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B.5 A Comparison Between Jumps and Increments . . . . . 583

B.6 Proofs for Chapter 11 . . . . . . . . . . . . . . . . . . . 593

B.6.1 Proof of Theorems 11.11, 11.12, 11.18, 11.19, and

Remark 11.14 . . . . . . . . . . . . . . . . . . . . 593

B.6.2 Proof of Theorem 11.21 . . . . . . . . . . . . . . 597

B.6.3 Proof of Theorem 11.23 . . . . . . . . . . . . . . 600



Contents xv

B.7 Proofs for Chapter 12 . . . . . . . . . . . . . . . . . . . 604

B.8 Proofs for Chapter 13 . . . . . . . . . . . . . . . . . . . 612

B.9 Proofs for Chapter 14 . . . . . . . . . . . . . . . . . . . 614

B.9.1 Proofs for Section 14.1 . . . . . . . . . . . . . . . 614

B.9.2 Proofs for Section 14.2 . . . . . . . . . . . . . . . 619

Bibliography 633

Index 657





Preface

Over the past fifteen years or so, the domain of statistical and econo-

metric methods for high-frequency financial data has been experiencing

an exponential growth, due to the development of new mathematical

methods to analyze these data, the increasing availability of such data,

technological developments that made high-frequency trading strategies

possible, and the correlative need of practitioners to analyze these data.

So, the time seems ripe for a book devoted to this topic.

The purpose of this book is to introduce these recent methods and

present some of the main new tools available to analyze high-frequency

data, taking into account some of the distinguishing properties of finan-

cial data and the constraints they impose on the range of conceivable

econometric methods. Indeed, from a statistical perspective, the analysis

of high-frequency financial data presents a number of specific character-

istics. As in many other time series settings, we are observing what is

assumed to be an underlying continuous-time stochastic process, but on

a grid of discrete times. Discrete observation of a path implies in partic-

ular that we need to make a distinction between the observed discrete

increments and the complete path of the underlying process.

However, although observation times are discrete, the time interval ∆

between successive observations is small, or very small: the high-frequency

asymptotics we consider are all based on limiting results where the time

interval ∆ tends to zero, or equivalently the sampling frequency tends

to infinity. By focusing on asymptotics, we make no real attempt to-

ward an analysis of finite or small samples, although this question is

mentioned occasionally. This is not to say that the analysis of small sam-

ples is unimportant; this is indeed crucial, since in real life the amount

of data available is always finite (even if measured in gigabytes when

ultra-high-frequency data is concerned). However, the properties of the

various estimators or testing procedures in a small sample situation are

always specific to each method, and in most cases can be ascertained

xvii



xviii Preface

only through simulation studies rather than through mathematical anal-

ysis. In a few instances, we discuss small sample refinements such as small

sample bias corrections or Edgeworth expansions. But a useful treatment

of small samples would require hundreds of pages, if at all feasible, hence

our quasi exclusive focus on asymptotic theory.

Next, in this book we consider only inference problems on a finite time

horizon, say [0, T ], unlike the usual time series asymptotics where T goes

to infinity, or mixed asymptotics where both ∆ → 0 and T → ∞. Our

rationale for keeping T fixed is twofold: first, high-frequency asymptotics

make it possible to say much, although not everything, about the un-

derlying process when observed within a finite time interval; second, in

many cases the underlying models we consider fail to have the type of

stationarity or ergodic properties that are crucial for long horizon asymp-

totics, which then requires different tools. One consequence of observing

the price path on a finite horizon is the possibility of being subject to

the peso problem: when jumps have finite activity, there is a positive

probability that the path we observe has no jump on [0, T ], although the

model itself may allow for jumps.

The class of problems we consider has another specific property: not

only is the time horizon finite, but we also observe a single path of the

process; for example a typical question is the estimation of the so-called

integrated volatility, in a model with stochastic volatility: we want the

integrated volatility over, say, a specific day, which is of course different

from the integrated volatility over the next day, and averaging over many

days does not make much sense in that case.

Two final distinguishing characteristics of high-frequency financial

data are important, and call for the development of appropriate econo-

metric methods. First, the time interval separating successive observa-

tions can be random, or at least time varying. Second, the observations

are subject tomarket microstructure noise, especially as the sampling fre-

quency increases. Market microstructure effects can be either information

or non-information-related, such as the presence of a bid-ask spread and

the corresponding bounces, the differences in trade sizes and the cor-

responding differences in representativeness of the prices, the different

informational content of price changes due to informational asymmetries

of traders, the gradual response of prices to a block trade, the strategic

component of the order flow, inventory control effects, the discreteness of

price changes, data errors, etc. The fact that this form of noise interacts

with the sampling frequency raises many new questions, and distinguishes

this from the classical measurement error problem in statistics.
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Before describing in more detail the contents of this book, let us em-

phasize at the onset some of its general features:

• Our hope is that the book can be useful to econometricians, statisti-

cians, mathematicians and high-frequency practitioners alike, start-

ing at the graduate level. We have assumed basic knowledge of

standard probabilistic and statistical principles, but have other-

wise attempted to include the prerequisites that fall outside the

standard graduate level econometric curriculum. This motivates

the existence of the first two parts, which cover the required rele-

vant elements about stochastic processes, convergence, and statis-

tical experiments, plus a brief description of the specific qualitative

features of financial data; a knowledgeable reader can skip these,

although they do establish the notation we employ in the remain-

der of the book. Note that Chapter 5 also contains new material,

to which the subsequent chapters occasionally refer.

• Because many methods developed in papers rely on different sets

of assumptions, we have made a conscious effort to unify our treat-

ment of the available methods by describing them, and their asymp-

totic properties, under a common set of assumptions. As a result,

our proofs will often differ from those in the papers, and the re-

sults themselves are sometimes weaker, but more often stronger,

than what appeared in the original papers.

• Many different problems are presented and, for most of them, many

different methods have been proposed in the literature. However

different these statistical methods may appear, they (almost) al-

ways hinge upon the same basic techniques and basic limit theo-

rems concerning what we call power variations. The mathematical

results about these power variations and some related functionals

are gathered in Appendix A. They are all taken from Jacod and

Protter (2011), and proofs are omitted.

• Apart from Appendix A, we have tried to make this book as self-

contained as possible, as far as its mathematical content is con-

cerned. This includes relying as little as possible on specific proofs

contained in papers, and providing these proofs instead. On the

other hand, writing its proof after each result slows down the ex-

position and tends to obscure the main ideas, at least for a non-

mathematician reader. We have thus chosen to write the main part
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of the text without proofs, except when they are very simple and/or

useful for the understanding of what immediately follows. Further,

many results are not stated as formal theorems. Nevertheless, since

this book is also intended to be a mathematical book, the proofs are

given (some of them are new), and they are gathered in Appendix

B.

• Since every rule has its exceptions, for a few results we do not give

a proof and refer to the appropriate papers. This applies primarily

to the results on microstructure noise and on non-equally spaced

observations: these are topics in full development now, and the

theory is not fully established yet. It also applies in places where

we only sketch a description of several different methods which have

been proposed for some specific problems.

• We have included an implementation on real data of some estima-

tors or testing procedures described.

• We have tried to be as comprehensive as possible. This said, even

under the restrictions imposed by the data (discrete sampling, a

single path) and by our choice of methods (high-frequency asymp-

totics, finite horizon), we cannot pretend to cover all or almost all

recent developments on the topic, let alone an exhaustive compar-

ison between the different methods which have been proposed so

far, while keeping the length of the book manageable. Inevitably,

we did not describe all the available methods, and the – necessarily

subjective – choice we made might be viewed as biased by our own

interests. We apologize in advance to the authors who might feel

that we have not done full justice to their work.

• We have left out some topics altogether, for instance forecasting (of

volatility and other related quantities for example) and methods

for processes driven by fractional Brownian motion or by fractal

processes.

The book is divided into four parts, plus the two appendices A and

B described above. The first two parts are devoted to preliminary ma-

terial: the mathematical notions on stochastic processes and especially

semimartingales which are necessary to proceed further, and a chapter

that explains the specificities of financial data are gathered into Part I,

whereas Part II introduces the asymptotic concepts that the analysis in

this book relies upon.
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Part III deals with estimation of the volatility part of the model, in-

cluding methods that are robust to market microstructure noise. Part IV

is devoted to estimation and testing questions involving the jump part

of the model. The practical importance and relevance of jumps in finan-

cial data is universally recognized, but only recently have econometric

methods become available to rigorously analyze jump processes. The ob-

jective of the methods we will describe here is to decide on the basis of

statistical tests applied to high-frequency data which component(s) need

to be included in the model (jumps, finite or infinite activity, continuous

component, etc.) and determine their relative magnitude. We may then

magnify specific components of the model if they are present, so that we

can analyze their finer characteristics such as the degree of activity of

jumps.

We would like to thank our co-authors of the various papers on which

this book is partly based. Without them, most of the book would not

exist: many thanks to Jianqing Fan, Arnaud Gloter, Tahaki Hayashi, Jia

Li, Yingying Li, Loriano Mancini, Per Mykland, Mark Podolskij, Philip

Protter, Markus Reiss, Mathieu Rosenbaum, Viktor Todorov, Matthias

Vetter, Dacheng Xiu, Nakahiro Yoshida, Jialin Yu and Lan Zhang. We

also thank Yaroslav Yevmenenko-Shul’ts for proofreading parts of the

manuscript, and Peter Van Tassel and Michael Sockin for research assis-

tance.

Last but not least, we warmly thank Sophie and Hadda for their love,

patience and understanding while we wrote this book.

