΔWn)

2〉2 = 3(tn+1− tn)
2.

Hence,
〈

N−1

∑
n=0

(ΔWn)
2

〉

= 2
N−1

∑
n=0

(tn+1− tn)
2 +∑

n,m
[(tn+1− tn)− (t− t0)][(tm+1− tm)− (t− t0)]

= 2
N−1

∑
n=0

(tn+1− tn)
2 → 0 as N → ∞.

We deduce that
∫ t

t0
W (t ′)dW (t ′) =

1
2
[W (t)2−W(t0)

2− (t− t0)]. (2.6.24)
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2.6.3 Ito’s Formula and the Fokker–Planck Equation

The result dW (t)2 = dt has important implications for how one carries out a change
of variables in stochastic calculus. This is most directly established by consider-
ing the SDE for an arbitrary function f (X(t)) with X(t) evolving according to
Eq. (2.6.17):

d f (X(t)) = f (X(t)+ dX(t))− f (X(t))

= f ′(X(t))dX(t)+
1
2

f ′′(X(t))dX(t)2 + . . .

= f ′(X(t))[a(X , t)dt + b(X , t)dW(t)]+
1
2

f ′′(X(t))b(X , t)2dW (t)2,

where all terms of higher order than dt have been dropped. Now using dW (t)2 = dt,
we obtain the following SDE for f , which is known as Ito’s formula:

d f (X(t)) =

[
a(X(t), t) f ′(X(t))+

1
2

b(X , t)2 f ′′(X(t))

]
dt + b(X , t) f ′(X(t))dW (t).

(2.6.25)
Hence, changing variables in Ito calculus is not given by ordinary calculus unless f
is a constant or a linear function.

We can now use Ito’s formula to derive the FP equation for an Ito SDE. First,

〈d f (X(t))〉
dt

=

〈
a(X(t), t) f ′(X(t))+

1
2

b(X(t), t)2 f ′′(X(t))

〉

=
∫ [

a(x, t) f ′(x)+
1
2

b(x, t)2 f ′′(x)
]

p(x, t)dx,

=

∫
f (x)

[
− ∂

∂x
(a(x, t)p(x, t))+

1
2

∂ 2

∂x2 (b(x, t)
2 p(x, t))

]
dx, (2.6.26)

after integration by parts, where p(x, t) is the probability density of the stochastic
process X(t) under the initial condition X(t0) = x0. However, we also have

〈d f (X(t))〉
dt

=

〈
d f (X(t))

dt

〉

=
d
dt
〈 f (X(t))〉

=

∫
f (x)

∂
∂ t

p(x, t)dx. (2.6.27)

Comparing Eqs. (2.6.26) and (2.6.27) and using the fact that f (x) is arbitrary, we
obtain the Ito version of the FP equation

∂
∂ t

p(x, t) =− ∂
∂x

(a(x, t)p(x, t))+
1
2

∂ 2

∂x2 (b(x, t)
2 p(x, t)). (2.6.28)
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2.6.4 Multiplicative Noise and Stratonovich Integrals

It turns out that there is more than one way to define a stochastic difference equation
driven by an incremental Wiener process and thus more than one way to obtain an
SDE in the continuum limit. This issue only arises in the case of multiplicative noise,
that is, when the term multiplying dW (t) depends on the state variable X(t). Recall
that in the Ito integral Eq. (2.6.20), it is the value of b(x, t) at the start of the nth time
step that multiplies ΔWn, so that there are no contributions of the form (ΔWn)

2. An
alternative definition of a stochastic integral is the Stratonovich integral

∮ T

0
b(X(t), t)dW(t) = lim

N→∞

N−1

∑
n=0

b

(
Xn+1 +Xn

2
, tn

)
ΔWn, (2.6.29)

where we have used
∮

to distinguish it from the Ito integral. Now b depends on the
value Xn+1 at the end of the nth time step, which means there will be an extra term
involving (ΔWn)

2. In order to compare the Ito and Stratonovich integrals, suppose
that Xn evolves according to the stochastic difference equation (2.6.18). Thus, in the
continuum limit, X(t) is the solution to an Ito SDE. Suppose that we Taylor expand
the nth term in the sum defining the Stratonovich integral about the point Xn and set
bn = b(Xn, tn):

b

(
Xn+1 +Xn

2
, tn

)
= bn +

ΔXn

2
∂bn

∂x
+

1
2

(
ΔXn

2

)2 ∂ 2bn

∂x2 + . . . .

Substituting for ΔXn using Eq. (2.6.18) and dropping terms that are higher order
than Δ t shows that

b

(
Xn+1 +Xn

2
, tn

)
= bn +

(
an

2
∂bn

∂x
+

b2
n

8
∂ 2bn

∂x2

)
Δ t +

(
bn

2
∂bn

∂x

)
ΔWn.

Applying this result to the sum appearing in the definition of the Stratonovich inte-
gral, Eq. (2.6.29), and again dropping higher-order terms in Δ t yields the result

N−1

∑
n=0

b

(
Xn+1 +Xn

2
, tn

)
ΔWn =

N−1

∑
n=0

bnΔWn +
N−1

∑
n=0

bn

2
∂bn

∂x
(ΔWn)

2.

Finally, taking the continuum limit with dW (t)2 = dt, we have

∮ T

0
b(X(t), t)dW(t) =

∫ T

0
b(X(t), t)dW(t)+

1
2

∫ T

0

∂b(X(t), t)
∂x

b(X(t), t)dt.

(2.6.30)

Now suppose that Y (t) is a stochastic process evolving according to the Stratonovich
SDE

dY = a(Y, t)dt + b(Y, t)dW(t). (2.6.31)
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This means that the integral equation satisfied by Y (t) is based on the Stratonovich
integral, that is,

Y (t) = y0 +

∫ t

0
a(Y (s),s)ds+

∮ t

0
b(Y (t), t)dW (t). (2.6.32)

Using Eq. (2.6.30), we can rewrite the solution in terms of an Ito integral
according to

Y (t) = y0 +

∫ t

0

[
a(Y (s),s)+

1
2

∂b(Y (s),s)
∂y

b(Y (s),s)

]
ds+

∫ t

0
b(Y (s),s)dW (s).

(2.6.33)
The latter is the solution to an equivalent Ito SDE of the form

dY =

[
a(Y (t), t)+

b(Y (t), t)
2

∂b(Y (t), t)
∂y

]
dt + b(Y (t), t)dW (t). (2.6.34)

Finally, given that we know the FP equation corresponding to an Ito SDE, we can
immediately write down the FP equation corresponding to the Stratonovich SDE
(2.6.31):

∂
∂ t

p(y, t) =− ∂
∂y

(a(y, t)p(y, t))+
1
2

∂
∂y

(
b(y, t)

∂
∂y

[b(y, t)p(y, t)]

)
. (2.6.35)

2.6.5 Ito Integration and Convergence

So far we have not been specific about the form of convergence used to take the
continuum limit of a discrete sum of random variables in order to define a stochastic
integral. Following Gardiner [204], we now revisit some results on Ito calculus using
the notion of convergence in the mean-square. That is, we define a random variable
X to be the limit of a sequence of random variables {X1,X2, . . . ,Xn} if

lim
n→∞

〈|X−Xn|2
〉
= 0, (2.6.36)

that is, for any ε > 0, there exists an integer N = N(ε) such that for all n > N,〈|X−Xn|2
〉
< ε . Given this definition of convergence, a stochastic process X(t)

is said to be mean-square integrable on the interval (0, t) if there exists a random
process Z(t) such that the following limit exists:

lim
n→∞

〈
(Zn−Z(t))2

〉
= 0, (2.6.37)

where

Zn = Δ t
n

∑
j=0

X( jΔ t), nΔ t = t.

We then formally write Z(t) =
∫ t

0 X(s)ds.
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Suppose that G(t) is a non-anticipating function, that is, G(t) is statistically
independent of W (s)−W (t) for all s > t, where W (t) is a Wiener process. We will
show that ∫ t

0
G(t ′)[dW (t ′)]2 =

∫ t

0
G(t ′)dt ′,

in the mean-square sense, that is, Eq. (2.6.37) holds with

Zn =
n

∑
j=0

G j[ΔWj]
2, Z(t) =

∫ t

0
G(t ′)dt ′,

where G j = G( jΔ t) and ΔWj =W (( j+ 1)Δ t)−W( jΔ t). Consider

I = lim
n→∞

〈[

∑
j

G j(ΔW 2
j −Δ t)

]2〉

= lim
n→∞

〈

∑
j

G2
j(ΔW 2

j −Δ t)2 + 2 ∑
i> j

GiG j(ΔW 2
j −Δ t)(ΔW 2

i −Δ t)

〉

.

Note that G2
j is statistically independent of (ΔW 2

j −Δ t)2 and GiG j(ΔW 2
j −Δ t) is

statistically independent of (ΔW 2
i −Δ t) for j < i. Using the Gaussian nature of ΔWi,

we have
〈ΔW 2

i 〉= Δ t, 〈(ΔW 2
i −Δ t)2〉= 2Δ t2.

Thus we find that
I = 2 lim

n→∞∑
j

G2
jΔ t2 = 0,

assuming that G(t) is bounded. Thus, for Ito integrals dW (t)2 acts like dt.

2.6.6 Simulation of Stochastic Differential Equations

Consider the scalar SDE

dX = a(X)dt + b(X)dW(t), (2.6.38)

where W (t) is a Wiener process. As with ordinary differential equations, the sim-
plest numerical scheme is to use a direct Euler method. That is, given the solution
X(t) at time t, the solution at time t +Δ t is given by X(t +Δ) = X(t)+ΔX , where
ΔX is determined explicitly by the equation

ΔX = a(X(t))Δ t + b(X(t))ΔW, (2.6.39)
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for a Gaussian random variable ΔW with zero mean and variance equal to Δ t.
Iterating this process using a random number generator to choose a new value of
ΔW at each time step Δ t results in an approximation of a sample path of the stochas-
tic process X(t). Repeating the simulation over many independent trials up to a time
T then generates a histogram of values of X(T ), which can be used to determine
an approximation of the probability density for X(T ) and to estimate the mean and
variance. The direct Euler method is easily extended to multivariate SDEs and those
with nonautonomous coefficients a,b.

The accuracy of Euler’s method increases with decreasing step size Δ t, and the
approximate sample path converges in mean-square to the true sample path in the
limit Δ t → 0. For a rigorous discussion of estimating the accuracy of a stochastic
numerical algorithm see the book by Kloeden and Platen [338]. Here we give a
heuristic definition of the numerical error (see also [204, 298]). Suppose that the
time interval (0,T ) is divided into N infinitesimal subintervals of size τ = T/N, so
that the stochastic process X(t) is sampled at the times τn with n = 0, . . . ,τN . Let
xn = X(τn) be the exact solution on a given sample path and yn the corresponding
numerical approximation of the solution on the same sample path. At the nth time
step let en = xn−yn and define the error at time T to be the root mean-square (RMS)
value

E(T ) =
√
〈e2

N〉. (2.6.40)

In the case of the direct Euler method,

E(T )∼ τ1/2,

and the Euler method is said to be accurate to τ1/2 or that the order of convergence is
τ1/2. (In general the order of convergence will depend on how we define the numer-
ical error, that is, the particular measure of convergence. We will restrict ourselves
to mean-square convergence.) One practical method for checking the accuracy of a
numerical simulation of a given sample path is to repeat the simulation after halving
the time step Δ t. Suppose that T = NΔ t and the sample path is generated by the
N random increments ΔWn, n = 0, . . . ,N− 1. If we then halve the time step, then
in order to generate an approximation to the same sample path, it is necessary to
produce a set of 2N Gaussian random numbers ΔŴm, m = 1, . . .2N, such that

ΔŴ2n +ΔŴ2n+1 = ΔWn, n = 0, . . . ,N− 1.

Given the values ΔWn, this can be realized by generating N random variables rn with
zero mean and variance Δ t/2, and setting

ΔŴ2n = rn, ΔŴ2n+1 = ΔWn− rn.

One can thus successively halve the time step until errors are within acceptable
bounds for the given application. The method can also be used to estimate the rate
of convergence.
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2.6.7 Milstein’s Method

The direct Euler method is a low-order numerical method for SDEs due to the fact
that in approximating an SDE one needs to take into account the fact that dW (t) is of
order

√
dt. Suppose that we rewrite the scalar SDE (2.6.38) as the integral equation

X(t) = X(t0)+
∫ t

t0
a(X(s))ds+

∫ t

t0
b(X(s))dW (s). (2.6.41)

We recover Euler’s method by taking t = t0 +Δ t, with X(t0) known, and approxi-
mating the functions a,b in the interval s ∈ (t0, t0 +Δ t) according to

a(X(s))≈ a(X(t0)), b(X(s)≈ b(X(t0)).

In order to obtain a more accurate approximation, we apply Ito’s formula (2.6.25)
to the functions a and b. For example,

b(X(s)) = b(X(t0))+
∫ s

t0

[
a(X(s′))b′(X(s′))+

1
2

b(X(s′))2b′′(X(s′))
]

ds′

+
∫ s

t0
b(X(s′))b′(X(s′))dW (s′) (2.6.42)

and similarly for a(X(s)). Iterating these equations by successively applying Ito’s
formula to a(X(s′)) and so forth generates an approximation of a(X(s)) and b(X(s))
in terms of a(X(t0)),b(X(t0)), higher-order derivatives of a(x),b(x) evaluated at
x0, and a remainder. Substituting such an expansion of a(X(s)) and b(X(s)) into
Eq. (2.6.41) generates a higher-order numerical scheme. The Milstein method is the
next higher-order approximation to the stochastic integral Eq. (2.6.41) after Euler’s
method. It is obtained by substituting

a(X(s))≈ a(X(t0)), b(X(s))≈ b(X(t0))+ b(X(t0))b
′(X(t0))

∫ s

t0
dW (s′)

into Eq. (2.6.41) for t = t0 +Δ t and s ∈ (t0, t0 +Δ t). This yields the following equa-
tion for ΔX :

ΔX = a(X(t0))
∫ t0+Δ t

t0
ds+ b(X(t0))

∫ t0+Δ t

t0
dW (s)

+
1
2

b(X(t0))b
′(X(t0))

∫ t0+Δ t

t0

∫ s

t0
dW (s)dW (s′).

The double integral can be evaluated using Eq. (2.6.24). That is,
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∫ t0+Δ t

t0

∫ s

t0
dW (s)dW (s′) =

∫ t0+Δ t

t0
[W (s)−W (t0)]dW (s)

=

∫ t0+Δ t

t0
W (s)dW (s)−W (t0)W (t0 +Δ t)

=
1
2
[W (t0 +Δ t)2−W(t0)

2−Δ t]−W(t0)W (t0 +Δ t)

=
1
2
[(ΔW )2−Δ t].

Hence, we arrive at the Milstein algorithm

ΔX =

[
a(X(t0))− 1

2
b(X(t0))b

′(X(t0))

]
Δ t + b(X(t0)ΔW

+
1
2

b(X(t0))b
′(X(t0))ΔW 2. (2.6.43)

It turns out that this algorithm has order Δ t accuracy, which improves upon the
√

Δ t
accuracy of Euler’s method.

The complexity of Milstein’s method increases when there are multiple noise
sources. Consider the multivariate SDE

dXi = ai(X(t), t)dt +
M

∑
j=1

Bi j(X(t), t)dWj(t),

where Wi(t) are independent Wiener processes. The Milstein approximation of this
equation takes the form

ΔXi = aiΔ t +
M

∑
j=1

Bi jΔWj +
M

∑
j,k=1

[
M

∑
m=1

Bm j
∂Bik

∂Xm

]∫ t0+Δ t

t0

∫ s

t0
dWj(t

′)dWk(s).

Unfortunately, only when j = k does the double integral reduce to a simple expres-
sion involving the discrete stochastic increments ΔWj along the lines of the scalar
case. However, it can be shown that the symmetrized integral is also reducible ac-
cording to

∫ t0+Δ t

t0

∫ s

t0
[dWi(s)dWj(s

′)+ dWj(s)dWi(s
′)] = ΔWiΔWj− δi, j(t− t0).

It follows that when the matrix G satisfies the set of relations (commutative noise)

M

∑
m=1

Bm j
∂Bik

∂xm
=

M

∑
m=1

Bmk
∂Bi j

∂xm
(2.6.44)

for all i, j,k, the double integral can be symmetrized and Milstein’s algorithm
becomes
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ΔXi = aiΔ t +
M

∑
j=1

Bi jΔWj +
1
2

M

∑
j,k=1

[
M

∑
m=1

Bm j
∂Bik

∂Xm

]

ΔWjΔWk

− 1
2

M

∑
j,k=1

[
M

∑
m=1

Bm j
∂Bi j

∂Xm

]

Δ t.

2.6.8 Runge–Kutter and Implicit Methods

One limitation of the Milstein method is that it requires an evaluation of the first
derivative of the function b(X) or its higher-dimensional matrix version. In a simi-
lar fashion to deterministic equations, one can use a Runger–Kutta method to elim-
inate the need to evaluate any derivatives. A first-order method that builds upon the
Milstein algorithm has been developed by Platen [338]. It is based on using the
approximation

b(X)b′(X)≈ 1√
Δ t

[b(X̂)− b(X)],

where
X̂ = X + aΔ t + b

√
Δ t.

Substituting into Eq. (2.6.43) yields the Milstein–Platen method

ΔX = aΔ t + bΔW +
1

2
√

Δ t
[b(X̂)− b(X)][(ΔW)2−Δ t]. (2.6.45)

Similarly, for a multivariate process, one substitutes into the Milstein method the
approximation

M

∑
m=1

Bm j(X, t)
∂Bik(X, t)

∂Xm
≈ 1√

Δ t
[Bi j(X̂(k))−Bi j(X)]

with
X̂ (k)

i = Xi + aiΔ t +Bik

√
Δ t.

Another issue that numerical methods for solving SDEs share with their determinis-
tic counterparts is instability. This refers to a rapid, exponential increase in numer-
ical error, which can occur spontaneously even though the algorithm appears to be
converging to a numerically accurate solution prior to the instability. This feature
is a particular problem for “stiff” differential equations, that is, those that have two
or more disparate time scales. Often an instability can be fixed by using an implicit
rather than an explicit method. For example, consider a simple Euler scheme for a
single variable,

X(t +Δ t) = X(t)+ΔX(t) = X(t)+ a(X(t), t)Δ t+ b(X(t), t)ΔW(t).
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The implicit version is obtained by replacing X(t) with X(t +Δ t) in the functions
a,b:

X(t +Δ t) = X(t)+ΔX(t) = X(t)+ a(X(t+Δ t), t)Δ t + b(X(t+Δ), t)ΔW (t).

This is clearly an implicit equation for X(t +Δ t), which can be solved numerically
using the Newton–Raphson method.

Finally, note that we have focused on the speed and accuracy of numerical meth-
ods for generating sample paths of a SDE. Convergence to a sample path is known
as strong convergence. If one is only interested in properties of the corresponding
probability density such as the mean and variance, then these properties are deter-
mined by averaging over many sample paths. For a given numerical method, the
rate of convergence to the mean or variance tends to differ from the rate of strong
convergence and is thus referred to as weak convergence.

2.7 Exercises

Problem 2.1 (1D random walk). Consider the probability distribution for a 1D
unbiased random walk

PN(r) =
1

2N

N!
(

N + r
2

)
!

(
N− r

2

)
!
.

Using Stirling’s formula

logN!≈ N logN−N +
1
2

ln(2πN),

derive the Gaussian approximation

PN(r)∼ 1√
2πN

e−r2/2N .

This result includes a factor of 1/2 in order to take into account the fact that r is
even (odd) when N is even (odd).

Problem 2.2 (Random walk on a lattice). Consider a random walker on a 1D lat-
tice with sites � and displacement distribution p(�). The probability Pn(�) that the
walker is at site �+ �0 after n steps, starting at �0, satisfies the recurrence relation

Pn(�) = ∑
�′

p(�− �′)Pn−1(�
′).
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(For a homogeneous random walk, �0 is arbitrary so we can set �0 = 0.) Define the
generating function Γ (�,z) according to

Γ (�,z) = ∑
n≥0

znPn(�).

(a) Show that the generating function satisfies the equation

Γ (�,z) = δ�,0 + z∑
�′

p(�− �′)Γ (�′,z).

(b) Introduce the discrete Fourier transform

Γ̂ (k,z) = ∑
�

eik�Γ (�,z)

and define the structure function of the walk to be

λ (k) = ∑
�

eik�p(�).

From part (a), show that

Γ̂ (k,z) = 1+ zλ (k)Γ̂ (k,z),

so that

Γ̂ (k,z) =
1

1− zλ (k)
.

(c) For a standard RW with p(�) = (δ�,1 + δ�,−1)/2, we have λ (k) = cos(k). Using
the inverse transform

Γ (�,z) =
1

2π

∫ π

−π
e−ik�Γ̂ (k,z)dk,

and the result of part (b), evaluate the integral to show that

Γ (0,z) = (1− z2)−1/2.

Hint: make the change of variables t = tan(k/2).
(d) For a general structure function

Γ (�,z) =
1

2π

∫ π

−π

e−ik�

1− zλ (k)
dk,

divergence of the integral is only possible if λ (k0) = 1 for some k = k0. If this
holds then the integral will be dominated by the region around k0. Show eik0� = 1
for all � such that p(�)> 0 and hence λ (k) = λ (k− k0). It follows that the local
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behavior of 1−λ (k) near k0 is the same as the local behavior of 1−λ (k) around
the origin. Show that for small k and an unbiased RW, ∑� �p(�) = 0, we have

λ (k)≈ 1− σ2k2

2
, σ2 = ∑

�

�2 p(�).

Hence, deduce that an unbiased 1D RW is recurrent when the MSD per step is
finite.

Problem 2.3 (Chapman-Kolmogorov equation). Consider a stationary stochastic
process X(t) with initial condition X(0) = 0. Setting p(x, t|x′, t ′) = p(x− x′, t− t ′),
the Chapman-Kolmogorov equation takes the form

p(x, t) =
∫ ∞

−∞
p(x− y, t− τ) (y,τ)dy.

(a) Using Fourier transforms, show that the CK equation is satisfied if the charac-
teristic function G(k, t) has the general form lnG(k, t) = tg(k) for some function
g(k).

(b) Suppose that the probability density of the continuous process evolves according
to the equation

d p
dt

=

∫ ∞

−∞
w(x− y)[p(y, t)− p(x, t)]dy,

where w is a transition probability per unit time. That is, we have a jump process
for a continuous random variable. Using Fourier transforms, obtain the solution

p(x, t) =
1

2π

∫ ∞

−∞
exp

[
−ikx+ t

∫ ∞

−∞
w(x′)

[
eikx′ − 1

]
dx′
]

dk.

Hence determine g(k) for this process.

Problem 2.4 (Electrodiffusion). The flow of ions through channels in the cell
membrane is driven by the combination of concentration gradients and electric
fields. If interactions between the ions are ignored, then each ion can be treated as
an independent Brownian particle moving under the influence of the electric force
−q∇φ , where φ is the electrical potential and q is the charge on the ion. Multiply-
ing the corresponding FP equation by the number N of ions and using an Einstein
relation, we obtain the Nernst–Planck equation

∂c(x, t)
∂ t

=−∇ ·J, J(x, t) =−D

(
∇c+

qc
kBT

∇φ
)
,

where c denotes ion concentration. Treating an ion channel as a quasi-one-
dimensional domain, this reduces to the 1D equation

∂c(x, t)
∂ t

=−∂J
∂x

, J(x, t) =−D

(
∂c
∂x

+
qc

kBT
∂φ
∂x

)
.

p
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(a) Suppose that the cell membrane extends from x = 0 (inside) to x = L (outside)
and denote the extracellular and intracellular ion concentrations by ce and ci, re-
spectively. Solve the 1D steady-state Nernst–Planck equation to show that there
is zero flux through the membrane if the potential difference V = φi−φe across
the membrane is given by the Nernst potential

V =
kBT

q
ln

(
ce

ci

)
.

(b) Now suppose that there is a constant nonzero flux J of ions through the chan-
nel, and assume for simplicity that the electric field is uniform, that is, ∂φ/∂x =
−V/L. Solving the steady-state Nernst–Planck equation with boundary condi-
tions c(0) = ci,c(L) = ce, derive the Goldman–Hodgkin–Katz equation for the
current density:

I ≡ qJ =
D
L

q2V
kBT

ci− ce exp(−qV/kBT )
1− exp(−qV/kBT )

.

Check that the Nernst potential is recovered when J = 0.
(c) Consider two ion species with opposite charges q1 = −q2 = q. Applying part

(b) to the current for each ion species, derive an expression for the membrane
voltage V at which the total ionic current is zero.

Problem 2.5 (Ornstein–Uhlenbeck process). Consider the Ornstein–Uhlenbeck
process

dX =−kXdt +
√

DdW (t),

where W (t) is a Wiener process.

(a) Using the solution of the SDE,

X(t) = X(0)e−kt +
√

D
∫ t

0
e−k(t−t′)dW (t ′),

show that if the initial condition X(0) is Gaussian distributed with zero mean
and variance σ2 then

〈X(t)〉= 〈X(0)〉e−kt , Var[X(t)] = σ2e−2kt +
D
2k

[1− e−2kt ].

(b) The FP equation for the OU process is

∂ p(x, t)
∂ t

=
∂ [kxp(x, t)]

∂x
+

D
2

∂ 2 p(x, t)
∂x2 .

Taking the fixed (deterministic) initial condition X(0) = x0, the initial condition
of the FP equation is

p(x,0) = δ (x− x0).
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Introducing the characteristic function (Fourier transform)

Γ (z, t) =
∫ ∞

−∞
eizx p(x, t)dx,

show that
∂Γ
∂ t

+ kz
∂Γ
∂ z

=−D
2

z2Γ .

Use separation of variables to obtain a solution of the form

Γ (z, t) = Γ0(ze−kt)e−Dz2/4k

with Γ0 determined by the initial condition for p. Hence, obtain the result

Γ (z, t) = exp

[
−Dz2

4k
(1− e−2kt)+ izx0e−kt

]
.

(c) The probability density p(x, t) can be obtained from Γ (z, t) using the inverse
Fourier transform

p(x, t) =
1

2π

∫ ∞

−∞
e−izxΓ (z, t)dz.

Substituting for Γ using part (e), show that p(x, t) is a Gaussian with mean and
variance

〈X(t)〉= x0e−kt , Var[X(t)] =
D
2k

[1− e−2kt ].

(d) Show that the solution to the steady-state FP equation is

ps(x) = (2πD/k)−1/2e−kx2/2D

and that this is consistent with the time-dependent solution in the limit t → ∞.

Problem 2.6 (Additive noise). Solve the SDE

dX =−αt2Xdt + dW(t).

(a) Performing the change of variables Y (t) = X(t)eαt3/3, show that

dY (t)≡ Y (X(t + dt), t + dt)−Y(X(t), t) = eαt3/3dW (t).

How was the change of variables chosen?
(b) Use part (a) to obtain the solution

X(t) = X0e−αt3/3 +
∫ t

0
e−α [t3−s3]/3dW (s).

(c) Determine the mean 〈X(t)〉 and variance var[X(t)]. In particular show that the
variance is a dimensionless function of αt3.
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Problem 2.7 (Multivariate Ornstein–Uhlenbeck process). Consider the multi-
variate SDE

dXi =−
N

∑
j=1

Ai jXjdt +
N

∑
j=1

Bi jdWj(t),

where Wj(t) form a set of independent Wiener process:

〈dWi(t)〉= 0, 〈dWi(t)dWj(t
′)〉= δi, jδ (t− t ′).

Assume a deterministic initial condition Xj(0) = x̄ j.

(a) Show that the solution in vector form is given by

X(t) = e−At x̄+
∫ t

0
e−A(t−t′)BdW(t ′).

(b) Introduce the correlation function C(t,s) = 〈X(t),XT (s)〉 with components

Ci j(t,s) = 〈Xi(t),Xj(s)〉= 〈[Xi(t)−〈Xi(t)〉][Xj(s)−〈Xj(s)〉]〉.

Using part (a), show that

C(t,s) =
∫ min(t,s)

0
e−A(t−t′)BBT e−AT (s−t′)dt ′.

(c) Introduce the covariance matrix Σ(t) = C(t, t) with components

Σi j(t) = 〈[Xi(t)−〈Xi(t)〉][Xj(t)−〈Xj(t)〉]〉.

Derive the matrix equation

dΣ(t)
dt

=−AΣ(t)−Σ(t)AT +BBT .

Hence, show that if A has distinct eigenvalues with positive real part, then
Σ(t)→ Σ0 where Σ0 is the stationary covariance matrix satisfying

AΣ0 +Σ0AT = BBT .

Problem 2.8 (1D Fokker–Planck equation with space-dependent variance).
Consider the 1D FPE with a space-dependent variance due to multiplicative noise:

∂P
∂ t

=
1
2

∂ 2

∂x2 [D(x)P],

with x ∈ [−1,1] and reflecting boundary conditions.

(a) Determine the steady-state probability density for general D(x).
(b) Calculate the steady-state probability density when D(x) = k(a+ |x|) for k >

0,a > 1. What happens when a→ ∞?
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Problem 2.9 (FPE with multiplicative noise). Write down the (Ito) FP equation
for the SDE

dX = adt + bxdW,

for positive constants a,b and X ∈ [0,1] with reflecting boundary conditions.

(a) Solve the steady-state FP equation up to a normalization factor.
(b) Calculate the steady-state density for y = 1/x and determine the normalization

factor—use the change of random variables formula from Sect. 1.3.
(c) Determine 〈1/x〉 as a function of a and b.

Problem 2.10 (Power spectrum). Consider the Langevin equation for a noise-
driven, damped harmonic oscillator:

m
d2X
dt2 + γ

dX
dt

+ kX(t) = 2Dξ (t),

where ξ (t) is a Gaussian white noise process with zero mean and covariance

〈ξ (t)ξ (t ′)〉= δ (t− t ′).

(a) Plot the spectrum of X(t) as a function of the angular frequency ω for ω0 ≡√
k/m = 1, 2D/m = 1 and various values of β = γ/m. What happens in the

limit β → 0? What is the significance of ω0?
(b) The solution to the Langevin equation can be formally written as

X(t) =
∫ ∞

−∞
G(τ)ξ (t− τ)dτ,

where G(τ) is the causal Green’s function. Determine the real and imaginary
parts of the Fourier transform G̃(ω) and plot them as a function of ω for the
same parameters as part (a).

Problem 2.11 (FPT for random walks on a lattice). Consider a random walker on
a 1D lattice with sites � and displacement distribution p(�). The probability Pn(�)
that the walker is at site � after n steps starting at �0 = 0 satisfies the recurrence
relation (see Ex. 2.2)

Pn(�) = ∑
�′

p(�− �′)Pn−1(�
′).

Let Fn(�) denote the probability of arriving at site � for the first time on the nth step,
given that the walker started at �0 = 0.

(a) Pn(�) and Fn(�) are related according to the recurrence relation

Pn(�) = δ�,0δn,0 +
n

∑
m=1

Fm(�)Pn−m(0), n≥ 0.

Explain what this relation means physically.
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(b) Show that the corresponding generating functions are related according to

ΓF(�,z) =
ΓP(�,z)− δ�,0

ΓP(0,z)
,

where
ΓP(�,z) = ∑

n≥0

znPn(�), ΓF(�,z) = ∑
n≥0

znFn(�).

Hence, use Ex. 2.2c to show that for a standard, unbiased RW

ΓF(0,z) = 1−
√

1− z2.

(c) Let R(�) denote the probability that site � is ever reached by a walker starting at
�0 = 0:

R(�) =
∞

∑
n=1

Fn(�)≤ 1.

Use part (b) to show that R(0) = 1 for an unbiased RW (recurrent rather than
transient) while the MFPT τ(0) to return to the origin is infinite, where

τ(�) =
∞

∑
n=1

nFn(�).

Problem 2.12 (FPT for a Brownian particle in a semi-infinite domain). Consider
a Brownian particle restricted to a semi-infinite domain x ∈ [0,∞) with an absorbing
boundary condition at x = 0. The FP equation is given by

∂ p
∂ t

= D
∂ 2 p
∂x2 , 0 < x < ∞,

with p(0, t) = 0.

(a) Check that the solution of the FP equation for the initial condition x(0) = x0 is

p(x, t) =
1√

4πDt
e−(x−x0)

2/4Dt − 1√
4πDt

e−(x+x0)
2/4Dt .

(Such a solution can be derived using the method of images, in which one imag-
ines initially placing a fictitious Brownian particle at the image point x =−x0.)

(b) Show that for large times where
√

Dt � x0, the probability density can be ap-
proximated by

p(x, t)≈ 1√
4πDt

xx0

Dt
e−(x

2+x2
0)/4Dt .

(c) Calculate the FPT density f (x0, t) to reach the origin starting from x0 by calcu-
lating the flux through the origin using part (a):

f (x0, t) = D
∂ p(x, t|x0,0)

∂x

∣
∣
∣
∣
x=0

.
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Hence show that when
√

Dt � x0, we have the asymptotic behavior

f (x0, t)∼ x0

t3/2
.

Deduce that the MFPT to reach the origin is infinite.

Problem 2.13 (Rotational diffusion). Consider a Brownian particle undergoing
diffusion on the circle θ ∈ [−π ,π ]. This could represent the orientation of a bac-
terium during a single run (see Sect. 2.4). The corresponding FP equation for p(θ , t)

∂ p
∂ t

= D
∂ 2 p
∂θ 2 , −π < θ < π , p(−π , t) = p(π , t), p′(−π , t) = p′(π , t),

where D is the rotational diffusion coefficient.

(a) Using separation of variables the initial condition p(θ ,0) = δ (0), show that the
solution of the FP equation is

p(θ , t) =
1

2π

∞

∑
n=−∞

einθ e−Dn2t .

(b) If t is sufficiently small then p(θ , t) is strongly localized around the origin θ = 0.
This means that the periodic boundary conditions can be ignored and we can
effectively take the range of θ to be−∞< θ <∞. That is, performing the rescal-
ings x = θ/ε and τ = ε2t, show that p(θ , t) can be approximated by a Gaussian
p(x, t) and deduce the small-time approximation

〈θ 2〉= 2Dt, t � π2/D.

(c) What happens in the limit t → ∞?

Problem 2.14 (Diffusion in a sphere). Consider the diffusion equation in a spheri-
cal cell of radius R:

∂u(x, t)
∂ t

= D∇2u(x, t), 0 < |x|< R,

with boundary condition u(|x| = R, t) = u1 and initial condition u(x,0) = u0 with
u0,u1 constants.

(a) Assume a radially symmetric solution v(r, t) = u(r, t)− u1 so that

∂v(r, t)
∂ t

= D
∂ 2v
∂ r2 +

2
r

D
∂v
∂ r

, 0 < r < R,
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with v(R, t) = 0 and v(r,0) = u0 − u1. Use separation of variables v(r, t) =
V (r)T (t) to derive the general solution

v(r,r) =
∞

∑
n=1

cne−tDn2π2/R2 1
r

sin(nπr/R).

Hint: in order to solve the boundary value problem for V (r), perform the change
of variables V̂ (r) = rV (r).

(b) Setting t = 0 in the general solution and using v(r,0) = u0− u1, determine the
coefficients cn. Hint: you will need to use the identity

∫ R

0
sin(nπr/R)sin(mπr/R)dr =

R
2

δn,m.

(c) Determine an approximation for the concentration u(0, t) at the center of the
sphere by taking the limit r→ 0, with r−1 sin(θ r)→ θ . Keeping only the leading
order exponential term (n = 1), show that the time τ for the center to reach a
concentration u∗, u1 < u∗ < u0, is approximately

τ =
R2

Dπ2 ln
2(u0− u1)

u∗ − u1
.

Problem 2.15 (Computer simulations: Langevin equation). Use the algorithms
of Sect. 2.6.6 to solve the following problems in MatLab.

(a) Consider the Ornstein–Uhlenbeck process

dX(t) =−λ X(t)dt + dW(t), X(0) = x0,

where W (t) is a Wiener process. Use direct Euler to simulate 1,000 trajectories
on the time interval [0,1] for λ = 1/2, Δ t = 0.01 and x0 = 1. Compare the mean
and covariance of the trajectories with the theoretical values of Ex. 2.6]

(b) Use Milstein’s method to simulate the following SDE on the time interval [0,1]

dX(t) =−λ X(t)dt + μX(t)dW(t), X(0) = x0

for λ = 0.1,μ = 0.1, and x0 = 1. Compare the cases Δ t = 0.1, Δ t = 0.001, and
Δ t = 10−5. Check that the histogram of values at t = 1 is similar to the histogram
obtained by simulating the exact solution

X(t) = x0 exp
[
(−λ − μ2/2)t + μW(t)

]
.



Chapter 3
Stochastic Ion Channels

Ion channels are pore-forming membrane proteins that gate the flow of ions across
the cell membrane and the membrane of various intracellular organelles [261, 322].
More than 300 different types of ion channels have been identified across different
cell types, which are primarily classified by the nature of their gating and the species
of ions passing through the open gates. For example, the opening and closing of
voltage-gated ion channels depends on the voltage gradient across the plasma mem-
brane, while ligand-gated ion channels are open or closed by the binding of ligands
to the channel. Both types are particularly prominent components of the nervous
system, where voltage-gated ion channels underlie the generation of action poten-
tials and ligand-gated (neurotransmitter activated) ion channels mediate conduction
across synapses. They also play a key role in a wide variety of biological processes
that involve rapid changes in cells, such as cardiac, skeletal, and smooth muscle con-
traction, epithelial transport of nutrients and ions, T-cell activation, and pancreatic
beta-cell insulin release. Ion channels are thus a frequent target of drug therapies.
There also exist mechanically gated ion channels, which allow sound, pressure, or
movement to cause a change in the excitability of specialized sensory cells and sen-
sory neurons. The stimulation of a mechanoreceptor causes mechanically sensitive
ion channels to open and produce a transduction current that changes the membrane
potential of the cell—a process known as mechanotransduction. An important ex-
ample of mechanotransduction will be considered in Sect. 5.4, where we describe
models of active process in hair cells of the inner ear.

Electrophysiological models of a cell typically assume that the number of ion
channels is sufficiently large so that one can determine the average transmembrane
currents based on the opening probabilities of individual channels, which is an ap-
plication of the law of large numbers. However, the resulting deterministic equa-
tions cannot account for spontaneous events driven by ion channel fluctuations such
as SAPs in a neuron. Another example is the spontaneous release of calcium from
the sarcoplasmic reticulum of cardiac cells, which is thought to be related to delayed
after depolarizations, which are, in turn, believed to initiate fatal cardiac arrhythmias
[401, 414]. Furthermore, the stochastic opening and closing of high-conductance
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K+–Ca2+ channels is thought to be responsible for the highly stochastic bursting
patterns of isolated pancreatic β cells [586].

In this chapter, we consider stochastic models of ion channel gating, which can
be used to study various spontaneous electrophysiological events when coupled to
a continuous variable such as membrane voltage or calcium concentration. We be-
gin by describing the chemical kinetics underlying the opening and closing of a
single ion channel, distinguishing between voltage-gated and ligand-gated channels
(Sect. 3.1). In the latter case we describe the Monod–Wyman–Changeux (MWC)
model of cooperative binding. We then construct the master equation for an en-
semble of independent two-state ion channels and show how it can be reduced to a
FPE using a diffusion approximation (Sect. 3.2). We introduce the notion of a quasi-
potential for steady-state solutions of the master equation and FP equation. We high-
light the fact that the diffusion approximation yields a different quasi-potential from
the full master equation, which can lead to exponential errors in the steady-state so-
lution. We then address the important problem of bistability, whereby the fraction of
open ion channels can exists in two distinct stable states in the deterministic limit.
We use the diffusion approximation to analyze noise-induced transitions between
these two states in terms of a first passage time problem, and derive an Arrhenius
formula for the mean time to escape that depends on the corresponding FP quasi-
potential (Sect. 3.3). (The more general theory of noise-induced escape, based on the
WKB approximation of solutions to jump Markov processes, will be developed in
Chap. 10. The WKB approach yields a much better estimate of quasi-potentials and
MFPTs compared to the diffusion approximation.) Two examples of bistability are
then considered: spontaneous Ca2+ release in oocytes (eggs) and cardiac myocytes
(Sect. 3.4) and the generation of SAPs in excitable neurons (Sect. 3.5). In the latter
case, the stochastic model takes the form of a stochastic hybrid system in which
the piecewise deterministic dynamics of the membrane voltage is coupled to a jump
Markov process describing the opening and closing of the ion channels. Finally, in
Sect. 3.6 we consider the problem of diffusive escape from a compartment through
a stochastic gate, which has been used to model diffusion in the plasma membrane.

3.1 Single Ion Channel Kinetics

3.1.1 Voltage-Gated Ion Channels

The major players in the generation of action potentials are voltage-gated sodium
(Na+) and potassium (K+) channels. Consider a simple two-state model of a K+

channel that can exist either in a closed state (C) or an open state (O). Transitions
between the two states are governed by a continuous-time discrete Markov process

C(closed)
α(v)
�

β (v)
O(open) (3.1.1)
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with transition rates α(v),β (v) depending on the membrane voltage v. For the
moment, we assume that the voltage is fixed; the coupling of ion channel kinet-
ics with voltage dynamics will be considered in Sect. 3.5. In order to understand
what such a process means, let Z(t) be a discrete random variable taking values
Z ∈ {C,O} and set Pz(t) = Prob [Z(t) = z]. From conservation of probability,

PC(t)+PO(t) = 1.

The transition rates then determine the probability of jumping from one state to the
other in a small interval Δ t:

αΔ t = Prob [Z(t +Δ t) = O|Z(t) =C], β Δ t = Prob [Z(t +Δ t) =C|Z(t) = O].

It follows that there are two possible ways for the ion channel to enter or leave the
closed state:

PC(t +Δ t) = Prob[C→C]PC(t)+Prob[O→C]PO(t)

= [1−αΔ t]PC(t)+β Δ tPO(t).

Writing down a similar equation for the open state, dividing by Δ t, and taking the
limit Δ t → 0 leads to the pair of equations

dPC

dt
=−αPC +β PO

dPO

dt
= αPC−β PO, (3.1.2)

which are equivalent, since P0(t)+P1(t) = 1.
Equation (3.1.2) has the unique stable steady state

PO =
α

α +β
, PC =

β
α +β

. (3.1.3)

Such a steady state has to be consistent with equilibrium statistical mechanics. For
a single ion channel maintained at a fixed temperature T , the open and closed prob-
abilities are determined by the Boltzmann–Gibbs distribution (see Sect. 1.4). In
particular, we find that PO = PCe−ΔE/kBT , where ΔE = EO−EC is the difference in
free energy between the open and closed states. It follows that

α
β

= e−ΔE/kBT (3.1.4)

with ΔE a function of membrane voltage. Typically,

ΔE(v) = qv,

where the constant q is determined by the displacement of charge when the ion
channel changes its conformational state. Now suppose that there are N identical,
independent two-state ion channels evolving according to the simple Markov pro-
cess (3.1.2). In the limit N → ∞ we can reinterpret PC and PO as the mean fraction
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Fig. 3.1: Schematic diagram of the opening/closing of a single sodium ion channel described by a
3-state model. The reduced 2-state model ignores the inactivated state

of closed and open ion channels within the population, and fluctuations can be
neglected. After setting PO = x and PC = 1− x, we obtain the kinetic equation

dx
dt

=−β x+α(1− x). (3.1.5)

The above two-state model is a simplification of more detailed Markov models,
in which there can exist inactivated states and multiple subunits [600]. For example,
the Na+ channel inactivates as well as activates (see Fig. 3.1). (An example of an
ion channel with multiple internal states is considered in Ex. 3.1.) Moreover, both
K+ and Na+ channels consist of multiple subunits, each of which can be in an open
state, and the channel only conducts when all subunits are open. For example, sup-
pose that a channel consists of two identical, independent subunits, each of which
can be open or closed, and that an ionic current can only flow through the chan-
nel if both the subunits are open. Let S j denote the state in which j subunits are
open.The transitions between the different states of the ion channel are governed by
the reaction scheme

S0
2α�
β

S1
α�
2β

S2,

where α,β are the rates of opening and closing of a single subunit. The factors of
two take into account the fact that the state S0 (S2) has two closed (open) states
either of which can open (close). The corresponding kinetic equations for a large
number of identical, independent channels are

dx0

dt
= β x1− 2αx0,

dx2

dt
= αx1− 2β x2, (3.1.6)
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where x j is the fraction of channels in state j and x0 + x1 + x2 = 1. The steady-state
solution satisfies x∗0 = β x∗1/(2α) and x∗2 = αx∗1/(2β ), which implies

x∗1

(
1+

β
2α

+
α
2β

)
= 1.

Hence,

x∗0 =
β 2

(α +β )2 , x∗1 =
2αβ

(α +β )2 , x∗2 =
α2

(α +β )2 .

It is straightforward to show that the steady-state solution is stable by linearizing
the kinetic equations. (Linear stability analysis for general ODEs is presented in
Box 4B. That is, setting y j = x j− x∗j and using ∑ j y j = 0, we have

dy0

dt
=−β (y0 + y2)− 2αy0,

dy2

dt
=−α(y0 + y2)− 2β y2.

Introducing the vector y = (y0,y2)
tr, this pair of equations can be rewritten in the

matrix form
dy
dt

= Ay, A =

(−β − 2α −β
−α −α− 2β

)
.

The linear ODE has solutions of the form y = veλ t with (λ ,v) satisfying the eigen-
value equations

Av = λ v.

This only has nontrivial solutions if A− λ I is not invertible, where I is the unit
matrix. We thus obtain the characteristic equation

0 = det(A−λ I)≡ (λ +β + 2α)(λ +α + 2β )−αβ .

Rearranging, we have

(λ +α +β )(λ + 2[α +β ]) = 0,

and so λ = λ1,2 with λ1 =−(α +β ) and λ2 =−2(α +β ). Since λ1,2 < 0, it follows
that y(t)→ 0 as t → ∞ and the steady state is stable.

One of the interesting features of models of ion channels with two or more sub-
units is that the kinetic equations can often be reduced to a lower-dimensional set
of equations due to the existence of a stable invariant manifold—solutions that start
in the manifold cannot leave it and other solutions exponentially converge to the in-
variant manifold. In the case of the two-subunit model, this can be shown by direct
substitution. That is, setting

x0 = (1− n)2, x1 = 2n(1− n), x2 = n2 (3.1.7)
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and substituting into the kinetic equations (3.1.6) gives

−2(1− n)
dn
dt

= 2β n(1− n)− 2α(1−n)2, 2n
dn
dt

= 2αn(1− n)− 2β n2,

which are both satisfied provided that

dn
dt

= α(1− n)−β n. (3.1.8)

Thus, if the initial state can be expressed in terms of the single variable n according
to equations (3.1.7), then the solution remains in this one-dimensional space with
the dynamics described by the single kinetic equation (3.1.8). Moreover, the stabil-
ity of the unique steady state implies that the invariant manifold is stable. Since the
conducting state of each ion channel corresponds to S2 (both subunits in the open
state), it follows that the fraction of conducting ion channels at time t is n2(t). Thus
the expected conductance of an ion channels is proportional to n2. Such a result gen-
eralizes to more complex ion channel models such as Hodgkin–Huxley (see Ex. 3.2
and Sect. 3.5).

3.1.2 Ligand-Gated Ion Channel

Another very important class of ion channel involves receptor–ligand binding rather
than voltage as a gating mechanism. Ligand-gated ion channels are exemplified by
neurotransmitter receptors at chemical synapses, where the binding of freely diffus-
ing ligands to a receptor induces a change in conformational state that increases the
chance of opening the ion channel. Changes in state of the receptor can be modeled
in terms of a set of chemical reactions. Given any chemical reaction (or sequence
of reactions) there is a general principle known as the law of mass action that de-
termines the form of the kinetic equations describing the evolution of the molecular
concentrations. The law states that the rate of an elementary reaction (a reaction
that proceeds through only one step) is proportional to the product of the concen-
trations of the participating molecules. In thermodynamic equilibrium, the rates of
the forward and backward reactions must be equal, which allows one to express the
ratio of the concentrations of reactants and products in terms of a constant known as
the dissociation constant Kd . An expression for Kd can be derived from first princi-
ples using the Boltzmann–Gibbs distribution of statistical mechanics (see Sect. 1.4).
However, the absolute values of the transition rates (rather than their ratios) can-
not be determined from the theory of equilibrium systems. Instead one has to apply
some version of Kramers reaction rate theory in order to determine noise-induced
transitions between minima of an underlying free energy landscape that represents
molecular interactions [204, 253] (see Sect. 3.3). For the moment, we will focus on
equilibrium states of the ion channels (see also Chap. 7 of [509]).
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We begin by returning to the simple two-state model of an ion channel that was
briefly considered in Sect. 1.4. That is, we assume that the ion channel is always
open when a single receptor binding site is occupied by a ligand and is always closed
when the binding site is unoccupied. The corresponding receptor–ligand reaction is

R+L � LR,

where R denotes an unbound receptor, L is a ligand, and LR is a the receptor–ligand
complex. Applying the law of mass action to receptor–ligand binding gives

[LR]
[R][L]

=
1

Kd
.

Assuming that the total number of receptors is fixed, [R]+ [LR] = [Rtot], we have

[LR]
(Rtot]− [LR])[L]

=
1

Kd
,

which on rearranging gives
[LR]
[Rtot]

=
[L]

[L]+Kd
. (3.1.9)

Comparison with the Boltzmann–Gibbs distribution of equation (1.4.9), with PO =
[LR]/[Rtot] and [L] = c/c0, establishes that the dissociation constant is

Kd = eε/kBT ,

where ε is the binding energy. The fraction of bound receptors increases linearly
with [L] at low ligand concentrations but saturates at high concentrations for which
[L]� Kd .

A sharper dependence on [L] can be obtained if there is some form of cooperative
binding [518]. The latter refers to situations in which a receptor has multiple binding
sites, which can influence each other. An extreme example is when a receptor has n
binding sites such that mutual interactions force all of the binding sides to be either
simultaneously occupied or simultaneously empty. This can be represented by the
reaction scheme

R0 + nL � Rn,

where R0 denotes a receptor with empty binding sites and Rn denotes a receptor with
all sites filled. The law of mass action shows that at equilibrium

[Rn]

[L]n[R0]
=

1
Kn

,

where Kn is an effective dissociation rate. Note that since the forward reaction in-
volves n ligands, one has to include the factor [L]n. Again setting [Rn]+ [R0] = [Rtot]
and rearranging gives
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Fig. 3.2: Cooperative binding model. Plot of fraction of open receptors as a function of ligand
concentration for various n, where n is the number of binding sites

[LR]
[Rtot]

=
[L]n

[L]n +Kn
. (3.1.10)

The dependence of the fraction of open ion channels as a function of [L] and n is
illustrated in Fig. 3.2. Note that ligand-gated ion channels can also exist in more
than two conformational states, as considered in Ex. 3.3.

3.1.3 Monod–Wyman–Changeux Model

The above model of receptor–ligand binding is unrealistic in at least two aspects.
First, the binding to multiple sites is not all-or-none, that is, a fraction of sites can be
occupied at any one time. Second, it is possible for the ion channel to be either open
or closed in each binding state—changes in binding state shift the balance between
open and closed. A more realistic model of a ligand-gated ion channel with co-
operative binding has been developed for the nicotinic acetylcholine receptor, which
is found at the neuromuscular junction. It is analogous to the classical MWC model
of dimoglobin [451]. The nicotinic receptor has two binding sites for acetylcholine
and the equilibrium between the open and closed state of the channel is shifted
to the open state by the binding of acetylcholine. A schematic illustration of the
different receptor states together with a reaction diagram is shown in Fig. 3.3. In the
diagram Tj denotes a closed receptor with j occupied sites and R j denotes a receptor
in the corresponding open state. Also shown is the equilibrium constant (inverse of
the dissociation constant) for each of the reversible reactions. In particular, KT and
KR are the equilibrium constants for binding of an acetylcholine molecule to an
individual site of a closed and an open receptor, respectively. The additional factor
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of 2 takes into account the fact that there are two unoccupied sites in the forward
reaction T0→ T1, whereas the additional factor of 1/2 takes into account the fact that
there are two occupied sites in the backward reaction T2 → T1 (and similarly for R j).
Finally, Yj is the equilibrium constant associated with the opening and closing of a
receptor with j occupied sites.

Applying the law of mass action to each of the reversible reactions leads to the
following set of equations for the concentrations:

[Ri]

[Ti]
= Yi (3.1.11a)

[T1]

[L][T0]
= 2KT ,

[R1]

[L][R0]
= 2KR (3.1.11b)

[T2]

[L][T1]
= KT /2,

[R2]

[L][R1]
= KR/2 (3.1.11c)

We are interested in the fraction of receptors that are in the open state, which is

popen =
[R0]+ [R1]+ [R2]

[R0]+ [R1]+ [R2]+ [T0]+ [T1]+ [T2]
.

Equations (3.1.11b,c) can be used to express [Tj] and [R j] in terms of [T0] and [R0]:

[T1] = 2KT [L][T0], [T2] = (KT [L])
2[T0], [R1] = 2KT [L][R0], [R2] = (KT [L])

2[R0].

CLOSED OPEN

2KR

2KT

KR/2

KT/2

Y2Y1Y0

R2R1 + LR0 + L

T0 + L T1 + L T2

a b

Fig. 3.3: The MWC model of nicotinic acetylcholine receptor with two binding sites. (a) Schematic
illustration of different conformational states distinguished by the number of occupied binding sites
and whether the ion channel is open or closed. (b) Reaction diagram
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Substituting these results into the formula for popen and using (3.1.11a) gives

popen =
Y0(1+KR[L])2

Y0(1+KR[L])2 +(1+KT [L])2 . (3.1.12)

We now observe that when [L] = 0,

popen(0) =
1

1+ 1/Y0
,

whereas when [L] is large

popen([L])≈ 1
1+(KT/KR)(1/Y0)

.

It follows that if the open receptor has a higher affinity for binding acetylcholine than
the closed receptor (KR > KT ), then popen([L]) > popen(0). An interesting feature
of MWC type models is that activation of the receptor, as specified by popen, is
a sigmoidal function of ligand concentration [L]. Thus binding is effectively co-
operative even though there are no direct interactions between binding sites. Finally,
note that it is straightforward to generalize the MWC model to the case of n binding
sites (see Exs. 3.4 and 3.5). Defining the fraction of open receptors according to

popen =
∑n

j=0[R j]

∑n
j=0[R j]+∑n

j=0[Tj]

the law of mass action gives

popen =
Y0(1+KR[L])n

Y0(1+KR[L])n +(1+KT [L])n . (3.1.13)

The MWC model has emerged as a general mechanism for receptor-ligand interac-
tions within a diverse range of applications, including ion channel gating, chemo-
taxis, and gene regulation (see the review [425] and Sect. 5.3).

3.2 Master Equation for an Ensemble of Ion Channels

Now suppose that there are a finite number N of identical, independent two-state
ion channels evolving according to the simple Markov process (3.1.2). In order to
take into account fluctuations in the case of finite N, it is necessary to keep track
of the probability P(n, t) that there are n open channels at time t, 0 ≤ n ≤ N. (If
there are n open channels, then it immediately follows that there are N− n closed
channels, so we don’t need to keep track of the latter as well.) Consider a time
interval [t, t+Δ t] with Δ t sufficiently small so that only one channel has a significant
probability of making a C→ O or O→C transition. There are four possible events
that can influence P(n, t) during this interval, two of which involve transitions into



3.2 Master Equation for an Ensemble of Ion Channels 113

the state of n open ion channels, and two of which involve transitions out of the state.
Collecting these terms and taking the limit Δ t → 0 leads to the master equation

d
dt

P(n, t) = α(N− n+ 1)P(n− 1, t)+β(n+1)P(n+1, t) (3.2.1)

− [α(N− n)+β n]P(n, t).

The first term on the right-hand side represents the probability flux that one of
N − (n− 1) closed channels undergoes the transition C → O, whereas the second
term represents the probability flux that one of n+ 1 open channels undergoes the
transition O → C. The last two terms represent transitions n → n± 1. Define the
mean number of open channels at time t by

n(t) =
N

∑
n=0

nP(n, t).

By differentiating both sides of this equation with respect to t and using the master
equation (3.2.1) we recover the kinetic equation (3.1.5) with x = n/N (see Ex. 3.6).

The two-state ion channel model is an example of a birth–death process described
by a master equation of the general form

d
dt

P(n, t) = ω+(n− 1)P(n− 1, t)+ω−(n+ 1)P(n+ 1, t) (3.2.2)

− [ω+(n)+ω−(n)]P(n, t).

In the case of the simple ion channel model with constant transition rates α,β , we
have

ω+(n) = (N− n)α, ω−(n) = nβ . (3.2.3)

However, as we shall see later, more general ion channel models can have transition
rates ω±(n) that are nonlinear functions of n. In the latter case, multiplying both
sides of the more general master equation (3.2.2) by n/N and summing over n gives

d〈n/N〉
dt

= 〈Ω+(n/N)〉− 〈Ω−(n/N)〉, (3.2.4)

where ω±(n) = NΩ±(n/N) and the brackets 〈. . .〉 denote a time-dependent ensem-
ble averaging over realizations of the stochastic dynamics, that is,

〈A(n/N)〉= ∑
n

P(n, t)A(n/N)

for any function of state A(n/N). If the transition rates in (3.2.2) are nonlinear func-
tions of n, then there is coupling between different order moments resulting in a
moment closure problem. That is, 〈Ω±(n/N)〉 �= Ω±(〈n〉/N) for finite N. However,
in the thermodynamic limit N → ∞, statistical correlations can be ignored so that
one can take the mean-field limit

〈Ω±(n/N)〉 →Ω±(〈n/N〉).
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This then yields a deterministic equation for the fraction x of open ion channels:

dx
dt

= Ω+(x)−Ω−(x). (3.2.5)

The steady-state solution Ps(n) of the master equation (3.2.2), assuming it exists,
satisfies J(n) = J(n+ 1) with

J(n) = ω−(n)Ps(n)−ω+(n− 1)Ps(n− 1).

Using the fact that n is a nonnegative integer, that is, Ps(n) = 0 for n < 0, it follows
that J(n) = 0 for all n. Hence, by iteration,

Ps(n) = Ps(0)
n

∏
m=1

ω+(m− 1)
ω−(m)

, (3.2.6)

with

Ps(0) =

(

1+
N

∑
n=1

n

∏
m=1

ω+(m− 1)
ω−(m)

)−1

.

In the particular case of the transition rates (3.2.3), we have

Ps(n) = Ps(0)

[
α
β

]n N!
n!(N− n)!

. (3.2.7)

After calculating Ps(0), we obtain the binomial distribution

Ps(n) =
αnβ N−n

(α +β )N

N!
n!(N− n)!

= pn
0(1− p0)

N−n N!
n!(N− n)!

, (3.2.8)

where p0 = α/(α +β ). The mean and variance of the binomial distribution can be
obtained using generating functions. That is,

Γ (z)≡
N

∑
m=0

zmPs(m)

=
N

∑
m=0

N!
n!(N− n)!

(zp0)
n(1− p0)

N−n

= (zp0 + 1− p0)
N .

It follows that

〈n〉= Γ ′(1) = N p0(zp0 + 1− p0)
N−1
∣
∣
z=1 = N p0,

and

〈n(n− 1)〉= Γ ′′(0) = N(N− 1)p2
0(zp0 + 1− p0)

N−2
∣∣
z=1 = N(N− 1)p2

0.
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Hence, the mean and variance of the binomial distribution are

〈n〉= N p0, Var[n] = N(N− 1)p2
0 +N p0−N2 p0 = N p0(1− p0). (3.2.9)

3.2.1 Diffusion Approximation of a Birth–Death Master Equation

A useful diffusion approximation of the birth–death master equation (3.2.2) for large
but finite N can be obtained by carrying out a Kramers–Moyal or system-size expan-
sion to second order in N−1 [204, 651], which was originally applied to ion channel
models by Fox and Lu [191]. This yields a Fokker–Planck (FP) equation describing
the evolution of the probability density of a corresponding continuous stochastic
process that is the solution to an SDE. A rigorous analysis of the diffusion approxi-
mation has been carried out by Kurtz [360] (see also Chap. 11). First, introduce the
rescaled variable x = n/N and transition rates NΩ±(x) = ω±(Nx). Equation (3.2.2)
can then be rewritten in the form

d p(x, t)
dt

= N[Ω+(x− 1/N)p(x− 1/N, t)+Ω−(x+ 1/N)p(x+ 1/N, t)

−(Ω+(x)+Ω−(x))p(x, t)].

Treating x, 0 ≤ x ≤ 1, as a continuous variable and Taylor expanding terms on the
right-hand side to second order in N−1 leads to the FP equation

∂ p(x, t)
∂ t

= − ∂
∂x

[A(x)p(x, t)]+
1

2N
∂ 2

∂x2 [B(x)p(x, t)] (3.2.10)

with

A(x) = Ω+(x)−Ω−(x), B(x) = Ω+(x)+Ω−(x). (3.2.11)

In the particular case of the two-state ion channel model with transition rates (3.2.3),
we have

A(x) = α− (α +β )x, B(x) = α +(β −α)x.

The FP equation takes the form of a conservation equation

∂ p
∂ t

=−∂J
∂x

, (3.2.12)

where J(x, t) is the probability flux,

J(x, t) =− 1
2N

∂
∂x

[B(x)p(x, t)]+A(x)p(x, t). (3.2.13)



116 3 Stochastic Ion Channels

The FP equation is supplemented by the no-flux or reflecting boundary conditions
at the ends x = 0,1 and a normalization condition,

J(0, t) = J(1, t) = 0,
∫ 1

0
p(x, t)dx = 1. (3.2.14)

The FP equation has a unique steady-state solution obtained by setting J(x, t) = 0
for all 0≤ x≤ 1. The resulting first-order ODE can be solved to give a steady-state
probability density of the form

PFP(x) =N
e−NΨ (x)

B(x)
, (3.2.15)

with the so-called quasi-potential

Ψ (x)≡−2
∫ x A(x′)

B(x′)
dx′ =−2

∫ x Ω+(x′)−Ω−(x′)
Ω+(x′)+Ω−(x′)

dx′. (3.2.16)

Here N is a normalization factor.
Recall from Sect. 2.2 that the solution to the FP equation (3.2.10) determines

the probability density function for a corresponding stochastic process X(t), which
evolves according to the SDE or Langevin equation [204]

dX = A(X)dt +
1√
N

b(X)dW (t), (3.2.17)

with b(x)2 = B(x). Here W (t) denotes a Wiener process with dW (t) distributed
according to a Gaussian process with mean and covariance

〈dW (t)〉= 0, 〈dW (t)dW (s)〉 = δ (t− s)dtds. (3.2.18)

Note that the noise term in (3.2.17) is multiplicative, since it depends on the current
state X(t). It is well known that there is an ambiguity in how one integrates multi-
plicative noise terms, which relates to the issue of Ito versus Stratonovich versions
of stochastic calculus [204] (see Sect. 2.6). However, for this particular example,
based on the reduction of a master equation, the explicit form of the correspond-
ing FP equation (3.2.10) ensures that the noise should be interpreted in the sense
of Ito. In the limit N → ∞, we recover the deterministic equation (3.2.5) with x(t)
converging to the unique stable fixed point

x∗ = α/(α +β ). (3.2.19)

One can thus view the SDE as describing a stochastic path in phase space that in-
volves Gaussian-like fluctuations of order 1/

√
N about the deterministic trajectory.

Substituting X − x∗ = Y/
√

N into the SDE (3.2.17) and formally Taylor expanding
to lowest order in 1/

√
N yields the so-called linear noise approximation

dY =−kYdt + b(x∗)dW (t), (3.2.20)
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with

k ≡−A′(x∗) = α +β , b(x∗) =
√

B(x∗) =

√
2αβ

α +β
.

This takes the form of an Ornstein–Uhlenbeck equation [204] [see equation
(2.2.16)]. Hence, in the stationary limit t → ∞,

〈Y (t)〉 → 0, 〈Y (t)2〉 → b(x∗)2

2k

[
1− e−2kt

]
.

Since Y (t) =
√

N(X(t)− x∗), X(t) = n(t)/N, and x∗ = p0, we recover the results of
(3.2.9).

How does the resulting steady-state density given by (3.2.15) with quasi-potential
(3.2.16) compare to the steady-state solution of the corresponding master equation
(3.2.2) in the large N limit? In order to answer this question, let us consider the
particular transition rates (3.2.3). Taking logarithms of both sides of equation (3.2.7)
and using Stirling’s formula log(n!)≈ n logn −n yield a steady-state density similar
in form to (3.2.15) but with a different quasi-potential:

P(x) = K(x)e−NΦ(x), (3.2.21)

with K(x) = O(1) and

Φ(x) =−x log(α/β )+ x log(x)+ (1− x) log(1− x)

=

∫ x
ln

Ω−(x′)
Ω+(x′)

dx′. (3.2.22)

Since Φ(x) �=Ψ(x), we see that the steady-state probability density under the dif-
fusion approximation can deviate significantly from the effective potential obtained
directly from the master equation. However, this discrepancy is not much of an is-
sue for the simple two-state system, since the underlying kinetic equation has a
unique fixed point. Indeed, both potentials have the same global minimum at x = x∗,
Φ ′(x∗) =Ψ ′(x∗) = 0. Moreover, we find that Ψ ′′(x∗) = Φ ′′(x∗). Since N is large,
we can make the Gaussian approximation

P(x)≈ p(x∗)exp
[−NΦ(x∗)−NΦ ′′(x∗)(x− x∗)2/2

]
,

and similarly for PFP(x). Under this approximation, the mean and variance of the
fraction of open channels are given by

n̄
N

= x∗ =
α

α +β
,
〈(n− n̄)2〉

N2 =
1

NΦ ′′(x∗)
=

x∗(1− x∗)
N

, (3.2.23)

and we obtain the same results using the Gaussian approximation of PFP(x). Thus
the diffusion approximation accounts well for the Gaussian-like fluctuations around
a globally stable fixed point.



118 3 Stochastic Ion Channels

On the other hand, it can lead to exponentially large errors when there are mul-
tiple stable fixed points. The diffusion approximation still accounts for the effects
of fluctuations well within the basin of attraction of a locally stable fixed point, but
there is now a small probability that there is a noise-induced transition to the basin of
attraction of another fixed point. Since the probability of such a transition is usually
of order e−τN with τ = O(1), except close to the boundary of the basin of attraction,
such a contribution cannot be analyzed accurately using standard Fokker–Planck
methods [651]. These exponentially small transitions play a crucial role in allow-
ing the system to approach the unique stationary state (if it exists) in the asymptotic
limit t →∞. In other words, for bistable or multistable systems, the limits t→∞ and
N → ∞ do not commute [19, 252, 653]. Later on we will consider two examples of
bistability in a population of ion channels: (i) stochastic calcium release in oocytes
and cardiac myocytes (Sect. 3.4) and (ii) membrane voltage fluctuations underlying
the initiation of SAPs (Sect. 3.5). In the first case, there is bistability in the fraction x
of open ion channels arising from the fact that the transition rates in the birth–death
process are nonlinear functions of x. This is due to a feedback mechanism involving
CICR. On the other hand, bistability in the membrane voltage of a neuron occurs
under the assumption that the kinetics of sodium ion channels is relatively fast and
potassium kinetics are frozen. In Ex. 3.7, we consider another well-known example
of a two-state chemical reaction that exhibits bistability, namely, an autocatalytic
reaction [518].

3.3 Population Channel Bistability and Mean Escape Times

If a population of ion channels exhibits bistability in the deterministic limit
N → ∞, then a quantity of considerable interest is the mean time for a noise-induced
transition from one fixed point to the other when N is finite. We will show how to
estimate the escape time using the diffusion approximation of the underlying birth–
death master equation (3.2.2) given by the FP equation (3.2.10). First, it is conve-
nient to rewrite the deterministic kinetic equation (3.2.5) for the fraction of open ion
channels in the form

dx
dt

= A(x) =−dU
dx

, (3.3.24)

where U(x) is a deterministic potential, which is distinct from the quasi-potentials
Φ(x) and Ψ(x). The minima and maxima of the potential U(x) correspond to stable
and unstable fixed points of the deterministic dynamics, respectively. Suppose that
there are two stable fixed points x± separated by an unstable fixed point x0 (see
Fig. 3.4), and consider the mean time to escape from x− to x+; an almost identical
calculation holds for the transition x+→ x−. Since the system will rapidly approach
the state x+ once it has passed the maximum at x0, the major contribution to the
escape time will be due to the fluctuation-driven transition from x− to x0. We can
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Fig. 3.4: Double-well potential U(x) for a population of two-state ion channels exhibiting bistabil-
ity in the deterministic limit. Two stable fixed points x± are separated by an unstable fixed point x0

model this process by supplementing the FP equation (3.2.10) with an absorbing
boundary condition at x = x0:

p(x0, t) = 0.

Let T (x) denote the stochastic time for the particle to exit the right-hand boundary at
x0, given that it starts at location x∈ [0,x0] at time t = 0. As a first step, we introduce
the survival probability P(x, t) that the particle has not yet exited at time t:

P(x, t) =
∫ x0

0
p(x′, t|x,0)dx′. (3.3.25)

It follows that Prob[T (x) ≤ t] = 1− P(x, t) and we can define the FPT density
according to

f (x, t) =−∂P(x, t)
∂ t

. (3.3.26)

Following along similar lines to the analysis of first passage times in Sect. 2.3, it can
be shown that the FPT density satisfies a backward FP equation of the form

∂P(x, t)
∂ t

= A(x)
∂P(x, t)

∂x
+

B(x)
2N

∂ 2

∂x2 P(x, t). (3.3.27)

A quantity of particular interest is the MFPT τ(x) defined according to

τ(x) = 〈T (x)〉 ≡
∫ ∞

0
f (x, t)tdt (3.3.28)

=−
∫ ∞

0
t
∂P(x, t)

∂ t
dt =

∫ ∞

0
P(x, t)dt,



120 3 Stochastic Ion Channels

after integration by parts. Hence, integrating both sides of equation (3.3.27) shows
that the MFPT satisfies the ODE

A(x)
dτ(x)

dx
+

B(x)
2N

d2τ(x)
dx2 =−1. (3.3.29)

Equation (3.3.29) is supplemented by reflecting and absorbing boundary conditions
for the backward FP equation:

τ ′(0) = 0, τ(x0) = 0. (3.3.30)

It is straightforward to solve equation (3.3.29) by direct integration [204] (see also
Sect. 2.3). First, introducing an integration factor and integrating once gives

e−NΨ (x)τ ′(x) =−N
∫ x

0

e−NΨ (x′)

B(x′)
dx′,

whereΨ (x) is the quasi-potential (3.2.16), and we have used the boundary condition
τ ′(0) = 0. Integrating once more with respect to x and using τ(x0) = 0 then gives

τ(x) = N
∫ x0

x
eNΨ (x′)dx′

∫ x′

0

e−NΨ (x′′)

B(x′′)
dx′′. (3.3.31)

There is now a standard procedure for approximating this double integral based on
Kramers reaction rate theory [204, 253].

For simplicity, let us first consider the FP equation with constant diffusivity

∂ p(x, t)
∂ t

= − ∂
∂x

[A(x)p(x, t)]+D
∂ 2 p(x, t)

∂x2 ,

where A(x) = −U ′(x) and U(x) is given by a double-well potential with minima at
x± and a maximum at x0 with 0 < x− < x0 < x+ (see Fig. 3.4). The MFPT to reach
a point x beyond x0, starting from x−, is

τ− =
1
D

∫ x

x−
eU(x′)/Ddx′

∫ x′

0
e−U(x′′)/Ddx′′.

If the central peak of U(x) around x0 is large and D is small, then eU(x′)/D is
sharply peaked around x0. On the other hand, e−U(x′′)/D is very small near x0 so
∫ x′

0 e−U(x′′)/Ddx′′ is slowly varying around x′ = x0. Hence,
∫ x′

0 e−U(x′′)/Ddx′′ is ap-
proximately constant for values of x′ such that eU(x′)/D is well above zero. We can
thus approximate the MFPT by a product of two independent integrals

τ− =
1
D

[∫ x0

0
e−U(x′′)/Ddx′′

][∫ x

x−
eU(x′)/Ddx′

]
.
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The first integral is dominated by a small region around x = x−, whereas the second
is dominated by a small region around x = x0. Thus, the integrals are insensitive to
the values of the limits and we can take

τ− =
1
D

[∫ ∞

−∞
e−U(x′′)/Ddx′′

][∫ ∞

−∞
eU(x′)/Ddx′

]
.

Taylor expanding U(x′′) to second order about x = x− with U ′(x−) = 0, we obtain
the Gaussian integral

∫ ∞

−∞
e−U(x′′)/Ddx′′ ≈

∫ ∞

−∞
e−[U(x−)+U ′′(x−)(x′′−x−)2/2]/Ddx′′ =

√
2πD

U ′′(x−)
e−U(x−)/D.

Similarly, expanding U(x′) to second order about x = x0,

∫ ∞

−∞
eU(x′)/Ddx′ ≈

∫ ∞

−∞
e[U(x0)−|U ′′(x0)|(x′′−x0)

2/2]/Ddx′ =

√
2πD

|U ′′(x0)|e
U(x0)/D.

Combining these results, we finally arrive at the classical Arrhenius formula

τ− ∼ 2π
√|U ′′(x0)|U ′′(x−)

e[U(x0)−U(x−)]/D. (3.3.32)

Note that the transition rate λ− = 1/τ− (inverse MFPT) from x− to x+ varies
exponentially with the barrier height U(x0)−U(x−), that is, λ− ∼ e−[U(x0)−U(x−)]/D.
Similarly, the transition rate from the active state x+ to x− satisfies

λ+ ∼ e−[U(x0)−U(x+)]/D.

It follows that the ratio of the forward and backward transition rates is

λ−
λ+

= κe[U(x−)−U(x+)]/D, (3.3.33)

where κ is a constant that is independent of U(x0). The exponential dependence on
the energy difference ΔE =U(x−)−U(x+) is consistent with equilibrium thermo-
dynamics. For the sake of illustration, suppose that we idealize the above stochastic
process as a two-state Markov process involving transitions between two discrete
states O± (corresponding to x = x±) with rates

O−
λ−�
λ+

O+.

This is identical in form to the two-state ion channel model evolving according to
(3.1.2). Hence, at equilibrium

λ−P− = λ+P+,
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where P± is the steady-state probability of being in state O±. Equilibrium thermody-
namics requires that P± are given by a Boltzmann–Gibbs distribution (see Sect. 1.4)
so that P± = Z−1e−U±/kBT where Z is a normalization factor. We deduce that

λ−
λ+

=
P+
P−

= e[U−−U+]/kBT .

Comparison with the previous results shows that D = kBT . Note that this simplified
model cannot account for the prefactor κ and its precise form is still a matter of
some debate.

Returning to equation (3.3.31), we can adapt the classical Arrhenius formula
(3.3.32) with −Ψ(x) an effective potential function and B(x)/2N a state-dependent
diffusivity. Note that Ψ(x) has the same stationary points as U(x) so it is also given
by a double-well potential. The result is (Ex. 3.8),

τ(x−)≈ 1
B(x−)

2π
√|Ψ ′′(x0)|Ψ ′′(x−)

eN[Ψ (x0)−Ψ (x−)]. (3.3.34)

Since the argument of the exponential is positive, it follows that the rate of escape
is exponentially small for large N. Similarly, the MFPT for the reverse transition
x+→ x− is

τ(x+)≈ 1
B(x+)

2π
√|Ψ ′′(x0)|Ψ ′′(x+)

eN[Ψ (x0)−Ψ (x+)]. (3.3.35)

From our discussion of the diffusion approximation of the steady state, we might
expect that a more accurate estimate of the MFPT can be obtained by replacing the
quasi-potentialΨ(x) by the quasi-potential Φ(x) of equation (3.2.22). This is indeed
found to be the case, except one also has to modify the prefactor:

τ(x−) =
2π

Ω+(x−)
√|Φ ′′(x0)|Φ ′′(x−)

eN[Φ(x0)−Φ(x−)]. (3.3.36)

Equation (3.3.36) can be derived using a WKB approximation of the master equa-
tion (3.2.2). Such an approach has been used increasingly to analyze escape prob-
lems in chemical and biological systems [152, 163, 174, 252, 264, 341]. The details
of the calculation for a general birth–death process are presented in Chap. 10.

3.4 Stochastic Models of Ca2+ Release

Calcium (Ca2+) is one of the most important and well studied cellular signaling
molecules. From a modeling perspective, it attracts a great deal of interest due to
the fact that calcium signaling often involves complex spatiotemporal dynamics, in-
cluding oscillations and waves. For reviews on the modeling of calcium dynamics
within cells, see Chap. 7 of Keener and Sneyd [322], Falcke [179], and Chap. 4
of Bressloff [66]. In vertebrates, most of the Ca2+ is stored in bones, from where



3.4 Stochastic Models of Ca2+ Release 123

it can be released by hormonal stimulation to maintain a high extracellular Ca2+

concentration (around 1 mM). On the other hand, active ion pumps and exchang-
ers maintain the cytoplasmic Ca2+ concentration at relatively low levels (around
10–100 nM). The resulting steep concentration gradient across the plasma mem-
brane means that cells are able to increase their cytoplasmic Ca2+ concentration
rapidly by opening either voltage-gated or ligand-gated Ca2+ ion channels. Here we
will consider another major mechanism for controlling intracellular Ca2+ based on
the action of protein receptors embedded in the surface membrane of intracellular
stores. Some of the main features of such receptors are as follows:

1. Cells can regulate their cytoplasmic Ca2+ concentration via the intracellular sup-
ply of Ca2+ from internal stores such as the endoplasmic reticulum (ER) and
mitochondria. Inositol (1,4,5)-trisphosphate (IP3) receptors and Ryanodine (Ry)
receptors distributed throughout the ER, for example, mediate the release of Ca2+

into the cytoplasm, whereas Ca2+ ion pumps maintain the relatively high Ca2+

concentration within the ER. The Ry receptor plays a critical role in excitation–
contraction coupling in skeletal and cardiac muscle cells, but is also found in
non-muscle cells such as neurons. One important feature of Ry receptors is that
they can undergo CICR, in which elevated cytoplasmic Ca2+ activates Ry recep-
tors that release further Ca2+, which then activates other Ry receptors, resulting
in a nonlinear regenerative feedback mechanism. The IP3 receptor is similar in
structure to the Ry receptor, but is found predominantly in non-muscle cells and
is sensitive to the second messenger IP3. The binding of an extracellular ligand
such as a hormone or a neurotransmitter to a metabotropic receptor results in
the activation of a G-protein and the subsequent activation of phospholipase C
(PLC). This then cleaves phosphatidylinositol biphosphate (PIP2) into diacyl-
glycerol (DAG) and IP3. The water-soluble IP3 is free to diffuse throughout the
cell cytoplasm and bind to IP3 receptors located on the ER membrane, which
then open and release Ca2+ from the ER. The opening and closing of an IP3 re-
ceptor is also modulated by the concentration of cytoplasmic Ca2+, so it too can
undergo CICR.

2. Another mechanism for controlling cytoplasmic Ca2+ is through buffering (bind-
ing) to large proteins. It is estimated that at least 99 % of the total cytoplasmic
Ca2+ is bound to buffers. A summary of the basic extracellular and intracellular
mechanisms for controlling cytoplasmic Ca2+ is shown in Fig. 3.5.

3. One of the most dramatic consequences of CICR is the propagation of intra-
cellular Ca2+ waves mediated primarily by the opening of IP3 receptors. These
waves were first observed in nonneuronal cells such as Xenopus laevis oocytes
[376, 499], where the resulting changes in Ca2+ concentration across the whole
cell provided a developmental signal.

4. Many cell types exhibit spontaneous localized Ca2+ release events known as
sparks or puffs [103, 104]. The fluorescent imaging of Ca2+ puffs and sparks
has established that Ca2+ release is a stochastic process that occurs at spatially
discrete sites consisting of clusters of IP3Rs and RyRs, respectively. Ca2+ puffs
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Fig. 3.5: Calcium signaling. The entry of Ca2+ from outside the cell is mediated by voltage-
gated (VGCC) and ligand-gated (LGCC) calcium channels. Stimulation of metabotropic glutamate
receptors (mGluRs) produces IP3 second messengers that bind to IP3 receptors (IP3Rs), which
subsequently release Ca2+ from the endoplasmic reticulum. Both IP3Rs and Ryanodine receptors
(RyRs) are sensitive to Ca2+, resulting in calcium-induced calcium release (CICR). The latter can
sometimes result in the propagation of a Ca2+ wave along the dendrites

are found in Xenopus laevis oocytes and have an amplitude ranging from around
50–600 nM, a spatial spread of approximately 6 μm and a typical duration of
1 s [498, 499, 692]. For sufficiently high levels of IP3 concentration, the am-
plification of Ca2+ puffs by CICR can lead to the formation of Ca2+ waves
[498, 499, 692]. Calcium sparks, which are thought to be the building blocks of
the large regenerative Ca2+ signal that controls contraction in cardiac and skele-
tal muscle cells, arise from the opening of clusters of RyRs by local CICR. The
frequency of calcium spark events is sensitive to changes in membrane poten-
tial, although they rarely induce calcium waves due to shorter duration and less
spatial spread.

3.4.1 Stochastic Model of Ca2+ Puffs in a Cluster of IP3Rs

Stochastic models of Ca2+ puffs typically treat a cluster of IP3Rs as a set of N chan-
nels that open and close independently, but are indirectly coupled by the common
cytoplasmic Ca2+ concentration [178, 180, 590, 618]. Models differ in the level of
detail regarding individual receptors. The first deterministic kinetic model of Ca2+-
gated IP3Rs was proposed by De Young and Keizer [696], in their study of agonist-
induced Ca2+ oscillations. This model assumes that the IP3 receptor consists of
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Fig. 3.6: IP3 receptor model. (a) Reaction diagram of the De Young–Keizer model [696] of an IP3
receptor subunit. The state of the subunit is denoted by Si jk, where i = 0,1 denotes whether the
IP3 binding site is unoccupied (i = 0) or occupied (i = 1), and j,k denote the corresponding status
of the activating and inactivating Ca2+ binding sites, respectively. Although there are 24 separate
single-step reactions, the model only has ten independent rate constants. This is a consequence of
equilibrium thermodynamics and two additional constraints: (i) the rate constants are taken to be
independent of whether or not the Ca2+ activating binding site is occupied and (ii) the kinetics of
Ca2+ activation are assumed to be independent of IP3 binding and Ca2+ inactivation. (b) Schematic
diagram of fluxes in the Li–Rinzel model [388]. Here c and p denote the concentration of Ca2+

and IP3 in the cytoplasm, and ce is the concentration in the endoplasmic reticulum (ER). Both p
and ce are held fixed

three equivalent receptor subunits, all of which have to be in a conducting state in
order to generate a Ca2+ flux. Each subunit is taken to have an IP3 binding site, an
activating Ca2+ binding site, and an inactivating Ca2+ binding site; the conducting
state corresponds to the state in which all subunits have the first two binding sites
occupied but the third unoccupied (see Fig. 3.6a). Although the De Young–Keizer
model is simple to describe, it involves a relatively large number of variables that
have to be coupled to the Ca2+ and IP3 concentrations. A simplified version of the
model was subsequently developed by Li and Rinzel [388]. They exploited the fact
that the binding of IP3 and activating Ca2+ are fast relative to inactivating Ca2+ and
used a quasi-steady-state (QSS) argument to reduce the eight-state subunit model to
a model that simply keeps track of whether or not the inactivating Ca2+ binding site
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of a subunit is occupied. There is then a single gating variable

h = x000 + x010 + x100 + x110,

where xi jk denotes the fraction of subunits in state Si jk (see Fig. 3.6a). Thus, h3 is the
fraction of receptors in a cluster not inactivated by Ca2+. One finds that h evolves
according to an equation of the form (Ex. 3.9)

dh
dt

= αh(p)(1− h)−βh(p)ch, (3.4.1a)

where c is the cytoplasmic Ca2+ concentration and p is the IP3 concentration (which
is assumed fixed). It is assumed that there are three fluxes contributing to the change
in Ca2+ concentration:

dc
dt

= JIP + Jleak− Jp2, (3.4.1b)

where JIP is the flux through the cluster of IP3 receptors, Jleak is a leakage flux from
the ER to the cytoplasm, and Jp2 is the flux pumped back into the ER (see Fig. 3.6b).
The expressions for the various fluxes are

JIP = f (c, p)3h3[ce− c], Jleak = ν0[ce− c], JP2 =
ν1c2

k2
3 + c2

, (3.4.2)

where ce is the fixed Ca2+ concentration in the ER, ν0,ν1 are constants, and

f (c, p) =

(
p

p+K1

)
·
(

c
c+K5

)
, Kj = k− j/k j. (3.4.3)

The function f (c, p) can be derived from the QSS reduction of the De Young–
Keizer model, which shows that the fraction of open subunits is x110 = f (c, p)h
(Ex. 3.9). The cubic terms reflect the existence of three subunits. Parameter values
of the model can be found in [388]. Note that the simplified model resembles the
Hodgkin–Huxley model of a neuron, which will be introduced in Sect. 3.5 [see
equation (3.5.6)] after replacing Ca2+ concentration c by membrane voltage v and
ce by a reversal potential.

We now describe a stochastic version of the Li–Rinzel model for a cluster of
IP3Rs due to Shuai and Jung [590]. For stochastic versions of the full De Young–
Keizer model, see, for example, [178, 180, 243, 618]. The deterministic equations
(3.4.1) describe the mean behavior of a large cluster of Ca2+ channels, just as
the Hodgkin–Huxley equations for membrane voltage apply to a large number of
voltage-gated ion channels. If the number of channels is relatively small, then it is
necessary to take into account thermally driven fluctuations in the opening and clos-
ing of individual channels. In the case of the Li–Rinzel model, one only needs to
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consider the state of the Ca2+-inactivating binding site of each subunit. The latter is
modeled as the two-state Markov process

A∗
αh�

βh(c)
A, (3.4.4)

where A (A∗) denotes the unbound (bound) state. Suppose that there are N inde-
pendent IP3Rs, each with three independent subunits labeled i = 1,2,3 that are de-
scribed by the above two-state Markov process. Let Ni(t) (i = 1,2,3) denote the
number of receptors at time t that have the ith subunit in state A. Under the adiabatic
assumption that the Ca2+ concentration c evolves much more slowly than the state
transitions of the channels, we can write down a master equation for the probability
P(ni, t) = Prob[Ni(t) = ni|Ni(0) = n0] according to

dP(ni, t)
dt

= (N− ni+ 1)αhP(ni− 1, t)+ (ni+ 1)cβhP(ni + 1, t) (3.4.5)

− (nicβh +(N− ni)αh)P(ni, t), i = 1,2,3.

As with voltage-gated ion channels (see Sect. 3.5), we have a stochastic hybrid sys-
tem, since the A→ A∗ transition rate depends on the Ca2+ concentration c(t), which
evolves according to a piecewise deterministic equation of the form (3.4.1b). The
latter, in turn, couples to the discrete stochastic variables Ni(t) through the flux

JIP = f (c(t), p)[ce− c(t)]
3

∏
i=1

Ni(t)
N

. (3.4.6)

Finally, for large N, one can obtain a further simplification by carrying out a
Kramers–Moyal expansion of the master equation (3.4.5) along identical lines to
Sect. 3.2. This yields the following SDE for Hi(t) = Ni(t)/N with Hi treated as a
continuous stochastic variable:

dHi = αh(1−Hi)− cβhHi +
1√
N

b(Hi)dWi, (3.4.7)

where
b(Hi) =

√
αh(1−Hi)+ cβhHi,

and Wi(t) is an independent Wiener process with

〈dWi(t)〉= 0, 〈dWi(t)dWj(t
′)〉= δ (t− t ′)dt dt ′δi, j.

Shuai and Jung [590] simulated the stochastic Li–Rinzel model in order to inves-
tigate the effects of noise on Ca2+ oscillations in a space-clamped model. They as-
sumed that the deterministic system (3.4.1) was monostable at low and high IP3 con-
centrations and exhibited limit cycle oscillations (occurring via a Hopf bifurcation,
see Box 4B) at intermediate concentrations. They showed that noise can enlarge
the range of IP3 concentrations over which oscillations occur—an effect known
as coherence resonance. They also found a broad distribution of puff amplitudes,
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lifetimes, and interpuff intervals. In particular, at low IP3 concentrations, the am-
plitude distribution is a monotonically decaying function, whereas at higher con-
centrations it is unimodal. This suggests that Ca2+ puffs become more significant
as IP3 concentration is increased and hence could impact the spontaneous genera-
tion of Ca2+ waves. This issue was investigated numerically by Falcke [178] using
a stochastic version of the De Young–Keizer model that was incorporated into a
reaction–diffusion model of spatially distributed channel clusters. He showed that
there is indeed a transition from Ca2+ puffs to waves as the IP3 concentration is
increased. At low concentrations, only puffs occur, since there is not enough Ca2+

released to stimulate neighboring clusters, which means that the response is purely
local. However, as IP3 concentration increases, global Ca2+ waves can emerge from
local nucleation sites of high Ca2+ concentration. At intermediate levels of IP3,
global events are rare and waves only progress a short distance before dying out.
On the other hand, for higher IP3 concentrations, global waves occur regularly with
a well-defined period. Again this oscillatory-like behavior can occur in parameter
regimes for which the deterministic model is non-oscillatory.

3.4.2 Stochastic Model of Ca2+ Sparks in Cardiac Myocytes

We now turn to a stochastic model of Ca2+ sparks in cardiac myocytes [263], which
includes details of the geometry of Ca2+ release units, in particular, the narrow
junctional gap known as the diadic space that separates the sarcoplasmic reticulum
(SR) from the plasma membrane (see Fig. 3.7). (In smooth muscle cells the SER is
referred to as the sarcoplasmic reticulum.) In a typical myocyte, there could be up
to 10,000 Ca2+ release units, each one containing a cluster of around N = 50 RyRs
on the surface of the SR. The cluster of RyRs is apposed to L-type Ca2+ channels
located on so-called t-tubules, which are invaginations of the plasma membrane into
the myocyte. (The Ca2+ channels are not involved in the spontaneous generation
of Ca2+ sparks so are ignored in the model.) The diadic space separating the SR
from the t-tubules is a region of the mytoplasm (intracellular fluid of myocytes),
which is approximately cylindrical in shape with height 10 nm and radius 100nm.
Since the diadic space is a small enclosed volume, it supports an elevation in Ca2+

concentration relative to the bulk mytoplasm following the release of Ca2+ from an
RyR. Such a local elevation plays a crucial role in the CICR that results in a Ca2+

spark. The SR in a neighborhood of the RyRs is known as the junctional SR (JSR),
which may have a different Ca2+ concentration from the bulk or network SR (NSR).

We present the model in nondimensional form; details of model approximations
and estimates of experimentally based model parameters can be found in [263].
First, the diadic space is modeled as a single compartment with Ca2+ concentration
c satisfying the current conservation equation

τD
dc
dt

= JRyR− JD. (3.4.8)
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Here τD is a time constant, JRyR is the total Ca2+ current through the RyRs, and JD

is the diffusive current from the diadic space to the bulk mytoplasm. The latter is
modeled as the Fickian current

JD = c− cm, (3.4.9)

where cm is the bulk mytoplasm Ca2+ concentration. The total current through the
RyRs is taken to be proportional to the number n of open RyRs times the Ca2+

concentration csr in the JSR:

JRyR = csrx, x =
n
N
, (3.4.10)

diadic
space

RyRs

junctional SR

bulk
mytoplasm

JD JD

JRyR

JSR

t-tubules

network SR

Fig. 3.7: Schematic diagram of a Ca2+ release unit in a cardiac myocyte. It is divided into four
compartments: the network SR, the junctional SR, the diadic space, and the bulk mytoplasm. See
text for details

with N the total number of RyRs in the cluster. Each RyR has Ca2+ binding sites,
which can be activating or deactivating. When an RyR is in an activated state it is
promoted to a mode where it continuously opens and closes according to a Markov
process, with a mean open time of 1 ms [699]. The opening of an RyR channel re-
sults in an extra Ca2+ current flowing into the diadic space, which increases the rate
at which Ca2+ binds to the other RyRs via CICR, thus creating a positive feedback
loop. This feedback loop provides a mechanism for bistability. Note that the RyRs
also contain inactivating Ca2+ binding sites, but these do not play a role in initiating
a Ca2+ spark so are not included in the model. For simplicity, the RyRs are modeled
using a two-state Markov process involving a single closed state and a single open
state (see also [324]):

C(closed)
k+(c)�

k−
O(open), (3.4.11)
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with transition rates

k+(c) =
1

kτo

cα

cα + 1
, k− =

1
τo
. (3.4.12)

Here τo is the mean open time of a RyR, α is the number of Ca2+ ions that are
needed to open a RyR, and k determines the proportion of time the RyRs are open. It
is assumed that the RyRs are gated independently of each other. They are, however,
indirectly coupled via the Ca2+ concentration in the diadic space. The time constant
τD of diffusive flux from the diadic space is several orders of magnitude smaller than
the mean open time τo of a RyR, that is, τD ∼ 3μs whereas τo ∼ 1 ms. Therefore,
the Ca2+ concentration in the diadic space can be taken to be in quasi-equilibrium,
τD → 0, so that

c = cm + csrx. (3.4.13)

It follows that the transition rate can be reexpressed as a function of the fraction of
open channels and the Ca2+ concentration in the SR, k+ = k+(cm + csrx).

Now consider N independent RyRs within a Ca2+ release unit, each described
by the above two-state Markov process. Let N(t) be the number of open channels at
time t and set P(n, t) = Prob[N(t) = n|N(0) = n0]. The distribution P(n, t) evolves
according to the birth–death master equation (3.2.2) with transition rates ω±(n/N) :
n→ n± 1:

ω+(x) = N(1− x)
(cm + csrx)α

k((cm + csrx)α + 1)
, ω−(x) = Nx. (3.4.14)

For the moment, it is assumed that cm and csr are fixed so that ω+ can be treated as
a function of x alone. (Later the dynamics of csr following initiation of a Ca2+ spark
will also be taken into account.) The units of time are fixed by setting τo = 1. In the
deterministic limit N → ∞, we obtain the kinetic equation (3.2.5), which takes the
explicit form

dx
dt

= Ω+(x)−Ω−(x) = (1− x)
(cm + csrx)α

k((cm + csrx)α + 1)
− x. (3.4.15)

It can be shown that, for physiologically reasonable parameter values, this equation
exhibits bistability [263], that is, there exists a pair of stable fixed points x± sepa-
rated by an unstable fixed point x0. The fixed point x− ≈ 0 represents a quiescent
state, whereas the other fixed point x+ represents a Ca2+ spark in which a significant
fraction of RyRs are in the active mode and can be interpreted as a burst phase.

Noise-induced transitions from x− to x+ determine the distribution of inter-spark
intervals, just as noise-induced transitions from x+ to x− determine the distribution
of spark lifetimes. Hence, estimating the mean time for the occurrence of a spark
event reduces to the problem of calculating the MFPT to reach x+, starting from a
neighborhood of x−, by crossing x0. This calculation was carried out in Sect. 3.3 for
a general birth–death master equation using a diffusion approximation and can be
made more accurate using WKB methods (see Chap. 10). The latter approach yields
equation (3.3.36) for the mean time τi to initiate a Ca2+ spark starting from the
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Fig. 3.8: Stochastic model of calcium sparks. (a,b) Monte Carlo simulations of the proportion x of
RyRs in the open state and the transitions of one of the RyRs in the cluster. (c) The mean spark time
as a function of the number N of receptors in the cluster. The line is the asymptotic calculation and
the points are from a Monte Carlo simulation. As the number of receptors in the cluster increases,
the spark time increases and the error in asymptotic calculation decreases. The mean spark length
also increases rapidly with SR concentration csr. The model parameters are α = 4, cm = 0, and
k = 0.2. (Adapted from Hinch [263])

quiescent state x− after substituting for the transition rates using equation (3.4.14).
Similarly, the mean duration τ f of a spark, which corresponds to the mean time
to transition back from x+ to x−, is given by equation (3.3.36) under the mapping
x− → x+. It turns out that in the case of Ca2+ release, the quiescent state x− is
in an O(1/N) neighborhood of the boundary x = 0, so that the prefactor of the
MFPT has to be modified accordingly (see [263, 264] for details). Nevertheless, the
leading order exponential is unchanged. Hinch compared the theoretical prediction
with Monte Carlo simulations of the full system for various cst, and the results are
shown in Fig. 3.8. One can see that the spark time increases with the number of
receptors in the cluster and the mean spark length increases rapidly with csr.

Irrespective of the particular method used to solve the FPT problem, it was as-
sumed above that the concentration csr in the JSR is held fixed. This is a reasonable
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csr

x0 1
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4
x+

x- x0

nullcline of csr

nullcline of x

fluctuations 
about nullcline

Fig. 3.9: Sketch of nullclines in the deterministic planar Ca2+ spark model with x denoting the
fraction of open RyRs and cSR the Ca2+ concentration in the junctional SR. The csr nullcline is a
monotonically decreasing function x(csr), whereas the x-nullcline is cubic-like with three branches
x±(csr) and x0(csr). (Note that the branch x−(csr) ≈ 0; we have moved it away from the vertical
axis for the sake of illustration.) In the given diagram there is a single, stable fixed point on the
left-hand branch. In the stochastic version of the model a Ca2+ spark initiates a jump to the right-
hand branch x+(csr). This is followed by a stochastic trajectory in which the slow variable csr(t)
moves down the nullcline until it undergoes a noise-induced transition back to the left-hand branch
before the knee at x = xc. In the deterministic case, the return transition occurs at the knee (dashed
curve)

approximation when considering the initiation of a Ca2+ spark. However, following
Ca2+ release from the RyRs, the Ca2+ concentration csr slowly changes according to

τsr
dcsr

dt
=−csrx+ ksr[c0− csr]. (3.4.16)

where τsr � τo � τD. The first term on the right-hand side is the loss of Ca2+

through the RyRs, whereas the second term is the influx JSR of Ca2+ from the
NSR with fixed Ca2+ concentration c0 (see Fig. 3.7). The variation of csr means that
one has to modify the analysis of the time to terminate the Ca2+ spark. Following
Hinch [263], this can be achieved by combining the theory of stochastic transitions
with the classical phase-plane analysis of slow–fast excitable systems (see [322] and
Sect. 3.5). That is, (3.4.15) and (3.4.16) form an excitable system with the fraction
x of open RyRs acting as the fast variable and csr acting as the slow variable. In
Fig. 3.9 we sketch the nullclines of the deterministic system in a parameter regime
where there is a single, stable fixed point (x∗,c∗sr). In the full stochastic model, the
initiation of a Ca2+ spark induces a transition to the right-hand x-nullcline according
to x−(c∗sr)→ x+(c∗sr). The slow variable then moves down the right-hand nullcline
x+(csr) according to the equation
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Fig. 3.10: Distribution of spark durations for clusters containing (a) 10 RyRs and (b) 40 RyRs.
The results of Monte Carlo simulations are plotted as a histogram, whereas the solid line is the
analytical result calculated using stochastic phase-plane analysis. Additional parameters are c0 =
3.5, and ksr = 0.3. Adapted from Hinch [263]]

τsr
dcsr

dt
=−csrx+(csr)+ ksr[c0− csr]. (3.4.17)

That is, although x is a stochastic variable, it fluctuates much faster than the dynam-
ics of csr so one can substitute a time-averaged value of x in (3.4.16).

Suppose that csr(t) is the solution of (3.4.17) with csr(0) = c∗sr, that is, the Ca2+

spark occurs at t = 0. In principle, the spark can terminate at any time t > 0 due to
fluctuations in the number of open RyRs. Using a separation of time scales, we can
estimate the rate of transition λ back to the left-hand branch at time t by solving the
FPT problem using a diffusion approximation with csr(t) fixed. Since λ depends on
csr, we have a time-dependent transition rate λ (t) = λ (csr(t)). One can now calcu-
late the distribution of spark durations T . Let P(τ) = Prob(T > τ) and introduce
the spark duration probability density p(τ) =−dP/dτ. The probability that a spark
terminates in an infinitesimal time interval δτ is λ (τ)δτ , so that

P(τ + δτ) = P(τ)(1−λ (τ)δτ).

Dividing both sides by δτ and taking the limit δτ → 0 gives

dP
dτ

=−λ (τ)P(τ),

which can be integrated to yield P(τ) = exp
(−∫ τ

0 λ (t)dt
)
. Note that by definition

P(0) = 1. It follows that

p(τ) = λ (τ)exp

(
−
∫ τ

0
λ (t)dt

)
. (3.4.18)

An illustration of the distribution of spark durations is shown in Fig. 3.10; the results
are consistent with experimental data of Wang et al. [670].
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Finally, note that one of the major simplifications of the Hinch model [263] is
that the background Ca2+ concentrations in the mytoplasm (cm) and the network
SR (cnsr) are held fixed. It thus fails to capture the collective behavior of a large
population of Ca2+ release units (CaRUs), which are coupled via global changes
in these background concentrations (assuming diffusion can be neglected on the
relevant time-scales). This has motivated the development of a whole-cell model
of calcium-induced calcium release in cardiac myocytes, based on a system of N
globally-coupled CaRUs [682, 683].

3.5 Membrane Voltage Fluctuations and Spontaneous
Action Potentials

Conductance-based models of the Hodgkin–Huxley type have been used to describe
many important features of the electrophysiology of neurons and other secretory
cells [322]. It is typically assumed that the number of voltage-gated ion channels is
sufficiently large so that one can determine the average transmembrane ionic cur-
rents based on the opening probabilities of individual channels, which is an appli-
cation of the law of large numbers. However, the resulting deterministic equations
cannot account for spontaneous events driven by ion channel fluctuations. In this
section, we describe how to couple the voltage dynamics to the stochastic open-
ing and closing of a finite number of ion channels and show how such fluctua-
tions can initiate a SAP. However, it is first useful to review the classical theory of
conductance-based models of neural excitability.

3.5.1 Conductance-Based Model of Neural Excitability

A neuron typically consists of a cell body (or soma) where the nucleus containing
DNA is located, a branching output structure known as the axon and a branching
input structure known as the dendritic tree (see Fig. 3.11). Neurons mainly commu-
nicate with each other by sending electrical impulses or spikes (action potentials)
along their axons. (Some neurons are also coupled diffusively via gap junctions.)
These axons make contacts on the dendrites of other neurons via microscopic junc-
tions known as synapses. The basic components of synaptic processing induced by
the arrival of an action potential are shown in the inset of Fig. 3.11. Depolariza-
tion of the presynaptic axon terminal causes voltage-gated Ca2+ channels within
an active zone to open. The influx of Ca2+ produces a high concentration of Ca2+

near the active zone, which in turn causes vesicles containing neurotransmitter to
fuse with the presynaptic cell membrane and release their contents into the synaptic
cleft (exocytosis). The released neurotransmitter molecules then diffuse across the
synaptic cleft and bind to specific receptors on the postsynaptic membrane. These
receptors cause ion channels to open, thereby changing the membrane conductance
and membrane potential of the postsynaptic cell.
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Fig. 3.11: Basic structure of a neuron. [Inset shows a synaptic connection from an upstream or
presynaptic neuron and a downstream or postsynaptic neuron.] See text for details

The opening of synaptic ion channels results in the flow of electrical current
along the dendritic tree of the stimulated neuron. If the total synaptic current from
all of the activated synapses forces the electrical potential within the cell body to
cross some threshold, then the neuron fires a spike. The standard biophysical model
for describing the dynamics of a single neuron with somatic membrane potential v
is based upon conservation of electric charge:

C
dv
dt

=−Icon + u+ Iext, (3.5.1)

where C is the cell capacitance, Icon is the membrane current, u denotes the sum
of synaptic currents entering the cell body, and Iext describes any externally injected
currents. Ions can diffuse in and out of the cell through ion-specific channels embed-
ded in the cell membrane. Ion pumps within the cell membrane maintain concentra-
tion gradients, such that there is a higher concentration of Na+ and Ca2+ outside the
cell and a higher concentration of K+ inside the cell. The membrane current through
a specific channel varies approximately linearly with changes in the potential v rela-
tive to some equilibrium or reversal potential, which is the potential at which there is
a balance between the opposing effects of diffusion and electrical forces. Summing
over all channel types, the total membrane current (flow of positive ions) leaving the
cell through the cell membrane is

Icon = ∑
s

gs(v−Vs), (3.5.2)
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where gs is the conductance due to channels of type s and Vs is the corresponding
reversal potential. In the case of a channel selective to a single ion, Vs satisfies the
Nernst equation (see Ex. [2.4])

Vs =
kBT

q
ln

(
[outside]s
[inside]s

)
, (3.5.3)

where q is the charge of the ion, kB is the Boltzmann constant, T is temperature (in
degrees Kelvin), and [outside]s, [inside]s denote the extracellular and intracellular
concentrations of the given ion. Typical values for the common ion species are VK ≈
−75 mV, VNa ≈ 50 mV, VCa ≈ 150 mV, and VCl ≈ −60 mV (which is close to the
resting potential of the cell).

The generation and propagation of an action potential arises from nonlinearities
associated with active membrane conductances. Recordings of the current flowing
through single channels indicate that channels fluctuate rapidly between open and
closed states in a stochastic fashion, as described in Sect. 3.1. Nevertheless, most
models of a neuron use deterministic descriptions of conductance changes, under the
assumption that there are a large number of approximately independent channels of
each type. It then follows from the law of large numbers that the fraction of channels
open at any given time is approximately equal to the probability that any one channel
is in an open state. The conductance gs for ion channels of type s is thus taken to be
the product gs = ḡsPs where ḡs is equal to the density of channels in the membrane
multiplied by the conductance of a single channel and Ps is the fraction of open
channels. The voltage dependence of the probabilities Ps in the case of a delayed-
rectifier K+ current and a fast Na+ current was originally obtained by Hodgkin and
Huxley [265] as part of their Nobel prize winning work on the generation of action
potentials in the squid giant axon. The delayed-rectifier K+ current is responsible for
terminating an action potential by repolarizing a neuron. One finds that opening of
the K+ channel requires structural changes in 4 identical and independent subunits
so that PK = n4 where n is the probability that any one gate subunit has opened. In
the case of the fast Na+ current, which is responsible for the rapid depolarization
of a cell leading to action potential generation, the probability of an open channel
takes the form PNa = m3h where m3 is the probability that an activating gate is open
and h is the probability that an inactivating gate is open. Depolarization causes m to
increase and h to decrease, whereas hyperpolarization has the opposite effect.

The dynamics of the gating variables m,n,h are usually formulated in terms of
a simple kinetic scheme that describes voltage-dependent transitions of each gating
subunit between open and closed states. More specifically, for each X ∈ {m,n,h}

dX
dt

= αX (v)(1−X)−βX(v)X , (3.5.4)

where αX (v) is the rate of the transition closed → open and βX(v) is the rate of
the reverse transition open→ closed [see equation (3.2.5)]. Equation (3.5.4) can be
rewritten in the alternative form

τX (v)
dX
dt

= X∞(v)−X , with X ∈ {m,n,h}, (3.5.5)
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where

τX (v) =
1

αX (v)+βX(v)
, X∞(v) = αX (v)τX (v).

It follows that the conductance variables m, n, and h approach the asymptotic values
m∞(v), n∞(v), and h∞(v) exponentially with time constants τm(v), τn(v), and τh(v),
respectively. From basic thermodynamic arguments, the opening and closing rates
are expected to be exponential functions of the voltage. Hodgkin and Huxley [265]
fitted exponential-like functions to the experimental data obtained from the squid
axon:

αm =
0.1(v+ 40)

1− exp[−0.1(v+ 40)]
αh = 0.07exp[−0.05(v+ 65)],

αn =
0.01(v+ 55)

1− exp[−0.1(v+ 55)]
βm = 4.0exp[−0.556(v+ 65)],

βh =
1

1+ exp[−0.1(v+ 35)]
βn = 0.125exp[−0.125(v+ 65)].

All potentials are measured in mV, all times in ms, and all currents in μA per cm2.
The corresponding asymptotic functions X∞(v) and time constants τX (v) are plotted
in Fig. 3.12.

We can now write down the Hodgkin–Huxley model for the generation of an ac-
tion potential, which takes the membrane current to be the sum of a leakage current,
a delayed-rectifier K+ current, and a fast Na+ current,

C
dv
dt

= f (v,m,n,h)+ Iext, (3.5.6)

with

f (v,m,n,h) =−ḡNam3h(v−VNa)− ḡKn4(v−VK)− ḡL(v−VL). (3.5.7)
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Fig. 3.12: Voltage-dependent steady-state levels of activation and inactivation (left panel) and
voltage-dependent time constants (right panel) for the Hodgkin–Huxley model
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The maximal conductances and reversal potentials used in the original model are
ḡL = 0.003 ms/mm2, ḡK = 0.36 mS/mm2, ḡNa = 1.2 mS/mm2, VL = −54.387
mV, VK = −77 mV, and VNa = 50 mV. Note that the leakage current groups to-
gether various voltage-independent processes such as the currents carried by ion
pumps that maintain the concentration gradients. The variables m,n,h evolve ac-
cording to equation (3.5.4). The temporal evolution of the variables v, f ,m,n,h dur-
ing a single action potential is shown in Fig. 3.13. Injection of a depolarizing current
induces a rapid increase in the m variable describing activation of the Na+ current.
Since the slower h variable is initially around 0.6, there is a large influx of Na+ ions,
producing a sharp downward spike in the membrane current and a rapid depolariza-
tion through positive feedback. However, the rise in the membrane potential causes
the Na+ conductance to inactivate by driving h towards zero. In addition, the depo-
larization activates the K+ conductance, resulting in a subsequent hyperpolarization.
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Fig. 3.13: The dynamics of v, f ,n,m,h in the Hodgkin–Huxley model during the firing of an action
potential induced by a current injection at t = 5 ms

3.5.2 Neural Excitability and Phase-Plane Analysis

In order to understand the basic mechanism of neural excitability, we consider a
simplified version of the Hodgkin–Huxley model, namely, the Morris–Lecar model
[454], which takes the form of a planar dynamical system

dv
dt

= a(v) fNa(v)+w fK(v)− g(v)≡ f (v,w) (3.5.8a)

dw
dt

=
w∞(v)−w

τw(v)
≡ εg(v,w), (3.5.8b)
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where w represents the fraction of open K+ channels, fi(v) = gi(vi − v), g(v) =
g0(v− v0), and

a(v) =
αNa(v)

αNa(v)+βNa(v)
, w∞(v) =

αK(v)
αK(v)+βK(v)

.

Here

αNa(v) = e4(γNav+κNa), βNa(v) = 1, αK(v) = eγKv+κK = βK(v)
−1.

The fraction of Na+ channels (or Ca2+ channels in the original formulation of the
model) is assumed to be in QSS. The generation of action potentials can be ana-
lyzed using a slow/fast analysis of the deterministic system, under the assumption
that the dynamics of w is slow relative to that of v, that is, ε � 1. The fast variable

Fig. 3.14: Deterministic phase-plane dynamics of the ML model. Nullclines: v̇ = 0 (gray) and
ẇ = 0 (black). Black streamlines represent deterministic trajectories. Green/blue curves represent
an action potential in the limit of slow w

v has a cubic-like nullcline (along which v̇ = 0) and the slow variable has a mono-
tonically increasing nullcline (along which ẇ = 0) (see Fig. 3.14). It is assumed
that the nullclines have a single intersection point at (v∗,w∗). This corresponds to
a fixed point of the system, which we identify with the resting state. A schematic
diagram of the phase plane is shown in Fig. 3.15. For a finite range of values of w,
there exist three solutions v = v(w) of the equation f (v,w) = 0, which we denote by
V−(w),V0(w), and V+(w). Whenever these solutions coexist, we have the ordering
V−(w) ≤ V0(w) ≤ V+(w). Let W∗ denote the minimal value of w for which V−(w)
exists and let W ∗ denote the maximal value of w for which V+(w) exists.

Suppose that the fixed point is located on the left-hand branch close to the mini-
mum of the cubic. It is straightforward to show that the fixed point is linearly stable
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by evaluating the eigenvalues of the corresponding Jacobian. Moreover, the system
is excitable in the sense that sufficiently large perturbations of the resting state re-
sult in a time-dependent trajectory taking a prolonged excursion through state space
before returning to the resting state (see Fig. 3.15). Such a trajectory rapidly transi-
tions to the right branch V+, after which it slowly moves upward in a neighborhood
of the branch before reaching the maximum. It then rapidly transitions back to the
left branch V− followed by slow returns to the resting state along this branch. The
time-dependent plot of the variable v can be interpreted as an action potential. Since
the resting state is linearly stable, small perturbations simply result in small ex-
cursions that decay exponentially in time. Hence, there is effectively a threshold
phenomenon in which subthreshold perturbations result in a simple return to the
resting state, whereas super-threshold perturbations generate an action potential.

w

v

g(v,w)=0
f(v,w)=0

action potential

v

time
W*

W
*

V-(w)
V0(w)

V+(w)

Fig. 3.15: Schematic diagram illustrating the trajectory of a single action potential in the phase
plane for the ML equations. The unique rest point is stable. Inset shows the action potential as a
function of time

A more mathematical description of the above events can be developed in terms
of singular perturbation theory [173, 322, 548]. Due to the separation of time scales
with ε � 1, the fast variable v rapidly adjusts whenever it can to maintain the quasi-
equilibrium f (v,w). This can be captured by introducing the slow time scale τ = εt
such that (3.5.8) become

ε
dv
dτ

= f (v,w),
dw
dτ

= g(v,w). (3.5.9)

Now setting ε = 0 and assuming that v is moving along the stable branches V±(w)
of f (v,w) = 0, the dynamics of the recovery variable reduces to

dw
dτ

= g(V±(w),w) ≡ G±(w). (3.5.10)
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In the case of rapid transitions between the left and right branches, the dynamics
with respect to the fast time scale can be approximated by setting ε = 0 in (3.5.8),

dv
dt

= f (v,w),
dw
dt

= 0. (3.5.11)

Thus, on this time scale, w is constant and v converges to a stable solution of
f (v,w) = 0. Suppose that the system starts from a super-threshold initial condi-
tion (v0,w0) such that v0 >V0(w0). After rapidly reaching the right branch, it takes
a finite time to reach the upper “knee” of the nullcline f (v,w) and is obtained by
integrating (3.5.10):

Te =
∫ W∗

w0

dw
G+(w)

. (3.5.12)

On the other hand, the time taken to return to the resting state along the left branch
is infinite, since G−(w) vanishes at the fixed point.

In the above we have focused on so-called type II excitability in which there
is a globally attracting resting state. This should be contrasted with another form
of excitability exhibited by the ML model, which is called type I excitability [173].
From a dynamical systems perspective, the latter is associated with a saddle node on
a limit cycle (SNLC), also known as a saddle node on an invariant circle (SNIC).
This is illustrated in Fig. 3.16, which shows three fixed points corresponding to a
stable node (the resting state), a saddle, and an unstable node. The stable node and
saddle lie on a closed curve consisting of the unstable manifold of the saddle. Under
a saddle-node bifurcation the saddle and unstable node annihilate resulting in the

w

v

N

U

S

Fig. 3.16: Sketch of type I excitability in the deterministic ML model. Nullclines: v̇ = 0 (solid) and
ẇ = 0 (dashed). There are three fixed points: a stable node (N), a saddle (S), and an unstable node
(U). The fixed points S and N lie on a closed curve (thick black) that is the unstable manifold of S.
Under a change of parameters, the fixed points S and N can annihilate via a saddle-node bifurcation
resulting in the transition to a limit cycle oscillator
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formation of a limit cycle oscillator; this bifurcation scenario is distinct from the
onset of oscillations typical of type II excitability, which occur via a Hopf bifurca-
tion (see Box 3B). Below the SNIC bifurcation point, an action potential will occur
if the resting state is perturbed beyond the stable manifold of the saddle. In the fol-
lowing we will focus on the effects of stochastic ion channels on type II excitability.

3.5.3 Stochastic Conductance-Based Model

Let us now consider a conductance-based model of a neuron, in which the stochastic
opening of ion channels generates a stochastic ionic current that drives the mem-
brane voltage. It is then possible that ion channel noise induces SAPs, which can
have a large effect on a neuron’s function [678]. If SAPs are too frequent, a neuron
cannot reliably perform its computational role. Hence, ion channel noise imposes
a fundamental limit on the density of neural tissue. Smaller neurons must function
with fewer ion channels, making ion channel fluctuations more significant and more
likely to cause a SAP. In order to investigate SAPs, we will consider a stochastic
version of the ML model [476] consisting of N sodium and M potassium channels:

dV
dt

= F(V,m,n)≡ n
N

fNa(V )+
m
M

fK(V )− g(V). (3.5.13)

We assume that each channel can either be open or closed and can switch between
each state according to the kinetic scheme

C
αi(v)
−→←−
βi(v)

O, i = Na, K. (3.5.14)

(Note that a more detailed biophysical model would need to treat each ion channel
as a cluster of subunits rather than a single unit [224]. In other words, the Markov
chain of events associated with opening and closing of an ion channel would involve
transitions between more than two internal states; see Sect. 3.1.)

The Na+ channels open and close rapidly relative to the voltage and K+ dy-
namics. We are particularly interested in how fluctuations affect the initiation of an
action potential due to the opening of a finite number of Na+ channels. Therefore,
we imagine freezing the slow K+ channels, so that they effectively act as a leak
current, and simplify the sodium channels by treating each as a single activating
subunit. The stochastic membrane voltage then evolves according to the piecewise
deterministic equation

dV
dt

= F(V,n)≡ n
N

f (V )− g(V), (3.5.15)

where f (V ) = fNa(V ), g(V ) = −geff[Veff −V ]− I represents the sum of effective
leakage currents and external inputs I, and n(t) is the number of open sodium
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channels. The right-hand side of (3.5.15) is negative for large V and positive for
small V , which implies that the voltage V is confined to some bounded domain
[V1,V2]. Note that (3.5.15) only holds between jumps in the number of open ion
channels, with the latter described by the master equation (3.2.1). The stochastic
process defined by (3.5.14) and (3.5.15) is an example of a stochastic hybrid sys-
tem with piecewise deterministic dynamics. There has been a lot of recent inter-
est in such systems, particularly within the context of conductance-based models
[74, 81, 321, 476, 491, 600, 663]. They also arise in models of polymerization
(Sect. 4.1), biochemical chemotaxis (Sect. 5.3), gene networks (Sect. 6.4), and ac-
tive motor transport (Sect. 7.4). The associated probability density p(v,n, t), which
is defined according to

p(v,n, t)dv = Prob[n(t) = n,v≤V (t)≤ v+ dv],

given an initial condition V (0) = V0,n(0) = n0, satisfies the differential Chapman–
Kolmogorov (CK) equation

∂ p
∂ t

= − ∂
∂v

[( n
N

f (v)− g(v)
)

p
]
+ω+(v,n− 1)p(v,n− 1, t) (3.5.16)

+ω−(v,n+ 1)p(v,n+ 1, t)− [ω+(v,n)+ω−(v,n)]p(v,n, t),

with
ω+(v,n) = α(v)(N− n), ω−(v,n) = β (v)n. (3.5.17)

The first term on the right-hand side of (3.5.16) generates the deterministic dy-
namics for a given n – see the discussion of the Liouiville equation in Sect. 2.2.1
– whereas the other terms represent the transitions between discrete states of the
Markov chain. If the continuous process were an SDE, then there would be an addi-
tional n-dependent diffusion term on the right-hand side. Techniques for analyzing
differential CK equations will be developed in Sect. 7.4, 7.6, and 10.1.

In order to investigate action potential initiation, we will make the following
approximations:

(i) For sufficiently large N, we approximate the jump Markov process for the ion
channels by a continuous Markov process using a diffusion approximation as
outlined in Sect. 3.2;

(ii) The transitions between different discrete states are much faster than the volt-
age dynamics so that, for fixed v, the number of open ion channels is close to
the quasi-equilibrium x∗ = a(v)≡ α(v)/(α(v)+β (v)). This limiting case was
originally considered by Chow and White [116].

Under approximation (i), the voltage dynamics can be described by an SDE of the
form (see (3.2.20))

dV =
[

f (V )(a(V )+Y(t)/
√

N)− g(V)
]

dt, dY =−k(V )Y dt + b(V)dW (t),

(3.5.18)
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with

k(V ) = α(V )+β (V), b(V ) =

√
2α(V )β (V )

α(V )+β (V)
.

Thus the stochastic voltage is coupled to a fast Ornstein–Uhlenbeck process Y (t).
In the case of fast sodium channel kinetics (approximation (ii)), we have α,β =
O(1/ε) for some dimensionless parameter 0 < ε � 1. (The time scale is fixed by
taking the relaxation time of the voltage to be of O(1).) It follows that k(V ) =
O(1/ε) and b(V) = O(1/

√
ε). Hence, we can take Y (t) to be in quasi-equilibrium

for a given V (fast ion channels), that is, Y (t)dt ≈ k(V )−1b(V)dW (t). This then
yields a scalar SDE for the voltage:

dV = [ f (V )a(V )− g(V)]dt +
1√
N

σ(V ) f (V )dW (t), (3.5.19)

where

σ(V ) =
b(V )

k(V )
=

1
α(V )+β (V)

√
2α(V )β (V )

α(V )+β (V)
. (3.5.20)

In deriving (3.5.19), we have effectively taken a zero correlation limit of an
Ornstein–Uhlenbeck process. It can be shown that the multiplicative noise term
should be interpreted in the sense of Stratonovich [204, 321]. However, for large N
this yields an O(1/N) correction to the drift term in the FP equation, which can be
dropped. We thus obtain the FP equation

∂ p(v, t)
∂ t

= − ∂
∂v

[A(v)p(v, t)]+
1

2N
∂ 2

∂v2 [B(v)p(v, t)], (3.5.21)

with
A(v) = f (v)a(v)− g(v), B(v) = [σ(v) f (v)]2. (3.5.22)

The FP equation is supplemented by reflecting boundary conditions at v =V1,V2:

J(V1, t) = J(V2, t) = 0, (3.5.23)

with

J(v, t) = A(v)p(v, t)− 1
2N

∂
∂v

B(v)p(v, t). (3.5.24)

Note that equation (3.5.21) is identical in form to (3.2.10) except we now have a
stochastic process with respect to membrane voltage rather than fraction of open
ion channels; the latter is slaved to the voltage.

A key property that one would like to calculate is the mean time to fire an action
potential (MFPT) as a function of the stimulus current I. In the absence of noise, the
system evolves according to the deterministic equation

dv
dt

= A(v) =
α(v)

α(v)+β (v)
f (v)− g(v)≡−dU(v)

dv
, (3.5.25)
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Fig. 3.17: Plot of deterministic potential U(v) as a function of voltage v for different values of
the external stimulus current I. Parameter values are N = 10, vNa = 120 mV, veff = −62.3 mV,
gNa = 4.4 ms/cm2, geff = 2.2 ms/cm2, β = 0.8 s−1, and α(v) = β exp[(v+1.2)/9]

where U(v) is a deterministic potential. In Fig. 3.17, we plot U(v) as a function of v
for various values of the external input current and the particular transition rates

α(v) = β exp

(
2(v− v1)

v2

)
, β = constant.

The minima and maxima of the potential correspond to stable and unstable fixed
points of the deterministic dynamics, respectively. It can be seen that below a thresh-
old current I∗, I < I∗, there exist two stable fixed points v± (minima) separated by
an unstable fixed point at v0 (maximum), that is, the system exhibits bistability.
The left-hand fixed point represents the resting state, whereas the right-hand fixed
point corresponds to an excited state. Thus, in the bistable regime the determinis-
tic system requires an external perturbation in order to generate an action potential
starting from the resting state. On the other hand, for the stochastic system it is
possible that fluctuations in the opening and closing of Na+ ion channels induce a
transition from the resting state to the excited state by crossing over the potential
hill at v0. Of course, once such an event occurs, one has to take into account the K+

dynamics in order to incorporate the effects of repolarization that return the system
to the resting state. If one includes the slow opening and closing of these channels,
then the underlying deterministic system becomes excitable rather than bistable. For
simplicity, we will assume that this does not significantly affect the noise-induced
initiation of an action potential. It turns out that such an assumption breaks down
if fluctuations in the opening and closing of K+ channels become significant [476]
(see Sect. 10.1).
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The calculation of the mean time to escape from the resting state using the diffu-
sion approximation proceeds along identical lines to Sect. 3.3. After taking v→ x,
we obtain equation (3.3.34) with the FP quasi-potential Ψ ≡ ΦFP determined by
equations (3.2.16) and (3.5.22):

ΦFP(x) =−2
∫ x A(y)

B(y)
dy =−2

∫ x f (y)a(y)− g(y)
σ(y) f (y)

dy. (3.5.26)

Keener and Newby [321] explicitly calculated the MFPT and compared it with
Monte Carlo simulations of the full stochastic model whose probability density
evolves according to the CK equation (3.5.17). A summary of their findings is shown
schematically in Fig. 3.18. The main observation is that although the Gaussian-like
diffusion approximation does well in the superthreshold regime (I > I∗), it devi-
ates significantly from the full model results in the subthreshold regime (I < I∗),
where it overestimates the mean time to spike. This is related to the fact that the

applied current I (mA)
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diffusion approximation
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Fig. 3.18: Schematic diagram comparing MFPT calculated using the diffusion approximation with
the MFPT of the full system obtained using Monte Carlo simulations. The scales of the axes are
based on numerical results carried out in [321] for N = 10

quasi-potential of the steady-state density under the diffusion approximation gen-
erates exponentially large errors in the MFPT. Thus more advanced asymptotic
methods are required such as the WKB approximation [321]. The application of
WKB methods to FPT problems is developed in Chap. 10.
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3.6 Stochastic Gating Model of Confinement

An interesting problem is the escape of particles from a bounded domain via the
random opening and closing of one or more channels embedded in the boundary of
the domain (see Fig. 3.19). One important application is to modeling the escape of
diffusing proteins from a corral in the plasma membrane (see Sect. 7.1). Consider, in
particular, the spatially homogeneous stochastic gating model of Brown and collab-
orators [79, 380], in which diffusion within the domain is relatively fast so that the
molecules are well mixed and one can ignore spatial effects. Let Pn(t) be the prob-
ability that there are n free particles within the domain at time t. Denote the state
of the stochastic gate at time t to be the binary random variable μ(t) with μ(t) = 1
(μ(t) = 0) corresponding to the open (closed) state. The opening and closing of the
stochastic gate is governed by the two-state Markov process

dP1

dt
=−γ−P1 + γ+P0,

dP0

dt
= γ−P1− γ+P0, (3.6.1)

where P1(t) and P0(t)) are the probabilities that the gate is open and closed, re-
spectively, at time t, and γ± are the transition rates between the two states. Particles
can only transfer between the exterior and interior of the domain when the gate is
open, in which case the rates of outflux and influx are γ and k. Note that k will
depend linearly on the concentration of particles outside the domain. The probabil-
ity distribution Pn(t) evolves according to the nonautonomous birth–death master
equation

dPn

dt
= μ(t) [kPn−1(t)+ (n+ 1)γPn+1(t)− (k+ γn)Pn(t)] (3.6.2)

with n ≥ 0 and P−1(t) ≡ 0. The positive terms on the right-hand side represent the
various transitions into the state (n) whereas the negative terms represent the various
transitions from the state (n). The initial condition is Pn(0) = δn,n0 ; i.e., at time t = 0
there are n0 free particles within the domain. First, suppose that the gate is always
open so that (3.6.2) reduces to the autonomous master equation

dPn

dt
= kPn−1(t)+ (n+ 1)γPn+1(t)− (k+ γn)Pn(t). (3.6.3)

The mean concentration of particles in the domain, x(t) = 〈n(t)〉/V , where V is the
volume of the domain, evolves according to the simple kinetic equation

dx
dt

= k/V − γx.

This has a steady-state solution n =Vx = k/γ .



148 3 Stochastic Ion Channels

μ(t) = 1μ(t) = 0

Fig. 3.19: Escape from a domain with a single stochastic gate

Equation (3.6.3) is a rare example of a master equation that can be solved exactly,
and one finds that Pn(t) is given by a Poisson distribution. The simplest way to see
this is to introduce the generating function

G(z, t) = ∑
m≥0

zmPm(t),

and substitute into (3.6.3):

∂G
∂ t

+ γ(z− 1)
∂G
∂ z

= k(z− 1)G.

This is a linear first-order PDE with nonconstant coefficients. A standard method
for solving such equations is the method of characteristics [554]. The basic idea is
to construct characteristic curves z = z(t) along which G(t)≡ G(z(t), t) satisfies

dG
dt

=
∂G
∂ t

+
dz
dt

∂G
∂ z

,

such that the evolution of G is consistent with the original PDE. This then yields the
characteristic equations

dz
dt

= γ(z− 1),
dG
dt

= k(z− 1)G.

Solving for z(t),
z(t) = 1+ seγt

where s parameterizes the initial data. Then

dG
dt

= kseγt G, G(t) = F(s)exp
(
kseγt/γ

)

for some function F determined by the initial data. In order to determine the solution
G(z, t) we eliminate s in terms of z, which gives

G(z, t) = F([z− 1]e−γt)exp(k(z− 1)/γ) . (3.6.4)
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Since G(1, t)= 1, we require F(0)= 1. Moreover, given the initial condition Pn(0)=
δn,n0 , we have G(z,0) = zn0 and F(z) = (1+ z)n0e−kz/γ . It follows that

G(z, t) = [1+ e−γt(z− 1)]n0ek(1−e−γt)(z−1)/γ . (3.6.5)

Note that the method of characteristics provides an alternative method for solving
equation (2.2.20) for the characteristic function of the Ornstein–Uhlenbeck process
(see Ex. 3.10). More importantly, the method can also be applied to nonlinear first-
order equations of the general form

a(x, t, p)
∂ p
∂ t

+ b(x, t, p)
∂ p
∂x

= c(x, t, p)p, (3.6.6)

for sufficiently smooth functions a,b,c. These so-called quasilinear equations crop
up in many models of transport processes and support nontrivial solutions such as
shock waves and rarefaction waves [554]. An application to molecular motors will
be developed in Sect. 7.5.

Returning to the stochastic gating model, we Taylor expand G(z, t) in powers of z
and find that for n0 = 0 (bounded domain is initially empty), we have (see Ex. 3.11),

Pn(t) = e−λ (t) λ (t)n

n!
, λ (t) =

k
γ
(1− e−γt), (3.6.7)

which is a time-dependent Poisson distribution of rate λ (t). It immediately follows
that

〈n(t)〉= λ (t), var[n(t)] = λ (t).

In the more general case n0 �= 0, the mean and variance can be calculated from the
formulae

〈n(t)〉= ∂G(z, t)
∂ z

∣
∣
∣∣
z=1

, 〈(n2(t)− n(t))〉= ∂ 2G(z, t)
∂ z2

∣
∣
∣∣
z=1

.

Calculating these derivatives yields

〈n(t)〉= (n0− k/γ)e−γt + k/γ, var[n(t)] = 〈n(t)〉− n0e−2γt .

Let us now turn to the full stochastic gating model, in which the state of the gate is
given by the stochastic variable μ(t) so that there are two levels of stochasticity: the
stochastic process of exchange of particles when the gate is open and the random
opening and closing of the gate itself. For a given realization ω ∈Ω of the stochastic
gate (a given trajectory μ(t) through state space), we can repeat the analysis of the
autonomous master equation (3.6.3), except that

e−γt →N (t)≡ e−γ
∫ t

0 μ(t′)dt′ .
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It follows that different realizations of μ(t) will yield different values of the mean
and variance. Hence, a more useful characterization of the statistics is obtained by
averagingN (t) with respect to all possible stochastic realizations of the gate, which
is denoted by 〈N 〉μ . The latter can be performed using a method originally devel-
oped by Kubo [358] in the study of spectral line broadening in a quantum system
and subsequently extended to chemical rate processes with dynamical disorder by
Zwanzig [707]. Following Kubo [358], consider the SDE

dX
dt

=−γμ(t)X(t),

where μ(t) is a discrete random variable that switches between μ = 1 and μ = 0
according to (3.6.1). This is a simple example of a stochastic hybrid system (see
Sect. 3.5). Introduce the probability densities pl(x, t) with pl(x, t)dx = Prob[μ(t) =
l, x≤ X(t)≤ x+ dx], l = 0,1, and initial conditions

pl(x,0) = δ (x− 1)Πl.

Here Πl , l = 0,1, are the stationary probability distributions of the two-state Markov
process (3.6.1):

Π1 =
γ+

γ++ γ−
, Π0 =

γ−
γ++ γ−

.

These densities evolve according to the equation

∂ p1

∂ t
= γ

∂ (xp1)

∂x
− γ−p1 + γ+p0 (3.6.8a)

∂ p0

∂ t
= γ−p1− γ+p0. (3.6.8b)

We now make the observation that p(x, t) = p0(x, t) + p1(x, t) is the probability
density for the stochastic process X(t), which has the formal solution

X(t) =N (t)≡ e−γ
∫ t

0 μ(t′)dt′

together with the constraint that the initial state of the gate μ(0) is a random variable
distributed according to the stationary distributions Π0,1. Thus, finding the mean
of N (t) with respect to the stochastic process μ(t) is equivalent to finding the
conditional means

ml(t) =
∫ ∞

0
xpl(x, t)dx, l = 0,1,

and setting

〈N (t)〉μ = m0(t)+m1(t).
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In order to determine m0,1(t), take first moments of equations (3.6.8a,b). This
yields the matrix equation

d
dt

(
m1(t)
m0(t)

)
=−A

(
m1(t)
m0(t)

)
, A =

(
γ−+ γ −γ+
−γ− γ+

)
, (3.6.9)

which has the solution (
m1(t)
m0(t)

)
= e−tA

(
Π1

Π0

)
.

A similar analysis can be carried out for second moments. One thus finds that the
μ-averaged mean and variance are

〈n〉μ = (n0− k/γ)〈N 〉μ + k/γ, (3.6.10)

varμ [n] = 〈n〉μ − n0〈N 2〉μ +(n0− k/γ)2 (〈N 〉μ −〈N 〉2μ
)
, (3.6.11)

where

〈N (t)q〉μ =

(
1
1

)T

exp

[
−t

(
γ−+ qγ −γ+
−γ− γ+

)](
Π1

Π0

)
(3.6.12)

for q = 1,2. The averages 〈N q〉, q = 1,2, approach zero as time increases; hence
the steady-state mean and variance are both equal to k/γ . There have been a number
of extensions of the stochastic gating model. These include taking into account the
effects of membrane proteins binding to scaffolding proteins within a corral [68]
and the analysis of the narrow escape problem for a particle that can switch between
different conformational states and can only exit a domain in one of these states
[531].

3.7 Exercises

Problem 3.1 (Chain of ion channel states). The time course of the opening and
closing of some ion channels seems to follow a power law rather than an exponential
law at large times. One way to understand such power law behavior is to consider
an ion channel with N closed states such that the transition to an open state can only
take place from state 1 at one end of a chain

0
α←1

γ1�
β1

2 . . .
γN−1�
βN−1

N.

(a) Write down the corresponding set of kinetic equations. Hence, show that when
γn = βn = 1 for all n and α = 1, we obtain the discrete diffusion equation along
a chain with a reflecting boundary at n = N and an absorbing boundary at n = 0:
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d p1

dt
= p2− 2p1,

d pn

dt
= pn−1 + pn+1− 2pn, 1 < n < N,

d pN

dt
= pN−1− pN,

where pn(t) is the probability that the channel is in state n at time t.
(b) Given the initial condition pn(0) = δn,1, show that in the large N limit, the exact

solution is
pn(t) = e−2t [In−1(2t)− In+1(2t)],

where In(z) is the modified Bessel function of integer order:

In(z) =
∫ π

−π
einkezcos(k) dk

2π
.

Hint: use discrete Fourier transforms to solve the discrete diffusion equation on
the infinite lattice (Box 2A) and then use the method of images to write down
the solution for a semi-infinite lattice (by analogy with Ex. 2.12).

