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Preface

The discrete and random occurrence of chemical reactions, far from thermo-
dynamic equilibrium, among less-abundant chemical species in single cells,
necessitates stochastic approaches for modeling. Currently available texts on
stochastic approaches relevant to systems biology can be classified into two
categories. Books in the first category require the reader to have sufficient
background of probability theory and focus directly on applications. Books
in the second category take a two-step approach: first, they provide the nec-
essary background in probability theory and then the concepts so developed
are applied to model systems. We here follow the “introduce when needed”
approach which is more natural and avoids distractions to the reader. While
we still provide a review of probability and random variables, subsequent no-
tions of biochemical reaction systems and the relevant concepts of probability
theory are introduced side by side. This will hopefully lead to an intuitive
presentation of the stochastic framework for modeling subcellular biochemical
systems. In particular, we make an effort to show how the notion of propensity,
the chemical master equation, and the stochastic simulation algorithm arise
as consequences of the Markov property. The reader is encouraged to pay
attention to this because it is not easy to see this connection when reading the
relevant literature in systems biology. The nonobvious relationship between
various stochastic approaches and our own struggle to find texts explaining
them provided a motivation to write this book.

Throughout the text we use several examples to illustrate ideas and
motivate stochastic modeling. It is shown how such systems can be studied
with computer simulations, and the reader is encouraged to experiment with
the programming code provided. Additionally, the cell cycle model is included
as a more complex case study. Exercises in each chapter provide an opportunity
to deepen one’s understanding.

Another aspect of this work is a focus on analytical approaches. Most
works concentrate on stochastic simulations: the exact stochastic simulation
algorithm and its various improvements and approximations. This work is
an attempt to complement those works on stochastic simulation approaches.
The most common formulation of stochastic models for biochemical networks
is the chemical master equation (CME). While stochastic simulations are
a practical way to realize the CME, analytical approximations offer more
insight into the influence of randomness. Toward that end, the two-moment
approximation (2MA) is a promising addition to the established analytical
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approaches including the chemical Langevin equation (CLE) and the related
linear noise approximation (LNA). The 2MA approach directly tracks the
mean and (co)variance, which are coupled in general. This coupling is not
obvious in CME and CLE and ignored by LNA and conventional differential
equation models.

For the advanced reader, we include a chapter at the end that deals
with a general Markov process with both continuous and jump character.

Readership
The most frequently used conceptual framework to model and simulate bio-
logical systems is that of differential equations. Their widespread use is also
reflected by the fact that any undergraduate course in the engineering and
physical sciences, as well as many life science programs, will teach ordinary
differential equations and the basics of dynamical systems theory. The book
Computational Cell Biology by Fall et al. [42] provides an excellent treatment
of modeling with differential equations, including a short introduction to
stochastic modeling. As we shall argue in this book, there are natural systems
for which stochastic modeling is more appropriate. We would thus hope that
an advanced undergraduate student would find the material of this book
accessible and helpful. As a complementary text we recommend Branching
Processes in Biology by Kimmel and Axelrod [82] as a textbook for stochastic
approaches in biology. The book focuses on branching processes, in which an
entity (e.g., cell or molecule) exists for a time and then may be replaced by
one, two, or more entities of a similar or different type. The book provides an
excellent introduction to the theory but at the same time provides various ex-
amples that are relevant to experimentalists. Examples and application areas
include the application of branching processes to polymerase chain reactions,
DNA sequence analysis, cell cycle kinetics, drug resistance, and chemotherapy.
With these examples and the combination of theory and practical examples it
is a suitable complement for further reading to the present text.

We are well aware of the fact that stochastic modeling is less frequently,
and less thoroughly covered by university courses. We admit that the material
appears more abstract at first sight and takes some getting used to. We
therefore encourage the reader of this book to experiment with the examples
provided. To this end, we have included the code with which one can simulate
these systems.

Computer Experiments
Stochastic modeling requires some of the more advanced material a graduate
student encounters, and the notation alone can be daunting. To ease the pain,
we have included a glossary and various examples, supported by the code
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that can be used to reproduce the examples. There are numerous software
tools available to model and simulate dynamical systems. For most of the
examples in this book we use Matlab from MathWorks [96], including the
SimBiology and Symbolic toolboxes. An alternative software, which we have
also used, is Cains http://cain.sourceforge.net, a free tool that excels in
computationally efficient stochastic simulations. Anyone looking for more
examples of subcellular biochemical networks for modeling will find model
databases such as BioModels http://www.ebi.ac.uk/biomodels-main/ and
JWS Online http://jjj.biochem.sun.ac.za useful.

Supporting material for this book, including software and a list of
corrections, will be provided on our website at www.sbi.uni-rostock.de
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Notation

Conventions
We shall distinguish three ways of highlighting terms. A term (i) we wish to
emphasize, (ii) that appears for the first time, or (iii) is defined implicitly as
part of a sentence will be typeset in italics. When we inform the reader of
how a term is referred to (commonly called) in the literature, we enclose it in
double quotes. When we ourselves introduce a new term, that is, we name
something in our own way, we enclose it in single quotes.

General Notes
• Symbols of the form Q(t) represent time-dependent quantities.

• The ith element of a vector X is denoted by Xi.

• For a matrix S, the transpose is written ST

• The entry that lies in the ith row and the jth column of a matrix S is
denoted by Sij . When a complete row/column is intended, we write a
dot for the index of the column/row. Thus we write Si� for the ith row,
and S�j for the jth column.

• Any symbol denoting a random/stochastic variable/process will be
set as an uppercase letter. Once defined, the corresponding lowercase
symbol represents a sample/realization of the variable/process. The
time-dependent version of the same symbol in lowercase represents a
deterministic approximation of the corresponding stochastic process.
Thus if N(t) is a stochastic process, n is a typical sample of N(t) and
n(t) is a deterministic approximation of N(t).

• Symbols denoting operators such as probability are typeset in roman,
e.g., Pr [·].

• The notation f(n) is shorthand for f(n1, . . . , ns) whenever an s-vector
n appears as an argument.
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xviii Notation

• We will switch between the three alternative notations φ̇(t), d
dtφ(t) and

dφ
dt , for the time derivative of any scalar quantity φ(t). We will prefer
the last of these when dependence on time is implicitly clear.

List of Symbols

Xi ith chemical species/component

∅ null species

s number of chemical species

Rj jth reaction channel

r number of reaction channels

Ni(t) copy number

N c(t) continuous approximation of N(t)

NA Avogadro’s constant

V volume

Ω system size, typically NAV

Ω sample space

Xi(t) species concentration (absolute or relative)

Ci(t) characteristic concentration indicating the scale of Xi(t)

Yi(t) general stochastic process

φ(t) concentration for an infinitely large system size

Ξ(t) fluctuation of N c(t) around φ(t)

ξ a sample (realization) of Ξ(t)



List of Symbols xix

S stoichiometry matrix

¯
Sij number of Xi molecules as reactant in channel Rj

S̄ij number of Xi molecules as product in channel Rj

Zj(t) reaction count: number of Rj occurrences during [0, t]

Pr [·] probability measure

P (n, t) state probability

P c(n, t) continuous approximation of P (n, t)

Π (ξ, t) P c
(
Ωφ(t) + Ω1/2ξ, t

)
δ(n) Dirac’s delta function centered at the origin

P (n|m, t) transition probability

vj(x) reaction rate

kj rate coefficient, or rate constant

aj(n) reaction propensity

cj stochastic reaction rate constant

hj(n) different possible combinations of Rj reactant molecules

v̂j(n) conversion rate

a0(n) exit rate,
∑
j aj(n)

Ej a step operator defined by Ej f(n) = f (n− S�j)

〈Y (t)〉 mean of the process Y (t)

δY deviation from the mean, Y − 〈Y 〉〈
δY δY T

〉
covariance matrix of the process Y (t)
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〈δYiδYk〉 (i, k)th element of the above covariance matrix〈
δY 2

i

〉
variance of the process Yi

µi(t) mean concentration 〈Xi(t)〉

σik(t) pairwise concentration covariance 〈δXiδXk〉

ζii(t) NSR

ζik(t) xNSR

A(n) drift rate of (the process) N(t) in state n

B(n) diffusion rate of (the process) N(t) in state n
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g(x) diffusion rate of (the process) X(t) in state x

A : B Frobenius inner product: sum of elements of A�B

Pj Poisson random variable

Nj standard normal random variable

Wj standard Brownian motion, or Wiener process

Tj(n) time, in state n, until the occurrence of a reaction Rj

Wk The kth waiting time in a counting process

Tk interarrival time between the kth and the next arrival

J(n) index of the next reaction known to have occurred

O(x) first neglected order with respect to x in an expansion

o(x) terms vanishing faster than x, as the latter approaches zero

X ∼ Y Random variables X and Y are identically distribed
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Chapter 1

Introduction

1.1 Levels of Organization in Living Systems
All known living systems are made up of one basic structural and functional
unit: the cell. Populations of interacting cells can form higher levels of
structural and functional organization. Take, for example, the human body,
in which cells are organized to form tissues and organs. Cells in tissues and
organs are specialized for a particular function they realize within that context.
One can thus distinguish between the molecular level (molecules interacting
within the cell), the cellular level (interacting cells), and the level of tissues or
organs. Various organs together make up an organ system, and various organ
systems together make up an organism. Now, with a complex system such as
the human body, the different levels of structural and functional organization
are tightly coupled. This is illustrated in Figure 1.1, which shows the human
body as a multilevel system. The digestive system includes the small and large
intestines in which food is processed. The large intestine is further divided
into the cecum and colon. The colon is a common site of carcinogenesis due
to the mechanical and chemotoxic stress it is subjected to. It is for this reason
the object of intensive research. The functional role of the colon is thus the
absorption of nutrients from food that passes through the lumen. The lumen
is the inner tract of the intestine tract, further organized into villi (vaginations,
folds in the small intestine) and crypts (cavities) that effectively increase the
overall surface area. The innermost tissue lining consists of cells to absorb
nutrients and goblet cells that secrete mucus, which lubricates the passage of
the food through the intestine. There are about 107 crypts, each consisting
of several thousand cells. At the bottom of the crypt, a small number of stem
cells divide slowly in an environment referred to as the niche. The functional
role of the stem cell niche is to renew the tissue on a weekly basis and to repair
damaged tissue. The daughter cells of dividing stem cells proliferate rapidly
before differentiating and maturing into functional tissue cells. The cells of the
crypt walls migrate toward the top, where they undergo apoptosis (cell death)
and/or are shed into the gut lumen. Homeostasis of the overall system involves
various levels of structural and functional organization. Each level possesses
a characteristic function and interlinked dynamic behavior, regulated through
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2 1 Introduction

Figure 1.1 Cells—the building blocks of living systems. Each type of cell is
specialized for a particular function. Large numbers of specialized cells together
make up a tissue. Various tissues together make up an organ. Various organs
together make up an organ system, and various organ systems together make up an
organism.

cellular processes. The goal of systems biology is to understand the behavior
of such biological systems through an understanding of cells.

The most obvious aspect of the structural organization of the (eukary-
otic) cell (Figure 1.2) is given by the outer membrane and the inner membrane,
which defines the nucleus. While the prokaryotic cell (microorganisms, bacte-
ria, etc.) is characterized by only one compartment, the eukaryotic cell has the
inner membrane that defines the nucleus. The nucleus of the cell contains the
genetic material, or genome, in the form of a double-stranded DNA molecule
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Figure 1.2 Structural organization of the (eukaryotic) cell. The defining boundary
structures are the outer membrane, and the inner membrane that defines the nucleus.
Material, signals, and information can pass through the membranes directly, through
gates, or through receptors. What the drawing does not show are two important
structural elements: the cytoskeleton (providing structural support and transport
mechanisms) and other organelles in the cytoplasm that fulfill specialized roles in
the processing of proteins.

with its characteristic double helix structure. The genetic material is packed
into chromosomes. The generic term gene is used to describe the role of
information- and protein-coding regions in the genome. The medium between
the nucleus and the outer membrane is the intracellular fluid cytosol. The
area between the outer and inner membranes, including all of the compo-
nents therein, is called cytoplasm. The cytoskeleton is a meshwork providing
structural support for the cell. As part of the cytoskeleton, microfilaments,
made of actin, provide mechanical support (and participate in some cell–cell
or cell–matrix interactions), while microtubules, made of tubulin, act as a
transport system for molecules. In addition to the two main compartments
(nucleus and cytoplasm), eukaryotic cells have organelles, which are smaller
compartments with a membrane and which contain a set of specific enzymes.
Material can pass through the membranes directly or through pores. More
specifically, there are four kinds of proteins that are embedded in the outer
cell membrane and organelle membrane to allow material import and export:
pores, ion channels, transporters, and pumps. In contrast to the structural
organization of the cells, its functional organization involves the following key
processes, or cell functions:

• Growth

• Division (cell proliferation)
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Figure 1.3 The functional organization of the cell.

• Specialization (cell differentiation)

• Death (apoptosis)

In order to investigate the (mal)functioning of cells, cell populations, tissue,
organs, and organisms, one has to gain an understanding of the behavior of
cells—processes therein and interactions between cells and their environment.1
This quest can be summarized by the following two questions:

Intracellular dynamics: How do the components within a cell interact to
form the cell’s structure and realize its function? This is an interior aspect of
the cell.

Intercellular dynamics: How do cells interact to develop and maintain
higher levels of structural and functional organization? This is an exterior
aspect of the cell.
To this end, we can group processes within a cell as follows (Figure 1.3):

• Gene regulation: The reading and processing (transcription and transla-
tion) of information from the genome in response to the environment.

• Metabolism: Processes that construct and maintain the cell, that realize
cell growth and genome duplication before cell division.

• Signal transduction: Processes of inter- and intracellular communication
and the coordination of cell function.

Each class of processes usually involves a large number of interacting molecular
species organized in networks (pathways). The threefold classification of

1The environment of a cell consists of other cells and the extracellular matrix.



1.1 Levels of Organization in Living Systems 5

cellular processes into metabolism, signaling, and gene regulation associates
with each a range of specialized technologies for generating experimental data.
The nature of the data can differ considerably, making their integration a
challenge. At the methodological level, where one is trying to model and
simulate these processes, a range of approaches is used, depending the type of
network under study. The biochemical reactions of metabolism are organized
into metabolic pathways, whereas reaction networks underlying signaling are
organized into signal transduction pathways. Genes are sometimes regarded
as nodes in a gene regulatory network, with inputs being proteins such as
transcription factors, and outputs being the level of gene expression.2

The study of metabolism, cell signaling, and gene expression requires a
range of technologies, often leading to an operational division of researchers
into “omics” disciplines, including metabolomics, proteomics, and transcrip-
tomics. While there is an obvious relation between metabolism, signaling
and gene expression, the complexity of the cell, specifically the technological
difficulties of measuring these processes, has forced researchers to specialize
with obvious consequences for the overall endeavor—we can’t see the forest
wood for the trees.

While to this day the identification and molecular characterization of
cellular components has been the main focus in molecular and cell biology, the
emergence of systems biology is closely linked to the fact that the functioning
of cells is an inherently dynamical phenomenon. In our view, systems biology
is thus the timely merger of (dynamical) systems theory with molecular and
cell biology.

The modeling of dynamical systems, and biochemical reaction networks
in particular, can be roughly divided into three classes:

• Models based on differential equations

• Stochastic models

• Other approaches, such as Petri nets, pi-calculus, and combinations of
methodologies.

Differential equations are the most frequently used approach to representing
dynamical systems. In systems biology, they derive their popularity from
an apparently direct translation of biochemical reactions into rate equations.
While the mathematical structures of such rate equations are often similar
or identical, the semantics can differ widely (See Figure 2.4 in Chapter 2).
This highlights an important fact: choosing a modeling framework depends
on the nature of the system under consideration but also on assumptions and
personal preferences.

2A glossary in the appendix provides brief definitions for key biological terms.
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As a consequence of the complexity of biological systems, full under-
standing of cells and their function(ing) cannot be assured. Hypotheses must
thus be formulated and tested by experiments. This requires a conceptual
framework appropriate for making precise and empirically testable predictions.
Such a framework is provided by (dynamical) systems theory. A mathematical
model is a thus representation, a simplified version of the part of the biological
system studied, one in which exact calculations and deductions are possible.
An obvious priority in modeling is assurance that the model’s behavior (estab-
lished through numerical simulation or formal analysis) corresponds closely to
the empirical behavior of the biological system, that the mathematical model
in some way resembles the behavior of the biological system. In addition to
replication/reproduction of certain observed qualities or behavior, simplicity
and mathematical tractability can be important criteria in developing a model.

A biological system is our interpretation of observable facts in the light of
a formal model that we ourselves invent/construct. Understanding a complex
system thus requires abstraction, reducing one type of reality to another.
Mathematical modeling facilitates understanding through abstraction. If we
are to describe the mechanisms/principles/laws by which the components of
a system interact (and thereby realize the (sub)system functions), then the
purpose of the model is to distill something complex to a simpler, essential
aspect. Modeling does therefore imply for most cases a reduction of complexity;
a model is then understood as an excerpt or selection from the biological
system under consideration.

To model inter- and intracellular processes, one requires quantitative
spatiotemporal data for a relatively large number of components. At present
these are not available, forcing us to handle uncertainty and “reduce” com-
plexity. For practical purposes to do with technological limitations, but also
with the time and money required to conduct the experiments, a subset of
components is chosen. This leads to the pragmatic notion of pathways or
networks as a selected subsystem of biochemical reactions (relevant to some
cell function).

Not only are we forced to select a subset of proteins, respectively a
subsystem, even if we could quantify larger numbers of components, the
analytical tools for the analysis of such large, nonlinear models are missing.
Proteins are modified (e.g., activated), each of these states adding to the
number of variables in a mathematical model. A system with 10 components
can subsequently lead to 20 or more system variables. The theory of nonlinear
dynamical systems, the methodologies and tools available to identify models
(their structure and parameter values) from experimental data, to investigate
their behavior analytically or through numerical simulations, remains to this
day limited. We are once more forced to simplify out of practical consid-
erations. The reduction of complexity through abstraction and modeling
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does, however, serve more than that. In studying complex systems, we seek
simplifications to reduce complex processes to an essential aspect of their
functional organization, to extract a principle that serves as an explanation.
We are seeking general principles underlying the observations we make in
experiments. Mathematical modeling is then the art of making appropri-
ate assumptions, balancing necessary reductions due to methodological and
experimental limitations with abstractions serving explanatory purposes.

The functions of a cell are thus realized by spatiotemporal processes.
The first omission we admit here is that we will largely ignore spatial aspects.
Within cells, the translocation of molecules can either be assumed to be so
rapid that it does not matter or, if barriers are crossed (say the inner nuclear
membrane of eukaryotic cells), we might approximate this translocation
process by a reversible reaction. Spatial aspects are important, and we shall
not pretend otherwise.

In the present text we shall look at cells as the building blocks of living
systems. Observing cells in experiments, irregularities and the absence of
an obvious pattern/trend in data induce uncertainty in the analysis of the
system. The first question is then whether this randomness is an inherent,
possibly purposeful aspect of the system or whether it is a consequence of
limitations in observing the system (the choice of subsystem looked at, ignored
components or limitations to measurement technologies)?

Note that our discussion will also be limited to the level of cells, where
we investigate the function(ing) of cells in terms of changes in the abundance
of molecules within cells and consequences this may have for populations of
interrelated cells [126]. The discussion of randomness in physics, specifically
statistical mechanics, may thus be avoided in our present context. While
thermal and perhaps quantum fluctuations influence events at the cellular level
and above, instead of modeling them in detail we may, without losing essential
cellular and higher-order modeling power, represent their consequences by
irreducible stochasticities. The cell is here considered an open, nonequilibrium
system, with a constant flux of material and information into and out of
the cell. At the level of single molecules, the irregular motion of atoms and
molecular bonds within the system may well be relevant but will here be
referred to as effects of a ‘microscopic level’. This includes thermal fluctuations
and Brownian motion. Looking at changes in the concentration of molecules,
following a clear trend that can be described in terms of differential equations,
such models may be referred to as ‘macroscopic’. Our focus will here be the
level of changes in the population/concentration of molecules, without further
consideration of the mechanistic details underlying the reactions.
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1.2 Systems Biology
Systems biology takes an interdisciplinary approach to the systematic study
of complex interactions in biological systems. This approach seeks to decipher
the emergent behaviors of complex systems rather than focusing only on their
constituent properties. Aiming at understanding the dynamic interactions
among components of a cell, and among cells as well as their interaction
with the environment, systems biology is an approach by which biomedical
questions are addressed through integrating experiments in iterative cycles
with mathematical modeling, simulation, and theory. Modeling is not the final
goal, but is a tool to increase understanding of the system, to develop more
directed experiments, and finally to enable predictions. Mathematical models
have the advantage of being quantitative and interactive rather than solely
descriptive. The process by which models are formulated, which may include
the representation of genetic, epigenetic, cellular, and tissue effects across the
various physical and temporal scales during tumorigenesis, helps to articulate
hypotheses and thereby supports the design of appropriate experiments to
test them [170].

The most popular definitions of systems biology refer to dynamics,
mechanisms, principles, and behaviors. The complexity of biological systems
and/or functions arises from the interaction of myriad nonlinear spatiotem-
poral phenomena and components. The fact that most cellular processes,
such as cell-cycle control, cell differentiation, and apoptosis, are inherently
dynamical highlights the need for integrating mathematical modeling into life
science and clinical research. A systems biology approach can help identify
and analyze the principles, laws, and mechanisms underlying the behavior of
biological systems.

In systems biology, arguments arise over the predictions and validity of
theories, the methods of collecting data, and the interpretation of experimental
data sets. Figure 1.4 describes the role of mathematical modeling within the
field of systems biology, mediating the interpretation of experimental data
and helping the formulation of hypotheses. A warrant is the justification that
explains the relation of the data to the hypothesis (claim). Often, warrants
rest on contextual assumptions that are only tacitly acknowledged. Qualifiers
express the limits of the validity of the claim. Arguments arise when attempts
are made to rebut or refute the claim either by attacking the validity of the
data or the validity of the warrant. The diagram shows how mathematical
modeling fits in Toulmin’s philosophy of argumentation.

The main reason that necessitates modeling in the life sciences is the
complexity of natural systems. The number of components does not really
play a particular role in this. To have many molecules or cells interacting
is not a problem as such (particularly not if they are in sync or if it is an
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Figure 1.4 The role of mathematical modeling in systems biology. Figure derived
from [111] and based on Toulmin’s theory of argumentation [153].

average process that matters). The number of different kinds of components
does, however, provide a challenge for the theory of nonlinear systems, which
to this day is practical only for a handful of system variables. The fact that a
molecule and its modified form (say by phosphorylation) require already two
system variables in a model of differential equations shows that systems with
ten or twenty molecular species can become rather difficult to handle. One
should also add the difficulties in accounting for spatial phenomena. While
models based on ordinary differential equations dominate, it is at present not
practical to formulate partial differential equation models and identify their
parameters from experimental data. Nonlinearity in the interactions and the
resulting behavior is another major element of complexity, a hurdle and a
source for surprise. Most important, however, is the fact that a natural system
constantly changes, adapts, evolves, making it difficult to use approaches
that assume stationarity and time-invariance. A living system, such as a
cell, a tissue, an organ, or an organism, is acting and reacting; it responds
to and modifies its environment. Cells, like organisms, undergo a continuous
process of mutual interaction and change. A living system is constrained by
its environment but also changes its environment. This self-reference and
the subsequently emerging phenomena are the real cause of trouble for the
modeler.

While mathematical modeling (especially of dynamical systems) is a
central element of systems biology, the field of bioinformatics has more to do
with the analysis of data and information, whether directly from experiments
or from databases and the literature. Both areas are complementary and rely
on each other. For example, to simulate a signaling pathway, the construction
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of the model benefits from knowledge about the structural properties, e.g.,
phosphorylation sites, of a protein. This can be found in databases using
bioinformatics methods and tools. For many systems we cannot develop
detailed mechanistic models because of a lack of quantitative time-course
data. With the help of bioinformatics one can nevertheless analyze databases
to help formulate and verify hypotheses about networks at a higher level of
abstraction. Although the present text focuses on systems biology, one should
acknowledge the challenges of mechanistic modeling and the complementary
role that bioinformatics methods play in dealing with the uncertainty arising
from the complexity of the systems under consideration.

There are two dominant paradigms used in mathematical modeling of
biochemical reaction networks (pathways) in systems biology: the determinis-
tic approach, using numerical simulations of nonlinear ordinary differential
equations (including mass-action-type, power-law or Michaelis–Menten mod-
els), and the stochastic approach based on a master equation and stochastic
simulations. Stochastic modeling has a long tradition in physics and has
brought forth such expository masterpieces as the books by van Kampen
[75] and Gardiner [47]. Van Kampen shows how a stochastic model can be
formulated comprising both the deterministic laws and the fluctuations about
them. Such models are sometimes referred to as “mesoscopic” models. Con-
sidering a system of interacting mass points, fluctuations in nonequilibrium
systems do not arise from a probability distribution of the initial microstate,
but are continuously generated by the equations of motion of the molecules.
While mesoscopic stochastic models are attractive theoretical concepts, in a
practical context where such a (nonlinear) model and its parameter values
would have to be extracted from experimental data, we face various problems
(which are in part a reason for the wide use of ordinary differential equations).

We can illustrate the notions of microscopic, mesoscopic, and macro-
scopic in the context of cell biology by considering gene expression, the process
by which information of the genome is first transcribed into RNA before being
translated into proteins. These two stages involve two levels, the transcription
of a gene being microscopic compared to fluctuations in the concentration
of the protein for which the gene encodes the information. While for the
initiation of transcription, say through the binding of transcription factors, a
discrete stochastic model may be appropriate, changes in the concentrations
of the proteins involved in the function of a single cell (e.g., cell cycle) may on
the other hand be described macroscopically by ordinary differential equations.
That, however, is only valid if effects of discrete random events at the level of
transcription do not propagate to the level of translation. When that happens,
the continuous model describing changes in protein concentrations needs to be
stochastic as well and will take the form of a so-called “Langevin equation.”

In many situations random fluctuations are sufficiently small to be
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ignored, allowing macroscopic equations to predict the behavior of a system
with great accuracy. Cells, however, are open systems, where the environment
may force them into a stationary nonequilibrium state in which the system’s
dynamics bifurcate, the direction taken depending on the specific fluctuations
that occur. Note that therefore the randomness of the fluctuations (which
can be described only in terms of probabilities) influences the behavior of the
system of macroscopic equations most critically at specific bifurcation points,
while other areas of the state space may be perfectly well approximated by
macroscopic equations. Intrinsic noise from thermal fluctuations or transcrip-
tional control could determine how the system at the macroscopic level goes
through a bifurcation. Looking at a population of genetically identical cells in
a homogeneous environment, this leads to variability of cell states that may
well be exploited by the biological system [74, 127, 141]. The obvious context
in which randomness has a function is generating diversity in evolution.

Looking at a single gene in a single cell, the initiation of transcription
at its promoter site is driven by the association and dissociation of a very
small number of molecules. This very low copy number of molecules has two
consequences: the time of reaction events can be described only in terms of
probabilities, and changes in the number of molecules are discrete, with no
obvious trend that could be approximated with a differential equation (see [117]
for a review). The expression of a gene does, however, serve a cell function such
as growth, differentiation, and apoptosis. For example, in response to external
stimuli, the cell may produce large quantities of a protein. This response,
measured as an apparently smooth/monotonic change in concentration, is
appropriately described by differential equations. Small fluctuations around
an obvious trend/mean are thus ignored. At this level we are aiming at a
description of a pathway acting as a switch, filter, oscillator, or amplifier,
studying the network behavior in terms of its robustness, responsiveness, and
sensitivity of the model to changes in parameters, transitions between steady
states, and bifurcations. A usual assumption in such rate equation models is
that parameters (rate coefficients) are constants. Since these parameters are
implicitly linked to environmental variables, such as temperature, pH level,
or water balance, fluctuations in these are considered negligible. The art of
modeling is then to decide in the given context which modeling approach or
combination of approaches is most appropriate.

The following section will serve as additional motivation for stochastic
modeling.

1.3 Why Stochastic Modeling? Philosophical
Two opposing views of causal entailment in nature exist: determinism and
randomness. Adherents of determinism assert that events in nature are
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governed by causal laws that unambiguously link changes of relevant quantities
(states). That is, the next state of the system is unambiguously determined
by the present and past states of the system. Adherents of randomness, on
the other hand, assert that nature is random at a fundamental level and the
course of future events cannot be predicted from the knowlegdge of previous
events in a deterministic sense. In systems biology, a modeler should not worry
whether nature is deterministic or random at a fundamental level. The choice
of a modeling framework is determined by the complexity of the system being
modeled, the level of investigation, and, consequently, the question being asked
[29]. Even under the assumption of determinism as a worldview, successful
modeling of complex phenomena requires stochasticity, owing to the complexity
of the natural system as a whole. Each observable phenomenon is causally
related to a large number of phenomena, and its pattern of development
depends on many factors, not all of which can be established and traced.
For this reason, each observation of the same phenomenon shows, besides
its general properties, certain special features that are typical only of that
particular observation. These observation-specific features, referred to as
fluctuations, are products of the influence of the factors excluded from the
model. This loss of information is handled by probabilistic methods. Thus, the
assumption of a stochastic model is a scientific decision, not a metaphysical
perspective. Andrei Kolmogorov, the founder of modern probability theory,
explains the matter in his statement that “the possibility of applying a scheme
of either a purely deterministic or a stochastically determined process to the
study of some real processes is in no way linked with the question whether this
process is deterministic or random” [83]. The so-called “real process” is not
accessible to scientific investigation. Whether a cell function is deterministic
or stochastic cannot be answered in the current realm of science, and even if
cell function were deterministic, that would not be reflected in a gene network,
since the genes in the model would be affected by events (latent variables),
including genes, outside the model, thereby forcing the modeler to choose a
stochastic model. This recognition is critical in modeling (intra- and inter-)
cellular phenomena.

1.4 Why Stochastic Modeling? Biological
At a coarse level, cell functions are largely determined by spatiotemporal
changes in the abundance of molecular components. At a finer level, cellular
events are triggered by discrete and random encounters of molecules [120].
The discreteness is typical of processes with only a few molecules. Gene
transcription is an example of such discrete processes. That cellular events are
discrete and random is supported by many recent experiments [7, 39, 97, 127]
that have revealed cell–cell variations, even in isogenic cell populations, of
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Figure 1.5 Discrete and random nature of chemical reactions. Left: large copy
numbers and frequent reactions allow for a continuous approximation leading to
the chemical Langevin equation (Chapter 5), which, for an infinitely large system,
approaches deterministic rate equations. Right: small copy numbers and infrequent
reactions require discrete stochastic approaches leading to the chemical master
equation and stochastic simulations.

transcription (when a gene is copied in the form of an mRNA transcript) and
translation (when the mRNA is used as a template to build proteins).

The above discussion may suggest a deterministic modeling approach
at the coarse level (cell function) and a stochastic one at the finer level (gene
regulation) [6, 13, 74, 93, 95, 115, 116, 122, 127, 128]. However, stochastic
modeling is necessary when noise propagation from processes at the fine level
changes cellular behavior at the coarse level.

Stochasticity is not limited to low copy numbers. The binding and
dissociation events during transcription initiation are the result of random en-
counters between molecules [74]. If molecules are present in large numbers and
the molecular events occur frequently, as in Figure 1.5 (left), the randomness
will cancel out (both within a single cell and from cell to cell) and the average
cellular behavior could be described by a deterministic model. However, many
subcellular processes, including gene expression, are characterized by infre-
quent (rare) molecular events involving small copy numbers of molecules, as in
Figure 1.5 (right) [74, 120]. Most proteins in metabolic pathways and signaling
networks realizing cell functions are present in the range 10–1000 copies per
cell [14, 91, 117]. For such moderate/large copy numbers, noise can be signifi-
cant when the system dynamics are driven toward critical points in cellular
systems that operate far from equilibrium [34, 150, 176]. The significance
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of noise in such systems has been demonstrated for microtubule formation
[28], ultrasensitive modification and demodification reactions [14], plasmid
copy number control [119], limit cycle attractor [125], noise-induced oscilla-
tions near a macroscopic Hopf bifurcation [162], and intracellular metabolite
concentrations [37].

Noise has a role at all levels of cell function. Noise, when undesired, may
be suppressed by the network (e.g., through negative feedback) for robust
behavior [46, 101, 118, 127, 132, 151]. However, all noise may not be rejected,
and some noise may even be amplified from process to process and ultimately
influence the phenotypic behavior of the cell [13, 69, 86, 122, 142]. Noise may
even be exploited by the network to generate desired variability (phenotypic
and cell-type diversification) [16, 24, 64, 127, 173]. Noise from gene expression
can induce new dynamics including signal amplification [133], enhanced
sensitivity (stochastic focusing) [121, 122], bistability (switching between
states) and oscillations [8, 9, 45, 92, 112], stabilization of a deterministically
unstable state [154], and even discreteness-induced switching of catalytic
reaction networks [152]. These are both quantitatively and qualitatively
different from what is predicted or possible deterministically. Other important
processes wherin noise plays a role include development and pattern formation
[88].

In the remainder of the present section, we illustrate the need for
stochastic modeling by selecting a few important aspects of biochemical
reaction networks.

Identifiability: In the isomerization reaction U
kw−−−−−⇀↽−−−−−
ku

W, proteins are
converted back and forth between the unmodified form U and the modified
form W, such that the total number ntot of protein molecules remains constant.
When treated deterministically, the number n of proteins in the unmodified
form varies continuously with time according to the rate equation, to be
derived in the next chapter,

dn
dt = kun

tot − (kw + ku)n,

where kw and ku are the respective rate constants of the modification and
demodification reactions. When recast in nondimensional time τ , the rate
equation takes the form

dn
dτ = kun

tot

(kw + ku) − n .

Here we see that n(τ) depends on the fraction pu = ku/(kw+ku) but not on
the particular values of kw and ku. In other words, experimental data on
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protein copy numbers can provide information only about the fraction pu,
and not on the particular values of kw and ku separately. This issue of
identifiability is reported in [165, 166]. The problem here is that changes in
the protein copy numbers are discrete and random, rather than continuous
and deterministic. We will learn in Chapter 6 that the variance of n satisfies
an ordinary differential equation (ODE) that involves the difference kw − ku
between the two parameters, in addition to the fraction pu. Thus experimental
data on fluctuations, combined with the experimental data on the average
protein copy numbers, give information about both kw and ku separately.
Note that this argument of identifiability is made in the context of parameter
estimation from time courses. Some experimental procedure may allow one
to identify both parameters directly without requiring estimation from time
course.

Depletion (extinction): The steady-state copy number, nss in the above
example, is a fraction of the total copy number ntot and hence can never
become zero for nonzero rate constants. However, a discrete stochastic
treatment of the problem leads to nonzero steady-state probabilities of n = 0
(corresponding to depletion of U), and of n = ntot (corresponding to depletion
of W). Of specific interest in such cases is the average time until the first
depletion (or extinction).

Fluctuation-affected mean: The validity of deterministic macroscopic ap-
proaches for description of the averages is limited because the average of a
nonlinear function is generally not the same as the function of the average.
This was first demonstrated for bimolecular reactions in [131]. In the isomer-
ization example, the mean (copy number) of the stochastic model was the
same as the solution of the corresponding deterministic model. However, we
will learn in Chapter 6 that this is not true in general. For systems containing
bimolecular reactions, the mean is also influenced by the fluctuations. In
some systems, the mean of the stochastic model can be considerably larger
than the deterministic prediction, and can lead to enhanced sensitivity of the
network, known as “stochastic focusing” [121, 122].

Bistability: A bistable system has two stable steady states separated by an
unstable steady state. In a deterministic framework, such a system settles
to the steady state whose basin of attraction contains the initial condition.
In a stochastic framework, however, the behavior is more complex: either
steady state may be reached in different realizations regardless of the initial
condition. This behavior is referred to as “stochastic switching” [58, 160],
illustrated in Figure 1.6 for the Schlögl reaction, to be discussed in the
following two chapters. The time-varying histogram, which was obtained from
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Figure 1.6 Temporal histogram progress for the Schlögl reaction.

10000 realizations, is unimodal initially and has a bimodal pattern at the end.
This phenomenon is better visualized as the time-dependent 3-dimensional
probability distribution shown in Figure 1.7. To study a bistable process
(e.g., apoptosis, cell differentiation), single-cell technologies are necessary.
Averaging over ensembles of cells, as done in a Western blot, does not allow
one to distinguish between states. Using single-cell technologies, such as
microscopy, a sample generated from a collection of cells under the same
condition has proportions of cells in each state. The stochastic approach is
necessary for capturing the variability in these experimental observations.
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Figure 1.7 Temporal distribution progress for the Schlögl reaction. Left:
monomodal during the time interval 0 < t < 1, Right: turns bimodal during
later time interval 1 < t < 5.

1.5 Stochastic Approaches
The pioneering works of Kramers [84] and Delbrück [27] provided the impetus
for the application of stochastic approaches to chemical kinetics. The most
common formulation of stochastic models for biochemical networks is the
chemical master equation (CME). The analytical nature of the early stochas-
tic approaches made it highly complicated and, in some cases, intractable
altogether. That is why early analytical stochastic approaches received little
attention in the biochemical community. Later, the situation changed with the
increasing computational power of modern computers. The ground-breaking
work of Gillespie [51, 52] presented an algorithm for numerically generating
sample trajectories of the abundances of chemical species in chemical reaction
networks. The so-called “stochastic simulation algorithm,” or “Gillespie algo-
rithm,” can easily be implemented in any programming or scripting language
that has a pseudorandom number generator. Several software packages imple-
menting the algorithm have been developed [15, 17, 49, 81, 129, 130]. For a
survey of stochastic simulation approaches, the reader is referred to two recent
reviews [113, 155]. Different stochastic approaches and their interrelationships
are depicted in Figure 1.8.

For large biochemical systems, with many species and reactions, stochas-
tic simulations (based on the original Gillespie algorithm) become compu-
tationally demanding. Recent years have seen a large interest in improving
the efficiency/speed of stochastic simulations by modification/approximation
of the original Gillespie algorithm. These improvements include the “next
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Figure 1.8 Classification of stochastic processes: Interrelationships for various
stochastic approaches. Figure adopted from [158].

reaction” method of Gibson and Bruck [50], the “τ-leap” method [57] and its
various improvements [20–22] and generalizations [23, 90] and the “maximal
time step method” [124], which combines the next reaction and the τ-leap
methods.

While stochastic simulations are a practical way to realize the CME,
analytical approximations offer more insights into the influence of noise
on cell function. Formally, the CME is a continuous-time discrete-state
Markov process [52, 75, 143]. For gaining intuitive insight and a quick
characterization of fluctuations in biochemical networks, the CME is usually
approximated analytically in different ways [61, 75], including the frequently
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used chemical Langevin equation (CLE) [56, 76, 144, 174], the linear noise
approximation (LNA) [34, 65, 139, 140], and the two-moment approximation
(2MA) [44, 58, 62].

Of the analytical approaches mentioned above, we focus in Chapter 6 on
the 2MA approach because of its representation of the coupling between the
mean and (co)variance. The traditional Langevin approach is based on the
assumption that the time-rate of abundance (copy number or concentration)
or the flux of a component can be decomposed into a deterministic flux and
a Langevin noise term, which is a Gaussian (white noise) process with zero
mean and amplitude determined by the system dynamics. This separation of
noise from the system dynamics may be a reasonable assumption for external
noise that arises from the interaction of the system with other systems (such
as the environment), but cannot be assumed for internal noise that arises
from within the system [13, 30, 74, 117, 128, 141]. As categorically discussed
in [76], internal noise is not something that can be isolated from the system
because it results from the discrete nature of the underlying molecular events.
Any noise term in the model must be derived from the system dynamics
and cannot be presupposed in an ad hoc manner. However, the CLE does
not suffer from the above criticism because Gillespie [56] derived it from the
CME description. The CLE allows much faster simulations compared to the
exact stochastic simulation algorithm (SSA) [52] and its variants. The CLE
is a stochastic differential equation (dealing directly with random variables
rather than moments) and has no direct way of representing the mean and
(co)variance and the coupling between the two. That does not imply that CLE,
like the LNA, which has the same mean as the solution of the deterministic
model, ignores the coupling.

The merits of the 2MA compared to alternative approximations have
been discussed in [58, 62, 149]. In [44], the 2MA is developed as an approx-
imation of the master equation for a generic Markov process. In [58], the
2MA framework is developed under the name “mass fluctuation kinetics” for
biochemical networks composed of elementary reactions. The authors demon-
strate that the 2MA can reveal new behavior such as stochastic focusing and
bistability. Another instance of the 2MA is proposed in [61, 62] under the
names “mean-field approximation” and “statistical chemical kinetics.” Again,
the authors assume elementary reactions, so that the propensity function is
at most quadratic in concentrations. The authors evaluate the accuracy of
the 2MA against the alternatives (such as LNA) for a few toy models. The
derivation of the 2MA for more general systems with nonelementary reactions
is one motivation for our derivation in this book.

The 2MA approaches referred to above assume absolute concentrations
(copy number divided by some fixed system-size parameter). In systems
biology, however, models often use relative concentrations that have arbitrary
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units [26, 108, 109, 156]. In general, the concentration of each component in
the system may have been obtained by a different scaling parameter, rather
than using a global system size. For such models, the above-mentioned
approaches need modification. This was another motivation for our derivation
in this book. We develop a compact form of the 2MA equations—a system of
ODEs for the dynamics of the mean and (co)variance of the continuous-time
discrete-state Markov process that models a biochemical reaction system by
the CME. This is an extension of previous derivations, taking into account
arbitrary concentrations and nonelementary reactions. The compact form,
obtained by careful selection of notation, for our derivation allows for an easy
interpretation. Using these analytical results, we develop our 2MA model
of the fission yeast cell cycle, which has two sets of ODEs: one set for the
mean protein concentrations and the other set for concentration (co)variances.
Numerical simulations of our model show a considerably different behavior.
Especially, for the wee1– cdc25∆ mutant (hereinafter referred to simply as
double mutant), the timings of S-phase and M-phase are visibly different from
those obtained for a deterministic model because of the oscillatory behavior
of the key regulator. Since the 2MA is only an approximation, we investigate
its validity by comparing the statistics computed from the 2MA model with
experimental data.

1.6 Outline of the Text
The remainder of the text is organized as follows.

Chapter 2: Representations of biochemical reactions are reviewed. We
introduce key concepts such as concentration, system size, and reaction count,
and provide a motivation for more complex reaction networks. The reaction
rate is expressed in terms of the time derivative of reaction count, which is
a more natural way than in terms of concentrations. Examples of chemical
reactions have been chosen to illustrate certain key ideas. The standard
modification (isomerization) is the simplest possible reversible reaction system.
The complexity is gradually increased by heterodimerization (illustrating a
reversible bimolecular reaction). Simple networks of more than one reaction
are illustrated by the Lotka–Volterra model and the enzyme kinetic reaction
system. Branching in a reaction network is illustrated by an example that also
illustrates the phenomenon of stochastic focusing. Bistability, an important
phenomenon, is illustrated by the Schlögl model. Finally, a biologically more
relevant system, a simple gene regulatory network, is introduced to illustrate
the key idea that noise matters even with large copy numbers because it
propagates from transcription to translation. The Matlab code is provided
for most examples in order to encourage the reader to play with the models.
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Chapter 3: This chapter provides an informal discourse on the notion of ran-
domness and its mathematical representation by random variables. Working
with simple reaction examples, key concepts in probability, random variables,
and stochastic processes are introduced along the road. The relevant terms
are introduced when needed, in contrast to the usual approach of first giving
definitions without setting the stage. Probability theory is kept to a minimum
and the focus is more on convincing the reader through intuition.

Chapter 4: Key concepts in probability, random variables, and stochastic
processes are reviewed. This chapter cannot serve as a complete introduction
to probability theory but should be enough for those who have been introduced
to probability and random variables at some stage in their academic career. To
keep things short, only those probability distributions that are important for
later chapters have been included. These include the exponential distribution
(vital for Markov processes), the Poisson distribution (underlies the famous
Poisson process), and the uniform distribution (important for random number
generation). A first flavor of stochastic processes is given by presenting a
detailed account of the Poisson process.

Chapter 5: The stochastic framework for modeling subcellular biochemical
systems is presented. In particular, an effort is made to show how the notion
of propensity, the chemical master equation, and the stochastic simulation
algorithm arise as consequences of the Markov property. This connection is
not obvious from the relevant literature in systems biology. Moreover, we
review various analytical approximations of the chemical master equation.
The notation has been carefully chosen to make it easy for the reader to see
how different approximations are related to each other. Examples introduced
in Chapter 2 are revisited in a stochastic setting. For each example, simulation
results are presented.

Chapter 6: This chapter develops a compact form of the 2MA equations—
a system of ODEs for the dynamics of the mean and (co)variance of the
continuous-time discrete-state Markov process that models a biochemical
reaction system by the CME. This is an extension of previous derivations,
taking into account relative concentrations and nonelementary reactions. The
compact form, obtained by careful selection of notation, allows for an easy
interpretation.

Chapter 7: This chapter takes the Tyson–Novák model for the fission yeast
cell cycle as a case study. This deterministic model is a practical example
using nonelementary reactions and relative concentrations, the two central
features of our extended 2MA approach. This will allow us to investigate
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the price of higher-order truncations by comparing the simulated cycle time
statistics with experiments.

Chapter 8: This chapter deals with general Markov processes that can
have both continuous and jump character. A general system of differential
equations is derived for the general Markov process. Then it is illustrated how
different processes can arise as special cases of the general process. That leads
to a family tree of stochastic models that is sketched in a detailed diagram.

Chapter 9: In this chapter we review selected publications on noise and
stochastic modeling, including those linked to experimental studies. Due
to the wide range of experimental technologies used to generate data, and
because the importance of this to the analysis, we cannot reproduce those
studies in a book like this. The selection of a few papers is to demonstrate
the relevance of noise and stochastic modeling to state-of-the-art molecular
and cell biology.



Chapter 2

Biochemical Reaction Networks

This chapter is a basic introduction to chemical reactions and chemical species.
Different ways of quantifying the abundance of molecules lead to the notions of
concentration. Similarly, a deterministic quantification of how fast a reaction
proceeds in time leads to notions such as reaction rate and rate constant.
Representation of biochemical reaction schemes is reviewed. Deterministic
description of reaction networks in terms of reaction rates is described.

2.1 The Notion of a Chemical Reaction
Molecules inside the cell undergo various transformations. For example, a
molecule can transform from one kind to another, two molecules of the same
or different kinds can combine to form another molecule of a third kind, and so
on. At the basic level these transformations are known as chemical reactions.
In the context of chemical reactions, a molecule is said to be (an instance) of
a certain species. Similarly, a chemical reaction is said to be (an instance) of a
certain channel. The chemical species are denoted by roman uppercase letters.
A single molecule of a species A is referred to as an A-molecule. The chemical
reaction is written schematically as an arrow with reactants on the left and
products on the right. Thus an A-molecule could transform to a B-molecule:

A→ B,

a conversion or modification or isomerization. An A-molecule could associate
with a B-molecule to form a non-covalently-bound complex:

A + B→ C,

an association or synthesis. The complex C-molecule could dissociate into an
A- and a B-molecule:

C→ A + B,

a dissociation or decomposition. A species that is not of interest to us (e.g.,
because its abundance does not change over time) is represented by the symbol

Stochastic Approaches for Systems Biology,
DOI 10.1007/978-1-4614-0478-1_2, © Springer Science+Business Media, LLC 2011
M. Ullah and O. Wolkenhauer, 23



24 2 Biochemical Reaction Networks

∅ and referred to as the “null species.” So the reaction

A→ ∅

represents the degradation of an A-molecule to a form not of interest to us.
Similarly, the production of a B-molecule is written as

∅→ B

when the reactants are disregarded. These reactions are said to be elementary
and irreversible; elementary in the sense that each one takes one basic step
(association, dissociation, conversion) to complete and irreversible because
the change is only in one direction. They never exist in isolation, but always
in combination with each other. So, what we usually describe as a chemi-
cal reaction can always be broken down into a mechanism that consists of
combinations of these three elementary processes. For example, the probable
mechanism of the chemical reaction

A + B
 C

would be
A + B
 AB→ C,

where C is a covalent modification of AB. Each half (⇀ or ↽) of the double
arrow (
) denotes one of the elementary reactions. Thermodynamically, all
chemical reactions are reversible and consist of a forward reaction and a reverse
reaction. Thus when we write an irreversible reaction, it will either represent
the forward or backward step of a reversible reaction, or a simplification (i.e.,
approximation) of a reversible reaction by an irreversible one.

2.2 Networks of Reactions
Imagine molecules of s chemical species homogeneously distributed in a com-
partment of constant volume V at thermal equilibrium and interacting through
r irreversible reaction channels. A reaction channel either is elementary or may
represent a simplification of multiple elementary steps into a single step. Any
reversible (bidirectional) reaction can be listed as two irreversible reactions.
We symbolize the ith species with Xi and the jth reaction channel with Rj .
The abundance of Xi present in the system at time t can be described by
the copy number Ni(t). The total copy number ntot of all species indicates
how large the system is. Since a large/small value of ntot usually implies a
large/small volume, the volume V can also indicate the size of the system.
Any such parameter can be used as the system size and is usually denoted by
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Ω. The copy number is usually divided by the system size, and the quantity
thus obtained,

Xi(t) = Ni(t)
Ω ,

is referred to as the concentration. The choice of the system size Ω depends
on the kind of concentration one would like to define.

Molar Concentrations: For molar concentrations, in units M ≡mol/L, the
system size is chosen as Ω = NAV , where Avogadro’s constant

NA = 6.022× 1023 mol−1

(correct to four significant digits) is the number of molecules (or any elementary
entities) in one mole. If the volume is given in liters (L) and concentration in
molar (M), then the unit of system size Ω is mol−1 × L = M−1. The molar
unit (M) is too large for very small concentrations, which are better specified
in smaller units including nanomolar (nM), micromolar (µM), and millimolar
(mM). Suppose the proteins in a cell of volume V = 30 fL are measured in
nanomolar (nM)−1; then the computation of the system size proceeds like
this:

Ω = NAV =
(
6.022× 1014 (n mol)−1)× (3× 10−14 L

)
≈ 18 (nM)−1 .

Sometimes, the volume is chosen so that Ω = 1 (nM)−1 for the resulting
convenience that each nanomolar concentration is numerically equal to the
corresponding copy number.

Relative concentrations: For relative concentrations, the system size is
chosen to give dimensionless concentrations. One simpler way to obtain
relative concentrations is by choosing Ω = ntot, so that each concentration
is just a fraction of two copy numbers. Take the isomerization reaction
as an example whereby proteins are converted back and forth between the
unmodified form U and the modified form W such that the total number ntot

of protein molecules remains constant. The relative concentrations in this
example are the fractions

XU(t) = NU(t)
ntot and XW(t) = ntot −NU(t)

ntot

of proteins in the inactive and active form, respectively. For some systems
it is more appropriate to introduce a different scaling parameter Ωi for each
component i if the copy numbers Ni differ in magnitude to keep Xi of the
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same order O(1). That can be obtained by defining relative concentration as

Xi = Ni
CiΩ

,

that is, the concentration Ni/Ω divided by a characteristic concentration Ci.
In that case, each scaling parameter can be expressed as Ωi = CiΩ. This will
be of concern to us in the following chapter. In this chapter, we stick to the
simpler case.

The reaction channel Rj will be represented by the general scheme

¯
S1jX1 + · · ·+

¯
SsjXs

kj−−−−−→ S̄1jX1 + · · ·+ S̄sjXs . (2.1)

The participation of individual species in the reaction is indicated by stoi-
chiometries, or stoichiometric coefficients, written beside them. Thus, the
coefficient

¯
Sij (on the left) represents the participation of Xi as a reactant and

S̄ij (on the right) is the corresponding participation as a product. The rate
constant, or coefficient, kj , written over the reaction arrow informs us about
the assumed reaction kinetics, and will be explained later. The coefficient
will be omitted when we do not want to attach any assumed reaction kinetics
to the above reaction scheme. The progress of channel Rj is quantified in
this text by the reaction count Zj(t), defined as the number of occurrences
of Rj during the time interval [0, t]. One occurrence of Rj changes the copy
number of Xi by Sij = S̄ij − ¯

Sij , the (i, j)th element of the stoichiometry
matrix S. During the time interval [0, t], the change in the copy number of
Xi contributed by Rj is thus SijZj(t). The total change in the copy number
is the sum of contributions from all reactions:

Ni(t) = Ni(0) +
r∑
j=1

SijZj(t) . (2.2)

Thus changes in copy numbers are determined by stoichiometries and reaction
counts. We need to caution the reader against a potential confusion between
the term reaction count and a similar term reaction extent. Since the copy
numbers appearing in the above equation are in units of molecules, we can also
interpret the reaction count Zj(t) as number of molecules of a hypothetical
substance in terms of which the other copy numbers are expressed. Dividing
the above equation by NA will change the measurements from molecules to
moles, and the reaction count is replaced by the reaction extent Zj(t)/NA.
Following the usual vector notation, we write N(t) for the s-vector of copy
numbers, X(t) for the s-vector of concentrations, and Z(t) for the r-vector
of reaction counts. The above conservation relation can be written in vector
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notation:
N(t) = N(0) + S Z(t) . (2.3)

Dividing by Ω gives the corresponding relation in concentrations:

X(t) = X(0) + S Z(t)
Ω . (2.4)

The quantity Zj(t)/Ω is referred to as the degree of advancement of the reaction
channel and replaces the role of reaction count in converting the progress of
reaction to species concentration.

The copy number N(t), the concentration X(t), and the reaction count
Z(t) are alternative ways to describe our system. Description in terms of these
macroscopic variables is done in the hope that they approximately satisfy
an autonomous set of deterministic (differential or difference) equations.
Because of the ease of analysis, differential equations are always preferred
over the difference equation. However, the reactions are discrete events in
time, which means that the copy numbers do not vary continuously with
time. That would require the adoption of difference equations. The situation
is made even more complicated by two problems. Firstly, the occurrence
time of a reaction is a random quantity because it is determined by a large
number of microscopic factors (e.g., positions and momenta of the molecules
involved). The second problem arises when more than one type of reaction
can occur. The type of reaction to occur is also a random quantity for the
same reasons mentioned above. Therefore, the deterministic description needs
a few simplifying assumptions. Alternatively, the macroscopic variables are
formulated as stochastic processes. Such a stochastic description in terms of
macroscopic variables is mesoscopic.

Throughout this text, we will use a couple of academic examples. They
are chosen to demonstrate different ideas and methods in the discussion. For
further examples of simple biochemical networks and a discussion of their
relevance to molecular and cell biology, the reader is referred to [157].

Example 2.1 (Standard modification) Consider a protein that can exist in
two different conformations, or forms, an unmodified form U and a modified
form W. The protein changes between the two forms by the reversible
isomerization reaction

U
kw−−−−−⇀↽−−−−−
ku

W (2.5)

composed of a modification (forward) channel with rate constant ku and a
demodification (reverse) channel with rate constant kw. The reaction scheme
(2.5) also represents the opening and closing of an ion channel and similar
systems with two-state conformational change. Since the two reactions are
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not influenced by any external catalyst (e.g., an enzyme), the scheme (2.5)
will be referred to as the standard modification. This example was used in the
introductory chapter to illustrate ideas of identifiability and species extinction
or depletion.

Example 2.2 (Heterodimerization) Consider the reversible heterodimeriza-
tion

X1 + X2
k1−−−−−⇀↽−−−−−
k2

X3 . (2.6)

Here the forward reaction is the association of a receptor X1 and a ligand X2 to
form a heterodimer (complex) X3. The backward reaction is the dissociation
of the heterodimer back into the two monomers. The parameters k1 and k2
are the respective association and dissociation rate constants. This example
is the simplest one with a bimolecular reaction.

Example 2.3 (Lotka–Volterra model) Consider the process whereby a reac-
tant A, replenished at a constant rate, is converted into a product B that is
removed at a constant rate. The reaction will reach a steady state but cannot
reach a chemical equilibrium. Suppose the process can be decomposed into
three elementary steps:

X1 + A −→ 2X1,

X1 + X2 −→ 2X2,

X2 −→ B .
The first two reactions are examples of an autocatalytic reaction: the first one
is catalyzed by the reactant X1 and the second by the reactant X2. This simple
reaction scheme was proposed as a simple mechanism of oscillating reactions
[67, 94]. Although the scheme illustrates how oscillation may occur, known
oscillating chemical reactions have mechanisms different from the above. For
an in-depth treatment of biochemical oscillations, the reader is referred to
[42, 59, 106, Chapter 9]. This type of process is found in fields other than
chemistry; they were investigated in the context of population biology by
Lotka [94] and Volterra [164]. Due to the frequent appearance of this latter
context in the literature, we rewrite the above reaction scheme as

X1 + A k1−−−−−→ 2X1,

X1 + X2
k2−−−−−→ 2X2,

X2
k3−−−−−→ ∅,

 (2.7)

as a system of two interacting species: X1 (the prey) and X2 (the predator).
The food (substrate) A is available for X1, which reproduces, with rate
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Figure 2.1 Enzyme-catalyzed conversion of a substrate to a product. The enzyme
binds to the substrate to make its conversion to product energetically favorable.
Figure based on an illustration in Alberts et al. [4].

coefficient k1, after consuming one unit of A. An encounter between the two
species, with rate coefficient k2, results in the disappearance of X1 and the
replication of X2. This is the only way X1 dies (degrades), whereas X2 has a
natural death (degradation) with rate coefficient k3. The food A is assumed
to be constantly replenished so that the copy number nA remains constant.
This example serves the purpose of a simple system containing a bimolecular
reaction and the resulting influence of (co)variance on the mean (Chapter 6).

Example 2.4 (Enzyme kinetic reaction) In biological systems, the conversion
of a substrate to a product may not be a thermodynamically feasible reaction.
However, specialized proteins called enzymes ease the job by binding to the
substrate and lowering the activation energy required for conversion to the
product, as depicted in Figure 2.1. Represented in reaction notation,

E + S −→ E + P,

the enzymatic reaction is thought to be accomplished in three elementary
steps:

E + S
k1−−−−−⇀↽−−−−−
k2

ES k3−−−−−→ E + P . (2.8)

Here the enzyme E catalyzes a substrate S into a product P that involves an
intermediary complex ES. Note that we have not placed any rate constant
over the arrow in the original reaction because we do not specify any assumed
kinetics in that notation. Later we will learn that it is possible to approximate
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the three elementary reactions by a single reaction,

S keff−−−−−−→ P,

with an effective rate coefficient keff that represents the assumed approximate
kinetics. Intuitively, keff will be a function of the enzyme abundance. We
include this example because this type of reaction appears frequently in
the literature. It also serves the purpose of a simple system containing a
bimolecular reaction and allows demonstration of how mass conservation leads
to a simplified model.

Example 2.5 (Schlögl model) The Schlögl model is an autocatalytic, tri-
molecular reaction scheme, first proposed by Schlögl [137]:

A + 2X
k1−−−−−⇀↽−−−−−
k2

3X, B
k3−−−−−⇀↽−−−−−
k4

X . (2.9)

Here the concentrations of A and B are kept constant (buffered). This example,
mentioned in the introduction, serves to illustrate the need for a stochastic
approach to model systems with bistability and the associated behavior known
as “stochastic switching.”