Yacine Aı̈t-Sahalia, Princeton

Jean Jacod, Paris





Notation

General Notation

for reals un > 0 and vn > 0 :

un ∼ vn if un/vn converges to a limit in (0,∞)

un ≍ vn if 1
A ≤ un/vn ≤ A for a constant A ∈ (1,∞)

un = o(vn) if un/vn → 0

un = O(vn) if supn |un|/vn <∞

for random variables Un and Vn > 0 :

Un = oP (Vn) if Un/Vn goes to 0 in probability

Un = OP (Vn) if Un/Vn is bounded in probability

M+
d the set of all d× d symmetric

nonnegative matrices

x∗, A∗ the transpose of a vector or a matrix

∧ the infimum

∨ the supremum

[x] the integer part of a real x

{x} = x− [x], the fractional part of a real x

x+ = x ∨ 0, the positive part of a real x

x− = (−x) ∨ 0, the negative part of a real x

N (0, 1) the standard normal distribution on R

N (b,Σ) the normal distribution on Rd with mean b

and variance-covariance Σ

zα the two-sided α-quantile of N (0, 1)

z′α the one-sided α-quantile of N (0, 1)

xxiii



xxiv Notation

Notation for Convergence

P−→ convergence in probability (for random variables)
a.s.
=⇒ almost sure convergence (for random variables)
L−→ convergence in law (for random variables)

L−s−→ stable convergence in law (for random variables)
P

=⇒ functional convergence in probability (for processes)
L

=⇒ functional convergence in probability (for processes)
L−s
=⇒ functional convergence in probability (for processes)
u.c.p.
=⇒ local uniform convergence in probability (for processes)

Specific Notation

∆n
i X = Xi∆n −X(i−1)∆n

or XS(n,i) −XS(n,i−1),

the ith return of the process X

∆Xt = Xt −Xt−, the jump size of the process X at t

Ct =
∫ t
0 cs ds, the integrated volatility

C(p)t =
∫ t
0 c

p/2
s ds

A(p)t =
∑
s≤t |∆Xs|p

B(f,∆n)t =
∑[t/∆n]−k+1
i=1 f(∆n

i X, · · · ,∆n
i+k−1X)

B(f,∆n, un)t =
∑[t/∆n]−k+1
i=1 f(∆n

i X, · · · ,∆n
i+k−1X)

×∏k−1
j=0 1{‖∆n

i+jX‖≤un}

B(p,∆n)t =
∑[t/∆n]
i=1 |∆n

i X |p
B([p, k],∆n)t =

∑[t/∆n]−k+1
i=1 |∆n

i X + · · ·+∆n
i+k−1X |p

B(p,∆n, un)t =
∑[t/∆n]
i=1 |∆n

i X |p 1{|∆n
i X

n
i |≤un}

B′(f,∆n)t = ∆n

∑[t/∆n]−k+1
i=1 f

(
∆n

i X√
∆n
, · · · , ∆

n
i+k−1X√

∆n

)

B′(f,∆n, un)t = ∆n
∑[t/∆n]−k+1
i=1 f

(
∆n

i X√
∆n
, · · · , ∆

n
i+k−1X√

∆n

)

×∏k−1
j=0 1{‖∆n

i+jX‖≤un}

B(f,∆n)t =
∑[t/k∆n]
i=1 f(∆n

ik−k+1X, · · · ,∆n
ikX)

B
′
(f,∆n)t = ∆n

∑[t/k∆n]
i=1 f

(
∆n

ik−k+1X√
∆n

, · · · , ∆
n
ikX√
∆n

)

Ĉ(∆n)
jl
t =

∑[t/∆n]
i=1 ∆n

i X
j∆n

i X
l

Ĉ(∆n, un)
jl
t =

∑[t/∆n]
i=1 ∆n

i X
j∆n

i X
l 1{‖∆n

i X‖≤un}
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Chapter 1

From Diffusions to

Semimartingales

This chapter is a quick review of the theory of semimartingales, these

processes being those for which statistical methods are considered in this

book.

A process is a collection X = (Xt) of random variables with values

in the Euclidean space Rd for some integer d ≥ 1, and indexed on the

half line R+ = [0,∞), or a subinterval of R+, typically [0, T ] for some

real T > 0. The distinctive feature however is that all these variables

are defined on the same probability space (Ω,F ,P). Therefore, for any

outcome ω ∈ Ω one can consider the path (or “trajectory”), which is the

function t 7→ Xt(ω), and X can also be considered as a single random

variable taking its values in a suitable space of Rd-valued functions on

R+ or on [0, T ].

In many applications, including the modeling of financial data, the

index t can be interpreted as time, and an important feature is the way

the process evolves through time. Typically an observer knows what hap-

pens up to the current time t, that is, (s)he observes the path s 7→ Xs(ω)

for all s ∈ [0, t], and wants to infer what will happen later, after time t.

In a mathematical framework, this amounts to associating the “history”

of the process, usually called the filtration. This is the increasing family

(Ft)t≥0 of σ-fields associated with X in the following way: for each t,

Ft is the σ-field generated by the variables Xs for s ∈ [0, t] (more pre-

cise specifications will be given later). Therefore, of particular interest is

the law of the “future” after time t, that is of the family (Xs : s > t),

conditional on the σ-field Ft.

3
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In a sense, this amounts to specifying the dynamics of the process,

which again is a central question in financial modeling. If the process

were not random, that would consist in specifying a differential equation

governing the time evolution of our quantity of interest, or perhaps a

non-autonomous differential equation where dXt = f(t,Xs : s ≤ t) dt for

a function f depending on time and on the whole “past” of X before t. In

a random setting, this is replaced by a “stochastic differential equation.”

Historically, it took quite a long time to come up with a class of pro-

cesses large enough to account for the needs in applications, and still

amenable to some simple calculus rules. It started with the Brownian

motion, or Wiener process, and then processes with independent and

stationary increments, now called Lévy processes after P. Lévy, who in-

troduced and thoroughly described them. Next, martingales were consid-

ered, mainly by J. L. Doob, whereas K. Itô introduced (after W. Feller

and W. Doeblin) the stochastic differential equations driven by Brownian

motions, and also by Poisson random measures. The class of semimartin-

gales was finalized by P.-A. Meyer in the early 1970s only.

In many respects, this class of processes is the right one to consider by

someone interested in the dynamics of the process in the sense sketched

above. Indeed, this is the largest class with respect to which stochastic

integration is possible if one wants to have something like the dominated

(Lebesgue) convergence theorem. It allows for relatively simple rules for

stochastic calculus. Moreover, in financial mathematics, it also turns out

to be the right class to consider, because a process can model the price

of an asset in a fair market where no arbitrage is possible only if it is a

semimartingale. This certainly is a sufficient motivation for the fact that,

in this book, we only consider this type of process for modeling prices,

including exchange rates or indices, and interest rates.

Now, of course, quite a few books provide extensive coverage of semi-

martingales, stochastic integration and stochastic calculus. Our aim in

this chapter is not to duplicate any part of those books, and in partic-

ular not the proofs therein: the interested reader should consult one of

them to get a complete mathematical picture of the subject, for example,

Karatzas and Shreve (1991) or Revuz and Yor (1994) for continuous pro-

cesses, and Dellacherie and Meyer (1982) or Jacod and Shiryaev (2003)

for general ones. Our aim is simply to introduce semimartingales and

the properties of those which are going to be of constant use in this

book, in as simple a way as possible, starting with the most commonly

known processes, which are the Brownian motion or Wiener process and

the diffusions. We then introduce Lévy processes and Poisson random
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measures, and finally arrive at semimartingales, presented as a relatively

natural extension of Lévy processes.

1.1 Diffusions

1.1.1 The Brownian Motion

The Brownian motion (or Wiener process), formalized by N. Wiener and

P. Lévy, has in fact been used in finance even earlier, by T. N. Thiele and

L. Bachelier, and for modeling the physical motion of a particle by A.

Einstein. It is the simplest continuous-time analogue of a random walk.

Mathematically speaking, the one-dimensional Brownian motion can

be specified as a process W = (Wt)t≥0, which is Gaussian (meaning that

any finite family (Wt1 , . . . ,Wtk) is a Gaussian random vector), centered

(i.e. E(Wt) = 0 for all t), and with the covariance structure

E(WtWs) = t ∧ s (1.1)

where the notation t ∧ s means min(t, s). These properties completely

characterize the law of the process W , by Kolmogorov’s Theorem,

which allows for the definition of a stochastic process through its finite-

dimensional distributions, under conditions known as consistency of the

finite-dimensional distributions. And, using for example the Kolmogorov

continuity criterion (since E(|Wt+s −Ws|4) = 3s2 for all nonnegative t

and s), one can “realize” the Brownian motion on a suitable probability

space (Ω,F ,P) as a process having continuous paths, i.e. t 7→ Wt(ω) is

continuous and with W0(ω) = 0 for all outcomes ω. So we will take the

view that a Brownian motion always starts atW0 = 0 and has continuous

paths.

One of the many fundamental properties of Brownian motion is that

it is a Lévy process, that is it starts from 0 and has independent and

stationary increments: for all s, t ≥ 0 the variable Wt+s−Wt is indepen-

dent of (Wr : r ≤ t), with a law which only depends on s: here, this law

is the normal law N (0, s) (centered with variance s). This immediately

follows from the above definition. However, a converse is also true: any

Lévy process which is centered and continuous is of the form σW for

some constant σ ≥ 0, where W is a Brownian motion.

Now, we need two extensions of the previous notion. The first one is

straightforward: a d-dimensional Brownian motion is an Rd-valued pro-

cess W = (Wt)t≥0 with components W i
t for i = 1, . . . , d (we keep the

same notation W as in the one-dimensional case), such that each com-
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ponent process W i = (W i
t )t≥0 is a one-dimensional Brownian motion,

and all components are independent processes. Equivalently, W is a cen-

tered continuous Gaussian process with W0 = 0, and with the following

covariance structure:

E(W i
t W

j
s ) =

{
t ∧ s if i = j

0 if i 6= j.
(1.2)

A d-dimensional Brownian motion retains the nice property of being a

Lévy process.

The second extension is slightly more subtle, and involves the concept

of a general filtered probability space, denoted by (Ω,F , (Ft)t≥0,P). Here

(Ω,F ,P) is a probability space, equipped with a filtration (Ft)t≥0: this

is an increasing family of sub-σ-fields Ft of F (that is, Ft ⊂ Fs ⊂ F
when t ≤ s ), which is right-continuous (that is Ft = ∩s>tFs ). The

right-continuity condition appears for technical reasons, but is in fact

an essential requirement. Again, Ft can be viewed as the amount of

information available to an observer up to (and including) time t.

We say that a process X is adapted to a filtration (Ft), or (Ft)-
adapted, if each variable Xt is Ft-measurable. The filtration generated

by a process X is the smallest filtration with respect to which X is

adapted. It is denoted as (FX
t ), and can be expressed as follows:

FX
t = ∩s>t σ(Xr : r ∈ [0, s])

(this is right-continuous by construction).

We suppose that the reader is familiar with the notion of a martingale

(a real process M = (Mt)t≥0 is a martingale on the filtered space if it

is adapted, if each variable Mt is integrable and if E(Mt+s | Ft) = Mt

for s, t ≥ 0), and also with the notion of a stopping time: a [0,∞]-valued

random variable τ is a stopping time if it is possible to tell, for any t ≥ 0,

whether the event that τ has occurred before or at time t is true or not,

on the basis of the information contained in Ft; formally, this amounts

to saying that the event {τ ≤ t} belongs to Ft, for all t ≥ 0. Likewise, Fτ
denotes the σ-field of all sets A ∈ F such that A ∩ {τ ≤ t} ∈ Ft for all

t ≥ 0, and it represents the information available up to (and including)

time τ .

A process X is called progressively measurable if for any t the function

(ω, s) 7→ Xs(ω) is Ft ⊗ B([0, t])-measurable on Ω × [0, t]; here, B([0, t])
denotes the Borel σ-field of the interval [0, t], that is the σ-field generated

by the open sets of [0, t]. Then, given a stopping time τ and a progres-

sively measurable process Xt, the variable Xτ 1{τ<∞} is Fτ -measurable;
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moreover one can define the new process Xτ∧t, or X stopped at τ , and

this process is again adapted. We note the following useful property:

if M is a martingale and τ1 and τ2 are two stopping times such that

0 ≤ τ1 ≤ τ2 ≤ T a.s. (almost surely), then E(Mτ2 | Fτ1) =Mτ1.

Coming back to Brownian motion, we say that a d-dimensional pro-

cess W = (W i)1≤i≤d is a Brownian motion on the filtered space

(Ω,F , (Ft)t≥0,P), or an (Ft) -Brownian motion, if it satisfies the fol-

lowing three conditions:

1. It has continuous paths, with W0 = 0.

2. It is adapted to the filtration (Ft).

3. For all s, t ≥ 0 the variableWt+s−Wt is independent of the σ-field

Ft, with centered Gaussian law N (0, sId) (Id is the d × d identity

matrix).