(c) When 2t � n, the modified Bessel function has the asymptotic expansion

In(2t) =
e2t
√

4πt

[
1− 4n2− 1

16t
+ . . .

]
.

Use this to show that, for large t,

pn(t)≈ n

2π1/2t3/2
.

(d) Define F(t) to be the total probability of finding the system in a closed state:

F(t) =
∞

∑
n=1

pn(t).

Show that dF/dt =−p1 and, hence, F(t)≈ (πt)−1/2 for large N, t.

Problem 3.2 (Ion channel with multiple subunits). Consider an ion channel with
k identical open subunits, each of which can be open or closed, and a current only
passes if all k subunits are open.

(a) Let S j denote the state in which j subunits are open and let α,β denote the
rates of opening and closing of a single subunit. Write down the corresponding
reaction scheme

(b) Derive the kinetic equations for x j, which is the fraction of channels in state j
such that ∑k

j=0 x j = 1.
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(c) By direct substitution, show that

x j =
k!

(k− j)! j!
n j(1− n)k− j

is an invariant manifold of the dynamics, provided that

dn
dt

= α(1− n)−β n.

Problem 3.3 (Ligand-gated ion channel). Consider the following second-order ki-
netic scheme for a ligand-gated ion channel:

C
r1(T )
�
r2

C1

↖
r4

↙
r3

O

Here C and C1 are the closed forms of the receptor, O is the open (conducting) form,
and the ri are voltage-independent transition rates. The transition rate r1 for C→C1

depends on the concentration of ligand T . Suppose that we make the following
approximations: (i) the transmitter concentration T occurs as a pulse δ (t− t0) for a
release event occurring at time t = t0, that is, r1(T ) = r1δ (t− t0); (ii) the fraction
of channels in state C is taken to be fixed at unity—this is reasonable if the number
of channels in state C is much larger than the number of channels in states C1 or O.

(a) Write down the kinetic equations for the fraction of receptors in the states C1

and O, which are denoted by z and s, respectively.
(b) Solve the resulting pair of inhomogeneous linear equations assuming that z(0) =

s(0) = 0. In particular show that the fraction of open channels is given by

s(t) = r1r3

(
1
τ2
− 1

τ1

)−1

(e−(t−t0)/τ1− e−(t−t0)/τ2), t > t0,

with τ1 = 1/(r2 + r3), τ2 = 1/r4.
(c) Show that in the limit τ2 → τ1 = τs this reduces to the so-called alpha function

s(t) = r1r3(t− t0)e
−(t−t0)/τs , t > t0.

Such a response function is often used to model the response of synaptic recep-
tors following the release of neurotransmitter.

Problem 3.4 (MWC model). Generalize the MWC model of a ligand-gated ion
channel from two binding sites to n binding sites. Let R j,Tj, j = 0,1, . . . ,n, denote
the global states (open or closed) with j ligands bound to the allosteric site. Also
define KT and KR to be the equilibrium constants for binding of an acetylcholine
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molecule to an individual site of a closed and open receptor, respectively. Finally,
take Yj to be the equilibrium constant associated with the opening and closing of a
receptor with j occupied sites. Defining the fraction of open receptors according to

popen =
∑n

j=0[R j]

∑n
j=0[R j]+∑n

j=0[Tj]

use the law of mass action to derive the sigmoidal function

popen =
Y0(1+KR[L])n

Y0(1+KR[L])n +(1+KT [L])n .

Hint: care needs to be taken in working out the combinatorial factors multiplying
KT and KR in the reaction diagram.

Problem 3.5 (MWC model and the Boltzmann–Gibbs distribution). Rederive
the result for the MWC model in Ex. 3.4 using the Boltzmann–Gibbs distribution
(Sect. 1.4). Use the following observations. A microstate is specified by the number
of occupied binding sites m, 0≤ m≤ n, and whether the channel is open or closed.
The free energy of a given microstate is

Er
m = m [εr

b− μ0− kBT ln(c/c0)] ,

where εr
b is the binding energy when the channel is open (r = R) or closed (r = T )

and the chemical potential μ = μ0−kBT ln(c/c0) takes into account that ligands are
being taken out of solution (see Sect. 1.4). Evaluate the partition function

Z = ∑
r=R,T

n!
m!(n−m)!

e−Er
m/kBT ,

and hence determine popen. Explain the presence of the combinatorial factor in the
definition of Z.

Problem 3.6 (Master equation for an ensemble of ion channels). Consider the
master equation for the two-state ion channel model:

d
dt

P(n, t) = α(N− n+ 1)P(n− 1, t)+β(n+1)P(n+1, t)

− [α(N− n)+β n]P(n, t).

(a) By multiplying both sides by n and summing over n, derive the following kinetic
equation for the mean n̄ = ∑N

n=0 nP(n, t):

dn̄
dt

= α(N− n̄)−β n̄.

(b) Derive a corresponding equation for the variance σ2 = 〈n2〉−〈n〉2. That is, mul-
tiply both sides of the master equation by n2 and sum over n to determine an
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equation for the second moment and then use part (a). Show that the variance
decays exponentially at a rate 2(α +β ) to the steady-state value

σ2 =
αβ

(α +β )2

and hence deduce that fluctuations become negligible in the large N limit.
(c) Compare the results obtained from the master equation with the analysis based

on the linear noise approximation.
(d) Construct the master equation for an ensemble of N identical, independent chan-

nels each of which has two subunits. That is, determine an equation for the evo-
lution of the probability distribution Pn0,n2(t) that there are n j ion channels with
j open subunits such that N = n0 + n1 + n2.

Problem 3.7 (Bistability in an autocatalytic reaction). Consider the following
nonlinear, autocatalytic reaction scheme for a protein that can exists in two states X
and Y :

X
k1�
k2

Y, X + 2Y
k3→ 3Y.

Let [X ] and [Y ] denote the concentrations of the molecule in each of the two states
such that [X ]+ [Y ] = Ytot fixed. The kinetic equation for [Y ] is

d[Y ]
dt

=−k2[Y ]+ k1[X ]+ k3V
2[Y ]2[X ],

where V is cell volume.

(a) Let y= [Y ]/Ytot. Show that after an appropriate rescaling of time, the correspond-
ing kinetic equation for y is

dy
dt

= y(μ(1− y)y− 1)+λ (1− y),

where μ = k3Y 2
tot/k2,λ = k1/k2. Determine the existence and stability of the

fixed points for y. Plot the bifurcation diagram with μ treated as a bifurcation
parameter and λ = 0.03. Hence, show that the system is bistable over a range of
values of μ .

(b) Suppose that there are N molecules, that is, N = VYtot, where V is cell volume.
Construct the master equation for the probability P(n, t) that there are n(t) = n
molecules in state Y at time t.

(c) Using equation (3.2.6), show that the steady-state distribution is

Ps(n) =
CNN!

n!(N− n)!

n−1

∏
m=0

[
λ +

μ
N2 m(m− 1)

]
.



156 3 Stochastic Ion Channels

Plot Ps(n) as a function of n (treated as a continuous variable over the range
[0,400]) for N = 400, μ = 4.5, and μ = 6 with λ = 0.03. Comment on the
location of the peaks in terms of fixed points of the deterministic system.

(d) Derive the corresponding FPE using a Kramers–Moyal expansion and determine
the steady-state solution. Calculate the steady-state solution and compare with
the exact solution of part (c) for N = 40 and N = 400.

Problem 3.8 (Mean time to escape). Consider the model of bistability in a popu-
lation of two-state ion channels analyzed in Sect. 3.3 (see also Fig. 3.4). The FPT to
escape from the state x− is

τ(x−) = N
∫ x0

x−
eNΨ (x′)dx′

∫ x′

0

e−NΨ (x′′)

B(x′′)
dx′′,

with the quasi-potential

Ψ (x) =
∫ x

0

A(x′)
B(x′)

dx′.

By following the steps in the derivation of the Arrhenius formula (3.3.32), show that
the rate of escape is given by

λ =
1

τ(x−)
≈ B(x−)

2π

√∣
∣
∣
∣
A′(x−)
B(x−)

∣
∣
∣
∣

A′(x0)

B(x0)
exp

[
N
∫ x0

x−

A(x)
B(x)

dx.

]
.

Problem 3.9 (De Young–Keizer model). Carry out the reduction of the De Young–
Keizer model discussed in Sect. 3.4.1.

(a) First write down the kinetic equations for the four states without calcium bound
to the inactivating site (S000,S010,S100,S110), using the reaction diagram of
Fig. 3.6a.

(b) Perform the QSS approximation by setting all time derivatives to zero and drop-
ping all slow transitions involving binding/unbinding of the calcium inactivating
binding site, that is, set k±2 = k±4 = 0. Show that

x100 =
K5h

c+K5
− x000, x010 =

K1h
p+K1

− x000,

where Ki = k−i/ki and

x000 + x010 + x100 + x110 = h.

Hence, determine x000 and x110.
(c) Show that the corresponding QSS solutions for the states with calcium bound to

the inactivating site (S001,S011,S101,S111) are obtained from (b) by taking K1 →
K3 and h→ 1− h. Note that

x001 + x011+ x101 + x111 = 1− h.
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(d) Finally, add together the four kinetic equations of part (a) and substitute for the
xi jk using their QSS solutions. Hence derive the equation

dh
dt

=− (k−4K2K1 + k−2pK4)c
K4K2(p+K1)

h+
k−2 p+ k−4K3

p+K3
(1− h).

Problem 3.10 (Method of characteristics). Recall that the characteristic function
for the Ornstein–Uhlenbeck process satisfies the linear PDE (see Ex. 2.5)

∂Γ
∂ t

+ kz
∂Γ
∂ z

=−D
2

z2Γ .

Use the method of characteristics to obtain a solution of the form

Γ (z, t) = Γ0(ze−kt)e−Dz2/4k

and show how Γ0 is related to the initial condition for p.

Problem 3.11 (Gating model of confinement). Consider the gating model of con-
finement within a corral that was introduced in Sect. 3.6. If the gate is always open,
then the generating function for stochastic confinement is given by

G(z, t) = [1+ e−γt(z− 1)]n0ek(1−e−γt)(z−1)/γ .

(a) Suppose that n0 = 0 (domain is initially empty). Show that Pn(t) is given by a
time-dependent Poisson process with rate

λ (t) =
k
γ
(1− e−γt)

by Taylor expanding G(z, t) as a function of z.
(b) Now suppose that n0 �= 0. Determine the mean and variance using the formulae

〈n(t)〉= ∂G(z, t)
∂ z

∣
∣
∣
∣
z=1

, 〈(n2(t)− n(t))〉= ∂ 2G(z, t)
∂ z2

∣
∣
∣
∣
z=1

.

Problem 3.12 (Computer simulations: two-state ion channels). In this problem
we investigate the diffusion approximation of the master equation (3.2.1) for an
ensemble of two-state ion channels:

d
dt

P(n, t) = α(N− n+ 1)P(n− 1, t)+β(n+1)P(n+1, t)

− [α(N− n)+β n]P(n, t).

Take α = 1,β = 2, and N = 100.
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(a) Numerically solve the master equation using Euler’s direct method for t ∈ [0,1]
and Δ t = 0.01. Plot the histogram of Pn(T ) for T = 1 and compare with the
steady-state distribution (3.2.8).

(b) Use the Gillespie algorithm of Sect. 6.8 to generate sample paths for the number
n(t) of open ion channels for t ∈ [0,10]. The two reactions are n→ n+1 at a rate
α(N− n) and n→ n− 1 at a rate β n. By averaging over sample paths, compare
the histogram of n(T ) with the distribution Pn(T ) for T = 1.

(c) Use Euler’s direct method (see Sect. 2.6.6) to simulate the Langevin equation

dX(t) = [α(1−X)−β X ]dt+
1√
N

√
α(1−X)+β XdW (t),

obtained by carrying out a Kramers–Moyal expansion of the master equation.
Here X(t) is the fraction of open ion channels at time t. Construct a histogram
of X(T ) for T = 1 and compare with the results of part (b). Repeat for N = 10
and N = 1,000 and comment on the differences.

Problem 3.13 (Computer simulations: noise-induced escape). Consider the sim-
plified stochastic conductance-based model given by equation (3.5.15):

Cm
dV
dt

=
n
N

gNa[VNa−V ]+ geff[Veff−V ]+ I.

The transition rates for the opening and closing of the Na channels are

ω+ = β exp[(v+ 1.2)/9](N− n), ω− = β n.

Take the parameter values N = 10, Cm = 20 μF /cm2, VNa = 120 mV, Veff = −62.3
mV, gNa = 4.4 mS/cm2, geff = 2.2 mS/cm2, and β = 0.8 s−1.

(a) Adapt the Gillespie algorithm (Sect. 6.8) to simulate sample trajectories of the
above stochastic hybrid system. That is, use Gillespie to determine the random
sequence of times at which a jump occurs and whether the number of channels
increases or decreases by unity at each jump. In between jumps, solve the equa-
tion for V given the current state n.

(b) Pick a value of current I (in mA) for which the deterministic system is bistable.
Taking the initial condition to be the stable rest state, determine the first time for
the system to reach the unstable fixed point. Repeat over many trials in order to
estimate the MFPT of escape. Compare with the Arrhenius formula (3.3.34) for
N = 10 and N = 100.



Chapter 4
Polymers and Molecular Motors

The cytoskeleton within the cytoplasm plays important roles in maintaining the
structural integrity of a cell, intracellular transport, cell motility, and cell divi-
sion. In eukaryotes, the cytoskeleton consists of three types of protein filaments—
microtubules, intermediate filaments, and actin filaments (see Fig. 4.1). Actin fila-
ments are the thinnest structures (around 6 nm) whose basic building block is the
globular protein G-actin. These can assemble into a long filamentous chain known
as F-actin, which has the superficial appearance of two interlocked strands. Actin fil-
aments are relatively flexible and strong. (The degree of flexibility of a polymer can
be characterized in terms of the so-called persistence length ξp, which characterizes
the length scale over which correlations in the orientation of the polymer persist. If
ξp � L, where L is the total length of the polymer, then the polymer is said to be
rigid, whereas if ξp � L, then it acts like a random coil.) Actin dynamics plays a
major role in cell motility, where one end (the + or barbed end) elongates due to
polymerization while the other end (the− or pointed end) contracts due to a combi-
nation of depolymerization and myosin motors (Sect. 8.3). F-actin also serves as a
tensile platform for myosin motors involved in the pulling action of muscle contrac-
tion. Actin filaments are themselves assembled into two general types of structures:
bundles called filopodia that consist of parallel arrays of filaments and cross-linked
networks called lamellipodia. Microtubules are hollow cylinders around 23 nm in
diameter, which typically consist of 13 protofilaments, each of which is a polymer
made up of heterodimers of alpha and beta tubulin. Microtubules project radially
from organizing centers known as centrosomes and play a key role in cell division
via the mitotic spindle (Sect. 8.2). Finally, intermediate filaments average 10 nm in
diameter, are more strongly bound than F-actin, and act to maintain the structural
integrity of a cell. Actin and tubulin filaments are assembled via the polymerization
of subunits, which change their chemical state when incorporated into a filament.
For example, actin monomers contain an ATP molecule that rapidly hydrolyzes
to adenosine diphosphate (ADP) following polymerization. Similarly, the β unit
of the tubulin heterodimer contains a guanosine triphosphate (GTP) molecule that
hydrolyzes to guanosine diphosphate (GDP) after polymerization. These chemical
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a

α-tubulin

β-tubulin

heterodimers

protofilament

b

Fig. 4.1: Cell cytoskeletal filaments. (a) Computer reconstruction of the atomic structure of an
actin filament with 13 subunits by Thomas Splettstoesser using open source software PyMol. (b)
Schematic illustration of helical structure of a microtubule. Public domain figures downloaded
from Wikipedia Commons

transformations can lead to more complex phenomena than observed in simple poly-
mers, such as treadmilling and dynamical instabilities.

Another major function of actin and microtubular polymer filaments is that they
act as effective 1D tracks for the active movement of molecular motor proteins.
Diffusion inside the cytosol or within the plasma membrane of a cell is a means by
which dissolved macromolecules can be passively transported without any input of
energy. However, there are two main limitations of passive diffusion as a mechanism
for intracellular transport:

(i) It can take far too long to travel the long distances necessary to reach targets
within a cell, which is particularly acute in the case of the axons and dendrites
of neurons.

(ii) Diffusive transport tends to be unbiased, making it difficult to target resources
to specific areas within a cell.

Active intracellular transport can overcome these difficulties so that movement
is both faster and direction specific, but does so at a price. Active transport cannot
occur under thermodynamic equilibrium, which means that energy must be con-
sumed by this process, typically via the hydrolysis of ATP. The main types of ac-
tive intracellular transport involve the molecular motors kinesin and dynein carry-
ing resources along microtubular filament tracks and myosin V motors transporting
cargo along actin filaments. As we have already highlighted, microtubules and actin
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Fig. 4.2: (a) The kinesin molecule consists of two motor units (analogous to feet) that are linked
together via a common stalk that attaches to cargo to be transported. (b) Previous studies had
shown that the kinesin molecule moves along the microtubule in steps of 8 nm. Kinetic analysis of
the dwell time between steps shows that there is an alternation of displacement from one step to the
other, supporting a hand-over-hand model rather than an inchworm model. In the latter case, both
feet would move only in 8-nm steps as the kinesin molecule’s center of mass moves. However, if
the kinesin molecule moves in a hand-over-hand motion, then the “rear” foot should take a 16-nm
step forward during one cycle and then 0 nm during the next cycle. (Adapted from Yildiz et al.
[695].)

filaments are polarized polymers with biophysically distinct (+) and (−) ends. It
turns out that this polarity determines the preferred direction in which an individual
molecular motor moves. For example, kinesin moves towards the (+) end whereas
dynein moves towards the (−) end of a microtubule. Each motor protein undergoes a
sequence of conformational changes after reacting with one or more ATP molecules,
causing it to step forward along a filament in its preferred direction (see Fig. 4.2).
Thus, ATP provides the energy necessary for the molecular motor to do work in the
form of pulling its cargo along a filament in a biased direction. When modeling ac-
tive transport, one usually neglects the dynamics of microtubules and actin filaments
and simply treats them as static 1D tracks with periodic structure. On the other hand,
the regulation of polymerization and depolymerization by molecular motors plays
an important role in the formation and maintenance of certain cytoskeletal structures
such as the mitotic spindle (Chap. 8).
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The movement of molecular motors such as kinesin occurs over several length
and time scales [309, 325, 348, 391]. In the case of a single motor there are at least
three regimes:

(a) The mechanochemical energy transduction process that generates a single step
of the motor. In the case of dimeric or double-headed kinesin, a single step is of
length 8 nm and the total conformational cycle takes around 10 ms.

(b) The effective biased random walk along a filament during a single run, in which
the motor takes multiple steps before dissociating from the filament. For exam-
ple, kinesin takes around 100 steps in a single run, covering a distance of around
1 μm. Walking distances can be substantially increased if several molecular mo-
tors pull the cargo.

(c) The alternating periods of directed motion along the filament and diffusive or
stationary motion when the motor is unbound from the filament. In the unbound
state a motor diffuses in the surrounding aqueous solution with a diffusion co-
efficient of the order 1μm2 s−1. However, molecular crowding tends to confine
the motor so that it stays close to its detachment point. In the case of multiple
molecular motors transporting cargo, the resulting complex can exhibit bidirec-
tional motion [244, 359, 577, 677].

Advances in experimental techniques have generated considerable information
about the structural properties of molecular motors and their dynamics. For example,
optical traps (Sect. 1.2) have been used to measure how changes in ATP concentra-
tion affect the force–displacement properties of both kinesin [571, 658] and dynein
[201, 335]. A sketch of typical results obtained for kinesin is shown in Fig. 4.3. Such
data can be incorporated into models at levels (b) and (c). On the other hand, infor-
mation about the energetics of the various conformational states and the rates of
transitions between them are not yet sufficient to develop detailed biophysical mod-
els of motors. Hence, it is not possible to generate realistic velocity–force curves,
for example, without considerable data fitting. Thus much of the work on molecular
motors at the smallest scale (a) is of a more qualitative nature, in which one tries to
understand the basic principles that allow nanoscale machines to do useful work in
the presence of thermal noise—so-called Brownian ratchet models.

In addition to intracellular transport, molecular motors perform many other func-
tions within a cell:

(i) Muscle contraction and cell locomotion due to the collective action of multi-
ple myosin II motor heads (cross bridges) interacting with actin filaments (see
Chap. 15 of Keener and Sneyd [322])

(ii) The reversible action of rotary motor ATP synthase, which either produces ATP
using ion gradients or acts as an ion pump fueled by ATP hydrolysis [166]

(iii) The swimming and tumbling of bacteria such as E. coli driven by flagella rotary
motors (see Sect. 5.3)
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Fig. 4.3: Sketch of results from optical trap measurements of kinesin. (a) Variation of velocity
with load for high and low ATP concentrations. (b) Variation of velocity with ATP concentration
for low and high loads. (Redrawn from Visscher et al. [658].)

(iv) Transcription of RNA from DNA via RNAP [669] (Sect. 6.6)
(v) The action of viral DNA packaging motors that inject viral genomic DNA into

the protein shell (capsid) of a bacteriophage (a virus that infects and replicates
within bacteria) as part of its replication cycle [697]

In this chapter we introduce some basic stochastic models of polymerization and
of molecular motors, involving both discrete and continuous Markov processes. The
dynamics of polymers will figure significantly in Chap. 8 on the self-organization of
the cytoskeleton, whereas the role of molecular motors in active intracellular trans-
port will be considered in Chap. 7. For a comprehensive introduction to the me-
chanics of motor proteins and the cytoskeleton, see the book by Howard [275]. We
begin by considering a simple 1D stochastic model of polymerization and depoly-
merization, which neglects molecular details such as the structure of heterodimers
and helical protofilaments (Sect. 4.1). The model takes the form of a birth–death
process that keeps track of the addition or removal of monomers from one or both
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ends of the polymer. We also consider two models of microtubule catastrophe, a
two-state model of growth and shrinking phases and a more detailed model of the
effects of ATP hydrolysis and cap formation.

In Sect. 4.2 we introduce the theory of Brownian ratchets by considering the
FPE for a Brownian particle moving in a periodic ratchet (asymmetric) potential.
We show that the mean velocity of the Brownian particle is zero, which implies that
such a potential cannot provide a mechanism for a molecular motor to do useful
work against an applied load. One mechanism for breaking the periodicity is to rec-
tify the motion, as exemplified by polymerization ratchets and translocation ratchets;
energy is provided by the binding of a molecule to the polymer or protein. Polymer-
ization ratchets play a major role in cell motility (Sect. 8.4) and cell polarization
(Sect. 9.5), where the force exerted by an actin filament extrudes the cell membrane
in a particular direction. On the other hand, the translocation ratchet is used to model
the transport of a polymer through a membrane pore. On one side of the membrane,
proteins known as chaperones, which are too large to pass through the pore, bind
the polymer and thus rectify its motion through the pore (see also Sect. 7.3).

In Sect. 4.3 we describe a qualitative model of processive molecular motors
such as kinesin and dynein that is based on a two-state Brownian ratchet (flash-
ing ratchet). The basic idea is that the motor has to negotiate a periodic potential
energy landscape based on its interactions with the microtubule filaments and the
form of the landscape depends on the conformational state of the motor. (The idea
of representing a molecular motor in terms of several conformational states that
depend on interactions with a filament was first introduced by Huxley in his theoret-
ical study of muscles [290].) We show that useful work can be generated provided
that the transition rates between the different conformational states do not satisfy
detailed balance, which is achieved via the hydrolysis of ATP. We end by briefly
describing an alternative, kinetic approach to modeling the stepping of molecular
motors, based on a discrete Markov process. The state transition diagram includes
both jumps between conformational states and jumps between neighboring sites on
the filament.

We further develop the theory of molecular motors in Sect. 4.4, where we con-
sider three examples of the collective motion of an ensemble of molecular motors:
(i) the tug-of-war (ToW) model of bidirectional vesicular transport by opposing
groups of processive motors; (ii) the motor-assisted extraction of membrane nan-
otubes; (iii) a model of interacting motors attached to a rigid cytoskeletal backbone.
We show how the last two models support collective oscillations consistent with
those seen experimentally. We also review the Hopf bifurcation theorem and linear
stability analysis, since the Hopf bifurcation is the underlying mechanism for the
emergence of these collective oscillations. Finally, in the appendix (Sect. 4.5) we
provide a brief introduction to the statistical mechanics of polymers, building upon
the theory briefly summarized in Sect. 1.4. We focus on how entropic forces arise
from the uncoiling of a polymer, since it leads to a reduction in the number of pos-
sible configurational states. Some of the ideas will later be used to study the effects
of entropic forces on polymer translocation through a membrane pore and diffusion
through narrow channels (Sect. 7.3).
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4.1 Polymerization

4.1.1 Simple Model of a Single Polymer Filament

Consider, for simplicity, monomers binding or unbinding at the + end of a single-
stranded filament (see Fig. 4.4 and Ex. 4.1). (For an extension to multi-stranded
filaments see [614] and Ex. 4.2.) Suppose that the minimum length of the polymer
is either a single monomer or a critical nucleus of M monomers, which for the
moment is considered stable. Let n, n ≥ 0, denote the number of monomers added
to this critical nucleus and take the rate of monomer binding and unbinding to be
π and ε , respectively. The probability Pn(t) that the filament contains n additional
monomers at time t satisfies the master equation

dPn

dt
= εPn+1(t)+πPn−1(t)− [ε +π ]Pn(t), n > 0 (4.1.1)

supplemented by the reflecting boundary condition

dP0

dt
= εP1(t)−πP0(t), (4.1.2)

and the normalization condition ∑∞
n=0 Pn(t) = 1. We are assuming that there is an un-

limited supply of monomers. First, note that if we multiply both sides of Eq. (4.1.1)
by n and sum over n, then we obtain a mean-field equation for the mean change in
length 〈n〉= ∑∞

n=0 nPn, namely,

d〈n〉
dt

= π− ε + εP0. (4.1.3)

If the master equation has a stationary solution, then

εPn+1 +πPn−1− [ε +π ]Pn = 0, n > 0, εP1 = πP0.

Since the binding/unbinding rates are n-independent, the solution is of the form
Pn =Cλ n. Substituting this into the stationary equation for n > 0 gives

ελ n+1 +πλ n−1− [ε +π ]λ n = 0, n > 0,

which reduces to the quadratic equation

λ 2 + rλ − (1+ r) = 0, r =
π
ε
.

This has the solutions λ = 1 or λ = r. The normalization condition C ∑∞
n=0 λ n = 1

requires that λ < 1 so that there exists a unique stationary solution provided that
π/ε < 1. Solving for C using the normalization condition then gives
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nucleus

π

ε_
+

Fig. 4.4: Simple model of F-actin undergoing polymerization at one end

Pn =
(

1− π
ε

)(π
ε

)n
, n≥ 0. (4.1.4)

It also follows that d〈n〉/dt = 0.
So far we have considered a stochastic model of a single filament. Each model

simulation generates a sample path of the stochastic behavior, and statistics can be
extracted by running many trials. An alternative picture is to consider a large popu-
lation of N identical filaments. Suppose that each filament is in the same initial state.
For sufficiently large N, we expect the number Xn(t) of filaments having additional
length n to be Xn(t) = NPn(t). Since the transition rates are n-independent, we can
simply multiply the master equation by N to obtain corresponding kinetic equations
for the Xn with ∑∞

n=0 Xn(t) = N. As we have discussed in the context of chemical re-
actions, the kinetic equations for a population of filaments are deterministic. If one
wanted to take into account fluctuations due to intrinsic noise, then one would have
to consider the master equation for the probability distribution P(M0,M1, . . . ,MN , t)
where Mn is the number of filaments in state n.

The deterministic population model has been extended to take into account the
disappearance and production of critical nuclei of size M [156, 282]. Taking Xn to
denote the fraction of filaments of length n, the kinetic equations are

dXn

dt
= εXn+1(t)+πXn−1(t)− [ε +π ]Xn(t), n > M (4.1.5)

and
dXM

dt
= εXM+1(t)− (π + ε)XM(t)+σ , (4.1.6)

where nuclei can disappear (convert back to M monomers) at a rate ε and are pro-
duced at a rate σ . Assuming a fixed background monomer concentration a, the bind-
ing and production rates are taken to be

π = π0a, σ = σ0aM, (4.1.7)

with σ0,π0 independent of a. One no longer has a conservation condition for the
total number of filaments. However, if π/ε < 1, then one can still construct a steady-
state solution of the form Xn =C(π/ε)n. Substituting into the steady-state solution
for n = M, we have

Cε
(π

ε

)M+1
−C(ε +π)

(π
ε

)M
+σ = 0,
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which implies that C = (σ/ε)(ε/π)M and

Xn =
σ
ε

(π
ε

)n−M
=

σ0

ε

(π0

ε

)n−M
an. (4.1.8)

It immediately follows that the mean filament length L in the population is

L = M+

∞

∑
n=M

(n−M)Xn

∞

∑
n=M

Xn

= M+

∞

∑
n=0

n(π/ε)n

∞

∑
n=0

(π/ε)n
= M+

π/ε
1−π/ε

.

Hence, the mean length diverges as π → ε from below.
It is also possible to analyze the stability of the steady state in the case that the

polymers have a maximum size n = J. After dividing the kinetic equation by ε and
rescaling time, we obtain the matrix equation

dX
dt

= MX+ s,

where X = (XM,XM+1, . . . ,XJ)
T , s = (σ/ε,0, . . . ,0)T and M is the tridiagonal

matrix

M =

⎛

⎜⎜
⎜
⎜
⎜
⎝

−(1+ r) 1 0 0 · · · 0
r −(1+ r) 1 0 · · · 0
0 r −(1+ r) 1 · · · 0
...

...
...

...
...

...
0 · · · · · · 0 r 1

⎞

⎟⎟
⎟
⎟
⎟
⎠
.

This linear system has a general solution of the form

X(t) = X0 +
J−M+1

∑
j=1

v jeλ jt ,

where X0 is the steady-state solution and 0,λ j, j = 1,J + 1−M are the eigenval-
ues of M. We can now use same basic results from linear algebra. First, since M
is tridiagonal with Mm,n+1Mn+1,n = r > 0, it follows that the eigenvalues are real
and simple. In particular, none of the eigenvalues λ j vanish. The Gershgorin disk
theorem can then be used to establish that none of the eigenvalues λ j are positive
definite and are thus negative definite. The theorem states that the eigenvalues of the
tridiagonal matrix M are contained in the union of disks Dn in the complex λ -plane
with

Dn = {|λ −Mnn| ≤ ∑
k �=n

|Mnk|}.

The first disk D1 has center at λ = −(1+ r) and radius 1, whereas all the disks
D2, . . . ,DJ−1 have centers at λ = −(1+ r) and radii 1+ r. All of these lie in the
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left-half complex plane. Finally, DJ has a center at λ =−1 and radius r, which also
lies the left-half complex plane provided that r ≤ 1.

Now suppose that actin monomers can bind or unbind at both ends with rates k±on
and k±off, as shown in Fig. 4.5. The binding rate is multiplied by a fixed background
monomer concentration a. (The spatial effects of a nonuniform monomer concen-
tration are considered by Edelstein-Keshet and Ermentrout [157]; see also Ex. 4.3.)
The difference between the two ends is due to the fact the ATP-actin quickly hy-
drolyzes to ATD-actin so that the tip consists of ATP-actin and the tail consists
of ATD-actin. Rather than writing down the master equation for the system, let us
consider the equations for the mean number of monomers n± added at each end.
Assuming that the filament is sufficiently long, we have

dn+
dt

= k+ona− k+off,
dn−
dt

= k−ona− k−off. (4.1.9)

It is clear that the ± end grows provided that a > a±c , where a±c = k−off/k−on. If a+c ≈
a−c , then both ends shrink or grow simultaneously. On the other hand, if a+c < a< a−c
then the plus end grows at the same time the minus end shrinks. Finally, adding the
pair of Eq. (4.1.9) shows that

dn
dt

= kona− koff,

with n = n+ + n−, koff = k+off + k−off, and kon = k+on + k−on. Hence, if the monomer
concentration a = a0, where

a0 =
k+off + k−off

k+on + k−on
≡ koff

kon
,

_
+

kon

koff

+

+kon

koff

−

−

Fig. 4.5: Model of F-actin undergoing polymerization at both ends

then the total filament length remains constant even though monomers are constantly
moving along its length—treadmilling.
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4.1.2 Microtubule Catastrophes

An interesting aspect of microtubules is that they undergo periods of persistent mi-
crotubule growth interrupted by occasional switching to rapid shrinkage know
as “microtubule catastrophe” [443]. Microtubules grow by the attachment of
GTP-tubulin complexes at one end. In order to maintain growth, the end of the
microtubule must consist of a “cap” of consecutive GTP-tubulin monomers. How-
ever, each polymerized complex can hydrolyze into GDP-tubulin such that if all
the monomers in the cap convert to GDP, then the microtubule is destabilized, and
there is rapid shrinkage due to detachment of the GTP-tubulin monomers. The com-
petition between attachment of GTP-tubulin and hydrolysis from GTP to GTD is
thought to be the basic mechanism of alternating periods of growth and shrinkage.

Two-State Model

One approach to modeling catastrophe is based on an effective two-state model, in
which the microtubule exists either in a growing phase or a shrinking phase and

(i)

(ii)

X(t)

time t

Fig. 4.6: Schematic diagram illustrating two phases of microtubule growth depending on the sign
of the mean growth rate V . (i) For V > 0 the microtubule undergoes unbounded growth. (ii) For
V < 0 the frequency of catastrophes increases so that there is bounded growth. The mean length as
a function of time is shown by gray curves

there are stochastic transitions between the two states based on a Markov process
[50, 146]. The microscopic details of cap formation and hydrolysis are not modeled
explicitly. It is assumed that one end of a microtubule is fixed and the position of
the other end is taken to be a stochastic variable X(t), which can also be identified
as the variable length of the microtubule. Let P±(x, t) be the probability density that
at time t the end of the microtubule is at X(t) = x and it is in either the growing
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phase (+) or the shrinking phase (−). The Dogterom–Leibler model of microtubule
catastrophe takes the form [146]

∂P+
∂ t

=−v+
∂P+
∂x

− k+P++ k−P− (4.1.10a)

∂P−
∂ t

= v−
∂P−
∂x

− k−P−+ k+P+. (4.1.10b)

Here v+ and v− are the average speeds of growth and shrinking and k± are the
transition rates between the two states. Both v+ and k− are assumed to vary linearly
with the tubulin concentration c at the tip of the microtubule, k−= kc,v+ = cu; the
concentration c is taken to be fixed. We can determine a condition for the existence
of a steady state by adding Eqs. (4.1.10a) and (4.1.10b) and setting ∂tP± = 0. This
shows that

v
∂P+
∂x

− v
∂P−
∂x

= 0,

and thus v+P+− v−P− = constant. Assuming a semi-infinite domain for x, normal-
izability of P± implies that the constant must be zero and, hence, P± = P/v± with P
satisfying the equation

dP(x)
dx

=

[
k−
v−
− k+

v+

]
P(x) =

V
D

P(x),

where

V =
k−v+− k+v−

k++ k−
is the mean speed of microtubular growth (based on the steady-state solution of the
two-state Markov process describing the switching between growth and shrinking
phases) and

D =
v+v−

k++ k−
is an effective diffusivity. It immediately follows that there exists a steady-state so-
lution, P(x) = P(0)e−Vx/D, 0 < x < ∞, if and only if V < 0. In the regime V > 0,
catastrophe events are relatively rare and the microtubule continuously grows with
mean speed V , whereas, for V < 0, the catastrophe events occur much more fre-
quently so that there is a balance between growth and shrinkage that results in a
steady-state distribution of microtubule lengths (see Fig. 4.6).

Model of Hydrolysis and Caps

Another approach to modeling microtubule dynamics is to include a simplified des-
cription of hydrolysis and cap formation that involves only a few model parameters
[11, 185, 186]. Here we will describe in some detail the model of Antal et al. [11].
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The microtubule is taken to consist of a mixture of GTP-tubulin complexes (GTP-T)
and GTD-tubulin complexes (GTD-T). A given configuration is represented by a
string of + and− symbols corresponding to GTP-T and GTD-T, respectively. Three
basic processes are considered:

1. Attachment: Growth of a microtubule occurs via the attachment of a GTP-T
monomer at one end, with the attachment rate depending on the identity of the
current monomer at the tip. That is,

| . . .+〉 =⇒ | . . .++〉 at rate λ , | . . .−〉 =⇒ | . . .−+〉 at rate pλ ,

with p ≤ 1.

2. Conversion: Once incorporated into the microtubule, each GTP-T can indepen-
dently convert by hydrolysis to GTD-T:

| . . .+ . . .〉 =⇒ | . . .− . . .〉 at rate 1.

3. Detachment: Shrinkage of a microtubule occurs via the detachment of a GTD-T
monomer from the end of the microtubule

| . . .−〉 =⇒ | . . .〉 at rate μ .

In general, one finds that there are two phases in the parameter space (λ ,μ , p),
one corresponding to a growing phase with average growth rate V (λ ,μ , p) and
the other to a bounded phase. The two phases are separated by a phase boundary
μ = μ∗(λ , p) along which V = 0. Following Antal et al. [11], we will develop the
stochastic analysis of the model by considering various limiting cases.

Unconstrained Growth. First, suppose that there is unrestricted growth (μ = 0)
and the attachment rate is independent of the end monomer (p = 1). The speed
of growth is then simply V = λ . The kinetic equation for the mean number x of
GTP-T monomers in the chain is

dx
dt

= λ − x.

The probability pm(t) that there are m GTP-T monomers at time t evolves according
to a birth–death master equation (6.2.1):

d pm

dt
= (m+ 1)pm+1(t)+λ pm−1(t)− (λ +m)pm(t).

This is identical in form to Eq. (3.6.3), which means that pm(t) is given by the time-
dependent Poisson distribution

pm(t) =
λ (t)me−λ (t)

m!
, λ (t) = λ (1− e−t), (4.1.11)
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GTP-T region

GTD-T region

cap

k

λ

Fig. 4.7: Schematic diagram illustrating a cap of GTP-T monomers and additional islands of
GTP-T

and
〈m(t)〉= var[m(t)] = λ (1− e−t).

Cap Length. The conversion of GTP-T to GTD-T means that more recently attached
monomers around the tip region are more likely to be GTP-T, whereas monomers
in the tail are predominantly GTD-T. The cap is defined to be the region from the
end of the microtubule to the first GTD-T monomer (see Fig. 4.7). Let πk be the
probability that the cap is of length k and consider the associated master equation

dπk

dt
= λ (πk−1−πk)− kπk + ∑

s≥k+1

πs (4.1.12)

for k≥ 0 and π−1 ≡ 0. We are assuming each GTP-T monomer in the cap is equally
likely to hydrolyze. Thus, the last term on the right-hand side represents the prob-
ability that a cap of length greater than k hydrolyzes at the k+ 1th site. Adding the
first k− 1 equations gives (in steady state)

π1 + 2π2+ . . .+(k− 1)πk−1+λ πk−1 = N1 +N2 + . . .+Nk,

where Nk = ∑s≥k πs. Using the fact that Nj = Nk +πk−1 + . . .+π j for j < k, we see
that

πk−1 =
k
λ

Nk.

From the identity Nk−1−Nk = πk−1, it follows that

Nk =
λ

k+λ
Nk−1.

Iterating this equation and using N0 ≡ 1 give

Nk =
λ kΓ (1+λ )

Γ (k+ 1+λ )
,
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where Γ (z) is the gamma function

Γ (z) =
∫ ∞

0
tz−1e−tdt, (4.1.13)

with
Γ (1+λ )

Γ (k+ 1+λ )
=

1
(k+λ )(k− 1+λ ) . . .(1+λ )

.

Thus, the stationary cap length distribution is

πk =
(k+ 1)λ kΓ (1+λ )

Γ (k+ 2+λ )
. (4.1.14)

We can now calculate the mean cap length using

〈k〉= ∑
k≥1

kπk = ∑
k≥1

k[Nk−Nk+1] = ∑
k≥1

Nk =−1+ ∑
k≥0

Nk.

Given the solution for Nk and the properties of confluent hypergeometric functions
F(a,c;x) (see Box 4A), we have

〈k〉=−1+F(1,λ + 1;λ ) =−1+λ eλ λ−λ γ(λ ,λ ),

where γ(a,x) is the incomplete gamma function. Finally, using the asymptotic result

γ(λ ,λ )→
√

π
2λ

λ λ e−λ , λ � 1,

we see that

〈k〉 →
√

πλ/2. (4.1.15)

Thus a growing microtubule with λ GTP-T monomers has a cap size that scales
as
√

λ .

Box 4A. Hypergeometric series.

The confluent hypergeometric function is defined according to the infinite
series

F(a,c;x) =
∞

∑
k=0

(a)nxn

(c)nn!
,

where we have used the Pochhammer symbol

(a)n = a(a+ 1)(a+ 2) . . .(a+ n− 1), (a)0 = 1.
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The congruent hypergeometric function has the integral representation

F(a,c;x) =
Γ (c)

Γ (a)Γ (c− a)

∫ 1

0
ext ta−1(1− t)c−a−1dt

for Re[c]> Re[a]> 0. An important special case is

F(1,1+λ ;x) =
∫ 1

0
ext(1− t)λ−1dt = ex

∫ 1

0
e−uxuλ−1du

= exxλ
∫ x

0
e−uuλ−1du

= λ exx−λ γ(λ ,x),

where γ(λ ,x) is the incomplete gamma function.

Constrained Growth. There are two mechanisms for slowing the growth rate; con-
version from GTP-T to GTD-T at the tip resulting in a reduced rate of attachment
(for p < 1) and detachment of GTD-T at the tip (μ > 0). First, consider the effect of
having p < 1 but no detachment. In determining the rate of growth, it is now nec-
essary to keep track of the hydrolysis state of the end monomer. Thus, the kinetic
equation for the number of GTP-T monomers in the chain becomes

dx
dt

=−x+ pλ π0+λ (1−π0),

where π0 is the probability that there is no cap. Extending Eq. (4.1.12) to the case
p < 1 gives

dπ0

dt
=−pλ π0 +(1−π0).

This pair of equations yields the steady-state solution

n0 = pλ
1+λ

1+ pλ
.

The steady-state speed of growth of the microtubule is

V (p,λ ) = pλ n0 +λ (1− n0) = pλ
1+λ

1+ pλ
.

Let us now calculate the probability distribution of microtubule lengths P(L, t). Let
X(L, t) and Y (L, t) denote the conditional probabilities that the length equals L and
the end monomer is GTP-T and GTD-T, respectively. These probabilities evolve
according to
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dX(L, t)
dt

= λ X(L− 1, t)+ pλY(L− 1, t)− (1+λ )X(L),

dY (L, t)
dt

= X(L)− pλY(L).

Adding this pair of equations and using P = X +Y ,

dP(L, t)
dt

= λ X(L− 1, t)+ pλY(L− 1, t)−λ X(L)− pλY(L).

For sufficiently long filaments, the state of the last monomer does not depend on
polymer length so that

X(L) = (1−π0)P(L), Y (L) = π0P(L).

Substituting into the equation for dP/dt gives

dP(L, t)
dt

=V (p,λ )[P(L− 1, t)−P(L, t)]. (4.1.16)

This represents a Poisson process with rate V so that

P(L, t) =
(Vt)L

L!
e−Vt , (4.1.17)

and
〈L〉=Vt, var[L] =Vt.

Finally, consider the general case μ > 0 and p < 1. The probability that there is no
cap (the end monomer is GTD-T) evolves as

dπ0

dt
=−pλ π0 +(1−π0)− μN0,

where N0 = Pr{+−〉}, and the corresponding speed of growth is

V (λ ,μ , p) = pλ π0 +λ (1−π0)− μπ0.

The difficulty in analyzing the general case is due to fact one has to solve an infinite
hierarchy of higher-order correlations in order to determine N0. However, progress
can be made in certain limiting cases [11]. For example, suppose that λ ,μ � 1 so
that rate of conversion GTP-T → GTD-T is much faster than the other processes.
Consequently, hydrolysis occurs as soon as a monomer attaches, that is, π0 ≈ 1.
Hence, the growth phase occurs when pλ > μ and

V = pλ − μ .
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On the other hand, when λ � 1, there is a high probability that the end monomer is
GTP-T so that π0 ≈N0. Consequently, the steady-state distribution is

π0 =
1

1+ pλ + μ
,

and

V = λ − (1− p)λ + μ
1+ pλ + μ

.

4.2 Brownian Motion in a Periodic Potential

One qualitative method for modeling the stepping of molecular motors is based on
the theory of Brownian ratchets (see the extensive review by Reimann [529]). Here,
we develop the theory by considering the classical problem of how to solve the
FPE for a Brownian particle in a periodic potential. Therefore, consider the 1D FP
equation

∂ p
∂ t

= D0

[
1

kBT
∂ [V ′(x)−F0]p

∂x
+

∂ 2 p
∂x2

]
, (4.2.1)

where V (x) is an L-periodic potential, V (x+ L) = V (x) for all x, and F0 is a con-
stant external force (see Fig. 4.8). We begin by describing the standard Stratonovich-
based calculation of the mean velocity [253, 529, 612, 701] and show that it is zero
when F0 = 0, i.e., the motor cannot do any useful work. We then consider one mech-
anism for breaking periodicity that is based on rectification. An alternative mech-
anism, involving ATP hydrolysis and the breaking of detailed balance, will be the

F0 = 0
V(x)

V(x)−F0x

F0 > 0

x

Fig. 4.8: Brownian particle moving in a periodic potential V (x). In the absence of tilt (F0 = 0) the
mean velocity in the long-time limit is zero. On the other hand, in the presence of a tilt (F0 �= 0),
the net motion of the particle is in the direction of the force
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subject of Sect. 4.3. The first step is to introduce the effective potential or free en-
ergy V (x) = V (x)−F0x and to note that V ′(x) is periodic even though V is not.
Next we define the reduced probability density and currents

p̂(x, t) =
∞

∑
n=−∞

p(x+ nL, t), Ĵ(x, t) =
∞

∑
n=−∞

J(x+ nL, t) (4.2.2)

with

J(x, t) =−D0

[
1

kBT
V ′(x)p+

∂ p
∂x

]
.

It immediately follows that

p̂(x+L, t) = p̂(x, t),
∫ L

0
p̂(x, t)dx = 1. (4.2.3)

The periodicity of V ′(x) implies that if p(x, t) is a solution of the FP equation, then
so is p(x+ nL, t). (Note that p(x, t) itself is not periodic; otherwise it would not be
possible to satisfy the normalization condition

∫ ∞
∞ p(x, t)dx = 1.) The principle of

superposition for a linear PDE then shows that p̂ satisfies the FP equation

∂ p̂(x, t)
∂ t

+
∂ Ĵ(x, t)

∂x
= 0, (4.2.4)

with

Ĵ(x, t) =−D0

[
1

kBT
V ′(x)p̂+

∂ p̂
∂x

]
(4.2.5)

and periodic boundary conditions at x = 0,L. There exists a stationary solution p̂0

of the reduced FP equation with constant flux Ĵ0 such that

d
dx

(
eV (x)/kBT p̂0(x)

)
=− Ĵ0

D0
eV (x)/kBT . (4.2.6)

(The full FP equation does not have a nontrivial steady state, since p(x, t)→ 0 as
t → ∞.) Integrating this equation from x to x+ L and using periodicity yield the
stationary solution

p̂0(x) =
Ĵ0N (x)

[
1− e−F0L/kBT

] , (4.2.7)

where

N (x) =
1

D0
e−V (x)/kBT

∫ x+L

x
eV (y)/kBT dy. (4.2.8)

Finally, Ĵ0 is determined by imposing the normalization condition on p̂0.
A quantity of particular interest is the ensemble averaged velocity v with vdt =

〈dX(t)〉. It turns out that this is equal to the rate of change of the ensemble averaged
position [529]. Recall that the solution of the FP equation (4.2.1), p(x, t), is the
probability density on the sample space Ω of solutions to the Langevin equation
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dX(t) =
F0−V ′(x)

γ
+
√

2D0dW (t),

where γ is the drag coefficient with D0γ = kBT . (We assume some fixed initial con-
dition X(0) = x0). The connection between the two paradigms can be expressed as

p(x, t) = 〈δ (x−X(t))〉,

where for fixed (x, t), 〈. . .〉 denotes averaging with respect to realizations of the
Wiener process. (This should be contrasted with the definition 〈x(t)〉= ∫ xp(x, t)dx.)
Taking differentials of both sides with respect to time gives

∂t p(x, t)dt =−〈δ ′(x−X(t))dX(t)〉,

and, since ∂t p =−∂xJ(x, t), implies that

J(x, t)dt = 〈δ (x−X(t))dX(t)〉.

Integrating both sides with respect to x yields the result

〈dX(t)〉=
[∫ ∞

−∞
J(x, t)dx

]
dt. (4.2.9)

The right-hand side of Eq. (4.2.9) can be rewritten as

−
[∫ ∞

−∞
x∂xJ(x, t)dx

]
dt =

[∫ ∞

−∞
x∂t p(x, t)dx

]
dt =

d〈x(t)〉
dt

dt.

We deduce the important result that [529]

〈dX(t)〉= d〈x(t)〉
dt

dt.

Equation (4.2.9) thus implies that

v =
∫ ∞

−∞
J(x, t)dx =

∫ L

0
Ĵ(x, t)dx. (4.2.10)

Since v = LĴ0 for constant current, it follows that

v = L
1− e−F0L/kBT

∫ L
0 N (x)dx

. (4.2.11)

It can be seen that there is no net motion in a purely periodic potential, since the
numerator vanishes when F0 = 0. Moreover the net direction of motion for F0 �= 0
is in the direction of the applied force. Note that in the case of a space-dependent
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Fig. 4.9: Brownian particle moving in a periodic ratchet potential V (x)

diffusion coefficient D(x), the above analysis is easily extended with N (x) now
given by [82]

N (x) = e−V (x)/kBT
∫ x+L

x

1
D(y)

eV (y)/kBT dy.

The result that there is no net motion in a periodic potential (F = 0) can be counter-
intuitive when considering ratchet potentials as shown in Fig. 4.9, since one might
think that it is more difficult to move backward and cross the steep slope.

4.2.1 Polymerization Ratchet

One interesting application of ratchet potentials is to the so-called polymeriza-
tion ratchet [507], which is a simplified model of the role of actin polymerization
in changing the shape of a cell’s membrane during cell motility [444, 447] (see
Sect. 8.3). Suppose that a section of cell membrane wall is undergoing Brownian

F

a

b

membrane

k+

k_

actin filament

a

ΔG

x

V(x)

Fig. 4.10: (a) Cartoon of polymerization ratchet model. (b) Simplified ratchet model
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motion in the presence of a resistive force F due to stretching (see Fig. 4.10a). This
motion is rectified by the addition of actin monomers to the end of an actin polymer
filament, whenever the gap x between membrane wall and filament is sufficiently
large. Assume that in the absence of a load force, actin monomers are added at a rate
k+m and lost at a rate k−, where m is the background concentration of monomers.
First, consider the limiting case in which the mean time between attachments is suf-
ficiently large so that the Brownian particle reaches thermal equilibrium. This means
that the probability density for a gap of size x is given by the Boltzmann–Gibbs dis-
tribution (Sect. 1.4):

p(x) =
F

kBT
e−Fx/kBT .

An estimate of the mean polymerization velocity is then

v = a [k+mP(x > a)− k−] ,

where a is the size of a monomer and

P(x > a) =
∫ ∞

a
p(x)dx = e−Fa/kBT ,

Finally, using detailed balance,

k+m
k−

= eΔG/kBT ,

where ΔG is the binding energy, we have

v = ak−
[
e[ΔG−Fa]/kBT − 1

]
, (4.2.12)

which suggests that growth stops when the resistive force F becomes sufficiently
large such that F ≥ FS, where the stall force FS = ΔG/a. A sketch of the velocity-
load curve for typical values of k+,m,k−, and a is shown in Fig. 4.11.

Let us now turn to the diffusion-limited case, which has been analyzed by Peskin
et al. [507] using a Fokker–Planck description of the process shown in Fig. 4.10a.
Here, we will consider a reduced model, consisting of a Brownian particle moving
in a ratchet potential (see Fig. 4.10b). This is obtained by ignoring spontaneous un-
binding of monomers (k− = 0) and assuming that as soon as the distance between
the polymer and the wall is equal to a, a new monomer is immediately inserted,
resulting in a sudden drop in energy by an amount ΔG. However, it is possible to re-
verse direction by jumping over a free energy barrier of height ΔG—this represents
the dislodging of a monomer due to wall motion.

The analysis of the reduced model proceeds along similar lines to the general
motion of a Brownian particle in a tilted potential with

V (x) = Fx− nΔG, na < x < (n+ 1)a.
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Fig. 4.11: Sketch of typical velocity–force curve based on Eq. (4.2.9)

However, one now needs to take into account the discontinuities in V (x) at the points
x = na, integer n. Thus, Eq. (4.2.6) still holds, but care must be taken when integrat-
ing this equation with respect to x ∈ (0,a]. That is, it is necessary to introduce the
matching condition

lim
x→a+

p̂0(x)e
V (x) = lim

x→a−
p̂0(x)e

V (x).

One finds that (see Ex. 4.5)

v =
2D0

a
ω2/2

A (1− e−ω)−ω
, ω =

Fa
kBT

(4.2.13)

with

A =
eΔG/kBT − 1

e(ΔG−Fa)/kBT − 1
. (4.2.14)

Note that v → 0 as Fa → ΔG, since A → ∞. On the other hand, in the regime
ΔG� Fa and kBT � Fa,

v≈ 2D0/a.

This latter result can be understood as follows: in the absence of a force F , the mean
time for a diffusive displacement of size a is T = a2/2D0 so that the mean speed is
v = a/T .

4.2.2 Translocation Ratchet

Following gene expression, many proteins have to translocate into or across a cel-
lular membrane. Examples include translocation through nuclear pores and through
pores in the endoplasmic reticulum. It has been suggested that translocation may be
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driven by a Brownian ratchet [212, 507, 592]. The basic mechanism is illustrated
in Fig. 4.12. Once the protein chain enters a pore, thermal fluctuations cause it to
diffuse back and forth through the pore without any net displacement. However,
suppose that the protein has ratchet sites that are equally spaced along the chain
with nearest neighbor separation δ . In the case of a perfect ratchet, it is assumed
that once a ratchet site has passed through the pore it cannot reenter the pore, that
is, it is reflected. On the other hand, for an imperfect ratchet there is a certain prob-
ability π of reflection. The latter could be due to the binding of a macromolecule
(chaperonin) to the ratchet site on the distal side of the pore.

Consider a translocation ratchet and let p(x, t) be the probability density that
X(t) = x, where X(t), 0 < X(t) < δ , is the position of the first ratchet site to the
right of the pore exit. Let F be the net force resisting translocation of the protein.
The corresponding FP equation takes the form

∂ p
∂ t

+
∂J
∂x

= 0, J =− DF
kBT

p−D
∂ p
∂x

. (4.2.15)

The corresponding boundary conditions for a perfect ratchet are

J(0, t) = J(δ , t), p(δ , t) = 0. (4.2.16)

The periodic flux condition expresses the fact that as soon as one ratchet site crosses
x = δ , another site appears at x = 0, with x = δ treated as an absorbing boundary.
The steady-state solution satisfies the constant flux condition

− DF
kBT

p−D
∂ p
∂x

= J0.

Multiplying both sides by D−1eFx/kBT , integrating from x to δ , and using the ab-
sorbing boundary condition yields

p(x) =
kBT J0

DF

[
eF(δ−x)/kBT − 1

]
.

kon

koff

F

δ

translocation pore

chaperonin

Fig. 4.12: Cartoon of a translocation ratchet
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Imposing the normalization condition
∫ 1

0 p(x)dx= 1 then determines J0 according to

1 =
J0δ 2

D
1
ω
[eω − 1−ω ], ω =

Fδ
kBT

.

It follows that the average speed of the perfect translocation ratchet is [507]

v = δJ0 =
2D
δ

ω2

eω − 1−ω
. (4.2.17)

Now suppose that each ratchet site can exist in two states that are in equilibrium

S0
kon�
koff

S1,

with only S1 ratcheted. Hence S0 passes freely through the pore in both directions,
whereas S1 is reflected. The probability of being in the ratcheted state is then

π =
kon

kon + koff
.

The only modification of the perfect ratchet equations is that the absorbing boundary
condition is replaced by [507]

p(δ ) = (1−π)p(0). (4.2.18)

Repeating the above calculation yields the modified velocity (see Ex. 4.6)

v = δJ0 =
2D
δ

⎡

⎢
⎣

ω2/2
eω − 1

1−K(eω− 1)
−ω

⎤

⎥
⎦ . (4.2.19)

Note that one major simplification of the above model is that it treats the translo-
cating polymer as rigid. However, a polymer such as a protein or DNA tends to
be highly coiled (small persistence length) so that one has to take into account an
effective entropic force, reflecting the fact that a free polymer has many more con-
figurational states than one that is threaded through a pore [117, 462, 493, 615]. The
statistical mechanics of a polymer is considered in Sect. 4.5 and the application to
translocation through a pore is developed in Sect. 7.3.4.

4.3 Brownian Ratchet Model of a Processive Molecular Motor

In performing a single step along a filament track, a molecular motor cycles through
a sequence of conformational states before returning to its initial state (modulo the
change in spatial location). Suppose that there is a total of M conformational states
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2

1

1 2

Fig. 4.13: Brownian ratchet model of a molecular motor that can exist in two internal states with
associated l-periodic ratchet potentials V1(x) and V2(x). State transition rates are denoted by ω1
and ω2

in a single cycle labeled i = 1, . . . ,M. Given a particular state i, the motor is mod-
eled as an overdamped, driven Brownian particle moving in an asymmetric periodic
(ratchet) potential Vi(x). A periodic potential is said to be symmetric if there exists
Δx such that

Vi(−x) =Vi(x+Δx)

for all x, otherwise it is asymmetric. The asymmetry of the potentials reflects the fact
that cytoskeletal filaments are polarized. The Langevin equation for the location of
the particle X(t), assuming that it remains in a given conformational state, is

dX =−V ′i (X)

γ
dt + dWi(t), (4.3.20)

with 〈dWi(t)〉 = 0 and 〈dWi(t)dWj(t ′)〉 = 2Dδi, jδ (t − t ′)dt dt ′. The corresponding
FP equation is

∂ pi(x, t)
∂ t

=−∂Ji(x, t)
∂x

, (4.3.21)

where pi(x, t) is the probability density that the motor particle is in internal state i
and at location x at time t and Ji(x, t) is the probability flux

Ji(x, t) =
1
γ

[
−V ′i (x)− kBT

∂
∂x

]
pi(x, t), (4.3.22)

where Dγ = kBT . If the state transitions between the conformational states are now
introduced according to a discrete Markov process, then it is necessary to add source
terms to the FP equation:

∂ pi(x, t)
∂ t

=−∂Ji(x, t)
∂x

+∑
j �=i

[ωi j(x)p j(x, t)−ω ji(x)pi(x, t)] ,

where ωi j(x) is the rate at which the motor switches from state j to state i.
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In order to develop the basic theory, consider the simple case of two internal
states N = 2 following along the lines of [309, 495, 508, 516]. Then

∂ p1(x, t)
∂ t

+
∂J1(x, t)

∂x
=−ω1(x)p1(x, t)+ω2(x)p2(x, t) (4.3.23a)

∂ p2(x, t)
∂ t

+
∂J2(x, t)

∂x
= ω1(x)p1(x, t)−ω2(x)p2(x, t). (4.3.23b)

Note that adding the pair of equations together and setting p = p1 + p2, J = J1 + J2

leads to the conservation equations ∂t p+∂xJ = 0. An example of l-periodic ratchet
potentials V1(x),V2(x) is shown in Fig. 4.13, with l the basic step length of a cycle
along the filament track. The analysis of the two-state model proceeds along similar
lines to the one state model considered in Sect. 4.2. That is, set

p̂ j(x, t) =
∞

∑
n=−∞

p j(x+ nl, t), Ĵ j(x, t) =
∞

∑
n=−∞

Jj(x+ nl, t). (4.3.24)

The total probability flux can then be written as

Ĵ(x, t) =−1
γ

[
V ′1(x)p̂1(x, t)+V ′2(x)p̂2(x, t)+ kBT

∂ p̂(x, t)
∂x

]
.

Consider the steady-state solution for which there is a constant total flux Ĵ0 so that

V ′1(x)p̂1(x)+V ′2(x)p̂2(x)+ kBT
∂ p̂(x)

∂x
=−Ĵ0γ.

Defining λ (x) = p̂1(x)/ p̂(x), this equation can be rewritten as

V ′eff(x)p̂(x)+ kBT
∂ p̂(x)

∂x
=−Ĵ0γ, (4.3.25)

where

Veff(x) =
∫ x

0

[
λ (y)V ′1(y)+ (1−λ (y))V ′2(y)

]
dy. (4.3.26)

Suppose that the system is in thermodynamic equilibrium. The state transition
rates and steady-state probabilities then satisfy the detailed balance condition (see
Sect. 1.4)

ω1(x)
ω2(x)

= e[V1(x)−V2(x)]/kBT =
p̂2(x)
p̂1(x)

. (4.3.27)

Therefore,

λ (x) =
1

1+ e−[V1(x)−V2(x)]/kBT
, (4.3.28)

and, in particular, λ (x) reduces to an l-periodic function. It follows that Veff(x) in
Eq. (4.3.25) is also an l-periodic potential and hence there is no net motion in a par-
ticular direction (in the absence of an external force or tilt) (see Sect. 4.2). In conclu-
sion, in order for a molecular motor to sustain directed motion that can pull against
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an applied load, we require a net positive supply of chemical energy that maintains
the state transition rates away from detailed balance—this is the role played by ATP.

Therefore, consider the situation in which transitions between the two states oc-
cur as a result of chemical reactions involving ATP hydrolysis. Denoting the two
conformational states of the motor by M1,M2, the scheme is taken to be [495]

ATP+M1
α1�
α2

M2 +ADP+P

ADP+P+M1
γ1�
γ2

M2 +ATP

M1
β1�
β2

M2

with α j,γ j,β j x-dependent. The first reaction pathway involves ATP hydrolysis with
chemical free energy gain Δ μ and a corresponding transition from state 1 to state
2, the second involves hydrolysis in the opposite direction, while the third involves
thermal state transitions without any change in chemical free energy. Basic chemical
kinetics implies that

α1

α2
= e(V1−V2+Δ μ)/kBT ,

γ1

γ2
= e(V1−V2−Δ μ)/kBT ,

β1

β2
= e(V1−V2)/kBT . (4.3.29)

It follows that the net transition rates between the two conformational states are

ω1 = α2e(V1−V2+Δ μ)/kBT + γ2e(V1−V2−Δ μ)/kBT +β2e(V1−V2)/kBT (4.3.30)

ω2 = α2 + γ2 +β2. (4.3.31)

Clearly detailed balance no longer holds. In general, it is now necessary to determine
the steady-state solution of the pair of Eq. (4.3.23) numerically. Given such a solu-
tion, the efficiency of the motor doing work against a load F may be determined
as follows. First the flux (4.3.22) has an additional term of the form F pi(x, t)/γ .
The mechanical work done per unit time against the external force is then Ẇ = Fv
where v = lĴ0 is the velocity of the motor. On the other hand, the chemical energy
consumed per unit time is Q̇ = rΔ μ , where r is the steady-state rate of ATP con-
sumption:

r =
∫ l

0
[(α1(x)− γ1(x))p̂1(x)− (α2(x)− γ2(x))p̂2(x)]dx.

The efficiency of the motor is then defined to be [309] η = Fv/rΔ μ.
A major mathematical challenge is to determine how the effective speed of the

molecular motor depends on the asymmetries of the potentials and/or the transition
rates. (If these functions are symmetric, then there is no net polarization and the
speed is zero.) In the weak diffusion limit, analytical tools from PDE theory and
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transport processes have been used to prove the existence of a steady-state solution
of Eq. (4.3.23) in a bounded domain with no-flux boundary conditions. Moreover,
for certain classes of potential function and transition rates, the steady-state density
localizes to one end or other of the domain—the so-called motor-effect [108, 506,
662]. A simple heuristic argument for directed motion can be given [309, 516] by
considering the switch between an asymmetric ratchet potential V1(x) and a uniform
potential V2(x) = const for which pure diffusion occurs (see Fig. 4.14). Suppose that
the motor starts at a minimum of the potential V1(x) and is excited to state 2. In this
state it undergoes diffusion, which generates a Gaussian probability density with a
width

√
2Dt at time t. The motor should spend sufficient time τ2 in state 2 so that it

has a reasonable chance to jump down to the well of the next minimum on the right
and yet not enough time to jump too far to the left. This suggests that τ2 ∼ a2/D
where a is the width of the steep part of the potential. The motor also needs just
enough time in state 1 in order to move down the shallow part of the potential to the
next minimum. If the width of the shallow part is b and the maximum potential is V1,
then the net drift is V1/γb. Assuming that the drift induced by the force dominates
diffusion in state 1, we have τ1 ∼ b2γ/V1 � τ2. Such a condition violates detailed
balance. One way to measure the deviation from detailed balance is to introduce the
quantity

Ω(x) = ω1(x)−ω2(x)e
[V1(x)−V2(x)]/kBT . (4.3.32)

One finds that the mean velocity v depends on the amplitude Ω(x) and whether
it is homogeneous (x-independent) or localized as shown in Fig. 4.14. In the
homogeneous case, the motor speed is a unimodal function of the amplitude

V1(x)

V2(x)

x

ab

d

Ω(x)

Fig. 4.14: Simplified Brownian ratchet model in which V1(x) is a periodic ratchet potential and
V2(x) is constant. Also shown is an example of a localized function Ω(x) that signals regions
where there is a breakdown of detailed balance
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amplitude of perturbation Ω
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ci
ty

 v

homogeneous perturbation

localized perturbation

Fig. 4.15: Schematic diagram of the mean velocity v (for zero external force) of a two-state Brow-
nian ratchet as a function of Ω , which measures the departure from equilibrium and is related to
the fuel concentration. (Redrawn from [309].)

Ω0 = maxx |Ω(x)|, with the maximum at Ω0 ∼ 1/τ1 and v→ 0 as Ω0 → ∞. On the
other hand the speed is monotonically increasing for a localized perturbation (see
Fig. 4.15).

The Brownian ratchet is one important example of a stochastic system with a
nonequilibrium steady state (NESS). An NESS has a number of characteristics that
distinguish it from an equilibrium state: irreversibility, breakdown of detailed bal-
ance, and free energy dissipation. In particular, it is a steady state in which there
are constant nonzero fluxes or currents. For a recent review of the theory and appli-
cations of NESSs see Zhang et al. [255, 701]. Although Brownian ratchet models
provide important insights into the mechanisms underlying molecular motor dynam-
ics, they have certain limitations. First, as we have already highlighted, it is difficult
to obtain analytical solutions of the full equations in order to construct velocity–
force curves, for example. Second, there is currently not enough experimental data
regarding the potentials Vj(x) and transition rates ωi j(x) to sufficiently constrain
models. Moreover, a large number of model parameters are needed to specify these
functions, making data fitting problematic.

The above motivates an alternative approach to modeling molecular motors,
based on a discrete Markov process [165, 348, 390, 391]. The basic idea is to take the
transition rate functions to be localized at a discrete set of spatial positions x = xk,
k = 1, . . . ,K, and to replace the continuum diffusion and drift terms by hopping
rates between nearest lattice sites. The resulting discrete Brownian ratchet model
can be mapped on to a stochastic network of KM states as shown in Fig. 4.16. The
stochastic dynamics is now described by a master equation, an example of which is



4.3 Brownian Ratchet Model of a Processive Molecular Motor 189

Fig. 4.16: State transition diagram for a discrete Brownian ratchet that cycles through M = 3
internal states and makes a single step of length Δx

dPkm(t)
dt

= ∑
n �=m

[Pkn(t)Wkm;kn−Pkm(t)Wkn;km]+Pk+1,1(t)WkM;k+1,1 (4.3.33)

+Pk−1,M(t)Wk1;k−1,M−Pk,1(t)Wk−1,M;k,1−Pk,M(t)Wk+1,1;k,M,

where Pkm(t) = pm(xk, t) and for “vertical” transitions Wkm;kn = ωmn(xk). In this
example steps along the filament (power strokes) only occur between states m = 1
and m = M. One can then use methods developed by Derrida [137] to calculate
the effective diffusion and velocity of a particle whose state probability evolves

Fig. 4.17: Mean dwell times of myosin V as a function of external load at different ATP con-
centrations. The symbols correspond to the experimental data of Mehta et al. [433], whereas the
solid lines are theoretical predictions from a discrete stochastic model analyzed by Kolomeisky
and Fisher [347]. (Figure adapted from Kolomeisky and Fisher [347].)
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according to such a master equation. One of the advantages of the discrete models
is that the relatively small number of parameters makes it easier to fit to experimental
data such as shown in Fig. 4.3 [348]. This is illustrated in Fig. 4.17, which shows the
results of fitting a discrete model to data on the ATP dependence of myosin V dwell
times, that is, the times between successive steps.

4.4 Collective Effects of Multiple Molecular Motors

In many cases, molecular motors work in groups rather than in isolation [245].
For example, the number of myosin motors involved in muscle contraction can be
around 1019, the number of dynein motors responsible for the beating of cilia or
flagella is roughly 104, and up to ten coordinated motors can be involved in the in-
tracellular transport of vesicles. A useful characterization of the collective behavior
in motor assemblies distinguishes between rowers and porters [379]. Rowers spend
most of their time unbound from their cytoskeletal filaments so they need to operate
as part of a large assembly in order to produce sufficiently high velocities. This is
exemplified by various classes of myosin motor. On the other hand, porters such as
kinesin need to be more carefully coordinated, since the presence of other motors
can impede the motion of any individual motor within the assembly. A variety of
theoretical models have shown that there are interesting collective effects in motor
ensembles, including bidirectional motion, spontaneous oscillations, hysteresis, and
the formation of self-organizing structures (see also Chap. 8).

4.4.1 Intracellular Cargo Transport by Multiple Motors

Often intracellular cargo such as a vesicle is transported by multiple motors form-
ing a motor/cargo complex. Here we will consider a simple model of a motor/cargo
complex, in which there is only a single type of motor, kinesin, say responsible for
transport [340]. Suppose that there are N identical motors irreversibly attached to
the cargo particle, but which can bind to and unbind from the filament along which
they move. Thus, the number n of motor molecules that are bound to the filament
can vary between n = 0 and n = N. Hence, there are N + 1 different states of the
cargo particle corresponding to the unbound state with n = 0 and to N bound states
with n = 1,2, . . . ,N. Each of these bound states contains N!/(N− n)!n! substates
corresponding to the different combinations of connecting n motor molecules to the
filament. The dynamics of the motor complex depends on properties of individual
motors combined with the observation that an applied force is shared equally be-
tween the motors.
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(a) When bound to a microtubule, the velocity of a single molecular motor
decreases approximately linearly with the force applied against the move-
ment of the motor [658]. Thus, each motor is assumed to satisfy the linear
force–velocity relation

v(F) =

{
v f (1−F/Fs) for F ≤ Fs

vb(1−F/Fs) for F ≥ Fs,
(4.4.1)

where F is the applied force, Fs is the stall force satisfying v(Fs) = 0, v f is
the forward motor velocity in the absence of an applied force in the preferred
direction of the particular motor, and vb is the backward motor velocity when
the applied force exceeds the stall force.

(b) The binding rate is independent of the applied force, whereas the unbinding rate
is taken to be an exponential function of the applied force:

π(F) = π̄, γ(F) = γ̄e
F
Fd , (4.4.2)

where Fd is the experimentally measured force scale on which unbinding occurs.
The force dependence of the unbinding rate is based on measurements of the
walking distance of a single motor as a function of load [571], in agreement
with Kramers’ rate theory [253] (see Sect. 3.3).

(c) Now suppose that the externally applied load or force F acts on a motor/cargo
complex with n independent molecular motors. If the motors are not directly
coupled to each other, then they act independently and share the load. It follows
that a single motor feels the force F/n. Hence, the velocity of the cargo when
there are n bound motors is

vn = v(F/n).

Moreover, Eq. (4.4.2) implies that the population binding and unbinding rates
take the form

γn = nγ(F/n), πn = (N− n)π̄. (4.4.3)

One can model transitions between the different internal states of the cargo com-
plex using a birth–death master equation (see Fig. 4.18). Let Pn(t) be the probability
that there are n bound motors at time t. Then

dPn

dt
= γn+1Pn+1 +πn−1Pn−1− (γn +πn)Pn. (4.4.4)

γn

πn

vn

Fig. 4.18: Model of cooperative motor transport
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There are a number of quantities that characterize properties of the transport process.
We begin by calculating the steady-state distribution of bound motors, which satis-
fies the equation Jn = Jn+1 with

Jn = γnPn−πn−1Pn−1.

Since n is nonnegative, we have Pn = 0 for all n < 0, which means that Jn = 0 for
all n≥ 0. Hence,

γn+1Pn+1 = πnPn,

so that by iteration,

Pn = P0

n−1

∏
i=0

πi

γi+1
, (4.4.5)

with P0 determined from the normalization ∑N
n=0 Pn = 1. The correctly normalized

probability distribution of the bound states is then

P̃n =
Pn

1−P0
.

It follows that the mean number of bound motors in steady state is

Nb =
N

∑
n=1

nPn

1−P0
, (4.4.6)

and the mean cargo velocity is

veff =
N

∑
n=1

vn
Pn

1−P0
. (4.4.7)

The steady-state distribution of the number of bound motors also yields an explicit
expression for the effective cargo detachment rate. In steady state, the effective cargo
attachment and detachment rates satisfy

γeff(1−P0) = πeffP0,

where 1−P0 is the probability that the cargo is bound to the filament via at least one
motor. The effective binding rate is πeff = π̄ , since attachment is established as soon
as one motor binds to the filament. Thus

γeff =
π̄P0

1−P0
=

γ1P1

1−P0
.

Using

Pn+1 = P1

n

∏
i=1

πi

γi+1
, n≥ 1
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and 1−P0 = P1 +∑N−1
n=1 Pn+1, we have

γeff = γ1

[

1+
N−1

∑
n=1

n

∏
i=1

πi

γi+1

]−1

. (4.4.8)

Explicit formulae can be obtained in the absence of a load force, for which γn = nγ̄
and πn = (N− n)π̄ (see Ex. 4.7). For example, the steady-state distribution is

Pn = P0
N!

(N− n)!n!

(
π̄
γ̄

)n

, P0 =

(
1+

π̄
γ̄

)−N

and

Nb ≈ N
π̄/γ̄

1+ π̄/γ̄
for large N.

4.4.2 Tug-of-War Model

Using SPT (Sect. 1.2), trajectories of individual motor–cargo complexes can be
recorded and shown to exhibit many random turning events [244, 359, 577, 677].
This immediately raises the issue of how bidirectional transport is achieved, given
that motors such as kinesin and dynein are unidirectional. Recall that microtubules
are polarized filaments with biophysically distinct + and − ends and the polarity
determines the preferred direction of motion of individual motors: kinesin (dynein)
moves towards the + (−) end. There is considerable debate in the literature re-
garding the most likely mechanism for bidirectional transport. Several different sce-
narios have been proposed including those shown in Fig. 4.19: (a) an asymmetric
tug-of-war model involving the joint action of multiple kinesin and dynein motors
pulling in opposite directions; (b) a symmetric ToW model where all the motors are
of the same type, but they are distributed on microtubules of opposite polarity; (c)
a hopping model, in which the whole motor–cargo complex hops between micro-
tubules of opposite polarity. Yet another suggested mechanism (not shown) is some
form of coordination complex that controls the switching between different motor
species. It might be possible to apply statistical methods to SPT data which, when
combined with knowledge of the individual motor dynamics, could identify the un-
derlying mechanism(s) for bidirectional transport [14]. However, as far as we are
aware, the debate continues! For the sake of illustration, we will focus on the first
two models here.

It has been hypothesized that the experimentally observed bidirectional motion
of molecular motors could be due to the joint action of multiple kinesin and dynein
motors pulling in opposite directions. Suppose that a certain vesicular cargo is trans-
ported along a one-dimensional track via N+ right-moving (anterograde) motors and
N− left-moving (retrograde) motors (see Fig. 4.19). At a given time t, the internal
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Fig. 4.19: Molecular motor-assisted models of bidirectional transport. (a) Asymmetric tug-of-war
model: opposing groups of motors (e.g., dynein and kinesin) compete to transport along a single
polarized microtubule track. (b) Symmetric tug-of-war model: groups of motors of the same direc-
tional preference are distributed among two parallel microtubules of opposite polarity. (c) Hopping
model in which a motor–cargo complex jumps between microtubules of opposite polarity

state of the cargo–motor complex is fully characterized by the numbers n+ and n− of
anterograde and retrograde motors that are bound to a microtubule and thus actively
pulling on the cargo. Assume that over the time scales of interest all motors are per-
manently bound to the cargo so that 0≤ n± ≤ N±. The ToW model of Muller et al.
[456, 457] assumes that the motors act independently other than exerting a load on
motors with the opposite directional preference. (However, some experimental work
suggests that this is an oversimplification, i.e., there is some direct coupling between
motors [150].) Thus the properties of the motor complex can be determined from
the corresponding properties of the individual motors together with a specification
of the effective load on each motor.

The ToW model can be constructed as a generalization of the cooperative motor
model. At the single-motor level, Eqs. (4.4.1) and (4.4.2) still hold, except that the
value of parameters such as the stall force will differ for kinesin and dynein. How-
ever, even in the absence of an externally applied load, there is now an effective force
on one class of motor due to the opposing action of the other class. Let Fc denote
the net load on the set of anterograde motors, which is taken to be positive when
pointing in the retrograde direction. If the molecular motors are not directly coupled
to each other, then a single anterograde motor feels the force Fc/n−, whereas a sin-
gle retrograde motor feels the opposing force −Fc/n+. At the population level, the
binding and unbinding rates for the two types of motor are

γ j(n j) = n j γ̄ jeFc/FD, jn j , π j(n j) = (Nj− n j)π̄ j j =±. (4.4.9)

The cargo force Fc is determined self-consistently by the condition that all the mo-
tors move with the same cargo velocity vc. Suppose that N+ ≥ N− so that the net
motion is in the anterograde direction, which is taken to be positive. In this case,
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the forward motors are stronger than the backward motors so that n+Fs+ > n−Fs−.
Equation (4.4.1) implies that

vc = v f+(1−Fc/(n+Fs+)) =−vb−(1−Fc/(n−Fs−)). (4.4.10)

This generates a unique solution for the load Fc and cargo velocity vc:

Fc(n+,n−) = (Fn+Fs++(1−F )n−Fs−), (4.4.11)

where

F =
n−Fs−v f−

n−Fs−v f−+ n+Fs+vb−
, (4.4.12)

and

vc(n+,n−) =
n+Fs+− n−Fs−

n+Fs+/v f++ n−Fs−/vb−
. (4.4.13)

The corresponding expressions when the backward motors are stronger, n+Fs+ <
n−Fs−, are found by interchanging v f and vb.

The original study of [456, 457] considered the stochastic dynamics associated
with transitions between different internal states (n+,n−) of the motor complex,
without specifying the spatial position of the complex along a 1D track. This de-
fines a Markov process with a corresponding master equation for the time evolution
of the probability distribution P(n+,n−, t). They determined the steady-state prob-
ability distribution of internal states and found that the motor complex exhibited at
least three different modes of behavior (see Fig. 4.20), which were consistent with
experimental studies of motor transport using SPT (Sect. 1.2); the transitions be-
tween these modes of behavior depend on motor strength, which primarily depends
upon the stall force.

(i) The motor complex spends most of its time in states with approximately zero
velocity.

(ii) The motor complex alternates between fast backward and forward movements,
so that there is a bimodal velocity distribution with peaks close to the single-
motor velocities of 1μms−1.

(iii) The motor complex exhibits fast backward and forward movement interrupted
by stationary pauses, which is consistent with experimental studies of bidirec-
tional transport. The velocity distribution now has three peaks.

One of the useful features of the ToW model is that it allows various biophysical
signaling mechanisms to be incorporated into the model [472, 473, 514]. This will
be exploited in Sect. 7.6.4, when we use the ToW model to study the effects of local
chemical signaling on intracellular cargo transport.

ATP Signaling. Experimentally, it is found that [ATP] primarily affects the stall
force, forward motor velocity, and unbinding rate (see for example Fig. 4.3).
There are a number of models of the [ATP] and force-dependent motor param-
eters that closely match experiments for both kinesin [183, 449, 571, 658] and
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Fig. 4.20: Motility states for the symmetric tug-of-war model consisting of N = 4 plus and N = 4
minus motors. The three columns correspond to the three listed motility states (i), (ii), and (iii),
respectively. The top row shows a typical trajectory for given motility state, whereas the bottom row
shows a histogram of the distribution of velocities. The different motility behavior is obtained by
taking different stall forces FS and unbinding rates ε̄: (i) FS = 2pN, ε̄ = 0.4s−1, (ii) FS = 6pN,ε0 =
1s−1, (iii) FS = 4.75pN,ε0 = 0.4s−1. These and other single-motor parameter values are based on
experimental data from kinesin 1: detachment force Fd = 3pN, binding rate π̄ = 5s−1, forward
velocity v f = 1μms−1, and backward velocity vb = 6nms−1 (Adapted from Muller et al. [457])

dynein [201, 335]. We give some examples of [ATP]-dependent parameters. First,
the forward velocity can be modeled using Michaelis–Menten kinetics:

v f ([ATP]) =
vmax

f [ATP]

[ATP]+Kv
, (4.4.14)

where vmax
f = 1μms−1, Kv = 79.23μM for kinesin and vmax

f = 0.7μms−1, Kv =
38μM for dynein. (The backward velocity of both kinesin and dynein is small, vb ≈
±0.006μms−1, so that the [ATP] dependence can be neglected.) The binding rate is
determined by the time necessary for an unbound motor to diffuse within range of
the microtubule and bind to it, which is assumed to be independent of [ATP]. The
unbinding rate of a single motor under zero load can be determined using the [ATP]-
dependent average run length Lk([ATP]) = Lmax

k /([ATP] +Ku). The mean time to
detach from the microtubule is v f ([ATP])/Lk([ATP]) so that

γ̄([ATP]) =
vmax

f ([ATP]+Ku)

Lmax
k ([ATP]+Kv)

, (4.4.15)

where Lmax
k = 0.86μm, Ku = 3.13μM for kinesin and Lmax

k = 1.5μm, Ku = 1.5μM
for dynein. Finally, a model for the [ATP]-dependent stall force of kinesin is

Fs([ATP]) = F0
s +

(Fmax
s −F0

s )[ATP]
Ks +[ATP]

, (4.4.16)
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where F0
s = 5.5pN, Fmax

s = 8pN, Ks = 100μM for kinesin and F0
s = 0.22pN,

Fmax
s = 1.24pN, Ks = 480μM for dynein.

Tau Signaling. The second signaling mechanism involves microtubule-associated
proteins (MAPs). These molecules bind to microtubules and effectively modify the
free energy landscape of motor–microtubule interactions [622]. For example, tau is
a MAP found in the axon of neurons and is known to be a key player in Alzheimer’s
disease [351]. Experiments have shown that the presence of tau on the microtubule
can significantly alter the dynamics of kinesin, specifically by reducing the rate
at which kinesin binds to the microtubule [655]. It has also been shown that, at
the low tau concentrations affecting kinesin, dynein is relatively unaffected by tau.
Thus tau signaling can be incorporated into the ToW model by considering a tau
concentration-dependent kinesin binding rate of the form [474]

π̄(τ) =
π̄max

1+ e−γ(τ0−τ) , (4.4.17)

where τ is the dimensionless ratio of tau per microtubule dimer and π̄max = 5s−1.
The remaining parameters are found by fitting the above function to experimental
data [655], so that τ0 = 0.19 and γ = 100.

4.4.3 Collective Extraction of Membrane Nanotubes

Another example of collective motor activity occurs in the extraction of a mem-
brane nanotube or tether from a vesicle. Membrane nanotubes play an important
role in lipid and protein exchange between various organelles of the early secre-
tory pathways such as the ER and Golgi apparatus (see also Sect. 8.4) [609, 636].
They have also been observed in vitro, where the dynamical clustering of several
molecular motors at the tip of a nanotube is required to pull it from the host vesicle
[92, 352, 377]. The basic experimental setup involves a unilamellar vesicle coated
with kinesin proteins, which are permanently attached to the membrane via their
tail domains, and can bind/unbind to microtubules via their motor domains. The
initial membrane tension τ0 of the vesicle is determined by fixing the osmotic pres-
sure difference between the interior and exterior of the vesicle. The kinesin-coated
vesicle is sedimented on a network of microtubules fixed on a glass surface. Under
suitable conditions, a membrane nanotube is formed when the kinesin motors bind
microtubules and walk towards the plus end, deforming the vesicle membrane. Two
types of behaviors are observed following formation of a nanotube. In the majority
of cases, the membrane tubes simply stall at a certain length, whereas in the remain-
ing cases the length of a tubed oscillates between two values; the oscillations are
characterized by a slow growth phase and a fast retraction phase.
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Fig. 4.21: Sketch of the extraction of a membrane nanotube from a vesicle by the collective action
of kinesin molecular motors. A side view shows the different regions (vesicle, tube, and tip). The
inset represents a scaled-up version of the tip region, where V is the velocity of the tube and of
bound motors at the tip, V0 is the zero-load velocity of bound kinesins, and ku,kb are the unbinding
rate at zero load and the binding rate of kinesins onto MTs, respectively

The basic mechanism by which kinesin motors are thought to pull a membrane
nanotube is sketched in Fig. 4.21. First, motors distributed along the nanotube bind
to and unbind from the microtubule at rates kb and ku, respectively, and the bound
motors move with a speed V0. The values of V0 and ku are based on single-motor
properties in the absence of an external load. Typical parameter values are kb =
5s−1, ku = 0.5s−1, and V0 = 0.6μms−1 [649]. Each motor also feels a drag force due
to its motion relative to the membrane nanotube, with the latter moving at speed V .
Although the drag on a single motor is small, the cumulative effect on all of the
motors can be significant. Motors at the tip of the nanotube exert a normal force
that can pull the nanotube out from the vesicle. However, since the speed of kinesin
motors decreases with applied load, the motors at the tip move more slowly than
those moving along the tube, resulting in an accumulation of motors at the tip which
provide the necessary force to generate and sustain the tube.

We now describe a dynamical model of motor-assisted tube extraction due to
Leduc et al. [92, 377]. It is first necessary to state a few results regarding the
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mechanical properties of vesicular membranes, in order to determine the applied
force F required to pull a tube of length L from a vesicle. (For a detailed description
of cell mechanics, see [53].) The extraction of a single tube from a spherical vesicle
of area A0 means that the area increases by some amount δA0, while the volume re-
mains constant. This then generates an increase in membrane tension τ . The excess
area δA0/A0 = rL/2R2

0 where r is the radius of the tube and R0 is the initial radius
of the sphere (typically R0 ≈ 10μm). For a given membrane tension τ and bending
rigidity κ , one finds that [509] (see Ex. 4.8)

F = f (τ) ≡ 2π
√

2κτ, r = r(τ)≡
√

κ/2τ. (4.4.18)

The relationship between F and L can now be determined by specifying how the
membrane tension varies with the excess area. There are two distinct regimes. At
low vesicle tensions, τ depends exponentially on the excess area, reflecting the
thermodynamics of membrane fluctuations, which leads to the following force-
displacement relation:

L
Lc

=
2F
F0

ln

(
F
F0

)
, (4.4.19)

where Lc = kBT R2
0/4πκr0 is the characteristic length scale at which the increase in

F becomes significant, r0 = r(τ0), and F0 = f (τ0). For the given experimental con-
ditions, the force increase was noticeable at tube lengths greater than about 30μm
[377]. If the vesicle is initially already under sufficient tension (τ0 ∼ 10−4 Nm−1),
then membrane stretching dominates (elastic regime) and the vesicle tension in-
creases linearly with the excess area. The force–displacement relation now takes the
form

L
Le

=
F
F0

[(
F
F0

)2

− 1

]

, (4.4.20)

where Le = R2
0F3

0 /(8π3κ2Ka) is the characteristic length in the elastic regime (with
Ka the elastic rigidity).

Given the force–displacement function F = F(L), one can now derive dynamical
equations for the extraction of a nanotube based on the force-balance equation (see
also Sects. 8.2 and 8.3):

FM−F(L)+FD = 0, (4.4.21)

where FM is the force exerted by motors at the tip and FD is the net drag force
on the tube. All the forces must balance, since inertial terms can be neglected in
the low Reynolds number regime (see also Box 5B). It turns out that the dominant
contribution to the drag force is the accumulative effect of drag due to each of the
motors moving with velocity V0−L′ relative to the membrane, where L′ = dL/dt.
Thus

FD = ξ L(V0−L′), ξ = ρb
kBT
D

,

where ξ is the motor friction coefficient per unit length, D is the diffusivity, ρb is
the density of bound motors along the tube, and we have used the Einstein relation.
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One finds that friction only becomes significant in regimes where |L′| � V0, for
which the force-balance equation becomes

ξ L
dL
dt

= FM−F(L). (4.4.22)

The motor force FM arises from the collective action of the cluster of bound motors
at the tip. If nb is the number of motors at the tip and each independently applies
a force fm, then FM = nb fm. The motors at the tip move with a load-dependent
velocity V . Assuming a linear force–velocity relation, we have

V =V0

(
1− FM

nb fs

)
,

with fs the stall force of an individual motor. Finally, setting L′ = V , the force bal-
ance equation (4.4.22) becomes

ξ LL′ = (1−V/V0)nb fs−F(L) = (1−L′/V0)nb fs−F(L),

which can be rearranged to give

dL
dt

=V0
nb−F(L)/ fs

nb + ξV0L/ fs
. (4.4.23)

Equation (4.4.23) implies that there are two limiting cases. When the number nb of
motors at the tip is sufficiently large, the force on each motor is negligible so that it
moves at speed V0 and L′ →V0. On the other hand, when the motors are not able to
sustain a force (nb → 0), the tube retracts according to

dL
dt

=−F(L)
ξ L

.

In order to complete the dynamical description of the system, it is necessary to
take into account the dynamics of the bound motors at the tip, that is, the time
dependence of nb. The latter satisfies the conservation equation

dnb

dt
= Jb− kunb, (4.4.24)

where ku is the rate of unbinding from the microtubule and Jb is the flux of motors
entering the tip region (expressed in the reference frame of the tube); the rate at
which tip motors rebind the microtubule can be neglected. Using Kramers rate the-
ory (Sect. 3.3), the unbinding rate of a motor can be related to the force fm it exerts
according to

ku = k0e fma/kBT = k0 exp

(
[1−L′/V0]

fsa
kBT

)
, (4.4.25)
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where a is a characteristic length scale of the width of the energy barrier between
bound and unbound states (a≈ 1 nm). The flux Jb is given by

Jb = (V0−L′)ρb,

which depends on the motor density per unit length ρb and the latter is assumed
to be uniform for simplicity. Assuming that the rates of binding and unbinding are
relatively fast, ρb can be related to the total density ρ0 of motors coating unit area
of membrane according to the equilibrium condition

ρb = 2πrρ0
kb

kb + k0
.

Using Eq. (4.4.18) to relate r to the tube force F(L), we have

ρb =
4π2κρ0

F(L)
kb

kb + k0
. (4.4.26)

Finally, substituting for L′ in Eq. (4.4.25) and using ξ = ρbkBT/D gives

ku = k0 exp

(
ρbkBT (V0L/D)+F(L)
fsnb +ρbkBT (V0L/D)

fsa
kBT

)
. (4.4.27)

Following [92], it is convenient to nondimensionalize Eqs. (4.4.23) and (4.4.24)
and to reexpress them in terms of the variables (nb,F) rather than (nb,L); the
force–displacement relations are invertible. First, introduce the so-called proces-
sivity length lp =V0/k0, where k0 is the load-free unbinding rate, and then perform
the rescalings

L→ L/lp, F → F/F0, nb → nb fs/F0, t → k0t.

In terms of the nondimensionalized variables, the force–displacement relation is
written as L = β g(F) with β ≡ Lc,e/lp. Thus, in the thermodynamic regime g(F) =
2F ln(F) and in the elastic regime g(F) = F(F2− 1). Moreover, Eq. (4.4.27) may
be expressed in the nondimensional form

ku = exp

(
γg(F)/F +F
nb + γg(F)/F

fsa
kBT

)
, (4.4.28)

with

γ = β
(

kBTV0

D fs

)
γ0, γ0 =

4π2κ fslp

F2
0

kb

kb + k0
ρ0.
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Equations (4.4.24) and (4.4.23) now become

dnb

dt
=

γ0

F
F + γg(F)/F
nb + γg(F)/F

− exp

(
γg(F)/F +F
nb + γg(F)/F

fsa
kBT

)
nb (4.4.29a)

dF
dt

= A(F)
nb−F

nb + γg(F)/F
, (4.4.29b)

with

A(F) =

[
β

dg(F)

dF

]−1

.

Equations (4.4.29) have a single fixed point (n̄b, F̄) with n̄b = F̄ and

γ0

F̄
= e fsa/kBT F̄ ,

that is,

F̄ =

√
γ0e− fsa/kBT .

Since the tube length L≥ 0 and when L= 0 the membrane tension τ = τ0 and F =F0

(in physical variables), it follows that F(L) ≥ F0 and thus F̄ ≥ 1 (in dimensionless
variables). This implies that a nanotube can only be extracted if γ0e− fsa/kBT > 1, so
that the density of coating ρ0 has to exceed a minimum value ρmin given by

ρmin =
F2

0

4π2κ lp fse− fsa/kBT

kb + k0

kb
.

One can now analyze the stability of the fixed point (assuming it exists), by lin-
earizing equation (4.4.29) about the fixed point and determining the eigenvalues
of the resulting Jacobian. There are four dimensionless parameters in Eq. (4.4.24),
namely, β ,γ,γ0, and f ≡ fsa/kBT . It is convenient to consider the equivalent set of
parameters p ≡ ρm/ρ0, f ,β and ξ0 ≡ γβ/γ0 = kBTV0/(D fs). Fixing ξ0, one finds
that the fixed point is stable provided that f < 1, whereas if f > 1, then there are
biophysically realistic parameter regimes in which the fixed point undergoes a Hopf
bifurcation along the lines outlined in Box 4B [92, 377], resulting in the occurrence
of a stable periodic orbit or limit cycle as observed experimentally. This is illustrated
in Fig. 4.22, which shows a bifurcation diagram in the (p,β )-plane for f = 2.03 and
ξ0 = 4.1× 10−4 [92]. A region of oscillatory behavior occurs, consistent with the
hypothesis that the collective behavior of a cluster of molecular motors is pulling
the nanotube at the tip. As the tube grows, the membrane tension increases so that
the tip motors have to exert a stronger force in order to maintain elongation of the
tube. However, once the tension is too high, the incoming flux of motors to the tip is
not sufficient to generate a large enough cluster to generate the necessary force, and
the tube starts to shrink. This relaxation allows the reformation of a large enough
cluster to start growing the nanotube again.
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Fig. 4.22: Spontaneous oscillations in the model of nanotube extraction given by Eq. (4.4.29). (a)
Bifurcation diagram showing different dynamical regimes in the (β , p)-plane for f = 2.03 and
ξ0 = 4.1×10−4. (b) Sketch of oscillations in the tube length and the number nb of bound motors
at the tip for ρmin/ρ0 = 7.3, f = 2.03 and ξ0 = 4.1×10−4 and β = 1.73. (Redrawn from [92].)

Box 4B. The Hopf bifurcation.

Any differential equation describing the dynamics of some biological sys-
tem will depend on one or more parameters μ . This can be made explicit
by writing

dx
dt

= f(x(t); μ), x ∈ R
n, μ ∈R

m.

For simplicity, suppose that only one parameter is varied and set m = 1.
The dynamical system is said to have a bifurcation at the critical value
μ = μc if there is a change in the (topological) structure of trajectories
as μ crosses μc. (For a detailed introduction to bifurcation theory see
the book Elements of Applied Bifurcation Theory by Kuznetsov [366].)
In the case of local bifurcations, this means that there is a change in the
number and/or stability of equilibria or fixed points. A Hopf bifurcation
occurs when a fixed point changes stability as μ crosses μc resulting in
the emergence of a small amplitude limit cycle. If the limit cycle is stable
and surrounds an unstable fixed point, then the Hopf bifurcation is said
to be supercritical, whereas if the limit cycle is unstable and surrounds
a stable fixed point, then it is said to be subcritical. Before stating the
general conditions for the occurrence of a Hopf bifurcation in a planar
system (n = 2), it is useful to consider an explicit example:

dx
dt

= μx+ωy+σx(x2+y2),
dy
dt

=−ωx+μy+σy(x2+y2), (4.4.30)
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with σ =±1. This pair of equations has a single fixed point at the origin.
Transforming to polar coordinates by setting x = r cosθ ,y = r sin θ , we
have

dr
dt

= r(μ +σr2),
dθ
dt

=−ω ,

with r≥ 0. It immediately follows that all nonzero solutions rotate clock-
wise at the same angular frequency ω . Suppose that σ = −1. If μ ≤ 0,
then ṙ < 0 for all r > 0 and trajectories converge to the fixed point at
the origin, which is stable. On the other hand, if μ > 0 then ṙ < 0 for
r ∈ (

√μ ,∞) and ṙ > 0 for r ∈ (0,
√μ). Hence, the origin is now an un-

stable fixed point, whereas there is a stable periodic orbit at r =
√μ (see

Fig. 4.23). In other words, the system undergoes a supercritical Hopf bi-
furcation at the critical value μ = μc = 0. Similarly, if σ = +1 then the
fixed point undergoes a subcritical Hopf bifurcation with an unstable limit
cycle existing for μ < 0.

Fig. 4.23: Supercritical Hopf bifurcation. Phase portraits for system ẋ = μx+ y−
x(x2 + y2) and ẏ =−x+μy− y(x2 + y2) for the three cases μ < 0, μ = 0, and μ > 0

Hopf bifurcation theorem (2D). Consider the planar dynamical system

dx
dt

= f (x,y; μ), ẏ = g(x,y; μ)

for the single parameter μ . Suppose that there exists a fixed point at
(x,y) = (0,0), say. Linearizing about the origin gives the linear system

d
dt

(
x
y

)
= A(μ)

(
x
y

)
,

where A(μ) is the Jacobian

A(μ) =

⎛

⎝
∂x f (0,0; μ) ∂y f (0,0; μ)

∂xg(0,0; μ) ∂yg(0,0; μ)

⎞

⎠ .
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Let the eigenvalues of the Jacobian be given by the complex conjugate
pair λ (μ),λ (μ) = α(μ)± iβ (μ). Furthermore, suppose that at a certain
value μ = μc (with μc = 0, say), the following conditions hold:

1. α(0) = 0, β (0) = ω �= 0 with sign(ω) = sign[∂μg(0,0;0)].

2.
dα(μ)

dμ

∣
∣
∣
∣
μ=0

�= 0 (transversality condition) .

3. The so-called first Liapunov coefficient l1 doesn’t vanish, l1 �= 0
(genericity condition), where

l1 =
1

16
( fxxx + fxyy + gxxy + gyyy)

+
1

16ω
( fxy[ fxx + fyy]− gxy[gxx + gyy]− fxxgxx + fyygyy),

with fxy = ∂x∂y f (0,0;0) etc.

Then a unique curve of periodic solutions bifurcates from the origin
as μ crosses zero. The amplitude of the limit cycle grows like

√|μ | and
the period tends to 2π/ω as |μ | → 0. Suppose for the sake of illustration
that α ′(μ)> 0 and set σ = sign(l1).

−1

1

2

0

r

μ

1

2

0

r

0 10 1 2 3 −3 −2 −1
μ

supercritical subcritical

a b

Fig. 4.24: Bifurcation diagrams for (a) supercritical (σ = −1) and (b) subcritical
(σ =+1) Hopf bifurcations in the same dynamical system as Fig. 4.23

If σ = −1, then the fixed point is asymptotically stable for μ ≤ 0 and
unstable for μ > 0. Moreover, there is a unique and stable periodic orbit
that exists for μ > 0, corresponding to the case of a supercritical Hopf
bifurcation (see Fig. 4.24a).

If σ = +1, then the fixed point is asymptotically stable for μ < 0 and
unstable for μ ≥ 0. Moreover, an unstable limit cycle exists for μ < 0,
and we have a subcritical Hopf bifurcation (see Fig. 4.24b).
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Finally, sufficiently close to the bifurcation point, the dynamical system is
locally topologically equivalent to the normal form given by Eq. (4.4.30).

There is also an n-dimensional version of the Hopf bifurcation theorem
for n≥ 3. In particular, suppose that the n× n Jacobian matrix has a pair
of complex conjugate eigenvalues λ (μ),λ (μ) = α(μ)± iβ (μ) and all
other eigenvalues have negative real parts, Re[λ j(μ)]< 0 for j = 3, . . . ,n.
It can then be shown that the system converges to a family of smooth
two-dimensional invariant manifolds Wc (trajectories starting in Wc stay
within Wc) and the above Hopf bifurcation theorem then applies to the
effective dynamics on Wc (Fig. 4.25).

μ < 0 μ = 0 μ > 0

Fig. 4.25: Hopf bifurcation in 3D

Linear stability analysis [221]. In the statement of the Hopf bifurcation
theorem, the (local) stability of a fixed point was determined in terms of
the eigenvalues of the Jacobian. We now explain this in more detail. Let
us return to a planar dynamical system written as

dx1

dt
= f1(x1,x2),

dx2

dt
= f1(x1,x2),

where we have suppressed the bifurcation parameter. Introduce the vector
notation x = (x1,x2)

T , f = ( f1, f2)
T , and suppose that x = x∗ is a fixed

point for which f(x) = 0. Set y = x− x∗ and Taylor expand the ODEs to
first order in y:

dy j

dt
=

dx j

dt
= f j(x

∗
1+y1,x

∗
2+y2)= f j(x

∗
1,x

∗
2)+ ∑

k=1,2

∂ f j

∂xk
(x∗1,x

∗
2)yk+ h. o. t..

Imposing the fixed point conditions and dropping the higher-order terms
then yields the linear equation

dy
dt

= Ay, A jk =
∂ f j

∂xk
(x∗1,x

∗
2). (4.4.31)
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Trying a solution of the form y = veλ t generates the eigenvalue equation

Av = λ v.

This will have a nontrivial solution provided that A−λ I is non-invertible,
where I is the 2×2 unit matrix, which means that the pair of eigenvalues
is a solutions to the characteristic equation

Det[A−λ I] = 0. (4.4.32)

This yields a quadratic equation for λ , which can be factorized as

(λ −λ1)(λ −λ2) = 0,

where the roots λ1,2 are the eigenvalues. If these eigenvalues are distinct,
then the general solution to the linear ODE can be written as

y(t) = ∑
j=1,2

c jv jeλ jt

for constant coefficients c j, where v j is the unit eigenvector correspond-
ing to λ j.

Expanding the factorized equation and using the fact that Tr[A] = λ1+
λ2 and Det[A] = λ1λ2 gives

λ 2−Tr[A]λ +Det[A] = 0.

Thus

λ1,2 =
1
2

[
Tr[A]±

√
Tr[A]2− 4Det[A]

]
. (4.4.33)

It follows from the above analysis that the fixed point x∗ will be stable
provided that Re[λ1,2] < 0, since the perturbations y j(t) = v jeλ jt → 0 as
t → ∞. Using Eq. (4.4.33), the condition for linear stability is Tr[A] < 0.
Moreover, reintroducing the bifurcation parameter μ , the first two condi-
tions for a Hopf bifurcation at μ = μc can be expressed as

Tr[A(μc)] = 0, Det[A(μc)]> 0. (4.4.34)

Then λ1,2(μc) =±iω0 with ω0 =
√

Det[A(μc)].
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4.4.4 Rigidly Linked Molecular Motors

As our final example of a motor assembly, consider the case where N motors are
rigidly coupled to a common backbone, which is connected to a fixed cytoskeletal
structure via a spring K [307, 308] (see Fig. 4.26). Each motor is treated as a two-
state Brownian ratchet, such that the motor sees an asymmetric, l-periodic potential
V1(x) when bound to a cytoskeletal filament and a flat potential V2 when unbound.
The motors switch between the two states with position-dependent transition rates
ω1,2(x), which do not satisfy detailed balance due to ATP hydrolysis. Cooperativity
arises due to the global motion of the backbone relative to the filament, which simul-
taneously modifies the positions of all the motors. Such a configuration mimics the
experimental protocol known as a motility assay as well as the coupling of myosin
motor cross bridges in muscles.

Suppose that the displacement of the backbone at time t is Y (t) and the center
of masses of the motors is separated by a uniform spacing q on the backbone. It
follows that the position of the nth motor at time t is xn(t) = Y (t)+ nq. Each motor
is either in the bound state (σ = 1) or the unbound state (σ = 2) and the energy of
the nth motor in state σ is Vσ (xn(t)). However, since Vσ (x+ l) =Vσ (x) for all x, we
need only specify the position of the motor using the cyclic coordinate ξn(t) = xn(t)
mod l with 0 < ξn < l. Let Pσ (ξ , t) be the probability that there exists a motor in
state σ at cyclic position ξ at time t. It follows that

P(ξ , t)≡ P1(ξ , t)+P2(ξ , t) =
1
N

N

∑
n=1

δ (ξ − ξn(t)).

V1(x)

V2

x
l

q

Y

xn

d

θ(x)1

Fig. 4.26: Ensemble of molecular motors coupled rigidly to a moving backbone. See text for details
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A major simplification occurs if the periodic spacing q of the motors is incommen-
surate with the period l of the filament track, that is, l/q is an irrational number.
In the limit N → ∞, the motor positions ξn form a dense subset on [0, l] such that
P(x, t)→ 1/l. The equations of motion for Pσ are [307]

∂P1

∂ t
+ v

∂P1

∂ξ
=−ω1P1 +ω2P2 (4.4.35a)

∂P2

∂ t
+ v

∂P2

∂ξ
= ω1P1−ω2P2, (4.4.35b)

where v = dY/dt is the velocity of the backbone and the transition rates satisfy
Eq. (4.3.32), that is,

Ω(ξ ) = ω1(ξ )−ω2(ξ )e[V1(ξ ))−V2]/kBT .

It is convenient to set Ω(ξ ) = Ωθ (ξ ) and
∫ l

0 θ (ξ )dξ = 1. For concreteness, ω2 is
a constant and ω1(ξ ) is determined by taking θ (ξ ) to be a periodic sequence of
square pulses of width d (see Fig. 4.26). Finally, the velocity v is determined by the
force-balance equation

Fext = μv(t)+KY(t)+
∫ l

0
(P1∂ξV1 +P2∂ξV2)dξ , (4.4.36)

where Fext is an externally applied force (per motor). The first term on the right-hand
side is a frictional force with damping coefficient μ , the second term is the elastic
force from the spring with elastic modulus NK, and the third term is the force due
to the potentials.

For an incommensurate system with P2 = l−1−P1, and a soft spring (K = 0),
there exists a steady state that satisfies the pair of equations

v
∂P1

∂ξ
=−(ω1 +ω2)P1 +

ω2

l
(4.4.37)

and (since V2 is constant)

Fext = μv+
∫ l

0
P1∂ξV1dξ . (4.4.38)

Let us nondimensionalize the system by fixing the length and time units such that
l,q,ω2 = O(1) and suppose that v� 1. The solution for P1 may then be expanded
as a Taylor series in v:

P1(ξ ) =
∞

∑
n=0

vnP(n)
1 (ξ ).

Substituting into Eq. (4.4.37) gives

P(0)
1 (ξ ) =

1
l

ω2(ξ )
ω1(ξ )+ω2(ξ )

, P(n)
1 (ξ ) =− 1

ω1(ξ )+ω2(ξ )
∂ξ P(n−1)

1 (ξ ). (4.4.39)
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Substituting the Taylor expansion of P1 into Eq. (4.4.38) then yields

Fext−F(0) = (μ +F(1))v+
∞

∑
n=2

vnF (n), for F (n) =
∫ l

0
P(n)

1 ∂ξV1dξ . (4.4.40)

It follows from Eq. (4.3.32) that

P(0)
1 (ξ ) = l−1 1

e(V1(ξ )−V2)/kBT + 1+Ωθ (ξ )/ω2(ξ )
.

Hence, if detailed balance holds (Ω = 0), then from the periodicity of the potentials,

F (0) =−kBT
l

∫ l

0
∂ξ ln
[
1+ e−(V1(ξ )−V2)/KBT

]
dξ = 0.

One also finds that F (1) > 0, that is, there is an effective increase in friction so v = 0
in the absence of an external force. On the other hand, when detailed balance is
broken, two important features arise [307]:

(i) If Ω �= 0 and the potential V1(ξ ) is asymmetric, then F (0) �= 0 and the system
can do work against an external load as previously found for a single motor. One
subtle point is that we still have F(0) = 0 if the transition rates are homogeneous,
which differs from the single-motor case.

(ii) If Ω �= 0, then F(1) may become negative as an emergent feature of cooperativ-
ity. This can overcome the effects of external damping, resulting in a nonzero
velocity in the absence of an external force. Note that in contrast to a single
motor, it is no longer necessary for asymmetric potentials or transition rates.

In order to explore feature (ii) in more detail, suppose that both the potential
V1(ξ ) and θ (ξ ) are symmetric functions, with θ (ξ ) determining the deviation from
detailed balance. The perturbation analysis implies that P(n)(ξ ) is symmetric for
even n and antisymmetric for odd n [see Eq. (4.4.39)]. Since taking a derivative
converts a symmetric function to an antisymmetric one and vice versa, we see from
Eq. (4.4.40) that F (n) = 0 for all even n. Therefore, we have

Fext = (μ +F(1))v+ v3F(3) +O(v5). (4.4.41)

This represents the normal form of an imperfect pitchfork bifurcation. First consider
the case Fext = 0. Suppose that F(1) is a monotonically decreasing function of Ω
such that μ+F(1) = 0 at a critical value Ω =Ωc. Then for Ω <Ωc, the only solution
is v = 0 and the system does not move. However, at the critical point Ω = Ωc,
the zero velocity state loses stability and two new stable solutions v± emerge via
spontaneous symmetry breaking, with v± ∼

√
Ω −Ωc close to the bifurcation point

(see Fig. 4.27a). One can also determine the relationship between an external force
and velocity for different values of Ω as illustrated in Fig. 4.27b.

Now suppose that the spring constant K of the spring connecting the backbone to
the cytoskeleton is nonzero. It is now possible for the system to exhibit spontaneous
oscillations [309]. In order to show this, consider the linear stability of the zero
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velocity steady-state solution of Eqs. (4.4.35) and (4.4.36) of zero external force.
The steady-state solution is given by

P1(ξ ) = R(ξ )≡ 1
l

ω2(ξ )
ω1(ξ )+ω2(ξ )

, Y = Y0 ≡− 1
K

∫ l

0
R(ξ )∂ξV1(ξ )dξ .

Linearize about the steady-state solution by setting

P1(ξ , t) = R(ξ )+ p(ξ )eλ t, Y (t) = Y0 + yeλ t ,

lF
ex

t/U

Ω = 0

Ω = Ωc

Ω > Ωc

v/
lω

2

Fext = 0

a b0.4

0.3

0.2

0.1

0

0 0.1 0.2 0.3
Ω/ω2

0

v/lω2

−0.01

0.01

0.1 0.20−0.1−0.2

Fig. 4.27: Ensemble of molecular motors coupled rigidly to a moving backbone. (a) There exists
a critical amplitude Ω = Ωc, where Ω measures the size of the deviation from detailed balance,
beyond which the motor assembly has a nonzero velocity in the absence of an external force.
(b) Sketch of force–velocity curves for different amplitudes Ω and a symmetric potential V1(x)
of height U and periodicity l, illustrating spontaneous symmetry breaking. For the dimensionless
parameter values d/l = 0.1 and μω2l2/U = 0.1 one finds that Ωc/ω2 ≈ 0.026. (Redrawn from
Julicher and Prost [307].)

and v(t) = ∂tY (t) = λ yeλ t , we find

λ p(ξ )+λ yR′(ξ ) =−(ω1(ξ )+ω2(ξ ))p(ξ )

0 = μλ y+Ky+
∫ l

0
p(ξ )V ′1(ξ )dξ .

Expressing p(ξ ) in terms of y and eliminating y yields the eigenvalue equation

μ +
K
λ

=

∫ l

0

R′(ξ )V ′1(ξ )
λ +ω1(ξ )+ω2(ξ )

dξ . (4.4.42)

The zero velocity state is stable if Reλ < 0. An instability will occur if there exists
a critical value Ω = Ωc(K) for which λ = iω . Note that if K = 0, then the left-
hand side is real, which implies that λ is real and destabilization of the zero velocity
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state cannot occur via a Hopf bifurcation. On the other hand, if K > 0, then a Hopf
bifurcation can occur resulting in a limit cycle oscillation with frequency ω(K) (see
Box 4B). An amplitude equation for spontaneous oscillations close to the bifurca-
tion point can be obtained using Fourier analysis and perturbation theory [308] (see
Ex. 4.9).

4.5 Appendix: Statistical Mechanics of Polymers

In the bulk of the book, we treat F-actin and microtubules as rigid or semirigid
polymer filaments. These provide one-dimensional tracks for active intracellular
transport by molecular motors and self-organize through polymerization into the
various structures of the cytoskeleton responsible for cell mitosis and cell motility
(Chap. 8). We will neglect statistical mechanical effects in these applications. On
the other hand, biopolymers such as DNA and proteins are much more flexible rel-
ative to their lengths, which means one has to take into account the wide range of
different configurations that can occur through bending and folding of the polymers,
as well as the associated energetics. The statistical mechanics of polymers will be
important when considering translocation of biopolymers through membrane pores
(Sect. 7.3). The examples in this section also help illustrate some of the basic prin-
ciples of statistical mechanics.

Example 4.1 (Random walk model of a polymer (1D)). Consider a simple 1D model
of a flexible polymer. The polymer is represented as a sequence of links of length a
that either point in the positive or negative x-direction with equal probability. One
can thus treat a given configuration or microstate of the polymer as a sample tra-
jectory of an unbiased random walk on a 1D lattice with spacing a (see Ex. 4.10).
Suppose that there are N links in the chain and one end of the chain is fixed at the
origin. Let n denote the number of links pointing in the positive x-direction. It fol-
lows that the other end of the chain (end-to-end distance) is at x = (2n−N)a. We
will assume that N is sufficiently large so that x and n can be treated as continuous
variables. If we ignore any energy contributions from the elastic stretching, bending,
or twisting of the polymer, then the energy Φ of any configuration is zero. However,
stretching the polymer by pulling on the free end at x is resisted by an entropic
force. In order to show this, we note that the number of configurations or internal
microstates for fixed n or x is given by the combinatorial factor (see also Sect. 1.4)

Ω(n) =
N!

n!(N− n)!
. (4.5.1)

Taking logs and using Stirling’s formula (2.1.5) we have the entropy

S(n) = kB[N lnN− n lnn− (N− n) ln(N− n)], (4.5.2)
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0
a

x

Fig. 4.28: Random walk model of a 1D polymer. The links have been displaced in the vertical
direction for illustrative purposes

which can be reexpressed in terms of x according to

S(x) = kB

(
N lnN− x+Na

2a
ln

[
x+Na

2a

]
− Na− x

2a
ln

[
Na− x

2a

])
. (4.5.3)

The entropic force is then

fent(x) = T
dS(x)

dx
=−kBT

2a
ln

[
1+ x/Na
1− x/Na

]
. (4.5.4)

Assuming that x� Na, we can Taylor expand to first order in x to obtain Hooke’s
law for an elastic spring:

fext(x)≈− kBT
Na2 x. (4.5.5)

The minus sign means that the polymer resists stretching, since the force is in the
negative x-direction. The origin of the entropic force is that when a polymer is
stretched it becomes less random, in the sense that there are less configurations
for larger x. In order to maintain the displacement x, the environment has to exert an
opposing force f = − fnet. Inverting Eq. (4.5.4), we obtain the force–displacement
relation

z≡ x
Na

= tanh

[
f a

kBT

]
. (4.5.6)

Example 4.2 (Freely-jointed chain model of a polymer (3D)). Suppose that we rep-
resent a polymer in 3D as a chain of N segments; each of which is described by a
vector a j with |a j|= a the length of the segment and the direction of a j representing
the orientation of the segment (see Fig. 4.29). One end of the polymer is fixed at the
origin, so that the end-to-end displacement of the chain is given by r = ∑N

j=1 a j.
Suppose that the orientations of the segments are random in the sense that, averag-
ing over a large population of identical polymers, we have 〈a j ·ai〉= 0 for all i �= j.
A fixed force f is applied to the free end of the polymer in the z-direction using
an external load, for example. The configuration of the polymer is specified by the
spherical polar angles (θ j,φ j) of the N links, j = 1, . . . ,N, with 0 < θ j ≤ π and
0 ≤ φ j ≤ 2π . The total energy of the system consisting of the polymer in a given
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a1
aN

f

Lz

load

θ
z

x

yφ

Fig. 4.29: Freely jointed chain model of a 3D polymer. A load maintains a constant force f in the
z direction

configuration and the applied load is E =−∑N
j=1 f acos(θ j), which is the work done

by the load in moving links in a direction perpendicular to the (x,y)-plane. The
Boltzmann–Gibbs distribution with Θ = (θ1, . . . ,θN) and Φ = (φ1, . . . ,φN) is

p(Θ ,Φ) =
1
Z

e( f a/kBT )∑N
j=1 cosθ j =

1
Z

N

∏
j=1

e( f a/kBT)cosθ j , (4.5.7)

with the partition function obtained by integrating over all solid angles, dΩ =

∏N
j=1 sin θ jdθ jdφ j:

Z =

∫
e( f a/kBT )∑N

j=1 cosθ j dΩ (4.5.8)

=
N

∏
j=1

[∫ 2π

0

∫ π

0
e( f a/kBT )cosθ j sinθ jdθ jdφ j

]
= ZN

1 , (4.5.9)

where

Z1 =

∫ 2π

0

∫ π

0
sinθe( f a/kBT )cosθ dθdφ

= 2π
∫ 2π

0
e( f a/kBT )cosθ d cosθ

= 2π
∫ 1

−1
e( f a/kBT )xdx =

4πkBT
f a

sinh

(
f a

kBT

)
.

It follows from the above analysis that the Boltzmann–Gibbs distribution can be
factorized into a product of distributions for the N independent links,

p(Θ ,Φ) =
N

∏
j=1

p1(θ j ,φ j), p1(θ j ,φ j) = Z−1
1 e( f a/kBT )cosθ j . (4.5.10)
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In order to derive a force–displacement relation, it is necessary to determine the
mean displacement of the polymer in the z direction, Lz = r · ez:

〈Lz〉 ≡
∫ [

a
N

∑
j=1

cosθ j

]

p(Θ ,Φ)dΩ

= Na
∫ 2π

0

∫ π

0
cosθ p1(θ ,φ)sin θdθdφ .

The integral can be evaluated by noting that

d lnZ1

d f
=

a
kBT

1
Z1

∫ 2π

0

∫ π

0
cosθ sinθe( f a/kBT )cosθ dθdφ ,

which implies that

〈Lz〉= NkBT
d lnZ1

d f
= Na

[
coth

(
f a

kBT

)
− kBT

f a

]
. (4.5.11)

In the small force limit, this reduces to Hooke’s law:

f = k〈Lz〉, k = 3kBT/Na2. (4.5.12)

One possible point of confusion is that in Example 4.1, the position x of the poly-
mer was treated as deterministic, whereas in this case Lz is fluctuating. The two
pictures are consistent once one notes that for a large polymer (large N) fluctuations
in the end-to-end distance are negligible, which is a consequence of the law of large
numbers.

Example 4.3 (The Ising model of a polymer). The next level of complexity in the
statistical mechanical modeling of polymers is to incorporate elastic effects such
as bending, stretching, and twisting. Here we will consider a simplified model,
which is equivalent to the classical Ising model of magnetic spins [102]. Let us
return to the example of a 1D polymer consisting of N links of length a. Denote
the state of each link by the binary variable σi with σi = 1 (σ = −1) if the link
points in the positive (negative) x-direction. Suppose that an external load maintains
a constant force f in the positive x-direction. The total extension of the polymer is
x = a∑N

j=1 σ j. In contrast to the random walk model, suppose that when two neigh-
boring links point in opposite directions, they contribute an extra 2γkBT of energy,
where γ is some cooperativity parameter. (This could represent an effective bending
energy.) Then the total energy of the polymer plus load for a given configuration
σ = (σ1, . . . ,σN) is

E[σ] =− f a
N

∑
j=1

σ j− γkBT
N−1

∑
j=1

σ jσ j+1. (4.5.13)
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The corresponding Boltzmann–Gibbs distribution is

p(σ) = Z−1e−E[σ]/kBT , (4.5.14)

and the partition function is

Z = ∑
σ1=±1

· · · ∑
σN=±1

eα ∑N
j=1 σ j+γ ∑N−1

j=1 σ jσ j+1 , (4.5.15)

with α = f a/kBT . The partition function can be treated as a generating function for
the displacement x, that is,

〈x〉= kBT
d

d f
lnZ[ f ] = a

d
dα

Z[α]. (4.5.16)

A well-known result from statistical mechanics is that the 1D Ising model can be
solved exactly. In particular, one can derive an exact expression for Z using transfer
matrices [102]. First rewrite Z in the more suggestive form

Z = ∑
s1

. . .∑
sN

[
eα(σ1+σ2)/2+γσ1σ2

][
eα(σ2+σ3)/2+γσ2σ3

]
. . .
[
eα(σN+σ1)/2+γσNσ1

]
.

We can view each term on the right-hand side as the element of a matrix T with
matrix elements labeled by σ1,σ2, etc., that is, Tσ1σ2 = eα(σ1+σ2)/2+γσ1σ2 . Hence,

T =

(
T11 T1−1

T−11 T−1−1

)
=

(
eα+γ e−γ

e−γ e−α+γ

)
.

In terms of the transfer matrix T

Z = ∑
σ1

. . .∑
σN

Tσ1σ2Tσ2σ3 . . .TσN σ1 = Tr[TN ],

where we have used the standard rules of matrix multiplication. It can then be shown
that for large N, Z ≈ λ N

+ , where λ+ is the larger eigenvalue of T,

λ+ = eγ
[
coshα +

√
sinh2α + e−4γ

]
.

Finally, substituting the result into Eq. (4.5.16) shows that the mean extension is

〈x〉= Nasinhα
√

sinh2α + e−4γ
.

Note that this reduces to the force-extension relation (4.5.6) of the random walk
model in the limit γ → 0. The Ising model will be used to model receptor clustering
in Sect. 5.3.
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Example 4.4 (Persistence Length of a Polymer). In the above models there is a fun-
damental length scale, namely, the length a of each link, which is called the Kuhn
length. Roughly speaking, one can view the Kuhn length as the length over which a
polymer is essentially straight. In order to consider properties of polymers on length
scales smaller than the Kuhn length, which are important for strong deformations,
it is more convenient to consider a continuum model of a polymer. One now treats
a polymer as a continuous curve in 3D space, parameterized by arc length s (see

t(s)

s

t(u)

u

Fig. 4.30: Persistence length of a polymer represented as a continuous curve

Fig. 4.30). The Kuhn length a of the freely jointed chain model can then be related
to the persistence length ξp of the continuous model, with the latter defined accord-
ing to the correlation length over which tangent–tangent correlations decay along
the chain:

〈t(s) · t(u)〉= e−|s−u|/ξp . (4.5.17)

For example, the DNA of viruses such as λ -phage has a contour length of 16.6 μm
and a persistence length of ξp ≈ 50 nm at room temperature. One can derive a rela-
tionship between a and ξp by considering the mean square of the end-to-end vector

r =
∫ L

0
t(s)ds.

One finds that

〈r2〉=
〈∫ L

0
t(s)ds ·

∫ L

0
t(u)du

〉
=

∫ L

0
ds
∫ L

0
du〈t(s) · t(u)〉

= 2
∫ L

0
ds
∫ L

s
due−(u−s)/ξp ≈ 2

∫ L

0
ds
∫ ∞

0
dxe−x/ξp = 2Lξp,

for L� ξp. Carrying out an analogous calculation for the freely jointed chain, we
have

〈r2〉=
〈

N

∑
j=1

a j ·
N

∑
k=1

ak

〉

=
N

∑
j,k=1

〈a j ·ak〉

= Na2 + ∑
j �=k

〈a j ·ak〉= Na2,

since 〈a j · ak〉 = 0 for j �= k. Comparison of the two models shows that a = 2ξp.
Note that the continuous model is the starting point for a more detailed analysis of
the elastic properties of polymers using the theory of elastic beams or rods [53].
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4.6 Exercises

Problem 4.1 (Single-stranded polymer). Consider the kinetic equations for a
single-stranded polymer:

dXn

dt
= εXn+1(t)+πXn−1(t)− [ε +π ]Xn(t), n > 0

and
dX0

dt
= εX1(t)−πX0(t),

where X0 is the concentration of monomer and Xn,n > 0, is the concentration of
filaments of length n+ 1.

(a) Derive the steady-state solution

Xn =
(π

ε

)n
X0.

Hence, show that the steady-state concentrations satisfy the equilibrium law of
mass action for the reversible reaction

Xn +X0
π0�
ε

Xn+1,

with π = π0X0.
(b) Show that the average length of polymers (not counting the monomers) is

〈n〉 ≡ ∑∞
n=1(n+ 1)Xn

∑∞
n=1 Xn

= 1+
K

K− 1
, K =

π
ε

and that the total concentration of subunits is

A≡
∞

∑
n=0

(n+ 1)Xn =
X0K2

(K− 1)2 .

Problem 4.2 (Double-stranded polymer). Consider a double-stranded filament
consisting of two protofilaments whose ends can take on two basic types of con-
figuration as shown in Fig. 4.31. Let Pn(a,0) denote the probability that the spatial
separation of the protofilament tips is a+ nd, where d is the length of a monomer,
and let Pn(0,d− a) denote the probability that the spatial separation is nd + d− a
(cases (a) and (b) of Fig. 4.31). The corresponding configurations are labeled by
(a+ nd,0) and (0,d− a+ nd). The dissociation constants associated with the re-
versible binding of a monomer will depend on which configuration it binds to and
whether or not it binds to the longer or shorter protofilament. Let ΔFm be the change
in free energy due to the removal of a monomer from solution, let 2lΔFlat/d be the
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lateral binding energy when the added monomer overlaps the other protofilament by
an amount l, and denote the binding energy due to attachment of a monomer to the
end of a protofilament by ΔFlong. There are then four possible reactions involving
the binding of an additional monomer, with the following dissociation constants:

K1 ≡ w1

u1
= ce(2ΔFlata/d+ΔFlong+ΔFm)/kBT

K2 ≡ w2

u2
= ce(2ΔFlat(1−a/d)+ΔFlong+ΔFm)/kBT

K3 ≡ w3

u3
= ce(2ΔFlat+ΔFlong+ΔFm)/kBT

K ≡ w
u
= ce(ΔFlong+ΔFm)/kBT ,

where u j,wj are forward and backward reaction rates and c is a fixed concentration
of monomers in solution.

(a) Sketch the type of polymer configuration that binds an additional monomer in
each of the four reactions, i.e., determine whether the configuration is (a+nd,0)
or (0,d− a+ nd) and determine the allowed values of n for each case.

(b) Construct a reaction diagram and show that at steady state

Pn(a,0) =

(
u+w3

u3 +w

)n

P0(a,0)

Pn(0,d− a) =

(
u+w3

u3 +w

)n

P0(0,d− a)

P0(0,d− a) =
u1 +w2

u2 +w1
P0(a,0),

which is supplemented by the normalization condition

∞

∑
n=0

[Pn(a,0)+Pn(0,d− a)] = 1.

a d-a

a bn monomers n monomers

Fig. 4.31: Different configurations of a double-stranded filament. (a) One of the protofilaments has
a tip at a distance nd+a from the other protofilament with n≥ 0. (b) One of the protofilaments has
a tip at a distance nd + d− a from the other protofilament with n ≥ 0. The identity of the longer
protofilament is not important
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(c) Using part (b) and assuming

β =
u+w3

u3 +w
< 1,

sum the geometric series to show that

P0(a) =
1−β
1+α

, P0(d− a) =
α(1−β )

1+α
, where α =

u1 +w2

u2 +w1
.

(d) The mean growth velocity V is defined as the mean rate of growth of the popu-
lation of polymers due to polymerization minus the mean rate of shrinkage due
to depolymerization. Using this definition, derive the following formula for V :

V = du+(d− a)u1P0(a)+ au2P0(d− a)− dw[1−P0(a)−P0(d− a)]

− (d− a)w1P0(d− a)− aw2P0(a,0).

Hence, show that

V = d

[
u−wβ +(1−β )

u1u2−w1w2

u1+ u2 +w1 +w2

]
.

Problem 4.3 (Spatial polymerization of a filament). Suppose that a polymer fil-
ament is placed in a cylinder with uniform cross section A. Suppose that the
monomers within the tube can undergo diffusion along the axis of the tube, which
is taken to be the x-axis. Let x±(t) denote the positions of the ± ends of the fil-
ament within the tube. The apparent velocities of these ends due to polymeriza-
tion/depolymerization are

dx+
dt

= v+ = l[k+ona(x+, t)− k+off]

dx−
dt

= v− =−l[k−ona(x−, t)− k−off].

The ends of the filament act as sources or sinks for the monomer, so that the
monomer concentration a(x, t) along the axis satisfies the inhomogeneous diffusion
equation

∂a
∂ t

= D
∂a2

∂x2 − γ[δ (x− x+)v+− δ (x− x−)v−], γ =
1
Al

.

(a) Derive the diffusion equation by considering conservation of monomer passing
through an infinitesimal volume AΔx centered about either end of the filament.
Explain the minus sign in the definition of v−.

(b) Suppose that the tube is infinitely long and

a(x, t)→ α, x→±∞.
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Look for a traveling wave solution in which the filament maintains a fixed length
L and v± = v, where v is the speed of the wave. That is, set x+ = vt,v− = vt−L
and go to a moving frame z = x− vt with a(x, t) =A (z) such that

−v
dA
dz

= D
d2A

dz2 + vγ[δ (z+L)− δ (z)].

Explicitly solve this equation by matching the solution at the points z = −L,0.
In particular, show that

A (−L) = α, A (0) = α− 1+ e−γvL/D.

(c) Substituting for A in the expressions for v± and setting v+ = v− = v, determine
v and L. Show that a physical solution only exists if

α >
k+off + k−off

k+on + k−on
.

Problem 4.4 (Computer simulations: polymerization).

(a) Use Euler’s direct method to solve the ODE corresponding to the master equa-
tion (4.1.1) for polymerization at one end:

dPn

dt
= εPn+1(t)+πPn−1(t)− [ε +π ]Pn(t), n > 0

with Pn(0) = δn,10, ε = 0.7, π = 0.4. Take t = [0,2].
(b) Use the Gillespie algorithm (Sect. 6.8) to generate sample paths for the length

N(t) of the polymer. The two reactions are n→ n+ 1 at rate π and n→ n− 1 at
rate ε . By averaging over sample paths, compare the histogram of N(T ) with the
distribution Pn(T ) for T = 2.

(c) Does the histogram of N(T ) appear to converge to a stationary distribution for
large T and ε = 0.7, π = 0.4? What about the case ε = 0.4, π = 0.7?

Problem 4.5 (Polymerization ratchet). Consider a Brownian particle moving in
the ratchet potential

F (x) = Fx− nΔG, na < x < (n+ 1)a.

Following the analysis of Sect. 4.2, we obtain the equation

d
dx

(
eV (x)/kBT p̂0(x)

)
=− Ĵ0

D0
eV (x)/kBT .

for the stationary distribution p̂0(x) = ∑∞
n=−∞ p0(x+ na).
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(a) Integrate the above equation from 0+ to x, 0 < x < a, and impose the matching
condition

lim
x→a+

p̂0(x)e
F (x) = lim

x→a−
p̂0(x)e

F (x)

together with periodicity p̂0(a+) = p̂0(0+). Hence show that

p̂0(x) =
Ĵ0kBT
FD0

[
A e−Fx/kBT − 1

]
,

with

A =
eΔG/kBT − 1

e(ΔG−Fa)/kBT − 1
.

(b) Explain the matching condition used in part (a).
(c) Determine the constant flux Ĵ0 using the normalization condition 1=

∫ a
0 p̂0(x)dx.

Hence show that the speed of growth v = Ĵ0a is given by

v = D0
F2a

(kBT )2

[
A
(

1− e−Fa/kBT
)
− Fa

kBT

]−1

.

(d) Show that in the regime ΔG� Fa and kBT � Fa,

v≈ 2D0/a.

Problem 4.6 (Translocation ratchet). The FP equation for the translocation ratchet
takes the form

∂ p
∂ t

+
∂J
∂x

= 0, J =− DF
kBT

p−D
∂ p
∂x

.

Suppose that each ratchet site can exist in two states that are in equilibrium

S0
kon�
koff

S1,

with only S1 ratcheted. The FP equation is then supplemented by the boundary con-
ditions

J(0, t) = J(δ , t), p(δ ) = (1−π)p(0), π =
kon

kon + koff
.

Show that the velocity of translocation is

v = δJ0 =
2D
δ

⎡

⎢
⎣

ω2/2
eω − 1

1−K(eω− 1)
−ω

⎤

⎥
⎦ .
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Problem 4.7 (Cooperative model of motor transport). Consider the cooperative
model of motor transport in the absence of a load force, for which the cargo attach-
ment and detachment rates are given by

γn = nγ0, πn = (N− n)π0.

(a) Show that the steady-state distribution is

Pn = P0
N!

(N− n)!n!

(
π0

γ0

)n

, P0 =

(
1+

π0

γ0

)−N

.

(b) By constructing the generating function G(s) = ∑N
n=1 esnPn/(1−P0), derive an

expression for the mean number of bound motors using Nb = G′(0) and show
that for large N,

Nb ≈ N
π0/γ0

1+π0/γ0
.

Problem 4.8 (Energetics of membrane tethering). Consider a membrane nan-
otube of length L and radius r, pulled from a spherical vesicle of radius R by an
applied force F (see Fig. 4.21). For simplicity, assume that the membrane is in the
elastic regime. In order to compute the force F and radius r, we need to consider the
energetics associated with bending and stretching the membrane. First, membranes
with higher curvature require more bending energy and the rate at which energy
changes with curvature is given by the bending stiffness κ . Treating the system as
the union of a sphere, cylinder, and hemisphere (at the tip), respectively, the total
bending energy is

Ebend = 12πκ +πκ
L
r
.

The energy associated with changing the area by an amount ΔA = A−A0, where
A = 4πR2 + 2πrL and A0 = 4πR2

0, is

Estretch =
Ka

2
ΔA2

A0
,

where Ka is the elastic rigidity. Another contribution to the total energy arises from
the pressure difference Δ p between the inside and outside of the vesicle multiplied
by the volume:

Ep =−Δ p

(
4
3

πR3 +πLr2
)
.

The total energy of the system is thus

Etot = Ebend +Estretch +Ep−FL,

where FL is the work done by the load. (Note the contributions to the area and
volume from the hemispherical tip region have been neglected.)
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(a) In order to determine the equilibrium shape of the vesicle + tube, minimize Etot

with respect to the three variables r,R,L.
(b) Using the fact that the membrane tension in the elastic regime satisfies

τ = Ka
ΔA
A0

,

derive the Laplace–Young relation Δ p = 2τ/R from the condition ∂Etot/∂R= 0.
This then justifies neglecting the Δ p terms in the equations ∂Etot/∂ r = 0 and
∂Etot/∂L = 0 since r� R. Hence, derive the equations

F = 2π
√

2κτ, r =
√

κ/2τ.