Example 2.6 (Stochastic focusing) This example was first described in [121]
to demonstrate a behavior phenomenon known as “stochastic focusing.” The
branched reaction network comprised the following reaction channels:

∅
ks−−−−−⇀↽−−−−−
kd

S, ∅
ki−−−−−−−⇀↽−−−−−−−
kaXS

I kp−−−−−→ P 1−−−−→ ∅ . (2.10)

Here the product P results from the irreversible isomerization of its precursor
I, an intermediary chemical species. This isomerization is inhibited by a
signaling chemical species S that is synthesized and degraded by independent
mechanisms.

Example 2.7 (Gene regulation) As pointed out earlier, oscillating chemical
reactions have mechanisms different from the simple and intuitive Lotka–
Volterra scheme. Those familiar with dynamical systems theory will recall
that such a kinetic system can oscillate only if both activation and inhibition
are present in the form of a feedback loop. Such feedback loops exist in gene
expression, where the protein product serves as a transcription factor and
represses transcription. A simplified regulatory mechanism is illustrated in
Figure 2.2. The protein product from gene expression binds to a regulatory
region on the DNA and represses transcription. The regulatory mechanism
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Figure 2.2 Gene regulation: a simplified model. Left: cartoon representation.
Right: reaction pathways.

is simplified by not showing the contributions of RNA polymerase and any
cofactors. The reaction scheme for the system is

G km−−−−−→ G + M (transcription),

M kp−−−−−→ M + P (translation),

G + P
kb−−−−−⇀↽−−−−−
ku

GP (binding/unbinding),

M k−m−−→ ∅, P
k−p−−→ ∅ (degradation),


(2.11)

where the gene G is transcribed to the mRNA M with rate constant km, the
mRNA is translated to the protein P with rate constant kp, and the protein
binds to (and represses) the gene with rate constant kb and unbinds back
with rate constant ku. The mRNA and protein are degraded with respective
rate constants k−m and k−p .

Synthetic gene regulation: The above idea of a simple feedback loop
has motivated several researchers to construct such feedback transcriptional
regulatory networks in living cells [11]. These investigators found that an
increased delay in the feedback loop increases the dynamic complexity of the
synthetic transcription system. A feedback loop with one repressor protein
constructed by Becskei and Serrano [12] exhibited on and off transitions.
Another loop with two repressor proteins, constructed by Gardner, Cantor,
and Collins [48], manifested bistability in the on and off states. Yet another
loop with three repressor proteins, constructed and termed “repressilator” by
Elowitz and Leibler [40], exhibited oscillations.

Repressilator: The repressilator is a milestone of synthetic biology because
its shows that gene regulatory networks can be designed and implemented to



32 2 Biochemical Reaction Networks

Lacl TetRcl

Figure 2.3 The repressilator gene regulatory network.

perform a novel desired function [40]. The repressilator consists of three genes,
λcl, Lacl, and TelR, connected in a feedback loop. As depicted in Figure 2.3,
each gene product represses the next gene in the loop, and is repressed by the
previous gene. In addition, not shown in the figure, green fluorescent protein
is used as a reporter so that the behavior of the network can be observed
using fluorescence microscopy.

Cell cycle: The cycle through which cells grow and duplicate their DNA
before eventually dividing into two daughter cells is of central importance
to the realization of higher levels of biological organization. Underlying the
cell cycle and its regulation are complex mechanisms, realized through large
reaction networks. Due to its complexity, the cell cycle is investigated as a
case study in Chapter 7.

2.3 Deterministic Description
Suppose that reactions occur so frequently that the reaction count Z(t) can
be approximated by a continuous quantity z(t). This assumption requires
that a large number of reactant molecules be freely available (no crowding) in
a large volume so that they can react easily. It also requires that the energy
and orientation of reactant molecules favor the reaction, a fact summarized in
a rate constant. Large numbers of molecules also mean that a change resulting
from a single occurrence of a reaction is relatively small. This means that the
copy number N(t) can be approximated by a continuous quantity n(t). The
concentration X(t) is similarly approximated by a continuous quantity x(t).
In a deterministic description, equations (2.3) and (2.4) respectively translate
to

n(t) = n(0) + S z(t) (2.12)

and
x(t) = x(0) + S z(t)

Ω . (2.13)

Taking the time derivatives gives us the net chemical fluxes:

ṅ(t) = S ż(t), ẋ(t) = S
ż(t)
Ω . (2.14)
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Here the time derivative ẋ is the net concentration flux and ṅ is the net
copy-number flux. Note that our usage of the term “chemical flux” differs
from IUPAC[1], which defines it in terms of moles. The above equations are
useful only if a relationship between the time derivative on the right and the
abundance variable (n(t) or x(t)) is established. Suppose a relation can be
mathematically represented as

ż = v̂(n) = Ωv(x), (2.15)

where the vectors v̂(x) and v(x) are referred to here as the conversion rate
and the reaction rate, respectively. The conversion rate is here defined as
reaction count per unit time, a slight difference with the standard definition
in [1] as the time derivative ż/NA of the extent of reaction. The reaction rate
is defined as reaction count per unit time divided by the system size. The
notation v (x(t)) is based on the assumption that the reaction rate depends
only on the concentrations of the reactants. This is a realistic assumption in
many reactions at constant temperature. In general, the reaction rate can
depend on temperature, pressure, and the concentrations or partial pressures
of the substances in the system.

The functional form vj(·) of the rate of Rj is called the rate law (or
kinetic law), which is a result of the modeling assumptions about the particular
reaction channels. It is only after specifying a rate law that the above ODEs
can characterize a particular biochemical reaction network. Without that
specification, the above ODEs only represent a consistency condition imposed
by mass (or substance) conservation of reactants and products. Incorporating
the rate law specification (2.15) into the ODEs (2.14) leads to the deterministic
chemical kinetic equations

ṅ(t) = S v̂ (n(t)) , ẋ(t) = S v (x(t)) . (2.16)

There is a large class of chemical reactions in which the reaction rate is
proportional to the concentration of each reactant raised to some power:1

vj(x) = kj

s∏
i=1

x
gij

i , v̂j(n) = k̂j

s∏
i=1

n
gij

i , (2.17)

which is called a rate law with definite orders [102]. The rate constant
kj summarizes factors such as activation energy and proper orientation of
the reactant molecules for an encounter leading to the reaction. The rate
constant kj can be interpreted as the factor of the reaction rate that does not

1Since 00 is undefined, the product
∏s

i=1 must exclude i for which both xi and gij are
zero.
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depend on reactant concentrations. The conversion rate constant k̂j has a
similar interpretation as the factor of the extensive reaction rate that does
not depend on the reactant copy numbers. Recall that while the units of
k̂j are always sec−1, the units of kj additionally depend on the units used
for the concentration x. The exponent gij is the order with respect to the
species Xi. The sum of orders for a particular reaction channel is the overall
order. For elementary reactions, the orders gij are the same as the reactant
stoichiometries

¯
Sij :

vj(x) = kj

s∏
i=1

x¯
Sij

i , v̂j(n) = k̂j

s∏
i=1

n¯
Sij

i . (2.18)

This rate law is called mass-action kinetics [66] and is justified by collision
theory and transition state theory [71, 102, 171]. The mass-action kinetics
should not be confused with the closely related law of mass action, which
is obtained by equating the forward and backward reaction rates (according
to the above rate law) of a reversible reaction. Reactions that cannot be
described by rate laws like (2.17) are said to have no definite order. For
such a reaction, the rate law depends on the assumptions involved in the
approximation of the constituent reaction channels. Examples of such rate
laws include Michaelis–Menten kinetics, Hill kinetics, and competitive inhibi-
tion [25, 43, 66]. A family tree of deterministic ODE models is sketched in
Figure 2.4. The ODEs in their most general form are rarely used in systems
biology. Equation (2.16) is the most common representation to describe the
continuous changes in concentration x(t) in terms of the network structure,
encoded by the stoichiometry matrix S, and the network kinetics, encoded by
the rate law v(·). Note that the kinetic parameters such as the rate constant
k and the kinetic order g are incorporated in the rate law. Further variations
emerge through an implicit assumption about the underlying biophysical
environment in which reactions take place. Assuming basic mass-action-type
kinetics, the kinetic order gij of the rate law will typically take the value 1
or 2 (dimerization). Further quasi-steady-state assumptions for intermediate
complexes can simplify into Michaelis–Menten type kinetic models. The left
branch allows for noninteger kinetic orders and takes two routes that depend
on the semantics [161]. Simplified power-law models (e.g., S-Systems [163])
assume very little knowledge about the biophysical structure of the environ-
ment in which reactions take place. These models distinguish between positive
and negative contributions (pos/neg kinetic orders) and different strengths
of activation/inhibition. On the other hand, criticizing the assumption of a
homogeneous and well mixed environment (underlying the right branch) leads
to noninteger (but positive) kinetic orders. A detailed kinetic power-law model
would thus arguably represent the biophysical environment more accurately
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state vector input vector

parameter vector

no inputs

network kinetics
(rate law)

network structure (stoichiometric matrix)

Power-Law Models Conventional Kinetic Models

Simplified
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Detailed
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kinetic order
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tim
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Figure 2.4 Family tree of deterministic ODE models. For chemical reaction
networks, the general ODE formulation simplifies to a decomposition into the
stoichiometry matrix (encoding the network structure) and the rate law (encoding
the network kinetics). A large class of chemical reactions have a rate law with
definite (kinetic) orders, of the form (2.17). Restricting and broadening the range
of values of the kinetic order gij allows further classification.

than the conventional mass-action model. On the other hand the simplified
power-law model admits a more phenomenological interpretation. A drawback
of the power-law models is that of additional parameters, the kinetic orders,
they introduce. The more parameters a model has, the more difficult it is to
identify a unique set of parameter values from experimental time-course data.

Relationship between k and k̂: We can combine the defining relationship
(2.15) with the rate law (2.17) to get a relationship between the rate constant
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Table 2.1 Relationship between the rate constant and the conversion rate constant
for example reactions.

Rj Relation

∅
kj−−→ X k̂j = Ωkj

X
kj−−→? k̂j = kj

X1 +X2
kj−−→? v = kj

Ω

2X kj−−→? k̂j = kj

Ω

X1 +X2 +X3
kj−−→? k̂j = kj

Ω2

X1 + 2X2
kj−−→? k̂j = kj

Ω2

k and the conversion rate constant k̂:

k̂j

s∏
i=1

n
gij

i = v̂(n) = Ωv(x) = Ωkj
s∏
i=1

x
gij

i .

Now invoke the defining relationship n = Ωx to obtain

k̂j = kj
ΩKj−1 , (2.19)

where Kj =
∑s
i=1 gij , which, for elementary reactions, is simply Kj =∑s

i=1 ¯
Sij . The relationship for sample elementary reactions is illustrated in

Table 2.1. The table suggests that the two types of rate constants are equal
for monomolecular reactions.

Matlab implementation: To implement rate laws of the form (2.17) in Mat-
lab [96], the standard Matlab data type function handle can be employed.
We will need Matlab representations of our mathematical quantities. Let us
collect the species concentrations xi (at a certain time) in an s× 1 column
vector x, the reaction rate constants kj in an r × 1 column vector k, and the
exponents gij (which equal

¯
Sij for mass-action kinetics) of the rate law (2.17)

in an s× r matrix G. Then the Matlab representation v of the rate law v(·)
defined elementwise in (2.17) takes the following form:
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M-code 2.1 makeRateLaw: implements rate law with definite orders (2.17).

function v = makeRateLaw(k,G)
r = size(G,2);
i0 = (G==0);
i = ~i0 & (G~=1);
v = @RateLaw;

function vofx = RateLaw(x)
X = repmat(x,1,r);
X(i0) = 1;
X(i) = X(i2.^G(i);
vofx = k.*prod(X)’;

end
end

v = @(x) k.*prod(repmat(x,1,r).^G)’;

where r is the Matlab representation of the number r of reaction channels.
Here the function handle v stores the mathematical expression following
@(x). The standard Matlab notations .* and .^ represent the elementwise
operations multiplication and exponentiation. The compact code above may
not be efficient in dealing with a large network of many species and reactions.
Specifically, the exponentiation and multiplication are computationally de-
manding. To avoid these unnecessary computations, the code is replaced by
Matlab function makeRateLaw in M-code 2.1. Here the output v returned
by the main function makeRateLaw is a function handle to the nested func-
tion RateLaw. Note how exponentiation is avoided for the obvious cases
gij = 0 and gij = 1. In general, a rate law may not be expressible in the form
(2.17) and has to be written on a case-by-case basis. Once such function (or
handle) has been written for the rate law, a Matlab representation of the
chemical kinetic equations (2.16) can be written and numerically solved with
the following piece of Matlab code:

dxdt = @(t,x) S*v(x); % concentration ODE
[tout,xout] = ode15s(dxdt, [0 tf], x0); % solution

Here x0 is a column vector of initial concentrations and tf is the final (stop)
time of the simulation. The solver ode15s returns the column vector tout
of time points and the solution array xout with a row of concentrations for
each time point.



38 2 Biochemical Reaction Networks

0 1 2 3 4 5
0

0.5

1

U

W

time

co
nc

en
tr

at
io

n 
(f

ra
ct

io
n)

Figure 2.5 Time course of concentrations in the standard modification (2.20).
Initially all molecules are assumed to be unmodified (U). The ordinate is the fraction
of molecules in (un)modified form. Equilibrium is reached when the two fractions
are equal. Both the rate constants were taken as 2 sec−1.

Example 2.8 (Standard modification) Consider the (de)modification of a
protein between two forms by the reaction scheme (2.5). Suppose there are
ntot copies of this protein in a container, n(t) of them being unmodified
(in form U) at time t. The two reaction channels progress at the following
conversion rates (listed on the right)

U kw−−−−−→W

W ku−−−−−→ U

∣∣∣∣∣ v̂w = kwn

v̂u =
(
ntot − n

)
ku

(2.20)

and their difference gives the rate equation

ṅ = −v̂w + v̂u = kun
tot − (kw + ku)n .

The rate equation for the unmodified fraction x = n/ntot of all proteins is then

ẋ = ku − (kw + ku)x . (2.21)

The Matlab implementation of this differential equation and its numerical
solution will look like the following piece of code:

k = [2;2]; % rate constants
dxdt = @(t,n) k(2)-(k(1)+k(2))*x; % ODE
x0 = 1; % initial condition
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[tout,xout] = ode15s(dxdt, [0 tf], x0); % solution

with the understanding that the Matlab workspace has values of variables k,
tf, and x0, which correspond respectively to the rate constant k = [kw, ku],
the simulation stop time, and the initial fraction xinit. A typical time course
is plotted in (2.21) wherein the fractions of molecules in the two forms are
plotted against time. The above Matlab code can be rewritten in a way that
lends itself to automatic code-writing. Toward that end, we write down the
stoichiometry matrix S and the reaction rate vector v for this example:

S =
[
−1 1

]
, v =

vw
vu

 =

 kwx

(1− x)ku

 .
With these two quantities available, the above Matlab code can be replaced
by

S = [-1 1]; % stoichiometry matrix
k = [2;2]; % rate constants
v = @(x) [k(2)*x; (1-x)*k(1)]; % reaction rate
dxdt = @(t,x) S*v(x)’; % rate equation
x0 = 1; % initial condition
[tout,xout] = ode15s(dxdt, [0 tf], x0); % solution

Here the first line assigns values to (the array) S, which corresponds to the
stoichiometry matrix S. The second line assigns an expression to the function
handle v, which corresponds to the rate law v(·). The next line defines the
function handle dndt to represent the system of ODEs in question. The
last line calls an ODE solver to solve the problem and returns the output
arrays tout of time points and xout of concentration values. It can be seen
from the above Matlab code that all we need is a representation S (a Matlab
matrix) of the stoichiometry matrix S and a representation v (a Matlab
function handle) of the reaction rate law v(·).

For the remainder of the text, we will mostly specify such quantities
with an understanding that the reader can translate that information into the
corresponding Matlab code.

Chemical equilibrium: When the modification rate vw (in the last example)
is balanced by the demodification rate vu, chemical equilibrium is said to have
occurred. In other words, the reversible reaction equilibrates or reaches the
steady state. The steady-state fraction xss is the value of x that makes the
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time derivative in (2.21) zero, that is,

xss = ku
kw + ku

.

Thus, in the steady state, a fraction PU = ku/(ku+kw) of proteins are in the
unmodified form and a fraction PW = kw/(ku+kw) of them in the modified form.
We can also say that a protein spends, on average, a fraction PW of time in
the modified form and a fraction PU of time in the unmodified form. This
interpretation proves very useful in reducing complicated reactions to single
steps. Suppose the W form participates in another reaction W kb−→ B that
occurs on a much slower time scale than two-state conformational changes
between U and W. The overall complicated reaction

U
kw−−−−−⇀↽−−−−−
ku

W kb−→ B

can be reduced to a single step ∅ kbPW−−−→ B under the fast equilibration
assumption for the reversible reaction.

Example 2.9 (Heterodimerization) Recall the reversible heterodimerization
depicted in the reaction scheme (2.6). Let x1(t), x2(t), and x3(t) denote the
respective time-dependent molar concentrations of receptor X1, ligand X2,
and heterodimer X3. The reaction network has to satisfy two conservation
relations:

x1 + x3 = q1, x2 + x3 = q2, (2.22)

where q1 and q2 are constants determined by the initial conditions. Using
these to express x1 and x2 in terms of x3, the system state can be represented
by tracking only species X3. The reaction rates according to the mass-action
kinetics follow from (2.18) to be (each listed to the right of the corresponding
reaction channel)

X1 + X2
k1−−−−−→ X3,

X3
k2−−−−−→ X1 + X2,

∣∣∣∣∣ v1 = k1 (q1 − x3) (q2 − x3) ,
v2 = k2x3 .

As far as X3 is concerned, the stoichiometry matrix S and the reaction rate v
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can be written as2

S =
[
1 −1

]
, v =

v1

v2

 =

k1 (q1 − x3) (q2 − x3)

k2x3

 .
The concentration x3(t) of the complex thus evolves according to

dx3
dt = Sv = k1 (q1 − x3) (q2 − x3)− k2x3 .

Example 2.10 (Lotka–Volterra model) Revisit the mutual interactions (2.7)
between the prey X1 and the predator X2. Let n1(t) and n2(t) denote the
copy numbers of X1 and X2, respectively. The number nA of the food items A
is assumed to be unchanged by consumption during the time scale of interest.
The reaction rates according to the mass-action kinetics follow from (2.18) to
be (listed to the right)

X1 + A k̂1−−−−−→ 2X1,

X1 + X2
k̂2−−−−−→ 2X2,

X2
k̂3−−−−−→ ∅,

∣∣∣∣∣∣∣∣
v̂1 = k̂1nAn1,

v̂2 = k̂2n1n2,

v̂3 = k̂3n2 .

As far as X1 and X2 are concerned, the stoichiometry matrix S and the
reaction rate v can be written as

S =

1 −1 0

0 1 −1

 , v̂ =


k̂1nAn1

k̂2n1n2

k̂3n2

 .

The ODEs governing the time courses of n1(t) and n2(t) can be constructed
from the vector Sv as

dn1
dt =

(
k̂1nA − k̂2n2

)
n1,

dn2
dt =

(
k̂2n1 − k̂3

)
n2 .

 (2.23)

2The full stoichiometry matrix for the 3-species 2-reaction scheme has three rows and two
columns.



42 2 Biochemical Reaction Networks

0 10 20 30
0

100

200

300

400

prey 

 predator

time

po
pu

la
tio

n

0 100 200 300
0

100

200

300

400

prey population

pr
ed

at
or

 p
op

ul
at

io
n

Figure 2.6 Deterministic simulation of the Lotka–Volterra model. Left: time
course, Right: phase plot. Parameters (in sec−1): k̂1 = 1, k̂2 = 0.005, k̂3 = 0.6.
Initial population is taken as 50 individuals of prey for 100 individuals of predator.

A numerical solution of the ODEs above is the time plot shown in Figure 2.6
side by side with the associated phase plot.

Example 2.11 (Enzyme kinetic reaction) For the enzyme kinetic reaction
(2.8), we write xE(t), xS(t), xES(t), and xP(t) for the respective time-dependent
molar concentrations of E, S, ES, and P. The solution is usually assumed to
respect two conservation laws:

xE(t) + xES(t) = xtot
E and xS(t) + xES(t) + xP(t) = xtot

S , (2.24)

where xtot
E and xtot

S are, respectively, the total concentrations of the enzyme
and substrate determined by the initial conditions. We can choose x =
(xS, xES)T as the state vector sufficient to describe the system because the
remaining two variables can be determined from the conservation relations
above. The channelwise mass-action kinetic laws for the reaction scheme (2.8)
are (list on the right):

E + S k1−−−−−→ ES,

ES k2−−−−−→ E + S,

ES k3−−−−−→ E + P,

∣∣∣∣∣∣∣
v1 =

(
xtot

E − xES
)
k1xS,

v2 = k2xES,

v3 = k3xES .

As far as S and ES are concerned, the stoichiometry matrix S and the reaction
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Figure 2.7 Deterministic time course of the enzyme kinetic reaction. Parameters:
k1 = 10−3 (nM sec)−1, k2 = 10−4 sec−1, k3 = 0.1 sec−1. Initial concentrations:
xS = 500 nM, xE = 200 nM, xES = xP = 0 nM.

rate v can be written as

S =

−1 1 0

1 −1 −1

 , v =


(xtot

E − xES) k1xS

k2xES

k3xES

 .

The concentrations evolve according to the following set of nonlinear coupled
ODEs (constructed from the vector Sv)

dxS
dt = k2xES −

(
xtot

E − xES
)
k1xS,

dxES
dt =

(
xtot

E − xES
)
k1xS − (k2 + k3)xES .

(2.25)

A numerical solution of the ODEs above is the time plot shown in Figure 2.7.

Michaelis–Menten kinetics: Following Michaelis and Menten [99] and
Briggs and Haldane [19], in addition to the assumption of a constant to-
tal enzyme concentration xtot

E , we make an additional assumption that the
concentration xES of the substrate-bound enzyme changes little over time,
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assuming a quasi steady state, that is,

dxES
dt =

(
xtot

E − xES
)
k1xS − (k2 + k3)xES ≈ 0,

which is reasonable if the concentration xES of the substrate-bound enzyme
changes much more slowly than those of the product and substrate. The
above steady-state assumption can rearranged to form an algebraic expression
for the steady-state concentration of the complex:

xES = xtot
E xS(

k2+k3
k1

)
+ xS

= xtot
E xS

KM + xS
,

where KM = (k2 + k3)/k1 is known as the Michaelis–Menten constant. This
can be combined with the fact that the product concentration xP changes at
the rate

dxP
dt = v3 = k3xES = k3x

tot
E xS

KM + xS
.

Thus the 3-reaction enzymatic network has been reduced to a single reaction
channel S→ P with reaction rate

dxP
dt = −dxS

dt = v (xS) = vmaxxS
KM + xS

,

where vmax = k3x
tot
E is the initial (maximum) reaction rate.

Example 2.12 (Schlögl model) For the Schlögl reaction scheme (2.9), write
xA and xB for the constant respective concentrations of chemicals A and B,
and x(t) for the time-dependent concentration of chemical X. The reaction
rates according to the mass-action kinetics follow from (2.18) to be (listed on
the right)

A + 2X k1−−−−−→ 3X,

3X k2−−−−−→ A + 2X,

B k3−−−−−→ X,

X k4−−−−−→ B,

∣∣∣∣∣∣∣∣∣
v1 = k1xAx

2,

v2 = k2x
3,

v3 = k3xB,

v4 = k4x .

As far as X3 is concerned, the stoichiometry matrix S and the reaction rate v
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can be written as

S =
[
1 −1 1 −1

]
, v =



k1xAx
2

k2x
3

k3xB

k4x


.

The deterministic ODE turns out to be

dx
dt = Sv = k1xAx

2 − k2x
3 + k3xB − k4x . (2.26)

Example 2.13 (Stochastic focusing) The branched reaction scheme (2.10):

∅
ks−−−−−⇀↽−−−−−
kd

S, ∅
ki−−−−−−−⇀↽−−−−−−−
kaxS

I kp−−−−−→ P 1−−−−→ ∅ .

Write xS(t), xI(t), and xP(t) for the respective time-dependent molar concen-
trations of the signal S, the intermediary precursor I, and product P. The
reaction rates based on mass-action kinetics are ks for synthesis of S and kdxS
for its degradation, ki for synthesis of I and kaxSxI for its degradation, kpxI
for the I → P conversion and −xP the product degradation. Ordering the
species as {S, I, P}, the stoichiometry matrix S and the reaction rate v take
the forms

S =


1 −1 0 0 0 0

0 0 1 −1 −1 0

0 0 0 0 1 −1

 , v =



ks

kdxS

ki

kaxSxI

kpxI

−xP



.

The deterministic system of ODEs for the system can now be read from the
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vector Sv:
dxS
dt = ks − kdxS,

dxI
dt = ki − (kp + kaxS)xI,

dxP
dt = kpxI − xP .


(2.27)

Example 2.14 (Hyperbolic control) If the pool of I-molecules is insignificant,
the two reactions involving their loss are fast enough, and XS does not change
significantly during the life span of an individual I-molecule, then we can
assume the steady state of ending up in P or A to be reached immediately.
The steady-state abundance of I-molecules, obtained by setting to zero the
right side of the second equation in (2.27), is xss

I = ki/(kp+kaXS). That leads
to the following simplification of (2.27):

dxS
dt = ks − kdxS,

dxP
dt = kpki

kp + kaxS
− xP,

 (2.28)

and a corresponding reduction of the branched reaction scheme (2.10):

∅
ks−−−−−⇀↽−−−−−
kd

S, ∅
ki/(1+xS/K)−−−−−−−−−−−⇀↽−−−−−−−−−−−

1
P, (2.29)

where K = kp/ka is the inhibition constant. The denominator 1 + xS/K in the
expression for the new effective rate coefficient suggests the name “hyperbolic
control” for the product molecule by the signal molecule.

Example 2.15 (Gene regulation) For the gene regulation scheme (2.11):

G km−−−−−→ G + M (transcription),

M kp−−−−−→ M + P (translation),

G + P
kb−−−−−⇀↽−−−−−
ku

GP (binding/unbinding),

M k−m−−→ ∅, P
k−p−−→ ∅ (degradation),

write xM(t), xG(t), and xP(t) for the respective time-dependent molar con-
centrations of mRNA M, the unbound gene G, and protein P. The total gene
concentration xtot

G is assumed to be constant, so that the bound (repressed)
protein concentration is simply xtot

G − xG. The reaction rates based on mass-
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action kinetics are kmxG for transcription, kpxM for translation, kbxGxP
for the gene–protein binding, ku (xtot

G − xG) for the gene–protein unbinding,
k−mxM for mRNA degradation, and k−p xP for protein degradation. Ordering
the species as {M, G, P}, the stoichiometry matrix S and the reaction rate v
take the forms

S =


1 0 0 0 −1 0

0 0 −1 1 0 0

0 1 −1 1 0 −1

 , v =



kmxG

kpxM

kbxGxP

ku (xtot
G − xG)

k−mxM

k−p xP



.

The deterministic system of ODEs for the system can now be constructed
from the vector Sv:

dxM
dt = kmxG − k−mxM,

dxG
dt = ku

(
xtot

G − xG
)
− kbxGxP,

dxP
dt = kpxM + ku

(
xtot

G − xG
)
−
(
kbxG + k−p

)
xP .


(2.30)

2.4 The Art of Modeling
To do mathematical modeling at the life sciences interface is to engage in an
act of discovery and conjecture. The art of modeling is not in the accuracy
of a mathematical model but in the explanation, that is, in the argument
that is developed in the process outlined in Figure 1.4. It is this argument
and its context that give the model its validity. Mathematical modeling of
cell-biological systems is an art—the art of asking suitable questions, choosing
an appropriate conceptual framework to formulate and test hypotheses, and
making appropriate assumptions and simplifications. Our goal is to improve
the understanding of living systems, and we believe that there is nothing more
practical in addressing the complexity of living systems than mathematical
modeling.

What we are seeking is an understanding of the functioning of cells, of
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their behavior and the mechanisms underlying it. When we speak of mecha-
nisms and principles as being the goal of our scientific quest, we really mean
that we are interested in the system’s organization [168]. In living systems
there are two forms of interlinked organization: The structural organization
of a cell refers to the arrangement and structural (material or biophysical)
properties of its components— organelles and macromolecules. Inseparable
from the cell’s structural organization is its functional organization, describing
the processes that determine the cell’s behavior or ‘(mal)functioning’. In-
teracting with other cells and/or its environment, the cell realizes four key
functions: growth, proliferation, apoptosis, and differentiation. The processes
that realize these functions of a cell can be further organized into three process
levels: gene regulation, signal transduction, and metabolism (Figure 1.3). The
experimental study of any one of these cell functions and any one of these
process levels is subject to high degrees of specialization. These specialized
research fields are often separated by technology, methodology, and culture.
This depth of specialization is a hurdle to a comprehensive understanding of
how cells and cell populations (mal)function.
In summary, systems theory is the study of organization, using mathematical
modeling. With respect to systems biology, the key challenges are:

• Depending on the data and question at hand, what approach to choose
and why?

• How do I decompose a complex system intro tractable subsystems?

• Given an understanding of subsystems, how can one integrate these
data and models into an understanding of the system as a whole?

Techniques for coupling/embedding models of components built on disparate
time and length scales, and often with different modeling techniques, into
larger models spanning much longer scales are in their infancy and require
further investigation. We limit ourselves in this text to a small subset of these
challenges and focus on one particular approach to studying small subsystems.

Problems
2.1. When the volume is not known or important, it is convenient to choose
a value so that each nanomolar concentration is numerically equal to the
corresponding copy number. Compute that value of the volume.

2.2. Suppose species concentration is measured in molecules per µm3 (cubic
micrometers) of volume. What can you say about the magnitude and unit of
the system size?
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2.3. Consider the irreversible bimolecular reaction

A + B k−−−−→ X + Y .

Temporal changes in species concentration for this reaction are restricted by
a conservation relation.

1. Write down the conservation relation for concentrations in terms of
initial concentrations.

2. Express the reaction rate law in terms of time-dependent concentration
of X.

3. Implement the rate law as a Matlab function handle. Assume that
k = 1 sec−1 and initial abundances are 2 M for A, 3 M for B, and 0.5 M
for X.

4. Call the function handle in an ODE solver to compute and plot the
time-course concentration of X for the first 5 seconds.

2.4. Consider the consecutive reaction

X1
k1−−−−−→ X2

k2−−−−−→ X3 .

1. Write down the differential equation for the concentration X2.

2. Assume zero initial concentrations except for the first reactant, which
is 10 M, and take 1 sec−1 for both rate constants. Run the following
script:

x0 = [10;0]; % initial concentrations
k1 = 1; k2 = k1; % rate constants
v = @(t,x) [-k1*x(1);k1*x(1)-k2*x(2)]; % rate law
[t,x] = ode45(v,[0 5],x0); % solver
plot(t,x(:,2)) % plot x2

Repeat the simulation for k2 = 0.1k1 and k2 = 10k1. Relate the relative
magnitudes of the rate constants to the relative reaction rates.

3. If one of the two reactions is much faster than the other, the overall
reaction rate is determined by the slower reaction, which is then called
the “rate-determining step.” For each value of k2, which reaction is
rate-determining?
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2.5. Recall the rate law
v(x) = k

s∏
i=1

xgi

i

with definitive orders for a chemical reaction. It can be implemented as a
function handle:

k = 2; % rate constant
g = [0 1 1 0 0 1]’; % reaction stoichiometry
v = @(x) k*prod(x.^g); % rate law

for the specified values of k and g.

1. Evaluate the rate expression for

x =
[

2 0.5 0 1.5 0 3
]T

.

What problem did you encounter? Can you figure out why?

2. Reimplement the rate law as a function that accounts for the pitfall you
encountered.

2.6. Consider a simple network

2X1
k1−−−−−→ X2, X2 + X3

k2−−−−−→ X4,

of metabolites. The metabolite concentrations are measured in molecules per
µm3 (cubic micrometers).

1. Set up the stoichiometry matrix S.

2. Write down the expression, based on mass-action kinetics, for the two
reaction rates v1 and v2 in terms of species concentrations.

3. How would you combine the two results to construct the ODEs that
describe how species concentrations change with time.

4. Complete the following script based on the quantities in the above steps
in order to compute and plot the species concentrations against time
over 500 seconds:

% initial abundance (molecules per cubic micrometer)
x0 = [10;0;5;0];
% rate constants (per cubic micrometer per second)
k = [1e-3;3e-3];
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% S = ?; % stoichiometry matrix
% v = @(x) ?; % rate law
% dxdt = ?; % ODEs
[t,x] = ode15s(v,[0 500],x0); % solver
plot(t,x) % plot x

5. Discover the conservation relations in the reaction scheme and utilize
them to rewrite the rate equations so that they involve concentrations
of X2 and X3 only.

6. Modify the code accordingly and check the result by plotting and
comparing with the previous implementation.

2.7. The repressilator consists of three genes connected in a feedback loop such
that each gene product represses the next gene in the loop and is repressed
by the previous gene [40]. If we use subscripts i = 1, 2, 3 to denote the three
genes; Mi represents mRNAs, and Pi the proteins. The gene network can be
represented by the reaction scheme

Mi
1−−−−−−−−−⇀↽−−−−−−−−−

α(Mi−1)
∅, Pi

b−−−−→ ∅, Mi
b−−−−→ Mi + Pi

where i runs through 1, 2, 3 and P0 = P3. For simplicity, assume relative
(nondimensional) concentrations. The mRNA transcription rate is

α(x) = a0 + a1
(1 + x)h ,

where a0 is the transcription rate in the presence of saturating repressor
and a0 + a1 represents the maximal transcription rate in the absence of the
repressor. The exponent h in the denominator is the Hill coefficient. The
parameter b appears as the protein degradation rate constant and translation
rate constant.

1. Set up the stoichiometry matrix S by adopting the ordering M1, M2, M3,
P1, P2, P3 for species and the ordering M1 → ∅, M2 → ∅, M3 → ∅,
P1 → ∅, P2 → ∅, P3 → ∅, ∅→ M1, ∅→ M2, ∅→ M3, M1 → M1+P1,
M2 → M2 + P2, M3 → M3 + P3 for reactions.

2. Write down the expressions for channelwise reaction rates vj in terms
of species concentrations.

3. Combine the two results to construct the ODEs that describe how
species concentrations change with time.
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4. Complete the following script based on the quantities in the above steps
in order to compute and plot the protein levels for 50 time units:

% parameters
a0 = 0.25; a1 = 250; b = 5; h = 2.1;
% S = ?; % stoichiometry matrix
% v = @(x) ?; % rate law
dxdt = @(t,x) S*v(x); % ODEs
tmax = 50; % time
x0 = [0 0 0 4 0 15]’; % initial concentration
[t,x] = ode45(dxdt,[0 tmax],x0); % solution
plot(t,x(:,4:6)) % plot protein levels

5. Do you see oscillations in the protein levels? Play with the parameter
values and initial conditions to see whether you always get oscillations.

6. Looking at time plots for checking oscillations is one way to solve part
5 above. An alternative is to look at the phase plot. Extend the code
to plot the phase plots for each mRNA–protein pair. What do these
phase plots reflect?

2.8. The repressilator model in the last exercise is a nondimensional version of
the original model available on the biomodel database http://biomodels.
caltech.edu/BIOMD0000000012. Run the online simulation provided.
Do you see oscillations in the protein levels? Play with the parameter values
and initial conditions to see whether you always get oscillations.

http://biomodels.caltech.edu/BIOMD0000000012
http://biomodels.caltech.edu/BIOMD0000000012


Chapter 3

Randomness

This chapter is intended to provide an informal introduction to concepts
that are necessary for stochastic modeling. The goal is to prepare readers
unfamiliar with probability theory for the next chapter, which will be a more
formal discourse. It is recommended to read this chapter before reading the
next one.

3.1 Terminology
The terms “noise,” “fluctuations,” and “randomness” can be confusing because
they are not clearly defined for all systems. Loosely speaking, fluctuations or
noise refers to the irregular aspects of observations made of a phenomenon
representing various disturbances over which there is no clear control. It also
refers to the factors (sources) responsible for the fluctuations. It has often
negative associations as something undesirable, something that should be
removed or avoided. In biology, however, noise can also contain information
about details in a system under study and thus plays an important role. In
this text the term (noise) is used with the understanding that it may well
be something desirable. The term “randomness” refers to the fact that we
have no knowledge about, or have no control over, the factors responsible
for the irregularities and lack of pattern in the observations. The term has
been explained beautifully in [29] which we will adopt. What does it mean
to say that the time of occurrence of an event, or between two events, is
random? Examples are the time of a specific gene mutation or between
completion of transcription and initiation of translation. The first thing to
know is that randomness is related not to the phenomena but rather in how we
treat phenomena in our investigation. Every scientific investigation looks for
relations between objects referred to as measurements. A single measurement
takes the form of a real (or a logical) number. However, we are interested in
measurements of recurring phenomena, and the objects to be related take the
form of abstract symbols, called “variables.” These represent measurements,
such as time and protein abundance. Let us fix these ideas with the help
of our first example, the standard modification, introduced in the previous
chapter.

Stochastic Approaches for Systems Biology,
DOI 10.1007/978-1-4614-0478-1_3, © Springer Science+Business Media, LLC 2011
M. Ullah and O. Wolkenhauer, 53
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3.1.1 Representations of Measurements
Recall the reversible transformations in the reaction scheme (2.5) of a protein
between two forms. Consider the time τ between successive modifications (i.e.,
reaction events). For a specific instance, τ represents a single measurement
and takes the form of a real number. However, our interest is not with a single
observation of time but rather with the class of measurements. Thus, the
time between successive modifications varies depending on many conditions
within the cell, and the time is represented as a random variable, which we
will denote by T . Here, the single (unique) value τ has been replaced by a
range of values, and the adjective “random” renders to the term “variable” a
new mathematical meaning, which can be thought of as a rule (or mapping)
that assigns a unique real number to each measurement of the quantity
of interest, in this case time between two transformations. This (rule of)
assignment cannot be arbitrary but must satisfy some requirement in an
axiomatic framework. In that yet to be introduced framework, it is said that
T is a “measurable function” from a “probability space” into the space of real
numbers. Our purpose in this chapter will be to establish and clarify these
spaces. Since real numbers are assigned to measurements by the random
variable T , it is said to be a continuous random variable, in contrast to a
discrete random variable, which assigns values from a finite, or countably
infinite, collection. For instance, the copy number n(t) of unmodified protein
molecules, at time t, is an integer in a specific measurement. If we track this
abundance for a single cell, we get a time function that is deterministic, the
latter meaning, by definition, that there is a certain value at each time point.
However, we are typically interested in the behavior of the proteins for an
arbitrary cell, and then, the measurement is not deterministic but varies from
cell to cell. In this case, the measurement is represented as a time-dependent
random variable, denoted by N(t), again the word “random” appearing as
part of the mathematical term “random variable.” The deterministic variable
n(t) takes integer values. The random variable N(t) is a function (or a rule)
that assigns a unique integer, from 1 to ntot, to each measurement of the
abundance. In the axiomatic terminology to be introduced latter, N(t) is
a measurable function from a probability space to the numerical space of
integers 1 to ntot. Whereas n(t) is referred to as a “time function,” N(t)
is referred to as a “random time function,” a “random time process,” or a
“stochastic process”. In every instance in which the word “random” is used, it
requires a definition in terms of the underlying mathematical spaces. None of
this makes any suppositions concerning things-in-themselves. In the context
of science, “random” is simply a word adopted by mathematics and defined
therein within the framework of axiomatic probability theory.
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3.1.2 Sources of Noise
The classification of noise (e.g., internal/external) can have different meanings
for different systems. However, the various kinds of noise in gene expression
have been clearly defined in [13, 30, 74, 117, 128]. Intrinsic noise has origins
within the boundaries of the system under consideration and arises from the
very discrete nature of the chemical events of gene expression. Extrinsic noise
arises from interactions of the (sub)system with other (sub)systems or the
outside environment. Following [128], noise in gene expression refers to the
stochastic variation of an (expressed) protein concentration within isogenic
cells having the same history and conditions (environment). Placing two
gene reporters in the same cell and quantifying their gene expression (by
the abundance of their target proteins) allows the following categorization of
noise (see Figure 2 in [128]). Intrinsic noise arises from sources that create
differences (in the gene expression) between the two reporters in the same
cell, and extrinsic noise arises from sources that have equal effects on the two
reporters in the same cell but create differences between two cells. Stochastic
events during gene expression will then emerge as intrinsic noise, whereas
differences between cells will appear as extrinsic noise. Extrinsic noise can be
global when fluctuations in basic reaction rates affect expressions of all genes,
or it can be pathway-specific. It is important to realize that extrinsic noise
can be theoretically isolated from the system, but intrinsic noise is the very
essence (discrete nature) of the underlying molecular events and cannot be
separated (even hypothetically) from the system.

3.2 Probability
Again, we use the reversible transformations of a protein between two forms in
the reaction scheme (2.5). Imagine that every protein molecule, irrespective
of its form, has been tagged with a unique label. Representing the labels by
integers 1 to ntot, we can represent the whole collection of molecules with the
set

Ω =
{

1, 2, . . . , ntot} .
Your first distribution: Now imagine a thought experiment of picking at
random (i.e., without considering its form or spatial location) one protein
molecule from the lot. We can think of it as a random experiment because we
cannot uniquely determine the outcome. The outcome of this experiment will
be an element i of the above set Ω. We can think of each element i as a sample
point in a sample space Ω in the same sense that a number is considered to be
a point in some numerical space (e.g., real line, complex plane, vector space).
Logically, every molecule is as likely to be picked as any other molecule. So
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if we assign a number 0 ≤ pi ≤ 1 to quantify the chance or likelihood of the
molecule labeled i being picked, then pi = 1/ntot for all ω. If you have ever
heard the term “probability” before, it is natural for you to anticipate that
the number pi should be a probability. Well, you have to wait a bit.

3.2.1 Probability of What?
When one first encounters probabilities, it is tempting to think that a proba-
bility is assigned, like the number pi, to the sample points i. This may seem
logical at first, but it suffers from a caveat. Since probability is meant to be a
measure of chance, we should be able to assign probabilities, in a consistent
manner, to a variety of questions (of interest) about the outcome. We cannot
limit such questions to the sample points (individual elements) only. For
instance, we could be interested in the probability of picking a molecule with
a label i < ntot

/2 that corresponds to a subset of the sample space Ω. It turns
out that any question we could ask about the outcome can be translated to
whether the outcome is an element of some subset A of the sample space Ω.
Such a subset can be thought of as an event. This perfectly matches the use
of the term “events” in everyday life. We call something an event only if it is
interesting to us. Therefore, it is more logical to assign probabilities to an
event, which is a subset A of the sample space. The probability that has been
assigned to an event A is usually written as Pr [A]. The sample points, the
individual elements i, can also be represented as single-element events of the
form {i}, which can be thought of as elementary events. Now we can say that
the equal numbers pi = 1/ntot are assigned to the elementary events {i}, and
not to the elements i of the sample space. In other words, Pr [{i}] = 1/ntot

with a caution that Pr [i] has no meaning.

3.2.2 Event Space
A common misunderstanding about events needs to be removed at this point.
We saw that every event can be cast as a subset of the sample space. Does
that mean that every subset of the sample space is an event? The answer is,
in general, no. Remember that we want to assign probabilities in a consistent
framework and would like to guarantee that the desired properties such as
the additive rule, and others not discussed so far, always hold. This limits the
choice of subsets, because it may not always be possible to assign probabilities
with all the desired properties. One obvious example arises when the sample
space is infinite: you can’t assign a nonzero probability to each elementary
outcome, because the sum of all has to be unity. Furthermore, we may not
be interested in every subset of Ω, nor do we have to. All this means that,
similar to a sample space, we need an event space A that contains all our
events of interest. So, while an outcome is an element ω of the sample space
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Ω, an event A is an element of an event space A. You can think of an event
space as a reduced collection that is short-listed from all possible subsets of
the sample space. This also brings another issue to the forefront. The rule
of assigning probabilities (real numbers from 0 to 1) to events from an event
space A can be interpreted as a set function Pr : A → [0, 1] that maps the
event space to the unit interval on the real line.

3.2.3 This OR That
Many questions asked together can be cast as a new complex question and
vice versa. Therefore, events can be combined logically to form new events.
For instance, the event A = {1, 2} can be written as a set union: {1} ∪ {2}.
Common sense will guide you that the probabilities should add:

Pr [A] = p1 + p2 = 2/ntot,

because of greater number of possibilities (sample points). Another example
is the outcome B = {2, 3} with probability

Pr [B] = p2 + p3 = 2/ntot .

This additive rule of probabilities cannot always be used. Now consider the
outcome A ∪B = {1, 2, 3}. We cannot simply add the probabilities as before,
since A and B have the sample point 2 in common, and hence p2 will be
added twice. Whenever the set intersection A ∩ B is nonempty, there will
be such common elements, and the additive rule of probabilities will not
hold. Therefore, probabilities can be added only if the individual events
have nothing in common. Formally speaking, they are mutually exclusive
or disjoint: A ∩ B = ∅. When that is not the case, a little thought about
the matter could convince you that the probability Pr [A ∩B] should be
subtracted from the sum of probabilities to give the correct probability.

3.3 Random Variables
So far, in this standard-modification example, our discussion about protein
molecules disregarded the form. Now imagine that in addition to the previous
labeling, groups of molecules in the two forms are tagged with two different
labels, which we represent here by 1 for unmodified and 0 for modified. This
new labeling will not change anything regarding the assignment of probabilities
to the outcomes of our previous experiment as long as we do not ask a question
that relates to the type or form of the molecule. If we do ask about which
group a molecule belongs to, the answer can be found only after selecting the
molecule and observing whether it has been labeled 1 or 0. In other words,
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we need to represent the form (or state) of a molecule by a random variable
Y that assigns the value (1)0 to the observation if the protein molecule is
(un)modified. It is important to realize that Y assigns a value to a whole
group of molecules. Thus Y maps all the labels from the previous tagging,
which have been newly labeled (1)0, to a single point (1)0 on the real line.
Now you can guess why the random variable is considered a function that
maps the sample space to points on the real line.

Suppose we know, before picking a protein molecule, that n molecules
of the lot are unmodified. This means that ntot − n molecules are modified.
This knowledge will change the probability of any event (question) that is
asked about the type of molecules. Let us consider the event A that a selected
molecule is labeled 1. The event A can also be written, in a more intuitive
notation, as Y = 1, with the understanding that it does not represent the
value 1 of Y , but a subset A in the event space. Since n molecules, and hence
labels, from the previous tagging constitute the event Y = 1, its probability
is, following the additive rule, the sum of n probabilities, all equal to 1/ntot,
that is,

Pr [Y = 1]n = n

ntot , (3.1)

the fraction of molecules that are unmodified. The subscript n here reflects
the condition that n molecules of the lot are unmodified. It is not the same
as the probability Pr [Y = 1], which is unconditional. At this point we do not
know the expression for the latter. We will refer to the yet to be determined
expressions for Pr [Y = y] as pu in the discussion to follow. In other words, pu
is the probability for a molecule to be an unmodified protein and pw = 1− pu
is the complementary probability of being a modified protein.

Relative size: The probability (3.1) is a ratio of numbers #A = n and
#Ω = ntot of elements in the event space and the sample space. Thus, the
probability of an event A can be regarded as a measure of the size of A relative
to Ω.

Your first distribution: The description of the random variable Y is com-
plete, because we know all the possible values, 0 and 1, and the probabilities
that those values will be assigned in a measurement (the selection of a molecule
here). Such a description is referred to as a probability distribution, a col-
lection of all possible values, assigned by the random variable to individual
measurements, together with the associated probabilities. The particular
probability distribution of Y here can be expressed as

Pr [Y = 1] = pu, Pr [Y = 0] = 1− pu
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where y is a possible value of the measurement. This is so-called Bernoulli
distribution, and Y is said to be a Bernoulli variable, with success probability
pu. In this terminology, Y = 1 is a success and Y = 0 a failure. The detailed
description of a distribution is either not always possible to know, or may be
difficult to interpret due to overwhelming complexity. Therefore, summarizing
features including the average (or mean) and variance are used to characterize
the distribution.

3.3.1 Average
The average is a measure of the expected value of a distribution. In everyday
life, the average is usually associated with a list of values of some quantity
and is computed as the sum of all values in the list divided by the number
of values. The sum in this computation is usually a weighted sum because
some values may be repeated. For our current example, the random variable
Y assigns the value y = 1 to all unmodified molecules. Thus, if n molecules
of the lot are known to be unmodified, the weighted sum has the value y = 1
added n times and the value y = 0 added ntot − n times. The conditional
average value of Y then has the expression

〈Y 〉n = (1)n+ (0) (ntot − n)
ntot = n

ntot ,

which, from (3.1), is equal to the conditional probability of success. It
follows that the unconditional average is equal to the (unconditional) success
probability pu. An interesting pattern appears if we write the unconditional
version of the above equation:

〈Y 〉 = (1)pu + (0)pw = pu,

which is a weighted sum in which each value y is weighted by the probability
Pr [Y = y]. This procedure can be extended to find an expression for the
average value of any discrete random variable Y . The resulting expression for
the average is

〈Y 〉 =
∑
y

yPr [Y = y] . (3.2)

The averaging operation expressed here is mathematically known as the
expectation.

3.3.2 Variance
The variance is a measure of the spread of the distribution around the average.
The variance is the average of (Y −〈Y 〉)2, the random variable representing the
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squared deviation from the average value. Replacing, in the above expression
for the average, Y by (Y − 〈Y 〉)2 followed by the associated replacement for
the sample values y, we get the expression for the variance〈

δY 2〉 =
〈

(Y − 〈Y 〉)2
〉

=
∑
y

(y − 〈Y 〉)2 Pr [Y = y] . (3.3)

The squared deviation is used because the simple deviation Y − 〈Y 〉 has a
zero average, and the use of absolute deviation is mathematically unpleasant.
For this example, Y has variance〈

δY 2〉 = (1− pu)2
pu + (0− pu)2 (1− pu) = (1− pu) pu .

Let us highlight these two important results in words:

A Bernoulli random variable with success probability pu has aver-
age value pu and variance (1− pu) pu.

3.3.3 Continuous Random Variable
The relative size interpretation of probability is very useful in cases in which
probabilities cannot be assigned to elementary events. For instance, consider
a protein that can change its length l between two fixed real numbers a and b.
Imagine an experiment in which we measure the protein length L formulated
as a random variable that attains (real) values between a and b. The sample
space Ω for this experiment is the segment between a and b of the real line.
Since the number of sample points, possible length values, is infinite, we
cannot assign nonzero probabilities to events of the form L = l because of
the requirements of the additive rule. However, we can employ the relative
size interpretation of probability. Using the length b − a of the interval as
a measure of size of the sample space, a probability can be assigned to any
event that takes the form of a subinterval l ≤ L ≤ l + ∆l. If all subintervals
of equal length are equiprobable, then the probability of such a subinterval is
its size relative to b− a, that is,

Pr [l ≤ L ≤ l + ∆l] = ∆l
b− a .

If we shrink the interval length ∆l to zero, we can think of 1/(b−a) as a
probability density. In this particular case, the density is constant, and such a
distribution is said to be uniform. In general, the probability density function
p(x) of a continuous random variable X is defined in such a way that the



3.3 Random Variables 61

probability that X would fall in an interval [a, b] is the integral

Pr [a < X < b] =
bˆ

a

p(x)dx .

Since a summation in the discrete setting becomes an integral in the continuous
setting, the average value of X can be written, in analogy to (3.2),

〈X〉 =
ˆ

x

xp(x)dx,

where the integration is done over all sample values x. Similarly, the variance
is a continuous analogue of (3.3):

〈
δX2〉 =

ˆ

x

(x− 〈X〉)2
p(x)dx .

3.3.4 This AND That
Another possible confusion arises in dealing with joint events, which are
intersections of the form A ∩B. If the two events A and B have nothing in
common, they are disjoint, A ∩B = ∅, that is, an outcome of the experiment
cannot be an element of both. In other words, the occurrence of one of the
two events rules out the possibility of the other. For instance, in the standard
modification example, the two events Y = 1 and Y = 0 are disjoint because
only one of the two can occur in a single selection. However, extending the
experiment to selecting two molecules changes the situation. Represent the
form of the first selected molecule by Y1 and that of the second by Y2. Since
we are now dealing with pairs of molecules, the new sample space is the set
Ω2 = Ω× Ω with all possible pairs of labels. While the events for the same
pick are disjoint, Yi = 0 ∩ Yi = 1 = ∅, those for alternative picks are not. The
joint event Y1 = y1 ∩ Y2 = y2 for the alternative picks has size

#Y1 = y1 ∩ Y2 = y2 = # (Y1 = y1) # (Y2 = y2)

if the first selected molecule is placed back in the lot before the second selection.
This assumption, which makes sense because you would not throw a molecule
out after observing its form, makes sure that the sizes of the events and the
sample space do not change from the first selection to the second. Following
the relative size interpretation of probability, we divide the above sizes by the
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size #Ω2 = (#Ω)2 of the joint sample space, and get

Pr [Y1 = y1 ∩ Y2 = y2] = # (Y1 = y1) # (Y2 = y2)
#Ω#Ω

= Pr [Y1 = y1] Pr [Y2 = y2] .

Based on this expression, the selection sequences 11, 00, 10, and 01 have
respective probabilities p2

u, (1− pu)2, pu (1− pu), and (1− pu) pu; where pu
is the success probability (fraction of molecules that are unmodified). That
the probability of a joint event can be written as the product of probabilities
of the joined events is exactly what is meant by independence of events. Two
events A and B are independent if the probability of their joint occurrence is
the product of their individual probabilities. Note that in this example this
independence is a consequence of our assumption that the first molecule, after
being selected, is placed back in the lot before the second selection. When
this is not true, for example if the two molecules are selected together, the
sample size is reduced for the second selection and the joint sample space
has the reduced size ntot (ntot − 1). Moreover, the sizes of the joint events
depend on the outcome of the first selection. Without getting into details of
how the probabilities should be assigned in this case, we can conclude that in
general, the probability of the joint occurrence of events A and B is

Pr [A ∩B] = Pr [B] Pr [A |B] ,

where the new notation Pr [A |B] denotes the probability of the event A after
it is known that the event B has occurred. It is a conditional probability in
which the occurrence of A is conditioned on B. When the two events are
independent, knowledge about the occurrence of B has nothing to do with
the occurrence of the event A. In that case, Pr [A |B] = Pr [A], and the joint
probability can be factored: Pr [A ∩B] = Pr [A] Pr [B].

3.3.5 Total Law of Probability
The factorization of the joint probability Pr [A ∩B] has useful consequences.
If the sample space Ω can be partitioned into a disjoint collection B1, B2,
. . ., then A ∩ Bi represents the joint occurrence of A and Bi. Summing up
probabilities of these joint occurrences naturally gives the probability of A.
Mathematically, this assumes the form

Pr [A] =
∑
i

Pr [A ∩Bi] =
∑
i

Pr [Bi] Pr [A |Bi] ,
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known as the “total law of probability.” It essentially says that the probability
of an event can be represented as a sum of probabilities of its joint occurrences
with a collection of disjoint events that span the whole sample space.

Success probability: The total law of probability allows us to find the
expression for the success probability pu. Recall that the success probability
(3.1) is conditional on the knowledge that n molecules of the lot are unmodified.
If we represent the copy number of unmodified proteins by the random variable
N , then the aforementioned condition can be represented by the event N = n.
The event Y = 1 can be thought of as a union of joint events Y = 1 ∩N = n
for all values n. The law of total probability for this case is

Pr [Y = 1] =
∑
n

Pr [Y = 1 ∩N = n] =
∑
n

Pr [N = n] Pr [Y = 1]n .

Using the expression (3.1) for the conditional success probability in the above
will turn it into

pu = Pr [Y = 1] = 〈N〉
ntot , (3.4)

where the average copy number 〈N〉 is recognized following (3.2). Thus the
success probability is the average fraction of molecules in the unmodified form.
In other words, the fraction n(t)/ntot has been replaced by the average fraction
when the condition N = n is removed from the success probability (3.1).

3.3.6 Sum of Random Variables
The sum of two (or more) random variables is also a random variable. In
relation to the above discussion, the sum Y = Y1+Y2 is a random variable that
represents the number of successes. Thus Y = 0 occurs with the (selection)
sequence 00, Y = 1 occurs with the sequences 10 and 01, and Y = 2 occurs
with the sequence 11. Since we know the probabilities of those sequences, the
probability distribution of the random sum Y can be expressed as

Pr [Y = y] =


(1− pu)2 if y = 0,
2pu (1− pu) if y = 1,
p2
u if y = 2,

where the second case y = 2 requires the summation of probabilities of the
corresponding sequences 10 and 01. The random sum has average value

〈Y 〉 = (0) (1− pu)2 + (1)2pu (1− pu) + 2p2
u = 2pu,
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and variance〈
δY 2〉 = (0− 2pu)2 (1− pu)2 + (1− 2pu)2 2pu (1− pu) + (2− 2pu)2

p2
u

= 2pu (1− pu) .

The point to note here is that the average of the random sum is the sum of
averages of the summands. The same is true for the variance of random sum.
These relationship hold for more than two independent random variables.
Let us write these relationships mathematically: the random sum

∑
i Yi of

independent random variables has the average value〈∑
i

Yi

〉
=
∑
i

〈Yi〉 ,

and variance 〈
δ

(∑
i

Yi

)2〉
=
∑
i

〈
δY 2

i

〉
.

3.3.7 Random Process
It is very important to remember that our earlier probability assignment in
(3.1) was based on the knowledge about the lot: we assume that n of the total
are in that form, and that n is a fixed known number. This should not be
confused with the fraction x(t) = n(t)/ntot of molecules that are unmodified,
defined in the last chapter in a deterministic setting. Therein, n(t) represented
a deterministic time-dependent protein abundance, which, in the stochastic
setting, has been replaced by the random process N(t). The deterministic
time-dependent fraction x(t) satisfies the differential equation (2.21):

ẋ(t) = ku − (kw + ku)x(t) .

How can we relate the deterministic quantities n(t) and x(t) to the random
process N(t)? Before we proceed with that, recall that, unlike a unique time
function n(t), the random process N(t), as a rule, will assign a different time
function to each time-course measurement made for the abundance. The
average features of the process will appear in all the time functions, but in
addition, each time function will have features specific to that measurement
and representing all the factors that were, willingly or unwillingly, excluded
from the model. In light of this, the only sensible way in which we can relate
the deterministic time function to the random process is to suggest (or hope)
that the former n(t) is the average feature of the latter and hence should be
reflected in all the time functions assigned to the time-course measurements
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by the process N(t). Denoting the average time-dependent protein abundance
by 〈N(t)〉, we suggest that the following relation holds:

〈N(t)〉 = n(t) = ntotx(t) .

Combining this with (3.4) gives

pu(t) = 〈N(t)〉
ntot = x(t) .

Thus, we can replace x(t) in (2.21) with pu(t) to get the kinetic law for the
success probability,

ṗu = ku − (kw + ku) pu .

The steady-state solution, obtained by equating the derivative to zero, is

pss
u = 〈N

ss〉
ntot = ku

kw + ku
. (3.5)

If the protein molecule is initially modified, that is, pu(0) = 0, the time-
dependent solution is

pu(t) = ku
kw + ku

[
1− e−(kw+ku)t

]
. (3.6)

The steady-state solution (3.5) can be interpreted as the fraction of time
spent by the protein in the unmodified form, which makes intuitive sense in a
chemical equilibrium.