It turns out that a Brownian motion in the previously stated restricted

sense is an (FW
t )-Brownian motion. This property is almost obvious: it

would be obvious if FW
t were σ(Wr : r ∈ [0, t]), and its extension comes

from a so-called 0− 1 law which asserts that, if an event is in FW
s for all

s > t and is also independent of FW
v for all v < t, then its probability

can only equal 0 or 1.

Another characterization of the Brownian motion, particularly well

suited to stochastic calculus, is the Lévy Characterization Theorem.

Namely, a continuous (Ft)-adapted process W with W0 = 0 is an (Ft)-
Brownian motion if and only if it satisfies

the processes W i
t and W i

tW
j
t − δijt are (Ft)−martingales (1.3)

where δij = 1 if i = j and 0 otherwise denotes the Kronecker symbol.

The necessary part is elementary; the sufficient part is more difficult to

prove.

Finally, we mention two well known and important properties of the

paths of a one-dimensional Brownian motion:

• Lévy modulus of continuity: almost all paths satisfy, for any inter-

val I of positive length,

lim sup
r→0

1√
r log(1/r)

sup
s,t∈I,|s−t|≤r

|Wt −Ws| =
√
2. (1.4)
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• Law of iterated logarithm: for each finite stopping time T , almost

all paths satisfy

lim sup
r→0

1√
r log log(1/r)

(WT+r −WT ) =
√
2. (1.5)

By symmetry, the lim inf in the law of iterated logarithm is equal to

−
√
2. Despite the appearances, these two results are not contradictory,

because of the different position of the qualifier “almost all.” These facts

imply that, for any ρ < 1/2, almost all paths are locally Hölder with

index ρ, but nowhere Hölder with index 1/2, and a fortiori nowhere

differentiable.

1.1.2 Stochastic Integrals

A second fundamental concept is stochastic integration. The paths of

a one-dimensional Brownian motion W being continuous but nowhere

differentiable, a priori the “differential” dWt makes no sense, and neither

does the expression
∫ t
0 HsdWs. However, suppose that H is a “simple,”

or piecewise constant, process of the form

Ht =
∑

i≥1

Hti−1 1[ti−1,ti)(t), (1.6)

where 0 = t0 < t1 < · · · and tn → ∞ as n → ∞. Then it is natural to

set ∫ t

0
Hs dWs =

∑

i≥1

Hti−1(Wt∧ti −Wt∧ti−1). (1.7)

This would be the usual integral if t 7→Wt were the distribution function

of a (signed) measure on [0, t], which it is of course not. Nevertheless it

turns out that, due to the martingale properties (1.3) of W , this “inte-

gral” can be extended to all processes H having the following properties:

H is progressively measurable, and not too big,

in the sense that
∫ t
0 H

2
sds <∞ for all t.

(1.8)

The extension is still denoted as
∫ t
0 HsdWs or, more compactly, as

H •Wt. It is called a stochastic integral, which emphasizes the fact that

it is not a Stieltjes (ω-wise) integral. In particular, it is only defined

“up to a null set,” meaning that another variable Y is also a version

of the stochastic integral if and only if we have Y = H • Wt a.s. So

we emphasize that every statement about a stochastic integral variable

H • Xt or process (H • Xt)t≥0 is necessarily true “up to a null set”
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only, although for simplicity we usually omit the qualifier “almost surely”

(exactly as, for the conditional expectation, one simply writes an equality

such as E(Y | G) = Z without explicitly mentioning “a.s.”).

Stochastic integrals enjoy the following properties:

• the process (H •Wt)t≥0 is a continuous (local) martingale

starting at 0

• the process (H •Wt)
2 −

∫ t
0 H

2
s ds is a (local) martingale

• the map H 7→ H •W is linear

• We have a “dominated convergence theorem”: if Hn → H

pointwise and |Hn| ≤ H ′ with H ′ as in (1.8), then

Hn •W u.c.p.
=⇒ H •W.

(1.9)

In this statement, two notions need some explanation. First,
u.c.p.
=⇒ stands

for “local uniform convergence in probability,” that is we write Xn u.c.p.
=⇒

X if for all t we have sups≤t |Xn
s −Xs| P−→ 0 (convergence in probability).

Second, a local martingale is a process M for which there exists an

increasing sequence of stopping times Tn with infinite limit (called a

“localizing sequence”), such that each “stopped” process t 7→Mt∧Tn is a

martingale. In other words, M behaves like a martingale up to suitably

chosen stopping times; martingales are local martingales but the converse

is not true.

Let us also mention that the first statement (1.9) is shorthand for the

more correct “one can find versions of the stochastic integrals H •Wt

such that almost all paths t 7→ H •Wt are continuous and start at 0, and

further (H •Wt)t≥0 is a local martingale.” And, as mentioned before,

the third statement in (1.9) is true “up to null sets.”

More generally, let W be a d-dimensional Brownian motion. Then one

can integrate “componentwise” a d-dimensional process H = (Hi)1≤i≤d
whose components each satisfy (1.8), thus getting the following one-

dimensional process:

H •Wt =

∫ t

0
Hs dWs =

d∑

i=1

∫ t

0
Hi
s dW

i
s .

We still have the properties (1.9), with the norm of Hn instead of the

absolute value in the fourth property. Moreover if H and K are two

integrable processes, the process

(H •Wt)(K •Wt)−
∫ t

0

d∑

i=1

Hi
sK

i
s ds is a local martingale. (1.10)
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Before stating the “change of variable” formula for stochastic integrals,

we give our first (restricted) definition of a semimartingale:

Definition 1.1. A one-dimensional continuous Itô semimartingale (also

called a “generalized diffusion,” or a “Brownian semimartingale” some-

times) is an adapted process X which can be written as

Xt = X0 +

∫ t

0
bs ds+

∫ t

0
σs dWs, (1.11)

where W is a q-dimensional Brownian motion, and σ is a q-dimensional

process, integrable in the above sense (i.e., its components satisfy (1.8)),

and b = (bt)t≥0 is another progressively measurable process such that∫ t
0 |bs|ds <∞ for all t.

A d-dimensional continuous Itô semimartingale is a process whose

each one of the d components is a continuous Itô semimartingale.

If X is as above, one can integrate a process K with respect to it, by

setting

K •Xt =

∫ t

0
Ks dXs =

∫ t

0
Ksbs ds+

∫ t

0
Ksσs dWs

(with an obvious interpretation when X and K are q-dimensional). We

need Kσ to be integrable with respect to W , as in (1.8), and also Kb

to be integrable with respect to the Lebesgue measure on each finite

interval [0, t] (this integral is an “ordinary,” or ω-wise, integral). A precise

description of all processes K which can thus be integrated is somewhat

complicated, but in any case we can integrate all processes K which are

progressively measurable and locally bounded (meaning we have |Ks| ≤ n

for any 0 < s ≤ Tn, where Tn is a sequence of stopping times increasing

to ∞); note that no condition on K0 is implied. In this case, the integral

process K •X is also a continuous Itô semimartingale.

The last process on the right hand side of (1.11) is called the continu-

ous martingale part of X , although it usually is a local martingale only,

and it is denoted as Xc (with components X i,c in the multidimensional

case). We also associate the family of processes, for j, l = 1, . . . , q and q

the dimension of X :

Cjlt =
d∑

i=1

∫ t

0
σjis σ

li
s ds. (1.12)

Another notation for Cjlt is 〈Xj,c, X l,c〉t and it is called the quadratic

variation-covariation process. From this formula, the q2-dimensional pro-
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cess C = (Cjl)1≤j,l≤q takes its values in the cone of all positive semi-

definite symmetric q × q matrices, and is continuous in t and increasing

(in t again) for the strong order in this cone (that is, Ct−Cs is also posi-

tive semi-definite if t ≥ s). Note also the following obvious but important

fact:

If X =W is a Brownian motion, then Xc =W and Cjlt = δjlt.

This definition of the quadratic variation is based upon the definition

(1.11). However, there are two other characterizations. First, one can

rewrite (1.10) as

Xj,cX l,c − Cjl is a local martingale. (1.13)

Conversely, C is the unique (up to null sets) adapted continuous pro-

cess, starting at C0 = 0, with path t 7→ Cjlt having finite variation over

compact intervals, and such that (1.13) holds.

Second, the name “quadratic variation” comes from the following

property: let ((t(n, i) : i ≥ 0) : n ≥ 1) be a sequence of subdivi-

sions on R+ with meshes going to 0. This means that for each n we

have t(n, 0) = 0 < t(n, 1) < · · · and t(n, i) → ∞ as i → ∞, and also

supi≥1(t(n, i)− t(n, i− 1)) → 0 as n→ ∞. Then we have

∑

i≥1:t(n,i)≤t

(
Xj
t(n,i) −Xj

t(n,i−1)

)(
X l
t(n,i) −X l

t(n,i−1)

)
P−→ Cjlt . (1.14)

Historically this is the way the quadratic variation has been introduced,

indeed as a tool for defining stochastic integrals. We will give below

a (simple) proof of this property, deduced from Itô’s formula, and for

general semimartingales. The reason for giving the proof is that from an

applied viewpoint (and especially for financial applications) (1.14) is an

important property in high-frequency statistics: the left hand side, say

when j = l = 1, is the so-called realized quadratic variation, or realized

volatility, of the component X1, along the observation times t(n, i) for

i ≥ 0, whereas the process C11 is what is called “integrated (squared)

volatility.”

We are now ready to state the change of variable formula, more com-

monly called Itô’s formula: for any C2 real-valued function f on Rd

(twice continuously differentiable) and any d-dimensional continuous Itô

semimartingale X = (Xj)1≤j≤d, the process Y = f(X) is also a con-

tinuous Itô semimartingale; moreover, if f ′
i and f

′′
ij denote the first and
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second partial derivatives of f , we have

f(Xt) = f(X0) +
d∑

i=1

∫ t

0
f ′
i(Xs) dX

i
s (1.15)

+
1

2

d∑

i,j=1

∫ t

0
f ′′
ij(Xs) d〈X i,c, Xj,c〉s .

Note that the processes f ′
i(Xs) and f

′′
ij(Xs) are continuous, hence locally

bounded, and adapted; so the first integrals in the right hand side above

are stochastic integrals with respect to the Itô semimartingales X i, and

the second integrals are ordinary (Stieltjes) integrals with respect to the

functions t 7→ Cijt = 〈X i,c, Xj,c〉t, which are absolutely continuous by

(1.12).

When Xc = 0, that is, when the functions t 7→ X i
t are absolutely

continuous, the last sum in (1.15) vanishes, and the formula reduces to

the usual change of variable formula (then of course f being C1 would be

sufficient). The fact that in general this additional last term is present is

one of the key observations made by K. Itô.

1.1.3 A Central Example: Diffusion Processes

As the other name “generalized diffusion processes” for continuous Itô

semimartingales suggests, the main examples of such processes are diffu-

sions processes. Historically speaking, they were the first relatively gen-

eral semimartingales to be considered, and they play a central role in

modeling, in the physical sciences and in finance, although in many cases

they can be far from sufficient to account for all encountered empirical

features of the processes being measured.

