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Introduction

Economics made progress without mathematics, but has made faster progress with it.
Mathematics has brought transparency to many hundreds of economic arguments.
—Deirdre N. McCloskey (1994)

Economists rely on models to obtain insight into a complex world. Eco-
nomic analysis is primarily an exercise in building and analyzing models.
An economic model strips away unnecessary detail and focuses attention
on the essential details of an economic problem. Economic models come
in various forms. Adam Smith used a verbal description of a pin factory
to portray the principles of division of labor and specialization. Irving
Fisher built a hydraulic model (comprising floating cisterns, tubes, and
levers) to illustrate general equilibrium. Bill Phillips used a different
hydraulic model (comprising pipes and colored water) to portray the cir-
cular flow of income in the national economy. Sir John Hicks developed a
simple mathematical model (IS-LM) to reveal the essential differences
between Keynes’s General Theory and the “classics.” In modern eco-
nomic analysis, verbal and physical models are seen to be inadequate.
Today’s economic models are almost exclusively mathematical.

Formal mathematical modeling in economics has two key advantages.
First, formal modeling makes the assumptions explicit. It clarifies intu-
ition and makes arguments transparent. Most important, it uncovers the
limitations of our intuition, delineating the boundaries and uncovering
the occasional counterintuitive special case. Second, the formal modeling
aids communication. Once the assumptions are explicit, participants
spend less time arguing about what they really meant, leaving more time
to explore conclusions, applications, and extensions.

Compare the aftermath of the publication of Keynes’s General Theory
with that of von Neumann and Morgenstern’s Theory of Games and
Economic Behavior. The absence of formal mathematical modeling in the
General Theory meant that subsequent scholars spent considerable energy
debating “what Keynes really meant.” In contrast, the rapid development
of game theory in recent years owes much to the advantages of formal
modeling. Game theory has attracted a predominance of practitioners
who are skilled formal modelers. As their assumptions are very explicit,
practitioners have had to spend little time debating the meaning of others’
writings. Their efforts have been devoted to exploring ramifications and
applications. Undoubtedly, formal modeling has enhanced the pace of
innovation in game-theoretic analysis in economics.
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Economic models are not like replica cars, scaled down versions of the
real thing admired for their verisimilitude. A good economic model strips
away all the unnecessary and distracting detail and focuses attention on
the essentials of a problem or issue. This process of stripping away
unnecessary detail is called abstraction. Abstraction serves the same role
in mathematics. The aim of abstraction is not greater generality but
greater simplicity. Abstraction reveals the logical structure of the mathe-
matical framework in the same way as it reveals the logical structure of an
economic model.

Chapter 1 establishes the framework by surveying the three basic
sources of structure in mathematics. First, the order, geometric and alge-
braic structures of sets are considered independently. Then their interac-
tion is studied in subsequent sections dealing with normed linear spaces
and preference relations.

Building on this foundation, we study mappings between sets or func-
tions in chapters 2 and 3. In particular, we study functions that preserve
the structure of the sets which they relate, treating in turn monotone,
continuous, and linear functions. In these chapters we meet the three
fundamental theorems of mathematical economics—the (continuous)
maximum theorem, the Brouwer fixed point theorem, and the separating
hyperplane theorem, and outline many of their important applications in
economics, finance, and game theory.

A key tool in the analysis of economic models is the approximation of
smooth functions by linear and quadratic functions. This tool is devel-
oped in chapter 4, which presents a modern treatment of what is tradi-
tionally called multivariate calculus.

Since economics is the study of rational choice, most economic models
involve optimization by one or more economic agents. Building and ana-
lyzing an economic model involves a typical sequence of steps. First, the
model builder identifies the key decision makers involved in the economic
phenomenon to be studied. For each decision maker, the model builder
must postulate an objective or criterion, and identify the tools or instru-
ments that she can use in pursuit of that objective. Next, the model
builder must formulate the constraints on the decision maker’s choice.
These constraints normally take the form of a system of equations and
inequalities linking the decision variables and defining the feasible set. The
model therefore portrays the decision maker’s problem as an exercise in
constrained optimization, selecting the best alternative from a feasible set.
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Typically analysis of an optimization model has two stages. In the first
stage, the constrained optimization problem is solved. That is, the optimal
choice is characterized in terms of the key parameters of the model. After
a general introduction, chapter 5 first discusses necessary and sufficient
conditions for unconstrained optimization. Then four different perspec-
tives on the Lagrangean multiplier technique for equality constrained
problems are presented. Each perspective adds a different insight con-
tributing to a complete understanding. In the second part of the chapter,
the analysis is extended to inequality constraints, including coverage of
constraint qualification, sufficient conditions, and the practically impor-
tant cases of linear and concave programming.

In the second stage of analysis, the sensitivity of the optimal solution to
changes in the parameters of the problem is explored. This second stage is
traditionally (in economics) called comparative statics. Chapter 6 outlines
four different approaches to the comparative static analysis of optimiza-
tion models, including the traditional approaches based on the implicit
function theorem or the envelope theorem. It also introduces a promising
new approach based on order properties and monotonicity, which often
gives strong conclusions with minimal assumptions. Chapter 6 concludes
with a brief outline of the comparative static analysis of equilibrium
(rather than optimization) models.

The book includes a thorough treatment of some material often omitted
from introductory texts, such as correspondences, fixed point theorems,
and constraint qualification conditions. It also includes some recent devel-
opments such as supermodularity and monotone comparative statics. We
have made a conscious effort to illustrate the discussion throughout with
economic examples and where possible to introduce mathematical con-
cepts with economic ideas. Many illustrative examples are drawn from
game theory.

The completeness of the real numbers is assumed, every other result is
derived within the book. The most important results are stated as theo-
rems or propositions, which are proved explicitly in the text. However, to
enhance readability and promote learning, lesser results are stated as exer-
cises, answers for which will be available on the internet (see the note to the
reader). In this sense the book is comprehensive and entirely self-contained,
suitable to be used as a reference, a text, or a resource for self-study.

The sequence of the book, preceding from sets to functions to smooth
functions, has been deliberately chosen to emphasize the structure of the
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underlying mathematical ideas. However, for instructional purposes or
for self-study, an alternative sequence might be preferable and easier to
motivate. For example, the first two sections of chapter 1 (sets and
ordered sets) could be immediately followed by the first two sections of
chapter 2 (functions and monotone functions). This would enable the
student to achieve some powerful results with a minimum of fuss. A
second theme could then follow the treatment of metric spaces (and the
topological part of section 1.6) with continuous functions culminating in
the continuous maximum theorem and perhaps the Banach fixed point
theorem. Finally the course could turn to linear spaces, linear functions,
convexity, and linear functionals, culminating in the separating hyper-
plane theorem and its applications. A review of fixed point theorems
would then highlight the interplay of linear and topological structure in
the Brouwer fixed point theorem and its generalizations. Perhaps it would
then be advantageous to proceed through chapters 4, 5, and 6 in the given
sequence. Even if chapter 4 is not explicitly studied, it should be reviewed
to understand the notation used for the derivative in the following
chapters.

The book can also be used for a course emphasizing microeconomic
theory rather than mathematical methods. In this case the course would
follow a sequence of topics, such as monotonicity, continuity, convexity,
and homogeneity, interspersed with analytical tools such as constrained
optimization, the maximum, fixed point, and separating hyperplane
theorems, and comparative statics. Each topic would be introduced and
illustrated via its role in the theory of the consumer and the producer.

Achieving consistency in notation is a taxing task for any author of a
mathematical text. Wherever I could discern a standard notation in the
economics literature, I followed that trend. Where diversity ruled, I have
tended to follow the notation in Hal Varian’s Microeconomic Analysis,
since it has been widely used for many years. A few significant exceptions
to these rules are explicitly noted.

Many people have left their mark on this book, and I take great plea-
sure in acknowledging their contribution. Foremost among my creditors
is Graeme Guthrie whose support, encouragement, and patient exposition
of mathematical subtleties has been invaluable. Richard Edlin and Mark
Pilbrow drafted most of the diagrams. Martin Osborne and Carolyn
Pitchik made detailed comments on an early draft of the manuscript and
Martin patiently helped me understand intricacies of TEX and IKTEX.
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Other colleagues who have made important comments include Thomas
Cool, John Fountain, Peter Kennedy, David Miller, Peter Morgan, Mike
Peters, Uli Schwalbe, David Starrett, Dolf Talman, Paul Walker, Richard
Watt, and Peyton Young. I am also very grateful for the generous hospi-
tality of Eric van Damme and CentER at the University of Tilburg and
Uli Schwalbe and the University of Hohenheim in providing a productive
haven in which to complete the manuscript during my sabbatical leave.
Finally, I acknowledge the editorial team at The MIT Press, for their
proficiency in converting my manuscript into a book. I thank them all.
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A Note to the Reader

Few people rely solely on any social science for their pleasures, and attaining a
suitable level of ecstasy involves work. ... It is a nuisance, but God has chosen to give
the easy problems to the physicists.

—Lave and March (1975)

Some people read mathematics books for pleasure. I assume that you are
not one of this breed, but are studying this book to enhance your under-
standing of economics. While I hope this process will be enjoyable, to
make the most of it will require some effort on your part. Your reward
will be a comprehension of the foundations of mathematical economics,
you will appreciate the elegant interplay between economic and mathe-
matical ideas, you will know why as well as how to use particular tools
and techniques.

One of the most important requirements for understanding mathemat-
ics is to build up an appropriate mental framework or structure to relate
and integrate the various components and pieces of information. I have
endeavored to portray a suitable framework in the structure of this book,
in the way it is divided into chapters, sections, and so on. This is especially
true of the early mathematical chapters, whose structure is illustrated in
the following table:

Sets Functions

Ordered sets Monotone functions
Metric spaces Continuous functions
Linear spaces Linear functions
Convex sets Convex functions
Cones Homogeneous functions

This is the framework to keep in mind as you proceed through the book.

You will also observe that there is a hierarchy of results. The most
important results are stated as theorems. You need to be become familiar
with these, their assumptions and their applications. Important but more
specialized results are stated as propositions. Most of the results, however,
are given as exercises. Consequently exercise has a slightly different
meaning here than in many texts. Most of the 820 exercises in the book
are not “finger exercises,”” but substantive propositions forming an inte-
gral part of the text. Similarly examples contain many of the key ideas
and warrant careful attention.
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There are two reasons for this structure. First, the exercises and exam-
ples break up the text, highlighting important ideas. Second, the exercises
provide the potential for deeper learning. It is an unfortunate fact of life
that for most of us, mathematical skills (like physical skills) cannot be
obtained by osmosis through reading and listening. They have to be
acquired through practice. You will learn a great deal by attempting to do
these exercises. In many cases elaborate hints or outlines are given, leav-
ing you to fill in the detail. Then you can check your understanding by
consulting the comprehensive answers, which are available on the Internet
at http://mitpress.mit.edu/carter-foundations.
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Sets and Spaces

All is number.
—Pythagoras

God created the integers; everything else is the work of man
—L. Kronecker

One of the most important steps in understanding mathematics is to build
a framework to relate and integrate the various components and pieces of
information. The principal function of this introductory chapter is to start
building this framework, reviewing some basic concepts and introducing
our notation. The first section reviews the necessary elements of set
theory. These basics are developed in the next three sections, in which we
study sets that have a specific structure. First, we consider ordered sets
(section 1.2), whose elements can be ranked by some criterion. A set that
has a certain form or structure is often called « space. In the following two
sections, we tour in turn the two most important examples: metric spaces
and linear spaces. Metric spaces (section 1.3) generalize the familiar
properties of Euclidean geometry, while linear spaces (section 1.4) obey
many of the usual rules of arithmetic while. Almost all the sets that
populate this book will inhabit a linear, metric space (section 1.5), so a
thorough understanding of these sections is fundamental to the remainder
of the book. The chapter ends with an extended example (section 1.6) in
which we integrate the order, algebraic, and geometric perspectives to
study preference relations that are central to the theory of the consumer
and other areas of economics.

1.1 Sets

A set is a collection of objects (called elements) such as the set of people in
the world, books in the library, students in the class, weekdays, or com-
modities available for trade. Sometimes we denote a set by listing all its
members between braces { }, for example,

Weekdays = {Monday, Tuesday, Wednesday, Thursday, Friday}

Some of the elements may be omitted from the list when the meaning is
clear, as in the following example:

alphabet = {A,B,C,...,Z}
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More frequently we denote a set by specifying a rule determining mem-
bership, for example,

ECON301 = {students : who are studying Economics 301}

The elements of a set may themselves be sets. Such sets of sets are often
called classes, collections, or families. We write x € X to denote that x is
an element or member of the set X, while x ¢ X indicates that x is not in
X. The most fundamental set in economics is ‘R, the set of real numbers.
Another important set is 9t = {1,2,3,...}, the set of positive integers.

Exercise 1.1
Denote the set of odd positive integers in two different ways.

A subset S of a set T (denoted S < T) is a set containing some (possibly
all, possibly none) of the elements of 7. For example, the vowels form a
subset of the alphabet

vowels = {A,E, 1,0, U}
An important example in economics is the set of nonnegative real numbers
R, ={xeR: x>0} =N

since economic quantities such as prices and incomes are usually non-
negative. R, and 9t are different subsets of R. If S = T, then T is called
a superset of S. We sometimes emphasize the inclusive role of 7" by using
the notation 7' = S.

Two sets S and T are said to be equal (S = T) if they comprise exactly
the same elements. S is a proper subset of Tif S = T but S # T. We will
use the notation S = T to denote that S is a proper subset of 7. Note that
every set is a subset of itself. It is important to clearly distinguish the
notions belonging (€) and inclusion (). If x € X is an element of the set X,
then x belongs to X, while the set {x} is a subset of X.

Exercise 1.2
Show that 4 = B and B < A4 implies that 4 = B.

For any set S, we use |S| to denote the number of elements in S. A set is
finite if it contains a finite number of elements, otherwise it is an infinite
set. The set of all subsets of a finite set S is called the power set of S and is
denoted #(S). The empty or null set is a special set which contains no
elements. Denoted ¢, the empty set is a subset of every set.
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Exercise 1.3
Give examples of finite and infinite sets.

Example 1.1 (Sample space) In a random experiment, the set S of all
possible outcomes is called the sample space. An event is a subset of the
possible outcomes, that is, a subset of S.

Exercise 1.4
Describe the sample space for the experiment of tossing a single die. What
is the event E that the result is even?

Example 1.2 (A game) A game is a mathematical model of strategic
decision making combining elements of both conflict and cooperation. It
specifies a finite set N of participants, called the players. Each player i e N
has a set of possible actions A;, which is called her action space. A game is
finite if A; is finite for every i € N. The outcome depends on the action
chosen by each of the players.

Exercise 1.5 (Rock—Scissors—Paper)

To decide whose turn it is to wash the dishes, Jenny and Chris play the
following game. Each player simultaneously holds up two fingers (scis-
sors), an open palm (paper), or a closed fist (rock). The winner is deter-
mined by the following rules:

+ Scissors beats (cuts) paper
+ Paper beats (covers) rock

+ Rock beats (blunts) scissors

The loser does the dishes. Specify the set of players and the action space
for each player.

Exercise 1.6 (Oligopoly)

An electricity grid connects n hydroelectric dams. Each dam i has a fixed
capacity Q;. Assuming that the dams are operated independently, the
production decision can be modeled as a game with n players. Specify the
set of players and the action space of each player.

Example 1.3 (Coalitions) In a game, subsets of the set of players N are
called coalitions. The set of all coalitions is the power set of N, denoted
2(N). It includes the set of all players N (called the grand coalition) and
the empty coalition ¢F. The set of proper coalitions excludes the trivial
coalitions ¢ and N.
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Remark 1.1 There is a subtle distinction in the usage of the word proper
between set theory and game theory. In conventional usage, f is a proper
subset of a nonempty set N, but it is not a proper coalition.

Exercise 1.7
List all the coalitions in a game played by players named 1, 2, and 3. How
many coalitions are there in a ten player game?

If Sis a subset of X, the complement of S (with respect to X), denoted
S¢, consists of all elements of X that are not in S, that is,

S‘={xeX:x¢S}

If both S and T are subsets of X, their difference S\T is the set of all
elements in S which do not belong to 7, that is,

S\T={xeX:xeS,x¢T}

This is sometimes known as the relative complement of T in S. The union
of the two sets S and T is the set of all elements which belong to either S
or T or both, that is,

SuT ={x:xeS,orxeT,orboth}

The intersection of two sets S and T is set of all elements that simulta-
neously belong to both S and 7,

SNnT={x:xeSandxeT}

These set operations are illustrated in figure 1.1 by means of Venn dia-
grams, where the shaded areas represent the derived set.

Exercise 1.8 (DeMorgan’s laws)
Show that

(SUT) =5°AT¢
(SAT) =8 UTe

Set union and intersection have straightforward extensions to collec-
tions of sets. The union of a collection % of sets

) §={x:xe S forsome Se?}
Se®
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5° S\T

Figure 1.1
Venn diagrams

is the set of all elements that belong to a least one of the sets in %. The
intersection of a collection % of sets

() S={x:xeSforevery Se%}
Se®

is the set of all elements that belong to each of the sets in €. If the sets in
a collection % have no elements in common, then their intersection is the
empty set.

Exercise 1.9
Let € be the collection of coalitions in a five-player game (N =
{1,2,3,4,5}). What is the union and the intersection of the sets in €?

Union and intersection are one way of generating new sets from old.
Another way of generating new sets is by welding together sets of dispa-
rate objects into another set called their product. The product of two sets
X and Y is the set of ordered pairs

XxY={(x,y):xeX,yeY}

A familiar example is the coordinate plane R x R which is denoted R>
(figure 1.2). This correspondence between points in the plane and ordered
pairs (x, y) of real numbers is the foundation of analytic geometry. Notice
how the order matters. (1,2) and (2, 1) are different elements of R>.
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) (1,2)

Figure 1.2
The coordinate plane %2

The product readily generalizes to many sets, so that
X1 x Xy X X Xy = {(x1, %2, Xn) 1 x; € X}

is the set of all ordered lists of elements of X;, and R" = {(x1,x2,...,x,):
x; € N} is the set of all ordered lists of n real numbers. An ordered list of n
elements is called an n-tuple. ‘R" and its nonnegative subset R’ provide
the domain of most economic quantities, such as commodity bundles and
price lists. To remind ourselves when we are dealing with a product space,
we will utilize boldface to distinguish the elements of a product space
from the elements of the constituent sets, as in

X = (x1,X2,...,X,) €X
where X = X x Xo x -+ x X,,.

Example 1.4 (Action space) The outcome of a game depends on the
action chosen by each of the players. If there are n players each of whom
chooses an action «; from a set A4;, the combined choice is the n-tuple
(a1,az,...,a,). The set of all possible outcomes A is the product of the
individual action spaces

A:A1 ><A2><~~><An:{(al,az,...,an):aleAl,ageAz,...,aneAn}

A is called the action space of the game. A typical element a =
(a1, az,...,a,) € A, called an action profile, lists a particular choice of
action for each player and determines the outcome of the game.



1.1  Sets

Exercise 1.10

Let the two possible outcomes of coin toss be denoted H and 7. What is
the sample space for a random experiment in which a coin is tossed three
times?

Given any collection of sets X7, X3,...,X,, we use X_; to denote the
product of all but the ith set, that is,

X i=XixXox XX xXijpg X+ x X,

An element x_; of X_; is a list containing one element from each of the
sets except X;:

X = (xlax27"'axi717xi+1a"'>xn)

By convention, the ordered pair (x;,x_;) denotes the list of elements
(x1,x2,...,X,) with x; restored to its rightful place in the order, that is,

(X,‘,X,[) =X= (x17x27'"axiflvﬁhxi%»h"wxn)

Example 1.5 The preceding notation is used regularly in game theory,
when we want to explore the consequences of changing actions one player
at time. For example, if a* = (a;,45,...,a,) is a list of actions in a game
(an action profile), then a*,; denotes the actions of all players except player
i. (a;,a*;) denotes the outcome in which player i takes action ;, while all
the other players j take action a, j # i (see example 1.51).

Next we introduce two examples of set products that form the basis for
consumer and producer theory. We will use these sets regularly to illus-
trate further concepts.

Example 1.6 (Consumption set) The arena of consumer theory is the
consumption set, the set of all feasible consumption bundles. Suppose that
there are n commodities. The behavior of a consumer can be described by
a list of purchases (x,x2,...,x,), where x; is the quantity of the ith
commodity. For example, x; might be pounds of cheese and x, bottles of
wine. Since purchases cannot be negative, each quantity x; belongs to R...
A particular consumption bundle x = (x,x3,...,x,) is a list of non-
negative real numbers. The consumption set X is a subset of R, the
product of n copies of R, which is known as the nonnegative orthant of
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T3

T

Figure 1.3
A consumption set with two commodities

R". The consumption set may be a proper subset, since not all consump-
tion bundles will necessarily be feasible. For example, we may wish to
preclude from consideration any bundles that do not ensure subsistence
for the consumer. Figure 1.3 illustrates a possible consumption set for two
commodities, where a minimum quantity of X; is required for subsistence.

Example 1.7 (Production possibility set) A producer combines various
goods and services (called inputs) to produce one or more products (called
outputs). A particular commodity may be both an input and an output.
The net output y; of a commodity is the output produced minus any input
required. The net output is positive if output exceeds input, and negative
otherwise. A production plan is a list of the net outputs of the various
goods and services y = (yy, ¥5,..., ,). That is, a production plan is an
element of the product set

mn:{(ylvyb'-'ayn):yiem}

The production possibility set Y is set of all technologically feasible pro-
duction plans,

Y ={(y1, y2,-.-,¥,) € R":yis technologically feasible}

It is a proper subset of the product set R”. The precise composition of
Y depends on the production technology. Producer theory begins by
assuming some properties for Y. We meet some of these in subsequent
sections.
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Exercise 1.11
Assume that Y < R” is a production possibility set as defined in the
previous example. What is ¥ n R"?

Example 1.8 (Input requirement set) In classical producer theory a firm
produces a single output using n different inputs. If we let y denote the
quantity of output x denote the quantities of the various inputs, we can
represent a production plan as the pair (y, —x) where x € R'. The pro-
duction possibility set is

Y={(y,—x) e ERTI : (y, —x) is technologically feasible}
It is often more convenient to work with the input requirement set
V(y)={xe®Ri:(y,x)eY}

which is the set of all input bundles sufficient to produce y units of output.
It details all the technologically feasible ways of producing y units of
output. One of the tasks of economic analysis is to identify the least costly
method of producing a given level of output. In this representation of the
technology, both inputs and outputs are measured by positive quantities.

Exercise 1.12 (Free disposal and monotonicity)
A conventional assumption in production theory is free disposal, namely

yeY=y'eY foreveryy <y
A technology is said to be monotonic if
xeV(y)=x"eV(y) foreveryx' >x

where x’ > x means that x; > x/ for every 7 (see example 1.26). Show that
free disposal implies that
1. the technology is monotonic and

2. the input requirement sets are nested, that is, V' (y’) 2 V(y) for every
v <y

1.2 Ordered Sets

Economics is the study of rational choice. Economic analysis presumes
that economic agents seek the best element in an appropriate set of feasi-
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ble alternatives. Consumers are assumed to choose the best consumption
bundle among those that are affordable. Each producer is assumed to
choose the most profitable production plan in its production possibility
set. Each player in a game is assumed to choose her best alternative given
her predictions of the choices of the other players. Consequently eco-
nomic analysis requires that the analyst can rank alternatives and identify
the best element in various sets of choices. Sets whose elements can be
ranked are called ordered sets. They are the subject of this section.

An ordered set is a set on which is defined an order relation, which
ranks the elements of the set. Various types of ordered sets arise in eco-
nomics. They differ in the specific properties assumed by the associated
relation. This section starts with an outline of relations in general and a
discussion of their common properties. This leads to a discussion of the
two most common types of relations—equivalence relations and order
relations. Next we discuss in turn the two main types of ordered sets—
partially ordered sets and weakly ordered sets. Finally we consider the
extension of orders to the product of sets. Figure 1.4 illustrates the rela-
tionship of the various types of relations. It also serves as a road map for
the section.

1.2.1 Relations

Given two sets X and Y, any subset R of their product X x Y is called a
binary relation. For any pair of elements (x,y) € R < X x Y, we say that
x is related to y and write x R y. Although formally expressed as a subset
of the product, a relation is usually thought of in terms of the rule
expressing the relationship between the elements.

Example 1.9 Let

X = {Berlin, London, Tokyo, Washington}

and

Y = {Germany, Japan, United Kingdom, United States}

The relation

R = {(Berlin, Germany), (London, United Kingdom),
(Tokyo, Japan), (Washington, United States)}

expresses the relation “x is the capital of y.”
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Relations

reflexive
transitive

A

Preorder

symmetric not symmetric

Equivalence | . induces ~ Order
relation relation
antisymmetric complete
Partial ‘Weak
order order

bounded

antisymmetric

Lattice

Total order
(Chain)

Figure 1.4
Types of relations

Example 1.10 Let X = Y = {1,2,3}. The set X x Y is the set of all

ordered pairs

X xY={(1,1),(1,2),(1,3),

(2,1),(2,2),(2,3), (3, 1), (3,2), (3,3)}

The relation “less than” between X and Y is the set of ordered pairs “<”
={(1,2),(1,3),(2,3)} which expresses the ranking that 1 < 2, 1 < 3, and
2 < 3. When X and Y are subsets of R, we can illustrate the relation by
means of its “graph.” Figure 1.5 illustrates the product X x Y, where the
elements of the relation “<” are circled.

Any relation R = X x Y has an inverse relation R™! = Y x X defined

by

R'={(y,x)eY x X:(x,y) € R}
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Figure 1.5

A relation

For example, the inverse of the relation “is the capital of” is the relation
“the capital of y is x.”” The inverse of “<” is “>.” It is sometimes useful
to identify the set of elements which are involved in a relation. For any
relation R = X x Y, the domain of R is set of all x € X that are related to
some y € Y, that is,

domain R={xe X :(x,y) e R}
The range is the corresponding subset of Y, that is,
range R={ye Y:(x,y) € R}

Exercise 1.13
What are the domain and range of the relation “<’” in example 1.10?

Most relations encountered in economics are defined on the elements of
a single set, with X = Y. We then speak of relation on X.

Exercise 1.14
Depict graphically the relation {(x,y): x>+ 3> =1} on R.

Any relation R can be characterized by the properties that it exhibits.
The following properties of binary relations have been found to be impor-
tant in a variety of contexts. A relation R on X is
reflexive if x R x
transitive if x Ryandy Rz=x Rz
symmetric if x Ry = y R x
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antisymmetric if x Ryandy Rx=x=1y
asymmetric if x R y = not (y R x)
complete if either x R y or y R x or both

for all x, y, and z in X.

Example 1.11 Let R be the relation “at least as high as” applied to the
set of all mountain peaks. R is reflexive, since every mountain is at least as
high as itself. It is complete, since all mountains can be compared. It is
transitive, since if A4 is at least has high as B and B is at least as high as C,
then A is at least as high as C. However, it is not symmetric, asymmetric,
nor antisymmetric.

It is not symmetric, since if A4 is higher than B, 4 is at least as high as B,
but B is not at least as high as A4. It is not antisymmetric, since if two
distinct mountains A and B are of the same height, we have 4 R B and
B R A but without 4 = B. Neither is it asymmetric, since if 4 and B have
the same height, then 4 R B and B R A.

Exercise 1.15
What properties does the relation “is strictly higher than” exhibit when
applied to the set of mountains?

Exercise 1.16
Consider the relations <, <, = on R. Which of the above properties do
they satisfy?

Example 1.12 (Preference relation) The most important relation in eco-
nomics is the consumer preference relation 2~ on the consumption set X.
The statement x 2~ y means that the consumer rates consumption bundle
x at least as good as consumption bundle y. The consumer’s preference
relation is usually assumed to be complete and transitive. We explore the
consumer preference relation in some detail in section 1.6, where we will
introduce some further assumptions.

Any relation which is reflexive and transitive is called a preorder or
quasi-order. A set on which is defined a preorder is called preordered set.
Preorders fall into two fundamental categories, depending on whether or
not the relation is symmetric. A symmetric preorder is called an equiva-
lence relation, while any preorder that is not symmetric is called an order
relation. Both classes of relations are important in economics, and we deal
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Table 1.1
Classes of relations

Reflexive  Transitive Symmetric  Antisymmetric ~ Asymmetric ~ Complete

Equivalence Y Y Y

Order Y Y N

Quasi-ordering

Preordering

Partial ordering Y Y N Y

Total ordering Y Y N Y Y
Linear ordering

Chain

Weak ordering Y Y N Y

with each in turn. Table 1.1 summarizes the properties of the common
classes of relations.

1.2.2 Equivalence Relations and Partitions

An equivalence relation R on a set X is a relation that is reflexive, transi-
tive, and symmetric. Given an equivalence relation ~, the set of elements
that are related to a given element a,

~@a@)={xeX:x~a}

is called the equivalence class of a.

There is intimate connection between equivalence relations on a set and
partitions of that set. A partition is a decomposition of a set into subsets.
More formally, a partition of a set X is a collection of disjoint subsets of X
whose union is the full set X. Given an equivalence relation on a set X,
every element of X belongs to one and only one equivalence class. Thus
the collection of equivalence classes partitions X. Conversely, every par-
tition of X induces some equivalence relation on X.

The simplest possible partition of a set X comprises a subset S and its
complement S¢. The collection {S,S¢} form a partition of X since
SuS‘ =X and S S = . At the other extreme, all one element sub-
sets of X comprise another partition. Less trivial examples are given in the
following examples.

Example 1.13 (Mutually exclusive events) Recall that an event E in a
random experiment is a subset of the sample space S, the set of all possi-
ble outcomes. Two events £ and E; are mutually exclusive if they cannot
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occur together, that is, if £} n E; = . If we decompose the possible
outcomes into a collection of mutually exclusive events {E|, Ea, ..., E,}
with S = Ul. E;, then the events E; form a partition of the sample space S.

Example 1.14 (Teams) Suppose that a game of n players is played in
teams, with each player belonging to one and only one team. Suppose
that there are k teams {7, 75, ..., Tx}. Let R be the relation “belongs to
the same team as.” Then R is an equivalence relation, since it is reflexive,
transitive, and symmetric. The teams are coalitions that partition the set
of players.

Example 1.15 (Rational numbers) A fraction is the ratio of two integers.
The fractions 1/2 and 2/4 both represent the same real number. We say
that two fractions p/q and r/s are equal if ps = gr. Thus defined, equality
of fraction is an equivalence relation in the set of fractions of integers.
Each rational number is identified with an equivalence class in the set of
fractions.

Example 1.16 (Indifference classes) The consumer preference relation
is not symmetric and hence is not an equivalence relation. However, it
induces a symmetric relation ~ on the consumption set which is called
indifference. For any two consumption bundles x and y in X, the state-
ment X ~ y means that the consumer is indifferent between the two con-
sumption bundles x and y; that is, x is at least as good as y, but also y is at
least as good as y. More precisely

X~y<xzyandy = x

Indifference is an equivalence relation. The equivalence classes of the
indifference relation are called indifference classes, and they form a parti-
tion of the consumption set, which is sometimes called an indifference
map. The indifference map is often depicted graphically by a set of indif-
ference curves. Each indifference curve represents one indifference class.

Exercise 1.17
Show that any equivalence relation on a set X partitions X.

Exercise 1.18 (Coalitions)
In a game played by members of the set N, is the set of proper coalitions
(example 1.3) a partition of N?
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1.2.3 Order Relations

A relation that is reflexive and transitive but not symmetric is called an
order relation. We denote a general order relation x > y and say that “x
follows y” or “x dominates y.”” Every order relation > on a set X induces
two additional relations > and ~. We say that “x strictly dominates y,”
denoted x > y, if x dominates y but y does not dominate x, that is,

x>yexzyandy tx

The relation > is transitive but not reflexive. Every order relation > also
induces an equivalence relation ~ defined by
x~ysxzyandy = x

for all x, y in X. An ordered set (X, 2-) consists of a set X together with an
order relation = defined on X.

It is sometimes useful to use the inverse relations < and <. We say
that y precedes x if x follows y,

yIxexzy
or y strictly precedes x if x strictly follows y,
y<x&x>y

Remark 1.2 (Weak and strong orders) The reflexive relation > is often
called a weak order, while its nonreflexive counterpart > is called a strong
or strict order. For example, in the consumer’s preference relation, > is
called weak preference and > strong preference. Note however that the
adjective “‘weak” is also applied to a completely ordered set (section

1.2.5).

The following interactions between these orderings are often used in
practice.

Exercise 1.19
x>yandy~z=x>z
x~yandy >z=x>z

Exercise 1.20
Show that > is asymmetric and transitive.
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Exercise 1.21
Show that ~ is reflexive, transitive, and symmetric, that is, an equivalence
relation.

Remark 1.3 (Acyclicity) In consumer and social choice theory, a weaker
condition than transitivity is sometimes invoked. A binary relation = on
X is acyclical if for every list xq, x2,...,x; € X,

X1 > X2, X2 7 X3y ... Xkl > Xg = X1 2 Xk
This is a minimal requirement for a consistent theory of choice.

Example 1.17 (Natural order on R) The natural order on R is > with
the inverse <. It induces the strict orders > and < and the equivalence
relation =. All order relations are generalizations of aspects of the natural
order on R.

Example 1.18 (Integer multiples) For the set 9t of positive integers, the
relation “m is a multiple of #” is an order relation. For example, 4 > 2
and 15 2= 3, while 2 > 4 and 5 % 2. Figure 1.6 illustrates the implied strict
relation > on {1,2,...,9}, where the arrows indicate that m is a proper
multiple of n. The two pathways connecting the integers 8 and 2 illustrate
the property of transitivity.

Exercise 1.22
Show that the relation in example 1.18 is an order relation. That is, show
that it is reflexive and transitive, but not symmetric.

8 5

\

N
AN

2 6

Figure 1.6
Integer multiples
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Intervals

Given a set X ordered by > and two elements a,b € X with a < b, the
closed interval [a, b] is the set of all elements between a and b, that is,

[a,b) ={xe X:a ZXx < b}

With a < b, the open interval (a,b) is the set of all elements strictly
between « and b, that is,

(a,b)={xeX:a<x<b}

Note that a,b € [a,b] while (a,b) may be empty. We also encounter
hybrid intervals

[a,h) ={xeX:a3x<b} and (a,b]={xeX:a<x3b}

Example 1.19 In Example 1.18, the elements of the intervals [2, 8] and
(2,8) are {2,4,8} and {4} respectively.

Exercise 1.23
Assume that the set X = {a, b, x, y, z} is ordered as follows:

x<a<y<b~:z
Specify the closed interval [a, b] and the open interval (a, b).

Example 1.20 (Intervals in R) Intervals are especially common subsets
of R. For example,

0,]={xeR:0<x<1}
(-,)={xeR:—-1<x< 1}
Upper and Lower Contour Sets

Analogous to intervals are the upper and lower contour sets. Given a set
X ordered by >, the set

Z@)={xeX:x za}

of all elements that follow or dominate « is called the upper contour set of
Z at a. The set of elements that strictly dominate a is

>a)={xeX:x>a}

Similarly the lower contour set at «,
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(@) ={xeX:x=Za}

~

contains all elements which precede a in the order 2. The set of elements
which strictly precede « is

<@ ={xeX:x<a}
Note that a € % (a) but that a ¢ >(a).

Example 1.21 In example 1.18, the upper contour set of 7 is the set of all
multiples of 7, namely

>(7) = {7,14,21,.. .}

Similarly
=(7) = {14,21,...}
(7 =A{17}
<(7)=A{1}

Exercise 1.24
Assume that the set X = {a, b, x,y,z} is ordered as follows:

x<a<y<b~:z
Specify the upper and lower contour sets of y.

Example 1.22 (Upper and lower contour sets in ‘) A special notation is
used for upper and lower contour sets in R. For any a € R the upper
contour set at ¢ (in the natural order) is denoted [a, o). That is,

[a,00) ={xeNR:x>a}
Similarly

(@a,0) ={xeR:x>a}
(—o0,al ={xeR:x<a}
(—o0,a) ={xeNR:x <a}

The set of nonnegative real numbers R’} is the upper contour set at 0, that
is Ry = [0, 00). The set of positive real numbers is (0, o0), which is often
denoted R, ..
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Maximal and Best Elements

Given any order relation 2 on a set X, an element x is a maximal element
if there is no element that strictly dominates it; that is, there is no element
y € X such that y > x. x € X is called the last or best element in X if it
dominates every other element, that is, x = y for all y € X. In general,
there can be multiple maximal and best elements.

Exercise 1.25
Formulate analogous definitions for minimal and first or worst elements.

Example 1.23 Let X be the set of positive integers {1,2,...,9}, ordered
by the relation m is a multiple of n (example 1.18). The numbers
5,6,7,8,9 are all maximal elements (they have no arrowheads pointing at
them). There is no best element. The number 1 is the first number and the
only minimal number.

Exercise 1.26
Find the maximal and minimal elements of the set X = {a,b,x,y,z}
when ordered x < a < y < b ~ z. Are they also best and worst elements
respectively?

Exercise 1.27
Every best element is a maximal element, and not vice versa.

Exercise 1.28
Every finite ordered set has a least one maximal element.

The following characterization of maximal and best elements in terms
of upper contour sets is often useful. (See, for example, proposition 1.5.)
Analogous results hold for minimal and first elements.

Exercise 1.29
Let X be ordered by .

x* is maximal & >(x*) =
x*isbest & J(x*) =X
Upper and Lower Bounds

To delineate sets that have no maximal or best elements, such as the
interval (0,1), we often identify upper and lower bounds. Let 4 be a
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nonempty subset of an ordered set X. An element x € X is called an upper
bound for A if x dominates every element in A, that is, x = a for every
a€ A. xe X is called a least upper bound for A if it precedes every upper
bound for A4.

Exercise 1.30
Formulate analogous definitions for lower bound and greatest lower
bound.

Example 1.24 Consider again the set of positive integers 9t ordered by m
is a multiple of n (example 1.18). It has a unique minimal element 1 and
no maximal element. Any finite subset {n;,na,...,n;} < 9 has a least
upper bound that is called the least common multiple. 1t has a greatest
lower bound that is called the greatest common divisor.

Exercise 1.31

For the set of positive integers 9t ordered by m is a multiple of n (example
1.18), specify upper and lower bounds for the set 4 = {2,3,4,5}. Find the
least upper bound and greatest lower bound.

Example 1.25 (Intervals) b is the least upper bound of the closed interval
[a,b]. b is an upper bound of the open interval (a,b) but not necessarily
the least upper bound. Similarly a is a lower bound of (a,b) and the
greatest lower bound of [a, b].

Exercise 1.32
Assume that the set X = {a,b, x, y,z} is ordered as follows:

x<a<y<b~:z
Find the least upper bounds of the intervals [a, 5] and (a, b).

Exercise 1.33
Let X be ordered by =.

x is an upper bound of 4 & 4 = <(x)
x is a lower bound of 4 & 4 = =(x)
Product Orders

Recall that we generate a product of sets by welding together individual
sets. If we take the product X = X] x X5 x -+ x X, of a collection of
ordered sets X;, there is a natural order induced on the product by
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XZYSXiZ; )i foralli=1,2,...,n

X,y € X. We often want to distinguish between the cases in which x; >; y;
for all i and those in which x; ~; y; for some i. We do this by means of
notational convention, reserving > for the case

X >y X > Vi foralli=1,2,...,n
using = to indicate the possibility that x; = y; for some i, that is,
XZYES X2y foralli=1,2,..., andx #y

Even if all the order z; are complete, the natural product order 2 is only
a partial order on the product space X7 x X, x --- x X,,. When x; > y, for
some i while x; < y; for others, X and y are not comparable.

Example 1.26 (Natural order on R") Elements of R” inherit a natural
order from > on R. Thus for any x,y € R”",

X>y & X > foralli=1,2,...,n

Readers of the literature need to be alert to what various authors mean by
x >y in R". We adopt the convention that

X>Yy&E X > foralli=1,2,...,n
using x = y for the possibility the x and y are equal in some components
XZY&S X > foralli=1,2,...,nand x #y

Some authors use > where we use =, and use > in place of >. Other
conventions are also found.

The natural order is not the only way in which to order the product of
weakly ordered sets. An example of a complete order on a product space
X=X xXox---x X, is the lexicographic order, in which x >’y if
X > yi in the first component in which they differ. That is,

x>tye x>y and x;,=y; foralli=1,2,...,k—1

A dictionary is ordered lexicographically, which is the origin of the name.
(Lexicography is the process or profession of compiling dictionaries.)
Lexicographic orders are used occasionally in economics and game theory
(see example 1.49).
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Exercise 1.34
Using the natural order > on R, order the plane R by the lexicographic

order. It is a total order?

Exercise 1.35

Let X be the product of n sets X; each of which is ordered by ;. Show
that the lexicographic order > is complete if and only if the component
orders z; are complete.

~

1.2.4 Partially Ordered Sets and Lattices

In general, an ordered set may have many maximal elements and its sub-
sets may have multiple least upper bounds. Uniqueness may be achieved
by imposing the additional requirement of antisymmetry. The result is
called a partially ordered set.

A partial order is a relation that is reflexive, transitive, and antisym-
metric. The most common example of an antisymmetric order relation is
the numerical order < on R, where x > y and y > x implies that x = y. A
set X on which is defined a partial order > is called a partially ordered set
or poset. Partially ordered sets have numerous applications in economics.

Example 1.27 The set 9t of positive integers is partially ordered by the
relation “m is a multiple of n”* (example 1.18). The ordering is only par-
tial, since not all integers are comparable under this relation.

Example 1.28 (!R") The natural order on R" (example 1.26) is only
partial, although > is complete on R. In R?, for example, (2,1) > (1, 1),
but the elements (2, 1) and (1,2) are not comparable. Therefore R" with
the natural order is a partially ordered set.

Example 1.29 (Set inclusion) The set of subsets of any set is partially
ordered by set inclusion <.

Exercise 1.36
Show that set inclusion is a partial order on the power set of a set X.

Example 1.30 Let X be the set of steps necessary to complete a project
(e.g., a building or a computer program). For any x,y € X, let x <y
denote that task x has to be completed before y and define x <y if x <y
or x = y. The set of tasks X is partially ordered by <.
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The significance of antisymmetry is that, if they exist, the least upper
bound and greatest lower bound of any subset of a poset are unique. The
least upper bound of a set S is called the supremum of S and denoted
sup S. The greatest lower bound is called the infimum of S and denoted
inf S.

Exercise 1.37
Let 4 be a nonempty subset of X that is partially ordered by =. If 4 hasa
least upper bound, then it is unique. Similarly 4 has at most one greatest
lower bound.

Exercise 1.38
Characterize the equivalence classes of the relation ~ induced by a partial
order .

Remark 1.4 (Best versus supremum) The best element in a set is an
element of the set, whereas the supremum of a set may not necessarily
belong to the set. For example, 1 is the supremum of the interval (0, 1),
which has no best element. Another example is given in exercise 1.31. This
distinction is of practical importance in optimization, where the search for
the best alternative may identify the supremum of the choice set, which
may not be a feasible alternative.

When the supremum of a partially ordered set X belongs to X, it is
necessarily the best element of X. In this case, the supremum is called the
maximum of X. Similarly, when the infimum of a partially ordered set X
belongs to X, it is called the minimum of X.

Exercise 1.39
The set of subsets of a set X is partially ordered by inclusion. What is the
maximum and minimum of 2(X).

Chains

A partial ordering is ““partial’”’ in the sense that not all elements are nec-
essarily comparable. For example, in the partial order < if S and T are
disjoint nonempty sets, then neither S < 7 nor T < S. If all elements in a
partially ordered set are comparable, so that the ordering = is complete,
it is called a fotal or linear ordering. A totally ordered set is called a chain.

Example 1.31 The set of real numbers with the usual order < is a chain.
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Exercise 1.40
In the multiple ordering of 9t (example 1.18), find a subset which is a
chain.

Exercise 1.41
A chain has at most one maximal element.

Example 1.32 (Game tree) In many strategic games (example 1.2), the
temporal order of moves is vital. Economists model such dynamic inter-
actions by means of the extensive form; an essential ingredient is a game
tree. A game tree is a partially ordered finite set (7, >) in which the
predecessors <(?) of every element ¢ are totally ordered, that is, <(¢) is a
chain for every ¢.

The elements of 7 are called nodes. Nodes that have no successors are
called terminal nodes. Thus the set of terminal nodes Z is defined by

Z={teT:>(t) = &}

Terminal nodes are the maximal elements of (7', ). The remaining nodes
X = T\Z are called decision nodes. Similarly nodes that have no prede-
cessors are called initial nodes. The set of initial nodes W is

W={teT:<(1) =g}

Initial nodes are the minimal elements of (7', >).

As a partial order, > is asymmetric, transitive, and antisymmetric.
The additional requirement that <(¢) is a chain for every ¢ implies that
there is a unique path to every node from some initial node (exercise
1.42). A partially ordered set with this additional property is called an
arborescence.

Exercise 1.42
Let (T, >) be a game tree (arborescence). For every noninitial node, call

p(1) = sup <(7)
the immediate predecessor of ¢. Show that

1. p(¢) is unique for every t € T\W.

2. There is a unique path between any node and an initial node in a game
tree.
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Remark 1.5 (Zorn’s lemma) Zorn’s lemma asserts that if X is a par-
tially ordered set in which every chain has an upper bound, then X has a
maximal element. Zorn’s lemma is the fundamental existence theorem of
advanced mathematics. It is not possible to prove Zorn’s lemma in the
usual sense of deducing it from more primitive propositions. It can be
shown that Zorn’s lemma is equivalent to the seemingly obvious axiom
of choice that states: Given any nonempty class of disjoint nonempty sets,
it is possible to select precisely one element from each set. The axiom
of choice or one of its equivalents is usually taken as an axiom in any
mathematical system.

Lattices

A lattice is a partially ordered set (poset) in which every pair of elements
have a least upper bound and a greatest lower bound. If x and y are any
two elements in a lattice L, their least upper bound, denoted x v y, is an
element of L which is called the join of x and y. Their greatest lower
bound, denoted x A y is called their meet. These notations are analogous
to set union and intersection, which provides a useful example of a lattice.

Example 1.33 The real numbers R with x v y = max{x,y} and x A y =
min{x, y} form a lattice.

Example 1.34 Let X = {1,2,3}. The partially ordered set X x X is a
lattice, where

(x17x2) v (ylv yZ) = (max{xlv yl}vmax{xzvyZ})
(x1,x2) A (31, 2) = (min{xy, y, }, min{xz, y,}).

See figure 1.7. Although the points (2,1) and (1,2) are not comparable
under the natural order, they have a least upper bound of (2,2) and a
greatest lower bound of (1,1). Therefore (2,1)v (1,2) =(2,2) and
(2,1) A (1,2) =(1,1).

Exercise 1.43
In example 1.34, what is (1,2) v (3,1)? (1,2) A (3,2)?

Example 1.35 The positive integers 9t ordered by “m is a multiple of n”
(example 1.18) constitute a lattice. m A n is the least common multiple of
m and n, while m v n is the greatest common divisor of m and n.
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3 . . .
2 . . .
1 . . .

1 2 3
Figure 1.7

A simple lattice in %>

Example 1.36 (Set inclusion) For any set X, the poset (Z(X), <) is a
lattice. For any two sets S and T, their joinis S v 7= S u T and their
meetisSAT=SnT.

The lattice of subsets of the four element set {a, b, ¢,d} is illustrated in
figure 1.8. Its regular structure justifies the term ““lattice.”

Example 1.37 (Information partitions) Let S denote the sample space of
random experiment. An information partition P is a partition of S into
mutually exclusive events with interpretation that the decision maker
knows which event takes place. The information partition captures the
decision makers information about the random experiment.

Let 2 be the set of all partitions of S. We say that a partition P; is finer
than P, if each set in P, can be written as the union of sets in Py. A finer
partition provides better information about the outcome. Let Py = P,
denote the relation P; is finer than P,. Then the ordered set (2, ) is a
lattice, where P; v P, is the coarsest partition that is finer than both and
Py A P; is the finest partition that is coarser than both.

Exercise 1.44

The operations v and A have the following consistency properties. For
every x,y in a lattice (X, ),

l.XVyZXxzZxAy

2.xZzyexvy=xandxAy=y

3.xv(xAay)=x=xA(xVvy)
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{ab,c,d}
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B

Figure 1.8
The lattice of subsets of a four-element set

Exercise 1.45
Any chain is a lattice.

Exercise 1.46
The product of two lattices is a lattice.

The previous exercise implies that the product of n lattices is a lattice,
with v and A defined componentwise, that is,

XVy= (xl VI, X2V V2yeeey Xp Vyn)
XAY=(XI AV, X2 AY2yeenyXn A Vn)
Example 1.38 R" is a lattice with v and A defined componentwise.

A lattice L is complete if every nonempty subset S < L has a least upper
bound and a greatest lower bound in L. Set inclusion is the only complete
lattice in the above examples. A sublattice is a subset S = L that is a lat-
tice in its own right, that is, x A y e S and x v y € S for every x,y € S.

Example 1.39 The set of real numbers R is an example of set that is
completely ordered but not a complete lattice. There are sets that do not
have upper (e.g., ) or lower bounds.
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Remark 1.6 (Extended real numbers) The fact that the set R of real
numbers is not a complete lattice (example 1.39) often causes technical
difficulties. Therefore a useful analytical device is to extend the set R so
that it is always complete. To do this, we add to new elements +oo and
—o0, with —00 < x < oo for every x € R. The set

R =Ru{-w0}u{+w}

is called the set of extended real numbers.

Since —o0 < x < oo for every x € R, every subset S = R* has an upper
bound (+00) and a lower bound (—o0). Consequently every nonempty set
has a least upper bound and a greatest lower bound. R* is a complete
lattice. If moreover we adopt the convention that sup ¢J = —oo and
inf @ = 400, then every subset of R* has a least upper bound and
greatest lower bound.

In fact the definition of a complete lattice is partially redundant. For
completeness it suffices that every subset has a greatest lower bound, since
this implies the existence of a least upper bound. This result (exercise 1.47)
is valuable in establishing completeness. (Similarly, if every subset of a
partially ordered set has a least upper bound, the poset is a complete
lattice.)

Exercise 1.47

Let X be a partially ordered set which has a best element x*. If every
nonempty subset S of a X has a greatest lower bound, then X is a com-
plete lattice.

Example 1.40 The set of points {1,2,3} x {1,2,3} (example 1.34) is a
sublattice of R

However, note that the requirement of being a sublattice is more strin-
gent than being a complete lattice in its own right.

Example 1.41 In the previous example, let X be the set of points illus-
trated in figure 1.9.

X = {(17 1)7 (27 1)7 (37 1)7 (172)7 (173)7 (373)}

X is a complete lattice but is it not a sublattice of {1,2,3} x {1,2,3} or
%2, The point (2,2) is the least upper bound of {(2,1),(1,2)} in R,
while (3, 3) is the least upper bound in X.
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3 © . O]
2 ® . .
1 O] O] O]

1 2 3
Figure 1.9

A lattice that is not a sublattice

Exercise 1.48
Let a, b be elements in a lattice L with ¢ < b. Then the subsets =(b), <(a)
and [a, b] are sublattices. The sublattices are complete if L is complete.

Remark 1.7 It is worth noting the role of successive assumptions. Anti-
symmetry ensures the uniqueness of the least upper bound and greatest
lower bound of any set if they exist. A poset is a lattice if it contains the
least upper bound and greatest lower bound of every pair of elements in
the set. A lattice is complete if furthermore it contains the least upper
bound and greatest lower bound for every set. Note that “completeness’
in reference to a lattice is used in a slightly different sense to completeness
of the underlying relation. A complete lattice is a complete ordering,
although the converse is not necessarily true.

Strong Set Order

Any lattice (X, ) induces a relation on the subsets of X that is called the
strong set order, denoted =g. Given S;, S» < X,

SHZsS1e&x1AxesS and xpvxeS

for every x; in S; and x; € S;. This order will play an important role in
section 2.2.

Example 1.42 The strong set order is quite different to set inclusion.
For example, consider example 1.34. Let S; = {(1,1),(2,1),(3,1)} and
Sy =4{(1,2),(2,2),(3,2)} (figure 1.10). Then S, ¢ S; although S} and S,
are disjoint. Further consider a proper subset of S; such as S; =
{(2,1),(3,1)}. S %483, since (1,1) = (2,1) A (1,2) ¢ S5.
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Figure 1.10
The strong set order

The strong set order is not reflexive, and hence it is not an order on
2(X). However, it is a partial order on the set of all sublattices of X. The
details are given in the following exercise.

Exercise 1.49

1. For any lattice X, the strong set order g is antisymmetric and tran-
sitive. [Hint: Use exercise 1.44.]

2. Sz S if and only S is a sublattice.

3. Zgis a partial order on the set of all sublattices of X.

~

The nature of the strong set order is characterized by the following
result, which says (roughly) that S, ¢ S; implies that the lowest element
of S, dominates the lowest element of S;. Similarly the best element of S,
is greater than the best element of S;.

Exercise 1.50
If S, S, are subsets of a complete lattice,

St ZgS = inf §; Zinf S, and sup S; Zsup S,

For closed intervals of a chain, such as ‘R, this characterization can be
strengthened.

Exercise 1.51
If Sy, S, are intervals of a chain,

S1 Zg S, & inf §; Zinf S, and sup S Z sup S»



32

Chapter 1  Sets and Spaces

1.2.5 Weakly Ordered Sets

The second class of order relations important in economics is obtained by
imposing completeness rather than antisymmetry on the preorder. A weak
order is a relation that is complete and transitive. It is sometimes called
simply an ordering. The most important example in economics is the
consumer’s preference relation (example 1.12), which is considered in
detail in section 1.6.

Exercise 1.52

Many economics texts list three assumptions—complete, transitive, and
reflexive—in defining the consumer’s preference relation. Show that reflex-
ivity is implied by completeness, and so the third assumption is redundant.

Exercise 1.53
Why would antisymmetry be an inappropriate assumption for the con-
sumer’s preference relation?

Exercise 1.54
In a weakly ordered set, maximal and best elements coincide. That is,

x 1s maximal < x is best

Exercise 1.55
A weakly ordered set has a most one best element. True or false?

In a weakly ordered set, every element is related to every other element.
Given any element y, any other element x € X belongs to either the upper
or lower contour set. Together with the indifference sets, the upper and
lower contour sets partition the set X in various ways. Furthermore the
upper and lower contour sets are nested. The details are given in the
following exercises.

Exercise 1.56
If > is a weak order on X, then for every y € X,

L. 2(y) v 2(y)=Xand z(y)n 2(») =1,

2. Z(y)u <(y) = X and () n () = &
3. >(»), I, and <(y) together partition X

z
z

Exercise 1.57
If > is a weak order on X,



33

1.2 Ordered Sets

xzy= zx) <z
x>y=>x) g >()

The principal task of optimization theory and practice is identify the
best element(s) in a choice set X, which is usually weakly ordered by some
criterion. To identify the best element, optimization theory draws on
other properties (linear and metric) of the choice set. Techniques of opti-
mization are explored in chapter 5. To prepare the ground, we next
investigate the metric and linear properties of sets in sections 1.3 and 1.4.
Before leaving order relations, we touch on the problem of aggregating
different orders on a common set.

1.2.6 Aggregation and the Pareto Order

The product order defines a natural order on the product of ordered sets.
Economists frequently confront an analogous situation, involving differ-
ent orders over a common set. Specifically, suppose that there is a set X on
which is defined a profile of distinct orderings (%, Z,,..., Z,). These
different orders might correspond to different individuals or groups or to
different objectives. The problem is to aggregate the separate orders into a
common or social order.

Analogous to the product order, a natural way in which to aggregate
the individual preferences is to define the social preference by

szy@)xz,-y foralli=1,2,...,n
x,y € X, and
x>Pye x>y foralli=1,2,...,n (1)

This is known as the Pareto order. For state x to strictly preferred to state
y in the Pareto order requires that x strictly dominate y in every individ-
ual order.

The outcome x is said to Pareto dominate y if x >y in the Pareto
order. It is called Pareto efficient or Pareto optimal if it is maximal in the
weak Pareto order, that is if there is no outcome y such that all individ-
uals strictly prefer y to x. The set of states that is maximal in the Pareto
ordering is called the Pareto optimal set.

Pareto = {x € X : there is no y € X such that y >‘x}
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Exercise 1.58
There always at least one Pareto optimal outcome in any finite set, that is

X finite = Pareto #

Remark 1.8 (Weak versus strong Pareto order) Two distinct Pareto
orders are commonly used in economics, which is a potential source of
confusion. The order defined by (1) is called the weak Pareto order. Some
authors replace (1) with

x>Py<:>x2[y foralli=1,2,..., and x >>; y for some j

This is called the strong Pareto order, since it ranks more alternatives.
Alternative x dominates y in the strong Pareto order provided that at least
one individual strictly prefers x to y (and no one strictly prefers y to x).
Similarly x is called strongly Pareto optimal if it is maximal in the strong
Pareto order.

The weak and strong Pareto orders are distinct, and they can lead to
different answers in some situations [although the distinction is immate-
rial in one domain of prime economic interest (exercise 1.249)]. The
strong Pareto order is more commonly applied in welfare economics,
whereas the weak order is usually adopted in general equilibrium theory
and game theory.

Exercise 1.59

Investigate which definition of the Pareto order is used in some leading
texts, such as Kreps (1990), Mas-Colell et al. (1995), Varian (1992), and
Osborne and Rubinstein (1994).

Even if all the constituent orders 7, are complete, the Pareto order =
is only a partial order. Where x >; y for some i while x <; y for others, x
and y are not comparable. This deficiency provides scope for two fertile
areas of economic analysis, social choice theory and game theory. Since
they also provide good illustrations for the material of this book, we

briefly describe each of these areas.
Social Choice
A social choice problem comprises

+ a finite set N of individuals or agents
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- a set X of outcomes or social states

+ for each individual i e N a preference relation z; on the set of out-
comes X

The theory of social choice is concerned with aggregating individuals
orderings over a set of social states X into a social preference. While non—
Pareto orders have been considered, the Pareto criterion is so compelling
that the central problem of social choice can be regarded as completing
the Pareto order in a way that respects the individual preference orderings.
Unfortunately, the principal results are essentially negative, as exemplified
by the famous impossibility theorem of Arrow.

Example 1.43 (Arrow’s impossibility theorem) One way to complete the
Pareto order would be to define

XZyexzy

for some specific individual i. In effect, individual 7/ is made a dictator.
While the dictatorial ordering satisfies the Pareto principle, it is not cur-
rently regarded as politically correct!

Another property that reflects sympathy between the social ordering
and individual orders requires that the social order does not distinguish
between alternatives that are indistinguishable to individuals. We say that
the product order 2 satisfies independence of irrelevant alternatives (11A)
if for every set of social states 4 = X, given two sets of individual prefer-
ences %, and X which are identical over the set 4, that is,

XZyexzy for every x,y € A

then the corresponding social orders > and >’ also order A identically,
that is,

xzyexz'y foreveryx,yed

In 1950 Nobel laureate Kenneth Arrow (1963) showed that it is impos-
sible to complete the weak Pareto ordering in a way that is independent of
irrelevant alternatives but not dictatorial. The following three exercises
provide a straightforward proof of Arrow’s theorem.

Exercise 1.60 (Field expansion lemma)
A group S of individuals is decisive over a pair of alternatives x,y € X if

X >y foreveryie S= x>y
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Assume that the social order is consistent with the Pareto order and sat-
isfies the IIA condition. Show that, if a group is decisive over any pair of
states, it is decisive over every pair of alternatives. (Assume that there are
at least four distinct states, that is, | X| > 4.)

Exercise 1.61 (Group contraction lemma)

Assume that the social order is consistent with the Pareto order and sat-
isfies the ITA condition, and that |X| > 3. If any group S with |S| > 1 is
decisive, then so is a proper subset of that group.

Exercise 1.62
Using the previous exercises, prove Arrow’s impossibility theorem.

Exercise 1.63 (The Liberal Paradox)

Liberal values suggest that there are some choices that are purely personal
and should be the perogative of the individual concerned. We say that a
social order exhibits /iberalism if for each individual i, there is a pair of
alternatives x, y € X over which she is decisive, that is, for which

X>y=>x>y

(A dictator is decisive over all alternatives.) Show that is impossible to
complete a Pareto order in a way that respects liberalism. This incon-
sistency between liberalism and the Pareto principle is known the Liberal
Paradox. [Hint: It suffices that show that there are not even two persons
who are decisive over personal choices. Consider a pair of alternatives for
each person, and show that the implied Pareto order is intransitive.]

Remark 1.9 (Rawlsian social choice) A criterion of social justice first
advocated by the philosopher John Rawls (1971) has attracted a lot of
attention from economists. Effectively, the Rawlsian maximin criterion is
analogous to completing the Pareto ordering lexicographically, assigning
priority to the preferences of the least well off individual, then the next
least favored, and so on. The analogy is inexact, since the identity of the
least well off individual varies with the social state.

Coalitional Games
A coalitional game comprises

- a finite set N of players

« a set X of outcomes
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+ for each player i € N a preference relation 2z, on the set of outcomes X

« for every proper coalition S = N, a set W(S) < X of outcomes that it
can obtain by its own actions

In effect each coalition S is decisive for the outcomes in W(S). Although
the structure of a coalitional game is similar to that of a social choice
problem, the analytical focus is different. Rather than attempting to pro-
duce a complete social order over X, coalitional game theory aims to
isolate a subset of X which is maximal with respect to some partial
order.

Example 1.44 (Cost allocation) The Southern Electricity Region of India
comprises four states: Andra Pradesh (AP), Kerala, Mysore, and Tamil
Nadu (TN). In the past each state had tended to be self-sufficient in the
generation of electricity. This led to suboptimal development for the region
as a whole, with reliance on less economic alternative sources in Andra
Pradesh and Tamil Nadu, instead of exploiting the excellent hydro
resources in Mysore and Kerala.

The costs of developing the electric power system in the region, under
various assumptions about the degree of cooperation between states, are
summarized in the following table. To simplify the calculations, Kerala
and Mysore have been amalgamated into a hybrid state (KM), since they
are essentially similar in their hydro resources and power requirements.
(The cost estimates were derived from a general investment planning and
system operation model comprising 800 variables and 300 constraints.)

Total cost
Coalition structure N AP KM  in region
Self-sufficiency for each area 5,330 1,870 860 8,060

Cooperation between TN and AP, 5,520 1,470 860 7,850
self-sufficiency for KM

Cooperation between TN and KM, 2,600 1,870 2,420 6,890
self-sufficiency for AP
Cooperation between AP and KM, 5,330 480 1,480 7,290
self-sufficiency for TN

Full cooperation 3,010 1,010 2,510 6,530




38

Chapter 1  Sets and Spaces

Clearly, the region as a whole benefits from cooperation, since total costs
are minimized by exploiting the rich hydro resources in Kerala and
Mysore. However, this increases the costs incurred in Kerala and Mysore
to 2,510 million rupees, whereas they can provide for the own needs at a
much lower cost of 860 million rupees. To induce the Kerala and Mysore
to cooperate in a joint development, the other states must contribute to
the development of their hydro resources.

We can model this problem as a coalitional game in which the players
are Andra Pradesh (AP), Tamil Nadu (TN), and the hybrid state
Kerala Mysore (KM). The outcomes are their respective cost shares
(x4p, xX7TN, XKM ), Where x4p is the cost borne by Andra Pradesh. The set

of outcomes X = ‘.Ri. Each player prefers a lower cost share, that is,
X Zixi e x! < x;

i ~i

By being self-sufficient, each state can ensure that it pays no more than
its own costs, so that

W(AP) = {(xap, XTn, XkM) : Xap < 1,870}
W(TN) = {(xap, XTn, XkMm) : X77v < 5,300}
W(KM) = {(x4p, X1, Xkp) : Xxm < 860}

Alternatively, Andra Pradesh and Tamil Nadu could undertake a joint
development, sharing the total cost of 6,990 between them. Thus

W(AP,TN) = {(xap, XN, XKkM) : Xap + X775 < 6,990}

Similarly

W(AP,KM) = {(xap, X1N,XKM) : XaP + XKx0s < 1,960}
W(TN,KM) = {(xap, X1n, Xkm) : X773 + XK1 < 5,020}

Finally the three states could cooperate sharing the total costs 6,530
W (AP, TN,KM) = {(x4p, X5, Xk0) : Xap + X175 + Xk = 6,530}

Coalitional game theory typically respects the Pareto order, attempting
to extend it by recognizing the decisiveness of coalitions over certain
subsets of the feasible outcomes. The primary example of such a solution
concept is the core, which extends the Pareto order to coalitions as well as
the group as a whole.
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Example 1.45 (Core) The core of a coalitional game is the set of out-
comes for which no coalition can do better by unilateral action, that is,

Core = {x € X : there does not exist S and y € W(S) such that
y > x for every i € S}

For some games there may be no such unimprovable allocation, in which
case we say that the core is empty.

Exercise 1.64
Show that every core allocation is Pareto optimal, that is,

core < Pareto

Exercise 1.65
Find the core of the cost allocation game (example 1.44).

Example 1.46 (Coalitional game with transferable payoff) In an impor-
tant class of coalitional games, the set of possible outcomes X comprises
allocations of fixed sum of money or other good, denoted w(N), among
the players. That is,

X = {xe‘ﬁ”: Zx,-:w(N)}
ieN

Individual coalitions can allocate smaller sums, denoted w(S), among
their members, so that

w(S) = {x eNR": in < W(S)}
ieS
Individual players rank allocations on the basis of their own shares, that is,
X' Z;X & x| > X
Concisely, a coalitional game with transferable payoff comprises

+ a finite set of players N
- for every coalition S = N, a real number w(S) that is called the worth of
the coalition S

Conventionally w() = 0. A TP-coalitional game (N, w) is called essen-
tial if there is some surplus to distribute, that is,
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w(N) > w({i})

ieN

The label transferable payoff reflects the fact that potential worth of a
coalition w(.S) can be freely allocated among the members of the coalition.
For convenience, we will refer to such games as TP-coalitional games. As
well as being practically important (exercise 1.66), TP-coalitional games
provide an excellent illustration of many of the concepts introduced in
this chapter and also in chapter 3.

Exercise 1.66 (Cost allocation)

Formulate the cost allocation problem in example 1.44 as a TP-coalitional
game. [Hint: Regard the potential cost savings from cooperation as the
sum to be allocated.]