3.3.8 Probability Distribution
Let us look at the experiment of selecting molecules from another angle.
Although we do not know the proportions of molecules in the two forms, we
know the probability pu(t) that an individual protein molecule is unmodified.
How can we use this information to say something about the abundance of
unmodified proteins? Extend the experiment of selecting two molecules to
selecting all the ntot molecules in a sequence with replacement (each molecule
is placed back after having been selected). The form of the protein molecule
in the ith selection, in a sequence, is represented by a random variable Yi
that assigns to the selection a value (1)0 for the (un)modified form. Then
the random variable N(t) =

∑ntot

i=1 Yi represents the number of molecules that
are unmodified. The probability of each selection to be in one of the two
forms is the same because of independence of events. Consider the specific
sequence that has Yi = 1 for the first n selections and Yi = 0 for the rest of
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Figure 3.1 Steady-state probability distribution of protein abundance for the
standard modification. The distribution is binomial with parameters ntot and pu

with the average located at ntotpu = 10. Left: ntot = 20, pu = 0.5, symmetric
distribution around the average. Right: ntot = 40, pu = 0.25, distribution is skewed
toward smaller values.

the sequence. The associated per-selection probabilities are

Pr [Yi = y] =
{
pu if y = 1, 1 ≤ i ≤ n,
1− pu if y = 0, n < i ≤ ntot .

Now the probability of this specific sequence is, following the multiplication
rule for independent events,

Pr

 n⋂
i=1

Yi = 1
ntot⋂

k=n+1
Yk = 0

 =
n∏
i=1

Pr [Yi = 1]
ntot∏

k=n+1
Pr [Yk = 0]

= pnu (1− pu)n
tot−n

.

The specific sequence is one of(
ntot

n

)
= ntot!
n! (ntot − n)!



3.3 Random Variables 67

distinct sequences that have n unmodified protein molecules, and with the
same probability. Since all the sequences are disjoint, their sum

Pr [N(t) = n] =
(
ntot

n

)(
pu(t)

)n(
1− pu(t)

)ntot−n
(3.7)

gives the probability that n molecules in the lot, not just in one specific
sequence, are unmodified proteins. The above equation expresses a binomial
distribution with parameters ntot and pu. The distribution has average value
〈N(t)〉 = ntotpu(t) and variance

〈
δN2〉 = ntotpu (1− pu), where the latter

follows from the fact that the sum of independent random variables has a
variance that is the sum of their individual variances. The distribution is
plotted in Figure 3.1 for selected values of parameters ntot and pu. When
viewed in steady state, this also highlights another important difference be-
tween the two frameworks. In the deterministic framework, we say that the
protein abundances in the two forms have reached constant values nss = ntotp
and ntot − nss. In the stochastic framework, we say that the probability
distribution has reached a constant distribution with the average abundances
〈N ss〉 = ntotpss

u of unmodified protein molecules. In other words, the determin-
istic steady state appears as the average value of the stochastic steady-state
distribution.

Initial conditions: The probability distribution described by (3.7) implicitly
assumes some fixed initial condition N(0). If all the molecules are initially
in the modified form, that is, N(0) = 0, then pu(0) = 0, in which case, the
time-dependent success probability pu(t) is given by (3.6).

3.3.9 Measures of Fluctuation
For a random process N(t), the average time function 〈N(t)〉 is a measure of
the expected time course of a (time-dependent) distribution, and the variance〈
δN2〉 is a measure of the spread of the distribution around the average. This
should give the impression that the variance can be used as a measure of
fluctuations. That is not an appropriate choice because of different units
(due to the squaring involved in the variance). The fluctuation around the
average can then be measured by the square root

√
〈δN2〉 of the variance.

Fluctuation so defined is also known as standard deviation (SD). Even this
may be inappropriate when two fluctuations around averages at different scales
need to be compared, because the scale of each fluctuation would inherit the
scale of the corresponding average. Therefore, a more appropriate measure
of noise is the relative fluctuation around the average, measured as the SD
divided by the average, also known as the coefficient of variation (CV). The
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relative fluctuation for the protein abundance process N(t) above is√
〈δN2〉
〈N〉 =

√
ntotpu (1− pu)

ntotpu
∝ 1√

ntot
,

and thus inversely proportional to the square root of the system size, which
is a general rule of thumb. The implication here is that stochasticity due to
discreteness is not significant for large abundances but has to be taken into
account for small abundances. More will be said on measures of fluctuation in
the coming chapters. To get a glimpse of how different choices of the measure
lead to different consequences, have a look at Figures 5.13 and 6.1.

3.3.10 Rare Events
The binomial distribution is skewed toward the smaller protein abundances
when ntot is doubled and pu halved so that the average stays the same. If we
keep increasing ntot with a proportional decrease in pu so that the average
ntotpu does not change, the distribution will be skewed more and more toward
the left. To interpret this physically, it follows from (3.6) that smaller values
of pu can be achieved by setting ku smaller compared to kw. That in turn, for
a single molecule, is equivalent to fast modification and slower demodification.
A proportional increase in ntot will make up for the slower demodifications to
keep the average ntotpu the same. Let us investigate the limiting behavior of
the above (binomial) distribution for infinitely large ntot and infinitely small
pu such that their product is a finite positive number, ntotpu = µ. We start
by noting that(

ntot

n

)
pnu = pnu

ntot (ntot − 1) · · · (ntot − n+ 1)
n!

= (ntotpu)
n!

(
1− 1

ntot

)
· · ·
(

1− n− 1
ntot

)
→ µn

n! as ntot →∞ .

Similarly,

(1− p)ntot
=
(

1− µ

ntot

)ntot

→ e−µ as ntot →∞,

and (1− p)−n → 1 as p→ 0. Thus the binomial distribution (3.1) approaches
a distribution with one parameter λ, namely

Pr [N(t) = n] = e−µ(t) (µ(t))n

n! . (3.8)
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This is called the Poisson distribution with average value µ(t). An infinitely
small pu also means that the variance is the same as the average value µ. This
is a very important and useful observation: when you access to the average
value and variance of an otherwise unknown distribution, you look at the
value of the variance relative to the average, and the ratio will tell you how
close/faraway the distribution is to/from the Poisson distribution. Since a
small pu means a rare event, this last result is known as the law of rare events.
What is essentially meant here is that when an extremely large number of
extremely rare events are possible during some time interval, the number of
events occurring during the interval is a Poisson distributed random variable
with a finite average value. The situation is easily understood in terms of calls
received by a telephone exchange operator. Although calls from individual
callers are rare in a large population, the number of calls received by the
operator during a time interval is not necessarily small.

3.4 The Poisson Process
Let us dig further into the dynamics (temporal aspects) of rare events. In
the limiting procedure leading to the Poisson distribution above, the two
parameters ntot and pu(t) disappeared and a new parameter µ(t) = ntotpu(t)
emerged to replace them. Therefore, for pedagogical reasons, we shall not use
the standard (de)modification for investigating the dynamics of rare events.
Instead, we select a zero-order reaction

∅ λ−−−−→ X

in which molecules of some protein (the only species) X are produced at a
constant rate from some reactant that stays constant during the time scale
of interest (because of infinite abundance or constant replenishment). Note
that λ = k̂ is the conversion rate constant. In a deterministic setting, the
time-dependent protein abundance n(t) has kinetics ṅ(t) = λ, which has
a solution n(t) = λt that increases linearly with time from the supposed
zero initial abundance. In a stochastic setting, this time function can be
interpreted as the average trajectory 〈N(t)〉 = λt of the random process
N(t) that represents the time-dependent abundance. We are interested in
the random process N(w + t)−N(w) representing the abundance increment
during a time interval [w,w + t] with known N(w). The average increment
during the interval is

〈N(w + t)−N(w)〉 = λ(w + t)− λw = λt
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which does not depend on the time w of measurement. If we divide the
interval into a large number K of subintervals, each of length ∆t = t/K, so
short that at most one reaction could occur in a subinterval with probability
λ∆t, then the increment to the average abundance during a subinterval is

〈∆N〉 = λ∆t = λt

K
.

The increment ∆N is a Bernoulli random variable because of only two possible
events: a success ∆N = 1 (one reaction) with probability p = λ∆t and a
failure ∆N = 0 (no reaction) during the subinterval. One point to note here
is that since λ∆t is the probability of one reaction instance during the short
interval, the conversion rate λ can be interpreted as the probability per unit
time of the occurrence of the reaction. We note that the success probability
p = λ∆t depends neither on the time w of measurement nor on the associated
state N(w). The random process can then be expressed as

N(w + t)−N(t) = K∆N(t),

which is a sum of K Bernoulli variables, and hence has a binomial distribution
with parameters K and p. Since we require a very large K to keep the
subinterval very short, resulting in a very small p to give rare events, the
binomial distribution approaches a Poisson distribution,

Pr [N(w + t)−N(w) = n] = Pr [N(t) = n] = e−λt(λt)n
n! .

with the average and variance both equal to µ(t) = λt. The random process
with the above time-dependent probability distribution is called the Poisson
process with rate parameter λ. No dependence on w means that the increments
in nonoverlapping intervals are stationary. No dependence on N(w) means
that they are identically distributed.

3.4.1 Interreaction Time
The first interesting thing to be observed is that the above probability reduces
to e−λt for n = 0, which means that the time T until the next reaction, that is,
the times between successive reactions, has probability e−λt of being greater
than t. Mathematically, this is expressed by

Pr [T > t] = e−λt .

The continuous random variable T0 with the above property is said to be expo-
nentially distributed, or to be an exponential random variable, with parameter
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λ. Note that the distribution does not depend on w or N(w). In other words,
the interreaction times are independent and identically distributed random
variables with a common exponential distribution.

Exponential density: We have seen that the time Tn until the next reaction
is exponentially distributed, based on the expression e−λt for the probability
Pr [Tn > t] that the occurrence of the next reaction is later than t units of
time. The probability Pr [Tn ≤ t] that the reaction occurs within the next
t units of time is, complimentarily, 1 − e−λt. Since this probability can be
expressed as the integral

1− e−λt = Pr [Tn ≤ t] =
tˆ

−∞

p(x)dx

of the probability density, the latter is simply the time derivative of the
probability, that is,

p(t) = λe−λt,

the exponential density.

3.4.2 Arrival Times
Apart from interreaction times, we may also be interested in the time Wn

of the nth reaction. This is the time the process must wait before state n is
reached, and is referred to as the arrival time or epoch time of the nth reaction.
Its probability density can be worked out by considering the possibility of the
nth reaction taking place during the interval [t, t+ ∆t]. This is equivalent to
the statement that the first n− 1 reactions have occurred in the interval [0, t]
and one reaction occurs in the next interval of length ∆t. So the event of our
interest is a joint event involving two intervals. Since they are nonoverlapping,
the number of events that occur within one interval is independent of the
number of events that occur within the other interval. Thus the required
probability of the joint event is

Pr [t ≤Wn ≤ t+ ∆t] = Pr [(N(t) = n− 1) ∩ (∆N(t) = 1)]
= Pr [N(t) = n− 1] Pr [∆N(t) = 1]

= e−λt(λt)n−1

(n− 1)! λ∆t,
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and hence the probability density of the nth arrival time Wn is

p(t) = λntn−1

(n− 1)!e
−λt, (3.9)

which expresses an Erlang distribution with rate parameter λ and shape
parameter n.

Exponential random sums: Since the arrival time can be expressed as
a sum Wn =

∑n−1
i=0 Ti of n interarrival times, all exponentially distributed

with the same parameter λ, we conclude that the sum of exponential random
variables is an Erlang random variable with shape parameter that is the
number of summands and rate parameter that is the common parameter of
the exponential distributions. A detailed discussion of the Erlang distribution
and its application will be presented in the next chapter, in Section 4.5.2.

3.5 Chemical Reactions as Events
In the last section we noted how the Poisson process was a natural choice to
describe the time-dependence abundance N(t) of the zero-order reaction

∅ λ−−−−→ X,

with the important discovery that the conversion rate λ, appearing as the
rate parameter of the Poisson process N(t), has a new interpretation as the
probability per unit time of the occurrence of the reaction. We now would like
to investigate whether a similar interpretation can be given to the conversion
rate of a general elementary reaction.

3.5.1 Conversion Rate
Consider again the standard (de)modification (2.20). The two conversion
rates are

żw(t) = kwn(t), żu = ku
(
ntot − n(t)

)
.

The reaction-count increments during an infinitesimally short time interval
[t, t+ ∆t] are

∆zw(t) = kwn(t)∆t, ∆zu(t) = ku
(
ntot − n(t)

)
.

It is important to realize that n(t), zw(t), and zu(t) are deterministic time
functions. In a stochastic setting, these will be replaced by stochastic processes
N(t), Zw(t), and Zu(t). If n represents a sample state of N(t), then the above
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reaction-count increments can be interpreted only in an average sense:

〈∆Zw〉n = kwn∆t, 〈∆Zu〉n = ku
(
ntot − n

)
∆t .

The subscript n here reflects the conditional average such that the probability
in (3.2) is conditioned on state n. Both the reaction-count increments ∆Zw
and ∆Zu are Bernoulli variables, since at most, one reaction can occur in the
infinitesimal interval. Since the average of a Bernoulli variable is equal to
its success probability, the expressions in the above equations are (success)
probabilities of one reaction of the corresponding type. It then follows that
the conversion rates kwn and ku (ntot − n) are probabilities per unit time
of the occurrence of the modification and demodification, respectively. The
important difference between this and the Poisson process is the dependence
of these probabilities on the current state n. However, the process has no
memory, since the probabilities of future events depend only on the current
state, and not on past states. Such a process is said to be memoryless or to
have the Markov property. In other words, we have a Markov process.

We can follow a similar analysis for any elementary reaction and thus
conclude that the conversion rate of an elementary reaction is the probability
per unit time of its occurrence. In Chapter 5, this will be referred to as the
reaction propensity.

3.5.2 Interreaction Time
Suppose the copy-number process is in state n. Write Tw(n) for the time until
the next modification reaction and Tu(n) for that until the next demodification
reaction. The probability that a modification occurs in the next ∆t time
units is kwn∆t. As long as n does not change, the occurrence of the next
modification reaction is a Poisson arrival, the time until which, Tw(n), is an
exponential random variable with parameter kwn. Similarly, the time Tu(n)
until the next demodification reaction is an exponential random variable with
parameter kun. If we could somehow generate random numbers from an
exponential distribution, then it is straightforward to generate sample paths
of the stochastic process N(t). Simply generate two random numbers tw and
tu as samples of the exponentially distributed random variables Tw(n) and
Tu(n), respectively. The smaller of the two will determine the time and type
of the next reaction. Alternatively, we could work with the time T0(n) until
the next reaction (of any type). The probability of one reaction, irrespective
of its type, during the next ∆t time units is (kw + ku)n∆t. As long as n
does not change, the occurrence of the next reaction is a Poisson arrival, the
time until which, T0(n), is an exponential random variable with parameter
(kw + ku)n. Thus we need to generate only one random number t0 as a
sample of the exponentially distributed random variable T0(n). The type of
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the next reaction, known to have occurred, is modification with probability
kw/(kw+ku) and demodification with probability ku/(kw+ku). These expressions
follow from the fact that the probabilities are conditional. This is the key
idea behind the stochastic simulation method that will be formally developed
in Chapter 5.

So far we have presented the notions of probability, random variables,
and stochastic processes, using intuition without the mathematical theory of
probability. The next chapter follows a formal and rigorous discourse and
hence should complement this chapter.

Problems
3.1. Transcription factors bind to a promoter region to regulate gene expres-
sion. Suppose three repressors and one activator can bind a promoter region
in a sequential manner. Imagine the observations of a sequence of molecules
binding to the promoter until the molecule turns out to be an activator. What
is the probability that we find an activator on the seventh observation?

3.2. Two events A and B are said to be mutually exclusive (or disjoint)
when the occurrence of one excludes the possibility of the occurrence of the
other. Imagine a stem cell dividing into two daughter cells, with only two
possibilities: both daughter cells are identical, such an event being denoted
by A, or they are different, the event being denoted by B. What is the
mathematical representation of the fact that A and B are mutually exclusive?
What is the conditional probability of one given the other?

3.3. Two events A and B are said to be independent when the occurrence
of one does not change the probability of occurrence of the other. Consider
two stem cells, each dividing into two daughter cells, again with only two
possibilities. Let us write A1 for the event that the first stem cell divides
into identical cells, and B1 for the opposite. The events A2 and B2 can be
similarly defined for the second stem cell. Assume that the two cells do not
influence each other and are not influenced by a common external agent.
Identify, among the four event, pairs of

1. mutually exclusive events.

2. independent events.

3.4. Consider two stem cells that rarely die and do so independently of each
other. Assume a probability 10−6 of the rare death of each stem cell. What
is the probability that they both die? What is the probability that at least
one of the cells dies?



Chapter 4

Probability and Random Variables

The previous chapter provided an informal introduction to concepts that
are necessary for stochastic modeling. So the readers who are happy with
that material may skip this chapter on first reading and return to it when
needed in the later chapters. It has been added as background necessary for
an advanced understanding of the subsequent chapters. The books by Breuer
and Petruccione [18] and Allen [5] were the main inspirations for this chapter.

4.1 Probability: A Measure
The central notion of probability theory is a random experiment: certain
conditions are fixed, and the observed phenomena are recorded to give the
outcome of the experiment. The fixed conditions cannot uniquely determine
the outcome of the experiment, which is influenced by other conditions (known
or unknown) not fixed. These conditions are explained as the effect of chance
(or randomness). Hence the explanation of the notion of chance (randomness)
differs essentially from its semantic content in everyday life. There is no sense
of rareness and unexpectedness, but it is a simple expression of ignorance
about what will influence and determine the observed outcome of a future
experiment.

We introduce the terminology used in probability theory in terms of
sets. Each possible outcome of an experiment is considered to be a sample
point, or an element ω, of a set Ω, the sample space. An outcome of interest
is expressed by the notion of an event defined as a set of sample points, which
is some subset of the sample space. To understand the meaning of an event,
we say that an event A has occurred if the outcome is an element of A. The
sample space Ω, being a collection of all possible outcomes, is the certain
event, and the null set ∅ is the impossible event. Subsets {ω} containing just
one element of are called elementary events. The usual operations with sets
can now be interpreted in the language of the corresponding events:

• The joint occurrence of (both the) two events A1 and A2 is represented
by their intersection A1 ∩A2.

Stochastic Approaches for Systems Biology,
DOI 10.1007/978-1-4614-0478-1_4, © Springer Science+Business Media, LLC 2011
M. Ullah and O. Wolkenhauer, 75
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• The alternative occurrence of (at least one of) the two events is repre-
sented by their union A1 ∪A2.

• The nonoccurrence of the event A is represented by its complement
Ω\A.

• The set inclusion A1 ⊂ A2 represents the implied occurrence of A2
whenever A1 occurs.

• The set difference A1\A2 represents the implied nonoccurrence of A2
whenever A1 occurs.

This way we can represent mathematically interesting situations between
events. Probability is then defined as a measure of chance assigned to an
event. All subsets of Ω may not be of interest to us (for example, if Ω is
uncountable). All possible events of interest are expressed by a collection A
of events including:

1. the sample space Ω itself and the empty set ∅,

2. the union A1 ∪A2, the intersection A1 ∩A2, and the difference A1\A2
of any two events A1, A2 ∈ A, and

3. the union A1∪A2∪· · · of any countable event collection A1, A2, . . . ∈ A.

Such a collection A is our event space, which contains all the events of interest.
We can now introduce probability as a measure of chance normalized by the
chance of the certain event. The impossible event has no chance; hence its
probability is zero. The certain event has probability equal to unity. Any
other event is assigned a real number between 0 and 1 that quantifies its
chance of occurrence. Formally, a probability measure is a map Pr : A → [0, 1]
that assigns to each event A a real number Pr [A] in the unit interval, the
assignment being denoted by A 7→ Pr [A]. The number Pr [A] is a measure of
the size of A relative to Ω and is interpreted as the probability of the event
A. The probability measure Pr must satisfy the following additive rule, the
Kolmogorov axiom: If we have a countable collection of disjoint events

A1, A2, . . . ∈ A, withAi ∩Aj = ∅ for i 6= j,

then the probability of their union is equal to the sum of their probabilities,

Pr [A1 ∪A2 ∪ · · · ] = Pr [A1] + Pr [A2] + · · · .

It must be possible to assign a probability, according to the above requirements,
to every event in the event space A. Formally speaking, the events in A are
said to be measurable events.
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On the basis of these axioms one can build up a consistent theory of
probabilities. In particular, the Kolmogorov axiom enables one to determine
the probabilities for all events that arise from logical operations on other
events. For example, one finds that

Pr [A1 ∪A2] = Pr [A1] + Pr [A2]− Pr [A1 ∩A2] . (4.1)

4.1.1 Probability Space
We have been talking about two types of spaces: the sample space Ω of all
possible outcomes of our experiment and the event space A of all events
of interest to which probabilities can be assigned. The notion of random
experiment can be characterized by these two spaces together with the prob-
ability measure. The triplet (Ω,A,Pr [·]) thus formed is called a probability
space. This concept of a probability space constitutes the axiomatic basis of
classical probability theory. Of course, from a physical viewpoint one has to
relate these abstract notions to an experimental setting. We can also look at
probability as a measure of our uncertainty about the event. Thus if we are
almost certain that an event will occur, we assign to it a probability close to 1,
say 0.99. We assign a number close to zero, say 0.01, if we are almost certain
that it will not occur. When our uncertainty about the event is maximum,
we assign 0.5.

4.1.2 Conditional Probability
In most applications, there exists information that when taken into account,
alters the assignment of probability to events of interest. This concept is often
formulated by introducing the conditional probability Pr [A1|A2] of an event
A1 under the condition that an event A2 has occurred,

Pr [A1|A2] = Pr [A1 ∩A2]
Pr [A2] , (4.2)

where the denominator accounts for the reduced sample space after the
occurrence of event A2. Of course, both events A1 and A2 are taken from the
event space A, and it is assumed that Pr [A2] > 0. These events are said to
be independent if

Pr [A1|A2] = Pr [A1] ,

or equivalently, if
Pr [A1 ∩A2] = Pr [A1] Pr [A2] .

This means that the probability of the joint occurrence of two independent
events factor to their individual probabilities. For more than two events the
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condition of mutual independence means that the probability of the occurrence
of any subset of joint events factors as above. It is important to note that
mutual independence is not always implied by pairwise independence.

If a collection B1, B2 . . . , of pairwise disjoint nonempty events partitions
the sample space, that is, Ω = ∪iBi, then combining the third axiom of
probability with (4.2), we can write for an event A,

Pr [A] =
∑
i

Pr [Bi] Pr [A|Bi] . (4.3)

This law, called the “total law of probability”, can be extended by conditioning
all events on a further event C:

Pr [A|C] =
∑
i

Pr [Bi] Pr [A|Bi|C] .

4.2 Random Variables
The elements ω of the sample space Ω can be rather abstract objects. In
practice, one often deals with simple numbers (integer or real). For example,
one would like to add and multiply these numbers, and also to consider
arbitrary functions of them. The aim is thus to associate real numbers with
the elements of the sample space. This idea leads to the concept of a random
variable.

Consider a probability space (Ω,A,Pr [·]). A random variable may be
defined as a mapping that assigns a real number to each element of the
sample space Ω. Thus every event in A will map to a corresponding subset
of R. Since we would like to deal with real numbers, every subset (of R)
of interest must also must map back to an event in A, under the inverse
mapping. Thus every subset B of interest must have a corresponding event A
in A (under the inverse map). Formally, such subsets are called Borel sets.
Do not be intimidated by this term: a Borel set is a subset of R that has a
corresponding measurable event in the event space A, where the adjective
measurable indicates the assignability of probability. This puts a constraint
on the choice of functions available for defining a random variable. Now we
can give a formal definition of a random variable.

For a probability space (Ω,A,Pr [·]), a random variable X is defined to
be a real-valued map

X : Ω→ R (4.4)

that assigns to each elementary event ω ∈ Ω a real number X(ω) such that
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ω

A

Pr [A]

X

X(ω)

B = X(A)

Pr [X ∈ B]

R

Ω

Figure 4.1 Illustration of the definition of a random variable. A random variable
X is a map from the sample space S to the real line R. Probability is assigned to a
Borel set B using Pr [X ∈ B] = Pr [A], where A = X−1 (B). Figure adopted from
[18].

every Borel set B has a corresponding event,

X−1 (B) = {ω ∈ Ω : X(w) ∈ B},

that belongs to the event space A. The event X−1 (B), corresponding to
the Borel set B, will be written as X ∈ B for convenience.1 Thus we will
write X = x for the event corresponding to the singleton {x}, x1 < X ≤ x2
for the one corresponding to (x1, x2], X ≤ x for the one corresponding to
(−∞, x], and so forth. This notation is only a matter of convenience, and the
reader should always remember that X is a mapping, not a number. The
above condition ensures that probabilities can be assigned to events X ∈ B
as illustrated in Figure 4.1. Given some ω, the value x = X(ω) is a sample,
or realization, of X. In the following we use the usual convention to denote a
random variable by a capital letter, and its realization by the corresponding
lowercase letter. The range set X(Ω), the set of all realizations of X, is
the state space of X. If the state space X(Ω) is finite or countably infinite,
then X is a discrete random variable. If the state space X(Ω) is uncountable
(typically an interval), then X is a continuous random variable. However, the
random variable could be of mixed type, having properties of both discrete
and continuous random variables. The probability that a random variable X
takes a value less than or equal to a given value x,

FX(x) = Pr [X ≤ x] ,
1We will not use the usual, but misleading, notation {X ∈ B}, which may be misunderstood
as a set with element X ∈ B.
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is the most general way to characterizeX. The function FX(·) is the cumulative
distribution function (CDF), or simply the distribution function of X. The
subscript X, implicit from the context, will often be dropped. Sometimes, it
is more useful to work with a closely related right-tail distribution function,
or complementary cumulative distribution function (CCDF):

G(x) = Pr [X > x] = 1− F (x) .

Thus the distribution function F (x) is the probability that X falls to the left
of the point x (on the real line), and G(x) gives the probability for X falling
to the right of x.

4.2.1 Discrete Random Variables
For a discrete random variable X taking values n from some state space, the
CDF F (n) is a (discontinuous) step function that can be written as

F (n) =
∑
n′≤n

P (n′),

where P (·) is the probability mass function (PMF) defined for each sample n
by the probability

P (n) = Pr [X = n] .

The PMF can be used to compute the probability that X falls in a (Borel)
set B,

Pr [X ∈ B] =
∑
n∈B

P (n) .

In the following we give a few familiar and important examples of
discrete random variables and their distributions.

Bernoulli distribution: A Bernoulli variable X has two possible values:
x = 1, a success, with probability p, and x = 0, a failure, with probability
1− p. The probability distribution with parameter p can be written as

Pr [X = x] = px(1− p)1−x, x = 0, 1 .

We write X ∼ Bernoulli (p) to declare X as a Bernoulli random variable with
success probability p. The PMF above is zero for values of x other than 0
and 1. This needs to be understood whenever a probability distribution is
expressed in terms of PMF or PDF:

The PMF/PDF is zero for sample values other than those specified
in the formula expressing the distribution.
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Figure 4.2 Binomial distribution for selected parameter values.

Binomial distribution: The number X of successes in n independent tri-
als, with probability p of success at each trial, takes integer values k with
probabilities

Pr [X = k] =
(
n

k

)
pn(1− p)n−k, 0 ≤ k ≤ n . (4.5)

This set of probabilities forms the binomial distribution with parameters n
and k, and we write X ∼ Binomial (n, k) to represent that X follows this
distribution. It can be seen that the binomial random variable is, in essence,
the sum of n Bernoulli variables with a common parameter p. The form of
the distribution follows by considering that pk(1− p)n−k gives the probability
of one particular sequence of k successes (and n− k failures) and

(
n
k

)
is the

number of different sequences possible. Figure 4.2 shows the PMF of the
binomial distribution for three different pairs of parameter values.

Poisson distribution: A discrete random variable X with probabilities

Pr [X = n] = e−λλn
n! , n = 0, 1, 2, . . . , (4.6)

is said to have the Poisson distribution with parameter λ and is denoted by
X ∼ Poisson (λ). In our discussion leading to (3.8), we saw how the binomial
distribution approaches the Poisson distribution when there is a large number
of trials, each with rare success. Figure 4.3 shows the PMF of the Poisson
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Figure 4.3 Poisson distribution: PMF for selected parameter values.

distribution for selected values of the rate parameter λ.

Geometric distribution The number X of trials until the first success in a
sequence of trials with probability p of success at each trial has the geometric
distribution

Pr [X = n] = (1− p)np, n = 0, 1, 2, . . . ,

with parameter p, and we write X ∼ Geometric (p) to represent that X follows
this distribution. Figure 4.4 shows the PMF of the geometric distribution for
three selected values of the parameter p.

4.2.2 Continuous Random Variables
For a continuous random variable X taking values x from some state space,
the CDF F (x) is continuous (from the right) and can be written as

F (x) =
ˆ x

−∞
p(x′)dx′,

where p(x) is the probability density function (PDF), or simply the density
function of X. From the definition above, it follows that

p(x) = dF
dx
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Figure 4.4 Geometric distribution: PMF for selected parameter values.

for regions (of the state space ofX) where F is differentiable. Loosely speaking,
p(x) can be interpreted such that,

Pr [x ≤ X < x+ h] ≈ p(x)h, for small h,

which justifies that p(x) is a density. The probability that X falls in a Borel
set B is then given by

Pr [X ∈ B] =
ˆ

B

p(x)dx .

A few important examples of continuous random variables are given
next.

Uniform distribution: The position X of a point selected at random in
some interval [a, b] such that all subintervals of equal lengths are equiprobable
has the PDF

p(x) = 1
b− a, a ≤ x ≤ b .

This is the density of the so-called uniform distribution. That X follows the
uniform distribution in the interval [a, b] is written as X ∼ Uniform (a, b).
The CDF of X can be obtained by integrating the above density:

F (x) = Pr [X ≤ x] = x− a
b− a , a ≤ x ≤ b .
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Figure 4.5 Exponential distribution. left: The PDF for three different values of
the rate parameter λ. right: The CCDF for the same parameter values.

The CDF is zero/unity for values of x to the left/right of the interval [a, b].
This needs to be understood whenever a probability distribution is expressed
in terms of CDF:

The CDF is zero/unity for sample values lower/higher than those
specified in the formula expressing the distribution.

Of particular interest is the standard uniform variable U ∼ Uniform (0, 1)
with the distribution function

Pr [U ≤ u] = u− 0
1− 0 = u, 0 ≤ u ≤ 1 . (4.7)

The standard uniform random variable will turn out to be useful in generating
samples of a random variable with an arbitrary distribution.

Exponential distribution: A random variable X is said to be exponen-
tial with parameter λ, denoted by X ∼ Exponential (λ), if its PDF is the
exponential density,

p(x) = λe−λx, x ≥ 0 . (4.8)

The time until an event from a sequence of events, the occurrences of which
over nonoverlapping intervals are independent, such as Poisson arrivals, is
exponentially distributed. The CCDF of X is then given by

G(x) = Pr [X > x] =
∞̂

x

p(x)dx = e−λx,
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and the CDF, by F (x) = 1−G(x) = 1− e−λx. Figure 4.5 illustrates how the
exponential distribution looks for three different values of the rate parameter,
where the PDF p(x) is plotted to the left and the CCDF G(x) to the right.

4.2.3 The Memoryless Property
The exponential distribution has the remarkable property that it does not
remember its past. To see this, consider the (conditional) probability

Pr [X > t+ s |X > t] = Pr [X > t+ s ∩ X > t]
Pr [X > t] = Pr [X > t+ s]

Pr [X > t]

= G(t+ s)
G(t) = e−(t+s)λ

e−λt = e−λs = Pr [X > s] .

If X is interpreted as the lifetime of a cell, then the above equation tells:
the (conditional) probability, given that the cell has lived for a length t
of time, that it will survive a further length s of time, is given by the
(unconditioned) probability of surviving duration s, thus forgetting that it
has survived duration t. In other words an exponential random variable X
has the memoryless property

Pr [X > t+ s |X > t] = Pr [X > s] . (4.9)

In fact, any random variable satisfying the memoryless property must be
exponential. To show this, we write

G(t+ s) = Pr
[
X > t+ s

]
= Pr

[
X > t+ s ∩ X > t

]
= Pr

[
X > t

]
Pr
[
X > t+ s |X > t

]
= Pr [X > t] Pr [X > s] = G(t)G(s),

where the last step follows from the memoryless property. For t = 0, G(s) =
G(0)G(s) implies G(0) = 1 if G(s) > 0, which is the nontrivial case. Since the
derivatives of G(t+ s) with respect to t, s, and t+ s are all the same, we have

G′(t+ s) = G′(t)G(s) = G(t)G′(s),

giving
G′(t)
G(t) = G′(s)

G(s) .
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But this is possible only if both sides are equal to a constant, say −λ,

G′(t)
G(t) = −λ,

with the only nontrivial solution

G(t) = e−λt,

which is bounded for λ > 0 and corresponds to the exponential random
variable, Exponential (λ), and it follows that any nonnegative continuous
random variable satisfying the memoryless property (4.9) has an exponential
distribution. In other words, the exponential distribution is the only continu-
ous distribution that satisfies the memoryless property. This result is very
important and will be used in the section on Markov processes to find the
distribution of the interevent times.

4.2.4 Mixed-Type Random Variables
For a random variable X of mixed type, taking values x from a continuous
state space with density pcont(x) and values n from a discrete state space
with probability P (n), the CDF F (x) can be written as

F (x) =
ˆ x

−∞
pcont(x′)dx′ +

∑
n≤x

P (n) .

To find an expression for the density p(x) of the random variable X of mixed
type, differentiate both sides with respect to x,

p(x) = dF (x)
dx = pcont(x) +

∑
n

P (n)δ(x− n),

where the delta function δ(x) is defined by
∞̂

−∞

g(x)δ(x− c)dx = g(c)

for any (real) constant c and an arbitrary function g defined on the real axis.
The probability that X falls in an event set B is then given by

Pr(X ∈ B) =
ˆ

B

p(x)dx =
ˆ

B

pcont(x)dx+
∑
n∈B

P (n) .
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This also shows that one can use probability density functions to characterize
both continuous and discrete random variables.

4.3 Random Number Generation
Here follows a brief review of one way to compute a sample y of a random
variable Y . The sample y is a random number selected from the proba-
bility distribution of Y . These concepts are important for computational
experiments including the stochastic simulation algorithm (Chapter 5).

Bernoulli distribution: The standard uniform random variable U is very
useful for generating random numbers of other distributions. To construct a
Bernoulli variable Bernoulli (p) with a parameter 0 < p < 1, we define

X =
{

1 if U < p,

0 otherwise,

so that, following (4.7),

Pr [X = 1] = Pr [U < p] = p,

Pr [X = 0] = 1− p .

This random variable X has a Bernoulli distribution with parameter p. If u
is a uniform random number selected from the unit interval, then

x =
{

1 if u < p,

0 otherwise,

is a sample of Bernoulli (p).

Binomial distribution: Recall that a binomial variable Binomial (n, p) is
the sum of n independent Bernoulli variables Bernoulli (p). To generate a
Binomial random number, generate n independent Bernoulli variables with
the common success probability p and then add them.

4.3.1 The CDF Inversion Method
The CDF

F (x) = Pr [X ≤ x]

of a random variable X has values in the interval [0, 1]. This is also the range
of the standard uniform random variable U . In an attempt to find a possible



88 4 Probability and Random Variables
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Figure 4.6 The CDF inversion method.

relationship between the two, we recall the unique property Pr [U ≤ u] = u,
which for u = F (x) becomes

Pr [U ≤ F (x)] = F (x) .

If the CDF F (x) is strictly increasing, its inverse F−1(u) at any point u is
easily found to be the point on the abscissa corresponding to the point u
on the ordinate. The CDF shown in Figure 4.6 is strictly increasing during
the intervals (x1, x2), (x2, x3), and (x4, x5). For any u in one of the intervals
(0, u1), (u2, u3), and (u3, 1), the inverse F−1(u) is simply the projection of
u back to the abscissa. In such cases, the event U ≤ F (x) is equivalent to
F−1(U) ≤ x, and we can write the above CDF as

Pr
[
F−1(U) ≤ x

]
= F (x) .

But this is possible only if X = F−1(U). Thus any random variable with
a known CDF F (·) can be expressed as the inverse function F−1(U) of the
standard uniform random variable U . The requirement of F (x) to be strictly
increasing was necessary only for the above derivation and is not a serious
issue because we can replace the inverse function by a quantile. The uth
quantile or 100uth percentile of the distribution of X is the smallest number
qu such that

F (qu) = Pr [X ≤ qu] = u .

The most familiar example is the median of a distribution, which is its half
quantile or 50th percentile. Note that finding a quantile, unlike the inverse
F−1(U), does not require the CDF to be strictly increasing. The CDF in



4.3 Random Number Generation 89

Figure 4.6 has a discontinuity at x2 and a flat (nonincreasing) portion during
(x3, x4). Although the CDF seems undefined at x = x2, the probability
Pr [X = x2] = u2 − u1 is well defined, and F (x2) = u2 by convention. There-
fore, for every u1 ≤ u ≤ u2, the uth quantile is x2. For the flat portion, u3
maps to the interval [x3, x4], from which we choose, by definition, the smallest
number x3 as the u3th quantile. Returning to the problem of random number
generation, if u is a uniform random number selected from the unit interval,
then the uth quantile of the distribution of X is a sample of X. When the
distribution function F has a closed-form expression, then finding the uth
quantile is as easy as solving the equation F (x) = u for x.

Exponential distribution: To generate a sample x of X ∼ Exponential (λ)
from a standard uniform random number u, we need to solve

u = F (x) = 1− e−λx

for x. The solution is
x = − 1

λ
log(1− u) .

Since 1−u is also a standard uniform random number, we could replace 1−u
by u, and the new number

τ = − log u
λ

(4.10)

is another sample of Exponential (λ).

4.3.2 Empirical Discrete Distribution
Consider a discrete random variable X taking values x with probabilities

P (x) = Pr [X = x] ,

and the CDF
F (x) = Pr [X ≤ x] =

∑
j≤x

P (j) .

Pick a sample u of the uniform random variable U in the interval (0, 1] and set
u = F (x), which needs to be solved for x to give the desired random number.
We observe that

P (x) = F (x)− F (x−)
= Pr [U ≤ F (x)]− Pr

[
U ≤ F (x−)

]
= Pr

[
F (x−) < U ≤ F (x)

]
,
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where x− = maxm{m < x} is the state nearest to x from below. It follows
that x is a sample of X if

F (x−) < u ≤ F (x) .

Thus computing x involves a search algorithm. Mathematically, the solution
x can be written as

x = inf
m
{m : F (m) ≥ u} = inf

m

{
m :

∑
j≤m

P (j) ≥ u
}
. (4.11)

Matlab implementation: The seemingly complicated equation above can
be implemented in a compact piece of Matlab code. To generate a sample
of a discrete random variable X taking values 2, 3, and 4 with respective
probabilities 0.5, 0.2, and 0.3, we could write the following code:

X = [2 3 4]; % state space
P = [0.5 0.2 0.3]; % probabilities
u = rand; % uniform random number
F = cumsum(P); % CDF
x = X(find(F>=u,1)); % generated random number

4.4 Random Vectors
One can study a vector

X = (X1, . . . , Xs)T

of random variables defined on a common probability space. The vector-valued
mapping

X : Ω→ Rs with assignment ω 7→ X(ω)

is called a multivariate random variable or a random vector, which simply
means that each component Xi is a random variable (discrete or continuous)
taking real values xi. For a given ω ∈ Ω, the quantity

x = X(ω) =
(
X1(ω), . . . , Xs(ω)

)T
is a (sample) realization of the random vector. The joint cumulative distribu-
tion function of X can be defined as

F (x1, . . . , xs) = Pr
[
n⋂
i=1

Xi ≤ xi
]
,
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which can be written in terms of the joint probability mass function P (x1, . . . , xs)
as ∑

x′1≤x1

· · ·
∑
x′s≤xs

P (x1, . . . , xs)

when X is discrete, and in terms of the joint probability density p (x1, . . . , xs)
as ˆ x1

−∞
· · ·
ˆ xs

−∞
p(x′1, . . . , x′s) dx′1 · · · dx′s

when X is continuous. We introduce the following simplified notation:2

F (x) = F (x1, . . . , xs),
P (x) = P (x1, · · · , xs) ,
p(x) = p(x1, . . . , xs),∑
x′≤x

=
∑
x′1≤x1

· · ·
∑
x′s≤xs

,

ˆ

x′≤x

dx′ =
ˆ x1

−∞
dx′1 · · ·

ˆ xs

−∞
dx′s .

This notation allows us to write

F (x) =



∑
x′≤x

P (x′), for discreteX,

ˆ

x′≤x

p(x′)dx′, for continuousX .

The probability for the random vector X to fall into a set B ⊂ Rs is then
given by

Pr(X ∈ B) =



∑
x∈B

P (x), for discreteX,

ˆ

x∈B

p(x)dx, for continuousX .

2This notation can mislead the reader to conclude that dx = (dx1, . . . , dxs) from x =
(x1, . . . , xs), but here dx denotes the product dx1 · · · dxs.



92 4 Probability and Random Variables

4.5 Expectations
The probability distribution of a random variable X fully specifies its behavior.
However, one is often interested in the average behavior of X or some function
g(X). This motivates the following definition. If X is a random variable
taking real values x with probability distribution F (x), which corresponds to
a probability mass P (x) or density p(x) depending on whether X is discrete
or continuous, then the expectation, or mean, of X is defined by

〈X〉 =
ˆ
xdF (x) =



∑
n

nP (n), for discreteX,

ˆ
x p(x)dx, for continuousX,

where the integration is understood to be over all possible values x ∈ X(Ω),
the summation is over all values from the discrete state space, and the last
integration is over all values from the continuous state space. Note that the
expectation is a linear operator, because both the summation and integration
are linear operators. More generally, the expectation of some measurable
function g(X) of X is defined to be

〈g(X)〉 =
ˆ
g(x) dF (x) .

Particularly important expectations are the moments of order m:

〈Xm〉 =
ˆ
xm dF (x) .

The deviation of a random variable X from its mean value will be written as

δX = X − 〈X〉 .

The variance of X is then defined by〈
δX2〉 def=

〈
(δX)2

〉
=
〈

(X − 〈X〉)2
〉
.

The significance of the variance stems from its property as a measure of the
fluctuations of the random variable X, that is, the extent of deviations of
the realizations of X from the mean value. The linearity of the expectation
operator leads to the useful relation〈

δX2〉 =
〈
X2〉− 〈X〉2 . (4.12)
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An alternative measure of fluctuation is the standard deviation, which is the
square root of the variance,

SD(X) =
√
〈δX2〉,

which is notable for its usefulness as a measure of fluctuation in units of X,
the coefficient of variation.

Poisson moments: If X ∼ Poisson(λ), with distribution (4.6), then for
the mean,

〈X〉 =
∞∑
x=0

x
e−λλx
x! = λ

∞∑
x=1

e−λλx−1

(x− 1)! = λ

∞∑
y=0

e−λλy
y! = λ,

where the last step uses the normalization of probability to unity. For the
variance, we need the second moment, for which the following expectation is
helpful:

〈(X − 1)X〉 =
∑
x

x(x− 1)p(x)

=
∞∑
x=1

x(x− 1)e−λλx
x!

= λ2
∞∑
x=2

e−λλx−2

(x− 2)!

= λ2 .

Since expectation is a linear operator, we have 〈(X − 1)X〉 =
〈
X2〉 − 〈X〉,

from which follows 〈
X2〉 = 〈(X − 1)X〉+ 〈X〉 = λ2 + λ .

The variance can now be determined:〈
δX2〉 =

〈
X2〉− 〈X〉2 = λ2 + λ− λ2 = λ .

Thus the parameter λ gives both the mean and variance of the Poisson random
variable.
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Exponential moments: If X ∼ exponential(λ), then X has the mean

〈X〉 =
∞̂

0

xλe−λxdx =
∞̂

0

e−λxdx = 1
λ
,

which is why λ is called the rate of X. Moreover, X has second moment

〈
X2〉 =

∞̂

0

x2λe−λxdx = 2
λ

∞̂

0

xe−λxdx = 2
λ2

and variance

〈
δX2〉 =

〈
X2〉−X2 = 2

λ2 −
(

1
λ

)2
= 1
λ2 .

4.5.1 Multidimensional Expectations

Consider a random vector X = (X1, . . . , Xn)T with state space X(Ω) ⊂ Rn
and distribution function F (x) that corresponds to a joint probability density
p(x) or a mass P (x) depending on whether X is continuous or discrete. The
componentwise expectation

〈Xi〉 =
ˆ
xi dF (x)

can be written as
〈Xi〉 =

∑
x

xiP (x)

when X is discrete, and
〈Xi〉 =

ˆ
xip(x)dx

when X is continuous. In terms of the moments

〈XiXj〉 =
ˆ
xixj dF (x),

the covariance matrix
〈
δXδXT

〉
is defined elementwise by covariances

〈δXiδXj〉 = 〈(Xi − 〈Xi〉) (Xj − 〈Xj〉)〉 = 〈XiXj〉 − 〈Xi〉 〈Xj〉 .

The covariance is zero when Xi and Xj are independent, because then
〈XiXj〉 = 〈Xi〉 〈Xj〉, which follows from independence. In matrix notation,
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we can write〈
δXδXT

〉
=
〈

(X − 〈X〉) (X − 〈X〉)T
〉

=
〈
XXT

〉
− 〈X〉 〈X〉T . (4.13)

Here the superscript T denotes transpose of a matrix. In the next section we
introduce generating functions, a further important class of expectations that
may serve to characterize completely a random variable.

4.5.2 Generating Functions
Consider a random variable X taking values x from some state space with
probability density p(x) when continuous or mass P (x) when discrete. We
introduce the expectation, for complex z,

P(z) =
〈
zX
〉
,

which is a sum
P(z) =

∑
k

zkP (k)

when X is discrete and an integral

P(z) =
ˆ
zxp(x)dx

when X is continuous. The function P(z) is well defined for |z| ≤ 1, since
both the above sum and the integral converge in that region. If X takes only
nonnegative integer values k, then the above sum is a Taylor expansion,

P(z) =
∞∑
k=0

zkP (k) .

Note how probabilities P (k) can be recovered from P(z) as coefficients of the
above expansion, which is why P(z) is referred to as the probability generating
function (PGF) of the distribution. The Taylor coefficients satisfy

P (k) = 1
k!P

(k)(0) = 1
2πi

˛

C(0)

P(z)
zk+1 dz,

where P(k)(0) is the nth derivative of P(z) evaluated at z = 0 and C(0)
denotes a contour around z = 0 and inside the unit circle. The PGF can also
be used to calculate the mean and variance of X. The reader is encouraged
to show that

〈X〉 = P ′(1)
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for the mean and 〈
δX2〉 = P ′′(1) + P ′(1)− [P ′(1)]2

for the variance (provided the mean is finite). The PGF is not useful if X is
not restricted to nonnegative integers. In that case it is useful to use z = ew
to have the expectation

M(w) = P(ew) =
〈
ewX

〉
.

The mth derivative of M(w),

M (m)(w) =
〈
XmewX

〉
,

gives the mth-order moment when w = 0,

M (m)(0) = 〈Xm〉 ,

which shows that M(w) is the moment generating function (MGF) for the
random variable X. Sometimes it is more convenient to use w = iu, where
i =
√
−1 and the resulting function φ(u) =

〈
eiuX〉, called the characteristic

function, is well defined for all real values of u. If X is continuous, then the
MGF

M(w) =
∞̂

−∞

ewxp(x)dx (4.14)

can be used to generate the density function through the inverse transform,

f(x) = 1
2πi

c+i∞ˆ

c−i∞

e−wxM(w)dw,

where c is a real number such that the integral in (4.14) converges to the
left of w = c. If X takes only takes nonnegative values, the integral in (4.14)
converges in the left half-plane, and we can choose c = 0.

Another useful expectation is the natural logarithm of the MGF,

K(w) = logM(w) .

The first two derivatives of K(w) directly give the mean and variance:

K ′(0) = 〈X〉 , K ′′(0) = δX .

Higher derivatives of K(w) are combinations of the moments. The mth



4.5 Expectations 97

derivative of K(w) evaluated at the origin is called the mth cumulant of the
random variable X,

κm = Km(0),

and the function K(w) itself is called the cumulant generating function (CGF)
for obvious reasons. The natural logarithm of the characteristic function
behaves exactly the same. In terms of the generating functions, the mean of
a discrete random variable can be expressed as

〈X〉 = P ′(1) = M ′(0) = K ′(0),

and the variance as〈
δX2〉 = P ′′(1) + P ′(1)− [P ′(1)]2 = M ′′(0)− [M ′(0)]2 = K ′′(0)

Poisson generating functions: If X ∼ Poisson(λ), then X has PGF

P(z) =
∞∑
n=0

zn
e−λλn
n! = e−λ

∞∑
n=0

n

n! = e−λeλz = e(z−1)λ,

MGF
M(w) = P(ew) = exp ((ew − 1)λ) ,

and CGF
K(w) = logM(w) = (ew − 1)λ .

The mean and variance of X can be computed from these generating functions:

〈X〉 = K ′(0) = λ,
〈
δX2〉 = K ′′(0) = λ .

Exponential MGF and random sums: If X ∼ exponential(λ), then X has
the MGF

M(w) =
∞̂

0

ewxλe−λxdx = λ

∞̂

0

e(w−λ)xdx = λ

λ− w,

which converges for |w| < λ.
If we have a random vector X = (X1, . . . , Xn)T , with probability density

p(x) when continuous or mass P (x) when discrete, the definitions of generating
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functions can be extended as

PX(z) = P
X1...Xn

(z1, . . . , zn) =
〈

n∏
i=1

zXi
i

〉
,

MX(w) = M
X1...Xn

(w1, . . . , wn) =
〈

exp
(

n∑
i=1

wiXi

)〉
,

both involving integrals (or sums) of the argument of 〈·〉, weighted by p(x)
(or px), over all possible values of X. If Xi are independent, then we have〈

n∏
i=1

zXi
i

〉
=

n∏
i=1

〈
zXi
i

〉
,

〈
exp

(
n∑
i=1

wiXi

)〉
=

n∏
i=1

〈
ewiXi

〉
,

and therefore

PX(z) =
n∏
i=1
PXi

(zi) and MX(w) =
n∏
i=1

MXi
(wi) .

Setting zi = z, wi = w for all i, and Y =
∑n
i=1Xi , we get

PY (z) =
〈
zY
〉

=
n∏
i=1
PXi

(z) and MY (w) =
〈
ewY

〉
=

n∏
i=1

MXi
(w) . (4.15)

Poisson random sums: If (X1, . . . , Xn) are independent Poisson distributed
random variables with rate parameters λ1, . . . , λn, and and Y =

∑n
i=1Xi,

then (4.15) combined with PXi
(z) = e(z−1)λi gives

PY (z) =
n∏
i=1
PXi(z) =

n∏
i=1

e(z−1)λi = exp
(

(z − 1)
n∑
i=1

λi

)
,

which shows that

Y =
n∑
i=1

Xi ∼ Poisson
(

n∑
i=1

λi

)
. (4.16)

Thus the sum of independent Poisson random variables is also Poisson dis-
tributed with rate parameter that is the sum of the individual rate parameters.

Exponential random sums: If X1, . . . , Xn are independent each being
Exponential (λ), and Y =

∑n
i=1Xi, then (4.15) combined with MXi(w) =
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λ/(λ− w) gives

MY (w) =
n∏
i=1

MXi
(w) =

(
λ

λ− w

)n
.

The probability density of Y can be obtained from the inverse transform,

pY (y) = 1
2πi

c+i∞ˆ

c−i∞

e−wyMY (w) dw = λn

(−1)n2πi

c+i∞ˆ

c−i∞

e−wy
(w − λ)n dw,

which is a contour integral with nth order pole at w = λ. To perform this
integration, we can use the Cauchy relation

1
k!G

(k)(α) = 1
2πi

˛

C(α)

G(w)
k + 1 dw .

In our case, G(w) = e−wy, k = n − 1, and α = λ, from which G(k)(α) =
G(n−1)(λ) = (−1)nyn−1e−λy. Combining all the above leads to the PDF

pY (y) = λnyn−1

(n− 1)!e
−λy

of the sum Y of n independent variables each exponentially distributed with
a common rate λ. This is the Erlang distribution defined in (3.9) with rate
parameter λ and shape parameter n. We write Y ∼ Erlang (λ, n) to denote
that Y follows the Erlang distribution. We can summarize this important
result as follows

if Xi ∼ Exponential (λ), then
n∑
i=1

Xi ∼ Erlang (λ, n) . (4.17)

This result has a very interesting implication: If Xi is interpreted as the time
between two consecutive events from a sequence of events, the occurrences
of which, over nonoverlapping intervals, are independent, then Y =

∑n
i=1Xi

represents the waiting time until the occurrence of the nth event, starting
from zero. Thus, the waiting time until the nth event follows an Erlang
distribution with rate parameter λ and shape parameter n.

The gamma distribution: The factorial in the Erlang density is a special
case of the more general gamma function, in light of the well-known relation

Γ(n) = (n− 1)! .
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Figure 4.7 Gamma distribution for five different value pairs of the rate parameter
λ and the shape parameter n. Note how a range of simpler distributions can be
represented by altering the values of the two parameters.

Since the gamma function is defined for every positive real number n, we
can generalize the Erlang distribution to the gamma distribution denoted by
Gamma (λ, n), which has probability density

pY (y) = λnyn−1

Γ(n) e−λy . (4.18)

Figure 4.7 illustrates how the gamma distribution can represent a range of
simpler distributions for different values of the rate parameter λ and the shape
parameter n.

4.6 Stochastic Processes
A stochastic process X is a map that assigns a real number (or an n-vector)
to each outcome ω of the sample space Ω for each element t of an index set I,

X : Ω× I → Rn, (ω, t) 7→ X(ω, t), t ∈ I, ω ∈ Ω .

The process is univariate for n = 1 and multivariate for n > 1. In most
physical applications, the parameter t plays the role of the time variable, in
which case I is the nonnegative real axis. Each value X(ω, t) is the state of
the process, and the set of all possible values forms the state space of the
process. The interpretation of a stochastic process X depends on the variation
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of ω and t. Thus X is interpreted as

1. A family (or an ensemble) of functions {X(ω, t) : ω ∈ Ω, t ∈ I} when
both t and ω are variables.

2. A realization, trajectory, or sample path Xω(t) of the stochastic process
when t is a variable and ω is fixed.

3. A random variable (or vector) Xt(ω) of the process at time t when ω is
variable and t is fixed.

4. Simply a number (or vector) when both t and ω are fixed.

It is common practice to write X(t) for a stochastic process, and the de-
pendence on ω is taken for granted. If the index set I is a countable set,
X(t) is a discrete-time process. If I is a continuum (e.g., real line), X(t)
is a continuous-time process. If the state space is a countable set, X(t) is
a discrete-state process. A discrete-state stochastic process is also called a
chain. If the state space is a continuum, X(t) is a continuous-state process.
For example, the outcome of n tosses of a coin is a discrete-time chain with
state space {head, tail} and time index I = {0, 1, 2, . . . , n}. The number of
telephone calls in a region during a time interval [a, b] and the number of
transcription initiation cycles in a promoter region during a time interval
[a, b] are examples of a continuous-time chain because t ∈ [a, b]. The daily
measurement of temperature or hourly measurement of concentration of a
protein in a cell are examples of a discrete-time continuous-state process. The
position of a Brownian particle (small pollen grain suspended in water) at
a certain time t is a continuous-time continuous-state (stochastic) process.
Note that a stochastic process is a mathematical abstraction and should not
be confused with the physical process being modeled.

In continuous-time stochastic processes, it is convenient to define incre-
ments as the differences X(t)−X(s), which are random variables for s < t.
The continuous-time stochastic process X(t) is said to have independent in-
crements if changes X(t1) − X(t0), X(t2) − X(t1), . . . in the state of the
process in different time intervals t0 < t1 < · · · are independent. If changes
X(t + w) −X(t) in the value of the process depend only on the lengths w
during which the change occurs, not on the time points t of measuring the
change, then the continuous-time stochastic process is said to have station-
ary increments. Stochastic processes are distinguished by three principal
properties:

1. the state space X(Ω, I),

2. the index set I,
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3. the dependence relations between the random variables X(t) at different
times.

An alternative name for a stochastic process is random process. The level of
randomness in a process is determined by the dependence relations between the
random variables. Thus a process with independent and identically distributed
random variables is as random as it can be. For example, a Poisson process,
defined later in this sequel, is a continuous-time (stochastic) chain X(t) taking
nonnegative integer values at times t ≥ 0, and has stationary and independent
increments X(t+ s)−X(t) with a Poisson distribution.

A generalization of the Poisson process is a counting process, defined as
a (stochastic) chain X(t) taking nonnegative integer values; it represents the
total number of events that have occurred in a time interval [0, t]. Examples
of counting processes are, the number of telephone calls at a local exchange,
the number of transcription initiation cycles in a promoter region, and the
number of virus attacks on a computer, all during a time interval. Processes
with independent and identically distributed random variables are not always
interesting as stochastic models because they behave more or less in the
same way. However, stochastic processes that allow some dependence on the
past can give variability in their behavior, and that is why the dependence
relationship is so important. The dependence relations between the random
variables of a particular stochastic process are usually derived from the
modeling assumptions made about the process for analysis. Typically the
process is specified by determining its local behavior (in a short time interval
next to the current time), and the goal of our analysis is to discover its global
behavior. In most cases, it is reasonable to assume that the local behavior
depends only on the current state of the process and not on the past. This
property is called the memoryless or the Markov property, and a stochastic
process having this property is a Markov process.

Construction: In practice, a stochastic process is constructed from experi-
mental data. Take a set t1, . . . , tm of discrete times and Borel sets B1, . . . , Bm
in Rn, and consider for a multivariate stochastic process X(t) the joint prob-
ability distribution of order m,

Pr
[
m⋂
i=1

X(ti) ∈ Bi
]
.

The process can then be specified by collecting these distributions for m =
1, 2, . . . to form the family of finite joint probability distributions of the stochas-
tic process. A sample in Figure 4.8 illustrates the idea. The Borel sets Bi
could be suitable intervals (bins) in a frequency histogram constructed from
data.
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Figure 4.8 A sample path of a stochastic process. Figure adopted from [18].

In the next section, we introduce one of the most important stochastic
processes, the Poisson process.

4.6.1 Poisson Process
Consider a sequence of events occurring at random times. Typical examples
are

• Molecules arriving at (and passing through) a biological channel such
as a pore in a cell membrane, as depicted in Figure 4.9,

• Transcription factors (arriving and) binding to a promoter region to
initiate transcription,

• Students arriving in a classroom/library,

• Failure of a device (and being replaced by a new one).

