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Introduction

Economics made progress without mathematics, but has made faster progress with it.

Mathematics has brought transparency to many hundreds of economic arguments.

ÐDeirdre N. McCloskey (1994)

Economists rely on models to obtain insight into a complex world. Eco-

nomic analysis is primarily an exercise in building and analyzing models.

An economic model strips away unnecessary detail and focuses attention

on the essential details of an economic problem. Economic models come

in various forms. Adam Smith used a verbal description of a pin factory

to portray the principles of division of labor and specialization. Irving

Fisher built a hydraulic model (comprising ¯oating cisterns, tubes, and

levers) to illustrate general equilibrium. Bill Phillips used a di¨erent

hydraulic model (comprising pipes and colored water) to portray the cir-

cular ¯ow of income in the national economy. Sir John Hicks developed a

simple mathematical model (IS-LM) to reveal the essential di¨erences

between Keynes's General Theory and the ``classics.'' In modern eco-

nomic analysis, verbal and physical models are seen to be inadequate.

Today's economic models are almost exclusively mathematical.

Formal mathematical modeling in economics has two key advantages.

First, formal modeling makes the assumptions explicit. It clari®es intu-

ition and makes arguments transparent. Most important, it uncovers the

limitations of our intuition, delineating the boundaries and uncovering

the occasional counterintuitive special case. Second, the formal modeling

aids communication. Once the assumptions are explicit, participants

spend less time arguing about what they really meant, leaving more time

to explore conclusions, applications, and extensions.

Compare the aftermath of the publication of Keynes's General Theory

with that of von Neumann and Morgenstern's Theory of Games and

Economic Behavior. The absence of formal mathematical modeling in the

General Theory meant that subsequent scholars spent considerable energy

debating ``what Keynes really meant.'' In contrast, the rapid development

of game theory in recent years owes much to the advantages of formal

modeling. Game theory has attracted a predominance of practitioners

who are skilled formal modelers. As their assumptions are very explicit,

practitioners have had to spend little time debating the meaning of others'

writings. Their e¨orts have been devoted to exploring rami®cations and

applications. Undoubtedly, formal modeling has enhanced the pace of

innovation in game-theoretic analysis in economics.



Economic models are not like replica cars, scaled down versions of the

real thing admired for their verisimilitude. A good economic model strips

away all the unnecessary and distracting detail and focuses attention on

the essentials of a problem or issue. This process of stripping away

unnecessary detail is called abstraction. Abstraction serves the same role

in mathematics. The aim of abstraction is not greater generality but

greater simplicity. Abstraction reveals the logical structure of the mathe-

matical framework in the same way as it reveals the logical structure of an

economic model.

Chapter 1 establishes the framework by surveying the three basic

sources of structure in mathematics. First, the order, geometric and alge-

braic structures of sets are considered independently. Then their interac-

tion is studied in subsequent sections dealing with normed linear spaces

and preference relations.

Building on this foundation, we study mappings between sets or func-

tions in chapters 2 and 3. In particular, we study functions that preserve

the structure of the sets which they relate, treating in turn monotone,

continuous, and linear functions. In these chapters we meet the three

fundamental theorems of mathematical economicsÐthe (continuous)

maximum theorem, the Brouwer ®xed point theorem, and the separating

hyperplane theorem, and outline many of their important applications in

economics, ®nance, and game theory.

A key tool in the analysis of economic models is the approximation of

smooth functions by linear and quadratic functions. This tool is devel-

oped in chapter 4, which presents a modern treatment of what is tradi-

tionally called multivariate calculus.

Since economics is the study of rational choice, most economic models

involve optimization by one or more economic agents. Building and ana-

lyzing an economic model involves a typical sequence of steps. First, the

model builder identi®es the key decision makers involved in the economic

phenomenon to be studied. For each decision maker, the model builder

must postulate an objective or criterion, and identify the tools or instru-

ments that she can use in pursuit of that objective. Next, the model

builder must formulate the constraints on the decision maker's choice.

These constraints normally take the form of a system of equations and

inequalities linking the decision variables and de®ning the feasible set. The

model therefore portrays the decision maker's problem as an exercise in

constrained optimization, selecting the best alternative from a feasible set.
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Typically analysis of an optimization model has two stages. In the ®rst

stage, the constrained optimization problem is solved. That is, the optimal

choice is characterized in terms of the key parameters of the model. After

a general introduction, chapter 5 ®rst discusses necessary and su½cient

conditions for unconstrained optimization. Then four di¨erent perspec-

tives on the Lagrangean multiplier technique for equality constrained

problems are presented. Each perspective adds a di¨erent insight con-

tributing to a complete understanding. In the second part of the chapter,

the analysis is extended to inequality constraints, including coverage of

constraint quali®cation, su½cient conditions, and the practically impor-

tant cases of linear and concave programming.

In the second stage of analysis, the sensitivity of the optimal solution to

changes in the parameters of the problem is explored. This second stage is

traditionally (in economics) called comparative statics. Chapter 6 outlines

four di¨erent approaches to the comparative static analysis of optimiza-

tion models, including the traditional approaches based on the implicit

function theorem or the envelope theorem. It also introduces a promising

new approach based on order properties and monotonicity, which often

gives strong conclusions with minimal assumptions. Chapter 6 concludes

with a brief outline of the comparative static analysis of equilibrium

(rather than optimization) models.

The book includes a thorough treatment of some material often omitted

from introductory texts, such as correspondences, ®xed point theorems,

and constraint quali®cation conditions. It also includes some recent devel-

opments such as supermodularity and monotone comparative statics. We

have made a conscious e¨ort to illustrate the discussion throughout with

economic examples and where possible to introduce mathematical con-

cepts with economic ideas. Many illustrative examples are drawn from

game theory.

The completeness of the real numbers is assumed, every other result is

derived within the book. The most important results are stated as theo-

rems or propositions, which are proved explicitly in the text. However, to

enhance readability and promote learning, lesser results are stated as exer-

cises, answers for which will be available on the internet (see the note to the

reader). In this sense the book is comprehensive and entirely self-contained,

suitable to be used as a reference, a text, or a resource for self-study.

The sequence of the book, preceding from sets to functions to smooth

functions, has been deliberately chosen to emphasize the structure of the
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underlying mathematical ideas. However, for instructional purposes or

for self-study, an alternative sequence might be preferable and easier to

motivate. For example, the ®rst two sections of chapter 1 (sets and

ordered sets) could be immediately followed by the ®rst two sections of

chapter 2 (functions and monotone functions). This would enable the

student to achieve some powerful results with a minimum of fuss. A

second theme could then follow the treatment of metric spaces (and the

topological part of section 1.6) with continuous functions culminating in

the continuous maximum theorem and perhaps the Banach ®xed point

theorem. Finally the course could turn to linear spaces, linear functions,

convexity, and linear functionals, culminating in the separating hyper-

plane theorem and its applications. A review of ®xed point theorems

would then highlight the interplay of linear and topological structure in

the Brouwer ®xed point theorem and its generalizations. Perhaps it would

then be advantageous to proceed through chapters 4, 5, and 6 in the given

sequence. Even if chapter 4 is not explicitly studied, it should be reviewed

to understand the notation used for the derivative in the following

chapters.

The book can also be used for a course emphasizing microeconomic

theory rather than mathematical methods. In this case the course would

follow a sequence of topics, such as monotonicity, continuity, convexity,

and homogeneity, interspersed with analytical tools such as constrained

optimization, the maximum, ®xed point, and separating hyperplane

theorems, and comparative statics. Each topic would be introduced and

illustrated via its role in the theory of the consumer and the producer.

Achieving consistency in notation is a taxing task for any author of a

mathematical text. Wherever I could discern a standard notation in the

economics literature, I followed that trend. Where diversity ruled, I have

tended to follow the notation in Hal Varian's Microeconomic Analysis,

since it has been widely used for many years. A few signi®cant exceptions

to these rules are explicitly noted.

Many people have left their mark on this book, and I take great plea-

sure in acknowledging their contribution. Foremost among my creditors

is Graeme Guthrie whose support, encouragement, and patient exposition

of mathematical subtleties has been invaluable. Richard Edlin and Mark

Pilbrow drafted most of the diagrams. Martin Osborne and Carolyn

Pitchik made detailed comments on an early draft of the manuscript and

Martin patiently helped me understand intricacies of TEX and LATEX.
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Other colleagues who have made important comments include Thomas

Cool, John Fountain, Peter Kennedy, David Miller, Peter Morgan, Mike

Peters, Uli Schwalbe, David Starrett, Dolf Talman, Paul Walker, Richard

Watt, and Peyton Young. I am also very grateful for the generous hospi-

tality of Eric van Damme and CentER at the University of Tilburg and

Uli Schwalbe and the University of Hohenheim in providing a productive

haven in which to complete the manuscript during my sabbatical leave.

Finally, I acknowledge the editorial team at The MIT Press, for their

pro®ciency in converting my manuscript into a book. I thank them all.
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A Note to the Reader

Few people rely solely on any social science for their pleasures, and attaining a

suitable level of ecstasy involves work. . . . It is a nuisance, but God has chosen to give

the easy problems to the physicists.

ÐLave and March (1975)

Some people read mathematics books for pleasure. I assume that you are

not one of this breed, but are studying this book to enhance your under-

standing of economics. While I hope this process will be enjoyable, to

make the most of it will require some e¨ort on your part. Your reward

will be a comprehension of the foundations of mathematical economics,

you will appreciate the elegant interplay between economic and mathe-

matical ideas, you will know why as well as how to use particular tools

and techniques.

One of the most important requirements for understanding mathemat-

ics is to build up an appropriate mental framework or structure to relate

and integrate the various components and pieces of information. I have

endeavored to portray a suitable framework in the structure of this book,

in the way it is divided into chapters, sections, and so on. This is especially

true of the early mathematical chapters, whose structure is illustrated in

the following table:

Sets Functions

Ordered sets Monotone functions

Metric spaces Continuous functions

Linear spaces Linear functions

Convex sets Convex functions

Cones Homogeneous functions

This is the framework to keep in mind as you proceed through the book.

You will also observe that there is a hierarchy of results. The most

important results are stated as theorems. You need to be become familiar

with these, their assumptions and their applications. Important but more

specialized results are stated as propositions. Most of the results, however,

are given as exercises. Consequently exercise has a slightly di¨erent

meaning here than in many texts. Most of the 820 exercises in the book

are not ``®nger exercises,'' but substantive propositions forming an inte-

gral part of the text. Similarly examples contain many of the key ideas

and warrant careful attention.



There are two reasons for this structure. First, the exercises and exam-

ples break up the text, highlighting important ideas. Second, the exercises

provide the potential for deeper learning. It is an unfortunate fact of life

that for most of us, mathematical skills (like physical skills) cannot be

obtained by osmosis through reading and listening. They have to be

acquired through practice. You will learn a great deal by attempting to do

these exercises. In many cases elaborate hints or outlines are given, leav-

ing you to ®ll in the detail. Then you can check your understanding by

consulting the comprehensive answers, which are available on the Internet

at http://mitpress.mit.edu/carter-foundations.
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1 Sets and Spaces

All is number.

ÐPythagoras

God created the integers; everything else is the work of man

ÐL. Kronecker

One of the most important steps in understanding mathematics is to build

a framework to relate and integrate the various components and pieces of

information. The principal function of this introductory chapter is to start

building this framework, reviewing some basic concepts and introducing

our notation. The ®rst section reviews the necessary elements of set

theory. These basics are developed in the next three sections, in which we

study sets that have a speci®c structure. First, we consider ordered sets

(section 1.2), whose elements can be ranked by some criterion. A set that

has a certain form or structure is often called a space. In the following two

sections, we tour in turn the two most important examples: metric spaces

and linear spaces. Metric spaces (section 1.3) generalize the familiar

properties of Euclidean geometry, while linear spaces (section 1.4) obey

many of the usual rules of arithmetic while. Almost all the sets that

populate this book will inhabit a linear, metric space (section 1.5), so a

thorough understanding of these sections is fundamental to the remainder

of the book. The chapter ends with an extended example (section 1.6) in

which we integrate the order, algebraic, and geometric perspectives to

study preference relations that are central to the theory of the consumer

and other areas of economics.

1.1 Sets

A set is a collection of objects (called elements) such as the set of people in

the world, books in the library, students in the class, weekdays, or com-

modities available for trade. Sometimes we denote a set by listing all its

members between braces f g, for example,

Weekdays � fMonday, Tuesday, Wednesday, Thursday, Fridayg
Some of the elements may be omitted from the list when the meaning is

clear, as in the following example:

alphabet � fA;B;C; . . . ;Zg



More frequently we denote a set by specifying a rule determining mem-

bership, for example,

ECON301 � fstudents : who are studying Economics 301g
The elements of a set may themselves be sets. Such sets of sets are often

called classes, collections, or families. We write x A X to denote that x is

an element or member of the set X, while x B X indicates that x is not in

X. The most fundamental set in economics is R, the set of real numbers.

Another important set is N � f1; 2; 3; . . .g, the set of positive integers.

Exercise 1.1

Denote the set of odd positive integers in two di¨erent ways.

A subset S of a set T (denoted S JT ) is a set containing some (possibly

all, possibly none) of the elements of T. For example, the vowels form a

subset of the alphabet

vowels � fA;E; I;O;Ug
An important example in economics is the set of nonnegative real numbers

R� � fx A R : xV 0gJR

since economic quantities such as prices and incomes are usually non-

negative. R� and N are di¨erent subsets of R. If S JT , then T is called

a superset of S. We sometimes emphasize the inclusive role of T by using

the notation T KS.

Two sets S and T are said to be equal (S � T) if they comprise exactly

the same elements. S is a proper subset of T if S JT but S 0T . We will

use the notation S HT to denote that S is a proper subset of T. Note that

every set is a subset of itself. It is important to clearly distinguish the

notions belonging (A) and inclusion (J). If x A X is an element of the set X,

then x belongs to X, while the set fxg is a subset of X.

Exercise 1.2

Show that AJB and BJA implies that A � B.

For any set S, we use jSj to denote the number of elements in S. A set is

®nite if it contains a ®nite number of elements, otherwise it is an in®nite

set. The set of all subsets of a ®nite set S is called the power set of S and is

denoted P�S�. The empty or null set is a special set which contains no

elements. Denoted q, the empty set is a subset of every set.
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Exercise 1.3

Give examples of ®nite and in®nite sets.

Example 1.1 (Sample space) In a random experiment, the set S of all

possible outcomes is called the sample space. An event is a subset of the

possible outcomes, that is, a subset of S.

Exercise 1.4

Describe the sample space for the experiment of tossing a single die. What

is the event E that the result is even?

Example 1.2 (A game) A game is a mathematical model of strategic

decision making combining elements of both con¯ict and cooperation. It

speci®es a ®nite set N of participants, called the players. Each player i A N

has a set of possible actions Ai, which is called her action space. A game is

®nite if Ai is ®nite for every i A N. The outcome depends on the action

chosen by each of the players.

Exercise 1.5 (Rock±Scissors±Paper)

To decide whose turn it is to wash the dishes, Jenny and Chris play the

following game. Each player simultaneously holds up two ®ngers (scis-

sors), an open palm (paper), or a closed ®st (rock). The winner is deter-

mined by the following rules:

. Scissors beats (cuts) paper

. Paper beats (covers) rock

. Rock beats (blunts) scissors

The loser does the dishes. Specify the set of players and the action space

for each player.

Exercise 1.6 (Oligopoly)

An electricity grid connects n hydroelectric dams. Each dam i has a ®xed

capacity Qi. Assuming that the dams are operated independently, the

production decision can be modeled as a game with n players. Specify the

set of players and the action space of each player.

Example 1.3 (Coalitions) In a game, subsets of the set of players N are

called coalitions. The set of all coalitions is the power set of N, denoted

P�N�. It includes the set of all players N (called the grand coalition) and

the empty coalition q. The set of proper coalitions excludes the trivial

coalitions q and N.
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Remark 1.1 There is a subtle distinction in the usage of the word proper

between set theory and game theory. In conventional usage, q is a proper

subset of a nonempty set N, but it is not a proper coalition.

Exercise 1.7

List all the coalitions in a game played by players named 1, 2, and 3. How

many coalitions are there in a ten player game?

If S is a subset of X, the complement of S (with respect to X ), denoted

S c, consists of all elements of X that are not in S, that is,

S c � fx A X : x B Sg
If both S and T are subsets of X, their di¨erence SnT is the set of all

elements in S which do not belong to T, that is,

SnT � fx A X : x A S; x B Tg
This is sometimes known as the relative complement of T in S. The union

of the two sets S and T is the set of all elements which belong to either S

or T or both, that is,

S WT � fx : x A S, or x A T , or bothg
The intersection of two sets S and T is set of all elements that simulta-

neously belong to both S and T,

S XT � fx : x A S and x A Tg
These set operations are illustrated in ®gure 1.1 by means of Venn dia-

grams, where the shaded areas represent the derived set.

Exercise 1.8 (DeMorgan's laws)

Show that

�S WT�c � S c XT c

�S XT�c � S c WT c

Set union and intersection have straightforward extensions to collec-

tions of sets. The union of a collection C of sets

6
S AC

S � fx : x A S for some S A Cg
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is the set of all elements that belong to a least one of the sets in C. The

intersection of a collection C of sets

7
S AC

S � fx : x A S for every S A Cg

is the set of all elements that belong to each of the sets in C. If the sets in

a collection C have no elements in common, then their intersection is the

empty set.

Exercise 1.9

Let C be the collection of coalitions in a ®ve-player game (N �
f1; 2; 3; 4; 5g). What is the union and the intersection of the sets in C?

Union and intersection are one way of generating new sets from old.

Another way of generating new sets is by welding together sets of dispa-

rate objects into another set called their product. The product of two sets

X and Y is the set of ordered pairs

X � Y � f�x; y� : x A X ; y A Yg
A familiar example is the coordinate plane R�R which is denoted R2

(®gure 1.2). This correspondence between points in the plane and ordered

pairs �x; y� of real numbers is the foundation of analytic geometry. Notice

how the order matters. �1; 2� and �2; 1� are di¨erent elements of R2.

Figure 1.1
Venn diagrams
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The product readily generalizes to many sets, so that

X1 � X2 � � � � � Xn � f�x1; x2; . . . ; xn� : xi A Xig
is the set of all ordered lists of elements of Xi, and Rn � f�x1; x2; . . . ; xn� :

xi A Rg is the set of all ordered lists of n real numbers. An ordered list of n

elements is called an n-tuple. Rn and its nonnegative subset Rn
� provide

the domain of most economic quantities, such as commodity bundles and

price lists. To remind ourselves when we are dealing with a product space,

we will utilize boldface to distinguish the elements of a product space

from the elements of the constituent sets, as in

x � �x1; x2; . . . ; xn� A X

where X � X1 � X2 � � � � � Xn.

Example 1.4 (Action space) The outcome of a game depends on the

action chosen by each of the players. If there are n players each of whom

chooses an action ai from a set Ai, the combined choice is the n-tuple

�a1; a2; . . . ; an�. The set of all possible outcomes A is the product of the

individual action spaces

A � A1 � A2 � � � � � An � f�a1; a2; . . . ; an� : a1 A A1; a2 A A2; . . . ; an A Ang
A is called the action space of the game. A typical element a �
�a1; a2; . . . ; an� A A, called an action pro®le, lists a particular choice of

action for each player and determines the outcome of the game.

Figure 1.2
The coordinate plane R2
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Exercise 1.10

Let the two possible outcomes of coin toss be denoted H and T. What is

the sample space for a random experiment in which a coin is tossed three

times?

Given any collection of sets X1;X2; . . . ;Xn, we use Xÿi to denote the

product of all but the ith set, that is,

Xÿi � X1 � X2 � � � � � Xiÿ1 � Xi�1 � � � � � Xn

An element xÿi of Xÿi is a list containing one element from each of the

sets except Xi:

xÿi � �x1; x2; . . . ; xiÿ1; xi�1; . . . ; xn�
By convention, the ordered pair �xi; xÿi� denotes the list of elements

�x1; x2; . . . ; xn� with xi restored to its rightful place in the order, that is,

�xi; xÿi� � x � �x1; x2; . . . ; xiÿ1; xi
*
; xi�1; . . . ; xn�

Example 1.5 The preceding notation is used regularly in game theory,

when we want to explore the consequences of changing actions one player

at time. For example, if a� � �a�1 ; a�2 ; . . . ; a�n � is a list of actions in a game

(an action pro®le), then a�ÿi denotes the actions of all players except player

i. �ai; a
�
ÿi� denotes the outcome in which player i takes action ai, while all

the other players j take action a�j , j 0 i (see example 1.51).

Next we introduce two examples of set products that form the basis for

consumer and producer theory. We will use these sets regularly to illus-

trate further concepts.

Example 1.6 (Consumption set) The arena of consumer theory is the

consumption set, the set of all feasible consumption bundles. Suppose that

there are n commodities. The behavior of a consumer can be described by

a list of purchases �x1; x2; . . . ; xn�, where xi is the quantity of the ith

commodity. For example, x1 might be pounds of cheese and x2 bottles of

wine. Since purchases cannot be negative, each quantity xi belongs to R�.

A particular consumption bundle x � �x1; x2; . . . ; xn� is a list of non-

negative real numbers. The consumption set X is a subset of Rn
�, the

product of n copies of R�, which is known as the nonnegative orthant of
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Rn. The consumption set may be a proper subset, since not all consump-

tion bundles will necessarily be feasible. For example, we may wish to

preclude from consideration any bundles that do not ensure subsistence

for the consumer. Figure 1.3 illustrates a possible consumption set for two

commodities, where a minimum quantity of x̂1 is required for subsistence.

Example 1.7 (Production possibility set) A producer combines various

goods and services (called inputs) to produce one or more products (called

outputs). A particular commodity may be both an input and an output.

The net output yi of a commodity is the output produced minus any input

required. The net output is positive if output exceeds input, and negative

otherwise. A production plan is a list of the net outputs of the various

goods and services y � �y1; y2; . . . ; yn�. That is, a production plan is an

element of the product set

Rn � f�y1; y2; . . . ; yn� : yi A Rg
The production possibility set Y is set of all technologically feasible pro-

duction plans,

Y � f�y1; y2; . . . ; yn� A Rn : y is technologically feasibleg
It is a proper subset of the product set Rn. The precise composition of

Y depends on the production technology. Producer theory begins by

assuming some properties for Y. We meet some of these in subsequent

sections.

Figure 1.3
A consumption set with two commodities
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Exercise 1.11

Assume that Y HRn is a production possibility set as de®ned in the

previous example. What is Y XRn
�?

Example 1.8 (Input requirement set) In classical producer theory a ®rm

produces a single output using n di¨erent inputs. If we let y denote the

quantity of output x denote the quantities of the various inputs, we can

represent a production plan as the pair �y;ÿx� where x A Rn
�. The pro-

duction possibility set is

Y � f�y;ÿx� A Rn�1
� : �y;ÿx� is technologically feasibleg

It is often more convenient to work with the input requirement set

V�y� � fx A Rn
� : �y;ÿx� A Yg

which is the set of all input bundles su½cient to produce y units of output.

It details all the technologically feasible ways of producing y units of

output. One of the tasks of economic analysis is to identify the least costly

method of producing a given level of output. In this representation of the

technology, both inputs and outputs are measured by positive quantities.

Exercise 1.12 (Free disposal and monotonicity)

A conventional assumption in production theory is free disposal, namely

y A Y ) y 0 A Y for every y 0a y

A technology is said to be monotonic if

x A V�y� ) x 0 A V�y� for every x 0b x

where x 0b x means that xi b x 0i for every i (see example 1.26). Show that

free disposal implies that

1. the technology is monotonic and

2. the input requirement sets are nested, that is, V�y 0�KV�y� for every

y 0a y.

1.2 Ordered Sets

Economics is the study of rational choice. Economic analysis presumes

that economic agents seek the best element in an appropriate set of feasi-
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ble alternatives. Consumers are assumed to choose the best consumption

bundle among those that are a¨ordable. Each producer is assumed to

choose the most pro®table production plan in its production possibility

set. Each player in a game is assumed to choose her best alternative given

her predictions of the choices of the other players. Consequently eco-

nomic analysis requires that the analyst can rank alternatives and identify

the best element in various sets of choices. Sets whose elements can be

ranked are called ordered sets. They are the subject of this section.

An ordered set is a set on which is de®ned an order relation, which

ranks the elements of the set. Various types of ordered sets arise in eco-

nomics. They di¨er in the speci®c properties assumed by the associated

relation. This section starts with an outline of relations in general and a

discussion of their common properties. This leads to a discussion of the

two most common types of relationsÐequivalence relations and order

relations. Next we discuss in turn the two main types of ordered setsÐ

partially ordered sets and weakly ordered sets. Finally we consider the

extension of orders to the product of sets. Figure 1.4 illustrates the rela-

tionship of the various types of relations. It also serves as a road map for

the section.

1.2.1 Relations

Given two sets X and Y, any subset R of their product X � Y is called a

binary relation. For any pair of elements �x; y� A RJX � Y , we say that

x is related to y and write x R y. Although formally expressed as a subset

of the product, a relation is usually thought of in terms of the rule

expressing the relationship between the elements.

Example 1.9 Let

X � fBerlin, London, Tokyo, Washingtong
and

Y � fGermany, Japan, United Kingdom, United Statesg
The relation

R � f�Berlin, Germany�; �London, United Kingdom�;
�Tokyo, Japan�; �Washington, United States�g

expresses the relation ``x is the capital of y.''
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Example 1.10 Let X � Y � f1; 2; 3g. The set X � Y is the set of all

ordered pairs

X � Y � f�1; 1�; �1; 2�; �1; 3�; �2; 1�; �2; 2�; �2; 3�; �3; 1�; �3; 2�; �3; 3�g
The relation ``less than'' between X and Y is the set of ordered pairs ``<''

� f�1; 2�; �1; 3�; �2; 3�g which expresses the ranking that 1 < 2, 1 < 3, and

2 < 3. When X and Y are subsets of R, we can illustrate the relation by

means of its ``graph.'' Figure 1.5 illustrates the product X � Y , where the

elements of the relation ``<'' are circled.

Any relation RJX � Y has an inverse relation Rÿ1 JY � X de®ned

by

Rÿ1 � f�y; x� A Y � X : �x; y� A Rg

Figure 1.4
Types of relations
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For example, the inverse of the relation ``is the capital of '' is the relation

``the capital of y is x.'' The inverse of ``<'' is ``>.'' It is sometimes useful

to identify the set of elements which are involved in a relation. For any

relation RJX � Y , the domain of R is set of all x A X that are related to

some y A Y , that is,

domain R � fx A X : �x; y� A Rg
The range is the corresponding subset of Y, that is,

range R � fy A Y : �x; y� A Rg
Exercise 1.13

What are the domain and range of the relation ``<'' in example 1.10?

Most relations encountered in economics are de®ned on the elements of

a single set, with X � Y . We then speak of relation on X.

Exercise 1.14

Depict graphically the relation f�x; y� : x2 � y2 � 1g on R.

Any relation R can be characterized by the properties that it exhibits.

The following properties of binary relations have been found to be impor-

tant in a variety of contexts. A relation R on X is

re¯exive if x R x

transitive if x R y and y R z ) x R z

symmetric if x R y) y R x

Figure 1.5
A relation
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antisymmetric if x R y and y R x) x � y

asymmetric if x R y) not ( y R x)

complete if either x R y or y R x or both

for all x, y, and z in X.

Example 1.11 Let R be the relation ``at least as high as'' applied to the

set of all mountain peaks. R is re¯exive, since every mountain is at least as

high as itself. It is complete, since all mountains can be compared. It is

transitive, since if A is at least has high as B and B is at least as high as C,

then A is at least as high as C. However, it is not symmetric, asymmetric,

nor antisymmetric.

It is not symmetric, since if A is higher than B, A is at least as high as B,

but B is not at least as high as A. It is not antisymmetric, since if two

distinct mountains A and B are of the same height, we have A R B and

B R A but without A � B. Neither is it asymmetric, since if A and B have

the same height, then A R B and B R A.

Exercise 1.15

What properties does the relation ``is strictly higher than'' exhibit when

applied to the set of mountains?

Exercise 1.16

Consider the relations <, U, � on R. Which of the above properties do

they satisfy?

Example 1.12 (Preference relation) The most important relation in eco-

nomics is the consumer preference relation 7 on the consumption set X.

The statement x7 y means that the consumer rates consumption bundle

x at least as good as consumption bundle y. The consumer's preference

relation is usually assumed to be complete and transitive. We explore the

consumer preference relation in some detail in section 1.6, where we will

introduce some further assumptions.

Any relation which is re¯exive and transitive is called a preorder or

quasi-order. A set on which is de®ned a preorder is called preordered set.

Preorders fall into two fundamental categories, depending on whether or

not the relation is symmetric. A symmetric preorder is called an equiva-

lence relation, while any preorder that is not symmetric is called an order

relation. Both classes of relations are important in economics, and we deal
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with each in turn. Table 1.1 summarizes the properties of the common

classes of relations.

1.2.2 Equivalence Relations and Partitions

An equivalence relation R on a set X is a relation that is re¯exive, transi-

tive, and symmetric. Given an equivalence relation @, the set of elements

that are related to a given element a,

@�a� � fx A X : x@ ag
is called the equivalence class of a.

There is intimate connection between equivalence relations on a set and

partitions of that set. A partition is a decomposition of a set into subsets.

More formally, a partition of a set X is a collection of disjoint subsets of X

whose union is the full set X. Given an equivalence relation on a set X,

every element of X belongs to one and only one equivalence class. Thus

the collection of equivalence classes partitions X. Conversely, every par-

tition of X induces some equivalence relation on X.

The simplest possible partition of a set X comprises a subset S and its

complement S c. The collection fS;S cg form a partition of X since

S WS c � X and S XS c �q. At the other extreme, all one element sub-

sets of X comprise another partition. Less trivial examples are given in the

following examples.

Example 1.13 (Mutually exclusive events) Recall that an event E in a

random experiment is a subset of the sample space S, the set of all possi-

ble outcomes. Two events E1 and E2 are mutually exclusive if they cannot

Table 1.1
Classes of relations

Re¯exive Transitive Symmetric Antisymmetric Asymmetric Complete

Equivalence Y Y Y

Order Y Y N
Quasi-ordering
Preordering

Partial ordering Y Y N Y

Total ordering Y Y N Y Y
Linear ordering
Chain

Weak ordering Y Y N Y
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occur together, that is, if E1 XE2 �q. If we decompose the possible

outcomes into a collection of mutually exclusive events fE1;E2; . . . ;Eng
with S �6

i
Ei, then the events Ei form a partition of the sample space S.

Example 1.14 ( Teams) Suppose that a game of n players is played in

teams, with each player belonging to one and only one team. Suppose

that there are k teams fT1;T2; . . . ;Tkg. Let R be the relation ``belongs to

the same team as.'' Then R is an equivalence relation, since it is re¯exive,

transitive, and symmetric. The teams are coalitions that partition the set

of players.

Example 1.15 ( Rational numbers) A fraction is the ratio of two integers.

The fractions 1=2 and 2=4 both represent the same real number. We say

that two fractions p=q and r=s are equal if ps � qr. Thus de®ned, equality

of fraction is an equivalence relation in the set of fractions of integers.

Each rational number is identi®ed with an equivalence class in the set of

fractions.

Example 1.16 (Indi¨erence classes) The consumer preference relation 7

is not symmetric and hence is not an equivalence relation. However, it

induces a symmetric relation @ on the consumption set which is called

indi¨erence. For any two consumption bundles x and y in X, the state-

ment x@ y means that the consumer is indi¨erent between the two con-

sumption bundles x and y; that is, x is at least as good as y, but also y is at

least as good as y. More precisely

x@ y, x7 y and y7 x

Indi¨erence is an equivalence relation. The equivalence classes of the

indi¨erence relation are called indi¨erence classes, and they form a parti-

tion of the consumption set, which is sometimes called an indi¨erence

map. The indi¨erence map is often depicted graphically by a set of indif-

ference curves. Each indi¨erence curve represents one indi¨erence class.

Exercise 1.17

Show that any equivalence relation on a set X partitions X.

Exercise 1.18 (Coalitions)

In a game played by members of the set N, is the set of proper coalitions

(example 1.3) a partition of N?
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1.2.3 Order Relations

A relation that is re¯exive and transitive but not symmetric is called an

order relation. We denote a general order relation x7 y and say that ``x

follows y'' or ``x dominates y.'' Every order relation 7 on a set X induces

two additional relations 1 and @. We say that ``x strictly dominates y,''

denoted x1 y, if x dominates y but y does not dominate x, that is,

x1 y, x7 y and yT x

The relation 1 is transitive but not re¯exive. Every order relation 7 also

induces an equivalence relation @ de®ned by

x@ y, x7 y and y7 x

for all x, y in X. An ordered set �X ;7� consists of a set X together with an

order relation 7 de®ned on X.

It is sometimes useful to use the inverse relations 6 and 0. We say

that y precedes x if x follows y,

y6 x, x7 y

or y strictly precedes x if x strictly follows y,

y0 x, x1 y

Remark 1.2 (Weak and strong orders) The re¯exive relation 7 is often

called a weak order, while its nonre¯exive counterpart 1 is called a strong

or strict order. For example, in the consumer's preference relation, 7 is

called weak preference and 1 strong preference. Note however that the

adjective ``weak'' is also applied to a completely ordered set (section

1.2.5).

The following interactions between these orderings are often used in

practice.

Exercise 1.19

x1 y and y@ z) x1 z

x@ y and y1 z) x1 z

Exercise 1.20

Show that 1 is asymmetric and transitive.
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Exercise 1.21

Show that@ is re¯exive, transitive, and symmetric, that is, an equivalence

relation.

Remark 1.3 (Acyclicity) In consumer and social choice theory, a weaker

condition than transitivity is sometimes invoked. A binary relation 7 on

X is acyclical if for every list x1, x2; . . . ; xk A X ,

x1 1 x2; x2 1 x3; . . . ; xkÿ1 1 xk ) x1 7 xk

This is a minimal requirement for a consistent theory of choice.

Example 1.17 (Natural order on R) The natural order on R is V with

the inverse U. It induces the strict orders > and < and the equivalence

relation �. All order relations are generalizations of aspects of the natural

order on R.

Example 1.18 ( Integer multiples) For the set N of positive integers, the

relation ``m is a multiple of n'' is an order relation. For example, 47 2

and 157 3, while 2T 4 and 5T 2. Figure 1.6 illustrates the implied strict

relation 1 on f1; 2; . . . ; 9g, where the arrows indicate that m is a proper

multiple of n. The two pathways connecting the integers 8 and 2 illustrate

the property of transitivity.

Exercise 1.22

Show that the relation in example 1.18 is an order relation. That is, show

that it is re¯exive and transitive, but not symmetric.

Figure 1.6
Integer multiples
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Intervals

Given a set X ordered by 7 and two elements a; b A X with a6 b, the

closed interval �a; b� is the set of all elements between a and b, that is,

�a; b� � fx A X : a6 x6 bg
With a0 b, the open interval �a; b� is the set of all elements strictly

between a and b, that is,

�a; b� � fx A X : a0 x0 bg
Note that a; b A �a; b� while �a; b� may be empty. We also encounter

hybrid intervals

�a; b� � fx A X : a6 x0 bg and �a; b� � fx A X : a0 x6 bg
Example 1.19 In Example 1.18, the elements of the intervals [2, 8] and

�2; 8� are f2; 4; 8g and f4g respectively.

Exercise 1.23

Assume that the set X � fa; b; x; y; zg is ordered as follows:

x0 a0 y0 b@ z

Specify the closed interval �a; b� and the open interval �a; b�.
Example 1.20 (Intervals in R) Intervals are especially common subsets

of R. For example,

�0; 1� � fx A R : 0U xU 1g
�ÿ1; 1� � fx A R : ÿ1 < x < 1g
Upper and Lower Contour Sets

Analogous to intervals are the upper and lower contour sets. Given a set

X ordered by 7, the set

7�a� � fx A X : x7 ag
of all elements that follow or dominate a is called the upper contour set of

7 at a. The set of elements that strictly dominate a is

1�a� � fx A X : x1 ag
Similarly the lower contour set at a,
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6�a� � fx A X : x6 ag
contains all elements which precede a in the order 7. The set of elements

which strictly precede a is

0�a� � fx A X : x0 ag
Note that a A 7�a� but that a B 1�a�.
Example 1.21 In example 1.18, the upper contour set of 7 is the set of all

multiples of 7, namely

7�7� � f7; 14; 21; . . .g
Similarly

1�7� � f14; 21; . . .g
6�7� � f1; 7g
0�7� � f1g
Exercise 1.24

Assume that the set X � fa; b; x; y; zg is ordered as follows:

x0 a0 y0 b@ z

Specify the upper and lower contour sets of y.

Example 1.22 (Upper and lower contour sets in R) A special notation is

used for upper and lower contour sets in R. For any a A R the upper

contour set at a (in the natural order) is denoted �a;y�. That is,

�a;y� � fx A R : xV ag
Similarly

�a;y� � fx A R : x > ag
�ÿy; a� � fx A R : xU ag
�ÿy; a� � fx A R : x < ag
The set of nonnegative real numbers Rn

� is the upper contour set at 0, that

is R� � �0;y�. The set of positive real numbers is �0;y�, which is often

denoted R��.
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Maximal and Best Elements

Given any order relation 7 on a set X, an element x is a maximal element

if there is no element that strictly dominates it; that is, there is no element

y A X such that y1 x. x A X is called the last or best element in X if it

dominates every other element, that is, x7 y for all y A X . In general,

there can be multiple maximal and best elements.

Exercise 1.25

Formulate analogous de®nitions for minimal and ®rst or worst elements.

Example 1.23 Let X be the set of positive integers f1; 2; . . . ; 9g, ordered

by the relation m is a multiple of n (example 1.18). The numbers

5; 6; 7; 8; 9 are all maximal elements (they have no arrowheads pointing at

them). There is no best element. The number 1 is the ®rst number and the

only minimal number.

Exercise 1.26

Find the maximal and minimal elements of the set X � fa; b; x; y; zg
when ordered x0 a0 y0 b@ z. Are they also best and worst elements

respectively?

Exercise 1.27

Every best element is a maximal element, and not vice versa.

Exercise 1.28

Every ®nite ordered set has a least one maximal element.

The following characterization of maximal and best elements in terms

of upper contour sets is often useful. (See, for example, proposition 1.5.)

Analogous results hold for minimal and ®rst elements.

Exercise 1.29

Let X be ordered by 7.

x� is maximal,1�x�� �q

x� is best,6�x�� � X

Upper and Lower Bounds

To delineate sets that have no maximal or best elements, such as the

interval �0; 1�, we often identify upper and lower bounds. Let A be a
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nonempty subset of an ordered set X. An element x A X is called an upper

bound for A if x dominates every element in A, that is, x7 a for every

a A A. x A X is called a least upper bound for A if it precedes every upper

bound for A.

Exercise 1.30

Formulate analogous de®nitions for lower bound and greatest lower

bound.

Example 1.24 Consider again the set of positive integers N ordered by m

is a multiple of n (example 1.18). It has a unique minimal element 1 and

no maximal element. Any ®nite subset fn1; n2; . . . ; nkgJN has a least

upper bound that is called the least common multiple. It has a greatest

lower bound that is called the greatest common divisor.

Exercise 1.31

For the set of positive integers N ordered by m is a multiple of n (example

1.18), specify upper and lower bounds for the set A � f2; 3; 4; 5g. Find the

least upper bound and greatest lower bound.

Example 1.25 (Intervals) b is the least upper bound of the closed interval

�a; b�. b is an upper bound of the open interval �a; b� but not necessarily

the least upper bound. Similarly a is a lower bound of �a; b� and the

greatest lower bound of �a; b�.
Exercise 1.32

Assume that the set X � fa; b; x; y; zg is ordered as follows:

x0 a0 y0 b@ z

Find the least upper bounds of the intervals �a; b� and �a; b�.
Exercise 1.33

Let X be ordered by 7.

x is an upper bound of A , AJ6�x�
x is a lower bound of A , AJ7�x�
Product Orders

Recall that we generate a product of sets by welding together individual

sets. If we take the product X � X1 � X2 � � � � � Xn of a collection of

ordered sets Xi, there is a natural order induced on the product by
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x7 y, xi 7i yi for all i � 1; 2; . . . ; n

x; y A X . We often want to distinguish between the cases in which xi 1i yi

for all i and those in which xi @i yi for some i. We do this by means of

notational convention, reserving 1 for the case

x1 y, xi 1i yi for all i � 1; 2; . . . ; n

using V to indicate the possibility that xi � yi for some i, that is,

xV y, xi 7 yi for all i � 1; 2; . . . ; and x0 y

Even if all the order 7i are complete, the natural product order 7 is only

a partial order on the product space X1 � X2 � � � � � Xn. When xi 1 yi for

some i while xi 0 yi for others, x and y are not comparable.

Example 1.26 (Natural order on Rn) Elements of Rn inherit a natural

order from V on R. Thus for any x; y A Rn,

xb y, xi b yi for all i � 1; 2; . . . ; n

Readers of the literature need to be alert to what various authors mean by

x > y in Rn. We adopt the convention that

x > y, xi > yi for all i � 1; 2; . . . ; n

using xX y for the possibility the x and y are equal in some components

xX y, xi V yi for all i � 1; 2; . . . ; n and x0 y

Some authors use > where we use X, and use g in place of >. Other

conventions are also found.

The natural order is not the only way in which to order the product of

weakly ordered sets. An example of a complete order on a product space

X � X1 � X2 � � � � � Xn is the lexicographic order, in which x1L y if

xk 1 yk in the ®rst component in which they di¨er. That is,

x1L y, xk 1 yk and xi � yi for all i � 1; 2; . . . ; k ÿ 1

A dictionary is ordered lexicographically, which is the origin of the name.

(Lexicography is the process or profession of compiling dictionaries.)

Lexicographic orders are used occasionally in economics and game theory

(see example 1.49).
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Exercise 1.34

Using the natural order V on R, order the plane R2 by the lexicographic

order. It is a total order?

Exercise 1.35

Let X be the product of n sets Xi each of which is ordered by 7i. Show

that the lexicographic order 7L is complete if and only if the component

orders 7i are complete.

1.2.4 Partially Ordered Sets and Lattices

In general, an ordered set may have many maximal elements and its sub-

sets may have multiple least upper bounds. Uniqueness may be achieved

by imposing the additional requirement of antisymmetry. The result is

called a partially ordered set.

A partial order is a relation that is re¯exive, transitive, and antisym-

metric. The most common example of an antisymmetric order relation is

the numerical order U on R, where xV y and yV x implies that x � y. A

set X on which is de®ned a partial order 7 is called a partially ordered set

or poset. Partially ordered sets have numerous applications in economics.

Example 1.27 The set N of positive integers is partially ordered by the

relation ``m is a multiple of n'' (example 1.18). The ordering is only par-

tial, since not all integers are comparable under this relation.

Example 1.28 (Rn) The natural order on Rn (example 1.26) is only

partial, although V is complete on R. In R2, for example, �2; 1�b �1; 1�,
but the elements �2; 1� and �1; 2� are not comparable. Therefore Rn with

the natural order is a partially ordered set.

Example 1.29 (Set inclusion) The set of subsets of any set is partially

ordered by set inclusion J.

Exercise 1.36

Show that set inclusion is a partial order on the power set of a set X.

Example 1.30 Let X be the set of steps necessary to complete a project

(e.g., a building or a computer program). For any x; y A X , let x0 y

denote that task x has to be completed before y and de®ne x6 y if x0 y

or x � y. The set of tasks X is partially ordered by 6.
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The signi®cance of antisymmetry is that, if they exist, the least upper

bound and greatest lower bound of any subset of a poset are unique. The

least upper bound of a set S is called the supremum of S and denoted

sup S. The greatest lower bound is called the in®mum of S and denoted

inf S.

Exercise 1.37

Let A be a nonempty subset of X that is partially ordered by 7. If A has a

least upper bound, then it is unique. Similarly A has at most one greatest

lower bound.

Exercise 1.38

Characterize the equivalence classes of the relation@ induced by a partial

order 7.

Remark 1.4 (Best versus supremum) The best element in a set is an

element of the set, whereas the supremum of a set may not necessarily

belong to the set. For example, 1 is the supremum of the interval �0; 1�,
which has no best element. Another example is given in exercise 1.31. This

distinction is of practical importance in optimization, where the search for

the best alternative may identify the supremum of the choice set, which

may not be a feasible alternative.

When the supremum of a partially ordered set X belongs to X, it is

necessarily the best element of X. In this case, the supremum is called the

maximum of X. Similarly, when the in®mum of a partially ordered set X

belongs to X, it is called the minimum of X.

Exercise 1.39

The set of subsets of a set X is partially ordered by inclusion. What is the

maximum and minimum of P�X �.
Chains

A partial ordering is ``partial'' in the sense that not all elements are nec-

essarily comparable. For example, in the partial order J if S and T are

disjoint nonempty sets, then neither S JT nor T JS. If all elements in a

partially ordered set are comparable, so that the ordering 7 is complete,

it is called a total or linear ordering. A totally ordered set is called a chain.

Example 1.31 The set of real numbers with the usual order U is a chain.
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Exercise 1.40

In the multiple ordering of N (example 1.18), ®nd a subset which is a

chain.

Exercise 1.41

A chain has at most one maximal element.

Example 1.32 (Game tree) In many strategic games (example 1.2), the

temporal order of moves is vital. Economists model such dynamic inter-

actions by means of the extensive form; an essential ingredient is a game

tree. A game tree is a partially ordered ®nite set �T ;1� in which the

predecessors 0�t� of every element t are totally ordered, that is, 0�t� is a

chain for every t.

The elements of T are called nodes. Nodes that have no successors are

called terminal nodes. Thus the set of terminal nodes Z is de®ned by

Z � ft A T : 1�t� �qg
Terminal nodes are the maximal elements of �T ;1�. The remaining nodes

X � TnZ are called decision nodes. Similarly nodes that have no prede-

cessors are called initial nodes. The set of initial nodes W is

W � ft A T : 0�t� �qg
Initial nodes are the minimal elements of �T ;1�.

As a partial order, 1 is asymmetric, transitive, and antisymmetric.

The additional requirement that 0�t� is a chain for every t implies that

there is a unique path to every node from some initial node (exercise

1.42). A partially ordered set with this additional property is called an

arborescence.

Exercise 1.42

Let �T ;1� be a game tree (arborescence). For every noninitial node, call

p�t� � sup0�t�
the immediate predecessor of t. Show that

1. p�t� is unique for every t A TnW .

2. There is a unique path between any node and an initial node in a game

tree.
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Remark 1.5 (Zorn's lemma) Zorn's lemma asserts that if X is a par-

tially ordered set in which every chain has an upper bound, then X has a

maximal element. Zorn's lemma is the fundamental existence theorem of

advanced mathematics. It is not possible to prove Zorn's lemma in the

usual sense of deducing it from more primitive propositions. It can be

shown that Zorn's lemma is equivalent to the seemingly obvious axiom

of choice that states: Given any nonempty class of disjoint nonempty sets,

it is possible to select precisely one element from each set. The axiom

of choice or one of its equivalents is usually taken as an axiom in any

mathematical system.

Lattices

A lattice is a partially ordered set (poset) in which every pair of elements

have a least upper bound and a greatest lower bound. If x and y are any

two elements in a lattice L, their least upper bound, denoted x4y, is an

element of L which is called the join of x and y. Their greatest lower

bound, denoted x5y is called their meet. These notations are analogous

to set union and intersection, which provides a useful example of a lattice.

Example 1.33 The real numbers R with x4y � maxfx; yg and x5y �
minfx; yg form a lattice.

Example 1.34 Let X � f1; 2; 3g. The partially ordered set X � X is a

lattice, where

�x1; x2�4�y1; y2� � �maxfx1; y1g;maxfx2; y2g�
�x1; x2�5�y1; y2� � �minfx1; y1g;minfx2; y2g�:
See ®gure 1.7. Although the points �2; 1� and �1; 2� are not comparable

under the natural order, they have a least upper bound of �2; 2� and a

greatest lower bound of �1; 1�. Therefore �2; 1�4�1; 2� � �2; 2� and

�2; 1�5�1; 2� � �1; 1�.
Exercise 1.43

In example 1.34, what is �1; 2�4�3; 1�? �1; 2�5�3; 2�?
Example 1.35 The positive integers N ordered by ``m is a multiple of n''

(example 1.18) constitute a lattice. m5n is the least common multiple of

m and n, while m4n is the greatest common divisor of m and n.
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Example 1.36 (Set inclusion) For any set X, the poset �P�X �;J� is a

lattice. For any two sets S and T, their join is S4T � S WT and their

meet is S5T � S XT .

The lattice of subsets of the four element set fa; b; c; dg is illustrated in

®gure 1.8. Its regular structure justi®es the term ``lattice.''

Example 1.37 (Information partitions) Let S denote the sample space of

random experiment. An information partition P is a partition of S into

mutually exclusive events with interpretation that the decision maker

knows which event takes place. The information partition captures the

decision makers information about the random experiment.

Let P be the set of all partitions of S. We say that a partition P1 is ®ner

than P2 if each set in P2 can be written as the union of sets in P1. A ®ner

partition provides better information about the outcome. Let P1 7P2

denote the relation P1 is ®ner than P2. Then the ordered set �P;7� is a

lattice, where P14P2 is the coarsest partition that is ®ner than both and

P15P2 is the ®nest partition that is coarser than both.

Exercise 1.44

The operations 4 and 5 have the following consistency properties. For

every x; y in a lattice �X ;7�,
1. x4y7 x7 x5y

2. x7 y, x4y � x and x5y � y

3. x4�x5y� � x � x5�x4y�

Figure 1.7
A simple lattice in R2
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Exercise 1.45

Any chain is a lattice.

Exercise 1.46

The product of two lattices is a lattice.

The previous exercise implies that the product of n lattices is a lattice,

with 4 and 5 de®ned componentwise, that is,

x4y � �x14y1; x24y2; . . . ; xn4yn�
x5y � �x15y1; x25y2; . . . ; xn5yn�
Example 1.38 Rn is a lattice with 4 and 5 de®ned componentwise.

A lattice L is complete if every nonempty subset S JL has a least upper

bound and a greatest lower bound in L. Set inclusion is the only complete

lattice in the above examples. A sublattice is a subset S JL that is a lat-

tice in its own right, that is, x5y A S and x4y A S for every x; y A S.

Example 1.39 The set of real numbers R is an example of set that is

completely ordered but not a complete lattice. There are sets that do not

have upper (e.g., N) or lower bounds.

Figure 1.8
The lattice of subsets of a four-element set
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Remark 1.6 (Extended real numbers) The fact that the set R of real

numbers is not a complete lattice (example 1.39) often causes technical

di½culties. Therefore a useful analytical device is to extend the set R so

that it is always complete. To do this, we add to new elements �y and

ÿy, with ÿy < x <y for every x A R. The set

R� � RW fÿygW f�yg
is called the set of extended real numbers.

Since ÿy < x <y for every x A R, every subset S JR� has an upper

bound (�y) and a lower bound (ÿy). Consequently every nonempty set

has a least upper bound and a greatest lower bound. R� is a complete

lattice. If moreover we adopt the convention that sup q � ÿy and

inf q � �y, then every subset of R� has a least upper bound and

greatest lower bound.

In fact the de®nition of a complete lattice is partially redundant. For

completeness it su½ces that every subset has a greatest lower bound, since

this implies the existence of a least upper bound. This result (exercise 1.47)

is valuable in establishing completeness. (Similarly, if every subset of a

partially ordered set has a least upper bound, the poset is a complete

lattice.)

Exercise 1.47

Let X be a partially ordered set which has a best element x�. If every

nonempty subset S of a X has a greatest lower bound, then X is a com-

plete lattice.

Example 1.40 The set of points f1; 2; 3g � f1; 2; 3g (example 1.34) is a

sublattice of R2.

However, note that the requirement of being a sublattice is more strin-

gent than being a complete lattice in its own right.

Example 1.41 In the previous example, let X be the set of points illus-

trated in ®gure 1.9.

X � f�1; 1�; �2; 1�; �3; 1�; �1; 2�; �1; 3�; �3; 3�g
X is a complete lattice but is it not a sublattice of f1; 2; 3g � f1; 2; 3g or

R2. The point �2; 2� is the least upper bound of f�2; 1�; �1; 2�g in R2,

while �3; 3� is the least upper bound in X.
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Exercise 1.48

Let a; b be elements in a lattice L with a6 b. Then the subsets 7�b�, 6�a�
and �a; b� are sublattices. The sublattices are complete if L is complete.

Remark 1.7 It is worth noting the role of successive assumptions. Anti-

symmetry ensures the uniqueness of the least upper bound and greatest

lower bound of any set if they exist. A poset is a lattice if it contains the

least upper bound and greatest lower bound of every pair of elements in

the set. A lattice is complete if furthermore it contains the least upper

bound and greatest lower bound for every set. Note that ``completeness''

in reference to a lattice is used in a slightly di¨erent sense to completeness

of the underlying relation. A complete lattice is a complete ordering,

although the converse is not necessarily true.

Strong Set Order

Any lattice �X ;7� induces a relation on the subsets of X that is called the

strong set order, denoted 7S. Given S1, S2 JX ,

S2 7S S1 , x15x2 A S1 and x14x2 A S2

for every x1 in S1 and x2 A S2. This order will play an important role in

section 2.2.

Example 1.42 The strong set order is quite di¨erent to set inclusion.

For example, consider example 1.34. Let S1 � f�1; 1�; �2; 1�; �3; 1�g and

S2 � f�1; 2�; �2; 2�; �3; 2�g (®gure 1.10). Then S2 7S S1 although S1 and S2

are disjoint. Further consider a proper subset of S1 such as S3 �
f�2; 1�; �3; 1�g. S2 TS S3, since �1; 1� � �2; 1�5�1; 2� B S3.

Figure 1.9
A lattice that is not a sublattice
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The strong set order is not re¯exive, and hence it is not an order on

P�X�. However, it is a partial order on the set of all sublattices of X. The

details are given in the following exercise.

Exercise 1.49

1. For any lattice X, the strong set order 7S is antisymmetric and tran-

sitive. [Hint: Use exercise 1.44.]

2. S 7S S if and only S is a sublattice.

3. 7S is a partial order on the set of all sublattices of X.

The nature of the strong set order is characterized by the following

result, which says (roughly) that S2 7S S1 implies that the lowest element

of S2 dominates the lowest element of S1. Similarly the best element of S2

is greater than the best element of S1.

Exercise 1.50

If S1, S2 are subsets of a complete lattice,

S1 7S S2 ) inf S1 7 inf S2 and sup S1 7 sup S2

For closed intervals of a chain, such as R, this characterization can be

strengthened.

Exercise 1.51

If S1, S2 are intervals of a chain,

S1 7S S2 , inf S1 7 inf S2 and sup S1 7 sup S2

Figure 1.10
The strong set order
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1.2.5 Weakly Ordered Sets

The second class of order relations important in economics is obtained by

imposing completeness rather than antisymmetry on the preorder. A weak

order is a relation that is complete and transitive. It is sometimes called

simply an ordering. The most important example in economics is the

consumer's preference relation (example 1.12), which is considered in

detail in section 1.6.

Exercise 1.52

Many economics texts list three assumptionsÐcomplete, transitive, and

re¯exiveÐin de®ning the consumer's preference relation. Show that re¯ex-

ivity is implied by completeness, and so the third assumption is redundant.

Exercise 1.53

Why would antisymmetry be an inappropriate assumption for the con-

sumer's preference relation?

Exercise 1.54

In a weakly ordered set, maximal and best elements coincide. That is,

x is maximal, x is best

Exercise 1.55

A weakly ordered set has a most one best element. True or false?

In a weakly ordered set, every element is related to every other element.

Given any element y, any other element x A X belongs to either the upper

or lower contour set. Together with the indi¨erence sets, the upper and

lower contour sets partition the set X in various ways. Furthermore the

upper and lower contour sets are nested. The details are given in the

following exercises.

Exercise 1.56

If 7 is a weak order on X, then for every y A X ,

1. 7�y�W6�y� � X and 7�y�X6�y� � Iy

2. 7�y�W0�y� � X and 7�y�X0�y� �q

3. 1�y�, Iy and 0�y� together partition X

Exercise 1.57

If 7 is a weak order on X,
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x7 y)7�x�J7�y�
x1 y)1�x�S1�y�

The principal task of optimization theory and practice is identify the

best element(s) in a choice set X, which is usually weakly ordered by some

criterion. To identify the best element, optimization theory draws on

other properties (linear and metric) of the choice set. Techniques of opti-

mization are explored in chapter 5. To prepare the ground, we next

investigate the metric and linear properties of sets in sections 1.3 and 1.4.

Before leaving order relations, we touch on the problem of aggregating

di¨erent orders on a common set.

1.2.6 Aggregation and the Pareto Order

The product order de®nes a natural order on the product of ordered sets.

Economists frequently confront an analogous situation, involving di¨er-

ent orders over a common set. Speci®cally, suppose that there is a set X on

which is de®ned a pro®le of distinct orderings �71;72; . . . ;7n�. These

di¨erent orders might correspond to di¨erent individuals or groups or to

di¨erent objectives. The problem is to aggregate the separate orders into a

common or social order.

Analogous to the product order, a natural way in which to aggregate

the individual preferences is to de®ne the social preference by

x7P y, x7i y for all i � 1; 2; . . . ; n

x; y A X , and

x1P y, x1i y for all i � 1; 2; . . . ; n �1�
This is known as the Pareto order. For state x to strictly preferred to state

y in the Pareto order requires that x strictly dominate y in every individ-

ual order.

The outcome x is said to Pareto dominate y if x1P y in the Pareto

order. It is called Pareto e½cient or Pareto optimal if it is maximal in the

weak Pareto order, that is if there is no outcome y such that all individ-

uals strictly prefer y to x. The set of states that is maximal in the Pareto

ordering is called the Pareto optimal set.

Pareto � fx A X : there is no y A X such that y1Pxg
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Exercise 1.58

There always at least one Pareto optimal outcome in any ®nite set, that is

X ®nite) Pareto0q

Remark 1.8 ( Weak versus strong Pareto order) Two distinct Pareto

orders are commonly used in economics, which is a potential source of

confusion. The order de®ned by (1) is called the weak Pareto order. Some

authors replace (1) with

x1P y, x7i y for all i � 1; 2; . . . ; and x1j y for some j

This is called the strong Pareto order, since it ranks more alternatives.

Alternative x dominates y in the strong Pareto order provided that at least

one individual strictly prefers x to y (and no one strictly prefers y to x).

Similarly x is called strongly Pareto optimal if it is maximal in the strong

Pareto order.

The weak and strong Pareto orders are distinct, and they can lead to

di¨erent answers in some situations [although the distinction is immate-

rial in one domain of prime economic interest (exercise 1.249)]. The

strong Pareto order is more commonly applied in welfare economics,

whereas the weak order is usually adopted in general equilibrium theory

and game theory.

Exercise 1.59

Investigate which de®nition of the Pareto order is used in some leading

texts, such as Kreps (1990), Mas-Colell et al. (1995), Varian (1992), and

Osborne and Rubinstein (1994).

Even if all the constituent orders 7i are complete, the Pareto order 7P

is only a partial order. Where x1i y for some i while x0i y for others, x

and y are not comparable. This de®ciency provides scope for two fertile

areas of economic analysis, social choice theory and game theory. Since

they also provide good illustrations for the material of this book, we

brie¯y describe each of these areas.

Social Choice

A social choice problem comprises

. a ®nite set N of individuals or agents
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. a set X of outcomes or social states

. for each individual i A N a preference relation 7i on the set of out-

comes X

The theory of social choice is concerned with aggregating individuals

orderings over a set of social states X into a social preference. While non±

Pareto orders have been considered, the Pareto criterion is so compelling

that the central problem of social choice can be regarded as completing

the Pareto order in a way that respects the individual preference orderings.

Unfortunately, the principal results are essentially negative, as exempli®ed

by the famous impossibility theorem of Arrow.

Example 1.43 (Arrow's impossibility theorem) One way to complete the

Pareto order would be to de®ne

x7 y, x7i y

for some speci®c individual i. In e¨ect, individual i is made a dictator.

While the dictatorial ordering satis®es the Pareto principle, it is not cur-

rently regarded as politically correct!

Another property that re¯ects sympathy between the social ordering

and individual orders requires that the social order does not distinguish

between alternatives that are indistinguishable to individuals. We say that

the product order 7 satis®es independence of irrelevant alternatives (IIA)

if for every set of social states AHX , given two sets of individual prefer-

ences 7i and 70i which are identical over the set A, that is,

x7i y, x70i y for every x; y A A

then the corresponding social orders 7 and 70 also order A identically,

that is,

x7 y, x70 y for every x; y A A

In 1950 Nobel laureate Kenneth Arrow (1963) showed that it is impos-

sible to complete the weak Pareto ordering in a way that is independent of

irrelevant alternatives but not dictatorial. The following three exercises

provide a straightforward proof of Arrow's theorem.

Exercise 1.60 (Field expansion lemma)

A group S of individuals is decisive over a pair of alternatives x; y A X if

x1i y for every i A S ) x1 y
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Assume that the social order is consistent with the Pareto order and sat-

is®es the IIA condition. Show that, if a group is decisive over any pair of

states, it is decisive over every pair of alternatives. (Assume that there are

at least four distinct states, that is, jX jV 4.)

Exercise 1.61 (Group contraction lemma)

Assume that the social order is consistent with the Pareto order and sat-

is®es the IIA condition, and that jX jV 3. If any group S with jSj > 1 is

decisive, then so is a proper subset of that group.

Exercise 1.62

Using the previous exercises, prove Arrow's impossibility theorem.

Exercise 1.63 (The Liberal Paradox)

Liberal values suggest that there are some choices that are purely personal

and should be the perogative of the individual concerned. We say that a

social order exhibits liberalism if for each individual i, there is a pair of

alternatives x; y A X over which she is decisive, that is, for which

x1i y) x1 y

(A dictator is decisive over all alternatives.) Show that is impossible to

complete a Pareto order in a way that respects liberalism. This incon-

sistency between liberalism and the Pareto principle is known the Liberal

Paradox. [Hint: It su½ces that show that there are not even two persons

who are decisive over personal choices. Consider a pair of alternatives for

each person, and show that the implied Pareto order is intransitive.]

Remark 1.9 (Rawlsian social choice) A criterion of social justice ®rst

advocated by the philosopher John Rawls (1971) has attracted a lot of

attention from economists. E¨ectively, the Rawlsian maximin criterion is

analogous to completing the Pareto ordering lexicographically, assigning

priority to the preferences of the least well o¨ individual, then the next

least favored, and so on. The analogy is inexact, since the identity of the

least well o¨ individual varies with the social state.

Coalitional Games

A coalitional game comprises

. a ®nite set N of players

. a set X of outcomes
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. for each player i A N a preference relation 7i on the set of outcomes X

. for every proper coalition S JN, a set W�S�JX of outcomes that it

can obtain by its own actions

In e¨ect each coalition S is decisive for the outcomes in W�S�. Although

the structure of a coalitional game is similar to that of a social choice

problem, the analytical focus is di¨erent. Rather than attempting to pro-

duce a complete social order over X, coalitional game theory aims to

isolate a subset of X which is maximal with respect to some partial

order.

Example 1.44 (Cost allocation) The Southern Electricity Region of India

comprises four states: Andra Pradesh (AP), Kerala, Mysore, and Tamil

Nadu (TN). In the past each state had tended to be self-su½cient in the

generation of electricity. This led to suboptimal development for the region

as a whole, with reliance on less economic alternative sources in Andra

Pradesh and Tamil Nadu, instead of exploiting the excellent hydro

resources in Mysore and Kerala.

The costs of developing the electric power system in the region, under

various assumptions about the degree of cooperation between states, are

summarized in the following table. To simplify the calculations, Kerala

and Mysore have been amalgamated into a hybrid state (KM), since they

are essentially similar in their hydro resources and power requirements.

(The cost estimates were derived from a general investment planning and

system operation model comprising 800 variables and 300 constraints.)

Coalition structure TN AP KM

Total cost

in region

Self-su½ciency for each area 5,330 1,870 860 8,060

Cooperation between TN and AP,

self-su½ciency for KM

5,520 1,470 860 7,850

Cooperation between TN and KM,

self-su½ciency for AP

2,600 1,870 2,420 6,890

Cooperation between AP and KM,

self-su½ciency for TN

5,330 480 1,480 7,290

Full cooperation 3,010 1,010 2,510 6,530
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Clearly, the region as a whole bene®ts from cooperation, since total costs

are minimized by exploiting the rich hydro resources in Kerala and

Mysore. However, this increases the costs incurred in Kerala and Mysore

to 2,510 million rupees, whereas they can provide for the own needs at a

much lower cost of 860 million rupees. To induce the Kerala and Mysore

to cooperate in a joint development, the other states must contribute to

the development of their hydro resources.

We can model this problem as a coalitional game in which the players

are Andra Pradesh (AP), Tamil Nadu (TN), and the hybrid state

Kerala Mysore (KM). The outcomes are their respective cost shares

�xAP; xTN ; xKM�, where xAP is the cost borne by Andra Pradesh. The set

of outcomes X � R3
�. Each player prefers a lower cost share, that is,

x 0i 7i xi , x 0i U xi

By being self-su½cient, each state can ensure that it pays no more than

its own costs, so that

W�AP� � f�xAP; xTN ; xKM� : xAP U 1;870g
W�TN� � f�xAP; xTN ; xKM� : xTN U 5;300g
W�KM� � f�xAP; xTN ; xKM� : xKM U 860g
Alternatively, Andra Pradesh and Tamil Nadu could undertake a joint

development, sharing the total cost of 6,990 between them. Thus

W�AP;TN� � f�xAP; xTN ; xKM� : xAP � xTN U 6;990g
Similarly

W�AP;KM� � f�xAP; xTN ; xKM� : xAP � xKM U 1;960g
W�TN;KM� � f�xAP; xTN ; xKM� : xTN � xKM U 5;020g
Finally the three states could cooperate sharing the total costs 6,530

W�AP;TN;KM� � f�xAP; xTN ; xKM� : xAP � xTN � xKM � 6;530g
Coalitional game theory typically respects the Pareto order, attempting

to extend it by recognizing the decisiveness of coalitions over certain

subsets of the feasible outcomes. The primary example of such a solution

concept is the core, which extends the Pareto order to coalitions as well as

the group as a whole.
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Example 1.45 (Core) The core of a coalitional game is the set of out-

comes for which no coalition can do better by unilateral action, that is,

Core � fx A X : there does not exist S and y A W�S� such that

y1i x for every i A Sg
For some games there may be no such unimprovable allocation, in which

case we say that the core is empty.

Exercise 1.64

Show that every core allocation is Pareto optimal, that is,

coreJPareto

Exercise 1.65

Find the core of the cost allocation game (example 1.44).

Example 1.46 (Coalitional game with transferable payo¨ ) In an impor-

tant class of coalitional games, the set of possible outcomes X comprises

allocations of ®xed sum of money or other good, denoted w�N�, among

the players. That is,

X � x A Rn :
X
i AN

xi � w�N�
( )

Individual coalitions can allocate smaller sums, denoted w�S�, among

their members, so that

w�S� � x A Rn :
X
i AS

xi Uw�S�
( )

Individual players rank allocations on the basis of their own shares, that is,

x 07i x, x 0i V xi

Concisely, a coalitional game with transferable payo¨ comprises

. a ®nite set of players N

. for every coalition S JN, a real number w�S� that is called the worth of

the coalition S

Conventionally w�q� � 0. A TP-coalitional game �N;w� is called essen-

tial if there is some surplus to distribute, that is,
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w�N� >
X
i AN

w�fig�

The label transferable payo¨ re¯ects the fact that potential worth of a

coalition w�S� can be freely allocated among the members of the coalition.

For convenience, we will refer to such games as TP-coalitional games. As

well as being practically important (exercise 1.66), TP-coalitional games

provide an excellent illustration of many of the concepts introduced in

this chapter and also in chapter 3.

Exercise 1.66 (Cost allocation)

Formulate the cost allocation problem in example 1.44 as a TP-coalitional

game. [Hint: Regard the potential cost savings from cooperation as the

sum to be allocated.]

Exercise 1.67

Show that the core of coalitional game with transferable payo¨ is

core � x A X :
X
i AS

xi Vw�S� for every S JN

( )

Example 1.47 (Simple games) A simple game is a TP-coalitional game

in which the worth of each coalition w�S� is either 0 or 1 (w�N� � 1). A

coalition for which w�S� � 1 is called a winning coalition. Simple games

often provide a suitable model for situations involving the exercise of

power.

Example 1.48 (Unanimity games) In some simple games a particular

coalition T is necessary and su½cient to form a winning coalition, so that

w�S� � 1 if S KT

0 otherwise

�
Each member i of the essential coalition T is called a veto player, since no

winning coalition can be formed without i. The game is called a unanimity

game, since winning requires the collaboration of all the veto players.

For a given set of players N, each coalition T de®nes a di¨erent

unanimity game uT given by

uT�S� � 1 if S KT

0 otherwise

�

40 Chapter 1 Sets and Spaces



Unanimity games play a fundamental role in the theory of TP-coalitional

games.

Exercise 1.68

Specify the set of unanimity games for the player set N � f1; 2; 3g.
Exercise 1.69

Show that the core of a simple game is nonempty if and only if it is a

unanimity game.

Example 1.49 (Nucleolus) We can measure the potential dissatisfaction

of a coalition S with a particular outcome x A X by the di¨erence between

its worth and its total share, de®ning

d�S; x� � w�S� ÿ
X
i AS

xi

The amount d�S; x� is called the de®cit of the coalition S at the outcome

x. If d�S; x�V 0, the coalition is receiving less than its worth. The larger

its de®cit d�S; x�, the greater is its potential dissatisfaction with the out-

come x.

For any outcome x, let d�x� denote a list of de®cits for each proper

coalition arranged in decreasing order. That is, the ®rst element of the list

d�x� is the de®cit of the most dissatis®ed coalition at the outcome x. Since

there are 2n coalitions, the list d�x� has 2n components. It is an element of

the space R2n

.

We can order these lists lexicographically (section 1.2.3). d�x� precedes

d�y� in the lexicographic order on R2 n

if the coalition which is most dis-

satis®ed with x has a smaller de®cit than the coalition which is most dis-

satis®ed at y.

The lexicographic order 7L on R2 n

induces a preorder 7d on the set of

outcomes X de®ned by

x7d y, d�x�6L d�y�
and

x1d y, d�x�0L d�y�
Outcome x is preferred to outcome y in the de®cit order 7d if d�x� pre-

cedes d�y� in the lexicographic order; that is, the maximum de®cit at x is

less than the maximum de®cit at y.
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The nucleolus of a TP-coalitional game is the set of most preferred or

best elements in the de®cit order 7d , that is,

Nu � fx A X : x7d y for every y A Xg
In section 1.6 we will show that there is a unique best element for every

TP-coalitional game. Consequently the nucleolus is a useful solution

concept for such games, with many desirable properties.

Exercise 1.70

In the cost allocation game, ®nd d�x� for

x1 � �180; 955; 395� and x2 � �200; 950; 380�
Show that d�x1�0L d�x2� and therefore x1 1d x2.

Exercise 1.71

Is the de®cit order 7d de®ned in example 1.49

. a partial order?

. a weak order?

on the set X.

Exercise 1.72

x belongs to the core if and only if no coalition has a positive de®cit, that

is,

core � fx A X : d�S; x�U 0 for every S JNg
Exercise 1.73

Show that NuJ core assuming that core0q.

Strategic Games

Our earlier description of a strategic game in example 1.2 was incomplete

in that it lacked any speci®cation of the preferences of the players. A full

description of a strategic game comprises:

. A ®nite set N of players.

. For each player i A N a nonempty set Ai of actions.

. For each player i A N a preference relation 7i on the action space

A � A1 � A2 � � � � � An.
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We can summarize a particular game by the ordered triple

�N;A; �71; 72; . . . ;7n��, comprising the set of players, their strategies,

and their preferences.

Example 1.50 (Strictly competitive game) A strategic game between two

players is strictly competitive if the preferences of the players are strictly

opposed, that is for every a1, a2 A A

a1 71 a2 , a2 72 a1

In other words, 72 is the inverse of 71.

A strategic game is analogous to the problem of social choice, in that it

involves di¨erent orderings over a common space A � A1 � A2 � � � � � An.

However, strategic game theory adopts yet another way of resolving (in

an analytical sense) the con¯ict between competing orderings. Rather

than attempting to combine the individual preference orderings 7i into a

complete order 7, the game theorist attempts to identify certain action

pro®les a A A as likely outcomes of independent play. The primary crite-

rion is Nash equilibrium.

Example 1.51 (Nash equilibrium) In a strategic game, a Nash equilibrium

is a choice of action for each player a� � �a�1 ; a�2 ; . . . ; a�n � such that for

every player i A N,

�a�i ; a�ÿi�7i �ai; a
�
ÿi� for every ai A Ai

Each player's chosen action a�i is at least as preferred as any other action

ai A Ai given the choices of the other players. These choices are made

simultaneously, and a Nash equilibrium results when each player's action

is an optimal response to those of the other players. No player will regret

her action when the actions of the other players are revealed. A Nash

equilibrium is called strict if

�a�i ; a�ÿi�1i �ai; a
�
ÿi� for every ai A Ainfa�i g

Example 1.52 (The Prisoner's Dilemma) Two suspects are arrested and

held in separate cells. Each is independently o¨ered the option of turning

``state's evidence'' by confessing the crime and appearing as a witness

against the other. He will be freed while his partner receives a sentence of

four years. However, if both confess, they can expect a sentence of three

years each. If neither confess, the police only have su½cient evidence to
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charge them with a lesser o¨ense, which carries a penalty of one year's

imprisonment.

Each player has just two actions: Confess (denoted C ) and not confess

(N ). The following table summarizes actions available to the players and

their consequences (expected years of imprisonment).

Player 2

C N

C 3, 3 0, 4

N 4, 0 1, 1
Player 1

Assuming that the suspects do not like prison, the players preferences are

�C;N�11 �N;N�11 �C;C�11 �N;C�
�N;C�12 �N;N�12 �C;C�12 �C;N�
where �C;N� denotes the action pro®le in which player 1 confesses and

player 2 does not. Note that each player would prefer to confess irre-

spective of the choice of the other player. The Nash equilibrium outcome

of this game is �C;C� is which both suspects confess, receiving a sentence

of three years each.

Note that the Nash equilibrium is inconsistent with the Pareto order,

since both players prefer �N;N� to the Nash equilibrium outcome �C;C�.
The Prisoner's Dilemma game is a model for many social phenomena, in

which independent action does not achieve Pareto optimal outcomes.

Exercise 1.74

Show formally that the action pro®le �C;C� is a Nash equilibrium.

Example 1.53 (Dominance) In a strategic game each player's complete

preference ordering 7i over outcomes (action pro®les A) de®nes a partial

ordering over the player i 's own actions. We say that action a2
i weakly

dominates a1
i for player i if

�a2
i ; aÿi�7i �a1

i ; aÿi� for every aÿi A Aÿi

that a2
i strictly dominates a1

i if

�a2
i ; aÿi�1i �a1

i ; aÿi� for every aÿi A Aÿi

In the Prisoner's Dilemma, C strictly dominates N for both players.
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Exercise 1.75

Let 70i denote the partial order induced on player i 's action space by her

preferences over A. That is,

a2
i 7

0
i a1

i , �a2
i ; aÿi�7i �a1

i ; aÿi� for every aÿi A Aÿi

Show that if there exists an action pro®le a� such that a�i is the unique

maximal element in �Ai;7
0
i� for every player i, then a� is the unique Nash

equilibrium of the game.

1.3 Metric Spaces

In a metric space, attention is focused on the spatial relationships between

the elements. A metric space is a set X on which is de®ned a measure of

distance between the elements. To conform with our conventional notion

of distance, the distance measure must satisfy certain properties. The dis-

tance between distinct elements should be positive. It should be symmetric

so that it does not matter in which direction it is measured. Last, the

shortest route between two distinct elements is the direct route (the trian-

gle inequality). See ®gure 1.11. A distance measure with these properties is

called a metric.

Formally, a metric on a set X is a measure that associates with every

pair of points x; y A X a real number r�x; y� satisfying the following

properties:

1. r�x; y�V 0

2. r�x; y� � 0 if and only if x � y

Figure 1.11
The triangle inequality
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3. r�x; y� � r�y; x� (symmetry)

4. r�x; y�U r�x; z� � r�z; y� (triangle inequality)

A metric space is a set X together with its metric r and is denoted by the

ordered pair �X ; r�. If the metric is understood, it may be referred to as

the metric space X. The elements of a metric space are usually called

points.

The most familiar metric space is the set R of real numbers, where the

distance between any two elements x and y is naturally measured by their

di¨erence jxÿ yj, where we take absolute values to ensure nonnegativity.

There are various ways in which we can generalize this to other sets. Some

of these are explored in the following example.

Example 1.54 (Consumption bundles) Consider how we might de®ne the

distance between consumption bundles. Recall that a consumption bundle

x is a list �x1; x2; . . . ; xn� of quantities of di¨erent commodities, where xi is

the quantity of good i. Given two consumption bundles x and y, one way

to measure the distance is to consider the di¨erence in consumption of

each commodity in turn and sum them, giving

r1�x; y� �
Xn

i�1

jxi ÿ yij

Instead of taking the absolute value of the di¨erences, an alternative

measure would be to square the di¨erences and take their square root

r2�x; y� �
���������������������������Xn

i�1

�xi ÿ yi�2
s

Finally, we might consider that the commodity whose quantity has

changed most should determine the distance between the commodity

bundles, giving

ry�x; y� � max
n

i�1
jxi ÿ yij

Each of these measures is a metric, an appropriate measure of the distance

between consumption bundles.

The preceding example introduced three ways in which we might gen-

eralize the notion of distance between real numbers to the n-dimensional
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space Rn. Each of the three metrics for Rn discussed in the preceding

example is used in mathematical analysis. Most familiar is the Euclidean

metric

r2�x; y� �
���������������������������Xn

i�1

�xi ÿ yi�2
s

which generalizes the usual notion of distance in two and three dimen-

sional space. The third metric

ry�x; y� � max
n

i�1
jxi ÿ yij

is known as the sup metric. It is often more tractable in computations. We

will see later that the distinctions between these three metrics are often

immaterial, since the most important properties are independent of the

particular metric.

Exercise 1.76

Show that r�x; y� � jxÿ yj is a metric for R.

Exercise 1.77

Show that ry�x; y� � maxn
i�1 jxi ÿ yij is a metric for Rn.

Analogous to linear spaces, a subspace of a metric space �X ; r� is a

subset S HX in which distance is de®ned by the metric inherited from the

space �X ; r�. For example, the consumption set X JRn
� (example 1.6)

can be thought of as a subspace of the metric space Rn, with one of its

associated metrics r1, r2, ry.

Two further illustrations of metric spaces are given in the following

examples. Other interesting examples involving sets of functions will be

met in chapter 2.

Example 1.55 (Discrete metric space) Any set X can be converted into a

metric space by equipping it with the discrete metric

r�x; y� � 0 if x � y

1 otherwise

�
Such a metric space is not very useful, except as a source of possible

counterexamples.
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Example 1.56 (Hamming distance) Let X be the set of all n-tuples of

zeros and ones, that is,

x � f�x1; x2; . . . ; xn� : xi A f0; 1gg
The elements of x can be regarded as binary strings or messages of length

n. The Hamming distance rH between any two elements x and y in X is

the number of places in which x and y di¨er. �X ; rH� is a metric space

used in coding theory, where the distance between two points (strings or

messages) is the number of locations in which they di¨er. It is also used in

the theory of automata.

In any metric space the distance of a point from a set is de®ned to be its

distance from the nearest point, that is,

r�x;S� � inffr�x; y� : y A Sg
and the distance between sets is the minimum distance between points in

the sets

r�S;T� � inffr�x; y� : x A S; y A Tg
The diameter of a set is the maximum distance between any points in the

set

d�S� � supfr�x; y� : x; y A Sg
A set S is bounded if it has a ®nite diameter, that is, d�S� <y.

A thorough understanding of the structure of metric spaces requires

careful study and attention to detail, which can be somewhat tedious.

To understand the rest of this book, the reader needs to be able to dis-

tinguish the interior and boundary points, to know the di¨erence between

an open and a closed set, and to have some familiarity with the conver-

gence of sequences. The following subsections outline the important

properties of metric spaces. Many of these properties will be used in the

book, but their use is seldom fundamental in the same way as linearity

and convexity. Most of the properties are given as exercises, leaving to

the reader the choice of depth in which they are studied. Some readers

will be content to note the terminology and the major results. For

those who want to go further, much can be learned by attempting all the

exercises.
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1.3.1 Open and Closed Sets

Proximity and neighborhood are fundamental to the theory of metric

spaces. The set of points in close proximity to a given point x0 is called a

ball about x0. Speci®cally, given any point x0 in a metric space �X ; r� and

a distance r > 0, the open ball about x0 of radius r is the set of points

Br�x0� � fx A X : r�x; x0� < rg
It is the set of all points that are less than r distant from x0 (®gure 1.12).

Example 1.57 (Unit balls in R2) Open balls are not necessarily spherical,

and their shape depends on the particular metric. Figure 1.13 illustrates

Figure 1.12
An open ball and its neighborhood

Figure 1.13
Unit balls in R2
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the unit balls Br�0� associated with di¨erent metrics in the plane (R2).

The unit ball in the Euclidean metric r2 is indeed circularÐit is a spheri-

cal disk centered at the origin. In the sup metric, ry, the unit ball is a

square. For this reason, the sup metric is sometimes called the taxicab

metric. Similarly the metric r1 is sometimes called the ``diamond metric.''

An open ball is a symmetrical neighborhood. However, we note that

symmetry is not essential to the idea of proximity. The important char-

acteristic of the neighborhood of a particular point is that no nearby

points are excluded. Formally, any set S JX is a neighborhood of x0 (and

x0 is an interior point of S) if S contains an open ball about x0.

The set of all interior points of a set S is called the interior of S, which is

denoted int S. A set S is open if all its points are interior points, that is,

S � int S. In an open set, every point has a neighborhood that is entirely

contained in the set, so it is possible to move a little in any direction and

remain within the set. We can also de®ne interior points in terms of

neighborhoods. A point x0 A X is an interior point of S JX if S contains

a neighborhood of x0. That is, x0 is an interior point of S if S contains all

nearby points of x0. On the other hand, a point x0 A X is a boundary point

of S JX if every neighborhood of x0 contains points of S and also con-

tains points of S c. Each boundary point is arbitrarily close to points in S

and to points outside. The boundary b�S� of S is the set of all its boundary

points. In line with common usage, the boundary delineates a set from its

complement.

The closure S of a set S is the union of S with its boundary, that is,

S � S W b�S�
Any x A S is called a closure point of S. A set S is closed if it is equal to its

closure, that is, if S � S.

Remark 1.10 These conceptsÐballs, neighborhoods, interiors, and

boundariesÐgeneralize everyday concepts in familiar three-dimensional

Euclidean space. Indeed, the theory of metric spaces is an abstraction of

familiar geometry. A thorough understanding of the geometry of more

abstract spaces requires an ability to ``visualize'' these spaces in the mind.

Two- and three-dimensional analogues and diagrams like ®gure 1.14 are

very helpful for this purpose. However, we need to bear in mind that these

are only aids to understanding, and learn to rely on the de®nitions. There
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are some obvious properties of three-dimensional Euclidean space that do

not carry over to all metric spaces. These distinctions are usually explored

by studying pathological examples. Since these distinctions will not bother

us in this book, we will not pursue them here. However, readers should be

wary of leaping to unwarranted conclusions when they encounter more

general spaces.

To summarize, every set S in a metric space has two associated sets,

int S and S with

int S JS J S

In general, S is neither open nor closed, and both inclusions will be

proper. However, if equality holds in the left hand inclusion, S is open. If

equality holds in the right-hand side, S is closed. Furthermore every point

x A S is either an interior point or a boundary point. A set is open if it

contains no boundary points; it is closed if it contains all its boundary

points. If S is open, then its complement is closed. If it is closed, its com-

plement is open. The closure of S is the union of S with its boundary. The

interior of S is comprises S minus its boundary. These important proper-

ties of open and closed sets are detailed in the following exercises.

Example 1.58 (Closed ball) Given any point x0 in a metric space �X ; r�,
the closed ball about x0 of radius r,

Cr�x0� � fx A X : r�x; x0�U rg
is a closed set.

Figure 1.14
Interior and boundary points
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Example 1.59 (Unit sphere) The boundary of the unit ball B1�0� is the

set

S1�0� � fx A X : r�x; 0� � 1g
is called the unit sphere. In R2 the unit sphere is S1�0� �
fx A R2 : x2

1 � x2
2 � 1g, which is the boundary of the set B1�0� �

fx A R2 : x2
1 � x2

2 < 1g.
Exercise 1.78

What is the boundary of the set S � f1=n : n � 1; 2; . . .g?
Exercise 1.79

For any S JT ,

1. int S J int T

2. S JT

Exercise 1.80

A set is open if and only if its complement is closed.

Exercise 1.81

In any metric space X, the empty set q and the full space X are both open

and closed.

A metric space is connected if it cannot be represented as the union of

two disjoint open sets. In a connected space the only sets that are both

open and closed are X and q. This is case for R, which is connected. Also

the product of connected spaces is connected. Hence Rn and q are the

only sets in Rn that are both open and closed.

Exercise 1.82

A metric space is connected if and only it cannot be represented as the

union of two disjoint closed sets.

Exercise 1.83

A metric space X is connected if and only if X and q are the only sets

that are both open and closed.

Exercise 1.84

A subset S of a metric space is both open and closed if and only if it has

an empty boundary.
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Exercise 1.85

1. Any union of any collection of open sets is open. The intersection of a

®nite collection of open sets is open.

2. The union of a ®nite collection of closed sets is closed. The intersection

of any collection of closed sets is closed.

Exercise 1.86

For any set S in a metric space

1. int S is open. It is the largest open set in S.

2. S is closed. It is the smallest closed set containing S.

Exercise 1.87

The interior of a set S comprises the set minus its boundary, that is,

int S � Snb�S�
Exercise 1.88

A set is closed if and only if it contains its boundary.

Exercise 1.89

A set is bounded if and only it is contained in some open ball.

Exercise 1.90

Given an open ball Br�x0� in a metric space, let S be a subset of diameter

less than r that intersects Br�x0�. Then S JB2r�x0�.
Example 1.60 (Rational approximation) One concept that arises in more

advanced work is the notion of a dense set. A set S is dense in the metric

space X if S � X . This means that every point in S c is a boundary point

of S. The classic example is the set of rational numbers, which is dense in

the set of real numbers. Therefore there are rational numbers that are

arbitrarily close to any real number. This is fundamental for computation,

since it implies that any real number can be approximated to any degree

of accuracy by rational numbers.

Example 1.61 (E½cient production) A production plan y A Y is e½cient

if and only if there is no feasible plan y 0 A Y with y 0X y. y A Y is e½cient

if it impossible to produce the same output with less input, or to produce

more output with the same input. Let E¨�Y� denote the set of all e½cient

production plans. Then

E¨�Y � � fy A Y : y 0X y) y 0 B Yg
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Every interior point of the production possibility set Y is ine½cient.

Assume that y0 is a production plan in int Y . Then there exists an open

ball Br�y0� about y0 that is contained in int Y . This ball contains a plan

y 0X y in Br�y0�, which is feasible. Therefore y B E¨�Y�. Consequently

e½cient production plans belong to the boundary of the production pos-

sibility set, that is, E¨�Y�J b�Y�. In general, E¨�Y � is a proper subset of

b�Y �. Not all boundary points are e½cient.

Exercise 1.91

Show that free disposal (example 1.12) implies that the production possi-

bility set has a nonempty interior.

Remark 1.11 (Topological spaces) The student of mathematical eco-

nomics will sooner or later encounter a topological space. This is a gen-

eralization of a metric space, which can be explained as follows.

We remarked earlier that an open ball is a neighborhood that is sym-

metrical. Careful study of the preceding exercises reveals that symmetry is

irrelevant to distinguishing interior from boundary points, open from

closed sets. The fundamental idea is that of a neighborhood. A topologi-

cal space dispenses with the measure of distance or metric. It starts by

selecting certain subsets as neighborhoods or open sets, which is known as

a topology for the set. This su½ces to identify interior points, boundary

points, closed sets, and so on, with all the properties outlined in the pre-

ceding exercises.

Any metric on a space identi®es certain subsets as neighborhoods, and

hence induces a topology on the space. Furthermore di¨erent metrics on a

given set may lead to the same topology. For example, we will show in

section 1.5 that the three metrics which we proposed for Rn all identify

the same open sets. We say they generate the same topology. Any prop-

erty that does not depend on the particular metric, but on the fact that

certain sets are open and others are not, is called a topological property

(exercise 1.92). Continuity (section 2.3) is the most important topological

property.

Exercise 1.92 (Normal space)

A topological space is said to be normal if, for any pair of disjoint closed

sets S1 and S2, there exist open sets (neighborhoods) T1 KS1 and T2 KS2

such that T1 XT2 �q. Show that any metric space is normal.
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Exercise 1.93

Let S1 and S2 be disjoint closed sets in a metric space. Show that there

exists an open set T such that

S1 JT and S2 XT �q

Remark 1.12 (Separation theorems) Many results in economic analysis

are based on separation theorems in linear spaces, which will be explored

extensively in section 3.9. Exercises 1.92 and 1.93 are topological separa-

tion theorems.

Relative Interiors, Open and Closed Sets

Recall that any subset X of a metric space Y is a metric space in its own

right (a subspace). When dealing with subspaces, it is important to be

clear to which space the topology is relative. A set S JX JY might be

open as a subset of the subspace X but not open when viewed as a subset

of Y. The following is a typical example from economics.

Example 1.62 In a world of two commodities, suppose that the con-

sumer's consumption set is X � R2
�, which is a subspace of R2. The con-

sumption set is a metric space in its own right with any of the metrics

from R2.

Moreover the consumption set X is open in the metric space X,

but it is not open in the underlying metric space R2. The set S �
fx A X : x1 � x2 > 1g is also open in X but not in R2 (see ®gure 1.15). To

specify the underlying metric space, we say that S is open relative to X.

Figure 1.15
The relative topology of the consumption set
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Similarly the point �2; 0� is an interior point not a boundary point of S

(relative to X ), since it is some distance from any point in X nS.

Let X be a subspace of a metric space Y. x0 A S is a boundary point of

S relative to X if every neighborhood of x0 contains points of S and points

of X nS. x0 A S is an interior point of S relative to X if there exists some

open ball Br�x0�JX about x0 such that Br�x0�JS. In other words, x0 is

an interior point relative to X if all points x A X that are less than r distant

from x0 are also in S. S is open relative to X if every x A S is an interior

point relative to X. S is closed relative to X if it contains all its boundary

points relative to X.

Exercise 1.94

In the previous example, illustrate the open ball of radius 1
2 about �2; 0�.

Use the Euclidean metric r2.

The following result links the metric and order structures of real

numbers (see exercise 1.20).

Exercise 1.95

A set S JR is connected if and only if it is an interval.

1.3.2 Convergence: Completeness and Compactness

Before the advent of modern calculators, high school students were taught

to ®nd square roots by a process of successive approximation. Today the

pocket calculator uses a similar algorithm to provide the answer almost

instantaneously, and students are no longer required to master the algo-

rithm. This nearly forgotten algorithm is an example of iteration, which is

absolutely fundamental to the practice of computation. Most practical

computation today is carried out by digital computers, whose compara-

tive advantage lies in iteration.

Pocket calculators use iteration to compute the special functions (roots,

exponents, sine, cosine, and their inverses). Computers use iteration to

solve equations, whether algebraic or di¨erential. Most practical opti-

mization procedures are based on iteration, the simplex algorithm for

linear programming being a classic example. Similarly many dynamic

processes are modeled as iterative processes, in which the state at each

period is determined by the state in the previous period or periods. The

outcome of an iterative process in a metric space is an example of a
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sequence. One of the most important questions to be asked of any iter-

ative computational process is whether or not it converges to the desired

answer. A necessary requirement for converging on the right answer is

converging on any answer. In this section we study the general theory of

convergence of sequences in a metric space.

A sequence in a metric space X is a list of particular elements

x1; x2; x3; . . . of X. We will use the notation �xn� to denote a sequence.

A sequence is ®nite if it is a ®nite list; otherwise, it is in®nite. It is impor-

tant to note that a sequence of points in a set is not a subset of the set,

since it does not necessarily contain distinct elements. The set of elements

in an in®nite sequence may be a ®nite set. For example, f0; 1gHR is the

set of elements in the sequence 1; 0; 1; 0; . . . . The sequence 0; 1; 0; 1; . . . is

di¨erent sequence containing the same elements. (We will be able to give

a more robust de®nition of a sequence in the next chapter.) Typical

instances of sequences in economics include a series of observations on

some economic variable (a time series), the outputs of an iterative opti-

mization process, or moves in a game. Each of the elements xn in a

sequence �xn� is a element in the metric space XÐit may a single number

(a measure of some economic quantity), an n-tuple (a consumption

bundle), a set (a production possibility set), a function (a statistical esti-

mator), or something more complicated like a whole economy or game.

Example 1.63 (Repeated game) Suppose that a set of n players repeat-

edly play the same game. At each stage each player i chooses from an

action ai from a set Ai. Let at
i denote the choice of player i at time t, and

let a t � �at
1; a

t
2; . . . ; at

n� denote the combined choice. The outcome of the

repeated game is a sequence of actions �a0; a1; a2; . . .�. If there are a ®nite

number of stages T, the game is called a ®nitely repeated game, and the

outcome �a0; a1; a2; . . . ; aT� is a ®nite sequence. Otherwise, it is called an

in®nitely repeated game. (It is conventional to label the ®rst stage ``period

0.'')

At any time t the ®nite sequence of past actions �a0; a1; a2; . . . ; a tÿ1� is

called the history of the game to time t. The set of possible histories at

time t is the product

H t � A� A� � � � � A|�������������{z�������������}
t times

where A � A1 � A2 � � � � � An.
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A sequence �xn� in x converges to point x A X if the elements of �xn�
get arbitrarily close to x, so every neighborhood of x eventually contains

all subsequent elements in the sequence. More precisely, the sequence �xn�
converges to x if there exists a stage N such that xn belongs to the open

ball Br�x� for all nVN. Every neighborhood of x contains all but a ®nite

number of terms in the sequence. The point x is called the limit of the

sequence �xn�. Convergence of sequence is often denoted by

xn ! x or x � lim
n!y

xn

Example 1.64 The formula

x0 � 2; xn�1 � 1

2
xn � 2

xn

� �
; n � 0; 1; 2; . . .

de®nes an in®nite sequence, whose ®rst ®ve terms are

�2; 1:5; 1:416666666666667; 1:41421568627451; 1:41421356237469�
The sequence converges to

���
2
p

(example 1.103).

Exercise 1.96

If a sequence converges, its limit is unique. Therefore we are justi®ed in

talking about the limit of a convergent sequence.

Exercise 1.97

Every convergent sequence is bounded; that is, the set of elements of a

convergent sequence is a bounded set. [Hint: If xn ! x, show that there

exists some r such that r�xn; x� < r for all n.]

Exercise 1.98

At a birthday party the guests are invited to cut their own piece of cake.

The ®rst guest cuts the cake in half and takes one of the halves. Then,

each guest in turn cuts the remainder of the cake in half and eats one

portion. How many guests will get a share of the cake?

Remark 1.13 (Consistent estimators) One of the principal topics of

advanced econometrics concerns the asymptotic properties of estimators,

that is, their behavior as the sample size becomes large. Often it is easier

to analyze the limiting behavior of some econometric estimator than it is

to derive its properties for any ®nite sample. For example, suppose that ŷn

is an estimate of some population parameter y that is based on a sample
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of size n. The estimator ŷ is said to be consistent if the sequence �ŷn�
converges to the true value y. However, the estimator ŷ is a random

variable (example 2.19), which requires an appropriate measure of dis-

tance and convergence, called convergence in probability (Theil 1971,

pp. 357±62).

Exercise 1.99 (Cauchy sequence)

Let �xn� be a sequence that converges to x. Show that the points of �xn�
become arbitrarily close to one another in the sense that for every e > 0

there exists an N such that

r�xm; xn� < e for all m; nVN

A sequence with this property is called a Cauchy sequence.

Exercise 1.100

Any Cauchy sequence is bounded.

Exercise 1.99 showed that every convergent sequence is a Cauchy

sequence; that is, the terms of the sequence become arbitrarily close to one

another. The converse is not always true. There are metric spaces in which

a Cauchy sequence does not converge to an element of the space. A com-

plete metric space is one in which every Cauchy sequence is convergent.

Roughly speaking, a metric space is complete if every sequence that tries

to converge is successful, in the sense that it ®nds its limit in the space. It

is a fundamental result of elementary analysis that the set R is complete;

that is, every Cauchy sequence of real numbers converges. This implies

that Rn is complete (exercise 1.211).

Basic Fact R is complete.

Remark 1.14 (Cauchy convergence criterion) The practical importance of

completeness is as follows: To demonstrate that a sequence in a complete

metric space is convergent, it is su½cient to demonstrate that it is a Cauchy

sequence. This does not require prior knowledge of the limit. Hence we

can show that an iterative process converges without knowing its limiting

outcome. This is called the Cauchy convergence criterion.

Example 1.65 (Monotone sequences) Another useful convergence crite-

rion (in R) is monotonicity. A sequence �xn� of real numbers is increasing

if xn�1 V xn for all n. It is decreasing if xn�1 U xn for all n. A sequence
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�xn� is monotone if it is either increasing or decreasing. Every bounded

monotone sequence of real numbers converges. This fact links the order

and metric properties of R.

Exercise 1.101 (Bounded monotone sequence)

A monotone sequence in R converges if and only if it is bounded. [Hint:

If xn is a bounded monotone sequence, show that xn ! supfxng.]
Exercise 1.102

For every b A R�, the sequence b, b2, b3; . . . converges if and only if

b U 1 with

bn ! 0, b < 1

Exercise 1.103

Show that

1.
1

2
x� 2

x

� �
V

���
2
p

for every x A R�. [Hint: Consider �xÿ ���
2
p �2 V 0.]

2. the sequence in example 1.64 converges to
���
2
p

.

Exercise 1.104

Extend example 1.64 to develop an algorithm for approximating the

square root of any positive number.

The following exercises establish the links between convergence of

sequences and geometry of sets. First, we establish that the boundary of

a set corresponds to the limits of sequences of elements in the set. This

leads to an alternative characterization of closed sets which is useful in

applications.

Exercise 1.105

Let S be a nonempty set in a metric space. x A S if and only if it is the

limit of a sequence of points in S.

Exercise 1.106

A set S is closed if and only if the limit of every convergent sequence

belongs to S.

Exercise 1.107

A closed subset of a complete metric space is complete.
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A sequence �S n� of subsets of a metric space X is nested if S1 K
S2 KS2 K � � � .
Exercise 1.108 (Cantor intersection theorem)

Let �S n� be a nested sequence of nonempty closed subsets of a complete

metric space with d�S n� ! 0. Their intersection S �7y
n�1 S n contains

exactly one point.

Exercise 1.109 (A topological duel)

Let C be the set of all subsets of a metric space X with nonempty interior.

Consider the following game with two players. Each player in turn selects

a set S n from C such that

S1 KS2 KS2 K � � �
Player 1 wins if 7y

n�1 S n 0q. Otherwise, player S wins. Show that

player 1 has a winning strategy if X is complete.

One of the most important questions that we can ask of any iterative

process is whether or not it converges. It is impossible to ensure that any

arbitrary sequence converges. For example, neither of the real sequences

�1; 2; 3; . . .� and �1; 0; 1; 0; . . .� converges. However, the behavior of the

second sequence is fundamentally di¨erent from the ®rst. The second

sequence �1; 0; 1; 0; . . .� has a convergent subsequence �0; 0; 0; . . .� con-

sisting of every second term. (The remaining terms �1; 1; 1; . . .� form

another convergent subsequence.) A metric space X is compact if every

sequence has a convergent subsequence. A subset S of a metric space is

compact if it is a compact subspace, that is, if every sequence in S has

a subsequence that converges to a limit in S. Compactness is related to

the earlier properties of closedness and boundedness, as detailed in the

following proposition.

Proposition 1.1 In any metric space, a compact set is closed and bounded.

Proof Assume that S is compact. To show that S is closed, let x be any

point in S. There exists a sequence �xn� in S which converges to x (exer-

cise 1.105). Since S is compact, the sequence �xn� converges to an element

of S. Since the limit of a sequence is unique, this implies that x A S, and

therefore that S JS. Therefore S is closed.

To show that S is bounded, we assume the contrary. Choose some

x0 A S and consider the sequence of open balls B�x0; n� for n � 1; 2; 3; . . . .
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If S is unbounded, no ball contains S. Therefore, for every n, there exists

some point xn B B�x0; n�. The sequence �xn� cannot have a convergent

subsequence, contradicting the assumption that S is compact. r

In general, the converse of this proposition is false, that is, a closed and

bounded set is not necessarily compact. However, the converse is true in

the space which economists normally inhabit, Rn (proposition 1.4). Also

a closed subset of a compact set is compact.

Exercise 1.110

A closed subset of a compact set is compact.

Exercise 1.111

A Cauchy sequence is convergent , it has a convergent subsequence.

Actually compact spaces have a much stronger property than bound-

edness. A metric space X is totally bounded if, for every r > 0, it is con-

tained in a ®nite number of open ball Br�xi� of radius r, that is,

X � 6
n

i�1

Br�xi�

The open balls are said to cover X.

Exercise 1.112

A compact metric space is totally bounded.

Exercise 1.113

A metric space if compact if and only if it is complete and totally

bounded.

This leads us toward an equivalent formulation of compactness, which

is useful in many applications (e.g., in the proof of proposition 1.5). A

collection C of subsets of a metric space X is said to cover X if X is

contained in their union, that is,

X � 6
S AC

S

C is an open cover if all the sets S are open and a ®nite cover if the number

of sets in C is ®nite. Exercise 1.112 showed that every compact set has a

®nite cover of open balls of a given size. In the next two exercises we show

that if X is compact, every open cover has a ®nite subcover; that is, if
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X � 6
S AC

S; S open

there exists sets S1, S2; . . . ;Sn A C such that

X � 6
n

i�1

Si

Exercise 1.114 (Lebesgue number lemma)

Let C be an open cover for a compact metric space X. Call a subset T

``big'' if is not contained in a single S A C, that is, if it requires more than

one open set S A C to cover it. Let B be the collection of all big subsets of

X, and de®ne d � infT AB d�T�. Use the following steps to show that d > 0:

Step 1. d�T� > 0 for every T A B.

Step 2. Suppose, however, d � infT AB d�T� � 0. Then, for every n �
1; 2 . . . , there exists some big set Tn with 0 < d�Tn� < 1=n.

Step 3. Construct a sequence �xn : xn A Tn�. This sequence has a conver-

gent subsequence xm ! x0.

Step 4. Show that there exists some S0 A C and r such that Br�x0�JS0.

Step 5. Consider the concentric ball Br=2�x�. There exists some N such

that xn A Br=2�x� for every nVN.

Step 6. Choose some nVminfN; 2=rg. Show that Tn JBr�x�JS0.

This contradicts the assumption that Tn is a big set. Therefore we con-

clude that d > 0.

In the previous exercise we showed that for every open covering there

exists a diameter d such that every set of smaller diameter than d is wholly

contained in at least one S. The critical diameter d is known as a Lebesgue

number for the C. Thus, in a compact metric space, every open cover has

a Lebesgue number. In the next exercise we use this fact to show that

every compact space has a ®nite cover.

Exercise 1.115 (Finite cover)

Let C be an open cover of a compact metric space, with Lebesgue number

d. Let r � d=3.

Step 1. There exists a ®nite number of open balls Br�xn� such that

X �6n

i�1 Br�xi�.

63 1.3 Metric Spaces



Step 2. For each i, there exists some Si A C such that Br�xi�JSi.

Step 3. fS1;S2; . . . ;Sng is a ®nite cover for X.

Yet another useful characterization of compactness is given in the fol-

lowing exercise. A collection C of subsets of a set has the ®nite intersection

property if every ®nite subcollection has a nonempty intersection.

Exercise 1.116 (Finite intersection property)

A metric space X is compact if and only if every collection C of closed sets

with the ®nite intersection property has a nonempty intersection.

We will used this property in the following form (see exercise 1.108).

Exercise 1.117 (Nested intersection theorem)

Let S1 KS2 KS3 . . . be a nested sequence of nonempty compact subsets

of a metric space X. Then

S � 7
y

i�1

Si 0q

Exercise 1.118

In any metric space the following three de®nitions of compactness are

equivalent:

1. Every sequence has a convergent subsequence.

2. Every open cover has a ®nite subcover.

3. Every collection of closed subsets with the ®nite intersection property

has a nonempty intersection.

Remark 1.15 Completeness and compactness are the fundamental

properties of metric spaces. Their names are suggestive. Completeness

relates to richness of the space. An incomplete space lacks certain neces-

sary elements. On the other hand, compactness is a generalization of

®niteness. Many properties, which are trivially true of ®nite sets, generalize

readily to compact sets, and fail without compactness. A good example of

the role of compactness can be found in the proof of proposition 1.5.

In the most common metric space R, the properties of completeness

and compactness are closely related. Completeness of R implies another

fundamental theorem of analysis, the Bolzano-Weierstrass theorem. This
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theorem, which will be used in section 1.5, states that every bounded

sequence of real numbers has a convergent subsequence. In turn, the

Bolzano-Weierstrass theorem implies that R is complete. The details are

provided in the following exercises.

Exercise 1.119 (Bolzano-Weierstrass theorem)

Every bounded sequence of real numbers has a convergent subsequence.

[Hint: Construct a Cauchy sequence by successively dividing the interval

containing the bounded sequence. Then use the completeness of R.]

Exercise 1.120

Use the Bolzano-Weierstrass theorem to show that R is complete.

The following proposition is regarded as the most important theorem

in topology. We give a simpli®ed version for the product of two metric

spaces. By induction, it generalizes to any ®nite product. In fact the

theorem is also true of an in®nite product of compact spaces.

Proposition 1.2 (Tychono¨ 's theorem) The product of two compact met-

ric spaces is compact.

Proof Let X � X1 � X2, where X1 and X2 are compact. Let �xn� be a

sequence in X. Each term xn is an ordered pair �xn
1 ; x

n
2 �. Focusing on the

®rst component, the sequence of elements �xn
1 � in x1 has a convergent

subsequence, with limit x1 since X1 is compact. Let �xm� be the sub-

sequence in which the ®rst component converges. Now, focusing on the

second component in the subsequence �xm�, the sequence of elements

�xm
2 � has a convergent subsequence, with limit x2. Thus �xn� has a sub-

sequence that converges to �x1; x2�. r

Remark 1.16 A similar induction argument could be used to show that

Rn is complete. However, we will give a slightly more general result below,

showing that any ®nite-dimensional linear metric space is complete.

Example 1.66 (Compact strategy space) Consider a game of n players

each of whom has a strategy space Si. The strategy space of the game is

the product of the individual strategy spaces

S � S1 � S2 � � � � � Sn

If each of the individual player's strategy spaces Si is compact, then the

combined strategy space is compact. This is an essential component of
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the Nash theorem establishing the existence of an equilibrium in a non-

cooperative game (example 2.96).

1.4 Linear Spaces

It is a fundamental property of economic quantities that they can be

added and scaled in a natural way. For example, if ®rm A produces yA
1

units of good 1 while ®rm B produces yB
1 units of the same good, the

aggregate output of the two ®rms is yA
1 � yB

1 . If ®rm A then doubles it

output while ®rm B reduces its output by 50 percent, their respective

outputs are 2yA
1 and 1

2 yB
1 , and their combined output is 2yA

1 � 1
2 yB

1 .

Similarly lists of economic quantities can be added and scaled item by

item. For example, if y � �y1; y2; . . . ; yn� is a production plan with net

outputs yi, 2y � �2y1; 2y2; . . . ; 2yn� is another production plan in which

all the inputs and outputs have been doubled. The production plan 1
2 y

produces half the outputs (of y) with half the inputs. Similarly, if

x � �x1; x2; . . . ; xn� and y � �y1; y2; . . . ; yn� are two consumption bundles,

x� y is another consumption bundle containing x1 � y1 units of good 1,

x2 � y2 units of good 2 and so on. We can also combine adding and

scaling. The consumption bundle 1
2 �x� y� is the average of the two bun-

dles x and y. It contains 1
2 �x1 � y1� units of good 1. The important point

is that adding, scaling, and averaging consumption bundles and produc-

tion plans does not change their fundamental nature. The consequence of

these arithmetic operations is simply another consumption bundle or

production plan.

A set whose elements can be added and scaled in this way is called a

linear space. Formally, a linear space is a set X whose elements have the

following properties:

Additivity

For every pair of elements x and y in X, there exists another element

x� y A X , called the sum of x and y such that

1. x� y � y� x (commutativity)

2. �x� y� � z � x� �y� z� (associativity)

3. there is a null element 0 in X such that x� 0 � x
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4. to every x A X there exists a unique element ÿx A X such that

x� �ÿx� � 0

Homogeneity

For every element x A X and number a A R, there exists an element

ax A X , called the scalar multiple of x such that

5. �ab�x � a�bx� (associativity)

6. 1x � x

Moreover the two operations of addition and scalar multiplication obey

the usual distributive rules of arithmetic, namely

7. a�x� y� � ax� ay

8. �a� b�x � ax� bx

for all x; y A X and a; b A R.

We say that a linear space is ``closed'' under addition and scalar multi-

plication. A linear space is sometimes called a vector space, and the ele-

ments are called vectors.

This long list of requirements does not mean that a linear space is

complicated. On the contrary, linear spaces are beautifully simple and

possess one of the most complete and satisfying theories in mathematics.

Linear spaces are also immensely useful providing one of the principal

foundations of mathematical economics. The most important examples of

linear spaces are R and Rn. Indeed, the abstract notion of linear space

generalizes the algebraic behavior of R and Rn. The important require-

ments are additivity and homogeneity. The additional requirements such

as associativity and commutativity merely ensure that the arithmetic in a

linear space adheres to the usual conventions of arithmetic in R, in which

the order of addition or scaling is irrelevant. More subtle examples of

linear spaces include sets of functions and sets of games.

Example 1.67 (Rn) The set of all lists of n quantities, Rn, is a linear

space. Each element x A Rn is an n-tuple of real numbers, that is,

x � �x1; x2; . . . ; xn� where each xi A R. Clearly, if y � �y1; y2; . . . ; yn� is

another n-tuple, then

x� y � �x1 � y1; x2 � y2; . . . ; xn � yn�
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is also a n-tuple, another list of numbers xi � yi in Rn. Similarly

ax � �ax1; ax2; . . . ; axn�
is also a n-tuple in Rn. To verify that Rn satis®es the above rules of

arithmetic is straightforward but tedious. For example, to verify the

commutative law (rule (1)), we note that

x� y � �x1 � y1; x2 � y2; . . . ; xn � yn�
� �y1 � x1; y2 � x2; . . . ; yn � xn�
� y� x

Example 1.68 (Sequences) The set of all sequences of real numbers

fx1; x2; . . .g is also a linear space.

Example 1.69 (Polynomials) An expression of the form 5� 3t2 ÿ
220t4 � t7, where t A R is called a polynomial. A general polynomial can

be expressed as

x � a0 � a1t� a2t2 � � � � � antn

The degree of a polynomial is the highest power of t in its expression. x

is of degree n, and 5� 3t2 ÿ 220t4 � t7 is a polynomial of degree 7. We

add polynomials by adding the coe½cients of corresponding terms. For

example, if y is another polynomial

y � b0 � b1t� b2t2 � � � � � bmtm

their sum (supposing that mU n) is

x� y � �a0 � b0� � �a1 � b1�t� �a2 � b2�t2 � � � � � �am � bm�tm

� am�1tm�1 � � � � � antn

Similarly scalar multiplication is done term by term, so

ax � aa0 � aa1t� aa2t2 � � � � � aantn

The set of all polynomials is a linear space. Polynomials are often used

in economics to provide tractable functional forms for analysis and

estimation.

Example 1.70 (The space of TP-coalitional games) Recall that a TP-

coalitional game (example 1.46) comprises
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. a ®nite set of players N

. for each coalition S JN, a real number w�S� that is called its worth

We use the notation G � �N;w� to denote an arbitrary game among

players N with coalitional worths fw�S� : S JNg.
Given any speci®c game G � �N;w�, if the worth of each coalition is

multiplied by some number a A R, we obtain another coalitional game

among the same set of players. We can denote this game aG � �N; aw�.
Similarly, given two speci®c games G1 � �N;w1� and G2 � �N;w2�, we

can conceive another game among the same players in which the worth of

each coalition is the sum of its worth in G1 and G2. That is, in the new

game, the worth of each coalition is given by

w�S� � w1�S� � w2�S� for every S JN

We denote the construction of the new game by G1 � G2 � �N;w1 � w2�.
We see that TP-coalitional games can be added and scaled in a natural

way, so that the set of all coalitional games among a ®xed set of players

forms a linear space, which we denote GN . The null vector in this space is

the null game in �N; 0� in which the worth of each coalition (including the

grand coalition) is zero. It is straightforward, though tedious, to verify

that the space of TP-coalitional games satis®es the other requirements of

a linear space.

One of the most common ways of making new linear spaces is by

welding together existing spaces by taking their product. In this way we

can think of Rn as being the product of n copies of R.

Exercise 1.121

If X1 and X2 are linear spaces, then their product

X � X1 � X2

is a linear space with addition and multiplication de®ned as follows:

�x1; x2� � �y1; y2� � �x1 � y1; x2 � y2�
a�x1; x2� � �ax1; ax2�

The following standard rules of arithmetic are often used in computing

with linear spaces.
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Exercise 1.122

Use the de®nition of a linear space to show that

1. x� y � x� z) y � z

2. ax � ay and a0 0) x � y

3. ax � bx and x0 0) a � b

4. �aÿ b�x � axÿ bx

5. a�xÿ y� � axÿ ay

6. a0 � 0

for all x; y; z A X and a; b A R.

Remark 1.17 (Real and complex linear spaces) We implicitly assumed in

the preceding discussion that the ``scalars'' relevant to a linear space were

real numbers a A R. This corresponds to physical reality of scaling con-

sumption bundles and production plans, so it is appropriate for most

applications in economics. A linear space with real scalars is called a real

linear space. For some purposes it is necessary to extend the set of scalars

to include complex numbers, giving rise to a complex linear space. We will

encounter only real linear spaces in this book.

The consumption set and the production possibility set are not linear

spaces in their own right. A linear space is symmetrical in the sense that

ÿx A X for x A X . Therefore a linear space must include negative quanti-

ties, which precludes the consumption set. Although the production pos-

sibility set Y includes negative (inputs) as well as positive (outputs)

quantities, it is usually the case that production is irreversible. Conse-

quently, if y A Y is a feasible production plan, ÿy (which involves recov-

ering the inputs from the outputs) is not feasible, and hence ÿy B Y .

Neither the consumption nor the production possibility set is a linear

space in its own right. However, both are subsets of the linear space Rn,

and they inherit many of the attributes of linearity from their parent

space. The next example illustrates some aspects of linearity in the pro-

duction possibility set. Some further examples of linearity in economics

follow.

Example 1.71 (Production plans) We can illustrate some of the con-

sequences of the conventional rules of arithmetic in the context of pro-

duction plans. Let x, y, and z be production plans. The ®rst rule
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(commutativity) states that the order of addition is irrelevant, x� y and

y� x are the same production planÐthey produce the same outputs

using the same inputs. Similarly adding z to x� y produces the same net

outputs as adding x to y� z (associativity). The null vector is zero pro-

duction plan, in which all net outputs are zero (rule 3). Rule 7 states that

scaling the combined production plan x� y generates the same result as

combining the scaled production plans ax and ay.

Example 1.72 (Aggregate demand and supply) Consider an economy

consisting of k consumers. Suppose that each consumer i purchases the

consumption bundle x i. Aggregate demand x is the sum of the individual

purchases

x � x1 � x2 � � � � � xk

where for each commodity j, the total demand xj is the sum of the indi-

vidual demands

xj � x1
j � x2

j � � � � � xk
j

and xi
j is the demand of consumer i for good j.

Suppose that there are n producers. Each produces the net output vec-

tor y i. Aggregate supply is the sum of the supplies of the separate ®rms

y � y1 � y2 � � � � � yn

Equilibrium requires that aggregate demand equal aggregate supply,

that is,

x � y

This simple equation implies that for every commodity j, the quantity

demanded by all consumers is equal to the total quantity produced, that

is,

x1
j � x2

j � � � � � xk
j � y1

j � y2
j � � � � � yn

j

or xj � yj.

Example 1.73 (Constant returns to scale) It is conventionally assumed

that it is possible to replicate any production process. That is, if y is a

feasible production plan, we assume that n� y is also feasible for every

n A N. That is, replication implies that for every n A N
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ny A Y for every y A Y

It is often further assumed that it is feasible to scale up or down, so that

any positive scaling is feasible, that is,

ay A Y for every y A Y and for every a > 0 �2�
A technology is said to exhibit constant returns to scale if the production

possibility set satis®es (2). Note that constant returns to scale is a restricted

form of homogeneity, since it is limited to positive multiples.

Example 1.74 (In¯ation and average prices) Let p t � �pt
1; p

t
2; . . . ; pt

n� be a

list of the prices of the n commodities in an economy. If the economy

experiences 10% in¯ation, the prices at time t� 1 are 1.1 times the prices

at time t, that is,

p t�1 � 1:1p t � �1:1pt
1; 1:1pt

2; . . . ; 1:1pt
n�

Comparing the prices prevailing at two di¨erent times, if p2 can be

obtained from p1 merely by scaling so that the prices of all goods change

at the same rate, we say that it is a general price change; that is, there is

some a A R such that p2 � ap1. On the other hand, if the prices of di¨er-

ent commodities change at di¨erent rates, so that p2 0 ap1 for any a A R,

we say that relative prices have changed. A pure in¯ation is an example of

a linear operation on the set of prices.

Even when relative prices change, we can summarize the prices pre-

vailing at two distinct times by computing their average

p � 1
2 �p1 � p2�

where pj � �p1
j � p2

j �=2 is the average price of good j.

1.4.1 Subspaces

A linear combination of elements in a set S JX is a ®nite sum of the form

a1x1 � a2x2 � � � � � anxn

where x1; x2; . . . ; xn A S and a1; a2; . . . ; an A R. The span or linear hull of

a set of elements S, denoted lin S, is the set of all linear combinations of

elements in S, that is,

lin S � fa1x1 � a2x2 � � � � � anxn : x1; x2; . . . ; xn A S; a1; a2; . . . ; an A Rg
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Exercise 1.123

What is the linear hull of the vectors f�1; 0�; �0; 2�g in R2?

Example 1.75 (Coalitional games) The characteristic function w of a

TP-coalitional game �N;w� A GN (example 1.70) is a linear combination

of unanimity games uT (example 1.48), that is,

w�S� �
X

T

aT uT�S�

for every coalition S JN (exercise 1.124).

Exercise 1.124

Given a ®xed set of players N, each coalition T JN determines a

unanimity game uT (example 1.48) de®ned by

uT�S� � 1 if S KT

0 otherwise

�
1. For each coalition S HN, recursively de®ne the marginal value of a

coalition by

ai � w�i�

aS � w�S� ÿ
X
THS

aT

(Recall that T HS means that T is a proper subset of S, i.e., T JS but

T 0S.) Show thatX
TJS

aT � w�S� for every S JN

2. Show that

w�S� �
X

TJN

aT uT�S�

for every coalition S JN.

A subset S of a linear space X is a subspace of X if for every x and y in S,

the combination ax� by belongs to S, that is,

ax� by A S for every x; y A S and a; b A R �3�
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Condition (3) combines the two principal requirements of linearity,

namely

additivity x� y A S for every x; y A S.

homogeneity ax A S for every x A S and a A R.

Every subspace of a linear space is a linear space in its own right. By

de®nition, it satis®es the principal requirements of additivity and homo-

geneity. These in turn imply the existence of the null vector (rule 3) and an

inverse for every vector (rule 4; exercise 1.125). Furthermore, any subset

of linear space will inherit the conventional arithmetic properties of its

parent space, thus satisfying rules 1, 2, 5, 6, 7, and 8. Therefore, to verify

that the subset S is in fact a subspace, it su½ces to con®rm that it satis®es

the two properties of additivity and homogeneity; that is, it is closed under

addition and scalar multiplication.

Exercise 1.125

If S JX is a subspace of a linear space X, then

1. S contains the null vector 0

2. for every x A S, the inverse ÿx belongs to S

Example 1.76 (Subspaces of R3) The subspaces of R3 are

. the origin f0g

. all lines through the origin

. all planes through the origin

. R3 itself

Exercise 1.126

Give some examples of subspaces in Rn.

Exercise 1.127

Is Rn
� a subspace of Rn?

Example 1.77 (Polynomials of degree less than n) Let Pn denote the set

of all polynomials of degree less than n. Since addition and scalar multi-

plication cannot increase the degree of a polynomial, the set Pn for any n

is a subspace of the set of all polynomials P.
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Exercise 1.128

The linear hull of a set of vectors S is the smallest subspace of X con-

taining S.

Exercise 1.129

A subset S of a linear space is a subspace if and only if S � lin S.

Exercise 1.130

If S1 and S2 are subspaces of linear space X, then their intersection

S1 XS2 is also a subspace of X.

Example 1.78 In R3, the intersection of two distinct planes through the

origin is a line through the origin. The intersection of two distinct lines

through the origin is the subspace f0g.
The previous exercise regarding the intersection of two subspaces can

be easily generalized to any arbitrary collection of subspaces (see exercises

1.152 and 1.162). On the other hand, the union of two subspaces is not

in general a subspace. However, two subspaces of a linear space can be

joined to form a larger subspace by taking their sum. The sum of two

subsets S1 and S2 of a linear space X is the set of all element x1 � x2

where x1 A S1 and x2 A S2, that is,

S1 � S2 � fx A X : x � x1 � x2; x1 A S1; x2 A S2g
The sum of two sets is illustrated in ®gure 1.16.

Figure 1.16
The sum of two sets
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Exercise 1.131

If S1 and S2 are subspaces of linear space X, their sum S1 � S2 is also a

subspace of X.

Exercise 1.132

Give an example of two subspaces in R2 whose union is not a subspace.