Exercise 1.67
Show that the core of coalitional game with transferable payoff is

core = {xe X Zx,— > w(S) for every S = N}
ieS

Example 1.47 (Simple games) A simple game is a TP-coalitional game
in which the worth of each coalition w(S) is either 0 or 1 (W(N) =1). A
coalition for which w(S) =1 is called a winning coalition. Simple games
often provide a suitable model for situations involving the exercise of
power.

Example 1.48 (Unanimity games) In some simple games a particular
coalition 7' is necessary and sufficient to form a winning coalition, so that

w(S)—{l 1fS2?"
0 otherwise

Each member i of the essential coalition 7 is called a veto player, since no
winning coalition can be formed without i. The game is called a unanimity
game, since winning requires the collaboration of all the veto players.

For a given set of players N, each coalition T defines a different
unanimity game ur given by

1 if S=T
0 otherwise

ur(s) = {
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Unanimity games play a fundamental role in the theory of TP-coalitional
games.

Exercise 1.68
Specify the set of unanimity games for the player set N = {1,2,3}.

Exercise 1.69
Show that the core of a simple game is nonempty if and only if it is a
unanimity game.

Example 1.49 (Nucleolus) We can measure the potential dissatisfaction
of a coalition S with a particular outcome x € X by the difference between
its worth and its total share, defining

d(S,x) =w(S) =) x;

ieS
The amount d(S, x) is called the deficit of the coalition S at the outcome
x. If d(S,x) > 0, the coalition is receiving less than its worth. The larger
its deficit d(S, x), the greater is its potential dissatisfaction with the out-
come X.

For any outcome x, let d(x) denote a list of deficits for each proper
coalition arranged in decreasing order. That is, the first element of the list
d(x) is the deficit of the most dissatisfied coalition at the outcome x. Since
there are 2" coalitions, the list d(x) has 2” components. It is an element of
the space R>".

We can order these lists lexicographically (section 1.2.3). d(x) precedes
d(y) in the lexicographic order on R2" if the coalition which is most dis-
satisfied with x has a smaller deficit than the coalition which is most dis-
satisfied at y.

The lexicographic order > on R*" induces a preorder > on the set of
outcomes X defined by

x 2y e d(x) 3"d(y)
and
x>y & d(x) <"d(y)

Outcome x is preferred to outcome y in the deficit order > if d(x) pre-
cedes d(y) in the lexicographic order; that is, the maximum deficit at x is
less than the maximum deficit at y.
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The nucleolus of a TP-coalitional game is the set of most preferred or
best elements in the deficit order zd, that is,

Nu={xeX:xxyforeveryye X}

In section 1.6 we will show that there is a unique best element for every
TP-coalitional game. Consequently the nucleolus is a useful solution
concept for such games, with many desirable properties.

Exercise 1.70
In the cost allocation game, find d(x) for

x! = (180,955,395) and x? = (200, 950,380)
Show that d(x!) <% d(x?) and therefore x' > x.

Exercise 1.71
Is the deficit order zd defined in example 1.49
+ a partial order?

- a weak order?
on the set X.

Exercise 1.72
x belongs to the core if and only if no coalition has a positive deficit, that
s,

core = {x € X : d(S,x) <0 for every S = N}

Exercise 1.73
Show that Nu < core assuming that core # (.

Strategic Games

Our earlier description of a strategic game in example 1.2 was incomplete
in that it lacked any specification of the preferences of the players. A full
description of a strategic game comprises:

+ A finite set N of players.

+ For each player i € N a nonempty set 4; of actions.

+ For each player ie N a preference relation 7z; on the action space
A=Ay X Ay X --- X A,,.
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We can summarize a particular game by the ordered triple
(N,A,(Zys Zoy--+»Z,)), comprising the set of players, their strategies,

~l1r ~29 Y ~n

and their preferences.

Example 1.50 (Strictly competitive game) A strategic game between two
players is strictly competitive if the preferences of the players are strictly
opposed, that is for every a!, a’ € 4

1 2 2 1
a zZa"&a za

In other words, %, is the inverse of ;.

A strategic game is analogous to the problem of social choice, in that it
involves different orderings over a common space 4 = A; X Ay X -+ X A,.
However, strategic game theory adopts yet another way of resolving (in
an analytical sense) the conflict between competing orderings. Rather
than attempting to combine the individual preference orderings =, into a
complete order =, the game theorist attempts to identify certain action
profiles a € 4 as likely outcomes of independent play. The primary crite-

rion is Nash equilibrium.

Example 1.51 (Nash equilibrium) In a strategic game, a Nash equilibrium
is a choice of action for each player a* = (af,a3,...,a;) such that for
every player i e N,

(af,a’;) z,;(a;,a”;)  forevery a; € 4;

Each player’s chosen action a; is at least as preferred as any other action
a; € A; given the choices of the other players. These choices are made
simultaneously, and a Nash equilibrium results when each player’s action
is an optimal response to those of the other players. No player will regret
her action when the actions of the other players are revealed. A Nash
equilibrium is called strict if

(af,a*;) >i(a;,a”;) for every a; € A\{a/}

Example 1.52 (The Prisoner’s Dilemma) Two suspects are arrested and
held in separate cells. Each is independently offered the option of turning
“state’s evidence” by confessing the crime and appearing as a witness
against the other. He will be freed while his partner receives a sentence of
four years. However, if both confess, they can expect a sentence of three
years each. If neither confess, the police only have sufficient evidence to
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charge them with a lesser offense, which carries a penalty of one year’s
imprisonment.

Each player has just two actions: Confess (denoted C) and not confess
(N). The following table summarizes actions available to the players and
their consequences (expected years of imprisonment).

Player 2
C N
3,3 10,4
Player 1
N |40 1,1

Assuming that the suspects do not like prison, the players preferences are
(CaN) >1 (N7N) >1 (C, C) >1 (N, C)
(Na C) >2 (NvN) >2 (C> C) >2 (C7N)

where (C, N) denotes the action profile in which player 1 confesses and
player 2 does not. Note that each player would prefer to confess irre-
spective of the choice of the other player. The Nash equilibrium outcome
of this game is (C, C) is which both suspects confess, receiving a sentence
of three years each.

Note that the Nash equilibrium is inconsistent with the Pareto order,
since both players prefer (N, N) to the Nash equilibrium outcome (C, C).
The Prisoner’s Dilemma game is a model for many social phenomena, in
which independent action does not achieve Pareto optimal outcomes.

Exercise 1.74
Show formally that the action profile (C, C) is a Nash equilibrium.

Example 1.53 (Dominance) In a strategic game each player’s complete
preference ordering 2, over outcomes (action profiles 4) defines a partial
ordering over the player i’s own actions. We say that action a? weakly
dominates a! for player i if

(af,a;) z;(a/,a;)  foreverya ;€A ;
that a? strictly dominates a! if
(a,-z, a_;) > (al-l, a_;) foreverya_; e A_;

In the Prisoner’s Dilemma, C strictly dominates N for both players.
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Exercise 1.75
Let ! denote the partial order induced on player i’s action space by her
preferences over 4. That is,

a’>>lal & (a,-z,a,i) > (ail,a,i) foreverya_;e A_;

i ~i™i ~i

Show that if there exists an action profile a* such that @/ is the unique
maximal element in (A4;, ) for every player i, then a* is the unique Nash

~i

equilibrium of the game.

1.3 Maetric Spaces

In a metric space, attention is focused on the spatial relationships between
the elements. A metric space is a set X on which is defined a measure of
distance between the elements. To conform with our conventional notion
of distance, the distance measure must satisfy certain properties. The dis-
tance between distinct elements should be positive. It should be symmetric
so that it does not matter in which direction it is measured. Last, the
shortest route between two distinct elements is the direct route (the trian-
gle inequality). See figure 1.11. A distance measure with these properties is
called a metric.

Formally, a metric on a set X is a measure that associates with every
pair of points x,y € X a real number p(x,y) satisfying the following
properties:

L p(x,y) =0
2. p(x,y) =0ifand only if x =y

plx, 2

Figure 1.11
The triangle inequality
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3. p(x,y) = p(y,x) (symmetry)
4. p(x,y) < p(x,z) + p(z,y) (triangle inequality)

A metric space is a set X together with its metric p and is denoted by the
ordered pair (X, p). If the metric is understood, it may be referred to as
the metric space X. The elements of a metric space are usually called
points.

The most familiar metric space is the set R of real numbers, where the
distance between any two elements x and y is naturally measured by their
difference |x — y|, where we take absolute values to ensure nonnegativity.
There are various ways in which we can generalize this to other sets. Some
of these are explored in the following example.

Example 1.54 (Consumption bundles) Consider how we might define the
distance between consumption bundles. Recall that a consumption bundle
x is a list (x1,xa, ..., X,) of quantities of different commodities, where Xx; is
the quantity of good i. Given two consumption bundles x and y, one way
to measure the distance is to consider the difference in consumption of
each commodity in turn and sum them, giving

n
pi(x,y) = Z Ix; — yil
i=1

Instead of taking the absolute value of the differences, an alternative
measure would be to square the differences and take their square root

n

Pa(X,y) = Z(Xi - J’z‘)z

i=1

Finally, we might consider that the commodity whose quantity has
changed most should determine the distance between the commodity
bundles, giving

P (X,y) = rgljalx xi — yil

Each of these measures is a metric, an appropriate measure of the distance
between consumption bundles.

The preceding example introduced three ways in which we might gen-
eralize the notion of distance between real numbers to the n-dimensional
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space R". Each of the three metrics for R" discussed in the preceding
example is used in mathematical analysis. Most familiar is the Euclidean
metric

n

pa(x,y) = Z(xi - y,—)2

i=1

which generalizes the usual notion of distance in two and three dimen-
sional space. The third metric

por(x,y) = max |x; - yi|

is known as the sup metric. It is often more tractable in computations. We
will see later that the distinctions between these three metrics are often
immaterial, since the most important properties are independent of the
particular metric.

Exercise 1.76
Show that p(x,y) = |x — y| is a metric for R.

Exercise 1.77
Show that p_ (x,y) = max/_, |x; — y;| is a metric for R".

Analogous to linear spaces, a subspace of a metric space (X,p) is a
subset S < X in which distance is defined by the metric inherited from the
space (X,p). For example, the consumption set X = R (example 1.6)
can be thought of as a subspace of the metric space R", with one of its
associated metrics p;, P, Pos-

Two further illustrations of metric spaces are given in the following
examples. Other interesting examples involving sets of functions will be
met in chapter 2.

Example 1.55 (Discrete metric space) Any set X can be converted into a
metric space by equipping it with the discrete metric

0 if x=y
x7 = .
p(x.5) { 1 otherwise

Such a metric space is not very useful, except as a source of possible
counterexamples.
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Example 1.56 (Hamming distance) Let X be the set of all n-tuples of
zeros and ones, that is,

x = {(x1,x2,...,x,) : x; €{0,1}}

The elements of x can be regarded as binary strings or messages of length
n. The Hamming distance p between any two elements x and y in X is
the number of places in which x and y differ. (X, pf) is a metric space
used in coding theory, where the distance between two points (strings or
messages) is the number of locations in which they differ. It is also used in
the theory of automata.

In any metric space the distance of a point from a set is defined to be its
distance from the nearest point, that is,

p(x,8) = inf{p(x,y) : y € S}

and the distance between sets is the minimum distance between points in
the sets

p(S,T)=inf{p(x,y):xe S,ye T}

The diameter of a set is the maximum distance between any points in the
set

d(S) = sup{p(x,y) : x,y € S}

A set S is bounded if it has a finite diameter, that is, d(S) < co.

A thorough understanding of the structure of metric spaces requires
careful study and attention to detail, which can be somewhat tedious.
To understand the rest of this book, the reader needs to be able to dis-
tinguish the interior and boundary points, to know the difference between
an open and a closed set, and to have some familiarity with the conver-
gence of sequences. The following subsections outline the important
properties of metric spaces. Many of these properties will be used in the
book, but their use is seldom fundamental in the same way as linearity
and convexity. Most of the properties are given as exercises, leaving to
the reader the choice of depth in which they are studied. Some readers
will be content to note the terminology and the major results. For
those who want to go further, much can be learned by attempting all the
exercises.
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1.3.1 Open and Closed Sets

Proximity and neighborhood are fundamental to the theory of metric
spaces. The set of points in close proximity to a given point X is called a
ball about xy. Specifically, given any point xj in a metric space (X, p) and
a distance r > 0, the open ball about x, of radius r is the set of points

By(xo) = {x € X : pl(x, x0) < 1}
It is the set of all points that are less than r distant from x, (figure 1.12).

Example 1.57 (Unit balls in R?) Open balls are not necessarily spherical,
and their shape depends on the particular metric. Figure 1.13 illustrates

X

Figure 1.12
An open ball and its neighborhood

1
i ERNCE
iy P iPeo
14 0 il
-1
Figure 1.13

Unit balls in 222
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the unit balls B.(0) associated with different metrics in the plane (%?).
The unit ball in the Euclidean metric p, is indeed circular—it is a spheri-
cal disk centered at the origin. In the sup metric, p_,, the unit ball is a
square. For this reason, the sup metric is sometimes called the taxicab
metric. Similarly the metric p; is sometimes called the “diamond metric.”

An open ball is a symmetrical neighborhood. However, we note that
symmetry is not essential to the idea of proximity. The important char-
acteristic of the neighborhood of a particular point is that no nearby
points are excluded. Formally, any set S < X is a neighborhood of x, (and
Xo is an interior point of S) if S contains an open ball about xy.

The set of all interior points of a set S is called the interior of S, which is
denoted int S. A set S is open if all its points are interior points, that is,
S =int S. In an open set, every point has a neighborhood that is entirely
contained in the set, so it is possible to move a little in any direction and
remain within the set. We can also define interior points in terms of
neighborhoods. A point x; € X is an interior point of S < X if S contains
a neighborhood of xy. That is, xo is an interior point of S if S contains al/
nearby points of xy. On the other hand, a point xy € X is a boundary point
of S < X if every neighborhood of xj contains points of S and also con-
tains points of S¢. Each boundary point is arbitrarily close to points in S
and to points outside. The boundary b(S) of S'is the set of all its boundary
points. In line with common usage, the boundary delineates a set from its
complement.

The closure S of a set S is the union of S with its boundary, that is,

S =Sub(S)

Any x € S'is called a closure point of S. A set S is closed if it is equal to its
closure, that is, if S = S.

Remark 1.10 These concepts—balls, neighborhoods, interiors, and
boundaries—generalize everyday concepts in familiar three-dimensional
Euclidean space. Indeed, the theory of metric spaces is an abstraction of
familiar geometry. A thorough understanding of the geometry of more
abstract spaces requires an ability to “visualize” these spaces in the mind.
Two- and three-dimensional analogues and diagrams like figure 1.14 are
very helpful for this purpose. However, we need to bear in mind that these
are only aids to understanding, and learn to rely on the definitions. There
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5%
ST e, Boundary
PSS T
Interior
point
Figure 1.14

Interior and boundary points

are some obvious properties of three-dimensional Euclidean space that do
not carry over to all metric spaces. These distinctions are usually explored
by studying pathological examples. Since these distinctions will not bother
us in this book, we will not pursue them here. However, readers should be
wary of leaping to unwarranted conclusions when they encounter more
general spaces.

To summarize, every set S in a metric space has two associated sets,
int S and S with

intSesS<S

In general, S is neither open nor closed, and both inclusions will be
proper. However, if equality holds in the left hand inclusion, S is open. If
equality holds in the right-hand side, S is closed. Furthermore every point
x € S is either an interior point or a boundary point. A set is open if it
contains no boundary points; it is closed if it contains all its boundary
points. If S is open, then its complement is closed. If it is closed, its com-
plement is open. The closure of S is the union of S with its boundary. The
interior of S is comprises S minus its boundary. These important proper-
ties of open and closed sets are detailed in the following exercises.

Example 1.58 (Closed ball) Given any point x, in a metric space (X, p),
the closed ball about x( of radius r,

Ci(x0) = {xe X : p(x,x0) < r}

is a closed set.
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Example 1.59 (Unit sphere) The boundary of the unit ball B;(0) is the
set

S1(0) ={xe X :p(x,0) =1}

is called the unit sphere. In R* the unit sphere is S(0) =
{xeM?*:x? +x3 =1}, which is the boundary of the set B;(0)=
{xeR*:x]+x3 <1}

Exercise 1.78

What is the boundary of the set S = {l/n:n=1,2,...}?

Exercise 1.79
Forany S = 7T,

l.intS<cint T
2.85<T

Exercise 1.80
A set is open if and only if its complement is closed.

Exercise 1.81
In any metric space X, the empty set ¢§ and the full space X are both open
and closed.

A metric space is connected if it cannot be represented as the union of
two disjoint open sets. In a connected space the only sets that are both
open and closed are X and . This is case for ‘R, which is connected. Also
the product of connected spaces is connected. Hence R” and ¢ are the
only sets in R” that are both open and closed.

Exercise 1.82
A metric space is connected if and only it cannot be represented as the
union of two disjoint closed sets.

Exercise 1.83
A metric space X is connected if and only if X and ¢ are the only sets
that are both open and closed.

Exercise 1.84
A subset S of a metric space is both open and closed if and only if it has
an empty boundary.
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Exercise 1.85
1. Any union of any collection of open sets is open. The intersection of a
finite collection of open sets is open.

2. The union of a finite collection of closed sets is closed. The intersection
of any collection of closed sets is closed.

Exercise 1.86
For any set S in a metric space

1. int S is open. It is the largest open set in S.

2. Sis closed. It is the smallest closed set containing S.

Exercise 1.87
The interior of a set S comprises the set minus its boundary, that is,

int S = S\b(S)

Exercise 1.88
A set is closed if and only if it contains its boundary.

Exercise 1.89
A set is bounded if and only it is contained in some open ball.

Exercise 1.90
Given an open ball B,(x() in a metric space, let S be a subset of diameter
less than r that intersects B,(xo). Then S = By.(xo).

Example 1.60 (Rational approximation) One concept that arises in more
advanced work is the notion of a dense set. A set S is dense in the metric
space X if S = X. This means that every point in S¢ is a boundary point
of S. The classic example is the set of rational numbers, which is dense in
the set of real numbers. Therefore there are rational numbers that are
arbitrarily close to any real number. This is fundamental for computation,
since it implies that any real number can be approximated to any degree
of accuracy by rational numbers.

Example 1.61 (Efficient production) A production plan y € Y is efficient
if and only if there is no feasible plan y’ € Y with y’ = y. y € Y is efficient
if it impossible to produce the same output with less input, or to produce
more output with the same input. Let Eff(Y) denote the set of all efficient
production plans. Then

Eff(Y)={yeY:yZy=y' ¢ Y}
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Every interior point of the production possibility set Y is inefficient.
Assume that y° is a production plan in int Y. Then there exists an open
ball B,(y") about y° that is contained in int Y. This ball contains a plan
y' 2y in B.(y°), which is feasible. Therefore y ¢ Eff(Y). Consequently
efficient production plans belong to the boundary of the production pos-
sibility set, that is, Eff(Y) < b(Y). In general, Eff(Y) is a proper subset of
b(Y). Not all boundary points are efficient.

Exercise 1.91
Show that fiee disposal (example 1.12) implies that the production possi-
bility set has a nonempty interior.

Remark 1.11 (Topological spaces) The student of mathematical eco-
nomics will sooner or later encounter a topological space. This is a gen-
eralization of a metric space, which can be explained as follows.

We remarked earlier that an open ball is a neighborhood that is sym-
metrical. Careful study of the preceding exercises reveals that symmetry is
irrelevant to distinguishing interior from boundary points, open from
closed sets. The fundamental idea is that of a neighborhood. A topologi-
cal space dispenses with the measure of distance or metric. It starts by
selecting certain subsets as neighborhoods or open sets, which is known as
a topology for the set. This suffices to identify interior points, boundary
points, closed sets, and so on, with all the properties outlined in the pre-
ceding exercises.

Any metric on a space identifies certain subsets as neighborhoods, and
hence induces a topology on the space. Furthermore different metrics on a
given set may lead to the same topology. For example, we will show in
section 1.5 that the three metrics which we proposed for R” all identify
the same open sets. We say they generate the same topology. Any prop-
erty that does not depend on the particular metric, but on the fact that
certain sets are open and others are not, is called a topological property
(exercise 1.92). Continuity (section 2.3) is the most important topological

property.

Exercise 1.92 (Normal space)

A topological space is said to be normal if, for any pair of disjoint closed
sets S; and S, there exist open sets (neighborhoods) 71 =2 S; and 7, 2 S,
such that T n T, = &. Show that any metric space is normal.
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Exercise 1.93
Let S; and S, be disjoint closed sets in a metric space. Show that there
exists an open set 7 such that

SicT and S$nT=¢g

Remark 1.12 (Separation theorems) Many results in economic analysis
are based on separation theorems in linear spaces, which will be explored
extensively in section 3.9. Exercises 1.92 and 1.93 are topological separa-
tion theorems.

Relative Interiors, Open and Closed Sets

Recall that any subset X of a metric space Y is a metric space in its own
right (a subspace). When dealing with subspaces, it is important to be
clear to which space the topology is relative. A set S = X = Y might be
open as a subset of the subspace X but not open when viewed as a subset
of Y. The following is a typical example from economics.

Example 1.62 In a world of two commodities, suppose that the con-
sumer’s consumption set is X = ‘.Ri, which is a subspace of R?. The con-
sumption set is a metric space in its own right with any of the metrics
from R2.

Moreover the consumption set X is open in the metric space X,
but it is not open in the underlying metric space R>. The set S =
{xe X :x; + xp > 1} is also open in X but not in R (see figure 1.15). To

specify the underlying metric space, we say that S is open relative to X.

Figure 1.15
The relative topology of the consumption set
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Similarly the point (2,0) is an interior point not a boundary point of S
(relative to X'), since it is some distance from any point in X'\ S.

Let X be a subspace of a metric space Y. xy € S is a boundary point of
S relative to X if every neighborhood of xy contains points of .S and points
of X\S. xo € S is an interior point of S relative to X if there exists some
open ball B,(xy) = X about xy such that B,(xy) < S. In other words, x is
an interior point relative to X if all points x € X that are less than r distant
from x( are also in S. S is open relative to X if every x € S is an interior
point relative to X. S is closed relative to X if it contains all its boundary
points relative to X.

Exercise 1.94
In the previous example, illustrate the open ball of radius J about (2,0).
Use the Euclidean metric p,.

The following result links the metric and order structures of real
numbers (see exercise 1.20).

Exercise 1.95
A set S = R is connected if and only if it is an interval.

1.3.2 Convergence: Completeness and Compactness

Before the advent of modern calculators, high school students were taught
to find square roots by a process of successive approximation. Today the
pocket calculator uses a similar algorithm to provide the answer almost
instantaneously, and students are no longer required to master the algo-
rithm. This nearly forgotten algorithm is an example of iteration, which is
absolutely fundamental to the practice of computation. Most practical
computation today is carried out by digital computers, whose compara-
tive advantage lies in iteration.

Pocket calculators use iteration to compute the special functions (roots,
exponents, sine, cosine, and their inverses). Computers use iteration to
solve equations, whether algebraic or differential. Most practical opti-
mization procedures are based on iteration, the simplex algorithm for
linear programming being a classic example. Similarly many dynamic
processes are modeled as iterative processes, in which the state at each
period is determined by the state in the previous period or periods. The
outcome of an iterative process in a metric space is an example of a
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sequence. One of the most important questions to be asked of any iter-
ative computational process is whether or not it converges to the desired
answer. A necessary requirement for converging on the right answer is
converging on any answer. In this section we study the general theory of
convergence of sequences in a metric space.

A sequence in a metric space X is a list of particular elements
x',x%,x3,... of X. We will use the notation (x") to denote a sequence.
A sequence is finite if it is a finite list; otherwise, it is infinite. It is impor-
tant to note that a sequence of points in a set is not a subset of the set,
since it does not necessarily contain distinct elements. The set of elements
in an infinite sequence may be a finite set. For example, {0, 1} < R is the
set of elements in the sequence 1,0,1,0,.... The sequence 0,1,0,1,... is
different sequence containing the same elements. (We will be able to give
a more robust definition of a sequence in the next chapter.) Typical
instances of sequences in economics include a series of observations on
some economic variable (a time series), the outputs of an iterative opti-
mization process, or moves in a game. Each of the elements x" in a
sequence (x") is a element in the metric space X—it may a single number
(a measure of some economic quantity), an n-tuple (a consumption
bundle), a set (a production possibility set), a function (a statistical esti-
mator), or something more complicated like a whole economy or game.

Example 1.63 (Repeated game) Suppose that a set of n players repeat-
edly play the same game. At each stage each player i chooses from an
action ¢; from a set A4;. Let a/ denote the choice of player i at time ¢, and
let a’ = (af,d}, ..., a}) denote the combined choice. The outcome of the
repeated game is a sequence of actions (a® a' a?,...). If there are a finite
number of stages 7, the game is called a finitely repeated game, and the
outcome (2% a' a ... a”) is a finite sequence. Otherwise, it is called an
infinitely repeated game. (It is conventional to label the first stage “period
0.”)

At any time 7 the finite sequence of past actions (a’ a' a ... ,a""")is
called the history of the game to time 7. The set of possible histories at

time ¢ is the product

H=AxAx---xA4
—

t times

where 4 = A1 X Ay X --- X A,,.
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A sequence (x”) in x converges to point x € X if the elements of (x")
get arbitrarily close to x, so every neighborhood of x eventually contains
all subsequent elements in the sequence. More precisely, the sequence (x")
converges to x if there exists a stage N such that x" belongs to the open
ball B,(x) for all n > N. Every neighborhood of x contains all but a finite
number of terms in the sequence. The point x is called the limit of the
sequence (x"). Convergence of sequence is often denoted by

x"—=x or x=lim x"
n— 00

Example 1.64 The formula

1 2
0 __ n+l __ n —
x'=2 Xx —§<x +_x”>’ n=0,1,2,...

defines an infinite sequence, whose first five terms are
(2,1.5,1.416666666666667, 1.41421568627451,1.41421356237469)
The sequence converges to v/2 (example 1.103).

Exercise 1.96
If a sequence converges, its limit is unique. Therefore we are justified in
talking about the limit of a convergent sequence.

Exercise 1.97

Every convergent sequence is bounded; that is, the set of elements of a
convergent sequence is a bounded set. [Hint: If x" — x, show that there
exists some r such that p(x", x) < r for all n.]

Exercise 1.98

At a birthday party the guests are invited to cut their own piece of cake.
The first guest cuts the cake in half and takes one of the halves. Then,
each guest in turn cuts the remainder of the cake in half and eats one
portion. How many guests will get a share of the cake?

Remark 1.13 (Consistent estimators) One of the principal topics of
advanced econometrics concerns the asymptotic properties of estimators,
that is, their behavior as the sample size becomes large. Often it is easier
to analyze the limiting behavior of some econometric estimator than it is
to derive its properties for any finite sample. For example, suppose that 0"
is an estimate of some population parameter 0 that is based on a sample



59

1.3 Metric Spaces

of size n. The estimator 0 is said to be consistent if the sequence (é")
converges to the true value 0. However, the estimator 0 is a random
variable (example 2.19), which requires an appropriate measure of dis-
tance and convergence, called convergence in probability (Theil 1971,
pp. 357-62).

Exercise 1.99 (Cauchy sequence)

Let (x") be a sequence that converges to x. Show that the points of (x")
become arbitrarily close to one another in the sense that for every & > 0
there exists an N such that

p(x" x") <e forallm,n > N
A sequence with this property is called a Cauchy sequence.

Exercise 1.100
Any Cauchy sequence is bounded.

Exercise 1.99 showed that every convergent sequence is a Cauchy
sequence; that is, the terms of the sequence become arbitrarily close to one
another. The converse is not always true. There are metric spaces in which
a Cauchy sequence does not converge to an element of the space. A com-
plete metric space is one in which every Cauchy sequence is convergent.
Roughly speaking, a metric space is complete if every sequence that tries
to converge is successful, in the sense that it finds its limit in the space. It
is a fundamental result of elementary analysis that the set R is complete;
that is, every Cauchy sequence of real numbers converges. This implies
that R" is complete (exercise 1.211).

Basic Fact R is complete.

Remark 1.14 (Cauchy convergence criterion) The practical importance of
completeness is as follows: To demonstrate that a sequence in a complete
metric space is convergent, it is sufficient to demonstrate that it is a Cauchy
sequence. This does not require prior knowledge of the limit. Hence we
can show that an iterative process converges without knowing its limiting
outcome. This is called the Cauchy convergence criterion.

Example 1.65 (Monotone sequences) Another useful convergence crite-
rion (in *R) is monotonicity. A sequence (x") of real numbers is increasing
if x"*1 > x" for all n. It is decreasing if x"*! < x" for all n. A sequence
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(x™) is monotone if it is either increasing or decreasing. Every bounded
monotone sequence of real numbers converges. This fact links the order
and metric properties of R.

Exercise 1.101 ( Bounded monotone sequence)
A monotone sequence in ‘R converges if and only if it is bounded. [Hint:
If x" is a bounded monotone sequence, show that x” — sup{x"}.]

Exercise 1.102
For every e R., the sequence 8, %, °,... converges if and only if
f <1 with

pr—-0sp<1

Exercise 1.103
Show that
1

2
1. 3 (x + ;) > V/2 for every x € ... [Hint: Consider (x — v/2)? > 0.]

2. the sequence in example 1.64 converges to v/2.

Exercise 1.104
Extend example 1.64 to develop an algorithm for approximating the
square root of any positive number.

The following exercises establish the links between convergence of
sequences and geometry of sets. First, we establish that the boundary of
a set corresponds to the limits of sequences of elements in the set. This
leads to an alternative characterization of closed sets which is useful in
applications.

Exercise 1.105
Let S be a nonempty set in a metric space. x € S if and only if it is the
limit of a sequence of points in S.

Exercise 1.106
A set S is closed if and only if the limit of every convergent sequence
belongs to S.

Exercise 1.107
A closed subset of a complete metric space is complete.
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A sequence (S") of subsets of a metric space X is nested if S!' 2
S?2822 ...

Exercise 1.108 (Cantor intersection theorem)

Let (S”) be a nested sequence of nonempty closed subsets of a complete
metric space with d(S") — 0. Their intersection S = ()", S" contains
exactly one point.

Exercise 1.109 (A topological duel)

Let C be the set of all subsets of a metric space X with nonempty interior.
Consider the following game with two players. Each player in turn selects
a set S” from C such that

S'o2s?os8?2 -

Player 1 wins if ﬂ:o:lS” # . Otherwise, player S wins. Show that
player 1 has a winning strategy if X is complete.

One of the most important questions that we can ask of any iterative
process is whether or not it converges. It is impossible to ensure that any
arbitrary sequence converges. For example, neither of the real sequences
(1,2,3,...) and (1,0,1,0,...) converges. However, the behavior of the
second sequence is fundamentally different from the first. The second
sequence (1,0,1,0,...) has a convergent subsequence (0,0,0,...) con-
sisting of every second term. (The remaining terms (1,1,1,...) form
another convergent subsequence.) A metric space X is compact if every
sequence has a convergent subsequence. A subset S of a metric space is
compact if it is a compact subspace, that is, if every sequence in S has
a subsequence that converges to a limit in S. Compactness is related to
the earlier properties of closedness and boundedness, as detailed in the
following proposition.

Proposition 1.1 In any metric space, a compact set is closed and bounded.

Proof  Assume that S is compact. To show that S is closed, let x be any
point in S. There exists a sequence (x") in S which converges to x (exer-
cise 1.105). Since S is compact, the sequence (x") converges to an element
of S. Since the limit of a sequence is unique, this implies that x € S, and
therefore that S = S. Therefore S is closed.

To show that S is bounded, we assume the contrary. Choose some
x € S and consider the sequence of open balls B(x?,n) forn=1,2,3,....
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If S is unbounded, no ball contains S. Therefore, for every n, there exists
some point x” ¢ B(x", n). The sequence (x") cannot have a convergent
subsequence, contradicting the assumption that S is compact. O

In general, the converse of this proposition is false, that is, a closed and
bounded set is not necessarily compact. However, the converse is true in
the space which economists normally inhabit, R" (proposition 1.4). Also
a closed subset of a compact set is compact.

Exercise 1.110
A closed subset of a compact set is compact.

Exercise 1.111
A Cauchy sequence is convergent < it has a convergent subsequence.

Actually compact spaces have a much stronger property than bound-
edness. A metric space X is totally bounded if, for every r > 0, it is con-
tained in a finite number of open ball B,(x;) of radius r, that is,

X =

s

Br(xi)

i=1

The open balls are said to cover X.

Exercise 1.112
A compact metric space is totally bounded.

Exercise 1.113
A metric space if compact if and only if it is complete and totally
bounded.

This leads us toward an equivalent formulation of compactness, which
is useful in many applications (e.g., in the proof of proposition 1.5). A
collection % of subsets of a metric space X is said to cover X if X is
contained in their union, that is,

x=1{s
Se¥

% is an open cover if all the sets S are open and a finite cover if the number
of sets in ¥ is finite. Exercise 1.112 showed that every compact set has a
finite cover of open balls of a given size. In the next two exercises we show
that if X is compact, every open cover has a finite subcover; that is, if
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xX=1 s, S open
Se®

there exists sets Sy, S»,...,S, € € such that

C=

x=Us

1

Exercise 1.114 (Lebesque number lemma)

Let @ be an open cover for a compact metric space X. Call a subset T
“big” if is not contained in a single S € €, that is, if it requires more than
one open set S € € to cover it. Let 4 be the collection of all big subsets of
X, and define d = infr 4 d(T). Use the following steps to show thatd > 0:

Step 1. d(T) > 0 for every T € 4.

Step 2. Suppose, however, 0 = infrcy d(T) = 0. Then, for every n=
1,2..., there exists some big set 7, with 0 < d(T,) < 1/n.

Step 3. Construct a sequence (x": x" € T,). This sequence has a conver-
gent subsequence x™

Step 4. Show that there exists some S° € % and r such that B,(xo) < So.

Step 5. Consider the concentric ball B,/;(x). There exists some N such
that x" € B,»(x) for every n > N.

Step 6. Choose some n > min{N,2/r}. Show that T,, = B,(x) = S°.

— X0.

This contradicts the assumption that 7, is a big set. Therefore we con-
clude that o > 0.

In the previous exercise we showed that for every open covering there
exists a diameter o such that every set of smaller diameter than ¢ is wholly
contained in at least one S. The critical diameter ¢ is known as a Lebesgue
number for the €. Thus, in a compact metric space, every open cover has
a Lebesgue number. In the next exercise we use this fact to show that
every compact space has a finite cover.

Exercise 1.115 (Finite cover)

Let % be an open cover of a compact metric space, with Lebesgue number
0. Let r=9/3.

Step 1. There exists a finite number of open balls B.(x,) such that
X = Uzn:l Br(X,').
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Step 2. For each i, there exists some S; € € such that B,(x;) < S;.
Step 3. {S1,S2,...,S,} is a finite cover for X.

Yet another useful characterization of compactness is given in the fol-
lowing exercise. A collection C of subsets of a set has the finite intersection
property if every finite subcollection has a nonempty intersection.

Exercise 1.116 ( Finite intersection property)
A metric space X is compact if and only if every collection % of closed sets
with the finite intersection property has a nonempty intersection.

We will used this property in the following form (see exercise 1.108).

Exercise 1.117 ( Nested intersection theorem)
Let S; 25, = S;5... be a nested sequence of nonempty compact subsets
of a metric space X. Then

S=S#o

8

1

Il
_

Exercise 1.118
In any metric space the following three definitions of compactness are
equivalent:

1. Every sequence has a convergent subsequence.
2. Every open cover has a finite subcover.

3. Every collection of closed subsets with the finite intersection property
has a nonempty intersection.

Remark 1.15 Completeness and compactness are the fundamental
properties of metric spaces. Their names are suggestive. Completeness
relates to richness of the space. An incomplete space lacks certain neces-
sary elements. On the other hand, compactness is a generalization of
finiteness. Many properties, which are trivially true of finite sets, generalize
readily to compact sets, and fail without compactness. A good example of
the role of compactness can be found in the proof of proposition 1.5.

In the most common metric space R, the properties of completeness
and compactness are closely related. Completeness of ‘R implies another
fundamental theorem of analysis, the Bolzano-Weierstrass theorem. This
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theorem, which will be used in section 1.5, states that every bounded
sequence of real numbers has a convergent subsequence. In turn, the
Bolzano-Weierstrass theorem implies that R is complete. The details are
provided in the following exercises.

Exercise 1.119 (Bolzano-Weierstrass theorem)

Every bounded sequence of real numbers has a convergent subsequence.
[Hint: Construct a Cauchy sequence by successively dividing the interval
containing the bounded sequence. Then use the completeness of R.]

Exercise 1.120
Use the Bolzano-Weierstrass theorem to show that ‘R is complete.

The following proposition is regarded as the most important theorem
in topology. We give a simplified version for the product of two metric
spaces. By induction, it generalizes to any finite product. In fact the
theorem is also true of an infinite product of compact spaces.

Proposition 1.2 (Tychonoff’s theorem) The product of two compact met-
ric spaces is compact.

Proof Let X = X; x X3, where X and X, are compact. Let (x") be a
sequence in X. Each term x” is an ordered pair (x], x}). Focusing on the
first component, the sequence of elements (xj) in x; has a convergent
subsequence, with limit x; since X; is compact. Let (x™) be the sub-
sequence in which the first component converges. Now, focusing on the
second component in the subsequence (x™), the sequence of elements
(xJ") has a convergent subsequence, with limit x,. Thus (x") has a sub-
sequence that converges to (xj, x2). O

Remark 1.16 A similar induction argument could be used to show that
R" is complete. However, we will give a slightly more general result below,
showing that any finite-dimensional linear metric space is complete.

Example 1.66 (Compact strategy space) Consider a game of n players
each of whom has a strategy space S;. The strategy space of the game is
the product of the individual strategy spaces

S=81x8x:--x8,

If each of the individual player’s strategy spaces S; is compact, then the
combined strategy space is compact. This is an essential component of
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the Nash theorem establishing the existence of an equilibrium in a non-
cooperative game (example 2.96).

1.4 Linear Spaces

It is a fundamental property of economic quantities that they can be
added and scaled in a natural way. For example, if firm A produces y;!
units of good 1 while firm B produces y# units of the same good, the
aggregate output of the two firms is y{! + pZ. If firm A then doubles it
output while firm B reduces its output by 50 percent, their respective
outputs are 2y{' and 1yf, and their combined output is 2y;' +1y5.

Similarly lists of economic quantities can be added and scaled item by
item. For example, if y = (y,,)2,...,y,) is a production plan with net
outputs y;, 2y = (2y1,2y2,...,2y,) is another production plan in which
all the inputs and outputs have been doubled. The production plan §y
produces half the outputs (of y) with half the inputs. Similarly, if
X = (x1,X2,...,%,) and y = (y,¥2,...,yn) are two consumption bundles,
X +y is another consumption bundle containing x; + y; units of good 1,
X2 + y2 units of good 2 and so on. We can also combine adding and
scaling. The consumption bundle %(x +y) is the average of the two bun-
dles x and y. It contains %(xl + y1) units of good 1. The important point
is that adding, scaling, and averaging consumption bundles and produc-
tion plans does not change their fundamental nature. The consequence of
these arithmetic operations is simply another consumption bundle or
production plan.

A set whose elements can be added and scaled in this way is called a
linear space. Formally, a linear space is a set X whose elements have the
following properties:

Additivity
For every pair of elements x and y in X, there exists another element

X +y € X, called the sum of x and y such that

1. X +y =Yy + X (commutativity)
2. (x+y)+z=x+(y+z) (associativity)

3. there is a null element 0 in X such that x4+ 0 = x
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4. to every Xxe€ X there exists a unique clement —x e X such that
x+(—-x)=0

Homogeneity

For every element x € X and number o € R, there exists an element
ax € X, called the scalar multiple of x such that

5. (off)x = a(px) (associativity)

6. Ix=x

Moreover the two operations of addition and scalar multiplication obey
the usual distributive rules of arithmetic, namely

7. a(x+y) =oax+ay
8. (a4 f)x =ax + fx

for all x,y € X and o, € R.

We say that a linear space is “‘closed” under addition and scalar multi-
plication. A linear space is sometimes called a vector space, and the ele-
ments are called vectors.

This long list of requirements does not mean that a linear space is
complicated. On the contrary, linear spaces are beautifully simple and
possess one of the most complete and satisfying theories in mathematics.
Linear spaces are also immensely useful providing one of the principal
foundations of mathematical economics. The most important examples of
linear spaces are R and R". Indeed, the abstract notion of linear space
generalizes the algebraic behavior of R and R". The important require-
ments are additivity and homogeneity. The additional requirements such
as associativity and commutativity merely ensure that the arithmetic in a
linear space adheres to the usual conventions of arithmetic in R, in which
the order of addition or scaling is irrelevant. More subtle examples of
linear spaces include sets of functions and sets of games.

Example 1.67 (R") The set of all lists of n quantities, R", is a linear
space. Each element x € R" is an n-tuple of real numbers, that is,
X = (x1,X2,...,%,) where each x; € R. Clearly, if y = (y,y2,...,yu) I8
another n-tuple, then

X+y= (Xl +y17x2+y27~~~7xn +yn)
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is also a n-tuple, another list of numbers x; + y; in R". Similarly
oxX = (00X, 00X2, . . 00Xy )

is also a n-tuple in R". To verify that R” satisfies the above rules of
arithmetic is straightforward but tedious. For example, to verify the
commutative law (rule (1)), we note that

X+y=(X1+y5,% 4+ X + V)
:(y1+x17y2+x27"'7yn+xn)

Example 1.68 (Sequences) The set of all sequences of real numbers
{x1,x2,...} is also a linear space.

Example 1.69 (Polynomials) An expression of the form 5+ 3% —
220¢* 4 ¢7, where t € R is called a polynomial. A general polynomial can
be expressed as

X =day+ait + art* + - -+ at"

The degree of a polynomial is the highest power of ¢ in its expression. x
is of degree n, and 5 + 3¢ — 220¢* + 7 is a polynomial of degree 7. We
add polynomials by adding the coefficients of corresponding terms. For
example, if y is another polynomial

y =bo + bit+bat*> + -+ byt"

their sum (supposing that m < n) is

X+y = (ao+bo) + (a1 + b))t + (ar + b2) > + -+ + (@ + by )"
+ i " 4 at”

Similarly scalar multiplication is done term by term, so

uX = oy + oyt + aart’ + - - + aayt”

The set of all polynomials is a linear space. Polynomials are often used
in economics to provide tractable functional forms for analysis and
estimation.

Example 1.70 (The space of TP-coalitional games) Recall that a TP-
coalitional game (example 1.46) comprises
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- a finite set of players N

- for each coalition S = N, a real number w(S) that is called its worth

We use the notation G = (N,w) to denote an arbitrary game among
players N with coalitional worths {w(S):S = N}.

Given any specific game G = (N, w), if the worth of each coalition is
multiplied by some number o € ‘R, we obtain another coalitional game
among the same set of players. We can denote this game oG = (N, aw).
Similarly, given two specific games G; = (N,w;) and G, = (N, w), we
can conceive another game among the same players in which the worth of
each coalition is the sum of its worth in G; and G,. That is, in the new
game, the worth of each coalition is given by

w(S) = wi(S) + wa(S) for every S = N

We denote the construction of the new game by G| + Gy = (N, w; + w»).
We see that TP-coalitional games can be added and scaled in a natural
way, so that the set of all coalitional games among a fixed set of players
forms a linear space, which we denote 4" . The null vector in this space is
the null game in (N, 0) in which the worth of each coalition (including the
grand coalition) is zero. It is straightforward, though tedious, to verify
that the space of TP-coalitional games satisfies the other requirements of
a linear space.

One of the most common ways of making new linear spaces is by
welding together existing spaces by taking their product. In this way we
can think of R" as being the product of n copies of ‘R.

Exercise 1.121
If X7 and X; are linear spaces, then their product

X=X xX
is a linear space with addition and multiplication defined as follows:
(x1,%2) + (¥1,02) = (X1 + y1, X2 + 12)

o(x1, x2) = (oxy, 00x7)

The following standard rules of arithmetic are often used in computing
with linear spaces.
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Exercise 1.122
Use the definition of a linear space to show that

lLx+y=x+z=>y=1z
2.ox=oyanda #0=>x=y
J.ox=pfxandx#0=a=p
4. (o —pP)x=ox — fx
5.a(x—y) =oax—oay

6. a0 =0

for all x,y,ze X and «, ff € R.

Remark 1.17 (Real and complex linear spaces) We implicitly assumed in
the preceding discussion that the ““scalars” relevant to a linear space were
real numbers « € R. This corresponds to physical reality of scaling con-
sumption bundles and production plans, so it is appropriate for most
applications in economics. A linear space with real scalars is called a real
linear space. For some purposes it is necessary to extend the set of scalars
to include complex numbers, giving rise to a complex linear space. We will
encounter only real linear spaces in this book.

The consumption set and the production possibility set are not linear
spaces in their own right. A linear space is symmetrical in the sense that
—x € X for x € X. Therefore a linear space must include negative quanti-
ties, which precludes the consumption set. Although the production pos-
sibility set Y includes negative (inputs) as well as positive (outputs)
quantities, it is usually the case that production is irreversible. Conse-
quently, if y € Y is a feasible production plan, —y (which involves recov-
ering the inputs from the outputs) is not feasible, and hence —y ¢ Y.
Neither the consumption nor the production possibility set is a linear
space in its own right. However, both are subsets of the linear space R”,
and they inherit many of the attributes of linearity from their parent
space. The next example illustrates some aspects of linearity in the pro-
duction possibility set. Some further examples of linearity in economics
follow.

Example 1.71 (Production plans) We can illustrate some of the con-
sequences of the conventional rules of arithmetic in the context of pro-
duction plans. Let x, y, and z be production plans. The first rule
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(commutativity) states that the order of addition is irrelevant, x +y and
y + x are the same production plan—they produce the same outputs
using the same inputs. Similarly adding z to x + y produces the same net
outputs as adding x to y + z (associativity). The null vector is zero pro-
duction plan, in which all net outputs are zero (rule 3). Rule 7 states that
scaling the combined production plan x + y generates the same result as
combining the scaled production plans ox and ay.

Example 1.72 (Aggregate demand and supply) Consider an economy
consisting of k consumers. Suppose that each consumer i purchases the
consumption bundle x’. Aggregate demand x is the sum of the individual
purchases

x=x'"+x>+. - +x*

where for each commodity j, the total demand Xx; is the sum of the indi-
vidual demands

— 1 2 “ e k
X=X FX A X

and x} is the demand of consumer i for good ;.
Suppose that there are n producers. Each produces the net output vec-
tor y'. Aggregate supply is the sum of the supplies of the separate firms

y=y +y 4y

Equilibrium requires that aggregate demand equal aggregate supply,
that is,
X=Yy

This simple equation implies that for every commodity j, the quantity
demanded by all consumers is equal to the total quantity produced, that
is

1 2 k_ 1, .2 n
X +Xi+e X =y Fy e+
or xj = y/
Example 1.73 (Constant returns to scale) It is conventionally assumed
that it is possible to replicate any production process. That is, if y is a

feasible production plan, we assume that n x y is also feasible for every
n € N. That is, replication implies that for every n e A"
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nyeY forevery ye Y

It is often further assumed that it is feasible to scale up or down, so that
any positive scaling is feasible, that is,

oy ey for every y € Y and for every o > 0 (2)

A technology is said to exhibit constant returns to scale if the production
possibility set satisfies (2). Note that constant returns to scale is a restricted
form of homogeneity, since it is limited to positive multiples.

Example 1.74 (Inflation and average prices) Letp’ = (p{,p},...,p}) bea
list of the prices of the n commodities in an economy. If the economy
experiences 10% inflation, the prices at time ¢+ 1 are 1.1 times the prices
at time ¢, that is,

p = 11p" = (L.1p{, 1.1ps, ..., 1.1p})

Comparing the prices prevailing at two different times, if p?> can be
obtained from p' merely by scaling so that the prices of all goods change
at the same rate, we say that it is a general price change; that is, there is
some o € R such that p> = ap!. On the other hand, if the prices of differ-
ent commodities change at different rates, so that p> # ap! for any o € R,
we say that relative prices have changed. A pure inflation is an example of
a linear operation on the set of prices.

Even when relative prices change, we can summarize the prices pre-
vailing at two distinct times by computing their average

p=5(p"+p?)
where j; = (p; + p})/2 is the average price of good j.

1.4.1 Subspaces

A linear combination of elements in a set S = X is a finite sum of the form
«1X] + 0X2 + -+ ApXy

where x1,Xp,...,X, € S and oy, 0,...,0, € R. The span or linear hull of
a set of elements S, denoted lin S, is the set of all linear combinations of
elements in S, that is,

lin S = {oyx; +oaXo + -+ + Xy 1 X1, X2, ..., Xy €S, 01, 00,...,0, € R}
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Exercise 1.123
What is the linear hull of the vectors {(1,0),(0,2)} in R*?

Example 1.75 (Coalitional games) The characteristic function w of a
TP-coalitional game (N, w) € " (example 1.70) is a linear combination
of unanimity games ur (example 1.48), that is,

w(S) =Y orur(S)
T

for every coalition S = N (exercise 1.124).

Exercise 1.124
Given a fixed set of players N, each coalition 7= N determines a
unanimity game uy (example 1.48) defined by

uT(S):{l itS=>T

0 otherwise

1. For each coalition S = N, recursively define the marginal value of a
coalition by

o; = w(i)

os = w(S) — Z or

TS

(Recall that T' < S means that 7 is a proper subset of S, i.e., T < S but
T # S.) Show that

Z ar = w(S) for every S < N

TS
2. Show that
w(S) = Z orur(S)

TSN
for every coalition S = N.

A subset S of a linear space X is a subspace of X if for every x and y in S,
the combination ax + fy belongs to S, that is,

ox+fyesS for every x,y € S and o, f € R (3)
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Condition (3) combines the two principal requirements of linearity,
namely

additivity x +y e S for every x,y € S.

homogeneity ox € S for every x € S and o € R.

Every subspace of a linear space is a linear space in its own right. By
definition, it satisfies the principal requirements of additivity and homo-
geneity. These in turn imply the existence of the null vector (rule 3) and an
inverse for every vector (rule 4; exercise 1.125). Furthermore, any subset
of linear space will inherit the conventional arithmetic properties of its
parent space, thus satisfying rules 1, 2, 5, 6, 7, and 8. Therefore, to verify
that the subset S is in fact a subspace, it suffices to confirm that it satisfies
the two properties of additivity and homogeneity; that is, it is closed under
addition and scalar multiplication.

Exercise 1.125
If S < X is a subspace of a linear space X, then
1. S contains the null vector 0

2. for every x € S, the inverse —x belongs to S
Example 1.76 (Subspaces of %°) The subspaces of R> are
» the origin {0}

- all lines through the origin

+ all planes through the origin
-« R itself

Exercise 1.126
Give some examples of subspaces in R".

Exercise 1.127
Is R’ a subspace of R"?

Example 1.77 (Polynomials of degree less than n) Let %, denote the set
of all polynomials of degree less than n. Since addition and scalar multi-
plication cannot increase the degree of a polynomial, the set %, for any n
is a subspace of the set of all polynomials 2.



75

1.4 Linear Spaces

Exercise 1.128
The linear hull of a set of vectors S is the smallest subspace of X con-
taining S.

Exercise 1.129
A subset S of a linear space is a subspace if and only if S = lin S.

Exercise 1.130
If S; and S, are subspaces of linear space X, then their intersection
S1 N S, is also a subspace of X.

Example 1.78 In R°>, the intersection of two distinct planes through the
origin is a line through the origin. The intersection of two distinct lines
through the origin is the subspace {0}.

The previous exercise regarding the intersection of two subspaces can
be easily generalized to any arbitrary collection of subspaces (see exercises
1.152 and 1.162). On the other hand, the union of two subspaces is not
in general a subspace. However, two subspaces of a linear space can be
joined to form a larger subspace by taking their sum. The sum of two
subsets S| and S; of a linear space X is the set of all element x; + x;
where x; € S7 and x, € S,, that is,

Si+S={xeX:x=x]+x,X1 €S51,X2€ 5}

The sum of two sets is illustrated in figure 1.16.

S+ S
S
XL
X
5
Figure 1.16

The sum of two sets
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Exercise 1.131
If S and S; are subspaces of linear space X, their sum S; + S5 is also a
subspace of X.

Exercise 1.132
Give an example of two subspaces in R? whose union is not a subspace.
What is the subspace formed by their sum?

Linear Dependence and Independence

A element x € X is linearly dependent on a set S of vectors if x € lin S,
that is, if x can be expressed as a linear combination of vectors from S.

This means that there exist vectors Xi,X»,...,X, €S and numbers
oy, 0,...,0, € R such that
X = oX| + 02Xy + - + 0 X, 4)

Otherwise, x is linearly independent of S. We say that a set S is linearly
dependent if some vector x € S is linearly dependent on the other elements
of S, that is x € lin(S\{x}). Otherwise, the set is said to be linearly
independent.

Exercise 1.133
Show that a set of vectors S < X is linearly dependent if and only if there
exists distinct vectors X1, Xa, ..., X, € S and numbers o, o, . .., a,, not all
zero, such that

uxy + X+ Fox, =0 (5)

The null vector therefore is a nontrivial linear combination of other vec-
tors. This is an alternative characterization of linear dependence found in
some texts.

Exercise 1.134
Is the set of vectors {(1,1,1),(0,1,1),(0,0,1)} = R linearly dependent?

Exercise 1.135 (Unanimity games)

Let U={ur:T < N,T # J} denote the set of all unanimity games
(example 1.48) playable by a given set of players N. Show that U is
linearly independent.

Exercise 1.136
Every subspace S of a linear space is linearly dependent.
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1.4.2 Basis and Dimension

In an arbitrary set, the elements may be completely unrelated to one
another, for example, as in the set {Tonga, blue, wood, bread, 1, Pascal}.
In a linear space the elements are related to one another in a precise
manner, so any element can be “represented” by other elements. It is this
structure that makes linear spaces especially useful.

A basis for a linear space X is a linearly independent subset S that spans
X, that is, lin S = X. Since S spans X, every x € X can be represented as a
linear combination of elements in S. That is, for every x € X there exist
elements X, X, ...,X,; € S and numbers oy, o, ..., %, € R such that

X = o1X] 4+ 09Xy + - -+ X, (6)

Furthermore, since S is linearly independent, this representation is unique
(for the basis S). In this sense a basis encapsulates the whole vector space.
It is a minimal spanning set.

Exercise 1.137 (Unique representation)
Show that the representation in equation (6) is unique, that is, if

X = o1X] + 00Xy + -+ 04Xy
and also if

X = X1 + foxo + - + B, Xy
then o; = f5; for all 1.

Exercise 1.138

Every linear space has a basis. [Hint: Let P be the set of all linearly
independent subsets of a linear space X. P is partially ordered by inclu-
sion. Use Zorn’s lemma (remark 1.5) to show that P has a maximal ele-
ment B. Show that B is a basis of X]

Example 1.79 (Standard basis for R") The set of unit vectors

e =(1,0,0,...,0)
e, =(0,1,0,...,0)
e; =(0,0,1,...,0)
e, =(0,0,0,...,1)
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is called the standard basis for R". Every list x = (x,X2,...,X,) has a
unique representation in terms of the standard basis

X =o€ + o€y + - - -+ oyey,

Expanding this representation

X1 1 0 0
X2 0 1 0
= o . + o . + 0y .
X, 0 0 1
we see that
o] = X1,0) = X2,...,0,; = X

Example 1.80 (Standard basis for P) Let P denote the set of all poly-
nomials and B = P be the set of polynomials {1,7,¢%,¢},...} (example
1.69). Since every polynomial

X=ay+ajt+amt* +ast’ +--- €P

is a linear combination of polynomials in B, B spans P. Furthermore B is
linearly independent. Therefore B is a basis for P.

Example 1.81 (Standard basis for ¥") The set U={ur:T<N,T # &}
of unanimity game uy (example 1.48) defined by

1 ifS=2T
0 otherwise

ur(S) = {

form a basis for the linear space 4% of all TP-coalitional games amongst
a fixed set of players N (exercise 1.146).

Example 1.82 (Arrow-Debreu securities) The burgeoning field of finan-
cial economics (Duffie 1992; Luenberger 1997; Varian 1987) is founded
on a simple linear model of financial assets. The model has two periods.
In the first period (“‘today’), assets are bought and sold. In the second
period (“tomorrow”), exactly one of a finite number S states of the world
eventuate and the assets are realized, when their value depends on the
state of the world. Formally, an asset or security is a title to receive a
return or payoff r; “tomorrow” if state s occurs. Any asset is therefore
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fully described by its return vector r = (ry,r2,...,rs), which details its
prospective return of payoff in each state. Negative returns are allowed in
certain states, in which case the holder is obligated to pay r;. Conse-
quently the return vectors r belong to the linear space R5.

A special role is accorded Arrow-Debreu securities. These are (hypo-
thetical) financial assets that pay $1 if and only if a particular state of
the world occurs. The return vector of the s Arrow-Debreu security is
e, =(0,...,1,...,0), where the 1 occurs in the location s. Arrow-Debreu
securities form a basis for the linear space R° of all securities. Conse-
quently any actual financial asset r is equivalent to a portfolio of Arrow-
Debreu assets, since the return vector r can be constructed from a linear
combination of elementary (Arrow-Debreu) assets e,. For example, if
there are three states of the world, the asset with return vector (3,4,5) is
equivalent to a portfolio containing 3, 4, and 5 units respectively of the
Arrow-Debreu securities (1,0,0), (0,1,0), and (0,0, 1).

Remark 1.18 (Primary colors and the spectrum) Around 1800 the physi-
cist Thomas Young observed that all the colors of visible spectrum could
be generated by mixing three, but not less than three, pure colors. The
ability to recreate the spectrum from just three colors explains human
color vision and underlies the technology of color photography and tele-
vision. Red, green, and blue are the usually chosen as the three primary
colors. However, it is well known that other combinations also serve to
generate the spectrum. For example, Young initially chose red, yellow,
and blue as the primary colours.

Mixing colors is analogous to the linear combination of vectors in a
linear space. A set of primary colors represents the spectrum in the same
sense in which a basis represents a linear space. Any color can be obtained
as a linear combination of the primary colors, while fewer than three pri-
mary colors is insufficient to generate the whole spectrum. Other colors
can be substituted for one of the primary colors to provide a different but
equally adequate spanning set.

Exercise 1.139

Is {(1,1,1),(0,1,1),(0,0, 1)} a basis for R3Ts {(1,0,0),(0,1,0),(0,0,1)}?
A linear space which has a basis with a finite number of elements is said

to be finite dimensional. Otherwise, the linear space is called infinite dimen-

sional. In a finite-dimensional space X, every basis has the same number

of elements, which is called the dimension of X and denoted dim X.
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Exercise 1.140
Any two bases for a finite-dimensional linear space contain the same
number of elements.

Exercise 1.141 ( Coalitional games 4")
The linear space 4" of TP-coalitional games has dimension 2" — 1 where
n is the number of players.

The following facts about bases and dimension are often used in practice.

Exercise 1.142
A linearly independent set in a linear space can be extended to a basis.

Exercise 1.143
Any set of n+ 1 elements in an n-dimensional linear space is linearly
dependent.

The next two results highlight the dual features of a basis, namely that
a basis is both

- a maximal linearly independent set

+ a minimal spanning set

Exercise 1.144
A set of n elements in an n-dimensional linear space is a basis if and only
if it is linearly independent.

Exercise 1.145
A set of n elements in an n-dimensional linear space X is a basis if and
only if it spans X.

Exercise 1.146 (Standard basis for 4")
Show that the set of unanimity games U = {uy: T =< N, T # &} forms a
basis for the space of TP-coalitional games %" .

As a linear space in its own right, a subspace has a unique dimension.
The dimension of a subspace cannot exceed that of it parent space. Fur-
thermore a proper subspace of a finite-dimensional space necessarily has a
lower dimension (and a smaller basis) than its parent space.

Exercise 1.147 ( Dimension of a subspace)
A proper subspace S = X of an n-dimensional linear space X has dimen-
sion less than n.
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Finite-dimensional linear spaces are somewhat easier to analyze, since our
intuition is contradicted less often and there are fewer pathological cases.
Furthermore there are some results that only hold in finite-dimensional
spaces. For the most part, however, finite- and infinite-dimensional spaces
are completely analogous. Although infinite-dimensional spaces play an
important role in more advanced analysis, the linear spaces encountered
in this book will usually be finite dimensional.

Coordinates

The unique numbers oy, oy, . .., o, that represent a vector x with respect
to a given basis are called the coordinates of x relative to the basis. It is
important to note that the coordinates vary with the chosen basis (exercise
1.148). Some bases offer more convenient representations than others. For
example, in R", the coordinates of any n-tuple x = (x1,x2,...,X,) with
respect to the standard basis is simply the components of x (example 1.79).
Similarly the coordinates of a polynomial with respect to the standard
basis for P (example 1.80) are the coefficients of the polynomial, since
every polynomial x € P,

x:a0+alt+a2t2+a3t3+~~

Despite the simplicity of these representations, it is important to remember
the distinction between an element of a linear space and its coordinates
with respect to a particular basis.

Exercise 1.148

What are the coordinates of the vector (1,1, 1) with respect to the basis
{(1,1,1),(0,1,1),(0,0,1)}? What are its coordinates with respect to the
standard basis {(1,0,0), (0, 1,0),(0,0,1)}?

Remark 1.19 (Notation) Choice of notation involves a trade-off between
consistency and flexibility. We will consistently use a boldface, for exam-
ple x and y, to denote elements of a linear space. We will use subscripts
to denote their coordinates with respect to a particular basis (which will
almost always be the standard basis), as in

X = (X1,X2,...,Xy)

The coordinates are always numbers (scalars) and will be in the ordinary
face.
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We will use both subscripts and superscripts to label particular elements
of a linear space. Therefore x; and y“ are particular vectors, while y;!
is the first coordinate of y# with respect to a particular basis. The alter-
native convention of reserving subscripts for coordinates, and using
superscripts to distinguish vectors, is too inflexible for our purposes. In
economic models we will often have two or more sources of labels for
vectors, and the use of both subscripts and superscripts will enhance
clarity. For example, we might need to label strategy choices or con-
sumption bundles by player or agent (subscript) and also by time period
(superscript).

Weighted Sums and Averages

Subspaces of a linear space X are those sets that contain arbitrary
weighted sums of their elements. That is, S = X is a subspace if

X = 01X] + 00Xy + -+ 00X, €S

for all x;,Xs,...,x, €S, and o; € R. We have already seen how permit-
ting arbitrary weighted sums is too general for some important sets in
economics, such as consumption and production sets.

However, restricted classes of weighted sums occur frequently in eco-
nomics. In production theory, it is natural to consider nonnegative weighted
sums of production plans. In the theory of the consumer, it is appropriate
to average different consumption bundles. The weighted average a set of
elements {x;,Xy,...,X,} in a linear space is a weighted sum

X = 01X] + 00Xy + -+ Xy

in which the weights are nonnegative and sum to one, that is, o; > 0 and
o) +op+ -+ o, = 1. Each of these restricted weighted sums character-
izes a class of sets with special properties. These include affine sets, convex
sets, and convex cones, whose relationships are detailed in table 1.2. We
now consider each class in turn. Convex sets and cones are absolutely

Table 1.2
Classes of subset in a linear space

>~ o; unrestricted Sop=1
o =0 Subspace Affine set

o >0 Convex cone Convex set
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fundamental in mathematical economics and game theory, and these sec-
tions should be studied carefully. Affine sets lie midway between convex
sets and subspaces. They play a less prominent role and are included here
for completeness.

1.4.3 Affine Sets

Subspaces are the n-dimensional analogues of straight lines and planes
passing through the origin. When translated so that they do not pass
through the origin, straight lines, planes, and their analogues are called
affine sets. The theory of affine sets closely parallels the theory of sub-
spaces, for which they are a slight generalization. The solutions of a sys-
tem of linear equations form an affine set (exercise 3.101). Affine sets also
occur in the theory of simplices, which are used in general equilibrium
theory and game theory.

A subset S of a linear space X is called an affine set if for every x and y
in S the combination ax + (1 — a)y belongs to S, that is,

ox+ (1—o)ye S for every x,y € S and o € R
For distinct x and y in X, the set of all points
{ox+ (1 —a)y:ae R}

is called the line through x and y (figure 1.17). It is the straight line
through x and y and extending beyond the endpoints in both directions. A
set is an affine if the straight line through any two points remains entirely
within the set. Affine sets have many synonyms, including linear mani-
folds, linear varieties, and flats.

ax+ (1 —a)y

Figure 1.17
The line through x and y
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For every affine set S that does not necessarily pass through the origin,
there is a corresponding subspace that does. That is, there is a unique
subspace ¥ such that

S=x+V

for some x € S. We say that S is parallel to V. In R°, affine sets include
planes, straight lines, and points. The following exercises formalize the
relationship between affine sets and subspaces.

Exercise 1.149
In any linear space every subspace is an affine set, and every affine set
containing 0 is a subspace.

Exercise 1.150
For every affine set S there is a unique subspace V such that S =x+ V'
for some x € S.

Exercise 1.151
Let X be a linear space. Two affine subsets S and T are parallel if one is a
translate of the other, that is,

S=T+x for some x e X

Show that the relation S is parallel to 7 is an equivalence relation in the
set of affine subsets of X.

Example 1.83 (R%) Let x and y be two points in R*. The straight line
through x and y is an affine set. It is a subspace if and only if the straight
line passes through the origin (figure 1.18).

Example 1.84 (%°) In R the affine sets are
%

- all points x € R*

+ all straight lines

« all planes

<R3

Exercise 1.152
The intersection of any collection of affine sets is affine.
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7
/

Figure 1.18
An affine set in the plane

The dimension of an affine set is defined as the dimension of the sub-
space to which it is parallel (exercise 1.150). Affine sets of dimension 0, 1,
and 2 are called points, lines, and planes respectively.

The proper affine subsets of a linear space X are partially ordered by
inclusion. Any maximal element of this partially ordered set is called a
hyperplane. That is, a hyperplane is a maximal proper affine subset, the
biggest possible affine set that is not the whole space. In an n-dimensional
space, every (n— 1)-dimensional affine set is a hyperplane. Lines and
planes are hyperplanes in R> and R> respectively.