Going from general to particular, one can characterize diffusions as

those continuous Itô semimartingales which are Markov processes. These

may be homogeneous or not, and for simplicity we only consider the ho-

mogeneous case below, since they are by far the most common ones. More

specifically, following for example Çinlar and Jacod (1981), if a continu-

ous d-dimensional Itô semimartingale of the form (1.11) is a homogeneous

Markov process, then the two random “infinitesimal coefficients” bt and

σt take the form

bt = b(Xt), σt = σ(Xt),

where b = (bi)1≤d and σ = (σij)1≤i≤d,1≤j≤q are functions on Rd. That
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is,

Xt = X0 +

∫ t

0
b(Xs) ds+

∫ t

0
σ(Xs) dW

j
s (1.16)

or, componentwise,

X i
t = X i

0 +

∫ t

0
bi(Xs) ds+

q∑

j=1

∫ t

0
σij(Xs) dW

j
s , ∀i = 1, . . . , d.

Now, the law of a Markov processes is also characterized by the law of

its initial value X0 and its transition semi-group (Pt)t≥0 (defined as the

operator which returns Ptf(x) = E(f(Xt) |X0 = x) when applied to any

Borel bounded test function f, and x ∈ Rd), and in turn the semi-group

is characterized by its infinitesimal generator (in general an unbounded

operator defined on a suitable domain). Whereas there is no hope in

general to have an explicit expression for the semi-group, one can easily

compute the infinitesimal generator, at least when the test function is C2.

Namely, with the notation c(x) = σ(x)σ(x)∗ (where σ∗ is the transpose

of σ), we observe that, by virtue of (1.12), 〈X i,c, Xj,c〉t = Cijt =
∫ t
0 c

ij
s ds.

Then Itô’s formula (1.15) implies that

Mf
t = f(Xt)− f(X0)−

d∑

i=1

∫ t

0
b(Xs)

if ′
i(Xs) ds

− 1

2

d∑

i,j=1

∫ t

0
c(Xs)

ijf ′′
ij(Xs) ds

is a local martingale. With the notation

Af(x) =
d∑

i=1

b(x)if ′
i(x) +

1

2

d∑

i,j=1

c(x)ijf ′′
ij(x), (1.17)

we then have Mf
t = f(Xt) − f(X0) −

∫ t
0 Af(Xs)ds. If further f has

compact support, say, and if the coefficients b and σ are locally bounded,

then Af is bounded. Hence Mf is a martingale and not only a local

martingale, and by taking the expectation and using Fubini’s Theorem

we obtain

Ptf(x) = f(x) +

∫ t

0
PsAf(x)ds.

In other words, f belongs to the domain of the infinitesimal generator,

which is Af (as defined above) for such a function.

Of course, this does not fully specify the infinitesimal generator: for

this we should exhibit its full domain and say how it acts on functions
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which are in the domain but are not C2 with compact support (and

the domain always contains plenty of such functions). But in the “good”

cases, the complete infinitesimal generator is simply the closure of the

operator A acting on C2 functions with compact support as in (1.17).

Now, diffusions can also be viewed, and historically have been intro-

duced, as solutions of stochastic differential equation, or SDE in short.

Coming back to (1.16), a convenient way of writing it is in “differential

form,” as follows, and with the convention Y = X0:

dXt = b(Xt)dt+ σ(Xt)dWt, X0 = Y (1.18)

despite the fact that the differential dWt is a priori meaningless. Now, we

can consider (1.18) as an equation. The “solution” will be a d-dimensional

process X , whereas W is a q-dimensional Brownian motion, and the

following ingredients are given: the initial condition Y (an Rd-valued

random vector, most often a constant Y = x ∈ Rd) and the coefficients

b and σ which are Borel functions on Rd, with the suitable dimensions

(they are respectively called the drift and diffusion coefficients).

The word “solution” for an SDE like (1.18) may have several dif-

ferent meanings. Here we consider the simplest notion, sometimes called

solution-process or strong solution. Namely, we are given a q-dimensional

(Ft)-Brownian motionW and a d-dimensional F0-measurable variable Y

on some filtered probability space (Ω,F , (Ft)t≥0,P), and a solution is a

continuous adapted processX which satisfies (1.18), which is a shorthand

way of writing (1.16) with X0 = Y .

In particular, the integrals on the right side of (1.16) should make

sense: so the functions b and σ should be measurable and not “too big”;

more important, the process σ(Xt) should be progressively measurable,

so (unless of course σ is constant) we need X itself to be progressively

measurable, and since it is continuous in time this is the same as say-

ing that it is adapted. Finally, it follows in particular that X0 is F0-

measurable, which is the reason why we impose the F0-measurability to

the initial condition Y .

Of course, as ordinary differential equations, not all SDEs have a so-

lution. Let us simply mention that, if the two functions b and σ are

locally Lipschitz and with at most linear growth on Rd, then (1.18) has

a solution, and furthermore this solution is unique: the uniqueness here

means that any two solutions X and X ′ satisfy Xt = X ′
t a.s. for all t,

which is the best one can hope since in any case stochastic integrals are

defined only up to null sets. An interesting feature is that, under the
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previous assumptions on b and σ, existence and uniqueness hold for all

initial conditions Y .

These Lipschitz and growth conditions are by far not the only avail-

able conditions implying existence and/or uniqueness. In fact, existence

and/or uniqueness is somehow related to the fact that the operator A de-

fined by (1.17) for C2 functions f with compact support can be extended

as a bona fide infinitesimal generator.

Example 1.2. The following one-dimensional example (d = q = 1):

dXt = κ(ν −Xt)dt+ η
√
XtdWt, X0 = Y (1.19)

where κ, η ∈ R and ν ∈ R+ are given constants, is known as Feller’s

equation or in finance the Cox-Ingersoll-Ross (CIR) model, and it shows

some of the problems that can occur. It does not fit the previous setting,

for two reasons: first, because of the square root, we need Xt ≥ 0; so the

natural state space of our process is not R, but R+. Second, the diffusion

coefficient σ(x) = η
√
x is not locally Lipschitz on [0,∞).

Let us thus provide some comments:

1. In the general setting of (1.18), the fact that the state space is not

Rd but a domainD ⊂ Rd is not a problem for the formulation of the

equation: the coefficients b and σ are simply functions on D instead

of being functions on Rd, and the solution X should be a D-valued

process, provided of course that the initial condition Y is also D-

valued. Problems arise when one tries to solve the equation. Even

with Lipschitz coefficients, there is no guarantee that X will not

reach the boundary of D, and here anything can happen, like the

drift or the Brownian motion forcing X to leave D. So one should

either make sure that X cannot reach the boundary, or specify

what happens if it does (such as, how the process behaves along

the boundary, or how it is reflected back inside the domain D).

2. Coming back to the CIR model (1.19), and assuming Y > 0, one

can show that with the state spaceD = (0,∞) (on which the coeffi-

cients are locally Lipschitz), then the solution X will never reach 0

if and only if 2κν > η2. Otherwise, it reaches 0 and uniqueness fails,

unless we specify that the process reflects instantaneously when it

reaches 0, and of course we need κ > 0.

All these problems are often difficult to resolve, and sometimes require

ad hoc or model-specific arguments. In this book, when we have a dif-

fusion we suppose in fact that it is well defined, and that those difficult
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problems have been solved beforehand. Let us simply mention that the

literature on this topic is huge, see for example Revuz and Yor (1994)

and Karatzas and Shreve (1991).

1.2 Lévy Processes

As already said, a Lévy process is an Rd-valued process starting at 0 and

having stationary and independent increments. More generally:

Definition 1.3. A filtered probability space (Ω,F , (Ft)t≥0,P) being

given, a Lévy process relative to the filtration (Ft), or an (Ft)-Lévy
process, is an Rd-valued process X satisfying the following three condi-

tions:

1. Its paths are right-continuous with left limit everywhere (we say, a

càdlàg process, from the French acronym “continu à droite, limité

à gauche”), with X0 = 0.

2. It is adapted to the filtration (Ft).

3. For all s, t ≥ 0 the variable Xt+s−Xt is independent of the σ-field

Ft, and its law only depends on s.

These are the same as the conditions defining an (Ft)-Brownian mo-

tion, except that the paths are càdlàg instead of continuous, and the laws

of the increments are not necessarily Gaussian. In particular, we asso-

ciate with X its jump process, defined (for any càdlàg process, for that

matter) as

∆Xt = Xt −Xt− (1.20)

where Xt− is the left limit at time t, and by convention ∆X0 = 0.

Regarding the nature of the sample paths of a Lévy process, note that

the càdlàg property is important to give meaning to the concept of a

“jump” defined in (1.20) where we need as a prerequisite left and right

limits at each t. When a jump occurs at time t, being right-continuous

means that the value after the jump, Xt+, is Xt. In finance, it means

that by the time a jump has occurred, the price has already moved to

Xt = Xt+ and it is no longer possible to trade at the pre-jump value

Xt−.

Although the process can have infinitely many jumps on a finite inter-

val [0, T ], the càdlàg property limits the total number of jumps to be at

most countable. It also limits the number of jumps larger than any fixed
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value ε > 0 on any interval [0, t] to be at most finite. Further, the paths

of a Lévy process are stochastically continuous, meaning that Xs
P−→ Xt

(convergence in probability) for all t > 0, and as s → t (here, t is non-

random). This condition does not make the paths of X continuous, but it

excludes jumps at fixed times. All it says is that at any given non-random

time t, the probability of seeing a jump at this time is 0.

1.2.1 The Law of a Lévy Process

One can look at Lévy processes per se without consideration for the con-

nection with other processes defined on the probability space or with the

underlying filtration. We then take the viewpoint of the law, or equiva-

lently the family of all finite-dimensional distributions, that is the laws

of any n-tuple (Xt1 , . . . , Xtn), where 0 ≤ t1 < · · · < tn.

Because of the three properties defining X above, the law of

(Xt1 , . . . , Xtn) is the same as the law of (Y1, Y1 + Y2, . . . , Y1 + · · ·+ Yn),

where the Yj ’s are independent variables having the same laws as

Xtj−tj−1 . Therefore the law of the whole process X is completely de-

termined, once the one-dimensional laws Gt = L(Xt) are known.

Moreover, Gt+s is equal to the convolution product Gt ∗ Gs for all

s, t ≥ 0, so the laws Gt have the very special property of being infinitely

divisible: the name comes from the fact that, for any integer n ≥ 1,

we can write Xt =
∑n
j=1 Yj as a sum of n i.i.d. random variables Yj

whose distribution is that of Xt/n; equivalently, for any n ≥ 1, the law

Gt is the n-fold convolution power of some probability measure, namely

Gt/n here. This property places a restriction on the possible laws Gt,

and is called infinite divisibility. Examples include the Gaussian, gamma,

stable and Poisson distributions. For instance, in the Gaussian case, any

Xt ∼ N (m, v) can be written as the sum of n i.i.d. random variables

Yj ∼ N (m/n, v/n).