What is the subspace formed by their sum?

Linear Dependence and Independence

A element x A X is linearly dependent on a set S of vectors if x A lin S,

that is, if x can be expressed as a linear combination of vectors from S.

This means that there exist vectors x1; x2; . . . ; xn A S and numbers

a1; a2; . . . ; an A R such that

x � a1x1 � a2x2 � � � � � anxn �4�
Otherwise, x is linearly independent of S. We say that a set S is linearly

dependent if some vector x A S is linearly dependent on the other elements

of S, that is x A lin�Snfxg�. Otherwise, the set is said to be linearly

independent.

Exercise 1.133

Show that a set of vectors S JX is linearly dependent if and only if there

exists distinct vectors x1; x2; . . . ; xn A S and numbers a1; a2; . . . ; an, not all

zero, such that

a1x1 � a2x2 � � � � � anxn � 0 �5�
The null vector therefore is a nontrivial linear combination of other vec-

tors. This is an alternative characterization of linear dependence found in

some texts.

Exercise 1.134

Is the set of vectors f�1; 1; 1�; �0; 1; 1�; �0; 0; 1�gJR3 linearly dependent?

Exercise 1.135 (Unanimity games)

Let U � fuT : T JN;T 0qg denote the set of all unanimity games

(example 1.48) playable by a given set of players N. Show that U is

linearly independent.

Exercise 1.136

Every subspace S of a linear space is linearly dependent.
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1.4.2 Basis and Dimension

In an arbitrary set, the elements may be completely unrelated to one

another, for example, as in the set {Tonga, blue, wood, bread, 1, Pascal}.

In a linear space the elements are related to one another in a precise

manner, so any element can be ``represented'' by other elements. It is this

structure that makes linear spaces especially useful.

A basis for a linear space X is a linearly independent subset S that spans

X, that is, lin S � X . Since S spans X, every x A X can be represented as a

linear combination of elements in S. That is, for every x A X there exist

elements x1; x2; . . . ; xn A S and numbers a1; a2; . . . ; an A R such that

x � a1x1 � a2x2 � � � � � anxn �6�
Furthermore, since S is linearly independent, this representation is unique

(for the basis S). In this sense a basis encapsulates the whole vector space.

It is a minimal spanning set.

Exercise 1.137 (Unique representation)

Show that the representation in equation (6) is unique, that is, if

x � a1x1 � a2x2 � � � � � anxn

and also if

x � b1x1 � b2x2 � � � � � bnxn

then ai � bi for all i.

Exercise 1.138

Every linear space has a basis. [Hint: Let P be the set of all linearly

independent subsets of a linear space X. P is partially ordered by inclu-

sion. Use Zorn's lemma (remark 1.5) to show that P has a maximal ele-

ment B. Show that B is a basis of X.]

Example 1.79 (Standard basis for Rn) The set of unit vectors

e1 � �1; 0; 0; . . . ; 0�
e2 � �0; 1; 0; . . . ; 0�
e3 � �0; 0; 1; . . . ; 0�
en � �0; 0; 0; . . . ; 1�

77 1.4 Linear Spaces



is called the standard basis for Rn. Every list x � �x1; x2; . . . ; xn� has a

unique representation in terms of the standard basis

x � a1e1 � a2e2 � � � � � anen

Expanding this representation

x1

x2

..

.

xn

0BBBB@
1CCCCA � a1

1

0

..

.

0

0BBB@
1CCCA� a2

0

1

..

.

0

0BBB@
1CCCA� � � � an

0

0

..

.

1

0BBB@
1CCCA

we see that

a1 � x1; a2 � x2; . . . ; an � xn

Example 1.80 (Standard basis for P) Let P denote the set of all poly-

nomials and BHP be the set of polynomials f1; t; t2; t3; . . .g (example

1.69). Since every polynomial

x � a0 � a1t� a2t2 � a3t3 � � � � A P

is a linear combination of polynomials in B, B spans P. Furthermore B is

linearly independent. Therefore B is a basis for P.

Example 1.81 (Standard basis for GN ) The set U �fuT :TJN;T0qg
of unanimity game uT (example 1.48) de®ned by

uT�S� � 1 if S KT

0 otherwise

�
form a basis for the linear space GN of all TP-coalitional games amongst

a ®xed set of players N (exercise 1.146).

Example 1.82 (Arrow-Debreu securities) The burgeoning ®eld of ®nan-

cial economics (Du½e 1992; Luenberger 1997; Varian 1987) is founded

on a simple linear model of ®nancial assets. The model has two periods.

In the ®rst period (``today''), assets are bought and sold. In the second

period (``tomorrow''), exactly one of a ®nite number S states of the world

eventuate and the assets are realized, when their value depends on the

state of the world. Formally, an asset or security is a title to receive a

return or payo¨ rs ``tomorrow'' if state s occurs. Any asset is therefore
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fully described by its return vector r � �r1; r2; . . . ; rS�, which details its

prospective return of payo¨ in each state. Negative returns are allowed in

certain states, in which case the holder is obligated to pay rs. Conse-

quently the return vectors r belong to the linear space RS.

A special role is accorded Arrow-Debreu securities. These are (hypo-

thetical) ®nancial assets that pay $1 if and only if a particular state of

the world occurs. The return vector of the s Arrow-Debreu security is

es � �0; . . . ; 1; . . . ; 0�, where the 1 occurs in the location s. Arrow-Debreu

securities form a basis for the linear space RS of all securities. Conse-

quently any actual ®nancial asset r is equivalent to a portfolio of Arrow-

Debreu assets, since the return vector r can be constructed from a linear

combination of elementary (Arrow-Debreu) assets es. For example, if

there are three states of the world, the asset with return vector �3; 4; 5� is

equivalent to a portfolio containing 3, 4, and 5 units respectively of the

Arrow-Debreu securities �1; 0; 0�, �0; 1; 0�, and �0; 0; 1�.
Remark 1.18 (Primary colors and the spectrum) Around 1800 the physi-

cist Thomas Young observed that all the colors of visible spectrum could

be generated by mixing three, but not less than three, pure colors. The

ability to recreate the spectrum from just three colors explains human

color vision and underlies the technology of color photography and tele-

vision. Red, green, and blue are the usually chosen as the three primary

colors. However, it is well known that other combinations also serve to

generate the spectrum. For example, Young initially chose red, yellow,

and blue as the primary colours.

Mixing colors is analogous to the linear combination of vectors in a

linear space. A set of primary colors represents the spectrum in the same

sense in which a basis represents a linear space. Any color can be obtained

as a linear combination of the primary colors, while fewer than three pri-

mary colors is insu½cient to generate the whole spectrum. Other colors

can be substituted for one of the primary colors to provide a di¨erent but

equally adequate spanning set.

Exercise 1.139

Is f�1; 1; 1�; �0; 1; 1�; �0; 0; 1�g a basis for R3? Is f�1; 0; 0�; �0; 1; 0�; �0; 0; 1�g?
A linear space which has a basis with a ®nite number of elements is said

to be ®nite dimensional. Otherwise, the linear space is called in®nite dimen-

sional. In a ®nite-dimensional space X, every basis has the same number

of elements, which is called the dimension of X and denoted dim X.
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Exercise 1.140

Any two bases for a ®nite-dimensional linear space contain the same

number of elements.

Exercise 1.141 (Coalitional games GN)

The linear space GN of TP-coalitional games has dimension 2n ÿ 1 where

n is the number of players.

The following facts about bases and dimension are often used in practice.

Exercise 1.142

A linearly independent set in a linear space can be extended to a basis.

Exercise 1.143

Any set of n� 1 elements in an n-dimensional linear space is linearly

dependent.

The next two results highlight the dual features of a basis, namely that

a basis is both

. a maximal linearly independent set

. a minimal spanning set

Exercise 1.144

A set of n elements in an n-dimensional linear space is a basis if and only

if it is linearly independent.

Exercise 1.145

A set of n elements in an n-dimensional linear space X is a basis if and

only if it spans X.

Exercise 1.146 (Standard basis for GN)

Show that the set of unanimity games U � fuT : T JN;T 0qg forms a

basis for the space of TP-coalitional games GN .

As a linear space in its own right, a subspace has a unique dimension.

The dimension of a subspace cannot exceed that of it parent space. Fur-

thermore a proper subspace of a ®nite-dimensional space necessarily has a

lower dimension (and a smaller basis) than its parent space.

Exercise 1.147 (Dimension of a subspace)

A proper subspace S HX of an n-dimensional linear space X has dimen-

sion less than n.
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Finite-dimensional linear spaces are somewhat easier to analyze, since our

intuition is contradicted less often and there are fewer pathological cases.

Furthermore there are some results that only hold in ®nite-dimensional

spaces. For the most part, however, ®nite- and in®nite-dimensional spaces

are completely analogous. Although in®nite-dimensional spaces play an

important role in more advanced analysis, the linear spaces encountered

in this book will usually be ®nite dimensional.

Coordinates

The unique numbers a1; a2; . . . ; an that represent a vector x with respect

to a given basis are called the coordinates of x relative to the basis. It is

important to note that the coordinates vary with the chosen basis (exercise

1.148). Some bases o¨er more convenient representations than others. For

example, in Rn, the coordinates of any n-tuple x � �x1; x2; . . . ; xn� with

respect to the standard basis is simply the components of x (example 1.79).

Similarly the coordinates of a polynomial with respect to the standard

basis for P (example 1.80) are the coe½cients of the polynomial, since

every polynomial x A P,

x � a0 � a1t� a2t2 � a3t3 � � � �
Despite the simplicity of these representations, it is important to remember

the distinction between an element of a linear space and its coordinates

with respect to a particular basis.

Exercise 1.148

What are the coordinates of the vector �1; 1; 1� with respect to the basis

f�1; 1; 1�; �0; 1; 1�; �0; 0; 1�g? What are its coordinates with respect to the

standard basis f�1; 0; 0�; �0; 1; 0�; �0; 0; 1�g?
Remark 1.19 (Notation) Choice of notation involves a trade-o¨ between

consistency and ¯exibility. We will consistently use a boldface, for exam-

ple x and y, to denote elements of a linear space. We will use subscripts

to denote their coordinates with respect to a particular basis (which will

almost always be the standard basis), as in

x � �x1; x2; . . . ; xn�
The coordinates are always numbers (scalars) and will be in the ordinary

face.
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We will use both subscripts and superscripts to label particular elements

of a linear space. Therefore x1 and yA are particular vectors, while yA
1

is the ®rst coordinate of yA with respect to a particular basis. The alter-

native convention of reserving subscripts for coordinates, and using

superscripts to distinguish vectors, is too in¯exible for our purposes. In

economic models we will often have two or more sources of labels for

vectors, and the use of both subscripts and superscripts will enhance

clarity. For example, we might need to label strategy choices or con-

sumption bundles by player or agent (subscript) and also by time period

(superscript).

Weighted Sums and Averages

Subspaces of a linear space X are those sets that contain arbitrary

weighted sums of their elements. That is, S JX is a subspace if

x � a1x1 � a2x2 � � � � � anxn A S

for all x1; x2; . . . ; xn A S, and ai A R. We have already seen how permit-

ting arbitrary weighted sums is too general for some important sets in

economics, such as consumption and production sets.

However, restricted classes of weighted sums occur frequently in eco-

nomics. In production theory, it is natural to consider nonnegative weighted

sums of production plans. In the theory of the consumer, it is appropriate

to average di¨erent consumption bundles. The weighted average a set of

elements fx1; x2; . . . ; xng in a linear space is a weighted sum

x � a1x1 � a2x2 � � � � � anxn

in which the weights are nonnegative and sum to one, that is, ai V 0 and

a1 � a2 � � � � � an � 1. Each of these restricted weighted sums character-

izes a class of sets with special properties. These include a½ne sets, convex

sets, and convex cones, whose relationships are detailed in table 1.2. We

now consider each class in turn. Convex sets and cones are absolutely

Table 1.2
Classes of subset in a linear spaceP

ai unrestricted
P

ai � 1

ai W 0 Subspace A½ne set

ai V 0 Convex cone Convex set
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fundamental in mathematical economics and game theory, and these sec-

tions should be studied carefully. A½ne sets lie midway between convex

sets and subspaces. They play a less prominent role and are included here

for completeness.

1.4.3 A½ne Sets

Subspaces are the n-dimensional analogues of straight lines and planes

passing through the origin. When translated so that they do not pass

through the origin, straight lines, planes, and their analogues are called

a½ne sets. The theory of a½ne sets closely parallels the theory of sub-

spaces, for which they are a slight generalization. The solutions of a sys-

tem of linear equations form an a½ne set (exercise 3.101). A½ne sets also

occur in the theory of simplices, which are used in general equilibrium

theory and game theory.

A subset S of a linear space X is called an a½ne set if for every x and y

in S the combination ax� �1ÿ a�y belongs to S, that is,

ax� �1ÿ a�y A S for every x; y A S and a A R

For distinct x and y in X, the set of all points

fax� �1ÿ a�y : a A Rg
is called the line through x and y (®gure 1.17). It is the straight line

through x and y and extending beyond the endpoints in both directions. A

set is an a½ne if the straight line through any two points remains entirely

within the set. A½ne sets have many synonyms, including linear mani-

folds, linear varieties, and ¯ats.

Figure 1.17
The line through x and y

83 1.4 Linear Spaces



For every a½ne set S that does not necessarily pass through the origin,

there is a corresponding subspace that does. That is, there is a unique

subspace V such that

S � x� V

for some x A S. We say that S is parallel to V. In R3, a½ne sets include

planes, straight lines, and points. The following exercises formalize the

relationship between a½ne sets and subspaces.

Exercise 1.149

In any linear space every subspace is an a½ne set, and every a½ne set

containing 0 is a subspace.

Exercise 1.150

For every a½ne set S there is a unique subspace V such that S � x� V

for some x A S.

Exercise 1.151

Let X be a linear space. Two a½ne subsets S and T are parallel if one is a

translate of the other, that is,

S � T � x for some x A X

Show that the relation S is parallel to T is an equivalence relation in the

set of a½ne subsets of X.

Example 1.83 (R2) Let x and y be two points in R2. The straight line

through x and y is an a½ne set. It is a subspace if and only if the straight

line passes through the origin (®gure 1.18).

Example 1.84 (R3) In R3 the a½ne sets are

. q

. all points x A R3

. all straight lines

. all planes

. R3

Exercise 1.152

The intersection of any collection of a½ne sets is a½ne.
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The dimension of an a½ne set is de®ned as the dimension of the sub-

space to which it is parallel (exercise 1.150). A½ne sets of dimension 0, 1,

and 2 are called points, lines, and planes respectively.

The proper a½ne subsets of a linear space X are partially ordered by

inclusion. Any maximal element of this partially ordered set is called a

hyperplane. That is, a hyperplane is a maximal proper a½ne subset, the

biggest possible a½ne set that is not the whole space. In an n-dimensional

space, every �nÿ 1�-dimensional a½ne set is a hyperplane. Lines and

planes are hyperplanes in R2 and R3 respectively.

Exercise 1.153

Let H be a hyperplane in a linear space X. Then H is parallel to unique

subspace V such that

1. H � x0 � V for some x0 A H

2. x0 A V , H � V

3. V S X

4. X � linfV ; x1g for every x1 B V

5. for every x A X and x1 B V , there exists a unique a A R such that

x � ax1 � v for some v A V

Example 1.85 (Preimputations: feasible outcomes in a coalitional game)

The set of feasible outcomes in a TP-coalitional game with transferable

payo¨ (example 1.46)

Figure 1.18
An a½ne set in the plane
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X � x A Rn :
X
i AN

xi � w�N�
( )

is a hyperplane in Rn. In other words, it is an a½ne subset of dimension

nÿ 1. Elements of X are sometimes called preimputations.

Exercise 1.154

Show that

X � x A Rn :
X
i AN

xi � w�N�
( )

is an a½ne subset of Rn.

A½ne Combinations and A½ne Hulls

Linear combinations of vectors in a linear space allowed arbitrary sums.

Slightly more restrictive, an a½ne combination of vectors in a set S JX is

a ®nite sum of the form

a1x1 � a2x2 � � � � � anxn

where x1; x2; . . . ; xn A S, a1; a2; . . . ; an A R and a1 � a2 � � � � � an � 1.

Analogous to the linear hull, the a½ne hull of a set of vectors S,

denoted a¨ S, is the set of all a½ne combinations of vectors in S, that is,

a¨ S � fa1x1 � a2x2 � � � � � anxn :

x1; x2; . . . ; xn A S;
�7�

a1; a2; . . . ; an A R

a1 � a2 � � � � � an � 1g
The a½ne hull of a set S is the smallest a½ne set containing S.

Example 1.86 The a½ne hull of the standard basis fe1; e2; e3g for R3 is

the plane through the points �1; 0; 0�; �0; 1; 0�; �0; 0; 1�. It has dimension 2.

By contrast, the linear hull of the three vectors fe1; e2; e3g is the whole

space R3.

Exercise 1.155

A set S in a linear space is a½ne if and only if S � a¨ S.
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Exercise 1.156

Is Rn
� an a½ne subset of Rn?

A½ne Dependence and Independence

A vector x A X is a½nely dependent on a set S of vectors if x A a¨ S,

that is, if x can be expressed as an a½ne combination of vectors from

S. This means that there exist vectors x1; x2; . . . ; xn A S and numbers

a1; a2; . . . ; an A R with a1 � a2 � � � � � an � 1 such that

x � a1x1 � a2x2 � � � � � anxn �8�
Otherwise, x is a½nely independent of S. We say that a set S is a½nely

dependent if some vector x A S is a½nely dependent on the other elements

of S, that is, x A a¨�Snfxg�. Otherwise, the set is a½nely independent.

Exercise 1.157

The set S � fx1; x2; . . . ; xng is a½nely dependent if and only if the set

fx2 ÿ x1; x3 ÿ x1; . . . ; xn ÿ x1g is linearly dependent.

Exercise 1.157 implies that the maximum number of a½nely indepen-

dent elements in an n-dimensional space is n� 1. Moreover the maximum

dimension of a proper a½ne subset is n. Analogous to exercise 1.133, we

have the following alternative characterization of a½ne dependence.

Exercise 1.158

The set S � fx1; x2; . . . ; xng is a½nely dependent if and only if there exist

numbers a1; a2; . . . ; an, not all zero, such that

a1x1 � a2x2 � � � � � anxn � 0

with a1 � a2 � � � � � an � 0.

Analogous to a basis, every vector in the a½ne hull of a set has a

unique representation as an a½ne combination of the elements of the

set.

Exercise 1.159 (Barycentric coordinates)

If S � fx1; x2; . . . ; xng is a½nely independent, every x A a¨ S has a unique

representation as an a½ne combination of the elements of S; that is, there

are unique scalars a1; a2; . . . ; an such that

x � a1x1 � a2x2 � � � � � anxn
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with a1 � a2 � � � � � an � 1. The numbers a1; a2; . . . ; an are called the

barycentric coordinates of x with respect to S.

1.4.4 Convex Sets

A subset S of a linear space X is a convex set if for every x and y in

S, the weighted average ax� �1ÿ a�y with 0U aU 1 belongs to S, that

is,

ax� �1ÿ a�y A S for every x; y A S; and 0U aU 1 �9�
For distinct x and y in X, the set of weighted averages or convex

combinations

fax� �1ÿ a�y : 0U aU 1g
is the straight line joining the two points (®gure 1.19). A set is convex if

the line joining any two points remains entirely within the set (®gure 1.20).

Note that X and q are trivially convex.

In an obvious extension of the notation for an interval, we will let �x; y�
denote the line joining two points x and y, that is,

�x; y� � fx A X : x � ax� �1ÿ a�y; 0U aU 1g
Similarly �x; y� denotes the line joining two points, but excluding the end

points, that is,

�x; y� � fx A X : x � ax� �1ÿ a�y; 0 < a < 1g

Figure 1.19
The line joining two points
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Exercise 1.160 (Intervals)

Show that the open interval �a; b� and the closed interval �a; b� are both

convex sets of R with the natural order (example 1.20). The hybrid inter-

vals �a; b� and �a; b� are also convex. Show that intervals are the only

convex sets in R.

Example 1.87 (Consumption set) If x and y are two consumption bundles,

their weighted average ax� �1ÿ a�y is another consumption bundle con-

taining a weighted average of the amount of each commodity in x and y.

More speci®cally, the consumption bundle 1
2 x� 1

2 y contains the average

of each commodity in x and y, that is,

1
2 x� 1

2 y � �12 x1 � 1
2 y1;

1
2 x2 � 1

2 y2; . . . ; 1
2 xn � 1

2 yn�
The consumption set X is a convex subset of Rn

�.

Example 1.88 (Input requirement set) Recall that the input requirement

set V�y�JRn
� details the inputs necessary to produce y units of a single

output. Assume that x1 and x2 are two di¨erent ways of producing y.

For example, x1 might be a capital intensive production process, whereas

x2 might use less capital and relatively more labor. A natural question is

whether it is possible to combine these two production processes and still

produce y, that is does ax1 � �1ÿ a�x2 belong to V�y�. The answer is yes

if V�y� is a convex set. In producer theory, it is conventional to assume

that V�y� is convex for every output level y, in which case we say that the

technology is convex.

Figure 1.20
Convex and nonconvex sets

89 1.4 Linear Spaces



Exercise 1.161

The core of a TP-coalitional game is convex.

Exercise 1.162

The intersection of any collection of convex sets is convex.

Example 1.89 (Slicing an egg) As an illustration of the preceding result,

consider slicing an egg. An egg is a good example of a convex set. Observe

that no matter in what direction we slice an egg, provided that the slices

are parallel, the slices are also convex. With just a little license, we can

think of slices as resulting from the intersection of two convex sets, the

egg and the plane (a½ne set) containing the knife. Provided that the knife

does not deviate from a single plane, we are guaranteed a convex slice. A

banana illustrates that the converse is not true. A banana will also pro-

duces convex slices, but the banana itself is not a convex set.

As the preceding example illustrates, a set may have convex cross

sections without itself being convex. This is an important distinction in

producer theory.

Example 1.90 (Convex technology) The input requirement set V�y� is a

cross section of the production possibility set Y. It is conventional to

assume that the input requirement set V�y� is convex for every y. This is

less restrictive than assuming that the production possibility set Y is con-

vex. Exercise 1.162 demonstrates that

Y convex) V�y� convex for every y

but the converse is not generally true. If the technology exhibits increasing

returns to scale, Y is not convex although V�y� may be. Technology

emulates the banana rather than the egg.

Exercise 1.163

Devise a formal proof of

Y convex) V�y� convex for every y

Sums and products of convex sets are also convex, as detailed in the

following exercises. Convexity of a sum is used in establishing the exis-

tence of a general equilibrium in an exchange economy, while convexity

of the product is used in establishing the existence of a noncooperative

equilibrium of a game.
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Exercise 1.164 (Sum of convex sets)

If fS1;S2; . . . ;Sng is a collection of convex subsets of a linear space X,

their sum S1 � S2 � � � � � Sn is also a convex set.

Exercise 1.165 (Product of convex sets)

If S1;S2; . . . ;Sn are convex subsets of the linear spaces X1;X2; . . . ;Xn,

their product S1 � S2 � � � � � Sn is a convex subset of the product space

X1 � X2 � � � � � Xn.

Example 1.91 (Aggregate production possibility set) Suppose that an

economy contains n producers dealing in m commodities. The technology

of each producer is summarized by its production possibility set Y j HRm.

Aggregate production y is the sum of the net outputs of each of the pro-

ducers y j, that is,

y � y1 � y2 � � � � � ym

The set of feasible aggregate production plans, the aggregate production

possibility set, is the sum of the individual production sets

Y � Y 1 � Y 2 � � � � � Y m HRm

The aggregate net output y is feasible if and only if y � y1 � y2 � � � � � ym

and y j A Y j for every j. A su½cient condition for the aggregate produc-

tion possibility set Y to be convex is that each ®rm has a convex produc-

tion set (exercise 1.164).

Exercise 1.166

S convex) aS convex for every a A R.

Exercise 1.167

If fS1;S2; . . . ;Sng is a collection of convex subsets of a linear space X, any

linear combination a1S1 � a2S2 � � � � � anSn, ai A R is also a convex set.

Exercise 1.168 is a useful characterization of convex sets.

Exercise 1.168

A set S is convex if and only if S � aS � �1ÿ a�S for every 0U aU 1.

Exercise 1.169

The collection of all convex subsets of a linear space ordered by inclusion

forms a complete lattice.
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Convex Combinations and Convex Hulls

A convex combination of elements in a set S JX is a ®nite sum of the

form

a1x1 � a2x2 � � � � � anxn

where x1; x2; . . . ; xn A S and a1; a2; . . . ; an A R� with a1� a2� � � � � an � 1.

The weights ai are nonnegative fractions between 0 and 1. In many

applications the weights have a natural interpretation as proportions or

probabilities. The convex hull of a set of vectors S, denoted conv S, is the

set of all convex combinations of vectors in S, that is,

conv S � fa1x1 � a2x2 � � � � � anxn :

x1; x2; . . . ; xn A S;

a1; a2; . . . ; an A R�

a1 � a2 � � � � � an � 1g
See ®gure 1.21.

The de®nition of a convex set (9) requires that it contain the convex

combination of any two elements. An equivalent criterion, which is often

used in practice, requires that a convex set contains the convex combina-

tion of an arbitrary number of elements.

Exercise 1.170

A set is convex if and only if it contains all convex combinations of its

elements.

Exercise 1.171

The convex hull of a set of vectors S is the smallest convex subset of X

containing S.

Figure 1.21
Two convex hulls
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Exercise 1.172

A set S is convex if and only if S � conv S

A useful fact is that taking sums and convex hulls commutes. That is,

the convex hull of the sum of a collection of sets is equal to the sum of

their convex hulls.

Exercise 1.173

For any ®nite collection of sets fS1;S2; . . . ;Sng,

conv
Xn

i�1

Si �
Xn

i�1

conv Si

[Hint: Establish the result for n � 2. The generalization to any ®nite n is

immediate.]

Remark 1.20 (Shapley-Folkman theorem) Let fS1;S2; . . . ;Sng be a col-

lection of nonempty (possibly nonconvex) subsets of an m-dimensional

linear space, and let x belong to conv
Pn

i�1 Si. Then by the previous exercise

x �
Xn

i�1

xi

where xi A conv Si. The Shapley-Folkman theorem shows that all but at

most m of the xi actually belong to Si. In this sense

conv
Xn

i�1

Si A
Xn

i�1

Si

The sum of a large number of sets is approximately convex.

This is relevant in economic models, where convexity is a common

assumption. It is comforting to know that aggregation tends to convexify.

Even if convexity is not appropriate for individual economic agents, con-

vexity in the aggregate may be a reasonable approximation. For example,

suppose that the sets Si are the production possibility sets of the n pro-

ducers in an economy with m commodities. S �Pn
i�1 Si is the aggregate

production possibility set (example 1.91). In a large economy with many

more producers n than commodities m, the aggregate production possi-

bility set may be reasonably convex even if the technology of individual

®rms is nonconvex. Proof of the Shapley-Folkman theorem requires
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additional tools. We will give two di¨erent proofs in chapter 3 (exercises

3.112 and 3.210).

The following example demonstrates the convexifying e¨ect of

aggregation.

Example 1.92 Let Si � f0; 1g, i � 1; 2; . . . ; n be a collection of subsets of

R. Then

. S �Pn
i�1 Si � f1; 2; . . . ; ng

. conv Si � the closed interval �0; 1�

. conv S � �0; n�
Any real number x A conv S can be written in many ways as the sum

x �
Xn

i�1

xi

where xi A �0; 1�. Among these representations, there is a least one in which

every xi except one is an integer, either 0 or 1. In this sense conv SAS.

For example, with n � 3, the number 2.25 can be written as 2:25 � 0:80�
0:75� 0:7. It can also be represented as 2:25 � 1� 1� 0:25.

So far our treatment of convex sets has paralleled exactly our presen-

tation of subspaces and a½ne sets, which are both particular examples of

convex sets. In general, however, convex sets are less regularly structured

than a½ne sets and subspaces. Consequently there is no direct counterpart

of a basis for a convex set. However, there is an analogous representation

theory that we discuss in the next subsection. We then turn to some new

concepts which arise in general convex sets, and some special classes of

convex sets.

Dimension and CaratheÂodory's Theorem

The dimension of a convex set is measured in terms of its a½ne hull.

Speci®cally, the dimension of a convex set S is de®ned to be the dimension

of its a½ne hull (exercise 1.150).

Example 1.93 The a½ne hull of an egg is the entire three-dimensional

space R3. Hence an egg is a three-dimensional convex set. If we contem-

plate an egg slice of negligible dimension, its a½ne hull is the two-
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dimensional plane R2. Hence a planar egg slice is a two-dimensional

convex set.

Exercise 1.174

Suppose a producer requires n inputs to produce a single output. Assume

that the technology is convex. What is the dimension of the input require-

ment set V�y�?
By de®nition, any element in the convex hull of a set S can be repre-

sented as a convex combination of a ®nite number of elements of S. In

fact it is su½cient to take dim S � 1 distinct points. This is analogous to

the representation of elements of a subspace by a basis.

Exercise 1.175 (CaratheÂodory's theorem)

Let S be a nonempty subset of a linear space, and let m � dim S �
dim a¨ S. Suppose that x belongs to conv S so that there exist x1;

x2; . . . ; xn A S and a1; a2; . . . ; an A R� with a1 � a2 � � � � � an � 1 such

that

x � a1x1 � a2x2 � � � � � anxn �10�
1. If n > dim S � 1, show that the elements x1; x2; . . . ; xn A S are a½nely

dependent, and therefore there exist numbers b1; b2; . . . ; bn, not all zero,

such that

b1x1 � b2x2 � � � � � bnxn � 0 �11�
and

b1 � b2 � � � � � bn � 0

2. Show that for any number t, x can be represented as

x �
Xn

i�1

�ai ÿ tbi�xi �12�

3. Let t � minifai=bi : bi > 0g. Show that ai ÿ tbi V 0 for every t and

ai ÿ tbi � 0 for at least one t. For this particular t, (12) is a convex rep-

resentation of x using only nÿ 1 elements.

4. Conclude that every x A conv S can be expressed as a convex combi-

nation of at most dim S � 1 elements.
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Extreme Points and Faces

An element x in a convex set S is an extreme point or vertex of S if it does

not lie on any line segment in S; that is, there are no two distinct points x1

and x2 in S such that

x � ax1 � �1ÿ a�x2

for some a A �0; 1�. In other words, an extreme point cannot be written

as the convex combination of other points in the set. A set may have no

extreme points, a ®nite number or an in®nite number of extreme points.

Figure 1.22 illustrates the three cases. We use ext�S� to denote the set of

extreme points of S.

Exercise 1.176

If x is not an extreme point of the convex set S JX , then there exists

y A X such x� y A S and xÿ y A S.

A convex subset F of a convex set S is called a face of S if no point of F

is an interior point of a line segment whose end points are in S but not in

F. Formally, if for any x; y A S, the point x � ax� �1ÿ a�y A F for any

a A �0; 1�, then x and y are also in F. An extreme point is a face containing

a single point (®gure 1.23).

Example 1.94 For any c > 0, consider the ``cube''

C � fx � �x1; x2; . . . ; xn� A Rn : ÿ cU xi U c; i � 1; 2; . . . ; ng
Each point of the form �Gc;Gc; . . .Gc� is a vertex of the cube. Each

point of the form �x1; . . . ; xiÿ1;Gc; xi�1; . . . ; xn�, where xi is ®xed at Gc,

lies on a face of cube. A three-dimensional cube is illustrated in ®gure 1.24.

Figure 1.22
Sets with and without extreme points
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Exercise 1.177

1. Show that the cube C2 � fx A R2 : ÿ cU x1 U c;ÿcU x2 U cg in R2

lies in the convex hull of the points �Gc;Gc�, that is,

C2 J conv
c

c

� �
;
ÿc

c

� �
;

c

ÿc

� �
;
ÿc

ÿc

� �� �
2. Suppose for any n � 2; 3; . . . ; that the cube Cnÿ1 J convf�Gc;Gc;

. . . ;Gc�gHRnÿ1. Show that n-dimensional cube Cn J convf�Gc;Gc;

. . . ;Gc�gHRn.

3. Conclude that the only extreme points of the cube

Cn � fx � �x1; x2; . . . ; xn� A Rn : ÿ cU xi U c; i � 1; 2; . . . ; ng
are the points of the form �Gc;Gc; . . .Gc�.
4. Show that Cn is the convex hull of its extreme points.

Figure 1.23
Faces and extreme points

Figure 1.24
A three-dimensional cube

97 1.4 Linear Spaces



Exercise 1.178

If F is a face of a convex set S, then SnF is convex.

Exercise 1.179 will be used in chapter 3.

Exercise 1.179

Let S be a convex set in a linear space:

1. S and q are faces of S.

2. The union of a collection of faces of S is a face.

3. The intersection of any nested collection of faces of S is a face.

4. The collection of all faces of S (partially ordered by inclusion) is a

complete lattice.

Polytopes and Simplices

The simplest of all convex sets are convex polytopes and simplices. The

convex hull of a ®nite set of points E � fx1; x2; . . . ; xng is called a poly-

tope (®gure 1.25). If in addition the points x1; x2; . . . ; xn are a½nely inde-

pendent, conv E is called a simplex with vertices x1; x2; . . . ; xn. Polytopes

and simplices ®gure prominently in optimization theory, general equilib-

rium theory, and game theory.

The following exercise shows that polytopes have a convenient repre-

sentation in terms of their extreme points. This result is a generalization of

exercise 1.177. It will be further generalized in chapter 2 to compact con-

vex sets, a result known as the Krein-Milman theorem (exercise 3.209).

Exercise 1.180

Let E be the set of extreme points of a polytope S. Then S � conv E.

Figure 1.25
A polytope and a simplex
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Exercise 1.181

Let S be the simplex generated by the ®nite set of points E �
fx1; x2; . . . ; xng. Show that each of the vertices xi is an extreme point of

the simplex.

Simplices are the most elementary of convex sets and every convex set

is the union of simplices. For this reason results are often established for

simplices and then extended to more general sets (example 1.100, exercise

1.229). The dimension of a simplex with n vertices is nÿ 1. Since the ver-

tices of a simplex are a½nely independent, each element in a simplex has a

unique representation as a convex combination of the vertices (exercise

1.159). The coe½cients in this representation are called the barycentric

coordinates of the point.

Example 1.95 (Standard simplex in Rn) The standard or unit simplex in

Rn is the �nÿ 1�-dimensional convex hull of the unit vectors e1; e2; . . . ; en,

that is,

Dnÿ1 � convfe1; e2; . . . ; eng
Elements x of Dnÿ1 are nonnegative vectors in Rn whose components sum

to one, that is,

Dnÿ1 � x A Rn : xi V 0 and
Xn

i�1

xi � 1

( )

Each component xi is a fraction between 0 and 1. Standard simplices

provide a natural space for the weights in convex combinations and for

probability distributions (example 1.98). The one-dimensional simplex is a

line, the two-dimensional simplex is a triangle, and the three-dimensional

simplex is a tetrahedron (®gure 1.26).

Exercise 1.182

Every n-dimensional convex set contains an n-dimensional simplex.

The following examples give some impression of the utility of simplices

in economics and game theory.

Example 1.96 (Sectoral shares) One of the most striking features of

economic development is the changing sectoral composition of output

and employment, where the predominance of economic activity shifts
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from agriculture to manufacturing, and then to services. This transition

can be illustrated graphically by plotting sectoral shares in the two-

dimensional unit simplex, where each point represents the respective

shares of agriculture, manufacturing and services.

Figure 1.27 illustrates this structural change in the United States over

the period 1879 to 1980. In 1879, 50 percent of the workforce were

engaged in agriculture and mining. By 1953, this had declined to 12 per-

cent, falling to 4.5 percent in 1980. For nearly a century, employment

growth was shared by both manufacturing and services. Recently, how-

ever, manufacturing employment has also declined as the United States

moves inexorably toward a ``service economy.'' By 1980 two out of every

three workers were employed in the service sector. Both the rapid decline

in agriculture and the subsequent emergence of the service economy are

graphically evident in ®gure 1.27.

Figure 1.26
Some simplices

Figure 1.27
Illustrating the changing sectoral distribution of employment in the United States
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Example 1.97 (Imputations: reasonable outcomes in a coalitional game)

The outcome x A X of a TP-coalitional game is an allocation of the

available sum w�N� among the players so that

X � x A Rn :
X
i AN

xi � w�N�
( )

Each player i receives xi. Assuming that the players are rational, it seems

reasonable to assume that no player will agree to an outcome that is infe-

rior to that which she can obtain acting alone. Each player will insist that

xi V v�fig�. The presumption of individual rationality requires that

xi V v�fig� for every i A N

Any feasible, individually rational outcome in a coalitional game is called

an imputation. Typically the set of imputations

I � fx A X : xi V v�fig�g for every i A N

is an �nÿ 1�-dimensional simplex in Rn.

Consider the three-player game

w�f1g� � 10 w�f1; 2g� � 50

w�f2g� � 20 w�f1; 3g� � 60 w�f1; 2; 3g� � 100

w�f3g� � 30 w�f2; 3g� � 70

The set of imputations is

I � fx A R3 : x1 V 10; x2 V 20; x3 V 30; x1 � x2 � x3 � 100g �13�
This is illustrated by the dark shaded area in the left-hand panel of ®gure

1.28, which is a two-dimensional simplex. The larger lightly shaded area

comprises all nonnegative allocations.

A more concise pictorial representation of the set of imputations can be

obtained by projecting the two-dimensional simplex onto the plane from a

suitable viewpoint. This gives us a planar representation of the set impu-

tations, which is illustrated by the dark shaded area in the right-hand

panel of ®gure 1.28. Each of the vertices is labeled with one of the players.

The payo¨ to each player is measured from the baseline opposite the vertex

corresponding to the player. Each point in the simplex has the property

that the sum of its coordinates is a constant v�N�, which is the sum

available for distribution.
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Exercise 1.183

The set of imputations of an essential TP-coalitional game �N;w� is an

�nÿ 1�-dimensional simplex in Rn.

Example 1.98 (Mixed strategies) In a ®nite strategic game, each player i

has a set Si � �s1; s2; . . . ; sm� of possible strategies. Each element of sj A Si

is called a pure strategy. In a static strategic game (example 1.2 and

section 1.2.6), each pure strategy corresponds to an action so that Si � Ai.

In a dynamic game (example 1.63), a pure strategy sj may be a sequence

of actions to be carried out by player i. It is often advantageous for a

player to choose her strategy randomly in order to keep her opponent

guessing. Such a random choice is called a mixed strategy. Formally, a

mixed strategy for player i is a probability distribution over her set of pure

strategies. That is, a mixed strategy is a set of probability weights

p � �p1; p2; . . . ; pm�, where pj is the probability attached to pure strategy

sj. Since p is a probability distribution

. 0U pj U 1, j � 1; 2; . . . ;m

. Pm
j�1 pj � 1

Each mixed strategy p corresponds to a point in the unit simplex Dmÿ1.

Therefore the set of mixed strategies is the �mÿ 1�-dimensional unit

simplex.

Example 1.99 (Rock±Scissors±Paper) If one player plays a pure strategy

in Rock±Scissors±Paper (exercise 1.5), this can always be exploited by the

Figure 1.28
Outcomes in a three-player cooperative game
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other player. Therefore it is necessary to play a mixed strategy. One par-

ticular mixed strategy is s � �12 ; 1
3 ;

1
6� which involves playing ``Rock'' with

probability 1
2, ``Scissors'' with probability 1

3, and ``Paper'' with probability
1
6. The set S of all mixed strategies is the two-dimensional unit simplex

(®gure 1.29). The vertices represent the pure strategies, while the edges

represent mixtures of two of the three strategies. Any point in the interior

of the simplex involves a mixture of all three strategiesÐit is called a

completely mixed strategy. We show later that the mixed strategy �13 ; 1
3 ;

1
3�

in which the player chooses each action with equal probability is the

unique equilibrium of the game.

Example 1.100 (The price simplex) Let � p̂1; p̂2; . . . ; p̂m� denote the prices

of the m goods in a general equilibrium model. Sometimes it is convenient

to normalize the prices by dividing each price by the sum of all prices,

de®ning the normalized price

pi � p̂iPm
j�1 p̂j

This normalization preserves relative prices and has the consequence that

the normalized prices pi always sum to one. Therefore the normalized

price vectors are contained in the �mÿ 1�-dimensional unit simplex

Dmÿ1 � p A Rm
� :
Xm

i�1

pi � 1

( )

We will use this normalization in proving the existence of a general equi-

librium in an exchange economy (example 2.95).

Figure 1.29
Mixed strategies in Rock±Scissors±Paper
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1.4.5 Convex Cones

A subset S of a linear space X is a cone if aS JS for every aV 0, that is,

ax A S for every x A S and aV 0

This a slight relaxation of the homogeneity requirement of a linear space.

If, in addition, S is convex, it is called a convex cone (®gure 1.30). Note

that every cone contains 0, which is called the vertex.

Exercise 1.184

Give examples of

1. a cone that is not convex

2. a convex set that is not a cone

3. a convex cone

Example 1.101 (Constant returns to scale) A production technology

exhibits constant returns to scale if any feasible production plan y remains

feasible when it is scaled up or down, that is,

ay A Y for every y A Y and aV 0

In other words, the technology exhibits constant returns to scale if the

production possibility set Y is a cone.

Convex cones provide a slight generalization of subspaces. A subspace

of linear space is a subset that is closed under addition and scalar

multiplication. A convex cone is a slightly broader class of a set that is

Figure 1.30
Some cones in R2
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closed under addition and nonnegative multiplication. That is, S is a

convex cone if

ax� by A S for every x; y A S and a; b A R�

Compare this with equation (3) de®ning a subspace. This alternative

characterization of a convex cone is established in exercise 1.186.

Exercise 1.185

Show that set Rn
� is a cone in Rn.

Exercise 1.186

A subset S of a linear space is a convex cone if and only if

ax� by A S for every x; y A S and a; b A R�

Exercise 1.187

A set S is a convex cone if and only if

1. aS JS for every aV 0

2. S � S JS

Convex cones arise naturally in economics, where quantities are required

to be nonnegative. The set of nonnegative prices vectors is a convex cone

�Rn
�� and the production possibility set is often assumed to be a convex

cone (example 1.102).

Example 1.102 (Convex technology) Among the typical assumptions on

technology cited by Debreu (1959, pp. 41±42) are

additivity Y � Y JY

constant returns to scale aY JY for every aV 0

Additivity requires that production processes be independent. Together,

these conventional assumptions imply that the production possibility set

Y is a convex cone. In general, convexity is too stringent a requirement to

demand of the technology.

Exercise 1.188

Another conventional (and trivial) assumption on technology cited by

Debreu (1959, p. 41) is 0 A Y , which he calls the possibility of inaction.

Show that the three assumptions
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convexity Y is convex

additivity Y � Y JY

possibility of inaction 0 A Y

together imply that the technology exhibits constant returns to scale.

Exercise 1.189 (Superadditive games)

A natural assumption for TP-coalitional games is superadditivity, which

requires that coalitions cannot lose through cooperation. Speci®cally, a

TP-coalitional game is superadditive if

w�S WT�Vw�S� � w�T�
for all distinct coalitions S, T, S XT �q. Show that the set of super-

additive games forms a convex cone in GN (example 1.70).

Analogous to convex sets exercises 1.162 and 1.164, cones are preserved

through intersection and addition.

Exercise 1.190

If fS1;S2; . . . ;Sng is a collection of cones in a linear space X, then

. their intersection 7n

i�1 Si

. their sum S1 � S2 � � � � � Sn

are also cones in X.

Nonnegative Linear Combinations and Conic Hulls

A nonnegative linear combination of elements in a set S JX is a ®nite sum

of the form

a1x1 � a2x2 � � � � � anxn

where x1; x2; . . . ; xn A S and a1; a2; . . . ; an A R�. The conic hull of a set of

vectors S, denoted cone S, is the set of all nonnegative combinations of

vectors in S, that is,

cone S � fa1x1 � a2x2 � � � � � anxn :

x1; x2; . . . ; xn A S;

a1; a2; . . . ; an A R�g
See ®gure 1.31.
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Example 1.103 (Linear production model) One of simplest models of

production begins with the assumption that there are a ®nite number of

basic activities or production plans y1; y2; . . . ; ym. These basic activities

can be operated independently at constant returns to scale, that is,

. yi � yj A Y for all i; j � 1; 2; . . . ;m

. ayi A Y for all i � 1; 2; . . . ;m and a > 0

so that the production possibility set Y is a convex cone (example 1.102).

In fact the production possibility set Y is precisely the conic hull of the

basic activities, that is,

Y � conefy1; y2; . . . ; ymg
Exercise 1.191

Suppose that a ®rm's technology is based on the following eight basic

activities:

y1 � �ÿ3;ÿ6; 4; 0�
y2 � �ÿ7;ÿ9; 3; 2�
y3 � �ÿ1;ÿ2; 3;ÿ1�
y4 � �ÿ8;ÿ13; 3; 1�
y5 � �ÿ11;ÿ19; 12; 0�
y6 � �ÿ4;ÿ3;ÿ2; 5�

Figure 1.31
The conic hull of S
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y7 � �ÿ8;ÿ5; 0; 10�
y8 � �ÿ2;ÿ4; 5;ÿ2�
which can be operated independently at any scale. The aggregate pro-

duction possibility set is

Y � conefy1; y2; y3; y4; y5; y6; y7; y8g
1. Show that it is impossible to produce output without using any inputs,

that is,

y A Y ; yV 0) y � 0

This is called the no-free-lunch property.

2. Show that Y does not exhibit free disposal (exercise 1.12).

3. Show that activities y4, y5, y6, and y8 are ine½cient. (Compare with y2,

y1, y7, and y3 respectively.)

4. Show that activities y1 and y2 are ine½cient. (Compare with a combi-

nation of y3 and y7.)

5. Specify the set of e½cient production plans.

The following results are analogous to those for convex hulls.

Exercise 1.192

The conic hull of a set of vectors S is the smallest convex cone in X con-

taining S.

Exercise 1.193

A set S is a convex cone if and only if S � cone S.

CaratheÂodory's Theorem Again

As a convex set, the dimension of a convex cone S is de®ned to be the

dimension of its a½ne hull. However, since every cone contains 0, its

a½ne hull is in fact a subspace. Hence the dimension of a convex cone is

the dimension of its linear hull, the maximum number of linearly indepen-

dent elements which it contains. By CaratheÂodory's theorem, any point

in a convex cone S can be represented as a convex combination of

dim S � 1 distinct points in S. In fact, because of its tighter structure,

dim S points su½ces for a convex cone. This has an interesting implica-

tion for the linear production model (example 1.104).
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Exercise 1.194 (CaratheÂodory's theorem for cones)

Let S be a nonempty subset of a linear space and let m � dim cone S. For

every x A cone S, there exist x1; x2; . . . ; xn A S and a1; a2; . . . ; an A R�
such that

x � a1x1 � a2x2 � � � � � anxn �14�
1. If n > m � dim cone S, show that the elements x1; x2; . . . ; xn A S are

linearly dependent and therefore there exist numbers b1; b2; . . . ; bn, not all

zero, such that

b1x1 � b2x2 � � � � � bnxn � 0

2. Show that for any number t, x can be represented as

x �
Xn

i�1

�ai ÿ tbi�xi

3. Let t � minifai=bi : bi > 0g. Show that ai ÿ tbi V 0 for every t and

ai ÿ tbi � 0 for at least one t. For this particular t, (14) is a nonnegative

representation of x using only nÿ 1 elements.

4. Conclude that every x A cone S can be expressed as a nonnegative

combination of at most dim S elements.

Example 1.104 In the linear production model (example 1.103), the

production possibility set Y � conefy1; y2; . . . ; ymg is a subset of Rn

where is n is the number of commodities. Assume that m > n. Exercise

1.194 implies that every feasible production plan y A Y can be obtained

with at most n basic processes.

The preceding exercise can be extended to arbitrary convex sets, pro-

viding an alternative proof of exercise 1.175. This illustrates a common

technique called homogenization, in which a result is ®rst established for

convex cones (which are easier) and then extended to arbitrary convex sets.

Exercise 1.195

Let S be a nonempty subset of a linear space, and let m � dim S �
dim a¨ S. Consider the set

~S � x

1

� �
: x A S

� �
illustrated in ®gure 1.32.
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1. Show that dim cone ~S � dim S � 1.

2. For every x A conv S, there exists m� 1 points x1; x2; . . . ; xm�1 A S

such that

x A convfx1; x2; . . . ; xm�1g
1.4.6 Sperner's Lemma

Suppose that a simplex S is partitioned into a ®nite collection of sub-

simplices S1;S2; . . . ;Sk JS so that S �6Si. If no further restriction is

placed on this collection, the subsimplices may overlap or intersect in the

middle of a face, as illustrated in ®gure 1.33. A simplicial partition pre-

cludes arbitrary intersections. That is, a simplicial partition of a simplex is

a partition into ®nitely many simplices such that either any two simplices

are disjoint or they have a common face as their intersection (®gure 1.34).

Let S be a simplex with vertices fx1; x2; . . . ; xng. Suppose that S is

simplicially partitioned, and let V denote the set of all vertices of the

subsimplices. Assign to each vertex x A V a label 1; 2; . . . ; n. Such an

Figure 1.32
CaratheÂodory's theorem for cones

Figure 1.33
Invalid intersections of subsimplices
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assignment is called an admissible labeling provided that

. each vertex of the original simplex S retains its own label and

. each vertex on a face of S receives a label corresponding to one of the

vertices of that face

If one of the subsimplices has a complete set of labels 1; 2; . . . ; n, then we

say that the subsimplex is completely labeled. Surprisingly, every admis-

sibly labeled simplicial partition has at least one completely labeled sub-

simplex, a profound result known as Sperner's lemma.

An admissibly labeled simplicial partition of a two-dimensional simplex

is illustrated in ®gure 1.36. Each of the original vertices retains its own

label. Each vertex along a face of the original simplex is assigned the label

of one of the vertices of the face, while the labels assigned to the interior

points are quite arbitrary. The shaded subsimplex has a complete set of

labels 1, 2, and 3. Since the labels in the interior were assigned arbitrarily,

the existence of a completely labeled subsimplex seems implausible in gen-

eral. Suppose that the label of the vertex 2 is changed to 3. Then another

subsimplex becomes completely labeled. On the other hand, suppose that

it is changed to 1. Then three subsimplices are completely labeled.

Sperner's lemma asserts that there is always an odd number of completely

labeled subsimplices. It is will be used to prove the Brouwer ®xed point

theorem (theorem 2.6) in chapter 2.

Proposition 1.3 (Sperner's lemma) An admissibly labeled simplicial parti-

tion of a simplex always contains at least one subsimplex that is completely

labeled.

Figure 1.34
A simplicial partition
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Proof Let S be an n-dimensional simplex. We proceed by induction on

the dimension of the simplex, with one- and two-dimensional cases serv-

ing as a model for the general case.

For n � 1, let the two vertices of the one-dimensional simplex be labeled

1 and 2. An admissibly labeled simplicial partition divides the line joining

x1 and x2 into segments (®gure 1.35) with vertices labeled 1 or 2. A seg-

ment may have no, one, or two vertices labeled 1. Let c denote the

number of segments with just one vertex labeled 1, and let d denote the

number of segments with both vertices labeled 1. The total number of

1 vertices, counted segment by segment, is c� 2d. But, interior vertices

have been counted twice in this total, since each interior vertex is shared

by two segments. Let a denote the number of interior 1 vertices. There is a

single boundary 1 vertex, x1. Therefore the previous count must be equal

to 2a� 1. That is,

2a� 1 � c� 2d

which implies that c is necessarily odd. If a segment has just one vertex

labeled 1, the other vertex must be labeled 2Ðsuch a segment is com-

pletely labeled. We conclude that there are an odd number of completely

labeled segments.

For n � 2, let S be the two-dimensional simplex generated by the points

x1; x2; x3. Create an admissibly labeled simplicial partition (®gure 1.36).

Call a side of a subsimplex distinguished if it carries both the labels 1 and

2. A subsimplex may have none, one, or two distinguished sides. (Why are

three distinguished sides impossible? See exercise 1.196.) Let c denote the

number of subsimplices with one distinguished side and d denote the

number of subsimplices with two distinguished sides. The total number

of distinguished sides, counted simplex by simplex, is c� 2d. But every

interior distinguished side is shared by two subsimplices, and therefore

has been included twice in preceding total. Let a denote the number of

interior distinguished sides and b the number of distinguished sides on the

boundary. The previous count must be equal to 2a� b, that is,

2a� b � c� 2d

Figure 1.35
An admissibly labeled partition of a one-dimensional simplex
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Every distinguished side on the boundary is a completely labeled sub-

simplex of one-dimensional simplex. We have just shown that b is odd,

and therefore c must also be odd. A subsimplex with precisely one dis-

tinguished side is completely labeled. We conclude that there are an odd

number of completely labeled subsimplices.

For n > 2, assume every admissibly labeled simplicial partition of

an �nÿ 1� ÿ dimensional simplex contains an odd number of completely

labeled subsimplices. Let L be an admissibly labeled simplicial subdivision

of an n-dimensional simplex S. Call an �nÿ 1�-dimensional face of a sub-

simplex distinguished if it carries all the labels 1; 2; . . . ; nÿ 1. For each n-

dimensional subsimplex T A L, there are three possibilities (exercise 1.196):

. T has no distinguished faces.

. T has one distinguished face.

. T has two distinguished faces.

Let c denote the number of subsimplices with just one distinguished

face and d denote the number of subsimplices with two distinguished

faces. The total number of distinguished faces, counted simplex by sim-

plex, is c� 2d. But, in a simplicial partition, every interior distinguished

face is shared by two subsimplices, and therefore has been included twice

in preceding total. Let a denote the number of interior distinguished faces

and b the number of distinguished faces on the boundary. The previous

count must be equal to 2a� b, that is,

2a� b � c� 2d

Figure 1.36
An admissibly labeled simplicial partition
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Every distinguished face on the boundary is a completely labeled sub-

simplex of an �nÿ 1�-dimensional simplex. By assumption, there are an

odd number of completely labeled subsimplices on the boundary. That is,

b is odd and therefore c must also be odd. A subsimplex with precisely

one distinguished face is completely labeled. We conclude that there are

an odd number of completely labeled subsimplices.

Since we have established the result for n � 1 and n � 2, we conclude

that every admissibly labeled simplicial partition of an n-dimensional

simplex has an odd number of completely labeled subsimplices. In par-

ticular, since zero is not an odd number, there is at least one completely

labeled subsimplex. r

Exercise 1.196

Why can a subsimplex have no more than two distinguished faces?

1.4.7 Conclusion

Linear spaces and their subsetsÐa½ne sets, convex sets, and conesÐare

the natural domain of the typical objects of economic analysis, such as

consumption bundles, production plans and ®nancial portfolios, and TP-

coalitional games. Linearity re¯ects our physical ability to combine and

scale these basic objects into new objects of the same type.

A subspace is a subset that is a linear space in its own right, meeting the

twin requirements of linearity, namely additivity and homogeneity. A½ne

sets, convex sets, and cones are subsets that retain some (but not all) of

the properties of their underlying spaces. A½ne and convex sets satisfy

relaxed additivity requirements but not homogeneity. On the other hand,

a cone satis®es a relaxed homogeneity condition (without additivity). A

convex cone therefore satis®es relaxed forms of both additivity and homo-

geneity, and is therefore almost but not quite a subspace. In chapter 3 we

will note a similar relationship among linear, convex, and homogeneous

functions. Another way of distinguishing among subspaces, a½ne sets,

convex sets, and cones is to consider the di¨erent types of weighted sum

which they embrace, as detailed in table 1.2.

1.5 Normed Linear Spaces

We now explore sets that are simultaneously linear spaces and metric

spaces. Any linear space can be made into a metric space by equipping it

with a metric. However, to permit the fruitful interaction of the algebraic
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and geometric structure, it is desirable that the metric or distance function

respect the linearity of the space. To achieve the necessary consistency

between the algebraic and geometric structure of the space, we derive the

metric from another measure, the norm, which respects the linearity of the

space.

For any linear space X, a norm (denoted kxk) is a measure of the size of

the elements satisfying the following properties:

1. kxkV 0

2. kxk � 0 if and only if x � 0

3. kaxk � jaj kxk for all a A R

4. kx� ykU kxk � kyk (triangle inequality)

A norm on a linear space X induces a metric on X in which the distance

between any two elements is given by the norm of their di¨erence

r�x; y� � kxÿ yk
Note how linearity is used in de®ning the metric. A linear space together

with a norm is called a normed linear space. It is a special metric space

with a rich interaction of the algebraic and geometric structures. In this

section, we highlight some of the features of this interaction which will be

useful later in the book.

Exercise 1.197

Show that the metric r�x; y� � kxÿ yk satis®es the properties of a metric,

and hence that a normed linear space is a metric space.

Example 1.105 (Production plans) A production plan y is a list of the net

outputs of various goods and services �y1; y2; . . . ; yn�, where yi is the net

output of commodity i. How could we measure the ``size'' of a production

plan?

One suggestion would be to sum (or average) the net outputs of all the

goods and services, as in
Pn

i�1 yi or �Pn
i�1 yi�=n. However, recognizing

that some of the components will be negative (inputs), it would be more

appropriate to take their absolute values. Therefore one possible measure

of size is

kyk1 �
Xn

i�1

jyij
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Another way to compensate for the negativity of some components

(inputs) would be to square the individual measures, as in

kyk2 �
�������������Xn

i�1

y2
i

s

This measure, which is analogous to the standard deviation, gives greater

weight to larger quantities. Both of these measures qualify as norms,

although verifying the triangle inequality for kyk2 is a nontrivial exercise.

Another candidate for a measure of size would be to focus on one

particular component, ``the output,'' and measure the size of the produc-

tion plan by the quantity of this output produced. For example, assume

that good n is regarded as the principal output. Could we measure the size

of the production plan y by the quantity yn? I am afraid not. The measure

kyk � jyij does not satisfy the requirements of a norm, since kyk � 0 does

not imply that y � 0. Unfortunately, as researchers are only too aware, it

is possible to consume inputs and produce no outputs. This measure does

not induce a metric on the production possibility set.

There is a related measure which does qualify as a norm (exercise

1.198) and which induces an appropriate metric. This measure uses the

size of the largest component (input or output) as the measure of the size

of the production plan, as in

kyky � max
n

i�1
jyij

Each of these norms kyk1, kyk2 and kyky induces one of the standard

metrics on Rn.

Exercise 1.198

Show that kyky satis®es the requirements of a norm on Rn.

Exercise 1.199

Show that the average of the net outputs �Pn
i�1 yi�=n does not satisfy the

requirements of a norm on the production possibility set.

Example 1.106 (Euclidean space) The Euclidean norm kxk2 generalizes

the conventional notion of the length of a vector in two and three dimen-

sional space. In the plane (R2), the Euclidean norm is an expression of the

theorem of Pythagoras that in a right angle triangle, the square of the
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length of the hypotenuse is equal to the sum of the squares of the other

two sides

kxk2 � jx1j2 � jx2j2

as illustrated ®gure 1.37. In R3, the length of the vector x � �x1; x2; x3� is

kxk �
��������������������������
x2

1 � x2
2 � x2

3

q
Example 1.107 (The space ly) Instead of the static choice of a con-

sumption or production plan at a single point in time, consider the prob-

lem of choosing a path of consumption over a lifetime. For simplicity,

assume that there is a single commodity and let xt A R denote the con-

sumption of the commodity in period t. Moreover, to avoid the problem

of uncertainty regarding the time of death, let us assume that the con-

sumer lives forever. (Alternatively, assume that the decision maker is a

social planner concerned with future as well as current generations.) A

consumption plan is an in®nite sequence of instantaneous consumptions

x � �x1; x2; . . .�. The consumption set X is the set of all such in®nite

sequences of real numbers, that is,

X � f�x1; x2; . . . ; xt; . . .� : xt A Rg
which is a linear space (example 1.68).

For the moment it is convenient not to exclude negative consumption

in particular periods. However, consumption in any period is typically

bounded by the available resources; that is, there exists some K such that

jxtjUK for every t.

Figure 1.37
The theorem of Pythagorus
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The set of all bounded sequences of real numbers x � �x1; x2; . . .� is a

natural setting for the study of simple dynamic models in economics.

Equipped with the norm

kxk � sup
i
jxij

it is a normed linear space, which is denoted ly. In this norm the magni-

tude of any consumption plan is the absolute size of the largest con-

sumption planned at any time. ly and related normed linear spaces are

now commonplace in dynamic economic models (e.g., Sargent 1987;

Stokey and Lucas 1989).

Exercise 1.200

Prove the following useful corollary of the triangle inequality: for any x, y

in a normed linear space

kxk ÿ kykU kxÿ yk
The preceding corollary of the triangle inequality implies that the norm

converges along with a sequence, as detailed in the following exercise.

Exercise 1.201

Let xn ! x be a convergent sequence in a normed linear space. Then

kxnk ! kxk
Furthermore the norm respects the linearity of the underlying space.

Exercise 1.202

Let xn ! x and yn ! y be convergent sequences in a normed linear space

X. The sequence �xn � yn� converges to x� y, and axn converges to ax.

[Hint: Use the triangle inequality.]

The following corollary will be used in chapter 3.

Exercise 1.203

If S and T are subsets of a normed linear space with

. S closed and

. T compact

then their sum S � T is closed.
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Exercise 1.204

Let c0 be the set of all sequences of real numbers converging to zero, that is,

c0 � f�xn� : xn A R and xn ! 0g
Is c0 a subspace of ly?

Example 1.108 (Geometric series) Given a sequence of x1; x2; x3; . . . of

elements in a normed linear space, their sum

x1 � x2 � x3 � � � �
is called a series. If the sequence has only ®nite number of elements, then

the series has a ®nite number of terms and is called a ®nite series. Other-

wise, it is an in®nite series with an in®nite number of terms. What mean-

ing can we attach to such an in®nite sum?

Given an in®nite series, we can de®ne the sequence of partial sums

whose nth term sn is the sum of the ®rst n terms of the series

sn � x1 � x2 � � � � � xn

If the sequence s1; s2; . . . converges to some s, we say that the series

x1 � x2 � x3 � � � � converges, and we call s the sum of the in®nite series,

that is,

s � x1 � x2 � x3 � � � �
In the special case where each term xn in the sequence is a constant

multiple of the previous term �xn � bxnÿ1), their sum is called a geometric

series, which can be written as

x� bx� b2x� � � �
where x � x1. A geometric series converges if and only if jbj < 1 (exercise

1.205), and the limit (in®nite sum) is

s � x� bx� b2x� � � � � x

1ÿ b

Exercise 1.205

Show that the in®nite geometric series x� bx� b2x� � � � converges pro-

vided that jbj < 1 with

x� bx� b2x� � � � � x

1ÿ b
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Exercise 1.206

Show that

1� 1

2
� 1

4
� 1

8
� 1

16
� � � � � 2

Example 1.109 (Present value) Frequently in economics we have to

evaluate future income streams recognizing that future income is worth

less than current income. For example, in a repeated game (example 1.63)

a particular strategy pro®le will give rise to a sequence of payo¨s to each

of the players. Typically we evaluate this sequence by its present value,

discounting future payo¨s to compensate for the delay in their receipt. To

be speci®c, suppose that a particular strategy will generate a constant

payo¨ of x per round for some player. Suppose further that the player

discounts future payments at the rate of b per period, so that x dollars to

be received in the next period is worth as much as bx dollars in the current

period. Then the present value of the income stream is a geometric series

present value � x� bx� b2x� b3x� � � �
Provided that the player discounts future payo¨s (b < 1), the present

value is ®nite and equal to the sum of the series, that is,

present value � x

1ÿ b

Exercise 1.207

What is the present value of n periodic payments of x dollars discounted

at b per period?

A special feature of a normed linear space is that its structure or

geometry is uniform throughout the space. This can be seen in the special

form taken by the open balls in a normed linear space. Recall that the

open ball about x0 of radius r is the set

Br�x0� � fx A X : kxÿ x0k < rg
By linearity, this can be expressed as

Br�x0� � fx0 � x : kxk < rg
The unit ball B is the open ball about 0 of radius 1

B � fx : kxk < 1g
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It is the set of all elements of norm less than 1. Any open ball can be

expressed in terms of the unit ball as follows:

Br�x0� � x0 � rB

That is, any open ball in a normed linear space is simply a translation and

scaling of the unit ball. Therefore many important properties of a normed

linear space are related to the shape of its unit ball. Figure 1.13 illustrates

the unit ball in the plane (R2) for some di¨erent norms.

The uniform structure of a normed linear space enables the following

re®nement of exercise 1.93.

Exercise 1.208

Let S1 and S2 be disjoint closed sets in a normed linear space with S1

compact. There exists a neighborhood U of 0 such that

�S1 �U�XS2 �q

Completeness is one of the most desirable properties of a metric space.

A complete normed linear space is called a Banach space. Almost all the

spaces encountered in mathematical economics are Banach spaces.

Exercise 1.209

Let X, Y be Banach spaces. Their product X � Y with norm

k�x; y�k � maxfkxk; kykg
is also a Banach space.

The natural space of economic models is Rn, the home space of con-

sumption and production sets, which is a typical ®nite-dimensional

normed linear space. In these spaces the interaction between linearity and

topology is most acute, and many of the results obtained above can be

sharpened. The most important results are summarized in the following

proposition.

Proposition 1.4 Any ®nite-dimensional normed linear space has the fol-

lowing properties:

. It is complete.

. All norms are equivalent.

. Any subset is compact if and only if it is closed and bounded.

121 1.5 Normed Linear Spaces



Let us examine each of these properties in turn. Given the fundamental

convenience of completeness, it is very comforting to know that every

®nite-dimensional normed linear space is complete, in other words, a

Banach space. Some of the analytical di½culties of in®nite-dimensional

spaces arises from the fact that they may be incomplete.

Two norms are equivalent if they generate the same topology, that is if

they have the same open and closed sets. In a ®nite-dimensional normed

linear space, the identity of neighborhoods and limits transcends any

speci®c norm associated with the space. In particular, this means that

convergence of a sequence is invariant to the choice of norm. Essentially

the geometry of all ®nite-dimensional linear spaces is the same. In this

sense, there is only one ®nite-dimensional normed linear space, and Rn is

a suitable incarnation for this space.

In the previous section, we established (proposition 1.1) that every

compact set in a metric space is closed and bounded. Proposition 1.4

shows that the converse is true in a ®nite-dimensional normed linear

space. This is extremely useful in practice, since it provides two simple

criteria for identifying compact sets. Typically it is straightforward to

show that a set is closed and bounded and hence to conclude that it is

compact.

These three important properties of ®nite-dimensional normed linear

spaces (proposition 1.4) are established in the following exercises (1.211,

1.213, and 1.215). All three properties rest on the interplay of two funda-

mental ideas:

. The spanning of a ®nite-dimensional linear space by a basis.

. The completeness of the real numbers R.

These exercises highlight the powerful interaction of algebra (linearity)

and geometry in a normed linear space.

One implication of linear independence for geometry is summarized in

the following key lemma, which is used in each of the exercises 1.211,

1.213, and 1.215 and also in chapter 3. Roughly speaking, this lemma

states that it is impossible to represent arbitrarily small vectors as large

linear combinations of linearly independent vectors.

Lemma 1.1 Let S � fx1; x2; . . . ; xng be a linearly independent set of vec-

tors in a normed linear space (of any dimension). There exists some con-

stant c > 0 such that for every x A lin S
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kxkV c�ja1j � ja2j � � � � � janj�
where x � a1x1 � a2x2 � � � � � anxn.

Exercise 1.210

To prove lemma 1.1, assume, to the contrary, that for every c > 0 there

exists x A linfx1; x2; . . . ; xng such that

kxk < c
Xn

i�1

jaij
 !

where x � a1x1 � a2x2 � � � � � anxn. Show that this implies that

1. there exists a sequence �xm� with kxmk ! 0

2. there exists a subsequence converging to some x A linfx1; x2; . . . ; xng
3. x0 0 contradicting the conclusion that kxmk ! 0

This contradiction proves the existence of a constant c > 0 such that

kxkV c�ja1j � ja2j � � � � � janj�
for every x A lin S.

Exercise 1.211 (Every ®nite-dimensional space is complete)

Let �xm� be a Cauchy sequence in a normed linear space X of dimension

n. Let fx1; x2; . . . ; xng be a basis for X. Each term xm has a unique

representation

xm � am
1 x1 � am

2 x2 � � � � � am
n xn

1. Using lemma 1.1, show that each sequence of scalars am
i is a Cauchy

sequence in R and hence converges to some ai A R.

2. De®ne x � a1x1 � a2x2 � � � � � anxn. Show that x A X and that

xm ! x.

3. Conclude that every ®nite-dimensional normed linear space is

complete.

Exercise 1.212 (Equivalent norms)

Two norms kxka and kxkb on a linear space are equivalent if there are

positive numbers A and B such that for all x A X ,

Akxka U kxkb UBkxka �15�
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The following exercise shows that there essentially only one ®nite-

dimensional normed linear space.

Exercise 1.213

In a ®nite-dimensional normed linear space, any two norms are

equivalent.

One implication of the equivalence of norms in a normed linear space is

that if a sequence converges with respect to one norm, it will converge in

every norm. Therefore convergence in a ®nite-dimensional normed linear

space is intrinsic to the sequence, and it does not depend on any particular

norm. A useful corollary of this fact is given in the following exercise.

Exercise 1.214

A sequence �xn� in Rn converges if and only if each of its components xn
i

converges in R.

Exercise 1.215 (Closed and bounded equals compact)

Let S JX be a closed and bounded subset of a ®nite-dimensional normed

linear space X with basis fx1; x2; . . . ; xng, and let xm be a sequence in S.

Every term xm has a unique representation

xm �
Xn

i�1

am
i xi

1. Using lemma 1.1, show that for every i the sequence of scalars �am
i � is

bounded.

2. Show that �xm� has a subsequence �xm
�1�� for which the coordinates of

the ®rst coordinate am
1 converge to a.

3. Repeating this argument n times, show that �xm� has a subsequence

whose scalars converge to �a1; a2; . . . ; an�.
4. De®ne x �Pn

i�1 aixi. Show that xm ! x.

5. Show that x A S.

6. Conclude that S is compact.

An immediate corollary is that the closed unit ball in a ®nite-

dimensional space

C � fx : kxkU 1g

124 Chapter 1 Sets and Spaces



is compact (since it is closed and bounded). This is not the case in an

in®nite-dimensional space, so a linear space is ®nite-dimensional if and

only if its closed unit ball is compact.

1.5.1 Convexity in Normed Linear Spaces

Because of the interaction of algebraic and geometric structure, the topo-

logical properties of convex sets are notably simpler than arbitrary sets.

The results outlined in the following exercises are often fruitful in eco-

nomic analysis.

Recall ®rst that many of the important properties of a normed linear

space are related to the shape of its unit ball. This is always convex.

Exercise 1.216

In any normed linear space, the unit ball is convex.

Exercise 1.217

Let S be a convex set in a normed linear space. Then int S and S are

convex.

Similarly it can be shown that closure preserves subspaces, cones and

linear varieties. For any convex set the line segment joining an interior

point to a boundary point lies in the interior (except for the endpoints).

Exercise 1.218 (Accessibility lemma)

Let S be a convex set, with x1 A S and y2 A int S. Then ax1 � �1ÿ a�x2 A
int S for all 0 < a < 1.

Exercise 1.219

Let Si, i A I be a collection of open convex sets.

S � 7
i A I

Si 0q) S � 7
i A I

Si

We have encountered two distinct notions of the extremity of a set:

boundary points and extreme points. Boundary points, which demark a set

from its complement, are determined by the geometry of a space. Extreme

points, on the other hand, are an algebraic rather than a topological

concept; they are determined solely by the linear structure of the space.

However, in a normed linear space, these two notions of extremity over-

lap. All extreme points of a convex set are found on the boundary.
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Exercise 1.220

If S is a convex set in a normed linear space, ext�S�J b�S�.
The converse is not true in general; not all boundary points are extreme

points. However, boundary points and extreme points coincide when a set

is strictly convex. A set S in a normed linear space is called strictly convex

if the straight line between any two points lies in the interior of the set.

More precisely, S is strictly convex if for every x, y in X with x0 y,

ax� �1ÿ a�y A int S for every 0 < a < 1

Note that the interior of a convex set is always strictly convex (exercise

1.217). Therefore the additional requirement of strict convexity applies

only to boundary points, implying that the straight line between any two

boundary points lies in the interior of the set. Hence the boundary of a

strictly convex set contains no line segment and every boundary point is

an extreme point.

Exercise 1.221

If S is a strictly convex set in a normed linear space, every boundary point

is an extreme point, that is, ext �S� � b�S�.
Exercise 1.222

If S is a convex set in a normed linear space,

S open) S strictly convex

Exercise 1.223

S open) conv S open.

Exercise 1.224

Let S � f�x1; x2� A R2 : x2 V 1=jx1jg which is closed in R2. Find conv S.

Show that it is open (not closed) in R2.

The convex hull of a closed set is not necessarily closed (exercise 1.224).

However, if the set is compact, then so is its convex hull. This impor-

tant result is established in the following exercise as an application of

CaratheÂodory's theorem.

Exercise 1.225

Let S be a compact subset of a ®nite-dimensional linear space X of

dimension n.
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1. Show that conv S is bounded.

2. For every x A conv S, there exists a sequence �xk� in conv S that

converges to x (exercise 1.105). By CaratheÂodory's theorem (exercise

1.175), each term xk is a convex combination of at most n� 1 points,

that is,

xk �
Xn�1

i�1

ak
i xk

i

where xk
i A S. Show that we can construct convergent subsequences

ak
i ! ai and xk

i ! xi. [Hint: See exercise 1.215.]

3. De®ne x �Pn�1
i�1 aixi. Show that xk ! x.

4. Show that x A conv S.

5. Show that conv S is closed.

6. Show that conv S is compact.

Remark 1.21 Finite dimensionality is not essential to the preceding

result that the convex hull of a compact set is compact, which in fact

holds in any Banach space (Pryce 1973, p. 55). However, ®nite dimen-

sionality is essential to the proof given here, which relies on proposition

1.4 and especially exercise 1.215. Conversely, exercise 1.225 can be used

to provide an alternative proof of exercise 1.215, as in the following

exercise.

Exercise 1.226

Let S be a closed bounded subset of Rn. Show that

1. S is a closed subset of some cube

C � fx � �x1; x2; . . . ; xn� A Rn :ÿcU xi U c; i � 1; 2; . . . ng;
see example 1.94

2. C is the convex hull of the 2n points �Gc;Gc; . . . ;Gc�
3. C is compact

4. S is compact

The following corollary of exercise 1.225 is important in the theory of

optimization and also in game theory.
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Exercise 1.227

Any polytope is compact.

Example 1.110 (Mixed strategy space) In a ®nite strategic game, each

player's mixed strategy space Si is a �mÿ 1�-dimensional simplex (example

1.98), where m � jSij is the number of pure strategies of player i. Exercise

1.225 implies that every Si is compact. Consequently the mixed strategy

space of the game

S � S1 � S2 � � � � � Sn

is also compact (example 1.66).

In section 1.3.1 we touched brie¯y on the notion of a relative topology.

The distinction is especially pertinent when dealing with convex sets. For

example, the situation illustrated in ®gure 1.28 arises in the theory of TP-

coalitional games (section 1.2.6), where the dark shaded triangle (the set

of imputations) is a subset of the light shaded triangle (the 2-dimensional

simplex). As a subset of Euclidean space R3, the set of imputations has an

empty interior. Every point in the dark shaded triangle (imputation) is

arbitrarily close to points which lie o¨ the hyperplane containing the tri-

angle. Hence every imputation is a boundary point of the set of imputa-

tions. Similarly any line in a space of dimension 2 or more has no interior.

Generalizing, any set of dimension nÿ 1 in an n-dimensional space has an

empty interior.

Given a line in space, our intuition would be to refer to any points

except the endpoints as interior points. Similarly, in the left panel of ®gure

1.28, we would like to be able to refer to the interior of the dark shaded

triangle as the interior of the set of imputations. Our intuition is to visu-

alize the geometry of a set relative to its a½ne hull. To give e¨ect to this

intuition, we de®ne the topology of a convex set relative to its a½ne hull.

A point x in a convex set S is a relative interior point of S if it is an inte-

rior point of S with respect to the relative topology induced by a¨ S.

Similarly the relative interior of a subset S of a normed linear space X,

denoted ri S, is interior of S regarded as a subset of its a½ne hull. That is,

ri S � fx A a¨ S : x� rBHS for some r A R�g
Of course,

ri S JS J S
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The set di¨erence Snri S is called the relative boundary of S. S is said to

be relatively open if ri S � S. For an n-dimensional convex set S in an

n-dimensional space, a¨ S � X and ri S � int S.

For a ®nite line in space, its a½ne hull is the straight line extending

beyond its endpoints in both direction. Relative to this set, the interior of

the ®nite line is the line minus its endpoints. Similarly, in the game illus-

trated in ®gure 1.28, the a½ne hull of the dark shaded triangle is the plane

in which it lies. Relative to this plane, the interior of the shaded triangle is

the triangle minus its boundary.

Example 1.111 Each side of the two-dimensional simplex D2 is a one-

dimensional simplex D1. The relative interior of D2 is the interior of the

triangle (®gure 1.38), while ri D1 is the side minus its endpoints. Note that

while D1 HD2, ri D1 N ri D2. In fact ri D1 and ri D2 are nonempty disjoint

sets.

Example 1.112 (Completely mixed strategies and trembles) In a ®nite

game in which each player i has a set Si of pure strategies, her set of

mixed strategies Di is the �mÿ 1�-dimensional unit simplex (example

1.98). A mixed strategy s is called completely mixed if every component

is strictly positive, si > 0, so that there is a nonzero probability of every

pure strategy being chosen. The set of completely mixed strategies is the

relative interior of D.

For every pure strategy si A Si, there exists a sequence of completely

mixed strategies sn
i A ri Si converging to si (see exercise 1.105). Sequences

of completely mixed strategies, called trembles, are used in re®ning equi-

librium concepts (Fudenberg and Tirole 1991, pp. 338±339; Osborne and

Rubinstein 1994, pp. 246±253).

Figure 1.38
The relative interiors of D1 and D2
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Exercise 1.228

The unit simplex in Rn has a nonempty relative interior.

Exercise 1.229

If S is a convex set in a ®nite-dimensional normed linear space

S 0q) ri S 0q

Exercise 1.230

Let S be a nonempty convex set in a ®nite-dimensional normed linear

space.

ri S � int S , int S 6�q

1.6 Preference Relations

In economics a preference relation (example 1.12) is simply a weak order,

that is a relation 7 on a set X that is complete and transitive. The basic

properties of weak orders have been explored in section 1.2. However, the

sets on which a preference relation is de®ned (e.g., the consumption set

or strategy space) typically also have algebraic (example 1.87) and geo-

metric structure (example 1.54). All three aspects contribute to economic

analysis. In this section we integrate the order, linear, and geometric

aspects of preference relation de®ned on a subset of a normed linear

space. We use the consumer's problem to illustrate the usefulness of this

interaction.

Example 1.113 (The consumer's problem) Assume that there are n com-

modities. The consumer's problem is to choose an a¨ordable consump-

tion bundle x in the consumption set X HRn (example 1.6) that yields the

most satisfaction. The consumer's preferences over consumption bundles

are assumed to be represented by a preference relation 7 on X.

The consumer's choice is constrained by her income, m. If the n

commodities have prices p1; p2; . . . ; pn, the set of a¨ordable commodity

bundles

X�p;m� � fx A X : p1x1 � p2x2 � � � � pnxn Umg
is called her budget set, where p � � p1; p2; . . . ; pn� is the list of prices. The

consumer's problem is to choose a best element in the budget set X�p;m�,
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that is, to choose x� A X �p;m� such that x�7 x for every x A X �p;m�.
A best element of X�p;m� is called the consumer's optimal choice given

prices p and income m. Note that there may be more than one optimal

choice for any p and m.

Exercise 1.231

Assume that all prices and income are positive (p > 0;m > 0) and that the

consumer can a¨ord some feasible consumption bundle, that is,

m > inf
x AX

Xn

i�1

pixi

Then the consumer's budget set X �p;m� is nonempty and compact.

Exercise 1.232

The budget set is convex.

Remark 1.22 In establishing that the budget set is compact (exercise

1.231), we relied on the assumption that the choice was over n distinct

commodities so that the consumption set is ®nite dimensional, X HRn.

In more general formulations involving intertemporal choice or uncer-

tainty, it is not appropriate to assume that the consumption set is ®nite

dimensional. Then, compactness of the budget set is more problematic.

Note, however, that ®nite dimensionality is not required to establish that

the budget set is convex (exercise 1.232).

1.6.1 Monotonicity and Nonsatiation

Recall that the natural order on Rn (example 1.26) is only a partial order,

whereas a preference relation is complete. Therefore the natural order

``V'' (example 1.26) cannot represent a preference relation on X JRn.

However, an obvious requirement to impose on a preference relation on

any X JRn is that it be consistent with the natural order. This property

is usually called monotonicity. A preference relation 7 on X JRn is

weakly monotonic if xV y implies that x7 y. It is strongly monotonic

if xX y implies x1 y. Monotonicity is a natural assumption for the

consumer preference relation, embodying the presumption that ``more is

better.'' It implies that the consumer is never fully satis®ed or sated.

Nonsatiation is a weaker assumption on preferences. A best element x�

in a set X weakly ordered by a preference relation 7 is called a bliss point.
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(x� A X is a best element if x�7 x for every x A X .) Typically the set X

has no best element, in which case we say that the preference relation 7 is

nonsatiated. A stronger assumption, which relies on the geometric struc-

ture of X, is often imposed in practice. A preference relation is locally

nonsatiated if given any element x A X and neighborhood S around x,

there always exists some neighboring element y A S that is preferred, that

is, y1 x. The relationships between these various notions are established

in the following exercise.

Exercise 1.233

1. Strong monotonicity) weak monotonicity.

2. Strong monotonicity) local nonsatiation.

3. Local nonsatiation) nonsatiation.

A useful implication of strong monotonicity or local nonsatiation in

consumer choice is that the consumer will spend all her income, so every

optimal choice lies on the boundary of the budget set. Note that neither

weak monotonicity nor nonsatiation is su½cient to provide this result (but

see exercise 1.248).

Exercise 1.234

Assume that the consumer's preference relation is strongly monotonic.

Then any optimal choice x�7 x for every x A X�p;m� exhausts her

income, that is,
Pn

i�1 pixi � m.

Exercise 1.235

Extend the previous exercise to encompass the weaker assumption of local

nonsatiation.

1.6.2 Continuity

The principal geometric property of a preference relation is continuity.

A preference relation 7 on a metric space is continuous if, whenever

x0 1 y0, neighboring points of x0 are also preferred to y0. More formally,

a preference relation 7 on a metric space X is continuous if, whenever

x0 1 y0, there exist neighborhoods S�x0� and S�y0� of x0 and y0 such that

x1 y for every x A S�x0� and y A S�y0�. In e¨ect, 7 is continuous pro-

vided that small changes in x and y do not lead to a reversal of preference.

An alternative de®nition of continuity is often found in textbooks. A

preference relation 7 on a metric space X is continuous if and only if the
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upper 7�y� and lower 6�y� preference sets are closed in X. The equiva-

lence of these de®nitions is established in the following exercise.

Exercise 1.236

1. Assume that the preference relation 7 on a metric space X is con-

tinuous. Show that this implies that the sets 1�y� � fx : x1 yg and

0�y� � fx : x0 yg are open for every y in X.

2. Conversely, assume that the sets 1�y� � fx : x1 yg and 0�y� �
fx : x0 yg are open for every y in X. Choose any x0, z0 in X with

x0 1 z0.

a. Suppose there exists some y A X such that x0 1 y1 z0. Show that

there exist neighborhoods S�x0� and S�z0� of x0 and z0 such that x1 z for

every x A S�x0� and z A S�z0�.
b. Now suppose that there is no such y with x0 1 y1 z0. Show that

i. 1�z0� is an open neighborhood of x0

ii. 1�z0� �7�x0�
iii. x1 z0 for every x A 1�z0�
iv. There exist neighborhoods S�x0� and S�z0� of x0 and z0 such that

x1 z for every x A S�x0� and z A S�y0�
This establishes that a preference relation 7 on a metric space X is con-

tinuous if and only if the sets 1�y� � fx : x1 yg and 0�y� � fx : x0 yg
are open for every y in X.

3. Show that a preference relation 7 on a metric space X is continuous

if and only if the sets 7�y� � fx : x7 yg and 6�y� � fx : x6 yg are

closed for every y in X.

Exercise 1.237

Mas-Colell et al. (1995, p. 46) de®ne continuity of preferences as follows:

The preference relation 7 on X is continuous if it is preserved under

limits. That is, for any sequence of pairs ��xn; yn�� with xn 7 yn for all n,

with x � limn!y xn, and y � limn!y yn, we have x7 y.

1. Show that this de®nition in e¨ect requires that the set f�x; y� : x7 yg
be a closed subset of X � X .

2. Is this equivalent to the de®nition given above?
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Exercise 1.238

Assume that 7 is continuous preference on a connected metric space X.

For every pair x, z in X with x1 z, there exists y such that x1 y1 z.

Remark 1.23 (Order topology) Any weak order 7 on a set X induces a

natural topology (geometry) in which the sets fx : x1yg and fx : x0yg are

open. This is called the order topology on X. A preference relation (weak

order) on a metric space is continuous if the order topology is consistent

with the metric topology of space. A preference relation on Rn is contin-

uous if the order topology is consistent with the usual topology on Rn.

Example 1.114 (Lexicographic preferences) The standard example of a

noncontinuous preference relation is the lexicographic ordering. Assum-

ing two commodities, the lexicographic ordering on R2 is

x1 y,
�

x1 > y1 or

x1 � y1 and x2 > y2

�
To show that the lexicographic ordering is not continuous, let x and y

be two commodity bundles with the same quantity of good 1 (x1 � y1)

(®gure 1.39). Assume that x2 > y2, and let r � �x2 ÿ y2�=2. Under the

lexicographic ordering, x1 y. However, y is strictly preferred to some

bundles in the neighborhood of x. In particular, y1 z � �x1 ÿ e; x2� for

every e < r.

Continuity is su½cient to ensure the existence of a best element in a

compact ordered set. This is essential for a well-de®ned formulation of the

Figure 1.39
Lexicographic preferences are not continuous
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consumer's problem (example 1.113). In the next chapter we will see that

continuity also ensures the existence of a utility function that represents

the preferences.

Proposition 1.5 A weakly ordered set �X ;7� has a best element if X is

compact and 7 is continuous.

Proof Every ®nite set fy1; y2; . . . ; yng has a best element (exercise 1.29).

Without loss of generality, suppose that this is y1, so that y1 7 yi,

i � 1; 2; . . . ; n. That is, y1 A 7�yi�, i � 1; 2; . . . ; n. Thus we have estab-

lished that the collection of all upper preference sets 7�y�y A X has the

®nite intersection property; that is, for every ®nite subcollection

f7�y1�;7�y2�; . . . ;7�yn�g,

7
n

i�1

7 �yi�0q

Since 7 is continuous, every 7�y� is closed. Since X is compact,

7
y AX

7 �yi�0q

by exercise 1.116. Let x� be a point in 7
y AX

7 �yi�. Then x�7 y for

every y A X . x� is a best element. r

Exercise 1.239

Let 7 be a continuous preference relation on a compact set X. The set of

best elements is nonempty and compact.

Example 1.115 (Existence of an optimal choice) Provided that all prices

and income are positive, the budget set is nonempty and compact (exer-

cise 1.231). By proposition 1.5, X�p;m� contains a best element x�7 x

for every x A X�p;m�.
Exercise 1.240

Assume that a consumer with lexicographic preferences over two com-

modities requires a positive amount of both commodities so that con-

sumption set X � R2
��. Show that no optimal choice exists.

Exercise 1.241

Why is the existence of an optimal choice essential for a well-de®ned

formulation of the consumer's problem?
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Exercise 1.242 (Nucleolus is nonempty and compact)

Let �N;w� be a TP-coalitional game with a compact set of outcomes X.

For every outcome x A X , let d�x� be a list of coalitional de®cits arranged

in decreasing order (example 1.49). Let di�x� denote the ith element of

d�x�.
1. Show that X 1 � fx A X : d1�x�U d1�y� for every y A Xg is nonempty

and compact.

2. For k � 2; 3; . . . ; 2n, de®ne X k � fx A X kÿ1 : dk�x�U dk�y� for every

y A X kÿ1g. Show that X k is nonempty and compact.

3. Show that Nu � X 2 n

, which is nonempty and compact.

1.6.3 Convexity

The most useful algebraic property of a preference relation is convexity. A

preference relation is convex if averages are preferred to extremes. For-

mally, the preference relation 7 is convex if for every x; y A X with x7 y,

ax� �1ÿ a�y7 y for every 0U aU 1

The link between convexity of the preference relation and convex sets is

given in the following exercise. The method of proof should be carefully

noted, since it is widely used in economics.

Exercise 1.243

The preference relation 7 is convex if and only if the upper preference

sets 7�y� are convex for every y.

Exercise 1.244

Let 7 be a convex preference relation on a linear space X. The set of best

elements X � � fx : x7 y for every y A Xg is convex.

A slightly stronger notion of convexity is often convenient (example

1.116). A preference relation is strictly convex if averages are strictly pre-

ferred to extremes. Formally the preference relation 7 is strictly convex if

for every x; y A X with x7 y but x0 y,

ax� �1ÿ a�y1 y for every 0 < a < 1

Example 1.116 (Unique optimal choice) If the consumer's preference

relation is strictly convex, the consumer's optimal choice x� (if it exists) is

unique. To see this, assume the contrary; that is, assume that there are
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two distinct best elements x� and y� in the budget set X�p;m�. That is,

x�7 x and y�7 x for every x A X�p;m�
In particular, note that x�7 y� and y�7 x�. By strict convexity, the average

of these two bundles z � 1
2 x� � 1

2 y� is strictly preferred to either x� or y�,
that is, z1 x� and z1 y�. Furthermore, since the budget set is convex

(exercise 1.232), z A X�p;m�. The consumer can a¨ord the preferred

bundle z. We have shown that if the optimal choice were nonunique, we

could ®nd another a¨ordable bundle that was strictly preferred. Therefore

the optimal choice must be unique if preferences are strictly convex.

Recall that the nucleolus of a TP-coalitional game is the set of out-

comes that are maximal in the de®cit order 7d (example 1.49). Exercise

1.242 showed that this set is always nonempty. In the next exercise we

show that the nucleolus contains just one outcome, Nu � fxNg. In a slight

abuse of language, it is conventional to identify the set Nu with its only

element. We call the maximal element xN the nucleolus and say that ``the

nucleolus is unique.''

Exercise 1.245 (Nucleolus is unique)

In a TP-coalitional game the de®cit order 7d (example 1.49) is strictly

convex. Consequently the nucleolus contains a single outcome.

1.6.4 Interactions

To complete this section, we indicate some of the substitutability among

algebraic, geometric, and order structures. Throughout this section we

have assumed a weak order that is a complete, transitive relation 7 on

a set X. Exercise 1.246 shows that the assumption of completeness is

redundant provided that 7 is continuous and X is connected (see exercise

1.238). Exercise 1.247 shows how continuity strengthens convexity, while

exercise 1.248 establishes a link between nonsatiation and strict convexity.

We then introduce the standard model of an exchange economy, and

show (exercise 1.249) that weak and strong Pareto optimality (section

1.2.6) coincide in an exchange economy in which the participants have

continuous and monotone preferences. After reformulating the exchange

economy as an example of a coalitional game, we ®nish with the ®rst

fundamental theorem of welfare economics, which underlies the econo-

mist's faith in competitive markets.
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Exercise 1.246

Assume that 7 is a continuous order relation on a connected metric space

with x0 1 y0 for at least one pair x0; y0 A X .

1. Show that for any x0; y0 A X such that x0 1 y0,

a. 0�x0�W1�y0� �6�x0�W7�y0�
b. 0�x0�W1�y0� � X

2. Suppose that 7 is not complete. That is, there exists x; y A X such that

neither x7 y nor x6 y. Then show that

a. 0�x�X0�y�0X

b. 0�x�X0�y�0q

c. 0�x�X0�y� �6�x�X6�y�
3. Show that X connected implies that 7 is complete.

Exercise 1.247

If the convex preference relation 7 is continuous,

x1 y) ax� �1ÿ a�y1 y for every 0 < a < 1

[Hint: Use the accessibility lemma (exercise 1.218).]

Exercise 1.248

If 7 is strictly convex, nonsatiation is equivalent to local nonsatiation.

Example 1.117 (Exchange economy) In studying aggregate economic

interaction, a fruitful simpli®cation is the pure exchange economy in

which there is no production. Consumers are endowed with an initial

allocation of goods. The only possible economic activity is trade in which

consumers exchange their endowments at given prices to obtain preferred

consumption bundles. Formally an exchange economy comprises

. a set of l commodities

. a set N � f1; 2; . . . ; ng of consumers

. for every consumer i A N

a feasible consumption set Xi JR l
�

a preference ordering 7i over Xi

an endowment oi A R l
�

138 Chapter 1 Sets and Spaces



An allocation x A R ln is a list of commodity bundles assigned to each

consumer. That is, x � �x1; x2; . . . ; xn�, where xi A R l
� is the commodity

bundle assigned to the ith consumer. An allocation is feasible if

. xi A Xi for every consumer i and

. aggregate demand is less than or equal to available supply; that is,X
i AN

xi U
X
i AN

oi

In a competitive exchange economy, trade take place at ®xed commodity

prices p � � p1; p2; . . . ; pl�. Each consumer's income (or wealth) mi is equal

to the value of her endowment, that is,

mi �
Xl

j�1

pioij

Each consumer endeavors to exchange commodities to achieve her most

preferred bundle, which is a¨ordable given the value of her endowment

mi. A competitive equilibrium is attained when all consumers achieve this

goal simultaneously. That is, a competitive equilibrium �p�; x�� is a set of

prices p� and a feasible allocation x� such that for every i A N,

. x�i A Xi

. x�i 7 xi for every xi A X�p;mi�

. P
i AN xi U

P
i AN oi

Provided that the individual preferences are continuous, proposition 1.5

guarantees the existence of best allocations x� for every set of prices p

(example 1.115). A deep theorem to be presented in the next chapter

guarantees the existence of a set of prices p� at which the desired trades

are all feasible.

The following exercise is another illustration of the usefulness of the

interaction of order and topological structures.

Exercise 1.249

Remark 1.8 distinguished the strong and weak Pareto orders. Show that

the distinction is innocuous in an exchange economy in which the agents

preferences are monotone and continuous. Speci®cally, show that an
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allocation is weakly Pareto e½cient if and only if it is strongly Pareto

e½cient.

Example 1.118 (Market game) We can model an exchange economy as

a coalitional game, thereby establishing a profound link between tradi-

tional economic theory and game theory. The set of outcomes X is the set

of all allocations

X � fx � �xi�i AN : xi A R l
�g

Acting independently, any coalition can obtain any allocation that can be

achieved by trading among itself so that

W�S� � x A X :
X
i AS

xi �
X
i AS

oi

( )

To complete the description of the game, we extend the individual pref-

erence relations to the set of allocations X so that

x 7i y, xi 7i yi

The familiar Edgeworth box diagram illustrates the core of a two-person

two-good exchange economy (®gure 1.40).

Exercise 1.250

Every competitive equilibrium allocation x� belongs to the core of the

corresponding market game.

Figure 1.40
An Edgeworth box, illustrating an exchange economy with two traders and two goods
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Exercise 1.251 (First theorem of welfare economics)

Every competitive equilibrium is Pareto e½cient.

This theorem underlies the economist's faith in competitive markets.

If an economic outcome is achieved through free trade in competitive

markets, it is it is impossible to make any individual better o¨ without

harming another. There is no allocation which would make all the agents

better o¨.

1.7 Conclusion

This chapter opened with a short introduction to the vocabulary of sets.

We noted that the most familiar set, the real numbers R, exhibits three

distinct properties: order, distance, and linearity. In succeeding sections

we explored the consequences of generalizing each of these properties to

more general sets. Ordered sets, posets, and lattices generalize the order

properties of the numbers, the fact that numbers can be ranked by mag-

nitude. Ranking is important for economics, since economists are contin-

ually comparing alternatives and searching for the best way of doing

things. Metric spaces generalize the spatial properties of real numbers.

Measurement of distance is also important to economists, since we want

to know how far it is from one production plan to another, and to know

whether or not we are getting closer to the desired point. Linear spaces

generalize the algebraic properties of real numbers. Linearity is impor-

tant, since averaging and scaling are two ways of generating new eco-

nomic choices (production and consumption plans).

This individual exploration of the consequences of order, additivity,

and distance is a powerful illustration of the utility of abstraction. As we

noted in the preface, abstraction in mathematics serves the same function

as model building in economics. Although most economic analysis takes

place in the familiar set Rn, it is so commonplace that we tend to confuse

order, algebraic, and geometric properties. Separating out these di¨erent

aspects focuses attention on the essential aspects of a particular problem

and sharpens our thinking.

While separation sharpens our focus, further insights can be obtained

by combining the algebraic, geometric, and order structures. We have seen

two good examples in this chapter. In section 1.5 we saw how the interplay
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of algebra and geometry contributed signi®cantly to our understanding of

the structure of ®nite-dimensional spaces. In the ®nal section we explored

the interaction of algebra, geometry, and order in preference relations,

and showed how this led to new insights into consumer behavior.

1.8 Notes

To supplement this chapter, I particularly recommend Luenberger (1969)

and Simmons (1963), which cover most of the material of this chapter

(and much more besides) elegantly and lucidly. Klein (1973) covers simi-

lar material from the viewpoint of an economist. For a more concrete

approach to mathematics for economists, Simon and Blume (1994) and

Sydsaeter and Hammond (1995) are recommended. Debreu (1991) dis-

cusses the contribution of mathematics to the development of economic

theory.

Halmos (1960) is a lucid introduction to set theory. The material on

ordered sets is collated from many sources, which employ a variety of

terminology. For the most part, we have used the terminology of Sen

(1970a). Birkho¨ (1973) is the standard reference for lattice theory. Our

treatment is based largely on Topkis (1978) and Milgrom and Shannon

(1994). The strong set order is called the induced set order by Topkis

(1978).

Sen (1970a) provides a comprehensive and readable account of the

problem of social choice, and Sen (1995) a recent review. Sen ®rst noted

the liberal paradox in Sen (1970b). Hammond (1976) investigates the

relationship between the Rawlsian criterion of social justice and social

choice.

For the most part, our encounters with game theory follow the

approach in Osborne and Rubinstein (1994). Another standard reference

is Fudenberg and Tirole (1991). Example 1.44 is adapted from Gately

(1974). The de®cit of a coalition (example 1.49) is usually called the

``excess,'' although de®cit seems more appropriate given the usual sign

convention.

Binmore (1981) is a patient exposition of metric and topological ideas.

The standard reference of topology is Kelley (1955). For normed linear

spaces, see Luenberger (1969). Exercise 1.109 is adapted from Moulin

(1986), who attributes it to Choquet.
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The best reference for linear spaces is Halmos (1974). This classic text

is consistent with the approach taken here and is very readable. The

standard references on convexity are Rockafellar (1970) and Stoer and

Witzgall (1970). The recent book by Panik (1993) is a useful compendium

of results written with the economist in mind. Exercise 1.191 is adapted

from Mas-Colell et al. (1995).

The Shapley-Folkman lemma is a good example of economics fertiliz-

ing mathematics. It was discovered by Lloyd Shapley and J. Folkman in

answer to a problem posed by Ross Starr, arising from the latter's inves-

tigation of the implications of nonconvexity in economic models. It was

®rst published in Starr (1969). An accessible account of its use in eco-

nomics is given by Hildenbrand and Kirman (1976). (Unfortunately, this

topic does not appear to have found its way into the second edition of this

delightful book.)

The material on preference relations can be found in any advanced

microeconomics text such as Kreps (1990), Mas-Colell et al. (1995), and

Varian (1992). Proposition 1.5 on the existence of a maximal element in

an ordered set is not widely cited. Border (1985) provides a useful over-

view of the relevant literature. Carter and Walker (1996) discuss the

uniqueness of the nucleolus and outline an algorithm for its computation.

Hildenbrand and Kirman (1976) is a concise and entertaining account of

the relationship between Walrasian equilibria and the core in exchange

economies.
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2 Functions

While sets and spaces provide the basic characters of mathematical anal-

ysis, functions provide the plot. A function establishes a relationship or

linkage between the elements in two or more sets. Of particular interest

are functions that respect the structure of the sets that they associate.

Functions that preserve the order of sets are called monotone, those that

preserve the geometry are called continuous, and those that preserve the

algebraic structure are called linear. In this chapter we explore monotone

and continuous functions, while the next chapter is devoted to linear

and related functions. In the course of this exploration, we encounter the

major theorems founding mathematical economics: the maximum theo-

rems (theorems 2.1, 2.3, 3.1), the separating hyperplane theorem (theorem

3.2), and Brouwer's ®xed point theorem (theorem 2.6). The ®rst section

examines functions in general.

2.1 Functions as Mappings

2.1.1 The Vocabulary of Functions

A function f : X ! Y is a rule that assigns to every element x of a set X

(the domain) a single element of a set Y (the co-domain). Note that

. the de®nition comprises two sets (domain and co-domain) and a rule

. every element of X of x is assigned an element of Y

. only one element of Y is assigned to each x A X

The mapping or assignment is usually denoted y � f �x�. The element

y A Y that is assigned to a particular x A X is called the image of x

under f . When f represents an economic model, the image y is frequently

called the dependent variable, while x is called the independent variable.

Synonyms for a function include map, mapping, and transformation

(®gure 2.1). A function f : X ! X from a set X to itself is often called an

operator.

The range of a function f : X ! Y is the set of all elements in Y that

are images of elements in X . Since it is the image of X , the range is

denoted f �X�. Formally

f �X� � fy A Y : y � f �x� for some x A Xg



If every y A Y is the image of some x A X , so that f �X� � Y , we say that

f maps X onto Y . If every x A X maps to a distinct Y , so that

f �x� � f �x 0� implies that x � x 0, we say that f is one-to-one or univalent.

The graph of a function f : X ! Y is the set of all related pairs �x; f �x��
in X � Y . Formally

graph� f � � f�x; y� A X � Y : y � f �x�; x A Xg
This graphical representation of a function underscores the fact that a

function f : X ! Y is a special type of binary relation (section 1.2.1) on

X � Y in which

. domain f � X

. for every x A X , there is a unique y A Y such that �x; y� A f

Example 2.1 Let X � fmembers of a classg and Y � fdays of the yearg.
The rule that assigns each member of the class to his or her birthday is a

function. We note that

. everyone has a birthday

. nobody has two birthdays

. two people may have the same birthday

. not every day is someone's birthday

As this example illustrates, while every element of X must be assigned to

some element of Y , not every element of Y need be assigned an element of

X . In general, the range is a proper subset of the co-domain.

Figure 2.1
A function mapping X to Y
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Exercise 2.1

Is the birthday mapping de®ned in the previous example one-to-one or

onto?

Example 2.2 (Power function) Among the simplest functions encoun-

tered in economic analysis are the power functions fn: R! R de®ned by

f1�x� � x; f2�x� � x2; fn�x� � x fnÿ1�x� � xn; n � 3; 4 . . .

which assign to every real number its nth power. Two power functions are

illustrated in ®gure 2.2.

Example 2.3 (Rotation) The function f : R2 ! R2 de®ned by

f �x1; x2� � �x1 cos yÿ x2 sin y; x1 sin y� x2 cos y�
where y is a number 0U y < 2p, ``transforms'' vectors in the plane R2

by rotating them counterclockwise through the angle y (®gure 2.3). This

function is in fact an operator, since it maps the plane R2 into itself.

We sometimes depict a function by explicitly illustrating the map be-

tween the domain and co-domain, for example, as in ®gures 2.1 and

2.3. A function between ®nite sets may be expressed in a table. For ex-

ample, the birthday mapping for a class of ®ve is speci®ed in the following

table:

Figure 2.2
The functions f �x� � x2 and f �x� � x3
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John 3 February

Jason 22 June

Kathryn 16 March

Jenny 29 October

Chris 7 January

Prior to the prevalence of pocket calculators, many numerical functions

were tabulated for use in calculations. Tables are normally used to repre-

sent ®nite strategic games (example 2.34). Numerical functions are usually

represented by a mathematical formula or rule. Elementary numerical

functions can be illustrated by drawing their graph (®gure 2.2).

Example 2.4 (Demand function) In economics, it is common to deal with

functions that cannot be speci®ed by any table or rule. A familiar example

from elementary economics is the demand function for a particular

commodity, which speci®es the quantity demanded for every price. Since

prices and quantities are necessarily positive, the demand function f maps

R� to R�. The price p is the independent variable, while the quantity

demanded q � f �p� is the dependent variable. Rather than specifying a

particular functional form (rule) for the function f , the economist is

often content to specify certain properties for the function, such as being

``downward sloping.'' The graph of a demand function is called the

demand curve (®gure 2.4).

In ®gure 2.2 we adopted the mathematician's convention of displaying

the independent variable on the horizontal axis, and the dependent vari-

Figure 2.3
Rotation of a vector
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able on the vertical axis. Economists often employ the opposite conven-

tion (established by Alfred Marshall), putting the independent variable on

the vertical axis. We followed the economist's convention in ®gure 2.4.

Example 2.5 (Constant and identity functions) The constant and identity

functions are particularly simple functions. A constant function f : X ! Y

assigns all x A X to a single element y of Y , that is f �X � � fyg. The

identity function IX : X ! X assigns every element to itself, that is,

IX �x� � x for every x A X .

Given an operator f : X ! X , any x A X for which f �x� � x is called a

®xed point of f . For the identity function every point is a ®xed point.

However, an arbitrary operator may or may not have any ®xed points.

Since signi®cant questions in economics (e.g., the existence of a Nash

equilibrium) can be reduced to the existence of a ®xed point of a suitable

operator, we are interested in deducing conditions that guarantee that an

operator has a ®xed point. This question is addressed in section 2.4.

Exercise 2.2

Does the rotation operator (example 2.3) have any ®xed points?

Any function f : X ! Y induces a mapping between the subsets of X

and Y . Thus for any S HX , the image f �S� of S is

f �S� � fy A Y : y � f �x� for some x A Xg
Similarly for any T HY , the preimage or inverse image f ÿ1�T� of T is set

of all x A X that are mapped into some y A T , that is,

Figure 2.4
A downward sloping demand function
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f ÿ1�T� � fx A X : f �x� A Tg
When T comprises a single element y A Y , it is customary to dispense

with the brackets denoting the set T � fyg so that the preimage of a

single element y A Y is denoted f ÿ1�y�. The preimages of single points

f ÿ1�y� � fx A X : f �x� � yg
are called contours of the function f .

Example 2.6 In the birthday mapping (example 2.1), f ÿ1 (1 April) is the

set of students in the class whose birthday is the 1st of April.

Exercise 2.3

The contours f f ÿ1�y� : y A Yg of a function f : X ! Y partition the

domain X .

For any particular y A Y , its preimage f ÿ1�y� may be

. empty

. consist of a single element

. consist of many elements

Where f ÿ1�y� consists of one and only one element for every y A Y ,

the preimage de®nes a function from Y ! X which is called the inverse

function. It is denoted f ÿ1.

Exercise 2.4

The function f : X ! Y has an inverse function f ÿ1: Y ! X if and only

if f is one-to-one and onto.

Example 2.7 (Inverse demand function) In economic analysis it is often

convenient to work with the inverse demand function p � f ÿ1 for a par-

ticular commodity, where p�q� measures the price p at which the quantity

q would be demanded.

If we have consecutive functions between matching sets, for example,

f : X ! Y and g: Y ! Z, the functions implicitly de®ne a map between

X and Z. This function is called the composition of f and g and is denoted

by g � f . That is, g � f : X ! Z is de®ned by

g � f �x� � g� f �x�� � g�y� where y � f �x�
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Exercise 2.5

If f : X ! Y is one-to-one and onto with inverse f ÿ1,

f ÿ1 � f � IX and f � f ÿ1 � IY

where IX and IY are the identity functions on X and Y respectively.

Function Spaces and Sequences

Sets of functions provide a fertile source of linear spaces.

Example 2.8 Let F�X ;Y� denote the set of all functions from X to Y .

Suppose that Y is a linear space. For any f ; g A F�X ;Y �, de®ne f � g

and a f by

� f � g��x� � f �x� � g�x�
�a f ��x� � a f �x�
Then F�X ;Y � is another linear space.

Example 2.9 (Polynomials) A polynomial of degree n is a function

f : R! R de®ned by

f �x� � a0 � a1x� a2x2 � a3x3 � � � � � anxn

It is a linear combination of power functions (example 2.2). We have

previously shown that the set of all polynomials is a linear space (example

1.69).

If Y is a normed linear space, we can think about convergence of

functions in F�X ;Y�. Let � f n� be a sequence of functions in F�X ;Y�.
If the sequence of images � f n�x�� converges for every x A X , we say

that the sequence � f n� converges pointwise to another function f de®ned

by

f �x� � lim
n!y

f n�x� for every x A X

Convergence of functions is denoted f n ! f . This implies that for every x

and e > 0 there exists N such that

k f �x� ÿ f n�x�k < e for every nVN

In general, N depends on x as well as e. If there exists an N such that for

every x A X ,
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k f �x� ÿ f n�x�k < e for every nVN

then f n converges uniformly f . Clearly, uniform convergence implies

pointwise convergence, but not vice versa.

Example 2.10 (Exponential function) Consider the sequence of

polynomials

f n�x� �
Xn

k�0

xk

k!
� 1� x� x2

2!
� x3

3!
� � � � � xn

n!

where n! (called n factorial ) is the product of the ®rst n integers

n! � 1 � 2 � 3 . . . �nÿ 2��nÿ 1�n
For any x A R,

j f n�x�ÿ f m�x�j �
Xn

k�m�1

xk

k!

�����
�����U xm�1

�m� 1�!
Xnÿm

k�0

x

m

� �k
�����

�����U jxjm�1

�m� 1�!
Xnÿm

k�0

jxj
m

� �k

For nVmV 2jxj, jxj=mU 1=2, and

j f n�x� ÿ f m�x�jU �12�m�1�1� 1
2� 1

4� � � � � �12�nÿm�

The sum inside the brackets is than 2 (exercise 1.206), and therefore

j f n�x� ÿ f m�x�jU 2
1

2

� �m�1

� 1

2m
! 0 as m; n!y

Clearly, f n�x� is a Cauchy sequence in R, and hence it converges to

some y A R. Since the sequence f n�x� converges for any x A R, it de®nes

a new function f : R! R where

f �x� � lim
n!y

f n�x� �1�

Note that f n�0� � 1 for every n, and therefore f �0� � 1. Known as the

exponential function, the function f is often denoted ex and written

ex � 1� x

1
� x2

2!
� x3

3!
� � � � �

Xy
n�0

xn

n!

The exponential function is illustrated in ®gure 2.5. It has several useful

properties, the most important of which is
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f �x1 � x2� � f �x1� f �x2� or ex1�x2 � ex1 ex2 �2�
This will be proved in chapter 4 (exercise 4.40). Other properties are

developed in exercises 2.6 and 2.7.

Exercise 2.6 (Properties of ex)

Using (2), show that for every x A R,

. eÿx � 1=ex

. ex > 0

. ex !y as x!y and ex ! 0 as x! ÿy
This implies that the exponential function maps R onto R�.

Exercise 2.7

The exponential function is ``bigger'' than the power function, that is,

lim
x!y

ex

xn
�y for every n � 1; 2; . . .

[Hint: First show that limn!y�ex=x� �y.]

Exercise 2.8

Show that the sequence of polynomials

f n�x� �
Xn

k�0

xk

k!
� 1� x� x2

2!
� x3

3!
� � � � xn

n!

converges uniformly on any compact subset S HR.

Figure 2.5
The exponential function
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Functionals

In practice, the most common functions in economics are those which

measure things, such as output, utility, pro®t. To distinguish this common

case, functions whose values are real numbers have a special name. A

real-valued function f : X ! R is called a functional.

Remark 2.1 (Extended real-valued function) It is often analytically conve-

nient (see example 2.28) to allow a function to take values in the extended

real numbers R� � RW fÿygW f�yg (remark 1.6). Such a function

f : X ! R� is called an extended real-valued function. For convenience we

will allow the term functional to include extended real-valued functions.

More generally, the range of functionals may be real or complex

numbers. In economics, complex functionals arise in dynamics models.

However, they are beyond the scope of this book.

Since R is naturally ordered, every functional f : X ! R induces an

ordering 7f on its domain, de®ned by

x1 7f x2 , f �x1�V f �x2�
with

x1 1f x2 , f �x1� > f �x2�
and

x1 @f x2 , f �x1� � f �x2�
Thus every functional f : X ! R implicitly creates an ordered set

�X ; 7f �. This ordering de®nes certain useful subsets of X , such as the

upper and lower contour sets of f de®ned by

7f �a� � fx A X : f �x�V ag
6f �a� � fx A X : f �x�U ag

Similarly the epigraph of a functional f : X ! R is the set of all points

in X �R on or above the graph. Formally

epi f � f�x; y� A X �R : yV f �x�; x A Xg
The corresponding set of points on or below the graph is called the

hypograph, which is de®ned as

hypo f � f�x; y� A X �R : yU f �x�; x A Xg

154 Chapter 2 Functions



Using these concepts, the analysis of functionals can often be reduced

to the analysis of properties of sets, utilizing the results developed in the

previous chapter. For example, the contours of a linear functional are

a½ne sets (hyperplanes) (section 1.4.3). Its upper and lower contour sets

are called halfspaces. Similarly a function is concave if and only if its

hypograph is a convex set.

Remark 2.2 (Functional analysis) So important are functionals that a

whole branch of mathematics is devoted to their study. It is called func-

tional analysis. We will encounter some of the principal results of this ®eld

in chapter 3.

Exercise 2.9

Let X be any set. Let F�X � denote the set of all functionals on X . Show

that F�X� is a linear space.

Exercise 2.10

What is the zero element in the linear space F�X�?
A functional f A F�X� is de®nite if takes only positive or negative

values. Speci®cally,

f is

strictly positive

nonnegative

nonpositive

strictly negative

8>><>>:
9>>=>>; de®nite if

f �x� > 0

f �x�V 0

f �x�U 0

f �x� < 0

8>><>>:
9>>=>>; for every x A X

A functional f A F �X � is bounded if there exists a number k such that

j f �x�jU k for every x A X .

Example 2.11 (The space B�X �) For any set X , let B�X � denote the set

of all bounded functionals on X . Clearly, B�X �JF �X �. In fact B�X� is a

subspace of F�X�.
Exercise 2.11

1. k f k � supx AX j f �x�j is a norm on B�X�.
2. B�X� is a normed linear space.

3. B�X� is a Banach space.

Example 2.12 A sequence in B�X � converges uniformly if and only if

k f n ÿ f k ! 0. That is, uniform converges corresponds to convergence of

elements in the normed space B�X �.
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2.1.2 Examples of Functions

In this section we introduce many other examples of functions encoun-

tered in economic analysis.

Examples from Mathematics

Example 2.13 (Indicator function) For any subset S of a set X , the indi-

cator function wS: X ! f0; 1g of S is de®ned by

wS�x� �
1 if x A S

0 if x B S

�
Mathematicians sometimes call this the characteristic function. We reserve

the latter term for a related concept in game theory (example 2.36).

We have already encountered some signi®cant examples of functions in

chapter 1, such as norms, metrics, and sequences.

Example 2.14 (Norm) Given a linear space X , a norm is a functional

k � k: X ! R with the properties

1. kxkV 0

2. kxk � 0 if and only if x � 0

3. kaxk � jaj kxk for all a A R

4. kx� ykU kxk � kyk
The norm assigns to every element x A X its size. Similarly, a metric r on

a metric space X is a function from X � X to R which assigns every pair

of elements the distance between them.

Example 2.15 (Sequence) Given a set X , an in®nite sequence �xn� in X is

a function from the set of integers N to X , where f �n� � xn. This clari®es

the distinction between the elements of a sequence x1; x2; . . . and its range

f �N�, comprising all those elements in X that are points in the sequence.

Example 2.16 (Countable set) A set X is called countable if it is the range

of some sequence, that is, if there exists a function from the set of integers

N onto X . If there is not no such, the set is called uncountable. Clearly, the

set N is countable. It is a fundamental property of numbers that the set Q

of all rational numbers is countable, while any interval of real numbers in

uncountable.
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Example 2.17 (Probability) Consider a random experiment with sample

space S. A probability function P is a real-valued function (functional) on

the set of events S with the properties

1. P�E�V 0 for every E A S

2. P�S� � 1

3. for any sequence E1;E2; . . . of mutually exclusive events (E mXE n�q)

P 6
y

n�1

E n

 !
�
Xy
n�1

P�E n�

P�E� is called the probability of the event E.

When the sample space is ®nite, every subset of S is an event, and

S � P�S�. Furthermore, using condition 3, we can de®ne P�E� by the

probability of the elementary outcomes

P�E� �
X
s AE

P�fsg�

Where the sample space S is an in®nite set (e.g., R), not all subsets of

S can be events, and the probability function is de®ned only for a sub-

collection of P�S�.
Example 2.18 The sample space of a single coin toss is fH;Tg. The

probability function for a fair coin is de®ned by

P�fHg� � P�fTg� � 1
2

Exercise 2.12

The sample space for tossing a single die is f1; 2; 3; 4; 5; 6g. Assuming that

the die is fair, so that all outcomes are equally likely, what is the proba-

bility of the event E that the result is even (See exercise 1.4)?

Example 2.19 (Random variable) Analysis of random processes is often

simpli®ed through the use of random variables. Any functional f : S ! R
whose domain is the sample space S of a random experiment is called

a random variable. In probability theory it is conventional to denote a

random variable by X .

Example 2.20 In many board games, progress at each turn is determined

by the sum of two fair die. This is the random variable X : f1; 2; 3; 4; 5; 6g �
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f1; 2; 3; 4; 5; 6g ! f2; 3; . . . ; 12g de®ned by

X�m; n� � m�m

where m and n are randomly chosen from f1; 2; 3; 4; 5; 6g.
Example 2.21 (Distribution function) Given a random variable X :

S ! R, the distribution function of X is de®ned by the probability of the

lower contour sets of X

F�a� � P�fs A S : X�s�U ag�
Example 2.22 (Dynamical system) A discrete dynamical system is a set X

together with an operator f : X ! X which describes the evolution of the

system. If the system is in state xt at time t, the state at time t� 1 is given

by

xt�1 � f �xt�
If the system begins at x0, the subsequent evolution of the system is

described by repeated application of the function f , that is,

x1 � f �x0�
x2 � f �x1� � f � f �x0�� � f 2�x0�
x3 � f �x2� � f � f � f �x0��� � f 3�x0�
and

xt�1 � f �xt� � f t�1�x0�
The set X of possible states is called the state space. x0 is called the initial

position. Particular interest is attached to stationary points or equilibria of

the dynamical system, where

xt�1 � f �xt� � xt

Equilibria are simply the ®xed points of the function f .

Example 2.23 (Lag operator) The lag operator is commonly employed

in econometrics and in the exposition of dynamic models. Suppose that

�x0; x1; x2; . . .� A Xy is a sequence of observations or economic states.

The lag operator L generates a new sequence �y0; y1; y2; . . .�, where each

yt is equal to value of x in the previous period. That is,
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y1 � Lx1 � x0

y2 � Lx2 � x1

y3 � Lx3 � x2

and

yt � Lxt � xtÿ1

Given any sequence of observations, the lag operator generates a new

sequence in which each observation is shifted one period. The lag opera-

tor is a function on the set Xy of all sequences, that is, L: Xy ! Xy.

Examples from Economics

Example 2.24 (Production function) In classical producer theory, where

the ®rm produces a single output from n inputs, the technology can be

represented by the input requirement set

V�y� � fx A Rn
� : �y;ÿx� A Yg

which measures the inputs necessary to produce y units of output (exam-

ple 1.8). Equivalently the relationship inputs and outputs can be expressed

by the production function, which speci®es the maximum output that can

be obtained from given inputs. Formally the production function f maps

the set of feasible input vectors Rn
� to the set of feasible outputs R and is

de®ned by

f �x� � supfy : x A V�y�g
Example 2.25 (Distance function) The e½ciency of any feasible produc-

tion plan �y;ÿx� A Y can be measured by the distance between x and the

boundary of V�y�. Given any technology V�y�, the distance function is

de®ned as

F�y; x� � sup l > 0 :
1

l
x A V�y�

� �
Example 2.26 (Objective function) Most economic models pose one or

more optimization problems. The decision maker has some control over a

list (vector) of choice or decision variables x. The outcome of any choice

also depends on the values of one or more exogenous parameters y. The
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combined e¨ect of the decision variables and parameters is measured by a

functional f : X �Y! R, which is called the objective function. X is the

set of feasible values of the decision variables and Y the set of parameters

(the parameter space). Typically the decision maker seeks to maximize the

value of the objective function for given parameters, so the optimization

problem can be formulated as choosing x A X to maximize f �x; y� given

y, or succinctly

max
x AX

f �x; y� �3�

Example 2.27 (Competitive ®rm) A competitive ®rm buys and sells at

®xed prices p � � p1; p2; . . . ; pn�. Its pro®t depends on both the prices p

and the production plan y it chooses. Speci®cally, the pro®t (net revenue)

of the production plan y is given by f �y; p� �Pi pi yi. To maximize

pro®t, the ®rm will seek that feasible production plan y A Y that maxi-

mizes f �y; p�. Therefore the behavior of a pro®t-maximizing competitive

®rm can be represented by the maximization problem

max
y AY

f �y; p�

The function f �y; p� �Pi pi yi is the ®rm's objective function, y are the

decision variables and p the parameters.

Example 2.28 (Value function) The optimization problem (3) implicitly

de®nes a functional on the set of parameters Y that determines the best

performance that can be attained for di¨erent values of the parameters.

This functional v: Y! R�, which is de®ned by

v�y� � sup
x AX

f �x; y�

is called the value function.

The value function is properly an extended real-valued function

(remark 2.1). Allowing v to take values in the extended real numbers

R� ensures that the function v is well-de®ned. For any y A Y, the set

Sy � f f �x; y� : x A Xg is a subset of R. Sy always has an upper bound

in R� (remark 1.6). v�y� � �y for every y for which Sy is unbounded.