Exercise 1.153

Let H be a hyperplane in a linear space X. Then H is parallel to unique
subspace V such that

1. H=xo+ V for some xo € H

2.x0eVeH=V

3. Ve X

4. X =1lin{V x,} for every x; ¢ V

5. for every xe X and x; ¢ V, there exists a unique o € R such that
X

=oax; +vforsomeveV

Example 1.85 (Preimputations: feasible outcomes in a coalitional game)
The set of feasible outcomes in a TP-coalitional game with transferable
payoff (example 1.46)
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ieN

X = {XG‘R”: in = w(N)}

is a hyperplane in R". In other words, it is an affine subset of dimension
n — 1. Elements of X are sometimes called preimputations.

Exercise 1.154
Show that

X = {xe R": Zx,- = w(N)}
ieN
is an affine subset of R".
Affine Combinations and Affine Hulls

Linear combinations of vectors in a linear space allowed arbitrary sums.
Slightly more restrictive, an affine combination of vectors in a set S = X is
a finite sum of the form

01Xy + 00Xp + -+ Xy

where X1,Xs,...,X, €S, aj,00,...,0, e Rand oy +o0 + -+ 0o, = 1.
Analogous to the linear hull, the affine hull of a set of vectors S,
denoted aff S, is the set of all affine combinations of vectors in S, that is,

aff S = {oux; +ooxp + -+ + X, -
X1,X2,...,X, €S,
0,00, ...,0, ENR
A+t Ao, =1}
The affine hull of a set S is the smallest affine set containing S.

Example 1.86 The affine hull of the standard basis {e;,e;,e;} for R is
the plane through the points (1,0,0), (0, 1,0), (0,0, 1). It has dimension 2.
By contrast, the linear hull of the three vectors {e, e, es} is the whole
space R°.

Exercise 1.155
A set Sin a linear space is affine if and only if S = aff S.
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Exercise 1.156
Is R’ an affine subset of R"?

Affine Dependence and Independence

A vector X € X is affinely dependent on a set S of vectors if x € aff S,
that is, if x can be expressed as an affine combination of vectors from
S. This means that there exist vectors Xi,Xz,...,X, € S and numbers
0,0, ...,0, € R with oy + oy + - -+ + &, = 1 such that

X = o1X| + 02Xy + - - + 0,X, (8)

Otherwise, X is affinely independent of S. We say that a set S is affinely
dependent if some vector x € S is affinely dependent on the other elements
of S, that is, x € aff (S\{x}). Otherwise, the set is affinely independent.

Exercise 1.157
The set S = {x;,xa,...,X,} is affinely dependent if and only if the set
{xy — x1,X3 — X1, ...,X, — X1 } is linearly dependent.

Exercise 1.157 implies that the maximum number of affinely indepen-
dent elements in an n-dimensional space is z + 1. Moreover the maximum
dimension of a proper affine subset is n. Analogous to exercise 1.133, we
have the following alternative characterization of affine dependence.

Exercise 1.158
The set S = {x1,Xa,...,X,} is affinely dependent if and only if there exist
numbers oy, dy, . .., &, not all zero, such that

o1X] + 00Xy + -+ oX, = 0
with oy +0p +---+a, =0.

Analogous to a basis, every vector in the affine hull of a set has a
unique representation as an affine combination of the elements of the
set.

Exercise 1.159 (Barycentric coordinates)
If S = {x1,xa,...,X,} is affinely independent, every x € aff S has a unique
representation as an affine combination of the elements of S; that is, there
are unique scalars o, o, .. ., o, such that

X =01X] + 00Xy + -+ 04Xy
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Figure 1.19
The line joining two points

with o + 0oy +---+ o, = 1. The numbers a;,a,...,a, are called the
barycentric coordinates of x with respect to S.

1.4.4 Convex Sets

A subset S of a linear space X is a convex set if for every x and y in
S, the weighted average ox + (1 — o)y with 0 < o < 1 belongs to S, that
is,

ox+ (Il —a)yeS  foreveryx,ye S, and0<a <1 9)

For distinct x and y in X, the set of weighted averages or convex
combinations

{ox+(1—a)y:0<a<1}

is the straight line joining the two points (figure 1.19). A set is convex if
the line joining any two points remains entirely within the set (figure 1.20).
Note that X and ¢ are trivially convex.

In an obvious extension of the notation for an interval, we will let [x, y]
denote the line joining two points x and y, that is,

X,y ={XeX:X=ax+ (1l —a)y,0<a <1}

Similarly (x,y) denotes the line joining two points, but excluding the end
points, that is,

(x,y) ={XeX:X=ax+ (1 —a)y,0<a<l1}
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Convex Nonconvex

Figure 1.20
Convex and nonconvex sets

Exercise 1.160 (Intervals)

Show that the open interval (a,b) and the closed interval [a,b] are both
convex sets of R with the natural order (example 1.20). The hybrid inter-
vals [a,b) and (a,b] are also convex. Show that intervals are the only
convex sets in ‘R.

Example 1.87 (Consumption set) If x and y are two consumption bundles,
their weighted average ax + (1 — a)y is another consumption bundle con-
taining a weighted average of the amount of each commodity in x and y.
More specifically, the consumption bundle %x + %y contains the average
of each commodity in x and y, that is,

IX+3Y = (X1 +301,3%2 502,03 % +30n)
The consumption set X is a convex subset of R’}.

Example 1.88 (Input requirement set) Recall that the input requirement
set V(y) € R details the inputs necessary to produce y units of a single
output. Assume that x; and x, are two different ways of producing y.
For example, x; might be a capital intensive production process, whereas
x; might use less capital and relatively more labor. A natural question is
whether it is possible to combine these two production processes and still
produce y, that is does ax; + (1 — a)x; belong to ¥ (y). The answer is yes
if V() is a convex set. In producer theory, it is conventional to assume
that V() is convex for every output level y, in which case we say that the
technology is convex.
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Exercise 1.161
The core of a TP-coalitional game is convex.

Exercise 1.162
The intersection of any collection of convex sets is convex.

Example 1.89 (Slicing an egg) As an illustration of the preceding result,
consider slicing an egg. An egg is a good example of a convex set. Observe
that no matter in what direction we slice an egg, provided that the slices
are parallel, the slices are also convex. With just a little license, we can
think of slices as resulting from the intersection of two convex sets, the
egg and the plane (affine set) containing the knife. Provided that the knife
does not deviate from a single plane, we are guaranteed a convex slice. A
banana illustrates that the converse is not true. A banana will also pro-
duces convex slices, but the banana itself is not a convex set.

As the preceding example illustrates, a set may have convex cross
sections without itself being convex. This is an important distinction in
producer theory.

Example 1.90 (Convex technology) The input requirement set V' (y) is a
cross section of the production possibility set Y. It is conventional to
assume that the input requirement set ¥ (y) is convex for every y. This is
less restrictive than assuming that the production possibility set Y is con-
vex. Exercise 1.162 demonstrates that

Y convex = V(y) convex for every y

but the converse is not generally true. If the technology exhibits increasing
returns to scale, Y is not convex although V' (y) may be. Technology
emulates the banana rather than the egg.

Exercise 1.163
Devise a formal proof of

Y convex = V(y) convex for every y

Sums and products of convex sets are also convex, as detailed in the
following exercises. Convexity of a sum is used in establishing the exis-
tence of a general equilibrium in an exchange economy, while convexity
of the product is used in establishing the existence of a noncooperative
equilibrium of a game.
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Exercise 1.164 (Sum of convex sets)
If {S1,S2,...,S,} is a collection of convex subsets of a linear space X,
their sum S + 5> + - -- + S, is also a convex set.

Exercise 1.165 ( Product of convex sets)

If §1,8,,...,S, are convex subsets of the linear spaces X, X3,..., X,
their product S; x S, x --- x S, is a convex subset of the product space
X1 x Xp x -+ x X,

Example 1.91 (Aggregate production possibility set) Suppose that an
economy contains n producers dealing in m commodities. The technology
of each producer is summarized by its production possibility set Y/ < R™.
Aggregate production y is the sum of the net outputs of each of the pro-
ducers y/, that is,

y:y1_|_y2_|_..._|_y"7

The set of feasible aggregate production plans, the aggregate production
possibility set, is the sum of the individual production sets

Y=Y'4+ ¥’ +... 4 Y"cR"

The aggregate net output y is feasible if and only if y = y! + y?> + --- +y”
and y/ € Y/ for every j. A sufficient condition for the aggregate produc-
tion possibility set Y to be convex is that each firm has a convex produc-
tion set (exercise 1.164).

Exercise 1.166
S convex = oS convex for every o € R.

Exercise 1.167
If {S1,S5,...,S,} is a collection of convex subsets of a linear space X, any
linear combination a; Sy 4+ ¢Sy + - - - + o,S,, o; € R is also a convex set.

Exercise 1.168 is a useful characterization of convex sets.

Exercise 1.168
A set S'is convex if and only if S = aS + (1 — «)S for every 0 <o < 1.

Exercise 1.169
The collection of all convex subsets of a linear space ordered by inclusion
forms a complete lattice.
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Convex Combinations and Convex Hulls

A convex combination of elements in a set S = X is a finite sum of the
form

01Xy + 00X2 + - -+ Xy

where X1,Xy,...,X, € Sand oy, 0,...,0, € Ry withoy +op+--- +a, = 1.
The weights o; are nonnegative fractions between 0 and 1. In many
applications the weights have a natural interpretation as proportions or
probabilities. The convex hull of a set of vectors S, denoted conv S, is the
set of all convex combinations of vectors in S, that is,

conv S = {a1X; + 02Xa + -+ + 04Xy, :
X1,X2,...,X, €S,
0,00, .., 0 € Ry
o +on+ 4o, =1}

See figure 1.21.

The definition of a convex set (9) requires that it contain the convex
combination of any rwo elements. An equivalent criterion, which is often
used in practice, requires that a convex set contains the convex combina-
tion of an arbitrary number of elements.

Exercise 1.170
A set is convex if and only if it contains all convex combinations of its
elements.

Exercise 1.171
The convex hull of a set of vectors S is the smallest convex subset of X
containing S.

Figure 1.21
Two convex hulls
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Exercise 1.172
A set S'is convex if and only if S = conv S

A useful fact is that taking sums and convex hulls commutes. That is,
the convex hull of the sum of a collection of sets is equal to the sum of
their convex hulls.

Exercise 1.173
For any finite collection of sets {S|,S2,...,S,},

n n
conv E S, = E conv S;
i=1 i=1

[Hint: Establish the result for n = 2. The generalization to any finite 7 is
immediate. ]

Remark 1.20 (Shapley-Folkman theorem) Let {S,S,...,S,} be a col-
lection of nonempty (possibly nonconvex) subsets of an m-dimensional
linear space, and let x belong to conv Y| S;. Then by the previous exercise

n
X = E X;
i=1

where x; € conv S;. The Shapley-Folkman theorem shows that all but at
most m of the x; actually belong to S;. In this sense

n n
conv g S~ E S
i=1 i=1

The sum of a large number of sets is approximately convex.

This is relevant in economic models, where convexity is a common
assumption. It is comforting to know that aggregation tends to convexify.
Even if convexity is not appropriate for individual economic agents, con-
vexity in the aggregate may be a reasonable approximation. For example,
suppose that the sets S; are the production possibility sets of the n pro-
ducers in an economy with m commodities. S = Y1 | S; is the aggregate
production possibility set (example 1.91). In a large economy with many
more producers n than commodities m, the aggregate production possi-
bility set may be reasonably convex even if the technology of individual
firms is nonconvex. Proof of the Shapley-Folkman theorem requires
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additional tools. We will give two different proofs in chapter 3 (exercises
3.112 and 3.210).

The following example demonstrates the convexifying effect of
aggregation.

Example 1.92 Let S; ={0,1},i=1,2,...,n be a collection of subsets of
R. Then

CS=30 S ={1,2,....n}
- conv S; = the closed interval [0, 1]

- conv S = [0,n]

Any real number x € conv S can be written in many ways as the sum
n
X = E Xi
i=1

where x; € [0, 1]. Among these representations, there is a least one in which
every x; except one is an integer, either 0 or 1. In this sense conv S =~ S.
For example, with n = 3, the number 2.25 can be written as 2.25 = 0.80 +
0.75 + 0.7. It can also be represented as 2.25 =1+ 1+ 0.25.

So far our treatment of convex sets has paralleled exactly our presen-
tation of subspaces and affine sets, which are both particular examples of
convex sets. In general, however, convex sets are less regularly structured
than affine sets and subspaces. Consequently there is no direct counterpart
of a basis for a convex set. However, there is an analogous representation
theory that we discuss in the next subsection. We then turn to some new
concepts which arise in general convex sets, and some special classes of
convex sets.

Dimension and Carathéodory’s Theorem

The dimension of a convex set is measured in terms of its affine hull.
Specifically, the dimension of a convex set S is defined to be the dimension
of its affine hull (exercise 1.150).

Example 1.93 The affine hull of an egg is the entire three-dimensional
space R>. Hence an egg is a three-dimensional convex set. If we contem-
plate an egg slice of negligible dimension, its affine hull is the two-
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dimensional plane R2. Hence a planar egg slice is a two-dimensional
convex set.

Exercise 1.174
Suppose a producer requires # inputs to produce a single output. Assume
that the technology is convex. What is the dimension of the input require-
ment set V(y)?

By definition, any element in the convex hull of a set S can be repre-
sented as a convex combination of a finite number of elements of S. In
fact it is sufficient to take dim S + 1 distinct points. This is analogous to
the representation of elements of a subspace by a basis.

Exercise 1.175 (Carathéodory’s theorem)
Let S be a nonempty subset of a linear space, and let m = dim S =
dim aff S. Suppose that x belongs to conv S so that there exist xi,

Xy, ..., X, €8 and oy, 00,...,0, € Ry with oay +op +---+0a, =1 such
that

X = 01X] + 00Xy + -+ 4 04Xy (10)
1. If n > dim S + 1, show that the elements x;, x5, ..., X, € S are affinely
dependent, and therefore there exist numbers S, f,,...,f,, not all zero,
such that

Bixi+Boxa+ -+ f,x, =0 (11)
and

Pr+pBy+--+B,=0
2. Show that for any number ¢, X can be represented as

n

X =Y (04— 1B)xi (12)

i=1

3. Let ¢t = min;{o;/f;: f; > 0}. Show that o; — ¢8;, > 0 for every ¢ and
o; — tff; = 0 for at least one 7. For this particular ¢, (12) is a convex rep-
resentation of x using only # — 1 elements.

4. Conclude that every x € conv S can be expressed as a convex combi-
nation of at most dim S + 1 elements.
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None Finite Infinite

Figure 1.22
Sets with and without extreme points

Extreme Points and Faces

An element x in a convex set S is an extreme point or vertex of S if it does
not lie on any line segment in S; that is, there are no two distinct points x;
and x, in S such that

x =ox; + (1 —a)xy

for some o € (0,1). In other words, an extreme point cannot be written
as the convex combination of other points in the set. A set may have no
extreme points, a finite number or an infinite number of extreme points.
Figure 1.22 illustrates the three cases. We use ext(.S) to denote the set of
extreme points of S.

Exercise 1.176
If x is not an extreme point of the convex set S < X, then there exists
yeXsuchx+yeSandx—yeS.

A convex subset F of a convex set S is called a face of S if no point of F
is an interior point of a line segment whose end points are in .S but not in
F. Formally, if for any x,y € S, the point X = ax + (1 — a)y € F for any
o € (0,1), then x and y are also in F. An extreme point is a face containing
a single point (figure 1.23).

Example 1.94 For any ¢ > 0, consider the “cube”
C={x=(x1,x2,...,x) eR": —c<x;<¢,i=1,2,...,n}

Each point of the form (+¢,+¢,... +¢) is a vertex of the cube. Each
point of the form (xi,...,x—1,+¢,Xi41,...,X,), Where x; is fixed at +c,

lies on a face of cube. A three-dimensional cube is illustrated in figure 1.24.
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Extreme points

Face

Figure 1.23
Faces and extreme points

P

Figure 1.24
A three-dimensional cube

Exercise 1.177
1. Show that the cube C, = {xeiRZ: —c<x1<¢,—c<xy<c}in R?
lies in the convex hull of the points (+ ¢, +¢), that is,

ceamf(0).() (5 ()

2. Suppose for any n=2,3,..., that the cube C,_; < conv{(+¢, *c,

...,+¢)} <« R Show that n-dimensional cube C, = conv{(+c,+c,
L, to)} e R

3. Conclude that the only extreme points of the cube

Co={x=(x1,x2,...,%) €R": —c<x;<¢,i=1,2,...,n}

are the points of the form (+¢,+¢,... +¢).

4. Show that C, is the convex hull of its extreme points.
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Polytope Simplex

Figure 1.25
A polytope and a simplex

Exercise 1.178
If Fis a face of a convex set S, then S\ F is convex.

Exercise 1.179 will be used in chapter 3.

Exercise 1.179
Let S be a convex set in a linear space:

1. S and (¥ are faces of S.

2. The union of a collection of faces of S is a face.

3. The intersection of any nested collection of faces of S is a face.

4. The collection of all faces of S (partially ordered by inclusion) is a
complete lattice.

Polytopes and Simplices

The simplest of all convex sets are convex polytopes and simplices. The

convex hull of a finite set of points E = {x;,Xa,...,X,} is called a poly-
tope (figure 1.25). If in addition the points x;, Xz, . .., X, are affinely inde-
pendent, conv E is called a simplex with vertices Xx;, X», ..., X,. Polytopes

and simplices figure prominently in optimization theory, general equilib-
rium theory, and game theory.

The following exercise shows that polytopes have a convenient repre-
sentation in terms of their extreme points. This result is a generalization of
exercise 1.177. It will be further generalized in chapter 2 to compact con-
vex sets, a result known as the Krein-Milman theorem (exercise 3.209).

Exercise 1.180
Let E be the set of extreme points of a polytope S. Then S = conv E.
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Exercise 1.181

Let S be the simplex generated by the finite set of points E =
{X1,X2,...,X,}. Show that each of the vertices x; is an extreme point of
the simplex.

Simplices are the most elementary of convex sets and every convex set
is the union of simplices. For this reason results are often established for
simplices and then extended to more general sets (example 1.100, exercise
1.229). The dimension of a simplex with n vertices is n — 1. Since the ver-
tices of a simplex are affinely independent, each element in a simplex has a
unique representation as a convex combination of the vertices (exercise
1.159). The coefficients in this representation are called the barycentric
coordinates of the point.

Example 1.95 (Standard simplex in R") The standard or unit simplex in

R" is the (n — 1)-dimensional convex hull of the unit vectors e, e,,. .., e,,
that is,
A" = conv{e;,es,...,e,}

Elements x of A"~! are nonnegative vectors in R” whose components sum
to one, that is,

A = {xeiR”:xiZOand in: 1}

i=1

Each component Xx; is a fraction between 0 and 1. Standard simplices
provide a natural space for the weights in convex combinations and for
probability distributions (example 1.98). The one-dimensional simplex is a
line, the two-dimensional simplex is a triangle, and the three-dimensional
simplex is a tetrahedron (figure 1.26).

Exercise 1.182
Every n-dimensional convex set contains an n-dimensional simplex.

The following examples give some impression of the utility of simplices
in economics and game theory.

Example 1.96 (Sectoral shares) One of the most striking features of
economic development is the changing sectoral composition of output
and employment, where the predominance of economic activity shifts
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Al A? A3
Figure 1.26

Some simplices

Agriculture

1879

1980
Manufacturing Services

Figure 1.27
Illustrating the changing sectoral distribution of employment in the United States

from agriculture to manufacturing, and then to services. This transition
can be illustrated graphically by plotting sectoral shares in the two-
dimensional unit simplex, where each point represents the respective
shares of agriculture, manufacturing and services.

Figure 1.27 illustrates this structural change in the United States over
the period 1879 to 1980. In 1879, 50 percent of the workforce were
engaged in agriculture and mining. By 1953, this had declined to 12 per-
cent, falling to 4.5 percent in 1980. For nearly a century, employment
growth was shared by both manufacturing and services. Recently, how-
ever, manufacturing employment has also declined as the United States
moves inexorably toward a “‘service economy.”” By 1980 two out of every
three workers were employed in the service sector. Both the rapid decline
in agriculture and the subsequent emergence of the service economy are
graphically evident in figure 1.27.



101

1.4 Linear Spaces

Example 1.97 (Imputations: reasonable outcomes in a coalitional game)
The outcome x € X of a TP-coalitional game is an allocation of the
available sum w(N) among the players so that

X = {xefﬁ”: in = w(N)}

ieN

Each player i receives x;. Assuming that the players are rational, it seems
reasonable to assume that no player will agree to an outcome that is infe-
rior to that which she can obtain acting alone. Each player will insist that
x; = v({i}). The presumption of individual rationality requires that

x; = v({i}) for every i e N

Any feasible, individually rational outcome in a coalitional game is called
an imputation. Typically the set of imputations

I={xeX:x;>v({i})} foreveryie N

is an (n — 1)-dimensional simplex in R".
Consider the three-player game

w({1}) =10 w({1,2}) =50

w({2}) =20 w({L,3}) =60 w({1,2,3}) =100

w({3}) =30 w({2,3}) =70

The set of imputations is

I={xeR:x;>10,x; >20,x3 > 30,x; +x3+x3 = 100} (13)

This is illustrated by the dark shaded area in the left-hand panel of figure
1.28, which is a two-dimensional simplex. The larger lightly shaded area
comprises all nonnegative allocations.

A more concise pictorial representation of the set of imputations can be
obtained by projecting the two-dimensional simplex onto the plane from a
suitable viewpoint. This gives us a planar representation of the set impu-
tations, which is illustrated by the dark shaded area in the right-hand
panel of figure 1.28. Each of the vertices is labeled with one of the players.
The payoff to each player is measured from the baseline opposite the vertex
corresponding to the player. Each point in the simplex has the property
that the sum of its coordinates is a constant v(N), which is the sum
available for distribution.
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100

100" |

Figure 1.28
Outcomes in a three-player cooperative game

Exercise 1.183
The set of imputations of an essential TP-coalitional game (N, w) is an
(n — 1)-dimensional simplex in R".

Example 1.98 (Mixed strategies) In a finite strategic game, each player i
has a set S; = (s1,52,...,5n) of possible strategies. Each element of s; € S;
is called a pure strategy. In a static strategic game (example 1.2 and
section 1.2.6), each pure strategy corresponds to an action so that S; = A4;.
In a dynamic game (example 1.63), a pure strategy s; may be a sequence
of actions to be carried out by player i. It is often advantageous for a
player to choose her strategy randomly in order to keep her opponent
guessing. Such a random choice is called a mixed strategy. Formally, a
mixed strategy for player i is a probability distribution over her set of pure
strategies. That is, a mixed strategy is a set of probability weights
p = (p1,p2,...,Pm), where p; is the probability attached to pure strategy
s;. Since p is a probability distribution

c0<p <l,j=12,....m
: Zjnilpjzl

Each mixed strategy p corresponds to a point in the unit simplex A”~!.
Therefore the set of mixed strategies is the (m — 1)-dimensional unit
simplex.

Example 1.99 (Rock-Scissors—Paper) If one player plays a pure strategy
in Rock—Scissors—Paper (exercise 1.5), this can always be exploited by the
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Paper

Rock Scissors

Figure 1.29
Mixed strategies in Rock—Scissors—Paper

other player. Therefore it is necessary to play a mixed strategy. One par-
ticular mixed strategy is o = (§,1,%) which involves playing “Rock’ with
probability %, “Scissors” with probability %, and “Paper” with probability
L The set ¥ of all mixed strategies is the two-dimensional unit simplex
(figure 1.29). The vertices represent the pure strategies, while the edges
represent mixtures of two of the three strategies. Any point in the interior
of the simplex involves a mixture of all three strategies—it is called a
completely mixed strategy. We show later that the mixed strategy (3,1,
in which the player chooses each action with equal probability is the
unique equilibrium of the game.

Example 1.100 (The price simplex) Let (p;,p,,...,p,,) denote the prices
of the m goods in a general equilibrium model. Sometimes it is convenient
to normalize the prices by dividing each price by the sum of all prices,
defining the normalized price

pi= %
Zj:l pj

This normalization preserves relative prices and has the consequence that
the normalized prices p; always sum to one. Therefore the normalized
price vectors are contained in the (m — 1)-dimensional unit simplex

A = {pei}{:’f: Zpil}
i=1

We will use this normalization in proving the existence of a general equi-
librium in an exchange economy (example 2.95).
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L9 Zo Iy

Figure 1.30
Some cones in %2

1.4.5 Convex Cones
A subset S of a linear space X is a cone if oS = S for every o > 0, that is,

ax € S for every x e S and o > 0

This a slight relaxation of the homogeneity requirement of a linear space.
If, in addition, S is convex, it is called a convex cone (figure 1.30). Note
that every cone contains 0, which is called the vertex.

Exercise 1.184

Give examples of

1. a cone that is not convex

2. a convex set that is not a cone

3. a convex cone

Example 1.101 (Constant returns to scale) A production technology

exhibits constant returns to scale if any feasible production plan y remains
feasible when it is scaled up or down, that is,

aye Y foreveryye Y and o > 0

In other words, the technology exhibits constant returns to scale if the
production possibility set Y is a cone.

Convex cones provide a slight generalization of subspaces. A subspace
of linear space is a subset that is closed under addition and scalar
multiplication. A convex cone is a slightly broader class of a set that is
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closed under addition and nonnegative multiplication. That is, S is a
convex cone if

ox+fyeS for every x,ye Sand o, € R,

Compare this with equation (3) defining a subspace. This alternative
characterization of a convex cone is established in exercise 1.186.

Exercise 1.185
Show that set R’ is a cone in R".

Exercise 1.186
A subset S of a linear space is a convex cone if and only if

ox+ fyeS for every x,y € S and o, € R,

Exercise 1.187
A set Sis a convex cone if and only if

1. oS < S forevery a« >0
2.85+85¢<S

Convex cones arise naturally in economics, where quantities are required
to be nonnegative. The set of nonnegative prices vectors is a convex cone
(') and the production possibility set is often assumed to be a convex
cone (example 1.102).

Example 1.102 (Convex technology) Among the typical assumptions on
technology cited by Debreu (1959, pp. 41-42) are

additivity Y+ Y < Y

constant returns to scale «Y < Y for every « > 0

Additivity requires that production processes be independent. Together,
these conventional assumptions imply that the production possibility set
Y is a convex cone. In general, convexity is too stringent a requirement to
demand of the technology.

Exercise 1.188

Another conventional (and trivial) assumption on technology cited by
Debreu (1959, p. 41) is 0 € Y, which he calls the possibility of inaction.
Show that the three assumptions
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convexity Y is convex
additivity Y+ Y < Y

possibility of inaction 0 € Y
together imply that the technology exhibits constant returns to scale.

Exercise 1.189 (Superadditive games)
A natural assumption for TP-coalitional games is superadditivity, which
requires that coalitions cannot lose through cooperation. Specifically, a
TP-coalitional game is superadditive if

w(SuT)=w(S)+w(T)

for all distinct coalitions S, 7, S~ T = . Show that the set of super-
additive games forms a convex cone in ¥” (example 1.70).

Analogous to convex sets exercises 1.162 and 1.164, cones are preserved
through intersection and addition.

Exercise 1.190
If {S1,S,,...,S,} is a collection of cones in a linear space X, then

-+ their intersection (), S;
+ their sum S; + S, +---+ S,

are also cones in X.
Nonnegative Linear Combinations and Conic Hulls

A nonnegative linear combination of elements in a set S < X is a finite sum
of the form

X1+ 00Xp + -+ Xy

where X1,Xo,...,X, € S and oy, %, ..., o, € Ry. The conic hull of a set of
vectors S, denoted cone S, is the set of all nonnegative combinations of
vectors in S, that is,

cone S = {ox] + Xy + - -+ AXy
X1,X2,...,X, €S,
01, 002, .-y Uy G‘J{Jﬁ}

See figure 1.31.
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Figure 1.31
The conic hull of S

Example 1.103 (Linear production model) One of simplest models of
production begins with the assumption that there are a finite number of
basic activities or production plans y,,y,,...,¥,,- These basic activities
can be operated independently at constant returns to scale, that is,

cy,tyeYforalij=12,....m

cay;e Yforalli=1,2,... mand o >0

so that the production possibility set Y is a convex cone (example 1.102).
In fact the production possibility set Y is precisely the conic hull of the
basic activities, that is,

Y= COne{yl ' Y25 ym}

Exercise 1.191
Suppose that a firm’s technology is based on the following eight basic
activities:
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y; = (—8,-5,0,10)
Ys = (_27 _47 57 _2)

which can be operated independently at any scale. The aggregate pro-
duction possibility set is

Y= COHe{Y1>y27YS7Y4ay57Y67Y77Y8}

1. Show that it is impossible to produce output without using any inputs,
that is,

yeY y>0=y=0

This is called the no-free-lunch property.
2. Show that Y does not exhibit free disposal (exercise 1.12).

3. Show that activities y,, ¥s, ¥4, and yg are inefficient. (Compare with y,,
Y1, ¥7, and y; respectively.)

4. Show that activities y; and y, are inefficient. (Compare with a combi-
nation of y; and y;.)

5. Specify the set of efficient production plans.
The following results are analogous to those for convex hulls.

Exercise 1.192
The conic hull of a set of vectors S is the smallest convex cone in X con-
taining S.

Exercise 1.193
A set S'is a convex cone if and only if S = cone S.

Carathéodory’s Theorem Again

As a convex set, the dimension of a convex cone S is defined to be the
dimension of its affine hull. However, since every cone contains 0, its
affine hull is in fact a subspace. Hence the dimension of a convex cone is
the dimension of its linear hull, the maximum number of linearly indepen-
dent elements which it contains. By Carathéodory’s theorem, any point
in a convex cone S can be represented as a convex combination of
dim S + 1 distinct points in S. In fact, because of its tighter structure,
dim S points suffices for a convex cone. This has an interesting implica-
tion for the linear production model (example 1.104).
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Exercise 1.194 ( Carathéodory’s theorem for cones)
Let S be a nonempty subset of a linear space and let m = dim cone S. For

every x € cone S, there exist xi,Xp,...,X, €S and oy, 00,...,0, € Ry
such that

X = X + Xy + - + o4X, (14)
1. If n > m = dim cone S, show that the elements x;,X,,...,Xx, € S are
linearly dependent and therefore there exist numbers f8,, $5, ..., f,, not all

zero, such that
Bixi + foxa+ -+ B,x, =0

2. Show that for any number ¢, x can be represented as

n

X = Z(“z — tB)x;

i=1

3. Let ¢t =min;{o;/f;: f; > 0}. Show that o; — 78, > 0 for every ¢ and
o; — tff; = 0 for at least one ¢. For this particular ¢, (14) is a nonnegative
representation of x using only n — 1 elements.

4. Conclude that every x e cone S can be expressed as a nonnegative
combination of at most dim .S elements.

Example 1.104 In the linear production model (example 1.103), the
production possibility set Y = cone{y;,¥,,...,¥,,} is a subset of R"
where is 7 is the number of commodities. Assume that m > n. Exercise
1.194 implies that every feasible production plan y € Y can be obtained
with at most n basic processes.

The preceding exercise can be extended to arbitrary convex sets, pro-
viding an alternative proof of exercise 1.175. This illustrates a common
technique called homogenization, in which a result is first established for
convex cones (which are easier) and then extended to arbitrary convex sets.

Exercise 1.195
Let S be a nonempty subset of a linear space, and let m = dim S =
dim aff S. Consider the set

)

illustrated in figure 1.32.
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conv S

Figure 1.32
Carathéodory’s theorem for cones

1. Show that dim cone S = dim S + 1.

2. For every x e conv S, there exists m + 1 points Xi,Xp,...,X;;1 €S
such that
X € conv{xy, X2, ..., Xpi1}

1.4.6 Sperner’s Lemma

Suppose that a simplex S is partitioned into a finite collection of sub-
simplices Sy, Ss,..., Sk = S so that S = | ) S;. If no further restriction is
placed on this collection, the subsimplices may overlap or intersect in the
middle of a face, as illustrated in figure 1.33. A simplicial partition pre-
cludes arbitrary intersections. That is, a simplicial partition of a simplex is
a partition into finitely many simplices such that either any two simplices
are disjoint or they have a common face as their intersection (figure 1.34).

Let S be a simplex with vertices {xj,Xs,...,X,}. Suppose that S is
simplicially partitioned, and let V' denote the set of all vertices of the
subsimplices. Assign to each vertex xe V' a label 1,2,...,n Such an

L\ /8

Figure 1.33
Invalid intersections of subsimplices




111

1.4 Linear Spaces

Figure 1.34
A simplicial partition

assignment is called an admissible labeling provided that

+ each vertex of the original simplex S retains its own label and

- each vertex on a face of S receives a label corresponding to one of the
vertices of that face

If one of the subsimplices has a complete set of labels 1,2, ..., n, then we
say that the subsimplex is completely labeled. Surprisingly, every admis-
sibly labeled simplicial partition has at least one completely labeled sub-
simplex, a profound result known as Sperner’s lemma.

An admissibly labeled simplicial partition of a two-dimensional simplex
is illustrated in figure 1.36. Each of the original vertices retains its own
label. Each vertex along a face of the original simplex is assigned the label
of one of the vertices of the face, while the labels assigned to the interior
points are quite arbitrary. The shaded subsimplex has a complete set of
labels 1, 2, and 3. Since the labels in the interior were assigned arbitrarily,
the existence of a completely labeled subsimplex seems implausible in gen-
eral. Suppose that the label of the vertex 2 is changed to 3. Then another
subsimplex becomes completely labeled. On the other hand, suppose that
it is changed to 1. Then three subsimplices are completely labeled.
Sperner’s lemma asserts that there is always an odd number of completely
labeled subsimplices. It is will be used to prove the Brouwer fixed point
theorem (theorem 2.6) in chapter 2.

Proposition 1.3 (Sperner’s lemma) An admissibly labeled simplicial parti-
tion of a simplex always contains at least one subsimplex that is completely
labeled.
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1 ! fl l
I T 1

Figure 1.35
An admissibly labeled partition of a one-dimensional simplex

Proof Let S be an n-dimensional simplex. We proceed by induction on
the dimension of the simplex, with one- and two-dimensional cases serv-
ing as a model for the general case.

For n = 1, let the two vertices of the one-dimensional simplex be labeled
1 and 2. An admissibly labeled simplicial partition divides the line joining
x; and x; into segments (figure 1.35) with vertices labeled 1 or 2. A seg-
ment may have no, one, or two vertices labeled 1. Let ¢ denote the
number of segments with just one vertex labeled 1, and let d denote the
number of segments with both vertices labeled 1. The total number of
1 vertices, counted segment by segment, is ¢ + 2d. But, interior vertices
have been counted twice in this total, since each interior vertex is shared
by two segments. Let a denote the number of interior 1 vertices. There is a
single boundary 1 vertex, x;. Therefore the previous count must be equal
to 2a + 1. That is,

2a+1=c+2d

which implies that ¢ is necessarily odd. If a segment has just one vertex
labeled 1, the other vertex must be labeled 2—such a segment is com-
pletely labeled. We conclude that there are an odd number of completely
labeled segments.

For n = 2, let S be the two-dimensional simplex generated by the points
X],X2,X3. Create an admissibly labeled simplicial partition (figure 1.36).
Call a side of a subsimplex distinguished if it carries both the labels 1 and
2. A subsimplex may have none, one, or two distinguished sides. (Why are
three distinguished sides impossible? See exercise 1.196.) Let ¢ denote the
number of subsimplices with one distinguished side and ¢ denote the
number of subsimplices with two distinguished sides. The total number
of distinguished sides, counted simplex by simplex, is ¢ + 2d. But every
interior distinguished side is shared by two subsimplices, and therefore
has been included twice in preceding total. Let a denote the number of
interior distinguished sides and b the number of distinguished sides on the
boundary. The previous count must be equal to 2a + b, that is,

2a+b=c+2d
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Figure 1.36
An admissibly labeled simplicial partition

Every distinguished side on the boundary is a completely labeled sub-
simplex of one-dimensional simplex. We have just shown that b is odd,
and therefore ¢ must also be odd. A subsimplex with precisely one dis-
tinguished side is completely labeled. We conclude that there are an odd
number of completely labeled subsimplices.

For n > 2, assume every admissibly labeled simplicial partition of
an (n — 1) — dimensional simplex contains an odd number of completely
labeled subsimplices. Let A be an admissibly labeled simplicial subdivision
of an n-dimensional simplex S. Call an (n — 1)-dimensional face of a sub-
simplex distinguished if it carries all the labels 1,2,...,n — 1. For each n-
dimensional subsimplex 7" € A, there are three possibilities (exercise 1.196):

+ T has no distinguished faces.
+ T has one distinguished face.

+ T has two distinguished faces.

Let ¢ denote the number of subsimplices with just one distinguished
face and d denote the number of subsimplices with two distinguished
faces. The total number of distinguished faces, counted simplex by sim-
plex, is ¢ + 2d. But, in a simplicial partition, every interior distinguished
face is shared by two subsimplices, and therefore has been included twice
in preceding total. Let a denote the number of interior distinguished faces
and b the number of distinguished faces on the boundary. The previous
count must be equal to 2a + b, that is,

2a+b=c+2d
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Every distinguished face on the boundary is a completely labeled sub-
simplex of an (n — 1)-dimensional simplex. By assumption, there are an
odd number of completely labeled subsimplices on the boundary. That is,
b is odd and therefore ¢ must also be odd. A subsimplex with precisely
one distinguished face is completely labeled. We conclude that there are
an odd number of completely labeled subsimplices.

Since we have established the result for » = 1 and » = 2, we conclude
that every admissibly labeled simplicial partition of an n-dimensional
simplex has an odd number of completely labeled subsimplices. In par-
ticular, since zero is not an odd number, there is at least one completely
labeled subsimplex. O

Exercise 1.196
Why can a subsimplex have no more than two distinguished faces?

1.4.7 Conclusion

Linear spaces and their subsets—affine sets, convex sets, and cones—are
the natural domain of the typical objects of economic analysis, such as
consumption bundles, production plans and financial portfolios, and TP-
coalitional games. Linearity reflects our physical ability to combine and
scale these basic objects into new objects of the same type.

A subspace is a subset that is a linear space in its own right, meeting the
twin requirements of linearity, namely additivity and homogeneity. Affine
sets, convex sets, and cones are subsets that retain some (but not all) of
the properties of their underlying spaces. Affine and convex sets satisfy
relaxed additivity requirements but not homogeneity. On the other hand,
a cone satisfies a relaxed homogeneity condition (without additivity). A
convex cone therefore satisfies relaxed forms of both additivity and homo-
geneity, and is therefore almost but not quite a subspace. In chapter 3 we
will note a similar relationship among linear, convex, and homogeneous
functions. Another way of distinguishing among subspaces, affine sets,
convex sets, and cones is to consider the different types of weighted sum
which they embrace, as detailed in table 1.2.

1.5 Normed Linear Spaces

We now explore sets that are simultaneously linear spaces and metric
spaces. Any linear space can be made into a metric space by equipping it
with a metric. However, to permit the fruitful interaction of the algebraic
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and geometric structure, it is desirable that the metric or distance function
respect the linearity of the space. To achieve the necessary consistency
between the algebraic and geometric structure of the space, we derive the
metric from another measure, the norm, which respects the linearity of the
space.

For any linear space X, a norm (denoted ||x||) is a measure of the size of
the elements satisfying the following properties:

~xl=0
. |xX||=0if and only if x =0

. JJox]| = || ||x]| for all & € R

B~ W =

x4yl < |Ix|| + ||y|| (triangle inequality)

A norm on a linear space X induces a metric on X in which the distance
between any two elements is given by the norm of their difference

p(x,y) =[x -l

Note how linearity is used in defining the metric. A linear space together
with a norm is called a normed linear space. It is a special metric space
with a rich interaction of the algebraic and geometric structures. In this
section, we highlight some of the features of this interaction which will be
useful later in the book.

Exercise 1.197
Show that the metric p(x,y) = ||x — y|| satisfies the properties of a metric,
and hence that a normed linear space is a metric space.

Example 1.105 (Production plans) A production plan y is a list of the net
outputs of various goods and services (y;,2,--.,Vn), where y; is the net
output of commodity i. How could we measure the ““size” of a production
plan?

One suggestion would be to sum (or average) the net outputs of all the
goods and services, as in Y ., y; or (>_I, y;)/n. However, recognizing
that some of the components will be negative (inputs), it would be more
appropriate to take their absolute values. Therefore one possible measure
of size is

n
Iyll, = Z\yi|
i=1
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Another way to compensate for the negativity of some components
(inputs) would be to square the individual measures, as in

Iyl = /D> %7
i=1

This measure, which is analogous to the standard deviation, gives greater
weight to larger quantities. Both of these measures qualify as norms,
although verifying the triangle inequality for ||y||, is a nontrivial exercise.

Another candidate for a measure of size would be to focus on one
particular component, “the output,” and measure the size of the produc-
tion plan by the quantity of this output produced. For example, assume
that good n is regarded as the principal output. Could we measure the size
of the production plan y by the quantity y,? I am afraid not. The measure
Iyl = |»;| does not satisfy the requirements of a norm, since ||y|| = 0 does
not imply that y = 0. Unfortunately, as researchers are only too aware, it
is possible to consume inputs and produce no outputs. This measure does
not induce a metric on the production possibility set.

There is a related measure which does qualify as a norm (exercise
1.198) and which induces an appropriate metric. This measure uses the
size of the largest component (input or output) as the measure of the size
of the production plan, as in

n
¥l = max |y

Each of these norms |ly||;, ||y|l, and ||y
metrics on R”.

+» induces one of the standard

Exercise 1.198
Show that ||y||, satisfies the requirements of a norm on R".

Exercise 1.199
Show that the average of the net outputs (>, y;)/n does not satisfy the
requirements of a norm on the production possibility set.

Example 1.106 (Euclidean space) The Euclidean norm ||x||, generalizes
the conventional notion of the length of a vector in two and three dimen-
sional space. In the plane (R?), the Euclidean norm is an expression of the
theorem of Pythagoras that in a right angle triangle, the square of the



117

1.5 Normed Linear Spaces

i)

[1xll2

z

Figure 1.37
The theorem of Pythagorus

length of the hypotenuse is equal to the sum of the squares of the other
two sides

2 2 2
IxI[" = [ ]” + x|

as illustrated figure 1.37. In N3, the length of the vector x = (x1, x2, x3) is

X[l = \/xF + x5 + x3

Example 1.107 (The space /) Instead of the static choice of a con-
sumption or production plan at a single point in time, consider the prob-
lem of choosing a path of consumption over a lifetime. For simplicity,
assume that there is a single commodity and let x, € ‘R denote the con-
sumption of the commodity in period z. Moreover, to avoid the problem
of uncertainty regarding the time of death, let us assume that the con-
sumer lives forever. (Alternatively, assume that the decision maker is a
social planner concerned with future as well as current generations.) A
consumption plan is an infinite sequence of instantaneous consumptions
X = (x1,X2,...). The consumption set X is the set of all such infinite
sequences of real numbers, that is,

X ={(x1,x2, .., %¢,...) : x; € R}

which is a linear space (example 1.68).

For the moment it is convenient not to exclude negative consumption
in particular periods. However, consumption in any period is typically
bounded by the available resources; that is, there exists some K such that
|x,| < K for every ¢.
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The set of all bounded sequences of real numbers x = (x1,x2,...) is a
natural setting for the study of simple dynamic models in economics.
Equipped with the norm

[[x|| = sup [x;]
1

it is a normed linear space, which is denoted /,,. In this norm the magni-
tude of any consumption plan is the absolute size of the largest con-
sumption planned at any time. /,, and related normed linear spaces are
now commonplace in dynamic economic models (e.g., Sargent 1987;
Stokey and Lucas 1989).

Exercise 1.200
Prove the following useful corollary of the triangle inequality: for any x, y
in a normed linear space

X[ = lIyll < lIx =yl

The preceding corollary of the triangle inequality implies that the norm
converges along with a sequence, as detailed in the following exercise.

Exercise 1.201
Let x, — x be a convergent sequence in a normed linear space. Then

[[%all — [Ix]
Furthermore the norm respects the linearity of the underlying space.

Exercise 1.202

Let x, — x and y, — y be convergent sequences in a normed linear space
X. The sequence (x, +y,) converges to x +y, and ax, converges to ax.
[Hint: Use the triangle inequality.]

The following corollary will be used in chapter 3.

Exercise 1.203
If S and T are subsets of a normed linear space with

« S closed and

+ T compact

then their sum S + T is closed.
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Exercise 1.204
Let ¢y be the set of all sequences of real numbers converging to zero, that is,

co ={(xn) : x, e Rand x, — 0}
Is ¢y a subspace of /,,?

Example 1.108 (Geometric series) Given a sequence of Xi,X,,X3,... of
elements in a normed linear space, their sum

X] +X) +X3+4 -

is called a series. If the sequence has only finite number of elements, then
the series has a finite number of terms and is called a finite series. Other-
wise, it is an infinite series with an infinite number of terms. What mean-
ing can we attach to such an infinite sum?

Given an infinite series, we can define the sequence of partial sums
whose nth term s, is the sum of the first n terms of the series

Sy =X +Xp+ -+ Xy

If the sequence sp,sy,... converges to some s, we say that the series
X1 + Xz + X3 + - - - converges, and we call s the sum of the infinite series,
that is,

S=X| +Xp + X34 -

In the special case where each term x, in the sequence is a constant
multiple of the previous term (x,, = fix,_1), their sum is called a geometric
series, which can be written as

X+ pX+ x4 -

where x = x;. A geometric series converges if and only if || < 1 (exercise
1.205), and the limit (infinite sum) is

X

S=X X =

Exercise 1.205
Show that the infinite geometric series x 4 X + X + - - - converges pro-
vided that |f] < 1 with

X

x+ﬂX+ﬂ2X+---=17ﬂ
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Exercise 1.206

Show that

1+ ! + ! + ! + ! 4+ =2
2 4 8 16 o

Example 1.109 (Present value) Frequently in economics we have to
evaluate future income streams recognizing that future income is worth
less than current income. For example, in a repeated game (example 1.63)
a particular strategy profile will give rise to a sequence of payoffs to each
of the players. Typically we evaluate this sequence by its present value,
discounting future payoffs to compensate for the delay in their receipt. To
be specific, suppose that a particular strategy will generate a constant
payoff of x per round for some player. Suppose further that the player
discounts future payments at the rate of § per period, so that x dollars to
be received in the next period is worth as much as fx dollars in the current
period. Then the present value of the income stream is a geometric series

present value = x + fix + f7x + f2x + - --

Provided that the player discounts future payoffs (ff < 1), the present
value is finite and equal to the sum of the series, that is,

X

1-p

present value =

Exercise 1.207
What is the present value of n periodic payments of x dollars discounted
at f§ per period?

A special feature of a normed linear space is that its structure or
geometry is uniform throughout the space. This can be seen in the special
form taken by the open balls in a normed linear space. Recall that the
open ball about x, of radius r is the set

Bi(x0) = {x e X :||x — xol| < r}

By linearity, this can be expressed as

By(x0) = {xo +x: [x]| < r}

The unit ball B is the open ball about 0 of radius 1
B={x:|x| <1}
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It is the set of all elements of norm less than 1. Any open ball can be
expressed in terms of the unit ball as follows:

B,(x¢) =x¢ +rB

That is, any open ball in a normed linear space is simply a translation and
scaling of the unit ball. Therefore many important properties of a normed
linear space are related to the shape of its unit ball. Figure 1.13 illustrates
the unit ball in the plane (R?) for some different norms.

The uniform structure of a normed linear space enables the following
refinement of exercise 1.93.

Exercise 1.208
Let S} and S, be disjoint closed sets in a normed linear space with S|
compact. There exists a neighborhood U of 0 such that

(S1—|-U)ﬂ52=@

Completeness is one of the most desirable properties of a metric space.
A complete normed linear space is called a Banach space. Almost all the
spaces encountered in mathematical economics are Banach spaces.

Exercise 1.209
Let X, Y be Banach spaces. Their product X x Y with norm

([, Y| = max{ix], [y}

is also a Banach space.

The natural space of economic models is R”, the home space of con-
sumption and production sets, which is a typical finite-dimensional
normed linear space. In these spaces the interaction between linearity and
topology is most acute, and many of the results obtained above can be
sharpened. The most important results are summarized in the following
proposition.

Proposition 1.4 Any finite-dimensional normed linear space has the fol-
lowing properties:

« It is complete.

« All norms are equivalent.

« Any subset is compact if and only if it is closed and bounded.
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Let us examine each of these properties in turn. Given the fundamental
convenience of completeness, it is very comforting to know that every
finite-dimensional normed linear space is complete, in other words, a
Banach space. Some of the analytical difficulties of infinite-dimensional
spaces arises from the fact that they may be incomplete.

Two norms are equivalent if they generate the same topology, that is if
they have the same open and closed sets. In a finite-dimensional normed
linear space, the identity of neighborhoods and limits transcends any
specific norm associated with the space. In particular, this means that
convergence of a sequence is invariant to the choice of norm. Essentially
the geometry of all finite-dimensional linear spaces is the same. In this
sense, there is only one finite-dimensional normed linear space, and R” is
a suitable incarnation for this space.

In the previous section, we established (proposition 1.1) that every
compact set in a metric space is closed and bounded. Proposition 1.4
shows that the converse is true in a finite-dimensional normed linear
space. This is extremely useful in practice, since it provides two simple
criteria for identifying compact sets. Typically it is straightforward to
show that a set is closed and bounded and hence to conclude that it is
compact.

These three important properties of finite-dimensional normed linear
spaces (proposition 1.4) are established in the following exercises (1.211,
1.213, and 1.215). All three properties rest on the interplay of two funda-
mental ideas:

« The spanning of a finite-dimensional linear space by a basis.

+ The completeness of the real numbers ‘R.

These exercises highlight the powerful interaction of algebra (linearity)
and geometry in a normed linear space.

One implication of linear independence for geometry is summarized in
the following key lemma, which is used in each of the exercises 1.211,
1.213, and 1.215 and also in chapter 3. Roughly speaking, this lemma
states that it is impossible to represent arbitrarily small vectors as large
linear combinations of linearly independent vectors.

Lemma 1.1 Let S = {x1,Xa,...,X,} be a linearly independent set of vec-
tors in a normed linear space (of any dimension). There exists some con-
stant ¢ > 0 such that for every x € lin S
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[1X[| > e(lo| + [oa] 4+ - + |ow])
where X = o1X] + 0aXp + + -+ + 0, X;,.

Exercise 1.210
To prove lemma 1.1, assume, to the contrary, that for every ¢ > 0 there
exists x € lin{xy, x,,...,X,} such that

n
lIxll < 6(2 |a,-|>
i=1

where X = o1X| + X + - - - + &, X,. Show that this implies that

1. there exists a sequence (x™) with ||x"|| — 0
2. there exists a subsequence converging to some x € lin{x;, Xy, ..., X, }

3. x # 0 contradicting the conclusion that ||x™|| — 0

This contradiction proves the existence of a constant ¢ > 0 such that
1]l = e(loa| 4 [oa| + -+ 4 [ota])

for every x € lin S.

Exercise 1.211 ( Every finite-dimensional space is complete)

Let (x™) be a Cauchy sequence in a normed linear space X of dimension
n. Let {x1,Xs,...,X,} be a basis for X. Each term x™ has a unique
representation

X" =o"X1 + a0+ -+ o)X,
1. Using lemma 1.1, show that each sequence of scalars " is a Cauchy

sequence in R and hence converges to some «; € ‘R.

2. Define x = oyX; + opXo + - -+ + o,X,. Show that xe X and that

XITI — X.

3. Conclude that every finite-dimensional normed linear space is
complete.

Exercise 1.212 ( Equivalent norms)
Two norms ||x||, and ||x||, on a linear space are equivalent if there are
positive numbers 4 and B such that for all x € X,

Allx[l, < [Ix[l, < Bllx|, (15)
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The following exercise shows that there essentially only one finite-
dimensional normed linear space.

Exercise 1.213
In a finite-dimensional normed linear space, any two norms are
equivalent.

One implication of the equivalence of norms in a normed linear space is
that if a sequence converges with respect to one norm, it will converge in
every norm. Therefore convergence in a finite-dimensional normed linear
space is intrinsic to the sequence, and it does not depend on any particular
norm. A useful corollary of this fact is given in the following exercise.

Exercise 1.214
A sequence (x") in R” converges if and only if each of its components x/
converges in R.

Exercise 1.215 (Closed and bounded equals compact)

Let S = X be a closed and bounded subset of a finite-dimensional normed
linear space X with basis {x;,x,...,X,}, and let X be a sequence in S.
Every term x™ has a unique representation

n
m m
X :E o' X;
i=1

1. Using lemma 1.1, show that for every i the sequence of scalars (") is
bounded.

2. Show that (x™) has a subsequence (x{})) for which the coordinates of
the first coordinate «{" converge to o.

3. Repeating this argument » times, show that (x™) has a subsequence
whose scalars converge to (o, o2, . . ., 0y).

4. Define x = Y ' | o;x;. Show that x™ — x.
5. Show that x € S.
6. Conclude that S is compact.

An immediate corollary is that the closed unit ball in a finite-
dimensional space

C={x:[x[<1}
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is compact (since it is closed and bounded). This is not the case in an
infinite-dimensional space, so a linear space is finite-dimensional if and
only if its closed unit ball is compact.

1.5.1 Convexity in Normed Linear Spaces

Because of the interaction of algebraic and geometric structure, the topo-
logical properties of convex sets are notably simpler than arbitrary sets.
The results outlined in the following exercises are often fruitful in eco-
nomic analysis.

Recall first that many of the important properties of a normed linear
space are related to the shape of its unit ball. This is always convex.

Exercise 1.216
In any normed linear space, the unit ball is convex.

Exercise 1.217
Let S be a convex set in a normed linear space. Then int S and S are
convex.

Similarly it can be shown that closure preserves subspaces, cones and
linear varieties. For any convex set the line segment joining an interior
point to a boundary point lies in the interior (except for the endpoints).

Exercise 1.218 (Accessibility lemma)
Let S be a convex set, with x; € S and y, € int S. Then ax; + (1 — a)x; €
int Sforall0 < o< 1.

Exercise 1.219
Let S;, i € I be a collection of open convex sets.

S:ﬂSj7£®:>§:mE
iel iel

We have encountered two distinct notions of the extremity of a set:
boundary points and extreme points. Boundary points, which demark a set
from its complement, are determined by the geometry of a space. Extreme
points, on the other hand, are an algebraic rather than a topological
concept; they are determined solely by the linear structure of the space.
However, in a normed linear space, these two notions of extremity over-
lap. All extreme points of a convex set are found on the boundary.
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Exercise 1.220
If S is a convex set in a normed linear space, ext(S) < b(S).

The converse is not true in general; not all boundary points are extreme
points. However, boundary points and extreme points coincide when a set
is strictly convex. A set S in a normed linear space is called strictly convex
if the straight line between any two points lies in the interior of the set.
More precisely, S is strictly convex if for every x, y in X with x #y,

ox+ (1 —a)yeint S forevery 0 < o < 1

Note that the interior of a convex set is always strictly convex (exercise
1.217). Therefore the additional requirement of strict convexity applies
only to boundary points, implying that the straight line between any two
boundary points lies in the interior of the set. Hence the boundary of a
strictly convex set contains no line segment and every boundary point is
an extreme point.

Exercise 1.221
If S is a strictly convex set in a normed linear space, every boundary point
is an extreme point, that is, ext (S) = b(S).

Exercise 1.222
If S is a convex set in a normed linear space,

S open = § strictly convex

Exercise 1.223
S open =- conv S open.

Exercise 1.224
Let S = {(x},x2) € R?: xo > 1/|x;|} which is closed in %%, Find conv S.
Show that it is open (not closed) in R>.

The convex hull of a closed set is not necessarily closed (exercise 1.224).
However, if the set is compact, then so is its convex hull. This impor-
tant result is established in the following exercise as an application of
Carathéodory’s theorem.

Exercise 1.225
Let S be a compact subset of a finite-dimensional linear space X of
dimension n.
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1. Show that conv S is bounded.

2. For every x econv S, there exists a sequence (xX) in conv S that
converges to x (exercise 1.105). By Carathéodory’s theorem (exercise
1.175), each term x* is a convex combination of at most n + 1 points,
that is,

n+1

xk = E oclkxlk
i=1

where x¥ e S. Show that we can construct convergent subsequences
af — o; and x¥ — x;. [Hint: See exercise 1.215.]

3. Define x = 3" 4;x;. Show that x*¥ — x.

4. Show that x € conv S.

5. Show that conv S is closed.

6. Show that conv S is compact.

Remark 1.21 Finite dimensionality is not essential to the preceding
result that the convex hull of a compact set is compact, which in fact
holds in any Banach space (Pryce 1973, p. 55). However, finite dimen-
sionality is essential to the proof given here, which relies on proposition
1.4 and especially exercise 1.215. Conversely, exercise 1.225 can be used

to provide an alternative proof of exercise 1.215, as in the following
exercise.

Exercise 1.226
Let S be a closed bounded subset of R”. Show that

1. Sis a closed subset of some cube
C={x=(x1,x2,...,xy) eR":—c<x; < ¢,i=1,2,...n};
see example 1.94

2. C is the convex hull of the 2” points (+¢, +¢,...,+c¢)
3. C is compact

4. S is compact

The following corollary of exercise 1.225 is important in the theory of
optimization and also in game theory.
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Exercise 1.227
Any polytope is compact.

Example 1.110 (Mixed strategy space) In a finite strategic game, each
player’s mixed strategy space ¥; is a (m — 1)-dimensional simplex (example
1.98), where m = |S;] is the number of pure strategies of player i. Exercise
1.225 implies that every %; is compact. Consequently the mixed strategy
space of the game

2= XXy X+ X2,
is also compact (example 1.66).

In section 1.3.1 we touched briefly on the notion of a relative topology.
The distinction is especially pertinent when dealing with convex sets. For
example, the situation illustrated in figure 1.28 arises in the theory of TP-
coalitional games (section 1.2.6), where the dark shaded triangle (the set
of imputations) is a subset of the light shaded triangle (the 2-dimensional
simplex). As a subset of Euclidean space %>, the set of imputations has an
empty interior. Every point in the dark shaded triangle (imputation) is
arbitrarily close to points which lie off the hyperplane containing the tri-
angle. Hence every imputation is a boundary point of the set of imputa-
tions. Similarly any line in a space of dimension 2 or more has no interior.
Generalizing, any set of dimension n — 1 in an n-dimensional space has an
empty interior.

Given a line in space, our intuition would be to refer to any points
except the endpoints as interior points. Similarly, in the left panel of figure
1.28, we would like to be able to refer to the interior of the dark shaded
triangle as the interior of the set of imputations. Our intuition is to visu-
alize the geometry of a set relative to its affine hull. To give effect to this
intuition, we define the topology of a convex set relative to its affine hull.
A point x in a convex set S is a relative interior point of S if it is an inte-
rior point of S with respect to the relative topology induced by aff S.
Similarly the relative interior of a subset S of a normed linear space X,
denoted ri S, is interior of S regarded as a subset of its affine hull. That is,

riS={xeaff S:x+rB < S forsomere R, }
Of course,

isescsS
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Figure 1.38
The relative interiors of A! and A2

The set difference S\ri S is called the relative boundary of S. S is said to
be relatively open if ri S$ = S. For an n-dimensional convex set S in an
n-dimensional space, aff S = X and ri S = int S.

For a finite line in space, its affine hull is the straight line extending
beyond its endpoints in both direction. Relative to this set, the interior of
the finite line is the line minus its endpoints. Similarly, in the game illus-
trated in figure 1.28, the affine hull of the dark shaded triangle is the plane
in which it lies. Relative to this plane, the interior of the shaded triangle is
the triangle minus its boundary.

Example 1.111 Each side of the two-dimensional simplex A” is a one-
dimensional simplex A'. The relative interior of A® is the interior of the
triangle (figure 1.38), while ri A' is the side minus its endpoints. Note that
while A! = A%, ri A! ¢ ri A%. In fact ri A! and ri A> are nonempty disjoint
sets.

Example 1.112 (Completely mixed strategies and trembles) In a finite
game in which each player i has a set S; of pure strategies, her set of
mixed strategies A; is the (m — 1)-dimensional unit simplex (example
1.98). A mixed strategy o is called completely mixed if every component
is strictly positive, o; > 0, so that there is a nonzero probability of every
pure strategy being chosen. The set of completely mixed strategies is the
relative interior of A.

For every pure strategy s; € S;, there exists a sequence of completely
mixed strategies ¢} € ri Z; converging to s; (see exercise 1.105). Sequences
of completely mixed strategies, called trembles, are used in refining equi-
librium concepts (Fudenberg and Tirole 1991, pp. 338-339; Osborne and
Rubinstein 1994, pp. 246-253).
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Exercise 1.228
The unit simplex in R” has a nonempty relative interior.

Exercise 1.229
If S is a convex set in a finite-dimensional normed linear space

SEF =18+

Exercise 1.230
Let S be a nonempty convex set in a finite-dimensional normed linear
space.

nS=intS<intS # g

1.6 Preference Relations

In economics a preference relation (example 1.12) is simply a weak order,
that is a relation = on a set X that is complete and transitive. The basic
properties of weak orders have been explored in section 1.2. However, the
sets on which a preference relation is defined (e.g., the consumption set
or strategy space) typically also have algebraic (example 1.87) and geo-
metric structure (example 1.54). All three aspects contribute to economic
analysis. In this section we integrate the order, linear, and geometric
aspects of preference relation defined on a subset of a normed linear
space. We use the consumer’s problem to illustrate the usefulness of this
interaction.

Example 1.113 (The consumer’s problem) Assume that there are n com-
modities. The consumer’s problem is to choose an affordable consump-
tion bundle x in the consumption set X = R" (example 1.6) that yields the
most satisfaction. The consumer’s preferences over consumption bundles
are assumed to be represented by a preference relation >~ on X.

The consumer’s choice is constrained by her income, m. If the n
commodities have prices py,ps,...,p,, the set of affordable commodity
bundles

X(p,m)=4{xeX:pxi+px2+- pux, <m}

is called her budget set, where p = (py, p,,- - ., p,) is the list of prices. The
consumer’s problem is to choose a best element in the budget set X (p,m),
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that is, to choose x* € X (p,m) such that x* > x for every x € X (p,m).
A best element of X (p,m) is called the consumer’s optimal choice given
prices p and income m. Note that there may be more than one optimal
choice for any p and m.

Exercise 1.231
Assume that all prices and income are positive (p > 0,m > 0) and that the
consumer can afford some feasible consumption bundle, that is,

n
m > inf E DiXi
xeX e

Then the consumer’s budget set X (p,m) is nonempty and compact.

Exercise 1.232
The budget set is convex.

Remark 1.22 In establishing that the budget set is compact (exercise
1.231), we relied on the assumption that the choice was over n distinct
commodities so that the consumption set is finite dimensional, X = R”".
In more general formulations involving intertemporal choice or uncer-
tainty, it is not appropriate to assume that the consumption set is finite
dimensional. Then, compactness of the budget set is more problematic.
Note, however, that finite dimensionality is not required to establish that
the budget set is convex (exercise 1.232).

1.6.1 Monotonicity and Nonsatiation

Recall that the natural order on R” (example 1.26) is only a partial order,
whereas a preference relation is complete. Therefore the natural order
“>" (example 1.26) cannot represent a preference relation on X = R".
However, an obvious requirement to impose on a preference relation on
any X = R" is that it be consistent with the natural order. This property
is usually called monotonicity. A preference relation > on X = R” is
weakly monotonic if x >y implies that x > y. It is strongly monotonic
if x =2y implies x > y. Monotonicity is a natural assumption for the
consumer preference relation, embodying the presumption that “more is
better.” It implies that the consumer is never fully satisfied or sated.
Nonsatiation is a weaker assumption on preferences. A best element x*
in a set X weakly ordered by a preference relation 2> is called a bliss point.
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(x* € X is a best element if x* 2 x for every x € X.) Typically the set X
has no best element, in which case we say that the preference relation = is
nonsatiated. A stronger assumption, which relies on the geometric struc-
ture of X, is often imposed in practice. A preference relation is locally
nonsatiated if given any element x € X and neighborhood S around x,
there always exists some neighboring element y € S that is preferred, that
is, y > X. The relationships between these various notions are established
in the following exercise.

Exercise 1.233

1. Strong monotonicity = weak monotonicity.
2. Strong monotonicity = local nonsatiation.

3. Local nonsatiation = nonsatiation.

A useful implication of strong monotonicity or local nonsatiation in
consumer choice is that the consumer will spend all her income, so every
optimal choice lies on the boundary of the budget set. Note that neither
weak monotonicity nor nonsatiation is sufficient to provide this result (but
see exercise 1.248).

Exercise 1.234

Assume that the consumer’s preference relation is strongly monotonic.
Then any optimal choice x* > x for every x e X(p,m) exhausts her
income, thatis, >, p,x; = m.

Exercise 1.235
Extend the previous exercise to encompass the weaker assumption of local
nonsatiation.

1.6.2 Continuity

The principal geometric property of a preference relation is continuity.
A preference relation > on a metric space is continuous if, whenever
Xo > Yo, neighboring points of x, are also preferred to y,. More formally,
a preference relation > on a metric space X is continuous if, whenever
X0 > ¥, there exist neighborhoods S(x¢) and S(y,) of xo and y, such that
x >y for every x € S(x¢) and y € S(y,). In effect, = is continuous pro-
vided that small changes in x and y do not lead to a reversal of preference.

An alternative definition of continuity is often found in textbooks. A
preference relation > on a metric space X is continuous if and only if the
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upper >(y) and lower <(y) preference sets are closed in X. The equiva-
lence of these definitions is established in the following exercise.

Exercise 1.236

1. Assume that the preference relation > on a metric space X is con-

tinuous. Show that this implies that the sets >(y) = {x:x >y} and
<(y) = {x:x <y} are open for every y in X.

2. Conversely, assume that the sets >(y) = {x:x >y} and <(y) =
{x:x <y} are open for every y in X. Choose any Xo, zp in X with
X > Zg.

a. Suppose there exists some y € X such that xy >y > zy. Show that
there exist neighborhoods S(x¢) and S(zy) of X and z, such that x > z for
every x € S(xo) and z € S(zo).

b. Now suppose that there is no such y with xy >y > z;. Show that

i. >(z) is an open neighborhood of xg

. >(z0) = Z(xo)

iii. x >z for every x € >(zo)

iv. There exist neighborhoods S(x¢) and S(zg) of x¢ and zy such that
x > z for every x € S(x¢) and z € S(y,)

This establishes that a preference relation = on a metric space X is con-

tinuous if and only if the sets >(y) = {x:x >y} and <(y) = {x:x <y}
are open for every y in X.