Infinite divisibility implies that the characteristic function Ĝt(u) =

E
(
eiu

∗Xt

)
=
∫
ei u

∗xGt(dx) (where u ∈ Rd and u∗x is the scalar product)

does not vanish and there exists a function Ψ : Rd → R, called the

characteristic exponent of X , such that the characteristic function takes

the form

Ĝt(u) = exp (tΨ(u)) , u ∈ Rd, t > 0. (1.21)

Indeed we have Ĝt+s(u) = Ĝt(u)Ĝs(u) and Ĝt(u) is càdlàg in t, which

imply that the logarithm of Ĝt(u) is linear, as a function of t; of course

these are complex numbers, so some care must be taken to justify the

statement.
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In fact it implies much more, namely that Ψ(u) has a specific form

given by the Lévy-Khintchine formula, which we write here for the vari-

able X1:

Ĝ1(u) = exp
(
u∗b− 1

2
u∗cu+

∫ (
ei u

∗x−1−iu∗x1{‖x‖≤1}
)
F (dx)

)
. (1.22)

In this formula, the three ingredients (b, c, F ) are as follows:

• b = (bi)i≤d ∈ Rd,

• c = (cij)i,j≤d is a symmetric nonnegative matrix,

• F is a positive measure on Rd

with F ({0}) = 0 and
∫
(‖x‖2 ∧ 1)F (dx) <∞.

(1.23)

and u∗cu =
∑d
i,j=1 uicijuj. The integrability requirement on F in

(1.23) is really two different constraints written in one: it requires∫
‖x‖≤1 ‖x‖2F (dx) < ∞, which limits the rate at which F can diverge

near 0, and
∫
‖x‖≥1 F (dx) <∞. These two requirements are exactly what

is needed for the integral in (1.22) to be absolutely convergent, because

ei u
∗x − 1− iu∗x1{‖x‖≤1} ∼ (u∗x)2 as x→ 0, and ei u

∗x − 1 is bounded.

We have written (1.2) at time t = 1, but because of (1.21), we also

have it at any time t. A priori, one might think that the triple (bt, ct, Ft)

associated with Gt would depend on t in a rather arbitrary way, but this

is not so. We have, for any t ≥ 0, and with the same (b, c, F ) as in (1.22),

• Ĝt(u) = etΨ(u),

• Ψ(u) = u∗b− 1
2u

∗cu+
∫ (

ei u
∗x − 1− iu∗x1{‖x‖≤1}

)
F (dx),

(1.24)

and Ψ(u) is called the characteristic exponent of the Lévy process.

In other words, the law of X is completely characterized by the triple

(b, c, F ), subject to (1.23), thus earning it the name characteristic triple

of the Lévy process X . And we do have a converse: if (b, c, F ) satisfies the

conditions (1.23), then it is the characteristic triple of a Lévy process.

The measure F is called the Lévy measure of the process, c is called the

diffusion coefficient (for reasons which will be apparent later), and b is

the drift (a slightly misleading terminology, as we will see later again).

In Section 1.2.5 below, we will see that the different elements on the

right-hand side of (1.22) correspond to specific elements of the canonical

decomposition of a Lévy process in terms of drift, volatility, small jumps

and big jumps.

We end this subsection by pointing out some moment properties of
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Lévy processes. First, for any reals p > 0 and t > 0 we have

E(‖Xt‖p) <∞ ⇔
∫

{‖x‖>1}
‖x‖p F (dx) <∞. (1.25)

In particular the pth moments are either finite for all t or infinite for all

t > 0, and they are all finite when F has compact support, a property

which is equivalent to saying that the jumps of X are bounded, as we

will see later.

Second, cumulants and hence moments of the distribution of Xt of

integer order p can be computed explicitly using (1.24) by differentiation

of the characteristic exponent and characteristic function. For example,

in the one-dimensional case and when E(|Xt|n) < ∞, the nth cumulant

and nth moment of Xt are

κn,t =
1

in
∂n

∂un
(tΨ(u))|u=0 = tκn,1,

ϕn,t =
1

in
∂n

∂un

(
etΨ(u)

)
)|u=0.

The first four cumulants, in terms of the moments and of the centered

moments µn,t = E((Xt − φ1,t)
n), are

κ1,t = ϕ1,t = E(Xt),

κ2,t = µ2,t = ϕ2,t − ϕ2
1,t = Var(Xt),

κ3,t = µ3,t = ϕ3,t − 3ϕ2,tϕ1,t + 2ϕ3
1,t,

κ4,t = µ4,t − 3µ2
2,t.

In terms of the characteristics (b, c, F ) of X , we have

κ1,t = t
(
b+

∫
|x|≥1 xF (dx)

)
,

κ2,t = t
(
c+

∫
x2 F (dx)

)
,

κp,t = t
∫
xp F (dx) for all integers p ≥ 3.

All infinitely divisible distributions with a non-vanishing Lévy measure

are leptokurtic, that is κ4 > 0. The skewness and excess kurtosis of Xt,

when the third and fourth moments are finite, are

skew(Xt) =
κ3,t

κ
3/2
2,t

=
skew(X1)

t1/2

kurt(Xt) =
κ4,t
κ22,t

=
kurt(X1)

t

which both increase as t decreases.
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1.2.2 Examples

The Brownian motion W is a Lévy process, with characteristic triple

(0, Id, 0). Another (trivial) example is the pure drift Xt = bt for a vector

b ∈ Rd, with the characteristic triple (b, 0, 0). Then Xt = bt+σWt is also

a Lévy process, with characteristic triple (b, c, 0), where c = σσ∗. Those

are the only continuous Lévy processes – all others have jumps – and

below we give some examples, starting with the simplest one. Note that

the sum of two independent d-dimensional Lévy processes with triples

(b, c, F ) and (b′, c′, F ′) is also a Lévy process with triple (b′′, c+c′, F+F ′)

for a suitable number b′′, so those examples can be combined to derive

further ones.

Example 1.4 (Poisson process). A counting process is an N-valued

process whose paths have the form

Nt =
∑

n≥1

1{Tn≤t}, (1.26)

where Tn is a strictly increasing sequence of positive times with limit +∞.

The usual interpretation is that the Tn’s are the successive arrival times

of some kind of “events,” and Nt is the number of such events occurring

within the interval [0, t]. The paths of N are piecewise constant, and

increase (or jump) by 1. They are càdlàg by construction.

A Poisson process is a counting process such that the inter-arrival

times Sn = Tn−Tn−1 (with the convention T0 = 0) are an i.i.d. sequence

of variables having an exponential distribution with intensity parameter

λ. Using the memoryless property of the exponential distribution, it is

easy to check that a Poisson process is a Lévy process, and Nt has a Pois-

son distribution with parameter λt, that is, P (Nt = n) = exp(−λt) (λt)
n

n!

for n ∈ N. The converse is also easy: any Lévy process which is also a

counting process is a Poisson process.

In particular, E(Nt) = λt so λ represents the expected events arrival

rate per unit of time, and also Var(Nt) = λt. The characteristic function

of the Poisson random variable Nt is

Ĝt(u) = exp
(
tλ
(
eiu − 1

))
, (1.27)

and the characteristic triple of N is (λ, 0, λε1), where εa stands for the

Dirac mass sitting at a; note that (1.27) matches the general formula

(1.24). When λ = 1 it is called the standard Poisson process.

Another property is important. Assume that N is an (Ft)-Poisson
process on the filtered space (Ω,F , (Ft)t≥0,P); by this, we mean a Poisson
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process which is also an (Ft)-Lévy process. Because of the independence

of Nt+s −Nt from Ft, we have E(Nt+s −Nt | Ft) = λs. In other words,

Nt − λt is an (Ft)-martingale. (1.28)

This is the analogue of the property (1.3) of the Brownian motion. And,

exactly as for the Lévy characterization of the Brownian motion, we have

the following: if N is a counting process satisfying (1.28), then it is an

(Ft)-Poisson process. This is called the Watanabe characterization of

the Poisson process.

Nt − λt is called a compensated Poisson process. Note that the

compensated Poisson process is no longer N-valued. The first two mo-

ments of (Nt − λt) /λ1/2 are the same as those of Brownian motion:

E
(
(Nt − λt) /λ1/2

)
= 0 and Var

(
(Nt − λt) /λ1/2

)
= t. In fact, we have

convergence in distribution of (Nt − λt) /λ1/2 to Brownian motion as

λ→ ∞.

Finally, if Nt and N
′
t are two independent Poisson processes of inten-

sities λ and λ′, then Nt +N ′
t is a Poisson process of intensity λ+ λ′.

Example 1.5 (Compound Poisson process). A compound Poisson

process is a process of the form

Xt =
∑

n≥1

Yn 1{Tn≤t}, (1.29)

where the Tn’s are like in the Poisson case (i.e., the process N associated

by (1.26) is Poisson with some parameter λ > 0) and the two sequences

(Tn) and (Yn) are independent, and the variables (Yn) are i.i.d. with

values in Rd\{0}, with a law denoted by G. The Tn’s represent the jump

times and the Yn’s the jump sizes.

On the set {Nt = n}, the variable Xt is the sum of n i.i.d. jumps Yn’s

with distribution F , so

E
(
eiu

∗Xt

∣∣∣Nt = n
)
= E

[
eiu

∗(Y1+...+Yn)
]
= E

[
eiu

∗Y1

]n
= Ĝ(u)n

where Ĝ(u) =
∫

Rd eiu
∗xG(dx) is the characteristic function of Y1. There-

fore the characteristic function of Xt is

E
(
eiu

∗Xt

)
=
∑∞

n=0
E
(
eiu

∗Xt

∣∣∣Nt = n
)

P (Nt = n)

= e−tλ
∑∞

n=0

(
λĜ(u)t

)n

n!
= e−λt(1−Ĝ(u))

= exp

(
tλ

∫ (
eiu

∗x − 1
)
G(dx)

)
.



22 Chapter 1

Again, proving that a compound Poisson process is Lévy is a (rel-

atively) easy task, and the above formula shows that its characteristic

triple is (b, 0, λG), where b = λ
∫
{|x‖≤1} xG(dx). The converse is also

true, although more difficult to prove: any Lévy process whose paths are

piecewise constant, that is, have the form (1.29), is a compound Poisson

process.

Example 1.6 (Symmetrical stable process). A symmetrical stable

process is by definition a one-dimensional Lévy process such that X and

−X have the same law, and which has the following scaling (or self-

similarity) property, for some index β > 0:

for all t > 0, the variables Xt and t
1/βX1 have the same law. (1.30)

By virtue of the properties of Lévy processes, this implies that for any

a > 0, the two processes (Xat)t≥0 and (a1/βXt)t≥0 have the same (global)

law.

By (1.24), the log-characteristic function of Xt satisfies Ψ(u) = Ψ(−u)
because of the symmetry, so (1.30) immediately yields Ψ(u) = −φ|u|β
for some constant φ. The fact that ψ is the logarithm of a characteristic

function has two consequences, namely that φ ≥ 0 and that β ∈ (0, 2],

and φ = 0 will be excluded because it corresponds to having Xt = 0

identically. Now, we have two possibilities:

1. β = 2, in which case X =
√
2φW , with W a Brownian motion.