Remark 2.3 The value function uses a number of aliases. In the eco-

nomics literature it is sometimes termed the maximum value function. This

emphasizes its optimal nature but is inappropriate in minimization prob-
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lems. Speci®c instances of the value function in economics have names

appropriate to their circumstances, such as the pro®t function, the cost

function, and the indirect utility function. In the mathematics and mathe-

matical programming literature, a name like the perturbation function

might be used.

Example 2.29 (Pro®t function) The value function for the problem of a

competitive ®rm (example 2.27)

P�p� � sup
y AY

f �p; y� � sup
y AY

X
i

pi yi

is known as the ®rm's pro®t function. As we will show in chapter 6, much

of the behavior of a competitive ®rm can be deduced from the properties

of its pro®t function.

Exercise 2.13

Where the ®rm produces just a single output, it is common to distinguish

output from inputs. To do this, we reserve p for the price of the output,

and let the vector or list w � �w1;w2; . . . ;wn� denote the prices of the

inputs. Using this convention, de®ne the pro®t function for a pro®t-

maximizing competitive ®rm producing a single output.

The following exercise shows the importance of allowing the value

function to take in®nite values.

Exercise 2.14 (Constant returns to scale)

Consider a competitive ®rm with a constant returns to scale technology

Y JRn (example 1.101). Let f �p; y� �Pi pi yi denote the net revenue

(pro®t) of adopting production plan y with prices p.

1. If production is pro®table at prices p, that is, there exists some y A Y

such that f �y; p� > 0, then P�p� � �y.

2. Show that the pro®t function takes only three values, that is, for every

p A Rn
�,

P�p� � 0 or P�p� � �y or P�p� � ÿy
Example 2.30 (Constrained optimization) In most optimization problems,

the choice of x is constrained to some subset G�y�JX depending on the

value of the parameters y. The general constrained maximization problem

can be formulated as choosing x A G�y� so as to maximize the objective
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function f �x; y�, which can be expressed succinctly as

max
x AG�y�

f �x; y� �4�

The corresponding value function v: Y! R� is de®ned as

v�y� � sup
x AG�y�

f �x; y�

Adopting the convention that sup q � ÿy, then v�y� is de®ned even

where the feasible set G�y� �q.

For given parameter values y, the solution of the constrained maxi-

mization problem is a choice of the decision variables x� A G�y� such that

f �x�; y�V f �x; y� for every x A G�y�
in which case x� satis®es the equation

v�y� � f �x�; y� �5�
Chapter 5 is devoted to techniques for solving constrained optimization

problems.

Sometimes an optimization problem is formulated in such a way that

the decision maker wishes to minimize rather than maximize the objective

function. An example is the ®rm's cost minimization problem (example

2.31). The general constrained minimization problem is

min
x AG�y�

f �x; y�

and the corresponding value function v: Y! R� is de®ned by

v�y� � inf
x AG�y�

f �x; y�

Since

min
x AG�y�

f �x; y� � max
x AG�y�

ÿ f �x; y�

minimization problems require no generalization in technique.

Exercise 2.15

For given y A Y, verify that x� A G�y� is a solution to (4) if and only if it

satis®es (5).
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Remark 2.4 (Max versus sup) You will often encounter the value func-

tion for a constrained optimization problem de®ned by

v�y� � max
x AG�y�

f �x; y� �6�

using max rather than sup. Strictly speaking, this is a di¨erent meaning of

the abbreviation max than we have used in the expression

max
x AG�y�

f �x; y� �7�

The max in (7) is a verb (maximize), whereas the max in (6) is a noun

(maximum or maximal element). It is useful to keep this distinction in

mind.

By virtue of exercise 2.15, the expression (6) is well de®ned provided

that an optimal solution exists. However, we favor the more robust

expression

v�y� � sup
x AG�y�

f �x; y�

since it ensures that the value function is well-de®ned without this pro-

viso. It also helps to clearly distinguish the noun from the verb.

Example 2.31 (Cost function) In another useful model of the producer,

also relevant to the analysis of monopolies and oligopolies, the ®rm pur-

chases its inputs at ®xed prices and seeks to minimize the cost of produc-

tion. For simplicity, assume that the ®rm produces a single output. The

total cost of the input bundle x is
Pn

i�1 wixi. To produce any output level

y, the ®rm seeks the input combination x A V�y� that minimizes the cost

of producing y. The decision variables are input choices x A Rn
�, while

the parameters are input prices w and output y. We can model the cost-

minimizing ®rm as a constrained minimization problem

min
x AV�y�

Xn

i�1

wixi

The value function for this problem, de®ned by

c�w; y� � inf
x AV�y�

Xn

i�1

wixi

is called the cost function.
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In the rest of this section, we specify in more detail a particular

optimization model that is more sophisticated than standard economics

models such as the model of a consumer (example 1.113) or a competitive

®rm (example 2.27). We introduce it now since it provides an ideal example

to illustrate many of the concepts introduced in this chapter, including the

®xed point theorem used to establish the existence of an optimal solution

(section 2.4).

Example 2.32 (Dynamic programming) Dynamic programming is a

special type of constrained optimization problem which takes the form

max
x1;x2;...

Xy
t�0

b tf �xt; xt�1�

subject to xt�1 A G�xt�; t � 0; 1; 2; . . .

x0 A X given

Starting from an initial point x0 A X , the problem is to make a sequence

of choices x1; x2; . . . from a set X . The feasible choice xt�1 at period

t� 1 is constrained by the choice in the previous period, so that

xt�1 A G�xt�JX . The functional f �xt; xt�1�: X � X ! R measures the

return in period t if xt�1 is chosen when the state is xt. Future returns are

discounted at the rate b with 0U b < 1. Any sequence x � �x0; x1; x2; . . .�
in X is called a plan. Let X y denote the set of all sequences (plans). The

objective is to choose a plan x so as to maximize the present value

(example 1.109) of the total return
Py

t�0 b tf �xt; xt�1�.
Let

G�x0� � fx A Xy : xt�1 A G�xt�; t � 0; 1; 2; . . .g
denote the set of plans that is feasible, starting from the initial point x0.

The feasible set depends on a single parameter x0, the initial state. Let

U�x� denote the total return from feasible plan x A G�x0�, that is,

U�x� �
Xy
t�0

b tf �xt; xt�1�

Then the dynamic programming problem can be expressed as a standard

constrained optimization problem (example 2.30)

max
x AG�x0�

U�x�
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What distinguishes this constrained optimization problem from the pre-

ceding examples is the in®nite planning horizon. If the planning horizon

were ®nite, this problem would be no di¨erent in principle to the preced-

ing examples and could be solved in a straightforward manner using the

techniques in chapter 5. However, the in®nite planning horizon is often

an essential ingredient of the model, and necessitates the use of di¨erent

solution techniques. One fruitful approach uses the value function.

The value function for the dynamic programming problem measures

the best that can be achieved from any initial point x0. It is de®ned by

v�x0� � sup
x AG�x0�

U�x�

Provided that u is bounded, G�x� is nonempty for every x A X and

0U b < 1, the value function is a bounded functional on X that satis®es

the equation

v�x� � sup
y AG�x�

f f �x; y� � bv�y�g for every x A X �8�

This is known as Bellman's equation (exercise 2.16).

A feasible plan x� A G�x0� is optimal if

U�x��VU�x� for every x A G�x0�
in which case v�x0� � U�x�� (exercise 2.15). The right-hand side of equa-

tion (8) de®nes on operator T on the space B�X� (exercise 2.18), namely

�Tv��x� � sup
y AG�x�

f f �x; y� � bv�y�g

The functional equation (8) can be written

v�x� � �Tv��x�
That is, the value function v is a ®xed point of the operator T .

Example 2.33 (Optimal economic growth) A particular application of

dynamic programming is provided by the following model of optimal

economic growth widely used in macroeconomics (Stokey and Lucas

1989). Time is divided into a sequence of periods (months or years).

A single good is produced using a technology that requires two inputs,

capital k and labor l. In each period the quantity yt of output produced is

given by
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yt � f �kt; lt�
where kt is the stock of capital and lt the quantity of labor available at the

beginning of the period. This output yt can be allocated between current

consumption ct and gross investment it so that

ct � it � yt

Capital depreciates at a constant rate 0 < d < 1 so that the capital stock

in the next period becomes

kt�1 � �1ÿ d�kt � it

Labor supply is assumed to be constant. For convenience we assume that

lt � 1 in every period, and we de®ne

F�kt� � f �kt; 1� � �1ÿ d�kt

to be the total supply of goods available at the end of period k, compris-

ing current output yt � f �kt; 1� plus undepreciated capital �1ÿ d�kt. The

supply of goods must be allocated between current consumption ct and

investment in next period's capital kt�1, so that for every t,

ct � kt�1 � F�kt�
or

ct � F�kt� ÿ kt�1 �9�
Investment increases future output at the expense of current consumption.

The bene®ts of consumption ct in each period are measured by the

instantaneous utility function u�ct� (example 2.58). Future utility is dis-

counted b per period. The problem is to choose the optimal trade-o¨

between consumption and investment in each period so as to maximize

total discounted utilityXy
t�0

b tu�ct�

To cast the problem in the form of the previous example, substitute (9)

into the objective function to obtain

max
Xy
t�0

b tu�F�kt� ÿ kt�1�
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In each period the choice between consumption ct and future capital kt�1

is constrained by the available output F �kt�:
0U ct; kt�1 UF�kt�
The optimal growth policy is a sequence ��c0; k1�; �c1; k2�; . . .� of con-

sumption and investment pairs that maximizes total utility. It is analyti-

cally convenient to regard the future capital stock kt�1 as the decision

variable, leaving the residual for current consumption ct according to (9).

Therefore optimal growth in this economy can be modeled as choosing a

sequence k � �k1; k2; k3; . . .� of capital stocks to solve

max
Xy
t�0

b tu�F�kt� ÿ kt�1�

subject to 0U kt�1 UF�kt� �10�
given k0.

Let

G�k0� � f�k1; k2; k3; . . .� : 0U kt�1 UF�kt�; t � 0; 1; 2; . . .g
denote the set of feasible investment plans, which depends on a single

parameter k0, the initial capital stock. The value function for the optimal

growth problem is

v�k0� � sup
k AG�k0�

Xy
t�0

b tu�F�kt� ÿ kt�1� �11�

The value function measures the total utility that can be derived from

an initial capital stock of k0, presuming that the allocation between con-

sumption and investment is made optimally at each period. Similarly

v�k1� is the total utility that could be derived by optimal investment,

starting with a capital stock of k1. Therefore in period 0 the best that can

be done is to choose k1 to solve

max
k1 A �0;F�k0��

u�F�k0� ÿ k1� � bv�k1� �12�

where u�F�k0� ÿ k1� is the utility derived from consumption in period 0

and bv�k1� is the total utility attainable from capital stock of k1 in period

1, discounted to period 0.
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Assume, for the moment, that the value function v is known. It is then

straightforward to solve (12) to determine the optimal consumption c0 and

k1 in the ®rst period. In the second period the decision maker faces the

analogous problem

max
k2 A �0;F�k1��

u�F�k1� ÿ k2� � bv�k2�

and so on, for subsequent periods. Knowledge of the value function en-

ables the decision maker to decompose the multi-period problem (10) into

a sequence of single-period optimization problems (12). The optimal growth

problem can be solved by ®nding the value function v de®ned by (11).

Observe that the value function v de®ned by (11) is also the value

function for the optimization problem (12); that is, the v must satisfy the

equation

v�k0� � sup
k1 A �0;F�k0��

u�F �k0� ÿ k1� � bv�k1�

Indeed, for an optimal investment sequence �k0; k1; k2; . . .�, this equation

must hold in all periods, that is,

v�kt� � sup
kt�1 A �0;F�kt��

u�F�kt� ÿ kt�1� � bv�kt�1�; t � 0; 1; 2; . . .

Consequently we can dispense with the superscripts, giving rise to Bell-

man's equation

v�k� � sup
0UyUF�k�

u�F�k� ÿ y� � bv�y� for every k V 0

Since the unknown in this equation is a functional v rather than single

point k, it is called a functional equation.

Exercise 2.16 (Bellman's equation)

Let

v�x0� � sup
x AG�x0�

U�x�

be the value function for the dynamic programming problem (example

2.32). Assume that

. f is bounded on X � X

. G�x� is nonempty for every x A X
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Show that v is a bounded functional on X (i.e., v A B�X �) that satis®es the

equation

v�x� � sup
y AG�x�

f f �x; y� � bv�y�g

for every x A X .

The previous exercise showed that the value function satis®es Bellman's

equation. The next exercise shows that every optimal plan must satisfy

Bellman's equation at each stage.

Exercise 2.17 (Principle of optimality)

Let

v�x0� � sup
x AG�x0�

U�x�

be the value function for the dynamic programming problem (example

2.32). Assume that

. f is bounded on X � X

. G�x� is nonempty for every x A X

Show that the plan x� � �x0; x
�
1 ; x

�
2 ; . . .� A G�x0� is optimal if and only if it

satis®es Bellman's equation

v�x�t � � f �x�t ; x�t�1� � bv�x�t�1�; t � 0; 1; 2; . . . �13�
Exercise 2.18

In the dynamic programming problem (example 2.32), assume that

. f is bounded on X � X

. G�x� is nonempty for every x A X

Show that the function T de®ned by

�Tv��x� � sup
y AG�x�

f f �x; y� � bv�y�g

is an operator on the space B�X� (example 2.11).

Examples from Game Theory

Example 2.34 (Payo¨ function) It is customary to assign numerical

values or payo¨s to each of the outcomes in a strategic game (section
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1.2.6). For example, in Rock±Scissors±Paper (exercise 1.5), if we assign

the value 1 for a win, 0 for a draw, and ÿ1 for a loss, the game can be

represented in the familiar tabular or matrix form

Chris

Rock Scissors Paper

Rock 0, 0 1, ÿ1 ÿ1, 1

Jenny Scissors ÿ1, 1 0, 0 1, ÿ1

Paper 1, ÿ1 ÿ1, 1 0, 0

The ®rst entry in each cell represents the payo¨ to Jenny when she

chooses that row and Chris chooses the column. The second entry is the

corresponding payo¨ to Chris. For example, if Jenny chooses Rock and

Chris chooses Scissors, Jenny wins. Her payo¨ is 1, while the payo¨ to

Chris is ÿ1.

For each player the mapping from strategies to payo¨s is called the

payo¨ function of each player. In this game Jenny's payo¨ function is the

function uJ : S1 � S2 ! R, whose values are given by the ®rst entries in

the above table. For example,

uJ�Rock; Scissors� � 1

Example 2.35 (Cournot oligopoly) In the standard Cournot model of

oligopoly, n ®rms produce a homogeneous product. The strategic choice

of each ®rm is to choose its output level yi. Since the product is homo-

geneous, the market price p depends only on the total output Y �
y1 � y2 � � � � � yn according to the inverse demand function p�Y �. The

revenue of an individual ®rm is determined by its own output yi and

the market price p, which depends on the output of all the other ®rms.

Therefore the oligopoly is a game in which the payo¨ function of ®rm i is

ui�yi; yÿi� � p�Y� ÿ ci�yi�
where ci�yi� is the cost function of ®rm i. yÿi denotes the output choices

of the other ®rms. Provided that the cost functions satisfy appropriate

conditions, this game can be shown to have a Nash equilibrium con-

®guration of output choices y� � �y�1 ; y�2 ; . . . ; y�n �, which is known as the

Cournot equilibrium.
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Example 2.36 (Characteristic function) A coalitional game with trans-

ferable payo¨ (example 1.46) comprises

. a ®nite set N of players

. for every coalition S JN, a real number w�S� that represents the worth

of the coalition S (if it acts alone)

The function w: P�N� ! R, which assigns to every coalition S JN its

worth w�S�, is called the characteristic function of the game. By conven-

tion w�q� � 0.

Exercise 2.19 (Three-person majority game)

Suppose that the allocation of $1 among three persons is to be decided by

majority vote. Specify the characteristic function.

Example 2.37 (Value of a game) In section 1.6 we showed that the

nucleolus (example 1.49) identi®es precisely one outcome in every TP-

coalitional game. In e¨ect the nucleolus de®nes a function on the space

of games GN (example 1.70). It is an example of a value. A value for

TP-coalitional games is a function j de®ned on GN that identi®es a fea-

sible allocation for every game. Formally any function j: GN ! Rn is a

value if
P

i AN�jw�i � w�N�. Another prominent value for TP-coalitional

games is the Shapley value (example 3.6). These values di¨er in their

properties. In particular, the Shapley value is a linear function, whereas

the nucleolus is nonlinear.

2.1.3 Decomposing Functions

The domain of most functions encountered in economics is a product

space. That is, if f maps X to Y , the domain X can usually be decom-

posed into a product of simpler spaces

X � X1 � X2 � � � � � Xn

Similarly the co-domain Y can often be decomposed into

Y � Y1 � Y2 � � � � � Ym

These decompositions can be helpful in exploring the structure of the

function f .

For example, suppose that f : X1 � X2 � � � � � Xn ! Y , and choose

some point x0 � �x0
1 ; x

0
2 ; . . . ; x0

n� A X . The function f̂i de®ned by
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f̂i�t� � f �x0
1 ; x

0
2 ; . . . ; x0

iÿ1; t; x
0
i�1; . . . ; x0

n�
maps Xi ! Y . The function f̂i allows us to explore the implications of

allowing one factor to vary, while holding all the others constant. It

implements the economist's notion of ceteris paribus. Sometimes we will

use the notation f̂ �t; xÿi� to indicate such a decomposition, where the

variables following the semicolon are regarded as constant.

Example 2.38 (Total cost function) A ®rm's cost function c�w; y�: Rn
� �

R! R measures the minimum cost of producing output level y when the

input prices are w � �w1;w2; . . . ;wn� (see example 2.31). Frequently we

are interested in analyzing just the impact of output on costs. Holding

input prices w constant, the function ĉ: R! R,

ĉ�y� � c�w; y�
is the familiar total cost function of elementary economics (®gure 2.6).

Sometimes it is appropriate to allow a subset of the variables to vary,

while holding the remainder constant. This is illustrated in the following

example.

Example 2.39 (Short-run production function) A ®rm produces a single

output using n inputs. Its technology is described by the production

function y � f �x1; x2; . . . ; xn�. Suppose that some inputs are ®xed in the

short-run. Speci®cally, suppose that we can decompose the list of inputs x

into two sublists �xf ; xv�, where xf A Xf are inputs that are ®xed in the

Figure 2.6
A total cost function
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short-run and xv A Xv are variable inputs. The function f̂ : Xv ! R de®ned

by

f̂ �xv; xf � � f �xv; xf �
is known as the short-run production function. It describes the output

obtainable from various levels of the variable factors xv, while holding the

®xed inputs xf constant.

When the co-domain Y is a product space Y � Y1 � Y2 � � � � � Ym,

it is useful to decompose a function f: X ! Y into m components

f � � f1; f 2; . . . ; f m�, where each component f i: X ! Yi. For any point

x A X , its image is

f�x� � � f1�x�; f 2�x�; . . . ; f m�x��
In line with our notational convention, we use a bold font to designate

a function whose co-domain is a product space. Almost invariably the

co-domain Y is a subset of Rm, so each component fi: X ! R is a func-

tional on X . It is often convenient to alternate between these two di¨erent

perspectives, sometimes viewing f as a function from X to Rm and other

times regarding f as a list of functionals on X . These di¨erent perspectives

are illustrated in the following example.

Example 2.40 (Constrained optimization) In the general constrained

optimization problem (example 2.30)

max
x AG�y�

f �x; y�

the constraint set G�y� can often be represented a function g: X �Y!
Y JRm, so the general constrained maximization problem becomes

max
x AX

f �x; y�

subject to g�x; y�U 0

Sometimes it is convenient to think of the constraint as a single function

g: X �Y! Rm. At other times it is more convenient to decompose g into

m separate constraints (functionals) gj: X �Y! R, j � 1; 2; . . . ;m, with

g1�x; y�U 0; g2�x; y�U 0; . . . ; gm�x; y�U 0

We will take advantage of this decomposition in chapter 5.
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2.1.4 Illustrating Functions

Some functions can be illustrated directly (®gure 2.3) or by means of their

graph (®gures 2.2, 2.4, 2.5, and 2.8). The dimensionality of most eco-

nomic models precludes such simple illustrations, and it is necessary to

resort to schematic illustrations such as ®gures 2.1 and 2.7.

Many functions that we meet in economics, including objective func-

tions, payo¨ functions, production and cost functions, are functionals. In

other words, they are real-valued functions f : X ! R. Where the domain

X JR2, the graph of f ,

graph� f � � f��x1; x2�; y� A R2 �R � R3� : y � f �x1; x2�g
is a surface in R3. With imagination this can be illustrated on a two-

dimensional page (®gure 2.8). Even where the economic model requires

Figure 2.7
Illustrating a function from Rn ! Rm

Figure 2.8
A function from R2 ! R
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more than two decision variables, we often use illustrations like ®gure 2.8

to help cement ideas. Alternatively, with higher dimensions and more

general spaces, we sometimes depict the graph schematically, allowing a

single horizontal axis to represent the domain (®gure 5.11).

The decompositions discussed in the previous section can be very useful

in illustrating higher-dimensional functions. For example, for any func-

tional f A F �X �, where X JRn, the function

f̂i�t� � f �t; x0
ÿi� � f �x0

1 ; x
0
2 ; . . . ; x0

iÿ1; t; x
0
i�1; . . . ; x0

n�
for any x0 A X maps R to itself. The graph of f̂i can be depicted as a

curve in the plane (®gure 2.9). It provides a vertical cross section of the

graph of f , parallel to the ith axis. Figure 2.9 shows a vertical cross

section of ®gure 2.8. The total cost curve (®gure 2.6) provides another

example.

Exploiting the linear structure of Rn, another useful cross section of a

function f A F�Rn� is de®ned by

h�t� � f �tx0� � f �tx0
1 ; tx

0
2 ; . . . ; tx0

n�
where x0 is an arbitrary point in Rn. Again, h maps R into R. Its graph is

vertical cross section of the graph of f, this time along a ray through the

origin. This cross section is particularly useful in describing technologies

Ðit represents changing the scale of production while leaving input pro-

portions ®xed.

Recall that the contours f ÿ1�y� of a function f : X ! Y partition the

domain X. Another useful way to explore the geometry of a function is to

depict some contours (®gure 2.10). These correspond to horizontal cross

Figure 2.9
A vertical cross section of ®gure 2.8
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sections of the graph. The use of contours to reduce dimensionality is

familiar in topographical and weather maps. Contours are equally useful

in economics.

Remark 2.5 (Tomography) Tomography is the technique of obtaining a

planar image of a cross section of a human body or other object. In a CAT

(computer-assisted tomography) scan, a sequence of parallel cross sections

is obtained. These images enable the radiologist to construct a detailed

picture of the interior of the body. Economists use an analogous tech-

nique, deducing the structure of a multidimensional function by mentally

combining judicious cross sections.

Example 2.41 (Anatomy of the production surface) Economists frequently

resort to horizontal and vertical cross sections to describe the properties

of a technology as represented by a production function. Figure 2.11

illustrates a Cobb-Douglas production function

f �x1; x2� � xa1

1 xa2

2 ; a1 � a2 � 1

together with three useful cross sections. Alongside the surface, the second

quadrant depicts a sequence of horizontal cross sections or contours,

known as isoquants. They represent the di¨erent combinations of x1 and

x2 that can be used to produce a particular output level, illustrating the

substitutability between the inputs. The third quadrant is a vertical cross

section parallel to the x1 axis. It shows the output produced by varying

the amount of x1 while holding x2 constant, illustrating the diminishing

Figure 2.10
Horizontal cross sections (contours) of ®gure 2.8
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marginal product of factor 1. Alongside this, the fourth quadrant shows a

vertical cross section along an expansion path (ray through the origin). It

shows the output obtained by changing the scale of production, holding

the input ratios ®xed. In this particular case, the cross section is linear,

illustrating the constant returns to scale of the Cobb-Douglas technology

when a1 � a2 � 1.

2.1.5 Correspondences

The budget set X�p;m� of a consumer (example 1.113) is a subset of the

consumption set X. The composition of the budget set, the bundles that

are a¨ordable, depends on the prices of all goods p and the consumer's

income m. In fact a¨ordability determines a function from set of feasible

prices and incomes to the set of all subsets of the consumption set �P�X��.
This situation, where the co-domain of a function is the power set of an-

other set, occurs frequently in economics. It justi®es a slight generaliza-

tion of the concept of a function that is known as a correspondence.

Given two sets X and Y, a correspondence j is a rule that assigns to

every element x A X a nonempty subset j�x� of Y. Every correspondence

j between X and Y can be viewed simply as a function from X to

P�Y�. Alternatively, it can be viewed as a multi-valued function, since

any x can be associated with more than one y A Y . Although a corre-

spondence j: X x Y is a proper function between X and P�Y�, it is the

relationship between X and Y that we wish to emphasize, which creates

the need to introduce a new concept. We will denote a correspondences by

Figure 2.11
A Cobb-Douglas function and three useful cross sections
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j: X x Y , using the double arrow to distinguish it from a function be-

tween X and Y. Correspondences, which arise so naturally in economic

analysis, have an unjusti®ed reputation for di½culty, which we would like

to dispel. In fact we have already met several examples of correspond-

ences. We discuss some of these after the following remark.

Remark 2.6 (Correspondences, functions, and relations) Recall that a

relation between two sets X and Y is a subset of their product X � Y , that

is, a collection of pairs of elements from X and Y. A correspondence

j x X ! Y is a relation between X and Y in which every x A X is

involved, that is, whose domain is the whole of X. A function is relation

(in fact a correspondence) in which every x A X is involved only once; that

is, every x A X has a unique relative in Y. For example, in ®gure 2.12, the

left-hand panel is merely a relation, since not all points in X are related to

Y. The right-hand panel is a correspondence, since every x A X is related

to some y A Y . It is not a function, since there is an x that is related to

more than one y. The middle panel is a legitimate function, since every x

is related to one and only one y.

By convention, we do not distinguish between a correspondence in

which every image set contains a single element and a function.

Example 2.42 (Upper and lower contour sets) If 7 is an order relation

on a set X, the upper contour sets

7�a� � fx A X : x7 ag

Figure 2.12
Comparing a relation, a correspondence, and a function
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specify a correspondence on X, as do the sets 1�a�. Similarly the lower

contours sets 6�a�, 0�a� and the indi¨erence sets @�a� are all corre-

spondences on X.

Example 2.43 (Preimage) Given any function f : X ! Y , the preimage

f ÿ1�y� � fx A X : f �x� � yg
de®nes a correspondence between the range f �X� of f and X.

Example 2.44 (Input requirement set) For a single-output technology Y,

the input requirements sets

V�y� � fx A Rn
� : �y;ÿx� A Yg

de®ne a correspondence between output levels y A R� and the set of all

nonnegative input levels Rn
�.

Example 2.45 (Coalitional game) In a coalitional game (section 1.2.6),

the relation which speci®es the subset of outcomes over which each co-

alition is decisive is a correspondence between the set of coalitions and the

set of outcomes. Therefore a coalitional game comprises

. a ®nite set N of players

. a set X of outcomes

. for each player i A N a preference relation 7i on the set of outcomes X

. a correspondence W : P�N�x X that speci®es for each coalition S the

set W�S� of outcomes over which it is decisive

The correspondence W is typically called the characteristic function of the

game (despite being a correspondence), although it is conventional to use

a capital W to contrast with the little w used to denote the characteristic

function of a game with transferable payo¨.

A correspondence j: X x Y is called closed-valued if j�x� is closed for

every x A X . Similarly j is compact-valued if j�x� compact- and convex-

valued if j�x� convex for every x A X . Alternatively, we say that j has

closed, compact, or convex sections.

Example 2.46 (Budget correspondence) For ®xed prices p and income m,

the consumer's budget set
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X�p;m� � fx A X : p1x1 � p2x2 � � � � � pnxn Umg
is a subset of the consumption set X. The budget set depends on both

prices p and income m. Let P denote the set of all price and income pairs

for which the budget set is not empty, that is,

P � f�p;m� A Rn �R : X�p;m�0qg
A¨ordability determines a correspondence X �p;m�: P x X between the

parameter set P and the consumption set X, which is called the budget

correspondence. The budget correspondence X �p;m� is convex-valued

(exercise 1.232). It is also closed-valued and compact-valued provided all

prices are positive p > 0 (exercise 1.231).

Example 2.47 (Demand correspondence) In example 1.115 we showed

the existence of an optimal choice x� for a consumer with continuous

preferences. For given prices p and income m in P, there may be more

than one optimal choice. The way in which the set of optimal choices

x��p;m� varies with prices and income de®nes a correspondence from P

to the consumption set X that is called the demand correspondence of the

consumer.

Exercise 2.20

Assume that the consumer's preferences are continuous and strictly con-

vex. Show that the demand correspondence is single valued. That is, the

demand correspondence is a function mapping P! X .

Example 2.48 (Best response correspondence) In a strategic game (sec-

tion 1.2.6), the optimal choice of any player depends on the strategies of

the other players. The set of strategies of player i that constitutes her best

response to the strategies of the other players sÿi is called player i 's best

response correspondence

Bi�sÿi� � fsi A Si : �si; sÿi�7i �s 0i ; sÿi� for every s 0i A Sig
Since player i may have more than one optimal response to any sÿi, Bi is

a correspondence between Sÿi and Si (rather than a function). The best

response correspondence maps Sÿi into the power set P�Si� of Si.

For some purposes (e.g., example 2.52) it is convenient to regard the

domain of each player's best response correspondence as the whole strat-

egy space S rather than just Sÿi. This can be done by simply ignoring the

180 Chapter 2 Functions



Si dimension of the domain. The extended best response correspondence

is then de®ned identically, namely

Bi�s� � fsi A Si : �si; sÿi�7i �s 0i ; sÿi� for every s 0i A Sig
In e¨ect, the extended best response correspondence is constant on Si.

Game theorists often refer to Bi as the best response function rather than

the more correct best response correspondence, even when they know that

Bi is not strictly a function.

Exercise 2.21

s� � �s�1 ; s�2 ; . . . ; s�n � is a Nash equilibrium if and only if

s�i A B�s�� for every i A N

Exercise 2.22 (Rationalizability)

In a strategic game, a strategy of player i is justi®able if it is a best

response to some possible (mixed) strategy (example 1.98) of the other

players, that is,

si is justi®able, si A Bi�Sÿi�
where Sÿi is the set of mixed strategies of the opposing players (example

1.110). Let B1
i denote the set of justi®able strategies of player i. Then

B1
i � Bi�Sÿi�

A strategy of player i is rationalizable if it is justi®able using a belief that

assigns positive probability only to strategies of j 0 i that are justi®able, if

these strategies are justi®ed using beliefs that assign positive probability

only to justi®able strategies of i, and so on. To formalize this de®nition,

de®ne the sequence of justi®able strategies

Bn
i � Bi�Bnÿ1

ÿi �
The set of rationalizable strategies for player i is Ri �7y

n�0 Bn
i . That is,

the set of rationalizable strategies is those that are left after iteratively

discarding unjusti®ed strategies. Show that when S is compact and 7i is

continuous, there are rationalizable strategies for every game, that is,

Ri 0q. [Hint: Use the nested intersection theorem (exercise 1.117).]

Exercise 2.23

Every Nash equilibrium is rationalizable.
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Example 2.49 (Solution correspondence) The general constrained opti-

mization problem (example 2.30)

max
x AG�y�

f �x; y�

de®nes a correspondence between Y and X, known as the solution corre-

spondence, which speci®es the optimal choice of the decision variables x

for varying values of the parameters y. Formally let the solution corre-

spondence is de®ned as

j�y� � arg max
x AG�y�

f �x; y�

where arg max denotes the set of elements of G�y� that maximize f �x; y�.
Economists are very interested in the properties that j inherits from

f and G�y�. The demand correspondence (example 2.47) and best re-

sponse correspondence (example 2.48) are particular examples of solution

correspondences.

Exercise 2.24

Show that the value function (example 2.28) can be alternatively de®ned by

v�y� � f �x�; y� for x� A j�y�
Most of the vocabulary of functions applies to correspondences with

little change. The domain of a correspondence between X and Y is of

course X. The range is

j�X � � fy A Y : y A j�x� for some x A Xg
The graph of a correspondence j between X and Y is

graph�j� � f�x; y� A X � Y : y A j�x�g
The graph of a hypothetical correspondence is illustrated by the shaded

area in ®gure 2.13.

A correspondence j is closed if its graph is closed in X � Y , that is, for

every pair of sequences xn ! x and yn ! y with yn A j�xn�, y A j�x�.
Similarly a correspondence j is convex if its graph is a convex subset of

X � Y ; that is, for every x1; x2 A X and corresponding y1 A j�x1� and

y2 A j�x2�,
ay1 � �1ÿ a�y2 A j�ax1 � �1ÿ a�x2�
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Every closed correspondence is closed-valued and every convex corre-

spondence is convex-valued, but the converse is false. A closed-valued

and convex-valued correspondence may be neither closed nor convex, as

illustrated in the following example.

Example 2.50 Let X � �0; 1�. De®ne j : X x X by

j�x� � fxg 0U x < 1

f0g x � 1

�
j is both closed- and convex-valued for every x A X . However, j is neither

closed nor convex. The sequence �xn; yn) de®ned by xn � yn � 1ÿ 1=n

belongs to graph�j�. However the sequence converges to �1; 1� B graph�j�.
Therefore graph�j� is not closed, nor is j convex. The point �0; 0� and

�1; 0� belong to graph�j�, but there convex combination �12 ; 0� does not.

Example 2.51 (Input requirement sets) For a single-output technology,

the input requirement sets V�y�,
V�y� � fx A Rn

� : �y;ÿx� A Yg
de®ne a correspondence (Example 2.44) between desired output �y A R��
and required inputs �x A Rn

��. The graph of this correspondence is almost

but not quite the production possibility set Y. The graph of the corre-

spondence is

graph�V� � f�y; x� A R� �Rn
� : x A V�y�g

Figure 2.13
The graph of a correspondence
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while the production possibility set Y is

Y � f�y;ÿx� A R� �Rn
� : x A V�y�g

the distinction being required by the convention that inputs are speci®ed

as negative quantities in production plans. For some purposes it is more

convenient to use graph�V� rather than Y.

In producer theory it is conventional to assume that the input require-

ment set V�y� is convex for every y (example 1.163). In other words, we

usually assume that the the input requirements sets de®ne a convex-valued

correspondence. In general, V is not further assumed to be a convex

correspondence. However, if the technology is restricted so that the pro-

duction possibility set Y is convex, then V is a convex correspondence

(exercise 2.25).

Exercise 2.25

Let Y be the production possibility set for a single-output technology and

V�y� denote the corresponding input requirements sets

V�y� � fx A Rn
� : �y;ÿx� A Yg

Then Y is convex if and only if V�y� is a convex correspondence.

Exercise 2.26

Suppose that the constraint correspondence G�y� in the constrained opti-

mization problem (example 2.30)

max
x AG�y�

f �x; y�

is de®ned by a set of inequalities (example 2.40)

g1�x; y�U 0; g2�x; y�U 0; . . . ; gm�x; y�U 0

If each functional gj�x; y� A F�X �Y� is convex jointly in x and y, then

the correspondence

G�y� � fx A X : gj�x; y�U 0; j � 1; 2; . . . ;mg
is convex.

Individual correspondences can be combined in analogous ways to func-

tions. If j: X x Y and c: Y x Z are two correspondences, their compo-

sition c � j is a correspondence between X and Z, which is de®ned by

184 Chapter 2 Functions



c � j�x� � 6
y A j�x�

c�y�

If ji: X x Yi, i � 1; 2; . . . ; n, is a collection of correspondences with

common domain X, their product is a correspondence between X and the

Cartesian product
Q

Yi de®ned by

j�x� �
Y

i

ji�x�

Where the co-domains Yi belong to a linear space, their sum is a corre-

spondence j: X x
P

Yi de®ned by

j�x� �
X

i

ji�x�

Correspondences also invite some operations which are inapplicable

to functions. If j: X x Y is a correspondence between X and a convex

set Y, its convex hull �conv j� is another correspondence between X and

Y de®ned by

�conv j��x� � conv�j�x�� for every x A X

Similarly, where Y is a metric space, the closure of j is a correspondence

j: X ! Y de®ned by

j�x� � j�x� for every x A X

Economic models often establish a correspondence between a set X and

itself. A ®xed point of a correspondence j: X ! X is an element that

belongs to its own image set, that is an x A X such that x A j�x�.
Example 2.52 (Nash equilibrium as a ®xed point.) Consider a strategic

game of n players with strategy space S � s1 � s2 � � � � � sn. In exercise

2.21, we showed that s� � �s1; s2; . . . ; sn� A S is Nash equilibrium if and

only if

s�i A Bi�s�� for every i A N

The Cartesian product of the individual best response correspondences

de®nes a correspondence j on the whole strategy space S given by

j�s� � B1�s� � B2�s� � � � � � Bn�s�
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s� is Nash equilibrium if and only if s� A j�s��, that is s� is a ®xed point of

j. Therefore the search for a Nash equilibrium can be reduced to the

search for a ®xed point of an appropriate mapping. An equilibrium will

be ensured if the mapping can be guaranteed to have a ®xed point. Sec-

tion 2.4 discusses the necessary conditions for existence of a ®xed point.

Selections

Given a correspondence j between X and Y, we can always construct a

function by choosing some y A j�x� for every x, since j�x� is nonempty

for every x. Any function constructed from a correspondence in this

way is called a selection. We use the notation f A j to denote that f is a

selection from the correspondence j. Unless the correspondence is in fact

a function, there will be many selections from any correspondence.

2.1.6 Classes of Functions

As we remarked in opening this chapter, we are especially interested in

functions that respect the structure of their domains. Of course, that

structure can take various forms. Functions that respect the order struc-

ture of their domains are called monotone functions. Continuous func-

tions preserve the geometry of the spaces that they link, while linear

functions preserve the algebraic structure. In the next section we investi-

gate monotone functions and correspondences, while in section 2.3 we

deal with continuous functions and correspondences. Linear and related

functions are explored in chapter 3. In the absence of further quali®ca-

tion, the domain and range are assumed to appropriately structured sets.

In section 2.2 (monotone functions) all sets are assumed to be ordered

sets. Similarly in section 2.3 all sets are assumed to be metric spaces.

2.2 Monotone Functions

A function between ordered sets X and Y is called monotone if it respects

the order of X and Y. f is increasing if it preserves the ordering so that

x2 7X x1 ) f �x2�7Y f �x1�
where 7X and 7Y are the orders on X and Y respectively. f is strictly

increasing if in addition
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x2 1X x1 ) f �x2�1Y f �x1�
On the other hand, f : X ! Y is decreasing if it reverses the ordering

x2 7X x1 ) f �x2�6Y f �x1�
It is strictly decreasing if in addition

x2 1X x1 ) f �x2�0Y f �x1�
f is monotone if it is either increasing or decreasing. Some authors use the

term monotone increasing, although the ®rst adjective is redundant.

Exercise 2.27 (Identity function)

Show that the identity function IX (example 2.5) is strictly increasing.

Remark 2.7 For mappings between arbitrary ordered sets, the mathe-

matical terms isotone and antitone for increasing and decreasing functions

respectively are more appropriate. However, most monotone functions in

economics are real-valued, and the terms increasing and decreasing are

conventional.

Many authors use nondecreasing in place of increasing, reserving

increasing for strictly increasing. Our terminology carries some risk of

confusion. For example, a constant function is ``increasing.'' On the other

hand, our terminology is internally consistent (an increasing function

preserves the weak order) and less cumbersome.

The following properties of monotone functions are used frequently.

Exercise 2.28

If f : X ! Y and g: Y ! Z are increasing functions, so is their composi-

tion g � f : X ! Z. Moreover, if f and g are both strictly increasing, then

so is g � f .

Exercise 2.29

If X and Y are totally ordered (chains) and f : X ! Y is strictly increas-

ing, then f has a strictly increasing inverse f ÿ1: f �X� ! X .

Exercise 2.30

If f : X ! R is increasing, ÿf : X ! R is decreasing.

Exercise 2.31

If f ; g A F�X � are increasing, then
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. f � g is increasing

. a f is increasing for every aV 0

Therefore the set of all increasing functionals on a set X is a cone in F�X�.
Moreover, if f is strictly increasing, then

. f � g is strictly increasing

. a f is strictly increasing for every a > 0

Exercise 2.32

If f and g are strictly positive de®nite and strictly increasing functionals on

X, then so is their product fg de®ned by

� f g��x� � f �x�g�x�
Example 2.53 (The power function) The power functions fn de®ned by

fn�x� � xn; n � 1; 2; 3; . . .

are strictly increasing on R�. First f1 is the identity function and there-

fore strictly increasing (exercise 2.27). f1 is also strictly positive de®nite on

R��. By the previous exercise,

f2�x� � f1�x� f1�x�
is strictly increasing and strictly positive de®nite on R��. Similarly

f3�x� � f1�x� f2�x�
is strictly increasing and strictly positive de®nite on R��. Continuing in

this fashion using exercise 2.32, we can demonstrate that for every n,

fn�x� � f1�x� fnÿ1�x� �14�
is strictly increasing and strictly positive de®nite on R��.

Note also that f1�0� � 0 and therefore fn�0� � 0 for every n by (14).

Since fn is strictly positive de®nite on R��, fn�0� < fn�x� for every

x A R��. Furthermore 0 < x for every x A R��. We conclude that fn is

strictly increasing on R�.

Remark 2.8 (Induction) Example 2.53 illustrates the common technique

of proof by induction, applicable when seeking to demonstrate that a

property belongs to every member of a sequence. We ®rst prove that the
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®rst member of the sequence has the property. Then we show that the nth

member of the sequence has the property if member nÿ 1 has the prop-

erty. This is known as the inductive step, exempli®ed by applying exercise

2.32 to (14). Together these steps prove that every member of the se-

quence has the property.

Example 2.54 (Exponential function) We now let f n denote the sequence

of polynomials

f n �
Xn

k�0

xk

k!

Example 2.53 and exercise 2.31 shows that f n is strictly increasing on R�
for every n � 1; 2; . . . This implies that the exponential function (example

2.10)

ex � lim
n!y

f n�x� �
Xy
n�0

xn

n!

is also strictly increasing on R� (exercise 2.33). Since (exercise 2.6)

eÿx � 1=ex,

x1 < x2 < 0) 0 < ÿx2 < ÿx1 ) f �ÿx2� < f �ÿx1�

) 1

ex2
<

1

ex1
) ex1 < ex2

Therefore the exponential function ex is strictly increasing on R.

Exercise 2.33

Show that ex is strictly increasing on R�. [Hint: ex � 1� x�
limn!ygn�x�, gn�x� �Pn

k�2 xk=k!, n > 2.]

Example 2.55 (Log function) In exercise 2.6 we showed that

ex !y as x!y and ex ! 0 as x! ÿy
This implies that ex maps R onto R�. Furthermore we have just shown

that ex is strictly increasing. Therefore (exercise 2.29), the exponential

function has a strictly increasing inverse log: R� ! R de®ned by

y � log x, x � ey
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which is illustrated in ®gure 2.14. Log is an abbreviation of logarithm.

Property (2) of the exponential function implies that

log�x1x2� � log x1 � log x2 �15�
Prior to the development of pocket calculators and personal computers,

(15) was used to facilitate numerical calculations. Students, engineers and

others involved in nontrivial calculations were equipped with tables of

logarithms, enabling them to convert multiplication problems to easier

addition.

Example 2.56 (General power function) The log function enables us to

extend the de®nition of the power function to noninteger exponents. For

every x A R�, e log x is the identity function, that is,

x � e log x

and we de®ne the general power function f : R� ! R by

f �x� � xa � ea log x; a A R �16�
Exercise 2.34

The general power function f �x� � xa is strictly increasing on R� for all

a > 0 and strictly decreasing for a < 0.

Example 2.57 (Cobb-Douglas function) In economic analysis, the for-

mula or rule that speci®es a particular function is known as a functional

form. One of the most popular functional forms in economics is the Cobb-

Figure 2.14
The log function
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Douglas function f : Rn
� ! R� de®ned by

f �x� � xa1

1 xa2

2 . . . xan
n ; ai > 0

The Cobb-Douglas function is the product of general power functions.

Therefore (exercise 2.32) it is strictly increasing on Rn
�.

Exercise 2.35 (CES function)

Another popular functional form in economics is the CES function,

f : Rn
� ! R� de®ned by

f �x� � �a1x
r
1 � a2x

r
2 � � � � anxr

n �1=r; ai > 0; r0 0

Show that the CES function is strictly increasing on Rn
�.

Example 2.58 (Utility function) A strictly increasing functional u on a

weakly ordered set �X ;7� is called a utility function. A utility function is

said to represent the preference relation 7, since (exercise 2.36)

x2 7 x1 , u�x2�V u�x1�
Exercise 2.36

Let u: X ! R be a strictly increasing function on the weakly ordered set

�X ;7�. Show that

x2 7 x1 , u�x2�V u�x1�
Example 2.59 (Monotonic preferences) A utility function is strictly

increasing with respect to the preference order 7 on X. When X JRn,

the preference order 7 may not necessarily be consistent with the natural

order on Rn. If the two orders are consistent, the preference order is

monotonic (section 1.6). If the preference 7 is weakly monotonic on X,

xV y) x7 y, u�x�V u�x�
and u is in increasing on X. If 7 is strongly monotonic

xX y) x1 y, u�x� > u�y�
and u is strictly increasing on X.

Example 2.60 (Monotonic transformation) Given any functional f on

X and a strictly increasing functional g: R! R, their composition

g � f : X ! R is called a monotonic transformation of f. A monotonic

transformation preserves the ordering 7f implied by f.
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This terminology (``monotonic transformation'') is at odds with our

de®nition of monotone (weakly increasing or decreasing) but is well

entrenched in the economics literature. Synonyms include ``monotone

transformation,'' ``monotone increasing transformation,'' and ``positive

monotonic transformation''. A typical application is given in the exercise

2.37.

Exercise 2.37 (Invariance to monotonic transformations)

Let u: X ! R be a utility function representing the preference relation 7.

Show that every monotonic transformation g � u is a utility function

representing the same preferences. We say that utility representation is

invariant to monotonic transformations.

Remark 2.9 (Existence of a utility function) Continuity (section 1.6) is a

necessary and su½cient condition for the existence of a utility function

representing a given preference relation. However, a general proof of this

fact is quite complicated, requiring both topological and order-theoretic

ideas. A simple constructive proof can be given when X � Rn
� and pref-

erences are strongly monotonic (exercise 2.38).

Exercise 2.38

Let 7 be a continuous preference relation on Rn
�. Assume that 7 is

strongly monotonic. Let Z denote the set of all bundles that have the same

amount of all commodities (®gure 2.15), that is, Z � fz � z1 : z A R�g
where 1 � �1; 1; . . . ; 1�.
1. For any x A Rn

�, show that

a. the sets Z�x �7�x�XZ and Zÿx �6�x�XZ are nonempty and

closed

b. Z�x XZÿx 0q [Hint: Z is connected.]

c. there exists zx A Z which is indi¨erent to x

d. zx � zx1 is unique

2. For every x A R, de®ne zx to be the scale of zx @ x. That is, zx � zx1.

The assignment u�x� � zx de®nes a function u: Rn
� ! R that represents

the preference ordering 7.

Exercise 2.39

Remark 2.9 implies that the lexicographic preference relation (example

1.114) cannot be represented by a utility function, since the lexicographic
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preference ordering is not continuous. To verify this, assume, to the con-

trary, that u represents the lexicographic ordering 7L on R2.

1. For every x1 A R there exists a rational number r�x1� such that

u�x1; 2� > r�x1� > u�x1; 1�
2. This de®nes an increasing function r from R to the set Q of rational

numbers.

3. Obtain a contradiction.

Example 2.61 (Payo¨ function) A function ui: A! R is a payo¨ func-

tion for player i in the strategic game �N;A; �71;72; . . . ;7n�� (example

2.34) if ui represents the preferences of player i, that is,

a2 7i a1 , ui�a2�V ui�a1�
So a payo¨ function is simply a utility function over the set of action

pro®les A. The necessary conditions for existence of a payo¨ function for

players in a game are those for the existence of a utility function, namely

completeness and continuity of the preference relation 7i.

Exercise 2.40 (Zero-sum game)

Suppose that u1: A A R represents the preferences of the player 1 in a

two-person strictly competitive game (example 1.50). Then the function

u2 � ÿu1 represents the preferences of the player 2 and

u1�a� � u2�a� � 0 for every a A A

Figure 2.15
Constructive proof of the existence of a utility function
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Consequently a strictly competitive game is typically called a zero-sum

game.

Example 2.62 (Superadditive game) Monotonicity is a natural assump-

tion for the characteristic function of a TP-coalitional game, re¯ecting the

presumption that bigger coalition can achieve anything achievable by a

smaller coalition. In fact a stronger presumption is customary. The

characteristic function of a TP-coalitional game is superadditive if dis-

tinct coalitions cannot lose by acting jointly, that is, for all S;T JN,

S XT �q,

w�S WT�Vw�S� � w�T�
Exercise 2.41

Show that superadditivity implies monotonicity, that is, if v: P�N� ! R
is superadditive, then v is monotonic.

Example 2.63 (Monotone operator) Given an arbitrary set X, the set

F�X � of all functionals on X is a linear space (exercise 2.9). There is

a natural partial order on F �X� that is de®ned as follows: For any

f ; g A F�X�,
f 7 g, f �x�V g�x� for every x A X

Let AJF�X � be a set of functionals on a space X. A monotone opera-

tor is a function T : A! A that preserves the natural order of A, that is,

f 7 g) Tf 7Tg

Use of the term monotone operator to describe an increasing function

from a set A to itself is well-entrenched Stokey and Lucas (1989, p. 528),

although the description increasing operator would be more consistent

with our terminology. It is possible to conceive of a decreasing operator,

although its behavior would be confusing.

Example 2.64 (Dynamic programming) In introducing the dynamic

programming problem (example 2.32, exercise 2.18), we encountered the

operator

�Tv��x� � sup
y AG�x�

f �x; y� � bv�y�

on the space B�X � of bounded functionals on the set X. There is a natural
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partial order on B�X � such that

w7 v, w�x�V v�x� for every x A X

The operator T preserves this order, that is,

w7 v) Tw7Tv

That is, T is a monotone operator.

Exercise 2.42

Show that the operator T : B�X� ! B�X � de®ned by

�Tv��x� � sup
y AG�x�

f �x; y� � bv�y�

is increasing.

2.2.1 Monotone Correspondences

Extending the concept of monotonicity to a correspondence j: X x Y

requires an order on the subsets of Y. One useful order is set inclusion. We

say that a correspondence is ascending if

x2 7X x1 ) j�x2�K j�x1�
It is descending if

x2 7X x1 ) j�x2�J j�x1�
Example 2.65 (Budget set) The budget correspondence X�p;m� is

ascending in income, since

m2 Vm1 ) X �p;m2�KX �p;m1�
It is descending in prices, since

p2 V p1 ) X�p2;m�JX�p1;m�
Example 2.66 (Input requirement sets) The input requirement sets of a

single output technology (example 2.44)

V�y� � fx A Rn
� : �y;ÿx� A Yg

are an ascending correspondence provided the technology exhibits free

disposal (exercise 1.12).
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Alternatively, when Y is a lattice, we can use the strong set order

(section 1.2.4) to order Y. We will say that correspondence j: X x Y is

increasing if it preserves the strong set order, that is,

x2 7X x1 ) j�x2�7S j�x1�
where 7S is the strong set order induced on P�Y � by 7Y . That is,

j: X x Y is increasing if for every x2 7 x1,

y15y2 A j�x1� and y14y2 A j�x2�
for every y1 A j�x1� and y2 A j�x2�. It is decreasing if it reverses the strong

set order, that is,

x2 7X x1 ) j�x2�6S j�x1�
A correspondence is monotone if it is either increasing or decreasing.

With a one-dimensional domain and range, it is straightforward to

illustrate monotone correspondences (®gure 2.16). However, in general,

the concept of monotonicity is more subtle as the following example

illustrates.

Example 2.67 (Budget set) The budget correspondence is not monotone.

Consider ®gure 2.17, which shows the budget set for two commodities

at two di¨erent income levels m2 > m1 (with prices constant). The com-

Figure 2.16
Weakly and strongly increasing correspondences
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modity bundle x1 is a¨ordable at m1 and x2 (with more of good 1 and less

of good 2) is a¨ordable at m2. However, the commodity bundle x14x2 is

not a¨ordable at m2. Hence the budget correspondence is not monotone.

Exercise 2.43

For Y A R, if g A F�Y� is increasing, then the correspondence

G�y� � fx : 0U xU g�y�g
is increasing.

The signi®cance of this de®nition of monotonicity for correspondences

is that every monotone correspondence has a monotone selection. This

and other useful properties of monotone correspondences are detailed in

the following exercises.

Exercise 2.44

Let j be an increasing correspondence from X to Y, and let x1; x2 A X

with x2 7 x1. Then

. for every y1 A j�x1� there exists y2 A j�x2� with y2 7 y1

. for every y2 A j�x2� there exists y1 A j�x1� with y2 7 y1

Exercise 2.45 (Increasing selection)

If j: X x Y is increasing and every j�x� is a sublattice, there exists an

increasing selection f A j.

Figure 2.17
The budget correspondence is not monotone
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Exercise 2.46

If ji: X x Yi, i � 1; 2; . . . ; n, is a collection of increasing correspondences

with common domain X, their product j: X x
Q

Yi de®ned by

j�x� �
Y

i

ji�x�

is also increasing.

Exercise 2.47

If ji: X x Yi, i � 1; 2; . . . ; n, is a collection of increasing correspondences

with common domain X, and their intersection j: X x7Yi de®ned by

j�x� �7
i
ji�x� is nonempty for every x A X , then j is also increasing.

A stronger concept of monotonicity is also useful. A correspondence

j: X x Y is always increasing if

x1 7X x2 ) y1 7Y y2 for every y1 A j�x1� and y2 A j�x2�
A correspondence is always increasing if and only if every selection is

increasing. Note that this concept does not require that Y is a lattice.

Exercise 2.48

j: X x Y is always increasing if and only if every selection f A j is

increasing.

2.2.2 Supermodular Functions

Monotonicity restricts the behavior of a function on comparable ele-

ments. It places no restriction on the action of the function with respect to

noncomparable elements. For the special case of functionals on lattices,

we can de®ne a related property, called supermodularity, which restricts

the behavior of the functional over its entire domain. A functional

f : X ! R on a lattice X is supermodular if every x1; x2 A X ,

f �x14x2� � f �x1 5 x2�V f �x1� � f �x2� �17�
f is strictly supermodular if every noncomparable x1; x2 A X ,

f �x14x2� � f �x1 5 x2� > f �x1� � f �x2�
A functional f is (strictly) submodular if ÿf is (strictly) supermodular.

As we will see, supermodularity formalizes the useful economic notion

of complementarity (example 2.70). In strategic games it expresses the im-
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portant idea of strategic complementarity (example 2.71). A TP-coalitional

game in which the characteristic function is supermodular is called a

convex game, which has special and very useful properties (example 2.69).

Remark 2.10 (Function or functional) Strictly speaking, this section

should be entitled ``supermodular functionals'' because the concept of

supermodularity relies on the linear structure of R and is therefore only

de®ned for real-valued functions. However, the terminology supermodular

function has become established in the literature, and to insist on func-

tional would seem unnecessarily pedantic. Similar usage is even more

®rmly established for convex and concave functions (section 3.7), which

also implicitly refer to real-valued functions only. Exercise 2.57 presents a

strictly ordinal property that can be used to generalize supermodularity to

any function between ordered sets.

Exercise 2.49

Every functional on a chain is supermodular.

The following properties are analogous to those for monotone func-

tions (exercises 2.31 and 2.32).

Exercise 2.50

If f ; g A F�X � are supermodular, then

. f � g is supermodular

. a f is supermodular for every aV 0

Therefore the set of all supermodular functions on a set X is a cone in

F�X�.
Exercise 2.51

If f and g are nonnegative de®nite, increasing, and supermodular func-

tionals on X, then so is their product f g de®ned by

� f g��x� � f �x�g�x�
Exercises 2.49 to 2.51 are useful in constructing supermodular

functions.

Example 2.68 (Cobb-Douglas) Since R� is a chain, the power function

f �x� � xai

i is supermodular on R� (exercise 2.49), and therefore (exercise

2.51) the Cobb-Douglas function
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f �x� � xa1

1 xa2

2 . . . xan
n ; ai V 0

is supermodular on Rn
�.

Exercise 2.52 (CES function)

Show that the CES function

f �x� � �a1x
r
1 � a2x

r
2 � � � � anxr

n �1=r; ai > 0; r0 0

is supermodular on Rn
�.

Exercise 2.53 (Economies of scope)

If a ®rm produces many products, a straightforward generalization of the

cost function c�w; y� measures the cost of producing the list or vector of

outputs y when input prices are w. The production technology displays

economies of joint production or economies of scope at y � �y1; y2; . . . ; ym�
if the total cost of producing all the outputs separately is greater than the

cost of producing the outputs jointly, that is,Xm

j�1

c�w; yj ej� > c�w; y�

where yj ej � �0; 0; . . . ; yj; 0 . . . 0� is the output vector consisting of yj units

of good j. Show that the technology displays economies of scope if the

cost function is strictly submodular in y. Assume zero ®xed costs.

Example 2.69 (Convex games) A TP-coalitional game is convex if its

characteristic function is supermodular, that is,

w�S WT� � w�S XT�Vw�S� � w�T� for every S;T JN �18�
The set of convex games is a convex cone in the set of all TP-coalitional

games GN (exercise 2.50). Convexity in a game re¯ects increasing returns

to cooperation (exercise 2.55). Convex games occur naturally in many

applications, and they have special properties. In particular, the core

(example 1.45) is nonempty, and contains the Shapley value (example

3.6), which coincides with the nucleolus (example 1.49).

Exercise 2.54

Every convex game is superadditive.

Exercise 2.55

Show that a TP-coalitional game �N;w� is convex if and only if
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w�T W fig� ÿ w�T�Vw�S W fig� ÿ w�S�
for every i A N and for every S HT HNnfig

The marginal contribution of every player increases with the size of the

coalition to which the player is joined.

Exercise 2.56

Is the cost allocation game (exercise 1.66) convex?

Exercise 2.57 (Quasisupermodularity)

The de®nition of supermodularity utilizes the linear structure of R. Show

that supermodularity implies the following strictly ordinal property

f �x1�V f �x1 5 x2� ) f �x14x2�V f �x2�
and

f �x1� > f �x1 5 x2� ) f �x14x2� > f �x2�
for every x1; x2 A X .

Increasing Di¨erences

Another property closely related to supermodularity is useful when deal-

ing with functionals whose domain can be decomposed into two sets, as

for example, the objective function of a constrained optimization problem

(example 2.30) or the payo¨ function in a strategic game (example 2.34).

Suppose that f : X � Y ! R is supermodular. For any x1; x2 A X , and

y1; y2 A Y with x2 7X x1 and y2 7Y y1,

�x1; y2�5 �x2; y1� � �x1; y1�
�x1; y2�4�x2; y1� � �x2; y2�
Evaluating (17) at �x1; y2� and �x2; y1�, supermodularity implies that

f �x2; y2� � f �x1; y1�V f �x1; y2� � f �x2; y1�
Rearranging the inequality, we observe that

f �x2; y2� ÿ f �x1; y2�V f �x2; y1� ÿ f �x1; y1�
which motivates the following de®nition. Given two posets X and Y, a

functional f : X � Y ! R displays increasing di¨erences in �x; y� if, for all
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x2 7 x1, the di¨erence f �x2; y� ÿ f �x1; y� is increasing in y. It has strictly

increasing di¨erences if f �x2; y� ÿ f �x1; y� is strictly increasing in y (see

®gure 2.18).

Exercise 2.58

Let f : X � Y ! R. Show that f displays increasing di¨erences if and

only if

f �x2; y2� ÿ f �x2; y1�V f �x1; y2� ÿ f �x1; y1�
that is, the di¨erence f �x; y2� ÿ f �x; y1� is increasing in x. Therefore the

order of the comparison in the de®nition increasing di¨erences is irrele-

vant. This is analogous to Young's theorem (theorem 4.2) for smooth

functions.

The concepts of supermodularity and increasing di¨erences are closely

related. Both concepts formalize the notion of complementarity. The

preceding discussion showed that any supermodular function on a prod-

uct space displays increasing di¨erences. Conversely, where the com-

ponent sets are totally ordered (chains), increasing di¨erences implies

supermodularity, so the two properties coincide (exercise 2.59). This

equivalence generalizes to ®nite products and hence applies to Rn, the

domain of many economic models. The property of increasing di¨erences

is more readily applicable in economic models and easier to verify, while

supermodularity is more tractable mathematically. Proposition 4.2 gives a

useful characterization of smooth supermodular functions in terms of the

second derivative.

Figure 2.18
A supermodular function displays increasing di¨erences
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Exercise 2.59

Let f be a functional on X � Y where X and Y are chains. Show that f

has increasing di¨erences in �x; y� if and only if f is supermodular on

X � Y .

Example 2.70 (Complementary inputs) The technology of a single output

producer can be represented by a production function (example 2.24)

f : Rn
� ! R. The production is supermodular if and only if it displays

increasing di¨erences. The (discrete) marginal product of input i is the

additional product obtained by adding another unit of input

MPi�x� � f �x� ei� ÿ f �x�
where ei is the ith unit vector in Rn. The production function is super-

modular if and only if the marginal product f �x� ei� ÿ f �x� of every

input i is an increasing function of all the other inputs. This captures the

economic idea of complementary inputs.

Example 2.71 (Supermodular games) A supermodular game is a strategic

game in which

. every strategy set Si is a lattice

. the payo¨ functions ui: Si � Sÿi ! R are supermodular on Si

. ui display increasing di¨erences in �si; sÿi�
Fortunately, many games meet these requirements, since supermodular

games are particularly well behaved. They always have a pure strategy

Nash equilibrium (example 2.92), and the set of Nash equilibria is a lattice

(exercise 2.118).

Example 2.72 (Coordination failure in a macro model) Some recent work

in macroeconomics attributes aggregate ¯uctuations to ``coordination

failures.'' A typical example is the following simple search model. Trade

takes place by barter coordinated by a stochastic matching process. The

payo¨ for any individual player depends on the probability of meeting a

trading partner, which in turn is determined by search e¨ort of all the

players. Speci®cally, the probability of meeting a suitable trading partner

is si

P
i 0 j sj, where si denotes the search e¨ort of player i. If a > 0 denotes

the gain from successful trade and c�si� the cost of search, player i 's pay-

o¨ function is
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ui�si; sÿi� � asi

X
i0nj

sj ÿ c�si�

ui is supermodular in si. Furthermore, as player i increases her search

activity from s1
i to s2

i , her payo¨ increases, ceteris paribus, by

ui�s2
i ; sÿi� ÿ ui�s1

i ; sÿi� � a
X
i0j

sj�s2
i ÿ s1

i �

which is clearly increasing in sj. Therefore this is a supermodular game.

In general, the game has multiple equilibria. Those equilibria with lower

search activity have smaller aggregate output.

Exercise 2.60 (Bertrand oligopoly)

In the standard Bertrand model of oligopoly n ®rms each produce a

di¨erentiated product. The demand qi for the product of the ith ®rm

depends on its own price and the price charged by all the other ®rms,

that is,

qi � f �pi; pÿi�
If each ®rm's production cost is measured by the cost function ci, ®rm i 's

payo¨ function is

ui�pi; pÿi� � pi f �pi; pÿi� ÿ ci� f �pi; pÿi��
In the simplest speci®cation the demand functions are linear

f �pi; pÿi� � ai ÿ bi pi �
X
j0i

dij pj

with bi > 0 and the ®rm's produce at constant marginal cost ci, so the

payo¨ functions are

ui�pi; pÿi� � � pi ÿ ci�f � pi; pÿi�
Show that if the goods are gross substitutes (dij > 0 for every i; j), the

Bertrand oligopoly model with linear demand and constant marginal

costs is a supermodular game.

Exercise 2.61 (Single-crossing condition)

Increasing di¨erences implies the following ordinal condition, which is

known as the single-crossing condition. For every x2 7 x1 and y2 7 y1,
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f �x2; y1�V f �x1; y1� ) f �x2; y2�V f �x1; y2�
and

f �x2; y1� > f �x1; y1� ) f �x2; y2� > f �x1; y2�
2.2.3 The Monotone Maximum Theorem

In formulating economic models as optimization problems (example

2.30), economists are primarily interested in determining the way in which

the optimal solution varies with the parameters. A powerful tool in this

quest is provided by the following theorem.

Theorem 2.1 (Monotone maximum theorem) Let Y�JY denote the set

of parameter values for which a solution to the problem

max
x AG�y�

f �x; y�

exists. If X is a lattice, Y a poset and

. the objective function f : X �Y! R is supermodular in X

. f displays increasing di¨erences in �x; y�

. and the constraint correspondence G: Y x X is increasing in y

then the solution correspondence j: Y�x X de®ned by

j�y� � arg max
x AG�y�

f �x; y�

is increasing. Furthermore, if objective function is increasing in x and y, the

value function

v�y� � sup
x AG�y�

f �x; y�

is increasing.

Proof Let y1; y2 belong to Y� with y2 7 y1. Choose any optimal solu-

tions x1 A j�y1� and x2 A j�y2�. To show that j is monotone, we have to

show that x14x2 A j�y2� and x1 5 x2 A j�y1�.
Since the constraint set G�y� is monotone, x14x2 A G�y2� and

x1 5 x2 A G�y1�. That is, both x14x2 and x1 5 x2 are feasible. To show

that they are optimal, consider the following sequence of inequalities.

205 2.2 Monotone Functions



Supermodularity implies that

f �x14x2; y2� � f �x1 5 x2; y2�V f �x1; y2� � f �x2; y2�
which can be rearranged to give

f �x14x2; y2� ÿ f �x2; y2�V f �x1; y2� ÿ f �x1 5 x2; y2�
Increasing di¨erences applied to the right-hand side implies that

f �x1; y2� ÿ f �x1 5 x2; y2�V f �x1; y1� ÿ f �x1 5 x2; y1�
Combining these two inequalities we have

f �x14x2; y2� ÿ f �x2; y2�V f �x1; y1� ÿ f �x1 5 x2; y1� �19�
However, x1 and x2 are optimal for their respective parameter values,

that is,

f �x2; y2�V f �x14x2; y2� ) f �x14x2; y2� ÿ f �x2; y2�U 0

f �x1; y1�V f �x1 5 x2; y1� ) f �x1; y1� ÿ f �x1 5 x2; y1�V 0

Substituting in (19), we conclude that

0V f �x14x2; y2� ÿ f �x2; y2�V f �x1; y1� ÿ f �x1 5 x2; y1�V 0

The inequality must be an equality with

f �x14x2; y2� � f �x2; y2�; f �x1 5 x2; y1� � f �x1; y1�
That is, x14x2 A j�y2� and x1 5 x2 A j�y1�. Furthermore, if f is

increasing,

v�y2� � f �x14x2; y2�V f �x1 5 x2; y1� � v�y1�
since �x14x2; y2�7 �x1 5 x2; y1�. The value function is increasing. r

Corollary 2.1.1 If in addition to the hypotheses of the previous theorem,

the feasible set is a lattice for every y A Y�, then the set of optimal solutions

j�y� � arg max
x AG�y�

f �x; y�

is a sublattice of X for every y A Y and j has an increasing selection.

Exercise 2.62

Prove corollary 2.1.1.
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Example 2.73 (Private value auction) In a ®rst-price private value auc-

tion, each bidder has a value y for an object which is known only to him.

If he bids an amount x and is successful, he receives utility u�yÿ x�. Let

p�x� denote the probability of winning with a bid of x. Then his problem

is to choose x given y to maximize his expected utility, that is,

max
x A �0;y�

u�yÿ x�p�x�

The constraint correspondence G�y� � �0; y� is increasing (exercise 2.43)

in y, and the objective function is supermodular in x (exercise 2.49). If u is

strictly concave, then u displays strictly increasing di¨erences in �x; y�
(exercise 3.129). By theorem 2.1, the optimal bids belong to an increasing

correspondence. Further (corollary 2.1.1), since G�y� is a lattice for every

y, there exists an increasing selection (bidding function). Note that this

conclusion is independent of the properties of p, which re¯ects the prob-

ability distribution of values among the bidders.

Corollary 2.1.2 If, in addition to the hypotheses of theorem 2.1, the objec-

tive function displays strictly increasing di¨erences in �x; y�, the optimal

correspondence

j�y� � arg max
x AG�y�

f �x; y�

is always increasing. Every selection from j�y� is an increasing function

of y.

Exercise 2.63

Prove corollary 2.1.2. [Hint: Assume that x2 T x1, and derive a

contradiction.]

Example 2.74 (Supermodular games) In any strategic game, player i's

best response correspondence (example 2.48) is the solution of a maxi-

mization problem, namely

B�sÿi� � arg max
si ASi

ui�si; sÿi�

If the game is supermodular (example 2.71), the optimization problem

meets the requirements of theorem 2.1, with X � Si, Y � Sÿi, f � ui and

G equal to the identity correspondence. The theorem establishes that B is

increasing in si. In particular, this means that there exists an increasing

207 2.2 Monotone Functions



selection f A B, which can be used to establish the existence of an

equilibrium.

Furthermore, if the payo¨ functions ui�si; sÿi� display strictly increasing

di¨erences in �si; sÿi�, then the best response correspondences are always

increasing (corollary 2.1.2). Every selection is increasing so that for every

s1 A B�sÿ1� and s2 A B�sÿ2�, s2
ÿi 7 s1

ÿi implies that s2
i 7 s1

i .

The requirements of theorem 2.1 are severe, especially the requirement

that the feasible set G�y� be increasing. When the feasible set is indepen-

dent of y, this implicitly requires that the feasible set be a lattice, which

precludes the application of theorem 2.1 to some common models in

microeconomic theory such as example 2.31. In other cases, although the

feasible set varies with the parameters, the relationship is not monotone.

We provide some weaker results that can be applied in these cases.

Proposition 2.1 (Increasing maximum theorem) If f : X �Y! R is

increasing in y, the value function

v�y� � sup
x AG

f �x; y�

is also increasing in y.

Proof Assume y2 7 y1 A Y�, and let x2 and x1 be corresponding optimal

solutions. Then

f �x2; y2�V f �x1; y2�
and

v�y2� � f �x2; y2�V f �x1; y2�V � f �x1; y1� � v�y1� r

Example 2.75 (Cost function) The cost function (example 2.31) of a ®rm

producing output y purchasing inputs at ®xed prices w � �w1;w2; . . . ;wn�
is

c�w; y� � inf
x AV�y�

Xn

i�1

wixi � ÿ sup
x AV�y�

Xn

i�1

�ÿwixi�

and the objective function
Pÿwixi is increasing in ÿw. However, for

®xed output y, the input requirement set is not a lattice. Therefore, we

cannot apply theorem 2.1. We can apply proposition 2.1, which implies
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that ÿsupx AV�y�
Pn

i�1�ÿwixi� is increasing in ÿw, and therefore the cost

function

c�w; y� � inf
x AV�y�

Xn

i�1

wixi

is increasing in w.

Proposition 2.2 (Ascending maximum theorem) If f is independent of y

and G�y� is ascending, the value function

v�y� � sup
x AG�y�

f �x�

is increasing in y.

Proof Assume that y2 7 y1 A Y. Since G�y� is ascending, G�y1�JG�y2�
and therefore

v�y2� � sup
x AG�y2�

f �x�V sup
x AG�y1�

f �x� � v�y1� r

Example 2.76 ( Indirect utility function) For ®xed p, the budget corre-

spondence X �p;m� is ascending in m. Therefore

v�p;m2� � sup
x AX �p;m2�

u�x�V sup
x AX �p;m1�

u�x� � v�p;m1�

The indirect utility function is increasing in m.

Exercise 2.64

Show that the indirect utility function

v�p;m� � sup
x AX�p;m�

u�x�

is decreasing in p.

Example 2.77 (Cost function) Assuming free disposal, the input require-

ment sets are ascending (exercise 1.12). For ®xed input prices w, the cost

function

c�w; y� � inf
x AV�y�

Xn

i�1

wixi � ÿ sup
x AV�y�

Xn

i�1

�ÿwixi�

is increasing in y.
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The following exercise re®nes theorem 2.1, to show that quasisuper-

modularity and the strict crossing condition are both necessary and su½-

cient for monotone comparative statics.

Exercise 2.65

Consider the general constrained maximization problem where X is a

lattice, Y a poset and the feasible set G is independent of y. The optimal

solution correspondence

j�y;G� � arg max
x AG

f �x; y�

is increasing in �y;G� if and only if

. f is quasisupermodular in X

. and f satis®es the single crossing condition

2.3 Continuous Functions

Roughly speaking, a function is continuous if small changes in input (the

independent variable) produce only small changes in output (the depen-

dent variable). Continuity of the physical world makes life bearable.

When you make a small adjustment in the volume control of your stereo

system, you do not expect to be deafened by a vast change in loudness. In

riding a bicycle, a small change in posture does not produce a dramatic

change in altitude. By and large, physical systems are continuous. Conti-

nuity is equally important for economic analysis. Throughout this section

the domain and co-domain will be metric spaces.

A function between metric spaces is continuous if the images of neigh-

boring points are neighbors. Formally a function f : X ! Y is continuous

at x0 in X if for every neighborhood T of f �x0�, there exists a corre-

sponding neighborhood S of x0 such that f �S�JT . f is continuous if it is

continuous at all x0 in X . Continuous functions are important because

they respect the geometric structure of the domain and co-domain.

Remark 2.11 An equivalent de®nition of continuity is: A function

f : X ! Y is continuous at x0 if for every e > 0 there exist a d > 0 such

that for every x A X ,

r�x; x0�U d) r� f �x�; f �x0�� < e
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The next three exercises provide equivalent characterizations that are

often useful in practice.

Exercise 2.66

f : X ! Y is continuous if and only if the inverse image of any open

subset of Y is an open subset of X .

Exercise 2.67

f : X ! Y is continuous if and only if the inverse image of any closed

subset of Y is a closed subset of X .

Exercise 2.68

f : X ! Y is continuous if and only if f �x� � limn!y f �xn� for every

sequence xn ! x.

Care must be taken to distinguish between continuous and open map-

pings. A function f : X ! Y is continuous if f ÿ1�T� is open in X when-

ever T is open in Y . It is called an open mapping if f �S� is open in Y

whenever S is open in X . An open mapping preserves open sets. If an

open mapping has inverse, then the inverse is continuous (exercise 2.69).

In general, continuous functions are not open mappings (example 2.78).

However, every continuous function on an compact domain is an open

mapping (exercise 2.76), as is every bounded linear function (proposition

3.2).

Example 2.78 (A continuous function that is not an open mapping) The

function f : R! R de®ned by f �x� � x2 is continuous. However, its

range f �R� � R� is closed (not open) in R. Therefore it is not an open

mapping.

Exercise 2.69

Let f : X ! Y be one-to-one and onto. Suppose that f is an open

mapping. Then f has a continuous inverse f ÿ1: Y ! X .

Remark 2.12 (Homeomorphism) A one-to-one continuous open function

f of X onto Y is called a homeomorphism. Since it is one-to-one and onto,

f has an inverse. Since f is open, the inverse f ÿ1 is a continuous mapping

from Y onto X . Homeomorphic spaces are indistinguishable geometri-

cally, and di¨er only in the nature of their elements.
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Exercise 2.70 (Closed graph)

If f is a continuous function from X to Y , the graph of f ,

graph� f � � f�x; y� : y � f �x�; x A Xg
is a closed subset of X � Y .

The converse of this result is not true in general. The following exercise

details a partial converse in the special case in which the range Y is com-

pact. Later we show that converse also holds for linear functions (exercise

3.37), a fundamental result which is known as the closed graph theorem.

Exercise 2.71

Suppose that Y is compact. f : X ! Y is continuous if and only if

graph� f � � f�x; y� : y � f �x�; x A Xg
is a closed subset of X � Y .

Exercise 2.72

If f : X ! Y and g: Y ! Z are continuous function, so is their composi-

tion g � f : X ! Z.

Most of the functions that we encounter in practice are continuous.

Trivially, constant and identity functions are continuous. Typical func-

tional forms, such as the Cobb-Douglas function, are continuous (exam-

ple 2.81). The norm on a normed linear space is continuous (exercise

2.73). One of the most important theorems in this book (theorem 2.3)

shows that the solution of a constrained optimization problem is con-

tinuous provided the structure of the problem is continuous.

Exercise 2.73

Let X be a normed linear space. The norm k � k is a continuous function

on X .

Exercise 2.74 (Utility functions)

Let 7 be a continuous preference relation on Rn
�. Assume that 7 is

strongly monotonic. There exists a continuous function u: Rn
� ! R which

represents the preferences.

[Hint: Show that the function u de®ned in exercise 2.38 is continuous.]

Example 2.79 (Path) Given a set X , any continuous function f : R! X

is called a path. In a sense, a path is the opposite of a continuous
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functional, mapping R! X rather than X ! R. Paths arise in dynamic

models where the dependent variable is often time. The terminology

comes from the physical world where the motion of any object traces a

path in R3.

Example 2.80 (Nucleolus) The nucleolus (example 1.49) is a value

(example 2.37), a function Nu: GN ! Rn such that Nu�N;w� A X �
fx A Rn :

P
i AN xi � w�N�g. The nucleolus is in fact a continuous func-

tion. That is, if �N;wn� is a sequence of games converging to a game

�N;w�, and xn is the nucleolus of the each game �N;wn�, then x � lim xn

is the nucleolus of the game �N;w� (Schmeidler 1969). The signi®cance

of continuity is that the nucleolus is relatively insensitive to small changes

in the characteristic function. This is important in practice since the

speci®cation of a game is seldom known with precision. We can be con-

®dent that small errors in the measurement of the worth of speci®c coali-

tions will not result in drastic changes in the suggested outcome.

Continuous functions preserve two of the most signi®cant topological

properties.

Proposition 2.3 Let f : X ! Y be continuous.

. f �X� is compact if X is compact

. f �X� is connected if X is connected

Exercise 2.75

Prove proposition 2.3.

Exercise 2.76

Suppose that X is compact and f is a continuous one-to-one function

from X onto Y . Then f is an open mapping, which implies that f ÿ1 is

continuous and f is a homeomorphism.

2.3.1 Continuous Functionals

Some properties of continuity can be sharpened when applied to func-

tionals, which are the most frequently encountered functions. First, we

have a convenient characterization of continuity in terms of the upper and

lower contour sets.
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Exercise 2.77

A functional f : X ! R is continuous if and only if its upper

7f �a� � fx : f �x�V ag
and lower contour sets

6f �a� � fx : f �x�U ag
are both closed.

Remark 2.13 We noted earlier (section 2.1.1) that every functional

induces an ordering on the its domain X . An immediate implication of the

previous result is that a continuous functional induces a continuous

ordering. This shows that continuity is a necessary as well as a su½cient

condition for the existence of a continuous utility function (exercise 2.74).

Next, we show that standard algebraic operations on functionals pre-

serve continuity. These results can be used to show some familiar func-

tional forms in economics are continuous.

Exercise 2.78

If f ; g are continuous functionals on a metric space X , then

. f � g is continuous

. a f is continuous for every a A R

Therefore the set of all continuous functionals on X is a linear space.

Exercise 2.79 If f ; g are continuous functionals on a metric space X ,

then their product fg de®ned by � f g��x� � f �x�g�x� is continuous.

Remark 2.14 We could follow a similar agenda to that in section 2.2 to

demonstrate that common functional forms are continuous. The identity

function is clearly continuous. Repeated application of exercise 2.79

shows that the power functions are continuous. Exercise 2.78 shows that

every polynomial of power functions is continuous. From there we can

deduce that the exponential function (example 2.10) is continuous, which

in turn implies that the log function (example 2.55) is continuous. Exer-

cise 2.72 then shows that the general power function (example 2.56) is

continuous. Instead, we will take this for granted for now. In chapter 5 we

will show that these functions are di¨erentiable, which implies that they

are continuous.
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Example 2.81 The Cobb-Douglas function

f �x� � xa1

1 xa2

2 . . . xan
n ; ai > 0

is continuous on Rn
�, since it is the product of general power functions.

Exercise 2.80 (CES function)

Show that the CES function

f �x� � �a1x
r
1 � a2x

r
2 � � � � anxr

n �1=r; ai > 0 and r0 0

is continuous on Rn
�.

Exercise 2.81

Given two functionals f and g on X , de®ne

� f 4g��x� � maxf f �x�; g�x�g
� f 5 g��x� � minf f �x�; g�x�g
If f and g are continuous, then so are f 4g and f 5 g.

Applied to functionals, proposition 2.3 yields three important corol-

laries. The ®rst, a counterpart of proposition 1.5 known as the Weierstrass

theorem, gives su½cient conditions for a constrained optimization prob-

lem to have a solution. The second corollary, known as the intermediate

value theorem, should be well known from elementary calculus. The third

corollary (exercise 2.84) shows that every continuous functional on a

compact set is bounded.

A functional f : X ! R achieves a maximum at a point x� A X if

f �x��V f �x� for every x A X . Similarly it achieves a minimum at x� if

f �x��V f �x� for every x A X .

Theorem 2.2 (Weierstrass theorem) A continuous functional on a com-

pact set achieves a maximum and a minimum.

Proof Let M � supx AX f �x�. There exists a sequence xn in X with

f �xn� !M. Since X is compact, there exists a convergent subsequence

xm ! x� and f �xm� !M. However, since f is continuous, f �xm� !
f �x��. We conclude that f �x�� �M. r

Exercise 2.82

Use proposition 2.3 to provide an alternative proof of theorem 2.2.

[Hint: See the proof of theorem 1.5.]
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Exercise 2.83 (Intermediate value theorem)

Let f be a continuous functional on a connected space X . For every

x1; x2 A X and c A R such that f �x1� < c < f �x2�, there exists x A X such

that f �x� � c.

Exercise 2.84

Every continuous functional on a compact metric space X is bounded.

More generally, when X is not compact, the set of continuous func-

tionals form a closed subset of the set of bounded functionals.

Exercise 2.85 (The space C�X �)
Given a metric space X , the C�X� denote the set of all bounded, con-

tinuous functionals on X . Show that

. C�X � is a linear subspace of B�X �

. C�X � is closed (in B�X�)

. C�X � is a Banach space with the sup norm

k f k � sup
x AX

j f �x�j

For certain applications somewhat weaker or stronger forms of con-

tinuity are appropriate or necessary. These generalization are dealt with

in the next two sections. Then we extend the notion of continuity to

correspondences, where we ®nd that some of the standard equivalences

(exercise 2.70) diverge.

2.3.2 Semicontinuity

Continuous functionals are characterized by the property that both upper

fx : f �x�V ag and lower fx : f �x�U ag contour sets are closed. A func-

tional f : X ! R is said to be upper semicontinuous if its upper contour

sets fx : f �x�V ag are closed. Similarly f is lower semicontinuous if its

lower contour sets fx : f �x�U ag are closed. An upper semicontinuous

function is illustrated in ®gure 2.19. An upper (or lower) semicontinuous

function can have jumps, but the jumps must all be in one direction.

Exercise 2.86

f is upper semicontinuous, ÿf is lower semicontinuous.
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Exercise 2.87

A function f is continuous if and only if it is both upper and lower

semicontinuous.

The following exercise, which should be compared to exercise 2.70,

provides equivalent characterizations of semicontinuity which are useful

in practice.

Exercise 2.88

For any f : X ! R, the following conditions are equivalent:

1. f is upper semicontinuous.

2. f �x�V limn!y f �xn� for every sequence xn ! x.

3. The hypograph of f is closed in X �R.

Semicontinuity, as opposed to the more restrictive continuity, is often

assumed in economic analysis, since it is su½cient to guarantee the exis-

tence of a maximum in a constrained optimization model. This is a

consequence of the following result, which shows that semicontinuous

functions obey a form of the Weierstrass theorem.

Exercise 2.89

An upper semicontinuous functional on a compact set achieves a

maximum.

2.3.3 Uniform Continuity

Completeness was noticeably absent from the list of properties preserved

by continuous mappings (proposition 2.3). This is because mere continu-

Figure 2.19
An upper semicontinuous function
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ity is insu½cient to preserve Cauchy sequences (example 2.82). For this

reason, a slight strengthening of continuity is of particular signi®cance in

analysis. A function f : X ! Y is uniformly continuous if for every e > 0

there exist a d > 0 such that for every x; x0 A X ,

r�x; x0�U d) r� f �x�; f �x0�� < e �20�
Remark 2.15 (Uniform continuity versus continuity) The distinction

between the de®nitions of continuity (see remark 2.11) and uniform con-

tinuity is subtle but signi®cant. For mere continuity the choice of d nec-

essary to satisfy (20) may depend on x0 as well as e. Uniform continuity

imposes the additional restriction that for every e there exists a d that

satis®es (20) uniformly over the entire space X . Note, however, that the

concepts are equivalent on compact domains (exercise 2.91).

Example 2.82 Let f : �0; 1� ! R be the de®ned by f �x� � x=�1ÿ x�. f is

continuous but not uniformly continuous. The sequence xn � 1ÿ 1=n is a

Cauchy sequence, its image f �xn� � nÿ 1 is not.

Exercise 2.90

Let f : X ! Y be uniformly continuous. If �xn� is a Cauchy sequence in

X , � f �xn�� is a Cauchy sequence in Y .

Exercise 2.91

A continuous function on a compact domain is uniformly continuous.

In economic analysis, uniform continuity typically takes a slightly

stronger form. A function f : X ! Y is Lipschitz (continuous) if there is a

constant b such that for every x, x0 A X ,

r� f �x�; f �x0��U br�x; x0�
b is called the Lipschitz constant or modulus.

Exercise 2.92

A Lipschitz function is uniformly continuous.

We frequently encounter a particularly strong form of Lipschitz conti-

nuity where the function maps a metric space into itself with modulus less

than one. Such a function, which maps points closer together, is called a

contraction. Speci®cally, an operator f : X ! X is called a contraction

mapping if (or simply a contraction) if there exists a constant b, 0U b < 1,
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such that

r� f �x�; f �x0��U br�x; x0�
for every x; x0 A X . Contraction mappings are valuable in economic

analysis since they can easily be shown to have a unique ®xed point

(theorem 2.5).

Example 2.83 (Dynamic programming) The dynamic programming

problem (example 2.32)

max
x1;x2; ...

Xy
t�0

b tf �xt; xt�1�

subject to xt�1 A G�xt�; t � 0; 1; 2; . . . ; x0 A X

gives rise to an operator

�Tv��x� � sup
y AG�x�

f f �x; y� � bv�y�g

on the space B�X � of bounded functionals (exercise 2.18). Provided the

discount rate b < 1, T is a contraction mapping with modulus b. To see

this, assume that v;w A B�X�. Since B�X� is a normed linear space (exer-

cise 2.11), for every y A X ,

v�y� ÿ w�y� � �vÿ w��y�U kvÿ wk
or

v�y�Uw�y� � kvÿ wk
Consequently for any b V 0,

bv�y�U bw�y� � bkvÿ wk
and

�Tv��x� � sup
y AG�x�

f �x; y� � bv�y�

U sup
y AG�x�

f �x; y� � bw�y� � bkvÿ wk

� Tw�x� � bkvÿ wk
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or

�Tvÿ Tw��x� � Tv�x� ÿ Tw�x�U bkvÿ wk
Since this is true for every x A X ,

kTvÿ Twk � sup
x
�Tvÿ Tw��x�U bkvÿ wk

T is a contraction with modulus b.

The only speci®c features of the operator T in the preceding example

that are required to demonstrate that it is a contraction are the facts that

T is increasing (exercise 2.42) and future returns are discounted. The fol-

lowing exercise, which captures these properties, is useful in identifying

contraction mappings in economic models.

Exercise 2.93 (Su½cient conditions for a contraction)

Let B�X� be the space of bounded functionals on a metric space X

(example 2.11). Let T : B�X � ! B�X� be an increasing function with

property that for every constant c A R,

T� f � c� � T� f � � bc for every f A B�X � �21�
for some 0U b < 1. Show that T is a contraction with modulus b.

Exercise 2.94

Show that operator T in example 2.83 satis®es the conditions of the

previous exercise.

Remark 2.16 (Isometry) Another special case of a Lipschitz function f

is one that preserves distance so that

r� f �x1�; f �x2�� � r�x1; x2�
Such a function is called an isometry. Isometric spaces are essentially

equivalent as metric spaces, di¨ering only in the nature of their points.

Equicontinuity

Uniform continuity applies to a single function. An even stronger notion

is useful in characterizing sets of functions. A set F of continuous func-

tions de®ned on a compact metric space X is equicontinuous if for every

e > 0 there exists a d > 0 such that for every x; x0 A X , and f A F ,
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r�x; x0�U d) r� f �x�; f �x0�� < e

That is, a family F of continuous functions is equicontinuous if each

function f is uniformly continuous and the continuity is uniform for all

functions in F .

The most important application of equicontinuity is in characterizing

compact subsets of C�X�. Recall that a closed subspace of a complete

metric space is compact if and only if it is totally bounded (exercise

1.113). Also we have previously shown that C�X � is complete. Therefore

a subset of C�X� will be compact if and only if it is totally bounded,

which is the case provided it is bounded and equicontinuous.

Exercise 2.95 (Ascoli's theorem)

Let X be a compact metric space. A closed subspace of C�X� is compact

if and only if it is bounded and equicontinuous. [Hint: Adapt exercise

1.113).]

Exercise 2.96

If F JC�X� is equicontinuous, then so is F .

2.3.4 Continuity of Correspondences

A function is continuous where small changes in input produce small

changes in output. We formalized this by requiring that neighboring

images arise from neighboring points. De®ning continuity for correspon-

dences is a little more complicated, since there is a possible ambiguity

regarding the identity of the neighbors. Speci®cally, there are two rea-

sonable de®nitions of the inverse image of any set. The following example

illustrates the issue.

Example 2.84 Consider the strategic game

Player 2

t1 t2 t3 t4

s1 1, 1 1, 1 0, 0 0, 0

Player 1 s2 0, 0 2, 2 2, 2 0, 0

s3 1, 0 1, 0 0, 0 3, 3

Player 2's best response correspondence j2 is
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j2�s1� � ft1; t2g
j2�s2� � ft2; t3g
j2�s3� � ft4g
which is illustrated in ®gure 2.20.

Clearly, the inverse image of t4 is s3. Player 2's optimal response is t4 if

and only if 1 plays s3. However, what should we regard as the inverse

image of ft2; t3g? fs2g is the set of strategies of player 1 which ensure

a response in ft2; t3g. We see that a best response in ft2; t3g is possible

when 1 chooses either s1 or s2. Our de®nition of continuity will vary

depending on whether we regard s1 as an element of the inverse image of

ft2; t3g.
Given a correspondence j: X x Y , the upper (or strong) inverse of

T JY is

j��T� � fx A X : j�x�JTg
The lower (or weak) inverse is

jÿ�T� � fx A X : j�x�XT 0qg
The upper inverse includes only assured precursors of j�x�, while the

lower inverse includes all possible precursors.

Example 2.85 In the previous example

j�2 �ft2; t3g� � fs2g
jÿ2 �ft2; t3g� � fs1; s2g

Figure 2.20
The best response correspondence of player 2
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Exercise 2.97

Let j: X x Y . For every T JY ,

j��T� � �jÿ�T c��c

Exercise 2.98

Regarding a correspondence j: X x Y as a function from X to P�Y �, the

natural inverse is

jÿ1�T� � fx A X : j�x� � Tg
Show that for every T A j�X �,
jÿ1�T�J j��T�J jÿ�T�
Unfortunately, the natural inverse jÿ1 is not very useful as its composi-

tion is erratic (see the following exercise).

Exercise 2.99

For the game in example 2.84, calculate jÿ1
2 ; j�2 ; j

ÿ
2 for the sets ft1g, ft2g,

ft1; t2g, ft2; t3g, and ft1; t2; t3g.
The two de®nitions of inverse image give rise to two de®nitions of

continuity for correspondences. A correspondence is said to be upper

hemicontinuous if, whenever x0 is in the upper inverse of an open set,

so is a neighborhood of x0. Similarly a correspondence is lower hemi-

continuous if, whenever x0 is in the lower inverse of an open set, so is a

neighborhood of x0.

Formally a correspondence j: X x Y is upper hemicontinuous (uhc) at

x0 if for every open set T containing j�x0�, there exists a neighborhood S

of x0 such that j�x�HT for every x A S. j is upper hemicontinuous if it is

uhc at every x0 A X . A uhc correspondence cannot suddenly become

much larger or ``explode'' for a small change in x. The correspondence

illustrated in ®gure 2.21 is not uhc at x0, since there are neighboring

points of x0 for which j�x� lies outside a small open set T containing j�x0�.
A correspondence j is lower hemicontinuous (lhc) at x0 if for every open

set T meeting j�x0�, there exists a neighborhood S of x0 such that

j�x�XT 0q for every x A S. A lhc correspondence cannot suddenly

contract or ``implode.'' The correspondence illustrated in ®gure 2.22 is

not lhc at x0, since there are neighboring points of x0 for which j�x� does

not meet the open set T .
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Finally a correspondence j is continuous at x0 if it is both upper hemi-

continuous and lower hemicontinuous at x0.

Remark 2.17 (Hemicontinuity or semicontinuity) Many authors use the

term semicontinuity to describe the continuity of correspondences, which

risks confusion with the distinct concept of semicontinuity of functionals

(section 2.3.2).

Example 2.86 Let X � �0; 2�. The correspondence j: X x X de®ned by

j�x� � f1g 0U x < 1

X 1U xU 2

�

Figure 2.21
j is not uhc at x0

Figure 2.22
j is not lhc at x0
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is uhc but not lhc at x � 1. If T is an open set containing j�1� � X , then

T contains j�x� for every x A X . Therefore j is uhc at 1. To see that j is

not lhc at x � 1, consider the open interval T � �3=2; 2�. Clearly,

j�1�XT 0q but j�x�XT �q for every x < 1. Therefore j is not lhc

at x � 1. Note that j is continuous for every x0 1 (exercise 2.101).

Exercise 2.100

Let X � �0; 2�. Show that the correspondence j: X x X de®ned by

j�x� � f1g 0U xU 1

X 1 < xU 2

�
is lhc but not uhc at x � 1.

Exercise 2.101 (Constant correspondence)

Let K be any subset of Y . The constant correspondence j: X ! Y

de®ned by

j�x� � K for every x A X

is continuous.

Example 2.87 (Matching Pennies) Consider the following strategic game

Player 2

H T

H 1, ÿ1 ÿ1, 1

T ÿ1, 1 1, ÿ1
Player 1

which is usually known as Matching Pennies. The game has no pure

strategy equilibrium.

Let s1 denote the probability with which player 1 plays H. If player 1 is

more likely to choose H (s1 > 1=2), player 2 should respond with T .

Conversely, if player 1 is more likely to choose T (s1 < 1=2), player 2

should respond with H. However, if 1 is equally likely to choose H or T,

any response is equally useful. Therefore player 2's best response corre-

spondence j2: �0; 1�x �0; 1� is given by

j2�s1� �
1 if s1 <

1
2

�0; 1� if s1 � 1
2

0 if s1 >
1
2

8><>:
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j2 is uhc, but it is not lhc at s1 � 1
2. For example, if T � �14 ; 3

4�

j�2 �T� �q and jÿ2 �T� � f1
2g

As in the case of continuity of functions, we have useful characteriza-

tions in terms of open sets and in terms of sequences. A correspondence is

upper hemicontinuous if the upper inverse images of open sets are open. It

is lower hemicontinuous if the lower inverse images of open sets are open.

Both conditions arise in applications, and neither condition implies the

other.

Exercise 2.102

A correspondence j: X x Y is

. uhc , j��T� is open for every open set T

. lhc , jÿ�T� is open for every open set T

Exercise 2.103

A correspondence j: X x Y is

. uhc , jÿ�T� is closed for every closed set T

. lhc , j��T� is closed for every closed set T

Exercise 2.104

A compact-valued correspondence j: X x Y is uhc if and only if for

every sequence xn ! x in X and every sequence �yn� A Y with yn A j�xn�,
there exists a subsequence of yn that converges to y A j�x�.
Exercise 2.105

A correspondence j: X x Y is lhc if and only if for every sequence

xn ! x in X and for every y A j�x�, there exists a sequence yn ! y with

yn A j�xn�.
Upper hemicontinuity of a correspondence is often confused with the

property of having a closed graph. The two properties are distinct (example

2.88), although they are equivalent for closed-valued correspondences

into a compact space (exercise 2.107).

Example 2.88 (Closed graph versus upper hemicontinuity) The corre-

spondence j: R�x R de®ned by

226 Chapter 2 Functions



j�x� �
1

x

� �
if x > 0

f0g if x � 0

8><>:
is closed but is not uhc at 0.

To see this, note that the set f�x; 1=x� : x > 0g is closed in R� �R, and

hence so also is graph�j� � f�x; 1=x� : x > 0gW �0; 0�. Note also that for

every sequence xn ! 0, yn A j�xn� does not converge.

The constant correspondence j: R x R de®ned by

j�x� � �0; 1�
is uhc but not closed. It is uhc, since for every x and every T K j�x�,
j��T� � R. Exercise 2.107 does not apply, since j is not closed-valued.

The next two exercises should be compared with the corresponding

results for functions (exercises 2.70 and 2.71).

Exercise 2.106

Let j: X x Y .

1. If j is closed, then j is closed-valued.

2. If j is closed-valued and uhc, then j is closed.

3. If Y is compact and j closed, then j is uhc.

Exercise 2.107 (Closed equals upper hemicontinuous)

Suppose that Y is compact. The correspondence j: X x Y is closed if and

only if it is closed-valued and uhc.

The following exercise is a useful generalization of the previous result.

It will be used to prove the continuous maximum theorem (theorem 2.3).

Exercise 2.108

If j1: X x Y is closed and j2: X x Y is uhc and compact-valued,

j � j1 X j2 is uhc and compact-valued.

Example 2.89 (Budget correspondence is uhc) Let P denote the domain

of the budget correspondence, that is, the set of all prices and incomes

pairs for which some consumption is feasible

P � �p;m� 2 Rn �R : min
x AX

Xm

i�1

pixi Um

( )
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The graph of budget correspondence X�p;m� (example 2.46),

graph�X� � �p;m; x� A P� X :
Xm

i�1

pixi Um

( )

is closed in P� X (see exercise 1.231). Consequently, if the consumption set

X is compact, the budget correspondence X �p;m� is uhc (exercise 2.107).

Exercise 2.109 (Budget correspondence is continuous)

Assume that the consumption set X is nonempty, compact, and convex.

Let

X�p;m� � x A X :
Xm

i�1

pixi Um

( )

denote the budget correspondence. Choose any �p;m� A P such that

m > minx AX

Pm
i�1 pixi, and let T be an open set such that X�p;m�X

T 0q. For n � 1; 2; . . . ; let

Bn�p;m� � f�p 0;m 0� A P : kpÿ p 0k � jmÿm 0j < 1=ng
denote the sequence of open balls about �p;m� of radius 1=n.

1. Show that there exists ~x A T such that
Pn

i�1 pi ~xi < m.

2. Suppose that X �p;m� is not lhc. Show that this implies that

a. there exists a sequence ��pn;mn�� in P such that that

�pn;mn� A Bn�p;m� and X �pn;mn�XT �q

b. there exists N such that ~x A X�pN ;mN�
c. ~x B T

3. Conclude that X�p;m� is lhc at �p;m�.
4. The budget correspondence is continuous for every p0 0 such that

m > infx AX

Pm
i�1 pixi.

Remark 2.18 The assumption in exercise 2.109 that the consumption set

is compact is unrealistic and stronger than necessary. It su½ces to assume

that the X is closed and bounded from below (Debreu 1959).

Exercise 2.110 is fundamental, while exercise 2.111 is given for its own

interest.
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Exercise 2.110

Let j: X x Y be uhc and compact-valued. Then j�K� is compact if K is

compact.

Exercise 2.111

If X is a compact space and j: X x X uhc and compact-valued such that

j�x� is nonempty for every x, then there exists a compact nonempty sub-

set K of X such that j�K� � K .

Exercise 2.112 (Product of correspondences)

Let ji, i � 1; 2; . . . ; n, be a collection of compact-valued and uhc

correspondences ji: X x Yi. The product correspondence j: S x Y , Y �
Y1 � Y2 � � � � � Yn de®ned by

j�x� � j1�x� � j2�x� � � � � � jn�x�
is compact-valued and uhc.

Continuous Selections

As we stated before, given a correspondence j: X x Y , we can always

construct a selection, that is, a function f : X ! Y , such that f �x� A j�x�
for every x A X . If the correspondence j is continuous, can we make a

continuous selection? The answer is yes, provided that X is compact and j

has closed convex values. In fact lower hemicontinuity su½ces and upper

hemicontinuity is not required. Straightforward proofs of this result,

known as the Michael selection theorem, can be found in Border (1985,

p. 70) and Hildenbrand and Kirman (1976, p. 203).

2.3.5 The Continuous Maximum Theorem

The continuous maximum theorem is usually known simply as the maxi-

mum theorem. It is one of the most frequently used theorems in mathe-

matical economics. It gives su½cient conditions to impose a constrained

optimization model to ensure that an optimal solution exists and varies

continuously with the parameters.

Theorem 2.3 (Continuous maximum theorem) Consider the general con-

strained maximization problem

max
x AG�y�

f �x; y�
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If the objective function f : X �Y! R is continuous and the constraint

correspondence G: Y x X continuous and compact-valued, then the value

function v: Y! R,

v�y� � sup
x AG�y�

f �x; y�

is continuous and the optimal correspondence

j�y� � arg max
x AG�y�

f �x; y�

is nonempty, compact-valued, and upper hemicontinuous.

Proof

j�y� is nonempty for every y Since G�y� is compact for every y and f is

continuous, j�y� is nonempty (theorem 2.2).

j is closed-valued For any y A Y, let �xn� be sequence in j�y� which con-

verges to x. Since xn A j�y�, f �xn� � v�y� for every n. Moreover

. G�y� compact implies that x A G�y�

. f continuous implies that f �x; y� � limn!y f �xn; y� � v�y�
We conclude that x A j�y� and that therefore j�y� is closed (exercise

1.107).

j is compact-valued j�y� is a closed subset of a compact set G�y�. There-

fore j�y� is compact for every y (exercise 1.111).

j is closed Let yn ! y be a sequence of parameters and xn A j�y n� a

corresponding sequence of maximizers with xn ! x. We have to show

that x A j�y�.
We ®rst note that x is feasible, that is x A G�y�, since xn A G�y� and G is

closed (exercise 2.106). Suppose that x is not maximal, that is x B j�y�.
Then there exists some z A G�y� with f �z; y� > f �x; y�. By lower hemi-

continuity of G, there exists a sequence zn ! z with zn A G�y n�. Since

f �z; y� > f �x; y�, there must exist some n such that f �zn; y n� > f �xn; y n�,
contradicting the hypothesis that xn A j�y n�. This contradiction establishes

that x is maximal, that is, x A j�y�.
j is uhc Since j�y�JG�y�, j � jXG. We have just shown that j is

closed, and we assumed that G is uhc and compact-valued. Therefore j is

uhc (exercise 2.108).
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v�y� is continuous Continuity of f implies that v�y n� � f �xn; y n� !
f �x; y� � v�y�. r

Example 2.90 (Consumer theory) The consumer's problem (example

1.113) is to choose an a¨ordable consumption bundle x A X to maximize

satisfaction. Provided that the consumer's preferences are continuous,

they can be represented by a continuous utility function u: X ! R (exer-

cise 2.74), and the consumer's problem can be expressed by the following

constrained optimization problem

max
x AX �p;m�

u�x�

where X�p;m� � fx A X :
Pm

i�1 pixi Umg is the consumer's budget

constraint.

Assume that prices p > 0 and m > infx AX

Pm
i�1 pixi. Then the budget

correspondence is compact-valued and continuous (exercise 2.109). With

these assumptions, the consumer's problem satis®es the requirements

of the continuous maximum theorem (theorem 2.3), ensuring that the

indirect utility function

v�p;m� � sup
x AX�p;m�

u�x�

is continuous and the demand correspondence (example 2.47)

x��p;m� � arg max
x AX�p;m�

u�x�

is nonempty, compact-valued and upper hemicontinuous.

Furthermore, if the consumer's preference relation is strictly convex

(example 1.116), the consumer's demand correspondence x�p;m� is a

continuous function (see example 3.62).

Exercise 2.113 (Dynamic programming)

The dynamic programming problem (example 2.32)

max
x1;x2;...

Xy
t�0

b tf �xt; xt�1�

subject to xt�1 A G�xt�; t � 0; 1; 2; . . . ; x0 A X

gives rise to an operator
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�Tv��x� � sup
y AG�x�

f f �x; y� � bv�y�g

on the space B�X� of bounded functionals (exercise 2.16). Assuming that

. f is bounded and continuous on X � X

. G�x� is nonempty, compact-valued, and continuous for every x A X

show that T is an operator on the space C�X� of bounded continuous

functionals on X (exercise 2.85), that is Tv A C�X � for every v A C�X�.

2.4 Fixed Point Theorems

Fixed point theorems are powerful tools for the economic theorist. They

are used to demonstrate the existence of a solution to an economic model,

which establishes the consistency of the model and highlights the require-

ments minimal requirements to ensure a solution. The classic applications

of ®xed point theorems in economics involve the existence of market

equilibria in an economy and the existence of Nash equilibria in strategic

games. They are also applied in dynamic models, a fundamental tool in

macroeconomic analysis.

Fixed point theorems are essentially existence theorems. They guaran-

tee that a particular model (which ful®lls the conditions of the theorem)

has a solution, but they tell us nothing about the identity and properties

of the solution. However, the theory underlying ®xed point theorems

can be used to provide practical guidance on the actual computation of

solutions.

2.4.1 Intuition

Recall that a ®xed point of a mapping from a set X to itself is an element

x A X , which is its own image. That is, x is a ®xed point of f : X ! X if

and only if f �x� � x. A ®xed point theorem speci®es the minimal prop-

erties on X and f that are required to ensure that there exists at least one

®xed point for every qualifying function.

The fundamental intuition of a ®xed point theorem is illustrated in

®gure 2.23, which depicts a function from the interval �0; 1� to itself.

The graph of the function must connect the left-hand side of the box to

the right-hand side. A ®xed point occurs whenever the curve crosses the
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45 degree line. The function illustrated in ®gure 2.23 has three ®xed

points.

There are three fundamental classes of ®xed point theorems, which

di¨er in the structure that is required of the underlying spaces. The Tarski

®xed point theorem and its corollaries (section 2.4.2) rely solely on the

order structure of X and the monotonicity of f. The Banach ®xed point

theorem (section 2.4.3) utilizes metric space structure, requiring com-

pleteness of the metric space X and a strong form of continuity for f. The

most powerful theorem, the Brouwer theorem (section 2.4.4) combines

linear and metric structure in a potent cocktail. We deal with each class of

theorems in turn.

2.4.2 Tarski Fixed Point Theorem

Our ®rst ®xed point theorem has minimal assumptionsÐan increasing

function on a complete lattice. This is su½cient to establish the existence

of a pure strategy Nash equilibrium in a supermodular game.

Theorem 2.4 (Tarski's ®xed point theorem) Every increasing function

f : X ! X on a complete lattice �X ;7� has a greatest and a least ®xed

point.

Proof Let

M � fx A X : f �x�6 xg
Note that M contains all the ®xed points of f. M is not empty, since

sup X A M. Let ~x � inf M. We claim that ~x is a ®xed point of f .

Figure 2.23
A function with three ®xed points
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First, we show that ~x A M. Since ~x is the greatest lower bound of M

and f is increasing,

~x6 x and f �~x�6 f �x�6 x for every x A M

Therefore f �~x� is also a lower bound for M. Since ~x is the greatest lower

bound of M, we must have

f �~x�6 ~x �22�
and so ~x A M.

Since f is increasing, (22) implies that

f � f �~x��6 f �~x�
and therefore f �~x� A M and (since ~x � inf M)

f �~x�7 ~x �23�
Together, (22) and (23) (and the fact that 7 is antisymmetric) imply

that

~x � f �~x�
That is, ~x is a ®xed point of f . Furthermore every ®xed point of f belongs

to M. So ~x � inf M is the least ®xed point of f. Similarly we can show

that supfx A X : f �x�7 xg is the greatest ®xed point of f . r

Figure 2.24
Illustrating the proof of the Tarksi theorem
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Corollary 2.4.1 Let f be an increasing function on a complete lattice. The

set of ®xed points of f is a complete lattice.

Corollary 2.4.2 (Zhou's theorem) Let j: X x X be an increasing corre-

spondence on a complete lattice X. If j�x� is a complete sublattice of X for

every x A X, then the set of ®xed points of j is a nonempty complete lattice.

It is important to note that while the set of ®xed points of an increasing

function or correspondence on X forms a complete lattice, it is not nec-

essarily a sublattice of the X. The distinction is illustrated in the following

example.

Example 2.91 Let X be the lattice f1; 2; 3g � f1; 2; 3g and f be a func-

tion that maps the points �2; 2�; �3; 2�; �2; 3�, to �3; 3� and maps all other

points to themselves. The set E of ®xed points of f is a complete lattice

where, for example, supEf�2; 1�; �1; 2�g � �3; 3�. Note, however, that E is

not a sublattice of X. For example, supXf�1; 2�; �2; 1�g � �2; 2� B E.

Exercise 2.114

To prove corollary 2.4.1, let f : X ! X be an increasing function on a

complete lattice �X ;7�, and let E be the set of ®xed points of f . For any

S JE de®ne

S � � fx A X : x7 s for every s A Sg
S � is the set of all upper bounds of S in X. Show that

1. S � is a complete sublattice.

2. f �S ��HS �.

3. Let g be the restriction of f to the sublattice S �. g has a least ®xed

point ~x.

4. ~x is the least upper bound of S in E.

5. E is a complete lattice.

Exercise 2.115

Let j: X x X be an increasing correspondence on a complete lattice X.

Assume that j�x� is a complete sublattice of X for every x A X . Let E

be the set of ®xed points of j, and de®ne

M � fx A X : there exists y A j�x� such that y6 xg
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Note that E JM and M 0q, since sup X A M. Let ~x � inf M. Show

that

1. For every x A M, there exists some zx A j�~x� such that zx 6 x.

2. Let ~z � inffzxg. Then

a. ~z6 ~x

b. ~z A j�~x�
3. ~x A M.

4. There exists some y A j�~z� such that y6~z A j�~x�. Hence ~z A M.

5. ~x A E 0q.

6. ~x is the least ®xed point of j.

Exercise 2.116

To prove corollary 2.4.2, let S JE and s� � sup S.

1. For every x A S there exists some zx A j�s�� such that zx 7 x.

2. Let z� � sup zx. Then

a. z�6 s�

b. z� A j�s��
3. De®ne S � � fx A X : x7 s for every s A Sg. S � is the set of all upper

bounds of S in X. S � is a complete lattice.

4. De®ne m: S �x S � by m�x� � j�x�Xc�x� where c: S �x S � is the

constant correspondence c�x� � S � for every x A S �. Show that

a. m�x�0q for every x A S �.

b. m�x� is a complete sublattice for every x A S �.

c. m is increasing on S �.

5. m has a least ®xed point ~x.

6. ~x is the least upper bound of S in E.

7. E is a nonempty complete lattice.

We can use the Tarski ®xed point theorem to provide a simple proof of

the existence of a pure strategy Nash equilibrium in a supermodular

game.

Example 2.92 (Supermodular games) Recall that a strategic game is

supermodular if
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. every strategy set Ai is a lattice

. the payo¨ functions ui�ai; aÿi� are supermodular in ai

. and display increasing di¨erences in ai; aÿi

Assume further that either

. the strategy spaces Ai are ®nite or

. the strategy spaces are compact and the payo¨ functions ui are upper

semicontinuous in a

These assumptions imply that each player i 's best response correspondence

Bi�aÿi� � arg max
ai AAi

ui�ai; aÿi�

is nonempty (exercise 2.89) and increasing in aÿi (theorem 2.1). This

implies that for every player i there exists an increasing selection

fi A B�sÿi�, a best response function that is increasing the opponents's

actions. De®ne f : A! A by

f �a� � f1�aÿ1� � f2�aÿ2� � � � � � fn�aÿn�
Then f is increasing (exercise 2.46) on the complete lattice A and there-

fore has a ®xed point a� such that a� � f �a�� or

a� A B�a��
That is, a� is a Nash equilibrium of the game.

Not only is the set of Nash equilibria nonempty, it contains a largest

and a smallest equilibrium (in the product order on A). For every aÿi,

player i 's best response set B�aÿi� is a (nonempty) sublattice of Ai (corol-

lary 2.1.1). Therefore it has a greatest element ai, that is,

ai 7i ai for every ai A B�aÿi�
Let fi: Aÿi ! A be the selection of Bi�ai� consisting of the greatest ele-

ments, that is,

fi�aÿi� � ai

fi is increasing for every i (exercise 2.117). Applying theorem 2.4, we see

that the product mapping f : A! A de®ned by
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f �a� � f1�aÿ1� � f2�aÿ2� � � � � � fn�aÿn�
has a greatest ®xed point a� where

a� � supfa A A : a6 f �a�g
Let a� A E be any Nash equilibrium. Then a�i A B�a�ÿi�, and therefore

fi�a��7i a�i for every i. So we have

a� � supfa A A : f �a�7 ag7 a�

Therefore a� is the greatest Nash equilibrium. Similarly there exists a least

Nash equilibrium a�.

Exercise 2.117

Show that fi is increasing for every i.

Exercise 2.118

Show that the best response correspondence

B�a� � B1�aÿ1� � B2�aÿ2� � � � � � Bn�aÿn�
of a supermodular game satis®es the conditions of Zhou's theorem (cor-

ollary 2.4.2). Therefore the set of Nash equilibria of a supermodular game

is a complete lattice.

2.4.3 Banach Fixed Point Theorem

Our second ®xed point theorem applies to a contraction mapping (section

2.3.3) on a complete metric space. The Banach ®xed point theorem is a

simple and powerful theorem with a wide range of application, including

iterative methods for solving linear, nonlinear, di¨erential, and integral

equations.

Theorem 2.5 (Banach ®xed point theorem) Every contraction mapping

f : X ! X on a complete metric space has a unique ®xed point.

Proof Let b < 1 denote the Lipschitz constant of f . Select an arbitrary

x0 A X . De®ne the sequence �xn� by setting

xn�1 � f �xn�; n � 0; 1; 2; . . .

�xn� is a Cauchy sequence
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r�xn�1; xn� � r� f �xn�; f �xnÿ1�
U br�xn; xnÿ1�
U b2r�xnÿ1; xnÿ2�
� � �
U bnr�x1; x0�

Using the triangle inequality and the formula for the sum of a geometric

series (exercise 1.205)

r�xn; xn�m�U r�xn; xn�1� � r�xn�1; xn�2� � � � � � r�xn�mÿ1; xn�m�
U �b n � bn�1 � � � � � bn�mÿ1�r�x0; x1�

U
b n

1ÿ b
r�x0; x1� ! 0 as n!y

Therefore �xn� is a Cauchy sequence.

xn converges to x in X Since X is complete, there exists some x A X such

that xn ! x.

x is a ®xed point Since f is a contraction, it is uniformly continuous, and

therefore

f �x� � lim
n!y

f �xn� � lim
n!y

xn�1 � x

x is the only ®xed point Suppose that x � f �x� and z � f �z�. Then

r�x; z� � r� f �x�; f �z��U br�x; z�
which implies that x � z. r

The Banach theorem does more than ensure the existence of a unique

®xed point. It provides a straightforward algorithm for computing the

®xed point by repeated application of f to an arbitrary starting point x0,

computing the sequence

xn�1 � f �xn� � f n�x0�
Whereas many iterative algorithms are sensitive to the initial value, with

a contraction mapping, convergence is ensured from any starting point
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x0 A X . Furthermore the following corollary gives useful error bounds for

this procedure.

Corollary 2.5.1 Let f : X ! X be a contraction mapping on the complete

metric space X. Let �xn� be the sequence constructed from an arbitrary

starting point x0, and let x � lim xn be the unique ®xed point. Then

r�xn; x�U b n

1ÿ b
r�x0; x1�

r�xn; x�U b

1ÿ b
r�xnÿ1; xn�

Exercise 2.119

Prove corollary 2.5.1.

Exercise 2.120

Example 1.64 outlined the following algorithm for computing the square

root of 2:

x0 � 2; xn�1 � 1

2
xn � 2

xn

� �
Verify that

. the function f �x� � 1

2
x� 2

x

� �
is a contraction mapping on the set

X � fx A R : xV 1g
. the ®xed point of f is

���
2
p

Estimate how many iterations are required to ensure that the approxi-

mation error is less than 0.001.

The following result is often useful in establishing the properties of the

®xed point of a particular model.

Corollary 2.5.2 Let f : X ! X be a contraction mapping on the complete

metric space X with ®xed point x. If S is a closed subset of X and f �S�JS,

then x A S.

Exercise 2.121

Prove corollary 2.5.2.
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Corollary 2.5.3 (N-stage contraction) Let f : X ! X be an operator on a

complete metric space X. Suppose that for some integer N, the function

f N : X ! X is a contraction. Then f has a unique ®xed point.

Exercise 2.122

Prove corollary 2.5.3.

Exercise 2.123 (Continuous dependence on a parameter)

Let X and Y be metric spaces, and let f : X �Y! X where

. X is complete

. for every y A Y, the function fy�x� � f �x; y� is contraction mapping on

X with modulus b

. f is continuous in y, that is for every y0 A Y, limy!y0
fy�x� � fy0

�x� for

every x A X

Then fy has a unique ®xed point xy for every y A Y and limy!y0
xy � xy0

.

Although there are many direct methods for solving systems of linear

equations, iterative methods are sometimes used in practice. The follow-

ing exercise outlines one such method and devises a su½cient condition

for convergence.

Exercise 2.124

Suppose that the linear model (section 3.6.1)

Ax � c

has been scaled so that aii � 1 for every i. Show the following:

1. Any solution is a ®xed point of the mapping f �x� � �I ÿ A�x� c.

2. f is a contraction provided A has strict diagonal dominance, that is,

jaiij >
P

j0i jaijj.
[Hint: Use the sup norm.]

Dynamic Programming

We now show how the Banach ®xed point theorem can be applied to the

dynamic programming problem (example 2.32)

max
x1;x2;...

Xy
t�0

b tf �xt; xt�1�

241 2.4 Fixed Point Theorems



subject to xt�1 A G�xt�; t � 0; 1; 2; . . . ; x0 A X �24�
Let

G�x0� � fx A Xy : xt�1 A G�xt�; t � 0; 1; 2; . . .g
denote the set of plans which are feasible starting from the initial point x0.

Assuming that

. f is bounded on X � X

. G�x� is nonempty for every x A X

we have previously shown (exercise 2.16) that the value function v de®ned

by

v�x0� � sup
x AG�x0�

U�x�

satis®es Bellman's equation

v�x� � sup
y AG�x�

f f �x0; y� � bv�y�g for every x A X �25�

Consequently v is a ®xed point of the operator

�Tv��x� � sup
y AG�x�

f f �x; y� � bv�y�g

Furthermore T is a contraction mapping (example 2.83) on the complete

metric space B�X� (exercise 2.11). Therefore it has a unique ®xed point

(theorem 2.5). In other words, the Banach ®xed point theorem establishes

that the value function is the unique solution of Bellman's equation (25).

To prove the existence of an optimal solution to the dynamic program-

ming problem, we need to establish the continuity of the value function

v�x0� � sup
x AG�x0�

U�x�

where

U�x� �
Xy
t�0

b tf �xt; xt�1�

denotes the total return from plan x A G�x0�. We cannot appeal directly to

the continuous maximum theorem (theorem 2.3), since the set of feasible
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plans G�x0� is not compact. However, we can apply corollary 2.5.2. To do

this, we strengthen the assumptions on (24) to include

. f is bounded and continuous on X � X

. G�x� is nonempty, compact-valued, and continuous for every x A X

. 0U b < 1

Then

. the operator

�Tv��x� � sup
y AG�x�

f f �x; y� � bv�y�g

is a contraction on B�X � (example 2.83)

. C�X � is a closed subset of B�X � (exercise 2.85)

. T�C�X��JC�X� (exercise 2.113)

By corollary 2.5.2, the unique ®xed point v of T belongs to C�X�. The

value function of the dynamic programming problem de®ned by

v�x0� � sup
x AG�x0�

U�x�

is continuous. In the next exercise we use the continuity of the value

function to demonstrate the existence of optimal plans in the dynamic

programming problem.

Exercise 2.125 (Existence of an optimal plan)

Let v be the value function for the dynamic programming problem

(example 2.32)

max
x1;x2;...

Xy
t�0

b tf �xt; xt�1�

subject to xt�1 A G�xt�; t � 0; 1; 2; . . . ; x0 A X

Assume that

. f is bounded and continuous on X � X

. G�x� is nonempty, compact-valued, and continuous for every x A X

. 0U b < 1
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De®ne the correspondence j: X x X by

j�x� � fy A G�x� : v�x� � f �x; y� � bv�y�g
j describes the set of solutions to Bellman's equation (exercise 2.17) at

any x A X . Show that

1. j�x� � arg maxy AG�x�f f �x; y� � bv�y�g.
2. j�x� is nonempty, compact-valued and uhc.

3. There exists a sequence x� � �x0; x
�
1 ; x

�
2 ; . . .� such that x�t�1 A j�x�t �.

4. x� is an optimal plan.

By imposing additional structure on the problem, we can show that

optimal plan is monotone. In exercise 3.158 we give su½cient conditions

for the optimal plan to be unique.

Exercise 2.126 (Monotonicity of optimal plans)

Consider a dynamic programming problem that satis®es all the assump-

tions of the previous exercise. In addition assume that the state space X is

a lattice on which

. f �x; y� is supermodular in y

. f �x; y� displays strictly increasing di¨erences in �x; y�

. G�x� is increasing

Show that

1. j�x� is always increasing.

2. Consequently every optimal plan �x0; x
�
1 ; x

�
2 ; . . .� is a monotone

sequence.