3. Show that a preference relation > on a metric space X is continuous

if and only if the sets >(y) = {x:x 2y} and <(y) ={x:x <y} are
closed for every y in X.

Exercise 1.237
Mas-Colell et al. (1995, p. 46) define continuity of preferences as follows:

The preference relation > on X is continuous if it is preserved under

limits. That is, for any sequence of pairs ((x”,y")) with x" > y” for all n,
with x = lim,,_,, X", and y = lim,,_,, y", we have x > y.

1. Show that this definition in effect requires that the set {(x,y) :x = y}
be a closed subset of X x X.

2. Is this equivalent to the definition given above?
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Exercise 1.238
Assume that > is continuous preference on a connected metric space X.
For every pair x, z in X with x > z, there exists y such that x >y > z.

Remark 1.23 (Order topology) Any weak order > on a set X induces a
natural topology (geometry) in which the sets {x: x >y} and {x:x < y} are
open. This is called the order topology on X. A preference relation (weak
order) on a metric space is continuous if the order topology is consistent
with the metric topology of space. A preference relation on R” is contin-

uous if the order topology is consistent with the usual topology on R".

Example 1.114 (Lexicographic preferences) The standard example of a
noncontinuous preference relation is the lexicographic ordering. Assum-
ing two commodities, the lexicographic ordering on R? is

X| >y or }

X>y<&
y {x1:y1 and x; >

To show that the lexicographic ordering is not continuous, let x and y
be two commodity bundles with the same quantity of good 1 (x| = y)
(figure 1.39). Assume that x, > y,, and let r = (x, — y»)/2. Under the
lexicographic ordering, x > y. However, y is strictly preferred to some
bundles in the neighborhood of x. In particular, y > z = (x; — &, x) for
every ¢ < r.

Continuity is sufficient to ensure the existence of a best element in a
compact ordered set. This is essential for a well-defined formulation of the

T3
/B(x,r)
/é‘vo X .
z i 2r
Yy
I
Figure 1.39

Lexicographic preferences are not continuous
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consumer’s problem (example 1.113). In the next chapter we will see that
continuity also ensures the existence of a utility function that represents
the preferences.

Proposition 1.5 A weakly ordered set (X, z) has a best element if X is
compact and = is continuous.

Proof Every finite set {y,,¥,,...,Y,} has a best element (exercise 1.29).
Without loss of generality, suppose that this is y,, so that y; Zy,,
i=1,2,...,n. That is, y, € =(y;), i=1,2,...,n. Thus we have estab-
lished that the collection of all upper preference sets z(y)y € X has the
finite intersection property; that is, for every finite subcollection

{z(y1), 2(¥2),- -5 Z(¥a) }
ﬁl z(y)#

Since - is continuous, every = (y) is closed. Since X is compact,

ﬂ z () #J

yeX

by exercise 1.116. Let x* be a point in ﬂyeX % (y;). Then x* >y for
every y € X. x* is a best element. O

Exercise 1.239
Let > be a continuous preference relation on a compact set X. The set of
best elements is nonempty and compact.

Example 1.115 (Existence of an optimal choice) Provided that all prices
and income are positive, the budget set is nonempty and compact (exer-
cise 1.231). By proposition 1.5, X(p,m) contains a best element x* > x
for every x € X(p, m).

Exercise 1.240

Assume that a consumer with lexicographic preferences over two com-
modities requires a positive amount of both commodities so that con-
sumption set X = ‘J{i - Show that no optimal choice exists.

Exercise 1.241
Why is the existence of an optimal choice essential for a well-defined
formulation of the consumer’s problem?
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Exercise 1.242 ( Nucleolus is nonempty and compact)

Let (N,w) be a TP-coalitional game with a compact set of outcomes X.
For every outcome x € X, let d(x) be a list of coalitional deficits arranged
in decreasing order (example 1.49). Let d;(x) denote the ith element of
d(x).

1. Show that X! = {x € X : d)(x) < di(y) for every y € X} is nonempty
and compact.

2. For k=2,3,...,2", define X¥ = {xe X*!:d;(x) < di(y) for every
y € X*~1}. Show that X* is nonempty and compact.

3. Show that Nu = X2", which is nonempty and compact.
1.6.3 Convexity

The most useful algebraic property of a preference relation is convexity. A
preference relation is convex if averages are preferred to extremes. For-
mally, the preference relation = is convex if for every x,y € X withx >y,

ox+ (1—oa)y Zy forevery 0 <a <1

The link between convexity of the preference relation and convex sets is
given in the following exercise. The method of proof should be carefully
noted, since it is widely used in economics.

Exercise 1.243
The preference relation = is convex if and only if the upper preference

~

sets =(y) are convex for every y.

Exercise 1.244
Let = be a convex preference relation on a linear space X. The set of best
elements X* = {x:x >y for every y € X} is convex.

A slightly stronger notion of convexity is often convenient (example
1.116). A preference relation is strictly convex if averages are strictly pre-
ferred to extremes. Formally the preference relation 2 is strictly convex if
for every x,y € X with x Z y but x #y,

ox+ (1 —o)y >y forevery 0 <o < 1

Example 1.116 (Unique optimal choice) If the consumer’s preference
relation is strictly convex, the consumer’s optimal choice x* (if it exists) is
unique. To see this, assume the contrary; that is, assume that there are
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two distinct best elements x* and y* in the budget set X (p, ). That is,
x*>x and y* zx for every x € X(p,m)

In particular, note that x* > y*andy* = x*. By strict convexity, the average
of these two bundles z = %x* + %y* is strictly preferred to either x* or y*,
that is, z > x* and z > y*. Furthermore, since the budget set is convex
(exercise 1.232), ze€ X (p,m). The consumer can afford the preferred
bundle z. We have shown that if the optimal choice were nonunique, we
could find another affordable bundle that was strictly preferred. Therefore
the optimal choice must be unique if preferences are strictly convex.

Recall that the nucleolus of a TP-coalitional game is the set of out-
comes that are maximal in the deficit order > (example 1.49). Exercise
1.242 showed that this set is always nonempty. In the next exercise we
show that the nucleolus contains just one outcome, Nu = {x"}. In a slight
abuse of language, it is conventional to identify the set Nu with its only
element. We call the maximal element x" the nucleolus and say that “‘the
nucleolus is unique.”

Exercise 1.245 (Nucleolus is unique)
In a TP-coalitional game the deficit order > (example 1.49) is strictly
convex. Consequently the nucleolus contains a single outcome.

1.6.4 Interactions

To complete this section, we indicate some of the substitutability among
algebraic, geometric, and order structures. Throughout this section we
have assumed a weak order that is a complete, transitive relation = on
a set X. Exercise 1.246 shows that the assumption of completeness is
redundant provided that > is continuous and X is connected (see exercise
1.238). Exercise 1.247 shows how continuity strengthens convexity, while
exercise 1.248 establishes a link between nonsatiation and strict convexity.
We then introduce the standard model of an exchange economy, and
show (exercise 1.249) that weak and strong Pareto optimality (section
1.2.6) coincide in an exchange economy in which the participants have
continuous and monotone preferences. After reformulating the exchange
economy as an example of a coalitional game, we finish with the first
fundamental theorem of welfare economics, which underlies the econo-
mist’s faith in competitive markets.
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Exercise 1.246
Assume that > is a continuous order relation on a connected metric space
with xy >y, for at least one pair Xg,y, € X.

1. Show that for any xo,y, € X such that xo >y,
- <(x0) W >(¥0) = ZAx0) W Z(¥o)
b. <(x0) U >(yp) =X

2. Suppose that = is not complete. That is, there exists X,y € X such that
neither x >~ y nor x <y. Then show that

I

a. <(x)n<(y)#X
b. <(x)n <(y) # I
c. <(x)n<(y)==2(x)n<(y)

3. Show that X connected implies that > is complete.

Exercise 1.247
If the convex preference relation = is continuous,

x>y=>ox+(1—-a)y>y forevery 0 < o < 1
[Hint: Use the accessibility lemma (exercise 1.218).]

Exercise 1.248
If = is strictly convex, nonsatiation is equivalent to local nonsatiation.

Example 1.117 (Exchange economy) In studying aggregate economic
interaction, a fruitful simplification is the pure exchange economy in
which there is no production. Consumers are endowed with an initial
allocation of goods. The only possible economic activity is trade in which
consumers exchange their endowments at given prices to obtain preferred
consumption bundles. Formally an exchange economy comprises

- a set of / commodities

- aset N=1{1,2,...,n} of consumers

- for every consumer i € N

a feasible consumption set X; = iRi

a preference ordering =, over X;

an endowment o; € ‘Ri
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An allocation x € R"™ is a list of commodity bundles assigned to each
consumer. That is, X = (X, Xa,...,X,), where x; € ﬂ%i is the commodity
bundle assigned to the ith consumer. An allocation is feasible if

+ x; € X; for every consumer i/ and

- aggregate demand is less than or equal to available supply; that is,

Sx=Yo
ieN ieN
In a competitive exchange economy, trade take place at fixed commodity

prices p = ( py,p2, - .., pi1)- Each consumer’s income (or wealth) m; is equal
to the value of her endowment, that is,

i
m; = E PiQij
J=1

Each consumer endeavors to exchange commodities to achieve her most
preferred bundle, which is affordable given the value of her endowment
m;. A competitive equilibrium is attained when all consumers achieve this
goal simultaneously. That is, a competitive equilibrium (p*,x*) is a set of
prices p* and a feasible allocation x* such that for every i € N,

* X eX;
* X z x; for every x; € X(p,m;)
TN Xi < Dy O

Provided that the individual preferences are continuous, proposition 1.5
guarantees the existence of best allocations x* for every set of prices p
(example 1.115). A deep theorem to be presented in the next chapter
guarantees the existence of a set of prices p* at which the desired trades
are all feasible.

The following exercise is another illustration of the usefulness of the
interaction of order and topological structures.

Exercise 1.249

Remark 1.8 distinguished the strong and weak Pareto orders. Show that
the distinction is innocuous in an exchange economy in which the agents
preferences are monotone and continuous. Specifically, show that an
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allocation is weakly Pareto efficient if and only if it is strongly Pareto
efficient.

Example 1.118 (Market game) We can model an exchange economy as
a coalitional game, thereby establishing a profound link between tradi-
tional economic theory and game theory. The set of outcomes X is the set
of all allocations

X ={x=(X);cy xR}

Acting independently, any coalition can obtain any allocation that can be
achieved by trading among itself so that

w(S) = {XGX: > xi = Z(u,}
ieS ieS
To complete the description of the game, we extend the individual pref-
erence relations to the set of allocations X so that
XZ,YOXi Y

The familiar Edgeworth box diagram illustrates the core of a two-person
two-good exchange economy (figure 1.40).

Exercise 1.250
Every competitive equilibrium allocation x* belongs to the core of the
corresponding market game.

02

Ol

Figure 1.40
An Edgeworth box, illustrating an exchange economy with two traders and two goods
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Exercise 1.251 (First theorem of welfare economics)
Every competitive equilibrium is Pareto efficient.

This theorem underlies the economist’s faith in competitive markets.
If an economic outcome is achieved through free trade in competitive
markets, it is it is impossible to make any individual better off without
harming another. There is no allocation which would make all the agents
better off.

1.7 Conclusion

This chapter opened with a short introduction to the vocabulary of sets.
We noted that the most familiar set, the real numbers R, exhibits three
distinct properties: order, distance, and linearity. In succeeding sections
we explored the consequences of generalizing each of these properties to
more general sets. Ordered sets, posets, and lattices generalize the order
properties of the numbers, the fact that numbers can be ranked by mag-
nitude. Ranking is important for economics, since economists are contin-
ually comparing alternatives and searching for the best way of doing
things. Metric spaces generalize the spatial properties of real numbers.
Measurement of distance is also important to economists, since we want
to know how far it is from one production plan to another, and to know
whether or not we are getting closer to the desired point. Linear spaces
generalize the algebraic properties of real numbers. Linearity is impor-
tant, since averaging and scaling are two ways of generating new eco-
nomic choices (production and consumption plans).

This individual exploration of the consequences of order, additivity,
and distance is a powerful illustration of the utility of abstraction. As we
noted in the preface, abstraction in mathematics serves the same function
as model building in economics. Although most economic analysis takes
place in the familiar set R”, it is so commonplace that we tend to confuse
order, algebraic, and geometric properties. Separating out these different
aspects focuses attention on the essential aspects of a particular problem
and sharpens our thinking.

While separation sharpens our focus, further insights can be obtained
by combining the algebraic, geometric, and order structures. We have seen
two good examples in this chapter. In section 1.5 we saw how the interplay
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of algebra and geometry contributed significantly to our understanding of
the structure of finite-dimensional spaces. In the final section we explored
the interaction of algebra, geometry, and order in preference relations,
and showed how this led to new insights into consumer behavior.

1.8 Notes

To supplement this chapter, I particularly recommend Luenberger (1969)
and Simmons (1963), which cover most of the material of this chapter
(and much more besides) elegantly and lucidly. Klein (1973) covers simi-
lar material from the viewpoint of an economist. For a more concrete
approach to mathematics for economists, Simon and Blume (1994) and
Sydsaeter and Hammond (1995) are recommended. Debreu (1991) dis-
cusses the contribution of mathematics to the development of economic
theory.

Halmos (1960) is a lucid introduction to set theory. The material on
ordered sets is collated from many sources, which employ a variety of
terminology. For the most part, we have used the terminology of Sen
(1970a). Birkhoff (1973) is the standard reference for lattice theory. Our
treatment is based largely on Topkis (1978) and Milgrom and Shannon
(1994). The strong set order is called the induced set order by Topkis
(1978).

Sen (1970a) provides a comprehensive and readable account of the
problem of social choice, and Sen (1995) a recent review. Sen first noted
the liberal paradox in Sen (1970b). Hammond (1976) investigates the
relationship between the Rawlsian criterion of social justice and social
choice.

For the most part, our encounters with game theory follow the
approach in Osborne and Rubinstein (1994). Another standard reference
is Fudenberg and Tirole (1991). Example 1.44 is adapted from Gately
(1974). The deficit of a coalition (example 1.49) is usually called the
“excess,” although deficit seems more appropriate given the usual sign
convention.

Binmore (1981) is a patient exposition of metric and topological ideas.
The standard reference of topology is Kelley (1955). For normed linear
spaces, see Luenberger (1969). Exercise 1.109 is adapted from Moulin
(1986), who attributes it to Choquet.



143

1.8 Notes

The best reference for linear spaces is Halmos (1974). This classic text
is consistent with the approach taken here and is very readable. The
standard references on convexity are Rockafellar (1970) and Stoer and
Witzgall (1970). The recent book by Panik (1993) is a useful compendium
of results written with the economist in mind. Exercise 1.191 is adapted
from Mas-Colell et al. (1995).

The Shapley-Folkman lemma is a good example of economics fertiliz-
ing mathematics. It was discovered by Lloyd Shapley and J. Folkman in
answer to a problem posed by Ross Starr, arising from the latter’s inves-
tigation of the implications of nonconvexity in economic models. It was
first published in Starr (1969). An accessible account of its use in eco-
nomics is given by Hildenbrand and Kirman (1976). (Unfortunately, this
topic does not appear to have found its way into the second edition of this
delightful book.)

The material on preference relations can be found in any advanced
microeconomics text such as Kreps (1990), Mas-Colell et al. (1995), and
Varian (1992). Proposition 1.5 on the existence of a maximal element in
an ordered set is not widely cited. Border (1985) provides a useful over-
view of the relevant literature. Carter and Walker (1996) discuss the
uniqueness of the nucleolus and outline an algorithm for its computation.
Hildenbrand and Kirman (1976) is a concise and entertaining account of
the relationship between Walrasian equilibria and the core in exchange
economies.
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2 Functions

While sets and spaces provide the basic characters of mathematical anal-
ysis, functions provide the plot. A function establishes a relationship or
linkage between the elements in two or more sets. Of particular interest
are functions that respect the structure of the sets that they associate.
Functions that preserve the order of sets are called monotone, those that
preserve the geometry are called continuous, and those that preserve the
algebraic structure are called linear. In this chapter we explore monotone
and continuous functions, while the next chapter is devoted to linear
and related functions. In the course of this exploration, we encounter the
major theorems founding mathematical economics: the maximum theo-
rems (theorems 2.1, 2.3, 3.1), the separating hyperplane theorem (theorem
3.2), and Brouwer’s fixed point theorem (theorem 2.6). The first section
examines functions in general.

2.1 Functions as Mappings

2.1.1 The Vocabulary of Functions

A function f: X — Y is a rule that assigns to every element x of a set X
(the domain) a single element of a set Y (the co-domain). Note that

+ the definition comprises two sets (domain and co-domain) and a rule
« every element of X of x is assigned an element of Y

+ only one element of Y is assigned to each x € X

The mapping or assignment is usually denoted y = f(x). The element
y e Y that is assigned to a particular x € X is called the image of x
under /. When f represents an economic model, the image y is frequently
called the dependent variable, while x is called the independent variable.
Synonyms for a function include map, mapping, and transformation
(figure 2.1). A function f: X — X from a set X to itself is often called an
operator.

The range of a function f: X — Y is the set of all elements in Y that
are images of elements in X. Since it is the image of X, the range is
denoted f(X). Formally

f(X)={yeY:y=f(x) for some x € X}
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Figure 2.1
A function mapping X to Y

If every y € Y is the image of some x € X, so that f(X) = Y, we say that
f maps X onto Y. If every xe X maps to a distinct Y, so that
f(x) = f(x') implies that x = x’, we say that f is one-to-one or univalent.

The graph of a function f: X — Y is the set of all related pairs (x, f(x))
in X x Y. Formally

graph(f) ={(x,y) e X x Y :y = f(x),x € X}

This graphical representation of a function underscores the fact that a
function f: X — Y is a special type of binary relation (section 1.2.1) on
X x Y in which

+ domain f =X

- for every x € X, there is a unique y € Y such that (x,y) € f

Example 2.1 Let X = {members of a class} and ¥ = {days of the year}.
The rule that assigns each member of the class to his or her birthday is a
function. We note that

+ everyone has a birthday

+ nobody has two birthdays

+ two people may have the same birthday

+ not every day is someone’s birthday

As this example illustrates, while every element of X must be assigned to

some element of Y, not every element of Y need be assigned an element of
X. In general, the range is a proper subset of the co-domain.
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f(z)
IZ 6 $3
4
2
2 2 ) it

Figure 2.2
The functions f(x) = x? and f(x) = x*

Exercise 2.1
Is the birthday mapping defined in the previous example one-to-one or
onto?

Example 2.2 (Power function) Among the simplest functions encoun-
tered in economic analysis are the power functions f,: ‘R — R defined by

fi(x) = x, fz(x)zxz7 Ju(x) = xf,_ (x) = X", n=234...

which assign to every real number its nth power. Two power functions are
illustrated in figure 2.2.

Example 2.3 (Rotation) The function f: R> — R? defined by
f(x1,x2) = (x1 cos 0 — x; sin 0, x; sin 0 + x; cos 0)

where 6 is a number 0 < 6 < 27, “transforms” vectors in the plane R’
by rotating them counterclockwise through the angle 6 (figure 2.3). This
function is in fact an operator, since it maps the plane R? into itself.

We sometimes depict a function by explicitly illustrating the map be-
tween the domain and co-domain, for example, as in figures 2.1 and
2.3. A function between finite sets may be expressed in a table. For ex-
ample, the birthday mapping for a class of five is specified in the following
table:
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Iy
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(-Tl,Iz)

T

Figure 2.3
Rotation of a vector

John 3 February
Jason 22 June
Kathryn 16 March
Jenny 29 October
Chris 7 January

Prior to the prevalence of pocket calculators, many numerical functions
were tabulated for use in calculations. Tables are normally used to repre-
sent finite strategic games (example 2.34). Numerical functions are usually
represented by a mathematical formula or rule. Elementary numerical
functions can be illustrated by drawing their graph (figure 2.2).

Example 2.4 (Demand function) In economics, it is common to deal with
functions that cannot be specified by any table or rule. A familiar example
from elementary economics is the demand function for a particular
commodity, which specifies the quantity demanded for every price. Since
prices and quantities are necessarily positive, the demand function f maps
R, to R,. The price p is the independent variable, while the quantity
demanded ¢ = f(p) is the dependent variable. Rather than specifying a
particular functional form (rule) for the function f, the economist is
often content to specify certain properties for the function, such as being
“downward sloping.” The graph of a demand function is called the
demand curve (figure 2.4).

In figure 2.2 we adopted the mathematician’s convention of displaying
the independent variable on the horizontal axis, and the dependent vari-
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p
. Demand curve
Price
: q
Quantity demanded
Figure 2.4

A downward sloping demand function

able on the vertical axis. Economists often employ the opposite conven-
tion (established by Alfred Marshall), putting the independent variable on
the vertical axis. We followed the economist’s convention in figure 2.4.

Example 2.5 (Constant and identity functions) The constant and identity
functions are particularly simple functions. A constant function f: X — Y
assigns all x € X to a single element y of Y, that is f(X) = {y}. The
identity function Iy: X — X assigns every element to itself, that is,
Iy(x) = x for every x € X.

Given an operator f: X — X, any x € X for which f(x) = x is called a
fixed point of f. For the identity function every point is a fixed point.
However, an arbitrary operator may or may not have any fixed points.
Since significant questions in economics (e.g., the existence of a Nash
equilibrium) can be reduced to the existence of a fixed point of a suitable
operator, we are interested in deducing conditions that guarantee that an
operator has a fixed point. This question is addressed in section 2.4.

Exercise 2.2
Does the rotation operator (example 2.3) have any fixed points?

Any function f: X — Y induces a mapping between the subsets of X
and Y. Thus for any S = X, the image f(S) of S is

f(S)={yeY:y=f(x) for some x € X}

Similarly for any T = Y, the preimage or inverse image f~'(T) of T is set
of all x € X that are mapped into some y € T, that is,
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T ={xeX:f(x)eT}

When T comprises a single element y € Y, it is customary to dispense
with the brackets denoting the set 7 = {y} so that the preimage of a
single element y € Y is denoted /! (). The preimages of single points

[0 ={xeX: f(x) =y}
are called contours of the function f.

Example 2.6 In the birthday mapping (example 2.1), ! (1 April) is the
set of students in the class whose birthday is the 1st of April.

Exercise 2.3
The contours {f '(y):ye Y} of a function f: X — Y partition the
domain X.

For any particular y € Y, its preimage f~'(y) may be

* empty
+ consist of a single element

- consist of many elements

Where fﬁl( ») consists of one and only one element for every ye Y,
the preimage defines a function from Y — X which is called the inverse
function. It is denoted f~!.

Exercise 2.4
The function f: X — Y has an inverse function f~': ¥ — X if and only
if f is one-to-one and onto.

Example 2.7 (Inverse demand function) In economic analysis it is often
convenient to work with the inverse demand function p = f~! for a par-
ticular commodity, where p(¢) measures the price p at which the quantity
g would be demanded.

If we have consecutive functions between matching sets, for example,
f: X — Y and ¢g: Y — Z, the functions implicitly define a map between
X and Z. This function is called the composition of f and g and is denoted
by gof. Thatis, gof: X — Z is defined by

gof(x) =g(f(x)) =g(y)  wherey=f(x)
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Exercise 2.5
If f: X — Y is one-to-one and onto with inverse f ',

flof=Iy and fof'=1Iy

where Iy and Iy are the identity functions on X and Y respectively.
Function Spaces and Sequences

Sets of functions provide a fertile source of linear spaces.

Example 2.8 Let F(X,Y) denote the set of all functions from X to Y.
Suppose that Y is a linear space. For any f,ge F(X,Y), define f+g¢g
and o f by

(f +9)(x) =/(x) +9(x)
(@f)(x) = af(x)
Then F(X, Y) is another linear space.

Example 2.9 (Polynomials) A polynomial of degree »n is a function
f: R — N defined by

f(x)=ap+ax+ x> + a3x> + -+ a,x”

It is a linear combination of power functions (example 2.2). We have
previously shown that the set of all polynomials is a linear space (example
1.69).

If Y is a normed linear space, we can think about convergence of
functions in F(X,Y). Let (f") be a sequence of functions in F(X,Y).
If the sequence of images (f"(x)) converges for every x € X, we say
that the sequence (/") converges pointwise to another function f defined
by

f(x) = lim f"(x) for every x e X

n—aoo

Convergence of functions is denoted f” — f. This implies that for every x
and ¢ > 0 there exists N such that

[If(x)=f"(x)]| <e for every n > N

In general, N depends on x as well as ¢. If there exists an N such that for
every x € X,
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IILf(x) =f"(x)|| < e for everyn > N

then f" converges uniformly f. Clearly, uniform convergence implies
pointwise convergence, but not vice versa.

Example 2.10 (Exponential function) Consider the sequence of
polynomials

n 3 X"
:;k,—1+x+ +3,+ T+

where n! (called n factorial) is the product of the first n integers
n=1-2-3...n=2)(n—1)n

For any x € R,

n Xk m+l n— |X|m+] n—m |X|
-l =] 3 (2 ) < (& )
k:zm;rl k! (m+1)! =0 )=

Forn > m > 2|x|, |x|/m < 1/2, and
/") =/ < @A+ ")

The sum inside the brackets is than 2 (exercise 1.206), and therefore

1 m+1 1
0=l <2(3) =g 0asma—

Clearly, f"(x) is a Cauchy sequence in R, and hence it converges to
some y € R. Since the sequence f”(x) converges for any x € R, it defines
a new function f: R — R where

f() = lim /" (x) (1)

Note that f”(0) =1 for every n, and therefore f(0) = 1. Known as the
exponential function, the function f is often denoted ¢~ and written

2 3 0 .n
X X X X
ef=1+= I + + 3 + - Zﬁ
n=0
The exponential function is illustrated in figure 2.5. It has several useful
properties, the most important of which is
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-2 -1 1 2

Figure 2.5
The exponential function

f(x1+x2) =f(x1)f(x2) or NIt pN1 N 2)

This will be proved in chapter 4 (exercise 4.40). Other properties are
developed in exercises 2.6 and 2.7.

Exercise 2.6 (Properties of e*)
Using (2), show that for every x € R,

ce¥=1/e"

ce*>0

ce*—wasx—o and e¥—0asx— —w

This implies that the exponential function maps R onto R..

Exercise 2.7
The exponential function is “bigger” than the power function, that is,

X
. e
lim — = foreveryn=1,2,...
x—oo XN

[Hint: First show that lim,,_.,,(e*/x) = c0.]

Exercise 2.8
Show that the sequence of polynomials

" xk xz X3 x"

n — J— — e e _
R B TR T
k—

converges uniformly on any compact subset S < ‘R.
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Functionals

In practice, the most common functions in economics are those which
measure things, such as output, utility, profit. To distinguish this common
case, functions whose values are real numbers have a special name. A
real-valued function f: X — R is called a functional.

Remark 2.1 (Extended real-valued function) It is often analytically conve-
nient (see example 2.28) to allow a function to take values in the extended
real numbers R* = Ru {—o0} U {+0} (remark 1.6). Such a function
[+ X — R*is called an extended real-valued function. For convenience we
will allow the term functional to include extended real-valued functions.

More generally, the range of functionals may be real or complex
numbers. In economics, complex functionals arise in dynamics models.
However, they are beyond the scope of this book.

Since R is naturally ordered, every functional f: X — ‘R induces an
ordering > s on its domain, defined by

x1 Zpx e f(x1) =2 f(x)
with
X1 > X2 & f(x1) > f(x2)

and

X1 ~p X2 & f(x1) =f(x2)

Thus every functional f: X — R implicitly creates an ordered set
(X, Z,). This ordering defines certain useful subsets of X, such as the
upper and lower contour sets of f defined by

Zyla) ={xeX:f(x) =z a}

Srla) ={xeX: f(x) <a}

~

Similarly the epigraph of a functional f: X — R is the set of all points
in X x R on or above the graph. Formally

epi f ={(x, ) e X xR:y > f(x),xe X}

The corresponding set of points on or below the graph is called the
hypograph, which is defined as

hypo f ={(x,»)) e X x R:y < f(x),xe X}
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Using these concepts, the analysis of functionals can often be reduced
to the analysis of properties of sets, utilizing the results developed in the
previous chapter. For example, the contours of a linear functional are
affine sets (hyperplanes) (section 1.4.3). Its upper and lower contour sets
are called halfspaces. Similarly a function is concave if and only if its
hypograph is a convex set.

Remark 2.2 (Functional analysis) So important are functionals that a
whole branch of mathematics is devoted to their study. It is called func-
tional analysis. We will encounter some of the principal results of this field
in chapter 3.

Exercise 2.9
Let X be any set. Let F(X) denote the set of all functionals on X. Show
that F(X) is a linear space.

Exercise 2.10
What is the zero element in the linear space F(X)?

A functional f € F(X) is definite if takes only positive or negative
values. Specifically,

strictly positive f(x)>0

. ti . >0
fis ronnegattve definite if S(x) = for every x e X

nonpositive f(x) <0

strictly negative f(x)<0

A functional f € F(X) is bounded if there exists a number k such that
|f(x)| <k for every x € X.

Example 2.11 (The space B(X)) For any set X, let B(X) denote the set
of all bounded functionals on X. Clearly, B(X) < F(X). In fact B(X) is a
subspace of F(X).

Exercise 2.11

L. ||f]] = supycx|f(x)] is a norm on B(X).

2. B(X) is a normed linear space.

3. B(X) is a Banach space.

Example 2.12 A sequence in B(X) converges uniformly if and only if

Il/" = f1 — 0. That is, uniform converges corresponds to convergence of
elements in the normed space B(X).
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2.1.2 Examples of Functions

In this section we introduce many other examples of functions encoun-
tered in economic analysis.

Examples from Mathematics

Example 2.13 (Indicator function) For any subset S of a set X, the indi-
cator function yg: X — {0, 1} of S is defined by

o {! ifxes
AW =0 ifxes

Mathematicians sometimes call this the characteristic function. We reserve
the latter term for a related concept in game theory (example 2.36).

We have already encountered some significant examples of functions in
chapter 1, such as norms, metrics, and sequences.

Example 2.14 (Norm) Given a linear space X, a norm is a functional
I |I: X — R with the properties

- Ix[[ =0

. |Ix|| = 0if and only if x =0

. lox|| = || ||x]|| for all & € R

Ayl < (I i

DW=

The norm assigns to every element x € X its size. Similarly, a metric p on
a metric space X is a function from X x X to R which assigns every pair
of elements the distance between them.

Example 2.15 (Sequence) Given a set X, an infinite sequence (x") in X is
a function from the set of integers 9t to X, where f(n) = x". This clarifies
the distinction between the elements of a sequence x', x2, ... and its range

S (M), comprising all those elements in X that are points in the sequence.

Example 2.16 (Countable set) A set X is called countable if it is the range
of some sequence, that is, if there exists a function from the set of integers
N onto X . If there is not no such, the set is called uncountable. Clearly, the
set 9t is countable. It is a fundamental property of numbers that the set O
of all rational numbers is countable, while any interval of real numbers in
uncountable.
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Example 2.17 (Probability) Consider a random experiment with sample
space S. A probability function P is a real-valued function (functional) on
the set of events & with the properties

1. P(E) >0 forevery E€ &
2. P(S) =1

3. for any sequence E', E?, ... of mutually exclusive events (E” N E" = ()
0 0
P(U E") => P(E")
n=1 n=1

P(E) is called the probability of the event E.

When the sample space is finite, every subset of S is an event, and
& = 2(S). Furthermore, using condition 3, we can define P(E) by the
probability of the elementary outcomes

P(E) = P({s})

seE

Where the sample space S is an infinite set (e.g., R), not all subsets of
S can be events, and the probability function is defined only for a sub-
collection of 2(S).

Example 2.18 The sample space of a single coin toss is {H, T}. The
probability function for a fair coin is defined by

P({H}) = P({T}) =3

Exercise 2.12

The sample space for tossing a single die is {1,2,3,4,5,6}. Assuming that
the die is fair, so that all outcomes are equally likely, what is the proba-
bility of the event E that the result is even (See exercise 1.4)?

Example 2.19 (Random variable) Analysis of random processes is often
simplified through the use of random variables. Any functional f: S — R
whose domain is the sample space S of a random experiment is called
a random variable. In probability theory it is conventional to denote a
random variable by X.

Example 2.20 In many board games, progress at each turn is determined
by the sum of two fair die. This is the random variable X: {1,2,3,4,5,6} x
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{1,2,3,4,5,6} — {2,3,...,12} defined by
X(m,n) =m+m
where m and n are randomly chosen from {1,2,3,4,5,6}.

Example 2.21 (Distribution function) Given a random variable X:
S — R, the distribution function of X is defined by the probability of the
lower contour sets of X

Fla)=P({seS:X(s) <a})

Example 2.22 (Dynamical system) A discrete dynamical system is a set X
together with an operator f: X — X which describes the evolution of the
system. If the system is in state x’ at time z, the state at time ¢ + 1 is given
by

xr+l :f(xt)

If the system begins at x°, the subsequent evolution of the system is
described by repeated application of the function f, that is,

xt+l :f(xt) :ft+1(x0)

The set X of possible states is called the state space. x" is called the initial
position. Particular interest is attached to stationary points or equilibria of
the dynamical system, where

xt+1 :f(xt) _ xl

0

Equilibria are simply the fixed points of the function f.

Example 2.23 (Lag operator) The lag operator is commonly employed
in econometrics and in the exposition of dynamic models. Suppose that
(x% x',x2,...) € X* is a sequence of observations or economic states.
The lag operator L generates a new sequence (y°,p',y2,...), where each

y' is equal to value of x in the previous period. That is,
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pl= Lyl = x°

RIS —
y3=Lx3=x2

and

yl — Lxl — xl—l

Given any sequence of observations, the lag operator generates a new
sequence in which each observation is shifted one period. The lag opera-
tor is a function on the set X of all sequences, that is, L: X* — X®.

Examples from Economics

Example 2.24 (Production function) In classical producer theory, where
the firm produces a single output from » inputs, the technology can be
represented by the input requirement set

V(y)={xeR!:(y,—x)e Y}

which measures the inputs necessary to produce y units of output (exam-
ple 1.8). Equivalently the relationship inputs and outputs can be expressed
by the production function, which specifies the maximum output that can
be obtained from given inputs. Formally the production function f maps
the set of feasible input vectors R’ to the set of feasible outputs R and is
defined by

f(x) =sup{y:xeV(y)}

Example 2.25 (Distance function) The efficiency of any feasible produc-
tion plan (y, —x) € Y can be measured by the distance between x and the
boundary of V(y). Given any technology V'(y), the distance function is
defined as

F(y,x) :sup{/l >0: %xe V(y)}

Example 2.26 (Objective function) Most economic models pose one or
more optimization problems. The decision maker has some control over a
list (vector) of choice or decision variables x. The outcome of any choice
also depends on the values of one or more exogenous parameters 6. The
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combined effect of the decision variables and parameters is measured by a
functional f: X x ® — R, which is called the objective function. X is the
set of feasible values of the decision variables and ® the set of parameters
(the parameter space). Typically the decision maker seeks to maximize the
value of the objective function for given parameters, so the optimization
problem can be formulated as choosing x € X' to maximize f(x, @) given
0, or succinctly

max f(x,0) (3)
xeX

Example 2.27 (Competitive firm) A competitive firm buys and sells at
fixed prices p = (py,p2,---,pn). Its profit depends on both the prices p
and the production plan y it chooses. Specifically, the profit (net revenue)
of the production plan y is given by f(y,p) =>_;piy;. To maximize
profit, the firm will seek that feasible production plan y € Y that maxi-
mizes f(y,p). Therefore the behavior of a profit-maximizing competitive
firm can be represented by the maximization problem

max f(y,p)
yeY

The function f(y,p) = >, p;y; is the firm’s objective function, y are the
decision variables and p the parameters.

Example 2.28 (Value function) The optimization problem (3) implicitly
defines a functional on the set of parameters ® that determines the best
performance that can be attained for different values of the parameters.
This functional v: ® — R*, which is defined by
v(0) = sup f(x,0)

xeX
is called the value function.

The value function is properly an extended real-valued function
(remark 2.1). Allowing v to take values in the extended real numbers
R* ensures that the function v is well-defined. For any 6 € ®, the set
So={f(x,0):xe X} is a subset of R. Sy always has an upper bound
in R* (remark 1.6). v(8) = oo for every 6 for which Sy is unbounded.

Remark 2.3 The value function uses a number of aliases. In the eco-
nomics literature it is sometimes termed the maximum value function. This
emphasizes its optimal nature but is inappropriate in minimization prob-
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lems. Specific instances of the value function in economics have names
appropriate to their circumstances, such as the profit function, the cost
function, and the indirect utility function. In the mathematics and mathe-
matical programming literature, a name like the perturbation function
might be used.

Example 2.29 (Profit function) The value function for the problem of a
competitive firm (example 2.27)

T(p) =sup f(p,y) =sup > piy;

yevY yeY 3
is known as the firm’s profit function. As we will show in chapter 6, much
of the behavior of a competitive firm can be deduced from the properties
of its profit function.

Exercise 2.13

Where the firm produces just a single output, it is common to distinguish
output from inputs. To do this, we reserve p for the price of the output,
and let the vector or list w= (w;,ws,...,w,) denote the prices of the
inputs. Using this convention, define the profit function for a profit-
maximizing competitive firm producing a single output.

The following exercise shows the importance of allowing the value
function to take infinite values.

Exercise 2.14 (Constant returns to scale)

Consider a competitive firm with a constant returns to scale technology
Y = R" (example 1.101). Let f(p,y) = >, p;y; denote the net revenue
(profit) of adopting production plan y with prices p.

1. If production is profitable at prices p, that is, there exists some y € Y
such that f(y,p) > 0, then II(p) = +o0.

2. Show that the profit function takes only three values, that is, for every
pe Ry,
II(p)=0 or II(p)=+4+o00 or II(p)=—o0

Example 2.30 (Constrained optimization) In most optimization problems,
the choice of x is constrained to some subset G(#) = X depending on the
value of the parameters 0. The general constrained maximization problem
can be formulated as choosing x € G(0) so as to maximize the objective
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function f(x, @), which can be expressed succinctly as

g%fﬂxﬁ (4)

The corresponding value function v: @ — R* is defined as

v(0) = sup f(x,0)
xeG(0)

Adopting the convention that sup ¢J = —co, then v(6) is defined even
where the feasible set G(0) = (.

For given parameter values 6, the solution of the constrained maxi-
mization problem is a choice of the decision variables x* € G(8) such that

f(x*,0) > f(x,0) for every x € G(6)
in which case x* satisfies the equation

v(0) =/ (x",0) (5)

Chapter 5 is devoted to techniques for solving constrained optimization
problems.

Sometimes an optimization problem is formulated in such a way that
the decision maker wishes to minimize rather than maximize the objective
function. An example is the firm’s cost minimization problem (example
2.31). The general constrained minimization problem is

i 0
gg%f@,)

and the corresponding value function v: ® — R”* is defined by

o0)= i, 0

Since

i 0) = — 0
xg%,ﬂx) Jnax f(x,0)

minimization problems require no generalization in technique.

Exercise 2.15
For given 6 € O, verify that x* € G(0) is a solution to (4) if and only if it
satisfies (5).



163

2.1 Functions as Mappings

Remark 2.4 (Max versus sup) You will often encounter the value func-
tion for a constrained optimization problem defined by
v(0) = max f(x,60 6
(0) = max f(x,0) (©
using max rather than sup. Strictly speaking, this is a different meaning of
the abbreviation max than we have used in the expression
max f(x,80 7
max f(x,0) )
The max in (7) is a verb (maximize), whereas the max in (6) is a noun
(maximum or maximal element). It is useful to keep this distinction in
mind.

By virtue of exercise 2.15, the expression (6) is well defined provided
that an optimal solution exists. However, we favor the more robust
expression
v(0) = sup f(x,0)

xe G(0)
since it ensures that the value function is well-defined without this pro-
viso. It also helps to clearly distinguish the noun from the verb.

Example 2.31 (Cost function) In another useful model of the producer,
also relevant to the analysis of monopolies and oligopolies, the firm pur-
chases its inputs at fixed prices and seeks to minimize the cost of produc-
tion. For simplicity, assume that the firm produces a single output. The
total cost of the input bundle x is >_"" | w;x;. To produce any output level
v, the firm seeks the input combination x € V(y) that minimizes the cost
of producing y. The decision variables are input choices x € R’, while
the parameters are input prices w and output y. We can model the cost-
minimizing firm as a constrained minimization problem
n

min WiXi
xeV(y) ‘3

The value function for this problem, defined by
c¢(w,y) = inf Z WiX;

is called the cost function.
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In the rest of this section, we specify in more detail a particular
optimization model that is more sophisticated than standard economics
models such as the model of a consumer (example 1.113) or a competitive
firm (example 2.27). We introduce it now since it provides an ideal example
to illustrate many of the concepts introduced in this chapter, including the
fixed point theorem used to establish the existence of an optimal solution
(section 2.4).

Example 2.32 (Dynamic programming) Dynamic programming is a
special type of constrained optimization problem which takes the form

max Z B (x4, x41)
=0

X1, X2,4..0

subject to  x,41 € G(x;), t=0,1,2,...
Xo € X given

Starting from an initial point xy € X, the problem is to make a sequence
of choices xp,xp,... from a set X. The feasible choice x,;; at period
t+1 is constrained by the choice in the previous period, so that
X1 € G(x;) € X. The functional f(x;,x.41): X x X — R measures the
return in period ¢ if x,,; is chosen when the state is x,. Future returns are
discounted at the rate § with 0 < f < 1. Any sequence x = (xg, X1, X2, . ..)
in X is called a plan. Let X denote the set of all sequences (plans). The
objective is to choose a plan x so as to maximize the present value
(example 1.109) of the total return > B'f (x;, Xr41)-
Let

I(x) ={xeX*:x41€G(x),t=0,1,2,...}

denote the set of plans that is feasible, starting from the initial point xy.
The feasible set depends on a single parameter xp, the initial state. Let
U(x) denote the total return from feasible plan x € I'(xy), that is,

o0

Ulx) = Zﬂ’f(x[, Xe+1)

t=0

Then the dynamic programming problem can be expressed as a standard
constrained optimization problem (example 2.30)

U
) v
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What distinguishes this constrained optimization problem from the pre-
ceding examples is the infinite planning horizon. If the planning horizon
were finite, this problem would be no different in principle to the preced-
ing examples and could be solved in a straightforward manner using the
techniques in chapter 5. However, the infinite planning horizon is often
an essential ingredient of the model, and necessitates the use of different
solution techniques. One fruitful approach uses the value function.

The value function for the dynamic programming problem measures
the best that can be achieved from any initial point xq. It is defined by
v(xo) = sup U(x)

xel(xo)
Provided that u is bounded, G(x) is nonempty for every x e X and
0 < B < 1, the value function is a bounded functional on X that satisfies
the equation
v(x) = sup {f(x,»)+pv(y)} for every x e X (8)
yeG(x)
This is known as Bellman’s equation (exercise 2.16).
A feasible plan x* € I'(x) is optimal if

Ux*) = U(x) for every x € I'(xp)

in which case v(xp) = U(x*) (exercise 2.15). The right-hand side of equa-
tion (8) defines on operator T on the space B(X) (exercise 2.18), namely

(Tv)(x) = sup {f(x,y)+ fu(y)}

yeG(x)
The functional equation (8) can be written

v(x) = (Tv)(x)
That is, the value function v is a fixed point of the operator 7.

Example 2.33 (Optimal economic growth) A particular application of
dynamic programming is provided by the following model of optimal
economic growth widely used in macroeconomics (Stokey and Lucas
1989). Time is divided into a sequence of periods (months or years).
A single good is produced using a technology that requires two inputs,
capital k£ and labor /. In each period the quantity y, of output produced is
given by
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Vi :f(kn It)

where k; is the stock of capital and /, the quantity of labor available at the
beginning of the period. This output y, can be allocated between current
consumption ¢, and gross investment i, so that

¢ +ir =y

Capital depreciates at a constant rate 0 < ¢ < 1 so that the capital stock
in the next period becomes

kt+1 = (1 _5)]([ + it

Labor supply is assumed to be constant. For convenience we assume that
[, = 1 in every period, and we define

F(kt) :.f<kta 1) + (1 _5)kt

to be the total supply of goods available at the end of period k, compris-
ing current output y, = f(k;, 1) plus undepreciated capital (1 — J)k,. The
supply of goods must be allocated between current consumption ¢, and
investment in next period’s capital k1, so that for every ¢,

¢+ ki1 = F(ky)
or
Cr = F(kt> — kt+1 (9)

Investment increases future output at the expense of current consumption.

The benefits of consumption ¢; in each period are measured by the
instantaneous utility function u(c,) (example 2.58). Future utility is dis-
counted f per period. The problem is to choose the optimal trade-off
between consumption and investment in each period so as to maximize
total discounted utility

o0

> Bluler)

=0

To cast the problem in the form of the previous example, substitute (9)
into the objective function to obtain

maxi/)’tu(F(kt) — k1)
=0
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In each period the choice between consumption ¢; and future capital &,
is constrained by the available output F(k;):

0 <ci ki1 < F(ky)

The optimal growth policy is a sequence ((co, k1), (c1,k2),...) of con-
sumption and investment pairs that maximizes total utility. It is analyti-
cally convenient to regard the future capital stock k,.; as the decision
variable, leaving the residual for current consumption ¢, according to (9).
Therefore optimal growth in this economy can be modeled as choosing a
sequence k = (ky, ks, ks, ...) of capital stocks to solve

maxZﬂ’u(F(k,) — k1)
t=0

subject to 0 < kyy < F(ky) (10)
given ky.

Let
(ko) = {(k1, ko, ks, ...): 0 < kpyy < F(ky),t=0,1,2,...}

denote the set of feasible investment plans, which depends on a single
parameter kj, the initial capital stock. The value function for the optimal
growth problem is

o0

v(ko) = W ;ﬁ’u(F(kr) — ki) (11)

The value function measures the total utility that can be derived from
an initial capital stock of ky, presuming that the allocation between con-
sumption and investment is made optimally at each period. Similarly
v(ky) is the total utility that could be derived by optimal investment,
starting with a capital stock of k;. Therefore in period 0 the best that can
be done is to choose k; to solve

L max (ko) — ki) + felk) (12)
where u(F (ko) — ki) is the utility derived from consumption in period 0
and fuv(k;) is the total utility attainable from capital stock of k; in period
1, discounted to period 0.
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Assume, for the moment, that the value function v is known. It is then
straightforward to solve (12) to determine the optimal consumption ¢y and
ki in the first period. In the second period the decision maker faces the
analogous problem

ma F(ky) —k k
pohax u(F (ki) — ka) + po(kz)
and so on, for subsequent periods. Knowledge of the value function en-
ables the decision maker to decompose the multi-period problem (10) into
a sequence of single-period optimization problems (12). The optimal growth
problem can be solved by finding the value function v defined by (11).

Observe that the value function v defined by (11) is also the value
function for the optimization problem (12); that is, the v must satisfy the
equation
v(ko) = sup u(F(ko) — ki) + pu(ki)

ki €[0, F (ko))
Indeed, for an optimal investment sequence (ko, k1, k2, . ..), this equation
must hold in all periods, that is,
U(kt) = sup U(F(kt) — kpr]) +ﬂv(k1+1), = 07 17 2,7 N

ki1 €[0,F(ki)]
Consequently we can dispense with the superscripts, giving rise to Bell-
man’s equation
vk)= sup u(F(k)—y)+pv(y) for every k > 0

0<y<F(k)
Since the unknown in this equation is a functional v rather than single
point k, it is called a functional equation.

Exercise 2.16 (Bellman’s equation)
Let

v(xo) = sup U(x)
xeT'(xo)

be the value function for the dynamic programming problem (example
2.32). Assume that

+ fisbounded on X x X

+ G(x) is nonempty for every x € X
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Show that v is a bounded functional on X (i.e., v € B(X)) that satisfies the
equation

v(x) = sup {f(x,p) +pv(y)}

yeG(x)
for every x € X.

The previous exercise showed that the value function satisfies Bellman’s
equation. The next exercise shows that every optimal plan must satisfy
Bellman’s equation at each stage.

Exercise 2.17 ( Principle of optimality )
Let

o) = sup U(x)

xeT(xp)

be the value function for the dynamic programming problem (example
2.32). Assume that

« fis bounded on X x X

+ G(x) is nonempty for every x € X

Show that the plan x* = (xo, x{, x3,...) € I'(xo) is optimal if and only if it
satisfies Bellman’s equation

U(xr*) :f(xtyﬁ?xtttl)"'ﬁv(xt:l% t=0,1,2,... (13)

Exercise 2.18
In the dynamic programming problem (example 2.32), assume that

« fis bounded on X x X

+ G(x) is nonempty for every x € X

Show that the function 7" defined by
(Tv)(x) = sup {f(x,y)+ Bu(y)}

yeG(x)
is an operator on the space B(X) (example 2.11).
Examples from Game Theory

Example 2.34 (Payoff function) It is customary to assign numerical
values or payoffs to each of the outcomes in a strategic game (section
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1.2.6). For example, in Rock—Scissors—Paper (exercise 1.5), if we assign
the value 1 for a win, 0 for a draw, and —1 for a loss, the game can be
represented in the familiar tabular or matrix form

Chris
Rock Scissors Paper

Rock 0,0 I, -1 —1,1
Jenny Scissors -1,1 0,0 1, -1
Paper 1, -1 -1, 1 0,0

The first entry in each cell represents the payoff to Jenny when she
chooses that row and Chris chooses the column. The second entry is the
corresponding payoff to Chris. For example, if Jenny chooses Rock and
Chris chooses Scissors, Jenny wins. Her payoff is 1, while the payoff to
Chris is —1.

For each player the mapping from strategies to payoffs is called the
payoff function of each player. In this game Jenny’s payoff function is the
function u;: S; x S, — R, whose values are given by the first entries in
the above table. For example,

uy(Rock, Scissors) = 1

Example 2.35 (Cournot oligopoly) In the standard Cournot model of
oligopoly, n firms produce a homogeneous product. The strategic choice
of each firm is to choose its output level y;. Since the product is homo-
geneous, the market price p depends only on the total output Y =
y1+y2+ -+ y, according to the inverse demand function p(Y). The
revenue of an individual firm is determined by its own output y; and
the market price p, which depends on the output of all the other firms.
Therefore the oligopoly is a game in which the payoff function of firm 7 is

ui(yiy-i) = p(Y) —ci(yy)

where ¢;(y;) is the cost function of firm i. y_; denotes the output choices
of the other firms. Provided that the cost functions satisfy appropriate
conditions, this game can be shown to have a Nash equilibrium con-

figuration of output choices y* = (y{, »5,...,»,), which is known as the
Cournot equilibrium.
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Example 2.36 (Characteristic function) A coalitional game with trans-
ferable payoff (example 1.46) comprises

- a finite set N of players

- for every coalition S = N, a real number w(S) that represents the worth
of the coalition S (if it acts alone)

The function w: Z(N) — R, which assigns to every coalition S = N its
worth w(S), is called the characteristic function of the game. By conven-
tion w(¥) = 0.

Exercise 2.19 ( Three-person majority game)
Suppose that the allocation of $1 among three persons is to be decided by
majority vote. Specify the characteristic function.

Example 2.37 (Value of a game) In section 1.6 we showed that the
nucleolus (example 1.49) identifies precisely one outcome in every TP-
coalitional game. In effect the nucleolus defines a function on the space
of games 4V (example 1.70). It is an example of a value. A value for
TP-coalitional games is a function ¢ defined on %% that identifies a fea-
sible allocation for every game. Formally any function ¢: 4V — R" is a
value if ), _y(pw); = w(N). Another prominent value for TP-coalitional
games is the Shapley value (example 3.6). These values differ in their
properties. In particular, the Shapley value is a linear function, whereas
the nucleolus is nonlinear.

2.1.3 Decomposing Functions

The domain of most functions encountered in economics is a product
space. That is, if f/ maps X to Y, the domain X can usually be decom-
posed into a product of simpler spaces

X=X xX; x - xX,
Similarly the co-domain Y can often be decomposed into
Y=Y xY,x---xY,

These decompositions can be helpful in exploring the structure of the
function f.

For example, suppose that f: X; x X x --- x X, — Y, and choose

some point x” = (x¥,x,...,x%) € X. The function f; defined by

»n
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fi(0) :f(x?,xg,...,x?ﬁl,t,x,f)ﬂ,...,x,?)

maps X; — Y. The function f, allows us to explore the implications of
allowing one factor to vary, while holding all the others constant. It
implements the economist’s notion of ceteris paribus. Sometimes we will
use the notation f(#;x_;) to indicate such a decomposition, where the

variables following the semicolon are regarded as constant.

Example 2.38 (Total cost function) A firm’s cost function c(w, y): R’ x
R — R measures the minimum cost of producing output level y when the
input prices are w = (wy,wy,...,w,) (see example 2.31). Frequently we
are interested in analyzing just the impact of output on costs. Holding
input prices w constant, the function ¢: R — R,

e(y) = c(w,y)
is the familiar total cost function of elementary economics (figure 2.6).

Sometimes it is appropriate to allow a subset of the variables to vary,
while holding the remainder constant. This is illustrated in the following
example.

Example 2.39 (Short-run production function) A firm produces a single
output using n inputs. Its technology is described by the production
function y = f(x1, x2,...,x,). Suppose that some inputs are fixed in the
short-run. Specifically, suppose that we can decompose the list of inputs x
into two sublists (xf,X,), where x; € Xy are inputs that are fixed in the

Total

Cost é(y)

Output Y

Figure 2.6
A total cost function
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short-run and x, € X, are variable inputs. The function f : X, — R defined
by

f(Xv§ Xf) :f(xm Xf)

is known as the short-run production function. It describes the output
obtainable from various levels of the variable factors x,, while holding the
fixed inputs X constant.

When the co-domain Y is a product space ¥ = Y] X Y, X --- X ¥},
it is useful to decompose a function f: X — Y into m components
f=(f1,f2 -, fm), where each component f;: X — Y;. For any point
x € X, its image is

f(x) = (/1(%), S2(x), s S (%))

In line with our notational convention, we use a bold font to designate
a function whose co-domain is a product space. Almost invariably the
co-domain Y is a subset of R”, so each component f;: X — R is a func-
tional on X. It is often convenient to alternate between these two different
perspectives, sometimes viewing f as a function from X to R” and other
times regarding f as a list of functionals on X. These different perspectives
are illustrated in the following example.

Example 2.40 (Constrained optimization) In the general constrained
optimization problem (example 2.30)

max f(x,60
xeGg(g)f(x )

the constraint set G(@) can often be represented a function g: X x ©@ —
Y < R, so the general constrained maximization problem becomes

(X, 0
max f(x,0)

subject to  g(x,0) <0

Sometimes it is convenient to think of the constraint as a single function
g: X x ® — R™. At other times it is more convenient to decompose g into
m separate constraints (functionals) g;: X x ® — R,j=1,2,...,m, with

91(x,0) <0, g2(x,0) <0, ..., gn(x,0) <0

We will take advantage of this decomposition in chapter 5.
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Figure 2.7
Tllustrating a function from 2" — 2"

Figure 2.8
A function from %> — %

2.1.4 Illustrating Functions

Some functions can be illustrated directly (figure 2.3) or by means of their
graph (figures 2.2, 2.4, 2.5, and 2.8). The dimensionality of most eco-
nomic models precludes such simple illustrations, and it is necessary to
resort to schematic illustrations such as figures 2.1 and 2.7.

Many functions that we meet in economics, including objective func-
tions, payoff functions, production and cost functions, are functionals. In
other words, they are real-valued functions f: X — R. Where the domain
X = W2, the graph of f,

graph(f) = {((x1,x2),5) € W2 x R=R*) 1y = f(x1.32)}

is a surface in R>. With imagination this can be illustrated on a two-
dimensional page (figure 2.8). Even where the economic model requires
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A

Figure 2.9
A vertical cross section of figure 2.8

more than two decision variables, we often use illustrations like figure 2.8
to help cement ideas. Alternatively, with higher dimensions and more
general spaces, we sometimes depict the graph schematically, allowing a
single horizontal axis to represent the domain (figure 5.11).

The decompositions discussed in the previous section can be very useful
in illustrating higher-dimensional functions. For example, for any func-
tional f € F(X), where X < R", the function

SO =f(6x0) =, 39, X )

for any x* € X maps R to itself. The graph of f, can be depicted as a
curve in the plane (figure 2.9). It provides a vertical cross section of the
graph of f, parallel to the ith axis. Figure 2.9 shows a vertical cross
section of figure 2.8. The total cost curve (figure 2.6) provides another
example.

Exploiting the linear structure of R”, another useful cross section of a
function f € F(R") is defined by

h(t) = f(x") = f(ex), 09, ... 1x0)

where x’ is an arbitrary point in R”. Again, # maps R into R. Its graph is
vertical cross section of the graph of f; this time along a ray through the
origin. This cross section is particularly useful in describing technologies
—it represents changing the scale of production while leaving input pro-
portions fixed.

Recall that the contours f~'(y) of a function f: X — Y partition the
domain X. Another useful way to explore the geometry of a function is to
depict some contours (figure 2.10). These correspond to horizontal cross
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T2

T

Figure 2.10
Horizontal cross sections (contours) of figure 2.8

sections of the graph. The use of contours to reduce dimensionality is
familiar in topographical and weather maps. Contours are equally useful
in economics.

Remark 2.5 (Tomography) Tomography is the technique of obtaining a
planar image of a cross section of a human body or other object. In a CAT
(computer-assisted tomography) scan, a sequence of parallel cross sections
is obtained. These images enable the radiologist to construct a detailed
picture of the interior of the body. Economists use an analogous tech-
nique, deducing the structure of a multidimensional function by mentally
combining judicious cross sections.

Example 2.41 (Anatomy of the production surface) Economists frequently
resort to horizontal and vertical cross sections to describe the properties
of a technology as represented by a production function. Figure 2.11
illustrates a Cobb-Douglas production function

f(x1,x2) = x{"x3?, ar+a =1

together with three useful cross sections. Alongside the surface, the second
quadrant depicts a sequence of horizontal cross sections or contours,
known as isoquants. They represent the different combinations of x; and
x; that can be used to produce a particular output level, illustrating the
substitutability between the inputs. The third quadrant is a vertical cross
section parallel to the x; axis. It shows the output produced by varying
the amount of x; while holding x, constant, illustrating the diminishing



177 2.1 Functions as Mappings

Ty
3 \

e ,,s\ v,.,, “gﬂ “ “‘l
, RN
xX %ﬁw: “g‘i ““ﬁ\

t‘l"“‘ T

T1
f(x) f(x)
Iy ! t

Figure 2.11
A Cobb-Douglas function and three useful cross sections

marginal product of factor 1. Alongside this, the fourth quadrant shows a
vertical cross section along an expansion path (ray through the origin). It
shows the output obtained by changing the scale of production, holding
the input ratios fixed. In this particular case, the cross section is linear,
illustrating the constant returns to scale of the Cobb-Douglas technology
when a; +a; = 1.

2.1.5 Correspondences

The budget set X (p,m) of a consumer (example 1.113) is a subset of the
consumption set X. The composition of the budget set, the bundles that
are affordable, depends on the prices of all goods p and the consumer’s
income m. In fact affordability determines a function from set of feasible
prices and incomes to the set of all subsets of the consumption set (2(X)).
This situation, where the co-domain of a function is the power set of an-
other set, occurs frequently in economics. It justifies a slight generaliza-
tion of the concept of a function that is known as a correspondence.
Given two sets X and Y, a correspondence ¢ is a rule that assigns to
every element x € X a nonempty subset ¢(x) of Y. Every correspondence
@ between X and Y can be viewed simply as a function from X to
2(Y). Alternatively, it can be viewed as a multi-valued function, since
any x can be associated with more than one y € Y. Although a corre-
spondence ¢: X 3 Y is a proper function between X and 2(Y), it is the
relationship between X and Y that we wish to emphasize, which creates
the need to introduce a new concept. We will denote a correspondences by
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Relation Function Correspondence

Figure 2.12

Comparing a relation, a correspondence, and a function

@p: X 3 Y, using the double arrow to distinguish it from a function be-
tween X and Y. Correspondences, which arise so naturally in economic
analysis, have an unjustified reputation for difficulty, which we would like
to dispel. In fact we have already met several examples of correspond-
ences. We discuss some of these after the following remark.

Remark 2.6 (Correspondences, functions, and relations) Recall that a
relation between two sets X and Y'is a subset of their product X x Y, that
is, a collection of pairs of elements from X and Y. A correspondence

33X — Y is a relation between X and Y in which every xe X is
involved, that is, whose domain is the whole of X. A function is relation
(in fact a correspondence) in which every x € X is involved only once; that
is, every x € X has a unique relative in Y. For example, in figure 2.12, the
left-hand panel is merely a relation, since not all points in X are related to
Y. The right-hand panel is a correspondence, since every x € X is related
to some y € Y. It is not a function, since there is an x that is related to
more than one y. The middle panel is a legitimate function, since every x
is related to one and only one y.

By convention, we do not distinguish between a correspondence in
which every image set contains a single element and a function.

Example 2.42 (Upper and lower contour sets) If > is an order relation
on a set X, the upper contour sets

Z(@a) ={xeX:xZza}

~
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specify a correspondence on X, as do the sets >(a). Similarly the lower
contours sets (a), <(a) and the indifference sets ~(a) are all corre-
spondences on X.

Example 2.43 (Preimage) Given any function f: X — Y, the preimage

) ={xeXx:f(x) =y}
defines a correspondence between the range f(X) of f and X.

Example 2.44 (Input requirement set) For a single-output technology Y,
the input requirements sets

V(y)={xeR!:(y,—x)e Y}

define a correspondence between output levels y € R, and the set of all
nonnegative input levels R’ .

Example 2.45 (Coalitional game) In a coalitional game (section 1.2.6),
the relation which specifies the subset of outcomes over which each co-
alition is decisive is a correspondence between the set of coalitions and the
set of outcomes. Therefore a coalitional game comprises

+ a finite set N of players
- a set X of outcomes

- for each player i € N a preference relation =, on the set of outcomes X

~i
- a correspondence W: 2(N) 3 X that specifies for each coalition S the
set W(S) of outcomes over which it is decisive

The correspondence W is typically called the characteristic function of the
game (despite being a correspondence), although it is conventional to use
a capital W to contrast with the little w used to denote the characteristic
function of a game with transferable payoff.

A correspondence ¢: X 3 Y is called closed-valued if ¢(x) is closed for
every x € X. Similarly ¢ is compact-valued if p(x) compact- and convex-
valued if p(x) convex for every x € X. Alternatively, we say that ¢ has
closed, compact, or convex sections.

Example 2.46 (Budget correspondence) For fixed prices p and income m,
the consumer’s budget set
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X(p,m)={xeX:pixi +pxs+ -+ pux, <m}

is a subset of the consumption set X. The budget set depends on both
prices p and income m. Let P denote the set of all price and income pairs
for which the budget set is not empty, that is,

P={(p,m)eR" xR:X(p,m) # J}

Affordability determines a correspondence X (p,m): P 3 X between the
parameter set P and the consumption set X, which is called the budget
correspondence. The budget correspondence X (p,m) is convex-valued
(exercise 1.232). It is also closed-valued and compact-valued provided all
prices are positive p > 0 (exercise 1.231).

Example 2.47 (Demand correspondence) In example 1.115 we showed
the existence of an optimal choice x* for a consumer with continuous
preferences. For given prices p and income m in P, there may be more
than one optimal choice. The way in which the set of optimal choices
x*(p,m) varies with prices and income defines a correspondence from P
to the consumption set X that is called the demand correspondence of the
consumer.

Exercise 2.20

Assume that the consumer’s preferences are continuous and strictly con-
vex. Show that the demand correspondence is single valued. That is, the
demand correspondence is a function mapping P — X.

Example 2.48 (Best response correspondence) In a strategic game (sec-
tion 1.2.6), the optimal choice of any player depends on the strategies of
the other players. The set of strategies of player i that constitutes her best
response to the strategies of the other players s_; is called player i’s best
response correspondence

Bi(s_;) = {si € S;: (si,8-1) Z; (s},s_;) for every s; € S;}

Since player i may have more than one optimal response to any s_;, B; is
a correspondence between S_; and S; (rather than a function). The best
response correspondence maps S_; into the power set 2(S;) of S;.

For some purposes (e.g., example 2.52) it is convenient to regard the
domain of each player’s best response correspondence as the whole strat-
egy space S rather than just S_;. This can be done by simply ignoring the
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S; dimension of the domain. The extended best response correspondence
is then defined identically, namely

Bi(s) = {s; € Si: (si,8-;) z; (s;,8_;) for every s; € S;}

In effect, the extended best response correspondence is constant on S;.
Game theorists often refer to B; as the best response function rather than
the more correct best response correspondence, even when they know that
B; is not strictly a function.

Exercise 2.21
s* = (s],85,...,8

n

) is a Nash equilibrium if and only if
s; € B(s") for every i e N

Exercise 2.22 (Rationalizability)

In a strategic game, a strategy of player i is justifiable if it is a best
response to some possible (mixed) strategy (example 1.98) of the other
players, that is,

s; 18 justifiable < s; € B;(Z_;)

where X_; is the set of mixed strategies of the opposing players (example
1.110). Let B! denote the set of justifiable strategies of player i. Then

B} = Bi(X_;)

1

A strategy of player i is rationalizable if it is justifiable using a belief that
assigns positive probability only to strategies of j # i that are justifiable, if
these strategies are justified using beliefs that assign positive probability
only to justifiable strategies of i, and so on. To formalize this definition,
define the sequence of justifiable strategies

B = B(B"")

The set of rationalizable strategies for player i is R; = ﬂf:o B!'. That is,
the set of rationalizable strategies is those that are left after iteratively
discarding unjustified strategies. Show that when § is compact and %, is
continuous, there are rationalizable strategies for every game, that is,
R; # . [Hint: Use the nested intersection theorem (exercise 1.117).]

Exercise 2.23
Every Nash equilibrium is rationalizable.
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Example 2.49 (Solution correspondence) The general constrained opti-
mization problem (example 2.30)

max X, 0

xeG(0) f( )

defines a correspondence between ® and X, known as the solution corre-
spondence, which specifies the optimal choice of the decision variables x
for varying values of the parameters 6. Formally let the solution corre-
spondence is defined as

0) = arg max X, 0

p(0) = arg Jnax /(x,0)

where arg max denotes the set of elements of G(0) that maximize f(x,0).
Economists are very interested in the properties that ¢ inherits from
f and G(6). The demand correspondence (example 2.47) and best re-
sponse correspondence (example 2.48) are particular examples of solution
correspondences.