2. β ∈ (0, 2), and most usually the name “stable” is associated with

this situation. The number β is then called the index, or stability

index, of the stable process. In this case the characteristic triple of

X is (0, 0, F ), where

F (dx) =
aβ

|x|1+β dx (1.31)

for some a > 0, which is connected with the constant φ by

φ =





a π if β = 1
2aβ sin( (1−β)π

2 )
(1−β)Γ(2−β) if β 6= 1

(Γ is the Euler gamma function). The requirement in (1.23) that

F integrates the function 1 ∧ x2 is exactly the property 0 < β < 2.

The case β = 1 corresponds to the Cauchy process, for which the

density of the variable Xt is explicitly known and of the form x 7→
1/
(
taπ2(1 + (x/taπ)2)

)
.
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Note that the value of β controls the rate at which F diverges near 0:

the higher the value of β, the faster F diverges, and, as we will see later,

the higher the concentration of small jumps of the process. But the same

parameter also controls the tails of F near ∞. In the case of a stable

process, these two behaviors of F are linked. Of course, this is the price

to pay for the scaling property (1.30).

Finally, we note that these processes are stable under addition: if

X(1), ..., X(n) are n independent copies of X, then there exist numbers

an > 0 such that X
(1)
t + · · ·+X

(n)
t

d
= anXt.

Example 1.7 (General stable process). As said before, we exclude

the case of the Brownian motion here. The terminology in the non-

symmetrical case is not completely well established. For us, a stable pro-

cess will be a Lévy process X having the characteristic triple (b, 0, F ),

where b ∈ R and F is a measure of the same type as (1.31), but not

necessarily symmetrical about 0:

F (dx) =

(
a(+)β

|x|1+β 1{x>0} +
a(−)β

|x|1+β 1{x<0}

)
dx, (1.32)

where a(+), a(−) ≥ 0 and a(+) + a(−) > 0, and β ∈ (0, 2) is again called

the index of the process. This includes the symmetrical stable processes

(take b = 0 and a(+) = a(−) = a).

The scaling property (1.30) is lost here, unless either β = 1 and b ∈ R

and a(+) = a(−), or β 6= 1 and b = β(a(+)−a(−))
1−β . The variables Xt for

t > 0 have a density, unfortunately almost never explicitly known, but one

knows exactly the behavior of this density at infinity, and also at 0, as

well as the explicit (but complicated) form of the characteristic function;

see for example the comprehensive monograph of Zolotarev (1986). Note

also that, by a simple application of (1.25), we have for all t > 0

p < β ⇒ E(|Xt|p) <∞, p ≥ β ⇒ E(|Xt|p) = ∞.

Finally, let us mention that the density of the variable Xt is positive

on R when β ≥ 1, and also when β < 1 and a(+), a(−) > 0. When

β < 1 and a(−) = 0 < a(+), (resp. a(+) = 0 < a(−)), the density of

Xt is positive on (b′t,∞), resp. (−∞, b′t), and vanishes elsewhere, where

b′ = b −
∫
{|x|≤1} xF (dx) is the “true drift.” If β < 1 and b′ ≥ 0 and

a(−) = 0 < a(+), almost all paths of X are strictly increasing, and we

say that we have a subordinator.
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Example 1.8 (Tempered stable process). A tempered stable pro-

cess of index β ∈ (0, 2) is a Lévy process whose characteristic triple is

(b, 0, F ), where b ∈ R and F is

F (dx) =
(a(+) β e−B+|x|

|x|1+β 1{x>0} +
a(−) β e−B−|x|

|x|1+β 1{x<0}
)
dx,

for some a(+), a(−) ≥ 0 with a(+) + a(−) > 0, and B−, B+ > 0. The

reason for introducing tempered stable processes is that, although they

somehow behave like stable processes, as far as “small jumps” are con-

cerned, they also have moments of all orders (a simple application of

(1.25) again). Those processes were introduced by Novikov (1994) and

extended by Rosiński (2007) to a much more general situation than what

is stated here.

Example 1.9 (Gamma process). The gamma process is in a sense a

“tempered stable process with index 0.” It is an increasing Lévy process

X having the characteristics triple (0, 0, F ), where

F (dx) =
a e−Bx

x
1{x>0} dx,

with a,B > 0. The name comes from the fact that the law of Xt is the

gamma distribution with density x 7→ 1
Γ(ta) e

−BxBtaxta−11{x>0}.

1.2.3 Poisson Random Measures

In this subsection we switch to a seemingly different topic, whose (fun-

damental) connection with Lévy processes will be explained later. The

idea is to count the number of jumps of a given size that occur between

times 0 and t. We start with a sketchy description of general Poisson

random measures, also called Poisson point processes, or “independently

scattered point processes.” We consider a measurable space (L,L). A
random measure on L, defined on the probability space (Ω,F ,P), is a

transition measure p = p(ω, dz) from (Ω,F) into (L,L). If for each ω the

measure p(ω, .) is an at most countable sum of Dirac masses sitting at

pairwise distinct points of L, depending on ω, we say that p is associated

with a “simple point process” in L, and p(A) is simply the number of

points falling into A ⊂ L.

Definition 1.10. A random measure p associated with a simple point

process is called a Poisson random measure if it satisfies the following

two properties:
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1. For any pairwise disjoint measurable subsets A1, . . . , An of L the

variables p(A1), . . . , p(An) are independent.

2. The intensity measure q(A) = E(p(A)) is a σ-finite measure on

(L,L), without atoms (an atom is a measurable set which has pos-

itive measure and contains no subset of smaller but positive mea-

sure).

In this case, if q(A) = ∞ we have p(A) = ∞ a.s., and if q(A) <∞ the

variable p(A) is Poisson with parameter q(A), that is,

P
(
p(A) = n

)
= exp(−q(A)) (q(A))

n

n!

for n ∈ N. Hence the “law” of p is completely characterized by the in-

tensity measure q. It is also characterized by the “Laplace functional,”

which is

Φ(f) := E
(
e−

∫
f(x)p(dx)

)
= exp

(
−
∫ (

1− e−f(x)
)
q(dx)

)
.

for any Borel nonnegative (non-random) function f on L, with the con-

vention e−∞ = 0.

A last useful (and simple to prove) property is the following one: if

A1, A2, . . . are pairwise disjoint measurable subsets of L, we have:

the restrictions of p to the An’s are independent Poisson

random measures, whose intensity measures

are the restrictions of q to the An’s.

(1.33)

The situation above is quite general, but in this book we specialize as

follows: we let L = R+ × E, where (E, E) is a “nice” topological space

with its Borel σ-field, typically E = Rq (it could be a general Polish

space as well): for the measure associated with the jumps of a process,

see below, R+ is the set of times and Rq the set of jump sizes.

Moreover, we only consider Poisson random measures p having an

intensity measure of the form

q(dt, dx) = dt⊗Q(dx), (1.34)

where Q is a σ-finite measure on (E, E). In this case it turns out that,

outside a null set, the process at = p({t} × E) (which a priori takes its

values in N) actually takes only the values 0 and 1, and the (random) set

D = {t : at = 1} is countable: this is the set of times where points occur.
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Upon deleting the above null set, it is thus not a restriction to assume

that p has the representation

p =
∑

t∈D
ε(t,Zt), (1.35)

where as usual εa denotes the Dirac measure sitting at a, and Z = (Zt)t≥0

is a measurable process.

When Q(A) < ∞, the process p([0, t] × A) is a Poisson process with

parameter Q(A). Exactly as in the previous subsection, in which Lévy

processes (and in particular Poisson processes) relative to a filtration (Ft)
were defined, we introduce a similar notion for Poisson random measures

whose intensity has the form (1.34). Suppose that our random measure

p is defined on a filtered probability space (Ω,F , (Ft)t≥0,P); we then say

that p is a Poisson measure relative to (Ft), or an (Ft)-Poisson random

measure, if it is a Poisson measure satisfying also:

1. The variable p([0, t]×A) is Ft-measurable for all A ∈ E and t ≥ 0.

2. The restriction of the measure p to (t,∞)×E is independent of Ft.

This implies that for all A with Q(A) < ∞, the process p([0, t] ×
A) is an (Ft)-Poisson process, and we have a (not completely trivial)

converse: if p is a random measure of the form (1.35) such that for any

A with Q(A) < ∞ the process p([0, t] × A) is an (Ft)-Poisson process

with parameter Q(A), then p is an (Ft)-Poisson random measure with

the intensity measure given by (1.34).

If E = {1} the measure p is entirely characterized by the process

Nt = p([0, t]× {1}). In this case p is an (Ft)-Poisson random measure if

and only if N is an (Ft)-Poisson process; this is the simplest example of

a Poisson random measure.

Example 1.11. If X is an Rd-valued càdlàg process, we associate its

jump measure, defined as follows (recall the notation (1.20) for the

jumps):

µX =
∑

s>0:∆Xs 6=0

ε(s,∆Xs), (1.36)

which is (1.35) when E = Rd and Zt = ∆Xt and D = {t : ∆Xt 6= 0}.
Note that µX([0, t] × A) is the number of jumps of size falling in the

measurable set A ⊂ E, between times 0 and t:

µX([0, t]×A) =
∑

0<s≤t
1{∆Xs∈A}.
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Then it turns out that the measure µX is a Poisson random measure

when X is a Lévy process and an (Ft)-Poisson random measure when X

is an (Ft)-Lévy process, and in those cases the measure Q in (1.34) is

equal to the Lévy measure of the process; we thus have independence of

the number of jumps both serially (over two disjoint time intervals [t1, t2]

and [t3, t4]) and cross-sectionally (jump sizes in two disjoint sets A1 and

A2).

The cross-sectional independence is not simple to prove, but the time

independence is quite intuitive: the value µX((t, t+s]×A) = µX((0, t+s]×
A)−µX((0, t]×A) is the number of jumps of size in A, in the time interval

(t, t+s], so it only depends on the increments (Xt+v−Xt)v≥0. Then, the

(Ft)-Lévy property, say, implies that this variable µX((t, t + s] × A) is

independent of Ft, and also that its law only depends on s (by stationarity

of the increments of X). Therefore the process µX((0, t]×A) is an (Ft)-
Lévy process, and also a counting process, hence an (Ft)-Poisson process.

1.2.4 Integrals with Respect to Poisson Random

Measures

For any random measure µ on R+ × E, where (E, E) is a Polish space,

and for any measurable function U on Ω× R+ × E, we set

U ∗ µt(ω) =

∫ t

0

∫

E
U(ω, s, x)µ(ω; ds, dx), (1.37)

whenever this makes sense, for example when U ≥ 0 and µ is positive.

Suppose that p is an (Ft)-Poisson random measure, with intensity

measure q given by (1.34). If U(ω, t, x) = 1A(x) with Q(A) < ∞, then

both U ∗p
t
and U ∗q

t
are well defined. Keep in mind that p is random, but

that q, its compensator, is not. And by (1.28) the compensated difference

U ∗ p−U ∗ q is a martingale on (Ω,F , (Ft)t≥0,P). This property extends

to any finite linear combination of such U ’s, and in fact extends much

more, as we shall see below.