(c) Using part (b) and the approximation

τ ≈ τ0 +Ka
rL

2R2
0

,

derive the following force–displacement relation in the elastic regime:

L
Le

=
F
F0

[(
F
F0

)2

− 1

]

, (4.6.18)

where Le = R2
0F3

0 /(8π3κ2Ka) and F = F0 when τ = τ0.

Problem 4.9 (Spontaneous oscillations of collective molecular motors). Con-
sider the system of rigidly linked molecular motors shown in Fig. 4.26. Assuming
that the system is incommensurate, that is, l/q is an irrational number and the po-
tential V2 is a constant, Eq. (4.4.35) reduces to the form

∂P1

∂ t
+ v

∂P1

∂ξ
=−(ω1 +ω2)P1 +

ω2

l
,

where P1(ξ , t) is the probability density that there is a bound molecular motor at ξ ,
and the force-balance equation (4.4.36) for the displacement Y (t) of the backbone
becomes

Fext = μv(t)+KY(t)+
∫ l

0
P1∂ξV1dξ , v(t) = Ẏ (t).

(a) Let
P1(ξ , t) = R(ξ )+Q(ξ , t), R(ξ ) = l−1ω2/(ω1 +ω2),

and assume a T -periodic solution of the form

Q(ξ , t) = ∑
k �=0

Qk(ξ )eikωt , v(t) = ∑
k �=0

vkeikωt ,
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where ω = 2π/T , and set Fext = 0. Show that the coefficients Qk(ξ ) satisfy

Qk(ξ ) =−∑
l,m

δk,l+m

α(ξ )+ iωk
vl
[
Q′m(ξ )+ δm,0R′(ξ )

]
, α(ξ ) = ω1(ξ )+ω2(ξ ).

(b) Suppose that the velocity v(t)� 1 (relative to typical length and time scales of
the system), so that one can perform a perturbation analysis about the steady
state, (P1(ξ ) = R(ξ ), Y (t) = Y0, v = 0), with respect to the Fourier coefficients
vk. Introduce the perturbation expansion

Qk(ξ ) = ∑
l

Q(1)
kl (ξ )vl +∑

l,m

Q(2)
klm(ξ )vlvm + . . .

and substitute into the differential equation for the coefficients Qk(ξ ). Derive the
recursion relation

Q(n)
k,k1,...,kn

(ξ ) =−∑
l

δk,kn+l

α(ξ )+ iωk
∂ξ Q(n−1)

l,k1,...,kn−1
(ξ )

for n > 1 with

Q(1)
kl (ξ ) =−

δk,l

α(ξ )+ iωk
R′(ξ ).

(c) Show that the force-balance equation with Fext = 0 can be Taylor expanded as

0 = ∑
l

F (1)
kl vl +∑

lm

F(2)
klmvlvm + . . . ,

with

F (1)
kl = δk,l

(
μ +

K
iωk

−
∫ l

0

R′(ξ )V ′1((ξ )
α(ξ )+ iωk

dξ
)
,

and for n > 1

F (n)
k,k1,...,kn

=

∫ l

0
Q(n)

k,k1,...,kn
(ξ )V ′1(ξ )dξ .

Note that F (1)
11 (ω)= 0 recovers the instability condition of the steady state, which

occurs at a critical frequency ω = ωc.
(d) Use parts (b) and (c) to prove that Fk,k1,...,kn = 0 unless k = k1 + . . .+ kn. Close

to the bifurcation point (ω = ωc,v = 0), the dominant terms in the Fourier ex-
pansion are v±1 and v±2. Dropping higher-order terms v±n,n > 2, use the force-
balance equation to show that v±1,v±2 satisfy the pair of equations

0 = F (1)
11 v1 +G(2)v−1v2 +G(3)v2

1v−1, 0 = F(1)
22 v2 +F(2)

211v2
1,

where v−1 = v1 and

G(2) = F (2)
1,2,−1 +F(2)

1,−1,2, G(3) = F(3)
1,1,1,−1+F(3)

1,1,−1,1+F(3)
1,−1,1,1.
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Deduce that the amplitude of the spontaneous oscillation satisfies

|v1|2 =−F (1)
11 /G̃(3), G̃(3) = G(3)−F(2)

211G(2)/F(1)
22 .

Since |v1|2 is real, setting the imaginary part of F (1)
11 /G̃(3) to zero determines ω .

Problem 4.10 (Random walk model of a 1D polymer). Consider a 1D random
polymer consisting of N links, each of which is described by a vector a j = ±aex

with equal probability p± = 1/2, where ex is the unit vector in the x-direction (see
Fig. 4.28). One end of the polymer is fixed at x = 0. Formulate this model as a ran-
dom walk problem, with the number of segments N analogous to the number of time
steps and the end-to-end displacement analogous to position on a 1D lattice after the
Nth step. Hence, show that the probability distribution of R, where ∑N

j=1 a j = Rex is
approximately given by

PN(R)∼ 1√
2πN

e−R2/2Na2
.



Chapter 5
Sensing the Environment: Adaptation
and Amplification in Cells

One important requirement of sensory eukaryotic cells and single-cell organisms
such as bacteria is detecting weak signals in noisy extracellular environments. As we
briefly discussed in Sect. 2.4.2 within the context of bacterial chemoreception, there
are fundamental limits to the strength of signal that can be detected. However, even
if a weak signal is detected, it is necessary for some form of amplification to oc-
cur in order that the signal is not lost in subsequent stages of processing within the
cell. Moreover, it is advantageous for a cell to be able to shift its response so that it
always operates in a regime of maximal gain, that is, it is able to respond to small
changes in signal irrespective of the mean strength of the signal—a process known
as adaptation. In this chapter we explore these issues in more detail. We begin by
considering the Berg–Purcell limit of biochemical signaling [40] and a subsequent
modification of the original result that applies outside the diffusion-limited regime
(Sect. 5.1). In Sect. 5.2 we review an alternative approach to estimating the preci-
sion of biochemical sensors that is based on the fluctuation–dissipation theorem of
statistical mechanics. In Sect. 5.3 we return to the problem of bacterial chemotaxis,
which is a canonical system used to explore the sensitivity of biochemical sensors
to environmental signals. We describe some of the biochemical signaling networks
responsible for amplification via receptor clustering (cooperativity) and for adap-
tation. We also analyze some simple PDE models of bacterial chemotaxis. Finally,
in Sect. 5.4, we consider how amplification and adaptation occur in hair cells of
the inner ear via active mechanotransduction. Here the interactions between the me-
chanical properties of transduction elements, the action of myosin motors, and Ca2+

signaling allow a hair cell to operate close to a Hopf bifurcation point for the on-
set of spontaneous oscillations. This, in turn, provides the basis for active signal
processing such as amplification and frequency tuning.

© Springer International Publishing Switzerland 2014
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5.1 Physical Limits of Biochemical Signaling due to Noise

We begin by presenting the original derivation of the Berg–Purcell limit for the pre-
cision with which the external concentration c of some ligand such as a chemoat-
tractant can be inferred from the time-averaged occupancy of a single receptor em-
bedded in the cell membrane [37, 40]. Let us denote the time-dependent state of the
receptor by n(t) with n(t) = 1 (n(t) = 0) if the receptor’s binding site is occupied
(unoccupied) by a single ligand molecule. In thermodynamic equilibrium at some
given concentration c, the time-averaged occupation n̄ is

n̄ =
c

c+Kd
, (5.1.1)

where Kd is the dissociation constant for ligand binding/unbinding (see Sect. 3.1).
After a molecule is bound to the receptor, the probability of detachment in an inter-
val dt is dt/τb where τb is the inverse of the unbinding rate. Suppose that the binding
site is treated as a circular disk of radius a. From the analysis of diffusion-limited
reactions in Sect. 2.4, we know that the diffusive flux into the dic is 4Dac, where
D is the ligand diffusivity. At equilibrium the rate at which a molecule binds to the
receptor must balance the rate of escape:

n̄
τb

= 4(1− n̄)Dac. (5.1.2)

In particular, since n̄ = 1/2 when c = Kd , it follows that

τb =
1

4DaKd
. (5.1.3)

The information about the surrounding concentration c available to the cell is the
function n(t) sampled over a time interval τavg. Let

n∗ =
1

τavg

∫ t0+τavg

t0
n(t)dt (5.1.4)

be the cell’s estimate of n̄, with t0 the time when sampling begins. It follows from
equation (5.1.1) that the corresponding estimate of c is

c∗ =
n∗

1− n∗
Kd . (5.1.5)

We would like to determine the error in such an estimate. From the definition of
n∗, we have

n2
∗ =

1
τ2

avg

∫ t0+τavg

t0

∫ t0+τavg

t0
n(t)n(t ′)dtdt ′,
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which implies that

〈n2
∗〉=

1
τ2

avg

∫ τavg

0

∫ τavg

0
C(t− t ′)dt dt ′, (5.1.6)

where C(τ) is the correlation function

C(τ) = 〈n(t)n(t + τ)〉. (5.1.7)

It is assumed that the stochastic process is stationary so that C only depends on the
time difference and the expression for 〈n2∗〉 is independent of the initial time t0. The
correlation function satisfies the differential equation

τb
dC
dτ

=−C(τ)+ (n̄−C(τ))
p̄

1− p̄
. (5.1.8)

In order to derive this equation, one imagines making a large number N of mea-
surements n(t0)n(t0 + τ) over a random set of initial sampling times t0. Since
n(t0)n(t0 + τ) = 1 only if n(t0) = n(t0 + τ) = 1, otherwise n(t0)n(t0 + τ) = 0, one
can keep track of changes in the number of nonzero pair-wise measurements when
τ → τ + dτ , which leads to equation (5.1.8) [40]. Integrating this equation and re-
quiring that C(0) = n̄ gives

C(τ) = n̄2 + n̄(1− n̄)e−|τ|/(1−n̄)τb . (5.1.9)

Substituting for C(τ) into equation (5.1.6) yields the result

〈n2
∗〉=

1
τ2

avg

∫ τavg

0

∫ τavg

0

[
n̄2 + n̄(1− n̄)e−|t−t′ |/(1−n̄)τb

]
dt dt ′

= n̄2 +
2

τavg
n̄(1− n̄)2τb.

Given the unbiased estimate 〈n∗〉= n̄, we see that the RMS error δn in our estimate
of n̄ satisfies

δn
n̄

=
1
n∗

√
〈n2∗〉− 〈n∗〉2 =

√
2

n̄τavg
(1− n̄)2τb,

which, combined with equation (5.1.2), reduces to

δn
n̄

=

√
1− n̄

2Dacτavg
. (5.1.10)

If we now use the small noise approximation

δc
c

=
dc
dn̄

δn
c

=
Kd

(1− n̄)2

1− n̄
Kdn̄

δn =
1

1− n̄
δn
n̄
,
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we deduce that
δc
c

=

√
2

4Dac(1− n̄)τavg
. (5.1.11)

Equations (5.1.10) and (5.1.11) express the fundamental limits of Berg and Purcell
[40]. If the binding site is modeled as a sphere rather than a disk, then there is a
different geometric factor so 4Dac→ 2πaDc.

One of the simplifying assumptions of the above derivation is that reactions are
diffusion-limited. That is, as soon as a ligand molecule comes into contact with the
receptor, it is absorbed. In other words, the rates of binding and unbinding k± → ∞
with k−/k+ = Kd . Berg and Purcell argued that their result also holds for reactions
that are not diffusion-limited (finite k±) since, if a ligand molecule fails to bind,
then it will rapidly keep re-colliding with the receptor until it does eventually bind.
Such a process can be captured by rescaling the radius a. However, this ignores the
possibility that after unsuccessfully binding, the specific ligand molecule diffuses
back into the bulk, and a different ligand molecule subsequently binds. Similarly,
a ligand molecule that has just dissociated from the receptor could either rapidly
rebind or diffuse away into the bulk. Recently, a detailed study of the Berg–Purcell
problem outside the diffusion-limited regime has been carried out by Kaizu et al.
[314], who show that there are now two contributions to the RMS error:

δc
c

=

√
1

2πDac(1− n̄)τavg
+

2
k+c(1− n̄)τavg

. (5.1.12)

The first term recovers the fundamental limit of Berg and Purcell applied to a sphere
rather than a circular disk, whereas the second term takes into account the variability
that results from the receptor–ligand binding kinetics; the latter vanishes in the limit
k+→∞. Interestingly, a similar result has been obtained by Bialek and Setayeshgar
[45] using a very different approach, which is based on the fluctuation–dissipation
(FD) theorem of statistical mechanics:

δc
c

=

√
1

πDacτavg
+

2
k+c(1− n̄)τavg

. (5.1.13)

The contribution to uncertainty from binding kinetics agrees with the Kaizu et al. re-
sult [314], but the contribution from diffusion differs from both the latter and Berg–
Purcell. One possible explanation for this discrepancy is that the FD theorem only
takes into account linear correlations. On the other hand, the FD theorem provides a
relatively simple, intuitive method for addressing the physical limits of biochemical
signaling and will be discussed at length in the next section.
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5.2 Fluctuation–Dissipation Theorem

The fluctuation–dissipation (FD) theorem is based on the assumption that the re-
sponse of a system in thermodynamic equilibrium to a small applied force is the
same as its response to a spontaneous fluctuation. Suppose that x(t) represents the
linear response of the system to a small external input h(t), such that

x(t) =
∫ ∞

−∞
G(τ)h(t− τ)dτ, G(τ) = 0 for τ < 0, (5.2.1)

where G(t) is the linear response function. In a mechanical system x(t) would repre-
sent a physical displacement and h an applied force, whereas in a magnetic system
x(t) would represent magnetization and h an applied magnetic field. In the latter
case, G(t) is known as the magnetic susceptibility. Let X(t) represent the corre-
sponding response of the system to thermal fluctuations. The FD theorem states that
the power spectrum SX(ω) (defined in Sect. 2.2.5) is related to the Fourier transform
of the linear response function G(t) according to

SX(ω) =
2kBT

ω
Im[G̃(ω)]. (5.2.2)

(The FD theorem can be derived from first principles using statistical physics and
the observation that at equilibrium 〈X〉= ∂E/∂h, where E is the free energy of the
system; see Box 5A.) For example, applying the FD theorem to the OU process
(Sect. 2.2.3) with G̃(ω) = [κ− iωγ]−1, we find that

SX(ω) =
2kBT γ

κ2 +(ωγ)2 . (5.2.3)

Comparison with the calculated expression for SX(ω) in equation (2.2.33) recovers
the Einstein relation D = kBT γ .

Box 5A. Derivation of the fluctuation–dissipation theorem.

We sketch a proof of the FD theorem for a system close to thermody-
namic equilibrium using the Boltzmann–Gibbs distribution introduced
in Sect. 1.4 (see also [102]). Imagine that a constant external force h is
applied to the system over the time interval (−∞,0] and then suddenly
switched off at time t = 0. Let E j be the energy of a microstate in the
absence of the force and E j− hA j be the energy of the state for h �= 0,
where A j is some function of state. Since the system has had an infinite
time to relax to equilibrium prior to t = 0, we know that before the force
is switched off the mean 〈A(0)〉 is given by
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〈A(0)〉= ∑ j A je−β (E j−hA j)

∑ j e−β (E j−hA j)
, β =

1
kBT

.

Let A(t| j) be the value of A at time t, which evolves in the absence of
the applied force from one of the initial microstates A j(0) at time t = 0.
Averaging over these initial states and using the fact that h is infinitesimal,
we have

A(t) = 〈A(t| j)〉= ∑ j A(t| j)e−β (E j−hA j)

∑ j e−β (E j−hA j)

≈ ∑ j A(t| j)e−β E j(1+β hA j(0)+ . . .)

∑ j e−β E j(1+β hA j(0)+ . . .)

≈
∑ j e−β E jA(t| j)

(
1+β hA j(0)−β h ∑k e−βEk Ak(0)

∑k e−βEk

)

∑ j e−β E j

= 〈A(t)〉+β h [〈A(t)A(0)〉− 〈A(t)〉〈A(0)〉] .

In other words, the relaxation to equilibrium can be related to the auto-
correlation function C(t) of spontaneous fluctuations δA(t):

A(t)−〈A〉= 〈δA(t)δA(0)〉=C(t).

Let G(t) be the linear response function. It follows that we can also
represent the relaxation to equilibrium according to

A(t)−〈A〉=
∫ ∞

−∞
G(τ)h(t− τ)dτ.

Using the particular piecewise constant form for h,

A(t)−〈A〉= h
∫ ∞

t
G(τ)dτ,

which implies that

G(t) =−β
dC(t)

dt
H(t).

Fourier transforming this equation gives

G̃(ω) =−β
∫ ∞

0
Ċ(t)eiωt dt =−β + iωβ

∫ ∞

0
C(t)eiωt dt.
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Taking the imaginary part of this equation,

Im G̃(ω) = ωβ Re
∫ ∞

0
C(t)eiωt dt =

ωβ
2

[∫ ∞

0
C(t)eiωt +

∫ ∞

0
C(t)e−iωt

]
dt

=
ωβ
2

[∫ ∞

0
C(t)eiωt +

∫ ∞

0
C(−t)e−iωt

]
dt =

ωβ
2

∫ ∞

−∞
C(t)eiωt dt

=
ωβ
2

S(ω),

where S(ω) is the power spectrum.

C+

Im ω

Re ω

ε

C-

Im ω

Re ω
−ε

ε−ε

Fig. 5.1: Contours in the complex frequency plane ω

Another version of the FD theorem. This can be obtained by comparing
two formulae for the total power. First, integrating equation (2.2.29) with
respect to ω and ω ′ shows that

〈X(0)2〉 ≡
∫ ∞

−∞

∫ ∞

−∞
〈X̃(ω)X̃(ω ′)〉dω

2π
dω ′

2π
=

∫ ∞

−∞
SX(ω)

dω
2π

.

On the other hand, integrating (5.2.2) with respect to ω gives

∫ ∞

−∞
SX(ω)

dω
2π

= 2kBT
∫ ∞

−∞

Im[G̃(ω)]

ω
dω
2π

.

Recall that G(τ) is a causal Green’s function, which means that G(τ) = 0
for τ < 0. It follows from G(τ) =

∫ ∞
−∞ G̃(ω)e−iωτ dω/2π that G̃(ω)

is analytic in the upper-half complex ω-plane. This also means that
G̃∗(ω) = G̃(−ω) is analytic in the lower-half complex plane. Hence, we
can rewrite the integral of Im[G̃(ω)] as a sum of contour integrals

∫ ∞

−∞

Im[G̃(ω)]

ω
dω
2π

=
1
2i

∮

C+

[G̃(ω)

ω
dω
2π
− 1

2i

∮

C−

G̃(ω)

ω
dω
2π

,
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where C+ (C−) is closed in the upper-half (lower-half) complex plane
(see Fig. 5.1). From the calculus of residues, we then have

∫ ∞

−∞

Im[G̃(ω)]

ω
dω
2π

=
1
2

G̃(0).

We thus obtain another version of the FD theorem

〈X(0)2〉= kBT G̃(0). (5.2.4)

In the case of the OU equation, G̃(0) = κ−1 and

κ
2
〈X(0)2〉= 1

2
kBT,

which is an expression of the equipartition theorem of statistical mechan-
ics: in equilibrium each degree of freedom has a mean energy of kBT/2.

The FD theorem has traditionally been applied to mechanical and other physical
systems within the context of statistical physics. More recently, however, Bialek
and colleagues have used the FD theorem to explore a number of important issues
in biochemical signaling, including the identification of fundamental physical limits
on the sensitivity of biochemical sensors such as receptors [45, 46, 630]. Following
[45], consider the simple problem of signaling molecules binding to a single site of
a receptor. Ignoring fluctuations, the fractional occupancy of the site, n(t), evolves
according to the first-order kinetic equation

dn
dt

= k+c[1− n(t)]− k−n(t), (5.2.5)

where c is the background concentration of the ligand. The equilibrium law of
mass action requires that the rate constants are related through detailed balance (see
Sects. 1.4 and 3.1),

k+c
k−

= eF/kBT ,

where F is the free energy associated with binding. Now suppose that thermal noise
induces small fluctuations in the binding energy, δF , and in the associated rate con-
stants, δk±. Taking logs of the detailed balance equation shows that the fluctuations
are related according to

δk+
k+

− δk−
k−

=
δF
kBT

.

Linearizing (5.2.5) about the equilibrium solution

n̄ =
k+c

k+c+ k−
, (5.2.6)
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gives
dδn
dt

=−(k+c+ k−)δn+ c(1− n̄)δk+− n̄δk−.

Combining this with the detailed balance constraint yields the linear equation

γ
dδn
dt

=−κδn+ δF, (5.2.7)

with

γ =
kBT

k+c(1− n̄)
, κ = (k+c+ k−)γ =

kBT
n̄(1− n̄)

. (5.2.8)

This has an identical structure to the OU equation but now describes the change
in fractional occupation in response to fluctuations in binding free energy rather
than the change in position of a particle in response to fluctuating forces in solu-
tion. There is an effective damping coefficient γ and an effective spring constant κ .
Applying the FD theorem to this system using equations (5.2.3) and (5.2.8) imme-
diately gives

Sn(ω) =
2k+c(1− n̄)

ω2 +(k+c+ k−)2 = 〈(δn)2〉 2τc

1+(ωτc)2 ,

where, from equation (5.2.4),

〈(δn)2〉= kBT
κ

= n̄(1− n̄),

and τc = (k+c+ k−)−1. The power spectrum is said to have a Lorentzian form and
is equivalent to an exponential decay of correlations:

〈δn(t)δn(t ′)〉=
∫ ∞

−∞
e−iω(t−t′)Sn(ω)

dω
2π

= 〈δn2〉e−|t−t′ |/τc . (5.2.9)

This is easy to check by noting that

∫ ∞

−∞
eiωte−|t|/τc dt =

∫ ∞

0
eiωte−t/τc dt +

∫ 0

−∞
eiωtet/τc dt

=

∫ ∞

0
eiωte−t/τc dt +

∫ ∞

0
e−iωte−t/τc dt

= 2Re
∫ ∞

0
eiωte−t/τc dt = 2Re

1

τ−1
c + iω

=
2τc

1+ω2τ2
c
.

In summary, the above application of the FD theorem recovers results that could
also be obtained using a linear noise approximation of the underlying master equa-
tion along analogous lines to the two-state ion channel model of Sect. 3.2. The
advantage of the FD theorem is that it makes no assumptions about the underlying
microscopic theory (e.g., master equation), other than that the system operates close
to thermodynamic equilibrium. It also provides a powerful framework for coupling
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chemical reactions with diffusion. In particular, Bialek and Setayeshgar [45] de-
rived an extension of the Berg–Purcell result presented in Sect. 5.1 by coupling the
receptor model with diffusion of ligand. Taking the receptor to be at position x0 and
setting c = c(x, t), we have

dn
dt

= k+c(x0, t)[1− n(t)]− k−n(t), (5.2.10)

and
∂c(x, t)

∂ t
= D∇2c(x, t)− δ (x− x0)

dn(t)
dt

. (5.2.11)

The last term on the right-hand side of (5.2.11) takes into account the transfer of a
single ligand molecule when it binds to the receptor. The next step is to linearize the
equations about the steady-state solution (n̄, c̄), where c̄ is the uniform background
concentration. Using a combination of temporal and spatial Fourier transforms, it
can be shown that (see Ex. 5.1)

δn(ω)

δF(ω)
=

k+c̄(1− n̄)
kBT

1
−iω [1+Σ(ω)]+ k+c̄+ k−

, (5.2.12)

where

Σ(ω) = k+(1− n̄)
∫

1
Dk2− iω

d3k
(2π)3 . (5.2.13)

In bacterial chemotaxis, the receptor occupancy is averaged over a sufficiently
long time interval so that high-frequency components of the spectrum are elimi-
nated, and we can thus make the approximation Σ(ω)→ Σ(0), with

Σ(0) = k+(1− n̄)
∫

1
Dk2

d3k
(2π)3

= 4πk+(1− n̄)
∫ π/a

0

k2

Dk2

dk
(2π)3

=
k+(1− n̄)

2πDa
.

In evaluating the integral we have used spherical polar coordinates and taken the
upper bound of the wavenumber k =

√
k ·k to be k = π/a, where a is the size of the

receptor. We then have an effective damping coefficient γ and an effective spring
constant κ given by

γ = [1+Σ(0)]γ0, κ = (k+c+ k−)γ0, γ0 =
kBT

k+c(1− n̄)
. (5.2.14)

An application of the FD theorem together with equations (5.2.3) and (5.2.14) shows
that

Sn(ω) =
2k+c(1− n̄)[1+Σ(0)]

(ω [1+Σ(0)])2 +(k+c+ k−)2 = n̄(1− n̄)
2τc

1+(ωτc)2 ,
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where

τc =
1+Σ(0)
k+c̄+ k−

=
1− n̄
k−

+
n̄(1− n̄)
2πDac̄

. (5.2.15)

We have used equation (5.2.6) and the formula for Σ(0). The RMS error is then
given by

δn
n̄

=
1
n̄

√
Sn(0)
τavg

=

√
2(1− n̄)2

k−n̄τavg
+

(1− n̄)2

πDac̄τavg
.

Using the identity (1− n̄)/k−n̄ = 1/ck+ and δc = cδn/[n̄(1− n̄)], we finally obtain
equation (5.1.13).

5.3 Bacterial Chemotaxis

We briefly considered the chemotaxis of E. coli in Sect. 2.4.2, within the context of
diffusion-limited reactions and sensitivity to chemical gradients. Here we consider
the role of biochemical signaling networks in bacterial chemotaxis. E. coli is one
of the most studied organisms in systems biology, exhibiting a number of important
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Fig. 5.2: Bacterial chemotaxis. (a) A schematic showing the motion of a bacterium that consists
of a series of runs and tumbles. (b) The sequence of runs and tumbles can be altered by an exter-
nal chemical gradient so that the motion is biased towards (away from) an attractant (a repellant).
(c) The switching of a flagellar motor from counterclockwise to clockwise rotation, resulting in a
switch from running to tumbling, is controlled by a signaling pathway in which unbinding of a lig-
and (attractant molecule) from a chemoreceptor in the cell membrane leads to the phosphorylation
of CheY, which subsequently binds to the motor and induces the switch
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signaling mechanisms including signal amplification, adaptation, and robustness to
noise. For an excellent discussion of some of the issues covered here see Chap. 4
of Bialek [44] and the reviews [628, 645]. Many bacteria, including E. coli, possess
flagella, which are helical polymer filaments that are turned by molecular motors
embedded in the cell’s membrane. (The axial-asymmetric helical structure of flag-
ella provides a mechanism for swimming at low Reynolds number; see Box 5B.)
When all of the flagellar motors are rotating CCW, the helical filaments bundle to-
gether and efficiently drive the bacterium in a straight line comprising a single run.
On the other hand, if the motors reverse direction, the flagellar bundle flies apart
and the bacterium rotates in a random fashion called a tumble. This is illustrated in
Fig. 5.2a. Over longer time scales the motion of the bacterium looks like a sequence
of straight line trajectories arranged at random angles to each other (see Fig. 5.2b).
Tuning of the swimming behavior by environmental signaling molecules allows the
bacterium to swim either towards a food source (chemoattractant) or away from
a noxious toxin (chemorepellant). These signaling molecules bind to chemorecep-
tors in the cell membrane that induce dephosphorylation of a downstream signaling
molecule CheY which tends to switch the flagellar motors from clockwise to CCW
rotation (see Fig. 5.2c).

Box 5B. Swimming at low Reynolds number.

Reynolds number. The flagellar-based swimming mechanism of E. coli
is one strategy for moving in a fluid at low Reynolds number. In order
to understand what this means, it is necessary to consider a little fluid
mechanics [38, 122, 517]. Consider a flat body such as a spoon moving
in a fluid such as air or water. Roughly speaking, the force necessary to
keep the object moving at a constant speed v is F ∼ μAdv/dy, where
A is the surface area of the spoon and v(y) is the velocity of different
cross sections of fluid at a perpendicular distance y from the object. The
constant μ is known as the viscosity of the fluid. (The linear relationship
between F and the velocity gradient is characteristic of a Newtonian fluid
such as air or water.) Suppose that l is a characteristic size of the object.
Using dimensional analysis, the viscous force μAdv/dy will scale as μ lv,
whereas the inertial force mdv/dt due to the fluid’s momentum will scale
as ρ l2v2 where ρ is the density of the fluid. The ratio of these two forces is
characterized by a single dimensionless parameter known as the Reynolds
number (Re):

Re =
ρ l2v2

μ lv
=

ρ lv
μ

. (5.3.1)

When Re� 1 inertial forces dominate, whereas viscous forces dom-
inate when Re� 1. Using typical length and velocity scales for humans
and bacteria swimming in water, one finds that Re∼ 104 for humans and
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Re∼ 10−3−10−5 for bacteria. Note that the Reynolds number can also be
obtained from the Navier–Stokes equation, which is the governing equa-
tion in fluid dynamics and is associated with conservation of momentum.
In the case of an incompressible fluid (∇ ·v = 0), the Navier–Stokes equa-
tion is

−∇p+ μ∇2v = ρ
∂v
∂ t

+ρ(v ·∇)v.

The terms on the left-hand side represent pressure and viscous terms,
and the terms on the right-hand side correspond to inertial terms. After
non-dimensionalizing the Navier–Stokes equation, the right-hand side is
multiplied by Re, so that for Re� 1, the Navier–Stokes equation reduces
to the time-independent equation

μ∇2v = ∇p. (5.3.2)

Scallop theorem. One of the immediate consequences of swimming at
low Reynolds number is that the net forces acting on a body must at all
times be zero, since they cannot be counterbalanced by an inertial force
(mass times acceleration). Consider, for example, a microscopic swim-
mer that moves by changing its shape. Clearly the sum of all internal
forces must be zero, i.e., the organism cannot “bootstrap” its own mo-
tion. However, changing its shape elicits reactive resistive forces from the
fluid which themselves have to sum to zero. It turns out that the sequence
of shape changes is uniquely determined by the requirement that the re-
sistive forces cancel and can result in net motion of the swimmer. The
requirement that there is net motion then constrains the allowed sequence
of motions, as illustrated by the so-called scallop theorem formulated by
Purcell [517]. Consider a scallop that moves in water at high Re by slowly
opening and rapidly closing its shell. The latter action expels a jet of wa-
ter that propels the scallop in the opposite direction, whereas the drag
associated by reopening can be reduced by opening slowly. In contrast,
at low Reynolds number, the flow of water into and out of the scallop
over one cycle would be the same, regardless of the speed, implying that
a scallop would make no net progress at low Re. This theorem reflects the
fact that the Navier–Stokes equation in the limit Re→ 0 is time reversal
symmetric, that is, it doesn’t change under the transformations t → −t
and v→−v. The motion is independent of the speed and is determined
by the sequence of body configurations. Since the opening and closing of
a scallop’s shell is time reversible, there is no net progress at low Re. The
helical structure of flagella motors clearly breaks time reversal symmetry
and thus allows E. coli to generate net motion at low Re.

How to swim at low Re. We now give a more abstract mathematical de-
scription of how to achieve net motion at low Re due to Shapere and
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Wilczek [583] (see also [122]). Consider a cyclic sequence of shape
changes of a microscopic swimmer at low Re in a Newtonian fluid. Let
S(t) denote the shape of the swimmer at time t at the actual orientation
and location in space. S(t) can be decomposed in terms of a displacement
and orientation operator R(t) acting on a shape function S0(t), where
{S0} denotes the set of all possible shapes at a fixed location and ori-
entation. This is illustrated in Fig. 5.3, which shows two shapes S0(0)
and S0(t) determined by a fixed local coordinate system (x,y). The ac-
tual physically located shape S(t) is obtained by displacing and rotating
the local coordinate system by the rigid body transformation R(t). For
example, suppose that S(σ) is a simply connected shape in R

3, which is
treated as a map from the two-sphere S2 to R

3 with σ ∈ S2. Then R can
be represented as a 4× 4 matrix

R =

(
R d
0 1

)
,

where R is a standard 3× 3 rotation matrix and d = (d1,d2,d3)
T rep-

resents displacements of the global Cartesian coordinates (X ,Y,Z). The
operator R operates on the 4-vector (S0(σ),1)T with S0(σ) ∈ R

3. It fol-
lows that under the rigid body transformation, S0(σ)→ RS0(σ)+ d. It
should be noted that the physical shape S(t) is independent of the choice
of local coordinates used to define the shapes S0—changing the local co-
ordinate system changes R(t) and hence A(t), but the sequence of mo-
tions is invariant under these transformations. Introduce a matrix A(t) for
infinitesimal motions according to

x

x

y

y

S0(0)

S0(t)

S(t)

X

Y

(t)

Fig. 5.3: Representing a shape S(t) in physical space (X ,Y ) by a shape S0(t) at a
fixed location and orientation, which is then shifted and reoriented by a rigid body
transformation R(t)
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dR
dt

=R(t)A(t).

This can be formally integrated to give

R(t) = Texp

(∫ t

0
A(t ′)dt ′

)
.

Here T denotes the time-ordering operator. That is, on Taylor expanding
the exponential, we obtain a series of multiple integrals involving prod-
ucts of the operators A(t) at different times. The time-ordered product
means that operators at later times appear to the right of operators at ear-
lier times—in general the operators don’t commute:

Texp

(∫ t

0
A(t ′)dt ′

)
= 1+

∫ t

0
A(t ′)dt ′+

∫ t

0

∫ t′′

0
A(t ′)A(t ′′)dt ′dt ′′+ . . . .

Finally, one can express A(t) in a time-independent manner by setting
A(t)dt ≡ A[S0(t)]dS0 such that

R(t) = Texp

(∫ S0(t)

S0(0)
A[S0]dS0

)
.

In the case of a cyclic sequence of shape changes, the net rotation and
displacement per cycle period Δ is

R(Δ) = Texp

(∮
A[S0]dS0

)
.

Of course, in order to calculate this explicitly one still has to solve the
fluid dynamics equations at low Re to determine A[S0]. Various examples
can be found in [583].

5.3.1 Receptor Clustering and Signal Amplification

The main components of the signaling transduction pathways involved in E. coli
chemotaxis are shown in Fig. 5.4 [628, 645]. Each chemoreceptor forms a complex
with kinase CheA via an adaptor protein CheW—a protein kinase is an enzyme that
modifies other proteins by chemically adding phosphate groups to them (phosphory-
lation). The autophosphorylation (self-activation) of CheA is suppressed (enhanced)
when a chemoattractant (chemorepellant) binds to the associated receptor. In the ac-
tivated state, CheA transfers a phosphate group to the motor regulator CheY thus
counteracting dephosphorylation by CheZ. The phosphorylated form of CheY then
diffuses away and binds with a flagellar motor, which then increases the motor’s
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clockwise bias and hence the cell’s probability of tumbling. As with other biological
sensory systems, the bacterial chemotaxis pathway allows the cell to adapt to persis-
tent chemical stimuli. Adaptation is mediated by the methylation and demethylation
of the chemoreceptors by the enzymes CheR and CheB*, where CheB* is the phos-
phorylated form of CheB that is also targeted by the activated form of CheA (see
Sect. 5.3.2).

There are more than 10,000 chemoreceptors in a single E. coli cell, and they
tend to form clusters around the cell pole. As first hypothesized by Bray et al. [62]
and later confirmed experimentally [436, 605], one important function of receptor
clustering is signal amplification due to cooperativity, analogous to cooperativity
between multiple binding sites on a ligand-gated ion channel (see Sect. 3.1). Let us
first consider a single chemoreceptor, which can bind to a single ligand molecule.
Suppose that the kinase activity of the chemoreceptor (via CheA) has two discrete
states, active (a) and inactive (i), and that the equilibrium constants for ligand bind-
ing/unbinding are different in the two states. We thus have a version of the MWC
model with n = 1. It immediately follows (see equation (3.1.13)) that the steady-
state probability of being in the active state is

pa =
Y0(1+Ka[L])

Y0(1+Ka[L])+ (1+Ki[L])
, (5.3.3)

where Y0 is the equilibrium constant for i � a and Ki,Ka are the equilibrium

constants for ligand binding in the inactive and active states, respectively, with
Ka < Ki. From equilibrium thermodynamics we know that Y0 = e−ΔE/kBT , where
ΔE = Ea−Ei is the free energy difference between the active and inactive states in
the absence of a ligand. Given equation (5.3.3), we can also define an effective free
energy difference ΔE between the two states that is “averaged” with respect to the
binding state by setting

pa =
1

1+ eΔE/kBT
.

A comparison with (5.3.3) shows that

ΔE([L]) = ΔE + kBT ln
1+Ki[L]
1+Ka[L]

. (5.3.4)

Since Ki > Ka, increasing the ligand concentration [L] increases the effective free
energy and thus decreases the probability of being in the active state.

There are two basic models of receptor clustering. One involves dividing the
receptors into a set of independent subclusters. Within each subcluster, all the re-
ceptors are tightly coupled and always in the same state (active or inactive), which
is uncorrelated with the collective state of any other subcluster. However, the bind-
ing state of each receptor within a subcluster varies independently as in the single
receptor case. This all-or-none activation state of a subcluster is precisely the MWC
model introduced in Sect. 3.1. In the case of N receptors in a subcluster we obtain
an equation of the form (3.1.13) for the probability pa. Another way to derive such
an equation is to note that the effective free energy for N globally coupled receptors
is EN = NΔE and pa = (1+ eEN/kBT )−1. On using (5.3.4), we have
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Fig. 5.4: Schematic diagram of major signaling pathways in E. coli chemotaxis. See text for details

pa =

[
1+ exp

(
N

(
ΔE + kBT ln

1+Ki[L]
1+Ka[L]

))]−1

=
Y0(1+Ka[L])N

Y0(1+Ka[L])N +(1+Ki[L])N . (5.3.5)

If Ka � [L]−1 � Ki, then we obtain a Hill function of order n:

pa =
Y0

Y0 +Kn[L]n
(5.3.6)

where K = Ki. It follows that

d pa

d[L]
=−n[L]n−1 Y0

(Y0 +Kn[L]n)2 =− n
[L]

pa(1− pa).

This suggests that maximal sensitivity will occur if the system is kept in a regime
where pa ≈ 0.5.

An alternative model of receptor clustering is to take the receptors to be dis-
tributed on some form of lattice with nearest neighbor interactions [151]. Let
m = 1, . . . ,N be a receptor label and denote the state of the mth receptor by am

with am = 1 (active) or am = 0 (inactive). Let a = (a1, . . . ,aN) denote a given cluster
state and take the corresponding free energy to be

H(a) =−J ∑
〈m,n〉

(2am− 1)(2an− 1)+ΔE([L])∑
m

am. (5.3.7)

The first term on the right-hand side represents interactions between nearest neigh-
bor pairs on the lattice, denoted by 〈n,m〉, with J, J > 0, a coupling strength. Such
coupling favors neighboring receptors to be in the same activation state (1 or 0).
The second term takes into account the internal energetics of individual receptors.
In steady state the probability P(a) of the cluster state a is given by

P(a) =
1
Z

e−H(a)/kBT , Z = ∑
a

e−H(a)/kBT .
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The second model of receptor clustering is identical in structure to the Ising model
of a 1D polymer considered in example 4.3 of Sect. 4.5. The latter is obtained under
the transformations 2am−1→σm =±1 and ΔE→−α , where σm is the orientation
of the mth polymer link and α represents an external force. An exact solution for
the mean number of active receptors can then be obtained along identical lines to
the derivation of the force–extension relation for the polymer (see Ex. 5.2):

a≡ 1
N

〈

∑
m

am

〉
=

1
2

⎡

⎣1− sinhΔE([L])
√

sinh2ΔE([L])+ e−4J

⎤

⎦ . (5.3.8)

CheY* CheY*

CheY* CheY*

counter
clockwise

clockwise

Fig. 5.5: Model of motor as a sensor of CheY. See text for details. Redrawn from [44]

It turns out that the flagellar motors are very sensitive to changes in the concentra-
tion of the phosphorylated form of CheY. Since ligand binding to chemoreceptors
reduces the level of phosphorylation, this provides another mechanism for signal
amplification. In Fig. 5.5, we show a model for the modulation of motor rotation
bias due to binding of phosphorylated CheY (denoted by CheY*) [44]. Each flag-
ellar motor is a rotary engine with a ring-like structure. The CheY molecules bind
independently to multiple sites distributed around the ring with the binding affinity
greater when the motor is rotating clockwise (CW) rather than CCW, that is, the
associated equilibrium constants satisfy KCW > KCCW. When all sites are empty the
equilibrium is biased towards CCW rotation. However, as more sites become occu-
pied the equilibrium shifts to CW rotation. It follows that increasing the concentra-
tion of CheY* will favor the latter state. From the perspective of binding reactions,
this model is also identical to the MWC model of a ligand-gated ion channel with n
binding sites (Sect. 4.1). That is, we can map the open (R) and closed (T ) states of
the ion channel to the CW and CCW states of the molecular motor. Taking Y0 to be
the equilibrium constant for the switching between the CW and CCW states with all
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sites empty, we see that the probability PCW that the motor is in the CW state is (see
equation (3.1.13))

PCW =
Y0(1+KCWc)n

Y0(1+KCW)n +(1+KCCWc)n (5.3.9)

where c denotes the concentration of CheY*.

5.3.2 Adaptation in Signal Transduction Pathways

A sudden increase in the concentration of a chemoattractant results in a decrease in
the cell’s tumbling frequency, but over a longer time scale the frequency recovers
to its prestimulus level [39]. This frequency adaptation occurs over a wide range of
stimulus strengths. At the molecular level, adaptation is mediated by the enzymes
CheR and CheB*, which are responsible for the methylation and demethylation of
chemoreceptors. The level of methylation ν , say, can be incorporated into the re-
ceptor clustering models by taking the difference in free energies between the active
and inactive receptor states to depend on ν , that is, ΔE = ΔE(ν). As highlighted
by Barkai and Leibler [20], the level of parameter fine-tuning that would be needed
to account for the observed adaptation is unrealistic given the presence of noise.
Therefore, they proposed a robust adaptation mechanism that doesn’t need any fine-
tuning. The basic idea is to assume that the relatively slow process of demethyla-
tion (CheB*) counteracts the shift in tumbling frequency induced by changes in the
level of kinase activity (CheA*). More specifically, the Barkai–Leibler model as-
sumes the following: (i) the rate of catalysis of the methylation enzyme CheR is at
its maximum so independent of any concentrations; (ii) the action of the demethy-
lation enzyme CheB* on active receptors is given by a Hill function of index n = 1.
Thus,

dν
dt

= F(a)≡ ΓR− ΓBa
KB + a

, (5.3.10)

where ΓR,B are maximum catalytic rates and a is the average receptor activity. In
general, this is a nonlinear equation for ν since a is a function of ν via its depen-
dence on ΔE(ν).

In order to illustrate how adaptation occurs, let us return to the MWC model.
Equation (5.3.5) shows that the average receptor activity a is a function of the level
of methylation ν according to

a = a([L],ν)≡
[

1+ exp

(
N

(
ΔE(ν)+ kBT ln

1+Ki[L]
1+Ka[L]

))]−1

. (5.3.11)

Suppose that there is a fixed background ligand concentration [L] = L0 and denote
the equilibrium receptor activity by a0. This must also correspond to the steady-state
solution of (5.3.10) with F(a0) = 0:
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a0 =
KBΓR

ΓB−ΓR
,

which is independent of ligand concentration. (The fixed point is globally stable as
F ′(a) < 0 and da/dν > 0.) Given this solution for a0, equation (5.3.11) implies
that a0 = a(ν,L0), which can be inverted to yield the steady-state methylation level
ν0 = ν(a0,L0). Now suppose that there is a sudden change in ligand concentration,
[L] = L1. The average receptor activity rapidly changes to give the new equilibrium
solution for ν0 fixed,

A
C

B

adaptation shifts
response curve

[L]0 [L] input

ou
tp

ut

Fig. 5.6: Illustration of the Barkai–Leibler adaptation mechanisms. A sudden change in input (lig-
and concentration) [L]0 → [L] induces a fast response from receptor activity state A to state B.
Over longer time scales, the response curve shifts to a higher attractant concentration as the sys-
tem adapts its methylation level until it reaches the adapted state C with the same activity as the
prestimulus state A. As a result of the response curve shift, the high response sensitivity of adapted
state C in the new environment is identical to that of state A. Redrawn from [645]

a0 → a1 = a(L1,ν0).

Suppose that a0 ≈ 1/2 so the system initially operates in the sensitive region of the
response curve, whereas a1 is outside this domain (see Fig. 5.6). However, over a
longer time scale, the methylation level adapts according to equation (5.3.10) so
that a1 → a0 with ν0 → ν1 = ν(a0,L1) (see Fig. 5.6). The linear response of the
Barkai–Leibler model to a small oscillatory input is considered in Ex. 5.3.

5.3.3 Bacterial Chemotaxis as a Velocity-Jump Process

One of the challenges in modeling bacterial chemotaxis is understanding how
extracellular biochemical signals are transduced into behavioral changes at the
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macroscopic level illustrated in Fig. 5.2b. Early models tend to be phenomenologi-
cal in nature, representing the dynamics of cells in terms of an advection–diffusion
equation for the cell density n(x, t), in which the velocity is taken to depend on the
concentration gradient of some chemotactic substance [311, 326]. For example,

∂n
∂ t

= ∇ · (D∇n− nχ(c)∇), (5.3.12)

where c is the concentration of the extracellular signal and the function χ(c) is
known as a sensitivity function. Often the above equation is coupled to a reaction–
diffusion equation for the evolution of c, which may itself depend on n if cells se-
crete their own chemoattractant. An alternative, stochastic formulation of bacterial
motion has been developed in terms of a so-called velocity jump process, in which
the velocity of the cell can randomly jump according to a discrete or continuous
Markov process [6, 140, 262, 486, 487]. For example, let p(x,v, t) denote the prob-
ability density of cells at position x ∈ R

d and velocity v ∈ R
d at time t. Then p

evolves according to an equation of the form

∂
∂ t

p(x,v, t)+ v ·∇p(x,v, t) =−λ p(x,v, t)+λ
∫

T (v,v′)p(x,v′, t)dv′. (5.3.13)

Here λ is a constant turning rate, with 1/λ measuring the mean run length between
velocity jumps. For simplicity the time spent in the tumbling state is neglected. The
kernel T (v,v′) is the conditional probability of a velocity jump from v′ to v given
that a jump occurs. If motion is restricted to 1D, then there are just two velocity
states ±v and equation (5.3.13) reduces to the much simpler pair of equations

∂ p+
∂ t

+ v
∂ p+
∂x

=−λ p++λ p−, (5.3.14a)

∂ p−
∂ t

− v
∂ p−
∂x

= λ p+−λ p−, (5.3.14b)

where p±(x, t) are the probability densities of a cell being at (x, t) and moving to
the right (+) and left (−), respectively, and v is the speed. This pair of equations is
identical in form to the Dogterom–Leibler model of microtubule catastrophe [146]
introduced in Sect. 4.1 [see equation (4.1.10)]. For constant v and λ , it can be re-
duced to a damped wave equation for the total density p = p+ + p− known as the
telegraph equation [223, 311, 487] (see Ex. 5.4).

In order to model 1D chemotaxis, it is necessary to introduce some bias into the
stochastic switching (tumbling) between the velocity states ±v that depends on the
extracellular concentration gradient c. One phenomenological way to achieve this is
to assume that the rate of tumbling depends on the time derivative of the concen-
tration c(t) = c(x(t)) along the bacterial trajectory according to some function r(ċ),
where ċ =±vdc/dx [44]. This yields the pair of equations
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∂ p+
∂ t

+ v
∂ p+
∂x

=−1
2

r(vc′(x))p+(x, t)+
1
2

r(−vc′(x))p−(x, t) (5.3.15a)

∂ p−
∂ t

− v
∂ p−
∂x

=
1
2

r(vc′(x))p+(x, t)− 1
2

r(−vc′(x))p−(x, t). (5.3.15b)

We are assuming that when the bacterium tumbles there is an equal probability of
moving in either direction and that tumbling is instantaneous—experimentally it is
an order of magnitude faster than a typical run length. Another simplification is to
take the tumble rate to depend on instantaneous values of the concentration gradient
rather than a time-averaged change in concentration. The steady-state probability
densities satisfy the pair of equations

v
∂ p+
∂x

=
1
2

r(−vc′(x))p−(x)− 1
2

r(vc′(x))p+(x)

and

−v
∂ p−
∂x

=
1
2

r(vc′(x))p+(x)− 1
2

r(−vc′(x))p−(x).

Adding these two equations gives

v
∂ p+
∂x

− v
∂ p−
∂x

= 0,

which implies that the difference p+(x)− p−(x) = constant. Assuming that −∞ <
x < ∞, normalizability of the probability densities requires this constant to be zero.
Hence, p±(x) = p(x)/2 with p(x) satisfying the single equation

v
∂ p
∂x

=
1
2

[
r(−vc′(x))− r(vc′(x))

]
p(x).

Under the linear approximation r(z)≈ r(0)+ r′(0)z, we have

r(±vc′(x))≈ r(0)± r′(0)vc′(x),

and

v
∂ p
∂x

=−r′(0)c′(x)p(x).

This has the straightforward solution

p(x) =
1
Z

e−r′(0)c(x), (5.3.16)

where Z is a normalization factor. If the signaling molecules correspond to a
chemoattractant, then the rate of tumbling decreases in the direction for which ċ> 0,
that is, r′(0) < 0, and maxima of the steady-state solution (5.3.16) coincide with
maxima of the concentration c(x). Conversely, r′(0) > 0 for a chemorepellant and
maxima of P(x) coincide with minima of the concentration.
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Erban and Othmer [170] have developed a more detailed 1D model of chemotaxis
that incorporates aspects of the biochemical signal transduction pathways described
in earlier parts of this section. For simplicity, they assume that there are two internal
state variables of a bacterium, y1,y2, which evolve according to the equations

τ1
dy1(t)

dt
= g(c(x(t))− y1(t)− y2(t), τ2

dy2(t)
dt

= g(c(x(t))− y2(t). (5.3.17)

Here x(t) is the current position of a cell and the function g represents signal am-
plification based on a sigmoid, say, g(c) = c/(c+Kd). For a constant signal c = c0,
we have the asymptotic solutions

lim
t→∞

y1(t) = 0, lim
t→∞

y2(t) = g(c0),

which implies that the variable y1 adapts perfectly to a constant background signal.
Finally, the turning rate is taken to be a linear function of y1, λ = λ0−β y1, where λ0

is the basal switching frequency for a fully adapted cell and β is a positive constant.
As a further simplification, suppose that τ1 = 0 and g(c) = c so that y1(t)= c(x(t))−
y2(t)≡−z(t). It follows that λ = λ0 +β z and

τ2
dz
dt

= c(x(t))− y2(t)− τ2c′(x(t))
dx
dt

=−z(t)∓ τ2c′(x(t))v,

depending on the sign of the velocity. Now let p±(x,z, t) denote the probability
density for being at position x and in internal state z at time t with velocity ±v. The
resulting 1D model of chemotaxis takes the form [170]

∂ p+
∂ t

+ v
∂ p+
∂x

+
∂
∂ z

[(
− z

τ2
− vc′(x)

)
p+

]
= (λ0 +β z)[−p++ p−] (5.3.18a)

∂ p−
∂ t

− v
∂ p−
∂x

+
∂
∂ z

[(
− z

τ2
+ vc′(x)

)
p−
]
= (λ0 +β z)[p+− p−]. (5.3.18b)

Equations (5.3.18) can be analyzed by constructing moment equations and car-
rying out an appropriate truncation in order to solve the resulting closure problem
[170]. First, introduce the following macroscopic variables:

n(x, t) =
∫

R

[p+(x,z, t)+ p−(x,z, t)]dz (5.3.19a)

j(x, t) = v
∫

R

[p+(x,z, t)− p−(x,z, t)]dz (5.3.19b)

n1(x, t) =
∫

R

z[p+(x,z, t)+ p−(x,z, t)]dz (5.3.19c)

j1(x, t) = v
∫

R

z[p+(x,z, t)− p−(x,z, t)]dz (5.3.19d)

j2(x, t) = v
∫

R

z2[p+(x,z, t)− p−(x,z, t)]dz. (5.3.19e)
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Here n(x, t) is the total probability density (summed over internal states and the two
velocity states), j(x, t) is the macroscopic particle flux, and the other macroscopic
variables involve first and second moments with respect to the slow internal variable
z. Multiplying equations (5.3.18) by 1 or z, integrating with respect to z, and adding
or subtracting the resulting equations leads to the following hierarchy of moment
equations (see Ex. 5.5):

∂n
∂ t

+
∂ j
∂x

= 0, (5.3.20a)

∂ j
∂ t

+ v2 ∂n
∂x

=−2λ0 j− 2β j1, (5.3.20b)

∂n1

∂ t
+

∂ j1
∂x

=−c′(x) j− n1

τ2
, (5.3.20c)

∂ j1
∂ t

+ v2 ∂n1

∂x
=−v2c′(x)n− (2λ0+ τ−1

2 ) j1− 2β j2. (5.3.20d)

As they stand, these do not form a closed system of equations, since (n,n1, j, j1)
couple to the second-order flux j2, which will itself couple to higher-order moments.
However, it is possible to achieve moment closure by assuming j2 = 0. This can be
justified rigorously provided that the concentration gradient is sufficiently shallow
[170].

Equations (5.3.20) with j2 = 0 can be used to determine various statistics of the
motion. For the sake of illustration, suppose that the concentration gradient is a
constant c′(x) = c0. Assuming the normalization

∫
R

n(x, t)dx = 1, the mean position
x̄ and MSD σ2 are defined according to

x̄(t) =
∫

R

xn(x, t)dx, σ2(t) =
∫

R

(x− x̄)2n(x, t)dx. (5.3.21)

Multiplying equation (5.3.20a) by x or by (x− x̄)2 and integrating with respect to x
gives

dx̄
dt

= j0,
dσ2

dt
= 2 j1− 2x̄ j0, (5.3.22)

where

js =
∫

R

xs j(x, t)dx, j1s =
∫

R

xs j1(x, t)dx, n1s =
∫

R

xsn1(x, t)dx. (5.3.23)

A closed set of first-order differential equations for ( j0,n10, j10) can be obtained
by integrating equations (5.3.20b)–(5.3.20d) with respect to x. Similarly, a closed
set of equations for the triplet ( j1,n11, j11) can be derived by multiplying equa-
tions (5.3.20b)–(5.3.20d) by x and then integrating with respect to x. One finds that
each of the two dynamical systems converges to a stable fixed point so that in the
limit t → ∞ [170],
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x̄(t) =
β v2c0τ2

λ0 + 2λ 2
0 τ2

t, σ2(t) =

(
v2

λ0
+

2β v4c2
0τ3

2

(λ0 + 2λ 2
0 τ2)2

)
t. (5.3.24)

The details of the calculation are left to Ex. 5.5.
In summary, the large-time behavior of a bacterium undergoing chemotaxis in

a shallow concentration gradient is characterized by constant drift and diffusion.
This is a special case of a more general result that, under an appropriate rescaling of
space and time, wave-like (hyperbolic) equations for chemotaxis such as the general
velocity-jump process of equation (5.3.13) can be approximated in the long-time
limit by an advection–diffusion (parabolic) equation, provided that the concentration
gradient is sufficiently shallow [262, 486]. We will encounter analogous results for
PDE models of motor-driven transport in Sect. 7.4.

5.4 Hair Cells and Active Mechanotransduction

Most sensory cells have to amplify their signals in order to separate them from
background noise (see also Sect. 5.1). For example, photoreceptors enhance their
responses to photon excitation a thousandfold by using a biochemical cascade [44].
On the other hand, hair cells of the vertebrate inner ear use a mechanical active
process to amplify their inputs [286, 412, 422]. When sound reaches the cochlea—
a spiraled, hollow, conical chamber of bone in the inner ear along which waves
propagate—it elicits mechanical vibrations that stimulate hair cell receptors. These
receptors transduce the vibrations into an electrical signal via mechanotransduc-
tion, simultaneously performing work that amplifies the mechanical signal resulting
in positive feedback. The hair cells of all vertebrates share a similar structure and
transduce mechanical stimuli according to the same basic mechanism [287]. On the
top of each hair cell is a cluster of 20–300 actin-based cylindrical structures called
stereocilia, which is known as the hair bundle (see Fig. 5.7). The stereocilia develop

Fig. 5.7: Electron micrograph showing stereocilia of an inner hair cell of the bullfrog (Public
domain figure downloaded from Wikipedia Commons)
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hair cell

hair bundle

stereocilium channel
(closed)

tip link

channel
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Fig. 5.8: Schematic illustration of a hair cell, illustrating how a mechanical stimulus deflects the
bundle of stereocilia surmounting the cell resulting in the opening of mechanosensitive ion chan-
nels and the influx of K+ and subsequent influx of Ca2+. This can lead to the firing of an action
potential (AP) (Public domain figure downloaded from Wikipedia Commons)

in such a way that there is a specific variation of their lengths across the hair bundle
giving the latter a beveled shape (see Fig. 5.8). The mechanical stimulus induced by
sound reaching the ear deflects the hair bundles, with their component stereocilia
bending at their base. This deflection causes a shearing motion between neighbor-
ing stereocilia, which is detected by mechanosensitive ion channels located near the
stereociliary tips. This transduction is mediated by cadherin-based adhesive tip links
that couple adjacent stereocilia and can open the ion channels under tension. This
allows K+ to enter the hair cell. The resulting depolarization opens voltage-gated
Ca2+ channels and the intracellular Ca2+ concentration rises. This in turn opens
Ca2+-sensitive K+ channels through which K+ can flow out of the cell and the cell
returns to rest. The given sequence of events can result in an action potential being
produced by the hair cell.
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One major feature of the hair bundle is that the tension of the tip link can be
adjusted by myosin motors that walk up and down the stereocilia [607, 610], which
then allows the hair cell to adapt to a sustained deflection of the hair bundle. It
is thought that, at least in the case of nonmammalian tetrapods (four-legged verte-
brates), the interaction of the molecular motors with the mechanical properties of the
hair bundle forms the basis of active processes in the inner ear, which include signal
amplification, enhanced frequency selectivity, and spontaneous oscillatory acous-
tic emissions. Moreover, from a dynamical systems perspective, these characteris-
tics emerge naturally if the transduction process operates near a Hopf bifurcation
[90, 109, 423, 465, 657]. In this section we review some of the models that have
been developed to explore active processes in hair cells.
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5.4.1 Gating-Spring Model

Our starting point is a gating-spring model of mechanotransduction in hair cells,
as reviewed in [418]. Suppose that the hair bundle is modeled as a collection of N
elastic units in parallel. Each unit consists of a mobile element of width ΔA that is
attached to two fixed walls by a pair of springs in series (see Fig. 5.9b), which is
a simplified model of the mechanical properties of a pair of linked stereocilia (see
Fig. 5.9a). The left spring represents the tip link or gating spring (gs) and is attached
to the element via a hinge or trapdoor, whereas the right spring (sp) represents the
stereociliary pivots. Assume, for the moment, that the trapdoor is closed. Let x be
the distance of the mobile element from the left-hand wall and denote the lengths of
the gating spring and pivots by ags and asp, respectively. If the distance between the
walls is A, then

ags = x, asp = A−ΔA− x.

Suppose that each spring has an equilibrium length (no tension) denoted by ags and
asp. It follows that we can express the displacements form equilibrium of the two
springs as

Δags = ags− ags = x− xgs, Δasp = asp− asp =−(x− xsp),

with xgs = ags and xsp = A−ΔA−asp. When the trapdoor is open, it is assumed that
the left spring’s length is reduced by an amount δ , so that Δags → Δags− δ . Now
suppose that an external force f in the positive x-direction is applied to a single unit
and that we have Hookean springs with spring constants kgs and ksp, respectively.
The displacement x is then determined by the force-balance equations

f = fc(x)≡ kgsΔags− kspΔasp = kgs(x− xgs)+ ksp(x− xsp)

= K(x− x), (5.4.1)

for the closed trapdoor and

f = fo(x)≡ kgs(Δags− δ )− kspΔasp = kgs(x− xgs− δ )+ ksp(x− xsp)

= K(x− x)− kgsδ , (5.4.2)

for the open trap door, where K = kgs + ksp and x = [kgsxgs + kspxsp]/K. (Note that
the applied force is opposed by stretching the left spring and compressing the right
spring.)

Having looked at the mechanical properties of the springs, we now have to in-
corporate the stochastic opening and closing of the trapdoor. This is achieved by
treating the gating-spring unit as a two-state system in thermodynamic equilib-
rium, so that the probability of being in an open or closed state is given by a
Boltzmann–Gibbs distribution (Sect. 1.4). That is Pc(x) = 1−Po(x), with Po(x) =
(1+ eΔE(x)/kBT )−1 and ΔE(x) is the energy difference between the open and closed
states. There are two contributions to this energy difference. First, there is an
increase ΔE0 in the configuration energy of the trapdoor when it jumps to the
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open state. Second, there is a change in the potential energy stored by the left spring
when it shifts by an amount δ , which is given by −δkgs(x− xgs). Hence,

Po(x) =
1

1+ e−[δkgs(x−xgs)−ΔE0]/kBT
. (5.4.3)

Now let us consider N identical gating-spring units in parallel. Since they are in
parallel, each unit experiences the same applied force f/N. If N is sufficiently large,
then fluctuations in the fraction of open and closed gates can be ignored. It follows
that we have the force-balance equation

f = f (x) ≡ N [ fo(x)Po(x)+ fc(x)Pc(x)]

= N
[
(K(x− x)− kgsδ )Po(x)+K(x− x)Pc(x)

]

= N
[
K(x− x)− kgsδPo(x)

]

= N

[
K(x− x)− δkgs

1+ e−[δkgs(x−xgs)−ΔE0]/kBT

]
.

= Ktotx+ f0− Nz

1+ e−z(x−x0)/kBT
, (5.4.4)

where Ktot = NK, f0 = −NKx, z = δkgs, and x0 = xgs +ΔE0/z. Fitting the model
to experimental data from bullfrog hair cells yields the following example set of
parameter values [422]: N = 65, Ktot = 103 μNm−1, z = 0.72 pN, f0 = 25 pN, and
x0 =−2.2 nm. If one plots the force–displacement function f (x) for these values at
room temperature, one obtains the curve shown in Fig. 5.9c. It can be seen that for
sufficiently large displacements in the positive or negative x directions, the system
acts like an ordinary spring, that is, it has approximately constant stiffness. However,
within ±20nm of the resting position, the stiffness d f/dx varies significantly with
displacement. Even more striking is that, within ±10 nm of the resting position, the
stiffness slope is negative and displacement of the bundle in a particular direction
requires a force in the opposite direction—the hair bundle is said to have channel
compliance. It is important to note that no active processes have been included in
the model, since there is no net consumption of energy. However, when the force–
displacement characteristics of the form shown in Fig. 5.9c are combined with the
action of myosin motors, the active features of hair cells can be reproduced [422,
424] (see Sect. 5.4.2).

Before considering active processes, however, we briefly consider what happens
when N is small so that fluctuations in the number of open ion channels cannot
be ignored. From the analysis of Sect. 3.2, we know that the probability PN(n|x)
of there being n open channels for a given displacement x is given by a binomial
distribution of the form (3.2.8):

PN(n|x) = Po(x)
n(1−Po(x))

N−n N!
(N− n)!n!

.

It follows that the mean and variance of the number of open channels are



256 5 Sensing the Environment: Adaptation and Amplification in Cells

〈n〉= NPo(x), σ2 = NPo(x)(1−Po(x)).

For a given displacement x, the necessary force on the hair bundle can be written as
[see equation (5.4.4)],

f (x) = f0(x)− zn,
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Fig. 5.10: Possible mechanism for spontaneous oscillations of a hair bundle. (a) Shifts in the force–
displacement curve due to the action of myosin motors. See text for details. (b) Hair bundle acts
like a relaxation oscillator with fast jumps (i→ ii and iii→ iv) alternating with slow shifts in the
fixed point due to adaptation (ii→ iii and iv→ i). (c) Sketch of variation of displacement x with
time (Redrawn from Martin et al. [422])

where f0(x) = NK(x−x) and n is the stochastic number of open ion channels. Thus
f0(x) is the force needed to hold bundle at x when all the channels are closed. We
can now determine the mean and variance of the force:

〈 f − f0〉=−z〈n〉=−NzPo(x),

and
Var[ f − f0] = z2σ2 = Nz2Po(x)(1−Po(x)).

5.4.2 Channel Compliance, Myosin Motors and Spontaneous
Oscillations

The channel compliance (negative stiffness) of the hair bundle implies that the bun-
dle can operate in a bistable regime for sufficiently small applied forces. However,
the force–displacement curve can be shifted by the Ca2+-regulated action of myosin
molecular motors that move up and down a stereocilium, altering the stiffness of the
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tip link [422, 424]. The myosin motors adapt the response of the hair bundle so that
if a negative (positive) displacement has been maintained for some time, the force–
displacement curve of Fig. 5.9c is shifted to the left and downward (to the right and
upward). This has the effect of moving the negative stiffness region toward the offset
point. One possible mechanism for Ca2+ regulation of myosin is that Ca2+ simply
reduces the probability that myosin motors bind to actin filaments, thus allowing the
transduction element to lose tension [287]. Alternatively, Ca2+ could alter the equi-
librium between different bound conformational states of the motor. It has also been
suggested that Ca2+ might regulate hair bundle dynamics in a myosin-independent
fashion [109, 287]. For example, the energy associated with binding of Ca2+ di-
rectly to the channel or to an associated protein could reduce the open probability.
However, the myosin-dependent mechanism is currently thought to be more likely.

As shown by Martin et al. [422], the above adaptation mechanism can also re-
sult in spontaneous oscillations, which is illustrated in Fig. 5.10. Suppose that the
bundle occupies a negative displacement equilibrium when f = 0 (black curve in
Fig. 5.10a). The ion channels are then in a low open probability state and the Ca2+

concentration is kept at a low level by Ca2+ pumps. This upregulates the myosin
motors, resulting in an increased stiffness of the tip link and a leftward shift of
the force–displacement curve (dashed curve in Fig. 5.10a). A sufficient shift leads
to the disappearance of the negative fixed point (i) and the system jumps to the
corresponding positive fixed point (ii). The ion channels are now in a high open
probability state, Ca2+ flows into the cell and downregulates the myosin motors,
and the force–displacement curve shifts in a rightward direction. Eventually, the
positive fixed point (iii) disappears (gray curve in Fig. 5.10a), and the system jumps
back to a negative fixed point (iv). The cycle then repeats itself resulting in a peri-
odic solution (see Figs. 5.10b,c). Since the jumps are much faster than adaptation,
the hair bundle acts like a relaxation oscillator, analogous to the conductance-based
models of a neuron considered in Sect. 3.5. (Indeed, it is possible to linearly trans-
form equations (5.4.5) and (5.4.7) for fixed C to obtain equations similar in structure
to those of the FitzHugh–Nagumo model [121].) It is thought that these oscillations
are responsible for the spontaneous acoustic emissions observed in nonmammalian
vertebrates. For example, Martin et al. [422] measured the power spectrum (see
equation 2.2.5) of spontaneous oscillations emitted by the hair bundle of a bullfrog
hair cell and found a sharp peak at around 8 Hz and a half-width of around 3 Hz; the
spectral broadening is a result of thermal noise. The typical range of spontaneous
oscillation frequencies is 5–50 Hz. The existence of spontaneous oscillations pro-
vides a possible mechanism for signal amplification and frequency tuning, namely,
a nonlinear resonance effect when the stimulus frequency is sufficiently close to
the natural frequency of spontaneous oscillations and the system operates close to a
Hopf bifurcation point [90, 109, 158, 423, 465, 657].

For the sake of illustration, we will consider a dynamical model of spontaneous
oscillations in hair bundles based on the combined action of Ca2+ and myosin
motors on the gating-spring model [424, 465] (see also Ref. [657]). Neglecting



258 5 Sensing the Environment: Adaptation and Amplification in Cells

inertial effects, the position of a single gating-spring element evolves according to
the equation

ξ
dx
dt

=−N
[
kgs(x− xM− δP0(x))+ kspx

]
+Fext (5.4.5)

where ξ is a friction coefficient, Fext is an external force, and δ is scaled by a ge-
ometrical factor that takes into account the gain of stereociliary shear motion. The
open probability is given by a slightly modified version of equation (5.4.3):

Po(x) =
1

1+Ae−[δkgs(x−xM)]/kBT
, A = e[ΔG+kgsδ 2/(2N)]/kBT . (5.4.6)

Following the idea that myosin motors modify the tension in the tip link of a chan-
nel, the effective equilibrium position xM of the gating spring is maintained by NM

myosin motors pulling against the force f (x) = kgs(x− xM)− δP0(x). That is, we
identify xM with the position of the motor cluster. The dynamics of the cluster is
assumed to satisfy a linear force–velocity relation with slope ξM:

ξM
dxM

dt
= Nkgs [x− xM− δP0(x)]−NM f p(C). (5.4.7)

Here the force exerted by the motors is taken to be proportional to the force f gen-
erated by a single motor and the probability p that a motor is bound to an active
filament. The active force produced by the molecular motors corresponds to the
motors climbing up the stereocilia, dxM/dt < 0, which increases the tension of the
gating springs and thus increases the open probability Po of the ion channels. The
binding probability p = p(C) is assumed to be a monotonically decreasing func-
tion of the intracellular Ca2+ concentration C. Ignoring nonlinearities in p(C), the
binding probability can be written as p(C)≈ p0− p1C with p0,1 > 0, provided that
C < p0/p1. Finally, the intracellular Ca2+ dynamics is modeled as

τ
dC
dt

=−(C−C0)+ [CM−C0]P0(x), (5.4.8)

where the decay term represents the effects of Ca2+ pumps and the other term on
the right-hand side is the total flux through the open ion channels. When all the
channels are closed, C returns to the background concentration C0. A crucial aspect
of the model is a separation of time scales—the channel kinetics are assumed to be
much faster than the Ca2+ dynamics, which are themselves assumed to be faster
than the bundle and motor dynamics.

Since τ � ξ ,ξM (fast Ca2+ dynamics), one can use a slow–fast analysis and set
τ = 0. This yields an effective planar dynamical system for (x,xM) given by equa-
tions (5.4.5) and (5.4.7) with p(C) = p0− p1CMPo(x) for C0 = 0. (Vilfan and Duke
[657] also use a slow–fast decomposition but treat the motors as the slow system
by fixing xm and consider the planar dynamics of (x,C).) One can then determine
the existence and stability of fixed points for Fext = 0 and derive conditions for the
occurrence of a Hopf bifurcation along the lines of Box 3B. Nadrowski et al. [465]
constructed a bifurcation diagram in terms of two parameters: the maximal force
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with experiments; see text for details.) Other parameter values are as follows: ξ = 2.8 μNsm−1,
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fmax = γNm f p0 exerted by the molecular motors and the dimensionless strength
S = CM p1/p0 of the negative Ca2+ feedback. The final term on the right-hand
side of (5.4.7) becomes − fmax(1− SPo(x)). The bifurcation diagram is sketched
in Fig. 5.11 and consists of different dynamical regimes as indicated. In particular
spontaneous oscillations occur at intermediate values of the maximal force and the
strength of Ca2+ feedback; in other regions the system is either in a monostable or
bistable regime (see Ex. 5.6).

One simplification of the above model is that it ignores the effects of noise.
Nadrowski et al. [465] also considered a stochastic version of the model by
introducing white noise terms η ,ηM , and ηC on the right-hand side of equa-
tions (5.4.5), (5.4.7), and (5.4.8), respectively. The Gaussian random variables are
taken to have zero mean and autocorrelations

〈η(t)η(0)〉= 2kBT ξ δ (t) (5.4.9a)

〈ηM(t)ηM(0)〉= 2kBTMξMδ (t) (5.4.9b)

〈ηC(t)ηC(0)〉= 2N−1C2
MPo(1−Po)τCδ (t). (5.4.9c)

The major source of noise for the hair bundle is Brownian motion in the surrounding
fluid, and one can use the Einstein relation to determine the noise strength in terms of
the friction coefficient ξ . Although the motors also undergo Brownian motion, there
are additional sources of noise due to the random binding and binding to filament
tracks. This leads to an effective temperature TM ≈ 1.5T . Finally, the main source of
noise for Ca2+ dynamics is the random opening and closing of ion channels, which
can be described by a binomial distribution as outlined at the end of Sect. 5.4.1.
Assuming the channel kinetics relaxation time τC is very fast, one can approximate
the channel noise by white noise (see also Chap. 3). Simulations of the stochastic
model for τC = 1ms, fmax = 50.3pn, and S = 0.65 (indicated by the black dot in the
bifurcation diagram of Fig. 5.11) generates a spectrum of spontaneous oscillations
that agrees quantitatively with experiments. An example of a spectrum obtained by
Nadrowski et al. [465] is sketched in Fig. 5.12, together with the corresponding real
and imaginary parts of the linear response function in the frequency domain.

5.4.3 Active Amplification Close to a Hopf Bifurcation

A number of theoretical studies have suggested that many of the active properties
of a hair bundle can be reproduced by assuming that it operates close to a Hopf
bifurcation [90, 109, 158, 422]. This is also consistent with the dynamical model
of spontaneous oscillations considered by Nadrowski et al. [465] (see Fig. 5.11), al-
though certain care needs to be taken since the Hopf bifurcation may be subcritical,
so that there is a rapid transition to a large amplitude relaxation oscillator. Following
Refs. [90, 158], we now consider the generic behavior of a forced oscillator close
to a supercritical Hopf bifurcation. Let μ denote some bifurcation parameter of the
system, which could be related to the activity of myosin motors or the concentration
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of intracellular Ca2+ in the case of a hair bundle. Suppose that the system is in a sta-
ble stationary state for μ < 0, whereas it exhibits spontaneous oscillations for μ > 0
due to a supercritical Hopf bifurcation at the critical value μc = 0. Recall from Box
3B that close to a Hopf bifurcation, the dynamics of an unforced oscillator with nat-
ural frequency ω0 can be represented (after an appropriate change of variables) by
the normal form (4.4.30):

dx
dt

= μx+ω0y− x(x2 + y2),
dy
dt

=−ω0x+ μy− y(x2+ y2),

which can be recast in complex form by setting z = x+ iy:

dz
dt

= (μ− iω0)z−|z|2z. (5.4.10)

Now suppose that we drive the oscillator with a forcing term aeiωt , and look for
solutions of the form z = Aei(ωt+θ). Substituting into the complex version of the
normal form gives

(
iA(ω−ω0)− μA+A3)eiθ = a.

The relevant quantity in terms of amplification is the amplitude of the response, so
taking the modulus of both sides we have

A6− 2μA+[μ2+(ω−ω0)
2]A2 = a2. (5.4.11)

Solving this equation for fixed stimulus strength a, we can plot the amplitude A as
a function of the stimulus frequency. The results are shown in Fig. 5.13 for various
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input amplitudes a. It can be seen that when a is small, there is significant amplifica-
tion and sharp frequency tuning around the resonant frequency ω0. The amplitude
response curves are qualitatively similar to those seen experimentally [287, 423].
At the resonant frequency (ω = ω0), the amplitude equation reduces to the simpler
form

A3− μA = a,

which establishes that at the Hopf bifurcation point where μ = 0, we have

A∼ a1/3.

This is a highly compressive nonlinearity that boosts weak signals much more
strongly than strong signals. On the other hand, if the stimulus frequency differs sig-
nificantly from ω0, then the cubic term in the amplitude equation can be neglected,
and the system operates in a linear regime for which

A∼ a
ω−ω0

,

and there is a 90◦ phase lag. Finally, note that in order for the above nonlinear
resonance to be realized by hair bundles, there has to be some feedback mechanism
that keeps the system close to Hopf bifurcation point for a range of different natural
frequencies—a process known as self-tuning [90, 158].

5.5 Exercises

Problem 5.1 (Physical limits of biochemical signaling). Consider a receptor at
position x0 with a single binding site. Let n(t) denote the fractional occupancy of
the site and c(x, t) the concentration of diffusing ligand. Binding and diffusion are
coupled according to equations (5.2.10) and (5.2.11).

(a) By linearizing these equations about the uniform steady state (n̄, c̄) and using
detailed balance, show that

γ
dδn
dt

=−κδn+ k+[1− n̄]γδc(x0, t)+ δF,

with

γ =
kBT

k+c̄(1− n̄)
, κ = (k+c̄+ k−)γ,

and
∂δc(x, t)

∂ t
= D∇2δc(x, t)− δ (x− x0)

dδn(t)
dt

.
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(b) By Fourier transforming the diffusion equation with respect to space and time,
with

δc(k,ω) =

∫ ∞

−∞
dt
∫

d3xeiωt eik·xδc(x, t), δn(ω) =

∫ ∞

−∞
eiωtδn(t)dt

show that

δc(x,ω) = iωΣ0(ω)δn(ω), Σ0(ω) =
∫

eik·(x0−x)

Dk2− iω
d3k
(2π)3 .

(c) Hence, derive the result

δn(ω)

δF(ω)
=

1
γ

1
−iω [1+Σ(ω)]+ k+c̄+ k−

,

where Σ(ω) = k+(1− n̄)Σ0(ω).

Problem 5.2 (Ising model of receptor clustering.). Consider the Ising model of
receptor clustering with partition function

Z = ∑
a

e−H(a)/kBT , H(a) =−J ∑
〈m,n〉

(2am− 1)(2an− 1)+F([L])∑
m

am.

Using the identity 〈

∑
m

am

〉
=−∂ lnZ

∂F
,

and the analysis of the Ising model in Sect. 4.5, show that the mean level of kinase
activity per receptor is

〈a〉= 1
2

⎡

⎣1− sinhF([L])
√

sinh2F([L])+ e−4J

⎤

⎦ ,

with

F([L]) = ΔE + kBT ln
1+Ki[L]
1+Ka[L]

.

Given that Ki > Ka, describe how 〈a〉 changes as [L] increases from 0 to ∞.

Problem 5.3 (Linear response in the Barkai–Leibler model). Consider the
Barkai–Leibler model of adaptation in bacterial chemotaxis. The methylation level
evolves as

dν
dt

= F(a)≡ ΓR− ΓBa
KB + a

,
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where ΓR,B are maximum catalytic rates and the average receptor activity a is given
by the MWC model (with kBT = 1):

a = a([L],ν)≡
[

1+ exp

(
N

(
ΔE(ν)+ ln

1+Ki[L]
1+Ka[L]

))]−1

.

Let a0,ν0 be the steady state at a background ligand concentration L0. Suppose that
there is a small oscillatory modulation of the ligand concentration

[L](t) = L0eAcos(ωt),

where A is the amplitude, A� 1, and ω is the modulation frequency. Finally, assume
that Ka[L]� 1� Ki[L] so that

ln
1+Ki[L]
1+Ka[L]

≈ ln([L]/Ki).

(a) Linearizing about the steady state (a0,ν0), show that

dΔν
dt

= F ′(a0)Δa,

with Δν = ν−ν0,

Δa = a− a0 = Na0(1− a0)[αΔν −Acos(ωt)],

and α = ΔE ′(ν0).
(b) Setting

Δν = Re[Ameiωt ], Δa = Re[Aaeiωt ],

use part (a) to solve for the complex amplitudes Am,Aa:

Aa =
iωca

iω +ωm
A, Am =

ωmcm

iω +ωm
A,

where

ca = Na0(1− a0), cm = α−1, ωm =−αF ′(a0)Na0(1− a0).

(c) The linear response of receptor activity can be characterized by the amplitude
|Aa| and phase φa = π/2+ tan−1(ν/νm). Plot |Aa|/|Aa|max and φ/π as a function
of ν/νm. (A typical value of νm is around 5× 10−3 Hz.)

Problem 5.4 (Telegraph equation). Consider the simple velocity-jump process

∂ p+
∂ t

+ v
∂ p+
∂x

=−λ p++λ p−,

∂ p−
∂ t

− v
∂ p−
∂x

= λ p+−λ p−,

for constant v,λ .
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(a) By adding and subtracting the pair of equations, derive corresponding equations
for the total probability density p = p++ p− and the flux j = v[p−− p−]. Elim-
inate j by cross-differentiating in order to derive the telegraph equation

∂ 2 p
∂ t2 + 2λ

∂ p
∂ t

= v2 ∂ 2 p
∂x2 .

(b) By performing the change of variables u(x, t) = p(x, t)eλ t , show that u satisfies
another version of the telegraph equation

∂ 2u
∂ t2 −λ 2u = v2 ∂ 2u

∂x2 .

Problem 5.5 (Moment equations for a 1D model of bacterial chemotaxis). Con-
sider the 1D model of chemotaxis given by equations (5.3.18).

(a) Show how multiplying equations (5.3.18) by 1 or z, integrating with respect
to z, and adding or subtracting the resulting equations leads to the hierarchy
of moment equations (5.3.20) for the macroscopic variables defined by equa-
tions (5.3.19).

(b) In parts (b)–(d) set j2 = 0 and c′(x) = c0 in equations (5.3.20). Taking first and
second moments of equation (5.3.20a) with respect to x, derive equation (5.3.22).

(c) Taking the zeroth moments of equations (5.3.20b–d), derive a system of first-
order equations for the triplet ( j0,n10, j10) and show that there exists a unique
stable fixed point for which

j0 =
β v2c0τ2

λ0 + 2λ 2
0 τ2

.

(d) Similarly, taking the first moment of equations (5.3.20b–d), derive a system
of first-order equations for the triplet ( j1,n11, j11) and show that there exists
a unique stable fixed point for which

2 j1− 2x̄ j0 =

(
v2

λ0
+

2β v4c2
0τ3

2

(λ0 + 2λ 2
0 τ2)2

)
.

(e) Use parts (b)–(d) to obtain the asymptotic drift and diffusion coefficient of equa-
tion (5.3.24).

Problem 5.6 (Dynamical model of hair cell oscillations). Consider the stochas-
tic version of the planar model of hair cell oscillations given by equations (5.4.5)
and (5.4.7) in the QSS limit of fast Ca2+ dynamics:

ξ
dx
dt

=−N
[
ksp(x− xM− δP0(x)/γ)+ kspx

]
+η(t)

and

ξM
dxM

dt
= Nkgs [x− xM− δP0(x)/γ]− fmax(1− SPo(x))+ηM(t),
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with the open channel probability P0(x) given by equation (5.4.6) and Gaussian
white noise terms satisfying

〈η(t)η(0)〉= 2kBT ξ δ (t)
〈ηM(t)ηM(0)〉= 2kBTMξMδ (t)

for TM = 1.5T .

(a) First consider the zero-noise case. Investigate the existence and stability of any
fixed points as a function of fmax for the parameter values given in Fig. 5.11 in
the two cases (a) S = 0.5 and (b) S = 1.0. Show that the results are consistent
with the bifurcation diagram shown in Fig. 5.11.

(b) Using the numerical methods outlined in Sect. 2.6.6, simulate the stochastic ver-
sion of the model for fmax = 50.3pn and S = 0.65, and plot the power spectrum.

Problem 5.7 (Biochemical amplification in photoreceptors.). One of the remark-
able features of a photoreceptor in the retina is that it can detect individual photons
(particles) of light. This is mediated by a single rhodopsin molecule that is activated
by the photon and generates a current via a signaling cascade. Since the lifetime of
the active state of rhodopsin is stochastic, how does the molecule produce a reliable
single-photon response? One possible mechanism for enhanced reliability is based
on the observation that rhodopsin is inactivated in a series of phosphorylation steps
[322].

(a) Suppose that a rhodopsin molecule is activated at time t = 0 and that the rate of
decay to the inactive state is k. The probability P0(t) that it is still active at time
t satisfies the equation

dP0

dt
=−kP0,

with P0(0) = 1. The probability density that the molecule is active for exactly a
time t is then kP0(t). Let the mean and variance of the activation time be μ and
σ , respectively. Show that σ/μ = 1.

(b) Now suppose that upon light activation, rhodopsin starts in the state R0 and un-
dergoes a sequence of phosphorylation steps according to the reaction scheme

R0
k0→ R1

k1→ R2 · · · kn−2→ Rn−1
kn−1→ inactive rhodopsin,

where R j is the state with j sites phosphorylated. The rhodopsin is inactivated as
soon as a maximum of n sites are phosphorylated. Write down the correspond-
ing set of kinetic equations for the probability Pk(t), k = 0, . . . ,n− 1, that the
molecule is in state k at time t.

(c) Assume that each state R j elicits the same response. The relevant quantity is then
the probability density that the molecule exits the state Rn−1 exactly at time t,
which is given by kPn−1(t). By Fourier transforming the kinetic equations with
respect to time t, show that
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Pn−1(t) =
∫ ∞

−∞

kn−1

(k+ iω)n eiωt dω
2π

.

Using the identity

∫ ∞

0
tn−1e−kte−iωtdt =

(n− 1)!
(k+ iω)n .

determine Pn−1(t), and then calculate

μ = k
∫ ∞

0
Pn−1(t)tdt, σ2 = k

∫ ∞

0
Pn−1(t)t

2dt− μ2,

Hence, deduce that
σ
μ

=
1√
n
.

This establishes that increasing the number of phosphorylation steps n increases
the reliability of the single photon response.



Chapter 6
Stochastic Gene Expression and Regulatory
Networks

Genetically identical cells exposed to the same environmental conditions can show
significant variation in molecular content and marked differences in phenotypic
characteristics. This intrinsic variability is linked to the fact that many cellular events
at the genetic level involve small numbers of molecules (low copy numbers). We
have already encountered intrinsic noise effects within the context of stochastic ion
channels (Chap. 3) and biochemical signaling (Chap. 5). Although stochastic gene
expression was originally viewed as having detrimental effects on cellular function,
with potential implications for disease, it is now seen as being potentially advan-
tageous. For example, intrinsic noise can provide the flexibility needed by cells to
adapt to fluctuating environments or respond to sudden stresses and can also support
a mechanism by which population heterogeneity is established during cell differen-
tiation and development. Since the demonstration of a functional role for stochastic
gene expression in λ -phage [13], there has been an explosion of studies focused
on investigating the origins and consequences of noise in gene expression (see the
reviews [312, 408, 502, 521, 555, 644]). This typically involves establishing the
molecular mechanisms of noise generation at the single gene level and then build-
ing on this knowledge to test and predict its effects on larger regulatory networks.
Gene regulation refers to the cellular processes that control the expression of pro-
teins, dictating under what conditions specific proteins should be produced from
their parent DNA. This is particularly crucial for multicellular organisms, where all
cells share the same genomic DNA, yet do not all express the same proteins. That
is, selective gene expression allows the cells to specialize into different phenotypes
(cell differentiation), resulting in the development of different tissues and organs
with distinct functional roles.

In this chapter we explore the effects of noise on gene expression and protein
synthesis. We begin by reviewing the basic steps in gene expression (Sect. 6.1). We
then analyze transcription and translation in some simple unregulated networks and
show how translational bursts in the production of protein can occur (Sect. 6.2).
Various simple gene regulatory networks are analyzed in Sect. 6.3 using the lin-
ear noise (diffusion) approximation (see also Sect. 3.2) and Fourier (spectral) meth-
ods. Important examples of nonlinear feedback regulatory networks such as genetic
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switches and genetic oscillators are studied in Sect. 6.4, including the lac operon
and the genetic circuits of the circadian clock. We also discuss some methods for
analyzing the effects of noise on biochemical oscillators. The efficacy of gene net-
works in transmitting information in the presence of molecular noise is investigated
in Sect. 6.5, where some basic concepts such as Shannon information and mutual
information are introduced. We then look at some models of kinetic proofreading,
which is a mechanism for increasing the fidelity of molecular recognition during
protein synthesis, for example, and other cellular processes such as T-cell activation
in immunology (see Sect. 6.7). Finally, the stochastic simulation algorithm (SSA)
introduced by Gillespie to simulate sample trajectories of a gene or biochemical
network is described in Sect. 6.8.

6.1 Basics of Gene Expression

In Fig. 6.1a we show the two main stages in the expression of a single gene accord-
ing to the central dogma.

1. Transcription (DNA → RNA). The first major stage of gene expression is the
synthesis of a messenger RNA (mRNA) molecule with a nucleotide sequence
complementary to the DNA strand from which it is copied—this serves as the
template for protein synthesis. Transcription is mediated by a molecular ma-
chine known as RNA polymerase (RNAP). In the case of eukaryotes, transcrip-
tion takes place in the cell nucleus, whereas subsequent protein synthesis takes
place in the cytoplasm, which means that the mRNA has to be exported from the
nucleus as an intermediate step.

2. Translation (RNA → protein). The second major stage is synthesis of a protein
from mRNA. Translation is mediated by a macromolecule known as a ribosome,
which produces a string of amino acids (polypeptide chains), each specified by
a codon (represented by three letters) on the mRNA molecule. Since there are
four nucleotides (A, U, C, G), there are 64 distinct codons, e.g., AUG and CGG,
most of which code for a single amino acid. The process of translation consists
of ribosomes moving along the mRNA without backtracking (from one end to
the other, technically known as the 5’ end to the 3’ end) and is conceptually
divided into three major stages (as is transcription): initiation, elongation, and
termination. Each elongation step invokes translating or “reading” of a codon and
the binding of a freely diffusing transfer RNA (tRNA) molecule that carries the
specific amino acid corresponding to that codon. Once the chain of amino acids
has been generated a number of further processes occur in order to generate a
correctly folded protein.

The above simplified picture ignores a major feature of cellular processing,
namely, gene regulation. Individual cells frequently have to make “decisions,” that
is, to express different genes at different spatial locations and times and at differ-
ent activity levels. One of the most important mechanisms of genetic control is
transcriptional regulation, that is, determining whether or not an mRNA molecule
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Fig. 6.1: Transcriptional regulation due to the binding of a repressor or activator protein to a pro-
moter region along the DNA. (a) Unregulated transcription of a gene Y following binding of RNA
polymerase to the promoter region. The resulting mRNA exits the nucleus and is then translated by
ribosomes to form protein Y. (b) Increased transcription due to the binding of an activator protein
X to the promoter. An activator typically transitions between inactive and active forms; the active
form X∗ has a high affinity to the promoter binding site. An external chemical signal can regulate
transitions between the active and inactive states. (c) Transcription can be stopped by a repressor
protein X binding to the promoter and blocking the binding of RNA polymerase

is made. The control of transcription (switching on or off a gene) is mediated
by proteins known as transcription factors (see Fig. 6.1b, c). Negative control
(or repression) is mediated by repressors that bind to a promoter region along the
DNA where RNAP has to bind in order to initiate transcription—it thus inhibits
transcription. On the other hand, positive control (activation) is mediated by activa-
tors that increase the probability of RNAP binding to the promoter. The presence of
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transcription factors means that cellular processes can be controlled by extremely
complex gene networks, in which the expression of one gene produces a repressor
or activator, which then regulates the expression of the same gene or another gene.
This can result in many negative and positive feedback loops, the understanding of
which lies at the heart of systems biology [5]. In addition to transcriptional reg-
ulation, there are a variety of other mechanisms that can control gene expression
including mRNA and protein degradation and translational regulation.

6.1.1 Intrinsic Versus Extrinsic Noise Sources

Following Swain et al. [164], it is useful to distinguish between contributions aris-
ing from fluctuations that are inherent to a given system of interest (intrinsic noise)
from those arising from external factors (extrinsic noise). In the model of gene ex-
pression shown in Fig. 6.1, intrinsic noise is due to fluctuations generated by the
binding/unbinding of a repressor or activator and mRNA and protein production
and decay—these can be significant due to the small number of molecules involved.
Extrinsic noise sources are defined as fluctuations and population variability in the
rate constants associated with these events. The classification of a noise source as
intrinsic rather than extrinsic is context-dependent, so that intrinsic noise at one
level can act as extrinsic noise at another level. Gene-intrinsic noise refers to the
variability generated by molecular-level noise in the reaction steps that are intrinsic
to the process of gene expression. Network-intrinsic noise is generated by fluctua-
tions and variability in signal transduction and includes gene-intrinsic noise in the
expression of regulatory genes. Cell-intrinsic noise arises from gene-intrinsic noise
and network-intrinsic noise, as well as fluctuations and variability in cell-specific
factors, such as the activity of ribosomes and polymerases, metabolite concentra-
tions, cell size, cell age, and stage of the cell cycle.

An operational definition of gene-intrinsic noise is the difference in the expres-
sion of two almost identical genes from identical promoters in single cells averaged
over a large cell population. This definition is based on the assumptions that the two
genes are affected identically by fluctuations in cell-specific factors and that their
expression is perfectly correlated if these fluctuations are the only source of pop-
ulation heterogeneity. The contribution of gene-intrinsic noise can then be investi-
gated experimentally using two-reporter assays (see Sect. 1.2). These assays evalu-
ate, in single cells, the difference in the abundances of two equivalent reporters, such
as red and green fluorescent protein, expressed from identical promoters, located
at equivalent chromosomal positions. This allows measurements of noise fluctua-
tions generated by the biochemical reaction steps that are intrinsic to the process of
gene expression, and how this is affected by mutations or gene deletions. There are,
however, some potential limitations. For example, contributions from extrinsic fac-
tors, such as imperfect timing in replication and intracellular heterogeneity, might



6.1 Basics of Gene Expression 273

be measured as gene-intrinsic noise. Moreover, because increased variability in reg-
ulatory signals might cause cells to adapt distinct expression states, the measured
population-average gene-intrinsic noise and the extrinsic regulatory noise might not
always be independent.

6.1.2 Biological Significance of Stochasticity

Stochasticity in gene expression is generally believed to be detrimental to cell func-
tion, because fluctuations in protein levels can corrupt the quality of intracellular
signals, negatively affecting cellular regulation. One possible benefit of randomness,
however, is that it can provide a mechanism for phenotypic and cell-type diversifi-
cation:

1. Stochasticity in gene expression that generates phenotypic heterogeneity is ex-
pected to be particularly beneficial to microbial cells that need to adapt efficiently
to sudden changes in environmental conditions. Fluctuations in gene expression
provide a mechanism for ‘sampling’ distinct physiological states and could there-
fore increase the probability of survival during times of stress, without the need
for genetic mutation. A classical example is the infection of E. coli by a bac-
terial virus known as lambda phage. Infection is governed by a particular ly-
sis/lysogeny decision circuit, in which only a fraction of infecting phage chooses
to lyse (break down) the cell. The remainder become dormant lysogens, in which
the bacteriophage nucleic acid is integrated into the host bacterium’s genome,
awaiting bacterial stress signals to enter the production phase of their life cycle.

2. Switching between phenotypic states with different growth rates might be an im-
portant factor in the phenomenon of persistent bacterial infections after treatment
with antibiotics. Although most of the population is rapidly killed by the treat-
ment, a small genetically identical subset of dormant ‘persistor’ cells can survive
an extended period of exposure. When the drug treatment is removed, the surviv-
ing persistors randomly transition out of the dormant state, causing the infection
to reemerge.

3. The primary purpose of the Saccharomyces cerevisiae (yeast) galactose-
utilization network is to increase the uptake and metabolism of galactose. It
involves several positive feedback loops that generate bistability in the network,
which endow cells (and their progeny) with long-term epigenetic memory of
past galactose-consumption states. It has been suggested that the existence of a
negative feedback loop (which appear spurious from a deterministic perspective)
reduces this memory by increasing the rate at which cells randomly switch be-
tween different phenotypic states that are associated with different expression of
the galactose-utilization genes. As a result, the biological function of negative
feedback might be to prevent cells from being trapped in suboptimal phenotypic
states.
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4. Stochasticity may also play a constructive role in development and cellular dif-
ferentiation in higher organisms. For example, during Drosophila melanogaster
development, stochastic fluctuations in the turnover of two proteins, Notch and
Delta, might underlie the random emergence of neural precursor cells from an
initial homogeneous cell population.

6.2 Unregulated Transcription and Translation

The key steps in transcription are binding of RNAP (P) to the relevant promoter
region of DNA (D) to form a closed complex (PDc), the unzipping of the two strands
of DNA to form an open complex (PDo), and finally promoter escape, when RNAP
reads one of the exposed strands

P+D
k+�
k−

PDc
kopen−→ PD0

kescape−→ transcription.

Once the RNAP is reading the strand, the promoter is unoccupied and ready
to accept a new polymerase. The binding/unbinding of polymerase is very fast,
k± � kopen so that the first step happens many times before formation of an open
complex. Hence, one can treat the RNAP as in quasi-equilibrium with the promoter
characterized by an equilibrium constant KP = k+/k−. The rate of transcription will
thus be proportional to the fraction of bound RNAP, k+/(k++ k−). The production
of mRNA from a typical gene in E. coli occurs at a rate around 10 per minute, while
the average lifetime of mRNA due to degradation is around a minute. This implies
that on average there are ten mRNA molecules per cell. Generation of the mRNA
molecule occurs at a rate of 50 nucleotides per second. Hence, a typical gene of
around 1,000 nucleotides will be transcribed in about 20 s. Thus, there are around
three RNAP per gene at any one time, suggesting the number fluctuations will be
significant.

First, suppose that we ignore any regulation of the promoter as in Fig. 6.1a, and
collapse the various stages of transcription into a single step with mRNA production
rate k. Letting γ denote the rate of mRNA degradation and m(t) the number of
mRNA molecules at time t, we have the reaction

m
k−→ m+ 1, m

γ−→ m− 1

with corresponding kinetic equation for the concentration x =m/Ω , where Ω is cell
volume

dx
dt

= k− γx.

Clearly, given that m is of order 10, the law of mass action breaks down and we have
to consider the corresponding birth–death master equation
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d pm(t)
dt

=−Ωkpm(t)+Ωkpm−1(t)− γmpm(t)+ γ(m+ 1)pm+1(t) (6.2.1)

for m ≥ 0 and P−1 ≡ 0. This is identical to the autonomous version (3.6.3) of the
master equation for a stochastic gating model (Sect. 3.6). We immediately deduce
that the resulting probability density is given by the Poisson distribution (3.6.7).
Hence, in the limit t → ∞ we obtain a stationary Poisson process with

pm = e−λ λ m

m!
, λ = Ωk/γ. (6.2.2)

It follows that
〈m〉= λ , var[m] = λ .

This is an important result because both the mean and variance in the number of
mRNA molecules can be measured experimentally. One commonly used measure
of the level of noise in a regulatory network is the so-called Fano factor:

Fano factor =
〈m2〉− 〈m〉2

〈m〉 . (6.2.3)

For the unregulated process, the Fano factor is one.

6.2.1 Translational Bursting

In addition to transcription, other steps in the central dogma are also subject to
variability including protein translation, which often occurs in bursts [36, 89, 199,
427]. One could add the translation step (mRNA→ protein) to the previous model.
However, it is simpler to proceed by exploiting the fact that a single mRNA molecule
has a much shorter lifetime than a protein. First, consider a single mRNA molecule
with a degradation rate γ , which starts synthesizing a protein at time t = 0. Let
p0(n, t) (pc(n, t)) denote the probability that there are n proteins at time t and the
mRNA has not (has) decayed. Neglecting protein degradation, we have the master
equation

d p0(n, t)
dt

=−γ p0(n, t)+ r[p0(n− 1, t)− p0(n, t)] (6.2.4a)

d pc(n, t)
dt

= γ p0(n, t), (6.2.4b)

where r is the rate of protein production and p0(−1, t)≡ 0. Let

P(n) = lim
t→∞

pc(n, t).

Note that limt→∞ p0(n, t) = 0 due to the decay of mRNA. Integrating Eq. (6.2.4b)
with respect to time gives
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P(n) = γ
∫ ∞

0
p0(n, t)dt,

since pc(n,0) = 0. In order to compute p0(n, t), integrate Eq. (6.2.4a) with respect
to time using p0(n, t) = δn,0:

−δn,0 =−P(n)+
r
γ
[P(n− 1)−P(n)].

Setting n = 0 gives

P(0) =
γ

r+ γ
.

For n≥ 1, we have the recurrence relation

P(n) =
r

r+ γ
P(n− 1) =⇒ P(n) =

(
r

r+ γ

)n γ
r+ γ

.

An important quantity is the so-called burst size b, which is the mean number of
proteins produced per mRNA. Using generating functions it can be shown that (see
Ex. 6.1)

b =
r
γ
.

The idea of a translational burst refers to the observation that a single mRNA gen-
erates a burst of protein production before it decays (see Fig. 6.2a).

Now suppose that there are m mRNA molecules and that translation of each
mRNA proceeds independently. The probability of producing N proteins due to
bursts from each mRNA molecule can be expressed as a multiple convolution [509].
For example, if m = 2, then

P2(N) =
N

∑
n=0

P(n)P(N− n),

and

P3(N) =
N

∑
n=0

P(n)
N−n

∑
n′=0

P(n′)P(N− n− n′).

Assume that the number of proteins is sufficiently large so that we can approximate
the sums by integrals, for example,

P2(N) =
∫ N

0
P(n)P(N− n)dn.

The advantage of the integral formulation is that one can use Laplace transforms
and the convolution theorem. Thus, setting

P̃m(s) =
∫ ∞

0
Pm(n)e−sndn,
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Fig. 6.2: Effects of noise in gene expression. (a) Schematic illustration of translational bursting.
Each arrow represents a burst event where an mRNA transcript releases a burst of proteins of av-
erage size b, and proteins decay between bursts. (b) Illustration of how negative feedback in an
autoregulatory network reduces the mean number of proteins but also reduces the size of fluctua-
tions

we have
P̃m(s) =

[
P̃(s)
]m

.

Calculating P̃m(s) and then inverting yields the result (see Ex. 6.1)

Pm(n) =

(
b

1+ b

)n( 1
1+ b

)m nm−1

Γ (m)
.

For n,b� 1, we can make the approximation

(
b

1+ b

)n

= e−n ln(1+b−1) ≈ e−n/b,

which leads to the gamma distribution for n with m fixed:

Pm(n)≡ F(n;m,b−1) =
nm−1e−n/b

bmΓ (m)
. (6.2.5)

From properties of the gamma distribution, we immediately note that for a given
number of mRNA molecules,

〈n〉= mb, var(n) = mb2.

Hence, under the various approximations the Fano factor is of the order of the burst
size b. Finally, an estimate for m is m ≈ k/γ0 where k is the rate of production of
mRNAs and γ0 is the frequency of the cell cycle (assuming that it is higher than the
rate of protein degradation).
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An alternative approach to analyzing protein bursting is to start from the
Chapman–Kolmogorov (CK) equation [199]

∂ p(x, t)
∂ t

=
∂
∂x

[γ0xp(x)]+ k
∫ x

0
w(x− x′)p(x′, t)dx′, (6.2.6)

where p(x, t) is the probability density for x protein molecules (treating x as a con-
tinuous variable) at time t, and

w(x) =
1
b

e−x/b− δ (x). (6.2.7)

The first term on the right-hand side of the CK equation represents protein degra-
dation, where the second term represents the production of proteins from exponen-
tially distributed bursts. The gamma distribution (6.2.5) with n → x is obtained as
the stationary solution of the CK equation, which can be established using Laplace
transforms (Ex. 6.2). It is also possible to incorporate autoregulatory feedback into
the CK equation by allowing the burst rate to depend on the current level of protein
x, which acts as its own transcription factor [199]:

∂ p(x, t)
∂ t

=
∂
∂x

[γ0xp(x)]+ k
∫ x

0
w(x− x′)c(x′)p(x′, t)dx′. (6.2.8)

One possible form of the response function c(x) is a Hill function

c(x) =
ks

ks + xs ,

with s > 0 (s < 0) corresponding to negative (positive) feedback. In this case, the
stationary density takes the form (Ex. 6.2)

p(x) = Axm(1+ε)−1e−x/b[1+(x/k)s]−m/s.

A more general mathematical analysis of bursting in discrete and continuous models
can be found in [407].

6.3 Simple Models of Gene Regulation

One of the simplest gene regulatory networks consists of a gene that can be in one
of two states, active or inactive (see Fig. 6.3). In the active state the gene produces
protein X at a rate r, which subsequently degrades at a rate γ , whereas no protein is
produced in the inactive state. For simplicity, the stages of transcription and trans-
lation are lumped together so we do not keep track of the amount of mRNA. More-
over, the transcription factor Y that switches on the gene is independent of protein
X , that is, there is no feedback. Since the rate of activation k+ will be proportional
to the concentration c of Y in the nucleus, this simple network can be viewed as an
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input/output device that converts the input signal c to an output signal given by the
concentration x of protein X . Moreover, if X is a green fluorescent protein, then the
output response can be measured. In Sect. 6.5, we will consider how effective such
a feedforward networks is in transmitting information in the presence of molecular
noise, following the work of Tkacik et al. [631, 632, 634, 665]. Here we will focus
on calculating the level of noise.

6.3.1 Transcriptional Bursting in a Two-State Model

The reaction scheme of the regulatory network shown in Fig. 6.3 is

I
k+�
k−

A
r−→ p

γ−→ /0,

where A and I denote the active and inactive states of the gene. We first consider the
case in which the number of X proteins is sufficiently large so that we can represent
the dynamics in terms of a continuous-valued protein concentration x [318]. The
latter evolves according to the (piecewise) deterministic equation

dx
dt

= rn(t)− γx, (6.3.1)

where the discrete random variable n(t) represents the current state of the gene with
n(t) = 1 (active) or n(t) = 0 (inactive). We thus have another example of a stochastic
hybrid system. Let p j(x, t) denote the probability density of the protein concentra-
tion for n(t)= j, j = 0,1. We then have the differential Chapman–Kolmogorov (CK)
equation

k γY

k+ k_

X

Fig. 6.3: Simple example of a two-state gene regulatory network. The promoter transitions between
an active state (bound by a transcription factor protein Y and RNA polymerase) and an inactive state
with rates k± . The active state produces protein X at a rate r and protein X degrades at a rate γ
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∂ p0

∂ t
=− ∂

∂x
(−γxp0(x, t))+ k−p1(x, t)− k+p0(x, t) (6.3.2a)

∂ p1

∂ t
=− ∂

∂x
([r− γx]p1(x, t))+ k+p0(x, t)− k−p1(x, t), (6.3.2b)

supplemented by the no-flux boundary conditions Js(x) = 0 at x = 0,r/γ , where
J0(x) =−γxp0(x) and J1(x) = [r− γx]p1(x). In the limit that the switching between
active and inactive states is much faster than the protein dynamics, the probability
that the gene is active rapidly converges to the steady state k+/(k+ + k−), and we
obtain the deterministic equation

dx
dt

= r〈n〉− γx =
rk+

k++ k−
− γx. (6.3.3)

Following [318], we will characterize the long-time behavior of the system in terms
of the steady-state solution, which satisfies

d
dx

(−γxp0(x)) = k−p1(x)− k+p0(x) (6.3.4a)

d
dx

([r− γx]p1(x)) = k+p0(x)− k−p1(x). (6.3.4b)

The no-flux boundary conditions imply that p0(r/γ) = 0 and p1(0) = 0. First, note
that we can take x ∈ [0,r/γ] and impose the normalization condition

∫ r/γ

0
[p0(x)+ p1(x)]dx = 1.

Integrating Eq. (6.3.4) with respect to x then leads to the constraints

∫ r/γ

0
p0(x)dx =

k−
k−+ k+

,

∫ r/γ

0
p1(x)dx =

k+
k−+ k+

.

Adding Eqs. (6.3.4a) and (6.3.4b) we can solve for p0(x) in terms of p1(x) and then
generate a closed differential equation for p1(x). We thus obtain a solution of the
form (see Ex. 6.3),

p0(x) =C (γx)−1+k+/γ(r− γx)k−/γ , p1(x) =C (γx)k+/γ(r− γx)−1+k−/γ (6.3.5)

for some constant C. Imposing the normalization conditions then determines C as

C = γ
[
r(k++k−)/γB(k+/γ,k−/γ)

]−1
,

where B(α,β ) is the beta function:

B(α,β ) =
∫ 1

0
tα−1(1− t)β−1dt.
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Finally, setting r/γ = 1, the total probability density p(x) = p0(x)+ p1(x) is given
by [318]

p(x) =
xk+/γ−1(1− x)k−/γ−1

B(k+/γ,k−/γ)
. (6.3.6)

p(x)

x

p(x)
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2

3
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1
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k+ = k_

x

0 0.2 0.4 0.6 0.8 1.0 0 0.2 0.4 0.6 0.8 1.0

a b

Fig. 6.4: Steady-state protein density p(x) for a simple regulated network in which the promoter
transitions between an active and inactive state at rates k±. (a) Case k±/k > 1: there is a graded
density that is biased towards x = 0,1 depending on the ratio k+/k−. (b) Case k±/k < 1: there is a
binary density that is concentrated around x = 0,1 depending on the ratio k+/k−

In Fig. 6.4, we plot p(x), 0 < x < 1 for various values of K± = k±/γ . It can be
seen that when the rates k± of switching between the active and inactive gene states
are faster than the rate of degradation k, then the steady-state density is unimodal
(graded), whereas if the rate of degradation is faster, then the density tends to be
concentrated around x = 0 or x = 1, consistent with a binary process. In other words,
if switching between promoter states is much slower than other processes, then one
can have transcriptional contribution to protein bursting [318]. This scenario tends to
occur in eukaryotic gene expression, for which the presence of nucleosomes and the
packing of DNA–nucleosome complexes into chromatin generally make promoters
inaccessible to the transcriptional machinery. Hence, transitions between open and
closed chromatin structures, corresponding to active and repressed promoter states,
can be quite slow.

Finally, note that a model identical in form to the above has also been applied
to gene expression dynamics in a randomly varying environment [599]. In the lat-
ter case, x represents the concentration of mRNA and γ is the rate of degradation.
The rate k of mRNA production takes on two values, depending on a binary-valued
environmental input n(t), with k = k0 if n(t) = 0 and k = k1 if n(t) = 1. The envi-
ronment randomly switches between its two states at the rates k±. Equations (6.3.2)
thus become
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∂ p0

∂ t
=− ∂

∂x
([k0− γx]p0(x, t))+ k−p1(x, t)− k+p0(x, t) (6.3.7a)

∂ p1

∂ t
=− ∂

∂x
([k1− γx]p1(x, t))+ k+p0(x, t)− k−p1(x, t), (6.3.7b)

where p j(x, t) is the probability density for mRNA concentration x given the envi-
ronmental input is n(t) = j, j = 0,1. The analysis of the steady-state density pro-
ceeds as before and one finds [599]

p0(x) =C (γx− k0)
−1+k+/γ(k1− γx)k−/γ , p1(x) =C (γx− k0)

k+/γ(k1− γx)−1+k−/γ

(6.3.8)

for some constant C. Imposing the normalization conditions, then determines C as

C = γ
[
(k1− k0)

(k++k−)/γ B(k+/γ,k−/γ)
]−1

.

It follows from the analog of Fig. 6.4 that if the mRNA degradation rate is faster
than the rate of environmental fluctuations, then the steady-state density of mRNA
tracks the state of the environment with p(x) localized around x = 0 (x = 1) when
k− > k+ (k+ > k−). Stochastic switching has been suggested as a survival strategy
used by populations of yeast cells in fluctuating environments [1].

6.3.2 Protein Fluctuations and the Linear Noise Approximation

In the above analysis, we considered the distribution of proteins arising from a single
gene, in which the only source of noise came from the random switching of the
promoter. We now want to estimate the size of protein fluctuations in a population
of nmax genes that takes into account intrinsic noise effects due to a finite number of
proteins. Let n1 denote the number of active genes and n2 the number of proteins.
Setting x j = 〈n j〉/Ω , where Ω is the system size, the various reactions and the
corresponding rate equations based on mass action (valid in the limit Ω → ∞) are
as follows:

1. Gene activation and inactivation

n1
k+(nmax−n1)−→ n1 + 1, n1

k−n1−→ n1− 1

with
dx1

dt
= k+(xmax− x1)− k−x1.

2. Protein production and degradation

n2
rn1−→ n2 + 1, n2

γn2−→ n2− 1
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with
dx2

dt
= rx1− γx2.

In order to take into account the effects of intrinsic noise, it is necessary to turn to
the associated master equation. Let P = P(n1,n2, t) denote the probability that there
are n1 active genes and n2 proteins at time t. Then

dP
dt

= k+(nmax− n1 + 1)P(n1− 1,n2, t)+ k−(n1 + 1)P(n1 + 1,n2, t)

+ rn1P(n1,n2− 1, t)+ γ(n2+ 1)P(n1,n2 + 1, t)

− [k+(nmax− n1)+ k−n1 + rn1 + γn2]P(n1,n2, t). (6.3.9)

Since the transition rates are linear in n1 and n2, one could determine the means
and variances by taking moments. However, this method is not applicable to master
equations with nonlinear transition rates. Therefore, we will follow the approxima-
tion method introduced in Sect. 3.2, whereby the master equation is reduced to a
Fokker–Planck (FP) equation by carrying out a system-size expansion. The result-
ing FP equation can then be linearized about a stable fixed point of the deterministic
rate equations, resulting in a multivariate OU process that can be used to calcu-
late means and variances [162, 164, 625]. One of the useful features of the linear-
noise approximation is that it can be applied systematically, once the mass-action
kinetic equations are expressed in the general form (6.3.17) as described in Box
6A. For the given regulatory network, there are two chemical species (N = 2) and
four single-step reactions (R = 4). For a = 1,2 (gene activation and inactivation),
we have Si,1 = δi,1,Si,2 =−δi,1, f1(x) = k+(xmax− x1), and f2(x) = k−x1. Express-
ing the master equation as (6.3.18) and carrying out a diffusion approximation then
leads to the FP equation (6.3.20) with drift terms

V1(x) = k+(xmax− x1)− k−x1, V2(x) = rx1− γx2

and a diagonal diffusion matrix D with nonzero components

D11 = k+(xmax− x1)+ k−x1, D22 = rx1 + γx2.

In the deterministic limit, we recover the kinetic equations expressed as

dxi

dt
=Vi(x).

It immediately follows that there is a unique fixed point given by

x∗1 =
k+

k++ k−
xmax, x∗2 =

r
γ

x∗1.
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Linearizing the corresponding Langevin equation about this fixed point by setting
Xi(t) = x∗i +Ω−1/2Yi(t) then yields the OU process (6.3.25) for Yi, which takes the
explicit form

dY1 =−(k++ k−)Y1dt + dW1, dY2 = [rY1− γY2]dt + dW2, (6.3.10)

with W1(t) and W2(t) independent Wiener processes satisfying

〈dW1(t)dW1(t
′)〉= [k+(xmax− x∗1)+ k−x∗1]δ (t− t ′)dtdt ′ = 2k−x∗1δ (t− t ′)dtdt ′,

〈dW2(t)dW2(t
′)〉= [rx∗1 + γx∗2]δ (t− t ′)dtdt ′ = 2rx∗1δ (t− t ′)dtdt ′.

Introducing the stationary covariance matrix

Σi j = 〈[Yi(t)−〈Yi(t)〉][Yj(t)−〈Yj(t)〉]〉

one sees that Yi(t) is a Gaussian process with zero mean and covariances determined
from the matrix equation

AΣ +ΣAT =−D, (6.3.11)

with

A =

(−(k++ k−) 0
r −γ

)
, D =

(
2k−x∗1 0

0 2rx∗1

)
.

Finally, solving the matrix equation (6.3.11) for the covariance gives the Fano fac-
tors (see Ex. 6.4):

var[n1]

〈n1〉 =
k−

k++ k−
= 1−〈n1〉/nmax, (6.3.12a)

var[n2]

〈n2〉 = 1+ 〈n2〉 γ
k++ k−+ γ

var[n1]

〈n1〉2 . (6.3.12b)

Note that 〈n j〉= Ωx∗j and var[n j] = ΩΣ j j. We immediately see that the presence of
a transcription factor increases the Fano factor of the protein above one.

An alternative approach to analyzing the multivariate OU process derived from
the linear noise approximation is to Fourier transform the corresponding multivari-
ate Langevin equation (6.3.10) and calculate the spectrum of the protein concentra-
tion [328, 624]. First, since we are ultimately interested in protein number fluctua-
tions, we rescale the Langevin equation by setting Δn j =

√
ΩYj = n j−〈n j〉 and use

the white noise formulation (see Sect. 2.2.5):

dΔn1

dt
=−(k++ k−)Δn1 +η1,

dΔn2

dt
= rΔn1− γΔn2 +η2, (6.3.13)
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with η1(t) and η2(t) independent Gaussian white noise processes satisfying

〈η1(t)η1(t
′)〉= [k+(nmax−〈n1〉)+ k−〈n1〉]δ (t− t ′) = 2k−〈n1〉δ (t− t ′),

〈η2(t)η2(t
′)〉= [r〈n1〉+ γ〈n2〉]δ (t− t ′) = 2r〈n1〉δ (t− t ′).

Fourier transforming the linear equations (6.3.13) with

Δn j(t) =
∫ ∞

−∞
Δ̃n j(ω)e−iωt dω

2π

yields

−iωΔ̃n1 =−(k++ k−)Δ̃n1 + η̃1, −iωΔ̃n2 = rΔ̃n1− γΔ̃n2 + η̃2. (6.3.14)

It follows that

Δ̃n2 =
rΔ̃n1

γ− iω
+

η̃2

γ− iω

=
rη̃1

(k++ k−− iω)(γ− iω)
+

η̃2

γ− iω
.

From the spectral analysis of Sect. 2.2.5, we have

〈η̃1(ω)η̃1(ω ′)〉= 2k−〈n1〉·2πδ (ω+ω ′), 〈η̃2(ω)η̃2(ω ′)〉= 2r〈n1〉·2πδ (ω+ω ′).

Hence, the spectrum of the protein fluctuations, defined by 〈Δ̃n2(ω)Δ̃n2(ω ′)〉 =
S2(ω)δ (ω +ω ′), is

S2(ω) =
r2(2k−〈n1〉)

(ω2 +(k++ k−)2)(ω2 + γ2)
+

2r〈n1〉
ω2 + γ2 . (6.3.15)

It follows that

var[n2] = 〈(Δn2)
2〉=

∫ ∞

−∞

∫ ∞

−∞
〈Δ̃n2(ω)Δ̃n2(ω ′)〉e−iωte−iω ′t dω

2π
dω ′

2π

=

∫ ∞

−∞
S2(ω)

dω
2π

.

The integral can be evaluated using partial fractions and the identity

∫ ∞

−∞

dω
ω2 + a2 =

π
a
,
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which gives

var[n2] =
r〈n1〉

γ
+

r2k−〈n1〉
(k++ k−)2− γ2

(
1
γ
− 1

k++ k−

)

=
r〈n1〉

γ
+

r2〈n1〉/γ
k++ k−+ γ

k−
(k++ k−)

= 〈n2〉+(r/γ)2 γ
k++ k−+ γ

〈n1〉(1−〈n1〉/nmax). (6.3.16)

This agrees with Eq. (6.3.12b). Finally, note that there are two contributions to the
size of protein fluctuations. First, there is the output noise 〈n2〉 arising from the
production of a finite number of proteins in which the variance equals the mean,
reflecting a pure Poisson process. The second contribution arises from the random
switching of the promoter and is proportional to the binomial variance p1(1− p1)
where p1 = 〈n1〉/nmax is the mean fraction of active genes. For further applications
of frequency domain analysis to feedforward gene networks see Exs. 6.5 and 6.6.

Box 6A. Linear noise approximation.

Suppose that the mass-action kinetics of a general biochemical or gene
network is written in the form

dxi

dt
=

R

∑
a=1

Sia fa(x), i = 1, . . . ,N (6.3.17)

where a labels a single-step reaction and S is the so-called N×R stochio-
metric matrix for N molecular species and R reactions. Thus Sia specifies
the change in the number of molecules of species i in a given reaction a.
The functions fa are known transition intensities or propensities. Given
this notation, the corresponding master equation is

dP(n, t)
dt

= Ω
R

∑
a=1

(
N

∏
i=1

E
−Sia − 1

)

fa(n/Ω)P(n, t), (6.3.18)

where Ω represents the system size. Typically, Ω is the volume of the
well-mixed compartment where reactions occur or the total number of
molecules in cases where there is number conservation. Here E

−Sia is a
step or ladder operator such that for any function g(n),

E
−Siag(n1, . . . ,ni, . . . ,nN) = g(n1, . . . ,ni− Sia, . . . ,nN). (6.3.19)
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A diffusion approximation of the master equation can now be ob-
tained along identical lines to Sect. 3.2 (see also [162]). That is, set
fa(n/Ω)P(n, t)→ fa(x)p(x, t) and use the fact that

N

∏
i=1

E
−Siah(x) = h(x−Sa/Ω)

= h(x)−Ω−1
N

∑
i=1

Sia
∂h
∂xi

+
1

Ω 2

N

∑
i, j=1

SiaS ja
∂ 2h(x)
∂xi∂x j

+O(Ω−3).

Carrying out a Taylor expansion of the master equation to second order
thus yields the multivariate FP equation

∂ p
∂ t

=−
N

∑
i=1

∂Vi(x)p(x, t)
∂xi

+
1

2Ω

N

∑
i, j=1

∂ 2Di j(x)p(x, t)
∂xi∂x j

, (6.3.20)

where

Vi(x) =
R

∑
a=1

Sia fa(x), Di j(x) =
R

∑
a=1

SiaS ja fa(x). (6.3.21)

The FP equation (6.3.20) corresponds to the multivariate Langevin equa-
tion

dXi =Vi(X)dt +
1√
Ω

R

∑
a=1

Bia(X)dWa(t), (6.3.22)

where Wa(t) are independent Wiener processes and D = BBT , that is,

Bia = Sia

√
fa(x). (6.3.23)

Now suppose that the deterministic system, written as

dxi

dt
=Vi(x),

has a unique stable fixed point x∗ for which Vi(x∗) = 0 and introduce the
Jacobian matrix A with

Ai j =
∂Vi

∂x j

∣
∣
∣
∣
x=x∗

. (6.3.24)

The Langevin equation suggests that, after a transient phase, the stochas-
tic dynamics is characterized by Gaussian fluctuations about the fixed
point. Substituting Xi(t) = x∗i + Yi(t)/

√
Ω into the Langevin equa-

tion (6.3.20) and keeping only lowest order terms in Ω−1/2 yields the
Ornstein–Uhlenbeck (OU) process
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dYi =
N

∑
j=1

Ai jYjdt +
R

∑
a=1

Bia(x∗)dWa(t). (6.3.25)

Introducing the stationary covariance matrix

Σi j = 〈[Yi(t)−〈Yi(t)〉][Yj(t)−〈Yj(t)〉]〉

it immediately follows from the analysis of the multivariate OU process
(see Ex. 2.7), that

AΣ +ΣAT =−BBT . (6.3.26)

6.3.3 Autoregulatory Network

So far we have considered a simple feedforward regulatory network. However, much
of the complexity in gene networks arises from feedback, in which proteins in-
fluence their own synthesis directly or indirectly by acting as transcription factors
within a regulatory network. A common example is autoregulation, in which a gene
is directly regulated by its own gene product [625] (see Fig. 6.5a). A simple kinetic
model of negative autoregulatory feedback is

dx1

dt
=−γx1 +F(x2),

dx2

dt
= rx1− γpx2, (6.3.27)

where x1(t) and x2(t) denote the concentrations (or number) of mRNA and protein
molecules at time t. The parameters γ,γp represent the degradation rates, r repre-
sents the translation rate of proteins, and F(y) represents the nonlinear feedback
effect of the protein on the transcription of mRNA. A typical choice for F in the
case of a repressor is the Hill function

F(y) =
k

1+(y/K)n . (6.3.28)

We will assume that the network acts in a regime where the Hill function is approx-
imately linear with F(y) = k0− ky. The analysis of intrinsic noise proceeds along
similar lines to regulated gene transcription.

Let P = P(m,n, t) denote the probability that there are m mRNA and n proteins
at time t. Then

dP
dt

= Ωk0P(m− 1,n, t)+ [kn+ γ(m+ 1)]P(m+1,n, t)

+ rmP(m,n− 1, t)+ γp(n+ 1)P(m,n+ 1, t)

− [Ωk0 +(kn+ γm)+ rm+ γpn]P(m,n, t). (6.3.29)
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In order to carry out a linear noise approximation, we first rewrite the kinetic equa-
tions in the general form (6.3.17) with two chemical species (N = 2) and four single-
step reactions (R= 4). For a= 1,2 (mRNA production and degradation/repression),
we have Si,1 = δi,1,Si,2 = −δi,1, f1(x) = k0, and f2(x) = kx2 + γx1. Expressing the
master equation as (6.3.18) and carrying out a diffusion approximation then leads to
the FP equation (6.3.20) with drift terms

V1(x) = k0− kx2− γx1, V2(x) = rx1− γpx2

gene X

X

Fig. 6.5: Negative autoregulatory network. A gene X is repressed by its own protein product

and a diagonal diffusion matrix D with nonzero components

D11 = k0 + kx2 + γx1, D22 = rx1 + γpx2.

There is a unique fixed point of the deterministic dynamics (in the linear regime)

x∗1 =
k0γp

γγp + kr
, x∗2 =

r
γp

x∗1.

Linearizing the corresponding Langevin equation about this fixed point by setting
Xi(t) = x∗i +Ω−1/2Yi(t) then yields the OU process (6.3.25) for Yi. Introducing the
stationary covariance matrix

Σi j = 〈[Yi(t)−〈Yi(t)〉][Yj(t)−〈Yj(t)〉]〉

one sees that Yi(t) is a Gaussian process with zero mean and covariances determined
from the matrix equation

AΣ +ΣAT =−D (6.3.30)

with

A =

(−γ −k
r −γp

)
, D =

(
kx∗2 + γx∗1 0

0 rx∗1 + γpx∗2

)
.
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Solving the matrix equation (6.3.30) yields (see Ex. 6.7)

Σ12 = Σ21 =
η

1+η

(
1− φ

1+ bφ

)
x∗2, Σ22 = x∗2 +

r
γp

Σ12,

where

b =
r
γ
, η =

γp

γ
, φ =

k
γp

.

Here b is the burst size, η is the ratio of degradation rates, and φ describes the
strength of the negative feedback. It follows that the Fano factor for proteins is

var[n]
〈n〉 = 1+

b
1+η

(
1− φ

1+ bφ

)
. (6.3.31)

The above analysis establishes the negative feedback can reduce fluctuations in pro-
tein number (see Fig. 6.2b). That is, in the absence of feedback (φ = 0), the Fano
factor is 1+ b/(1+η), which is clearly larger than the case φ > 0. Also note that
when η � 1 and b� 1, we recover the result obtained from the protein translation
model of Sect. 6.2.

6.4 Genetic Switches and Oscillators

Once feedback and nonlinearities are included in gene networks, a rich repertoire of
dynamics can occur. Here we briefly consider two important classes of dynamical
gene networks, namely, switches and oscillators.

6.4.1 Mutual Repressor Model of a Genetic Switch

Considerable insight into genetic switches has been obtained by constructing a syn-
thetic version of a switch in E. coli, in which the gene product of the switch is a
fluorescent reporter protein [206]. This allows the flipping of the switch to be ob-
served by measuring the fluorescent level of the cells. The underlying gene circuit
is based on a mutual repressor model (see Fig. 6.6). It consists of two repressor
proteins whose transcription is mutually regulated. That is, the protein product of
one gene binds to the promoter of the other gene and represses its output. For sim-
plicity, the explicit dynamics of transcription and translation are ignored so that we
only model the mutual effects of the proteins on protein production. Denoting the
concentrations of the proteins by x(t),y(t), the resulting kinetic equations are

dx
dt

=−γx+
r

1+Kyn ,
dy
dt

=−γy+
r

1+Kxn . (6.4.1)
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Here γ is the rate of protein degradation, r is the rate of protein production in the
absence of repression, and K is a binding constant for the repressors. As in the model
of autoregulation, negative feedback is modeled in terms of a Hill function with Hill
coefficient n. It is convenient to rewrite the equations in nondimensional form by
measuring x and y in units of K−1/n and time in units of γ−1:

du
dt

=−u+
α

1+ vn ,
dv
dt

=−v+
α

1+ un , (6.4.2)

with α = rK1/n/γ . Analysis of the fixed point solutions of this pair of equations
establishes that the mutual repressor model acts as a bistable switch. For simplicity,
consider the case n = 2 (protein dimerization). The fixed point equation for u is

u = α

[

1+

(
α

1+ u2

)2
]−1

,

which can be rearranged to yield a product of two polynomials:

(u2−αu+ 1)(u3+ u−α) = 0.

The cubic is a monotonically increasing function of u and thus has a single root
given implicitly by

gene X

X

Y

gene Y

Fig. 6.6: Mutual repressor model of a genetic switch. A gene X expresses a protein X that represses
the transcription of gene Y and the protein Y represses the transcription of gene X

u =
α

1+ u2 = v.

This solution is guaranteed by the exchange symmetry of the underlying equations.
The roots of the quadratic are given by

u =U± ≡ 1
2

[
α±
√

α2− 4
]
,

with v=U∓. It immediately follows that there is a single fixed point when α < 2 and
three fixed points when α > 2. Moreover, linear stability analysis establishes that
the symmetric solution is stable when α < 2 and undergoes a pitchfork bifurcation
at the critical value αc = 2 where it becomes unstable and a pair of stable fixed
points emerge.
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Given that the deterministic system is bistable, one can now investigate the ef-
fects of intrinsic noise by constructing a master equation along the lines of Sect. 6.3.
We will construct the master equation for a slightly simplified mutual repressor
model consisting of a single promoter site; if a dimer of one protein is bound to the
site then this represses the expression of the other [328, 470]. Thus the promoter can
be in three states O j, j = 0,1,2: no dimer is bound to the promoter (O0); a dimer of
protein X is bound to the promoter (O1); a dimer of protein Y is bound to the pro-
moter (O2). Suppose that the number of proteins X and Y are n and m, respectively.
The state transition diagram for the three promoter states is then

O1
β κ
�

n(n−1)κ
O0

m(m−1)κ
�
β κ

O2,

where κ is a rate and β is a nondimensional dissociation constant. Protein X (Y )
is produced at a rate α when the promoter is in the states O0,1 (O0,2), and both
proteins are degraded at a rate γ in all three states. Let p j(n,m, t), j = 0,1,2, be the
probability that there are n (m) proteins X (Y ) and the promoter is in state j at time
t. The master equation for p = (p0, p1, p2)

T is given by

d
dt

p j(n,m, t) = ∑
j=0,1,2

∑
n′,m′

[
δn,n′δm,m′A jk + δ j,kW

j
nm,n′m′

]
pk(n

′,m′, t), (6.4.3)

where

A = κ

⎛

⎝
−n(n− 1)−m(m− 1) β β

n(n− 1) −β 0
m(m− 1) 0 −β

⎞

⎠ , (6.4.4)

and

∑
n′,m′

W 0
nm,n′m′ p0(n

′,m′, t)

= γ[(n+ 1)p0(n+ 1,m, t)+ (m+ 1)p0(n,m+ 1, t)− (n+m)p0(n,m, t)]

+α(p0(n− 1,m, t)+ p0(n,m− 1, t)− 2p0(n,m, t)) (6.4.5a)

∑
n′,m′

W 1
nm,n′m′ p1(n

′,m′, t)

= γ[(n+ 1)p1(n+ 1,m, t)+ (m+ 1)p1(n,m+ 1, t)− (n+m)p1(n,m, t)]

+α(p1(n− 1,m, t)− p1(n,m, t)) (6.4.5b)

∑
n′,m′

W 2
nm,n′m′ p1(n

′,m′, t)

= γ[(n+ 1)p2(n+ 1,m, t)+ (m+ 1)p2(n,m+ 1, t)− (n+m)p2(n,m, t)]

+α(p2(n,m− 1, t)− p2(n,m, t)). (6.4.5c)
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Kepler and Elston [328] consider two approximations of the master equation,
one based on a system-size expansion of the W j terms with respect to the mean
number N = α/γ of proteins when the promoter is in state O0 and the other based
on a QSS approximation. The latter assumes that the rates of protein production and
degradation are much slower than the rates of switching between promoter states.
First, introduce the rescaling t → tγ and set x = n/N, y =m/N. The master equation
for the resulting probability densities p j(x,y, t) takes the form

∂
∂ t

p j(x,y, t) = ∑
j=0,1,2

[
1
ε

A jk +Nδ j,kW
j
]

pk(x,y, t), (6.4.6)

where ε = γ3/κα2 and b = β γ2/α2 are dimensionless parameters,

A =

⎛

⎝
−x(x− 1/N)− y(y− 1/N) b b

x(x− 1/N) −b 0
y(y− 1/N) 0 −b

⎞

⎠ , (6.4.7)

and W
j are differential shift operators

W
0 =
(

e∂x/N− 1
)

x+
(

e∂y/N − 1
)

y+
(

e−∂x/N + e−∂y/N− 2
)

(6.4.8a)

W
1 =
(

e∂x/N− 1
)

x+
(

e∂y/N − 1
)

y+
(

e−∂x/N− 1
)

(6.4.8b)

W
2 =
(

e∂x/N− 1
)

x+
(

e∂y/N − 1
)

y+
(

e−∂y/N− 1
)
. (6.4.8c)

The latter are a way of representing a Taylor expansion. That is, for any smooth
function f (x),

f (x±Δx) = f (x)± f ′(x)Δx+ f ′′(x)Δx2/2!± . . .

=

(
1±Δx∂x +

Δx2

2!
∂ 2

x ± . . .

)
f (x) = e±Δx∂x f (x).

If the promoter transitions are fast and the expected number of protein molecules
is large, then there are two small parameters in the model, ε and 1/N. Taking the
limits ε → 0 and N → ∞ in either order, one obtains the kinetic equations (see also
Ex. 6.8)

dx
dt

= f (x,y),
dy
dt

= f (y,x), with f (x,y) =
1

1+ y2

b+x2

− x. (6.4.9)

One finds that the deterministic system is bistable for 0< b< bc = 4/9 (see Fig. 6.7).
At the critical point b = bc there is a saddle-node bifurcation in which a sta-
ble/unstable pair annihilate so that for b > bc there is a single stable fixed point.
There are then two approximations of the full master equation that can be used to
explore the effects of noise-induced transitions in the bistable regime, depending on



294 6 Stochastic Gene Expression and Regulatory Networks

whether one considers the system-size expansion in 1/N for fixed ε or the QSS ex-
pansion in ε for fixed N. For the sake of illustration, we focus on the former. Taylor
expanding the differential operators W j and keeping only the leading order terms
yields the multivariate differential Chapman–Kolmogorov (CK) equation [328, 470]

∂ p j

∂ t
=−∂Fj(x)p j

∂x
− ∂G j(y)p j

∂y
+

1
ε ∑

k=0,1,2

A jk(x,y)pk (6.4.10)

with

F0(x) = 1− x, F1(x) = 1− x, F2(x) =−x

G0(y) = 1− y, G1(y) =−y, G2(y) = 1− y, (6.4.11)

and

A =

⎛

⎝
−x2− y2 b b

x2 −b 0
y2 0 −b

⎞

⎠ . (6.4.12)

Fig. 6.7: Phase-plane dynamics of mutual repressor model analyzed by Kepler and Elston [328]
and Newby [470] with b = 0.15. The black curve shows the y-nullcline and the gray curve shows
the x-nullcline. The open circles show the stable fixed points; the filled circle shows the unstable
saddle. The irregular curve shows a stochastic trajectory leaving the lower basin of attraction to
reach the separatrix

The CK equation (6.4.10) describes an effective stochastic hybrid system in which
the concentration of proteins X and Y play the role of the piecewise determinis-
tic continuous variables, and the state of the promoter is the discrete variable that
evolves according to a continuous-time Markov process. We have previously en-
countered stochastic hybrid systems in our analysis of voltage-gated ion channels
(Sect. 3.5). One could now use a QSS approximation to obtain a Fokker–Planck
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(FP) equation for the total probability density p(x,y, t) = ∑ j=0,1,2 p j(x,y, t) along
the lines outlined in Sect. 7.4 (see also Kepler and Elston [328]). However, a diffu-
sion approximation of the full master equation based on an FP representation can
generate exponential errors in the mean time of noise-induced escape from the basin
of attraction of one of the metastable fixed points (see also Sects. 3.4 and 3.5). A
more accurate estimate can be obtained using large deviation theory and the WKB
methods outlined in Chap. 10, as has been shown for the mutual repressor model by
Newby [470].