Example 2.93 (Optimal economic growth)

As it stands, the optimal economic growth model (example 2.33) does

not ful®ll the requirements of exercise 2.125, since the utility function u

may be unbounded on its domain R�. Rather than arti®cially impose

boundedness, it is more common to adopt a restriction on the technol-

ogy that is akin to diminishing marginal productivity. We assume that

there exists an upper bound to investment k above which productivity is

negative. Speci®cally, we assume that

. there exists k > 0 such that F�k�U k for every k V k
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In addition we assume that

. u is continuous on R�

. F is continuous and increasing on R� with F�0� � 0

. 0U b < 1

Let X � �0; k �. Assume that k0 A X . Then F�k� A X for every k A X .

Without loss of generality, we may restrict analysis to X. Then

. u is bounded on X (exercise 2.84)

. u�F�kt� ÿ kt�1� is bounded and continuous on X � X

. G�k� � �0;F �k�� is nonempty, compact and continuous for every k A X

Exercise 2.125 establishes that there exists an optimal growth policy

�k0; k
�
1 ; k

�
2 ; . . .� for every starting point k0.

2.4.4 Brouwer Fixed Point Theorem

The most useful ®xed point theorem in mathematical economics is the

Brouwer ®xed point theorem and its derivatives. The Brouwer theorem

asserts that every continuous function on a compact convex set in a

normed linear space has a ®xed point. In this section we present and prove

the Brouwer theorem, derive some important extensions, and outline the

most important applicationsÐthe existence of competitive equilibrium

and the existence of a Nash equilibrium in a noncooperative game.

The Brouwer theorem is intuitively obvious and easy to prove in R.

Consider the continuous function f : �0; 1� ! �0; 1� illustrated in ®gure

2.25. Its graph is a curve joining the left-hand side of the box to the right-

hand side. If the function is continuous, its graph has no gaps and thus

must cross the diagonal at some point. Every such intersection is a ®xed

point. Exercise 2.127 formalizes this proof.

Exercise 2.127

Let f : �0; 1� ! �0; 1� be continuous. Show that f has a ®xed point. [Hint:

Apply the intermediate value theorem (exercise 2.83) to g�x� � f �x� ÿ x.]

In higher dimensions the Brouwer theorem is much less intuitive and

correspondingly harder to prove. To appreciate its profundity, take a cup

of co¨ee and gently swirl it around to mix thoroughly, being careful not

to introduce any turbulence. (Unfortunately, you cannot stir the co¨ee

with a spoon, since the transformation would no longer be continuous.)
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No matter how long you swirl, at least one ``molecule'' must end up exactly

where it started.

Our approach to proving Brouwer's theorem utilizes Sperner's lemma

on admissibly labeled simplicial partitions (proposition 1.3). We ®rst illus-

trate the approach on the two-dimensional simplex. A function on the

two-dimensional simplex can be illustrated by using arrows to connect

selected points and their images. Label each point with the label of the

vertex from which it points away (®gure 2.26). Where the arrow points

away from two vertices (e.g., on the boundary), choose one of them. We

can label each vertex of a simplicial partition in this way. By construction,

such a labeling constitutes an admissible labeling. For any simplicial

partition, Sperner's lemma ensures that there is a always exists a com-

Figure 2.25
Brouwer's theorem in R

Figure 2.26
Illustrating an operator on the two-dimensional simplex
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pletely labeled subsimplex, that is, a subsimplex that has vertices at which

the function points in each of the three directions. If we take a sequence of

increasingly ®ne partitions, we will ®nd a point at which it appears the

function is pointing in all three directions at once. This is only possible if

in fact it is a ®xed point. We now make this argument rigorous.

We ®rst show that an operator on a simplex conveniently de®nes a ad-

missible labeling of the points of the simplex. Let S be the n-dimensional

simplex with vertices fx0; x1; . . . ; xng. Recall that every point x A S has a

unique representation as a convex combination of the vertices

x � a0x0 � ax1 � � � � � anxn

with ai V 0 and a0 � a1 � � � � � an � 1 (exercise 1.159). The coe½cients

a0; a1; . . . ; an are called the barycentric coordinates of x. Similarly the

image f �x� of x under f has a unique representation

f �x� � b0x0 � bx1 � � � � � bnxn

with bi V 0 and b0 � b1 � � � � � bn � 1. Given any function f : S ! S, a

label in the set f0; 1; . . . ; ng can be assigned to every point in the simplex

S using the rule

x 7! minfi : bi U ai 0 0g
where ai and bi are the barycentric coordinates of x and f �x� respectively.

This assignment satis®es the requirements of an admissible labeling for

the application of Sperner's lemma (exercise 2.128).

Exercise 2.128

Let f : S ! S be an operator on an n simplex with vertices fx0; x1; . . . ; xng.
Suppose that the elements of S are labeled using the rule

x 7! minfi : bi U ai 0 0g
where ai and bi are the barycentric coordinates of x and f �x� respectively.

Show that

1. The rule assigns a label in f0; 1; . . . ; ng to every x A S.

2. Each vertex of S retains its own label.

3. Each vertex on a face of S receives a label corresponding to one of the

vertices of that face.

Hence the rule generates an admissible labeling of the simplex.
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Theorem 2.6 (Brouwer's theorem) Let S be a nonempty, compact, convex

subset of a ®nite dimensional normed linear space. Every continuous func-

tion f : S ! S has a ®xed point.

Proof We assume for simplicity that S is a simplex. The extension to an

arbitrary compact convex set is given in exercise 2.129. We proceed by

constructing a sequence of increasingly ®ne simplicial partitions of S

which eventually ``trap'' the ®xed point.

Let Lk, k � 1; 2; . . . ; be a sequence of simplicial partitions of S in

which the maximum diameter of the subsimplices tend to zero as k !y.

For each vertex xk of Lk, assign a label i A f0; 1; . . . ; ng using the labeling

rule

xk 7! minfi : bk
i U ak

i 0 0g
where ak

i and bk
i are the barycentric coordinates of xk and f �xk� respec-

tively. Every partition is admissibly labeled (exercise 2.128).

By Sperner's lemma (proposition 1.3), each partition Lk has a com-

pletely labeled subsimplex. That is, there is a simplex with vertices

xk
0 ; x

k
1 ; . . . ; xk

n such that

bk
i U ak

i �26�
for the vertex xk

i . In other words, every vertex of the completely labeled

subsimplex satis®es (26) in its corresponding coordinate.

Since S is compact, each sequence xk
i has a convergent subsequence

xk 0
i . Moreover, since the diameters of the subsimplices converge to zero,

these subsequences must converge to the same point, say x�. That is,

lim
k 0!y

xk 0
i � x�; i � 0; 1; . . . ; n

Since f is continuous, their images also converge:

lim
k 0!y

f �xk 0
i � � f �x��; i � 0; 1; . . . ; n

This implies that the corresponding barycentric coordinates also converge:

ak
i ! a�i and b k

i ! b �i ; i � 0; 1; . . . ; n

where a�i and b�i are the barycentric coordinates of x� and f �x�� respec-

tively. Since for every i � 0; 1; . . . ; n, there exist coordinates such that

bk 0
i U ak 0

i for every k, we have b�i U a�i for every coordinate i � 0; 1; . . . ; n.
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Since
P

b �i �
P

a�i � 1, this implies that

b�i � a�i ; i � 0; 1; . . . ; n

In other words,

f �x�� � x�

x� is a ®xed point of f. r

Example 2.94 (Markov chains) Let T be the n� n transition matrix of a

®nite Markov process (section 3.6.4). The set of state distributions

S � p A Rn :
X

i

pi � 1

( )

is precisely the �nÿ 1�-dimensional standard simplex (example 1.95),

which is nonempty, convex, and compact. T is a linear operator on the

®nite-dimensional space S and is therefore continuous (exercise 3.31).

Applying the Brouwer theorem, T has a ®xed point p

Tp � p

which is a stationary distribution of the Markov process. Consequently

every Markov chain has a stationary distribution.

For any S HT in a metric space, a continuous function r: T ! S is

called a retraction of T onto S if r�x� � x for every x A S. In chapter 3 we

will show (exercise 3.74) that every set in a ®nite-dimensional normed

linear space can be retracted onto its closed convex subsets.

Exercise 2.129

Generalize the proof of the Brouwer theorem to an arbitrary compact

convex set as follows. Let f : S ! S be a continuous operator on a non-

empty, compact, convex subset of a ®nite-dimensional normed linear

space.

1. Show that there exists a simplex T containing S.

2. By exercise 3.74, there exists a continuous retraction r: T ! S. Show

that f � r: T ! T and has a ®xed point in x� A T .

3. Show that x� A S and therefore f �x�� � x�.

Consequently f has a ®xed point x�.
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Exercise 2.130

Where is the convexity of S required in the previous exercise?

Exercise 2.131

To show that each of the hypotheses of Brouwer's theorem is necessary,

®nd examples of functions f : S ! S with S JR that do not have ®xed

points, where

1. f is continuous and S is convex but not compact

2. f is continuous and S is compact but not convex

3. S is compact and convex but f is not continuous

The following proposition, which is equivalent to Brouwer's theorem,

asserts that it is impossible to map the unit ball continuously on to its

boundary.

Exercise 2.132 (No-retraction theorem)

Let B denote the closed unit ball in a ®nite-dimensional normed linear

space

B � fx A X : kxkU 1g
and let S denote its boundary, that is,

S � fx A X : kxk � 1g
There is no continuous function r: B! S such that r�x� � x for every

x A S.

Exercise 2.133

Let f : B! B be a continuous operator on the closed unit ball B in a

®nite-dimensional normed linear space. Show that the no-retraction

theorem implies that f has a ®xed point.

Exercise 2.134

Prove that the no-retraction theorem is equivalent to Brouwer's theorem.

The following proposition, due to Knaster, Kuratowki, and Mazurkie-

wicz (K-K-M), is equivalent to the Brouwer theorem. It is often used as

a step on the way to the Brouwer theorem. It is more useful than the

Brouwer theorem in some applications.
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Proposition 2.4 (K-K-M theorem) Let A0;A1; . . . ;An be closed subsets

of an n-dimensional simplex S with vertices x0; x1; . . . ; xn. If for every

I J f0; 1; . . . ; ng the face convfxi : i A Ig is contained in the corresponding

union 6
i A I

Ai, then the intersection 7n

i�0 Ai is nonempty.

Exercise 2.135

Prove the K-K-M theorem directly, using Sperner's lemma.

Exercise 2.136

Prove that the K-K-M theorem is equivalent to Brouwer's theorem,

that is,

K-K-M theorem, Brouwer's theorem

The classic application of the Brouwer theorem in economics is to

prove the existence of competitive equilibrium. We extract the mathe-

matical essence in the following corollary, and then show how it applies to

competitive equilibrium in example 2.95.

Corollary 2.6.1 (Excess demand theorem) Let z: Dnÿ1 ! Rn be a con-

tinuous function satisfying pT z�p� � 0 for every p A Dnÿ1. Then there exists

p� A Dnÿ1 such that z�p��U 0.

Proof De®ne the function g: D lÿ1 ! D lÿ1 by

gi�p� � pi �max�0; zi�p��
1�P l

j�1 max�0; zj�p��

g is continuous (exercises 2.78, 2.79, 2.81). By Brouwer's theorem, there

exists a ®xed point p� such that g�p�� � p�. Given pT z�p� � 0 for every

p A Dnÿ1, it is easy to show (exercise 2.137) that

g�p�� � p� ) z�p��U 0 r

Example 2.95 (Existence of competitive equilibrium) A competitive

equilibrium �p�; x�� in an exchange economy (example 1.117) is a set of

prices p� and an allocation x� � �x�1 ; x�2 ; . . . x�n � such that

. every consumer i chooses the optimal bundle in his budget set

x�i 7 xi for every xi A X �p;mi�
where mi �

P l
j�1 pjoij
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. aggregate demand is less than or equal to available supplyX
i AN

xi U
X
i AN

oi

Assume that the consumers' preferences 7i are continuous and strictly

convex. Then every consumer has a continuous demand function x�p;m�
indicating their optimal choice at given prices p (examples 2.90 and 3.62).

Let zi: Rl
� ! Rl denote consumer i 's excess demand function

zi�p� � xi�p;m� ÿ oi

which measures his desired net trade in each commodity at the prices p.

Let z�p� denote the aggregate excess demand function

z�p� �
Xn

i�1

zi�p�

The aggregate excess demand function is continuous and homogeneous of

degree zero (exercise 2.138), so only relative prices matter. We can nor-

malize so that prices are restricted to the unit simplex D lÿ1. Furthermore,

provided that consumers' preferences are nonsatiated, the excess demand

function satis®es the following identity known as Walras's law (exercise

2.139):

pT z�p�1 0 for every p (Walras's law)

The excess demand functions z�p� satisfy the conditions of corollary 2.6.1.

Therefore there exists a price p� such that

z�p��U 0 �27�
p� is a competitive equilibrium price (exercise 2.140), and �p�; x�p��� is a

competitive equilibrium.

The function

gi�p� � pi �max�0; zi�p��
1�P l

j�1 max�0; zi�p��

used in the proof of corollary 2.6.1 has a nice interpretation in this

applicationÐit increases the price of commodities in excess demand and

lowers the price of those commodities in excess supply.
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At ®rst sight, (27) is a system of l inequalities in l unknowns. How-

ever, since z�p� satis®es Walras's law, there are only l ÿ 1 independent

inequalities. On the other hand, z�p� is homogeneous of degree zero, so

only relative prices matter. There are only l ÿ 1 relative prices. Therefore

(27) is a system of l ÿ 1 independent inequalities in l ÿ 1 unknowns. If

the excess demand function z were linear, we could apply the theory of

section 3.6 to deduce a solution. It is precisely because the system (27) is

nonlinear that we have to resort a more powerful ®xed point argument.

Exercise 2.137

Let z: Dnÿ1 ! Rn be a continuous function satisfying pz�p� � 0 for every

p A Dnÿ1 and

gi�p� � pi �max�0; zi�p��
1�P l

j�1 max�0; zi�p��

Show that

g�p�� � p� ) z�p��U 0

Exercise 2.138 (Properties of the excess demand function)

Show that the aggregate excess demand function z�p� is continuous and

homogeneous of degree zero.

Exercise 2.139 (Walras's law)

Assuming that the consumers' preference relations 7i are nonsatiated

and strictly convex, show that the aggregate excess demand function z�p�
satis®es Walras's law

pT z�p�1 0 for every p

[Hint: Use exercise 1.248.]

Remark 2.19 (Strong and weak forms of Walras's law) The previous

result is known as the strong form of Walras's law. Homogeneity alone

implies the analogous weak form of Walras's law

pT z�p�U 0 for every p

but this alone is inadequate to support our proof of existence of equilib-

rium. In addition to homogeneity the strong form of Walras's law

requires that consumers spend all their income, which is implied by local

nonsatiation.
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Exercise 2.140

p� is a competitive equilibrium price if z�p��U 0.

Remark 2.20 (Uzawa equivalence theorem) Corollary 2.6.1 abstracts the

mathematical essence of the existence of equilibrium in a competitive

exchange economy. We showed that this is implied by Brouwer's theo-

rem. Uzawa (1962) proved the converse, namely that corollary 2.6.1

implies Brouwer's theorem, establishing their equivalence. This underlines

the profundity of Brouwer's theorem, and it means that a ®xed point

argument is essential to proving existence of economic equilibrium. This

cannot be done with simpler means.

Two generalizations of Brouwer's theorem are important in economics.

The ®rst extends the theorem to correspondences (Kakutani's theorem),

while the second extends to in®nite-dimensional spaces (Schauder's theo-

rem). We consider these in turn.

Kakutani's Theorem

To use Brouwer's theorem to prove the existence of a competitive equi-

librium in example 2.95 required that the consumers' optimal choices be

unique (demand functions), which necessitated the unreasonable assump-

tion that consumer preferences are strictly convex. To relax this assump-

tion, and also to incorporate production into the economic system,

requires an extension of the Brouwer theorem to correspondences. This

extension was provided by Kakutani for precisely this purpose. It also

allows us to prove a general existence theorem for games.

Theorem 2.7 (Kakutani's theorem) Let S be a nonempty, compact, convex

subset of a ®nite dimensional normed linear space. Every closed, convex-

valued correspondence j: S x S has a ®xed point.

Remark 2.21 Recall that a correspondence j: S x S is closed if it graph

is closed in S � S. Since S is compact, this is equivalent to j being closed-

valued and uhc (exercise 2.107).

Proof We assume for simplicity that S is a simplex. The extension to

an arbitrary compact convex set is given in exercise 2.142. We proceed

by constructing a sequence of continuous functions that approximate a

selection from the correspondence. By Brouwer's theorem, each of these
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functions has a ®xed point, and these ®xed points converge to a ®xed

point of the correspondence.

Let Lk, k � 1; 2; . . . be a sequence of simplicial partitions of S in which

the maximum diameter of the subsimplices tend to zero as k !y. Con-

struct a sequence of continuous functions f k: S ! S that approximate j,

by assigning to each vertex x of the partition Lk a point in the set j�x�
and then extending f k linearly to the subsimplices. Speci®cally, if V k

denotes the set of all vertices of the subsimplices in Lk,

. For every vertex x A V k, choose some y A j�x� and set f �x� � y.

. For every nonvertex x A SnV k, let S k A Lk denote the subsimplex that

contains x. Let ak
0 ; a

k
1 ; . . . ; ak

n denote the barycentric coordinates (exercise

1.159) of x with respect to the vertices xk
0 ; x

k
1 ; . . . ; xk

n A V k of S k. That is,

x � ak
0 xk

0 � ak
1 xk

1 � � � � � ak
n xk

n

and we de®ne

f k�x� � ak
0 f �xk

0 � � ak
1 f �xk

1 � � � � � � ak
n f �xk

n �
By Brouwer's theorem, each function f k has a ®xed point xk. Since S is

compact, the sequence of ®xed points xk has a convergent subsequence

xk 0 that converges to a point x� A S. Since each function f k matches the

correspondence at the vertices of the subsimplices the diameters of which

converge to zero, it follows (exercise 2.141) that x� A j�x��. That is, x� is

the required ®xed point of the correspondence. r

Exercise 2.141

Verify that x� � limk 0!y xk 0 as de®ned in the preceding proof is a ®xed

point of the correspondence, that is x� A j�x��.
Exercise 2.142

Generalize the proof of the Kakutani theorem to an arbitrary convex,

compact set S. [Hint: See exercise 2.129.]

Example 2.96 (Existence of Nash equilibrium) A strategic game (section

1.2.6) comprises

. a ®nite set N of players

. for each player i A N a nonempty set Si of strategies
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. for each player i A N a preference relation 7i on the strategy space

S � S1 � S2 � � � � � Sn

Assume that the strategy space of Si of every player is nonempty, com-

pact, and convex. Then the product S � S1 � S2 � � � � � Sn is likewise

nonempty, compact, and convex. Assume further that for each player i

there exists a continuous, quasi-concave function ui: S ! R that repre-

sents the player's preferences in the sense that

�s; sÿi�7i �s 0; sÿi� , ui�s�V ui�s 0�
where s 0 � �s 0; sÿi�. The best response correspondence of player i is

Bi�s� � fs A Si : �s; sÿi�7i �s 0; sÿi� for every s 0 A Sig
This can be alternatively de®ned as the solution correspondence of the

maximization problem

Bi�s� � arg max
si A Si

ui�s�

By the maximum theorems, each best response correspondence Bi is

compact-valued and upper hemicontinuous (theorem 2.3) and convex-

valued (theorem 3.1).

Let B denote the product of the individual player's best response cor-

respondences. That is, for every s A S,

B�s� � B1�s� � B2�s� � � � � � Bn�s�
Then B is a closed, convex-valued correspondence B: S x S (exercise

2.143). By Kakutani's theorem, B has a ®xed point s A S such that

s A B�s�. That is,

si A Bi�s� for every i A N

s � �s1; s2; . . . ; sn� is a Nash equilibrium of the game.

Exercise 2.143

Show that the best response correspondence B: S x S is closed and

convex valued.

Remark 2.22 The existence theorem in the previous example applies to

two important special cases:
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®nite games Assume that each player has a ®nite set of actions Ai, and let

Si denote the set of mixed strategies, that is, the set of all probability dis-

tributions over Ai (example 1.98). Let ui denote the expected payo¨ from

strategy s, that is,

ui�s� �
X

j

pju�ai�

Since u is linear, it is continuous and quasiconcave.

Cournot oligopoly The payo¨ function ui is the pro®t function

ui�yi; yÿi� � p�Y �yi ÿ c�yi�
where Y is total output and p�Y � is the inverse demand curve (example

2.35). Provided that the demand and cost functions satisfy suitable con-

ditions, the pro®t function ui will be continuous and quasiconcave. If Y is

an upper bound on feasible output, the strategy spaces can be taken to be

�0;Y �.
Exercise 2.144 (Uniqueness of Nash equilibrium)

Suppose, in addition to the hypotheses of example 2.96, that

. the players' payo¨ functions ui: S ! R are strictly quasiconcave

. the best response mapping B: S ! S is a contraction

Then there exists a unique Nash equilibrium of the game.

Schauder's Theorem

We generalized Brouwer's theorem to an arbitrary convex, compact set

S by mapping S to an enclosing simplex. To generalize to in®nite-

dimensional spaces, we adopt a similar technique. The following lemma

shows that every compact set can be mapped continuously to a ®nite-

dimensional convex set.

Exercise 2.145

Let K be a compact subset of a normed linear space X. For every e > 0,

there exists a ®nite-dimensional convex set S JX and a continuous

function h: K ! S such that S J conv K and

kh�x� ÿ xk < e for every x A K

[Hint: Exercise 1.112.]
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Theorem 2.8 (Schauder's theorem) Let S be a nonempty, compact, con-

vex subset of a normed linear space. Every continuous function f : S ! S

has a ®xed point.

Proof f �S� is compact (proposition 2.3). Applying the preceding

lemma, we can approximate f �S� by a sequence of ®nite-dimensional

convex sets. Speci®cally, for k � 1; 2; . . . there exists a ®nite-dimensional

convex set S k and continuous function hk: f �S� ! S k such that

khk�x� ÿ xk < 1

k
for every x A f �S�

Since S convex,

S k J conv f �S�JS

The function gk � hk � f approximates f on S k. That is (exercise 2.146),

. gk: S k ! S k

. kgk�x� ÿ f �x�kU 1=k for every x A S k

Furthermore gk is continuous (exercise 2.72) and S k is compact, convex,

and ®nite dimensional. Applying Brouwer's theorem (theorem 2.6), we see

that every function gk has a ®xed point xk � gk�xk�. Every ®xed point

xk A S. Since S is compact, there exists a convergent subsequence

xk 0 ! x� A S. Furthermore f �x�� � x�; that is, x� is a ®xed point of f

(exercise 2.147). r

Exercise 2.146

Let gk � hk � f as de®ned in the preceding proof. Show that

1. gk: S k ! S k

2. kgk�x� ÿ f �x�kU 1=k for every x A S k

Exercise 2.147

Verify that x� � limk!y xk as de®ned in the preceding proof is a ®xed

point of f, that is, f �x�� � x�.

Schauder's theorem is frequently applied in cases where the underlying

space is not compact. The following alternative version relaxes this con-

dition to require that the image lie in a compact set. A function f : X ! Y

is called compact if f �X� is contained in a compact set of Y.
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Corollary 2.8.1 (Schauder's theoremÐAlternative version) Let S be a

nonempty, closed, and bounded convex subset of a normed linear space.

Every compact continuous operator f : S ! S has a ®xed point.

Proof Let A � conv� f �S��. Then A is a subset of S which is compact

and convex. Furthermore f �A�HA. Therefore the restriction of f to A is

a continuous operator on a compact, convex set. By Schauder's theorem,

f has a ®xed point which is automatically a ®xed point of f on S. r

The alternative version implies the following result which is used in

dynamic economic models.

Exercise 2.148

Let F be a nonempty, closed and bounded, convex subset of C�X�, the

space of continuous functionals on a compact metric space X. Let

T : F ! F be a continuous operator on F. If the family T�F� is equi-

continuous, then T has a ®xed point.

2.4.5 Concluding Remarks

We have presented a suite of ®xed point theorems, the heavy artillery of

the analyst's arsenal. The most powerful is Brouwer's theorem and its

generalizations, whose essential requirements are continuity of the

mapping together with compactness and convexity of underlying space.

Banach's theorem shows that compactness can dispensed with by

strengthening the continuity requirement, while Tarksi's theorem shows

that even continuity is dispensable if we have monotonicity.

2.5 Notes

The general references cited in chapter 1 are also relevant for sections 2.1

and 2.3, to which should be added Berge (1963). Our presentation of

dynamic programming is based on Stokey and Lucas (1989), who give

numerous applications. Maor (1994) discusses the history of the expo-

nential and log functions. The standard Cournot (example 2.35) and

Bertrand (exercise 2.60) oligopoly models are explored in Shapiro (1989).

The de®nition of rationalizability in exercise 2.22 di¨ers from the stan-

dard de®nition, in that it allows for the actions of opponents to be corre-

lated. See Osborne and Rubinstein (1994, pp. 57±58) for a discussion of

this point.
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In representing continuous preferences, the di½cult part is not the

existence of a utility function but its continuity. This has tripped some

distinguished economists and generated a sizable literature; see Beardon

and Mehta (1994) for references. The fundamental result is due to Debreu

(1954, 1964). A concise account is given by Barten and BoÈhm (1982). The

simple constructive proof for monotone preferences (exercises 2.38, 2.73)

originated with Wold. Our treatment is adapted from Mas-Colell et al.

(1995, p. 47).

The properties of supermodular functions were studied by Topkis

(1978). Further references are given in chapter 6. The study of convex

games (example 2.69) originated with Shapley (1971±1972). In the light of

subsequent developments, the choice of adjective convex rather than

supermodular to describe these games is unfortunate, since convexity and

supermodularity are quite distinct properties. The single-crossing condi-

tion of exercise 2.61 is closely related to the ``sorting'' or ``Spence-Mirrlees''

condition which is often invoked in the literature on signaling and mech-

anism design. Example 2.74 adapted from Fudenberg and Tirole (1991,

p. 492) and modeled on Diamond (1982). Exercise 2.64 is the principal

result of Milgrom and Shannon (1994).

The monotone maximum theorem (theorem 2.1) is due to Topkis (1978)

and the continuous maximum theorem (theorem 2.3) to Berge (1963). The

latter is usually called simply the maximum theorem. It should be dis-

tinguished from the ``maximum principle,'' which is a counterpart of the

principle of optimality (exercise 2.17) for dynamic programming in con-

tinuous time.

Good treatments of the continuity of correspondences can be found in

Border (1985), Ellickson (1993), and Sundaram (1996), from which we

adapted some examples. Border (1985) is an excellent source on ®xed

point theorems for economists. Zeidler (1986) is also recommended for

its clarity and thoroughness. The extension of Tarski's theorem to corre-

spondences (corollary 2.4.2), due to Zhou (1994), parallels the general-

ization of Brouwer's theorem to Kakutani's theorem. Our proof of

Kakutani's theorem follows Kakutani (1941). An alternative approach is

to apply Brouwer's theorem to a continuous selection (see Border 1985,

pp. 71±72 and Hildenbrand and Kirman 1976, pp. 201±204). Our deri-

vation of Schauder's theorem is based on Zeidler (1986). Some economic

applications of Schauder's theorem can be found in Stokey and Lucas

(1989).
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The primary role of Kakutani's theorem in economics is to establish the

existence of competitive equilibrium in economies in which demand and

supply correspondences are not single-valued. Proof of the existence of

competitive equilibrium is one of the major accomplishments of mathe-

matical economics. Our proof is a standard textbook account omitting

much of the ®ne detail. Lucid introductory accounts are provided by

Ellickson (1993), Mas-Colell et al. (1995), and Starr (1997), while Debreu

(1959) and Arrow and Hahn (1971) are classics in the ®eld. The survey by

Debreu (1982) outlines the various approaches which have been used.

Debreu (1982, pp. 719±720) and Starr (1997, pp. 136±138) discuss the

Uzawa equivalence theorem (remark 2.20).
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3 Linear Functions

A function f : X ! Y between two linear spaces X and Y is linear if it

preserves the linearity of the sets X and Y, that is, for all x1; x2 A X , and

a A R,

additivity f �x1 � x2� � f �x1� � f �x2�
homogeneity f �ax1� � af �x1�
A linear function is often called a linear transformation and a linear

function from a set X to itself is often called a linear operator. Through-

out this chapter the domain and co-domain are assumed to be subsets of

linear spaces.

Exercise 3.1

A function f : X ! Y is linear if and only if

f �a1x1 � a2x2� � a1 f �x1� � a2 f �x2�
for all x1; x2 A X , and a1; a2 A R.

Exercise 3.2

Show that the set L�X ;Y � of all linear functions X ! Y is a linear space.

Example 3.1 The function f : R2 ! R2 de®ned by

f �x1; x2� � �x1 cos yÿ x2 sin y; x1 sin y� x2 cos y�; 0U y < 2p

rotates any vector in the plane counterclockwise through the angle y

(®gure 2.3). It is easily veri®ed that f is linear. Linearity implies that

rotating the sum of two vectors yields the same result as summing the

rotated vectors.

Exercise 3.3

Show that f in example 3.1 is linear.

Exercise 3.4

Show that the function f : R3 ! R2 de®ned by

f �x1; x2; x3� � �x1; x2; 0�
is a linear function. Describe this mapping geometrically.

Example 3.2 (The high-®delity ampli®er) Pure musical tones can be

thought of as elements of a linear space. Pure tones can be combined

(added) to produce complex tones and they can be scaled in amplitude to



di¨erent volumes. An ampli®er can be thought of as a function, trans-

forming the inputs (electrical signals) into music (sound signals). An ideal

ampli®er would be a linear function, combining di¨erent pure tones

faithfully and scaling their volumes proportionately. Real ampli®ers su¨er

from various degrees of nonlinearity known as distortion. Generally,

more expensive ampli®ers produce better sound reproduction because

they are more nearly linear.

Example 3.3 A matrix is a collection of similar elements (numbers,

functions) arranged in a table. For example,

A � 1 5 10

2 15 25

� �
is a 2� 3 matrix of numbers, while

H � f11�x� f12�x�
f21�x� f22�x�

� �
is a 2� 2 matrix of functions fij: X ! Y , i; j � 1; 2.

Any m� n matrix A � �aij� of numbers de®nes a linear mapping from

Rn ! Rm de®ned by

f �x� �

Pn
j�1 a1jxjPn
j�1 a2jxj

..

.Pn
j�1 amjxj

0BBBBB@

1CCCCCA
This is usually compactly written as

f �x� � Ax

Exercise 3.5

Describe the action of the mapping f : R2 ! R2 de®ned by

f �x1; x2� � 0 1

1 0

� �
x1

x2

� �
Example 3.4 (Portfolio investment) Example 1.82 introduced a simple

linear model of ®nancial assets. Suppose there exist a ®nite number A of

®nancial assets or securities in which to invest. Each asset a is fully
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described by its return vector ra � �r1a; r2a; . . . ; rSa�, which details the

prospective return of asset a in each of the S possible states of the world.

Arranging the return vectors of the A ®nancial assets into a table or

matrix, we can form an S � A matrix of prospective returns

R �
r11 r12 . . . r1A

r21 r22 . . . r2A

� � � � � � � � � � � � � � �
rS1 rS2 . . . rSA

0BBB@
1CCCA� �

where rsa denote the return of asset a in state s. The matrix R is called

the return matrix. The sth row of the matrix speci®es the return to the

various assets if state of the world s prevails. Similarly the ath column of

the matrix speci®es the return to asset a in the various states.

A portfolio x � �x1; x2; . . . ; xA� is a list of amounts invested in the dif-

ferent assets. The function

f �x� � Rx

�

PA
a�1 r1axaPA
a�1 r2axa

..

.PA
a�1 rSaxa

0BBBBB@

1CCCCCA
speci®es the total return to the portfolio x in the various states. f is linear,

so the combined return of two portfolios x1 and x2 is equal to the return

of a combined portfolio x1 � x2. Similarly scaling the portfolio ax changes

the aggregate return proportionately. Linearity requires that potential

returns are independent of the portfolio choice, a reasonable assumption

for a small investor.

Example 3.5 (Transpose) The matrix obtained by interchanging rows

and columns in an matrix A is known as the transpose of A, and denoted

AT . That is,

if A �

a11 a12 . . . a1n

a21 a22 . . . a2n

..

. ..
. . .

. ..
.

am1 am2 . . . amn

0BBBB@
1CCCCA
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then AT �

a11 a21 . . . am1

a12 a22 . . . am2

..

. ..
. . .

. ..
.

a1n a2n . . . amn

0BBBB@
1CCCCA

If A represents a linear function from X to Y, AT represents a linear

function from Y to X.

Example 3.6 (Shapley value) Since the set of all TP-coalitional games is

a linear space (example 1.70), it is natural to consider values (example

2.37) that respect this linearity. A linear value on the space of games GN

is a linear function j: G N ! Rn such that
P

i AN�jw�i � w�N�. Linearity

requires that for any two games w;w 0 A G N ,

j�w� w 0� � jw� jw 0

j�aw� � ajw

Both aspects of linearity have natural interpretations in the context of

coalitional games. Homogeneity requires that the solution be invariant to

the units of measurement, while additivity requires the solution to be

invariant to the degree of aggregation. These are natural requirements in

many applications of coalitional games (e.g., the cost allocation game of

exercise 1.66).

The Shapley value is a particular linear function on the space of TP-

games GN . It is de®ned by

ji�w� �
X
SJN

gS�w�S� ÿ w�Snfig��

where

gS �
�sÿ 1�!�nÿ s�!

n!

s � jSj � number of players in coaliton S

ji�w� � the allocation to player i at the outcome j�w�
Since only those coalitions in which i is a member carry any weight in the

preceding sum (w�S� � w�Snfig� if i B S), the formula for Shapley value

is often more usefully written as
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ji�w� �
X
S C i

gS�w�S� ÿ w�Snfig�� �1�

Example 3.7 (Three-way market) A farmer, f, owns a block of land that

is worth $1 million as a farm. There are two potential buyers

. a manufacturer m to whom it is worth $2 million as a plant site

. a subdivider s to whom it is worth $3 million

This situation can be modeled as a TP-coalitional game with N � f f ;m; sg
and the characteristic function

w�f f g� � 1 w�fmg� � 0 w�fsg� � 0

w�f f ;mg� � 2 w�f f ; sg� � 3 w�fm; sg� � 0

w�N� � 3

The following table details the computation of the Shapley value for

player f :

S gS w�S� w�Snfig� gS�w�S� ÿ w�Snfig��
f f g 1

3 1 0 1
3

f f ;mg 1
6 2 0 1

3

f f ; sg 1
6 3 0 1

2

f f ;m; sg 1
3 3 0 1

jf �w� 2 1
6

The Shapley value assigns a payo¨ of 2 1
6 to the farmer. Similar calcu-

lations reveal that the Shapley values of the manufacturer and the

subdivider are 1
6 and 2

3 respectively. The Shapley value of this game is

j�w� � �2 1
6 ;

1
6 ;

2
3�.

Exercise 3.6

Show that the Shapley value j de®ned by (1) is linear.

Exercise 3.7

Compute the Shapley value for the cost allocation game (exercise

1.66).
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Exercise 3.8

Verify that the Shapley value is a feasible allocation, that is,X
i AN

jiw � w�N�

This condition is sometimes called Pareto optimality in the literature of

game theory.

Exercise 3.9

Two players i and j are substitutes in a game �N;w� if their contributions

to all coalitions are identical, that is, if

w�S W fig� � w�S W f jg� for every S JNnfi; jg
Verify that the Shapley value treats substitutes symmetrically, that is

i; j substitutes) jiw � jjw

Exercise 3.10

A player i is called a null player in a game �N;w� if he contributes nothing

to any coalition, that is, if

w�S W fig� � w�S� for every S JN

Verify that the Shapley value of a null player is zero, that is,

i null) jiw � 0

Exercise 3.11

Recall that, for any coalition T HN, the T-unanimity game (example

1.48) uT A G N is

uT�S� � 1 if T HS

0 otherwise

�
Compute the Shapley value of a T-unanimity game.

Exercise 3.12 (Potential function)

For any TP-coalitional game �N;w� the potential function is de®ned to be

P�N;w� �
X

TJN

1

t
aT
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where t � jT j and aT are the coe½cients in the basic expansion of w

(exercise 1.75). Show that

jiw � P�N;w� ÿ P�Nnfig;w�

P�N;w� � 1

n
w�N� ÿ

X
i AN

P�Nnfig;w�
 !

Consequently the potential function provides a straightforward recursive

method for computing the Shapley value of game. [Hint: Use the linearity

of j, example 1.75 and exercises 3.8 and 3.11.]

3.1 Properties of Linear Functions

The requirements of linearity impose a great deal of structure on the

behavior of linear functions. The elaboration of this structure is one of the

most elegant and satisfying ®elds of mathematics.

Exercise 3.13

Every linear function f : X ! Y maps the zero vector in X into the zero

vector in Y. That is, f �0X � � 0Y .

Exercise 3.14

If f : X ! Y and g: Y ! Z are linear functions, then so is their compo-

sition g � f : X ! Z.

Exercise 3.15

Show that a linear function maps subspaces to subspaces, and vice versa.

That is, if S is a subspace of X, then f �S� is a subspace of Y; if T is a

subspace of Y, then f ÿ1�T� is a subspace of X.

Associated with any linear function are two subspaces that are partic-

ularly important in analyzing the behavior of the function. The range

f �X� of a linear function is called the image of f. The inverse image of the

zero element is called the kernel, that is,

kernel f � f ÿ1�0� � fx A X : f �x� � 0g
The dimension of the image is called the rank of f. The dimension of the

kernel is called the nullity of f. If X is ®nite dimensional, then (exercise

3.24)
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rank f � nullity f � dim X �2�
A linear function f : X ! Y has full rank if

rank f �X � � minfrank X ; rank Yg
The rank of a matrix A is the rank of the linear transformation f �x� � Ax

that it represents (example 3.3). An m� n matrix has full if rank if

rank A � minfm; ng.
Exercise 3.16

Suppose that f : X ! Y is a linear function with rank f � rank Y U
rank X . Then f maps X onto Y.

Exercise 3.17

Show that the kernel of a linear function f : X ! Y is a subspace of X.

The behavior of a linear function is essentially determined by way in

which it maps the kernel.

Exercise 3.18

Suppose that f : X ! Y is a linear function with kernel f � f0g. Then f is

one-to-one, that is,

f �x1� � f �x2� ) x1 � x2

A linear function f : X ! Y that has an inverse f ÿ1: Y ! X is said to

be nonsingular. A function that does not have an inverse is called singular.

Exercise 3.19

A linear function f : X ! Y is nonsingular if and only if kernel f � f0g
and f �X � � Y .

Exercise 3.20

The inverse of a (nonsingular) linear function is linear.

Exercise 3.21

If f ; g are nonsingular linear functions, then so is their composition g � f

with

�g � f �ÿ1 � f ÿ1 � gÿ1

The following converse of 3.14 is the linear version of the important

implicit function theorem (theorem 4.5).
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Exercise 3.22 (Quotient theorem)

If f : X ! Y and h: X ! Z are linear functions with kernel f J kernel h,

then there exists a linear function g: f �X � ! Z such that h � g � f .

Exercise 3.23

Suppose that f : X ! Y is a linear function and BHX is a basis for X.

Then f �B� spans f �X�.
Exercise 3.23 implies that any linear mapping is completely determined

by its action on a basis for the domain. This has an several useful con-

sequences for ®nite-dimensional mappings. It implies that any linear

mapping between ®nite-dimensional spaces can be represented by a

matrix (proposition 3.1). It establishes the link between the rank and

nullity of a linear mapping (2). A striking application in game theory is

given by the next example.

Example 3.8 (Shapley value is unique) The Shapley value (example 3.6)

is uniquely de®ned for T-unanimity games by (exercise 3.11)

ji�uT� � 1=t i A T

0 i B T

�
where t � jT j. Since these form a basis for GN (exercise 1.146),

fj�uT� : T JNg spans j�GN�. j is uniquely de®ned for all w A GN .

We previously demonstrated that the Shapley value de®ned by

ji�w� �
X
SJN

gS�w�S� ÿ w�Snfig��; gS �
�sÿ 1�!�nÿ s�!

n!
; s � jSj �3�

is feasible, treats substitutes symmetrically and disregards null players

(exercises 3.8±3.10). We conclude that (3) is the only linear function with

these properties. The Shapley value on the space of TP-coalitional games

is unique.

Exercise 3.24 (Rank theorem)

Suppose that f : X ! Y is a linear function. If X is ®nite-dimensional, then

rank f � nullity f � dim X

Exercise 3.25

Suppose that f : X ! Y is a linear function with rank f � rank X U
rank Y and dim X <y. Then f is one-to-one.
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Recall example 3.3 showing that any matrix de®nes a linear mapping.

Exercise 3.23 implies the converse: any linear mapping between ®nite-

dimensional spaces can be represented by a m� n matrix (of numbers).

Proposition 3.1 (Matrix representation) Let f : X ! Y be a linear map-

ping between an n-dimensional space X and m-dimensional space Y. Then,

for every choice of bases for X and Y, there exists an m� n matrix of

numbers A � �aij� that represents f in the sense that

f �x� � Ax for every x A X

where Ax is as de®ned in example 3.3.

Exercise 3.26

Assuming that X � Rn and Y � Rm, prove proposition 3.1 for the stan-

dard basis (example 1.79).

A matrix provides a means of describing completely, concisely and

uniquely any ®nite-dimensional linear function. Note that the matrix

representation depends on a choice of basis for X and Y. Unless a partic-

ular basis is speci®ed, the usual basis is implied in the matrix representa-

tion of a linear function.

Example 3.9 Consider example 2.3. Given the usual basis for R2, the

matrix representing this function is

A � cos y ÿsin y

sin y cos y

� �
For a rotation of 90 degrees �y � p=2�, the matrix is

A � 0 ÿ1

1 0

� �
Exercise 3.27

Give a matrix representation with respect to the usual bases for the linear

function in exercise 3.4.

Exercise 3.28

Describe the matrix representing the Shapley value. Specify the matrix for

three-player games �jNj � 3�.
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If f : X ! Y is a nonsingular linear function with matrix representation

A, then the representation of the inverse function f ÿ1 with respect to the

same bases is called the matrix inverse of A and is denoted Aÿ1.

3.1.1 Continuity of Linear Functions

The continuity of linear functions between normed linear spaces illus-

trates again a subtle interplay of linearity and geometry. The fundamental

insight is the uniformity of linear spaces, as illustrated in the following

result. Throughout this section, X and Y are assumed to be normed linear

spaces.

Exercise 3.29

A linear function f : X ! Y is continuous if and only if it is continuous

at 0.

A linear function f : X ! Y is bounded if there exists a constant M

such that

k f �x�kUMkxk for every x A X �4�
Note that boundedness does not imply that the range f �X� is bounded

but rather that f �S� is bounded for every bounded set S. As the following

exercise demonstrates, boundedness is equivalent to continuity for linear

functions. Consequently these two terms are used interchangeably in

practice.

Exercise 3.30

A linear function f : X ! Y is continuous if and only if it is bounded.

Fortunately every linear function on a ®nite-dimensional space is

bounded and therefore continuous.

Exercise 3.31

A linear function f : X ! Y is bounded if X has ®nite dimension. [Hint:

Use lemma 1.1.]

Rewriting (4), we have that a linear function f is bounded if there exists

a constant M <y such that

k f �x�k
kxk UM for every x A X �5�

273 3.1 Properties of Linear Functions



The smallest constant M satisfying (5) is called the norm of f. It is given

by

k f k � sup
x00

k f �x�k
kxk

Clearly,

k f �x�kU k f k kxk
Exercise 3.32

If f is a bounded linear function, an equivalent de®nition of the least

upper bound is

k f k � sup
kxk�1

k f �x�k

Exercise 3.33

The space BL�X ;Y� of all bounded linear functions from X to Y is a

normed linear space, with norm

k f k � supfk f �x�k : kxk � 1g
It is a Banach space (complete normed linear space) if Y is complete.

The following proposition is an important result regarding bounded

linear functions.

Proposition 3.2 (Open mapping theorem) Assume that X and Y are

complete (i.e., Banach spaces). Every bounded linear function from X onto

Y is an open map. Consequently, if f is nonsingular, the inverse function f ÿ1

is continuous.

A proof of the general theorem is beyond the scope of this text. It is

within our resources to prove the theorem in the important case in which

X is ®nite-dimensional.

Exercise 3.34

Prove proposition 3.2 assuming that X is ®nite-dimensional as follows:

Let B be the unit ball in X, that is,

B � fx : kxk < 1g
The boundary of B is the unit sphere S � fx : kxk � 1g. Show that
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1. f �S� is a compact subset of Y which does not contain 0Y .

2. There exists an open ball T J � f �S��c containing 0Y .

3. T J f �B�.
4. f is open.

5. If f is nonsingular, f ÿ1 is continuous.

We now give three applications of proposition 3.2. The ®rst formalizes a

claim made in chapter 1, namely that the geometry of all ®nite-dimensional

spaces is the same. There is essentially only one ®nite-dimensional normed

linear space, and Rn is a suitable manifestation of this space. The second

(exercise 3.36) shows that a linear homeomorphism is bounded from below

as well as above. The third application (exercise 3.37) shows that for linear

maps, continuity is equivalent to having a closed graph (exercise 2.70).

We will use proposition 3.2 again in section 3.9 to prove the separating

hyperplane theorem.

Exercise 3.35

Let X be a ®nite-dimensional normed linear space, and fx1; x2; . . . ; xng
any basis for X. The function f : Rn ! X de®ned by

f �a1; a2; . . . ; an� �
Xn

i�1

aixi

is a linear homeomorphism (remark 2.12). That is,

. f is linear

. f is one-to-one and onto

. f and f ÿ1 are continuous

[Hint: Use the norm kak1 �
Pm

i�1 jaij.]
Exercise 3.36

Let f : X ! Y be a linear homeomorphism (remark 2.12). Then there

exists constants m and M such that for all x1; x2 A X ,

mkx1 ÿ x2kU k f �x1� ÿ f �x2�kUMkx1 ÿ x2k
Exercise 3.37 (Closed graph theorem)

Let X and Y be Banach spaces. Any linear function f : X ! Y is con-

tinuous if and only if its graph
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graph� f � � f�x; y� : y � f �x�; x A Xg
is a closed subset of X � Y .

3.2 A½ne Functions

A½ne functions relate to linear functions in the same way as subspaces

relate to a½ne sets. A function f : X ! Y is a½ne if

f �ax1 � �1ÿ a�x2� � af �x1� � �1ÿ a� f �x2�
for all x1; x2 A X , and a A R. (Compare with exercise 3.1.) A½ne func-

tions preserve a½ne sets (lines, planes). Their graphs are translations of

the graph of a linear function, and do not pass through the origin (unless

the function is linear). The following example illustrates the distinction.

Example 3.10 The function f : R! R de®ned by

f �x� � 2x� 3

is an a½ne function. Its graph is a straight line in the Euclidean plane,

with a vertical intercept of 3 (®gure 3.1). Such functions are often incor-

rectly called linear. It is not linear because f �0� � 30 0.

Exercise 3.38

Show that f �x� � 2x� 3 violates both the additivity and the homogene-

ity requirements of linearity.

Figure 3.1
The graph of the a½ne function f �x� � 2x� 3
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Exercise 3.39

A function f : X ! Y is a½ne if and only if

f �x� � g�x� � y

where g: X ! Y is linear and y A Y

Exercise 3.40

Show that an a½ne function maps a½ne sets to a½ne sets, and vice versa.

That is, if S is an a½ne subset of X, then f �S� is an a½ne subset of Y; if T

is an a½ne subset of Y, then f ÿ1�T� is an a½ne subset of X.

Exercise 3.41

An a½ne function preserves convexity; that is, S JX convex implies that

f �S� is convex.

3.3 Linear Functionals

Recall that a real-valued function f : X ! R is called a functional. Linear

functionals are the simplest and most prevalent linear functions. They

assign a real number to every element of a linear space. For the econo-

mist, these assignments will often be interpreted as valuations and the

linear functional as a valuation function. Linearity embodies the natural

property that the value of two objects is equal to the sum of their indi-

vidual values.

Example 3.11 Let X JRn. For any p � � p1; p2; . . . ; pn� A Rn, de®ne the

functional f : X ! R by

fp�x� � p1x1 � p2x2 � � � � � pnxn

where x � �x1; x2; . . . ; xn�. Then fp�x� is a linear function, that is for

every x1; x2 A X fp�x1 � x2� � fp�x1� � fp�x2� and fp�ax1� � a fp�x1� for

every a A R. Note how the linear functional depends on p. Each p A Rn

de®nes a di¨erent linear functional (valuation). The linear functional has

a natural interpretation as a valuation of X using the system of prices p.

The next two examples make this interpretation more explicit.

Example 3.12 If X is the consumption set, the function cp: X ! R
de®ned by
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cp�x� � p1x1 � p2x2 � � � � � pnxn

measures the cost of the commodity bundle x at prices p. Linearity implies

that the joint cost of two di¨erent bundles is equal to the sum of the costs

of the bundles separately and that the cost of bigger or smaller bundles is

proportional to the cost of the original bundle.

Example 3.13 (Competitive ®rm) A producer is competitive if it takes the

prices p � � p1; p2; . . . ; pn� of all net outputs as given. If the producer

adopts the production plan y � �y1; y2; . . . ; yn�, its net revenue or pro®t is

Pp�y� �
Xn

i�1

pi yi

(Remember the convention that net inputs are negative.) The linear

functional Pp: Y ! R evaluates net revenue or pro®t of any production

plan y at prices p. Each price vector p generates a di¨erent evaluation

functional Pp. A pro®t-maximizing ®rm seeks to ®nd that production

plan y� A Y that maximizes net revenue (example 2.27). This necessarily

requires it to produce e½ciently (exercise 3.42). We use the term net rev-

enue function to distinguish it from the related maximized pro®t function

(example 2.29).

Exercise 3.42

If the production plan y A Y maximizes pro®ts at prices p > 0, then y is

e½cient (example 1.61).

Example 3.14 (Expectation) Let X be the set of all random variables

(example 2.19) de®ned on a sample space S, that is, X � F �S;R�. Expec-

tation E is a linear functional on X with the properties

E�X �V 0 for every X V 0 and E�1� � 1

where X is an arbitrary positive random variable in X and 1 is the degen-

erate random variable that takes the value 1 for every outcome. (A con-

vergence condition is also required; Whittle 1992, p. 15.) The value E�X �
of a particular random variable X is called the expected value of X.

Linearity of expectation is commonly exploited in probability theory, for

example, implying that

E�aX � b� � aE�X� � b
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Exercise 3.43

Assume that the sample space S is ®nite. Then the expectation functional

E takes the form

E�X� �
X
s AS

psX�s�

with ps V 0 and
P

s AS ps � 1. ps � P�fsg� is the probability of state s.

Example 3.15 (Shapley value) For any individual player i in a set N, her

Shapley value ji is a linear functional on the space of games GN , whose

value ji�w� can be interpreted as the expected value to i of playing the

game w.

Example 3.16 (TP-coalitional games) Each coalition S in a TP-

coalitional game implicitly de®nes a linear functional gS on the space of

outcomes X de®ned by

gS�x� �
X
i AS

xi

representing the total share of coalition S at the outcome x. Note that

this linear functional is de®ned on a di¨erent space to the preceding

example.

Exercise 3.44

Let X � C�0; 1� be the space of all continuous functions x�t� on the

interval �0; 1�. Show that the functional de®ned by

f �x� � x�12�
is a linear functional on C�0; 1�.
Example 3.17 Another linear functional on the space X � C�0; 1� of all

continuous functions x�t� on the interval [0,1] is given by the integral,

that is,

f �x� �
�1

0

x�t� dt

The following result is fundamental for the economics of

decentralization.
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Exercise 3.45

Let fS1;S2; . . . ;Sng be a collection of subsets of a linear space X with

S � S1 � S2 � � � � � Sn. Let f be a linear functional on X. Then

x� � x�1 � x�2 � � � � � x�n maximizes f over S if and only if x�i maximizes f

over Si for every i. That is,

f �x��V f �x� for every x A S , f �x�i �V f �xi� for every xi A Si for every i

Example 3.18 Suppose that an economy consists of n producers each

with a production possibility set Yi HRm. Assume that they produce

without interaction, so that the aggregate production possibility set is

Y � Y1 � Y2 � � � � � Yn. Then, applying the previous exercise, the aggre-

gate production plan y� � y�1 � y�2 � � � � � y�n , yj A Y maximizes gross

national product

GNP �
Xn

j�1

Xm

i�1

pi yi j

at prices p if and only each producer maximizes her own pro®t
Pm

i�1 pi yij

at y�j .

3.3.1 The Dual Space

Example 3.17 and exercise 3.44 illustrate two distinct linear functionals on

the same space. The set of all linear functionals on a linear space X is

another linear space (exercise 3.2), which is called the algebraic dual of X;

we will denote this by X 0. The original space X is called the primal space.

The set of all continuous linear functionals on a linear space X is called the

topological dual or conjugate space of X and is denoted X �JX 0. Since

this is of more practical importance, the adjective topological is usually

omitted and the unquali®ed term dual space implies the topological dual.

For ®nite-dimensional spaces (e.g., Rn), the distinction is vacuous, since

all linear functionals on a ®nite-dimensional space are continuous (exer-

cise 3.31). The following proposition is a special case of exercise 3.33.

Proposition 3.3 X � is a Banach space.

Example 3.11 shows how to construct a host of linear functionals on

Rn. It is a remarkable fact that all linear functionals on Rn are con-

structed in this way. That is, every linear functional on Rn is a valuation

for some price system p.
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Proposition 3.4 (The dual of Rn) For every linear functional f : Rn ! R,

there exists an element p A Rn such that

f �x� � p1x1 � p2x2 � � � � � pnxn

Proof Although this is a special case of proposition 3.3, it is insightful to

prove the theorem directly. Let f be a linear functional on X � Rn, and

let fe1; e2; . . . ; eng be the standard basis for Rn. De®ne pi � f �ei� for each

i � 1; 2; . . . ; n. Any x A X has the standard representation

x �
Xn

i�1

xiei

and hence by linearity

f �x� � f
Xn

i�1

xiei

 !
�
Xn

i�1

xi f �ei�

�
Xn

i�1

xi pi � p1x1 � p2x2 � � � � � pnxn r

This representation theorem is another application of the principle that

the action of any linear mapping is summarized precisely by its action on

a basis (exercise 3.23). It can be given an insightful economic interpreta-

tion. If we think of X as a commodity space, then the elements of the

standard basis fe1; e2; . . . ; eng are unit quantities of each of the commod-

ities. The pi's are the values of each commodity, that is, their prices, and

the linear functional prescribes the value of any commodity bundle for a

given set of prices p. Di¨erent price vectors give rise to di¨erent valuations

(linear functionals), and every linear functional corresponds to a valua-

tion function for a certain set of prices.

Remark 3.1 (Primal versus dual) Strictly speaking, the vector p in

proposition 3.4 is an element of the dual space X �, and we should care-

fully distinguish it from elements the primal space X. Indeed, some

authors do this by distinguishing between column vectors (primal space)

and row vectors (dual space). However, ®nite-dimensional spaces are self-

dual, and there is an obvious identi®cation between elements of X and

elements of X � with the same coordinates. This correspondence should be

used with caution. It is peculiar to ®nite-dimensional linear spaces and is
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dependent on the choice of basis in each space. In general, the primal and

dual spaces are mathematically distinct.

The distinction between the primal and dual spaces is clear in

consumption space. Commodity bundles belong to the primal space X,

whereas price lists belong to a di¨erent linear space X �. While we can make

a formal identi®cation between commodity bundles and price lists as n

dimensional vectors, they remain distinct types of objects. To put it bluntly,

you cannot eat price lists. We are quite adept at manipulating prices and

quantities mathematically but distinguish between them where necessary.

We need to apply the same skill with ®nite-dimensional dual spaces.

Example 3.19 (Characteristic vector of a coalition) The set X of feasible

outcomes in a TP-coalitional game �N;w� is a subset of Rn. The linear

functional

gS�x� �
X
i AS

xi

measures the share of coalition S at the outcome x A X (example 3.16).

Corresponding to each coalition S, there exists a vector eS A Rn that rep-

resents this functional such that

gS�x� � eT
S x

Here eS, which is called the characteristic vector of the coalition S, is

de®ned by

�eS�i �
1 if i A S

0 otherwise

�
It identi®es the members of the coalition S. Each characteristic vector

corresponds to a vertex of the unit cube in Rn.

Things are more complicated in in®nite-dimensional spaces, and not all

dual spaces can be given a simple representation.

Example 3.20 (Dual of ly) In the dynamic programming problem

(example 2.32), the choice set X is the set of in®nite bounded sequences ly
(example 1.107). Those sequences �x1; x2; x3; . . .� for whichXy
t�1

jxtj <y
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comprise a proper subspace of ly which is denoted l1. Every sequence

p � �p1; p2; p3; . . .� in l1 speci®es a continuous linear functional fp on ly
de®ned by

fp�x� �
Xy
i�1

ptxt �6�

Therefore l1 is a subset of the dual space l �y. We can think of the sequence

p � �p1; p2; p3; . . .� as being a path of prices through time.

Unfortunately, l1 is a proper subset of l �y There are linear functionals

on ly that cannot be given a simple representation of the form (6). This

poses a problem for the use of ly as the choice set for such models (see

Stokey and Lucas 1989, pp. 460±461).

Exercise 3.46

Let c0 denote the subspace of ly consisting of all in®nite sequences con-

verging to zero, that is c0 � f�xt� A ly : xt ! 0g. Show that

1. l1 H c0 H ly

2. l1 is the dual of c0

3. ly is the dual of l1

The next two results will be used in subsequent applications. Exercise

3.48 implies the fundamental Lagrange multiplier rule of classical pro-

gramming (chapter 5).

Exercise 3.47

Let X be a linear space and j be a linear functional on the product space

X �R. Then j has the representation

j�x; t� � g�x� � at

where g A X 0 and a A R. [Hint: Show that j�x; t� � j�x; 0� � j�0; 1�t.]
Exercise 3.48 (Fredholm alternative)

Let f ; g1; g2; . . . ; gm be linear functionals on a linear space X. f is linearly

dependent on g1; g2; . . . ; gm, that is, f A lin g1; g2; . . . ; gm if and only if

7
m

j�1

kernel gj J kernel f
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[Hint: De®ne the function G: X ! Rn by G�x� � �g1�x�; g2�x�; . . . ; gm�x��
and apply exercise 3.22.]

3.3.2 Hyperplanes

In section 1.4.3 we de®ned hyperplanes as the largest proper a½ne subsets

of a linear space X. We now develop an alternative characterization of

hyperplanes as the contours of linear functionals. This intimate and useful

correspondence between sets in the primal space X and elements in the

dual space X 0 provides the foundation of the theory of duality.

Exercise 3.49

H is a hyperplane in a linear space X if and only if there exists a nonzero

linear functional f A X 0 such that

H � fx A X : f �x� � cg
for some c A R.

We use Hf �c� to denote the speci®c hyperplane corresponding to the

c-level contour of the linear functional f.

Example 3.21 (Hyperplanes in Rn) Since every linear functional on Rn

corresponds to a valuation function for some price list p (proposition 3.4),

hyperplanes in Rn are sets of constant value. That is, a set H in Rn is a

hyperplane if and only if there exists some price list p A Rn and constant c

such that

H � fx : p1x1 � p2x2 � � � � � pnxn � cg
The zero hyperplane c � 0 is the subspace of all elements in X that are

orthogonal to p, that is,

Hp�0� � x A Rn :
X

pixi � 0
n o

Other hyperplanes with the same price vector p consist of parallel trans-

lations of this subspace, with the distance from the origin increasing with

jcj (®gure 3.2). The price vector p is called the normal to the hyperplane

Hp�c�. It has a geometric representation as a vector at right angles to the

hyperplane.

Example 3.22 (Isopro®t lines) For a competitive ®rm the net revenue

function
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Pp�y� �
Xn

i�1

pi yi

is a linear functional on the production possibility set Y HRn. The con-

tours of the net revenue function

Hp�c� � fy A Y : Pp�y� � cg
are hyperplanes containing those production plans which yield a constant

pro®t c. They are sometimes known as isopro®t lines (®gure 3.3).

Excluding the special case in which the hyperplane is a subspace, the

correspondence between hyperplanes in the primal space and linear func-

tional in the dual space is unique.

Exercise 3.50

Let H be a hyperplane in a linear space that is not a subspace. Then there

is a unique linear functional f A X 0 such that

H � fx A X : f �x� � 1g
On the other hand, where H is a subspace, we have the following

primitive form of the Hahn-Banach theorem (section 3.9.1).

Exercise 3.51

Let H be a maximal proper subspace of a linear space X and x0 B H. (H is

a hyperplane containing 0). There exists a unique linear functional f A X 0

Figure 3.2
A hyperplane in R2
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such that

H � fx A X : f �x� � 0g and f �x0� � 1

All linear functionals that share the same kernel di¨er only in their

scale. If f is a linear functional with kernel V and f �x0� � 1, then for any

l0 0 the linear functional g � lf also has kernel V but g�x0� � l. Con-

versely, if two linear functionals share the same kernel, they must be

scalar multiples of one another (exercise 3.52). In this sense the linear

functional corresponding to a particular hyperplane is only uniquely

de®ned up to a scalar multiple. Selecting a particular linear functional

from the class with a common kernel is known as normalization.

Remark 3.2 (Normalization) Since the hyperplane

Hlp�lc� � x A Rn :
X

lpixi � lc
n o

is identical to the hyperplane

Hp�c� � x A Rn :
X

pixi � c
n o

it is often useful to standardize the representation of a given hyperplane.

This standardization is called normalization. Common normalizations

include choosing c � 1, kpk � 1, or pi � 1 for some i. It is important to

appreciate that normalizing involves nothing more than selecting one of

Figure 3.3
Isopro®t lines
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the multitude of equivalent representations of a given hyperplane and

implies no loss of generality. In an economic context in which hyper-

planes correspond to valuations at given prices, normalization corre-

sponds to selecting the scale of the general price level. Selecting good i as

numeÂraire corresponds to the normalization pi � 1.

Exercise 3.52 is a simple version of the Lagrange multiplier theorem

(theorem 5.2) for constrained optimization. l is the Lagrange multiplier.

It is also a special case of exercise 3.48.

Exercise 3.52

For any f ; g A X 0

kernel f � kernel g, f � lg

for some l A Rnf0g.
Finally, we note that closed hyperplanes in X correspond precisely to

continuous linear functionals in X 0. That is, there is a one-to-one rela-

tionship between closed hyperplanes in X and elements of X �.

Exercise 3.53

Let f be a nonzero linear functional on a normed linear space X. The

hyperplane

H � fx A X : f �x� � cg
is closed if and only if f is continuous.

3.4 Bilinear Functions

A function f : X � Y ! Z between linear spaces X, Y and Z is bilinear if

it linear in each factor separately, that is, for all x; x1; x2 A X and

y; y1; y2 A Y ,

f �x1 � x2; y� � f �x1; y� � f �x2; y�
(additivity)

f �x; y1 � y2� � f �x; y1� � f �x; y2�
f �ax; y� � af �x; y� � f �x; ay� for every a A R

(homogeneity)
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In other words, the partial functions fx: Y ! Z and fy: X ! Z are linear

for every x A X and y A Y respectively.

Bilinear functions are one of the most common types of nonlinear

functions. They are often used to represent the objective function in eco-

nomic models. Bilinear functions are also encountered in the second-order

conditions for optimization, since the second derivative of any smooth

function is bilinear (section 4.4.1). Most of the bilinear functions that we

will encounter are real-valued �Z � R�, in which case we speak of bilinear

functionals. Two important classes of bilinear functional that we will

encounter in this book are the inner product and quadratic forms. These

are introduced in separate sections below.

Example 3.23 The familiar product function f : R2 ! R de®ned by

f �x; y� � xy is bilinear, since

f �x1 � x2; y� � �x1 � x2�y � x1y� x2y � f �x1; y� � f �x2; y�
and

f �ax; y� � �ax�y � axy � af �x; y� for every a A R

Example 3.24 Any m� n matrix A � �aij� of numbers de®nes a bilinear

functional on Rm �Rn by

f �x; y� �
Xm

i�1

Xn

j�1

aijxi yj

Exercise 3.54

Show that the function de®ned in the previous example is bilinear.

There is an intimate relationship between bilinear functionals and

matrices, paralleling the relationship between linear functions and

matrices (theorem 3.1). The previous example shows that every matrix

de®nes a bilinear functional. Conversely, every bilinear functional on

®nite dimensional spaces can be represented by a matrix.

Exercise 3.55 (Matrix representation of bilinear functionals)

Let f : X � Y ! R be a bilinear functional on ®nite-dimensional linear

spaces X and Y. Let m � dim X and n � dim Y . For every choice of

bases for X and Y, there exists an m� n matrix of numbers A � �aij� that

represents f in the sense that
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f �x; y� �
Xm

i�1

Xn

j�1

aijxi yj for every x A X and y A Y

Example 3.25 Let X be any linear space and Y � X 0 be the dual space.

Then

f �x; y� � y�x�
is a bilinear functional on X � X 0.

Exercise 3.56

Show that the function f de®ned in the preceding example is bilinear.

Exercise 3.57

Let BiL�X � Y ;Z� denote the set of all continuous bilinear functions

from X � Y to Z. Show that BiL�X � Y ;Z� is a linear space.

The following result may seem rather esoteric but is really a straight-

forward application of earlier de®nitions and results. It will be used in the

next chapter.

Exercise 3.58

Let X ;Y ;Z be linear spaces. The set BL�Y ;Z� of all bounded linear func-

tions from Y to Z is a linear space (exercise 3.33). Let BL�X ;BL�Y ;Z��
denote the set of bounded linear functions from X to the set BL�Y ;Z�.
Show that

1. BL�X ;BL�Y ;Z�� is a linear space.

2. Let j A BL�X ;BL�Y ;Z��. For every x A X , jx is a linear map from Y

to Z. De®ne the function f : X � Y ! Z by

f �x; y� � jx�y�
Show that f is bilinear, that is, f A BiL�X � Y ;Z�.
3. For every f A BiL�X � Y ;Z�, let fx denote the partial function

fx: Y ! Z de®ned by

fx�y� � f �x; y�
De®ne

jf �x� � fx

Show that jf A BL�X ;BL�Y ;Z��.
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This establishes a one-to-one relationship between the spaces

BiL�X � Y ;Z� and BL�X ;BL�Y ;Z��.
3.4.1 Inner Products

A bilinear functional f on the space X � X is called

symmetric if f �x; y� � f �y; x� for every x; y A X

nonnegative de®nite if f �x; x�V 0 for every x A X

positive de®nite if f �x; x� > 0 for every x A X , x0 0

Exercise 3.59 (Cauchy-Schwartz inequality)

Every symmetric, nonnegative de®nite bilinear functional f satis®es the

inequality

� f �x; y��2 U f �x; x� f �y; y�
for every x; y A X .

A symmetric, positive de®nite bilinear functional on a linear space X is

called an inner product. It is customary to use a special notation to denote

the inner product. We will use xT y to denote f �x; y� when f is an inner

product. By de®nition, an inner product satis®es the following properties

for every x; x1; x2; y A X :

symmetry xT y � yT x

additivity �x1 � x2�T y � xT
1 y� xT

2 y

homogeneity axT y � axT y

positive de®niteness xT xV 0 and xT x � 0 if and only if x � 0

Remark 3.3 (Notation) A variety of notation is used for the inner prod-

uct. The common choices x � y and hx; yi emphasize the symmetry of the

function. However, our choice xT y will be advantageous in de®ning qua-

dratic forms (section 3.5.3) and representing the derivative (chapter 4).

We will ®nd it convenient to use x � y in section 6.2.1.

A linear space equipped with an inner product is called an inner product

space. Every inner product de®nes a norm (exercise 3.63) given by

kxk �
���������
xT x
p
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Consequently every inner product space is a normed linear space. A ®nite-

dimensional inner product space is called a Euclidean space and a com-

plete inner product space is called a Hilbert space.

Example 3.26 Rn is a Euclidean space, with inner product xT y �Pn
i�1 xi yi.

Exercise 3.60

Every Euclidean space is complete, that is, a Hilbert space.

Exercise 3.61 (Cauchy-Schwartz inequality)

For every x; y in an inner product space,

jxT yjU kxk kyk
Exercise 3.62

The inner product is a continuous bilinear functional.

Exercise 3.63

The functional kxk �
���������
xT x
p

is a norm on X.

Exercise 3.64

Every element y in an inner product space X de®nes a continuous linear

functional on X by fy�x� � xT y.

Exercise 3.65 (Existence of extreme points)

A nonempty compact convex set in an inner product space has at least

one extreme point.

Exercise 3.66 (Parallelogram law)

In an inner product space

kx� yk2 � kxÿ yk2 � 2kxk2 � 2kyk2

Remark 3.4 An inner product space mimics the geometry of ordinary

Euclidean space. It is the most structured of linear spaces. Not all normed

linear spaces are inner product spaces (e.g., ly in example 1.107 and

C�X� in exercise 3.67). In fact, a normed linear space is an inner product

space if and only if its norm satis®es the parallelogram law (exercise 3.66),

in which case the inner product can be recovered from the norm by the

following polarization identity:

xT y � 1
4 �kx� yk2 ÿ kxÿ yk2�

291 3.4 Bilinear Functions



Exercise 3.67

Show that C�X � (exercise 2.85) is not an inner product space. [Hint: Let

X � �0; 1�, and consider the functionals x�t� � 1 and y�t� � t.]

Two vectors x and y in an inner product space X are orthogonal if

xT y � 0. We symbolize this by x ? y. The orthogonal complement S? of a

subset S HX as the set of all vectors that are orthogonal to every vector

in S, that is,

S? � fx A X : xT y � 0 for every y A Sg
A set of vectors fx1; x2; . . . ; xng is called pairwise orthogonal if xi ? xj for

every i 0 j. A set of vectors fx1; x2; . . . ; xng is called orthonormal if it is

pairwise orthogonal and each vector has unit length so that

xT
i xj � 1 if i � j

0 otherwise

�
Example 3.27 (Orthonormal basis) Every orthonormal set is linearly

independent (exercise 3.68). If there are su½cient vectors in the ortho-

normal set to span the space, the orthonormal set is called an orthonormal

basis. The standard basis fe1; e2; . . . ; eng for Rn (example 1.79) is an

orthonormal basis, since

eT
i ej � 1 if i � j

0 otherwise

�
Exercise 3.68

Any pairwise orthogonal set of nonzero vectors is linearly independent.

Exercise 3.69

Let the matrix A � �aij� represent a linear operator with respect to an

orthonormal basis x1; x2; . . . ; xn for an inner product space X. Then

aij � xT
i f �xj� for every i; j

A link between the inner product and the familiar geometry of R3 is

established in the following exercise, which shows that the inner product

is a measure of the angle between two vectors.

Exercise 3.70

For any two nonzero elements x and y in an inner product space X, de®ne

the angle y between x and y by
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cos y � xT y

kxk kyk �7�

for 0U yU p. Show that

1. ÿ1U cos yU 1

2. x ? y if and only if y � 90 degrees

The angle between two vectors is de®ned by (7) corresponds to the

familiar notion of angle in R2 and R3.

Exercise 3.71 (Pythagoras)

If x ? y, then

kx� yk2 � kxk2 � kyk2

The next result provides the crucial step in establishing the separating

hyperplane theorem (section 3.9).

Exercise 3.72 (Minimum distance to a convex set)

Let S be a nonempty, closed, convex set in a Euclidean space X and y a

point outside S (®gure 3.4). Show that

1. There exists a point x0 A S which is closest to y, that is,

kx0 ÿ ykU kxÿ yk for every x A S

[Hint: Minimize g�x� � kxÿ yk over a suitable compact set.]

2. x0 is unique

3. �x0 ÿ y�T�xÿ x0�V 0 for every x A S

Finite dimensionality is not essential to the preceding result, although

completeness is required.

Exercise 3.73

Generalize the preceding exercise to any Hilbert space. Speci®cally, let S

be a nonempty, closed, convex set in Hilbert space X and y B S. Let

d � inf
x AS
kxÿ yk

Then there exists a sequence �xn� in S such that kxn ÿ yk ! d. Show

that
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1. �xn� is a Cauchy sequence.

2. There exists a unique point x0 A S which is closest to y, that is,

kx0 ÿ ykU kxÿ yk for every x A S

To complete this section, we give two important applications of exer-

cise 3.72. Exercise 3.74 was used in chapter 2 to prove Brouwer's ®xed

point theorem (theorem 2.6).

Exercise 3.74 (Existence of a retraction)

Let S be a closed convex subset of a Euclidean space X and T be another

set containing S. There exists a continuous function g: T ! S that

retracts T onto S, that is, for which g�x� � x for every x A S.

Earlier (exercise 3.64) we showed that every element in an inner prod-

uct space de®nes a distinct continuous linear functional on the space. We

now show that for a complete linear space, every continuous linear func-

tional takes this form.

Exercise 3.75 (Riesz representation theorem)

Let f A X � be a continuous linear functional on a Hilbert space X. There

exists a unique element y A X such that

f �x� � xT y for every x A X

[Hint: Show that there exists some z ? S � kernel f and consider Ŝ �
f f �x�zÿ f �z�x : x A Xg.]

Figure 3.4
Minimum distance to a closed convex set
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Remark 3.5 (Re¯exive normed linear space) Exercise 3.205 shows that

dual X � of a normed linear space X contains nonzero elements. Since X �

is a normed linear space in its own right (proposition 3.3), it too has a

dual space denoted X �� which is called the second dual space of X. Every

x A X de®nes a linear functional F on X � by

F� f � � f �x� for every f A X �

In general, X �� is bigger than X, that is there are linear functionals on X �

which cannot be identi®ed with elements in X. A normed linear space is

called re¯exive if X � X ��, that is for every F A X ��, there exists an x A X

such that

f �x� � F � f � for every f A X �

Every ®nite-dimensional space and every Hilbert space is re¯exive.

Exercise 3.76

If X is a Hilbert space, then so is X �.

Exercise 3.77

Every Hilbert space is re¯exive.

Exercise 3.78 (Adjoint transformation)

Let f A L�X ;Y� be a linear function between Hilbert spaces X and Y.

1. For every y A Y , de®ne fy�x� � f �x�T y. Then fy A X �.

2. There exists a unique x� A X such that fy�x� � xT x�.

3. De®ne f �: Y ! X by f ��y� � x�. Then f � satis®es

f �x�T y � xT f ��y�
4. f � is a linear function, known as the adjoint of f.

3.5 Linear Operators

Some important tools and results are available for linear operators, that

is, linear functions from a set to itself. Since every linear operator on a

®nite-dimensional space can be represented (proposition 3.1) by a square

matrix, the following can be seen alternatively as the theory of square

matrices.
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Example 3.28 (Identity operator) The identity operator I : X ! X maps

every point in X to itself, that is,

I�x� � x for every x A X

If dim X � n <y, the identity operator is represented (relative to any

basis) by the identity matrix of order n,

In �

1 0 . . . 0

0 1 . . . 0
..
. ..

. . .
. ..

.

0 0 . . . 1

0BBB@
1CCCA

n�n

Exercise 3.79

Every linear operator f : X ! X has at least one ®xed point.

3.5.1 The Determinant

The set of all linear operators on a given space X is denoted L�X ;X �. If X

is ®nite-dimensional, there is a unique functional det on L�X ;X � with the

following properties

. det� f � g� � det� f � det�g�

. det�I� � 1

. det� f � � 0 if and only if f is nonsingular

for every f ; g A L�X ;X �. This functional is known as the determinant. The

last property is especially important, the determinant provides a simple

means of distinguishing nonsingular operators. Note that the determinant

is not a linear functional. In general, det� f � g�0 det� f � � det�g�.
Example 3.29 Let dim X � 1. Every linear operator on X takes the

form

f �x� � ax

for some a A R. The functional j� f � � a satis®es the properties of the

determinant. Therefore det� f � � j� f � � a.

The determinant of a square matrix is de®ned to be the determinant of

the linear operator that it represents. The determinant of a matrix A can

be computed recursively by the formula
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det�A� �
Xn

j�1

�ÿ1� i�j
aij det�Aij� �8�

where Aij is the �nÿ 1� � �nÿ 1� matrix obtained from A by deleting the

ith row and jth column. This is known as ``expansion along the ith row.''

Alternatively, the determinant can be calculated by ``expansion down the

jth column'' using the formula

det�A� �
Xn

i�1

�ÿ1� i�j
aij det�Aij� �9�

It is a remarkable implication of the structure of linear operators that it

does not matter which basis we use to represent the operator by a matrix,

nor does it matter which row or column we use in the recursion. The

determinant of a linear operator f is uniquely de®ned by (8) or (9) for any

matrix representation A. To prove this would require a substantial diver-

sion from our main path, and so the discussion is omitted. Suitable refer-

ences are given at the end of the chapter.

Example 3.30 The determinant of the matrix

A � a11 a12

a21 a22

� �
is sometimes denoted by

jAj � a11 a12

a21 a22

���� ����
Expanding along the ®rst row and using example 3.29, we have

det A � a11 a12

a21 a22

���� ���� � a11 det�a22� ÿ a12 det�a21�

� a11a22 ÿ a12a21

Example 3.31 (Triangular matrix) A matrix A � �aij� is called upper-

triangular if aij � 0 for every i > j and lower-triangular if aij � 0 for every

i < j. Thus a triangular matrix has only zero elements on one side of the

diagonal. The matrix
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A �
1 0 3

0 2 1

0 0 3

0@ 1A
is upper-triangular. Expanding down the ®rst column, its determinant is

det�A� � 1
2 1

0 3

���� ����� 0
0 3

0 3

���� ����� 0
0 3

2 1

���� ����
� 1�2� 3ÿ 0� 1� � 6

which is the product of the diagonal elements.

We record several useful properties of the determinant in the following

proposition.

Proposition 3.5 (Properties of the determinant) For any matrices A and

B,

1. det�AB� � det�A� det�B�.
2. det�I� � 1.

3. det�A� � 0 if and only if A is invertible.

4. det Aÿ1 � 1=det�A�.
5. If A has a row of zeros, then det�A� � 0.

6. det�AT� � det�A�.
7. If A has two rows that are equal, det A � 0.

8. If B is obtained from A by multiplying a row of A by a number a, then

det�B� � adet�A�.
9. If B is obtained from A by interchanging two rows, det�B� � ÿdet�A�.
10. If B is obtained from A by adding a multiple of one row to a di¨erent

row, then det�B� � det�A�.
11. If A is triangular, det�A� is the product of the diagonal entries.

Proof The ®rst three properties are simply translations of the properties

of the determinant of an operator. Property 4 is proved in exercise 3.80.

The remaining properties ¯ow from the expansions (8) and (9) (Simon

and Blume 1994, pp. 726±735). r
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Exercise 3.80

Suppose that the matrix A has an inverse Aÿ1. Then det�Aÿ1� � 1=det�A�.
The determinant of a matrix is ``linear in the rows'' in the sense estab-

lished in the following exercise. An analogous result holds for columns.

Exercise 3.81

Let A, B, and C be matrices that di¨er only in their ith row, with the ith

row of C being a linear combination of the rows of A and B. That is,

A �

a1

..

.

ai

..

.

an

0BBBBB@

1CCCCCA; B �

a1

..

.

bi

..

.

an

0BBBBB@

1CCCCCA; C �

a1

..

.

aai � bbi

..

.

an

0BBBBB@

1CCCCCA
Then

det�C� � a det�A� � b det�B�
3.5.2 Eigenvalues and Eigenvectors

For linear operators, a generalization of the notion of a ®xed point proves

useful. Given a linear operator f : X ! X , a nonzero element x A X is

called an eigenvector if

f �x� � lx

for some number l A R. The constant l is called an eigenvalue of f. The

synonyms characteristic vector and characteristic value are also used. The

operator acts very simply on its eigenvectors, scaling them by a constant.

If the eigenvalue l corresponding to an eigenvector is one, then the

eigenvector is a ®xed point. The eigenvectors corresponding to a par-

ticular eigenvalue, together with the zero vector 0X , form a subspace of X

called an eigenspace (exercise 3.82).

Exercise 3.82

Show that the eigenvectors corresponding to a particular eigenvalue,

together with the zero vector 0X , form a subspace of X

Exercise 3.83 (Zero eigenvalues)

A linear operator is singular if and only if it has a zero eigenvalue.
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Exercise 3.84

If x is an eigenvector of a linear operator f on an inner product space X

with eigenvalue l, then the eigenvalue l can be expressed as

l � f �x�T x

kxk
An operator f on an inner product space X is called symmetric if

f �x�T y � xT f �y� for every x; y A X

If the inner product space is ®nite-dimensional (Euclidean), the operator

can be represented by a matrix (proposition 3.1), in the sense that

f �x� � Ax for every x A X

Provided that we use an orthonormal basis (example 3.27) for the repre-

sentation, the operator is symmetric if and only if its associated matrix is

a symmetric matrix, that is, A � AT . Since many of the linear operators

encountered in practice are represented by symmetric matrices, the prop-

erties of symmetric operators are important.

Exercise 3.85

Let f be a linear operator on a Euclidean space, and let the matrix

A � �aij� represent f with respect to an orthonormal basis. Then f is a

symmetric operator if and only if A is a symmetric matrix, that is,

A � AT .

Remark 3.6 (Self-adjoint operator) A symmetric operator on a Hilbert

space is often called self-adjoint. The adjoint f � of a linear operator f

is de®ned by (exercise 3.78) f �x�T y � xT f ��y�. If the operator f is sym-

metric, then

f �x�T y � xT f �y� for every x; y A X

which implies that f � � f .

Exercise 3.86

For a symmetric operator, the eigenvectors corresponding to distinct

eigenvalues are orthogonal.

Remark 3.7 (Existence of eigenvalues) Not every linear operator has an

eigenvalue (example 2.3). However, every symmetric operator on a
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Euclidean space has eigenvalues and the corresponding eigenvectors form

a basis for the space (proposition 3.6). To be able to analyze nonsym-

metric operators, many texts on linear algebra resort to complex linear

spaces, in which the scalars are complex numbers (Halmos 1974, p. 150).

Then it can be shown that every ®nite-dimensional linear operator has an

eigenvalue that may, however, be complex (Janich 1994, p. 156)

Exercise 3.87

Let f be a symmetric operator on a Euclidean space X. Let S be the

unit sphere in X, that is S � fx A X : kxk � 1g, and de®ne g: X � X ! R
by

g�x; y� � �lxÿ f �x��T y where l � max
x AS

f �xT�x �10�

Show that

1. The maximum in (10) is attained at some x0 A S. Therefore g is well-

de®ned.

2. g is nonnegative de®nite.

3. g is symmetric.

4. x0 is an eigenvector of f.

Hence every symmetric operator on a Euclidean space has an eigenvector

of norm 1. [Hint: Use exercise 3.59.]

The following key result is an existence theorem for eigenvalues. It

shows that the eigenvalues of a symmetric linear operator on a Euclidean

space X are real (as opposed to complex). Furthermore, although the

eigenvalues may not be distinct, there are su½cient linearly independent

eigenvectors to span the space.

Proposition 3.6 (Spectral theorem) If f is a symmetric linear operator on

a Euclidean space X, then X has an orthogonal basis comprising eigenvectors

of f. The matrix representing f with respect to this basis is a diagonal matrix

whose diagonal elements are the eigenvalues of f.

Proof By exercise 3.87, there exists an eigenvector x0 of norm 1. Let

n � dim X . If n � 1, then x1 is a basis for X. Otherwise �n > 1�, assume

that the proposition is true for all spaces of dimension nÿ 1. Let

S � fx0g?. We claim (exercise 3.88) that
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. S is a subspace of dimension nÿ 1

. f �S�JS.

Therefore f is a symmetric linear operator on S on a Euclidean space

of dimension nÿ 1. By assumption, S has an orthonormal basis

fx2; x3; . . . ; xng of eigenvectors. x1 is orthogonal to xi, i � 2; 3; . . . ; n, and

therefore fx1; x2; . . . ; xng is a basis for X (exercise 3.68). Let the matrix A

represent f with respect to the orthonormal basis fx1; x2; . . . ; xng. By

exercise 3.69,

aij � xT
i f �xj� � ljx

T
i xj � li i � j

0 i0 j

�
r

Exercise 3.88

Let S be de®ned as in the preceding proof. Show that

1. S is a subspace of dimension nÿ 1

2. f �S�JS

Exercise 3.89 (Determinant of symmetric operator)

The determinant of symmetric operator is equal to the product of its

eigenvalues.

2.5.3 Quadratic Forms

Let X be a Euclidean space. A functional Q: X ! R is called a quadratic

form if there exists a symmetric linear operator f : X ! X such that

Q�x� � xT f �x� for every x A X

Quadratic forms are amongst the simplest nonlinear functionals we

encounter. They play an important role in optimization (chapter 5).

Example 3.32 The function

Q�x1; x2� � x2
1 � 4x1x2 � x2

2

is a quadratic form on R2. The matrix

A � 1 2

2 1

� �
de®nes a symmetric linear operator on R2,
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f �x1; x2� � 1 2

2 1

� �
x1

x2

� �
� x1 � 2x2

2x1 � x2

� �
and

xT f �x� � �x1; x2�T x1 � 2x2

2x1 � x2

� �
� x2

1 � 4x1x2 � x2
2 � Q�x1; x2�

As the previous example suggests, any n� n symmetric matrix A � �aij�
of numbers de®nes a quadratic form by

Q�x� �
Xn

i�1

Xn

j�1

aijxixj

which is usually compactly written as Q�x� � xT Ax. Conversely, every

quadratic form can be represented by a symmetric matrix. As with linear

functions (proposition 3.1), the speci®c matrix which represents a given

quadratic form depends upon the choice of basis for X. For a ®xed basis

there is a one-to-one relationship between quadratic forms Q and their

representing matrices A speci®ed by Q�x� � xT Ax. Accordingly we usually

do not distinguish between a quadratic form and its matrix representation.

Exercise 3.90

Let the matrix A � �aij� represent a linear operator f with respect to the

orthonormal basis x1; x2; . . . ; xn. Then the sum

Q�x� �
Xn

i�1

Xn

j�1

aijxixj

de®nes a quadratic form on X, where x1; x2; . . . ; xn are the coordinates of

x relative to the basis.

Example 3.33 (Quadratic forms on R2) The general two-dimensional

quadratic form Q: R2 ! R,

Q�x1; x2� � a11x2
1 � 2a12x1x2 � a22x2

2

is represented by the matrix

A � a11 a12

a21 a22

� �
where a12 � a21
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Exercise 3.91 (Principal axis theorem)

For any quadratic form Q�x� � xT Ax, there exists a basis x1; x2; . . . ; xn

and numbers such that

Q�x� � l1x2
1 � l2x2

2 � � � � � lnx2
n

where l1; l2; . . . ; ln are the eigenvalues of A and x1; x2; . . . ; xn are the

coordinates of x relative to the basis x1; x2; . . . ; xn.

Recall that a functional is de®nite if it takes only positive or negative

values (section 2.1.1). De®nite quadratic forms are important in practice.

However, no quadratic form Q can be strictly de®nite (exercise 3.93).

Consequently we say that quadratic form Q: X ! R is

positive

negative

� �
de®nite if

Q�x� > 0

Q�x� < 0

� �
for every x0 0 in X

Similarly it is

nonnegative

nonpositive

� �
de®nite if

Q�x�V 0

Q�x�U 0

� �
for every x in X

Otherwise, the quadratic form is called inde®nite. Similarly a symmetric

matrix is called positive (negative) de®nite if it represents positive (nega-

tive) de®nite quadratic form. That is, a symmetric matrix A is

positive

nonnegative

negative

nonpositive

8>>><>>>:
9>>>=>>>; de®nite if

xT Ax > 0

xT AxV 0

xT Ax < 0

xT AxU 0

8>>><>>>:
9>>>=>>>; for every x0 0 in X

Remark 3.8 (Semide®nite quadratic forms) It is common in economics to

describe a nonnegative de®nite quadratic form as positive semide®nite.

Similarly a nonpositive de®nite quadratic form is called negative semi-

de®nite. That is, a quadratic form Q is

positive

negative

� �
semide®nite if

Q�x�V 0

Q�x�U 0

� �
for every x in X

We use the former terminology as it is more descriptive.

Example 3.34 The two-dimensional quadratic form

Q�x1; x2� � a11x2
1 � 2a12x1x2 � a22x2

2 �11�
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is

positive

negative

� �
de®nite if and only if

a11 > 0

a11 < 0

� �
and a11a22 > a2

12 �12�

It is

nonnegative

nonpositive

� �
de®nite if and only if

a11; a22 V 0

a11; a22 U 0

� �
and a11a22 V a2

12

�13�
Exercise 3.92

1. Show that the quadratic form (11) can be rewritten as

Q�x1; x2� � a11 x1 � a12

a11
x2

� �2

� a11a22 ÿ a2
12

a11

� �
x2

2

assuming that a11 0 0. This procedure is known as ``completing the

square.''

2. Deduce (12).

3. Deduce (13).

This is an example of the principal axis theorem (exercise 3.91).

Exercise 3.93

Show that Q�0� � 0 for every quadratic form Q.

Since every quadratic form passes through the origin (exercise 3.93), a

positive de®nite quadratic form has a unique minimum (at 0). Similarly a

negative de®nite quadratic form has a unique maximum at 0. This hints at

their practical importance in optimization. Consequently we need criteria

to identify de®nite quadratic forms and matrices. Example 3.34 provides a

complete characterization for 2� 2 matrices. Conditions for de®niteness

in higher-dimensional spaces are analogous but more complicated (e.g.,

see Simon and Blume 1994, pp. 375±386; Sundaram 1996, pp. 50±55;

Takayama 1985, pp. 121±123; Varian 1992, pp. 475±477.) Some partial

criteria are given in the following exercises.

Exercise 3.94

A positive (negative) de®nite matrix is nonsingular.
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Exercise 3.95

A positive de®nite matrix A � �aij� has a positive diagonal, that is,

A positive de®nite) aii > 0 for every i

One of the important uses of eigenvalues is to characterize de®nite

matrices, as shown in the following exercise.

Exercise 3.96

A symmetric matrix is

positive

nonnegative

negative

nonpositive

8>>><>>>:
9>>>=>>>; de®nite if and only if all eigenvalues are

positive

nonnegative

negative

nonpositive

8>>><>>>:
9>>>=>>>;

Exercise 3.97

A nonnegative de®nite matrix A is positive de®nite if and only if it is

nonsingular.

3.6 Systems of Linear Equations and Inequalities

Many economic models are linear, comprising a system a linear equations

or inequalities

a11x1 � a12x2 � � � � � a1nxn � c1

a21x1 � a22x2 � � � � � a2nxn � c2

..

.

am1x1 � am2x2 � � � � � amnxn � cm

or

a11x1 � a12x2 � � � � � a1nxn U c1

a21x1 � a22x2 � � � � � a2nxn U c2

..

.

am1x1 � am2x2 � � � � � amnxn U cm
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Solving the model requires ®nding values for the variables x1; x2; . . . ; xn

that satisfy the m equations or inequalities simultaneously. A linear model

is called consistent if has such a solution. Otherwise, the model is called

inconsistent.

Matrices can be used to represent these linear systems more compactly,

as in

Ax � c or AxU c �14�
where

A �

a11 a12 . . . a1n

a21 a22 . . . a2n

..

. ..
. . .

. ..
.

am1 am2 . . . amn

0BBB@
1CCCA

is a matrix of coe½cients, x � �x1; x2; . . . ; xn� A Rn is a list of the vari-

ables, and c � �c1; c2; . . . ; cn� A Rm is a list of constants.

Example 3.35 (Leontief input-output model) Consider the linear produc-

tion model (example 1.103) with n commodities in which

. each activity produces only one output

. each commodity is an output of only one activity.

Let ai � �ai1; ai2; . . . ; ain� denote the production plan for producing one

unit of commodity i. Then aij , i 0 j represents the quantity of commodity

j required to produce one unit of commodity i. By de®nition, aii � 1 for

every i. (aii � 1 is the net output of i in activity i, after allowing for any

use of good i in producing itself.) Since each activity produces only one

input, aij U 0 for every i0 j.

Let xi denote the scale or intensity of activity i. Then xi denotes the

gross output of commodity i and aijxi is the amount of good j required to

produce xi units of i. However, each commodity is used in the production

of other goods. If each of the n activities is operated at scale xj, the net

output of good i is

yi �
Xn

j�1

aijxj

and the total net output of the economy is
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y � Ax �15�
where A is the n� n matrix whose rows ai comprise the basic activities. It

is called the technology matrix. A particular net output y will be feasible

provided there exists a nonnegative solution to the linear system (15).

That is, feasibility requires an intensity vector x that satis®es the system of

equations and inequalities

Ax � y; xV 0

We note that most presentations of the Leontief input±output model

start with a nonnegative matrix Â listing the input requirements to pro-

duce one unit of each output (e.g., Simon and Blume 1994, pp. 110±13;

Gale 1960). Then the technology matrix A is given by I ÿ Â, where I is

the n� n identity matrix.

It is often fruitful to view a linear model as a linear function f �x� � Ax

from Rn to Rm (example 3.3). In this section we catalog some of the

implications of the theory of linear functions for linear models such as

(14), dealing in turn with equation and inequalities.

3.6.1 Equations

A vector x will be a solution of the system of equations

Ax � c �16�
if and only if f maps x into c. Consequently the linear model (16) will have

a solution if and only if c A f �X�, the image of X. For any c A f �X � the set

of all solutions to (16) is simply the inverse image of c, f ÿ1�c�.
A special case of a linear system occurs when c � 0. Such a system is

called homogeneous. The set of solutions to the homogeneous linear

system

Ax � 0 �17�
is the kernel of the linear mapping f �x� � Ax. We know that the kernel of

any linear mapping is a subspace (exercise 3.17), which implies that

. 0 is always a solution of (17). It is called the trivial solution.

. If x1; x2 are solutions of (17), then their sum x1 � x2 is also a solution.

. The homogeneous system has a nontrivial solution x0 0 if and only

rank f � rank A < n.
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Exercise 3.98

Verify these assertions directly.

The general linear equation system (16) with c0 0 is called a non-

homogeneous system of equations. The set of solutions to a nonhomoge-

neous system form an a½ne subset of X. This implies that

. If x1; x2 are solutions of (16), then their di¨erence x1 ÿ x2 is a solution

of the corresponding homogeneous system (17).

. The set of all solutions to the nonhomogeneous system 16 takes the

form xp � K , where xp is any particular solution to the nonhomogeneous

system 16 and K is the set of all solutions to the corresponding homoge-

neous system (17) (the kernel of f ).

. if 0 is the only solution of homogeneous system (17), then the non-

homogeneous system (16) has a unique solution.

Exercise 3.99

Verify these assertions directly.

Exercise 3.100

The set of solutions to a nonhomogeneous system of linear equations

Ax � c is an a½ne set.

The converse is also true.

Exercise 3.101

Every a½ne set in Rn is the solution set of a system of a linear equations.

We conclude that there are three possible cases for the number of

solutions to a linear equation system. A system of linear equations (16)

may have

No solution c B f �Rn�
A unique solution c A f �Rn� and kernel f � f0g (or rank A � n)

An in®nity of solutions c A f �Rn� and kernel f 0 f0g (rank A < n)

In the ®rst case the system is inconsistent, and there is not much more to

said. The second and third cases are consistent systems.

x � �x1; x2; . . . ; xn� is a solution of the linear system Ax � c if and only

if
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c1

c2

..

.

cm

0BBB@
1CCCA � x1

a11

a21

..

.

am1

0BBB@
1CCCA� x2

a12

a22

..

.

am2

0BBB@
1CCCA� � � � � xn

a1n

a2n

..

.

amn

0BBB@
1CCCA

that is,

c � x1A1 � x2A2 � � � � � xnAn �18�
where Ai are the columns of A. Thus the system (16) is consistent if and

only if c A linfA1;A2; . . . ;Ang, which is called the column space of A.

Furthermore the equation system Ax � c has a solution for every c A Rm

provided that the columns of A span Rm. This requires that rank A � m,

the number of equations.

In the third case (multiple solutions) there are fewer equations than

variables, and the system is said to be underdetermined. Practitioners are

most interested in the solutions with the fewest number of nonzero com-

ponents. If rank A � m < n, any c A Rm can be expressed as a linear

combination of at most m columns which form a basis for Rm. That is,

there exist solutions (18) with xj 0 0 for at most m columns of A. A

solution with at most m nonzero components is called a basic solution of

(16), since the nonzero components corresponds to the elements of a basis

for Rm.

Exercise 3.102

Prove that the linear equation system

x1 � 3x2 � c1

x1 ÿ x2 � c2

has a unique solution for every choice of c1; c2.

Exercise 3.103 (Cramer's rule)

Let Ax � c be a linear equation system with A a nonsingular square n� n

matrix (rank A � n). For every c A Rn there exists a unique solution

x � �x1; x2; . . . ; xn� given by

xj � det�Bj�
det�A� ; j � 1; 2; . . . ; n

where
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Bj �
a11 . . . c1 . . . a1n

..

. ..
. ..

.

an1 . . . cn . . . ann

0B@
1CA

is the matrix obtained by replacing the jth column of A with c. [Hint:

Subtract c from the jth column of A and apply exercise 3.81.]

Cramer's rule (exercise 3.103) is not a practical method of solving large

systems of equations. However, it can be used to analyze how the solution

x varies with changes in c. It is an important tool comparative statics

(example 6.14).

Exercise 3.104

Show that

a b

c d

� �ÿ1

� 1

D

d ÿb

ÿc a

� �
where D � det�A� � ad ÿ bc.

Example 3.36 (Portfolio investment) Example 3.4 introduced a simple

linear model of portfolio investment comprising A risky assets or secu-

rities and S states of the world. If rsa denotes the return of asset a in state s

and x � �x1; x2; . . . ; xA� is a list of amounts invested in di¨erent assets,

the total return f �x� of a portfolio x is given by

f �x� � Rx �

PA
a�1 r1axaPA
a�1 r2axa

..

.PA
a�1 rSaxa

0BBBB@
1CCCCA

where

R �
r11 r12 . . . r1A

r21 r22 . . . r2A

� � � � � � � � � � � � � � �
rS1 rS2 . . . rSA

0BB@
1CCA� �

is the matrix of prospective returns. The sth component of f �x�,PA
a�1 rsaxa, is the total return of portfolio x in state s.
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Note that it is allowable for xa to be negative for some assets. If xa > 0,

then the investor holds a long position in asset a, entitling her to receive

rsaxa if state s pertains. On the other hand, a negative xa indicates a short

position, in which the investor e¨ectively borrows xa units of assets a and

promises to pay back rsaxa in state s.

A portfolio x is called riskless if it provides the same rate of return in

every state, that is,XA

a�1

r1axa �
XA

a�1

r2axa � � � � �
XA

a�1

rSaxa � r

In other words, x is a riskless portfolio if it satis®es the equation

Rx � r1

for some r A R where 1 � �1; 1; . . . ; 1�. A su½cient condition for the

existence of a riskless portfolio is that rank R � S, that is,

. There are at least as many assets as states �AVS�.

. The prospective returns of at least S assets are linearly independent.

In other words, the existence of a riskless portfolio is guaranteed provided

that there are a su½cient number of assets whose returns are independent

across states.

Exercise 3.105

A portfolio is called duplicable if there is a di¨erent portfolio y0 x which

provides exactly the same returns in every state, that is, Rx � Ry orXn

a�1

rsaxa �
Xn

a�1

rsaya for every s A S

Show that every portfolio is duplicable if rank R < A.

Exercise 3.106

A state s is called insurable if there exists a portfolio x which has a positive

return if state s occurs and zero return in any other state, that is,XA

a�1

rsaxa > 0 and
XA

a�1

rsaxa � 0; s0 s

Show that every state is insurable if and only if rank R � S.
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Example 3.37 (Arrow-Debreu securities) Recall that Arrow-Debreu

securities are hypothetical ®nancial assets that pay $1 if and only if a

particular state of the world occurs (example 1.82). Therefore the payo¨

pro®le of the s Arrow-Debreu security is es � �0; . . . ; 1; . . . ; 0�, where the

1 occurs in the location s. Suppose that there is a full set of Arrow-Debreu

securities, that is there exists an Arrow-Debreu security es for every state

s, s � 1; 2; . . . S. Then AVS and rank R � S. From the preceding exer-

cises, we conclude that

. there exists a riskless portfolio

. every portfolio is duplicable

. every state is insurable

Indeed, any pattern of payo¨s (across di¨erent states) can be constructed

by an appropriate portfolio of Arrow-Debreu securities. (The Arrow-

Debreu securities span the payo¨ space f �RA� � RS.)

Assuming that investors only care about the ®nal distribution of

wealth, any two portfolios that provide the same pattern of returns must

have the same value. Therefore, in equilibrium, the price of any ®nancial

asset a must be equal to the value of the corresponding portfolio of

Arrow-Debreu securities that yield the same distribution of payo¨s.

Consequently any security can be valued if we know the price of each

Arrow-Debreu security. That is, if pa is the price of security a with payo¨

vector �r1a; r2a; . . . ; rSa� and ps is the price of the s Arrow-Debreu security,

then in equilibrium

pa �
XS

s�1

rsaps

A single linear equation

ai1x1 � ai2x2 � � � � � ainxn � ci

de®nes a hyperplane in Rn (example 3.21), and it is often convenient to

think of a system of linear equations (16) as a ®nite collection of hyper-

planes. The solution to the system corresponds to the intersection of these

hyperplanes. Figure 3.5 illustrates the possibilities for three equations in

three unknowns. Each equation de®nes a plane in R3. These planes may

intersect in a single point (unique solution), a line, a plane, or not intersect

at all (no solution).
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Exercise 3.107

Draw analogous diagrams illustrating the possible cases for a system of

three equations in two unknowns.

Exercise 3.108

Every a½ne subset of Rn is the intersection of a ®nite collection of

hyperplanes.

3.6.2 Inequalities

A solution to system of linear inequalities

AxU c �19�
is a vector x � �x1; x2; . . . ; xn� that satis®es the inequalities simulta-

neously. While the solution set of a system of equations is an a½ne set

(subspace when c � 0), the set of solutions to a system of linear inequal-

ities (19) is a convex set. When the system is homogeneous, the set of

solutions is a convex cone.

Exercise 3.109

The set of solutions to a system of linear inequalities AxU c is a convex set.

Exercise 3.110

The set of solutions to a homogeneous system of linear inequalities

AxU 0 is a convex cone.

Figure 3.5
The solutions of three equations in three unknowns
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Each inequality aT
i xU ci de®nes a halfspace in Rn (section 3.9).

Therefore the set of solutions S � fx : AxU cg, which satisfy a system of

linear inequalities is the intersection of the m halfspaces. We will show

later (section 3.9.2) that this implies that the solution set S is a particularly

simple convex set, a polytope which is the convex hull of a ®nite number

of points.

Example 3.38 Consider the following system of linear inequalities:

3x1 � 8x2 U 12

x1 � x2 U 2

2x1 U 3

Each of the inequalities de®nes a halfspace in R2. For example, the set

of all points satisfying the inequality 3x1 � 8x2 U 12 is the region below

and to the left of the line (®gure 3.6a) 3x1 � 8x2 � 12. The set of points

satisfying all three inequalities simultaneously is the set that lies below

and to the left of the three lines

3x1 � 8x2 � 12

x1 � x2 � 2

2x1 � 3

This is the shaded region in ®gure 3.6b. Frequently we are only concerned

with nonnegative solutions to a system of inequalities. This is the set

bounded by the axes and the lines (hyperplanes) associated with each of

the inequalities. It is the shaded set in ®gure 3.6c

Any system of inequalities can be transformed into a equivalent system

of equations and nonnegativity conditions, by adding another variable to

each equations. For example, the inequality system

a11x1 � a12x2 � � � � � a1nxn U c1

a21x1 � a22x2 � � � � � a2nxn U c2

..

.

am1x1 � am2x2 � � � � � amnxn U cm

is equivalent to the system of equations
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a11x1 � a12x2 � � � � � a1nxn � xn�1 � c1

a21x1 � a22x2 � � � � � a2nxn � xn�2 � c2

..

. �20�

am1x1 � am2x2 � � � � � amnxn � xn�m � cm

together with the requirement

xn�1 V 0; xn�2 V 0; . . . ; xn�m V 0

The additional variables xn�i are called slack variables, since they measure

the degree of slack in the corresponding ith inequality. This transforma-

tion of inequalities to equations is especially common in optimization

techniques, such as linear programming (section 5.4.4). The transformed

systems has two important characteristics:

Figure 3.6
Systems of inequalities
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. There are fewer equations than variables.

. Some of the variables are restricted to be nonnegative.

Commonly the original variables x1; x2; . . . ; xn are also required to be

nonnegative, and linear systems of the form

Ax � c �21�
xV 0 �22�
are especially prevalent in practice. Since the system (21) necessarily has

more variables m� n than equations m, it will usually be underdeter-

mined. If there exists any feasible solution, there will be multiple solutions.

The simplest of these solutions will be basic feasible solutions.

Earlier we showed that it is always possible to reduce a solution

c � x1A1 � x2A2 � � � � � xnAn

to a linear equation system (21) by eliminating redundant columns,

reducing the number of nonzero components of x to m. However, it is not

clear that this reduction can be done without violating the nonnegativity

constraint (22). In the following exercise we show that any feasible solu-

tion to (21) and (22) can be reduced to a basic feasible solution. This

result, which has important practical consequences, is often called the

fundamental theorem of linear programming.

Exercise 3.111 (Fundamental theorem of linear programming)

Let x be a feasible solution to the linear system

Ax � c; xV 0 �23�
where A is an m� n matrix and c A Rm. Then

c � x1A1 � x2A2 � � � � � xnAn

where Ai A Rm are the columns of A and and xi V 0 for every i. Without

loss of generality, assume that the ®rst k components are positive and the

rest are zero, that is,

c � x1A1 � x2A2 � � � � � xkAk

with k U n and xi > 0 for every a � 1; 2; . . . k.
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1. The columns fA1;A2; . . . ;Akg are vectors in Rm. If the columns

fA1;A2; . . . ;Akg are linearly independent, then k Um and there exists a

basic feasible solution.

2. If the vectors fA1;A2; . . . ;Akg are linearly dependent,

a. There exists a nonzero solution to the homogeneous system

y1A1 � y2A2 � � � � � ykAk � 0

b. For t A R de®ne x̂ � xÿ ty. x̂ is a solution to the nonhomogeneous

system

Ax � c

c. Let

t � min
j

xj

yj
: yj > 0

� �
Then x̂ � xÿ tx is a feasible solution, that is, x̂V 0.

d. There exists h such that

c �
Xk

j
j0h
�1

x̂jAJ

x̂ is a feasible solution with one less positive component.

3. If there exists a feasible solution, there exists a basic feasible solution.

Remark 3.9 Later we will show that the basic feasible solutions of non-

negative system like (23) correspond to the extreme points of the convex

solution set, and that any optimal solution of a linear program will occur

at an extreme point. Therefore the search for optimal solutions to a linear

program can be con®ned to extreme points. The simplex algorithm for

linear programming is an e½cient method for moving from one basic

feasible solution to another.

The fundamental theorem can be used to give an elegant and straight-

forward proof of the Shapley-Folkman theorem (remark 1.20), as out-

lined in the following exercise.

Exercise 3.112 (Shapley-Folkman theorem)

Let fS1;S2; . . . ;Sng be a collection of nonempty (possibly nonconvex)

subsets of an m-dimensional linear space, and let x A conv
Pn

i�1 Si. Then
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1. x �Pn
i�1 xi, where xi A conv Si.

2. x �Pn
i�1

P li
j�1 aijxij, where xij A Si, aij > 0,

P li
j�1 aij � 1.

3. z �Pn
i�1

P li
j�1 aijzij, where

z � x

1

� �
; zij � xij

ei

� �
; 1; ei A Rn

4. z �Pn
i�1

P li
j�1 bijzij with bij V 0 and bij > 0 for at most m� n

components.

5. De®ne x̂i �
P li

j�1 bijxij . Then x̂i � conv Si and x �Pn
i�1 x̂i. Show that

all but at most x̂i actually belong to Si.

3.6.3 Input±Output Models

In the input-output model (example 3.35), a necessary condition for a

given net output y to be feasible is that technology matrix A is non-

singular �rank A � n�. However, nonsingularity is not su½cient, since it

does not guarantee that the corresponding intensity vector

x � Aÿ1y

is nonnegative. An input-output system A is said to be productive if it is

capable of producing a positive amount of all commodities, that is, if the

inequality system

Ax > 0

has any nonnegative solution. In the following exercises, we show that

. A necessary and su½cient condition for input-output system A to have

a nonnegative solution for any output y is that A is productive.

. The system A is productive if and only if A is nonsingular and Aÿ1 is

nonnegative.

Remark 3.10 The ®rst conclusion states that if there is any feasible way

of producing positive quantities of all commodities, then it is possible to

produce any output vector. In other words, it is possible to produce arbi-

trarily large quantities of any of the goods in any proportions. While this

is somewhat surprising, we should recall that there are no resources con-

straints and the system is entirely self-contained. Real economies have

resource constraints that limit the quantity of feasible outputs (example

3.39).
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Exercise 3.113

Assume that A is productive. Show that

1. AzV 0 implies zV 0

2. A is nonsingular

3. for every yV 0, the system Ax � y has a unique nonnegative solution

[Hint: Consider the matrix B � I ÿ AV 0.]

Exercise 3.114

The system A is productive if and only if Aÿ1 exists and is nonnegative.

The essential characteristic of the technology matrix is that its o¨-

diagonal elements are nonpositive. Any n� n matrix A is called a Leontief

matrix if aij U 0, i0 j. In the following exercise we extend the properties

of input-output system to arbitrary Leontief matrices.

Exercise 3.115 (Leontief matrices)

Let A be an n� n matrix with aij U 0, i0 j. Then the following condi-

tions are mutually equivalent:

1. There exists some x A Rn
� such that Ax > 0.

2. For any c A Rn
�, there exists an x A Rn

� such that Ax � c.

3. A is nonsingular and Aÿ1 V 0.

Example 3.39 (Primary inputs) An input that is not produced by any

activity is called a primary input. The standard Leontief model has a

single primary input, which is required by all activities. It is convention-

ally called ``labor.'' If there are primary inputs, then the economy cannot

produce arbitrarily large quanities of output. However, it can still pro-

duce in arbitrary proportions if the technology is productive.

Exercise 3.116

Augment the input-output model to include a primary commodity

(``labor''). Let a0j denote the labor required to produce one unit of com-

modity j. Show that there exists a price system p � � p1; p2; . . . ; pn� such

that the pro®t of each activity (industry) is zero.

3.6.4 Markov Chains

A stochastic process is a dynamical system (example 2.22) in which the

transitions from state to state are random. A Markov chain is a discrete
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stochastic process in which

. the state space is ®nite

. the probabilities of transitions from one state to another are ®xed and

independent of time

Let S � fs1; s2; . . . ; sng denote the ®nite set of states. Let tij denote the

probability that if the system is in state j at some period, it will move to

state i in the next period. tij is called the transition probability from state j

to i. Since tij is a probability, we have

0U tij U 1; i; j � 1; 2; . . . ; n

Furthermore, since the system must be in some state si A S at every

period,

t1j � t2j � � � � � tnj � 1

The vector tj � �t1j; t2j; . . . ; tnj� is the probability distribution of the state

of the system at time t� 1 given that it is in state j in period t.

The important assumption of the model is that the transition proba-

bilities tij are constant through time, so the state of the system at time

t� 1 depends only on the state at time t (and not on the state at any

earlier time). This is called the Markov assumption. A stochastic model

with this assumption is called a Markov process. A Markov process with a

®nite number of states is called a Markov chain.

Let T � �tij� be the matrix of transition probabilities. T is called the

transition matrix. By construction, the transition matrix is nonnegative.

Furthermore the entries in each column sum to 1. Any matrix with these

properties is called a Markov matrix or stochastic matrix.

At any point of time, we can describe the state of the stochastic system

by the probability that it is any given state. Let �pt
1; p

t
2; . . . ; pt

n�,
P

pt
j � 1,

denote the probability distribution of states at time t. pt
j is the probability

that the system is in state sj at time t. Given the distribution pt of states at

time t, the expected distribution at time t� 1 is

pt�1 � Tpt

Furthermore the distribution at time t� k is

pt�k � T kpt
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where T k � TT . . . T
z�����}|�����{k times

. The stochastic behavior of the system is entirely

determined by the transition matrix T. The fact that T is a stochastic

matrix circumscribes the possible behavior of the dynamical system.

While it is convenient to analyze this as a standard linear dynamical

system, it should be emphasized that p in not really the state of Markov

process. At any point in time the process is in one of the n distinct states

s1; s2; . . . ; sn. The vector p lists the probabilities that the process is in the

various states. A distribution p is called a stationary distribution of the

Markov chain with transition matrix T if

p � Tp

that is, p is a ®xed point of the linear mapping de®ned by T. In chapter 2

we used the Brouwer ®xed point theorem to show that every Markov

chain has a stationary distribution (example 2.94). Example 3.87 gives an

alternative proof based on the separating hyperplane theorem.

Example 3.40 (Labor market turnover) Hall (1972) modeled turnover in

the US labor force as a Markov process. Using survey data in 1966, he

estimated that a 30-year-old married white male employee living in New

York had a 0.22 percent chance of becoming unemployed in any given

week. A similar unemployed male had a 13.6 percent chance of obtaining

another job in the same period. This implied the transition probabilities

listed in table 3.1. Similar estimates were obtained for a range of di¨erent

categories based on age, gender, race, and location. Hall used these esti-

mated probabilities in a simple Markov model to explain the di¨erences

in unemployment rates of di¨erent groups. For example, the higher un-

Table 3.1
Transition probabilities in the U.S. labor force

Currently

Remaining/becoming Employed Unemployed

Black males
Employed 0.9962 0.1025
Unemployed 0.0038 0.8975

White males
Employed 0.9978 0.1359
Unemployed 0.0022 0.8641
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employment rate experienced by black men can be attributed to their

higher probability of becoming unemployed in any period as well as a

lower probability of becoming employed again. Note that the Markov

assumption is very strong in this example, since the transition proba-

bilities presumably vary through time with employment experience and

the state of the labor market.

Exercise 3.117

What steady state unemployment rates are implied by the transition

probabilities in table 3.1?

Exercise 3.118

A magazine maintains a mailing list containing both current subscribers

and potential subscribers. Experience has shown that sending a letter to

all the individuals on the list will induce 60 percent of current subscribers

to renew their subscriptions. In addition the letter will sell subscriptions to

25 percent of the potential subscribers who are not actual subscribers.

1. Write out the transition matrix for this stochastic process.

2. Suppose that 40 percent of the mailing list comprise actual subscribers.

How many subscriptions or renewals can be expected from another

mailing.

3.7 Convex Functions

Recall that a linear functional f on a linear space X satis®es the twin

conditions of additivity and homogeneity:

f �x1 � x2� � f �x1� � f �x2�
f �ax1� � af �x1� for every a A R

For many purposes in economics, linearity is too restrictive. For example,

linear production functions imply constant returns to scale, and linear

utility functions imply that the consumer is never satiated no matter how

much she consumes of any good. Convex and homogeneous functions

generalize some of the properties of linear functions, providing more

suitable functional forms (®gure 3.7).

A real-valued function f de®ned on a convex set S of a linear space X is

convex if the value of the function along a line joining any two points x1
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and x2 is never greater than a weighted average of its value at the two

endpoints. Formally the function f : S ! R is convex if for every x1; x2

in S

f �ax1� �1ÿ a�x2�U af �x1� � �1ÿ a� f �x2� for every 0U aU 1 �24�
This condition relaxes the additivity requirement of a linear function,

and dispenses with homogeneity. A function is strictly convex if the in-

equality is strict; that is, for every x1; x2 in S with x1 0 x2,

f �ax1 � �1ÿ a�x2� < af �x1� � �1ÿ a� f �x2� for every 0 < a < 1

Remark 3.11 Strictly speaking, we should refer to convex functionals,

but ``convex function'' is more usual (remark 2.10).

Example 3.41 Two familiar convex functions x2 and ex are illustrated

in ®gure 3.8. Note how a line joining any two points on the curve lies

everywhere above the curve.

Figure 3.7
Generalizing linear functions
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Exercise 3.119

Show that x2 is convex on R.

Exercise 3.120 (Power function)

Show that the power functions f �x� � xn, n � 1; 2; . . . are convex on R�.

Example 3.42 (Pro®t function) The pro®t function of a competitive ®rm

(example 2.29)

P�p� � sup
y AY

X
i

pi yi

measures the maximum pro®t which the ®rm can earn given prices p and

technology Y. To show that it is a convex function of p, suppose that y1

maximizes pro®t at prices p1 and y2 maximizes pro®t at p2. For some

a A �0; 1�, let p be the weighted average price, that is,

p � ap1 � �1ÿ a�p2

Now suppose that y maximizes pro®ts at p. Then

P�p� � pT y � �ap1 � �1ÿ a�p2�T y � apT
1 y� �1ÿ a�pT

2 y

But since y1 and y2 maximize pro®t at p1 and p2 respectively,

apT
1 yU apT

1 y1 � aP�p1�
�1ÿ a�pT

2 yU �1ÿ a�pT
2 y2 � �1ÿ a�P�p2�

so

P�p� �P�ap1� �1ÿ a�p2� � apT
1 y� �1ÿ a�pT

2 yUaP�p1� � �1ÿ a�P�p2�
This establishes that the pro®t function P is convex in p.

Figure 3.8
Two examples of convex functions
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Geometrically the graph of a convex function lies below the line joining

any two points of the graph. This provides an intimate and fruitful con-

nection between convex functions and convex sets. Recall that the epi-

graph of a functional f : X ! R is the set of all points in X �R on or

above the graph, that is,

epi f � f�x; y� A X �R : yV f �x�; x A Xg
Convex functions are precisely those functions with convex epigraphs

(®gure 3.9).

Proposition 3.7 A function f : S ! R is convex if and only if epi f is

convex.

Proof Assume f is convex, and let �x1; y1�; �x2; y2� A epi f so that

f �x1�U y1 and f �x2�U y2

For any a A �0; 1� de®ne

x � ax1 � �1ÿ a�x2; y � ay1 � �1ÿ a�y2

Since f is convex,

f �x� � f �ax1 � �1ÿ a�x2�U af �x1� � �1ÿ a� f �x2�U ay1 � �1ÿ a�y2 � y

Therefore �x; y� � a�x1; y1� � �1ÿ a��x2; y2� A epi f ; that is, epi f is

convex.

Conversely, assume that epi f is convex. Let x1; x2 A S, and de®ne

y1 � f �x1� and y2 � f �x2�

Figure 3.9
The epigraph of a convex function is a convex set

326 Chapter 3 Linear Functions



Then �x1; y1�; �x2; y2� A epi f . For any a A �0; 1� de®ne

x � ax1 � �1ÿ a�x2; y � ay1 � �1ÿ a�y2

Since epi f is convex,

�x; y� � a�x1; y1� � �1ÿ a��x2; y2� A epi f

and therefore f �x�U y, that is,

f �ax1 � �1ÿ a�x2�U ay1 � �1ÿ a�y2 � af �x1� � �1ÿ a� f �x2�
f is convex. r

Proposition 3.7 implies another useful characterization of convex func-

tions. A function is convex if and only if every vertical cross section

(section 2.1.3) is convex.

Corollary 3.7.1 (Convex cross sections) For any f A F�S� and x1; x2 A S,

let h A F �0; 1� be de®ned by

h�t� � f ��1ÿ t�x1 � tx2�
Then f is convex if and only if h is convex for every x1; x2 A S.

Proof

epi h � f�t; y� A �0; 1� �R : h�t�U yg
and we observe that

�t; y� A epi h, �x; y� A epi f

where x � �1ÿ t�x1 � tx2, and therefore

epi h is convex, epi f is convex

Therefore h is convex if and only if f is convex. r

Exercise 3.121

Prove corollary 3.7.1 directly from the de®nition (24) without using

proposition 3.9.

Exercise 3.122 (Jensen's inequality)

A function f : S ! R is convex if and only if

f �a1x1 � a2x2 � � � � � anxn�U a1 f �x1� � a2 f �x2� � � � � � an f �xn� �25�
for all a1; a2; . . . ; an V 0,

Pn
i�1 ai � 1 [Hint: Use proposition 3.7.]
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Exercise 3.123

Show that

xa1

1 xa2

2 . . . xan
n U a1x1 � a2x2 � � � � � anxn

for every x1; x2; . . . ; xn A R�. Deduce that the arithmetic mean of a set of

positive numbers is always greater than or equal to the geometric mean,

that is,

x � 1

n

Xn

i�1

xi V �x1x2 . . . xn�1=n

[Hint: Use that fact that ex is convex (example 3.41).]

Example 3.43 (Price stabilization) The fact that the pro®t function of a

competitive ®rm is convex has some surprising rami®cations. For exam-

ple, it implies that price stabilization will reduce average pro®ts. Suppose

that prices are random, taking the values �p1; p2; . . . ; pn� with probabilities

�a1; a2; . . . ; an�. On average, the competitive ®rm will earn the expected

pro®t

P �
Xn

i�1

aiP�pi�

Now suppose that the prices are stabilized at the average price

p �
Xn

i�1

aipi

Since the pro®t function is convex, Jensen's inequality implies that

P�p�UP �
Xn

i�1

aiP�pi�

Price stabilization reduces expected pro®t. The intuition is straightfor-

ward. When the price is allowed to vary, the ®rm can tailor its production

to the prevailing prices in each period. When the price is stabilized, the

®rm is not encouraged to respond optimally to price variations.

Even more common in economics are concave functions, which are

characterized by reversing the inequality in (24). A function f : S ! R is

concave if for every x1; x2 in S,
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f �ax1� �1ÿ a�x2�V af �x1� � �1ÿ a� f �x2� for every 0U aU 1 �26�
A function is strictly concave if the inequality is strict; that is, for every

x1; x2 in S with x1 0 x2,

f �ax1 � �1ÿ a�x2� > af �x1� � �1ÿ a� f �x2� for every 0 < a < 1

Reversing the inequality corresponds to turning the graph of the function

upside down. Therefore a function is concave if and only if its hypograph

is convex. The graph of a concave function on R2 looks like an upturned

bowl (®gure 3.10).