Such a sequence of arrivals or jumps can be modeled by a continuous-time
discrete-state stochastic process. Counting the number of such arrivals in a
given time interval leads us to define a counting process. A counting process
X(t) represents the total number of arrivals in a time interval [0, t], where
t ≥ 0. In every sample path of the counting process, the counter X(t) starts
in state X(0) = 0 and is incremented by size one on each arrival. Thus the
state space of a counting process is the set of nonnegative integers. The nth
arrival time is denoted by Wn, and since X(0) = 0 is not an arrival, W0 = 0
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Figure 4.9 Molecules arriving at a channel in the cell membrane. The channels in
the cell membrane provide a mechanism to selectively pass molecules arriving from
the extracellular space into the intracellular space.

by definition. Alternative names used in the literature for the arrival time are
“jump time” and “waiting time.” The interarrival time between the nth and
the next arrival is Tn = Wn+1−Wn. Alternative names used in the literature
for the interarrival time are “holding time” and “sojourn time.” Figure 4.10
shows a sample path of a counting process, illustrating the arrival times and
the interarrival times. Note that since the nth jump is, by definition, to state
n, the two events Wn ≤ t and X(t) ≥ n are identical. Therefore a counting
process can be defined in terms of the arrival times:

X(t) = max
n
{n : Wn ≤ t} , where Wn =

n−1∑
i=1

Ti . (4.19)

In some cases, for example when a device fails and is replaced by a new one,
it may be reasonable to assume that the process probabilistically restarts (or
renews) at each arrival. This renewal property means that the interarrival
times Tk are independent and identically distributed random variables. A
counting process that has independent and identically distributed interarrival
times is thus called a renewal process. Since the common distribution of
the interarrival times can be arbitrary, a general renewal process has a weak
renewal property. The interested reader can find further information in [2, 5].

Note that a renewal process is more random than a general counting
process. We can get even more randomness if the process has the memoryless
property, which is the case if the arrivals are not coordinated with each other.
A renewal process with the memoryless property is called a Poisson process.
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t

Figure 4.10 Illustration of events taking place in a counting process. At each
arrival at time t = Wn, the quantity X(t) is incremented by unity (hence the
qualification counting process). The interarrival times Tn are continuous random
variables. They are independent and identically distributed for a renewal process,
and, further, are exponentially distributed for a Poisson process. For the latter, the
arrival times Wn have the gamma distribution because each arrival time is a sum
of the exponential interarrival times Tn. Recall the property (4.17) of independent
and identically distributed exponential random variables. Figure adopted from [5].

Thus a Poisson process is a counting process X(t) that has independent and
identically distributed exponentially distributed interarrival times. Since the
common distribution of interarrival times is now fixed, the Poisson process
has the strong renewal property. If λ is the rate parameter of the common
exponential distribution, we can write, for the interarrival times of a Poisson
process,

Tn ∼ Exponential (λ), n = 0, 1, 2, . . . .

It follows from (4.17) that

Wn =
n−1∑
i=0

Ti ∼ Erlang (λ, n)

for the time of the nth arrival. The distribution function of Wn can be
obtained by integrating its density (4.18),

Pr [Wn ≤ t] =
tˆ

0

λnyn−1

(n− 1)!e
−λydy .
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Integrating by parts, we can obtain the following recurrence relation:

Pr [Wn ≤ t] = Pr [Wn+1 ≤ t] + (λt)ne−λt
n! .

Hence we can write for n > 0,

Pr [X(t) = n] = Pr [X(t) ≥ n]− Pr [X(t) ≥ n+ 1]
= Pr [Wn ≤ t]− Pr [Wn+1 ≤ t]

= (λt)ne−λt
n! ,

and for n = 0,
Pr [X(t) = 0] = Pr [T0 > t] = e−λt,

which shows that X(t) ∼ Poisson (λt) and why the process is called a Poisson
process. Next we investigate how the incrementsX(s+t)−X(s) are distributed.
Given that the process is in state i at time s > 0, the time T s until the next
arrival, is also Exponential(λ). To see this, note that X(s) = i is the same as
Ti > s−Wi and T s > t is the same as Ti > s−Wi + t. Therefore from the
memoryless property of interarrival times, we can write

Pr [T s > t |X(s) = i] = Pr [Ti > s−Wi + t | Ti > s−Wi]
= Pr [Ti > t]
= e−λt,

which establishes the result. Note that this result does not rely on the choice
of i and s and hence is true in general,

Pr [T s > t] = e−λt .

It follows that T s, Ti+1, Ti+2, . . . is a sequence of independent and identically
distributed exponential interarrival times, in terms of which the increment
X(s+ t)−X(s) can be expressed, for t > 0, as

X(s+ t)−X(s) = max
n

{
n : T s +

n−1∑
r=1

Ti+r ≤ t
}
,

which can be interpreted as a counting process with arrival times

Wn = T s +
n−1∑
r=1

Ti+r, n = 1, 2, 3, . . . .



4.6 Stochastic Processes 107

0 5 10 15
0

5

10

15

time

nu
m

be
r 

of
 a

rr
iv

al
s

Figure 4.11 Three sample paths of the Poisson process with rate parameter λ = 1,
together with the time-dependent mean λt (the straight line) of the process. Figure
adopted from [5].

When compared with (4.19), these arrival times differ from those of the
counting process X(t) in the starting time T s. Hence the process defined by
the Poisson increments X(s+ t)−X(s) shares the same distribution with the
counting process X(t), that is,

X(s+ t)−X(s) ∼ X(t) .

The Poisson increments X(s+ t)−X(s) are stationary because they do not
depend on the choice of s, and are independent because the above property does
not depend on the arrival times outside the interval [s, s+ t]. Thus a Poisson
process can also be defined as a counting process that has stationary and
independent increments. In summary, for a Poisson process, the probability
of n arrivals in a length t of time is given by

Pr [X(t) = n] = (λt)ne−λt
n! , n = 0, 1, 2, . . . , (4.20)

which corresponds to the Poisson distribution with rate parameter λt. Sample
paths of a Poisson process can be computed by generating a sequence of
exponentially distributed random numbers using (4.10) and incrementing the
process by unity each time. Three sample paths of a Poisson process, with rate
parameter λ = 1, are shown in Figure 4.11 together with the time-dependent
mean λt of the process (plotted by a solid line).
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Sample paths of the Poisson process can be easily computed in Matlab.
The three sample paths in Figure 4.11 were generated by the following Matlab
code:

% T = exprnd(1,14,1);
% if statistics toolbox is installed, uncomment the
% previous line and comment out the following line.
T = repmat(-1,14,1).*log(rand(14,1));
W = [0; cumsum(T)];
n = (0:14)’;
stairs(W,n)

Our view about the Poisson process so far has been global. For general
stochastic processes, this is not convenient, and the usual way is to look
(locally) at what happens during an arbitrarily short time interval (t, t+ h].
Since the Poisson increments are stationary, we can choose the interval to be
(0, h]. We will use the notation o(h) to represent negligible quantities that
vanish faster than h as the latter approaches zero. More precisely, a function
f(h) is said to be o(h) if f(h)/h→ 0 as h→ 0. The probability of no arrivals
in the interval is

Pr [X(h) = 0] = Pr [T0 > h] = e−λh = 1− λh+ o(h),

and the probability of one arrival is

Pr [X(h) = 1] = Pr [T0 ≤ h] = 1− e−λh = λh+ o(h) .

The probability of two arrivals is

Pr [X(h) = 2] = Pr [T0 + T1 ≤ h] .

But the event T0+T1 ≤ h is the same as the intersection of the two independent
events T0 ≤ αh and T1 ≤ (1− α)h for any real 0 ≤ α ≤ 1. Therefore

Pr [X(h) = 2] = Pr [T0 ≤ αh] Pr [T1 ≤ (1− α)h]
= (λαh+ o(h)) ((1− α)λh+ o(h))
= o(h),

(4.21)

which shows that multiple arrivals in a short time interval are extremely rare.
Let P (n, t) denote the probability of n arrivals in a time interval of length t,
that is,

P (n, t) = Pr [X(t) = n] .
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Then the local behavior of a Poisson process in a short interval of length h
can be summarized as

P (n, h) = o(h) +


1− λh, if n = 0,
λh, if n = 1,
0, if n > 1,

(4.22)

which tells that the arrivals in a Poisson process are independent over nonover-
lapping intervals, have a constant density (or rate) λ, and that multiple
arrivals in a short time interval are extremely rare. Let us investigate, for
arbitrarily small h, the probability P (n, t+ h) of k arrivals in time t+ h. For
k = 0 it is straightforward. The probability of no arrivals in time t+ h is

P (0, t+ h) = P (0, t)P (0, h)

because of the independence of arrivals in the nonoverlapping intervals (0, t]
and (t, t+ h]. Using (4.22), we get

P (0, t+ h) = P (0, t)(1− λh+ o(h)),

and for vanishingly small h, we get the differential equation

∂

∂t
P (0, t) = −λP (0, t),

subject to the initial condition P (0, 0) = Pr [X(0) = 0] = 1. The solution
P (0, t) = e−λt satisfies the Poisson distribution. For k ≥ 1 we note that n
arrivals in t+ h are possible in the following mutually exclusive ways:

1. There are n arrivals during (0, t] and no arrivals during (t, t+ h]. The
probability of this happening is the product P (n, t)P (0, h).

2. There are n− 1 arrivals during (0, t] and a single arrival during (t, t+h].
The probability of this happening is the product P (n− 1, t)P (1, h).

3. There are fewer than n − 1 arrivals during (0, t] and more than one
arrival during (t, t+ h]. The probability of this happening is very small
and represent by o(h).

Thus the probability of n arrivals during t + h is the sum of the above
probabilities,

P (n, t+ h) = (1− λh+ o(h))P (n, t) + (λh+ o(h))P (n− 1, t) + o(h),
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and for vanishingly small h, we obtain the system of differential equations

∂

∂t
P (n, t) = −λP (n, t) + λP (n− 1, t), k = 1, 2, . . . .

This can be combined with the case n = 0 to give

∂

∂t
P (n, t) =

{
−λP (0, t), if n = 0,
−λP (n, t) + λP (n− 1, t) if n ≥ 1 .

(4.23)

We can solve this system by employing the probability generating function
presented earlier in Section 4.5.2. Multiply by zn and sum over n,

∞∑
n=0

zn
∂

∂t
P (n, t) = −λ

∞∑
n=0

znP (n, t) + λ
∞∑
n=1

znP (n− 1, t),

where we note that P (n, t) is zero for negative values of n. Interchanging
summation and differentiation, and recognizing the probability generating
function

P(z, t) =
∞∑
n=0

znP (n, t),

leads to the partial differential equation

∂

∂t
P(z, t) = −λP(z, t) + zλP(z, t) = (z − 1)λP(z, t) .

This partial differential equation can be solved for P(z, t) subject to the initial
condition

P(z, 0) =
∞∑
n=0

znP (n, 0) = P (0, 0) = 1

to give

P(z, t) = e(z−1)λt = e−λt
∞∑
n=0

(zλt)n
n! .

Comparing this with the definition of PGF gives the PMF for a Poisson
process,

P (n, t) = e−λt (λt)
n

n! , n = 0, 1, 2, . . . ,

and thus we have arrived at (4.20). A more detailed explanation of the method
of generating functions for solving differential equations involving probabilities
can be found in [2, 5]. Therefore, combined with independence of increments,
(4.22) can be used as an alternative definition of a Poisson process. To get a
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Figure 4.12 Temporal progress of the (distribution of a) Poisson process. The
PMF is plotted for λ = 1 for two time intervals: 0 < t < 5 (left) and 5 < t < 20
(right).

feel for how a Poisson process evolves in time, the PMF of the process, with
λ = 1, is plotted in Figure 4.12 at two time subintervals. The PMF spreads
out from the initial peak and ultimately will look like a Gaussian distribution.

4.6.2 Birth–Death Processes
The arrivals of a Poisson process are so random that the current state n
has no influence on the arrival rate λ. However, this is not an interesting
behavior. For example, the number of individual cells in a culture does have
an influence on the rate of proliferation or cell death. Such an influence could,
for example, arise from the following simple mechanism. Imagine a population
of stem cells each of which has, during a short time interval [t, t + dt], a
probability λbdt of producing a copy of itself (a birth) and a probability λddt
of losing itself (cell death). The coefficients λb and λd can be interpreted as
the respective transition rates of birth and death of an individual. If there
are n individuals present in the colony at time t, it follows, from the additive
rule of probabilities of mutually exclusive events, that during the short time
interval, the probability of a birth somewhere in the colony is λbndt, whereas
the probability of a death is λdndt. In the next chapter, we will learn how to
turn this information of birth/death probability into a differential equation
for the probability P (n, t) of finding the colony in state n at time t.
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4.6.3 Toward Markov Processes
In a general stochastic process, the probability of moving from one state to
another can depend on its state at present time and past times. However,
many stochastic processes rapidly forget their past history. In that case, it is
reasonable to assume that the probability of moving from one state to another
is entirely determined by the most recent state and the states at earlier times
have no influence. This is the Markov assumption, and the process is called
Markov process. In the next chapter we will return to Markov processes for a
more formal discussion.

Problems
4.1. A substrate and an inhibitor are competing for a binding site on an
enzyme. Assume that the probability that in a particular scenario, the
substrate wins is 0.7. If 10 observations are made to see which of the two is
bound to the enzyme, compute the probability that the substrate is bound in
exactly five observations.

4.2. The color of one’s eyes is determined, in a simplified model, by a single
pair of genes, with the gene for brown eyes being dominant over the one for
blue eyes. This means that an individual having two blue-eyed genes will have
blue eyes, while one having either two brown-eyed genes or one brown-eyed
and one blue-eyed gene will have brown eyes. When two people mate, the
resulting offspring receives one randomly chosen gene from each of its parents’
gene pair. If the eldest child of a pair of brown-eyed parents has blue eyes,
what is the probability that exactly two of the four other children (none of
whom is a twin) of this couple also have blue eyes?

4.3. Imagine a mechanism inside the cell that, during DNA replication,
inspects 1000 DNA base pairs per minute. Assume that the probability of
finding a replication error in a base pair is 0.001. What is the probability of
finding at least three replication errors?

4.4. Red blood cells are replaced, on average, every 28 days. Assuming an
exponential distribution for the lifetime of red blood cells, find the distribution
of the time required for 10 turnovers (successive replacements).

4.5. Suppose that the life of a cell, measured in days, is exponentially dis-
tributed with an average value of 10 days. What is the probability that the
cell will be intact after 5 days? If it turns our that the cell has survived 5
days, what is the probability that it survives another 5 days?

4.6. Write a Matlab code that generates a random number from the binomial
distribution with (trials, success) parameters (n, p).
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4.7. Write a Matlab code that generates a random number from the expo-
nential distribution with parameter a. Extend the code to generate a random
number from the gamma distribution with the (rate, shape) parameters (a, n).

4.8. Write a Matlab code that generates a random number from the geometric
distribution with success probability p.

4.9. A stem cell divides into two daughter cells that may be either both stem
cells, with probability 1/5, or both committed progenitor cells, with probability
1/5, or else as in invariant asymmetric division, one daughter cell may be stem
cell (self renewal) and the other a progenitor (due to differentiation), with
probability 3/5. Define the random variable X to be the number of daughter
cells that are stem cells. Write down the probability distribution for X. How
would you generate samples of X?

4.10. Transcription factors are molecules that are activated by signaling
pathways to regulate gene expression. The arrivals of transcription factors
at a promoter region can be modeled as a Poisson process. Suppose that on
average 30 molecules arrive per minute. What would you choose for the rate
λ in arrivals per second? What is the expected interarrival time?



Chapter 5

Stochastic Modeling of Biochemical
Networks

In this chapter, we present a stochastic framework for modeling subcellular
biochemical reaction networks. In particular, we make an effort to show
how the notion of propensity, the chemical master equation (CME), and the
stochastic simulation algorithm arise as consequences of the Markov property.
We would encourage the reader to pay attention to this, because it is not
easy to see this connection when reading the relevant literature in systems
biology. We review various analytical approximations of the CME, leaving out
stochastic simulation approaches reviewed in [113, 155]. Moreover, we sketch
interrelationships between various stochastic approaches. The books [114]
and [165] inspired this chapter and can be referred to for further reading.

5.1 Stochastic Formulation
Since the occurrence of reactions involves discrete and random events at the
microscopic level, it is impossible to deterministically predict the progress
of reactions in terms of the macroscopic variables (observables) N(t) and
Z(t). To account for this uncertainty, one of the observables N(t), Z(t), X(t)
is formulated as a stochastic process. If we choose the copy number N(t) as
the observable of the system, a sample value n of the process is the state of
our biochemical system under consideration.

Our goal is to determine how the process N(t) of copy numbers evolves
in time. Starting at time t = 0 from some initial state N(0), every sample
path of the process remains in state N(0) for a random amount of time W1
until the occurrence of a reaction takes the process to a new state N(W1);
it remains in state N(W1) for another random amount of time W2 until the
occurrence of another reaction takes the process to a new state N(W1 +W2),
and so on, as shown in Figure 5.1. In other words, the time-dependent copy
number N(t) is a jump process.

The stochastic process N(t) is characterized by a collection of state

Stochastic Approaches for Systems Biology,
DOI 10.1007/978-1-4614-0478-1_5, © Springer Science+Business Media, LLC 2011
M. Ullah and O. Wolkenhauer, 115
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Figure 5.1
A time-course realization of
a jump process. Labels Wi

on the time axis denote the
waiting times.

probabilities and transition probabilities. The state probability

P (n, t) = Pr
[
N(t) = n

]
is the probability that the process N(t) is in state n at time t. The transition
probability

Pr
[
N(t0 + t) = n |N(t0) = m

]
is the conditional probability that process N(t) has moved from state m to
state n during the time interval [t0, t0 + t]. The analysis of a stochastic process
becomes greatly simplified when the above transition probability depends on
(i) the starting statem but not on the states before time t0 and (ii) the interval
length t but not on the start time t0. Property (i) is the well-known Markov
property, and a process with this property is said to be a Markov process.
The process holding property (ii) is said to be a homogeneous process. If the
molecules are well mixed and are available everywhere for a reaction (space
can be ignored), then the copy number N(t) can be approximately formulated
as a homogeneous Markov process in continuous time. In this text, all Markov
processes will be assumed to be homogeneous unless stated otherwise. Now
we use a simplified notation for the above transition probability:

P (n|m, t) = Pr
[
N(t0 + t) = n |N(t0) = m

]
= Pr

[
N(t) = n |N(0) = m

]
.

(5.1)

It should be remembered that t in the above equation is the length of the
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time interval. The initial condition is usually fixed and the state probability
can be written as a transition probability

P (n, t) = P (n|n0, t) = Pr
[
N(t) = n |N(0) = n0

]
.

The Markov property has two important consequences, explained in the
following two sections.

5.1.1 Chapman–Kolmogorov Equation
The Markov property places a consistency condition on the transition proba-
bilities. To see this, decompose the transition probability, as

Pr
[
X(t+ w) = n |X(0) = m

]
=
∑
n′

Pr
[
X(t+ w) = n |X(t) = n′ ∩ X(0) = m

]
Pr
[
X(t) = n′ |X(0) = m

]
=
∑
n′

Pr
[
X(t+ w) = n |X(t) = n′

]
Pr
[
X(t) = n′ |X(0) = m

]
where the Markov property allows us to ignore the information X(0) = m
(about the past event) in the joint condition (in the second line). In the
compact notation for transition probabilities, the above consistency condition
takes the form

P (n|m, t+ w) =
∑
n′

P (n|n′, w)P (n′|m, t), (5.2)

which is known as the Chapman–Kolmogorov equation (CKE) for continuous-
time Markov processes. This equation expresses the probability of a transition
(m→ n) as the summation of probabilities of all transitions (m→ n′ → n) via
the intermediate states n′. Figure 5.2 illustrates the idea conveyed by the CKE.
It is important to clarify that the CKE is only a consistency condition imposed
on every stochastic process by the Markov property and cannot characterize a
particular process. We need dependence relations between random variables of
the process to characterize it. Typically, that is achieved by investigating the
local behavior of transition probabilities in a short time interval. Replacing
the length w of the time interval of the transition probabilities in (5.2) by ∆t
and fixing the initial condition, the CKE (5.2) reduces to

P (n, t+ ∆t) =
∑
n′

P (n|n′,∆t)P (n′, t), (5.3)
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Figure 5.2
Graphical interpretation of the Chapman–
Kolmogorov equation. The probability of a
transition m→ n can be obtained by sum-
ming up the probabilities of all transitions
m → n′ → n, via intermediate states n′.
Drawing adopted from [54].

time

m
t0

t

n

n′

t + w

where the transition probabilities away from the fixed initial state have been
replaced by the state probabilities. Later we will see that the short-time
transition probabilities P (n|n′,∆t) can be expressed in terms of parameters of
the particular process under consideration when certain modeling assumptions
about the underlying chemical reactions are made. This will open the door
for an analytical characterization of a particular Markov process in Section
5.5.

5.1.2 The Memoryless Property
Suppose the Markov process N(t) is in state n at time t0 and let Tj(n) denote
the time in state n until the occurrence of a reaction Rj takes the process
to state n + S�j , where S�j is the jth column of the stoichiometry matrix
(Chapter 2). If the reaction has not occurred during [t0, t0 +w], we can write
Tj(n) > w. This knowledge, however, does not change the uncertainty in time
until the next reaction. In other words, the process is memoryless, and its
subsequent behavior is independent of w. The mathematical representation
(4.9) of this memoryless property was discussed in the previous chapter, which
we rewrite here in the present notation as

Pr
[
Tj(n) > w + t |Tj(n) > w

]
= Pr

[
Tj(n) > t

]
.

This holds only for the exponential distribution, as shown in the previous
chapter.

The memoryless property, and hence the fact that the times between
reactions are exponentially distributed, opens the door for stochastic simula-
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tions of biochemical reaction networks. That will be our focus in the following
section.

5.2 Propensity as a Transition Rate
We here derive the basis for a stochastic simulation algorithm, which has
played an important role in applications of stochastic modeling to systems
biology [113, 155]. It follows from the previous section that the time Tj(n)
until the occurrence of reaction Rj has an exponential distribution with a
parameter, say aj(n). We can thus write

Pr
[
Tj(n) > t

]
= exp

(
−aj(n)t

)
(5.4)

for the probability that an Rj reaction will not occur in the next time interval
of length t, provided reactions of other types involving Rj reactants do not
occur during this period. Using a Taylor expansion, for an arbitrarily short
interval of length ∆t, the above probability can be written as

Pr
[
Tj(n) > ∆t

]
= exp

(
−aj(n)∆t

)
= 1− aj(n)∆t+ o(∆t), (5.5)

where the sum of the second- and higher order terms has been written as
o(∆t) because it will vanish faster than ∆t as the interval is made vanishingly
short. The probability of occurrence of an Rj reaction during the same short
interval is complementary to the above:

Pr
[
Tj(n) ≤ ∆t

]
= aj(n)∆t+ o(∆t) . (5.6)

The rate parameter aj(n), which gives the probability per unit time of the
occurrence of an Rj reaction in state n, is referred to as the reaction propensity.
Although propensity is often is seen as a measure of how fast a reaction
proceeds, it is important to remember it as a “probability per unit time” in
contrast to the conversion rate v̂j(n), which is the number of Rj occurrences
per unit time. In other words, while aj(n)∆t gives the probability of an Rj
occurrence in a short time interval of length ∆t , the number of Rj occurrences
in the same interval is given by v̂j(n)∆t. Recall that the propensity aj(n) is
defined at a particular state n and is hence a deterministic quantity. However,
it can be interpreted as a sample value of a random variable aj(N(t)) that is
a function of the random variable N(t), the copy number at a fixed time t. If
t is varying, then N(t), and hence aj(N(t)), is a stochastic process.
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5.2.1 Mean Conversion Rate
In a vanishingly short interval, it is highly improbable that a particular
reaction will occur more than once. To see this, note that the probability of
two occurrences of Rj during a time interval [t, t+ ∆t] is the joint probability
of its first occurrence during [t, t + α∆t] and a second occurrence during
(t+ α∆t, t+ ∆t]:

Pr
[
Tj(n) ≤ α∆t

]
Pr
[
Tj (n+ S�j) ≤ (1− α)∆t

]
=
(
aj(n)α∆t+ o(∆t)

)(
aj (n+ S�j) (1− α)∆t+ o(∆t)

)
= o(∆t),

where 0 < α < 1. Therefore, the probability in (5.6) is equivalent to the
probability in state n of one reaction (i.e., a unit increment in the reaction
count) of type Rj during [t, t+ ∆t]:

Pr
[
Zj(t+ ∆t)− Zj(t) = 1 |N(t) = n

]
= aj(n)∆t+ o(∆t) .

The probability distribution in state n of the short-time Rj reaction-count
increment ∆Zj = Zj(t+ ∆t)− Zj(t) during the time interval [t, t+ ∆t) is

Pr
[
∆Zj = zj |N(t) = n

]
= o(∆t) +


aj(n)∆t if zj = 1,
1− aj(n)∆t if zj = 0,
0 if zj > 1 .

(5.7)

It is interesting to note that for a vanishingly small ∆t, the change in propensity
during the interval is vanishingly small, which in turn implies that the above
distribution approaches a Poisson distribution with mean (and variance)
aj(n)∆t. The expected value, conditioned on N(t) = n, of this short-time
Rj reaction-count increment is a summation over all possible values zj of the
reaction-count increment, each weighted by its probability,

〈∆Zj〉n = 〈∆Zj |N(t) = n〉

=
∞∑
zj=0

zj Pr
[
∆Zj = zj |N(t) = n

]

=

zj=1︷ ︸︸ ︷
aj(n)∆t+

zj>1︷ ︸︸ ︷
o(∆t) .

(5.8)

The subscript n here reflects conditioning on N(t) = n. Comparing the
above result with the rate law (2.15), the reaction propensity aj(n) can be
interpreted as the (conditional) mean conversion rate from state n. The
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unconditional expectation of the short-time Rj reaction-count increment can
be obtained by summing the probabilities P (n, t) weighted by the above
conditional expectation over all possible states n:〈

∆Zj
〉

=
∑
n

〈
∆Zj

〉
n
P (n, t)

=
∑
n

aj(n)P (n, t)∆t+ o(∆t)

=
〈
aj
(
N(t)

)〉
∆t+ o(∆t),

which for vanishingly small ∆t leads to the ODE

d
dt 〈Zj(t)〉 =

〈
aj
(
N(t)

)〉
. (5.9)

This ODE conveys an important relation: the expected reaction count increases
with time at a rate equal to the expected reaction propensity. In other words,
analogous to (2.15), the mean conversion rate is equal to the mean reaction
propensity.

5.2.2 Reaction as a State Transition
The state transition from state n associated with channel Rj will be written
as

n
aj(n)−−−−−−−−→ n+ S�j ,

because the completion of one Rj reaction simply adds the jth column of the
stoichiometry matrix to the state. The completion of one Rj reaction could
also bring the system into state n from another state. This state transition
can be written as

n− S�j
aj (n− S�j)−−−−−−−−−−−−→ n .

5.2.3 Propensity Rate Law
The dependence relation of the propensity on the state n is determined by the
system being modeled and reflects the assumptions made about the system. If
Rj is an elementary reaction in a well-mixed system, it is reasonable to assume
that each possible combination of the Rj reactant molecules has the same
probability cj per unit time to react. In other words, cjdt gives the probability
that a particular combination of Rj reactant molecules will react in a short
time interval (t, t + dt]. In the literature, cj is referred to as the stochastic
(reaction) rate constant. If there are hj(n) different possible combinations of
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Rj reactant molecules in state n, then the propensity aj(n) can be written as

aj(n) = cjhj(n) . (5.10)

The form of hj(n) depends on the order of the reaction Rj .

Zero-order reaction (∅→ X): Since the reaction rate does not depend on
the reactant, the propensity is a constant a(n) = cj if the reaction is a single
step. If the reaction is nonelementary, then the propensity is a function of
the copy numbers of any enzymatic chemical species involved.

First-order reaction (X→): The stochastic reaction rate cj of this reaction
is the probability per unit time of a particular reactant molecule undergoing
the reaction. Given n reactant molecules, the probability per unit time of
any reactant molecule undergoing the reaction is obtained by summing the
individual probabilities of all n reactant molecules, that is, aj(n) = cjn.

Bimolecular reaction (X1 + X2 →): The stochastic reaction rate cj of this
reaction is the probability per unit time of a particular pair of reactant
molecules undergoing the reaction. Given n1 copies of reactant X1 and
n2 copies of reactant X2, there are n1n2 distinct possible pairs of reactant
molecules available for the reaction. The probability per unit time of any
pair of reactant molecules undergoing the reaction is obtained by summing
the individual probabilities of all n1n2 pairs of reactant molecules, that is,
aj(n) = cjn1n2.

Bimolecular reaction (2X1 →): The stochastic reaction rate cj of this
reaction is the probability per unit time of a particular pair of reactant
molecules undergoing the reaction. Given n copies of reactant X, there are
(n−1)n/2 distinct possible pairs of reactant molecules available for the reaction.
The reaction propensity is thus aj(n) = cj(n−1)n/2.

For an elementary reaction channel Rj of the general form (2.1), with

¯
Sij molecules of reactant species Xi, we can write the combinatorial function

hj(n) =
s∏
i=1

(
ni

¯
Sij

)
. (5.11)

However, it is highly unlikely that a reaction of order higher than two will
result from all its reactants coming together and reacting in one step, for
example by collision. A more realistic model will decompose the high-order
reaction into two or more one-step reactions.
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M-code 5.1 makePropensity: implements propensity function (5.10).

function a = makePropensity(c,Su)
r = size(Su,2);
inz = (Su>0);
a = @RateLaw;

function w = RateLaw(n)
C = repmat(n,1,r);
C(~inz) = 1;
ineg = (C<Su);
C(inz & ineg) = 0;
i = (inz & ~ineg);
C(i) = arrayfun(@nchoosek,C(i),Su(i));
w = c.*prod(C)’;

end
end

Matlab implementation: When all the reaction channels are elementary,
the above combinatorial expression determines the number hj(n) of reactant
combinations that multiplies the rate constant cj in (5.10) for the reaction
propensities aj(n). To implement such a computation in Matlab, let us rep-
resent the number r of reaction channels by Matlab scalar r, the matrix

¯
S

(of stoichiometries on the left) by Matlab matrix Su and the stochastic rate
constant c by Matlab vector c. Then the propensity function a(·) can be
implemented as a function handle a in the following Matlab code:

a = @(n) c.*prod(arrayfun(nchoosek, repmat(n,1,r), Su))’;

where the Matlab function nchoosek has been employed to implement the
combinatorial computation of (5.11). As pointed out before, the compact code
above is not efficient for large reaction networks because of the computationally
expensive combinatorics and multiplications involved. Another, more serious,
issue with the code is that the function nchoosek does not allow its second
argument to be greater than its first one. This latter case arises when the
abundance of a reactant species decreases below its participation in a reaction
channel. To avoid the aforementioned issues and any unnecessary compu-
tations, the code is replaced by the function makePropensity in M-code
(5.1). Here the output a returned by the main function makePropensity
is a function handle to the nested function Propensity. Note how extra
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Table 5.1 Examples of elementary reactions Rj listed with their propensities aj(n)
and conversion rates v̂j(n). The last column shows the condition for equality of the
two. The resulting relationship between cj and k̂j is translated in terms of the rate
constant kj following (2.1). Note that cases of repeating reactant species require a
large system size, Ω � 1.

Rj aj(n) v̂j(n) aj(n) = v̂j(n) if

∅
kj−−→ X cj k̂j cj = k̂j = Ωkj

X
kj−−→? cjn k̂jn cj = k̂j = kj

X1 +X2
kj−−→? cjn1n2 k̂jn1n2 cj = k̂j = kj

Ω

2X kj−−→? cj
(n−1)n

2 k̂jn
2 cj = 2k̂j = 2kj

Ω

X1 +X2 +X3
kj−−→? cjn1n2n3 k̂jn1n2n3 cj = k̂j = kj

Ω2

X1 + 2X2
kj−−→? cjn1

(n2−1)n2
2 k̂jn1n

2
2 cj = 2k̂j = 2kj

Ω2

combinatorial computations are avoided for the obvious cases
¯
Sij = 0 and

¯
Sij = 1.

For elementary reactions, the stochastic rate constant c is closely related
to the deterministic rate constant, as shown below.

5.2.4 Deterministic- and Stochastic Reaction Rates
Using the interpretation of propensity as the mean reaction count per unit time
from (5.9), the propensity is analogous to the conversion rate v̂j defined earlier
in the deterministic framework. Hence, the propensity can be interpreted as
the stochastic conversion rate. The two kinds of rates are given for selected
elementary reactions in Table 5.1. The condition under which the two type
of extensive reaction rates are equal is shown in the corresponding entry of
the last column. This also provides the relationship between the stochastic
rate constant cj and the deterministic rate constant kj . That relationship
is generalized in the following section. Note that the two rates differ by an
order of one molecule in the case of repeating reactant species:

aj(n) = v̂j(n) +O(1)
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Here O(x) represents a function (neglected term) bounded by some linear
function of x. The difference O(1) will vanish for an infinitely large system.
The above relation can also be translated to a relation between propensity
and reaction rate, namely

aj(n) = Ω
(
vj(x) +O

(
Ω−1)) , (5.12)

where n = Ωx is the assumed system state [33].

5.2.5 Deterministic- and Stochastic Rate Constants
Let us find the conditions under which the deterministic extensive reaction
rate and propensity of a general elementary reaction are approximately the
same. From (2.18), (5.10), and (5.11) we can propose

k̂j

s∏
i=1

n¯
Sij

i = v̂j(n) ≈ aj(n) = cj

s∏
i=1

(
ni

¯
Sij

)
.

The leftmost expression is valid only in the deterministic framework, which
requires large system size, Ω � 1. To the extent that this assumption is valid,
the combinatorial function can be approximated as(

ni

¯
Sij

)
= (ni − ¯

Sij + 1) · · · (ni − 1)ni

¯
Sij !

=
(

Ω¯
Sij

¯
Sij !

)(
xi − ¯

Sij − 1
Ω

)
· · ·
(
xi −

1
Ω

)
xi

≈
(

Ω¯
Sij

¯
Sij !

)
x¯
Sij

i for Ω � 1 .

Inserting this into the previous equation leads to the stochastic rate constant

cj = k̂j

s∏
i=1

(
¯
Sij !) = kj

ΩKj−1

s∏
i=1

(
¯
Sij !) , (5.13)

where Kj =
∑s
i=1 ¯

Sij is the number of Rj reactant molecules required to
collide and possibly result in a single occurrence of the reaction. The above
derivation is a refinement of our earlier attempt in [169].

Example 5.1 (Standard modification) In the standard modification (2.5),
the copy number N(t) of the unmodified proteins is a simple birth–death
process. Each copy of the unmodified protein U is modified at a rate kw.
Similarly, each copy of the modified protein W is demodified at a rate ku. Both
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the modification and the demodification are monomolecular reactions. With
0 < n < ntot unmodified proteins, expressions for the reaction propensities
a(n) are listed here (on the right) together with the corresponding reactions
on the left:

U kw−−−−−→W,

W ku−−−−−→ U,

∣∣∣∣∣∣ aw(n) = kwn,

au(n) = (ntot − n)ku .

 (5.14)

Example 5.2 (Heterodimerization) The reversible heterodimerization (2.6)
is a 3-component 2-reaction network. Let N1(t), N2(t), and N3(t) denote, the
respective copy numbers of the components X1, X2, and X3. The full state
has to respect the two conservation relations (2.22), which translate to

N1(t) +N3(t) = q̂1 and N2(t) +N3(t) = q̂2,

where q̂1 = Ωq1 and q̂2 = Ωq2 are the conserved copy numbers and Ω = NAV
is the system size. The Markov process N(t) = N3(t) having states n = n3
is sufficient to describe the system, because the remaining two variables
can be determined from the conservation relations above. Subject to those
conservation relations, expressions for the channel propensities a(n) in state
n = n3 are listed here (on the right) together with the corresponding reactions
on the left:

X1 + X2
k1−−−−−→ X3,

X3
k2−−−−−→ X1 + X2,

∣∣∣∣∣∣ a1(n) = k̂1 (q̂1 − n) (q̂2 − n) ,

a2(n) = k2n .

 (5.15)

Example 5.3 (Lotka–Volterra model) The mutual interaction between two
kinds of entities depicted in (2.7) is a 2-component 3-reaction network. Let
N1(t) denote the population of the prey X1, and N2(t) that of the predator
X2. The prey replication and the predation are of the second order, whereas
predator death is of first order. Expressions for the channel propensities
a(n) in state n = (n1, n2)T are listed here (on the right) together with the
corresponding reactions on the left:

X1 + A k̂1−−−−−→ 2X1,

X1 + X2
k̂2−−−−−→ 2X2,

X2
k̂3−−−−−→ ∅,

∣∣∣∣∣∣∣∣∣∣
a1(n) = k̂1nAn1,

a2(n) = k̂2n1n2,

a3(n) = k̂3n2 .

 (5.16)

Example 5.4 (Enzyme kinetic reaction) The enzyme kinetic model (2.8) is
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a 4-component 3-reaction network. Let NE(t) denote the copy number of
the enzyme, NS(t) that of the substrate, NES(t) that of the complex, and
NP(t) that of the product. The full state has to respect the two conservation
relations (2.24), which translate to

NE(t) +NES(t) = ntot
E and NS(t) +NES(t) +NP(t) = ntot

S ,

where ntot
E = Ωxtot

E and ntot
S = Ωxtot

S are the conserved copy numbers and
Ω = NAV . The Markov process

N(t) =
(
NS(t), NES(t)

)T
having states n = (nS, nES)T is sufficient to describe the system, because
the remaining two variables can be determined from the conservation rela-
tions above. The (enzyme–substrate) complex formation is a bimolecular
reaction, whereas the complex dissociation and the product formation are
monomolecular reactions. Expressions for the reaction propensities a(n) in
state n = (nS, nES)T are listed here (on the right) together with the corre-
sponding reactions on the left:

E + S k1−−−−−→ ES,

ES k2−−−−−→ E + S,

ES k3−−−−−→ E + P,

∣∣∣∣∣∣∣∣∣
a1(n) = k̂1

(
ntot

E − nES
)
nS,

a2(n) = k2nES,

a3(n) = k3nES .

 (5.17)

Example 5.5 (Schlögl model) For the Schlögl reaction scheme (2.9), let
xA and xB denote the constant respective concentrations of chemicals A
and B, and let N(t) denote the time-dependent copy number of chemical
X. The first two reaction channels, the autocatalysis and its backward
dissociation, are trimolecular reactions with two and three identical species,
respectively. The last two reaction channels, the synthesis/dissociation of
X from/to B, are monomolecular reactions. Expressions for the reaction
propensities a(n) in state n = (n1, n2)T are listed here (on the right) together
with the corresponding reactions on the left:

A + 2X k1−−−−−→ 3X,

3X k2−−−−−→ A + 2X,

B k3−−−−−→ X,

X k4−−−−−→ B,

∣∣∣∣∣∣∣∣∣∣∣∣

a1(n) = k̂1n (n− 1) ,

a2(n) = k̂2n (n− 1) (n− 2) ,

a3(n) = k̂3,

a4(n) = k4n,


(5.18)
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where the new rate parameters are defined as

k̂1 = k1xA
Ω , k̂2 = k2

Ω2 , k̂3 = k3xBΩ,

in terms of the system size Ω = NAV . Note that the constant concentrations
have been digested in the conversion rate constants for a simpler notation.

Network reduction: The last example shows an interesting feature of some
biochemical reaction networks. In this example, reaction channels R1 and
R3 both have the same stoichiometry as far as the abundance N(t), the only
state variable, is concerned. A reaction of either of the two channels will take
the system from state n to state n+ 1. Similarly, a reaction of either channel
R1 or R4 will take the system from state n to state n− 1. Thus, as far the
state transitions are concerned, the reaction network (5.18) can be reduced to
a birth–death process with birth rate a+(n) and death rate a−(n) given by

a+(n) = k̂1n (n− 1) + k̂3,

a−(n) = k̂2n (n− 1) (n− 2) + k4n .

}
(5.19)

In general, if the stoichiometry matrix S of a reaction network has identical
columns, the network can be reduced by merging the set of reaction channels
corresponding to those columns in the above manner.

Example 5.6 (Gene regulation) For the gene regulation scheme (2.11) write
nM(t), nG(t), and nP(t) for the respective time-dependent copy numbers
of mRNA M, the unbound gene G, and protein P. The total gene copy
number ntot

G is assumed to be constant, so that the bound (repressed) protein
concentration is simply ntot

G − nG. The reaction propensities based on mass-
action kinetics are (each to the right of the corresponding reaction channel)

G km−−−−−→ G + M,

M kp−−−−−→ M + P,

G + P kb−−−−−→ GP,

GP ku−−−−−→ G + P,

M k−m−−−−−→ ∅,

P
k−p−−−−−→ ∅,

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

am(n) = kmnG,

ap(n) = kpnM,

ab(n) = kbnGnP,

au(n) = ku
(
ntot

G − nG
)
,

a−m(n) = k−mnM,

a−p (n) = k−p nP .


(5.20)
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Stochastic simulation: The idea of reaction propensity allows one to derive
strategies for generating sample paths of the stochastic process N(t). The
practice of generating sample paths of a stochastic process is referred to as
stochastic simulation. In the following two sections we look at two alternatives:
discrete and continuous stochastic simulation.

5.3 Discrete Stochastic Simulation
The discrete approach to stochastic simulation decomposes the problem by
asking two successive questions: (1) when is the next reaction going to occur
and (2) what type of reaction will it be?

5.3.1 Time Until the Next Reaction
Suppose that a process is in state n. The time T0(n) until the next reaction
is a continuous random variable, which can be interpreted as the exit time
(of the process away) from state n. It turns out that the exit time is also
exponentially distributed. To see this, we consider the probability that no
reaction has occurred in an interval of length t. Divide the interval into a
large number K of subintervals, each of length ∆t = t/K, so short that at
most one reaction can occur in a subinterval, with probability aj(n)∆t. The
required probability then from independence of nonoverlapping intervals is

Pr [T0(n) > t] = lim
K→∞

∏
j

(
1− aj(n) t

K

)K

= lim
K→∞

∏
j

(
1− aj(n) t

K

)K

=
∏
j

exp (−aj(n)t) = exp

−t∑
j

aj(n)

 .

Hence the exit time T0(n) from state n is exponential with rate parameter

a0(n) =
∑
j

aj(n),

which is the exit rate (of the process away) from state n. The mean exit
time is simply the reciprocal 1/a0(n), which allows an interesting observation.
Since the a0(n) will increase/decrease with an increase/decrease in the copy
numbers of the reactant species, the mean exit time will increase/decrease
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accordingly. In other words, large/small copy numbers of the reactant species
lead to frequent/rare reactions. Recall from Figure 1.5 that only frequent
reactions allow for continuous approximation of an inherently discrete process.

Random number generation: The exponential time T0(n) has CCDF

G(t) = Pr
[
T0(n) > t

]
= exp

(
−a0(n)t

)
.

If u1 is a uniform random number from [0, 1], then following (4.10),

τ = G−1(u1) = − log u1
a0(n) (5.21)

is a sample of the time until the next reaction.

5.3.2 Index of the Next Reaction
If it is known that a reaction has occurred in state n, the (conditional)
probability that it was an Rj reaction is determined as

lim
∆t→0

Pr
[
Tj(n) ≤ ∆t |T0(n) ≤ ∆t

]
= lim

∆t→0

Pr
[
Tj(n) ≤ ∆t

]
Pr
[
T0(n) ≤ ∆t

] = lim
∆t→0

aj(n)∆t+ o(∆t)
a0(n)∆t+ o(∆t) = aj(n)

a0(n) .

Thus the index J(n) of the next reaction known to have occurred in state n
is a discrete random variable taking values j with probability

Pr
[
J(n) = j

]
= aj(n)
a0(n) . (5.22)

Random number generation: The index J(n) has CCDF

F (j) = Pr
[
J(n) ≤ j

]
=

j∑
l=1

al(n)
a0(n) .

If u2 is a uniform random number from [0, 1] then, following (4.11),

j = F−1(u2) = min
w
{w : F (w) ≥ u2}
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is a sample of the random index J(n). For the range of values taken by J ,
the above condition is equivalent to

F (j − 1) < u2 ≤ F (j) .

Multiplying both sides by a0(n) and plugging in values for F (j) gives the
criteria

j−1∑
l=1

al(n) < u2a0(n) ≤
j∑
l=1

al(n) . (5.23)

for j to be a sample of the index J(n) of the next reaction known to have
occurred in state n.

5.3.3 Gillespie Algorithm
The two results (5.21) and (5.23) allow a simple procedure to simulate the
Markov process: (1) Pick a sample τ from the exponential distribution with
rate a0(n) to compute the time until the next reaction will occur, and (2)
pick a sample j from the discrete distribution with probabilities (5.22) to
determine the type of the next reaction. This is the stochastic simulation
algorithm (SSA), known as the “Gillespie algorithm” [52] and involves the
following steps:

1. Initialize the system at t = 0 with initial numbers of molecules for each
species, n1, . . . , ns.

2. For each j = 1, . . . , r, calculate aj(n) based on the current state n.

3. Calculate the exit rate a0(n) =
∑r
j=1 aj(n). Terminate if a0(n) = 0.

4. Compute a sample τ of the time until the next reaction using (5.21).

5. Update the time t = t+ τ .

6. Compute a sample j of the reaction index using (5.23).

7. Update the state n according to Rj . That is, set n = n+ S�j , where S�j

denotes jth column of the stoichiometry matrix S.

8. If t < tmax, return to Step 2.

Improvements and approximations: For large biochemical systems, with
many species and reactions, stochastic simulations (based on the original
Gillespie algorithm) become computationally demanding. Recent years have
seen a large interest in improving the efficiency/speed of stochastic simulations
by modification/approximation of the original Gillespie algorithm. These
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improvements include the “next reaction” method [50], the “τ-leap” method
[57] and its various improvements [20–22] and generalizations [23, 90], and
the “maximal time step method” [124], which combines the next reaction and
the τ-leap methods.

Matlab implementation: To implement the above SSA in Matlab, we need
a representation of reactions and species. All the information about our
chemical reaction network is encoded in the stoichiometry matrix (the static
information) S and the reaction propensity (the kinetic information) a(n)
as a function of the state n. So all we need is a Matlab matrix S for the
stoichiometry matrix S and a Matlab function handle a, when given the state
n as an argument, for the propensity function a(n). For elementary reactions,
the function makePropensity in M-code 5.1 returns the required function
handle representation of the propensity. If we pass these two arguments to
the function makeSSA in M-code 5.2, a function handle ssa is returned that
can be used as a function to generate sample trajectories according to the
Gillespie SSA for the given chemical reaction network. In addition, a second
function handle ensemb is returned that can be used to generate an ensemble
of trajectories by executing multiple runs of SSA.

Software implementations: The Matlab implementation above is only for
illustration and is by no means a practical one. An efficient implementation
of the SSA and its variants is available in the Matlab SimBiology toolbox in
the form of a stochastic solver. Numerous stochastic simulation packages,
implemented in other programming languages, have been developed over
time, including [15, 17, 49, 81, 129, 130]. An alternative software, which
allows arbitrary rate laws (and hence nonelementary reactions), is Cains
http://cain.sourceforge.net, a free tool for computationally efficient stochastic
simulations.

Example 5.7 (Standard modification) To use the function handle returned
by the function makeSSA in M-code 5.2, we need to specify the arguments S
and a in the M-code 5.2. For the isomerization reaction (2.5) with propensities
in (5.14), the two arguments are specified in the following piece of code:

S = [-1 1]; % stoichiometry matrix
k = [2;2]; % rate constant
a = @(n)[k(1)*n; k(2)*(ntot-n)]; % propensity
[ssa,ensem] = makeSSA(S,a);
n0 = 20; % initial condition
tmax = 5; dt = 0.01; % time scale and steps
[tt,nn] = ssa(n0,tmax,dt); % single SSA run
[TT,NN] = ensem(n0,tmax,dt,50)% 50 runs

http://cain.sourceforge.net
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M-code 5.2 makeSSA: implementation of Gillespie’s SSA.

function [ssa,ensem] = makeSSA(S,a)
rng(’shuffle’); s = size(S,1);
ssa = @gillespie; ensem = @ensemble;

function [tt,nn] = gillespie(n,tmax,dt) % Single run
t = 0; steps = tmax/dt;
tt = zeros(steps,1);
nn = zeros(steps,s);
nn(1,:) = n; idx = 1;
while t<tmax

if all(n==0) % exhaustion check
disp(’Reactants exhausted!’);
break;

end
asum = cumsum(a(n));
t = t - (1/asum(end))*log(rand);
j = find(asum>asum(end)*rand,1);
n = n + S(:,j);
if (t - tt(idx)) > dt

idx = idx + 1;
tt(idx) = t;
nn(idx,:) = n;

end
end
tt(idx:end) = []; nn(idx:end,:) = [];

end
function [TT,NN] = ensemble(n0,tmax,dt,runs) % Ensemble

TT = (0:dt:tmax)’; ttmax = zeros(runs,1);
NN = zeros(1+tmax/dt, s, runs);
for i=1:runs

[tt,nn] = gillespie(n0,tmax,dt);
ttmax(i) = tt(end);
NN(:,:,i) = interp1q(tt, nn, TT);

end
idx = (TT > min(ttmax));
TT(idx) = []; NN(idx,:,:) = [];

end
end
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Figure 5.3 Stochastic simulation for the standard modification. Left: A single run
of the SSA, mean over 1000 runs together with mean±SD (red thread), and solution
of the deterministic ODE model (dashed). Right: Endpoint histogram. Parameters:
kw = ku = 2 sec−1. Initial conditions: n = 20.

We note that the propensity function is specified as a function handle, unlike
the stoichiometry field, which is a matrix. Another point to note is that the
state variable n here is a scalar that is the copy number of unmodified proteins
because the copy number of modified proteins is just ntot-n. Of course,
values of k and ntot respectively corresponding to the rate constant vector
k and the total copy number ntot must be available in the Matlab workspace.
The stochastic simulation results for the 2-species, 2-reaction network (2.5),
with propensities (5.14), are shown in Figure 5.3. In the introductory chapter
we briefly discussed the notion of identifiability of parameters from time-course
data by taking the isomerization reaction as an example. To demonstrate the
idea through stochastic simulation, see the four cases in Figure 5.4, wherein
five sample trajectories are plotted, together with the associated deterministic
time course, for each parameter-value pair.

We see different patterns as the difference kw − ku of parameters is
changed while keeping the sum kw + ku the same. As will be seen in Chapter
6, the sum kw + ku determines the mean trajectory, whereas the difference
kw − ku determines the spread of trajectories around the mean. The time-
course measurements of mean alone provide information about the one fraction
ku/(kw+ku) only. To get information about the other fraction (kw−ku)/(kw+ku),
we need time-course measurements of the variance as well.

Example 5.8 (Heterodimerization) The stochastic simulation results for the
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Figure 5.4 Identifiability illustrated through stochastic simulation. Five sample
trajectories are shown, together with the associated deterministic time course, for
each parameter-value pair. The parameter pairs (kw, ku) in sec−1 have been selected
to satisfy kw + ku = 4. The total number of protein molecules was chosen to be
ntot = 10, initially all unmodified, that is, N(0) = 10 .

reversible heterodimerization (2.6), with propensities (5.15), are shown in
Figure 5.5. Notice the slight difference between the deterministic and the mean
trajectories. This difference arises from the nonlinearity of the propensity of
the bimolecular reaction.

Example 5.9 (Lotka–Volterra model) For the Lotka–Volterra system (2.7)
with propensities in (5.16), the arguments S and a of the function makeSSA
in the M-code 5.2 are specified in the following piece of code:

S = [1,-1,0; 0,1,-1];
a = @(n)[k(1)*nA*n(1); k(2)*n(1)*n(2); k(3)*n(2)];
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Figure 5.5 Stochastic simulation for heterodimerization. Left: A single run of
the SSA (stairs), mean over 1000 runs together with mean±SD, and solution of
the deterministic ODE model (dashed). Right: Endpoint histogram. Parameters:
k1 = 1 sec−1 (nM)−1, k2 = 1 sec−1, V = 1.66 fL (chosen so that Ω = 1 (nM)−1),
q1 = q2 = 30 nL. Initial concentrations: x1 = x2 = x3 = 15 nM.

with the values of the variables k and nA corresponding respectively to the
rate constant vector k and the constant copy number nA, available in the
Matlab workspace. Five sample trajectories are shown in Figure 5.6 side by
side with the associated phase plot. To see the possibility of species extinction,
sample trajectories starting from different initial populations are plotted in
Figure 5.7. It can be seen that for some initial populations, species extinction
occurs quickly.

Example 5.10 (Enzyme kinetic reaction) For the 4-species, 3-reaction enzy-
matic reaction (2.8) with propensities in (5.17), the arguments S and a of the
function makeSSA in M-code 5.2 are specified in the following piece of code:

S = [-1,1,0; 1,-1,-1];
a = @(n)[c(1)*n(1)*(nStot-n(2)); c(2)*n(2); c(3)*n(2)];

which assumes that the values of the variables c and nStot corresponding
respectively to the stochastic rate constant vector c and the total copy number
ntotS of molecules involving the substrate, are available in the Matlab workspace.
Recall that the stochastic rate constant c has to be computed from the
deterministic rate constant k according to the relation (5.13). Since, in this
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Figure 5.6 Stochastic simulation of the Lotka–Volterra model obtained by one
SSA run. Left: time course, Right: phase plot. Parameters (in sec−1): k̂1 = 1,
k̂2 = 0.005, k̂3 = 0.6. Initial populations are taken as 50 individuals of prey and 100
individuals of predator.
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Figure 5.7 Stochastic trajectories of the Lotka–Volterra model of interacting
species (2.7) for different initial species populations. The prey and predator popula-
tions are plotted in solid and dashed lines, respectively. Note how extinction quickly
occurs for some initial populations. Parameters are the same as in Figure 5.6.
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Figure 5.8 Five sample trajectories of species abundance in an enzymatic reaction
(2.8). The volume is chosen as V = 1.66 fL, so that Ω = 1 (nM)−1, and hence the
species concentration is numerically the same as the corresponding copy number.
Parameters are taken from Figure 2.7. Left: large copy numbers, ntot

S = 500,
ntot

E = 200. Right: small copy numbers, ntot
S = 50, ntot

E = 20.

example, only the first reaction channel is bimolecular, we have

c1 = k1
Ω , c2 = k2, c3 = k3,

with the Matlab representation

ssz = NA*V; % system size
c = [k(1)/ssz, k(2), k(3)];

which understands that values of the variables V and NA respectively cor-
responding to the volume V and Avogadro’s number NA are available in
the Matlab workspace. The volume is chosen to be V = 1.66 fL, so that
Ω = 1 (nM)−1, which means that one nanomolar of each species corresponds
to one molecule. To see the variability among realizations, five different
sample trajectories are shown in Figure 5.8 for two scenarios: small/large
initial populations on the left/right. The mean species abundance, together
with the error bars for mean±SD, computed over an ensemble of 10000 re-
alizations, are plotted side by side with the specieswise endpoint empirical
distribution (PMF) in Figure 5.9. Note that the distributions for enzyme
and enzyme–substrate complex have exactly the same shapes and differ only
in their means. This is not a coincidence, but a direct consequence of the
conservation relation (2.24).
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Figure 5.9 Ensemble of 10000 stochastic simulations for the enzymatic reaction
(2.8). The parameters and initial copy numbers are taken from Figure 5.8. Left:
The mean species abundance, together with the error bars according to mean±SD.
Right: Specieswise endpoint empirical distribution (PMF). Top: large copy numbers,
ntot

S = 500, ntot
E = 200. Bottom: small copy numbers, ntot

S = 50, ntot
E = 20.

Example 5.11 (Stochastic focusing) The branched reaction network (2.10):

Ø
ks−−−−−⇀↽−−−−−
kd

S, Ø
ki−−−−−−−⇀↽−−−−−−−
kaXS

I kp−−−−−→ P 1−−−−→ Ø,

contains a two-reaction module

Ø kaXS←−−−−−−− I kp−−−−−→ P,
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where intermediate I-molecules have two destination states in which they can
end up: state P or state Ø. For convenience, the system size is taken as Ω = 1.
If the two reactions are fast enough, the pool of I-molecules is insignificant,
and XS does not change significantly during the life span of an individual
I-molecule, then we can assume the steady state of ending up in P or state Ø
to be reached immediately. In the steady state, one of the two transitions has
occurred, and the probability that it ended up in state P is simply

P ss
P = kp

kp + kaXS
= 1

1 + XS/K
,

where K = kp/ka is the inhibition constant. A more rigorous derivation of the
above result will appear in Section 5.5. The two-reaction module can then
be approximated by a single fast reaction I→ P with transition probability
1/(1+xS/K) taken as the stationary probability of ending up in state P from
the last example. Note that we have assigned to the fast reaction an effective
transition probability and not a propensity, because the stationary state is
assumed to be achieved fast. The simplified transition I→ P follows in series
the transition Ø ki−→ I. The two in-series transitions can be combined into
one overall transition from Ø to I with an effective transition rate ki/(1+XS/K).
The branched reaction scheme (2.10) then simplifies to (2.29):

Ø
ks−−−−−⇀↽−−−−−
kd

S, Ø
ki/(1+XS/K)−−−−−−−−−−−⇀↽−−−−−−−−−−−

1
P .

For this simplified scheme, the reaction propensities a(n) in state n =
(nS, nP)T are listed here (on the right) together with the corresponding
reactions (on the left):

Ø ks−−−−−→ S,

S kd−−−−−→ Ø,

Ø
k/(1+xS/K)−−−−−−−−−−→ P,

P 1−−−−→ Ø,

∣∣∣∣∣∣∣∣∣∣∣∣∣

a+
s (n) = ks,

a−s (n) = kdnS,

a+
p (n) = ki

1 + nS
K

,

a−p (n) = nP .


(5.24)

The results of stochastic simulations performed for noise-free and noisy signal
concentrations are shown in Figure 5.10. When signal noise is insignificant, a
twofold decrease in the average signal can never result in more than a twofold
increase in the average product abundance due to intrinsic limitations of hyper-
bolic inhibition. However, when signal noise is significant, a twofold decrease
in the average signal concentration results in more than a threefold increase
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Figure 5.10 Stochastic focusing—fluctuation enhanced sensitivity. Number of
product molecules evolving against time when the product formation is inhibited
by a noisy or noise-free signal. After five time units, the signal mean 〈NS〉 shifts
from 10 to 5 due to a twofold reduction in ks from 10kd to 5kd. The respective
values of kd for slow and fast fluctuations are taken as 100 and 1000. Rapid
signal fluctuations correspond to insignificant time correlations, and hence negligible
product fluctuations. Slow signal fluctuations result in considerable time correlations
in the product synthesis rate, and hence significant product fluctuations. Parameters
that stay the same before/after the shift are ki = 104 and K = 0.1. Figure adapted
from [121].

increase in the average product abundance (Figure 5.10, top). Consequently,
when the stationary signal abundance distributions overlap significantly (Fig-
ure 5.10, bottom), the corresponding average reaction probabilities can in
fact become more separated than when fluctuations are negligible: stochastic
focusing. The increased capacity for sensitivity amplification is the only
effect of a rapidly fluctuating signal. Rapid signal fluctuations correspond
to insignificant time correlations, and hence negligible product fluctuations.
Slow signal fluctuations result in considerable time correlations in the product
synthesis rate, and hence significant product fluctuations.
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Figure 5.11 Stochastic simulation of the Schlögl model (2.9). Five sample trajec-
tories together with the deterministic time course (dashed). While the deterministic
time course settles into one of the two stable fixed points, some of the SSA trajecto-
ries spread out to other states. Left: Initial copy number N(0) = 100 is in the basin
of attraction of the first stable fixed point n = 300. Right: Initial copy number
N(0) = 80 is in the basin of attraction of the second stable fixed point n = 17.