Exercise 2.24
Show that the value function (example 2.28) can be alternatively defined by

v(0) = f(x*, 0) for x* € p(0)

Most of the vocabulary of functions applies to correspondences with
little change. The domain of a correspondence between X and Y is of
course X. The range is

p(X)={ye Y:yep(x) for some x € X}
The graph of a correspondence ¢ between X and Y is

graph(p) = {(x,y) e X x Y:y e p(x)}

The graph of a hypothetical correspondence is illustrated by the shaded
area in figure 2.13.

A correspondence ¢ is closed if its graph is closed in X x Y, that is, for
every pair of sequences x” — x and y" — y with y”" € p(x"), y € p(x).
Similarly a correspondence ¢ is convex if its graph is a convex subset of
X x Y; that is, for every x!,x?> € X and corresponding y' € p(x!) and
»* e p(x?),

ay! + (1 - oc)y2 € (p(ocxl +(1- oc)xz)
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Figure 2.13
The graph of a correspondence

Every closed correspondence is closed-valued and every convex corre-
spondence is convex-valued, but the converse is false. A closed-valued
and convex-valued correspondence may be neither closed nor convex, as
illustrated in the following example.

Example 2.50 Let X = [0, 1]. Define ¢ : X 3 X by

C[{x} 0=<x<l1

¢ is both closed- and convex-valued for every x € X. However, ¢ is neither
closed nor convex. The sequence (x",y") defined by x" =y"=1—1/n
belongs to graph(p). However the sequence converges to (1, 1) ¢ graph(g).
Therefore graph(gp) is not closed, nor is ¢ convex. The point (0,0) and

(1,0) belong to graph(y), but there convex combination (},0) does not.
Example 2.51 (Input requirement sets) For a single-output technology,
the input requirement sets V' (y),

V(y)={xeR!:(y,—x)e Y}

define a correspondence (Example 2.44) between desired output (y € R.)
and required inputs (x € R”}). The graph of this correspondence is almost
but not quite the production possibility set Y. The graph of the corre-
spondence is

graph(V) = {(y,x) e Ry x R :xe V(y)}
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while the production possibility set Y is
Y = {(r.-x) e Ry x R :xe V()

the distinction being required by the convention that inputs are specified
as negative quantities in production plans. For some purposes it is more
convenient to use graph(}) rather than Y.

In producer theory it is conventional to assume that the input require-
ment set V() is convex for every y (example 1.163). In other words, we
usually assume that the the input requirements sets define a convex-valued
correspondence. In general, ¥ is not further assumed to be a convex
correspondence. However, if the technology is restricted so that the pro-
duction possibility set Y is convex, then V is a convex correspondence
(exercise 2.25).

Exercise 2.25
Let Y be the production possibility set for a single-output technology and
V(y) denote the corresponding input requirements sets

V(y)={xeRL:(y,—x)e Y}
Then Y is convex if and only if V() is a convex correspondence.

Exercise 2.26
Suppose that the constraint correspondence G(0) in the constrained opti-
mization problem (example 2.30)

max f(x,60
xeGg;)f(X )

is defined by a set of inequalities (example 2.40)
91(x,0) <0, ga2(x,0) <0, ... gu(x,0) <0

If each functional g;(x, ) € F(X x @) is convex jointly in x and 6, then
the correspondence

GO) ={xeX:gj(x,0)<0,j=1,2,...,m}
is convex.

Individual correspondences can be combined in analogous ways to func-
tions. If p: X 3 Y and y: Y 3 Z are two correspondences, their compo-
sition o ¢ is a correspondence between X and Z, which is defined by
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Yopx)= U ¥()

yep(x)

If o X33Y, i=1,2,...,n, is a collection of correspondences with
common domain X, their product is a correspondence between X and the
Cartesian product [ [ Y; defined by

o() = [0

Where the co-domains Y; belong to a linear space, their sum is a corre-
spondence ¢: X 3 > Y; defined by

p(x) = Z @;(x)

Correspondences also invite some operations which are inapplicable
to functions. If ¢: X 3 Y is a correspondence between X and a convex
set Y, its convex hull (conv ¢) is another correspondence between X and
Y defined by

(conv ¢)(x) = conv(p(x)) for every x e X

Similarly, where Y is a metric space, the closure of ¢ is a correspondence
. X — Y defined by

?(x) = p(x) for every x e X

Economic models often establish a correspondence between a set X and
itself. A fixed point of a correspondence ¢: X — X is an element that
belongs to its own image set, that is an x € X such that x € ¢(x).

Example 2.52 (Nash equilibrium as a fixed point.) Consider a strategic
game of n players with strategy space S =s; X 5, X - -+ X §,. In exercise
2.21, we showed that s* = (s1,52,...,5,) € S is Nash equilibrium if and
only if

57 € Bi(s™) foreveryie N

The Cartesian product of the individual best response correspondences
defines a correspondence ¢ on the whole strategy space S given by

@(s) = Bi(s) X By(s) X -+ X By(s)
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s* is Nash equilibrium if and only if s* € ¢(s*), that is s* is a fixed point of
¢. Therefore the search for a Nash equilibrium can be reduced to the
search for a fixed point of an appropriate mapping. An equilibrium will
be ensured if the mapping can be guaranteed to have a fixed point. Sec-
tion 2.4 discusses the necessary conditions for existence of a fixed point.

Selections

Given a correspondence ¢ between X and Y, we can always construct a
function by choosing some y € ¢(x) for every x, since ¢(x) is nonempty
for every x. Any function constructed from a correspondence in this
way is called a selection. We use the notation f € ¢ to denote that f is a
selection from the correspondence ¢. Unless the correspondence is in fact
a function, there will be many selections from any correspondence.

2.1.6 Classes of Functions

As we remarked in opening this chapter, we are especially interested in
functions that respect the structure of their domains. Of course, that
structure can take various forms. Functions that respect the order struc-
ture of their domains are called monotone functions. Continuous func-
tions preserve the geometry of the spaces that they link, while linear
functions preserve the algebraic structure. In the next section we investi-
gate monotone functions and correspondences, while in section 2.3 we
deal with continuous functions and correspondences. Linear and related
functions are explored in chapter 3. In the absence of further qualifica-
tion, the domain and range are assumed to appropriately structured sets.
In section 2.2 (monotone functions) all sets are assumed to be ordered
sets. Similarly in section 2.3 all sets are assumed to be metric spaces.

2.2 Monotone Functions

A function between ordered sets X and Y is called monotone if it respects
the order of X and Y. f is increasing if it preserves the ordering so that

X2 Zy X1 = f(x2) Zy f(x1)

where 2z, and 2, are the orders on X and Y respectively. f is strictly
increasing if in addition
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Xy >y x1 = f(x2) >y f(x1)

On the other hand, f: X — Y is decreasing if it reverses the ordering
X2 Zy X1 = f(x2) Sy f(x1)

It is strictly decreasing if in addition

X2 >y x1 = f(x2) <y f(x1)

f is monotone if it is either increasing or decreasing. Some authors use the
term monotone increasing, although the first adjective is redundant.

Exercise 2.27 (Identity function)
Show that the identity function Iy (example 2.5) is strictly increasing.

Remark 2.7 For mappings between arbitrary ordered sets, the mathe-
matical terms isotone and antitone for increasing and decreasing functions
respectively are more appropriate. However, most monotone functions in
economics are real-valued, and the terms increasing and decreasing are
conventional.

Many authors use nondecreasing in place of increasing, reserving
increasing for strictly increasing. Our terminology carries some risk of
confusion. For example, a constant function is “increasing.” On the other
hand, our terminology is internally consistent (an increasing function
preserves the weak order) and less cumbersome.

The following properties of monotone functions are used frequently.

Exercise 2.28
If /: X — Y and g: Y — Z are increasing functions, so is their composi-
tion go f: X — Z. Moreover, if f and g are both strictly increasing, then

soisgof.
Exercise 2.29

If X and Y are totally ordered (chains) and f: X — Y is strictly increas-
ing, then f has a strictly increasing inverse /~': f (X) — X.

Exercise 2.30
If /: X — N isincreasing, —f: X — N is decreasing.

Exercise 2.31
If f,g € F(X) are increasing, then
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+ [ + g is increasing

+ of is increasing for every o > 0

Therefore the set of all increasing functionals on a set X is a cone in F(X).
Moreover, if f'is strictly increasing, then

+ f + g is strictly increasing

« of is strictly increasing for every o > 0

Exercise 2.32
If fand g are strictly positive definite and strictly increasing functionals on
X, then so is their product fg defined by

(f9)(x) =1 (x)g(x)
Example 2.53 (The power function) The power functions f, defined by

fa(x) = x", n=1,273,...

are strictly increasing on R, . First f; is the identity function and there-
fore strictly increasing (exercise 2.27). f; is also strictly positive definite on
R_ ;. By the previous exercise,

S2(%) = fi(x) /1 (%)

is strictly increasing and strictly positive definite on R, .. Similarly

() = fi(x)f2(x)

is strictly increasing and strictly positive definite on R, ,. Continuing in
this fashion using exercise 2.32, we can demonstrate that for every n,

Ja(x) = /1) -1 (%) (14)

is strictly increasing and strictly positive definite on R ..

Note also that f;(0) = 0 and therefore f,(0) =0 for every n by (14).
Since f, is strictly positive definite on R., f,(0) < f,(x) for every
x € Ry.. Furthermore 0 < x for every x € R, ;. We conclude that f, is
strictly increasing on R

Remark 2.8 (Induction) Example 2.53 illustrates the common technique
of proof by induction, applicable when seeking to demonstrate that a
property belongs to every member of a sequence. We first prove that the
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first member of the sequence has the property. Then we show that the nth
member of the sequence has the property if member n» — 1 has the prop-
erty. This is known as the inductive step, exemplified by applying exercise
2.32 to (14). Together these steps prove that every member of the se-
quence has the property.

Example 2.54 (Exponential function) We now let /" denote the sequence
of polynomials

n_ .k
=Y
; k!

Example 2.53 and exercise 2.31 shows that /" is strictly increasing on R
for every n = 1,2, ... This implies that the exponential function (example
2.10)

0 n

e =lim f"(x)=> =

- n:On

is also strictly increasing on R, (exercise 2.33). Since (exercise 2.6)
e ¥ =1/e",

X1 <X <0=0<—x3 < —x1 = f(—x2) < f(—x1)

1 1 N N
=>—<—=e' <e?
e}vz exl

Therefore the exponential function e* is strictly increasing on ‘R.

Exercise 2.33
Show that e* is strictly increasing on R,. [Hint: e*=1+x+
lim, 09" (x), 9"(x) = Y4y 2K/l n > 2]

Example 2.55 (Log function) In exercise 2.6 we showed that
e*— o asx— o and e¢*—0 asx— —w

This implies that e* maps R onto R,. Furthermore we have just shown
that e* is strictly increasing. Therefore (exercise 2.29), the exponential
function has a strictly increasing inverse log: R, — R defined by

y=logxex=2¢
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log(z)

Figure 2.14
The log function

which is illustrated in figure 2.14. Log is an abbreviation of logarithm.
Property (2) of the exponential function implies that

log(xx2) = log x; + log x, (15)

Prior to the development of pocket calculators and personal computers,
(15) was used to facilitate numerical calculations. Students, engineers and
others involved in nontrivial calculations were equipped with tables of
logarithms, enabling them to convert multiplication problems to easier
addition.

Example 2.56 (General power function) The log function enables us to
extend the definition of the power function to noninteger exponents. For
every x € R, e!°¢¥ is the identity function, that is,

X = elogx

and we define the general power function f: R, — R by
f(x) = x4 = etlogx, aeR (16)

Exercise 2.34
The general power function f(x) = x“ is strictly increasing on R for all
a > 0 and strictly decreasing for a < 0.

Example 2.57 (Cobb-Douglas function) In economic analysis, the for-
mula or rule that specifies a particular function is known as a functional
Jform. One of the most popular functional forms in economics is the Cobb-
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Douglas function f: R — R, defined by

f(x) =x{"x52 ... X a; >0

The Cobb-Douglas function is the product of general power functions.

Therefore (exercise 2.32) it is strictly increasing on R

Exercise 2.35 (CES function)

Another popular functional form in economics is the CES function,
f: ML — R, defined by

f(x):(ocle+oc2x§+~~-ocnx,’j)'/”, o;>0,p#0

Show that the CES function is strictly increasing on R

Example 2.58 (Utility function) A strictly increasing functional u on a

weakly ordered set (X, ) is called a utility function. A utility function is
said to represent the preference relation =, since (exercise 2.36)

X2 Z x1 < u(xz) = u(xp)

Exercise 2.36
Let u: X — R be a strictly increasing function on the weakly ordered set
(X, Z). Show that

X2 Z x1 < u(xz) = u(xp)

Example 2.59 (Monotonic preferences) A utility function is strictly
increasing with respect to the preference order > on X. When X = R",
the preference order > may not necessarily be consistent with the natural
order on R”". If the two orders are consistent, the preference order is
monotonic (section 1.6). If the preference > is weakly monotonic on X,

X>y=Xx2Zy< uXx) > ux)

and u is in increasing on X. If X is strongly monotonic
XZ2y=x>y&ux) > uy)

and u is strictly increasing on X.

Example 2.60 (Monotonic transformation) Given any functional f on
X and a strictly increasing functional g: R — R, their composition
go f: X — N is called a monotonic transformation of f. A monotonic
transformation preserves the ordering % , implied by f.
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This terminology (“‘monotonic transformation™) is at odds with our
definition of monotone (weakly increasing or decreasing) but is well
entrenched in the economics literature. Synonyms include “monotone
transformation,” ‘““monotone increasing transformation,” and “positive
monotonic transformation”. A typical application is given in the exercise
2.37.

bl

Exercise 2.37 (Invariance to monotonic transformations)

Let u: X — R be a utility function representing the preference relation .
Show that every monotonic transformation gou is a utility function
representing the same preferences. We say that utility representation is
invariant to monotonic transformations.

Remark 2.9 (Existence of a utility function) Continuity (section 1.6) is a
necessary and sufficient condition for the existence of a utility function
representing a given preference relation. However, a general proof of this
fact is quite complicated, requiring both topological and order-theoretic
ideas. A simple constructive proof can be given when X = R’ and pref-
erences are strongly monotonic (exercise 2.38).

Exercise 2.38

Let z be a continuous preference relation on R7. Assume that 2 is
strongly monotonic. Let Z denote the set of all bundles that have the same
amount of all commodities (figure 2.15), that is, Z={z=1z1:z€ R}

where 1 = (1,1,...,1).

1. For any x € R’} show that

a. the sets Z} = >(x)nZ and Z; = 3(x)nZ are nonempty and
closed

b. ZI nZ; # ¢ [Hint: Z is connected. ]
c. there exists z, € Z which is indifferent to x
d. zy = z«1 is unique

2. For every x € R, define zy to be the scale of zy ~ x. That is, zy = z1.
The assignment u(x) = z, defines a function u: R — R that represents
the preference ordering .

Exercise 2.39
Remark 2.9 implies that the lexicographic preference relation (example
1.114) cannot be represented by a utility function, since the lexicographic
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9

NI

T

Figure 2.15
Constructive proof of the existence of a utility function

preference ordering is not continuous. To verify this, assume, to the con-
trary, that u represents the lexicographic ordering =, on R

1. For every x; € ‘R there exists a rational number r(x;) such that
u(x1,2) > r(x1) > u(xg, 1)

2. This defines an increasing function r from R to the set Q of rational
numbers.

3. Obtain a contradiction.

Example 2.61 (Payoff function) A function u;: 4 — R is a payoff func-
tion for player i in the strategic game (N, 4, (Z, Z,,--., Z,)) (example

~1)~2 Y ~n

2.34) if u; represents the preferences of player i, that is,
a Z;a1 & ui(a) > u;(a;)

So a payoff function is simply a utility function over the set of action
profiles A. The necessary conditions for existence of a payoff function for
players in a game are those for the existence of a utility function, namely
completeness and continuity of the preference relation ..

Exercise 2.40 ( Zero-sum game)
Suppose that u;: A € R represents the preferences of the player 1 in a

two-person strictly competitive game (example 1.50). Then the function
uy = —uy represents the preferences of the player 2 and

ui(a) + up(a) =0 for every a € 4
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Consequently a strictly competitive game is typically called a zero-sum
game.

Example 2.62 (Superadditive game) Monotonicity is a natural assump-
tion for the characteristic function of a TP-coalitional game, reflecting the
presumption that bigger coalition can achieve anything achievable by a
smaller coalition. In fact a stronger presumption is customary. The
characteristic function of a TP-coalitional game is superadditive if dis-
tinct coalitions cannot lose by acting jointly, that is, for all S,7 = N,
SNnT =,

w(SuT)=>w(S)+w(T)

Exercise 2.41
Show that superadditivity implies monotonicity, that is, if v: Z(N) — R
is superadditive, then v is monotonic.

Example 2.63 (Monotone operator) Given an arbitrary set X, the set
F(X) of all functionals on X is a linear space (exercise 2.9). There is
a natural partial order on F(X) that is defined as follows: For any

/.9 € F(X),
fzgef(x)=g(x) for every x e X

Let A = F(X) be a set of functionals on a space X. A monotone opera-
tor is a function 7: 4 — A that preserves the natural order of A, that is,

fZg=Tf z Ty

Use of the term monotone operator to describe an increasing function
from a set A4 to itself is well-entrenched Stokey and Lucas (1989, p. 528),
although the description increasing operator would be more consistent
with our terminology. It is possible to conceive of a decreasing operator,
although its behavior would be confusing.

Example 2.64 (Dynamic programming) In introducing the dynamic
programming problem (example 2.32, exercise 2.18), we encountered the
operator

(Tv)(x) = sup f(x,y)+ Bo(y)
yeG(x)

on the space B(X) of bounded functionals on the set X. There is a natural
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partial order on B(X) such that

wZve w(x) = o(x) for every x e X
The operator T preserves this order, that is,
wzv=Twx Tv

That is, 7 is a monotone operator.

Exercise 2.42
Show that the operator T: B(X) — B(X) defined by

(Tv)(x) = sup f(x,y)+ po(y)
yeG(x)

is increasing.

Monotone Correspondences

Extending the concept of monotonicity to a correspondence ¢: X 3 Y
requires an order on the subsets of Y. One useful order is set inclusion. We
say that a correspondence is ascending if

X2 Zy X1 = ¢(x2) 2 o(x1)
It is descending if
X2 Zyx1 = p(x2) < o(x1)

Example 2.65 (Budget set) The budget correspondence X (p,m) is
ascending in income, since

my > my = X(p,mz) 2 X(p,m)
It is descending in prices, since
P> =P = X(py,m) < X(py,m)

Example 2.66 (Input requirement sets) The input requirement sets of a
single output technology (example 2.44)

V(y)={xeR}:(y,—x)e Y}

are an ascending correspondence provided the technology exhibits free
disposal (exercise 1.12).
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X X
Increasing Always increasing

Figure 2.16
Weakly and strongly increasing correspondences

Alternatively, when Y is a lattice, we can use the strong set order
(section 1.2.4) to order Y. We will say that correspondence ¢: X 3 Y is
increasing if it preserves the strong set order, that is,

X2 Zy X1 = 9(x2) Zgp(x1)

where % is the strong set order induced on #(Y) by x,. That is,
@: X 3 Y is increasing if for every x, = xi,

yiAy €ep(x)) and y; vy € p(x;)

for every y| € ¢(x)) and y, € p(x2). It is decreasing if it reverses the strong
set order, that is,

X2 Zx X1 = 9(x2) s p(x1)

A correspondence is monotone if it is either increasing or decreasing.

With a one-dimensional domain and range, it is straightforward to
illustrate monotone correspondences (figure 2.16). However, in general,
the concept of monotonicity is more subtle as the following example
illustrates.

Example 2.67 (Budget set) The budget correspondence is not monotone.
Consider figure 2.17, which shows the budget set for two commodities
at two different income levels m, > m; (with prices constant). The com-
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I3

'| \ i
‘X(pa ml) X(p7 m?)

Figure 2.17
The budget correspondence is not monotone

modity bundle x; is affordable at m; and x, (with more of good 1 and less
of good 2) is affordable at m,. However, the commodity bundle x; v X; is
not affordable at m,. Hence the budget correspondence is not monotone.

Exercise 2.43
For ® € R, if g € F(®) is increasing, then the correspondence

GO)={x:0<x<g(0)}
is increasing.

The significance of this definition of monotonicity for correspondences
is that every monotone correspondence has a monotone selection. This
and other useful properties of monotone correspondences are detailed in
the following exercises.

Exercise 2.44
Let ¢ be an increasing correspondence from X to Y, and let x;,x; € X
with x, = x;. Then

- for every y; € ¢(x)) there exists y; € p(x3) with y, = »
- for every y, € p(x,) there exists y; € p(x1) with y, =y

Exercise 2.45 (Increasing selection)
If p: X 3 Y is increasing and every ¢(x) is a sublattice, there exists an
increasing selection f € ¢.
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Exercise 2.46
Ifp; X33Y;,i=1,2,...,n,is a collection of increasing correspondences
with common domain X, their product ¢: X 33 [] ¥; defined by
p(x) =[J o:(x)
i

is also increasing.

Exercise 2.47

Ifp; X33Y,i=1,2,...,n,is a collection of increasing correspondences
with common domain X, and their intersection ¢: X 33 () ¥; defined by
¢(x) = (), ¢:(x) is nonempty for every x € X, then ¢ is also increasing.

A stronger concept of monotonicity is also useful. A correspondence
. X 3 Y is always increasing if

XI Zy X2 =V Zy for every y; € p(x;) and y; € p(x2)
A correspondence is always increasing if and only if every selection is

increasing. Note that this concept does not require that Y is a lattice.

Exercise 2.48
@p: X 3 Y is always increasing if and only if every selection f € ¢ is
increasing.

2.2.2 Supermodular Functions

Monotonicity restricts the behavior of a function on comparable ele-
ments. It places no restriction on the action of the function with respect to
noncomparable elements. For the special case of functionals on lattices,
we can define a related property, called supermodularity, which restricts
the behavior of the functional over its entire domain. A functional
f+ X — R on a lattice X is supermodular if every x|, x, € X,

S(x1vx) +f(x1 Ax2) = f(x1) +f(x2) (17)

f is strictly supermodular if every noncomparable xj,x; € X,

S(x1 v x2) +f(x1 A x2) > f(x1) +1(x2)

A functional fis (strictly) submodular if —f is (strictly) supermodular.
As we will see, supermodularity formalizes the useful economic notion
of complementarity (example 2.70). In strategic games it expresses the im-
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portant idea of strategic complementarity (example 2.71). A TP-coalitional
game in which the characteristic function is supermodular is called a
convex game, which has special and very useful properties (example 2.69).

Remark 2.10 (Function or functional) Strictly speaking, this section
should be entitled “supermodular functionals” because the concept of
supermodularity relies on the linear structure of R and is therefore only
defined for real-valued functions. However, the terminology supermodular
function has become established in the literature, and to insist on func-
tional would seem unnecessarily pedantic. Similar usage is even more
firmly established for convex and concave functions (section 3.7), which
also implicitly refer to real-valued functions only. Exercise 2.57 presents a
strictly ordinal property that can be used to generalize supermodularity to
any function between ordered sets.

Exercise 2.49
Every functional on a chain is supermodular.

The following properties are analogous to those for monotone func-
tions (exercises 2.31 and 2.32).

Exercise 2.50

If f,g € F(X) are supermodular, then
+ f + g is supermodular

« af is supermodular for every o > 0

Therefore the set of all supermodular functions on a set X is a cone in
F(X).

Exercise 2.51
If f and g are nonnegative definite, increasing, and supermodular func-
tionals on X, then so is their product fg defined by

(f9)(x) = f(x)g(x)

Exercises 2.49 to 2.51 are useful in constructing supermodular
functions.

Example 2.68 (Cobb-Douglas) Since R, is a chain, the power function
f(x) = x{" is supermodular on R (exercise 2.49), and therefore (exercise
2.51) the Cobb-Douglas function
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f(x) =x{"x32 . x a; >0

A =

is supermodular on R

Exercise 2.52 (CES function)
Show that the CES function

f(x):(ocle+oc2x§+-~-ocnx,’1’)l/”, o >0,p#0
is supermodular on R

Exercise 2.53 (Economies of scope)

If a firm produces many products, a straightforward generalization of the
cost function ¢(w,y) measures the cost of producing the list or vector of
outputs y when input prices are w. The production technology displays
economies of joint production or economies of scope aty = (v, 2, -, Vm)
if the total cost of producing all the outputs separately is greater than the
cost of producing the outputs jointly, that is,

m

Z C(W7yjej) > C(Wa y)
=1
where y;e; = (0,0,...,;,0...0) is the output vector consisting of y; units

of good j. Show that the technology displays economies of scope if the
cost function is strictly submodular in y. Assume zero fixed costs.

Example 2.69 (Convex games) A TP-coalitional game is convex if its
characteristic function is supermodular, that is,

wSUT)+w(SnT)=w(S)+w(T) forevery S, T =< N (18)

The set of convex games is a convex cone in the set of all TP-coalitional
games ¥ (exercise 2.50). Convexity in a game reflects increasing returns
to cooperation (exercise 2.55). Convex games occur naturally in many
applications, and they have special properties. In particular, the core
(example 1.45) is nonempty, and contains the Shapley value (example
3.6), which coincides with the nucleolus (example 1.49).

Exercise 2.54
Every convex game is superadditive.

Exercise 2.55
Show that a TP-coalitional game (N, w) is convex if and only if
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w(T u{i}) —w(T) = w(Su{i}) —w(S)
for every i € N and for every S = T < N\{i}

The marginal contribution of every player increases with the size of the
coalition to which the player is joined.

Exercise 2.56
Is the cost allocation game (exercise 1.66) convex?

Exercise 2.57 (Quasisupermodularity)
The definition of supermodularity utilizes the linear structure of ‘R. Show
that supermodularity implies the following strictly ordinal property

S(x1) = f(x1 A x2) = f(x1 v x2) = f(x2)

and

S(x1) > f(x1 A x2) = f(x1 v x2) > f(x2)
for every xi,x; € X.
Increasing Differences

Another property closely related to supermodularity is useful when deal-
ing with functionals whose domain can be decomposed into two sets, as
for example, the objective function of a constrained optimization problem
(example 2.30) or the payoff function in a strategic game (example 2.34).
Suppose that f: X x Y — R is supermodular. For any xi,x; € X, and
y1,¥2 € Y with x; Zy x1 and y» Zy y1,

(x1,02) A (x2,01) = (x1,01)

(x1,02) v (x2,01) = (2, 02)

Evaluating (17) at (x;,y2) and (x2, 1), supermodularity implies that
S (x2,02) + [/ (x1,01) = f(x1,02) +f(x2, 1)

Rearranging the inequality, we observe that

S (x2,p2) = f(x1,32) = f(x2,31) = f(x1,01)

which motivates the following definition. Given two posets X and Y, a
functional f: X x Y — R displays increasing differences in (x, y) if, for all
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fz,9)
J%,y)
f=hy)
Y
Figure 2.18

A supermodular function displays increasing differences

Xy Z x1, the difference f(x2,y) — f(x1,y) is increasing in y. It has strictly
increasing differences if f(xa,y) — f(x1,y) is strictly increasing in y (see
figure 2.18).

Exercise 2.58
Let /- X x Y — R. Show that f displays increasing differences if and
only if

S (x2,32) = f(x2,31) = f(x1,02) — f(x1,01)

that is, the difference f(x,y2) — f(x,y1) is increasing in x. Therefore the
order of the comparison in the definition increasing differences is irrele-
vant. This is analogous to Young’s theorem (theorem 4.2) for smooth
functions.

The concepts of supermodularity and increasing differences are closely
related. Both concepts formalize the notion of complementarity. The
preceding discussion showed that any supermodular function on a prod-
uct space displays increasing differences. Conversely, where the com-
ponent sets are totally ordered (chains), increasing differences implies
supermodularity, so the two properties coincide (exercise 2.59). This
equivalence generalizes to finite products and hence applies to R”, the
domain of many economic models. The property of increasing differences
is more readily applicable in economic models and easier to verify, while
supermodularity is more tractable mathematically. Proposition 4.2 gives a
useful characterization of smooth supermodular functions in terms of the
second derivative.
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Exercise 2.59

Let f be a functional on X x Y where X and Y are chains. Show that f
has increasing differences in (x,y) if and only if f is supermodular on
X xY.

Example 2.70 (Complementary inputs) The technology of a single output
producer can be represented by a production function (example 2.24)
f: ML — R, The production is supermodular if and only if it displays
increasing differences. The (discrete) marginal product of input 7 is the
additional product obtained by adding another unit of input

MP;(x) = f(x +e) - f(x)

where e; is the ith unit vector in R". The production function is super-
modular if and only if the marginal product f(x +e;) —f(x) of every
input 7 is an increasing function of all the other inputs. This captures the
economic idea of complementary inputs.

Example 2.71 (Supermodular games) A supermodular game is a strategic
game in which

+ every strategy set S; is a lattice
+ the payoff functions u;: S; x S_; — R are supermodular on S;

+ u; display increasing differences in (s;,s_;)

Fortunately, many games meet these requirements, since supermodular
games are particularly well behaved. They always have a pure strategy
Nash equilibrium (example 2.92), and the set of Nash equilibria is a lattice
(exercise 2.118).

Example 2.72 (Coordination failure in a macro model) Some recent work
in macroeconomics attributes aggregate fluctuations to “coordination
failures.” A typical example is the following simple search model. Trade
takes place by barter coordinated by a stochastic matching process. The
payoff for any individual player depends on the probability of meeting a
trading partner, which in turn is determined by search effort of all the
players. Specifically, the probability of meeting a suitable trading partner
is5; ) ,;, where s; denotes the search effort of player i. If o > 0 denotes
the gain from successful trade and c(s;) the cost of search, player i’s pay-
off function is
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u;i(si,8_;) = as; E s;— c(si)

i1#nj
u; is supermodular in s;. Furthermore, as player i increases her search
activity from s to s?, her payoff increases, ceteris paribus, by

wi(s7,5-1) = wils! s—i) = 0 Yy si(57 = 7)

i#j
which is clearly increasing in s;. Therefore this is a supermodular game.
In general, the game has multiple equilibria. Those equilibria with lower
search activity have smaller aggregate output.

Exercise 2.60 (Bertrand oligopoly)

In the standard Bertrand model of oligopoly n firms each produce a
differentiated product. The demand ¢; for the product of the ith firm
depends on its own price and the price charged by all the other firms,
that is,

qi =f(pip_;)

If each firm’s production cost is measured by the cost function ¢;, firm i’s
payoff function is

ui(pisp—;) = pif (pip-i) — i/ (pipy))
In the simplest specification the demand functions are linear
f(pisp_i) = ai—bip; + Zdijpj

J#i

with b; > 0 and the firm’s produce at constant marginal cost ¢;, so the
payoff functions are

ui(pisp-i) = (pi — &)f (PisPsi)

Show that if the goods are gross substitutes (d; > 0 for every i,j), the
Bertrand oligopoly model with linear demand and constant marginal
costs is a supermodular game.

Exercise 2.61 (Single-crossing condition)
Increasing differences implies the following ordinal condition, which is
known as the single-crossing condition. For every x, = x; and y, = y1,
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S(x2, 1) = f(x1,01) = f(x2,32) = f(x1,)2)

and

S(x2, 1) > f(x1,01) = f(x2,92) > f(x1,)2)

2.2.3 The Monotone Maximum Theorem

In formulating economic models as optimization problems (example
2.30), economists are primarily interested in determining the way in which
the optimal solution varies with the parameters. A powerful tool in this
quest is provided by the following theorem.

Theorem 2.1 (Monotone maximum theorem) Let ®F = O denote the set
of parameter values for which a solution to the problem

(x.0
Jnax f(x,0)

exists. If X is a lattice, ® a poset and

« the objective function f: X x ® — R is supermodular in X
- fdisplays increasing differences in (x,0)

* and the constraint correspondence G: ® 3 X is increasing in 6

then the solution correspondence ¢p: @ 3 X defined by

0) = arg max X, 0
¢(0) gxecw)f( ,0)
is increasing. Furthermore, if objective function is increasing in X and 0, the
value function

v(0) = sup f(x,0)
xe G(0)

is increasing.

Proof Let 01,0, belong to ®* with 6, = 6;. Choose any optimal solu-
tions x; € ¢(0;) and x; € ¢(6,). To show that ¢ is monotone, we have to
show that x; v X, € ¢(6,) and x; A X € ¢(6;).

Since the constraint set G(0) is monotone, X; V X, € G(#,) and
X] A Xz € G(6;). That is, both x; v X, and x; A x; are feasible. To show
that they are optimal, consider the following sequence of inequalities.
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Supermodularity implies that

S(X1 vV X2,0y) + f(X1 A X2,07) > f(x1,02) + f(x2,02)

which can be rearranged to give

f(x1 VvV x2,00) — f(x2,07) = f(x1,02) —f (X1 A X2,05)

Increasing differences applied to the right-hand side implies that

f(X1702) —f(Xl A X2702) Zf(Xl,ﬂl) —f(Xl A Xz,ﬂl)

Combining these two inequalities we have

S X1V x2,02) = f(x2,02) > f(x1,01) —f(x1 A X2,01) (19)
However, x; and x, are optimal for their respective parameter values,
that is,

f(x2,05) = f(x1 v X2,0,) = f(X1 Vv X2,00) — f(X2,0,) <0
f(x1,01) = f(X1 A X2,01) = f(x1,01) —f(X1 A X2,0,) >0
Substituting in (19), we conclude that

0> f(xi VX2,0) —f(x2,02) = f(x1,01) —f(x1 A X2,01) >0
The inequality must be an equality with

f(x1 Vv x,0,) =f(x2,0), f(x1 AX2,00)=Ff(x1,0)

That is, x; vxy€@(f) and x; A Xy € ¢(0;). Furthermore, if f is
increasing,

0(02) :f(Xl \2 X2,02) > f(X] A Xz,al) = 0(01)
since (X] Vv X, 602) Z (X1 A Xp,0;). The value function is increasing. O

Corollary 2.1.1 If in addition to the hypotheses of the previous theorem,
the feasible set is a lattice for every 0 € ®F, then the set of optimal solutions

0) = 0
9(0) = arg Jnax f(x,0)

is a sublattice of X for every 0 € ® and ¢ has an increasing selection.

Exercise 2.62
Prove corollary 2.1.1.
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Example 2.73 (Private value auction) In a first-price private value auc-
tion, each bidder has a value @ for an object which is known only to him.
If he bids an amount x and is successful, he receives utility u(6 — x). Let
p(x) denote the probability of winning with a bid of x. Then his problem
is to choose x given 6 to maximize his expected utility, that is,

Jmax, u(0 — x)p(x)

The constraint correspondence G(0) = [0, 0] is increasing (exercise 2.43)
in 0, and the objective function is supermodular in x (exercise 2.49). If u is
strictly concave, then u displays strictly increasing differences in (x, 6)
(exercise 3.129). By theorem 2.1, the optimal bids belong to an increasing
correspondence. Further (corollary 2.1.1), since G(0) is a lattice for every
0, there exists an increasing selection (bidding function). Note that this
conclusion is independent of the properties of p, which reflects the prob-
ability distribution of values among the bidders.

Corollary 2.1.2 If, in addition to the hypotheses of theorem 2.1, the objec-
tive function displays strictly increasing differences in (X, 0), the optimal
correspondence

0) = 0
9(0) = arg Jnax f(x,0)

is always increasing. Every selection from ¢(0) is an increasing function
of 0.

Exercise 2.63
Prove corollary 2.1.2. [Hint: Assume that X, 7% x;, and derive a
contradiction. ]

Example 2.74 (Supermodular games) In any strategic game, player i’s
best response correspondence (example 2.48) is the solution of a maxi-
mization problem, namely

B(s_;) = arg max u;(s;,s_;)

Si€S;

If the game is supermodular (example 2.71), the optimization problem
meets the requirements of theorem 2.1, with X = S;, ® =S_;, f = u; and
G equal to the identity correspondence. The theorem establishes that B is
increasing in s;. In particular, this means that there exists an increasing
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selection f € B, which can be used to establish the existence of an
equilibrium.

Furthermore, if the payoff functions u;(s;,s_;) display strictly increasing
differences in (s;,s_;), then the best response correspondences are always
increasing (corollary 2.1.2). Every selection is increasing so that for every
s1 € B(s_1) and s, € B(s_»), s?; = s!, implies that s? X s!.

The requirements of theorem 2.1 are severe, especially the requirement
that the feasible set G(0) be increasing. When the feasible set is indepen-
dent of 0, this implicitly requires that the feasible set be a lattice, which
precludes the application of theorem 2.1 to some common models in
microeconomic theory such as example 2.31. In other cases, although the
feasible set varies with the parameters, the relationship is not monotone.
We provide some weaker results that can be applied in these cases.

Proposition 2.1 (Increasing maximum theorem) If f: X x® — R is
increasing in 0, the value function

o(0) = sup /(x,0)

xeG
is also increasing in 6.

Proof Assume 6, > 6; € ®F, and let x, and x| be corresponding optimal
solutions. Then

f(x2,02) = f(x1,62)

and

v(02) = f(x2,02) = f(x1,02) = (f(x1,01) = v(01) 0
Example 2.75 (Cost function) The cost function (example 2.31) of a firm
producing output y purchasing inputs at fixed prices w = (w, wa, ..., wy)

is

n
c(w,y) inf WiX; = — sup (—wix;)
xeV(y Z ! xeV(y) ; ll
and the objective function Y —w;x; is increasing in —w. However, for
fixed output y, the input requirement set is not a lattice. Therefore, we
cannot apply theorem 2.1. We can apply proposition 2.1, which implies
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that —supy. y(,) >/ (—wx;) is increasing in —w, and therefore the cost
function

c(w,y) inf Zw,x,

er

is increasing in w.

Proposition 2.2 (Ascending maximum theorem) If f is independent of 0
and G(0) is ascending, the value function

v(0) = sup f(x)

xeG(0)
is increasing in 0.
Proof Assume that 8, = 0, € ©. Since G(0) is ascending, G(0,) = G(0,)

and therefore

v(02) = sup f(x)= sup f(x)=uv(0) 0

xeG(02) xeG(0r)
Example 2.76 (Indirect utility function) For fixed p, the budget corre-

spondence X (p,m) is ascending in m. Therefore

Wpom)= sup  u(x)= sup u(x)=v(p,m)

xeX(p,ms) xeX(p,m)
The indirect utility function is increasing in m.

Exercise 2.64
Show that the indirect utility function

v(p,m) = sup u(x)
xeX(p,m)

is decreasing in p.

Example 2.77 (Cost function) Assuming free disposal, the input require-
ment sets are ascending (exercise 1.12). For fixed input prices w, the cost
function

n

c(w,y) inf WiX; = — sup (—wix;)
xeV(y Z xeV(y) ;

is increasing in y.
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The following exercise refines theorem 2.1, to show that quasisuper-
modularity and the strict crossing condition are both necessary and suffi-
cient for monotone comparative statics.

Exercise 2.65

Consider the general constrained maximization problem where X is a
lattice, ® a poset and the feasible set G is independent of 6. The optimal
solution correspondence

0(0,G) = arg max /(x,0)
xeG
is increasing in (0, G) if and only if

+ f is quasisupermodular in X

+ and f satisfies the single crossing condition

2.3 Continuous Functions

Roughly speaking, a function is continuous if small changes in input (the
independent variable) produce only small changes in output (the depen-
dent variable). Continuity of the physical world makes life bearable.
When you make a small adjustment in the volume control of your stereo
system, you do not expect to be deafened by a vast change in loudness. In
riding a bicycle, a small change in posture does not produce a dramatic
change in altitude. By and large, physical systems are continuous. Conti-
nuity is equally important for economic analysis. Throughout this section
the domain and co-domain will be metric spaces.

A function between metric spaces is continuous if the images of neigh-
boring points are neighbors. Formally a function f: X — Y is continuous
at xo in X if for every neighborhood T of f(xp), there exists a corre-
sponding neighborhood S of xj such that f(S) < T. f is continuous if it is
continuous at all xy in X. Continuous functions are important because
they respect the geometric structure of the domain and co-domain.

Remark 2.11 An equivalent definition of continuity is: A function
f: X — Y is continuous at x if for every ¢ > 0 there exist a § > 0 such
that for every x € X,

p(x,x0) <0 = p(f(x),[(x0)) <é
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The next three exercises provide equivalent characterizations that are
often useful in practice.

Exercise 2.66
f+ X — Y is continuous if and only if the inverse image of any open
subset of Y is an open subset of X.

Exercise 2.67
f: X — Y is continuous if and only if the inverse image of any closed
subset of Y is a closed subset of X.

Exercise 2.68
f: X — Y is continuous if and only if f(x)=lim,_. f(x") for every
sequence x" — x.

Care must be taken to distinguish between continuous and open map-
pings. A function f: X — Y is continuous if /~'(T) is open in X when-
ever T is open in Y. It is called an open mapping if f(S) is open in Y
whenever S is open in X. An open mapping preserves open sets. If an
open mapping has inverse, then the inverse is continuous (exercise 2.69).
In general, continuous functions are not open mappings (example 2.78).
However, every continuous function on an compact domain is an open
mapping (exercise 2.76), as is every bounded linear function (proposition
3.2).

Example 2.78 (A continuous function that is not an open mapping) The
function f: R — R defined by f(x) = x> is continuous. However, its
range f(R) = R, is closed (not open) in R. Therefore it is not an open

mapping.

Exercise 2.69
Let f: X — Y be one-to-one and onto. Suppose that f is an open
mapping. Then f has a continuous inverse f~: ¥ — X.

Remark 2.12 (Homeomorphism) A one-to-one continuous open function
f of X onto Y is called a homeomorphism. Since it is one-to-one and onto,
f has an inverse. Since f is open, the inverse f~! is a continuous mapping
from Y onto X. Homeomorphic spaces are indistinguishable geometri-
cally, and differ only in the nature of their elements.
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Exercise 2.70 (Closed graph)
If 1 is a continuous function from X to Y, the graph of f,

graph(f) = {(x,»):y =f(x),xe X}
is a closed subset of X x Y.

The converse of this result is not true in general. The following exercise
details a partial converse in the special case in which the range Y is com-
pact. Later we show that converse also holds for linear functions (exercise
3.37), a fundamental result which is known as the closed graph theorem.

Exercise 2.71
Suppose that Y is compact. f: X — Y is continuous if and only if

graph(f) = {(x,»):y =f(x),xe X}
is a closed subset of X x Y.

Exercise 2.72
If /- X — Y and ¢g: Y — Z are continuous function, so is their composi-
tiongof: X — Z.

Most of the functions that we encounter in practice are continuous.
Trivially, constant and identity functions are continuous. Typical func-
tional forms, such as the Cobb-Douglas function, are continuous (exam-
ple 2.81). The norm on a normed linear space is continuous (exercise
2.73). One of the most important theorems in this book (theorem 2.3)
shows that the solution of a constrained optimization problem is con-
tinuous provided the structure of the problem is continuous.

Exercise 2.73
Let X be a normed linear space. The norm || - || is a continuous function
on X.

Exercise 2.74 (Utility functions)

Let > be a continuous preference relation on R’. Assume that > is
strongly monotonic. There exists a continuous function u: R’} — R which
represents the preferences.

[Hint: Show that the function u defined in exercise 2.38 is continuous.|

Example 2.79 (Path) Given a set X, any continuous function f: R — X
is called a path. In a sense, a path is the opposite of a continuous
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functional, mapping ‘R — X rather than X — ‘R. Paths arise in dynamic
models where the dependent variable is often time. The terminology
comes from the physical world where the motion of any object traces a
path in R>.

Example 2.80 (Nucleolus) The nucleolus (example 1.49) is a value
(example 2.37), a function Nu: ¥ — R” such that Nu(N,w)e X =
{xeR": >, yxi=w(N)}. The nucleolus is in fact a continuous func-
tion. That is, if (N,w") is a sequence of games converging to a game
(N, w), and x" is the nucleolus of the each game (N, w"), then x = lim x”
is the nucleolus of the game (N,w) (Schmeidler 1969). The significance
of continuity is that the nucleolus is relatively insensitive to small changes
in the characteristic function. This is important in practice since the
specification of a game is seldom known with precision. We can be con-
fident that small errors in the measurement of the worth of specific coali-
tions will not result in drastic changes in the suggested outcome.

Continuous functions preserve two of the most significant topological
properties.

Proposition 2.3 Let f- X — Y be continuous.
« f(X) is compact if X is compact

» f(X) is connected if X is connected
Exercise 2.75

Prove proposition 2.3.

Exercise 2.76

Suppose that X is compact and f is a continuous one-to-one function
from X onto Y. Then f is an open mapping, which implies that f~! is
continuous and f is a homeomorphism.

2.3.1 Continuous Functionals

Some properties of continuity can be sharpened when applied to func-
tionals, which are the most frequently encountered functions. First, we
have a convenient characterization of continuity in terms of the upper and
lower contour sets.
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Exercise 2.77
A functional f: X — R is continuous if and only if its upper

Zr@) = {x:f(x) = a}

and lower contour sets

Syla) ={x: f(x) <a}
are both closed.

Remark 2.13 We noted earlier (section 2.1.1) that every functional
induces an ordering on the its domain X. An immediate implication of the
previous result is that a continuous functional induces a continuous
ordering. This shows that continuity is a necessary as well as a sufficient
condition for the existence of a continuous utility function (exercise 2.74).

Next, we show that standard algebraic operations on functionals pre-
serve continuity. These results can be used to show some familiar func-
tional forms in economics are continuous.

Exercise 2.78
If £, g are continuous functionals on a metric space X, then

+ f + ¢ is continuous

+ af is continuous for every o € R
Therefore the set of all continuous functionals on X is a linear space.

Exercise 2.79 1If f g are continuous functionals on a metric space X,
then their product fg defined by (fg)(x) = f(x)g(x) is continuous.

Remark 2.14 We could follow a similar agenda to that in section 2.2 to
demonstrate that common functional forms are continuous. The identity
function is clearly continuous. Repeated application of exercise 2.79
shows that the power functions are continuous. Exercise 2.78 shows that
every polynomial of power functions is continuous. From there we can
deduce that the exponential function (example 2.10) is continuous, which
in turn implies that the log function (example 2.55) is continuous. Exer-
cise 2.72 then shows that the general power function (example 2.56) is
continuous. Instead, we will take this for granted for now. In chapter 5 we
will show that these functions are differentiable, which implies that they
are continuous.
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Example 2.81 The Cobb-Douglas function

f(x) =x{"x52 ... x) a; >0

X
is continuous on R, since it is the product of general power functions.

Exercise 2.80 (CES function)
Show that the CES function

F(x) = (ux! 4+ oaxh +---0,x2) 7 oy >0and p#0
is continuous on R’} .

Exercise 2.81
Given two functionals f and g on X, define

(/v 9)(x) = max{f(x),g(x)}
(/' A 9)(x) = min{f(x),g(x)}
If / and g are continuous, then so are /' v g and f A g.

Applied to functionals, proposition 2.3 yields three important corol-
laries. The first, a counterpart of proposition 1.5 known as the Weierstrass
theorem, gives sufficient conditions for a constrained optimization prob-
lem to have a solution. The second corollary, known as the intermediate
value theorem, should be well known from elementary calculus. The third
corollary (exercise 2.84) shows that every continuous functional on a
compact set is bounded.

A functional f: X — R achieves a maximum at a point x* € X if
f(x*) = f(x) for every x € X. Similarly it achieves a minimum at x, if
f(x:) = f(x) for every x € X.

Theorem 2.2 (Weierstrass theorem) A continuous functional on a com-
pact set achieves a maximum and a minimum.

Proof Let M =sup,.y f(x). There exists a sequence x" in X with
f(x") — M. Since X is compact, there exists a convergent subsequence
x™ — x* and f(x™) — M. However, since f is continuous, f(x™) —
f(x*). We conclude that f(x*) = M. N

Exercise 2.82
Use proposition 2.3 to provide an alternative proof of theorem 2.2.
[Hint: See the proof of theorem 1.5.]
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Exercise 2.83 (Intermediate value theorem)

Let f be a continuous functional on a connected space X. For every
X1,X2 € X and ¢ € R such that f(x;) < ¢ < f(x2), there exists x € X such
that f(x) = c.

Exercise 2.84
Every continuous functional on a compact metric space X is bounded.

More generally, when X is not compact, the set of continuous func-
tionals form a closed subset of the set of bounded functionals.

Exercise 2.85 (The space C(X))
Given a metric space X, the C(X) denote the set of all bounded, con-
tinuous functionals on X. Show that

+ C(X) is a linear subspace of B(X)
+ C(X) is closed (in B(X))

+ C(X) is a Banach space with the sup norm

171 = sup [f(x)]
xeX

For certain applications somewhat weaker or stronger forms of con-
tinuity are appropriate or necessary. These generalization are dealt with
in the next two sections. Then we extend the notion of continuity to
correspondences, where we find that some of the standard equivalences
(exercise 2.70) diverge.

2.3.2 Semicontinuity

Continuous functionals are characterized by the property that both upper
{x: f(x) = o} and lower {x: f(x) < o} contour sets are closed. A func-
tional f: X — R is said to be upper semicontinuous if its upper contour
sets {x: f(x) = o} are closed. Similarly f is lower semicontinuous if its
lower contour sets {x: f(x) < a} are closed. An upper semicontinuous
function is illustrated in figure 2.19. An upper (or lower) semicontinuous
function can have jumps, but the jumps must all be in one direction.

Exercise 2.86

[ 1s upper semicontinuous < —f is lower semicontinuous.
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Figure 2.19
An upper semicontinuous function

Exercise 2.87
A function f is continuous if and only if it is both upper and lower
semicontinuous.

The following exercise, which should be compared to exercise 2.70,
provides equivalent characterizations of semicontinuity which are useful
in practice.

Exercise 2.88
For any f: X — R, the following conditions are equivalent:

1. f is upper semicontinuous.
2. f(x) = lim,_ f(x") for every sequence x" — Xx.
3. The hypograph of f is closed in X x R.

Semicontinuity, as opposed to the more restrictive continuity, is often
assumed in economic analysis, since it is sufficient to guarantee the exis-
tence of a maximum in a constrained optimization model. This is a
consequence of the following result, which shows that semicontinuous
functions obey a form of the Weierstrass theorem.

Exercise 2.89
An upper semicontinuous functional on a compact set achieves a
maximum.

2.3.3 Uniform Continuity

Completeness was noticeably absent from the list of properties preserved
by continuous mappings (proposition 2.3). This is because mere continu-
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ity is insufficient to preserve Cauchy sequences (example 2.82). For this
reason, a slight strengthening of continuity is of particular significance in
analysis. A function f: X — Y is uniformly continuous if for every ¢ > 0
there exist a 0 > 0 such that for every x, xy € X,

p(x,x0) <0 = p(f(x), f(x0)) <& (20)

Remark 2.15 (Uniform continuity versus continuity) The distinction
between the definitions of continuity (see remark 2.11) and uniform con-
tinuity is subtle but significant. For mere continuity the choice of J nec-
essary to satisfy (20) may depend on x( as well as e. Uniform continuity
imposes the additional restriction that for every ¢ there exists a ¢ that
satisfies (20) uniformly over the entire space X. Note, however, that the
concepts are equivalent on compact domains (exercise 2.91).

Example 2.82 Let f: [0,1) — 9 be the defined by f(x) = x/(1 — x). f'is
continuous but not uniformly continuous. The sequence x" =1 — 1/nis a
Cauchy sequence, its image f(x") =n — 1 is not.

Exercise 2.90
Let /: X — Y be uniformly continuous. If (x") is a Cauchy sequence in
X, (f(x")) is a Cauchy sequence in Y.

Exercise 2.91
A continuous function on a compact domain is uniformly continuous.

In economic analysis, uniform continuity typically takes a slightly
stronger form. A function f: X — Y is Lipschitz (continuous) if there is a
constant f such that for every x, xy € X,

p(f(x)a f(XO)) < ﬂp(xv X())
f is called the Lipschitz constant or modulus.

Exercise 2.92
A Lipschitz function is uniformly continuous.

We frequently encounter a particularly strong form of Lipschitz conti-
nuity where the function maps a metric space into itself with modulus less
than one. Such a function, which maps points closer together, is called a
contraction. Specifically, an operator f: X — X is called a contraction
mapping if (or simply a contraction) if there exists a constant 5, 0 < f < 1,
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such that

ﬂ(f(x), f(xo)) = ﬁ/)(X, XO)

for every x,xpe€ X. Contraction mappings are valuable in economic
analysis since they can easily be shown to have a unique fixed point
(theorem 2.5).

Example 2.83 (Dynamic programming) The dynamic programming
problem (example 2.32)

X1, X2, .+

max Zﬁtf(xn Xi41)
" 1=0

subject to x4 € G(x),1=0,1,2,... ., x0e X
gives rise to an operator

(Tv)(x) = sup {f(x,»)+pv(y)}

yeG(x)

on the space B(X) of bounded functionals (exercise 2.18). Provided the
discount rate f < 1, T is a contraction mapping with modulus . To see
this, assume that v, w € B(X). Since B(X) is a normed linear space (exer-
cise 2.11), for every y € X,

o(y) =w(y) = (=w)(y) < [lo—wl
or

o(y) <w(y) + o —wl
Consequently for any f > 0,

po(y) < Bw(y) + Bllo—w

and
(Tv)(x) = sup f(x,y) + pu(y)
yeG(x)
< sup f(x,p)+pw(y) +Bllo—w|
yeG(x)

Tw(x) + Bllo — w|
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or
(Tv — Tw)(x) = To(x) — Tw(x) < Bllv — w]|
Since this is true for every x € X,

|Tv — Tw|| = sup(Tv — Tw)(x) < Bllv — w]|

T is a contraction with modulus f.

The only specific features of the operator 7 in the preceding example
that are required to demonstrate that it is a contraction are the facts that
T is increasing (exercise 2.42) and future returns are discounted. The fol-
lowing exercise, which captures these properties, is useful in identifying
contraction mappings in economic models.

Exercise 2.93 (Sufficient conditions for a contraction)

Let B(X) be the space of bounded functionals on a metric space X
(example 2.11). Let T: B(X) — B(X) be an increasing function with
property that for every constant ¢ € ‘R,

T(f+c¢)=T(f)+pc  forevery f € B(X) (21)
for some 0 < f < 1. Show that T is a contraction with modulus f.

Exercise 2.94
Show that operator 7 in example 2.83 satisfies the conditions of the
previous exercise.

Remark 2.16 (Isometry) Another special case of a Lipschitz function f
is one that preserves distance so that

p(f(x1), f(x2)) = p(x1,x2)

Such a function is called an isometry. Isometric spaces are essentially
equivalent as metric spaces, differing only in the nature of their points.

Equicontinuity

Uniform continuity applies to a single function. An even stronger notion
is useful in characterizing sets of functions. A set F' of continuous func-
tions defined on a compact metric space X is equicontinuous if for every
& > 0 there exists a 0 > 0 such that for every x,xp € X, and f € F,
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p(x,x0) <6 = p(f(x), f(x0)) <e&

That is, a family F of continuous functions is equicontinuous if each
function f is uniformly continuous and the continuity is uniform for all
functions in F.

The most important application of equicontinuity is in characterizing
compact subsets of C(X). Recall that a closed subspace of a complete
metric space is compact if and only if it is totally bounded (exercise
1.113). Also we have previously shown that C(X) is complete. Therefore
a subset of C(X) will be compact if and only if it is totally bounded,
which is the case provided it is bounded and equicontinuous.

Exercise 2.95 (Ascoli’s theorem)

Let X be a compact metric space. A closed subspace of C(X) is compact
if and only if it is bounded and equicontinuous. [Hint: Adapt exercise
1.113).]

Exercise 2.96
If F = C(X) is equicontinuous, then so is F.

2.3.4 Continuity of Correspondences

A function is continuous where small changes in input produce small
changes in output. We formalized this by requiring that neighboring
images arise from neighboring points. Defining continuity for correspon-
dences is a little more complicated, since there is a possible ambiguity
regarding the identity of the neighbors. Specifically, there are two rea-
sonable definitions of the inverse image of any set. The following example
illustrates the issue.

Example 2.84 Consider the strategic game

Player 2
n %) 13 14

st | L1 | 1,1 10,0100

> )

Player1 s, | 0,0 | 2,2 | 2,2 | 0,0

551 1,0 ] 1,0 0,033

Player 2’s best response correspondence ¢, is
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wa(s1) @a(s2) ©a(s3)

Figure 2.20
The best response correspondence of player 2

p2(s1) = {11, 2}
92(s2) = {2, 1}
92(s3) = {ta}

which is illustrated in figure 2.20.

Clearly, the inverse image of #4 is s3. Player 2’s optimal response is #4 if
and only if 1 plays s;. However, what should we regard as the inverse
image of {fy,#3}? {s2} is the set of strategies of player 1 which ensure
a response in {#,,73}. We see that a best response in {,, 3} is possible
when 1 chooses either s; or s,. Our definition of continuity will vary
depending on whether we regard s; as an element of the inverse image of

{12713}.

Given a correspondence ¢: X 3 Y, the upper (or strong) inverse of
T<Yis

o (T) = {xe X :p(x) € T}
The lower (or weak) inverse is
9 (T)={xeX:p(x)nT # T}

The upper inverse includes only assured precursors of ¢(x), while the
lower inverse includes all possible precursors.

Example 2.85 In the previous example
p; ({2, 13}) = {52}
0, ({12, 13}) = {s1,9}
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Exercise 2.97
Letp: X3 Y. Forevery T <7,

¢ (T) = [p (T
Exercise 2.98

Regarding a correspondence ¢: X 3 Y as a function from X to 2(Y), the
natural inverse is

g (T)={xeX :p(x) =T}

Show that for every T € ¢p(X),
v (T) = 9" (T) = ¢ (T)

Unfortunately, the natural inverse ¢! is not very useful as its composi-
tion is erratic (see the following exercise).

Exercise 2.99
For the game in example 2.84, calculate 95!, 3, ¢, for the sets {1}, {£2},

{t1,}, {2, 13}, and {11, 1>, t3}.

The two definitions of inverse image give rise to two definitions of
continuity for correspondences. A correspondence is said to be upper
hemicontinuous if, whenever x( is in the upper inverse of an open set,
so is a neighborhood of xjy. Similarly a correspondence is lower hemi-
continuous if, whenever xy is in the lower inverse of an open set, so is a
neighborhood of xy.

Formally a correspondence ¢: X =3 Y is upper hemicontinuous (uhc) at
xp if for every open set T containing ¢(x), there exists a neighborhood S
of xj such that ¢(x) = T for every x € S. ¢ is upper hemicontinuous if it is
uhc at every xp € X. A uhc correspondence cannot suddenly become
much larger or “explode” for a small change in x. The correspondence
illustrated in figure 2.21 is not uhc at x(, since there are neighboring
points of xy for which ¢(x) lies outside a small open set 7" containing ¢(xg).

A correspondence ¢ is lower hemicontinuous (lhc) at xo if for every open
set 7" meeting ¢(xp), there exists a neighborhood S of x, such that
p(x) T # & for every x e S. A lhc correspondence cannot suddenly
contract or “implode.” The correspondence illustrated in figure 2.22 is
not lhe at x, since there are neighboring points of x( for which ¢(x) does
not meet the open set 7.
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¢(zo)
To -X
Figure 2.21
@ is not uhc at x
Y
@(xo)
X
To
Figure 2.22

¢ is not lhc at xj

Finally a correspondence ¢ is continuous at xy if it is both upper hemi-
continuous and lower hemicontinuous at x.

Remark 2.17 (Hemicontinuity or semicontinuity) Many authors use the
term semicontinuity to describe the continuity of correspondences, which
risks confusion with the distinct concept of semicontinuity of functionals
(section 2.3.2).

Example 2.86 Let X = [0,2]. The correspondence ¢: X =3 X defined by

{1} 0<x<1
(p(x)_{X l<x<?2
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is uhc but not lhc at x = 1. If T is an open set containing ¢(1) = X, then
T contains ¢(x) for every x € X. Therefore ¢ is uhc at 1. To see that ¢ is
not lhc at x =1, consider the open interval T = (3/2,2). Clearly,
p(1)nT # & but p(x) " T = J for every x < 1. Therefore ¢ is not lhc
at x = 1. Note that ¢ is continuous for every x # 1 (exercise 2.101).

Exercise 2.100
Let X = [0, 2]. Show that the correspondence ¢: X 3 X defined by

{1} 0<x<x1
¢(X)_{X l<x<2

is lhc but not uhc at x = 1.

Exercise 2.101 (Constant correspondence)
Let K be any subset of Y. The constant correspondence ¢: X — Y
defined by

p(x) =K for every x e X
is continuous.
Example 2.87 (Matching Pennies) Consider the following strategic game

Player 2

H |1

Player 1

which is usually known as Matching Pennies. The game has no pure
strategy equilibrium.

Let o denote the probability with which player 1 plays H. If player 1 is
more likely to choose H (o) > 1/2), player 2 should respond with 7.
Conversely, if player 1 is more likely to choose T (g1 < 1/2), player 2
should respond with H. However, if 1 is equally likely to choose H or T,
any response is equally useful. Therefore player 2’s best response corre-
spondence ¢,: [0,1] 3 [0,1] is given by

1 if o1 <
¢a(01) = [0,1] if o1 =
0 if g1 >%

= =
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¢, is uhc, but it is not Ihc at sy = . For example, if 7 = (,3)

p3(T) = and 3 (T)={3}

As in the case of continuity of functions, we have useful characteriza-
tions in terms of open sets and in terms of sequences. A correspondence is
upper hemicontinuous if the upper inverse images of open sets are open. It
is lower hemicontinuous if the lower inverse images of open sets are open.
Both conditions arise in applications, and neither condition implies the
other.

Exercise 2.102
A correspondence ¢: X 3 Y is

+ uhc < ¢ (T) is open for every open set T'
+ lhc & ¢ (T) is open for every open set T

Exercise 2.103
A correspondence ¢: X 3 Y is

+ uhc & ¢ (T) is closed for every closed set T'
+ lhc & ¢ (T) is closed for every closed set T

Exercise 2.104

A compact-valued correspondence ¢: X 3 Y is uhc if and only if for
every sequence x” — x in X and every sequence (y") € Y with y”" € p(x"),
there exists a subsequence of y” that converges to y € ¢(x).

Exercise 2.105
A correspondence ¢: X 3 Y is lhc if and only if for every sequence
x" — x in X and for every y € ¢(x), there exists a sequence y” — y with

" e p(x").

Upper hemicontinuity of a correspondence is often confused with the
property of having a closed graph. The two properties are distinct (example
2.88), although they are equivalent for closed-valued correspondences
into a compact space (exercise 2.107).

Example 2.88 (Closed graph versus upper hemicontinuity) The corre-
spondence ¢: ‘R, =3 R defined by
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o(x) = {i} if x>0
{0} ifx=0

is closed but is not uhc at 0.

To see this, note that the set {(x, 1/x): x > 0} is closed in R, x R, and
hence so also is graph(p) = {(x,1/x):x > 0} U (0,0). Note also that for
every sequence x" — 0, y" € p(x") does not converge.

The constant correspondence ¢: R =3 R defined by

p(x) = (0,1)

is uhc but not closed. It is uhc, since for every x and every T 2 ¢(x),
¢ (T) = R. Exercise 2.107 does not apply, since ¢ is not closed-valued.

The next two exercises should be compared with the corresponding
results for functions (exercises 2.70 and 2.71).

Exercise 2.106

Letp: X3 Y.

1. If ¢ is closed, then ¢ is closed-valued.

2. If ¢ is closed-valued and uhc, then ¢ is closed.

3. If Y is compact and ¢ closed, then ¢ is uhc.
Exercise 2.107 (Closed equals upper hemicontinuous)

Suppose that Y is compact. The correspondence ¢: X 3 Y is closed if and
only if it is closed-valued and uhc.

The following exercise is a useful generalization of the previous result.
It will be used to prove the continuous maximum theorem (theorem 2.3).

Exercise 2.108
If p: X33Y is closed and ¢, X3 Y is uhc and compact-valued,
® = ¢, N @, is uhc and compact-valued.

Example 2.89 (Budget correspondence is uhc) Let P denote the domain
of the budget correspondence, that is, the set of all prices and incomes
pairs for which some consumption is feasible

m
P= {(p,m) e R"x N: irg)r};pix,- Sm}
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The graph of budget correspondence X (p,m) (example 2.46),

graph(X) = {(p,m7x) ePxX: pixi < m}
1

i=
isclosed in P X X (see exercise 1.231). Consequently, if the consumption set

X is compact, the budget correspondence X (p, m) is uhc (exercise 2.107).

Exercise 2.109 (Budget correspondence is continuous)
Assume that the consumption set X is nonempty, compact, and convex.
Let

X(p,m) = {xeX: Zpixigm}
i—1

=

denote the budget correspondence. Choose any (p,m) e P such that
m>mingex Y 1o, p;X;, and let T be an open set such that X(p,m) N
T#g. Forn=1,2 ..., let

By(p,m) ={(p',m') € P:|p—p'[| + |m—m'| <1/n}

denote the sequence of open balls about (p,m) of radius 1/n.

1. Show that there exists X € 7 such that > | p,X; < m.
2. Suppose that X (p,m) is not lhc. Show that this implies that

a. there exists a sequence ((p”,m")) in P such that that
(pnvmn) EBn(pvm) and X(pn,mn)m T= @

b. there exists N such that x € X (p",m")

c. x¢T

3. Conclude that X (p,m) is lhc at (p,m).

4. The budget correspondence is continuous for every p # 0 such that

: m
m>infyex D70, pixi.

Remark 2.18 The assumption in exercise 2.109 that the consumption set
is compact is unrealistic and stronger than necessary. It suffices to assume
that the X is closed and bounded from below (Debreu 1959).

Exercise 2.110 is fundamental, while exercise 2.111 is given for its own
interest.
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Exercise 2.110
Let ¢: X 3 Y be uhc and compact-valued. Then ¢(K) is compact if K is
compact.

Exercise 2.111

If X is a compact space and ¢: X =3 X uhc and compact-valued such that
@(x) is nonempty for every x, then there exists a compact nonempty sub-
set K of X such that ¢(K) = K.