Example 3.44 (Power function) The general power function f : R� ! R
is (example 2.56)

f �x� � xa; a A R

Figure 3.11 illustrates the graph of xa for various values of a. Consistent

with these illustrations, we will verify in chapter 4 (example 4.38) that the

power function is strictly concave if 0 < a < 1 and strictly convex if a < 0

or a > 1. It is both concave and convex when a � 0 and a � 1.

Exercise 3.124

f is concave if and only if ÿf is convex.

There is an analogous relation between concave functions and convex

sets. A function is concave if and only if its hypographÐthe set of all

points on or below the graphÐis convex.

Figure 3.10
A concave function
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Exercise 3.125

A function f : S ! R is concave if and only if hypo f is convex.

Example 3.45 (Inverse functions) Let f : R! R be invertible with inverse

g � f ÿ1. Then

hypo f � f�x; y� A R2 : yU f �x�g � f�x; y� : g�y�U xg
while

epi g � f�y; x� A R2 : g�y�U xg
We observe that

hypo f convex, epi g convex

Therefore f is concave if and only if g is convex.

Example 3.46 (Production function) The technology of a ®rm producing

a single output from n inputs can be represented by its production func-

tion f (example 2.24) where y � f �x� is the maximum output attainable

from inputs x. If the production function is concave, the technology

exhibits nonincreasing returns to scale. It exhibits decreasing returns to

scale if the technology is strictly concave.

Example 3.47 (Production possibility set) The relationship between a

production function f and the underlying production possibility set Y

Figure 3.11
The power function xa for di¨erent values of a
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(example 1.7) is complicated by the convention that inputs have negative

sign in Y. Given a production function f de®ne the function

g�x� � f �ÿx� for every x A Rn
ÿ

the production possibility set Y is the hypograph of the function g. The

production function f is concave if and only if the production possibility

set Y is convex.

Exercise 3.126 (Cost function)

Show that the cost function c�w; y� of a competitive ®rm (example 2.31) is

concave in input prices w.

Exercise 3.127 (Lifetime consumption)

Suppose that a consumer retires with wealth w and wishes to choose

remaining lifetime consumption stream c1; c2; . . . ; cT to maximize total

utility

U �
XT

t�1

u�ct� with
XT

t�1

ct Uw

Assuming that the consumer's utility function u is concave, show that it is

optimal to consume a constant fraction c � w=T of wealth in each period.

[Hint: Use Jensen's inequality (exercise 3.122).]

The following result is useful. For instance, it provides a simple proof

of exercise 3.129, a result we used in example 2.74 and will use again in

exercise 3.159.

Exercise 3.128

If f is convex on R

f �x1 ÿ x2 � x3�U f �x1� ÿ f �x2� � f �x3�
for every x1 U x2 U x3 A R. The inequality is strict if f is strictly convex

and reversed if f is concave.

Exercise 3.129

If f A F�R� is strictly concave, f �xÿ y� displays strictly increasing dif-

ferences in �x; y�.
If a function is both convex and concave, it must be a½ne.
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Exercise 3.130

A functional is a½ne if and only if it is simultaneously convex and

concave.

Finally, on a normed linear space, it is useful to de®ne convexity

locally. A functional f on a normed linear space X is locally convex at x0 if

there exists a convex neighborhood S of x0 such that for every x1; x2 A S,

f �ax1 � �1ÿ a�x2�U af �x1� � �1ÿ a� f �x2� for every 0U aU 1

In other words, a function is locally convex at x0 if its restriction to a

neighborhood of x0 is convex. Analogously, it is strictly locally convex at

x0 if the inequality is strict, and locally concave at x0 if the inequality is

reversed.

Example 3.48 The power function f �x� � x3 is neither convex nor

concave on R (®gure 2.2). It is locally convex on R� and locally concave

on Rÿ.

3.7.1 Properties of Convex Functions

We ®rst note here some useful rules for combining convex functions.

Analogous rules apply for concave functions. In particular, we note that

the minimum of concave functions is concave (see exercise 3.132).

Exercise 3.131

If f ; g A F �X� are convex, then

. f � g is convex

. af is convex for every aV 0

Therefore the set of convex functions on a set X is a cone in F �X�.
Moreover, if f is strictly convex, then

. f � g is strictly convex

. af is strictly convex for every a > 0

Example 3.49 (Exponential function) Let

f n�x� � 1� x

1
� x2

2
� x3

6
� � � � � xn

n!

f n is convex for every n � 1; 2; . . . by exercises 3.120 and 3.131. That is,
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f n�ax1 � �1ÿ a�x2�U af n�x1� � �1ÿ a� f n�x2�; n � 1; 2; . . .

Therefore for any x1; x2 A R,

exp�ax1 � �1ÿ a�x2� � lim
n!y

f n�ax1 � �1ÿ a�x2�

U lim
n!y
�af n�x1� � �1ÿ a� f n�x2��

� aex1 � �1ÿ a�ex2

We conclude that ex is convex on R�. In fact ex is strictly convex on R,

which we will show in the next chapter.

Example 3.50 (Log function) The log function log�x� is the inverse

(example 2.55) of the exponential function. Since the exponential function

is convex, the log function log�x� is concave (example 3.45).

Exercise 3.132

If f and g are convex functions de®ned on a convex set S, the function

f 4g de®ned by

� f 4g��x� � maxf f1�x�; f2�x�g for every x A S

is also convex on S.

Exercise 3.133 (Composition)

If f A F�X � and g A F �R� with g increasing, then

f and g convex) g � f convex

f and g concave) g � f concave

Example 3.51 (Log transformation) Logarithmic transformations are

often used in analysis. It is nice to know that they preserve concavity,

since log is both concave (example 3.50) and increasing (example 2.55).

Therefore (exercise 3.133), assuming that f is nonnegative de®nite,

f concave) log f concave

Example 3.51 has a useful converse.

Exercise 3.134

If f is nonnegative de®nite

log f convex) f convex
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Exercise 3.135

If f is a strictly positive de®nite concave function, then 1=f is convex. If f

is a strictly negative de®nite convex function, then 1=f is concave.

Exercise 3.133 has a counterpart for supermodular functions (section

2.2.2).

Exercise 3.136 (Composition)

Suppose that f A F �X � is monotone and g A F �R� is increasing. Then

f supermodular and g convex) g � f supermodular

f submodular and g concave) g � f submodular

Continuity of Convex Functions

We noted earlier the close relationship between continuity and bounded-

ness for linear functions. Linear functionals are continuous if and only if

they are bounded. An analogous requirement applies to convex and con-

cave functions. Clearly, a function that is continuous at any point must be

bounded in a neighborhood of that point. This necessary condition turns

out to be su½cient.

Proposition 3.8 (Continuity of convex functions) Let f be a convex func-

tion de®ned on an open convex set S in a normed linear space. If f is

bounded from above in a neighborhood of a single point x0 A S, then f is

continuous on S.

Proof Exercise 3.140. r

The following important corollary implies that any convex function on

a ®nite-dimensional space is continuous on the interior of its domain.

Corollary 3.8.1 Let f be a convex function on an open convex set S in a

®nite-dimensional normed linear space. Then f is continuous.

Remark 3.12 The converse of corollary 3.8.1 is that a convex function

can be discontinuous on the boundary of its domain (example 3.52). This

is not a mere curiosity. Economic life often takes place at the boundaries

of convex sets, where the possibility of discontinuities must be taken into

account. This accounts for some of the unwelcome contortions necessary

in, for example, duality theory, which could otherwise be exhibited rather

more elegantly.
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Example 3.52 (A discontinuous convex function) Let S � R�. The func-

tion f : S ! R de®ned by

f �x� � 1; x � 0

0; otherwise

�
is convex on S but discontinuous at 0.

Exercise 3.137

Let f be a convex function on an open set S that is bounded above by M

in a neighborhood of x0; that is, there exists an open set f containing x0

such that

f �x�UM for every x A U

1. Show that there exists a ball B�x0� containing x0 such that for every

x A B�x0�,
f �ax� �1ÿ a�x0�U aM � �1ÿ a� f �x0�
2. Choose some x A B�x0� and a A �0; 1�. Let z � ax� �1ÿ a�x0. Show

that x0 can be written as a convex combination of x, x0 and z as follows:

x0 � 1

1� a
z� a

1� a
�2x0 ÿ x�

3. Deduce that f �x0� ÿ f �z�U a�M ÿ f �x0��.
4. Show that this implies that f is continuous at x0.

Exercise 3.138

Let f be a convex function on an open set S which is bounded above by M

in a neighborhood of x0. That is, there exists an open ball Br�x0� con-

taining x0 such that f is bounded on B�x0�. Let x1 be an arbitrary point

in S.

1. Show that there exists a number t > 1 such that

z � x0 � t�x1 ÿ x0� A S

2. De®ne T � fy A X : y � �1ÿ a�x� az; x A B�x0�g. T is a neighbor-

hood of x1.

3. f is bounded above on T.
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Exercise 3.139

Let f be a convex function on an open set S that is bounded at a single

point. Show that f is locally bounded, that is for every x A S there exists a

constant M and neighborhood U containing x such that

j f �x 0�jUM for every x 0 A U

Exercise 3.140

Prove proposition 3.8.

Exercise 3.141

Prove corollary 3.8.1 [Hint: Use CaratheÂodory's theorem (exercise 1.175)

and Jensen's inequality (exercise 3.122).]

Exercise 3.142 (Local convexity)

Let f be a functional on a convex open subset S of a Euclidean space X.

f is convex if and only f is locally convex at every x A S. [Hint: Assume

the contrary, and consider a cross section. Use the theorem 2.3.]

3.7.2 Quasiconcave Functions

Convex and concave functions relax the additivity requirement of lin-

earity and dispense with homogeneity. Even this is too restrictive for many

economic models, and a further generalization is commonly found. A

functional f on a convex set S of a linear space X is quasiconvex if

f �ax1 � �1ÿ a�x2�Umaxf f �x1�; f �x2�g
for every x1; x2 A S and 0U aU 1

Similarly f is quasiconcave if

f �ax1 � �1ÿ a�x2�Vminf f �x1�; f �x2�g
for every x1; x2 A S and 0U aU 1

It is strictly quasiconcave if the inequality is strict, that is, for every

x1 0 x2

f �ax1 � �1ÿ a�x2� > minf f�x1�; f�x2�g; 0 < a < 1

Geometrically a function is quasiconcave if the function along a line

joining any two points in the domain lies above at least one of the end-

points. In practice, quasiconcave functions are more frequently encoun-
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tered than quasiconvex functions, and we will focus on the former in this

section. The surface of a bell is quasiconcave (®gure 3.12).

Exercise 3.143

f is quasiconcave if and only if ÿf is quasiconvex.

Exercise 3.144

Every concave function is quasiconcave.

Exercise 3.145

Any monotone functional on R is both quasiconvex and quasiconcave.

Example 3.53 (Power function) The general power function f A F�R��
f �x� � xa; a A R

is monotone, being strictly increasing if a > 0 and strictly decreasing

a < 0 (exercise 2.34). Therefore (exercise 3.145), it is quasiconcave (and

quasiconvex) for all a.

Recall that convex and concave functions can be characterized by

convexity of associated sets (proposition 3.7). Quasiconvex and quasi-

concave functions have an analogous geometric characterization in terms

of their upper and lower contour sets (section 2.1.1).

Proposition 3.9 (Quasiconcavity) A functional f is quasiconcave if and

only if every upper contour set is convex; that is, 7f �c� � fx A X : f �x�Vcg
is convex for every c A R.

Proof Assume that f is quasiconcave, and choose some c A R. If 7f �c�
is empty, then it is trivially convex. Otherwise, choose x1; x2 A 7f �c�.
Then f �x1�V c and f �x2�V c. Since f is quasiconcave,

Figure 3.12
A bell
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f �ax1 � �1ÿ a�x2�Vminf f �x1�; f �x2�gV c

for every 0U aU 1, and therefore ax1 � �1ÿ a�x2 A 7f �c�. That is,

7f �c� is convex. Conversely, assume that 7f �c� is convex for every

c A R. Choose any x1 and x2 in the domain of f, and let

c � minf f �x1�; f �x2�g
Then x1; x2 A 7f �c�. Since 7f �c� in convex, ax1 � �1ÿ a�x2 A 7f �c� for

every 0U aU 1. Consequently

f �ax1 � �1ÿ a�x2�V c � minf f �x1�; f �x2�g
f is quasiconcave. r

Exercise 3.146

A functional f is quasiconvex if and only if every lower contour set is

convex; that is, 6f �c� � fx A X : f �x�U cg is convex for every a A R.

Remark 3.13 This geometric characterization highlights the sense in

which quasiconcavity generalizes concavity. A function is concave if and

only if its hypograph is concave. The hypograph of a function f : X ! R
is a subset of X �R. If we think of R forming the vertical axis, the con-

tour sets can be thought of as horizontal cross sections of the hypograph.

Clearly, a convex hypograph (concave function) will have convex cross

sections. But a hypograph may have convex cross sections without itself

being convex. We illustrate with examples from producer and consumer

theory.

Example 3.54 (Convex technology) Suppose that the technology of a

®rm producing a single output y can be represented by the production

function f de®ned by

y � f �x� � supfy : x A V�y�g
The input requirement sets (example 1.8) are the upper contour sets of f,

that is,

V�y� � fx A Rn
� : f �x�V yg

The ®rm's technology is convexÐV�y� convex for every y (example 1.163)

Ðif and only if the production f is quasiconcave. This is less restrictive

than assuming that the production function f is concave, which is equiv-
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alent to the assumption that the production possibility set Y is convex

(example 3.47). The assumption of a convex technology (V�y� convex or f

quasiconcave) is typical in economic models, since it does not preclude

increasing returns to scale.

Example 3.55 (Convex preferences) Recall that a preference relation 7

is convex if and only if the upper preference sets 7�y� are convex for

every y (section 1.6). A utility function u represents a convex preference

relation 7 if and only if u is quasiconcave.

Although quasiconvex functions are less commonly encountered, there

is one important example of a quasiconvex function in economics.

Example 3.56 (Indirect utility function) The consumer's indirect utility

function (example 2.90)

v�p;m� � sup
x AX�p;m�

u�x�

which measures the maximum utility attainable given prices and income,

is quasiconvex in prices p.

Exercise 3.147

Show that the indirect utility function is quasiconvex. [Hint: Show that

the lower contour sets 6v�c� � fp : v�p;m�U cg are convex for every c.]

Properties of Quasiconcave Functions

It is important to note that there is no counterpart to the ®rst part of

exercise 3.131Ðquasiconcavity is not preserved by addition (example

3.57). On the other hand, exercise 3.133 admits a signi®cant generaliza-

tion (exercise 3.148).

Example 3.57 The function f �x� � ÿ2x is concave and g�x� � x3 � x is

quasiconcave, but their sum � f � g��x� � x3 ÿ x is neither concave nor

quasiconcave.

Exercise 3.148

If f is quasiconcave and g is increasing, then g � f is quasiconcave.

Example 3.58 (CES function) The CES function

f �x� � �a1x
r
1 � a2x

r
2 � � � � anxr

n �1=r; ai > 0; r0 0
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is quasiconcave on Rn
� provided that rU 1. To see this, let h�x� �

a1x
r
1 � a2x

r
2 � � � � anxr

n so that f �x� � �h�x��1=r. From example 3.44, we

know that x
r
i is concave if 0 < rU 1 and convex otherwise. Therefore

(exercise 3.133) h is concave if 0 < rU 1 and convex otherwise.

There are two cases to consider:

when 0 < rU 1, f �x� � �h�x��1=r is an increasing function of concave

function and is therefore quasiconcave (exercise 3.148).

when r < 0,

f �x� � �h�x��1=r � 1

h�x�
� �ÿ1=r

Since h is convex, 1=h is concave (exercise 3.135) and ÿ1=r > 0. Again, f

is an increasing function of concave function and is therefore quasi-

concave (exercise 3.148).

Note that we cannot use exercise 3.133 to conclude that the CES function

is concave when 0 < r < 1, since g�y� � y1=r is then convex while h is

concave. However, we will show later (example 3.74) that it is in fact

concave when r < 1.

Exercise 3.149 (CES function)

The CES function

f �x� � �a1x
r
1 � a2x

r
2 � � � � anxr

n �1=r; ai > 0; r0 0

is convex on Rn
� if rV 1.

Remark 3.14 Production and utility functions are usually assumed to be

quasiconcave, so as to represent convex technologies (example 3.54) and

convex preferences (example 3.55) respectively. Consequently, when the

CES functional form is used as a production or utility function, it is nor-

mally restricted so that r < 1.

Recall that a monotonic transformation is a strictly increasing func-

tional on R. A monotonic transformation (example 2.60) of a concave

function is called concavi®able. Formally a function f A F �R� is con-

cavi®able if there exists a strictly increasing function g A F�R� such that

g � f is concave. Every concavi®able function is quasiconcave (exercise

3.148). However, the converse is not true in general. There exist quasi-

concave functions that are not concavi®able.
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Exercise 3.150

Any strictly increasing functional on R is concavi®able.

The following results help in recognizing quasiconcave functions.

Exercise 3.151

Let f and g be a½ne functionals on a linear space X, and let S JX be a

convex set on which g�x�0 0. The function

h�x� � f �x�
g�x�

is both quasiconcave and quasiconvex on S. [Hint: Use exercise 3.39.]

Exercise 3.152

Let f and g be strictly positive de®nite functions on a convex set S with

f concave and g convex. Then

h�x� � f �x�
g�x�

is quasiconcave on S. [Hint: Consider the upper contour sets 7h�a�.]
Exercise 3.153

Let f and g be strictly positive de®nite concave functions on a convex set

S. Then their product

h�x� � f �x�g�x�
is quasiconcave on S [Hint: Use exercise 3.135.]

The following result should be compared with exercise 3.134.

Exercise 3.154

If f is nonnegative de®nite,

log f concave) f quasiconcave

Exercise 3.155

Let f1; f2; . . . ; fn be nonnegative de®nite concave functions on a convex

set S. The function

f �x� � � f1�x��a1� f2�x��a2 . . . � fn�x��an

is quasiconcave on S for any a1; a2; . . . ; an A R�.
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Example 3.59 (Cobb-Douglas) As an immediate application of the pre-

ceding exercise, we note that the Cobb-Douglas function

f �x� � xa1

1 xa2

2 . . . xan
n ; ai > 0

is quasiconcave on Rn
�. Figure 3.13 illustrates two Cobb-Douglas

functions

f �x� � x
1=3
1 x

1=3
2 and g�x� � x

4=3
1 x

4=3
2

Note that f is concave but g is not. However, both are quasiconcave, as

indicated by the curvature of the isoquants.

3.7.3 Convex Maximum Theorems

Convexity in optimization problems yields some useful counterparts to

the maximum theorems for monotone and continuous problems (theo-

rems 2.1 and 2.3). The most straightforward result applies to optimization

problems in which the constraint is independent of the parameters.

Proposition 3.10 (Convex maximum theorem) Assume that f : X �Y!R
is convex in y. Then the value function

v�y� � max
x AX

f �x; y�

is convex in y.

Example 3.60 (Pro®t function) Earlier (example 3.42) we showed directly

that the pro®t function of a competitive ®rm

P�p� � sup
y AY

X
i

pi yi

Figure 3.13
The Cobb-Douglas function is quasiconcave
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is convex in p. This is a particular case of proposition 3.10, since the

objective function is linear in p.

To apply proposition 3.10, it is not necessary that the constraint set be

completely free of parameters, only that they be free of the parameters of

interest. This is illustrated in example 3.61.

Example 3.61 (Cost function) The cost minimization problem

min
x AV�y�

wT x

is equivalent to maximization problem

max
x AV�y�

ÿ wT x �27�

The objective function in (27) is convex (linear) in w, and the constraint is

independent of w. Therefore (27) ®ts the requirements of proposition 3.10,

and its value function

v�w� � sup
x AV�y�

ÿ wT x

is convex in w. For every output y, the cost function is

c�w; y� � ÿv�w�
which is therefore concave in w (exercise 3.124). This duplicates a result

found directly in exercise 3.126

Exercise 3.156

Prove proposition 3.10. [Hint: Adapt example 3.42.]

Many optimization problems have constraints that depend on parame-

ters of interest, so proposition 3.10 cannot be applied. A more explicit

counterpart to theorems 2.1 and 2.3 is provided by the following theorem,

applicable to general constrained optimization problems with concave

objectives and convex constraints.

Theorem 3.1 (Concave maximum theorem) Consider the general con-

strained maximization problem

max
x AG�y�

f �x; y�
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where X and Y are linear spaces. Let Y�HY denote the set of parameter

values for which a solution exists. If

. the objective function f : X �Y! R is quasiconcave in X and

. the constraint correspondence G: Y x X is convex-valued

then the solution correspondence j: Y�x X de®ned by

j�y� � arg max
x AG�y�

f �x; y�

is convex-valued. Furthermore, if

. the objective function f : X �Y! R is (strictly) concave in X �Y and

. the constraint correspondence G: Y x X is convex

the value function

v�y� � sup
x AG�y�

f �x; y�

is (strictly) concave in y.

Proof

Convexity of j�y� For any y A Y�, let x1; x2 A j�y�. This implies that

f �x1; y� � f �x2; y� � v�y�V f �x; y� for every x A G�y�
Let x � ax1 � �1ÿ a�x2. Since f is quasiconcave,

f �x; y�Vminf f �x1; y�; f �x2; y�g � v�y�
which implies that x A j�y�. For every y, j�y� is convex.

Concavity of v Let y1; y2 belong to Y�. Choose any optimal solutions

x1 A j�y1� and x2 A j�y2�. Let

y � ay1 � �1ÿ a�y2; x � ax1 � �1ÿ a�x2

Since x1 A G�y1�, x2 A G�y2�, and G is convex, x A G�y�. Thus x is feasible

for y so

v�y� � sup
x A j�y�

f �x; y�V f �x; y�V af �x1; y1� � �1ÿ a� f �x2; y2�

� av�y1� � �1ÿ a�v�y2�
v is concave.
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Strict concavity of v Furthermore, if f is strictly concave,

v�y� � sup
x A j�y�

f �x; y�V f �x; y� > af �x1; y1� � �1ÿ a� f �x2; y2�

� av�y1� � �1ÿ a�v�y2�
so v is strictly concave. r

The ®rst part of this theorem, requiring only quasiconcavity of the

objective function (and convex-valued constraint), is a key result in opti-

mization (see proposition 3.16). Strict quasiconcavity leads to the follow-

ing important corollary.

Corollary 3.1.1 Let Y�HY denote the set of parameter values for which

a solution exists in the general constrained maximization problem

max
x AG�y�

f �x; y�

where X and Y are linear spaces. If

. the objective function f : X �Y! R is strictly quasiconcave in X and

. the constraint correspondence G: Y x X is convex-valued

then the solution correspondence j: Y�x X de®ned by

j�y� � arg max
x AG�y�

f �x; y�

is single-valued; that is, j is a function from Y� to X.

Example 3.62 (Demand functions) Corollary 3.1.1 can be applied

directly to the consumer's problem (example 2.90). If the consumer's

preferences are strictly convex, the utility function is strictly quasiconcave,

and corollary 3.1.1 implies a unique optimal solution for every p and m.

That is, the consumer's demand correspondence x�p;m� is a function.

Exercise 3.157

Prove corollary 3.1.1.

Example 3.63 (Cost function) We have previously shown (exercise 3.126)

that the cost function c�w; y� of a competitive ®rm is concave in w. Sup-

pose in addition that the ®rm's production possibility set Y is convex.

Then the input requirements sets
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V�y� � fx A Rn
� : �y;ÿx� A Yg

de®ne a convex correspondence (exercise 2.25), and the cost minimization

problem

min
x AV�y�

Xn

i�1

wixi � max
x AV�y�

ÿ
Xn

i�1

wixi

satis®es the requirements of theorem 3.1 (the objective function is linear).

This implies that the value function

c�w; y� � inf
x AV�y�

Xn

i�1

wixi

is concave in w and y jointly.

Exercise 3.158 (Uniqueness of the optimal plan)

In the dynamic programming problem (example 2.32)

max
x1;x2;...

Xy
t�0

b t f �xt; xt�1�

subject to xt�1 A G�xt�
t � 0; 1; 2; . . . ; x0 A X given

Assume that

. f is bounded, continuous and strictly concave on X � X .

. G�x� is nonempty, compact-valued, convex-valued, and continuous for

every x A X

. 0U b < 1

We have previously shown (exercise 2.124) that an optimal policy exists

under these assumptions. Show also that

1. the value function v is strictly concave

2. the optimal policy is unique

Example 3.64 (Optimal economic growth) In the optimal economic

growth model (example 2.33), assume that
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. u is continuous and strictly concave on R�

. F is continuous and increasing on R� with F�0� � 0

. there exists k > 0 such that F�k�U k for every k V k

. 0U b < 1

Then there exists an optimal growth policy �k0; k
�
1 ; k

�
2 ; . . .� for every

starting point k0 (example 2.93). Furthermore

. the optimal growth policy �k0; k
�
1 ; k

�
2 ; . . .� is unique (exercise 3.158) and

. converges monotonically to some steady state k � (exercise 3.159).

Whether capital accumulates or decumulates under the optimal policy

depends on the relationship between the limiting value k � and the initial

value k0. If k0 < k �, then k �t grows increases monotonically to k �. Con-

versely, if the economy starts with an oversupply of capital k0 > k �,
capital will be progressively reduced.

Exercise 3.159

Assuming that u is strictly concave, show that the optimal growth model

satis®es the requirements of exercise 2.126. Hence conclude that the opti-

mal policy converges monotonically to a steady state.

Unfortunately, the requirements of the second part of theorem 3.1,

joint concavity of f in x and y and convexity of the constraint correspon-

dence, are quite stringent and often missing in practice. Example 3.65

illustrates that it is not su½cient that the constraint be convex-valued,

while example 3.66 illustrates what this requirement means in the most

typical setting. Often theorem 3.1 can be applied to those parts of the

problem that satisfy the conditions, holding the other parameters con-

stant. This procedure is illustrated in example 3.67, where we establish

concavity of the indirect utility function in income, by holding prices

constant.

Example 3.65 Let X � Y � �0; 1�, and de®ne

f �x; y� � x for every �x; y� A X �Y

G�y� � �0; y2� for every y A Y

Since f is strictly increasing, the optimal solution correspondence is
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j�y� � fy2g for every y A Y

G is convex-valued but not convex, and the value function

v�y� � sup
x A �0;y2�

x � y2

is not concave on Y.

Example 3.66 Suppose that the constraint set G�y� in the constrained

optimization problem

max
x AG�y�

f �x; y�

is de®ned by a set of inequalities (example 2.40)

g1�x; y�U c1

g2�x; y�U c2

� � �
gm�x; y�U cm

where each g�x; y� is convex jointly in x and y. Then the correspondence

G�y� � fx A X : gj�x; y�U cj; j � 1; 2; . . . ;mg
is convex (exercise 2.26). Provided that the objective function f �x; y� is

(strictly) concave in x and y, the value function

v�y� � sup
x AG�y�

f �x; y�

is (strictly) concave in y (theorem 3.1).

Example 3.67 (Consumer theory) Theorem 3.1 cannot be applied directly

to deduce general properties of the indirect utility function (example

2.90), since the budget constraint is not convex in x and p jointly. How-

ever, for given prices p, the budget constraint

X�m� � fx A X : pT xUmg
is convex in m. If the utility function is concave, the consumer's problem

(with constant prices)
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max
x AX �m�

u�x�

satis®es the conditions of theorem 3.1. We can deduce that the indirect

utility function v�p;m� is concave in income m. We have previously shown

that the indirect utility function v�p;m� is quasiconvex in p (example

3.56). This is as far as we can go in deducing general properties of the

indirect utility function.

3.7.4 Minimax Theorems

Let f �x; y� be a continuous functional on a compact domain X � Y in a

normed linear space. It is always the case (exercise 3.161) that

max
x AX

min
y AY

f �x; y�U min
y AY

max
x AX

f �x; y� �28�

If (28) is satis®ed as an equality

max
x AX

min
y AY

f �x; y� � min
y AY

max
x AX

f �x; y�

so that the order of max and min does not matter, there exists a point

�x�; y�� A X � Y satisfying

f �x; y��U f �x�; y��U f �x�; y� for every x A X and y A Y

Such a point is called a saddle point, since it simultaneously maximizes f

over X and minimizes f over Y (®gure 3.14).

Exercise 3.160 (Saddle point)

Let X and Y be compact subsets of a ®nite-dimensional normed linear

space, and let f be a continuous functional on X � Y . Then

max
x AX

min
y AY

f �x; y� � min
y AY

max
x AX

f �x; y�

Figure 3.14
A saddle point
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if and only if there exists a point �x�; y�� A X � Y such that

f �x; y��U f �x�; y��U f �x�; y� for every x A X and y A Y

Theorems that specify the additional conditions on f, X, and Y neces-

sary to ensure equality in (28), and hence the existence of saddle points,

are known as minimax theorems. The original minimax theorem (exercise

3.262) was due to von Neumann, who used it to demonstrate the existence

of solutions to zero-sum games (section 3.9.4). Von Neumann's theorem

applied to bilinear functions on the standard simplex in Rn. The following

generalization to quasiconcave functions on convex sets is a straightfor-

ward application of Kakutani's theorem (theorem 2.7).

Proposition 3.11 (Minimax theorem) Let X and Y be compact, convex

subsets of a ®nite-dimensional normed linear space, and let f be a continuous

functional on X � Y which is quasiconcave on X and quasiconvex on Y.

Then

max
x

min
y

f �x; y� � min
y

max
x

f �x; y�

Proof De®ne the correspondences j: Y x X and c: X ! Y by

j�y� � arg max
x AX

f �x; y�

and

c�x� � arg min
y AY

f �x; y� � arg max
y AY
ÿf �x; y�

By the continuous maximum theorem (theorem 2.3) j and c are non-

empty, compact, and upper hemicontinuous. By the concave maximum

theorem (theorem 3.1), j is convex-valued. Similarly, since �ÿf � is quasi-

concave (exercise 3.143), c is also convex-valued.

The correspondence F: X � Y x X � Y de®ned by

F�x; y� � j�y� � c�x�
is closed and convex-valued (proposition 1.2, exercises 2.107, 1.165). By

Kakutani's theorem (theorem 2.7), F has a ®xed point �x�; y�� such that

x� A arg max
x AX

f �x; y�� and y� A arg min
y AY

f �x�; y�

That is,
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f �x; y��U f �x�; y��U f �x�; y� for every x A X and y A Y

In other words, �x�; y�� is a saddle point. This implies (exercise 3.160)

that

max
x

min
y

f �x; y� � min
y

max
x

f �x; y� r

Exercise 3.161

If f is a continuous functional on a compact domain X � Y ,

max
x

min
y

f �x; y�U min
y

max
x

f �x; y�

3.8 Homogeneous Functions

Concave and convex functions generalize the additivity property of linear

functionals. Homogeneous functions generalize homogeneity. If S is a

cone in linear space X, a functional f A F�S� is homogeneous of degree k if

for every x A S,

f �tx� � tk f �x� for every t A R��

This de®nition relaxes the homogeneity requirement of a linear function

(and dispenses with additivity).

Example 3.68 (Power function) The general power function f A F�R��
(example 2.56)

f �x� � xa

is homogeneous of degree a, since

f �tx� � �tx�a � taxa � taf �x�
In fact, every homogeneous function on R� is a power function (exercise

3.162).

Exercise 3.162

A function f : R� ! R� is homogeneous of degree a if and only if it is

(a multiple of ) a power function, that is,

f �x� � Axa for some A A R

351 3.8 Homogeneous Functions



Example 3.69 (Cobb-Douglas) The Cobb-Douglas function

f �x� � xa1

1 xa2

2 . . . xan
n

is homogeneous of degree a1 � a2 � � � � � an, since for any t > 0,

f �tx� � �tx1�a1�tx2�a2 . . . �txn�an

� ta1�a2�����an xa1

1 xa2

2 . . . xan
n

� ta1�a2�����an f �x�
Exercise 3.163 (CES function)

Show that the CES function

f �x� � �a1x
r
1 � a2x

r
2 � � � � anxr

n �1=r

is homogeneous of degree one.

The explicit characterization of homogeneous functions on R� as power

functions (exercise 3.162) can help us understand the structure of homo-

geneous functions on more complex domains. Suppose that f is homoge-

neous of degree k on S. For any x0 A S, the function h A F�R�� de®ned by

h�t� � f �tx0�; t A R�

is also homogeneous of degree k (exercise 3.164). h provides a cross sec-

tion of f along a ray ftx0 : x0 A S; t > 0g through the point x0 (see section

2.1.4). By exercise 3.162, h is a power function, that is,

h�t� � Atk

Therefore any homogeneous function looks like a power function when

viewed along a ray.

Example 3.70 (Cobb-Douglas) The two-variable Cobb-Douglas function

f �x1; x2� � xa1

1 xa2

2

is homogeneous of degree a1 � a2. Figure 2.11 illustrates this function

when a1 � a2 � 1 (example 2.41). While clearly nonlinear when consid-

ered over its whole domain, the surface is linear when considered along

any ray through the origin. If a ruler were laid along this Cobb-Douglas

surface so that it passed through the origin, it would align with the surface

along its entire length. Similarly, when a1 � a2 � 1, the Cobb-Douglas
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function is homogeneous of degree 2 and looks like a quadratic t2 along

any ray.

Exercise 3.164

Let f : S ! R be homogeneous of degree k. For any x0 A S, the func-

tional de®ned h�t� � f �tx0� is homogeneous of degree k on R�.

Homogeneous functions arise naturally in economics. Homogeneity

restricts the behavior of a function when all variables change in the same

proportion, which represents two recurrent situations in economic anal-

ysis. In a production context it corresponds to changing the scale of

production, leaving the relative proportions of di¨erent inputs ®xed.

Constant returns to scale implies that the production function is homo-

geneous of degree one. In a function of prices (e.g., a pro®t function),

scaling corresponds to changing all prices in the same proportion (in¯a-

tion), leaving relative prices unchanged. The degree of homogeneity k can

be positive, negative, or zero. The most common examples encountered in

economics are homogeneity of degree 0 and homogeneity of degree 1.

Functions homogeneous of degree 0 are constant along any ray. Func-

tions homogeneous of degree 1 are sometimes called linearly homogeneous

functions, since they are linear along any ray.

Example 3.71 (Pro®t function) The pro®t function of a competitive ®rm

(example 2.29)

P�p� � sup
y AY

X
i

pi yi

is homogeneous of degree one. To see this, suppose that the production

plan y� maximizes the ®rms pro®t at prices p, that is,

pT y�V pT y for every y A Y

Therefore for every t > 0,

�tp�T y�V �tp�T y for every y A Y

and therefore y� also maximizes the ®rm's pro®t at prices tp. Consequently

P�tp� � �tp�T y� � t
X

i

pi yi � tP�p�
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We conclude that the pro®t function is homogeneous of degree one. This

implies that if all prices are increased in the same proportion, the ®rm's

maximum pro®t increases proportionately.

Example 3.72 (Demand function) If the consumer's preferences are

strictly convex, the optimal solution to the consumer's problem (examples

1.113, 2.91, and 3.67) is a set of demand functions xi�p;m�, each specify-

ing the consumer's demand for commodity i as a function of prices p

and m. One of the most important properties of the consumer demand

functions is that they are homogeneous of degree zero. This means that

demand is invariant to the general level of prices and incomeÐonly rela-

tive prices matter.

To verify homogeneity, we note that if commodity bundle x is a¨ord-

able at prices p and income m, it is also a¨ordable at prices tp and income

tm for every t > 0, since

pT xUm, �tp�T xU tm

Therefore the consumer's budget set is invariant to proportionate changes

in prices and income

X�tp; tm� � X�p;m� for every t > 0

which implies that the consumer's optimal choice will also be invariant to

proportionate changes in prices and income.

Exercise 3.165 (Cost function)

Show that the cost function c�w; y� of a competitive ®rm (example 2.31) is

homogeneous of degree one in input prices w.

Exercise 3.166 (Cost function with constant returns to scale)

If the production function of a competitive ®rm is homogeneous of degree

one, then the cost function c�w; y� is homogeneous of degree one in y,

that is,

c�w; y� � yc�w; 1�
where c�w; 1� is the cost of producing one unit (unit cost).

Exercise 3.167 (Indirect utility function)

Show that the indirect utility function v�p;m� (example 2.90) is homo-

geneous of degree zero in p and m.
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Analogous to convex functions (proposition 3.7), linearly homoge-

neous functions can be characterized by their epigraph.

Exercise 3.168

A function f : S ! R is linearly homogeneous if and only if epi f is a

cone.

The following useful proposition show how quasiconcavity and homo-

geneity combine to produce full concavity. Quasiconcavity ensures con-

vexity of the upper contour sets, while homogeneity of degree k U 1

strengthens this to convexity of the hypograph (see remark 3.13).

Proposition 3.12 Let f be a strictly positive de®nite functional that is

homogeneous of degree k, 0 < k U 1. Then f is quasiconcave if and only if f

is concave.

Proof The ``if '' part is trivial (exercise 3.144). The ``only-if '' part is

developed in exercises 3.169 through 3.171. r

Exercise 3.169

If f A F �S� is strictly positive de®nite, quasiconcave, and homogeneous of

degree one, then f is superadditive, that is,

f �x1 � x2�V f �x1� � f �x2� for every x1; x2 A S

Exercise 3.170

If f A F �S� is strictly positive de®nite, quasiconcave, and homogeneous of

degree one, then f is concave.

Exercise 3.171

Generalize exercise 3.170 to complete the proof of proposition 3.12.

Example 3.73 (Cobb-Douglas) We have previously shown that the

Cobb-Douglas function

f �x� � xa1

1 xa2

2 . . . xan
n ; ai > 0

is quasiconcave and homogeneous of degree a1 � a2 � � � � � an. By prop-

osition 3.12, we can conclude that the Cobb-Douglas function is concave

provided a1 � a2 � � � � � an U 1.

Example 3.74 (CES function) We have previously shown that the CES

function
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f �x� � �a1x
r
1 � a2x

r
2 � � � � anxr

n �1=r; ai > 0; r0 0

is quasiconcave if rU 1 (example 3.58) and convex if rU 1 (exercise

3.149). Since the CES function is positive and homogeneous of degree one

(exercise 3.163), proposition 3.12 implies that the CES function is in fact

concave if rU 1 and convex otherwise.

3.8.1 Homothetic Functions

Analogous to the generalization of concave to quasiconcave functions,

there is corresponding generalization of homogeneity. A functional f

de®ned on a convex cone S in a linear space X is homothetic if

f �x1� � f �x2� ) f �tx1� � f �tx2�
for every x1; x2 A S and t > 0

Geometrically, if two points belong to the same contour of a homothetic

function, then every scalar multiple of these points belong to a common

contour. In other words, a function is homothetic if its contours are radial

expansions of each other. Clearly, every homogeneous function is homo-

thetic, but not every homothetic function is homogeneous, as is shown by

the following example.

Example 3.75 The function f : R2
�� ! R de®ned by

f �x1; x2� � log x1 � log x2

is homothetic but not homogeneous, since

f �tx1; tx2� � log tx1 � log tx2 � 2 log t� log x1 � log x2

� 2 log t� f �x1; x2�
and therefore f �x1� � f �x2� implies that

f �tx1� � 2 log t� f �x1� � 2 log t� f �x2� � f �tx2� for every t > 0

Exercise 3.172 (Homothetic preferences)

A preference relation 7 (section 1.6) on a cone S is said to be homothetic if

x1 @ x2 ) tx1 @ tx2 for every x1; x2 A S and t > 0

Show that a continuous preference relation is homothetic if and only if

every utility representation (example 2.58) is homothetic.
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Every monotonic transformation of a homogeneous function is homo-

thetic (exercise 3.174). For strictly increasing functions the converse is

also true (exercise 3.175). This provides an equivalent characterization of

homotheticity that is particularly useful in economic analysis.

Proposition 3.13 (Homotheticity) Let f be a strictly increasing functional

on a cone S in an linear space X. f is homothetic if and only if it is a mono-

tonic transformation of a homogeneous function.

Proof Exercises 3.174 and 3.175. r

Remark 3.15 (Equivalent de®nitions of homotheticity) Many texts use the

characterization in proposition 3.13 to de®ne homotheticity, stating that a

function is homothetic if it is a monotonic transformation of a homo-

geneous function (Simon and Blume 1994, p. 500). Other texts de®ne a

homothetic function as monotonic transformation of a linearly homoge-

neous function (Varian 1992, p. 18). Clearly, these de®nition are equiva-

lent to one another (exercise 3.173) and equivalent to our de®nition for

strictly increasing functions (proposition 3.13).

Example 3.76 (Log-linear function) The log-linear function

f �x� � a1 log x1 � a2 log x2 � � � � � an log xn

is commonly used in empirical work. It is not homogeneous, since

f �tx� � a1 log�tx1� � a2 log�tx2� � � � � � an log�txn�
� �a1 � a2 � � � � � an� log t� a1 log x1 � a2 log x2 � � � � � an log xn

� �a1 � a2 � � � � � an� log t� f �x�
It is, however, homothetic, since it is an increasing transformation of the

homogeneous Cobb-Douglas function (example 3.69)

f �x� � log�xa1

1 xa2

2 . . . xan
n � � a1 log x1 � a2 log x2 � � � � � an log xn

Exercise 3.173

Suppose that f is a monotonic transformation of a homogeneous function.

Show that f is a monotonic transformation of a linearly homogeneous

function.

Exercise 3.174

If h is a homogeneous functional on S and g: R! R is strictly increasing,

then f � g � h is homothetic.
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Exercise 3.175

Let f be a strictly increasing homothetic functional on a cone S in an

linear space X. Then there exists a linearly homogeneous function

h: S ! R and a strictly increasing function g: R! R such that f � g � h.

[Hint: De®ne g�a� � f �ax0� for some x0 A S, and show that h � gÿ1 � f is

homogeneous of degree one.]

Exercise 3.176 (Homothetic technology)

If the production function of a competitive ®rm is homothetic, then the

cost function is separable, that is,

c�w; y� � j�y�c�w; 1�
where c�w; 1� is the cost of producing one unit (unit cost). [Hint: Use ex-

ercise 3.166.]

Exercise 3.177 (Concavi®ability)

A strictly positive de®nite, strictly increasing, homothetic, and quasi-

concave functional is concavi®able.

3.9 Separation Theorems

A hyperplane Hf �c� in a linear space X divides the space into two sets

fx A X : f �x�V cg and fx A X : f �x�U cg called halfspaces. These are the

upper 7f �c� and lower 6f �c� contour sets of f respectively. The half-

spaces are closed sets if f is continuous (exercise 2.77). A hyperplane is

said to separate two sets A and B if they lie on opposite sides of the

hyperplane so that each is contained in opposing halfspaces. Formally

Hf �c� separates A and B if

either f �x�U cU f �y� or f �x�V cV f �y�
for every x A A and y A B

Similarly the hyperplane Hf �c� bounds a set S if S is wholly contained in

one or other of the halfspaces, that is,

either f �x�U c or f �x�V c for every x A S

A hyperplane Hf �c� is a supporting hyperplane to S at x0 A S if Hf �c�
bounds S and contains x0 (®gure 3.15). A surprising number of questions
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in economics can be posed in terms of the existence of separating or sup-

porting hyperplanes to appropriately de®ned sets.

Two sets A and B can be separated if and only if there exists a linear

functional f and constant c such that

f �x�U cU f �y� for every x A A and y A B

That is, there exists a linear functional that values every point in A less

than any point in B. The connection with optimization becomes more

transparent when we rewrite the condition as asserting the existence of

linear functional, which is maximized over A and minimized over B, that

is,

sup
x AA

f �x�U cU inf
y AB

f �y�

Exercise 3.178

Assume that Hf �c� is a supporting hyperplane to a set S at x0. Show that

either x0 maximizes f or x0 minimizes f on the set S.

As the illustrations in ®gure 3.16 suggest, the fundamental requirement

for separation is convexity. This is the content of following basic separa-

tion theorem, whose proof is developed in the next section.

Theorem 3.2 (Separating hyperplane theorem) Let A and B be nonempty,

disjoint, convex subsets in a normed linear space X. Assume that either at

least one of the sets has a nonempty interior or X is ®nite-dimensional. Then

there exists a continuous linear functional f A X � and a number c such that

f �x�U cU f �y� for every x A A and y A B

Figure 3.15
Bounding, separating, and supporting hyperplanes
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Moreover separation is strict on the interiors of A and B, that is,

f �x� < c < f �y� for every x A int A and y A int B

Actually it is not necessary that the convex sets be entirely disjoint.

Separation is possible if the convex sets share a common boundary, pro-

vided they have no interior points in common. In fact this is a necessary

and su½cient condition for separation. Thus we have the following useful

corollary.

Corollary 3.2.1 Let A and B be nonempty, convex subsets in a normed

linear space X with int A0q. Then A and B can be separated if and only

if int AXB �q.

Corollary 3.2.2 (Supporting hyperplane) Let x0 be a boundary point of a

convex set S in normed linear space. Assume that S has a nonempty inte-

rior. Then there exists a supporting hyperplane at x0; that is, there exists a

continuous linear functional f A X � such that

f �x0�U f �x� for every x A S

In many applications one of the convex sets to be separated is a sub-

space; when this is the case, the separating hyperplane necessarily con-

tains the subspace.

Corollary 3.2.3 (Subspace separation) Let S be a convex subset of linear

space X with a nonempty interior, and let Z be a subspace that is disjoint

from the interior of S. Then there exists a separating hyperplane which

contains Z, that is there exists a continuous linear functional f A X � such

that

Figure 3.16
Convexity is the fundamental requirement for separation
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f �x�V 0 for every x A S

and

f �z� � 0 for every z A Z

The classic application of the separating hyperplane theorem in eco-

nomics is the second theorem of welfare economics, which shows it is

possible for decentralization to achieve Pareto optimality. The following

example involving a single producer and consumer illustrates the essential

idea.

Example 3.77 (Robinson Crusoe) Isolated on a desert island, Robinson

Crusoe survives by catching ®sh. Although ®sh are plentiful in the lagoon,

the more time he spends ®shing, the more wary become the ®sh, and the

harder they are to catch. Robinson does not like ®shingÐit is hard work,

and he would prefer to spend his time sitting on the beach dreaming of

being rescued.

Robinson's predicament is illustrated in ®gure 3.17. He has a single input

(time) and a single output (®sh). His only productive activity (®shing)

exhibits diminishing returns. His production opportunities are prescribed

by the convex production possibility set A. Each point in y A A is a pair

�h; q� specifying the time spent ®shing (h) and the resulting catch of ®sh

(q). Since ®shing time is an input, h is negative (example 1.7). We assume

that A is closed.

Figure 3.17
Robinson's choice of lifestyle
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A is the set of attainable or feasible lifestyles for Robinson. His choice

of the best lifestyle �h; q� A A is guided by his preferences, speci®cally his

trade-o¨ between food and leisure. We assume that his preferences are

strictly convex, continuous, and monotonic. Since total time is limited (to

24 hours a day), the feasible set A is compact. Consequently there exists a

best choice �h�; q�� A A that is at least as good as any other lifestyle

�h; q� A Y (proposition 1.5).

Robinson ful®lls two roles in our model: he is both consumer and pro-

ducer. Suppose that we want to separate these roles, allowing Robinson

the consumer to act independently of Robinson the producer, exchanging

®sh for labor at arm's-length. The separating hyperplane theorem guar-

antees that there exist a price of ®sh p and wage rate w that achieves pre-

cisely this decentralization. To see this, let B denote the set of all feasible

lifestyles which are at least as good as �h�; q��. That is,

B �7�h�; q�� � f�h; q� : �h; q�7 �h�; q��g
B is convex. Furthermore B contains no interior points of A (exercise

3.179). Consequently (theorem 3.2, corollary 3.2.1) there is a linear func-

tional f and number c such that

f �y�U cU f �y 0� for every y A A and y 0 A B �29�
See ®gure 3.17. A and B are convex sets in R2. Consequently (proposition

3.4) there exist numbers w and p such that f �h; q� � wh� pq. If Robinson

the producer buys labor at wage rate w and sells ®sh at price p, f �h; q�
measures the net pro®t achieved from the production plan �h; q�. Simul-

taneously f �h; q� measures the net cost to Robinson the consumer of

buying q ®sh at price p, while selling h hours of labor at wage rate w.

Since �h�; q�� belongs to both A and B, (29) implies that

1. wh� � pq�Vwh� pq for every y � �h; q� A A At the prices �w; p�,
Robinson the producer maximizes his pro®t wh� pq at the production

plan �h�; q��.
2. wh� � pq�Uwh� pq for every y 0 � �h; q� A B At the prices �w; p�,
Robinson the consumer minimizes the cost wh� pq of achieving a life-

style at least as satisfying as �h�; q��.
Remark 3.16 (Second theorem of welfare economics) The ®rst theorem of

welfare economics (exercise 1.251) establishes the Pareto optimality of
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competitive markets. The second theorem of welfare economics is the

converse, asserting that the achievement of Pareto optimal outcomes can

be decentralized through competitive markets.

In the Robinson Crusoe economy, the existence of prices that enable the

decentralization of the production and consumption sides of Robinson's

existence is a straightforward application of the separating hyperplane

theorem. Trading at these prices, Robinson the producer and Robinson

the consumer will independently achieve a compatible outcome.

At ®rst glance the Robinson Crusoe economy seems a very special case,

since it involves a single consumer, a single producer, and only two com-

modities. Fortunately, these limitations are more apparent than real.

Nothing in the derivation in example 3.77 hinged on there only being two

commodities, and the extension to l > 2 commodities is trivial.

The assumption of price-taking behavior when there are only two

agents is far-fetched. Fortunately the extension to multiple consumers and

producers is also straightforward. Exercise 3.228 establishes the second

theorem for an exchange economy with many consumers but no pro-

ducers. Adding multiple producers brings no further conceptual insight,

although the need to take account of the distribution of pro®ts in the

economy complicates the notational burden. For this reason we invite the

reader to consult standard texts such as Mas-Colell et al. (1995), Starr

(1997), and Varian (1992) for a general treatment.

The one ingredient of the Robinson Crusoe economy that cannot be

dispensed with is convexity. Convexity of both technology and prefer-

ences is indispensable to ensure the separation of production and upper

preference sets and hence the possibility of decentralization through

markets. With many agents, the convexity requirements can be relaxed

somewhat. On the production side, convexity of the aggregate production

set su½ces, even if the technology of individual producers in not convex.

Similarly the aggregation of large numbers of consumers alleviates indi-

vidual nonconvexity (Hildenbrand and Kirman 1976).

Exercise 3.179

In example 3.77 show that int AXB �q.

Exercise 3.180

In example 3.77 Robinson the producer makes a pro®t of wh� � pq�. This

is Robinson the consumer's income, so his budget set is

363 3.9 Separation Theorems



X � f�h; q� : wh� pqUwh� � pq�g
This is halfspace below the separating hyperplane in ®gure 3.17. Note that

AJX .

�h�; q�� is the optimal choice in the feasible set A. Show that it is also

Robinson the consumer's optimal choice in the larger budget set X. Con-

sequently �h�; q�� solves the consumer's problem when the prices are w

and p.

Exercise 3.181 (Subgradient)

Let f be a convex function de®ned on a convex set S in a normed linear

space X. For every x0 A int S there exists a linear functional g A X � that

bounds f in the sense that

f �x�V f �x0� � g�xÿ x0� for every x A S

Such a linear functional g is called a subgradient of f at x0. [Hint: Con-

sider a supporting hyperplane to epi f at �x0; f �x0��.]
Example 3.78 (Pro®t function) Figure 3.18 shows a cross section

through the pro®t function of a competitive ®rm. The straight line is the

graph of a subgradient of the pro®t function. It shows that pro®t attain-

able by the ®rm if it does not change it production activities as the price p

varies. The fact that it bounds the pro®t function from below shows that

the ®rm can attain a higher pro®t by adjusting its production plans in

response to price changes.

Figure 3.18
A subgradient of the pro®t function

364 Chapter 3 Linear Functions



Proof of the Basic Separation Theorem

The separating hyperplane theorem is one of the most intuitive results in

mathematics. A few minutes drawing ®gures should convince you of the

veracity of the separation theorem in the plane R2. Fortunately this is not

one of those occasions where our intuition leads us astray in higher

dimensions, and the passage to higher dimensions introduces no major

complications. However, proving this is not trivial. Indeed, a proof

for an arbitrary linear space involves some sophisticated mathematics.

In the special case of Euclidean space, a proof of the separating hyper-

plane theorem is a useful illustration of the interplay of algebraic and

topological concepts in linear spaces. It is established in the following

exercises.

Exercise 3.182

Let S be a nonempty, closed, convex set in a Euclidean space X and y B S.

There exists a continuous linear functional f A X � and a number c such

that

f �y� < cU f �x� for every x A S

Exercise 3.183

Let y be a boundary point of a nonempty, convex set S in a Euclidean

space X. There exists a supporting hyperplane at y; that is, there exists a

continuous linear functional f A X � such that

f �y�U f �x� for every x A S

[Hint: If y A b�S�, there exists a sequence yn ! y with yn B S.]

Exercise 3.184

Generalize exercise 3.182 to dispense with the assumption that S is closed.

That is, let S be a nonempty, convex set in a Euclidean space X and y B S.

There exists a continuous linear functional f A X � such that

f �y�U f �x� for every x A S

[Hint: Consider separately the two possible cases: y A S and y B S.]

Exercise 3.185

Let S be an open convex subset of a linear space X and f A X � a nonzero

linear functional on X. Then f �S� is an open interval in R.
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Exercise 3.186

Prove theorem 3.2 (assuming that X is Euclidean). [Hint: Apply exercise

3.184 to separate 0 from S � B� �ÿA�. Then use exercise 3.185.]

Remark 3.17 Finite dimensionality was used at two crucial stages in the

derivation above. In exercise 3.72 ®nite dimensionality ensured the com-

pactness of Ŝ, to which we applied the Weierstrass theorem to guarantee

the existence of a closest point to y. In exercise 3.183 ®nite dimensionality

was required to ensure the existence of a convergent subsequence of linear

functionals. Holmes (1975, pp. 14±16) gives a general proof of the sepa-

rating hyperplane theorem.

Exercise 3.187

Prove corollary 3.2.1.

Exercise 3.188

Prove corollary 3.2.2

Exercise 3.189

Let Hf �c� be a bounding hyperplane of a cone C in a normed linear space

X, that is, f �x�V c for every x A C. Then

f �x�V 0 for every x A C

Exercise 3.190

Let Hf �c� be a bounding hyperplane of a subspace Z of a normed linear

space X, that is, f �x�U c for every x A Z. Then Z is contained in the

kernel of f, that is,

f �x� � 0 for every x A Z

Exercise 3.191

Prove corollary 3.2.3.

Separation theorems are so pervasive in mathematical economics that it

is necessary to have a range of variations in the armory. In the following

sections we develop some re®nements of the basic separating hyperplane

theorem that are useful in applications.

Strong Separation

A hyperplane Hf �c� is said to properly separate convex sets A and B,

provided that both are not contained in the hyperplane itself. This avoids
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the trivial case in which f �x� � c for every x A AWB (®gure 3.19). Theo-

rem 3.2 ensures proper separation whenever at least one of the sets has a

nonempty interior (exercise 3.192).

Exercise 3.192 (Proper separation)

Let A and B be nonempty, convex subsets in a normed linear space X

with int A0q and int AXB �q. Then A and B can be properly

separated.

Frequently stronger forms of separation are required. Two sets A and B

are strictly separated by a hyperplane Hf �c� if A and B lie in opposite

open halfspaces de®ned by Hf �c�, that is,

f �x� < c < f �y� for every x A A; y A B

The sets A and B are strongly separated by the hyperplane Hf �c� if there

exists some number e such that

f �x� < cÿ e < c� e < f �y� for every x A A; y A B

or equivalently

sup
x AA

f �x� < inf
y AB

f �y�

Figure 3.19
Various forms of separation
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Exercise 3.193 (Strict separation)

If A and B are nonempty, disjoint, convex open sets in a ®nite dimensional

normed linear space X, they can be strictly separated; that is, there exists a

continuous linear functional f A X � and a numbers c such that

f �x� < c < f �y� for every x A A; y A B

The most important variant is strong separation. The basic result is

presented in the following proposition. In the following exercises we

explore proofs for the ®nite- and in®nite-dimensional cases. We then use

proposition 3.14 to generalize some previous results and provide some

new applications.

Proposition 3.14 (Strong separation) Let A and B be nonempty, disjoint,

convex subsets in a normed linear space X with

. A compact

. B closed.

Then A and B can be strongly separated; that is, there exists a continuous

linear functional f A X � such that

sup
x AA

f �x� < inf
y AB

f �y�

A straightforward proof for a ®nite-dimensional space is given in the

following exercise.

Exercise 3.194

Prove proposition 3.14 for a ®nite-dimensional space X. [Hint: Apply

exercise 3.182 to the set Bÿ A. Compactness of A is necessary to ensure

that Bÿ A is closed.]

The following exercise shows that compactness of A is essential in

proposition 3.14.

Exercise 3.195

In R2, draw the sets A � fx A R2
� : x1x2 V 1g and B � fx A R2 : x2 U 0g.

Can these sets be strongly separated?

The essential requirement for strong separation is that the two sets

be spatially disjoint. This requirement is formalized for general (in®nite-
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dimensional) normed linear spaces in the following exercise, providing a

general proof of proposition 3.14.

Exercise 3.196

1. Let A and B be nonempty, disjoint, convex subsets in a normed linear

space X. A and B can be strongly separated if and only if there exists a

convex neighborhood of U of 0 such that

�A�U�XB �q

2. Prove proposition 3.14. [Hint: Use exercise 1.208.]

Exercise 3.197

Let A and B be convex subsets in a ®nite-dimensional normed linear space

X. A and B can be strongly separated if and only if

r�A;B� � inffkxÿ yk : x A A; y A Bg > 0

Combining proposition 3.14 with corollary 3.2.3 gives the following

important result, a geometric form of the Hahn-Banach theorem (propo-

sition 3.15).

Exercise 3.198 (Geometric Hahn-Banach theorem)

Let M be a nonempty, closed, subspace of a linear space X and y B M.

Then there exists a continuous linear functional f A X � such that

f �y� > 0 and f �x� � 0 for every x A M

As an application of the previous result, we use it in the following

exercise to provide an alternative derivation of the Fredholm alternative

(exercise 3.48). Note how a clever choice of space enables us to apply a

separation theorem to derive an a straightforward proof of a fundamental

theorem.

Exercise 3.199 (Fredholm alternative)

Let g1; g2; . . . ; gm be linear functionals on a linear space X, and let

S � fx A X : gj�x� � 0; j � 1; 2; . . . ;mg � 7
m

j�1

kernel gj

Suppose that f 0 0 is another linear functional such that such that

f �x� � 0 for every x A S. Show that
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1. The set Z � f f �x�;ÿg1�x�;ÿg2�x�; . . . ;ÿgm�x� : x A Xg is a subspace

of Y � Rm�1.

2. e0 � �1; 0; 0; . . . ; 0� A Rm�1 does not belong to Z (®gure 3.20).

3. There exists a linear functional j A Y � such that j�e0� > 0 and

j�z� � 0 for every z A Z.

4. Let j�y� � lT
y where l � �l0; l1; . . . ; lm� A Y � R�m�1�� . For every

z A Z,

lT
z � l0z0 � l1z1 � � � � � lmzm � 0

5. l0 > 0.

6. f �x� �Pm
i�1 ligi�x�; that is, f is linearly dependent on g1; g2; . . . ; gm.

Exercise 3.200

Show the converse; that is, if f �x� �Pm
i�1 ligi�x�, then f �x� � 0 for every

x A S where S � fx A X : gj�x� � 0; j � 1; 2 . . . mg.
Exercise 3.201 (Gale)

Let g1; g2; . . . ; gm be linear functionals on a linear space X. For ®xed

numbers cj, the systems of equations

gj�x� � cj; j � 1; 2; . . . ;m

is consistent if and only ifXm

j�1

ljgj � 0)
Xm

j�1

ljcj � 0

Figure 3.20
The Fredholm alternative via separation
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for every set of numbers l1; l2; . . . ; lm. [Hint: Separate c � �c1; c2; . . . ; cm�
from the subspace Z � fg1�x�; g2�x�; . . . ; gm�x� : x A Xg in Rm.]

Exercise 3.198 can be extended to a closed convex cone when X is ®nite-

dimensional. This result will be used in exercise 3.225.

Exercise 3.202

Let K be a closed convex cone in a ®nite-dimensional linear space X and

M a subspace with K XM � f0g. Then there exists a linear functional

f A X � such that

f �x� > 0 for every x A Knf0g
and

f �x� � 0 for every x A M

[Hint: Consider the set K̂ � fx A K : kxk1 � 1g.]
3.9.1 Hahn-Banach Theorem

Any linear functional f0 on a subspace Z HX can be trivially extended to

a functional f A X � on the whole space by de®ning

f �x� � f0�z�
where x � y� z with z A Z and y A Z?, the orthogonal complement of Z.

What makes extension theorems interesting is the presence of various

additional constraints which must be satis®ed by the extension. The classic

extension theorem is the Hahn-Banach theorem, where the extension must

satisfy the additional constraint that f �x�U g�x� where g is convex.

Proposition 3.15 (Hahn-Banach theorem) Let g be a convex functional

on a linear space X. Suppose that f0 is a linear functional de®ned on a

subspace Z of X such that

f 0�x�U g�x� for every x A Z

Then f0 can be extended to a functional f A X � such that

f �x� � f0�x� for every x A Z

and

f �x�U g�x� for every x A X
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Proof Exercise 3.203. r

Exercise 3.203

Suppose that f0 is a linear functional de®ned on a subspace Z of X such

that

f 0�x�U g�x� for every x A Z

where g A X � is convex. Show that

1. The sets

A � f�x; y� : yV g�x�; x A Xg
and

B � f�x; y� : y � f0�x�; x A Zg
are convex subsets of the linear space Y � X �R (®gure 3.21)

2. int A0q and int AXB �q.

3. There exists a linear functional j A Y � with j�0; 1� > 0 such that

j�x; y�V 0 for every �x; y� A A

and

j�x; y� � 0 for every �x; y� A B

4. De®ne the functional f A X � by f �x� � ÿ 1

c
j�x; 0� where c �

j�0; y� > 0. Then

Figure 3.21
Deriving the Hahn-Banach theorem
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f �x� � ÿ 1

c
j�x; y� � y for every y A R

5. f is an extension of f0; that is f �z� � f0�z� for every z A Z.

6. f is bounded by g; that is f �x�U g�x� for every x A X .

The Hahn-Banach theorem is in fact equivalent to the basic separation

theorem. We established one direction of this equivalence in exercise

3.203. Luenberger (1969, p. 133) gives the reverse direction. The Hahn-

Banach theorem shows that a normed linear space is well endowed with

linear functionals. Some consequences are addressed in the following

exercises. We will use exercise 3.205 in proposition 4.1.1 and exercise

3.206 in exercise 3.207.

Exercise 3.204

Let f0 be a bounded linear functional on a subspace Z of a normed linear

space X. Then f0 can be extended to a linear functional on the whole

space X without increasing its norm, that is,

k f kX � k f0kZ

Exercise 3.205

Let x0 be an element of a normed linear space X. There exists a linear

functional f A X � such that k f k � 1 and f �x0� � kx0k. [Hint: De®ne the

function f0�ax0� � akx0k on the subspace linfx0g � fax0 : a A Rg.]
Exercise 3.206

Let x1; x2 be distinct points in a normed linear space X. There exists a

continuous linear functional f A X � that evaluates them di¨erently, that

is, such that

f �x1�0 f �x2�
Example 3.79 When X � Rn, the vector x0=kx0k de®nes a linear func-

tional f A X � satisfying exercise 3.205 (exercise 3.64), namely

f �x� � xT x0

kx0k
� �

since

f �x0� � xT
0 x0

kx0k � kx0k and f
x0

kx0k
� �

� xT
0 x0

kx0k2
� 1
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By Cauchy-Schwartz inequality (exercise 3.61)

j f �x�jU kxk for every x A X

and therefore

k f k � sup
kxk�1

j f �x�j � 1

Extreme Points

The following exercise is a nice illustration of the use of the Hahn-Banach

theorem. Earlier (exercise 3.65) we showed that every compact set in an

inner product space has an extreme point. To extend this to more general

spaces requires two of our most powerful tools: Zorn's lemma and the

Hahn-Banach theorem.

Exercise 3.207 (Existence of extreme points)

Let S be a nonempty compact convex subset of a normed linear space X.

1. Let F be the collection of all faces of S. F has a minimal element F0.

2. F0 contains only a single point, x0.

3. x0 is an extreme point of S

Remark 3.18 We note that convexity is unnecessary in the previous

result: every compact set in a normed linear space has an extreme point. We

assumed convexity to take advantage of the familiar concept of faces,

since the result will normally be applied to convex sets (exercise 3.16). The

proof of the more general result follows exactly the form outlined in the

previous exercise, substituting the related concept of extremal set for face

(Holmes 1975, p. 74).

Combining exercise 3.207 with some earlier results yields the following

proposition, which is of immense practical importance for optimization

because it implies that the search for an optimum can be con®ned to the

extreme points of feasible set. In particular, this observation provides the

essential rationale for the simplex algorithm in linear programming.

Proposition 3.16 (Quasiconcave functional maximized at an extreme point)

Let f be a continuous function on a compact, convex set S. If f is quasi-

concave, then it attains its maximum at an extreme point of S.
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Proof Let S � be the set on which f attains its maximum, that is,

S � � fx� A S : f �x��V f �x� for every x A Sg
S � is nonempty (Weierstrass theorem 2.2), compact (continuous maximum

theorem 2.3), and convex (concave maximum theorem 3.1). Therefore S �

contains an extreme point (exercise 3.207). r

A particular application of this proposition is often useful.

Exercise 3.208

Let S be a compact convex set. Every supporting hyperplane to S con-

tains an extreme point of S.

This leads to another important implication of the strong separation

theorem, which is called the Krein-Milman theorem.

Exercise 3.209 (Krein-Milman theorem)

Every compact, convex set is the closed convex hull of its extreme points.

The Krein-Millman theorem underpins the standard proof of the

Shapley-Folkman theorem (see exercise 3.112), which is developed in the

following exercises.

Exercise 3.210

Let fS1;S2; . . . ;Sng be a collection of nonempty compact subsets of an

m-dimensional linear space, and let x A conv
Pn

i�1 Si. We consider the

Cartesian product of the convex hulls of Si, namely

P �
Yn

i�1

conv Si

Every point in P is an n-tuple �x1; x2; . . . ; xn� where each xi belongs to the

corresponding conv Si. Let P�x� denote the subset of P for whichPn
i�1 xi � x, that is,

P�x� � �x1; x2; . . . ; xn� : xi A conv Si and
X
i�1

xi � x

( )

1. Show that

a. P�x� is compact and convex.

b. P�x� is nonempty.

375 3.9 Separation Theorems



c. P�x� has an extreme point z � �z1; z2; . . . ; zn� such that

. zi A conv Si for every i

. Pn
i�1 zi � x.

2. At least nÿm components zi of z � �z1; z2; . . . ; zn� are extreme points

of their sets conv Si. To show this, assume the contrary. That is, assume

that there are l > m components of z that are not extreme points of

conv Si. Without loss of generality, suppose that these are the ®rst l

components of z.

a. For i � 1; 2; . . . ; l, there exists yi A X such that

zi � yi A conv Si and zi ÿ yi A conv Si

b. There exists numbers a1; a2; . . . ; al , jaijU 1 such that

a1y1 � a2y2 � � � � � alyl � 0

c. De®ne

z� �

z1 � a1y1

z2 � a2y2

� � �
zl � alyl

zl�1

� � �
zn

0BBBBBBBB@

1CCCCCCCCA
; zÿ �

z1 ÿ a1y1

z2 ÿ a2y2

� � �
zl ÿ alyl

zl�1

� � �
zn

0BBBBBBBB@

1CCCCCCCCA
Show that z� and zÿ belong to P�x�.
d. Conclude that z is not an extreme point of P�x�, contradicting the

assumption. Hence at least �nÿm� of the zi are extreme points of the

corresponding conv Si.

3. z is the required representation of x, that is

x �
Xn

i�1

zi; zi A conv Si

and zi A Si for all but at most m indexes i.

Exercise 3.211

Let S1 � f0; 1g, S2 � f2; 3g, and x � 2:5. Illustrate the sets conv Si, P,

and P�x�.
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Exercise 3.212 (Shapley-Folkman theorem)

Extend exercise 3.210 to allow for noncompact Si, thus proving the

Shapley-Folkman theorem. [Hint: Use CaratheÂodory's theorem (exercise

1.175).]

3.9.2 Duality

Exactly what an economist means by duality is confusingÐit is an over-

worked term that has many di¨erent shades of meaning. Nevertheless, it

is clear that the foundation of the theory of duality in economics is the

following proposition, a straightforward corollary of the strong separa-

tion theorem. It establishes a correspondence between a closed, convex set

and its bounding hyperplanes. Since the latter can be identi®ed with ele-

ments of the dual space X �, we have a correspondence between convex

sets in the primal space X and elements in the dual space X �.

Proposition 3.17 (Minkowski's theorem) A closed, convex set in a normed

linear space is the intersection of the closed halfspaces that contain it.

Minkowski's theorem is illustrated in ®gure 3.22.

Exercise 3.213

Prove proposition 3.17.

Remark 3.19 This result can be strengthened to so that it is con®ned

to halfspaces of supporting (as opposed to bounding) hyperplanes (Rock-

afellar 1970, p. 169), which is often how it is presented and used in eco-

nomic sources (e.g., Diewert 1982, p. 547; Klein 1973, p. 327). However,

it is often the weaker result that is proved (e.g., Karlin 1959, p. 398).

Figure 3.22
Minkowski's theorem
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Example 3.80 (Recovering the technology from the cost function) The

classic application of the duality of convex sets in economics involves the

recovery of a production technology from cost data. To illustrate, sup-

pose that the following data describe the behavior of a cost minimizing

®rm producing a ®xed output y as factor prices change. xi denotes the

demand for factor i when its price is wi.

w1 w2 x1 x2 Cost

1 2 10 5 11

2 1 6 10 11

From these data we can deduce certain facts about the technology of the

®rm. The isocost lines corresponding to the two price vectors are bound-

ing hyperplanes H�1;2��11� and H�2;1��11� to the input requirement set

V�y� (®gure 3.23). We can rule out certain production plans as infeasible.

For example, the input combination �8; 5� cannot be a feasible way of

producing y (�8; 5� B V�y�), since it lies on the wrong side of the hyper-

plane H�2;1��11�. If we had more data, we could re®ne our knowledge of

the technology.

If we know the cost function c�w; y� (example 2.31) of an unknown

technology V�y�, we potentially have an in®nite supply of data. Extend-

ing the previous line of reasoning, de®ne the set

V ��y� � fx : wT xV c�w; y� for every wV 0g

Figure 3.23
Recovering the technology from the cost function
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V ��Y� is the set which is bounded by all conceivable isocost lines. It is a

closed convex set that approximates the true technology V�y�. Further-

more, by virtue of proposition 3.17, if the technology is convex, the

approximation is exact, that is, V ��y� � V�y�. The practical importance

of this derivation is that an analyst does not need to begin with detailed

knowledge of the technology. She can concentrate on estimating the cost

function, using market prices w that are easily observable and exogenous,

and then recover the technology from the estimated cost function.

Exercise 3.214

Show that

1. V ��y� is a closed convex set containing V�y�
2. if V�y� is convex and monotonic, then V ��y� � V�y�
Example 3.81 (Leontief technology) Suppose that the cost function is

linear in factor prices, that is,

c�w; y� �
Xn

i�1

biwi

 !
y

Then

V ��y� � fx : wT xV c�w; y� for every wV 0g

� x :
Xn

i�1

wixi V
Xn

i�1

biwi

 !
y for every wV 0

( )

Equivalently, x A V ��y� if it satis®es the inequality
Pn

i�1 wi�xi ÿ bi y�V 0

for every wV 0. This requires that xi V bi y for i � 1; 2; . . . ; n. Equivalently

y � min
x1

b1
;
x2

b2
; . . . ;

xn

bn

� �
or letting ai � 1=bi,

y � minfa1x1; a2; x2; . . . ; anxng
which is known as the Leontief production function.

Exercise 3.215

Assume that the cost function for a convex, monotonic technology V�y�
is linear in y, that is, c�w; y� � ĉ�w�y. Then the technology exhibits con-

stant returns to scale. [Hint: Consider V ��y�.]
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Polyhedral Sets

By Minkowski's theorem (proposition 3.17), any convex set is the inter-

section of a (possibly in®nite) collection of closed halfspaces. If a ®nite

number of halfspaces is su½cient to determine a convex set, then the set is

called a polyhedral set or simply a polyhedron. Formally a set S in a normed

linear space is polyhedral if there exist linear functionals g1; g2; . . . ; gm A X �

and numbers c1; c2; cm such that S � fx A X : gi�x�U ci; i � 1; 2; . . . ;mg.
Exercise 3.216

Every polyhedral set is closed and convex.

Exercise 3.217

Let A be an m� n matrix. The set of solutions to the system of linear

inequalities AxU c is a polyhedron in Rn.

Example 3.82 (Core of a TP-coalitional game) The core of a TP-

coalitional game �N;w� is the set of allocations x A Rn for whichX
i AS

xi Vw�S� for every S HN

andX
i AN

xi � w�N�

The equation can be represented as a pair of inequalitiesX
i AN

xi Uw�N�; ÿ
X
i AN

xi Uÿw�N�

So the core of a TP-coalitional game is the solution to a system of linear

inequalities and therefore a polyhedron (exercise 3.217). Geometrically,

each coalitional constraint
P

i AS xi V v�S� de®nes a closed halfspace in

Rn bounded by the hyperplane
P

i AS xi � v�S�. The core is the inter-

section of these 2n closed halfspaces. Since each coalitional constraint is

de®ned by a hyperplane, TP-coalitional games are sometimes called

hyperplane games.

Exercise 3.218

The core of a TP-coalitional game is compact.
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A polyhedral set which is nonempty and compact is called a polytope.

Earlier (section 1.4.3) we de®ned a polytope as the convex hull of ®nite

set of points. The equivalence of these two de®nitions follows from the

Krein-Milman theorem.

Exercise 3.219

Show that a polytope can be de®ned alternatively as

. the convex hull of a ®nite set of points

. a nonempty compact polyhedral set

That is, show the equivalence of these two de®nitions.

Example 3.83 (Core of a TP-coalitional game) Provided it is nonempty,

the core of a TP-coalitional game is a polytope (exercise 3.218). This

means that the core can be represented as the convex hull of its extreme

points, an alternative representation that is often more revealing than the

corresponding system of inequalities.

Example 3.84 (Three way market) The characteristic function of the

three way market game (example 3.7) is

w�f f g� � 1; w�fmg� � 0; w�fsg� � 0

w�f f ;mg� � 2; w�f f ; sg� � 3; w�fm; sg� � 0

w�N� � 3

So its core is

core � fx A R3 : x1 V 1; x2 V 0; x3 V 0; x1 � x2 V 2; x1 � x3 V 3;

x1 � x2 � x3 � 3g
The extreme points of the core are f�3; 0; 0�; �2; 0; 1�g, so the core can

be represented as core � a�3; 0; 0� � �1ÿ a��2; 0; 1� for 0U aU 1, or

alternatively,

core � f�3ÿ a; 0; a� : 0U aU 1g
This expression highlights the two features of the core in this game:

. the zero payo¨ to player 2

. the discretion over the division of 1 unit between players 1 and 3.
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Duality for Cones

Given any subset S of a normed linear space X, the polar or dual cone of

S is de®ned to be

S � � f f A X � : f �x�U 0 for every x A Sg
The polar cone of S � is called the bipolar of S. It is de®ned by

S�� � fx A X : f �x�U 0 for every f A S �g
The polar cone is a generalization of the orthogonal complement of a

subspace (see ®gure 3.24). Polar cones provide elegant proofs of a

number of results. Their basic properties are summarized in the following

exercise.

Exercise 3.220 (Polar cones)

Let S be a nonempty set in a normed linear space X. Show

1. S � is a closed convex cone in X �

2. S�� is a closed convex cone in X

3. S JS��

4. S JS��

Exercise 3.221

Let S1;S2 be nonempty sets in a normed linear space.

S1 JS2 ) S �2 JS �1

Figure 3.24
Polar cones in R2
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Whatever the nature of the set S, S � and S�� are always cones (in X �

and X respectively) and S JS��. Under what conditions is S identical to

its bipolar S�� (rather than a proper subset)? Clearly, a necessary condi-

tion is that S is a convex cone. The additional requirement is that S is

closed. This is another implication of the strong separation theorem.

Exercise 3.222 (Duality theorem for convex cones)

Let S be a nonempty convex cone in a normed linear space X. Then

S � S�� if and only if S is closed.

The duality theory of convex cones provides an elegant proof of the

Farkas lemma that extends a classic result on linear equationsÐthe

Fredholm alternative (exercises 3.48 and 3.199)Ðto systems of linear

inequalities. The Farkas lemma is an equivalent formulation of the basic

separation theorem that is particularly useful for applications. Among

other things, it implies the duality theorem in linear programming, the

minimax and Bondareva-Shapley theorems (propositions 3.20 and 3.21)

of game theory, and the Kuhn-Tucker theorem (theorem 5.3) of nonlinear

programming.

Proposition 3.18 (Farkas lemma) Let g1; g2; . . . ; gm be linear functionals

on a (re¯exive) normed linear space X, and let

S � fx A X : gj�x�U 0; j � 1; 2; . . . ;mg
Suppose that f 0 0 is another linear functional such that f �x�U 0 for

every x A S. Then f A conefg1; g2; . . . ; gmg, the conic hull of the gj . That is,

there exist nonnegative constants lj such that

f �x� �
Xm

j�1

ljgj�x�

Proof Let K � conefg1; g2; . . . ; gmg. Since X is re¯exive (remark 3.5)

K � � fx A X : g�x�U 0 for every g A Kg � S

We need to prove that f A K . Since K is a closed convex cone, K � K��

(exercise 3.222), and

K�� � fg A X � : g�x�U 0 for every x A K �g
� fg A X � : g�x�U 0 for every x A Sg
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f A K if and only if f A K��. By assumption, f A K��, which implies that

f A K . r

Remark 3.20 To exploit the duality theory of convex cones, our proof of

the Farkas lemma presumes a re¯exive normed linear space (see remark

3.5). Re¯exivity is not necessary, although establishing the theorem in

a general linear space requires a more elaborate proof (Fan 1956, thm. 4,

p. 108). Braunschweiger and Clark (1962) discuss the necessity of re¯ex-

ivity. The Farkas lemma is most often encountered in Rn or other Hilbert

space, where a more direct proof can be given (exercise 3.223).

Exercise 3.223 (Farkas lemma in Hilbert space)

Use proposition 3.14 directly to prove the Farkas lemma when X is a

Hilbert space. [Hint: Use the Riesz representation theorem (exercise

3.75).]

A major application of the traditional theory of linear algebra

addresses the consistency of linear models; that is, it speci®es necessary

and su½cient conditions for the existence of solutions to a systems of

linear equations or inequalities (section 3.6). In many applications we also

require that the solution of the model be nonnegative. This is the most

frequent application of the Farkas lemma, which provides necessary and

su½cient conditions for the existence of a nonnegative solution to a system

of linear equations, as detailed in the following exercise.

Exercise 3.224

Let A be an m� n matrix. A necessary and su½cient condition for the

system of linear equations AT y � c to have a nonnegative solution y A Rm
�

is that cT xU 0 for every x A Rn satisfying AxU 0.

Separation with Nonnegative Normal

In economic applications the underlying space X is usually a set of com-

modity bundles or allocations of resources, and the linear functionals are

valuations or equivalently prices. It is often appropriate that the prices

be nonnegative. The following corollary of the separating hyperplane

theorem is particularly useful in such cases. We give the result for Rn,

since its application in the more general spaces requires the speci®cation

of an order structure for the space.
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Exercise 3.225 (Nonnegative normal)

Let S be convex set in Rn which contains no interior points of the non-

negative orthant Rn
�. Then there exists a hyperplane with nonnegative

normal pX 0 (that is p0 0, pi V 0) such that pT xU 0 for every x A S.

Earlier (exercise 3.42) we showed that pro®t maximization implies e½-

ciency. Now we establish the converse provided the production set is

convex. This is another version of the second theorem of welfare eco-

nomics (example 3.77).

Exercise 3.226

Suppose that the production possibility set Y is convex. Then every e½-

cient production plan y A Y is pro®t maximizing for some nonzero price

system pV 0.

The mirror image of exercise 3.225 is useful in some applications

(exercises 3.228, 3.259).

Exercise 3.227

Let S be convex set in Rn that contains no interior points of the non-

positive orthant Rn
ÿ. Then there exists a hyperplane with nonnegative

normal pX 0 such that

pT xV 0 for every x A S

Exercise 3.228 (Exchange economy)

Suppose that x� � �x�1 ; x�2 ; . . . ; x�n � is a Pareto e½cient allocation in an

exchange economy with l commodities and n consumers (example 1.117).

Assume that

. individual preferences are convex, continuous and strongly monotonic.

. x� �Pn
i�1 x�i > 0

Show that

1. The set 7�x�� �Pn
i�1 7i�x�i � is the set of all aggregate commodity

bundles that can be distributed so as to make all the consumers at least as

well o¨ as at the allocation x�.

2. S �7�x�� ÿ x� is nonempty, convex and contains no interior points

of the nonpositive orthant R l
ÿ.
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3. There exist prices p� A R l
� such that �p��T xV �p��T x� for every

x A 7�x��.
4. For every consumer i, �p��T xi V �p��T x�i for every xi A 1i�x�i �.
5. �p�; x�� is a competitive equilibrium with endowments wi � x�i

Exercise 3.229 (Second theorem of welfare economics)

Suppose that x� � �x�1 ; x�2 ; . . . ; x�n � is a Pareto-e½cient allocation in an

exchange economy (example 1.117) in which each of the n consumers has

an endowment wi A R l
� of the l commodities. Assume that

. individual preferences 7i are convex, continuous and strongly

monotonic

. x� is a feasible allocation, that is
P

i x�i �
P

i wi > 0

Show that there exists

. a list of prices p� A R l
� and

. a system of lump-sum taxes and transfers t A Rn with
P

i ti � 0

such that �p�; x�� is a competitive equilibrium in which each consumer's

after-tax wealth is mi � �p��T wi � ti.

Example 3.85 Let S � f�x; x; 0� : x A Rg. S is a subspace of R3. There

exists a hyperplane (improperly) separating S from R3
�, namely the hyper-

plane orthogonal to the x3 axis that has normal p � �0; 0; p�. Note that

S XR3
� � f�x; x; 0� : x A R�g0 0 and pT x � 0 for all x � �x1; x2; 0� A R3.

In general, a separating hyperplane with a strictly positive normal

(p > 0) cannot be guaranteed, as the preceding example illustrates. How-

ever, exercise 3.225 can be strengthened to ensure strictly positive prices

(pi > 0) if S is a subspace which intersects the nonnegative orthant Rn
�

precisely at 0 (exercise 3.230).

Exercise 3.230 (Positive normal)

Let S be a subspace that intersects the nonnegative orthant at 0, that is

S XRn
� � f0g. Then there exists a hyperplane with positive normal p > 0

(i.e., pi > 0 for every i) such that

pT x � 0 for every x A S

and
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pT x > 0 for every x A Rn
�nf0g

Using the duality theory of cones, we can elegantly extend this result to

closed convex cones.

Exercise 3.231 (Positive normal)

Let K be a closed convex cone that intersects the nonnegative orthant at

0, that is, K XRn
� � f0g. Then there exists a hyperplane with positive

normal p > 0 (i.e., pi > 0 for every i) such that pT xU 0 for every x A K .

[Hint: Show K XRn
� � f0g ) K �XRn

��0q.]

Example 3.86 (No arbitrage theorem) In a simple model of portfolio

investment, we showed earlier (example 3.37) that where there exists a full

set of Arrow-Debreu securities, the equilibrium price of asset a must be

given by

pa �
XS

s�1

rsaps

where ps is the price of the s Arrow-Debreu security, which guarantees a

payo¨ of $1 in state s and zero in every other state. In reality the hypo-

thetical Arrow-Debreu securities do not exist, and the number of states S

vastly exceeds the number of assets A. It is a surprising consequence of the

separating hyperplane theorem that a similar result holds even when there

are fewer assets than states of the world.

Suppose that there are A assets with prices p � �p1; p2; . . . ; pA� and

return matrix

R �
r11 r12 � � � r1A

r21 r22 � � � r2A

� � � � � � � � � � � � � � �
rS1 rS2 � � � rSA

0BB@
1CCA� �

The value of any portfolio x is pT x �PA
a�1 paxa.

Recall that a portfolio x can have negative as well as positive compo-

nents. A negative component xa indicates a short position in the asset a.

Given a system of asset prices p � �p1; p2; . . . ; pA�, an arbitrage is a

portfolio x such that pT xU 0 and RxX 0. It is a portfolio that has zero

(or negative cost) and that guarantees a nonnegative return in every state

and a positive return in at least one state. An arbitrage is the ®nancial
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equivalent of a ``free lunch,'' a sure way to make money. We expect an

e½cient market to eliminate any arbitrage possibilities very rapidly. The

no arbitrage condition precludes the existence of any arbitrage oppor-

tunities in equilibrium. Formally the no arbitrage condition requires any

portfolio that guarantees nonnegative returns in every state to have a

nonnegative value, that is,

RxV 0) pT xV 0

This simple equilibrium condition has surprisingly deep implications.

In particular, the no arbitrage condition implies the existence of posi-

tive state prices p � �p1; p2; . . . ; pS� such that the price of any security a is

given by

pa �
XS

s�1

rasps

The state price ps > 0 measures the value of $1 to be received in state s. It

re¯ects the likelihood that state s occurs. The state prices are the implicit

prices of the nonexistent Arrow-Debreu securities (example 3.37). Even

in the absence of such securities, ®nancial market acts as though they exist

in the sense that the equilibrium prices of all existing securities are com-

pounds of the implicit prices of notional basic securities. The fundamental

theorem of ®nancial economics states that the no arbitrage condition is a

necessary and su½cient condition for the existence of state prices. This

has many implications.

Exercise 3.232 (No arbitrage theorem)

There is no arbitrage if and only if there exist state prices. [Hint: Apply

exercise 3.230 to the set Z � f�ÿpT x;Rx� : x A Rng.]
3.9.3 Theorems of the Alternative

We saw earlier that the Farkas lemma provides necessary and su½cient

conditions for the existence of a nonnegative solution to a system of linear

equations (exercise 3.224). Speci®cally, if A is an m� n matrix, a neces-

sary and su½cient condition for the system of linear equations AT y � c to

have a nonnegative solution y A Rm
� is that cT xU 0 for every x A Rn,

satisfying AxU 0. Therefore, if c � AT y for some y A Rm
� , there is no

x A Rn with AxU 0 and cT x > 0. In other words, the Farkas lemma
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asserts that one and only one of these two linear systems is consistent. In

this form the Farkas lemma is the archetypical theorem of the alternative,

a collection of results which provide versatile tools in applications.

Proposition 3.19 (Farkas alternative) Let A be an m� n matrix and c be

a nonzero vector in Rn. Then exactly one of the following two alternatives

holds:

Either I there exists x A Rn such that AxU 0 and cT x > 0

or II there exists y A Rm
� such that AT y � c.

Proof Assume that alternative I does not hold. That is, cT xU 0 for

every x such that AxU 0. Then there exists y A Rm
� such that c � AT y

(exercise 3.224). This is alternative II. Conversely, suppose that alterna-

tive II holds. Then cT xU 0 for every x such that AxU 0 (exercise 3.224).

This precludes alternative I. r

The Farkas alternative is illustrated in ®gure 3.25. Suppose that m � 3.

Each inequality de®nes a closed halfspace, which is depicted in the dia-

gram by a hyperplane and its associated normal. For example, the set of

all x satisfying aT
1 xU 0 is given by the area below and to the left of the

hyperplane Ha1
�0�. The set of all x satisfying the three inequalities is the

cone POQ in ®gure 3.25a. POQ is the polar cone to the cone a10a3 gen-

erated by the normals to the hyperplanes.

There are only two possibilities for any other linear functional c. Either

the hyperplane Hc�0� intersects the cone POQ or it does not. If the

hyperplane Hc�0� intersects the cone POQ (®gure 3.25b), there exists a

point x̂ that belongs to both H� � fx : cT x > 0g and POQ, so that

Ax̂U 0 �x̂ A POQ� and cT x̂ > 0 �x̂ A H�c �
x̂ satis®es alternative 1.

Alternatively, if the hyperplane Hc�0� does not intersect the cone POQ,

the positive halfspace H�c must be disjoint from POQ (®gure 3.25c).

Then cT xU 0 for x in POQ and the normal c must lie in the cone a1Oa3.

Since c A conefa1; a2; a3g, there exists yV 0 such that c � yT A � AT y.

r

Example 3.87 (Markov chains) As an application of the Farkas lemma,

we show that every Markov chain (section 3.6.4) has a stationary distri-

bution. Let T be the n� n transition matrix of ®nite Markov process. A
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stationary distribution p is a solution to the system

T p � p;
X

i

pi � 1 �30�

which is equivalent to

T pÿ Ip � 0; 1p � 1

where 1 � �1; 1; . . . ; 1� A Rn. This can be considered alternative II of the

Farkas lemma with

AT � T T ÿ I

1

� �
; c � 0

1

� �
Thus system (30) has a solution provided the corresponding alternative

I has no solution. That is, there is no x A Rn�1 such that AxU 0 and

Figure 3.25
The Farkas lemma

390 Chapter 3 Linear Functions



cx > 0. Suppose, to the contrary, that this system has a solution. A is the

matrix A � �T T ÿ I ; 1T�. Partition x so that

x � x̂

xn�1

� �
Then alternative II is the system

T T xÿ x� xn�11T U 0 and xn�1 > 0

which implies that T T x < x contradicting the fact that T is a stochastic

matrix, with t1j � t2j � � � � � tnj � 1 for every j � 1; 2; . . . ; n. Therefore

alternative I has no solution, which implies that alternative II has a solution

p A Rn
�. This solution is a stationary distribution for the Markov process.

This duplicates a result we obtained in example 2.94 using Brouwer's

®xed point theorem (theorem 2.6).

The Farkas alternative is the best known of a host of similar results

known as theorems of the alternative, because they assert that one and

only one of two related linear systems will have a solution. Many of these

theorems are equivalent to the Farkas lemma. We explore some variants

in the following exercises.

One variant simply reverses the sense of the inequalities.

Exercise 3.233

Let A be an m� n matrix and c be a nonzero vector in Rn. Then exactly

one of the following systems has a nonnegative solution:

Either I AxV 0 and cx < 0 for some x A Rn

or II AT y � c for some y A Rm
� .

Other variants of the Farkas alternative theorem can be obtained by

using slack variables to transform inequalities to equations. The following

example is typical.

Exercise 3.234 (Gale alternative)

Let A be an m� n matrix and c be a nonzero vector in Rn. Then exactly

one of the following systems has a nonnegative solution:

Either I AxU 0 and cx > 0 for some x A Rn
�

or II AT yV c for some y A Rm
� .
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Still other variants can be derived by creative reformulations of the

alternative systems.

Exercise 3.235

Let A be an m� n matrix and c be a nonzero vector in Rn. Then exactly

one of the following systems has a solution:

Either I Ax � 0 and cT x > 0 for some x A Rn
�

or II AT yV c for some y A Rm.

[Hint: Show that system I is equivalent to Bx � b, where B � ÿA

c

� �
,

b � 0

1

� �
, 0 A Rm, and apply the Farkas alternative.]

Exercise 3.235 is often found in an equivalent form, known as Fan's

condition. We will use this version to prove the Bondareva-Shapley theo-

rem (proposition 3.21) for coalitional games.

Exercise 3.236 (Fan's condition)

Let g1; g2; . . . ; gm be linear functionals on Rn. For ®xed numbers

c1; c2; . . . ; cm, the system of inequalities

gj�x�V cj; j � 1; 2; . . . ;m �31�
is consistent for some x A Rn if and only if

Pm
j�1 ljgj � 0 implies thatPm

j�1 ljcj U 0 for every set of nonnegative numbers l1; l2; . . . ; lm.

These theorems of the alternative are all generalizations of a classic

result in the theory of linear equations (the Fredholm alternative), which

we have already encountered in our discussion of linear functionals

(exercise 3.48) and as an application of the separation theorem (exercise

3.199).

Exercise 3.237 (Fredholm alternative)

Let A be an m� n matrix and c be a nonzero vector in Rn. Then exactly

one of the following systems has a solution:

Either I Ax � 0 and cx > 0

or II AT y � c

[Hint: The system of equations Ax � 0 is equivalent to the system of

inequalities AxU 0, ÿAxU 0.]
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Exercise 3.238

Derive the Fredholm alternative (exercise 3.237) directly from exercise

3.199.

These variants of the Farkas alternative are summarized in table 3.2,

which highlights the interplay between inequalities in one system and

nonnegativity restrictions in the other. The Fredholm alternative is a stan-

dard result in linear algebra. The Farkas alternative theorem generalizes

system I from homogeneous equations to inequalities, requiring non-

negativity in system II as a consequence. The Gale alternative gives exis-

tence conditions for consistency of two systems of inequalities. Compared

to the Farkas lemma, it generalizes system II from nonhomogeneous

equations to inequalities; it requires nonnegativity in system I as a con-

sequence. The ®nal variant dispenses with the nonnegativity condition

in system II, by requiring that system I be strengthened to a system of

homogeneous equations. This ®nal variant provides an interesting con-

trast to the Fredholm alternative that heads the table.

Another useful alternative theorem, known as Gordan's theorem, deals

with the consistency of homogeneous equations and inequalities. We ®rst

derive Gordan's theorem independently using an appropriate separation

theorem, and present some of its variants. Later we show that Gordan's

theorem is equivalent to the Farkas alternative and then use it to derive

the basic separation theorem, completing a circle of equivalences.

Exercise 3.239 (Gordan's theorem)

Let A be an m� n matrix. Then exactly one of the following systems as a

solution:

Either I Ax > 0 for some x A Rn

or II AT y � 0, yX 0 for some y A Rm

[Hint: Apply exercise 3.225 to the set S � fz : z � Ax; x A Rg.]

Table 3.2
Variants of the Farkas alternative

System I System II

Ax � 0, cT x > 0 AT y � c Fredholm

AxU 0, cT x > 0 AT y � c, yV 0 Farkas

AxU 0, cT x > 0, xV 0 AT yV c, yV 0 Gale

Ax � 0, cT x > 0, xV 0 AT yV c Fan
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Gordan's theorem is illustrated in ®gure 3.26. For every matrix A,

either (I) there exists a vector x that makes an obtuse angle with every

row of A (®gure 3.26a) or (II) the origin is in the convex hull of the row

vectors (linear functionals) of A (®gure 3.26b).

Exercise 3.240

Derive Gordan's theorem from the Farkas alternative. [Hint: Apply the

Farkas alternative to the matrix B � �A; 1�, the matrix B augmented with

a column of ones.]

Gordan's theorem has a natural geometric interpretation which is given

in the following exercise.

Exercise 3.241

Let S be a subspace in Rn and S? its orthogonal complement.

Either I S contains a positive vector y > 0

or II S? contains a nonnegative vector yX 0

Interchanging the role of S and S? in the previous exercise provides the

following variant of Gordan's theorem.

Exercise 3.242 (Stiemke's theorem)

Let A be an m� n matrix. Then exactly one of the following systems has

a solution:

Figure 3.26
Gordan's theorem
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Either I AxX 0 for some x A Rn

or II AT y � 0, y > 0 for some y A Rm
��

Exercise 3.243

Deduce Stiemke's theorem directly from exercise 3.230.

Analogous to the Farkas lemma (exercise 3.234), system II in Gordan's

theorem can be generalized to an inequality, requiring a nonnegativity

restriction on system I. This gives a theorem of the alternative attributed

to von Neumann.

Exercise 3.244 (von Neumann alternative I)

Let A be an m� n matrix. Then exactly one of the following systems has

a nonnegative solution:

Either I Ax > 0, x > 0 for some x A Rn

or II AT yU 0, yX 0 for some y A Rm.

[Hint: Use slack variables as in exercise 3.234.]

We will use the following variation to prove the fundamental minimax

theorem (proposition 3.20) of game theory.

Exercise 3.245 (von Neumann alternative II)

Let A be an m� n matrix. Then exactly one of the following systems has

a nonnegative solution:

Either I AT x > 0, xX 0 for some x A Rm

or II AyU 0, yX 0 for some y A Rn.

[Hint: Apply the Gale alternative (exercise 3.234) to the system AyU 0,

1T yV 1.]

Table 3.3 summarizes the di¨erent versions of Gordan's theorem. Note

again the interplay between inequalities in one system and nonnegativity

conditions in the other.

Gordan's and Stiemke's theorems provide the two extreme cases of

the phenomenom called complementary slackness, which is of practical

importance in the theory of optimization. The two homogeneous linear

systems

AxV 0 and AT y � 0; yV 0
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are said to form a dual pair. A fundamental theorem of Tucker guarantees

the existence of a pair of solutions x and y to every dual pair such that

Ax� y > 0 �32�
Let �Ax�j denote the jth element of the list Ax. Inequality (32) requires that

�Ax�j � yj is positive for every j. In other words, for every j � 1; 2; . . . ;m

either yj > 0 or the corresponding jth element of Ax is positive. For each

coordinate j, only one of the constraints yj V 0 and �Ax�j V 0 is binding.

Tucker's theorem follows quite readily from Gordan's and Stiemke's

theorem, using the result in the following exercise.

Exercise 3.246

Assume the system AxX 0 has a solution, while Ax > 0 has no solution.

Then A can be decomposed into two consistent subsystems

Bx > 0 and Cx � 0

such that CxX 0 has no solution.

Exercise 3.247 (Tucker's theorem)

Let A be an m� n matrix. The dual pair

AxV 0 and AT y � 0; yV 0

possess a pair of solutions x A Rn and y A Rm such that Ax� y > 0.

Once again, an equation can be relaxed by including a nonnegativity

condition.

Exercise 3.248 (von Neumann)

Let A be an m� n matrix. The dual pair

AxV 0; xV 0 and AT yU 0; yV 0

possess a pair of solutions x A Rn and y A Rm such that

Table 3.3
Variants of Gordan's theorem

System I System II

Ax > 0 AT y � 0, yX 0 Gordan

AxX 0 AT y � 0, y > 0 Stiemke

Ax > 0, x > 0 AT yU 0, yX 0 von Neumann
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Ax� y > 0 and xÿ AT y > 0

[Hint: Apply Tucker's theorem to the 2m� n matrix
A

I

� �
.]

Tucker's theorem was described as the key theorem by Good (1959),

since so many results can be derived from it. Gordan's and Stiemke's

theorems are obvious corollaries. The Farkas lemma is another corollary.

It can also provide theorems that are apparently more general, such as

Motzkin's theorem.

Exercise 3.249

Show that Gordan's and Stiemke's theorems are special cases of Tucker's

theorem.

Exercise 3.250

Derive the Farkas lemma from Tucker's theorem.

Exercise 3.251 (Motzkin's theorem)

Let A, B, and C be matrices of order m1 � n, m2 � n and m3 � n respec-

tively with A nonvacuous. Then either

Either I Ax > 0;BxV 0;Cx � 0 has a solution x A Rn

or II AT y1 � BT y2 � C T y3 � 0 has a solution y1 A Rm1 , y2 A Rm2 ,

y3 A Rm3 with y1 X 0, y2 V 0.

Exercise 3.250 completes the cycle

Farkas lemma) Gordan's theorem) Tucker's theorem

) Farkas lemma

establishing the mutual equivalence of the basic theorems of the alter-

native. These theorems were in turn derived from appropriate separation

theorems. In the following exercise we reverse this process, deriving the

basic separation theorem from Gordan's theorem. This establishes the

fundamental equivalence between the separation theorems and theorems

of the alternative in Rn.

Exercise 3.252

Let S be a nonempty convex set in Rn with 0 B S.

1. For every point a A S, de®ne the polar set S �a � fx A Rn : kxk � 1;

xT aV 0g. S �a is a nonempty closed set.
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2. For any ®nite set of points fa1; a2; . . . ; amg in S, let A be the m� n

matrix whose rows are ai. The system

AT y �
Xm

i�1

yiai � 0

has no solution y A Rm
� .

3. The system Ax > 0, i � 1; 2 . . . ;m has a solution x A Rn, x0 0.

4. x A 7m

i�1 S �ai
.

5. 7
a A S

S �a 0q.

6. There exists a hyperplane f �a� � pT a that separates S from 0 such

that pT aV 0 for every a A S.

3.9.4 Further Applications

We have already presented a number of applications of the separation

theorems or the equivalent theorems of the alternative. The classic appli-

cation in economics is the second theorem of welfare economics (example

3.228). Another important application in economics is the theory of duality

in consumer and producer theory (example 3.80). In ®nance, the no arbi-

trage theorem is a straightforward application of the Farkas lemma. In

chapter 5 we will use the Farkas lemma again to prove the Kuhn-Tucker

theorem (theorem 5.3) for constrained optimization. We will use the sepa-

rating hyperplane theorem directly to derive a stronger result for concave

programming. To complete this survey of applications, we now derive

two fundamental theorems of game theory. These applications are sum-

marized in ®gure 3.27.

Zero-Sum Games and the Minimax Theorem

In 1953 an intellectual paternity dispute was aired in the pages of Econo-

metrica. The famous French mathematician Maurice FreÂchet claimed

that the even more famous French mathematician Emile Borel should be

credited with initiating the formal study of game theory. In particular,

Borel proposed the concept of a strategy, and suggested resort to mixed

strategies to avoid loss and maximize expected payo¨. John von Neu-

mann, the acknowledged father of game theory, demurred. He suggested

that the importance of Borel's contribution was diminished because the

latter had not formulated the essential minimax theorem, and indeed had
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doubted it would hold in general. ``Throughout the period in question,''

wrote von Neumann, ``I felt there was nothing worth publishing until the

minimax theorem was proved'' (see von Neumann 1953).

What is this fundamental theorem of game theory without which there

is nothing worth publishing? The minimax theorem establishes the exis-

tence of optimal strategies in games in which the interests of the players

are diametrically opposed. Von Neumann proved the minimax theorem

in 1928 using a ®xed point argument. Subsequent authors devised more

elementary proofs based on the separation theorem or equivalent theo-

rems of the alternative.

A two person zero-sum game (example 2.40) comprises:

. two players 1 and 2

Figure 3.27
Applications of the separating hyperplane theorem
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. for each player i � 1; 2 a nonempty set of pure strategies Si

. a function u: S1 � S2 ! R representing the payo¨ (from player 2 to 1)

The function u�s1
i ; s

2
j � denotes the payo¨ to player 1 if he chooses strategy

s1
i and his opponent chooses s2

j . Player 1 seeks to maximize u�s1
i ; s

2
j � while

player 2 seeks to minimize it.

A game is ®nite if each player has only a ®nite number of pure strat-

egies. Let m � jS1j and n � jS2j be the number of strategies of players 1

and 2 respectively. For any ®nite two person zero-sum game, there exists

an m� n matrix A that represents u, in the sense that its elements

aij � u�s1
i ; s

2
j � represent the payment from 2 to 1 when the players choose

strategies i and j respectively.

Let u�p; j� denote the expected payo¨ if player 1 adopts the mixed

strategy p � � p1; p2; . . . ; pm� while player 2 plays her j pure strategy. That

is, de®ne

u�p; j� �
Xm

i�1

piaij

The worst that can happen to player 1 when he plays the mixed strategy

p is

v1�p� � min
n

j�1
u�p; j�

We call this player 1's security level when playing the strategy p. Similarly,

if

u�i; q� �
Xn

j�1

qiaij

denotes the expected outcome when player 2 plays the mixed strategy q

and player 1 plays strategy i, the worst outcome from the viewpoint of

player 2 is

v2�q� � max
n

i�1
u�i; q�

Note that player 1 wishes to maximize the payo¨ and succeeds in the

game if v1�p�V 0. On the other hand, player 2 seeks to minimize the

payo¨ (from 2 to 1), and succeeds if v2�q�U 0. Surprisingly, in any zero-
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sum game, at least one of the players has a strategy that guarantees she

cannot lose. That is, either player 1 has a strategy p that ensures an

expected outcome favorable to him (v1�p�V 0) or player 2 has a strategy

q that ensures an outcome favorable to her (v2�q�U 0).

Exercise 3.253

In any ®nite two person zero-sum game, at least one of the players has a

mixed strategy that guarantees she cannot lose. That is, either v1�p�V 0

or v2�q�U 0. [Hint: Use the von Neumann alternative (exercise 3.245).]

Example 3.88 (Chess) Chess can be considered a zero-sum game in

which a payo¨ of 1 is assigned for a win, ÿ1 for a loss and 0 for a draw.

Each players has a ®nite (though extremely large) set of possible strat-

egies. (A game is declared a draw if the same position is repeated three

times.) The preceding proposition asserts that at least one of the players,

White or Black, has a mixed strategy that will ensure that she can expect

not to lose on average. In fact it can be shown that one of the players has

a pure strategy that ensures she will never the lose. The only di½culty is

that no one knows which player, White or Black, has the winning strat-

egy, let alone the speci®cation of that strategy.

This example illustrates both the power and the limitation of abstrac-

tion. On the one hand, the apparently innocuous proposition (exercise

3.253), based on the separation of convex sets, has enormous rami®ca-

tions for this classic strategic game. Without abstraction, a study of the

rules and possibilities of chess would have proved overwhelmingly too

complicated to yield the conclusion. On the other hand, because of the

high degree of abstraction, the proposition shields little light on optimal

behavior in real chess games, and a future for chess masters remains

assured.

In seeking the most propitious outcome, player 1 would do well to

choose his strategy p in order to maximize his security level v�p�. If he

does this, the value (expected payo¨ ) of the game to player 1 is

v1 � max
p

v1�p� � max
p

min
j

u�p; j�

Similarly the value of the game to player 2 is

v2 � min
q

v2�q� � min
q

max
i

u�i; q�
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This also is the best that player 1 can hope to achieve from the game. By

the previous result, either v1 V 0 or v2 U 0. The minimax theorem goes a

step further and asserts that in fact v1 � v2 � v, which is called the value

of the game.

Proposition 3.20 (Minimax theorem) For any two person zero-sum game,

v1 � v2. Every game has a value.

Exercise 3.254

Prove proposition 3.20 by showing

1. for every c A R, either v1 V c or v2 U c

2. v1 � v2

[Hint: Apply the previous exercise to the game û�s1; s2� � u�s1; s2� ÿ c.]

Example 3.89 (Rock±Scissors±Paper) The payo¨ matrix for the game

Rock±Scissors±Paper (example 2.34) is

Chris

Rock Scissors Paper

Rock 0 1 ÿ1

Jenny Scissors ÿ1 0 1

Paper 1 ÿ1 0

If Jenny adopts the mixed strategy p � �13 ; 1
3 ;

1
3�, her expected payo¨ is

zero regardless of the Chris's choice. That is,

u�p;Rock� � u�p; Scissors� � u�p;Paper� � 0

Therefore

v1�p� � minfu�p;Rock�; u�p; Scissors; u�p;Paper�g � 0

which implies that v1 � maxp v1�p�V 0. If Chris adopts a similar strategy

q � �13 ; 1
3 ;

1
3�, v2�q� � 0 and therefore v2 � minqv2�q�U 0. We conclude

that v � 0. This value of this game is zero, since it is symmetric.

Exercise 3.255

Let v denote the value of a two person zero-sum game. Show that
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1. Player 1 has an optimal strategy p� that achieves the value v. Similarly

player 2 has an optimal strategy q�.

2. The strategy pair �p�; q�� constitutes a Nash equilibrium of the game.

Exercise 3.256

Every ®nite two-person zero-sum game has a Nash equilibrium.

Example 3.90 Consider a zero-sum game in which player 1 has two

strategies fs1; s2g, while player 2 has 5 strategies ft1; t2; t3; t4; t5g. The

payo¨s to player 1 are

Player 2

t1 t2 t3 t4 t5

s1 ÿ1 1 3 1 1

s2 2 4 2 1 ÿ2
Player 1

The set of feasible outcomes is illustrated in Figure 3.28, where each

labeled point represents the pair of outcomes corresponding to a particu-

lar pure strategy of player 2. For example, if player 2 selects t1, the out-

come will be either ÿ1 or 2 depending on the choice of player 1. This is

the point labeled t1. By using mixed strategies, player 2 in e¨ect chooses a

point in the convex hull Z of these primary points. Player 1 chooses which

coordinate determines the outcome.

Figure 3.28
The feasible payo¨s
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Player 1 seeks to maximize the payo¨ and player 2 to minimize it. In

particular, player 2 would like to achieve a negative outcome, which

results in a payment from 1 to 2. Unfortunately, she cannot to this. The

best that she can do is to play a 50±50 mixture of t1 and t5, which guar-

antees her a payo¨ of zero irrespective of the choice of player 1. This is

her value v2 which is achieved with the mixed strategy q � �12 ; 0; 0; 0; 1
2�. If

she attempts to secure a better outcome (by favoring t1 or t5), player 1 can

counteract by choosing the appropriate coordinate. Resorting to any of

her other strategies t2, t3, and t4 can only make things worse. Breaking

even, v2 � 0, is the best she can hope to achieve in this game.

We can illustrate the strategic choice of player 1 in a similar diagram.

Every mixed strategy p for player 1 de®nes a linear functional fp on the

set Z of feasible outcomes de®ned by

f p�z� � p1z1 � p2z2

fp�z� measures the expected payo¨ when player 1 chooses p and player 2

chooses z. The linear functional fp corresponding to the mixed strategy p

can be illustrated by the set of hyperplanes representing the contours of

fp. Each hyperplane traces out the various choices in Z that generate the

same expected payo¨, given that player 1 chooses the mixed strategy p.

For example, if player 1 adopts the mixed strategy �12 ; 1
2� and player 2

responds with the t1, the expected payo¨ is

f ��ÿ1; 2�� � 1
2 �ÿ1� � 1

2 �2� � 1
2

Other choices of player 2 that also generate an expected payo¨ of 1
2 lie

along the hyperplane through t1. Clearly, the best response of player 2 to

the mixed strategy �12 ; 1
2� is t5 which achieves an expected payo¨

f ��ÿ1; 2�� � 1
2 �1� � 1

2 �ÿ2� � ÿ 1
2

This is the security level v1�p� of the strategy �12 ; 1
2�.

Di¨erent mixed strategies p give rise to hyperplanes of di¨erent slopes.

Player 1's choice of mixed strategy determines the slope of the set of

hyperplanes of equal expected payo¨. Player 2's choice of an element in Z

selects which particular hyperplane determines the outcome. The expected

payo¨ associated with any particular hyperplane can be read o¨ its inter-

section with the 45 degree line.

The security level v1�p� of any mixed strategy p is given by the expected

payo¨ the supporting hyperplane which bounds Z from below. As already
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stated, the security level v1�p� of the strategy �12 ; 1
2� that supports Z at t5 is

ÿ 1
2. Player 1 should seek that mixed strategy whose supporting hyper-

plane has the highest possible intersection with the 45 degree line. In this

example, the optimal strategy for player 1 will be that associated with the

hyperplane that is aligned with the southwest boundary of the set Z. In

this case the optimal strategy for player 1 is the mixed strategy �23 ; 1
3�. The

supporting hyperplane corresponding to this strategy passes through the

origin and has a security level of 0. The supporting hyperplane corre-

sponding to any other mixed strategy will intersect the 45 degree below

the origin, indicating a negative security level.

We conclude that 0 is the best that player 1 can guarantee, which is

therefore the value v1 of the game to player 1. This is equal to the best

that player 2 can guarantee, and therefore v2 � v1.

Exercise 3.257

In the context of the previous example, prove that v1�p� < 0 for every

p0 �23 ; 1
3� and therefore that v1 � 0.

Building on the insight of the previous example, we sketch an alter-

native proof of the minimax theorem which makes explicit use of a sepa-

ration theorem. Consider any ®nite two-person zero-sum game in which

player 1 has m pure strategies and player 2 has n strategies. Let A be the

m� n matrix that represents the payo¨ function, that is, aij � u�s1
i ; s

2
j �.

The set of feasible outcomes

Z � fz � Aq : q A Dmÿ1g
is the convex hull of the columns of A. Player 2's choice of q selects a

particular point of z A Z, a convex polyhedron in Rm. Player 1's strategy

de®nes a linear functional fp which evaluates z A Z to determine the

expected payo¨.

Assume initially that the value of the game to player 2 is zero, that is,

v2 � 0. This implies that there exists some z A Z with zU 0. Furthermore

player 2 can only improve on this outcome if there exists an element z A Z

with z < 0. That is, an expected payo¨ of zero is the best that player 2 can

hope to achieve if Z contains no interior point of the negative orthant

Rm
ÿ . If Z is disjoint from the negative orthant, the separating hyperplane

theorem guarantees the existence of linear functional such that fp such

that fp�z�V 0 for every z A Z. In other words, there exists a mixed strategy
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p A Dmÿ1 with security level v1�p�V 0 � v2. Since v1 U v2, we conclude

that v1 � v2.

Consider now an arbitrary two person zero-sum game in which v2 �
c0 0. By subtracting c from every outcome, this game can be trans-

formed into a strategically equivalent game with v2 � 0. By the preceding

argument, there exists an optimal strategy p� for player 1 that ensures an

expected payo¨ of zero. This same strategy ensures a payo¨ of c to player

1 in the original game. We conclude that v1 � v2. The argument is made

precise in the following exercises.

Exercise 3.258

Let A be a m� n matrix which represents (exercise 3.253) the payo¨

function of a two-person zero-sum game in which player 1 has m pure

strategies and player 2 has n strategies. Let Z be the convex hull of the

columns of A, that is, Z � fz � Aq : q A Dnÿ1g. Assume that v2 � 0.

Show that

1. Z XRn
ÿ0q.

2. Z X int Rn
ÿ �q.

3. There exists p� A Dmÿ1 such that fp � �z�V 0 for every z A S.

4. v1 � 0 � v2.

Exercise 3.259

Prove the minimax theorem by extending the previous exercise to an

arbitrary two-person zero-sum game with v2 � c0 0.

Exercise 3.260

Show that the set of optimal strategies for each player is convex.

Exercise 3.261

Let f be a bilinear functional on the product of two simplices, that is

f : Dm � Dn ! R. Then

max
x

min
y

f �x; y� � min
y

max
x

f �x; y�

The Core of a TP-Coalitional Game

It is highly desirable that any proposed solution to a coalitional game

belong to the core. Unfortunately, in some games the core is empty. It

would be extremely useful to have a set of necessary and su½cient con-
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ditions for the core of a game to be nonempty. A necessary condition for

the existence of core allocations in a game �N;w� is that the game be co-

hesive, that is,

w�N�V
XK

k�1

w�Sk� �33�

for every partition fS1;S2; . . . ;SKg of N. However, cohesivity is not suf-

®cient to guarantee the existence of outcomes in the core (exercise 3.262).

The appropriate characterization is obtained by extending the concept of

cohesivity to more general families of coalitions, called balanced families.

Exercise 3.262 (Three-person majority game)

A classic example in coalitional game theory is the three-person majority

game, in which the allocation of $1 among three persons is decided by

majority vote. Let N � f1; 2; 3g. The characteristic function is

w�fig� � 0; i � 1; 2; 3

w�fi; jg� � 1; i; j A N; i 0 j

w�N� � 1

1. Show that the three-person majority game is cohesive.

2. Show that its core is empty.

Exercise 3.263

Show that cohesivity is necessary, but not su½cient, for the existence of a

core.

A partition fS1;S2; . . . ;SKg is a family of coalitions in which each

player I belongs to one and only one of the coalitions. A balanced family

of coalitions B is a set of coalitions fS1;S2; . . . ;SKg together with a cor-

responding set of positive numbers l1; l2; . . . ; lK called weights such that

for every player i A N, the sum of the weights of the coalitions to which

player i belongs sum to one. That is, for every player i A N,X
k: Sk C i

lk � 1; for every i A N

Compared to a simple partition, the coalitions in a balanced family do

not require the exclusive allegiance of their members.
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In one possible interpretation of the concept of a balanced family, each

player allocates her time among the various coalitions in B to which she

belongs. The weight lS of coalition S represents the proportion of the

available time which each member spends in that coalition. The family is

balanced with weights lS if each player's time is fully allocated to coali-

tions in the family B.

Example 3.91 Any partition P � fS1;S2; . . . ;SKg of the player set N is

a balanced family with weights

lS � 1; for every S A P

This con®rms that a balanced family is a generalized partition.

Example 3.92 The set of all coalitions in a three-player game

(N � f1; 2; 3g) is

N � fq; f1g; f2g; f3g; f1; 2g; f1; 3g; f2; 3g; f1; 2; 3gg
The family of two-player coalitions B � ff1; 2g; f1; 3g; f2; 3gg together

with weights lS � 1
2 for every S A B is a balanced family of coalitions.

Another balanced family of coalitions is B � ff1; 2g; f1; 3g; f2; 3g;
f1; 2; 3gg with weights

lS �
1
2 ; S � N
1
4 ; S A B, S 0N

(
To verify this, calculate the allegiance of player 1,X
S C 1

lS � lf1;2g � lf1;3g � lf1;2;3g � 1
4� 1

4� 1
2 � 1

and similarly for the other two players.

Exercise 3.264

List three other balanced families of coalitions for the three-player game.

Exercise 3.265

Find a nontrivial (i.e., not a partition) balanced family of coalitions for

the four-player game with N � f1; 2; 3; 4g.
The following exercise presents an alternative representation of a bal-

anced collection, which will be useful below.
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Exercise 3.266

A collection B of coalitions is balanced if and only if there exists positive

weights flS : S A Bg such that

eN �
X
S AB

lSeS and gN �
X
S AB

lSgS

where eS is the characteristic vector of the coalition S (example 3.19) and

gS: X ! R represents the share of coalition S at the allocation x (example

3.16).

In a natural extension of cohesivity (33) a cooperative game G � �N;w�
is balanced if

w�N�V
X
S AB

lSw�S�

for every balanced family of coalitions B. Balance is the appropriate

necessary and su½cient condition for nonemptyness of the core.

Proposition 3.21 (Bondareva-Shapley theorem) A TP-coalitional game

has a nonempty core if and only if it is balanced.

Proof x A X belongs to the core if and only if it satis®es the system of

inequalities (example 3.82)

gS�x�Vw�S� for every S JN

ÿgN�x�Vÿw�N�
where gS�x� �

P
i AS xi measures the share of coalition S at the allocation

x. Therefore a core allocation exists if and only if the preceding system of

inequalities is consistent. Applying Fan's condition (exercise 3.236), a

necessary and su½cient condition for consistency is, for every set of non-

negative scalars flS : S JNg and m,X
SJN

lSgS ÿ mgN � 0

)
X
SJN

lSw�S� ÿ mw�N�U 0

Without loss of generality, we can normalize so that m � 1 (exercise

3.267). Consistency requires that whenever
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X
SJN

lSgS � gN �34�

thenX
SJN

lSw�S�Uw�N� �35�

Let B denote the set of coalitions with positive weight, that is,

B � fS JN j lS > 0g
Then (34) requires that B be balanced by the weights l (exercise 3.266).

Therefore (35) must hold for every balanced collection. That is, the game

must be balanced. We conclude that the inequalities de®ning the core are

consistent if and only if the game is balanced. r

Exercise 3.267

Why can we normalize so that m � 1 in the previous proof ?

Exercise 3.268

The set of balanced games forms a convex cone in the set of all TP-

coalitional games GN .

Remark 3.21 (Finding the right space) The preceding proof of the

Bondareva-Shapley theorem is elegant, but it is does not yield much

insight into why it works. We know that it is based on Fan's condition,

which in turn is derived from the Farkas lemma which is equivalent to the

basic separation theorem. But the simple icon of the separation of convex

sets is not transparent.

Yet the Bondareva-Shapley theorem seems tailor-made for a separation

argument. Let Y be the set of allocations which satis®es the claims of all

the coalitions, that is

Y � fx A Rn : gS�x�Vw�S� for every S JNg
The core is empty precisely if Y is disjoint from the set of feasible out-

comes X. Clearly, both X and Y are convex and nonempty. This per-

spective seems to demand the application of a separation theorem.

Unfortunately, this will not yield the desired result. The reason is the X

and Y live in the wrong space. X and Y are subsets of Rn, whereas we are

looking for a result applying to the set of coalitions, which live in a
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higher-dimensional space. To achieve our goal with a separation argu-

ment requires that we translate these sets to a higher-dimensional space.

Exercise 3.269 presents one method of doing this.

These observations exemplify a general point, namely that successful

application of separation arguments requires formulation of the problem

in an appropriate linear space, which may not necessarily be the one in

which the problem originates. Exercise 3.199 provides another example

where using the right space is crucial.

Exercise 3.269

To construct a suitable space for the application of a separation argu-

ment, consider the set of points A0 � f�eS;w�S�� : S JNg, where eS is

characteristic vector of the coalition S (example 3.19) and w�S� is its

worth. Let A be the conic hull of A0, that is,

A � y A Rn�1 : y �
X
SJN

lS�eS;w�S��; lS V 0

( )

Let B be the interval B � f�eN ;w�N� � e : e > 0g. Clearly, A and B are

convex and nonempty.

We assume that the game is balanced and construct a payo¨ in the

core.

1. Show that A and B are disjoint if the game is balanced. [Hint: Show

that AXB0q implies that the game is unbalanced.]

2. Consequently there exists a hyperplane that separates A and B. That is,

there exists a nonzero vector �z; z0� A Rn �R such that

�z; z0�T yV c > �z; z0�T�eN ;w�N� � e� �36�
for all y A A and all e > 0. Show that

a. �eq; 0� A A implies that c � 0.

b. �eN ;w�N�� A A implies that z0 < 0. Without loss of generality, we can

normalize so that z0 � ÿ1.

3. Show that (36) implies that the payo¨ vector z satis®es the inequalities

eT
S zVw�S� for every S JN and eT

N zUw�N�
Therefore z belongs to the core.
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Another alternative proof of the Bondareva-Shapley theorem makes

ingenious use of the minimax theorem. This approach is developed in the

following exercises.