Example 5.12 (Schlögl model) The Schlögl model (2.9) with propensities
in (5.19) is a bistable system with two stable steady states separated by an
unstable steady state. In a deterministic framework, such a system settles
to the steady state whose basin of attraction is nearer the initial condition.
In a stochastic framework, however, the behavior is more complex: either
steady state may be reached in different realizations regardless of the initial
condition. This behavior, referred to as “stochastic switching” in [58, 160], is
illustrated here in Figure 5.11, wherein two sets of five sample trajectories,
each set starting from a different initial copy number, are plotted side by side.
The associated deterministic time course is overlaid on each set. It is easy
to see that, while the deterministic time course settles into one of the stable
fixed points, some of the stochastic trajectories spread out to other states.
This can be more easily seen in the histogram of Figure 1.6, discussed earlier
in the introductory chapter. The time-varying histogram, which was obtained
from 10000 realizations, is unimodal initially and has a bimodal pattern at the
end. The Matlab implementation of the Schlögl model (2.9) with propensities
(5.19) in terms of fields of the R structure is left as an exercise for the reader.

Example 5.13 (Gene regulation) Let us revisit the gene regulation model
(2.11) with propensities in (5.20). The analysis presented here was motivated
from a more detailed discussion of stochasticity (and its origins) in [74],
which is highly recommended for a thorough reading. Results of stochastic
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Figure 5.12 Fluctuations in protein abundance for the gene regulatory network
(2.11). Left: Time courses of a single SSA run (the staircase) and the mean over
1000 runs (the curve). Right: Endpoint histogram showing the empirical probability
that a cell will have a given protein abundance. The initial conditions are ten
copies of the gene G and zero copies of the other species. The rate parameters are
km = kp = 20 sec−1, kb = 0.2 sec−1, ku = k−p = 1 sec−1, and k−m = 1.5 sec−1. Top:
Small fluctuations with high copy numbers of expressed mRNA and protein. Middle:
Large fluctuations in protein abundance arise from a decrease in the expressed
mRNA abundance, and an associated decrease in protein abundance, due to a
tenfold decrease in the transcription rate km. Bottom: Large fluctuations in protein
abundance arise from a decrease in the expressed mRNA abundance due to a tenfold
decrease in the transcription rate km. The translation rate kp was increased fivefold
to avoid any significant decrease in the protein abundance. We can clearly see
that the fluctuations are still large, because fluctuations in mRNA abundance are
a dominant source of noise in gene expression. This illustrates the propagation of
noise from transcription to translation.
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Figure 5.13 Measures of noise in gene regulation model.

simulations are shown in Figure 5.12, where time courses of protein abundance
are plotted side by side with the associated empirical probability distributions
for three different cases. For the parameters chosen in the first case (Figure
5.12, top), high abundance of expressed mRNA and protein lead to small
fluctuations. A tenfold decrease in the transcription rate km, the second case
(Figure 5.12, middle), leads to a decrease in the expressed mRNA abundance
and an associated decrease in protein abundance. That, in turn, leads to large
fluctuations in the protein abundance. The third case (Figure 5.12, bottom),
highlights how fluctuations in mRNA abundance at the transcription level
are a second important factor contributing to gene-expression noise. Therein,
in addition to the tenfold decrease in the rate of transcription, the rate
of translation is increased fivefold in order to keep the protein abundance
more or less the same as in the first case (Figure 5.12, top). The increased
gene-expression noise in spite of large protein abundance is attributable to
increased fluctuations in mRNA abundance, causing increased fluctuations
in the rate of protein synthesis. In other words, noise is propagated from
transcription to translation.

Measures of noise: The common mistake of using the standard deviation
(SD) as a measure of noise is illustrated in Figure (5.13). The relative levels
in the left subplot in Figure (5.13), corresponding to the three cases in the
last example, can be misleading because the SD depends on the mean. The
relative fluctuation around the mean, measured as the SD divided by the
mean, also known as the coefficient of variation (CV), is the most direct and
unambiguous measure of gene-expression noise. Note the changed order of
levels in the middle subplot in Figure (5.13). It is sometimes advantageous to
use a different measure, the noise strength, which is defined by the variance
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divided by the mean and referred to as the “Fano factor”. Since the Fano
factor is unity for a Poisson process, it can be interpreted as a measure of
how close to Poisson a given process is. The Fano factor is used primarily to
reveal trends that would otherwise be obscured by noise attributed to low
copy numbers; see [74]. Note that although the relative levels in the right
subplot in Figure (5.13) are the same as in the left subplot, the separation
between levels has changed.

5.4 Continuous Stochastic Simulation
The discrete stochastic simulation method presented in the last section is
an exact method. The various improvements and approximations to the
original method are all discrete methods. An alternative is to approximate
the jump process N(t) by a continuous process N c(t). Simulating (i.e.,
generating sample paths of) such a continuous process should be orders of
magnitude faster than the discrete simulation. To set the stage for such an
approximation, we introduce two important properties of a stochastic process:
drift and diffusion.

5.4.1 Drift and Diffusion
We recall that the mean and (co)variance can be used as crude characteriza-
tions of an otherwise unknown probability distribution. When the average
value of a stochastic process changes with time, we say that the process
is drifting or has a drift. When the (co)variance, a measure of spread of
the distribution, changes with time, we say that the process has diffusion.
At this stage, we are not in a position to qualitatively discuss the evolving
shape of the probability distribution of the (copy-number) process in question.
However, the notion of propensity is powerful enough for us to discuss drift
and diffusion locally. The two quantities can be best described locally in terms
of the increment ∆N(t) = N(t+ ∆t)−N(t) of the copy-number process N(t)
during the time interval [t, t+ ∆t] supposed to be in state n at time t. The
short-time drift can be defined as 〈∆N〉n, the change of the average value
of the process during the interval. The short-time diffusion can be defined
as
〈
δ∆N δ∆NT

〉
n
, the change in the covariance of the process during the

interval.
An expression for the short-time diffusion 〈∆N〉n can be derived in

the following way. The increment ∆N follows from (2.2) to be a linear
combination

∆N(t) = S∆Z(t) (5.25)

of the short-time reaction-count increments ∆Zj , whose probability distribu-
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tion, conditioned on state n, follows from (5.7) to be approximately Poisson
with mean (and variance) aj(n)∆t during a sufficiently short interval. In
other words, ∆Z is approximately Poisson with mean

〈∆Z〉n ≈ a(n)∆t (5.26)

and covariance 〈
δ∆Z δ∆ZT

〉
n
≈ diag(a(n)∆t) . (5.27)

Here diag(a), for any vector a, denotes the diagonal matrix with elements
of a on the main diagonal. The nondiagonal elements are zero because
the reaction channels progress independently of each other during the short
interval. Following (5.25) and (5.8), the short-time drift takes the form

〈∆N〉n = S 〈∆Z〉n ≈ S a(n)∆t = A(n)∆t, (5.28)

where the vector
A(n) = S a

(
n
)

(5.29)

is the drift per unit time interval, the drift rate,

Ai(n) =
r∑
j=1

Sijaj(n) .

The short-time diffusion
〈
δ∆N δ∆NT

〉
n
can be worked out in a similar

way as follows:〈
δ∆N δ∆NT

〉
n

=
〈
∆N∆NT

〉
n
− 〈∆N〉 〈∆N〉T

= S
[〈

∆Z∆ZT
〉
n
− 〈∆Z〉n 〈∆Z〉

T
n

]
ST

= S
〈
δ∆Z δ∆ZT

〉
n
ST

≈ S diag(a(n)∆t)ST .

Thus the short-time diffusion takes the form〈
δ∆N δ∆NT

〉
n
≈ B(n)∆t, (5.30)

where the matrix
B(n) = S diag(a(n))ST (5.31)

is the diffusion per unit time interval, the diffusion rate, with elements

Bik(n) =
r∑
j=1

SijSkjaj(n) .
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Drift/diffusion terminology: In the physics literature, the drift/diffusion
rate is usually referred to as the “drift/diffusion coefficient” or “drift/diffusion
vector/matrix.” We believe that the latter (vector/matrix) terms are mislead-
ing because they do not reflect the per unit time nature of the associated
quantities.

5.4.2 Chemical Langevin Equation
Equations (5.26) and (5.28) give useful expressions for the average reaction-
count increment 〈∆Z〉n and average copy-number increment 〈∆N〉n, respec-
tively, conditioned on N(t) = n. Since we are aiming for a continuous
approximation N c(t) of the jump process N(t) itself rather than averages, we
need expressions for the copy-number increment

(∆N)n = N(t+ ∆t)− n

from the fixed state N(t) = n and the related reaction-count increment (∆Z)n.
We pointed out in the last subsection that (∆Zj)n has a Poisson distribution
with mean aj(n)∆t during the short time interval. The requirement of ∆t
to be small enough to assume a constant propensity during the interval was
reported as condition (i) in [56]. The property of the Poisson distribution to
approach a normal distribution for a very large mean motivates the condition
(ii) assumed in [56] on ∆t: it is large enough for the average reaction count
increment 〈∆Zj〉 of every channel to be very large, aj(n) ∆t � 1, so that
the Poisson variable ∆Zj can be approximated by a normal random variable
with the same mean and variance aj(n)∆t for each reaction channel. Since
any normal random variable can be written as a sum of its mean and the
standard normal variable (with zero mean and unit variance) multiplied by
its standard deviation, we can write the normal approximation as

(∆Zj)n ≈ aj(n)∆t+ (aj(n)∆t)1/2Nj(t), (5.32)

where Nj(t) is a standard normal (i.e., zero mean and unit variance) process
associated with reaction channel Rj . The channelwise processes collected in
the r-vector process N (t) are statistically independent. Inserting the above
equation into (5.25) gives the copy-number increments

(∆Ni)n ≈
r∑
j=1

Sijaj(n)∆t+
r∑
j=1

Sij (aj(n)∆t)1/2Nj(t) .

The increment vector then takes the form

(∆N)n ≈ A(n)∆t+D(n)
√

∆tN (t), (5.33)
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where we have recognized the drift rate A(n) = S a(n) and the newly appearing
matrix

D(n) = S diag (a(n))1/2
, (5.34)

is referred to, in this text, as the drift coefficient. The square root should be
interpreted elementwise. The factor

√
∆tN (t) in the second summation on

the right can be recognized as the Wiener increment,

∆W =W(t+ ∆t)−W(t) =
√

∆tN (t),

of an r-vector W(t) of independent standard Brownian motions, or standard
Wiener processes. Setting ∆t = dt followed by replacing

√
∆tN (t) by the

Wiener increment ∆W and the supposedly fixed n by the continuous approxi-
mation N c(t) of the original jump process N(t), we arrive at an Ito stochastic
differential equation (SDE),

dN c(t) = A (N c(t)) dt+D (N c(t)) dW(t) . (5.35)

In the econometrics literature, the coefficients A(n) and D(n) are respectively
referred to as the (vector-valued) “drift-rate function” and the (matrix-valued)
“diffusion-rate function.” This is a bit unfortunate, because diffusion rate
refers, in the physical sciences, to the matrix B(n) in line with the present
text. That is why we have adopted the term “drift coefficient” for D(n).
With its coefficients specifically defined by A(n) = S a(n) and (5.34), the SDE
(5.35) is known as the chemical Langevin equation (CLE) in the “standard
form.” An equivalent “white-noise form” of CLE is

dN c(t)
dt = A (N c(t)) +D (N c(t)) Γ(t), (5.36)

where the elements of Γ(t) = dW/dt are statistically independent Gaussian
white-noise processes.

In the above (two forms of) CLE, we have one Wiener process Wj for
each reaction channel. An alternative form of the CLE can be derived that has
a Wiener process Wi for each chemical component. The derivation goes like
this. Being a linear combination of Gaussian process (∆Z)n, the copy-number
increment (∆N)n is also a Gaussian variable of the form

(∆N)n ≈ 〈∆N〉n +
〈
δ∆N δ∆NT

〉1/2
n
N (t), (5.37)

which is a sum of the mean and an s× 1 standard Gaussian random vector
N (t) premultiplied by the matrix square root of the covariance matrix. Here
the matrix square root M1/2 of a matrix M is defined such that M =
M1/2 (M1/2)T . Inserting expressions (5.28) and (5.30) into the above equation
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gives
(∆N)n ≈ A(n)∆t+ (B(n))1/2 N (t) (∆t)1/2

. (5.38)

Replacing the supposedly known n by N c(t) and recognizing the Wiener
increments ∆W = N (t)

√
∆t, followed by substitution ∆t = dt, we obtain the

alternative form

dN c = A (N c) dt+
(
B (N c)

)1/2
dW (5.39)

of the CLE. The matrix square root B1/2 can be computed from the eigenvalue
decomposition of the diffusion rate B.

The two conditions (i) and (ii) seem conflicting and require the existence
of a domain of macroscopically infinitesimal time intervals. Although the
existence of a such a domain cannot be guaranteed, Gillespie argues that this
can be found for most practical cases. Admitting that, “it may not be easy to
continually monitor the system to ensure that conditions (i) and (ii) [. . . ] are
satisfied.” He justifies his argument by saying that this “will not be the first
time that Nature has proved to be unaccommodating to our purposes” [56].

Generating sample paths of (5.36) is orders of magnitude faster than
doing the same for the CME, because it essentially needs generation of normal
random numbers. See [68] for numerical simulation methods of stochastic
differential equations such as (5.35) and (5.39). The choice between (5.35) and
(5.39) may be dictated by the number of reactions r relative to the number
of species s, because in each simulation step, the former requires r random
numbers, whereas the latter requires s random numbers.

Matlab implementation: Since a CLE is just a special form of the more
general SDE, we can use the well-known “Euler–Maruyama method” found
in, for example, [68] for generating sample paths of the stochastic process
represented by a CLE. The method involves generation of random numbers
from the Gaussian distribution to represent the Wiener processes and then
using the update rule (5.35) at each time step. The Euler–Maruyama method
is implemented here in M-code 5.3. The reader is recommended to read [68]
for more efficient methods and implementations.

Example 5.14 (Standard modification) For the standard modification (2.5)
with propensities in (5.14), the drift rate is the scalar

A(n) = −aw + au = −kwn+ (ntot − n)ku,
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M-code 5.3 simCLE: computes CLE sample paths by the Euler–Maruyama
method. Requires the statistics toolbox.

function [T,N] = simCLE(S,a,n0,tmax,dt)
[s,r] = size(S);
% Function to generate a sample path of CLE
A = @(n) S*a(n); % Drift rate
D = @(n) S*diag(sqrt(a(n))); % Diffusion coefficient
Steps = tmax/dt; % number of steps
T = (0:dt:tmax)’; % Time output
% Refresh the random number generator
strm = RandStream(’mt19937ar’,’Seed’,142857);
RandStream.setDefaultStream(strm);
dW = sqrt(dt)*randn(r,1); % Wiener processes
n = n0;
N = zeros(Steps+1,s); % time course of states
N(1,:) = n0;
for i=2:Steps

n = n + dt*A(n) + D(n)*dW;
N(i,:) = real(n);

end

and the diffusion coefficient is the 1× 2 matrix

D(n) =
[
−√aw

√
au

]
=
[
−
√
kwn

√
(ntot − n)ku

]
.

With A(n) and D(n) available, the CLE (5.35) gives us an update rule to
generate the next state from the current state in a simulation. Specifically,
when the current state is n, the next state (after one time step dt used in the
simulation) will be

n+A(n)dt+D(n)dW(t) .

Approximate trajectories can be generated using the above CLE update rule
in any standard simulation environment such as Matlab. Figure 5.14 shows
time courses (on the left) plotted side by side with the endpoint histogram
(on the right), both computed from CLE simulations and overlaid on the
same quantities computed with SSA. It can be seen that the mean±SD of
1000 realizations computed with CLE simulations match closely the same
quantities computed with SSA. Although not an exact match, the essence of
both the time course and the probability distribution is captured by the CLE.
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Figure 5.14 CLE simulation for the standard modification (2.5). Left: A single
CLE run (fluctuating) and mean over 1000 runs together with the error bars
determined by mean±SD (threads). The CLE computed mean (stars) as well as
the error bars match closely the ensemble mean (circles), and the associated error
bars, that were computed over 1000 SSA runs. Right: Endpoint histogram. The
empirical probability density computed with CLE simulations (solid curve) matches
closely the density computed with SSA runs. Parameters and initial conditions are
the same as in Figure 5.3.

Example 5.15 (Heterodimerization) For the heterodimerization (2.6) with
propensities in (5.15), the drift rate is the scalar

A(n) = a1 − a2 = k̂1 (q̂1 − n) (q̂2 − n)− k2n,

and the diffusion coefficient is the 1× 2 matrix

D(n) =
[
√
a1 −√a2

]
=
[ √

k̂1 (q̂1 − n) (q̂2 − n) −
√
k2n

]
.

With A(n) and D(n) determined, we can generate approximate trajectories
from the CLE (5.35). Figure 5.15 shows time courses (on the left) plotted
side by side with the endpoint histogram (on the right), both computed from
CLE simulations and overlaid on the same quantities computed with SSA.
It can be seen that the mean±SD of 1000 realizations computed with CLE
simulations match closely with the same quantities computed with SSA.

Example 5.16 (Lotka–Volterra model) For the Lotka–Volterra model (2.7)
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Figure 5.15 CLE simulation for the heterodimerization (2.6). Left: A single CLE
run (fluctuating) and mean over 1000 runs together with the error bars determined
by mean±SD (threads). The CLE computed mean (stars) as well as the error
bars match closely the ensemble mean (circles), and the associated error bars, that
were computed over 1000 SSA runs. Right: Endpoint histogram. The empirical
probability density computed with CLE simulations (solid curve) matches closely
the density computed with SSA runs. Parameters and initial conditions are the
same as in Figure 5.5.
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Figure 5.16 CLE simulation of the Lotka–Volterra model obtained by one CLE
run. Left: time course, Right: phase plot. Parameters and initial conditions are the
same as in Figure 5.6.
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Figure 5.17 CLE simulation for the enzymatic reaction (2.8). Left: A single CLE
run (fluctuating) and mean over 1000 runs together with the error bars determined
by mean±SD (threads). The CLE computed mean (stars) as well as the error
bars match closely the ensemble mean (circles), and the associated error bars, that
were computed over 1000 SSA runs. Right: Endpoint histogram. The empirical
probability density computed with CLE simulations (solid curve) matches closely
with the density computed SSA runs. Parameters and initial conditions are the
same as in Figure 2.7.

with propensities in (5.16), the drift rate is the 2× 1 vector

A(n) =

a1 − a2

a2 − a3

 =

k̂1nAn1 − k̂2n1n2

k̂2n1n2 − k̂3n2

 ,
and the diffusion coefficient is the 2× 2 matrix

D(n) =


√
a1 −√a2

√
a2 −√a3

 =


√
k̂1nAn1 −

√
k̂2n1n2√

k̂2n1n2 −
√
k̂3n2

 .
After determining A and D, we can generate approximate trajectories from
the CLE (5.35). Figure 5.16 shows time courses (on the left) and endpoint
histogram (on the right), both CLE generated. This figure should be compared
with Figure 5.6, which shows SSA-computed plots.
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Figure 5.18 State transitions of a generic r-reaction network with network struc-
ture encoded in the stoichiometry matrix S and reaction kinetics encoded in the
propensity function a(n).

Example 5.17 (Enzyme kinetic reaction) For the enzymatic reaction (2.8)
with propensities in (5.17), the drift rate is the 2× 1 vector

A(n) =

 a2 − a1

a1 − a2 − a3

 =

 k2nES − k̂1 (ntot
E − nES)nS

k̂1 (ntot
E − nES)nS − (k2 + k3)nES

 ,
and the diffusion coefficient is the 2× 2 matrix

D(n) =

 −
√
a1

√
a2

√
a3

√
a1 −√a2 −√a3



=

 −
√
k̂1 (ntot

E − nES)nS
√
k2nES

√
k3nES√

k̂1 (ntot
E − nES)nS −

√
k2nES −

√
k3nES

 .
Once A and D are available, we can generate approximate trajectories from
the CLE (5.35). Figure 5.17 shows time courses (on the left) plotted side by
side with the endpoint histogram (on the right), both computed from CLE
simulations and overlaid on the same quantities computed with SSA. It can be
seen that the mean±SD of 1000 realizations computed with CLE simulations
match closely the same quantities computed with SSA.
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5.5 Chemical Master Equation
The occurrence of each reaction moves the system from one state to another
in the state space. The possible state transitions from/to state n are usually
sketched in a state transition diagram like the one in Figure 5.18, where a
transition from one state to another is represented by an arrow labeled with
the corresponding transition rate. The transition rate of a state transition
resulting from a single reaction channel is equal to the reaction propensity of
that channel. The transition rate of a state transition resulting from more
than one reaction channel is the sum of propensities of those reaction channels.

How does the state probability P (n, t) change with time? To answer
this, we need to find an expression for P (n, t+ ∆t), the probability of being
in state n after a short time interval of length ∆t. How can the system land
in state n at time t+ ∆t? One possibility is that the system was in state n at
time t and no reaction occurred during the interval. Otherwise, as obvious
from the state transition diagram in Figure 5.18, the state n was reached after
the occurrence of one of r possible reactions. Mathematically, we can write

P (n|n′,∆t) = o(∆t) +



1− a0(n)∆t ifn′ = n,

a1 (n− S�1) ∆t ifn′ = n− S�1,
...
ar (n− S�r) ∆t ifn′ = n− S�r,

0 otherwise.

The term o(∆t) represents the probability of arriving in state n by the
occurrence of more than one reaction during the interval. Recall that a0(n) =∑
j aj(n) is the exit rate from state n. Substituting the above expressions

into (5.3) gives

P (n, t+ ∆t) = o(∆t) + P (n, t)

1−
r∑
j=1

aj(n)∆t


+

r∑
j=1

P (n− S�j , t) aj (n− S�j) ∆t,

which for vanishingly short ∆t can be rearranged as the chemical master
equation (CME):

∂

∂t
P (n, t) =

r∑
j=1

[
aj (n− S�j)P (n− S�j , t)− aj(n)P (n, t)

]
. (5.40)
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tot − n)

Figure 5.19 State transitions of the standard modification (2.5).

We should note two important facets of the way we have written the CME
above. First, in spite of the use of a partial differential operator ∂ and the
appearance of the CME as a differential–difference equation (differential in
time t and difference in states n), it is a large (typically infinite-dimensional)
system of ODEs because n is a sample (or state) of the copy number N(t), and
therefore we need an ODE for each state. Since the state n is fixed, a more
intuitive notation would place it as a subscript, namely Pn(t), and replace the
partial differential operator ∂ with an ordinary differential operator d. That
would, however, lead to notational complications in the subsequent sections
where we will be extending the state space of n to the nonnegative real line
and will require differentiation of probabilities with respect to n. Second,
recall that the CME above has been written with an understanding that the
functional form of the propensities aj(n) has been specified for the process
under study. Without that specification, the CME, similar to the CKE, merely
represents a consistency condition imposed by the Markov property.

5.5.1 The Dimensionality Curse
Since there is potentially a large number of possible states, any attempt to
solve the CME analytically or even numerically will be impractical, unless one
is dealing with a very simple system such as the isomerization reaction (2.5)
that has just one state variable n and only two channels (state transitions).
When all the reactions in a system are monomolecular, it is possible to solve
the CME analytically, although the procedure is quite involved mathematically
[73]. However, bimolecular reactions typically occur more often in biological
processes because of enzymatic associations, making the CME intractable
for such systems. This means that one has to resort to either stochastic
simulations (covered in the previous section), analytical approximations (to
come in the following section), or numerical approximations including the
“finite state projection algorithm” [103] and the “sliding windows” method
[167].

Example 5.18 (Standard modification) For the standard modification (2.5)
with propensities in (5.14), the state transition diagram is given in Figure
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5.19. Based on these state transitions, the CME for this example reads

∂

∂t
P (n, t) = kw

[
(n+ 1)P (n+ 1, t)− nP (n, t)

]
+ ku

[(
ntot − n+ 1

)
P (n− 1, t)−

(
ntot − n

)
P (n, t)

]
. (5.41)

Note that this CME must respect the boundary conditions with respect to
n = 0, 1, . . . , ntot. That is, P (n, t) = 0 for 0 > n > ntot. We can gain some
insight into the dynamics described in the above CME by setting ntot = 1,
which corresponds to a single molecule (in isolation) that can exist either in
the unmodified form U with probability PU(t) def= P (1, t), or in the modified
form W with probability PW(t) def= P (0, t) = 1− PU(t) . The single-molecule
version of the above CME turns out to be

d
dtPU(t) = −kwPU(t) + ku (1− PU(t)) = ku − (kw + ku)PU(t),

where we have used the boundary condition P (2, t) = 0. Suppose that the
protein molecule is initially unmodified, that is, PU(0) = 1. Then the above
single molecule CME can be solved for PU(t) to yield

PU(t) = ku + kwe−(kw+ku)t

kw + ku
.

Having determined the probability PU of a single molecule to be unmodified,
the probability P (n, t) that n out of all the available ntot are unmodified is
simply the PMF of the binomial distribution Binomial (ntot, PU), namely

P (n, t) =
(
ntot

n

)
(PU(t))n (1− PU(t))n

tot−n
.

We have thus found the solution to the original CME (5.41) through an
indirect, but insightful, procedure. This will, however, not be tractable for
every case. The progress, in time, of the probability distribution of the copy
number N(t) (of molecules in inactive form) is shown in Figure 5.20, wherein
the PMF is plotted during two time subintervals.

Example 5.19 (Hyperbolic control) Hyperbolic control arises from a multi-
tude of schemes, for instance

P kp←−−−−− I kaXS−−−−−−−→ A .
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Figure 5.20 Temporal progress of the probability distribution for the standard
modification. The PMF P (n, t), for the copy number of unmodified proteins, is
plotted during two time subintervals: 0 < t < 1 (left) and 1 < t < 5 (right). The
parameters were chosen as kw = 3 and ku = 1, both in sec−1. Initially, all the
proteins are assumed to be unmodified.

Here the usual conversion, with rate coefficient kp, of I-molecule to P-molecule
(the product) is inhibited by a signaling S-molecule that binds to an I-molecule
and transforms it to an A-molecule with a rate coefficient kaXS that depends
on signal concentration XS. Suppose that XS(t) = xS at time point t. At this
time point, the I-molecule is either unchanged from its original I-form with
probability PI(t), has converted to the product with probability PP(t), or has
been converted to an A-molecule with probability

PA(t) = 1− PI(t) + PP(t) .

It is important to keep in mind that the probabilities here are conditioned on
XS(t) = xS. The master equations for PP(t) and PI(t) can be written as

ṖP(t) = kpPI(t), ṖI(t) = − (kp + kaxS)PI(t) .

The solution of the second master equation, subject to the obvious initial
condition PI(0) = 1, is

PI(t) = exp (− (kp + kaxS) t) .

Substituting this solution into the first master equation and integrating the
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latter during time interval [0, t] yields its solution:

PP(t) = kp
kp + kaxS

[1− exp (− (kp + kaxS) t)] .

The probability PI(t) will eventually vanish, leaving the stationary probability
distribution

P ss
P = kp

kp + kaxS
= 1

1 + xS/K
, P ss

A =
xS/K

1 + xS/K
,

the probabilities of ending up in state P and A, respectively. The new
parameter K = kp/ka can be interpreted as an inhibition constant. As noted
in the previous example, the above steady-state probabilities could have been
obtained by intuitive reasoning under the assumption of chemical equilibrium:
the respective fractions of time spent in states P and A are kp/(kp+kaxS) and
kaxS/(kp+kaxS).

Example 5.20 (Stochastic focusing) The two-reaction module in the last
example appears in the branched reaction network (2.10):

Ø
ks−−−−−⇀↽−−−−−
kd

S, Ø
k−−−−−−−⇀↽−−−−−−−

kaXS
I kp−−−−−→ P 1−−−−→ Ø,

where the A-molecules appear as the null species Ø. When the transition from
I to Ø or P is fast enough, the pool of I-molecules is insignificant, and XS
does not change significantly during the life span of an individual I-molecule.
The two-reaction module

Ø kaXS←−−−−−−− I kp−−−−−→ P

can then be approximated by a single fast reaction I → P with transition
probability 1/(1+XS/K) taken as the stationary probability of ending up in state
P from the last example. Note that we have assigned to the fast reaction an
effective transition probability and not a propensity, because the stationary
state is assumed to be achieved fast. The simplified transition I→ P follows in
series the transition Ø ki−→ I. The two in-series transitions can be combined into
one overall transition from Ø to I with an effective transition rate ki/(1+XS/K).
The branched reaction scheme (2.10) then simplifies to (2.29):

Ø
ks−−−−−⇀↽−−−−−
kd

S, Ø
ki/(1+XS/K)−−−−−−−−−−−⇀↽−−−−−−−−−−−

1
P,

with the state transition diagram shown in Figure 5.21. Based on these state
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Figure 5.21 State transitions of the simplified branched network (2.29) (stochastic
focusing).

Figure 5.22 State transitions of the heterodimerization reaction (2.6).

transitions, the CME for the simplified scheme can be derived to read

∂

∂t
P (nS, nP, t) = ksP (nS − 1, nP, t)− ksP (nS, nP, t)

+ kd (nS + 1)P (nS + 1, nP, t)− kdnSP (nS, nP, t)

+ ki
1 + nS/K

[
P (nS, nP − 1, t)− P (nS, nP, t)

]
+ (nP + 1)P (nS, nP + 1, t)− nPP (nS, nP, t) .

Example 5.21 (Heterodimerization) For the reversible heterodimerization
(2.6) with propensities (5.15), the state transition diagram is shown in Figure
5.22. Based on these state transitions, the CME for this example reads

∂

∂t
P (n, t) = k̂1 (q̂1 − n+ 1) (q̂2 − n+ 1)P (n− 1, t)

− k̂1 (q̂1 − n) (q̂2 − n)P (n, t)

+ k2

[
(n+ 1)P (n+ 1, t)− nP (n, t)

]
,

where q̂1 = Ωq1 and q̂2 = Ωq2 are the conserved copy numbers, and Ω = NAV
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Figure 5.23 State transitions of the enzyme kinetic reaction (2.8).

is the system size..

Example 5.22 (Enzyme kinetic reaction) For the enzymatic reaction (2.8)
with propensities in (5.17), the state transition diagram is given in Figure
5.23. Following these state transitions, the CME can be written as

∂

∂t
P (nS, nES, t) = k̂1

(
ntot

S − nES + 1
)

(nS + 1)P (nS + 1, nES − 1, t)

− k̂1
(
ntot

S − nES
)
nSP (nS, nES, t)

+ k2

[
(nES + 1)P (nS − 1, nES + 1, t)− nESP (nS, nES, t)

]
+ k3

[
(nES + 1)P (nS, nES + 1, t)− nESP (nS, nES, t)

]
.

Example 5.23 (Lotka–Volterra model) For the Lotka–Volterra model (2.7)
with propensities in (5.16), the state transition diagram is given in Figure
5.24. From these state transitions, the CME for this example reads

Example 5.24 (Schlögl model) For the Schlögl model (2.9) with propensities
in (5.18), the state transition diagram is given in Figure 5.25. But recall

∂

∂t
P (n1, n2, t)= k1

[
(n1 − 1)P (n1 − 1, n2, t)− n1P (n1, n2, t)

]
+ k2

[
(n1 +1)(n2−1)P (n1 +1, n2−1, t)− n1n2P (n1, n2, t)

]
+ k3

[
(n2 +1)P (n1, n2 + 1, t)− n2P (n1, n2, t)

]
.
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Figure 5.24 State transitions of the Lotka–Volterra model (2.7).

Figure 5.25 State transitions of the Schlögl model (2.9).

that the same transition diagram also corresponds to the reduced reaction
network (5.19). Following these state transitions, the CMEs for both the
original Schlögl reaction (5.18) and the reduced reaction network (5.19) read
the same:

∂

∂t
P (n, t) =

[
k̂1(n− 2)(n− 1) + k̂3

]
P (n− 1, t)−

[
k̂1(n− 1)n+ k̂3

]
P (n, t)

+ k̂2

[
(n+ 1)P (n+ 1, t)− (n− 2)P (n, t)

]
(n− 1)n

+ k4

[
(n+ 1)P (n+ 1, t)− nP (n, t)

]
.

Example 5.25 (Gene regulation) For the gene regulation scheme (2.11) with
propensities in (5.20), the state transition diagram is given in Figure 5.26.
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Figure 5.26 State transitions of the gene regulation (2.11).

Following these state transitions, the CME can be written as

∂

∂t
P (nG, nM, nP, t)

= kmnG [P (nG, nM − 1, nP, t)− P (nG, nM, nP, t)]
+ k−m [(nM + 1)P (nG, nM + 1, nP, t)− nMP (nG, nM, nP, t)]
+ kpnM [P (nG, nM, nP − 1, t)− P (nG, nM, nP, t)]
+ k−p [(nP + 1)P (nG, nM, nP + 1, t)− nPP (nG, nM, nP, t)]
+ ku

(
ntot

G − nG + 1
)
P (nG − 1, nM, nP − 1, t)

− ku
(
ntot

G − nG
)
P (nG, nM, nP, t)

+ kb (nG + 1) (nP + 1)P (nG + 1, nM, nP + 1, t)
− kbnGnPP (nG, nM, nP, t)

While the stochastic simulation algorithm and extensions provide a way
to generate sample paths of copy numbers for a biochemical system, one needs
to repeat many simulation runs to get an idea of the probability distribution in
terms of its moments (mean and (co)variance), which become increasingly time-
consuming and even impractical for larger systems. Therefore, attempts have
been made toward continuous approximations of the CME [55, 65, 104, 123],
including the following.
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5.6 Continuous Approximations of the CME
It is imperative to rewrite the CME in an alternative notation more suited
to a Taylor expansion. Using a negative-shift operator Ej for each reaction
channel defined by its effect

Ej f(n) = f (n+ S�j)

on an arbitrary scalar function f(n) of s-vector n, the CME (5.40) can be
written in the alternative form

∂

∂t
P (n, t) =

r∑
j=1

(
E−1
j −1

)
aj(n)P (n, t) . (5.42)

5.6.1 Kramers–Moyal Expansion
Suppose the propensity aj(n) is a smooth function, and one is interested in
solutions P c(n, t) that can be represented by a smooth function (defined for
all real values of n, unlike the original probability distribution P (n, t), which
is defined only on integer values of n). These smoothness assumptions allow
us to approximate the problem by means of a description in which n is treated
as a continuous variable and thus replace the differential–difference equation
by one partial differential equation. The operator E−1

j , acting only on smooth
functions, may be replaced with a Taylor expansion,

E−1
j =

∞∑
m=0

1
m!

(
−
∑
i

Sij
∂

∂ni

)m

= 1−
∑
i

Sij
∂

∂ni
+ 1

2
∑
i,k

SijSkj
∂2

∂ni∂nk
+ · · · .

(5.43)

Inserting values into the master equation yields the Kramers–Moyal expansion,

∂

∂t
P c(n, t) =

r∑
j=1

∞∑
m=1

1
m!

(
−
∑
i

Sij
∂

∂ni

)m
aj(n)P c(n, t) .

Fokker–Planck equation: Ignoring all the terms involving derivatives be-
yond the second in the above expansion, we obtain

∂

∂t
P c(n, t) =

r∑
j=1

−∑
i

Sij
∂

∂ni
+ 1

2
∑
i,k

SijSkj
∂2

∂ni∂nk

 aj(n)P c(n, t),
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which can be recast as the Fokker–Planck equation (FPE)

∂

∂t
P c(n, t) = − ∂

∂n
[A(n)P c(n, t)] + 1

2
∂2

∂n∂nT
[B(n)P c(n, t)] , (5.44)

after recognizing the drift rate A(n) and the diffusion rate B(n).
Solving the nonlinear FPE (5.44) for the probability density is as difficult

as the CME. Therefore, from an analytical point of view, the nonlinear FPE
do not provide any significant advantage. However, linearising the propensity
function around the mean [61], or using the Ω-expansion [75] (presented in the
following section), the nonlinear FPE (5.44) can be reduced to the so-called
“linear noise approximation” whose solution is a Gaussian distribution with
a mean that is equal to the solution of the deterministic ODE model and
a covariance matrix that obeys a linear ODE. This is the main drawback
of linear noise approximation because, for system containing at least one
bimolecular reactions, the mean of a stochastic model is not equal to the
solution of deterministic ODEs, as shown next.

Relation to CLE: The CLE and FPE (5.44) are equivalent. It was shown
in [55] that the probability density function P c(n, t) of the continuous approx-
imation N c(t) described by the CLE (5.35) satisfies the FPE (5.44).

5.6.2 System-Size Expansion
The cutting of higher moments in the Kramers–Moyal expansion to get the
Fokker–Planck approximation requires that the fluctuations, as measured by
the standard deviations σ, be small. However, changes in copy numbers by
chemical reactions are whole numbers, and there is no objective criterion of
smallness of fluctuations in such a setting. This is true for any approximation
method that requires small fluctuations. Therefore, one needs a systematic
approximation method in the form of an expansion in powers of a small
parameter. Only in that case does one have an objective measure for the
size of the several terms. The expansion parameter must appear in the
master equation and must govern the size of the fluctuations. The system-size
parameter Ω is a potential choice. Again, we assume the propensity aj(n) to
be a smooth function and look for solutions P c(n, t) that can be represented
by a smooth function. It is then reasonable to approximate the problem by
means of a description in which n is treated as a continuous variable. We can
anticipate the way in which the solution P c(n, t) will depend on the system
size Ω. The initial condition is

P c(n, t) = δ(n− n0) .
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The initial copy number X(0) = n0 = Ωx(0) is of order Ω. The Dirac delta
function δ(n−n0) is defined to be zero everywhere except at n = n0, where it
integrates to unity. One expects that at later times the distribution P c(n, t)
has a sharp peak located at a value of order Ω, while its width will be of
order

√
Ω. In order words, it is assumed that the continuous approximation

N c(t) of the process N(t) fluctuates around a macroscopic trajectory of order
Ω with a fluctuation of order Ω1/2. To express this formally, we set

N c(t) = Ωφ(t) + Ω1/2Ξ(t), (5.45)

where φ(t) is equal to the macroscopic concentration x = n/Ω for an infinitely
large system size Ω and Ξ(t) models the fluctuation of N c(t) around φ(t). A
realization n of N c(t) is related to a realization ξ of Ξ(t) by the same relation
above:

n = Ωφ(t) + Ω1/2ξ .

The probability distribution P c(n, t) of N c(t) transforms into a probability
distribution Π (ξ, t) of Ξ(t) according to

P c(n, t) = P c
(

Ωφ(t) + Ω1/2ξ, t
)

= Π (ξ, t) . (5.46)

The time derivative in the master equation is taken with constant n, that is,

dn
dt = Ω dφ

dt + Ω1/2 dξ
dt = 0 =⇒ dξ

dt = −Ω1/2 dφ
dt .

This result can be used in the differentiation of the probability distributions
with respect to time to give

∂P c

∂t
= ∂Π

∂t
+

s∑
i=1

dξi
dt

∂Π
∂ξi

= ∂Π
∂t
− Ω1/2

s∑
i=1

dφi
dt

∂Π
∂ξi

. (5.47)

Before we can compare this equation with the CME (5.42), we need to express
the propensity function aj(n) in terms of the fluctuation ξ and translate the
operator Ej so that it can be applied to functions of ξ. The propensity is
related to the deterministic reaction rate vj(x) through (5.12):

aj(n) = Ω
[
vj

(
φ+ Ω−1/2ξ

)
+O

(
Ω−1)] .

The operator E−1
j that changes n to n−S�j , effectively changing the fluctuation

ξ to ξ − Ω−1/2S�j , translates to E−Ω−1/2

j , which can be applied to functions of
ξ. Now we can write the CME (5.42) so that the right side is a function of ξ
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only:

∂P c

∂t
= Ω

r∑
j=1

(
E−Ω−1/2

j −1
) [
vj

(
φ+ Ω−1/2ξ

)
+O

(
Ω−1)]Π (ξ, t), (5.48)

where the replacement of P c(n, t) with Π (ξ, t) on the right follows from (5.46).
The next step is the Taylor expansion, around φ, of vj(x) and the operator
E−Ω−1/2

j in several dimensions:

vj

(
φ+ Ω−1/2ξ

)
= vj(φ) + Ω−1/2

∑
i

∂vj
∂φi

ξi +O
(
Ω−1) ,

E−Ω−1/2

j = 1− Ω−1/2
∑
i

Sij
∂

∂ξi

+ 1
2Ω−1

∑
i,k

SijSkj
∂2

∂ξi∂ξk
+O

(
Ω−3/2

)
,

where the latter follows from (5.43) by replacing n with ξ and S with Ω−1/2S.
Inserting the above two expansions into (5.48) and then comparing the result
with (5.47) leads to

∂Π
∂t
− Ω1/2

s∑
i=1

dφi
dt

∂Π
∂ξi

=
r∑
j=1

−Ω1/2
∑
i

Sij
∂

∂ξi
+ 1

2
∑
i,k

SijSkj
∂2

∂ξi∂ξk
+O

(
Ω−1/2

)
×
[
vj(φ) + Ω−1/2

∑
i

∂vj
∂φi

ξi +O
(
Ω−1)]Π (ξ, t) .

The terms of order Ω1/2 are proportional to the factors ∂Π/∂ξi. It is possible
to make the terms of each type cancel each other by choosing φ such that

dφi
dt =

r∑
j=1

Sijvj(φ), (5.49)
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and we see that the macroscopic law emerges as the lowest approximation in
the Ω expansion. Comparing terms of order Ω0 yields

∂Π
∂t

=
r∑
j=1

−∑
i,k

Sij
∂vj
∂φk

∂ (ξkΠ )
∂ξi

+ 1
2vj(φ)

∑
i,k

SijSkj
∂2Π
∂ξi∂ξk

 .

Introducing matrices G and H with elements

Gik =
r∑
j=1

Sij
∂vj
∂φk

and Hik =
r∑
j=1

SijSkjvj(φ), (5.50)

the above differential equation can be written as

∂Π
∂t

= −
∑
i,k

Gik
∂ (ξkΠ )
∂ξi

+ 1
2
∑
i,k

Hik
∂2Π
∂ξi∂ξk

, (5.51)

which is a linear Fokker–Planck equation with coefficient matrices G and H
that depend on time through macroscopic concentration φ(t). The temporal
dynamics of the mean fluctuations 〈Ξi〉 can be obtained by multiplying (5.51)
by ξi and integrating over all values ξ:

d 〈Ξi〉
dt =

∑
k

Gik 〈Ξi〉 . (5.52)

By a similar procedure, the temporal dynamics of the second moments 〈ΞiΞk〉
of pairs of fluctuations can be obtained by multiplying (5.51) by ξiξk and
integrating over all values ξ:

d 〈ΞiΞk〉
dt =

∑
l

Gil 〈ΞlΞk〉+
∑
l

Gkl 〈ΞiΞl〉+Hik . (5.53)

It is convenient to consider instead of these moments the covariances

〈δΞiδΞk〉 = 〈ΞiΞk〉 − 〈Ξi〉 〈Ξk〉 .

With the aid of (5.52) one finds that they satisfy the same equation (5.53),
but vanish at t = 0. In matrix notation,

d
〈
δΞδΞT

〉
dt = G

〈
δΞδΞT

〉
+
〈
δΞδΞT

〉
GT +H . (5.54)
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With the mean and covariance determined by (5.52)–(5.54), the solution of
the linear FPE (5.51) can be shown to be a multivariate Gaussian [77]:

Π (ξ, t) = (2π)−s/2
∣∣〈δΞδΞT 〉∣∣−1/2 exp

(
−1

2ξ
T
〈
δΞδΞT

〉−1
ξ

)
. (5.55)

The proposed transformation (5.45) together with (5.49) and (5.51) forms the
so-called linear noise approximation (LNA) [75].

Since the LNA does not include terms of order higher than Ω0, the
same could have been obtained by applying the method of Ω-expansion to
the nonlinear FPE (5.44).

Tracking the moments: The analytical approximations discussed in this
chapter do not allow direct tracking of the mean and (co)variance, which,
in general, are coupled. This coupling is not obvious in CLE and FPE, and
ignored by LNA and conventional ODE models. The next chapter presents
the 2MA approach, which has a direct representation of the first two moments
and the coupling between them.

Problems
5.1. Revisit the metabolite network in Exercise 2.6,

2X1
k1−−−−−→ X2, X2 + X3

k2−−−−−→ X4 .

In that continuous description you directly worked with the metabolite con-
centrations. Take the same rate constants and initial abundances, but this
time you have to deal with copy numbers!

1. The reaction rate constants k1 and k2 have units involving nanomolars
and cannot be used in discrete stochastic simulations. Compute the
conversion rate constants k̂1 and k̂2. Use 5µm3 for the volume V .

2. Give the expressions for the reaction propensities a1 and a2 in terms of
the copy number n = (n1, n2, n3, n4)T .

3. Implement these expressions in Matlab to compute propensities at any
state n.

4. Instead of computing propensities directly, since both the reactions
are elementary, you could call the function makePropensity with
arguments c (the stochastic rate constant) and

¯
S (the reactant stoi-

chiometry). For that, the conversion rate constants must be translated
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to stochastic rate constants c1 and c2. Rewrite the above code by calling
makePropensity.

5.2. For the metabolite network in Exercise 2.6, you have obtained Matlab
representations of the stoichiometry matrix S and the reaction propensity
function a(·). In this exercise, you will use these two in discrete stochastic
simulations based on Gillespie’s SSA.

1. Generate a sample path of the metabolite copy numbers for 500 seconds.
You could make use of the first handle returned by the function makeSSA,
which requires as its arguments the stoichiometry matrix S and a
function handle for the propensity, which you already have. Repeat the
simulation for a different volume, say 2µm3. What differences do you
observe among repeated simulation runs for the two volume? Explain
your observations.

2. To get an idea of the average behavior and fluctuations around it, one
could plot the ensemble mean together with mean±SD. Complete the
following code by adding code to compute the mean and variance from
100 simulation runs. You could use the second handle returned by the
function makeSSA for that purpose.

% mu = ?; % mean
% sd = ?; % standard deviation
figure
ti = linspace(0,tt(end),20).’;
for i=1:4

nni = interp1q(tt, [mu(:,i) sd(:,i)], ti);
errorbar(ti,nni(:,1),nni(:,2));
hold on;

end
hold off

3. The plots in the last part do not indicate how the fluctuations scale
with the average copy numbers. Plot the standard deviation divided by
the square root of the mean and check it for different volumes. Check
whether the plots confirm the inverse-square-root relationship with the
copy numbers.

4. Plot the endpoint (or terminal) histogram for all species for different
volumes. How does the histogram change with the system size?

5.3. For the same metabolite network in Exercise 2.6, you are going to use
the Matlab representations of the stoichiometry matrix S and the reaction
propensity function a(·) in continuous stochastic simulations based on CLE.
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Call the Matlab function simCLE (in the main text) to generate a
sample path of the metabolite copy numbers for 500 seconds. Compare your
observations with those from discrete stochastic simulations. Repeat the other
tasks in the previous exercise for continuous stochastic simulations.

5.4. Recall the repressilator in Exercise 2.7, for which you worked out the
stoichiometry matrix S and the reaction rate vector v(x). Now you have to
revisit it from a stochastic perspective. To keep things simple, assume that
one unit of concentration corresponds to one molecule in the network.

1. Write down the expressions for channelwise propensities aj(n) in terms
of species copy number n.

2. Complete the following script to compute, using SSA, and plot the
protein levels for 50 time units:

% parameters
a0 = 0.25; a1 = 250; b = 5; h = 2.1;
% stoichiometry matrix
Splus = diag(ones(6,1));
S = [-Splus Splus];
% prop = @(n) ?; % propensity
[ssa,ensem] = makeSSA(S,prop);
tmax = 50; dt = 0.1 % time scale and steps
n0 = [0 0 0 4 0 15]’; % initial copy number
[t,n] = ssa(n0,tmax,dt); % SSA run
plot(t,n(:,4:6)) % plot protein levels

Do you see oscillations in the protein levels? Play with the parameter
values and initial conditions to see whether you always get oscillations.

5.5. Repeat the second task in the previous exercise using continuous stochas-
tic simulations based on the CLE. Call simCLE for that purpose. Compare
your results with the discrete simulations. Do you still see oscillations in the
protein levels?



Chapter 6

The 2MA Approach

This chapter develops a compact form of the 2MA equations—a system of
ODEs for the dynamics of the mean and (co)variance of the continuous-time
discrete-state Markov process that models a biochemical reaction system by
the CME. This is an extension of previous derivations, taking into account
relative concentrations and nonelementary reactions. The compact form,
obtained by careful selection of notation, allows for an easier interpretation.

The 2MA approach allows a representation of the coupling between
the mean and (co)variance. The traditional Langevin approach is based on
the assumption that the time rate of change of abundance (copy number
or concentration) or the flux of a component can be decomposed into a
deterministic flux and a Langevin noise term, which is a Gaussian (white noise)
process with zero mean and amplitude determined by the system dynamics.
This separation of noise from the system dynamics may be a reasonable
assumption for external noise that arises from the interaction of the system
with other systems (such as the environment), but cannot be assumed for
internal noise that arises from within the system [13, 30, 74, 117, 128, 141].
As categorically discussed in [76], internal noise is not something that can be
isolated from the system, because it results from the discrete nature of the
underlying molecular events. Any noise term in the model must be derived
from the system dynamics and cannot be presupposed in an ad hoc manner.
However, the CLE does not suffer from the above criticism, because Gillespie
[56] derived it from the CME description. The CLE allows much faster
simulations compared to the exact stochastic simulation algorithm (SSA)
[52] and its variants. The CLE is a stochastic differential equation (dealing
directly with random variables rather than moments) and has no direct way
of representing the mean and (co)variance and the coupling between the two.
That does not imply that CLE ignores the coupling as does the LNA, which
has the same mean as the solution of the deterministic model.

Stochastic Approaches for Systems Biology,
DOI 10.1007/978-1-4614-0478-1_6, © Springer Science+Business Media, LLC 2011
M. Ullah and O. Wolkenhauer, 173
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6.1 Absolute and Relative Concentrations
The concentration X(t) is usually defined as the copy number N(t) divided
by the system size parameter Ω. In other words,

N(t) = ΩX(t) .

However, for some systems it is more appropriate to introduce a different
scaling parameter Ωi for each component i if the copy numbers Ni differ in
magnitude to keep Xi of the same order O(1). In such cases, the concentration
will be defined as a relative concentration

Xi = Ni
CiΩ

,

that is, the absolute concentration Ni/Ω divided by a characteristic concentra-
tion Ci. In that case, each scaling parameter can be expressed as Ωi = CiΩ.
Unless otherwise stated, concentration Xi will be interpreted in the absolute
sense.

Often we are interested in the first two moments of the probability
distribution. The first moment is the mean vector 〈N(t)〉 of copy numbers,
defined elementwise by

〈Ni(t)〉 =
∑
n

niP (n, t),

the ith mean copy number. The second central moment is the covariance
matrix

〈
δNδNT

〉
defined elementwise by

〈δNiδNk〉 =
〈(
Ni − 〈Ni〉

)(
Nk − 〈Nk〉

)〉
,

the covariance between Ni and Nk. When obvious from the context, we will
leave out dependence on time, as in the above.

We are also interested in the mean concentration vector

〈X〉 = 〈N〉Ω

and the concentration covariance matrix

〈
δXδXT

〉
=
〈
δNδNT

〉
Ω2 .
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The diagonal elements of the covariance matrix are the variances〈
δN2

i

〉
= 〈δNiδNi〉 ,

〈
δX2

i

〉
= 〈δXiδXi〉 .

6.2 Dynamics of the Mean
Taking expectation on both sides of (2.3) gives the mean copy number,

〈N(t)〉 = N(0) + S 〈Z(t)〉 .

Taking the time derivative and employing (5.9) yields

d 〈N〉
dt = S

〈
a
(
N
)〉

=
〈
A
(
N
)〉
, (6.1)

where we have recognized the drift rate A(n) = S a(n) of the copy-number
process N(t) defined in (5.29). Dividing by Ω gives the system of ODEs for
the mean concentration:

d 〈X〉
dt =

〈
f
(
X
)〉
, (6.2)

where f(x) = S v(x) is the drift rate of the concentration process X(t). In
general (to account for relative concentrations), the drift rate can be defined
componentwise by

fi(x) = 1
Ci

r∑
j=1

Sijvj(C � x) . (6.3)

Here C is the s-vector of characteristic concentrations Ci, and the binary
operation � denotes the elementwise product of two arrays. The two drift rates
are related by A(n) = Ωf(x) for absolute concentrations and, componentwise,
by Ai(n) = ΩCifi(x) for relative concentrations. The above two systems of
ODEs for the mean abundance should be compared to the analogous chemical
kinetic equations (2.16) for the deterministic abundance.

It is interesting to note that (6.1) is a direct consequence of mass
conservation (2.2) and definition of propensity because we have not referred
to the CME (which is the usual procedure) during our derivation.

Example 6.1 (Standard modification) Following from the state transitions
in Figure 5.19 for the standard modification (2.5), the reaction propensities
are linear,

v1 = kwx, v2 = (1− x)ku,
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giving the linear drift rate

f(x) = −v1 + v2 = ku − (kw + ku)x .

The mean copy number thus satisfies

d 〈X〉
dt =

〈
f
(
X
)〉

= ku − (kw + ku) 〈X〉 ,

which is the same as the deterministic ODE (2.21). In general, the mean of
a system composed solely of reactions of order zero and/or one is the same
as the solution of the corresponding deterministic ODE because of linear
propensities.

Example 6.2 (Lotka–Volterra model) Following the state transitions in
Figure 5.24 for the reaction scheme (2.7) of the Lotka–Volterra model, the
reaction propensities are given by

a1 = k̂1nAn1, a2 = k̂2n1n2, a3 = k̂3n2,

giving the drift rate

A(n) =

a1 − a2

a2 − a3

 =

k̂1nAn1 − k̂2n1n2

k̂2n1n2 − k̂3n2

 .
The time derivative of the mean copy number is then the mean drift rate〈
A
(
N
)〉
:

d 〈N1〉
dt = k̂1nA 〈N1〉 − k̂2 〈N1N2〉 ,

d 〈N2〉
dt = k̂2 〈N1N2〉 − k̂3 〈N2〉 .

Since 〈N1N2〉 6= 〈N1〉 〈N2〉, the mean 〈N〉 is not the same as the solution of
the deterministic ODE (2.23). In general, the mean of a system containing
second- and/or higher-order reactions is not the same as the solution of the
corresponding deterministic ODE because of nonlinear propensities. Hence
the deterministic model cannot be used, in general, to describe the correct
mean.

In general, the mean drift rate
〈
A
(
N
)〉

involves the unknown probability
distribution P (n, t). In other words, it not only depends on the mean itself,
but also involves higher-order moments, and therefore (6.2) is, in general, not
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closed in 〈N〉. Suppose the reaction propensities aj(n) are smooth functions
and that central moments 〈(N − 〈N〉)m〉 of order higher than m = 2 can
be ignored. Then the elements of drift rate A(n) = S a(n) are also smooth
functions and allow a Taylor expansion. The Taylor expansion of Ai(n) around
the mean 〈N〉 is

Ai(n) = Ai

(
〈N〉

)
+ ∂Ai
∂nT

(
n−〈N〉

)
+ 1

2

(
n−〈N〉

)T ∂2Ai
∂n∂nT

(
n−〈N〉

)
+ · · · .

All the partial derivatives with respect to the state n are evaluated at n = 〈N〉.
The first-order partial derivative here is the ith row of the Jacobian ∂A

∂nT of
the drift rate A. The second-order partial derivative is the Hessian ∂2Ai

∂n∂nT of
the componentwise drift rate Ai. The expectation of the second term on the
right is zero. Ignoring terms (moments) of order higher than two, the ODE
(6.1) can be approximated componentwise by

d 〈Ni〉
dt = Ai

(
〈N〉

)
+ 1

2
∂2Ai
∂n∂nT

:
〈
δNδNT

〉
. (6.4)

Here the binary operation : denotes the Frobenius inner product, the sum of
products of the corresponding elements, between two matrices. The last term
on the right can be interpreted as the contribution from fluctuations in the
drift rate. Note that this term has been derived from the CME instead of
being assumed like external noise. This shows that knowledge of fluctuations
(even if small) is important for a correct description of the mean. This also
indicates an advantage of the stochastic framework over its deterministic
counterpart: starting from the same assumptions and approximations, the
stochastic framework allows us to see the influence of fluctuation on the mean.
Note that the above equation is exact for systems in which no reaction has an
order higher than two, because then third and higher derivatives of propensity
are zero.

Dividing the above ODE by the system size Ω, we can arrive at the
corresponding ODE for componentwise concentration,

d 〈Xi〉
dt = fi

(
〈X〉

)
+ 1

2
∂2fi
∂x∂xT

:
〈
δXδXT

〉
, (6.5)

where all the partial derivatives with respect to the state x are evaluated at
x = 〈X〉 and fi is the componentwise drift rate. The above result follows
from the following obvious relations in state n = Ωx:

〈N〉 = Ω 〈X〉 ,
〈
δNδNT

〉
= Ω2 〈δXδXT

〉
, A(n) = Ωf(x) .

The form of the above ODE will not change in dealing with relative concen-
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trations because then we would employ the relations

〈Ni〉 = ΩCi 〈Xi〉 , 〈δNiδNk〉 = Ω2CiCk 〈δXiδXk〉 , Ai(n) = ΩCifi(x),

and thus the characteristic concentrations would cancel out during the sim-
plification process from (6.4) to (6.5). Remember that all the derivatives
with respective state vectors n and x are evaluated at n = 〈N〉 and x = 〈X〉,
respectively.

6.3 Dynamics of the (Co)variance
Before we can see how the (co)variances 〈NiNk〉 evolve in time, let us multiply
the CME by nink and sum over all n,∑

n

nink
dP (n, t)

dt =
∑
n

nink
∑
j

[
aj(n− S�j)P (n− S�j , t)− aj(n)P (n, t)

]
=
∑
n,j

[
(ni + Sij) (nk + Skj)− nink

]
aj(n)P (n, t)

=
∑
n

∑
j

(
nkSij + niSkj + SijSkj

)
aj(n)P (n, t),

where dependence on time is implicit for all variables except n and s. Recog-
nizing sums of probabilities as expectations yields

d 〈NiNk〉
dt = 〈NkAi(N)〉+ 〈NiAk(N)〉+ 〈Bik(N)〉 ,

where
Bik(n) =

r∑
j=1

SijSkjaj(n)

forms the (i, k)th element of the s×s diffusion coefficient B(n) defined earlier,
in (5.31). The relation〈

δNδNT
〉

=
〈
NNT

〉
− 〈N〉 〈N〉T

can be utilized to yield

d 〈δNiδNk〉
dt = 〈(Nk − 〈Nk〉)Ai(N)〉+〈(Ni − 〈Ni〉)Ak(N)〉+〈Bik(N)〉 (6.6)
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for the copy-number covariance. Dividing through by Ω2 gives the analogous
system of ODEs for concentration covariance:

d 〈δXiδXk〉
dt = 〈(Xk − 〈Xk〉) fi(X)〉+〈(Xi − 〈Xi〉) fk(X)〉+ 〈gik(X)〉

Ω , (6.7)

where gik(x) =
∑r
j=1 SijSkjvj(x) for the case of absolute concentrations, and

in general (to account for relative concentrations),

gik(x) = 1
CiCk

r∑
j=1

SijSkjvj(C � x), (6.8)

an element of the normalized diffusion coefficient g in terms of concentrations.
Let us start with the component form of (6.6). The argument of the first
expectation on the right has Taylor expansion

Ai(n)
(
nk−〈Nk〉

)
= Ai

(
〈N〉

)(
nk−〈Nk〉

)
+ ∂Ai
∂nT

(n− 〈N〉)
(
nk−〈Nk〉

)
+· · · .