Exercise 2.112 (Product of correspondences)

Let ¢, i=1,2,...,n, be a collection of compact-valued and uhc
correspondences ¢;: X 3 Y;. The product correspondence ¢: S Y, Y =
Y1 x Y, x --- x Y, defined by

P(x) = 91(xX) X @2(x) x -+ X 9, (x)
is compact-valued and uhc.
Continuous Selections

As we stated before, given a correspondence ¢: X =3 Y, we can always
construct a selection, that is, a function f: X — Y, such that f(x) € ¢(x)
for every x € X. If the correspondence ¢ is continuous, can we make a
continuous selection? The answer is yes, provided that X is compact and ¢
has closed convex values. In fact lower hemicontinuity suffices and upper
hemicontinuity is not required. Straightforward proofs of this result,
known as the Michael selection theorem, can be found in Border (1985,
p- 70) and Hildenbrand and Kirman (1976, p. 203).

2.3.5 The Continuous Maximum Theorem

The continuous maximum theorem is usually known simply as the maxi-
mum theorem. It is one of the most frequently used theorems in mathe-
matical economics. It gives sufficient conditions to impose a constrained
optimization model to ensure that an optimal solution exists and varies
continuously with the parameters.

Theorem 2.3 (Continuous maximum theorem) Consider the general con-
strained maximization problem

max 7]
Jnax f(x,0)
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If the objective function - X x @ — R is continuous and the constraint
correspondence G: ® 3 X continuous and compact-valued, then the value
function v: @ — R,

o(0) = sup f(x,0)
xeG(0)

is continuous and the optimal correspondence

0) = 0
9(0) = arg Jnax f(x,0)

is nonempty, compact-valued, and upper hemicontinuous.
Proof

@(0) is nonempty for every 6 Since G(0) is compact for every 6 and f'is
continuous, ¢(0) is nonempty (theorem 2.2).

¢ is closed-valued For any 0 € ©, let (x") be sequence in ¢(0) which con-
verges to x. Since x" € ¢(0), f(x") = v(0) for every n. Moreover

- G(0) compact implies that x € G(0)
- fcontinuous implies that f(x, 8) = lim,_.., f(x",0) = v(0)

We conclude that x € ¢(0) and that therefore ¢(8) is closed (exercise
1.107).

@ is compact-valued ¢(9) is a closed subset of a compact set G(0). There-
fore ¢(0) is compact for every 0 (exercise 1.111).

¢ is closed Let 8" — 0 be a sequence of parameters and x" € p(8") a
corresponding sequence of maximizers with x” — x. We have to show
that x € ¢(0).

We first note that x is feasible, that is x € G(0), since x” € G(0) and G is
closed (exercise 2.106). Suppose that x is not maximal, that is x ¢ ¢(6).
Then there exists some z € G(0) with f(z,8) > f(x,0). By lower hemi-
continuity of G, there exists a sequence z" — z with z" € G(0"). Since
f(z,0) > f(x, 0), there must exist some » such that f(z",0") > f(x",0"),
contradicting the hypothesis that x” € ¢(6"). This contradiction establishes
that x is maximal, that is, x € ¢(0).

@ is uhc Since ¢(0) = G(0), 9 = p 1 G. We have just shown that ¢ is
closed, and we assumed that G is uhc and compact-valued. Therefore ¢ is
uhc (exercise 2.108).
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v(0) is continuous Continuity of f implies that v(0") =f(x",0") —
f(x,0) =v(0). O

Example 2.90 (Consumer theory) The consumer’s problem (example
1.113) is to choose an affordable consumption bundle x € X to maximize
satisfaction. Provided that the consumer’s preferences are continuous,
they can be represented by a continuous utility function u: X — R (exer-
cise 2.74), and the consumer’s problem can be expressed by the following
constrained optimization problem

max  u(x)
xeX(p,m)
where X(p,m)={xeX: > " pix;<m} is the consumer’s budget
constraint.

Assume that prices p > 0 and m > infycx Y., pix;. Then the budget
correspondence is compact-valued and continuous (exercise 2.109). With
these assumptions, the consumer’s problem satisfies the requirements
of the continuous maximum theorem (theorem 2.3), ensuring that the
indirect utility function

v(p,m) = sup u(x)
xeX(p,m)

is continuous and the demand correspondence (example 2.47)

x"(p,m) =arg max u(x)
xeX(p,m)

is nonempty, compact-valued and upper hemicontinuous.

Furthermore, if the consumer’s preference relation is strictly convex
(example 1.116), the consumer’s demand correspondence x(p,m) is a
continuous function (see example 3.62).

Exercise 2.113 ( Dynamic programming)
The dynamic programming problem (example 2.32)

X1,X2,..0

max Zﬂtf(x,, xt+l)
=0

subject to  x,41 € G(x),1=0,1,2,... ., x0e X

gives rise to an operator
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(To)(x) = sup {f(x,y)+ Bo(y)}

yeG(x)
on the space B(X) of bounded functionals (exercise 2.16). Assuming that

+ fis bounded and continuous on X x X

+ G(x) is nonempty, compact-valued, and continuous for every x € X

show that T is an operator on the space C(X) of bounded continuous
functionals on X (exercise 2.85), that is Tv € C(X) for every v e C(X).

2.4 Fixed Point Theorems

24.1

Fixed point theorems are powerful tools for the economic theorist. They
are used to demonstrate the existence of a solution to an economic model,
which establishes the consistency of the model and highlights the require-
ments minimal requirements to ensure a solution. The classic applications
of fixed point theorems in economics involve the existence of market
equilibria in an economy and the existence of Nash equilibria in strategic
games. They are also applied in dynamic models, a fundamental tool in
macroeconomic analysis.

Fixed point theorems are essentially existence theorems. They guaran-
tee that a particular model (which fulfills the conditions of the theorem)
has a solution, but they tell us nothing about the identity and properties
of the solution. However, the theory underlying fixed point theorems
can be used to provide practical guidance on the actual computation of
solutions.

Intuition

Recall that a fixed point of a mapping from a set X to itself is an element
x € X, which is its own image. That is, x is a fixed point of f: X — X if
and only if f(x) = x. A fixed point theorem specifies the minimal prop-
erties on X and f that are required to ensure that there exists at least one
fixed point for every qualifying function.

The fundamental intuition of a fixed point theorem is illustrated in
figure 2.23, which depicts a function from the interval [0,1] to itself.
The graph of the function must connect the left-hand side of the box to
the right-hand side. A fixed point occurs whenever the curve crosses the
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I ) Z3

Figure 2.23
A function with three fixed points

45 degree line. The function illustrated in figure 2.23 has three fixed
points.

There are three fundamental classes of fixed point theorems, which
differ in the structure that is required of the underlying spaces. The Tarski
fixed point theorem and its corollaries (section 2.4.2) rely solely on the
order structure of X and the monotonicity of f. The Banach fixed point
theorem (section 2.4.3) utilizes metric space structure, requiring com-
pleteness of the metric space X and a strong form of continuity for f. The
most powerful theorem, the Brouwer theorem (section 2.4.4) combines
linear and metric structure in a potent cocktail. We deal with each class of
theorems in turn.

2.4.2 Tarski Fixed Point Theorem

Our first fixed point theorem has minimal assumptions—an increasing
function on a complete lattice. This is sufficient to establish the existence
of a pure strategy Nash equilibrium in a supermodular game.

Theorem 2.4 (Tarski’s fixed point theorem) Every increasing function
[+ X — X on a complete lattice (X, ) has a greatest and a least fixed
point.

Proof Let
M={xeX:f(x)Zx}

Note that M contains all the fixed points of f. M is not empty, since
sup X € M. Let X = inf M. We claim that X is a fixed point of f.
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-

Figure 2.24
Illustrating the proof of the Tarksi theorem

First, we show that X € M. Since X is the greatest lower bound of M
and fis increasing,

Xx<x and f(X)3f(x)Ix for every xe M

Therefore f(X) is also a lower bound for M. Since X is the greatest lower
bound of M, we must have

J(X)2x (22)

and so X € M.
Since f'is increasing, (22) implies that

J(X) 2 f(%)
and therefore f(X) € M and (since X = inf M)
J(X)zx (23)

Together, (22) and (23) (and the fact that > is antisymmetric) imply
that

x= /(%)
That is, x is a fixed point of /. Furthermore every fixed point of f belongs

to M. So x = inf M is the least fixed point of f. Similarly we can show
that sup{x € X : f(x) Z x} is the greatest fixed point of f. O
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Corollary 2.4.1 Let f be an increasing function on a complete lattice. The
set of fixed points of f is a complete lattice.

Corollary 2.4.2 (Zhou’s theorem) Let p: X =3 X be an increasing corre-
spondence on a complete lattice X. If p(x) is a complete sublattice of X for
every x € X, then the set of fixed points of ¢ is a nonempty complete lattice.

It is important to note that while the set of fixed points of an increasing
function or correspondence on X forms a complete lattice, it is not nec-
essarily a sublattice of the X. The distinction is illustrated in the following
example.

Example 2.91 Let X be the lattice {1,2,3} x {1,2,3} and f be a func-
tion that maps the points (2,2),(3,2),(2,3), to (3,3) and maps all other
points to themselves. The set E of fixed points of f is a complete lattice
where, for example, sup,{(2,1),(1,2)} = (3, 3). Note, however, that E is
not a sublattice of X. For example, supy{(1,2),(2,1)} = (2,2) ¢ E.

Exercise 2.114

To prove corollary 2.4.1, let f: X — X be an increasing function on a
complete lattice (X, ), and let E be the set of fixed points of /. For any
S < E define

S*={xe X :xzsforevery se S}
S* is the set of all upper bounds of S in X. Show that

1. S* is a complete sublattice.

2. f(S*) = S*.

3. Let g be the restriction of f to the sublattice S*. g has a least fixed
point X.

4. X is the least upper bound of S in E.

5. Eis a complete lattice.

Exercise 2.115

Let ¢: X 3 X be an increasing correspondence on a complete lattice X.

Assume that ¢(x) is a complete sublattice of X for every x € X. Let E
be the set of fixed points of ¢, and define

M = {x € X : there exists y € ¢(x) such that y < x}



236

Chapter 2 Functions

Note that £ = M and M # , since sup X € M. Let X = inf M. Show
that

For every x € M, there exists some z, € ¢(X) such that z, < x.

There exists some y € ¢(Z) such that y <Z € ¢(X). Hence z € M.
xeE # .
X is the least fixed point of ¢.

S O e~ B A e
=
m

Exercise 2.116
To prove corollary 2.4.2, let S < E and s* = sup S.

. For every x € S there exists some z, € ¢(s*) such that z, > x.

~

. Let z* = sup z,. Then

. z5 e p(s)
Define S* = {x e X : x z s for every s € S}. S* is the set of all upper
bounds of S'in X. S* is a complete lattice.
4. Define u: S* 3.8* by u(x) = ¢(x) ny(x) where ¢: S* 3 S* is the
constant correspondence y(x) = S* for every x € S*. Show that
a. u(x) #  for every x € S*.

1
2
a. z¥ <s*
b
3.

b. u(x) is a complete sublattice for every x € S*.
C. u is increasing on S*.
5. u has a least fixed point X.
6. X is the least upper bound of S'in E.
7. Eis a nonempty complete lattice.
We can use the Tarski fixed point theorem to provide a simple proof of

the existence of a pure strategy Nash equilibrium in a supermodular
game.

Example 2.92 (Supermodular games) Recall that a strategic game is
supermodular if
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+ every strategy set A; is a lattice
+ the payoff functions u;(a;,a_;) are supermodular in g;

+ and display increasing differences in @;,a_;
Assume further that either

« the strategy spaces A; are finite or

« the strategy spaces are compact and the payoff functions u; are upper
semicontinuous in a

These assumptions imply that each player i’s best response correspondence

Bi(a_;) = arg max u;(a;,a_;)

a;€A;
is nonempty (exercise 2.89) and increasing in a_; (theorem 2.1). This
implies that for every player i there exists an increasing selection
fi € B(s_;), a best response function that is increasing the opponents’s
actions. Define f: 4 — A4 by

f@) = filar) x fr(az) x - X f(a)

Then f is increasing (exercise 2.46) on the complete lattice 4 and there-
fore has a fixed point a* such that a* = f(a*) or

a* e B(a")

That is, a* is a Nash equilibrium of the game.

Not only is the set of Nash equilibria nonempty, it contains a largest
and a smallest equilibrium (in the product order on A). For every a_;,
player i’s best response set B(a_;) is a (nonempty) sublattice of A; (corol-
lary 2.1.1). Therefore it has a greatest element a;, that is,

a; z;a;  forevery a; e B(a_;)

Let f;: A_; — A be the selection of Bj(a;) consisting of the greatest ele-
ments, that is,

filay) =a

f; is increasing for every i (exercise 2.117). Applying theorem 2.4, we see
that the product mapping f: A — A defined by
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f(a)=Fi(az1) x fr(az) x - x f(a)

has a greatest fixed point a* where

a* =sup{aecd:axf(a)}

Let a* € E be any Nash equilibrium. Then a; € B(a*;), and therefore
fi(a*) z,a for every i. So we have

a* =sup{acd:f(a) za} za

Therefore a* is the greatest Nash equilibrium. Similarly there exists a least

Nash equilibrium a*.

Exercise 2.117
Show that f; is increasing for every i.

Exercise 2.118
Show that the best response correspondence

B(a) = Bl(a,l) X Bz(a,z) X e X Bn(a,n)

of a supermodular game satisfies the conditions of Zhou’s theorem (cor-
ollary 2.4.2). Therefore the set of Nash equilibria of a supermodular game
is a complete lattice.

2.4.3 Banach Fixed Point Theorem

Our second fixed point theorem applies to a contraction mapping (section
2.3.3) on a complete metric space. The Banach fixed point theorem is a
simple and powerful theorem with a wide range of application, including
iterative methods for solving linear, nonlinear, differential, and integral
equations.

Theorem 2.5 (Banach fixed point theorem) FEvery contraction mapping
f: X — X on a complete metric space has a unique fixed point.

Proof Let f < 1 denote the Lipschitz constant of f. Select an arbitrary
x € X. Define the sequence (x") by setting

X" = f(x"), n=0,1,2,...

(x™) is a Cauchy sequence
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< B"p(x',x?)
Using the triangle inequality and the formula for the sum of a geometric
series (exercise 1.205)
p(xn xn+m) < p<xn xn+l) +p(xn+1 xn+2) N +p(xn+)11—l xn+m)

< (ﬁn +ﬂl‘l+] + ...+ﬂn+m—l)p(x0’xl)
ﬂﬂ

Sl_ﬁm

X x) = 0asn— oo
Therefore (x") is a Cauchy sequence.

x" converges to x in X Since X is complete, there exists some x € X such
that x” — x.

x is a fixed point Since f'is a contraction, it is uniformly continuous, and
therefore

f(x) = lim f(x") = lim x"*'=x

x is the only fixed point Suppose that x = f(x) and z = f(z). Then

p(x,z) = p(f(x), f(z)) < Bp(x,2)
which implies that x = z. |

The Banach theorem does more than ensure the existence of a unique
fixed point. It provides a straightforward algorithm for computing the
fixed point by repeated application of f to an arbitrary starting point x°,
computing the sequence

XI‘H-I :f<Xn) _ fn(XO)

Whereas many iterative algorithms are sensitive to the initial value, with
a contraction mapping, convergence is ensured from any starting point
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x? € X. Furthermore the following corollary gives useful error bounds for
this procedure.

Corollary 2.5.1 Let f- X — X be a contraction mapping on the complete
metric space X. Let (x") be the sequence constructed from an arbitrary
starting point x°, and let x = lim x" be the unique fixed point. Then

ﬁn

P ) < Tl )
", x) < 1P pla )
Exercise 2.119

Prove corollary 2.5.1.

Exercise 2.120
Example 1.64 outlined the following algorithm for computing the square
root of 2:

XO:2’ xn+1 :l(xn_’_£>
2 x"

Verify that

. 1 2\ . . .
- the function f(x)= 3 (x+x) is a contraction mapping on the set

X={xeR:x>1}
- the fixed point of f'is V2

Estimate how many iterations are required to ensure that the approxi-
mation error is less than 0.001.

The following result is often useful in establishing the properties of the
fixed point of a particular model.

Corollary 2.5.2 Let - X — X be a contraction mapping on the complete
metric space X with fixed point x. If S is a closed subset of X and f(S) < S,
then x € S.

Exercise 2.121
Prove corollary 2.5.2.
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Corollary 2.5.3 (N-stage contraction) Let f: X — X be an operator on a
complete metric space X. Suppose that for some integer N, the function
fN: X — X is a contraction. Then f has a unique fixed point.

Exercise 2.122
Prove corollary 2.5.3.

Exercise 2.123 ( Continuous dependence on a parameter)
Let X and ® be metric spaces, and let /: X x ® — X where
+ X is complete

« for every 6 € O, the function f,(x) = f(x, ) is contraction mapping on
X with modulus S

+ f is continuous in 0, that is for every 0y € ©, limy_q, fy(x) = fp,(x) for
every xe X

Then f; has a unique fixed point x, for every ¢ € ® and limy_4, Xy = xg,.

Although there are many direct methods for solving systems of linear
equations, iterative methods are sometimes used in practice. The follow-
ing exercise outlines one such method and devises a sufficient condition
for convergence.

Exercise 2.124
Suppose that the linear model (section 3.6.1)

Ax =c¢
has been scaled so that a; = 1 for every i. Show the following:

1. Any solution is a fixed point of the mapping f(x) = (I — A)x + c.

2. f'is a contraction provided A4 has strict diagonal dominance, that is,
lait| > 32,4 lag].

[Hint: Use the sup norm.]

Dynamic Programming

We now show how the Banach fixed point theorem can be applied to the
dynamic programming problem (example 2.32)

max Z ﬁtf(xtv xz+1)
" =0

X1y X253
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subject to  x;41 € G(x,),t=0,1,2,...,x0€ X (24)
Let
[(x0) = {x€ X* :x;41 € G(x,),1=0,1,2,...}

denote the set of plans which are feasible starting from the initial point xj.
Assuming that

+ fis bounded on X x X
*+ G(x) is nonempty for every x € X

we have previously shown (exercise 2.16) that the value function v defined
by

o(x0) = sup U(X)
xel(xg)

satisfies Bellman’s equation

v(x) = sup {f(x0,y)+ pv(»)} for every x e X (25)
yeG(x)

Consequently v is a fixed point of the operator

(Tv)(x) = sup {f(x, )+ fo(y)}
yeG(x)

Furthermore 7 is a contraction mapping (example 2.83) on the complete
metric space B(X) (exercise 2.11). Therefore it has a unigue fixed point
(theorem 2.5). In other words, the Banach fixed point theorem establishes
that the value function is the unique solution of Bellman’s equation (25).

To prove the existence of an optimal solution to the dynamic program-
ming problem, we need to establish the continuity of the value function

v(xp) = sup U(x)
xeT(xg)

where

0]

U(x) = B (x4, x41)

t=0

denotes the total return from plan x € I'(xy). We cannot appeal directly to
the continuous maximum theorem (theorem 2.3), since the set of feasible
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plans I'(xp) is not compact. However, we can apply corollary 2.5.2. To do
this, we strengthen the assumptions on (24) to include
+ fis bounded and continuous on X x X

+ G(x) is nonempty, compact-valued, and continuous for every x € X
c0<p<1

Then

+ the operator

(To)(x) = sup {f(x,y) + po(y)}

veG(x)

is a contraction on B(X) (example 2.83)

+ C(X) is a closed subset of B(X) (exercise 2.85)
« T(C(X)) = C(X) (exercise 2.113)

By corollary 2.5.2, the unique fixed point v of T belongs to C(X). The
value function of the dynamic programming problem defined by

v(x0) = sup U(x)
xel(xg)

is continuous. In the next exercise we use the continuity of the value
function to demonstrate the existence of optimal plans in the dynamic
programming problem.

Exercise 2.125 ( Existence of an optimal plan)
Let v be the value function for the dynamic programming problem
(example 2.32)

max Z B (X0, Xe11)
=

X1y X250

subject to  x.41 € G(x),t=0,1,2,... ., x0€ X
Assume that

+ fis bounded and continuous on X x X
+ G(x) is nonempty, compact-valued, and continuous for every x € X
c0<p<l
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Define the correspondence ¢: X =3 X by

p(x) ={ye G(x):v(x) =f(x,y) + po(y)}

¢ describes the set of solutions to Bellman’s equation (exercise 2.17) at
any x € X. Show that

1. p(x) = arg max, ¢ g {/(x,y) +pv(y)}.
2. ¢(x) is nonempty, compact-valued and uhc.
3. There exists a sequence X* = (X, X{, X5, ...) such that x| € p(x/).
4. x* is an optimal plan.
By imposing additional structure on the problem, we can show that

optimal plan is monotone. In exercise 3.158 we give sufficient conditions
for the optimal plan to be unique.

Exercise 2.126 ( Monotonicity of optimal plans)

Consider a dynamic programming problem that satisfies all the assump-
tions of the previous exercise. In addition assume that the state space X is
a lattice on which

+ f(x,y) is supermodular in y

+ f(x,y) displays strictly increasing differences in (x, y)

+ G(x) is increasing
Show that

1. ¢(x) is always increasing.
2. Consequently every optimal plan (xg,x],x5,...) is a monotone
sequence.

Example 2.93 (Optimal economic growth)

As it stands, the optimal economic growth model (example 2.33) does
not fulfill the requirements of exercise 2.125, since the utility function u
may be unbounded on its domain R,. Rather than artificially impose
boundedness, it is more common to adopt a restriction on the technol-
ogy that is akin to diminishing marginal productivity. We assume that
there exists an upper bound to investment k above which productivity is
negative. Specifically, we assume that

« there exists k > 0 such that F(k) < k for every k > k
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In addition we assume that

* u is continuous on R .
+ Fis continuous and increasing on R, with F(0) =0
c0<p<1

Let X = [0,k]. Assume that ko € X. Then F(k) e X for every ke X.
Without loss of generality, we may restrict analysis to X. Then

+ u is bounded on X (exercise 2.84)
* u(F(k;) — ky11) is bounded and continuous on X x X

+ G(k) = [0, F(k)] is nonempty, compact and continuous for every k € X

Exercise 2.125 establishes that there exists an optimal growth policy
(ko, ki, k5, ...) for every starting point ky.

2.4.4 Brouwer Fixed Point Theorem

The most useful fixed point theorem in mathematical economics is the
Brouwer fixed point theorem and its derivatives. The Brouwer theorem
asserts that every continuous function on a compact convex set in a
normed linear space has a fixed point. In this section we present and prove
the Brouwer theorem, derive some important extensions, and outline the
most important applications—the existence of competitive equilibrium
and the existence of a Nash equilibrium in a noncooperative game.

The Brouwer theorem is intuitively obvious and easy to prove in ‘R.
Consider the continuous function f:[0,1] — [0,1] illustrated in figure
2.25. Its graph is a curve joining the left-hand side of the box to the right-
hand side. If the function is continuous, its graph has no gaps and thus
must cross the diagonal at some point. Every such intersection is a fixed
point. Exercise 2.127 formalizes this proof.

Exercise 2.127
Let f:[0,1] — [0, 1] be continuous. Show that f has a fixed point. [Hint:
Apply the intermediate value theorem (exercise 2.83) to g(x) = f(x) — x.]

In higher dimensions the Brouwer theorem is much less intuitive and
correspondingly harder to prove. To appreciate its profundity, take a cup
of coffee and gently swirl it around to mix thoroughly, being careful not
to introduce any turbulence. (Unfortunately, you cannot stir the coffee
with a spoon, since the transformation would no longer be continuous.)
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0L
0 1

Figure 2.25
Brouwer’s theorem in 2

Figure 2.26
Tllustrating an operator on the two-dimensional simplex

No matter how long you swirl, at least one “molecule” must end up exactly
where it started.

Our approach to proving Brouwer’s theorem utilizes Sperner’s lemma
on admissibly labeled simplicial partitions (proposition 1.3). We first illus-
trate the approach on the two-dimensional simplex. A function on the
two-dimensional simplex can be illustrated by using arrows to connect
selected points and their images. Label each point with the label of the
vertex from which it points away (figure 2.26). Where the arrow points
away from two vertices (e.g., on the boundary), choose one of them. We
can label each vertex of a simplicial partition in this way. By construction,
such a labeling constitutes an admissible labeling. For any simplicial
partition, Sperner’s lemma ensures that there is a always exists a com-
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pletely labeled subsimplex, that is, a subsimplex that has vertices at which
the function points in each of the three directions. If we take a sequence of
increasingly fine partitions, we will find a point at which it appears the
function is pointing in all three directions at once. This is only possible if
in fact it is a fixed point. We now make this argument rigorous.

We first show that an operator on a simplex conveniently defines a ad-
missible labeling of the points of the simplex. Let S be the n-dimensional
simplex with vertices {xo, X1,...,X,}. Recall that every point x € S has a
unique representation as a convex combination of the vertices

X = 0lgXo + 0X| + - -+ X,

with o; > 0 and o + oy + -+, = 1 (exercise 1.159). The coefficients
o, 01, --,0, are called the barycentric coordinates of x. Similarly the
image f(x) of x under fhas a unique representation

S(X) = BoXo + X1 + -+ + f,X,

with f; >0 and f, + f, +---+ f, = 1. Given any function f: S — S, a
label in the set {0, 1,...,n} can be assigned to every point in the simplex
S using the rule

X — min{i: f; < o; # 0}

where «; and f; are the barycentric coordinates of x and f(x) respectively.
This assignment satisfies the requirements of an admissible labeling for
the application of Sperner’s lemma (exercise 2.128).

Exercise 2.128

Let f: S — S be an operator on an n simplex with vertices {Xo, X1, ..., X, }.
Suppose that the elements of S are labeled using the rule
x—min{i: f;, <o; #0}

where «; and f; are the barycentric coordinates of x and f(x) respectively.
Show that

1. The rule assigns a label in {0, 1,...,n} to every x € S.

2. Each vertex of S retains its own label.

3. Each vertex on a face of S receives a label corresponding to one of the

vertices of that face.

Hence the rule generates an admissible labeling of the simplex.
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Theorem 2.6 ( Brouwer’s theorem) Let S be a nonempty, compact, convex
subset of a finite dimensional normed linear space. Every continuous func-
tion S — S has a fixed point.

Proof We assume for simplicity that S is a simplex. The extension to an
arbitrary compact convex set is given in exercise 2.129. We proceed by
constructing a sequence of increasingly fine simplicial partitions of S
which eventually “trap” the fixed point.

Let A, k=1,2,..., be a sequence of simplicial partitions of S in
which the maximum diameter of the subsimplices tend to zero as k — oo.
For each vertex x* of Ay, assign a label i € {0, 1,...,n} using the labeling
rule

x¥ — min{i: ¥ < of # 0}

where o and S¥ are the barycentric coordinates of x* and f(x*) respec-
tively. Every partition is admissibly labeled (exercise 2.128).

By Sperner’s lemma (proposition 1.3), each partition A; has a com-
pletely labeled subsimplex. That is, there is a simplex with vertices

xK, xf, ..., x* such that

i <of (26)

for the vertex x¥. In other words, every vertex of the completely labeled
subsimplex satisfies (26) in its corresponding coordinate.

Since S is compact, each sequence x¥ has a convergent subsequence
x{". Moreover, since the diameters of the subsimplices converge to zero,
these subsequences must converge to the same point, say x*. That is,

. ’ .
lim x,.k:x* i=0,1,...,n

)
k!'— oo

Since f'is continuous, their images also converge:

lim f(x¥)=f(x"), i=0,1,...,n

k'— o0
This implies that the corresponding barycentric coordinates also converge:

ok — o and pF—pr, i=0,1,....n

1 1

where of and 8] are the barycentric coordinates of x* and f(x*) respec-
tively. Since for every i =0,1,...,n, there exist coordinates such that
B < aF' for every k, we have i} < o for every coordinate i = 0, 1,...,n.
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Since Y~ 7 = > o = 1, this implies that

pi=oal, i=0,1,...,n

In other words,

S =x

x* is a fixed point of f. O

Example 2.94 (Markov chains) Let 7 be the n x n transition matrix of a
finite Markov process (section 3.6.4). The set of state distributions

S:{peiR”:Zp,-:I}

is precisely the (n— 1)-dimensional standard simplex (example 1.95),
which is nonempty, convex, and compact. 7 is a linear operator on the
finite-dimensional space S and is therefore continuous (exercise 3.31).
Applying the Brouwer theorem, 7 has a fixed point p

Tp=p

which is a stationary distribution of the Markov process. Consequently
every Markov chain has a stationary distribution.

For any S = T in a metric space, a continuous function »: 7" — S is
called a retraction of T onto S if r(x) = x for every x € S. In chapter 3 we
will show (exercise 3.74) that every set in a finite-dimensional normed
linear space can be retracted onto its closed convex subsets.

Exercise 2.129

Generalize the proof of the Brouwer theorem to an arbitrary compact
convex set as follows. Let f: S — S be a continuous operator on a non-
empty, compact, convex subset of a finite-dimensional normed linear
space.

1. Show that there exists a simplex 7" containing S.

2. By exercise 3.74, there exists a continuous retraction r: 7' — S. Show
that f or: T — T and has a fixed point in x* € 7.

3. Show that x* € S and therefore f(x*) = x*.

Consequently fhas a fixed point x*.
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Exercise 2.130
Where is the convexity of S required in the previous exercise?

Exercise 2.131
To show that each of the hypotheses of Brouwer’s theorem is necessary,
find examples of functions f: S — S with S = R that do not have fixed
points, where

1. f is continuous and S is convex but not compact
2. fis continuous and S is compact but not convex
3. Sis compact and convex but f is not continuous
The following proposition, which is equivalent to Brouwer’s theorem,

asserts that it is impossible to map the unit ball continuously on to its
boundary.

Exercise 2.132 ( No-retraction theorem)
Let B denote the closed unit ball in a finite-dimensional normed linear
space

B={xeX:|x| <1}
and let S denote its boundary, that is,
S={xeX:|x|| =1}

There is no continuous function r: B — S such that r(x) = x for every
xeS.

Exercise 2.133

Let f: B— B be a continuous operator on the closed unit ball B in a
finite-dimensional normed linear space. Show that the no-retraction
theorem implies that f has a fixed point.

Exercise 2.134
Prove that the no-retraction theorem is equivalent to Brouwer’s theorem.

The following proposition, due to Knaster, Kuratowki, and Mazurkie-
wicz (K-K-M), is equivalent to the Brouwer theorem. It is often used as
a step on the way to the Brouwer theorem. It is more useful than the
Brouwer theorem in some applications.
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Proposition 2.4 (K-K-M theorem) Let Ay, Ay,...,A, be closed subsets
of an n-dimensional simplex S with vertices Xo,Xy,...,X,. If for every
I ={0,1,...,n} the face conv{x; : i € I'} is contained in the corresponding
union | ),_, A;, then the intersection (), A; is nonempty.

Exercise 2.135
Prove the K-K-M theorem directly, using Sperner’s lemma.

Exercise 2.136
Prove that the K-K-M theorem is equivalent to Brouwer’s theorem,
that is,

K-K-M theorem < Brouwer’s theorem

The classic application of the Brouwer theorem in economics is to
prove the existence of competitive equilibrium. We extract the mathe-
matical essence in the following corollary, and then show how it applies to
competitive equilibrium in example 2.95.

Corollary 2.6.1 (Excess demand theorem) Let z: A"~ — R" be a con-
tinuous function satisfying pTz(p) = 0 for every p € A""'. Then there exists
p* € A" such that z(p*) < 0.

Proof Define the function g: A" — A’"! by

o pi + max(0, z;(p))
9i(p) =17 S°! max(0,z(p))

g is continuous (exercises 2.78, 2.79, 2.81). By Brouwer’s theorem, there
exists a fixed point p* such that g(p*) = p*. Given p”z(p) = 0 for every
pe A" ! it is easy to show (exercise 2.137) that

gp*)=p =z(p*) <0 O

Example 2.95 (Existence of competitive equilibrium) A competitive
equilibrium (p*,x*) in an exchange economy (example 1.117) is a set of
prices p* and an allocation x* = (x,X;,...X;) such that

+ every consumer i chooses the optimal bundle in his budget set
X, ZX; for every x; € X (p, m;)

/
where m; = ijlpja)i,-
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- aggregate demand is less than or equal to available supply

in < Zwi

ieN ieN

Assume that the consumers’ preferences 2, are continuous and strictly
convex. Then every consumer has a continuous demand function x(p, m)
indicating their optimal choice at given prices p (examples 2.90 and 3.62).

Let z;: R’+ — R! denote consumer i’s excess demand function

z:(p) = xi(p,m) — o

which measures his desired net trade in each commodity at the prices p.
Let z(p) denote the aggregate excess demand function

z(p) = z": z(p)
i1

The aggregate excess demand function is continuous and homogeneous of
degree zero (exercise 2.138), so only relative prices matter. We can nor-
malize so that prices are restricted to the unit simplex A’~!. Furthermore,
provided that consumers’ preferences are nonsatiated, the excess demand
function satisfies the following identity known as Walras’s law (exercise
2.139):

plz(p) =0  forevery p (Walras’s law)

The excess demand functions z(p) satisfy the conditions of corollary 2.6.1.
Therefore there exists a price p* such that

z(p’) <0 (27)

p* is a competitive equilibrium price (exercise 2.140), and (p*, x(p*)) is a
competitive equilibrium.
The function

i + max 0, Zi

(p) = P M0z (p)
1451 max(0,z(p))

used in the proof of corollary 2.6.1 has a nice interpretation in this

application—it increases the price of commodities in excess demand and
lowers the price of those commodities in excess supply.
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At first sight, (27) is a system of / inequalities in / unknowns. How-
ever, since z(p) satisfies Walras’s law, there are only / — | independent
inequalities. On the other hand, z(p) is homogeneous of degree zero, so
only relative prices matter. There are only / — 1 relative prices. Therefore
(27) is a system of / — 1 independent inequalities in / — 1 unknowns. If
the excess demand function z were linear, we could apply the theory of
section 3.6 to deduce a solution. It is precisely because the system (27) is
nonlinear that we have to resort a more powerful fixed point argument.

Exercise 2.137
Let zz A"' — R" be a continuous function satisfying pz(p) = 0 for every
pe A" and

b + max(0, z;(p))
gi(p) 1+Z]?:1max(0,2i(P))

Show that

g(p")=p = z(p’) <0

Exercise 2.138 (Properties of the excess demand function)
Show that the aggregate excess demand function z(p) is continuous and
homogeneous of degree zero.

Exercise 2.139 (Walras’s law)
Assuming that the consumers’ preference relations 2, are nonsatiated

and strictly convex, show that the aggregate excess demand function z(p)
satisfies Walras’s law

p’z(p) =0 for every p
[Hint: Use exercise 1.248.]

Remark 2.19 (Strong and weak forms of Walras’s law) The previous
result is known as the strong form of Walras’s law. Homogeneity alone
implies the analogous weak form of Walras’s law

p’z(p) <0 for every p

but this alone is inadequate to support our proof of existence of equilib-
rium. In addition to homogeneity the strong form of Walras’s law
requires that consumers spend all their income, which is implied by local
nonsatiation.
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Exercise 2.140
p* is a competitive equilibrium price if z(p*) < 0.

Remark 2.20 (Uzawa equivalence theorem) Corollary 2.6.1 abstracts the
mathematical essence of the existence of equilibrium in a competitive
exchange economy. We showed that this is implied by Brouwer’s theo-
rem. Uzawa (1962) proved the converse, namely that corollary 2.6.1
implies Brouwer’s theorem, establishing their equivalence. This underlines
the profundity of Brouwer’s theorem, and it means that a fixed point
argument is essential to proving existence of economic equilibrium. This
cannot be done with simpler means.

Two generalizations of Brouwer’s theorem are important in economics.
The first extends the theorem to correspondences (Kakutani’s theorem),
while the second extends to infinite-dimensional spaces (Schauder’s theo-
rem). We consider these in turn.

Kakutani’s Theorem

To use Brouwer’s theorem to prove the existence of a competitive equi-
librium in example 2.95 required that the consumers’ optimal choices be
unique (demand functions), which necessitated the unreasonable assump-
tion that consumer preferences are strictly convex. To relax this assump-
tion, and also to incorporate production into the economic system,
requires an extension of the Brouwer theorem to correspondences. This
extension was provided by Kakutani for precisely this purpose. It also
allows us to prove a general existence theorem for games.

Theorem 2.7 ( Kakutani’s theorem) Let S be a nonempty, compact, convex
subset of a finite dimensional normed linear space. Every closed, convex-
valued correspondence ¢: S 3 S has a fixed point.

Remark 2.21 Recall that a correspondence ¢: S =3 S is closed if it graph
is closed in S x S. Since S is compact, this is equivalent to ¢ being closed-
valued and uhc (exercise 2.107).

Proof We assume for simplicity that S is a simplex. The extension to
an arbitrary compact convex set is given in exercise 2.142. We proceed
by constructing a sequence of continuous functions that approximate a
selection from the correspondence. By Brouwer’s theorem, each of these
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functions has a fixed point, and these fixed points converge to a fixed
point of the correspondence.

Let A, k=1,2,...bea sequence of simplicial partitions of .S in which
the maximum diameter of the subsimplices tend to zero as k — co. Con-
struct a sequence of continuous functions f*: § — S that approximate ¢,
by assigning to each vertex x of the partition A* a point in the set p(x)
and then extending /* linearly to the subsimplices. Specifically, if V¥
denotes the set of all vertices of the subsimplices in A¥,

- For every vertex x € V¥, choose some y € ¢(x) and set f(x) =y

« For every nonvertex x € S\ V¥, let S* € A¥ denote the subsimplex that

contains x. Let o, o, ..., «¥ denote the barycentric coordinates (exercise
1.159) of x with respect to the vertices x5, x¥, ... x¥ e V¥ of S¥. That is,

x—ocox0 +ocf(x{‘+- -+ac,’fx,’j

and we define

SEX) = o £(x6) + af f(xF) + -+ o f(x))

By Brouwer’s theorem, each function /% has a fixed point x*. Since S is
compact, the sequence of fixed points x* has a convergent subsequence
x" that converges to a point x* € S. Since each function /* matches the
correspondence at the vertices of the subsimplices the diameters of which
converge to zero, it follows (exercise 2.141) that x* € p(x*). That is, x* is
the required fixed point of the correspondence. O

Exercise 2.141
Verify that x* = limg/_,,, x¥" as defined in the preceding proof is a fixed
point of the correspondence, that is x* € p(x*).

Exercise 2.142
Generalize the proof of the Kakutani theorem to an arbitrary convex,
compact set S. [Hint: See exercise 2.129.]

Example 2.96 (Existence of Nash equilibrium) A strategic game (section
1.2.6) comprises

« a finite set N of players

« for each player i € N a nonempty set S; of strategies
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- for each player i € N a preference relation >, on the strategy space

~i
S=S1><S2><---><S,,

Assume that the strategy space of S; of every player is nonempty, com-
pact, and convex. Then the product S = S; x S, x --- x S, is likewise
nonempty, compact, and convex. Assume further that for each player i
there exists a continuous, quasi-concave function u;: S — R that repre-
sents the player’s preferences in the sense that

(sy8-1) Z; (s'ys-1) © ui(s) > u;(s’)
where s’ = (s',s_;). The best response correspondence of player i is
Bi(s) = {s€ S;: (s,5_;) Z,; (s',s_;) for every s’ € S;}

This can be alternatively defined as the solution correspondence of the
maximization problem
Bi(s) = arg max u;(s)
S; € S,’

By the maximum theorems, each best response correspondence B; is
compact-valued and upper hemicontinuous (theorem 2.3) and convex-
valued (theorem 3.1).

Let B denote the product of the individual player’s best response cor-
respondences. That is, for every s € S,

B(s) = Bi(s) X Bx(s) x - -+ X By(s)

Then B is a closed, convex-valued correspondence B: S 33 S (exercise
2.143). By Kakutani’s theorem, B has a fixed point s € .S such that
s € B(s). That is,

si € Bi(s) foreveryie N
s = (s1,8,...,5,) is a Nash equilibrium of the game.

Exercise 2.143
Show that the best response correspondence B: S 3 S is closed and
convex valued.

Remark 2.22 The existence theorem in the previous example applies to
two important special cases:
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finite games Assume that each player has a finite set of actions 4;, and let
S; denote the set of mixed strategies, that is, the set of all probability dis-
tributions over A4; (example 1.98). Let u; denote the expected payoff from
strategy s, that is,

ui(s) = iju(a,-)

Since u is linear, it is continuous and quasiconcave.

Cournot oligopoly The payoff function u; is the profit function

ui(yiy-i) = p(Y)yi = ()

where Y is total output and p(Y) is the inverse demand curve (example
2.35). Provided that the demand and cost functions satisfy suitable con-
ditions, the profit function u; will be continuous and quasiconcave. If Y is

an upper bound on feasible output, the strategy spaces can be taken to be
0, 7.

Exercise 2.144 (Uniqueness of Nash equilibrium)
Suppose, in addition to the hypotheses of example 2.96, that

+ the players’ payoff functions u;: S — R are strictly quasiconcave

+ the best response mapping B: S — S is a contraction
Then there exists a unique Nash equilibrium of the game.
Schauder’s Theorem

We generalized Brouwer’s theorem to an arbitrary convex, compact set
S by mapping S to an enclosing simplex. To generalize to infinite-
dimensional spaces, we adopt a similar technique. The following lemma
shows that every compact set can be mapped continuously to a finite-
dimensional convex set.

Exercise 2.145

Let K be a compact subset of a normed linear space X. For every ¢ > 0,
there exists a finite-dimensional convex set S < X and a continuous
function 4: K — S such that S = conv K and

|h(x) — x| <& for every x € K

[Hint: Exercise 1.112.]
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Theorem 2.8 (Schauder’s theorem) Let S be a nonempty, compact, con-
vex subset of a normed linear space. Every continuous function f: S — S
has a fixed point.

Proof f(S) is compact (proposition 2.3). Applying the preceding
lemma, we can approximate f(S) by a sequence of finite-dimensional
convex sets. Specifically, for k = 1,2, ... there exists a finite-dimensional
convex set S* and continuous function 4*: f(S) — S¥ such that

1
17 (x) — x|| <7 for every x € f(S)

Since S convex,

S* < conv f(S) = S

The function g¥ = h* o f approximates f on S*. That is (exercise 2.146),
. gk Sk sk

* lg%(x) —f(x)|| < 1/k for every x € S¥

Furthermore g¥ is continuous (exercise 2.72) and S* is compact, convex,
and finite dimensional. Applying Brouwer’s theorem (theorem 2.6), we see
that every function g* has a fixed point x* = gk (x*). Every fixed point
x* e S. Since S is compact, there exists a convergent subsequence

x¥' — x* e S. Furthermore f(x*) = x*; that is, x* is a fixed point of f
(exercise 2.147). O
Exercise 2.146

Let g* = h* o f as defined in the preceding proof. Show that
1. g% Sk — sk
2. |lg%(x) — f(x)|| < 1/k for every x € §¥

Exercise 2.147
Verify that x* = limy_., x* as defined in the preceding proof is a fixed
point of f, that is, f(x*) = x*.

Schauder’s theorem is frequently applied in cases where the underlying
space is not compact. The following alternative version relaxes this con-
dition to require that the image lie in a compact set. A function /: X — Y
is called compact if f(X) is contained in a compact set of Y.
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Corollary 2.8.1 (Schauder’s theorem— Alternative version) Let S be a
nonempty, closed, and bounded convex subset of a normed linear space.
Every compact continuous operator f: S — S has a fixed point.

Proof Let A =conv(f(S)). Then A is a subset of S which is compact
and convex. Furthermore f(A) = A. Therefore the restriction of f'to A4 is
a continuous operator on a compact, convex set. By Schauder’s theorem,
f has a fixed point which is automatically a fixed point of fon S. O

The alternative version implies the following result which is used in
dynamic economic models.

Exercise 2.148

Let F be a nonempty, closed and bounded, convex subset of C(X), the
space of continuous functionals on a compact metric space X. Let
T: F — F be a continuous operator on F. If the family 7'(F) is equi-
continuous, then 7 has a fixed point.

2.4.5 Concluding Remarks

We have presented a suite of fixed point theorems, the heavy artillery of
the analyst’s arsenal. The most powerful is Brouwer’s theorem and its
generalizations, whose essential requirements are continuity of the
mapping together with compactness and convexity of underlying space.
Banach’s theorem shows that compactness can dispensed with by
strengthening the continuity requirement, while Tarksi’s theorem shows
that even continuity is dispensable if we have monotonicity.

2.5 Notes

The general references cited in chapter 1 are also relevant for sections 2.1
and 2.3, to which should be added Berge (1963). Our presentation of
dynamic programming is based on Stokey and Lucas (1989), who give
numerous applications. Maor (1994) discusses the history of the expo-
nential and log functions. The standard Cournot (example 2.35) and
Bertrand (exercise 2.60) oligopoly models are explored in Shapiro (1989).
The definition of rationalizability in exercise 2.22 differs from the stan-
dard definition, in that it allows for the actions of opponents to be corre-
lated. See Osborne and Rubinstein (1994, pp. 57-58) for a discussion of
this point.
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In representing continuous preferences, the difficult part is not the
existence of a utility function but its continuity. This has tripped some
distinguished economists and generated a sizable literature; see Beardon
and Mehta (1994) for references. The fundamental result is due to Debreu
(1954, 1964). A concise account is given by Barten and Bohm (1982). The
simple constructive proof for monotone preferences (exercises 2.38, 2.73)
originated with Wold. Our treatment is adapted from Mas-Colell et al.
(1995, p. 47).

The properties of supermodular functions were studied by Topkis
(1978). Further references are given in chapter 6. The study of convex
games (example 2.69) originated with Shapley (1971-1972). In the light of
subsequent developments, the choice of adjective convex rather than
supermodular to describe these games is unfortunate, since convexity and
supermodularity are quite distinct properties. The single-crossing condi-
tion of exercise 2.61 is closely related to the ““sorting” or ““Spence-Mirrlees”
condition which is often invoked in the literature on signaling and mech-
anism design. Example 2.74 adapted from Fudenberg and Tirole (1991,
p. 492) and modeled on Diamond (1982). Exercise 2.64 is the principal
result of Milgrom and Shannon (1994).

The monotone maximum theorem (theorem 2.1) is due to Topkis (1978)
and the continuous maximum theorem (theorem 2.3) to Berge (1963). The
latter is usually called simply the maximum theorem. It should be dis-
tinguished from the “maximum principle,” which is a counterpart of the
principle of optimality (exercise 2.17) for dynamic programming in con-
tinuous time.

Good treatments of the continuity of correspondences can be found in
Border (1985), Ellickson (1993), and Sundaram (1996), from which we
adapted some examples. Border (1985) is an excellent source on fixed
point theorems for economists. Zeidler (1986) is also recommended for
its clarity and thoroughness. The extension of Tarski’s theorem to corre-
spondences (corollary 2.4.2), due to Zhou (1994), parallels the general-
ization of Brouwer’s theorem to Kakutani’s theorem. Our proof of
Kakutani’s theorem follows Kakutani (1941). An alternative approach is
to apply Brouwer’s theorem to a continuous selection (see Border 1985,
pp. 71-72 and Hildenbrand and Kirman 1976, pp. 201-204). Our deri-
vation of Schauder’s theorem is based on Zeidler (1986). Some economic
applications of Schauder’s theorem can be found in Stokey and Lucas
(1989).
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The primary role of Kakutani’s theorem in economics is to establish the
existence of competitive equilibrium in economies in which demand and
supply correspondences are not single-valued. Proof of the existence of
competitive equilibrium is one of the major accomplishments of mathe-
matical economics. Our proof is a standard textbook account omitting
much of the fine detail. Lucid introductory accounts are provided by
Ellickson (1993), Mas-Colell et al. (1995), and Starr (1997), while Debreu
(1959) and Arrow and Hahn (1971) are classics in the field. The survey by
Debreu (1982) outlines the various approaches which have been used.
Debreu (1982, pp. 719-720) and Starr (1997, pp. 136-138) discuss the
Uzawa equivalence theorem (remark 2.20).
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Linear Functions

A function f: X — Y between two linear spaces X and Y is linear if it
preserves the linearity of the sets X and Y, that is, for all x;,x, € X, and
ae R,

additivity /(x; +x2) =f(x1) +/(x2)
homogeneity f(ox;) = of (x;)

A linear function is often called a linear transformation and a linear
function from a set X to itself is often called a linear operator. Through-
out this chapter the domain and co-domain are assumed to be subsets of
linear spaces.

Exercise 3.1
A function f: X — Y is linear if and only if

Slouxy + axo) = oy f(X1) 4 o2 f(X2)
for all x;,x; € X, and oy, 0, € R.

Exercise 3.2
Show that the set L(X, Y) of all linear functions X — Y is a linear space.

Example 3.1 The function /: R*> — R? defined by
f(x1,x2) = (x1 cos @ — x; sin 0, x; sin 6 + x; cos 6), 0<0<2n

rotates any vector in the plane counterclockwise through the angle 6
(figure 2.3). It is easily verified that f is linear. Linearity implies that
rotating the sum of two vectors yields the same result as summing the
rotated vectors.

Exercise 3.3
Show that f'in example 3.1 is linear.

Exercise 3.4
Show that the function f: R*> — R? defined by

f(xlv X2, X3) = (xla X2, O)
is a linear function. Describe this mapping geometrically.

Example 3.2 (The high-fidelity amplifier) Pure musical tones can be
thought of as elements of a linear space. Pure tones can be combined
(added) to produce complex tones and they can be scaled in amplitude to
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different volumes. An amplifier can be thought of as a function, trans-
forming the inputs (electrical signals) into music (sound signals). An ideal
amplifier would be a linear function, combining different pure tones
faithfully and scaling their volumes proportionately. Real amplifiers suffer
from various degrees of nonlinearity known as distortion. Generally,
more expensive amplifiers produce better sound reproduction because
they are more nearly linear.

Example 3.3 A matrix is a collection of similar elements (numbers,
functions) arranged in a table. For example,

1 5 10
A= (2 15 25)
is a 2 x 3 matrix of numbers, while
H— (fll(x> flz(x))

S (x) fa(x)

is a 2 x 2 matrix of functions f;;: X — Y, i, j=1,2.
Any m x n matrix 4 = (a;;) of numbers defines a linear mapping from
R" — R defined by
Dojm1
D jm1 4%X;
fx) ="
D1 AmiX;
This is usually compactly written as
f(x) = 4x

Exercise 3.5
Describe the action of the mapping f: R> — R? defined by

o= (2 D))

Example 3.4 (Portfolio investment) Example 1.82 introduced a simple
linear model of financial assets. Suppose there exist a finite number 4 of
financial assets or securities in which to invest. Each asset a is fully
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described by its return vector r, = (rig, 724, - -,¥sq), Which details the
prospective return of asset a in each of the S possible states of the world.

Arranging the return vectors of the A financial assets into a table or
matrix, we can form an S x 4 matrix of prospective returns

ry ri2 ... gy

1 o ... Ty
R =

rsiy rs2 ... rsy

where r,, denote the return of asset a in state s. The matrix R is called
the return matrix. The sth row of the matrix specifies the return to the
various assets if state of the world s prevails. Similarly the ath column of
the matrix specifies the return to asset a in the various states.

A portfolio x = (x1,x2,...,x4) is a list of amounts invested in the dif-
ferent assets. The function
f(x) =Rx
A
Ea:l T'aXa
A
— Za:l I2aXq
A
Za:l I'SaXa

specifies the total return to the portfolio x in the various states. fis linear,
so the combined return of two portfolios x' and x? is equal to the return
of a combined portfolio x! + x?. Similarly scaling the portfolio ax changes
the aggregate return proportionately. Linearity requires that potential
returns are independent of the portfolio choice, a reasonable assumption
for a small investor.

Example 3.5 (Transpose) The matrix obtained by interchanging rows
and columns in an matrix 4 is known as the transpose of 4, and denoted
AT. That is,

al agn ... Ay

. a); dxp ... dyy
if 4=

Aml w2 .- dmn
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apy  dap cee A
T dip dxp ... 4dm

then A" =
dip dn  --. Amp

If A represents a linear function from X to Y, AT represents a linear
function from Y to X.

Example 3.6 (Shapley value) Since the set of all TP-coalitional games is
a linear space (example 1.70), it is natural to consider values (example
2.37) that respect this linearity. A linear value on the space of games GV
is a linear function ¢: G¥ — R”" such that },_,(pw); = w(N). Linearity
requires that for any two games w,w’ € GV,

p(w+w') = pw + ow'
plow) = apw

Both aspects of linearity have natural interpretations in the context of
coalitional games. Homogeneity requires that the solution be invariant to
the units of measurement, while additivity requires the solution to be
invariant to the degree of aggregation. These are natural requirements in
many applications of coalitional games (e.g., the cost allocation game of
exercise 1.66).

The Shapley value is a particular linear function on the space of TP-
games %" . It is defined by

piw) = > ys(w(S) — w(S\{i}))

SSN
where

_(s=Dln—ys)!
Vs = nl

s = |S| = number of players in coaliton S

@;(w) = the allocation to player i at the outcome ¢(w)

Since only those coalitions in which i is a member carry any weight in the
preceding sum (w(S) = w(S\{i}) if i ¢ S), the formula for Shapley value
is often more usefully written as
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0i(w) = 7s(w(S) = w(S\{i})) (1)

Soi

Example 3.7 (Three-way market) A farmer, f, owns a block of land that
is worth $1 million as a farm. There are two potential buyers

+ a manufacturer m to whom it is worth $2 million as a plant site

- a subdivider s to whom it is worth $3 million

This situation can be modeled as a TP-coalitional game with N = { /', m, s}
and the characteristic function

w{fH =1 wl{mh=0  w({sh)=0
w({(fm}) =2 w({f,s) =3 w({m,s}) =0
w(N) =73

The following table details the computation of the Shapley value for
player f:

N Vs w(S) w(S\{i}) 7s(w(S) —w(S\{i}))
{r} 3 1 0 3

{f,m} % 2 0 %

{f,s} 1 3 0 !

{f,m,s} % 3 0 1

o (w) 2;

The Shapley value assigns a payoff of 2% to the farmer. Similar calcu-
lations reveal that the Shapley values of the manufacturer and the
subdivider are % and % respectively. The Shapley value of this game is
p(w) = (25..3)-

Exercise 3.6
Show that the Shapley value ¢ defined by (1) is linear.

Exercise 3.7

Compute the Shapley value for the cost allocation game (exercise
1.66).
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Exercise 3.8
Verify that the Shapley value is a feasible allocation, that is,

S g =w(N)

ieN
This condition is sometimes called Pareto optimality in the literature of

game theory.

Exercise 3.9
Two players i and j are substitutes in a game (N, w) if their contributions
to all coalitions are identical, that is, if

w(Su {i}) =w(Su{j}) for every S = N\{i,j}
Verify that the Shapley value treats substitutes symmetrically, that is
i,j substitutes = p,w = g;w

Exercise 3.10
A player i is called a null player in a game (N, w) if he contributes nothing
to any coalition, that is, if

w(S U {i}) = w(S) for every S = N
Verify that the Shapley value of a null player is zero, that is,
inul = pw=0

Exercise 3.11

Recall that, for any coalition 7' < N, the T-unanimity game (example
1.48) ur € GV is

1 f T<S

0 otherwise

ur(S) = {

Compute the Shapley value of a T-unanimity game.

Exercise 3.12 (Potential function)
For any TP-coalitional game (N, w) the potential function is defined to be

P(N,w) = Z ;ocT

TSN
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where ¢ = |T| and ar are the coefficients in the basic expansion of w
(exercise 1.75). Show that

p;w = P(N,w) — P(N\{i},w)
P(N,w) = % <W(N) - Z P(N\{i}, w)>

Consequently the potential function provides a straightforward recursive
method for computing the Shapley value of game. [Hint: Use the linearity
of ¢, example 1.75 and exercises 3.8 and 3.11.]

3.1 Properties of Linear Functions

The requirements of linearity impose a great deal of structure on the
behavior of linear functions. The elaboration of this structure is one of the
most elegant and satisfying fields of mathematics.

Exercise 3.13
Every linear function f: X — Y maps the zero vector in X into the zero
vector in Y. That is, f(0x) = 0y.

Exercise 3.14
If f: X — Y and ¢g: Y — Z are linear functions, then so is their compo-
sitiongof: X — Z.

Exercise 3.15

Show that a linear function maps subspaces to subspaces, and vice versa.
That is, if S is a subspace of X, then f(S) is a subspace of Y; if T is a
subspace of Y, then f~!(T) is a subspace of X.

Associated with any linear function are two subspaces that are partic-
ularly important in analyzing the behavior of the function. The range
f(X) of a linear function is called the image of f. The inverse image of the
zero element is called the kernel, that is,

kernel f = /71(0) = {x e X : f(x) = 0}

The dimension of the image is called the rank of f. The dimension of the
kernel is called the nullity of f. If X is finite dimensional, then (exercise
3.24)
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rank f + nullity f = dim X (2)
A linear function f: X — Y has full rank if
rank f(X) = min{rank X, rank Y}

The rank of a matrix A is the rank of the linear transformation f(x) = Ax
that it represents (example 3.3). An m x n matrix has full if rank if
rank A = min{m, n}.

Exercise 3.16
Suppose that f: X — Y is a linear function with rank f = rank ¥ <
rank X. Then f maps X onto Y.

Exercise 3.17
Show that the kernel of a linear function f: X — Y is a subspace of X.

The behavior of a linear function is essentially determined by way in
which it maps the kernel.

Exercise 3.18
Suppose that /: X — Y is a linear function with kernel /' = {0}. Then f'is
one-to-one, that is,

f(x1)=/(x)=x=x
A linear function f: X — Y that has an inverse f~': ¥ — X is said to

be nonsingular. A function that does not have an inverse is called singular.

Exercise 3.19
A linear function f: X — Y is nonsingular if and only if kernel /' = {0}
and f(X)=7Y.

Exercise 3.20
The inverse of a (nonsingular) linear function is linear.

Exercise 3.21
If £, g are nonsingular linear functions, then so is their composition g o f
with
S S R |
(gof) =/ "oy

The following converse of 3.14 is the linear version of the important
implicit function theorem (theorem 4.5).
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Exercise 3.22 (Quotient theorem)
If f: X — Y and i: X — Z are linear functions with kernel f* < kernel £,
then there exists a linear function g: f(X) — Z such that A =g o f.

Exercise 3.23
Suppose that f: X — Y is a linear function and B < X is a basis for X.
Then f(B) spans f(X).

Exercise 3.23 implies that any linear mapping is completely determined
by its action on a basis for the domain. This has an several useful con-
sequences for finite-dimensional mappings. It implies that any linear
mapping between finite-dimensional spaces can be represented by a
matrix (proposition 3.1). It establishes the link between the rank and
nullity of a linear mapping (2). A striking application in game theory is
given by the next example.

Example 3.8 (Shapley value is unique) The Shapley value (example 3.6)
is uniquely defined for T-unanimity games by (exercise 3.11)

= {57

where = |T|. Since these form a basis for %" (exercise 1.146),
{p(ur) : T = N} spans ¢p(G"). ¢ is uniquely defined for all w e GV.
We previously demonstrated that the Shapley value defined by

o) = 3 2s(0(S) —w(S\(@}), s =S ZI 1g 3

SEN !
is feasible, treats substitutes symmetrically and disregards null players
(exercises 3.8-3.10). We conclude that (3) is the only linear function with
these properties. The Shapley value on the space of TP-coalitional games
is unique.

Exercise 3.24 (Rank theorem)
Suppose that /: X — Y is a linear function. If X is finite-dimensional, then

rank f + nullity /' = dim X

Exercise 3.25
Suppose that f: X — Y is a linear function with rank f = rank X <
rank Y and dim X < co. Then f'is one-to-one.
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Recall example 3.3 showing that any matrix defines a linear mapping.
Exercise 3.23 implies the converse: any linear mapping between finite-
dimensional spaces can be represented by a m x n matrix (of numbers).

Proposition 3.1 (Matrix representation) Let f: X — Y be a linear map-
ping between an n-dimensional space X and m-dimensional space Y. Then,
for every choice of bases for X and Y, there exists an m x n matrix of
numbers A = (ay) that represents f'in the sense that

f(x) =Ax  foreveryxe X
where AX is as defined in example 3.3.

Exercise 3.26
Assuming that X = R" and Y = R™, prove proposition 3.1 for the stan-
dard basis (example 1.79).

A matrix provides a means of describing completely, concisely and
uniquely any finite-dimensional linear function. Note that the matrix
representation depends on a choice of basis for X and Y. Unless a partic-
ular basis is specified, the usual basis is implied in the matrix representa-
tion of a linear function.

Example 3.9 Consider example 2.3. Given the usual basis for R, the
matrix representing this function is

4= cos@ —sin@
" \sind  cosd

For a rotation of 90 degrees (0 = n/2), the matrix is

0 -1
A:

()
Exercise 3.27

Give a matrix representation with respect to the usual bases for the linear
function in exercise 3.4.

Exercise 3.28
Describe the matrix representing the Shapley value. Specify the matrix for
three-player games (|N| = 3).
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If /: X — Y is a nonsingular linear function with matrix representation
A, then the representation of the inverse function f~' with respect to the
same bases is called the matrix inverse of A and is denoted 47!,

Continuity of Linear Functions

The continuity of linear functions between normed linear spaces illus-
trates again a subtle interplay of linearity and geometry. The fundamental
insight is the uniformity of linear spaces, as illustrated in the following
result. Throughout this section, X and Y are assumed to be normed linear
spaces.

Exercise 3.29
A linear function f: X — Y is continuous if and only if it is continuous
at 0.

A linear function f: X — Y is bounded if there exists a constant M
such that

I/ X < M|x|| for every x € X (4)

Note that boundedness does not imply that the range f(X) is bounded
but rather that f(S) is bounded for every bounded set S. As the following
exercise demonstrates, boundedness is equivalent to continuity for linear
functions. Consequently these two terms are used interchangeably in
practice.

Exercise 3.30
A linear function f: X — Y is continuous if and only if it is bounded.

Fortunately every linear function on a finite-dimensional space is
bounded and therefore continuous.

Exercise 3.31
A linear function f: X — Y is bounded if X has finite dimension. [Hint:
Use lemma 1.1.]

Rewriting (4), we have that a linear function f'is bounded if there exists
a constant M < oo such that

PSSl

]

<M  foreveryxeX (5
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The smallest constant M satistying (5) is called the norm of f. It is given
by

L1 — sup /001

x20 x|

Clearly,

L7 G =< LA Il

Exercise 3.32
If fis a bounded linear function, an equivalent definition of the least
upper bound is

1A= sup, 1/ &)l

Exercise 3.33
The space BL(X,Y) of all bounded linear functions from X to Y is a
normed linear space, with norm

/1= sup{|[/ ()| - [Ix]| = 1}
It is a Banach space (complete normed linear space) if Y is complete.

The following proposition is an important result regarding bounded
linear functions.

Proposition 3.2 (Open mapping theorem) Assume that X and Y are
complete (i.e., Banach spaces). Every bounded linear function from X onto
Y is an open map. Consequently, if f is nonsingular, the inverse function f~!
is continuous.

A proof of the general theorem is beyond the scope of this text. It is
within our resources to prove the theorem in the important case in which
X is finite-dimensional.

Exercise 3.34
Prove proposition 3.2 assuming that X is finite-dimensional as follows:
Let B be the unit ball in X, that is,

B={x:|x| <1}
The boundary of B is the unit sphere S = {x: ||x|| = 1}. Show that
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1. f(S) is a compact subset of Y which does not contain 0y.
2. There exists an open ball 7 < ( f(S))“ containing 0y.

3. T <f(B).

4. fis open.

5. If f is nonsingular, f~! is continuous.

We now give three applications of proposition 3.2. The first formalizes a
claim made in chapter 1, namely that the geometry of all finite-dimensional
spaces is the same. There is essentially only one finite-dimensional normed
linear space, and R” is a suitable manifestation of this space. The second
(exercise 3.36) shows that a linear homeomorphism is bounded from below
as well as above. The third application (exercise 3.37) shows that for linear
maps, continuity is equivalent to having a closed graph (exercise 2.70).
We will use proposition 3.2 again in section 3.9 to prove the separating
hyperplane theorem.

Exercise 3.35
Let X be a finite-dimensional normed linear space, and {x,Xs,...,X,}
any basis for X. The function f: R" — X defined by

n
f(O(],OCz,...,OCn) = Zaixi
i=1

is a linear homeomorphism (remark 2.12). That is,

+ fis linear
+ f'is one-to-one and onto

- fand f~! are continuous

[Hint: Use the norm [Jaf|; = Y7 |oul.]

i=1

Exercise 3.36
Let f: X — Y be a linear homeomorphism (remark 2.12). Then there
exists constants m and M such that for all x;,x; € X,

mixi = xall < 1/ (x1) /(x| < Mxi = 2]

Exercise 3.37 (Closed graph theorem)
Let X and Y be Banach spaces. Any linear function f: X — Y is con-
tinuous if and only if its graph
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graph(f) = {(x,y) :y = f(x),xe X}

is a closed subset of X x Y.

3.2 Affine Functions

Affine functions relate to linear functions in the same way as subspaces
relate to affine sets. A function f: X — Y is affine if

floxy + (1 —a)x2) = of (x1) + (1 — 2) f(x2)

for all x;,x; € X, and o € R. (Compare with exercise 3.1.) Affine func-
tions preserve affine sets (lines, planes). Their graphs are translations of
the graph of a linear function, and do not pass through the origin (unless
the function is linear). The following example illustrates the distinction.

Example 3.10 The function f: R — R defined by
f(x)=2x+3

is an affine function. Its graph is a straight line in the Euclidean plane,
with a vertical intercept of 3 (figure 3.1). Such functions are often incor-
rectly called linear. It is not linear because f(0) = 3 # 0.

Exercise 3.38
Show that f(x) = 2x + 3 violates both the additivity and the homogene-
ity requirements of linearity.

f(z)
3
-1.5
/ I
Figure 3.1

The graph of the affine function f(x) =2x+3
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Exercise 3.39
A function f: X — Y is affine if and only if

J(x)=9g(x) +y
where g: X — Y islinearandye Y

Exercise 3.40

Show that an affine function maps affine sets to affine sets, and vice versa.
That is, if S is an affine subset of X, then f(S) is an affine subset of Y; if T
is an affine subset of Y, then f~'(T) is an affine subset of X.

Exercise 3.41
An affine function preserves convexity; that is, S < X convex implies that
f(S) is convex.