Exercise 3.270 (0±1 Normalization)

A TP-coalitional game �N;w� is called 0±1 normalized if

w�fig� � 0 for every i A N and w�N� � 1

Show that

1. to every essential game �N;w� there is a corresponding 0±1 normalized

game �N;w0�
2. core�N;w� � a core�N;w0� � w, where w � �w1;w2; . . . ;wn�, wi �
w�fig�, a � w�N� ÿPi AN wi

3. core�N;w� �q, core�N;w0� �q

Exercise 3.271

Let �N;w� be a 0±1 normalized TP-coalitional game, and let A be the set

of all nontrivial coalitions A � fS JN : w�S� > 0g. Consider the follow-

ing two-player zero-sum game. Player 1 chooses a player i A N and player 2

chooses a coalition S A A. The payo¨ (from 2 to 1) is

u�i;S� �
1

w�S� ; i A S

0 i B S

8><>:
Let d be the value of the two-person zero-sum game. Show that

x A core�N;w� , dV 1

[Hint: Consider any x A core�N;w� as a mixed strategy for player 1 in the

two-person zero-sum game.]

Exercise 3.272

Let �N;w� be a 0±1 normalized TP-coalitional game, and let G be the

corresponding two-person zero-sum game described in the previous exer-

cise with value d. Show that dV 1 if �N;w� is balanced. [Hint: Consider a

mixed strategy for player 2.]

Exercise 3.273

Core�N;w�0q) �N;w� balanced.
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Combining the three previous exercises establishes the cycle of equiv-

alences

�N;w� balanced) dV 1) �core�N;w�0q� ) �N;w� balanced

and establishes once again the Bondareva-Shapley theorem.

The Bondareva-Shapley theorem can be used both positively to estab-

lish that game has a nonempty core and negatively to prove that a game

has an empty core. To establish that a game has an empty core, the the-

orem implies that it is su½cient to ®nd a single-balanced family of coali-

tions B for whichX
S AB

lSw�S� > w�N�

On the other hand, to show that a game has a nonempty core, we have to

show that it is balanced, that is,X
S AB

lSw�S�Uw�N�

for every balanced family of coalitions B. We give an example of each

usage.

Example 3.93 The four player game with N � f1; 2; 3; 4g and charac-

teristic function

w�S� �
1 if S � N
3
4 if S A B

0 otherwise

8<:
where B � ff1; 2; 3g; f1; 4g; f2; 4g; f3; 4gg has an empty core. First ob-

serve that B is a balanced collection of coalitions with weights lf1;2;3g � 2
3

and lf1;4g � lf2;4g � lf3;4g � 1
3 (exercise 3.265). However, since

2

3
w�1; 2; 3� � 1

3
w�1; 4� � � 1

3
w�2; 4� � 1

3
w�3; 4�

� 2

3
� 1

3
� 1

3
� 1

3

� �
3

4
� 5

4
> w�N�

the game is unbalanced. Applying the Bondareva-Shapley theorem

(proposition 3.21), we conclude that this game has an empty core.
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Example 3.94 (Market game) Assume that the preferences of each

player i in a market game (example 1.118) can be represented by a con-

cave utility function ui. We can formulate an exchange economy as a TP-

coalitional game by assuming that the worth of any coalition S as the

maximum aggregate utility which it can attain by trading amongst them-

selves. Formally

w�S� � max
x

X
i AS

ui�xi� :
X
i AS

xi �
X
i AS

oi

 !
�37�

We show that this game is balanced.

Consider an arbitrary balanced collection of coalitions, B, with weights

lS. For every S A B, let xS � fxi : i A Sg be an allocation to S that

achieves w�S�, that is,X
i AS

ui�xS
i � � max

X
i AS

ui�xi� :
X
i AS

xi �
X
i AS

oi

( )

xS is the best that coalition S can do with its own resources.

Now construct a new allocation x which is a convex combination of the

allocation xS with weights lS, that is,

xi �
X
S AB
S C i

lSxS
i

We will show that x is a feasible allocation for the grand coalition, which

is at least as good as xS for every player. To show that x is feasible, we

sum the individual allocations.X
i AN

xi �
X
i AN

X
S AB;S C i

lSxS
i

 !
�
X
S AB

lS

X
i AS

xS
i

 !

�
X
S AB

lS

X
i AS

oi

 !
�
X
i AN

oi

X
S ABi

lS �
X
i AN

oi

where the last equality utilizes the fact that B is balanced. Since the

players' utility functions are concave, we have

ui�xi� � ui

X
S ABi

lSxS
i

 !
V
X

S ABi

lSui�xS
i �
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Summing over all the players, we haveX
i AN

ui�xi�V
X
i AN

X
S ABi

lSui�xS
i � �

X
S AB

lS

X
i AS

u�xS
i � �

X
S AB

lSw�S�

Since x is feasible for the grand coalition, we must have

w�N�V
X
i AN

ui�xi�V
X
S AB

lSw�S�

Since B was an arbitrary balanced collection, this must be true for all

balanced collections.

Therefore we have demonstrated that the pure exchange economy game

is balanced. Applying the Bondareva-Shapley theorem (proposition 3.21),

we conclude that there exist core allocations in this game.

3.9.5 Concluding Remarks

It is remarkable that so many fundamental results in economics, opti-

mization, and ®nance depend essentially on separation theorems or theo-

rems of the alternative. It is also worth noting that there are other key

results for which separation arguments are not su½cient. The existence of

competitive equilibria in market economies and Nash equilibria in stra-

tegic games and the nonemptiness of the core in general coalitional games

are more profound, requiring less intuitive ®xed point arguments for their

derivation (section 2.4.4).

3.10 Notes

The ®rst half of this chapter is the central core of linear algebra, for which

there are a host of suitable references. Halmos (1974) is a classic text.

Smith (1998) is an elementary exposition with many examples. Janich

(1994) is concise and elegant, but more advanced. Simon and Blume

(1994) is thorough and written with economic applications in mind. Ex-

ample 3.7 is due to Shubik (1982). Magill and Quinzii (1996, pp. 108±13)

provide an instructive application of the adjoint transformation in general

equilibrium theory.

Roberts and Varberg (1973) provide a comprehensive account of the

mathematics of convex functions. Madden (1986) is written for econo-

mists, and deals with both convex and homogeneous functions. The

415 3.10 Notes



relationship between convex and quasiconvex functions is thoroughly

explored in Greenberg and Pierskalla (1971). Other generalization and

variations found the economics literature are surveyed in Diewert et al.

(1981). Exercise 3.127 is adapted from Sydsaeter and Hammond (1995).

Example 3.65 is from Sundaram (1996).

A slight generalization (with f semicontinuous) of the minimax theorem

(3.11) is sometimes known as Sion's theorem. Our proof follows Kakutani

(1941), who in fact developed his ®xed point theorem in the course of

establishing a generalization of von Neumann's minimax theorem (exercise

3.261). While Kakutani's theorem provides an elegant proof, the minimax

theorem does not require a ®xed point argument. An elementary proof

can be found in Karlin (1959, pp. 29±30). Berge (1963, p. 210) proves

Sion's theorem using the separation theorem. Some variations can be

found in Border (1985, pp. 74±77).

Section 3.9 was assimilated from many sources. Koopmans (1957) is an

insightful account of their role in decentralization. Bosch and Smith (1998)

present an interesting use of separating hyperplanes to assign authorship

to the disputed Federalist papers advocating rati®cation of the U.S.

Constitution. Exercise 3.112 is adapted from Zhou (1993). Exercise 3.210,

which is the standard proof of the Shapley-Folkman theorem, is adapted

from Green and Heller (1981) and Ellickson (1993). Although we prove

Fan's condition (exercise 3.236) for Rn, it in fact applies in arbitrary linear

spaces (Fan 1956; Holmes 1975). Theorems of the alternative are dis-

cussed by Gale (1960) and Ostaszewski (1990). Comprehensive treatments

are given by Mangasarian (1994) and Panik (1993).

The exchange between FreÂchet and von Neumann regarding Borel's

contribution to the theory of games begins with FreÂchet (1953). There

follow English translations of the three notes of Borel, a commentary by

FreÂchet, and the response from von Neumann (1953).

Proposition 3.21 was discovered independently by Olga Bondareva and

Lloyd Shapley, who also proposed the Shapley value (example 3.6). Our

proof follows Moulin (1986). The alternative proof (exercise 3.269) using

the separation theorem is due to Osborne and Rubinstein (1994). The

third approach via the minimax theorem (exercises 3.271 to 3.273) is from

a lecture by Sergiu Hart.
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4 Smooth Functions

All science is dominated by the idea of approximation.
ÐBertrand Russell

The last chapter explored the powerful structure of linear functions. We

now extend this analysis to nonlinear functions. By approximating a

nonlinear function by a linear function, we can exploit the precise struc-

ture of the linear approximation to obtain information about the behavior

of the nonlinear function in the area of interest. Functions that can be

approximated locally by linear functions are called smooth functions. A

smooth function is one whose surface or graph has no sharp edges or

points. Among other things, economists use linear approximation of

smooth functions to characterize the solution of a constrained optimiza-

tion problem (chapter 5) and to derive properties of the optimal solution

(chapter 6).

The content of this chapter is usually called multivariate calculus. In

elementary (univariate) calculus, the derivative of a function from R! R
is de®ned as the limit of the ratio of two numbers (an element of R). This

concept of the derivative does not generalize to functions on higher-

dimensional spaces. Therefore it is conventional to modify the de®nition

of the derivative when progressing from elementary to multivariate cal-

culus. We introduce the more appropriate de®nition in the next section by

working through some examples.

4.1 Linear Approximation and the Derivative

Table 4.1 compares the values of the functions

f �x� � 10xÿ x2 and g�x� � 9� 4x

We observe that the functions attain the same value at x � 3, and have

similar values in a neighborhood of 3. We say that the a½ne function g

approximates the nonlinear function f.

The accuracy of the approximation deteriorates as we move away from

their intersection at x � 3. Table 4.1 gives three di¨erent measures of this

approximation error. Most obvious is the actual error, the numerical dif-

ference between the two functions, f �x� ÿ g�x� (column 4). More useful is

the percentage error (column 5), which expresses the error as a percentage

of the true value f �x�, that is,



percentage error � f �x� ÿ g�x�
f �x� � 100

1

We see from the table that g approximates f quite well in the region of

x � 3. Even at x � 3:5, which involves a 17 percent change in x, the

approximation error is only 1.1 percent.

This suggests yet another measure of the approximation error, the

relative error (column 6), which gives the ratio of the absolute error to the

deviation in x from the point of intersection, x � 3, that is,

relative error � f �x� ÿ g�x�
xÿ 3

We observe from table 4.1 that the relative error decreases uniformly as

we approach x � 3 from either above or below. This is a more demanding

criterion than decreasing absolute error or percentage error. We will show

below that this is precisely the requirement of a ``good'' approximation.

Geometrically the similarity between f and g in the neighborhood of

x � 3 is re¯ected in the fact that the graphs of the two functions are tan-

gential at �3; 21�. That is, their graphs intersect at the point �3; 21� and are

barely distinguishable over the surrounding neighborhood (®gure 4.1).

Table 4.1
Approximating a quadratic function

Approximation error

x f �x� g�x� Actual Percentage Relative

1.000 9.000 13.000 ÿ4.000 ÿ44.444 ÿ2.000

2.000 16.000 17.000 ÿ1.000 ÿ6.250 ÿ1.000

2.500 18.750 19.000 ÿ0.250 ÿ1.333 ÿ0.500

2.900 20.590 20.600 ÿ0.010 ÿ0.049 ÿ0.100

2.990 20.960 20.960 ÿ0.000 ÿ0.000 ÿ0.010

2.999 20.996 20.996 ÿ0.000 ÿ0.000 ÿ0.001

3.000 21.000 21.000 0.000 0.000 NIL

3.001 21.004 21.004 ÿ0.000 ÿ0.000 0.001

3.010 21.040 21.040 ÿ0.000 ÿ0.000 0.010

3.100 21.390 21.400 ÿ0.010 ÿ0.047 0.100

3.500 22.750 23.000 ÿ0.250 ÿ1.099 0.500

4.000 24.000 25.000 ÿ1.000 ÿ4.167 1.000

5.000 25.000 29.000 ÿ4.000 ÿ16.000 2.000
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Table 4.2 analyzes another approximation for f. The function h�x� �
12� 3x provides a rough approximation of f, but it is a less satisfactory

approximation than g. Although the actual and percentage errors decline

as we approach x � 3, the relative error does not. This is illustrated

in ®gure 4.2, which shows that the graphs of f and h are close but not

tangential.

Exercise 4.1

Show that the function f �x� � 10xÿ x2 represents the total revenue

function for a monopolist facing the market demand curve

x � 10ÿ p

where x is the quantity demanded and p is the market price. In this con-

text, how should we interpret g�x� � 9� 4x?

Exercise 4.2 (Growth rates)

Suppose that nominal GDP rose 10 percent in your country last year,

while prices rose 5 percent. What was the growth rate of real GDP?

Moving to higher dimensions, table 4.3 shows how the linear function

g�x1; x2� � 1
3 x1 � 2

3 x2

approximates the Cobb-Douglas function

f �x1; x2� � x
1=3
1 x

2=3
2

Figure 4.1
The tangency of f and g
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Table 4.2
Another approximation for the quadratic function

Approximation error

x f �x� h�x� Absolute Percentage Relative

1.000 9.000 15.000 ÿ6.000 ÿ66.667 ÿ3.000

2.000 16.000 18.000 ÿ2.000 ÿ12.500 ÿ2.000

2.500 18.750 19.500 ÿ0.750 ÿ4.000 ÿ1.500

2.900 20.590 20.700 ÿ0.110 ÿ0.534 ÿ1.100

2.990 20.960 20.970 ÿ0.010 ÿ0.048 ÿ1.010

2.999 20.996 20.997 ÿ0.001 ÿ0.005 ÿ1.001

3.000 21.000 21.000 0.000 0.000 NIL

3.001 21.004 21.003 0.001 0.005 ÿ0.999

3.010 21.040 21.030 0.010 0.047 ÿ0.990

3.100 21.390 21.300 0.090 0.421 ÿ0.900

3.500 22.750 22.500 0.250 1.099 ÿ0.500

4.000 24.000 24.000 0.000 0.000 0.000

5.000 25.000 27.000 ÿ2.000 ÿ8.000 1.000

Figure 4.2
f and h are not tangential
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Table 4.3
Approximating the Cobb-Douglas function

Approximation error

x x0 � x f �x0 � x� g�x0 � x� Percentage Relative

At their intersection:

(0.0, 0.0) (8.0, 8.0) 8.0000 8.0000 0.0000 NIL

Around the unit circle:

(1.0, 0.0) (9.0, 8.0) 8.3203 8.3333 ÿ0.1562 ÿ0.0130

(0.7, 0.7) (8.7, 8.7) 8.7071 8.7071 ÿ0.0000 ÿ0.0000

(0.0, 1.0) (8.0, 9.0) 8.6535 8.6667 ÿ0.1522 ÿ0.0132

(ÿ0.7, 0.7) (7.3, 8.7) 8.2076 8.2357 ÿ0.3425 ÿ0.0281

(ÿ1.0, 0.0) (7.0, 8.0) 7.6517 7.6667 ÿ0.1953 ÿ0.0149

(ÿ0.7, ÿ0.7) (7.3, 7.3) 7.2929 7.2929 0.0000 0.0000

(0.0, ÿ1.0) (8.0, 7.0) 7.3186 7.3333 ÿ0.2012 ÿ0.0147

(0.7, ÿ0.7) (8.7, 7.3) 7.7367 7.7643 ÿ0.3562 ÿ0.0276

Around a smaller circle:

(0.10, 0.00) (8.1, 8.0) 8.0332 8.0333 ÿ0.0017 ÿ0.0014

(0.07, 0.07) (8.1, 8.1) 8.0707 8.0707 0.0000 0.0000

(0.00, 0.10) (8.0, 8.1) 8.0665 8.0667 ÿ0.0017 ÿ0.0014

(ÿ0.07, 0.07) (7.9, 8.1) 8.0233 8.0236 ÿ0.0035 ÿ0.0028

(ÿ0.10, 0.00) (7.9, 8.0) 7.9665 7.9667 ÿ0.0018 ÿ0.0014

(ÿ0.07, ÿ0.07) (7.9, 7.9) 7.9293 7.9293 0.0000 0.0000

(0.00, ÿ0.10) (8.0, 7.9) 7.9332 7.9333 ÿ0.0018 ÿ0.0014

(0.07, ÿ0.07) (8.1, 7.9) 7.9762 7.9764 ÿ0.0035 ÿ0.0028

Parallel to the x1 axis:

(ÿ4.0, 0.0) (4.0, 8.0) 6.3496 6.6667 ÿ4.9934 ÿ0.0793

(ÿ2.0, 0.0) (6.0, 8.0) 7.2685 7.3333 ÿ0.8922 ÿ0.0324

(ÿ1.0, 0.0) (7.0, 8.0) 7.6517 7.6667 ÿ0.1953 ÿ0.0149

(ÿ0.5, 0.0) (7.5, 8.0) 7.8297 7.8333 ÿ0.0460 ÿ0.0072

(ÿ0.1, 0.0) (7.9, 8.0) 7.9665 7.9667 ÿ0.0018 ÿ0.0014

(0.0, 0.0) (8.0, 8.0) 8.0000 8.0000 0.0000 NIL

(0.1, 0.0) (8.1, 8.0) 8.0332 8.0333 ÿ0.0017 ÿ0.0014

(0.5, 0.0) (8.5, 8.0) 8.1633 8.1667 ÿ0.0411 ÿ0.0067

(1.0, 0.0) (9.0, 8.0) 8.3203 8.3333 ÿ0.1562 ÿ0.0130

(2.0, 0.0) (10.0, 8.0) 8.6177 8.6667 ÿ0.5678 ÿ0.0245

(4.0, 0.0) (12.0, 8.0) 9.1577 9.3333 ÿ1.9177 ÿ0.0439

Parallel to the x2 axis:

(0.0, ÿ4.0) (8.0, 4.0) 5.0397 5.3333 ÿ5.8267 ÿ0.0734

(0.0, ÿ2.0) (8.0, 6.0) 6.6039 6.6667 ÿ0.9511 ÿ0.0314

(0.0, ÿ1.0) (8.0, 7.0) 7.3186 7.3333 ÿ0.2012 ÿ0.0147

(0.0, ÿ0.5) (8.0, 7.5) 7.6631 7.6667 ÿ0.0466 ÿ0.0071

(0.0, ÿ0.1) (8.0, 7.9) 7.9332 7.9333 ÿ0.0018 ÿ0.0014

(0.0, 0.0) (8.0, 8.0) 8.0000 8.0000 0.0000 NIL

(0.0, 0.1) (8.0, 8.1) 8.0665 8.0667 ÿ0.0017 ÿ0.0014

(0.0, 0.5) (8.0, 8.5) 8.3300 8.3333 ÿ0.0406 ÿ0.0068

(0.0, 1.0) (8.0, 9.0) 8.6535 8.6667 ÿ0.1522 ÿ0.0132

(0.0, 2.0) (8.0, 10.0) 9.2832 9.3333 ÿ0.5403 ÿ0.0251

(0.0, 4.0) (8.0, 12.0) 10.4830 10.6667 ÿ1.7524 ÿ0.0459
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in the neighborhood of the point �8; 8�. To facilitate future exposition,

we have expressed the values of x relative to the point of intersection,

x0 � �8; 8�.
One consequence of moving from one dimension to two is that there

is now an in®nity of directions along which f and g can be compared,

making the evaluation of the closeness of the approximation more com-

plicated. In the ®rst half of table 4.3, we have evaluated the approxima-

tion around a circle of unit radius centered at the point x0 and also

around a circle of radius 0.1. We observe that the approximation error

varies with the direction of evaluation but declines as we approach the

point x0. The bottom half of table 4.3 evaluates the approximation error

over a wider interval along two particular directions, namely parallel to

the x1 and x2 axes. Here the results parallel the approximation of a uni-

variate function in table 4.1. The relative error declines uniformly as we

approach the point of intersection, x0. The Cobb-Douglas function f and

its linear approximation g are illustrated in ®gure 4.3, where we see that

the graph of g is a plane that is tangential to the curved surface of f at

the point x0.

Example 4.1 Suppose that a production process requires two inputs, k

and l which we will call ``capital'' and ``labor'' respectively. The quantity

of output depends upon the inputs according to the production function f,

f �k; l� � k1=3l 2=3

Suppose that 8 units of each input are used currently, and will produce

an output of 8 units. We have just shown how we can approximate the

Figure 4.3
The tangency of f and g
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behavior of the production function f in the neighborhood of the input

mix �8; 8� by the linear function

g�k; l� � 1
3 k � 2

3 l

This linear approximation enables us to estimate the impact of any

change in the input mix.

For example, if we add an additional unit of labor l to the existing

quantity of capital k, we can see from table 4.3 that the output f �8; 9�
increases to 8.6523, an increase of 0.6523 units of output. Alternatively,

we can estimate the new output using g

g�8; 9� � 1
3 8� 2

3 9 � 8 2
3

The coe½cients of k and l in g are known as the marginal products of

capital and labor respectively (example 4.5). g can be thought of as an

approximate linear production function, in which the contribution of each

of the inputs x1 and x2 is evaluated by their respective marginal products

1/3 and 2/3 at the input combination �8; 8�.
To facilitate the estimation of changes in output, g can be rewritten as

g�k; l� � 8� 1
3 �k ÿ 8� � 2

3 �l ÿ 8�

If we increase both capital and labor by one unit, total output can be

estimated as

g�9; 9� � 8� 1
3� 1� 2

3� 1 � 9

which in this case equals the actual output f �9; 9�.
The examples illustrate the sense in which a nonlinear function can be

approximated by a linear function. Now let us generalize these examples.

Let f : X ! Y be a function between normed linear spaces X and Y. We

say that f is di¨erentiable at some point x0 in X if it has a good linear

approximation at x0, that is there exists a linear function g: X ! Y such

that

f �x0 � x�A f �x0� � g�x� �1�
for every x in a neighborhood of x0 where A means ``is approximately

equal to.''
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How do we know when we have a good approximation? Is there a

best linear approximation? In the preceding examples we showed that the

relative error decreased as we approached the point x0, and this was the

case no matter from which direction we approached. This is the property

that we want the approximation to possess. We now make this precise.

For any function f : X ! Y and any linear function g: X ! Y , the

error at x in approximating f by f �x0� � g�x� is given by

e�x� � f �x0 � x� ÿ f �x0� ÿ g�x�
e�x� A Y is the actual error as de®ned above. We can decompose e�x� into

two components

e�x� � h�x�kxk
where

h�x� � e�x�
kxk �

f �x0 � x� ÿ f �x0� ÿ g�x�
kxk

is the relative error. If for a particular linear function g, the relative error

h�x� gets smaller and smaller as x gets smaller, then their product kxkh�x�
becomes negligible and we consider g a good approximation of f in the

neighborhood of x0.

Formally the function f is di¨erentiable at x0 A X if there is a (con-

tinuous) linear function g: X ! Y such that for all x A X ,

f �x0 � x� � f �x0� � g�x� � h�x�kxk �2�
with h�x� ! 0Y as x! 0X . We call the linear function g the derivative of

f at x0 and denote it by Df �x0� or f 0�x0�. The derivative is the best linear

approximation to the function f at x0 in terms of minimizing the relative

error.

Three points deserve emphasis:

. There can be at most one linear function g that satis®es (2). The deriv-

ative of a function is unique (exercise 4.4).

. Every linear function can be approximated by itself. Therefore every

continuous linear function is di¨erentiable (exercise 4.6).

. Not every function is di¨erentiable. For a given function f and point x0,

there may be no continuous linear function that satis®es (2) (example 4.7).
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Remark 4.1 (Di¨erentiability and continuity) The adjective ``continu-

ous'' in the de®nition of a di¨erentiable function is redundant in ®nite-

dimensional spaces, since every linear function on a ®nite-dimensional

space is continuous (exercise 3.31). It is not redundant in in®nite-

dimensional spaces, and it implies that every di¨erentiable function is

continuous (exercise 4.5). Some authors (e.g., Chillingworth 1976, p. 53;

Dieudonne 1960, p. 143) proceed in the other direction. They de®ne dif-

ferentiabilty only for continuous functions, which implies that the

derivative (if it exists) must be continuous.

Remark 4.2 (A½ne or linear) We must be wary of some semantic con-

fusion here. Strictly speaking, the ``linear approximation'' f �x0� � g�x� is

an a½ne function (section 3.2). The derivative g � Df �x0� is its linear

component (exercise 3.39). Most authors do not make this distinction,

using the term linear to refer to the a½ne function f �x0� �Df �x0�. (Recall

example 3.10.) To avoid being pedantic, we will not slavishly adhere to

the distinction between a½ne and linear maps and follow the customary

usage when referring to the derivative.

Exercise 4.3

Show that the de®nition (2) can be equivalently expressed as

lim
x!0X

h�x� � lim
x!0X

f �x0 � x� ÿ f �x0� ÿ g�x�
kxk � 0Y �3�

Exercise 4.4 (Derivative is unique)

The derivative of a function is unique.

Exercise 4.5 (Di¨erentiable implies continuous)

If f : X ! Y is di¨erentiable at x0, then f is continuous at x0.

Exercise 4.6 (Linear functions)

Every continuous linear function is di¨erentiable with Df �x� � f .

Exercise 4.7 (Constant functions)

A constant function f : X ! Y is di¨erentiable with Df �x� � 0. That is,

the derivative of a constant function is the zero map in L�X ;Y �.
Example 4.2 (Derivative in R) It is easy to show that (2) is equivalent to

the familiar de®nition of the derivative of univariate functions. Recall

from elementary calculus that a function f : R! R is di¨erentiable at x0

if the limit
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lim
x!0

f �x0 � x� ÿ f �x0�
x

�4�

exists. This limit, called the derivative of f at x0, is a real number, say a. It

satis®es the equation

lim
x!0

f �x0 � x� ÿ f �x0�
x

ÿ a � 0

or

lim
x!0

f �x0 � x� ÿ f �x0� ÿ ax

x
� 0

The product ax de®nes a linear functional g�x� � ax on R, which is the

linear function of equation (3), that is,

lim
x!0

f �x0 � x� ÿ f �x0� ÿ g�x�
x

� 0

Any linear functional on R necessarily takes the form ax for some

a A R (proposition 3.4). Elementary calculus identi®es the derivative (the

linear function ax) with its dual representation a (a number). In geometric

terms, the derivative of a function is the linear function whose graph is

tangential to the function at a particular point. Elementary calculus rep-

resents that tangent (the graph of a function) by its slope.

Exercise 4.8

Evaluate the error in approximating the function

f �x1; x2� � x
1=3
1 x

2=3
2

by the linear function

g�x1; x2� � 1
3 x1 � 2

3 x2

at the point �2; 16�. Show that the linear function

h�x1; x2� � 4
3 x1 � 1

3 x2

is a better approximation at the point �2; 16�.
Remark 4.3 (Notation) As exercise 4.8 demonstrates, the particular lin-

ear function g that best approximates a given function f depends on the
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point x0 at which it is approximated. Di¨erent x0 in X require di¨erent

linear approximating functions. To emphasize that the derivative is a

function, we will use square brackets to denote the point of approxima-

tion, so as to distinguish this from the point of evaluation of the function.

That is, Df �x0� represents the derivative of the function f at the point x0,

and Df �x0��x� denotes the value of the approximating function Df �x0� at

the point x. Sometimes, particularly when X JR, we will use the synon-

ymous notation f 0�x0� for the derivative function, and f 0�x0��x� for its

value at a point. Where there is no ambiguity, we may even omit explicit

mention of the point of approximation, so that f 0 represents the deriva-

tive function (at some implicit point of approximation) and f 0�x� denotes

the value of this function at x.

A function f : X ! Y is di¨erentiable if it is di¨erentiable at all x0 A X .

In that case the derivative de®nes another function Df on X, a function

that takes its values in BL�X ;Y � rather than in Y. In other words, the

derivative Df de®nes a function from X to BL�X ;Y �, the space of all con-

tinuous linear functions from X to Y. If this function Df : X ! BL�X ;Y �
is continuous, we say that the original function f is continuously di¨er-

entiable. This means that nearby points in X give rise to nearby functions

in BL�X ;Y�. The set of all continuously di¨erentiable functions between

spaces X and Y is denoted C 1�X ;Y �. An individual continuously di¨er-

entiable function is said to be C 1.

Example 4.3 (Tangent hyperplane) The graph of the a½ne approximation

f �x0� �Df �x0� to a di¨erentiable function on Rn de®nes a hyperplane in

Rn�1 (exercise 3.40) which is known as the tangent hyperplane to f at x0

(®gure 4.3). Intuitively, for there to exist a well-de®ned tangent plane at any

point, the surface must be smooth, that is, have no sharp edges or points.

A function is di¨erentiable if has a tangent hyperplane everywhere.

If we think of dx as a ``small'' (i.e., close to zero) vector in X, and de®ne

df to be the change in the function f in a neighborhood of x0, then (1) can

be rewritten as

df 1 f �x0 � dx� ÿ f �x0�A Df �x0�|���{z���}
linear

function

�dx�|�{z�}
small
vector

�5�

This is sometimes known as the total di¨erential of f.
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Thinking about approximation geometrically, we perceive that one

function will approximate another when their graphs almost coincide.

More precisely, their graphs must intersect at some point and not diverge

too dramatically in the neighborhood of that point. We say that the

graphs are tangent at the point of intersection. The graph of a linear

function is characterized by the absence of curvature. Therefore, to be

tangent to linear function, a nonlinear function must not exhibit excessive

curvature. It must be smooth without sharp corners or edges. We will give

a precise de®nition of smoothness in a later section.

Example 4.4 (Tangent functions) Two function f ; h: X ! Y are tangent

at x0 A X if

lim
x!0

f �x0 � x� ÿ h�x0 � x�
kxk � 0

Exercise 4.4 shows that among all the functions that are tangent to a

function f �x� at a point x0, there is most one a½ne function of the form

f �x0� � h�x� where h�x� is linear. This is the derivative.

Remark 4.4 (Di¨erentiation) The process of ®nding the best linear

approximation to a given function is called di¨erentiation. This process

may be view abstractly as follows. In the preceding chapter we showed

(exercise 3.33) that the set BL�X ;Y � of all continuous linear functions

between two linear spaces X and Y is itself a linear space, and hence a

subspace of the set of all functions between X and Y. Given an arbitrary

function f : X ! Y and point x0 A X , imagine searching through the

subspace of all continuous linear functions BL�X ;Y � for a function g to

approximate f in the sense of (2). We may be unable to ®nd such a func-

tion. However, if we do ®nd such a function, we can give up the search.

There can be no better approximation in the set BL�X ;Y �.
Remark 4.5 (Econometric estimation) There is an analogy here with the

procedures of econometrics, which may be instructive to some readers. In

econometrics we are presented with some relationship between a depen-

dent variable y and a set of independent variables x that can be repre-

sented by a function f, that is,

y � f �x�
The function f is unknown, although there is a available of set of obser-
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vations or points f�xt; yt�g. In the technique of linear regression, it is

supposed that the function f can be represented as a (continuous) linear

function of x plus a random error, e, that is,

y � f �x0� � g�x� � e

f �x0� is called the constant term.

Estimation involves choosing an element of the set BL�X ;Y� to mini-

mize some measure of the error depending on the presumed statistical

properties of e. For example, in ordinary least squares estimation, a linear

function g A BL�X ;Y� is chosen so as to minimize the squared absolute

error summed over the set of observations f�xt; yt�g.
In calculus, on the other hand, the function f is known, and the linear

function g A BL�X ;Y� is chosen so as to minimize the relative error in the

neighborhood of some point of interest x0. The precise way in the which

the function g is found (the estimation procedure) is the process of di¨er-

entiation. It will be discussed in the next two sections.

Exercise 4.9 (The rank order function)

A subtle example that requires some thought is provided by the rank order

function, which sorts vectors into descending order. Let r: Rn ! Rn be

the function that ranks vectors in descending order; that is, y � r�x� is

de®ned recursively as

y1 � max
i

xi; y2 � max
xi0y1

xi; . . . ; yn � min
i

xi

For example, r�1; 2; 3; 4; 5� � �5; 4; 3; 2; 1� and r�66; 55; 75; 81; 63� �
�81; 75; 67; 63; 55�. Show that r is nonlinear and di¨erentiable for all x

such that xi 0 xj

Before analyzing the properties of the derivative, we show how the

derivative of a function can be computed in applications of practical

interest.

4.2 Partial Derivatives and the Jacobian

Most functions that we encounter in economic models are functionals on

Rn, which can be decomposed into simpler functions (section 2.1.3). For

example, given a functional f : Rn ! R, de®ne the function h: R! R
obtained by allowing only one component of x to vary while holding the
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others constant, that is,

h�t� � f �x0
1 ; x

0
2 ; . . . ; x0

iÿ1; t; x
0
i�1; . . . ; x0

n�
Geometrically the graph of h corresponds to a cross section of the graph

of f through x0 and parallel to the xi axis (section 2.1.4). If the limit

lim
t!0

h�x0
i � t� ÿ h�x0

i �
t

exists, then we call it the ith partial derivative of f at x0, denoted Dxi
f �x0�

or qf �x0�=qxi for even fxi
�x0�. Geometrically the partial derivative mea-

sures the slope of the tangent to the function h, which in turn is the slope

of the cross section of f through x0. Throughout this section, X is a sub-

space of Rn.

Example 4.5 (Marginal product) Recall example 4.1 where total output

was speci®ed by the production function

f �k; l� � k1=3l 2=3

Suppose that one input k (``capital'') is ®xed at 8 units. The restricted

production function

h�l� � f �8; l� � 2l 2=3

speci®es attainable output as a function of the variable input l (``labor''),

given a ®xed capital of 8 units (®gure 4.4). It represents a cross section

through the production surface f �k; l� at �8; 8� parallel to the labor axis.

To analyze the e¨ect of small changes in l, we can use

lim
t!0

h�8� t� ÿ h�8�
t

which is precisely the partial derivative of f �k; l� with respect to l at the

point �8; 8�. The result is called the marginal product of labor, and it mea-

sures the change in output resulting from a small change in l while holding

k constant. Geometrically it measures the slope of the tangent to the

restricted production function (®gure 4.4) at the point l � 8. Similarly the

partial derivative of f with respect to k is the marginal product of capital.

Example 4.6 (Directional derivatives) Recall that one of the complica-

tions of moving to a multivariate function is the in®nity of directions
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in which it is possible to move from any point. Consider the behavior of

a function f : X ! R in the neighborhood of some point x0. Any other

point x A X de®nes a direction of movement, and the function

h�t� � f �x0 � tx�
can be considered a function of the single variable t. Geometrically the

graph of h is a vertical cross section of the graph of f through x0 and x. If

h is di¨erentiable at 0 so that the limit

lim
t!0

h�t� ÿ h�0�
t

� lim
t!0

f �x0 � tx� ÿ f �x0�
t

exists, it is called the directional derivative of f at x0 in the direction x. It is

denoted ~Dx f �x0�.
Exercise 4.10

Let f : X ! Y be di¨erentiable at x0 with derivative Df �x0�, and let x be

a vector of unit norm �kxk � 1�. Show that the directional derivative of

f at x0 in the direction x is the value of the linear function Df �x0� at x,

that is,

~Dx f �x0� � Df �x0��x�
Exercise 4.11

Show that the ith partial derivative of the function f : Rn ! R at some

point x0 corresponds to the directional derivative of f at x0 in the direc-

Figure 4.4
The restricted production function
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tion ei, where

ei � �0; 0; . . . ; 1; . . . ; 0�
is the i unit vector. That is,

Dxi
f �x0� � ~Dei

f �x0�
Exercise 4.12

Calculate the directional derivative of the function

f �x1; x2� � x
1=3
1 x

2=3
2

at the point �8; 8� in the direction �1; 1�.
We now relate partial derivatives to the derivative de®ned in the pre-

vious section. If f : X ! R is di¨erentiable at x0, its derivative Df �x0� is a

linear functional on X. If the domain X is Rn, there exists (proposition

3.4) a vector p � �p1; p2; . . . ; pn� that represents Df �x0� with respect to the

standard basis in the sense that

Df �x0��x� � p1x1 � p2x2 � � � � � pnxn

where x � �x1; x2; . . . ; xn�. This vector is called the gradient of f at x0. It is

denoted grad f �x0� or `f �x0�. Moreover the components of p are pre-

cisely the partial derivatives of f at x0 (exercise 4.13), that is,

`f �x0� � �p1; p2; . . . pn� � �Dx1
f �x0�;Dx2

f �x0�; . . . ;Dxn
f �x0��

so

Df �x0��x� �
Xn

i�1

Dxi
f �x0�xi �6�

The gradient of a di¨erentiable function has an important geometric

interpretation: it points in the direction in which the function increases

most rapidly (exercise 4.16). For example, on a hill, the gradient at each

point indicates the direction of steepest ascent.

Exercise 4.13

Show that the gradient of a di¨erentiable functional on Rn comprises the

vector of its partial derivatives, that is,

`f �x0� � �Dx1
f �x0�;Dx2

f �x0�; . . . ;Dxn
f �x0��
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Exercise 4.14

Show that the derivative of a functional on Rn can be expressed as the

inner product

Df �x0��x� � `f �x0�T x

Exercise 4.15 (Nonnegative gradient)

If a di¨erentiable functional f is increasing, then `f �x�V 0 for every

x A X ; that is, every partial derivative Dxi
f �x� is nonnegative.

Exercise 4.16

Show that the gradient of a di¨erentiable function f points in the direction

of greatest increase. [Hint: Use exercise 3.61.]

Partial derivatives provide a practical means for computing the deriva-

tive of a di¨erentiable function. A fundamental result of chapter 3 was

that any linear mapping is completely determined by its action on a basis

for the domain. This implies that the derivative of a functional on Rn is

fully summarized by the n partial derivatives, which can be readily calcu-

lated for any given function. Formula (6) then gives a mechanism for

computing the value of the derivative Df �x0��x� for arbitrary x. The

derivative approximates a nonlinear function by combining linearly the

separate e¨ects of marginal changes in each of the variables.

Remark 4.6 (Di¨erentiability) The preceding discussion presumes that

the function f is di¨erentiable, which implies the existence of partial deriv-

atives. The converse is not necessarily true. We cannot infer from the

existence of its partial derivatives that the function is di¨erentiable. The

reason is that the partial derivatives only approximate a function parallel

to the axes, whereas the derivative approximates the function in all direc-

tions. It is possible for a function to have a linear approximation in certain

directions and not in others (example 4.7). Later (exercise 4.37) we will

show that continuity of the partial derivatives is su½cient to guarantee

linear approximation in all directions and hence di¨erentiability

Di¨erentiability is seldom an issue in economics. Commonly an explicit

functional form is not imposed on an economic model. Rather, the func-

tions are simply assumed to have the required properties, such as di¨er-

entiability or convexity. The results derived then apply to all functions

that exhibit the assumed properties.
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Example 4.7 (A nondi¨erentiable function) Let f : R2 ÿR be de®ned by

f �x1; x2� �
0 if x1 � x2 � 0

x1x2

x2
1 � x2

2

otherwise

8><>:
The partial derivatives of f exist for all �x1; x2� A R2 with Dx1

f ��0; 0�� �
Dx2

f ��0; 0�� � 0. But f is not continuous at �0; 0�, and hence not di¨er-

entiable there.

Example 4.8 (Marginal product again) We showed earlier (example 4.1)

that the Cobb-Douglas production function

f �k; l� � k1=3l 2=3

could be approximated by the linear function

g�k; l� � 1
3 k � 2

3 l

We will show later that the partial derivatives of f at the point �8; 8� are

Dk f ��8; 8�� � 1
3 and Dl f ��8; 8�� � 2

3

Therefore the derivative of f at �8; 8� is, from (6),

Df ��8; 8���k; l� � Dk f ��8; 8��k �Dl f ��8; 8��l � 1
3 k � 2

3 l

which is precisely the approximating function g. We now recognize that

the coe½cients of k and l in this function are the marginal products of k

and l respectively (example 4.5). Therefore g could be rewritten as

g�k; l� �MPkk �MPl l

where MPk and MPl denote the marginal products of k and l respectively

evaluated at �8; 8�. Output at the input combination �k; l� can be approxi-

mated by adding the contributions of k and l, where each contribution is

measured by the quantity used times its marginal product at �8; 8�.
The accuracy of the approximation provided by g will depend on the

degree to which the marginal products of f vary as the quantities of k and

l change. The approximation would be perfect if the marginal products

were constant, but this will be the case if and only if the production func-

tion is linear or a½ne. It is precisely because economic realism requires
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nonconstant marginal products that we need to resort to nonlinear func-

tions to model production.

Example 4.9 (Marginal utility) Suppose that a consumer's preferences

can be represented (example 2.58) by the utility function u: X ! R where

X HRn is the consumption set. The consumer is currently consuming a

bundle of goods and services x0 A X . It is desired to measure impact

on utility of small changes in the composition of this bundle. Let dx A X

denote the changes in the consumption bundle. Note that some compo-

nents of dx may be positive and some negative. If the utility function is

di¨erentiable, we can estimate the resulting change in utility du by the

total di¨erential (5)

du1 u�x0 � dx� ÿ u�x0�ADu�x0��dx�
Using (6) this can be expressed as

duA
Xn

iÿ1

Dxi
u�x0� dxi �7�

where dx � �dx1; dx2; . . . ; dxn�.
The partial derivative Dxi

u�x0� is called the marginal utility of good i. It

estimates the added utility obtained from consuming an additional unit of

good i holding the consumption of all other goods constant. Using (7), we

approximate the change in utility in moving from consumption bundle x0

to x0 � dx by estimating the change arising from each commodity sepa-

rately �Dxi
u�x0� dxi� and then summing these e¨ects. This estimate of the

total change in utility may be inaccurate for two reasons:

. It presumes that the marginal utility of each good is constant as the

quantity consumed is changed.

. It ignores interactions between di¨erent goods.

The extent of the inaccuracy will depend upon the utility function u, the

point x and the degree of change dx. However, for a di¨erentiable func-

tion, we know that the inaccuracy becomes negligible for su½ciently small

changes.

Example 4.10 (Marginal rate of substitution) We suggested in chapter 3

that any linear functional could be thought of as valuation function, with

its components as prices (example 3.11). This applies to the gradient of
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the utility function, where the marginal utilities measure the maximum

amount that the consumer would be willing to exchange for an additional

unit of one commodity, holding constant the consumption of the other

commodities. These are usually referred to as subjective or reservation

prices.

The absolute value of these reservation prices is of limited signi®cance,

since it depends on the particular function used to represent the consumer's

preferences. However, the implied relative prices between goods are sig-

ni®cant because they are invariant to di¨erent representations of the

utility function (example 4.17). At any consumption bundle the relative

reservation price between any two goods i and j is called the marginal rate

of substitution that is

MRSij � Dxi
u�x0�

Dxj
u�x0�

It measures the quantity of good j the consumer is willing to forgo for one

additional unit of good i. As we will see in the next chapter (example

5.15), choosing an optimal consumption bundle amounts to adjusting the

consumption bundle until these relative prices align with the market

prices.

Economists use contours to help analyze functions in higher-

dimensional spaces (section 2.1.4). Given a functional f on a set X JRn,

the contour of f through c � f �x0� is

f ÿ1�c� � fx A X : f �x� � cg
Familiar examples include isoquants and indi¨erence curves, which are

contours of production and utility functions respectively. If f is di¨er-

entiable at x0, the derivative Df �x0� de®nes a hyperplane (exercise 3.49)

in X,

H � fx A X : Df �x0��x� � 0g
which is tangential to the contour through f �x0� (®gure 4.5), and

orthogonal to the gradient of f at x0 (exercise 4.17). This hyperplane is a

linear approximation to the contour.

Example 4.11 (Slope of a contour) Suppose that f : R2 ! R is di¨er-

entiable at x0. Then there exists a hyperplane
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H � fx A X : Df �x0��x� � 0g
that is tangential to the contour through f �x0�. Using (6), we see that H is

a line de®ned by the equation

Dx1
f �x0�x1 �Dx2

f �x0�x2 � 0

or

Dx1
f �x0�x1 � ÿDx2

f �x0�x2

The slope of the line is

x2

x1
� ÿDx1

f �x0�
Dx2

f �x0�
the ratio of the partial derivatives of f at x0.

If for example f is a utility function representing preferences over two

goods, the marginal rate of substitution between the goods (example 4.10)

measures the slope the indi¨erence curve.

Exercise 4.17 (Gradient orthogonal to contour)

Let f be a di¨erentiable functional and

H � fx A X : Df �x0��x� � 0g
be the hyperplane tangent to the contour through f �x0�. Then `f �x0� is

orthogonal to H.

Remark 4.7 (Notation) Variety is abundant in the notation employed for

partial derivatives. Most common is the old-fashioned qf �x0�=qxi. This is

Figure 4.5
A contour and its tangent hyperplane

437 4.2 Partial Derivatives and the Jacobian



sometimes abbreviated as fi�x0� or even f i�x0�. Marginal utility in this

notation is qu�x0�=qxi or ui�x0�. This often leads to confusion. For exam-

ple, when dealing with many consumers, the marginal utility of consumer

l for good i becomes ul
i �x0�. Or is that the marginal utility of consumer i

for good l ? The marginal rate of substitution is the inelegant

MRSij � qu�x0�=qxi

qu�x0�=qxj

It is more consistent to use Dxi
f �x0� for the partial derivative of f with

respect to xi. When there is no ambiguity with regard to the independent

variable, this is abbreviated to Di f �x0� for the ith partial derivative. Then

the marginal utility of consumer l for good i is unambiguously Diu
l �x0�.

The marginal rate of substitution between goods i and j is Diu�x0�=Dju�x0�.
This is the convention we will follow in this book.

It is also common to omit the point of evaluation x0 when there is

ambiguity. The partial derivative Di f , marginal utility Diu and marginal

rate of substitution Diu=Dju are all understood to be evaluated at a par-

ticular point, which should be obvious from the context.

The Jacobian

So far in this section, we have focused on single real-valued functions or

functionals on Rn. However, we often encounter systems of functionals.

Examples include systems of demand functions, payo¨ functions in non-

cooperative games and the IS-LM model in macroeconomics. Sometimes

it is useful to study the components individually, where the preceding

discussion applies. At other times it useful to consider the system of

functions as a whole (section 2.1.3).

A system of m functionals f1; f2; . . . ; fm on X JRn de®nes a function

f: X ! Rm where

f�x� � � f1�x�; f2�x�; . . . ; fm�x�� for every x A X

The function f is di¨erentiable at x0 A X if and only if each component fj

is di¨erentiable at x0 (exercise 4.18). The derivative Df�x0� is linear func-

tion between ®nite-dimensional spaces which can be represented by a

matrix (proposition 3.1). The matrix representing the derivative Df�x0� of

a di¨erentiable function (with respect to the standard basis) is called the

Jacobian of f at x0. The elements of the Jacobian J are the partial deriv-
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atives of the components fj evaluated at x0:

Jf�x0� �

0BBBB@
Dx1

f1�x0� Dx2
f1�x0� . . . Dxn

f1�x0�
Dx1

f2�x0� Dx2
f2�x0� . . . Dxn

f2�x0�
..
. ..

. . .
. ..

.

Dx1
fm�x0� Dx2

fm�x0� . . . Dxn
fm�x0�

1CCCCA
Exercise 4.18

f: X ! Rm; X HRn is di¨erentiable x0 if and only if each component fj

is di¨erentiable at x0. The matrix representing the derivative, the Jacobian,

comprises the partial derivatives of the components of f.

The Jacobian encapsulates all the essential information regarding the

linear function that best approximates a di¨erentiable function at a par-

ticular point. For this reason it is the Jacobian which is usually used in

practical calculations with the derivative (example 4.16). To obtain the

derivative of a function from Rn to Rm, we take each of the components

in turn and obtain its partial derivatives. In e¨ect we reduce the problem

of calculating the derivative of a multivariate function to obtaining the

partial derivatives of each of its component functions. The Jacobian

encapsulates the link between univariate and multivariate calculus.

Remark 4.8 By analogy with computer programming, our approach to

multivariate calculus could be called the top±down approach, in which

we start with general functions between arbitrary spaces and reduce it to

the simpler familiar problem, real-valued functions of a single variable (the

elements of the Jacobian). This contrast with the conventional bottom-up

approach, which starts with the familiar univariate functions, and builds

up to multivariate functions and then systems of such functions.

Example 4.12 ( IS-LM model) The following model has formed the

foundation of macroeconomic theory for the last 30 years. It consists of

two equations. The IS curve describes equilibrium in the goods market

y � C�y;T� � I�r� � G

with national income y equal to aggregate output, comprising consump-

tion C, investment I, and government spending G. Consumption C�y;T�
depends on income y and taxes T , while investment I�r� is a function of

the interest rate. The LM curve describes equilibrium in the money market
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L�y; r� �M

P

when the demand for money L is equal to the supply M=P, where the

demand for money depends on national income y and the interest rate r.

Government spending G, taxes T , and the nominal money supply M are

exogenous parameters. For simplicity we also assume that the price level

P is ®xed. Analysis of this model consists of describing the relationship

between the dependent variables r; y and the three exogenous parameters

G;T ;M.

Designating two quantities y and r as variables and the remaining

quantities G, M, and T as parameters, we can analyze the IS-LM model

as a function from R2
� to R2, namely

f 1�r; y� � yÿ C�y;T� ÿ I�r� ÿ G � 0

f 2�r; y� � L�y; r� ÿM

P
� 0

The Jacobian of this system of equations is

J � Dr f1 Dy f1

Dr f2 Dy f2

 !
� ÿDrI 1ÿDyC

DrL DyL

� �
Regular Functions

A point x0 in the domain of a C 1 function f : X ! Y is called a regular

point if the derivative Df �x0� has full rank (section 3.1). Otherwise, x0 is

called a critical point. A function is regular if it has no critical points.

Two special cases occur most frequently. When f is an operator

�X � Y�, x0 is a regular point if and only if the Jacobian is nonsingular.

When f is a functional �Y � R�, x0 is a regular point if and only if the

gradient is nonzero. If every point on a contour fx : f �x� � cg of a func-

tional is a regular point, then the contour is called a regular surface or

nÿ 1 dimensional manifold.

Exercise 4.19

A point x0 is a regular point of a C 1 operator if and only det Jf �x0�0 0.

Exercise 4.20

A point x0 is a critical point of a C 1 functional if and only if `f �x0� � 0;

that is, Dxi
f �x0� � 0 for each i � 1; 2; . . . ; n.
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Critical points of smooth functionals will be the focus of our attention

in the next chapter.

4.3 Properties of Di¨erentiable Functions

In the ®rst part of this section, we present some elementary properties of

di¨erentiable functions. These properties form the basis of the rules of

di¨erentiation, which enable the derivatives of complicated functions to

be computed from the derivatives of their components. It is these rules

which form the focus of most introductory treatments of calculus. In the

second half of this section, we present one of the most fundamental results

of di¨erential calculus, the mean value theorem, which forms the foun-

dation of the rest of the chapter.

4.3.1 Basic Properties and the Derivatives of Elementary Functions

Most of the standard properties of di¨erentiable functions follow directly

from de®nition of the derivative. We summarize them in exercises 4.21 to

4.30. Unless otherwise speci®ed, X and Y are arbitrary normed linear

spaces.

The ®rst two results are fundamental in computing with derivatives.

The ®rst states the derivative of a sum is equal to the sum of the derivatives.

That is, the di¨erentiation is a linear operator. Exercise 4.22 shows that

the derivative of a composition is the composition of their derivatives.

Exercise 4.21 (Linearity)

If f ; g: X ! Y are di¨erentiable at x, then f � g and af are di¨erentiable

at x with

D� f � g��x� � Df �x� �Dg�x�
D�af �x�� � aDf �x� for every a A R

Exercise 4.22 (Chain rule)

If f : X ! Y is di¨erentiable at x and g: Y ! Z is di¨erentiable at f �x�,
then the composite function g � f : X ! Z is di¨erentiable at x with

D�g � f ��x� � Dg� f �x�� �Df �x�
Derivatives in Euclidean space can be represented by the Jacobian

matrix, and composition of linear functions corresponds to matrix multi-
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plication. Therefore the chain rule can be expressed as

Jf �g�x� � Jg�y�Jf �x�
where y � f �x�. Letting n, m and l denote the dimensions of X, Y, and Z

respectively, the partial derivative of gj with respect to xi is can be com-

puted using the familiar formula for matrix multiplication

Dxi
gj�x� �

Xm

k�1

Dyk
gj�y�Dxi

fk�x� �8�

The reason for the name ``chain rule'' becomes clearer when we express

(8) in the alternative notation

qgj

qxi
�
Xm

k�1

qgj

qyk
� qyk

qxi

This is one instance where the alternative notation can be more transpar-

ent, provided there is no ambiguity in meaning of the symbols (see remark

4.7).

The derivative of a bilinear function is the sum of the two partial

functions evaluated at the point of di¨erentiation.

Exercise 4.23 (Bilinear functions)

Every continuous bilinear function f : X � Y ! Z is di¨erentiable with

Df �x; y� � f �x; �� � f ��; y�
that is,

Df �x0; y0��x; y� � f �x0; y� � f �x; y0�
Combining exercises 4.22 and 4.23 enables as to derive one of the most

useful properties which is known as the product rule. The derivative of a

the product of two functions is equal to the ®rst times the derivative of the

second plus the second times the derivative of the ®rst. Formally we have

Exercise 4.24 (Product rule)

Let f : X ! R be di¨erentiable at x and g: Y ! R be di¨erentiable at

y. Then their product f g: X � Y ! R is di¨erentiable at �x; y� with

derivative

Dfg�x; y� � f �x�Dg�y� � g�y�Df �x�

442 Chapter 4 Smooth Functions



Exercise 4.25 (Power function)

The power function (example 2.2)

f �x� � xn; n � 1; 2; . . .

is di¨erentiable with derivative

Df �x� � f 0�x� � nxnÿ1

Example 4.13 (Exponential function) The exponential function (Exam-

ple 2.10)

ex � 1� x

1
� x2

2!
� x3

3!
� � � �

is the limit of a series of power functions

f n�x� � 1� x

1
� x2

2!
� x3

3!
� � � � � xn

n!

that is,

ex � lim
n!y

f n�x�

By exercises 4.21 and 4.25, each f n is di¨erentiable with

Df n�x� � 1� x

1
� x2

2!
� x3

3!
� � � � � xnÿ1

�nÿ 1�! � f nÿ1�x�

and therefore

lim
n!y

Df n�x� � lim
n!y

f nÿ1�x� � ex

As we will show later (example 4.20), this implies that the exponential

function is di¨erentiable with derivative

Dex � ex

Exercise 4.26

Assume that the inverse demand function for some good is given by

p � f �x�
where x is the quantity sold. Total revenue is given by
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R�x� � f �x�x
Find the marginal revenue at x0.

Recall that a homeomorphism (remark 2.12) is a continuous function

that has a continuous inverse. The next result shows that a di¨erenti-

able homeomorphism (with a nonsingular derivative) is di¨erentiable.

The derivative of the inverse is the inverse of the derivative of the original

function. A di¨erentiable map with a di¨erentiable inverse is called a

di¨eomorphism.

Exercise 4.27 (Inverse function rule)

Suppose that f : X ! Y is di¨erentiable at x and its derivative is non-

singular. Suppose further that f has an inverse f ÿ1: Y ! X that is con-

tinuous (i.e., f is a homeomorphism). Then f ÿ1 is di¨erentiable at x with

Df ÿ1�x� � �Df �x��ÿ1

Example 4.14 (Log function) The log function (example 2.55) is the

inverse of the exponential function, that is,

y � log x, x � ey

The exponential function is di¨erentiable and its derivative is nonsingular

(example 4.13). Applying the inverse function rule (exercise 4.27), the log

function is di¨erentiable with derivative

Dx log�x� � 1

Dyey
� 1

ey
� 1

x

Example 4.15 (General power function) The general power function is

de®ned by (example 2.56)

f �x� � xa � ea log x

Using the chain rule, we conclude that the general power function is

di¨erentiable with

Dx f �x� � D exp�a log x�D�a log x� � exp�a log x�a 1

x
� xaa

1

x
� axaÿ1

Exercise 4.28 (General exponential function)

When the roles are reversed in the general power function, we have the

general exponential function de®ned as
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f �x� � ax

where a A R�. Show that the general exponential function is di¨erentiable

with derivative

Dx f �x� � ax log a

Example 4.15 provides us with two more useful rules of di¨erentiation.

Exercise 4.29 (Reciprocal function)

Let f : X ! R be di¨erentiable at x where f �x�0 0, then 1=f is di¨er-

entiable with derivative

D
1

f
�x� � Df �x�

� f �x��2

Exercise 4.30 (Quotient rule)

Let f : X ! R be di¨erentiable at x and g: Y ! R be di¨erentiable at y

with f �y�0 0. Then their quotient f =g: X � Y ! R is di¨erentiable at

�x; y� with derivative

D
f

g
�x; y� � g�y�Df �x� ÿ f �x�Dg�y�

�g�y��2

We summarize the derivatives of elementary functions in in table 4.4.

Since most functional forms comprise linear combinations, products, and

compositions of these elementary functions, the derivative of almost any

function can be obtained by repeated application of the preceding rules to

these elementary functions. We give some examples and provide other

examples as exercises.

Table 4.4
Derivatives of elementary functions

Function Derivative

f �x� f 0�x0�
ax a

xa axaÿ1
0

ex ex0

ax ax0 log a

log x 1=x0
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Example 4.16 (Cobb-Douglas) Consider the Cobb-Douglas function

f �x1; x2� � xa1

1 xa2

2

Holding x1 constant, the partial function h2�x2� � Axa2

2 (where A � xa1

1 is

a constant) is a power function whose derivative is

Dh2�x2� � Aa2xa2ÿ1
2

Therefore the partial derivative of f with respect to x2 is

Dx2
f �x1; x2� � a2xa1

1 xa2ÿ1
2

Similarly the partial derivative with respect to x1 is

Dx1
f �x1; x2� � a1xa1ÿ1

1 xa2

2

The derivative can be represented by the gradient

`f �x� � �a1xa1ÿ1
1 xa2

2 ; a2xa1

1 xa2ÿ1
2 �

Note that the derivative depends both on the exponents a1 and a2 and on

the point of evaluation x0.

Exercise 4.31

Calculate the value of the partial derivatives of the function

f �k; l� � k2=3l 1=3

at the point �8; 8�
Exercise 4.32

Show that gradient of the Cobb-Douglas function

f �x� � xa1

1 xa2

2 . . . xan
n

can be expressed as

`f �x� � a1

x1
;
a2

x2
; . . . ;

an

xn

� �
f �x�

Exercise 4.33

Compute the partial derivatives of the CES function (exercise 2.35)

f �x� � �a1x
r
1 � a2x

r
2 � � � � � anxr

n �1=r; r0 0

Example 4.17 (Marginal rate of substitution) Given a utility function u,

the marginal rate of substitution (example 4.10) between goods i and j is
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given by

MRSij � Dxi
u�x0�

Dxj
u�x0�

If g is a monotonic transformation, the function v � g � u is another

utility function representing the same preferences (exercise 2.37). Apply-

ing the chain rule, we have

Dxi
v�x0�

Dxj
v�x0� �

g 0�u�x0��Dxi
u�x0�

g 0�u�x0��Dxj
u�x0� �

Dxi
u�x0�

Dxj
u�x0� �MRSij

The marginal rate of substitution is invariant to monotonic transforma-

tions of the utility function.

4.3.2 Mean Value Theorem

Previously (section 4.1), we showed how the derivative approximates a

di¨erentiable function locally. Now, we show how the derivative can

provide information about the function over the whole domain. Consider

®gure 4.6, which shows the graph of a di¨erentiable function f : R! R
and its derivative at the point x0. Di¨erentiability implies that

f �x0 � x�A f �x0� �Df �x0��x�
for small x. Generally, the approximation deteriorates as x increases.

However, for every x, there exists another linear approximation which is

exact at x, that is there exists some point x between x0 and x0 � x such

that

Figure 4.6
Illustrating the mean value theorem
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f �x0 � x� � f �x0� �Df �x��x�
This is the classical mean value theorem, which is readily generalized to

functionals on normed linear spaces.

Theorem 4.1 (Mean value theorem) Let f : S ! R be a di¨erentiable

functional on a convex neighborhood S of x0. For every x A S ÿ x0, there

exists some x A �x0; x0 � x� such that

f �x0 � x� � f �x0� �Df �x��x� �9�
Proof For ®xed x0; x, the function g: R! X de®ned by g�t� � x0 � tx

is di¨erentiable with derivative g 0�t� � x (exercise 4.6). We note that

g�0� � x0 and g�1� � x0 � x. The composite function h � f � g: R! R is

di¨erentiable (exercise 4.22) with derivative

h 0�t� � Df �g�t�� � g 0�t� � Df �g�t���x�
By the classical mean value theorem (exercise 4.34), there exists an

a A �0; 1� such that

h�1� ÿ h�0� � h 0�a� � Df �g�a���x�
Substituting in h�0� � f �x0�, h�1� � f �x0 � x� and x � g�a� yields

f �x0 � x� ÿ f �x0� � Df �x��x� r

Exercise 4.34 (Classical mean value theorem)

Suppose that f A C�a; b� is di¨erentiable on the open interval �a; b�. Then

there exists some x A �a; b� such that

f �b� ÿ f �a� � f 0�x��bÿ a�
[Hint: Apply Rolle's theorem (exercise 5.8) to the function

h�x� � f �x� ÿ f �b� ÿ f �a�
bÿ a

�xÿ a��

The mean value theorem is rightly seen as the cornerstone of di¨eren-

tial calculus and a fertile source of useful propositions. We give some

examples below. In subsequent sections we use it to derive Taylor's theo-

rem on polynomial approximation, Young's theorem on symmetry of the

Hessian and the fundamental inverse and implicit function theorems.

Figure 4.7 illustrates the seminal role of the mean value theorem in the

material of this chapter.
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Exercise 4.35 (Increasing functions)

A di¨erentiable functional f on a convex set S JRn is increasing if and

only `f �x�V 0 for every x A S, that is, if every partial derivative Dxi
f �x�

is nonnegative.

Exercise 4.36 (Strictly increasing functions)

A di¨erentiable functional f on a convex set S JRn is strictly increasing

if `f �x� > 0 for every x A X , that is, if every partial derivative Dxi
f �x� is

positive.

Example 4.18 It is worth noting that the converse of the previous result

is not true. For example, f �x� � x3 is strictly increasing on R although

f 0�0� � 0.

Example 4.19 (Marginal utility) If u represents a preference ordering 7

on X JRn, then u is increasing on X if and only if 7 is weakly mono-

tonic (example 2.59). It is u strictly increasing if 7 is strongly monotonic.

Consequently the marginal utility (example 4.9) of any good is non-

Figure 4.7
Theorems for smooth functions
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negative if and only if 7 weakly monotonic (exercise 4.35). Furthermore,

if marginal utility is positive for all goods, this implies that 7 is strongly

monotonic (exercise 4.36).

Exercise 4.37 (C1 functions)

Let f be a functional on an open subset S of Rn. Then f is continuously

di¨erentiable �C1� if and only if each of the partial derivatives Di f �x�
exists and is continuous on S.

We now present some extensions and alternative forms of the mean

value theorem which are useful in certain applications. Theorem 4.1

applies only to functionals and has no immediate counterpart for more

general functions. Furthermore, since the point of evaluation x is un-

known, the mean value theorem is often more usefully expressed as an

inequality

j f �x1� ÿ f �x0�jU kDf �x�k kx1 ÿ x0k
which follows immediately from (9). This alternative form of the mean

value theorem generalizes to functions between normed linear spaces.

Corollary 4.1.1 (Mean value inequality) Let f : S ! Y be a di¨er-

entiable function on an open convex set S JX . For every x1; x2 A S,

k f �x1� ÿ f �x2�kU sup
x A �x1;x2�

kDf �x�k kx1 ÿ x2k

Proof The proof of corollary 4.1.1 is an insightful illustration of the use

of the dual space in analysis. By the Hahn-Banach theorem (exercise

3.205), there exists a linear functional j A Y � such that kjk � 1 and

j�y� � kyk. That is,

j� f �x1� ÿ f �x2�� � k f �x1� ÿ f �x2�k
Then j � f : S ! R is a functional on S. Applying the mean value theo-

rem (theorem 4.1), there exists some x A �x1; x2� such that

�j � f ��x1� ÿ �j � f ��x2� � D�j � f ��x��x1 ÿ x2� �10�
By the linearity of j, the left-hand side of (10) is

j � f �x1� ÿ j � f �x2� � j� f �x1� ÿ f �x2��
� k f �x1� ÿ f �x2�k
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By the chain rule, the right-hand side becomes

D�j � f ��x��x1 ÿ x2� � Dj �Df �x��x1 ÿ x2�
� j �Df �x��x1 ÿ x2�
U kjk kDf �x�k kx1 ÿ x2k
� kDf �x�k kx1 ÿ x2k

since kjk � 1. Substituting these relations into (10) gives the desired result,

that is,

k f �x2� ÿ f �x2�kU kDf �x�k kx1 ÿ x2kU sup
x A �x1;x2�

kDf �x�k kx1 ÿ x2k r

If kDf k is bounded on S, that is there exists a constant M such that

kDf �x�k < M for all x A S, corollary 4.1.1 implies that f is Lipschitz

continuous on S, that is,

k f �x1� ÿ f �x2�kUMkx1 ÿ x2k for every x1; x2 A S

Exercise 4.38 (Constant functions)

A di¨erentiable function f on a convex set S is constant if and only if

Df �x� � 0 for every x A S.

Exercise 4.39 (Sequences of functions)

Let f n: S ! Y be a sequence of C1 functions on an open set S, and

de®ne

f �x� � lim
n!y

f n�x�

Suppose that the sequence of derivatives Df n converges uniformly to a

function g: S ! BL�X ;Y�. Then f is di¨erentiable with derivative Df � g.

Example 4.20 (Exponential function) The exponential function ex (exam-

ple 2.10) is the limit of a sequence of power series

ex � lim
n!y

f n�x�

where

f n�x� � 1� x

1
� x2

2!
� x3

3!
� � � � � xn

n!

451 4.3 Properties of Di¨erentiable Functions



Each partial function f n is di¨erentiable (exercise 4.13) with Df n�x� �
f nÿ1. Since f n converges uniformly on any compact set to ex (exercise

2.8), so do the derivatives

lim
n!y

Df n�x� � lim
n!y

f nÿ1�x� � ex

Using exercise 4.39, we conclude that the exponential function is di¨er-

entiable with derivative

Dex � ex

Example 4.21 Assume that f : R! R is di¨erentiable with

f 0�x� � f �x� for every x A R �11�
Then f is exponential, that is, f �x� � Aex for some A A R. To see this,

de®ne

g�x� � f �x�
ex

Now g is di¨erentiable (exercise 4.30) with derivative

g 0�x� � ex f 0�x� ÿ f �x�ex

e2x
� f 0�x� ÿ f �x�

ex

Substituting (11), we have

g 0�x� � f �x� ÿ f �x�
ex

� 0 for every x A R

Therefore g is a constant function (exercise 4.38). That is, there exists

A A R such that

g�x� � f �x�
ex
� A or f �x� � Aex

Equation (11) is the simplest example of a di¨erential equation that relates

a function to its derivative.

Exercise 4.40

Prove that ex�y � exey for every x; y A R. [Hint: Consider f �x� � ex�y=ey.]

Exercise 4.41 (Constant elasticity)

The elasticity of a function f : R! R is de®ned to be
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E�x� � x
f 0�x�
f �x�

In general, the elasticity varies with x. Show that the elasticity of a func-

tion is constant if and only if it is a power function, that is,

f �x� � Axa

Corollary 4.1.1 enables us to place bounds on the error in approximat-

ing the function f by its derivative anywhere in the domain. We give

three useful variations. Exercise 4.43 will be used in the proof of theorem

4.4.

Exercise 4.42

Let f : S ! Y be a di¨erentiable function on an open convex set S JX .

For every x0; x1; x2 A S,

k f �x1� ÿ f �x2� ÿDf �x0��x1 ÿ x2�kU sup
x A �x1;x2�

kDf �x� ÿDf �x0�k kx1 ÿ x2k

[Hint: Apply corollary 4.1.1 to the function g�x� � f �x� ÿDf �x0��x�.]
Exercise 4.43 (Approximation lemma)

Let f : X ! Y be C1. For every x0 A X and e > 0, there exists a neigh-

borhood S containing x0 such that for every x1; x2 A S,

k f �x1� ÿ f �x2� ÿDf �x0��x1 ÿ x2�kU ekx1 ÿ x2k
Exercise 4.44

Let f : X ! Y be C1. For every x0 A X and e > 0, there exists a neigh-

borhood S containing x0 such that for every x1; x2 A S,

k f �x1� ÿ f �x2�kU kDf �x0� � ek kx1 ÿ x2k
In fact we can go further and place upper and lower bounds on

f �x1� ÿ f �x2�, as in the following result, which is an interesting applica-

tion of the separating hyperplane theorem.

Exercise 4.45 (Mean value inclusion)

Let f : S ! Y be a di¨erentiable function on an open convex set S JX .

Then for every x1; x2 A S,

f �x1� ÿ f �x2� A conv A

453 4.3 Properties of Di¨erentiable Functions



where A � fy A Y : y � Df �x��x1 ÿ x2� for some x A �x1; x2�g. [Hint:

Assume that f �x1� ÿ f �x2� B conv A, and apply proposition 3.14.]

Exercise 4.45 is illustrated in ®gure 4.8. The a½ne functions f �x1� �
Df �x1��x2 ÿ x1� and f �x1� �Df �x2��x2 ÿ x1� bound the values of f �x�
between x1 and x2.

L'HoÃpital's Rule

We sometimes need to evaluate the behavior of the ratio of two func-

tionals close to a point where both are zero and their ratio is unde®ned.

For example, if c�y� denotes the total cost of production of output y

(example 2.38), average cost is measured by c�y�=y. Provided there are no

®xed costs, c�y� � 0 when y � 0 and their ratio is unde®ned. What can we

say about the average cost of producing the ®rst unit? L'HoÃpital's rule

provides an answer for di¨erentiable functions, which we develop in the

following exercises.

Exercise 4.46 (Cauchy mean value theorem)

Assume that f and g continuous functionals on �a; b�JR that are di¨er-

entiable on the open interval �a; b�. Then there exists some x A �a; b� such

that

� f �b� ÿ f �a��g 0�x� � �g�b� ÿ g�a�� f 0�x�
Provided g�a�0 g�b� and g 0�x�0 0, this can be written as

Figure 4.8
The mean value inclusion theorem
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f 0�x�
g 0�x� �

f �b� ÿ f �a�
g�b� ÿ g�a�

[Hint: Modify exercise 4.34.]

Exercise 4.47 (L'HoÃ pital's rule)

Suppose that f and g are functionals on R such that

lim
x!a

f �x� � lim
x!a

g�x� � 0

If limx!a f 0�x�=g 0�x� exists, then

lim
x!a

f �x�
g�x� � lim

x!a

f 0�x�
g 0�x�

Example 4.22 (CES function) The CES function (exercise 2.35)

f �x� � �a1x
r
1 � a2x

r
2 � � � � anxr

n �1=r

is not de®ned when r � 0. Using L'HoÃpital's rule (exercise 4.47), we can

show that the CES function tends to the Cobb-Douglas function as

r! 0. For simplicity, assume that a1 � a2 � � � � an � 1 (see exercise 4.48).

For any x > 0, let g: R! R be de®ned by

g�r� � log�a1x
r
1 � a2x

r
2 � � � � anxr

n �
Using the chain rule and exercise 4.28, we have

g 0�r� � a1x
r
1 log x1 � a2x

r
2 log x2 � � � � anxr

n log xn

a1x
r
1 � a2x

r
2 � � � � anx

r
n

and therefore

lim
r!0

g 0�r� � a1 log x1 � a2 log x2 � � � � an log xn

a1 � a2 � � � � � an

� a1 log x1 � a2 log x2 � � � � an log xn �12�
assuming that a1 � a2 � � � � an � 1. Now

log f �r; x� � g�r�
r
� g�r�

h�r�
where h is the identity function on R, h�r� � r and h 0�r� � 1. Applying

L'HoÃpital's rule, we have
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lim
r!0

log f �r; x� � lim
r!0

g�r�
h�r�

� lim
r!0

g 0�r�
h 0�r�

� a1 log x1 � a2 log x2 � � � � an log xn

Since the exponential function is continuous,

lim
r!0

f �r; x� � lim
r!0

exp�log f �r; x��

� lim
r!0

exp�a1 log x1 � a2 log x2 � � � � an log xn�

� xa1

1 xa2

2 . . . xan
n

which is the Cobb-Douglas function (example 2.57).

Exercise 4.48

Recall that the CES function is homogeneous of degree one (exercise

3.163), while the Cobb-Douglas function is homogeneous of degree

a1 � a2 � � � � � an (example 3.69). In the previous example we assumed

that a1 � a2 � � � � � an � 1. What is the limit of the CES function when

a1 � a2 � � � � � an 0 1?

Exercise 4.49

Let c�y� be the total cost of output y. Assume that c is di¨erentiable and

that there are no ®xed costs �c�y� � 0�. Show that the average cost of the

®rst unit is equal to marginal cost.

The following variant of L'HoÃpital's rule is also useful in evaluating

behavior at in®nity (example 4.23).

Exercise 4.50 (L'HoÃ pital's rule for y=y)

Suppose that f and g are di¨erentiable functionals on R such that

lim
x!y

f �x� � lim
x!y

g�x� �y

while

lim
x!y

f 0�x�
g 0�x� � k <y

Show that
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1. For every e > 0 there exists a1 such that

f �x� ÿ f �a1�
g�x� ÿ g�a1� ÿ k

���� ���� < e

2
for every x > a1

2. Using the identity

f �x�
g�x� �

f �x� ÿ f �a�
g�x� ÿ g�a� �

f �x�
f �x� ÿ f �a� �

g�x� ÿ g�a�
g�x�

deduce that there exists a such that

f �x�
g�x� ÿ k

���� ���� < e for every x > a

That is,

lim
x!y

f �x�
g�x� � k � lim

x!y

f 0�x�
g 0�x�

Example 4.23 (Logarithmic utility) The logarithmic utility function

u�x� � log�x� is a common functional form in economic models with a

single commodity. Although u�x� !y as x!y, average utility u�x�=x

goes to zero, that is,

lim
x!y

u�x�
x
� lim

x!y

log�x�
x
� 0

since (exercise 4.50)

lim
x!y

u 0�x�
1
� lim

x!y

1=x

1
� 0

The limiting behavior of the log function can be compared with that of

the exponential function (exercise 2.7), for which

lim
x!y

ex

x
�y

4.4 Polynomial Approximation and Higher-Order Derivatives

The derivative provides a linear approximation to a di¨erentiable func-

tion in the neighborhood of a point of interest. By virtue of the mean
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value theorem, it can also provide some information about the behavior

of a function over a wider area of the domain. Frequently we require

more exact information about the behavior of a function over a wide

area. This can often be provided by approximating the function by a

polynomial. In this section we show how the behavior of many smooth

functions can be well approximated over an extended area by poly-

nomials. These polynomials also provide additional information about

the behavior of a function in the neighborhood of a point of interest.

In particular, we can obtain information about the local curvature of the

function, which is not evident from the derivative.

Example 4.24 (The exponential function) The derivative of the expo-

nential function ex is f 0�x0� � ex0 (example 4.13). Therefore the function

g�x� � ex0 � ex0 x

provides a linear approximation to the exponential function at the point

x0. Since e0 � 1, the function

f 1�x� � 1� x

gives a linear approximation to the exponential function f �x� � ex in the

neighborhood of 0. As we can see from ®gure 4.9, this approximation

deteriorates markedly even over the interval �0; 1�. The curvature of the

exponential function implies that no linear function is going to provide

a good approximation of the exponential function over an extended

interval.

The approximation can be improved by adding an additional term x2,

as in

f̂2�x� � 1� x� x2

This quadratic approximation can be further improved by attenuating the

in¯uence of the new term x2, yielding the quadratic polynomial

f 2�x� � 1� x� x2

2

as shown in ®gure 4.9. In fact we will show that f2 is the best quadratic

approximation to f �x� � ex in the neighborhood of the point 0.

If we extend the interval of interest to say �0; 2�, even the quadratic

approximation f2 deteriorates (®gure 4.10). Accuracy of the approxima-
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tion can be further improved by adding yet another term, yielding the

cubic polynomial

f 3�x� � 1� x� x2

2
� x3

6

The power of the highest term in the polynomial is called the order of the

polynomial. The cubic polynomial f3 is a third-order polynomial.

This procedure of adding terms and increasing the order of the poly-

nomial can be continued inde®nitely. Each additional term improves the

accuracy of the approximation in two ways:

Figure 4.9
Approximating the exponential function

Figure 4.10
Adding another term extends the range of useful approximation
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. It improves the accuracy of the approximation in the neighborhood of

the point 0.

. It extends the range over which the polynomial yields a useful

approximation.

How can we ®nd the best polynomial approximation to a given func-

tion? In section 4.4.3 we show that the best polynomial approximation

involves the higher-order derivatives of the function. Therefore we must

®rst investigate these higher-order derivatives.

4.4.1 Higher-Order Derivatives

The derivative Df of a di¨erentiable function de®nes a function from X

to BL�X ;Y �. If the derivative is continuous � f A C1�, we can ask whether

the derivative Df : X ! BL�X ;Y � is itself di¨erentiable at any point x. In

other words, does the (possibly nonlinear) map Df have a linear approx-

imation at x? If so, then the derivative D�Df ��x� is called the second

derivative of f at x. It is denoted D2f �x�. The second derivative at a point

x is a continuous linear map from X to BL�X ;Y�, that is D2f �x� A
BL�X ;BL�X ;Y�. If the derivative Df is di¨erentiable at all x A X , then

we say that f is twice di¨erentiable, in which case the second derivative

D2f de®nes a function from X to BL�X ;BL�X ;Y �. If this function is

continuous, that is, Df is continuously di¨erentiable, we say that f is

twice continuously di¨erentiable or f is of class C 2. The set of all twice

continuously di¨erentiable functions between linear spaces X and Y is

denoted C2�X ;Y�.
Although the second derivative function D2f : X ! BL�X ;BL�X ;Y��

looks complicated, it is still a mapping between normed linear spaces. We

can continue in this fashion to de®ne third, fourth, and still higher-order

derivatives recursively as

Dnf �x� � D�Dnÿ1f ��x�
and obtain the corresponding classes of functions, C3;C4; . . . . It is con-

ventional to let C0 denote the class of continuous functions. Clearly, the

existence and continuity of a derivative of any order presupposes deriva-

tives of lower orders so that these classes are nested

C n�1 HC n � � � HC3 HC 2 HC1 HC0

If a function has continuous derivatives of all orders, that is f is of class
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C n for all n � 1; 2; 3; . . . , we say that f is of class Cy. A function f is

smooth if it is su½ciently di¨erentiable, that is f belongs to class C n for

given n, where n depends on the purpose at hand. For functionals on R,

it is convenient to use the notation f 0�x�; f 00�x�; f �3��x�; . . . ; f �r��x�; . . . to

denote successive derivatives.

Example 4.25 (Exponential function) The exponential function f �x� �
ex is di¨erentiable with derivative f 0�x� � ex. The derivative in turn is

di¨erentiable with derivative f 00�x� � ex. In fact the exponential function

is di¨erentiable to any order with f �n��x� � ex. That is, the exponential

function is in®nitely di¨erentiable and therefore smooth.

Example 4.26 (Polynomials) The nth-order polynomial

f n�x� � a0 � a1x� a2x2 � � � � � anxn

is Cy with

f 0n�x� � a1 � 2a2x1 � � � � � nanxnÿ1

f 00n �x� � 2a2 � 6a3x� � � � � n�nÿ 1�anxnÿ2

f �n�n �x� � n!an

f �m�n �x� � 0; m � n� 1; n� 2; . . .

Remark 4.9 (Solow's convention) Typically economic models are for-

mulated with general rather than speci®c functional forms, so that the

degree of di¨erentiability is a matter of assumption rather than fact.

Usual practice is expressed by Solow's convention: ``Every function is

assumed to be di¨erentiable one more time than we need it to be.'' For

many purposes, it su½ces if functions are twice continuously di¨er-

entiable or C2.

Exercise 4.51 (Composition)

If f : X ! Y and g: Y ! Z are C n, then the composite function

g � f : X ! Z is also C n.

4.4.2 Second-Order Partial Derivatives and the Hessian

When X JRn, the partial derivative Dxi
f �x� of a functional f on X mea-

sures the rate of change of f parallel to the xi axis. If Dxi
f �x� exists for all

x A X , it de®nes another functional
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Dxi
f : X ! R

If this is a continuous functional on X, we can consider in turn its partial

derivatives Dxj
�Dxi

f ��x�, which are called the second-order partial deriva-

tive of f. We will denote second-order partial derivatives by Dxjxi
f �x�,

which we will sometimes abbreviate to Dji f �x� when there is no ambigu-

ity. The alternative notation

q2f �x�
qx2

i

and
q2f �x�
qxjqxi

is also common. When i 0 j, Dxjxi
f �x� is called the cross partial derivative.

Example 4.27 (Cobb-Douglas) The partial derivatives of the Cobb-

Douglas function

f �x1; x2� � xa1

1 xa2

2

are

D1 f �x� � a1xa1ÿ1
1 xa2

2

D2 f �x� � a2xa1

1 xa2ÿ1
2

The second-order partial derivatives are

D11 f �x� � a1�a1 ÿ 1�xa1ÿ2
1 xa2

2 ; D21 f �x� � a1a2xa1ÿ1
1 xa2ÿ1

2

D12 f �x� � a1a2xa1ÿ1
1 xa2ÿ1

2 ; D22 f �x� � a2�a2 ÿ 1�xa1

1 xa2ÿ2
2

Notice that the cross-partial derivatives are symmetric, that is,

D21 f �x� � D12 f �x�
We will see shortly that this is a general result.

Exercise 4.52

Compute the second-order partial derivatives of the quadratic function

f �x1; x2� � ax2
1 � 2bx1x2 � cx2

2

Exercise 4.53 (C2 functions)

Let f be a functional on an open subset S of Rn. Then f is twice con-

tinuously di¨erentiable �C 2� if and only if each of the second-order par-

tial derivatives Dij f �x� exists and is continuous on S.
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Example 4.28 (Cobb-Douglas) The Cobb-Douglas function

f �x1; x2� � xa1

1 xa2

2

is C2, since the second-order partial derivatives of the Cobb-Douglas

function (example 4.27) are continuous. In fact the Cobb Douglas func-

tion is Cy.

When f is a C2 functional on X JRn, the gradient

`f �x� � �Dx1
f �x�;Dx2

f �x�; . . . ;Dxn
f �x��

is a di¨erentiable function from X ! Rn. The second derivative of f is

the derivative of the gradient, which can be represented by a matrix (the

Jacobian of `f ), the elements of which comprise the second-order partial

derivatives of f. This matrix representing the second derivative of f is

called the Hessian of f, denoted Hf :

Hf �x� �

D11 f �x� D12 f �x� . . . D1n f �x�
D21 f �x� D22 f �x� . . . D2n f �x�

..

. ..
. . .

. ..
.

Dn1 f �x� Dn2 f �x� � � � Dnn f �x�

0BBB@
1CCCA

Example 4.29 Using example 4.27, the Hessian of the Cobb-Douglas

function

f �x1; x2� � xa1

1 xa2

2

is

H�x� � a1�a1 ÿ 1�xa1ÿ2
1 xa2

2 a1a2xa1ÿ1
1 xa2ÿ1

2

a1a2xa1ÿ1
1 xa2ÿ1

2 a2�a2 ÿ 1�xa1

1 xa2ÿ2
2

 !
which can be expressed more compactly as

H�x� �

a1�a1 ÿ 1�
x2

1

a1a2

x1x2

a1a2

x1x2

a2�a2 ÿ 1�
x2

2

0BBB@
1CCCA f �x�

Exercise 4.54

Compute the Hessian of the quadratic function

f �x1; x2� � ax2
1 � 2bx1x2 � cx2

2
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Exercise 4.55

Compute the Hessian of the CES function

f �x1; x2� � �a1x
r
1 � a2x

r
2 �1=r

Remark 4.10 (Second derivative as a bilinear function) We can use the

theory developed in the previous chapter to provide an alternative repre-

sentation of the second derivative applicable to more general spaces. The

second derivative D2f of a function f : X ! Y is a linear mapping from

the set X to the set BL�X ;Y�. That is, D2f is an element of the space

BL�X ;BL�X ;Y��, which is equivalent (exercise 3.58) to BiL�X � X ;Y�,
the set of all continuous bilinear maps from X � X ! Y . In other words,

the second derivative is a bilinear function from X � X ! Y . Similarly

higher-order derivatives can be identi®ed with multilinear functions, with

Dkf mapping the k times product X � X � � � � � X to Y. Moreover,

when f is a functional Y � R and X is ®nite dimensional, then the bilinear

functional D2f can be represented by a matrix (exercise 3.55). The Hessian

is the matrix representation of D2f with respect to the standard basis.

We have already remarked on the symmetry of the cross partial deriv-

atives in the preceding examples. The order of di¨erentiation does not

matter. This somewhat counterintuitive property is exhibited by all C2

functions, a result that is often referred to as Young's theorem. Yet

another consequence of the mean value theorem, Young's theorem has

some surprising results for economics (example 4.30).

Theorem 4.2 (Young's theorem) If f is a C2 functional on an open set

X JRn, its Hessian is symmetric, that is,

Dij f �x� � Dji f �x� for every i; j

for every x A X .

Proof To aid interpretation, we will assume that function f is a produc-

tion function. The function Di f �x� is the marginal product of input i.

Dji f �x� measures the rate at which the marginal product of input i

changes with changes in the use of input j. Similarly Dij f �x� measures the

rate at which the marginal product of input j changes with changes in the

use of input i. Young's theorem asserts that these two apparently di¨erent

measures are equal if the production function is C2.
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As a partial derivative, Dji f �x� involves changes in the use of only two

commodities, with the quantities of all other commodities held constant.

Without loss of generality, we can ignore the other components and

assume that f is a function of only two variables (inputs) x1 and x2.

Consider two input bundles �x1; x2� and �x1 � dx1; x2 � dx2�, where

dx1 and dx2 are small changes in the quantities of inputs 1 and 2 respec-

tively. De®ne the function D f : R2 ! R by

D f �dx1; y� � f �x1 � dx1; y� ÿ f �x1; y� �13�
For each level of use of input 2, D f �y� measures the incremental product

of an additional dx1 of input 1. Next de®ne the function DD f : R2 ! R
by

DD f �dx1; dx2� � D f �dx1; x2 � dx2� ÿ D f �dx2; x2� �14�
Expanding (14) using (13), we have

DD f �dx1; dx2� � � f �x1 � dx1; x2 � dx2� ÿ f �x1; x2 � dx2��
ÿ � f �x1 � dx1; x2� ÿ f �x1; x2��

For small changes, the ®rst term in parentheses approximates the mar-

ginal product of input 1 given the use of x2 � dx2 units of input 2. The

second term in parentheses approximates the marginal product of input

1 given the use of only x2 units of input 2. Their di¨erence approximates

the change in the marginal product of input 1 with a small change in use

of input 2. Reordering the terms, we can rewrite the previous equation

as

DD f �dx1; dx2� � � f �x1 � dx1; x2 � dx2� ÿ f �x1 � dx1; x2��
ÿ � f �x1; x2 � dx2� ÿ f �x1; x2��

This expression also approximates the change in marginal product of

input 2 with a small change in use of input 1. This is the economic content

of Young's theorem. It remains to show that this approximation becomes

exact for marginal changes.

Applying the mean value theorem (theorem 4.1) to (14) and using (13),

we have

DD f �dx1; dx2� � �D2 f �x1 � dx1; x2� ÿD2 f �x1; x2�� dx2 �15�
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Since D2 f is di¨erentiable ( f is C 2), we can apply the mean value theo-

rem to the ®rst coordinate of (15) to give

DD f �dx1; dx2� � �D12 f �x1; x2� ÿD12 f �x1; x2�� dx1 dx2 �16�
where �x1; x2� is a commodity bundle between �x1; x2� and �x1 � dx1;

x2 � dx2�. Interchanging the roles of inputs 1 and 2 in the above deriva-

tion, there also exists a commodity bundle �~x1; ~x2� between �x1; x2� and

�x1 � dx1; x2 � dx2� at which

DD f �dx1; dx2� � �D21 f �~x1; ~x2� ÿD12 f �~x1; ~x2�� dx1 dx2 �17�
dx1 and dx2 were arbitrary use changes so that equations (16) and (17)

apply for all dx1; dx2 A R. Allowing dx1; dx2 to become arbitrarily small

and invoking the continuity of D12 f and D21 f , we have

D12 f �x1; x2� � lim
dxi!0

DD f �dx1; dx2�
dx1dx2

� D21 f �x1; x2� r

Remark 4.11 Although the preceding proof was couched in terms of a

production function, the only property of f which was invoked was the

fact that it was C2 and the proof is completely general. It is worth

observing that symmetry of the Hessian matrix at a particular point only

requires continuity of the partial derivatives in the neighborhood of that

point and not continuity everywhere.

The preceding discussion can be extended in a straightforward manner

to higher orders of derivatives that arise occasionally in economics. For

any C r function �rV 3�, the third- and higher-order derivatives Dkf can

be represented as a symmetric multilinear functions of partial derivatives

of a corresponding order. This means that each nth-order partial deriva-

tive is independent of the order of di¨erentiation.

Example 4.30 (Input demand functions) Suppose that a competitive ®rm

produces a single output y using n inputs �x1; x2; . . . ; xn� according to the

production function

y � f �x1; x2; . . . ; xn�
Let p denote the output price and w � �w1;w2; . . . ;wn� the input prices.

The input demand functions xi�w; p� specify the pro®t-maximizing de-

mand for input i as a function of w and p. We will show in example 6.15
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that the partial derivatives of the input demand function are proportional

to the inverse of the Hessian matrix of the production function, that is

Dw1
x1 Dw2

x1 . . . Dwn
x1

Dw1
x2 Dw2

x2 . . . Dwn
x2

..

. ..
. . .

. ..
.

Dw1
xn Dw2

xn . . . Dwn
xn

0BBB@
1CCCA � 1

p
Hÿ1

f

By Young's theorem, the Hessian Hf is symmetric and so therefore is its

inverse Hÿ1
f . This implies the surprising result that

Dwj
xi�w; p� � Dwi

xj�w; p�
That is, the change in demand for input i following a change in price of

input j is equal to the change in demand for input j following a change in

price of input i.

4.4.3 Taylor's Theorem

We return now to our primary goal of approximating an arbitrary smooth

function by a polynomial, beginning with an example.

Example 4.31 (Best quadratic approximation) Suppose that we seek the

best quadratic approximation to an arbitrary smooth function f : R! R.

That is, we seek to determine the coe½cients a0; a1; a2 in the quadratic

polynomial

f 2�x� � a0 � a1x� a2x2

so that

f �x0 � x�Aa0 � a1x� a2x2

for small x. We note that f2 is twice di¨erentiable (example 4.26) with

f 02�x� � a1 � 2a2x and f 002 �x� � 2a2

What do we mean by ``best approximation.'' At minimum, we want f

and its approximation to be tangential at x0 �x � 0�. This determines the

®rst two coe½cients of f2, since

. f2�0� � f �x0� implies that a0 � f �x0�

. f 02�0� � f 0�x0� implies that a1 � f 0�x0�
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That leaves a2 to be determined. We could choose a2 so that the functions

f and f2 have the same second derivative at x � 0 as well, which implies

setting a2 � 1
2 f 00�x0�. The quadratic polynomial

f 2�x� � f �x0� � f 0�x0�x� 1
2 f 00�x0�x2 �18�

is the best quadratic approximation to f in the neighborhood of x0 (exer-

cise 4.58).

Alternatively, we could choose a2 such that the approximation is exact

at some other x1 0 x0, that is, so that f �x1� � f2�x1 ÿ x0�, which requires

that a2 � 1
2 f 00�x� for some x between x0 and x1 (exercise 4.56). The qua-

dratic polynomial

f2�x� � f �x0� � f 0�x0�x� 1
2 f 00�x�x2 �19�

is an approximation to f, which is exact at x1.

This example illustrates the two fundamental results of polynomial

approximation. For any smooth functional f on R, (18) is the best qua-

dratic approximation to f in the neighborhood of x0. Furthermore, in a

generalization of the mean value theorem, for any speci®c x1 0 x0, there

exists a x between x0 and x1 such that the approximation (19) is exact at

x � x1 ÿ x0.

Exercise 4.56

Let f be a twice di¨erentiable functional on some open interval S JR
containing x0. For every x1 A S, there exists some x between x0 and x1

such that

f �x1� � f �x0� � f 0�x0�x� 1
2 f 00�x�x2

[Hint: Consider the function g�t� � f �t� � f 0�t��xÿ t� � a2�xÿ t�2.]

Exercise 4.56 is easily generalized to higher-order polynomials, which

gives Taylor's theorem, which can be seen as a generalization of the mean

value theorem to higher-level derivatives.

Exercise 4.57 (Taylor's theorem in R)

Let f be a �n� 1�-times di¨erentiable functional on some open interval

S JR containing x0. For every x A S ÿ x0, there exists some x between

x0 and x0 � x such that
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f �x0 � x� � f �x0� � f 0�x0�x� 1

2
f 00�x0�x2 � 1

3!
f �3��x0�x3

� � � � � 1

n!
f �n��x0�xn � 1

�n� 1�! f �n�1��x�xn�1

Example 4.32 (Exponential function) For the exponential function

f �x� � ex, f �n��x� � ex, and therefore f �n��0� � e0 � 1. Then, for every

n � 1; 2; . . . and every x A R�, there exists some x A �0; x� such that

ex � 1� x� 1

2!
x2 � 1

3!
x3 � � � � � 1

n!
xn � en�x�

where

en�x� � 1

�n� 1�! exxn�1

On �0; 1�, both xn�1 and ex are increasing, so that the error is bounded by

en�x�U en�1� � 1

�n� 1�! e; x A �0; 1�

The error in approximating ex by a polynomial over the interval �0; 1� can

be made as small as we like by choosing su½ciently many terms in the

polynomial. For example, with ®ve terms �n � 5�, the approximation

error is less than one percent over the interval �0; 1�. This con®rms our

discoveries in example 4.24.

Exercise 4.58

Let f be C3 on some open interval S JR containing x0. For every

x A S ÿ x0,

f �x0 � x� � f �x0� � f 0�x0�x� 1
2 f 00�x0�x2 � e�x�

where

lim
x!0

e�x�
x2
� 0

That is, the approximation error becomes very small as x! 0. In this

sense, (18) is the best quadratic approximation to f in a neighborhood of

x0.
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Extending exercise 4.57 to functionals on multidimensional spaces gives

us Taylor's theorem, which generalizes the mean value theorem (theorem

4.1) to higher-level derivatives.

Theorem 4.3 (Taylor's theorem) Let f be a C n�1 functional on a convex

neighborhood S of x0. For every x A S ÿ x0, there exists some x A
�x0; x0 � x� such that

f �x0 � x� � f �x0� �Df �x0�x� 1

2!
D2f �x0��x; x� � 1

3!
D3f �x0�x�3�

� � � � � 1

n!
Dnf �x0�x�n� � 1

�n� 1�! Dn�1f �x�x�n�1�

where x�k� denotes the k-tuple �x; x; . . . ; x�.
Proof For ®xed x A S ÿ x0, de®ne g: R! S by g�t� � x0 � tx.

The composite function h � f � g: R! R is C n�1 (exercise 4.59) with

derivatives

h�k��t� � D�k�f �g�t���x��k� �20�
Applying the univariate Taylor's theorem (exercise 4.57), there exists an

a A �0; 1� such that

h�1� � h�0��h 0�0�� 1

2
h 00�0�� 1

3!
h�3��0�� � � � � 1

n!
h�n��0�� 1

�n�1�! h�n�1��a�

Substituting h�0� � f �x0�, h�1� � f �x0 � x�, x � g�a�, and (20) gives

f �x0 � x� � f �x0� �Df �x0�x� 1

2!
D2f �x0��x; x� � 1

3!
D3f �x0�x�3�

� � � � � 1

n!
Dnf �x0�x�n� � 1

�n� 1�! Dn�1f �x�x�n�1�

as required. r

Exercise 4.59

Assume that f is a C n�1 functional on a convex set S. For ®xed x0 A S and

x A S ÿ x0, de®ne g: R! S by g�t� � x0 � tx. Show that the composite

function h � f � g: R! R is C n�1 with derivatives

h�k��t� � D�k�f �g�t���x��k�
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Taylor's theorem states that any smooth functional can be approxi-

mated by an nth-order polynomial fn of its derivatives

f n�x� � f �x0� �Df �x0��x� � 1

2!
D2f �x0��x��2� � � � � � 1

n!
Dnf �x0�x�n� �21�

where the error in approximating f by fn is

e�x� � f �x0 � x� ÿ fn�x� � 1

�n� 1�! Dn�1f �x�x�n�1�

Analogous to the de®nition of di¨erentiability in section 4.1, we can

decompose the actual error e�x� into two components

e�x� � h�x�kxkn

where

h�x� � e�x�
kxkn �

f �x0 � x� ÿ fn�x�
kxkn

is the approximation error relative to kxkn. If the relative error h�x� ! 0

as x! 0, approximation error h�x�kxkn becomes negligible very quickly.

This is a very strong form of convergence, which will be satis®ed if

Dn�1f �x� is bounded on �0; x�. In particular, this will be satis®ed if

f A C n�1, which gives us the following corollary.

Corollary 4.3.1 (Taylor series approximation) Let f be a C n�1 functional

on a convex neighborhood S of x0. For every x A S ÿ x0,

f �x0 � x� � f �x0� �Df �x0�x� 1

2!
D2f �x0��x; x�

� � � � � 1

n!
Dnf �x0��x�n � h�x�kxkn

and h�x� ! 0 as x! 0.

Proof By Taylor's theorem (4.3),

h�x� � e�x�
kxkn �

1

�n� 1�!
x

kxk
� ��n�

Dn�1f �x��x�

for some x A �x0; x0 � x�, and therefore
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jh�x�jU 1

�n� 1�! Dn�1f �x��x�

If f A C n�1, then Dn�1f �x� is bounded on �x0; x0 � x�, and therefore con-

tinuous (exercise 3.30). Consequently, jh�x�j ! 0 as x! 0. r

Corollary 4.3.1 generalizes the de®nition of the derivative in (2) to

higher orders of approximation. The polynomial (21) is called the nth-

order Taylor series for f. As n increases, convergence of the relative error

h�x� becomes more demanding. In this sense, the accuracy of the approxi-

mation f by fn close to x0 increases with n.

For some functions, the absolute error e�x� becomes negligible for all x

as the number of terms increases, that is, for all x A X

lim
n!y

f �x0 � x� ÿ fn�x� � 0

Such functions are called analytic.

In economics, ®rst- and second-order approximation usually su½ces,

and we seldom have to resort to higher-order polynomials. In Euclidean

space, the second-order Taylor series has a convenient representation in

terms of the gradient and Hessian of the function.

Example 4.33 (Quadratic approximation in Rn) Suppose that f is a

smooth functional on a convex neighborhood S JRn of x0. For every

x A S ÿ x0,

f �x0 � x� � f �x0� � `f �x0�T x� 1
2 xT Hf �x0�x� h�x�kxk2 �22�

where h�x� ! 0 as x! 0. (corollary 4.3.1). Furthermore (theorem 4.3)

there exists x A �x0; x0 � x� such that

f �x0 � x� � f �x0� � `f �x0�T x� 1
2 xT Hf �x�x �23�

Both quadratic approximations (22) and (23) are useful in practice (see

the proof of proposition 4.1).

Example 4.34 (Cobb-Douglas) Let us compute the best quadratic

approximation to the Cobb-Douglas function

f �x1; x2� � x
1=3
1 x

2=3
2

in the neighborhood of the point �8; 8�. From example 4.29 the Hessian of

f is
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Hf �x� �

1
3 �13ÿ 1�

x2
1

1
3 �23�
x1x2

1
3 �23�
x1x2

2
3 �23ÿ 1�

x2
2

0BBBB@
1CCCCA

f �x� � 2

9

ÿ1

x2
1

1

x1x2

1

x1x2

ÿ1

x2
2

0BBB@
1CCCA f �x�

which evaluates to

H�8; 8� � 2

72

ÿ1 1

1 ÿ1

� �
The gradient at �8; 8� is

`f �8; 8� � �13 ; 2
3�

Therefore the second-order Taylor series approximation of f at x0 � �8; 8�
is

f �x0 � x�A f �x0� � `f �x0�T x� 1

2
xT H�x0�x

� 8� 1

2
;
2

3

� �
x1

x2

� �
� 1

2
�x1; x2�T 2

72
ÿ1 1
1 ÿ1

� �
x1

x2

� �

� 8� 1

3
x1 � 2

3
x2 ÿ 1

72
�x2

1 ÿ 2x1x2 � x2
2� �24�

Table 4.5 compares the error of the quadratic approximation (24) to the

Cobb-Douglas function with that of the linear (®rst-order) approximation

f �x0 � x� � 8� 1
3 x1 � 2

3 x2

developed in section 4.1. Columns 2 and 3 compare the actual error e�x� for

linear and quadratic approximations. We see that the quadratic approxi-

mation is uniformly more accurate at all points evaluated in the tableÐ

it provides a better global approximation. Columns 4 and 5 compare the

relative (squared) error e�x�=kxk2. Declining relative (squared) error is
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Table 4.5
Approximating the Cobb-Douglas function

Actual error Relative error

x0 � x Linear Quadratic Linear Quadratic

Around the unit circle:

(9.0, 8.0) ÿ0.0130 0.0009 ÿ0.0130 0.0009

(8.7, 8.7) ÿ0.0000 ÿ0.0000 ÿ0.0000 ÿ0.0000

(8.0, 9.0) ÿ0.0132 0.0007 ÿ0.0132 0.0007

(7.3, 8.7) ÿ0.0281 ÿ0.0003 ÿ0.0281 ÿ0.0003

(7.0, 8.0) ÿ0.0149 ÿ0.0011 ÿ0.0149 ÿ0.0011

(7.3, 7.3) 0.0000 0.0000 0.0000 0.0000

(8.0, 7.0) ÿ0.0147 ÿ0.0008 ÿ0.0147 ÿ0.0008

(8.7, 7.3) ÿ0.0276 0.0002 ÿ0.0276 0.0002

Around a smaller circle:

(8.1, 8.0) ÿ0.0001 0.0000 ÿ0.0138 0.0001

(8.1, 8.1) 0.0000 0.0000 0.0000 0.0000

(8.0, 8.1) ÿ0.0001 0.0000 ÿ0.0138 0.0001

(7.9, 8.1) ÿ0.0003 ÿ0.0000 ÿ0.0278 ÿ0.0000

(7.9, 8.0) ÿ0.0001 ÿ0.0000 ÿ0.0140 ÿ0.0001

(7.9, 7.9) 0.0000 0.0000 0.0000 0.0000

(8.0, 7.9) ÿ0.0001 ÿ0.0000 ÿ0.0140 ÿ0.0001

(8.1, 7.9) ÿ0.0003 0.0000 ÿ0.0278 0.0000

Parallel to the x1 axis:

(4.0, 8.0) ÿ0.3171 ÿ0.0948 ÿ0.0198 ÿ0.0059

(6.0, 8.0) ÿ0.0649 ÿ0.0093 ÿ0.0162 ÿ0.0023

(7.0, 8.0) ÿ0.0149 ÿ0.0011 ÿ0.0149 ÿ0.0011

(7.5, 8.0) ÿ0.0036 ÿ0.0001 ÿ0.0144 ÿ0.0005

(7.9, 8.0) ÿ0.0001 ÿ0.0000 ÿ0.0140 ÿ0.0001

(8.0, 8.0) 0.0000 0.0000 NIL NIL

(8.1, 8.0) ÿ0.0001 0.0000 ÿ0.0138 0.0001

(8.5, 8.0) ÿ0.0034 0.0001 ÿ0.0134 0.0005

(9.0, 8.0) ÿ0.0130 0.0009 ÿ0.0130 0.0009

(10.0, 8.0) ÿ0.0489 0.0066 ÿ0.0122 0.0017

(12.0, 8.0) ÿ0.1756 0.0466 ÿ0.0110 0.0029

Parallel to the x2 axis:

(8.0, 4.0) ÿ0.2936 ÿ0.0714 ÿ0.0184 ÿ0.0045

(8.0, 6.0) ÿ0.0628 ÿ0.0073 ÿ0.0157 ÿ0.0018

(8.0, 7.0) ÿ0.0147 ÿ0.0008 ÿ0.0147 ÿ0.0008

(8.0, 7.5) ÿ0.0036 ÿ0.0001 ÿ0.0143 ÿ0.0004

(8.0, 7.9) ÿ0.0001 ÿ0.0000 ÿ0.0140 ÿ0.0001

(8.0, 8.0) 0.0000 0.0000 NIL NIL

(8.0, 8.1) ÿ0.0001 0.0000 ÿ0.0138 0.0001

(8.0, 8.5) ÿ0.0034 0.0001 ÿ0.0135 0.0004

(8.0, 9.0) ÿ0.0132 0.0007 ÿ0.0132 0.0007

(8.0, 10.0) ÿ0.0502 0.0054 ÿ0.0125 0.0013

(8.0, 12.0) ÿ0.1837 0.0385 ÿ0.0115 0.0024
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stringent requirement, which is met by the quadratic approximation but is

not met by the linear approximation. In this sense the quadratic approxi-

mation provides a better local approximation. Corollary 4.3.1 shows that

this is not a peculiarity of this example, but is a property of all smooth

functions. The second-order Taylor series is the best quadratic approxi-

mation to a smooth function.

Exercise 4.60

Compute the second-order Taylor series expansion of the quadratic

function

f �x1; x2� � ax2
1 � 2bx1x2 � cx2

2

around the point �0; 0�.
In economics the theory of polynomial approximations has two funda-

mental applications. In the ®rst, quadratic approximations are used to

analyze the behavior of unspeci®ed function in the neighborhood of a

point of interest. These underlie the second-order conditions in the theory

of optimization (section 5.2) and are also used to characterize convexity

and concavity (section 4.6). In the second major application, polynomial

approximations are used to generate speci®c functional forms for eco-

nomic models. We discuss this brie¯y now.

Although much economic analysis is conducted using general (unspe-

ci®ed) functional forms, there eventually comes a time where a functional

form must be speci®ed, whether to sharpen results, overcome intractabil-

ity or provide a simple model for easy analysis. Furthermore, whenever

empirical estimation is involved, a functional form must be chosen.

Computational restrictions have favored functional forms that are lin-

ear in the parameters. Most popular functional forms in economic anal-

ysis can be viewed as linear or quadratic approximations to an arbitrary

function.

From example 4.33, the best quadratic approximation to an arbitrary

smooth functional f at a point x0 A S JRn is given by

f �x0 � x�A f �x0� � `f �x0�T x� 1
2 xT H�x0�x

where

`f �x0� � �D1 f �x0�;D2 f �x0�; . . . ;Dn f �x0��
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and

H�x0� �

D11 f �x0� D12 f �x0� . . . D1n f �x0�
D21 f �x0� D22 f �x0� . . . D2n f �x0�

..

. ..
. . .

. ..
.

Dn1 f �x0� Dn2 f �x0� � � � Dnn f �x0�

0BBB@
1CCCA

Letting

a0 � f �x0�; ai � Di f �x0�; aij � Dij f �x0�; i; j � 1; 2; . . . ; n

gives the general quadratic function

f �x� � a0 �
X

i

aixi �
X

i

X
j

aijxixj �25�

Most of the common functional forms in economics are instances of

this general quadratic function (25) for appropriate transformations of the

variables. For example, the Cobb-Douglas and CES functions are linear

�aij � 0� in logarithms and powers of the variables respectively. These

forms are summarized in table 4.6.

4.5 Systems of Nonlinear Equations

Many economic models involve a system of equations relating one set of

variables �x1; x2; . . . ; xn� to another set of variables �y1; y2; . . . ; ym� as in

y1 � f1�x1; x2; . . . ; xn�
y2 � f2�x1; x2; . . . ; xn�

..

.

ym � fm�x1; x2; . . . ; xn�

Table 4.6
Common linear-in-parameters functional forms

General quadratic y � a0 �
P

i aixi �
P

i

P
j aijxixj

Cobb-Douglas log y � a0 �
P

i ai log xi

CES yr � a0 �
P

i aix
r
i

Translog log y � a0 �
P

i ai log xi �
P

i

P
j aij log xi log xj

Generalized Leontief y � a0 �
P

i ai

����
xi

p �Pi

P
j aij

����
xi

p ����
x
p

j
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The system can be viewed as a function f: X ! Y , where X is a subset of

Rn and Y a subset of Rm. Solving the equations amounts to expressing x

in terms of y, that is, to inverting the function f. Under what conditions

does the inverse fÿ1 exist, and how do we ®nd it?

We studied linear systems of equations in chapter 3, where we learned

that a necessary and su½cient condition for a linear system of equations

to have a unique solution is that the function f have full rank. Remark-

ably this extends locally to smooth functions. A necessary and su½cient

condition for the system y � f�x� to have a unique solution in the neigh-

borhood of a point x0 is that the corresponding linear system y � Df�x0��x�
have a unique solution. This requires that the derivative Df�x0� be inver-

tible, or equivalently that det Jf�x0�0 0. This fundamental result is

known as the inverse function theorem.

4.5.1 The Inverse Function Theorem

A linear function f is nonsingular if it is both one-to-one and onto. A

function f : X ! Y is locally one-to-one at x0 if there exists a neighbor-

hood of x0 such that the restriction of f to S is one-to-one. f is locally onto

at x0 if for any neighborhood S of x0 there is a neighborhood T of f �x0�
such that T J f �S�.

The signi®cance of these de®nitions for systems of equations is as fol-

lows. Suppose that y0 � f �x0� and that y1 is su½ciently close to y0. If f

is locally onto, then there exists x1 such that y1 � f �x1�. The system of

equations y � f �x� is solvable in the neighborhood of x0. If f is also

locally one-to-one, there is at most one x1 near x0 with y1 � f �x1�, and

the local solution is unique.

Exercise 4.61

Let f be C 1 and suppose that Df �x0� is one-to-one. Then

1. f is locally one-to-one, that is, there exists a neighborhood S of x0 such

that f is one-to-one on S

2. f has an inverse f ÿ1: f �S� ! S that is continuous

3. f is locally onto

[Hint: Use exercises 3.36 and 4.43.]

Remark 4.12 (Locally onto) Exercise 4.61 has an analogue that can be

stated as follows: Let f be C 1, and suppose that Df �x0� is onto. Then f is

locally onto (Lang 1969, pp. 193±94).
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To express the inverse function theorem succinctly, we say that a

smooth function f is a C n di¨eomorphism if it is nonsingular and f ÿ1 is

also C n. A function f : X ! Y is called a local C n di¨eomorphism at x0

if there exists neighborhoods S of x0 and T of f �x0� such that f : S ! T

is a C n di¨eomorphism. The inverse function theorem shows that a C n

function is a local di¨eomorphism at every point x0 at which the deriva-

tive is nonsingular. This implies that

. f has an inverse in a neighborhood of f �x0�

. the inverse f ÿ1 is continuous

. the inverse f ÿ1 is also C n

Theorem 4.4 (Inverse function theorem) Let x0 be a regular point of the

C n function f : X ! X . Then there exists a neighborhood S of x0 on which

f is invertible. The inverse f ÿ1 is C n on f �S� with derivative

Df ÿ1�x0� �
ÿ
Df �x0�

�ÿ1

Proof The derivative Df �x0� is one-to-one. By exercise 4.61, there exists

a neighborhood S of x0 on which f is one-to-one. Furthermore T � f �S�
is neighborhood of f �x0� and f has a local inverse f ÿ1: T ! S which is

continuous. Therefore f satis®es the conditions of exercise 4.27. f ÿ1 is

di¨erentiable f �x0� with derivative

Df ÿ1�x0� �
ÿ
Df �x0�

�ÿ1

Since Df is C nÿ1, so is Df ÿ1 (exercise 4.51). Therefore f ÿ1 A C n. r

The power of the inverse function theorem is starkly apparent when X

is ®nite dimensional. Then the derivative can be represented by the Jaco-

bian, and it is nonsingular precisely when the determinant of the Jacobian

is nonzero. Therefore the question of whether a smooth function is a dif-

feomorphism, at least in the neighborhood of some point x0, reduces

to verifying that a single number det Jf �x0� is nonzero.

The following corollary has an important implication for systems of

equations. If y is a regular value of the function f describing a system of

equations f �x� � y, then the system has a ®nite number of solutions.

Corollary 4.4.1 If S is a bounded, open subset of Rn and y is a regular

value f : S ! Y , then f ÿ1�y� is ®nite.
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Proof If y is a regular value, every x A f ÿ1�y� is a regular point. For

every x A f ÿ1�y�, there exists a neighborhood Sx on which f is one-to-one

(theorem 4.4). That is, f �x 0�0 y for every x 0 A Sxnfxg. The collection

fSx : x A f ÿ1�y�g is an open cover for f ÿ1�y�. Moreover f ÿ1�y� is closed

and also bounded since f ÿ1�y�JS. Therefore f ÿ1�y� is compact. So it

has a ®nite subcover. That is, there exists a ®nite number of points

x1; x2; . . . ; xn such that

f ÿ1�y�J 6
n

i�1

Sxi

and within each Sxi
, xi is the only solution. So f ÿ1�y� � fx1; x2; . . . ; xng.

r

Remark 4.13 (Sard's theorem) A remarkable theorem (whose proof is

beyond the scope of this book) states that for any di¨erentiable function

f : Rn ! Rn, irregular values are rare, in the sense that the set of non-

regular values has ``measure zero'' (Smith 1983). Corollary 4.4.1 states

that in this sense, most systems of equations have a ®nite number of

solutions.

It is important to appreciate that the inverse function theorem is only

a local resultÐit ensures that a smooth function is one-to-one in the

neighborhood of a regular value. Even if the function is regular (has a

nonsingular derivative everywhere), we cannot conclude that the function

is one-to-one throughout its domain. More stringent conditions on the

Jacobian are required to ensure that the function is globally univalent. We

give one result in exercise 4.62. Other sources are given in the references.

Exercise 4.62 (Global univalence)

Let f : S ! Rn be a di¨erentiable function on a convex set S JRn. Sup-

pose that the Jacobian Jf �x� is positive (or negative) de®nite for all x A S.

Then f is one-to-one. [Hint: Assume, to the contrary, that f �x1� � f �x0�
for some x1 0 x0 and consider the function h�t� � xT � f �g�t�� ÿ f �x0��
where g�t� � x0 � tx and x � x1 ÿ x0.]

4.5.2 The Implicit Function Theorem

To usefully apply the inverse function theorem to economic models, we

need to extend it systems in which there are more are more variables than

unknowns. For example, suppose that we have a system of n equations in
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n�m variables, comprising n dependent variables xi and m parameters yk

as follows:

f1�x1; x2; . . . ; xn; y1; y2; . . . ; ym� � 0

f2�x1; x2; . . . ; xn; y1; y2; . . . ; ym� � 0

..

. �26�

fn�x1; x2; . . . ; xn; y1; y2; . . . ; ym� � 0

We would like to solve for the dependent variable x in terms of the

parameters y. This system of equations f �x; y� � 0 can be viewed as a

function f : X �Y! Y where X ;Y HRn and YHRm. In solving this

system of equations, we are looking for the function g: Y! X that

determines x in terms of y.

Example 4.35 (IS-LM model) The IS-LM model (example 4.12)

y � C�y;T� � I�r� � G

L�y; r� �M

P

speci®es the relationship between two dependent variables r; y and the

three parameters G;T ;M. Analysis of the model reduces to analysis of

the mapping f de®ned by

f 1�r; y; G;T ;M� � yÿ C�y;T� ÿ I�r� ÿ G � 0 �27�
f 2�r; y; G;T ;M� � PL�y; r� ÿM � 0 �28�

Suppose that the functions f in (26) are linear. Then there exists ma-

trices A and B such that

Ax� By � 0

Provided that A is nonsingular, the expression can be inverted to yield x

in terms of y

x � ÿAÿ1By

The implicit function theorem generalizes this to smooth functions.

Exercise 4.63

Suppose that all the functions in the IS-LM are linear, for example,
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C�y;T� � C0 � Cy�yÿ T�
I�r� � I0 � Irr

L�Y ; r� � L0 � Lrr� Lyy

Solve for r and y in terms of the parameters G;T ;M and C0; I0;L0;Cy;

Ir;Lr;Ly.

Theorem 4.5 (Implicit function theorem) Let f: X �Y! Y be a C n

function on an open neighborhood of �x0; y� at which Dx f �x0; y0� is non-

singular and f �x0; y0� � 0. Then there exists a neighborhood W of y0 and a

unique function g: W! X such that

x0 � g�y0� and f �g�y�; y� � 0 for every y A W

Furthermore g is C n on W with

Dyg�y0� � ÿ
ÿ
Dx f �x0; y0�

�ÿ1 �Dy f �x0; y0�
Proof De®ne the function F : X �Y! Y �Y by

F�x; y� � � f �x; y�; y� � �y; y�
F is di¨erentiable at �x0; y0� and DF �x0; y0� is nonsingular (exercise 4.64).

By the inverse function theorem (theorem 4.4), F is invertible on a neigh-

borhood U of �x0; y0� with Fÿ1: V ! X �W being C n on V � F�U� and

�x; y� � Fÿ1�y; y� for every �y; y� A V . The required function g is the

restriction of Fÿ1 to y � 0.

Speci®cally, let W � fy : �0; y� A Vg and de®ne g: W! X by g�y� � x

where x is the ®rst component of �x; y� � Fÿ1�0; y�. Then

x0 � g�y0� and f �g�y�; y� � 0 for every y A W

Since Fÿ1 is C n, so is its restriction g. Furthermore, since f �g�y�; y� � 0

is constant for all y A W, Dy f �g�y�; y� � 0 by exercise 4.7. Applying the

chain rule (exercise 4.22), we have

Dx f �x0; y0� �Dyg�y0� �Dy f �x0; y0� � 0

or

Dyg�y0� � ÿ
ÿ
Dx f �x0; y0�

�ÿ1 �Dy f �x0; y0� r

Exercise 4.64

Show that F is C n with DF �x0; y0� is nonsingular.
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Example 4.36 (Slope of the IS curve) The IS curve is implicitly de®ned

by the equation

f �r; y; G;T ;M� � yÿ C�y;T� ÿ I�r� ÿ G � 0

Assume that the consumption function C�y;T� and the investment func-

tion I�r� are smooth and that Dy f � 1ÿDyC 0 0. Then, in the neigh-

borhood of any point �r0; y0� on the IS curve, there exists a function

r � g�y� that can be considered the equation of the IS curve. The slope of

the IS curve is given by the derivative Dyg, which by the implicit function

theorem is given by

Dyg � ÿDy f

Dr f
� ÿ 1ÿDyC

ÿDrI

Economic considerations imply that both the numerator �1ÿDyC� and

the denominator �ÿDrI� are positive so that the fraction, preceded by a

negative sign, is negative. Under normal circumstances the IS curve is

negatively sloped.

Exercise 4.65

Under what circumstances, if any, could the IS curve be horizontal?

Exercise 4.66

Determine the slope of the LM curve. Under what conditions would the

LM curve be vertical?

Example 4.37 (Indi¨erence curves and the MRS) Suppose that a con-

sumer's preferences 7 can be represented (example 2.58) by the utility

function u: X ! R, where X HRn is the consumption set. The contours

of u,

uÿ1�c� � fx A X : u�x� � cg
represent the indi¨erence classes of 7.

Choose any consumption bundle x0 at which the marginal utility of

good n is positive, that is, Dxn
u�x0�0 0. Let c � u�x0�. Applying the

implicit function theorem, there exists a neighborhood S HX of x0 and a

function j such that

xn � j�x1; x2; . . . ; xnÿ1� and u�x1; x2; . . . ; xnÿ1; j�x1; x2; . . . ; xnÿ1�� � c

for all x A S. j de®nes an indi¨erence surface. Furthermore j is C r with
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Dxi
j�x1; x2; . . . ; xnÿ1� � Dxi

u�x�
Dxn

u�x�
which is the marginal rate of substitution between i and n (example 4.10).

In the familiar case with two goods, the graph of the function x2 � j�x1�
is called an indi¨erence curve, the slope of which is given by

j 0�x1� � Dx1
u�x�

Dx2
u�x�

the marginal rate of substitution between the two goods.

We will use the implicit function theorem in chapter 5 to derive the

Lagrange multiplier rule for optimization. We will use it again in chapter

6 to derive comparative statics for economic models.

4.6 Convex and Homogeneous Functions

In this section we explore some special classes of smooth functions, such

as convex, quasiconcave, and homogeneous functions.

4.6.1 Convex Functions

We saw in the previous chapter that convexity places restrictions on the

behavior of a function. In particular, we saw that convex functions are

generally continuous. Similarly convex functions are generally smooth

functions (see remark 4.14). Moreover the derivative of a convex function

bounds the function from below so that

f �x�V f �x0� �Df �x0��xÿ x0� �29�
for every x; x0 A S. Similarly, if f is concave,

f �x�U f �x0� �Df �x0��xÿ x0� �30�
for every x; x0 in S. These bounds are extremely useful in computations

with convex and concave functions. In fact the converse is also true, pro-

viding a valuable characterization of convex functions.

Exercise 4.67

A di¨erentiable functional f on an open, convex set S is convex if and

only if
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f �x�V f �x0� �Df �x0��xÿ x0�
for every x; x0 A S. f is strictly convex if and only if

f �x� > f �x0� �Df �x0��xÿ x0�
for every x0 x0 A S.

Geometrically exercise 4.67 implies that a di¨erentiable function is

convex if and only if it lies above its tangent hyperplane (example 4.3) at

every point in the domain.

Remark 4.14 (Di¨erentiability of convex functions) Equation (29) shows

that the derivative of a convex function is a subgradient. Exercise 3.181

showed that a convex function has a subgradient at every interior point

x0. If the function is di¨erentiable at x0, then this subgradient is unique.

The converse holds for Euclidean space. That is, if S is ®nite dimen-

sional, and the convex function f A F�S� has a unique subgradient at

x0 A int S, then f is di¨erentiable at x0 (Roberts and Varberg 1973, p. 115).