6.4.2 The lac Operon

The idea of a genetic switch was first proposed over 40 years ago by Jacob and
Monod [296], in their study of the lac operon. When there is an abundance of glu-
cose, E. coli uses glucose exclusively as a food source irrespective of whether or not
other sugars are present. However, when glucose is unavailable, E. coli can feed on
other sugars such as lactose, and this occurs via the lac operon switch that induces
the expression of various genes. A variety of mathematical models of the lac operon

lac operon

lac permease

lactose allolactose

repressor CAP

lactose

glucose
cell exterior

cAMP+

+

+

+

_

_

_

Fig. 6.8: Feedback control circuit of the lac operon. See text for details

have been developed over the years [239, 240, 557, 688, 693, 694]. Here we briefly
describe a simplified model presented in Chap. 10 of Keener and Sneyd [322]. The
basic feedback control mechanism is illustrated in Fig. 6.8. There are two control
sites on the lac operon: (see Fig. 6.9), a repressor site that blocks RNAP from bind-
ing to the promoter site and a preceding control site to which a dimeric catabolic
activator protein (CAP) molecule can bind provided it forms a complex with cyclic
AMP (cAMP). Bound CAP promotes the binding of RNAP to the promoter region.
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When there is sufficient glucose in the cell exterior, the action of cAMP is inhibited
so that CAP cannot bind and the lac operon is repressed. On the other hand, when
glucose is removed, the CAP–cAMP complex can bind to the activator site and ac-
tivate the lac operon. The latter consists of several genes that code for the proteins
responsible for lactose metabolism. One of these proteins is lac permease, which
allows the entry of lactose into the cell that is enhanced by a positive feedback loop.
The feedback mechanism involves another protein, β -galactosidase, which converts
lactose into allolactose. Allolactose can bind to the repressor protein and prevent its
binding to the repressor binding site. This further activates the lac operon, resulting
in the further production of allolactose and increased entry of lactose via the lac
permease.

Suppose that the CAP dynamics is ignored, so that we can focus on the positive
feedback loop indicated in Fig. 6.8 by solid arrows. Let A denote the concentration
of allolactose and similarly for lactose (L), the permease (P), the protein product
β -galactosidase (B), mRNA (M), and the repressor (R). Let pon and poff denote the
probabilities that the operon is on and off, respectively, with pon+ poff = 1. Ignoring
the effect of the CAP site, we have the simple kinetic scheme

d pon

dt
= k−r(1− pon)− krR

∗pon,

where R∗ is the concentration of repressor in the activated state. Each activated
repressor protein interacts with two molecules of allolactose to become inactivated,
so from mass-action kinetics,

dR∗

dt
= k−aR− kaA2R∗,

where the binding/unbinding of a single repressor molecule to the operon has a
negligible effect on the total concentration RT = R+R∗. The next simplification is
to take these reactions to be much faster than those associated with gene expression
so that pon and R∗ take the steady-state values

R∗ =
RT

1+KaA2 , pon =
1

1+KrR∗
,

with Ka = ka/k−a and Kr = kr/k−r. Combining these two results gives the steady-
state probability

pon =
1+KaA2

1+KrRT +KaA2 ≡ Γ (A).

It follows that the concentration of mRNA is determined by the equation

dM
dt

= αMΓ (A)− γMM, (6.4.13a)
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where αM and γM are the rates of mRNA production and degradation. This is the
first of the model equations. The next two equations represent the dynamics of the
enzymes directly produced by the on-state of the operon, namely, permease and
β -galactosidase:

lac operon
off

RNA polymerase

k+k_

repressor

lac operon
on

CAP

glucose

lactose

Fig. 6.9: Repressor and CAP sites for the lac operon

dP
dt

= αPM− γPP, (6.4.13b)

dB
dt

= αBM− γBB. (6.4.13c)

Note that although both enzymes are produced by different parts of the same mRNA,
the effective production rates differ due to different times of production (perme-
ase is produced after β -galactosidase) and the time delay associated with permease
migrating to the cell membrane. The final two equations specify the dynamics of
lactose and allolactose based on Michaelis–Menten kinetics (see Box 6B). Let Le

be a fixed concentration of lactose exterior to the cell. Lactose enters the cell at a
Michaelis–Menten rate proportional to the permease concentration P, where it is
converted to allolactose via the enzymatic action of β -galactosidase; the latter also
breaks down allolactose into glucose and galactose. Thus

dL
dt

= αLP
Le

KLe +Le
−αAB

L
KL +L

− γLL (6.4.13d)

dA
dt

= αAB
L

KL +L
−βAB

A
KA +A

− γAA. (6.4.13e)

Keener and Sneyd [322] show that for physiologically based parameter values, the
system of Eq. (6.4.13) exhibits bistability in the interior lactose concentration as a
function of the exterior lactose concentration Le. Note that the stochastic analysis
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outlined in Sect. 6.4.1 for the mutual repressor model could be extended to the more
complicated model of the lac operon in order to investigate the effects of intrinsic
noise on the bistable switch.

6.4.3 Genetic Oscillator Network

There are numerous examples of gene circuits that support oscillations. Here we
consider a relaxation oscillator consisting of an activator that increases its own pro-
duction and that of a repressor, which in turn represses the production of the activa-
tor (see Fig. 6.10). Let x denote the concentration of the activator and y denote the
concentration of the repressor. The resulting kinetic equations take the form

dx
dt

=−γxx+ r0x
1

1+(x/Kd)2 +(y/Kd)2 + rx
(x/Kd)

2

1+(x/Kd)2 +(y/Kd)2 (6.4.14a)

dy
dt

=−γyy+ r0y
1

1+(x/Kd)2 + ry
(x/Kd)

2

1+(x/Kd)2 , (6.4.14b)

where γx,γy are the degradation rates of the two proteins, r0x,r0y are protein pro-
duction rates when respective promoters are not bound by transcription factors, and
rx,ry are the enhanced production rates when the promoter sites are activated. (It is
assumed that when the promoter of gene X is repressed, production of protein X is
blocked.) The production terms are based on the equilibrium binding probabilities
of the X and Y promoter domains. The Hill coefficient n = 2 arises because the tran-
scription factors bind as dimers. In the case of the unbound promoter A of activator
gene X, the binding reactions are

2X +A � A+, 2Y +A � A−,

where A± denote the activated and repressed promoter states. In terms of the equi-
librium law of mass action (see Sects. 1.4 and 4.1), the concentrations of the various
reactants and products satisfy

[A+]

[X2][A]
=

1
Kd

,
[A−]
[Y 2][A]

=
1

Kd
,

with the dissociation constant Kd taken to be the same for both binding reactions.
Denoting the total concentration of promoter domains of gene X by TA = [A] +
[A+]+ [A−], we have

[A+]

TA− [A+]− [A−]
=

[X2]

Kd
,

[A−]
TA− [A+]− [A−]

=
[Y 2]

Kd
.

These can be solved to give the equilibrium probabilities that the X promoter domain
is activated or repressed:
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[A+]

TA
=

([X ]/Kd)
2

1+([X ]/Kd)2 +([Y ]/Kd)2 ,
[A−]
TA

=
([Y ]/Kd)

2

1+([X ]/Kd)2 +([Y ]/Kd)2 .

A similar analysis of the single binding reaction

2X +R � R+,

where R,R+ are the unbound and activated states of the Y gene promoter, yields

[R+]

TR
=

([X ]/Kd)
2

1+([X ]/Kd)2 ,

where TR is the total concentration of the Y gene promoter.
As in the case of the genetic switch, it is useful to nondimensionalize the equa-

tions by taking time to be in units of γ−1
y and concentrations in units of Kd :

dx
dt

=−γx+
R0x +Rxx2

1+ x2 + y2 (6.4.15a)

dy
dt

=−y+
R0y +Ryx2

1+ x2 , (6.4.15b)

gene X

X

Y

gene Y

Fig. 6.10: Activator–repressor model of a genetic oscillator. A gene X expresses a protein X that
activates the transcription of genes X and Y and protein Y represses the transcription of gene X

where γ = γx/γy and R0x = r0x/γ , etc. If γ � 1, then we have a slow–fast system with
the repressor acting as the slow variable. The existence of a relaxation oscillator can
then be established using phase-plane analysis.

6.4.4 The Circadian Clock and Molecular Noise

The circadian rhythm plays a key physiological role in the adaptation of living or-
ganisms to the alternation of night and day [214, 492]. Experimental studies of a
wide range of plants and animals has established that in almost all cases, autoregu-
latory feedback on gene expression plays a central role in the molecular mechanisms
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underlying circadian rhythms [335, 501]. Based on experimental data, a variety of
models of increasing complexity have been developed, which show how regulatory
feedback loops in circadian gene networks generate sustained oscillations under
conditions of continuous darkness [188, 222, 381, 382, 602, 648]. The resulting cir-
cadian oscillator has a natural period of approximately 24 h, which can be entrained
to the external light–dark cycle. Given that the circadian rhythm is controlled by
gene networks, this immediately raises the issue regarding the extent to which such
oscillations are robust to intrinsic noise arising from small numbers of molecules
[21, 187, 189, 227]. Here we review the analysis of Gonze et al. [228], who con-
sidered the effects of molecular noise on a minimal model of the circadian clock
in the fungus Neurospora [382]. A schematic diagram of the basic model is shown
in Fig. 6.11. A clock gene X (frq in Neurospora, per in Drosophila) is transcribed
to form mRNA (M), which exits the nucleus and is subsequently translated into
cytoplasmic clock protein (XC). The resulting protein either degrades or enters the
nucleus (XN) where it inhibits its own gene expression.

The governing equations for the concentrations m,xC,xN of mRNA, cytosolic
protein, and nuclear protein, respectively, are

dm
dt

= k
Kn

m

Kn
m + xn

N
− γ

m
K′m +m

(6.4.16a)

dxC

dt
= rm− γP

xC

Kp + xC
− k1xC + k2xN (6.4.16b)

dxN

dt
= k1xC− k2xN . (6.4.16c)

Here k is the unregulated rate of transcription, r is the rate of translation, and γ,γp

are the rates of mRNA and protein degradation; degradation is assumed to obey
Michaelis–Menten kinetics. The negative regulation of transcription is taken to be
cooperative with a Hill coefficient of n. Finally, the rate constants k1,k2 character-
ize the transport of protein into and out of the nucleus. It can be shown that the
above model exhibits limit cycle oscillations in physiologically reasonable parame-
ter regimes and thus provides a molecular basis for the sustained oscillations of the
circadian clock under constant darkness [382]. In order to explore the robustness
of such oscillations to molecular noise, it is necessary to turn to a master equation
formulation of the gene network. One can then approximate the master equation by
an FP equation as outlined in Box 6A, but now one has to linearize the FP equation
about a limit cycle rather than a fixed point.

As in previous examples of gene regulation, it is convenient to rewrite this system
of equations in the form of Eq. (6.3.17), which involves a sum over R= 6 single-step
reactions labeled by a, whose transition rates fa(x) and stochiometric coefficients
Sia are listed in the table below with x = (m,xC,xN)

T [228]. Given this decom-
position, one can now write down the FP equation obtained under the diffusion
approximation [see also Eq. (6.3.20)]:
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clock gene X

cytosolic
protein (XC)

mRNA (M)

nuclear
protein (XN)

k1 k2

r

k

γ

γP

Fig. 6.11: Minimal model for a negative autoregulation network underlying circadian rhythms.
Transcription of a clock gene (X) produces mRNA (M), which is transported outside the nucleus
and then translated into cytosolic clock protein (XC). The protein is either degraded or transported
into the nucleus (XN ) where it exerts negative feedback on the gene expression

∂ p
∂ t

=−
3

∑
i=1

∂Vi(x)p(x, t)
∂xi

+
1

2Ω

3

∑
i, j=1

∂ 2Di j(x)p(x, t)
∂xi∂x j

, (6.4.17)

where Ω is the total number of molecules that can be present in the system, say,

Vi(x) =
R

∑
a=1

Sia fa(x), Di j(x) =
R

∑
a=1

SiaS ja fa(x). (6.4.18)

From Table 6.1, we deduce that

V1(x) = f1(x)− f2(x),V2(x) = f3(x)− f4(x)− f5(x)+ f6(x),V3(x) = f5(x)− f6(x),

and

D11(x) =
1
2
( f1(x)+ f2(x), D12 = D21 = D13 = D31 = 0,

D22(x) =
1
2
( f3(x)+ f4(x)+ f5(x)+ f6(x))

D23(x) = D32(x) =−1
2
( f5(x)+ f6(x)), D33(x) =

1
2
( f5(x)+ f6(x)).

In the deterministic limit Ω → ∞, we recover the deterministic model (6.4.16),
which can be rewritten in the more compact form

dxi

dt
=Vi(x), i = 1,2,3. (6.4.19)
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Reaction Transition rate Transition

X → X +M f1 = k
Kn

m
Kn

m + xn
N

M →M+1

M → /0 f2 = γ m
K′m +m

M →M−1

M → XC +M f3 = rm XC → XC +1

XC → /0 f4 = γP
xC

Kp + xC
XC → XC−1

XC → XN f5 = k1xC XC → XC−1, XN → XN +1

XN → XC f6 = k2xN XC → XC +1, XN → XN −1

Table 6.1: Single-step reactions of the minimal circadian clock gene network

One way to investigate the effects of molecular noise on the circadian clock is
to linearize the FP equation about the limit cycle solution, analogous to the linear
noise approximation for Gaussian-like fluctuations about fixed points (see Box 6A).
However, the linear noise approximation requires that perturbations remain small
for all times, which is not the case for limit cycles, since they are marginally stable
with respect to phase shifts around the limit cycle. Therefore, one needs to separate
out the effects of longitudinal and transverse fluctuations of the limit cycle [56, 578].
The basic intuition is that Gaussian-like transverse fluctuations are distributed in a
tube of radius 1/

√
Ω , whereas the phase around the limit cycle undergoes Brown-

ian diffusion. Thus, consider the Langevin equation corresponding to the FP equa-
tion (6.4.17):

dXi(t) =Vi(X(t))dt +
1√
Ω

n

∑
j=1

Di j(X(t))dWj(t), (6.4.20)

where n is the number of chemical species (n = 3 in the case of the circadian clock)
and Wj(t) are independent Wiener processes. We can then decompose the stochastic
vector X(t) according to

X(t) = x∗(t + S(t))+T(t), (6.4.21)

where the scalar random variable S(t) represents the undamped random phase shift
along the limit cycle and T(t) is a transversal perturbation (see Fig. 6.12). Since
there is no damping of fluctuations along the limit cycle, the random phase S(t)
is taken to undergo Brownian motion. The associated phase diffusion coefficient
Dθ is an effective time constant that characterizes the robustness of the oscillator
to intrinsic noise. However, it is important to note that the decomposition (6.4.21)
is not unique, so that the precise definition of the phase depends on the particular
method of analysis.
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x*(t)

X(t)

x*(t+S(t))

T(t)

Fig. 6.12: Decomposition of a stochastic limit cycle X(t) into a random phase shift S(t) along the
deterministic limit cycle x∗(t) and a random transversal component T(t)

For example, one recent study defines the phase in order to ensure that the mean
size of transversal fluctuations remains small [343]. On the other hand, Gonze et
al. [228] estimate Dθ for their circadian clock model using an alternative approach
based on a WKB approximation of solutions to the FP equation (see also [210, 650]).
In particular, they find Dθ ∼ 1/Ω so that larger systems are more robust to noise
as one would expect. Gonze et al. also determine the rate of decay of correlations.
Let x0 be a point on the deterministic limit cycle and suppose X(0) = x0. Define the
rth return time τr of a trajectory to be when an arbitrarily chosen component Xj(t)
returns to x j,0 for the rth time, Xj(τr) = x j,0. In the deterministic case, τr = rT where
T is the minimal period of the limit cycle oscillation. For sufficiently large Ω (small
noise), we expect the distribution of first return times τ1 = τ to be approximately
given by the Gaussian

P(τ)∼ 1√
2πDθ T

exp

[
− (τ−T )2

2Dθ T

]
.

It can also be shown that the autocorrelation function for each concentration takes
the form of damped oscillations [210, 228],

Cj(t) = 〈Xj(t)Xj(0)〉

≈Cj,0 +Cj,1e−t/γ cos(ωt +α j), t → ∞, (6.4.22)
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Fig. 6.13: Illustration of the time evolution of one of the autocorrelation functions of the stochastic
circadian clock model considered by Gonze et al. [228]. As the system size Ω is decreased, the
rate of decay of correlations becomes more rapid. Parameter values can be found in [228]

for some coefficients Cj,0,Cj,1 and phases α j, with

ω ≈ 2π
T

, γ ≈ T 2

2Dθ π2 . (6.4.23)

It follows that the rate of decay γ−1 of correlations is inversely proportional to the
system size (see Fig. 6.13).

6.4.5 Quasi-Cycles in a Biochemical Oscillator

In Sect. 6.4.4, we discussed the effects of intrinsic noise on a biochemical limit cy-
cle oscillator that exists in the absence of noise. One also finds that stochastic bio-
chemical and gene networks can exhibit noise-induced oscillations (quasi-cycles)
in parameter regimes for which the underlying deterministic kinetic equations have
only fixed point solutions. These quasi-cycles are characterized by a peak in the
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power spectrum obtained using a linear noise approximation of the chemical master
equation. Following Boland et al. [55, 56], we will illustrate this using a stochas-
tic version of the Brusselator. (A spatially extended version of the model will be
considered in Sect. 9.3.) The Brusselator is an idealized model of an autocatalytic
reaction, in which at least one of the reactants is also a product of the reaction [220].
The model consists of two chemical species X and Y interacting through the follow-
ing reaction scheme:

/0
a→ X

X
b→ Y

2X +Y
c→ 3X

X
d→ /0

These reactions describe the production and degradation of an X molecule, an X
molecule spontaneously transforming into a Y molecule, and two molecules of X
reacting with a single molecule of Y to produce three molecules of X . The corre-
sponding mass-action kinetic equations for u = [X ],v = [Y ] are (after rescaling so
that c = d = 1)

du
dt

= a− (b+ 1)u+ u2v, (6.4.24a)

dv
dt

= bu− u2v. (6.4.24b)

The system has a fixed point at u∗ = a,v∗ = b/a, which is stable when b < a2 + 1
and unstable when b > a2 + 1 (see below). Moreover, the fixed point undergoes a
Hopf bifurcation at the critical value b = a2 +1 for fixed a, leading to the formation
of a stable limit cycle (see Box 4B).

Following the examples of Sect. 6.3, it is straightforward to write down a stochas-
tic version of the Brusselator model. Let n1(t) and n2(t) denote the number of X and
Y molecules at time t, respectively, and take Ω to be cell volume. The various state
transitions are

(n1,n2)
T1→ (n1 + 1,n2), (6.4.25a)

(n1,n2)
T2→ (n1− 1,n2 + 1) (6.4.25b)

(n1,n2)
T3→ (n1 + 1,n2− 1) (6.4.25c)

(n1,n2)
T4→ (n1− 1,n2), (6.4.25d)

with n = (n1,n2) and

T1 = Ωa, T2 = bn1, T3 = n2
1n2/Ω 2, T4 = n1. (6.4.26)
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It is convenient to rewrite the kinetic equations (6.4.24) in the generic form (6.3.17):

dui

dt
=

p

∑
r=1

Sir fr(u1,u2), i = 1,2 (6.4.27)

where u j = n j/Ω , r labels the single-step reaction, p is the number of single-step
reactions, and S is the stochiometric matrix. In the case of the Brusselator model,
Eq. (6.4.24) shows that p = 4,

S11 = 1,S21 = 0, S12 =−1,S22 = 1, S13 = 1,S23 =−1, S14 =−1,S24 = 0,

and Ω fr(n1/Ω ,n2/Ω) = Tr(n1,n2). The corresponding master equation is then
given by [see Eq. (6.3.18)],

dP(n1,n2, t)
dt

= Ω
p

∑
r=1

(

∏
i=1,2

E
−Sir − 1

)

fr(n1/Ω ,n2/Ω)P(n1,n2, t). (6.4.28)

Now suppose that Ω is sufficiently large so that we can carry out a linear noise
approximation and obtain a Langevin equation for a multivariate OU process (see
Box 6A). That is, we approximate the master equation (6.4.28) by an FP equation
and then linearize about the fixed point (u∗,v∗) by setting

n j

Ω
= u j = u∗j +

1√
Ω

v j.

This yields the Langevin equation

dv j(t)

dt
= ∑

j′
A j j′v j′(t)+η j(t), (6.4.29)

with white noise terms satisfying

〈η j(t)〉= 0, 〈η j(t)η j′(t
′)〉= D j j′δ (t− t ′).

Here

A j j′ =
p

∑
r=1

S jr
∂ fr(u∗1,u

∗
2)

∂u∗j′
(6.4.30)

and

D j j′ =
p

∑
r=1

S jrS j′r fr(u
∗
1,u

∗
2). (6.4.31)

Fourier transforming the Langevin equation with respect to time using

Vi(ω) =

∫ ∞

−∞
eiωt vi(t)dt
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etc. gives

∑
l

Φ jl(ω)Vl(ω) = η j(ω)

with
Φ jl(ω) =−iωδ j,l−A jl

and
〈η j(ω)〉= 0, 〈η j(ω)η j′(ω ′)〉= D j j′δ (ω +ω ′).

Hence,

〈Vi(ω)Vi(ω ′)〉=
〈[

∑
l

Φ−1
il (ω)ηl(ω)

][

∑
j

Φ−1
i j (ω ′)η j(ω ′)

]〉

= δ (ω +ω ′)∑
l, j

Φ−1
il (ω)Dl jΦ−1

i j (−ω ′).

Defining the power spectrum of the ith chemical species by (see Sects. 2.2.4 and
6.3)

〈Vi(ω)Vi(ω ′)〉= Si(ω)δ (ω +ω ′),

we deduce that
Si(ω) = ∑

l, j

Φ−1
il (ω)Dl j(Φ†)−1

ji (ω). (6.4.32)

Note that the above analysis applies to any two-species master equation of the
form (6.4.28) and can be extended to multiple species. In the case of the Brusselator
model system, whose deterministic kinetic equations are given by Eq. (6.4.24), we
have

∑
r

S1r fr(u1,u2) = a− (b+ 1)u1+ u2
1u2, (6.4.33)

∑
r

S2r fr(u1,u2) = bu1− u2
1u2. (6.4.34)

It follows that

A =

(
b− 1 a2

−b −a2

)
, (6.4.35)

and

D =

(
2(b+ 1)a −2ba
−2ba 2ba

)
(6.4.36)

on setting u∗1 = a,u∗2 = b/a. The corresponding power spectra are [55]

S1(ω) = 2a((1+ b)ω2+ a4)Γ (ω)−1, S2(ω) = 2ab(ω2 + 1+ b)Γ (ω)−1,
(6.4.37)

where
Γ (ω) = (a2−ω2)2 +(1+ a2− b)2ω2.
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Fig. 6.14: Power spectrum S1(ω) of fluctuations in the concentration of X molecules in Brusselator
system for parameter values in the fixed point regime of the kinetic equations (6.4.24): a = 1 and
b = 1.0,1.1,1.3

In Fig. 6.14 we plot the power spectrum S1(ω) in a parameter regime where the
deterministic kinetic equation (6.4.24) support a stable fixed point. It can be seen
that there is a peak in the power spectrum at ω = ωc �= 0, indicating the presence
of stochastic oscillations (quasi-cycles) even though the deterministic system oper-
ates below the Hopf bifurcation point. Moreover the frequency ωc is approximately
equal to the Hopf frequency of limit cycle oscillations beyond the bifurcation point.
Thus, intrinsic noise can extend the parameter regime over which a biochemical sys-
tem can exhibit oscillatory behavior. An analogous result holds for Turing pattern
formation, as discussed in Sect. 9.3.

6.5 Information Transmission in Regulatory Networks

So far in this chapter we have focused on methods for calculating the level of molec-
ular noise in gene networks. However, as we indicated in the introduction, one im-
portant consequence of noise is that it can limit the ability of a network to transmit
information. In this section we show how to mathematically quantify this idea, fol-
lowing closely the recent review by Tkacik and Walczak [631]. In order to motivate
the analysis, let us return to the simple feedforward regulatory network considered
in Sect. 6.3.2 and Fig. 6.3. We now make explicit the fact that the rate at which the
gene switches to its active state will depend on the background concentration c(t)
of the transcription factor Y . Therefore, we set k+ → k+c and treat the network
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as an input/output device c(t)→ x(t), where x(t) is the protein concentration (see
Fig. 6.15). In the case of promoter switching that is faster than the protein kinet-
ics and time variation of c, the probability p1 that the gene is active reaches the
QSS p1(c) = k+c/(k+c+k−). Therefore, ignoring intrinsic fluctuations, the protein
concentration evolves according to the kinetic equation

dx
dt

= rk+c(t)/(k+c(t)+ k−)− γx(t). (6.5.1)

In the case of a constant input, the steady-state solution is

x̄(c)≡ r
γ

k+c
k+c+ k−

, (6.5.2)

input c(t)

output x(t)

n(t)

Y

Fig. 6.15: Simple regulatory network represented as a noisy input/output channel. The input signal
is the concentration c(t) of transcription factor and the output signal is the concentration x(t) of
expressed protein. The internal state n(t) of the channel specifies whether the gene is in the active
(n = 1) or inactive (n = 0) state

which is an invertible function. Hence, we can faithfully reconstruct the input from
the output—we have lossless channel. However, this no longer holds when the ef-
fects of intrinsic noise are included. Given a fixed input and weak noise, the output
response can be characterized in terms of the stationary Gaussian distribution

P(x|c) = 1
√

2πσ2
X(c)

e−(x−x̄(c))2/2σ 2
X (c), (6.5.3)

where σ2
X (c) is the variance of the protein concentration. In Sect. 6.3.2 we calcu-

lated the variance in the case of a large but finite population of genes using a linear
noise approximation. We found that there were two contributions to the variance—
input noise arising from the stochastic binding and unbinding of transcription fac-
tors and output Poisson noise due to the finite number of proteins [see Eq. (6.3.16)].
Both terms depend on c under the substitution k+→ k+c. It turns out that analogous
terms arise in the case of a single gene. However, the input noise tends to be smaller
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than diffusion noise, which arises from the passive transport of transcription factors
within the nucleus [632]. Therefore, applying the Berg–Purcell theory of diffusion-
limited reactions to estimate the size of fluctuations in the input concentration c (see
Sect. 5.1), we have σ2

c = c/(Daτ) where D is the diffusivity, a is the size of the pro-
moter binding site, and τ is the detection time (taken to be the lifetime of a protein).
The total output variance is then

σ2
X(c) = x̄(c)+

(
dx̄(c)

dc

)2

σ2
c , (6.5.4)

where the factor (dx̄(c)/dc)2 converts input fluctuations to output fluctuations in the
small noise limit.

Suppose that the inputs are drawn from some stationary distribution P(c). A fun-
damental issue is finding a way to quantify how much information one can extract,
in principle, about the values of the input c based on measurements of the output
x, given the conditional probability P(x|c). Since the joint probability distribution
is P(x,c) = P(x|c)P(c), it follows that if x and c were statistically independent (c-
independent x̄ and σ2

X ), then P(c,x) = P(c)P(x) and P(x|c) = P(x). In this case the
channel cannot transmit any information. This suggests that quantifying the amount
of information transmitted involves some measure of the statistical interdependence
of the inputs and outputs. A first guess might be the covariance

Cov(c,x) =
∫ ∫

(c−〈c〉)(x−〈x〉)dxdc.

However, this only captures linear correlations, whereas many gene networks are
nonlinear input/output devices. A much more general measure of statistical interde-
pendence, which is based on a minimal number of assumptions about the underlying
stochastic process, was introduced by Shannon [582] and is known as the mutual in-
formation between c and x.

6.5.1 Entropy and Mutual Information

In Sect. 1.4 we introduced the notion of entropy in terms of the number of differ-
ent configurations M that a macromolecule with given energy E can realize, that is,
S = kB lnM. (In statistical mechanics this is referred to as the entropy of a micro-
canonical ensemble.) An implicit assumption is that each of these microstates i is
equally likely so the probability distribution over the set of microstates for fixed E
is uniform, pi = 1/M. Hence, we could rewrite the entropy as

S =−kB ∑
i

pi ln pi. (6.5.5)
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It turns out that such a formula also applies to systems with different constraints
than fixed energy, where the distribution pi is not uniform. One example is the
Boltzmann–Gibbs distribution itself, where one allows the energy to fluctuate but
the mean energy is fixed by the temperature of the surrounding environment. The
basic idea is that the entropy still counts the number of accessible states but weights
them according to the probability of observing a given state. Shannon subsequently
introduced an information theoretic notion of entropy as a measure of the uncer-
tainty of a random variable; the larger the entropy, the greater the amount of infor-
mation that is generated by observing the state of the system. The convention in
information theory is to set kB = 1 and to use base 2 logarithms. Thus, the Shannon
entropy is defined according to

S =−∑
i

pi log2 pi (6.5.6)

so that S is measured in bits. One bit is the entropy of a binary variable that has two
equally accessible states. In the case of M possible states, the entropy takes values
in the range 0 ≤ S ≤ log2 M. If S = 0, then there is no uncertainty and making a
measurement yields no new information. On the other hand, the entropy is maxi-
mal when pi = 1/M. It is also possible to define Shannon entropy for a continuous
random variable such as the concentration c of a protein:

S =−
∫

p(c) log2 p(c)dc. (6.5.7)

(Note that certain care has to be taken, since the entropy depends on the units chosen
for the continuous random variable. However, we will be interested in changes in
entropy where this is no longer an issue.)

Recall that we want to find some measure of the statistical interdependence of
an input c and an output x. From the perspective of information theory, one can
quantify this in terms of how much one’s uncertainty in x is reduced by knowing c.
Prior to knowing c, the entropy is S[PX ] = −

∫
P(x) log2 P(x)dx, whereas after c is

specified the entropy becomes S[PX |C] = −
∫

P(x|c) log2 P(x|c)dx. Thus, a measure
of the reduction in uncertainty is the entropy difference

ΔS = S[PX ]− S[PX |C].

Now imagine measuring the entropy difference over an ensemble of different input
concentration regimes distributed according to P(c). The resulting quantity is called
the mutual information

I(c;x) =
∫

P(c)(S[PX ]− S[PX |C])dc. (6.5.8)

One important property of the mutual information is that it is symmetric with respect
to exchanging input and output. In order to see this, we use the definition of Shannon
entropy, and the relation between joint and conditional probabilities:
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I(c;x) =−
∫ ∫

P(c) [P(x) log2 P(x)−P(x|c) log2 P(x|c)]dxdc

=
∫ ∫ [

P(c,x) log2
P(c,x)
P(c)

−P(c,x) log2 P(x)

]
dxdc

=

∫ ∫ [
P(c,x) log2

P(c,x)
P(c)P(x)

]
dxdc =

∫ ∫ [
P(c,x) log2

P(c|x)
P(c)

]
dxdc

=
∫ ∫

[P(c|x)P(x) log2 P(c|x)−P(c,x) log2 P(c)]dxdc

=−
∫ ∫

P(x) [P(c) log2 P(c)−P(c|x) log2 P(c|x)]dcdx.

Hence, the mutual information measures how much, on average, our uncertainty in
one variable is reduced by knowing the value of the complementary variable.

Example 6.1 (Gaussian noise). As an illustration of the above ideas, suppose that an
input signal is corrupted by additive Gaussian noise

x = γc+ ξ .

This means that the conditional probability distribution is

P(x|c) = 1√
2πσ2

exp

(
− (x− γc)2

2σ2

)
.

Also suppose that the input c is also drawn from a Gaussian distribution,

P(c) =
1

√
2πσ2

c

exp

(
− c2

2σ2
c

)
.

It follows that x is also a Gaussian with

P(x) =
∫

P(x|c)P(c)dc =
1

√
2πσ2

x

exp

(
− x2

2σ2
x

)

with
σ2

x = γ2σ2
c +σ2.

The mutual information is

I(c;x) =
1

ln2

∫ ∫ [
P(c,x) ln

P(x|c)
P(x)

]
dxdc

=
1

ln2

∫ ∫
P(c,x)

[

ln

(√
2πσ2

x

2πσ2

)

− (x− γc)2

2σ2 +
x2

2σ2
x

]

dxdc,
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on using the identity log2 x = lnx/ ln2. Using the results
∫ ∫

P(c,x)x2dxdc = 〈x2〉,∫ ∫
P(x,c)dxdc = 1, and

∫ ∫
P(c,x)(x− γc)2dxdc =

∫ ∫
P(x|c)P(c)(x− γc)2dxdc = σ2,

we deduce that

I(c;x) =
1

ln2
ln

(√
σ2

x

σ2

)

=
1
2

log2

(
1+

γ2σ2
c

σ2

)
. (6.5.9)

The mutual information depends on the so-called SNR σ2
c /σ2. It can also be shown

that in the case of Gaussian additive noise, information transmission or mutual in-
formation is maximized for a given input variance when the input is drawn from a
Gaussian distribution [631].

6.5.2 Optimizing Mutual Information in a Simple
Regulatory Network

A basic goal of information theory within the context of gene regulatory networks
is to determine the distribution of inputs for which a network with a given form
of intrinsic noise maximizes its information transmission as measured by mutual
information. This program has been developed for a range of networks with ever
increasing complexity, including multiple gene products that may interact, and self-
regulatory feedback [632–635, 665]. For related studies on information transmis-
sion, see [105, 383, 638, 705]. In order to make analytical progress, the system is
usually assumed to operate in the small noise regime so that the various conditional
probability distributions can be approximated by Gaussians. Here we will illustrate
the basic ideas by focusing on the simple regulatory network of Fig. 6.15, following
the analysis of Tkacik et al. [634]. Since we are optimizing with respect to P(c), we
use the following version of the mutual information:

I(x;c) =−
∫

P(c) log2 P(c)dc+
∫ ∫

P(c|x) log2 P(c|x)dcdx. (6.5.10)

However, to use this formula, it is necessary to determine P(c|x) given P(x,c).
Exploiting the small noise approximation, we model P(c|x) as the Gaussian

P(c|x) = 1
√

2πσ2
C(x)

e−(c−c̄(x))2/2σ 2
C(x), (6.5.11)



314 6 Stochastic Gene Expression and Regulatory Networks

where c̄(x) is the most likely value of c given the output x and σ2
C(x) is the corre-

sponding variance about the expected value. Substituting into the expression for the
mutual information yields

I(x;c) =−
∫

P(c) log2 P(c)dc− 1
2

∫
P(x) log2[2πeσ2

C(x)]dx.

It remains to determine c̄(x) and σ2
C(x). Using Bayes’ theorem (Sect. 1.3), we have

P(c|x) = P(x|c)P(c)
P(x)

=
1

Z(x)
e−F(c,x),

where all c-independent terms have been lumped together in the normalization fac-
tor Z and, from Eq. (6.5.3),

F(c,x) =− lnP(c)+
1
2

lnσ2
X (c)+

1
2
(x− x̄(c))2

σ2
X (c)

.

Comparison with Eq. (6.5.11) shows that c̄(x) and σ2
C(x) are defined by

∂F(c,x)
∂c

∣
∣
∣∣
c=c̄(x)=0

= 0,
∂ 2F(c,x)

∂c2

∣
∣
∣∣
c=c̄(x)=0

=
1

σ2
C(x)

.

Expanding the solution for 1/σ2
C(x) to leading order in 1/σ2

X(c) (small noise ap-
proximation) then gives [634]

1

σ2
C(x)

=
1

Σ2(c)
≡ 1

σ2
X (c)

(
dx̄(c)

dc

)2

(6.5.12)

and hence

I(x;c) =−
∫

P(c) log2 P(c)dc+
1
2

∫
P(c) log2

[
1

2πe
1

Σ2(c)

]
dc. (6.5.13)

We have used the fact that, to leading order, P(x)dx = P(c)dc in the small noise
limit.

We now have the variational problem of finding the input distribution P∗(c) that
maximizes the mutual information. However, it is first necessary to specify certain
constraints regarding the optimization procedure. First, there is a maximum number
of proteins involved, which can be imposed by restricting the allowed range of the
input concentration c and the corresponding expected number of proteins x̄(c); the
latter is typically implemented by normalizing ḡ(c) to lie in the interval [0,1]. The
constraint that

∫ cmax
0 P(c)dc = 1 can be incorporated into the variational problem

using a Lagrange multipler λ , so that the optimization problem takes the form

δ
δP(c)

[
I(x;c)−λ

∫
P(c)dc

]
= 0. (6.5.14)
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Using the expression for I(x;c) and properties of functional derivatives1, one finds
that the optimal input distribution P∗(c) satisfies

0 =
1
2

ln

[
1

2πe
1

Σ2(c)

]
− lnP∗(c)− 1−λ ln2.

Rearranging and exponentiating gives the optimal distribution

P∗(c) =
1
Z

1√
2πe

1
Σ(c)

, (6.5.15)

where Z = e1+λ ln2 is a normalization factor with

Z =

∫ cmax

0

1√
2πe

dc
Σ(c)

. (6.5.16)

The corresponding optimal mutual information is simply

I∗ = log2 Z. (6.5.17)

Note that the resulting expression for I∗ will still depend on the various parameters
of the underlying regulatory network. These include the parameters associated with
the kinetics of binding and unbinding of transcription factors as in Eq. (6.5.4) and, in
more complex networks, interactions between multiple gene products. Thus, there
is an additional optimization step in which one maximizes the mutual information
I∗ with respect to these network parameters. Some of the predictions regarding the
structure of optimal networks can be found elsewhere [105, 634, 635, 665, 705].
Here we illustrate the theory with the simple regulatory network given by Fig. 6.15.
From Eqs. (6.5.4) and (6.5.16),

Z =

∫ cmax

0

1√
2πe

(dx̄(c)/dc)2

x̄(c)+ c(dx̄(c)/dc)2 . (6.5.18)

1 The mutual information is expressed as a functional of P(c), that is, I = I[P]. By analogy with the
least-action principle of classical mechanics (see Chap. 10), we can take the functional derivative
according to

δ I = lim
ε→0

1
ε
(I[P+ εδ P]− I[P]),

where δ P(c) is an arbitrary smooth function. Evaluating the first term in I, after converting to
natural logarithms, we have
∫
[P(c)+ εδ P(c)] ln(P(c)+ εδ P(c))dc−

∫
P(c) lnP(c)dc = ε

∫
δ P(c)[lnP(c)+1]dc+O(ε2).

Combining this with the other terms and using the fact that δ P(c) is arbitrary, we can set the total
factor multiplying δ P(c) to be zero, which yields Eq. (6.5.15).
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Fig. 6.16: The optimal input/output relations for repressors (dashed line) and activators (solid line)
for the simple regulatory network shown in Fig. 6.15 (Adapted from Tkacik and Walczak [631])

Here c has been nondimensionalized by fixing Daτ and normalizing x̄. Suppose that
x̄(c) is given by the Hill function

x̄(c) =
cn

Kn + cn .

For fixed cmax the only free parameters are K and n. Optimizing the mutual infor-
mation with respect to these parameters leads to the results shown in Fig. 6.16.

We end this brief detour into the world of information theory by briefly noting
some potential limitations of the above approach, as highlighted in the review by
Tkacik and Walczak [631]. First, there is no a priori reason why information should
be identified as an appropriate measure of biological function. Second, even if it is
an appropriate measure, it is possible that gene networks and biochemical signaling
pathways have not yet become optimized for biological function through evolution.
That is, the networks observed today simply reflect their particular evolutionary his-
tory rather than some history-independent optimization scheme. On the other hand,
recent experiments concerning specific gene networks active during early develop-
ment suggest that at least these networks operate close to the limits imposed by
intrinsic noise [237]. Finally, in order to strengthen the links between theory and
experiment, it will be necessary to confront the following theoretical challenges:
(i) dealing with information transmission in time-dependent nonlinear networks;
(ii) understanding information transmission in spatially inhomogeneous systems;
(iii) extending analytical methods beyond the small noise limit; (iv) linking informa-
tion transmission to other important measures of network function such as metabolic
cost.
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6.6 Fluctuations in DNA Transcription

One of the simplifications in the models of gene expression discussed so far is that
the multistage processes underlying transcription and translation have been reduced
to single-step processes with exponential waiting times (Poisson approximation).
However, transcription (and also translation) can be broken up into at least three
stages called initiation, elongation, and termination [128, 238]. During the initiation
stage, RNAP binds to a promoter site on the DNA and unzips the double helix so
that the strand of DNA to be transcribed is made accessible. Following the tran-
scription of the first few nucleotides, the so-called transcription elongation complex
(TEC) is formed, which consists of the RNAP, the DNA, and the emerging mRNA.
This signals the beginning of the elongation phase where the TEC slides along the
DNA, extending the transcript one nucleotide at a time. The process is terminated
when a specific site is reached, for example, and the nascent mRNA is released. An
implicit assumption of the single-step Poisson approximation of gene transcription
is that the rate-limiting step is initiation. However, there is growing evidence from
single-molecule experiments that initiation can be much faster than elongation [18].
Moreover, in vitro studies of E. coli RNAP have established that processive mRNA
synthesis is often disrupted by transcriptional pauses that can last anything from
1s to more than 20s [258, 469]. In some cases, the pauses are linked with the re-
verse translocation of the RNAP along the DNA, a process known as backtracking
[482]. These observations suggest that the distribution of transcription times might
be non-exponential with heavy tails arising from the long transcriptional pauses.

Recently, there have been a number of stochastic models of the elongation stage
and backtracking [413, 535, 552, 661, 690]. For the sake of illustration, we will
focus on the model of Voliotis et al. [661], which is based on a master equation
description of the dual processes of the TEC translocating along the DNA and the
extension of the nascent mRNA via polymerization. A schematic diagram of the
basic kinetics is shown in Fig. 6.17 in the simpler case that backtracking cannot
occur. Suppose that n nucleotides have been transcribed and the active site of RNAP
is at the end of the precursor mRNA chain. Denote this so-called pretranslocated
state of the active site by m = 0. The active site can then shift one step beyond the
precursor mRNA to form a posttranslocated state denoted by m = 1. It is now in
a position to add the next nucleotide to the precursor mRNA by polymerization so
that n→ n+ 1 and m resets to 0. The rates of polymerization and depolymerization
are given by k f and kb, while the rates of forward and backward translocation are
given by a and b. Let Pn,m(t) be the probability of finding the TEC in state (n,m) at
time t. The corresponding master equation is given by [661]

dPn,0

dt
= k f Pn−1,1 + bPn,1− (kb + a)Pn,0 (6.6.1a)

dPn,1

dt
= kbPn+1,0 + aPn,0− (k f + b)Pn,1, (6.6.1b)
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Fig. 6.17: Schematic illustration of the transcription elongation complex (TEC). In the absence of
fluctuations, the active transcription site in the pretranslocated state (m = 0) takes one step beyond
the nascent mRNA to enter the posttranslocated state (m = 1). Translocation is a reversible reaction
with transition rates a and b. The site can then add one nucleotide to the mRNA via polymerization
so that n → n+ 1 and m = 1 → m = 0. This step is also reversible with forward and backward
transition rates k f ,kb, respectively (Redrawn from [661])

with n = 0,1, . . .N − 1. There is a reflecting boundary condition at n = 0, which
can be implemented by introducing a fictitious state n = −1 and setting kbP0,0 =
k f P−1,1. Similarly, there is an absorbing boundary condition PN,0 = 0, since the
process terminates when n = N is reached.

The first step in the analysis is to introduce the mean occupancy for each translo-
cation step (m = 0,1) by summing over all nucleitide positions n = 0, . . . ,N − 1.
Setting Πm(t) = ∑N−1

n=0 Pn,m(t) and using the boundary conditions, we have

dΠ0

dt
= (k f + b)Π1− (kb + a)Π0, Π1 = 1−Π0
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with the initial condition Π0(0) = 1. There is convergence to the steady-state
solution

Π ∗
0 = (k f + b)τ, Π ∗

1 = (kb + a)τ, τ =
1

k f + kb + a+ b
,

with τ as the relaxation time. Assuming polymerization/depoylmerization is much
slower than translocation (k f ,kb � a,b), we can make the QSS approximation
Pm,n(t) = Π ∗

mPn(t) (see also Sect. 7.4), with Pn(t) satisfying the birth–death master
equation

dPn

dt
= ω−Pn+1 +ω+Pn−1− (ω++ω−)Pn, (6.6.2)

and the effective polymerization/depolymerization rates are

ω+ = k f (kb + a)τ ≈ k f a

a+ b
, ω− = kb(k f + b)τ ≈ kbb

a+ b
.

The boundary conditions become ω−P0 = ω+P−1 (reflecting) and PN = 0 (absorb-
ing). The elongation time is defined as the time for the TEC to reach position n = N
starting from n = 0. In terms of the mean-field model given by the birth–death pro-
cess, calculating the mean and variance of the elongation time requires solving a
FPT for the discrete Markov process. This can be achieved by following analogous
steps to the analysis of continuous process in Sect. 2.3.

Suppose that the TEC starts at position n(0) = n0. Define the survival probability
that the TEC has not yet reached the absorbing boundary at n = N by

S(n0, t) =
N−1

∑
n=0

P(n, t|n0,0), (6.6.3)

where we have made the initial condition explicit by setting Pn(t)→ P(n, t|n0,0).
If T is the (stochastic) elongation time, then S(n0, t) is the probability that T ≥
t. This implies that the cumulative distribution function of the elongation time is
1− S(n0,0). Hence the first and second moments of the elongation time are

T (n0) = 〈T 〉=
∫ ∞

0
t
∂S(n0, t)

∂ t
dt =

∫ ∞

0
S(n0, t)dt (6.6.4)

and

T2(n0) = 〈T 2〉=
∫ ∞

0
t2 ∂S(n0, t)

∂ t
dt = 2

∫ ∞

0
tS(n0, t)dt. (6.6.5)

Equations for S and the moments of T can be obtained by considering the backward
master equation

dP(n, t|n0,0)
dt

= ω+ [P(n, t|n0 + 1,0)−P(n, t|n0,0)]

+ω− [P(n, t|n0− 1,0)−P(n, t|n0,0)] . (6.6.6)
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The backward equation follows from differentiating with respect to t both sides of
the Chapman–Kolmogorov equation

P(n1,s|n0,0) = ∑
n

P(n1,s|n, t)P(n, t|n0,0).

Summing Eq. (6.6.6) from n = 0 to n = N− 1 shows that

dS(n0, t)
dt

= ω+ [S(n0 + 1, t)− S(n0, t)] +ω− [S(n0− 1, t)− S(n0, t)] , (6.6.7)

supplemented by the boundary conditions S(N, t) = 0 and S(0, t) = S(−1, t) and the
initial condition S(n0,0) = 1.

Let us now calculate the mean elongation time. Integrating Eq. (6.6.7) with re-
spect to t gives

−1 = ω+[T (n0 + 1)−T(n0)]+ω−[T (n0− 1)−T(n0)] (6.6.8)

with T (N) = 0 and T (0) = T (−1). Setting U(n0) = T (n0)−T (n0− 1) we obtain
the first-order difference equation

ω+U(n0 + 1)−ω−U(n0) =−1,

which has the solution U(0) = 0, U(1) = −1/ω+, U(2) = −1/ω+−ω−/ω2
+, etc.

that is

U(n) =− 1
ω+

[
1+

ω−
ω+

+
(ω−

ω+

)2
+ . . .+

(ω−
ω+

)n−1
]
.

Since −T (n) =U(N)+U(N− 1)+ . . .+U(n+ 1), we deduce that

T (n0) =
N

∑
n0+1

1
ω+

n−1

∑
m=0

(ω−
ω+

)m
. (6.6.9)

Introducing K =ω−/ω+ and noting that 0≤K < 1, we can sum the geometric series
to give [204, 661]

T (n0) =
1

ω+

N

∑
n=n0+1

1−Kn

1−K
=

1
ω+(1−K)

[
N− n0− Kn0+1−KN+1

1−K

]
.

Finally, setting n0 = 0 we obtain the mean elongation time μ = T (0) with

μ =
1

ω+(1−K)

[
N− K(1−KN)

1−K

]
. (6.6.10)

The variance can be calculated in a similar fashion (see Ex. 6.9). Here we simply
note that when chain lengthening is dominant, K � 1, both the mean and variance
are linear functions of the chain length N:

μ =
N

ω+
+K

N− 1
ω+

+O(K2), (6.6.11)
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Fig. 6.18: Distribution of elongation times (in units of the mean elongation time) for the TEC model
without backtracking. Results from mean-field theory are given by solid curves and superimposed
with stochastic simulations results. (a) Results for N = 1,000bp, ω+ = 20s−1, and various values
of K = ω−/ω+ . (b) Results for K = 0.01, ω+ = 20s−1, and different template lengths N (Adapted
from Voliotis et al. [661])

and

σ2 =
N

ω2
+

+ 4K
N− 1

ω2
+

+O(K2). (6.6.12)

For sufficiently long sequences N � 1, one finds that the distribution of elongation
times is given by a narrow Gaussian with fluctuations scaling as 1/

√
N. This adds a

characteristic delay to the Poisson-like distribution of initiation times (see Fig. 6.18).

TECa

b

unzipped DNA

nascent mRNA

transcription site

n transcribed 
nucleotides

m < 0

• • •-M -M+1 -2 -1 m = 0
c

c

c

c

d

c

backtracked states

Fig. 6.19: Schematic illustration of TEC backtracking. (a) Example of a backtracked state of the
TEC with m =−2. (b) Unbiased random walk model of backtracking. Transitions between back-
tracked states occur at a rate c. The TEC enters the backtracking regime from the state m = 0 at a
rate d and exits the backtracking regime at the rate c. (Redrawn from [661].)
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Moreover, if initiation is much faster than elongation, then the transcription time is
much more regular than if initiation dominates.

Voliotis et al. [661] show that the above picture persists when backtracking
pauses are included, provided that they are sufficiently rare. However, the distri-
bution of elongation times is drastically altered when backtracking becomes signif-
icant. The simplest way to incorporate backtracking into the model is to treat it as
a separate process. That is, one can introduce additional translocation states of the
TEC given by m = −1, . . . ,−M, which represent backtracked states shifted by |m|
steps from state m = 0. The duration of backtracking pauses can also be analyzed
in terms of a FPT problem—in this case, a random walk on a finite lattice with a
reflecting boundary at m =−M and an absorbing boundary at m = 0 (see Fig. 6.19).
One finds that there is a broad distribution of pause durations that exhibits power
law behavior at intermediate duration times. Consequently, the distribution of elon-
gation times is significantly altered. Numerical simulations of the full model also
suggest that the distribution of elongation times with long pauses naturally exhibits
switching between high and low mRNA product rats, resulting in transcriptional
bursting.

6.7 Kinetic Proofreading

A major requirement for proper cell function is that the genetic code is “read” with
few mistakes during protein synthesis or DNA replication. For example, both tran-
scription and translation involve the incorporation of specific molecular substrates
at particular times, namely, a specific mRNA nucleotide during the production of
mRNA or a specific amino acid during production of a protein. The incorporation
of each substrate involves some recognition site within an RNAP or a ribosome,
respectively, that is more energetically disposed to bind the correct substrate C, say,
rather than an incorrect substrate D. In a simple reaction scheme, the frequency of
errors is of the order e−ΔGCD/kBT , where ΔGCD is the smallest difference in binding
energies between the correct substrate and an incorrect substrate. The basic problem
is that typical values of ΔGCD cannot account for the small error rates observed in
protein synthesis. For example, the maximum frequency at which a wrong but simi-
lar amino acid is inserted during protein translation is 10−4, which means that even
smaller error rates must occur in each recognition step. The error rates are smaller
still in the case of DNA transcription, taking values around 10−9. Kinetic proofread-
ing is a mechanism for error correction in biochemical processes, which was first
introduced by Hopfield [273] and independently by Ninio [479]. The proofreading
mechanism increases specificity of biochemical interactions by including a number
of intermediate steps that can undo errors at the cost of increased reaction time and
free energy expenditure.
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Box 6B. Enzyme kinetics.

Enzymes are generally protein catalysts that help convert other molecules
called substrates into products, without themselves being changed by the
reaction. In contrast to single-step reactions, the rate of reaction does not
increase linearly with the concentration of substrate, since it saturates at
high concentrations. A simple model to explain this behavior was first
proposed by Michaelis and Menten. The basic reaction scheme involves
an enzyme E converting a substrate S to a complex C, which then breaks
down to form the product P together with the original enzyme. This can
be represented by the following two-step process:

S+E
k1�

k−1
C

k2→ P+E. (6.7.1)

Although all the reactions are reversible, reaction rates are typically mea-
sured under conditions in which the product P is continually removed
from the system, which effectively prevents the final reverse reaction
from occurring. Setting s = [S],c = [C],e = [E] and p = [P], we have
the system of kinetic equations

ds
dt

= k−1c− k1se, (6.7.2a)

de
dt

= (k−1 + k2)c− k1se, (6.7.2b)

dc
dt

=−(k−1 + k2)c+ k1se, (6.7.2c)

d p
dt

= k2c. (6.7.2d)

Note that the total concentration of enzyme is conserved, e+ c = e0 for
some constant e0. Hence, we can eliminate e such that

dc
dt

= k1e0s− (k−1 + k2 + k1s)c.

If the total concentration of enzyme is small, then s changes relatively
slowly, which suggests that c reaches steady state before s changes sig-
nificantly. Thus,

c = e0
k1s

k−1 + k2 + k1s
.

Under this so-called equilibrium approximation the overall rate of gener-
ating product (or depleting substrate) is
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d p
dt

= k2e0
k1s

k−1 + k2 + k1s
= k2e0

s
s+KM

, (6.7.3)

where KM is the Michaelis constant

KM =
k−1 + k2

k1
.

Hence, the rate of production is linear s when the substrate concentration
is low but saturates when s is sufficiently large. The resulting behavior is
referred to as Michaelis–Menten kinetics. For a more general discussion
of various kinetic schemes including Michaelis–Menten, see the books
by Siegel and Edelstein-Keshet [579] and Keeener and Sneyd [322].

Fig. 6.20: Ribosomes can bind to an mRNA chain and use it as a template for determining the
correct sequence of amino acids in a particular protein. Amino acids are selected, collected, and
carried to the ribosome by transfer RNA (tRNA) molecules, which enter one part of the ribosome
and bind to the messenger RNA chain. The attached amino acids are then linked together by an-
other part of the ribosome. Once the protein is produced, it can then “fold” to produce a specific
functional three-dimensional structure. Specificity is achieved through the interaction between the
codon (triplet of nucleotides) in mRNA and the anti-codon in the tRNA. (Public domain figure
from Wikipedia)
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6.7.1 Kinetic Proofreading in Protein Synthesis

Consider the binding interaction between a codon E of mRNA and the anti-codon
of a tRNA during protein synthesis (see Fig. 6.20). Let C denote the correct tRNA
and D an incorrect tRNA. Here E may be viewed as an enzyme acting on a substrate
C or D according to a classical Michaelis–Menten scheme (see Box 6B). That is,

E
kon[C]�

koff

EC
W→ E + correct amino acid incorporated (6.7.4a)

E +D
k′on[D]
�
k′off

ED
W→ E + incorrect amino acid incorporated. (6.7.4b)

(It is assumed that the catalytic step has no selectivity, that is, the rate of catalysis
W is the same for both substrates.) The corresponding kinetic equations are

d[EC]
dt

= kon[E][C]− (koff +W )[EC] (6.7.5a)

d[ED]

dt
= k′on[E][D]− (k′off +W)[ED], (6.7.5b)

[E]Total = [EC]+ [ED]+ [E]. (6.7.5c)

The last equation ensures that the total concentration of ribosomes or enzymes is
fixed. At steady state, we have

[EC] = [E]
kon[C]

koff +W
, [ED] = [E]

k′on[D]

k′off +W
.

It follows that the rates of correct and incorrect translation are

Rcorrect =W [EC], Rincorrect =W [ED],

and the error rate is

F0 =
Rincorrect

Rcorrect
=

[
k′on[D]

k′off +W

][
kon[C]

koff +W

]−1

. (6.7.6)

Typically, one finds that the on rates are approximately the same for all tRNAs
(being diffusion limited) and the tRNAs have similar concentrations, that is, kon ≈
k′on and [D] ≈ [C]. Hence, the error rate F0 is minimized by taking the catalytic
rate W to be much smaller than the off rates. Introducing the dissociation constants
KC = koff/kon,KD = k′off/k′on, we have

F0 ≈ KC

KD
= e−ΔGCD/kBT . (6.7.7)
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The above simple binding model neglects the fact that when tRNA binds to a codon,
it is chemically altered via the hydrolysis of GTP; an analogous process occurs
during the polymerization of microtubules (see Sect. 4.1). The transition to the new
state is irreversible and in this state the tRNA can also dissociate from the mRNA.
This leads to the new reaction scheme

E
kon[C]�

koff

EC
r→ EC∗
↓
E

W→ E + correct amino acid incorporated (6.7.8a)

E
k′on[D]
�
k′off

ED
r→ ED∗↓

E

W→ E + incorrect amino acid incorporated. (6.7.8b)

Let the on and off rates of the modified substrates C∗ and D∗ be qoff,qon[C∗] ≈ 0
and q′off,q

′
on[D

∗], respectively, with [C∗], [D∗] ≈ 0. The steady-state concentrations
of the modified substrate then satisfy (see Ex. 6.10),

[EC∗] =
1

qoff +W
rkon

koff + r
[E][C].

Again assuming that the rates of catalysis W,r are much smaller than the on and off
rates, and taking the concentrations of all tRNAs to be the same, we obtain the new
error rate

F ≈ qoff

q′off

k′on

k′off

koff

kon
.

Finally, taking the on rates to be tRNA nonspecific,

F =
QC

QD

KC

KD
= e−ΔGCD/kBT e−ΔGC∗D∗/kBT < F0. (6.7.9)

In particular, if the difference in biding energies of the two substrates is the same
for the native and modified states, then

F =
[
e−ΔGCD/kBT

]2
. (6.7.10)

In summary, the inclusion of an irreversible step into the kinetic scheme, EA→EA∗,
which necessitates the expenditure of energy, provides an additional opportunity for
the incorrect substrate to dissociate and leads to a reduction in the error rate. An
even higher level of accuracy can be achieved by having a sequence of n irreversible
proofreading stages:

E
kon[C]�

koff

EC
r1→ EC∗

↓
E

r2→ EC∗∗
↓
E

. . .
rm→ EC∗∗...∗

↓
E

W→ E + product.
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6.7.2 Kinetic Proofreading in T-Cell Activation

T cells, which mature in the thymus, are one of two key cell types of the adaptive
immune system, whose basic function is the detection and destruction of intracellu-
lar pathogens such as certain bacteria and all viruses (see the review by Coombs and
Goldstein [125]). (The other cell type consists of B cells, which mature in the bone
marrow and are mainly concerned with the detection and destruction of extracellu-
lar pathogens.) In order to execute their function, T cells scan the surfaces of cells
for molecular markers of infection. Detection of the appropriate marker activates
the T cell which then responds to the pathogen, either by killing the infected cell
(effector T cells) or by signaling other parts of the immune system such as B cells
(helper T cells). Since T cells only scan the surface of other cells, it is necessary that
some cells are able to present information regarding their internal contents to the
surface. This is achieved by cutting intracellular proteins into peptide fragments and
transporting these fragments to the surface for surveillance by T cells. If a pathogen
is present within the cell, then signature peptide groups known as antigens will be
made accessible. A major challenge for the pathogen recognition machinery is that
the vast majority of peptides on a given antigen-presenting cell do not signify the
presence of a pathogen. Thus, a T cell has to recognize an antigen against a noisy
background of these so-called self-peptides, just as a ribosome has to recognize the
correct tRNA during each stage of protein synthesis. It is not too surprising, there-
fore, that a kinetic proofreading model has been developed for T-cell activation by
McKeithan [430].

The model of McKeithan considers the interaction of a T-cell receptor (TCR)
with a ligand consisting of a peptide fragment that is bound to a specialized molecule
in the surface of an antigen-presenting cell, known as a major histocompatibility
complex (MHC) molecule (see Fig. 6.21a). The peptide–MHC complex that forms
the ligand is denoted by pMHC. There are two basic assumptions of the model:
(i) In order to respond to an antigen, a TCR in an inactive state T has to undergo
a sequence of N modifications to form the activated state BN . (ii) Dissociation of
pMHC from the TCR can occur at any stage, after which the receptor quickly returns
to its inactive state (see Fig. 6.21b). Suppose that the off rate back to the inactive
state T is the same for all intermediate states. We then have the following hierarchy
of kinetic equations for the concentrations [T ], [B j], j = 0, . . . ,N:

d[T ]
dt

=−kon[T ][P]+ koff

N

∑
i=0

[Bi], (6.7.11a)

d[B0]

dt
= kon[T ][P]− koff[B0]− kp[B0], (6.7.11b)

d[Bi]

dt
= kp([Bi−1]− [Bi])− koff[Bi], (6.7.11c)

d[BN ]

dt
= kp[BN−1]− koff[BN ], (6.7.11d)
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Fig. 6.21: Kinetic proofreading model of T-cell activation. (a) Schematic diagram of a T-cell re-
ceptor (TCR) binding to an antigen that is attached to a major histocompatibility complex molecule
(MHC) in the surface of an antigen-presenting cell. (b) Reaction diagram, see text for details

where [P] is the concentration of a specific pMHC complex. Solving these equations
in steady state shows that the fraction of activated complexes is (see Ex. 6.10)

[BN ]

∑N
i=0[Bi]

=

(
kp

kp + koff

)N

. (6.7.12)

Note that kp/(kp + koff) is the probability that in any intermediate step i, the T cell
is modified before dissociation of the pMHC. Assuming that kp is independent of
the particular substrate, it follows that the off rate koff is the only parameter whose
variation can distinguish between peptides. Even for small values of N, the fraction
of activated T cells is sensitive to small changes in koff, reflecting the objective of the
kinetic proofreading mechanism. However, it comes at a cost, namely that the actual
value of the activity level in response to the correct antigen reduces as N increases,
so that an increase in selectivity coincides in a decrease in sensitivity.
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6.8 Stochastic Algorithms for Chemical Kinetics

6.8.1 The Stochastic Simulation Algorithm

The SSA, which was originally developed by Gillespie [217–219], is an efficient nu-
merical scheme for generating exact sample paths of a continuous-time Markov pro-
cess whose probability distribution evolves according to a chemical master equation.
Following Sect. 6.2, suppose that the mass-action kinetics of a general biochemical
network is written in the form

dxi

dt
=

R

∑
a=1

Sia fa(x), i = 1, . . . ,N, (6.8.1)

where a labels a single-step reaction, fa are the transition intensities or propensities,
and S is the N × R stochiometric matrix. Given this notation, the corresponding
master equation is

dP(n, t)
dt

= Ω
R

∑
a=1

(
N

∏
i=1

E
−Sia − 1

)

fa(n/Ω)P(n, t), (6.8.2)

where Ω represents the system size. Typically, Ω is the volume of the well-mixed
compartment where reactions occur or the total number of molecules in cases where
there is number conservation. Here E

−Sia is a step or ladder operator such that for
and function g(n),

E
−Siag(n1, . . . ,ni, . . . ,nN) = g(n1, . . . ,ni− Sia, . . . ,nN). (6.8.3)

In the following we eliminate the global factor of Ω by rescaling time t →Ω t.
The starting point for constructing the SSA is to define a new probability func-

tion p(τ,a|x, t), which is the probability, given X(t) = x, that the next reaction in
the system will occur in the time interval [t + τ, t + τ +Δτ) and will be the reac-
tion a. From this perspective, both τ and a are random variables conditioned on
X(t) = x. An analytical expression for p(τ,a|x, t) can be obtained by introducing
another probability function P0(τ|x, t), which is the probability, given X(t) = x, that
no reaction of any kind occurs in the time interval [t, t + τ). It follows from the
definitions of P0 and the propensities fa that P0 satisfy the equation

P0(τ + dτ|x, t) = P0(τ|x, t)
[

1−
R

∑
a=1

fa(x)dτ

]

,

which is the product of the probability that no reaction occurs in [t,τ) and the prob-
ability that there are no transitions in the infinitesimal interval [t + τ, t + τ + dτ).
Rearranging and taking the limit dτ → 0 yields

dP0(τ|x, t)
dτ

=−F(x)P0(τ|x, t), F(x) =
R

∑
a=1

fa(x).
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Under the initial condition P(0|x, t) = 1, we have the solution

P0(τ|x, t) = exp(−F(x)τ).

We now note
p(τ,a|x, t)dτ = P0(τ|x, t) fa(x)dτ,

which implies that p can be written in the form

p(τ,a|x, t) = F(x)exp(−F(x)τ)
fa(x)
F(x)

. (6.8.4)

Hence, τ is an exponential random variable with mean and standard deviation
1/F(x), while a is a statistically independent integer random variable with x-
dependent probability fa(x)/F(x).

One exact Monte Carlo method for generating samples of the random variables
τ,a is to draw two random numbers r1,r2 from the uniform distribution on [0,1] and
take

τ =− 1
F(x)

lnr1 (6.8.5a)

a = the smallest integer for which
a

∑
s=1

fa(x)> r2F(x). (6.8.5b)

The direct method of implementing the SSA is as follows:

1. Initialize the time t = t0 and the chemical state x = x0.

2. Given the state x at time t, determine the fa(x) for a = 1, . . . ,R and their sums
F(x).

3. Generate values for τ and a using Eq. (6.8.5).

4. Implement the next reaction by setting t → t ′ = t +τ and x j → x′j = x j +S ja/Ω .

5. Return to step 2 with (x, t) replaced by (x′, t ′), or else stop.

There have been a variety of subsequent algorithms that differ in the implemen-
tation of step 2, including the next reaction method [215] and the modified next
reaction method [8]. The latter is based on the random time-change representa-
tion of Kurtz, which will be considered in Chap. 11 after developing the theory
of martingales.

6.8.2 Tau-Leaping

In many applications the mean time between reactions, 1/F(x), is very small so
that simulating every reaction becomes computationally infeasible, irrespective of
the version of the SSA chosen. Gillespie [218] introduced tau-leaping in order to
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address this problem by sacrificing some degree of exactness of the SSA in return
for a gain in computational efficiency. The basic idea is to “leap” the system for-
ward by a pre-selected time τ (distinct from the τ of the SSA), which may include
several reaction events. Given X(t) = x, τ is chosen to be large enough for efficient
computation but small enough so that

fa(x)≈ constant in [t, t + τ) for all a.

Let N (λ ) denote a Poison counting process with mean λ . During the interval [t, t+
τ) there will be approximately N (λa) reactions of type a with λa = fa(x)τ . Since
each of these reactions increases x j by S ja/Ω , the state at time t + τ will be

Xj(t + τ) = x+
R

∑
a=1

Na( fa(x)τ)S ja, (6.8.6)

where the Na are independent Poisson processes. This equation is known as the tau-
leaping formula. However, there are two fundamental problems with the original
formulation of tau-leaping. First, it is difficult to choose the appropriate value of τ
at each iteration of the algorithm—occasionally large changes in propensities occur
that cause one or more components x j to become negative. Second, although tau-
leaping becomes exact in the limit τ → 0, the inefficiency becomes prohibitive since
the R generated Poisson random numbers will be zero most of the time resulting in
no change of state. These two issues have been addressed in various modifications
in the tau-leaping procedure (see for example Cao et al. [93]).

6.9 Exercises

Problem 6.1 (Bursting in protein translation I).

(a) Consider a single mRNA molecule which produces n proteins with probability

P(n) =

(
r

r+ γ

)n γ
r+ γ

.

Use a generating function to show that the burst size b≡ 〈n〉= r/γ .
(b) Calculate the Laplace transform

P̃(s) =
∫ ∞

0
P(n)e−nsdn

with n treated as a continuous variable (for large protein number).
(c) Evaluate the inverse Laplace transform of P̃m(s) = [P̃(s)]m to obtain the result

Pm(n) =

(
b

1+ b

)n( 1
1+ b

)m nm−1

Γ (m)
.
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Problem 6.2 (Bursting in protein translation II). Consider the Chapman–
Kolmogorov equation (6.2.8) for protein bursting:

∂ p(x, t)
∂ t

=
∂
∂x

[γ0xp(x)]+ k
∫ x

0
w(x− x′)c(x′)p(x′, t)dx′,

with

w(x) =
1
b

e−x/b− δ (x).

(a) Suppose that c(x) = 1 (no autoregulatory feedback). Laplace transforming the
steady-state equation with respect to the protein number x, show that the station-
ary distribution is given by the gamma distribution

p(x) =
1

bmΓ (m)
xm−1e−x/b, m =

k
γ0
.

(For a more challenging problem, Laplace transform the full time-dependent
equation, solve the resulting quasilinear PDE in Laplace space using the method
of characteristics, and show that the system converges to the gamma distribution
in the limit t → ∞.)

(b) Suppose that c(x) is given by the Hill function

c(x) =
ks

ks + xs + ε.

Using Laplace transforms along similar lines to part (a), show that the stationary
probability density is

p(x) = Axm(1+ε)−1e−x/b[1+(x/k)s]−m/s,

where A is a normalization factor.
(c) Plot the stationary density of part (b) for the parameter values m = 10,b =

20,and k = 70nM and the following four cases: (i) c ≡ 1 (no feedback); (ii)
s = +1, ε = 0.05; (iii) s = −1,ε = 0.2; (iv) s = −4,ε = 0.2. Hence show that
negative feedback reduces noise, whereas positive feedback enhances noise and
can lead to bistability.

Problem 6.3 (Binary response in stochastic gene expression). Consider the
stochastic model of a gene expression in which the gene randomly switches be-
tween an active and inactive state. The steady-state probability densities p0,1(x) for
protein concentration x when the gene is in an active ( j = 1) or inactive ( j = 0) state
satisfy the pair of equations

d
dx

(−γxp0(x)) = k−p1(x)− k+p0(x)

d
dx

([r− γx]p1(x)) = k+p0(x)− k−p1(x)

with boundary conditions p0(r/γ) = 0 and p1(0) = 0.
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(a) Derive the normalization conditions

∫ r/γ

0
p0(x)dx =

k−
k−+ k+

,

∫ r/γ

0
p1(x)dx =

k+
k−+ k+

.

(b) By adding the pair of steady-state equations show that one solution is

p0(x) =
r− γx

γx
p1(x).

(c) Substituting for p0(x), solve the resulting differential equation for P(x) =
(r− γx)p1(x), and thus obtain the solution

p0(x) =C (γx)−1+k+/γ(r− γx)k−/γ , p1(x) =C (γx)k+/γ(r− γx)−1+k−/γ .

(d) Using part (c), show that

∫ r/γ

0
p0(x)dx =

C
γ

r(k++k−)/γB(k+/γ,1+ k−/γ),
∫ r/γ

0
p1(x)dx =

C
γ

r(k++k−)/γB(1+ k+/γ,k−/γ),

where B(α,β ) is the beta function:

B(α,β ) =
∫ 1

0
tα−1(1− t)β−1dt.

(e) Using the standard property

B(α,β ) =
Γ (α)Γ (β )
Γ (α +β )

,

show that the solution in part (c) satisfies the normalization conditions provided
that

C = γ
[
r(k++k−)/γB(k+/γ,k−/γ)

]−1
.

Problem 6.4 (Linear noise approximation of a two-state gene regulatory net-
work). Consider the simple kinetic model of gene expression given by equations

dx1

dt
= k+(1− x1)− k−x1,

dx2

dt
= rx1− γx2.

Here x1 is the density of active genes and x2 is the density of protein. There is a
unique fixed point

x∗1 =
k+

k++ k−
xmax, x∗2 =

r
γ

x∗1.



334 6 Stochastic Gene Expression and Regulatory Networks

Applying the linear noise approximation to the corresponding master equation for
finite copy numbers yields an OU process whose stationary covariance matrix Σ
satisfies the matrix equation

AΣ +ΣAT =−BBT ≡−D,

with

A =

(−(k++ k−) 0
r −γ

)
, D =

(
2k−x∗1 0

0 2rx∗1

)
.

By solving the matrix equation in component form, determine the variances σ2
1 and

σ2
2 for Yi = (Xi− x∗i )/

√
Ω , where Ω is the system size.

Problem 6.5 (Frequency domain analysis of a simple gene network). Consider a
simple model of protein translation given by the stochastic kinetic equations

dx
dt

= k− γx+η(t),
dy
dt

= rx− γpy+ηp(t),

where x and y are concentrations of mRNA and protein, γ,γp are degradation rates,
k is the rate of mRNA production, and r is the rate of protein production. Moreover
η(t) and ηp(t) are independent white noise terms with 〈η〉= 〈ηp〉= 0, and

〈η(t)η(t ′)〉= qδ (t− t ′), 〈ηp(t)ηp(t
′)〉= qpδ (t− t ′), 〈η(t)ηp(t

′)〉= 0.

(a) Introducing the Fourier transforms

η̃(ω) =

∫ ∞

−∞
eiωtη(t)dt, η(t) =

∫ ∞

−∞
e−iωt η̃(ω)

dω
2π

,

show that
〈η(ω)η(ω ′)〉= 2qπδ (ω +ω ′).

(b) By linearizing about the steady state x∗ = k/γ , y∗ = rk/(γγp) and using Fourier
transforms show that the power spectra of the fluctuations X(t) = x(t)− x∗ and
Y (t) = y(t)− y∗ are given by

SXX(ω) =
q

ω2 + γ2 , SYY (ω) =
qp

ω2 + γ2
p
+

r2q
(ω2 + γ2)(ω2 + γ2

p)
.

(c) Using the definition of the power spectrum, written in the form

〈X(t)2〉=
∫ ∞

−∞
SXX(ω)

dω
2π

,

show that
〈X(t)2〉= q

2γ
.
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Similarly, show that

〈Y (t)2〉= qp

2γp
+

r2q
2γpγ2 +O(γ−3).

Hint: you should assume that γ � γp and use the result

∫ ∞

−∞

1
ω2 + a2

dω
2π

=
1

2a
.

(d) From the linear noise approximation, one obtains the following Fano factors for
mRNA (m) and proteins (n):

var[m]

〈m〉 = 1,
var[n]
〈n〉 = 1+ b,

where b = r/γ . Use this to determine q and qp.

Problem 6.6 (Attenuation of noise in signaling cascades). Consider a generic
model of a stochastic signaling cascade consisting of molecular species labeled
i = 0, . . . ,n with corresponding concentrations yi [624] (see Fig. 6.22). Suppose that
the rate of production of species i only depends on the concentration yi−1 of the
species at the previous level of the cascade and that it degrades at a fixed rate γi. In
the deterministic limit, we have a system of first-order kinetic equations:

ẏi + γiyi = fi−1(yi−1),

where fi−1 is the corresponding production rate function and f−1 = 0. Suppose
that there exists a unique stable steady state. Linearizing about the steady state and
adding white noise terms to take into account intrinsic fluctuations, we have the
system of linear equations

δ ẏi + γiδyi = ci−1δyi−1 +ηi,

where
〈ηi〉= 0, 〈ηi(t)η j(t

′)〉= qiδi, jδ (t− t ′),

and ci is the derivative of fi at the steady state (with c−1 = 0). That is, ci can be
interpreted as a differential gain or amplification factor. Both γi and ci have units of
t−1. For convenience, set γi = 1 for all i.

(a) Using Fourier transforms show that

〈δy2
n(ω)〉= αn +βn−1αn−1 +βn−1βn−2αn−2 + . . .+βn−1 . . .β0〈δy2

0(ω)〉,

where

α j =
q j

1+ω2 , β j =
c2

j

1+ω2 .
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y0

q0
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q1

yn

qn
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Fig. 6.22: Schematic diagram of a linearized stochastic cascade

(b) Let q = max
i
{qi}, c = max

i
{ci} and define

α =
q

1+ω2 , β =
c2

1+ω2 .

Show that
lim
n→∞

〈δy2
n(ω)〉 ≤ α

1−β
.

Taking the inverse Fourier transform, obtain the result

lim
n→∞

〈δy2
n(t)〉 ≤ q

∫ ∞

−∞

1
1+ω2− c2

dω
2π

=
q

2
√

1− c2
.

This establishes that fluctuations in the output of the signaling cascaded will be
bounded provided that |ci| ≤ |c|< 1.

(c) Now consider a finite cascade of length n with ci = c < 1 for all i = 0, . . . ,n,
qi = q for all i = 1, . . . ,n, and q0 > q. Thus the noise at the input level is higher
than in successive levels of the cascade. Using part (a), show that

〈δy2
n(ω)〉= q

n−1

∑
j=0

c2 j

(1+ω2) j+1 + q0
c2n

(1+ω2)n+1 .

Taking inverse Fourier transforms and using contour integration, establish that

〈δy2
n(t)〉 ≤ q

n−1

∑
j=0

(2 j)!
j! j!

c2 j

22 j+1 + q0
(2n)!
n!n!

c2n

22n+1 .

(d) Applying Stirling’s approximation to part (c),

j!≈
(

j
e

) j√
2π j,
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obtain the inequality

〈δy2
n(t)〉 ≤

q
2

(

1+
n−1

∑
j=1

c2 j
√

π j

)

+
q0

2
c2n
√

πn
.

The first term represents an increase in intrinsic fluctuations with cascade length
n, whereas the second represents a faster than exponential decrease in the input
noise with cascade length. Show that the optimal cascade length for minimizing
the total noise is

nopt =

[
1

1− (q0− q)2/(q2
0c4)

]

−
,

with [x]− denoting the greatest integer less than x.

Problem 6.7 (Linear noise approximation of autoregulation). Consider a simple
kinetic model of gene autoregulation given by

dx1

dt
=−γx1 +F(x2),

dx2

dt
= rx1− γpx2,

with F(x) = k0− kx. Here x1 is the concentration of mRNA and x2 is the concentra-
tion of protein. There is a unique fixed point

x∗1 =
k0γp

γγp + kr
, x∗2 =

r
γp

x∗1.

Applying the linear noise approximation to the corresponding master equation for
finite copy numbers yields an OU process whose stationary covariance matrix Σ
satisfies the matrix equation

AΣ +ΣAT =−BBT ≡−D,

with

A =

(−γ −k
r −γp

)
, D =

(
kx∗2 + γx∗1 0

0 rx∗1 + γpx∗2

)
.

Solving the matrix equation show that the Fano factor for proteins is

var[n]
〈n〉 = 1+

b
1+η

(
1− φ

1+ bφ

)
,

where b = r/γ,η = γp/γ,φ = k/γp.

Problem 6.8 (Mutual repressor model). Consider the mutual repressor model
with a single promoter site, whose stochastic version is described by the master
equation (6.4.6).
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(a) Suppose that the kinetics of promoter transitions are much faster than the pro-
duction and degradation of proteins. Write down the continuous-time Markov
equations describing the evolution of the probabilities p j, assuming the con-
centrations x,y of proteins X ,Y are fixed. (Recall that the proteins bind to the
promoter site as dimers.) Solve for the steady-state probabilities p∗j in terms of x
and y.

(b) Under the adiabatic approximation p j = p∗j(x,y), with p∗0 + p∗1 (p∗0 + p∗2) inter-
preted as the rate of production of protein x (y), write down the kinetic equations
for x,y and use the solutions of part (a) to derive the deterministic equations

dx
dt

= f (x,y),
dy
dt

= f (y,x), with f (x,y) =
1

1+ y2

b+x2

− x.

Use phase-plane analysis to construct a bifurcation diagram for this planar sys-
tem with b treated as a bifurcation parameter.

(c) Derive the Chapman–Kolmogorov equation (6.4.10) by carrying out a system-
size expansion of the master equation expressed in the form (6.4.6).

Problem 6.9 (Model of transcriptional elongation). Consider the birth–death
master equation for the elongation phase of transcription in the absence of back-
tracking (Sect. 6.6).

(a) Starting from the backward master equation (6.6.7) derive a difference equation
for the second moment T2(n0) of the elongation time, where n0 is the starting
position along the chain, analogous to the difference equation (6.6.8) for the first
moment.

(b) Solve the difference equation in part (a) recursively by introducing the variable
U2(n0) = T2(n0)−T2(n0− 1).

(c) Using the result from part (b) and the formula (6.6.10) for the mean elongation
time, determine the variance σ2 of the elongation time in terms of K = ω−/ω+

and ω+, where ω± are the effective polymerization/depolymerization rates, and
show that when K � 1,

σ2 =
N

ω2
+

+ 4K
N− 1

ω2
+

+O(K2).

Problem 6.10 (Kinetic proofreading). Consider the kinetic proofreading model
given by the modified Michaelis–Menten reaction kinetics of Eq. (6.7.8).

(a) Write down the kinetic equations for the evolution of the concentrations [EC]
and [EC∗].

(b) Show that the steady-state concentration of the modified enzyme–substrate com-
plex [EC∗] is

[EC∗] =
1

qoff +W
rkon

koff + r
[E][C].
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(c) Repeating the analysis for the incorrect substrate D, derive the following approx-
imation for the error rate:

F =
QC

QD

KC

KD
= e−ΔGCD/kBT e−ΔGC∗D∗/kBT .

(d) Now consider the kinetic proofreading model of T-cell activation given by
Eq. (6.7.11). Show that the steady-state fraction of active TCRs is

[BN ]

∑N
i=0[Bi]

=

(
kp

kp + koff

)N

.

Problem 6.11 (Computer simulations: gene networks). Write MatLab programs
based on the Gillespie algorithm (see Sect. 6.8) that generate trajectories for each of
the following gene networks.

(a) The model of regulated transcription whose master equation is given by
Eq. (6.3.9). There are two discrete variables (number of active genes n1 and
number of mRNA molecules n2) and four reactions (gene activation and de-
activation, mRNA production and degradation). Take the parameter values
k+ = 0.03min−1,k− = 0.2min−1,k = 10min−1,andγ = 0.2min−1 and consider
the two cases nmax = 10, and nmax = 100. Run the simulations for sufficient
time to reach steady state. Plot a histogram of n1(T ) and n2(T ) based on 100
simulations, say, where T is the final time. Determine the mean and variance,
and compare the numerical Fano factor with the theoretical expressions based
on the diffusion approximation.

(b) The mutual repressor model whose master equation is given by Eq. (6.4.3). You
will have to determine the stochiometric matrix and the propensities. There are
three discrete variables (number of X proteins n, number of Y proteins m, and
state of the promoter) and four reactions involving changes in the promoter state,
and each promoter state involves degradation and production reactions. Take
the parameter values α = 1,000s−1, β = 5× 105, and κ = 5× 10−5 s−1 and
consider the two cases (i) γ = 1s−1 (monostable) and (ii) γ = 0.75s−1 (bistable).
Plot sample trajectories over a time interval of length T = 10 min and histogram
m(T ).

(c) The circadian clock model with stochiometry and propensities listed in Sect. 5.1.
Use the following parameter values taken from [228]: k = 0.5nM h−1,γ =
0.3nM h−1,Km = 2.0nM,K′m = 0.2nM, r = 2.0h−1,γp = 1.5nM h−1,Kp =
0.1nM, and k1 = k2 = 0.2h−1. Plot a sample trajectory of the number of mRNA
M and the number of cytosolic clock proteins XC as a function of time, and
check that the oscillation period is around 22 h. Compare with solutions of the
deterministic kinetic rate equations. Also plot several sample trajectories in the
(M,XC) phase plane superimposed on the deterministic limit cycle.
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Problem 6.12 (Keizer’s paradox.). Consider the following autocatalytic reaction
scheme:

X
k1�

k−1
2X , X

k2→ /0.

(a) Write down the deterministic kinetic equation for the concentration x of the
chemical species X . Show that it has an unstable fixed point at x1 = 0 and a
stable fixed point at x2 = (k1− k2)/k−1.

(b) Construct the master equation for the probability P(n, t) that there are n
molecules of X at time t. By writing out the explicit equations for dP(0, t)/dt,
dP(1, t)/dt etc., use induction to show that the unique steady-state solution
P∗(n) is

P∗(0) = 1, P∗(n) = 0, n > 0.

Hence the stochastic model shows that there will be no X left in the system –
X = 0 is an absorbing state. This appears to contradict the deterministic limit,
which is known as Keizer’s paradox.

(c) Use the Gillespie algorithm to explore the evolution of the probability distribu-
tion P(m, t) as a function of time. In particular, demonstrate that at intermedi-
ate times the distribution localizes around the deterministic steady-state x2 be-
fore eventually forming a peak around zero. Hence, provide an explanation of
Keizer’s paradox in terms of the non-commutativity of the operations lim t → ∞
and lim Ω → ∞ where Ω is the system size.



Part II
Advanced Topics



Chapter 7
Transport Processes in Cells

The efficient delivery of proteins and other molecular products to their correct
location within a cell (intracellular transport) is of fundamental importance to
normal cellular function and development [3]. Moreover, the breakdown of in-
tracellular transport is a major contributing factor to many degenerative diseases.
Broadly speaking, there are four basic mechanisms for intracellular transport [72]
(see Fig. 7.1):

(i) Passive diffusion within the cytosol or the surrounding plasma membrane of
the cell. Since the aqueous environment (cytosol) of a cell is highly viscous
at the length and velocity scales of macromolecules (low Reynolds number),
a diffusing particle can be treated as an overdamped Brownian particle where
inertial effects are ignored (Chap. 2).

(ii) Active motor-driven transport along polymerized filaments such as micro-
tubules and F-actin that comprise the cytoskeleton [275] (Chap. 4). Newly syn-
thesized products from the nucleus are mainly transported to other intracellular
compartments or the cell membrane via a microtubular network that projects
radially from organizing centers (centrosomes). The same network is used to
transport degraded cell products back to the nucleus and is also exploited by
various animal viruses including HIV in order to reach the nucleus from the
cell surface and release their genome through nuclear pores. Active transport is
faster and more easily regulated than passive diffusion, but requires a constant
supply of energy to do useful work.

(iii) Transport through membrane pores and channels. This involves a variety of
mechanisms, depending on the size of the transported molecules relative to the
width of the membrane and whether the transport process is passive or active.
(A pore refers to the case of a thin membrane, whereas a channel refers to the
case of a thick membrane, i.e., a long pore.) Facilitated diffusion is the passive
transport of small solute molecules including ions across a biological mem-
brane via specific transmembrane integral proteins such as ion channels. It is
passive in the sense that facilitated transport does not involve the use of chemi-
cal energy; rather, molecules and ions move down their concentration gradient.
However, it is distinct from diffusion, since it would be difficult for molecules
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Fig. 7.1: Different mechanisms of intracellular transport: (a) Passive diffusion through a cell mem-
brane. (b) Active motor-driven transport. (c) Facilitated diffusion. (d) Exocytosis and endocytosis.
(Public domain figures downloaded from Wikipedia Commons.)

or ions to cross the membrane without assistance from the transmembrane pro-
teins. There is also an active form of membrane transport involving ion pumps,
which are rotary motors that move ions across a membrane against their con-
centration gradient.

(iv) Exocytosis/endocytosis and secretory trafficking. An important mechanism for
regulating the distribution of proteins and lipids in the plasma membrane and
intracellular compartments is through endocytosis and exocytosis [246]. En-
docytosis is the physical process whereby a vesicle forms within a membrane
(budding) and is then released into the cytoplasm, whereas exocytosis is the
complementary process in which an intracellular vesicle fuses with the mem-
brane and releases its contents into a particular compartment or secretes its
contents externally (as in the release of neurotransmitters at a synapse). One
important role of exocytosis/endocytosis is to regulate protein receptors in the
plasma membrane [159, 371] (see Fig. 7.2). That is, molecular motors trans-
port internalized receptors from the plasma membrane to intracellular compart-
ments that either recycle the receptors to the cell surface (early endosomes and
recycling endosomes) or sort them for degradation (late endosomes and lyso-
somes). When this is coupled with membrane diffusion, it is possible to regu-
late the number of receptors within the membrane, which plays an important
role in synaptic plasticity. Another important role of exocytosis/endocytosis
occurs in the early secretory pathway of eukaryotic cells, which is a critical
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vesicle

early
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recycling
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sorting/late
endosome lysosome

Fig. 7.2: Cartoon sketch of the endocytic pathway. A small region of the plasma membrane is
invaginated and pinched off into a vesicle. The internalized vesicle fuses with larger, early endo-
somes and is then trafficked to sorting endosomes. From there, internalized material either is sent
to recycling endosomes followed by reinsertion into the cell surface or is targeted for lysosomal
degradation

system for the maturation and transportation of newly synthesized lipids and
proteins to specific target sites within the cell membrane [393]. The continuous
exchange of proteins and lipid membrane between different compartments of
the early secretory pathway will be considered in Sect. 8.4, as an example of a
self-organizing process.

Transport within living cells has a number of characteristic features that reflect
the complex nature of the cellular environment:

1. The intracellular environment is extremely crowded with macromolecules, sub-
cellular compartments, and confinement domains (Box 1A), suggesting that
anomalous subdiffusion is likely to occur [143]. The plasma membrane is also
a complex heterogeneous environment [364, 654]. Thus, many papers model
diffusion in such environments in terms of CTRWs and fractional Brownian mo-
tion (FBM). However, it is still unclear to what extent intracellular diffusion is
anomalous in the long-time limit rather than just at intermediate times. This mo-
tivates studying diffusion in the presence of obstacles and transient traps whereby
normal diffusion is recovered asymptotically [480, 562, 564, 565].

2. Molecules inside the cell are often confined to a domain with small exits on
the boundary of the domain. Examples include an ion searching for an open ion
channel within the cell membrane, the transport of newly transcribed mRNA
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from the nucleus to the cytoplasm via nuclear pores, the confinement of neu-
rotransmitter receptors within a synapse of a neuron, and the confinement of
calcium and other signaling molecules within subcellular compartments such
as dendritic spines of neurons. This has led to recent interest in using Green’s
function and asymptotic methods to solve the so-called narrow escape problem
[29, 267, 511, 576].

3. A related class of problems involves the search for a small target within the
interior of a cellular domain. In this case it is necessary to extend the Smolu-
chowski theory of diffusion-limited reaction rates [124, 323, 523, 536, 603] to
bounded domains or to more complex transport processes than simple diffusion.
One example is the arrival of a receptor at a localized reaction site on the sur-
face of an immune cell, which is a key step in the signaling cascade responsi-
ble for activating the cell [126]. Another important example is a promoter pro-
tein searching for its binding site on DNA, which is facilitated by an intermit-
tent search process in which the particle switches between 3D and 1D diffusion
[41, 42, 127, 250, 346, 440, 585].

4. One of the characteristic features of channel diffusion is that it is spatially con-
fined, which leads to strong entropic effects due to the reduction in the available
degrees of freedom [83] (see Sect. 1.4 for a definition of entropy). Moreover, var-
ious mechanisms of facilitated diffusion can occur through interactions between
a diffusing particle and proteins within the channel, as exemplified by nuclear
pore complexes (NPCs), which are the sole mediators of exchange between the
nucleus and cytoplasm [27]. When a channel becomes sufficiently narrow, parti-
cles are no longer able to pass each other (single-file diffusion)—one then finds
that a tagged particle exhibits anomalous subdiffusion on long time scales [22].
Entropic effects also play a major role in the translocation of biological polymers
such as DNA through nanopores.

5. There have been many stochastic models of motor-driven transport at multiple
spatial and temporal scales, ranging from Brownian ratchet models [529] to ran-
dom walk models [391, 457] to systems of PDEs [524, 601]. However, many
of these treatments neglect the fact that the goal of such transport is to deliver
molecular cargo to specific sites. This then naturally leads to a connection with
random intermittent search processes [68, 397, 472, 473]. It also raises the impor-
tant question regarding signaling mechanisms responsible for localizing a motor
complex at a target. Another issue in active transport involves exclusion effects
due to multiple motors moving along the same filament track [52, 115, 567].

In this chapter, we present a variety of models of passive and active transport in
cells that address various features of the complex cellular environment (see also the
review [72]). We begin by considering the anomalous effects of molecular crowd-
ing and trapping, where the differences in diffusive behavior at multiple timescales
are highlighted (Sect. 7.1). We consider two different mathematical formulations of
diffusion–trapping, one based on a reaction–diffusion model and the other based on
a CTRW. The particular example of anomalous diffusion in the plasma membrane



7.1 Anomalous Diffusion 347

is also considered. In Sect. 7.2 we describe how Green’s functions (Box 3C) and
singular perturbation theory can be used to analyze narrow escape problems and
diffusion to a small target. The diffusive transport through narrow membrane pores
and channels is described in Sect. 7.3, including the examples of nuclear pores and
translocation of DNA. We then turn to PDE models of active motor transport in
Sect. 7.4. These focus on the transitions between different types of motion (e.g., an-
terograde vs. retrograde active transport, diffusion vs. active transport) rather than
the microscopic details of how a motor performs a single step. It is shown how such
models can be reduced to an effective Fokker–Planck (FP) equation, under the as-
sumption that the transitions between the different motile states are relatively fast—
the so-called QSS approximation. In Sect. 7.5 we consider the effects of molecular
crowding of motors on a filament track, as modeled by so-called asymmetric exclu-
sion processes (ASEPs). We show how, in the mean-field limit, molecular crowd-
ing can be treated in terms of quasilinear PDEs that support shock waves [554].
Finally, in Sect. 7.6 the efficiency of various transport processes in targeting a par-
ticular subcellular domain is analyzed in terms of the theory of random intermittent
search processes. We consider the examples of a transcription factor searching for a
promoter site on DNA and the active motor transport of cargo to synaptic targets.

7.1 Anomalous Diffusion

7.1.1 Molecular Crowding, Diffusion-Trapping, and Long-Time
Correlations

In normal (unobstructed) diffusion in d dimensions, the MSD of a Brownian particle
is proportional to time, 〈R2〉 = 2dDt, which is a consequence of the central limit
theorem. A general signature of anomalous diffusion is the power law behavior [58,
438] (see Fig. 7.3)

〈R2〉= 2dDtα (7.1.1)

corresponding to either subdiffusion (α < 1) or superdiffusion (α > 1). Due to re-
cent advances in SPT methods (Sect. 1.2), subdiffusive behavior has been observed
for a variety of biomolecules and tracers within living cells. There are a number
of subcellular mechanisms thought to generate subdiffusive motion of particles in
cells, each with its own distinct type of physical model:

(i) Molecular crowding—one of the characteristic features of the interior aqueous
environment of cells (cytoplasm) and intracellular compartments such as the
endoplasmic reticulum and mitochondria is that they are crowded with small
solutes, macromolecules, and skeletal proteins, which occupy 10–50 % of the
volume [143]. Cell membranes are also crowded environments containing
lipids (molecules consisting of nonpolar, hydrophobic hydrocarbon chains that
end in a polar hydrophylic head), which are often organized into raft structures,
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Fig. 7.3: Anomalous diffusion. Two characteristic features of anomalous diffusion are shown: su-
perlinear or sublinear variation of the mean-square displacement (MSD) with time; large tails in
the probability density

and various mobile and immobile proteins [364]. If the concentration of obsta-
cles is sufficiently high, then subdiffusive behavior occurs, in which the domain
of free diffusion develops a fractal-like structure [562]. There is an ongoing de-
bate whether molecular crowding results in anomalous diffusion or leads to a
simple reduction in the normal diffusion coefficient on long time scales.

(ii) Diffusion–trapping—if a diffusing particle encounters a binding site, then it
will pause for a while before dissociating and diffusing away. Multiple binding
events with a range of rate constants can generate long tails in the waiting time
distribution leading to subdiffusive behavior [564, 565]. Diffusion–trapping is
typically modeled in terms of a CTRW [289, 569]; see below.

(iii) Long-time correlations—this mechanism involves the viscoelastic properties
of the cytoplasm due to the combined effects of macromolecular crowding and
the presence of elastic elements such as nucleic acids and cytoskeletal fila-
ments. As a particle moves through the cytoplasm, the latter “pushes back,”
thus generating long-time correlations in the particle’s trajectory. This memory
effect can lead to subdiffusive behavior that can be modeled in terms of FBM
or the fractional Langevin equation (FLE) [86, 411, 668].

Determining which type of stochastic model best fits experimental data is a non-
trivial task, particularly since CTRW, diffusion on fractals, and FBM/FLE generate
similar scaling laws for ensemble-averaged behavior in the long-time limit. Thus
other measures such as ergodicity (equivalence of time averages and ensemble aver-
ages) are being used to help identify which model provides the best characterization
for anomalous diffusion in living cells [619, 673, 675]. A more fundamental diffi-
culty in experimentally establishing the existence of anomalous diffusion is that the
behavior of 〈R2〉 can depend on the spatial or temporal scale over which observa-
tions are made. Consider, for example, the effects of obstacles on protein diffusion
[562, 616]. The presence of obstacles reduces the space available for diffusion and
consequently decreases the effective diffusion coefficient. As the volume or area
fraction of obstacles φ is increased, there is a fragmentation of the available space
in the sense that many paths taken by a diffusing protein terminate in a dead end
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and thus do not contribute to diffusive transport (see Fig. 7.4). The region of free
diffusion develops a fractal-like structure resulting in anomalous diffusion at inter-
mediate times, 〈R2〉 ∼ tα , α < 1. (For sufficiently small times

√
Dt � ξ , where

ξ is the mean distance between obstacles, so that diffusion is normal.) However,
assuming that the volume or area fraction is below the percolation threshold (i.e.,
there is still an unobstructed path across the domain), diffusion is expected to be
normal on sufficiently long time scales, 〈R2〉 ∼ t. On the other hand, above the per-
colation threshold, proteins are confined and 〈R2〉 saturates as t → ∞. The time it
takes to cross over from anomalous to normal diffusion increases with the volume
or area fraction φ and diverges at the percolation threshold φc where 〈R2〉 ∼ tα for all
times.

Another difficulty in interpreting experimental data is that there are certain prac-
tical limitations of current methods [143]. The most effective method for describing
membrane diffusion is SPT, as described in Sect. 1.2. This involves the selective
labeling of proteins or lipids with fluorophores such as quantum dots, GFP, or or-
ganic dyes so that continuous high-resolution tracking of individual molecules can
be carried out. SPT can yield nanometer spatial resolution and submillisecond tem-
poral resolution of individual trajectories. However, it is not currently suitable for
measuring diffusion in three dimensions due to the relatively rapid speed of 3D
diffusion and the problems of imaging in depth. Hence, in the case of diffusion
within the cytosol, it is necessary to use a method such as FRAP. Here fluorescently
labeled molecules are introduced into the cell and those in some specified volume
are bleached by a brief intense laser pulse. The diffusion of unbleached molecules
into the bleached volume is then measured. FRAP is limited because it only pro-
vides ensemble averaged information of many fluorescent particles, and it also has
a restricted measurement time, making it difficult to capture long-tail phenomena
expected in anomalous subdiffusion.
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7.1.2 Diffusion–Trapping Model of Protein Trafficking
in Dendrites

In the Smoluchowski theory of reaction kinetics (Sect. 2.4), it is assumed that when
a diffusing particle reacts with the target it disappears, that is, we have the trapping
reaction A+B→ B where A denotes a diffusing particle and B denotes an immobile
trap. However, within the context of intracellular transport, there are many examples
where there is transient trapping of diffusing particles, resulting in anomalous diffu-
sion on intermediate time scales and normal diffusion on long time scales. This has
been elucidated by Saxton [564, 565], who carried out Monte Carlo simulations of
random walks on a 2D lattice with a finite hierarchy of binding sites, that is, binding
sites with a finite set of energy levels. This means that there are no traps that have an
infinite escape time so that diffusing particles ultimately equilibrate with the traps
and diffusion becomes normal. On the other hand, in the case of infinite hierarchies,
arbitrarily deep traps exist but are very rare, resulting in a nonequilibrium system
in which anomalous subdiffusion occurs at all times [58]. The latter process can be
modeled in terms of a CTRW (see Sect. 7.1.3). Here we will consider a particular ex-
ample of diffusive transport in the presence of transient immobile traps, namely, the
effects of dendritic spines on diffusive protein transport in the dendrites of neurons.

Neurons are among the largest and most complex cells in biology (see Fig. 3.11
of Sect. 3.5). Their intricate geometry presents many challenges for cell function, in
particular with regard to the efficient delivery of newly synthesized proteins from
the cell body or soma to distant locations on the axon or dendrites. The axon con-
tains ion channels for action potential propagation and presynaptic active zones
for neurotransmitter release, whereas each dendrite contains postsynaptic domains
(or densities) where receptors that bind neurotransmitter tend to cluster. At most
excitatory synapses in the brain, the postsynaptic density (PSD) is located within a
dendritic spine, which is a small, sub-micrometer membranous extrusion that pro-
trudes from a dendrite [604] (see Fig. 7.5). Typically spines have a bulbous head
that is connected to the parent dendrite through a thin spine neck, and there can
exist thousands of spines distributed along a single dendrite. It is widely thought
that spines act to compartmentalize chemical signals generated by synaptic activity,
thus impeding their diffusion into dendrites [550, 698]. Conversely, in the case of
signaling molecules diffusing along the dendrite, the spines act as transient traps
as illustrated in Fig. 7.6a. Following along similar arguments to the case of diffu-
sion in the presence of obstacles, normal diffusion is expected at short and long
times and anomalous subdiffusion at intermediate times. Anomalous subdiffusion
was indeed observed experimentally by Santamaria et al. [556], such that the MSD
〈x2(t)〉 ∼ D0t2/β at intermediate times with β > 2 and D0 the free diffusion coef-
ficient. As might be expected, β increases (slower diffusion) with increasing spine
density. β also increases when the volume of the spine head is increased relative to
the spine neck, reflecting the fact there is an enhanced bottleneck. Note that anoma-
lous diffusion can occur at all times if the reactions within each spine are taken to
have a non-exponential waiting time density [181] (see also Sect. 7.1.3).
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A related problem is the diffusive transport of neurotransmitter protein receptors
within the plasma membrane of a dendrite, with each spine acting as a transient
trap that localizes the receptors at a synapse. The majority of fast excitatory synap-
tic transmission in the central nervous system is mediated by AMPA (α-amino-3-
hydroxy-5-methyl-4-isoxazole-propionic acid) receptors, which respond to the neu-
rotransmitter glutamate. There is now a large body of experimental evidence that
the fast trafficking of AMPA receptors into and out of spines is a major contribu-
tor to activity-dependent, long-lasting changes in synaptic strength [63, 123, 257].
SPT experiments (Sect. 1.2 and Fig. 1.5) suggest that surface AMPA receptors dif-
fuse freely within the dendritic membrane until they enter a spine, where they are
temporarily confined by the geometry of the spine and through interactions with
scaffolding proteins and cytoskeletal elements [111, 160, 213, 642] (see Fig. 7.6b).
A surface receptor may also be internalized via endocytosis and stored within an
intracellular compartment, where it is either recycled to the surface via recycling
endosomes and exocytosis, or sorted for degradation by late endosomes and lyso-
somes [159] (see Fig. 7.2). A number of single spine models have explored the com-
bined effects of diffusion, trapping, receptor clustering, and recycling on the number
of synaptic AMPA receptors [85, 132, 154, 269, 587]. In such models, the synapse

Fig. 7.5: An example of a piece of spine studded dendritic tissue (from rat hippocampal region CA1
stratum radiatum). The dendrite on the right-hand side is ∼ 5μm in length. Taken with permission
from SynapseWeb, Kristen M. Harris, PI, http://synapses.clm.utexas.edu/

is treated as a self-organizing compartment in which the number of AMPA recep-
tors is a dynamic steady state that determines the strength of the synapse; activity-
dependent changes in the strength of the synapse then correspond to shifts in the
dynamical set point. When receptor–receptor interactions are included a synapse
can exhibit bistability between a non-clustered and clustered state [587], which can
be understood in terms of a liquid-vapor phase transition [85].
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Fig. 7.6: (a) Schematic illustration of the anomalous diffusion model of [556], who carried out
detailed 3D simulations of diffusion in a spiny dendrite treated as a system of connected cylinders
with the following baseline parameter values: spine neck diameter 0.2μm, neck length 0.6μm,
head length and diameter 0.6μm, dendrite diameter 1μm, and a spine density of 15 spines/μm.
The dendritic spines act as transient traps for a diffusing particle within the dendrite, which leads to
anomalous diffusion on intermediate time scales. (b) Schematic illustration of various pathways of
AMPA receptor trafficking at a dendritic spine, including lateral diffusion, binding with scaffolding
proteins, and recycling between the surface and intracellular compartments

Given the tubular-like structure of a dendrite, it is possible to model the diffu-
sion of proteins in the plasma membrane using a reduced 1D model (analogous to
the cable equation for voltage changes along a dendrite [322]). Since the Green’s
function of the 1D diffusion equation is non-singular (Box 2C), one can treat the
dendritic spines as point-like sources or sinks [67, 76]. Consider a population of N
identical spines distributed along a uniform dendritic cable of length L and circum-
ference l, with x j, j = 1, . . . ,N, the position (axial coordinate) of the jth spine. Let
p(x, t) denote the probability density (per unit area) that a surface receptor is located
within the dendritic membrane at position x at time t. Similarly, let R j(t) denote the
probability that the receptor is trapped at the surface of the jth spine. A simple 1D
diffusion-trapping model of AMPA receptor trafficking takes the form [67, 155]
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∂ p
∂ t

= D
∂ 2 p
∂x2 −

N

∑
j=1

h[p j−R j/A]δ (x− x j), (7.1.2a)

dR j

dt
= lh[p j−R j/A], (7.1.2b)

where D is the diffusivity in the plasma membrane, A is the surface area of a spine,
and p j(t) = p(x j, t). Equation (7.1.2a) needs to be supplemented by boundary con-
ditions at the ends of the cable. Suppose that there exists a steady-state solution,
which occurs if there are reflecting boundary conditions at either end. Integrating
the right-hand side of Eq. (7.1.2a) over the interval [x j−Δ ,x j +Δ ], where Δ is the
effective half-width of a spine, and multiplying by the circumference l leads to the
current conservation condition

l[J(x j−Δ)− J(x j +Δ)] = lh[p j−R j/A], J(x) =−D∂x p.

Hence, lh[p j−R j/A] is the probability per unit time that a receptor enters the spine
with h an effective hopping rate. (This rate depends on the detailed geometry of the
dendritic spine.)

The effective diffusivity of a receptor in the long-time limit, which takes into ac-
count the effects of trapping at spines, can be determined by calculating the MFPT
τ(X) to travel a distance X from the end x = 0, for example. Introducing an absorb-
ing boundary at x = X and a reflecting boundary at x = 0,

Dl∂x p(0, t) =−δ (t), p(X , t) = 0,

the function

P(X , t)≡ l
∫ X

0
p(x, t)dx+

NX

∑
j=1

R j(t) (7.1.3)

is then the probability that t < τ(X), i.e., the probability that a receptor which was
initially at the origin has not yet reached the point x = X in a time t. Here NX is the
number of spines in the interval [0,X). The MFPT is then τ(X) =

∫ ∞
0 P(X , t)dt. It

follows that the MFPT can be expressed in terms of Laplace transforms:

τ(X) =

∫ X

0
p̃(x,0)dx+

NX

∑
j=1

R̃ j(0) (7.1.4)

where f̃ (s) ≡ ∫ ∞
0 e−st f (t)dt (see Box 2A). Laplace transforming Eqs. (7.1.2a)

and (7.1.2b) and using the initial conditions p(x,0) = 0 for 0 < x < X and R(0) = 0
gives

−sp̃+D
∂ 2 p̃
∂x2 =

NX

∑
j=1

h[p̃ j− R̃ j/A]δ (x− x j), (7.1.5a)

sR̃ j = lh[p̃ j− R̃ j/A], (7.1.5b)
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where p̃ j(s) = p̃(x j,s). In the limit s→ 0, Eq. (7.1.5b) implies that Ap̃ j(0) = R̃ j(0),
and Eq. (7.1.5a) becomes

D
∂ 2 p̃(x,0)

∂x2 = 0. (7.1.6)

Imposing the boundary conditions at x = 0,X , which imply that l∂x p̃(x,0)|x=0 =
−1/D and p̃(X ,0) = 0, we find that l p̃(x,0) = (X − x)/D. Combining these results,

τ(X) =
X2

2D
+

A
lD

NX

∑
j=1

(X− x j). (7.1.7)

The first term on the right-hand side of this equation is the MFPT in the absence
of any spines, whereas the remaining terms take into account the effects of being
temporarily trapped at a spine.

In order to calculate an effective diffusivity, consider the simple example of iden-
tical spines distributing uniformly along the cable with spacing d. That is, x j = jd,
j = 1, . . . ,N such that Nd = L and NX = X/d for X � d. Equation (7.1.7) then
becomes (for NX � 1)

τ(X)≡ X2

2Deff
=

X2

2D
+

A
lD

NX

∑
j=1

(X − jd).

Using the approximation

NX

∑
j=1

(X− jd) = NX X− (NX + 1)NX d
2

≈ X2

2d

finally gives [67]

Deff =
D

1+A/ld
. (7.1.8)

As expected, the presence of traps reduces the effective diffusivity of a receptor. In
particular, the diffusivity is reduced by increasing the surface area A of a spine rela-
tive to the product of the spine spacing d and circumference l of the dendritic cable.
Interestingly, D does not depend on the hopping rate h. Taking typical measured
values of the area of a spine (A = 1μm2), the spacing between spines (d = 1μm),
and the circumference of a dendrite (l = 1μm) [604], it follows that De f f = 0.5D.
A much greater reduction in the effective diffusivity can be obtained by including
additional aspects of receptor dynamics in spines such as binding/unbinding to cy-
toskeletal proteins (see Ex. 7.1) and recycling between the surface and intracellular
compartments [67, 76]. In the latter case, Eqs. (7.1.2a) and (7.1.2b) become
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∂ p
∂ t

= D
∂ 2 p
∂x2 −

N

∑
j=1

h[p j−R j/A]δ (x− x j), (7.1.9a)

dR j

dt
= lh[p j−R j/A]−σendR j +σexoS j (7.1.9b)

dS j

dt
=−σexoS j +σendR j, (7.1.9c)

where S j(t) is the probability that a receptor is in an intracellular compartment as-
sociated with the jth spine and σexo (σend) is the rate of exocytosis (endocytosis)
between the compartment and the surface of the spine. For simplicity, we neglect
degradation of receptors by lysosomes. The analysis of this model proceeds in an
identical fashion to the binding model considered in Ex. 7.1. It is also possible to
use diffusion–trapping models to determine the steady-state distribution of recep-
tors when there is a nonzero flux of receptors at one end (representing newly syn-
thesized receptors from the cell body) and the degradation of receptors is included
(see Ex. 7.2).

One major simplification of the diffusion-trapping model is that it neglects the
detailed structure of a spine and the associated PSD. A more comprehensive model
would need to take into account the complex organization of the PSD and the
geometry of the spine [194, 330, 406, 580]. Finally, note that the coupling be-
tween exocytosis and endocytosis during AMPA receptor recycling is one example
of a more general transport mechanism that occurs in neurons and other secretory
cells via the endocytic pathway illustrated in Fig. 7.2 [246]. Other examples include
the insertion and removal of membrane proteins during axonal elongation and the
stimulus-induced release of secretory molecules (neurotransmitters) at the presy-
naptic terminal of a synapse. The latter is regulated by the exocytosis of synaptic
vesicles; endocytic processes then have to be coordinated so that there is an efficient
reuptake of vesicles in order to restore functionality of the synapse. For a detailed
discussion of whole-cell kinetic models of receptor recycling and its role in chemi-
cal signaling see [371, 680].

7.1.3 Continuous-Time Random Walks

An important generalization of the standard random walk, known as the CTRW, is
often used to model anomalous diffusion arising from trapping processes. The basic
idea is that trapping can increase the time between jumps (waiting times) so that
jumps no longer occur at fixed discrete-time steps. A CTRW is typically written in
the form [289]

Rn(�, t) = ∑
�′∈Γ

p(�− �′)
∫ t

0
ψ(t− t ′)Rn−1(�

′, t ′)dt ′ (7.1.10)
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where Rn(�, t) is the probability density for a walker to just arrive at site � at time t
in n steps and ψ(t) is the waiting time density for a single step over a time interval
of length t. Thus steps can now take place at different times. In general, a CTRW
has a memory of previous time steps so it is non-Markovian. How does one recover
the standard Markovian random walk? First, we consider the exponential waiting
time density ψ(t) given by

ψ(t) = Λe−Λt .

Substituting into the CTRW and differentiating both sides with respect to t shows
that

1
Λ

dRn

dt
+Rn(�, t)≈ Rn(�, t + ε) = ∑

�′
p(�− �′)Rn−1(�

′, t)

for ε = Λ−1 � 1. This is the standard recursive equation after setting t = nε .
In order to analyze Eq. (7.1.10) we will make extensive use of the transform

methods described in Box 2A. It is useful to keep track of the different transform
pairs, which are as follows:

n↔ z(z−transform), �↔ k(discrete Fourier transform), t↔ s(Laplace transform).

First, taking the Laplace transform of Eq. (7.1.10) and using the convolution
Theorem 2.1 give

R̃n(�,s) = ψ̃(s) ∑
�′∈Γ

p(�− �′)R̃n−1(�
′,s).

This has the solution (for n≥ 1)

R̃n(�,s) = APn(�)ψ̃n(s), ψ̃n(s) = ψ̃(s)n

with unknown amplitude A and Pn(�) the solution to the standard random walk (RW)
master equation

Pn(�) = ∑
�′

p(�− �′)Pn−1(�
′).

One is often interested in the probability density of being at the site � at time t
irrespective of the number of steps. Therefore, introduce the density

R(�, t) = ∑
n≥0

Rn(�, t), (7.1.11)

and note that if the walker starts at the origin, then

R0(�, t) = δ�,0Ψ(t), Ψ(t) =
∫ ∞

t
ψ(t ′)dt ′.

Here Ψ(t) is the probability that the walker has not yet taken a first step at time t. It
follows from the analysis of Rn(�, t) and its Laplace transform that

R(�, t) = ∑
�′∈Γ

p(�− �′)
∫ t

0
ψ(t− t ′)R(�′, t ′)dt ′+ δ�,0Ψ(t) (7.1.12)
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and
R̃(�,s) = ∑

n≥0

R̃n(�,s) = A ∑
n≥0

Pn(�)ψ̃(s)n.

Summing both sides with respect to � and using the normalization ∑�Pn(�) = 1, we
have

∑
�

R̃(�,s) = A ∑
n≥0

ψ̃(s)n =
A

1− ψ̃(s)
.

We also have ∑� R(�, t) = 1, which implies ∑� R̃(�,s) = 1/s. Hence, A = (1−
ψ̃(s))/s and

R̃(�,s) =
1− ψ̃(s)

s
Γ [�, ψ̃(s)], (7.1.13)

where Γ (�,z) = ∑n Pn(�)zn, which is the generating function for the distribution
Pn(�) and fixed �.

We would like to determine the MSD for different choices of the waiting time
density ψ(t). First, we need to determine the generating function Γ for the underly-
ing RW, which satisfies

Γ (�,z) = δ�,0 + z∑
�′

p(�− �′)Γ (�′,z).

Taking discrete Fourier transforms and using the convolution theorem on the (infi-
nite) lattice

Γ̂ (k,z) = 1+ zp̂(k)Γ̂ (k,z),

where
p̂(k) = ∑

�

eik·�p(�).

Hence

Γ̂ (k,z) =
1

1− zp̂(k)
.

Taking the discrete Fourier transform of Eq. (7.1.13) with R̂(k,s) ≡ ∑� eik·�R̃(�,s)
thus gives

R̂(k,s) =
1− ψ̃(s)

s
1

1− ψ̃(s)p̂(k)
. (7.1.14)

For simplicity, consider a 1D lattice. Using
(
−i

∂
∂k

)n

R̂(k,s)

∣
∣∣
∣
k=0

= ∑
�

�nR̃(�,s),

which is the Laplace transform of the nth order moment of �, we obtain the following
results:

L (〈X〉)(s) = ∑
�

�R(�,s) =
−iψ̃(s)p̂′(0)
s(1− ψ̃(s))
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and

L (〈X2〉)(s) = ∑
�

�2R(�,s) =
ψ̃(s)p̂′′(0)
s(1− ψ̃(s))

− 2ψ̃(s)2 p̂′(0)2

s(1− ψ̃(s))2 .

We are assuming that the distribution p(�) of displacements on the lattice has finite
moments. In particular, if the CTRW is unbiased with p̂′(0) = 0 and p̂′′(0) =−σ2,
then

L (〈X〉)(s) = 0

and

L (〈X2〉)(s) = ψ̃(s)σ2

s(1− ψ̃(s))
.

Now suppose that the mean waiting time density is also finite:

τ =

∫ ∞

0
tψ(t)dt < ∞.

We can then Taylor expand the Laplace transform around u = 0

ψ̃(s) =
∫ ∞

0
e−stψ(t)dt ≈

∫ ∞

0
[1− st]ψ(t)dt = 1− sτ,

so that in the limit s→ 0,

L (〈X2〉)(s) ∼ σ2

s2τ
,

which implies that

〈X(t)2〉 ∼ σ2t
τ

.

On the other hand, if
ψ̃(s) ∼ 1−Bsβ

as s→ 0 with 0 < β < 1, then the waiting time density has infinite mean and

ψ(t)∼ t−1−β

as t → ∞. One now obtains subdiffusive behavior with

〈X(t)2〉 ∼ σ2tβ

BΓ (1+β )
. (7.1.15)

The relationship between the power laws with respect to t and the Laplace variable
u are determined using Tauberian theorems (see Box 7A).
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Box 7A. Tauberian theorems [289].

Weak Tauberian theorem. If ψ(t)≥ 0, 0≤ ρ < ∞ and L is slowly vary-
ing at ∞, then each of the relations

ψ̃(s)∼ L(1/s)s−ρ

as u→ 0 and ∫ t

0
ψ(t ′)dt ′ ∼ tρ L(t)

Γ (1+ρ)
as t → ∞ implies the other.

Strong Tauberian theorem. If ψ(t) ≥ 0, 0 ≤ ρ < ∞, ψ(t) is ultimately
monotonic as t → ∞, and L is slowly varying at ∞, then each of the
relations

ψ̃(s)∼ L(1/s)s−ρ

as u→ 0 and

ψ(t)∼ tρ−1L(t)
Γ (ρ)

as t → ∞ implies the other.

7.1.4 Diffusion in the Plasma Membrane

At the simplest level, the plasma membrane can be treated as a 2D sheet of mem-
brane lipids into which proteins are embedded (see Fig. 7.7). Membrane lipids
are a group of compounds (structurally similar to fats and oils) which form the
double-layered surface of all cells. The three major classes of membrane lipids are
phospholipids, glycolipids, and cholesterol. Lipids are amphiphilic: they have one
end that is soluble in water (“polar”) and an ending that is soluble in fat (“nonpo-
lar”). By forming a double layer with the polar ends pointing outward and the non-
polar ends pointing inward membrane lipids can form a “lipid bilayer” which keeps
the watery interior of the cell separate from the watery exterior. The arrangements of
lipids and various proteins, acting as receptors and channel pores in the membrane,
control the entry and exit of other molecules as part of the cell’s metabolism. In the
fluid mosaic model of [593], the membrane lipids are treated as the solvent (water
concentrations are very low within the membrane) into which proteins are dissolved.
One of the consequences of the fluid mosaic model is that protein clustering, which
alters the effective size of a diffusing particle, has only a weak effect on diffusion
in the plasma membrane. This follows from the hydrodynamic membrane diffusion
model of Saffman and Delbruck [551], which implies that the diffusion coefficient
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for a cylinder of radius r in a 2D membrane varies as logr. Although the diffusion
of lipids appears to be Brownian in pure lipid bilayers, SPT experiments (Sect. 1.2)
indicate that lipids and proteins undergo anomalous diffusion in the plasma mem-
brane [364, 565]. This has led to a modification of the original fluid mosaic model,
whereby lipids and transmembrane proteins undergo confined diffusion within, and
hopping between, membrane microdomains or corrals [364, 365, 654]; the corral-
ing could be due to “fencing” by the actin cytoskeleton or confinement by anchored
protein “pickets” (see Fig. 7.8). These microdomains could also be associated with
lipid rafts [299, 365]. Partitioning the membrane into a set of corrals implies that
anomalous diffusion of proteins will be observed on intermediate timescales, due to
the combined effects of confinement and binding to the actin cytoskeleton. However,
on time scales over which multiple hopping events occur, normal diffusion will be
recovered. A rough estimate of the corresponding diffusion coefficient is D∼ L2/τ ,
where L is the average size of a microdomain and τ is the mean hopping rate be-
tween microdomains. A typical range of values for various types of mammalian cell
are L∼ 30–240 nm and τ ∼ 1–20 ms.

In the case of confinement by anchored protein pickets, τ can be estimated by
treating each corral as a domain with a set of small holes (gaps) between anchored
proteins and solving a narrow escape problem [267, 269] (see Sect. 7.2). (Another
approach to estimating τ has been developed by [327], based on a random walker
moving on a 1D lattice with either periodically or randomly distributed semiperme-
able barriers.) On the other hand, the membrane cytoskeleton surrounding a corral is
usually modeled as an effective energy barrier over which a diffusing protein must
escape. For example, Saxton carried out a computational study of a particle diffus-
ing inside a corral surrounded by a static energy barrier [563]. It was assumed that
when the particle hit the barrier it had a fixed probability of escape. The MFPT out
of the corral was numerically determined for a wide range of corral sizes, shapes,
and escape probabilities. In earlier work, Saxton considered a static fence model in

Fig. 7.7: Fluid mosaic model of the plasma membrane. (Public domain figure downloaded from
Wikispaces.)
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membrane skeleton
a b

anchored proteins

Membrane skeleton (fence) Anchored protein (picket)

Fig. 7.8: Picket-fence model of membrane diffusion. The plasma membrane is parceled up into
compartments whereby both transmembrane proteins and lipids undergo short-term confined dif-
fusion within a compartment and long-term hop diffusion between compartments. This corralling
is assumed to occur by two mechanisms. (a) The membrane-cytoskeleton (fence) model: trans-
membrane proteins are confined within the mesh of the actin-based membrane skeleton. (b) The
anchored-protein (picket) model: transmembrane proteins, anchored to the actin-based cytoskele-
ton, effectively act as rows of pickets along the actin fences

which a protein could only move from one corral to another if the particular barrier
separating the two corrals was dissociated [561]. In this particular model, large-
scale diffusion only occurs if there exists a percolation network of dissociated bar-
riers. However, estimates of the density of the actin cytoskeleton in red blood cells
(erythrocytes), for example, suggest that the fraction of dissociated cytoskeleton is
below the percolation threshold. Hence, it is necessary to modify the percolation
model by considering time-dependent, fluctuating energy barriers. A simple model
of this is the stochastic gating model described in Sect. 3.6.

7.2 Narrow Escape Problems, Small Targets, and Singular
Perturbation Methods

7.2.1 Narrow Escape Problems

Within the context of intracellular transport, there has been a growing interest in a
particular class of FPT processes, namely, the escape of a freely diffusing molecule
from a 2D or 3D bounded domain through small absorbing windows on an otherwise
reflecting boundary [29, 76, 107, 267, 511, 576]. Examples include an ion search-
ing for an open ion channel situated within the cell membrane, the confinement of
neurotransmitter receptors within the synapse of a neuron, and the confinement of
calcium within intracellular compartments. Consider diffusion in a two-dimensional
domain Ω ⊂ R

2 whose boundary can be decomposed as ∂Ω = ∂Ωr ∪∂Ωa, where
∂Ωr represents the reflecting part of the boundary and ∂Ωa the absorbing part.
We then have a narrow escape problem in the limit that the measure of the absorbing
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Fig. 7.9: Example trajectory of a Brownian particle moving in a 2D unit disk with small absorbing
windows on an otherwise reflecting circular boundary. Inset: a local coordinate system around the
jth arc

set |∂Ωa| = O(ε) is asymptotically small, that is, 0 < ε � 1. It follows from the
analysis of exit times [see Eq. (2.3.8)], that the MFPT to exit the boundary ∂Ωa

satisfies the equation (in the absence of external forces)

∇2τ(x) =− 1
D
, x ∈Ω (7.2.1)

with boundary conditions

τ(x) = 0, x ∈ ∂Ωa = ∪N
j=1∂Ω j

and
∂nτ(x) = 0, x ∈ ∂Ωr.

The absorbing set is assumed to consist of N small disjoint absorbing windows ∂Ω j

centered at x j ∈ ∂Ω . In the 2D case, each window is a small absorbing arc of length
|∂Ω j |= εl j with l j = O(1). It is also assumed that the windows are well separated,
that is, |xi− x j| = O(1) for all i �= j. An example of a Brownian particle in a 2D
unit disk with small absorbing windows on the circular boundary is illustrated in
Fig. 7.9. Since the MFPT diverges as ε → 0, the calculation of τ(x) requires solving
a singular perturbation problem [29, 107, 267, 511, 576].

We follow the particular approach to the narrow escape problem by Ward and
collaborators [107, 511]. For a complementary Green’s function approach, see the
work of Holcman, Schuss, and collaborators reviewed in [268]. The basic idea is
to construct the asymptotic solution for the MFPT in the limit ε → 0 using the
method of matched asymptotic expansions. That is, an inner or local solution valid
in a O(ε) neighborhood of each absorbing arc is constructed and then these are
matched to an outer or global solution that is valid away from each neighborhood
(see Fig. 7.10). In order to construct an inner solution near the jth absorbing arc,
Eq. (7.2.1) is rewritten in terms of a local orthogonal coordinate system (z,s), in
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which s denotes arc length along ∂Ω and z is the minimal distance from ∂Ω to
an interior point x ∈ Ω , as shown in the inset of Fig. 7.9. Now introduce stretched
coordinates ẑ = z/ε and ŝ = (s− s j)/ε , and write the solution to the inner problem
as τ(x) = w(ẑ, ŝ). Neglecting terms of O(ε), it can be shown that w satisfies the
homogeneous equation [511]

∂ 2w
∂ 2ẑ

+
∂ 2w
∂ 2ŝ

= 0, 0 < ẑ < ∞, −∞ < ŝ < ∞ (7.2.2)

with the following boundary conditions on ẑ = 0:

∂w
∂ ẑ

= 0 for |ŝ|> l j/2, w = 0 for |ŝ|< l j/2. (7.2.3)

The resulting boundary value problem can be solved by introducing elliptic cylinder
coordinates. However, in order to match the outer solution we need only specify the
far-field behavior of the inner solution, which takes the form

w(x)∼ A j [log |y|− logd j + o(1)] as |y| → ∞, (7.2.4)

where d j = l j/4, |y|= |x−x j|/ε =
√

ẑ2 + ŝ2, and A j is an unknown constant, which
is determined by matching with the outer solution.

As far as the outer solution is concerned, each absorbing arc shrinks to a point
x j ∈ ∂Ω as ε → 0 (see Fig. 7.10b). Each point x j effectively acts as a point source
that generates a logarithmic singularity resulting from the asymptotic matching of
the outer solution to the far-field behavior of the inner solution. Thus the outer solu-
tion satisfies

∇2τ(x) =− 1
D
, x ∈Ω , (7.2.5)

w
 =

 0

Δw = 0

z

s

∂ z
w

 =
 0

∂ z
w

 =
 0

a b
∂
n τ = 0

Δτ = −D-1

Fig. 7.10: Construction of the matched asymptotic solution for the narrow escape problem. (a) In-
ner solution w in the half-plane s ∈ R, z ∈R

+ with mixed boundary conditions on z = 0. (b) Outer
solution τ in the disk with a reflecting boundary condition and the target treated as a point
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with reflecting boundary condition

∂nτ = 0 for x ∈ ∂Ω\{x1, . . . ,xN} (7.2.6)

and

τ(x)∼ A j

μ j
+A j log |x− x j| as x→ x j, j = 1, . . . ,N, (7.2.7)

where

μ j ≡− 1
log(εd j)

. (7.2.8)

This can be solved in terms of the Neumann Green’s function G, defined as the
unique solution of (see Box 2C)

∇2G(x,x′) =
1
|Ω | − δ (x− x′), x ∈Ω (7.2.9a)

G(x,x j)∼− 1
π

log |x− x j|+R(x j,x j) as x→ x j ∈ ∂Ω (7.2.9b)

∂nG(x,x′) = 0, x ∈ ∂Ω ,
∫

Ω
G(x,x j)dx = 0, (7.2.9c)

where R(x,x′) is the regular part of G(x,x′). It follows that the outer solution can be
expressed as

τ(x) =−π
N

∑
j=1

AiG(x,x j)+ χ , (7.2.10)

where χ is an unknown constant. Integrating both sides of Eq. (7.2.10) shows that χ
is the MFPT averaged over all possible starting positions:

χ = τ ≡ 1
|Ω |
∫

Ω
τ(x)dx. (7.2.11)

The problem has reduced to solving N + 1 linear equations for N + 1 unknowns
Ai,χ . The first N equations are obtained by matching the near-field behavior of
the outer solution as x→ x j with the far-field behavior of the corresponding inner
solution (7.2.4). After cancellation of the logarithmic terms, we have

−πA jR j−π ∑
i�= j

AiG ji + χ =
A j

μ j
, (7.2.12)

for j = 1, . . . ,N, where G ji ≡ G(x j,xi) and R j ≡ R(x j,x j). The remaining equation
is obtained by noting that ∇2τ(x) =−π ∑N

j=1 A j∇2G(x,x j) and hence

π |Ω |−1
N

∑
j=1

A j =
1
D
. (7.2.13)
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In the case of a single absorbing window of arc length 2ε (d = 1/2), Eqs. (7.2.12)
and (7.2.13) are easily solved to give A1 = Ω |/πD, so that we obtain the equations

τ(x)∼ |Ω |
D

[
− 1

π
log(ε/2)+R(x1,x1)−G(x,x1)

]
, (7.2.14)

τ ∼ |Ω |
D

[
− 1

π
log(ε/2)+R(x1,x1)

]
. (7.2.15)

All that remains is to calculate the regular part of the Neumann Green’s function
R(x,x j), which will depend on the geometry of the domain Ω . In certain cases such
as the unit disk or a rectangular domain, explicit formulae for R can be obtained;
otherwise numerical methods are required [267, 511, 594, 595]. The Green’s func-
tion for a unit disk when the source x j is on the unit circle has the well-known
formula

G(x,x j) =− 1
π

log |x− x j|+ |x|
2

4π
− 1

8π
.

It immediately follows that R(x1,x1) = 1/8π (since |x1|2 = 1) and

τ =
1
D
[− log(ε)+ log2+ 1/8].

For a rectangular domain of width L2 and height L1, the Green’s function can be
solved using separation of variables and expanding the result in terms of logarithms
(see [70, 511]).

7.2.2 Diffusion to a Small Target

In the derivation of diffusion-limited reaction rates (Sect. 2.4), it was assumed that
diffusion of the background reactants occurs in an unbounded domain with a uni-
form concentration at infinity. The analysis becomes considerably more involved
when reactions occur in a bounded domain. Recently, Straube et al. [613] have
shown how methods similar to the analysis of the narrow escape problem can be
used to determine the reaction rate in the asymptotic limit that the target is much
smaller than the domain size. Here we sketch the basic steps of their analysis. Con-
sider a target disk Ωε of radius ε � 1 and center x0 that is located in the interior of
a rectangular domain Ω of size O(1) (see Fig. 7.11). The calculation of the reaction
rate can be formulated in terms of the solution to the following diffusion equation:

∂c(x, t)
∂ t

= D∇2c(x, t), x ∈Ω\Ωε (7.2.16)
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with ∂nc = 0 on the exterior boundary ∂Ω and c = 0 on the interior boundary ∂Ωε .
The initial condition is taken to be c(x,0) = 1. Following Straube et al. [613], we
seek a solution in the form of an eigenfunction expansion,

c(x, t) =
∞

∑
j=0

c jφ j(x)e−λ jDt (7.2.17)

where the eigenfunctions φ j(x) satisfy the Helmholtz equation

∇2φ j +λ jφ j = 0, x ∈Ω\Ωε (7.2.18)

subject to the same boundary conditions as c(r, t). The eigenfunctions are orthogo-
nalized as ∫

Ω\Ωε
φi(x)φ j(x)dx = δi, j. (7.2.19)

The initial condition then implies that

c j =

∫

Ω\Ωε
φ j(x)dx. (7.2.20)

Taking the limit ε → 0 results in an eigenvalue problem in a rectangular domain
without a hole. It is well known that the eigenvalues are ordered as λ0 = 0 < λ1 ≤
λ2 ≤ . . .. This ordering will persist when 0 < ε � 1 so that in the long-time limit,
the solution will be dominated by the eigenmode with the smallest eigenvalue:

c(x, t)∼ c0φ0(x)e−λ0Dt . (7.2.21)

The time-dependent flux is then

J(t) = Dc0e−λ0Dt
∫ 2π

0

(
r

∂φ0

∂ r

)∣∣
∣∣
r=ε

dθ . (7.2.22)

∂nc = 0

target

∂tc = DΔc 
c = 0

Fig. 7.11: Diffusion-limited reaction rate for a small target in a bounded domain
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For small ε , the principal eigenvalue λ0 of the Helmholtz operator has an infinite
logarithmic expansion [613, 671]:

λ0 = νΛ1 +ν2Λ2 + . . . , ν =− 1
logε

. (7.2.23)

Moreover, the eigenfunction φ0(x) develops a boundary layer in a neighborhood of
the target, where it changes rapidly from zero on the boundary ∂Ωε to a value of
O(1) away from the target. This suggests dividing the domain into inner and outer
regions and using matched asymptotics along analogous lines to the study of the
narrow escape problem. The logarithmic expansion of λ0 implies that the right-hand
side of the rescaled eigenvalue equation is of O(ε2ν2) = o(νk) for all k ≥ 0. Thus,
to logarithmic accuracy, it follows that the inner problem with stretched coordinates
y = x/ε is

∇2ϕ(y) = 0, y ∈ R
2\S1,

where S1 is the unit circle centered about the origin and ϕ = 0 on |y| = 1. Hence,
ϕ(y) = A log |y| and the inner solution has the far-field behavior

ϕ ∼ A log(|x− x0|/ε). (7.2.24)

The outer solution satisfies the equation

∇2φ0 +λ0φ0 = 0, x ∈Ω\{x0},
φ0 ∼ A log(|x− x0|/ε), x→ x0,
∫

Ω
φ2

0 (x)dx = 1.