3.3 Linear Functionals

Recall that a real-valued function f: X — R is called a functional. Linear
functionals are the simplest and most prevalent linear functions. They
assign a real number to every element of a linear space. For the econo-
mist, these assignments will often be interpreted as valuations and the
linear functional as a valuation function. Linearity embodies the natural
property that the value of two objects is equal to the sum of their indi-
vidual values.

Example 3.11 Let X = R". Forany p = (py,p2,---,px) € R", define the
functional f: X — R by

fp(x) =p1X1+p2xXo+ -+ PuXa

where x = (x1,x2,...,x,). Then f,(x) is a linear function, that is for
every X1, xp € X fi(x1 +x2) = f(x1) + f,(x2) and f,(ox1) = af,(x1) for
every o € R. Note how the linear functional depends on p. Each p € R”
defines a different linear functional (valuation). The linear functional has
a natural interpretation as a valuation of X using the system of prices p.
The next two examples make this interpretation more explicit.

Example 3.12 If X is the consumption set, the function ¢, X — R
defined by
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cp(X) = p1x1 +paxa + -+ paXy

measures the cost of the commodity bundle x at prices p. Linearity implies
that the joint cost of two different bundles is equal to the sum of the costs
of the bundles separately and that the cost of bigger or smaller bundles is
proportional to the cost of the original bundle.

Example 3.13 (Competitive firm) A producer is competitive if it takes the
prices p = (py,p2,---,pu) of all net outputs as given. If the producer
adopts the production plan 'y = (y;,»2,...,Vu), its net revenue or profit is

() = > pu;
i=1

(Remember the convention that net inputs are negative.) The linear
functional IT,: ¥ — R evaluates net revenue or profit of any production
plan y at prices p. Each price vector p generates a different evaluation
functional IT,. A profit-maximizing firm seeks to find that production
plan y* € Y that maximizes net revenue (example 2.27). This necessarily
requires it to produce efficiently (exercise 3.42). We use the term net rev-
enue function to distinguish it from the related maximized profit function
(example 2.29).

Exercise 3.42
If the production plan y € ¥ maximizes profits at prices p > 0, then y is
efficient (example 1.61).

Example 3.14 (Expectation) Let X be the set of all random variables
(example 2.19) defined on a sample space S, that is, X = F(S, R). Expec-
tation E is a linear functional on X with the properties

E(X)=0 for every X > 0 and E(1) =1

where X is an arbitrary positive random variable in X and 1 is the degen-
erate random variable that takes the value 1 for every outcome. (A con-
vergence condition is also required; Whittle 1992, p. 15.) The value E(X)
of a particular random variable X is called the expected value of X.
Linearity of expectation is commonly exploited in probability theory, for
example, implying that

E(aX +b)=aE(X)+5b
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Exercise 3.43
Assume that the sample space S is finite. Then the expectation functional
E takes the form

E(X) =Y pX(s)

seS
with py > 0and > _¢ ps = 1. ps = P({s}) is the probability of state s.

Example 3.15 (Shapley value) For any individual player i in a set N, her
Shapley value g; is a linear functional on the space of games GV, whose
value ¢,(w) can be interpreted as the expected value to i of playing the
game w.

Example 3.16 (TP-coalitional games) Each coalition S in a TP-
coalitional game implicitly defines a linear functional gs on the space of
outcomes X defined by

gs(x) = in
ieS

representing the total share of coalition S at the outcome x. Note that
this linear functional is defined on a different space to the preceding
example.

Exercise 3.44
Let X = C[0,1] be the space of all continuous functions x(z) on the
interval [0, 1]. Show that the functional defined by

f(x) =x(3)
is a linear functional on CJ0, 1].

Example 3.17 Another linear functional on the space X = C|0, 1] of all
continuous functions x(#) on the interval [0,1] is given by the integral,
that is,

The following result is fundamental for the economics of
decentralization.
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Exercise 3.45

Let {S|,S2,...,S,} be a collection of subsets of a linear space X with
S=8S1+8+---+S, Let f be a linear functional on X. Then
X" =xj +xj + - -+ x; maximizes f'over S if and only if x; maximizes /'
over S; for every i. That is,

f(x*) = f(x) forevery x € S & f(x]) = f(x;) for every x; € S; for every i

Example 3.18 Suppose that an economy consists of n producers each
with a production possibility set ¥; = R”. Assume that they produce
without interaction, so that the aggregate production possibility set is
Y=Y + Y+ --+ Y, Then, applying the previous exercise, the aggre-
gate production plan y*=y; +y;+ - +Yy,, ;€ ¥ maximizes gross
national product

n m
GNP = Z Z PiYij
J=1 i=1

at prices p if and only each producer maximizes her own profit Y 1", p; y;
aty’.
J

3.3.1 The Dual Space

Example 3.17 and exercise 3.44 illustrate two distinct linear functionals on
the same space. The set of all linear functionals on a linear space X is
another linear space (exercise 3.2), which is called the algebraic dual of X;
we will denote this by X’. The original space X is called the primal space.
The set of all continuous linear functionals on a linear space X is called the
topological dual or conjugate space of X and is denoted X* < X’. Since
this is of more practical importance, the adjective topological is usually
omitted and the unqualified term dual space implies the topological dual.
For finite-dimensional spaces (e.g., R"), the distinction is vacuous, since
all linear functionals on a finite-dimensional space are continuous (exer-
cise 3.31). The following proposition is a special case of exercise 3.33.

Proposition 3.3 X* is a Banach space.

Example 3.11 shows how to construct a host of linear functionals on
R". It is a remarkable fact that all linear functionals on R" are con-
structed in this way. That is, every linear functional on R” is a valuation
for some price system p.
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Proposition 3.4 (The dual of ‘R")  For every linear functional f: ‘R" — R,
there exists an element p € ‘R" such that

S(X) =pixi +paxa+ -+ puxy

Proof Although this is a special case of proposition 3.3, it is insightful to
prove the theorem directly. Let f be a linear functional on X = R”, and
let {ej, ez, ...,e,} be the standard basis for R". Define p; = f'(e;) for each
i=1,2,...,n. Any x € X has the standard representation

n
X = Z X;€;
i=1
and hence by linearity

f(x) =f<i xiei> = ixif(ei)
i=1 i=1

n

Xip; = Pp1X1 +p2xXo+ -+ PuXa O
i=1

This representation theorem is another application of the principle that
the action of any linear mapping is summarized precisely by its action on
a basis (exercise 3.23). It can be given an insightful economic interpreta-
tion. If we think of X as a commodity space, then the elements of the
standard basis {e;,e,...,e,} are unit quantities of each of the commod-
ities. The p;’s are the values of each commodity, that is, their prices, and
the linear functional prescribes the value of any commodity bundle for a
given set of prices p. Different price vectors give rise to different valuations
(linear functionals), and every linear functional corresponds to a valua-
tion function for a certain set of prices.

Remark 3.1 (Primal versus dual) Strictly speaking, the vector p in
proposition 3.4 is an element of the dual space X*, and we should care-
fully distinguish it from elements the primal space X. Indeed, some
authors do this by distinguishing between column vectors (primal space)
and row vectors (dual space). However, finite-dimensional spaces are self-
dual, and there is an obvious identification between elements of X and
elements of X * with the same coordinates. This correspondence should be
used with caution. It is peculiar to finite-dimensional linear spaces and is
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dependent on the choice of basis in each space. In general, the primal and
dual spaces are mathematically distinct.

The distinction between the primal and dual spaces is clear in
consumption space. Commodity bundles belong to the primal space X,
whereas price lists belong to a different linear space X *. While we can make
a formal identification between commodity bundles and price lists as n
dimensional vectors, they remain distinct types of objects. To put it bluntly,
you cannot eat price lists. We are quite adept at manipulating prices and
quantities mathematically but distinguish between them where necessary.
We need to apply the same skill with finite-dimensional dual spaces.

Example 3.19 (Characteristic vector of a coalition) The set X of feasible
outcomes in a TP-coalitional game (N,w) is a subset of R”. The linear
functional

gs(x) = in

measures the share of coalition S at the outcome x € X (example 3.16).
Corresponding to each coalition S, there exists a vector es € R” that rep-
resents this functional such that

gs(x) = eSTx

Here eg, which is called the characteristic vector of the coalition S, is
defined by

es) _{1 ifies
S 0 otherwise

It identifies the members of the coalition S. Each characteristic vector
corresponds to a vertex of the unit cube in R”.

Things are more complicated in infinite-dimensional spaces, and not all
dual spaces can be given a simple representation.

Example 3.20 (Dual of /) In the dynamic programming problem
(example 2.32), the choice set X is the set of infinite bounded sequences /.,
(example 1.107). Those sequences (x1, X2, X3, . . .) for which

0

Z|x,|<oo

t=1
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comprise a proper subspace of /,, which is denoted /;. Every sequence
P = (p1,p2,p3,.-.) in [y specifies a continuous linear functional f, on /,,
defined by

A=Y p ©)
i=1

Therefore /; is a subset of the dual space /7. We can think of the sequence
p = (py,P2,p3,---) as being a path of prices through time.

Unfortunately, /; is a proper subset of / There are linear functionals
on /,, that cannot be given a simple representation of the form (6). This
poses a problem for the use of /., as the choice set for such models (see
Stokey and Lucas 1989, pp. 460-461).

Exercise 3.46
Let ¢¢ denote the subspace of /,, consisting of all infinite sequences con-
verging to zero, that is ¢o = {(x;) € [, : x, — 0}. Show that

1. hcey =y
2. [ 1is the dual of ¢y
3. [ is the dual of /;
The next two results will be used in subsequent applications. Exercise

3.48 implies the fundamental Lagrange multiplier rule of classical pro-
gramming (chapter 5).

Exercise 3.47
Let X be a linear space and ¢ be a linear functional on the product space
X x R. Then ¢ has the representation

(x, 1) = g(x) +
where g € X’ and o € R. [Hint: Show that ¢(x, ) = ¢(x,0) + ¢(0, 1)z.]

Exercise 3.48 (Fredholm alternative)
Let f,91,92,-..,9m be linear functionals on a linear space X. fis linearly
dependent on ¢, ¢, ..., ¢gm, thatis, f €lin gy, gs,..., g, if and only if

() kernel g; = kernel f

J=1
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[Hint: Define the function G: X — R" by G(x) = (¢1(x),g2(X), . .., gm(X))
and apply exercise 3.22.]

3.3.2 Hyperplanes

In section 1.4.3 we defined hyperplanes as the largest proper affine subsets
of a linear space X. We now develop an alternative characterization of
hyperplanes as the contours of linear functionals. This intimate and useful
correspondence between sets in the primal space X and elements in the
dual space X’ provides the foundation of the theory of duality.

Exercise 3.49
H is a hyperplane in a linear space X if and only if there exists a nonzero
linear functional f € X’ such that

H={xeX:f(x)=c}
for some ¢ € R.

We use Hy(c) to denote the specific hyperplane corresponding to the
c-level contour of the linear functional f.

Example 3.21 (Hyperplanes in R") Since every linear functional on R"
corresponds to a valuation function for some price list p (proposition 3.4),
hyperplanes in R" are sets of constant value. That is, a set H in R" is a
hyperplane if and only if there exists some price list p e R” and constant ¢
such that

H={x:pixi +pixo+ -+ ppx, =c}

The zero hyperplane ¢ = 0 is the subspace of all elements in X that are
orthogonal to p, that is,

Hy(0) = {x eR": Y po = 0}

Other hyperplanes with the same price vector p consist of parallel trans-
lations of this subspace, with the distance from the origin increasing with
lc| (figure 3.2). The price vector p is called the normal to the hyperplane
Hp(c). It has a geometric representation as a vector at right angles to the
hyperplane.

Example 3.22 (Isoprofit lines) For a competitive firm the net revenue
function
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g%

N

Figure 3.2
A hyperplane in R>

n
() = > p;
i=1

is a linear functional on the production possibility set ¥ = R". The con-
tours of the net revenue function

Hy(c) ={ye Y:I(y) =c}

are hyperplanes containing those production plans which yield a constant
profit c. They are sometimes known as isoprofit lines (figure 3.3).

Excluding the special case in which the hyperplane is a subspace, the
correspondence between hyperplanes in the primal space and linear func-
tional in the dual space is unique.

Exercise 3.50
Let H be a hyperplane in a linear space that is not a subspace. Then there
is a unique linear functional f/ € X’ such that

H={xeX:f(x)=1}

On the other hand, where H is a subspace, we have the following
primitive form of the Hahn-Banach theorem (section 3.9.1).

Exercise 3.51
Let H be a maximal proper subspace of a linear space X and xy ¢ H. (H is
a hyperplane containing 0). There exists a unique linear functional f € X’



286

Chapter 3 Linear Functions

Figure 3.3
Isoprofit lines

such that
H={xeX:f(x)=0} and f(x)=1

All linear functionals that share the same kernel differ only in their
scale. If fis a linear functional with kernel 7 and f(x¢) = 1, then for any
A # 0 the linear functional g = Af also has kernel 7" but g(x¢) = 4. Con-
versely, if two linear functionals share the same kernel, they must be
scalar multiples of one another (exercise 3.52). In this sense the linear
functional corresponding to a particular hyperplane is only uniquely
defined up to a scalar multiple. Selecting a particular linear functional
from the class with a common kernel is known as normalization.

Remark 3.2 (Normalization) Since the hyperplane
H;p(le) = {x eR": Z/Ip,-x,- = /lc}

is identical to the hyperplane

Hy(c) = {x eR": Zpl-x,- = c}

it is often useful to standardize the representation of a given hyperplane.
This standardization is called normalization. Common normalizations
include choosing ¢ = 1, ||p|| = 1, or p; = 1 for some i. It is important to
appreciate that normalizing involves nothing more than selecting one of
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the multitude of equivalent representations of a given hyperplane and
implies no loss of generality. In an economic context in which hyper-
planes correspond to valuations at given prices, normalization corre-
sponds to selecting the scale of the general price level. Selecting good i as
numéraire corresponds to the normalization p; = 1.

Exercise 3.52 is a simple version of the Lagrange multiplier theorem
(theorem 5.2) for constrained optimization. A is the Lagrange multiplier.
It is also a special case of exercise 3.48.

Exercise 3.52
For any f,g e X'

kernel f = kernel g & f = Ag
for some 4 € R\{0}.

Finally, we note that closed hyperplanes in X correspond precisely to
continuous linear functionals in X’. That is, there is a one-to-one rela-
tionship between closed hyperplanes in X and elements of X *.

Exercise 3.53
Let f be a nonzero linear functional on a normed linear space X. The
hyperplane

H={xeX: f(x)=c}

is closed if and only if fis continuous.

3.4 Bilinear Functions

A function f: X x Y — Z between linear spaces X, Y and Z is bilinear if
it linear in each factor separately, that is, for all x,x;,x, € X and

Y:¥YY2€ Y,
J(x1+x2,y) =1 (x1,y) +/(x2,y)
(additivity)
JXy1+¥2) =/ X y1) +/(x,¥2)
flox,y) = af (x,y) = f(x,ay) for every 2 € R

(homogeneity)
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In other words, the partial functions f,: ¥ — Z and f,: X — Z are linear
for every x € X and y € Y respectively.

Bilinear functions are one of the most common types of nonlinear
functions. They are often used to represent the objective function in eco-
nomic models. Bilinear functions are also encountered in the second-order
conditions for optimization, since the second derivative of any smooth
function is bilinear (section 4.4.1). Most of the bilinear functions that we
will encounter are real-valued (Z = R), in which case we speak of bilinear
functionals. Two important classes of bilinear functional that we will
encounter in this book are the inner product and quadratic forms. These
are introduced in separate sections below.

Example 3.23 The familiar product function f: %> — R defined by
f(x,y) = xy is bilinear, since

S(x1+x2,9) = (x1 +x2)y = x1y + x29 = f(x1,9) +f(x2,¥)

and

Sflox,y) = (ax)y = axy = of (x, ) for every o € R

Example 3.24 Any m x n matrix A = (a;) of numbers defines a bilinear
functional on R"” x R" by

m n
f(x,y) = Z Z aijXi);
i=1 j=1

Exercise 3.54
Show that the function defined in the previous example is bilinear.

There is an intimate relationship between bilinear functionals and
matrices, paralleling the relationship between linear functions and
matrices (theorem 3.1). The previous example shows that every matrix
defines a bilinear functional. Conversely, every bilinear functional on
finite dimensional spaces can be represented by a matrix.

Exercise 3.55 (Matrix representation of bilinear functionals)

Let /: X x Y — R be a bilinear functional on finite-dimensional linear
spaces X and Y. Let m =dim X and n=dim Y. For every choice of
bases for X and Y, there exists an m x n matrix of numbers 4 = (a;) that
represents f'in the sense that
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f(x,y) = Z ajx;y;  foreveryxe X andyeY
=1 j=1

Example 3.25 Let X be any linear space and Y = X’ be the dual space.
Then

f(x,y) =y(x)

is a bilinear functional on X x X’.

Exercise 3.56
Show that the function f defined in the preceding example is bilinear.

Exercise 3.57
Let BiL(X x Y,Z) denote the set of all continuous bilinear functions
from X x Y to Z. Show that BiL(X x Y,Z) is a linear space.

The following result may seem rather esoteric but is really a straight-
forward application of earlier definitions and results. It will be used in the
next chapter.

Exercise 3.58

Let X, Y, Z be linear spaces. The set BL(Y, Z) of all bounded linear func-
tions from Y to Z is a linear space (exercise 3.33). Let BL(X,BL(Y,Z))
denote the set of bounded linear functions from X to the set BL(Y,Z).
Show that

1. BL(X,BL(Y,Z)) is a linear space.

2. Let p € BL(X,BL(Y,Z)). For every x € X, ¢, is a linear map from Y
to Z. Define the function f: X x Y — Z by

J(x¥) = ox(y)

Show that f'is bilinear, that is, f € BiL(X x Y, Z).

3. For every feBiL(X x Y,Z), let f, denote the partial function
[t Y — Z defined by

S(¥) =/ (xy)

Define

gof(x) = fx
Show that ¢, € BL(X,BL(Y,Z)).
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This establishes a one-to-one relationship between the spaces
BiL(X x Y,Z) and BL(X,BL(Y,Z)).

3.4.1 Inner Products

A bilinear functional f on the space X x X is called

symmetric if f(x,y) =f(y,x) for every x,ye X
nonnegative definite if f(x,x) > 0 for every x e X
positive definite if f(x,x) > 0 for every xe X, x # 0
Exercise 3.59 (Cauchy-Schwartz inequality )

Every symmetric, nonnegative definite bilinear functional f satisfies the
inequality

(f(x¥)* < (%) (¥.¥)
for every x,y € X.

A symmetric, positive definite bilinear functional on a linear space X is
called an inner product. It is customary to use a special notation to denote
the inner product. We will use x”y to denote f(x,y) when f'is an inner
product. By definition, an inner product satisfies the following properties
for every x,Xx1,Xp,y € X:

symmetry x”y =y’x

additivity (x; +x;)"y = x7y 4+ xJy

homogeneity ox”y = ax’y

positive definiteness x”x > 0 and x”x = 0 if and only if x = 0

Remark 3.3 (Notation) A variety of notation is used for the inner prod-
uct. The common choices x -y and {x,y) emphasize the symmetry of the
function. However, our choice x”y will be advantageous in defining qua-

dratic forms (section 3.5.3) and representing the derivative (chapter 4).
We will find it convenient to use x -y in section 6.2.1.

A linear space equipped with an inner product is called an inner product
space. Every inner product defines a norm (exercise 3.63) given by

X[ = vxTx
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Consequently every inner product space is a normed linear space. A finite-
dimensional inner product space is called a Euclidean space and a com-
plete inner product space is called a Hilbert space.

Example 3.26 R" is a Euclidean space, with inner product x7y =
Doy Xii

Exercise 3.60
Every Euclidean space is complete, that is, a Hilbert space.

Exercise 3.61 (Cauchy-Schwartz inequality )
For every X,y in an inner product space,

X"yl < [IxIllyll

Exercise 3.62
The inner product is a continuous bilinear functional.

Exercise 3.63
The functional ||x|| = v'xTx is a norm on X.

Exercise 3.64
Every element y in an inner product space X defines a continuous linear
functional on X by f,(x) = xTy.

Exercise 3.65 (Existence of extreme points)
A nonempty compact convex set in an inner product space has at least
one extreme point.

Exercise 3.66 (Parallelogram law)
In an inner product space

2
Ix+ ¥l + Ix = yII* = 2[1x]1* + 21y

Remark 3.4 An inner product space mimics the geometry of ordinary
Euclidean space. It is the most structured of linear spaces. Not all normed
linear spaces are inner product spaces (e.g., /* in example 1.107 and
C(X) in exercise 3.67). In fact, a normed linear space is an inner product
space if and only if its norm satisfies the parallelogram law (exercise 3.66),
in which case the inner product can be recovered from the norm by the
following polarization identity:

2 2
xTy =3 (Ix+ylI* = Ix = ylI")
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Exercise 3.67
Show that C(X) (exercise 2.85) is not an inner product space. [Hint: Let
X = [0, 1], and consider the functionals x(¢) = 1 and y(7) = .]

Two vectors x and y in an inner product space X are orthogonal if
xTy = 0. We symbolize this by x L y. The orthogonal complement S+ of a
subset S = X as the set of all vectors that are orthogonal to every vector
in S, that is,

St ={xe X :xTy=0forevery y € S}

A set of vectors {Xi,Xa, ...,X,} is called pairwise orthogonal if x; L x; for
every i #j. A set of vectors {x;,Xa,...,X,} is called orthonormal if it is
pairwise orthogonal and each vector has unit length so that

xiTx/:{l 1fl=].
' 0 otherwise

Example 3.27 (Orthonormal basis) Every orthonormal set is linearly
independent (exercise 3.68). If there are sufficient vectors in the ortho-
normal set to span the space, the orthonormal set is called an orthonormal
basis. The standard basis {ej,es,...,e,} for R" (example 1.79) is an
orthonormal basis, since

el-Te,-:{l 1fz:]'
‘ 0 otherwise

Exercise 3.68
Any pairwise orthogonal set of nonzero vectors is linearly independent.

Exercise 3.69
Let the matrix 4 = (a;;) represent a linear operator with respect to an
orthonormal basis x;,Xj, . ..,X, for an inner product space X. Then

a; = x]f(x)) for every i,j

A link between the inner product and the familiar geometry of R> is
established in the following exercise, which shows that the inner product
is a measure of the angle between two vectors.

Exercise 3.70
For any two nonzero elements x and y in an inner product space X, define
the angle 0 between x and y by
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xTy
Iyl
for 0 < 0 < n. Show that

cos 0 =

1. -1 <cosf<1

2. x L yif and only if = 90 degrees

The angle between two vectors is defined by (7) corresponds to the
familiar notion of angle in R? and R°.

Exercise 3.71 ( Pythagoras)
If x Ly, then

2 2 2
[+ y[I7 = [1xI[" + Iyl

The next result provides the crucial step in establishing the separating
hyperplane theorem (section 3.9).

Exercise 3.72 (Minimum distance to a convex set)
Let S be a nonempty, closed, convex set in a Euclidean space X and y a
point outside S (figure 3.4). Show that

1. There exists a point X € S which is closest to y, that is,
IIxo — ¥l < |Ix =] for every x € S

[Hint: Minimize g(x) = ||x — y|| over a suitable compact set.]
2. X 1s unique
3. (xo—y) " (x —xo) =0 for every x € S

Finite dimensionality is not essential to the preceding result, although
completeness is required.

Exercise 3.73
Generalize the preceding exercise to any Hilbert space. Specifically, let S
be a nonempty, closed, convex set in Hilbert space X and y ¢ S. Let

d = inf |x —
inf [x —y]

Then there exists a sequence (x") in S such that ||x” —y|| — d. Show
that
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Figure 3.4
Minimum distance to a closed convex set

1. (x") is a Cauchy sequence.

2. There exists a unique point Xy € S which is closest to y, that is,
Ixo —y|| < [Ix—y] for every x € S

To complete this section, we give two important applications of exer-
cise 3.72. Exercise 3.74 was used in chapter 2 to prove Brouwer’s fixed
point theorem (theorem 2.6).

Exercise 3.74 (Existence of a retraction)

Let S be a closed convex subset of a Euclidean space X and T be another
set containing S. There exists a continuous function g: T — S that
retracts T onto S, that is, for which g(x) = x for every x € S.

Earlier (exercise 3.64) we showed that every element in an inner prod-
uct space defines a distinct continuous linear functional on the space. We
now show that for a complete linear space, every continuous linear func-
tional takes this form.

Exercise 3.75 (Riesz representation theorem)
Let f € X* be a continuous linear functional on a Hilbert space X. There
exists a unique element y € X such that

f(x)=xTy for every x € X

[Hint: Show that there exists some z | S = kernel f and consider S =

{f(x)z—f(z)x:xe X}.]
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Remark 3.5 (Reflexive normed linear space) Exercise 3.205 shows that
dual X* of a normed linear space X contains nonzero elements. Since X *
is a normed linear space in its own right (proposition 3.3), it too has a
dual space denoted X™** which is called the second dual space of X. Every
X € X defines a linear functional F on X* by

F(f)=f(x) for every f € X*

In general, X** is bigger than X, that is there are linear functionals on X *
which cannot be identified with elements in X. A normed linear space is
called reflexive if X = X™**, that is for every F € X**, there exists an X € X
such that

f(x)=F(f) for every f € X*

Every finite-dimensional space and every Hilbert space is reflexive.

Exercise 3.76
If X is a Hilbert space, then so is X *.

Exercise 3.77
Every Hilbert space is reflexive.

Exercise 3.78 ( Adjoint transformation)
Let f € L(X,Y) be a linear function between Hilbert spaces X and Y.

1. For every y € Y, define f,(x) = f(x) Ty. Then fye X

2. There exists a unique x* € X such that fy(x) = x"x".

3. Define f*: Y — X by f*(y) = x*. Then /™ satisfies
STy =x"1*(y)

4. f* is a linear function, known as the adjoint of f.

3.5 Linear Operators

Some important tools and results are available for linear operators, that
is, linear functions from a set to itself. Since every linear operator on a
finite-dimensional space can be represented (proposition 3.1) by a square
matrix, the following can be seen alternatively as the theory of square
matrices.
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Example 3.28 (Identity operator) The identity operator I: X — X maps
every point in X to itself, that is,

I(x) =x forevery x e X

If dim X = #n < oo, the identity operator is represented (relative to any
basis) by the identity matrix of order n,

1 0 ... 0

o1 ... 0
Li=|(. . . .

0 0 ... 1/,
Exercise 3.79

Every linear operator f: X — X has at least one fixed point.

3.5.1 The Determinant

The set of all linear operators on a given space X is denoted L(X, X). If X
is finite-dimensional, there is a unique functional det on L(X, X) with the
following properties

+ det(f o g) = det(/) det(g)
« det(l) =1

+ det(f) = 0 if and only if f'is nonsingular

forevery f, g € L(X, X). This functional is known as the determinant. The
last property is especially important, the determinant provides a simple

means of distinguishing nonsingular operators. Note that the determinant
is not a linear functional. In general, det(f + g) # det(f) + det(g).

Example 3.29 Let dim X = 1. Every linear operator on X takes the
form

J(x) = ax

for some a € R. The functional ¢(f) = a satisfies the properties of the
determinant. Therefore det(f) = o(f) = a.

The determinant of a square matrix is defined to be the determinant of
the linear operator that it represents. The determinant of a matrix 4 can
be computed recursively by the formula
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n

det(4) =Y "(=1)"7ay; det(4y) (8)

J=1

where A4j; is the (n — 1) x (n — 1) matrix obtained from A4 by deleting the
ith row and jth column. This is known as “expansion along the ith row.”
Alternatively, the determinant can be calculated by “expansion down the
jth column” using the formula

n

det(4) =Y (—1)"ay det(4y) (9)

i=1

It is a remarkable implication of the structure of linear operators that it
does not matter which basis we use to represent the operator by a matrix,
nor does it matter which row or column we use in the recursion. The
determinant of a linear operator f'is uniquely defined by (8) or (9) for any
matrix representation 4. To prove this would require a substantial diver-
sion from our main path, and so the discussion is omitted. Suitable refer-
ences are given at the end of the chapter.

Example 3.30 The determinant of the matrix
4= <a11 a12>

a1 ax
is sometimes denoted by

app A
4] =

ay) A

Expanding along the first row and using example 3.29, we have

det 4 =

apip  dn
a1 dxm

= ayy det(axn) — arp det(as;)

= dy1d — apdaz)

Example 3.31 (Triangular matrix) A matrix 4 = (a;) is called upper-
triangular if a;; = 0 for every i > j and lower-triangular if a; = 0 for every
i <j. Thus a triangular matrix has only zero elements on one side of the
diagonal. The matrix
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1 0 3
A:(O 2 1)
0 0 3

is upper-triangular. Expanding down the first column, its determinant is

2 1
0 3

0 3

det(4) =1
ct(4) = 1 -

0 3
ol ol ]

2 1
=12x3-0x1)=6
which is the product of the diagonal elements.

We record several useful properties of the determinant in the following
proposition.

Proposition 3.5 (Properties of the determinant) For any matrices A and
B,

det(AB) = det(A4) det(B).

det(l) = 1.

det(A) = 0 if and only if A is invertible.

det A7! = 1/det(A4).

If A has a row of zeros, then det(A4) = 0.

det(AT) = det(A4).

If A has two rows that are equal, det A = 0.

© N oL AW

. If B is obtained from A by multiplying a row of A by a number o, then
det(B) = adet(4).

9. If B is obtained from A by interchanging two rows, det(B) = —det(A4).
10. If B is obtained from A by adding a multiple of one row to a different
row, then det(B) = det(A4).

11. If A is triangular, det(A) is the product of the diagonal entries.

Proof The first three properties are simply translations of the properties
of the determinant of an operator. Property 4 is proved in exercise 3.80.
The remaining properties flow from the expansions (8) and (9) (Simon
and Blume 1994, pp. 726-735). O
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Exercise 3.80
Suppose that the matrix 4 has an inverse A~!. Then det(4~!) = 1/det(A4).

The determinant of a matrix is “linear in the rows” in the sense estab-
lished in the following exercise. An analogous result holds for columns.

Exercise 3.81
Let 4, B, and C be matrices that differ only in their ith row, with the ith
row of C being a linear combination of the rows of 4 and B. That is,

a) a) a)
A= a |, B = bi s C = oa; + ﬂb,
a, a, a,
Then
det(C) = a det(4) + S det(B)

3.5.2 Eigenvalues and Eigenvectors

For linear operators, a generalization of the notion of a fixed point proves
useful. Given a linear operator f: X — X, a nonzero element x € X is
called an eigenvector if

f(x) =Ax

for some number 4 € R. The constant 4 is called an eigenvalue of f. The
synonyms characteristic vector and characteristic value are also used. The
operator acts very simply on its eigenvectors, scaling them by a constant.
If the eigenvalue A corresponding to an eigenvector is one, then the
eigenvector is a fixed point. The eigenvectors corresponding to a par-
ticular eigenvalue, together with the zero vector Oy, form a subspace of X
called an eigenspace (exercise 3.82).

Exercise 3.82
Show that the eigenvectors corresponding to a particular eigenvalue,
together with the zero vector Oy, form a subspace of X

Exercise 3.83 (Zero eigenvalues)
A linear operator is singular if and only if it has a zero eigenvalue.
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Exercise 3.84
If x is an eigenvector of a linear operator f on an inner product space X
with eigenvalue 4, then the eigenvalue A can be expressed as

f(x)"x

]l
An operator f on an inner product space X is called symmetric if

fx) "y =xTf(y) for every X,y € X

If the inner product space is finite-dimensional (Euclidean), the operator
can be represented by a matrix (proposition 3.1), in the sense that

f(x) = Ax for every x e X

Provided that we use an orthonormal basis (example 3.27) for the repre-
sentation, the operator is symmetric if and only if its associated matrix is
a symmetric matrix, that is, 4 = 47. Since many of the linear operators
encountered in practice are represented by symmetric matrices, the prop-
erties of symmetric operators are important.

Exercise 3.85

Let f be a linear operator on a Euclidean space, and let the matrix
A = (ay) represent f with respect to an orthonormal basis. Then f'is a
symmetric operator if and only if 4 is a symmetric matrix, that is,
A=A4T.

Remark 3.6 (Self-adjoint operator) A symmetric operator on a Hilbert
space is often called self-adjoint. The adjoint /™ of a linear operator f
is defined by (exercise 3.78) f(x)”y = x7/*(y). If the operator f is sym-
metric, then

fx) Ty =x"f(y) for every x,y € X
which implies that /™ = f.

Exercise 3.86
For a symmetric operator, the eigenvectors corresponding to distinct
eigenvalues are orthogonal.

Remark 3.7 (Existence of eigenvalues) Not every linear operator has an
eigenvalue (example 2.3). However, every symmetric operator on a
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Euclidean space has eigenvalues and the corresponding eigenvectors form
a basis for the space (proposition 3.6). To be able to analyze nonsym-
metric operators, many texts on linear algebra resort to complex linear
spaces, in which the scalars are complex numbers (Halmos 1974, p. 150).
Then it can be shown that every finite-dimensional linear operator has an
eigenvalue that may, however, be complex (Janich 1994, p. 156)

Exercise 3.87

Let f be a symmetric operator on a Euclidean space X. Let S be the
unit sphere in X, thatis S = {x € X : ||x|| = 1}, and define g: X x X — R
by

g(x,y) = Ox—f(x))Ty where 1 = max f(x”)x (10)

xeS
Show that

1. The maximum in (10) is attained at some x¢ € S. Therefore ¢ is well-
defined.

2. ¢ is nonnegative definite.
3. ¢ is symmetric.

4. x is an eigenvector of f.

Hence every symmetric operator on a Euclidean space has an eigenvector
of norm 1. [Hint: Use exercise 3.59.]

The following key result is an existence theorem for eigenvalues. It
shows that the eigenvalues of a symmetric linear operator on a Euclidean
space X are real (as opposed to complex). Furthermore, although the
eigenvalues may not be distinct, there are sufficient linearly independent
eigenvectors to span the space.

Proposition 3.6 (Spectral theorem) If f is a symmetric linear operator on
a Euclidean space X, then X has an orthogonal basis comprising eigenvectors
of . The matrix representing f with respect to this basis is a diagonal matrix
whose diagonal elements are the eigenvalues of f.

Proof By exercise 3.87, there exists an eigenvector Xy of norm 1. Let
n=dim X. If n = 1, then x; is a basis for X. Otherwise (n > 1), assume
that the proposition is true for all spaces of dimension n— 1. Let
S = {xo}*. We claim (exercise 3.88) that
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- Sis a subspace of dimension n — 1
- f(S) e S.

Therefore f is a symmetric linear operator on S on a Euclidean space
of dimension n — 1. By assumption, S has an orthonormal basis

{x2,X3,...,X,} of eigenvectors. x; is orthogonal to x;, i =2,3,...,n, and
therefore {x;,xy,...,X,} is a basis for X (exercise 3.68). Let the matrix 4
represent [ with respect to the orthonormal basis {xi,Xs,...,X,}. By

exercise 3.69,

Ji Q=]
=xf(x) = AxIx; =4 "
ay = X; [(X}) = 4X; X 0 i+j O
Exercise 3.88
Let S be defined as in the preceding proof. Show that

1. Sis a subspace of dimension n — 1
2. f(S) S

Exercise 3.89 (Determinant of symmetric operator)
The determinant of symmetric operator is equal to the product of its
eigenvalues.

2.5.3 Quadratic Forms

Let X be a Euclidean space. A functional Q: X — R is called a quadratic
Sform if there exists a symmetric linear operator f: X — X such that

0(x) =x7f(x) for every x e X

Quadratic forms are amongst the simplest nonlinear functionals we
encounter. They play an important role in optimization (chapter 5).

Example 3.32 The function
O(x1,X2) = X7 +4x12 + X3

is a quadratic form on R2. The matrix

(1)

defines a symmetric linear operator on R,
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_ 1 2 X1\ X1+ 2x;
s = (5 )(0) = (Gus)
and

X1+ 2x;

X' (x) = (xl’xz)T<2x1 + X

) = x7 +4x1x + X3 = Q(x1,x2)
As the previous example suggests, any n x n symmetric matrix 4 = (a;)
of numbers defines a quadratic form by

n n

0(x) = > > ajxix;

i=1 j=1

which is usually compactly written as Q(x) = x” Ax. Conversely, every
quadratic form can be represented by a symmetric matrix. As with linear
functions (proposition 3.1), the specific matrix which represents a given
quadratic form depends upon the choice of basis for X. For a fixed basis
there is a one-to-one relationship between quadratic forms Q and their
representing matrices 4 specified by Q(x) = xT Ax. Accordingly we usually
do not distinguish between a quadratic form and its matrix representation.

Exercise 3.90
Let the matrix 4 = (a;;) represent a linear operator f with respect to the

orthonormal basis x1,X, ...,X,. Then the sum
n n
0(x) = ayxix;
i=1 j=1
defines a quadratic form on X, where xi, x3, ..., x, are the coordinates of

x relative to the basis.

Example 3.33 (Quadratic forms on %?) The general two-dimensional
quadratic form Q: R> — R,

2 2
O(x1,x2) = anxi + 2ax1x2 + anx;

is represented by the matrix

an  ap
A= < ) where aj; = ay
ay an
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Exercise 3.91 (Principal axis theorem)
For any quadratic form Q(x) = x7 Ax, there exists a basis x!,x?,... x"
and numbers such that

O(x) = /llxlz + )vzxg 44 /lnx,%
where Ay, 4s,...,4, are the eigenvalues of 4 and xi,x;,...,x, are the

coordinates of x relative to the basis x1,X», .. ., X,.

Recall that a functional is definite if it takes only positive or negative
values (section 2.1.1). Definite quadratic forms are important in practice.
However, no quadratic form Q can be strictly definite (exercise 3.93).
Consequently we say that quadratic form Q: X — R is

it 0
(e it (502} orevry x 20 1
Similarly it is
nonnege.lt.we definite if O(x) = 0 for every x in X
nonpositive Q(x) <0

Otherwise, the quadratic form is called indefinite. Similarly a symmetric
matrix is called positive (negative) definite if it represents positive (nega-
tive) definite quadratic form. That is, a symmetric matrix 4 is

positive xT4x >0
nonnegative . o xTAx >0 .
g. definite if ¢ . for every x # 0in X
negative x'Ax < 0
nonpositive xTAx <0

Remark 3.8 (Semidefinite quadratic forms) It is common in economics to
describe a nonnegative definite quadratic form as positive semidefinite.
Similarly a nonpositive definite quadratic form is called negative semi-
definite. That is, a quadratic form Q is

ggg i 8} for every x in X

We use the former terminology as it is more descriptive.

{ positive

. } semidefinite if {
negative

Example 3.34 The two-dimensional quadratic form

Q(xl,xz) :a11x12+2a12x1x2+a22x§ (11)
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is

6111>0

"
{P051 ive 0} and ayaxn > af, (12)

. } definite if and only if {
negative

an <
Itis

{nonnegative ayy,ayp >0

} definite if and only if { } and ajjaxn > a122

(13)

nonpositive ay,an <0

Exercise 3.92

1. Show that the quadratic form (11) can be rewritten as

2 2
ap apdxp —dap\ o
Q(xl,xz) = dai ()q —+ —a XZ> —+ (— X5

11 apn

assuming that a;; # 0. This procedure is known as ‘“completing the
square.”

2. Deduce (12).
3. Deduce (13).

This is an example of the principal axis theorem (exercise 3.91).

Exercise 3.93
Show that Q(0) = 0 for every quadratic form Q.

Since every quadratic form passes through the origin (exercise 3.93), a
positive definite quadratic form has a unique minimum (at 0). Similarly a
negative definite quadratic form has a unique maximum at 0. This hints at
their practical importance in optimization. Consequently we need criteria
to identify definite quadratic forms and matrices. Example 3.34 provides a
complete characterization for 2 x 2 matrices. Conditions for definiteness
in higher-dimensional spaces are analogous but more complicated (e.g.,
see Simon and Blume 1994, pp. 375-386; Sundaram 1996, pp. 50-55;
Takayama 1985, pp. 121-123; Varian 1992, pp. 475-477.) Some partial
criteria are given in the following exercises.

Exercise 3.94
A positive (negative) definite matrix is nonsingular.
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Exercise 3.95
A positive definite matrix 4 = (a;) has a positive diagonal, that is,

A positive definite = a;; > 0 for every i

One of the important uses of eigenvalues is to characterize definite
matrices, as shown in the following exercise.

Exercise 3.96
A symmetric matrix is
positive positive
nonnegative . . . nonnegative
g. definite if and only if all eigenvalues are g'
negative negative
nonpositive nonpositive
Exercise 3.97
A nonnegative definite matrix A4 is positive definite if and only if it is
nonsingular.

3.6 Systems of Linear Equations and Inequalities

Many economic models are linear, comprising a system a linear equations
or inequalities

anxiy +apxy + -+ awx, = c1

@ 1X1 + anXy + -+ awXy = 2

Am1X1 + Ay X2 + -+ - + ApnXn = C
or
anxy +apxy + -+ dpX, < c

a1 Xy +anxy + -+ dymXxy < ¢

Am1 X1 + A X2 + -+ + Qi Xn < Oy
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Solving the model requires finding values for the variables xi, x3,..., X,
that satisfy the m equations or inequalities simultaneously. A linear model
is called consistent if has such a solution. Otherwise, the model is called
inconsistent.

Matrices can be used to represent these linear systems more compactly,
as in

Ax=c or Ax<c (14)
where

air an ain

7531 ar ... Aoy
A=

aml  dm2 .- Amn
is a matrix of coefficients, x = (x1,X2,...,%,) € R" is a list of the vari-
ables, and ¢ = (¢1, ¢, ..., ¢y) € R™ is a list of constants.

Example 3.35 (Leontief input-output model) Consider the linear produc-
tion model (example 1.103) with » commodities in which

+ each activity produces only one output

+ each commodity is an output of only one activity.

Let a; = (an,an,...,a,) denote the production plan for producing one
unit of commodity i. Then ay;, i # j represents the quantity of commodity
j required to produce one unit of commodity i. By definition, a; = 1 for
every i. (@; = 1 is the net output of i in activity i, after allowing for any
use of good i in producing itself.) Since each activity produces only one
input, a; < 0 for every i # j.

Let x; denote the scale or intensity of activity i. Then x; denotes the
gross output of commodity 7 and a;x; is the amount of good j required to
produce x; units of i. However, each commodity is used in the production
of other goods. If each of the n activities is operated at scale x;, the net
output of good i is

n
vi= Y ax;
=1

and the total net output of the economy is



308 Chapter 3 Linear Functions

y = Ax (15)

where A is the n x n matrix whose rows a; comprise the basic activities. It
is called the technology matrix. A particular net output y will be feasible
provided there exists a nonnegative solution to the linear system (15).
That is, feasibility requires an intensity vector x that satisfies the system of
equations and inequalities

Ax =y, x>0

We note that most presentations of the Leontief input—output model
start with a nonnegative matrix A listing the input requirements to pro-
duce one unit of each output (e.g., Simon and Blume 1994, pp. 110-13;
Gale 1960). Then the technology matrix A is given by I — A, where I is
the n x n identity matrix.

It is often fruitful to view a linear model as a linear function f(x) = Ax
from R" to R™ (example 3.3). In this section we catalog some of the
implications of the theory of linear functions for linear models such as
(14), dealing in turn with equation and inequalities.

3.6.1 Equations
A vector x will be a solution of the system of equations
Ax=c¢ (16)

if and only if f maps x into ¢. Consequently the linear model (16) will have
a solution if and only if ¢ € f(X), the image of X. For any ¢ € f(X) the set
of all solutions to (16) is simply the inverse image of ¢, f ' (c).

A special case of a linear system occurs when ¢ = 0. Such a system is
called homogeneous. The set of solutions to the homogeneous linear
system

Ax =0 (17)
is the kernel of the linear mapping f(x) = Ax. We know that the kernel of
any linear mapping is a subspace (exercise 3.17), which implies that

- 0 is always a solution of (17). It is called the trivial solution.

» If x1,x, are solutions of (17), then their sum x; + X, is also a solution.

+ The homogeneous system has a nontrivial solution x # 0 if and only
rank f = rank 4 < n.
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Exercise 3.98
Verify these assertions directly.

The general linear equation system (16) with ¢ # 0 is called a non-
homogeneous system of equations. The set of solutions to a nonhomoge-
neous system form an affine subset of X. This implies that

« If x;,x; are solutions of (16), then their difference x; — x; is a solution
of the corresponding homogeneous system (17).

« The set of all solutions to the nonhomogeneous system 16 takes the
form x, + K, where X, is any particular solution to the nonhomogeneous
system 16 and K is the set of all solutions to the corresponding homoge-
neous system (17) (the kernel of f).

- if 0 is the only solution of homogeneous system (17), then the non-
homogeneous system (16) has a unique solution.

Exercise 3.99
Verify these assertions directly.

Exercise 3.100
The set of solutions to a nonhomogeneous system of linear equations
Ax = c is an affine set.

The converse is also true.

Exercise 3.101
Every affine set in R” is the solution set of a system of a linear equations.

We conclude that there are three possible cases for the number of
solutions to a linear equation system. A system of linear equations (16)
may have

No solution ¢ ¢ f(R")

A unique solution ¢ € f(R") and kernel /' = {0} (or rank 4 = n)

An infinity of solutions ¢ € f(R") and kernel f # {0} (rank 4 < n)

In the first case the system is inconsistent, and there is not much more to
said. The second and third cases are consistent systems.

X = (x1,X2,...,X,) is a solution of the linear system Ax = c if and only
if



310

Chapter 3 Linear Functions

C1 ar ap Ain
(&) an an (5
=x| . | txf . [t tX
Cm aml Am2 Amn
that is,
c=x141 +x242 + - + x, A4, (18)

where A; are the columns of A. Thus the system (16) is consistent if and
only if celin{4;, 4s,...,A,}, which is called the column space of A.
Furthermore the equation system 4Ax = ¢ has a solution for every ¢ € R”
provided that the columns of 4 span R™. This requires that rank 4 = m,
the number of equations.

In the third case (multiple solutions) there are fewer equations than
variables, and the system is said to be underdetermined. Practitioners are
most interested in the solutions with the fewest number of nonzero com-
ponents. If rank A =m < n, any ¢ e R™ can be expressed as a linear
combination of at most m columns which form a basis for R”. That is,
there exist solutions (18) with x; # 0 for at most m columns of 4. A
solution with at most m nonzero components is called a basic solution of
(16), since the nonzero components corresponds to the elements of a basis
for M.

Exercise 3.102
Prove that the linear equation system

X1+ 3x =¢
X1 — X2 =
has a unique solution for every choice of ¢y, ¢;.

Exercise 3.103 ( Cramer’s rule)

Let Ax = ¢ be a linear equation system with 4 a nonsingular square 7 X n
matrix (rank 4 =n). For every ¢ e R" there exists a unique solution
X = (x1,X2,...,X,) given by

x/*det(A)a J 3Ly ey

where
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ai .. ... Aip

Ayl ... Cp ... Gy

is the matrix obtained by replacing the jth column of A4 with c. [Hint:
Subtract ¢ from the jth column of 4 and apply exercise 3.81.]

Cramer’s rule (exercise 3.103) is not a practical method of solving large
systems of equations. However, it can be used to analyze how the solution
x varies with changes in ¢. It is an important tool comparative statics
(example 6.14).

Exercise 3.104
Show that

a b\' 1/(d b
c d)  A\-c a
where A = det(A) = ad — bc.

Example 3.36 (Portfolio investment) Example 3.4 introduced a simple
linear model of portfolio investment comprising 4 risky assets or secu-
rities and S states of the world. If r,, denotes the return of asset « in state s

and x = (x1,X2,...,X4) is a list of amounts invested in different assets,
the total return f(x) of a portfolio x is given by
4
Za:l FMaXa

A
f(X) = Rx = Ea:l. 124Xq

A
Za:l I'saXa
where
rnor 714
r r r
R— 21 I 24
rsy rs2 rs4

is the matrix of prospective returns. The sth component of f(x),
> ;:1 FsaXq, 1S the total return of portfolio x in state s.
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Note that it is allowable for x, to be negative for some assets. If x, > 0,
then the investor holds a long position in asset «, entitling her to receive
raX, if state s pertains. On the other hand, a negative x, indicates a short
position, in which the investor effectively borrows x, units of assets ¢ and
promises to pay back ryx, in state s.

A portfolio x is called riskless if it provides the same rate of return in
every state, that is,

A A A
§ MaXa = § raXg = -+ = § rsaXq =T
a=1 a=1 a=1

In other words, x is a riskless portfolio if it satisfies the equation
Rx =71

for some 7e R where 1= (1,1,...,1). A sufficient condition for the
existence of a riskless portfolio is that rank R = S, that is,

» There are at least as many assets as states (4 > S).

+ The prospective returns of at least S assets are linearly independent.

In other words, the existence of a riskless portfolio is guaranteed provided
that there are a sufficient number of assets whose returns are independent
across states.

Exercise 3.105
A portfolio is called duplicable if there is a different portfolio y # x which
provides exactly the same returns in every state, that is, Rx = Ry or

n n
§ VsaXa = § Vsa)a for every s € S
a=1 a=1

Show that every portfolio is duplicable if rank R < A.

Exercise 3.106
A state § is called insurable if there exists a portfolio x which has a positive
return if state § occurs and zero return in any other state, that is,

A A
g rsaXq >0 and E FeaXa = 0, S #£ S
a=1 a=1

Show that every state is insurable if and only if rank R = S.
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Example 3.37 (Arrow-Debreu securities) Recall that Arrow-Debreu
securities are hypothetical financial assets that pay $1 if and only if a
particular state of the world occurs (example 1.82). Therefore the payoff
profile of the s Arrow-Debreu security is e; = (0,...,1,...,0), where the
1 occurs in the location s. Suppose that there is a full set of Arrow-Debreu
securities, that is there exists an Arrow-Debreu security e, for every state
s, s=1,2,...8. Then 4 > S and rank R = S. From the preceding exer-
cises, we conclude that

« there exists a riskless portfolio
+ every portfolio is duplicable

+ every state is insurable

Indeed, any pattern of payoffs (across different states) can be constructed
by an appropriate portfolio of Arrow-Debreu securities. (The Arrow-
Debreu securities span the payoff space f(R?) = R5))

Assuming that investors only care about the final distribution of
wealth, any two portfolios that provide the same pattern of returns must
have the same value. Therefore, in equilibrium, the price of any financial
asset @ must be equal to the value of the corresponding portfolio of
Arrow-Debreu securities that yield the same distribution of payoffs.
Consequently any security can be valued if we know the price of each
Arrow-Debreu security. That is, if p, is the price of security a with payoff
vector (14, 24, - - -, F'sa) and 7 is the price of the s Arrow-Debreu security,
then in equilibrium

N
Pa = § UN
s=1

A single linear equation
i X1+ dppXy + -+ AipXy = €

defines a hyperplane in R” (example 3.21), and it is often convenient to
think of a system of linear equations (16) as a finite collection of hyper-
planes. The solution to the system corresponds to the intersection of these
hyperplanes. Figure 3.5 illustrates the possibilities for three equations in
three unknowns. Each equation defines a plane in R>. These planes may
intersect in a single point (unique solution), a line, a plane, or not intersect
at all (no solution).
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a4
KLY

Figure 3.5
The solutions of three equations in three unknowns

Exercise 3.107
Draw analogous diagrams illustrating the possible cases for a system of
three equations in two unknowns.

Exercise 3.108
Every affine subset of R” is the intersection of a finite collection of
hyperplanes.

3.6.2 Inequalities
A solution to system of linear inequalities
Ax <c¢ (19)

is a vector x = (x1,x2,...,X,) that satisfies the inequalities simulta-
neously. While the solution set of a system of equations is an affine set
(subspace when ¢ = 0), the set of solutions to a system of linear inequal-
ities (19) is a convex set. When the system is homogeneous, the set of
solutions is a convex cone.

Exercise 3.109
The set of solutions to a system of linear inequalities Ax < c¢is a convex set.

Exercise 3.110
The set of solutions to a homogeneous system of linear inequalities
Ax < 0 is a convex cone.
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Each inequality a/x < ¢; defines a halfspace in R”" (section 3.9).
Therefore the set of solutions S = {x: Ax < ¢}, which satisfy a system of
linear inequalities is the intersection of the m halfspaces. We will show
later (section 3.9.2) that this implies that the solution set S'is a particularly
simple convex set, a polytope which is the convex hull of a finite number
of points.

Example 3.38 Consider the following system of linear inequalities:
3x;1 +8xp; <12

X1 +x <2

2x1 <3

Each of the inequalities defines a halfspace in R>. For example, the set
of all points satisfying the inequality 3x; + 8x, < 12 is the region below
and to the left of the line (figure 3.6a) 3x; + 8x, = 12. The set of points
satisfying all three inequalities simultaneously is the set that lies below
and to the left of the three lines

3x;1 +8x; =12
X +x3 =2
2X1=3

This is the shaded region in figure 3.6b. Frequently we are only concerned
with nonnegative solutions to a system of inequalities. This is the set
bounded by the axes and the lines (hyperplanes) associated with each of
the inequalities. It is the shaded set in figure 3.6¢

Any system of inequalities can be transformed into a equivalent system
of equations and nonnegativity conditions, by adding another variable to
each equations. For example, the inequality system

anXxy +apxy + -+ apx; <o

ay x| +anx;+ -+ aux, < ¢

am1X1 + X2 + -+ ApnXn < Cy

is equivalent to the system of equations
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) (©)

Figure 3.6
Systems of inequalities
anxy +apxy + -+ Xy + Xpp1 = €1

a1 Xy + anxy + -+ dopXpy + X2 = 2

am1 X1 + Ay X2 + -+ - + AypXp + Xn+m = Cm
together with the requirement

Xnt1 = 0, Xn42 20,000 Xpm = 0

The additional variables x,,; are called slack variables, since they measure
the degree of slack in the corresponding ith inequality. This transforma-
tion of inequalities to equations is especially common in optimization
techniques, such as linear programming (section 5.4.4). The transformed

systems has two important characteristics:
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+ There are fewer equations than variables.

+ Some of the variables are restricted to be nonnegative.

Commonly the original variables xi, x»,...,x, are also required to be
nonnegative, and linear systems of the form

Ax =c¢ (21)
x>0 (22)

are especially prevalent in practice. Since the system (21) necessarily has
more variables m 4+ n than equations m, it will usually be underdeter-
mined. If there exists any feasible solution, there will be multiple solutions.
The simplest of these solutions will be basic feasible solutions.

Earlier we showed that it is always possible to reduce a solution

c=x141 + x4, + - - - + x,A4,

to a linear equation system (21) by eliminating redundant columns,
reducing the number of nonzero components of x to m. However, it is not
clear that this reduction can be done without violating the nonnegativity
constraint (22). In the following exercise we show that any feasible solu-
tion to (21) and (22) can be reduced to a basic feasible solution. This
result, which has important practical consequences, is often called the
fundamental theorem of linear programming.

Exercise 3.111 ( Fundamental theorem of linear programming)
Let x be a feasible solution to the linear system

Ax = c, x>0 (23)
where A4 is an m x n matrix and ¢ € ‘R”. Then
c=x141 + x4 + - - - + x, 4,

where 4; € R™ are the columns of 4 and and x; > 0 for every i. Without
loss of generality, assume that the first X components are positive and the
rest are zero, that is,

¢ =x1A; +x240 + - - + X Ax

with k <mand x; > 0 foreverya = 1,2,...k.



318

Chapter 3 Linear Functions

1. The columns {A4,A4,..., Ay} are vectors in R". If the columns
{A41,As,..., Ay} are linearly independent, then k& < m and there exists a
basic feasible solution.

2. If the vectors {A4,, 4s, ..., Ay} are linearly dependent,
a. There exists a nonzero solution to the homogeneous system
A+ 242+ + 1A =0

b. For € R define X =x — ty. X is a solution to the nonhomogeneous
system

Ax =c¢
c. Let
t= min{ﬁ 1y > O}
J Yio
Then X = x — rx is a feasible solution, that is, X > 0.
d. There exists / such that

M~

C = )??/'AJ

1

J
Jj#h
X is a feasible solution with one less positive component.

3. If there exists a feasible solution, there exists a basic feasible solution.

Remark 3.9 Later we will show that the basic feasible solutions of non-
negative system like (23) correspond to the extreme points of the convex
solution set, and that any optimal solution of a linear program will occur
at an extreme point. Therefore the search for optimal solutions to a linear
program can be confined to extreme points. The simplex algorithm for
linear programming is an efficient method for moving from one basic
feasible solution to another.

The fundamental theorem can be used to give an elegant and straight-
forward proof of the Shapley-Folkman theorem (remark 1.20), as out-
lined in the following exercise.

Exercise 3.112 (Shapley-Folkman theorem)
Let {S},S5,,...,S,} be a collection of nonempty (possibly nonconvex)
subsets of an m-dimensional linear space, and let x € conv ) ;" | S;. Then
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1. x=>""",x;, where x; € conv S,.

2. x=31 Z’la,]x,j,wherex,]eS,,a,]>OZ a =1
_ n I;

3.z=3",> ;. ayzy, where

X Xii "
Z:<1>7 ZU:(ell]>’ 17C[Em

4.z=>31", Z}":l bjzy with by >0 and b; >0 for at most m+n
components.

5. Define X; = Zj , bijx;;. Then X; = conv S; and x = > | X;. Show that

all but at most X; actually belong to S;.
3.6.3 Input—Output Models

In the input-output model (example 3.35), a necessary condition for a
given net output y to be feasible is that technology matrix 4 is non-
singular (rank 4 = n). However, nonsingularity is not sufficient, since it
does not guarantee that the corresponding intensity vector

x=Aly

is nonnegative. An input-output system A is said to be productive if it is
capable of producing a positive amount of all commodities, that is, if the
inequality system

Ax >0
has any nonnegative solution. In the following exercises, we show that

+ A necessary and sufficient condition for input-output system A to have
a nonnegative solution for any output y is that 4 is productive.

« The system A is productive if and only if 4 is nonsingular and 4~!
nonnegative.

Remark 3.10 The first conclusion states that if there is any feasible way
of producing positive quantities of all commodities, then it is possible to
produce any output vector. In other words, it is possible to produce arbi-
trarily large quantities of any of the goods in any proportions. While this
is somewhat surprising, we should recall that there are no resources con-
straints and the system is entirely self-contained. Real economies have
resource constraints that limit the quantity of feasible outputs (example
3.39).
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Exercise 3.113
Assume that A4 is productive. Show that

1. Az > 0 implies z > 0
2. A is nonsingular

3. for every y > 0, the system Ax =y has a unique nonnegative solution
[Hint: Consider the matrix B=1—4 > 0.]

Exercise 3.114
The system A is productive if and only if 4A~! exists and is nonnegative.

The essential characteristic of the technology matrix is that its off-
diagonal elements are nonpositive. Any n x n matrix 4 is called a Leontief
matrix if a; <0, i # j. In the following exercise we extend the properties
of input-output system to arbitrary Leontief matrices.

Exercise 3.115 (Leontief matrices)
Let 4 be an n x n matrix with a; <0, i #j. Then the following condi-
tions are mutually equivalent:

1. There exists some x € R’ such that 4x > 0.
2. For any ¢ € R'}, there exists an x € R/ such that Ax = c.

3. A is nonsingular and 47! > 0.

Example 3.39 (Primary inputs) An input that is not produced by any
activity is called a primary input. The standard Leontief model has a
single primary input, which is required by all activities. It is convention-
ally called “labor.” If there are primary inputs, then the economy cannot
produce arbitrarily large quanities of output. However, it can still pro-
duce in arbitrary proportions if the technology is productive.

Exercise 3.116

Augment the input-output model to include a primary commodity
(“labor”). Let ag; denote the labor required to produce one unit of com-
modity j. Show that there exists a price system p = (p;,p2,...,Ps) such
that the profit of each activity (industry) is zero.

3.6.4 Markov Chains

A stochastic process is a dynamical system (example 2.22) in which the
transitions from state to state are random. A Markov chain is a discrete
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stochastic process in which

- the state space is finite

+ the probabilities of transitions from one state to another are fixed and
independent of time

Let S = {s1,5,...,5,} denote the finite set of states. Let #; denote the
probability that if the system is in state j at some period, it will move to
state 7 in the next period. ¢; is called the transition probability from state j
to i. Since #; is a probability, we have

0<ty;<1, ij=12....n

Furthermore, since the system must be in some state s; € S at every
period,

ty+ty 4+ Aty =1

The vector t; = (t1j, 1, . . ., t,;) is the probability distribution of the state
of the system at time 7 + 1 given that it is in state j in period .

The important assumption of the model is that the transition proba-
bilities #; are constant through time, so the state of the system at time
t+ 1 depends only on the state at time ¢ (and not on the state at any
earlier time). This is called the Markov assumption. A stochastic model
with this assumption is called a Markov process. A Markov process with a
finite number of states is called a Markov chain.

Let T = (t;) be the matrix of transition probabilities. 7 is called the
transition matrix. By construction, the transition matrix is nonnegative.
Furthermore the entries in each column sum to 1. Any matrix with these
properties is called a Markov matrix or stochastic matrix.

At any point of time, we can describe the state of the stochastic system
by the probability that it is any given state. Let (p{,p5,...,p}), > pj’ =1,
denote the probability distribution of states at time ¢. pj’ is the probability
that the system is in state s; at time ¢. Given the distribution p’ of states at
time 7, the expected distribution at time ¢ + 1 is

pH-] — Tpt
Furthermore the distribution at time ¢ + k is

pH-k — Tkp[
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k times

where T =TT ... T. The stochastic behavior of the system is entirely
determined by the transition matrix 7. The fact that 7 is a stochastic
matrix circumscribes the possible behavior of the dynamical system.

While it is convenient to analyze this as a standard linear dynamical
system, it should be emphasized that p in not really the state of Markov
process. At any point in time the process is in one of the n distinct states
81,82, --,8,. The vector p lists the probabilities that the process is in the
various states. A distribution p is called a stationary distribution of the
Markov chain with transition matrix 7 if

p=1Tp

that is, p is a fixed point of the linear mapping defined by 7. In chapter 2
we used the Brouwer fixed point theorem to show that every Markov
chain has a stationary distribution (example 2.94). Example 3.87 gives an
alternative proof based on the separating hyperplane theorem.

Example 3.40 (Labor market turnover) Hall (1972) modeled turnover in
the US labor force as a Markov process. Using survey data in 1966, he
estimated that a 30-year-old married white male employee living in New
York had a 0.22 percent chance of becoming unemployed in any given
week. A similar unemployed male had a 13.6 percent chance of obtaining
another job in the same period. This implied the transition probabilities
listed in table 3.1. Similar estimates were obtained for a range of different
categories based on age, gender, race, and location. Hall used these esti-
mated probabilities in a simple Markov model to explain the differences
in unemployment rates of different groups. For example, the higher un-

Table 3.1
Transition probabilities in the U.S. labor force

Currently
Remaining/becoming Employed Unemployed
Black males
Employed 0.9962 0.1025
Unemployed 0.0038 0.8975
White males
Employed 0.9978 0.1359

Unemployed 0.0022 0.8641
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employment rate experienced by black men can be attributed to their
higher probability of becoming unemployed in any period as well as a
lower probability of becoming employed again. Note that the Markov
assumption is very strong in this example, since the transition proba-
bilities presumably vary through time with employment experience and
the state of the labor market.

Exercise 3.117
What steady state unemployment rates are implied by the transition
probabilities in table 3.1?

Exercise 3.118

A magazine maintains a mailing list containing both current subscribers
and potential subscribers. Experience has shown that sending a letter to
all the individuals on the list will induce 60 percent of current subscribers
to renew their subscriptions. In addition the letter will sell subscriptions to
25 percent of the potential subscribers who are not actual subscribers.

1. Write out the transition matrix for this stochastic process.

2. Suppose that 40 percent of the mailing list comprise actual subscribers.
How many subscriptions or renewals can be expected from another
mailing.

3.7 Convex Functions

Recall that a linear functional f on a linear space X satisfies the twin
conditions of additivity and homogeneity:

J(xi+x2) =f(x1) +/(x2)
Sfoxp) = af (x1) for every o« € R

For many purposes in economics, linearity is too restrictive. For example,
linear production functions imply constant returns to scale, and linear
utility functions imply that the consumer is never satiated no matter how
much she consumes of any good. Convex and homogeneous functions
generalize some of the properties of linear functions, providing more
suitable functional forms (figure 3.7).

A real-valued function f defined on a convex set S of a linear space X is
convex if the value of the function along a line joining any two points X
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Linear functions

[Flexs + (1~ apa) = af6a) + (1 — @)/ ()|

Additivity Homogeneity
J(x1+%9) = f(1) + f(xa) flox) = af(x)
generalizes generalizes
to to
Concave functions Homogeneous functions
flaxi+ (1 —a)xp) < flax) = o* f(x),a >0
af() + (1 - a)f(x) | \
: generalizes
generalizes
to
to
Quasiconcave functions Homothetic functions
floxi + (1 = a)xg) < f(xi1) = f(x2) =
min{f(x1), f(x2)} flox) = faxy),a >0
Figure 3.7

Generalizing linear functions

and x, is never greater than a weighted average of its value at the two
endpoints. Formally the function f: S — R is convex if for every x;,x,
inS

Slox) 4+ (1 —o)x2) < af (x1) + (1 — ) f(x2) forevery0 <a <1 (24)

This condition relaxes the additivity requirement of a linear function,
and dispenses with homogeneity. A function is strictly convex if the in-
equality is strict; that is, for every x, X, in S with x; # X,

Slax; + (1 —o)x2) < af (x1) + (1 — ) f(x2) for every 0 < o < 1

Remark 3.11 Strictly speaking, we should refer to convex functionals,
but “convex function” is more usual (remark 2.10).

Example 3.41 Two familiar convex functions x> and e* are illustrated

in figure 3.8. Note how a line joining any two points on the curve lies
everywhere above the curve.
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Figure 3.8
Two examples of convex functions

Exercise 3.119
Show that x? is convex on ‘R.

Exercise 3.120 (Power function)
Show that the power functions f(x) = x", n =1,2,... are convex on R..