It can be shown that the subgradient is unique for almost all x0 A int S,

and therefore that f is di¨erentiable almost everywhere. Furthermore, if a

convex function is di¨erentiable on S JRn, then Df is continuous on S,

that is f A C1�S� (Roberts and Varberg 1973, pp. 110±11).

The uniqueness of the subgradient of a di¨erentiable function (remark

4.14) implies the following envelope theorem for convex functions in

Euclidean space. If a convex function is bounded by a di¨erentiable con-

vex function, which it intersects at some point, then the former function

must be di¨erentiable at the point of intersection.

Exercise 4.68

Suppose that f and h are convex functionals on a convex set S in Eucli-

dean space with f di¨erentiable at x0 and

f �x0� � h�x0� and f �x�V h�x� for every x A S �31�
Then h is di¨erentiable at x0, with Dh�x0� � Df �x0�.

When X JRn, the derivative can be represented by the gradient, which

provides the following useful alternative characterization of a convex

function.
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Exercise 4.69

A di¨erentiable function f on a convex, open set S in Rn is convex if and

only if

�`f �x� ÿ `f �x0��T�xÿ x0�V 0 �32�
for every x0; x A S. f is strictly convex if and only if

�`f �x� ÿ `f �x0��T�xÿ x0� > 0

for every x0 x0 A S.

In the special case of functions on R, this has the following useful form.

Exercise 4.70

A di¨erentiable function f on an open interval S JR is (strictly) convex if

and only if f 0 is (strictly) increasing.

Combined with exercises 4.35 and 4.36, this means that convex and

concave functions on R can be identi®ed through their second derivatives.

Exercise 4.71

Let f be a twice di¨erentiable function on an open interval S JR.

Then

f is
convex

concave

� �
if and only if f 00�x� is

V0

U0

� �
for every x A S

f is strictly
convex

concave

� �
if f 00�x� is

>0

<0

� �
for every x A S

Example 4.38 (Power function) Earlier (example 3.120), we showed that

the power function

f �x� � xn; n � 1; 2; . . .

is convex on R�. Now, we extend this characterization to the general power

function f : R� ! R (example 2.56) de®ned by

f �x� � xa; a A R

with

f 0�x� � axaÿ1 and f 00�x� � a�aÿ 1�xaÿ2
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We observe that for every x > 0

f 00�x� �
� 0 if a � 0; 1

< 0 if 0 < a < 1

> 0 otherwise

8<:
We conclude that the general power function is strictly concave if

0 < a < 1, strictly convex if a < 0 or a > 1 and convex when a � 0 or

a � 1 (see ®gure 3.11).

Note that this characterization is limited to the nonnegative domain

R�. For example, x3 is neither convex nor concave on R.

Exercise 4.72

What can we say about the concavity/convexity of the simple power

functions f �x� � xn, n � 1; 2; . . . over R.

Example 4.39 (Exponential function) The ®rst and second derivatives of

the exponential function (example 3.49) f �x� � ex are

f 0�x� � ex and f 00�x� � ex > 0 for every x A R

by exercise 2.6. Therefore the exponential function is strictly convex on R.

Example 4.40 (Log function) The ®rst and second derivatives of the log

function f �x� � log�x� are

f 0�x� � 1

x
� xÿ1 and f 00�x� � ÿ 1

x2
< 0 for every x > 0

which implies that f is strictly concave on R��.

Proposition 4.71 generalizes this characterization to Rn, providing an

important link between this and the previous chapter.

Proposition 4.1 Let f be twice di¨erentiable on an open convex S in Rn,

and let Hf �x� denote the Hessian of f at x. Then

f is locally
convex

concave

� �
at x if and only if Hf �x� is

nonnegative

nonpositive

� �
de®nite

Furthermore

f is strictly locally
convex

concave

� �
at x if Hf �x� is

positive

negative

� �
de®nite.
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Proof Let x be a point at which Hf �x� is nonnegative de®nite. Since

f A C 2, there exists a convex neighborhood S of x such that Hf �x� is

nonnegative de®nite for every x A S. By Taylor's theorem (example 4.33),

for every x0; x1 A S there exists x A S such that

f �x1� � f �x0� � D f �x0�T�x1 ÿ x0� � �x1 ÿ x0�T Hf �x��x1 ÿ x0�
Since Hf �x� is nonnegative de®nite, �x1 ÿ x0�T Hf �x��x1 ÿ x0�V 0, and

therefore

f �x1�V f �x0� � `f �x0�T�x1 ÿ x0�
So f is convex on S, a convex neighborhood of x (exercise 4.67). That is,

f is locally convex at x. If Hf �x0� is positive de®nite, then the inequality is

strict

f �x0 � x� > f �x0� � `f �x0�T�x1 ÿ x0�
and f is strictly locally convex. Similarly, if Hf �x0� is nonpositive de®nite,

f �x0 � x�U f �x0� � `f �x0�T�x1 ÿ x0�
and therefore

ÿf �x0 � x�Vÿf �x0� � `�ÿf ��x0�T �x1 ÿ x0�
ÿf is locally convex and so f is locally concave (exercise 3.124). If H is

negative de®nite, the inequalities are strict.

Conversely, suppose that f is locally convex at x0. Then there exists a

convex neighborhood S of x0 such that

f �x�V f �x0� � `f �x0�T�xÿ x0�
for every x A S (exercise 4.67). Since S is open, for every x A Rn, there

exists t > 0 such that x0 � tx A S, and therefore

f �x0 � tx�V f �x0� � `f �x0�T tx �33�
By Taylor's theorem (example 4.33),

f �x0 � tx� � f �x0� � `f �x0�T tx� �tx�T H�x0�tx� h�tx�ktxk2 �34�
with h�tx� ! 0 as tx! 0. Together, (33) and (34) imply that

�tx�T H�x0�tx� h�tx�ktxk2 � t2xT H�x0�x� t2h�tx�kxk2 V 0
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Dividing by t2 > 0,

xT H�x0�x� h�tx�kxk2 V 0

Since h�tx� ! 0 as t! 0, we conclude that xT H�x0�xV 0 for every x. H

is nonnegative de®nite. The proof for f concave is analogous with the

inequalities reversed. r

Corollary 4.1 Let f be twice di¨erentiable on an open convex S in Rn.

Then f is convex on S if and only if Hf �x� is nonnegative de®nite for every

x A S. f is concave on S if and only if Hf �x� is nonpositive de®nite for every

x A S.

Proof Apply exercise 3.142. r

The following analogous characterization is very useful in identifying

supermodular functions (section 2.2.2). A function is supermodular if and

only if its Hessian has nonnegative o¨-diagonal elements.

Proposition 4.2 Let f be a twice di¨erentiable functional on an open con-

vex lattice S in Rn. Then f is supermodular if and only if D2
ij f �x�V 0 for

every i0 j and x A S.

Proof By exercise 2.59, f is supermodular if and only if

f �xi � r; xj � t; xÿij� ÿ f �xi � t; xj; xÿij�V f �xi; xj � t; xÿij� ÿ f �xi; xj; xÿij�
�35�

for every r > 0 and t > 0. Dividing by t > 0,

f �xi� r; xj � t; xÿij�ÿ f �xi� r; xj; xÿij�
t

V
f �xi; xj � t; xÿij�ÿ f �xi; xj; xÿij�

t

Therefore

Dxj
f �xi � r; xj ; xÿij � � lim

t!0

f �xi � r; xj � t; xÿij� ÿ f �xi � r; xj; xÿij�
t

V lim
t!0

f �xi; xj � t; xÿij� ÿ f �xi; xj; xÿij�
t

� Dxj
f �xi; xj; xÿij�

that is,
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Dxj
f �xi � r; xj; xÿij� ÿDj f �xi; xj; xÿij �V 0

Dividing now by r > 0,

Dij f �x� � lim
r!0

Dj f �xi � r; xj ; xÿij � ÿDj f �xi; xj; xÿij�
r

V 0

Conversely, if D2
ij f �x� < 0 for some i, j and x, there exists some r > 0 and

t > 0 violating (35). r

Example 4.41 Generalizing example 4.29, the o¨-diagonal elements of

the Hessian of the Cobb-Douglas function

f �x� � xa1

1 xa2

2 . . . xan
n ; ai > 0

are

Dij � aiaj

xixj
f �x�V 0 for every x A Rn

�

Therefore (proposition 4.2), the Cobb-Douglas function is supermodular

on Rn
�, echoing our conclusion in example 2.68.

Quasiconcave Functions

A di¨erentiable function is convex if and only if it lies above its tangent

hyperplane (exercise 4.67), which forms a supporting hyperplane to the

epigraph of a convex function. Similarly a di¨erentiable function is quasi-

concave if and only if its upper contour sets lie above the tangent to the

contour. In other words, the derivative supports the upper contour set.

This is formalized in the following exercise.

Exercise 4.73

A di¨erentiable functional f on an open set S JRn is quasiconcave if and

only if

f �x�V f �x0� ) `f �x0�T �xÿ x0�V 0 for every x, x0 in S �36�
Inequality (36) can be strengthened where f is regular.

Exercise 4.74

Suppose that a di¨erentiable functional f on an open set S JRn is quasi-

concave. At every regular point `f �x0�0 0,

f �x� > f �x0� ) `f �x0�T�xÿ x0� > 0 for every x, x0 in S �37�

489 4.6 Convex and Homogeneous Functions



A restricted form of quasiconcavity is useful in optimization (see sec-

tion 5.4.3). A function is quasiconcave if it satis®es (37) at regular points

of f. It is pseudoconcave if it satis®es (37) at all points of its domain. That

is, a di¨erentiable functional on an open convex set S A Rn is pseudo-

concave if

f �x� > f �x0� ) `f �x0�T�xÿ x0� > 0 for every x; x0 A S �38�
A function is pseudoconvex if ÿf is pseudoconcave. Pseudoconcave

functions have two advantages over quasiconcave functionsÐevery local

optimum is a global optimum, and there is an easier second derivative test

for pseudoconcave functions. Nearly all quasiconcave functions that we

encounter are in fact pseudoconcave.

Exercise 4.75 (Pseudoconvex functions)

A di¨erentiable function f : S ! R is pseudoconvex if

f �x� < f �x0� ) `f �x0�T�xÿ x0� < 0 for every x, x0 in S

Exercise 4.76 (Pseudoconcave functions)

Show that

1. Every di¨erentiable concave function is pseudoconcave.

2. Every pseudoconcave function is quasiconcave

3. Every regular quasiconcave function is pseudoconcave.

Example 4.42 The function f �x� � x3 is quasiconcave on R. It is not

pseudoconcave, since

f �1� > f �0� but `f �0��1ÿ 0� � 0

Example 4.43 The Cobb-Douglas function

f �x� � xa1

1 xa2

2 . . . xan
n , ai > 0

is pseudoconcave on Rn
��, since it is quasiconcave (example 3.59) and

regular (example 4.16).

Exercise 4.77

Is the CES function

f �x� � �a1x
r
1 � a2x

r
2 � � � � anxr

n �1=r, ai > 0; r0 0

pseudoconcave?
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4.6.2 Homogeneous Functions

Recall that homogeneous functions behave like power functions along

any ray through the origin (section 3.8). This structure is inherited by the

derivatives of di¨erentiable homogeneous functions.

Exercise 4.78

If a di¨erentiable functional f is homogeneous of degree k, its partial

derivatives are homogeneous of degree of k ÿ 1.

Example 4.44 (Slope of a contour) If f is a di¨erentiable functional on

S JR2, the slope of the contour at x0 (example 4.11) is given by

slope�x0� � ÿDx1
f �x0�

Dx2
f �x0�

If f is homogeneous of degree k, its partial derivatives are homogeneous

of degree k ÿ 1, and

slope�tx0� � ÿDx1
f �tx0�

Dx2
f �tx0� � ÿ

tkÿ1Dx1
f �x0�

tkÿ1Dx2
f �x0� � ÿ

Dx1
f �x0�

Dx2
f �x0� � slope�x0�

This means that the slope of the contours is constant along any ray

through the origin.

The most important property of di¨erentiable homogeneous functions

is that the directional derivative of a homogeneous function along any ray

through the origin is proportional to the value of the function, where the

constant of proportionality is equal to the degree of homogeneity.

Exercise 4.79 (Directional derivative)

If f is homogeneous of degree k

~Dx f �x� � kf �x� �39�
[Hint: Use L'HoÃpital's rule (exercise 4.47).]

This property is usually expressed in economics in an alternative form

known as Euler's theorem. In fact this property is a necessary and su½-

cient condition for a di¨erentiable function to be homogeneous.

Proposition 4.3 (Euler's theorem) A di¨erentiable functional f : S ! R
is homogeneous of degree k if and only if
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Df �x��x� �
Xn

i�1

Dxi
f �x�xi � kf �x� for every x A S �40�

Proof Equation (40) can be derived from (39) by expressing the direc-

tional derivative in terms of partial derivatives (exercise 4.10). As an

alternative, we derive (40) directly. If f is homogeneous of degree k,

f �tx� � tkf �x� for every x and t > 0

Di¨erentiating with respect to t using the chain rule (exercise 4.22), we

have

Dt f �tx�x � ktkÿ1f �x�
Evaluating at t � 1 gives the desired result. The converse is exercise 4.80.

r

Exercise 4.80

If f satis®es (40) for all x, it is homogeneous of degree k. [Hint: Use

exercise 4.38.]

Euler's theorem can be thought of as a multidimensional extension of

the rule for the derivative of a power function (example 4.15). Two special

cases are worth considering. When n � 1, equation (40) becomes

kf �x� � f 0�x�x) f 0�x� � k
f �x�

x

which is precisely the rule for a power function (example 4.15). When

k � 1, equation (40) becomes

Df �x��x� �
Xn

i�1

Dxi
f �x�xi � f �x� for every x A S

In this case the derivative is exact (rather than an approximation) along

any ray through the origin. We give a sample of applications of Euler's

theorem in economics.

Example 4.45 (Production with constant returns to scale) Suppose that

a ®rm produces a single product using a constant returns to scale tech-

nology, so that its production function is linearly homogeneous. Recall

that the partial derivatives of the production function are the marginal
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products of the respective inputs (example 4.5). By Euler's theorem, total

output y is determined by the sum of the quantity of each input employed

times its marginal product, that is,

y � f �x� �
Xn

i�1

MPixi

Note that this is true for any production plan �y; x�.
We will show in the next chapter that if the ®rm is in a competitive

market, pro®t is maximized if each input is paid the value of its marginal

product, pMPi where p is the price of the output. In this case Euler's the-

orem requires that factor payments exhaust the total revenue py,

py �
Xn

i�1

pMPixi

so that maximum pro®t will be precisely zero. This is a general charac-

teristic of competitive ®rms with constant returns to scale.

Example 4.46 (Wicksell's law) Again, suppose that a ®rm produces a

single product using a constant returns to scale technology f. Then the

marginal products are homogeneous of degree 0 (exercise 4.78) and satisfy

Euler's theoremXn

i�1

Dxi
MPjxi �

Xn

i�1

D2
xixj

f �x�xi � 0�MPj � 0

which implies that

D2
xixi

f �x� � ÿ
X
j0i

xi

xj
D2

xixj
f �x�

With only two inputs, this reduces to

D2
xixi

f �x� � ÿ xi

xj
D2

xixj
f �x�

The term on the left measures the way in which the marginal product

of input i varies with the quantity of i; the term on the right measures

the way in which the marginal product of i varies with quantity of j.

493 4.6 Convex and Homogeneous Functions



Wicksell's law holds that these two e¨ects are equal in magnitude and

opposite in sign.

Exercise 4.81 (Complementary inputs)

Two inputs are said to complementary if their cross-partial derivative

D2
xixj

f �x� is positive, since this means that increasing the quantity of one

input increases the marginal productivity of the other. Show that if a

production function of two inputs is linearly homogeneous and quasi-

concave, then the inputs are complementary. [Hint: Use proposition 4.1.]

Exercise 4.82 (Elasticity of scale)

In a generalization of the notion of elasticity of univariate functions

(example 4.41), the elasticity the elasticity of scale of a functional f is

de®ned by

E�x� � t

f �tx�Dt f �tx�
���
t�1

where the symbol jt�1 means that the expression is evaluated at t � 1. In

general, the elasticity of scale varies with x. Show that the elasticity of

scale is constant k if and only if f is homogeneous of degree k.

Exercise 4.83 (Regularity)

A di¨erentiable functional f homogeneous of degree k 0 0 is regular

wherever f �x�0 0.

Exercise 4.84

If f is C2 and homogeneous of degree k with Hessian H, then

xT Hf �x�x � k�k ÿ 1� f �x�
Note that this equation holds only at the point x at which the Hessian is

evaluated.

Example 4.47 (Homogeneity conditions) If the consumer's preferences

are strictly convex, the optimal solution to the consumer's problem is a set

of demand functions xi�p;m�, which are homogeneous of degree zero

(example 3.62). Applying Euler's theorem to the demand for good i, we

getXn

i�1

pjDpj
xi�p;m� �mDmxi�p;m� � 0
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Dividing by xi� p;m� givesXn

i�1

pj

xi
Dpj

xi�p;m� � m

xi
Dmxi�p;m� � 0

which can be expressed asXn

i�1

eij � hi � 0 �41�

where

eij�p;m� � pj

xi�p;m�Dpj
xi�p;m� and hi�p;m� �

m

xi�p;m�Dmxi�p;m�

are the price and income elasticities of demand respectively. Zero homo-

geneity of demand implies that the consumer's price and income elastic-

ities for any commodity are related by (41).

Homothetic Functions

Recall that a function is homothetic if its contours are radial expansions

of one another. Formally

f �x1� � f �x2� ) f �tx1� � f �tx2� for every x1; x2 A S and t > 0

This implies that the slopes of the contours are constant along a ray.

Exercise 4.44 demonstrated this for homogeneous functions. In the fol-

lowing exercise we extend this to homothetic functions.

Exercise 4.85

If f : S ! R, S JRn is strictly increasing, di¨erentiable and homothetic,

then for every i, j,

Dxi
f �tx�

Dxj
f �tx� �

Dxi
f �x�

Dxj
f �x� for every x A S and t > 0

Example 4.48 (Homothetic preferences) If consumer preferences are

homothetic (example 3.172), then any utility function u representing the

preferences is homothetic. Exercise 4.85 implies that the marginal rate of

substitution (example 4.10) is constant along any ray through the origin.

It depends only on the relative proportions of di¨erent goods, not on the

absolute quantities consumed.
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4.7 Notes

Excellent expositions of the top-down approach (remark 4.8) to smooth

functions are given by Dieudonne (1960) and Spivak (1965). Chillingworth

(1976) is less rigorous but very insightful. Lang (1969) is elegant but more

di½cult. Smith (1983) and Robert (1989) are also worthwhile consulting.

Spivak (1965, pp. 44±45) discusses the variety of notation for partial

derivatives. Exercise 4.9 is from Robert (1989).

The bottom-up approach is followed by Simon and Blume (1994) and

Sydsaeter and Hammond (1995). Leading mathematical texts covering

this material include Apostol (1974), Bartle (1976), and Rudin (1976).

Spivak (1980) is an excellent source for elementary (single variable) cal-

culus. Although old, Allen (1938) is an excellent source for economic

applications.

Precise usage of the adjective ``smooth'' varies, with some authors

restricting the class of smooth functions to Cy rather than C n. Solow's

convention (remark 4.9) is cited in Varian (1992, p. 487). The discussion

of functional forms is based on Fuss et al. (1978). Our derivation of the

inverse function theorem follows Bartle (1976) and Lang (1969). Global

univalence is discussed by Gale and Nikaido (1965) and Nikaido (1968).

Di¨erentiable convex functions are discussed by Bazaraa, Sherali, and

Shetty (1993), Madden (1986), Roberts and Varberg (1973), and Rock-

afellar (1976). Madden (1986) also discusses homogeneous functions, as

does Allen (1938).
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5 Optimization

The fundamental economic hypothesis is that human beings behave as rational and

self interested agents in the pursuit of their objectives, and that aggregate resources

are limited. Economic behavior is therefore modeled as the solution of a constrained

optimization problem.

ÐBill Sharkey, 1995

5.1 Introduction

In earlier chapters we used optimization models as illustrations. Now

optimization takes center stage and we utilize the tools we have developed

to explore optimization models in some depth. The general constrained

optimization problem was posed in example 2.30 as

max
x AG�y�

f �x; y� �1�

The maximand f �x; y� is known as the objective function (example 2.26).

Its value depends both upon the choice or decision variables x and the

exogenous parameters y. The choice of x is constrained to a feasible set

G�y�JX that also depends on the parameters y. Recall that (1) extends

to minimization problems, since

min
x AG�y�

f �x; y� � max
x AG�y�

ÿ f �x; y�

Typically the feasible set G�y� can be represented by a function

g: X �Y! Y

G�y� � fx A X : g�x; y�U 0g
so that the constrained optimization problem becomes (example 2.40)

max
x AX

f �x; y� subject to g�x; y�U 0

If Y JRm, the function g can be decomposed (example 2.40) into m

separate constraints (functionals) gj : X � y ! R,

g1�x; y�U 0; g2�x; y�U 0; . . . ; gm�x; y�U 0

Throughout this chapter we will assume that all spaces are ®nite dimen-

sional, with X JRn and Y JRm.

In this formulation the constraints on choice are of two types. The

functional constraints, gj�x; y�U 0, express an explicit functional relation-



ship between the choice variables and the parameters. They can be used

to derive explicit conditions to characterize the optimal choice, and to

analyze the sensitivity of the optimal choice to changes in parameters.

Feasible choices are also constrained to belong to the less-speci®ed set X.

The choice of whether to represent a particular constraint explicitly in the

form g�x; y�U 0 or implicitly as in x A X is largely an analytical choice

depending on the purpose at hand. Sometimes it is productive to model a

particular constraint explicitly. For other purposes it is more convenient

to embody a constraint implicitly in the domain X. We illustrate with two

important economic models.

Example 5.1 (The producer's problem) The simplest speci®cation of the

producer's problem is to choose a feasible production plan y in the pro-

duction possibility set Y to maximize total pro®t

max
y AY

pT y

In this speci®cation there are no explicit functional constraints.

In order to characterize the optimal solution, it is helpful to distinguish

inputs and outputs. Where the ®rm produces a single output, we can rep-

resent the production possibility set by a production function y � f �x�
relating inputs x to output y (example 2.24). Letting p denote the price of

the output and w the prices of the inputs, the producer's problem is to

maximize pro®t pyÿ wT x subject to the production constraint y � f �x�,
that is,

max
x

pyÿ wT x

subject to y � f �x�
If the ®rm is competitive, the prices of inputs and outputs are taken as

parameters. The producer's problem has a special structure in that the

parameters p and w appear only in the objective function, not in the

constraints.

Example 5.2 (The consumer's problem) The consumer's choice is con-

strained by her income m and the prices of goods and services p. Repre-

senting her preferences by a utility function u (example 2.58), her problem

is to choose that consumption bundle x in her budget set X�p;m� that
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maximizes her utility u�x�, that is,

max
x AX �p;m�

u�x�

The quantities of goods and services consumed x are the choice variables,

while prices p and income m are parameters. Typically we isolate the e¨ect

of prices p and income m on feasible choice by specifying the budget set in

terms of the budget constraint (example 1.113) so that the consumer's

problem becomes

max
x AX

u�x�

subject to pT xUm

The consumer's problem has a special structure in that the parameters p

and m appear only in the constraint, not in the objective function.

Although physical and biological laws preclude negative consumption,

this nonnegativity constraint is usually left implicit in the consumption set

X JRn
�. Sometimes a more complete analysis is required, in which case

the nonnegativity requirement on consumption can be modeled by an

explicit constraint xV 0 (example 5.17).

A solution to the constrained optimization problem (1) is a feasible

choice x� A G�y� at which the objective function f �x; y� attains a value at

least as great as any other feasible choice, that is,

f �x�; y�V f �x; y� for every x A G�y� �2�
We say that x� maximizes f �x; y� over G�y�. Analysis of an economic

model posed as a constrained maximization problem typically involves

addressing four questions:

. Does the problem have a solution (existence)?

. What is the solution (computation)?

. How can we characterize the solution (characterization)?

. How does the solution vary with the parameters (comparative statics or

sensitivity analysis)?

Su½cient conditions for existence of a solution were derived in chapter

2. Provided that f is continuous and G�y� is compact, the Weierstrass
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theorem (theorem 2.2) guarantees the existence of a solution to a con-

strained optimization problem. It is usual practice in economics to con-

struct the model in such a way as to ensure that these conditions are met

and existence assured. When nonexistence is a problem, it can usually be

traced to inadequacy in the speci®cation of the model rather than an

intrinsic feature of the problem (exercise 5.1).

Exercise 5.1

A small Paci®c island holds the entire world stock K of a natural fertilizer.

The market price p of the fertilizer varies inversely with the rate at which

it is sold, that is,

p � p�x�; p 0�x� < 0

where x denotes the number of tons of fertilizer mined and sold per year.

Giving equal regard to present and future generations, the island govern-

ment wishes to choose a rate of exploitation of their natural resource x

which maximizes total revenue f �x� from the resource where

f �x� � 0; x � 0

Kp�x�; x > 0

�
What is the optimal exploitation rate?

This chapter is devoted to answering the second and third questions,

that is, the computation and characterization of optimal solutions. The

fourth question, comparative statics, is the subject of chapter 6. Typically

economic analysis is less concerned with computing optimal solutions

to particular problems than with identifying and characterizing optimal

solutions in terms of the ingredients of the model. This distinguishes eco-

nomics from other disciplines focusing on constrained optimization, such

as operations research, where a central concern is in the development and

analysis of e½cient computational procedures. The remainder of this sec-

tion introduces additional vocabulary and summarizes some of the results

from previous chapters.

A solution x� to a constrained optimization problem satisfying (2) is

known as a global optimum. A choice that is the best in its neighborhood

is called a local optimum. Formally a choice x� A G�y� is a local optimum

if there is a neighborhood S of x� such that

f �x�; y�V f �x; y� for every x A S XG�y�

500 Chapter 5 Optimization



For example, each peak in a mountain range is a local maximum. Only

the highest mountain is a global maximum. A global optimum is neces-

sarily a local optimum, but not every local optimum is a global optimum.

Whether characterizing optima using di¨erential calculus or computing

optima with numerical techniques, our usual procedures at best identify

only local optima. Since we usually seek global solutions to economic

models, it is common to impose further conditions that ensure that any

local optimum is also a global optimum (exercise 5.2).

Exercise 5.2 (Local-global)

In the constrained optimization problem

max
x AG�y�

f �x; y�

suppose that f is concave and G�y� convex. Then every local optimum is a

global optimum.

Another distinction we need to note is that between strict and nonstrict

optima. A point x� A G�y� is a strict local optimum if it is strictly better

than all feasible points in a neighborhood S, that is,

f �x�; y� > f �x; y� for every x A S XG�y�
It is a strict global optimum if it is ``simply the best,'' that is,

f �x�; y� > f �x; y� for every x A G�y�
If there are other feasible choices which are as good as x�, then x� is a

nonstrict or weak (local or global) optimum.

Quasiconcavity is not su½cient to ensure the equivalence between local

and global optima (see exercise 5.2). However, strict quasiconcavity is

su½cient and moreover every optimum is a strict optimum. Therefore, if a

solution to the optimization problem exists, it is unique (corollary 3.1.1).

Exercise 5.3

In the constrained optimization problem

max
x AG�y�

f �x; y�

suppose that f is strictly quasiconcave in x and G�y� convex. Then every

optimum is a strict global optimum.
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There is one ®nal distinction that we need to make. If the solution x� of

an optimization problem is an interior point (section 1.3) of the feasible

set, then it is called an interior solution. A solution that lies on the

boundary of the feasible set is called a boundary solution. This distinction

is important, since tighter conditions can be developed for interior optima.

In characterizing optimal solutions to a constrained optimization

problem, we develop optimality conditions which will identify a solution

to (1). These optimality conditions are of two types, called necessary and

su½cient conditions. Necessary conditions must be satis®ed by every solu-

tion, and any choice that violates the necessary conditions cannot be an

optimum. These must be distinguished from su½cient conditions, which

guarantee that a point meeting the conditions is an optimum. Su½cient

conditions do not preclude the possibility of other solutions to the prob-

lem which violate the su½cient conditions.

Example 5.3 Being a male is a necessary (but not a su½cient) condition

for being a father. Having a son is a su½cient (but not a necessary) con-

dition for being a father.

Example 5.4 Su½cient conditions to ensure that the existence of an

optimal solution to the constrained optimization problem

max
x AG�y�

f �x; y�

are that f is continuous and G�y� compact. In addition su½cient con-

ditions to ensure that the solution is unique are that G�y� is convex and f

is strictly concave. None of these conditions is necessary.

In this chapter we develop necessary and su½cient conditions to iden-

tify a solution to the general problem (1). We will proceed in stages, start-

ing with intuitive solutions to familiar problems and building gradually to

a general solution. In the course of this development, we will present four

complementary approaches to the solution of the general constrained

optimization problem. Each perspective o¨ers a di¨erent insight into this

fundamental tool of economic analysis.

For clarity of notation, we will suppress for most of this chapter the

explicit dependence of the objective function and the constraints on

the parameters y, expressing the general constrained optimization prob-

lem as
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max
x AX

f �x�

subject to g�x�U 0

Accordingly G will denote the feasible set G � fx A X : g�x�U 0g.
Explicit dependence parameters will be restored in the next chapter when

we explore sensitivity of the optimal solution to the changes in the para-

meters. To utilize the tools of the previous chapter, we assume throughout

that the functions f and g are twice continuously di¨erentiable (C2).

5.2 Unconstrained Optimization

We begin with the simple optimization problem

max
x AX

f �x� �3�

in which there are no functional constraints. Suppose that x� is a local

optimum of (3) in X so that there exists a neighborhood S JX such that

f �x��V f �x� for every x A S �4�
Provided that f is di¨erentiable, we can use the derivative to approximate

f �x� in the neighborhood S, that is,

f �x�A f �x�� �Df �x���xÿ x��
If x� is a local maximum, (4) implies that

f �x��V f �x�� �Df �x���xÿ x��
or

Df �x���xÿ x��U 0 for every x A S

At a maximum it is impossible to move from x� in any direction and

increase the value of the objective function f �x�.
Furthermore, if x� is an interior point of X, it is necessary that

Df �x���x� ÿ x� � 0 for every x A S

since Df �x�� is a linear function. That is the derivative Df �x�� at x� must

be the zero function. Its matrix representation, the gradient, must be the

zero vector
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`f �x�� � �Dx1
f �x��;Dx2

f �x��; . . . ;Dxn
f �x��� � 0 �5�

and all its components, the partial derivatives of f evaluated at x�, must

be zero. This is a precise expression of the fact that, at a maximum, it is

impossible to marginally change the value of any one of the variables xi

so as to increase the value of the function f �x�. Even more stringent,

it implies that the directional derivative in any direction is zero. It is

impossible to move from x� in any direction and increase the value of the

function f �x�. We say that f is stationary at x� and x� is stationary point

of f .

In short, a local maximum must be either a stationary point of f or a

boundary point of X (or both). Note again how we are using the linear

approximation to an arbitrary function to reveal something about the

underlying function. Since stationarity involves the ®rst derivative, these

are called the ®rst-order conditions.

Proposition 5.1 (First-order conditions for a maximum) If x� is a local

maximum of f in X, there exists a neighborhood S of x� such that

Df �x���xÿ x��U 0 for every x A S

Furthermore, if x� is an interior point of X, then f is stationary at x�, that is,

`f �x�� � 0

Exercise 5.4

Prove proposition 5.1 formally.

Example 5.5 (Nonnegative variables) Variables in economic problems

are frequently restricted to be nonnegative, which creates the possibility of

boundary solutions. Consider the single-variable optimization problem

max
xV0

f �x�

where x A R. Suppose that x� maximizes f �x� over R�. Then x� is either

a stationary point or a boundary point or both (proposition 5.1). That is,

Either x > 0 and f 0�x�� � 0

or x � 0 and f 0�x��U 0

These alternatives can be telescoped into the necessary condition
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f 0�x��U 0; x�V 0; x�f 0�x�� � 0

The three cases are illustrated in ®gure 5.1.

We extend this result in the following corollary.

Corollary 5.1 (Nonnegative variables) If x� is a local maximum of f in

Rn
�, then it is necessary that x� satisfy

`f �x��U 0; x�V 0; `f �x��T x� � 0

which means that for every i,

Dxi
f �x��U 0; x�i V 0; x�i Dxi

f �x�� � 0

Exercise 5.5

Prove corollary 5.1.

As we saw in the previous chapter, the derivative of a function at

any point x de®nes the tangent hyperplane to the surface at that point.

Stationarity (5) implies that the tangent hyperplane is horizontal at a

stationary point x�, and so the graph of the function is ¯at at this point.

Consider a physical analogy. We recognize the top of a hill by observing

that we cannot climb any further, that all paths lead down. At the peak

the gradient is ¯at. If we could identify the coordinates of all ¯at land in

a given region, this list would necessarily include all mountain peaks. But

it would also include many other points, including valley ¯oors, lake

bottoms, plains, cols, and so on. Further criteria are required to distin-

guish the mountain peaks from troughs and other points of zero gradient.

Figure 5.1
A maximum must be either a stationary point or a boundary point or both
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Example 5.6 (Saddle point) Consider the function

f �x1; x2� � x2
1 ÿ x2

2

The ®rst-order condition for stationarity is

`f �x� � �2x1;ÿ2x2� � �0; 0�
In practice, the ®rst-order condition is usually written as a system of

partial di¨erential equations

D1 f �x� � 2x1 � 0

D2 f �x� � ÿ2x2 � 0

Since these equations have the unique solution x1 � x2 � 0, the function

f has a unique stationary point �0; 0�. However, the stationary point

�0; 0� is neither a maximum nor a minimum of the function, since

ÿ3 � f �1; 2� < f �0; 0� < f �2; 1� � 3

�0; 0� is in fact a saddle point (section 3.7.4). The function is illustrated in

®gure 5.2.

To distinguish maxima from minima and other stationary points, we

resort to a higher-order approximation. If x� is a local maximum, then

f �x��V f �x�
for every x in a neighborhood of x�. Previously we used a linear approx-

imation to estimate f �x�. Assuming that f is C2, f �x� can be better

approximated by the second-order Taylor series (example 4.33)

f �x�A f �x�� � `f �x��T dx� 1
2 dxT Hf �x�� dx

Figure 5.2
A saddle point
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where Hf �x�� is the Hessian of f at x� and dx � xÿ x�. If x� is a local

maximum, then there exists a ball Br�x�� such that

f �x��V f �x�� � `f �x��T dx� 1
2 dxT Hf �x�� dx

or

`f �x��T dx� 1
2 dxT Hf �x�� dxU 0

for every dx A Br�x��. To satisfy this inequality for all small dx requires

that the ®rst term be zero and the second term nonpositive. In other

words, for a point x� to be a local maximum of a function f , it is neces-

sary that the gradient be zero and the Hessian be nonpositive de®nite at

x�. We summarize these conditions in the following theorem.

Theorem 5.1 (Necessary conditions for interior maximum) For x� to be

an interior local maximum of f �x� in X, it is necessary that

1. x� be a stationary point of f, that is, `f �x�� � 0, and

2. f be locally concave at x�, that is, Hf �x�� is nonpositive de®nite

Theorem 5.1 states necessary conditions for an interior maximumÐ

that is, these conditions must be satis®ed at every local maximum. A

slight strengthening gives su½cient conditions, but these are not necessary

(example 5.7).

Corollary 5.1.1 (Su½cient conditions for interior maximum) If

1. x� is a stationary point of f, that is, `f �x�� � 0, and

2. f is locally strictly concave at x�, that is, Hf �x�� is negative de®nite

then x� is a strict local maximum of f .

Exercise 5.6

Prove corollary 5.1.1.

Example 5.7 The function f �x� � ÿx4 has a strict global maximum at

0, since f �0� � 0 and f �x� < 0 for every x0 0. We note that 0 satis®es

the necessary but not the su½cient conditions for a local maximum, since

f 0�x� � ÿ4x3; f 0�0� � 0

f 00�x� � ÿ12x2; f 00�0� � 0
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Where f is concave, stationarity is both necessary and su½cient for an

interior optimum.

Corollary 5.1.2 (Concave maximization) Suppose that f is concave and

x� is an interior point of X. Then x� is a global maximum of f on X if and

only if `f �x�� � 0.

Proof Suppose that f is concave and `f �x�� � 0. Then x� satis®es the

necessary conditions for a local optimum (theorem 5.1). Moreover, by

Exercise 4.67,

f �x�U f �x�� � `f �x��T�xÿ x�� � f �x��
Therefore x� is a global optimum. r

Exercise 5.7 (Interior minimum)

For x� to be an interior minimum of f �x�, it is necessary that

1. x� be a stationary point of f, that is, `f �x�� � 0, and

2. f be locally convex at x�, that is, Hf �x�� is nonnegative de®nite

If furthermore Hf �x�� is positive de®nite, then x� is a strict local minimum.

The following result was used to prove the mean value theorem (exer-

cise 4.34) in chapter 4.

Exercise 5.8 (Rolle's theorem)

Suppose that f A C�a; b� is di¨erentiable on �a; b�. If f �a� � f �b�, then

there exists x A �a; b� where f 0�x� � 0.

Since the conditions of theorem 5.1 involve respectively the ®rst and

second derivatives of the objective function, they are called the ®rst-order

and second-order necessary conditions for an interior maximum. The

usual technique for solving unconstrained optimization problems in eco-

nomics is to use the ®rst-order conditions to identify all the stationary

points of the objective function. Normally this is done by solving the ®rst-

order conditions as a system of equations. This reduces enormously the

number of potential candidates for an optimal solution. Second-order

conditions are then used to distinguish the local maxima and minima

from other stationary points. Having found all the local maxima, their

values can be compared to ®nd the global maximum. This technique is

illustrated in the following examples and exercises.
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Example 5.8 Consider the problem

max f �x1; x2� � 3x1x2 ÿ x3
1 ÿ x3

2

illustrated in ®gure 5.3. The ®rst-order conditions for a maximum are

D1 f � 3x2 ÿ 3x2
1 � 0

D2 f � 3x1 ÿ 3x2
2 � 0

or

x2 � x2
1 ; x1 � x2

2

These equations have two solutions: x1 � x2 � 0 and x1 � x2 � 1.

Therefore �0; 0� and �1; 1� are the only stationary points of f .

The Hessian of f is

H�x� � ÿ6x1 3

3 ÿ6x2

� �
At �1; 1� this evaluates to

H�x� � ÿ6 3

3 ÿ6

� �
which is negative de®nite. Therefore, we conclude that the function f

attains a local maximum at �1; 1� (corollary 5.1.1). At the other stationary

point �0; 0�, the Hessian evaluates to

Figure 5.3
A local maximum which is not a global maximum
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H�x� � 0 3

3 0

� �
which is inde®nite. �0; 0� is in fact a saddle point (section 3.7.4). Hence

x� � �1; 1� is the unique local maximum of f, where the function attains

the value f �1; 1� � 1. Note, however, that �1; 1� is not a global maximum

of f, since, for example, f �ÿ1;ÿ1� � 5 > f �1; 1�. In fact f has no global

maximum on R2, since for any x2, f �x1; x2� !y as x1 ! ÿy.

Example 5.9 (Saddle point) We showed earlier (example 5.6) that the

function

f �x1; x2� � x2
1 ÿ x2

2

has a unique stationary point at �0; 0�. However, the stationary point

�0; 0� cannot be a maximum or minimum of f because �0; 0� does not

satisfy the second-order necessary condition for a maximum or minimum.

The Hessian of f

H � 2 0

0 ÿ2

� �
is inde®nite. For example, the quadratic form �1; 0�T H�1; 0� � 2 while

�0; 1�T H�1; 0� � ÿ2. We can conclude that �0; 0� is a saddle point of f,

being simultaneously a minimum of f in the x1 direction and a maximum

of f in the x2 direction.

Exercise 5.9

Solve the problem

max
x1;x2

f �x1; x2� � x1x2 � 3x2 ÿ x2
1 ÿ x2

2

Exercise 5.10

Show that �0; 0� is the only stationary point of the function

f �x1; x2� � x2
1 � x2

2

Is it a maximum, a minimum or neither?

A function that has a nonpositive de®nite Hessian at a point x� is

locally concave, that is, concave in a neighborhood of x�. Frequently, in

economic analysis, conditions are imposed (e.g., strict concavity) that
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ensure that the function has a unique (global) maximum. In this case,

should the function have only a single stationary point, the analyst can

correctly deduce that this is the unique maximum, and the ®rst-order

conditions can be solved for this maximum. Without such an assumption,

even if a function has a unique stationary point that is a local maximum,

it is incorrect to infer that this is a global maximum (examples 5.8 and

5.10).

Example 5.10 Consider the function f : R2 ! R de®ned by

f �x1; x2� � 3x1ex2 ÿ x3
1 ÿ e3x2

Stationary points are de®ned by the ®rst-order conditions

D1 f �x� � 3ex2 ÿ 3x2
1 � 0

D2 f �x� � 3x1ex2 ÿ 3e3x2 � 0

which can be reduced to

ex2 ÿ x2
1 � 0

x1 ÿ e2x2 � 0

These equations have the unique (real) solution x1 � 1, x2 � 0. Therefore

�1; 0� is the unique stationary point of f . The Hessian of f is

H � ÿ6x1 3ex2

3ex2 ÿ9e3x2

� �
which evaluates to

H � ÿ6 3

3 ÿ9

� �
at the point �1; 0�. This matrix is negative de®nite, which implies that f is

locally concave at �1; 0� and so attains a local maximum of f �1; 0� � 1

there. This is not a global maximum, since, for example, f �ÿ2;ÿ2� � 7:18.

Example 5.11 (The competitive ®rm) A competitive ®rm produces a

single output y using n inputs �x1; x2; . . . ; xn� according to the production

function

y � f �x1; x2; . . . ; xn�
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Let p denote the output price and w � �w1;w2; . . . ;wn� the input prices.

The ®rm's revenue is pf �x� produced at a cost of wT x, so that its net

pro®t is given by

P�x; w; p� � pf �x� ÿ wT x

The ®rm's optimization problem is to choose x to maximize its pro®t,

that is

max
x

P�x; w; p� � pf �x� ÿ wT x

This implicitly determines the output level y according to the production

function y � f �x�.
The ®rst-order necessary condition for x� to maximize pro®t is that

P�x; w; p� be stationary at x�, that is,

DxP�x�; w; p� � pDx f �x�� ÿ w � 0

or

pDxi
f �x�� � wi for every i � 1; 2; . . . ; n �6�

Dxi
f �x�� is the marginal product of input i in the production of y and

pDxi
f �x�� is the value of the marginal product. Optimality (6) requires

that the pro®t-maximizing ®rm should utilize each input until the value of

its marginal product pDxi
f �x�� is equal to its cost wi. This accords with

common sense. If the value of an additional unit of input i ( pDxi
f �x��)

exceeds its cost (wi), the ®rm would increase its pro®t by increasing the

utilization of xi. Conversely, if pDxi
f �x�� < wi, the ®rm would increase

its pro®t by reducing the input of xi (assuming that xi > 0). Only if

pDxi
f �x�� � wi for every input i can the ®rm be maximizing its pro®t. The

®rst-order necessary condition is the ubiquitous ``marginal bene®t equals

marginal cost'' familiar from elementary economics.

The second-order necessary condition for x� to maximize pro®t is that

dxT HP�x�� dx � dxT pHf �x�� dxU 0 for every dx

where Hf �x�� is the Hessian of the production function f. That is, the

Hessian matrix of the production function must be nonpositive de®nite at

the optimal point. Note that the second-order necessary condition will be

satis®ed at every stationary point if the production function is concave.
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Exercise 5.11

A popular product called p®llip, a nonnarcotic stimulant, is produced by

a competitive industry. Each ®rm in this industry uses the same produc-

tion technology, given by the production function

y � k1=6l1=3

where y is the amount of p®llip produced, k is the amount of kapitose

(a special chemical) and l is the amount of legume (a common vegetable)

used in production. The current prices of kapitose and legume are $1 and

$1/2 per unit respectively. Firms also incur ®xed costs of $1/6. If the

market price of p®llip is also $1, how pro®table is the average ®rm?

Example 5.12 (Monopoly) Economic analysis of a monopolist usually

focuses on its output decision. Presuming that production is undertaken

e½ciently (i.e., at minimum cost), the monopolist's technological con-

straints can be represented by the cost function c�y� (example 2.38). Letting

R�y� denote the revenue from selling y units of output, the monopolist's

net pro®t is

P�y� � R�y� ÿ c�y�
The ®rst-order condition for maximizing pro®t is

DyP�y� � R 0�y� ÿ c 0�y� � 0

or

R 0�y� � c 0�y�
which is the familiar optimality condition ``marginal revenue equal to

marginal cost.''

The second-order condition necessary for a pro®t maximum is

D2
yP�y� � R 00�y� ÿ c 00�y�U 0

Su½cient conditions to ensure this are that marginal revenue is decreasing

and marginal cost increasing with output.

Example 5.13 (Least squares regression) The standard linear regression

model of econometrics postulates that some observed economic variable y

is linearly related to a number of independent variables xi together with

some random error e,
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y � b1x1 � b2x2 � � � � � bnxn � e

although the precise coe½cients �b1; b2; . . . ; bn� are unknown. The objec-

tive of an econometric analysis is to estimate the most likely values of the

unknown coe½cients �b1; b2; . . . ; bn�, given some observations yt of y and

the corresponding independent variables xt. The least squares criterion

chooses estimated coe½cients � b̂1; b̂2; . . . ; b̂n� so as to minimize the sum

of the squared errors between the observed values yt and the predicted

values b̂xt. The least squares estimates solve the following optimization

problem

min
b̂

X
t

�yt ÿ b̂xt�2

The ®rst-order conditions for a minimum are

Db̂i

X
t

�yt ÿ b̂xt�2 � 2
X

t

�yt ÿ b̂xt��ÿxit� � 0; i � 1; 2 . . . ; n

which are known as the normal equations. Solving these equations for

given data yt and xt gives the least squares estimators b̂.

The following exercise shows that the ®rst-order necessary condition is

invariant to monotonic transformations of the objective function. This can

be of considerable help in practice, where a monotonic transformation can

make the solution of problem more tractable (e.g., see exercise 5.13).

Exercise 5.12 (Monotonic transformation)

Suppose that h: R! R is a monotonic transformation (example 2.60) of

f : X ! R. Then h � f has the same stationary points as f.

Exercise 5.13 (Maximum likelihood estimation)

Suppose that a random variable x is assumed to be normally distributed

with (unknown) mean m and variance s2 so that its probability density

function is

f �x� � 1������
2p
p

s
exp ÿ 1

2s2
�xÿ m�2

� �
The probability (likelihood) of a sequence of independent observations

�x1; x2; . . . ; xT� for given parameters m and s2 is given by their joint

distribution
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L�m; s� �
YT
t�1

f �xt� � 1

�2p�T=2sT
exp ÿ 1

2s2

XT

t�1

�xt ÿ m�2
 !

which is known as the likelihood function. The maximum likelihood esti-

mators of m and s2 are those values that maximize the likelihood of given

set of observations �x1; x2; . . . ; xT�. That is, they are the solution to the

following maximization problem:

max
m;s

L�m; s� � 1

�2p�T=2
sT

exp ÿ 1

2s2

XT

t�1

�xt ÿ m�2
 !

Show that the maximum likelihood estimators are

m̂ � x �
XT

t�1

xt; ŝ2 � 1

T

XT

t�1

�xt ÿ x�2

[Hint: It is convenient to maximize log L; see exercise 5.12.]

These examples and exercises illustrate the typical approach to opti-

mization problems in economics. The ®rst-order necessary conditions for

a maximum are obtained and are used to chararacterize or identify the

optimal solution. These conditions are then interpreted or implemented in

terms of the original model. For example, in the model of a competitive

®rm, the ®rst-order necessary conditions for a pro®t maximum (station-

arity of the pro®t function) are interpreted in terms of the familiar

marginality conditions, ``value of marginal product equals factor price.''

In the least squares regression model, the ®rst-order necessary conditions

lead directly to the normal equations, which are used to de®ne the least

squares estimator. The second-order conditions play a secondary role.

Rather than identifying optimal solutions, their role is to place bounds

on the parameters of the model. For example, in a competitive ®rm, the

second-order conditions require that the production function be locally

concave. From this we infer that the competitive model is inappropriate

unless the technology is such that the production function is locally con-

cave. Often the underlying assumptions of the model are such as to ensure

that the second-order conditions are satis®ed everywhere, for example,

that the production function is globally concave. The second-order con-

ditions often play a crucial role in comparative statics (chapter 6).
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Our derivation of the ®rst-order conditions, by evaluating the e¨ect of

perturbations around a proposed solution, forms the foundation of all

optimization theory. Constraints have the e¨ect of restricting the set of

feasible perturbations. It is no longer necessary that the fundamental

inequality (4) be satis®ed for all x in the neighborhood of x� but only for

all neighboring x, which also satisfy the constraints x A G. In the next two

sections we show how this requirement can be translated into conditions

on the functions f and g and how these conditions can be phrased in terms

of the maximization of a new function called the Lagrangean, which is

constructed from f and g.

In the next section (section 5.3) we consider a restricted class of prob-

lems in which all the functional constraints are binding (equalities). In this

restricted context we develop the basic necessary conditions from four

di¨erent perspectives, each of which contributes its own insight into the

results. In following section (section 5.4) we generalize our results to

encompass problems in which the constraints are inequalities.

5.3 Equality Constraints

Analysis of a constrained optimization problem is simpli®ed if we assume

that the functional constraints are equalities, so (1) becomes

max
x AX

f �x� �7�

subject to g�x� � 0

We present four complementary derivations of the basic necessary condi-

tions for an optimal solution of (7). While the four approaches lead to the

same result, each provides a di¨erent perspective contributing to a better

understanding of this most fundamental tool of economic analysis.

5.3.1 The Perturbation Approach

The ®rst approach to constrained optimization follows the perturbation

procedure that we adopted for the unconstrained problem in the previous

section. To introduce the idea, let us ®rst apply the perturbation approach

to a familiar problem, the consumer's problem assuming that the con-

sumer spends all her income. In this case, the consumer's problem is
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max
x AX

u�x�

subject to pT x � m

For simplicity, we assume that there are only two commodities (X HR2).

Suppose that x� is the consumer's most preferred choice. Then it is

must be impossible to rearrange her expenditure and achieve a higher

utility. In particular, it must be impossible to increase the purchases of x1

at the expense of x2 and achieve higher utility. To see what this implies,

consider a small increase dx1 in x1 which costs p1 dx1. To satisfy the

budget constraint, this must be o¨set by a corresponding reduction in

p2 dx2 in expenditure on x2 so that

p1 dx1 � p2 dx2 � 0

or

p1 dx1 � ÿp2 dx2 �8�
That is, the increase in expenditure on x1 must be exactly equal to the

decrease in expenditure on x2. If x� is an optimal choice, this transfer of

expenditure cannot generate an increase in utility, that is,

u�x��V u�x� � dx�
where dx � �dx1; dx2�. To evaluate the change in utility, we can use the

linear approximation provided by the derivative, that is,

u�x� � dx�Au�x�� �Du�x���dx�
which can be decomposed into the separate e¨ects of x1 and x2 (example

4.9),

u�x� � dx�Au�x�� �Dx1
u�x�� dx1 �Dx2

u�x�� dx2

If x� is optimal, this change in consumption cannot provide an increase in

utility, that is, the change in utility must be nonpositive:

Dx1
u�x�� dx1 �Dx2

u�x�� dx2 U 0

or

Dx1
u�x�� dx1 UÿDx2

u�x�� dx2 �9�
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Dx1
u�x�� is the marginal utility of good 1 at the consumption bundle x�.

The left-hand side measures the increase in utility from consuming more

x1. If x� is an optimal consumption bundle, this must be more than o¨set

by the decrease in utility from consuming less of x2, which is measured be

the right-hand side. Dividing (9) by equation (8), we conclude that the

optimal bundle x� must satisfy the condition that

Dx1
u�x��
p1

U
Dx2

u�x��
p2

Similarly, by considering an increase in x2 matched by a reduction in x1,

we conclude that

Dx1
u�x��
p1

V
Dx2

u�x��
p2

Together, these inequalities imply that

Dx1
u�x��
p1

� Dx2
u�x��
p2

�10�

The ratio of marginal utility to the price of each good must be equal at

the optimal choice x�. If this were not the case, it would be possible to

rearrange the consumer's expenditure in such a way as to increase total

utility. For example, if the left-hand side was greater than the right-hand

side, one dollar of expenditure transferred from x2 to x1 would give greater

satisfaction to the consumer.

Applying similar analysis to the general equality-constrained problem

(7), suppose that x� maximizes f �x� subject to g�x� � 0. Consider a small

change in x to x� � dx. The change in x must satisfy

g�x� � dx� � 0

Provided that x� is a regular point of g, dx must satisfy the linear

approximation

g�x� � dx�Ag�x�� �Dg�x���dx� � 0

or

Dg�x���dx� � 0 �11�
For all perturbations dx satisfying (11), we must have
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f �x��V f �x� � dx�A f �x�� �Df �x���dx�
This implies that a necessary condition for x� to maximize f �x� is

Df �x���dx� � 0 for all dx such that Dg�x���dx� � 0 �12�
In a constrained optimization problem, optimality does not require

overall stationarity of the objective function, but stationarity with respect

to a restricted class of perturbations (11). At the optimum x� the objective

function is stationary with respect to perturbations which continue to sat-

isfy the constraint. For example, the optimal solution to the consumer's

problem does not mean that there exist no preferred commodity bundles.

Rather, optimality requires that any preferred bundles cost more than her

available income. Her utility function is stationary with respect to a¨ord-

able commodity bundles.

Condition (12) can be expressed alternatively as saying that there does

not exist any perturbation dx A Rn such that

Dg�x���dx� � 0 and Df �x���dx� > 0

In other words, it is impossible to ®nd any change from x�, which simul-

taneously satis®es the constraint and yields a higher value of the objective.

To derive useful criterion for identifying an optimal solution, we utilize

the results of chapter 3. The derivative of the objective function Df �x�� is

a linear functional on X. The derivative of the constraint Dg�x�� can be

considered as a system of m linear functionals, Dg1�x��;Dg2�x��; . . . ;

Dgm�x�� on X. By (12) these linear functionals satisfy the conditions of the

Fredholm alterative (exercises 3.48 and 3.199), which implies that there

exist constants lj such that

Df �x�� �
Xm

j�1

ljDgj�x��

or alternatively that the gradient of the objective function is a linear

combination of the gradient of constraints

`f �x�� �
Xm

j�1

lj`gj�x��

The constants lj are known as the Lagrange multipliers. This provides a

useful criterion for identifying optimal solutions to equality constrained

problems, which we summarize in the following theorem.
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Theorem 5.2 (Lagrange multiplier theorem) Suppose that x� is a local

optimum of

max
x AX

f �x�

subject to g�x� � 0

and a regular point of g. Then the gradient of f at x� is a linear combination

of the gradients of the constraints, that is there exist unique multipliers

l1; l2; . . . ; lm such that

`f �x�� �
Xm

j�1

lj`gj�x�� �13�

The requirement that x� be a regular point of g, that is, Dg�x��, has full

rank, means that the gradients `g1�x��, `g2�x��; . . . ;`gm�x�� are linearly

independent. Known as the constraint quali®cation condition, it will be

explored more fully in section 5.4.2.

Example 5.14 Consider the problem

max
x1;x2

f �x� � x1x2

subject to g�x� � x1 � x2 � 1

The gradient of the objective function is

`f �x� � �x2; x1�
while that of the constraint is

`g�x� � �1; 1�
A necessary condition for a solution is that these be proportional, that is,

`f �x� � �x2; x1� � l�1; 1� � `g�x�
which implies that

x1 � x2 � l �14�
The solution must also satisfy the constraint

x1 � x2 � 1 �15�
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Equations (14) and (15) can be solved to yield the solution

x1 � x2 � l � 1
2

Exercise 5.14

Solve

max
x1;x2

f �x� � 1ÿ �x1 ÿ 1�2 ÿ �x2 ÿ 1�2

subject to g�x� � x2
1 � x2

2 � 1

Example 5.15 (The consumer's problem) Returning to the consumer's

problem

max
x AX

u�x�

subject to pT x � m

the gradient of the objective function

`u�x�� � �Dx1
u�x��;Dx2

u�x��; . . . ;Dxn
u�x���

lists the marginal utility of each good. The gradient of the budget con-

straint `g�x�� � � p1; p2; . . . ; pn� lists the price of each good. A necessary

condition for the x� to be an optimal consumption bundle is that there

exists a Lagrange multiplier l such that these gradients are proportional,

that is,

`u�x�� � lp or Dxi
u�x� � lpi for every i � 1; 2; . . . ; n �16�

At the optimal consumption bundle x�, the marginal utility of each good

must be proportional to its price.

Equation (16) is known as the ®rst-order condition for utility maxi-

mization. It can be rearranged to give

MRSij�x�� � Dxi
u�x��

Dxj
u�x�� �

pi

pj

�17�

Utility maximization requires that, at the optimal consumption bundle,

marginal rate of substitution between any two goods is equal to their rel-

ative prices. With two goods the marginal rate of substitution measures

the slope of the indi¨erence curve through x� (example 4.11). The price

ratio measures the slope of the budget constraint. Equation (17) expresses
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the familiar condition that the optimal consumption bundle is found

where the budget line is tangential to an indi¨erence curve (®gure 5.4).

Example 5.16 (Cost minimization) Assume that the technology of a

competitive ®rm producing a single output y can be represented by the

production function y � f �x�. The minimum cost of producing output y is

min
x

wT x

subject to f �x� � y

where w lists the prices of the inputs. This is equivalent to

max
x
ÿwT x

subject to ÿf �x� � ÿy

The gradient of the objective function is the vector of factor prices ÿw,

while the gradient of the production constraint is ÿ`f �x��. A necessary

condition for minimizing cost is that these be proportional, that is,

ÿw � ÿl`f �x�� or wi � lDxi
f �x�� for every i � 1; 2 . . . ; n

To minimize costs, inputs should be used in such proportions that their

marginal products are proportional to the prices. This is known as the

®rst-order condition for cost minimization.

For nonnegative variables, we have the following corollary to theorem

5.2.

Figure 5.4
Optimum consumption occurs where the indi¨erence curve is tangential to the budget line
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Corollary 5.2.1 (Nonnegative variables) Suppose that x� is a local opti-

mum of

max
xV0

f �x�

subject to g�x� � 0

and a regular point of g. Then there exists multipliers l1; l2; . . . ; lm such

that

`f �x��U
X

lj`gj�x��; x�V 0

`f �x�� ÿ
X

lj`gj�x��
� �T

x� � 0

Proof Suppose without loss of generality that the ®rst k components of

x� are strictly positive while the remaining components are zero. That is

x�i > 0; i � 1; 2; . . . ; k

x�i � 0; i � k � 1; k � 2; . . . ; n

Clearly, x� solves the problem

max
xV0

f �x�

subject to g�x� � 0

xi � 0; i � k � 1; k � 2; . . . ; n

By theorem 5.2, there exist multipliers l1; l2; . . . ; lm and mk�1; mk�2; . . . ; mn

such that

`f �x�� �
Xm

j�1

lj`gj�x�� �
Xn

i�k�1

miei

where ei is the ith unit vector (example 1.79). Furthermore mi V 0 for

every i so that

`f �x��U
Xm

j�1

lj`gj�x�� �18�

and for every i � 1; 2; . . . ; n,
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either x�i � 0

or Dxi
f �x�� �P ljDxi

gj �x��
or both:

Given (18) and x�V 0, this is expressed concisely in the condition

`f �x�� ÿ
X

lj`gj�x��
� �T

x� � 0

Example 5.17 (The consumer's problem) Since negative consumption is

impossible, the consumer's problem should properly be posed as

max
xV0

u�x�

subject to pT x � m

The ®rst-order condition for utility maximization is

`u�x��U lp; x�V 0

�`u�x�� ÿ lp�T x� � 0

This means for every good i,

Diu�x��U lpi and Diu�x�� � lpi if x�i > 0

A good will not be purchased (x�i � 0) if its marginal utility fails to

exceed the critical level lpi. Furthermore, for goods i, j that are pur-

chased, the latter condition can be equivalently expressed as

MRSij � Diu�x��
Dju�x�� �

pi

pj

�19�

The consumer optimality conditions (marginal rate of substitution equal

to price ratio) apply only to goods that are actually included in the opti-

mal consumption bundle (xj > 0). Typical practice is to focus on attention

on the goods that are actually purchased (interior solutions) and to ignore

the rest. The analyst must keep the possibility of boundary solutions in

mind, and remain alert to the complications that might arise if a change in

conditions causes the optimal solution to move away from a particular

boundary. For instance, the price and income elasticities of a unpurchased

good are zero. However, if prices and incomes change su½ciently to induce

the purchase of a previously unpurchased product, its price and income
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elasticities will become nonzero. Caviar does not feature in the shopping

baskets of the average consumer, and her price elasticity would be zero. A

su½cient fall in the price of caviar might alter that substantially.

Exercise 5.15 (Quasi-linear preferences)

Analyze the consumer's problem where

u�x� � x1 � a log x2

ensuring that consumption is nonnegative. For simplicity, assume that

p1 � 1.

Sometimes nonnegativity constraints apply to a subset of the variables,

for which we have the following variation of theorem 5.2 and corollary

5.2.1.

Exercise 5.16

Suppose that �x�; y�� is a local optimum of

max
x;y

f �x; y�

subject to g�x; y� � 0 and yV 0

and a regular point of g. Then there exist multipliers l1; l2; . . . ; lm such

that

Dx f �x�; y�� �
X

ljDxgj �x�; y�� and Dy f �x�; y��U
X

ljDygj�x�; y��

with

Dyi
f �x�; y�� �

X
ljDyi

gj�x�; y�� if yi > 0

5.3.2 The Geometric Approach

In example 5.15 we showed that the optimal choice of a consumer between

two commodities was found where the budget line is tangent to an indif-

ference curve. The tangency requirement extends to more general opti-

mization problems. Consider the optimization problem depicted in ®gure

5.5. The objective is to locate the highest point on the concave surface

while remaining on the curved constraint.

Analysis of such a problem is facilitated by considering the contours

(section 2.1.4) of the objective function and the constraint respectively, as
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in ®gure 5.6. The contour f �x� � v1 shows the set of all x at which the

objective function attains a given level v1. The second contour f �x� � v2

contains points that achieve a higher level of the objective. Choice is

constrained to lie on the curve g�x� � 0.

Clearly, no point can be an optimal solution if it is possible to move

along the constraint to a higher contour of the objective function. For

example, x̂ cannot be an optimal solution, since it is possible to move

along the constraint in the direction of x� increasing the value of f �x�.
Only at a point where the constraint curve is tangential to a contour of the

objective function is it impossible to move to a higher contour while

simultaneously satisfying the constraint. x� is such a point, since it impos-

sible to move along the constraint without reducing the value of f �x�.
Tangency between a contour of the objective function and the constraint

is a necessary condition for optimality. The point of tangency x�, which

lies on the highest possible contour consistent with the constraint curve

g�x� � 0, is the optimal solution to this constrained maximization

problem.

To show that tangency between the objective function and the con-

straint is equivalent to the ®rst-order condition (13), we observe that the

slope of the objective function at x� is given by (example 4.11)

Slope of f � ÿDx1
f �x��

Dx2
f �x��

Figure 5.5
The optimum is the highest point that is common to the objective surface and the constraint
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Similarly, the slope of the constraint at x� is

Slope of g � ÿDx1
g�x��

Dx2
g�x��

Tangency requires that these slopes be equal, that is,

Dx1
f �x��

Dx2
f �x�� �

Dx1
g�x��

Dx2
g�x��

which can be rewritten as

Dx1
f �x��

Dx1
g�x�� �

Dx2
f �x��

Dx2
g�x�� � l �20�

Letting l denote the common value, (20) can be rewritten as two

equations:

Dx1
f �x�� � lDx1

g�x��
Dx2

f �x�� � lDx2
g�x��

or more succinctly

`f �x�� � l`g�x��
This is the basic ®rst-order necessary condition for an optimum (theorem

5.2).

The same reasoning applies when there are more than two decision

variables, as in

Figure 5.6
Tangency between the constraint and the objective function
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max
x AX

f �x�

subject to g�x� � 0

The constraint g�x� � 0 de®nes a surface in X (section 4.2). A contour of

the objective function passes through every point on the constraint sur-

face. No point x on the constraint surface can be optimal if the contour of

the objective function through x intersects the constraint surface. There-

fore a necessary condition for a point x� to be optimal is that the contour

through x� is tangential to the constraint surface at x�. Tangency of two

surfaces requires that the gradient of the objective function `f �x�� be

orthogonal to the constraint surface or alternatively that their respective

normals be aligned, that is,

`f �x�� � l`g�x��
This again is the basic ®rst-order necessary condition for an optimum.

With multiple constraints, the geometric perspective becomes harder to

visualize. Provided that the constraints are di¨erentiable at x� and Dg�x��
has full rank, the feasible set is a smooth surface in X to which Dg�x��
de®nes the tangent plane at x�. Again, a point x� cannot be optimal if the

contour surface of the objective function through x� intersects the con-

straint surface. Optimality requires that the gradient of the objective

function be perpendicular (orthogonal) to the tangent plane of the con-

straint surface.

A case with two constraints is illustrated in ®gure 5.7. The feasible set is

the curve G de®ned by the intersection of the two constraint surfaces

g1�x� � 0 and g2�x� � 0. Any point on this curve is a feasible solution to

the optimization problem. An optimal solution x� requires that the gra-

dient of the objective function at x� be orthogonal to the curve at x�,
since otherwise a better point could be found. This will only be the case if

the gradient of f lies in the plane generated by the normals `g1 and `g2 to

the constraint surfaces g1 and g2 respectively. That is, optimality requires

that the gradient of the objective function at the optimal point x� be a

linear combination of the gradients of the constraints

`f �x�� � l1`g1�x�� � l2`g2�x��
where the weights lj are the Lagrange multipliers.
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Remark 5.1 The illustration in ®gure 5.6 showing two disjoint convex

sets suggests a possible role for a separation theorem. This is indeed

appropriate. Theorem 5.2 is an application of the Fredholm alternative,

which we derived from the separating hyperplane theorem (exercise 3.199).

Exercise 5.34 invites you to establish the converse, deriving the Farkas

lemma from the necessary conditions for a constrained optimization

problem. In section 5.4.5 we will apply the separating hyperplane theorem

directly to obtain a stronger theorem for a particular class of problems.

This underlines the close relationship between constrained optimization

and the separation of convex sets.

5.3.3 The Implicit Function Theorem Approach

A straightforward approach to solving some constrained optimization

problems is use the constraint to solve for some of the decision variables,

converting the problem into unconstrained optimization problem. This

technique is illustrated by the following example.

Example 5.18 (Designing a vat) Consider the problem of designing an

open rectangular vat using a given quantity A of sheet metal so as to hold

the maximum possible volume. It is seems intuitive that the base of the

vat should be square, and this intuition is correct. But what is the optimal

proportion of height to width? Should the vat be short and squat or

alternatively tall and narrow? On this, our intuition is less clear. By for-

mulating this as a problem of constrained maximization, the answer can

be readily attained.

Figure 5.7
A problem with two constraints
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For simplicity, assume that the base of the vat is square and that all the

sheet metal is utilized. There are two choice variablesÐwidth (w) and

height (h). The volume of the vat is base times height

volume � w2h

while the area of sheet metal is base plus sides

area � w2 � 4wh

The constrained maximization problem is

max
w;h

f �w; h� � w2h

subject to g�w; h� � w2 � 4whÿ A � 0

Once the size of the base is determined, the height is implicitly deter-

mined by the available sheet metal. That is, w2 is required for the base,

leaving Aÿ w2 for the four walls, which implies that the height is limited

to �Aÿ w2�=4w. That is, we can solve for h in terms of w from the

constraint

h � Aÿ w2

4w
�21�

and substitute this into the objective function

volume�w� � w2 Aÿ w2

4w
� w

Aÿ w2

4
�22�

obtaining an expression for the feasible volume in terms of w alone.

This converts the constrained maximization problem into an equivalent

unconstrained maximization problem that can be solved using the stan-

dard technique. The feasible volume (22) is maximized where

Dw volume�w� � w
Aÿ w2

4
ÿ 2w2

4
� 0

whose solution is w � ���������
A=3

p
. The corresponding h can be found by sub-

stituting in the constraint (21).

While this technique is conceptually straightforward, it is not always

possible to solve the constraint explicitly. In many problems the con-
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straint will be intractable or may not have an explicit functional form.

However, provided that the constraint is di¨erentiable, it is always possi-

ble to solve it approximately using the derivative. This is the essence of

the implicit function theorem (theorem 4.5), which provides an alternative

derivation of the Lagrange multiplier method. Using this approach, we

use the implicit function theorem to solve the constraint locally, e¨ec-

tively converting a constrained maximization problem into an equivalent

unconstrained problem using a linear approximation.

Applying the implicit function theorem to the general equality-

constrained maximization problem

max
x AX

f �x� subject to g�x� � 0 �23�

is an exercise in the manipulation of linear functions. Suppose that x�

solves (23). Provided that Dg�x�� has full rank m, we can decompose

x A Rn into two subvectors �x1; x2�, where x1 A Rm and x2 A Rnÿm such

that Dx1
g�x�� has rank m. Applying the implicit function theorem (theo-

rem 4.5) to the constraint g�x1; x2� � 0, there exists a di¨erentiable func-

tion h: Rnÿm ! Rm such that

x1 � h�x2� and g�h�x2�; x2� � 0 �24�
for all x2 in a neighborhood of x�2 and

Dx2
h�x�2 � � ÿ�Dx1

g�x���ÿ1 �Dx2
g�x�� �25�

Substituting (24) into the objective function converts the constrained

maximization problem (23) into an unconstrained maximization prob-

lem

max
x2

f �h�x2�; x2� �26�

A necessary condition for x�2 to solve (26) is that f �h�x2�; x2� be station-

ary at x�2 (theorem 5.1), that is x�2 must satisfy the ®rst-order condition

Dx2
f �h�x2�; x2� � Dx1

f �Dx2
h�Dx2

f � 0

which we obtained by using the chain rule (exercise 4.22), suppressing

function arguments for clarity. Substituting (25) yields

ÿDx1
f � �Dx1

g�ÿ1 �Dx2
g�Dx2

f � 0 �27�
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Now Dx1
f is a linear functional on Rm. Dx1

g comprises m linearly

independent functionals on Rm, which span the dual space �Rm��.
Therefore there exists l A Rm such that

Dx1
f � lT Dx1

g �28�
Substituting into (27) yields

ÿlT Dx1
g � �Dx1

g�ÿ1 �Dx2
g�Dx2

f � 0

or

Dx2
f � lT Dx2

g �29�
Combining (28) and (29) gives the necessary condition for a local optimum

Dx f �x�� � lT Dxg�x�� or `f �x�� �
Xm

j�1

lj`gj�x�� �30�

Remark 5.2 The preceding derivation provides an alternative proof of

the theorem 5.2, based on the implicit function theorem rather than the

separating hyperplane theorem. Consequently its insight and motivation

are quite distinct.

Exercise 5.17

Characterize the optimal solution of the general two-variable constrained

maximization problem

max
x1;x2

f �x1; x2�

subject to g�x1; x2� � 0

using the implicit function theorem to solve the constraint.

Exercise 5.18

The consumer maximization problem is one in which it is possible to solve

the constraint explicitly, since the budget constraint is linear. Characterize

the consumer's optimal choice using this method, and compare your deri-

vation with that in example 5.15.

5.3.4 The Lagrangean

We have established that the ®rst-order necessary condition for a con-

strained optimum is that the derivative of objective function be a linear
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combination of the derivatives of the constraints

Df �x�� �
Xm

j�1

ljDgj�x��

This can be expressed alternatively as

Df �x�� ÿ
Xm

j�1

ljDgj�x�� � 0

which is the necessary condition for a stationary value of the function

L�x; l� � f �x� ÿ
Xm

j�1

ljgj�x�

L�x; l� is called the Lagrangean and l � �l1; l2; . . . ; lm� the Lagrange

multipliers.

The Lagrangean is constructed by taking a linear combination (weighted

average) of the objective function f and the constraints gj. Stationarity of

the Lagrangean is necessary but not su½cient for a solution of the con-

strained optimization problem (7). The set of stationary points of the

Lagrangean contains all local maxima (and minima) of f on the feasible

set G � fx A X : g�x� � 0g, but it may contain other points as well. Other

conditions are needed to distinguish maxima from minima and other

critical points of the Lagrangean. Corollaries 5.2.2 and 5.2.3 give second-

order necessary and su½cient conditions analogous to theorem 5.1 and

corollary 5.1.1. For a local maximum, the Lagrangean must be locally

concave, but only with respect to the subspace of feasible perturbations.

Corollary 5.2.2 (Necessary conditions for constrained maximum) Sup-

pose that x� is a local optimum of

max
x AX

f �x� subject to g�x� � 0 �31�

and a regular point of g. Then there exist l � �l1; l2; . . . ; lm� such that

1. �x�; l� is a stationary point of the Lagrangean L�x; l� � f �x� ÿPm
j�1 ljgj�x�, that is, DxL�x�; l� � 0

2. HL�x�� is nonpositive de®nite on the hyperplane tangent to g, that is,

xT HL�x��xU 0 for every x A T � fx A X : Dg�x���x� � 0g
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Corollary 5.2.3 (Su½cient conditions for constrained maximum) Suppose

there exists x� A X and l A Rm such that

1. �x�; l� is a stationary point of the Lagrangean L�x; l� � f �x� ÿPm
j�1 ljgj�x�, that is, DxL�x�; l� � 0

2. HL�x�� is negative de®nite on the hyperplane tangent to g, that is,

xT HL�x��x < 0 for every nonzero x A T � fx A X : Dg�x���x� � 0g
Then x� is a strict local maximum of maxx AX f �x� subject to g�x� � 0.

Exercise 5.19

Prove corollary 5.2.3.

We will not prove the second part of corollary 5.2.2, since it will not be

used elsewhere in the book (see Luenberger 1984, p. 226; Simon 1986,

p. 85). Instead we develop below (corollary 5.2.4, section 5.4.3) some

global conditions that are useful in practice.

Remark 5.3 (Form of the Lagrangean) At this point it seems immaterial

whether we construct the Lagrangean by adding or subtracting the con-

straints from the objective function. If we write the Lagrangean as

L � f �P ljgj rather than L � f ÿP ljgj, we will arrive at the same

stationary values x, although the associated Lagrange multipliers will

change sign. However, when we allow for inequality constraints g�x�U 0,

the chosen form f ÿP ljgj ensures that the Lagrange multipliers are non-

negative, which is the appropriate sign for their interpretation as shadow

prices of the constraints (proposition 5.2). Also, the form f ÿP ljgj

allows the interpretation of the Lagrangean as the net bene®t function in

section 5.3.6.

In consulting other texts, you should be wary that some authors pose

the general optimization problem as

max f �x� subject to g�x�V 0

or

min f �x� subject to g�x�U 0

in which cases the most appropriate form of the Lagrangean is f �P ljgj.

Clearly, the second-order necessary conditions are always satis®ed

when the Lagrangean is concave, in which case stationarity is also su½-

cient for a global maximum.
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Exercise 5.20

Suppose that �x�; l� is a stationary point of the Lagrangean

L�x; l� � f �x� ÿ
X

ljgj�x�

and L�x; l� is concave in x. Then x� is a global solution of the problem

max
x AX

f �x� subject to g�x� � 0

In general, knowledge of the solution is required before concavity of the

Lagrangean can be veri®ed. However, in the common instance of concave

objective function and a½ne constraint, the Lagrangean is always con-

cave, providing the following useful analogue of corollary 5.1.2.

Corollary 5.2.4 (A½ne constraint) Suppose that f is concave and g is

a½ne of full rank. Then x� is a global solution of

max
x AX

f �x� subject to g�x� � 0

if and only if x� is a stationary point of the Lagrangean

L�x; l� � f �x� ÿ
X

ljgj�x�

satisfying the constraint g�x� � 0.

Proof Since g is a½ne, g�x� � h�x� � y, with h linear of full rank (exer-

cise 3.39). Therefore Dg � h and g is regular. Therefore, if x� is a (local)

optimum, it is necessary that the Lagrangean is stationary. Conversely,

since an a½ne function is both concave and convex (exercise 3.130), the

Lagrangean

L�x; l� � f �x� ÿ
X

ljgj�x�

is concave irrespective of the sign of lj (exercise 3.131). By exercise 5.20,

every stationary point is a global optimum. r

Remark 5.4 If we knew that the Lagrange multipliers were nonnegative,

then corollary 5.2.4 could be generalized to convex constraints. In gen-

eral, however, the sign of the Lagrange multipliers are not restricted,

which is why corollary 5.2.4 is limited to an a½ne constraint function. We

will provide more general su½ciency conditions in section 5.4.3.
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It is sometimes said that the Lagrangean technique converts constrained

maximization into unconstrained maximization. This is incorrect. Corol-

lary 5.2.2 states that if x� maximizes f on G, then x� must be stationary

point of the Lagrangean L. This does not imply that x� maximizes L on

X (example 5.19). However, x� does maximize L on the feasible set G

(exercise 5.21).

Example 5.19 The point �1; 1� is the only optimum of the problem

max
x1;x2

x1x2 subject to x1 � x2 � 2

At the optimum the Lagrange multiplier l� � 1 and the optimum �1; 1� is

in fact a saddle point of the Lagrangean

L�x1; x2; l
�� � x1x2 ÿ �x1 � x2 ÿ 2�

It maximizes the Lagrangean along the constraint x1 � x2 � 2.

Exercise 5.21

If x� maximizes f �x� on G � fx A X : g�x� � 0g, then x� maximizes the

Lagrangean L � f �x� ÿP ljgj�x� on G.

Example 5.20 (Designing a vat) Consider again the vat design problem

(example 5.18)

max
w;h

f �w; h� � w2h

subject to g�w; h� � w2 � 4whÿ A � 0

The Lagrangean for this problem, formed by adjoining the constraint (area)

to the objective function (volume), is

L�w; h� � w2hÿ l�w2 � 4whÿ A� �32�
where l is the Lagrange multiplier. The solution requires that the

Lagrangean be stationary, for which it is necessary that

DwL�w; h� � 2whÿ l�2w� 4h� � 0

DhL�w; h� � w2 ÿ l4w � 0

To solve these necessary conditions for the optimal solution, we rewrite

these equations as
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2wh � l�2w� 4h� �33�
w2 � l4w �34�
Divide (33) by (34),

2wh

w2
� l�2w� 4h�

l4w

and cancel the common terms to give

2h

w
� w� 2h

2w
� 1

2
� h

w

which can be solved to yield

h

w
� 1

2
or h � 1

2
w �35�

We conclude that squat vat, whose height is half the width, is the optimal

design.

Note that we derived the desired conclusion, namely h � w=2, without

actually solving for h and w. This is a common feature of economic

applications, where the desired answer is not a speci®c number but a rule

or principle that applies to all problems of a given type. In this example

the rule is that the height should be half the width. An analogous result in

economics is that the consumer should allocate expenditure so that the

marginal rate of substitution is equal to the ratio of relative prices. To ®nd

the actual dimensions of the optimal vat, we substitute (35) into the con-

straint, yielding

w �
����
A

3

r
; h �

�����
A

12

r
�36�

Exercise 5.22

Show that the volume of the vat is maximized by devoting one-third of

the material to the ¯oor and the remaining two-thirds to the walls.

Exercise 5.23

Design a rectangular vat (open at the top) of 32 cubic meters capacity so

as to minimize the required materials.
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Example 5.21 (The consumer's problem) The Lagrangean for the con-

sumer's problem (example 5.15) is

L�x; l� � u�x� ÿ l�pT xÿm�
A necessary condition for an optimal solution is that the Lagrangean be

stationary, that is,

DxL�x�; l� � Dxu�x�� ÿ lp � 0

or

`u�x�� � lp

which is the standard ®rst-order condition (16) for maximizing utility. If

the utility function is concave, the ®rst-order condition is also su½cient,

since the budget constraint is a½ne (corollary 5.2.4).

Exercise 5.24

Solve the problem

min
x1;x2;x3

x2
1 � x2

2 � x2
3

subject to 2x1 ÿ 3x2 � 5x3 � 19

The Lagrangean converts the search for constrained extrema into an

unconstrained search for stationary points, at the cost of introducing

additional variables lj . With n decision variable and m constraints, the

®rst-order conditions for stationarity of the Lagrangean yield a system of

n equations in the n decision variables xi and the m unknown multipliers

lj. Together with the m constraints, we have n�m equations in n�m

unknowns. In principle, these can be solved to yield the optimal solution

x� and l�. Since these equations are typically nonlinear, there is no

unique general method for their solution and often a general solution is

not tractable. Fortunately, in economic applications, an explicit solution

is often not required. The desired results are obtained by manipulation of

the ®rst-order conditions, as we did in example 5.21.

In those cases where it is necessary, facility in solving the ®rst-order

conditions comes with practice and the accumulation of small number of

successful techniques, which are illustrated in the following examples.

Example 5.20 illustrated one technique, in which the Lagrange multiplier
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is eliminated from the ®rst-order conditions. Example 5.22 also uses this

technique.

Example 5.22 A consumer's preferences over two goods can be repre-

sented by the utility function

u�x� � ����������
x1x2
p

Suppose that the consumer's income is $12, and the two goods are priced

at p1 � 1 and p2 � 2 respectively. We wish to ®nd the consumer's optimal

consumption bundle. The Lagrangean is

L�x; l� � ����������
x1x2
p ÿ l�x1 � 2x2 ÿ 12�

Necessary conditions for the Lagrangean to be stationary are

Dx1
L�x; l� �

�����
x2

x1

r
ÿ l � 0

Dx2
L�x; l� �

�����
x1

x2

r
ÿ 2l � 0

or �����
x2

x1

r
� l

�����
x1

x2

r
� 2l

We can eliminate the unknown multiplier l by dividing one equation into

the other������������
x2=x1

p������������
x1=x2

p � l

2l

which simpli®es to

x1 � 2x2

From the budget constraint, we conclude that

x�1 � 6 and x�2 � 3
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Exercise 5.25

Generalize the preceding example to solve

max
x

u�x� � xa
1 x1ÿa

2

subject to p1x1 � p2x2 � m

Another useful technique uses the ®rst-order conditions to express the

decision variables in terms of the Lagrange multiplier. These are then

substituted in the constraint, which is solved for an explicit value for the

Lagrange multiplier. In turn, this yields an explicit solution for the deci-

sion variables. This technique is used in the following example.

Example 5.23 (Logarithmic utility function) A very common speci®c

functional form is the log-linear utility function

u�x� �
Xn

i�1

ai log xi

where without loss of generality we can assume that
Pn

i�1 ai � 1. The

Lagrangean for the consumer's problem

max
x AX

u�x� �
Xn

i�1

ai log xi subject to
Xn

i�1

pixi � m

is

L�x; l� �
Xn

i�1

ai log xi ÿ l
Xn

i�1

pixi ÿm

 !

Stationarity requires that

Dxi
L�x; l� � ai

xi
ÿ lpi � 0

or

ai � lpixi �37�
Summing over all goods and substituting in the budget constraint

1 �
Xn

i�1

ai � l
Xn

i�1

pixi � lm
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which implies that

l � 1

m

Substituting in (37), we conclude that utility maximization requires that

the consumer spends proportion ai on good i, that is,

pixi � ai

m

Solving, the optimal quantity of good i is

xi � ai
m

pi

Exercise 5.26

Solve the general Cobb-Douglas utility maximization problem

max
x

u�x� � xa1

1 aa2

2 . . . xan
n

subject to p1x1 � p2x2 � � � � pnxn � m

[Hint: Follow the technique in example 5.23.]

Exercise 5.27 (CES production function)

A common functional form in production theory is the CES (constant

elasticity of substitution) function

y � f �x� � �a1x
r
1 � a2x

r
2 �1=r

In this case the competitive ®rm's cost minimization problem is

min
x1;x2

w1x1 � w2x2

subject to f �x� � �a1x
r
1 � a2x

r
2 �1=r � y

To facilitate solution, it is convenient to assume that the inputs are

denominated so that a1 � a2 � 1 and to rewrite the constraint so that the

problem becomes

min
x1;x2

w1x1 � w2x2

subject to x
r
1 � x

r
2 � yr

Find the cost-minimizing input levels for given values of w1, w2, and y.
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We have shown that the optimal solution of a constrained maxi-

mization problem is necessarily a stationary point of the Lagrangean.

Not only does this provide a powerful aid to solution, the Lagrangean

function and its associated Lagrange multipliers have an insightful eco-

nomic interpretation, as we explore in the next section.

5.3.5 Shadow Prices and the Value Function

We now introduce a parameter into functional constraints. Speci®cally,

we consider the family of optimization problems

max
x AX

f �x�

subject to g�x� � c

and explore how the value attained varies with the parameter c.

Suppose that for every c, there is a unique optimal solution x��c�. In

general, the variation of x� with c is complex. However, the variation

of f �x�� with c can be readily estimated. Let dx denote the change in x

following a change dc in c. Then the increase in f �x� is approximated by

the derivative

df � f �x� � dx� ÿ f �x��ADf �x���dx� �38�
To satisfy the constraints, dx must satisfy (to a linear approximation)

Dgj�x���dx� � dcj for every j � 1; 2 . . . m

But we know that x� satis®es the ®rst-order condition (12)

Df �x�� �
Xm

j�1

ljDgj�x��

and therefore substituting into (38),

df � Df �x���dx� �
Xm

j�1

ljDgj�x���dx� �
Xn

j�1

lj dcj � lT dc

The change in the optimal value of the objective function f �x�� following

a change in the level of the constraint dc is equal to lT dc, where

l � �l1; l2; . . . ; lm� is the vector of Lagrange multipliers. Each Lagrange

multipliers measures the rate of change of the objective function with
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respect to the level of the corresponding constraint. This is the essential

insight of the following proposition, which will be proved in chapter 6.

Proposition 5.2 (Shadow prices) Let x� be a strict local optimum for the

equality-constrained maximization problem

max
x AX

f �x�

subject to g�x� � c

If f and g are C2 and Dg�x�� is of full rank, then the value function

v�c� � supf f �x� : g�x� � cg
is di¨erentiable with `v�c� � l, where l � �l1; l2; . . . ; lm� are the

Lagrange multipliers associated with x�.

Example 5.24 (Marginal utility of income) For the utility maximising

consumer, an increase in income m will lead to a change in consumption

x� and a corresponding increase in utility. Without restrictions on con-

sumer preferences, the change in consumption x� cannot be easily charac-

terized. However, the change in u�x�� can. The change in utility following

a unit increase in income is measured by l, the Lagrange multiplier.

Hence l is called the marginal utility of income. The basic necessary con-

dition for utility maximization (10),

Dx1
u�x��
p1

� Dx2
u�x��
p2

� l

can be interpreted as saying that, at the optimal consumption bundle x�,
it is immaterial how a small increment in income is divided among the

di¨erent goods. The change in utility is the same no matter how the

increment in income is spent.

Example 5.25 (Marginal cost) In the cost minimization problem of the

competitive ®rm, the Lagrange multiplier measures an important eco-

nomic quantity. The level of the constraint is the desired level of output

and the objective function is the cost of production. The Lagrange multi-

plier measures the additional cost of producing an additional unit of out-

put, that is the marginal cost. The ®rst-order conditions for a competitive

®rm (example 5.16) can be written as
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l � marginal cost � wi

Dxi
f �x�� for every i

If the input mix is chosen optimally, it is immaterial which inputs are used

to produce a marginal increase in output.

Comparing the ®rst-order conditions for the cost minimization problem

of the competitive ®rm

w � l`f �x��
with those of the corresponding pro®t maximization problem (example

5.11)

p`f �x�� � w

establishes the elementary rule characterizing the pro®t maximizing level

of output, p � l � marginal cost.

Example 5.26 (Vat design) Recall the problem of designing a volume-

maximizing vat (example 5.18). After completing the design, the engineer

discovers a small quantity of additional sheet metal. She does not have to

redesign the vat in order to determine the additional volume possible.

Rather, it can be calculated simply by multiplying the additional area dA

by the Lagrange multiplier l, that is,

Additional volume � l dA

From equation (34), we ®nd that

l � w

4
�39�

Substituting in (36) yields

l �
�����
A

48

r
�40�

This measures the shadow price of the available sheet metal in terms of

terms of the area available. For example, if the available sheet metal

A � 12 square meters, then the shadow price of sheet metal is

l �
�����
12

48

r
� 1

2
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Any additional sheet metal is worth approximately one-half a cubic meter

of volume.

Suppose that instead of discovering additional sheet metal, a trader

arrives o¨ering to sell sheet metal at a price q per square meter. Assume

further that the volume of the vat is worth p per cubic meter. Then, pur-

chasing additional sheet metal is worthwhile provided the additional

volume l dA is worth more than the cost of the additional sheet metal

q dA, that is,

value of volume � pl dAV q da � cost

or plV q. l measures the shadow price of sheet metal in units of volume,

and so pl measures the shadow price of sheet metal in dollars. w measures

the market price of sheet metal. Purchasing additional sheet is worthwhile

as long as its shadow price pl exceeds its market price.

One of the useful products of the Lagrangean approach to constrained

optimization problems is the automatic generation of shadow prices,

which measures the costliness of the constraint in terms of the objective

function. These frequently have an immediate role in economic discus-

sion. For example, the marginal utility of income and the marginal cost

are central concepts in consumer theory and producer theory respectively.

While the Lagrange multipliers express shadow prices in the units of the

objective function (utility, cost, volume), these can often be related directly

to market prices as in the previous example.

5.3.6 The Net Bene®t Approach

The preceding discussion of shadow prices leads to yet another approach

to the Lagrange multiplier method, a fundamentally economic approach

to the problem. Again, we introduce the idea by means of an example.

Example 5.27 (Designing a vat) Let us assume that the person charged

with designing the vat subcontracts the problem to another decision maker,

remunerating the latter according the volume produced and charging her

for the sheet metal used (and rewarding her for sheet metal left over).

That is, the vat owner puts a price of l on the sheet metal and instructs

the designer to maximize the net pro®t, namely

P�w; h� � f �w; h� ÿ lg�w; h� � w2hÿ l�w2 � 4whÿ A� �41�
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Equation (41) is precisely the Lagrangean for the vat design problem (32),

the ®rst-order conditions for maximizing which are given by equations

(33) and (34), which yield the rule

h � 1
2 w

Note that we achieve this result without specifying the price l of the sheet

metal. In choosing w and h to maximize net pro®t (41), the designer will

always design a vat of the optimal proportions irrespective of the price of

the sheet metal. However, the size of the vat will be governed by the price

of the sheet metal. By adjusting the price, the owner can ensure that the

designer uses all the available sheet metal.

Exercise 5.28

In the vat design problem, suppose that 48 square meters of sheet metal is

available. Show that if the shadow price of sheet metal is 1, designing a

vat to maximize the net pro®t function produces a vat of the optimal

shape and exactly exhausts the available metal.

Example 5.27 gives the fundamental economic insight of the Lagrangean

method. We impute a price to each constraint and maximize the net

bene®t function

L�x; l� � f �x� ÿ
X

ljgj�x� �42�

consisting of the objective function minus the imputed value of the con-

straints. The ®rst-order conditions for unconstrained maximization of the

net bene®t (42) de®ne the optimal value of x in terms of the shadow prices

l. Together with the constraints, this enables us to solve for both the

optimal x and the optimal shadow prices.

Example 5.28 (The competitive ®rm again) The Lagrangean for the

competitive ®rm's cost minimization problem is

L�x; l� � wT xÿ l� f �x� ÿ y�
which can be rewritten as

L�x; l� � ÿ�lf �x� ÿ wT x� � ly �43�
The ®rst term (in brackets) corresponds to the ®rm's net pro®t when the

output is valued at price l. For ®xed y, minimizing (43) is equivalent to
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maximizing the net pro®t

P � lf �x� ÿ wT x

The pro®t-maximizing output level f �x�� will vary with the shadow price

l. Setting the shadow price equal to the marginal cost of production at

y will ensure that pro®t maximizing output level f �x�� is equal to the

required output level y.

Example 5.29 (Electricity generation) An electricity company operates n

generating plants. At each plant i, it costs ci�xi� to produce xi units of

electricity. If the company aims to meet electricity demand D at minimum

cost, its optimization problem is

min
x

Xn

i�1

ci�xi� subject to
Xn

i�1

xi � D

The Lagrangean is

L�x; l� �
Xn

i�1

ci�xi� ÿ l
Xn

i�1

xi ÿD

 !

which can be rewritten as

L�x; l� �
Xn

i�1

ci�xi� � l Dÿ
Xn

i�1

xi

 !
�44�

Suppose that the company has the option of purchasing electricity from

outside suppliers at a price l. Then the Lagrangean (44) represents the

sum of the costs of producing electricity at its own plants and purchasing

electricity from outside. For any arbitrary price l, the company will choose

an optimal mix of its own production and outside purchase to minimize

the total costs.

The ®rst-order conditions for a minimum of (44) are

Dxi
L�x; l� � Dxi

ci�xi� ÿ l � 0 for every i �45�
Optimality requires that the company utilize each plant to the level at

which its marginal cost is equal to the alternative price l. As the price

increases, the proportion of demand that it satis®es from its own resources

will increase. At some price l� the company will be induced to ®ll total
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demand D from its own production. This is the shadow price which arises

from the solution of (45) together with the constraintXn

i�1

xi � D

and is the marginal cost of producing the total demand D from its own

plants.

Exercise 5.29

Show how the shadow price can be used to decentralize the running of the

power company, leaving the production level at each plant to be deter-

mined locally.

5.3.7 Summary

We see that the Lagrangean approach to constrained maximization is

not just a convenient mathematical trick for converting constrained to

unconstrained problems (as it is sometimes presented). It embodies a

fundamentally economic approach to constrained maximization, which

proceeds by putting a price on the constrained resources and maximizing

the net bene®t. You will enhance your understanding of constrained

maximization immensely by keeping this interpretation at the forefront of

your mind.

To recap, we have derived the basic necessary conditions, stationarity

of the Lagrangean, in four di¨erent ways. They are:

Perturbation If a decision x� is an optimal solution, it must be impossible

to change or perturb x� in any way consistent with the constraints and

increase the value of the objective function. Using linear approximations

to de®ne the set of perturbations consistent with the constraints and also

to measure the impact on the objective function, we showed that the

impossibility of ®nding a value-improving perturbation led directly to the

basic necessary conditions.

Geometric For a two-dimensional problem with a single constraint, it

is obvious that an optimal solution must occur at a point of tangency

between the constraint curve and the contours of the objective function.

In a multidimensional problem, this generalizes to the objective function

being orthogonal to the tangent space of the constraint.
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Implicit function theorem A natural way to attempt to solve a constrained

maximization problem is to use the constraint to eliminate some of the

decision variables, thus converting a constrained problem into an equiv-

alent unconstrained problem. In general, this technique is not available

because the constraints are not given explicit functional forms. However,

if the functions are di¨erentiable, we can use the implicit function theo-

rem to solve the constraints locally. This is equivalent to using a linear

approximation to solve the constraint, and yields the basic necessary

conditions.

Net bene®t An economist might approach a constrained maximization

problem by putting a price on the constrained resources and attempting

to maximize the net bene®t. The net bene®t function is precisely the

Lagrangean. Maximizing the net bene®t requires stationarity of the

Lagrangean. The Lagrange multipliers are the appropriate shadow prices

that lead to utilization of the available resources.

All four approaches lead to the same ®rst-order necessary condition for

the solution of the constrained maximization problem

max f �x� subject to g�x� � 0

namely that the Lagrangean L�x; l� � f �x� ÿP ljgj�x� be stationary,

that is,

DxL�x; l� � Dx f �x� ÿ
X

ljDxgj�x� � 0

This is one of the must frequently used results in mathematical economics.

5.4 Inequality Constraints

In this section we analyze a constrained optimization problem in which

the functional constrains are inequalities, as in

max f �x� subject to g�x�U 0

Super®cially the generalization of our results to inequality constraints

seems quite straightforward. Simply disregarding those constraints which

are not binding, we can adapt our previous results to obtain necessary

conditions for a local optimum (section 5.3). However, subtle di½culties
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arise. Optima often appear on the boundary of the feasible set, compli-

cating the determination of the set of feasible perturbations to be used in

characterizing local optima. The regularity condition becomes too strin-

gent and di½cult to verify, yet some constraint quali®cation is required to

guard against invalid inferences (section 5.4.2). On the other hand, when

the objective function f is concave and the functional constraints gj are

convex, a beautiful alternative derivation is obtainable that leads to

stronger and more robust conclusions (section 5.4.5).

5.4.1 Necessary Conditions

Suppose that x� is a local solution of the problem

max
x AX

f �x� �46�

subject to gj�x�U 0; j � 1; 2; . . . ;m

Constraint j is binding at x� if gj�x�� � 0. Otherwise, gj�x�� < 0, and

constraint j is slack. Let

B�x�� � f j : gj�x�� � 0g
be the set of binding constraints at x�.

Disregarding for the time being the slack constraints, the optimal solu-

tion x� to (46) must a fortiori solve the restricted equality constrained

problem

max
x AX

f �x� �47�

subject to gj�x� � 0 for every j A B�x��
Given that the binding constraints B�x�� satisfy the regularity condition,

we can apply theorem 5.2 to (47) to derive the ®rst-order condition that

the gradient of f �x�� be a linear combination of the gradients of the

binding constraints, that is,

`f �x�� �
X

j AB�x ��
lj`gj�x��

Furthermore we can deduce the sign of the Lagrange multipliers. Let v

denote the value function for the family of problems
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max
x AX

f �x� �48�

subject to gj�x� � cj for every j A B�x��
By the envelope theorem (proposition 5.2), lj � Dcj

v�c�. Because of the

direction of the original inequalities gj�x�U 0, increasing cj implies relax-

ing the constraint and expanding the feasible set. This cannot reduce the

attainable value, so the value function must be increasing in cj, that is,

lj � Dcj
v�c�V 0 for every j A B�x��. The Lagrange multipliers must be

nonnegative.

Assigning zero multipliers to the slack constraints (lj � 0 for every

j B B�x��), we can extend the sum to all the constraints

`f �x�� �
X

j AB�x��
lj`gj�x�� �

X
j BB�x ��

lj`gj�x��

�
Xm

j�1

lj`gj�x�� �49�

where

lj V 0 and lj � 0 if gj�x�� < 0 for every j � 1; 2; . . . ;m �50�
The ®rst condition (49) is the same as (13) with the additional require-

ment that the Lagrange multipliers lj be nonnegative. The second condi-

tion (50) requires that for every constraint either

1. the constraint is binding (gj�x�� � 0), or

2. the Lagrange multiplier is zero (lj � 0), or

3. both

This is known as the complementary slackness condition, and can be

expressed concisely as

ljgj�x�� � 0 for every j �51�
since the zero product requires that at least one of the terms are zero.

Finally, what about the regularity condition? The condition necessary

to apply theorem 5.2 involves only to the binding constraints. We do not

require that x� be a regular point of g as a whole. It su½ces if x� is a

regular point of the binding components of g. To this end, we will say that
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binding constraints B�x�� are regular at x� if their gradients `gj�x��,
j A B�x�� at x� are linearly independent.

We have established the fundamental theorem of nonlinear program-

ming, usually attributed to Kuhn and Tucker. After stating the theorem,

we will present an alternative proof based on the Farkas lemma. This

leads to an insightful geometric characterization. Exercise 5.32 invites yet

another derivation from earlier work.

Remark 5.5 (Mixed problems) It is worth noting that our derivation

applies equally to mixed problems in which there is a mixture of equality

and inequality constraints, provided the regularity condition is satis®ed by

the equality constraints and the binding constraints jointly. The Lagrange

multipliers attached to binding inequality constraints are necessarily non-

negative, whereas those attached to equality constraints are unrestricted

in sign.

Although mixed problems arise regularly in practice, it is customary to

maintain the distinction in theoretical treatments, since it is constraint

quali®cations become complicated for mixed problems. Indeed, the dis-

tinction is rather arti®cial, since it is usually straightforward to transform

from one to the other by rephrasing the problem.

Theorem 5.3 (Kuhn-Tucker theorem) Suppose that x� is a local optimum

of

max
x

f �x� �52�

subject to g�x�U 0

and the binding constraints are regular at x�. Then there exist unique

multipliers l1; l2; . . . ; lm V 0 such that

`f �x�� �
Xm

j�1

lj`gj�x�� and ljgj�x�� � 0; j � 1; 2 . . . ;m

Proof We give an alternative proof which follows the perturbation

approach which we used to establish theorem 5.2. Suppose that x� solves

(52). That is, x� maximizes f �x� subject to g�x�U 0. If this is so, there

must be no feasible perturbation which achieves a higher level of f �x�.
Determining the set of feasible perturbations requires distinguishing

between binding and slack constraints. Let B�x�� denote the set of con-
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straints that are binding at x� and let S�x�� be the set of slack constraints

at x�. That is,

gj�x�� � 0 for every j A B�x��
gj�x�� < 0 for every j A S�x��
If S�x�� is nonempty, then by continuity there exists an open set U about

x� such that gj�x� < 0 for every x A U and j A S�x��. That is, the slack

constraints remain slack in an neighborhood of x�, and therefore they

place no restrictions on the feasible perturbations provided the perturba-

tions are su½ciently small.

A perturbation dx is feasible provided gj�x� � dx�U 0 for every

j A B�x�� or to a linear approximation (and provided the binding con-

straints are regular)

dgj � gj�x� � dx� ÿ gj�x��ADgj�x�� dxU 0 �53�
For all perturbations dx satisfying (53), we must have

f �x��V f �x� � dx�A f �x�� �Df �x���dx�
This implies that a necessary condition for x� to maximize f �x� subject

to g�x�U 0 is

Df �x���dx�U 0

for all dx such that

Dgj�x���dx�U 0 for every j A B�x�� �54�
which should be compared to the corresponding condition (12) for

equality-constrained problems. Condition (54) can be expressed alter-

natively as saying that there does not exist any perturbation dx A Rn such

that

Dg�x���dx�U 0 for every j A B�x�� and Df �x���dx� > 0

In other words, it is impossible to ®nd any change from x� which simul-

taneously continues to satisfy the binding constraints and improves on the

objective criterion.

To derive a useful criterion, we again draw on chapter 3. The deriva-

tives of the objective function Df �x�� and the constraints Dgj�x�� are linear

functionals. We can apply the Farkas lemma (proposition 3.18) to (54) to
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deduce that Df �x�� in the conic hull of the Dgj�x��. That is, there exists

nonnegative multipliers l1; l2; . . . ; lm such that

Df �x�� �
X

j AB�x ��
ljDgj�x��

Regularity implies that the multipliers are unique. If we assign zero

multipliers to the slack constraints, we can extend the sum to all the

constraints

Df �x�� �
X

j AB�x ��
ljDgj�x�� �

X
j AS�x ��

ljDgj�x�� �
Xm

j�1

ljDgj�x��

Representing the derivatives by their gradients gives the expression in the

theorem. In addition every constraint j is either binding (gj�x�� � 0) or

slack (gj�x�� < 0), with lj � 0 for the slack constraints. Since gj�x��U 0

and lj V 0, this is expressed concisely by the condition ljg�x�� � 0 for

every j. r

In application, it is usually more convenient to express these conditions

in terms of stationarity of the Lagrangean.

Corollary 5.3.1 (Kuhn-Tucker conditions) Suppose that x� is a local

solution of

max
x

f �x� �55�

subject to g�x�U 0

and the binding constraints are regular at x�. Then there exist unique

multipliers l � �l1; l2; . . . ; lm�V 0 such that the Lagrangean

L�x; l� � f �x� ÿ
Xm

j�1

ljgj�x�

is stationary at �x�; l�, that is,

DxL�x�; l� � Dx f �x�� ÿ
Xm

j�1

ljDxgj �x�� � 0 and ljgj�x�� � 0 �56�

for every j � 1; 2; . . . ;m.
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These necessary ®rst-order conditions for optimality (56) are known as

the Kuhn-Tucker conditions.

Example 5.30 To solve the problem

max
x1;x2

6x1 � 2x1x2 ÿ 2x2
1 ÿ 2x2

2

subject to x1 � 2x2 ÿ 2U 0

ÿx1 � x2
2 ÿ 1U 0

we look for stationary values of the Lagrangean

L�x1; x2; l1; l2� � 6x1 � 2x1x2 ÿ 2x2
1 ÿ 2x2

2 ÿ l1�x1 � 2x2 ÿ 2�
ÿ l2�ÿx1 � x2

2 ÿ 1�
that satisfy the complementary slackness conditions. The ®rst-order con-

ditions for stationarity are

Dx1
L � 6� 2x2 ÿ 4x1 ÿ l1 � l2 � 0 �57�

Dx2
L � 2x1 ÿ 4x2 ÿ 2l1 ÿ 2l2x2 � 0 �58�

while the complementary slackness conditions are

x1 � 2x2 ÿ 2U 0; l1 V 0; l1�x1 � 2x2 ÿ 2� � 0

ÿx1 � x2
2 ÿ 1U 0; l2 V 0; l2�x1 ÿ x2

2 ÿ 1� � 0

This reduces the problem to one of ®nding a solution to this system of

equations and inequalities. Typically some trial and error is involved.

Suppose, for a start, that l1 > 0 and l2 > 0 so that both constraints are

binding. That is, suppose that

x1 � 2x2 � 2 and ÿx1 � x2
2 � 1

These equations have a unique solution x1 � 0 and x2 � 1. Substituting in

(57) and (58) gives

8ÿ l1 � l2 � 0 and ÿ4ÿ 2l1 ÿ 2l2 � 0

These equations have a unique solution l1 � 3 and l2 � ÿ5. Since l2 < 0,

we conclude that this cannot be a local optimum. Therefore at least one of

the constraints must be slack at the optimum.
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Suppose next that the second constraint is slack so l2 � 0. The binding

constraint is regular for all x1 and x2. The ®rst-order conditions and

the binding constraint constitute a systems of three equations in three

unknowns, namely

6� 2x2 ÿ 4x1 ÿ l1 � 0

2x1 ÿ 4x2 ÿ 2l1 � 0

x1 � 2x2 � 2

which have a unique solution x1 � 10=7, x2 � 2=7, l1 � 6=7 that satis®es

the second inequality

ÿ 10

7
� 2

7

� �2

� ÿ 66

49
< 1

This point satis®es the necessary conditions for a local optimum.

For completeness, we should really check the case in which the ®rst

constraint is slack and l1 � 0, yielding the system

6� 2x2 ÿ 4x1 � l2 � 0

2x1 ÿ 4x2 ÿ 2l2x2 � 0

ÿx1 � x2
2 � 1

This system has three solutions, but each solution has l2 < 0. Therefore

there cannot be a solution with the ®rst constraint slack.

We conclude that x1 � 10=7, x2 � 2=7 is the only possible solution of

the problem. In fact this is the unique global solution.

Exercise 5.30

Solve the problem

max x1x2

subject to x2
1 � 2x2

2 U 3

2x2
1 � x2

2 U 3

Example 5.31 (The consumer's problem) Previously (example 5.15) we

assumed that the consumer would spend all her income. Dispensing with

this assumption, the consumer's problem is
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max
x AX

u�x�

subject to pT xUm

The constraint g�x� � pT xÿmU 0 satis®es the regularity condition,

since `g�x� � p0 0. The Lagrangean is L�x; l� � u�x� ÿ l�pT xÿm�. If

x� is optimal, then it must satisfy the Kuhn-Tucker conditions

DxL�x�; l� � Du�x�� ÿ lp � 0 and l�pT xÿm� � 0 �59�
Two cases must be distinguished.

Case 1. lI 0 This implies that pT x � m, the consumer spends all her

income. Condition (59) implies that

Dxi
u�x�� � lpi for every i

Case 2. lF 0 This allows the possibility that the consumer does not

spend all her income. Substituting l � 0 in (59), we have

Dxi
u�x�� � 0 for every i

At the optimal consumption bundle x�, the marginal utility of every good

is zero. The consumer is satiated; that is, no additional consumption can

increase satisfaction.

We conclude that at the optimal consumption bundle, either the con-

sumer is satiated or she spends all her income.

Example 5.32 (Rate of return regulation) A regulated monopolist pro-

duces a single output y from two inputs: capital, k, and labor, l, utilizing

the technology (production function) y � f �k; l�. The unit costs of labor

and capital are w and r respectively. Demand for the ®rm's product is

represented by the inverse demand function p�y�. The ®rm's pro®t is

P�k; l� � p�y�yÿ rk ÿ wl � p� f �k; l�� f �k; l� ÿ rk ÿ wl

To facilitate analysis, it is convenient to de®ne the revenue function

R�k; l� � p� f �k; l�� f �k; l�
so that pro®t is given by

P�k; l� � R�k; l� ÿ rk ÿ wl
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The regulator imposes a ceiling s > r on the ®rm's rate of return to

capital, that is,

R�k; l� ÿ wl

k
U s

Therefore the regulated ®rm's optimization problem is to choose k and l

so as to maximize its total pro®t consistent with the constraint, that is,

max
k; l

P�k; l� � R�k; l� ÿ rk ÿ wl

subject to R�k; l� ÿ wl ÿ sk U 0

We investigate the e¨ect of the pro®t constraint on the ®rm's optimal

production decision.

Provided that the constraint satis®es the regularity condition, there

exists a nonnegative multiplier lV 0 such that the Lagrangean

L�k; l; l� � R�k; l� ÿ rk ÿ wl ÿ l�R�k; l� ÿ wl ÿ sk�
is stationary at the optimal solution. That is,

DkL�k �; l �; l� � DkR�k �; l �� ÿ rÿ lDkR�k �; l �� � ls � 0

DlL�k �; l �; l� � �1ÿ l�DlR�k �; l �� ÿ �1ÿ l�w � 0

with

l�R�k; l� ÿ wl ÿ sk� � 0

These ®rst-order conditions can be rewritten as

�1ÿ l�DkR�k �; l �� � �1ÿ l�rÿ l�sÿ r� �60�
�1ÿ l�DlR�k �; l �� � �1ÿ l�w
l�R�k �; l �� ÿ wl ÿ sk� � 0

Given that r > s, (60) ensures that l0 1. Therefore the ®rst-order con-

ditions can be further simpli®ed to give

DkR�k �; l �� � rÿ l�sÿ r�
1ÿ l

DlR�k �; l �� � w

l�R�k �; l �� ÿ wl ÿ sk� � 0
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To verify that these conditions are necessary for an optimum, we have

to con®rm that the regularity condition is satis®ed at �k �; l ��, a step that is

often overlooked. The constraint is

g�k; l� � R�k; l� ÿ wl ÿ sk U 0

with gradient

`g�k; l� � �DkRÿ s;DlRÿ w�
Substituting from the ®rst-order conditions, the gradient of the constraint

at �k �; l �� is

`g�k�; l �� � 1

1ÿ l
; 0

� �
0 0

Since the gradient is nonzero, any solution of the ®rst-order conditions

satis®es the regularity condition, and therefore the ®rst-order conditions

are necessary for a solution.

In characterizing the optimal solution, we distinguish two cases:

Case 1. lF 0 The regulatory constraint is not (strictly) binding and the

®rm's ®rst-order conditions for pro®t maximization reduce to those for

an unregulated monopolist, namely produce where marginal revenue

product is equal to factor cost:

DkR�k �; l �� � r

DlR�k �; l �� � w

Case 2. lI 0 The regulatory constraint is binding. The ®rst-order con-

ditions are

DkR�k �; l �� � rÿ l�sÿ r�
1ÿ l

DlR�k �; l �� � w

R�k; l� ÿ wl � sk

Compared to the unregulated ®rm, the pro®t constraint drives a wedge

between the marginal revenue product of capital and its price. Using the

second-order condition for a maximum, it can be shown (Baumol and

Klevorick 1970) that 0 < l < 1, and therefore that DkR�k; l� < r at the
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optimal solution. The ®rm uses capital ine½ciently, in that its marginal

revenue product is less than its opportunity cost.

Exercise 5.31

Develop the conclusion of the preceding example to show that the regu-

lated ®rm does not produce at minimum cost (see example 5.16).

Exercise 5.32

Inequality constraints gj�x�U 0 can be transformed into to equivalent

equality constraints by the addition of slack variables sj V 0,

gj�x� � sj � 0

Use this transformation to provide an alternative derivation of theorem

5.3 from theorem 5.2. Disregard the regularity condition.

Exercise 5.33

An equality quality constraint g�x� � 0 can be represented by a pair of

inequality constraints

g�x�U 0; g�x�V 0

Use this transformation to derive theorem 5.2 from theorem 5.3. Dis-

regard the regularity condition.

Exercise 5.34

Use the Kuhn-Tucker conditions to prove the Farkas alternative (propo-

sition 3.19). [Hint: Consider the problem maximize cT x subject to

AxU 0.]

Nonnegative Variables

Suppose (as is often the case) that the decision variables are restricted to

be nonnegative so that the optimization problem is

max
xV0

f �x�

subject to g�x�U 0

which can be written in standard form as

max
x

f �x� �61�

subject to g�x�U 0 and h�x� � ÿxU 0
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Suppose that x� is a local optimum of (61) and the binding constraints

(including the nonnegativity constraint h) are regular at x�. Applying the

Kuhn-Tucker theorem (theorem 5.3), there exist l � �l1; l2; . . . ; lm�V 0

and m � �m1; m2; . . . ; mn�V 0 such that

`f �x�� �
Xm

j�1

lj`gj�x�� � m �62�

and

ljgj�x�� � 0 and mihi�x�� � ÿmix
�
i � 0 �63�

for every i � 1; 2; . . . n and j � 1; 2; . . . m. Since mV 0, a necessary condi-

tion for x� to solve (61) is

`f �x�� ÿ
X

lj`gj�x��U 0 �64�

Equation (62) can be solved for m to yield

ÿm � `f �x�� ÿ
X

lj`gj�x��

Substituting into (63) yields

ljgj�x�� � 0 and `f �x�� ÿ
X

lj`gj�x��
� �T

x� � 0

which should be compared with corollary 5.2.1. De®ne

L�x; l� � f �x� ÿ
Xn

j�1

ljgj�x�

which is the Lagrangean for the problem ignoring the nonnegativity con-

straints. Then (64) can be written as

Dxi
L�x�; l�U 0 for every i � 1; 2; . . . ; n

and the necessary conditions can be written compactly in a form that

emphasizes the symmetry between decision variables x and Lagrange

multipliers l � �l1; l2; . . . ; lm�.
Dxi

L�x�; l�U 0; x�i V 0; x�i Dxi
L�x�; l� � 0; i � 1; 2; . . . ; n

gj�x��U 0; lj V 0; ljgj�x�� � 0; j � 1; 2; . . . ;m
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Optimality requires the following:

. For every decision variable xi, the Lagrangean is stationary (with

respect to xi) or xi � 0, or both.

. For every constraint, the constraint is binding or its shadow price is

zero, or both.

To summarize, to deal compactly with nonnegativity constraints, we

may omit them explicitly from the Lagrangean, and then we modify ®rst-

order conditions appropriatelyÐfrom (56) to those immediately above.

These stationarity conditions are also known as the Kuhn-Tucker condi-

tions. We record this conclusion in the following corollary.

Corollary 5.3.2 (Nonnegative variables) Suppose that x� is a local opti-

mum of

max
xV0

f �x�

subject to g�x�U 0

and that the binding constraints are regular at x�. Then there exist unique

multipliers l � �l1; l2; . . . ; lm� such that

Dxi
L�x�; l�U 0 x�i V 0 x�i Dxi

L�x�; l� � 0; i � 1; 2; . . . ; n

gj�x��U 0 lj V 0 ljgj�x�� � 0; j � 1; 2; . . . ;m

Although the Kuhn-Tucker conditions are a compact representation of

the ®rst-order conditions for a solution of an optimization problem with

nonnegative variables and inequality constraints, their solution is not

always transparent. This is because they are a system of inequalities, and

we cannot apply all the transformations which we can apply to equations.

Normally only some of the variables xi or lj will be nonzero at the optimal

solution. Some trial and error is usually involved in identifying the nonzero

variables. In economic problems, economic intuition may guide the selec-

tion. The typical procedure is illustrated in the following examples.

Example 5.33 Consider the problem

max
x1V0;x2V0

log x1 � log�x2 � 5�

subject to x1 � x2 ÿ 4U 0
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The Langrangean is

L�x1; x2; l� � log x1 � log�x2 � 5� ÿ l�x1 � x2 ÿ 4�
and the Kuhn-Tucker conditions are

Dx1
L � 1

x1
ÿ lU 0; x1 V 0; x1

1

x1
ÿ l

� �
� 0

Dx2
L � 1

x2 � 5
ÿ lU 0; x2 V 0; x2

1

x2 � 5
ÿ l

� �
� 0

x1 � x2 U 4; lV 0; l�4ÿ x1 ÿ x2� � 0

Assuming that the regularity condition is satis®ed (exercise 5.35), these

conditions must be satis®ed at any local optimum. To ®nd local optima,

we have to solve this system of inequalities. This process usually involves

some trial and error.

Let us begin with the assumption that both x1 > 0 and x2 > 0. This

implies that

1

x1
ÿ l � 0 and

1

x2 � 5
ÿ l � 0

or

x1 � x2 � 5

which is inconsistent with the constraints; that is, the system

x1 � x2 � 5

x1 � x2 U 4

x1 V 0

x2 V 0

has no solution. Therefore our trial hypothesis that x1 > 0 and x2 > 0 is

invalid.

Next we consider the possibility that x1 > 0 and l > 0, with x2 � 0. In

this case the Kuhn-Tucker conditions reduce to

1

x1
ÿ l � 0
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1

5
ÿ l � 0

4ÿ x1 � 0

These have an obvious solution x1 � 4 and l � 1
4.

Finally, we consider the possibility that x2 > 0 and l > 0, with x1 � 0.

In this case the Kuhn-Tucker conditions reduce to

1

0
U l � 0

1

x2 � 5
ÿ l � 0

4ÿ x2 � 0

This system implies that x2 � 4 and

lV 1; l � 1
9

which is clearly inconsistent.

The point x1 � 4, x2 � 0 and l � 1
4 is the only point which satis®es the

Kuhn-Tucker conditions. Subject to verifying that this point satis®es the

regularity (exercise 5.35) and second-order conditions (example 5.46), we

conclude that this is the solution of the problem.

Exercise 5.35

In the previous example, verify that the binding constraints are regular at

x� � �4; 0�.
Exercise 5.36 (The consumer's problem)

Derive and interpret the Kuhn-Tucker conditions for the consumer's

problem

max
xV0

u�x�

subject to pT xUm

constraining consumption to be nonnegative, while allowing the con-

sumer to spend less than her income. We will show later (example 5.41)

that the regularity condition is satis®ed.

564 Chapter 5 Optimization



Example 5.34 (Upper and lower bounds) A special case that is often

encountered is where the constraints take the form of upper and lower

bounds, as in the problem

max
0UxUc

f �x�

which can be written in standard from as

max
xV0

f �x�

subject to gi�x� � xi ÿ ci U 0; i � 1; 2; . . . ; n

Assuming that c > 0, the binding constraints are regular for all 0U xU c.

By corollary 5.3.2, it is necessary for a local optimum that there exist

l � �l1; l2; . . . ; ln�V 0 such that

Dxi
L�x�; l� � Dxi

f �x�� ÿ li U 0; x�i V 0; x�i �Dxi
f �x�� ÿ li� � 0

gi�x�� � x�i ÿ ci U 0; li V 0; li�x�i ÿ ci� � 0

for every i � 1; 2; . . . ; n, where L is the Lagrangean L�x; l� � f �x� ÿPn
i�1 ligi�x�. Now for every i,

x�i > 0) Dxi
f �x�� � li V 0

and

x�i < c) li � 0) Dxi
f �x��U 0

These ®rst-order conditions can be expressed very compactly as

Dxi
f �x��V 0 if x�i > 0 and Dxi

f �x��U 0 if x�i < ci

for every i � 1; 2; . . . ; n. These conditions together imply that Dxi
f �x�� � 0

for every i such that 0 < x�i < ci.

Example 5.35 (Production with capacity constraints) Consider a monop-

olist that supplies a market where total demand can be segmented into n

di¨erent periods and arbitrage between periods is precluded. Let yi denote

the ®rm's sales in period i and y � �y1; y2; . . . ; yn� the ®rm's sales plan.

Total revenue R�y� is function of sales in each period, which is equal

to production (storage is precluded). This speci®cation allows for inter-

dependence between the demand and price in di¨erent periods. Similarly
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total cost c�y� depends on production in each period, which cannot exceed

total capacity Y, that is, yi UY . The ®rm's problem is to determine the

level of production in each period yi so as to maximize total pro®t. The

®rm's maximization problem is

max
0UyiUY

P�y� � R�y� ÿ c�y�

Following example 5.34, the Kuhn-Tucker conditions for an optimal

production plan y� are

Dyi
P�y��V 0 if y�i > 0 and Dyi

P�y��U 0 if y�i < Y �65�
for every period i.

To interpret these conditions, we recognize that periods fall into two

categories: peak periods in which production is at capacity (yi � Y ) and

o¨-peak periods in which production falls below capacity (yi < Y ). To

simplify notation, let Ryi
� Dyi

R�y�� denote the marginal revenue in

period i evaluated at the optimal plan y�. Similarly let cyi
denote the

marginal cost in period i. In o¨-peak periods, (65) implies that

Ryi
U cyi

with Ryi
� cyi

if y�i > 0

The production schedule y cannot be optimal if in any o¨-peak period

marginal revenue of an additional unit exceeds marginal cost. Further-

more it cannot be optimal if marginal revenue is less than marginal cost

unless a lower output is not feasible (y�i � 0). In peak periods, the ®rm is

constrained by the capacity from producing at the level at which marginal

revenue equals marginal cost. In such periods, production is equal to

capacity y�i � Y and

Ryi
V cyi

Marginal revenue may exceed marginal cost, because it is impossible to

increase production.