The expectation of the first term on the right is zero. Ignoring moments of
order higher than two, the first expectation in (6.6) is then〈

(Nk − 〈Nk〉)Ai(N)
〉

= ∂Ai
∂nT

〈δNδNk〉 .

By a similar procedure, the second expectation in (6.6) is〈
(Ni − 〈Ni〉)Ak(N)

〉
=
〈
δNiδN

T
〉 ∂Ak
∂n

,

correct to second-order moments. The element Bik(n) of the diffusion coeffi-
cient has Taylor expansion

Bik(n) = Bik

(
〈N〉

)
+ ∂Bik
∂nT

(
n−〈N〉

)
+ 1

2

(
n−〈N〉

)T ∂2Bik
∂n∂nT

(
n−〈N〉

)
+· · · .

Taking termwise expectation, and ignoring third and higher-order moments
yields

〈Bik(N)〉 = Bik

(
〈N〉

)
+ 1

2
∂2Bik
∂n∂nT

:
〈
δNδNT

〉
.
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Summing up the three expectations above gives the ODE

d 〈δNiδNk〉
dt = ∂Ai

∂nT
〈δNδNk〉+

〈
δNiδN

T
〉 ∂Ak
∂n

+Bik

(
〈N〉

)
+ 1

2
∂2Bik
∂n∂nT

:
〈
δNδNT

〉
(6.9)

for the componentwise covariances. The Jacobian ∂f/∂nT reflects the dynamics
for relaxation (dissipation) to the steady state and the (Taylor approximation
to second order of) diffusion coefficient B reflects the randomness (fluctuations)
of the individual events [120]. These terms are borrowed from the fluctuation–
dissipation theorem (FDT) [78, 89], which has the same form as (6.9). Recall
that (6.9) is exact for systems that contain only zero- and first-order reactions
because in that case the propensity is already linear.

Dividing the above ODE by Ω2 will lead to the corresponding ODE for
the pairwise concentration covariance:

d 〈δXiδXk〉
dt = ∂fi

∂xT
〈δXδXk〉+

〈
δXiδX

T
〉 ∂fk
∂x

+ 1
Ω

[
gik

(
〈X〉

)
+ 1

2
∂2gik
∂x∂xT

:
〈
δXδXT

〉]
. (6.10)

Here we see that steady-state concentration (co)variance is inversely pro-
portional to the system size Ω, as one would expect. In other words, the
steady-state noise, as measured by the square root of (co)variance, is inversely
proportional to the square root of the system size, as one would expect. The
above result follows from the following obvious relations in state n = Ωx:

〈N〉 = Ω 〈X〉 ,
〈
δNδNT

〉
= Ω2 〈δXδXT

〉
,

A(n) = Ωf(x), B(n) = Ω2g(x) .

As we noted in the last section, the form of the above ODE will not
change in dealing with relative concentrations, because then we would employ
the following relations:

〈Ni〉 = ΩCi 〈Xi〉 , 〈δNiδNk〉 = Ω2CiCk 〈δXiδXk〉 ,
Ai(n) = ΩCifi(x), Bik(n) = Ω2CiCkgik(x)

and thus the characteristic concentrations would cancel out for the third term
during the simplification process from (6.9) to (6.10).
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6.3.1 Potential Confusions
It is instructive to point out similarities and differences of the 2MA approach
to other approaches.

The Gaussian approximation: The fact that the 2MA approach tracks
only the first two central moments may misguide the reader to equate the 2MA
approach to a Gaussian approximation is characterized only by its first two
central moments. However, the 2MA approach ignored all the higher-order
central moments, whereas for the Gaussian distribution only the odd higher-
order central moments are zero. The even higher-order (central) moments of
a Gaussian distribution can be expressed as the standard deviation raised to
the corresponding order.

The CLE: Consider the system in state n = Ωx. The drift rate A(n) (defined
by (5.29) and appearing in the 2MA equations) appears as the coefficient of
dt of the first term on the right of the CLE (5.35) and (5.39). Moreover, the
diffusion coefficient B (defined by (5.31) and appearing in the 2MA equations)
has its matrix square root B1/2 as a coefficient of the Wiener increment in the
CLE (5.39). However, while the CLE essentially approximates the Markov
process N(t) by a Gaussian random process, the 2MA simply ignores the
third and higher-order central moments.

Alternative names: In [58], the 2MA framework is developed under the
name “mass fluctuation kinetics” for biochemical networks composed of ele-
mentary reactions. Another instance of the 2MA is proposed in [61, 62] under
the names “mean-field approximation” and “statistical chemical kinetics.”

6.4 Outline of the 2MA
We can summarize the 2MA method, in terms of copy numbers, by the
following steps:

1. Assign propensity aj(n) to each reaction channel.

2. Construct elements Ai(n) of the drift rate according to (5.29) and the
partial derivatives ∂Ai

∂nT and ∂2Ai

∂n∂nT for each species.

3. Construct elements Bik(n) of the diffusion coefficient according to (5.31)
and the partial derivative ∂2Bik

∂n∂nT for each pair of species.

4. Construct sums ∂2Ai

∂n∂nT : 〈δNδNT 〉 of elementwise products between the
Hessian of Ai and covariance matrix, for each species.
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5. Construct the scalar (dot) products ∂Ai

∂nT 〈δNδNk〉 and 〈δNiδN
T 〉∂Ak

∂n for
each pair of species.

6. Construct sums of elementwise products, ∂2Bik

∂n∂nT : 〈δNδNT 〉, between the
Hessian of Bik and covariance matrix for each pair of species.

7. Insert the expressions obtained so far in (6.4) and (6.9) to obtain the
2MA equations.

Remember that any derivatives with respective to state n must be evaluated
at n = 〈N〉. The procedure for the 2MA equations in terms of concentrations
is the same except for appropriate replacements such as N with X and so on.

Matlab implementation: The steps outlined above for the 2MA method
can be implemented in Matlab. The implementation in M-code 6.1 is based on
the symbolic toolbox. Here the output hOut returned by the main function
make2MA is a function handle that can be used in any Matlab solver. Note
that this function handle can be used in an ODE solver as if it were a function
of the form f(t, y) with two arguments: time t and a vector y that corresponds
to the state n in the following way. The first s elements form the mean vector
〈N〉, and the remaining s(s+1)/2 elements form the lower triangular submatrix,
read columnwise, of the covariance matrix 〈δNδNT 〉.

Example 6.3 (Standard modification) Let us practice the procedure outlined
above to construct the 2MA equations for the standard modification scheme
(2.5) with the associated state transitions in Figure 5.19.

1. Assign propensity aj(n) to each reaction channel:

a1 = kwn, a2 =
(
ntot − n

)
ku .

2. Construct the drift rate,

A(n) = a1 − a2 = −kwn+
(
ntot − n

)
ku,

(according to(5.29)) and its partial derivatives:

∂A

∂n
= − (kw + ku) , ∂2A

∂n2 = 0 .

3. Construct the diffusion coefficient Bik(n) according to (5.31) and the
partial derivative ∂2Bik

∂n∂nT for each pair of species:

B(n) = a1 + a2 = kwn+
(
ntot − n

)
ku,

∂2B

∂n2 = 0 .
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M-code 6.1 make2MA: implements the 2MA method. Requires the symbolic
toolbox.

function hOut = make2ma(S,a)
s = size(S,1); % number of species
n = sym(’n%d’, [s 1]); % copy number
C = sym(’C%d%d’, [s s]); % covariance matrix
aofn = a(n); % propensity
A = S*aofn; % drift rate
B = S*diag(aofn)*S.’; % diffusion coefficient
if s==1

odearg = [n C].’;
d1Adn = diff(A, n); % Jacobian
d2Adn2 = diff(d1Adn,n); % Hessian
dndt = A + 0.5*d2Adn2.*C;
dCdt = 2*d1Adn*C + B + 0.5*d2Adn2.*C;

else
C = tril(C) + tril(C,-1).’;
onesxs = ones(s);
ind = find(tril(onesxs));
odearg = [n; C(ind)];
d1Adntr = jacobian(A, n); % Jacobian
d1Atrdn = d1Adntr.’;
dndt = A;
for i=1:s

d2Aidn2 = jacobian(d1Atrdn(:,i),n); % Hessian
dndt(i) = dndt(i) + 0.5*sum(d2Aidn2(:).*C(:));

end
dCdt = d1Adntr*C;
dCdt = dCdt + dCdt.’;
for idx=ind(:).’

d1Bijdn = jacobian(B(idx), n).’;
d2Bijdn2 = jacobian(d1Bijdn,n);
dCdt(idx) = dCdt(idx) + ...

B(idx) + 0.5*sum(d2Bijdn2(:).*C(:));
end
dCdt = dCdt(ind);

end
hOut = matlabFunction( ...

[dndt; dCdt], ’vars’, {sym(’t’),odearg} );
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4. Construct sums ∂2Ai

∂n∂nT : 〈δNδNT 〉 of elementwise products between the
Hessian of Ai and covariance matrix for each species:

∂2A

∂n2
〈
δN2〉 = 0 .

5. Construct the scalar (dot) products ∂Ai

∂nT 〈δNδNk〉 and 〈δNiδN
T 〉∂Ak

∂n for
each pair of species:

∂A

∂n

〈
δN2〉 = − (kw + ku)

〈
δN2〉 .

6. Construct sums ∂2Bik

∂n∂nT : 〈δNδNT 〉 of elementwise products between the
Hessian of Bik and covariance matrix for each pair of species:

∂2B

∂n2
〈
δN2〉 = 0 .

7. Insert the expressions obtained so far in (6.4) and (6.9) to obtain the
2MA equations

d 〈N〉
dt = − (kw + ku) 〈N〉+ kun

tot,

d
〈
δN2〉
dt = −2 (kw + ku)

〈
δN2〉+ (kw − ku) 〈N〉+ kun

tot .

(6.11)

We see that the growth of variance is influenced by the mean through
the rate term. With a rise in the mean, the growth of variance speeds
up if kw > ku, slows down if kw < ku, and is not influenced if kw = ku.
This is illustrated in Figure 6.1, which plots the standard deviation
(SD) and the coefficient of variation (CV) for four pairs of parameter
values with the same sum kw + ku = 4. It is interesting to note that
the transient overshoot of the SD is not shared by the CV. To get a
qualitative idea about possible stochastic realizations, the mean and the
band of one standard deviation around it are plotted in Figure 6.2 for
the same three pairs of parameter values.

In nondimensional time τ = (kw + ku)t, the above pair of ODEs takes the
form

d 〈N〉
dτ = −〈N〉+

(
ku

kw + ku

)
ntot,

d
〈
δN2〉
dτ = −2

〈
δN2〉+

(
kw − ku
kw + ku

)
〈N〉+

(
ku

kw + ku

)
ntot .
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Figure 6.1 Time courses, for the standard modification, of standard deviation
(SD), on the left, and the coefficient of variation (CV), on the right. The parameter
pairs (kw, ku) in sec−1 have been selected to satisfy kw + ku = 4. The total number
of protein molecules was chosen to be ntot = 10, initially all unmodified, that is,
N(0) = 10 .

Now we can see that experimental data on both the mean and variance
are needed for identifiability of both the parameters. The time-course mea-
surements of mean alone provide information about one fraction ku/(kw+ku)
only. To get information about the other fraction (kw−ku)/(kw+ku), we need
time-course measurements of variance as well.

Here we have used the SD and CV as measures of noise. In addition
to these two, other alternative measures of noise, including the Fano factor
F=〈δN2〉/〈N〉 and the noise-to-signal ratio ζ = 〈δN2〉/〈N〉2, are discussed in
[117].

Example 6.4 (Heterodimerization) For the heterodimerization reaction scheme
(2.6) with state transitions in Figure 5.22, the 2MA equations are obtained
by the same procedure outlined earlier.

1. Assign kinetic rate vj(x) to each reaction channel:

v1 = k1 (q1 − x) (q2 − x) , a2 = k2x .

2. Construct the drift rate,

f = v1 − v2 = k1 (q1 − x) (q2 − x)− k2x,
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Figure 6.2 Time courses of mean and mean±SD for the standard modification for
four parameter pairs (kw, ku) in sec−1, selected so that each one satisfies kw +ku = 4.
The difference kw − ku of the two parameters contributes to the temporal dynamics
of the moments. The total number of protein molecules was chosen to be ntot = 10,
initially all unmodified, that is, N(0) = 10 .

(according to(6.3)) and its partial derivatives:

∂f

∂x
= −k1 (q1 + q2 − 2x)− k2, ,

∂2f

∂x2 = 2k1 .

3. Construct the diffusion coefficient gik(x) according to (6.8) and the
partial derivative ∂2gik

∂x∂xT for each pair of species:

g = v1 + v2 = k1 (q1 − x) (q2 − x) + k2x,
∂2g

∂x2 = 2k1 .

4. Construct sums ∂2fi

∂x∂xT : 〈δXδXT 〉 of elementwise products between the
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Hessian of fi and covariance matrix for each species:

∂2f

∂x2
〈
δX2〉 = 2k1

〈
δX2〉 .

5. Construct the scalar products ∂fi

∂xT 〈δXδXk〉 and 〈δXiδX
T 〉∂fk

∂x for each
pair of species:

∂f

∂x

〈
δX2〉 = −

[
k1 (q1 + q2 − 2 〈X〉) + k2

] 〈
δX2〉 .

6. Construct sums ∂2gik

∂x∂xT : 〈δXδXT 〉 of elementwise products between the
Hessian of gik and covariance matrix for each pair of species:

∂2g

∂x2
〈
δX2〉 = 2k1

〈
δX2〉 .

7. Insert the expressions obtained so far in (6.5) and (6.10) to obtain the
2MA equations

d 〈X〉
dt = k1 (q1 − 〈X〉) (q2 − 〈X〉)− k2 〈X〉+ k1

〈
δX2〉 ,

d
〈
δX2〉
dt = 2

[
k1

(
1

2Ω + 2 〈X〉 − q1 − q2

)
− k2

] 〈
δX2〉

+ 1
Ω

[
k1 (q1 − 〈X〉) (q2 − 〈X〉) + k2 〈X〉

]
.

These 2MA equations can be solved numerically to compute the time-varying
mean and variance of the product abundance for this example. The 2MA
computed mean and the error bars determined by the mean±SD are plotted
in Figure 6.3 together with the ensemble mean and the associated error bars,
which were computed over 1000 realizations (SSA runs) of the stochastic
process.

Example 6.5 (Lotka–Volterra model) For the reaction scheme (2.7) and the
associated state transitions in Figure 5.24 of the Lotka–Volterra model, the
2MA equations are obtained by the same procedure outlined earlier.

1. Assign propensity aj(n) to each reaction channel:

a1 = k̂1nAn1, a2 = k̂2n1n2, a3 = k̂3n2 .
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Figure 6.3 Mean and the error bars determined by the mean±SD of the product
abundance for the heterodimerization reaction (2.6). The 2MA computed mean
(stars) as well as the error bars match with the ensemble mean (circles) and the
associated error bars, which were computed over 1000 realizations (SSA runs) of the
stochastic process. The parameters and initial conditions are taken from Figure 5.5.

2. Construct the drift rate,

A(n) =

a1 − a2

a2 − a3

 =

k̂1nAn1 − k̂2n1n2

k̂2n1n2 − k̂3n2

 ,
(according to (5.29)) and its elementwise partial derivatives:

∂A

∂nT
=

k̂1nA − k2 〈N2〉 −k̂2 〈N1〉

k̂2 〈N2〉 k̂2 〈N1〉 − k̂3

 ,
∂2A2
∂n∂nT

=

 0 k̂2

k̂2 0

 = − ∂2A1
∂n∂nT

.
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3. Construct the diffusion coefficient

B =

a1 + a2 −a2

−a2 a2 + a3

 =

k̂1nAn1 + k̂2n1n2 −k̂2n1n2

−k̂2n1n2 k̂2n1n2 + k̂3n2

 ,
(according to (5.31)) and its elementwise partial derivatives:

∂2B11
∂n∂nT

= ∂2B22
∂n∂nT

=

 0 k̂2

k̂2 0

 = − ∂2B12
∂n∂nT

= − ∂2B21
∂n∂nT

.

4. Construct sums ∂2Ai

∂n∂nT : 〈δNδNT 〉 of elementwise products between the
Hessian of Ai and covariance matrix for each species:

∂2A2
∂n∂nT

:
〈
δNδNT

〉
= − ∂2A1

∂n∂nT
:
〈
δNδNT

〉
= 2k̂2 〈δN1δN2〉 .

5. Construct the scalar products ∂Ai

∂nT 〈δNδNk〉 and 〈δNiδN
T 〉∂Ak

∂n for each
pair of species:

∂A1
∂nT

〈δNδN1〉 =
(
k̂1nA − k̂2 〈N2〉

) 〈
δN2

1
〉
− k̂2 〈N1〉 〈δN1δN2〉 ,

∂A1
∂nT

〈δNδN2〉 =
(
k̂1nA − k̂2 〈N2〉

)
〈δN1δN2〉 − k̂2 〈N1〉

〈
δN2

2
〉
,〈

δN1δN
T
〉 ∂A2
∂n

= k̂2 〈N2〉
〈
δN2

1
〉

+
(
k̂2 〈N1〉 − k̂3

)
〈δN1δN2〉 ,

∂A2
∂nT

〈δNδN2〉 = k̂2 〈N2〉 〈δN1δN2〉+
(
k̂2 〈N1〉 − k̂3

) 〈
δN2

2
〉
.

6. Construct sums ∂2Bik

∂n∂nT : 〈δNδNT 〉 of elementwise products between the
Hessian of Bik and covariance matrix for each pair of species:

∂2Bik
∂n∂nT

:
〈
δNδNT

〉
=
{

2k̂2 〈δN1δN2〉 if i = k,

−2k̂2 〈δN1δN2〉 if i 6= k.

7. Insert the expressions obtained so far in (6.4) and (6.9) to obtain the
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2MA equations

d 〈N1〉
dt =

(
k̂1nA − k2 〈N2〉

)
〈N1〉 − k̂2 〈δN1δN2〉 ,

d 〈N2〉
dt =

(
k̂2 〈N1〉 − k̂3

)
〈N2〉+ k̂2 〈δN1δN2〉 ,

d
〈
δN2

1
〉

dt = 2
(
k̂1nA − k̂2 〈N2〉

) 〈
δN2

1
〉
− (2 〈N1〉 − 1) k̂2 〈δN1δN2〉

+
(
k̂1nA + k̂2 〈N2〉

)
〈N1〉 ,

d 〈δN1δN2〉
dt = k̂2 〈N2〉

〈
δN2

1
〉
− k̂2 〈N1〉

〈
δN2

2
〉
− k̂2 〈N1〉 〈N2〉

+
(
k̂1nA − k̂3 + (〈N1〉 − 〈N2〉 − 1) k̂2

)
〈δN1δN2〉 ,

d
〈
δN2

2
〉

dt = 2
(
k̂2 〈N1〉 − k̂3

) 〈
δN2

2
〉

+ (2 〈N2〉+ 1) k̂2 〈δN1δN2〉

+
(
k̂2 〈N1〉+ k̂3

)
〈N2〉 .

We now need to compute the numerical solution of these 2MA equations
to obtain the time-varying mean and variance of the prey and predator
populations for the Lotka–Volterra model. The 2MA computed mean and the
error bars determined by the mean±SD are plotted in Figure 6.4 side by side
with the ensemble mean and the associated error bars, which were computed
over 1000 realizations (SSA runs) of the stochastic process.

Example 6.6 (Enzyme kinetic reaction) For the enzyme kinetic reaction
scheme (2.8) with the associated state transitions in Figure (5.23), the 2MA
equations are obtained by the same procedure outlined earlier, but replacing
copy numbers by concentrations.

1. Assign kinetics rates vj(x) to each reaction channel:

v1 =
(
xtot

E − xES

)
k1xS, v2 = k2xES, v3 = k3xES .

2. Construct the drift rate

f(x) =

 −v1 + v2

v1 − v2 − v3

 =

 −
(
xtot

E − xES

)
k1xS + k2xES(

xtot
E − xES

)
k1xS − (k2 + k3)xES

 ,
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Figure 6.4 Mean and the error bars determined by the mean±SD of the species
populations for the Lotka–Volterra model (2.7). Left: computed from 1000 real-
izations (SSA runs) of the stochastic process, Right: 2MA computed. The 2MA
predictions match closely the corresponding SSA computed values. Note that the
error bars have gone negative at some points, while the population must be nonneg-
ative. That can be explained in two ways: (1) the probability distribution is not
symmetric like a Gaussian (as assumed by error bars), and/or (2) extinction has
occurred. The parameters and initial populations were taken from Figure 5.6.

(according to(6.3)) and its partial derivatives:

∂f

∂xT
=

−
(
xtot

E −
〈
xES

〉)
k1 k1

〈
xS

〉
+ k2(

xtot
E −

〈
xES

〉)
k1 −k1

〈
xS

〉
− k2 − k3

 ,
∂2f1
∂x∂xT

=

 0 k1

k1 0

 = − ∂2f2
∂x∂xT

.
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3. Construct the diffusion coefficients

g11 = v1 + v2 =
(
xtot

E − xES

)
k1xS + k2xES,

g12 = g21 = −v1 − v2 = −
(
xtot

E − xES

)
k1xS − k2xES,

g22 = v1 + v2 + v3 =
(
xtot

E − xES

)
k1xS + (k2 + k3)xES,

(according to (6.8)) and its elementwise partial derivatives:

∂2g12
∂x∂xT

= ∂2g21
∂x∂xT

=

 0 k1

k1 0

 = − ∂2g11
∂x∂xT

= − ∂2g22
∂x∂xT

.

4. Construct sums ∂2fi

∂x∂xT : 〈δXδXT 〉 of elementwise products between the
Hessian of fi and covariance matrix for each species:

∂2f1
∂x∂xT

:
〈
δXδXT

〉
= 2k1 〈δXSδXES〉 = − ∂2f2

∂x∂xT
:
〈
δXδXT

〉
.

5. Construct the scalar products ∂fi

∂xT 〈δXδXk〉 and 〈δXiδX
T 〉∂fk

∂x for each
pair of species:

∂f1
∂xT

〈δXδXS〉 = −
(
xtot

E − 〈XES〉
)
k1
〈
δX2

S
〉

+ (k1 〈XS〉+ k2) 〈δXSδXES〉 ,
∂f1
∂xT

〈δXδXES〉 = −
(
xtot

E − 〈XES〉
)
k1 〈δXSδXES〉

+ (k1 〈XS〉+ k2)
〈
δX2

ES
〉
,〈

δXSδX
T
〉 ∂f2
∂x

=
(
xtot

E − 〈XES〉
)
k1
〈
δX2

S
〉

− (k1 〈XS〉+ k2 + k3) 〈δXSδXES〉 ,
∂f2
∂xT

〈δXδXES〉 =
(
xtot

E − 〈XES〉
)
k1 〈δXSδXES〉

− (k1 〈XS〉+ k2 + k3)
〈
δX2

ES
〉
.

6. Construct sums ∂2gik

∂x∂xT : 〈δXδXT 〉 of elementwise products between the
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Hessian of gik and covariance matrix for each pair of species:

∂2gik
∂x∂xT

:
〈
δXδXT

〉
=
{
−2k1 〈δXSδXES〉 if i = k,

2k1 〈δXSδXES〉 if i 6= k .

7. Insert the expressions obtained so far in (6.5) and (6.10) to obtain the
2MA equations

d 〈XS〉
dt = −

(
xtot

E − 〈XES〉
)
k1 〈XS〉+ k2 〈XES〉+ k1 〈δXSδXES〉 ,

d 〈XES〉
dt =

(
xtot

E − 〈XES〉
)
k1 〈XS〉 − (k2 + k3) 〈XES〉

− k1 〈δXSδXES〉 ,
d
〈
δX2

S
〉

dt = −2
(
xtot

E − 〈XES〉
)
k1
〈
δX2

S
〉

+
(

2k1

〈
xS

〉
+ 2k2 −

k1
Ω

)
〈δXSδXES〉

+ 1
Ω

[(
xtot

E − 〈XES〉
)
k1 〈XS〉+ k2 〈XES〉

]
,

d 〈δXSδXES〉
dt =

(
xtot

E − 〈XES〉
)
k1
〈
δX2

S
〉

+ (k1 〈XS〉+ k2)
〈
δX2

ES
〉

−
[( 1

Ω + xtot
E + 〈XS〉 − 〈XES〉

)
k1 + k2 + k3

]
〈δXSδXES〉

− 1
Ω

[(
xtot

E − 〈XES〉
)
k1 〈XS〉+ k2 〈XES〉

]
,

d
〈
δX2

ES
〉

dt = −
(
2k1 〈XS〉+ k2 + k3

) 〈
δX2

ES
〉

+
(

2
(
xtot

E − 〈XES〉
)
− 1

Ω

)
k1 〈δXSδXES〉

+ 1
Ω

[(
xtot

E − 〈XES〉
)
k1 〈XS〉+

(
k2 + k3

)
〈XES〉

]
.

The numerical solution of these 2MA equations provides us the time-varying
mean and variance of the substrate and complex abundances. The 2MA
computed mean and the error bars determined by the mean±SD are plotted
in Figure 6.5 together with the ensemble mean and the associated error bars,
which were computed over 1000 realizations (SSA runs) of the stochastic
process.

Example 6.7 (Stochastic focusing) For the simplified branched reaction



194 6 The 2MA Approach

0 20 40 60 80 100
0

10

20

30

40

50

S

ES

time (sec)

co
py

 n
um

be
r

Figure 6.5 Mean and the error bars determined by the mean±SD of the substrate
and complex abundances for the enzymatic reaction (2.8). The 2MA computed
mean (stars) as well as the error bars match closely the ensemble mean (circles)
and the associated error bars, which were computed over 1000 realizations (SSA
runs) of the stochastic process. The parameters and initial conditions are taken
from Figure 2.7.

scheme with the associated state transitions in Figure (5.21), the 2MA equa-
tions are obtained by the same procedure outlined earlier.

1. Assign propensities aj(n) to each reaction channel: (recall that Ω = 1)

a+
s = ks, a−s = kdnS, a+

p = ki
1 + nS

K

, a−p = nP .

2. Construct the drift rate,

A(n) =

a+
s − a−s

a+
p − a−p

 =

 ks − kdnS

ki

1+ nS
K

− nP

 ,
(according to (5.29)) and its partial derivatives:

∂A

∂nT
=

 −kd 0

−ki/K

(1+ nS
K )2 −1

 , ∂2A1
∂n∂nT

=

0 0

0 0

 , ∂2A2
∂n∂nT

=


2ki/K2

(1+ nS
K )3 0

0 0

 .
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3. Construct the diffusion coefficient,

B(n) =

a+
s + a−s 0

0 a+
p + a−p

 =

ks + kdnS 0

0 ki

1+ nS
K

+ nP

 ,
(according to (5.31)) and its elementwise partial derivatives:

∂2B11
∂n∂nT

= ∂2B12
∂n∂nT

= ∂2B21
∂n∂nT

=

0 0

0 0

 , ∂2B22
∂n∂nT

=


2ki/K2

(1+ nS
K )3 0

0 0

 .

4. Construct sums ∂2Ai

∂n∂nT : 〈δNδNT 〉 of elementwise products between the
Hessian of Ai and covariance matrix for each species:

∂2A1
∂n∂nT

:
〈
δNδNT

〉
= 0, ∂2A2

∂n∂nT
:
〈
δNδNT

〉
=

2ki
〈
δN2

S
〉

K2
(
1 + nS

K

)3 .
5. Construct the scalar products ∂Ai

∂nT 〈δNδNk〉 and 〈δNiδN
T 〉∂Ak

∂n for each
pair of species:

∂A1
∂nT

〈δNδNS〉 = −kd
〈
δN2

S
〉
,

∂A1
∂nT

〈δNδNP〉 = −kd 〈δNSδNP〉 ,〈
δNSδN

T
〉 ∂A2
∂n

= − ki
〈
δN2

S
〉

K
(

1 + 〈NS〉
K

)2 − 〈δNSδNP〉 ,

∂A2
∂nT

〈δNδNP〉 = − ki 〈δNSδNP〉
K
(

1 + 〈NS〉
K

)2 −
〈
δN2

P
〉
.

6. Construct sums ∂2Bik

∂n∂nT : 〈δNδNT 〉 of elementwise products between the
Hessian of Bik and covariance matrix for each pair of species:

∂2Bik
∂n∂nT

:
〈
δNδNT

〉
=


2ki〈δN2

S〉
K2(1+ nS

K )3 if i = k = 2,

0 otherwise .

7. Insert the expressions obtained so far in (6.4) and (6.9) to obtain the
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2MA equations

d 〈NS〉
dt = ks − kd 〈NS〉

d 〈NP〉
dt = −〈NP〉+ ki

1 + 〈NS〉
K

+
ki
〈
δN2

S
〉

K2
(

1 + 〈NS〉
K

)3 ,

d
〈
δN2

S
〉

dt = −2kd
〈
δN2

S
〉

+ kd 〈NS〉+ ks,

d 〈δNSδNP〉
dt = − ki

〈
δN2

S
〉

K
(

1 + 〈NS〉
K

)2 − (1 + kd) 〈δNSδNP〉 ,

d
〈
δN2

P
〉

dt = −2
〈
δN2

P
〉

+
ki
〈
δN2

S
〉

K2
(

1 + 〈NS〉
K

)3 −
2ki 〈δNSδNP〉
K
(

1 + 〈NS〉
K

)2

+ ki

1 + 〈NS〉
K

+ 〈NP〉 .

Example 6.8 (Schlögl model) We saw in the last chapter that for the Schlögl
reaction scheme (2.9) with state transitions in Figure 5.25, SSA-computed
trajectories ultimately get distributed as separate clusters around the two
fixed points. The mean copy number is located between the two clusters
but does not represent any cluster. Therefore, the mean copy number is
not an appropriate description for the Schlögl model, and in fact, for any
multistable model. However, we will still attempt to construct 2MA equations
for the Schlögl model to see the level of fluctuations relative to the mean. In a
monostable system, one expects fluctuations to be proportional to the square
root of the mean. In a bistable system, the fluctuations are comparable to
the mean.

1. Assign propensity aj(n) to each reaction channel:

a1 = (n− 1)k̂1n+ k̂3, a2 = (n− 2)(n− 1)k̂2n+ k4n,

where k̂1 =
k1xA

Ω , k̂2 = k2
Ω2 , k̂3 = k3xBΩ .

2. Construct the drift rate,

A(n) = a1 − a2 = −k̂2n
3 +

(
k̂1 + 3k̂2

)
n2 −

(
k4 + 2k̂2 + k̂1

)
n+ k̂3,
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(according to (5.29)) and its partial derivatives:

∂A

∂n
= −3k̂2 〈N〉2 + 2

(
k̂1 + 3k̂2

)
〈N〉 − k̂1 − 2k̂2 − k4,

∂2A

∂n2 = −6k̂2 〈N〉+ 2k̂1 + 6k̂2 .

3. Construct the diffusion coefficient (according to (5.31)) and its partial
derivative:

B = k̂2n
3 +

(
k̂1 − 3k̂2

)
n2 +

(
k4 + 2k̂2 − k̂1

)
n+ k̂3,

∂2B

∂n2 = 6k̂2 〈N〉+ 2k̂1 − 6k̂2 .

4. Construct sums ∂2Ai

∂n∂nT : 〈δNδNT 〉 of elementwise products between the
Hessian of Ai and covariance matrix for each species:

∂2A

∂n2
〈
δN2〉 =

(
−6k̂2 〈N〉+ 2k̂1 + 6k̂2

) 〈
δN2〉 .

5. Construct the scalar (dot) products ∂Ai

∂nT 〈δNδNk〉 and 〈δNiδN
T 〉∂Ak

∂n for
each pair of species:

∂A

∂n

〈
δN2〉 =

[
−3k̂2 〈N〉2 + 2

(
k̂1 + 3k̂2

)
〈N〉 − k̂1 − 2k̂2 − k4

] 〈
δN2〉 .

6. Construct sums ∂2Bik

∂n∂nT : 〈δNδNT 〉 of elementwise products between the
Hessian of Bik and covariance matrix for each pair of species:

∂2B

∂n2
〈
δN2〉 =

(
6k̂2 〈N〉+ 2k̂1 − 6k̂2

) 〈
δN2〉 .

7. Insert the expressions obtained so far in (6.4) and (6.9) to obtain the
2MA equations

d 〈N〉
dt = −k̂2 〈N〉3 +

(
k̂1 + 3k̂2

)
〈N〉2 −

(
k4 + 2k̂2 + k̂1

)
〈N〉+ k̂3

+
(
k̂1 + 3k̂2 − 3k̂2 〈N〉

) 〈
δN2〉 ,

d
〈
δN2〉
dt =

[(
15 〈N〉 − 6 〈N〉2 − 7

)
k̂2 + 3k̂1 − 2k4

] 〈
δN2〉+ k̂2 〈N〉3

+
(
k̂1 − 3k̂2

)
〈N〉2 +

(
k4 + 2k̂2 − k̂1

)
〈N〉+ k̂3 .
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Figure 6.6 2MA predictions for the Schlögl reaction scheme (2.9). Left: Mean copy
number, Right: mean together with the error bars determined by the mean±SD.
The mean is overshadowed by the error bars. Since one would expect otherwise, the
2MA prediction suggests that further analysis is needed. The parameters and initial
conditions are taken from Figure 1.7.

These 2MA equations can now be solved numerically. The results are plotted
in Figure 6.6, wherein the mean copy number is shown alone on the left, and
together with the error bars associated with mean±SD on the right. The
mean is overshadowed by the error bars. Since one would expect otherwise,
the 2MA prediction suggests that further analysis is needed.

The examples used above served as an illustration of the 2MA method.
The next chapter investigates the 2MA approach for a practical example of a
complex system with nonelementary reactions and relative concentration.

Problems
6.1. Consider the standard modification example with reaction scheme on
the left and propensities on the right:

U kw−−−−−→W,

W ku−−−−−→ U,

∣∣∣∣∣∣ aw(n) = kwn,

au(n) = (ntot − n)ku,


which is essentially a scalar system because of a conservation relation.

1. The following script constructs and solves the 2MA equations for this
system.
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ntot = 10; % total copy number
k = [2;2]; % rate constants
tmax = 5; % time scale in sec
y0 = [ntot;0]; % initial condition
S = [-1 1]; % Stoichiometry matrix
a = @(n) [ k(1)*n ; k(2)*(ntot-n) ] ;
dydt = make2ma(S,a);
[t,y] = ode45(dydt, [0 tmax], y0);

The code calls the function make2ma (in the main text). Interpret the
two columns of the output matrix y. Plot the two quantities against
time.

2. To get an idea of the average behavior and fluctuations around it, plot
the mean together with mean±SD.

6.2. The last exercise involved a scalar system of only one species. Consider
the two-species Lotka–Volterra scheme and the associated propensities

X1 + A k̂1−−−−−→ 2X1,

X1 + X2
k̂2−−−−−→ 2X2,

X2
k̂3−−−−−→ ∅,

∣∣∣∣∣∣∣∣∣∣
a1(n) = k̂1nAn1,

a2(n) = k̂2n1n2,

a3(n) = k̂3n2 .


The following script constructs and solves the 2MA equations for this system.

k = [1 .005 0.6];
tmax = 30; % time scale in sec
y0 = [50;100;zeros(3,1)]; % initial condition
S = [ 1 -1 0

0 1 -1 ];
a = @(n) [ k(1)*n(1) ; k(2)*n(1)*n(2) ; k(3)*n(2) ] ;
dydt = make2ma(S,a);
[t,y] = ode45(dydt, [0 tmax], y0);

Recover, for both species, the mean copy number and the corresponding
standard deviation from the output matrix y.

6.3. Revisit the metabolite network in Exercise 2.6. In the follow-up exercises
of the last chapter, you implemented computation of propensities and sample
paths based on SSA and CLE. Use that information for tasks in this exercise.

1. Construct the 2MA equations. To keep only a few variables, you could
use the reduced system (resulting from conservation relations) with
abundances of X2 and X3 only.
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2. Translate the 2MA equations to a Matlab function handle by calling
the function make2ma with appropriate arguments.

3. Solve the the 2MA equations numerically and plot the mean together
with mean±SD. Compare the 2MA predictions with results based on
stochastic simulations.

6.4. Recall the repressilator in Exercise 2.7, for which you worked out the
stoichiometry matrix S and the reaction propensity function a(n) in the
follow-up exercises in the last chapter. Now you have to revisit it from a 2MA
perspective.

1. Construct the 2MA equations. For convenience, use a Hill’s coefficient
of h = 2.

2. Translate the 2MA equations to a Matlab function handle by calling
the function make2ma with appropriate arguments.

3. Solve the the 2MA equations numerically and plot the mean abundance
of proteins together with the corresponding mean±SD. Compare the
2MA predictions with results based on stochastic simulations.



Chapter 7

The 2MA Cell Cycle Model

In this chapter we take the Tyson–Novák model [108] for the fission yeast cell
cycle as a case study [159]. This deterministic model is a practical example
using nonelementary reactions and relative concentrations, the two central
features of our extended 2MA approach. This will allow us to investigate
the price of higher-order truncations by comparing the simulated cycle time
statistics with experiments.

7.1 The 2MA Equations Revisited
In this chapter, we adopt a simplified notation for the relative concentration
vector X(t) with elements

Xi = Ni
Ωi

= Ni
CiΩ

,

mean (relative) concentration vector µ(t) with elements

µi = 〈Xi〉 = 〈Ni〉
CiΩ

,

and the concentration covariance matrix σ(t) with elements

σik = 〈δXiδXk〉 = 〈δNiδNk〉
CiCkΩ

where, as obvious from the context, we leave out dependence on time. Recall
that Ci are the componentwise characteristic concentrations used to normalize
usual concentrations to obtain relative concentrations.

The two-moment equations (6.5) and (6.10), in the simplified notation,

Stochastic Approaches for Systems Biology,
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take the form

dµi
dt = fi (µ) + 1

2
∂2fi
∂x∂xT

: σ, (7.1)

dσik
dt =

∑
l

[
∂fi
∂xl

σlk + σil
∂fk
∂xl

]
+ 1

Ω

[
gik(µ) + 1

2
∂2gik
∂x∂xT

: σ
]
, (7.2)

where
fi(x) = 1

Ci

r∑
j=1

Sijvj(C � x),

gik(x) = 1
CiCk

r∑
j=1

SijSkjvj(C � x) .
(7.3)

Recall that C is the s-vector of characteristic concentrations Ci, and the binary
operation � denotes the elementwise product of two arrays. The drift rate on
the right in (7.1) has a deterministic part fi(µ) and a stochastic part 1

2
∂2fi

∂x∂xT :
σ determined by the dynamics of both the mean and (co)variance. This
influence of the (co)variance implies that knowledge of fluctuations is important
for a correct description of the mean. This also indicates an advantage of the
stochastic framework over its deterministic counterpart: starting from the
same assumptions and approximations, the stochastic framework allows us to
describe the influence of fluctuations on the mean. This can be posed as the
central phenomenological argument for stochastic modeling.

The scaling by Ω confirms the inverse relationship between the noise,
as measured by (co)variance, and the system size. Note the influence of the
mean on the (co)variance in (7.2).

Since the 2MA approach is based on the truncation of terms containing
third and higher-order moments, any conclusion from the solution of 2MA
must be drawn with care. Ideally, the 2MA should be complemented and
checked with a reasonable number of SSA runs.

In [58, 62], the 2MA has been applied to biochemical systems, demon-
strating quantitative and qualitative differences between the mean of the
stochastic model and the solution of the deterministic model. The examples
used in [58, 62] all assume elementary reactions (and hence propensities at
most quadratic) and the usual interpretation of concentration as moles per
unit volume. In the next section, we investigate the 2MA for complex systems
with non-elementary and relative concentrations. The reason for our interest
in nonelementary reactions is the frequent occurrence of rational propensities
(reaction rates), e.g., Michaelis–Menten type and Hill type kinetic laws, in
models in the systems biology literature (e.g., [157]).



7.2 Fission Yeast Cell Cycle Modeling 203

Interphase

mitosis

cytokinesis

M phase

S phase

G phase2

G phase0

G Phase1

G phase1

Figure 7.1
Phases of cell cycle regulation.
Figure adopted from [4].

7.2 Fission Yeast Cell Cycle Modeling
The growth and reproduction of organisms requires a precisely controlled
sequence of events known as the cell cycle [4, 100]. On a coarse scale, the
cell cycle is composed of four phases: the replication of DNA (S phase), the
separation of DNA (mitosis, M-phase), and the intervening phases (gaps
G1 and G2), which allow for preparation, regulation, and control of cell
division. These phases are illustrated in Figure 7.1 for a generic cell cycle.
The central molecular components of cell cycle control system have been
identified [100, 110].

Cell cycle experiments show that cycle times (CTs) have different pat-
terns for the wild type and for various mutants [145, 146]. For the wild type,
the CTs have almost a constant value near 150 min ensured by a size control
mechanism: mitosis happens only when the cell has reached a critical size.
The double mutants (namely wee1– cdc25∆) exhibits quantized cycle times:
the CTs get clustered into three different groups (with mean CTs of 90, 160,
and 230 min). The proposed explanation for the quantized cycle times is
a weakened positive feedback loop (due to wee1 and cdc25), which means
that cells reset (more than once) back to G2 from early stages of mitosis by
premature activation of a negative feedback loop [145, 147].

Many deterministic ODE models describing the cell cycle dynamics
have been constructed [105, 107, 108, 156]. These models can explain many
aspects of the cell cycle including the size control for both the wild type and
mutants. Since deterministic models describe the behavior of a nonexistent
‘average cell’, neglecting the differences among cells in culture, they fail to
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Figure 7.2 Regulation of fission yeast cell cycle. Figure reproduced from [108].

explain curious behaviors such as the quantized cycle times in double mutants.
To account for such curiosities in experiments, two stochastic models were
constructed by Sveiczer: The first model [145, 147] introduces (external)
noise into the rate parameter of the protein Pyp3. The second model [148]
introduces noise into two cell and nuclear sizes after division asymmetry.
Full stochastic models that treat all the time-varying protein concentrations
as random variables are reported in [144, 172]. They provide a reasonable
explanation for the size control in wild type and the quantized CTs in the
double-mutant type. Both models employ the Langevin approach and hence
require many simulation runs to provide an ensemble for computing the
mean and (co)variance. However, the simulation results of stochastic models
in [144, 145, 147, 148, 172] represent one trajectory (for a large number of
successive cycles) of the many possible in the ensemble from which the CT
statistics (time averages) are computed. We will see that the time averages
computed from the 2MA simulation are for the ensemble of all trajectories.

7.2.1 The Deterministic Model
We base our 2MA model on the Tyson–Novák model, a deterministic ODE
model for the fission yeast cell cycle, developed by John Tyson and Béla Novák
in [108]. As shown in Figure 7.2, the cell cycle control mechanism centers
on the M-phase promoting factor (MPF), the active form of the heterodimer
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Table 7.1 Proteins and fluxes.

Index Protein Production flux Elimination flux

i Xi f+
i (x) f−i (x)

1 Cdc13T k1M (k′2 + k′′2x3 + k′′′2 x5)x1

2 preMPF (x1 − x2) kwee (k25 + k′2 + k′′2x3 + k′′′2 x5)x2

3 Ste9 (k′3+k′′3 x5)(1−x3)
J3+1−x3

(k′4x8+k4xmpf)x3

J4+x3

4 Slp1T k′5 + k′′5 x
4
mpf

J4
4 +x4

mpf
k6x4

5 Slp1 k7
(x4−x5)x6
J7+x4−x5

k6x5 + k8
x5

J8+x5

6 IEP k9
(1−x6)xmpf
J9+1−x6

k10
x6

J10+x6

7 Rum1T k11 (k12 + k′12x8 + k′′2xmpf)x7

8 SK k13xtf k14x8

Cdc13/Cdc2, and its antagonistic interactions with enemies (Ste9, Slp1, Rum1)
and the positive feedback with its friend Cdc25. These interactions, among
many others, define a sequence of checkpoints to control the timing of cell
cycle phases. The result is MPF activity oscillation between low (G1-phase),
intermediate (S- and G2-phases), and high (M-phase) levels that is required
for the correct sequence of cell cycle events. For simplicity, it is assumed that
the cell divides functionally when MPF drops below 0.1.

Table 7.1 lists the proteins whose concentrations xi, together with MPF
concentration, are treated as dynamic variables that evolve according to

dxi
dt = f+

i (x)− f−i (x) . (7.4)

Here f+
i (x) is the production flux and f−i (x) is the elimination flux of the ith

protein. Note that the summands in the fluxes f+
i (x) and f−i (x) are rates of

reactions, most of which are nonelementary (summarizing many elementary
reactions into a single step). Quite a few of these reaction rates have rational
expressions, which requires the extended 2MA approach developed in this
book. The MPF concentration xmpf can be obtained from the algebraic
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relation
xmpf = (x1 − x2) (x1 − xtrim)

x1
, (7.5)

where

dM
dt = ρM,

xtrim = 2x1x7

Σ +
√

Σ2 − 4x1x7
,

xtf = G (k15M,k′16, k
′′
16xmpf , J15, J16) ,

kwee = k′wee + (k′′wee − k′wee)G (Vawee, Viweexmpf , Jawee, Jiwee) ,
k25 = k′25 + (k′′25 − k′25)G (Va25xmpf , Vi25, Ja25, Ji25) ,
Σ = x1 + x7 +Kdiss,

G(a, b, c, d) = 2ad
b− a+ bc+ ad+

√
(b− a+ bc+ ad)2 − 4(b− a)ad

.

(7.6)

Note that the cell mass M is assumed to grow exponentially with rate ρ, and
the concentrations (xtrim, xtf , kwee, k25) are assumed to be in a pseudosteady
state to simplify the model. Note that we use a slightly different notation:
ρ for mass growth rate (instead of µ), xtrim for the concentration of trimer
(all associations between Cdc13/Cdc2 and Rum1), and xtf for TF concentra-
tion. We have to emphasize that the concentrations used in this model are
relative and dimensionless. When one concentration is divided by another,
the proportion is the same as a proportion of two copy numbers. Hence, such
a concentration should not be interpreted as a copy number per unit volume
(as misinterpreted in [172]). The parameters used in the Tyson–Novák model
[108] are listed in Table 7.2.

The deterministic ODE model describes the behavior of an average cell,
neglecting the differences among cells in culture. Since the model allows at
most two MPF resettings from early mitosis back to G2 (leading to alternating
short and long cycles) for the double-mutant yeast cells as shown in Figure
7.3, it fails to explain the experimentally observed clusters of the CT-vs-BM
plot and the trimodal distribution of CT [145–148].

7.2.2 Feasibility of Gillespie Simulations
Ideally, we should repeat many runs of Gillespie SSA and compute our desired
moments from the ensemble of those runs. At present, there are two problems
which this. The first problem is the requirement of elementary reactions for
SSA. The elementary reactions underlying the deterministic model [108] are
not known. Many elementary steps have been simplified to obtain that model.
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Table 7.2 Parameter values for the Tyson–Novák model of the cell cycle control in
the fission yeast (wild type) [108]. All the parameters have units min−1, except the
J ’s, which are dimensionless Michaelis constants, and Kdiss, which is a dimensionless
equilibrium constant for trimer dissociation. For the double-mutant type, one makes
the following three changes: k′′wee = 0.3, k′25 = k′′25 = 0.02 .

k15 = 0.03, k′2 = 0.03, k′′2 = 1, k′′′2 = 0.1, k′3 = 1, k′′3 = 10, J3 = 0.01,
k′4 = 2, k4 = 35, J4 = 0.01, k′5 = 0.005, k′′5 = 0.3, k6 = 0.1, J5 = 0.3,
k7 = 1, k8 = 0.25, J7 = J8 = 0.001, J8 = 0.001, k9 = 0.1, k10 = 0.04,
J9 = 0.01, J10 = 0.01, k11 = 0.1, k12 = 0.01,
k′12 = 1, k′′12 = 3, Kdiss = 0.001,
k13 = 0.1, k14 = 0.1, k15 = 1.5, k′16 = 1, k′′16 = 2, J15 = 0.01, J16 = 0.01,
Vawee = 0.25, Viwee = 1, Jawee = 0.01, Jiwee = 0.01, Va25 = 1, Vi25 = 0.25,
Ja25 = 0.01, Ji25 = 0.01, k′wee = 0.15, k′′wee = 1.3,
k′25 = 0.05, k′′25 = 5, ρ = 0.005

Trying to perform an SSA on nonelementary reactions will lose the discrete
event character of the SSA. The second problem arises from the fact that the
SSA requires copy numbers, which in turn requires knowledge of measured
concentrations. All protein concentrations in the model are expressed in
arbitrary units (a.u.), because the actual concentrations of most regulatory
proteins in the cell are not known [26]. Tyson and Sveiczer1 define relative
concentration xi of the ith protein as xi = ni/Ωi, where Ωi = CiNAV . Here
Ci is an unknown characteristic concentration of the ith component. The
idea is to have a common scale for all the relative concentrations so that a
comparison between changes in any two of them is free of their individual
(different) scales. Although one would like to vary Ci, this is computationally
intensive. This problem is not so serious for the continuous approximations
such as CLE, LNA, and the 2MA which are all ODEs and can be numerically
solved. Using Matlab R2009a on a quad-core 2.66 GHz CPU took longer
than 10 hours to complete one SSA run of 465 cycles. According to a recently
published report [3], to compare the stochastic results with the average
behavior, the simulation must be run thousands of times, for which the cited
authors had to use a parallel supercomputer. The main focus of the present
chapter is the analytical 2MA.

1Personal communication.
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Figure 7.3 Time course according to the Tyson–Novák model: (a) the wild-type
cells have cycles of nearly the same duration, (b) the double-mutant cells have
alternating short (no MPF resetting) and long cycles (one MPF resetting).

7.2.3 The Langevin Approach
In [172] a stochastic model is proposed that replaces the ODE model (7.4)
with a set of chemical Langevin equations (CLEs)

dxi
dt = f+

i

(
x
)
− f−i

(
x
)

+ 1
Ω

[√
f+
i (x)Γ+

i (t)−
√
f−i (x)Γ−i (t)

]
,

which uses the Langevin noise terms: white noises Γ+
i and Γ−i scaled by√

f+
i (x) and

√
f−i (x) to represent the internal noise. The system parameter

Ω has been described as the volume by the author. As we discussed before,
the concentrations are relative levels with possibly different componentwise
scaling parameters. This means that concentrations are not the same as copy
numbers per unit volume.

Another stochastic model employing the Langevin approach is reported
in [144]. It approximates the squared noise amplitudes by linear functions:

dxi
dt = fi (x(t)) +

√
2dixiΓi(t),

where di is a constant. The model dynamics f(x) are missing in the noise
term because the author wanted to represent both the internal and external
noise by the second term on the right.
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7.2.4 The 2MA Model
For the cell cycle model, the drift rate f(x) and the diffusion rate g, defined
in (7.3), have elements

fi(x) = f+
i (x)− f−i (x), gik(x) =

{
f+
i (x) + f−i (x) if i = k,

0 if i 6= k .

The off-diagonal elements of g are zero because each reaction changes only one
component, so that SijSkj = 0 for i 6= k. Once these quantities are known, it
follows from (7.1) and (7.2) that the set of ODEs

dµi
dt = fi(µ) + 1

2
∂2fi
∂x∂xT

: σ, (7.7)

dσii
dt = 2

∑
l

∂fi
∂xl

σli + 1
Ωi

[
gii(µ) + 1

2
∂2gii
∂x∂xT

: σ
]
, (7.8)

dσik
dt =

∑
l

[
∂fi
∂xl

σlk + σil
∂fk
∂xl

]
, i 6= k, (7.9)

approximates (correctly to the second-order moments) the evolution of compo-
nentwise concentration mean and covariance. See Tables 7.3–7.5 for the respec-
tive expressions of the Jacobian ∂f/∂xT , the second-order term 1

2
∂2fi/∂x∂xT : σ

in the Taylor expansion of fi, and the second-order term 1
2
∂2gii/∂x∂xT : σ in

the Taylor expansion of gii in (7.8).
Having at hand the moments involving the eight dynamic variables x1

to x8, the mean MPF concentration can also be approximated. Toward that
end, we start with the MPF concentration

xmpf = (x1 − x2)
(

1− xtrim
x1

)
= x1 − x2 − xtrim + xtrim

x2
x1

.

The ratio x2/x1 can be expanded around the mean,

x2
x1

= 1
µ1

x2

1 + (x1−µ1)
µ1

= 1
µ1

[
x2 −

(x1 − µ1)x2
µ1

+ (x1 − µ1)2
x2

µ2
1

+ · · ·
]
.
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Table 7.3 Rows of the Jacobian of the drift rate for the 2MA cell cycle model.

i ∂fi

∂xT

1
[
−k′2 − k′′2µ3 − k′′′2 µ5, 0,−k′′2µ1, 0,−k′′′2 µ1, 0, 0, 0

]
2

[
kwee,−kwee − k25 − k′2 − k′′2µ3 − k′′′2 µ5,−k′′2µ2, 0,−k′′′2 µ2, 0, 0, 0

]
3

[
0, 0,− (k′4µ8+k4µmpf)J4

(J4+µ3)2 − (k′3+k′′3 µ5)J3

(J3+1−µ3)2 , 0, (1−µ3)k′′3
J3+1−µ3

, 0, 0,− k′4µ3
J4+µ3

]
4 [0, 0, 0,−k6, 0, 0, 0, 0]

5
[
0, 0, 0, k7J7µ6

(J7+µ4−µ5)2 ,−k6 − k7J7µ6
(J7+µ4−µ5)2 − k8J8

(J8+µ5)2 ,
(µ4−µ5)k7
J7+x4−µ5

, 0, 0
]

6
[
0, 0, 0, 0, 0,− k9xmpfJ9

(J9+1−µ6)2 − k10J10
(J10+µ6)2 , 0, 0

]
7

[
0, 0, 0, 0, 0, 0,−k12 − k′12µ8 − k′′2µmpf ,−k′12µ7

]
8

[
0, 0, 0, 0, 0, 0, 0,−k14

]

Taking the expectation on both sides yields〈
X2
X1

〉
= 1
µ1

〈
X2

1 + (X1−µ1)
µ1

〉

= 1
µ1

〈
X2 −

(X1 − µ1)X2
µ1

+ (X1 − µ1)2
X2

µ2
1

+ · · ·
〉

= 1
µ1

[
µ2 −

σ12
µ1

+ µ2σ11
µ2

1

]
.

Finally, with the understanding that xtrim is in pseudosteady state, the mean
MPF concentration follows from the expectation of xmpf to be

µmpf = µ1 − µ2 − xtrim + xtrim
µ1

[(
1 + σ11

µ2
1

)
µ2 −

σ12
µ1

]
. (7.10)

This expression for the average MPF activity demonstrates the influence of
(co)variance on the mean, as emphasized here. We see the dependence of
mean MPF concentration µmpf on the variance σ11 and covariance σ12 in
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Table 7.4 The second-order term in the Taylor expansion of fi around the mean.

i 1
2
∂2fi

∂x∂xT : σ

1 −k′′2σ13 − k′′′2 σ15

2 −k′′2σ23 − k′′′2 σ25

3
[

(k′4µ8+k4µmpf)J4

(J4+µ3)3 − (k′3+k′′3 µ5)J3

(J3+1−µ3)3

]
σ33 − k′′3 J3σ35

(J3+1−µ3)2 − k′4J4σ38
(J4+µ3)2

4 0

5 k7J7µ6(2σ45−σ44−σ55)
(J7+µ4−µ5)3 + k7J7(σ46−σ56)

(J7+µ4−µ5)2 + k8J8
(J8+µ5)3σ55

6
[

k10J10
(J10+µ6)3 − k9µmpfJ9

(J9+1−µ6)3

]
σ66

7 −k′12σ78

8 0

addition to the means µ1, µ2, and xtrim.

7.2.5 Simulations of the 2MA Model
The system of ODEs (7.7)–(7.9) was solved numerically by the Matlab solver
ode15s [96]. The solution was then combined with algebraic relations (7.10).
For parameter values, see Table 7.2. The system-size parameter is chosen
to be Ω = 5000. Since information about the individual characteristic
concentrations Ci used in the definition of concentrations is not available, we
have used Ci = 1 for all i. This value has also been used in [172], although
there is no clear justification. The system size here should not be interpreted
as volume, because that would imply knowledge of the scale of characteristic
concentrations. Note, however, that the 2MA approach developed here will
work for any combination of {Ci}. The time courses of mass and MPF
activity are plotted in Figure 7.4a for the wild type and in Figure 7.4b for the
double-mutant type. For the wild type, the 2MA-predicted mean trajectories
do not differ considerably from the corresponding deterministic trajectories.
Both show nearly a constant CT around 150 min. Thus internal fluctuations
do not seem to have a major influence for the wild-type cells.

For the double-mutant cells, the difference between the 2MA and de-
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Table 7.5 The second-order term in the Taylor expansion of gii around the mean.

i 1
2
∂2gii

∂x∂xT : σ

1 k′′2σ13 + k′′′2 σ15

2 k′′2σ23 + k′′′2 σ25

3 −
[

(k′4µ8+k4µmpf)J4

(J4+µ3)3 + (k′3+k′′3 µ5)J3

(J3+1−µ3)3

]
σ33 − k′′3 J3σ35

(J3+1−µ3)2 + k′4J4σ38
(J4+µ3)2

4 0

5 k7J7µ6(2σ45−σ44−σ55)
(J7+µ4−µ5)3 + k7J7(σ46−σ56)

(J7+µ4−µ5)2 − k8J8
(J8+µ5)3σ55

6 −
[

k10J10
(J10+µ6)3 + k9µmpfJ9

(J9+1−µ6)3

]
σ66

7 k′12σ78

8 0
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Figure 7.4 Time courses of mass and MPF activity: (a) for the wild type, (b)
for the double-mutant type. The 2MA-predicted mean trajectories are plotted as
solid lines and the corresponding deterministic trajectories as dashed lines. The
difference between the two predictions is negligible for the wild type, but significant
for the double-mutant type. The figure first appeared in our earlier work [159].
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Figure 7.5 Time courses of protein concentrations: (a) for the wild type, (b) for
the double-mutant type. The 2MA-predicted mean trajectories are plotted as solid
lines and the corresponding deterministic trajectories as dashed lines.

terministic predictions is significant. The deterministic model (7.4) predicts
alternating short cycles and long cycles because cells born at the larger size
have shorter cycles, and smaller newborns have longer cycles [108]. This strict
alternation due to size control is not observed in experiments: cells of the
same mass may have short or long cycles (excluding very large cells that
always have the shortest CT) [146, 147]. This weak size control is reproduced
by the 2MA simulations: the multiple resettings of MPF to G2, induced
by the internal noise, result in longer CTs (thus accounting for the 230-min
cycles observed experimentally). Such MPF resettings have been proposed in
[145, 147] to explain quantized CTs. No such resetting is demonstrated by
the deterministic model.