Example 3.42 (Profit function) The profit function of a competitive firm
(example 2.29)

Ti(p) = sup > _ p;
yeY

measures the maximum profit which the firm can earn given prices p and
technology Y. To show that it is a convex function of p, suppose that y,
maximizes profit at prices p; and y, maximizes profit at p,. For some
o € [0, 1], let p be the weighted average price, that is,

p=op; + (1 —a)p,

Now suppose that ¥y maximizes profits at p. Then

H(p) ="y = (oapr + (1 —2)py) 'y = op{ ¥ + (1 — 2)p]¥

But since y; and y, maximize profit at p; and p, respectively,

oap[y < opy, = oIl(p;)

(1-o)p ¥ < (I —a)pyys = (1 — )TI(py)

sO

T1(p) = M (op; + (1 — )py) = op{ ¥+ (1 — 0)p, ¥ < odI(py) + (1 — o) I1(p,)

This establishes that the profit function IT is convex in p.
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Figure 3.9
The epigraph of a convex function is a convex set

Geometrically the graph of a convex function lies below the line joining
any two points of the graph. This provides an intimate and fruitful con-
nection between convex functions and convex sets. Recall that the epi-
graph of a functional f: X — R is the set of all points in X x R on or
above the graph, that is,

epi f={(x,y) e X xR:y>/f(x),xe X}

Convex functions are precisely those functions with convex epigraphs
(figure 3.9).

Proposition 3.7 A function f: S — R is convex if and only if epi f is
convex.

Proof Assume f'is convex, and let (x,y;), (X2,)2) € epi f so that

f(x1) <y and  f(x2) < >

For any o € [0, 1] define

X=o0x;+(l —a)xy, y=ay;+ (1l —a)y

Since f'is convex,

F(X) =floxi + (1 —a)x2) <af (x1)+ (1 =) f(x2) oy1 + (1 =)y =p

Therefore (X,y) = a(x1,y1) + (1 — a)(x2,)2) €epi f; that is, epi f is
convex.
Conversely, assume that epi f is convex. Let x, x, € S, and define

yi=f(x1) and y;=f(x2)
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Then (x1, 1), (X2,12) € epi f. For any « € [0, 1] define
X=oux;+(l—o)x2, 7=y + (1 =)y

Since epi f is convex,

(X,») = a(x1,y1) + (1 — a)(x2,2) € epi f

and therefore f(X) < 7, that is,

Slaxi + (1 —o)x2) <oy + (1 —o)ya = of (x1) + (1 — &) f(x2)

fis convex. |

Proposition 3.7 implies another useful characterization of convex func-
tions. A function is convex if and only if every vertical cross section
(section 2.1.3) is convex.

Corollary 3.7.1 (Convex cross sections) For any f € F(S) and x,,x; € S,
let h e F[0,1] be defined by

h(t) =f((1 — 1)x1 + 1x2)

Then fis convex if and only if h is convex for every x;,X; € S.

Proof

epih = {(t,y) €[0,1] x R:h(r) <y}

and we observe that

(t,y)eepih < (x,y) eepi f

where x = (1 — #)x; + x,, and therefore

epi /1 is convex < epi f is convex

Therefore / is convex if and only if f'is convex. O

Exercise 3.121
Prove corollary 3.7.1 directly from the definition (24) without using
proposition 3.9.

Exercise 3.122 (Jensen’s inequality )
A function f: S — R is convex if and only if

Slouxy 4+ oXo + -+ o,X,) < o f(X1) + 0 f(X2) + -+ + o f(Xp) (25)

for all oy, 00,..., 0, > 0, Y1, oy = 1 [Hint: Use proposition 3.7.]
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Exercise 3.123
Show that

XXX <Xy A 0aXy 4 e X,

for every xi, x2,...,x, € R,. Deduce that the arithmetic mean of a set of
positive numbers is always greater than or equal to the geometric mean,
that is,

1 n
X =- E X; = (X1XQ...X,,)1/"
n
i=1

[Hint: Use that fact that e* is convex (example 3.41).]

Example 3.43 (Price stabilization) The fact that the profit function of a
competitive firm is convex has some surprising ramifications. For exam-
ple, it implies that price stabilization will reduce average profits. Suppose

that prices are random, taking the values (p;, p,, - - -, p,) With probabilities
(ot1,00,...,0,). On average, the competitive firm will earn the expected
profit

n
I = Z o T1(p;)
i=1
Now suppose that the prices are stabilized at the average price
n
p= Z oiP;
=1

Since the profit function is convex, Jensen’s inequality implies that
_ n
n(p) <M= «M(p)
i1

Price stabilization reduces expected profit. The intuition is straightfor-
ward. When the price is allowed to vary, the firm can tailor its production
to the prevailing prices in each period. When the price is stabilized, the
firm is not encouraged to respond optimally to price variations.

Even more common in economics are concave functions, which are
characterized by reversing the inequality in (24). A function f: S — R is
concave if for every x;,x, in S,
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Figure 3.10
A concave function

Sloxi+ (1 —o)x2) = of (x1) + (1 — ) f(x2) forevery0 <o <1 (26)

A function is strictly concave if the inequality is strict; that is, for every
X1,X; in S with x; # xo,

Sloxy + (1 —o)x2) > af (x1) + (1 — ) f(x2) forevery 0 < o < 1

Reversing the inequality corresponds to turning the graph of the function
upside down. Therefore a function is concave if and only if its hypograph
is convex. The graph of a concave function on R looks like an upturned
bowl (figure 3.10).

Example 3.44 (Power function) The general power function f/: R, — R
is (example 2.56)

f(x) =x9, aeR

Figure 3.11 illustrates the graph of x“ for various values of a. Consistent
with these illustrations, we will verify in chapter 4 (example 4.38) that the
power function is strictly concave if 0 < ¢ < 1 and strictly convex if a < 0
or a > 1. It is both concave and convex when ¢ = 0 and a = 1.

Exercise 3.124

fis concave if and only if —f is convex.

There is an analogous relation between concave functions and convex
sets. A function is concave if and only if its hypograph—the set of all
points on or below the graph—is convex.
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Figure 3.11
The power function x“ for different values of a

Exercise 3.125
A function f: S — R is concave if and only if hypo f is convex.

Example 3.45 (Inverse functions) Let /: R — R be invertible with inverse

g= /"' Then
hypo f = {(x,y) e R :y < f(x)} = {(x,») 1 g(y) < x}
while

epi g = {(y,x) e R :g(y) < x}

We observe that

hypo f convex < epi g convex

Therefore f'is concave if and only if g is convex.

Example 3.46 (Production function) The technology of a firm producing
a single output from # inputs can be represented by its production func-
tion f (example 2.24) where y = f(x) is the maximum output attainable
from inputs x. If the production function is concave, the technology
exhibits nonincreasing returns to scale. It exhibits decreasing returns to
scale if the technology is strictly concave.

Example 3.47 (Production possibility set) The relationship between a
production function f and the underlying production possibility set Y
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(example 1.7) is complicated by the convention that inputs have negative
sign in Y. Given a production function f define the function

g(x) =f(—x) for every x e R"

the production possibility set Y is the hypograph of the function g. The
production function f'is concave if and only if the production possibility
set Y is convex.

Exercise 3.126 ( Cost function)
Show that the cost function c¢(w, y) of a competitive firm (example 2.31) is
concave in input prices w.

Exercise 3.127 ( Lifetime consumption)

Suppose that a consumer retires with wealth w and wishes to choose
remaining lifetime consumption stream ci, ¢, ..., cr to maximize total
utility

T
U= Zu(ct) with Zlc, <w
1=

t=1

Assuming that the consumer’s utility function u is concave, show that it is
optimal to consume a constant fraction ¢ = w/T of wealth in each period.
[Hint: Use Jensen’s inequality (exercise 3.122).]

The following result is useful. For instance, it provides a simple proof
of exercise 3.129, a result we used in example 2.74 and will use again in
exercise 3.159.

Exercise 3.128
If fis convex on R

S =x2+x3) < f(x1) = f(x2) +f(x3)

for every x; < x; < x3 € ‘R. The inequality is strict if f'is strictly convex
and reversed if f'is concave.

Exercise 3.129
If f e F(R) is strictly concave, f(x — y) displays strictly increasing dif-
ferences in (x, ).

If a function is both convex and concave, it must be affine.



332 Chapter 3 Linear Functions

Exercise 3.130
A functional is affine if and only if it is simultaneously convex and
concave.

Finally, on a normed linear space, it is useful to define convexity
locally. A functional f on a normed linear space X is locally convex at X if
there exists a convex neighborhood S of x¢ such that for every x;,x, € S,

flax; + (1 —o)xa) < af (x1) + (1 —a)f(x2) forevery 0 <o <1

In other words, a function is locally convex at xq if its restriction to a
neighborhood of xq is convex. Analogously, it is strictly locally convex at
xo if the inequality is strict, and locally concave at xg if the inequality is

reversed.
Example 3.48 The power function f(x)= x* is neither convex nor
concave on R (figure 2.2). It is locally convex on R, and locally concave

on R_.
3.7.1 Properties of Convex Functions

We first note here some useful rules for combining convex functions.
Analogous rules apply for concave functions. In particular, we note that
the minimum of concave functions is concave (see exercise 3.132).

Exercise 3.131
If f,g € F(X) are convex, then

« f + g is convex

+ of is convex for every o > 0

Therefore the set of convex functions on a set X is a cone in F(X).
Moreover, if fis strictly convex, then

« [+ g is strictly convex

+ of is strictly convex for every o > 0
Example 3.49 (Exponential function) Let

N x x> X3 x"
f(x):1+T+7+F+H.+E

/" is convex for every n = 1,2,... by exercises 3.120 and 3.131. That is,
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S oxp + (1 —o)xa) < af"(x1) + (1 — o) f"(x2), n=12...
Therefore for any x, x; € R,

exp(ox; + (1 — a)xp) = nan}) S (ox) 4+ (1 — a)x2)

< lim (af"(x1) + (1 — o) /" (x2))

n—oo
=oe™ + (1 —a)e™

We conclude that e* is convex on R,. In fact e* is strictly convex on ‘R,
which we will show in the next chapter.

Example 3.50 (Log function) The log function log(x) is the inverse
(example 2.55) of the exponential function. Since the exponential function
is convex, the log function log(x) is concave (example 3.45).

Exercise 3.132
If fand ¢ are convex functions defined on a convex set S, the function
f v g defined by

(f v g)(x) = max{f,(x), /,(x)} for every x € S
is also convex on S.

Exercise 3.133 (Composition)
If f e F(X) and g € F(R) with g increasing, then

f and g convex = g o f convex
f and g concave = g o f concave

Example 3.51 (Log transformation) Logarithmic transformations are
often used in analysis. It is nice to know that they preserve concavity,
since log is both concave (example 3.50) and increasing (example 2.55).
Therefore (exercise 3.133), assuming that f'is nonnegative definite,

f concave = log f concave
Example 3.51 has a useful converse.

Exercise 3.134
If f'is nonnegative definite

log f convex = f convex
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Exercise 3.135
If f'is a strictly positive definite concave function, then 1/f is convex. If f
is a strictly negative definite convex function, then 1/f is concave.

Exercise 3.133 has a counterpart for supermodular functions (section
2.2.2).

Exercise 3.136 (Composition)
Suppose that /€ F(X) is monotone and g € F(‘R) is increasing. Then

f supermodular and g convex = g o f supermodular
f submodular and g concave = ¢ o f submodular
Continuity of Convex Functions

We noted earlier the close relationship between continuity and bounded-
ness for linear functions. Linear functionals are continuous if and only if
they are bounded. An analogous requirement applies to convex and con-
cave functions. Clearly, a function that is continuous at any point must be
bounded in a neighborhood of that point. This necessary condition turns
out to be sufficient.

Proposition 3.8 (Continuity of convex functions) Let [ be a convex func-
tion defined on an open convex set S in a normed linear space. If f is
bounded from above in a neighborhood of a single point xg € S, then f is
continuous on S.

Proof Exercise 3.140. O

The following important corollary implies that any convex function on
a finite-dimensional space is continuous on the interior of its domain.

Corollary 3.8.1 Let f be a convex function on an open convex set S in a
finite-dimensional normed linear space. Then f is continuous.

Remark 3.12 The converse of corollary 3.8.1 is that a convex function
can be discontinuous on the boundary of its domain (example 3.52). This
is not a mere curiosity. Economic life often takes place at the boundaries
of convex sets, where the possibility of discontinuities must be taken into
account. This accounts for some of the unwelcome contortions necessary
in, for example, duality theory, which could otherwise be exhibited rather
more elegantly.
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Example 3.52 (A discontinuous convex function) Let S = R.. The func-
tion f: S — R defined by

X I, x=0
/() = {0, otherwise

is convex on S but discontinuous at 0.

Exercise 3.137

Let fbe a convex function on an open set S that is bounded above by M
in a neighborhood of xg; that is, there exists an open set f containing X
such that

fx)<M for every x e U

1. Show that there exists a ball B(xp) containing X, such that for every
X € B(xo),

Slox+ (1 —o)xo) < oM + (1 —a)f(Xo)

2. Choose some x € B(x¢) and a € [0,1]. Let z=oax + (1 — a)xp. Show
that x¢ can be written as a convex combination of x, xy and z as follows:

X0 (2xp — x)

= Z+ x
T l+4a 14+a

3. Deduce that f(xo) — f(z) < a(M — f(Xo)).

4. Show that this implies that f'is continuous at xy.

Exercise 3.138

Let f'be a convex function on an open set S which is bounded above by M
in a neighborhood of x¢. That is, there exists an open ball B,(x() con-

taining x( such that f'is bounded on B(x). Let x; be an arbitrary point
in S.

1. Show that there exists a number 7 > 1 such that
Z=Xo+tx] —X9) €S

2. Define T={yeX:y=(1—-0o)x+o0z,xe B(xp)}. T is a neighbor-
hood of x;.

3. fis bounded above on T.
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Exercise 3.139

Let f'be a convex function on an open set S that is bounded at a single
point. Show that fis locally bounded, that is for every x € S there exists a
constant M and neighborhood U containing x such that

lf(x) <M  foreveryx' e U

Exercise 3.140
Prove proposition 3.8.

Exercise 3.141
Prove corollary 3.8.1 [Hint: Use Carathéodory’s theorem (exercise 1.175)
and Jensen’s inequality (exercise 3.122).]

Exercise 3.142 (Local convexity)

Let f be a functional on a convex open subset S of a Euclidean space X.
fis convex if and only f'is locally convex at every x € S. [Hint: Assume
the contrary, and consider a cross section. Use the theorem 2.3.]

3.7.2 Quasiconcave Functions

Convex and concave functions relax the additivity requirement of lin-
earity and dispense with homogeneity. Even this is too restrictive for many
economic models, and a further generalization is commonly found. A
functional f'on a convex set S of a linear space X is quasiconvex if

J(oxp + (1 —0)x;) < max{f(x1), f(x2)}
for every x;,x e Sand 0 < a <1
Similarly f'is quasiconcave if

Saxy + (1 = a)x2) > min{ f(x1), f(x2)}
for every x;,x e Sand 0 < a <1

It is strictly quasiconcave if the inequality is strict, that is, for every
X| # X

Sf(ax) + (1 — o)x2) > min{ f(x;), f(x2)}, 0<a<l

Geometrically a function is quasiconcave if the function along a line
joining any two points in the domain lies above at least one of the end-
points. In practice, quasiconcave functions are more frequently encoun-
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Figure 3.12
A bell

tered than quasiconvex functions, and we will focus on the former in this
section. The surface of a bell is quasiconcave (figure 3.12).

Exercise 3.143
fis quasiconcave if and only if —f is quasiconvex.

Exercise 3.144
Every concave function is quasiconcave.

Exercise 3.145
Any monotone functional on R is both quasiconvex and quasiconcave.

Example 3.53 (Power function) The general power function f € F(R.)
f(x) =x9, aeR

is monotone, being strictly increasing if a > 0 and strictly decreasing
a < 0 (exercise 2.34). Therefore (exercise 3.145), it is quasiconcave (and
quasiconvex) for all a.

Recall that convex and concave functions can be characterized by
convexity of associated sets (proposition 3.7). Quasiconvex and quasi-
concave functions have an analogous geometric characterization in terms
of their upper and lower contour sets (section 2.1.1).

Proposition 3.9 (Quasiconcavity) A functional f is quasiconcave if and
only if every upper contour set is convex; that is, Z ;(c) = {x € X : f(x) = ¢}
is convex for every ¢ € R.

Proof  Assume that f'is quasiconcave, and choose some ¢ € R. If z ,(c)
is empty, then it is trivially convex. Otherwise, choose Xi,X; € X /().
Then f(x;) > ¢ and f(x2) > ¢. Since fis quasiconcave,
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Sox1 + (1 = a)xz) = min{f(x1), f(x2)} = ¢

for every 0 <o <1, and therefore ax; + (1 —o)x2 € Z,(c). That is,
Z(c) is convex. Conversely, assume that X (c) is convex for every
¢ € N. Choose any x; and X, in the domain of f, and let

¢ =min{f(x1), f(x2)}

Then x1,x; € Z,(¢). Since % ,(c) in convex, ax; + (1 —a)xz € Z,(c) for
every 0 < o < 1. Consequently

flax + (1 = 0)x2) > ¢ = min{f(x1), f(x2)}
fis quasiconcave. O

Exercise 3.146
A functional f is quasiconvex if and only if every lower contour set is
convex; that is, <,(¢) = {x € X : f(x) < ¢} is convex for every a € R.

Remark 3.13 This geometric characterization highlights the sense in
which quasiconcavity generalizes concavity. A function is concave if and
only if its hypograph is concave. The hypograph of a function f: X — R
is a subset of X x R. If we think of R forming the vertical axis, the con-
tour sets can be thought of as horizontal cross sections of the hypograph.
Clearly, a convex hypograph (concave function) will have convex cross
sections. But a hypograph may have convex cross sections without itself
being convex. We illustrate with examples from producer and consumer
theory.

Example 3.54 (Convex technology) Suppose that the technology of a
firm producing a single output y can be represented by the production
function f defined by

y=s(x) =sup{y:xeV(y)}

The input requirement sets (example 1.8) are the upper contour sets of f;
that is,

V(y)={xeR} f(x) >y}

The firm’s technology is convex— V() convex for every y (example 1.163)
—if and only if the production f is quasiconcave. This is less restrictive
than assuming that the production function f'is concave, which is equiv-
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alent to the assumption that the production possibility set Y is convex
(example 3.47). The assumption of a convex technology (¥ (y) convex or f
quasiconcave) is typical in economic models, since it does not preclude
increasing returns to scale.

Example 3.55 (Convex preferences) Recall that a preference relation
is convex if and only if the upper preference sets > (y) are convex for
every y (section 1.6). A utility function u represents a convex preference
relation = if and only if u is quasiconcave.

Although quasiconvex functions are less commonly encountered, there
is one important example of a quasiconvex function in economics.

Example 3.56 (Indirect utility function) The consumer’s indirect utility
function (example 2.90)

v(p,m) = sup u(x)
xeX(p,m)

which measures the maximum utility attainable given prices and income,
is quasiconvex in prices p.

Exercise 3.147
Show that the indirect utility function is quasiconvex. [Hint: Show that
the lower contour sets <,(¢) = {p: v(p,m) < ¢} are convex for every c.]

Properties of Quasiconcave Functions

It is important to note that there is no counterpart to the first part of
exercise 3.131—quasiconcavity is not preserved by addition (example
3.57). On the other hand, exercise 3.133 admits a significant generaliza-
tion (exercise 3.148).

Example 3.57 The function f(x) = —2x is concave and g(x) = x> + x is
quasiconcave, but their sum (f 4 ¢g)(x) = x> — x is neither concave nor
quasiconcave.

Exercise 3.148
If f'is quasiconcave and g is increasing, then g o f is quasiconcave.

Example 3.58 (CES function) The CES function

F(X) = (@x] +ox + o)) w>0,p#0
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is quasiconcave on R provided that p <1. To see this, let i(x) =
X)) 4+ aoxh 4 - a,x? so that f(x) = (h(x))l/p. From example 3.44, we
know that x” is concave if 0 < p <1 and convex otherwise. Therefore
(exercise 3.133) h is concave if 0 < p < 1 and convex otherwise.

There are two cases to consider:

when 0 < p <1, f(x) = (h(x))"/” is an increasing function of concave
function and is therefore quasiconcave (exercise 3.148).

when p < 0,

| 1\
769 = ) = (55
Since h is convex, 1/h is concave (exercise 3.135) and —1/p > 0. Again, f
is an increasing function of concave function and is therefore quasi-
concave (exercise 3.148).

Note that we cannot use exercise 3.133 to conclude that the CES function
is concave when 0 < p < 1, since g(y) = y'/? is then convex while / is
concave. However, we will show later (example 3.74) that it is in fact
concave when p < 1.

Exercise 3.149 (CES function)
The CES function

f(X)=(a1xf+oczx§+-~-oz,,x,§’)l//’7 o >0,p#0
is convex on R} if p > 1.

Remark 3.14 Production and utility functions are usually assumed to be
quasiconcave, so as to represent convex technologies (example 3.54) and
convex preferences (example 3.55) respectively. Consequently, when the
CES functional form is used as a production or utility function, it is nor-
mally restricted so that p < 1.

Recall that a monotonic transformation is a strictly increasing func-
tional on R. A monotonic transformation (example 2.60) of a concave
function is called concavifiable. Formally a function f € F(R) is con-
cavifiable if there exists a strictly increasing function g € F(R) such that
gof is concave. Every concavifiable function is quasiconcave (exercise
3.148). However, the converse is not true in general. There exist quasi-
concave functions that are not concavifiable.
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Exercise 3.150
Any strictly increasing functional on ‘R is concavifiable.

The following results help in recognizing quasiconcave functions.

Exercise 3.151
Let f'and g be affine functionals on a linear space X, and let S = X be a
convex set on which g(x) # 0. The function

-4

is both quasiconcave and quasiconvex on S. [Hint: Use exercise 3.39.]

Exercise 3.152
Let fand g be strictly positive definite functions on a convex set S with
fconcave and g convex. Then

-4

is quasiconcave on S. [Hint: Consider the upper contour sets =, (a).]

Exercise 3.153
Let fand g be strictly positive definite concave functions on a convex set
S. Then their product

is quasiconcave on S [Hint: Use exercise 3.135.]
The following result should be compared with exercise 3.134.

Exercise 3.154
If fis nonnegative definite,

log f concave = f quasiconcave

Exercise 3.155
Let 11, f5,. .., f, be nonnegative definite concave functions on a convex
set S. The function

Jx) = ()" ()™ (4,(x)™

is quasiconcave on S for any oy, oy, ..., %, € R..
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Figure 3.13
The Cobb-Douglas function is quasiconcave

Example 3.59 (Cobb-Douglas) As an immediate application of the pre-
ceding exercise, we note that the Cobb-Douglas function

f(x) =x{"x32 X a; >0

Ay

is quasiconcave on R. Figure 3.13 illustrates two Cobb-Douglas
functions

f(x) = x11/3x;/3 and g¢g(x) = x;‘/3x3/3

Note that f'is concave but g is not. However, both are quasiconcave, as
indicated by the curvature of the isoquants.

3.7.3 Convex Maximum Theorems

Convexity in optimization problems yields some useful counterparts to
the maximum theorems for monotone and continuous problems (theo-
rems 2.1 and 2.3). The most straightforward result applies to optimization
problems in which the constraint is independent of the parameters.

Proposition 3.10 ( Convex maximum theorem) Assume that f: X x @ — R
is convex in 0. Then the value function

v(0) = max f(x,0)

xeX
is convex in 6.

Example 3.60 (Profit function) Earlier (example 3.42) we showed directly
that the profit function of a competitive firm

Ti(p) = sup ¥ p,;

yeY 3
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is convex in p. This is a particular case of proposition 3.10, since the
objective function is linear in p.

To apply proposition 3.10, it is not necessary that the constraint set be
completely free of parameters, only that they be free of the parameters of
interest. This is illustrated in example 3.61.

Example 3.61 (Cost function) The cost minimization problem

min wl'x
xeV(y)

is equivalent to maximization problem

max — w’x (27)
xeV(y)

The objective function in (27) is convex (linear) in w, and the constraint is
independent of w. Therefore (27) fits the requirements of proposition 3.10,
and its value function

v(w) = sup —w’'x
xeV(y)

is convex in w. For every output y, the cost function is

e(w,y) = —u(w)

which is therefore concave in w (exercise 3.124). This duplicates a result
found directly in exercise 3.126

Exercise 3.156
Prove proposition 3.10. [Hint: Adapt example 3.42.]

Many optimization problems have constraints that depend on parame-
ters of interest, so proposition 3.10 cannot be applied. A more explicit
counterpart to theorems 2.1 and 2.3 is provided by the following theorem,
applicable to general constrained optimization problems with concave
objectives and convex constraints.

Theorem 3.1 (Concave maximum theorem) Consider the general con-
strained maximization problem

c (x,0
Jnax f(x,0)
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where X and © are linear spaces. Let ®* = @ denote the set of parameter
values for which a solution exists. If

« the objective function f: X x ® — R is quasiconcave in X and

* the constraint correspondence G: ® 3 X is convex-valued

then the solution correspondence ¢p: @ 3 X defined by

0) = 0
9(0) = arg Jnax f(x,0)

is convex-valued. Furthermore, if

« the objective function f: X x ® — R is (strictly) concave in X x ® and

* the constraint correspondence G: ® 3 X is convex

the value function

v(0) = sup f(x,0)
xeG(0)

is (strictly) concave in 6.
Proof
Convexity of ¢(0) For any 0 € @, let X1, x5 € ¢(0). This implies that
f(x1,0) = f(x2,0) = v(0) = f(x,0) for every x € G(0)
Let X = ax; + (1 — o)xz. Since f'is quasiconcave,
F(%,0) = min{f(x1,0), f(x2,0)} = 1(0)

which implies that X € ¢(8). For every 0, ¢(0) is convex.

Concavity of v Let 6,0, belong to ®*. Choose any optimal solutions
X; € p(0,) and x; € ¢(0;). Let

0=00,+ (1 —a)0, X=oax;+(l—a)x;

Since x| € G(0,), x, € G(0,), and G is convex, X € G(0). Thus X is feasible
for 0 so

o(B) = sup f(x,8) > f(X,0) > of (x1,00) + (1 = 2)f (x2, )
xe ()

=ov(0;) + (1 — a)v(6)

v 1S concave.



345

3.7 Convex Functions

Strict concavity of v Furthermore, if fis strictly concave,
v(0) = sup f(x,0) > f(X,0) > af (x1,01) + (1 — @) f(x2,02)
xep(0)
=av(0;) + (1 — a)v(6)
so v is strictly concave. |

The first part of this theorem, requiring only quasiconcavity of the
objective function (and convex-valued constraint), is a key result in opti-
mization (see proposition 3.16). Strict quasiconcavity leads to the follow-
ing important corollary.

Corollary 3.1.1 Let ®F < O denote the set of parameter values for which
a solution exists in the general constrained maximization problem

0
Jnax f(x,0)

where X and @ are linear spaces. If

* the objective function > X x @ — R is strictly quasiconcave in X and

« the constraint correspondence G: ® 3 X is convex-valued

then the solution correspondence ¢p: @ 3 X defined by

0) = (x.0
p(0) = arg Jmax f(x,0)

is single-valued; that is, ¢ is a function from O* to X.

Example 3.62 (Demand functions) Corollary 3.1.1 can be applied
directly to the consumer’s problem (example 2.90). If the consumer’s
preferences are strictly convex, the utility function is strictly quasiconcave,
and corollary 3.1.1 implies a unique optimal solution for every p and m.
That is, the consumer’s demand correspondence x(p, ) is a function.

Exercise 3.157
Prove corollary 3.1.1.

Example 3.63 (Cost function) We have previously shown (exercise 3.126)
that the cost function ¢(w, y) of a competitive firm is concave in w. Sup-
pose in addition that the firm’s production possibility set Y is convex.
Then the input requirements sets
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V(y)={xeR!:(y,—x)e Y}

define a convex correspondence (exercise 2.25), and the cost minimization
problem

xeV(y) 4 xeV(y)

n
min wix; = max — E WiX;
i=1 i=1

satisfies the requirements of theorem 3.1 (the objective function is linear).
This implies that the value function

is concave in w and y jointly.

Exercise 3.158 (Uniqueness of the optimal plan)
In the dynamic programming problem (example 2.32)

o0
max > B f(x,xi41)
X1,X24... —0

subject to  x,41 € G(x/)
t=0,1,2,...,x0 € X given
Assume that

+ f'is bounded, continuous and strictly concave on X x X.

*+ G(x) is nonempty, compact-valued, convex-valued, and continuous for
every x e X

c0<p<1

We have previously shown (exercise 2.124) that an optimal policy exists
under these assumptions. Show also that

1. the value function v is strictly concave

2. the optimal policy is unique

Example 3.64 (Optimal economic growth) In the optimal economic
growth model (example 2.33), assume that
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+ u is continuous and strictly concave on ‘R,

+ F is continuous and increasing on R, with F(0) =0
+ there exists k > 0 such that F(k) < k for every k > k
c0<p<1

Then there exists an optimal growth policy (ko,k{,k5,...) for every
starting point ko (example 2.93). Furthermore

+ the optimal growth policy (ko, k{, k', .. .) is unique (exercise 3.158) and

- converges monotonically to some steady state k* (exercise 3.159).

Whether capital accumulates or decumulates under the optimal policy
depends on the relationship between the limiting value k* and the initial
value ko. If ko < k*, then k; grows increases monotonically to k*. Con-
versely, if the economy starts with an oversupply of capital ko > k*,
capital will be progressively reduced.

Exercise 3.159

Assuming that u is strictly concave, show that the optimal growth model
satisfies the requirements of exercise 2.126. Hence conclude that the opti-
mal policy converges monotonically to a steady state.

Unfortunately, the requirements of the second part of theorem 3.1,
joint concavity of f'in x and # and convexity of the constraint correspon-
dence, are quite stringent and often missing in practice. Example 3.65
illustrates that it is not sufficient that the constraint be convex-valued,
while example 3.66 illustrates what this requirement means in the most
typical setting. Often theorem 3.1 can be applied to those parts of the
problem that satisfy the conditions, holding the other parameters con-
stant. This procedure is illustrated in example 3.67, where we establish
concavity of the indirect utility function in income, by holding prices
constant.

Example 3.65 Let X = ® = [0, 1], and define
f(x,0)=x  forevery (x,0) e X x ®
G(0) = [0, 6% for every 0 € ©

Since f'is strictly increasing, the optimal solution correspondence is
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p(0) = {6%} for every 0 € ®
G is convex-valued but not convex, and the value function

v(0) = sup x=0°
xel0,6%]

is not concave on ©®.

Example 3.66 Suppose that the constraint set G(0) in the constrained
optimization problem

ma (7]
Jnax f(x,0)

is defined by a set of inequalities (example 2.40)
g1(x,0) < ¢

g2(x,0) < 2

gm(X, 0) < cp
where each g(x, @) is convex jointly in x and 8. Then the correspondence
G0) ={xeX:gi(x,0)<¢,j=12,...,m}

is convex (exercise 2.26). Provided that the objective function f(x, 0) is
(strictly) concave in x and 6, the value function

v(0) = sup f(x,0)
xeG(0)

is (strictly) concave in 6 (theorem 3.1).

Example 3.67 (Consumer theory) Theorem 3.1 cannot be applied directly
to deduce general properties of the indirect utility function (example
2.90), since the budget constraint is not convex in x and p jointly. How-
ever, for given prices p, the budget constraint

X(m)={xeX:p'x <m}

is convex in m. If the utility function is concave, the consumer’s problem
(with constant prices)
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max  u(X)

xe X (m)

satisfies the conditions of theorem 3.1. We can deduce that the indirect
utility function v(p, m) is concave in income m. We have previously shown
that the indirect utility function v(p,m) is quasiconvex in p (example
3.56). This is as far as we can go in deducing general properties of the
indirect utility function.

Minimax Theorems

Let f(x,y) be a continuous functional on a compact domain X x Y in a
normed linear space. It is always the case (exercise 3.161) that

) < mi
max g]rél;l f(x,y) < Iyréerl max f(x,y) (28)

If (28) is satisfied as an equality

max min f(x,y) = min max f(x,y)

so that the order of max and min does not matter, there exists a point
(x*,¥*) € X x Y satistying

f(x,¥7) < f(x",y") < f(x",y) foreveryxe X andye Y

Such a point is called a saddle point, since it simultaneously maximizes f
over X and minimizes f over Y (figure 3.14).

Exercise 3.160 (Saddle point)
Let X and Y be compact subsets of a finite-dimensional normed linear
space, and let f be a continuous functional on X x Y. Then

max min f(x,y) = min max f(x,y)

Figure 3.14
A saddle point
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if and only if there exists a point (x*,y*) € X x Y such that
f(x,y") < f(x",y") < f(x%,y) foreveryxe X andye Y

Theorems that specify the additional conditions on f, X, and Y neces-
sary to ensure equality in (28), and hence the existence of saddle points,
are known as minimax theorems. The original minimax theorem (exercise
3.262) was due to von Neumann, who used it to demonstrate the existence
of solutions to zero-sum games (section 3.9.4). Von Neumann’s theorem
applied to bilinear functions on the standard simplex in R”. The following
generalization to quasiconcave functions on convex sets is a straightfor-
ward application of Kakutani’s theorem (theorem 2.7).

Proposition 3.11 (Minimax theorem) Let X and Y be compact, convex
subsets of a finite-dimensional normed linear space, and let f be a continuous
Sfunctional on X X Y which is quasiconcave on X and quasiconvex on Y.
Then

max min f(x,y) = min max f(x,y)
X y y X

Proof Define the correspondences ¢: ¥ 3 X and y: X — Y by
¢(y) = arg max f(x,y)
xeX
and
Y(x) = arg min /(x,y) = arg max —/(x.y)
yeY yeY
By the continuous maximum theorem (theorem 2.3) ¢ and y are non-
empty, compact, and upper hemicontinuous. By the concave maximum
theorem (theorem 3.1), ¢ is convex-valued. Similarly, since (—f) is quasi-

concave (exercise 3.143),  is also convex-valued.
The correspondence @: X x Y 3 X x Y defined by

O(x,y) = o(y) x ¥(x)

is closed and convex-valued (proposition 1.2, exercises 2.107, 1.165). By
Kakutani’s theorem (theorem 2.7), @ has a fixed point (x*,y*) such that

x" earg max f(x,y") and y*earg min f(x,y)
xeX yevY

That is,
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f(x,y) < f(x",y") < f(x",») forevery xe X andye Y

In other words, (x*,y*) is a saddle point. This implies (exercise 3.160)
that

max min f(x,y) = min max f(x,y) O
X y y X

Exercise 3.161
If fis a continuous functional on a compact domain X x Y,

max min f(x,y) < min max f(x,y)
X y y X

3.8 Homogeneous Functions

Concave and convex functions generalize the additivity property of linear
functionals. Homogeneous functions generalize homogeneity. If S is a
cone in linear space X, a functional f € F(S) is homogeneous of degree k if
for every x € S,

f(x) =t f(x) for every te R, .

This definition relaxes the homogeneity requirement of a linear function
(and dispenses with additivity).

Example 3.68 (Power function) The general power function f € F(R,)
(example 2.56)

J(x) = x*
is homogeneous of degree «, since
f(tx) = (tx)" = “x" = t*f (x)

In fact, every homogeneous function on R, is a power function (exercise
3.162).

Exercise 3.162
A function f: R, — R, is homogeneous of degree « if and only if it is
(a multiple of ) a power function, that is,

f(x) = Ax* for some 4 € R
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Example 3.69 (Cobb-Douglas) The Cobb-Douglas function

S(x) =x"x3%..x

is homogeneous of degree a; + a; + - - - + a,, since for any ¢ > 0,

f(1x) = (tx1) " (tx2) ™ ... (8x) ™

— Zal+az+---+a,,xtlt|xtzlz . .xzn

_— +02+"'+anf(x)

Exercise 3.163 (CES function)
Show that the CES function

S(%) = (@x] + axx} + - apxf) V7
is homogeneous of degree one.

The explicit characterization of homogeneous functions on ‘R, as power
functions (exercise 3.162) can help us understand the structure of homo-
geneous functions on more complex domains. Suppose that f'is homoge-
neous of degree k on S. For any x¢ € S, the function /1 € F(R, ) defined by

h(t) = f(1x), reR,

is also homogeneous of degree k (exercise 3.164). h provides a cross sec-
tion of f'along a ray {rxo : X9 € S,¢ > 0} through the point x; (see section
2.1.4). By exercise 3.162, i is a power function, that is,

h(t) = Atk

Therefore any homogeneous function looks like a power function when
viewed along a ray.

Example 3.70 (Cobb-Douglas) The two-variable Cobb-Douglas function
S, x2) = ' x3?

is homogeneous of degree a; + a. Figure 2.11 illustrates this function
when a; +a, =1 (example 2.41). While clearly nonlinear when consid-
ered over its whole domain, the surface is linear when considered along
any ray through the origin. If a ruler were laid along this Cobb-Douglas
surface so that it passed through the origin, it would align with the surface
along its entire length. Similarly, when a; = a, = 1, the Cobb-Douglas
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function is homogeneous of degree 2 and looks like a quadratic ¢> along
any ray.

Exercise 3.164
Let f: S — R be homogeneous of degree k. For any x( € S, the func-
tional defined /i(7) = f(#x¢) is homogeneous of degree k on R,.

Homogeneous functions arise naturally in economics. Homogeneity
restricts the behavior of a function when all variables change in the same
proportion, which represents two recurrent situations in economic anal-
ysis. In a production context it corresponds to changing the scale of
production, leaving the relative proportions of different inputs fixed.
Constant returns to scale implies that the production function is homo-
geneous of degree one. In a function of prices (e.g., a profit function),
scaling corresponds to changing all prices in the same proportion (infla-
tion), leaving relative prices unchanged. The degree of homogeneity k can
be positive, negative, or zero. The most common examples encountered in
economics are homogeneity of degree 0 and homogeneity of degree 1.
Functions homogeneous of degree 0 are constant along any ray. Func-
tions homogeneous of degree 1 are sometimes called linearly homogeneous
functions, since they are linear along any ray.

Example 3.71 (Profit function) The profit function of a competitive firm
(example 2.29)

T(p) =sup Y  p,y;

yeY

is homogeneous of degree one. To see this, suppose that the production
plan y* maximizes the firms profit at prices p, that is,

ply* >ply foreveryyeVY

Therefore for every ¢ > 0,

(p) 'y = (p)"y  foreveryyeY

and therefore y* also maximizes the firm’s profit at prices 7p. Consequently

M(p) = () "y" = 1) piy; = TI(p)
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We conclude that the profit function is homogeneous of degree one. This
implies that if all prices are increased in the same proportion, the firm’s
maximum profit increases proportionately.

Example 3.72 (Demand function) If the consumer’s preferences are
strictly convex, the optimal solution to the consumer’s problem (examples
1.113, 2.91, and 3.67) is a set of demand functions x;(p, m), each specify-
ing the consumer’s demand for commodity i as a function of prices p
and m. One of the most important properties of the consumer demand
functions is that they are homogeneous of degree zero. This means that
demand is invariant to the general level of prices and income—only rela-
tive prices matter.

To verify homogeneity, we note that if commodity bundle x is afford-
able at prices p and income m, it is also affordable at prices ¢p and income
tm for every ¢ > 0, since

pIx<me (p)'x <mm

Therefore the consumer’s budget set is invariant to proportionate changes
in prices and income

X(tp,tm) = X (p,m) for every t > 0

which implies that the consumer’s optimal choice will also be invariant to
proportionate changes in prices and income.

Exercise 3.165 (Cost function)
Show that the cost function ¢(w, y) of a competitive firm (example 2.31) is
homogeneous of degree one in input prices w.

Exercise 3.166 (Cost function with constant returns to scale)

If the production function of a competitive firm is homogeneous of degree
one, then the cost function ¢(w,y) is homogeneous of degree one in y,
that is,

C(W,y) = yc(w, 1)
where c(w, 1) is the cost of producing one unit (unit cost).

Exercise 3.167 (Indirect utility function)
Show that the indirect utility function v(p,m) (example 2.90) is homo-
geneous of degree zero in p and m.
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Analogous to convex functions (proposition 3.7), linearly homoge-
neous functions can be characterized by their epigraph.

Exercise 3.168
A function f: S — R is linearly homogeneous if and only if epi f is a
cone.

The following useful proposition show how quasiconcavity and homo-
geneity combine to produce full concavity. Quasiconcavity ensures con-
vexity of the upper contour sets, while homogeneity of degree k <1
strengthens this to convexity of the hypograph (see remark 3.13).

Proposition 3.12 Let f be a strictly positive definite functional that is
homogeneous of degree k, 0 < k < 1. Then f'is quasiconcave if and only if f
is concave.

Proof The “if” part is trivial (exercise 3.144). The “only-if” part is
developed in exercises 3.169 through 3.171. O

Exercise 3.169
If 1 e F(S) is strictly positive definite, quasiconcave, and homogeneous of
degree one, then fis superadditive, that is,

S(X1+x2) > f(x1) +f(x2) for every x;,x; € S

Exercise 3.170
If e F(S) is strictly positive definite, quasiconcave, and homogeneous of
degree one, then fis concave.

Exercise 3.171
Generalize exercise 3.170 to complete the proof of proposition 3.12.

Example 3.73 (Cobb-Douglas) We have previously shown that the
Cobb-Douglas function

f(x) = x{"x52 a; >0

is quasiconcave and homogeneous of degree a; + a; + - - - + a,. By prop-
osition 3.12, we can conclude that the Cobb-Douglas function is concave
provided ay +a, + -+ a, < 1.

Example 3.74 (CES function) We have previously shown that the CES
function
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f(X)=(061)6{)—1-062)65—i—-~-ot,,x,’1’)]/p7 o >0,p#0

is quasiconcave if p <1 (example 3.58) and convex if p <1 (exercise
3.149). Since the CES function is positive and homogeneous of degree one
(exercise 3.163), proposition 3.12 implies that the CES function is in fact
concave if p < 1 and convex otherwise.

3.8.1 Homothetic Functions

Analogous to the generalization of concave to quasiconcave functions,
there is corresponding generalization of homogeneity. A functional f
defined on a convex cone S in a linear space X is homothetic if

f(x1) =f(x2) = f(tx1) = f(tx2)
for every x;,x, e Sand t > 0

Geometrically, if two points belong to the same contour of a homothetic
function, then every scalar multiple of these points belong to a common
contour. In other words, a function is homothetic if its contours are radial
expansions of each other. Clearly, every homogeneous function is homo-
thetic, but not every homothetic function is homogeneous, as is shown by
the following example.

Example 3.75 The function f: ‘Ri 4+ — R defined by

f(x1,x2) =log x; + log x»

is homothetic but not homogeneous, since

f(tx1,1x2) = log tx; + log tx; = 2 log t + log x; + log x»
=2logt+f(x1,x2)

and therefore f(x!) = f(x?) implies that

f(x"y =2logt+f(x") =2log t +f(x?) = f(tx?) for every t > 0

Exercise 3.172 (Homothetic preferences)
A preference relation 2 (section 1.6) on a cone S is said to be homothetic if

X| ~ Xy = IX] ~ X for every xi,x; € Sand 7 > 0

Show that a continuous preference relation is homothetic if and only if
every utility representation (example 2.58) is homothetic.
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Every monotonic transformation of a homogeneous function is homo-
thetic (exercise 3.174). For strictly increasing functions the converse is
also true (exercise 3.175). This provides an equivalent characterization of
homotheticity that is particularly useful in economic analysis.

Proposition 3.13 (Homotheticity) Let f be a strictly increasing functional
on a cone S in an linear space X. f is homothetic if and only if it is a mono-
tonic transformation of a homogeneous function.

Proof Exercises 3.174 and 3.175. O

Remark 3.15 (Equivalent definitions of homotheticity) Many texts use the
characterization in proposition 3.13 to define homotheticity, stating that a
function is homothetic if it is a monotonic transformation of a homo-
geneous function (Simon and Blume 1994, p. 500). Other texts define a
homothetic function as monotonic transformation of a /inearly homoge-
neous function (Varian 1992, p. 18). Clearly, these definition are equiva-
lent to one another (exercise 3.173) and equivalent to our definition for
strictly increasing functions (proposition 3.13).

Example 3.76 (Log-linear function) The log-linear function

f(x) =aj log x; + ay log x, + - - - + a, log x,

is commonly used in empirical work. It is not homogeneous, since

f(1x) = a; log(tx1) + az log(txz) + - - - + a, log(1x,)
=(a1+a+---+a,) logt+a log x; +ax log x; + -+ a, log x,
= (a1 +a+ - +a,) log t + f(x)

It is, however, homothetic, since it is an increasing transformation of the
homogeneous Cobb-Douglas function (example 3.69)

Ay

f(x) =log(x{"x5*...x;") = a; log x| + a> log x5 + - - - + a, log x,

Exercise 3.173

Suppose that f'is a monotonic transformation of a homogeneous function.
Show that f is a monotonic transformation of a linearly homogeneous
function.

Exercise 3.174
If 4 is a homogeneous functional on S and g: R — R is strictly increasing,
then f = g o & is homothetic.
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Exercise 3.175

Let f be a strictly increasing homothetic functional on a cone S in an
linear space X. Then there exists a linearly homogeneous function
h: S — M and a strictly increasing function g: R — R such that f = g o /.
[Hint: Define g(«) = f(axo) for some Xq € S, and show that 1 = g~! o f is
homogeneous of degree one. ]

Exercise 3.176 (Homothetic technology)
If the production function of a competitive firm is homothetic, then the
cost function is separable, that is,

c(w, ) = p(y)e(w, 1)
where c¢(w, 1) is the cost of producing one unit (unit cost). [Hint: Use ex-
ercise 3.166.]

Exercise 3.177 ( Concavifiability)
A strictly positive definite, strictly increasing, homothetic, and quasi-
concave functional is concavifiable.

3.9 Separation Theorems

A hyperplane Hy(c) in a linear space X divides the space into two sets
{xeX:f(x)>c}and {x e X : f(x) < c} called halfspaces. These are the
upper % ,(c) and lower </(c) contour sets of f respectively. The half-
spaces are closed sets if f is continuous (exercise 2.77). A hyperplane is
said to separate two sets A and B if they lie on opposite sides of the
hyperplane so that each is contained in opposing halfspaces. Formally
Hy(c) separates 4 and B if

either f(x) <c<f(y) or f(x)=c= f(y)
forevery xe A andye B

Similarly the hyperplane Hy(c) bounds a set S if .S is wholly contained in
one or other of the halfspaces, that is,

either f(x)<c¢ or f(x)>c¢ for every x € S

A hyperplane Hy(c) is a supporting hyperplane to S at xo € S if Hy(c)
bounds S and contains x, (figure 3.15). A surprising number of questions
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Bounding Supporting Separating

Figure 3.15
Bounding, separating, and supporting hyperplanes

in economics can be posed in terms of the existence of separating or sup-
porting hyperplanes to appropriately defined sets.

Two sets A and B can be separated if and only if there exists a linear
functional f'and constant ¢ such that

f(x) << f(y) foreveryxe 4 andy € B

That is, there exists a linear functional that values every point in A less
than any point in B. The connection with optimization becomes more
transparent when we rewrite the condition as asserting the existence of
linear functional, which is maximized over 4 and minimized over B, that
is,

sup f(x) <c < inf f(y)

xeA yeB

Exercise 3.178

Assume that Hy(c) is a supporting hyperplane to a set S at xo. Show that
either Xy maximizes f or X, minimizes f on the set S.

As the illustrations in figure 3.16 suggest, the fundamental requirement
for separation is convexity. This is the content of following basic separa-
tion theorem, whose proof is developed in the next section.

Theorem 3.2 (Separating hyperplane theorem) Let A and B be nonempty,
disjoint, convex subsets in a normed linear space X. Assume that either at
least one of the sets has a nonempty interior or X is finite-dimensional. Then
there exists a continuous linear functional f € X* and a number ¢ such that

fx)<e< f(y) foreveryxeAandyeB
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Separable Non separable

Figure 3.16
Convexity is the fundamental requirement for separation

Moreover separation is strict on the interiors of A and B, that is,
f(x)<e<f(y)  foreveryxeint Aandy eint B

Actually it is not necessary that the convex sets be entirely disjoint.
Separation is possible if the convex sets share a common boundary, pro-
vided they have no interior points in common. In fact this is a necessary
and sufficient condition for separation. Thus we have the following useful
corollary.

Corollary 3.2.1 Let A and B be nonempty, convex subsets in a normed
linear space X with int A # . Then A and B can be separated if and only
ifint AnB= (.

Corollary 3.2.2 (Supporting hyperplane) Let Xy be a boundary point of a
convex set S in normed linear space. Assume that S has a nonempty inte-
rior. Then there exists a supporting hyperplane at Xy, that is, there exists a
continuous linear functional f € X* such that

f(x0) < f(x)  foreveryxeS

In many applications one of the convex sets to be separated is a sub-
space; when this is the case, the separating hyperplane necessarily con-
tains the subspace.

Corollary 3.2.3 (Subspace separation) Let S be a convex subset of linear
space X with a nonempty interior, and let Z be a subspace that is disjoint

from the interior of S. Then there exists a separating hyperplane which

contains Z, that is there exists a continuous linear functional f € X* such
that
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Fish caught (g)

Separating
ryperplane

24 h*
Time spent (&)

Figure 3.17
Robinson’s choice of lifestyle

f(x)=0  foreveryxeS

f(z)y=0  foreveryzeZ

The classic application of the separating hyperplane theorem in eco-
nomics is the second theorem of welfare economics, which shows it is
possible for decentralization to achieve Pareto optimality. The following
example involving a single producer and consumer illustrates the essential
idea.

Example 3.77 (Robinson Crusoe) Isolated on a desert island, Robinson
Crusoe survives by catching fish. Although fish are plentiful in the lagoon,
the more time he spends fishing, the more wary become the fish, and the
harder they are to catch. Robinson does not like fishing—it is hard work,
and he would prefer to spend his time sitting on the beach dreaming of
being rescued.

Robinson’s predicament is illustrated in figure 3.17. He has a single input
(time) and a single output (fish). His only productive activity (fishing)
exhibits diminishing returns. His production opportunities are prescribed
by the convex production possibility set 4. Each point in y € 4 is a pair
(h, q) specifying the time spent fishing (%) and the resulting catch of fish
(¢)- Since fishing time is an input, / is negative (example 1.7). We assume
that A is closed.
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A is the set of attainable or feasible lifestyles for Robinson. His choice
of the best lifestyle (4, ¢) € A is guided by his preferences, specifically his
trade-off between food and leisure. We assume that his preferences are
strictly convex, continuous, and monotonic. Since total time is limited (to
24 hours a day), the feasible set A is compact. Consequently there exists a
best choice (h*,q*) € A that is at least as good as any other lifestyle
(h,q) € Y (proposition 1.5).

Robinson fulfills two roles in our model: he is both consumer and pro-
ducer. Suppose that we want to separate these roles, allowing Robinson
the consumer to act independently of Robinson the producer, exchanging
fish for labor at arm’s-length. The separating hyperplane theorem guar-
antees that there exist a price of fish p and wage rate w that achieves pre-
cisely this decentralization. To see this, let B denote the set of all feasible
lifestyles which are at least as good as (h*, ¢*). That is,

B=2x(",q") ={(h,q): (h,q) 2 (h",q")}

B is convex. Furthermore B contains no interior points of 4 (exercise
3.179). Consequently (theorem 3.2, corollary 3.2.1) there is a linear func-
tional f and number ¢ such that

fly)<c<f(y)) foreveryyedandy' eB (29)

See figure 3.17. 4 and B are convex sets in R>. Consequently (proposition
3.4) there exist numbers w and p such that f(h, g) = wh + pq. If Robinson
the producer buys labor at wage rate w and sells fish at price p, f(h,q)
measures the net profit achieved from the production plan (4, q). Simul-
taneously f(/h,q) measures the net cost to Robinson the consumer of
buying ¢ fish at price p, while selling /# hours of labor at wage rate w.
Since (h*,g*) belongs to both A4 and B, (29) implies that

1. wh* + pq* > wh+ pq for every y = (h,q) € A At the prices (w, p),
Robinson the producer maximizes his profit wh + pg at the production
plan (h*,q").

2. wh* + pq* < wh+ pq for every y’' = (h,q) € B At the prices (w, p),
Robinson the consumer minimizes the cost wh + pg of achieving a life-
style at least as satisfying as (h*, ¢*).

Remark 3.16 (Second theorem of welfare economics) The first theorem of
welfare economics (exercise 1.251) establishes the Pareto optimality of



363

3.9 Separation Theorems

competitive markets. The second theorem of welfare economics is the
converse, asserting that the achievement of Pareto optimal outcomes can
be decentralized through competitive markets.

In the Robinson Crusoe economy, the existence of prices that enable the
decentralization of the production and consumption sides of Robinson’s
existence is a straightforward application of the separating hyperplane
theorem. Trading at these prices, Robinson the producer and Robinson
the consumer will independently achieve a compatible outcome.

At first glance the Robinson Crusoe economy seems a very special case,
since it involves a single consumer, a single producer, and only two com-
modities. Fortunately, these limitations are more apparent than real.
Nothing in the derivation in example 3.77 hinged on there only being two
commodities, and the extension to / > 2 commodities is trivial.

The assumption of price-taking behavior when there are only two
agents is far-fetched. Fortunately the extension to multiple consumers and
producers is also straightforward. Exercise 3.228 establishes the second
theorem for an exchange economy with many consumers but no pro-
ducers. Adding multiple producers brings no further conceptual insight,
although the need to take account of the distribution of profits in the
economy complicates the notational burden. For this reason we invite the
reader to consult standard texts such as Mas-Colell et al. (1995), Starr
(1997), and Varian (1992) for a general treatment.

The one ingredient of the Robinson Crusoe economy that cannot be
dispensed with is convexity. Convexity of both technology and prefer-
ences is indispensable to ensure the separation of production and upper
preference sets and hence the possibility of decentralization through
markets. With many agents, the convexity requirements can be relaxed
somewhat. On the production side, convexity of the aggregate production
set suffices, even if the technology of individual producers in not convex.
Similarly the aggregation of large numbers of consumers alleviates indi-
vidual nonconvexity (Hildenbrand and Kirman 1976).

Exercise 3.179
In example 3.77 show that int A " B = .

Exercise 3.180
In example 3.77 Robinson the producer makes a profit of wh* + pg*. This
is Robinson the consumer’s income, so his budget set is



364

Chapter 3 Linear Functions

X = {(h,q) : wh+pq <wh™ + pq"}

This is halfspace below the separating hyperplane in figure 3.17. Note that
AcX.

(h*,q*) is the optimal choice in the feasible set 4. Show that it is also
Robinson the consumer’s optimal choice in the larger budget set X. Con-
sequently (4%, ¢*) solves the consumer’s problem when the prices are w
and p.

Exercise 3.181 (Subgradient)

Let f'be a convex function defined on a convex set S in a normed linear
space X. For every x( € int S there exists a linear functional g € X* that
bounds fin the sense that

f(x) = f(x0) + g(x — x¢) for every x e S

Such a linear functional ¢ is called a subgradient of f at xo. [Hint: Con-
sider a supporting hyperplane to epi f at (X, f(xo)).]

Example 3.78 (Profit function) Figure 3.18 shows a cross section
through the profit function of a competitive firm. The straight line is the
graph of a subgradient of the profit function. It shows that profit attain-
able by the firm if it does not change it production activities as the price p
varies. The fact that it bounds the profit function from below shows that
the firm can attain a higher profit by adjusting its production plans in
response to price changes.

Profit

Subgradient

Figure 3.18
A subgradient of the profit function
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Proof of the Basic Separation Theorem

The separating hyperplane theorem is one of the most intuitive results in
mathematics. A few minutes drawing figures should convince you of the
veracity of the separation theorem in the plane R?. Fortunately this is not
one of those occasions where our intuition leads us astray in higher
dimensions, and the passage to higher dimensions introduces no major
complications. However, proving this is not trivial. Indeed, a proof
for an arbitrary linear space involves some sophisticated mathematics.
In the special case of Euclidean space, a proof of the separating hyper-
plane theorem is a useful illustration of the interplay of algebraic and
topological concepts in linear spaces. It is established in the following
exercises.

Exercise 3.182

Let S be a nonempty, closed, convex set in a Euclidean space X and y ¢ S.
There exists a continuous linear functional f € X* and a number ¢ such
that

fly) <c< f(x) forevery x € S

Exercise 3.183

Let y be a boundary point of a nonempty, convex set S in a Euclidean
space X. There exists a supporting hyperplane at y; that is, there exists a
continuous linear functional f € X* such that

fly) < f(x) for every x € S
[Hint: If y € b(S), there exists a sequence y” — y with y” ¢ S.]

Exercise 3.184

Generalize exercise 3.182 to dispense with the assumption that S is closed.
That is, let S be a nonempty, convex set in a Euclidean space X and y ¢ S.
There exists a continuous linear functional f € X* such that

f(y) < f(x)  foreveryxeS
[Hint: Consider separately the two possible cases: y € S and y ¢ S.]

Exercise 3.185
Let S be an open convex subset of a linear space X and f € X* a nonzero
linear functional on X. Then f(S) is an open interval in ‘R.
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Exercise 3.186
Prove theorem 3.2 (assuming that X is Euclidean). [Hint: Apply exercise
3.184 to separate 0 from .S = B+ (—A). Then use exercise 3.185.]

Remark 3.17 Finite dimensionality was used at two crucial stages in the
derivation above. In exercise 3.72 finite dimensionality ensured the com-
pactness of S, to which we applied the Weierstrass theorem to guarantee
the existence of a closest point to y. In exercise 3.183 finite dimensionality
was required to ensure the existence of a convergent subsequence of linear
functionals. Holmes (1975, pp. 14-16) gives a general proof of the sepa-
rating hyperplane theorem.

Exercise 3.187
Prove corollary 3.2.1.

Exercise 3.188
Prove corollary 3.2.2

Exercise 3.189
Let Hy(c) be a bounding hyperplane of a cone C in a normed linear space
X, that is, f(x) > ¢ for every x € C. Then

f(x)=0 for every x e C

Exercise 3.190

Let Hy(c) be a bounding hyperplane of a subspace Z of a normed linear
space X, that is, f(x) < ¢ for every x € Z. Then Z is contained in the
kernel of £, that is,

f(x)=0 for every x e Z

Exercise 3.191
Prove corollary 3.2.3.

Separation theorems are so pervasive in mathematical economics that it
is necessary to have a range of variations in the armory. In the following
sections we develop some refinements of the basic separating hyperplane
theorem that are useful in applications.

Strong Separation

A hyperplane Hy(c) is said to properly separate convex sets A and B,
provided that both are not contained in the hyperplane itself. This avoids
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Improper separation  Proper separation

Strict separation Strong separation

Figure 3.19
Various forms of separation

the trivial case in which f(x) = ¢ for every x € 4 U B (figure 3.19). Theo-
rem 3.2 ensures proper separation whenever at least one of the sets has a
nonempty interior (exercise 3.192).

Exercise 3.192 ( Proper separation)

Let A and B be nonempty, convex subsets in a normed linear space X
with int 4 # & and int AnB= . Then 4 and B can be properly
separated.

Frequently stronger forms of separation are required. Two sets 4 and B
are strictly separated by a hyperplane Hy(c) if A and B lie in opposite
open halfspaces defined by Hy(c), that is,

f(x) <ec<fly) forevery xe A,y e B

The sets 4 and B are strongly separated by the hyperplane Hy(c) if there
exists some number ¢ such that

fxX)<c—e<ct+e<f(y) for every xe A,y e B
or equivalently

sup f(x) < inf f(y)
YEB

xeA
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Exercise 3.193 (Strict separation)

If 4 and B are nonempty, disjoint, convex open sets in a finite dimensional
normed linear space X, they can be strictly separated; that is, there exists a
continuous linear functional f € X* and a numbers ¢ such that

f(x) <e<f(y) for every xe 4,y e B

The most important variant is strong separation. The basic result is
presented in the following proposition. In the following exercises we
explore proofs for the finite- and infinite-dimensional cases. We then use
proposition 3.14 to generalize some previous results and provide some
new applications.

Proposition 3.14 (Strong separation) Let A and B be nonempty, disjoint,
convex subsets in a normed linear space X with

+ A compact
* B closed.

Then A and B can be strongly separated, that is, there exists a continuous
linear functional f € X* such that

sup f(x) < inf f(y)

xed yeB

A straightforward proof for a finite-dimensional space is given in the
following exercise.

Exercise 3.194

Prove proposition 3.14 for a finite-dimensional space X. [Hint: Apply
exercise 3.182 to the set B — A. Compactness of A is necessary to ensure
that B — A4 is closed.]

The following exercise shows that compactness of A is essential in
proposition 3.14.

Exercise 3.195
In K2, draw the sets 4 = {x € ‘Ri :x1xy > 1} and B= {xe R*:x, <0}
Can these sets be strongly separated?

The essential requirement for strong separation is that the two sets
be spatially disjoint. This requirement is formalized for general (infinite-
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dimensional) normed linear spaces in the following exercise, providing a
general proof of proposition 3.14.

Exercise 3.196

1. Let A and B be nonempty, disjoint, convex subsets in a normed linear
space X. A4 and B can be strongly separated if and only if there exists a
convex neighborhood of U of 0 such that

(A+U)nB=
2. Prove proposition 3.14. [Hint: Use exercise 1.208.]

Exercise 3.197
Let 4 and B be convex subsets in a finite-dimensional normed linear space
X. A and B can be strongly separated if and only if

p(A4,B) =inf{||x —y|[:xed,ye B} >0

Combining proposition 3.14 with corollary 3.2.3 gives the following
important result, a geometric form of the Hahn-Banach theorem (propo-
sition 3.15).

Exercise 3.198 (Geometric Hahn-Banach theorem)
Let M be a nonempty, closed, subspace of a linear space X and y ¢ M.
Then there exists a continuous linear functional f € X* such that

f(y)>0 and f(x)=0 for every x e M

As an application of the previous result, we use it in the following
exercise to provide an alternative derivation of the Fredholm alternative
(exercise 3.48). Note how a clever choice of space enables us to apply a
separation theorem to derive an a straightforward proof of a fundamental
theorem.

Exercise 3.199 (Fredholm alternative)
Let g1, 92, - .-, gm be linear functionals on a linear space X, and let

m

S={xeX:gi(x)=0,j=1,2,...,m} = () kernel g;

Jj=1

Suppose that f # 0 is another linear functional such that such that
f(x) =0 for every x € S. Show that
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€0

Figure 3.20
The Fredholm alternative via separation

1. The set Z = {f(x), —g1(x), —g2(x), ..., —gm(x) : X € X} is a subspace
of ¥ ="

2. ¢"=(1,0,0,...,0) € R"™! does not belong to Z (figure 3.20).

3. There exists a linear functional g e Y* such that ¢(e’) >0 and
p(z) =0 forevery z€ Z.

4. Let ¢(y) = lyT where A= (Lo, A1,...,4m) €Y = RO For every
ze”Z,

}.ZT = AoZo + 1121 +---+ /’LIﬂZﬂ? =0
5. 4> 0.
6. f(x) =", Lgi(x); that is, fis linearly dependent on g1, ¢a, ..., gm-

Exercise 3.200
Show the converse; that is, if /(x) = >, 4igi(x), then f(x) = 0 for every
xeSwhere S={xeX:g;(x)=0,j=1,2...m}.

Exercise 3.201 (Gale)
Let g1,92,-..,9m be linear functionals on a linear space X. For fixed
numbers ¢;, the systems of equations

g;(x) = ¢j, j=12....m

is consistent if and only if
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for every set of numbers 41, 4z, ..., A, [Hint: Separate ¢ = (¢1,¢2,...,Cm)
from the subspace Z = {g1(x),g2(x),...,gm(x) : x € X} in R™ ]

Exercise 3.198 can be extended to a closed convex cone when X is finite-
dimensional. This result will be used in exercise 3.225.

Exercise 3.202

Let K be a closed convex cone in a finite-dimensional linear space X and
M a subspace with K n M = {0}. Then there exists a linear functional
f € X* such that

f(x)>0 for every x € K\{0}

and

f(x)=0 for every x e M

[Hint: Consider the set K = {x € K : ||x||; = 1}.]

3.9.1 Hahn-Banach Theorem

Any linear functional £, on a subspace Z < X can be trivially extended to
a functional f € X* on the whole space by defining

J (%) =/o(2)

where X =y +z with ze Z and y € Z*, the orthogonal complement of Z.
What makes extension theorems interesting is the presence of various
additional constraints which must be satisfied by the extension. The classic
extension theorem is the Hahn-Banach theorem, where the extension must
satisfy the additional constraint that f(x) < g(x) where g is convex.

Proposition 3.15 (Hahn-Banach theorem) Let g be a convex functional
on a linear space X. Suppose that f, is a linear functional defined on a
subspace Z of X such that

fo(x) <g(x)  foreveryxeZ

Then f,, can be extended to a functional f € X* such that
f(x) = fo(x) for every x e Z

and

f(x) <g(x)  foreveryxeX



372 Chapter 3 Linear Functions

Proof Exercise 3.203. |
Exercise 3.203

Suppose that f is a linear functional defined on a subspace Z of X such
that

fo(x) < g(x) for every x e Z

where g € X* is convex. Show that

1. The sets

A={(x,y):y=g(x),xe X}

and

B={(x,»):y =fo(x),x € Z}

are convex subsets of the linear space ¥ = X x R (figure 3.21)

2.intA# Zandint AnB= (.
3. There exists a linear functional ¢ € Y* with ¢(0, 1) > 0 such that

p(x,y) =0 for every (x,y) € 4
and
p(x,y) =0 for every (x,y) € B

. 1
4. Define the functional fe X* by f(x)=——-¢(x,0) where ¢=
¢(0,y) > 0. Then ¢

R

Figure 3.21
Deriving the Hahn-Banach theorem
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1
f(x)= —Z(P(X,y) +y for every y e R

5. fis an extension of f; that is f(z) = fo(z) for every z € Z.
6. fis bounded by g; that is f(x) < g(x) for every x € X.

The Hahn-Banach theorem is in fact equivalent to the basic separation
theorem. We established one direction of this equivalence in exercise
3.203. Luenberger (1969, p. 133) gives the reverse direction. The Hahn-
Banach theorem shows that a normed linear space is well endowed with
linear functionals. Some consequences are addressed in the following
exercises. We will use exercise 3.205 in proposition 4.1.1 and exercise
3.206 in exercise 3.207.

Exercise 3.204

Let f,, be a bounded linear functional on a subspace Z of a normed linear
space X. Then f; can be extended to a linear functional on the whole
space X without increasing its norm, that is,

1A = 170z

Exercise 3.205

Let xo be an element of a n