To this end, we first recall that we can endow the product space Ω×R+

with the predictable σ-field P , that is, the σ-field generated by the sets

B × {0} for B ∈ F0 and B × (s, t] for s < t and B ∈ Fs, or equivalently
(although this is not trivial) the σ-field generated by all processes that are

adapted and left-continuous, or the σ-field generated by all processes that

are adapted and continuous. By extension, the product σ-field P̃ = P⊗E
is also called the predictable σ-field on Ω×R+×E, and a P̃-measurable

function on this space is called a predictable function.
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If U is a predictable function on Ω×R+×E such that E(|U | ∗q
t
) <∞

for all t, the difference U ∗ p − U ∗ q is again a martingale (this is an

easy result, because the linear space spanned by all functions of the form

U(ω, t, x) = 1B(ω)1(u,v](t)1A(x) is dense in the sets of all predictable

functions in L1(P ⊗ q)). Slightly more generally, if |U | ∗ q
t
<∞ for all t,

then we have |U | ∗ p
t
< ∞ as well, and the difference U ∗ p− U ∗ q is a

local martingale. Moreover, the càdlàg process U ∗ p − U ∗ q has jumps

obviously satisfying for t > 0:

∆
(
U ∗ p− U ∗ q

)
t

=

∫

E
U(t, x)p({t} × dx) = U(t, Zt)

(where we use the representation (1.35) for the last equality, and ∆Y is

the jump process of any càdlàg process Y ).

At this stage, and somewhat similar to stochastic integrals with re-

spect to a Brownian motion, one can define stochastic integrals with

respect to the Poisson random measure p, or rather with respect to the

compensated measure p− q, as follows: if U is a predictable function on

Ω× R+ × E such that

(|U | ∧ U2) ∗ q
t
< ∞ ∀ t ≥ 0, (1.38)

there exists a local martingale M having the following properties:

• M is orthogonal to all continuous martingales,

meaning that the product MM ′ is a local martingale

for any continuous martingale M ′;

• outside a null set, M0 = 0 and t > 0

⇒ ∆Mt =
∫
E U(t, x)p({t} × dx) = U(t, Zt).

This local martingale is unique (up to a null set again), and we use either

one of the following notations:

Mt = U ∗ (p− q)t =

∫ t

0

∫

E
U(s, x)(p− q)(ds, dx). (1.39)

We have the following four properties, quite similar to (1.9):

• the map U 7→ U ∗ (p− q) is linear;

• we have a “dominated convergence theorem”:

if Un → U pointwise and |Un| ≤ V and V satisfies (1.38),

then Un ∗ (p− q)
u.c.p.
=⇒ U ∗ (p− q);

• if |U | ∗ q
t
<∞ for all t, then U ∗ (p− q) = U ∗ p− U∗q

(otherwise, the processes U∗p and U∗q may be ill-defined);

• if U2 ∗ q
t
<∞ for all t, then U ∗ (p− q) is a locally

square-integrable local martingale.

(1.40)
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Sometimes, the local martingale M = U ∗ (p − q) is called a “purely

discontinuous” local martingale, or a “compensated sum of jumps”; the

reason is that in the third property (1.40), U ∗p
t
=
∑
s∈D U(s, Zs)1{s≤t}

is a sum of jumps, and U ∗ q is the unique predictable process starting

at 0 and which “compensates” U ∗ p, in the sense that the difference

becomes a (local) martingale.

The notion of stochastic integral can be extended to random measures

of the type (1.35) which are not necessarily Poisson, and below we con-

sider the only case of interest for us, which is the jump measure µ = µX

of an Rd-valued càdlàg adapted process X ; see (1.36).

For any Borel subset A of Rd at a positive distance of 0, the process

µ([0, t] × A) is an adapted counting process, taking only finite values

because for any càdlàg process the number of jumps with size bigger than

any ε > 0 and within the time interval [0, t] is finite. Therefore one can

“compensate” this increasing process by a predictable increasing càdlàg

process Y (A) starting at 0, in such a way that the difference µ([0, t]×A)−
Y (A)t is a martingale (this is like U ∗p−U ∗q in the previous paragraph),

and Y (A) is almost surely unique (this is a version of the celebrated

Doob-Meyer decomposition of a submartingale). The map A 7→ µ([0, t]×
A) is additive, and thus so is the map A 7→ Y (A), up to null sets. Hence

it is not a surprise (although it needs a somewhat involved proof, because

of the P-negligible sets) that there exists an almost surely unique random

measure ν on R+ × Rd such that, for all A ∈ Rd at a positive distance

of 0,

ν([0, t]×A) is predictable, and is a version of Y (A). (1.41)

The measure ν = νX is called the compensating measure of µ. Of course,

when µ is further a Poisson random measure, its compensating measure

ν is also its intensity, and is thus not random.

We can rephrase the previous statement as follows, with the notation

(1.37): If U(ω, t, x) = 1A(x), with A Borel and at a positive distance of

0, then U ∗ ν is predictable and the difference U ∗ µ − U ∗ ν is a local

martingale. Exactly as in the previous paragraph, this extends to any U

which is predictable and such that

(|U | ∧ U2) ∗ νt < ∞ ∀ t ≥ 0. (1.42)

Namely, there exists an almost surely unique local martingale M satis-
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fying

• M is orthogonal to all continuous martingales

• outside a null set, we have M0 = 0 and, for all t > 0,

∆Mt =
∫
E U(t, x)µ({t} × dx) −

∫
E U(t, x)ν({t} × dx).

(1.43)

As in (1.39), we use either one of the following notations:

Mt = U ∗ (µ− ν)t =

∫ t

0

∫

E
U(s, x)(µ− ν)(ds, dx),

and all four properties in (1.40) are valid here, with p and q substituted

with µ and ν.

There is a difference, though, with the Poisson case: the process γt =

ν({t} × Rd) takes its values in [0, 1], but it is not necessarily vanishing

everywhere. When it is (for example when µ is a Poisson measure), the

second property in (1.43) can be rewritten as

∆Mt =

∫

E
U(t, x)µ({t} × dx) = U(t,∆Xt) 1{∆Xt 6=0} (1.44)

and the condition (1.42) describes the biggest possible class of predictable

integrands U . When γt is not identically 0, (1.44) is wrong, and it is

possible to define U ∗ (µ− ν) for a slightly larger class of integrands (see

for example Jacod (1979) for more details).

1.2.5 Path Properties and Lévy-Itô Decomposition

Now we come back to our d-dimensional Lévy processes X , defined on

the filtered probability space (Ω,F , (Ft)t≥0,P).

A fundamental property, already mentioned in Example 1.11, is that

the jump measure µ = µX of X is a Poisson random measure on L =

R+ × Rd, with the intensity measure

ν(dt, dx) = dt⊗ F (dx),

where F is the Lévy measure of X . Below, we draw some consequences

of this fact.

First, since µ(A) is Poisson with parameter ν(A) if ν(A) < ∞ and
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µ(A) = ∞ a.s. otherwise, we see that

• F = 0 ⇒ X is continuous (we knew this already) (1.45)

• 0 < F (Rd) <∞ ⇒ X has a.s. finitely many jumps on any (1.46)

interval [0, t] and a.s. infinitely many on R+

• F (Rd) = ∞ ⇒ X has a.s. infinitely many jumps on any (1.47)

interval [t, t+ s] such that s > 0.

Definition 1.12. In the case of (1.46) we say that we have finite activ-

ity for the jumps, whereas if (1.47) holds we say that we have infinite

activity.

Next, let g be a nonnegative Borel function on Rd with g(0) = 0.

By using the Laplace functional for the functions f(r, x) = λ(g(x) ∧
1)1(t,t+s](r) and the fact that a nonnegative variable Y is a.s. finite if

E(e−λY ) → 1 as λ ↓ 0 and a.s. infinite if and only if E(e−λY ) = 0 for all

λ > 0, we deduce
∫
(g(x) ∧ 1)F (dx) <∞ ⇔ ∑

s≤t g(∆Xs) <∞,

a.s. ∀ t > 0∫
(g(x) ∧ 1)F (dx) = ∞ ⇔ ∑

t<r≤t+s g(∆Xr) = ∞,

a.s. ∀ t ≥ 0, s > 0

(1.48)

which is particularly useful for the absolute power functions g(x) = ‖x‖p
where p > 0.

We now set

I =
{
p ≥ 0 :

∫

{‖x‖≤1}
‖x‖p F (dx) <∞

}
, β = inf(I). (1.49)

The number β defined above is called the Blumenthal-Getoor index of

the processX , as introduced by Blumenthal and Getoor (1961), precisely

for studying the path properties of Lévy processes. Note that, since the

function p 7→ ‖x‖p is decreasing when ‖x‖ ≤ 1, the set I is necessarily

of the form [β,∞) or (β,∞), whereas 2 ∈ I always by (1.23), hence

β ∈ [0, 2].

There is no conflicting notation here: for a stable or tempered sta-

ble process, the stability index and the Blumenthal-Getoor index agree.

Those are examples where I = (β,∞). A gamma process has Blumenthal-

Getoor index β = 0 and again I = (β,∞). For a compound Poisson pro-

cess we have β = 0 and I = [β,∞). More generally, the jumps have finite

activity if and only if 0 ∈ I. Later on, we will see that β can be quite nat-

urally generalized, and interpreted as a jump activity index : processes
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Figure 1.1: Examples of processes and their corresponding BG index of

jump activity β.

with higher β tend to jump more frequently. Figure 1.1 provides some

examples of processes and the corresponding values of β.

β is a lower bound for the values of p for which the pth power of the

jumps are summable. Observing that
∑
s≤t ‖∆Xs‖p 1{‖∆Xs‖>1} <∞ for

all t because X has finitely many jumps bigger than 1 on any interval

[0, t] (a property of all càdlàg processes), we deduce

p ∈ I ⇒ ∑
s≤t ‖∆Xs‖p <∞ a.s. ∀ t ≥ 0

p /∈ I ⇒ ∑
s≤t ‖∆Xs‖p = ∞ a.s. ∀ t > 0.

(1.50)

With µ = µX and ν and above, we observe that the predictable func-

tion U(ω, t, x) = x1{‖x‖≤1} satisfies (1.38), or equivalently (1.38) with

q = ν. Hence the stochastic integral U ∗ (p− q) is well defined, and will

be written below as (x1{‖x‖≤1}) ∗ (µ − ν). With the notation (1.37) we

also clearly have

(x1{‖x‖>1}) ∗ µt =
∑

s≤t
∆Xs 1{‖∆Xs‖>1}

(a finite sum for each t). On the other hand the symmetric nonnegative

matrix c occurring in the Lévy-Khintchine formula can be written as

c = σσ∗ for a d× q matrix σ, where q is the rank of c.
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With all this notation, and with b as in (1.24), one can show that

on (Ω,F , (Ft)t≥0,P) there is a q-dimensional Brownian motion W , in-

dependent of the Poisson measure µ, and such that the Lévy process X

is

Xt = bt+ σWt + (x1{‖x‖≤1}) ∗ (µ− ν)t + (x1{‖x‖>1}) ∗ µt. (1.51)

This is called the Lévy-Itô decomposition of X . This decomposition is

quite useful for applications, and also provides a lot of insight on the

structure of a Lévy process.