Figure 7.5 additionally shows time courses of slp1, Ste9, and Rum1T.
For the wild type, the difference in the Rum1T concentrations near the G2/M
transition has no significant effect on the MPF activity, because Rum1T tries
to inhibit MPF in G2-phase. For the double-mutant type, the oscillatory
behavior of Ste9 and Slp1 may have resulted in the oscillatory behavior of
the MPF near the G2/M transition, which in turn delays the mitosis by a



214 7 The 2MA Cell Cycle Model

0 100 200 300 400 500 600
0

0.01

0.02

σ
1
1

Time (min)

0

0.01

0.02

σ
1
2

(a)

0 100 200 300 400 500 600
0

10

20

30

σ
1
1

Time (min)

0

10

20

σ
1
2

(b)

Figure 7.6 Variance σ11 (of Cdc13T) and covariance σ12 (between Cdc13T and
preMPF): (a) for the wild type, (b) for the double-mutant type. The figure first
appeared in our earlier work [159].

noticeable period.
Note that the mean µ(t) of the 2MA describes the average of an ensem-

ble of cells. Yet the MPF resettings observed in Figure (7.4b), near the G2/M
transition, introduce the required variability that explains the clustering of
the cycle time observed in experiments. This is in contrast to the alterna-
tive stochastic approaches in [144, 145, 147, 148, 172] that use one sample
trajectory rather than the ensemble average.

How do we explain this significant effect of noise for the double mutants
on the one hand and its negligible effect for the wild type on the other hand?
If we look at expression (7.10), we see the influence of the variance σ11 (of
Cdc13T) and covariance σ12 (between Cdc13T and preMPF) on the mean
MPF concentration µmpf . The two (co)variances are plotted in Figure 7.6a
for the wild type and in Figure 7.6b for the double-mutant type. It is clear
that the two (co)variances have very small peaks for the wild type compared
to the large peaks for the double-mutant type. Note that the larger peaks
in Figure 7.6b are located at the same time points where the MPF activity
exhibits oscillations and hence multiple resettings to G2. This suggests that
the oscillatory behavior of MPF near the G2/M transition is due to the
influence of the oscillatory (co)variances. This coupling between the mean
and (co)variance is not captured by the deterministic model.

The rapid MPF oscillations near entry to mitosis warrants further
discussion. The authors of the Tyson–Novák model [108] show that G2/M
transition is a point of bifurcation (between low MPF in G2 and high MPF
in mitosis), considering the cell mass M as a parameter. That is exactly
where the 2MA model predicts these rapid MPF oscillations. This suggests
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Figure 7.7 Noise-to-signal ratio (NSR): (a) for the wild type, (b) for the double-
mutant type.

a noise induced change in the stability of the system near the critical point
(G2/M transition) where a steady limit cycle (in G2) is changed into a chaotic
unstable oscillation [70].

To allow for comparison between componentwise variances, the variance
is usually normalized by the squared mean to give a dimensionless ratio, which
also removes the dependence of the variance on the scale of the mean. The
normalized variance,

ζii = σii
µ2
i

,

is the noise-to-signal ratio (NSR). The NSR as a measure of noise is usually
preferred because of being dimensionless and allowing for additivity of noise
and the use of indirectly measured concentrations [58]. See [117] for different
measures of noise and their merits.

The componentwise NSR is plotted in Figure 7.7. We note that the
NSR for the double-mutant type has irregular oscillations compared to the
almost-periodic oscillations for the wild type. This may be one of the reasons
behind the significant difference in the evolution mean compared to the
deterministic evolution for the double-mutant type. The pairwise variation
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Figure 7.8 Cross noise-to-signal ratio (xNSR) of selected component pairs: (a) for
the wild type, (b) for the double-mutant type.

between components is better described by the cross noise-to-signal ratio
(xNSR)

ζik = σik
µ2
i

.

The xNSR for selected component pairs appearing in the expression for the
stochastic part of the total drift (see Table 7.4) is plotted in Figure 7.8. The
oscillatory behavior in both plots suggests that the off-diagonal elements of the
covariance matrix may have influenced the mean and had a mutual influence
on each other. At these points the system is sensitive to noise. Capturing
these phenomena is of particular importance if one considers cells in their
context (e.g., tissue), where cell–cell variations form the basis for functional
mechanisms at higher levels of cellular organization.



7.2 Fission Yeast Cell Cycle Modeling 217

Table 7.6 Cycle time statistics over 465 successive cell cycles of the double-mutant
cells, predicted by the 2MA model, compared with experimental data; see [146,
Table 1].

Case µCT σCT CVCT µDM σDM CVDM µBM σBM

(1) 131 47 0.358 2.22 0.45 0.203 1.21 0.24

(2) 138.8 12.4 0.09 3.18 0.101 0.0319 1.59 0.0575

(3) 138.8 17.6 0.127 3.25 0.178 0.055 1.623 0.0934

(4) 138.8 23.9 0.172 3.32 0.231 0.0697 1.657 0.12

(1) experimental data, (2) Ω = 5000, (3) Ω = 5200, (4) Ω = 5300.

It has to be realized that the above proposition requires validation,
since the 2MA approach ignores third and higher-order moments. We cannot
know whether that truncation is responsible for the oscillations in Figures
7.4 and 7.6, unless compared with a few sample trajectories simulated by the
SSA. However, as discussed before, the SSA cannot be performed (at present)
for the model under consideration. Therefore we need to compare the 2MA
predictions for the double-mutant cells with experimental data. Toward that
end, values of cycle time (CT), birth mass (BM), and division mass (DM)
were computed for 465 successive cycles of double-mutant cells. Figure 7.9
shows the CT-vs-BM plot and the CT distribution for three different values
{5000, 5200, 5300} of system size Ω.

To make this figure comparable with experimental data from [145, 146],
we assume that 1 unit of mass corresponds to 8.2 μm cell length [147]. We
can see the missing size control (CT clusters), in qualitative agreement with
experimentally observed clusters (see [146, Figure 6] and [145, Figure 5] for
a comparison). There are more than four clusters, which may have arisen
from the truncated higher-order moments. The extreme value of CT higher
than 230 min suggests more than two MPF resettings. Furthermore, more
than three modes in the CT distribution may have arisen from the truncated
higher-order moments. Table 7.6 compares the 2MA-computed statistics for
the double-mutant cells with data from [146, Table 1]. Columns 2–4 tabulate,
for CT, the mean µCT, the standard deviation σCT, and the coefficient of
variation CVCT, respectively. The other columns tabulate similar quantities
for the division mass (DM) and birth mass (BM). We see that only the mean
CT is in agreement with the experimental data. The mean values for both BM
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Figure 7.9 Cycle time behavior over 465 successive cycles of the double-mutant
cells, predicted by the 2MA model. (a, c, e): CT vs BM, (b, d, f): CT distribution,
(a, b): Ω = 5000, (c,d): Ω = 5200, (e,f): Ω = 5300. The plots are in qualitative
agreement with experiments; see Figure 6 in [146] and Figure 5 in [145] for a
comparison. The figure first appeared in our earlier work [159].



7.2 Fission Yeast Cell Cycle Modeling 219

and DM are larger than the corresponding experimental values. The other
statistics are much smaller than the corresponding experimental values. This
table and the above plots suggest that the 2MA should be used with caution.
However, another aspect of the cell cycle model deserves attention here. The
way the relative protein concentrations have been defined implies unknown
values of the scaling parameters {Ωi}. Since Ωi = CiNAV , knowing the volume
V does not solve the problem: the characteristic concentrations {Ci} are still
unknown. Our simulations have chosen typical values Ω = {5000, 5200, 5300}.
The corresponding three pairs of plots in Figure 7.9 and rows in Table 7.6
demonstrate a dependence of the results on a suitable system size. There is
no way to confirm these values. The scaling parameters could be regulated in
a wider range in order to improve the accuracy of our simulation, motivating
future work for us. The conclusion is that the quantitative disagreement
of the 2MA predictions can be attributed to two factors: (1) the truncated
higher-order moments during the derivation of the 2MA, and (2) the unknown
values of the scaling parameters.

7.2.6 Concluding Remarks
We investigated the applicability of the 2MA approach to the well established
fission yeast cell cycle model. The simulations of the 2MA model show
oscillatory behavior near the G2/M transition, which is significantly different
from the simulations of the deterministic ODE model. One notable aspect of
the analytical model is that although it describes the average of an ensemble, it
reproduces enough variability among cycles to reproduce the curious quantized
cycle times observed in experiments on double mutants.



Chapter 8

Hybrid Markov Processes

Our focus so far has been on continuous-time, discrete-state-space Markov
jump processes. These stochastic processes are conceptually suitable to
biochemical reaction networks because the reaction events occur randomly
on a continuous time scale and bring about discrete changes in the species
abundances. We have also seen how a jump process can be approximated by
a diffusion process, which is a continuous process, using approaches including
the chemical Langevin equation (and the associated Fokker–Planck equation)
and the system size expansion. Apart from the two extremes is an intermediate
possibility, a hybrid process that is essentially a diffusion process but with
occasional jumps. More appropriate terms for such hybrid processes in the
context of systems biology are “switch plus diffusion” and “diffusion process
with Markovian switching” [72, 134]. This happens in two-time-scale systems
wherein events occurring on the slower time scale contribute a jump process
(Markovian switching) superimposed on a diffusion process arising from events
occurring on the faster time scale. A sample path of such a hybrid process is
a continuously varying time course with occasional jumps, as illustrated in
Figure 8.1.

Yet another modeling regime keeps the switching (jumps) and drift but
ignores diffusion and appears in the systems biology literature under the names
“switch plus ODE” [72, 115] and “piecewise-deterministic Markov processes”
(PDMP) [175]. A sample path of such a hybrid process is illustrated in Figure
8.1, where occasional jumps (occurring at a slower time scale) ride on top of
a smooth drift process.

time

state

Figure 8.1
A sample path of a general hybrid Markov
process. Occasional jumps (occurring at a
slower time scale) ride on top of a smooth
process with diffusion and drift.

Stochastic Approaches for Systems Biology,
DOI 10.1007/978-1-4614-0478-1_8, © Springer Science+Business Media, LLC 2011
M. Ullah and O. Wolkenhauer, 221
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Figure 8.2
A sample path of a hybrid Markov process.
Occasional jumps (occurring at a slower
time scale) ride on top of a smooth drift
process. time

state

Gene regulation: In the gene regulation network (2.11), the active genes
G are low in copy numbers and follow significantly discrete changes. However,
the mRNA M and proteins P are relatively large in copy numbers and can be
assumed to follow a diffusion process. A detailed account of such a hybrid
model of a gene regulatory network can be found in [72] (switch plus diffusion)
and [115, 175] (switch plus ODE).

Motivated by the above discussion, we will build in this chapter a
general probabilistic framework to represent a range of processes in systems
biology. This will allow us to review the formal relationships between different
stochastic models referred to in the systems biology literature. As part
of this review, we present a novel derivation of the differential Chapman–
Kolmogorov equation for a general multidimensional Markov process made up
of both continuous and jump processes. We start with the definition of a time
derivative for a probability density but place no restrictions on the probability
distribution; in particular, we do not assume it to be confined to a region that
has a surface (on which the probability is zero). In our derivation, the master
equation gives the jump part of the Markov process, while the Fokker–Planck
equation gives the continuous part. We thereby sketch a “family tree” for
stochastic models in systems biology, providing explicit derivations of their
formal relationship and clarifying assumptions involved.

Key references in the area of stochastic modeling are the books [75], [54],
[18], and [47]. Most stochastic models presented in these texts are derived
on the basis of the Chapman–Kolmogorov equation (CKE), a consistency
condition on Markov processes, in the form of a system of differential equations
for the probability distribution. The system of differential equations takes
the form of master equations for a jump Markov process and Fokker–Planck
equations (FPE) for a continuous Markov process. For a detailed account of
how this happens, read [75] and [54, 55]. For a Markov process that is made
up of both jump and continuous parts, the differential equation takes the form
of the differential Chapman–Kolmogorov equation (dCKE), which has been
derived in [47]. The derivation is involved and requires the introduction of an
arbitrary function, which leads to boundary restrictions on the probability
distribution. As part of this review, we present a novel and more concise
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derivation of the dCKE. Since most of the mathematical foundations for
stochastic models have been developed by physicists and mathematicians, we
hope that our derivation makes the theory more accessible to the uninitiated
researcher in the field of systems biology. We choose Markov processes as a
framework, since more realistic approaches for modeling intracellular processes
must take into account factors such as heterogeneity of the environment,
macromolecular crowding [38, 138], and anomalous diffusion [60, 135, 136],
to name a few. Anomalous diffusion is described by fractional Fokker–Planck
equations [98]. Such treatments require advanced mathematical formalisms
that are beyond the level assumed here.

The focus of the present chapter is to review the formal relationships
between the equations referred to in the systems biology literature. We
provide explicit derivations of their formal relationship and clarify assumptions
involved in a common framework (Figure 8.3). We will end up in a family tree
of stochastic models wherein the chemical master equation occupies a place
for special jump processes. Similarly, the Fokker–Planck and the Langevin
equations hold a place for diffusion processes. Such generalization provides
a clearer picture of how the various stochastic approaches used in systems
biology are related within a common framework.

8.1 Markov Processes
Markov processes form the basis for the vast majority of stochastic models of
dynamical systems. The three books [47], [75], and [54] have become standard
references for the application of Markov processes to biological and biochemical
systems. At the center of a stochastic analysis is the Chapman–Kolmogorov
equation (CKE), which describes the evolution of a Markov process over
time. From the CKE stem three equations of practical importance: the
master equation for jump Markov processes, the Fokker–Planck equation
for continuous Markov processes, and the differential Chapman–Kolmogorov
equation (dCKE) for processes made up both the continuous and jump parts.
A nice mathematical (but nonbiological) account of these equations can also be
found in [18]. Gardiner, van Kampen, and Gillespie take different approaches
to derive these equations:

• Gillespie derives the FPE and the master equation independently from
the CKE and for the one-dimensional case only in [54]. In [53, 55] he
extends the derivations to multidimensional cases.

• Kampen [75] derives the master equation from the CKE for a one-
dimensional Markov process. The FPE is given as an approximation of
the master equation by approximating a jump process with a continuous
one. The same approach is adopted in [18]. However, this should not
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mislead the reader to conclude that the FPE arises in this way. In fact,
FPE is defined for a continuous Markov process.

• Gardiner [47] derives first the dCKE from the CKE for a multidimen-
sional Markov process whose probability distribution is assumed to be
contained in a closed surface. The FPE and the master equation are
given as special cases of the dCKE.

We start with a review of notation for multidimensional probability theory
required to read our proof. This is followed by a brief derivation of the CKE
and its graphical interpretation. From the CKE we derive the dCKE and
interpret its terms to show how the FPE and the master equation appear as
special cases of the dCKE. Finally, it turns out that the CME is just a special
form of the master equation for jump processes governed by chemical reactions.
Note that while the derivations of the master equation and the Fokker–Planck
equation in [54, 55] are for the one-dimensional case only, we here present a
general treatment and derive all our results for multidimensional systems.

The probability distribution for an s-dimensional stochastic process

Y (t) = (Y1(t), . . . , Ys(t))

is written as

Pr
[
s⋂
i=1

yi ≤ Yi(t) < yi + dyi

]
= p(y1, . . . , ys, t)dy1 · · · dys .

To simplify the notation, we use a short form,

Pr [y ≤ Y (t) < y + dy] = p(y, t)dy .

More useful will be the conditional probability density, p(x, t |x′, t′), defined
such that

Pr [y ≤ Y (t) < y + dy |Y (t′) = y′] = p(y, t | y′, t′)dy .

When t ≥ t′, p(y, t | y′, t′)dy is the transition probability from state y′ at time
t′ to state y at time t. Since it is much easier to work with densities p(·) rather
than probabilities Pr [·], we shall use densities p(·), but abuse the terminology
by referring to them as “probabilities.”

Essentially, a Markov process is a stochastic process with a short-term
memory. Mathematically, this means that the conditional probability of
a state is determined entirely by the knowledge of the most recent state.
Specifically, for any three successive times t0 ≤ t ≤ t+ ∆t, one has

p(y, t+ ∆t | y′, t; y0, t0) = p(y, t+ ∆t | y′, t),
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where the conditional probability of y at t+ ∆t is uniquely determined by the
most recent state y′ at t and is not affected by any knowledge of the initial
state y0 at t0. This Markov property is assumed to hold for any number of
successive time intervals. To see how powerful this property is, let us consider
the factorization of the joint probability

p(y, t+ ∆t ; y′, t) = p(y, t+ ∆t | y′, t)p(y, t) .

Making both sides conditional on (y0, t0) will modify this equation to

p(y, t+ ∆t ; y′, t | y0, t0) = p(y, t+ ∆t | y′, t; y0, t0)p(y′, t | y0, t0),

which, by the Markov property, reduces to

p(y, t+ ∆t ; y′, t | y0, t0) = p(y, t+ ∆t | y′, t)p(y′, t | y0, t0) . (8.1)

The last equation shows that the joint probability can be expressed in terms
of transition probabilities. Recall the following rule for joint probabilities,

p(y) =
ˆ

dy′ p(y, y′), (8.2)

which says that summing a joint probability over all values of one of the
variables eliminates that variable. Now integrating (8.1) over y′ and using
(8.2), we arrive at the Chapman–Kolmogorov equation (CKE) [47]:

p(y, t+ ∆t | y0, t0) =
ˆ

dy′ p(y, t+ ∆t | y′, t)p(y′, t | y0, t0) . (8.3)

This equation expresses the probability of a transition (y0 → y) as the sum-
mation of probabilities of all transitions (y0 → y′ → y) via intermediate states
y′. Figure 5.2 illustrates the basic notion of a Markov process for which the
CKE provides the stochastic formalism. When the initial condition (y0, t0) is
fixed, which is assumed here, the transition probability conditioned on (y0, t0)
is the same as the state probability:

p(y, t) = p(y, t | y0, t0) .

8.2 Derivation of the dCKE
The CKE serves as a description of a general Markov process, but cannot
be used to determine the temporal evolution of the probability. Here we
derive from the CKE a differential equation that will be more useful in
terms of describing the dynamics of the stochastic process. Referred to as
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the “differential Chapman–Kolmogorov equation” (dCKE) by Gardiner [47],
this equation contains the CME as a special case. This derivation is for a
multidimensional Markov process. We start with the definition of a time
derivative for a probability density but place no restrictions on the probability
distribution. Gardiner [47] instead starts with the expectation of an arbitrary
function, which results in integration by parts and consequently the need to
assume that the probability density vanishes on the surface of a region to
which the process is confined. We do not need such as assumption because of
the simplicity of our approach. The master equation gives the jump part of
the Markov process, while the Fokker–Planck equation gives the continuous
part.

Consider the time derivative of the transition probability

∂p(y, t)
∂t

= lim
∆t→0

1
∆t

{
p(y, t+ ∆t)− p(y, t)

}
, (8.4)

where differentiability of the transition probability with respect to time is
assumed. Employing the CKE (8.3) and the normalization condition

ˆ
dy′ p(y′, t+ ∆t | y, t) = 1 ,

since p(y′, t+ ∆t | y, t) is a probability, (8.4) can be rewritten as

∂p(y, t)
∂t

= lim
∆t→0

1
∆t

ˆ
dy′
{
p(y, t+∆t | y′, t)p(y′, t)−p(y′, t+∆t | y, t)p(y, t)

}
.

Let us divide the region of integration into two regions based on an arbitrarily
small parameter ε > 0. The first region ‖y − y′‖ < ε contributes a continuous-
state process, whereas the second region ‖y − y′‖ ≥ ε contributes to a jump
process. Here ‖·‖ denotes a suitable vector norm. Let IR denote the right
side of the above equation in region R of the state space, that is,

IR = lim
∆t→0

1
∆t

ˆ

R

dy′
{
p(y, t+ ∆t | y′, t)p(y′, t)− p(y′, t+ ∆t | y, t)p(y, t)

}
,

(8.5)
then the derivative (8.6) in the whole region of the state space can be expressed
by

∂p(y, t)
∂t

= I‖y−y′‖<ε + I‖y−y′‖≥ε, (8.6)

The integrand of I‖y−y′‖<ε can be expanded in powers of y−y′ using a Taylor
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expansion. Setting y − y′ = q, we can write

I‖q‖<ε = lim
∆t→0

1
∆t

ˆ

‖q‖<ε

dq
{
p(y, t+ ∆t | y − q, t)p(y − q, t)

− p(y − q, t+ ∆t | y, t)p(y, t)
}
. (8.7)

In order to expand the integrand more easily into a Taylor series, let us define
a function

f(y; q) , p(y + q, t+ ∆t | y, t)p(y, t),
so that the integrand in (8.7) becomes f(y − q; q)− f(y;−q), which, after a
Taylor expansion, becomes

−f(y;−q) + f(y; q)−
∑
i

qi
∂f(y; q)
∂yi

+ 1
2
∑
i,j

qiqj
∂2f(y; q)
∂yi∂yj

+ o
(∥∥qqT∥∥) .

The integrals of the first two terms cancel because of the symmetry
ˆ
f(y; q)dq =

ˆ
f(y;−q)dq

when the integral is over all the positive and negative values of q in the region.
Thus, we have

I‖q‖<ε = lim
∆t→0

1
∆t

ˆ

‖q‖<ε

dq
{
o
(∥∥qqT∥∥)

−
∑
i

qi
∂
[
p(y + q, t+ ∆t | y, t)p(y, t)

]
∂yi

+ 1
2
∑
i,j

qiqj
∂2
[
p(y + q, t+ ∆t | y, t)p(y, t)

]
∂yi∂yj

}
.

For the state increments ∆Yi = Yi(t+∆t)−Yi(t), recognizing the (conditional)
expectations

〈∆Yi〉y =
ˆ

‖q‖<ε

dq qi p(y + q, t+ ∆t | y, t)
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and
〈∆Yi∆Yj〉y =

ˆ

‖q‖<ε

dq qiqj p(y + q, t+ ∆t | y, t),

we refer to the differentiability conditions for continuous processes, i.e.,
‖y − y′‖ < ε [47, Section 3.4]:

lim
∆t→0

〈∆Yi〉y
∆t = Ai(y, t) + o(ε), (8.8)

lim
∆t→0

〈∆Yi∆Yj〉y
∆t = Bij(y, t) + o(ε) . (8.9)

The higher-order terms involve higher-order coefficients, which must vanish.
To see this, for the third-order coefficient, we have

lim
∆t→0

1
∆t

ˆ

‖q‖<ε

dq qiqjqk p(y + q, t+ ∆t | y, t) = Cijk(y, t) + o(ε) .

However,

lim
∆t→0

1
∆t

ˆ

‖q‖<ε

dq qiqjqk p(y + q, t+ ∆t | y, t)

≤ ‖q‖ lim
∆t→0

1
∆t

ˆ

‖q‖<ε

dq qiqj p(y + q, t+ ∆t | y, t)

≤ ε [Bij(y, t) + o(ε)] ≤ o(ε) .

Hence C(y, t) must vanish. The vanishing of higher-order coefficients follows
immediately. The coefficient A(y, t) turns out to be the drift rate, and B(y, t)
the diffusion rate. Comparison of (8.8) with (5.28) suggests that A(y, t) is
analogous to the drift rate A(n) defined in (5.29). Similarly, comparison
of (8.9) with (5.28) suggests that the matrix B(y, t) is analogous to the
diffusion rate B(n) defined in (5.31). The above analogy can be informally
explained in the following manner. Given Y (t) = y, the state increment vector
Y (t+ dt)− Y (t) for a continuous process has a mean approaching A(y, t)dt
and a covariance approaching B(y, t)dt, as ε approaches zero. This suggests
the following update rule, for ε → 0 and under assumptions given in [47,
Section 3.5.2]:

Y (t+ dt)− Y (t) = A(Y (t), t)dt+ [B(Y (t), t)]1/2 dW (8.10)

which has the same (alternative) form as the Langevin equation in (5.39).
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This also explains why we have chosen the same notation for these coefficients
appearing in different contexts. We remark here that (8.8) and (8.9) are
postulated here for mathematical convenience. A more rigorous justification
is given in [55]. Subject to the differentiability conditions (8.8) and (8.9), we
see that as ε→ 0,

I‖y−y′‖<ε → −
∂

∂y

[
A(y, t)p(y, t)

]
+ 1

2
∂2

∂y∂yT

[
B(y, t)p(y, t)

]
. (8.11)

Next we work out the jump probability rate I‖y−y′‖≥ε defined by (8.5). We
will use the differentiability condition for jump processes, i.e., ‖y − y′‖ ≥ ε
[47, Section 3.4]:

lim
∆t→0

1
∆tp(y, t+ ∆t | y′, t) = W (y | y′, t) ,

where W (y | y′, t) is called the transition rate for the jump (y′ → y). Subject
to this condition, we see that as ε→ 0, the region of integration approaches
the full state space, leading to

I‖y−y′‖≥ε →
ˆ

dy′
[
W (y | y′, t)p(y′, t)−W (y′ | y, t)p(y, t)

]
. (8.12)

Adding (8.11) and (8.12), we can rewrite (8.6) to arrive at the dCKE:

∂

∂t
p(y, t) = − ∂

∂y

[
A(y, t)p(y, t)

]
+ 1

2
∂2

∂y∂yT

[
B(y, t)p(y, t)

]
+
ˆ

dy′
[
W (y | y′, t)p(y′, t)−W (y′ | y, t)p(y, t)

]
. (8.13)

We now have a differential equation characterizing the dynamics of the
probability distribution p(y, t), that is, the probability of a state at any time,
starting from a given initial probability distribution. This completes our
derivation of the differential Chapman–Kolmogorov equation. The following
section will classify Markov processes based on this dCKE. This is followed by
a derivation of the chemical master equation and its use in systems biology.

8.3 Classification of Markov Processes
Being a linear differential equation, the dCKE is more convenient for mathe-
matical treatment than the original CKE. More importantly, it has a more
direct physical interpretation. The coefficients A(y, t), B(y, t), and W (y′ | y, t)
are specified by the system under consideration, and thus the solution of the
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dCKE gives the probability distribution for the state of the given system [75].
The original CKE, on the other hand, has no specific information about any
particular Markov process. We now interpret the different terms of (8.13).
Following [18, 47], we first consider the case

Bij(y, t) = W (y | y′, t) = W (y′ | y, t) = 0,

reducing the dCKE to

∂

∂t
p(y, t) = − ∂

∂y

[
A(y, t)p(y, t)

]
,

which is a special case of the Liouville equation describing a deterministic
motion (see [47, Section 3.5.3]):

d
dty(t) = A(y, t) .

Next, if A(y, t) = B(y, t) = 0, the CKE reduces to

∂

∂t
p(y, t) =

ˆ
dy′
[
W (y | y′, t)p(y′, t)−W (y | y′, t)p(xy, t)

]
. (8.14)

This is the master equation describing a jump Markov process with discon-
tinuous (or discrete) sample paths. An example of a jump process is the
time-dependent mRNA abundance in a gene regulatory network.

Next, if W (y | y′, t) = W (y′ | y, t) = 0, the CKE reduces to

∂

∂t
p(y, t) = − ∂

∂y

[
A(y, t)p(y, t)

]
+ 1

2
∂2

∂y∂yT

[
B(y, t)p(y, t)

]
,

which is the Fokker–Planck equation (FPE) and is equivalent to the Langevin
equation (8.10) under the conditions given in [47, 55, 75]. The corresponding
process is known as a “diffusion process” (a Markov process with continuous
sample paths). An example of a diffusion process is the metabolite concentra-
tion of a metabolic network. This shows that the FPE is originally defined for
a continuous process. However, the FPE can also arise as an approximation
of the master equation when the jumps of the corresponding discrete process
are assumed to be small [75, 79].

Finally, we consider the case without diffusion, that is, B(y, t) = 0,
which leads us to

∂

∂t
p(y, t) = − ∂

∂y

[
A(y, t)p(y, t)

]
+
ˆ

dy′
[
W (y | y′, t)p(y′, t)−W (y′ | y, t)p(y, t)

]
.
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which is called the “Liouville master equation” (LME) in [18, Chapter 1]
and describes a piecewise deterministic process with sample paths consisting
of smooth deterministic pieces interrupted by instantaneous jumps. One
way in which the LME arises is through the approximation of an originally
jump Markov process by a hybrid process with discrete and continuous parts
[93, 115].

In the most general case, in which none of the quantities A(y, t), B(y, t),
and W (y′ | y, t) vanish, the dCKE may describe a process whose sample paths
are piecewise continuous, made up of pieces that correspond to a diffusion
process with a nonzero drift, onto which is superimposed a fluctuating part.

8.4 Chemical Master Equation
Consider a discrete-state Markov process. The master equation for this process
can be obtained from (8.14), to give

∂P (n, t)
∂t

=
∑
n′

[
W (n |n′, t)P (n′, t)−W (n′ |n, t)P (n, t)

]
,

where n′ is the intermediate state, and n the final state. Since P (n, t) is a
probability (and not a density), the integral

´
in (8.14) has been replaced

by the summation
∑
n′ . We can rewrite this equation in terms of jumps

q = n− n′,

∂P (n, t)
∂t

=
∑
q

[
W (n |n− q, t)P (n− q, t)−W (n+ q |n, t)P (n, t)

]
, (8.15)

where we have used the symmetry
∑
q φ(−q) =

∑
q φ(q), for an arbitrary func-

tion φ(·), when writing the second summand. Now consider an s-component
and r-reaction biochemical system. Let i label the different components
(chemical species) and j label different reaction channels. The copy number
of the ith component at the variable time t will be denoted by Yi(t), which
takes values ni from the set of whole numbers. Each occurrence of the jth
reaction channel changes the copy number ni of the ith component by an
amount Sij , an element of the stoichiometry matrix S. It is assumed that
the species are distributed homogeneously (well mixed) in a closed system
of constant volume Ω at a constant temperature. This essentially assumes
that changes depend only on the current state (Markov property) and that
we can avoid spatial considerations [36, 47, 75] and macromolecular crowding
[63]. However, since diffusion may not always be rapid, spatial considerations
become important in dealing with intracellular processes [35, 80, 85]. Here we
are interested in a stochastic formulation that dates back to the initial work
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by Kramers [84]. Under the stated assumptions, the vector

Y (t) = (Y1(t), . . . , Ys(t))

taking values n = (n1, . . . , ns) is a continuous-time Markov process. The jump
sizes are determined by the stoichiometry and molecularity of the reactions
and therefore can take values only from the set {S�1, . . . , S�r} of the elementary
changes. Thus, for our system of chemical reactions, (8.15) becomes

∂P (n, t)
∂t

=
r∑
j=1

[
W (n |n− S�j , t)P (n− S�j , t)−W (n+ S�j |n, t)P (n, t)

]
.

Since S�j is uniquely defined for a reaction Rj , we can recognize the associated
transition rate as a reaction propensity (defined in Chapter 5)

aj(n) = W (n+ S�j |n, t)

which means that the above master equation is simply the chemical master
equation:

∂

∂t
P (n, t) =

r∑
j=1

[aj(n− S�j)P (n− S�j , t)− aj(n)P (n, t)] .

This shows that the CME is just a special form of the master equation for
jump processes governed by chemical reactions.

8.5 Stochastic Family Tree
The formal relationships between the equations referred to in the systems
biology literature, and reviewed in this chapter, can be depicted as a “family
tree” shown in Figure 8.3. This figure illustrates the links between differ-
ent stochastic models, between different simulation methods, and between
modeling and simulation.

Given that models of cellular systems are often modest, compared to
what nature presents us with, it is helpful to discuss the role of (mathematical)
modeling. Mathematical modeling serves several purposes that go beyond the
usual association of models with prediction. In an essay, Arthur D. Lander
[87] referred to an analysis of Epstein [41], which lists numerous reasons for
modeling, from which we consider the following most important for systems
biology:

• Explain (very distinct from predict)
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Figure 8.3 Family tree of stochastic processes: Interrelationships for various
stochastic approaches. QSSA stands for Quasi-Steady-State Assumption. The figure
first appeared in our earlier work [158].

• Guide data collection

• Illuminate core dynamics

• Suggest dynamical analogies

• Discover new questions

• Promote a scientific habit of mind
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• Bound (bracket) outcomes to plausible ranges

• Illuminate core uncertainties

• Demonstrate trade-offs / suggest efficiencies

• Challenge established views

• Train practitioners

• Reveal simplicity in complexity

We hope that the present text improves the chances of stochastic modeling
being used in systems biology The path to a model is already a goal. The
process by which a model is established should not (and cannot) be automated.
However, if done correctly, there is nothing more practical than a good
model/theory. To paraphrase the physicist Stephen Weinberg, in complexity
it is simplicity that is most interesting. This is what modeling is about—to
reduce something complex to its essence through abstraction. The motto for
this effort comes from the artist Leonardo da Vinci: Simplicity is the ultimate
perfection.



Chapter 9

Wet-Lab Experiments and Noise

In this chapter we review selected publications on noise and stochastic mod-
eling that are linked to experimental studies. Due to the wide range of
experimental technologies used to generate data, and because the importance
of this to the analysis, we cannot reproduce these studies in a book like this.
The selection of a few papers is to demonstrate the relevance of noise and
stochastic modeling to state-of-the-art molecular and cell biology.

9.1 Reviews
In a recent Nature review [32], Avigdor Eldar and Michael B. Elowitz highlight
the functional roles of noise in genetic circuits. They demonstrate that
stochastic fluctuations, or “noise,” in the levels of components in genetic
circuits is not just a nuisance, but has in fact a purposeful role in the
regulation of cellular functions. More specifically, their review focuses on the
fact that noise (i) enables physiological regulation mechanism, (ii) permits
probabilistic differentiation strategies in microbial to multicellular organisms
at the population level, and (iii) facilitates evolutionary adaptation and
developmental evolution. In addition to a concise summary of the literature
and key experimental works, the review is an excellent demonstration of how
theoretical (here stochastic) approaches can be combined with state-of-the-art
technologies to generate data. The small size of prokaryotic cells and very
low copy numbers of molecules are convincing reminders of what it takes
to quantify subcellular processes in individual cells. Despite the impressive
array of convincing examples, Eldar and Elowitz conclude with a summary
of remaining challenges and open questions, including the question of how
noise emerges. They point toward microRNAs as a possible important player,
adding to the considerable attention microRNAs have received very recently.
Their review covers the subcellular level up to the level of physiological
processes such as metabolic networks and hormone regulation of tissues. At
this level, a question remains as to which systems use noise in physiological
processes, something that would require technologies to monitor a diverse
range of biochemical reactions in individual living cells. A third challenge,
again requiring further advances in single-cell technologies, is probabilistic

Stochastic Approaches for Systems Biology,
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differentiation in stem cells to understand both how and why cells switch
dynamically among states or substates.

Michael Elowitz is a leading figure in the study of noise in gene expression.
Together with his coworkers, a key contribution he has made is the discovery
that noise can have a purposeful role in cells. In [31] it is shown that
correlations in gene expression noise could provide a noninvasive means to
probe the activity states of regulatory links. The underlying idea is that
gene regulatory interactions are context-dependent, active in some cellular
states but not in others, and that gene-expression noise propagates only
through active regulatory links. The authors show that single-cell time-lapse
microscopy can be used to discriminate between active regulatory connections
and extrinsic noise. The experimental work, focusing on galactose metabolism
genes in Escherichia coli, is complemented by a mathematical analysis and a
model of three differential equations and extrinsic noise signals modeled as
an Ornstein–Uhlenbeck process.

Noise can be used to analyze the activity of gene regulatory interactions
as depicted in Figure 9.1. “Extrinsic noise” is here defined as the overall
rate of expression of all genes, such as fluctuating numbers of ribosomes,
polymerase, and variations in cell size, affecting the expression of many genes.
This global, extrinsic noise is thus to be distinguished from “intrinsic noise”
in the expression of individual genes. Because it takes time for protein
concentrations to build up, gene regulation occurs with a delay. The sign
of the delay between fluctuation in regulator concentration and its effect on
target protein levels thus provides information about the causal direction
of the link. Since such delays do not occur for global extrinsic noise, which
affects all genes simultaneously, Elowitz and colleagues developed a strategy
to decouple extrinsic noise correlations from regulatory correlations.

In [141], “extrinsic noise” is defined as nonspecific fluctuations affecting
many system components and having long duration compared to the cell
cycle. Extrinsic fluctuations are then referred to as colored. The notion of
white or colored noise has its origin in the engineering sciences and is linked
to the spectral density (power distribution in the frequency spectrum) of a
noise signal. White noise is a process, named in analogy to white light, with
a flat frequency spectrum (white light being a uniform mix of wavelengths).
In contrast to white noise, colored noise does not vary completely randomly.
A random process whose power spectral density is not white or nearly white
is known in the engineering sciences as “colored noise”.

The trick to distinguish between intrinsic and extrinsic noise in experi-
ments is to create a copy of the network in the same cellular environment as
the original network. The idea, going back to [39], is that intrinsic variables
that define the copy numbers of components of the network are specific to
that network and thus differ between the copies of the network, while extrinsic
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Figure 9.1 Noise-based activity analysis of gene regulatory interactions. (a) Target
gene expression versus repressor concentration. In the active region (in the middle),
changes in repressor concentration cause changes in target gene expression. The link
is inactive’ for higher (right) and lower (left) repressor levels. (b) Noise can produce
different types of static correlations between transcription factor concentration
and target gene expression. In each plot, dots represent individual cells. Top
plots show correlations without an active regulatory link, whereas bottom plots
show correlations with active repression. The mean gene regulation function is
shown as a solid line. Two noise regimes are considered in which either intrinsic
(uncorrelated) or extrinsic (correlated) noise dominates. Active repression causes
anticorrelation between the transcription factor and its target. Intrinsic noise
decorrelates the two, and extrinsic noise causes positive correlations even without
active regulation. Thus, correlations derived from static snapshots are ambiguous
because high levels of extrinsic noise can conceal the anticorrelation expected from
repression. (c) Temporal gene expression patterns for a repressor and its target
showing anticorrelations at a delay time. Figure modified from [31, Figure 1].

variables describe molecules that affect equally each copy of the network.
For example, the abundance of transcribing RNA polymerase is an intrinsic
variable, which differs for each copy of the network. On the other hand, the
abundance of cytosolic RNA polymerase is an extrinsic variable for which all
copies of the network are exposed to the same numbers. Measured fluctuations
of the intrinsic variable will have intrinsic and extrinsic components: intrinsic
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variables are themselves part of a stochastic system, and that system interacts
with other stochastic systems. The term “noise” is used in [141] to mean
exclusively an empirical measure of stochasticity, usually the coefficient of
variation. Experimentally, the relative number of proteins can be quantified
in living cells using fluorescent proteins.

The authors extend the standard stochastic simulation algorithm to
include extrinsic fluctuations and show that these fluctuations affect mean
protein numbers. Because extrinsic fluctuations typically cause fluctuations
in the parameters of a network, their extension of the Gillespie algorithm
includes discontinuous, time-varying parameters. The study considers a simple
model of gene expression that includes promoter activation, transcription,
translation, and degradation. The rate of translation is a function of the
number of free ribosomes and is thus an extrinsic variable, fluctuating with
an average lifetime that is nonzero (thus “colored”).

Biological noise plays an import role in cell fate decisions generating
nongenetic cellular diversity, which may be critical for development, resource
utilization and survival in a fluctuating environment. In a recent review [10],
the role of regulatory network structure and molecular noise is highlighted
using several examples of stochastic cellular decision making from viruses,
bacteria, yeast, lower metazoans, and mammals. The authors consider cel-
lular decision as one of the three key processes underlying development at
various scales of biological organization. Environmental sensing and cell-cell
communication are the other two key processes. The networks behind cellu-
lar decision making are characterized by (1) feedback loops for stability of
cellular decisions (positive feedback) and reversibility (negative feedback), (2)
bistability or excitable dynamics, and (3) intrinsic molecular noise inducing
transitions between steady states in bistable systems and transient excursions
of gene expression in excitable systems. An interesting proposition by the
authors is that efforts to reduce intrinsic noise in experimental setups will
always be in vain. Intrinsic noise is unavoidable by its very nature. Thus
noise should be better understood, incorporated in modeling and subsequently
exploited to control cell fate decisions.

Other important processes wherin noise plays a role include development
and pattern formation [88].

9.2 Further Reading
Here is a list of articles and books for further reading.



9.2 Further Reading 239

Modeling Approaches
• A. Elston: Physics to pharmacology. Rep. Prog. Phys., 74(2011),
e016601.

• D. Pe’er and N. Hacohen: Principles and strategies for developing
network models in cancer. Cell, 144(2011), 864–873.

• W. W. Chen, M. Niepel and P. K. Sorger: Classic and contemporary ap-
proaches to modeling biochemical reactions. Genes. Dev., 1(2010):1861–
1875.

• P. K. Kreeger and D. A. Lauffenburger: Cancer systems biology: a
network modeling perspective. Carcinogenesis, 31(2010), 2–8.

• G. Karlebach and R. Shamir: Modeling and analysis of gene regulatory
networks. Nature Reviews—Molecular Cell Biology, 9(2008), 770–780.

• E.J. Crampin, S. Schnell, P.E. McSharry: Mathematical and computa-
tional techniques to deduce complex biochemical reaction mechanisms.
Progress in Biophysics & Molecular Biology, 86(2004), 77–112.

• J.J. Tyson, K.C. Chen, B. Novak: Sniffers, buzzers, toggles and blinkers:
dynamics of regulatory and signaling pathways in the cell. Current
Opinion in Cell Biology, 15(2003), 221–231.

Stochastic Modeling
• R. Cheong, S. Paliwal, and A. Levchenko: Models at the single cell level.
WIREs. Syst. Biol. Med., 2(2010), 34–48.

• S. J. Altschuler and L. F. Wu: Cellular heterogeneity: Do differences
make a difference? Cell, 141(2010), 559–563.

• R. J. Johnston and C. Desplan: Stochastic mechanisms of cell fate
specification that yield random or robust outcomes. Annu. Rev. Cell.
Dev. Biol., 26(2010), 689–719.

• D. J. Wilkinson: Stochastic modelling for quantitative description of
heterogeneous biological systems. Nat. Rev. Genet., 10(2009), 122–133.

• J. Pahle: Biochemical simulations: stochastic, approximate stochastic
and hybrid approaches. Brief. Bioinform., 10(2009), 53–64.

• D. J. Higham: Modeling and simulating chemical reactions. SIAM
Review, 50(2008), 347–368.



240 9 Wet-Lab Experiments and Noise

• D. T. Gillespie: Stochastic simulation of chemical kinetics. Annu. Rev.
Phys. Chem., 58(2007), 35–55.

• N. Maheshri and E. K. O’Shea: Living with noisy genes: How cells
function reliably with inherent variability in gene expression. Annu.
Rev. Biophys. Biomol. Struct., 36(2007), 413–434.

• C. Blomberg: Fluctuations for good and bad: The role of noise in living
systems. Physics of Life Reviews, 3(2006), 133–161.

• M. Kaern, T. C. Elston, W. J. Blake and J. J. Collins: Stochasticity
in gene expression: from theories to phenotypes. Nat. Rev. Genet.,
6(2005), 451–464.

• J. M. Raser and E. K. O’Shea: Noise in gene expression: Origins,
consequences, and control. Science, 309(2005), 2010–2013.

• J. Paulsson: Models of stochastic gene expression. Phys. Life. Rev.,
2(2005), 157–75.

• T. Turner, S. Schnell and K. Burrage: Stochastic approaches for mod-
elling in vivo reactions. Comput. Biol. Chem., 28(2004), 165–178.

• K. S. Dorman, J. S. Sinsheimer and K. Lange: In the garden of branching
processes. SIAM Review, 46(2004), 202–229.

Cellular Oscillations
• J, J. Ferrell, T.-C. Tsai and Q. Yang: Modeling the cell cycle: Why do
certain circuits oscillate? Cell, 144(2011), 874–885.

• B. Novák and J.J. Tyson: Design principles of biochemical oscillators.
Nature Reviews—Molecular Cell Biology, 9(2008), 981–991.

• T. Roenneberg, E. Mendoza: Modeling biological rhythms. Current
Biology, 18(2008), 826–835.

• F. Levi, U. Schibler: Circadian rhythms: Mechanisms and therapeutic
implications. Annu. Rev. Pharmacol. Toxicol., 47(2007), 593–628.

• A. Goldbeter: Computational approaches to cellular rhythms. Nature,
420(2002), 238–245.



9.2 Further Reading 241

Cell Signaling
• J. Muñoz-García and B. N. Kholodenko: Signalling over a distance: gra-

dient patterns and phosphorylation waves within single cells. Biochem.
Soc. Trans., 38(2010), 1235–1241.

• B. N. Kholodenko, J. F. Hancock and W. Kolch: Signalling ballet in
space and time. Nat. Rev. Mol. Cell. Biol., 11(2010), 414–26.

• O. Brandman and T. Meyer: Feedback loops shape cellular signals in
space and time. Science, 322(2008), 390–395.

• B.N. Kholodenko: Cell-signaling dynamics in time and space. Molecular
Cell Biology, 7(2006), 165–176.

• K.A. Janes, M.B. Yaffe: Data-driven modeling of signal-transduction
networks. Nature Cell Biology, 8(2006), 820–828.

• B. B. Aldridge, J.M. Burke, D.A. Lauffenburger, P. Sorger: Physic-
ochemical modeling of cell signaling pathways. Nature Cell Biology,
8(2006), 1195–1203.

• R. Heinrich, B.G. Neel, T.A. Rapoport: Mathematical models of protein
kinase signal transduction. Molecular Cell, 9(2002), 957–970.

• D. A. Lauffenburger and J. J. Linderman: Receptors: Models for Bind-
ing, Trafficking, and Signalling. Oxford University Press, (1993); 2nd
printing (1996).

Diagrammatic Modeling
• N.Le Novere et al.: The systems biology graphical notation. Nature
Biotechnology, 27(2009), 735–741.

• K.W. Kohn, M.I. Aladjem, J.N. Weinstein, Y. Pommier: Molecular
interaction maps of bioregulatory networks: A general rubric for systems
biology. Molecular Biology of the Cell, 17(2006), 1–13.

• H. Kitano, A. Funahashi, Y. Matsuoka, K. Oda: Using process dia-
gramms for the graphical representation of biological networks. Nature
Biotechnology, 23(2005), 961–966.



242 9 Wet-Lab Experiments and Noise

Handling Experimental Data
• S. Bandara, J.P. Schlöder, R. Eils, H.G. Bock, T. Meyer: optimal

experimental design for parameter estimation of a cell signaling model.
PLoS. Comput. Biol., 5(2009), e1000558.

• A. Raue, C. Kreutz, T. Maiwald, J. Bachmann, M. Schilling, U. Kling-
müller, J. Timmer: Structural and practical identifiability analysis of
partially observed dynamical models by exploiting theprofile likelihood.
Bioinformatics, 25(2009), 1923–1929.

• T. Maiwald, J. Timmer: Dynamical modeling and multi-experiment
fitting with PottersWheel. Bioinformatics, 24(2008), 2037–2043.

• E. Balsa-Canto, A.A. Alonso, J.R. Banga: Computational procedures
for optimal experimental design in biological systems. IET Systems
Biology, 2(2008), 163–172.

• S.J. Wilkinson, N. Benson and D.B. Kell: Proximate parameter tuning
for biochemical networks with uncertain. Mol. BioSyst., 4(2008), 74–97.

• R.N. Gutenkunst, J.J. Waterfall, F.P. Casey, K.S. Brown, C.R. Myers,
J.P. Sethna: Universally sloppy parameter sensitivities in systems biology
models. PLoS. Comput. Biol., 3(2007), e189.

• S. Hengl, C. Kreutz, J. Timmer, T. Maiwald: Data-based identifiability
analysis of non-linear dynamical models. Bioinformatics, 23(2007),
2612–2618.

• M. Rodriguez-Fernandez, J.A. Egea, J.R. Banga: Novel metaheuristic
for parameter estimation in nonlinear dynamic biological systems. BMC
Bioinformatics, 7(2006), e483.

• M. Schilling, T. Maiwald, S. Bohl, M. Kollmann, C. Kreutz, J. Tim-
mer, U. Klingmüller: Quantitative data generation for systems biology:
the impact of randomisation, calibrators and normalizers. Syst. Biol.
(Stevenage), 152(2005), 193–200.

Personal Perspectives
• J.E. Ferrell Jr: Q&A: Systems biology. Journal of Biology, 8:2(2009).

• O. Wolkenhauer, M. Mesarovic: Feedback dynamics and cell function:
Why systems biology is called Systems Biology. Mol. BioSyst., 1(2005),
14–16.



9.2 Further Reading 243

• L. Hood, J.R. Heath, M.E. Phelps, B. Lin: Systems biology and new tech-
nologies enable predictive and preventative medicine. Science, 306(2004),
640–643.

• H.S. Wiley: Systems biology: Beyond the buzz. The Scientist, 20(2006),
e52.

• H. Kitano: Computational systems biology. Nature, 420(2002), 206–210.

• Y. Lazebnik: Can a biologist fix a radio? Or, what I learned while
studying apoptosis. Cancer Cell, 2(2002), 179–182.



References

[1] IUPAC Compendium of Chemical Terminology—the Gold Book.

[2] Virtual Laboratories in Probability and Statistics. URL http://www.
math.uah.edu/stat/.

[3] T.-H. Ahn, L. T. Watson, Y. Cao, C. A. Shaffer, and W. T. Bau-
mann. Cell cycle modeling for budding yeast with stochastic simulation
algorithms. CMES, 51(1):27–52, 2009. doi: 10.3970/cmes.2009.051.027.

[4] B. Alberts, A. Johnson, J. Lewis, M. Raff, K. Roberts, and P. Walker.
Molecular Biology of the Cell. Garland Publishers, New York, 4th
edition, 2002.

[5] L. J. Allen. An Introduction to Stochastic Processes with Applications
to Biology. Prentice Hall, Apr. 2003. ISBN 0130352187.

[6] J. Ansel, H. Bottin, C. Rodriguez-Beltran, C. Damon, M. Nagarajan,
S. Fehrmann, J. François, and G. Yvert. Cell-to-cell stochastic variation
in gene expression is a complex genetic trait. PLoS Genet., 4(4):e1000049,
Apr 2008. doi: 10.1371/journal.pgen.1000049.

[7] A. Arkin, J. Ross, and H. H. McAdams. Stochastic kinetic anal-
ysis of developmental pathway bifurcation in phage λ-infected Es-
cherichia coli cells. Genetics, 149(4):1633–1648, 1998. URL http:
//www.genetics.org/cgi/content/abstract/149/4/1633.

[8] M. N. Artyomov, J. Das, M. Kardar, and A. K. Chakraborty. Purely
stochastic binary decisions in cell signaling models without underlying
deterministic bistabilities. Proc. Natl. Acad. Sci. U.S.A., 104(48):18958–
18963, Nov. 2007. doi: 10.1073/pnas.0706110104.

[9] S. Aumaître, K. Mallick, and F. Pétrélis. Noise-induced bifurca-
tions, multiscaling and on–off intermittency. Journal of Statistical
Mechanics: Theory and Experiment, 2007(07):P07016, 2007. doi:
10.1088/1742-5468/2007/07/P07016.

[10] G. Balázsi, A. van Oudenaarden, and J. Collins. Cellular decision
making and biological noise: From microbes to mammals. Cell, 144(6):
910–925, Mar. 2011. ISSN 0092-8674. doi: 10.1016/j.cell.2011.01.030.

Stochastic Approaches for Systems Biology,
DOI 10.1007/978-1-4614-0478-1, © Springer Science+Business Media, LLC 2011
M. Ullah and O. Wolkenhauer, 245

http://www.math.uah.edu/stat/
http://www.math.uah.edu/stat/
http://www.genetics.org/cgi/content/abstract/149/4/1633
http://www.genetics.org/cgi/content/abstract/149/4/1633


246 References

[11] D. A. Beard and H. Qian. Chemical Biophysics: Quantitative Analysis
of Cellular Systems. Cambridge University Press, July 2008. ISBN
0521870704.

[12] A. Becskei and L. Serrano. Engineering stability in gene networks by
autoregulation. Nature, 405(6786):590–593, June 2000. ISSN 0028-0836.
doi: 10.1038/35014651.

[13] A. Becskei, B. B. Kaufmann, and A. van Oudenaarden. Contributions
of low molecule number and chromosomal positioning to stochastic gene
expression. Nat. Genet., 37(9):937–944, Sept. 2005. ISSN 1061-4036.
doi: 10.1038/ng1616.

[14] O. G. Berg, J. Paulsson, and M. Ehrenberg. Fluctuations and quality of
control in biological cells: Zero-order ultrasensitivity reinvestigated. Bio-
phys. J., 79(3):1228–1236, 2000. doi: 10.1016/S0006-3495(00)76377-6.

[15] M. Bernaschi, F. Castiglione, A. Ferranti, C. Gavrila, M. Tinti, and
G. Cesareni. ProtNet: A tool for stochastic simulations of protein
interaction networks dynamics. BMC Bioinformatics, 8(Suppl 1):S4,
2007. doi: 10.1186/1471-2105-8-S1-S4.

[16] C. Blomberg. Fluctuations for good and bad: The role of noise in living
systems. Physics of Life Reviews, 3:133–161, 2006. doi: 10.1016/j.plrev.
2006.06.001.

[17] L. Boulianne, S. A. Assaad, M. Dumontier, and W. Gross. GridCell:
A stochastic particle-based biological system simulator. BMC Systems
Biology, 2(1):66, 2008. doi: 10.1186/1752-0509-2-66.

[18] H. Breuer and F. Petruccione. The Theory of Open Quantum Systems.
Oxford University Press, 2002.

[19] G. Briggs and J. Haldane. A note on the kinetics of enzyme action.
Biochem. J., 19:338–339, 1925.

[20] K. Burrage, S. Mac, and T. Tian. Accelerated leap methods for simu-
lating discrete stochastic chemical kinetics. In Positive Systems, pages
359–366. Springer Berlin / Heidelberg, 2006.

[21] X. Cai and Z. Xu. K-leap method for accelerating stochastic simulation
of coupled chemical reactions. J. Chem. Phys., 126(7):074102, Feb. 2007.
doi: 10.1063/1.2436869.

[22] Y. Cao, D. Gillespie, and L. Petzold. Efficient step size selection for the
tau-leaping simulation method. J. Chem. Phys., 124:044109, 2006. doi:
10.1063/1.2159468.



References 247

[23] Y. Cao, D. T. Gillespie, and L. R. Petzold. Adaptive explicit-implicit tau-
leaping method with automatic tau selection. The Journal of Chemical
Physics, 126(22):224101, 2007. doi: 10.1063/1.2745299.

[24] B. Chen and Y. Wang. On the attenuation and amplification of molecular
noise in genetic regulatory networks. BMC Bioinformatics, 7:52, Feb.
2006. doi: 10.1186/1471-2105-7-52.

[25] A. Cornish-Bowden. Fundamentals of Enzyme Kinetics. Portland Press,
London, third edition, 2004.

[26] A. Csikász-Nagy, D. Battogtokh, K. C. Chen, B. Novák, and J. J. Tyson.
Analysis of a generic model of eukaryotic cell cycle regulation. Biophys.
J., 90:4361–4379, 2006. doi: 10.1529/biophysj.106.081240.

[27] M. Delbrück. Statistical fluctuations in autocatalytic reactions. The
Journal of Chemical Physics, 8(1):120–124, 1940. doi: 10.1063/1.
1750549.

[28] M. Dogterom and S. Leibler. Physical aspects of the growth and
regulation of microtubule structures. Phys. Rev. Lett., 70(9):1347, Mar.
1993. doi: 10.1103/PhysRevLett.70.1347.

[29] E. R. Dougherty and M. L. Bittner. Causality, randomness, intelligibility,
and the epistemology of the cell. Curr. Genomics, 11(17):221–23, June
2010. doi: doi:10.2174/138920210791233072.

[30] Y. Dublanche, K. Michalodimitrakis, N. Kümmerer, M. Foglierini, and
L. Serrano. Noise in transcription negative feedback loops: Simulation
and experimental analysis. Molecular Systems Biology, 2:41, 2006. doi:
10.1038/msb4100081.

[31] M. J. Dunlop, R. S. Cox, J. H. Levine, R. M. Murray, and M. B. Elowitz.
Regulatory activity revealed by dynamic correlations in gene expression
noise. Nat. Genet., 40(12):1493–1498, Dec. 2008. ISSN 1061-4036. doi:
10.1038/ng.281.

[32] A. Eldar and M. B. Elowitz. Functional roles for noise in genetic
circuits. Nature, 467(7312):167–173, Sept. 2010. ISSN 0028-0836. doi:
10.1038/nature09326.

[33] J. Elf. Intracellular Flows and Fluctuations. PhD thesis, Uppsala
University, Teknisk-naturvetenskapliga vetenskapsområdet, Biology,
Department of Cell and Molecular Biology, Sept. 2004. URL http:
//urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-4291.

http://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-4291
http://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-4291


248 References

[34] J. Elf and M. Ehrenberg. Fast evaluation of fluctuations in biochemical
networks with the linear noise approximation. Genome Res., 13(11):
2475–2484, Nov. 2003. doi: 10.1101/gr.1196503.

[35] J. Elf and M. Ehrenberg. Spontaneous separation of bi-stable biochemi-
cal systems into spatial domains of opposite phases. Syst. Biol., 1(2):
230–236, Dec. 2004. doi: 10.1049/sb:20045021.

[36] J. Elf, P. Lötstedt, and P. Sjöberg. Problems of high dimension in
molecular biology. In Proceedings of the 19th GAMM Seminar on
High-dimensional problems, pages 21–30. Max Planck Institute for
Mathematics in the Sciences, Leipzig, Germany, Jan. 2003. URL
http://www.mis.mpg.de/conferences/gamm/2003/.

[37] J. Elf, J. Paulsson, O. G. Berg, and M. Ehrenberg. Near-critical
phenomena in intracellular metabolite pools. Biophys. J., 84(1):154–
170, Jan. 2003. doi: 10.1016/S0006-3495(03)74839-5.

[38] R. Ellis and A. Minton. Cell biology: Join the crowd. Nature, 425(6953):
27–28, Sept. 2003. doi: 10.1038/425027a.

[39] M. Elowitz, A. Levine, E. Siggia, and P. Swain. Stochastic gene expres-
sion in a single cell. Science, 297(5584):1183–1186, Aug. 2002. ISSN
1095-9203. doi: 10.1126/science.1070919.

[40] M. B. Elowitz and S. Leibler. A synthetic oscillatory network of tran-
scriptional regulators. Nature, 403(6767):335–338, Jan. 2000. ISSN
0028-0836. doi: 10.1038/35002125.

[41] J. M. Epstein. Why model? Journal of Artificial Societies and Social
Simulation, 11:4, 2008. URL http://econpapers.repec.org/
RePEc:jas:jasssj:2008-57-1.

[42] C. P. Fall, E. S. Marland, J. M. Wagner, and J. J. Tyson. Computational
Cell Biology. Springer, Berlin, February 2002. ISBN 0387953698. doi:
10.1007/b97701.

[43] D. Fell. Understanding the Control of Metabolism. Portland Press,
London, 1997.