The outer problem can be solved in terms of the Neumann Green’s function for the
Helmholtz equation:

∇2G(x,x0;λ0)+λ0G(x,x0;λ0) =−δ (x− x0), x ∈Ω (7.2.25a)

∂nG(x,x0;λ0) = 0, x ∈ ∂Ω (7.2.25b)

G(x,x0;λ0)∼− 1
2π

log |x− x0|+R(x0,x0;λ0), x→ x0. (7.2.25c)

That is,
φ0(x) =−2πAG(x,x0;λ0). (7.2.26)

Matching the near-field behavior of the outer solution with the far-field behavior of
the inner solution then yields a transcendental equation for the principal eigenvalue:

R(x0,x0;λ0) =− 1
2πν

. (7.2.27)
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Finally, the normalization condition for φ0 determines the amplitude A according to

4π2A2
∫

Ω
G(x,x0;λ0)

2dx = 1. (7.2.28)

Since 0 < λ0 � 1 for a small target, the Green’s function has the expansion

G(x,x0;λ0) =− 1
λ0|Ω | +G1(x,x0)+λ0G2(x,x0)+O(λ 2

0 )

with
∫

Ω G j(x,x0)dx = 0. Substituting this expansion into Eq. (7.2.28) shows that to
leading order in λ0,

A≈
√|Ω |λ0

2π
. (7.2.29)

Similarly, Eqs. (7.2.20) and (7.2.26) imply that

c0 =−2πA
∫

Ω
G(x,x0;λ0)dx≈ 2πA

λ0
. (7.2.30)

The regular part R(x,x0;λ0) can also be expanded in terms of λ0. Hence, neglect-
ing terms of O(λ0) and higher, substitute R(x,x0;λ0) ≈ −(λ0|Ω |)−1 + R1(x,x0)
into Eq. (7.2.27). This yields a linear equation for λ0 such that

λ0 ≈ 2πν
|Ω |

1
1+ 2πνR1(x0,x0)

. (7.2.31)

We now have all the components necessary to determine the time-dependent reac-
tion rate. That is, substituting the inner solution φ0(x) = A log(r/ε), r = |x− x0|,
into Eq. (7.2.22), and using Eqs. (7.2.29) and (7.2.30), yields the result

J(t)≈ D|Ω |λ0e−λ0Dt , λ0 =
2πν
Ω

+O(ν2). (7.2.32)

7.3 Membrane Transport Through Nanopores and Channels

As we mentioned in the introduction to this chapter, an important cellular transport
process is the passage of molecules through membrane channels or pores. Here we
will focus on passive aspects of membrane transport, which are characterized by
diffusion in confined domains. The details of the process will depend on the relative
size of the molecules compared to the channel and any interactions between the
diffusing particles and the channel itself. A major consequence of confinement is
that it restricts the number of degrees of freedom available to a molecule, which
leads to strong entropic effects. We will explore the effects of confinement in three
distinct cases.
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(i) Diffusion of ions or lipids through a narrow channel. Here changes in the
motion of a molecule occur mainly in the axial direction along the channel,
whereas local equilibrium is rapidly reached in the transverse directions. Thus
transport is quasi-one-dimensional and the effects of the boundaries of the
channel can be incorporated by introducing an effective (entropic) energy bar-
rier into the dynamics of a Brownian particle, leading to the so-called Fick–
Jacobs equation [82, 83, 297, 316, 547, 708]. Typically a 3D narrow channel is
represented by a cylinder that extends axially in the x-direction and has a pe-
riodically varying cross section that is rotationally symmetric about the x-axis
(see Fig. 7.12a). Denoting the space-dependent radius of period L by w(x), with
w(x+L) =w(x) for all x, the cross-section varies as A(x) = πw(x)2. In the case
of a corresponding 2D channel, w(x) represents the half-width of the channel.

(ii) Single-file diffusion. An extreme version of confined diffusion along a chan-
nel is single-file diffusion, in which the channel is so narrow that particles
cannot pass each other. In other words, the longitudinal motion of each parti-
cle is hindered by the presence of its neighbors, which act as moving obsta-
cles (see Fig. 7.12b). Hence, interparticle interactions can suppress Brownian
motion and lead to subdiffusive behavior [22, 386, 504, 621].

(iii) Translocation of polymers through a pore. Polymer translocation through a
membrane pore plays an important role in a number of cellular processes,
including the transport of RNA across nuclear pores, virus infection of cells,
and DNA packaging into viral capsids [3]. There are also an increasing number
of technological applications, ranging from drug delivery to biochemical sen-
sors, which have been driven by significant progress in experimental studies
of translocation at the single-molecule level [463]. Translocation of biopoly-
mers in vivo is typically facilitated by interactions with the channel or spe-
cialized proteins (chaperones), whereas translocation in vitro is driven by the
application of external electrical fields. Since the resulting voltage difference
across the pore would normally cause the flow of ions, one can measure when

w(x)

x

a

b

Fig. 7.12: Confined diffusion in a narrow cylindrical channel with a periodically modulated bound-
ary w(x) in the axial direction. (a) Small diffusing particle. (b) Single-file diffusion
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a polymer enters the pore since it partially blocks the path of the ions, resulting
in a significant decrease in the ionic current. Thus the frequency and dura-
tion of translocation events can be recorded. From a theoretical perspective the
translocation process also involves diffusion past an entropic barrier, in this
case arising from the fact that a free polymer has many more configurational
states than one that is threaded through a pore [117, 462, 493, 615].

7.3.1 Confined Diffusion and the Fick–Jacobs Equation

We begin by deriving the Fick–Jacobs equation for a Brownian particle diffusing in
a 2D channel as shown in Fig. 7.12a. We follow the particular derivation of [708].
It is assumed that the channel walls at y =±w(x) confine the motion of the particle
but do not exchange energy with it. Thus the probability flux normal to the boundary
is zero. This condition can be imposed by introducing a confining potential U(x,y)
such that U(x,y) = 0 for |y| < w(x) and U(x,y) = ∞ for |y| ≥ w(x). Let p(x,y, t)
denote the probability that the particle is located at position x = (x,y) at time t with
periodic boundary conditions in the longitudinal direction, p(x+L,y, t) = p(x,y, t).
For a general potential U(x,y), the 2D FP equation takes the form

∂ p
∂ t

=−1
γ

[
∂ [Fx p]

∂x
+

∂ [Fy p]
∂y

]
+D0

[
∂ 2 p
∂x2 +

∂ 2 p
∂y2

]
,

where Fx = −∂xU,Fy = −∂yU . Using the Einstein relations D0γ = kBT = β−1, the
FP equation can be rewritten as

∂ p
∂ t

= D0
∂
∂x

e−βU(x,y) ∂
∂x

eβU(x,y)p(x,y, t)

+D0
∂
∂y

e−βU(x,y) ∂
∂y

eβU(x,y)p(x,y, t). (7.3.1)

In order to reduce to a 1D equation, first integrate both sides of the FP equation with
respect to the transverse coordinate y:

∂P(x, t)
∂ t

= D0
∂
∂x

∫ w(x)

−w(x)
e−βU(x,y) ∂

∂x
eβU(x,y)p(x,y, t)dy,

where P(x, t) is the reduced probability density

P(x, t) =
∫ w(x)

−w(x)
p(x,y, t)dy. (7.3.2)
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The major step in the reduction is to assume that the probability density reaches
equilibrium in the transverse direction. That is, p(x,y, t) is assumed to factorize as
follows:

p(x,y, t)≈ P(x, t)ρ(x,y), (7.3.3)

where ρ(x,y) is a normalized Boltzmann–Gibbs probability density (Sect. 1.4):

ρ(x,y) =
e−βU(x,y)

A0e−βU (x)
, e−βU (x) =

1
A0

∫ w(x)

−w(x)
e−βU(x,y)dy, (7.3.4)

where A0 = 2
∫ L

0 w(x)dx and U (x) interpreted as an effective x-dependent barrier
potential or free energy. Under this factorization the averaged FP equation becomes

∂P(x, t)
∂ t

≈ D0
∂
∂x

e−βU (x) ∂
∂x

eβU (x)P(x, t). (7.3.5)

This holds for a general potential energy function U(x,y) [526]. If U is now taken
to be the confining potential of the channel boundary, then e−βU (x) = 2w(x)/A0 ≡
σ(x) and we obtain the Fick–Jacobs equation

∂P(x, t)
∂ t

= D0
∂
∂x

σ(x)
∂
∂x

P(x, t)
σ(x)

. (7.3.6)

The same equation is obtained in 3D with σ(x) = A(x)/A0 with A(x) = πw(x)2

and A0 = π
∫ L

0 w(x)2dx. In the physics literature U (x) is usually referred to as
an entropic barrier, since confinement reduces the volume of the phase space of
available states accessible to the particle.1 The Fick–Jacobs equation is valid pro-
vided that |w′(x)| � 1. However, it has been shown that the introduction of an
x-dependent diffusion coefficient into the Fick–Jacobs equation can considerably
increase the accuracy of the reduced FP equation and thus extend the domain of
validity [316, 526, 708]:

D(x) =
D0

[1+w′(x)2]α
, (7.3.7)

with α = 1/3,1/2 for 2D and 3D, respectively.
As it stands, the Fick–Jacobs equation (7.3.6) represents a particle diffusing in a

1D periodic potential U (x), which means that the mean velocity of the particle is
zero. On the other hand, net transport of the particle through the channel does occur
in the presence of a constant external force F0 in the x-direction. Equation (7.3.6)
still holds, except that now U (x) = −F0x− kBT lnσ(x), which yields the classical

1 The effective free energy U (x) =−kBT log[A(x)/A0 ] reflects the existence of an entropic barrier
to diffusion [526]. That is, using the standard definition of free energy U = E0−TS, where E0 is
internal energy and S is the entropy, it follows that S(x)∼ logA(x) where A(x) is the cross-sectional
area of the channel at x. This is consistent with the definition of entropy in terms of the logarithm
of the number of microstates. That is, in equilibrium there is a uniform probability density ρ0 in
the channel, so that the equilibrium x-dependent density Peq(x) = ρ0A(x)/A0 and the number of
microstates available to a diffusing particle at location x is proportional to the area of the channel.
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Fig. 7.13: Illustrative sketches of how mobility and diffusivity vary with nondimensionalized ap-
plied force F0L/kBT in the case of a 2D channel with a sinusoidally varying half-width Eq. (7.3.10).
(a) Effective mobility μ in units of γ . In the limit F0 → ∞, μ → γ−1. (b) Diffusion coefficient D in
units of free diffusivity D0. In the limit F0 → ∞, D→ D0. Sketches are based on numerical results
of [527] for a = L/2π and b = 1.02

problem of Brownian motion in a periodic potential with tilt [82, 253, 530, 612],
which was analyzed in Sect. 4.2. Given the mean and variance of the particle posi-
tion in the long-time limit, one can define the drift mobility and diffusion coefficient
of the particle according to

μ(F0)≡ 〈Ẋ〉F0
, 〈Ẋ〉= lim

t→∞

〈X(t)〉
t

, (7.3.8)

and

D(F0) = lim
t→∞

〈X(t)2〉− 〈X(t)〉2
2t

. (7.3.9)

Note that the relationship between 〈Ẋ〉 and the long-time limit of 〈X(t)〉/t is a con-
sequence of ergodicity [529] (see Sect. 4.2). The force dependence of the mobility
and diffusion coefficient have been studied both analytically and numerically in the
case of a sinusoidal boundary function [82, 527]

w(x) = a[sin(2πx/L)+ b], a > 0,b > 1. (7.3.10)

The basic results are sketched in Fig. 7.13. A number of interesting observations
emerge from this study. First, the mobility only depends on the temperature via the
dimensionless parameter F0L/kBT . Hence, increasing the temperature reduces the
mobility. Second, as the force is increased the effective diffusion coefficient D(F0)
exceeds the free diffusion coefficient D0. Finally, note that for certain forms of σ(x),
one can find exact solutions of the Fick–Jacobs equation by a change of variables
[543] (see Ex. 7.3).
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The Fick–Jacobs equation represents diffusion through a narrow channel in terms
of a 1D overdamped Brownian particle moving in an effective potential U (x) that
arises from confinement. Such a 1D model has also been the starting point for a
series of studies of channel-facilitated membrane transport, where now U (x) re-
flects the constructive role of attractive interactions between permeating particles
and proteins forming the channel pore. In a series of studies [33–35], mixed bound-
ary conditions are assumed at the ends x = 0,L of the channel: J(0, t) =−κ0P(0, t)
and J(L, t) =−κLP(L, t). The probability of crossing the channel and the mean time
in the channel is then calculated in terms of FPTs and splitting probabilities. It can
be shown that there is an optimal form of the interaction potential that maximizes
the flux through the channel and involves a play-off between increasing the translo-
cation probability through the channel and decreasing the average time particles
spend in the channel [33] (see also the entropic gate model in Sect. 7.3.2). For a
complementary approach to studying channel-facilitated transport that is based on
spatially discrete stochastic site-binding models, see [112, 345].

Finally, note that a variety of models have been developed to analyze ion perme-
ation through narrow channels. Broadly speaking, these models can be divided into
three classes [261, 387, 546]: (i) Brownian dynamics models based on a Langevin
description of the full 3D dynamics of ion motion through channels, which take
into account both ion–ion interactions and ion channel interactions. (ii) Continuum
mean-field models based on the Poisson–Nernst–Planck equation. The latter treats a
channel as a continuous medium, and the ionic current is determined by coupling the
Nernst–Planck electrodiffusion equation for the flux of charged particles in the pres-
ence of a concentration gradient and an electric field (see Ex. 2.4) with the Poisson
equation describing how the distribution of charges generates an effective mean-
field potential [464, 575]. (iii) Barrier models in which ions are localized to specific
regions of the channel via local potentials and the kinetics are represented by the
rate constants for hopping between these regions and between the channel and the
bulk [261]. A simple barrier model of ion permeation is considered in Ex. 7.4. (In
Chap. 3 we considered the stochastic gating of ion channels and their role in mem-
brane excitability, assuming a simple linear (ohmic) relationship between membrane
voltage and current flow through an open ion channel.)

7.3.2 Nuclear Transport

The nucleus of eukaryotes is surrounded by a protective nuclear envelope (NE)
within which are embedded NPCs (see Fig. 7.14). The NPCs are the sole mediators
of exchange between the nucleus and cytoplasm. In general small molecules of di-
ameter ∼ 5 nm can diffuse through the NPCs unhindered, whereas larger molecules
up to around 40 nm in diameter are excluded unless they are bound to a fam-
ily of soluble protein receptors known as karyopherins (kaps) (see the reviews
[403, 545, 641]). Within the cytoplasm kap receptors bind cargo to be imported
via a nuclear localization signal (NLS) that results in the formation of a kap–cargo
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complex. This complex can then pass through an NPC to enter the nucleus. A small
enzyme RanGTP then binds to the kap, causing a conformational change that re-
leases the cargo. The sequence of events underlying the import of cargo is shown

Fig. 7.14: The nuclear pore complex. 1 Nuclear envelope. 2 Outer ring. 3 Spokes. 4 Basket. 5
Filaments. Each of the eight protein subunits surrounding the actual pore (the outer ring) projects
a spoke-shaped protein into the pore channel. (Public domain figure from Wikimedia.)

in Fig. 7.15a. In the case of cargo export from the nucleus, kaps bind to cargo with
a nuclear export signal (NES) in the presence of RanGTP, and the resulting com-
plex passes through the NPC. Once in the cytoplasm, RanGTP undergoes hydrolysis
to form RanGDP, resulting in the release of the cargo. The export process is illus-
trated in Fig. 7.15b. Finally, RanGDP is recycled to the nucleus by another molecule
NFT2 and is reloaded with GTP to begin another import/export cycle. This cycle al-
lows a single NPC to support a very high rate of transport on the order of 1,000
translocations/seconds [533]. Since the transportation cycle is directional and accu-
mulates cargo against a concentration gradient, an energy source combined with a
directional cue is required. Both of these are provided by the hydrolysis of RanGTP
and the maintenance of a concentration gradient of RanGTP across the NPC. The
RanGTP gradient is continuously regenerated by GTP hydrolysis in the cytoplasm,
translocation of RanGTD into the nucleus by NFT2, and replacement of GDP by
GTP in the nucleus. It is important to note that the energy generated from RanGTP
hydrolysis is ultimately used to create a concentration gradient of RanGTP between
the nucleus and cytoplasm, so that the actual translocation across the NPC occurs
purely via diffusion.

Although the above basic picture is now reasonably well accepted, the detailed
mechanism underlying facilitated diffusion of kap–cargo complexes within the NPC
is still not understood. The NPC is composed of about 30 distinct proteins known
collectively as nucleoporins (nups). It has emerged in recent years that individual
nups are directly related to a number of human diseases including influenza and can-
cers such as leukemia [130], as well as playing an important role in viral infections
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Fig. 7.15: Schematic illustration of the (a) import and (b) export process underlying the
karyopherin-mediated transportation of cargo between the nucleus and cytoplasm via a nuclear
pore complex (NPC). See text for details

by providing docking sites for viral capsids [679]. Associated with many of the
nups are natively unfolded phenylalanine–glycine (FG) repeats, known collectively
as FG-repeats. The FG-repeats set up a barrier to diffusion for large molecules so
that the key ingredient in facilitated diffusion through the NPC is the interaction be-
tween kap receptors with the FG-repeats. In essence, the major difference between
the various theoretical models of NPC transport concerns the built-in assumptions
regarding the properties and spatial arrangements of FG-repeats within the NPC and
the nature of interactions with kaps during translocation through the NPC [27].

Entropic Gate Model

Recall from Sect. 7.3.1 that a macromolecule diffusing in a confined geometry (such
as a nuclear pore) experiences an entropic barrier due to excluded volume effects.
Within the NPC this would be enhanced by the densely packed FG-repeats. One way
to counteract the effects of the entropic barrier is for the kaps to have an affinity for
and bind to the FG-repeat regions [545, 704], thus lowering the effective free energy
of the cargo complex within the NPC. The degree of affinity has to be sufficiently
high to overcome the entropic barrier but not too high; otherwise the complex can
be trapped within the NPC and the rate of translocation would be too small. One
possible solution is to have a large number of low-affinity binding sites within the
nuclear pore. Recently, a mathematical model for the effects of binding on diffusion
within the NPC has been developed by [704], based on diffusion through an effective
energy landscape, which approximates the effects of multiple binding sites when
the binding/unbinding rates are relatively fast compared to the diffusion rate (see
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below). The simplest version of the model is illustrated in Fig. 7.16 for the case of
nuclear import. The effective potential energyU(x) is taken to be a flat potential well
of depth E along an NPC and zero outside the NPC. Absorbing boundary conditions
are placed at the points x = 0,L a distance R from either side of the NPC, which
has length L− 2R. The absorbing boundary conditions represent a cargo-complex

potential U(x)

R R

x=0 x=L

JS

J

NPC

J0

absorbing boundary

absorbing boundary

Je

JL

_

E

complex

Fig. 7.16: Sketch of model of [704]. Transport of cargo complex through the NPC is modeled as
diffusion in an energy landscape. See text for details

returning to the cytoplasm at x = 0 or entering the nucleus at x = L, and diffusing
away. Diffusion within the NPC is described by a standard Smoluchowski equation
for the density of cargo complexes ρ(x), x = [0,L]:

∂ρ
∂ t

=−∂J
∂x

, J =−D
∂ρ
∂x
−Dρ

∂U
∂x

, (7.3.11)

with U measured in units of kBT . This equation is supplemented by the absorbing
boundary conditions ρ(0) = ρ(L) = 0.

The steady-state solution is obtained by assuming that there are constant fluxes
J0 in [0,R], JL in [L−R,L], and J in [R,L−R] with J0 < 0. These fluxes are related
according to JS = J− |J0| and J = JL + Je, where JS is the total flux of complexes
injected into the NPC from the cytoplasm, which is proportional to the density of
complexes in the cytoplasm, and Je denotes the flux due to active removal of com-
plexes from the nucleus end of the NPC by RanGTP. The latter depends on the
number of complexes at the nuclear exit, the rate Jran at which RanGTP molecules
hit the exit: Je = Jranρ(L−R)R. The steady-state rate of transport J can now be de-
termined by solving for ρ(x) in terms of J0,JL,J in each of the three domains and
imposing continuity of the density at x = R and x = R−L (see Ex. 7.5). The result
is that the fraction of complexes reaching the nucleus is given by [704]

P =
J
JS

=

[
1+

1
1+K

+
1
R

∫ L−R

R
eU(x)dx

]−1

, (7.3.12)
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with K = JranR2/D. It follows that for a sufficiently deep well (large E), where
the integral term is negligible, and for sufficiently large K (large Jran), the proba-
bility of translocation is P ≈ 1. On the other hand, if K is small so that RanGTP
does not facilitate entry of complexes into the nucleus, then Pmax = 0.5. As previ-
ously indicated, it is not possible to arbitrarily increase the affinity of binding sites

Fig. 7.17: Results of Monte Carlo simulations carried out by Zilman et al. [704] on their entropic
gate model. Transport efficiency (probability P to reach the nucleus) is plotted as a function of
the NPC interaction strength E. The unimodal curves correspond to four different values of the
entrance rate J (in units of 10−416D/R2) and have a peak at a specific value of E, which provides
a mechanism of selectivity. The envelope is the theoretical curve calculated from Eq. (7.3.12).
RanGTP activity in the nucleus is fixed by setting JranL2/N2D = 1.5 (Adapted from Zilman
et al. [704])

and thus the well depth E , since this will lead to trapping of the complexes so that
they accumulate within the NPC, resulting in molecular crowding and an unrealis-
tically long time for an individual molecule to pass through the NPC. Thus there is
some optimal well depth that balances an increase of transport probability P with
increased time spent in the NPC [704]. Finally, note that the model is robust with re-
gard to the particular shape of the potential well. For example, one could represent
transport through the NPC as diffusion in an array of overlapping potential wells
that represent flexible FG-repeat regions. The shape of each well will depend on the
number and affinity of binding sites on each FG-repeat, and the degree of flexibility
of the polymers which will determine the entropic costs of bending and stretching
the FG-repeats. Results of Monte Carlo simulations are shown in Fig. 7.17. One dif-
ference from the analytical model is that only one complex is allowed to occupy a
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given site in the discretized model, which takes into account molecular crowding.
However, this effect is small for small interaction strength E , since the density of
complexes in the NPC is low, and there is good agreement between numerics and
theory.

It is straightforward to show that for relatively fast binding/unbinding, the multi-
well potential can be replaced by a single well along the lines of Fig. 7.16. Suppose
that inside the NPC there are N binding sites labeled i= 1, . . . ,N with corresponding
potentials Ui(x). Let U0(x) be the potential of an unbound complex. Denoting the
probability density of complexes bound to the jth site by ρi(t) and the density of
unbound complexes by ρ0(t), we have the system of equations

∂ρ0

∂ t
= D0

∂
∂x

e−U0(x)
∂
∂x

eU0(x)ρ0 +∑
i>0

[ω0i(x)ρi(x)−ωi0(x)ρ0(x)]

∂ρi

∂ t
= D0

∂
∂x

e−Ui(x) ∂
∂x

eUi(x)ρi +[ωi0(x)ρ0(x)−ω0i(x)ρi(x)].

Here a complex can unbind from the ith site at a rate ω0i(x) and rebind to the same
site or bind to a different site at a rate ω j0(x). From detailed balance (see Sect. 1.4),
the transition rates are related according to

ωi0(x)
ω0i(x)

= e−Ui(x)+U0(x).

Under the assumption of fast transition rates, the densities in the different states will
be at local thermodynamic equilibrium with respect to the internal states. We thus
have the Boltzmann–Gibbs distribution

ρi(x) =
e−Ui(x)

∑M
i=0 e−Ui(x)

ρ(x), ρ(x) =
N

∑
i=0

ρi(x).

Hence adding together the N + 1 differential equation gives

∂ρ
∂ t

= D0
∂
∂x

e−U(x) ∂
∂x

eU(x)ρ ,

where

U(x) =− ln

(

e−U0(x) +∑
i>0

e−Ui(x)

)

.

Selective Phase Model

The basic assumption of these models is that the NPC can be treated as a channel
filled with a hydrophobic medium consisting of a concentrated polymer solution
(see Fig. 7.18); the latter is composed of the natively unfolded, flexible protein do-
mains of FG-repeats [49, 362, 533, 534]. The FG-repeats form weak bonds with
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each other suggesting that they act approximately like a weak reversible gel. (A gel
is a jelly-like material that is mostly liquid by weight, yet behaves like a solid due to
a three-dimensional cross-linked polymer network within the liquid. It is the cross-
linking within the fluid that gives a gel its solid-like properties such as hardness.
A gel is said to be reversible if the cross-linking is reversible.) Particles smaller than
the mesh size of the network can diffuse freely through the NPC, whereas nonselec-
tive macromolecules larger than the mesh size cannot. On the other hand, kap–cargo

NucleusCytoplasm

NPC

Fig. 7.18: Selective phase model [49, 533, 534], in which the FG-repeats within an NPC are treated
as a reversible polymer gel. See text for details

complexes can “dissolve” in the gel due to the presence of hydrophobic domains on
the surface of the kap receptors and then diffuse through the pore by breaking the
weak bonds of the reversible gel [533, 534].

7.3.3 Single-File Diffusion

When a pore or channel becomes sufficiently narrow, particles are no longer able
to pass each other, which imposes strong constraints on the diffusive motion. An
idealized model of single-file diffusion considers a 1D collection of diffusing parti-
cles with hard-core repulsion. The many-body problem of single-file diffusion was
originally tackled by relating the dynamics of the interacting system with the effec-
tive motion of a free particle [375, 386, 504]. In particular, in the case of an infinite
system and a uniform initial particle density, it was shown that a tagged particle
exhibits anomalous subdiffusion on long time scales, 〈X2(t)〉 ∼ t1/2. (On the other
hand, the center of mass of the system of particles exhibits normal diffusion.) More
recently, a variety of complementary approaches to analyzing single-file diffusion
have been developed [22, 100, 542, 620]. Here we review the particular formulation
of Barkai and Silbey [22], which develops the analysis of a tagged particle in terms
of classical reflection and transmission coefficients.
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Suppose that the tagged particle is initially at the origin with N particles to its
left and N particles to its right (see Fig. 7.19a). The motion of each particle in the
absence of hard-core interactions is taken to be overdamped Brownian motion as
described by the Langevin equation (2.2.1) or the corresponding FP equation (2.2.5).
As a further simplification, the potential energy function V (x) =

∫ x F(x′)dx′ is taken
to be symmetric, V (x) = V (−x), as is the initial distribution of particles. That is, if
the initial position x0 of a particle is drawn from fR(x0) for x0 > 0 and from fL(x0)
for x0 < 0, then fR(x0) = fL(−x0) ≡ f (x0). This reflection symmetry ensures that
〈X(t)〉= 0, where X(t) is the stochastic position of the tagged particle at time t. The
main underlying idea is to map the many-body problem to a non-interacting one
by allowing particles to pass through each other and keeping track of the particle
label (see Fig. 7.19b). That is, assuming that collisions are elastic and neglecting n-
body interactions for n > 2, it follows that when two particles collide they exchange
momenta and this is represented as an exchange of particle labels. The probability
density for the tagged particle to be at X(t) = XT at time t then reduces to the
problem of finding the probability that the number of free particle trajectories that
started at x0 < 0 and are now to the right of XT is balanced by the number of free
particle trajectories that started at x0 > 0 and are now to the left of XT .

Thus, let PLL(x
− j
0 ) (PLR(x

− j
0 )) denote the probability that the jth free particle tra-

jectory starting from x− j
0 < 0 at t = 0 is to the left (right) of XT at time t. Similarly,

let PRR(x
j
0) (PRL(x

j
0)) denote the probability that the jth free particle trajectory start-

ing from x j
0 > 0 at t = 0 is to the right (left) of XT at time t. Let α be the net number

of free particle trajectories that are on the opposite side of XT at time t compared to
their starting point (with left to right taken as positive). The associated probability
distribution for α given 2N untagged particles is [22]

PN(α) =
1

2π

∫ π

−π

N

∏
j=1

Γ (φ ,x− j
0 ,x j

0)e
iαφ dφ , (7.3.13)

where

Γ (φ ,x− j
0 ,x j

0) = eiφ PLR(x
− j
0 )PRR(x

j
0)+PLL(x

− j
0 )PRR(x

j
0)

+PLR(x
− j
0 )PRL(x

j
0)+ e−iφPLL(x

− j
0 )PRL(x

j
0). (7.3.14)

The integration with respect to φ ensures that the net number of crossings is α ,
that is,

∫ π
−π eiφn = δn,0. Since the trajectories are independent and the initial condi-

tions are (iid) random variables, PN(α) can be averaged with respect to the initial
conditions to give

〈PN(α)〉= 1
2π

∫ π

−π
〈Γ (φ)〉Neiαφ dφ , (7.3.15)

where
〈Γ (φ)〉 = (〈PRR〉+ e−iφ〈PRL

)(〈PLL〉+ eiφ 〈PLR〉
)
. (7.3.16)

The averages 〈PLR〉 can be calculated using the fundamental solution K(x,x0, t) of
the corresponding FP equation (2.2.5), that is, the solution with initial condition
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Fig. 7.19: (a) Single-file diffusion of a tagged particle (darker filled circle) surrounded by other
impenetrable particles. (b) Equivalent noninteracting picture, in which each trajectory is treated as
a noninteracting Brownian particle by keeping track of the exchange of particle label

K(x,x0,0) = δ (x− x0). For example,

〈PLR〉=
∫ 0

−l
fL(x0)

∫ l

XT

K(x,x0, t)dxdx0, (7.3.17)

where 2l is the length of the 1D domain. For fixed x0 < 0,
∫ l

XT
K(x,x0, t)dx is the

probability of being to the right of XT at time t, which is then averaged over all
initial conditions to the left of the origin.

Equation (7.3.15) takes the form of the generating function for a discrete ran-
dom walk of N steps and a net displacement of α [see Eq. (2.1.4)]. Hence, for
large N, application of the central limit theorem (Sect. 2.1) leads to the Gaussian
approximation

PN(0)∼ 1√
2πNσ2

exp(−Nμ2
1/2σ2), (7.3.18)

where σ2 = μ2− μ2
1 and μ1,μ2 are the first two moments of the structure function:

〈Γ (φ)〉 = 1+ iμ1φ − 1
2

μ2φ2 +O(φ3). (7.3.19)

Hence,

μ1 = 〈PLR〉− 〈PRL〉, σ2 = 〈PRR〉〈PRL〉+ 〈PLL〉〈PLR〉. (7.3.20)

Since 〈X(t)〉 = 0 and N is assumed to be large, μ1 and σ2 can be Taylor expanded
with respect to XT about XT = 0. Reflection symmetry then implies that

〈PLL〉|XT=0 = 〈PRR〉|XT=0 ≡R,
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〈PLR〉|XT=0 = 〈PRL〉|XT=0 ≡T = 1−R,

∂XT 〈PLR〉|XT=0 =− ∂XT 〈PRL〉|XT=0 ≡J .

The time-dependent functions R and T may be interpreted as reflection and trans-
mission coefficients determining whether or not a free particle trajectory crosses
XT = 0. The resulting mean and variance are

μ1 =−2JXT +O(X2
T ), σ2 = 2R(1−R)+O(XT). (7.3.21)

Thus, 〈PN(α)〉 for α = 0 reduces to a Gaussian distribution for the position
X(t) = XT :

P(XT , t) =
1

√
2π〈X(t)2〉 exp

[
− X2

T

2〈X(t)2〉
]
, (7.3.22)

with

〈X(t)2〉= R(1−R)

2NJ 2 . (7.3.23)

Finally, using Eq. (7.3.17),

R =

∫ l

0
f (x0)

∫ l

0
K(x,x0, t)dxdx0 (7.3.24)

J =
∫ l

0
f (x0)K(0,x0, t)dx0. (7.3.25)

In the special case of zero external forces and l → ∞, the fundamental solution is

K(x,x0, t) =
1√

4πDt
e−(x−x0)

2/4Dt . (7.3.26)

That is, limt→0 K(x,x0, t) = δ (x− x0) and ∂tK = D∂xxK for t > 0, x ∈ R. Taking a
uniform initial distribution f (x0) = 1/l with l → ∞ and fixed particle density ρ =
N/l, one finds anomalous subdiffusion for large times t:

〈X(t)2〉 ∼ 2√
π

√
Dt
ρ

. (7.3.27)

On the other hand, for particles initially centered at the origin, f (x0) = δ (x0), diffu-
sion is normal

〈X(t)2〉 ∼ πDt
2N

. (7.3.28)

In the case of a bounded domain or a Gaussian initial condition, anomalous diffusion
occurs at intermediate times only [22].
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7.3.4 Translocation of DNA Through a Nanopore

As our final example of membrane transport, we will consider a simple model of
DNA translocation that is based on diffusion through an entropic barrier [462, 615].
There have been many subsequent improvements and extensions of the basic model,
as highlighted in the recent review by Panja et al. [493]. In order to develop the
theory, it will be necessary to apply the statistical mechanics of polymers intro-
duced in Sect. 4.5. A schematic illustration of the basic physical problem is shown
in Fig. 7.20. The membrane is treated as an infinitesimally thin plate separating two
regions I and II with electrical potentials Φ1 and Φ2, respectively. The DNA poly-
mer is represented as a freely jointed chain of N links, each of length a ≈ 100 nm
(the Kuhn length). For simplicity, the polymer is translocated through a pore in the
membrane as a single strand. Suppose that there are N−m segments in region I and
m segments in region II, and in each region the chain is modeled as a random walk
of m or N−m segments pinned at the pore at one end. A final simplification of the
model is that translocation is taken to be sufficiently slow so that at each step, the
chains have enough time to reach thermodynamic equilibrium. (This assumption is
relaxed in [117].) Note that the model differs considerably from the translocation
ratchet analyzed in Sect. 4.2.2. The latter treats the polymer as rigid and focuses on
the rectifying effects of chaperones; a discrete model of chaperone-assisted translo-
cation is considered in Ex. 7.6.

In Example 4.1 of Sect. 4.5, we considered a 1D random walk model of a polymer
with n segments pointed in the positive x-direction and N−m segments pointed in
the negative x-direction. The total number of configurations was Ω(n) =N!/[n!(N−
n)!], which contributed an entropic term S(n) = kB lnΩ(n) to the free energy. In this
case the relevant quantity was the end-to-end distance x = 2n−N and the conjugate
entropic force was determined by TdS/dx. For the translocation problem shown in
Fig. 7.20, there are two 3D chains, each of which is restricted to lie on one side of
the membrane. Now we are interested in how the total number of configurations of
each chain depends on m (the number of translocated segments). It can be shown
that the total configurational entropy is [462, 615]

region I Φ1 region II Φ2

N-m segments m segments

Fig. 7.20: Schematic illustration of a flexible biopolymer translating through a pore of a thin mem-
brane. The electrical potential in each region is denoted by Φ j , j = 1,2
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Fig. 7.21: Plot of free energy E(x) (in units of kBT ) as a function of the length x of the right-hand
segment with γ = 0.69 and L = 1. The three curves correspond to different values of the potential
energy difference with α = Δ μ/kBT . (Redrawn from Muthukumar [462].)

S(m) =−kB(1− γ) [ln(m)+ ln(N−m)] , (7.3.29)

where γ ≈ 0.69 is a constant that takes into account the fact that a 3D polymer
cannot self-intersect (self-avoiding random walk); for a pure random walk γ = 0.5.
A translocation step of the polymer leads to an increase in m, m → m+ 1, which
is opposed by an entropic force fent = T dS/dm (assuming m is large so that it can
be treated as a continuous variable). There is also an electrical field acting on the
(charged) polymer due to the fact that there is a potential difference V = Φ1−Φ2

across the membrane. If each segment has total charge zse, where e is the charge on
an electron, then the change in potential energy when m→ m+ 1 is Δ μ = ezsV . It
follows that the free energy of the system for a given m is

E(m) = kBT (1− γ) [ln(m)+ ln(N−m)]+mΔ μ .

Setting x = ma and L = Na, we can rewrite the free energy as

E(x) = kBT (1− γ) [ln(x/a)+ ln((L− x)/a)]+ xΔ μ/a. (7.3.30)

Plots of E(x) as a function of x are shown in Fig. 7.21. It is now possible to re-
formulate translocation as Brownian motion through an energy barrier E(x) with
associated force F(x) =−dE(x)/dx and diffusion coefficient D. One difference be-
tween various models is the assumed x-dependence of D [493]. Here we will follow
[462] and treat D as a constant. The resulting FP equation is then

∂ p(x, t)
∂ t

= D
∂
∂x

[
p(x, t)
kBT

∂E(x)
∂x

+
∂ p(x, t)

∂x

]
. (7.3.31)
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To complete the model, absorbing boundary conditions are introduced at x = 0,L,
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Fig. 7.22: Plot of MFPT τ (in units of a2/D) for translocation of an N unit polymer and various
values of α = Δ μ/kBT . (Redrawn from Muthukumar [462].)

p(0, t) = p(L, t) = 0, (7.3.32)

under the assumption that if the polymer leaves the pore from either side, it never
returns. It follows that the conditional MFPT τ for successful translocation, that is,
the polymer crosses the boundary at x = L rather than x = 0, can be calculated along
the lines outlined in Sect. 2.3. One finds the following asymptotic results for large
N [462] (see also Fig. 7.22):

Dτ
a2 ∼

kBT
|Δ μ |N, Δ μ � 0,

Dτ
a2 ∼

(
kBT
Δ μ

)2

exp

(
N

Δ μ
kBT

)
, Δ μ � 0,

Dτ
a2 ∼ N2, Δ μ = 0.

7.4 PDE Models of Active Transport

When considering the active transport of intracellular cargo over relatively long
distances, it is often convenient to ignore the microscopic details of how a motor
performs a single step (as described by the Brownian ratchet models of Sect. 4.3)
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and to focus instead on the transitions between different types of motion (e.g., an-
terograde vs. retrograde active transport, diffusion vs. active transport). This has
motivated a class of mesoscopic models that take the form of a system of PDEs
[68, 197, 310, 367, 397, 473, 524, 601].

7.4.1 Active Transport on a 1D Track

For the sake of illustration, consider a simple three-state model of a particle mov-
ing on a 1D track of length L. Such a track could represent a single microtubular
filament. Within the interior of the track, 0 < x < L, the particle is taken to be in
one of three states labeled by n = 0,±: unbound from the track and stationary (or
slowly diffusing) (n = 0), bound to the track and moving to the right (anterograde)
with speed v+ (n = +), or bound to the track and moving to the left (retrograde)
with speed −v− (n = −). For simplicity, take v± = v > 0. Transitions between the
three states are governed by a discrete Markov process. Let Z(t) and N(t) denote
the random position and state of the particle at time t and define P(x,n, t | y,m,0)dx
as the joint probability that x ≤ Z(t) < x+ dx and N(t) = n given that initially the
particle was at position Z(0) = y and was in state N(0) = m. Setting

pn(x, t)≡∑
m
P(x, t,n|0,0,m)σm (7.4.1)

with initial condition pn(x,0) = δ (x)σn, ∑m σm = 1, the evolution of the probability
is described by the following system of PDEs for t > 0:

∂ p+
∂ t

=−v∂x p+−β+p++α p0 (7.4.2a)

∂ p−
∂ t

= v∂x p−−β−p−+α p0 (7.4.2b)

∂ p0

∂ t
= β+p++β−p−− 2α p0. (7.4.2c)

Here α,β± are the transition rates between the stationary and mobile states.
Equation (7.4.2) is supplemented by appropriate boundary condition at x = 0,L. For
example, a reflecting boundary at x = 0 and an absorbing boundary at x = L means
that

p−(0, t) = p+(0, t), p−(L, t) = 0. (7.4.3)

In the general case that the velocities v± in the two directions are different, the
transport will be biased in the anterograde (retrograde) direction if v+/β+ > v−/β−
(v+/β+ < v−/β−). Note that the system of Eq. (7.4.2) is a three-state version of the
Dogterom–Leibler model of microtubule catastrophe [146], Eq. (4.1.10), and the
velocity-jump model of chemotaxis given by Eq. (5.3.14).
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The three-state model is a special case of a general class of motor transport
models, in which there are N distinct velocity states labeled by n = 1, . . . ,N with
corresponding velocities vn. The probability density evolves according to the sys-
tem of PDEs

∂ p
∂ t

=−vn
∂ [p(x,n, t)]

∂x
+

N

∑
n′=1

A(n,n′;x)p(x,n′, t), (7.4.4)

where A(n,n′,x) specifies the transition rates between the N internal motor states
and could, in principle, be space-dependent. We take vn > 0 for n = 1, . . . ,m and
vn ≤ 0 for n = m+1, . . . ,N with m > 0. For particular choices of A one recovers the
three-state model and also the ToW model introduced in Sect. 4.4.2.

Example 7.1 (The three-state model). Let n = 1,2,3 denote the positive, negative,
and stationary states, respectively. Then A(n,m;x) = Anm with the 3× 3 matrix

A =

⎛

⎝
−β+ 0 α

0 −β− α
β+ β− −2α

⎞

⎠ .

Example 7.2 (ToW model). Consider a motor complex consisting of N+ anterograde
motors and N− retrograde motors. The internal states of the complex are specified
by the number of bound motors (n+,n−) and the velocity vc(n+,n−) of a given
state is given by Eq. (4.4.13). Following [472, 473], we introduce the mapping
(n+,n−)→ n≡ (N++1)n−+(n++1) with 0≤ n≤N =(N++1)(N−+1). The cor-
responding probability density p(n,x, t) satisfies Eq. (7.4.4) with vn = vc(n+,n−).
The components Anm, n,m = 1, . . . ,N, of the state transition matrix A are given by
the corresponding binding/unbinding rates of Eq. (4.4.9). That is, the nonzero off-
diagonal terms are

Anm = π+(n+− 1) for m = n(n+− 1,n−),
Anm = π−(n−− 1), for m = n(n+,n−− 1),

Anm = γ+(n++ 1), for m = n(n++ 1,n−),
Anm = γ−(n−+ 1), for m = n(n+,n−+ 1).

The diagonal terms are then given by Ann =−∑m�=n Amn.

Note that Eq. (7.4.4) is another example of a differential Chapman–Kolmogrov
(CK) equation for a stochastic hybrid system. That is, the dynamics combines a
piecewise deterministic continuous process (in this case translation of the motor
along the track) with a discrete stochastic process given by a continuous-time
Markov process (in this case switching between different internal motors states). We
have encountered other examples of stochastic hybrid systems in Chap. 3 (stochastic
ion channels) and Chap. 6 (stochastic gene networks).
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In many applications, one finds that the transition rates are fast compared to v/L
where v = maxn |vn|. Performing the rescalings x → x/L and t → tv/L leads to a
non-dimensionalized version of the CK equation

∂ p
∂ t

=−vn
∂ [p(x,n, t)]

∂x
+

1
ε

N

∑
n′=1

A(n,n′;x)p(x,n′, t), (7.4.5)

with 0 < ε � 1.The transition matrix A(n,m;x) is assumed to be irreducible for all
x with a unique stationary density (right eigenvector) ρ(x,n). In the limit ε → 0,
p(x,n, t)→ ρ(x,n) and the motor moves deterministically according to the mean-
field equation

dx
dt

=V (x)≡
N

∑
n=1

vnρ(x,n). (7.4.6)

In the regime 0 < ε � 1, there are typically a large number of transitions be-
tween different motor complex states n while the position x hardly changes at all.
This suggests that the system rapidly converges to the (quasi) steady state ρ(x,n),
which will then be perturbed as x slowly evolves. The resulting perturbations can
be analyzed using a QSS diffusion or adiabatic approximation, in which the CK
equation (7.4.5) is approximated by a Fokker–Planck (FP) equation for the total
density C(x, t) = ∑n p(x,n, t). The QSS approximation was first developed from a
probabilistic perspective by Papanicolaou [494]; see also [204]. It has subsequently
been applied to a wide range of problems in biology, including bacterial chemotaxis
[140, 170, 262, 486, 487] (see also Sect. 5.3.3), wave-like behavior in models of
slow axonal transport [196, 198, 524], and molecular motor-based models of ran-
dom intermittent search [70, 472–474]. The QSS reduction proceeds as follows:

1. Decompose the probability density as

p(x,n, t) =C(x, t)ρ(x,n)+ εw(x,n, t), (7.4.7)

where ∑n p(x,n, t) = C(x, t) and ∑n w(x,n, t) = 0. Substituting into Eq. (7.4.5)
yields

∂C
∂ t

ρ(x,n)+ ε
∂w(x,n, t)

∂ t
=−vn

∂ [C(x, t)ρ(x,n)+ εw(x,n, t)]
∂x

+
1
ε

N

∑
n′=1

A(n,n′;x)[C(x, t)ρ(x,n′)+ εw(x,n′, t)].

Summing both sides with respect to n then gives

∂C
∂ t

=−∂VC
∂x

− ε
N

∑
n=1

vn
∂w(x,n, t)

∂x
, (7.4.8)

where V (x) = ∑m vmρ(x,m).
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2. Using the equation for C and the fact that Aρ = 0, we have

ε
∂w
∂ t

=
N

∑
n′=1

A(n,n′;x)w(x,n′, t)− vn
∂ρ(x,n)C

∂x
+ρ(x,n)

∂V(x)C
∂x

− ε
N

∑
m=1

[vnδm,n−ρ(x,n)vm]
∂w(x,m, t)

∂x
.

3. Introduce the asymptotic expansion

w∼ w0 + εw1 + ε2w2 + . . .

and collect O(1) terms:

N

∑
n′=1

A(n,n′;x)w0(n
′,x, t) = vn

∂ρ(x,n)C(x, t)
∂x

−ρ(x,n)
∂V(x)C(x, t)

∂x
. (7.4.9)

The Fredholm alternative theorem shows that this has a solution, which is unique
on imposing the condition ∑n w0(x,n, t) = 0 (see Box 7B).

4. Combining Eqs. (7.4.8) and (7.4.9) shows that C evolves according to the FP
equation

∂C
∂ t

=− ∂
∂x

(VC)+ ε
∂
∂x

(
D

∂C
∂x

)
(7.4.10)

with the drift V and diffusion coefficient D given by

V (x) =
N

∑
m=1

vmρ(x,m), D(x) =
N

∑
n=1

Z(x,n)vn, (7.4.11)

where Z(x,n) is the unique solution to

N

∑
m=1

A(n,m;x)Z(x,m) = [V (x)− vn]ρ(x,n) (7.4.12)

with ∑m Z(v,m) = 0. We have dropped O(ε) corrections to the drift term.

The FP equation (7.4.10) is often easier to analyze than the full CK equation,
particularly when the number of internal states is large or the motor moves along
a microtubular network rather than a single track. In the simple case of the three-
state model given by Eq. (7.4.2), one can obtain explicit expressions for the drift and
diffusion coefficient (see Ex. 7.7):

V =
v
γ

(
1

β+
− 1

β−

)
, D = ε

(
(1−V)2

γβ 2
+

+
(1+V)2

γβ 2−

)
, γ =

1
β+

+
1

β−
+

1
α
.

The QSS approximation will be used to study the efficacy of motor intracellular
cargo transport in Sect. 7.6.
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Box 7B. Fredholm alternative theorem (matrices).

Consider an M-dimensional linear inhomogeneous equation Az = b with
z,b ∈ R

M . Suppose that the M×M matrix A has a nontrivial null-space
and let u be a null vector of the adjoint matrix A†, that is, A†u = 0. The
Fredholm alternative theorem for finite-dimensional vector spaces states
that the inhomogeneous equation has a (nonunique) solution for z if and
only if u ·b = 0 for all null vectors u.

Let us apply this theorem to Eq. (7.4.9) for fixed x, t with Anm = A(n,m;x)
and A†

nm = Amn. The one-dimensional null-space is spanned by the vec-
tor with components un = 1, since ∑n unAnm = ∑n A†

mnun = 0. Hence
Eq. (7.4.9) has a solution provided that

0 = ∑
n

[
vn

∂ρ(x,n)C(x, t)
∂x

−ρ(x,n)
∂V(x)C(x, t)

∂x

]
.

This immediately follows since ∑n ρ(x,n) = 1 and ∑n ρ(x,n)vn = V (x)
for all x.

7.4.2 Active Transport on Microtubular Networks

In the case of axonal or dendritic transport in neurons, the microtubles tend to be
aligned in parallel so that one can treat the transport process as effectively 1D.
On the other hand, intracellular transport within the soma of neurons and most
nonpolarized animal cells occurs along a microtubular network that projects radi-
ally from organizing centers (centrosome) with outward polarity [3] (see Sect. 7.3).
This allows the delivery of cargo to and from the nucleus. Moreover, various an-
imal viruses including HIV take advantage of microtubule-based transport in or-
der to reach the nucleus from the cell surface and release their genome through
nuclear pores [369]. In contrast, the delivery of cargo from the cell membrane or
nucleus to other localized cellular compartments requires a nonradial path involv-
ing several tracks. It has also been found that microtubules bend due to large inter-
nal stresses, resulting in a locally disordered network. This suggests that in vivo
transport on relatively short length scales may be similar to transport observed in
vitro, where microtubular networks are not grown from centrosomes, and thus ex-
hibit orientational and polarity disorder [313, 553]. Another example where a disor-
dered microtubular network exists is within the Drosophila oocyte [26]. Kinesin and
dynein motor-driven transport along this network is thought to be one of the mech-
anisms for establishing the asymmetric localization of four maternal mRNAs—
gurken, oskar, bicoid, and nanos—which are essential for the development of the
embryonic body axes.
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ba

Fig. 7.23: Active transport on a disordered microtubular network. (a) Random orientational ar-
rangement of microtubles. (b) Effective 2D random intermittent search in which a particle switches
between diffusion and ballistic motion in a random direction

A detailed microscopic model of intracellular transport within the cell would
need to specify the spatial distribution of microtubular orientations and polarity,
in order to determine which velocity states are available to a motor–cargo com-
plex at a particular spatial location. However, a simplified model can be obtained
under the “homogenization” assumption that the network is sufficiently dense so
that the set of velocity states (and associated state transitions) available to a motor
complex is independent of position. In that case, one can effectively represent the
active transport and delivery of cargo to an unknown target within the cell in terms
of a two- or three-dimensional model of active transport [31, 32, 397].

For simplicity, consider a disordered 2D microtubular network as illustrated in
Fig. 7.23. (The extension to 3D networks is relatively straightforward.) Suppose that
after homogenization, a molecular motor at any point r= (x,y) in the plane can bind
to a microtubule with any orientation θ , resulting in ballistic motion with velocity
v(θ ) = v(cosθ ,sinθ ) and θ ∈ [0,2π). If the motor is unbound, then it acts as a
Brownian particle with diffusion coefficient D0. Transitions between the diffusing
state and a ballistic state are governed by a discrete Markov process. The transi-
tion rate β from a ballistic state with velocity v(θ ) to the diffusive state is taken to
be independent of θ , whereas the reverse transition rate is taken to be of the form
αq(θ ) with

∫ 2π
0 q(θ )dθ = 1. Suppose that at time t the motor is undergoing bal-

listic motion. Let (X(t),Y (t)) be the current position of the motor particle and let
Θ(t) denote the corresponding velocity direction. Introduce the conditional prob-
ability density p(x,y,θ , t) such that p(x,y,θ , t)dxdydθ is the joint probability that
(x,y,θ )< (X(t),Y (t),Θ(t))< (x+dx,y+dy,θ +dθ ) given that the particle is in the
ballistic phase. Similarly, take p0(x,y, t) to be the corresponding conditional prob-
ability density if the particle is in the diffusive phase. (For the moment the initial
conditions are left unspecified.) The evolution of the probability densities for t > 0
can then be described in terms of the following 2D system of PDEs [70]:
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∂ p
∂ t

=−∇ · (v(θ )p)− β
ε

p(r,θ , t)+
αq(θ )

ε
p0(r, t) (7.4.13a)

∂ p0

∂ t
= εD0∇2 p0 +

β
ε

∫ 2π

0
p(r,θ ′, t)dθ ′ − α

ε
p0(r, t). (7.4.13b)

In the case of a uniform density, q(θ ) = 1/(2π), Eqs. (7.4.13a) and (7.4.13b) reduce
to a 2D model of active transport considered by Benichou et al. [31, 32, 397]. The
units of space and time have been fixed according to l = 1 and l/v = 1, where
l is a typical run length. Furthermore, for the given choice of units, it has been
assumed that there exists a small parameter ε � 1 such that all transition rates are
O(ε−1), the diffusivity is O(ε), and all velocities are O(1). In the limit ε → 0, the
system rapidly converges to the space-clamped (i.e., ∇p = ∇p0 = 0) steady-state
distributions (pss(θ ), pss

0 ) where

pss
0 =

β
α +β

≡ b, pss(θ ) =
αq(θ )
α +β

≡ aq(θ ). (7.4.14)

In the regime 0 < ε � 1, it is possible to extend the QSS approximation to the 2D
system to obtain a multivariate FP equation.

As in the 1D case, the QSS approximation is based on the assumption that for
0 < ε � 1, solutions remain close to the steady-state solution. Hence,

p(r,θ , t) = u(r, t)pss(θ )+ εw(r,θ , t) (7.4.15a)

p0(r, t) = u(r, t)pss
0 + εw0(r, t), (7.4.15b)

where

u(r, t)≡
∫ 2π

0
p(r,θ , t)dθ + p0(r, t)

and ∫ 2π

0
w(r,θ , t)dθ +w0(r, t) = 0. (7.4.16)

Furthermore, the initial conditions are taken to be

u(r,0) = δ (r−X), w(r,0) = w0(r,0) = 0,

which are equivalent to the following initial conditions for the full probability
densities:

p(r,θ ,0) = δ (r−X)pss(θ ), p0(r,0) = δ (r−X)pss
0 .

Thus, the initial internal state of the motor (diffusive or ballistic with velocity v(θ ))
is generated according to the steady-state distributions pss(θ ) and pss

0 . In other
words, the motor starts on the slow manifold of the underlying dynamics. If this
were not the case, then one would need to carry out a multi-scale analysis in or-
der to take into account the initial transient dynamics transverse to the slow mani-
fold [204]. Perturbation and projection methods can now be used to derive a closed
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equation for the scalar component u(r, t) [70]. First, integrating Eq. (7.4.13a) with
respect to θ and adding Eq. (7.4.13b) yields

∂u
∂ t

= εD0∇2 p0−〈〈v ·∇p〉〉 (7.4.17)

= εbD0∇2u− a〈v〉 ·∇u− ε 〈〈v ·∇w〉〉+O(ε2),

where 〈 f 〉 = ∫ 2π
0 q(θ ) f (θ )dθ and 〈〈 f 〉〉 = ∫ 2π

0 f (θ )dθ for any function or vector
component f (θ ). Next, substituting Eqs. (7.4.15a) and (7.4.15b) into Eqs. (7.4.13a)
and (7.4.13b) yields

aq(θ )
∂u
∂ t

+ ε
∂w
∂ t

=−v(θ ) ·∇ [aq(θ )u+ εw]−β w

+αq(θ )w0. (7.4.18)

and

b
∂u
∂ t

+ ε
∂w0

∂ t
= εD0∇2 (bu+ εw0) (7.4.19)

+β 〈w〉−αw0.

Now substitute Eq. (7.4.17) into Eqs. (7.4.18) and (7.4.19). Collecting terms to lead-
ing order in ε and using Eq. (7.4.16) then gives

w0(r, t)∼ ab
α +β

[〈v〉 ·∇u] , (7.4.20)

and

w(r,θ , t)∼ q(θ )
β
(
a2(1+ b)〈v〉− av(θ )

) ·∇u. (7.4.21)

Finally, substituting Eqs. (7.4.21) and (7.4.20) into Eq. (7.4.17) yields to O(ε) the
FP equation

∂u
∂ t

=−∇ · (Vu)+ εbD0∇2u+ ε∇ · (D∇u). (7.4.22)

The diffusion tensor D has components Dkl ,k = x,y, l = x,y

Dkl ∼ a
β
(〈vkvl〉− 〈vk〉 〈vl〉+ b2 〈vk〉 〈vl〉

)
, (7.4.23)

to lowest order in ε , while the effective drift velocity is given by V ∼ a〈v〉. Here
〈vn〉=

∫ 2π
0 vn(θ )q(θ )dθ .

In the case of a uniform direction distribution q(θ ) = 1/(2π), the diffusion tensor
reduces to a scalar. This follows from the fact that vx = vcosθ ,vy = vsin θ so 〈vx〉=
〈vy〉= 〈vxvy〉= 0 and to leading order

Dxx =
av2

2β
= Dyy, Dxy = 0. (7.4.24)
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More generally, assuming that Q(θ ) is sufficiently smooth, we can expand it as a
Fourier series,

Q(θ ) =
1

2π
+

1
π

∞

∑
n=1

(ωn cos(nθ )+ ω̂n sin(nθ )). (7.4.25)

Assume further that ω1 = ω̂1 = 0 so there is no velocity bias, i.e., 〈vx〉=
〈
vy
〉
= 0.

Then

Dxx =
av2

β

∫ 2π

0
cos2(θ )Q(θ )dθ =

av2

2β
(1+ω2)

Dyy =
av2

β

∫ 2π

0
sin2(θ )Q(θ )dθ =

av2

2β
(1−ω2) , (7.4.26)

Dxy =
av2

β

∫ 2π

0
sin(θ )cos(θ )Q(θ )dθ =

av2

2β
ω̂2.

It follows that only the second terms in the Fourier series expansion contribute to
the diffusion tensor.

An alternative formulation of transport on disordered microtubular networks has
been developed by Kahana et al. [313] in terms of random velocity fields [522, 706].
In order to describe the basic idea, consider the simplified model analyzed by [706].
The latter model consists of a set of equally spaced parallel tracks along the x-axis,
for example (see Fig. 7.24). The tracks are assigned random polarities±1 with equal
probabilities corresponding to quenched polarity disorder. A particle undergoes a
random walk in the y-direction, whereas when a particle attaches to a certain track it
moves ballistically with velocity ±1 according to the track’s polarity. It is assumed
that when a particle hops to a neighboring track it binds immediately. Let X(t)
denote the displacement of a random walker in the longitudinal direction at time t:

X(t) =
∫ t

0
v[y(t ′)]dt ′. (7.4.27)

Taking the continuum limit in the y-direction means that

p(y, t) =
1√

4πDt
e−y2/4Dt ,

where D is the diffusion coefficient, and the velocity field is δ -correlated
〈v(y)v(y′)〉c = v2ξ δ (y− y′). Here averaging is taken with respect to the quenched
polarity disorder and ξ is the infinitesimal spacing between tracks. Now consider
the second moment 〈〈X2(t)〉〉 of the stochastic process averaged with respect to the
quenched disorder and realizations of the random walk:

〈〈X2(t)〉〉= 2
∫ t

0
dt1

∫ t1

0
dt2〈〈v[y(t1)]v[y(t2)]〉〉, (7.4.28)
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where

〈〈v[y(t1)]v[y(t2)]〉〉=
∫ ∞

−∞
dy1

∫ ∞

−∞
dy2〈v(y1)v(y2)〉c

× p(y2, t2)p(y1− y2, t1− t2). (7.4.29)

Using Laplace transforms and the velocity correlation function,

y-ξ

y+ξ

hopping

y

−v

v

ξ

Fig. 7.24: Random velocity model of a microtubular network with quenched polarity disorder.
Particles move ballistically along parallel tracks in a direction determined by the polarity of the
given track. They also hop between tracks according to an unbiased random walk

〈〈X̃2(s)〉〉= 2v2ξ
s

p̃(0,s)
∫ ∞

−∞
p̃(y,s)dy, (7.4.30)

with

p̃(y,s) =
1√
4Ds

e−|y|
√

s/D.

Performing the integration with respect to y thus shows that 〈〈X̃2(s)〉〉 =
v2ξ D−1/2s−5/2, which on inverting the Laplace transform gives

〈〈X2(t)〉〉= 4v2ξ
3
√

πD
t3/2. (7.4.31)

An equivalent formulation of the problem is to treat 〈〈X2(t)〉〉 as the solution to the
differential equation [313]

d2

dt2 〈〈X2(t)〉〉= 2v2ξ yp(0, t), (7.4.32)

where ξ p(0, t) is the probability of turn to the origin at time t within a single lat-
tice spacing ξ and p(0, t) = 1/

√
4πDt. In conclusion, the random velocity model

supports anomalous superdiffusion in the x-direction.



396 7 Transport Processes in Cells

Kahana et al. [313] extended the above construction to 2D (and 3D) disordered
networks where there are parallel tracks in the x- and y-directions. The distribution
of polarities are unbiased in both directions. A self-consistent description of the
dynamics is obtained by taking

d2

dt2 〈〈X2(t)〉〉= 2v2ξ py(0, t),
d2

dt2 〈〈Y 2(t)〉〉= 2v2ξ px(0, t), (7.4.33)

where px and py are the probability densities of the x- and y-coordinates. From
the symmetry of the network, px(0, t) = py(0, t). Hence, assuming that px(0, t) =
C〈〈X2(t)〉〉−1/2 for some constant C and setting φ(t) = 〈〈X2(t)〉〉 gives

φ1/2 d2

dt2 φ = 2Cv2ξ . (7.4.34)

It follows that φ(t) ∼ t4/3 so that the diffusion is less enhanced than in the case of
parallel tracks in one direction. Finally, note that active transport on the randomly
oriented network of Fig. 7.23 exhibits normal rather than anomalous diffusion.
A major difference from the random velocity model is that the latter has quenched
polarity disorder, whereas the former has dynamical polarity disorder.

7.5 Exclusion Processes

So far we have considered a single molecular motor or motor/cargo complex mov-
ing along a filament track. However, in practice there could be many active particles
moving along the same track, which could interact with each other and exhibit some
form of collective behavior. This has motivated a number of studies that model the
movement of multiple motor particles as an ASEP [2, 176, 339, 344, 481, 496,
497, 513, 515]. In the simplest version of such models, each particle hops unidirec-
tionally at a uniform rate along a 1D lattice; the only interaction between particles
is a hard-core repulsion that prevents more than one particle occupying the same
lattice site at the same time. This so-called totally asymmetric exclusion process
(TASEP) is combined with absorption/desorption kinetics, in which individual par-
ticles can bind to or unbind from the track (see Fig. 7.25). The TASEP has become
the paradigmatic model of nonequilibrium stochastic processes, and a variety of an-
alytical methods have been developed to generate exact solutions for the stationary
state (see [52, 115, 567] and references therein). However, when chemical kinetic
or other biologically motivated extensions of TASEP are included, it is usually no
longer possible to obtain exact solutions so that some form of mean-field approxi-
mation is required.
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7.5.1 Asymmetric Exclusion Process and the Hydrodynamic Limit

Let us consider in more detail the system shown in Fig. 7.25, which consists of a
finite 1D lattice of N sites labeled i = 1, . . . ,N. The microscopic state of the system
is given by the configuration C that specifies the distribution of identical particles
on the lattice. That is, C = {n1, . . . ,nN} where each occupation number ni = 1 if
the ith site is occupied by a single particle and ni = 0 if the site is vacant. Exclusion
effects preclude more than one particle at any site. Thus, the state space consists
of 2N configurations. Let P(C , t) demote the probability of finding a particular
configuration C at time t. The evolution of this probability distribution is described
by a master equation:

α

βωD
ωA

Fig. 7.25: Schematic diagram of TASEP with absorption/desorption kinetics, in which particles
can spontaneously detach and attach at rates ωD and ωA, respectively

dP(C , t)
dt

= ∑
C ′ �=C

[
WC ′→CP(C ′, t)−WC→C ′P(C , t)

]
. (7.5.1)

The transition rate WC→C ′ from configuration C to C ′ is determined from the fol-
lowing set of rules [496]:

(a) at sites i = 1, . . . ,N−1, a particle can jump to site i+1 at a unit rate if the latter
is unoccupied;

(b) at site i = 1 (i = N) a particle can enter (exit) the lattice at a rate α (β ) provided
that the site is unoccupied (occupied);

(c) in the bulk of the lattice, a particle can detach from a site at a rate ωD and attach
to an unoccupied site at a rate ωA.

Rules (a) and (b) constitute a TASEP with open boundary conditions, whereas
rule (c) describes absorption/desorption kinetics. It follows that the evolution of the
particle densities 〈ni〉 away from the boundaries is given by the exact equation

d〈ni〉
dt

= 〈ni−1(1− ni)〉− 〈ni(1− ni+1)〉+ωA〈1− ni〉−ωD〈ni〉. (7.5.2)
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Here 〈ni(t)〉= ∑C niP(C , t). Similarly, at the boundaries

d〈n1〉
dt

=−〈n1(1− n2)〉+α〈1− n1〉−ωD〈n1〉, (7.5.3a)

d〈nN〉
dt

= 〈nN−1(1− nN)〉+ωA〈1− nN〉−β 〈nN〉. (7.5.3b)

Note that in the absence of any exclusion constraints, Eq. (7.5.2) reduces to a spa-
tially discrete version of the unidirectional PDE (7.4.2a), with p+(niΔx, t) = 〈ni〉,
β+ = ωD, and p0α = ωA and v+/Δx = 1. The goal is to find a nonequilibrium sta-
tionary state for which the current flux along the lattice is a constant J0. It then
follows that J0 has the exact form

J0 = α〈1− n1〉= 〈ni(1− ni+1)〉= β 〈nN〉, i = 1,N− 1.

Equations (7.5.2) and (7.5.3) constitute a nontrivial many-body problem, since in
order to calculate the time evolution of 〈ni〉 it is necessary to know the two-point
correlations 〈ni−1(1− ni)〉. The latter obey dynamical equations involving three-
point and four-point correlations. Thus, there is an infinite hierarchy of equations of
motion. However, progress can be made by using a mean-field approximation and a
continuum limit in order to derive a PDE for the density of particles [176, 497]. The
mean-field approximation consists of replacing two-point correlations by products
of single-site averages:

〈nin j〉= 〈ni〉〈n j〉.
(It turns out that for pure TASEP (no binding or unbinding) this yields an accurate
phase diagram; see below.) Next introduce the infinitesimal lattice spacing ε and
set x = kε , ρ(x, t) = ρk(t)≡ 〈nk(t)〉. The continuum limit is then defined according
to N → ∞ and ε → 0 such that the length of the track L = Nε is fixed. (Fix length
scales by setting L = 1.) Expanding ρk±1(t) = ρ(x± ε, t) in powers of ε gives

ρ(x± ε, t) = ρ(x)± ε∂xρ(x, t)+
1
2

ε2∂xxρ(x, t)+O(ε3).

Finally, rescaling the absorption/desorption rates according to ωA = ΩAε,ωD =
ΩDε , and rescaling time τ = εt, Eq. (7.5.2) becomes to O(ε)

∂ρ
∂τ

=
ε
2

∂ 2ρ
∂x2 − (1− 2ρ)

∂ρ
∂x

+ΩA(1−ρ)−ΩDρ . (7.5.4)

Similarly, Eq. (7.5.3) reduces to the boundary conditions

J(0, t) = α(1−ρ(0, t)), J(L, t) = β ρ(L, t)

where the continuum flux is

J(x, t) =−ε
2

∂ρ
∂x

+ρ(1−ρ). (7.5.5)
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In the following, we describe methods for analyzing the mean-field model for a
pure TASEP by setting ΩA = ΩD = 0. For extensions to the full model, we refer the
reader to [176, 496, 497].

7.5.2 Steady-State Analysis

In order to develop the basic theory, we will focus on pure TASEP by setting
ΩA = ΩD = 0 in Eq. (7.5.4). We proceed by finding a stationary nonequilibrium
state for which the current J(x, t) = J0 is constant and determining the correspond-
ing stationary density profile. This then generates a phase diagram with respect to
the parameters α,β , which can be calculated explicitly [52, 355]. The steady-state
current equation takes the form

ε
dρ
dx

= ρ(1−ρ)− J0.

Setting q = ρ− 1/2, this becomes

ε
dq
dx

= v2− q2, v2 =
1
4
− J0.

It follows that for v2 > 0

ε
∫

dq
(v− q)(v+ q)

= x− x0,

where x0 is an integration constant. Using partial fractions, we find that

v+ q
v− q

= e2v(x−x0)/ε ,

which on rearranging yields the density profile

ρ(x) =
1
2
+ v tanh(v(x− x0)/ε), (7.5.6)

with v≥ 0. On the other hand, if v2 < 0, then we have

ε
∫

dq
|v2|+ q2 = x− x0.

Under the change of variables q = cot an(u), we can evaluate the integral and find
that

ρ(x) = 0.5+ |v|cotan(|v|(x− x0)/ε). (7.5.7)
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The two unknown parameters J0,x0 can be determined in terms of α,β by imposing
the boundary conditions at x= 0,L. The resulting phase diagram in the limit of large
L and small ε is shown in Fig. 7.26. Three distinct phases can be identified:

1. A low-density phase in which the bulk density is smaller than 1/2, x0 =O(L) and
v2 > 0. Since ε � 1, we see from Eq. (7.5.6) that ρ(x)≈ 0.5−v for all x < x0. In
particular, at the left-hand boundary α(0.5+ v) = J0, which can be rewritten as
v = J0/α−0.5. Squaring both sides and using the definition of v gives, to lowest
order in ε ,

ρ(0) = α, J0 = α(1−α), α < 1/2.

The other boundary condition becomes

β =
J0

0.5+ v tanh(v(L− x0)/ε)
>

J0

0.5+ v
= α.

α

β

HD

LD MC

1/2

1/2

J0 =1/4

J0 = β(1−β)

J0 = α(1−α)

0

1

1

Fig. 7.26: Mean-field phase diagram for the TASEP showing the regions of α ,β parameter
space where the low-density (LD), high-density (HD), and maximal-current (MC) phases exist.
Schematic illustrations of the density profiles in the various regions are shown in red

In order to satisfy this boundary condition, there is an ε-wide boundary layer at
x = L with L− x0 = O(ε).

2. A high-density phase in which the bulk density is larger than 1/2 and x0 ≈ 0.
Hence, ρ(x) ≈ 0.5+ v in the bulk of the domain and at the right-hand boundary
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we have β (0.5+ v) = J0. Following along similar lines to the low-density case,
we deduce that

ρ(L) = 1−β , J0 = β (1−β ), β < 1/2,

and β < α . There is now a boundary layer around x = 0 in order to match the
rate α . The two phases coexist along the line α = β < 1/2.

3. A maximal-current phase. In the region α > 1/2,β > 1/2, we require J0 > 1/4 so
that v2 < 0. It turns out that the current takes the form J0 = 0.5+O(ε2/L2), that
is, it is very close to the maximal value of function ρ(1−ρ). This follows from
the observation that the solution (7.5.7) will blow up unless 0< |v|(x−x0)/ε < π
for all x ∈ [0,L]. This implies that x0 = −O(ε) and |v| < πε/L. Under these
conditions, Eq. (7.5.7) ensures that ρ(x) ≈ 0.5 in the bulk of the domain. The
precise values of v and x0 are then adjusted so that the boundary conditions at
x = 0,L are satisfied: ρ(0) = 1− 1/(4α)> 0.5 and ρ(L) = 1/(4β )< 0.5. Also
note away from the left-hand boundary, we have cotan(|v|(x− x0)/ε)≈ ε/(|v|x)
so that

ρ(x)∼ 0.5+ ε/x.

7.5.3 Method of Characteristics and Shocks

Equation (7.5.4) is mathematically similar in form to the viscous Burger’s equation
with additional source terms [554]. Thus, one expects singularities such as shocks
in the density ρ to develop in the inviscid or non-dissipative limit ε → 0+. One can
view the formation and propagation of shocks as a way of understanding how the
system evolves to the final steady-state solution [176, 349]. Again, we will illustrate
this by considering a pure TASEP. Setting ΩA = ΩD = 0 and ε = 0 in Eq. (7.5.4),
yields a kinematic wave equation of the quasilinear form

∂ρ
∂τ

+
∂J(ρ)

∂x
= 0, J(ρ) = ρ(1−ρ). (7.5.8)

Equation (7.5.8) is a particular example of a quasilinear PDE [see Eq. (10.1.6)], and
can be analyzed using the method of characteristics introduced in Sect. 3.6. Thus
one looks for characteristic curves x = x(τ) along which ρ(τ)≡ ρ(x(τ),τ) satisfies

dρ
dτ

=
∂ρ
∂τ

+
dx
dτ

∂ρ
∂x

.

Comparison with Eq. (7.5.8) leads to the characteristic equations

dx
dτ

= J′(ρ) = 1− 2ρ ,
dρ
dτ

= 0. (7.5.9)
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It can be seen that the characteristics are straight lines along which ρ is constant.
Suppose that x(0) = x0 and the corresponding initial density is ρ(x0,0) = ρ0(x0).
For simplicity, we ignore the boundary conditions by taking x ∈R. The correspond-
ing characteristic solutions (parameterized by x0) are then

x(τ) = [1− 2ρ0(x0)]t + x0, ρ(τ) = ρ(x(τ),τ) = ρ0(x0).

In other words, the density profile at time t is determined by the propagation of the
initial density ρ(x0,0) along the straight line characteristics.

For the given kinetic wave equation, one finds that an initial density profile can
sharpen up to form a discontinuity, which then propagates as a shock wave. This
is illustrated in Fig. 7.27 for an initial density given by the piecewise linear func-
tion ρ0(x) = 0 for x < 0, ρ0(x) = x for 0 ≤ x ≤ 1, and ρ0(x) = 1 for x > 1. Since
higher densities propagate more slowly than lower densities, an initial linear density
profile steepens until a shock is formed at the points of intersection where pairs of
characteristics meet. In general, a shock propagates with a speed vS determined by
the so-called Rankine–Hugonoit condition [554]:

x

t shock

ρ = 1
ρ  = 0

0

1

density profile ρ(0)

density profile ρ(0.5)

0.5

10 0.5

Fig. 7.27: Formation of a shock for Eq. (7.5.8). The characteristics are straight lines of speed 1−2ρ
with ρ constant along a characteristic. The initial density profile evolves into a stationary shock
solution

vS =
J(ρ2)− J(ρ1)

ρ2−ρ1
= 1−ρ1−ρ2 (7.5.10)

where ρ1,ρ2 are the densities on either side of the shock. For the particular initial
density profile shown in Fig. 7.27, ρ1 = 0 and ρ2 = 1 so that the shock is station-
ary (vS = 0). The possibility of stationary shocks reflects the fact that the current
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J(ρ) = ρ(1− ρ) has a maximum, which means that two different densities can
have the same current on either side of the shock. The Rankine–Hugonoit condi-
tion is usually derived by considering weak solutions of the kinematic equation (see
Box 7C). However, it can also be understood in terms of a traveling wave solu-
tion of the corresponding PDE with weak diffusion (see Ex. 7.8). A further example
illustrating the method of characteristics and shocks is given in Ex. 7.9.

Box 7C. Weak formulation of shocks and the Rankine–Hugonoit
condition.

In order to deal with discontinuities and shocks, it is necessary to intro-
duce a more flexible notion of a solution to the kinematic wave equa-
tion, in which derivatives of the solution are not directly involved [554].
Let φ(x, t) be a smooth function in R× [0,∞) with compact support,
that is, it vanishes outside a bounded domain. If ρ is a smooth solution
of the kinematic wave equation ∂tρ + ∂xJ(ρ) = 0 with initial condition
ρ(x,0) = p(x), then

∫ ∞

0

∫

R

[∂tρ + ∂xJ(ρ)]φdxdt = 0.

We now carry out an integration by parts of the first term with respect to
t and the second term with respect to x:

∫ ∞

0
∂tρφdxdt =−

∫ ∞

0
ρ∂tφdxdt−

∫

R

p(x)φ(x,0)dx

and, since φ(±∞) = 0,
∫ ∞

0
∂xJ(ρ)φdxdt =−

∫ ∞

0
J(ρ)∂xφdxdt.

We thus obtain the integral equation
∫ ∞

0

∫

R

[ρ∂tφ + J(ρ)∂xφ ]dxdt +
∫

R

p(x)φ(x,0)dx = 0. (7.5.11)

It can be seen that no derivative of ρ appears. We define a weak solution
of the kinematic wave equation to be one that satisfies the integral equa-
tion (7.5.11) for every test function φ in R× [0,∞) with compact support.
Note that if ρ is also smooth, then we can reverse the integration by parts
to recover the PDE.
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Γ : x = s(t)

Ω−

Ω+

n M

t

x

Fig. 7.28: Construction of a weak solution in a domain partitioned by a shock Γ

The weak formulation can now be used to derive the Rankine–
Hugonoit condition for the speed of a shock. Suppose that an open set
Ω ∈ R× [0,∞)is partitioned into two disjoint domains Ω± by a smooth
shock curve Γ satisfying x = s(t). Suppose that ρ is a weak solution in
Ω that is a continuously differentiable function ρ in the closed sets Ω+

and Ω−. That is, ρ is a smooth solution of ∂tρ + ∂xJ(ρ) = 0 in Ω+ and
Ω− such that ρ and its first derivatives extend continuously up to Γ from
either side (see Fig. 7.28). Choose a test function φ with support in a com-
pact set M ⊂Ω such that M∩Ω is not empty, and take φ(x,0) = 0. The
integral equation for the weak solution takes the form

0 =
∫ ∞

0

∫

R

[ρ∂tφ + J(ρ)∂xφ ]dxdt

=

∫

Ω+

[ρ∂tφ + J(ρ)∂xφ ]dxdt +
∫

Ω−
[ρ∂tφ + J(ρ)∂xφ ]dxdt.

Integrating by parts the integral over Γ+ using Stoke’s Theorem, noting
that φ = 0 on ∂Ω+/Γ (the boundary of Ω+ excluding the curve Γ ), we
have

∫

Ω+

[ρ∂tφ + J(ρ)∂xφ ]dxdt =−
∫

Ω+

[∂tρ + ∂xJ(ρ)]φdxdt

+

∫

Γ
[ρ+n2 + J(ρ+)n1]φdl

=

∫

Γ
[ρ+n2 + J(ρ+)n1]φdl,
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where ρ+ denotes the value of ρ on Γ from the Ω+ side, n = (n1,n2)
is the outward normal vector on the boundary ∂Ω+, and dl denotes arc
length along Γ . Similarly,

∫

Ω−
[ρ∂tφ + J(ρ)∂xφ ]dxdt =−

∫

Γ
[ρ−n2 + J(ρ−)n1]φdl,

where ρ− denotes the value of ρ on Γ from the Ω− side.

The above analysis shows that
∫

Γ
[(J(ρ+)− J(ρ−))n1 +(ρ+−ρ−)n2]φdl = 0.

The arbitrariness of φ means that

(J(ρ+)− J(ρ−))n1 +(ρ+−ρ−)n2 = 0. (7.5.12)

If ρ were continuous across Γ , then this equation would be an identity.
Therefore, suppose that ρ+ �= ρ−. The shock curve is given by x = s(t),
which implies that

n = (n1,n2) =
1

√
1+ ṡ(t)2

(−1, ṡ(t)).

Substituting for n in Eq. (7.5.12) thus gives the Rankine–Hugonoit con-
dition for the speed ṡ(t) of the shock:

ṡ =
J(ρ+(s, t))− J(ρ−(s, t))

ρ+(s, t)−ρ−(s, t)
. (7.5.13)

The method of characteristics and kinematic wave theory yields insights into
the dynamics underlying the formation of the various stationary phases shown in
Fig. 7.26 [52, 349, 355]. The basic idea is to consider kinematic waves propagating
from the left-hand and right-hand boundaries, respectively, by considering an initial
density profile such that ρ(0,0) = α and ρ(L,0) = 1−β with L large.

1. If α,β < 1/2, then a kinematic wave propagates from the left-hand and right-
hand boundaries with speeds 1− 2α > 0 and (2β − 1)< 0, respectively. These
waves thus propagate into the interior of the domain and meet somewhere in the
middle to form a shock that propagates with speed vS = β −α . If β > α , then
the shock moves to the right-hand boundary and the bulk of the domain is in a
low-density (LD) state with ρ ≈ α < 1/2. On the other hand, if β < α , then the
shock moves to the left-hand boundary and the bulk of the domain is in a high-
density (HD) state with ρ ≈ 1−β > 1/2. For weak dissipation the sharp drop in
the density at one end is smoothed to form a boundary layer.



406 7 Transport Processes in Cells

2. In the special case α = β < 1/2 the LD and HD phases coexist. The solution
consists of a low-density region separated from a high-density region by a shock.
Once higher-order dissipative effects are included, this shock diffuses freely be-
tween the ends of the domain, so that the average density profile is linear.

3. If both α > 1/2 and β > 1/2, then the steady-state bulk solution has the maximal-
current density J = 1/4. In order to show this, and to determine how bulk solu-
tions match the boundary conditions, it is necessary to include dissipation effects
as in the previous section.

The above analysis based on the theory of shocks can be extended to the full
molecular motor model that combines TASEP with binding/unbinding kinetics [176,
496, 497]. When ΩA,ΩD �= 0 the characteristic Eq. (7.5.9) become

dx
dτ

= 1− 2ρ ,
dρ
dτ

= ΩA(1−ρ)−ΩDρ . (7.5.14)

It follows that the characteristics are now curves in the x−t plane. For example, con-
sider the propagation of density fluctuations along a characteristic starting at the left
boundary with ρ =α < 1/2 and α <K/(K+1), where K =ΩA/ΩD. It follows from
Eq. (7.5.14) that initially the fluctuation propagates along the characteristic with de-
creasing speed and increasing density. If K/(1+K) < 1/2, then ρ will approach
the constant value ρ = K/(K+1) and the speed approaches a constant value. How-
ever, if K/(1+K) > 1/2, then after a finite time the density reaches ρ = 1/2 and
propagation ceases. A similar analysis holds for characteristics propagating from the
right boundary. Furthermore, characteristics propagating from opposite boundaries
can again intersect, implying multivalued densities and the formation of shocks. The
resulting shock has the same wave speed as pure TASEP. Of particular interest are

α β

Fig. 7.29: A TASEP with extended particles of size l = 3

stationary solutions for which the current J = ρ(1−ρ) is constant so that any shock
solution is stationary (vS = 0). To a first approximation, these can be obtained by
finding steady-state solutions of the mean-field equation

(1− 2ρ)
∂ρ
∂x
−ΩD[K− (1+K)ρ ] = 0. (7.5.15)

The occurrence of stationary shocks is consistent with the observation that this
is a first-order ordinary differential equation (ODE), but there are two bound-
ary conditions. One thus proceeds by integrating from the left boundary where
ρ(0) = α to obtain a density profile ρL(x) and then integrating from the right
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boundary where ρ(L) = 1 − β to obtain a second density profile ρR(x). The
full solution is constructed by matching the two profiles at a shock whose po-
sition also has to be determined. If the shock lies outside the interval [0,L],
then it is necessary to include at least one boundary layer. A detailed analysis
of the steady-state solutions with coexisting low- and high-density phases and
the corresponding phase diagram with respect to the parameters (α,β ,ΩD,ΩA)
can be found in [176, 497]. If the effects of dissipation are also taken into ac-
count, then the sharp interfaces and boundary layers become smooth fronts of size
O(1/ε).

One of the first examples of a TASEP model in biology was proposed by Gibbs
and collaborators in their study of the translation of mRNA by ribosomes during
protein synthesis [404, 405] (see also Sect. 6.7.1). However, it is necessary to mod-
ify pure TASEP to include multisite particles, since ribosomes are large molecules
which extend over several codons or lattice sites (around l = 12). In the case of
multisite particles, one has to specify the rules for entry and exit of a ribosome
[115, 703]. One possibility is “complete entry, incremental exit,” which assumes that
a ribosome enters completely provided the first l lattice sites are vacant, whereas it
exits one step at a time [113] (see Fig. 7.29). Inclusion of extended objects consider-
ably complicates the analysis even though the basic structure of the phase diagram
is preserved [113, 584]. In contrast to pure TASEP, there does not currently exist
an exact solution, although mean-field approximations do provide useful insights. A
second biologically motivated modification of TASEP is to include site-dependent
hopping rates [114, 149, 190, 344]. This is motivated by the fact that the local hop-
ping rate depends on the relative abundance of specific amino-acid carrying tRNA.
Using a combination of Monte Carlo simulations and mean-field theory it can be
shown, for example, that two defects (regions of slow hopping rates) decrease the
steady-state current more when they are close to each other. Finally, note that more
complex models take into account intermediate steps in the translocation of a ribo-
some along the mRNA, including the binding of tRNA to the ribosome and hydrol-
ysis [25, 118, 202, 528].

7.6 Random Intermittent Search Processes

Random search strategies are used throughout nature as a means of efficiently
searching for one or more targets of unknown location. Examples include animals
foraging for food or shelter [28, 659, 660], proteins searching for particular sites on
DNA [42, 250], and biochemical reaction kinetics [397]. Recently, there has been a
great deal of interest in a particular class of search strategy known as random inter-
mittent search, in which a particle randomly switches between a slow search phase
and a faster non-search phase [30–32, 485]. At the macroscopic scale, intermittent
motion has been observed in a variety of animal species during exploratory behavior.
One striking example is given by the nematode C. elegans, which alternates between
a fast displacement along a straight trajectory (roaming) and a much slower dis-
placement along a more sinuous trajectory (dwelling) [510]. During the slow phase,
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the worm’s head, bearing most of its sensory organs, moves and touches the surface
nearby, suggesting that this is a search phase. Intermittent motion also occurs at the
microscopic level of reaction kinetics within biological cells (see Fig. 7.30). For ex-
ample, diffusing molecules within the cellular environment intermittently bind and
unbind to molecular motors that execute ballistic transport along cytoskeletal fila-
ments powered by ATP hydrolysis; reaction with a target molecule can only occur
during the free diffusive phase [288, 397]. The effective reaction rate can be deter-
mined by solving a FPT problem for random intermittent search in 3D or 2D, de-
pending on whether or not the search domain is restricted to the plasma membrane.
An effective 1D search process can occur in tubular structures such as the axons and
dendrites of neurons, where microtubular filaments tend to align in parallel. Experi-
mental observations of active transport along axons and dendrite reveal intermittent
behavior with constant velocity movement in both directions along a microtubule,
interrupted by brief pauses or fast oscillatory movements that may correspond to
localization at specific targets such as synapses [153, 342, 544].

A variety of stochastic models of random intermittent search processes have been
developed (as reviewed in [32, 397]). In these studies it is typically assumed that (i) a
particle (e.g., a motor–cargo complex) is searching for some hidden target (e.g., a
subcellular compartment) within a bounded physical domain (e.g., the plasma mem-
brane or cytoplasm), (ii) the motion of the particle is unbiased, (iii) the particle
initiates its search at some random location within the domain, and (iv) the prob-
ability of eventually finding the target is equal to unity. Under these conditions, it
can be shown that there exists an optimal search strategy, in the sense that there
exist values for the durations of each phase that minimize the mean search time to
find a single hidden target [29–31]. An analogous result holds for protein–DNA in-
teractions. However, for some cellular processes, such as the directed transport of
newly synthesized products from the nucleus to targets in the plasma membrane,
assumptions (ii)–(iv) no longer hold, since the motion is biased in the anterograde
direction and the initial location is always at the nucleus. Moreover, there is now
a nonzero probability that the particle does not reach the target due to degradation
or absorption by another target [69, 471]. Under these circumstances, an optional
search strategy no longer exists. On the other hand, the failure to find a subcellular
target may be mitigated if the target is only partially hidden, in the sense that it emits
a local chemical signal that increases the probability of a motor particle stopping in
a neighborhood of that target [473].

7.6.1 Diffusive Search for a Protein-DNA Binding Site

A wide range of cellular processes are initiated by a protein transcription factor (see
Sect. 6.1) binding a specific target sequence of base pairs (target site) on a long DNA
molecule. The precise mechanism whereby a protein finds its DNA binding site re-
mains unclear. However, it has been observed experimentally that reactions occur
at very high rates, of around k = 1010 M−1 s−1 [537, 540]. This is around 100 times
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Fig. 7.30: Models of intracellular intermittent active transport in 3D and 1D. Redrawn from [397].
(a) A molecule alternates between a diffusive phase of mean duration τ1 and diffusion coefficient
D, and ballistic phases of velocity v and mean duration τ2 that are powered by molecular motor
transport along cytoskeletal filaments. The cytoskeletal filaments are in a disordered state (see also
Fig. 7.23). If the molecule diffuses within a neighborhood of a target substrate, it can undergo a
chemical reaction. (b) Active transport of intracellular cargo along a tubular structure such as an
axon or dendrite of a neuron

faster than the rate based on the Smoluchowski theory of diffusion-limited reaction
rates (Sect. 2.4) and 1,000 times higher than most known protein–protein association
rates. This apparent discrepancy in reaction rates suggests that some form of facili-
tated diffusion occurs. The best known theoretical model of facilitated diffusion for
proteins searching for DNA targets was originally developed by Berg, Winter, and
von Hippel (BHW) [41, 42, 684] and subsequently extended by a number of groups
[127, 250, 281, 440]. The basic idea of the BHW model is to assume that the protein
randomly switches between two distinct phases of motion, 3D diffusion in solution
and 1D diffusion along DNA (sliding) (see Fig. 7.31a). Such a mechanism is one
example of a random intermittent search process. The BHW model assumes that
there are no correlations between the two transport phases, so that the main factor in
speeding up the search is an effective reduction in the dimensionality of the protein
motion. However, as recently reviewed in [346], there are a number of discrepancies
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between the BHW model and experimental data, which has led to several alternative
theoretical approaches to facilitated diffusion. We first review the BHW model and
then briefly discuss these alternative models.

A simple method for estimating the effective reaction rate of facilitated diffusion
in the BHW model is as follows [440]. Consider a single protein searching for a
single binding site on a long DNA strand of N base pairs, each of which has length
b. Suppose that on a given search, there are R rounds labeled i = 1, . . . ,R. In the ith
round the protein spends a time T3,i diffusing in the cytosol followed by a period
T1,i sliding along the DNA. The total search time is thus T = ∑R

i=1(T3,i +T1,i), and
the mean search time is τ = r(τ3 + τ1). Here r is the mean number of rounds and
τ3,τ1 are the mean durations of each phase of 3D and 1D diffusion. Let n denote
the mean number of sites scanned during each sliding phase with n � N. If the
binding site of DNA following a 3D diffusion phase is distributed uniformly along
the DNA, then the probability of finding the specific promoter site is p = n/N. It
follows that the probability of finding the site after R rounds is (1− p)R−1p. Hence,
the mean number of rounds is r = 1/p = N/n. Assuming that 1D sliding occurs via
normal diffusion, then nb = 2

√
D1τ1 where D1 is the 1D diffusion coefficient, and

we have [440]

τ =
N
n
(τ1 + τ3). (7.6.1)

Since τ3 depends primarily on the cellular environment and is thus unlikely to vary
significantly between proteins, it is erasable to minimize the mean search time with
respect to τ1 while τ3 is kept fixed. Setting dτ/dτ1 = 0 implies that the optimal
search time occurs when τ1 = τ3 with τopt = 2Nτ3/n. On the other hand, the ex-
pected search time for pure 3D diffusion gives τ3D = Nτ3, which is the approximate
time to find one out of N sites by randomly binding to a single site of DNA every τ3

seconds and no sliding (τ1 = 0). Thus facilitated diffusion is faster by a factor n/2.
Further insights to facilitated diffusion may be obtained by using the Smolu-

chowski formula for the rate at which a diffusing protein can find any one of N
binding sites of size b, namely, τ−1

3 = 4πD3Nb[DNA], where [DNA] is the concen-
tration of DNA. (We are simplifying the problem by not worrying about the 3D
geometry of DNA.) Using this to eliminate N shows that the effective reaction rate
of facilitated diffusion is [440]

k≡ 1
τ[DNA]

= 4πD3

(
τ3

τ1 + τ3

)
nb

This equation identifies two competing mechanisms in facilitated diffusion. First,
sliding diffusion effectively increases the reaction cross section from 1 to n base
pairs, thus accelerating the search process compared to standard Smoluchowski the-
ory. This is also known as the antenna effect [281]. However, the search is also
slowed down by a factor τ3/(τ1 + τ3), which is the fraction of the time the pro-
tein spends in solution. That is, a certain amount of time is lost by binding to non-
specific sites that are far from the target. Note that typical experimental values are
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Fig. 7.31: (a) Mechanism of facilitated diffusion involving alternating phases of 3D diffusion and
1D diffusion (sliding along the DNA). (b) 1D representation of facilitated diffusion

D3 = 10μm2 s−1, b = 0.34 nm, and n = 200, and one has to convert k into units of
inverse molar per second.

A more complicated analysis is needed in order to take into account the effects
of boundaries, for example. Here we review the particular formulation of Coppey et
al. [127], which generalizes the original analysis of Berg [42]. Suppose that DNA
is treated as a finite track of length l = L+M with reflecting boundaries at x =−M
and x =+L and a point-like target at x = 0 (see Fig. 7.31). Rather than modeling 3D
diffusion explicitly, each time the protein dissociates from DNA it simply rebinds
at a random site at a time t later that is generated from an exponential waiting time
density. This is based on the assumption that 3D excursions are uncorrelated in
space. It might be expected that excursions would be correlated due to the geometric
configuration of DNA. However, in solution DNA is a random coil so that even short
3D trips can generate long displacements relative to the linear position of the protein
along the DNA strand, resulting in decorrelation of excursions. If P3(t) denotes the
probability density that the protein in solution at time t = 0 binds to the DNA at
time t at a random position, then

P3(t) = λ3e−λ3t , (7.6.2)

where τ3 = 1/λ3 is again the mean time spent in solution. Next, let P1(x, t) be the
conditional probability density that the protein dissociates from the DNA at time t
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without finding the target, given that it is at linear position x along the DNA at time
t = 0:

P1(x, t) = λ1e−λ1t
P(x, t) (7.6.3)

where τ1 = 1/λ1 is the mean time of each sliding phase and P(x, t) is the conditional
probability density that the protein starting at x has not met the target at time t.
Finally, let Q1(x, t) be the conditional probability density that the protein starting at
x finds the target at time t:

Q1(x, t) = e−λ1t f (x, t), (7.6.4)

where f (x, t) = −dP(x, t)/dt is the FPT density associated with diffusion along
the DNA strand. That is, f (x, t)dt is the probability that starting at x at t = 0, the
protein finds the target during a single phase of sliding diffusion in the time interval
[t, t + dt]. (Protein–DNA binding is assumed to be diffusion-limited so that as soon
as the protein reaches the target site it reacts.)

Suppose that in a given trial, a protein starting at x at time t = 0 executes n− 1
excursions before finding the target with t1, . . . , tn the residence times on DNA and
τ1, . . . ,τn−1 the excursion times. The probability density for such a sequence of
events with t = ∑n

i=1 ti +∑n−1
i=1 τn is

Pn(x,{ti,τi}) = Q1(tn)P3(τn−1)P1(tn−1) . . .P1(t2)P3(τ1)P1(x, t1), (7.6.5)

where P1(t) = 〈P1(x, t)〉,Q1(t) = 〈Q1(x, t)〉 and 〈g(x, t)〉 ≡ (L+M)−1 ∫ L
−M g(x, t)dx

for an arbitrary function g. In order to determine the FPT density F(x, t) for finding
the target, it is necessary to sum over all possible numbers of excursions and inter-
vals of time, given the constraint t =∑n

i=1 ti+∑n−1
i=1 τn. Thus, setting F(t)= 〈F(x, t)〉,

one finds that

F(t) =
∞

∑
n=1

∫ ∞

0
dt1 . . .dtndτ1 . . .dτn−1 (7.6.6)

δ

(
n

∑
i=1

ti +
n−1

∑
i=1

τi− t

)

Q1(tn)
n−1

∏
i=1

P3(τi)
n−1

∏
i=1

P1(ti).

Finally, Laplace transforming this equation and using the convolution Theorem 2.1
gives [127]

F̃(s) = f̃ (λ1 + s)

[
1− 1− f̃ (λ1 + s)

(1+ s/λ1)(1+ s/λ3)

]−1

, (7.6.7)

with f̃ (s) =
∫ ∞

0 e−st〈 f (x, t)〉dt. Given F̃(s), the MFPT to find the target (averaged
over the starting position x) is then

τ =

∫ ∞

0
tF(t)dt =− dF̃(s)

ds

∣
∣
∣
∣
s=0

, (7.6.8)
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which can be evaluated to give

τ =
1− f̃ (λ1)

f̃ (λ1)
(λ−1

1 +λ−1
3 ). (7.6.9)

All that remains is to determine f̃ (x,s) averaged with respect to x. If x < 0 (x > 0),
then one simply needs to determine the FPT density for a 1D Brownian particle
on the interval [−M,0] ([0,L]) with a reflecting boundary at x =−M (x = L) and an
absorbing boundary at x = 0. Recall from Sect. 2.3 that f (x, t) satisfies the backward
FP equation

∂ f (x, t)
∂ t

= D1
∂ 2 f (x, t)

∂x2 , (7.6.10)

with f (x,0) = 0, f (0, t) = δ (t), and ∂x f (L, t) = 0 or ∂x f (−M, t) = 0. Taking Laplace
transforms,

s f̃ (x,s) = D1
∂ 2 f̃ (x,s)

∂x2 , (7.6.11)

with f̃ (0,s) = 1,∂x f̃ (L,s) = 0 or ∂x f̃ (−M,s) = 0. The general solution is f̃ (x,s) =

Ae−
√

s/D1x+Be−
√

s/D1x with the coefficients A,B determined by the boundary con-
ditions. Solving for A,B separately when x < 0 and x > 0 and averaging with respect
to x finally gives

f̃ (s) =
1

L+M

√
D1

s

[
tanh(L

√
s/D1)+ tanh(M

√
s/D1)

]
. (7.6.12)

Thus, setting τi = 1/λi, i = 1,3,

τ =

[
(L+M)/

√
τ1D1

tanh(L/
√

τ1D1)+ tanh(M/
√

τ1D1)
− 1

]
(τ1 + τ3) , (7.6.13)

which recovers the original result of Berg [42]. It also recovers Eq. (7.6.1) when
L/
√

τ1D1,M/
√

τ1D1 � 1. (Ex. 7.10 involves carrying out the missing steps in the
above derivations.) A sample plot of the mean search time is shown in Fig. 7.32.

There have been a number of extensions of the BHW model that incorporate var-
ious biophysical effects. For example, sequence-dependent protein–DNA interac-
tions generate a rugged energy landscape during sliding motion of the protein [440].
This observation then leads to an interesting speed–stability paradox [440, 585]. On
the one hand, fast 1D search requires that the variance σ2 of the protein–DNA bind-
ing energy be sufficiently small, that is, σ ∼ kBT , whereas stability of the protein at
the DNA target site requires σ ∼ 5kBT . One suggested resolution of this paradox is
to assume that a protein–DNA complex has two conformational states: a recognition
state with large σ and a search state with small σ [440]. If the transitions between
the states are sufficiently fast, then target stability and fast search can be reconciled.
(For a recent review of the speed–stability paradox and its implications for search
mechanisms see [585].) Other effects include changes in the conformational state of
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Fig. 7.32: The mean search time plotted against the 1D sliding frequency λ1. The length of DNA
is taken to be 5,000 bp, the 3D frequency λ3 = 10 s−1, and the 1D diffusion coefficient D1 =
5×103 bp2/s. (Redrawn from Coppey et al. [127].)

DNA and the possibility of correlated association/dissociation of the protein [281]
and molecular crowding along DNA [389] or within the cytoplasm [294].

The BHW model and its extensions provide a plausible mechanism for facilitated
diffusion that has some support from experimental studies, which demonstrate that
proteins do indeed slide along DNA [230, 389, 684]. In particular, recent advances
in single-molecule spectroscopy means that the motion of fluorescently labeled pro-
teins along DNA chains can be quantified with high precision, although it should
be noted that most of these studies have been performed in vitro. A quantitative
comparison of the BHW model with experimental data leads to a number of dis-
crepancies, however. For example, it is usually assumed that D1 ≈ D3 in order to
obtain a sufficient level of facilitation. On the other hand, single-molecule measure-
ments indicate that D1 �D3 [691]. Such experiments have also shown that τ1 � τ3,
which is significantly different from the optimal condition τ1 = τ3. Hence the inter-
mittent search process could actually result in a slowing down compared to pure 3D
diffusion [281]. The BHW model also exhibits unphysical behavior in certain limits.
These issues have motivated a number of alternative models of facilitated diffusion,
as recently highlighted in [346].

1. Electrostatic interactions. One alternative hypothesis is that the observed fast as-
sociation rates are due to electrostatic interactions between oppositely charged
molecules and thus do not violate the 3D diffusion limit [249]. This is motivated
by the theoretical result that the maximal association rate in Smoluchowski the-
ory when there are long-range interactions between the reacting molecules is

k = 4πDa/β , β =

∫ ∞

a
eU(r)/kBT dr

r2 ,
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where U(r) is the interaction potential. The standard result is recovered when
U(r) = 0 for r > a [see Eq. (2.4.1)]. It follows that long-range attractive interac-
tions can significantly increase diffusion-limited reaction rates. It has been fur-
ther argued that in vitro experiments tend to be performed at low salt concen-
trations so that the effects of screening could be small. However, experimentally
based estimates of the Debye length, which specifies the size of the region where
electrostatic forces are important, indicate that it is comparable to the size of the
target sequence. Hence, electrostatic forces are unlikely to account for facilitated
diffusion.

2. Colocalization. Another proposed mechanism is based on the observation that in
bacteria, genes responsible for producing specific proteins are located close to the
binding sites of these proteins. This colocalization of proteins and binding sites
could significantly speed up the search process by requiring only a small number
of alternating 3D and 1D phases [440]. However, such a mechanism might not
be effective in eukaryote cells, where transcription and translation tend to be
spatially and temporally well separated. Moreover, colocalization breaks down
in cases where proteins have multiple targets on DNA.

3. Correlations. Yet another theoretical mechanism involves taking into account
correlations between 1D sliding and 3D bulk diffusion. These correlations reflect
the fact that attractive interactions between a protein and nonspecific binding
sites means that there is a tendency for a protein to return back to a neighbor-
hood of the DNA site from which it recently dissociated [106, 702]. Although
such interactions tend to slow down proteins moving along DNA, they also in-
crease the local concentration of proteins absorbed to DNA. This suggests that
facilitated diffusion can occur at intermediate levels of protein concentration and
protein-DNA interactions.

7.6.2 Optimal Unbiased Search on a 1D Track

Consider a single-motor-driven particle moving along a one-dimensional track of
length 2L (see Fig. 7.33). Suppose that at time t = 0 the particle is at some position
y on the track. Within the interior of the track, −L < x < L, the particle can be
in one of three states labeled by n = 0,±: stationary (n = 0), moving to the right
(anterograde) with speed v+ (n = +), or moving to the left (retrograde) with speed
v− (n =−). Transitions between the three states are governed by a discrete Markov
process. We further assume that there is a hidden target of width 2a at the center of
the domain. If the particle is within a distance a of the target and is in the stationary
state, then the particle can detect or, equivalently, be absorbed by the target at a
rate k. We assume throughout that a � L. Let Z(t) and N(t) denote the random
position and state of the particle at time t and define P(x, t,n | y,0,m)dx as the joint
probability that x≤ Z(t) < x+ dx and N(t) = n given that initially the particle was
at position Z(0) = y and was in state N(0) = m. Setting pn(x, t) ≡ P(x, t,n|y,0,+)
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with initial condition pn(x,0) = δ (x− y)δn,+, we have a slightly modified version
of the three-state model (7.4.2):

∂t p+(x, t) =−v∂x p+(x, t)−β p+(x, t)+α p0(x, t), (7.6.14a)

∂t p−(x, t) = v∂x p−(x, t)−β p−(x, t)+α p0(x, t), (7.6.14b)

∂t p0(x, t) = β p+(x, t)+β p−(x, t)− 2α p0(x, t)− kχ(x)p0(x, t). (7.6.14c)

target
motor

microtubule
+−

a

k
v

x = 0x = −L x = L

−v

Fig. 7.33: Schematic diagram illustrating a model of a motor-driven particle moving along a one-
dimensional track of length L. The particle can transition between two motile states with speeds
±v and a stationary state. A hidden target of half-width a is located at the center of the domain.
The particle can be absorbed by the target at a rate k when in the stationary state

Here α,β are the transition rates between the stationary and mobile states and χ is
the target indicator function

χ(x) =
{

1, if |x|< a
0, otherwise.

(7.6.15)

Note that the motion is unbiased. Equations (7.6.14) are supplemented by a reflect-
ing boundary conditions at each end:

p−(x, t) = p+(x, t), x =±L. (7.6.16)

The efficacy of the search process can be characterized in terms of the MFPT to
find (be absorbed by) the target. There are two alternative methods for calculating
the MFPT, one based on Laplace transforming the forward CK equation (7.6.14)
and the other based on solving the corresponding backward equation. We will de-
scribe the latter approach here as developed by Loverdo et al. [398]. The backward
CK equation is given by

∂tQ+ = v∂yQ+−β [Q+−Q0], (7.6.17a)

∂tQ− =−v∂yQ−−β [Q−−Q0], (7.6.17b)

∂tQ0 = α[Q++Q−− 2Q0]− kχ(y−X)Q0, (7.6.17c)
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where Qm(y, t) = P(x, t,0|y,0,m). Let Sm(y, t) be the probability that the particle is
absorbed by the target after time t given that it started at y in state m. That is,

Sm(y, t) = k
∫ ∞

t

∫ a

a
P(x, t ′,0|y,0,m)dxdt ′. (7.6.18)

Integrating Eq. (7.6.17) with respect to x and t and using

∂t Sm(y, t) =−k
∫ a

−a
P(x, t,0|y,0,m)dx,

we find that

∂t S+ = v∂yS++β (S0− S+), (7.6.19a)

∂t S− =−v∂yS−+β (S0− S−), (7.6.19b)

∂t S0 = α[S++ S−− 2S0]− kχ(y−X)S0. (7.6.19c)

Let Tm(y) be the MFPT to find the target given that the particle is at x = y and state
m at t = 0. Then

Tm(y) =−
∫ ∞

0
t∂t Sm(y, t)dt =

∫ ∞

0
Sm(y, t)dt (7.6.20)

after integration by parts. It follows that Tm evolves according to the equations

v∂yT++β (T0−T+) =−1, (7.6.21a)

−v∂yT−+β (T0−T−) =−1, (7.6.21b)

α(T++T−)− (2α + kχ(y−X))T0 =−1. (7.6.21c)

Solving Eq. (7.6.21c) for T0 yields

T0(y) = u(y)(α[T+(y)+T−(y)]+ 1), (7.6.22)

where

u(y) =
1

2α + kχ(y−X)
. (7.6.23)

Substituting Eq. (7.6.22) into Eq. (7.6.21a,b) gives

∂yT+(y)+
β
v
[(αu(y)− 1)T+(y)+αu(y)T−(y)] =−β

v

(
1
β
+ u(y)

)
, (7.6.24a)

∂yT−(y)− β
v
[αu(y)T+(y)+ (αu(y)− 1)T−(y)] =

β
v

(
1
β
+ u(y)

)
. (7.6.24b)

It is now necessary to solve for T±(y) in the three regions:−L< y<−a,−a< y< a,
and a < y < L. The solution in each of these regions will have two unknown
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integration constants so that we require six conditions. Two are given by the bound-
ary conditions

T+(y) = T−(y), y =±L, (7.6.25)

whereas the other four are obtained by requiring continuity in T+(y) and T−(y) at
y = ±a (see Ex. 7.11). Suppose that the particle starts at a random position inside
the domain and is initially in the + state. We then define the averaged MFPT τ1

according to

τ1 =
1

2L

∫ L

−L
T+(y)dy.

From the analysis of T±(y), one finds that [29] (see Ex. 7.11)

τ1 =
1
L

(
1
β
+

1
2α

)([
β
v

]2 2(L− a)3

3
+

β
v

√
2α + k

k
(L− a)2coth(Λa)

)

+
2α + k

k

(
1
β
+

1
2α + k

)
L− a

L
, (7.6.26)

where

Λ =
β
v

√
k

2α + k
.

This expression can be simplified by taking L� a and aβ/v� 1:

k, τ1D, τ1

a

Fig. 7.34: Two models of target detection: the particle alternates between slow reactive phases of
mean duration τ1 and fast nonreactive ballistic phases of mean duration τ2. Left: the slow reactive
phase is diffusive and detection is infinitely efficient. Right: the slow reactive phase is static and
detection takes place with finite rate k

τ1 ≈
(

1
β
+

1
2α

)([
β
v

]2 2L2

3
+

2α + k
k

L
a

)

. (7.6.27)
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It is then straightforward to show that τ1 has a global minimum as a function of the
parameters α,β , which occurs at the values (α∗,β ∗) with

1
α∗

= 2

√
a
vk

(
L

12a

)1/4

,
1

β ∗
=

a
v

√
L
3a

.

It is possible to extend the above analysis to a modified target detection scheme, in
which the particle slowly diffuses in the search phase and is immediately absorbed
by the target if it enters the target domain (k → ∞) (see Fig. 7.34). In this case,
an intermittent search scheme is more efficient than pure diffusion provided that
D/v� a, where D is the diffusivity of the particle in the search phase, v is its speed
in a ballistic non-search phase, and a is the size of the target [398]. Interestingly the
optimal time spent in the non-search phase, 1/β ∗, is independent of the particular
target detection mechanism. The existence of a minimum search time for unbiased
intermittent search in a bounded domain also extends to higher spatial dimensions
[31, 70, 398] and to more detailed molecular motor models such as ToW [472, 474].
However, in these more complicated cases, the calculation of the MFPT becomes
considerably more difficult unless some approximation scheme is used such as the
QSS reduction outlined in Sect. 7.4 [471, 473] (see below).

7.6.3 Biased Intermittent Search

The existence of an optimal search strategy breaks down if one considers a biased
search process and allow for the possibility of failure to find the target [68, 471]. In
order to illustrate this, we modify the previous 1D model (7.6.14) along the follow-
ing lines. First the transition rates from the left- and right-moving states are taken to
be different, β → β± with β+ < β−. The stochastic process is then biased in the an-
terograde direction since the particle tends to spend more time in the right-moving
state. (One could also take the velocities in the two directions to be different.) Unidi-
rectional transport is obtained in the limit β− →∞. Second, the possibility of failure
is incorporated into the model by considering a 1D track of length L with a reflecting
boundary at x = 0 and an absorbing boundary at x = L:

p−(0, t) = p+(0, t), p−(L, t) = 0. (7.6.28)

The absorbing boundary takes into account the fact that a motor particle can be
degraded or absorbed by other targets downstream to the given target. Third, the
particle always starts from the end x = 0 (which could be close to the cell nucleus)
and the target is at some unknown location X with 0 < X− a < X + a < L. In con-
trast to the unbiased case, the efficacy of the search process is characterized by two
quantities. Let J(t) denote the probability flux due to absorption by the target at X :

J(t) = k
∫ X+a

X−a
p0(x, t)dx. (7.6.29)
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Define the hitting probability Π to be the probability that the particle eventually
finds the target, that is, it is absorbed somewhere in the interval X − a ≤ x ≤ X + a
rather than at the end x = L:

Π =

∫ ∞

0
J(t)dt. (7.6.30)

The conditional MFPT [523] T is then defined to be the mean time it takes for the
particle to find the target given that it is not absorbed at x = L:

T =

∫ ∞
0 tJ(t)dt
∫ ∞

0 J(t)dt
. (7.6.31)

The two quantities T and Π determine the efficiency of the stochastic search
process.

Clearly it would be advantageous for the particle to minimize the search time T
and maximize the hitting probability Π . However, these two requirements compete
with each other so that, in contrast to unbiased intermittent search with Π = 1, there
is not a single optimal search strategy. This can be seen heuristically in the case of
unidirectional transport where the particle is either stationary or undergoes antero-
grade motion. Here the particle can reach the target more quickly by having a higher
probability of being in the mobile state. However, this also increases the chance of
overshooting the target without detecting it, thus reducing the hitting probability. It
could be argued that the only important factor is minimizing the MFPT irrespective
of the hitting probability, since active transport typically involves multiple motor–
cargo complexes. However, a low hitting probability would require more resources,
which costs the cell energy. In the case of unidirectional transport, Eq. (7.6.14) re-
duce to

∂t p+ =−v∂x p++α p0−β p+, (7.6.32a)

∂t p0 = β p+−α p0− kχ(x−X)p0. (7.6.32b)

Note that there is no need to introduce any supplementary boundary conditions,
since the particle cannot return to the origin nor find the target once it has crossed
the point x = X + a < L. The corresponding backward equations are

∂tQ+ = v∂yQ+−β [Q+−Q0], (7.6.33a)

∂tQ0 = α[Q+−Q0]− kχ(y−X)Q0, (7.6.33b)

where Qm(y, t) = P(x, t,0|y,0,m).
Let γm(y, t) be the total probability that the particle is absorbed by the target after

time t given that it started at y in state m. That is,

γm(y, t) = k
∫ ∞

t

∫ X+a

X−a
P(x, t ′,0|y,0,m)dxdt ′. (7.6.34)
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Fig. 7.35: Partially biased anterograde transport. (a) The hitting probability Π and (b) the MFPT
T are plotted as functions of the parameter α for fixed β+ = 1s−1 and various values of β−: solid
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These values are extracted from experimental studies of mRNA transport [153, 342, 544]

Integrating Eqs. (7.6.33a) and (7.6.33b) with respect to x and t and using
∂tγm(y, t) =−k

∫ X+a
X−a P(x, t,0|y,0,m)dx, we find that

∂tγ+ = v∂yγ++β (γ0− γ+), (7.6.35a)

∂tγ0 = α[γ+− γ0]− kχ(y−X)γ0. (7.6.35b)

The probability γm(y, t) can be used to define the hitting probability

πm(y) = γm(y,0) (7.6.36)

and the conditional MFPT Tm(y),

Tm(y) =−
∫ ∞

0
t
∂tγm(y, t)
γm(y,0)

dt =

∫ ∞
0 γm(y, t)dt

γm(y,0)
(7.6.37)

after integration by parts. It follows from the definitions (7.6.30) and (7.6.31) that

Π = π+(0), T = T+(0). (7.6.38)
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Proceeding along analogous lines to the unbiased case, one finds that [68]

Π = 1− e−2λ a, T = (X − a)μ1− 2aμ2

e2λ a− 1
+ μ3,

where

μ1 =
1
v

(
1+

β
α

)
, μ2 =

1
v

(
1+

αβ
(α + k)2

)
, μ3 =

α +β + k
β k

, λ =
β
ν

k
α + k

.

The calculation of Π and T can also be carried out for the full three-state model,
although the analysis is considerably more involved [68]. The results are illustrated
in Fig. 7.35. It can be seen that increasing the parameter α , which controls how
much time the particle spends in the stationary search mode, decreases both the hit-
ting probability and the conditional MFPT. Similarly, increasing the parameter β+,
which controls how much time the particle spends in the anterograde mobile state,
increases both the hitting probability and the MFPT. During unidirectional motion
average velocities are found in the range 0.05–0.2μms−1, whereas the duration of
a moving phase tends to be in the range 1–10 s. Dendrites in cultured cells range in
length from 10 to 100 μm.

7.6.4 Effects of Local Chemical Signaling

Let us now consider a much more general model of motor-driven search by incor-
porating a hidden target into the PDE model (7.4.4)

∂ p
∂ t

=−vn
∂ [p(x,n, t)]

∂x
+

N

∑
n′=1

A(n,n′;x)p(x,n′, t)− knχ(x−X), (7.6.39)

where kn is the rate of target absorption in the nth internal state. Thus the flux into
the target is

J(t) =
N

∑
n=1

kn

∫ X+a

X−a
p(x,n, t)dx. (7.6.40)

In general kn will only be nonzero for a subset of states. For example, in the three-
state model the unbound stationary or diffusing state is identified as the search state.
In the case of the more biophysically realistic ToW model (Sect. 4.4), the identifica-
tion of the search states is more complicated. The simplest scenario is that the cargo
locates its target after it becomes fully detached from the microtubule and diffuses
within distance of its target, where it binds to scaffolding proteins and is separated
from its molecular motors. However, if many molecular motors are bound to the
cargo, the waiting time between diffusive searching events can be too large to reli-
ably deliver the cargo. Moreover, if the cargo is large so that its diffusivity is low
or the cargo is moving through a crowded and confined domain, diffusive motion
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may be restricted, preventing the cargo from reaching the target. Another possi-
bility is that subcellular machinery is present to detach the cargo from its motors
or inhibit the activity of the motors so that scaffolding proteins can bind to and
sequester the cargo. Delivery then changes from a diffusion-limited reaction to a
waiting time that depends on a reaction occurring between the motor–cargo com-
plex and biomolecules (either freely diffusing or anchored) local to the target while
the motor-cargo complex is moving along the microtubule. If details of the localiza-
tion mechanism are unknown, then the simplest model is to assume that this waiting
time is approximately exponential and to associate a target detection rate kn with
each motor state. The model can be simplified further by assuming that detection
is unlikely while only one species of motors is engaged and pulling the cargo at
its maximum (forward or backward) velocity. This suggests assigning a single tar-
get detection rate k to those states that have sufficiently low speeds [474]. Thus,
k(n+,n−) = kΘ(vh− v(n+,n−)), where v(n+,n−) denotes the velocity when n+ ki-
nesin and n− dynein motors are attached to the track and vh is a velocity threshold.

It is straightforward to extend the QSS approximation of Sect. 7.4 in the presence
of a target, and one finds that [473]

∂C
∂ t

=− ∂
∂x

(VC)+
∂
∂x

(
D

∂C
∂x

)
−λ χ(x−X)C, (7.6.41)

with the drift V and diffusion coefficient D given by Eq. (7.4.11) and the effective
detection rate is

λ =
N

∑
n=1

knρ(x,n). (7.6.42)

There are now three effective parameters that describe the random search process:
the drift V , the diffusivity D, and the target detection rate λ . Each of these param-
eters are themselves functions of the various cargo velocities, transition rates, and
target detection rates contained in the full model. The hitting probability and MFPT
are still given by Eqs. (7.6.30) and (7.6.31) except that now the flux is

J(t) = λ
∫ X+a

X−a
C(x, t)dx. (7.6.43)

In general, one finds that there is a play-off between minimizing the MFPT and max-
imizing the hitting probability [68, 471, 473]. One way to enhance the efficiency of
the search process is for the target to generate a local chemical signal that increases
the probability of finding the target without a significant increase in the MFPT. This
issue has been explored by incorporating a local ATP or tau signal into the ToW
model of Sect. 4.4 and carrying out a QSS reduction along the lines outlined above
[472, 474]. The possible role of ATP is based on the observation that the stall force
and other single-motor parameters are strongly dependent on the level of [ATP].
Since ATP concentration ([ATP]) is heavily buffered, a small region of intense
ATP phosphorylation around a target could create a sharp, localized [ATP] gradient,
which would significantly slow down a nearby motor complex, thus increasing the
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chances of target detection. Here we consider a mechanism based on local tau sig-
naling [472], based on the ToW model with the tau concentration-dependent kinesin
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Fig. 7.36: Effects of tau concentration on the tug-of-war model with N+ kinesin motors and
N− dynein motors. The stall force FS, forward velocity v f , and unbinding rate γ̄ are given
by Eqs. (4.4.14)–(4.4.16) with [ATP] = 103 μM. The other single-motor parameters are [457]
Fd = 3pN, γ0 = 1s−1, π̄ = 5s−1, and vb = 0.006μms−1. The corresponding parameters of the
FP equation are obtained using a QSS reduction and plotted as a function of τ . (a) Effective cap-
ture rate λ . (b) Drift velocity V . (c) Diffusivity D

binding rate Eq. (4.4.17). Carrying out the QSS reduction of the tug-of-war model
then leads to the FP equation (7.6.41) with τ-dependent drift V , diffusivity D, and
capture rate λ as illustrated in Fig. 7.36. The most significant alteration in the be-
havior of the motor complex is the change in the drift velocity V as a function of τ .
The drift velocity switches sign when τ is increased past a critical point. That is, by
reducing the binding rate of kinesin, the dynein motors become dominant, causing
the motor complex to move in the opposite direction. The effects of local changes
in τ concentration on the efficiency of random search can now be determined by
assuming that within range of the target, |x−X | < a, τ = τ1 > τ0, whereas τ = τ0

outside the target, |x−X | > a. Carrying out the QSS reduction of the tug-of-war
model then leads to the FP equation (7.4.10) with x-dependent drift and diffusivity:

V (x) =V0 +ΔV χ(x), D(x) = D0 +ΔDχ(x), (7.6.44)
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Fig. 7.37: Effect of adding tau to the target on the capture probability Π and MFPT T using param-
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simulation. (b) The analytical approximation T along with averaged Monte Carlo simulations. The
synaptic trap is located at X = 10μm, the trapping region has radius a = 2μm, and the MT track
has length L = 20μm. The capture rate is taken to be k0 = 0.5s−1

where χ(x) is the indicator function defined in Eq. (7.6.15),V0 =V (τ0),D0 =D(τ0),
ΔV =V (τ1)−V0, and ΔD=D(τ1)−D0. Solving the piecewise continuous FP equa-
tion then determines the hitting probability Π and MFPT T as functions of τ1 for
fixed τ0. In Fig. 7.37, the hitting probability Π and the MFPT T are plotted as a
function of τ1. As τ1 is increased above the critical level τ0 = 0.19, there is a sharp
increase in Π but a relatively small increase in the MFPT, confirming that τ can
improve the efficacy of the search process.

One interesting effect of a local increase in MAPs is that it can generate stochastic
oscillations in the motion of the motor complex [474], see Fig. 7.38. As a kinesin-
driven cargo encounters the MAP-coated trapping region, the motors unbind at their
usual rate and can’t rebind. Once the dynein motors are strong enough to pull the re-
maining kinesin motors off the microtubule, the motor complex quickly transitions
to (−) end-directed transport. After the dynein-driven cargo leaves the MAP-coated
region, kinesin motors can then reestablish (+) end-directed transport until the mo-
tor complex returns to the MAP-coated region. This process repeats until the motor
complex is able to move forward past the MAP-coated region. Interestingly, particle
tracking experiments have observed oscillatory behavior during mRNA transport
in dendrites [153, 544]. In these experiments, motor-driven mRNA granules move
rapidly until encountering a fixed location along the dendrite where they slightly
overshoot then stop, move backward, and begin to randomly oscillate back and forth.
After a period of time, lasting on the order of minutes, the motor-driven mRNA
stops oscillating and resumes fast ballistic motion. Calculating the mean time to es-
cape the target can be formulated as a FPT problem, in which the particle starts at
x = x0 and has to make a rare transition to the unstable fixed point at x = x∗. As in
the analogous problem of stochastic action potential generation the QSS diffusion
approximation breaks down for small ε , and one has to use singular perturbation
methods. The details in the case of the three-state model can be found elsewhere
[475].
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7.6.5 Virus Trafficking

An interesting example of random intermittent search in 2D or 3D is given by virus
trafficking. An animal virus typically invades a mammalian cell by first undergo-
ing membrane endocytosis from the exterior to the interior of the cell. It then has
to navigate the crowded cytoplasm without being degraded in order to reach a nu-
clear pore and deliver its DNA to the cell nucleus [133]. SPT has established that
virus trajectories within the cytoplasm consist of a succession of free or confined
diffusion and ballistic periods involving active transport along microtubules or actin
networks [60]. A macroscopic computational model of the trafficking of a popula-
tion of viruses has been developed based on the law of mass action, which takes
into account cell geometry but neglects stochastic effects [142]. More recently, in
a series of papers, Holcman and collaborators [266, 368, 369] have developed a
stochastic model of a single virus trafficking inside a cell, which involves reducing
an intermittent search model to an effective Langevin equation, and using the latter
to calculate the mean time to reach a nuclear pore based on a narrow escape problem
(see Sect. 7.2). The basic structure of a 2D version of the latter model is shown in
Fig. 7.39.

Following [368], the cell is treated as a radially symmetric disk consisting of
an annular region of cytoplasm of outer radius R and inner radius δ , surrounding
a central nuclear disk. N microtubules radiate outward from the nucleus to the cell
membrane and are assumed to be distributed uniformly so that the angle between
two neighboring microtubules is Θ = 2π/N. (A two-dimensional description of a
cell would be reasonable in the case of cultured cells that are flattened due to ad-
hesion to the substrate.) The motion of a virus particle alternates between diffusive
motion within a wedge region Ω̂ subtending an angle Θ at the origin and bind-
ing to one of the two microtubules at the boundary of the wedge. Suppose that a
virus particle starts at some radius r0 < R and arbitrary angle within such a wedge.
Let τ(r0) denote the MFPT for the particle to bind to a microtubule, and let ρ(r0)
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be the mean radial position on the microtubule. Suppose that the particle moves
with a fixed speed v for a time T towards the nucleus before being released to a
new position with radius r1 and arbitrary angle within another wedge. It follows
that r1 = ρ(r0)− vT . Treating the domain Ω̂ as an open wedge by ignoring the
reflecting boundary at r = R, it can be shown that if Θ � 1, then [369]

τ(r0)≈ r2
0Θ 2/12D, ρ(r0)≈ r0(1+Θ 2/12).

The reduction method of [368, 369] is to assume that on a coarse-grained time scale
the random intermittent motion of the virus can be approximated by a Langevin
equation with a radial drift vector:

dr
dt

= b(r)
r
|r| +

√
2Ddξ dt. (7.6.45)

In order to estimate the drift function b(r), the MFPT τ̂(r0) for the effective
Langevin particle to start at r0 and end at r1 is calculated using the standard the-
ory of FPTs (see Sect. 2.3) and then compared to τ(r0). First, τ̂(r0) satisfies the
equation

D∇2τ̂− b(r)∇τ̂ =−1,

with boundary conditions

dτ̂
dr

(R) = 0, τ̂(r1) = 0.

As a further simplification, it is assumed that b(r) varies slowly with r so that b(r)≈
b(r0), leading to the solution

τ̂(r0) =

∫ r0

r1

∫ R

v

ue−b(r0)[u−v]/D

Dv
dudv.

Assuming that D� 1 the Laplace method can be used to evaluate the integral with
respect to u, giving τ̂(r0)≈ (r0−r1)/b(r0). Finally, setting τ̂(r0) = τ(r0)+T yields

b(r0) =
r0− r1

τ(r0)+T
=

d− r0Θ 2/12

T + r2
0Θ 2/12D

. (7.6.46)

A more detailed calculation of the effective drift function b(r) under less restrictive
assumptions can be found in [369].

Having reduced the effective motion of the virus to a Langevin equation, the
probability that the virus arrives at a nuclear pore before being degraded at a rate
k0 can now be calculated by solving a narrow escape problem. The associated FP
equation takes the form

∂ p
∂ t

= D∇2 p(r, t)−∇ ·b(r)p(r, t)− k0p(r, t) (7.6.47)



428 7 Transport Processes in Cells

microtubule

nuclear
pore

nucleus

Brownian
motion

cell membrane

motor
transport

Fig. 7.39: Model of Lagache et al. [368]. Diagram of a 2D radially symmetric cell with radially
equidistant microtubles. A virus trajectory is shown that alternates between ballistic motion along
a microtubule and diffusion the cytoplasm. Trajectory starts at the cell membrane and ends at a
nuclear pore

on the annular region Ω of Fig. 7.39, together with the boundary conditions

p(r, t) = 0,r ∈ ∂Na, J(r, t) ·n = 0, r ∈ ∂Ω − ∂Na.

The boundary ∂Ω of the annulus is taken to be reflecting everywhere except for
the surface ∂Na of the nucleus occupied by nuclear pores, which are taken to be
perfect absorbers. Asymptotic analysis then shows that the hitting probability P
and conditional MFPT T are [368, 369]

P =
b(δ )

b(δ )+ 2δk0ν
, T =

2δν
2δk0ν + b(δ )

, (7.6.48)

where ν = log(1/ε) with ε the fraction of the nucleus covered by nuclear pores.

7.7 Exercises

Problem 7.1 (Diffusion–trapping model with receptor binding). Consider an ex-
tension of the 1D diffusion–trapping model given by Eqs. (7.1.2a) and (7.1.2b),
which includes the effects of receptor binding to scaffolding proteins within the
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spine. That is, let Ri and Bi denote, respectively, the probability of an unbound and
a bound receptor in the ith spine. Replace Eq. (7.1.2b) by the pair of equations

dR j

dt
= lh[p j−R j/A]+αB j−β R j,

dB j

dt
=−αB j +β R j,

where α,β are the rates of unbinding and binding. Calculate the MFPT to travel a
certain distance from one end and use this to obtain the following expression for the
effective diffusivity:

Deff = D

[
1+

A
ld

(
1+

β
α

)]−1

.

Describe what happens when β � α .

Problem 7.2 (Steady-state analysis of diffusion–trapping model). Consider a
slight modification of the diffusion–trapping model in a dendrite of length L and
circumference l, in which receptors within a spine degrade at a rate γ:

∂ p
∂ t

= D
∂ 2 p
∂x2 −

N

∑
j=1

h[p j−R j/A]δ (x− x j),

dR j

dt
= lh[p j−R j/A]− γR j

Moreover, suppose that newly synthesized receptors enter the end x = 0 (close to
the soma) at a rate σ . The boundary conditions become

D
∂ p
∂x

∣
∣
∣
∣
x=0

=−σ , D
∂ p
∂x

∣
∣
∣
∣
x=L

= 0

(a) Show that the steady-state receptor distribution satisfies

0 = D
∂ 2 p
∂x2 −β

N

∑
j=1

p jδ (x− x j)

and determine the constant β . Using the boundary conditions, derive the con-
servation condition

σ = β
N

∑
j=1

p j.

(b) Introducing the Neumann Green’s function

d2G(x,y)
dy2 =−δ (x− y)+L−1,
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with reflecting boundary conditions at the ends x = 0,L, derive the following
implicit equation:

p(x) = χ−β ∑
j

G(x,x j)p j +
σ
D

G(x,0).

The constant χ is determined from the conservation condition σ = β ∑N
j=1 p j.

(c) By setting x = xi in the result of part (b), show that

pi = ∑
j

Mi j(χ +σG(x j,0)/D), M−1
i j = G(xi,x j)+ δi j.

Use this to determine χ .
(d) Consider a set of N identical spines with uniform spacing d = L/N such that

x j = jd, j = 1, . . . ,N. Using the results of parts (b) and (c), plot p(x) as a
function of x for the three cases D = 0.5,0.1,0.05μm2 s−1, with L = 200μm,
l = 1μm, N = 200, spine spacing d = 1μm, σ = 1s−1, h = 10−3 μs−1, and
γ = 10−4 s−1. Use the fact that

G(x,x′) =
L
12

[
h([x+ x′]/L)+ h(|x− x′|/L)

]
,

where h(x) = 3x2− 6|x|+ 2.
(e) Consider a set of N identical spines with uniform spacing d = L/N such that

x j = jd, j = 1, . . . ,N, and rewrite the steady-state equation in the form

0 = D
d2 p
dx2 −β ρ(x)p (7.7.49)

where ρ(x) = ∑N
j=1 δ (x− jd). In the large N limit, take ρ = 1/d and solve the

resulting continuum equation. Compare with the results of part (d).

Problem 7.3 (Exact solutions of Fick–Jacobs equation). Consider the Fick–
Jacobs equation (with D0 = 1)

∂P(x, t)
∂ t

=
∂
∂x

σ(x)
∂
∂x

P(x, t)
σ(x)

.

(a) Let f (x) = 1
2 lnσ(x). Performing the change of variables

A(x, t) = e− f (x)P(x, t) =
P(x, t)
√

σ(x)
,

show that A satisfies an equation of the form

∂A(x, t)
∂ t

=
∂ 2A
∂x2 −V(x)A(x, t),
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with

V (x) = f ′2(x)+ f ′′(x) =
1

2σ(x)
d2σ(x)

dx2 − 1
4

(
σ ′(x)
σ(x)

)2

.

(b) Determine the effective potential V (x) in the two cases (i) σ(x) = π(1+ λ x)2

(conical cross section) and (ii) σ(x)= sin2(γx). Hence, for each case, express the
solution P(x, t) in terms of the initial data P(x,0) and the fundamental solution
of the diffusion equation.

Problem 7.4 (Multibarrier model of ion channel transport). Suppose that an ion
passing through a channel encounters a series of energy barriers and wells as shown
in Fig. 7.40. Ion channel movement within the channel can then be modeled in terms
of a sequence of hops over the barriers from one site (minimum) to the next. For
simplicity, in the absence of a voltage drop across the membrane (ΔV = 0), the
barriers are identical, symmetric, and spaced uniformly along the channel. A voltage
drop can then be superimposed to bias the jumps in a particular direction. Let α and
β denote the right and left hopping rates across each barrier. Assuming that the rates
are given by a standard Arrhenius formula (Sect. 2.3), we can write

α = ωe−(E−qΔV/2n)/kBT , β = ωe−(E+qΔV/2n)/kBT ,

where ω is some prefactor that depends on the detailed shape of the channel po-
tential energy around the minimum and q is the ion charge. Here E is the height
of the energy barrier when ΔV = 0 and the symmetric barriers are lowered by an

p0

p1

pn

ΔV

ΔV/n

α β

Fig. 7.40: Multibarrier potential of an ion channel

amount ΔV/2n, where n is the number of barriers. Assume the system is in steady
state so the flux J through the system is the same everywhere, and let pi denote the
probability that an ion is at the ith site.
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(a) Iteratively solve the sequence of flux equations

J = α pi−β pi+1, i = 0, . . . ,n− 1,

with p0 = vca and pn = vcb. Here ca and cb are the bulk concentrations on the
left and right sides of the channel, respectively, and v is related to a small volume
element at the entry/exit of the channel. In particular, show that

J = vωe−(E−qΔV/2n)/kBT (ca− cbφn)(1−φ)
1−φn , φ = e−qΔV/nkBT .

(b) Determine J when ca = cb = c. Plot the result flux as a function of voltage ΔV
measured in units of q/2kBT for n= 1,2,3. Set the scale factor cvωe−E/kBT = 1.
What happens to the current-voltage curve for large n?

Problem 7.5 (Entropic gate model of nuclear pore transport). Consider the
steady-state equation for the density ρ(x) of cargo complexes in the NPC:

d
dx

[
dρ
dx

+ρ(x)
dU(x)

dx

]
= 0,

supplemented by the boundary conditions ρ(0) = ρ(L) = 0. Here U(x) is given by
Fig. 7.16

(a) Solve the steady-state equation using the conditions J(x) =−|J0| for 0 < x < R,
J(x) = J̄ for R < x < L−R and J(x) = JL for L−R < x < L.

(b) Using J̄ = JL+Jranρ(L−R)R and the solution in the region L−R < x < L show
that

Dρ(L−R) =
RJ̄

JranR2/D+ 1
.

Now imposing continuity of ρ(x) at x = L−R and setting J̄ = JS− |J0| derive
the result

J̄
JS

=

[
1+

1
JranR2/D+ 1

+
1
R

∫ L−R

R
e−U(x′)dx′

]−1

.

Problem 7.6 (Discrete model of polymer chaperone-assisted translocation). Fol-
lowing Krapivsky and Mallick [353], consider a (rigid) polymer chain that passes
through a membrane nanopore as shown in Fig. 7.41. Take the pore to be located
at x = 0 and focus on the polymer segment to the right of the pore. At any given
time t, the segment consists of L monomer units, each of size a. In the absence of
any chaperones, the polymer executes an unbiased random walk, hopping by one
monomer unit to the right or left at equal rates α . In the following we set α = a = 1.
Now suppose that the region on the right side of the membrane has a fixed density
of chaperones that absorb irreversibly at a rate λ onto unoccupied monomeric sites
of the polymer. A chaperone is assumed to be larger than the pore, so that it rectifies
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the polymer diffusion when bound to the site immediately to the right of the pore
(see also Sect. 4.1.2), resulting in a nonzero speed V .

(a) Let Em denote the probability that an interval of length m to the right of the pore
is chaperone-free. It follows that the mean speed of translocation is V = 1−E1,
where 1− E1 is the probability that there is a chaperone immediately to the
right of the pore. Define the segment probability Sm = Em−Em+1, which is the
probability that the leftmost chaperone is at a distance m+1 from the pore. The
probabilities Em then evolve according to

dEm

dt
= Sm−1− Sm−λ mEm, m≥ 1.

Using the definitions of Em and Sm and the scenarios shown in Fig. 7.41, explain
the meaning of each term on the right-hand side of this equation.

m

a b c

Fig. 7.41: Schematic of chaperone-assisted translocation model of [353]. (a) If the site adjacent to
pore is unoccupied, then the polymer can hop in either direction. (b) The polymer can hop only to
the right because an adsorbed chaperone is next to the pore and is too large to enter. (c) Adsorption
of a new chaperone (shaded) at a site on the leftmost chaperone-free segment of length m

(b) Using the definition of Sm and the normalization condition ∑m≥0 Sm = 1 show
that

dEm

dt
= Em−1 +Em+1− 2Em−λ mEm, m≥ 1,

with boundary condition E0 = 1.
(c) Using the well-known identity of Bessel functions,

Jν−1(x)+ Jν+1(x)− 2ν
x

Jν(x) = 0,

and the boundary condition, show that the steady-state probabilities are given by

Em =
Jm+2/λ (2/λ )

J2/λ (2/λ )

and hence that the expected speed is

V = 1− J1+2/λ (2/λ )
J2/λ (2/λ )

.

Plot V as a function of the absorption rate λ .
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Problem 7.7 (Three-state model of bidirectional motor transport). Consider a
three-state model of bidirectional motor transport

∂t p1 =−v∂x p1 +
1
ε
[−β+p1 +α p3]

∂t p2 = v∂x p2 +
1
ε
[−β−p2 +α p3]

∂t p3 =
1
ε
[β+p1 +β−p2− 2α p3].