We can derive additional insight by extending the model, allowing

capacity to be a choice variable as well. Then cost depends on output

and capacity c�y;Y �, and the monopolist's problem is

max
yV0;YV0

P�y;Y� � R�y� ÿ c�y;Y �

subject to the capacity constraints yi UY for very i � 1; 2; . . . ; n. Since the
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upper bound is a decision variable, this problem no longer ®ts the formu-

lation of example 5.34 and we apply corollary 5.3.2. The Lagrangean

is

L�y;Y ; l� � R�y� ÿ c�y;Y � ÿ
Xn

i�1

lj�yi ÿ Y �

The Kuhn-Tucker conditions for an optimum require that for every

period i � 1; 2; . . . ; n,

Dyi
L � Ryi

ÿ cyi
ÿ li U 0; y�i V 0; y�i �Ryi

ÿ cyi
ÿ li� � 0

y�i UY ; li V 0; l�y�i ÿ Y� � 0

and that capacity be chosen such that

DY L � ÿcY �
Xn

i�1

li U 0; Y V 0; Y cY ÿ
Xn

i�1

li

 !
� 0

where cY � Dyc�y�;Y � is the marginal cost of additional capacity. The

conditions for optimal production are the same as before (65), with the

enhancement that li measures the degree to which marginal revenue may

exceed marginal cost in peak periods. Speci®cally,

Ryi
� cyi

� li

The margin li between marginal revenue and marginal cost represents the

shadow price of capacity in period i.

The ®nal ®rst-order condition determines the optimal capacity. It says

that capacity should be chosen so that the marginal cost of additional

capacity is just equal to the total shadow price of capacity in the peak

periods

cY �
Xn

i�1

li

An additional unit of capacity would cost cY . It would enable the produc-

tion of an additional unit of electricity in each peak period, the net revenue

from which is given by li � Ryi
ÿ cyi

. Total net revenue of an additional

unit of capacity would therefore be
Pn

i�1 li, which at the optimal capacity,

should be precisely equal to its marginal cost.
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5.4.2 Constraint Quali®cation

Faced with a constrained optimization problem, economists rely on the

®rst-order conditions for stationarity to select out possible candidates for

the solution. This technique relies on the ®rst-order conditions being nec-

essary for a solution, which requires that the functional speci®cation of

the constraint set be an adequate representation of its geometry.

In equality-constrained problems it is natural to assume that the con-

straint set is a smooth hypersurface or manifold. This is ensured by the

regularity condition that the gradients of the constraints be linearly

independent. We employed the same regularity condition in deriving the

Kuhn-Tucker theorem in the previous section. However, with inequality-

constrained problems, corner solutions arise and the regularity condi-

tion becomes too stringent. We need to consider alternative constraint

quali®cations.

A more practical di½culty in an inequality-constrained problem is that

the regularity condition will not necessarily apply throughout the con-

straint set. Verifying the regularity condition requires knowing the opti-

mal solution, but the ®rst-order conditions will not identify the optimal

solution unless the condition is satis®ed. To avoid this ``Catch 22,'' we

would like to ®nd global constraint quali®cation conditions that ensure

that the ®rst-order conditions are necessary. To illustrate the problem, we

begin with a traditional example due to Kuhn and Tucker.

Example 5.36 Consider the problem

max
x1;x2

x1

subject to x2 ÿ �1ÿ x1�3 U 0

ÿx2 U 0

The Lagrangean for this problem is

L�x1; x2; l1; l2� � x1 ÿ l1�x2 ÿ �1ÿ x1�3� � l2x2

The ®rst-order conditions are

D1L � 1ÿ 3l1�1ÿ x1�2 � 0

D2L � ÿl1 � l2 � 0
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l1�x2 ÿ �1ÿ x1�3� � 0

l2x2 � 0

which can be written as

3l1�1ÿ x1�2 � 1

l1 � l2

l1�x2 ÿ �1ÿ x1�3� � 0

l2x2 � 0

These conditions have no solution. The ®rst condition implies that l1 0 0

so that

l1 � l2 > 0

This implies that both constraints are binding, that is,

x2 ÿ �1ÿ x1�3� � 0

x2 � 0

which in turn implies that x1 � 1. However, x1 � 1 violates the ®rst

condition

3l1�1ÿ x1�2 � 1

Hence the ®rst-order conditions have no solution, and the Lagrangean

technique fails to solve the problem.

The feasible set is illustrated in ®gure 5.8. It is obvious that the optimal

solution occurs at the extremity �1; 0�. The di½culty is that the feasible

set has a cusp at this point, so the derivatives of the constraints do not

adequately represents the set of feasible perturbations at this point. The

following discussion is aimed at making this precise.

Remark 5.6 (Fritz John conditions) In the preceding example the

Lagrangean was not stationary at the optimal solution. If we augment

that Lagrangean by attaching a coe½cient (l0) to the objective function,

we can formally circumvent this problem. The augmented Lagrangean

L�x1; x2; l0; l1; l2� � l0x1 ÿ l1�x2 ÿ �1ÿ x1�3� � l2x2
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is stationary at the optimal solution �1; 0�, that is,

D1L � l0 ÿ 3l1�1ÿ 1�2 � 0

D2L � ÿl1 � l2 � 0

provided that l0 � 0. Stationarity of the augmented Lagrangean function

together with the appropriate complementary slackness conditions are

known as the Fritz John optimality conditions. These conditions are

necessarily satis®ed at any optimum without any constraint quali®cation.

However, they provide no help in locating optima in cases that violate the

constraint quali®cation condition. In such cases the Lagrange multiplier

l0 is equal to zero, and the Fritz John conditions do not utilize any

information relating to the gradient of the objective function. They merely

state that there is a nonnegative and nontrivial linear combination of the

gradients of the binding constraints that sum to zero. Constraint quali®-

cation can be seen as the search for conditions which ensure that l0 0 0.

The issue of constraint quali®cation involves the degree to which the

functional constraints adequately describe the set of feasible perturbations

from a given point. Let G be a nonempty set in Rn and x� a point in G.

Another point x0 0 A Rn is a feasible direction at x� if there exists some

a A R such that x� � ax A G for every 0 < a < a. In other words, x is a

feasible direction if a small perturbation of x� in the direction x remains

feasible. The set of all feasible directions at x�,

D�x�� � fx A Rn : x� � ax A G for every a A �0; a� for some a > 0g
is called the cone of feasible direction in G at x�.

Figure 5.8
Kuhn and Tucker's example
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Clearly, a point x� A G cannot be a local solution to

max
x AG

f �x�

if there exists any feasible direction in G at x� in which f �x� increases. To

make this precise, let H��x�� denote the set of all perturbations that

increase the objective function from x�, that is,

H��x�� � fx A Rn : Df �x���x� > 0g
H��x�� is the open halfspace containing the upper contour set of the

objective function. Then a necessary condition for x� to be a local opti-

mum is that H��x��XD�x�� �q.

Exercise 5.37

Suppose that x� is a local solution of maxx AG f �x�. Then H��x��X
D�x�� �q.

Unfortunately, the set of feasible directions does not exhaust the set of

relevant perturbations, and we need to consider a broader class. Suppose

that x A D�x�� with x� � ax A G for every 0U aU a. Let ak � 1=k. Then

the sequence xk � x� � akx A G converges to x�. Furthermore

xk ÿ x� � akx

and therefore the sequence �xk ÿ x��=ak converges trivially to x. We say

that xk converges to x� from the direction x (®gure 5.9).

Figure 5.9
xk converges to x� from direction x
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More generally, a feasible sequence �xk�JG converges to x� from the

direction x if xk ! x�, and there exists a sequence �ak�JR� such that

�xk ÿ x��=ak converges to x. A point x A Rn is a tangent to G at x� if

there exists a feasible sequence �xk� that converges to x� from the direc-

tion x. The set of all tangents to G at x�,

T�x�� � x A Rn : x � lim
k!y

�xk ÿ x��
ak

for some xk A G and ak A R�

� �
is called the cone of tangents to G at x�.

Exercise 5.38

The cone T�x�� of tangents to a set G at a point x� is a nonempty closed

cone. See ®gure 5.10.

Exercise 5.39

Show that D�x��JT�x��.
Clearly, D�x��JT�x��, and for some x� A G it may be proper subset.

The signi®cance of this is revealed by the following proposition. To ade-

quately determine local optima, it does not su½ce to consider only per-

turbations in D�x��.
Proposition 5.3 (Basic necessary condition) Suppose that x� is a local

maximum of

max
x AG

f �x�

Then H��x��XT�x�� �q.

Proof Let x A T�x�� be a tangent to G at x�. That is, there exists a

feasible sequence �xk� converging to x� and a sequence �ak� of positive

Figure 5.10
Examples of the cone of tangents
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scalars such that �xk ÿ x��=ak converges to x. Since x� is locally optimal,

for large enough k

f �x��V f �xk�A f �x�� �Df �x���x� ÿ xk�
so that

Df �x���xk ÿ x��A f �xk� ÿ f �x��U 0

Dividing by ak, we have

Df �x�� xk ÿ x�

ak

� �
U 0

Letting k !y this implies that

Df �x���x�U 0

and so x B H��x��. Therefore H��x��XT�x�� �q. r

This proposition suggests that the cone of tangents is the appropriate

set of perturbations to be evaluated when considering the local optimality

of a particular point. The issue of constraint quali®cation is the degree to

this set of perturbations is adequately represented by the gradients of

functional constraints.

Returning to the problem in which the feasible set G is de®ned by

functional constraints, that is,

G � fx A X : gj�x�U 0; j � 1; 2; . . . ;mg
let B�x�� denote the set of binding constraints at a point x� A G. The

system of inequalities

Dgj�x���dx�U 0; j A B�x�� �66�
is a linear approximation in the region of x� to the system of inequalities

gj�x��U 0 for every j

de®ning the feasible set G. The solution set of the linear system (66)

L�x�� � fdx A X : Dgj�x���dx�U 0; j A B�x��g
is a closed convex polyhedral cone which is called the linearizing cone of G

at x�. The cone of tangents T�x�� is a subset of L�x�� (exercise 5.40). The

following example shows that it may be a proper subset.
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Example 5.37 Consider the problem posed in example 5.36

max
x1;x2

x1

subject to x2 ÿ �1ÿ x1�3 U 0

ÿx2 U 0

The cone of tangents at �1; 0� is the half-line T � f�x1; 0� j x1 U 1g. The

halfspace de®ned by the gradient of the ®rst constraint at �1; 0� is

f�x1; x2� jx2 U 0g, whereas that de®ned by the second constraint is

f�x1; x2� jx2 V 0g. The cone of locally constrained directions L is the

intersection of these two halfspaces, namely the x2 axis L � f�x1; 0�g. In

this problem the linearizing does not adequately restrict the set of feasible

perturbations. This is why the Kuhn-Tucker conditions are not satis®ed in

this example.

Exercise 5.40

Show that T�x��JL�x��.
The Kuhn-Tucker ®rst-order conditions are necessary for a local opti-

mum at x� provided that the linearizing cone L�x�� is equal to the cone of

tangents T�x��, which is known as the Abadie constraint quali®cation

condition. The Kuhn-Tucker conditions follow immediately from propo-

sition 5.3 by a straightforward application of the Farkas lemma.

Proposition 5.4 (Abadie constraint quali®cation) Suppose that x� is a

local solution of

max
x AX

f �x� �67�

subject to g�x�U 0

and satis®es the Abadie constraint quali®cation T�x�� � L�x��. Then there

exist multipliers l1; l2; . . . ; lm V 0 such that

`f �x�� �
Xm

j�1

lj`gj�x�� and ljgj�x�� � 0; j � 1; 2 . . . ;m

Proof By proposition 5.3, H��x��XT�x�� �q, where

H��x�� � fdx : Df �x���dx� > 0g
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By the Abadie constraint quali®cation condition T�x�� � L�x��, this

implies that H��x��XL�x�� �q, so the system

Df �x���dx� > 0

Dgj�x���dx�U 0; i A B�x��
has no solution. By the Farkas lemma (proposition 3.18), there exists

nonnegative scalars lj such that

Df �x�� �
X

i AB�x ��
ljDgj �x��

Assigning zero multipliers to the slack constraints gives the desired result.

r

Example 5.38 We have already seen how the Kuhn-Tucker example

fails the Abadie constraint quali®cation condition (example 5.37). Sup-

pose that we add an additional constraint x1 � x2 U 1 to this problem,

which becomes

max
x1;x2

x1

subject to x2 ÿ �1ÿ x1�3 U 0

ÿx2 U 0

x1 � x2 U 1

The Lagrangean for this problem is

L�x1; x2; l1; l2; l3� � x1 ÿ l1�x2 ÿ �1ÿ x1�3� � l2x2 ÿ l3�x1 � x2 ÿ 1�
The ®rst-order conditions are

D1L � 1ÿ 3l1�1ÿ x1�2 ÿ l3 � 0

D2L � ÿl1 � l2 ÿ l3 � 0

l1�x2 ÿ �1ÿ x1�3� � 0

l2x2 � 0

l3�x1 � x2 ÿ 1� � 0

which can be written as
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3l1�1ÿ x1�2 � 1ÿ l3

l1 � l3 � l2

l1�x2 ÿ �1ÿ x1�3� � 0

l2x2 � 0

l3�x1 � x2 ÿ 1� � 0

These conditions are satis®ed at x� � �1; 0� with l � �1; 2; 1�. The addi-

tional constraint does not a¨ect the feasible set or its cone of tangents T.

However, it does alter the linearizing cone, which becomes

L�x�� � fdx : Dgj �x���dx�U 0; i � 1; 2; 3g � f�x1; 0� : x1 U 1g � T�x��
With the additional constraint the linearizing cone L�x��, adequately

represents the set of appropriate perturbations T�x��.
Unfortunately, the Abadie constraint quali®cation condition is di½cult

to verify. Consequently the optimization literature contains a variety of

alternative constraint quali®cation conditions designed to ensure the

necessity of the ®rst-order conditions. In the following theorem we present

a selection of constraint quali®cation conditions that are used in practice.

Each implies the Abadie condition and hence ensures the necessity of the

Kuhn-Tucker conditions for optimality.

First, we need to introduce some additional sets of perturbations. The

linearizing cone

L�x�� � fdx A X : Dgj �x���dx�U 0 for every j A B�x��g
is sometimes called the cone of locally constrained directions. Its interior is

L0�x�� � fdx A L : Dgj�x���dx� < 0 for every j A B�x��g
which is known as the cone of interior directions. The cone of semi-interior

directions L1 is

L1�x�� � fdx A L : Dgj�x���dx� < 0 for every j A BN�x��g
where BN�x�� is the set of all nonconcave constraints binding at x�.
Clearly, these cones are nested L0�x��JL1�x��JL�x��. In fact all the

cones of perturbations are nested, as speci®ed in the following exercise.

Each of the inclusions can be strict.
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Exercise 5.41 (Cones of perturbations)

Show that

L0�x��JL1�x��JD�x��JT�x��JL�x��
for every x� A G � fx : gj�x�U 0; j � 1; 2; . . . ;mg.

The following theorem establishes some practical constraint quali®ca-

tion conditions. The ®rst two conditions are especially important in prac-

tice, since they provide global criteria which can be veri®ed without

knowing the optimal solution, eliminating the Catch 22 referred to above.

The ®rst criterion (concave CQ) applies in particular to linear constraints

that are found in many economic models (example 5.2) and practical

optimization problems (section 5.4.4). In economic models with nonlinear

constraints, the second or third conditions are usually assumed (example

5.40). The regularity condition is the same as that used in section 5.3 and

theorem 5.3. The Cottle and Arrow-Hurwicz-Uzawa conditions do not

have practical application. They are vehicles for establishing the validity

of the other four criteria.

Theorem 5.4 (Constraint quali®cation conditions) Suppose that x� is a

local solution of

max
x AX

f �x� subject to g�x�U 0

at which the binding constraints B�x�� satisfy one of the following con-

straint quali®cation conditions.

Concave CQ gj is concave for every j A B�x��
Pseudoconvex CQ gj is pseudoconvex, and there exists x̂ A X such that

gj�x̂� < 0 for every j A B�x��
Quasiconvex CQ gj is quasiconvex, `gj�x��0 0, and there exists x̂ A X

such that gj�x̂� < 0 for every j A B�x��
Regularity The set f`gj�x�� : j A B�x��g is linearly independent

Cottle CQ L0�x��0q

Arrow-Hurwicz-Uzawa (AHUCQ) L1�x��0q

Then x� satis®es the Kuhn-Tucker conditions; that is, there exist multipliers

l1; l2; . . . ; lm V 0 such that
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`f �x�� �
Xm

j�1

lj`gj�x�� and ljgj�x�� � 0; j � 1; 2 . . . ;m

The multipliers l1; l2; . . . ; lm are unique if and only if B�x�� satis®es the

regularity condition; that is, f`gj�x�� : j A B�x��g is linearly independent.

Proof Each of the constraint quali®cation conditions implies the Abadie

constraint quali®cation, which by proposition 5.4 implies the necessity of

the Kuhn-Tucker conditions. We prove that

pseudoconvex CQ) Cottle) Abadie

and leave the remaining implications for the exercises.

Assume that g satis®es the pseudoconvex CQ condition at x�. That is,

for every j A B�x��, gj is pseudoconvex, and there exists x̂ such that

gj�x̂� < 0 for every j A B�x��. Consider the perturbation dx � x̂ÿ x�.
Since gj�x�� � 0 and gj�x̂� < 0, pseudoconvexity implies that (exercise

4.75)

gj�x̂� < gj�x�� ) Dgj�x���dx� < 0

for every binding constraint j A B�x��. Therefore dx A L0�x��0q, and

x� satis®es the Cottle constraint quali®cation condition.

For every j, let

Sj � fdx : Dgj�x���dx� < 0g
Each Sj is an open convex set (halfspace). If x� satis®es the Cottle con-

straint quali®cation condition,

L0�x�� � 7
m

j�1

Sj 0q

By exercise 1.219,

L0�x�� � 7
m

j�1

Sj � L�x��

Since L0�x��JT�x��JL�x�� (exercise 5.41) and T�x�� is closed, we

have

L�x�� � L0�x��JT�x��JL�x��
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which implies that T�x�� � L�x��, the Abadie constraint quali®cation

condition.

Since lj � 0 for every j B B�x��, the Kuhn-Tucker conditions imply that

`f �x�� �
X

j AB�x��
lj`gj�x��

If `gj�x��; j A B�x�� are independent, then the lj are unique (exercise

1.137). Conversely, if there exist m1; m2; . . . ; mm such that with mj 0 lj for

some j and

`f �x�� �
X

j AB�x��
mj`gj�x��

then

`f �x�� ÿ `f �x�� �
X

j AB�x ��
�lj ÿ mj�`gj�x�� � 0

which implies that `gj�x��; j A B�x��, are dependent (exercise 1.133). r

Example 5.39 The Kuhn-Tucker example (example 5.36)

max
x1;x2

x1

subject to g1�x1; x2� � x2 ÿ �1ÿ x1�3 U 0

g2�x1; x2� � ÿx2 U 0

satis®es none of the constraint quali®cation conditions, since g1 is neither

concave nor pseudoconvex.

Example 5.40 (Slater constraint quali®cation) Economic models often

assume the Slater constraint quali®cation condition, namely that gj is

convex and that there exists x such that gj�x� < 0 for every j � 1; 2; . . . ;m.

Since every convex function is pseudoconvex (exercises 4.75 and 4.76), the

Slater CQ implies the pseudoconvex CQ.

Exercise 5.42

Show

quasiconvex CQ) Cottle

[Hint: See exercise 4.74.]
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Exercise 5.43

Show that

regularity) Cottle

[Hint: Use Gordan's theorem (exercise 3.239).]

Exercise 5.44

Show that

gj concave) AHUCQ) Abadie

For nonnegative variables, we have the following corollary.

Corollary 5.4.1 (Constraint quali®cation with nonnegative variables)

Suppose that x� is a local solution of

max
xV0

f �x� subject to g�x�U 0

and the binding constraints j A B�x�� satisfy any one of the following con-

straint quali®cation conditions:

Concave CQ gj is concave for every j A B�x��.
Pseudoconvex CQ gj is pseudoconvex, and there exists x̂ such that

gj�x̂� < 0 for every j A B�x��.
Quasiconvex CQ gj is quasiconvex, `gj�x��0 0, and there exists x̂ such

that gj�x̂� < 0 for every j A B�x��.
Then x� satis®es the Kuhn-Tucker conditions; that is, there exist multipliers

l � �l1; l2; . . . ; lm� such that

Dxi
L�x�; l�U 0; x�i V 0; x�i Dxi

L�x�; l� � 0; i � 1; 2; . . . ; n

gj�x��U 0; lj V 0; ljgj�x��� � 0; j � 1; 2; . . . ;m

where L is the Lagrangean L�x; l� � f �x� ÿPm
j�1 ljgj�x�.

Proof The problem can be speci®ed as

max
x

f �x�

subject to g�x�U 0

h�x� � ÿxU 0
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We note that h is linear and is therefore both concave and convex. Further

Dh�x�0 0 for every x. Therefore, if g satis®es one of the three constraint

quali®cation conditions, so does the combined constraint �g; h�. By theo-

rem 5.4, the Kuhn-Tucker conditions are necessary for a local optimum

which, by corollary 5.3.2, can be expressed as above. r

Example 5.41 (The consumer's problem) The consumer's problem

max
xV0

u�x�

subject to pT xUm

has one functional constraint g�x� � pT xUm and n inequality constraints

hi�x� � ÿxi U 0, the gradients of which are

`g�x� � p; `hi�x� � ei; i � 1; 2; . . . ; n

where ei is the i unit vector (example 1.79). Provided that all prices

are positive p > 0, it is clear that these are linearly independent and the

regularity condition of corollary 5.3.2 is always satis®ed. However, it is

easier to appeal directly to corollary 5.4.1, and observe that the budget

constraint g�x� � pT xUm is linear and therefore concave.

5.4.3 Su½cient Conditions

Theorem 5.4 and its corollary 5.4.1 provide practical criteria under which

the Kuhn-Tucker conditions are necessary, ensuring that the solution of

the problem

max
x AX

f �x� �68�

subject to g�x�U 0

will be found among the solutions of the ®rst-order conditions. However,

not every solution of the Kuhn-Tucker conditions will necessarily be a

local solution of the problem, let alone a global solution. As in section

5.2, discriminating among solutions of the ®rst-order conditions requires

second-order conditions. The speci®cation of appropriate local conditions

analogous to theorem 5.1 and corollary 5.1.1 is even more complicated

than with equality constraints, since it is necessary to distinguish between

binding and slack constraints. Consequently it is useful in economic
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analysis to seek global conditions that ensure the su½ciency of the ®rst-

order conditions, analogous to those in corollaries 5.1.2 and 5.2.4.

In essence, the Kuhn-Tucker conditions are su½cient for a global

solution provided the objective function is pseudoconcave and the con-

straint functions are quasiconvex. Under these hypotheses, if a point x�

satis®es the Kuhn-Tucker conditions, then it is global solution of the

problem. Since every concave function is pseudoconcave (exercise 4.76),

this applies in particular to concave f.

Theorem 5.5 (Su½cient conditions for global optimum) Suppose that f is

pseudoconcave and g is quasiconvex, and let

G � fx A X : g�x�U 0g and L�x; l� � f �x� ÿ
Xm

j�1

ljgj�x�

Suppose that there exists x� A G and l � �l1; l2; . . . ; lm�V 0, satisfying the

Kuhn-Tucker conditions

`f �x�� �
Xm

j�1

lj`gj�x�� and ljgj�x�� � 0; j � 1; 2 . . . ;m �69�

Then f �x��V f �x� for every x A G. That is, x� solves

max
x AX

f �x� subject to g�x�U 0

Proof Applying exercise 5.45, the ®rst-order conditions (69) imply that

Df �x���xÿ x�� �
Xm

j�1

lj`gj�xÿ x��U 0 for every x A G

If f is pseudoconcave, this implies that

f �x��V f �x� for every x A G r

Theorem 5.5 can be extended to quasiconcave objective functions,

provided that the solution is not a critical point of the objective function.

Corollary 5.5.1 (Arrow-Enthoven theorem) Suppose that f is quasi-

concave and g is quasiconvex, and let

G � fx A X : g�x�U 0g and L�x; l� � f �x� ÿ
Xm

j�1

ljgj�x�
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Suppose that there exists x� A G and l � �l1; l2; . . . ; lm�V 0 with

Df �x��0 0 satisfying the Kuhn-Tucker conditions

`f �x�� �
Xm

j�1

lj`gj�x�� and ljgj�x�� � 0; j � 1; 2 . . . ;m �70�

Then f �x��V f �x� for every x A G.

Proof Since Df �x��0 0, there exists dx such that Df �x���dx� < 0. Let

z � x� � dx so that Df �x���zÿ x�� < 0. De®ne x��t� � tz� �1ÿ t�x�.
For any t A �0; 1�,
Df �x���x��t� ÿ x�� � tDf �x���zÿ x�� < 0

Choose any x A G, and de®ne x�t� � tz� �1ÿ t�x. The ®rst-order con-

ditions (70) imply that (exercise 5.45)

Df �x���x�t� ÿ x��t�� � �1ÿ t�Df �x���xÿ x��

� �1ÿ t�
Xm

j�1

lj`gj�xÿ x��U 0

for any t A �0; 1�. Adding these two inequalities, we have

Df �x���x�t� ÿ x�� < 0

Since f is quasiconcave, this implies that (exercise 4.73)

f �x�� > f �x�t�� for every t A �0; 1�
Letting t! 0, we have f �x��V f �x� for every x A G. r

The extension to nonnegative variables is straightforward.

Corollary 5.5.2 (Nonnegative variables) Suppose that f is quasiconcave

and g is quasiconvex, and let

G � fx A Rn
� : g�x�U 0; g and L�x; l� � f �x� ÿ

Xm

j�1

ljgj�x�

Suppose that there exists x� A G and l � �l1; l2; . . . ; lm�V 0 with

Df �x��0 0 satisfying the Kuhn-Tucker conditions
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Dxi
L�x�; l�U 0; x�i V 0; x�i Dxi

L�x�; l� � 0; i � 1; 2; . . . ; n

gj�x��U 0; lj V 0; ljgj�x�� � 0; j � 1; 2; . . . ;m

Then f �x��V f �x� for every x A G.

Proof The ®rst-order condition Dxi
L�x�; l�U 0 for every i can be written

`f �x�� ÿ
Xm

j�1

`ljgj�x��U 0

This implies that

`f �x�� ÿ
Xm

j�1

`ljgj�x��
 !T

xU 0

for every x A G (since xV 0). The ®rst-order conditions also require that

`f �x�� ÿ
Xm

j�1

lj`gj�x��
 !T

x� � 0

Subtracting

`f �x�� ÿ
Xm

j�1

lj`gj�x��
 !T

�xÿ x��U 0

or

`f �x��T�xÿ x��U
Xm

j�1

lj`gj�x��T�xÿ x��

and therefore applying exercise 5.45, we have

`f �x��T�xÿ x��U
Xm

j�1

lj`gj�x��T�xÿ x��U 0

for every x A G. The remainder of the proof is identical to that of

corollary 5.5.1. r

Example 5.42 (Cost minimization) In full generality the competitive

®rm's cost minimization problem (example 5.16) is

min
xV0

wT x subject to f �x�V y
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The objective function is linear and hence concave. Quasiconcavity of the

production function f is a natural assumption regarding the technology

(example 1.163), and is less restrictive than assuming that f is fully con-

cave. The cost minimization problem can be recast in the standard form

as

max
xV0

ÿwT x subject to ÿf �x�Uÿy

with ÿ f quasiconvex. Let L denote the Lagrangean L�x; l� � ÿwT xÿ
l�yÿ f �x��. By corollary 5.5.2, the Kuhn-Tucker conditions

Dxi
L�x�; l�U 0; x�i V 0; x�i Dxi

L�x�; l� � 0

ÿ f �x�� � yU 0; lV 0; l�ÿ f �x�� � y� � 0

for every i � 1; 2; . . . ; n are su½cient for cost minimization. These require

that f �x�V y and f �x� � y unless l � 0. They also require that for each

input i,

lDxi
f �x��Uwi; xi V 0; xi�lDxi

f �x�� ÿ wi� � 0

No input is employed at a level at which the value of its marginal product

lDxi
f �x� is greater than its cost wi. Moreover, for each input i used in

production xi > 0, the value of its marginal product must be equal to its

cost lDxi
f �x� � wi.

Theorem 5.5 and corollaries 5.5.1 and 5.5.2 establish the su½ciency of

the ®rst-order conditions provided the hypotheses are met. Theorem 5.4

and corollary 5.4.1 establishes the necessity of the ®rst-order conditions

provided an appropriate constraint quali®cation is met. In fact the

Arrow-Enthoven constraint quali®cation condition is designed to match

the hypotheses of the corollary 5.5.1. If the hypotheses of both theorem

5.4 and corollary 5.5.1 (or corollaries 5.4.1 and 5.5.2) are met, then the

®rst-order conditions are both necessary and su½cient for a global

optimum.

Corollary 5.5.3 (Necessary and su½cient conditions) In the constrained

optimization problem

max
x AG

f �x� �71�

585 5.4 Inequality Constraints



where Gfx A X : gj�x�U 0; j � 1; 2; . . . mg, suppose that

. f is quasiconcave and gj are quasiconvex

. x� A G is a regular point of f

. x� is a regular point of gj for every j A B�x��

. there exists x̂ such that gj�x̂� < 0 for every j A B�x��
where B�x�� is the set of binding constraints at x�. Then x� is a global

solution of (71) if and only if there exist multipliers l1; l2; . . . ; lm V 0 such

that

`f �x�� �
Xm

j�1

lj`gj�x�� and ljgj�x�� � 0; j � 1; 2 . . . ;m

Furthermore x� is a global solution of

max
xV0

f �x� subject to g�x�U 0

if and only if there exist multipliers l1; l2; . . . ; lm such that

Dxi
L�x�; l�U 0; x�i V 0; x�i Dxi

L�x�; l� � 0; i � 1; 2; . . . ; n

gj�x��U 0; lj V 0; ljgj�x�� � 0; j � 1; 2; . . . ;m

where L�x; l� � f �x� ÿP ljgj�x� is the Lagrangean.

Proof By theorem 5.4 or corollary 5.4.1, the Kuhn-Tucker conditions

are necessary. By corollary 5.5.1 or corollary 5.5.2, they are also su½cient.

r

Example 5.43 (The consumer's problem) The consumer's problem is

max
x AX

u�x� subject to pT xUm

Assuming concavity of the utility function is too restrictive, while assum-

ing quasiconcavity is natural, since it is equivalent to convexity of prefer-

ences (example 3.55). Nonsatiation implies that Du�x�0 0 for every

x A X . Under these assumptions, the ®rst-order conditions

`u�x�� � lp

are necessary and su½cient for utility maximization (corollary 5.5.3).
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Exercise 5.45

Suppose that

G � fx A X : gj�x�U 0; j � 1; 2; . . . ;mg
with gj is quasiconvex. Let x� A G and l A Rm

� satisfy the complementary

slackness conditions ljgj�x�� � 0 for every j � 1; 2; . . . ;m. ThenX
j

ljDgj�x���xÿ x��U 0

for every x A G.

5.4.4 Linear Programming

A linear programming problem is a special case of the general constrained

optimization problem

max
xV0

f �x� �72�

subject to g�x�U 0

in which both the objective function f and the constraint function g are

linear. Linear programming is the most developed branch of optimization

theory. It also the most important in practice. Since many real world

systems are linear or can approximated linearly, linear programming

provides an appropriate mathematical model for such systems. It would

be hard to exaggerate the importance of linear programming in practical

optimization, in applications such as production scheduling, transporta-

tion and distribution, inventory control, job assignment, capital budget-

ing, and portfolio management.

Example 5.44 Joel Franklin (1980) relates a visit to the headquarters of

the Mobil Oil Corporation in New York in 1958. The purpose of his visit

was to study Mobil's use of computers. In those days computers were rare

and expensive, and Mobil's installation had cost millions of dollars.

Franklin recognized the person in charge; they had been postdoctoral

fellows together. Franklin asked his former colleague how long he

thought it would take to pay o¨ this investment. ``We paid it o¨ in about

two weeks'' was the surprise response. Elaborating, he explained that

Mobil were able to make massive cost savings by optimizing production

decision using linear programming, decisions that had previously been
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made heuristically. Franklin's anecdote highlights the enormous bene®ts

that can accrue from optimizing recurrent decisions.

With linear objective and linear constraints, the standard linear pro-

gramming problem (72) satis®es the hypotheses of both corollary 5.4.1

and theorem 5.5.1. Consequently the Kuhn-Tucker conditions are both

necessary and su½cient for a global solution to a linear programming

problem. The Kuhn-Tucker conditions for a linear programming problem

determine a system of linear inequalities, whose every solution is a global

optimum of the problem. Finding an optimal solution is a matter of

®nding a solution to this system of linear inequalities. However, for a

problem with many variables or constraints, solving these inequalities

could pose a formidable computational problem. A second reason for the

popularity of linear programming, in practice, is the availability of a very

e½cient algorithm (the simplex algorithm) for solving the Kuhn-Tucker

conditions for linear programs. The postwar conjunction of the avail-

ability of digital computers and the discovery of the simplex algorithm

paved the way for successful industrial application as exempli®ed by

Mobil's experience.

In the following example, we solve a simple linear programming prob-

lem to illustrate the general problem of solving the Kuhn-Tucker con-

ditions. The example will also provide some insight into the practically

important simplex algorithm.

Example 5.45 Suppose that a furniture maker can produce three prod-

uctsÐbookcases, chairs, and desks. Each product requires machining,

®nishing, and some labor. The supply of these resources is limited. Unit

pro®ts and resource requirements are listed in the following table.

Bookcases Chairs Desks Capacity

Finishing 2 2 1 30

Labor 1 2 3 25

Machining 2 1 1 20

Net pro®t 3 1 3

Letting xb, xc, and xd stand for the output of bookcases, chairs, and

desks respectively, we can model the production planning problem as

follows:
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max P � 3xb � xc � 3xd

2xb � 2xc � xd U 30; xb � 2xc � 3xd U 25; 2xb � xc � xd U 20

and

xa V 0; xb V 0; xc V 0

Letting lf , ll , and lm be the Lagrange multipliers of the ®nishing,

labor, and machining constraints respectively, the Lagrangean is

L�x; l� � 3xb � xc � 3xd ÿ lf �2xb � 2xc � xd ÿ 30�
ÿ ll�xb � 2xc � 3xc ÿ 25� ÿ lm�2xb � xc � xd ÿ 20�

The Kuhn-Tucker conditions are

Dxb
L � 3ÿ 2lf ÿ ll ÿ 2lm U 0; xb V 0; xbDxb

L � 0

Dxc
L � 1ÿ 2lf ÿ 2ll ÿ lm U 0; xc V 0; xcDxc

L � 0

Dxd
L � 3ÿ lf ÿ 3ll ÿ lm U 0; xd V 0; xdDxd

L � 0

2xb � 2xc � xd U 30; lf V 0; lf �2xb � 2xc � xd ÿ 30� � 0

xb � 2xc � 3xd U 25; ll V 0; ll�xb � 2xc � 3xd ÿ 25� � 0

2xb � xc � xd U 20; lm V 0; lm�2xb � xc � xd ÿ 20� � 0

and these characterize the optimal solution.

The essence of the problem of solving the ®rst-order conditions is deter-

mining which constraints are binding and which are slack, and therefore

which Lagrange multipliers are zero. We will show how the Lagrangean

can aid in this choice; this is the essence of the simplex algorithm.

To start, suppose that we produce only desks. That is, let xc � xd � 0.

The constraints become

2xb U 30; xb U 25; 2xb U 20

The ®rst two constraints are redundant, which implies that they must be

slack and therefore lf � ll � 0. Complementary slackness requires that

if xb > 0,

Dxb
L � 3ÿ 2lm � 0 or lm � 3

2
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This in turn implies that the machining constraint 2xb U 20 is binding.

That is, xb � 10. xb � 10, xc � 0, xd � 0 is a feasible solution, since it

satis®es the constraints. However, it cannot be an optimal solution, since

the implied Lagrange multipliers �lf � ll � 0, lm � 3=2� do not satisfy

the ®rst-order conditions. Speci®cally,

Dxd
L � 3ÿ lf ÿ 3ll ÿ lm � 3

2
> 0

The implied shadow prices are not the optimal values.

Evaluating the Lagrangean at these shadow prices can lead us toward

the optimal solution. At these shadow prices the Lagrangean is

L x; 0; 0;
3

2

� �� �
� 3xb � xc � 3xd ÿ 3

20
�2xb � xc � xd ÿ 20�

� 3ÿ 6

2

� �
xb � 1ÿ 3

2

� �
xc � 3ÿ 3

2

� �
xd ÿ 3

2
�ÿ20�

� 30ÿ 1

2
xc � 3

2
xd

This reveals that net pro®t at (10, 0, 0) is $30, but this is not optimal. At

these shadow prices, pro®t would be increased by increasing xd . (Pro®t

would be decreased by increasing xc.)

Taking this hint, let us now consider a production plan with both

xb > 0 and xd > 0, leaving xc � 0. The constraints become

2xb � xd U 30; xb � 3xd U 25; 2xb � xd U 20

The ®rst constraint is redundant (given the third constraint), which

implies that lf � 0. Furthermore, if xb, xd > 0, complementary slackness

requires that

Dxb
L � 3ÿ 2lf ÿ ll ÿ 2lm � 0

Dxd
L � 3ÿ lf ÿ 3ll ÿ lm � 0

which with lf � 0 implies that

ll � 2lm � 3; 3ll � lm � 3

These equations have the unique solution ll � 3=5 and lm � 6=5. Sub-

stituting these shadow prices l� � �0; 3=5; 6=5� into the Lagrangean, we get
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L�x; l�� � 3xb � xc � 3xd ÿ 3

5
�xb � 2xc � 3xd ÿ 25�

ÿ 6

5
�2xb � xc � xd ÿ 20�

� 3ÿ 3

5
ÿ 12

5

� �
xb � 1ÿ 6

5
ÿ 6

5

� �
xc

� 3ÿ 9

5
ÿ 6

5

� �
xd ÿ 25

3

5

� �
ÿ 20

6

5

� �

� 39ÿ 7

5
xc

This reveals that producing bookcases xb > 0 and desks xd > 0 but no

chairs xc � 0 will yield a pro®t of $39. The only possible perturbation

involves producing chairs xc > 0. Since the coe½cient of xc is negative,

any marginal increase in xc above 0 would decease pro®ts. Because of

linearity, any nonmarginal increase would also reduce pro®ts. This estab-

lishes that an optimal plan produces no chairs.

It remains to ®nd the optimal plan, the quantity of bookcases and

desks. Since the labor and machining constraints are both binding, the

equations

xb � 3xd � 25; 2xb � xd � 20

can be solved to yield the optimal production of bookcases and desks.

The optimal production plan is xb � 7, xd � 6.

Let us summarize the method adopted in example 5.45. Setting certain

decision variables to zero yielded a basic feasible solution in which some

of the constraints were slack. Using the ®rst-order conditions, we derived

the values of the Lagrange multiplier (resource prices) implied by this

basic feasible solution. Evaluating the Lagrangean at these prices imme-

diately revealed (1) whether or not this was an optimal solution and (2)

if not, the direction of improvement. Making this improvement led to

another basic feasible solution at which the procedure could be repeated.

Since, at each stage, the value of the Lagrangean increases, this procedure

must eventually lead us to the optimal solution. This is the basic simplex

algorithm.
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Exercise 5.46

Solve the preceding problem starting from the hypothesis that xc > 0,

xb � xd � 0. [Hint: If faced with a choice between xb > 0 and xd > 0,

choose the latter.]

Exercise 5.47

What happens if you ignore the hint in the previous exercise?

5.4.5 Concave Programming

Concave programming is another special case of the general constrained

optimization problem

max
x AX

f �x� �73�

subject to g�x�U 0

in which the objective function f is concave and the constraint functions gj

are convex. For such problems an alternative derivation of the Kuhn-

Tucker conditions is possible, providing yet another perspective on the

Lagrangean method.

To achieve this perspective, we re-introduce a parameter c and consider

the family of optimization problems

max
x AX

f �x�

subject to g�x�U c

of which (73) is the particular instance in which c � 0. We direct our

attention to what can be achieved, disregarding for the moment how it is

achieved. That is, we suppress primary consideration of the decisions

made (x) and focus attention on the results achieved (z � f �x�) and the

resources used (c � g�x�). Remarkably, answering the what question

simultaneously answers the how question.

Regarding c as a parameter measuring the available resources, the value

function

v�c� � max
x AX
f f �x� : g�x�U cg

summarizes what can be achieved with di¨erent amounts of resources c.

The set of all attainable outcomes is given by its hypograph
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A � f�c; z� A Y �R : zU v�c�g
Since the value function is concave (theorem 3.1), the attainable set A is

convex (exercise 3.125).

Let z� � v�0�; that is, z� is the value attained by the optimal solution in

the original problem (73). De®ne

B � f�c; z� A Y �R : cU 0; zV z�g
B is a subset of the unattainable outcomes, comprising those outcomes

that achieve at least the same level of the objective z� with fewer resources

cU 0 or a higher level of the objective zV z� with the given resources

c � 0 (®gure 5.11). B is a convex set with a nonempty interior (exercise

5.48) and A contains no interior points of B (exercise 5.49).

By the separating hyperplane theorem (corollary 3.2.1), there exists a

linear functional L A �Y �R�� that separates A from B, that is,

L�c; z�UL�0; z�� for every �c; z� A A �74�
L�c; z�VL�0; z�� for every �c; z� A B �75�
Assuming that Y JRm, there exists (exercise 5.50) aV 0 and lV 0 such

that

L�c; z� � azÿ lT c

The Slater constraint quali®cation condition (example 5.4) ensures that

a > 0 (exercise 5.51), and we can without loss of generality select a � 1.

Figure 5.11
Concave programming
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Therefore (74) shows that �0; z�� maximizes the linear functional

L�c; z� � zÿ lT c on A. That is,

z� ÿ lT 0V zÿ lT c for every �c; z� A A �76�
By de®nition, for every �c; z� A A, there exists some x A X such that

f �x� � z and g�x�a c. Let x� be such that g�x��a 0 and f �x�� � z�.
Substituting in (76), we have

f �x��V f �x� ÿ lT g�x� for every x A X �77�
The right-hand side of this inequality is precisely the Lagrangean of the

constrained optimization problem

max
x AX

f �x� subject to g�x�U 0

We have shown that x� maximizes the Lagrangean over the choice set X.

Rearranging (77), we have

f �x�� ÿ f �x�VÿlT g�x�
for every x A X . In particular, x� A X , and therefore

0 � f �x�� ÿ f �x��VÿlT g�x��
that is, lT g�x��V 0. But lV 0 (exercise 5.50) and g�x��U 0, and there-

fore we must have

ljgj�x�� � 0 for every j � 1; 2; . . . m �78�
We have shown that, if x� solves the problem

max
x

f �x� subject to g�x�U 0

there exist nonnegative Lagrange multipliers l � �l1; l2; . . . ; lm� such

that

. x� maximizes the Lagrangean function L�x; l� � f �x� ÿPm
j�1 ljgj�x�

on X

. x� and l satisfy the complementary slackness condition ligj�x�� � 0 for

every j � 1; 2; . . . ;m

If f and g are di¨erentiable and X is open, maximization requires that the

Lagrangean be stationary at x� (proposition 5.1), that is,
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DxL�x�; l� � Df �x�� ÿ
Xm

j�1

ljDgj�x�� � 0

or

`f �x�� �
Xm

j�1

lj`gj�x��

Furthermore, since the Lagrangean L�x; l� � f �x� ÿPj ljgj�x� is con-

cave in x, the ®rst-order necessary conditions are su½cient (exercise 5.20)

We summarize these conclusions in the following theorem.

Theorem 5.6 (Concave programming) Suppose that f is concave and gj

are convex and there exists an x̂ A X for which g�x̂� < 0. Then x� is a

global solution of

max
x AX

f �x�

subject to g�x�U 0

if and only if there exist multipliers l � �l1; l2; . . . ; lm�V 0 such that the

Lagrangean L�x; l� � f �x� ÿP ljgj�x� is maximized at x� and ljgj�x�� �
0 for every j. If f and g are di¨erentiable, it is necessary and su½cient that

�x�; l� is stationary point of L, that is �x�; l� satis®es the Kuhn-Tucker

conditions

`f �x�� �
Xm

j�1

lj`gj�x�� and ljgj�x�� � 0; j � 1; 2 . . . ;m

Exercise 5.48

Show that B is a convex set with a nonempty interior.

Exercise 5.49

Show that AX int B �q.

Exercise 5.50

Show that L�c; z� � azÿ lT c with aV 0 and lV 0. [Hint: Use exercise

3.47 and apply (75) to the point �c; z� � 1�.]
Exercise 5.51

The constraint g satis®es the Slater constraint quali®cation condition if

there exist x̂ A X with g�x̂� < 0. Show that this implies that a > 0.
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Remark 5.7 (Normalization) Setting a � 1 in de®ning the separating

hyperplane is merely a normalization (see remark 3.2). The Lagrange

multipliers a and l constitute a system of shadow prices for the objective

function and constraints (resources) respectively and the Lagrangean is a

valuation function at these prices. Only relative prices matter for eco-

nomic decisions and normalization corresponds to selecting the general

price level. Fixing a � 1 as the normalization amounts to selecting the

value which is being maximized as the numeÂraire. For most optimization

problems this seems an appropriate choice.

In other situations an alternative normalization might be useful. In the

vat design problem (example 5.27) we measured the net bene®t in terms of

volume units, implicitly setting a � 1. If volume could be assigned a value

or market price, it might have been more useful to set a equal to that price,

in which case the Lagrangean would have measured net revenue or pro®t.

As another example, in a problem in which the objective is measured in a

foreign currency, a might be set to the exchange rate. The point is that the

optimal decision establishes only a system of relative prices; the general

price level can be chosen arbitrarily to meet the needs of the analyst.

Remark 5.8 We cautioned earlier (section 5.3.4) that although a local

optimum must be a stationary point of the Lagrangean, it does not nec-

essarily maximize the Lagrangean over the set X. However, for concave

problems ( f concave, gj convex), every stationary point is necessarily a

maximum (exercise 5.20). Therefore, in concave programming, it is

appropriate to say that solving of the constrained problem

max
x AX

f �x� subject to g�x�U 0

is equivalent to unconstrained maximization of the Lagrangean L�x; l� �
f �x� ÿP ljgj�x� in X.

Example 5.46 In example 5.33 we showed that �0; 4� is the only point

satisfying the ®rst-order necessary conditions for a local solution of the

problem

max
x1V0;x2V0

log x1 � log�x2 � 5�

subject to x1 � x2 ÿ 4U 0

Observing that the objective function f is concave (example 3.50 and
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exercise 3.131) and the constraints are a½ne and hence convex (exercise

3.130), we conclude that the ®rst-order conditions are also su½cient. So

�0; 4� is a global solution.

Exercise 5.52 (Peak-load pricing)

Suppose that a public utility supplies a service, whose demand varies with

the time of day. For simplicity, assume that demand in each period is

independent of the price in other periods. The inverse demand function

for each period is pi�yi�. Assume that marginal production costs ci are

constant, independent of capacity and independent across periods. Fur-

ther assume that the marginal cost of capacity c0 is constant. With these

assumptions, the total cost function is

c�y;Y� �
Xn

i�1

ci yi � c0Y

The objective is to determine outputs yi (and hence prices pi) and pro-

duction capacity Y to maximize social welfare as measured by total con-

sumer and producer surplus.

In any period i, total surplus is measured by the area between the

demand and cost curves, that is,

Si�y;Y� �
� yi

0

�pi�t� ÿ ci� dt

So aggregate surplus is

S�y;Y � �
Xn

i�1

� yi

0

�pi�t� ÿ ci� dtÿ c0Y �79�

The optimization problem is to choose nonnegative yi and Y so as to

maximize (79) subject to the constraints

yi UY ; i � 1; 2; . . . ; n

Show that it is optimal to price at marginal cost during o¨-peak periods,

and extract a premium during peak periods, where the total premium is

equal to the marginal cost of capacity c0. Furthermore, under this pricing

rule, the enterprise will break even. Note that

Dyi
Si�y;Y � � Dyi

� yi

0

�pi�t� ÿ ci� dt � pi�yi� ÿ ci
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5.5 Notes

There is an immense literature on optimization theory and practice. Most

texts on mathematics for economists discuss optimization. Good treat-

ments are given by Sydsaeter and Hammond (1995), Simon and Blume

(1994), and Takayama (1994, 1985), listed in increasing order of rigor.

There are also several texts on optimization written especially for econo-

mists. Dixit (1990) is a delightful and lucid introduction to optimization

in economics written with a minimum of formalism. This is comple-

mented by Sundaram (1996), which is a comprehensive and rigorous

treatment of optimization in economics. Also recommended are Lambert

(1985), Leonard and Long (1992), and Madden (1986). Simon (1986) is a

concise survey of optimization in economics written for mathematicians.

Noneconomists often draw their examples from the physical world, and

place relatively more emphasis on computation rather than characteriza-

tion. However, there are insights to be gained from exploring this wider

literature. Two personal favorites are Luenberger (1984) and Bazaraa et al.

(1993). Other standard references include Mangasarian (1994) and Zang-

will (1969). Chvatal (1983) is an excellent introduction to linear program-

ming and the simplex algorithm. By analogy with linear programming,

the general inequality-constrained optimization problem (section 5.4) is

often call nonlinear programming. The problem with equality constraints

(section 5.3) is sometimes called classical programming.

While all the examples presented in this chapter were ®nite dimen-

sional, the results apply (with a little attention to topological niceties) to

arbitrary Banach spaces, which is the appropriate setting for many opti-

mization problems. A thorough coverage with many examples is given by

Luenberger (1969).

The implicit function theorem approach is probably the most com-

mon textbook derivation of the Lagrange multiplier method. The reader

who ®nds our coordinate-free approach intimidating will ®nd a similar

coordinate-based treatment in Beavis and Dobbs (1990, p. 38) and many

similar texts.

The section on constraint quali®cation draws heavily on Abadie (1967)

and Bazaraa et al. (1972, 1993). Theorem 5.5 is due to Mangasarian

(1994), clarifying the classic theorem (corollary 5.5.1) of Arrow and

Enthoven (1961). Our proof of the latter is adapted from Sundaram
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(1996, p. 221). Takayama (1994, pp. 95±98, 615±619) discusses some

other variations.

Example 5.1 is adapted from Whittle (1971). Exercise 5.11 is from

Kreps (1990). Example 5.29 is adapted from Fryer and Greenman (1987).

Examples 5.30 and 5.33 are adapted from Leonard and Long. The model

of a regulated monopolist was proposed by Averch and Johnson (1962).

Their analysis was clari®ed and extended in Baumol and Klevorick

(1970). The peak-load pricing problem has a long tradition in economics.

It was ®rst formulated as an optimization problem by Williamson (1966).

Exercise 5.52 is based on Littlechild (1970), who applied peak-load pric-

ing to a telephone network.
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6 Comparative Statics

One of the most important professional activities of economists is to carry out

exercises in comparative statics: to estimate the consequences and the merits of

changes in economic policy and in our economic environment.

ÐHerbert Scarf, 1994

Comparative statics is the name economists use to describe the analysis of

way in which the solutions of an economic model change as the parame-

ters and speci®cation change. Most of the testable predictions and policy

implications of economic models are generated by comparative static

analysis.

Economic models fall into two classes: optimization models and equi-

librium models. An optimization model can be represented as a con-

strained optimization problem

max
x AX

f �x; y� subject to x A G�y� �1�

while an equilibrium model can be expressed as a system of equations

f �x; y� � 0 �2�
Suppose that a change in policy or the context of a model can be sum-

marized by a change in the parameters from y1 to y2. The objective of

comparative static analysis is to assess the impact on the corrresponding

solutions x1 and x2 to (1) or (2). A typical question might be: What is the

impact on decision variable xk of an increase in yi, holding all other yj

constant? If we can determine that xk must decrease, we can establish a

qualitative proposition of the form

y2
i > y1

i ; yj0i constant) x2
k < x1

k

As a further step, a quantitative analysis attempts to assess the magnitude

of the change in xk. The process is called comparative statics, since it

compares equilibria before and after a change in a parameter. Compara-

tive statics does not address the issue of the path by which economic vari-

ables move from one equilibrium solution to another. Neither does it

consider the time taken for the adjustment. This is why it is called com-

parative statics.

One obvious approach to comparative static analysis would be to

compute an explicit functional solution x�y� for (1) or (2), from which

comparative statics would be derived immediately by substitution. Typi-

cally this procedure is not available to the economist since economic



models are usually formulated without specifying functional forms. Even

when explicit functional forms are employed, derivation of an explicit

solution to (1) or (2) may be computationally impractical. The skill of the

economic analyst lies in deriving comparative static conclusions without

explicit solution of the model. Economists employ several tools in this

quest. This chapter explores the variety of tools which can be used for

comparative static analysis in optimization and equilibrium models.

All comparative static analysis of optimization models is based on one

or more of the maximum theorems, which are summarized in table 6.1.

Crucially the continuous maximum theorem gives su½cient conditions for

existence of an optimal solution, and ensures that the solution varies

continuously with the parameters. The convex maximum theorem gives

su½cient conditions for the optimal solution to be unique and value

function concave. Analogously the monotone maximum theorem gives

su½cient conditions for the optimal solution and value function to be

increasing in the parameters. In section 6.1 we present yet another maxi-

mum theorem that shows that the optimal solution of a smooth model is a

smooth function of the parameters. This leads to the envelope theorem,

one of the most useful tools in the analysis of optimization models.

The envelope theorem is employed in section 6.2 to undertake com-

parative static analysis of the key models of microeconomic theory. This

section also discusses two alternative approaches to the comparative

statics of optimization models. Section 6.3 is devoted to the comparative

statics of equilibrium models, where the basic tool is the implicit function

theorem.

Table 6.1
Maximum theorems

Monotone
maximum
theorem
(theorem 2.1)

Continuous
maximum
theorem
(theorem 2.3)

Convex
maximum
theorem
(theorem 3.10)

Smooth
maximum
theorem
(theorem 6.1)

Objective function Supermodular,
increasing

Continuous Concave Smooth

Constraint
correspondence

Weakly
increasing

Continuous,
compact-valued

Convex Smooth, regular

Value function Increasing Continuous Concave Locally smooth

Solution
correspondence

Increasing Compact-valued,
nonempty, uhc

Convex-valued Locally smooth
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6.1 The Envelope Theorem

Comparative static analysis of optimization models is based upon the

maximum theorems, which are summarized in table 6.1. Each theorem

shows the extent to which the optimal solution and value function inherit

the properties of the objective function and constraint correspondence. To

apply standard di¨erential analysis to the optimal solution, we need to

ensure it is di¨erentiable. Su½cient conditions for di¨erentiability are

provided by the smooth maximum theorem.

Theorem 6.1 (Smooth maximum theorem) Suppose that x0 is a local

maximum of

max
x AG�y�

f �x; y� �3�

when y � y0 and

. G�y� � fx A X : gj�x; y�U 0; j � 1; 2 . . . ;mg

. f and gj are C n�1 on X �Y, nV 1, j � 1; 2; . . . ;m

. the binding constraints B�x0� are regular

. x0 satis®es the su½cient conditions for a strict local maximum (corollary

5.2.3)

Then there exists a neighborhood W of y0 on which

. there exists a C n function x�: W! X such that x��y� solves (3) for every

y A W

. the value function v�y� � supx AG�y� f �x; y� is C n on W

Proof Assume ®rst that all constraints are binding. Then (theorem 5.2)

there exists l such that x0 satis®es the ®rst-order conditions

DxL�x0; y0; l� � 0

g�x0; y� � 0

where L is the Lagrangean L�x; y; l� � f �x; y� ÿP ljgj�x; y�. The Jaco-

bian of this system is

J � HL J T
g

Jg 0

� �
�4�
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where HL is the Hessian of the Lagrangean and Jg is the Jacobian of g.

Since x0 satis®es the conditions for a strict local maximum, J is non-

singular (exercise 6.1). By the implicit function theorem (theorem 4.5),

there exist C n functions x� and l� such that x0 � x��y0�, l0 � l��y0�, and

DxL�x��y�; y; l��y�� � 0

g�x��y�; y� � 0

for every y A W. We can ensure that W is su½ciently small that B�x��y�� is

regular for all y A W and also that L�x��y�; y; l��y�� satis®es the second-

order condition for a strict local maximum on W. Consequently x��y�
solves (3) for every y A W and the value function satis®es

v�y� � f �x��y�; y� for every y A W

By the chain rule (exercise 4.22), v is also C n. If not all constraints are

binding at x0, there exists a neighborhood in which they remain non-

binding, and we can choose W so that they remain nonbinding in W. r

Exercise 6.1

Show that the Jacobian J in (4) is nonsingular.

Having determined that v is di¨erentiable, let us now compute its

derivative. To simplify the notation, we will suppress the arguments of the

derivatives. Let fx denote Dx f �x0; y0�, the (partial) derivative of f with

respect to x evaluated at �x0; y0�. Similarly, let

fy � Dy f �x0; y0�; gx � Dxg�x0; y0�; gy � Dyg�x0; y0�; x�y � Dyx��y�
By theorem 6.1, there exists a neighborhood W around y0 and function x�

such that v�y� � f �x��y�; y� for every y A W. By the chain rule,

Dyv�y� � fxx�y � fy �5�
There are two channels by which a change in y can a¨ect v�y� �
f �x��y�; y�. First, there is the direct e¨ect fy since y is an argument of f.

Second, there is an indirect e¨ect. A change in y will also change x��y�,
which will in turn a¨ect v. The ®rst term fxx�y in (5) measures the indirect

e¨ect.

What do we know of the indirect e¨ect? First, if x0 is optimal, it must

satisfy the ®rst-order conditions (theorem 5.3)
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fx � lT
0 gx and lT

0 g�x; y� � 0 �6�
where l0 is the unique Lagrange multiplier associated with x0. Also x��y�
satis®es the constraint g�x��y�; y� � 0 for all y A W. Another application

of the chain rule gives

gxx�y � gy � 0) lT
0 gxx�y � ÿlT gy �7�

Using (6) and (7), the indirect e¨ect is fxx�y � lT
0 gxx�y � ÿlT gy, and

therefore

Dyv�y� � fy ÿ lT
0 gy �8�

Letting L denote the Lagrangean L�x; y; l� � f �x; y� ÿ lT g�x; y�, equa-

tion (8) implies that

Dyv�y� � DyL�x0; y; l0�
This is the envelope theorem, which states that the derivative of the value

function is equal to the partial derivative of the Lagrangean evaluated at

the optimal solution �x0; l0�. In the special case

max
x AG

f �x; y�

in which the feasible set G is independent of the parameters, gy � 0 and

(8) becomes

Dyv�y� � fy

The indirect e¨ect is zero, and the only impact on v of a change in y is the

direct e¨ect fy. We summarize this result in the following corollary.

Corollary 6.1.1 (Smooth envelope theorem) Suppose that x0 is a local

maximum of

max
x AG�y�

f �x; y� �9�

when y � y0 and

. G�y� � fx A X : gj�x; y�U 0; j � 1; 2 . . . ;mg

. f and gj are C2 at �x0; y0�, j � 1; 2; . . . ;m

. the binding constraints B�x0� are regular
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. x0 satis®es the su½cient conditions for a strict local maximum

Then the value function v�y� � supx AG�y� f �x; y� is di¨erentiable at y0 with

Dyv�y0� � DyL�x0; y0; l0�
where L is the Lagrangean L � f ÿPm

j�1 ljgj and l0 is the (unique)

Lagrange multiplier associated with x0.

Example 6.1 The Lagrangean for the consumer's problem

max
x AX

u�x� subject to pT x � m

is L�x; p;m; l� � u�x� ÿ l�pT xÿm�. The envelope theorem states that

Dmv�p;m� � DmL�x; p;m; l� � l

which we have previously identi®ed as the marginal utility of income. The

envelope theorem fomalizes the observation made in example 5.24. At the

optimum, it is immaterial how a small increment in income is divided

among di¨erent commodities. The change in utility is the same no matter

how the increment is spent.

Exercise 6.2

Prove proposition 5.2.

The envelope theorem is a key tool for comparative statics of opti-

mization models. The derivation in corollary 6.2, based on the smooth

maximum theorem, expresses the insight that the optimal solution is

chosen so as to make the Lagrangean stationary with respect to feasible

perturbations in x. However, the assumptions required for corollary 6.1.1

are stringent. Where the feasible set is independent of the parameters, a

more general result can be given.

Theorem 6.2 (Envelope theorem) Let x� be the solution correspondence

of the constrained optimization problem

max
x AG

f �x; y�

in which f : G �Y! R is continuous and G compact. Suppose that f is

continuously di¨erentiable in y, that is, Dy f �x; y� is continuous in G �Y.

Then the value function
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v�y� � sup
x AG

f �x; y�

is di¨erentiable wherever x� is single valued with Dyv�y� � Dy f �x�y�; y�.
Proof To simplify the proof, we assume that x� is single valued for every

y A Y (see Milgrom and Segal 2000 for the general case). Then x� is con-

tinuous on Y (theorem 2.3) and

v�y� � f �x��y�; y� for every y A Y

For any y 0 y0 A Y,

v�y� ÿ v�y0� � f �x��y�; y� ÿ f �x��y0�; y0�
V f �x��y0�; y� ÿ f �x��y0�; y0�
� Dy f �x��y0�; y0��y ÿ y0� � h�y�ky ÿ y0k

with h�y� ! 0 as y ! y0. On the other hand, by the mean value theorem

(theorem 4.1), there exist y A �y; y0� such that

v�y� ÿ v�y0� � f �x��y�; y� ÿ f �x��y0�; y0�
U f �x��y�; y� ÿ f �x��y�; y0�
� Dy f �x��y�; y��y ÿ y0�

Combining these inequalities, we have

Dy f �x��y0�; y0��y ÿ y0� � h�y�ky ÿ y0kU v�y� ÿ v�y0�
UDy f �x��y�; y��y ÿ y0�

or

Dy f �x��y0�; y0��y ÿ y0�
ky ÿ y0k � h�y�U v�y� ÿ v�y0�

ky ÿ y0k U
Dy f �x��y�; y��y ÿ y0�

ky ÿ y0k
Letting y ! y0 yields

lim
y!y0

Dy f �x��y0�; y0��y ÿ y0�
ky ÿ y0k � lim

y!y0

h�y�

U lim
y!y0

v�y� ÿ v�y0�
ky ÿ y0k U lim

y!y0

Dy f �x��y�; y��y ÿ y0�
ky ÿ y0k
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Since x� and Dy f are continuous,

lim
y!y0

Dy f �x��y0�; y0��y ÿ y0�
ky ÿ y0k U lim

y!y0

v�y� ÿ v�y0�
ky ÿ y0k

U lim
y!y0

Dy f �x��y0�; y0��y ÿ y0�
ky ÿ y0k

Therefore v is di¨erentiable (exercise 4.3) and

Dv�y� � Dy f �x��y�; y�
where Dy f �x��y�; y� denotes the partial derivative of f with respect to y

holding x constant at x � x��y�. r

Note that there is no requirement in theorem 6.2 that f is di¨erentiable

with respect to the decision variables x, only with respect to the parameters.

The practical importance of dispensing with di¨erentiability with respect

to x is that theorem 6.2 applies even when the feasible set is discrete. This

is illustrated in ®gure 6.1, where the choice set X � fx1; x2; x3g and there

is a single parameter. Each curve represents the value of the objective

function as a function of the parameter. Clearly, the optimal choice for

each value of y is that corresponding to the highest curve at that param-

eter value. Moreover the value function is the upper envelope of the

objective functions f �xi; y�. We observe that the value function is di¨er-

entiable wherever the the optimal choice is unique, and its derivative is

equal to the derivative of the objective function at that point. This insight

Figure 6.1
The value function is the upper envelope of the Lagrangean
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extends to more general decision sets X, with the value function remaining

the upper envelope of the objective function.

Example 6.2 (Optimal location) Suppose that demand for a product is

distributed according to

f �x; y� � 1ÿ �xÿ y�2

where x A �0; 1� is the location of the vendor, which can be interpreted as

either physical location or location of the product in some notional

``product space.'' y is a parameter measuring the location of demand. For

simplicity, assume that price is ®xed at one and marginal costs are zero.

Then the seller's optimization problem is

max
0UxU1

f �x; y� � 1ÿ �xÿ y�2

The optimal solution is x��y� � y and the value function is v�y� �
f �x��y�; y� � 1.

Suppose, however, that the seller is constrained to locate at one of the

endpoints, that is, x A f0; 1g. In this case the optimal solution is clearly to

locate as close as possible to the demand

x��y� � 0 if yU 0:5

1 if yV 0:5

�
and the value function is

v�y� � max
x A f0;1g

f �x; y�

� maxf f �0; y�; f �1; y�g � 1ÿ y2 if yU 0:5

1ÿ �1ÿ y�2 if yV 0:5

�
which is illustrated in ®gure 6.2. We observe that v is di¨erentiable

everywhere except at y � 0:5 (where x� is multi-valued), with Dyv�y� �
Dy f �x��y�; y�.

6.2 Optimization Models

We now present three complementary approaches to the comparative

static analysis of optimization models. The revealed preference approach

(section 6.2.1) obtains limited conclusions with minimal assumptions. The
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value function approach (section 6.2.2) exploits the envelope theorem to

deduce properties of the optimal solution from the known properties of

the value function. The monotonicity approach (section 6.2.3) applies the

monotone maximum theorem to derive strong qualitative conclusions in

those models in which it is applicable.

6.2.1 Revealed Preference Approach

The revealed preference approach provides comparative static conclusions

in the standard models of the consumer and producer, assuming nothing

more than that the agent seeks to maximize utility or pro®t.

Remark 6.1 (Notation) To avoid a confusion of superscripts in this

section, we will use p � y instead of our customary pT y to denote the inner

product of p and y. That is, if p; x; y A Rn,

p � y �
Xn

i�1

piyi and p � x �
Xn

i�1

pixi

Example 6.3 (Competitive ®rm) A competitive ®rm's optimization prob-

lem is to choose a feasible production plan y A Y to maximize total pro®t

max
y AY

p � y

Consequently, if y1 maximizes pro®t when prices are p1, then

p1 � y1 V p � y for every y A Y

Similarly, if y2 maximizes pro®t when prices are p2, then

Figure 6.2
The value function is di¨erentiable except at y � 0:5
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p2 � y2 V p � y for every y A Y

In particular,

p1 � y1 V p1 � y2 and p2 � y2 V p2 � y1

Adding these inequalities yields

p1 � y1 � p2 � y2 V p1 � y2 � p2 � y1

Rearranging, we have

p2 � �y2 ÿ y1�V p1 � �y2 ÿ y1�
Therefore

�p2 ÿ p1� � �y2 ÿ y1�V 0 or
Xn

i�1

�p1
i ÿ p2

i ��y2
i ÿ y2

i �V 0 �10�

If prices change from p1 to p2, the optimal production plan must change

in such a way as to satisfy the inequality (10).

To understand the import of this inequality, consider a change in a

single price pi. That is, suppose that p2
j � p1

j for every j 0 i. Substituting

in (10), this implies that

�p2
i ÿ p1

i ��y2
i ÿ y1

i �V 0 or p2
i > p1

i ) y2
i V y1

i �11�
Recall that yi measures the net output of commodity i (example 1.7).

Consequently, if i is an output, the quantity produced increases as its price

increases (and fall as its price falls). If i is an input �y2
i U 0�, (11) implies

that the quantity of the input used falls as its price increases. In other

words, it implies the elementary economic law that the supply curve of

a competitive ®rm slopes upward, and its input demand curves slope

downwards.

It is important to appreciate that (10) does not imply that other quan-

tities yj0i do not change when pi alone changes. In principle, all net out-

puts will change as the ®rm adjusts to a change in a single price. However,

whatever the changes in the other commodities, the net output of good i

must obey (11).

The term ``revealed preference'' stems from the observation that, in

chosing y1 when the prices are p1, the decision maker reveals that she

(weakly) prefers y1 to y2 given p1. Similarly her choice reveals that she
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prefers y2 to y1 given p2. These revelations impose restriction (10) on y1

and y2. The beauty of this approach to the comparative statics is that the

conclusions follow from nothing more than the assumption of maximizing

behavior.

Example 6.4 (Expenditure minimization) An alternative way to ap-

proach the consumer's problem (example 5.1) is to consider the problem

of minimizing the expenditure required to achieve a given level of utility

min
x AX

p � x subject to u�x�V u �12�

The optimal solution of this problem speci®es the optimal levels of con-

sumption so as to achieve utility level u at minimum cost. If x1 and x2

represent optimal solutions when prices are p1 and p2 respectively, we

conclude that

p1 � x1 U p1 � x2 and p2 � x2 U p2 � x1

Adding these inequalities, we have

p1 � x1 � p2 � x2 U p1 � x2 � p2 � x1

Rearranging yields

p2 � �x2 ÿ x1�U p1 � �x2 ÿ x1� or �p2 ÿ p1� � �x2 ÿ x1�U 0 �13�
For a single price change (p2

j � p1
j for every j 0 i), (13) implies that

�p2
i ÿ p1

i ��x2
i ÿ x1

i �U 0 or p2
i > p1

i ) x2
i U x1

i

Again, it is important to realise that (13) does not imply that other

quantities do not change when pi alone changes. It does imply that no

matter what the other changes, the quantity of good i consumed falls

when its price rises.

Note that the solution correspondence to the expenditure minimization

problem (12) depends on prices p and utility u, and not on income. When

it is single valued, the optimal solution function is known as the Hicksian

or compensated demand function, and is often denoted h�p; u� to distin-

guish it from the ordinary demand function x��p;m�. It speci®es the con-

sumer's behavior on the assumption that all prices changes are

accompanied by compensating changes in income so as to leave the con-

sumer's attainable utility unchanged.
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Re¯ecting on these two examples, we observe that the analysis de-

pended on two characteristics of these models:

. The objective function is bilinear.

. The feasible set is independent of the parameters.

We formalize this observation in the following exercise.

Exercise 6.3

Suppose that f is bilinear and that

x1 solves max
x AG

f �x; y1� and x2 solves max
x AG

f �x; y2�

Then

f �x1 ÿ x2; y1 ÿ y2�V 0

Examples 6.3 and 6.4 and exercise 6.3 do not exhaust the potential of

the revealed preference approach. Other results can be derived with some

ingenuity.

Example 6.5 (Monopoly) Suppose that the cost function of a monopolist

changes from c1�y� to c2�y� in such a way that marginal cost is higher at

every level of output

0 < c 01�y� < c 02�y� for every y > 0

In other words, the marginal cost curve shifts upward. Then (exercise

6.4)

c2�y1� ÿ c2�y2�V c1�y1� ÿ c1�y2� �14�
where y1 and y2 are the pro®t maximizing output levels when costs are

c1 and c2 respectively. The fundamental theorem of calculus (Spivak 1980,

p. 472) states: If f A C1�a; b�, then

f �b� ÿ f �a� �
� b

a

f 0�x� dx

Applying this theorem to both sides of (14), we deduce that� y1

y2

c 02�y� dyV
� y1

y2

c 01�y� dy
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or� y1

y2

c 02�y� dyÿ
� y1

y2

c 01�y� dy �
� y1

y2

�c 02�y� ÿ c 01�y�� dyV 0

Since c 02�y� ÿ c 01�y�V 0 for every y (by assumption), this implies that

y2 U y1. Assuming the demand curve is downward sloping, this implies

that p2 V p1. We have deduced that a monopolist's optimal price is

increasing in marginal cost.

Exercise 6.4

Suppose that the cost function of a monopolist changes from c1�y� to

c2�y� with

0 < c 01�y� < c 02�y� for every y > 0

Show that

c2�y1� ÿ c2�y2�V c1�y1� ÿ c1�y2� �15�
where y�1 and y�2 are the pro®t maximizing output levels when costs are c1

and c2 respectively.

6.2.2 Value Function Approach

The value function approach to comparative statics exploits the special

form of the value function in many economic models. It provides an

especially elegant analysis of the core microeconomic models of the con-

sumer and the producer.

Example 6.6 (Hotelling's lemma) The competitive producer's problem

(example 5.1) is to choose a feasible production plan y A Y to maximize

total pro®t pT y. Letting f �y; p� � pT y denote the objective function, the

competitive ®rm solves

max
y AY

f �y; p�

Note that f is di¨erentiable with Dp f �y; p� � y. Applying theorem 6.2, the

pro®t function

P�p� � sup
y AY

f �y; p�
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is di¨erentiable wherever the supply correspondence y� is single valued

with

DpP�p� � Dp f �y��p�; p� � y��p� �16�
or

y��p� � `P�p�
In other words, whenever the optimal production plan y��p� is unique, it

is equal to the gradient of the pro®t function at p, an important result

known as Hotelling's lemma.

Suppose that the supply correspondence is single valued for all p; that

is, y��p� is a function. Then the smooth maximum theorem (theorem 6.1)

applies and y� and v are smooth. The practical signi®cance of Hotelling's

lemma is that if we know the pro®t function, we can calculate the supply

function by straightforward di¨erentiation instead of solving a constrained

optimization problem. But its theoretical signi®cance is far more impor-

tant. Hotelling's lemma enables us to deduce the properties of the supply

function y� from the already established properties of the pro®t function.

In particular, we know that the pro®t function is convex (example 3.42).

From Hotelling's lemma (16), we deduce that the derivative of the

supply function is equal to the second derivative of the pro®t function

Dy��p� � D2P�p�
or equivalently that the Jacobian of the supply function is equal to the

Hessian of the pro®t function.

Jy � �p� � HP�p�
Since P is smooth and convex, its Hessian H�p� is symmetric (theorem

4.2) and nonnegative de®nite (proposition 4.1) for all p. Consequently the

Jacobian of the supply function Jy � is also symmetric and nonnegative

de®nite. This implies that for all goods i and j,

Dpi
y�i �p�V 0 Nonnegativity

Dpi
y�j �p� � Dpj

y�i �p� Symmetry

Nonnegativity is precisely the property we derived in example 6.3. Recall-

ing that net outputs yi are positive for outputs and negative for inputs,

nonnegativity implies that the quantity of output supplied increases and
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the quantity of input demanded falls as its own price increases. Symmetry

is new. It states the surprising proposition that the change in net output of

good i following a change in the price of good j is precisely equal to the

change in net output of good j following a change in the price of good i.

Exercise 6.5 (Single-output ®rm)

The preceding example is more familiar where the ®rm produces a single

output and we distinguish inputs and outputs. Assume that a competitive

®rm produces a single output y from n inputs x � �x1; x2; . . . ; xn� accord-

ing to the production function y � f �x� so as to maximize pro®t

P�w; p� � max
x

pf �x� ÿ wT x

Assume that there is a unique optimum for every p and w. Show that the

input demand x�i �w; p� and supply y��w; p� functions have the following

properties:

Dpy�i �w; p�V 0 Upward sloping supply

Dwi
x�i �w; p�U 0 Downward sloping demand

Dwj
x�i �w; p� � Dwi

x�j �w; p� Symmetry

Dpx�i �w; p� � ÿDwi
y��w; p�Reciprocity

Example 6.7 (Shephard's lemma) A cost-minimizing ®rm solves (example

5.16)

min
xV0

wT x subject to f �x�V y

which is equivalent to

max
xV0

ÿ wT x subject to ÿ f �x�Uÿy

Note that the feasible set is independent of the parameters w, and theorem

6.2 applies. The cost function

c�w; y� � inf
xV0

wT x � ÿ sup
xV0

ÿ wT x

is di¨erentiable wherever x� is single valued with

Dwc�w; y� � x��w; y� �17�
Equation (17) is known as Shephard's lemma.
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When it is single valued, x��w; y� is called the conditional demand

function, since it speci®es the optimal demand conditional on producing a

given level of output y. Practically, Shephard's lemma means that condi-

tional demand function can be derived simply by di¨erentiating the cost

function. Theoretically, it means that the properties of the conditional

demand function can be deduced from the known properties of the cost

function. Provided that the production function is smooth, Theorem 6.1

guarantees the x� and the cost function c are also smooth. From (17) we

calculate that

Dwx��w; y� � D2
wwc�w; y� �18�

For ®xed y, the left-hand side of (18) can be represented by the Jaco-

bian Jx � �w� of x� viewed as a function of w alone. Similarly the right-

hand side of (18) can be represented by the Hessian Hc�w� of c regarded

as a function of w alone. (18) asserts that these two matrices are equal,

that is,

Jx � �w� � Hc�w�
We previously determined (example 3.126) that the cost function is

concave in w so that Hc�w� is nonpositive de®nite. It is also symmetric

(theorem 4.2). Consequently, for all goods i and j,

Dwi
x�i �w; y�U 0 Negativity

Dwi
x�j �w; y� � Dwj

x�i �w� Symmetry

Exercise 6.6 (Inferior inputs)

An input i is called normal its demand increases with output, that is,

Dyx��w; y�V 0. Otherwise �Dyx��w; y� < 0�, i is called an inferior input.

Show that an input i is normal if and only if marginal cost Dyc�w; y� is

increasing in wi.

Example 6.8 (Roys's identity) The consumer's problem is

max
x AX �p;m�

u�x� �19�

where X�p;m� � fx A X : pT xÿmU 0g is the budget set. Theorem 6.2

cannot be applied, since the feasible set X �p;m� depends on the

parameters (p and m). Let g�x; p;m� � pT xÿm so that X �p;m� �
fx A X : g�p;m�U 0g. The Lagrangean is u�x� ÿ l�pT xÿm�. Assuming
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that u is smooth and the demand correspondence x��p;m� is single

valued, we can apply corollary 6.1.1. The indirect utility function

v�p;m� � sup
x AX�p;m�

u�x�

is di¨erentiable with

Dpv�p;m� � ÿlDpg�x�; p;m� � ÿlx�

and

Dmv�p;m� � ÿlDmg�x�; p;m� � l

where l is the marginal utility of income (example 5.24). It follows that

the demand function is

x��p;m� � ÿDpv�p;m�
l

� ÿ Dpv�p;m�
Dmv�p;m� �20�

Equation (20) is known as Roy's identity.

Example 6.9 (Slutsky equation) We have now encountered two di¨erent

demand functions for the consumer. The solution x�p;m� of (19) is known

as the ordinary demand function to distinguish it from the compensated

demand function h�p; u� de®ned in example 6.4. They di¨er in their inde-

pendent variables but are related by the identity

x�p;m�1 h�p; v�p;m�� �21�
In other words, the ordinary and compensated demand functions intersect

where utility u � v�p;m�. Using Roy's identity, we can also show that

their derivatives are also related. Di¨erentiating (21) using the chain rule

gives

Dmx�p;m� � Duh��p; v�p;m�� �Dmv�p;m�
�22�

Dpx�p;m� � Dph�p; v�p;m�� �Duh�p; v�p;m�� �Dpv�p;m�
Substituting for Dpv�p;m� using Roy's identity (20), we have

Dpx�p;m� � Dph�p;m� �Duh��p;m� � �ÿDmv�p;m�x�p;m��
and using (22),

Dpx�p;m� � Dph�p;m� ÿDmx�p;m�x�p;m�
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which is known as the Slutsky equation. To understand the implication of

this equation, consider the demand for good i. The Slutsky equation

Dpi
xi�p;m� � Dpi

hi�p;m� ÿ xi�p;m�Dmxi�p;m� �23�
decomposes the change in demand for good i (as its prices changes) into

two termsÐthe substitution e¨ect and the income e¨ect. The substitution

e¨ect Dpi
hi�p;m� measures the e¨ect on demand of change in price, hold-

ing utility constant. We have already shown that the substitution e¨ect

Dpi
hi�p;m� is always negative (example 6.4). Consequently the slope of the

demand curve depends on the income e¨ect.

An increase in pi e¨ectively reduces the consumer's real income by pixi.

The income e¨ect ÿxi�p;m�Dmxi�p;m� measures the e¨ect on demand

of the change in real income. Dmxi�p;m� measures the responsiveness of

demand to changes in income. If Dmxi�p;m�V 0, demand increases with

income, and good i is called a normal good. In that case the income e¨ect

is also negative, and (23) implies that Dpi
xi�p;m�U 0. The Slutsky equa-

tions reveals that ``normally'' demand curves slope downward.

On the other hand, if Dmxi�p;m�U 0, good i is called an inferior good.

For an inferior good, the income e¨ect is positive. It is theoretically pos-

sible for a positive income e¨ect to outweigh the negative substitution

e¨ect for an inferior good, in which case Dpi
xi�p;m�V 0 and the demand

curve slopes upward. Such a good is called a Gi¨en good.

Exercise 6.7 (Aggregation conditions)

As the previous example demonstrated, utility maximization places no

restrictions on the slopes of individual demand functions. However, the

consumer's demand must always satisfy the budget constraint, which

places certain restrictions on the system of demand functions as a whole.

Show that for all goods i,Pn
i�1 aihi � 1 Engel aggregation conditionPn
i�1 aieij � ÿaj Cournot aggregation condition

where ai � pixi=m is the budget share of good i and

eij�p;m� � pj

xi�p;m�Dpj
xi�p;m� and hi�p;m� �

m

xi�p;m�Dmxi�p;m�

are the price and income elasticities of demand respectively.
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6.2.3 The Monotonicity Approach

The monotone maximum theorem (theorem 2.1) is an obvious tool for

comparative static analysis in optimization models, since it generates

precisely the type of conclusions we seek. Where applicable, it generates

strong results with a minimum of extraneous assumptions. Unfortunately,

its requirements are also strong, and it cannot supplant other tools in the

economist's arsenal. It complements these other tools, generating addi-

tional conclusions in appropriate models and acting where other tools are

unavailable. Often the model has to be transformed before the monotone

maximum theorem can be applied. We give some examples. More exam-

ples can be found in the references cited in the notes.

The monotone maximum theorem is not directly applicable to many of

the standard models of microeconomics, such as examples 5.1, 5.2, and

5.16, since their feasible sets are not lattices. However, it can be applied to

the single-output ®rm, where the technology is represented by a produc-

tion function. We generate stronger conclusions in the special case in

which all inputs are complements in production.

Example 6.10 (Competitive ®rm) A ®rm produces a single product y

using the technology

y � f �x�
The ®rm purchases inputs at ®xed input prices w and sells its output at

price p. Net revenue is

NR�x; p;w� � pf �x� ÿ
Xn

i�1

wixi

and the ®rm's objective is to maximize net revenue by appropriate choice

of inputs, that is, to solve the optimization problem

max
x AR n

�
NR�x; p;w�

The objective function is decreasing in factor prices w. To conveniently

apply the monotone maximum theorem, we recast the problem using the

negative of the factor prices so that the objective function becomes

NR�x; p;ÿw� � pf �x� �
Xn

i�1

�ÿwi�xi
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If all inputs are complements in production, the production function f is

supermodular (example 2.70), and the net revenue function NR�x; p;ÿw�
is (exercise 6.8)

. supermodular in x

. displays strictly increasing di¨erences in �x;ÿw�
Applying the monotone maximum theorem (corollary 2.1.2), the ®rm's

input demand correspondences

x�i �w� � arg max
x AR n

�
pf �x� �

Xn

i�1

�ÿwi�xi

 !

are always increasing in ÿw (always decreasing in w). That is, provided

the inputs are complements in production, an increase in input price will

never lead to an increase in demand for any input.

This conclusion should be distinguished from our earlier conclusion

that input demand functions are declining in their own price (example 6.3

and exercise 6.5). Exercise 6.5 assesses the impact of a change in the price

of one factor holding all other prices constant. It does not predict the

e¨ect of changes in one factor price on the demand for other factors. It is

valid irrespective of the technology. In contrast, the monotone maximum

theorem predicts the impact of changes in one price on the demand for all

factors, and in fact accounts for simultaneous increase in many factor

prices, but requires a speci®c class of technology (complementary inputs).

Complementarity also implies that pro®t (P) and output y� are also

decreasing functions of w. However, complementarity is not necessary for

these conclusions. P is always decreasing in w, while y� is decreasing in w

provided that there are no inferior inputs (exercise 6.6).

Exercise 6.8

In preceding example show that the net revenue function

NR�x; p;ÿw� � pf �x� �
Xn

i�1

�ÿwi�xi

is supermodular in x and displays strictly increasing di¨erences in �x;ÿw�
provided that the production function f is supermodular.

In the next example, we replicate the analysis of example 6.5 using the

monotonicity approach.
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Example 6.11 Suppose that a monopolist's cost function c�y; y� displays

increasing di¨erences in a parameter y; that is, c�y2; y� ÿ c�y1; y� for

y2 > y1 is increasing in y. This implies increasing marginal costs. Suppose

also that demand f �p� is decreasing in p. Then net revenue

NR�p; y� � pf �p� ÿ c� f �p�; y�
. is supermodular in p (exercise 2.49)

. displays increasing di¨erences in �p; y� (exercise 6.9)

By the monotone maximum theorem (theorem 2.1), the pro®t-maximizing

price is increasing in y and therefore output f �p� is decreasing in p.

Compared to example 6.5, the preceding analysis requires an additional

assumption that demand is decreasing in price. Example 6.5 made no

assumption regarding demand. On the other hand, example 6.5 required

that marginal cost be continuous, which implicitly assumes that output is

continuously variable. In contrast, this analysis makes no such assump-

tion. Output and price can be discrete.

Exercise 6.9

Show that the objective function in the preceding example displays

increasing di¨erences in �p; y�.
Exercise 6.10

It is characteristic of microchip production technology that a proportion

of output is defective. Consider a small producer for whom the price of

good chips p is ®xed. Suppose that proportion 1ÿ y of the ®rm's chips are

defective and cannot be sold. Let c�y� denote the ®rm's total cost function

where y is the number of chips (including defectives) produced. Suppose

that with experience, the yield of good chips y increases. How does this

a¨ect the ®rm's production y? Does the ®rm compensate for the increased

yield by reducing production, or does it take advantage of the higher yield

by increasing production?

6.3 Equilibrium Models

The implicit function theorem (theorem 4.5) provides the mathematical

foundation for most comparative static analysis of equilibrium models.
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For any solution x0 to a system of equations

f�x; y0� � 0

the implicit function theorem asserts the existence of a function g: W! X

on a neighborhood W of y0 such that

x0 � g�y0� and f �g�y�; y� � 0 for every y A W

provided that Dx f �x0; y0� is nonsingular. Further g is di¨erentiable with

derivative

Dyg�y0� � ÿ�Dxf�x0; y0��ÿ1 �Dyf�x0; y0�
Although it is usually intractable to compute the explicit form of g, its

derivative provides a linear approximation that can be used to infer the

behavior of g and hence of the equilibrium in the neighborhood of y0. We

illustrate with some familiar examples.

Example 6.12 (A market model) The comparative statics of a simple

market model of a single commodity is familiar from elementary eco-

nomics. We will show how this can be formalized. Assume that demand q

for some commodity is inversely related to the price p according the

demand function

q � d�p�
where Dpd < 0. Supply is positively related to price, but is also dependent

on some exogenous parameter y (the ``weather'')

q � s�p; y�
with Dps > 0 and Dys > 0. We assume that both d and s are C1.

Naturally equilibrium in this market pertains where demand equals

supply. We will write the equilibrium relationship as

e�p; y� � d�p� ÿ s�p; y� � 0

where e�p; y� is called the excess demand function. Note that Dpe �
Dpd ÿDps and Dye � ÿDys (exercise 4.21). How does the equilibrium

price depend upon y (the ``weather'')?

Let �p0; q0; y0� denote an initial equilibrium. From the implicit function

theorem, we know that there exists a function g relating the equilibrium

market price p to the weather y,
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p � g�y�
in a neighborhood W of y0. Clearly, without specifying d and s, it is im-

possible to compute g explicitly. However, we can compute its derivative,

which is given by

Dpg�y0� � ÿ�Dpe�p0; y0��ÿ1 �Dye�p0; y0� � ÿ ÿDys

Dpd ÿDps

Armed with estimates regarding the magnitude of Dpd, Dps, and Dys, we

could then assess the sensitivity of the market price to changes in weather.

Even without any additional information, we can at least determine that

the market price is negatively related to the weather. By assumption,

Dpd < 0, Dps > 0 and Dys > 0, so Dyg�y0� < 0. This con®rms our eco-

nomic intuition. Favourable weather increases supply, decreasing the

market price. We can also assess the relationship between the weather and

the equilibrium quantity. Substituting in the demand function (or the

supply function) q � d�g�y�� and applying the chain rule

dq

dy
� Dpd �Dyg > 0

The quantity traded is positively related to the weather.

Example 6.13 (The IS-LM model)

The IS-LM model (example 4.35) is speci®ed by two equations

f 1�r; y; G;T ;M� � yÿ C�y;T� ÿ I�r� ÿ G � 0

f 2�r; y; G;T ;M� � PL�y; r� ÿM � 0

We assume that

0 < Cy < 1; CT < 0; Ir < 0; Ly > 0; Lr < 0 �24�
where Cy denotes the partial derivative of C with respect to y. The

Jacobian of f is

Jf �
Dr f 1 Dy f1

Dr f 2 Dy f2

� �
� ÿIr 1ÿ Cy

Lr Ly

� �
which is nonsingular, since its determinant

D � ÿIrLy ÿ �1ÿ Cy�Lr > 0
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is positive given the assumptions (24) regarding the slopes of the con-

stituent functions.

Let x � �r; y� A X and y � �G;M;T� A Y. In a neighborhood WJY

around any equilibrium, there exists a function g: W! X specifying r

and y as functions of G, M and T. Although the functional form of g is

impossible to deduce without further specifying the model, we can derive

some properties of g. Speci®cally,

Dyg�y0� � ÿ�Dx f �x0; y0��ÿ1 �Dy f �x0; y0�
or

Jg � Jÿ1
f Kf

where

Kf � DG f1 DM f1 DT f1

DG f2 DM f2 DT f2

� �
�

ÿ1 0 ÿCT

0 ÿ 1

P
0

0B@
1CA

is the matrix representing Dy f . The inverse of Jf is (exercise 3.104)

Jÿ1
f �

1

D

Ly ÿ�1ÿ Cy�
ÿLr ÿIr

� �
and therefore

Jg � Jÿ1
f Kf � ÿ 1

D

Ly ÿ�1ÿ Cy�
ÿLr ÿIr

� � ÿ1 0 ÿCT

0 ÿ 1

P
0

0B@
1CA

� 1

D

Ly ÿ 1ÿ Cy

P
Ly � CT

ÿLr ÿ Ir

P
ÿLr � CT

0BBB@
1CCCA

Using the alternative notation, we have shown that

qr

qG

qr

qM

qr

qT

qy

qG

qy

qM

qy

qT

0BBB@
1CCCA � 1

D

Ly ÿ 1ÿ Cy

P
Ly � CT

ÿLr ÿ Ir

P
ÿLr � CT

0BBB@
1CCCA
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This summarizes the comparative statics of the IS-LM model. For exam-

ple, we conclude that government spending is expansionary, since

qy

qG
� ÿLr

D
> 0

is positive given that Lr < 0 and D > 0. The magnitude qy=qG is known

as the government-spending multiplier. The impact of a marginal increase

in government spending matched by an equal change in taxes

qy

qG
� qy

qT
� ÿLr�1� CT�

D
> 0

which is also positive. This magnitude is known as the balanced budget

multiplier.

In practice, we often simplify the derivation of comparative statics by

linearly approximating the original model, and analysing the behavior of

the linear model, presuming that the behavior of the linear model will

match that of the original nonlinear model. The justi®cation for this pre-

sumption remains the implicit function theorem; the analysis is indeed

equivalent and the conclusions identical (review the remarks proceeding

theorem 4.5). The modi®ed procedure is often easier to conduct and to

follow. We illustrate this procedure in the IS-LM model. The reader

should carefully compare the following example with example 6.13.

Example 6.14 (IS-LM model again) Recall that the original IS-LM

model is described by two (nonlinear) equations

y � C�y;T� � I�r� � G

L�y; r� �M

P

For small changes in the income and the interest rate, the change in the

demand for money can be approximated linearly by

dL � Lr dr� Ly dy

Treating all the functions in the model similarly, we can derive the fol-

lowing linearization of IS-LM model (exercise 4.63):
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dy � Cy dy� CT dT � Ir dr� dG

Lr dr� Ly dy � 1

P
dM

Collecting the endogenous variables (dr; dy) on the left-hand side and the

exogenous variable on the right-hand side, we have

ÿIr dr� dyÿ Cy dy � CT dT � dG

Lr dr� Ly dy � 1

P
dM

or in matrix form

ÿIr 1ÿ Cy

Lr Ly

� �
dr

dy

� �
�

dG � CT dT

1

P
dM

0B@
1CA

Letting dM � dT � 0, the system reduces to

ÿIr 1ÿ Cy

Lr Ly

� �
dr

dy

� �
� ÿdG

O

� �
which can be solved by Cramer's rule (exercise 3.103) to give

dy �
ÿIr dG

Lr 0

���� ����
ÿIr 1ÿ Cy

Lr Ly

���� ���� � ÿ
Lr

D
dG

where

D � ÿIrLy ÿ �1ÿ Cy�Lr > 0

is the determinant of the Jacobian of f as in the previous example. We

deduce that

qy

qG
� ÿLr

D
> 0

which is identical to the conclusion we derived more formally in the pre-

vious example.
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Similarly, letting dG � dT and dM � 0, we have

dy �
ÿIr dG � CT dT

Lr 0

���� ����
ÿIr 1ÿ Cy

Lr Ly

���� ���� � ÿLr

D
�dG � CT dT�

and the balanced budget multiplier is

qy

qG

����
dG�DT

� ÿLr�1� CT�
D

> 0

Since the optimal solution to an optimization model must satisfy a

system of equationsÐthe ®rst-order conditions (theorems 5.1, 5.2, and

5.3)Ðevery optimization model contains an equilibrium model. Conse-

quently the tools of equilibrium analysis can also be applied to optimiza-

tion models. In particular, the implicit function can be applied directly to

the ®rst-order conditions. We illustrate with an example.

Example 6.15 (The competitive ®rm) A competitive ®rm produces a

single output y using n inputs x � �x1; x2; . . . ; xn� according to the pro-

duction function

y � f �x1; x2; . . . ; xn�
Let p denote the output price and w � �w1;w2; . . . ;wn� the input prices.

The objective of the ®rm is to choose input levels and mix x to maximize

pro®t pf �x� ÿ wT x. Pro®t is maximized where (example 5.11)

Q�x; w; p� � pDx f ÿ w � 0 �25�
The second-order condition for a strict local maximum is that

DxQ�x;w; p� � pD2
xx f < 0

that is, f must be strictly locally concave. The ®rst-order conditions (25)

implicitly determine the optimal level of inputs for any combination of

output price p and input prices w. Assuming that f is C2 and the optimal

solution is unique, there exists a function x��p;m� (input demand function)

determining optimal demand as a function of w and p. Furthermore the

input demand function x� is C1 with derivatives

Dwx��w; p� � ÿ�DxQ�ÿ1 �DwQ � �pD2
ww f �ÿ1 � IX �26�
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and

Dpx��w; p� � ÿ�DxQ�ÿ1 �DpQ � ÿ�pD2
xx f �ÿ1 �Dx f

Regarding x� as a function of w alone, equation (26) can be written

Jx � �w� � 1

p
Hÿ1

f �x��

The second-order condition requires that f be locally strictly concave so

that Hf is negative de®nite (proposition 4.1). This implies identical con-

clusions to exercise 6.5.

Exercise 6.11

Suppose that there are only two inputs. They are complementary if

D2fx1x2
> 0. Show that Dw1

x2 < 0 if the factors are complementary and

Dw1
x2 V 0 otherwise. Note that this is special case of example 6.10.

With explicit constraints, it can be more straightforward to linearize the

®rst-order conditions before deducing the comparative statics, as we did

in example 6.14. Again, we emphasize that the theoretical foundation for

this analysis remains the implicit function theorem. The di¨erence is

merely a matter of computation.

Example 6.16 (Cost minimization) A ®rm produces a single output y

from inputs x using technology f �x�. Assuming that the ®rm produces

e½ciently (that is, at minimum cost), we want to deduce the e¨ect of

changes in factor prices w on employment of factors x. The ®rst-order

conditions for cost minimization are (example 5.16)

f �x� � y

wÿ lDx f �x� � 0

Suppose that w changes to w� dw. This will lead to consequent changes

x! x� dx and l! l� dl

which must again satisfy the ®rst-order conditions

f �x� dx� � y

w� dwÿ �l� dl�Dx f �x� dx� � 0
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For small changes we can approximate f �x� dx� and Dx f �x� dx� using

the ®rst and second derivatives of f:

f �x� dx�A f �x� �Dx f �x��dx�
Dx f �x� dx�ADx f �x� �D2

xx f �x��dx�
Substituting and canceling common terms gives

Dx f �x��dx� � 0

dwÿDx f �x� dlÿ lD2
xx f �x��dx� ÿD2

xx f �x��dl dx� � 0

Representing the ®rst and second derivatives by the gradient and Hessian

respectively, and recognizing that dl dx is neglibible for small changes,

this system can be rewritten as

ÿ`f �x� dx � 0

ÿ`f �x�T dlÿ lHf �x� dx � ÿdw

or in matrix form

0 ÿ`f �x�
ÿ`f �x�T ÿlHf �x�

� �
dl

dx

� �
� 0

ÿdw

� �
�27�

The matrix on the left is known as the bordered Hessian of f. Provided

that f is locally strictly concave, Hf �x� is negative de®nite (proposition

4.1) and symmetric (4.2). Consequently the bordered Hessian is non-

singular (exercise 6.1) and symmetric, and system (27) can be solved to

give

dl

dx

� �
� 0 ÿ`f �x�
ÿ`f �x�T ÿlHf �x�

� �ÿ1
0

ÿdw

� �
It can be shown (Takayama 1985, p. 163) that the properties of Hf imply

that

Dwi
x�i �w�U 0 and Dwi

x�j �w� � Dwj
x�i �w� for every i and j

which are identical to the conclusions obtained by the value function

approach in example 6.7.
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With two inputs x � �x1; x2� the system (27) is

0 ÿf1 ÿf2

ÿf1 ÿl f11 ÿl f12

ÿf2 ÿl f21 ÿl f22

0B@
1CA dl

dx1

dx2

0B@
1CA � 0

ÿdw1

ÿdw2

0B@
1CA

which can be solved by Cramer's rule (exercise 3.103) to give

dx1 �

�������
0 0 ÿf 2

ÿf1 0 ÿl f12

ÿf2 ÿdw2 ÿl f22

�������
jHj � ÿ f1 f2

jHj dw2

So

Dw2
x1 � qx1

qw2
� ÿ f1 f2

jHj > 0

since H, the determinant of the bordered Hessian, is negative by the

second-order condition.

One advantage of the implicit function approach to comparative statics

is its ¯exibility. In the following example we use it to provide an alterna-

tive analysis of a question raised in exercise 6.12.

Example 6.17 It is characteristic of microchip production technology

that a proportion of output is defective. Consider a small producer for

whom the price of good chips p is ®xed. Suppose that proportion 1ÿ y of

the ®rm's chips are defective and cannot be sold. Let c�y� denote the

®rm's total cost function where y is the number of chips (including defec-

tives) produced. Suppose that with experience, the yield of good chips y

increases. How does this a¨ect the ®rm's production y? Does the ®rm

compensate for the increased yield by reducing production, or does it

celebrate by increasing production?

The ®rm's optimization problem is

max
y

ypyÿ c�y�

The ®rst-order and second-order conditions for pro®t maximization are

Q�y; y; p� � ypÿ c 0�y� � 0 and DyQ�y; y; p� � ÿc 00�y� < 0
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The second-order condition requires increasing marginal cost. Assuming

that c is C2, the ®rst-order condition implicitly de®nes a function y�y�.
Di¨erentiating the ®rst-order condition with respect to y, we deduce

that

p � c 00�y�Dyy or Dyy � p

c 00�y�
which is positive by the second-order condition. An increase in yield y

is analogous to an increase in product price p, inducing an increase in

output y.

6.4 Conclusion

In this chapter we have introduced a variety of tools for comparative

static analysis. No single tool is equal to every occasion, and each has a

role to play. For standard analysis of the core microeconomic models of

the consumer and the producer, it is hard to beat the elegance of the

revealed preference and value function approaches. The implicit function

theorem approach is the principal tool for the analysis of equilibrium

models. It also provides ¯exibility to deal with modi®cations of the stan-

dard optimization models (example 6.17). It remains the most important

tool in the research literature. The monotonicity approach, based on the

monotone maximum theorem, is a relatively new development in analyt-

ical technique, and its potential is yet to be fully explored. Its key advan-

tage is that it dispenses with irrelevant assumptions, focusing attention on

the conditions necessary for particular relations to hold and generating

more robust conclusions.

6.5 Notes

Silberberg (1990) gives a thorough account of the traditional methods of

comparative statics in economic analysis. Mas-Colell et al. (1995) and

Varian (1992) are good expositions of the value function approach in

the theory of the consumer and the producer. Lambert (1985) is also in-

sightful. Takayama (1985, pp. 161±166) discusses the implicit function

approach to comparative statics in optimization models.
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The monotonicity approach to comparative statics was introduced by

Topkis (1978). Its application to economics is still in its infancy. Milgrom

and Shannon (1994) is a good overview. Milgrom (1994) discusses appli-

cations to optimization models, Milgrom and Roberts (1994) applications

to equilibrium models, and Milgrom and Roberts (1990) applications in

game theory. Topkis (1995) applies the techniques to a variety of models

of the ®rm. Athey et al. (2001) provide a comprehensive introduction to

the monotonocity approach.

Theorem 6.2 is due to Milgrom and Segal (2000). A similar result is in

Sah and Zhao (1998), from whom example 6.2 was adapted. Example 6.5

is from Tirole (1988).
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Index of Symbols

Sets and Spaces

q 2

ly 117

N 2

R 2

Rn 6

Rn
� 6

Rn
�� 6

R� 29

X � 280

Set Operations

A 2

J 2

H 2

S 2

K 2

P�S� 2

jSj 2

X 4

W 4

S c 4

SnT 4

X � Y 5

x 6

xÿi 7

�x; xÿi� 7

Relations

b 17, 22

> 17,22

z 22

g 22

7 13, 16, 26

1 16

V 22

@ 16

7S 30

7�a� 18

@�a� 14

�a; b� 18

Pareto 33

4 26, 28

5 26, 28

inf S 24

sup S 24

Metric Spaces

r�x; y� 45

Br�x� 49

b�S� 5

d�S� 48

int S 50

lim 58

S 50

�xn� 58

xn ! x 58

Linear Spaces

a¨ S 86

cone S 106

conv S 92

dim S 79

ei 77

ext�S� 96

lin S 72

ri S 128

Dm 99

S? 292

S � 382

S�� 382

kxk 115

�x; y� 88

Functions and Correspondences

AT 265

B�X� 155

C�X� 216



det A 297

epi f 154

f �S� 149

f ÿ1�S� 149

F�X� 155

g � f 150

graph� f � 146

graph�j� 182

Hf �c� 284

hypo f 154

kernel f 269

xT y 290

xTAx 303

X ! Y 145

X x Y 177

7f �a� 154

j��T� 222

jÿ�T� 222

Smooth Functions

A 423

C 1 427

C n 460

Cy 461

Df 425

Dnf 460

Dxi
f 430

~Dx f 431

dx 427

Jf 438

Hf 463

�x�n 471

`f 432

Optimization

arg max 182

B�x�� 550

D�x�� 570

G�y� 161

H��x�� 571

L�x�� 573

L�x; y� 533

T�x�� 572

Economic Models and Games

Bi�s� 180

core 39

eS 282

E�x� 453, 494

Eff�Y� 53

GN 67

Nu 42

v�y� 160

V�y� 9

w�S� 39

W�S� 37

x 139

X�p;m� 130
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General Index

Action pro®le, 6, 43±45
Acyclical relation, 17
Adjoint, 295, 300
Admissible labeling, 110±11, 246±47
A½ne
combination, 86
function, 276±77
hull, 86
set, 83±86, 309, 314

A½ne dependence, 87
Always increasing, 198
Analytic, 472
Antisymmetric relation, 13
Arrow-Enthoven theorem, 582
Arrow's impossibility theorem, 35±36
Ascending, 195, 209
Ascoli's theorem, 221
Asymmetric relation, 13
Axiom of choice, 26

Banach ®xed point theorem, 238±41
Banach space, 121
Bellman's equation, 165, 168±69
Balanced, 407±409
Barycentric coordinates, 87±88, 99
Basis, 77±81, 292
Best element, 20, 135
Best response correspondence, 180±81
Bilinear function, 287±90, 464
Binary relation. See Relation
Binding constraint, 550
Bolzano-Weierstrass theorem, 65
Boundary
optimum, 502
point, 50, 56, 125±26
relative, 129
set, 50±53, 128±29

Bounded functional, 155
Bounded. See also Totally bounded
linear function, 273±74
sequence, 59±60
set, 48, 53, 61±62

Brouwer ®xed point theorem, 245±51
Budget set, 131±32, 179±80

Cantor intersection theorem, 61
CaratheÂodory's theorem, 94, 108±10, 126±

27
Cauchy sequence, 59
Cauchy mean value theorem, 454±55
Cauchy-Schwartz inequality, 290±91
CES function, 191, 200, 215, 339±40, 352,

355±56, 446, 455±56, 490, 541
Chain, 24
Chain rule, 441±42, 461

Characteristic function, 156, 171, 179
Closed
ball, 51, 124±25
correspondence, 182±83
graph, 212
interval, 18
set, 50±53, 56, 60±61

Closed graph theorem, 275±76
Closed-valued, 179
Closure
point, 50
of a correspondence, 185
of a set, 50

Cobb-Douglas function, 190±91, 199±200,
215, 342, 352±53, 355, 446, 463, 490,
539±41

Coalition, 3, 407±409
Coalitional game, 36±42, 68±69, 73, 78,

179
balanced, 409
convex, 200
core, 39, 140, 380±81, 406±15
essential, 39
imputation, 101
nucleolus, 41±42
potential function, 268±69
Shapley value, 266±69, 271
superadditive, 106

Column space, 310
Compact
function, 258
metric space, 61±65
set, 61±62, 121

Compact-valued, 179
Comparative statics, 601±602
Competitive equilibrium, 139±41, 251±54,

385±86
Complement of a set, 4
Complementary inputs, 203, 494
Complementary slackness, 395±96, 551
Complete
lattice, 28
metric space, 59±60
order or relation, 13

Composition, 150, 184±85, 187, 212, 269,
333±34

Concave
function, 328±36, 355 (see also Convex
function)

maximum theorem, 343±45
programming, 592±95

Concavi®able, 340±41, 358
Cone, 104, 382±83
Conic hull, 106±108
Connected metric space, 52, 56



Constant function, 149, 425, 451
Constant returns to scale, 71±72, 104±106,

161, 354, 379, 492±93
Constraint quali®cation, 520, 568±81
conditions, 577

Consumption set, 7±8
Continuous
function 210±16 (see also Uniformly

continuous)
preference relation, 132±35

Continuously di¨erentiable, 427, 460±62
Contours, 150, 436±37, 491
Contraction, 218±20, 238±41
Convergence, 58±60, 61, 118, 124
pointwise, 151
uniform, 151±52

Convex
combination, 92
cone, 104±106, 314
correspondence, 182±83
game, 200
hull, 92, 126±27, 185
maximum theorem, 342
preference relation, 136±37, 339
set, 88±95, 125±26, 293±94, 314
technology, 89, 90, 105, 338±39

Convex function, 324±36, 483±88
continuity, 334±36
di¨erentiability, 484

Convex-valued, 179
Cramer's rule, 310±11
Core, 39, 140, 380±81, 406±15
Correspondence, 177±85
always increasing, 198
ascending, 195
closed-valued, 179
closed, 182±83
closed versus uhc, 226±27
compact-valued, 179
composition, 184±85
continuous, 224
convex-valued, 179
convex, 182±83
descending, 195
domain, 182
hemicontinuous, 223±27
graph, 182
monotone, 195±98
product of, 185, 198, 229
range, 182
sum of, 185
versus function, 178

Cost function, 163, 208±209, 331, 343,
345±46, 354, 358

Countable, 156
Cover, 62±64
Critical point, 440

Decision variable, 159, 497
Decreasing. See Monotone
De®nite
functional, 155
matrix, 304
quadratic form, 304

Demand
correspondence, 180, 231, 345
function, 354, 612, 616±19

DeMorgan's laws, 4
Dense, 53
Dependent variable, 145, 148±49
Derivative, 424±26
second, 460

Determinant, 296±99, 302
Diameter of a set, 48
Di¨erentiable, 424±25, 427, 433
Di¨erential
equation, 452
total, 427

Di¨eomorphism, 444, 478
Dimension
a½ne set, 85
convex set, 94
®nite, 79
linear space, 79±80
simplex, 99

Directional derivative, 430±32
Distance function, 159
Distribution function, 158
Domain, 12, 145, 182
Dual space, 280±84, 377
Duality, 284, 377±79, 382±84
Dynamical system, 158
Dynamic programming, 164±69, 241±44

Eigenvalue, 299±302
Elasticity, 452±53
of scale, 494

Empty set, 2
Envelope theorem, 603±609
Epigraph, 154, 326, 355
Equicontinuous, 220±21, 259
Equivalence
class, 14
relation, 14±15

Euclidean
metric, 47
norm, 116±17
space, 116±17, 291
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Euler's theorem, 491±92
Exchange economy, 138±39, 251±54, 385±

86, 414±15
Existence
competitive equilibrium, 241±54
eigenvalues, 300±301
extreme point, 291, 374
maximal element, 20
Nash equilibrium, 255±57
optimal choice, 135
retraction, 294
utility function, 192±93

Expected value, 278
Exponential function, 152±53, 189, 332±33,

443
Extended real numbers, 29, 154
Extreme point, 96±97, 125±26, 291, 374

Face, 96±98
Fan's condition, 292, 409
Farkas lemma, 383±84, 389±93
Feasible set, 162, 208, 497
Finite
cover, 62±64
dimension, 79
intersection property, 64

First theorem of welfare economics, 141
First-order conditions, 504, 508
Fixed point, 149, 185, 296
Fixed point theorems
Banach, 238±41
Brouwer, 245±51
Kakutani, 254±55
Schauder, 257±59
Tarksi, 233±35

Fredholm alternative, 283±84, 369±70,
392±93

Free disposal, 9, 54
Function, 145±50. See also Functional
a½ne, 276±77
analytic, 472
bilinear, 287±90
compact, 258
composition, 150
concave, 328±36, 355
continuous, 210±16
convex, 324±36, 483±88
di¨erentiable, 424±25, 427, 433
domain, 145
homogeneous, 351±55, 491±92
homothetic, 356±58, 495
inverse, 150
linear, 263±76, 425
Lipschitz, 218

locally convex, 332, 336
monotone, 186±94
pseudoconcave, 490
quasiconcave, 336±42
onto, 146, 150
one-to-one, 146, 150
range, 145
regular, 440
space, 151
supermodular, 198±201, 334, 388
uniformly continuous, 217±18

Functional, 154
bounded, 155
constraints, 173, 497±98
continuous, 213±16
de®nite, 155
equation, 168
form, 190, 475±76
linear, 277±80, 284±87, 294
semicontinuous, 216±17

Game. See Coalitional game; Strategic
game

Geometric series, 119
Global
optimum, 500±501
univalence, 479

Gordan's theorem, 393±98
Gradient, 432±33
Graph, 146, 148±49, 182
Greatest lower bound, 21

Hahn-Banach theorem, 369, 371±73
Halfspace, 358
Hemicontinuous, 223±27
Hessian, 463±66, 486±88
Hilbert space, 291, 294
Homeomorphism, 211
Homogeneous
function, 351±55, 491±92
system of equations, 308

Homogenization, 109
Homothetic
function, 356±58, 495
preferences, 356, 495
technology, 358

Hotelling's lemma, 614±15
Hyperplane, 85, 284±87, 313±14, 358±59
Hypograph, 154, 329±30

Identity
function, 149, 187
matrix, 296
operator, 296
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Image, 145, 149, 269
Implicit function theorem, 479±81, 531±32,

622±23
Inclusion, 2
Increasing. See Monotone
Increasing di¨erences, 201±203, 331
Independent variable, 145, 148±49
Indi¨erence
class, 15
surface, 436±37, 482±83

Indirect utility function, 160±61, 209, 339,
348±49, 354

Induction, 188±89
In®mum (inf ), 24
Inner product, 290±93
Input requirement set, 9, 90, 183±84, 378±

79
Input-output model, 307±308, 319±20
Interior
of a set, 50±51, 53
point, 50±51, 56
relative, 55±56, 128±30
optimum, 502, 507

Intermediate value theorem, 216
Intersection, 4±5, 53, 90, 106, 125,

198
Interval, 18, 56, 88
Inverse
function, 150, 270
image, 149±50, 210±23
matrix, 273

Inverse function rule, 444
Inverse function theorem, 477±78
IS-LM model, 439±40, 482, 624±28
Isoquants, 436±37

Jacobian, 438±39
Jensen's inequality, 327
Join, 26

Kakutani ®xed point theorem, 254±
55

Kernel, 269
K-K-M theorem, 250±51
Krein-Milman theorem, 375
Kuhn-Tucker
conditions, 554±55, 562
theorem, 552±54

Lagrange multiplier theorem, 520
Lagrangean, 532±34
Lattice, 26±31
Least upper bound, 21
Lebesgue number, 63

Leontief
matrix, 320
production function, 379

Lexicographic order, 22, 134, 192±93
lhc, 223±27
L'HoÃpital's rule, 454±57
Limit, 58±60
Linear
approximation, 417±24
combination, 72
dependence, 76, 122±23
equations, 306±14, 384
functional, 277±80, 284±87, 294
hull, 72, 75
inequalities, 306±308, 314±19, 380, 388±
89

operator, 295±96, 299±302
ordering, 24
programming, 317±18
space, 66±82 (see also Normed linear
space)

subspace, 72±76
Linear function, 263±76
bounded, 273±74
continuous, 273±74
derivative, 425
nonsingular, 270

Linearly homogeneous, 353, 355
Lipschitz function, 218
Local optimum, 500, 511
Locally
convex, 332, 336
one-to-one, 477
onto, 477

Log function, 189±90, 333, 444
Lower
bound, 21
contour set, 18, 154, 178±79, 214, 338

Manifold, 440
Map, 145
Markov chain, 249, 320±23
Marginal
cost, 543±44
product, 430, 434
rate of substitution, 435±37, 446±47, 482±
83

utility, 435, 449±50, 543
Matrix, 264, 272±73
Hessian, 463±66, 486±88
Jacobian, 438±39
Leontief, 320
transition, 321

Maximal element, 20
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Maximum theorems, 602
continuous, 229±31
convex, 342
monotone, 205±207
smooth, 603±604

Mean value theorem, 447±51
Meet, 26
Metric, 45±46, 156
Metric space, 45±66. See also Normed

linear space
compact, 61±65
complete, 59±60
connected, 52, 56

Michael selection theorem, 229
Minimax theorem, 349±51, 398±406
Minkowski's theorem, 377
Minimum. See Maximum
Mixed strategy, 102±103, 128±29
Modulus, 218
Monotone
correspondence, 195±98
function, 186±94, 433, 449
maximum theorem, 205±207
operator, 194
preferences, 131, 191, 449±50
selection, 197±98
sequence, 59±60
technology, 9

Monotonic transformation, 191±92, 514
Monotonicity. See Monotone
Motzkin's theorem, 397

n-tuple, 6
Nash equilibrium, 43±44, 181, 185±86,

255±57, 403
Natural order on Rn, 22
Necessary conditions, 502, 507, 533, 550±

55, 560±62, 585±86, 595
Neighborhood, 50
Net output, 8
Nested intersection theorem, 64
No-arbitrage theorem, 387±88
Nondecreasing, 187
Nonhomogeneous. See Homogeneous
Nonlinear equations, 476±83
Nonnegative orthant, 7
Nonnegativity constraints, 504±505, 523,

525, 560±62
Nonsatiation, 132, 138, 252
Nonsingular, 270, 296, 299, 305±306
No-retraction theorem, 250
Norm, 115, 156, 212, 274, 290±91
Normal
of a hyperplane, 284
space, 54

Normalization, 103, 286±87, 596
Normed linear space, 114±30
Nucleolus, 41±42, 136, 137
Nullity, 269±70, 271

Objective function, 160
Oligopoly, 170, 204, 257
One-to-one, 146, 150, 270, 271, 477
Onto, 146, 150, 270, 477
Open
ball, 49, 120±21
cover, 62
interval, 18
mapping, 212
set, 50±53, 55

Open mapping theorem, 274±75
Operator, 145, 295±96
Optimal economic growth, 165±68, 244±45,

346±47
Order
relation, 16±23
topology, 134

Ordered set, 16
Ordering, 32
Orthogonal, 292
Orthonormal, 292

Parameter, 159, 497
Pareto
e½cient or optimal, 33±34, 139±41
order, 33±34, 139±40

Partial
derivative, 429±33, 437±38, 461±62
order, 23±26

Partition, 14, 110, 407
Payo¨ function, 170, 193
Perturbation function. See Value function
Pointwise convergence, 151
Polyhedral set, 380±81
Polynomial, 68, 151
approximation, 457±60, 467±75

Polytope, 98, 128, 381
Poset, 23±26
Power function, 147, 188, 190, 325, 337,

351, 443±44
Power set, 2
Preference relation, 13, 32±33, 130±38, 339,

356
Preimage, 149±50, 179
Preorder, 13
Present value, 120
Primal space, 280±81, 377
Principal axis theorem, 304
Principle of optimality, 169
Probability, 157

647 General Index



Product
of correspondences, 185, 198, 229
of functions, 188, 199, 214, 341
order, 21±22
rule, 442
of sets, 5±7, 91

Production
function, 159, 330, 338±39
possibility set, 8, 91, 183±84, 331±32

Pro®t function, 161, 325, 353±54
Proper
coalition, 3
subset, 2

Pseudoconcave, 490
Pure strategy, 102±103

Quadratic
approximation, 467±68, 472±75
form, 302±306

Quasi-order, 13
Quasiconcave, 336±42, 489
programming, 582±86

Quasiconvex. See Quasiconcave

Random variable, 157
Range
of correspondence, 182
of function, 145
of relation, 12

Rank, 269±70, 271
Re¯exive
normed linear space, 295
relation, 12

Regular function, 440, 478±79, 494
Regularity, 520, 551±52, 577
Relation, binary, 10±14, 146
acyclical, 17
antisymmetric, 13
asymmetric, 13
complete, 13
continuous, 132±35
equivalence, 14±15
order, 16±23
preference, 13, 32±33, 130±38
re¯exive, 12
transitive, 12

Relative
complement, 4
interior point, 56, 128
topology, 55±56, 128±30

Retraction, 249, 294
Riesz representation theorem, 294
Rolle's theorem, 508
Roy's identity, 617±18

Sard's theorem, 479
Saddle point, 349±50, 509±10
Sample space, 3
Schauder's theorem, 257±59
Second derivative, 460
Second theorem of welfare economics, 361±

63, 385±86
Second-order conditions, 508
Selection, 186, 197±98, 229
Semicontinuous, 216±17
Semide®nite, 304
Separating hyperplane theorem, 358±60
with nonnegative normal, 384±87
strong, 366±69

Separation theorems, 55, 121, 358±71
Sequence, 57±62, 156
Cauchy, 59
monotone, 59±60
of functions, 451

Series, 119
Set, 1
countable, 156
feasible, 162, 208
polyhedral, 380±81

Shadow price, 542±45
Shapley-Folkman theorem, 93±94, 318±19,

375±77
Shapley value, 266±69, 271
Shephard's lemma, 616±17
Simplex, 98±103, 110±14
Simplicial partition, 110
Single crossing condition, 204±205
Singular, 270, 299. See also Nonsingular
Slack constraint, 550
Slater condition, 579
Slutsky equation, 618±19
Slack variables, 316, 560
Smooth function, 428, 461
Solow's convention, 461
Social choice, 34±36
Solution correspondence, 182
Space, 1
action, 6, 42±45
Banach, 121
dual, 280±84
Euclidean, 291
function, 151
Hilbert, 291, 294
inner product, 290±92
linear, 66±82
metric, 45±66
mixed strategy, 128
normal, 54
normed linear, 114±30
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sample, 3
topological, 54

Span, 72, 77
Sperner's lemma, 110±14, 246±48
Spectral theorem, 301±302
Standard
basis, 77±78
simplex, 99

Stationary point, 504
Stochastic process. See Markov chain
Stiemke's theorem, 394±95
Strategic game, 3, 42±45
Nash equilibrium, 43±44, 181, 185±86,
255±57, 403

rationalizabilty, 181
repeated, 57
supermodular, 194, 207±208, 236±38
zero sum, 193±94, 398±406

Strict or strong order, 16. See also Pareto
order

Strong separation, 366±69
Strong set order, 30±31
Strong separation, 366±69
Subgradient, 364
Sublattice, 28
Submodular. See Supermodular
Subset, 2
Subspace
of linear space, 72±76
of metric space, 47

Su½cient conditions, 502, 507, 534, 581±86,
595

Sum
of correspondences, 185
of sets, 75±76, 91, 106, 118

Superadditive game, 194
Supermodular
function, 198±201, 334, 488
game, 194, 207±208, 236±38

Supporting hyperplane, 358±60
Supremum (sup), 24
Symmetric
linear operator, 300±302
relation, 12

Tangent hyperplane, 427
Tarksi ®xed point theorem, 233±35
Taylor series, 471±72
Taylor's theorem, 468±72
Theorems of the alternative, 388±98
Topology, 54. See also Order topology;

Relative topology
Total di¨erential, 427
Totally bounded, 62
Transitive relation, 12

Transition matrix, 321
Transpose, 265±66
Triangle inequality, 45±46, 115
Tucker's theorem, 396±97
Tychono¨'s theorem, 65

uhc, 223±27
Unanimity game, 40±41, 73, 76, 78, 268
Uniform
convergence, 151±52
continuity, 217±18

Union, 4±5, 53
Uniqueness
Nash equilibrium, 257
nucleolus, 137
optimal choice, 136, 137, 345±46
Shapley value, 271

Unit
ball, 49±50, 120±21, 124±25, 250
simplex, 99
sphere, 52
vector, 77

Univalent, 146, 479
Upper
bound, 21
contour set, 18, 154, 178±79, 337±38

Upper contour set, 154, 214
Utility function, 191±93, 212, 339
Uzawa equivalence theorem, 254

Value
function, 160±61, 543 (see also Maximum
theorems)

of a game, 171 (see also Shapley value)
Vector space. See Linear space
Vertex, 96
Von Neumann's alternative theorem, 395±

96

Walras's law, 252±53
Weak order, 16, 32±33. See also Pareto

order
Weierstrass theorem, 215
Wicksell's law, 493±94

Young's theorem, 464±66

Zero-sum game, 402
Zorn's lemma, 26
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