[44] L. Ferm, P. Lötstedt, and A. Hellander. A Hierarchy of Approxima-
tions of the Master Equation Scaled by a Size Parameter. Techni-
cal Report 2007-011, Uppsala University, Department of Information
Technology, Apr. 2007. URL http://www.it.uu.se/research/
publications/reports/2007-011/.

http://www.mis.mpg.de/conferences/gamm/2003/
http://econpapers.repec.org/RePEc:jas:jasssj:2008-57-1
http://econpapers.repec.org/RePEc:jas:jasssj:2008-57-1
http://www.it.uu.se/research/publications/reports/2007-011/
http://www.it.uu.se/research/publications/reports/2007-011/


References 249

[45] J. E. Ferrell and W. Xiong. Bistability in cell signaling: How to make
continuous processes discontinuous, and reversible processes irreversible.
Chaos, 11(1):227–236, Mar. 2001. ISSN 1054-1500. doi: 10.1063/1.
1349894.

[46] H. B. Fraser, A. E. Hirsh, G. Giaever, J. Kumm, and M. B. Eisen. Noise
minimization in eukaryotic gene expression. PLoS Biol., 2(6):e137, June
2004. doi: 10.1371/journal.pbio.0020137.

[47] C. Gardiner. Handbook of Stochastic Models. Springer, third edition,
2004.

[48] T. S. Gardner, C. R. Cantor, and J. J. Collins. Construction of a genetic
toggle switch in Escherichia coli. Nature, 403(6767):339–342, Jan. 2000.
ISSN 0028-0836. doi: 10.1038/35002131.

[49] C. v. Gend and U. Kummer. STODE—automatic stochastic simulation
of systems described by differential equations. In Yi and Hucka, editors,
Proceedings of the 2nd International Conference on Systems Biology,
pages 326–333, Pasadena, 2001. Omnipress.

[50] M. Gibson and J. Bruck. Efficient exact stochastic simulation of chemical
systems with many species and many channels. J. Phys. Chem. A, 104:
1876–188, 2000. doi: 10.1021/jp993732q.

[51] D. Gillespie. A general method for numerically simulating the stochastic
time evolution of coupled chemical reactions. Journal of Computational
Physics, 22:403–434, 1976. doi: 10.1016/0021-9991(76)90041-3.

[52] D. Gillespie. Exact stochastic simulation of coupled chemical reactions.
The Journal of Physical Chemistry, 81(25):2340–2361, 1977. doi: 10.
1021/jp993732q.

[53] D. Gillespie. A rigorous derivation of the chemical master equation.
Physica A, 188:404–425, 1992. doi: 10.1016/0378-4371(92)90283-V.

[54] D. Gillespie. Markov Processes. Academic Press, 1992.

[55] D. Gillespie. The multivariate Langevin and Fokker–Planck equations.
American Journal of Physics, 64(10):1246–1257, 1996. doi: 10.1119/1.
18387.

[56] D. Gillespie. The chemical Langevin equation. J. Chem. Phys., 113(1):
297–306, 2000. doi: 10.1063/1.481811.

[57] D. Gillespie. Approximate accelerated stochastic simulation of chemically
reacting system. J. Chem. Phys., 115(4):1716, 2001. doi: 10.1063/1.
1378322.



250 References

[58] C. A. Gómez-Uribe and G. C. Verghese. Mass fluctuation kinetics:
Capturing stochastic effects in systems of chemical reactions through
coupled mean-variance computations. J. Chem. Phys., 126(2):024109,
Jan. 2007. doi: 10.1063/1.2408422.

[59] A. Goldbeter. Biochemical Oscillations and Cellular Rythms. Cambridge
University Press, 1996.

[60] I. Golding and E. Cox. Physical nature of bacterial cytoplasm. Phys. Rev.
Lett., 96(9):098102, Mar. 2006. doi: 10.1103/PhysRevLett.96.098102.

[61] J. Goutsias. A hidden Markov model for transcriptional regulation in
single cells. IEEE/ACM Trans. Comput. Biol. Bioinform., 3(1):57–71,
2006. doi: 10.1109/TCBB.2006.2.

[62] J. Goutsias. Classical versus stochastic kinetics modeling of biochemical
reaction systems. Biophys. J., 92(7):2350–2365, Apr. 2007. doi: 10.
1529/biophysj.106.093781.

[63] R. Grima and S. Schnell. A mesoscopic simulation approach for modeling
intracellular reactions. Journal of Statistical Physics, 128:139–164, July
2006. doi: 10.1007/s10955-006-9202-z.

[64] J. Hasty, J. Pradines, M. Dolnik, and J. Collins. Noise-based switches
and amplifiers for gene expression. Proc. Natl. Acad. Sci. U.S.A., 97(5):
2075–2080, 2000. doi: 10.1073/pnas.040411297.

[65] F. Hayot and C. Jayaprakash. The linear noise approximation for
molecular fluctuations within cells. Physical Biology, 1(4):205–210, Dec.
2004. ISSN 1478-3975. doi: 10.1088/1478-3967/1/4/002.

[66] R. Heinrich and S. Schuster. The Regulation of Cellular Systems.
Chapman and Hall, New York, 1996.

[67] R. H. Hering. Oscillations in Lotka-Volterra systems of chemical re-
actions. J. Math. Chem., 5(2):197–202, 1990. ISSN 0259-9791. doi:
10.1007/BF01166429.

[68] D. J. Higham. An algorithmic introduction to numerical simulation of
stochastic differential equations. SIAM Review, 43(3):525–546, 2001.
doi: 10.1137/S0036144500378302.

[69] G. Hornung and N. Barkai. Noise propagation and signaling sensitivity
in biological networks: A role for positive feedback. PLoS Comput.
Biol., 4(1):e8, Jan 2008. doi: 10.1371/journal.pcbi.0040008.



References 251

[70] W. Horsthemke and R. Lefever. Noise-Induced Transitions, volume 15
of Springer Series in Synergetics. Springer, 2006.

[71] J. House. Principles of Chemical Kinetics. Academic Press, San Diego,
California, 2007.

[72] S. Intep, D. J. Higham, and X. Mao. Switching and diffusion models
for gene regulation networks. Multiscale Modeling & Simulation, 8(1):
30–45, 2009. doi: 10.1137/080735412.

[73] T. Jahnke and W. Huisinga. Solving the chemical master equation for
monomolecular reaction systems analytically. J. Math. Biol., 54(1):1–26,
Jan. 2007. doi: 10.1007/s00285-006-0034-x.

[74] M. Kaern, T. C. Elston, W. J. Blake, and J. J. Collins. Stochasticity in
gene expression: from theories to phenotypes. Nat. Rev. Genet., 6(6):
451–464, June 2005. ISSN 1471-0056. doi: 10.1038/nrg1615.

[75] N. v. Kampen. Stochastic Processes in Physics and Chemistry. El-
sevier Amsterdam, Amsterdam, 3rd edition, 2007. ISBN 978-0-
444-52965-7. URL http://www.sciencedirect.com/science/
book/9780444529657.

[76] N. v. Kampen. The Langevin approach. In Stochastic Processes in
Physics and Chemistry, pages 219–243. Elsevier, Amsterdam, 3rd edition,
2007. doi: 10.1016/B978-044452965-7/50012-X.

[77] N. v. Kampen. The Fokker–Planck equation. In Stochastic Processes
in Physics and Chemistry, pages 193–218. Elsevier, Amsterdam, 3rd
edition, 2007. doi: 10.1016/B978-044452965-7/50011-8.

[78] J. Keizer. Statistical Thermodynamics of Nonequilibrium Processes.
Springer, Berlin, 1987.

[79] T. Kepler and T. Elston. Stochasticity in transcriptional regulation:
origins, consequences, and mathematical representations. Biophys. J.,
81(6):3116–3136, Dec. 2001. doi: 10.1016/S0006-3495(01)75949-8.

[80] B. Kholodenko. Cell-signalling dynamics in time and space. Nature Re-
views: Molecular Cell Biology, 7:165–176, 2006. doi: 10.1038/nrm1838.

[81] A. M. Kierzek. STOCKS: STOChastic Kinetic Simulations of biochem-
ical systems with Gillespie algorithm. Bioinformatics, 18(3):470–481,
Mar. 2002. doi: 10.1093/bioinformatics/18.3.470.

[82] M. Kimmel and D. E. Axelrod. Branching Processes in Biology, vol-
ume 19 of Interdisciplinary Applied Mathematics. Springer, 2002. doi:
10.1007/b97371.

http://www.sciencedirect.com/science/book/9780444529657
http://www.sciencedirect.com/science/book/9780444529657


252 References

[83] A. N. Kolmogorov. On the analytical methods of probability theory.
Math. Ann., 104:415–458, 1931.

[84] H. Kramers. Brownian motion in a field of force and the diffusion
model of chemical reactions. Physica, 7(4):284–304, Apr. 1940. doi:
10.1016/S0031-8914(40)90098-2.

[85] K. Kruse and J. Elf. Kinetics in spatially extended systems in systems
modeling in cellular biology. In Z. Szallasi, J. Stelling, and V. Periwal,
editors, System Modeling in Cellular Biology, pages 177–198. The MIT
Press, 2006.

[86] Y. Lan and G. A. Papoian. The interplay between discrete noise and
nonlinear chemical kinetics in a signal amplification cascade. J. Chem.
Phys., 125(15):154901, Oct. 2006. doi: 10.1063/1.2358342.

[87] A. Lander. The edges of understanding. BMC Biology, 8(1):40,
2010. ISSN 1741-7007. URL http://www.biomedcentral.com/
1741-7007/8/40.

[88] A. Lander. Pattern, Growth, and Control. Cell, 144(6):955–969, Mar.
2011. ISSN 0092-8674. doi: 10.1016/j.cell.2011.03.009.

[89] M. Lax. Fluctuations from the nonequilibrium steady state. Reviews of
Modern Physics, 32(1):25–64, 1960. doi: 10.1103/RevModPhys.32.25.

[90] A. Leier, T. T. Marquez-Lago, and K. Burrage. Generalized binomial
tau-leap method for biochemical kinetics incorporating both delay and
intrinsic noise. The Journal of Chemical Physics, 128(20):205107, 2008.
doi: 10.1063/1.2919124.

[91] J. Levine, H. Y. Kueh, and L. Mirny. Intrinsic fluctuations, robustness,
and tunability in signaling cycles. Biophys. J., 92(12):4473–4481, 2007.
doi: 10.1529/biophysj.106.088856.

[92] Q. Li and X. Lang. Internal noise-sustained circadian rhythms in a
drosophila model. Biophys. J., 94(6):1983–1994, 2008. doi: 10.1529/
biophysj.107.109611.

[93] T. Lipniacki, P. Paszek, A. Brasier, B. Luxon, and M. Kimmel. Tran-
scriptional stochasticity in gene expression. J. Theor. Biol., 238:348–367,
2006. doi: 10.1016/j.jtbi.2005.05.032.

[94] A. J. Lotka. Undamped oscillations derived from the law of mass action.
J. Am. Chem. Soc., 42(8):1595–1599, 1920. doi: 10.1021/ja01453a010.

http://www.biomedcentral.com/1741-7007/8/40
http://www.biomedcentral.com/1741-7007/8/40


References 253

[95] N. V. Mantzaris. From single-cell genetic architecture to cell population
dynamics: Quantitatively decomposing the effects of different population
heterogeneity sources for a genetic network with positive feedback
architecture. Biophys. J., 92(12):4271–288, Jun 2007. doi: 10.1529/
biophysj.106.100271.

[96] MathWorks. Matlab. URL www.mathworks.com.

[97] H. H. McAdams and A. Arkin. Stochastic mechanisms in gene expression.
Proc. Natl. Acad. Sci. U.S.A., 94(3):814–819, 1997. doi: 10.1073/pnas.
94.3.814.

[98] R. Metzler and J. Klafter. The random walk’s guide to anomalous
diffusion: A fractional dynamics approach. Physical Reports, 1:339,
2000. doi: 10.1016/S0370-1573(00)00070-3.

[99] L. Michaelis and M. Menten. Die Kinetik der Invertinwirkung. Biochem.
Z., 19:333–369, 1913.

[100] D. O. Morgan. The Cell Cycle: Principles of Control. Primers in
Biology. New Science Press, 2007.

[101] Y. Morishita and K. Aihara. Noise-reduction through interaction in
gene expression and biochemical reaction processes. J. Theor. Biol., 228
(3):315–325, June 2004. doi: 10.1016/j.jtbi.2004.01.007.

[102] R. G. Mortimer. Physical Chemistry. Elsevier Academic Press, San
Diego, California, 3rd edition, 2008.

[103] B. Munsky and M. Khammash. The finite state projection algorithm for
the solution of the chemical master equation. The Journal of Chemical
Physics, 124(4):044104, 2006. doi: 10.1063/1.2145882.

[104] B. Munsky and M. Khammash. A reduced model solution for the
chemical master equation arising in stochastic analyses of biological
networks. In Decision and Control, 2006 45th IEEE Conference on,
pages 25–30, 2006.

[105] B. Novák and J. J. Tyson. Modelling the controls of the eukaryotic
cell cycle. Biochem. Soc. Trans., 31(6):1526–1529, 2003. URL http:
//www.biochemsoctrans.org/bst/031/bst0311526.htm.

[106] B. Novák and J. J. Tyson. Design principles of biochemical oscillators.
Nat. Rev. Mol. Cell Biol., 9(12):981–991, Dec. 2008. ISSN 1471-0072.
doi: 10.1038/nrm2530.

www.mathworks.com
http://www.biochemsoctrans.org/bst/031/bst0311526.htm
http://www.biochemsoctrans.org/bst/031/bst0311526.htm


254 References

[107] B. Novák, A. Csikasz-Nagy, B. Gyorffy, K. Chen, and J. J. Tyson. Math-
ematical model of the fission yeast cell cycle with checkpoint controls at
the G1/S, G2/M and metaphase/anaphase transitions. Biophys. Chem.,
72(1-2):185–200, May 1998. doi: 10.1016/S0301-4622(98)00133-1.

[108] B. Novák, Z. Pataki, A. Ciliberto, and J. J. Tyson. Mathematical model
of the cell division cycle of fission yeast. Chaos, 11(1):277–286, 2001.
doi: 10.1063/1.1345725.

[109] B. Novák, K. Chen, and J. Tyson. Systems biology of the yeast cell cycle
engine. In L. Alberghina and H. Westerhoff, editors, Systems Biology,
volume 13 of Topics in Current Genetics, pages 305–324. Springer Berlin,
2005. doi: 10.1007/b137123.

[110] P. Nurse. A long twentieth century of the cell cycle and beyond. Cell,
100(1):71–78, Jan. 2000. doi: 10.1016/S0092-8674(00)81684-0.

[111] J. Osborne. Arguing to learn in science: The role of collaborative,
critical discourse. Science, 328(5977):463–466, 2010. doi: 10.1126/
science.1183944.

[112] E. M. Ozbudak, M. Thattai, H. N. Lim, B. I. Shraiman, and A. V. Oude-
naarden. Multistability in the lactose utilization network of Escherichia
coli. Nature, 427(6976):737–740, Feb. 2004. doi: 10.1038/nature02298.

[113] J. Pahle. Stochastic Simulation and Analysis of Biochemical Networks.
PhD thesis, Humboldt-Universität zu Berlin, Fach Biophysik, 2008.

[114] A. Papoulis and S. U. Pillai. Probability, Random Variables, and
Stochastic Processes. McGraw-Hill, fourth edition, 2001.

[115] P. Paszek. Modeling stochasticity in gene regulation: Characterization
in the terms of the underlying distribution function. Bull Math Biol,
69:1567–1601, Mar. 2007. doi: 10.1007/s11538-006-9176-7.

[116] J. Paulsson. Summing up the noise. Nature, 427:415–418, 2004. doi:
10.1038/nature02257.

[117] J. Paulsson. Models of stochastic gene expression. Phys. Life Rev., 2:
157–75, June 2005. doi: 10.1016/j.plrev.2005.03.003.

[118] J. Paulsson and M. Ehrenberg. Random signal fluctuations can
reduce random fluctuations in regulated components of chemical
regulatory networks. Phys. Rev. Lett., 84:5447–5450, 2000. doi:
10.1103/PhysRevLett.84.5447.



References 255

[119] J. Paulsson and M. Ehrenberg. Noise in a minimal regulatory network:
Plasmid copy number control. Quarterly Reviews of Biophysics, 34(1):
1–59, Feb. 2001. doi: 10.1017/S0033583501003663.

[120] J. Paulsson and J. Elf. Stochastic modeling of intracellular kinetics. In
Z. Szallasi, J. Stelling, and V. Periwal, editors, System Modeling in Cel-
lular Biology, pages 149–176. The MIT Press, Cambridge, Massachusetts,
2006.

[121] J. Paulsson, O. Berg, and M. Ehrenberg. Stochastic focusing: fluctuation-
enhanced sensitivity of intracellular regulation. Proc. Natl. Acad. Sci.
U.S.A., 97:7148–7153, 2000. doi: 10.1073/pnas.110057697.

[122] J. M. Pedraza and A. van Oudenaarden. Noise propagation in gene
networks. Science, 307(5717):1965–1969, 2005. doi: 10.1126/science.
1109090.

[123] S. Peles, B. Munsky, and M. Khammash. Reduction and solution of
the chemical master equation using time scale separation and finite
state projection. J. Chem. Phys., 125(20):204104, Nov 2006. doi:
10.1063/1.2397685.

[124] J. Puchalka and A. M. Kierzek. Bridging the gap between stochastic
and deterministic regimes in the kinetic simulations of the biochemical
reaction networks. Biophys. J., 86(3):1357–1372, Mar. 2004. doi: 10.
1016/S0006-3495(04)74207-1.

[125] H. Qian. From discrete protein kinetics to continuous Brownian
dynamics: A new perspective. Protein Sci., 11(1):1–5, 2002. doi:
10.1110/ps.18902.

[126] A. Raj and A. van Oudenaarden. Nature, nurture, or chance: Stochastic
gene expression and its consequences. Cell, 135(2):216 – 226, 2008.
ISSN 0092-8674. doi: 10.1016/j.cell.2008.09.050.

[127] C. V. Rao, D. M. Wolf, and A. P. Arkin. Control, exploitation and
tolerance of intracellular noise. Nature, 420(6912):231–237, Nov. 2002.
doi: 10.1038/nature01258.

[128] J. M. Raser and E. K. O’Shea. Noise in gene expression: Origins,
consequences, and control. Science, 309(5743):2010–2013, Sept. 2005.
doi: 10.1126/science.1105891.

[129] A. S. Ribeiro and J. Lloyd-Price. SGN Sim, a stochastic genetic networks
simulator. Bioinformatics, 23(6):777–779, Mar. 2007. doi: 10.1093/
bioinformatics/btm004.



256 References

[130] A. S. Ribeiro, D. A. Charlebois, and J. Lloyd-Price. CellLine, a stochastic
cell lineage simulator. Bioinformatics, 23(24):3409–3411, 2007. doi:
10.1093/bioinformatics/btm491.

[131] A. Rényi. On the theory of order statistics. Acta Mathematica Hungarica,
4(3):191–231, Sept. 1953. doi: 10.1007/BF02127580.

[132] H. E. Samad and M. Khammash. Intrinsic noise rejection in gene
networks by regulation of stability. In First International Symposium
on Control, Communications and Signal Processing, pages 187–190,
Hammamet, Tunisia, 2004. doi: 10.1109/ISCCSP.2004.1296252.

[133] M. Samoilov, S. Plyasunov, and A. P. Arkin. Stochastic amplification
and signaling in enzymatic futile cycles through noise-induced bistability
with oscillations. Proc. Natl. Acad. Sci. U.S.A., 102(7):2310–2315, Feb.
2005. doi: 10.1073/pnas.0406841102.

[134] G. Sanguinetti, A. Ruttor, M. Opper, and C. Archambeau. Switching
regulatory models of cellular stress response. Bioinformatics, 25(10):
1280–1286, 2009. doi: 10.1093/bioinformatics/btp138.

[135] M. Saxton. Anomalous diffusion due to obstacles: A Monte Carlo
study. Biophys. J., 66:394–401, Feb. 1994. doi: 10.1016/S0006-3495(94)
80789-1.

[136] M. Saxton and K. Jacobson. Single-particle tracking: Applications to
membrane dynamics. Annu. Rev. Biophys. Biomol. Struct., 26:373–399,
1997. doi: 10.1146/annurev.biophys.26.1.373.

[137] F. Schlögl. Chemical reaction models for non-equilibrium phase tran-
sitions. Zeitschrift für Physik A Hadrons and Nuclei, 253(2):147–161,
Apr. 1972. doi: 10.1007/BF01379769.

[138] S. Schnell and T. Turner. Reaction kinetics in intracellular environ-
ments with macromolecular crowding: Simulations and rate laws. Prog.
Biophys. Mol. Biol., 85(2-3):235–260, 2004. doi: 10.1016/j.pbiomolbio.
2004.01.012.

[139] M. Scott and B. Ingalls. Using the linear noise approximation to
characterize molecular noise in reaction pathways. In Proceedings of the
AIChE Conference on Foundations of Systems Biology in Engineering
(FOSBE), Santa Barbara, California, Aug. 2005.

[140] M. Scott, B. Ingalls, and M. Kaern. Estimations of intrinsic and extrinsic
noise in models of nonlinear genetic networks. Chaos, 16(2):026107,
June 2006. doi: 10.1063/1.2211787.



References 257

[141] V. Shahrezaei, J. F. Ollivier, and P. S. Swain. Colored extrinsic fluctua-
tions and stochastic gene expression. Mol. Syst. Biol., 4:196, May 2008.
doi: 10.1038/msb.2008.31.

[142] T. Shibata and M. Ueda. Noise generation, amplification and propa-
gation in chemotactic signaling systems of living cells. Biosystems, 93
(1-2):126–132, 2008. doi: 10.1016/j.biosystems.2008.04.003.

[143] K. Singer. Application of the theory of stochastic processes to the
study of irreproducible chemical reactions and nucleation processes.
Journal of the Royal Statistical Society. Series B (Methodological), 15
(1):92–106, 1953. ISSN 0035-9246. URL http://www.jstor.org/
pss/2983726.

[144] R. Steuer. Effects of stochasticity in models of the cell cycle: From
quantized cycle times to noise-induced oscillations. J. Theor. Biol., 228
(3):293–301, June 2004. doi: 10.1016/j.jtbi.2004.01.012.

[145] A. Sveiczer and B. Novák. Regularities and irregularities in the cell cycle
of the fission yeast, Schizosaccharomyces pombe. Acta Microbiologica
et Immunologica Hungarica, 49(2):289–304, May 2002. doi: 10.1556/
AMicr.49.2002.2-3.17.

[146] A. Sveiczer, B. Novák, and J. Mitchison. The size control of fission yeast
revisited. J. Cell Sci., 109(12):2947–2957, 1996. URL http://jcs.
biologists.org/cgi/content/abstract/109/12/2947.

[147] A. Sveiczer, A. Csikasz-Nagy, B. Gyorffy, J. J. Tyson, and B. Novák.
Modeling the fission yeast cell cycle: Quantized cycle times in wee1−−
cdc25Delta mutant cells. Proc. Natl. Acad. Sci. U.S.A., 97(14):7865–
7870, 2000. doi: 10.1073/pnas.97.14.7865.

[148] A. Sveiczer, J. J. Tyson, and B. Novák. A stochastic, molecular model
of the fission yeast cell cycle: Role of the nucleocytoplasmic ratio in
cycle time regulation. Biophys. Chem., 92(1-2):1–15, Sept. 2001. doi:
10.1016/S0301-4622(01)00183-1.

[149] M. Tang. The mean and noise of stochastic gene transcription. J. Theor.
Biol., 253:271–280, 2008. doi: 10.1016/j.jtbi.2008.03.023.

[150] Y. Tao, Y. Jia, and T. G. Dewey. Stochastic fluctuations in gene
expression far from equilibrium: Omega expansion and linear noise
approximation. J. Chem. Phys., 122(12):124108, Mar. 2005. doi: 10.
1063/1.1870874.

http://www.jstor.org/pss/2983726
http://www.jstor.org/pss/2983726
http://jcs.biologists.org/cgi/content/abstract/109/12/2947
http://jcs.biologists.org/cgi/content/abstract/109/12/2947


258 References

[151] M. Thattai and A. van Oudenaarden. Attenuation of noise in ultrasen-
sitive signaling cascades. Biophys. J., 82(6):2943–2950, June 2002. doi:
10.1016/S0006-3495(02)75635-X.

[152] Y. Togashi and K. Kaneko. Switching dynamics in reaction networks
induced by molecular discreteness. Journal of Physics—Condensed
Matter, 19(6):065150, Feb. 2007. doi: 10.1088/0953-8984/19/6/065150.

[153] S. Toulmin. The Uses of Argument. Cambridge University Press,
Cambridge, 1958.

[154] M. Turcotte, J. Garcia-Ojalvo, and G. M. Süel. A genetic timer through
noise-induced stabilization of an unstable state. Proc. Natl. Acad. Sci.
U.S.A., 105(41):15732–15737, 2008. doi: 10.1073/pnas.0806349105.

[155] T. Turner, S. Schnell, and K. Burrage. Stochastic approaches for
modelling in vivo reactions. Comput. Biol. Chem., 28(3):165–178, July
2004. doi: 10.1016/j.compbiolchem.2004.05.001.

[156] J. J. Tyson, A. Csikasz-Nagy, and B. Novák. The dynamics of cell cycle
regulation. BioEssays, 24(12):1095–1109, 2002. doi: 10.1002/bies.10191.

[157] J. J. Tyson, K. C. Chen, and B. Novák. Sniffers, buzzers, toggles
and blinkers: Dynamics of regulatory and signaling pathways in the
cell. Curr. Opin. Cell Biol., 15(2):221–231, Apr. 2003. doi: 10.1016/
S0955-0674(03)00017-6.

[158] M. Ullah and O. Wolkenhauer. Family tree of Markov models in systems
biology. IET Systems Biology, 1(4):247–254, 2007. doi: 10.1049/iet-syb:
20070017.

[159] M. Ullah and O. Wolkenhauer. Investigating the two-moment charac-
terisation of subcellular biochemical networks. J. Theor. Biol., 260(3):
340–352, Oct. 2009. ISSN 0022-5193. doi: 10.1016/j.jtbi.2009.05.022.

[160] T. Ushikubo, W. Inoue, M. Yoda, and M. Sasai. Testing the transition
state theory in stochastic dynamics of a genetic switch. Chem. Phys.
Lett., 430(1-3):139–143, Oct. 2006. doi: 10.1016/j.cplett.2006.08.114.

[161] J. Vera, E. Balsa-Canto, P. Wellstead, J. R. Banga, and O. Wolkenhauer.
Power-law models of signal transduction pathways. Cell Signalling, 19
(7):1531–1541, July 2007. doi: 10.1016/j.cellsig.2007.01.029.

[162] J. M. G. Vilar, H. Y. Kueh, N. Barkai, and S. Leibler. Mechanisms of
noise-resistance in genetic oscillators. Proc. Natl. Acad. Sci. U.S.A., 99
(9):5988–5992, Apr 2002. doi: 10.1073/pnas.092133899.



References 259

[163] E. O. Voit. Computational Analysis of Biochemical Systems : A Practical
Guide for Biochemists and Molecular Biologists. Cambridge University
Press, September 2000. doi: 10.2277/0521785790.

[164] V. Volterra. Fluctuations in the abundance of a species considered
mathematically. Nature, 118:558–560, 1926. doi: 10.1038/119012b0.

[165] D. J. Wilkinson. Stochastic Modelling for Systems Biology. Mathematical
& Computational Biology. Chapman & Hall/CRC, London, Apr. 2006.
ISBN 1584885408.

[166] D. J. Wilkinson. Stochastic modelling for quantitative description of
heterogeneous biological systems. Nat. Rev. Genet., 10(2):122–133, Feb.
2009. ISSN 1471-0056. doi: 10.1038/nrg2509.

[167] V. Wolf, R. Goel, M. Mateescu, and T. Henzinger. Solving the chemical
master equation using sliding windows. BMC Systems Biology, 4(1):42,
2010. ISSN 1752-0509. doi: 10.1186/1752-0509-4-42.

[168] O. Wolkenhauer and J.-H. S. Hofmeyr. An abstract cell model that
describes the self-organization of cell function in living systems. J. Theor.
Biol., 246(3):461–476, June 2007. doi: 10.1016/j.jtbi.2007.01.005.

[169] O. Wolkenhauer, M. Ullah, W. Kolch, and K.-H. Cho. Modeling and
simulation of intracellular dynamics: Choosing an appropriate frame-
work. IEEE Trans. Nanobioscience, 3(3):200–207, Sept. 2004. doi:
10.1109/TNB.2004.833694.

[170] O. Wolkenhauer et al. Systems biologists seek fuller integration of
systems biology approaches in new cancer research programs. Cancer
Res., 70(1):12–13, 2010. doi: 10.1158/0008-5472.CAN-09-2676.

[171] M. R. Wright. Introduction to Chemical Kinetics. Wiley-Interscience,
West Sussex, 2004.

[172] M. Yi, Y. Jia, J. Tang, X. Zhan, L. Yang, and Q. Liu. Theoretical study
of mesoscopic stochastic mechanism and effects of finite size on cell cycle
of fission yeast. Physica A: Statistical Mechanics and its Applications,
387(1):323–334, Jan. 2008. doi: 10.1016/j.physa.2007.07.018.

[173] M. Yoda, T. Ushikubo, W. Inoue, and M. Sasai. Roles of noise in
single and coupled multiple genetic oscillators. J. Chem. Phys., 126(11):
115101, Mar 2007. doi: 10.1063/1.2539037.

[174] J. Zamborszky, C. I. Hong, and A. Csikasz Nagy. Computational analysis
of mammalian cell division gated by a circadian clock: Quantized cell



260 References

cycles and cell size control. J. Biol. Rhythms, 22(6):542–553, 2007. doi:
10.1177/0748730407307225.

[175] S. Zeiser, U. Franz, and V. Liebscher. Autocatalytic genetic networks
modeled by piecewise-deterministic Markov processes. Journal of Math-
ematical Biology, 60(2):207–246, Feb. 2010. ISSN 0303-6812. doi:
10.1007/s00285-009-0264-9.

[176] Y. Zhang, H. Yu, M. Deng, and M. Qian. Nonequilibrium model for
yeast cell cycle. In Computational Intelligence and Bioinformatics, pages
786–791. Springer Berlin, 2006. doi: 10.1007/11816102.



Glossary

The glossary provides brief descriptions of some technical terms used in the
main text. In addition to printed encyclopedias and dictionaries (e.g., the
Cambridge Dictionary of Statistics, 2nd ed, B.S. Everitt, Cambridge University
Press, 2002), the Internet provides a number of resources along those lines.
These include

Wikipedia: http://en.wikipedia.org

PlanetMath: http://planetmath.org

Wolfram MathWorld: http://mathworld.wolfram.com

Springer Encyclopedia of Mathematics: http://eom.springer.de/

Oxford Dictionary of Statistics: http://www.encyclopedia.com

IUPAC: http://goldbook.iupac.org/

2MA equations A closed system of ODEs for the dynamics of the mean and
(co)variance of a continuous-time discrete-state Markov process that
models a biochemical reaction system.

Active site Region of an enzyme surface to which a substrate molecule binds
in order to undergo a catalyzed reaction.

Algebra A branch of mathematics that generalizes arithmetic operations
with numbers to operations with variables, matrices, etc.

Amino acid Class of biochemical compounds from which proteins are com-
posed. Around 20 amino acids are present in proteins.

Analysis A branch of mathematics concerned primarily with limits of func-
tions, sequences, and series.

Analytic function A function possessing derivatives of all orders and agreeing
with its Taylor expansion locally.

Analytical solution A solution to an equation or set of equations that can
be explicitly written in terms of known functions and constants (i.e., in
closed form).
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Apoptosis The death of some of an organism’s cells as part of its natural
growth and development. Also called programmed cell death.

Argument The argument of a function is the element to which a function is
applied; usually the independent variable of the function.

Arrival The occurrence of an event in a counting process.

Association Any process of combination (especially in solution) that depends
on relatively weak chemical bonding.

ATP The principal carrier of chemical energy in cells.

Attractor A region of the space describing the temporal solution of a dynamic
system toward which trajectories nearby converge, that is, are attracted
to. An attractor can be an equilibrium point or a circle. An attracting
region that has no individual equilibrium point or cycle is referred to as
a chaotic or strange attractor.

Autocatalysis Reaction catalyzed by one of its products, creating a positive
feedback (self-amplifying) effect on the reaction rate.

Autoinhibition Mechanism for inhibiting a system’s own activity; e.g., Raf
contains an autoregulatory domain that inhibits its own activity by
binding to its catalytic domain. The autoregulatory domain is relieved
from the catalytic domain by phosphorylation of characteristic residues.

Autonomous A system (of differential equations) is said to be autonomous
if it does not explicitly depend on time.

Avogadro’s number The number of molecules in a mole of a substance,
approximately 6.0225× 1023.

Bifurcation point An instability point in which a single equilibrium condition
is split into two. At a bifurcation point the dynamics of a system change
structurally.

Binding site A specific stretch of sequence (protein, DNA or RNA) to which
another molecule or entity is able to bind and form a chemical bond.

Binomial distribution The discrete probability distribution of the number
of successes in a sequence of independent yes/no experiments, each of
which yields success with a fixed probability.

Bioinformatics The management and analysis of genomic data, most com-
monly using tools and techniques from computer science.



263

Biological activity The potential action that a biological entity has on other
entities. Examples are enzymatic activity and binding activity.

Birth–death process A method for describing the size of a population in
which the population increases or decreases by one unit or remains
constant over short time periods.

Bistability A property of of system (of equations) for which two stable
solutions exist. The existence of multiple stable solutions is known as
multistability.

Black-box model A model that aims to determine the functional relationship
between known system input and output when the specifics of the system
structure are unknown. Black-box models are often built from existing
data using some form of regression analysis.

Borel set Any set in a topological space that can be formed from open sets
(or, equivalently, from closed sets) through the operations of countable
union, countable intersection, and relative complement.

Brownian motion The erratic motion, visible through a microscope, of small
grains suspended in a fluid.

Catalytic site A catalytic site is the region that confers specificity of a
substrate for the binding entity, and where specific reactions take place
in the conversion of the substrate to the product.

Cell biology An academic discipline that studies cells—their physiological
properties, their structure, the organelles they contain, interactions with
their environment, their life cycle, division, and death.

Cell fate decision The process whereby cells assume different, functionally
important and heritable fates without an associated genetic or environ-
mental difference.

Cell differentiation The series of events involved in the development of a
specialized cell having specific structural, functional, and biochemical
properties.

Cell proliferation Process of cell growth and cell division.

Channel Participating entity that allows another participating entity to pass
through it, possibly connecting different compartments.

Chapman–Kolmogorov equation An identity relating the joint probability
distributions of different sets of coordinates on a stochastic process.

Glossary
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Chemical Langevin equation A stochastic differential equation describing
the time evolution of a subset of the degrees of freedom.

Chemical kinetics A branch of physical chemistry concerned with the mech-
anisms and rates of chemical reactions.

Chemical reaction A change in which a substance (or substances) is changed
into one or more new substances.

Chemical species Atoms, molecules, molecular fragments, ions, etc., being
subjected to a chemical process or to a measurement.

Closed form An expression or solution in terms of well-understood quantities.

Coefficient A numerical or constant multiplier of a variable in an algebraic
term.

Coefficient of variation A statistical measure of the dispersion of data points
in a data series around the mean.

Collision theory Theory of chemical reaction proposing that the rate of
product formation is equal to the number of reactant–molecule collisions
multiplied by a factor that corrects for low-energy-level collisions.

Complementary cumulative distribution function The probability for a
realization of the variable to be larger than a given value.

Complex Consisting of interconnected or interwoven parts.

Conditional probability The probability that an event will occur, given that
one or more other events have occurred.

Conformational change Biochemical reaction that does not result in the
modification of covalent bonds of reactants, but rather modifies the
conformation of some reactants, that is, the relative position of their
atoms in space.

Continuous function A function for which the value changes gradually.

Continuous random variable A random variable for which the data can
take infinitely many values.

Continuous-time Markov process A stochastic process that satisfies the
Markov property and takes values from a set called the state space.

Control Target or set-point tracking, making the system sensitive to changes
in the input. See also regulation and homeostasis.
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Conservation Mathematical expression stating that a quantity is conserved
in a system, whatever happens within the boundaries of that system.

Consistency condition The requirement that a mathematical theory be free
from contradiction.

Conversion Biochemical reaction that results in the modification of some
covalent bonds.

Copy number The number of plasmid or other DNA molecules in a cell.

Counting process When events occur in a sequence, the stochastic process
defined by the number of events (for some definition of an event) that
have occurred up to a given time is a counting process.

Covalence The number of electron pairs an atom can share with other atoms.

Covalent modification Alteration in the structure of a macromolecule by
enzymatic means, resulting in a change in the properties of that macro-
molecule; frequently, this type of modification is physiologically relevant.

Covariance The covariance of a pair of random variables is the expectation
of products of their deviations from their respective means.

Cumulative distribution function The probability for a realization of the
variable to be less than a given value.

Cytokine Extracellular signal protein or peptide that acts as a local short-
distance mediator in cell–cell communication. Cytokines are called
lymphokines if produced by lymphocytes, interleukines if produced by
leucocytes, and monokines if produced by monocytes and macrophages.

Cytoplasm Contents of a cell that are contained within its plasma membrane
but, in the case of eukaryotic cells, outside the nucleus.

Damped oscillations An oscillation in which the amplitude decreases over
time.

Degradation The change of a chemical species into a form that is less com-
plex/interesting/useful. The latter qualification depends on the context.
Degradation can be thought of as an increase in entropy.

Deterministic model A model in which future states are fully determined by
the past and present states, frequently built using differential equations.

Differentiation process by which the cell acquires specialized functional
properties.

Glossary
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Differentiable A system (usually a process described by differential equa-
tions) is called differentiable if its phase space has the structure of a
differentiable manifold, and the change of state is described by differen-
tiable functions.

Differential equation A differential equation gives a relation between the
value of some varying quantity and the rate at which that quantity is
changing, and perhaps the rate at which that rate is changing, and so
on. The numerical solution of a differential equation is a table of values
of the varying quantity that to a good approximation satisfy both the
differential equation and some given conditions on the initial values of
this quantity and of its rates of change.

Differential–difference equation Differential in time and difference in states.

Dimer A protein molecule that consists of two subunits (monomers) held
together by some type of bonding; homodimer: the subunits are identical;
heterodimer: the subunits are different.

Dimerization The process by which two molecules of the same chemical
composition form a condensation product or polymer.

Discrete random variable A variable that can assume only a countable
number of values and the sum of the probabilities is one.

Dissipation Wasteful expenditure or consumption.

Dissociation The temporary or reversible process in which a molecule or ion
is broken down into smaller molecules or ions.

DNA replication Process in which a DNA duplex is transformed into two
identical DNA duplexes.

Dynamic system A system that changes with time.

Elementary event A single point of a sample space.

Emergent properties Properties of a system that arise from the interactions
among its components that cannot be deduced from their individual
behavior.

Empirical model A nonmechanistic model that shows good agreement with
existing experimental data and can be used to predict outcomes in
separate but similar data sets.

Ensemble A unit or group of complementary parts that contribute to a
single effect.
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Enzyme Protein that catalyzes a specific chemical reaction.

Equilibrium State in which there is no net change in a system. In a chemical
reaction the equilibrium is defined by the state at which the forward
and reverse rates are equal.

Equilibrium point Point such that the derivatives of a system of differential
equations are zero. An equilibrium point may be stable (then called an
attractor) or unstable (repellor).

Expectation The expected value of a random variable.

Expression Production of a protein that has directly observable conse-
quences.

Extinction The condition of being extinguished; complete depletion/disap-
pearance of a chemical species.

External noise Noise that arises in (the behavior of) a system from interac-
tion with other systems such as cell–cell interaction.

Extrinsic noise See external noise.

Event Something that happens or is regarded as happening; an occurrence,
especially one of some importance; the outcome, issue, or result of
anything.

Fano factor A measure of the dispersion of a probability distribution of a
Fano noise.

Feedback inhibition Regulatory mechanism in metabolic pathways: an en-
zyme further up in the pathway is inhibited by a product further down
in that pathway.

Feedback loop A loop structure in which the output signal y produced by
an element upon receiving an input signal u is also an input signal to the
element generating signal u producing a down-regulation/up-regulation
of signal u.

Feedforward loop A loop structure in which two signals generated by a
system element converge on an element downstream from this origin.
Feedforward control can either speed up a system’s dynamics or desta-
bilize it.

Finite-dimensional A process is called finite-dimensional if its phase space
is finite-dimensional, i.e., if the number of parameters needed to describe
its states is finite.

Glossary
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Fission yeast A species of yeast.

Fixed point See steady state.

Formal system A mathematical framework in which to represent natural
systems.

Function A relation between two sets that describes unique associations
among the elements of the two sets. A function is sometimes called a
mapping or transformation.

Function handle A Matlab object, created inline or from a function, that
can be used as a function.

Gaussian process A stochastic process for which any finite linear combi-
nation of samples will be normally distributed (or, more generally, any
linear functional applied to the sample function will give a normally
distributed result).

Gene A region of genomic sequence, corresponding to a unit of inheritance,
that is associated with regulatory region, transcribed regions and/or
other functional sequence regions.

Gene product The macromolecules, RNA or proteins, that are the result of
gene expression.

Gene expression The process by which the information coded in the genome
is transcribed into RNA. Expressed genes include those for which the
RNA is not translated into proteins.

Gene transcription The process by which genetic information is copied from
DNA to RNA, resulting in a specific protein formation.

Genome The entirety of genetic material (DNA) of a cell or an organism.

Gillespie algorithm Generates a statistically correct trajectory (possible
solution) of a stochastic equation.

Growth factor Extracellular signaling molecule that can stimulate a cell to
grow or proliferate.

G-proteins Small monomeric GTP-binding proteins (e.g., Ras), molecular
switches that modulate the connectivity of a signaling cascade: resting
G-proteins are loaded with GDP and inactive; replacement of GDP with
GTP by exchange factors means activation.

Heterodimer A protein made of paired polypeptides that differ in their amino
acid sequences.
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Heterodimerization An association of two identical molecules linked to-
gether.

Heterogeneity The quality or state of being heterogeneous.

Homeostasis Regulation to maintain the level of a variable. See also regula-
tion.

Homogeneous process A stochastic process is said to be homogeneous in
space if the transition probability between any two state values at two
given times depends only on the difference between those state values.
The process is homogeneous in time if the transition probability between
two given state values at any two times depends only on the difference
between those times.

Identifiability A property that a model must satisfy in order for inference to
be possible. We say that the model is identifiable if it is theoretically
possible to learn the true value of the model’s underlying parameter
after obtaining an infinite number of observations from it.

Independent events Such events that the occurrence of one of them makes
it neither more nor less probable that the other occurs.

Independent increments A stochastic process is said to have independent
increments when its increments during nonoverlapping time intervals
are independent random variables.

Infinitesimal Infinitely small. Infinitesimal quantities are used to define
integrals and derivatives, and are studied in the branch of mathematics
called analysis.

Inhibition Negative modulation of the execution of a process.

in silico A term used in reference to systems created, solved, or simulated
using a computer.

Intermediate state A state through which a system may pass during transi-
tion from an initial state to a final state.

Internal noise Noise that arises (in the behavior of) a system by the very
discrete nature of events (such as chemical reactions) happening inside
the system.

Intrinsic noise See internal noise.

in vitro Experimental procedures taking place in an isolated cell-free extract.
Cells growing in culture, as opposed to an organism.

Glossary
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in vivo In an intact cell or organism.

Ion channel Ion channels are pore-forming proteins that help establish and
control a small voltage gradient across the plasma membrane in living
cells by allowing the flow of ions along their electrochemical gradient.

Irreversible Impossible to reverse or be reversed.

Isoforms Closely homologous proteins (from different genes) that perform
similar or only slightly different functions, e.g., under tissue-specific
control. Two or more RNAs that are produced from the same gene by
different transcription and/or differential RNA splicing are referred to
as isoforms.

Isogenic cells Cells having the same genetic makeup; characterized by iden-
tical genetic composition; being genetically alike.

Isomerization Process of transforming one chemical molecule into another
without changing its composition. The principal reactant and principal
product are isomers of each other.

Jump A process is said to have taken a jump when it has moved discontinu-
ously or has changed by a large amount during a short period.

Jump process A type of stochastic process that has large discrete movements
(jumps), rather than small continuous movements.

Kinase Enzyme that catalyzes the phosphorylation of a protein.

Langevin equation A stochastic differential equation describing the time
evolution of a subset of the degrees of freedom.

Ligand A physical entity (such as a molecule) that binds to a site on a
receptor’s surface by intermolecular forces.

Linear noise approximation Analytic supplement to numerical simulations.
The approximation proceeds in two steps. First, the fluctuations are
separated from the macroscopic trajectory of the system. Second, the
discrete state space is smeared into a continuum. The master equation
so modified is then expanded in inverse powers of the system size.

Linear operator A function between two vector spaces that preserves the
operations of vector addition and scalar multiplication.

Linear system A system is nonlinear if changes in the output are not pro-
portional to changes in the input.
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Linearization Taylor expansion of a dynamical system in the dependent
variable about a specific solution, discarding all but the terms linear in
the dependent variable.

Locus The position of a gene on a chromosome, the DNA of that position;
usually restricted to the main regions of DNA that are expressed.

M-phase The division of the mother cell into two daughter cells, genetically
identical to each other and to their parent cell.

MAP-kinase Mitogen-activated protein kinase that performs a crucial step
in transmitting signals from the plasma membrane to the nucleus.

Markov process A Markov process is a mathematical model for the random
evolution of a memoryless system, that describes the likelihood of a
given future state, at any given point in time, depending only on its
present state, and not on any past states. See also Markov property,
Markov chain.

Markov property A stochastic process is said to have the Markov property, or
to be memoryless, if its future and past are independent and conditional
only on the present state of the system.

Markov chain The term Markov chain is synonymous to a Markov process
with a discrete (finite or countable) state space. Usually, a Markov
chain is defined for a discrete set of times although some authors use
the same terminology where “time” can take continuous values.

Mass action Mathematical model describing the behavior of solutions in
dynamic equilibrium.

Master equation In physics, a master equation is a phenomenological set
of first-order differential equations describing the time evolution of the
probability of a system to occupy each one of a discrete set of states.

Mean The (statistical) mean, or average, of a random quantity is a a value
one expects in most of the observations made on the quantity.

Measure In mathematics, more specifically in measure theory, a measure on
a set is a systematic way to assign to each suitable subset a number,
intuitively interpreted as the size of the subset. In this sense, a measure
is a generalization of the concepts of length, area, volume, etc.

Mechanistic model A model that describes the physical processes that give
rise to observed properties of the system. Variables and parameters
of the system correspond to physical quantities and rates that can be
measured empirically.

Glossary
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Memoryless property A property of an exponential random variable such
that the future is independent of the past i.e., the fact that it has not
happened yet, tells us nothing about how much longer it will take before
it does happen.

Mesoscopic Pertaining to a size regime, intermediate between the micro-
scopic and the macroscopic, that is characteristic of a region where
a large number of particles can interact in a quantum-mechanically
correlated fashion.

Metabolic Control Analysis (MCA) Method for analyzing variation in fluxes
and intermediate concentrations in a metabolic pathway relating to the
effects of the different enzymes that constitute the pathway and exter-
nal parameters. The building blocks of MCA are control coefficients,
elasticity coefficients, and response coefficients.

Metabolism Metabolism is the set of chemical reactions that happen in living
organisms to maintain life. These processes allow organisms to grow
and reproduce, maintain their structures, and respond to their environ-
ments. Metabolism is usually divided into two categories. Catabolism
breaks down organic matter, for example to harvest energy in cellular
respiration. Anabolism uses energy to construct components of cells
such as proteins and nucleic acids.

Metabolite Substance produced by metabolism or by a metabolic process.

Michaelis–Menten kinetics Mathematical model describing enzyme kinetic
reaction in a good approximation.

Mitogen Substance that stimulates cell mitosis.

Mitosis The entire process of cell division including division of the nucleus
and the cytoplasm.

Mixed-type random variable A random variable whose distribution function
has a jump discontinuity at a countable number of points and that
increases continuously at least at one interval of states.

mRNA RNA resulting from the transcription of DNA that is used for protein
synthesis.

Modeling framework Set of assumptions that underlie a mathematical de-
scription.

Molar concentration A measure of the concentration of a solute in a solution,
or of any molecular, ionic, or atomic species in a given volume.



273

Molecular noise Stochastic fluctuations in molecular expression levels origi-
nating from the inherent indeterminism of molecular processes and the
unpredictable variability of the extracellular environment.

Monomer A single subunit of a protein molecule.

Moments The expected value of a positive integral power of a random
variable. The first moment is the mean of the distribution.

Monostable Having only one stable state.

Monte Carlo simulation A widespread method used to obtain observable
quantities that depend on random variables whose probability distri-
butions are known. Monte Carlo methods can be used to introduce
stochasticity into a model but are also used to sample the parameter
space of deterministic models.

Multistable system A dynamical system that supports the existence of two
or more coexisting attractors for some region of parameter space.

Natural system An aspect of the phenomenal world, studied in the natural
sciences.

Negative feedback Feedback that reduces the output of a system, such as
the action of heat on a thermostat to limit the output of a furnace or
the accumulation of toxic waste products by a growing population of
bacteria.

Network A (metabolic/signaling) network is the complete set of metabol-
ic/signaling and physical processes that determine the physiological and
biochemical properties of a cell. As such, these networks comprise the
chemical reactions of metabolism/signaling as well as the regulatory
interactions that guide these reactions.

Noise Randomness, uncertainty, or unpredictability of the behavior of a
system. Noise is either an inherent part of a system (which is referred
to as intrinsic or internal noise) or is an influence of the environment
(which is referred to as extrinsic or external noise).

Nonlinearity Linearity is defined in terms of functions that have the property
f(x+ y) = f(x) + f(y) and f(ax) = af(x). This means that the result
f may not be proportional to the input x or y.

Nontrivial solution A solution of a set of homogeneous linear equations in
which at least one of the variables has a value different from zero.

Glossary
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Nuclear pore Nuclear pores are large protein complexes that cross the inner—
nuclear membrane in eukaryotic cells.

Numerical solution Computationally determined solution to an equation or
system of equations, typically necessary when an analytical solution is
intractable. A numerical solution is an approximation of the closed-form
solution, but it can be calculated to any desired level of precision, given
enough time and computational power.

Observable An entity that can be measured quantitatively.

Open system A system in which there is a continual exchange of material,
energy, and information with the environment.

Orbit The set of points in phase space through which a trajectory passes.

Organization Pattern or configuration of processes.

Oscillation The periodic variation, typically in time, of some measure as
seen, for example, in a swinging pendulum.

Partition (of a set) A collection of nonempty subsets such that every element
belongs to one and only one of the subsets.

Pathway The term pathway refers to a series of chemical reactions occurring
within a cell. Collections of pathways are grouped into the metabolic
network and signaling network.

Peptide A small chain of amino acids linked by peptide bonds.

Phase space Phase space is the collection of possible states of a dynamical
system, i.e., the mathematical space formed by the dependent variables
of a system. An extended phase space is the Cartesian product of the
phase space with the independent variable, which is often time.

Phenomenon A collection of percepts to which relationships are assigned.

Phenotype The observable physical or biochemical characteristics of an
organism, as determined by both genetic makeup and environmental
influences.

Phosphatase Enzyme that removes phosphate groups from a molecule.

Phosphorylation Addition of a phosphate group to a protein molecule. The
resulting conformational change usually activates the protein.
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Poisson distribution A discrete probability distribution that expresses the
probability of a number of events occurring in a fixed period of time if
these events occur with a known average rate and independently of the
time since the last event.

Polymer Large molecule synthesized by linking monomers together.

Pore Pores are made of pore-forming proteins, called porins. Pores allow
small hydrophilic molecules (molecules that can transiently bond with
water) to pass through the membrane of an organelle.

Positive feedback Feedback that results in amplification or growth of the
output signal.

Probability density function A function that describes the relative likeli-
hood for a random variable to occur at a given point in the observation
space.

Probability generating function A power series representation (the gener-
ating function) of the probability distribution of a random variable.

Probability mass function A function that gives the probability that a
discrete random variable is exactly equal to some value.

Probability measure A probability measure is a measure with total measure
one; a probability space is a measure space with a probability measure.
See also Measure.

Probability space A mathematical construct that models a real-world pro-
cess (or experiment) consisting of states that occur randomly. A proba-
bility space is constructed with a specific kind of situation or experiment
in mind.

Product A substance resulting from a chemical reaction. In the context of
mathematical operations, a product is a result of multiplication.

Promoter A promoter is a region of DNA that facilitates the transcription of
a particular gene. Promoters are typically located near the genes they
regulate, on the same strand and upstream.

Propensity Probability per unit time that an elementary reaction in a given
state occurs.

Protein A linear polymer of linked amino acids, referred to as a macromolecule
and major constituent component of the cell.

Glossary
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Protease, proteinase Enzymes that degrade proteins by splitting internal
peptide bonds to produce peptides.

Proteinase inhibitor Small proteins that inhibit various proteinase enzymes.
An example is antitrypsin.

Protein kinase Enzyme that transfers the terminal phosphate group of ATP
to a specific amino acid of a target protein.

Pseudo steady state A condition in which it is convenient to assume a
steady state for portions of a non-steady-state system.

Pumps proteins that actively transport ions and other molecules across
cellular and intracellular membranes. Pumps can work against an
electrochemical gradient.

Quasi steady state State of a system’s component where its rate of change
is negligible in comparison to other system components. Then, its rate
of change is assumed to be approximately zero.

Randomness Lack of any specific pattern, in terms of predictability, in an
observed phenomenon.

Random experiment An experiment, trial, or observation that can be re-
peated numerous times under the same conditions.

Random number A number that occurs in a sequence such that two con-
ditions are met: (1) the values are distributed over a defined interval
or set according to some rule, and (2) it is impossible to predict future
values based on past or present ones.

Random process A description of real or simulated data for which the
behavior is or appears unpredictable.

Random variable Can be thought of as an unknown value that may change
every time it is inspected.

Random vector A finite-dimensional formal vector of random variables.

Rare event Uncommon event.

Rate law An equation that links the reaction rate with concentrations or pres-
sures of reactants and constant parameters (normally rate coefficients
and partial reaction orders).

Reactant A chemical substance that is present at the start of a chemical
reaction.
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Reaction count Number of reactions of a certain type that occur in a specific
time frame.

Reaction network Complete set of chemical reactions with their regulatory
interactions.

Reaction pathway Subset of chemical reactions in a reaction network leading
to a specific product.

Realization The realization of a random variable is the value that is actually
observed (what actually happened).

Receptor Participating entity that binds to a specific physical entity and
initiates the response to that physical entity.

Recurrence relation An equation that recursively defines a sequence: each
term of the sequence is defined as a function of the preceding terms.

Regulation The maintenance of a regular or desirable state, making a system
robust against perturbations. See also homeostasis and control.

Replication The process by which genetic material, a single-cell organism,
or a virus reproduces or makes a copy of itself.

Repressor Protein that binds to a specific region of DNA to prevent tran-
scription of an adjacent gene.

Reversible Of or relating to a process, such as a chemical reaction or a phase
change, in which the system undergoing the process can be returned to
its original state.

Right-tail distribution function See complementary cumulative distribution
function.

Sample point A possible result of an experiment, represented as a point.

Sample space The set of all possible outcomes.

S-phase Short for synthesis phase, a period in the cell cycle during interphase,
between the G1 phase and the G2 phase.

Sample space The set of possible outcomes in a statistical experiment.

Sensitivity analysis A tool used during the model-making process to deter-
mine the quantity of variation in the observable quantities that can be
attributed to variation in each input parameter.

Glossary
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Signal amplification Any process by which a cell converts one kind of signal
or stimulus into another.

Signaling, signal transduction A process by which signals are relayed through
biochemical reactions.

SimBiology A Matlab toolbox that provides an integrated environment for
modeling biological processes, simulating the dynamic behavior of these
processes, and analyzing the model with simulation and experimental
data.

Standard deviation A statistic used as a measure of the dispersion or varia-
tion in a distribution, equal to the square root of the arithmetic mean
of the squares of the deviations from the arithmetic mean.

State space The collection of all possible states of a system.

Stationary increments Increments such that the probability distribution of
any increment during a time interval depends only on the interval length
and not on the time point of measurement; increments with equally
long time intervals are identically distributed.

Steady state A system is said to be in a steady state if the recently observed
behavior will continue in the future. A steady state is usually obtained
by setting all time derivatives to zero, a justifiable assumption for
equilibrated systems.

Stochastic differential equation A differential equation in which one or
more of the terms is a stochastic process, thus resulting in a solution
that is itself a stochastic process.

Stochastic model A model that incorporates random fluctuations in model
parameters or model structure.

Stochastic process The counterpart to a deterministic process (or deter-
ministic system). Instead of dealing with only one possible reality of
how the process might evolve over time (as is the case, for example, for
solutions of an ordinary differential equation), in a stochastic or random
process there is some indeterminacy in its future evolution described by
probability distributions.

Stochastic simulation algorithm Generates a statistically correct trajec-
tory (possible solution) of a stochastic equation.

Stoichiometric coefficient The stoichiometric coefficient represents the de-
gree to which a chemical species participates in a reaction. It corresponds
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to the number of molecules of a reactant that are consumed or produced
with each occurrence of a reaction event.

Stoichiometry Calculation of the quantities of reactants and products in a
chemical reaction.

Subcellular Smaller than an ordinary cell; below cellular level or scope.

Substrate Molecule that is acted upon by an enzyme. The substrate binds
with the enzyme’s active site, and the enzyme catalyzes a chemical
reaction involving the substrate.

System A collection of objects and a relation among these objects.

System theory Theory of the laws that govern the behavior and interaction
of systems.

Taylor expansion A representation of a function as an infinite sum of terms
calculated from the values of its derivatives at a single point.

Thermal equilibrium A state in which all parts of a system are at the same
temperature.

Trajectory The solution of a set of differential equations, synonymous with
the phrase “phase curve”.

Transcription Process through which a DNA sequence is copied to produce
a complementary RNA.

Transcription factor A protein that binds to specific DNA sequences, thereby
controlling the movement (or transcription) of genetic information from
DNA to mRNA. Transcription factors perform this function alone or
with other proteins in a complex, by promoting (as an activator) or
blocking (as a repressor) the recruitment of RNA polymerase (the
enzyme that performs the transcription of genetic information from
DNA to RNA) to specific genes.

Translation Process in which a polypeptide chain is produced from a mes-
senger RNA.

Transition Passage from one form, state, style, or place to another.

Transition probability Conditional probability concerning a discrete Markov
chain giving the probabilities of change from one state to another.

Transition state theory Explains the reaction rates of elementary chemical
reactions. The theory assumes a special type of chemical equilibrium
(quasi equilibrium) between reactants and activated transition state
complexes.
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Uncertainty The lack of certainty. A state of having limited knowledge in
which it is impossible to describe exactly the existing state or future
outcome among more than one possible outcome.

Uniform distribution A family of probability distributions such that for
each member of the family, all intervals of the same length on the
distribution’s support are equally probable.

Variance The expected, or mean, value of the square of the deviation of that
variable from its expected value or mean.

Wiener process A continuous-time stochastic process named in honor of
Norbert Wiener. It is often called Brownian motion.
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