Use the QSS reduction method to derive the FP equation

∂C
∂ t

=−V
∂C
∂x

+D
∂ 2C
∂x2

with

V =
v
γ

(
1

β+
− 1

β−

)
, γ =

1
β+

+
1

β−
+

1
α

and

D = ε
(
(v−V)2

γβ 2
+

+
(v+V)2

γβ 2−

)
.

Hint: w0(x,n, t), n = 1,2,3, can be calculated explicitly using Gaussian elimination
and the condition ∑n w0(x,n, t) = 0.

Problem 7.8 (Traveling wave approximation of a shock). Construct a traveling
wave solution ρ(x, t) =U(z) with z = (x− ct)/ε of the equation

∂ρ
∂ t

+
∂
∂x

(ρ(1−ρ)) = ε
∂ 2ρ
∂x2 ,

for−∞ < x < ∞ and wavespeed c. Assume that U(z)→U±∞ as z→±∞. Show that

dU
dz

=U(1−U)− cU+ constant,

and deduce that

c =
U(1−U)]∞−∞

[U ]∞−∞
.

Use phase-pane analysis so that U can only tend to U(±∞) as z→±∞ if dU/dz< 0.
Sketch a traveling wave solution and discuss how it relates to a shock solution of
the kinematic wave equation obtained by setting ε = 0.

Problem 7.9 (Method of characteristics and shock waves). The kinematic wave
equation arises in a wide range of transport applications including vehicular traffic.
Suppose that ρ(x, t) is the number density of cars on a single-lane road, evolving
according to the equation

∂ρ
∂ t

+
∂ (ρV (ρ))

∂x
= 0,
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with V (ρ) the density-dependent car speed. Take

V (ρ) = vm(1−ρ/ρm),

where vm is the speed limit and ρm is the maximum (bumper-to-bumper) car density.
Suppose that the initial density profile is

ρ(x,0) =
{

ρm/8, x < 0
ρm x > 0.

This represents cars on the left moving with speed V = 7vm/8 encountering a traffic
jam at x = 0. Use the method of characteristics to determine the density profile as a
function of time. In particular, show that there is a shock that propagates from x = 0
at speed ṡ = −vm/8. This represents a back-propagating shock that represents the
slowing down of cars in response to the traffic jam ahead. Sketch the characteristics
and shock in the t− x plane.

Problem 7.10 (Model of DNA–protein interactions). Consider the model of
DNA–protein interactions with the space-averaged FPT density F(t) given by

F(t) =
∞

∑
n=1

∫ ∞

0
dt1 . . .dtndτ1 . . .dτn−1

δ

(
n

∑
i=1

ti +
n−1

∑
i=1

τi− t

)

Q1(tn)
n−1

∏
i=1

P3(τi)
n−1

∏
i=1

P1(ti).

Let L (g) = g̃ denote the Laplace transform of a function g(t).

(a) Show that

L (Q1)(s) = f̃ (s+λ1), L (P3)(s) =
λ3

s+λ3
, L (P1)(s) = λ1

1− f̃ (s+λ1)

s+λ1
.

(b) Laplace transforming F(t) and summing the resulting geometric series obtain
the result

F̃(s) = f̃ (λ1 + s)

[
1− 1− f̃ (λ1 + s)

(1+ s/λ1)(1+ s/λ3)

]−1

.

(c) Determine the Laplace transform of the x-dependent FPT density f (x, t) by
solving

s f̃ (x,s) = D1
∂ 2 f̃ (x,s)

∂x2 , 0≤ x≤ L,

with boundary conditions f̃ (0,s) = 1 and ∂x f̃ (L,s) = 0. Repeat for the case
−M ≤ x≤ with boundary conditions f̃ (0,s) = 1 and ∂x f̃ (−M,s) = 0.
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(d) Averaging f̃ (x,s) with respect to x using the results of (c), show that

f̃ (s) =
1

L+M

√
D1

s

[
tanh(L

√
s/D1)+ tanh(M

√
s/D1)

]
.

(e) Finally, setting τi = 1/λi, i = 1,3, derive the result

τ ≡
∫ ∞

0
tF(t)dt =− dF̃(s)

ds

∣
∣
∣
∣
s=0

=

[
(L+M)/

√
τ1D1

tanh(L/
√

τ1D1)+ tanh(M/
√

τ1D1)
− 1

]
(τ1 + τ3) .

Problem 7.11 (Calculation of MFPT for unbiased random intermittent search).
Consider the unbiased random search process given by Eq. (3.6.1). The MFPTs
T±(y) to find the target, given that the particle starts at position y and state ± at
time t, satisfy the pair of equations [see Eq. (7.6.21a, b)]

∂yT+(y)+
β
v
[(αu(y)− 1)T+(y)+αu(y)T−(y)] =−β

v

(
1
β
+ u(y)

)
,

∂yT−(y)− β
v
[αu(y)T+(y)+ (αu(y)− 1)T−(y)] =

β
v

(
1
β
+ u(y)

)
.

(a) Transform the equations using the new variables

S1(y) =
T+(y)+T−(y)

2
, S2(y) =

T+(y)−T−(y)
2

.

(b) Solve the equations for S1,2(y) in each of the following regions: (I) −L < y <
−a, (II) −a < y < a, and (III) a < y < L. It is necessary to use the boundary
conditions D(±L) = 0 and to impose continuity at y =±a.

(c) Show that S(y) = S(−y) and hence that the average MFPT is given by

τ1 =
1
L

∫ L

0
S(y)dt

=
1
L

(
1
β
+

1
2α

)([
β
v

]2 2(L− a)3

3
+

β
v

√
2α + k

k
(L− a)2coth(Λa)

)

+
2α + k

k

(
1
β
+

1
2α + k

)
L− a

L
,

where

Λ =
β
v

√
k

2α + k
.
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Problem 7.12 (Computer simulations: random intermittent searcher in 1D).

(a) Write a computer program to simulate an unbiased three-state random intermit-
tent searcher moving along a 1D track of length L = 20μm. Take the velocity
to be v = 0.1μms−1, and the transition rates β = 1s−1,α = 0.5s−1. Assume
that there is a target of width a = 1μm at position X = 10μm, and the particle
finds (is absorbed by) the target at a rate k = 0.05s−1. (Hint: use the Gillespie
algorithm to determine the random transition times and the sequence of states
while keeping track of changes in position. Hence, if the particle enters the +
(−) state at t = t0 and makes the next transition at time t0 + τ , then the position
is shifted by an amount Δx = vτ (Δx =−vτ). There is no shift if the particle is
in the stationary state.)

(b) Plot sample trajectories up to the time T the target is found. By averaging T
over many trials determine the MFPT to find the target, starting from a random
initial position. Compare with the analytical expression obtained in part (c) of
Ex. 7.11.

(c) Modify the program so that it now simulates a particle executing an unbiased 1D
random walk along the track for a random time τ1D, after which it is removed
from the track and placed randomly at a new location on the track after a random
time τ3D. Assume that the times τ j , j = 1D,3D, are exponentially distributed
with means τ̄ j , and select the new position using the uniform distribution on
[0,L]. Take τ̄3D = τ̄1D = 10−3 s and 1D diffusivity D1 = 10μm2 s−1.



Chapter 8
Self-Organization in Cells I: Active Processes

Another fundamental question in modern cell biology is how cellular and subcellular
structures are formed and maintained given their particular molecular components.
How are the different shapes, sizes, and functions of cellular organelles determined,
and why are specific structures formed at particular locations and stages of the life
cycle of a cell? In order to address these questions it is necessary to consider the the-
ory of self-organizing non-equilibrium systems [441]. One system where the princi-
ples of self-organization are widely applied is the cytoskeleton [275, 442, 467]. The
cytoskeleton, which is made up of polymers such as microtubules and F-actin, deter-
mines cell shape and polarity, maintains the structural integrity of the cell, and forms
the mitotic spindle apparatus during cell division. As described in Sect. 4.1, F-actin
and microtubules are polarized filaments that are intrinsically unstable, undergoing
continuous turnover of subunits by addition at their plus end and depolymerization
at their minus end. The continuous dynamic exchange of the subunits and their inter-
actions with filament-associated proteins provides the basis for the self-organization
of different cytoskeletal structures. This has been demonstrated in vitro for micro-
tubule networks, which form by simply combining tubulin, microtubule motors, and
ATP in solution [467]. By varying the relative concentrations of motors and tubulin,
one can generate different network patterns, including random networks, vortices,
or asters.

In this chapter we focus on the role of polymerization in the self-organization of
cytoskeletal structures. Reaction–diffusion models of cellular self-organization will
be considered in Chap. 9. We begin by considering various mechanisms for cellu-
lar length regulation, based on the interactions between polymerizing filaments and
molecular motors (Sect. 8.1). Self-organization of the mitotic spindle during various
stages of cell mitosis is considered in Sect. 8.2. We describe the search-and-capture
model for the interactions between chromosomes and the mitotic spindle, dynami-
cal instabilities in the positioning of the chromosomes, and spindle length control.
In Sect. 8.3 we discuss the important role of actin polymerization and Brownian
ratchets in cell motility. Finally, we briefly consider a different example of an active
self-organizing process based on vesicular transport between distinct intracellular
compartments (Sect. 8.4).

© Springer International Publishing Switzerland 2014
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Applied Mathematics 41, DOI 10.1007/978-3-319-08488-6 8
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8.1 Cellular Length Regulation by Molecular Motors

One basic issue is how the sizes of subcellular structures are determined in order
to scale with the size of the cell and with physiological requirements. It appears
that self-organizing processes together with physical constraints play a major role
in controlling organelle size [519]. At least three distinct control mechanisms have
been identified.

1. Molecular rulers. In the case of linear structures such as filaments, size control
can be achieved by a molecular ruler protein, whose length is equal to the desired
length of the growing structure. One classical example is the length of the λ -
phage tail, which is determined by the size of the gene H product (gpH) [319].
During assembly of the tail, gpH is attached to the growing end in a folded state,
and protects the growing end from the terminator gene product U (gpU). As the
tail elongates, gpH stretches such that when it is fully extended, further growth
exposes the tail to the action of gpU, (see Fig. 8.1).

2. Quantal synthesis. Size could be controlled by synthesizing exactly enough ma-
terial to build a structure of the appropriate size—a process known as quantal
synthesis. For example, precursor protein levels are known to affect the length
of flagella in the unicellular green alga Chlamydomonas reinhardtii [378], and
the length of sea urchin cilia is correlated with the concentration of the pro-
tein tektin [608]. One prediction of the quantal synthesis model is that doubling
the number of flagella should halve their length. However, studies of Chlamy-
domonas mutants indicate a much weaker dependence of length on the number
of flagella, suggesting that there is an additional length-controlling mechanism
involving dynamic balance [420]; see below. Another example of organelle size
regulation via protein synthesis occurs for the endoplasmic reticulum (ER). In
this case, there appears to be a feedback signaling pathway, the unfolded protein
response (UPR), which monitors the state of the ER and controls the synthesis of
membrane lipids [129].

3. Dynamic balance. Dynamic structures are constantly turning over so that in order
for them to maintain a fixed size, there must be a balance between the rates of as-
sembly and disassembly. If these rates depend on the size in an appropriate way,

gpH

gpU

Fig. 8.1: Mechanism of cellular size control: Molecular ruler in bacteriophage tail
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then there will be a unique balance point that stabilizes the size of the organelle.
For example, eukaryotic flagellar microtubules undergo continuous assembly and
disassembly at their tips, in which a constant rate of disassembly is balanced by
a length-dependent rate of assembly due to a fixed number of molecular motors
transporting tubulin dimers from the cell body, leading to a fixed flagellar length
[419, 420]. The transport of tubulin is also thought to be one possible mecha-
nism for controlling axonal elongation. In this case diffusion, possibly combined
with an active component, transports newly synthesized tubulin at the somatic
end of the axon to the + end of microtubules at the axonal tip. As the axon
grows, the concentration of tubulin at the tip decreases until there is a balance
between polymerization and depolymerization. (A simple continuum model of
axonal elongation [431] is considered in Ex. 8.1. For a more detailed stochastic
model see [15].) A different balance mechanism appears to control the length
of microtubules in yeast, where kinesin motors move processively to the micro-
tubule tips where they catalyze disassembly. Longer microtubules recruit more
kinesin motors from the cytoplasm, which results in a length-dependent rate of
disassembly. When this is combined with a length-independent rate of assem-
bly, a unique steady-state microtubule length is obtained [652]. In more com-
plex cytoskeletal structures such as the mitotic spindle (Sect. 8.2), it is likely that
multiple length-dependent mechanisms play a role [84]. Dynamic balance mech-
anisms also control other filament-like structures. For example, actin filaments
within stereocilia of the inner ear [549], (see Sect. 5.4), constantly treadmill back
towards the cell body, with disassembly at the base balanced by assembly at the
tip. The latter depends on the diffusion of actin monomers to the tip, which re-
sults in a length-dependent rate of assembly. Yet another example is the control
of the hook length in bacterial flagella [320].

In this section we consider cellular length-control mechanisms based on the ac-
tion of molecular motors. There have been a number of theoretical models that
combine the dynamics of molecular motors (Sect. 4.4) with the dynamics of mi-
crotubule assembly and disassembly (Sect. 4.1). Several studies have focused on
motor regulation of depolymerization at the tip combined with constant growth
[234, 274, 435, 525] or treadmilling [304], whereas others have considered the
effects of motors on dynamic instabilities, that is, the frequency of catastrophes
[357, 629]. We will describe simplified versions of these models developed in
[274, 357]. The more complicated example of mitotic spindle length control dur-
ing cell division will be considered in Sect. 8.2.3.

8.1.1 Filament Length Regulation by Depolymerization

Let ρ(x, t) denote the density of molecular motors along a single filament, which
is assumed to evolve according to the mean-field model (see also equation (7.5.4))
[357, 496]
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∂ρ
∂ t

=−v
∂
∂x

[ρ(1−ρ/ρmax)]+ konc(1−ρ/ρmax)− koffρ . (8.1.1)

Here v is the speed of the motors in the absence of crowding, ρmax is the maximum
possible motor density, and the factors (1−ρ/ρmax) take into account the effects of
molecular crowding on the processivity of the motors and on their rate of binding to
the filament. The latter is proportional to the bulk motor concentration c in the cyto-
plasm, which is assumed fixed. As a further simplification, the effects of crowding
on the drift term are neglected so that the PDE is linear. Introducing the fractional
motor density p(x, t) = ρ(x, t)/ρmax, we have

∂ p
∂ t

=−v
∂ p
∂x

+ k̄on(1− p)− koffp, k̄on =
konc
ρmax

. (8.1.2)

Equation (8.1.2) is supplemented by the boundary condition p(0, t) = 0 (absorbing
boundary condition at the base of the filament) and the initial condition p(x,0) = 0.
Away from the tip of the microtubule, it is assumed that the motor density reaches a
QSS ps given by the solution to the equation

d ps

∂x
+

1
λ

ps =
k̄on

v
, λ =

v

koff + k̄on

Hence,

ps(x) = p0

[
1− e−x/λ

]
, p0 =

k̄onλ
v

=
k̄on

koff + k̄on
.

Following [274], suppose that the depolymerization rate at the tip is γ pe(t),
where pe(t) is the fractional motor density at the tip and γ is a constant. Taking
the rate of growth to be a constant α , the filament length L(t) evolves as

dL
dt

= α− γ pe. (8.1.3)

Let a be the lattice spacing of a single subunit of the filament. The rate at which
molecular motors enter the tip (assuming the site is unoccupied) is then (v−L′)/a
with L′ = dL/dt. It follows that pe satisfies the equation

d pe

dt
=

v−L′

a
p(L− a, t)(1− pe)− ke,off pe, (8.1.4)

where ke,off is the rate of unbinding at the tip. The quasi-static assumption implies
that

p(L− a, t) = ps(L− a)≈ p0(1− e−L/λ ).

Therefore, at steady state (p′e = L′ = 0), equation (8.1.4) implies that pe = pe(L)
with

pe(L) =
p0(1− e−L/λ)

ake,off/v+ p0(1− e−L/λ)
,
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which can be rearranged to give

1− e−L/λ =
ake,off

p0v
pe

1− pe
.

However, we also have pe = α/γ , which then determines the filament length to be

Ls =−λ ln

[
1− ake,off

p0v
α

γ−α

]
. (8.1.5)

The existence of a steady-state length requires the argument of the logarithm to be
positive, which means that

p0 > p0c =
αke,offa
v(γ−α)

.

Note that p0 is a monotonically increasing function of the bulk motor concentra-
tion c. Hence, for a steady-state length to occur the bulk motor concentration must
exceed a minimal concentration c0 with

konc0

koffρmax + konc0
=

ake,off

v(γ/α− 1)
,

which yields

c0 =
koffke,offρmaxa

kon

1
v(γ/α− 1)− ake,off

. (8.1.6)

Note that Ls is a monotonically decreasing function of c with Ls →∞ as c→ c0 from
above.

The above model ignores statistical fluctuations. However, Monte Carlo simula-
tions of a stochastic version of the model show that there is a unimodal distribution
of filament lengths that is peaked around the steady-state value of mean-field theory

αkonkoff

growing filament

γ

motor-induced
depolymerization

Fig. 8.2: Schematic diagram of filament length regulation by molecular motor-based depolymer-
ization
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[274, 357]. The stochastic model takes the form of a TASEP in which a bound motor
can hop to a neighboring site if it is unoccupied, (see Fig. 8.2). Similarly a motor
in the bulk can only bind to a site if it is unoccupied. A monomer can be removed
from the tip of the filament when it is occupied by a motor. Following removal of the
monomer, the motor steps backward if the penultimate site is unoccupied; otherwise
it is also removed. The tip motor can also spontaneously unbind without removal of
the end monomer. The results from computer simulations are shown in Fig. 8.3 for
both the density-controlled model and a flux-controlled model. The latter takes the
depolymerization rate to depend on the flux of motors at the tip, rather than the
motor density. That is [357],

L′ = α− aρmaxp0

[
1− e−L/λ

]
(v−L′),

and the steady-state length is

Ls =−λ ln

[
1− α

p0v
δρmax

]
. (8.1.7)

One finds statistical fluctuations are reduced in the flux-controlled model.

Fig. 8.3: Filament dynamics and steady-state filament length for length regulation by depolymer-
ization. Top row: density-controlled depolymerization. Bottom row: flux-controlled depolymeriza-
tion. Left: example trace of filament length versus time from a simulation of TASEP model. Middle:
normalized filament length distribution averaged with respect to ten stochastic simulations (after
removal of initial transients). Right: comparison of steady-state filament length based on mean-
field theory with stochastic simulation (error bars are standard deviations of steady-state length
distributions). Parameters of mean-field model are v = 3 μmmin−1, kon = 2 nM−1μm−1min−1,
koff = 0.25 min−1, ke,off = 1.45 min−1, γ = 1.025 μmmin−1, a = 8 nm, δ = 8 nm, and ρmax = 125
μm−1. For the density-controlled model α = 1.0 μmmin−1, while for the flux-controlled model
α = 0.5 μmmin−1. The stochastic simulations use the same parameters except γ = 1.5 μmin−1

and ke,off = 1 min−1 for the density-controlled model (Adapted from Kuan and Betterton [357])



8.1 Cellular Length Regulation by Molecular Motors 445

8.1.2 Filament Length Regulation by Altering the Frequency
of Catastrophes

Some experimental and modeling studies have suggested that, rather than directly
regulating depolymerization, kinesin motors promote the transition from growing to
shrinking phases (catastrophes) in dynamic microtubules [208, 209, 248, 357, 629]
(see Fig. 8.4). Kuan et al. [357] consider a modified version of the Dogterom–
Leibler model of microtubule catastrophes [146] (see also equation (4.1.10))

∂n+
∂ t

=−v+
∂n+
∂L

− k+n++ k−n− (8.1.8a)

∂n−
∂ t

= v−
∂n−
∂L

− k−n−+ k+n+, (8.1.8b)

in which the transition rate k+ from the growing to shrinking phase is taken to
depend on the fractional density pe of motors at the tip:

k+ = k̄++α pe.

Here n±(L, t) represent the number density of filaments of length L in the growing
and shrinking phase, respectively. In steady state (assuming it exists), the transition
rate k+ will be L-dependent due to the L-dependence of pe. From the steady-state

kon

kon

k+ k-

koff

koff

growing filament

shrinking filament

motor-induced
catastrophe

Fig. 8.4: Schematic diagram of filament length regulation by altering the frequency of catastrophes

analysis of equation (4.1.10) in Sect. 4.1, it is straightforward to show that the num-
ber density of filaments of length L is given by n±(L) = n(L)/v± with

n(L) = n(0)ek−L/v− exp

(
− 1

v+

∫ L
k+(L

′)dL′
)
. (8.1.9)
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The length dependence of k+ is obtained by solving equation (8.1.4) with p′e = 0
and L′ = v+, the speed of the growing phase. Hence,

pe = pe(L) =
p0(1− e−L/λ)

ake,off/(v− v+)+ p0(1− e−L/λ)
,

and k+(L) = k̄++α pe(L). If e−L/λ � 1, then we can neglect the L-dependence of
k+ and [357]

n(L)≈ n(0)e−[(k̄++Δk+)/v+− k−/v−]L, (8.1.10)

with

Δk+ =
α(v− v+)p0

ake,off +(v− v+)p0
.

It follows that increasing p0 by increasing the bulk motor concentration results in a
higher catastrophe rate and, hence, shorter filament lengths.

8.1.3 Length Regulation by Intraflagellar Transport

Radioactive pulse labeling has been used to measure protein turnover in eukary-
otic flagella. Such measurements have established that turnover of tubulin occurs at
the + end of flagellar microtubules and that the assembly (rather than disassembly)
part of the turnover is mediated by intraflagellar transport (IFT). This is a motor-

IFT particle

microtubule

+_

v+

v−

V

L(t)

cargo
insertion

degradation

Fig. 8.5: Schematic diagram of intraflagellar transport (IFT), in which IFT particles travel with
speed v± to the ± end of a flagellum. When an IFT particle reaches the + end it releases its
cargo of protein precursors that contribute to the assembly of the flagellum. Disassembly occurs
independently of IFT transport at a speed V

assisted motility within flagella in which large protein complexes move from one
end of the flagellum to the other [572]. Particles of various size travel to the flag-
ellar tip (anterograde transport) at 2.0 μm/s, and smaller particles return from the
tip (retrograde transport) at 3.5 μm/s after dropping off their cargo of assembly
proteins at the + end. A schematic diagram of IFT transport is shown in Fig. 8.5.
Immunofluorescence analysis indicates that the number of IFT particles (estimated
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to be in the range 1–10) is independent of length [419, 420]. If a fixed number of
transport complexes M move at a fixed mean speed v̄, then the rate of transport and
assembly should decrease inversely with the flagellar length L. On the other hand,
measurements of the rate of flagellar shrinkage when IFT is blocked indicate that the
rate of disassembly is length-independent. This has motivated the following simple
deterministic model for length control [419]:

dL
dt

=
av̄M
2L

−V, (8.1.11)

where a is the size of the precursor protein transported by each IFT particle and V
is the speed of disassembly. Equation (8.1.11) has a unique stable equilibrium given
by L∗ = av̄M/2V . Using the experimentally based values M = 10, v̄ = 2.5 μm/s,
L∗ = 10 μm, and V = 0.01 μm/s, the effective precursor protein size is estimated
to be a ≈ 10 nm. (A stochastic version of a model for IFT has also been developed
using the theory of continuous-time random walks [64]; see Ex. 8.2.)

8.2 Cell Mitosis

Mitosis is a phase in a eukaryotic cell’s life cycle, during which it segregates its
already-duplicated chromosomes in preparation for cell division, or cytokinesis. Fol-
lowing duplication of its DNA, a cell synthesizes many additional macromolecules,
so at the end of the period between cell divisions (interphase), all of the materials
needed to form two viable cells are present. Mitosis and cytokinesis then separate
this biochemically doubled cell into two essentially identical objects, each equipped
to grow and divide again. The major molecular machinery responsible for organiz-
ing and segregating the duplicated chromosomes is known as the mitotic spindle,
which is an assembly of microtubules (MTs) spreading radially from two poles.
Mitosis consists of several distinct phases as illustrated in Fig. 8.6 [428]. An image
of a mitotic spindle obtained using fluorescent microscopy (see also Sect. 1.2) is
shown in Fig. 8.7.

(i) Prophase. The first physical step known as prophase involves restructuring the
chromosomes within a dividing cell, so that each is sufficiently compact to
be separable within a space no bigger than a single cell. In a human cell, the
DNA molecules range in length from 1.9 to 8.5 cm, whereas the nucleus that
contains 46 copies is an approximately spherical compartment with diameter
usually less than 8 mm. Thus, each DNA copy must be reduced in length by
more than a factor of 1,000. This form of condensation is achieved in multiple
steps. First, the DNA is wrapped around nucleosome “core particles” resulting
in the material chromatin. Fibers of chromatin are then somehow coiled and
looped until each chromosome is only a few micrometers long and less than 1
mm thick. As condensation proceeds the pair of sister DNA duplexes become
structurally distinct. These so-called chromatids remain tightly coupled around
their central region known as the centromere. Such coupling is crucial for the
proper functioning of mitosis, since accurate segregation of sister chromatids
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Fig. 8.6: The cell cycle of eukaryotes consists of four distinct phases or stages: G1, S, G2 and M.
Here G1 and G2 are gap phases, while S is the synthesis stage where DNA replication occurs. The
M phase consists of two tightly coupled processes; mitosis in which the cell’s chromosomes are
divided into two and cytokinesis where the cell’s cytoplasm divides in half to form distinct cells.
Activation of each phase is dependent on the proper progression and completion of the previous
one. Cells that have temporarily stopped dividing are said to have entered a state of quiescence
called the G0 phase. The mitotic phase is itself subdivided into four distinct phases, see text for
details (Public domain figure downloaded from Boundless)

depends on their being attached until the moment when all chromatids simul-
taneously begin segregation. The centromere is also the domain where each
chromosome develops specializations such as the kinetochore, which is the
protein structure on chromatids where the mitotic spindle fibers attach during
cell division to pull sister chromatids apart.

(ii) Prometaphase. Spindle formation initiates the process of chromosome organi-
zation during prometaphase. The main step is the attachment of all chromo-
somes to spindle MTs in such a way that each chromatid of every chromosome
is associated with MTs that are in turn associated with one and only one end of
the mitotic spindle. A second step of prometaphase is the migration of all chro-
mosomes to the spindle mid-plane or equator, a process called congression.

(iii) Metaphase. Once the chromosomes are positioned at the equator, the cell is
said to be in metaphase. Normal cells include quality control processes that
determine whether each chromosome is properly attached to the spindle before
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Fig. 8.7: Image of the mitotic spindle in a human cell showing microtubules in green, chromosomes
(DNA) in blue, and kinetochores in red (Public domain figure downloaded from Wikipedia)

segregation is allowed to begin; this is the spindle assembly checkpoint (SAC).
Shortly after this checkpoint has been satisfied, the cohesins that have been
holding sister chromatids together are cleaved by a protease.

(iv) Anaphase. MT-generated forces acting on the now-independent sister chro-
matids move them to opposite ends of the cell in a process called anaphase.
If the nuclear envelope dispersed during spindle formation, then it now re-
forms on the still-condensed chromosomes by the application of vesicles de-
rived largely, if not entirely, from the previously dissociated nuclear envelope.
As these membranes are fusing to define the two nuclear compartments, the cell
initiates cytokinesis, the process that divides the cytoplasm into two approxi-
mately equal parts, each of which contains its own nucleus. At the same time,
the chromosomes de-condense, and the daughter cells return to interphase.

A number of mathematical and computational models have been developed in order
to gain an understanding of how the spindle machinery performs its complex func-
tions. Typically, a model focuses on one or two aspects of mitosis such as spindle
assembly, positioning, maintenance and elongation, chromosomal capture and con-
gression, and the SAC. In the following we describe some of these models; see also
the reviews by Mogilner et. al. [445, 450].
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8.2.1 Search-and-Capture Model of Chromosome/Kinetochore
Attachment

A crucial step in prometaphase is the attachment of each chromosome to a kine-
tochore of the mitotic spindle. According to the search-and-capture model of
Kirschner and Mitchison [336], the underlying mechanism involves the nucleation
of MTs in random directions, which then grow and shrink dynamically in order to
search space and eventually encounter a target kinetochore (see Fig. 8.8). Analysis
of a single MT searching for a single kinetochore shows that MT dynamic instability
(Sect. 4.1.2) provides an effective search mechanism provided it is regulated appro-
priately, that is, MTs do not waste time growing in the wrong direction and don’t un-
dergo premature catastrophe when growing in the right direction [260, 272]. How-
ever, as highlighted by Wollman et al. [685], although the estimated capture time is
consistent with the duration of the mitotic phase, it does not take into account real-
istic geometries nor the capture of multiple chromosomes. Using a combination of
mathematical analysis and computer simulations, Wollman et al. show that unbiased
search and capture for multiple chromosomes is not efficient enough to account for
the duration of the prometaphase. On the other hand, if there exists a spatial gradient
in some stabilizing factor that biases MT dynamics towards the chromosomes, then
one obtains more realistic capture times [685]. One candidate molecule for acting
as a stabilizing factor is Ran-GTP [95]; see also Sect. 9.1.

We now develop the analysis of unbiased search and capture, following along the
lines of Wollman et al. [685], see also [229]. We begin by considering a single MT
searching for a single kinetochore. Let P(n) be the probability that n sequentially
nucleated MTs fail to capture the kinetochore but the (n+ 1)th MT is successful.
Let P(τ|n) denote the conditional probability that given n cycles of failure, the time
to capture is less than τ . The total probability of capture before time τ is then

P(τ) =
∞

∑
n=0

P(τ|n)P(n). (8.2.1)

The probability P(n) is given by

P(n) = p(1− p)n,

where p is the probability of an MT nucleating in the right direction and reaching
the kinetochore before undergoing catastrophe. Suppose that the kinetochore is at
a radial distance x from the nearest pole of the mitotic spindle and has an effective
target radius of r. Assuming that the MTs are nucleated in random directions, it
follows that the probability P1 of an MT nucleating in the right direction is given by
the solid angle subtended by the target:

P1 =
πr2

4πx2 =
r2

4x2 .
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microtubule organizing
center (MTOC)

microtubules
a

b

kinetochore
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kcat
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polar microtubules

kinetochore microtubules
(K-fibers)

Fig. 8.8: Schematic diagram of search-and-capture model based on microtubule dynamic insta-
bility. (a) During prometaphase MTs randomly probe the cellular domain by alternating between
growth and shrinkage phases until they capture the kinetochores. This process of dynamic instabil-
ity can be quantified by four parameters: the rates of growth (Vg) and shortening (VS) and the rates
of catastrophe (kcat) and rescue (kres). To capture all kinetochores in a reasonable time frame, the
dynamic instability parameters have to be optimized, but this is not sufficient to make the process
fast enough. One possible mechanism for accelerating the search and capture is the presence of a
RanGTP gradient around the chromosomes that biases the MT dynamics [685]. (b) At the end of
prometaphase, all the kinetochores are attached to MTs, one from each pole of the mitotic spindle,
and are co-aligned along the mid-plane
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Suppose that the time from nucleation of an MT to its catastrophe is exponentially
distributed. (For simplicity, it is assumed that following catastrophe an MT cannot
be rescued, that is, it starts growing again.) This means that the probability P2 of
reaching the kinetochore before catastrophe is

P2 =

∫ ∞

Ts

kcate−kcatt dt = e−kcatx/Vg ,

where Ts = x/Vg is the time to reach the kinetochore given a constant speed of
growth Vg. Therefore, the probability of reaching the kinetochore is

p = P1P2 =
r2

4x2 e−xkcat/Vg . (8.2.2)

It remains to calculate the conditional probability P(τ|n). First, note that
P(τ|n) =Q(τ−Δτ|n) where Δτ = x/Vg is the time for the (n+1)th MT to reach the
kinetochore and Q(τ|n) is the conditional probability that given n cycles of failure
(n ≥ 1), the total time taken up by these cycles is less than τ . In order to calculate
the latter, we need to determine the average lifetime Tcycle of an unsuccessful cycle,
starting from nucleation through catastrophe to complete depolymerization. The
mean time to a catastrophe is Tc = 1/kcat and the subsequent time for the MT to
shrink is given by the mean length at the start of catastrophe divided by the speed
of shrinkage, Vg/(Vskcat). Therefore,

Tcycle =
Vg +Vs

Vskcat
. (8.2.3)

The duration of each nucleation cycle, in the absence of rescue, is an exponential
random variable with mean Tcycle. We now use the basic result that the sum of n
exponential random variables is a Gamma random variable (see Box 8A), that is,

Q(τ|n) = 1
T n

cycle(n− 1)!

∫ τ

0
sn−1e−s/Tcycleds. (8.2.4)

We can now evaluate P(τ) according to (see Ex. 8.3)

P(τ) = p+
∞

∑
n=1

(1− p)npQ(τ−Δτ|n),τ > Δτ,

= p+(1− p)(1− e−p(τ−Δτ)/Tcycle).

If p� 1, then the characteristic number of unsuccessful searches is n� 1 and the
typical search time is τ � Δ t. Hence

P(τ)≈ 1− e−pτ/Tcycle,
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which implies that the average time to capture is

Tcapture =
Tcycle

p
=

Vg +Vs

Vskcat

4x2

r2 exkcat/Vg . (8.2.5)

It follows that the optimal catastrophe frequency is kcat = Vg/x [272, 685].
Extensions to the case of multiple MTs and multiple kinetochores are considered in
Ex 8.2. For example, one finds that for N nucleating MTs and a single kinetochore,
the mean time to capture is Tcapture/N. Moreover, for N MTs and M kinetochores
(N ≥M), the mean time to capture all of the kinetochores is approximately

TN,M = (Tcapture/N) lnM.

It turns out that the time to capture M = 46 chromosomes using up to 1,000
searching MTs is substantially greater than experimental measurements of 20–30
min. This was shown by Wollman et al. [685] using Monte Carlo computer simula-
tions of their model based on the following algorithm:

1. Chromosome positions are generated randomly within a sphere of radius 10μm
representing the nucleus, and for each chromosome the two pole-kinetochore
distances are calculated.
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Fig. 8.9: Summary sketch of results from model simulations of Wollman et al. [685] comparing
capture times for biased and unbiased search, shown by black and gray curves, respectively. (a)
Distribution of capture times in the case of 250 MTs searching for 46 chromosomes. (b) Variation
of mean capture time with the number of chromosomes for 1,000 searching MTs (unbiased search)
and 250 MTs (biased search), respectively. (c) The unbiased model exhibits an exponential increase
in capture time as a function of nucleus radius, whereas the capture time of the biased model varies
as a power law (approximately cubic)
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2. For each of these distances, the probability of a successful search p is calculated
using equation (8.2.2).

3. The number n of unsuccessful searches is generated randomly from the geometric
probability distribution P(n) = p(1− p)n.

4. The duration of each unsuccessful search is generated randomly using the ex-
ponential probability distribution P(τ) ∼ e−t/Tcycle with Tcycle given by equa-
tion (8.2.3). The sum of the n random duration times is added to the successful
search time x/Vg to determine the total search time for the given kinetochore.

5. The above four steps are repeated N times (for N MTs) and the smallest search
time is chosen. This is then repeated for each of the kinetochores and the largest
of the M search times is identified as the total capture time. (Since N �M, steric
effects are ignored, that is, one neglects the fact that once an MT has found a
kinetochore, the number of searching MTs is reduced.)

6. The average capture time is determined by repeating the above five steps over
multiple trials.

The results obtained by Wollman et al. [685] for the above unbiased search scenario
are sketched in Fig. 8.9, which shows the distribution of capture times and the vari-
ation of the mean with respect to nucleus size and number of chromosomes. Also
shown are the corresponding results for a biased search, in which the catastrophe
rate of MTs is modulated by a RhoGTPase concentration gradient, resulting in a
significant reduction in capture time (see [685] for further details).

Finally, note that another possible mechanism for reducing the capture time
would be to have some form of cooperative effect between chromosomes so that
once several central chromosomes have been captured by random search, the re-
mainder could be captured more quickly. Cooperative effects might be mediated by
molecular motors and bundles of MTs nucleated from the chromosomes [445].

Box 8A. Gamma distribution.

Let T = ∑n
j=1 τ j, where the τ j are independent, exponential random vari-

ables with mean τ̄ , that is, τ j has the probability density

p(τ j) =
1
τ̄

e−τ j/τ̄ .

The probability density for the random variable T is

ρ(T ) =
∫ ∞

0
. . .

∫ ∞

0
δ (T −

n

∑
l=1

τl)
n

∏
k=1

p(τk)dτk

=
1
τ̄n

∫ ∞

0
. . .
∫ ∞

0
δ (T −

n

∑
l=1

τl)e
−∑n

j=1 τ j/τ̄
n

∏
k=1

dτk.
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Introduce the Fourier representation of the Dirac delta function,

δ (T −
n

∑
l=1

τl) =

∫ ∞

−∞
eiz(T−∑n

l=1 τl)
dz
2π

.

Substituting into the integral expression for ρ(T ) and reordering the mul-
tiple integral yields

ρ(T ) =
1
τ̄n

∫ ∞

−∞
eizT

n

∏
l=1

[∫ ∞

0
e−τl(iz+1/τ̄)dτl

]
dz
2π

=
1
τ̄n

∫ ∞

−∞
eizT 1

(iz+ τ̄−1)n

dz
2π

=
(−i)n

τ̄n

∫ ∞

−∞
eizT 1

(z− iτ̄−1)n

dz
2π

.

The remaining integral can be calculated using the calculus of residues.
That is, treat z as a complex variable and close the contour in the lower-
half complex plane. Recall that for any analytic function f (z), the integral
around a closed contour C with ω an nth order pole within the interior of
C is given by

1
2π i

∫

C
f (z)

dz
(z−ω)n =

1
(n− 1)!

dn−1

dzn−1 f (z)

∣
∣
∣
∣
z=ω

.

Taking C to be the semicircle in the lower half-plane, ω = i/τ̄ , and f (z) =
eizT , we see that

ρ(T ) =
1
τ̄n

T n−1

(n− 1)!
e−T/τ̄ .

8.2.2 Chromosome Movements and Directional Instability

It is found that the movements of chromosomes during prometaphase and metaphase
are characterized by periods of ballistic motion or “runs” at approximately con-
stant speed, separated by abrupt reversals in direction of movement [97, 241, 538,
596]. These oscillations arise from interactions between attached kinetochore MTs
(kMTs) and the corresponding chromosomes. When a chromosome becomes bior-
iented, that is, the sister chromatids are attached to kMTs emanating from opposite
poles, the duration of movements towards and away from the nearest pole is biased
so that the chromosome is aligned with the spindle equator at metaphase.
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Hill Sleeve Model of kMT–Kinetochore Interactions

One of the first models of kMT/chromosome interactions was developed by Hill
[260], who treated the outer region of a kinetochore as a “sleeve” containing a
sequence of tubulin binding sites that holds a kMT within the sleeve (see Fig. 8.10a).
The sleeve is assumed to be around 40 nm thick, which means that it can accommo-
date up to M = 65 tubulin subunits of the kMT. The model keeps track of the position
n of the kMT tip within the sleeve, n = 1, . . . ,M, with limits n = 1 (fully inserted)
and n=M (almost unattached). Motion of the kMT tip is modeled as a random walk
in the free energy landscape sketched in Fig. 8.10b. Let−a, a> 0, be the binding en-
ergy of a single tubulin site. This effect tends to pull the kMT into the sleeve. How-
ever, the attractive force is opposed by two frictional forces—an external frictional
force F that opposes movement of the whole chromosome and a surface roughness
acting at the interface between the kMT and the kinetochore. The latter increases
linearly with the length of the interface, which is proportional to M− n+ 1. If l is
the length of a single step, then the forward transition n → n+ 1 (withdrawal) re-
quires climbing a barrier height of size ΔE+(n) = a+(M−n+1)b−Fl/2, whereas
the reverse transition n+1→ n (insertion) requires climbing a barrier height of size
ΔE−(n) = (M− n+ 1)b+Fl/2. (For convenience, the external frictional force is
divided equally between the two transitions.) From the theory of chemical kinetics
(Sect. 3.1), the forward and backward transition rates take the form

k±(n) = κe−ΔE±(n)/kBT ,

for a background hopping rate κ . The position of the tip can also change due to
polymerization or depolymerization. We will assume that the rate of adding a tubulin
subunit at the tip is αc, where c is the background concentration of tubulin, and the
rate of removing a subunit is β e−a/kBT . Here α,β are constants and the Boltzmann
factor takes into account the binding energy of the subunit to the kinetochore sleeve.
We can now write down a kinetic equation for the mean tip location n(t):

dn
dt

= k+(n)− k−(n)+β e−a/kBT −αc

= κe−[(M−n+1)b+a−Fl/2]/kBT +β e−a/kBT −κe−[(M−n+1)b+Fl/2]/kBT −αc.

Hence, at equilibrium the mean tip location n∗ is obtained by setting ṅ = 0:

κe−(M−n+1)b/kBT
[
e−Fl/2kBT − eFl/2kBT e−a/kBT

]
= β e−a/kBT −αc

which gives

n∗ = M+ 1− kBT
b

lnΓ , Γ = κ−1 β e−a/kBT −αc

e−Fl/2kBT − eFl/2kBT e−a/kBT
. (8.2.6)

Suppose that depolymerization dominates over polymerization so that the ten-
dency of the kinetochore is to move towards the nearest pole. An important feature
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Fig. 8.10: Hill “sleeve model.” (a) Schematic diagram of a kinetochore sleeve interacting with
a kMT. The position of the kMT tip changes either due to thermal motion of the sleeve or by
addition or loss of tubulin subunits at the kMT tip. (b) Free energy diagram for a kinetochore
sleeve interacting with a kMT in the absence of external friction (F = 0)

of Hill’s sleeve model is that over a wide range of external forces F , the speed of
depolymerization-coupled kinetochore movements remains constant . This is a con-
sequence of the observation that for a given F , the steady-state position n∗(F) of the
kMT tip within the sleeve is fixed, and thus the sleeve moves at an average speed
equal to the rate of kMT shortening. In other words, the sleeve keeps up with the
tip of the depolymerizing MT. If the external force changes, F → F ′, the sleeve will
shift to a new steady-state position n∗(F ′), where it will continue on at the rate of
kMT shortening. This approximate load independence is consistent with experimen-
tal observations [596].

Recently, a more mathematical treatment of the Hill sleeve has been developed
by Shtylla and Keener based on a jump-diffusion process [588, 589]. Suppose that
the position of the kMT tip relative to the entrance of the kinetochore is a continuous
random variable X(t). The SDE for X(t) is taken to be

dX(t) =
1
γ
(−Ψ ′(X)−F)dt +

√
2DdW (t)+ δ dNα(t)+ δ dNβ (t), (8.2.7)

where W (t) is a standard Wiener process, D is the diffusion coefficient, and γ is the
drag coefficient satisfying the Einstein relation D = kBT/γ . Here Nα (t) and Nβ (t)
are independent homogeneous Poisson processes with amplitudes δ and position-
dependent rates α(x) and β (x), respectively, which model the addition and removal
of tubulin monomers of size δ from the kMT tip; this subsequently shifts the posi-
tion of the tip by integer multiples of δ . Finally, Ψ ′(x) represents the binding force
due to interactions between the kMT and kinetochore with Ψ(x) the corresponding
free energy (see Fig. 8.10b), and F denotes any loads on the kMT. For concreteness,
Ψ (x) is taken to have the corrugated form [589]

Ψ(x) = f (x)(1− cos(2πx/δ ))+ h(x),
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where

f (x) =
bx
2δ

+C, h(x) =−ax/δ , for 0 < x≤ L1

and
f (x) = f (L1), h(x) = h(L1) for L1 < x≤ L,

where L1 is the length of the sleeve region along which binding sites occur, C is
a constant, and a,b are as depicted in Fig. 8.10b. Note that the spacing of binding
sites is taken to be equal to the monomer size δ . It is also possible to generalize
the model so that these two quantities are incommensurate [589]. The differential
Chapman–Kolmogorov (CK) equation for the given jump-diffusion process is

∂ p(x, t)
∂ t

=−1
γ

∂
∂x

(
V ′(x)p(x, t)

)
+D

∂ 2

∂x2 p(x, t)+α(x− δ )p(x− δ , t)

+β (x+ δ )p(x+ δ , t)− (α(x)+β (x))p(x, t), (8.2.8)

where V (x) =−Ψ(x)−Fx. Equation (8.2.8) is supplemented by a reflecting bound-
ary condition at x=L, where L is the length of the sleeve, and an absorbing boundary
condition at x = 0, since if the kMT crosses this point, it detaches from the kineto-
chore and is unlikely to reattach. The attachment and detachment rates are taken to
be steep sigmoid functions of position:

α(x) =
α0

1+ eλ (x−α1)
, β (x) = β0 +

β2−β0

1+ e−λ (x−β1)
,

with λ � 1/δ and x0 ≈ L− γ . Thus α(x) ≈ α0 for x < α1 and rapidly drops to
zero as it reaches the end of the sleeve at x = L (see Fig. 8.11). On the other hand
β (x) switches from a lower value β0 to a higher value β2 at an intermediate location
x = β1. This could be due to the presence of a depolymerase in the region proximal
to the end of the sleeve. In the absence of other factors, the system would reach
an equilibrium position x0 where the rates of polymerization and depolymerization
balance, that is, α(x0) = β (x0). If β2 > α0 (as depicted in Fig. 8.11), then x0 ≈ β1

and the system is called a depolymerization Kt motor, whereas if β2 < α0, then
x0 ≈ α1 and we have a polymerization Kt motor.

Monte Carlo simulations of the stochastic model (8.2.7) indicate that the mean
time for the kMT to detach from the kinetochore when starting at x = L is much
larger than the relaxation time of the system, provided that the load force F is not
too large [589]. That is, given biophysically reasonable parameter values, one finds
the MFPT is 〈T (L)〉 ∼ 100s, whereas the relaxation time is τ ∼ 1s. Therefore, it
makes sense to determine a (quasi) steady-state probability density ps(x) by replac-
ing the absorbing boundary at x = 0 by a reflecting boundary. Note that the result-
ing steady-state CK equation can be solved analytically using multi-scale analysis
[589] (see Box 8B). One finds that there are qualitative differences in the properties
of ps(x) as the parameter k = b/a is varied. For relatively large k (k ≈ 0.1), poly-
merization/depolymerization dominates diffusion due to the large barrier height that
must be overcome to shift along the sleeve. Thus one finds ps(x) is localized around
the point x = x0, and the distribution is relatively insensitive to the load force F .
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Fig. 8.11: Continuum sleeve model [589]. Sketch of space-dependent rate functions α(x) (poly-
merization) and β (x) (depolymerization) of the kMT tip. Vertical shaded regions indicate where
the stationary density ps(x) is localized. If k = b/a is sufficiently small (inset with k = 0.01), then
the stationary density ps(x) shifts in response to change in the load force F (as indicated by red
arrow). If ps(x) is localized in a region where α(x)−β (x) is constant, then the velocity is inde-
pendent of F whereas the velocity changes rapidly with F in regions where α(x)−β (x) changes
rapidly. For larger values of k (inset with k = 0.1), one finds that the density ps(x) only changes
slightly as a function of F and is localized around x = x0 where β (x0) = α(x0). Since this occurs
in a region where α(x)−β (x) changes rapidly, the velocity is sensitive to the value of F

On the other hand, for smaller values of k, diffusion plays an important role and the
stationary distribution tends to be localized around an F-dependent point that mini-
mizes the total free energy. Positive (negative) F shifts ps(x) towards x = 0 (x = L).
Given the stationary density ps(x), the mean velocity of the kMT/kinetochore sys-
tem relative to an outside frame of reference is

v = δ
∫
(α(y)−β (y))ps(y)dy. (8.2.9)

Since the kinetochore and kMT interactions have reached steady state, net depoly-
merization (polymerization) of kMT means that the Kt motor system moves to-
wards (away from) the corresponding spindle pole, which corresponds to a negative
(positive) mean velocity. One also finds qualitative differences in the load–velocity



460 8 Self-Organization in Cells I: Active Processes

relationship as k varies. For small k, changes in F shift the probability density ps(x).
However, if this occurs in regions where α(x)−β (x) is x-independent, then the ve-
locity does not change. Thus one finds significant ranges of F over which v does
not change, which again is consistent with experimental observations [596]. On
the other hand, for larger values of k the load–velocity relationship becomes more
monotone. In this “sticky” motor regime attachment can be maintained against large
loads but at the cost of reduced velocities. The qualitative behavior is illustrated in
Fig. 8.11 for a depolymerizing Kt motor. Similar results hold for a polymerizing
motor, except that one typically finds positive velocities for positive F , since ps(x)
is shifted to a region where polymerization dominates.

Box 8B. Asymptotic analysis of the continuum Hill model in cell mi-
tosis.

We derive an approximate steady-state solution of the CK equa-
tion (8.2.8) following the multi-scale analysis presented in [589]. The
steady-state CK equation for p(x) is

0 =−1
γ

∂
∂x

(
V ′(x)p(x)

)
+D

∂ 2

∂x2 p(x)+α(x− δ )p(x− δ )

+β (x+ δ )p(x+ δ )− (α(x)+β (x))p(x), (8.2.10)

which is supplemented by reflecting boundaries at x = 0,L. Setting

V (x) = f (x)cos(2πx/δ )+ r(x), r(x) =− f (x)− h(x)−Fx,

Taylor expanding the jump terms as infinite series in δ and then integrat-
ing with respect to x using the reflecting boundary conditions give

0 =−1
γ

d
dx

( f (x)cos(2πx/δ )+ r(x)) p(x)+D
d
dx

p(x)

+
∞

∑
n=1

δ n

n!
dn−1

dxn−1 ([β (x)+ (−1)nα(x)]p(x)) .

Nondimensionalize the CK equation by setting

x = ηy, η =
γDδ

b

with Dγ = kBT and introduce the small parameter ε = b/kBT . This gives
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0 =− d
dy

(
f̂ (y)cos(2πy/ε)+ r̂(y)

)
p̂(y)+

d
dy

p̂(y)

+α2

∞

∑
n=1

εn−1

n!
dn−1

dyn−1

(
[β̂ (y)+ (−1)nα̂(y)]p̂(y)

)
, (8.2.11)

with α2 = β0δ 2γ/b and

p̂(y) = p(x), f̂ (y) = f (x)/kBT, r̂(y) = r(x)/kBT,

β̂ (y) = β (x)/β0, α̂(y) = α(x)/β0.

In the following we drop theˆon the functions f ,r,α,β ,and p.

It can be seen from equation (8.2.11) that the drift term consists of
a high spatial frequency periodic oscillator with a slowly varying am-
plitude. This suggests using the method of multiple scales. That is, we
introduce a slow spatial variable z = y and a fast spatial variable σ = y/ε ,
which are treated as independent variables. That is, p(y) = p(z,σ) with

d
dy

=
∂
∂ z

+
1
ε

∂
∂σ

.

Equation (8.2.11) becomes

0 =−
(

f ′(z)cos(2πσ)+ r′(z)− 2π
ε

f (z)sin(2πσ)

)
p(z,σ)+

∂
∂ z

p(z,σ)

+
1
ε

∂
∂σ

p(z,σ)+α2

∞

∑
n=1

1
n!
[β (z)+ (−1)nα(z)]

∂ n−1

∂σn−1 p(z,σ),

(8.2.12)

+ εα2

∞

∑
n=1

n− 1
n!

∂
∂ z

∂ n−1

∂σn−1 ([β (z)+ (−1)nα(z)]p(z,σ))+O(ε2).

We now seek an asymptotic solution of the form

p = p0(z,σ)+ ε p1(z,σ)+O(ε2),

with p j(z,σ) a one-periodic function of σ . Substituting the asymptotic
expansion into equation (8.2.12) and collecting same order terms in ε
generates a hierarchy of equations. The O(1/ε) equation is

2π f (z)sin(2πσ)p0(z,σ)+
∂

∂σ
p0(z,σ) = 0, (8.2.13)
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and the O(1) equation is

2π f (z)sin(2πσ)p1(z,σ)+
∂

∂σ
p1(z,σ)

=
(

f ′(z)cos(2πσ)+ r′(z)
)

p0(z,σ)− ∂
∂ z

p0(z,σ)

−α2

∞

∑
n=1

1
n!
[β (z)+ (−1)nα(z)]

∂ n−1

∂σn−1 p0(z,σ). (8.2.14)

These are supplemented by the O(ε) normalization condition

∫ L/η

0
(p0(z,σ)+ ε p1(z,σ))dz = 1. (8.2.15)

Equation (8.2.13) may be solved by direct integration to give

p0(z,σ) = A0(z)exp( f (z)cos(2πσ)) . (8.2.16)

The slowly varying amplitude A0(z) is then determined from the O(1)
equation (8.2.14). It is first convenient to sum the infinite series in (8.2.14)
using the following identities for the function F(σ) =

∫ σ
0 p0(z,s)ds with

z fixed:

∫ 1

0
p0(z,s)ds = F(σ + 1)−F(σ) =

∞

∑
n=1

1
n!

∂ n

∂σn F(σ)

=
∞

∑
n=1

1
n!

∂ n−1

∂σn−1 p0(z,σ)

and

−
∫ 1

0
p0(z,s)ds = F(σ − 1)−F(σ) =

∞

∑
n=1

(−1)n

n!
∂ n

∂σn F(σ)

=
∞

∑
n=1

(−1)n

n!
∂ n−1

∂σn−1 p0(z,σ).

It follows that (8.2.14) simplifies as

2π f (z)sin(2πσ)p1(z,σ)+
∂

∂σ
p1(z,σ) =

(
f ′(z)cos(2πσ)+ r′(z)

)
p0(z,σ)

− ∂
∂ z

p0(z,σ)−α2[β (z)−α(z)]
∫ 1

0
p0(z,σ)dσ . (8.2.17)
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Multiply both sides of this equation by the integrating factor

I(z,σ) = e− f (z)cos(2πσ)

and integrate with respect to σ . Exploiting the fact that p1(z,σ) is peri-
odic in σ , so that

∫ 1

0

∂
∂σ

[p1(z,σ)I(z,σ)]dσ = 0,

we obtain the following solvability condition:

∫ 1

0

[
er(z) ∂

∂ z

(
p0(z,σ)e−r(z)I(z,σ)

)
+α2[β (z)−α(z)]I(z,σ)

∫ 1

0
p0(z,s)ds

]
dσ

= 0.

Substituting the explicit solution for p0(z,σ) we obtain an equation for
the amplitude A0(z):

− r′(z)A0(z)+A′0(z)+α2A0(z)[β (z)−α(z)]I2
0 ( f (z)) = 0, (8.2.18)

where I0(x) is the modified Bessel function of the first kind, whose inte-
gral representation is

I0( f (z)) =
∫ 1

0
e± f (z)cos(2πσ)dσ .

It follows that

A0(z) = Ĉ exp

(
r(z)−α2

∫ z
I2
0 ( f (z′)[β (z′)−α(z′)]dz′

)
, (8.2.19)

so that in terms of the original variables, the lowest order approximation
of the steady-state density is

p0(x)=C exp

(
V (x)
kBT

− δγ
kBT

∫ x
I2
0 ( f (x′)/kBT )[β (x′)−α(x′)]dx′

)
+O(ε).

(8.2.20)

The constant C can be determined using the normalization condi-
tion (8.2.15). Given p0(x), we one can numerically calculate the velocity
using the integral expression

v = δ
∫ L

0
(α(x)−β (x))p0(x)dx+O(ε).
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An alternative expression for v, which is easier to evaluate numerically, is
derived in Ex. 8.4. One final observation is that p0(x) is equivalent to the
steady-state solution of an FP equation whose drift terms is given by the
derivative of the function in the exponential. This implies that the MFPT
for the kMT to detach from the sleeve can be estimated by solving the
FPT problem of the reduced FP equation.

Chromosomal Oscillations

As it stands, the sleeve model of single kMT–kinetochore interactions cannot ex-
plain the oscillatory switching of chromosome motion towards and away from a
spindle pole (see Fig. 8.12). In order to account for such dynamics, it is neces-
sary to consider some combination of the following mechanisms: tensional cou-
pling between sister chromatids, polar ejection forces due to the pushing action of
polar (non-kinetochore) MTs on the arms of a chromosome, the space-dependent
modulation of kMT catastrophe and rescue frequencies, and the possible action
of depolymerizing and polymerizing molecular motors such as kinesin and dynein
[120, 205, 207, 303, 394, 588]. Joglekar and Hunt [303] considered a simple ex-
tension of the Hill sleeve model by including tensional coupling and polar ejection
forces and allowing detached MTs to switch from catastrophe to rescue. Following
the Hill model, kMTs are assumed to be in catastrophe so that in order to main-
tain an average kMT tip location within the kinetochore, the associated chromatid
tends to move towards the pole of the attached kMT. It follows that there is essen-
tially a ToW between the sister chromatids moving in opposite directions. As the
sister chromatids start to separate, tensional forces increase until one of the chro-
matids loses all of its depolymerizing kMTs, at which point it follows the motion of
the other chromatid. Consequently the chromosome moves towards the pole of the
winning chromatid. However, as it approaches the pole, the density of polar MTs
increases, resulting in an increase in the polar ejection force. The closer the kineto-
chore moves towards the pole, the more strongly the polar ejection force opposes its
advancement, and eventually the last depolymerizing kMT detaches from the kine-
tochore as the load exceeds the detachment force. Meanwhile growing MTs from
the opposite pole can be recruited by the sister chromatid resulting in an abrupt re-
versal in direction and the cycle repeats. An immediate consequence of the interplay
between polar ejection forces, MT dynamic instabilities, and the “Hill sleeve” is that
the chromosomes tend to position themselves towards the spindle equator.

One of the limitations of the Joglekar and Hunt model is that it neglects the ex-
perimental observation that there is a tension-dependent increase in the rescue fre-
quency of kMTs. This particular mechanism has been explored in a number of com-
putational models by Gardner et al. [205, 207, 606]. A schematic illustration of the
basic model is shown in Fig. 8.13; only one chromatid pair is shown for simplicity.
The minus end of each kMT is fixed at its spindle pole and the plus end of the kMT
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Fig. 8.12: Sawtooth-like in vivo oscillations of a non-oriented chromosome (attached to one spin-
dle pole) observed in a newt mitotic cell. The chromosome switches between poleward (P) and
anti-poleward (AP) motion (Adapted from Inoue et al. [291])
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Fig. 8.13: Tension-mediated regulation of kMT/kinetochore dynamics. Here FT and FPE denote
the tension force and polar ejection force acting on the rightward kMT whose tip is at position XK

relative to the equator. Similarly, FT and FPE denote the corresponding forces on the leftward kMT
whose tip is at XK . Note the sign conventions

is fixed at the corresponding kinetochore; thus the details of the kMT–kinetochore
interface, as specified in the Hill sleeve model, are neglected. For convenience, dis-
tance from the spindle equator towards the right (left) pole is denoted by the positive
coordinate x (x̄), and the direction of all forces F (F) acting on the right-half (left-
half) of the spindle are defined with respect to the poleward direction. Let XK and
XK denote the current position of the right and left sister kinetochore plates with re-
spect to the spindle equator, and let VK and V K denote the corresponding velocities.
For concreteness, let us focus on a kMT attached to the right-hand pole; a similar
formulation holds for those attached to the other pole. Each kMT is modeled in
terms of the Dogterom–Leibler model of microtubule catastrophe and rescue (see
equation (4.1.10) and [146]), so that the mean velocity is

〈VK〉= k−v+− k+v−
k++ k−

,



466 8 Self-Organization in Cells I: Active Processes

where k+ (k−) is the catastrophe (rescue) frequency and v+ (v−) is the rate of growth
(shrinkage). The catastrophe and rescue frequencies k± are assumed to be regulated
by mechanical forces acting on the kMT–kinetochore system, perhaps in combi-
nation with a chemical gradient in some kMT catastrophe promoter, and are thus
x-dependent. The basic components of the model are as follows [606]:

1. Tension force between the kinetochores FT. The tension force is modeled as a
linear spring, so that the magnitude of the force depends on the distance between
the sister kinetochores according to

FT = κ(XK +XK− d0), (8.2.21)

where κ is the spring constant and d0 is the equilibrium length of the spring.
Note that, given our sign convention, FT = FT. The tension force provides the
coupling between the two kinetochores.

2. Polar ejection force FPE. This is directed towards the spindle equator and is due
to the interaction between the chromosome arms and the plus ends of polar MTs.
Hence, it is proportional to the density of polar MTs emanating from the pole.
From geometric arguments one can take

FPE = ρX2
K (8.2.22)

for some constant ρ .

3. Rescue frequency. The rescue frequency is taken to be a function of the total force
F = FT +FPE according to

k− = k−,0eF/kBT .

4. Chemical gradient. It is assumed that a kMT catastrophe promoter forms a spatial
gradient due to spatial segregation of a kinase/phosphatase system that regulates
the promoter; the kinase phosphorylates (deactivates) the promoter, whereas the
phosphatase dephosphorylates (activates) the promoter. The spatial gradient is
modeled by taking the kinase to be localized to the surface of the spindle poles,
whereas phosphatase is distributed homogeneously throughout the cell volume.
Let cA and cB denote the concentration of deactivated and activated catastrophe
promoter, respectively, such that cA(x, t)+ cB(x, t) = cT with cT a constant. The
reaction–diffusion equation for cA is

∂cA

∂ t
=

∂ 2cA

∂x2 − kcA,

supplemented by the boundary conditions

−D
∂cA

∂x

∣
∣
∣
∣
x=0

= k∗cB(0), −D
∂cA

∂x

∣
∣
∣
∣
x=L/2

= 0.
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Here k and k∗ are the rates of activation and deactivation due to the action of
kinds/phophotase, and L is the spatial separation of the poles. The analysis of
intracellular spatial gradients is discussed more fully in Sect. 9.1.1. One finds
that the steady-state concentration is of the form

cA(x) = cT

(
Ae−γx/L +Beγx/L

)
, γ = 2

√
k/D.

5. Catastrophe frequency. Given the steady-state spatial gradient cB(x) of catastro-
phe promoter, the catastrophe frequency of the kMT tip is taken to be

k+ = k+,0 +β cB(XK).

Computer simulations of the above model, involving different combinations of the
various components, suggest that in order to match experimental data of chromoso-
mal dynamics during metaphase of budding yeast, including the tendency to clus-
ter at the cell equator, it is necessary to combine MT dynamic instabilities with
tension-dependent rescue and either polar ejection forces or a spatial gradient in
some catastrophe promoter [207, 606]. Finally, note that some more recent theoret-
ical studies have considered explicit models of the mechanobiochemical feedback
mechanism, in which tension-dependent molecular sensor molecules enzymatically
regulate a phosphorylation cascade that alters the dephosphorylation rate at the kMT
tip [394, 588]. Other recent models have emphasized the role of chromokinesin
motors on polar MTs that exert a polar ejection force on the chromosomal arms
[94, 617].

8.2.3 Force Balance and Spindle Length Control

It is hypothesized that the interplay between kMT dynamic instability, kMT–
kinetochore interactions, various populations of molecular motors, and elastic or
viscoelastic forces plays an important role in later stages of mitosis. This includes
the maintenance of spindle length (distance between the poles) in metaphase, the
separation of sister chromatids in anaphase A, and the increase in spindle length
in anaphase B [119, 232, 428]. For example, during anaphase A, there is a net
poleward flux of kMTs due to depolymerization at their pole-associated minus
ends, which may be supplemented by a so-called “pacman” mechanism in which
the kinetochores actively “chew” their way towards the poles by depolymerization
of kMTs at their plus ends. On the other hand, during anaphase B, a new subset of
motors known as ipMTs drive spindle elongation. Examples of changes in spindle
length during different stages of mitosis are shown in Fig. 8.14 for several organ-
isms. A number of computational models have been developed in order to study one
or more of these stages by considering the various forces acting on kMTs and the
chromosomes [84, 120, 131, 182, 233]. Here we will illustrate the flavor of force-
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balance models by considering in more detail the model of chromosome motility
in Drosophila embryos [120]. Figure 8.15 is a schematic diagram indicating the
various forces acting on the kinetochores and kMTs of the mitotic spindle. For sim-
plicity, we only consider one kMT per kinetochore, although it is possible to extend
the model to multiple kMTs [120]. The sign convention of spatial coordinates and
forces are as in Fig. 8.13. In contrast to the models of Gardner et al. [207, 606],
the tip of a kMT can move relative to its kinetochore, so that one must now con-
sider separate force-balance equations for the velocities of the tips and kinetochore.
Moreover, polar ejection and tension forces are supplemented by several additional
forces including the action of kinesin and dynein motors at the kMT tip.

Following the formulation of the Gardner et al. models, let XK and XK denote
the current position of the right and left sister kinetochore plates with respect to the
spindle equator, and let VK and V K denote the corresponding velocities. Similarly,
let XMT and XMT be the current position of the plus ends of the right and left kMTs
with respect to the spindle equator, and denote the corresponding poleward sliding
rates by VMT and V MT. (Note that VK = ẊK , whereas the relationship between XMT

and VMT is more complicated due to dynamic instability at the plus end of a kMT;
see below.) The force-balance equations for the right and left kinetochores (in a low
Reynolds number regime) are given by

μVK = FK−FP−FT−FPE (8.2.23a)

μV K = FK−FP−FT−FPE (8.2.23b)

where μ is the drag coefficient and FT and FPE are given by equations (8.2.21)
and (8.2.22). The additional forces on the right kinetochore are as follows (with
analogous definitions for the left kinetochore):

1. Net kinetochore motor force FK. Let n± denote the density of bound plus-end
(minus-end) moving kinetochore motors. These motors act on the region of the
MT tip that is inserted into the kinetochore; this region has length R− [XMT−XK],
where R is the length of the kinetochore sleeve. If f± denotes the force generated
by each plus-and minus-end-directed motor, then

FK = (XK +R−XMT)(n− f−− n+ f+). (8.2.24)

The motors are assumed to obey linear force–velocity relations (see Sect. 4.4.2),

f± = F±
(

1− v±
V±

)
, (8.2.25)

where F± is the stall force, V± is the motor velocity without a load, and v± is the
current velocity of the motors with

v− =−v+ =VK−VMT. (8.2.26)
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2. Plus-end polymerization force FP. This will only arise if the MT impinges on the
kinetochore plate, that is, XK > XMT, in which case it is taken to have the linear
form

FP = ε(XK−XMT), (8.2.27)

where ε is the elastic modulus of the plate.

In order to obtain a closed set of equations, it is necessary to determine the kMT
sliding velocity VMT and the position of the tip XMT. The former is determined by
considering the force-balance equation for the kMTs. It turns out that the viscous
drag on the kMT is negligible compared to other forces. The other forces acting on a
kMT are the counter motor force−FK, the counter polymerization force−FP, and a
depolymerization force FDP at the minus end. The latter is assumed to be generated
by a set of depolymerization motors with a linear force–velocity relationship. At
steady-state the depolymerization velocity at the minus end of the kMT due to the
action of the motors is equal to the sliding velocity VMT. It follows that

n0F0(1−VMT/V0) = FK−FP, (8.2.28)
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where n0 is the number of active depolymerization motors, F0 is the stall force, and
V0 is their maximum velocity. The position XMT will spend both on the sliding ve-
locity and the removal or addition of tubulin subunits at the tip. As in the Gardner
et al. model [207, 606], it is assumed that the plus end undergoes dynamic insta-
bility, characterized by the stochastic switching of microtubules between growing
and shrinking phases, that is between rescue and catastrophe see (Sect. 4.1). The
dynamic stability is specified by four parameters given by the growth and shrinkage
velocities vg,vs and the rates of rescue and catastrophe kcat and kres. The standard
catastrophe model of MT dynamics is supplemented by the action of depolymerase
enzymes. When tension on the kMT is low, the depolymerase acts freely on the MT
plus end by suppressing the rescue frequency by some factor γ > 1. On the other
hand, when the tension is high, the action of the depolymerase is blocked by some
form of structural change of the kMT so that the rescue frequency recovers pro-
portionally to the tension force. Finally, if the MT plus end is in contact with the
kinetochore plate, then the catastrophe frequency is scaled up, whereas the rescue
frequency returns to its low tension value.

Extensive numerical simulations of the above model have shown that it provides
a quantitative description of the rapid, highly dynamic properties of metaphase and
anaphase A that have been observed experimentally during drosophila embryo mi-
tosis [120] (see Fig. 8.16). It also provides a possible scenario for the switch from
metaphase to anaphase A based on the degradation of the cohesive bonds between
the sister kinetochores and the removal of PE forces. One prediction of the model
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is that increasing the level of dynein activity suppresses chromosome oscillations in
metaphase. The basic idea is that the increased minus-end-directed force pulls kMTs
further into the kinetochores, which increases the distance between sister chromatids
and thus increases the tension on the kMTs. This promotes kMT rescue and stabi-
lizes the kMTs within the kinetochores—recall that the basic mechanism for chro-
mosome oscillations is depolymerization of kMT tips within the kinetochore. One
limitation of the model is that it assumes that the spindle poles are fixed and thus
does not provide an explanation of spindle length maintenance during metaphase.
Another limitation is that it neglects the possible role of external factors such as
morphogen gradients and the dynamics of a postulated viscoelastic spindle matrix.

In order to develop a model of spindle length control, it is necessary to con-
sider the balance of forces acting on the spindle poles. Here we describe a simple
force-balance model due to Goshima et al. [232, 233] (see Fig. 8.17). Let S(t) and
L(t) denote the spindle length and length of the overlapping region of interpolar
Mts (ipMTs) where kinesin-5 motors act to separate the poles. The main com-
ponents of the model are the net forces acting on the poles and the polymeriza-
tion/depolymerization of ipMTs. Let Vpoly be the rate of polymerization of the ipMT
plus ends, Vdepoly be the rate of depolymerization of all MTs at the centrosome, and
Vslide the rate at which antiparallel ipMTs slide apart. It follows that

dS
dt

= 2(Vslide−Vdepol), (8.2.29)

and
dL
dt

= 2(Vpoly−Vslide). (8.2.30)

The factors of two reflect the fact that pairs of ipMTs overlap. These equations are
coupled to a force-balance equation (see Fig. 8.17),

μ
dS
dt

= 2(Fslide−FKt−FE) . (8.2.31)

Here Fslide is the kinesin-5-dependent force that slides apart the ipMTs and is given
by the linear force-velocity relationship

Fslide = αL

(
1− Vslide

Vmax

)
,

where α is the concentration of motors. The elastic restoring force FE is assumed to
behave like a Hookean spring with

FE = β (S− S0),

where β is the effective spring constant. Finally, FKt is taken to be a constant kineto-
chore force that tends to pull the kinetochore and pole together via some Hill sleeve
mechanism, for example. As it stands, such a model does not support a stable steady-
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matrix. The spatial separation of the poles is denoted by S, whereas the length of ipMT overlap is
given by L
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state length S, but can be used to model spindle length separation during anaphase
B [80]. One way to achieve stability is to introduce some mechanism that couples
the rate of depolymerization Vdepot to the sliding force Fslide. For example, Goshima
et al. [233] propose that increases in Fslide push the minus ends of MTs closer to
the centrosome where depolymerizing motors act. Using the theory of Brownian
ratchets (Sect. 4.2), the probability that an MT is within a critical distance δ of the
centrosome is P(x < δ ) = 1− exp(−Fslideδ/NkBT ). It is assumed that the sliding
force is divided equally by the N MTs attached to the centrosome. Assuming that
depolymerization by motors only occurs if x < δ , then

Vdepol =V0 +V1

(
1− e−Fslideδ/NkBT

)
. (8.2.32)

Combining these various equations we obtain the pair of equations

dL
dt

= 2(Vpoly−Vslide) (8.2.33a)

μ
dS
dt

= 2

(
αL

(
1− Vslide

Vmax

)
−FKt−β (S− S0)

)
, (8.2.33b)

with

Vslide =
1
2

dS
dt

+V0 +V1

(
1− e

−αL
(

1−Vslide
Vmax

)
δ/NKbT

)
.

The steady-state solution for S and L are then (see Ex. 8.5)

L =
Γ0kBT N

αδ (Vpoly/Vmax− 1)
, S = S0− FKt

β
− Γ0NkBT N

β δ
, (8.2.34)

where

Γ0 = ln

(
1− Vpoly−V0

V1

)
.

8.3 Cell Motility

Just as the polymerization and depolymerization of microtubules plays an es-
sential role in cell mitosis, the growth and shrinkage of actin polymers plays a
major role in generating the forces necessary for various forms of cell motility
[138, 446, 512, 520]. For example, the movement of crawling cells such as amoeba,
keratocytes, fibroblasts, and migrating neurons involves the protrusion of lamellipo-
dia and filopodia at the leading edge of the cell (see Fig. 8.18a), which requires actin
polymerization at the cell membrane boundary [61]. On the other hand, intracellular
pathogens such as Listeria propel themselves within a host cell by assembling the
host cell’s actin into a comet-like tail. The tail consists of oriented cross-linked net-
works of actin filaments whose growing ends orient towards the bacterial surface,
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thus thrusting the pathogen forward [626, 627] (see Fig. 8.18b). A major challenge
is linking the complex biochemical processes regulating actin polymerization with
mechanical properties of the cell and the associated forces. In the case of crawl-
ing cells, there are contractile forces on the actin cytoskeleton due to the action of
myosin motors, traction forces from the drag between the cytoskeleton and surface
adhesion complexes, membrane tension resisting the actin polymerization force, vis-
coelastic stresses arising from deformations of the actin network, and viscous drag
between actin filaments and cytosolic fluid flows [134, 371, 444]. As in the case of
cell mitosis, cell motility is a vast subject in its own right and we cannot hope to do
it justice here. Instead, we will focus on some aspects that relate most closely to the
themes of this book. For an excellent introduction to cell motility see the book Cell
movements: from molecules to motility by Bray [61].

filopodium

lamellipodium

actin network

actin bundle
actin tail

a

b

Fig. 8.18: Examples of actin-based cell motility. (a) Crawling eukaryotic cell. (b) Pathogen such
as Listeria propelled by an actin tail assembled from the cytoskeleton of the host cell

8.3.1 Tethered Ratchet Model

We begin by considering a microscopic model of cell protrusion based on an exten-
sion of the polymerization ratchet model [507]. This was developed by Mogilner and
Oster within the context of the simpler problem of Listeria propulsion [447, 448]
and has subsequently been incorporated into more complex models of cell crawling
[270, 329, 446]. Recall from Sect. 4.2 that the speed of growth of a polymerization
ratchet depends on the diffusion coefficient of membrane Brownian motion. Within
the context of bacterial motion, this would imply that the bacterial velocity depends
on its diffusion coefficient and thus on its size. However, such size dependence
has not been observed experimentally, which led Mogilner and Oster to propose an
elastic ratchet model, in which thermal bending fluctuations of a semi-stiff actin
filament, rather then bacterial diffusion [447], generates the gap necessary for in-
sertion of an additional monomer, with the resulting growth generating the force to
propel the bacterium forward. The elastic ratchet model was itself superseded by
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the tethered ratchet model [448], in order to account for a number of additional ex-
perimental observations [91]. In particular, Brownian fluctuations are almost com-
pletely suppressed during Listeria propulsion due to the fact that the bacterium is
tightly bound to its actin tail. One thus observes smooth particle trajectories that are
persistent in both direction and curvature. It is known that the surface of Listeria is
coated with nucleation promotion factor ActA, which transiently binds the Arp2/3
complex on the sides of attached actin filaments; Arp2/3 is known to mediate nucle-
ation of side-branched filaments. The tethered ratchet model is one way to resolve
the dilemma of how the actin tail can be attached to the bacterium and yet propel
the bacterium forward via growth of unattached active filaments. More specifically,
it proposes that there are two classes of filament: some are attached, under tension
and nucleating rather than growing, while others are unattached and pushing via an
elastic ratchet mechanism. In the following, we will describe the tethered ratchet
model in more detail.

Suppose that there are nu(t) unattached filaments and na(t) attached filaments at
time t and that the bacterium is moving at speed v. There are three forces acting on
the bacterium, neglecting any elastic recoil forces of the actin tail (see Fig 8.19): a
load force FL = γv+Fext, where γ is a viscous drag coefficient and Fext represents
any experimentally imposed external forces; a tensional force Fa = na fa due to at-
tached filaments, with fa the force per filament; a pushing force Fu = nu fu due to
unattached filaments, with fu the force exerted by a single unattached filament via
an elastic ratchet mechanism. The corresponding force-balance equation is

FL + na fa = nu fu. (8.3.1)

It is assumed that the two filament populations evolve according to the simple kinetic
equations

dna

dt
= σ − kna,

dnu

dt
= kna−κnu, (8.3.2)

where σ is the nucleation rate of side branches, k is the rate of detachment, and κ is
the rate of capping of unattached filaments which can then no longer polymerize and
push on the bacterium’s surface. It remains to specify the dependence of the forces
fa, fu and the detachment rate k on the bacterium velocity v. The force-velocity
relation for a single polymerizing filament is taken from the polymerization ratchet
model [447] (see equation (4.2.12)):

v = v+e− ful/kBT − v−, (8.3.3)

where v+ = konlM is the polymerization velocity and v−= koffl is the depolymeriza-
tion velocity. Here kon and koff are the rates of monomer assembly and disassembly,
M is the concentration of monomers available for polymerization, and l is the effec-
tive increase in filament length due to addition of one monomer.

In order to estimate the average attachment force fa, it is assumed that an attached
filament acts like a Hookean spring. Suppose that the filament binds to an ActA
complex at time t = 0. The force acting on the resulting bond is given by f (t) = ηvt,
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Fig. 8.19: Schematic diagram of tethered ratchet model, redrawn from [448]. There are three main
forces acting on the Listeria: a load force FL due to viscous drag and any externally imposed forces
(in an experiment), a polymerization ratchet force Fu due to unattached filaments, and a tensional
force Fa due to attached filaments with FL +Fa = Fu

where η is the effective spring constant. Using the basic theory of chemical bond
breaking [175], the rate of detachment takes the velocity-dependent form

k(v, t) = k0eηvt/ fb , (8.3.4)

where xb = fb/η can be interpreted as bond length at which the bond breaks sharply.
The probability p(t)dt of the bond first breaking in the time interval (t, t + dt) is
given by the product of no failure in the interval (0, t) times the probability of sub-
sequent failure within the interval (t, t + dt). Hence,

p(t) = k(v, t)e−
∫ t

0 k(v,s)ds.

Set v0 = fbk0/η , which can be interpreted as the velocity at which the bond stretches
to the critical length xb over the characteristic bond lifetime 1/k0. Rescaling velocity
and time according to μ = v/v0 and τ = k0t, we have

p(τ) = exp

(
μτ +

1
μ
(1− e−μτ)

)
.

It follows that the mean attachment time of a filament (for constant v) is

〈t〉= 1
k0

∫ ∞

0
τ p(τ)dτ =

1
k0

w(μ), (8.3.5)



8.3 Cell Motility 477

with

w(μ) =
∫ ∞

0
τ exp

(
μτ +

1− e−μτ

μ

)
dτ.

We now identify the mean detachment rate as k = 1/〈t〉 and take the average force
fa exerted by a single attached filament to be fa = ηv〈t〉. Thus,

k(μ) =
k0

w(μ)
, fa = fbμw(μ). (8.3.6)

Note that the function w(μ) has the following properties:

1. If μ � 1, then w(μ) ≈ 1, which implies that for sufficiently slow movement
(v� v0) the effective detachment rate is equal to the force-free rate (k ≈ k0) and
fa ≈ fbv/v0.

2. If μ � 1, then w(μ)≈ μ−1 ln μ .

Consider the case of constant propulsion speed v. The steady-state numbers of
attached and detached filaments are then

na = σ/k, nu = σ/κ .

Substituting the force-balance equation (8.3.1) into the velocity equation (8.3.3)
gives

v = v+ exp [−l(na fa/nu +Fl/nu)/kBT ]− v−.

Since na/nu = κ/k = w(μ)κ/k0 and fa = fbμw(μ), the velocity satisfies the im-
plicit equation

v = v+ exp

[
−l

(
fbk0

κv0
vw2(v/v0)+

FLκ
σ

)
/kBT

]
− v−. (8.3.7)

Using biophysically based estimates for the various parameters, Mogilner and Os-
ter [448] numerically solved the equation for v and obtained speeds of the order 10
nm /s, which is consistent with experimental data (see Fig. 8.20). They also showed
that the load–velocity relation exhibits biphasic behavior, whereby the velocity de-
creases rapidly with FL at low load forces and decreases more slowly at high load
forces. This is a consequence of the modeling assumptions regarding chemical bond
breaking. At high velocities increasing the external load helps the attached filaments
to hold on longer, thus increasing the resistive force Fa which itself slows the bac-
terium further. On the other hand, at sufficiently slow velocities the external load
has a minor effect on the resistive force Fa and the velocity decreases more slowly.

The tethered ratchet model has been refined over the years in order to include
more details regarding nucleation and capping mechanisms, for example, and to
try and account for an ever-increasing amount of new biophysical data [444]. Sev-
eral other propulsion mechanisms have also been proposed, which can match some
types of data better than ratchet models. One alternative model assumes that all
filaments are attached to the surface of the bacterium, with the pushing (barbed)
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ends clamped to an end-tracking protein at the surface, which processively tracks
the growing filament tip via phosphorylation of ATP [138, 139]. Another class of
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Fig. 8.20: The load–velocity curve for the tethered ratchet model of Mogilner and Oster [448]. The
solid curve is generated from equation (8.3.7) using the following parameter values: monomer size
l = 2.2 nm, polymerization velocity v+ = 500 nms−1, depolymerization velocity v− = 2.2 nms−1,
nucleation rate σ = 10 s−1, capping rate κ = 0.5 s−1, free detachment rate k0 = 0.5 s−1, thermal
energy kBT = 4.1pN ·nm, effective length of bond xb = 0.4 nm, effective strength of bond fb = 10
pN, and spring coefficient η = 1pN/nm. The dashed curve is obtained by introducing a threefold
increase in the nucleation rate σ and illustrates the effect of filament density on the load–velocity
behavior. Finally, the squares represent data from stochastic model simulations with a reduced
polymerization velocity v+ = 240 nms−1 (Adapted from Mogilner and Oster [448])

model is based on the analysis of elastic deformations of an actin gel near the sur-
face of the bacterium [211, 416]. The gel is approximated as a continuous elastic
medium with stress generated at the surface interface by growing actin filaments.
One finds that near curved surfaces, squeezing elastic forces propel the bacterium
forward.

8.3.2 Crawling Cells and Lamellipodial Motility

The majority of migratory cells that crawl along some cellular substrate such as
the extracellular matrix rely on lamellipodial motility. A prerequisite for directed
motion is that the cell is polarized, i.e., it has a well-defined front and rear. (Mech-
anisms of cell polarization for a range of cellular processes will be considered in
Sect. 9.5.) The leading edge of a crawling cell consists of a lamellipod, which is
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a flat leaf-like extension that is filled with a dense actin network. Roughly speak-
ing, following cell polarization, the migration of a cell consists of three components
driven by interconnected but distinct processes [134, 444] (see also Fig. 8.21):

Fig. 8.21: Schematic illustration of main components of cell crawling. (a) Side view shows pro-
trusion at the leading edge due to polymerization of the actin network followed by contraction or
retraction of the rear due to action of myosin II motors. Net displacement occurs proving that there
is a gradient of cell adhesion from front to rear. (b) Top view of a crawling cell showing the actin-
rich lamellipod whose branching actin network is modifies by various actin regulatory proteins
such as Arp2/3 (nucleation promoter and ADF/cofilin (capping promoter) Adapted from Mogilner
[444]

1. Cell protrusion: Models of cell protrusion combine ratchet models of actin poly-
merization with the so-called dendritic-nucleation hypothesis. The latter posits
that nascent actin filaments branch from the sides of existing filaments such that
there is approximately a 70◦ angle between “mother” and “daughter” filaments,
and all leading edge filaments have their barbed ends oriented towards the direc-
tion of protrusion at an angle of around 35◦ [96, 410, 458, 568]. One finds that
the growing barbed ends grow at a rate around 0.1 μm/sec, thus pushing out the
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membrane of the leading edge. However, capping of the growing ends restricts
the length of individual filaments to 0.1−1 μm. These features make sense, since
intermediate-length filaments that subtend the leading edge at an angle are nei-
ther too rigid nor too flexible and are protected from immediate capping. The net
protrusion of the leading edge is determined by actin polymerization minus the
centripetal rearward flow of the actin network. This retrograde flow is a dissipa-
tive mechanism for reducing stresses on the actin network.

2. Cell contraction: Contraction of the rear of the cell is thought to be mediated
by myosin II motors acting on actin fibers in an analogous fashion to muscle
contraction. A gradient of adhesion forces that is high at the leading edge and low
at the trailing edge (see below) means that contraction will lead to preferential
forward movement of the rear, provided that it is not too strong that it cancels
protrusion by imposing a rearward stress on the actin network.

3. Cell adhesion: Recall from our discussion of the mitotic spindle (Sect. 8.2) that
inertial effects can be ignored in the low Reynolds number regime, so there has
to be force balance. In order to balance propulsive forces at the leading edge and
contractile forces at the rear, adhesion forces between the cell and extracellular
matrix are required [500]. The latter forces are mediated by transmembrane re-
ceptors known as integrins [656]. At the leading edge, the adhesion acts like a
clutch [101]. That is, for high adhesion or drag, the retrograde flow is slow and
polymerization results in a net protrusion—the clutch is in “drive.” On the other
hand, if adhesion is weak, then retrograde flow can cancel the polymerization,
and the actin network treadmills, i.e., the clutch is in “neutral.” There is growing
experimental evidence that in addition to acting as mechanical linkages, integrins
couple to various signaling pathways that modulate actin polymerization and ac-
tivate myosin motors [54, 203]. Moreover, protrusion appears to be coupled to
the formation of nascent integrins at the leading edge [110], which subsequently
disassemble towards the rear resulting in an adhesion gradient. The existence of
an adhesion gradient was assumed in one of the earliest whole-cell mechanical
models of cell motility [141].

8.3.3 Stochastic Model of Integrin-Mediated Cell Protrusion

There are a wide variety of mathematical and computational models of cell migra-
tion; see the recent reviews by Mogilner and collaborators [134, 444]. Most mod-
els focus on the three main processes of cell migration—protrusion, contraction,
and adhesion. We will consider one recent example, namely, a stochastic model
of cell protrusion at the leading edge, which takes into account the formation of
nascent integrins and their coupling to the actin cytoskeleton and myosin motors
[676] (see Fig. 8.22). Following Welf et al. [676], we present the deterministic ver-
sion of the model and then indicate how fluctuations are incorporated. For simplic-
ity, the leading edge of the cell is treated as a single homogeneous compartment
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with m(t) the density of active myosin motors, a(t) the density of nascent adhesion
molecules, and r(t) the density of Rac GTPases, which act as signaling molecules.
The velocity Vp of polymerization is assumed to depend on the concentration of Rac

actin network
δ

actin bound integrinunbound integrin

rearward stress

rough substrate

ηVmem

adhesions

a b

δ−1Vmem

Rac

Vp(R)

width δ

Vmem

Fig. 8.22: Model of integrin-based leading edge protusion [676]. (a) Cartoon of nascent adhesion
formation and binding. Adhesions are formed at a rate ηVmen, where Vmen is the protrusion velocity,
and bind to the actin network. Turnover of adhesions towards the back occurs at a rate ka+Vmen/δ ,
where δ is the width of the actin network. (b) Schematic of reaction network for coupling between
adhesion and actin mediated by Rac

according to a sigmoid-like function, whereas the rate of depolymerization is taken
to be proportional to the width δ of the lamellipodium. Thus

dδ (t)
dt

=Vp(r(t))− kdδ (t), Vp(r) =
Vp,o +Vp,maxKvr

1+Kvr
, (8.3.8)

where kd is a rate constant. Activation of Rac is mediated by the nascent adhesions
according to the simple first-order kinetic scheme

dr(t)
dt

= k+a(t)− k−r(t), (8.3.9)

whereas the rates of production and degradation of adhesions depends on the veloc-
ity Vmem of membrane protrusion:

da(t)
dt

= ηVmem(t)− (ka +Vmem(t)/δ )a(t), (8.3.10)

Here ka is a background degradation rate of adhesions, and η is an adjustable pa-
rameter that determines the efficiency of adhesion formation at the leading edge as
a function of the extracellular matrix density. The relationship between protrusion
velocity and the speed of polymerization is taken to be [23]

Vmem =Vp−Vret, (8.3.11)
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where Vret is the retrograde flow velocity of the actin network. For fixed Vret,
equations (8.3.8)–(8.3.10) represent a protrusion-based positive feedback loop: an
increase in nascent adhesion strengthens the Rac signal, which results in faster poly-
merization and growth of δ (t), and this in turn increases the production rate of
nascent adhesions.

In order to determine Vret, it is necessary to consider a force-balance equation,
which is assumed to be of the form [676]

αVmem(t)+β m(t) = σc(t)+ ξVret(t), (8.3.12)

where αVmen is the rearward stress due to resistance of the membrane to protrusion,
which is assumed to be proportional to the protrusion velocity, β m(t) is the rearward
stress due to the action of myosin motors, σc is the opposing forward stress exerted
by the adhesion-based clutch, and ξVret is the dissipation of stress due to retrograde
flow. Here α,β , and ξ are constants. The next assumption is that the distribution of
stress between the clutch and retrograde flow depends on the density ac of adhesion
molecules bound to the actin network,

σc

σc + ξVret
=

αcac

1+αcac
. (8.3.13)

Assuming that bound and unbound adhesions are in thermodynamic equilibrium,
the fraction of bound adhesions is given by a Boltzmann–Gibbs distribution,

ac

a
=

Kce− f/ fc

1+Kce− f/ fc
, (8.3.14)

where f = σc/Nc is the force on a single adhesive bond. (A similar exponential
dependence of unbinding rates on the applied force was assumed in the ToW model
of collective motor transport; see Sect. 4.4.2.) The final assumption of the model is
that the adhesive clutch activates myosin according to the first-order kinetics

dm(t)
dt

= γ+a∗c(t)− γ−m(t), (8.3.15)

where a∗c(t) is the density of bound adhesions that activate myosin. The latter is also
assumed to be determined by a Boltzmann–Gibbs distribution,

a∗c
ac

=
K∗c e− f/ f ∗c

1+K∗c e− f/ f ∗c
. (8.3.16)

Welf et al. [676] performed computer simulations on a stochastic version of the
above system of equations, which takes into account intrinsic fluctuations in the
number of each molecular species, namely, integrins, active myosin motors, and
Rac GTPases. The construction of the master equation follows along identical lines
to the various gene networks considered in Chap. 6. The resulting master equation
is then simulated using a Gillespie-based algorithm. Details of the simulations and
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parameter values can be found in [676]. One of the main findings of the stochastic
model is that the protrusion velocity exhibits biphasic behavior, tending to switch
rapidly between on and off states, and that the distributions of times spent in the pro-
trusion phase have a characteristic distribution that is consistent with experimental
observations. Moreover, the distribution of protrusion durations shifts significantly
to shorter times as the density of the extracellular matrix is increased (larger η)
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Fig. 8.23: Sketch of results from computer simulations of the stochastic version of the integrin-
based model carried out by Welf et al. [676]. (a) Distributions of protrusion durations for low and
high extracellular matrix densities. (b) Mean protrusion duration as a function of ECM density,
showing a peak where the ECM density is optimal for cell motility

(see Fig. 8.23). In the model, this is a consequence of a higher rate of activation
of adhesions, which then activate more myosin’s that oppose protrusion. Note that
the peak in the distribution of duration times at high ECM density reflects a strong
deterministic oscillatory component of the profusion dynamics.

Finally, note that there have also been a number of integrative models of the
whole cell, which can make predictions about the changes in cell shape during
migration [270, 329, 417]. Mathematically speaking, the modeling of cell shape
involves a difficult free boundary value problem, in which the cell is represented
as a time-dependent domain Ω(t) whose boundary ∂Ω(t) evolves according to
boundary conditions that themselves depend on various densities that are defined
by dynamical equations on Ω(t). We refer the reader to the given citations for more
details.

8.4 Cooperative Transport of Proteins Between
Cellular Organelles

The extensive secretory pathway of eukaryotic cells is a critical system for the mat-
uration and transportation of newly synthesized lipids and proteins to specific target
sites within the cell membrane. The first major organelle of the secretory pathway is
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the endoplasmic reticulum (ER) [393] (see Fig. 8.24). Proteins and lipids destined
for the plasma membrane enter the ER from the nucleus as they are translated by
ER-associated ribosomes, where they fold into their proper 3D structure. One im-
portant aspect of the secretory pathway is that it is tightly regulated [393]. Proteins
accumulate at specific exit sites and leave the ER in vesicles that transfer the cargo
to organelles forming the Golgi network, where final packaging and sorting for tar-
get delivery is carried out. In most eukaryotic cells the Golgi network is confined
to a region around the nucleus known as the Golgi apparatus. Another of the sig-
nificant features of the secretory pathway is that there is a constant active exchange

Fig. 8.24: Diagram of secretory pathway including nucleus, ER, and Golgi apparatus. 1. Nuclear
membrane. 2. Nuclear pore. 3. RER. 4. SER. 5. Ribosome. 6. Protein. 7. Transport vesicles. 8.
Golgi apparatus. 9. Cis face of Golgi apparatus. 10. Trans face of Golgi apparatus. 11 Cisternae of
Golgi apparatus. 12. Secretory vesicle. 13. Plasma membrane. 14. Exocytosis. 15 Cytoplasm. 16.
Extracellular domain (Public domain image from WikiMedia Commons)

of molecules between organelles such as the ER and Golgi apparatus, which have
different lipid and protein compositions. Such an exchange is mediated by motor-
driven vesicular transport. Vesicles bud from one compartment or organelle, carry-
ing various lipids and proteins, and subsequently fuse with another compartment.
Transport in the anterograde direction from the ER to Golgi has to be counterbal-
anced by retrograde transport in order to maintain the size of the compartments and
to reuse components of the transport machinery. Since bidirectional transport would
be expected to equalize the composition of both compartments, there has been con-
siderable interest in understanding the self-organizing mechanisms that allow such
organelles to maintain their distinct identities while constantly exchanging material
[441]. One transport model for generating stable, nonidentical compartments has
been proposed by Heinrich and Rapoport [256], and developed further by a number
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of groups [51, 144, 226]. These models primarily focus on two of the essential steps
of vesicular transport, namely budding and fusion, both of which involve a complex
network of molecular interactions between vesicles, transported molecules, and re-
cipient organelles [337, 392]. Such nonlinear cooperative interactions provide the
basic mechanism for the self-organization of distinct organelles, and, hence, we re-
fer to the whole process as an example of cooperative vesicular transport.

Budding from a donor compartment is mediated by cytosolic protein coats that
bind to the membrane, induce curvature, and eventually pinch off a vesicle. Pro-
tein coats, which are recruited to the membrane by the hydrolysis of G-proteins, are
also involved in the selective concentration of specific proteins within the budding
vesicle. Following budding and detachment from the donor compartment, vesicles
are transported to the acceptor compartment where they undergo fusion. The latter
is mediated by the pair-wise interaction of vesicle (v−) and target (t−) soluble N-
ethylmaleimide-sensitive factor attachment protein receptors (SNARES). Although
v−snares and t−snares occur in multiple homologous variants, they tend to form
high-affinity pairs that provide a recognition mechanism for membrane fusion be-
tween specific vesicles and a compartment. Since each type of protein coat prefer-
entially loads particular high-affinity pairs of SNARES during budding, it follows
that a given vesicle fuses preferentially with a compartment that contains higher
levels of these SNARES, thus further increasing their concentration within the com-
partment. In the case of a single type of protein coat mediating vesicular transport
between two compartments, this mechanism would lead to a steady-state in which
many vesicles with a low SNARE content move in one direction (say, from the first
to the second compartment), whereas a few vesicles with a large SNARE content
move in the opposite direction. The total protein fluxes would then be balanced,
while maintaining a higher concentration of SNARES in the second compartment.
However, lipid balance would not be maintained because there would be a net flux
of vesicles in the anterograde direction. The simultaneous balance of lipid fluxes
could be achieved by having a second type of protein coat that preferentially loads
a different set of SNARES that are concentrated in the first compartment, resulting
in a net flux of vesicles in the retrograde direction. The role of protein coats and
SNARES in vesicular budding and fusion forms the basis of the model introduced
by Heinrich and Rapoport [256]. Note that in the case of the early secretory pathway
coat protein complex II (COPII) vesicles mediate transport from the ER to the Golgi,
whereas coat protein complex I (COPI) vesicles mediate transport in the opposite
direction.

We will describe a simplified version of the model by Rapoport and Heinrich
[256] see [65]. Suppose that there are two compartments j = 1,2 that contain two
types of surface protein X = U,V whose concentrations at time t are denoted by
Uj(t),Vj(t), respectively (see Fig. 8.25). For simplicity, we do not explicitly model
the interactions between complementary SNARE proteins, that is, we take each pro-
tein U,V to be self-interacting. These proteins are exchanged between the compart-
ments via two types of protein-coated vesicles labeled by α = a,b with a-vesicles
transporting protein U and b-vesicles transporting protein V . As a further simplifica-
tion, we neglect the actual physical process of vesicular transport and the associated
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transport delays. Thus, we assume vesicles that bud from the jth compartment are
immediately available for fusion with either compartment. Let Qa(Uj) denote the
backward rate per unit area of fusion of an a-vesicle with its source compartment,
whereas Pa(Uj,Uj) is the forward rate per unit area at which an a-vesicle from com-
partment j = 1,2 fuses with compartment j = 2,1. The backward and forward rates
for a-vesicles are taken to have the explicit form [256]

Qa(Uj) = γ +κ fa(Uj)Uj, (8.4.1)

Pa(Uj,Uj) = γ +κ fa(Uj)Uj. (8.4.2)

Here fa(U) is the protein and coat specific concentration within an a-vesicle gen-
erated from a compartment with concentration U . It is taken to have the Michaelis-
Menten form

fa(U) =Wa
U

U +Ca
. (8.4.3)

(In a more general model, vesicles would transport both proteins in a competitive
manner [71, 144, 226, 256].) Note that γ can be interpreted as a background fusion
rate, whereas κ determines the increase in the reaction rate due to binary interactions
between surface proteins of the vesicle and compartment, respectively, based on the
law of mass action. For simplicity, κ is taken to be independent of the particular
protein. Analogous equations hold for b-vesicles with a→ b and U →V .

Let Nα
j (t) denote the number density of α-vesicles produced by the jth compart-

ment at time t, α = a,b. The number of vesicles evolves according to the equation

dNa
j

dt
= A jKa−A jQa(Uj)N

a
j −A jPα(Uj,Uj)N

a
j . (8.4.4)

Here A j(t) is the surface area of the jth compartment and Kα is the rate of production
of α-vesicles. Assuming that all vesicles have the same surface area ΔA with ΔA�
A j, the rate of change of the number of U proteins within the jth compartment is

d[A jUj]

dt
= A jΔA

[
−Ka +Qa(Uj)N

a
j +Pa(Uj,Uj)N

a
j

]
fa(Uj). (8.4.5)

We also have a conservation equation for the total number MU of U proteins:

MU = ∑
j=1,2

(
A j(t)Uj(t)+ΔA fa(Uj)N

a
j (t)
)
. (8.4.6)

Identical equations hold for b-vesicles and V proteins by taking a→ b and U →V in
equations (8.4.4), (8.4.5), and (8.4.6). In this simplified model, competition between
the proteins arises via the transport of membrane. The rate of change of membrane
surface area of the jth compartment is
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Fig. 8.25: Schematic diagram of the exchange of vesicles between two organelles. Shown is the
limiting case in which one class of vesicle (shaded blue, labeled α = a) only carries protein U
and the other type of vesicle (shaded red, labeled α = b) only carries protein V. When a vesicle of
type α buds from a given compartment, it can immediately re-fuse with the same compartment at
a rate Qα or fuse with the other compartment at a rate Pα . Both compartments produce vesicles of
type α at a rate Kα . The nonlinear interactions between vesicles and compartments can generate a
symmetry-breaking bifurcation, in which the two compartments are maintained at different protein
concentrations

d[A j]

dt
= A jΔA

[
−Ka +Qa(Uj)N

a
j +Pa(Uj,Uj)N

a
j

]
(8.4.7)

+A jΔA
[
−Kb +Qb(Vj)N

b
j +Pb(Vj,Vj)N

b
j

]
, (8.4.8)

which is supplemented by the conservation condition for the total amount of mem-
brane Atot

Atot = ∑
j=1,2

(
A j(t)+ΔA[Na

j (t)+Nb
j (t)]
)
. (8.4.9)

We will focus on steady-state solutions. Setting to zero all time derivatives in
equation (8.4.4) with Uj,Vj fixed, immediately implies that at steady state

Na
j =

A jKa

A jQa(Uj)+A jPa(Uj,Uj)
, Nb

j =
A jKb

A jQb(Vj)+A jPb(Vj,Vj)
. (8.4.10)

Setting d[A jXj]/dt = 0 in equation (8.4.5) and substituting the steady-state expres-
sions for Na

j ,N
b
j gives
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Ga(U1,U2) fa(U1) = Ĝa(U1,U2) fa(U2) (8.4.11)

Gb(V1,V2) fb(V1) = Ĝb(V1,V2) fb(V2) (8.4.12)

where

Ga(U1,U2) =
Pa(U1,U2)

A1Qa(U1)+A2Pa(U1,U2)
, Ĝa(U1,U2) =

Pa(U2,U1)

A2Qa(U2)+A1Pa(U2,U1)
,

(8.4.13)

and similarly for a→ b, U →V . The steady-state version of (8.4.7) yields

KaGa(U1,U2)+KbGb(V1,V2) = KaĜa(U1,U2)+KbĜb(V1,V2). (8.4.14)

It turns out that the system undergoes a symmetry-breaking bifurcation even if the
kinetics of both proteins are the same, that is, Wa = Wb = W , Ca = Cb, and Ka =
Kb = K. In this case the functions fα ,Pα ,Qα , Gα , Ĝα become independent of the
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Fig. 8.26: Symmetry breaking in two-compartment model. (a) Plot of functions G(C) (solid curves)
and G(Ctot−C) (dashed curves) for various values of κ . Points of intersection of G(C) and G(Ctot)
for fixed κ determine steady states. Other parameter values are γ = 1, W = 1, CS = 1, Atot = 1, and
Ctot = 1. (b) Bifurcation diagram for steady-state concentration C in compartment 1 as a function
of the parameter κ . Thick curve shows the variation of the steady-state flux G(C) along a stable
branch

label α = a,b. In this simplified case, one solution to equations (8.4.11)–(8.4.14) is
the symmetric solution

(U1,V1,A1) = (U2,V2,A2) = (U∗,V ∗,A∗),

with (U∗,V ∗,A∗) determined from the conservation conditions (8.4.9) and (8.4.6).
In order to search for symmetry-breaking solutions (nonidentical protein concentra-
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tions in the two compartments), suppose that A1 = A2 = Atot/2 (equal surface areas)
and

MU = MV ≡M. (8.4.15)

Assuming that ε = ΔA/Atot � 1, the conservation conditions (8.4.9) and (8.4.6)
imply that

A2 ≈ Atot−A1, A2X2 ≈M−A1X1 (8.4.16)

for X = U,V , and the approximate solution of equations (8.4.11), (8.4.12),
and (8.4.14) is

U1 =C, U2 =Ctot−C, V1 =Ctot−C, V2 =C, (8.4.17)

with Ctot = 2M/Atot and C satisfying the equation

P(C,Ctot−C) f (C)
Q(C)+P(C,Ctot−C)

=
P(Ctot−C,C) f (Ctot−C)

Q(Ctot−C)+P(Ctot−C,C)
. (8.4.18)

A symmetry-breaking solution exists if equation (8.4.18) has solutions for which
C �=Ctot/2. Setting

G(C) =
P(C,Ctot−C) f (C)

Q(C)+P(C,Ctot−C)
, (8.4.19)

we plot G(C) and G(Ctot−C) in Fig. 8.26a for various values of κ . For each κ , the
intersections of the solid curve G(C) with the dashed curve G(Ctot−C) determines
the possible steady-state values for C. As κ increases, the symmetric solution at C =
Ctot/2 bifurcates into two additional non-symmetric solutions at a critical value κc,
as illustrated in Fig. 8.26b. Note that G(C) is a measure of the steady-state protein
flux of U in the anterograde direction, which is balanced by the corresponding flux
G(Ctot−C) in the opposite direction. (In the given parameter regime, the steady-
state fluxes of proteins U and V have the same magnitude). Fig. 8.26b shows that the
stable flux is independent of κ for κ < κc and a decreasing function of κ for κ > κc.
A similar bifurcation scenario occurs when other parameters are varied such as the
baseline flux rate γ .

8.5 Exercises

Problem 8.1 (Diffusion model of axonal length control). Consider a 1D contin-
uum model of the diffusive transport of tubulin along an axon [431]. Let c(x, t)
denote the concentration of tubulin at position x along the axon at time t. Suppose
that at time t the axon has length L(t) so that x ∈ [0,L(t)]. The transport of tubu-
lin is modeled macroscopically in terms of an advection–diffusion equation with an
additional decay term representing degradation at a rate γ:

∂c
∂ t

= D
∂ 2c
∂x2 −V

∂c
∂x
− γc.
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Such a model can be derived from a more detailed stochastic model of active trans-
port with V the effective drift due to motor-driven transport and D the effective
diffusivity. It is assumed that there is a constant flux of newly synthesized tubulin
from the cell body at x = 0 so that

−D
∂c
∂x

∣
∣
∣∣
x=0

= σ .

The flux at the growing end x = L(t) is equal to the difference between the fluxes
associated with microtubule assembly and disassembly:

−D
∂c
∂x

∣
∣∣
∣
x=L

= εlc(L)− γl ,

where εl and γl are the rates of polymerization and depolymerization. Finally, the
rate of growth is also taken to be proportional to the difference between these two
fluxes according to

dL
dt

= a [εlc(L(t), t))− γl ] .

The constant a depends on the size of each tubulin dimer, the number of micro-
tubules at the tip, and the cross-sectional area of the axon.

(a) Determine the steady-state solution c(x) in terms of the steady-state length L us-
ing the boundary conditions at x = L. Hence, derive the following transcendental
equation for L by imposing the boundary condition at x = 0:

F(L)≡ e−λ−L− e−λ+L =
Dσ
γ

1
cL

(λ+−λ−),

where cL = εL/γL and

λ± =
V
2D

[
1±
√

1+ 4Dγ/V 2

]
.

Determine an approximation for L in (i) the small L regime and (ii) the large L
and large V regime.

(b) Now suppose that diffusion is dominant, the concentration rather than the flux at
x = 0 is fixed, and the rate of polymerization is infinitely fast. Then

∂c
∂ t

=
∂ 2c
∂x2 , 0 < x < L(t),

with
c(0, t) = c0, c(L(t), t) = 0,

and

−∂c
∂x

∣
∣
∣
∣
x=L(t)

= β
dL(t)

dt
.
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We have set D = 1 for simplicity. Trying a solution of the form c(x, t) = 1+
Aerf(x/2

√
t), show that

u(x, t) = c0

[
1− erf[x/(2

√
t)]

erf(λ )

]
,

where the error function erf(x) = (2/
√

π)
∫ x

0 e−t2
dt, and λ satisfies the transcen-

dental equation √
πβ erf(λ )eλ 2

= 1.

This is known as the Neumann solution to the one-phase Stefan problem and
has been used to model the growth of the acrosome of the sea cucumber Thyone
during fertilization [505].

Problem 8.2 (Stochastic model of IFT). Consider a particle undergoing a unidi-
rectional random walk along a single filament track as shown in Fig. 8.27. The track
is modeled as a finite 1D lattice with lattice spacing �. Suppose that at time t there
are N(t)+ 1 lattice sites labeled n = 0, . . . ,N, with n = 0 corresponding to the −
end and n = N(t) to the + end. Suppose that N(0) = 0 and the particle starts at the
minus end. During the jth cycle of the dynamics with N(t) = j, the particle walks
from the minus to the plus end. The times τ between successive steps are taken to be
independent, identically distributed random variables with a common waiting time
density ψ(τ). When the particle reaches the current+ end, the length of the filament
is increased by one lattice site to form the new + end. Once the particle has reached
this new lattice site, the hopping process reverses direction. After returning to the
− end the particle reverses direction again immediately, and the process continues
iteratively. For simplicity the waiting time density is taken to be the same in both
directions, and we are neglecting depolymerization at the plus end.

(a) Let f j(t) be the FPT density for the particle to travel from one end to the other
when the length is Lj = ( j + 1)�. Similarly, let gn(t) be the probability density
that the particle has just completed the nth visit to the+ end at time t and filament
length has increased by one unit. Explain the meaning of the following iterative
equations:

f j(t) =
∫ t

0
ψ(τ) f j−1(t− τ)dτ,

with f0(t) = ψ(t) and

gn(t) =
∫ t

0

∫ t′

0
fn(t− t ′) fn−1(t

′ − t ′′)gn−1(t
′′)dt ′′dt ′

for n≥ 2 with g1(t) = f1(t).
(b) Using Laplace transforms show that for n≥ 2

g̃n(s) = f̃ j(s)
n−1

∏
k=1

[
f̃k(s)
]2

={ψ̃(s)}(n+1)2−2 .
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Fig. 8.27: Particle hopping along a one-dimensional filament that is modeled as a discrete lattice.
When the particle reaches the + end of the filament, a lattice site is added to form the new + end
and the particle reverses its direction. The particle also reverses direction at the − end

(c) Let L(t) be the length of the flagellum at time t and introduce the length proba-
bility Pj(t) = Prob[L(t) = Lj]. Explain the iterative equation

Pj(t) =
∫ t

0
Fj+1(t− t ′)g j(t

′)dt ′,

for j≥ 1, where Fj+1(t− t ′) is the probability that the particle has not completed
the ( j + 1)th trip to the plus end at time t, starting from the plus end at time t ′.
Show that

Fj+1(τ) =
∫ ∞

τ

[∫ t′

0
f j+1(t

′ − t ′′) f j(t
′′)dt ′′

]
dt ′

for j ≥ 1. Determine F̃j(s) and hence show that

P̃j(s) =
g̃ j(s)− g̃ j+1(s)

s
,

with g0(t) = δ (t). Determine ∑∞
j=0 P̃j(s) and interpret the result.

(d) A useful way to characterize the stochastic growth of the filament is in terms of
the mean and variance of the length L(t). Let ηn(t) = ∑∞

j=0 jnPj(t) denote the
nth moment of the distribution Pj(t). Then

〈L〉= 1+ �η1(t), 〈ΔL2〉= �2[η2(t)−η1(t)
2].

Using part (c) show that

η̃1(s) =
1
s

∞

∑
j=1

g̃ j(s), η̃2(s) =
1
s

∞

∑
j=1

(2 j− 1)g̃ j(s).
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(e) Suppose that the waiting density has finite first and second moments so that for
small s, ψ̃(s) ∼ 1− τs and g̃ j(s) ≈ e−( j+1)2τs. The sums in part (d) can then be
approximated for small s as

η̃1(s)∼ 1
2s

√
π
τs

, η̃2(s)∼ 1
τs2 .

Using a Tauberian theorem (see Box 7A), derive the large-t behavior

η1(t)∼
√

t/τ, η2(t)∼ t/τ.

Problem 8.3 (Search-and-capture model). Let P(τ) be the probability that a single
MT finds a single kinetochore before time τ . From equation (8.2.1),

P(τ) = p+
∞

∑
n=1

Q(τ−Δτ|n)P(n),

with P(n) = p(1− p)n, Δτ =Vg/x, and Q(τ|n) given by equation (8.2.4).

(a) Show that the probability of capture before time τ , τ > Δτ , is

P(τ) = p+(1− p)(1− e−p(τ−Δτ)/Tcycle).

(b) If p� 1 and Δτ � τ , then

P(τ)≈ 1− e−pτ/Tcycle.

Using the expressions for p and Tcycle (see equations (8.2.2) and (8.2.3)), show
that the optimal catastrophe frequency is kcat =Vg/x.

(c) Now suppose that there are N independent searching MTs, and denote the prob-
ability that a single kinetochore is found before time τ by P(N)(τ). Explain the
formula

P(N)(τ) = 1− (1−P(τ))N.

Using the expression for P(τ) in part (b), show that the average time to capture
is Tcapture/N, where Tcapture is the result for N = 1.

(d) Finally, consider N MTs and M kinetochores. Since the attachment of a kine-
tochore is independent of all other attachment events, the probability that all
kinetochores will be attached to an MT before time τ is

P(N,M)(τ) = P(N)(τ)M = (1− e−pNτ/Tcycle)M.

The corresponding density function is f (t) = dP(N,M)(t)/dt. The most likely
time t0 when the last kinetochore is captured is obtained by finding the maximum
of the function f (t). Show that

t0 =
Tcycle

pN
lnM.
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It turns out from numerical studies that t0 is a reasonable estimate of the average
time to capture all the kinetochores.

Problem 8.4 (Asymptotic analysis of continuum Hill model). Consider the
steady-state continuum Hill model analyzed in Box 8B. We would like to cal-
culate the mean velocity of the kMT given by v = V (L/η), where V (y) is the
solution to the first-order ODE (in dimensionless units)

dV
dy

= δ (α(y)−β (y))p(y), V (0) = 0.

(a) Introduce the asymptotic expansions

V (y) =V0(z)+ εV1(z,σ)+O(ε2), p(y) = p0(z,σ)+ ε p1(z,σ)+O(ε2)

with V1(z,σ) periodic in σ . Substituting into the ODE for V (y) and collecting
O(1) terms, show that

dV0(z)
dz

+
∂V1(z,σ)

∂σ
= δ (α(z)−β (z))p0(z,σ),

with p0(z,σ) given by equations (8.2.16) and (8.2.19).
(b) Integrating the O(1) equation over the interval 0 ≤ σ ≤ 1 and exploiting the

periodicity of V1 obtain the following approximation for the mean velocity (ex-
pressed in terms of original variables),

v = δ
∫ L

0
(α(x)−β (x))A(x)I0( f (x)/kBT )dx+O(ε),

where

A(x) =C exp

(
r(x)
kBT

− δγ
kBT

∫ x
I2
0( f (x′)/kBT )[β (x′)−α(x′)]dx′

)
.

(c) Why is the expression for v in part (b) preferable for numerical calculations
rather than the one obtained by substituting equation (8.2.20) for p0(x) directly
into

v = δ
∫ L

0
(α(x)−β (x))p0(x)dx+O(ε)?

Problem 8.5 (Spindle length control). Consider the model of spindle length con-
trol during Drosophila metaphase given by equations (8.2.33).

(a) Derive the steady-state equations (8.2.34) for the spindle length S and length of
overlap L between inter polar MTs.

(b) Determine conditions for the stability of the steady-state.
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(c) Consider the following basal parameter values: N = 100, S0 = 10 μm, δ = 4 nm,
Vslide = 0.1 V0 = 0.01, V1 = 0.06, Vpoly = 0.06, α = 100, β = 80, FKt = 100, and
kBT = 4.2× 10−3. All velocities are μm/s and all forces are pN/μm. Plot the
steady state lengths S and L as a function of α over the range 100 ≤ α ≤ 104.
Comment on what happens if α becomes too small.



Chapter 9
Self-Organization in Cells II: Reaction-Diffusion
Models

In the previous chapter, we focused on the role of active processes such as polymer-
ization on the self-organization of cytoskeletal structures. We now turn to another
major mechanism for self-organization within cells (and between cells), namely, the
interplay between diffusion (Chap. 2) and nonlinear chemical reactions (Chap. 6).
Historically speaking, the idea that a reaction–diffusion system can spontaneously
generate spatiotemporal patterns was first introduced by Turing in his seminal 1952
paper [646]. Turing considered the general problem of how organisms develop their
structures during the growth from embryos to adults. He established the principle
that two nonlinearly interacting chemical species differing significantly in their rates
of diffusion can amplify spatially periodic fluctuations in their concentrations, re-
sulting in the formation of a stable periodic pattern. The Turing mechanism for mor-
phogenesis was subsequently refined by Gierer and Meinhardt [216], who showed
that one way to generate a Turing instability is to have an antagonistic pair of molec-
ular species, a slowly diffusing chemical activator and a quickly diffusing chemical
inhibitor, which they applied to a number of specific biological systems. Over the
years, the range of models and applications of the Turing mechanism expanded dra-
matically [461],1 in spite of the fact that most experimental findings suggested that
morphogenesis was often guided by explicit spatial cues, based on the localization
of specific proteins or RNA [687]. Indeed, for many years the only direct experimen-
tal evidence for spatiotemporal patterning of molecular concentrations came from
the inorganic Belousov–Zhabotinsky reaction [700], until Kondo and Asai demon-
strated the occurrence of the Turing mechanism in studies of animal coat patterning
[350]. Recent advances in live cell imaging and gene knockout protocols are now
allowing for a closer connection between theories of pattern formation and cell biol-
ogy. Moreover, there are a growing number of examples of spatiotemporal patterns
at the intracellular level, which will be the focus of this chapter.

1 Biological pattern formation has also been studied within the context of ecology [385, 539]
and systems neuroscience [75, 172]; in the latter case nonlocal synaptic interactions drive pattern
forming instabilities rather than diffusion.

© Springer International Publishing Switzerland 2014
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We begin by considering the formation of intracellular protein gradients, which
are characterized by spatial variations in the activity state (eg., phosphorylation
state) of a protein due to some localized source of activation or deactivation
(Sect. 9.1). We address the robustness of intracellular gradients in the presence of
intrinsic noise due to low protein copy numbers. In Sect. 9.2 we review the theory
of Turing pattern formation in terms of deterministic reaction–diffusion (RD) equa-
tions. The effects of intrinsic noise on spontaneous pattern formation is considered
in Sect. 9.3, where we construct an RD master equation. The latter is obtained by
discretizing space and treating spatially discrete diffusion as a hopping reaction.
Carrying out a linear noise approximation of the master equation leads to an effec-
tive Langevin equation, whose power spectrum provides a means of extending the
definition of a Turing instability to stochastic systems, namely, in terms of the ex-
istence of a peak in the power spectrum at a nonzero spatial frequency. One thus
finds that noise can significantly extend the range over which spontaneous patterns
occur. Finally, we consider two examples of spontaneous self-organization in cells:
the Min system of proteins responsible for regulating the initiation site of bacterial
cell division (Sect. 9.4) and cell polarization (Sect. 9.5).

In keeping with previous chapters, we will concentrate on relatively simple,
analytically tractable models of reaction–diffusion systems. A complementary ap-
proach involves developing more biologically realistic multi-scale computational
models, which include details of the structure of individual macromolecules, the
biochemical network of signaling pathways, the aqueous environment of the cyto-
plasm, the mechanical properties of the cytoskeleton, and the geometry of the cell
[43, 171, 192, 611]. A major challenge in the computational modeling of reaction–
diffusion systems is how to efficiently couple stochastic chemical reactions involv-
ing low copy numbers with diffusion in complex environments. One approach is
to consider a spatial extension of the Gillespie algorithm for well-mixed chemi-
cal reactions [217, 218] (Sect. 6.8) using a mesoscopic compartment-based method,
although there are subtle issues with regard to choosing the appropriate compart-
ment size [283, 292, 293, 647]. Alternatively, one can combine a coarse-grained
deterministic reaction–diffusion model in the bulk of the domain with individual
particle-based Brownian dynamics in certain restricted regions [10, 168, 169, 193];
in this case considerable care must be taken in the choice of boundary conditions at
the interface between the two domains.

9.1 Intracellular Protein Concentration Gradients

It has been known for some time that concentration gradients play a crucial role in
the spatial regulation of patterning during development [370, 591, 672, 686, 687].
That is, a spatially varying concentration of a morphogen protein drives a corre-
sponding spatial variation in gene expression through some form of concentration
thresholding mechanism. For example, in regions where the morphogen concentra-
tion exceeds a particular threshold, a specific gene is activated. Hence, a continu-
ously varying morphogen concentration can be converted into a discrete spatial pat-
tern of differentiated gene expression across a cell population. The basic mechanism



9.1 Intracellular Protein Concentration Gradients 499

Cdr2 inactive
Cdr2 active
Pom1p

nucleus

activating
enzymereceptor

P P*

P*P

diffusion

deactivating
enzyme

a b

Fig. 9.1: (a) Cartoon of a protein modification cycle, in which an inactive form P is converted
to an active form P∗ at the plasma membrane. Both forms diffuse in the cytoplasm, resulting in
deactivation of P∗ by cytoplasmic enzymes. (b) Pom1 concentration gradient in fission yeast is
highest at the poles and lowest in the midcell region where Cdr2 concentrates in cortical nodes. In
early interphase (short cells), Pom1 at the midcell is present at a sufficient concentration to inhibit
Cdr2 and the transition to mitosis. As cells grow, the midcell Pom1 concentration decreases until
it crosses a threshold that relieves Cdr2 inhibition thereby promoting mitosis

of morphogen gradient formation is thought to involve a localized source of protein
production within the embryo, combined with diffusion away from the source and
subsequent degradation.

There is emerging experimental evidence that concentration gradients not only
arise within the context of embryonic development, but are also found within in-
dividual cells, typically taking the form of a concentration gradient in some active
protein [276, 331]. An important difference between intracellular gradients and mul-
ticellular morphogen gradients is that degradation does not play a significant role in
the formation of intracellular gradients. This is a consequence of the fact that the
lifetime of a typical protein exceeds the duration of the cellular process regulated
by the presence of a gradient. Instead, some modification in the protein, such as its
phosphorylation state, changes as it moves away from the catalytic source of the
modification. The existence of an intracellular gradient was first predicted theoreti-
cally by Brown and Kholodenko [78] and has subsequently been found to play a role
in a wide range of cellular processes, including cell division, polarity, and mitotic
spindle dynamics:

1. An important component of many signal transduction pathways is the reversible
cycling between an inactive and an active protein state, which is catalyzed by
opposing activator and deactivator enzymes. For example, a kinase and phos-
phatase acting on phosphoproteins, or a GEF (guanine-nucleotide-exchange fac-
tor) and GAP (GTPase-activating protein) acting on small G-proteins such as
proteins of the Ras and Rho families. A concentration gradient in these signal-
ing cycles can then be generated by the spatial segregation of the opposing en-
zymes [331, 459]. One such mechanism is the phosphorylation of proteins by a
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membrane-bound kinase, which are then dephosphorylated by a cytosolic phos-
phatase (see Fig. 9.1a). This results in a gradient of the phosphorylated protein,
with a high concentration close to the cell membrane and a low concentration
within the interior of the cell. As the cell grows in size, the surface-to-volume
ratio decreases and membrane-activated proteins have to diffuse over longer dis-
tances in order to reach their target such as the nucleus. Hence, the proteins be-
come progressively deactivated towards the cell interior, thus providing a mecha-
nism for coupling cell growth with the cell cycle. Indeed, activated spatial gradi-
ents have been observed during cell mitosis [98, 315, 478] involving for example
the small GTPase Ran, which assists in the formation of the mitotic spindle by bi-
asing microtubule growth towards the chromosomes, (see also Sect. 8.2). Activity
gradients may also play a role in the localization of the RhoGTPase Cell division
control protein 42, which is a regulator of actin polymerization, resulting in a
coupling between cell shape and protein activation [439].

2. One of the best studied intracellular gradients involves the dual-specificity tyro-
sine phosphorylation-regulated kinase (DYRK) Pom1p in fission yeast. Pom1p
forms a concentration gradient within the rod-shaped yeast cell, with the highest
concentrations at the cell tips and the lowest concentrations at the cell center.
This is achieved by a combination of localized binding to the membrane at the
cell tips, diffusive spreading within the membrane, followed by membrane un-
binding and diffusion in the cytoplasm until rebinding at the tips. It is thought
that Pom1p inhibits cell division, acting to localize the cell division factor Mid1
towards the cell mid-plane [99, 490]. Pom1p also phosphorylates and suppresses
the activity of Cdr2p, which is a promoter of cell mitosis that localizes to nodes
within the membrane at the center [421, 455]. In a short cell, the concentration of
Pom1p at the cell center is relatively high so that Cdr2 activity is inhibited. How-
ever, as the cell grows, the midcell concentration of Pom1p decreases resulting
in activation of Cdr2 and initiation of mitosis (see Fig. 9.1b). Thus, the formation
of a spatial concentration gradient again provides a mechanism for coupling cell
growth with the cell cycle.

3. Spatial concentration gradients have also been found to play a role in cell division
in small bacterial cells with spatial extents of only a few microns [541, 623].
One well-studied example is the oscillatory dynamics of Min proteins in E. coli,
which creates a time-averaged concentration gradient that directs localization of
the cell division machinery [277, 284, 356, 396, 434]. Such an oscillation is the
result of a dynamic instability of the underlying reaction–diffusion system (see
Sect. 9.4).

9.1.1 Spatially Distributed Signaling Cascades

We begin by considering the simplest system capable of generating a stationary
concentration gradient, consisting of an activating enzyme located in the cell mem-
brane and a deactivating enzyme freely diffusible in the cytoplasm [78, 331] (see
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Fig. 9.1a). For simplicity, consider an effective 1D geometry representing, for ex-
ample, a cylindrical bacterial cell of length L. Suppose that a kinase is localized to a
pole at x = 0, which generates a flux of phosphorylated protein at a rate v+, whereas
the phosphatase is distributed throughout the cytoplasm and deactivates each protein
at a rate v−. Assume that the phosphatase is far from saturation so that v− = k−c∗,
where c∗ is the active protein concentration. It follows that c∗(x, t) evolves according
to the diffusion equation

∂c∗

∂ t
= D

∂ 2c∗

∂x2 − k−c∗(x, t), (9.1.1)

supplemented by the boundary conditions

−D
∂c∗

∂x

∣∣
∣
∣
x=0

= v+,
∂c∗

∂x

∣∣
∣
∣
x=L

= 0. (9.1.2)

This has the steady-state solution

c∗(x) = c∗(0)

(
ex/λ + e2L/λ e−x/λ

1+ e2L/λ

)

, λ =

√
D
k−

. (9.1.3)

The concentration c∗(0) can be determined from the boundary condition at x = 0.
Note that when L� λ , the gradient is approximately linear, whereas when λ L� λ
it decays exponentially with length constant λ .

For biophysically reasonable parameter values, one typically finds that the pro-
tein gradient is very steep, which means that it is unlikely to reach the nucleus of
large cells such as developing neurons. Several mechanisms have been suggested
that could produce longer-range signal transduction, including spatially distributed
signaling cascades, active transport, and traveling waves of protein phosphorylation
[459]. Here we will consider the particular example of signaling cascades as devel-
oped in [460]. That is, suppose there exists a cascade of protein modification cycles,
in which each cycle involves transitions between inactive and active forms of a sig-
naling protein. At each level of the cascade, the active form of the protein catalyzes
the activation of the protein at the next downstream level (see Fig. 9.2a). Let c∗n(x, t)
and cn(x, t) denote the concentration of activated and deactivated protein, respec-
tively, at the nth level of the cascade. Assume that the total concentration of protein
at each cascade level is fixed at ctot

n so that cn(x, t) = ctot
n − c∗n(x, t). We have

∂c∗1
∂ t

= D
∂ 2c∗1
∂x2 − v−1 (x, t), (9.1.4a)

∂c∗n
∂ t

= D
∂ 2c∗n
∂x2 + v+n (x, t)− v−n (x, t), n = 2, . . . ,N, (9.1.4b)

where v+n and v−n are the phosphorylation and dephosphorylation rates, respectively.
Equation (9.1.4) are supplemented by the boundary conditions
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Fig. 9.2: Spatial propagation of activated forms for a cascade of protein modification cycles.
(a) Phosphorylation cycles within a cell. (b) Schematic illustration of steady-state concentration
profiles at successive levels n of the cascade for γ < 1 in nondimensionalized version of the model

−D
∂c∗1
∂x

∣
∣
∣
∣
x=0

= v+1 ,
∂c∗1
∂x

∣
∣
∣
∣
x=L

= 0 (9.1.5a)

∂c∗n
∂x

∣∣
∣
∣
x=0

= 0 =
∂c∗n
∂x

∣∣
∣
∣
x=L

, n = 2, . . . ,N. (9.1.5b)

Assuming Michaelis–Menten kinetics for the enzymatic reactions (see Box 6B), we
have

v−n =V−n
c∗n(x, t)

K−n + c∗n(x, t)
, n = 1, . . . ,N (9.1.6a)

v+1 =V+
1

ctot
1 − c∗1(0, t)

K+
1 + ctot

1 − c∗1(0, t)
, (9.1.6b)

v+n = V̂+
n c∗n−1(x, t)

ctot
n − c∗n(x, t)

K+
n + ctot

n − c∗n(x, t)
, n = 2, . . . ,N. (9.1.6c)

Suppose, for simplicity, that all parameters are independent of the cascade level
n: K−n = K−,V−n = V−, ctot

n = ctot for n = 1, . . . ,N and K+
n = K+,V̂+

n ctot = V+ for
n= 2, . . .N. We also assume that the Michaelis–Menten kinetics operate in the linear
regime (small concentrations). Nondimensionalizing the equations by setting

Cn = c∗n/ctot, x′ =
√

k−
D

x, t ′ = k+t, γ =
k−
k+

,
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with k± =V±/K±, and dropping primes gives

∂C1

∂ t
= γ

∂ 2C1

∂x2 − γC1, (9.1.7a)

∂Cn

∂ t
= γ

∂ 2Cn

∂x2 − γCn +(1−Cn)Cn−1, n = 2, . . . ,N, (9.1.7b)

−∂C1

∂x

∣∣
∣
∣
x=0

= ν(1−C1)x=0, D
∂C1

∂x

∣∣
∣
∣
x=L

= 0 (9.1.7c)

∂Cn

∂x

∣
∣
∣∣
x=0

= 0 =
∂Cn

∂x

∣
∣
∣∣
x=L

, n = 2, . . . ,N, (9.1.7d)

with

ν =
V+

1

K+
1

√
1

Dk−
.

The crucial parameter that determines the degree of spread of activity is γ , which
is the ratio of the deactivation and activation rates. Numerically solving these equa-
tions shows that for γ < 1, an initial activation signal at the boundary x = 0 propa-
gates into the domain, converging to a steady-state solution consisting of stationary
front-like profiles that are shifted further into the domain at higher levels of the
cascade [460]. This is illustrated schematically in Fig. 9.2b. On the other hand, if
γ > 1, then the activated proteins fail to propagate into the domain, and the con-
centrations of activated proteins decay rapidly close to the plasma membrane. In
this latter regime, it is possible to obtain analytical approximations for the concen-
tration profiles. First note that the steady-state equation for C1 can be solved as in
the single-level model. In particular, for a large domain, it has the exponential form
C1(x) =C1(0)e−x. The steady-state solution at successive levels can then be deter-
mined from the approximate recurrence relation [460]

γ
d2Cn

dx2 − γCn +Cn−1 = 0, (9.1.8)

assuming Cn � 1. When γ > 1, one can solve for Cn(x) using a polynomial expan-
sion of the form

Cn(x) =

(
n−1

∑
m=0

Q(m)
n xm

)

e−x.

In the more interesting regime γ < 1, the polynomial construction breaks down near
the boundary x = 0. Nevertheless, one can still determine the leading order behavior
in the tail of the profiles, x� 1, for which

Cn(x)≈ C1(0)
(n− 1)!(2γ)n−1 xn−1e−x.
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This can then be used to determine the spread of activated protein at the nth level
[460]. To a first approximation, the front profile shifts an amount (in physical units)

ΔX = (1− γ) ln(1/γ)
√

k−/D (9.1.9)

from one cascade level to the next. Qualitatively similar behavior is found when the
full Michaelis–Menten kinetics is used, except now the condition for propagation
failure depends on γ and the degree of saturation.

9.1.2 Robustness of Concentration Gradients

Intracellular protein gradients provide a mechanism for determining spatial position
within a cell so that, for example, cell division occurs at the appropriate time and
location. Similarly, developmental morphogen gradients control patterns of gene ex-
pression so that each stage of cell differentiation occurs at the correct spatial location
within an embryo. For gradient mechanisms to be biologically effective, however,
position determination has to be robust to both intrinsic and extrinsic noise fluctua-
tions. Recall from Sect. 6.1 that extrinsic noise is usually associated with cell-to-cell
variations in environmental factors, whereas intrinsic noise refers to fluctuations
within a cell due to biochemical reactions involving small numbers of molecules.
Both forms of noise can affect positional accuracy as illustrated in Fig. 9.3. Here we
will explore the effects of intrinsic noise on the simple gradient producing systems
shown in Fig. 9.1, following the analysis of Tostevin et al. [637, 639]. For simplic-
ity, consider a cylindrical geometry with the dimension d of the system given by
d = 2 if the gradient is restricted to the membrane (as in Pom1p) or d = 3 if it is in
the cytoplasm. Take the x-axis to be the axial coordinate and assume that the con-
centration is uniform in the transverse coordinates(s). Take the length of the cell to
be L with 0 < x < L and assume that there is a source at x = 0 where proteins are
produced at a rate J per unit area or circumference. The concentration gradient is
given by Eq. (9.1.3), written in the form

c(x) =
Jλ
D

e−x/λ . (9.1.10)

Suppose that the concentration gradient has to identify a particular spatial location
along its length. This location could be determined by the point xT at which the
monotonically decreasing concentration profile crosses a threshold cT . The system
will then be divided into two domains: an active domain 0≤ x< xT for which c(x)>
cT and an inactive domain xT ≤ x ≤ L where c(x) ≤ cT . Noise in the local protein
concentration will cause fluctuations in the threshold position. Tostevin et al. [639]
estimated the uncertainty in the position due to intrinsic noise. Recall from Sect. 6.2
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Fig. 9.3: Effect of noise on the positional information provided by concentration gradients. (a)
Extrinsic noise in the protein gradient leads to a varying profile from one cell to another. Variation
in the position at which the gradient concentration drops below a critical level cT leads to impre-
cision in the specification of position xT . (b) Intrinsic noise within a single gradient also leads to
imprecise positional information. Redrawn from Howard [276]

that a simple reaction involving protein production and degradation exhibit, Poisson
statistics. In particular, if n(x) is the random number of molecules in a volume ad

centered at x ∈ R
d , then

〈n(x)2〉− 〈n(x)〉2 = 〈n(x)〉.

Dividing through by the volume, we find that the fluctuations in the concentration
are

〈c(x)2〉− 〈c(x)〉2 = 〈c(x)〉
ad ,

with 〈c(x)〉 given by Eq. (9.1.10). We identify a with the size of the region measur-
ing the concentration, which could be the size of a receptor with which the gradient
proteins interact.

The uncertainty Δx in spatial location can now be estimated using

Δx|c′(xT )|=
√

Varc(x) =

√
c(xT )

ad , (9.1.11)

which implies that

Δx =

√
λ D
Jad exT /2λ . (9.1.12)

The optimal decay rate λ then depends on whether the flux J is kept constant or the
number of molecules N is kept constant. In the former case, minimizing Δx with
respect to λ shows that the optimal value is λ = xT/2. In the latter case, the flux J
can be expressed in terms of the total number of proteins N according to (for d = 2)
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N = L⊥
∫ L

0
ρ(x)dx =

JL⊥λ 2

D

[
1− e−L/λ

]
≈ JL⊥λ 2

D
,

assuming λ � L and L⊥ is the circumference of the cell. This implies that J =
ND/(L⊥λ 2) and thus

Δx
L

=
1
L

√
λ 3L⊥
Na2 exT /2λ .

This formula implies that the uncertainty in position decreases with copy number
according to N−1/2 and is a nonlinear function of λ with a global minimum given by

dΔx(λ )
dλ

=
3

2λ
Δx− xT

2λ 2 Δx,

which yields λmin = xT/3.
Typical parameter values for membrane gradients in bacteria such as fission yeast

are cell length L = 10μm, circumference L⊥ = 6μm, diffusivity D = 0.1μm2s−1,
decay length λ = 2μm, and detector size a = 0.01μm. Taking xT = 4μm and a rea-
sonable copy number N = 4,000 leads to the following estimate of the uncertainty
in position: Δx≈ 2L. This implies that the cell must carry out some additional pro-
cessing at the signal detection level in order to reduce the uncertainty in position.
One mechanism for achieving high precision even for low copy numbers is time av-
eraging [237, 637, 639]. (Alternative mechanisms of noise reduction are considered
by [276, 278, 559] for intracellular gradients and [57, 161, 167] for developmental
morphogen gradients.) Suppose that a receptor, for example, integrates the concen-
tration of the gradient protein over a time interval of length τ . The detector is then
able to perform Nτ = τ/τD independent measurements of the concentration, where
τD is the time for correlations in the concentration to decay. A rough estimate of
τD (ignoring logarithmic corrections) is τD = a2/D ≈ 10−3. From the law of large
numbers, we expect the uncertainty in position after time averaging becomes

Δx =
Δx√
Nτ

=

√
τD

τ
Δx≈ 0.1√

τ
L.

It follows that an integration time of 100 s would lead to uncertainty in position that
is only 1% of the cell length.

In the above analysis we considered the accuracy of positional information based
on a single concentration gradient. Another example of a non-uniform distribution
of proteins, such as Pom1 in fission yeast, involves two opposing gradients that are
used to determine the position of the center of the cell in preparation for cell division
[99, 421, 455, 490]. The effects of intrinsic noise on the precision of specifying the
mid-point of a fission yeast cell has been analyzed by Tostevin et al. [638, 639],
along similar lines to the single gradient case. The basic model is illustrated in
Fig. 9.4. It is assumed that Pom1 associates with the membrane at the cell poles,
resulting in an effective polar flux J at each end. This naturally generates a sym-
metric concentration profile with a minimum at the center through a combination
of lateral membrane diffusion and dissociation from the membrane. Assume that
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the membrane concentration around the circumference of the cell is uniform, and
let c(x) be the density of proteins (per unit area) as a function of the axial coordi-
nate x, x ∈ [−L/2,L/2], where L is cell length. Then c(x) evolves according to the
reaction–diffusion equation

∂c
∂ t

= D
∂ 2c
∂x2 − μc, (9.1.13)

where μ is the rate of membrane dissociation, supplemented by the boundary con-
ditions

D
∂c
∂x

∣
∣
∣
∣
x=±L/2

=±J. (9.1.14)

mid-region

x = 0 x = L/2x = -L/2

flux J flux -J

c(x)

Fig. 9.4: A schematic illustration of a model for the formation of two opposing protein gradients
within the membrane of a rod-like cell such as fission yeast [638]. Diffusing proteins within the cy-
toplasm bind to the membrane at the poles and then undergo lateral diffusion within the membrane.
When this is combined with dissociation from the membrane, a symmetric protein concentration
profile is set up with a minimum at the mid-plane. The cytoplasmic diffusion and membrane bind-
ing are represented as polar fluxes

Solving the boundary value problem (see Ex. 9.1) yields

c(x) =
J
D

λ cosh(x/λ )
sinh(L/2λ )

, (9.1.15)
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where λ =
√

D/μ is the characteristic decay length of the spatial gradient. Clearly
the deterministic concentration has a minimum at the center x = 0 with

c(0) =
J
D

λ
sinh(L/2λ )

. (9.1.16)

Now suppose that intrinsic noise generates an uncertainty in the concentration at
the center given by Δc = c(0)/a2 with a the size of the protein detector. Since the
deterministic concentration has a minimum at x= 0, it is necessary to Taylor expand
to second order, in order to determine the uncertainty Δx in position, that is,

Δc =
1
2
|c′′(0)|Δx2. (9.1.17)

Fig. 9.5: Variation of uncertainty in position Δx with the integration time τ based on numerical
simulations of a stochastic version of the dual gradient model. Parameter values are L = 10μm,
μ = 0.36s−1, J = 6μm−1s−1, D = μm2s−1, and a =−.01μm (Adapted from Tostevin et al. [639])

One thus finds that (see Ex. 9.1)

Δx =

(
4Dλ 3sinh(L/2λ )

Ja2

)1/4

. (9.1.18)

As in the case of a single concentration gradient, much greater precision can be
obtained by time averaging. However, greater care has to be taken with regard tem-
poral correlations when estimating the minimum time τD required for independent
measurements in two-dimensional domains such as the cell membrane (see [639]
for details). An example plot of how the uncertainty Δx varies with integration time
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τ is shown in Fig. 9.5, based on stochastic simulations of a finite number of proteins.
The main observation is that there are two distinct regimes, with Δx approximately
independent of τ for small τ and Δx∼ τ−1/4 for large τ as predicted from the theory.

9.2 Theory of Turing Pattern Formation

One of the necessary conditions for the formation of a concentration gradient is
that there exists some local source of intracellular proteins or a preexisting spatial
variation of mRNA in an embryo. In other words, an underlying spatial symme-
try of the cell is broken explicitly. An alternative mechanism for the formation of
spatial patterns, via spontaneous symmetry breaking, is the diffusion-driven insta-
bility first hypothesized by Turing [646]. Typically, such an instability is modeled
in terms of a system of reaction–diffusion (RD) equations. These describe two or
more chemical species interacting via short-range activation kinetics (slow diffu-
sion) and long-range inhibition kinetics (fast diffusion). In the absence of diffusion,
the system converges to a homogeneous stable steady state, whereas the addition
of diffusion can destabilize the homogeneous state resulting in a spatially varying
pattern (provided that the physical domain is sufficiently large). One major biolog-
ical application of the Turing mechanism has been in development, based on the
reaction–diffusion of morphogens [461, 488]. More recently, however, the Turing
mechanism has been used to account for various spatiotemporal patterns at the in-
tracellular level, including oscillations of Min protein concentrations in E. coli [396]
(Sect. 9.4) and the spatial variation of membrane-bound proteins in polarized cells
[231, 437] (Sect. 9.5). Before considering explicit applications in cell biology, we
review the basic theory of Turing pattern formation, covering the deterministic case
here and the stochastic case in Sect. 9.3.

For concreteness, we will focus on a two-component system in two spa-
tial dimensions, consisting of chemical concentrations u(x, t) and v(x, t) with
x ∈ R

2, t ∈ R
+. We will assume that the system is restricted to a bounded square

domain Ω of size L so that 0 ≤ x≤ L and 0≤ y≤ L. The standard RD model takes
the form

∂u
∂ t

= Du∇2u+ f (u,v) (9.2.1a)

∂u
∂ t

= Dv∇2u+ g(u,v). (9.2.1b)

Here Du and Dv are the corresponding diffusion coefficients, and the nonlinear func-
tions f ,g describe the chemical reactions. The RD system is typically supplemented
by a no-flux boundary condition

n ·∇u = 0, n ·∇v = 0, for x ∈ ∂Ω ,
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where n is the outward normal on the boundary ∂Ω . Suppose that there exists a
homogeneous stationary state (u∗,v∗) for which f (u∗,v∗) = g(u∗,v∗) = 0. The basic
idea of the Turing mechanism is that the stationary state is stable to perturbations
in the absence of diffusion, but is unstable to spatially inhomogeneous perturba-
tions when diffusion is present. Linear stability analysis can be used to identify the
fastest growing perturbations, which can be expressed in terms of linear combina-
tions of eigenmodes of the associated linear operator. However, in order to determine
whether or not these growing patterns themselves stabilize, it is necessary to go be-
yond linear theory by using perturbation methods to derive a system of nonlinear
ODEs for the amplitude of a given pattern.

9.2.1 Linear Stability Analysis

Linearizing equations (9.2.1) about the homogeneous state (u∗,v∗) by setting U =
u− u∗,V = v− v∗, leads to the linear system

∂
∂ t

(
U
V

)
= L

(
U
V

)
≡
(

fu fv

gu gv

)

u∗,v∗

(
U
V

)
+

(
Du 0
0 Dv

)(
∇2U
∇2V

)
(9.2.2a)

supplemented by no-flux boundary conditions. Here fu = ∂ f/∂u. Setting U =
(U,V )T , the general solution of Eq. (9.2.2) can be written as

U(x, t) = ∑
k

ckeik·xeλ (k)t ,

where ckeik·x and λ (k) form an eigenvalue pair of the linear operator L, parameter-
ized by the wavenumber k = |k|. The k-dependence of the eigenvalue λ (k) is known
as a dispersion relation. Substitution of the general solution into Eq. (9.2.2) yields a
characteristic equation for λ (k):

∣
∣A−Dk2−λ (k)I

∣
∣= 0, (9.2.3)

with

A =

(
fu fv

gu gv

)

u∗,v∗
, D =

(
Du 0
0 Dv

)
.

Evaluating the determinant, we obtain a quadratic equation for λ :

λ 2 +[(Du +Dv)k
2− fu− gv]λ +DuDvk4− k2(Dv fu +Dugv)+ fugv− fvgu = 0.

In the absence of diffusion (Du = Dv = 0), this reduces to

λ 2− [ fu + gv]λ + fugv− fvgu = 0,
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and the requirement that the homogeneous state is stable in the absence of diffusion
leads to the conditions

fu + gv < 0, fugv− fvgu > 0. (9.2.4)

On the other hand, the requirement that the stationary state is unstable to perturba-
tions in the presence of diffusion means that there exists a nonzero wavenumber k
for which λ (k) = 0. Setting λ = 0 in the quadratic equation yields

DuDvk4− k2(Dv fu +Dugv)+ fugv− fvgu = 0,

which will have a positive solution for k2 provided that

Dv fu +Dugv > 0. (9.2.5)

Equations (9.2.4) and (9.2.5) give the conditions for a Turing instability. One can
use these to identify regions in parameter space where a Turing instability can oc-
cur. Suppose that one chooses a point in parameter space just outside this instability
region such that plotting Re[λ (k)] as a function of k yields dispersion curves that lie
below the horizontal axis. However, if one varies an appropriate bifurcation param-
eter so that one crosses a boundary of the instability region, then at least one of the
dispersion curves crosses the axis at a critical wavenumber kc, and spatially periodic
patterns at the critical wavelength 2π/kc start to grow; this is the onset of the Turing
instability. Finally, note that in the given bounded domain, the linear operator L is
compact and has a discrete spectrum. In other words, the allowed wave vectors are
discrete with

k =
π
L

√
n2

x + n2
y

for integers nx,ny. However, when discussing dispersion curves one often treats k as
a continuous variable.

Example 9.1. In order to illustrate the above ideas, we consider a nondimensional-
ized RD system analyzed by Barrio et al. [24]:

∂u
∂ t

= D∇2u+κ(u+ av− uv2−Cuv) (9.2.6a)

∂u
∂ t

= ∇2u+κ(−u+ bv+uv2+Cuv). (9.2.6b)

This has a unique stationary state at (u,v) = (0,0). Linearizing about this state leads
to the characteristic equation

∣
∣
∣∣

(
κ−Dk2 κa
−κ bκ− k2

)
−λ (k)I

∣
∣
∣∣= 0, (9.2.7)

which yields the quadratic equation

(κ−Dk2−λ )(bκ− k2−λ )+ aκ2 = 0.
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When k = 0, we have

λ 2− (1+ b)κλ +(b+ a)κ2 = 0,

with roots

λ =
κ
2

[
(1+ b)±

√
(1+ b)2− 4(b+ a)

]
.

The fixed point (0,0) is stable to uniform perturbations provided b < −1 and
b+ a > 0. The condition for a Turing instability is that there exists a positive so-
lution for k2 when λ (k) = 0:

Dk4−κk2(Db+ 1)+κ2(b+ a) = 0.

At onset of the instability, the discriminant of the quadratic for k2 vanishes, that is,
[κ(Db+ 1)]2 = 4Dκ2(b+ a), which implies

1-2- 0
0

1

2

b

a

b = −1

b = −1/D b = -a

a = (Db−1)2/4D

Fig. 9.6: Stability diagram for the example RD system given by Eq. (9.2.6). The shaded region
indicates where in parameter space the homogeneous fixed point (0,0) undergoes a Turing insta-
bility

a =
(Db− 1)2

4D
,

and the critical wavenumber is given by

k2
c =

κ(Db+ 1)
2D

.
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Such a solution exists provided that Db+ 1 > 0. Note that the parameter C plays
no role in the linear analysis. The Turing instability region in the (a,b)-plane can
now be determined, as illustrated in Fig. 9.6. One striking feature is that the Turing
instability occupies a relatively small domain of parameter space—this is a common
finding in the theory of Turing pattern formation and is known as the fine-tuning
problem. One way to broaden the domain is to include the effects of noise (see
Sect. 9.3). In Fig. 9.7 we sketch the dominant dispersion curves for two different
sets of parameters, indicating a small band of unstable eigenmodes in both cases.

9.2.2 Amplitude Equations and Bifurcation Theory

So far we used linear theory to show how a stationary state of the RD system (9.2.1)
can undergo a pattern forming instability, leading to the growth of some linear com-
bination of eigenmodes of the underlying linear operator. However, as the eigen-
modes increase in amplitude, the linear approximation breaks down and nonlinear
theory is necessary in order to investigate whether or not a stable pattern ultimately
forms [666]. Suppose that we take μ to denote a bifurcation parameter, such that the
stationary state is stable for μ < μc and undergoes a Turing instability at μ = μc.
(In the model example given by Eq. (9.2.6), we could identify μ with the parameter
a, e.g.) Sufficiently close to the bifurcation point, we can treat μ−μc = ε as a small
parameter and carry out a perturbation expansion in powers of ε . This generates a

Re[λ(k)]

0

0 0.5 1

−0.1

−0.2

k

Fig. 9.7: The dispersion relation λ (k) of the dominant eigenvalue for two different parameter
sets. In both cases there is a small band of wavenumbers for which Re[λ (k)] > 0. The critical
wavenumber kc at the peak of the dispersion curve determines the wavelength of the emerging
pattern
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dynamical equation for the amplitude of the pattern that can be used to investigate
pattern stability, at least in the weakly nonlinear regime. However, one immediate
difficulty in carrying out this program is that a large number of eigenmodes could
be excited beyond the bifurcation point. In the case of an unbounded domain, the
wavenumber k is continuous-valued, since L now has a continuous spectrum, so
that there will be a continuous band of growing modes in a neighborhood of k = kc

when μ > μc. Moreover, the unbounded system is symmetric with respect to the
action of the Euclidean group E(2)—the group of rigid body translations, rotations,
and reflections in the plane. (See Box 9A for a brief primer on group theory and
its application to bifurcation theory.) This means that all eigenmodes eik·x lying on
the critical circle |k|= kc will be excited. Even though the number of excited eigen-
modes becomes finite in a bounded domain, it can still be very large when the size
of the domain satisfies L� 2π/kc.

Box 9A. Symmetric bifurcation theory and pattern formation [225].

Group axioms. A group Γ is a set of elements a ∈ Γ together with a
group operation · that satisfies the following axioms: (i) If a,b ∈ Γ , then
a · b ∈ Γ (closure). (ii) For all a,b,c ∈ Γ , we have a · (b · c) = (a · b) · c
(associativity). (iii) There exists an identity element 1 such that for all a∈
Γ , we have 1 ·a = a ·1 = a (identity element). (iv) For each a ∈ Γ , there
exists an element a−1 such that a ·a−1 = a−1 ·a = 1 (inverse element).

Group representations. A representation of a group Γ acting on an n-
dimensional vector space V is a map ρ : G→GL(V ), where GL(V ) is the
general linear group on V , such that

ρ(a ·b) = ρ(a)ρ(b), for all a,b ∈ Γ .

For a particular choice of basis set for V , GL(V ) can be identified with the
group of invertible n× n matrices. An irreducible representation is one
that has no proper closed sub-representations. In the language of matrices,
this means that it is not possible to choose a basis set in which the matrix
representation can be written in block diagonal form

D(a)=

⎛

⎜
⎜
⎜
⎝

D(1)(a) 0 . . .0
0 D(2)(a) . . .0
...

...
. . .

...
0 0 . . . D(k)(a)

⎞

⎟
⎟
⎟
⎠

=D(1)(a)⊕D(2)(a) . . .⊕D(k)(a),

where D( j)(a) are submatrices.

Group action on a function space. Suppose that the map ρ is a rep-
resentation of a group Γ acting on a finite-dimensional vector space V .
Let u : V →R be a function mapping elements of V to the real line. (One
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could also consider complex-valued functions.) There is then a natural
representation σ of the group Γ acting on the space of functions C(V,R):

σ(γ) ·u(x) = u(ρ(γ)−1(x)), for all x ∈V and γ ∈ Γ .

It is necessary to use the inverse element ρ(γ)−1 to ensure that σ is a
group representation. That is,

σ(γ1) ·σ(γ2) ·u(x) = σ(γ1) ·u(ρ(γ2)
−1(x)) = σ(γ1) ·u2(x)

= u2(ρ(γ1)
−1(x)) = u(ρ(γ2)

−1ρ(γ1)
−1(x))

=u([ρ(γ1)ρ(γ2)]
−1(x))=u([ρ(γ1γ2)]

−1(x))

=σ(γ1γ2)·u(x).

In the following we will use the same symbol γ for an abstract group
element and its corresponding group representation.

Equivariance. Suppose that u ∈ C(R2,R) is the solution to a scalar
reaction-diffusion equation of the form

∂u(x, t)
∂ t

= ∇2
xu(x, t)+ f (u(x, t)).

(One could equally well consider a system of RD equations.) This equa-
tion is equivariant with respect to the natural action of the Euclidean
group E(2) on C(R2,R). That is, if u(x, t) is a solution, then so is
u(γ−1x, t) for all γ ∈ E(2). This is a consequence of the fact that the
Laplacian operator is invariant with respect to the action of E(2): ∇2

γ−1x =

∇2
x. In other words, the operators γ and ∇2 commute, γ∇2 = ∇2γ . Equiv-

ariance then follows, since

0 = γ
[

∂u(x, t)
∂ t

−∇2
xu(x, t)− f (u(x, t))

]

=
∂u(γ−1x, t)

∂ t
−∇2

γ−1xu(γ−1x, t)− f (u(γ−1x, t))

=
∂u(γ−1x, t)

∂ t
−∇2

xu(γ−1x, t)− f (u(γ−1x, t)).

Equivariance has major implications for the bifurcation structure of so-
lutions to the PDE. In particular, suppose that u0 is a homogeneous sta-
tionary solution. Such a solution preserves full Euclidean symmetry so
that the PDE obtained by linearizing about the stationary solution is also
equivariant with respect to E(2). Writing the linear PDE as ∂t u = Lu,
where L is a linear operator on C(R2,R), we see that L commutes with
the group elements γ . This implies that generically the eigenfunctions of
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L form irreducible representations of E(2). (Strictly speaking L has a
continuous rather than a discrete spectrum. One could restrict the PDE to
a bounded domain to obtain a discrete spectrum, but it would have to be
sufficiently large so that Euclidean symmetry still approximately holds.)
Applying the group action to the eigenvalue equation for L shows that

0 = γ · [Lφλ (x)−λ φλ (x)]

= Lγφλ (x)−λ γφλ (x)

= Lφλ (γ−1x)−λ φλ (γ−1x).

Thus φλ (γ−1x) for all γ ∈Γ have the same eigenvalue λ . This degeneracy
is an immediate consequence of the underlying symmetry. In general,
we don’t expect any further degeneracy for the given eigenvalue, so the
eigenfunctions φλ (γ−1x) form an irreducible representation of the group.

The same analysis holds if we restrict solutions to doubly periodic
functions, except that the resulting PDE is now equivariant with respect
to the discrete group Γ = Dn+̇T2. As we show below, bifurcations from
a homogeneous stationary solution can now be analyzed in terms of a
system of ODEs—amplitude equations—of the form

ż = F(z) (9.2.8)

where z,F(z) ∈V with V =R
n or Cn. These equations are also equivari-

ant with respect to Γ , since

γ ·F(z) = F(γ · z)
for all γ ∈Γ . It immediately follows that if z(t) is a solution to the system
of ODEs, then so is γ · z(t). Moreover, since F(0) = 0, the origin is an
equilibrium that is invariant under the action of the full symmetry group
Γ . Thus linearizing about the fixed point z = 0 generates a linear operator
whose eigenvectors form irreducible representations of the group Γ .

Isotropy subgroups. The symmetries of any particular equilibrium solu-
tion z form a subgroup called the isotropy subgroup of z defined by

Σz = {σ ∈ Γ : σz = z}. (9.2.9)

More generally, we say that Σ is an isotropy subgroup of Γ if Σ = Σz
for some z ∈V . Isotropy subgroups are defined up to some conjugacy. A
group Σ is conjugate to a group Σ̂ if there exists σ ∈ Γ such that Σ̂ =
σ−1Σσ . The fixed point subspace of an isotropy subgroup Σ , denoted by
Fix(Σ), is the set of points z ∈V that are invariant under the action of Σ ,

Fix(Σ) = {z ∈V : σz = z ∀ σ ∈ Σ}. (9.2.10)



9.2 Theory of Turing Pattern Formation 517

Finally, the group orbit through a point z is

Γ z = {σz : σ ∈ Γ }. (9.2.11)

If z is an equilibrium solution of equation (9.2.8), then so are all other
points of the group orbit (by equivariance). One can now adopt a strat-
egy that restricts the search for solutions of equation (9.2.8) to those that
are fixed points of a particular isotropy subgroup. In general, if a dy-
namical system is equivariant under some symmetry group Γ and has a
solution that is a fixed point of the full symmetry group, then we expect
a loss of stability to occur upon variation of one or more system param-
eters. Typically such a loss of stability will be associated with the occur-
rence of new solution branches with isotropy subgroups Σ smaller than
Γ . One says that the solution has spontaneously broken symmetry from
Γ to Σ . Instead of a unique solution with the full set of symmetries Γ
a set of symmetrically related solutions (orbits under Γ modulo Σ ) each
with symmetry group (conjugate to) Σ is observed.

Equivariant branching lemma. Suppose that the system of equa-
tions (9.2.8) has a fixed point of the full symmetry group Γ . The equivari-
ant branching lemma [225] states that generically there exists a (unique)
equilibrium solution bifurcating from the fixed point for each of the ax-
ial subgroups of Γ under the given group action—a subgroup Σ ⊂ Γ is
axial if dimFix(Σ) = 1. The heuristic idea underlying this lemma is as
follows. Let Σ be an axial subgroup and z ∈ Fix(Σ). Equivariance of F
then implies that

σF(z) = F(σz) = F(z) (9.2.12)

for all σ ∈ Σ . Thus F(z) ∈ Fix(Σ) and the system of coupled
ODEs (9.2.8) can be reduced to a single equation in the fixed point space
of Σ . Such an equation is expected to support a codimension one bifurca-
tion, in which new stationary solutions emerge whose amplitudes corre-
spond to fixed points of axial isotropy subgroups. Since the codimension
of a bifurcation corresponds generically to the number of parameters that
need to be varied in order to induce the bifurcation, one expects the pri-
mary bifurcations to be codimension one. Thus one can systematically
identify the various expected primary bifurcation branches by construct-
ing the associated axial subgroups and finding their fixed points.
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x

y

(0,1)

(√3/2,-1/2)(-√3/2,-1/2)

Fig. 9.8: Symmetry operations on an equilateral triangle

Example. For the sake of illustration, consider the full symmetry group
D3 of an equilateral triangle (see Fig. 9.8). The action is generated by the
matrices (in an appropriately chosen orthonormal basis)

R =

(−1/2 −√3/2√
3/2 −1/2

)
, S =

(−1 0
0 1.

)

Here R is a rotation by π/3 and S is a reflection about the y-axis. (The
generators of a discrete group form a minimal set of group elements from
which all other group elements can be obtained by combinations of group
operations.) Clearly, R fixes only the origin, while S fixes any point (x,0).
We deduce that the isotropy subgroups are as follows: (i) the full symme-
try group D3 with single fixed point (0,0); (ii) the two-element group
Z2(S) generated by S, which fixes the x-axis, and the groups that are con-
jugate to Z2(S) by the rotations R and R2; and (iii) a trivial group formed
by the identity matrix in which every point is a fixed point. The isotropy
subgroups form the hierarchy

{I} ⊂ Z2(S)⊂ D3.

It follows that up to conjugacy the only axial subgroup is Z2(S). Thus we
expect the fixed point (0,0) to undergo a symmetry-breaking bifurcation
to an equilibrium that has reflection symmetry. Such an equilibrium will
be given by one of the three points {(x,0),R(x,0),R2(x,0)} on the group
orbit generated by discrete rotations. Which of these states is selected
will depend on initial conditions, that is, the broken rotation symmetry is
hidden. Note that a similar analysis can be carried out for the symmetry
group D4 of the square (see Ex. 9.2). Now, however, there are two distinct



9.2 Theory of Turing Pattern Formation 519

types of reflection axes: those joining the middle of opposite edges and
those joining opposite vertices. Since these two types of reflections are
not conjugate to each other, there are now two distinct axial subgroups.

One common property shared by many biological patterns observed in nature
is that the primary bifurcations tend to generate relatively simple patterns such as
stripes and hexagonal spot patterns. This motivates the mathematical simplification
of restricting the space of solutions of the RD system (9.2.1) to that of doubly peri-
odic functions . That is, one imposes the conditions

u(x+ �, t) = u(x, t), v(x+ �, t) = v(x, t)

for every � ∈L where L is some regular planar lattice. The lattice L is generated
by two linearly independent vectors �1 and �2:

L = {(m1�1 +m2�2) : m1,m2 ∈ Z} (9.2.13)

with lattice spacing d = |� j|. Let ψ be the angle between the two basis vectors �1

and �2. We can then distinguish three types of lattice according to the value of ψ :
square lattice (ψ = π/2), rhombic lattice (0 < ψ < π/2, ψ �= π/3), and hexagonal
(ψ = π/3) (see Table 9.1). Restriction to double periodicity means that the original
Euclidean symmetry group is now restricted to the symmetry group of the lattice,
Γ = Dn+̇T2, where Dn is the holohedry of the lattice, the subgroup of rotations
and reflections O(2) that preserves the lattice, and T2 is the two torus of planar
translations modulo the lattice. Thus, the holohedry of the rhombic lattice is D2,
the holohedry of the square lattice is D4, and the holohedry of the hexagonal lattice
is D6, (see Fig. 9.9). There are only a finite number of rotations and reflections to
consider for each lattice (modulo an arbitrary rotation of the whole plane). Conse-
quently, there is only a finite set of candidate excited eigenmodes.

Imposing double periodicity on the marginally stable eigenmodes restricts the
lattice spacing such that the critical wavevector kc lies on the dual lattice L̂ ; the
generators of the dual lattice satisfy �̂i.� j = δi, j for i, j = 1,2. In order to generate
the simplest observed patterns, d is chosen so that kc is the shortest length of a
dual wave vector. Linear combinations of eigenmodes that generate doubly periodic
solutions corresponding to dual wave vectors of shortest length are then given by
c(x) = c0φ(x) where

φ(x) =
N

∑
j=1

z je
ik j ·x + c.c (9.2.14)

where the z j are complex amplitudes. Here N = 2 for the square lattice with k1 = kc

and k2 = Rπ/2kc, where Rξ denotes rotation through an angle ξ . Similarly, N = 3
for the hexagonal lattice with k1 = kc, k2 = R2π/3kc, and k3 = R4π/3kc =−k1−k2.
It follows that the space of marginally stable eigenmodes can be identified with the
N-dimensional complex vector space spanned by the vectors (z1, . . . ,zN) ∈C

N with
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D6 D4 D2

Fig. 9.9: Holohedries of the plane

N = 2 for square or rhombic lattices and N = 3 for hexagonal lattices. It can be
shown that these form irreducible representations of the group Γ = Dn+̇T2 (see
Box 9A for a definition of irreducibility), whose action on C

N is induced by the
corresponding action of Γ on φ(x). For example, on a hexagonal lattice, a translation
φ(x)→ φ(r− s) induces the action

γ · (z1,z2,z3) = (z1e−iθ1 ,z2e−iθ2 ,z3ei(θ1+θ2)) (9.2.15)

with θ j = k j · s, a rotation φ(x)→ φ(R−2π/3x) induces the action

γ · (z1,z2,z3) = (z3,z1,z2), (9.2.16)

Lattice �1 �2 �̂1 �̂2

Square (1,0) (0,1) (1,0) (0,1)
Hexagonal (1,0) 1

2 (1,
√

3) (1, −1√
3
) (0, 2√

3
)

Rhombic (1,0) (cosη , sinη) (1,−cotη) (0,cscη)

Table 9.1: Generators for the planar lattices and their dual lattices in the case of unit lattice spacing
(d = 1)

and a reflection across the x-axis [assuming kc = kc(1,0)] induces the action

γ · (z1,z2,z3) = (z1,z3,z2). (9.2.17)

The full action of Dn+̇T2 on C
N for the various regular planar lattices is given in

Table 9.2.
It turns out that symmetry plays a major role in the selection and stability of

patterns that emerge via a Turing instability (see Box 9A). Here we will describe
the role of symmetry from the perspective of amplitude equations. The latter refer
to the system of nonlinear ODEs describing the slow dynamics of the amplitudes z=
(z1, . . . ,zN) close to the bifurcation point, which can be analyzed using the method
of multiple scales. The basic idea is that close to the Turing bifurcation point where
μ − μc = ε , the critical eigenvalue λ (kc) = O(ε), which means that the excited
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eigenmodes grow slowly with respect to time. (We are assuming that λ (kc) is real;
if it has a nonzero imaginary part, then a Turing–Hopf instability may lead to the
formation of oscillatory patterns; see also Box 4B.) In order to pick out this slow
exponential growth using perturbation theory, one introduces a slow time variable
τ = εt and substitutes the series expansion

u = u∗+ ε1/2u1(x,τ)+ ε1/2u2(x,τ)+ ε3/2u3(x,τ)+ . . .

into the full RD system (9.2.1). Taylor expanding the nonlinear functions f (u,v) and
g(u,v) about the stationary solution (u∗,v∗) and collecting terms having the same
power of ε leads to a hierarchy of equations of the general form

Lun(x,τ) = hn(u1, . . .un−1),

D2 Action D4 Action D6 Action
1 (z1, z2) 1 (z1, z2) 1 (z1, z2, z3)
ξ (z∗1, z

∗
2) ξ (z∗2, z1) ξ (z∗2, z

∗
3, z

∗
1)

κη (z2, z1) ξ 2 (z∗1, z
∗
2) ξ 2 (z3, z1, z2)

κη ξ (z∗2, z
∗
1) ξ 3 (z2, z∗1) ξ 3 (z∗1, z

∗
2, z

∗
3)

κ (z1, z∗2) ξ 4 (z2, z3, z1)
κξ (z∗2, z

∗
1) ξ 5 (z∗3, z

∗
1, z

∗
2)

κξ 2 (z∗1, z2) κ (z1, z3, z2)
κξ 3 (z2, z1) κξ (z∗2, z

∗
1, z

∗
3)

κξ 2 (z3, z2, z1)
κξ 3 (z∗1, z

∗
3, z

∗
2)

κξ 4 (z2, z1, z3)
κξ 5 (z∗3, z

∗
2, z

∗
1)

Table 9.2: (Left) D2+̇T2 action on rhombic lattice; (center) D4+̇T2 action on square lattice; (right)
D6+̇T2 action on hexagonal lattice. In each case the generators of Dn are a reflection and a rota-
tion. For the square and hexagonal lattices, the generator κ represents reflection across the x-axis,
whereas for the rhombic lattice, the generator κη represents reflections across the major diagonal.
The CCW rotation generator ξ represents rotation through the angles π (rhombic), π

2 (square), and
π
3 (hexagonal)

where L is the linear operator defined in Eq. (9.2.2) and hn is a function of lower-
order terms in the hierarchy. Since h1 ≡ 0, it follows that the O(ε1/2) solution u1 is
given by Eq. (9.2.14) with time-dependent amplitudes:

u1(x,τ) = c0

N

∑
j=1

z j(τ)eik j ·x + c.c.
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Fig. 9.10: Illustration of a stripe pattern and a hexagonal spot pattern in the plane

Applying the Fredholm alternative theorem (Box 9B) to the inhomogeneous higher-
order equations then determines an amplitude equation for z(τ) of the form

dz j

dτ
= Fj(z), j = 1, . . . ,N, (9.2.18)

where Fj can be expanded as a polynomial in the z j’s—close to the bifurcation point
it is often sufficient to truncate the polynomials at cubic order in the amplitudes. In
Ex. 9.3 we develop the steps necessary to derive the amplitude equation in the case
of a simpler problem, namely, the RD system (9.2.6) defined on a ring—in this
case the underlying symmetry group is O(2), consisting of rotations and reflections
on the circle (see also Ex. 9.4). Note that although the parameter C does not appear in
the linear theory, it does appear in the amplitude equation and thus, in the 2D case,
determines whether or not the emerging pattern is a stripe pattern or a hexagonal
spot pattern [24] (see Fig. 9.10).

Box 9B. Fredholm alternative theorem (linear operators).

The Fredholm alternative theorem for matrices (see Box 7B) can be
extended to the case of linear operators acting on infinite-dimensional
function spaces [554]. Consider the set of real functions f (x) for x∈ [a,b].
This is a vector space over the set of real numbers: given two func-
tions f1(x), f2(x) and two real numbers a1,a2, we can form the sum
f (x) = a1 f1(x) + a2 f2(x) such that f (x) is also a function on R. Sup-
pose that we restrict the space of functions to those that are normalizable:∫ b

a | f (x)|2dx <∞. More precisely, we are considering the Hilbert space of
functions L2([a,b]). We define the inner product of any two normalizable
functions f ,g according to
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〈 f ,g〉 =
∫ b

a
f (x)g(x)dx.

Suppose that L is a linear differential operator acting on a subspace of
L2([a,b]) consisting of functions that are differentiable to the appropriate
order, which we denote by the domain D(L ). Linearity of the operator
means that for f1, f2 ∈D(L ) and a1,a2 ∈ R,

L (a1 f1 + a2 f2) = a1L f1 + a2L f2.

Given the standard inner product on L2(R), we define the adjoint linear
operator L † according to

〈 f ,L g〉= 〈L † f ,g〉, f ,g ∈D(L).

The operator is said to be self-adjoint if L † =L . Note that, in practice,
one determines L † using integration by parts. For functions defined on
finite intervals, this generates boundary terms that only vanish if appropri-
ate boundary conditions are imposed. In general, this can result in differ-
ent domains for L and L †. Therefore, the condition for self-adjointness
becomes L = L † and D(L ) = D(L †). Given a differential operator
L on L2([a,b]), we can now state an infinite-dimensional version of the
Fredholm alternative theorem. The inhomogeneous equation

L f = h

has a solution if and only if

〈h,u〉= 0 for all u satisfying L †u = 0.

This version is useful when deriving amplitude equations for reaction-
diffusion models.

Although perturbation theory is needed to determine the specific model-
dependent coefficients of the cubic, the general structure of the amplitude equation
can be determined from its equivariance under the action of the symmetry group
Γ = Dn+̇T2. In particular, it can be shown that the cubic amplitude equations for
the three types of planar lattice are of the following general form [225]:

Square or rhombic lattice. First, consider planforms corresponding to a bimodal
structure of the square or rhombic type (N = 2). Take k1 = kc(1,0) and k2 =
kc(cos(ϕ),sin(ϕ)), with ϕ = π/2 for the square lattice and 0 < ϕ < π/2, ϕ �= π/3
for a rhombic lattice. The amplitudes evolve according to a pair of equations of the
form
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dz1

dτ
= z1
[
1− γ0|z1|2− γ(ϕ)|z2|2

]
(9.2.19a)

dc2

dτ̂
= z2
[
1− γ0|z2|2− γ(ϕ)|z1|2

]
(9.2.19b)

with γ(π/2) = γ0. If γ(ϕ)> 0, then three types of steady states are possible.

1. The homogeneous state: z1 = z2 = 0.

2. Rolls or stripe patterns: z1 =
√

1/γ0eiψ1 ,z2 = 0 or z1 = 0,z2 =
√

1/γ0eiψ2 .

3. Squares or rhombics: z j =
√

1/[γ0 + γ(ϕ)]eiψ j , j = 1,2,

where ψ1 and ψ2 are arbitrary phases. A standard linear stability analysis shows
that if γ(ϕ) > γ0, then rolls are stable whereas the square or rhombic patterns are
unstable. The opposite holds if γ(ϕ) < γ0. Note that here stability is defined with
respect to perturbations with the same lattice structure.

Hexagonal lattice. Next consider planforms on a hexagonal lattice with N = 3,
ϕ1 = 0, ϕ2 = 2π/3, and ϕ3 =−2π/3. The cubic amplitude equations take the form

dz j

dτ
= z j
[
1− γ|z j|2−α(|z j+1|2 + |z j−1|2)

]
+β z∗j+1z∗j−1 (9.2.20)

where j = 1,2,3 mod 3. Unfortunately, Eq. (9.2.20) is not sufficient to determine
the selection and stability of the steady-state solutions bifurcating from the homo-
geneous state. One has to carry out an unfolding of the amplitude equation that
includes higher-order terms (quartic and quintic) in z, z̄ whose general form can also
be deduced using symmetry arguments.

9.3 Stochastic Pattern Formation and the RD Master Equation

As in the case of non-spatial gene networks (Chap. 6) and spatial concentration gra-
dients (Sect. 9.1), one needs to take into account the possible effects of intrinsic
noise due to low copy numbers on spontaneous pattern formation. There have been a
number of recent studies that have incorporated diffusion into a stochastic biochemi-
cal network by discretizing space and treating diffusion as a hopping reaction, which
can then be represented in terms of a generalized reaction–diffusion master equation
[47, 87, 88, 399, 429, 573, 689]. One of the interesting implications of such stud-
ies is that intrinsic noise can increase the parameter region in which patterns form,
mitigating the aforementioned problem of parameter fine-tuning. Moreover, spectral
methods have been used to detect a range of noise-induced dynamical phenomena,
based on a linear noise approximation of the reaction–diffusion master equation.
In this section, we will develop the basic theory of stochastic pattern formation by
considering the well-known example of the chemical Brusselator—applications to
cell polarization will be developed in Sect. 9.5.
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9.3.1 Turing Instability in the Brusselator Model

Consider a spatially extended version of the Brusselator model introduced in
Sect. 6.4.5, which is given by the RD system

du
dt

= Du∇2u+ a− (b+ 1)u+u2v (9.3.1a)

dv
dt

= Dv∇2v+ bu− u2v, (9.3.1b)

where Du and Dv are the diffusion coefficients for u and v, respectively. Linearizing
about the spatially homogeneous steady-state solution u∗ = a,v∗ = b/a by setting

u(x, t) = u∗+ ξ (x)eλ t , v(x, t) = v∗+η(x)eλ t

and expanding to first order in ξ ,η leads to the eigenvalue equation

λ
(

ξ (x)
η(x)

)
=

(
b− 1+Du∇2 a2

−b −a2 +Dv∇2

)(
ξ (x)
η(x)

)
. (9.3.2)

This has eigensolutions of the form

ξ (x) = ξ̂ (k)e−ik·x, η(x) = η̂(k)e−ik·x,

such that ∇2 →−k2 and λ is the solution to

(b− 1−Duk2−λ )(a2 +Dvk2 +λ )− a2b = 0.

That is, λ = λ±(k) with

λ±(k) =
1
2

[
Γ (k)±

√
Γ (k)2 + 4Λ(k)

]
, (9.3.3)

where

Γ (k) = b− 1− a2− (Du +Dv)k
2, Λ(k) = (b− 1−Duk2)(a2 +Dvk2)− a2b.

(9.3.4)

One of the conditions for a Turing instability is that the homogeneous fixed point
should be stable with respect to homogeneous (k = 0) perturbations (see Sect. 9.2).
Setting k = 0 in Eq. (9.3.3), we thus require Re[λ±(0)]< 0, where

λ±(0) =
1
2

[
b− 1− a2± ia

]
. (9.3.5)

This yields the necessary condition b< 1+a2. Now observe that as k increases from
zero Γ (k) becomes more negative. Therefore, in order that the fixed point becomes
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Re[λ]

k
0.2 0.4 0.6 0.8

b > bc

b < bc

b = bc

Fig. 9.11: Sketch of dispersion curves for the deterministic Brusselator model, showing Re[λ (k)] as
a function of k for the most unstable eigenvalue. Parameter values are a = 1.5,Du = 2.8, and Dv =
22.4. Three different values for b are used: b = 1.8 < bc, b = bc = 2.34, and b = 2.9 > bc. Dashed
line shows imaginary part of λ (k), which is approximately the same for all given b values. Redrawn
from [429]

unstable due to the growth of some nonzero frequency mode (k �= 0), we require
Λ(k) to become positive. The critical wavenumber kc for a Turing instability is thus
given by the condition Λ(kc) = 0, that is,

[(b− 1)Dv− a2Du]k
2
c = a2.

Hence, a Turing instability will occur provided that

1+
Du

Dv
a2 < b < 1+ a2,

which immediately implies that Du < Dv, that is, Y molecules diffuse more quickly
than X molecules. If b is taken to be a bifurcation parameter, then increasing b from
zero will lead to a Turing instability at the critical value bc = 1+Dua2/Dv, beyond
which spatially periodic eigenmodes with spatial frequencies around kc will start to
grow (see Fig. 9.11). As the amplitude of these eigenmodes increases beyond the
linear regime, saturating nonlinearities of the full system will typically stabilize the
resulting patterns, whose fundamental wavelength will be approximately given by
2π/kc.

9.3.2 Linear-Noise Approximation of RD Master Equation

In order to incorporate diffusion into the corresponding master equation (6.4.28), we
follow McKane et al. [429] by partitioning the cell into small domains with centers
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at discrete lattice points �. For simplicity, it is assumed that the domain centers are
distributed on a regular d-dimensional lattice L (d = 1,2,3) with lattice spacing
Δ�. The spatially discrete version of the RD system (9.3.1) is

∂u�
dt

= a− (b+ 1)u�+ u2
�v�+αuΔu�, (9.3.6a)

∂v�
dt

= bu�− u2
�v�+αvΔv�. (9.3.6b)

Here Δ is the discrete Laplacian defined as (see Ex. 9.5)

Δu� =
2
z ∑
�′∈∂�

[u�′ − u�], (9.3.7)

where �′ ∈ ∂� indicates that we are summing over nearest neighbors of � on the lat-
tice and z is the number of nearest neighbors (lattice coordination number). The con-
tinuum RD Eq. (9.5.3) is recovered in the continuum limit Δ l → 0 and αu,αv → ∞
with 2αuΔ l2 = Du and 2αvΔ l2 = Dv fixed and u�(t),v�(t)→ u(x, t),v(x, t). Now
let n�, j denote the number of X molecules ( j = 1) and Y molecules ( j = 2) in the
domain with center at � and introduce the local densities u�, j = n�, j/Ω . A major
advantage of discretizing space is that diffusion can now be represented by a set
of hopping reactions and treated on an equal footing with the chemical reactions in
Eq. (6.4.25). The full set of reactions is

(n�,1,n�,2)
T�,1→ (n�,1 + 1,n�,2), (9.3.8a)

(n�,1,n�,2)
T�,2→ (n�,1− 1,n�,2+ 1) (9.3.8b)

(n�,1,n�,2)
T�,3→ (n�,1 + 1,n�,2− 1) (9.3.8c)

(n�,1,n�,2)
T�,4→ (n�,1− 1,n�,2), (9.3.8d)

(n�, j,n�′, j)
T j
�,�′−→ (n�, j− 1,n�′, j + 1), �′ ∈ ∂�, (9.3.8e)

with

T�,r = Tr(n�,1,n�,2) for r = 1,2,3,4, T j
�,�′ =

2α j

z
n�, j, (9.3.9)

and α1 = αu,α2 = αv. If N denotes the total number of lattice points, then there are
2N “chemical species” labeled by (�, j). Moreover, we have 2zN hopping reactions
and pN local biochemical reactions between the X and Y molecules, so that the total
number of reactions is R = (2z+ p)N. For the general two-species RD equation

∂u�,i
∂ t

=
p

∑
r=1

Sir fr(u�,1,u�,2)+αiΔu�,i, i = 1,2 (9.3.10)
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the corresponding RD master equation has the general form

dP(n1,n2, t)
dt

= Ω
R

∑
q=1

(

∏
i=1,2

∏
�

E
−Ŝi,�;q− 1

)

f̂q(n1/Ω ,n2/Ω)P(n1,n2, t)

(9.3.11)

where n j = {n�, j, � ∈L }, and

f̂q = fr(u�,1,u�,2), Ŝ�,i;q = Sir for q = (r, �)

f̂q =
2α j

z
u�, j, Ŝ�, j;q =−1, Ŝ�′, j;q = 1 for q = ( j, �,�′), �′ ∈ ∂�.

The RD master equation (9.3.11) is clearly difficult to analyze. However, if Ω is
sufficiently large, then we can carry out a linear noise approximation to obtain a
Langevin equation for a multivariate OU process (Sect. 6.3). That is, we approxi-
mate the RD master equation by an FP equation and then linearize about the homo-
geneous steady state (u∗1,u

∗
2) by setting

n�, j
Ω

= u�, j = u∗j +
1√
Ω

v�, j,

with u∗1 = a,u∗2 = b/a for the Brusselator model. This yields

dv�, j(t)

dt
= ∑

j′
A j j′v�, j′(t)+η�, j(t), (9.3.12)

with white noise terms satisfying

〈η�, j〉= 0, 〈η�, jη�′, j′ 〉= D�, j;�′, j′ .

Here

A j j′v�, j′ =
p

∑
r=1

S jr
∂ fr(u∗1,u

∗
2)

∂u∗j′
v�, j′+α jΔv�, jδ j. j′ (9.3.13)

and

D�, j;�′, j′ = δ�,�′Cj j′+
2α j

z
(Γ ∗) j

��′δ j, j′ (9.3.14)

with
p

∑
r=1

S jrS j′r fr(u
∗
1,u

∗
2) =Cj j′ (9.3.15)

and
(Γ ∗) j

�� = 2zu∗j , (Γ ∗) j
��′ =−2u∗j for all �′ ∈ ∂�. (9.3.16)

Considerable insight into the behavior of the system can now be obtained by
transforming to Fourier space [399, 429]. For simplicity, consider a 1D lattice with
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periodic boundary conditions, v�+N = v� for �= 1, . . . ,N, and set the lattice spacing
Δ� = 1. Introduce the discrete Fourier transforms (Box 2A)

V (k) = ∑
�

e−ik�v�, v� =
1
N ∑

k

eik�V (k)

with k = 2πm/N,m = 0, . . . ,N−1. For a regular 1D lattice the Fourier transform of
the discrete Laplacian operator is

∑
�

e−ik�Δ̂v� = ∑
�

e−ik�[v�+1 + v�−1− 2v�] = 2[cos(k)− 1]V(k). (9.3.17)

The discrete Fourier transform of the Langevin equation is

dVj(k, t)

dt
= ∑

j′
A j j′(k)Vj′(k, t)+η j(k, t) (9.3.18)

with

A j j′(k) =
p

∑
r=1

S jr
∂ fr(u∗1,u

∗
2)

∂u∗j′
+ 2α j[cos(k)− 1]δ j, j′ (9.3.19)

and
〈η j(k, t)〉= 0, 〈η j(k, t)η j′(k

′, t ′)〉= D̂ j j′(k,k
′)δ (t− t ′).

Moreover, using the identity ∑� ei(k−k′)� = Nδk,k′ , we have

D̂ j j′(k,k
′) = ∑

�,�′
e−ik�e−ik′�′D�, j;�′, j′

= ∑
�,�′

e−ik�e−ik′�′
[

δ�,�′Cj j′ +
2α j

z
(Γ ∗) j

��′δ j, j′

]

= Nδk,−k′
(
Cj j′+ 4α ju

∗
j [1− cos(k)]δ j, j′

)

= Nδk,−k′Cj j′(k).

The factor of N can be eliminated by rescaling time t and Vj(k) appropriately. Now
Fourier transforming the Langevin equation with respect to time gives

∑
l

Φ jl(k,ω)Vl(k,ω) = η j(k,ω)

with
Φ jl(k,ω) =−iωδ j,l−A jl(k)

and
〈η j(k,ω)〉= 0, 〈η j(k,ω)η j′(k

′,ω ′)〉= δk,−k′Cj j′(k)δ (ω +ω ′).
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Hence,

〈Vi(k,ω)Vi(k
′,ω ′)〉

=

〈[

∑
l

Φ−1
il (k,ω)ηl(k,ω)

][

∑
j

Φ−1
i j (k′,ω ′)η j(k

′,ω ′)

]〉

= δk,−k′δ (ω +ω ′)∑
l, j

Φ−1
il (k,ω)Cl j(k)Φ−1

i j (−k,−ω ′)

= δk,−k′δ (ω +ω ′)∑
l, j

Φ−1
il (k,ω)Cl j(k)(Φ†)−1

ji (k,ω).

Defining the power spectrum of the kth eigenmode by

〈Vi(k,ω)Vi(k
′,ω ′)〉= Si(k,ω)δk,−k′δ (ω +ω ′),

we deduce that

Si(k,ω) = ∑
l, j

Φ−1
il (k,ω)Cl j(k)(Φ†)−1

ji (k,ω). (9.3.20)

Note that the above analysis applies to any two-species RD master equation of the
form (9.3.11) and can be extended to multiple species. In the case of the Brusselator
model system, whose deterministic RD equations are given by Eq. (9.3.6), we have

∑
r

S1r fr(u�,1,u�,2) = a− (b+ 1)u�,1+ u2
�,1u�,2, (9.3.21)

∑
r

S2r fr(u�,1,u�,2) = bu�,1− u2
�,1u�,2 (9.3.22)

and ∑4
r=1 S jrS j′r fr(u�,1,u�,2) =C�

j j′ with

C� =

(
a+(b+ 1)u�,1+ u2

�,1u�,2 −bu�,1− u2
�,1u�,2

−bu�,1− u2
�,1u�,2 bu�,1 + u2

�,1u�,2

)
. (9.3.23)

Carrying out the linear noise approximation and transforming to Fourier space then
leads to the Langevin equation (9.3.18) with drift matrix

A(k) =

(
b− 1+ 2α1[cos(k)− 1] a2

−b −a2 + 2α2[cos(k)− 1]

)
(9.3.24)

and diffusion matrix

C(k) =

(
2(b+ 1)a+ 4α1u∗1[1− cos(k)] −2ba

−2ba 2ba+ 4α2u∗2[1− cos(k)]

)
(9.3.25)
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Fig. 9.12: Sketch of an example power spectrum S(k,0) for the concentration of chemical X in a
stochastic Brusselator model showing the peak in the spectrum at a nonzero wavenumber k

with u∗1 = a,u∗2 = b/a. For a wide range of RD models exhibiting a Turing instability
in the deterministic limit, including the Brusselator model, one finds that when one
plots Si(k,ω) as a function of k, the power spectrum shows a peak at k �= 0,ω = 0,
indicating the presence of a stochastic Turing pattern [47, 87, 88, 399, 429, 573,
689], see Fig. 9.12. Moreover, one can compute the region of parameter space for
which the spectrum has a peak at nonzero k and demonstrate that these regions are
significantly larger than the region over which a deterministic Turing pattern oc-
curs. It also possible to extend the analysis to the case of Turing–Hopf bifurcations,
where there is a peak in the power spectrum at k �= 0,ω �= 0, which can result in
either standing or traveling waves [48, 573]. The Turing–Hopf instability may be a
bifurcation mechanism underlying the Min protein oscillations (Sect. 9.4).

One important extension of the above analysis would be to determine the effects
of intrinsic noise on the selection and stability of patterns. One way to approach
this would be to construct a stochastic version of the amplitude equations discussed
in Sect. 9.2.2. However, it is not clear to what extent a diffusion approximation of
the RD master equation is valid close to a bifurcation point where weakly nonlinear
analysis can be applied. A related issue is to what extent symmetries of the under-
lying deterministic RD system persist in the presence of intrinsic noise.

9.4 Protein Self-Organization of Min Proteins in E. coli

The mechanism of cell division in bacteria differs significantly from eukaryotic
cells; see Sect. 8.2. Bacterial cell division is initiated by the polymerization of the
tubulin homolog FtsZ into the so-called Z-ring. In rod-shaped bacteria such as
E. coli, formation of the Z-ring is usually restricted to the cell center, where it de-
termines the site of cell division. The localization of the Z-ring is accurate to within
3 % of the cell length, resulting in two daughter cells of almost equal size. A major
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process involved in the high precision of cell division is the regulatory system of
Min proteins (see the review [396]). The Min systems consists of three proteins,
MinC, MinD, and MinE. MinC inhibits Z-ring formation, whereas MinD and MinE
act to confine MinC to the cell poles. A characteristic feature of Min protein dy-
namics is that the protein concentrations oscillate from pole to pole with a period of
1–2 min, which is much shorter than the cell cycle. Consequently, the time-averaged
MinC concentration is maximized at the cell poles and minimized at the cell center,
resulting in inhibition of Z-ring formation at the poles.

A more detailed picture of the mechanism underlying Min protein oscillations
is shown in Fig. 9.13. MinC forms a complex with MinD and thus follows the spa-
tiotemporal variation in MinD concentration, consistent with the finding that only
MinD and MinE are essential for the occurrence of oscillations. The basic biochem-
ical cycle is as follows: cytoplasmic MinD forms an ATPase MinD·ATP that binds
cooperatively to the cell membrane, forming polymer filaments; MinE then binds
to membrane MinD·ATP and stimulates ATP hydrolysis that causes MinD·ADP to
be released from the membrane; the cytoplasmic MinD·ADP is then converted back
to MinD·ATP and rebinds to the membrane. If MinD·ATP initially binds to a polar
region, then it forms a cap that extends towards the cell center and is flanked by a
ring of MinE known as the E-ring. The E-ring stimulates the hydrolysis of Min·ATP
in its neighborhood, leading to the release of MinD·ADP and MinE, with the lat-
ter rebinding to the shrinking MinD·ATP cap. This results in movement of the E
ring towards the pole in the wake of the shrinking MinD·ATP cap. Meanwhile, the
released MinD·ATD reconverts to MinD·ATP and rebinds to the membrane at the
opposite pole, where the MinE concentration is lowest, forming a new MinD·ATP
cap. Once the first cap has disappeared, the released MinE rebinds to form an E-ring
at the boundary of the new MinD·ATP cap. Iteration of this process underlies the ob-
served Min protein oscillations.

A number of models have been developed that describe the interactions be-
tween MinD and MinE in terms of a system of reaction–diffusion (RD) equations
[279, 284, 356, 432, 434]. All of the models can undergo a pattern forming insta-
bility of a homogeneous state, resulting in self-organized Min oscillations. How-
ever, the specifics of the molecular mechanism that generates the oscillations differ
between the models, and have not yet been resolved conclusively by experiments.
For example, Meinhardt and de Boer [434] consider a typical activator–inhibitor RD
system with slow membrane diffusion and fast cytoplasmic diffusion (see Sect. 9.2);
a crucial component of the model is protein synthesis and degradation. On the other
hand, a crucial feature of the model by Howard et al. [275] is that cytoplasmic MinD
recruits MinE to the membrane which in turn reduces the attachment rate of MinD.
Subsequent models have emphasized the importance of MinD aggregation within
the membrane and cooperative binding [284, 356, 432]. For the sake of illustra-
tion, consider the RD model of Huang et al. [284]. Let ρD, ρ∗D, and ρE denote the
concentrations of MinD·ATD, MinD·ATP, and MinE in the cytoplasm, and let ρ∗d ,
ρde denote the concentrations of MinD·ATP and MinD·ATP·MinE complexes in the
membrane. The cell is modeled as a cylinder of radius R and length L; typical values
are R = 0.5μm and L = 5μm. The various components of the model are as follows:
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Fig. 9.13: Oscillatory patterns of Min protein system in E. coli. MinD·ATP (blue) binds to the
membrane forming a polar cap. Min E (red) stimulates hydrolysis of MinD·ATP, which leads to
protein release from the membrane. The polar cap shrinks and cytoplasmic MinD reverts to its
ATP form and subsequently binds to the membrane at the opposite pole. Inset shows the cycle of
biochemical reactions underlying the oscillations

1. Conversion of cytoplasmic MinD·ATD to MinD·ATP at a rate σDρD

2. Hydrolysis of MinE-mediated membrane-bound MinD·ATP· at a rate σdρde;
MinE and MinD·ATD are then immediately released from the membrane.

3. The cooperative binding of cytoplasmic MinD·ATP at a rate

[kD + kd(ρde +ρ∗d)]ρ
∗
D(R),

where ρ∗D(R) is the concentration of cytoplasmic MinD·ATP close to the mem-
brane.

4. The binding of cytoplasmic MinE to membrane-bound MinD·ATP at a rate
σEρ∗d ρE .

5. All cytoplasmic proteins have the same diffusion coefficient, which has the
typical value D = 2.5μm2/s, whereas membrane diffusion is assumed to be
negligible.
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The resulting system of RD equation is then

∂ρD

∂ t
= D∇2ρD−σDρD + δ (r−R)σdρde (9.4.1a)

∂ρ∗D
∂ t

= D∇2ρ∗D +σDρD− δ (r−R)[kD + kd(ρde +ρ∗d )]ρ
∗
D (9.4.1b)

∂ρE

∂ t
= D∇2ρE + δ (r−R)σdρde− δ (r−R)σEρ∗d ρE (9.4.1c)

∂ρ∗d
∂ t

=−σEρ∗d ρE(R)+ [kD + kd(ρde +ρ∗d)]ρ
∗
D(R) (9.4.1d)

∂ρde

∂ t
=−σdρde +σEρ∗d ρE(R). (9.4.1e)

Numerical simulations of the above system reveal oscillations with similar char-
acteristics to those found in experiments, including the growth and shrinkage of
alternating polar caps and the formation of an E-ring at the cell center. The reason
that MinD can form a cap on the opposite pole is that it diffuses farther than MinE
following release from the old polar cap, which is a consequence of the delay in
converting MinD·ATD back to MinD·ATP. Once the original cap has disappeared,
the newly released MinE proteins diffuse until they encounter the edge of the newly
formed cap where they rapidly bind to form the E-ring.

The protein aggregation model of Kruse [356, 432] takes self-aggregation of
MinD in the membrane rather than cooperative binding as a critical mechanism
for Min oscillations. It also neglects details of ATP hydrolysis and assumes that the
radial distribution of cytoplasmic proteins is uniform. The corresponding system of
RD equations can be expressed in terms of the axial variable x as follows:

∂ρD

∂ t
= D

∂ 2ρD

∂x2 +σdρde− kD(ρmax−ρde−ρd)ρD (9.4.2a)

∂ρE

∂ t
= D

∂ 2ρE

∂x2 +σdρde−σEρdρE (9.4.2b)

∂ρd

∂ t
=−σEρdρE + kD(ρmax−ρde−ρd)ρD− ∂Jd

∂x
(9.4.2c)

∂ρde

∂ t
=−σdρde +σEρdρE . (9.4.2d)

Here there is no distinction between ATP and ATD versions of MinD, and the bind-
ing rate of MinD simply depends on the product of the cytoplasmic MinD concen-
tration ρD and the density of unoccupied membrane ρmax−ρde−ρd . The term ∂xJd

represents a membrane aggregation current,

Jd =−Dd∂ρd +ρd(ρmax−ρde−ρd)
[
k1∂xρd + k2∂ 3

x ρd + k̄1∂xρde + k̄2∂ 3
x ρde
]
,

(9.4.3)

where Dd is membrane diffusivity of MinD. (For simplicity, we drop a correspond-
ing aggregation current for MinD·MinE complexes and set k̄1 = k̄2 = 0.) No-flux
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boundary conditions are imposed at the ends x = 0,L and the total protein numbers
are conserved:

∫ L

0
(ρD +ρd +ρde)dx = LND,

∫ L

0
(ρE +ρde)dx = LNE . (9.4.4)

Following the analysis of [432], suppose that the diffusion of cytoplasmic proteins
is much faster than the period of Min oscillations so that ρD and ρE can be approx-
imated by uniform concentrations ρ̄D and ρ̄E . Integrating equations (9.4.2a,b) with
respect to x and using the conservation conditions leads to the pair of ODEs

dρ̄D

dt
= σd(ND− ρ̄E)− kD(ρmax−ND + ρ̄D)ρ̄D (9.4.5a)

dρ̄E

dt
= σd(ND− ρ̄E)−σE(ND−NE − ρ̄D+ ρ̄E)ρ̄E . (9.4.5b)

It can be shown that there exists a unique fixed point in the domain 0 ≤ ρ̄D ≤ ND

and 0 ≤ ρ̄E ≤ NE . Substituting this fixed point into Eq. (9.4.2cd) leads to a pair of
RD equations for membrane-bound Min proteins:

∂ρd

∂ t
=−σ̄Eρd + k̄D(ρmax−ρde−ρd)− ∂Jd

∂x
(9.4.6a)

∂ρde

∂ t
=−σdρde + σ̄Eρd , (9.4.6b)

where σ̄E = σE ρ̄E , k̄D = kDρ̄D. Note the reaction terms are linear and determine the
relaxation to a stationary state, whereas the current term is nonlinear and causes
the pattern forming instability. This differs from classical RD equations such as
the previous model, where transport is due to diffusion and instabilities arise from
nonlinear reactions. Equation (9.4.6) have a homogeneous fixed point solution

ρ̄d = ND−NE − ρ̄D+ ρ̄E , ρ̄de = NE − ρ̄E .

Linearizing about this fixed point, one can show that the resulting pair of linear
PDEs have eigensolutions of the form

ρd− ρ̄d ∼ cos(Ω t)cos(qcx), ρde− ρ̄de ∼ cos(Ω t +φ)cos(qcx),

with corresponding eigenvalue λ (q). The following results can be established (see
Ex. 9.6): (i) The homogeneous fixed point is stable unless k1 exceeds a critical value
k1c. (ii) The fastest growing (critical) eigenmode is an inhomogeneous stationary
state (Ω = 0) if σd > σd,c and an inhomogeneous oscillatory pattern when σd < σd,c

for a critical parameter value σd,c. (iii) The critical wavenumber and frequency of
the critical oscillatory mode are given by

q4
c =

σDρ̄D +σd +σE ρ̄E

ρ̄d(ρmax− ρ̄d− ρ̄de)k2
, Ω 2

c = σDσE ρ̄Dρ̄E −σ2
d .
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Fig. 9.14: Linear stability of the homogeneous state in aggregation current model of Min pro-
tein oscillations. (a) Sketch of example dispersion curves for the real and imaginary parts of
the eigenvalue λ as a function of wavenumber q. There is a band of growing eigenmodes with
nonzero wavenumber such that Im(λ ) �= 0, indicating the formation of an oscillatory standing
wave. (b) Sketch of stability diagram for the homogeneous fixed point as a function of the total
densities of MinD and MinE. Crossing the solid (dashed) stability curve leads to an oscillatory
(stationary) pattern. The curves are redrawn from [432] using the parameter values σD = 4×
10−5 μms−1,σE = 3× 10−4 μms−1,σd = 0.04s−1,Dd = 0.06μm2s−1,σmax = 1,000μm−1,k1 =
1.5×10−6 μm4s−1,k2 = 1.8×10−7μm6s−1, k̄1 =−1.2×10−6 μm4s−1, k̄2 = 1.2×10−10 μm6s−1.
In (a) ND = 900μm−1 and NE = 350μm−1

Example dispersion curves for the real and imaginary parts of λ (q) together with a
bifurcation diagram are sketched in Fig. 9.14.

As in the case of intracellular concentration gradients (Sect. 9.1), an important
issue is the effect of intrinsic noise due to low protein copy numbers on Min os-
cillations. This has been investigated by Kruse et al. [184] in a combined exper-
imental/computational study. The authors observed that for short cells (less than
2.5 μm), instead of exhibiting regular oscillations, MinD tended to shift stochasti-
cally from one cell half to the other. However, as the cell grew beyond around 2.5–
3 μm, stochastic switching transitioned into regular Min oscillations, which became
progressively more robust. Interestingly, the transition was accompanied by a quali-
tative change in the ensemble-averaged distribution ρ(τ) of residence times τ [184].
For small cells, the distribution appeared algebraic with ρ(τ) ∼ τ−α and α ≈ 2.1.
(This is consistent with the expected exponential distribution of switching events for
an individual cell, assuming a Gaussain variation in system parameters across cells.)
On the other hand, for longer cells, ρ(τ) was sharply peaked at approximately half
the period of oscillations (around 35 s), with a small tail of rare events in which
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one or more oscillations were missed. An accompanying computational study of
stochastic versions of several different models of Min Oscillations suggests that the
aggregation model of Meacci and Kruse [432] best captures the stochastic switching
observed experimentally [184]. One important issue is identifying the origin of the
transition between stochastic switching and oscillations of MinD as the cell grows.
It turns out that increasing cell length is not sufficient, assuming that the total num-
ber of proteins grows linearly with cell length. On the other hand, increasing the rate
σE of MinE binding can trigger the transition.

9.5 Cell Polarization

Many cellular processes depend critically on the establishment and maintenance of
polarized distributions of signaling proteins on the plasma membrane [300]. These
include cell motility, neurite growth and differentiation, epithileal morphogenesis,
embryogenesis, and stem cell differentiation. Cell polarization typically occurs in
response to some external spatial cue such as a chemical gradient. A number of
features of the stimulus response are shared by many different cell types, includ-
ing amplification of spatial asymmetries, persistence of polarity when the triggering
stimulus is removed, and sensitivity to new stimuli whereby a cell can reorient when
the stimulus gradient is changed. In many cases, cell polarity can also occur sponta-
neously, in the absence of pre-existing spatial cues.

One of the most studied model systems of cell polarization is the budding yeast
Saccharomyces cerevisiae [305, 598]. A yeast cell in the G1 phase of its life cycle
(see Fig. 8.6) is spherical and grows isotropically. It then undergoes one of two fates:
either it enters the mitotic phase of the life cycle and grows a bud, or it forms a mat-
ing projection (shmoo) towards a cell of the opposite mating type. Both processes
involve some form of symmetry-breaking mechanism that switches the cell from
isotropic growth to growth along a polarized axis (see Fig. 9.15). Under physiolog-

mating

budding

symmetry
breaking

Cdc42

actin patch
actin cable

Fig. 9.15: Symmetry-breaking processes in the life cycle of budding yeast. See text for details.
Redrawn from [598]
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ical conditions, yeast cells polarize towards an environmental spatial asymmetry.
This could be a pheromone gradient in the case of mating or a bud scar deposited
on the cell surface from a previous division cycle. However, yeast cells can also
undergo spontaneous cell polarization in a random orientation when external asym-
metries are removed. For example, in the case of budding, induced cell mutations
can eliminate the recognition of bud scars. Moreover, shmoo formation can occur
in the presence of a uniform pheromone concentration. The observation that cells
can break symmetry spontaneously suggests that polarization is a consequence of
internal biochemical states. Experimental studies in yeast have shown that cell po-
larization involves a positive feedback mechanism that enables signaling molecules
already localized on the plasma membrane to recruit more signaling molecules from
the cytoplasm, resulting in a polarized distribution of surface molecules. The partic-
ular signaling molecule in budding yeast is the Rho GTPase Cdc42. (More complex
cells involve interactions between several different GTPases; see below.) As with
other Rho GTPases (see Box 9C), Cdc42 targets downstream affectors of the actin
cytoskeleton. There are two main types of actin structure involved in the polar-
ized growth of yeast cells: cables and patches. Actin patches consist of networks
of branched actin filaments nucleated by the Arp2/3 complex at the plasma mem-
brane, whereas actin cables consist of long, unbranched bundles of actin filaments.
Myosin motors travel along the cables unidirectionally towards the actin barbed
ends at the plasma membrane, transporting intracellular cargo such as vesicles,
mRNA, and organelles. The patches act to recycle membrane-bound structures to
the cytoplasm via endocytosis. During cell polarization, Cdc42-GTP positively reg-
ulates the nucleation of both types of actin structure, resulting in a polarized actin
network, in which actin patches are concentrated near the site of asymmetric growth
and cables are oriented towards the direction of growth. There are at least two in-
dependent but coordinated positive feedback mechanisms that can establish cell po-
larity [674]. One involves the reinforcement of spatial asymmetries by the directed
transport of Cdc42 along the actin cytoskeleton to specific locations on the plasma
membrane [374, 415], whereas the other involves an actin-independent pathway, in
which Bem1, an adaptor protein with multiple binding sites, forms a complex with
Cdc42 that enables recruitment of more Cdc42 to the plasma membrane. In the lat-
ter case, intrinsic noise plays an essential role in allowing positive feedback alone
to account for spontaneous cell polarization [7, 302, 429]. An alternative possibility
is that positive feedback is coupled with activity-dependent inhibition [300], result-
ing in a reaction–diffusion system that exhibits Turing pattern formation [231, 437]
or bistability [200, 452, 581]. A universal feature of all of these models, which is
also shared by other cell types, is that there exists at least one signaling molecule
that can either be in an active membrane-bound state or an inactive cytosolic state,
together with some form of feedback mediated by molecular interactions within the
membrane or between the membrane and the cytosol [300].
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Box 9C. Rho GTPase and cell polarization.

Rho GTPase is a class of signaling molecule that plays an important role
in the polarization and migration of many different cell types [251]. Rho
GTPases act as intracellular molecular switches that cycle between an
active GTP-bound form in the membrane and an inactive GDP-bound
form in the cytosol (see Fix. 9.16a). Guanine nucleotide exchange fac-
tors (RhoGEFs) facilitate the conversion from GDP-bound to GTP-bound
form, whereas GTPase activating proteins (RhoGAPs) enhance GTP hy-
drolysis and are thus negative regulators. RhoGEFs and RhoGAPs are
both regulated by upstream signals. A major downstream target of the
Rho GTPase signaling pathways is the actin cytoskeleton [251, 400, 468].
A variety of actin accessory proteins mediate the different components of
actin dynamics within a cell and can be activated by the various signal-
ing pathways associated with cell polarization. We describe a few of the
major players; see [468] for more details. First, the actin related proteins
2 and 3 (Arp2/3) complex stimulates actin polymerization by creating
new nucleation cores. The Arp2/3 complex is activated by members of
the Wiskott–Aldrich syndrome protein (WASP) family protein (WAVE)
complex, which localizes to lamellipodia (mesh-like actin sheets) where
it facilitates actin polymerization.

The WAVE complex is activated by the small GTPase Rac1, which
modulates the actin cytoskeleton dynamics by controlling the formation
of lamellipodia. The formation of filopodia (packed actin bundles), on
the other hand, is regulated by another member of the small GTPases,
called Cdc42. A second important accessory protein is cofilin, a mem-
ber of the actin depolymerizing factor (ADF)/cofilin family, which mod-
ifies actin dynamics by increased severing and depolymerization of actin
filaments via its binding to the non-barbed (pointed) ends. Cofilin is in-
hibited when phosphorylated by LIM-kinase, which is itself activated by
p21 activated kinases (PAKs). Since the latter is a downstream target of
Rac1 and Cdc42, it follows that Rac1 and Cdc42 inhibit actin depoly-
merization by downregulating cofilin. At first sight, one would expect the
reduction of cofilin to counter the affects of Arp2/3. However, the extent
to which cofilin enhances or reduces cell protrusion depends on the spa-
tial and temporal scale over which it operates [136]. It turns out that the
overall effect of Rac1 and Cdc42 is to increase actin dynamics, thus pro-
moting cytoskeletal growth. This is opposed by the action of a third type
of GTPase known as RhoA, which tends to stabilize the actin network by
activating ROCK-kinase, which promotes profilin (an actin binding pro-
tein that catalyzes polymerization) and suppresses cofilin. A summary of
the basic signaling pathways is given in Fig. 9.16b.
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Fig. 9.16: (a) The Rho GTPase cycle. (b) Simplified signaling pathways from GTPases
RhoA, Rac, and Cdc42 to actin accessory proteins cofilin and Arp 2/3 that regulate
actin polymerization in the cytoskeleton (Redrawn from Luo [400])

Probably the most striking example of a polarized cell is the neuron, due to
its compartmentalization into a thin, long axon and several shorter, tapered den-
drites. Experimental studies of neuronal polarization have mainly been performed
on dissociated, embryonic cortical and hippocampal neurons or on postnatal cere-
bellar granule neurons. Such studies have identified three basic stages of polariza-
tion [12, 468]; see Fig. 9.17. Cultured neurons initially attach to their substrate as
round spheres surrounded by actin-rich structures including lamellipodia and filopo-
dia (stage 1). Lamellipodia then coalesce to form growth cones, followed by the es-
tablishment of several short processes, called neurites (stage 2). Eventually one of
the neurites starts to grow more rapidly to become the axon (stage 3), while the other
neurites remain short and develop into dendrites at later stages of maturation. The
growth cone at the mobile tip of an elongating neurite or axon contains microtubules
within a central domain (C-domain) and actin filaments within the peripheral do-
main (P-domain) (see Fig. 9.18). The microtubules provide the structural backbone
of the shaft and a substrate for intracellular transport to the growth cone. They poly-
merize with their growing ends pointed towards the leading edge of the growth cone.
Actin filaments within the P-domain form filopodia and lamellipodia that shape and
direct the motility of the growth cone. In both structures, the actin filaments face
with their barbed (growing) ends towards the plasma membrane. Polymerization
of actin filaments towards the leading edge causes the extension and protrusion of
the growth cone. This creates a force that pushes the actin network and the tightly
linked plasma membrane backward (retrograde flow), and hinders the invasion of
the microtubules into the P-domain. The retrograde flow is also enhanced by the
action of myosin molecular motors, which drag the actin cytoskeleton back towards
the C-domain where actin filaments depolymerize at their pointed ends. If there is
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Fig. 9.17: Stages of neuronal polarization. A neuron attaches to the substrate as a round sphere
surrounded by actin-rich lamellipodia and filopodia (stage 1). Growth cone formation by the con-
solidation of lamellipodia leads to the establishment of several neurites (stage 2). One neurite starts
to elongate rapidly and forms the axon (stage 3)

a balance between actin polymerization in the P-domain and retrograde flow, then
there is no elongation. However, signals from surface adhesion receptors bound to a
substrate can suppress the retrograde flow of actin filaments, shifting the balance to-
wards polymerization-driven forward motion that involves both actin filaments and
microtubules.

The growth cone of an axon can itself exhibit a form of polarization. During neu-
ral development, the growth cone has to respond accurately to extracellular chemical
gradients that direct its growth. One such gradient activates gamma-aminobutyric
acid (GABA) receptors in the plasma membrane, which then redistribute themselves
asymmetrically towards the gradient source. SPT experiments have shown how this
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central domain

microtubule

Fig. 9.18: Schematic diagram of growth cone showing cytoskeletal structures
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Fig. 9.19: Schematic diagram showing spatial distribution of a membrane-bound active signaling
molecule G∗ and a cytosolic inactive form G. (a) A 1D bidomain model of a flattened eukaryotic
cell adhering to a substrate with no-flux boundary conditions at either end. (b) An idealized 2D
or 3D cell with a spatially uniform interior and a polarized perimeter corresponding to the cell
membrane

redistribution involves interactions between the GABA receptors and microtubules
in the growth cone, which results in a reorientation of the microtubules towards the
gradient source and subsequent steering of the growth cone [59]. Interestingly, in
contrast to the interactions between Cdc42 and actin in budding yeast, one does not
observe spontaneous polarization of the growth cone in the absence of an external
spatial cue. This will be explored further in Sect. 9.5.3.

Another important example of cell polarization occurs in a variety of motile
eukaryotic cells that undergo directed motion in response to external spatial
signals—eukaryotic chemotaxis [271, 384, 417]. (See Sect. 5.3 for a correspond-
ing discussion of bacterial chemotaxis.) Examples include mammalian neutrophils
(white blood cells), fibroblasts (connective tissue mammalian cells responsible for
wound healing), and keratocytes (fast moving epithelial cells from scales of fish).
Prior to initiating movement, a given cell polarizes according to directional cues
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in the environment, forming nascent “front” and “back” regions; see Fig. 9.19a.
Protrusion of the front is driven by the assembly of actin cytoskeleton, whereas
myosin motors at the back contract and pull up the rear. The polarization of the
cell is regulated by Rho GTPases and phosphoinositides (PIs), with Rac, Cdc42,
and PIP3 localized at the front and Rho localized at the back. (PIs are lipids that
play an important role in regulating vesicular trafficking and actin polymerization.)
Although different motile eukaryotic cells utilize much of the same molecular
machinery, they can exhibit significantly different forms of behavior [300]. For
example, neutrophils can sense very small gradients over a large range of concen-
trations, polarize very quickly (in less than a minute), and do not spontaneously
polarize in the absence of chemoattractant. On the other hand, fibroblasts exhibit
much less sensitivity to concentration gradients, polarize and move more slowly,
and spontaneously polarize after being put on an adhesive substrate. Finally, kera-
tocytes polarize on a similar time scale to neutrophils, spontaneously polarize after
being detached from surrounding cells, and react to mechanical rather than chem-
ical stimuli. There is one further important difference between models of motile
eukaryotic cells and other examples of cell polarization such as budding yeast,
which is illustrated in Fig. 9.19. Polarized eukaryotic cells such as fibroblasts and
keratocytes tend to have a flattened shape when they adhere to a surface. If one
imagines taking a cross-sectional slice along the polarization axis, one can treat
the system as an effective 1D bidomain model with no-flux boundary conditions
at either end. Both membrane-bound and cytosolic molecules diffuse along the
polar axis, with a high concentration of membrane-bound molecules at the front
and a low concentration at the back; see Fig. 9.19a. On the other hand, in the case
of yeast, one treats the interior of the cell as spatially uniform and determines the
spatial distribution of chemicals along the cell perimeter, which in the case of a
simplified two-dimensional cell consists of a circle. Cell polarization would then
correspond to a localized increase in concentration somewhere on the circle. In
the remainder of this section, we describe in some detail several models of cell
polarization in budding yeast: actin-independent positive feedback (Sects. 9.5.1 and
9.5.2), actin-dependent positive feedback (Sect. 9.5.3), and a Turing-based model
of activation/inhibition (Sect. 9.5.4). Finally, in Sect. 9.5.5 we briefly describe a
wave-pinning model of polarization in motile eukaryotic cells.

9.5.1 Positive Feedback Model: Deterministic Analysis

We begin by considering a mechanism for cell polarization based on positive
feedback alone, which has been developed by Altschuler and collaborators [7,
300]. The basic framework is as follows: a signaling molecule such as Cdc42
transitions between inactive (cytosolic) and active (membrane-bound) states; acti-
vated molecules laterally diffuse along the membrane, recruiting inactive molecules
within the cytosol to their membrane locations. In the case of a large number of
signaling molecules N, the system converges to a spatially uniform steady state and



544 9 Self-Organization in Cells II: Reaction-Diffusion Models
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diffu
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koff
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Fig. 9.20: Positive feedback model of cell polarization. Redrawn from [415]

localized clusters cannot form. However, cell polarity emerges for intermediate val-
ues of N due to the effects of intrinsic noise fluctuations. Although stochasticity and
diffusion ultimately disperses the cluster, polarization is recurrent in the sense that
there is a repeating sequence of cluster formation and dispersal. The basic assump-
tions of the model are as follows [7, 302] (see Fig. 9.20):

1. Diffusion. Molecules in the cell membrane diffuse via Brownian motion with
diffusion coefficient D, while cytosolic molecules are uniformly distributed due
to a much faster rate of diffusion.

2. Mass conservation. The total number of signaling molecules N = nc+nm is fixed,
where nc (nm) is the number of cytosolic (membrane-bound) molecules.

3. Mass-action kinetics. There are three mechanisms for transitioning between the
active and inactive states: spontaneous dissociation from the membrane at a rate
koff, spontaneous association at a rate kon, and recruitment via positive feedback
at a rate kfb.

We begin by analyzing the deterministic version of the model, in which the num-
ber N of signaling molecules is sufficiently large so that fluctuations can be ignored;
see also the supplementary material of [302]. For the moment, we also neglect the
effects of diffusion, and consider changes in the total number of molecules nc in the
cytosol, whose dynamics can be described by deterministic kinetic equations based
on the law of mass action:

dnc

dt
= Koff(N− nc)−Konnc−Kfbnc(N− nc). (9.5.1)

The modified reaction rates are

Koff = koff, Kon =
Von

V
kon, Kfb =

Vfb

V
kfb.

The volume fractions take into account the fact that molecules are only sponta-
neously activated if they are within a region of volume Von near the cell membrane,
and additional molecules are only recruited via feedback if they are within a region
of volume Vfb around a membrane-bound molecule. Here V is the total cell volume.
Equation (9.5.1) can be rewritten in the more suggestive form
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dnc

dt
= Kfb(nc−N)(nc−Nc)−Konnc, Nc =

Koff

Kfb
. (9.5.2)

nc nc

nc = Nc

nc = N

Kon = 0 Kon > 0

N N

Fig. 9.21: Perfect (Kon) and imperfect (Kon > 0) transcritical bifurcations. In both cases the number
of molecules nc in the cytosol starts to significantly decrease the maximum N around the point
nc = Nc

If there are no spontaneous association events (Kon = 0), then we have a quadratic
first-order ODE

dnc

dt
= Kfb(nc−N)(nc−Nc),

with a pair of fixed points at nc = N and nc = Nc. If N < Nc, then the fixed point
nc = N is stable and nc = Nc is unstable, whereas the converse holds when N > Nc.
(Strictly speaking, the fixed point nc = Nc > N only makes sense mathematically.)
The ODE is said to undergo a transcritical bifurcation at the critical molecular num-
ber N = Nc since a pair of fixed points exchange their stability properties; (see
Fig. 9.21). From a biological perspective, if the stable state is nc = N, then all of
the molecules are in the cytosol and no membrane clustering can occur. On the
other hand, if nc = Nc then there are Nc molecules in the cytosol and N− nc in the
cell membrane. It follows that a necessary condition for cell polarization to occur
is that N > Nc, which means that N cannot be too small. If spontaneous activation
events are now allowed (Kon > 0), then the above picture still approximately holds
provided that Kon � Koff. The system now undergoes an imperfect transcritical bi-
furcation; although there exists a unique stable branch rather than an exchange of
symmetries, there is still a switch in behavior around nc = Nc.

The next step is to introduce diffusion into the deterministic mass-action model.
Let u(x, t) denote the density of signaling molecules in the cell membrane which
forms a bounded 2D domain Σ . The density evolves according to the reaction-
diffusion (RD) equation

∂u
∂ t

= D∇2u+
Kon

|Σ | nc +Kfbncu−Koffu, (9.5.3)
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where ∇2 is the Laplace operator on Σ (or the more general Laplace–Beltrami opera-
tor in the case of a curved surface). This is supplemented by the Neumann boundary
condition

∇u(x, t) ·n = 0 for all x ∈ ∂Σ ,

where n is the unit normal on the membrane boundary. The second term on the
right-hand side of Eq. (9.5.3) is divided by the area |Σ | of the membrane in order to
be consistent with the definition of u. Conservation of mass then requires that

nc(t)+
∫

Σ
u(x, t)dx = N.

Differentiating both sides and using Eq. (9.5.3) together with the boundary condition
gives

dnc

dt
=− d

dt

∫

Σ
u(x, t)dx =−Konnc−Kfb(N− nc)nc +Koff(N− nc). (9.5.4)

We now show that the given linear RD equation cannot support any spatial pattern-
ing. Introduce the average density

ū(t) =
1
|Σ |
∫

Σ
u(x, t)dx,

and the mean-square deviation from the average

σ2(t) =
1
|Σ |
∫

Σ

(
u(x, t)− ū(t)

ū(t)

)2

dx.

We will show that σ(t)2 decays exponentially in time, which means that any spatial
inhomogeneities are smoothed out by diffusion and hence cell polarization cannot
occur. Defining v(x, t) = [u(x, t)− ū(t)]/ū(t), one finds from Eqs. (9.5.3) and (9.5.4)
that

∂v
∂ t

= D∇2v− Konnc(t)
|Σ |ū(t) v.

It follows that

d
dt

∫

Σ
v2dx = 2

∫

Σ
vvtdx

= 2
∫

Σ

[
vD∇2v− Konnc(t)

|Σ |ū(t) v2
]

dx

≤ 2D
∫

Σ
vD∇2v =−2D

∫

Σ
|∇v|2dx.
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Finally, applying Poincare’s inequality, Eq. (9.5.6) of Box 9D,

d
dt

∫

Σ
v2dx≤−2D

∫

Σ
|∇v|2dx≤−2μ1D

∫

Σ
v2dx

and noting that σ(t)2 = |Σ |−1 ∫ v2dx, we have

dσ2

dt
≤−2μ1Dσ2, (9.5.5)

where μ1 is the first nonzero eigenvalue of the Laplacian. In conclusion, σ(t)2 ≤
e−2μ1Dt → 0 as t → ∞.

Box 9D. Poincare’s inequality.

Consider the Laplacian operator ∇2 acting on a bounded domain Σ with
the Neumann boundary condition ∇φ · n = 0, where n is the unit nor-
mal to the boundary ∂Σ . The operator has a complete set of orthonormal
eigenfunctions φk satisfying the equation

∇2φk + μkφk = 0,

with ∫

Σ
φk(x)φl(x)dx = δl,k.

The eigenvalues μk are ordered such that

0 = μ0 < μ1 ≤ μ2 ≤ μ3 . . . .

Suppose that v(x) is a function in Σ that satisfies the Neumann boundary
condition on ∂Σ and

∫
Σ v(x)dx= 0. We can then expand v in terms of the

generalized Fourier series

v(x) = ∑
k≥1

akφk(x), ak =

∫

Σ
v(x)φk(x)dx.

Note that φ0(x) = constant which means that a0 = 0. The following result
then holds:
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∫

Σ
|∇v|2dx =

∫

Σ

[

∑
k≥0

ak∇φk(x)

]

·
[

∑
l≥0

al∇φl(x)

]

= ∑
k,l≥0

akal

∫

Σ
∇φk(x) ·∇φl(x)dx

= ∑
k,l≥0

akal

∫

Σ

[
∇ · (φk∇φl)−φk∇2φl

]
dx

= ∑
k,l≥0

akal

[∫

∂Σ
φk∇φl ·ndσ +

∫

Σ
φk(x)μlφl(x)

]
dx

= ∑
k≥1

a2
kμk ≥ μ1 ∑

k≥1

a2
k .

We have used the divergence theorem, the eigenvalue equation, and the
Neumann boundary condition. Using a similar analysis, it is straightfor-
ward to show that ∫

Σ
v(x)2dx = ∑

k≥1

a2
k .

We thus obtain Poincare’s inequality

∫

Σ
v(x)2dx≤ 1

μ1

∫

Σ
|∇v(x)|2dx. (9.5.6)

9.5.2 Positive Feedback Model: Stochastic Analysis

Although the deterministic model does not support spontaneous cell polarization,
numerical simulations of a stochastic version of the model reveal that a localized
aggregate of membrane-bound molecules can form and persist for physiologically
reasonable time periods, before ultimately dispersing due to the effects of diffusion
[7, 302]. This stochastic-based effect has also been explored in more detailed sim-
ulations [373] and in a rigorous mathematical study [247]. Here we will describe a
recent stochastic analysis based on a spatially discrete master equation [429]. This
extends the Fokker–Planck approximation of chemical master equations to include
the effects of diffusion, as outlined in Sect. 9.3. First, consider a stochastic extension
of the diffusion-free model that takes into account finite number fluctuations using
a birth–death master equation [302]. This takes the form of Eq. (3.2.2):

d
dt

P(n, t) = ω+(n− 1)P(n− 1, t)+ω−(n+ 1)P(n+ 1, t) (9.5.7)

− [ω+(n)+ω−(n)]P(n, t),
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where P(n, t) is the probability that there are nc(t) = n cytosolic molecules at time t
and the transition rates are

ω+(n) = (N− n)Koff, ω−(n) = (N− n)nKfb + nKon. (9.5.8)

Following the analysis of two-state ion channels in Sect. 3.2, we know that the
steady-state solution is given by Eq. (3.2.6):

Ps(n) = Ps(0)
n

∏
m=1

ω+(m− 1)
ω−(m)

, (9.5.9)

with

Ps(0) =

(

1+
N

∑
n=1

n

∏
m=1

ω+(m− 1)
ω−(m)

)−1

.

Substituting the specific form of ω± for the cell polarization model, we find that for
n < N (see Ex. 9.7)

Ps(n)
Ps(0)

=
N

N− n
Nn

c

n!

n

∏
m=1

[
1+

γ
N−m

]−1

, γ =
Kon

Kfb
. (9.5.10)

Moreover, if γ � 1, then

Ps(n)
Ps(0)

≈
(

N
N− n

)1−γ Nn
c

n!
,

Ps(N)

Ps(0)
=

1
γ

Nn
c

n!
N1−γ .

From these latter expressions, it can be shown that for N < Nc, the stationary dis-
tribution is peaked around n = N, whereas for N > Nc it is essentially a Poisson
distribution peaked around n = Nc with width

√
Nc. Interestingly, close to the bifur-

cation point of the deterministic system and for a certain range of values of γ , the
probability distribution is bimodal with peaks around Nc and N [302].

We can incorporate diffusion into the master equation framework along similar
lines to the analysis of stochastic pattern formation presented in Sect. 9.3, which
was adapted to the particular problem of cell polarity by McKane et al. [429]. Thus,
we partition the membrane Σ into small domains with centers at N discrete lattice
points �. For simplicity, it is assumed that the domain centers are distributed on a
regular d-dimensional lattice (d = 1,2) with lattice spacing Δ�. Let m� denote the
number of signaling molecules in the domain with center at � and introduce the
local densities u� = m�/Ω , where Ω is the total number of molecules in the cell.
Similarly, denote the density of molecules in the cytoplasm by v = nc/Ω . Finally,
assume that the feedback rate can be scaled as Kfb → Kfb/Ω with all rate constants
now independent of Ω . A spatially discrete version of the RD equation (9.5.3) then
takes the form

du�
dt

= Konv+Kfbu�v−Koffu�+αΔ̂u�, (9.5.11)
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where Δ̂ is the discrete Laplacian Eq. (9.3.7). Equation (9.5.11) is supplemented by
the number conservation condition

v+∑
�

u� = 1. (9.5.12)

The continuum RD equation (9.5.3) is recovered in the continuum limit Δ�→ 0 and
α →∞ with 2α(Δ�)2 =D fixed. For this particular RD model, there are N “chemical
species” labeled by � (since nc can be eliminated using the conservation condition),
zN hopping reactions, and 2N reactions between the membrane and cytoplasm so
that the total number of reactions is R = (z+ 2)N: For each lattice site �,

m�
T+
�−→m�+ 1, m�

T−�−→m�− 1

and we have the hopping reactions

(m�,m�′)
T��′−→ (m�− 1,m�′+ 1), �′ ∈ ∂�.

The corresponding transition rates are

T+
� =

[
Kon +

Kfb

Ω
m�

]
(Ω −∑

�

m�), T−� = Koffm�, T��′ =
2α
z

m�.

It is now straightforward to read off the functions fa and stochiometric coefficients
Sa� for all the reactions labeled by a and then carry out the steps to reduce the
associated master equation (6.3.18) to the FP equation (6.3.20). The corresponding
Langevin equation is

dU�(t)
dt

=V�(U)U�(t)+Ω−1/2η�(t), (9.5.13)

with white noise terms satisfying

〈η�〉= 0, 〈η�η�′ 〉= D��′ ,

such that
V�(u) = [Kon +Kfbu�] (1−∑

�

u�)−Koffu�+αΔ̂u� (9.5.14)

and

D��′(u) =

[

[Kon +Kfbu�] (1−∑
�

u�)+Koffu�+O(α)

]

δ�,�′ . (9.5.15)

Note that contributions to the noise from hopping reactions will be negligible when
α is small, since there is also the additional small factor 1/Ω 1/2 in Eq. (9.5.13).
In the following, we drop the O(α) contributions to the diffusion matrix and set
Kon = 0.
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As in the case of stochastic pattern formation (Sect. 9.3), considerable insight into
the behavior of the system can be obtained by transforming to Fourier space [399,
429]. Again we consider a 1D lattice with periodic boundary conditions, u�+NΔ� =
u� for all � and lattice spacing Δ�. Introduce the discrete Fourier transforms

û(k) = Δ�∑
�

e−ik�u�, u� =
1

NΔ� ∑
k

eik�û(k)

with k = 2πm/(NΔ�),m = 0, . . . ,N− 1. For a regular 1D lattice the Fourier trans-
form of the discrete Laplacian operator is given by Eq. (9.3.17). Combining this with
the observation that ∑� u� = (Δ�)−1û(0), the Fourier transform of the deterministic
equation (9.5.11) is

dû(k)
dt

=
[
Kfb(1− (Δ�)−1û(0))−Koff + 2α(cos(kΔ�)− 1)

]
û(k). (9.5.16)

Recall that for Kfb > Koff the deterministic equation (9.5.11) has a homogeneous
fixed point u� = u∗ = 1−Koff/Kfb for all �. In Fourier space this corresponds to the
solution û(k) = δk,0(Δ�)u∗. Linearizing Eq. (9.5.16) about the fixed point yields a
diagonal Jacobian with eigenvalues

λ0 = Koff−Kfb, λk = 2α[cos(kΔ�)− 1] for k �= 0. (9.5.17)

We deduce that the homogeneous fixed point is stable, which appears to preclude
any polarization. However, as highlighted in [429], if α is small, then spatially vary-
ing modes (k �= 0) decay slowly so that a random perturbation combined with non-
linearities in the system could set up a polarized state that persists for long times. It
turns out that Fourier analysis of the Langevin equation (9.5.13) (see Box 9E) yields
the result

〈|Û(k, t)|2〉 ≈ (u∗Δ�)2

1+Γ 2k2 , Γ =
√

2αΩu∗Δ�2/Koff. (9.5.18)

The significance of the above result for cell polarization can be understood by taking
averages of the identity

Δ�∑
�′

u�′u�+�′ =
1

NΔ� ∑
k

eirk�|û(k)|2. (9.5.19)

This expresses the two-point spatial correlation function in terms of the Fourier
transform of |û(k)|2. It is convenient to consider the continuum limit Δ�→ 0,N→∞
with NΔ�= 2π . However, it is first necessary to renormalize the fields so that

v(x = �) = Nu�, v̂(k) =
2π
Δ�

û(k).
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The Fourier transforms become

v̂(k) =
2π
N ∑

x
e−ikxv(x), v(x) =

1
2π ∑

k

eikxv̂(k)

with Δk = 1,Δx = 2π/N. In the continuum limit we have

v̂(k) =
∫ π

−π
e−ikxv(x)dx, v(x) =

1
2π

∞

∑
k=−∞

eikxv̂(k)

and Eq. (9.5.19) becomes

∫ π

−π
v(y)v(x+ y)dy =

1
2π

∞

∑
k=−∞

eikx|v̂(k)|2.

Taking averages of both sides and using Eq. (9.5.18),

∫ π

−π
〈v(y)v(x+ y)〉dy =

1
2π

∞

∑
k=−∞

eikx 1

1+Γ 2
D k2

, ΓD =
√

DΩu∗/2Koff.

Finally, estimating the discrete sum using

1
2π

∞

∑
k=−∞

eikx 1

1+Γ 2
D k2

≈
∫ ∞

−∞
eikx 1

1+Γ 2
D k2

dk
2π

=
1

2ΓD
e−|x|/ΓD ,

we conclude that the averaged correlation function is a decaying exponential with
correlation length ΓD, which establishes that there exist localized states provided
that ΓD � 2π [429].

Box 9E. Fourier analysis of positive feedback model of cell
polarization.

The FP equation corresponding to the Langevin equation (9.5.13) is

∂ p
∂ t

=−∑
�

∂ [V�(u)p(u, t)]
∂u�

+
1

2Ω ∑
�,�′

∂ 2[D��′(u)p(u, t)]
∂u�∂u�′

. (9.5.20)

The Fourier transform of the FP equation (9.5.20) with p(u, t) = P(û, t),
which can be obtained by considering the Fourier transform of the
Langevin equation (9.5.13), see Ex. 9.8, is then

∂P
∂ t

=−∑
k

∂ [V̂ (k)P(û, t)]
∂ û(k)

+
1

2Ω ∑
k,k′

∂ 2[D̂(k,k′)P(û, t)]
∂ û(k)∂ û(k′)

, (9.5.21)
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where

V̂ (k) =
[
Kfb(1− (Δ�)−1û(0))−Koff + 2α(cos(kΔ�)− 1)

]
û(k),

(9.5.22)
and

D̂(k,k′) =
[
Kfb(1− (Δ�)−1û(0))+Koff

]
û(k+ k′). (9.5.23)

In the regime α � Kfb − Koff, the eigenvalues of Eq. (9.5.17) satisfy
λ0 � λk < 0 so that the mode û(0) is relatively stable around the steady-
state value Δ�u∗. Therefore, conditioning the stochastic process by fixing
û(0) = Δ�u∗ leads to an effective FP equation for the nonzero Fourier
modes û(k),k �= 0 [429]:

∂Peff(u, t)
∂ t

=−∑
k �=0

∂ [V̂eff(k)Peff(û, t)]
∂ û(k)

+
1

2Ω ∑
k,k′ �=0

∂ 2[D̂eff(k,k′)Peff(û, t)]
∂ û(k)∂ û(k′)

,

(9.5.24)
where

V̂eff(k)= 2α(cos(kΔ�)−1)û(k), D̂eff(k,k,
′ )= 2Koff

[
Δ� û(k+ k′)− û(k)û(k′)

u∗

]
.

(9.5.25)
Multiplying Eq. (9.5.24) by û(k) and integrating by parts with respect to
û leads to an ODE for the first moment:

d〈Û(k, t)〉
dt

≡
∫

û(k)Peff(û, t)dû = 2α〈Û(k, t)〉(cos(kΔ�)− 1),

which implies that 〈Û(k, t)〉 → 0 as t → 0 for all k �= 0. Repeating for the
second moments by multiplying Eq. (9.5.24) by û(k)û(k′) and integrating
by parts gives (see Ex. 9.8)

d〈Û(k, t)Û(k′, t)〉
dt

=
KoffΔ�

Ω
〈Û(k+ k′, t)〉

+

[
2α(cos(kΔ�)+ cos(k′Δ�)− 2)− Koff

Ωu∗

]
〈Û(k, t)Û(k′, t)〉.

Since, 〈Û(k+ k′, t)〉 = 0 unless k′ = −k, we see that all two-point corre-
lations 〈Û(k, t)Û(k′, t)〉 → 0 as t → 0 unless k′ =−k, in which case

〈Û(k, t)Û(−k, t)〉= 〈|Û(k, t)|2〉 → (u∗Δ�)2

1+ 4αΩ(1− cos(kΔ�))u∗/Koff
.

(9.5.26)

For large N and small Δ�, we can take cos(kΔ�)≈ 1−(kΔ�)2/2 resulting
in the Lorentzian distribution (9.5.18).
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9.5.3 Active Transport Models

A complementary mechanism for cell polarization in yeast is shown in Fig. 9.22.
Here the asymmetric distribution of the signaling molecule Cdc42 within the plasma
membrane and the orientation of actin filaments are mutually enhanced through a
positive feedback loop resulting in the formation of polarized distribution of Cdc42
and oriented actin cables [415, 597]. In order to develop the basic theory, it is con-
venient to treat the polarization region as a disk of radius r0 at the center of a planar
membrane so that curvature effects can be ignored. The density u(x, t) of signal-
ing molecules within the plasma membrane is then taken to evolve according to the
diffusion equation [415, 597]

∂u
∂ t

= D∇2u− k−χu− k̄−(1− χ)u+ k+χUc, (9.5.27)

actin filaments

signaling
molecule

membrane diffusion

endocytosis

recycling

k-

k-

k+

Fig. 9.22: Active transport model of cell polarization. Signaling molecules can attach and orient
actin filaments that deliver vesicles carrying the signaling molecule from the cytoplasm to the
plasma membrane. The additional signaling molecules orient more actin filaments that transport
more molecules in a positive feedback loop, resulting in a polarization region of higher molecule
density. The local clustering of actin patches of actin filaments also increases the rate of endocytosis
within the polarization domain. Redrawn from [415]

where k− and k̄− are the rates of endocytosis inside and outside the polarization
domain respectively, k+ is the rate of delivery to the polarization domain, Uc is the
total number of cytosolic molecules, and χ is an index function such that χ(x) = 1 if
|x|< r0 and zero otherwise. Note that Eq. (9.5.27) describes the dynamics of molec-
ular transport once polarization has been established, rather than during the initial
stages of polarization—the main goal is to establish that such a system can main-
tain a polarized state in steady state. Given the radial symmetry of the polarization
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domain, and ignoring any boundaries of the membrane, we can set u(x, t) = u(r, t)
with

∇2 =
1
r

∂
∂ r

(
r

∂u
∂ r

)
.

Finally, conservation of the total number of signaling molecules implies that

Utotal =Uc(t)+ 2π
∫ ∞

0
u(r, t)rdr. (9.5.28)

The steady-state equation (∂u/∂ t = 0) can be solved by partitioning the planar
membrane into two regions, 0 ≤ r ≤ r0 and r0 ≥ 0, and matching solutions at the
circular boundary r = r0 [597]. Denoting the solution in the first and second regions
by u1(r) and u2(r), respectively, we have

u′′1(r)+
1
r

u′1(r)− k−u1(r)+ k+Uc, 0≤ r ≤ r0,

and

u′′2(r)+
1
r

u′2(r)− k̄−u1(r) = 0, r ≥ r0,

together with the boundary conditions

u′1(0) = 0, lim
r→∞

u2(r) = 0,

and the continuity conditions

u1(r0) = u2(r0) =U, u′1(r0) = u′2(r0)

for some unknown constant U . The solutions of the equations for u1,u2 take the
form

u1(r) =
k+Uc

k−
+

(
U− k+Uc

k−

)
I0(
√

k−r)

I0(
√

k−r0)
, u2(r) =U

K0

(√
k̄−r
)

K0(
√

k̄−r0)
, (9.5.29)

where Ik(r) and Kk(r) are the modified Bessel functions of the second kind. The
unknown U is determined by matching the first derivatives at the boundary r = r0

and using standard properties of modified Bessel functions:

(
U− k+Uc

k−

)√
k−I1(r0

√
k−)

I0(r0
√

k−)
=−U

√
k̄−K0

(
r0

√
k̄−
)

K0(r0

√
k̄−)

,

which leads to the result

U =
k+Uc

k−
Γ (k−, k̄−),
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with

Γ (k−, k̄−) =
√

k−I1(r0
√

k−)
I0(r0

√
k−)

[√
k−I1(r0

√
k−)

I0(r0
√

k−)
+

√
k̄−K1(r0

√
k̄−)

K0(r0

√
k̄−)

]−1

.

Finally, the steady-state number of molecules in the cytoplasm can be determined
self-consistently using the conservation Eq. (9.5.28). A plot of the solution against
r shows a unimodal function with a peak within the polarization domain at r = 0
[597].

Numerical simulations confirm that a stable spatially localized distribution of
signaling molecules within the plasma membrane can be maintained. Moreover, the
degree of polarization can be optimized by varying the rates of endocytosis [415].
One limitation of the model, however, is that the packaging of signaling molecules
into discrete vesicles is ignored, that is, the model treats transport as a continuous
flux of proteins. As highlighted by [374, 560], incorporating vesicular transport into
the model makes cell polarization more difficult to sustain. A simple argument for
this proceeds as follows. First, it is clear that if the concentration of Cdc42 within a
vesicle is the same as a local region of membrane, then fusion of the vesicle releases
both Cdc42 and additional lipid membrane so the concentration doesn’t change,
in contrast to a continuous flux of Cdc42 alone. Hence, exocytic vesicles need to
have higher concentrations of the signaling molecule than the polarization site in
order to enhance the concentration. A dynamic equilibrium of recycling can only be
maintained if endocytic vesicles also have an enhanced concentration of signaling
molecules. Although there are various active mechanisms for enhancing the concen-
tration of proteins within vesicles, evidence for such processes within the context of
cell polarization is currently lacking.

Another modeling study has investigated conditions under which active transport
can generate spontaneous cell polarization [254]. These authors consider a general
mechanism of cell polarization based on the positive coupling between membrane-
bound signaling models and the cytoskeleton. They demonstrate that the geome-
try of the organization of cytoskeletal filaments plays a crucial role in determining
whether the cell is capable of spontaneous cell polarization or only polarizes in
response to an external chemical gradient. More specifically, they show that the
former holds if filaments are nucleated at sites on the cell membrane (the actin cy-
toskeleton), whereas the latter applies if the filaments nucleate from organizing sites
within the cytoplasm (microtubule asters). The model thus captures differences in
experimental studies of cell polarization in budding yeast [415, 597] and neuron
growth cones [59]. The basis model geometry is illustrated in Fig. 9.23. For sim-
plicity, the cell is taken to be two-dimensional and curvature effects are ignored.
The cell boundary is given by the x-axis and the cytoplasm given by the half-plane
(x,z),x > 0. Let u(x, t) denote the concentration of signaling molecules in the mem-
brane and let c(x,z, t) denote the corresponding concentration in the cytoplasm. The
reaction–diffusion model takes the form
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∂u(x, t)
∂ t

= Dm
∂ 2u(x, t)

∂x2 + konc(x,0, t)− koffu(x, t), (9.5.30a)

∂c(x,z, t)
∂ t

= D∇2c(x,z, t)− v ·∇c(x,z, t). (9.5.30b)

c(x,z,t) z

x

z

x

c(x,z,t)

u(x,t)

u(x,t)

aster

a

b actin cytoskeleton

Fig. 9.23: Schematic illustration of filament geometry in model of Hawkins et al. [254]. (a) Nucle-
ation at the cell center. (b) Nucleation at the cell membrane

The first equation represents diffusion of signaling molecules within the membrane
together with transfer between the membrane and cytoplasm, where kon and koff

are the binding and unbinding rates. The second equation is an advection–diffusion
equation that describes the hybrid transport dynamics of molecules in the cytoplasm,
which randomly switch between diffusive motion and ballistic motion along fila-
ments. The advection–diffusion model could be derived from a more detailed model
using a QSS approximation (see Sect. 7.4).

The velocity field v(x,z, t) depends on the geometry of the filaments, which is
itself determined by the concentration of signaling molecules on the membrane.
Hawkins et al. [254] distinguish between two cases (see also Fig. 9.23):

(a) Filaments that grow from a nucleating center in the cytoplasm (microtubule
aster) are approximately perpendicular to the membrane surface. Assuming that
the speed of active transport at (x,z) is proportional to the local density of par-
allel filaments, and that the latter is proportional to the concentration of surface
signaling molecules u(x, t), we have

v(x,z, t) =−αu(x, t)ez, (9.5.31)

where α is a constant that specifies the level of coupling between the signaling
molecules and filaments. This type of geometry holds for the distribution of mi-
crotubules in neuron growth cones, where GABA receptors appear to associate
with and regulate the growing microtubule ends [59].
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(b) Filaments that nucleate from sites on the membrane can be approximated by a
superposition of asters. Assuming that the velocity field at r = (x,z) is deter-
mined by the local density of filaments, and this decreases with distance from
each nucleation site r′ = (x,0), then

v(r, t) =−α
∫ L/2

−L/2

r− r′

|r− r′|2 u(x′, t)dx′, (9.5.32)

where L is the “length” of the cell. This geometry reflects the organization of
the actin cytoskeleton in budding yeast, as illustrated in Fig. 9.22.

The above equations are supplemented by the conservation equation

M =

∫ L/2

−L/2
u(x, t)dx+

∫ L/2

−L/2

∫ ∞

0
c(x,z, t)dz, (9.5.33)

with M the total number of signaling molecules. Since the concentration profile
decays exponentially in the z direction, the range of z is taken to be the half-line.
Finally, we have conservation of flux at the boundary z = 0:

−D
∂c(x,0, t)

∂ z
+ vz(x,0, t)c(x,0, t)+ konc(x,0, t)− koffu(x, t) = 0. (9.5.34)

The system (9.5.30) has an x-independent steady-state solution c(x,z, t) =
c(z),u(x, t) = u0 satisfying the pair of equations

0 = konc(0)− koffu0,

0 = D
d2c(z)

dz2 − vz
dc(z)

dz
.

In case (a) we have vz =−αu0 so that (imposing zero flux at the membrane surface)

u0 =
kon

koff
c(0), c(z) = c(0)e−ξ z, ξ = αu0/D.

The constant c0(0) may be determined from the conservation condition. The same
solution holds in case (b), except that ξ = αu0π/D. In order to show this, assume
that L is sufficiently large so that

vz ≈−αu0

∫ ∞

−∞

z
(x− x′)2 + z2 dx′.

Performing the change of variables x− x′ = z tanθ establishes that the integral has
the value π . The stability of the steady state is determined by substituting

u(x, t) = u0 +U(k)eikx+λ t , c(x,z, t) = c(z)+C(k,z)eikx+λ t
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into Eq. (9.5.30) and Taylor expanding to first order in U(k) and C(k,z). The
resulting linear equations are

(λ +Dmk2 + koff)U(k) = konC(k,0), (9.5.35a)

(λ +Dk2)C(k,z) = D
d2C(k,z)

dz2 − ikv0,x,C(k,z)− v0,z
dC(k,z)

dz

−βU(k)
dc0(z)

dz
, (9.5.35b)

where v0(r, t) = v(r, t)|u=u0 and (v − v0)ėz ≈ βU(k)eikx+λ t . For the velocity
field (9.5.32) it can be shown that Eq. (9.5.35b) has a solution of the form (see
Ex. 9.9)

C(k,z) =
[
a(k)e−ξ z +(1− a(k))e−ρz

]
C(k,0),

with

ρ =
1
2

[
ξ ±
√

ξ 2 + 4k2 + 4λ/D

]
(9.5.36)

and a(k) a function of k.
Substituting the linearized solutions into the zero-flux condition (9.5.34) then

yields the following characteristic equation for λ (see Ex. 9.9):

(λ −Dξ k)
(
koff(2ξ −ρ)+ (λ +Dmk2)(−kon/D+ ξ −ρ)

)

+(ξ + k−ρ)ξ 2Dkoff = 0 (9.5.37)

Numerically solving this equation for λ = λ (k), one finds that λ (k) < 0 for all k,
which means that the steady state is stable. On the other hand, repeating the analysis
for the vector field (9.5.32) leads to the characteristic equation (see Ex. 9.9)

(λ −Dξ k)
(
koff(2ξ −ρ)+ (λ +Dmk2)(−kon/D+ ξ −ρ)

)

+(ξ + k−ρ)ξ 2Dkoff = 0. (9.5.38)

Plotting the corresponding dispersion curve λ = λ (k) now shows that the steady
state is unstable, with λ (k) having a positive maximum at a nonzero wavenumber
kmax (see Fig. 9.24a). One also finds that kc increases with ξ and thus both with
the strength of coupling α and the total number of signaling molecules M (since
u0 increases with M). For a given cell circumference L, the number of polariza-
tion patches will be n when n ≤ kmaxL/2π < n+ 1. This implies that the number
of polarization patches grows with ξ , as illustrated in Fig. 9.23b. Therefore, the
model provides a possible explanation of why spontaneous polarization occurs in
budding yeast, where signaling molecules such as Cdc42 interact with the actin cy-
toskeleton, but not in neural growth cones, where GABA receptors interact with
microtubules. Hawkins et al. [254] suggest that these differences might reflect the
contrasting demands on the two cell types during chemical gradient sensing. That
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Fig. 9.24: Active transport model of cell polarization. (a) Sketch of dispersion curves λ = λ (k)
for the RD system (9.5.30) with aster-like velocity field (9.5.32) and various strengths of coupling
(since ξ is proportional to α). Parameter values are kon = 1μms−1, koff = 0.1s−1, D = 0.1μm2s−1,
Dm = 0.01μm2s−1, and L = 2πR with cell radius R = 10μm. Both k and ξ are in units of R−1. (b)
Sketch of how the dominant wavenumber kmax varies with ξ (in units of R−1). For weak coupling
(small ξ ), kmax < 1 and there are no polarization patches since one cannot fit a single period of a
sinusoid within the domain of length L. However, as ξ increases the wavelength of the growing
pattern decreases and one can fit n periods into the domain when n < kmax < n+ 1, that is, there
are n polarization patches. Redrawn from [254]

is, neuron growth cones respond to relatively weak chemical gradients and thus
need to suppress spontaneous fluctuations, whereas budding yeast tends to operate
in relatively large gradients that can override any spontaneous fluctuations. This is
particularly important for yeast, since they need to polarize quickly in order to gain
a mating partner, which means operating in a regime with large coupling α .

9.5.4 Turing-Like Mechanism for Cell Polarization

One mechanism for generating a stable polarization pattern in the absence of noise is
to include the effects of an inhibitor, which leads to a reaction–diffusion system that
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supports a Turing instability [231, 437] (see Sect. 9.2). For concreteness, we will
describe the formulation of Menchon et al. [437], which has been used to model
neuronal polarization. The basic idea is to extend the positive feedback model of
Altschuler et al. [7, 300] by including a second diffusing molecule which modulates
the rate of endocytosis of a membrane-bound molecule such as Cdc42. Let u and v

1.0

0.0
1.0−1.0 0.0

1.0

0.0
1.0−1.0 0.0

φ/π φ/π

Fig. 9.25: Schematic illustration of neuronal bipolarity

denote the cell membrane concentrations of membrane proteins and modulators of
endocytosis, respectively. The corresponding RD system is

∂u
∂ t

= Du∇2u+ kon(1+ r1u)− koff
uv

1+ r2u
, (9.5.39a)

∂v
∂ t

= Dv∇2v+ k′on(1+ r3u)− k′offv. (9.5.39b)

Both molecular species are recruited to the membrane by a combination of sponta-
neous association and positive feedback mediated by the membrane-bound protein.
However, the rate of endocytosis of the membrane protein is described by Michaelis-
Menten kinetics due to the enzymatic action of the endocytosis modulator. We can
identify u as the activator and v as the inhibitor. Consider the simplified case of a
two-dimensional cell with a circular membrane of radius R. Introducing polar co-
ordinates (r,φ), we can treat the spatial domain as an interval of length L = 2πR
with periodic boundary conditions. It is also convenient to nondimensionalize by
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defining τ = tDu/L2 and absorbing a factor of r1 into u and v. The system (9.5.39)
then reduces to

∂u
∂ t

=
∂ 2u
∂x2 + γ f (u,v), f (u,v) = (1+ u)− a1

uv
1+ b1u

, (9.5.40a)

∂v
∂ t

= D
∂ 2v
∂x2 + γg(u,v), g(u,v) = a2(1+ u)− a3v, (9.5.40b)

with x ∈ [0,1] and

D =
Dv

Du
, a1 =

koff

konr2
1

, a3 =
k′on

kon
, a3 =

k′off

konr1
, b1 =

r2

r1
, b2 =

r3

r1
, γ =

r1konL2

Du
.

The conditions for a Turing instability can now be derived as outlined in Sect. 9.2.
Menchon et al. [437] found parameter regimes, in which the dominant spatial pat-
tern had a single peak around the circular membrane, corresponding to a single site
of cell polarization. (This is analogous to the growth of the first Fourier mode e±iθ

in the ring model considered in Ex. 9.3.) In the case of a developing neuron, such
a site would indicate where a single neurite (precursor axon or dendrite) starts to
grow. Interestingly, if neurite growth is incorporated into the model of cell polar-
ization, one finds that the concentration of membrane protein sharpens and then
spontaneously changes into a double-peaked profile, signaling the formation of a
second polarization site at the opposite pole (see Fig. 9.25). This is consistent with
the experimental observation that a second neurite tends to form on the opposite
pole to the first neurite. Interestingly, it is also possible to induce yeast cells to make
two buds [280].

9.5.5 Wave-Pinning and Cell Polarity in a Bistable
Reaction-Diffusion Model

We end this section by considering a reaction–diffusion model of cell polarity in
motile eukaryotic cells developed and analyzed by Keshet et al. [301, 452, 453]; see
also [484, 489]. The simplest version of the model considers a single Rho GTPase
that can transition between inactive and active forms diffusing in a bounded 1D
domain of length L [452]; see Fig. 9.19a. Let a(x, t) and b(x, t) be the concentrations
of the active/inactive states. Then

∂a
∂ t

= Da
∂ 2a
∂x2 + f (a,b), (9.5.41a)

∂b
∂ t

= Db
∂ 2b
∂x2 − f (a,b). (9.5.41b)

Since the rate of diffusion of the membrane-bound (active) state is significantly
slower than that of the cytosolic (inactive) state, Da � Db. The nonlinear function
f (a,b) represents the difference between the rates of activation and inactivation of
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the Rho GTPase. Assuming there is cooperative positive feedback in the activation
of the protein, which is modeled as a Hill function of index 2, then

f (a,b) = b

(
k0 +

γa2

K2 + a2

)
− k−a. (9.5.42)

It can be checked that for a range of uniform concentrations of the inactive state,
bmin < b < bmax, the space-clamped version of the model exhibits bistability with
two stable fixed points a±(b) separated by an unstable fixed point a0(b). Equa-
tion (9.5.41) is supplemented by no-flux boundary conditions at the ends of the
domain:

∂a
∂x

∣
∣
∣∣
x=0,L

= 0,
∂b
∂x

∣
∣
∣∣
x=0,L

= 0. (9.5.43)

It follows that there is mass conservation of the total amount of Rho GTPase, that is,

∫ L

0
(a+ b)dx =C. (9.5.44)

The emergence of cell polarization in this model can be understood in terms of
front propagation in a bistable reaction–diffusion system (see Box 9F), with the fol-
lowing additional features [452, 453]: (i) the inactive and active states have unequal
rates of diffusion; (ii) the total amount of each GTPase is conserved. Consequently,
a local stimulus induces a propagating front that decelerates as it propagates across
the cell so that it becomes stationary, a process known as wave-pinning; the sta-
tionary front persists in the absence of the stimulus and represents a polarized cell.
Note that the wave-pinning mechanism is distinct from the diffusion-driven Turing
mechanism (Sect. 9.5.4). One of the basic differences is that in the latter class of
models, a homogeneous state becomes unstable to arbitrarily small fluctuations and
the nonlinear reaction terms support the growth of a spatially varying pattern via
a Turing stability. The mathematical explanation of wave-pinning proceeds as fol-
lows [452]. First, since Db � Da and there are no-flux boundary conditions, one
can assume that b rapidly diffuses to establish a uniform concentration within the
bounded domain [0,L]; b then changes on a slower time scale as the a dynamics
evolves (QSS approximation). Thus, on short time scales b can be treated as a fixed
global parameter of a scalar equation for a(x, t) given by Eq. (9.5.41a). Suppose
that initially bmin < b < bmax, so Eq. (9.5.41a) is bistable. On an infinite domain,
the bistable equation supports the propagation of a traveling front linking the stable
fixed point a+(b),a−(b) (see Box 9F). That is, for−∞< x <∞, there exists a mono-
tonically decreasing solution a(x, t) = A(ξ ), ξ = x−ct with limξ→−∞ A(ξ ) = a+(b)
and limξ→∞ A(ξ ) = a−(b). Moreover the wavespeed satisfies c = c(b) with

c(b) =

∫ a+

a−
f (a,b)da

∫ ∞

−∞
(∂A/∂ξ )2dξ

. (9.5.45)
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Note that the wavespeed depends on the global parameter b. Since the denom-
inator of Eq. (9.5.45) is always positive, the sign of c(b) will depend on the
sign of I(b) ≡ ∫ a+

a− f (a,b)da, which has a geometrical interpretation in terms of
the difference between the area of the curve y = f (a,b) above the straight line
y = k−a and the area below; see Fig. 9.26. In the case of a sufficiently sharp
front that is away from the boundaries, these results carry over to the bounded
domain [0,L].

Now suppose that a transient stimulus near the edge of the cell at x = 0 triggers at
time t = 0 a traveling front as described above. This implies that bmin < b(0)< bmax

and I(b(0)) > 0. As the front starts to propagate into the interior of the cell, it
converts a greater fraction of the domain from a ≈ a−(b) to a ≈ a+(b). From the
conservation condition (9.5.44), it follows that the approximately uniform concen-
tration b(t) of the inactive state decreases, eventually reaching a critical value bc,
bmin < bc < bmax, for which

I(bc)≡
∫ a+

a−
f (a,bc)da = 0, (9.5.46)

and wave-pinning occurs. The basic steps are illustrated in Fig. 9.26. One interesting
issue is to what extent the wave-pinning mechanism differs from the phenomenon
of wave propagation failure due to spatial discretization. This is particularly impor-
tant given that any numerical simulation of the wave-pinning model involves the
introduction of a spatial grid, and the wave becomes more sensitive to discretization
effects as it slows down. A careful numerical study has shown that wave-pinning
and propagation failure are distinct effects [667]. In the same study, a stochastic
version of the wave-pinning model was also considered, which takes into account
fluctuations in the number of active and inactive molecules at low concentrations. It
was found that when the total number of molecules is lowered,

wave-pinning behavior is lost due to a broadening of the transition layer as well
as increasing fluctuations in the pinning position.

Box 9F. Traveling fronts in a bistable RD equation [66, 322].

Consider a scalar bistable RD equation of the form

∂a
∂ t

=
∂ 2a
∂x2 + f (a), −∞ < x < ∞. (9.5.47)

Suppose that f (a) is chosen so that the corresponding ODE, dv/dt =
f (a), has stable equilibria at a = a±, a+ > a−, separated by an unstable
equilibrium at a = a0. We define a traveling front solution according to
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Fig. 9.26: Schematic diagram explaining the mechanism of wave-pinning developed in [452]. A
sequence of snapshots of the traveling front (left column) showing that as the front advances into
the domain, the background concentration b of the inactive state decreases so that the front deceler-
ates until it becomes stationary. The corresponding geometric construction of I(b) (right column),
which is given by the difference of the shaded areas, shows that I(b) is initially positive but van-
ishes at the critical value bc

a(x, t) = a(x− ct) = A(ξ ), ξ = x− ct (9.5.48)

for some yet to be determined wavespeed c, supplemented by asymp-
totic boundary conditions ensuring that the front links the two stable fixed
points of the x-independent system. For concreteness, we take

A(ξ )→ a+ as ξ →−∞, A(ξ )→ a− as ξ → ∞. (9.5.49)

Substituting the traveling front solution into the bistable equation (9.5.47)
yields the ODE

Aξ ξ + cAξ + f (A) = 0, (9.5.50)
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where Aξ = dA/dξ . Classical phase-plane analysis can now be used to
find a traveling front solution by rewriting the second-order equation in
the form

Aξ = Z, Zξ =−cZ− f (A). (9.5.51)

One now has to look for a solution that links the excited state (A,Z) =
(a+,0) at ξ → −∞ to the state a = a− at ξ → ∞—a so-called hete-
roclinic connection. This can be achieved using a geometric argument
based on a shooting method, as illustrated in Fig. 9.27 for the cubic
f (a) = a(a− a0)(1− a) with a− = 0,a+ = 1 and 0 < a0 < 1. Suppose
that 0 < a0 < 1/2 so that c > 0 (see below). First note that irrespec-
tive of the speed c, the fixed points (1,0) and (0,0) in the phase plane
are saddles, each with one-dimensional stable and unstable manifolds.
By looking at trajectories in the phase plane, it is straightforward to see
that when c � 1, the unstable manifold of (1,0) lies below the stable
manifold of (0,0) when 0 < A < 1, whereas the opposite holds when
c is very large. Since these manifolds depend continuously on c, it fol-
lows that there must exist at least one value of c for which the manifolds
cross, and this corresponds to the heteroclinic connection that represents
the traveling front solution. It can also be established that this front is
unique.

A useful formula for determining the sign of the wave speed can be
obtained by multiplying both sides of Eq. (9.5.50) by Aξ and integrating
with respect to ξ :

c
∫ ∞

−∞
(Aξ )

2dξ = −
∫ ∞

−∞
Aξ f (A(ξ ))dξ −

∫ ∞

−∞
Aξ Aξ ξ dξ ,

=
∫ a+

a−
f (A)dA, (9.5.52)

since A(ξ ) is monotone, and
∫ ∞
−∞ Aξ Aξ ξ dξ =

∫ ∞
−∞

d[A2
ξ /2]

dξ dξ = 0. As the
integral on the left-hand side is positive, it follows that the sign of c is
determined by the sign of the area of f between the two stable equilibria.
In the case of the cubic, if 0 < a0 < 1/2, then the latter is positive and the
wave moves to the right. If the negative and positive areas exactly cancel,
then the front is stationary (pinned).
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Fig. 9.27: Shooting method for constructing a front solution in the (A,Z) phase plane
with Z = Aξ . See text for details

9.6 Exercises

Problem 9.1 (Robustness of a dual protein gradient). The concentration of Pom1
in the membrane of fission yeast evolves according to the equation

∂c
∂ t

= D
∂ 2c
∂x2 − μc,

where μ is the rate of membrane dissociation, supplemented by the boundary con-
ditions

D
∂c
∂x

∣
∣
∣
∣
x=±L/2

=±J.

(a) Show that the steady-state solution is

c(x) =
J
D

λ cosh(x/λ )
sinh(L/2λ )

,
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where λ =
√

D/μ is the characteristic decay length of the spatial gradient.
(b) The uncertainty Δx in the position of the center is given by

Δc =
1
2
|c′′(0)|Δx2. (9.6.53)

where Δc =
√

c(0)/a2 and a is the size of the measuring region. Using part (a),
show that

Δx =

(
4Dλ 3sinh(L/2λ )

Ja2

)1/4

. (9.6.54)

Problem 9.2 (A little group theory).

(a) Show that the set of rotation matrices

M(θ ) =
(

cosθ −sinθ
sinθ cosθ

)
, θ ∈ [0,2π),

and the reflection matrix

Mκ =

(
1 0
0 −1

)

together with the rules of matrix multiplication form the representation of a
group acting on the linear vector space R

2. The abstract group is O(2). Setting
z = x+ iy, show that rotation by θ corresponds to the transformation z → eiθ z
and reflection becomes z→ z∗.

(b) Suppose that there exists a matrix representation of some group. Show that a cor-
responding one-dimensional representation can be obtained by taking the deter-
minants of the matrices. Calculate the representation explicitly for the dihedral
group D3.

(c) By considering a square centered at the origin of the (x,y)-plane construct the
matrix representation of the dihedral group D4, which consists of operations that
transform the square into itself. Is the group representation irreducible? Calcu-
late the axial isotropy subgroups of the given group representation.

Problem 9.3 (Pattern formation on a ring). Consider an RD system defined on a
ring:

∂u1

∂ t
= D

∂ 2u1

∂θ 2 +κ(u1+ au2− u1u2
2−Cu1u2)

∂u2

∂ t
=

∂ 2u2

∂θ 2 +κ(−u1+ bu2 + u1u2
2 +Cu1u2),

with θ ∈ [0,2π ] and periodic concentrations ui(θ +2mπ , t)= ui(θ , t) for all integers
m. Suppose that the onset of a Turing instability of the stationary state at (u1,u2) =
(0,0) occurs at a critical parameter value a = ac due to the particular Fourier modes
e±inθ becoming marginally stable. This means that there exists a vector c such that
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A(n)c≡
(

κ−Dn2 κac

−κ bκ− n2

)
c = 0.

Suppose that the system is just beyond the bifurcation point and set a− ac = εΔa
with 0 < ε � 1. Introduce the slow time scale τ = εt with ∂/∂ t → ε∂/∂τ .

(a) Substitute the perturbation expansion perturbation expansion

ui = ε1/2u(1)i + εu(2)i + ε3/2u(3)i + . . .

into the RD equation and separately collect terms in powers of ε1/2,ε , and ε3/2,
respectively. Hence, derive the linear inhomogeneous equations

Lu(1) = 0, Lu(2) = h(2), Lu(3) = h(3),

where

Lu =

(
κ κac

−κ bκ

)(
u1

u2

)
+

(
D 0
0 1

)(
∂ 2u1/∂θ 2

∂ 2u2/∂θ 2

)
.

Determine the vectors h(2) and h(3) as functions of u(1) and u(2).
(b) Write the O(ε1/2) solution as

u(1)(θ ,τ) =
[
z(τ) einθ + z∗(τ) e−inθ

]
c.

A dynamical equation for the complex amplitude z(τ) can be obtained by
deriving solvability conditions for the higher-order equations. That is, the linear
operator L is self-adjoint with respect to the inner product

〈u|v〉= ∑
j=1,2

∫ 2π

0
u∗j(θ )v j(θ )

dθ
2π

.

Since Le±inθ c = 0, it follows from the Fredholm alternative theorem (Box 9B)
that the higher-order equations only have a solution if the following solvability
conditions are satisfied:

〈ĉeinθ |h(m)〉= 0, m = 2,3

where ĉT A(n) = 0. Using the identity

∫ 2π

0
eimθ eim′θ dθ

2π
= δm+m′ ,0,

and the explicit expressions for h(2,3), show that (i) the solvability condition for
h(2) is automatically satisfied and (ii) the O(ε3/2) solvability condition is
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ĉ · 〈einθ |∂u(1)

∂τ
〉−κΔaĉ ·

(
1
0

)
〈einθ |u(1)2 〉

= κ ĉ ·
(−1

1

)
〈einθ |

[
u(1)1 u(1)2 u(1)2 +Cu(2)1 u(1)2 +Cu(1)1 u(2)2

]
〉.

(c) Show that u(2) has the general form

u(2)(θ ) = c+e2niθ + c−e−2niθ + c0 + ζu(1)(θ )

Substituting for u(2) into the equation Lu(2) = h(2), derive the equations

A(2n)c+ = κCc1c2z2
(

1
−1

)
, A(2n)c− = κCc1c2z∗2

(
1
−1

)
,

A(0)c0 = 2κCc1c2|z|2
(

1
−1

)
.

(The term involving ζ does not contribute to the cubic amplitude equation.)
(d) Combining the results of parts (b) and (c), evaluate the various inner products

to obtain the cubic amplitude equation

dz
dτ

= z(τ)(ηΔa−Λ |z(τ)|2),

after absorbing a factor of κ into τ , with

η = ĉ1c2, Λ = (ĉ1− ĉ2)c1c2
[
3c2 +κC2(c2V1 + c1V2)

]
.

and

V = A(2n)−1
(

1
−1

)
+ 2A(0)−1

(
1
−1

)
.

Problem 9.4 (Pattern formation and O(2) symmetry). The RD equations of
Ex. 9.3 (and their linearization) are equivariant with respect to the action of the
group O(2) of rotations and reflections on the circle S1. That is, if u(θ , t) is a so-
lution, then so is u(θ + φ , t) (rotations) and u(−θ , t) (reflections). Applying these
transformations to the solution

u(θ ,τ) =
[
z(τ) einθ + z∗(τ) e−inθ

]
c,

determine the action of O(2) on the amplitudes z,z∗. Show that the cubic amplitude
equation

dz
dτ

= z(τ)(ηΔa−Λ |z(τ)|2),



9.6 Exercises 571

is equivariant with respect to this action of O(2), and determine the z-dependence
of the next order term in the amplitude equation.

Problem 9.5 (Discrete Fourier transforms).

(a) Consider the discrete Fourier transform pair

V (k) = ∑
�

e−ik�v�, v� =
1
N ∑

k

eik�V (k)

with �= 1, . . . ,N and k = 2πm/N,m = 0, . . . ,N− 1. Show that

N

∑
�=1

ei(k−k′)� = Nδk,k′

for all k = 2πm/N. Hence, given the definition of V (k), verify the formula for
the inverse discrete transform.

(b) Use discrete Fourier transforms to solve the difference equation

Δ̂u j ≡ u j+1− 2u j + u j−1 = f j , j = 1, . . . ,N− 1,

u0 = uN = 0 , in terms of the Fourier coefficients of the discrete function f j , j =
1, . . . ,N− 1.

Problem 9.6 (Aggregation model of Min protein oscillations). Consider the sim-
plified model of Min oscillations given by [see Eq. (9.4.6)]

∂ρd

∂ t
=−σ̄Eρd + k̄D(ρmax−ρde−ρd)− ∂Jd

∂x
∂ρde

∂ t
=−σdρde + σ̄Eρd ,

where ρd and ρde are the concentrations of membrane-bound MinD and MinD·MinE
complexes and Jd is the aggregation current

Jd =−Dd∂ρd +ρd(ρmax−ρde−ρd)
[
k1∂xρd + k2∂ 3

x ρd
]
.

Also σ̄E = σE ρ̄E and k̄D = kDρ̄D with (ρ̄D, ρ̄E) the unique fixed point of equa-
tions (9.4.5).

(a) Linearize the RD equations about the homogeneous fixed point by setting

ρd− ρ̄d = u(q)eλ t+iqx, ρde− ρ̄de = v(q)eλ t+iqx

and Taylor expanding to first order in u,v. Thus obtain the eigenvalue equation

A(q)

(
u
v

)
= λ (q)

(
u
v

)
,
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with

A(q) =

(−σ̄E − k̄D− f (q2) −k̄D

σ̄E −σd

)

and
f (q2) = Ddq2− ρ̄d(ρmax− ρ̄de− ρ̄d)(k1q2− k2q4).

(b) Show that the homogeneous fixed point is stable unless k1 exceeds a criti-
cal value k1,c. Determine k1,c by finding the smallest value of k1 for which
Reλ (q) = 0 and show that this occurs at the critical wavenumber

q4
c =

kDρ̄D +σd +σE ρ̄E

ρ̄d(ρmax− ρ̄d− ρ̄de)k2
.

Hence, show that the critical oscillation frequency Ωc = Imλ (qc) is given by

Ω 2
c = σDσE ρ̄Dρ̄E −σ2

d .

Problem 9.7 (Positive feedback model of cell polarization I). Consider the birth–
death process arising from a model of cell polarization, which takes the form (9.5.7)
with transition rates

ω+(n) = (N− n)Koff, ω−(n) = (N− n)nKfb + nKon.

(a) Using the fact that the steady-state solution is given by

Ps(n) = Ps(0)
n

∏
m=1

ω+(m− 1)
ω−(m)

,

derive the solution

Ps(n)
Ps(0)

=
N

N− n
Nn

c

n!

n

∏
m=1

[
1+

γ
N−m

]−1

, Nc =
Koff

Kfb
, γ =

Kon

Kfb

for n < N and

Ps(N) =
Nc

Nγ
Ps(N− 1).

(b) Suppose that γ � 1. Show that

γ ln
N

N− n
= γ ln

n

∏
k=1

N− k+ 1
N− k

= γ
n

∑
k=1

1
N− k

+O(γ2).

Hence, obtain the approximations

Ps(n)
Ps(0)

≈
(

N
N− n

)1−γ Nn
c

n!
,

Ps(N)

Ps(0)
=

1
γ

Nn
c

n!
N1−γ .
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Problem 9.8 (Positive feedback model of cell polarization II). Consider the
Langevin equation for the positive feedback model of cell polarization [see also
Eq. (9.5.20)]:

dU�(t)
dt

=V�(U)U�(t)+Ω−1/2η�(t),

with white noise terms satisfying

〈η�〉= 0, 〈η�η�′ 〉= D��′ ,

such that
V�(u) = Kfbu�(1−∑

�

u�)−Koffu�+αΔu�

and

D��′(u) =

[

Kfbu�(1−∑
�

u�)+Koffu�+O(α)

]

δ�,�′ .

For simplicity, consider a 1D lattice with periodic boundary conditions,U�+NΔ�=U�

for �= 1, . . . ,N and lattice spacing Δ�.

(a) Show that the discrete Fourier transform of the Langevin equation is

dU(k, t)
dt

=V (k, t)U(k, t)+Ω−1/2η(k, t)

with
〈η(k, t)〉 = 0, 〈η(k, t)η(k′, t ′)〉= D̂(k,k′, t)δ (t− t ′),

and determine V (k, t) and D(k,k′, t) as functions of U(k, t) and U(k′, t). Hence,
show that the discrete Fourier transform of the FP equation (9.5.20) is given by
Eq. (9.5.21).

(b) Taking first and second moments of the effective FP equation (9.5.24), derive the
moment equations

d〈Û(k, t)〉
dt

= 2α〈Û(k, t)〉(cos(kΔ�)− 1)

and

d〈Û(k, t)Û(k′, t)〉
dt

=
KoffΔ�

Ω
〈Û(k+ k′, t)〉

+

[
2α(cos(kΔ�)+ cos(k′Δ�)− 2)− Koff

Ωu∗

]
〈Û(k, t)Û(k′, t)〉.

Hence, determine the large t behavior of the first and second moments.
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Problem 9.9 (Active transport model of cell polarization). Consider the follow-
ing RD model of cell polarization:

∂u(x, t)
∂ t

= Dm
∂ 2u(x, t)

∂x2 + konc(x,0, t)− koffu(x, t),

∂c(x,z, t)
∂ t

= D∇2c(x,z, t)− v ·∇c(x,z, t)

with 0≤ z < ∞. The velocity field v(x,z, t) is taken to be of the form

v(x,z, t) =−αu(x, t)ez

where α is a constant that specifies the level of coupling between the signaling
molecules and filaments. The above equations are supplemented by the conservation
equation

M =
∫ L/2

−L/2
u(x, t)dx+

∫ L/2

−L/2

∫ ∞

0
c(x,z, t)dz,

with M the total number of signaling molecules. The steady-state solution is

u0 =
kon

koff
c0(0), c0(z) = c0(0)e

−ξ z, ξ = αu0/D.

(a) Linearize about the steady-state solution by substituting

u(x, t) = u0 +U(k)eikx+λ t , c(x,z, t) = c0(z)+C(k,z)eikx+λ t ,

into the RD equations and Taylor expanding to first order in U(k) and C(k,z).
After solving the resulting linear differential equation for C(k,z) show that

U(k) =
kon

(λ +Dmk2 + koff)
C(k,0),

C(k,z) =C(k,0)
[
a(k)e−ξ z +(1− a(k))e−ρz

]

where

ρ =
1
2

[
ξ ±
√

ξ 2 + 4k2 + 4λ/D

]
,

and determine the coefficient a(k).
(b) Linearizing the zero-flux condition

−D
∂c(x,0, t)

∂ z
−αu(x, t)c(x,0, t)+ konc(x,0, t)− koffu(x, t) = 0

and using the solutions for U(k) and A in part (b), show that λ (k) satisfies the
dispersion equation

(λ +Dk2)
(
koff(2ξ −ρ)+ (λ +Dmk2)(−kon/D+ ξ −ρ)

)
+(ξ −ρ)ξ 2Dkoff = 0.
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(c) Repeat the analysis for the alternative velocity field

v(r, t) =−α
∫ ∞

−∞

r− r′

|r− r′|2 u(x′, t)dx′.

In particular, derive the dispersion relation

(λ −Dξ k)
(
koff(2ξ −ρ)+ (λ +Dmk2)(−kon/D+ ξ −ρ)

)

+(ξ + k−ρ)ξ 2Dkoff = 0.



Chapter 10
The WKB Method, Path-Integrals, and Large
Deviations

In Sects. 3.4 and 3.5 we highlighted a limitation of the diffusion approximation of
jump Markov processes for large system size N, namely, that it can lead to expo-
nentially large errors in solutions to FPT problems. For large but finite N, we expect
the stochastic system to “stay close” to the dynamics of the underlying mass-action
kinetics and to converge in the zero-noise limit ε ≡ N−1 → 0 to the deterministic
system. (Recall that for large N the random variables of the jump Markov process
can be treated as continuous rather than discrete.) In terms of the probability distri-
bution over random trajectories or paths realized by solutions to the master equation,
it should concentrate around the deterministic path of the kinetic equations in the
limit ε → 0. The source of the error in the diffusion approximation is that it gives
a poor estimate of the probability density as ε → 0. Such a density has the form
of a so-called large deviation principle [195, 574, 640]. In order to give a heuristic
definition of the latter, consider some random dynamical system in R

n for which
there exists a well-define probability density functional Pε [x] over the different sam-
ple trajectories {x(t)}T

0 in a given time interval [0,T ]. A large deviation principle
for the random paths is that

Pε [x]∼ e−S[x]/ε , ε → 0,

where S[x] is known as an action functional. Solving the FPT problem for escape
from a fixed point attractor of the underlying deterministic system involves find-
ing the most probable paths of escape, which minimize the action functional with
respect to the set of all trajectories emanating from the fixed point (under certain
additional constraints). Evaluating the action functional along a most probable path
from the fixed point to another point x generates a corresponding quasi-potential
Φ(x). The diffusion approximation generates an inaccurate action functional and
associated quasi-potential and thus leads to exponentially large errors in the MFPT.
Consider for example a single-variable stochastic process that exhibits bistability in
the deterministic limit, that is, there exists a pair of stable fixed points at x = x±
separated by an unstable fixed point at x = x0. Given a quasi-potential Φ , the MFPT

© Springer International Publishing Switzerland 2014
P.C. Bressloff, Stochastic Processes in Cell Biology, Interdisciplinary
Applied Mathematics 41, DOI 10.1007/978-3-319-08488-6 10
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Fig. 10.1: (a) Deterministic trajectories of a multistable dynamical system. The subset Ω is con-
tained within the basin of attraction of a fixed point xs. The boundary of the basin of attraction
consists of separatrices, which are also solution trajectories. Paths that start in a neighborhood of a
separatrix are attracted by different fixed points, depending whether they begin on the left or right
of the separatrix. (b) Random trajectories of the stochastic system. Escape from the domain Ω
occurs when a random trajectory hits the boundary ∂ Ω

τ to escape from the fixed point at x− takes the general Arrhenius form (see for
example (3.3.36))

τ ∼ Γ (x0,x−)√
|Φ ′′

(x0)|Φ ′′
(x−)

eN[Φ(x0)−Φ(x−)], (10.0.1)

where Γ is an appropriate prefactor. Moreover, Φ(x0)−Φ(x−) is the value of the
action along the optimal path from x− to x0. Thus any errors in the form of the
quasi-potential can generate exponentially large errors in the MFPT to escape from
a metastable state.

The physical interpretation of the least-action trajectories becomes crucial when
solving escape problems in higher dimensions, since a metastable state is now sur-
rounded by a nontrivial boundary (rather than a single point) and one needs to
determine the relative weighting of optimal paths crossing different points on the
boundary. This is illustrated in Fig. 10.1 for a two-dimensional SDE, whose under-
lying deterministic system has a stable fixed point xs with some basin of attraction
A . (A more complex example was encountered in Fig. 10.4.) If Ω ⊂ A , then one
can extend the MFPT calculation of the scalar case provided that ∂Ω does not over-
lap any separatrices [409]; otherwise the analysis is more involved. For a detailed
discussion of noise-induced escape problems see the book by Schuss [574].

One efficient method for deriving the correct quasi-potential is to use a WKB
approximation of the QSS probability density. This method has been applied to
FP equations in the weak noise limit [409, 426, 466, 574], to master equations
[145, 152, 163, 252, 341, 653], and more recently to stochastic hybrid systems
[72, 74, 321, 470, 475, 476]. In many cases, one can interpret the WKB equation for
the quasi-potential in terms of a Hamilton–Jacobi equation, whose corresponding
Hamiltonian H is related to the action of large deviation theory according to
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S[x] =
∫ t

t0
[pẋ−H(x, p)]dt.

Thus large deviation theory provides a rigorous foundation for the application and
interpretation of WKB methods, in particular, ensuring that the solutions to Hamil-
ton’s equations correspond to optimal paths of the full stochastic system.

We begin this chapter by describing how the WKB method can be used to
study escape problems in chemical master equations and stochastic hybrid sys-
tems (Sect. 10.1). We illustrate the theory by revisiting the example of SAPs, which
was analyzed using a linear noise approximation in Sect. 3.5. In subsequent sec-
tions we derive action principles underlying the WKB quasi-potentials. However,
we avoid the technical aspects of large deviation theory by using path-integrals. We
start by considering a path-integral representation of a SDE in the weak noise limit
(Sect. 10.2). We then show how to construct the so-called Doi–Peliti path integral
representation of a birth–death master equation (Sect. 10.3) and conclude by devel-
oping a path integral representation of a stochastic hybrid system (Sect. 10.4). The
latter is used to explore the effects of potassium ion channel fluctuations on SAPs
in a stochastic Morris–Lecar model (Sect. 10.5).

10.1 The Wentzel-Kramers-Brillouin Method

10.1.1 WKB Method for a Birth–Death Master Equation

Consider the birth–death master equation (3.2.2),

d
dt

P(n, t) = ω+(n− 1)P(n− 1, t)+ω−(n+ 1)P(n+ 1, t)

− [ω+(n)+ω−(n)]P(n, t),

with ω± = NΩ± and reflecting boundary conditions at n = 0,N. Suppose that in the
deterministic limit N → ∞, the rate equation (3.2.5), ẋ = Ω+(x)−Ω−(x), exhibits
bistability, with stable fixed points at x = x± and an unstable fixed point at x = x0.
(Throughout the analysis we will switch between n/N and x, with x treated as a
continuous variable for large N.) Since we are interested in calculating the MFPT
to escape from x−, for example we impose an absorbing boundary condition at n =
n0, that is, p(n0, t) = 0 and take 0 ≤ n ≤ n0. It is convenient to rewrite the master
equation (3.2.2) for n = 0, . . . ,n0 as the linear system

dp
dt

= Ap (10.1.2)

where p = (p0(t), p1(t), . . . , pn0(t))
T with pn(t) = p(n, t) and A the transition ma-

trix. Suppose that the matrix A is irreducible, that is, any state can be reached from
any other state through a sequence of transitions. If the absorbing boundary con-
dition at n = n0 were replaced by a reflecting boundary condition, then A would
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have a simple zero eigenvalue with corresponding left eigenvector 1 whose com-
ponents are all unity, that is, ∑n Anm = 0 for all m. The latter follows immediately
from conservation of probability in the case of reflecting boundaries. The Perron–
Frobenius theorem1 then ensures that all other eigenvalues are negative and that
equation (10.1.2) has a globally attracting steady state ρn such that ∑m Anmρm = 0
and pn(t)→ ρn as t → ∞. On the other hand, in the case of an absorbing boundary,
probability is no longer conserved since there is an exponentially small but nonzero
flux at n = n0 (for large N). The eigenvalues of the transition matrix can now be or-
dered according to 0 > λ0 ≥ Re[λ1]≥ Re[λ2]≥ . . . with |λ0| ∼ e−ηN for η = O(1),
whereas λr for r > 0 are only weakly dependent on N. The exponentially small
principal eigenvalue reflects the fact that the flux through the absorbing boundary is
exponentially small and in the limit N → 0 reduces to the Perron eigenvalue.

Consider the eigenfunction expansion

pn(t) =
n0

∑
r=0

Cre−λrtφ (r)
n , (10.1.3)

where φ (r)
n is the eigenvector corresponding to λr. It follows from the ordering of

the eigenvalues that all eigenmodes φ (r)
n , r > 0, decay to zero much faster than the

perturbed stationary density φ (0)
n . Thus at large times, we have the quasistationary

approximation

pn(t)∼C0e−λ0tφ (0)
n . (10.1.4)

Let T denote the (stochastic) FPT for which the system first reaches n0, given that
it started at n = 0, say. The distribution of FPTs is related to the survival probability
S(t) that the system hasn’t yet reached n0. That is, Prob{t > T}= S(t)=∑n0−1

n=0 pn(t)
and the FPT density is

f (t) =−dS
dt

=−
n0−1

∑
n=0

d pn(t)
dt

. (10.1.5)

Substituting for pn(t) using the quasistationary approximation (10.1.4) shows that
the normalized FPT density can be approximated as f (t) ∼ λ0e−λ0t with λ−1

0 thus

identified as the MFPT. In general, the eigenvalue equation for λ0 and φ (0)
n is diffi-

cult to analyze. On the other hand, one can use a WKB approximation to generate
a quasistationary solution φε

n for which Aφε = 0 and φε
n0
∼ O(e−ηN). Since the

WKB solution does not satisfy the absorbing boundary condition, it is necessary
to perform an asymptotic expansion in order to match the quasistationary solution

1 The Perron–Frobenius theorem asserts that a real square matrix with positive entries has a unique
largest real eigenvalue (the Perron eigenvalue) and that the corresponding eigenvector has strictly
positive components. The theorem can also be extended to matrices with non-negative entries, pro-
vided that the matrix is irreducible. However, there can now be complex eigenvalues with the same
absolute value as the Perron eigenvalue. In the case of a transition matrix, the Perron eigenvalue
is zero. Strictly speaking, the Perron–Frobenius theorem applies to finite-dimensional matrices, so
we will assume that it still holds in cases where the number of discrete states is infinite.
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with the solution in a neighborhood of x0. In the process this determines λ0, whose
inverse can be identified as the MFPT to escape from the basin of attraction of the
metastable state x− (see below). Dropping exponentially small terms, and writing
φε

n = φε(x) with x treated as a continuous variable, we have

0 = Ω+(x− 1/N)φε(x− 1/N) (10.1.6)

+Ω−(x+ 1/N)φε(x+ 1/N)− (Ω+(x)+Ω−(x))φε (x).

We seek a WKB solution of the form

φε (x)∼ K(x;ε)e−Φ(x)/ε , (10.1.7)

with K(x;ε)∼∑∞
m=0 εmKm(x). Substituting equation (10.1.7) into equation (10.1.6),

Taylor expanding with respect to ε , and collecting the O(1) terms give

Ω+(x)(eΦ ′ (x)− 1)+Ω−(x)(e−Φ ′ (x)− 1) = 0 (10.1.8)

where Φ ′ = dΦ/dx. Solving this quadratic equation in eΦ ′ shows that

Φ =

∫ x
ln

Ω−(y)
Ω+(y)

dy or Φ = constant. (10.1.9)

Proceeding to the next level, equating terms at O(ε) gives

Ω+eΦ ′
(
−K′0

K0
+

φ ′′

2

)
+Ω−e−Φ ′

(
K′0
K0

+
φ ′′

2

)
−Ω ′

+eΦ ′+Ω−e−Φ ′ = 0.

Substituting for Φ using (10.1.8) and solving for K0 yields the following leading
order forms for φε :

φε (x) =
A

√
Ω+(x)Ω−(x)

e−NΦ(x), (10.1.10)

with Φ given by (10.1.9), which is sometimes called the activation solution, and

φε (x) =
B

Ω+(x)−Ω−(x)
, (10.1.11)

which is sometimes called the relaxation solution. The constants A,B are determined
by matching solutions around x0. Clearly, (10.1.11) is singular at any fixed point x j,
where Ω+(x j) = Ω−(x j), so is not a valid solution for the required quasistationary
density. Note that the nontrivial WKB quasi-potential Φ(x) is identical to the one
derived in equation (3.2.22).

Equation (10.1.8) has the form of a stationary Hamilton–Jacobi equation for Φ
[306],

H(x,Φ
′
(x)) = 0,
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with Hamiltonian

H(x, p) = ∑
r=±

Ωr(x) [erp− 1] . (10.1.12)

This suggests a corresponding classical mechanical interpretation, in which H
determines the motion of a “particle” with position x and conjugate momentum p.
A trajectory of the particle is given by the solution of Hamilton’s equations

ẋ =
∂H
∂ p

= ∑
r=±1

rΩr(x)erp (10.1.13)

ṗ =−∂H
∂x

= ∑
r=±1

∂Ωr

∂x
(x) [1− erp] . (10.1.14)

Here the time t should be viewed as a parameterization of paths rather than as a real
time variable. In classical mechanics, Hamilton’s equations can be derived from a
variational principle, in which one looks for an extremum of the classical action

S[x, p] =
∫ T

0
[pẋ−H(x, p)]dt
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Fig. 10.2: Phase portrait of Hamiltonian equations of motion for transition rates Ω± =ω±/N given
by equation (3.4.14) of the Ca2+ sparks model, with cm = 0.01,ce = 4,α = 4, and k = 0.8. The
zero-energy solutions are shown as thicker curves

with respect to variations in x and p and assuming x is fixed at the endpoints, that is,
x(0) = x̄, x(T ) = x. The corresponding quasi potential is given by
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Φ(x) = inf
x(0)=x̄,x(T )=x

S[x, p] (10.1.15)

restricted to zero-energy solutions H = 0. Note that in classical mechanics one usu-
ally writes down a Lagrangian first, based on Newton’s law of motion, and then
constructs a Hamiltonian according to the Legendre transformation (see Box 10A
and [306])

H(x, p) = p · ẋ−L(x, ẋ), p =
∂L
∂ ẋ

. (10.1.16)

Within the Lagrangian framework Φ(x) corresponds to the classical action evaluated
along the least-action trajectory

Φ(x) = inf
x(t0)=x̄,x(T )=x

∫ T

0
L(x, ẋ)dt. (10.1.17)

In terms of the underlying stochastic process X(t), the least-action path is usually
interpreted as the most probable fluctuational path from x̄ to x (in the large N limit)
[195, 409]. However, this cannot be justified within the WKB approximation, but
must be established independently using a large deviation principle; we will show
how to achieve this using path integrals. Assuming that such an interpretation is
valid, the leading order term in the WKB approximation is determined by finding
zero-energy solutions p = p(x) such that H(x, p(x)) = 0. One solution is p = 0 or
Φ = constant, which represents the classical action along a deterministic (or relax-
ation) trajectory. For example, once the system escapes from the metastable state
x−, it tends to rapidly converge to the other metastable state x+ along such a de-
terministic path. (The contribution of relaxation trajectory to the mean escape time
is usually neglected.) Another solution for Φ is (10.1.9), which can be interpreted
as the action along a non-deterministic path that represents the most probable path
of escape from x− to x0 [152, 163, 174]. In Fig. 10.2 we illustrate the Hamiltonian
phase space for the Ca2+ sparks model of Sect. 3.4, showing the constant energy so-
lutions of the Hamiltonian given by equation (10.1.12); the zero-energy activation
and relaxation trajectories through the fixed points of the deterministic system are
highlighted as thicker curves.

Box 10A. Least-action principle of classical mechanics.

One way to formulate the dynamics of a classical point particle with spa-
tial coordinate x(t) is in terms of the Lagrangian L(x, ẋ) and action [306]

S[x] =
∫ x(T )=xT

x(0)=x0

L(x, ẋ)dt.

(For simplicity, we consider an autonomous system for which L is not
explicitly dependent on time t.) If the particle has kinetic energy mẋ2/2
and potential energy U(x), then
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L(x, ẋ) =
m
2

ẋ2−U(x).

One can think of S[x] as a functional, since it depends on the continuous
set of values x(t) over some time interval t ∈ [0,T ] with the endpoints
fixed; the functional dependence is usually indicated by square brackets.
The least-action principle states that the trajectories actually realized by
the particle are those that extremize the action, δS[x] = 0. This means
that, for any smooth function y(t) with y(0) = y(T ) = 0,

lim
ε→0

1
ε
(S[x+ εy]− S[x]) = 0. (10.1.18)

If we apply this definition to the action given by the time-integral of a
Lagrangian, we have

δS[x] =
∫
(L(x+ εy, ẋ+ ε ẏ)−L(x, ẋ))dt

= ε
∫ (∂L(x, ẋ)

∂x
y+

∂L(x, ẋ)
∂ ẋ

ẏ

)
dt +O(ε2)

= ε
∫ (∂L(x, ẋ)

∂x
− d

dt
∂L(x, ẋ)

∂ ẋ

)
ydt +O(ε2).

The last step is obtained by performing an integration by parts and us-
ing the boundary conditions on y. Since y(t) is arbitrary, the least action
principle generates the Euler–Lagrange equation

∂L(x, ẋ)
∂x

=
d
dt

∂L(x, ẋ)
∂ ẋ

.

Finally, substituting for L gives

mẍ =−dU(x)
dx

≡ F(x),

where F(x) is the force generated by the potential U(x). Thus the least-
action principle is equivalent to Newton’s law of motion.

Given the Lagrangian L, the corresponding classical Hamiltonian H is
defined by the Legendre transformation

H(x, p) = pẋ−L(x, ẋ).

with p = ∂L/∂ ẋ. Taking differential of H = H(x, p) we have

dH =
∂H
∂x

dx+
∂H
∂ p

d p.
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Similarly, taking differentials of the Legendre transformation,

dH = ẋd p+ pdẋ− ∂L
∂x

dx− ∂L
∂ ẋ

dẋ.

Using the definition of p to eliminate the dẋ terms and applying the Euler–
Lagrange equation, we obtain Hamilton’s equations

ẋ =
∂H
∂ p

, ṗ =−∂H
∂x

.

For the specific Lagrangian, p = mẋ (the momentum) and

H(x, p) =
p2

2m
+U(x),

which is the total energy of the particle. Finally, if we allow the endpoint x
of the action to vary, we obtain a function Φ(x) that satisfies a Hamilton–
Jacobi equation. It is important to emphasize that the WKB method for
a stochastic system works backward. The WKB solution of the quasis-
tationary density yields a quasi-potential Φ that satisfies a Hamilton–
Jacobi equation. From a mathematical perspective, there is an underlying
Hamiltonian structure and an associated variational principle. However,
the physical interpretation of the latter is not given a priori. Instead, one
needs to apply some version of large deviation theory to identify solutions
of the variational problem with most likely or optimal paths of the under-
lying stochastic process. This is established for the birth–death process
using path integrals in Sect. 10.3.

Asymptotic Expansion Around x0

Given the quasistationary approximation, the rate of escape from the metastable
state centered about x = x− can be calculated by matching it with an appropriate
inner solution in a neighborhood of the point x = x0 [152, 163, 174, 252, 264].
This is necessary since the quasistationary solution (10.1.10) does not satisfy the
absorbing boundary condition at the point x0 separating the two metastable states.
There are a number of different ways of carrying out the matched asymptotics; see



586 10 The WKB Method, Path-Integrals, and Large Deviations

for example [264]. Here we will follow an approach based on fixing the probability
flux J0 through x0 and then matching the activation solution for x < x0 with the
relaxation solution for x > x0 using a diffusion approximation of the full master
equation (10.3.1) in the vicinity of x0 [163, 174, 252]. The latter yields the FPE
(3.2.10), which can be rewritten in the form of a conservation equation

∂
∂ t

P(x, t) =− ∂
∂x

J(x, t) (10.1.19)

with

J(x, t) = (Ω+(x)−Ω−(x))P(x, t)− 1
2N

∂
∂x

[(Ω+(x)+Ω−(x))P(x, t)] .

Substituting the quasistationary solution p(x, t) = C0e−λ0tΠ(x) into equation
(10.1.19) and using the fact that λ0 is exponentially small gives

J0 = (Ω+(x)−Ω−(x))Π(x)− 1
2N

∂
∂x

[(Ω+(x)+Ω−(x))Π(x)] ,

where J0 is the constant flux through x0. In a neighborhood of x0, this equation can
be Taylor expanded to leading order in x− x0 and integrated to obtain the solution

Π(x) =
J0N

Ω+(x0)
e(x−x0)

2/σ 2
∫ ∞

x
e−(y−x0)

2/σ 2
dy, (10.1.20)

where

σ =

√
2Ω+(x0)

N[Ω ′
+(x0)−Ω ′

−(x0)]
(10.1.21)

determines the size of the boundary layer around x0.
In order to match the activation and relaxation solutions, the following asymp-

totic behavior of the inner solution (10.1.20) is used:

Π(x) =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

NJ0σ2

(x− x0)Ω+(x0)
, x− x0 � σ

NJ0σ
√

π
Ω+(x0)

e(x−x0)
2/σ 2

, x0− x� σ .

(10.1.22)

The solution to the right of the saddle matches the relaxation solution (10.1.11)
since Ω+(x)−Ω−(x) ≈ (x− x0)[Ω ′

+(x0)−Ω ′−(x0)] for x ≈ x0 such that B = J0. In
order to match the solution on the left-hand side of x0 with the activation solution
(10.1.10), Taylor expand Φ(x) about x0 using Φ ′

(x0) = 0 and Φ ′′
(x0) = 2/Nσ2. It

follows that

J0 =
AΩ+(x0)√

Ω+(x0)Ω−(x0)

√
|Φ ′′(x0)|

2πN
e−NΦ(x0). (10.1.23)
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The final step in the analysis is to link the flux J0 with the escape rate λ0. This is
achieved by substituting the quasistationary solution into the continuity equation
(10.1.19) and integrating over the interval x ∈ [0,x0] with a reflecting boundary con-
dition at x = 0:

1
λ0

=
1
J0

∫ x0

0
φε (y)dy. (10.1.24)

Since the activation solution is strongly peaked around the fixed point x−, a Gaussian
approximation of φε (x) around x− yields the final result (since Ω+(x) = Ω−(x) at
the fixed points x0,x−)

λ0 =
Ω+(x−)

2π

√
|Φ ′′

(x0)|Φ ′′
(x−)e−N[Φ(x0)−Φ(x−)]. (10.1.25)

Hence, we obtain equation (3.3.36) with τi = λ−1
0 and

Φ ′′(x) =
d
dx

ln

(
Ω−(x)
Ω+(x)

)
=

Ω ′−(x)
Ω−(x)

− Ω ′
+(x)

Ω+(x)
= γ(x).

10.1.2 WKB Method for a Stochastic Hybrid System

In Sect. 3.5 we considered a model of membrane voltage fluctuations that involved
the coupling between a piecewise deterministic dynamical system and a jump
Markov process, which is known as a stochastic hybrid system or piecewise deter-
ministic Markov process [135]. Other examples of stochastic hybrid systems consid-
ered in this book include bacterial chemotaxis (Sect. 5.3), stochastic gene networks
(Chap. 6), and motor-driven intracellular transport (Sect. 7.4). All of these systems
can be modeled in terms of an equation having the form

dx
dt

=
1
τx

Fn(x) (10.1.26)

where x∈R
d represents d continuous variables, n∈ I ⊆Z is a discrete internal state

variable, and the latter evolves according to a jump Markov process n′ → n with
transition rates Wnn′(x)/τn. For simplicity, we restrict ourselves to a single continu-
ous variable (d = 1). (It is also possible to have a set of discrete variables, but one
can always relabel the internal states so that they are effectively indexed by a single
integer.) The jump propagator Wnn′(x)dt/τn is the probability that the system at x
switches from the discrete internal state n′ at time t to the state n at time t + dt.
The transition rates generally depend on x, with the latter coupled to the associated
jump Markov process according to equation (10.1.26), which is only defined be-
tween jumps, during which x(t) evolves deterministically. Denote the random state
of the full model (10.1.26) at time t by (X(t),N(t)), and introduce the corresponding
probability density

Prob{X(t) ∈ (x,x+ dx),N(t) = n}= pn(x, t)dx, (10.1.27)
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given initial conditions X(0) = x0,N(0) = n0 (which are suppressed). The prob-
ability density evolves according to the differential Chapman–Kolmogorov (CK)
equation (dropping the explicit dependence on initial conditions)

∂ p
∂ t

+
1
τx

∂ [Fn(x)pn(x, t)]
∂x

(10.1.28)

=
1
τn

∑
n′∈I

[Wnn′(x)pn′(x, t)−Wn′n(x)pn(x, t)] .

We have introduced two time scales in the system, a relaxation time scale τx for the
x-dynamics and a transition time scale τn for the jump process.

In many of the listed biophysical applications, the kinetics associated with the
jump process are much faster than the relaxation dynamics of x, that is, τn � τx. Let
us fix the time units by setting τx = 1 and introduce the small parameter ε = τn/τx.
We can then rewrite (10.1.28) in the more compact form

∂ pn

∂ t
=−∂ [Fn(x)pn(x, t)]

∂x
+

1
ε ∑

n′∈I

Ann′(x)p(x), (10.1.29)

with
Ann′(x) =Wnn′(x)−∑

m∈I

Wmn(x)δn′,n.

In the limit ε → 0, equation (10.1.26) reduces to the deterministic or mean-field
equation

dx
dt

=F (x) ≡∑
n∈I

Fn(x)ρn(x), (10.1.30)

where ρn(x) is the unique steady-state density satisfying ∑m∈I Anm(x)ρm(x) = 0.
This follows from the law of large numbers [177]. As in the case of the birth–death
master equation, we are assuming that for fixed x, the matrix Anm(x) is irreducible
and has a simple zero eigenvalue with corresponding left eigenvector 1 whose com-
ponents are all unity, that is, ∑n∈I Anm(x) = 0 for all m. The Perron–Frobenius the-
orem then ensures that all other eigenvalues are negative and the continuous-time
Markov process for fixed x,

d pn(x, t)
dt

=
1
ε ∑

m∈I

Anm(x)pm(x, t),

has a globally attracting steady state ρn(x) such that pn(x, t)→ ρn(n) as t → ∞.
Following along similar lines to the analysis of the birth–death master equation,

suppose that the mean-field equation (10.1.30) is bistable with a pair of stable fixed
points x± separated by an unstable fixed point x0. Assume that the stochastic system
is initially at x−. On short time scales (t � 1/ε) the system rapidly converges to a
quasistationary solution within the basin of attraction of x−, which can be approx-
imated by a Gaussian solution of the reduced FP equation obtained using a QSS
diffusion or adiabatic approximation of the CK equation (10.1.29) (see Sect. 7.4).
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However, on longer time scales, the survival probability slowly decreases due to
rare transitions across x0 at exponentially small rates, which cannot be calculated
accurately using the QSS diffusion approximation. One thus has to work with the
full CK equation (10.1.29) supplemented by an absorbing boundary condition at x0:

pn(x0, t) = 0, for all n ∈ Σ , (10.1.31)

where Σ ⊂ I is the set of internal states n for which Fn(x0)< 0. The initial condition
is taken to be

pn(x,0) = δ (x− x−)δn,n̄. (10.1.32)

Let T denote the (stochastic) FPT for which the system first reaches x0, given that it
started at x−. The distribution of FPTs is related to the survival probability that the
system hasn’t yet reached x0, that is,

Prob{t > T}= S(t)≡
∫ x0

−∞
∑
n∈I

pn(x, t)dx.

The FPT density is then

f (t) =−dS
dt

=−
∫ x0

−∞
∑
n∈I

∂ pn

∂ t
(x, t)dx. (10.1.33)

Substituting for ∂ pn/∂ t using the CK equation (10.1.29) shows that

f (t) =
∫ x0

−∞

[

∑
n∈I

∂ [Fn(x)pn(x, t)]
∂x

]

dx = ∑
n∈I

pn(x0, t)Fn(x0). (10.1.34)

We have used ∑n Anm(x) = 0 and limx→−∞ Fn(x)pn(x, t) = 0. The FPT density can
thus be interpreted as the probability flux J(x, t) at the absorbing boundary, since we
have the conservation law

∑
n∈I

∂ pn(x, t)
∂ t

=−∂J(x, t)
∂x

, J(x, t) = ∑
n∈I

Fn(x)pn(x, t). (10.1.35)

Again proceeding as in the analysis of the birth–death master equation, suppose
that the solution to the CK equation (10.1.29) with absorbing boundary at x = x0 has
the eigenfunction expansion (see Sect. 2.5)

pn(x, t) = ∑
r≥0

Cre−λrtφ (r)
n (x), (10.1.36)

where Re[λr] > 0 for all r ≥ 0 and (λr,φ
(r)
n ) are an eigenpair of the linear operator

L̂ on the right-hand side of the CK equation (10.1.29):

L̂φ (r)
n (x)≡ d

dx
(Fn(x)φ

(r)
n (x))− 1

ε ∑
m∈I

Anmφ (r)
m (x) = λrφ

(r)
n (x), (10.1.37)
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together with the boundary conditions

φ (r)
n (x0) = 0, forn ∈ Σ . (10.1.38)

Furthermore, assume that there exists a simple, real eigenvalue λ0 such that 0 <
λ0 < Re[λ1] ≤ Re[λ2] ≤ . . . with λ0 ∼ e−C/ε , whereas Re[λr] = O(1) for r > 0. It
follows that at large times we have the quasistationary approximation

pn(x, t)∼C0e−λ0tφ (0)
n (x). (10.1.39)

Substituting such an approximation into equation (10.1.34) implies that f (t) ∼
λ0e−λ0t with λ−1

0 the MFPT. As shown elsewhere [321, 475], one can determine
λ0 by first using a WKB approximation to construct a quasistationary solution φε

n
for which L̂φε = 0 and φε

n (x0) ∼ O(e−ηN) and then performing an asymptotic ex-
pansion in order to match the quasistationary solution with the solution in a neigh-
borhood of x0. Here we will simply calculate the quasi-potential arising from the
leading order terms in the WKB approximation φε

n (x). The latter takes the form

φε
n (x)∼ Rn(x)exp

(
−Φ(x)

ε

)
, (10.1.40)

where Φ(x) is the quasi-potential. Substituting into the time-independent version of
equation (10.1.29) yields

∑
m∈I

(
Anm(x)+Φ ′(x)δn,mFm(x)

)
Rm(x) = ε

dFn(x)Rn(x)
dx

, (10.1.41)

where Φ ′ = dΦ/dx. Introducing the asymptotic expansions R ∼ R(0) + εR(1) and
Φ ∼Φ0 + εΦ1, the leading order equation is

∑
m∈I

Anm(x)R
(0)
m (x) =−Φ ′

0(x)Fn(x)R
(0)
n (x). (10.1.42)

Positivity of the probability density φε requires positivity of the corresponding so-
lution R(0). One positive solution is the trivial solution R(0) = ρ , for which Φ ′

0 = 0.
It can be proven that if Fn(x) for fixed x ∈Ω changes sign as n increases from zero,
then there exists one other positive eigenfunction R(0), which can be identified as
the appropriate WKB solution [475].

There are two major differences between the WKB analysis of the stochastic
hybrid system and the birth–death master equation

(i) In the former case the small parameter ε arises from the separation of time-
scales, whereas in the latter case ε = N−1 where N is the system size. Thus
equation (10.1.40) holds irrespective of the number of molecules N.
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(ii) The quasi-potential of the birth–death master equation naturally satisfies a
Hamilton–Jacobi equation (see (10.1.8)), whereas the quasi-potential of the
stochastic hybrid system is related to the eigenvalue of a matrix operator (see
(10.1.42)).

It turns out that there is a Hamiltonian structure underlying the construction of the
quasi-potential for stochastic hybrid systems, which can be shown rigorously using
a large deviation principle [332]. In Sect. 10.4 we derive such an action principle
using path-integrals along the lines of [66]. Here we simply summarize the main
result, namely that one can identify the Hamiltonian H(x, p) as the unique Perron
(principle) eigenvalue Λ0(x, p) of the matrix equation

∑
m
[Anm(x)+ pδn,mFm(x)]R

(0)
m (x, p) = Λ0(x, p)R(0)

n (x, p). (10.1.43)

Comparison with equation (10.1.42) show, that the quasi-potential is obtained from
the Hamilton–Jacobi equation Λ0(x,Φ ′(x)) = 0. This is equivalent to finding zero-
energy solutions of Hamilton’s equations

ẋ =
∂Λ0(x, p)

∂ p
, ṗ =−∂Λ0(x, p)

∂x
, (10.1.44)

and identifying Φ0 as the action along the resulting solution curve (x(t), p(t)):

Φ0(x) =
∫ x

x̄
p(x′)dx′. (10.1.45)

10.1.3 Stochastic Ion Channels Revisited

We will illustrate the above analysis by returning to the stochastic conductance-
based model given by equations (3.5.13) and (3.5.14), which was analyzed in
Sect. 3.5 using a diffusion approximation of the underlying CK equation (3.5.17)
for large N and small ε (fast Na channels). It is convenient to rewrite the CK equa-
tion (3.5.17) in the form (10.1.29) with

Fn(x)≡ 1
N

f (x)n− g(x)

and A the tridiagonal matrix (for fixed x):

An,n−1;x = ω+(x,n− 1), An,n;x =−ω+(x,n)−ω−(n), An,n+1;x = ω−(n+ 1)
(10.1.46)

for n = 0,1, . . . ,N. In the mean-field limit ε → 0, we recover the deterministic
kinetic equation (3.3.24),

dx
dt

= a(x) f (x)− g(x) (10.1.47)

where

a(x) = 〈n〉/N, 〈n〉=
N

∑
n=1

nρn(x),
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and ρ is the quasistationary density

ρn(x) =
N!

(N− n)!n!
a(x)nb(x)N−n, a(x) =

α(x)
α(x)+β (x)

, b(x) =
β (x)

α(x)+β (x)
.

(10.1.48)
In the case of the stochastic ion channel model, equation (10.1.43) with R(0)

n (x, p) =
ψn(x, p) takes the explicit form

(N− n+ 1)αψn−1− [λ0 + nβ +(N− n)α]ψn

+(n+ 1)β ψn+1 =−p
( n

N
f − g
)

ψn. (10.1.49)

Consider the trial solution

ψn(x, p) =
Γ (x, p)n

(N− n)!n!
, (10.1.50)

which yields the following equation relating Γ and Λ0:

nα
Γ

+Γ β (N− n)−Λ0− nβ − (N− n)α =−p
( n

N
f − g
)
.

Collecting terms independent of n and terms linear in n yields the pair of equations

p =− N
f (x)

(
1

Γ (x, p)
+ 1

)
(α(x)−β (x)Γ (x, p)) (10.1.51)

and
Λ0(x, p) =−N(α(x)−Γ (x, p)β (x))− pg(x). (10.1.52)

Eliminating Γ from these equation gives

p =
1

f (x)

(
Nβ (x)

Λ0(x, p)+Nα(x)+ pg(x)
+ 1

)
(Λ0(x, p)+ pg(x)).

This yields a quadratic equation for Λ0 of the form

Λ 2
0 +σ(x)Λ0− h(x, p) = 0 (10.1.53)

with

σ(x) = (2g(x)− f (x))+N(α(x)+β (x)),
h(x, p) = p[−Nβ (x)g(x)+ (Nα(x)+ pg(x))( f (x)− g(x))].

Along the zero-energy surface Λ0(x, p) = 0, we have h(x, p) = 0 which yields the
pair of solutions

p = 0 and p =−μ(x)≡ N
α(x) f (x)− (α(x)+β )g(x)

g(x)( f (x)− g(x))
. (10.1.54)
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It follows that the nontrivial WKB quasi-potential is given by

Φ0(x) =−
∫ x

μ(y)dy, (10.1.55)

which differs significantly from the FP quasi-potential ΦFP of equation (3.5.26).
This is a major source of the error in the diffusion approximation illustrated in
Fig. 3.18. Further examples of WKB analysis are considered in Exs. 10.1 and 10.2.

10.2 Path Integral Representation of an SDE

Consider the scalar SDE

dX(t) = A(X)dt +
√

εdW (t), (10.2.1)

for 0≤ t ≤ T and initial condition X(0) = x0. Here W (t) is a Wiener process and the
noise is taken to be weak (ε � 1). Discretizing time by dividing the interval [0,T ]
into N equal subintervals of size Δ t such that T = NΔ t and setting Xn = X(nΔ t), we
have

Xn+1−Xn = A(Xn)Δ t +
√

εΔWn,

with n = 0,1, . . . ,N− 1, ΔWn =W ((n+ 1)Δ t)−W(nΔ t)

〈ΔWn〉= 0, 〈ΔWmΔWn〉= Δ tδm,n.

Let X and W denote the vectors with components Xn and Wn, respectively. Formally,
the conditional probability density function for X = x given a particular realization
w of the stochastic process W (and initial condition x0) is

P(x|w) = ∏N−1
n=0 δ

(
xn+1− xn−A(xn)Δ t−√εΔwn

)
.

Inserting the Fourier representation of the Dirac delta function,

δ (xm+1− zm) =
1

2π

∫ ∞

−∞
e−ix̃m(xm+1−zm)dx̃m, (10.2.2)

gives

P(x|w) =
N−1

∏
m=0

[∫ ∞

−∞
e−ix̃m

(
xm+1− xm−A(xm)Δ t−√εΔwm

)
dx̃m

2π

]
.

The Gaussian random variable ΔWn has the probability density function

P(Δwn) =
1√

2πΔ t
e−Δw2

n/2Δ t .
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Hence, setting

P(x) =
∫

P[x|w]
N−1

∏
n=0

P(Δwn)dΔwn

and performing the integration with respect to Δwn by completing the square, we
obtain the result

P(x) =
N−1

∏
m=0

[∫ ∞

−∞
e−ix̃m(xm+1−xm−A(xm)Δ t)e−ε x̃2

mΔ t/2 dx̃m

2π

]
.

Finally, performing the Gaussian integration with respect to x̃m, we have

P(x) =
N−1

∏
m=0

1√
2πεΔ t

e−(xm+1−xm−A(xm)Δ t)2/(2εΔ t)

=N exp

[

−
N−1

∑
m=0

(xm+1− xm−A(xm)Δ t)2 /(2εΔ t)

]

=N exp

[

− 1
2ε

N−1

∑
m=0

(
xm+1− xm

Δ t
−A(xm)

)2

Δ t

]

, (10.2.3)

with

N =
1

(2πεΔ t)N/2
.

Note that P(x)dx1 . . .dxN is the probability that a given realization X(t) of the
discretized stochastic process lies within an infinitesimal domain given by xn <
X(nΔ t) < xn + dxn for n = 1, . . .N and with initial condition X(0) = x0. One can
define expectations in the usual way with

E[F(X)] =

∫
F(x)P(x)dx1 . . .xN

for any integrable function F . The main value of this particular integral representa-
tion is that it has a well-defined continuum limit obtained by taking Δ t → 0,N → ∞
with NΔ t = T fixed. Now P[x] is a probability density functional over the different
paths {x(t)}T

0 realized by the original SDE (10.2.1) with X(0) = x0. Taking the con-
tinuum limit of the exponential in equation (10.2.3) shows that (up to an appropriate
normalization)

P[x]∼ exp

[
− 1

2ε

∫ T

0
(ẋ−A(x))2dt

]
, (10.2.4)

and the expectation of a functional F [x] is given by the Onsager–Machlup path
integral [235, 236]

E[F [x]] =
∫

F [x]P[x]D(x), (10.2.5)

where the probability measure D [x] on the space of trajectories is known as the
Wiener measure. (It turns out that the subtleties of measure theory are not needed in
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order to carry out useful calculations using path-integrals.) Suppose, for example,
one wants to determine the probability density

P(x,τ|x0) =

∫ x(τ)=x

x(0)=x0

P[x]D [x]

that the stochastic process X(t) reaches a point x at time t = τ given that it started at
x0 at time t = 0. Substituting the exponential form for P[x], we see that

P(x,τ|x0) =

∫ x(τ)=x

x(0)=x0

exp

[
− 1

2ε

∫ τ

0
(ẋ−A(x))2dt

]
D [x]. (10.2.6)

In the limit ε → 0, we can use the method of steepest descents to obtain the
approximation

P(x,τ|x0)∼ exp

[
−Φ(x,τ|x0)

ε

]
, (10.2.7)

where Φ is known as the stochastic or quasi-potential

Φ(x,τ|x0) = inf
x(0)=x0,x(τ)=x

S[x], (10.2.8)

with

S[x] =
∫ τ

0
L(x, ẋ)dt (10.2.9)

and

L(x, ẋ) =
1
2
(ẋ−A(x))2. (10.2.10)

An interesting feature of the above analysis is that the quasi-potential is obtained
by solving a variational problem that minimizes the functional S[x] over trajectories
from {x(t)}τ

0 with x(0) = x0 and x(τ) = x. In other words, the variational problem
determines the most probable path. If we now make the connection with classical
mechanics, we can identify S[x] as an action with corresponding Lagrangian L(x, ẋ),
and the most probable path is given by the solution to the Euler–Lagrange equation
(see Box 10A)

d
dt

∂L
∂ ẋ

=
∂L
∂x

. (10.2.11)

Substituting for L, we see that the most probable path satisfies

ẍ−A′(x)ẋ =−(ẋ−A(x))A′(x),

that is
ẍ = A(x)A′(x). (10.2.12)

Suppose that in the zero-noise limit there is a globally attracting fixed point xs such
that A(xs) = 0. The steady-state solution of the corresponding FP equation can be
obtained by solving the Euler–Lagrange equation with the conditions x(−∞) = xs
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and x(τ) = x. Multiplying both sides of equation (10.2.12) by ẋ and integrating with
respect to t shows that ẋ(t)2 = A(x(t))2 + constant. The initial condition implies
that the constant is zero and the end condition implies that the most probable path
satisfies ẋ =−A(x). It follows that the quasi-potential is

Φ(x,τ|x∗) =−2
∫ τ

−∞
A(x)ẋdt = 2

∫ τ

−∞
U ′(x)ẋdt = 2

∫ x

xs

U ′(x)dx = 2U(x),

where we have set A(x) = −U ′(x) with U(x) the potential of the deterministic sys-
tem. Hence, we obtain the expected result that the stationary density is

P(x)∼ e−2U(x)/ε .

In the case of a scalar SDE one can of course solve the steady-state FP equation
directly. The power of the path-integral formulation is that one can extend the def-
inition of the quasi-potential to multivariate SDEs and to nonlinear systems having
multiple attractors. For example, consider the multivariate SDE

dXi(t) = Ai(X)dt +
√

ε ∑
j

bi j(X)dWi(t), (10.2.13)

for i = 1, . . . ,d with Wi(t) a set of independent Wiener processes. Generalizing the
path-integral method to higher dimensions or using the rigorous approach of Frei-
dlin and Wentzel [195], one obtains a large deviation principle with action functional

S[x] =
1
2

∫ T

0

d

∑
i, j=1

(ẋi(t)−Ai(x(t)))D−1
i j (ẋ j(t)−A j(x(t)))dt, (10.2.14)

where D = bbtr is the diffusion matrix. Suppose that the underlying deterministic
system has multiple attracting fixed points xr,r = 1,2 . . .. The quasi-potential Φ(x)
characterizing the stationary distribution (assuming it exists) is estimated as Φ(x) =
minr Φr(x), where Φr(x) is the quasi-potential obtained by initiating paths at xr:

Φr(x) = inf
x(−∞)=xr,x(τ)=x

S[x].

Note that the minimum over r switches abruptly on a separatrix separating the basins
of attraction of the fixed points.

10.2.1 The WKB Method and First Passage Time Problems
in the Weak Noise Limit

We now establish a connection to the variational principle obtained from path inte-
grals with a Hamiltonian formalism derived using the WKB method. The latter was
applied to a jump Markov process in Sect. 10.1.1 and a stochastic hybrid system in
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Sect. 10.1.2. Consider the FP equation corresponding to the scalar SDE (10.2.1):

∂ p
∂ t

=−∂ [A(x)p(x, t)]
∂x

+
ε
2

∂ 2 p(x, t)
∂x2 ≡−∂J(x, t)

∂x
, (10.2.15)

where

J(x, t) =−ε
2

∂ p(x, t)
∂x

+A(x)p(x, t).

Suppose that the deterministic equation ẋ = A(x) has a stable fixed point x−,
A(x−) = 0, and a basin of attraction given by the interval Ω = (0,x0); the point x0

corresponds to an unstable fixed point. For small but finite ε the fluctuations about
the steady state p(x) can induce rare transitions out of the basin of attraction due
to a metastable trajectory crossing the point x0. Assume that the stochastic system
is initially at x− so that p(x,0) = δ (x− x−). In order to solve the FPT problem for
escape from the basin of attraction of x−, we impose an absorbing boundary condi-
tion at x0, p(x0, t) = 0 and a reflecting boundary condition at x = 0. Let T denote
the (stochastic) FPT for which the system first reaches x0, given that it started at x−.
The distribution of FPTs is related to the survival probability that the system hasn’t
yet reached x0:

S(t)≡
∫

Ω
p(x, t)dx. (10.2.16)

That is, Prob{t > T}= S(t) and the FPT density is

f (t) =−dS
dt

=−
∫

Ω

∂ p
∂ t

(x, t)dx. (10.2.17)

Substituting for ∂ p/∂ t using the FP equation (10.2.15) shows that

f (t) =
∫

Ω

∂J(x, t)
∂x

dx = J(x0, t) =−ε
2

∂ p(x0, t)
∂x

. (10.2.18)

We have used J(0, t) = 0 and p(x0, t) = 0. The FPT density can thus be interpreted
as the probability flux J(x, t) at the absorbing boundary.

The FPT problem in the weak noise limit (ε � 1) has been well studied in the
case of FP equations; see for example [409, 426, 466, 574]. One of the characteristic
features of the weak noise limit is that the flux through the absorbing boundary and
the inverse of the MFPT 〈T 〉 are exponentially small, that is, 〈T 〉 ∼ eC/ε for some
constant C (reflecting an underlying large deviation principle). In order to make this
connection more explicit, we will proceed along analogous lines to Sect. 10.1 and
consider the eigenfunction expansion

p(x, t) = ∑
r

Cre−λrtφr(x), (10.2.19)

where (λr,φr(x)) are an eigenpair of the linear operator
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L̂ =
∂
∂x

A(x)− ε
2

∂ 2

∂x2

appearing on the right-hand side of (10.2.15). That is,

L̂φr(x) = λrφr(x), (10.2.20)

together with the absorbing boundary conditions φr(x0) = 0. We also assume that
the eigenvalues λr all have positive definite real parts and the smallest eigenvalue λ0

is real and simple, so that we can introduce the ordering 0 < λ0 <Re[λ1]≤Re[λ2]≤
. . .. The exponentially slow rate of escape through x0 in the weak noise limit means
that λ0 is exponentially small, λ0 ∼ e−C/ε , whereas Re[λr] = O(1) for r ≥ 1. Under
the above assumptions, we have the quasistationary approximation for large t

p(x, t)∼C0e−λ0tφ0(x), (10.2.21)

and the FPT density takes the form f (t)∼ λ0e−λ0t with λ−1
0 identified as the MFPT.

As in the examples considered in Sect. 10.1, the calculation of the principle
eigenvalue λ0 consists of two major components [409, 426, 466, 574]: (i) a WKB ap-
proximation of the quasistationary state, which also provides an alternative method
for deriving the quasi-potential of large deviation theory, and (ii) the use of matched
asymptotics in order to match the outer quasistationary solution with an inner
solution within a boundary layer around x0 so that the absorbing boundary con-
dition is satisfied. Here we will focus on the WKB method for determining the
quasi-potential. We seek a quasistationary solution of the WKB form

φε (x)∼ K(x;ε)e−Φ(x)/ε , (10.2.22)

with K(x;ε) ∼ ∑∞
m=0 εmKm(x). Substitute equation (10.2.22) into the eigenvalue

equation L̂φ0(x) = λ0φ0(x) and Taylor expand with respect to ε using the fact that
λ0 is exponentially small. Collecting the O(1) terms gives

1
2

(
∂Φ(x)

∂x

)2

+A(x)
∂Φ(x)

∂x
= 0. (10.2.23)

Similarly, collecting O(ε) terms yields the following equation for the leading con-
tribution K0 to the pre factor:

[
∂Φ
∂x

+A(x)

]
∂K0

∂x
=−
[

A′(x)+
1
2

∂ 2Φ(x)
∂x2

]
K0(x). (10.2.24)

Equation (10.2.23) has the form of a Hamilton–Jacobi (HJ) equation for a classical
Newtonian particle. That is, introducing the time-independent Hamiltonian

H(x, p) =
p2

2
+A(x)p, (10.2.25)
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we see that equation (10.2.23) can be rewritten as the “zero-energy” HJ equation

H(x,Φ ′(x)) = 0. (10.2.26)

The HJ structure suggests a classical mechanical interpretation, in which the Hamil-
tonian H describes the motion of a “fictitious” particle with position x and conjugate
momentum p evolving according to Hamilton’s equations

ẋ =
∂H
∂ p

= p+A(x) (10.2.27a)

ṗ =−∂H
∂x

=−pA′(x). (10.2.27b)

The Hamiltonian is related to a classical Lagrangian L(x, ẋ) according to the Legen-
dre transformation

H(x, p) = pẋ−L(x, ẋ), p =
∂L
∂ ẋ

.

It follows that

L(x, ẋ) =
1
2
(ẋ−A(x))2, (10.2.28)

which we immediately recognize as the Lagrangian associated with the action func-
tional of the large deviation principle (10.2.9). From the least-action principle of
classical mechanics, one knows that Φ(x) is given by

Φ(x) = inf
x(t0)=x∗,x(τ)=x

∫ τ

0
L(x, ẋ)dt, (10.2.29)

and can thus be identified as the quasi-potential of large deviation theory. However,
we have the additional constraint that Φ(x) is determined along a zero-energy tra-
jectory. This reflects the fact that we are interested in a quasistationary density and
thus should take t0 → −∞ and x∗ to be the fixed point x−. The vanishing of the
Lagrangian at the fixed points corresponds to a zero-energy solution.

10.3 Path-Integral Representation of a Birth–Death Master
Equation

The connection between WKB methods for solving FPT problems and large-
deviation variational principles also extends to chemical master equations in the
large N limit (with N−1 playing the role of a weak noise parameter ε). Once again
this connection can be established using path-integral methods, which were first
developed for master equations and reaction–diffusion systems by Doi and Peliti
[147, 148, 503]. For the sake of illustration, we will apply the “coherent states”
formulation of Peliti to the birth–death master equation
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dP(n, t)
dt

= ω+(n− 1)P(n− 1, t)+ω+(n+ 1)P(n+ 1, t)− [ω+(n)+ω−(n)]P(n, t)
(10.3.1)

for n = 0, . . . ,N with boundary conditions P(−1, t) = P(N+1, t) = 0. We are imag-
ining an ensemble of N independent elements, each evolving according to a two-
state Markov process with σ j = 0,1 for j = 1, . . . ,N. Then P(n, t) is the probability
that there are n elements in the up-state (σ = 1) at time t. Such a system could
describe N receptors or N ion channels, for example, with σ = 1 corresponding
to a bound receptor or an open ion channel. We begin by introducing an abstract
vector space (also known as a Fock space) with elements |n〉 representing the differ-
ent occupancies of the state σ = 1. Introduce a pair of creation–annihilation linear
operators that satisfy the commutation rule

[A,A†]≡ AA†−A†A = 1. (10.3.2)

These operators generate the full vector space by acting on the “vacuum” state |0〉,
which represents the state in which all elements are in the down-state (σ = 0), with
A|0〉= 0. The state |n〉 is then generated according to

|n〉= A†n|0〉. (10.3.3)

Inner products in this state space are defined by 〈0|0〉 = 1 and the commutation
relations. It follows that the dual of the vector A†|0〉 is 〈0|A. The number of elements
in the up-state can be extracted by operating on a state vector with the number
operator Φ†Φ and using the commutation relations:

A†A|n〉= n|n〉. (10.3.4)

In order to see this, note that

A†A|n〉= A†AA†|n− 1〉= A†[A,A†]|n− 1〉+A†AA†]|n− 1〉
= |n〉+A†A†A|n− 1〉= 2|n〉+[A†]3A|n− 2〉
= n|n〉+[A†]nA|0〉= n|n〉.

Similarly, we have
A|n〉= n|n− 1〉, A†|n〉= |n+ 1〉. (10.3.5)

The next step is to construct an operator representation of the master equation
(10.3.1). Given the probability distribution P(n, t), we introduce the state vector

|φ(t)〉= ∑
n

P(n, t)A†n|0〉=
N

∑
n=0

P(n, t)|n〉. (10.3.6)

Introducing the projection state

| /0〉= exp
(
A†) |0〉 (10.3.7)
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with A| /0〉 = | /0〉 and 〈 /0|0〉 = 1, we can then express expectation values in terms of
inner products. For example,

〈 /0|A†A|φ(t)〉=
N

∑
n=0

nP(n, t) = 〈n(t)〉. (10.3.8)

Differentiating the state vector |φ(t)〉with respect to t and using the master equation
(10.3.1) gives

∂t |φ(t)〉 = ∑
n

∂tP(n, t)|n〉

= ∑
n
[ω+(n− 1)P(n− 1, t)−ω+(n)P(n, t)] |n〉

+∑
n
[ω−(n+ 1)P(n+ 1, t)−ω−(n)P(n, t)] |n〉

= [(A−A†A)ω−(B) +(A†− 1)ω+(B)
] |φ(t)〉, (10.3.9)

where B = A†A and ω−(n) = ω−(n)/n. We see that the operator representation of
the master equation (10.3.1) is

∂t |φ(t)〉=H |φ(t)〉 (10.3.10)

with
H (A,A†) = (A−A†A)ω−(B)+ (A†− 1)ω+(B). (10.3.11)

Note that the operator equation (10.3.10) can be converted to a PDE describing
the evolution of the corresponding generating function G(z, t) of the probability
distribution P(n, t). This follows from setting

G(z, t)≡ 〈 /0|ezA|φ(t)〉= ∑
n

znP(n, t)

and converting the operators A,A† to d/dz,z. Both sets of operators satisfy the same
commutation relations. Formally speaking, the solution to the operator version of
the master equation (10.3.10) can be written as

|φ(t)〉 = eH (A,A†)t |φ(0)〉, (10.3.12)

and the expectation value of some physical quantity such as the number n(t) can
now be expressed as

〈n(t)〉= 〈 /0|A†AeH (A,A†)t |φ(0)〉. (10.3.13)

Note that such an operator formalism, which is borrowed from quantum mechan-
ics, has also been developed within the specific context of stochastic gene regulatory
networks [558, 664].

In order to convert the operator form of the expectation value into a path integral,
we divide the time interval [0, t] into N intervals of length Δ t = t/N and set tr =
rΔ t, r = 0,1, . . . ,N . We then introduce coherent states of the form
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|ϕ(t)〉= exp

(
−1

2
|ϕ(t)|2

)
exp
(
ϕ(t)A†) |0〉, (10.3.14)

such that ϕ(t) is the complex-valued eigenvalue of the annihilation operator A, with
complex conjugate ϕ∗. Coherent states satisfy the completeness relation

∫
dϕdϕ∗

π
|ϕ〉〈ϕ |= 1. (10.3.15)

At each discrete-time step we insert a complete set of coherent states using the
completeness relation (10.3.15) so that the expectation value becomes

〈n(t)〉 = 〈 /0|A†A|ϕ(t)〉 (10.3.16)
[

N

∏
r=1
〈ϕ(tr)|(1+H Δ t)|ϕ(tr−1)〉

]

〈ϕ(0)|φ(0)〉,

where we have made use of the formula

eH t = lim
N →∞

(1+H Δ t)N .

The crucial observation is that at the rth time step we can replace the annihilation
and creation operators A,A† in H by the corresponding coherent state eigenvalues
ϕ∗(tr+1),ϕ(tr)2 Thus

〈ϕ(tr)|ϕ(tr−1)〉= (1+H(ϕ(tr−1),ϕ∗(tr−1))Δ t)〈ϕ(tr)|ϕ(tr−1)〉,

where
H(ϕ ,ϕ∗) = (ϕ−ϕ∗ϕ)ω−(ψ)+ (ϕ∗− 1)ω+(ψ), (10.3.17)

with ψ = ϕ∗ϕ and

〈ϕ(tr)|ϕ(tr−1)〉= exp

(
−1

2
|ϕ(tr)|2− 1

2
|ϕ(tr−1)|2

)

×〈0|exp(ϕ∗(tr)A)exp
(
ϕ(tr−1)A

†) |0〉

= exp

(
−1

2
|ϕ(tr)|2− 1

2
|ϕ(tr−1)|2

)
eϕ∗(tr)ϕ(tr−1)

= exp

(
−1

2
|ϕ(tr−1)|2 + 1

2
|ϕ(tr)|2

)
e−ϕ∗(tr)[ϕ(tr)−ϕ(tr−1)].

Combining a product of these terms for increasing r shows that the first exponential
terms cancel except at the initial and final times, whereas the second exponential
yields a factor

2 Technically speaking, one first has to normal-order the operator H by moving all operators A† to
the right of all operators A using repeated application of the commutation rule. However, given the
dependence of the transition rates on the system size N, this normal ordering introduces O(1/N)
corrections, which can be ignored to leading order.
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exp

(
−ϕ∗(tr)

dϕ(tr)
dt

Δ t +O(Δ t2)

)
.

Moreover
〈 /0|ϕ(t)〉= e−|ϕ(t)|

2/2eϕ(t).

Finally, taking the limits N → ∞ and Δ t → 0, we obtain the following path-
integral representation of the expectation value:

〈n(t)〉=
∫

Dϕ
∫

Dϕ∗ ϕ(t)e−S[ϕ,ϕ∗]

where S is given by the action

S[ϕ ,ϕ∗] =
∫ t

0
ϕ∗ [∂τ ϕ−H(ϕ ,ϕ∗)] dτ, (10.3.18)

where we have dropped terms dependent on initial and final times. It turns out if
the initial probability density is taken to be a Poisson distribution with mean n̄, then
the integration with respect to ϕ(0) and ϕ∗(0) simply enforces the initial condition
ϕ(0) = n̄. In anticipation of deriving a large deviation principle for large N, we now
make explicit the N dependence of the transition rates,

ω±(n) = NΩ±(n/N).

It follows that ω−(n) = Ω−(n/N) with xΩ−(x) = Ω−(x). In order to incorporate
this scaling into the path integral, we rescale the variable ϕ according to ϕ → ϕ/N.
We then have for x(t) = n(t)/N

〈x(t)〉=
∫

Dϕ
∫

Dϕ∗ ϕ(t)e−NS[ϕ,ϕ∗]. (10.3.19)

It follows from the saddle point method or steepest descents that in the large N
limit, the path integral is dominated by the classical solution ϕ = q,ϕ∗ = p, which
is obtained by minimizing the action (10.3.18) with respect to time-dependent tra-
jectories in the phase space (ϕ(t),ϕ∗(t)) with the initial condition ϕ(0) = n̄ and
final condition ϕ(t) = ϕ . Denoting the minimal action by Φ(ϕ , t|n̄), we see that

〈n(t)〉 ∼
∫

ϕe−NΦ(ϕ,t|n̄)dϕ ,

which has the form of a large deviation principle.
As in the case of the FP equation with weak noise, we have an effective Hamil-

tonian system in which the minimal action is evaluated along the trajectory (most
probable path) given by the solution to Hamilton’s equations
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q̇ =
∂H
∂ p

= Ω+(pq)− qΩ−(pq)+ (p− 1)qΩ ′
+(pq)− (p− 1)q2Ω ′

−(pq)

ṗ =−∂H
∂q

= (p− 1)Ω−(pq)+ (p− 1)qpΩ′
−(pq)− (p− 1)pΩ ′

+(pq),

where (after the N rescaling)

H(q, p) = (p− 1)Ω+(pq)− (p− 1)qΩ−(pq).

We now make the observation that p= 1 is an invariant submanifold of the dynamics
for which ṗ = 0 and

q̇ = Ω+(q)− qΩ−(q) = Ω+(q)−Ω−(q),

which we recognize as the kinetic equation obtained in the deterministic limit
N → ∞. However, when p �= 1, it is clear that we cannot identify q as the physi-
cal variable n(t)/N, since the transition rates depend on the product pq. (Moreover,
in order to impose the initial condition ϕ(0) = n̄ we had to take the initial distri-
bution to be Poisson rather than δn,n̄.) Nevertheless, one can perform a canonical
change of variables that allows us to identify the position variable as n/N, namely,

q̃ = pq, p̃ = ln(p). (10.3.20)

The corresponding Hamiltonian becomes (after dropping tildes)

H(q, p) = (ep− 1)Ω+(q)+ (e−p− 1)Ω−(q). (10.3.21)

This is identical to the Hamiltonian (10.1.12) derived using WKB methods in
Sect. 10.1.1, thus establishing the connection between WKB methods and varia-
tional principles for a birth–death master equation.

10.4 Path-Integral Representation of a Stochastic
Hybrid System

Recall the differential Chapman–Kolmogorov (CK) equation (10.1.29) for a one-
dimensional stochastic hybrid system with fast kinetics:

∂ pn

∂ t
=−∂ [Fn(x)pn(x, t)]

∂x
+

1
ε ∑

n′∈I

Ann′(x)p(x). (10.4.1)

As highlighted in Sect. 10.1.2, the WKB analysis of this stochastic hybrid sys-
tem differs from the WKB analysis of master equations (and FP equations)
in the weak noise limit, since there is no obvious Hamiltonian structure, that
is, the quasi-potential satisfies a matrix equation (10.1.42) rather than a scalar
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Hamilton–Jacobi equation. Recently, a path-integral formulation of a stochastic
hybrid system has been developed that provides a variational principle for the cor-
rect Hamiltonian [73]. We describe this construction for the one-dimensional case,
although the extension to higher dimensions is straightforward. First, we discretize
time by dividing a given interval [0,T ] into N equal subintervals of size Δ t such that
T = NΔ t and set x j = x( jΔ t),n j = n( jΔ t). The conditional probability density for
x1, . . . ,xN given x0 and a particular realization of the stochastic discrete variables
n j, j = 0, . . . ,N− 1, is

P(x1, . . . ,xN |x0,n0, . . . ,nN−1) =
N−1

∏
j=0

δ
(
x j+1− x j−Fn j(x j)Δ t

)
.

Inserting the Fourier representation of the Dirac delta function gives

P(x1, . . . ,xN |x0,n0,n1, . . .nN−1) =
N−1

∏
j=0

[∫ ∞

−∞
e−ix̃ j

(
x j+1− x j−Fn j(x j)Δ t

)
dx̃ j

2π

]

≡
N−1

∏
j=0

[∫ ∞

−∞
Hn j(x j+1,x j , p j)

dx̃ j

2π

]
.

On averaging with respect to the intermediate states n j, j = 1,N− 1, we have

P(x1, . . . ,xN |x0,n0) =

[
N−1

∏
j=0

∫ ∞

−∞

dx̃ j

2π

]

∑
n1,...,nN−1

N−1

∏
j=0

Tn j+1,n j (x j)Hn j (x j+1,x j, p j)

where

Tn j+1,n j(x j) ∼ An j+1,n j(x j)
Δ t
ε

+ δn j+1,n j

(
1−∑

m
Am,n j(x j)

Δ t
ε

)
+ o(Δ t)

=

(
δn j+1,n j +An j+1,n j (x j)

Δ t
ε

)
.

Consider the eigenvalue equation

∑
m
[Anm(x)+ qδn,mFm(x)]R

(s)
m (x,q) = Λs(x,q)R

(s)
n (x,q), (10.4.2)

and let ξ (s)
m be the adjoint eigenvector. Inserting multiple copies of the identity

∑
s

ξ (s)
m (x,q)R(s)

n (x,q) = δm,n ,

with (x,q) = (x j,q j) at the jth time step, we have
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Tn j+1n j(x j)Hn j (x j+1,x j, p j)

∼ ∑
s j ,m

R
(s j)
n j+1(x j,q j)ξ

(s j)
m (x j,q j)

(
δn j ,m +Amn j(x j)

Δ t
ε

)
Hn j(x j+1,x j , p j)

= ∑
s j

(
1+[Λs j(x j,q j)− q jFn j(x j)]

Δ t
ε

)
e−ix̃ j

(
x j+1− x j−Fn j(x j)Δ t

)

×R
(s j)
n j+1(x j,q j)ξ

(s j)
n j (x j,q j)

∼∑
s j

exp

(
[Λs j (x j,q j)− q jFn j(x j)]

Δ t
ε
− ix̃ j

(
x j+1− x j−Fn j(x j)Δ t

))

×R
(s j)
n j+1(x j,q j)ξ

(s j)
n j (x j,q j)

= ∑
s j

exp

([
Λs j(x j,q j)− q j

x j+1− x j

Δ t

]
Δ t
ε

)
exp

(
[iε p jFn j(x j)− q jFn j(x j)]

Δ t
ε

)

×R
(s j)
n j+1(x j,q j)ξ

(s j)
n j (x j,q j),

to leading order in O(Δx,Δ t). Substituting into the expression for P and integrating
over intermediate states x j lead to

P(xN ,nN |x0,n0) =
N−1

∏
j=1

∫ ∞

−∞
dx jP(x1, . . . ,xN ,nN |x0,n0) (10.4.3)

[
N−1

∏
j=1

∫ ∞

−∞
dx j

][
N−1

∏
j=0

∫ ∞

−∞

dp j

2π

]

∑
n1,...,nN−1

∑
s0,...,sN−1

[
N−1

∏
j=0

R
(s j)
n j+1(x j,q j)ξ

(s j)
n j (x j,q j)

]

exp

(

∑
j

[
Λs j (x j,q j)−q j

x j+1− x j

Δ t

]
Δ t
ε

)

exp

(
[iε p jFn j (x j)−q jFn j (x j)]

Δ t
ε

)
.

By inserting the eigenfunction products and using the Fourier representation of the
Dirac delta function, we have introduced sums over the discrete labels s j and new
phase variables p j. However, this representation allows us to derive a large deviation
principle in the limit ε → 0. First, note that the discretized path integral is indepen-
dent of the q j. Therefore, we are free to set q j = iε p j for all j, thus eliminating
the final exponential factor. This choice means that we can perform the summations
with respect to the intermediate discrete states n j using the orthogonality relation

∑
n

R(s)
n (x j,q j−1)ξ

(s′)
n (x j+1,q j) = δs,s′ +O(Δx,Δq).

We thus obtain the result that s j = s for all j, which means that we can then take
the continuum limit of equation (10.4.3) to obtain the following path integral from
x(0) = x0 to x(τ) = x (after performing the change of variables iε p j → p j (complex
contour deformation)):
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P(x,n,τ|x0,n0,0) (10.4.4)

= ∑
s

x(τ)=x∫

x(0)=x0

exp

(
−1

ε

∫ τ

0
[pẋ−Λs(x, p)]dt

)
R(s)

n (x, p(τ))ξ (s)
n0 (x0, p(0))D [p]D [x].

Applying the Perron–Frobenius theorem to the linear operator on the left-hand
side of equation (10.4.2) shows that there exists a real, simple Perron eigenvalue
labeled by s = 0, say, such that Λ0 > Re(Λs) for all s > 0. It follows that in the limit
ε → 0, the largest contributions to the path integral (10.4.4) and the most likely paths
in phase space (x, p) are obtained by restricting the sum over s to s = 0. Also note

that the factor R(0)
n (x, p(τ))ξ (0)

n0 (x0, p(0)) in equation (10.4.4) essentially projects
on to stochastic trajectories that start in the discrete state n0 and terminate in the
discrete state n. We will ignore any restrictions on these discrete states and simply
consider the probability density (for fixed x(0) = x0)

P(x, t) =

x(τ)=x∫

x(0)=x0

D[x]D[p]e−S[x,p]/ε , (10.4.5)

with the action

S[x, p] =
∫ τ

0
[pẋ−Λ0(x, p)]dt. (10.4.6)

We now have a classical variational problem, in which the Perron eigenvalue
Λ0(x, p) is identified as a Hamiltonian and the most probable path is the solution
to Hamilton’s equations

ẋ =
∂H
∂ p

, ṗ =−∂H
∂x

, H(x, p) = Λ0(x, p). (10.4.7)

Note that the same action principle can also be derived using large deviation theory,
as detailed in the monograph by Kifer [332].

Now suppose that we have a higher-dimensional stochastic hybrid system with M
continuous variables xα , α = 1, . . .M, and a single discrete variable n= 0, . . . ,K−1.
The multivariate CK equation takes the form

∂ p
∂ t

= −
M

∑
α=1

∂
∂xα

(Fα(x,n)p(x,n, t))+
1
ε ∑

m
A(n,m;x)p(x,m, t). (10.4.8)

The drift terms Fα(x,n) for fixed n represent the piecewise deterministic dynamics
according to

τ
duα
dt

= Fα(x,n), α = 1, . . . ,M. (10.4.9)

Following along identical lines to the one-dimensional case, we can derive a path-
integral representation of the solution to equation (10.4.8):
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p(x,n,τ|x0,n0,0)

=

x(τ)=x∫

x(0)=x0

D [p]D [x] exp

(
−1

ε
S[x,p]

)
R(0)(x,p(τ),n)ξ (0)(x0,p(0),n0) (10.4.10)

with action

S[x,p] =
∫ τ

0

[
M

∑
α=1

pα ẋα −Λ0(x,p)

]

dt. (10.4.11)

Here Λ0 is the Perron eigenvalue of the following linear operator equation (cf. equa-
tion (10.4.2)):

∑
m

A(n,m;x)R(0)(x,p,m) = [Λ0(x,p)−
M

∑
α=1

pαFα(x,n)]R(0)(x,p,n),

and ξ (0) is the adjoint eigenvector. Suppose that the underlying deterministic system
(10.4.9) has a unique stable fixed point x∗. The quasi-potential of the corresponding
stationary density can then be obtained by finding zero-energy solutions of Hamil-
ton’s equations

ẋ = ∇pH (x,p), ṗ =−∇xH (x,p), (10.4.12)

with x= (x,y),p = (px, py). If such a solution can be found, then we can construct a
quasi-potential Φ by identifying it as the action along a zero-energy solution curve
x(t). That is,

dΦ
dt
≡

M

∑
α=1

∂Φ
∂xα

dxα
dt

=
M

∑
α=1

pα
dxα
dt

, (10.4.13)

with pα = ∂Φ/∂xα .

10.5 Excitability in the Stochastic Morris–Lecar Model

In this final section, we apply WKB methods to the stochastic version of the Morris–
Lecar model introduced in Sect. 3.5. The deterministic model is given by the planar
dynamical system

dx
dt

= a(x) fNa(x)+w fK(x)+ fL(x), (10.5.1a)

dw
dt

=
w∞(x)−w

τw(x)
, (10.5.1b)

where the membrane voltage is denoted by x rather than V , and
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τw(x) =
1

αw(x)+βw(x)
, w∞(x) = αw(x)τw(x).

As we showed in Sect. 3.5, the generation of action potentials in the deterministic
model can be analyzed using a slow/fast analysis, since the dynamics of the recovery
variable w (representing the fraction of open K ion channels) is slow relative to that
of the membrane voltage x; see Fig. 3.14. In the analysis of membrane voltage fluctu-
ations, it was assumed that the potassium channel dynamics could be ignored during
initiation of a SAP. This corresponds to keeping the recovery variable w fixed. The
resulting stochastic bistable model supported the generation of SAPs due to fluctu-
ations in the opening and closing of fast Na channels. However, it turns out that this
slow/fast analysis breaks down when the effects of K channel noise are included
[476]. That is, it is possible to generate a SAP due to fluctuations causing several K
channels to close simultaneously, effectively decreasing w and thereby causing v to
rise. This can be confirmed by numerically solving the full stochastic model as illus-
trated in Fig. 10.3. It follows that keeping w fixed in the stochastic model excludes
the latter mechanism, and thus the resulting MFPT calculation underestimates the

Fig. 10.3: Noise-induced SAPs. Stochastic Na and K channels: red for v(t) and blue for w(t).
Stochastic K and deterministic Na: orange for voltage v(t) and light blue for w(t). Parameter
values can be found in [476]

spontaneous rate of action potentials. In order to investigate the above phenomenon,
it is necessary to consider the full stochastic ML model given by equations (3.5.13)
and (3.5.14) with N sodium channels and M potassium channels. An additional
complication is that the full model is an excitable rather than a bistable system, so it
is not straightforward to relate the generation of SAPs with a noise-induced escape
problem. Nevertheless, Newby et al. [476] used WKB methods to identify the most
probable paths of escape from the resting state and obtained the following results,
which are illustrated in Fig. 10.4:

(i) Most probable paths of escape dip significantly below the resting value for w,
indicating a breakdown of the deterministic slow/fast decomposition.
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Fig. 10.4: Most probable paths of escape from the resting state of the stochastic ML model cal-
culated using a WKB approximation [476]. All paths of escape that enter the shaded blue region
represent large excursions in state space and coincide with SAPs. All of the SAP trajectories are
initially bunched together (red dashed curve) until they cross the bottleneck or metastable saddle
node (SN). Curves that don’t pass through SN are bounded by a curve (S) that acts like a stochastic
separatrix. Also shown are a caustic (C) where paths of escape intersect, the v nullcline (VN), and
the w nullcline (WN). The resting state is surrounded by an effective “basin of attraction” bounded
by C and S. Here N = M = 40 and ε = 0.1. Other parameter values can be found in [476]

(ii) Escape trajectories all pass through a narrow region of state space (bottleneck or
stochastic saddle node) so that although there is no well-defined separatrix for an
excitable system, it is possible to formulate an escape problem by determining
the MFPT to reach the bottleneck from the resting state.

As we have already made clear, there is no a priori reason to identify the WKB
Hamiltonian as the “correct ” Hamiltonian, in the sense that solutions of Hamilton’s
equations represent maximum likelihood paths of the underlying stochastic system.
Indeed, one finds that the Perron eigenvalue obtained using the path-integral formu-
lation [73] or large deviation theory [332] actually differs from the WKB Hamilto-
nian, but the two are equivalent on zero-energy surfaces so that the WKB method
is still valid. We now develop these results in more detail. Let p(x,m,n, t) denote
the probability density for the stochastic ML model, which evolves according to the
differential Chapman–Kolmogorov (CK) equation,

∂ p
∂ t

=−∂ (F p)
∂x

+LKp+LNa p, (10.5.2)

with F = F(x,m,n) given by equation (3.5.13):

F(x,m,n) =
n
N

fNa(x)+
m
M

fK(x)− g(x). (10.5.3)
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The jump operators are defined according to (dropping the explicit t dependence)

LNa p(x,m,n) = ω+
Na(n+ 1,x)p(x,m,n+ 1)

+ω−Na(n− 1,x)p(x,m,n− 1)− [ω+
Na(n,x)+ω+

Na(n,x)]p(x,m,n)
(10.5.4a)

LK p(x,m,n) = ω+
K (m+ 1,x)p(x,m+ 1,n)+ω−K(m− 1,x)p(x,m− 1,n)

− [ω+
K (m,x)+ω+

K (m,x)]p(x,m,n) (10.5.4b)

with

ω+
Na(n,x) = nβNa(x), ω−Na(n,x) = (N− n)αNa(x), (10.5.5a)

ω+
K (m,x) = mβK(x), ω−K (m,x) = (M−m)αK(x). (10.5.5b)

In contrast to the bistable sodium ion channel model, we cannot treat both the
Na and K channel kinetics as fast, and therefore we cannot develop a variational
problem by scaling all transition rates in terms of a small parameter ε and applying
the analysis of Sect. 10.1.3. In fact, rather than a piecewise deterministic system,
we now have a multi-scale stochastic system, in which both fast and slow processes
are intrinsically stochastic. Multi-scale stochastic processes also arise in models of
gene regulatory networks [470]. Instead, we treat n(t) as a fast variable by taking
αNa,βNa = O(1/ε), whereas we treat w(t) = m(t)/M as a continuous (recovery)
variable with M = 1/ε . Setting p = p(x,w,n, t) and rescaling the transition rates for
sodium by a factor of 1/ε , the CK equation (10.5.2) for p becomes

∂ p
∂ t

=−∂ (F p)
∂x

+
1
ε
LK p+

1
ε
LNa p, (10.5.6)

with jump operators

LNa p(x,w,n) = Ω+
Na(n+ 1,x)p(x,w,n+ 1)+Ω−

Na(n− 1,x)p(x,m,n− 1)

− [Ω+
Na(n,x)+Ω+

Na(n,x)]p(x,m,n) (10.5.7a)

LK p(x,w,n) = Ω+
K (w+ ε,x)p(x,w+ ε,n)+Ω−

K (w− ε,x)p(x,w− ε,n)
− [Ω+

K (w,x)+Ω+
K (w,x)]p(x,w,n), (10.5.7b)

and
ε−1Ω±

Na(n,x) = ω±Na(n,x), ε−1Ω±
K (w,x) = ω±Na(w/ε,x).

In the limit ε → 0, we recover the standard deterministic ML model (10.5.1).
Newby et al. [476] considered a WKB solution of the stationary CK equation

(10.5.6) of the form

p = φε(x,w,n) = Rn(x,w)e−Φ(x,w)/ε , (10.5.8)

After substituting (10.5.8) into (10.5.6) (with ∂ p/∂ t = 0) and collecting terms in ε ,
one finds to leading order that

[LNa +Fn(x,w)px + h(x,w, pw)]Rn(x,w) = 0, (10.5.9)
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where px = ∂xΦ , pw = ∂wΦ ,

h(x,w, pw) = ∑
j=±1

(e− jpw− 1)Ω±
K (w,x), (10.5.10)

and Fn(x,w) = F(x,Mw,n); see equation (3.5.13). Equation (10.5.9) can be solved
for Φ and Rn using the ansatz Rn(x,w) = A(x,w)n/(n!(N − n)!). The function
A(x,w) is determined by substituting Rn into (10.5.9) to obtain a self-consistency
condition with two terms: one linear in n and one independent of n. From the for-
mer we obtain

A(x,w) = αNa(x)− 1
N
(pxg(x,w)+ h(x,w, pw)), (10.5.11)

where g(x,w) = w fK(x) + fL(x). After substituting (10.5.11) into the remaining
n-independent term, we obtain a nonlinear scalar PDE for Φ in the form of a
Hamilton–Jacobi equation [476]:

H0(x,w,∂xΦ,∂wΦ) = 0, (10.5.12)

with

H0(x,w, px, pw) = (2g(x,w)+ fNa(x))pxh(x,w, pw)

+ ( fNa(x)+ g(x,w))g(x,w)p2
x + h(x,w, pw)

2 (10.5.13)

− N
1−w∞(x)

([w∞(x) fNa(x)+ g(x,w)]px + h(x,w, pw)) .

Newby et al. [476] used the WKB Hamiltonian H0 to generate maximum-
likelihood paths such as those illustrated in Fig. 10.4. Moreover, they showed that
conclusions based on WKB appeared to be consistent with Monte Carlo simulations
of the full system (3.5.13). A more rigorous justification of these results can be ob-
tained by constructing a path-integral representation. Here we simply write down
the action and determine the Perron eigenvalue. The action takes the form

S[x,w, px, pw] =

∫ τ

0
[pxẋ+ pwẇ−Λ0(x,w, px, pw)]dt (10.5.14)

where Λ0 is the Perron eigenvalue of the following linear operator equation (cf.
equation (10.4.2))

Λ0R(0)
n = [LNa +Fn(x,w)px + h(x,w, pw)]R

(0)
n . (10.5.15)

Maximum likelihood paths correspond to extreme of the action in the full phase
space (x,p), where x = (x,w),p = (px, pw). These are thus solutions of Hamilton’s
equation with Λ0 identified as the Hamiltonian. Equation (10.5.15) can be solved
along similar lines to (10.5.9) using the ansatz Rn(x,w) = A(x,w)n/(n!(N− n)!).
Collecting terms linear in n gives
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A(x,w) = αNa(x)− 1
N
(pxg(x,w)+ h(x,w, pw)−Λ0(x,w, px, pw)),

whereas collecting terms independent of n and substituting for A(x,w) gives the
following quadratic equation for Λ0:

Λ 2
0 − (2h(x,w, pw)+σ(x,w, px))Λ0 +H0(x,w, px, pw) = 0, (10.5.16)

with
σ(x,w, px) = (2g(x)+ f (x))px−N/(1−w∞(x))

and H0 the WKB Hamiltonian (10.5.13).
We have thus established that the “correct” Hamiltonian Λ0 underlying maximum

likelihood (optimal) paths of the stochastic Morris–Lecar model differs from the
WKB Hamiltonian H0. However, it turns out that both Hamiltonians generate the
same optimal paths on the zero-energy surface, and thus the results of Newby et al.
[476] still hold. First note that Λ0 = 0 implies that H0 = 0. Second, optimal paths
are given by solutions of Hamilton’s equations

ẋ = ∇pΛ0(x,p), ṗ =−∇xΛ0(x,p). (10.5.17)

Given a solution curve (x(t),w(t)), known as a ray or metastable trajectory, the
quasi-potential Φ can be determined along the ray by solving the equation

dΦ
dt
≡ ∂Φ

∂x
dx
dt

+
∂Φ
∂w

dw
dt

= px
dx
dt

+ pw
dw
dt

. (10.5.18)

Thus, the quasi-potential Φ can be identified as the action along a zero-energy
trajectory. In order to show that the optimal paths also correspond to solutions of
Hamilton’s equations for the WKB Hamiltonian H0, we differentiate the quadratic
equation with respect to each of the variables z = x,w, px, pw and then set Λ0 = 0.
This shows that

∂H0

∂ z
− [2h(x,w, pw)+σ(x,w, px)]

∂Λ0

∂ z
= 0

and hence

ẋ =
∂Λ0

∂ px
= [2h(x,w, pw)+σ(x,w, px)]

−1 ∂H0

∂ px
,

ẇ =
∂Λ0

∂ pw
= [2h(x,w, pw)+σ(x,w, px)]

−1 ∂H0

∂ pw
,

ṗx =−∂Λ0

∂x
=−[2h(x,w, pw)+σ(x,w, px)]

−1 ∂H0

∂x
,

ṗy =−∂Λ0

∂w
=−[2h(x,w, pw)+σ(x,w, px)]

−1 ∂H0

∂w
.
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Since all four equations have the same scale factor, we see that the phase-space
trajectories on the zero-energy surface of Λ0 are identical to those on the zero energy
surface of H0.

10.6 Exercises

Problem 10.1 (WKB analysis of a birth–death process). Consider the birth–death
master equation

d
dt

P(n, t) = ω+(n− 1)P(n− 1, t)+ω−(n+ 1)P(n+ 1, t)

− [ω+(n)+ω−(n)]P(n, t),

with transition rates of the form

ω+(n) = N f (n/N), ω−(x) = N.

Here f is the nonlinear sigmoid function

f (x) =
f0

1+ e−γ(x−θ)

for constants f0,γ , and θ . The quasi-potential Φ of the associated quasistationary
solution satisfies the Hamilton–Jacobi equation (see (10.1.12)), H(x,Φ ′(x)) = 0,
where

H(x, p) = Ω+(x)[ep− 1]+Ω−(x)[e−p− 1],

and ω±(Nx) = NΩ±(x).

(a) Determine Hamilton’s equations for the given transition rates.
(b) Construct a phase portrait in the (x, p)-plane of solutions to Hamilton’s equa-

tions (analogous to Fig. 10.2) for the parameter values f0 = 2, γ = 4 and θ = 1.0.
Identify the fixed points of the corresponding deterministic system and the var-
ious zero-energy solutions. Distinguish between the activation and relaxation
trajectories.

Problem 10.2 (WKB analysis of a conductance-based model with two types of
fast ion channels). This problem extends the analysis of the stochastic ion channel
model presented in Sect. 10.1.3. Consider a conductance-based model of a neuron
that consists of two distinct, independent types of ion channel labeled by x and y,
respectively. Let N be the total number of each type. Suppose that at time t, there are
n j(t) open ion channels of type j with the remaining N−n j(t) channels closed. The
membrane voltage v then evolves according to the Hodgkin–Huxley-type model

C
dv
dt

= ḡx
nx(t)

N
(Vx− v)+ ḡy

ny(t)

N
(Vy− v),
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where Vx,Vy are reversal potentials, ḡx, ḡy are conductances, and C is a membrane
capacitance. (Neglect any leak currents and set C = 1.) The voltage equation only
holds between jumps in the discrete random variables nx,ny, which are given by the
birth–death processes

n j →
ω j
+(n j)/ε

n j + 1, n j →
ω j
−(n j)/ε

n j− 1,

for j = x,y, where the small parameter ε reflects the fast kinetics of the ion channels.
The rescaled transition rates are

ω j
+(n j) = α j(V )(N− n j), ω j

−(n j) = β jn j.

(a) Write down the Chapman–Kolmogorov equation for the joint probability den-
sity p,

p(v,nx,ny, t)dv = P[v≤V (t)≤ v+ dv,nx(t) = nx,ny(t) = ny],

given some initial condition v(0) = v0,n j(0) = n̄ j.
(b) Derive the deterministic conductance-based model in the limit ε → 0.
(c) Seek a quasistationary solution of the CK equation of the WKB form

ϕ(v,n) = R(v,n)exp

(
−Φ(v)

ε

)
,

where Φ(v) is the quasi-potential. Introducing the asymptotic expansions R ∼
R(0) + εR(1) and Φ ∼ Φ0 + εΦ1, derive the leading order matrix equation for
R(0) and Φ0, which is the generalization of equation (10.1.42). Find the two
positive solutions of this matrix equation for Φ ′

0(v) using the ansatz

R(0)(v,n) =
1

[1+Γx(v)]N
1

[1+Γy(v)]N
N![Γx(v)]nx

(N− nx)!nx!
· N![Γy(v)]ny

(N− ny)!ny!
.

One of these solutions is Φ ′
0 = 0, with R(0)(v,n) equal to the stationary solu-

tion of the pure jump Markov process, whereas the other is the desired WKB
solution.

Problem 10.3 (Stochastic Morris–Lecar model). Consider the Chapman–
Kolmogorov equation (10.5.6) of the stochastic Morris–Lecar model.

(a) Substitute the WKB solution

p = φε(x,w,n) = Rn(x,w)e
−Φ(x,w)/ε ,

into the stationary version of (10.5.6). Collecting terms in ε , show that to leading
order

[LNa +Fn(x,w)px + h(x,w, pw)]Rn(x,w) = 0,
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where px = ∂xΦ , pw = ∂wΦ ,

h(x,w, pw) = ∑
j=±1

(e− jpw− 1)Ω±
K (w,x),

Fn(x,w) = F(x,Mw,n), and the operator LNa is given by equation (10.5.7a).
(b) Substituting the ansatz Rn(x,w) = A(x,w)n/(n!(N− n)!) and collecting terms

linear in n and independent of n, respectively, show that

A(x,w) = αNa(x)− 1
N
(pxg(x,w)+ h(x,w, pw)),

where g(x,w) = w fK(x)+ fL(x), and Φ satisfies the Hamilton–Jacobi equation

H0(x,w,∂xΦ,∂wΦ) = 0,

with

H0(x,w, px, pw) = (2g(x,w)+ fNa(x))pxh(x,w, pw)

+ ( fNa(x)+ g(x,w))g(x,w)p2
x + h(x,w, pw)

2

− N
1−w∞(x)

([w∞(x) fNa(x)+ g(x,w)]px + h(x,w, pw)) .

Problem 10.4 (Perron eigenvalue of a binary stochastic hybrid system). Suppose
that a continuous variable evolves according to piecewise dynamics on some finite
interval (a,b),

ẋ = Fn(x), n = 0,1, (10.6.1)

with F0,F1 continuous and locally Lipschitz. Suppose that F0,F1 are non-vanishing
within the interval (a,b), and Fn(a) ≥ 0,Fn(b) ≤ 0 for n = 0,1; the dynamics is
then confined to (a,b). Denote the transition rates of the two-state Markov chain by
ω±(x) with

{n = 0} ω+(x)�
ω−(x)

{n = 1}.

(a) Write down the matrix A(x) with

Anm =Wnm− δnm ∑
p

Wpm.

(b) Express the Perron eigenvalue equation

∑
m
[Anm(x)+ pδn,mFm(x)]R

(0)
m (x, p) = Λ0(x, p)R(0)

n (x, p),

as a 2× 2 matrix equation
(c) Solve the resulting characteristic equation for the Perron eigenvalue Λ0 and

show that Λ0 is real.
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(d) Using Hamilton’s equation ẋ = ∂Λ0/∂ p, derive the equation

ẋ =
F0(x)+F1(x)

2
+

F0(x)−F1(x)
2

p(F0−F1)− (ω+−ω−)√
[p(F0−F1)− (ω+−ω−)]2 +ω+ω−

and show that this can be rewritten in the form

ẋ = F0(x)ψ0(x)+F1(x)ψ1(x),

with ψ0,1 non-negative functions and ψ0 +ψ1 = 1.



Chapter 11
Probability Theory and Martingales

In the bulk of this book, we have avoided the rigorous formulation of stochastic
processes used by probabilists. We have sacrificed the level of rigor in order to make
the material accessible to applied mathematicians and biological physicists who tend
not have a background in advanced probability theory. However, it is useful to have
some exposure to the concepts and notation used by probabilists. Therefore, in this
appendix, we give a very brief introduction to probability theory with an emphasis
on martingales. There are a number of excellent textbooks on modern probability
theory see for example [242, 681]. Both of these books tend to focus on discrete-
time processes. However, the notation and concepts can be extended to continuous-
time processes as detailed in [483].

11.1 Probability Spaces, Random Variables and Conditional
Expectations

In appendix A we treated a continuous random variable X as a quantity that takes
on a range of real values x ∈ R, which are generated according to some probabil-
ity distribution F(x). Moreover, we assumed that there exists a probability density
function p such that dF(x) = p(x)dx. We now turn to a more abstract definition
of a random variable, which is used in more rigorous approaches to the theory of
stochastic process. The starting point is a set of possible outcomes (of an experi-
ment), which is denoted by the sample space Ω . An event is defined to be a subset A
of Ω , which is some collection of single outcomes or elementary events ω ∈Ω . In
general not all subsets of Ω can be treated as events so that the set of events forms
a subcollection F of all subsets. Within a probabilistic setting, this subcollection is
required to be a so-called σ -algebra with the following properties:

1. /0 ∈F

2. If A1,A2, . . . ∈F then ∪∞
i=1Ai ∈F

3. If A ∈F then Ω\A ∈F

© Springer International Publishing Switzerland 2014
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It can be shown that σ -algebras are closed under the operation of taking countable
intersections. A probability measure P on (Ω ,F ) is a function P : F → [0,1] with

1. P( /0) = 0, P(Ω) = 1

2. If Ai,A j, . . . ∈F with Ai∩A j = /0, i �= j, then

P(∪∞
i=1Ai) =

∞

∑
i=1

P(Ai)

The triple (Ω ,F ,P) is called a probability space.
Given a function f on the sample space Ω , we can use the probability measure

P to define the integral of this function over a set A ∈F according to

f (A) =
∫

A
f (ω)dP(ω).

If f (ω) = 1 for all ω ∈ Ω , then f (A) = P(A). Note that for certain choices of
σ -algebra, it is necessary to consider measures other than the standard Lebesgue
measure. However, we will not consider this technicality here. A random variable
is a function X : Ω →R such that

{ω ∈Ω : X(ω)≤ x} ∈F , ∀x ∈ R.

If this condition holds, then X is said to be F -measurable. If X ∈R, then we have a
continuous random variable, whereas if X belongs to a countable set, then it is said
to be a discrete random variable. The distribution function of a random variable X
is the function F : R→ [0,1] given by

F(x) = Prob(X ≤ x) = P(X−1(−∞,x)),

where X−1(−∞,x) is the set of events ω for which X ≤ x. In the case of a continuous
random variable, one can then express the expectation of random variable as an
integral

E(X) =

∫

R

xdF(x),

where dF(x) = Prob(x ≤ X ≤ x+ dx). The probability density function ( if exists)
is then defined according to dF(x) = ρ(x)dx.

In the case of two random variables on (Ω ,F ,P), we define the conditional
expectation of Y given X by

E(Y |X) =
∫

yρ(y|X)dy,

where ρ(y|X) is the conditional probability density with respect to X . The condi-
tional expectation satisfies

E(E(Y |X))≡
∫ ∫

yρ(y|x)ρ(x)dydx =
∫

yρ2(y,x)dydx = E(Y ),



11.2 Definitions and Examples of Martingales 621

where ρ2 is a joint probability density. Using a similar argument, one can also derive
the tower property

E(E(Y |X1,X2)|X1) = E(Y |X1).

An important generalization of the above is to construct the conditional expectation
of a random variable Y with respect to a sub-σ -algebra G ⊂F . Such a generaliza-
tion plays an important role in the theory of martingales. First note that Ŷ ≡E(Y |X)
can be interpreted as a random variable satisfying

∫

A(x)
Ŷ (ω)dP(ω) =

∫

A(x)
Y (ω)dP(ω) ∀ x ∈R,

where
A(x) = {ω ∈Ω : X(ω)≤ x} ⊂F .

The conditional expectation Ŷ = E(Y |G ) for a general sub-σ -algebra G is then de-
fined to be a random variable satisfying

∫

A
Ŷ (ω)dP(ω) =

∫

A
Y (ω)dP(ω) ∀ A ∈ G .

It immediately follows from taking A = Ω that

E(E(Y |G )) = E(Y ).

Given two sub-σ -algebrasG ,H with G ⊂H ⊂F , one also has the tower property

E(E(Y |H )|G ) = E(Y |G ).

11.2 Definitions and Examples of Martingales

Much of applied probability concerns establishing various limit theorems. Often
this is achieved by showing that a particular sequence of random variables is a mar-
tingale. Such a sequence could be generated by a discrete-time stochastic process.
(For the extension of martingales to continuous-time stochastic processes see [483].)
In the following we fix a probability space (Ω ,F ,P) and assume that there exists a
given sequence Fn, n = 1,2, . . ., of σ -algebras Fn ⊆F .

Definition 11.1. A filtration on (Ω ,F ) is an increasing sequence

F1 ⊆F1 ⊆F2 ⊆ . . .

of σ -algebras. A (discrete-time) stochastic process (Xn)n≥1 is adapted to a filtration
(Fn)n≥1 if and only if each Xn is Fn-measurable, that is,

{ω ∈Ω : Xn(ω)≤ x} ∈Fn, ∀x ∈ R.
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Example 11.1. The canonical filtration generated by a stochastic process (Xn) is
given by

Fn = σ(X1,X2, . . . ,Xn),

that is, the minimal event specifying the values of Xj, j = 1, . . . ,n. If the filtration is
not specified explicitly, it will be assumed to be the canonical filtration. In general
(Xn) is adapted to a filtration (Fn) if and only if σ(X1,X2, . . . ,Xn) ⊆Fn. Roughly
speaking, as n increases, the statistical information about a larger class of random
variables is included within the σ -algebra Fn, as one might expect from the evolu-
tion of a discrete-time stochastic process.

Definition 11.2. A sequence of random variables {Yn;n ≥ 1} on the probability
space (Ω ,F ,P) is called a martingale with respect to the filtration (Fn) if and
only if

(i) (Yn) is adapted to (Fn)

(ii) E(|Yn|)< ∞

(iii) E(Yn+1|Fn) =Yn

If Fn = σ(X1, . . . ,Xn) for some other random sequence (Xn), then (Yn) is said to be
a martingale with respect to X . If (i) and (ii) hold but instead of (iii) we have

E(Yn+1|Fn)≤ Yn,

then (Yn) is said to be a supermartingale. Similarly, if

E(Yn+1|Fn)≥ Yn,

then we have a submartingale.

Intuitively, the random sequence (Yn) models the outcomes of a random process in
time, whereas the filtration (Fn) specifies what is known at each step. Hence, if (Yn)
is a martingale, then we have at least partial information about the values Y1, . . . ,Yn,
i.e., their probability distributions, and conditional on this information, the expected
value of Yn+1 is equal (almost surely) to the observed value Yn. Given the definition
of a martingale, the following results hold:

(a) E(Yn|Fn) =Yn, which reflects the fact that Yn is Fn-measurable. It immediately
follows that

E(Yn+1−Yn|Fn) = 0.

(b)
E(Yn+k|Fn) = Yn, ∀ n≥ 1,k ≥ 0,

which can be shown using induction. The case k = 0 holds from (a). Moreover
the assertion for k− 1 implies that
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E(Yn+k|Fn) = E(E(Yn+k|Fn+k−1)|Fn) from the tower property

= E(Yn+k−1|Fn) (Yn) is a martingale

=Yn.

(c) Setting n = 1 in (b) shows that

E(Yn) = E(Y1) ∀ n≥ 1,

that is, the expected outcome is independent of time.

Example 11.2. One simple example of a martingale is a 1D random walk, in which
Sn is the position of the walker at the nth time step and Sn = ∑n

j=1 Xj where Xj is
the jth independent increment, with Xj = 1 (probability p) or Xj =−1 (probability
q = 1− p), and S0 = 0. In this case, we take

Fn = σ(X1, . . . ,Xn) = σ(S1, . . . ,Sn).

The result follows from

E(Sn+1|X1,X2, . . . ,Xn) = E(Sn +Xn+1|X1,X2, . . . ,Xn)

= E(Sn|X1,X2, . . . ,Xn)+E(Xn+1|X1,X2, . . . ,Xn)

= Sn + p− q.

Thus, Yn = Sn− n(p− q) defines a martingale with respect to X .

Example 11.3. Let X1,X2, . . . be a discrete-time Markov chain taking discrete values
in some countable space Γ , with conditional probabilities

pi j = P(Xn+1 = j|Xn = i).

Suppose that ψ : Γ →R is a bounded function satisfying

∑
j∈Γ

pi jψ( j) = ψ(i), ∀i ∈ Γ .

Then Yn = ψ(Xn) constitutes a martingale (with respect to X), since

E(Yn+1|X1, . . .Xn) = E(ψ(Xn+1)|X1, . . .Xn)

= E(ψ(Xn+1)|Xn) Markov property

= ∑
j∈Γ

pXn, jψ( j)

= ψ(Xn) = Yn.

Example 11.4. Let X be a random variable on (Ω ,F ,P). One can then define a
sequence of conditional expectations with respect to a filtration (Fn) in F given by

Xn = E(X |Fn).
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Note that Xn is itself a function of all the random variables contained within Fn.
From the tower property of conditional expectations and the fact that Fn ⊆Fn+1,
we have

E(Xn+1|Fn) = E(E(X |Fn+1)|Fn) = E(X |Fn) = Xn.

11.3 Stopping Times

We have encountered many examples in cell biology where one needs to calculate
a FPT. The latter is a particular example of a more abstract concept in probability
theory known as a stopping time. This is based on the idea that the decision to stop a
stochastic process at time m can be modeled as a random variable that is measurable
with respect to Fm, which represents the available information at time m.

Definition 11.3. A random variable T : Ω → {1,2, . . .}∪{∞} is called a stopping
time with respect to the filtration (Fn) if and only if

{T = n} ∈Fn for any n≥ 1.

Clearly {T ≤ n} ∈Fn, since we have a filtration.

Example 11.5. A common example is the FPT for a discrete stochastic process (Xn)
adapted to a filtration (Fn):

TA = min{n≥ 0 : Xn ∈ A}

for some measurable subset A of the state space. This follows from the observation
that

{TA = m}= {X1 /∈ A}∩ . . .∩{Xm−1 /∈ A}∩{Xm ∈ A} ∈ σ(X1, . . . ,Xn).

Note that TA = ∞ if Xn /∈ A for all n≥ 1.

Let (Xn) be a sequence of random variables adapted to the filtration (Fn) in F .
Suppose that the sequence (Xn) is stopped according to a stopping time T with
respect to (Fn). The sequence of random variables that will actually occur is (XTn)
where

Tm = min{T,m}.
In other words given a particular realization ω of the stochastic process

XTm(ω) =

{
Xm(ω) if m≤ T (ω)
XT (ω), if m > T (ω).

It can be shown that if (Xn) is a martingale with respect to the filtration (Fn), then
so is the sequence (Yn), where Yn = XTn . If a martingale sequence (Yn) is stopped at a
fixed time n, the mean value satisfies E(Yn) = E(Y1). An important issue within the
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context of first passage properties of martingales is whether or not the expectation
remains constant when the martingale is stopped after a random time T , that is,
E(YT ) = E(Y1). It turns out that such a result holds provided that T is a stopping
time and there are a few additional constraints.

Theorem 11.1 (optional stopping theorem). Let (Xn) be a martingale with respect
to the filtration (Fn) and let T be a stopping time. Then E(XT ) = E(X1) if:

(a) P(T < ∞) = 1

(b) E(XT )< ∞

(c) E(XnI{T>n})→ 0 as n→ ∞

Here IA for A ∈F is an indicator function with IA(ω) = 1 if ω ∈ A and IA(ω) = 0
if ω /∈ A.

Proof. First note that the difference between XT and XTn is zero if T < n. Therefore,
we have the decomposition

XT −XTn = (XT −Xn)I{T>n}.

Taking the expectation of both sides,

E(XT )−E(XTn) = E(XT I{T>n})−E(XnI{T>n}).

Since (XTn) is a martingale, it follows that E(XTn) = E(X1). Moreover, in the limit
n→ ∞ the last term on the right-hand side vanishes due to condition (c). Also,

E(XT I{T>n}) =
∞

∑
k=n+1

E(XT I{T=k}),

which is the tail of the convergent series

E(XT ) =
∞

∑
k=1

E(XT I{T=k})< ∞.

Thus, taking the limit n→ ∞ establishes that E(XT ) = E(X1).

Example 11.6. Let us return to the random walk of Example 11.2 for p= q= 1/2, in
which case (Sn) is a martingale. Let a,b be positive integers. Introduce the stopping
time

T = min{n : Sn =−a or Sn = b}
which is the first time that the walker visits the endpoints−a,b of the interval [−a,b]
with a < 0 < b. It can be shown that T satisfies the conditions of the optional stop-
ping theorem. Let pa be the splitting probability that the walker reaches −a before
it reaches b. By the optional stopping theorem,

E(ST ) =−apa + b(1− pa) = E(S0) = 0.
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This then determines pa:

pa =
b

a+ b
.

Using the fact that Yn = S2
n− n also generates a martingale sequence, the optional

stopping theorem implies

0 = E(S2
T −T ) = a2 pa + b2(1− pa)−E(T ),

that is,

E(T ) = a2 pa + b2(1− pa) =
a2b

a+ b
+

ab2

a+ b
= ab.

11.4 Martingale Convergence Theorems

Let X1,X2, . . . ,X be random variables on some probability space (Ω ,F ,P). There
are four basic ways of interpreting the meaning of Xn → X .

1. Xn
a.s.→ X almost surely if

{ω ∈Ω : Xn(ω)→ X(ω) as n→ ∞}

is an event of probability one.

2. Xn
r→ X in rth mean, r ≥ 1, if

E(|Xn−X |r)→ 0 as n→ ∞.

3. Xn
p→ X in probability if

P(|Xn−X |> ε)→ 0 as n→ ∞ ∀ε > 0.

4. Xn
D→ X in distribution if

P(Xn ≤ x)→ P(X ≤ x) as n→ ∞

for all x ∈ R satisfying P(X = x) = 0, where P(X ≤ x) is continuous.

Given these definitions, the following implications hold:

Xn
a.s.→ X or Xn

r→ X =⇒ Xn
p→ X =⇒ Xn

D→ X .

One of the useful properties of martingales is that one can prove various limit
theorems depending on the particular choice of convergence. Here we consider
mean-square or L2 convergence, which is the easiest to establish using standard
analysis. Let (Xn) be a martingale with respect to the filtration (Fn) and assume
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square integrability E(X2
n )< ∞ for all n≥ 1 and set X0 = 0. One useful property of

square-integrable martingales is that the increments Yn = Xn−Xn−1 have zero mean
and are uncorrelated in L2. That is, since (Xn) is a martingale

E(Yn|Fn−1) = E(Xn|Fn−1)−E(Xn−1|Fn−1) = Xn−1−Xn−1 = 0

for all n ≥ 1. Hence, from the properties of conditional expectations, E(Yn) =
E(E(Yn|Fn−1)) = 0, and

E(YmYn) = E(YmE(Yn|Fn−1)) = 0, for m < n.

Theorem 11.2 (L2 martingale convergence theorem). If (Xn) is a nonnegative
martingale, such that E(Xn) < ∞ for all n, then there exists a random variable X
with E(X)< ∞ and satisfying the following limits:

1. lim
n→∞

Xn = X almost surely.

2. If E(X2
n ) < M < ∞ for some M and all n, then Xn also converges to X in the L2

sense. In particular, var(X) = limn→∞ var(Xn).

Proof (part 2). First note that for m≤ n

E(X2
n )−E(X2

m) = E((Xn−Xm)(Xn +Xm)) = E((Xn−Xm)
2)+ 2E(Xm(Xn−Xm))

= E((Xn−Xm)
2).

It follows that E(X2
n ) is an increasing function of n. Since this sequence is bounded,

it is a Cauchy sequence and thus (Xn) is a Cauchy sequence in L2. Completeness of
L2 establishes that (Mn) converges.

11.5 The Galton–Watson Branching Process

We now illustrate an application of the martingale convergence theorem by con-
sidering the Galton–Watson branching process, which is often used to model cell
proliferation (see Chap. 3 of Kimmel and Axelrod [334]). The process starts with
a single ancestor who produces a random number of progeny according to a given
probability distribution. Each member of the first generation behaves independently
and produces second-generation progeny in an identical fashion to the ancestor. It-
erating this procedure leads to the Galton–Walton branching process. Let Zn denote
the number of members (events) of the nth generation (time step). Each member
of the nth generation gives birth to a family, which could be empty, of members
of the (n+ 1)th generation with the following assumption: the family sizes of the
individuals of the branching process are independent identically distributed random
variables. An example realization of a branching process is shown in Fig. 11.1.
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11.5.1 Generating Functions and Basic Properties

A useful method for analyzing a branching process is to use generating functions.
Let Gn(s) =E(sZn) be the generating function of the random variable Zn with proba-
bility Pn(m) = Prob(Zn = m). Each member of the (n+1)th generation has a unique
ancestor in the nth generation such that

Zn+1 = X1 +X2 + . . .+XZn ,

where Xi is the size of the family produced by the ith member of the mth generation.
It follows that

Gn+1(s) = E(sZn+1) = E(sX1+...+XZn )

=
∞

∑
n=0

E(sX1+...+Xm |Zn = m)Pn(m)

=
∞

∑
n=0

E(sX1 sX2 . . .Xm |Zn = m)Pn(m)

=
∞

∑
n=0

[
m

∏
j=1

E(sXj )

]

Pn(m)

=
∞

∑
n=0

[G1(s)]
mPn(m) = Gn(G1(s)).

Iterating this resulting and dropping the subscript on G1, we have the recurrence
relation

Gn(s) = Gn−1(G(s)) = G(G(. . . (G(s)) . . .)). (11.5.1)

Let μ = E(Z1) and σ2 = var(Z1). In order to determine the mean and variance
of Zn, we use the recursive structure of the generating functions. First,

E(Zn) = G′n(1) =
d
ds

G(Gn−1(s))

∣
∣∣
∣
s=1

= G′(1)G′n−1(s) = μG′n−1(s).

Z0 = 1

Z1 = 2

Z2 = 4

Z3 = 6

Fig. 11.1: Illustration of a branching process with three generations
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Iterating this result shows that
E(Zn) = μn. (11.5.2)

Similarly,

E(Zn(Zn− 1)) = G′′n(1) = G′′(1)G′n−1(1)
2 +G′(1)G′′n−1(1).

This gives the iterative result

var(Zn) = σ2μ2n−2 + μvar(Zn−1),

from which one finds that

var(Zn) =

⎧
⎨

⎩

nσ2 if μ = 1
σ2(μn− 1)μn−1

μ− 1 if μ �= 1.
(11.5.3)

Let Tn be the total number of individuals up to and including the nth generation.
Then

E(Tn) = E(Z0 +Z1 +Z2 + . . .+Zn)

= 1+E(Z1)+E(Z2)+ . . .+E(Zn)

= 1+ μ + μ2 + . . .+ μn

=

{
μn+1−1

μ−1 , μ �= 1,
n+ 1, μ = 1.

It follows that

lim
n→∞

E(Tn) =

{
∞, μ ≥ 1,
1

1−μ , μ < 1.

Let Hn(s) = E(sTn ) be the generating function for the random variable Tn. The gen-
erating functions satisfy the recurrence relation

Hn+1(s) = sG(Hn(s)). (11.5.4)

11.5.2 Extinction and Criticality

An important property of a branching process is whether or not it eventually be-
comes extinct, that is, Zn = 0 for some finite n. This motivates the classification of
a branching process is in terms of the asymptotic properties of the mean number of
progenyE(Zn). Since E(Zn) = μn for a Galton–Watson process, we see that it grows
geometrically if μ > 1, stays constant if μ = 1, and decays geometrically if μ < 1.
These three cases are labeled supercritical, critical, and subcritical, respectively:
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μ > 1 (supercritical) =⇒ lim
n→∞

E(Zn) = ∞

μ = 1 (critical) =⇒ E(Zn) = 1

μ < 1 (subcritical) =⇒ lim
n→∞

E(Zn) = 0.

The relationship between criticality and the probability of extinction η , where

η = lim
n→∞

Prob(Zn = 0), (11.5.5)

is quite subtle. First note that

ηn ≡ Prob(Zn = 0) = Gn(0) = G(Gn−1(0)) = G(ηn−1).

Taking the limit n→ ∞ shows that η is a root of the equation η = G(η). Moreover,
if ψ is any nonnegative root of s = G(s), then η ≤ψ . This follows from the fact that
G is a non-decreasing function on [0,1] so

η1 = G(0)≤ G(ψ) = ψ ,η2 = G(η1)≤ G(ψ) = ψ , . . . ,

so by induction ηn ≤ ψ for all n ≥ 0. Hence η is the smallest nonnegative root of
the equation s = G(s). The value of η can now be determined graphically by noting
that G(1) = 1 and G(s) is a convex function of s (see Fig. 11.2). The latter is a
consequence of the result

G′′(s) = E(Z1(Z1− 1)sZ1−2)≥ 0, ∀ s≥ 0.

s
1

G(s)

μ < 1

μ > 1

η

Fig. 11.2: Graphical construction of the probability of extinction η . The convex function G(s),
s ≥ 0, intersects the diagonal twice for μ > 1 but only once when μ ≤ 1
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Hence, if μ = G′(1)> 1, then there exists a root η = G(η) with 0≤ η < 1, whereas
if μ =G′(1)≤ 1, then η = 1 (the two roots coincide). We see that the critical process
is counterintuitive, since the process becomes extinct almost surely although the
mean E(Zn) = 1 for all n≥ 0.

Example 11.7. For the sake of illustration, consider a geometric branching process
where the distribution of family sizes is given by Prob(Z1 = k) ≡ f (k) = qpk with
q= 1− p. In this case, one can calculate the generating function and other quantities
explicitly:

G(s) = q(1− ps)−1, μ =
p
q
, σ2 =

p2

q2 +
p
q
. (11.5.6)

Moreover, it can be shown by induction that

Gn(s) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

n− (n− 1)s
n+ 1− ns if p = q = 1

2 ,

q[pn− qn− ps(pn−1− qn−1)]

pn+1− qn+1− ps(pn− qn)
if p �= q.

(11.5.7)

It follows that

Prob(Zn = 0) = Gn(0) =

⎧
⎪⎪⎨

⎪⎪⎩

n
n+ 1 if p = q,

q(pn− qn)

pn+1− qn+1 if p �= q,
(11.5.8)

and, hence, η = 1 if p ≤ q and η = q/p if p > q. We conclude that for a geometric
branching process, extinction occurs almost surely if E(Z1) = μ = p/q≤ 1; other-
wise there is a finite probability of persistent growth. We can identify the regime
p < q as subcritical, the regime p > q as supercritical, and the point p = q = 1/2 as
critical.

11.5.3 Asymptotic Properties

The asymptotic properties of the Galton–Watson process can be analyzed using the
convergence properties of martingales, as summarized in Theorem 11.2. The ap-
plicability of this theorem to the Galton–Watson process follows from the fact that
Wn = Zn/μn is a martingale. That is, since the branching process is a Markov chain,

E(Zn+1|Zn, . . . ,Z0) = E(Zn+1|Zn),

and thus
E(Wn+1|Wn, . . . ,W0) = E(Wn+1|Wn).
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Moreover, since Zn+1 is the sum of Zn independent families, we have

E(Zn+1|Zn) = μZn.

Similarly,

E(Wn+1|Wn) = μ−(n+1)
E(Zn+1|Zn) =

Zn

μn =Wn.

We deduce that (Wn) is a martingale:

E(Wn+1|Wn, . . . ,W0) =Wn.

The convergence theorem thus establishes that there exists a random variable W for
which

lim
n→∞

Wn =W almost surely.

Since η = 1 in the critical and subcritical cases, it follows that W ≡ 0. Hence, we
assume the process is supercritical. Now introduce the discrete Laplace transform
of Wn given by φn(s) = E(e−sWn). We have

φn(s) = E(e−sWn) = E[(e−s/μn
)Zn ]

= Gn(e−s/μn
) = G(Gn−1(e

−s/μn
))

= G(φn−1(s/μ)).

Since Wn→W almost surely implies Wn→W in distribution, taking the limit n→∞
shows that φn(s)→ φ(s), with φ satisfying the so-called Abel’s equation

φ(s) = G [φ(s/μ)] . (11.5.9)

There are also nontrivial limit theorems for subcritical and critical process con-
ditions on nonextinction. We simply quote the theorems here (see Athreya and Ney
[16] for proofs).

Theorem 11.3. If μ < 1 (subcritical), then Prob(Zn|Zn > 0) converges as n→ ∞ to
a probability distribution whose generating function B(s) satisfies

B[G(s)] = μB(s)+ 1− μ ,

and the probability of nonextinction has the asymptotic form

1−ηn ∼ μn

B′(1)
, n→ ∞.

Theorem 11.4. If μ = 1 (critical) and σ2 = var(Z1)< ∞, then

lim
n→∞

Prob(Zn/n > z|Zn > 0) = e−2z/σ 2
, z≥ 0.
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11.5.4 Application to Gene Amplification and Drug Resistance

There are many applications of the Galton–Watson process to models of cell pro-
liferation and population genetics, as reviewed in [334]. Here we illustrate the
theory by considering the particular example of gene amplification [333, 334]. This
refers to the increase in the number of copies of a gene through successive cell
generations. One important example is the amplification of genes coding for the
enzyme DHFR, which has been associated with cellular resistance to the anticancer
drug methotrexate (MTX). A Galton–Watson process can be used to model the
number Zn of DHFR genes in a cell randomly selected from cell progeny in the
nth generation of repeated cycles of cell replication and division (see Fig. 11.3).
During the lifetime of a cell, each DHFR gene is either replicated with probability
a or not replicated with probability 1− a. In the former case, at the time of cell
division, DHFR is assigned to one of the two daughter cells with probability 1/2.
On the other hand, if replication occurs, then during cell division both copies are
assigned to one daughter cell with probability α/2 or each daughter cell receives
one copy with probability 1−α . It follows that for a randomly selected cell of the
first generation, given Z0 = 1, we have

Prob(Z1 = 0) = (1− a)/2+ aα/2≡ A0, Prob(Z1 = 1) = 1−A1−A2,

Prob(Z1 = 2) = aα/2 = A2.

Hence
G(s) = E(sZ1 ) = A0 +(1−A0−A2)s+A2s2.

It is assumed that in the absence of selection, DHFR gradually disappears from the
cell population so that the branching process is subcritical. This means that

μ ≡ G′(1) = 1−A0+A2 < 1 =⇒ A2 < A0.

A cell is said to be resistant if it contains at least one copy of the DHFR gene;
otherwise it is called sensitive. Suppose that cells are initially cultured in a medium
rich in MTX so that they develop drug resistance in the sense that all cells have at
least one copy of DHFR. After N generations the distribution of copy numbers is
given by Prob(ZN |ZN > 0). Moreover, since the probability of nonextinction scales
as μn for large n, it follows that the probability of a daughter cell to be resistant
is μ so that the number of resistant cells grows on average by 2μ per generation
(assuming 1/2 < μ < 1). Now suppose that at the Nth generation the drug-resistant
cells are placed in a drug-free medium so sensitive cells also proliferate. Let R(n)
and S(n) denote the number of resistant and sensitive cells after n cycles within
the drug-free medium with S(0) = 0. Using the fact that R(n) = (2μ)nR(0) and
S(n)+R(n) = 2nR(0), we see that the fraction of drug-resistant cells scales as

r(n)
r(0)

= μn → 0 as n→ ∞, r(n) =
R(n)

R(n)+ S(n)
.

Meanwhile the distribution of copy numbers among the drug-resistant population is
preserved after normalization, consistent with experimental observations.
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1 - a

a

replication

1/2

1/2

division

α

α

1−α

Fig. 11.3: Schematic illustration of a branching process model of gene amplification. See text for
details

11.6 Modeling Chemical Reaction Networks
as Counting Processes

As our final example illustrating the application of martingales, we turn to a stochas-
tic formulation of biochemical reaction networks based on counting processes,
which provides a framework for applying rigorous probabilistic methods such as the
theory of continuous-time martingales [9, 361]. The reaction network is treated as a
continuous-time Markov chain with reactions corresponding to transitions along the
chain. The number of occurrences of each reaction is modeled as a counting process,
which is itself represented in terms of a scaled Poisson process. This so-called ran-
dom time-change representation yields a stochastic equation for the Markov chain.
Our presentation follows closely the introductory review by Anderson and Kurtz [9].
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11.6.1 Poisson Processes and Counting Processes

Let us first briefly recall properties of a Poisson process Y (t), which represents the
number of events or observations up to time t with the following properties:

1. Observations occur one at a time.
2. The number of observations in disjoint time intervals are independent random

variables. That is, if t0 < t1 < .. . < tm, then Y (tk)−Y (tk−1), k = 1, . . . ,m are
independent random variables.

3. The distribution of Y (t + a)−Y(t) is independent of t.

Under the above assumptions it can be shown that there exists a constant λ > 0 such
that, for t < s, Y (s)−Y(t) is Poisson distributed with rate λ :

P[Y (s)−Y (t) = k] =
λ (s− t)k

k!
e−λ (s−t).

In the following we will take Y (t) to be a unit rate Poisson process (λ = 1) and
denote a Poisson process with rate λ by the time-change representation Y (λ t). Sup-
pose that Ft represents the information obtained by observing Y (λ s) for s ≤ t. It
follows that

P[Y (λ (t +Δ t))−Y(λ t) = 1|Ft ] = P[Y (λ (t +Δ t))−Y(λ t) = 1] = λ Δ te−λ Δ t .

Taking the limit Δ t → 0, we have the formal limit

P[dY (λ t) = 1|Ft ]≡ E[dY (λ t)|Ft ] = λ dt. (11.6.1)

Thus one can interpret the rate λ as the expected number of jumps per unit time
(transition intensity or propensity). The usefulness of this definition of λ is that it
is intuitive and can easily be generalized to a large class of counting processes,1

including those that keep track of the number of single-step chemical reactions (see
below). Moreover, it forms the starting point of a mathematically rigorous theory of
counting process that involves the theory of continuous-time martingales. Indeed, a
more precise version of the formal relation (11.6.1) is that in terms of the filtration
{Ft , t ≥ 0}, the stochastic process

M(t) = Y (λ t)−λ t

is a martingale. This follows from

E[Y (λ [t + s])−Y (λ t)|Ft)] = λ s =⇒ E[Y (λ [t + s])|Ft)] =Y (λ t)−λ t +λ (t− s),

1 A counting process is a stochastic process {N(t), t ≥ 0} satisfying the following properties:
N(t) ≥ 0; N(t) is an integer; if s≤ t , then N(s) ≤ N(t) (a positive, increasing integer).
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that is,

E[M(t + s)|Ft ] = M(t)

for all s, t ≥ 0.
The above results generalize to a Poisson process with a time-dependent rate

function λ (t) so that the counting process N(t) = Y (λ (t)):

1. The random variable Y (λ (t))−Y(λ (s)) is independent of Fs for t > s.

2. The conditional distribution of the increments is given by

P[Y (λ (t))−Y(λ (s)) = k|Fs] =
Λ k

s,t

k!
e−Λs,t ,

where

Λs,t =

∫ t

s
λ (u)du.

3. The stochastic process

M(t) = Y (λ (t))−
∫ t

0
λ (u)du

is a martingale with respect to the filtration {Ft}.
The converse relation also holds, namely, if M(t) is a martingale with respect to Ft ,
then N(t) = Y (λ (t)), that is, N(t) is a Poisson process (Watanabe theorem).

In order to develop a mathematical theory of chemical reaction networks, it is first
necessary to consider a more general counting process N(t) in which the intensity
λ (t;N) is itself a stochastic process adapted to the filtration {Ft}. In other words, if
Ft represents all information about the counting process up to time t, then λ (t;N)
is specified, that is, it is non-anticipating. For concreteness, take λ (t;N) = λ (N(t))
and consider the counting process given by the solution to the stochastic equation

N(t) = Y

(∫ t

0
λ (N(s))ds

)
, (11.6.2)

with
∫ t

0 λ (N(s))ds < ∞ for all t ≥ 0. Note that in the infinitesimal interval (t, t +Δ t],

P[N(t +Δ t)> N(t)|Ft ] = 1−P[N(t+Δ t) = N(t)|Ft ]

= 1−P

[
Y

(∫ t+Δ t

0
λ (N(s))ds

)
−Y

(∫ t

0
λ (N(s))ds

)
= 0

]

= 1− e−λ (N(t))Δ t ≈ λ (N(t))Δ t.

Thus λ (N(t)) can still be identified as a transition intensity. The relationship to
martingales is now a little more involved. First, define the stochastic jump times

τk = inf{t, t ≥ 0|N(t)≥ k}
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with τk the time of the kth jump, and introduce the notation

τk ∧ t = min(τk, t).

Define the following set of stochastic processes:

Mk(t) = N(t ∧ τk)−
∫ t∧τk

0
λ (N(s))ds. (11.6.3)

Given the counting process N(t) satisfying equation (11.6.2), Mk(t) is a martingale
for all k ≥ 0, that is,

E[Mk(t + s)|Ft ] = Mk(t), t,s≥ 0.

Moreover, if E[N(t)]< ∞ for all t ≥ 0, then limk→∞ τk ≡ τ∞ = ∞ and

M(t)≡ lim
k→∞

Mk(t) = N(t)−
∫ t

0
λ (N(u))du

is a martingale. Since M(0) = 0 (assuming N(0) = 0), it follows that E[M(t)] = 0
for all t ≥ 0, that is,

E

[
Y

(∫ t

0
λ (N(s))ds

)]
= E

[∫ t

0
λ (N(u))du

]
.

Again, the converse relation holds: suppose that N(t) is a counting process with
transition intensity λ (N(t)) such that for each k, Mk(t) is a martingale. Then N(t) is
the solution to the stochastic equation (11.6.2).

Martingales of a counting process.

We sketch a proof that Mk(t) is a martingale for the counting process N(t)
satisfying the stochastic equation (11.6.2). Suppose that τk−1 < t < τk.
Since τk−1 is adapted to Ft , it follows that τk−1 is known when condi-
tioning expectations with respect to Ft . On the other hand, τk is a random
variable. It is clear from the definition of Mk(t) that for all j ≤ k− 1

E[Mj(t + s)|Ft ] = N(τ j)−
∫ τ j

0
λ (N(u))du = Mj(t).

In the case j = k, we have to consider two cases: (i) τk < t + s, which
means that at least one jump occurs in the interval (t, t+ s] and N(t + s)−
N(t)> 0; (ii) τk ≥ t + s, which means that no jump occurs in (t, t + s) and
N(t + s) = N(t). Therefore
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E[Mk(t + s)|Ft ] =

∫ ∞

t+s
P(τk|Ft)

[
N(t + s)−

∫ t+s

0
λ (N(u))du

]
dτk

+
∫ t+s

t
P(τk|Ft)

[
N(τk)−

∫ τk

0
λ (N(u))du

]
dτk

=

∫ ∞

t+s
P(τk|Ft)

[
N(t)−

∫ t

0
λ (N(u))du−

∫ t+s

t
λ (N(u))du

]
dτk

+

∫ t+s

t
P(τk|Ft)

[
N(t)+ 1−

∫ t

0
λ (N(u))du−

∫ τk

t
λ (N(u))du

]
dτk

=

∫ ∞

t+s
P(τk|Ft)

[
Mk(t)−

∫ t+s

t
λ (N(u))du

]
dτk

+

∫ s+t

t
P(τk|Ft)

[
Mk(t)+ 1−

∫ τk

t
λ (N(u))du

]
dτk.

Hence,

E[Mk(t + s)|Ft ]−Mk(t) =−
∫ ∞

s+t
P(τk|Ft)dτk

[∫ t+s

t
λ (N(u))du

]

+

∫ s+t

t
P(τk|Ft)

[
1−
∫ τk

t
λ (N(u))du

]
dτk,

where

P(τk|Ft ) =C exp

(
−
∫ τk

t
λ (N(u))du

)

and C is a normalization factor. Conditioning in Ft and the absence of
any subsequent jumps means that λ (N(u)) can be treated as a constant
λ0. Then

E[Mk(t + s)|Ft ]−Mk(t) =−Csλ0

∫ ∞

s+t
e−λ0(τk−t)dτk

+C
∫ s+t

t
e−λ0(τk−t) [1− (τk− t)λ0]dτk

=−Cse−λ0s +C
1− e−λ0s

λ0
+Cλ0

d
dλ0

1− e−λ0s

λ0

= 0.

Thus
E[Mk(t + s)|Ft ] = Mk(t) for all 0≤ t < τk, s≥ 0.

Since E[Mk(t + s)|Ft ] = Mk(t) for all t > τk, it follows that Mk(t) is a
martingale. This result holds for all k ≥ 0.
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The above martingale formulation can be used to derive the master equation for
the counting process. Introduce an arbitrary, bounded function f on Z. Suppose that
N(t) = n and τk is the nth jump time. Then

f (N(t)) = f (0)+
n

∑
k=1

[ f (k)− f (k− 1)] = f (0)+
n

∑
k=1

[ f (N(τk))− f (N(τk−1))]

= f (0)+
n

∑
k=1

[ f (N(τk−1)+ 1)− f (N(τk−1))]

= f (0)+
∞

∑
k=1

∫ t

0
[ f (N(s)+ 1)− f (N(s))]δ (s− τk−1)ds,

= f (0)+
∞

∑
k=1

∫ t

0
[ f (N(s−)+ 1)− f (N(s−))]δ (s− τk)ds,

which is independent of the particular value n. Formally speaking,

∞

∑
k=1

δ (s− τk) = dN(t),

so that

f (N(t)) = f (0)+
∫ t

0
[ f (N(s−)+ 1)− f (N(s−))]dN(s). (11.6.4)

Setting N(t) = M(t)+
∫ t

0 λ (N(u))du with M(t) a martingale, we have

f (N(t))− f (0)−
∫ t

0
λ (N(s))[ f (N(s)+ 1)− f (N(s))]ds

=
∫ t

0
[ f (N(s−)+ 1)− f (N(s−))]dM(s).

Introducing the generator

A f (n) = λ (n)[ f (n+ 1)− f (n)]

and using the fact that M(s) is a martingale, it follows that

f (N(t))− f (N(0))−
∫ t

0
A f (N(s))ds (11.6.5)

is a martingale and, in particular,

E[ f (N(t))] = E[ f (N(0))]+
∫ t

0
E[A f (N(s))]ds. (11.6.6)

Consider the index function f (N) = χn(N) = 1 if N = n and zero otherwise. Then
E[ f (N(t))] = P[N(t) = n] and



640 11 Probability Theory and Martingales

P[N(t) = n] = P[N(0) = n]+
∫ t

0
[λ (n− 1)P[N(s) = n− 1]−λ (n)P[N(s) = n]] .

Differentiating both sides with respect to t and setting p(n, t) = P[N(t) = n] yields
the forward master equation for the counting process

d p(n, t)
dt

= [λ (n− 1)p(n− 1, t)−λ (n)p(n, t)]. (11.6.7)

11.6.2 Chemical Reactions and Counting Processes

Now consider the simple single-step reaction

A+B
κ→C.

Let X(t) = (XA(t),XB(t),XC(t)) be the state of the stochastic process at time t with
Xi(t) the number of molecules of chemical species i at time t. From simple book-
keeping, we can write

X(t) = X(0)+R(t)

⎛

⎝
−1
−1
1

⎞

⎠ , (11.6.8)

where R(t) is the number of reactions that has occurred by time t, X(0) is the ini-
tial state, and the constant vector specifies the stochiometric coefficients. We will
assume that the probability of a reaction in an infinitesimal interval (t, t +Δ t] is

P[reaction occurs in (t, t +Δ t]|Ft ]≈ κXA(t)XB(t)Δ t, (11.6.9)

where Ft is the information obtained by observing the stochastic process up to
time t. Equation (11.6.9) is consistent with the law of mass action in the determin-
istic limit. The basic idea of the time-change representation is that the number of
reactions can be expressed in terms of a unit rate Poisson process according to

R(t) = Y

(∫ t

0
κXA(s)XB(s)ds

)
. (11.6.10)

In order to establish that this is consistent with equation (11.6.9), set λ (X(t)) =
κXA(t)XB(t) and note that the probability a reaction occurs in a small time interval
(t, t +Δ t] is

P[R(t +Δ t)> R(t)|Ft ] = 1−P[R(t+Δ t) = R(t)|Ft ]

= 1−P

[
Y

(∫ t+Δ t

0
λ (X(s))ds

)
−Y

(∫ t

0
λ (X(s))ds

)
= 0

]

= 1− e−λ (X(t))Δ t ≈ λ (X(t))Δ t.
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We have used the fact that Y
(∫ t

0 λ (X(s))ds
)

and X(t) are part of the information in
Ft , that is, they are Ft -measurable. Similarly, for a general set of chemical reactions
involving N chemical species i = 1, . . . ,N and K single-step reactions with stochio-
metric vectors Sa ∈ Z

N and propensity functions λa, a = 1, . . . ,K (see Sect. 6.3), we
have

X(t) = X(0)+∑
a

SaRa(t), (11.6.11)

where X(t) = (X1(t), . . . ,XN(t)) and Ra(t) is the number of occurrences of reaction
a up to time t. Moreover,

Ra(t) = Ya

(∫ t

0
λa(X(s))ds

)
, (11.6.12)

where the Ya are independent unit rate Poisson processes. Following along similar
lines to our analysis of a simple counting process, it can be shown that the counting
processes (R1, . . . ,RK) are solutions of the stochastic process defined by equations
(11.6.11) and (11.6.12) if and only if they are solutions of a corresponding mar-
tingale problem with respect to the intensities λa: there exists a filtration {Ft} to
which the Ra are adapted and

Ma,k(t)≡ Ra(t ∧ τk)−
∫ t∧τk

0
λa(X(s))ds

is a {Ft}-martingale.
The martingale problem can be used to derive the master equation for a chemi-

cal reaction network. For simplicity, suppose that τ∞ = ∞ and E[Ra(t)] < ∞. (This
condition can be relaxed [9].) It follows that

Ma(t) = Ra(t)−
∫ t

0
λa(X(s))ds

is a martingale so that if Ra(0) = 0 for all a, then

E[Ra(t)] = E

[∫ t

0
λa(X(s))ds

]
.

Introduce an arbitrary, bounded function f on Z
N . Generalizing equation (11.6.4),

we have

f (X(t)) = f (X(0))+∑
a

∫ t

0
[ f (X(s−)+Sa)− f (X(s−))]dRa(s),
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which can be rewritten as

f (X(t))− f (X(0))−
∫ t

0
∑
a

λa(X(s)) [ f (X(s)+Sa)− f (X(s))]ds

= ∑
a

∫ t

0
[ f (X(s−)+Sa)− f (X(s−))]dMa(s).

Introducing the generator (of the master equation)

A f (x) = ∑
a

λa(x)[ f (x+Sa)− f (x)]

and using the fact that Ma(s) is a martingale, it follows that

f (X(t))− f (X(0))−
∫ t

0
A f (X(s))ds (11.6.13)

is a martingale and, in particular,

E[ f (X(t))] = E[ f (X(0))]+
∫ t

0
E[A f (X(s))]ds. (11.6.14)

Consider the index function f (x) = χy(x) = 1 if y = x and zero otherwise. Then
E[ f (X(t))] = P[X(t) = y] and

P[X(t) = y] = P[X(0) = y]

+

∫ t

0
∑
a
(λa(y−Sa)P[X(s) = y−Sa]−λa(y)P[X(s) = y])ds.

Differentiating both sides with respect to t and setting p(y, t) = P[X(t) = y] yields
the forward master equation

d p(y, t)
dt

= ∑
a
[λa(y−Sa)p(y−Sa, t)−λa(y)p(y, t)] . (11.6.15)

Having shown how to reformulate chemical reaction networks in terms of count-
ing processes and martingales, we briefly highlight some of the applications of the
latter [9]:

1. The martingale properties of the counting process Ra provide an effective method
for evaluating moments of the chemical processes Xi(t).

2. One can obtain rigorous asymptotic estimates for convergence to the determin-
istic rate equations in the large N limit, where N is the system size (number of
molecules). One can also carry out a rigorous slow/fast decomposition in the case
of multiple time scales.
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3. The concept of the generator A and its associated martingales can be extended
to the case of continuous stochastic processes based on a Langevin equation.
Indeed, carrying out a system-size expansion of the master equation generator,
leads to the second-order differential operator of the FPE

4. Equations (11.6.11) and (11.6.12) provide the basis for SSAs such as Gillespie’s
direct method [217] (see Sect. 6.8).
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