A few comments are in order here:

1. When c = 0 there is no σ, and of course the Brownian motion W

does not show in this formula.

2. The independence of W and µ has been added for clarity, but one

may show that if W and µ are an (Ft)-Brownian motion and an

(Ft)-Poisson measure on some filtered space (Ω,F , (Ft)t≥0,P), then

they necessarily are independent.

3. The four terms on the right in the formula (1.51) correspond to

a canonical decomposition of Xt into a sum of a pure drift term,

a continuous martingale, a purely discontinuous martingale con-

sisting of “small” jumps (small meaning smaller than 1) that are

compensated, and the sum of the “big” jumps (big meaning big-

ger than 1). As we will see, this is also the structure of a general

semimartingale.

4. The four terms in (1.51) are independent of each other; for the last

two terms, this comes from (1.33).

5. These four terms correspond to the decomposition of the charac-

teristic function (1.24) into four factors, that is,

E
(
eiu

∗Xt

)
=

4∏

j=1

φj(u),

where
φ1(u) = eiu

∗bt, φ2(u) = e−
1
2 tu

∗cu,

φ3(u) = et
∫
{‖x‖≤1}(e

iu∗x−1−iu∗x)F (dx),

φ4(u) = et
∫
{‖x‖>1}(e

iu∗x−1)F (dx).

The terms φ1 and φ2 are the characteristic functions of bt and

σWt, and the last one is the characteristic function of the com-

pound Poisson variable which is the last term in (1.51). For the
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third factor, one can observe that on the one hand the variable

(x1(1/n)<{‖x‖≤1}) ∗ (µ− ν)t is a compound Poisson variable minus

t
∫
{(1/n)<‖x‖≤1} xF (dx), whose characteristic function is

exp t

∫

{(1/n)<‖x‖≤1}

(
eiu

∗x − 1− iu∗x
)
F (dx),

whereas on the other hand it converges to the third term in (1.51)

as n→ ∞ by the dominated convergence theorem in (1.40).

6. Instead of truncating jumps at 1 as in (1.51), we can decide to

truncate them at an arbitrary fixed ε > 0, in which case the de-

composition formula becomes

Xt = bεt+ σWt + (x1{‖x‖≤ε}) ∗ (µ− ν)t + (x1{‖x‖>ε}) ∗ µt

with the drift term changed to

bε = b+

∫
x
(
1{‖x‖≤ε} − 1{‖x‖≤1}

)
F (dx).

We can more generally employ a truncation function h(x) in lieu of

1{‖x‖≤ε}, as long as h(x) = 1+ o(‖x‖) near 0 and h(x) = O(1/|x|)
near ∞, so that

eiu
∗x − 1− iu · xh(x) = O(‖x‖2) as x→ 0

eiu
∗x − 1− iu · xh(x) = O(1) as ‖x‖ → ∞

and
∫
(‖x‖2 ∧ 1)F (dx) <∞ ensures that

∫ ∣∣ eiu∗x − 1− iu∗xh(x)
∣∣F (dx) <∞.

The drift needs again to be adjusted to

bh = b+

∫
x
(
h(x)− 1{‖x‖≤1}

)
F (dx)

Different choices of ε or h do not change (c, F ) but they are re-

flected in the drift bh, which is therefore a somewhat arbitrary

quantity. Since the choice of truncation is essentially arbitrary, so

is the distinction between small vs. big jumps. The only distin-

guishing characteristic of big jumps is that there are only a finite

number of them, at the most.
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7. Recall that the reason we cannot simply take x ∗ µt is that, when
the process has infinite jump activity, the series x∗µt =

∑
s≤t∆Xs

may be divergent even though the number of jumps is at most

countable. The variable (x1{‖x‖>ε}) ∗ µt =
∑
s≤t∆Xs 1{‖∆Xs‖>ε},

being a finite sum for all ε > 0, is well defined, but its limit as ε→ 0

may not exist because of the infinitely many jumps. Compensat-

ing solves that problem and (x 1{ε<‖x‖≤1}) ∗ (µ− ν)t converges as

ε → 0. On the other hand, we cannot simply compensate without

truncating and take x ∗ (µ − ν)t, because (x 1{‖x‖>1}) ∗ νt may be

divergent; hence the solution which consists in breaking the sum

(or integrals) into two parts, compensated small jumps, and un-

compensated large jumps, both of which are convergent.

8. If the process has finite variation, that is, if ‖x‖ ∗ µt < ∞ almost

surely for all t, or equivalently if
∫
(‖x‖ ∧ 1)F (dx) < ∞ (note the

absence of a square on ‖x‖), then the integral x ∗ µt is convergent,
and the compensation is not needed. The difference between the

representation

Xt = b′t+ σWt + x ∗ µt
and (1.51) for a finite variation process consists in a change of drift

from b to b′.

1.3 Semimartingales

1.3.1 Definition and Stochastic Integrals

We now reach the main topic of this chapter. Among all processes, the

class of semimartingales plays a very special role. For example they are

the most general processes with respect to which a (stochastic) inte-

gration theory, having the usual “nice” properties like a Lebesgue con-

vergence theorem, can be constructed. This fact may even be used as

the definition of semimartingales, according to the Bichteler-Dellacherie-

Mokobodski theorem. In mathematical finance they also play a special

role, since one of the most basic results (the so-called fundamental as-

set pricing theorem) says that if no arbitrage is allowed, then the price

process should be a semimartingale.

Definition 1.13. A real-valued process X on the filtered probability space

(Ω,F , (Ft)t≥0,P) is called a semimartingale if it can be written as

X = A+M, (1.52)
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where M is a local martingale and A is an adapted càdlàg process “with

finite variation,” which means that the total variation of each path t 7→
At(ω) is bounded over each finite interval [0, t].

Intuitively, the finite variation process plays the role of a “drift” term

(such as
∫ t
0 bsds) whereas the local martingale part is “pure randomness”

(such as
∫ t
0 σsdWs). A deterministic process is a semimartingale if and

only if it has finite variation. This decompositionX =M+A is essentially

not unique, since we can always add to A and subtract fromM the same

martingale with finite variation. Both A and M may be discontinuous.

A d-dimensional semimartingale X = (X i)1≤i≤d is a process whose

components are real-valued semimartingales. A semimartingale is always

adapted and càdlàg. Every adapted process of finite variation (e.g. Pois-

son or pure drift) is a semimartingale. Every martingale (e.g. Brownian

motion) is a semimartingale. By virtue of the Lévy-Itô decomposition

(1.51), any Lévy process is a semimartingale, since it is the sum of a

square integrable martingale and a finite variation process: one may for

example take At = bt+ (x1{‖x‖>1}) ∗ µt to get a decomposition (1.52).

Now we introduce stochastic integrals with respect to a semimartin-

gale X , starting with the one-dimensional case. Exactly as for the Brow-

nian motion, and substituting W with X , one may define the integral∫ t
0 HsdXs by (1.7) for any simple process H of the form (1.6).

Again as for the Brownian motion, this elementary integral can be

extended to a much larger class of integrands. An important difference

with the Brownian case is the fact that we need the integrand to be

predictable, a fundamental requirement without which the whole theory

breaks down. More precisely, we consider processes H with the following

properties:

H is predictable, and locally bounded in the sense that

we have |Ht(ω)| ≤ n for all 0 < t ≤ Tn(ω),

where (Tn) is a sequence of stopping times increasing to ∞.

(1.53)

This is not the largest possible class of integrands, but it will be sufficient

for our purposes. The extension is of course still denoted by
∫ t
0 HsdXs or

H •Xt, and is uniquely defined up to a null set again. It has properties
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analogous to (1.9):

• the process H •Xt is a semimartingale starting at 0

• if X is a local martingale, then so is H •X
• the maps H 7→ H •X and X 7→ H •X are linear

• we have a “dominated convergence theorem”:

if Hn → H pointwise and |Hn| ≤ H ′

where H ′ satisfies (1.53), then Hn •X u.c.p.
=⇒ H •X.

(1.54)

When X is d-dimensional, one can integrate componentwise a d-

dimensional predictable locally bounded process H = (Hi)1≤i≤d, thus

getting the following one-dimensional process:

H •Xt =

∫ t

0
Hs dXs =

d∑

i=1

∫ t

0
Hi
s dX

i
s.

Why the predictability requirement? There are two reasons. A first

“mathematical” reason is that, for a general semimartingale, it is im-

possible to extend integrals of simple integrands to all càdlàg adapted

processes while preserving the dominated convergence theorem. Second,

in financial applications, trading strategies must be predictable to avoid

arbitrage opportunities. Imagine an investor trading an asset with price

process X at times Ti, 0 = T0 < T1 < · · · < Tn+1 = T , and holding

HTi shares of the asset between Ti and Ti+1. The capital gain from that

strategy is
n∑

i=0

HTi (XTi+1 −XTi) =

∫ T

0
HtdXt.

The transaction times Ti may be fixed, or more generally they may be

non-anticipating random times (that is, stopping times). For example

the investor may trade the first time X crosses a barrier: this would be

a limit order. Also, HTi is chosen based on information known at Ti: it

is FTi-measurable. The investor’s holdings at each time t are given by

Ht = H010(t) +
n∑

i=0

HTi1(Ti,Ti+1](t).

The investor decides to trade at Ti; immediately afterwards, the portfolio

changes from HTi−1 to HTi . Therefore Ht is left-continuous with right-

limits (càglàd). This makes it a predictable process.

Trading strategies must be predictable when jumps are present, oth-

erwise there may be arbitrage opportunities. Consider for example Xt =

λt − Nt, where N is a Poisson process with intensity λ. Let T1 denote
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the time of the first jump. At that time, X jumps by −1. Consider the

strategy that buys 1 unit of the asset at time 0 for price X0 = 0 and sells

it right before the crash at T1. H is not a predictable process, since it is

impossible to implement this strategy without knowing ahead the time

when T1 will happen. The holdings Ht are given by 1 between [0, T1).

The fact that the interval is open on the right means that this strategy is

not predictable because of the properties of the jump times of a Poisson

process. The strategy generates sure profits since

∫ t

0
HsdXs =

{
λt for t < T1
λT1 for t ≥ T1

and does that with zero initial investment, so it is an arbitrage. This

explains why, in the presence of jumps, only predictable strategies are

admissible.

1.3.2 Quadratic Variation

For defining the quadratic variation, one needs to recall some proper-

ties. The first is that a local martingale M can always be written as

Mt =M0+M
c
t +M

d
t , whereM

c
0 =Md

0 = 0 and M c is a continuous local

martingale, and Md is a local martingale orthogonal to each continuous

(local) martingale. The second is that a local martingale starting from

0, which has bounded variation in the sense explained after (1.52), and

which is continuous, is almost surely vanishing everywhere. Therefore, if

we consider two decompositions X = M + A = M ′ + A′ as (1.52), then

necessarily M c =M ′c a.s. In other words, we can write the semimartin-

gale X as

Xt = X0 +Xc
t +Mt +At,

where A0 = M0 = 0 and where A is of finite variation and M is a

local martingale orthogonal to all continuous martingales, and Xc is a

continuous local martingale starting at 0. In this decomposition the two

processes M and A are still not unique, but the process Xc is unique

(up to null sets), and it is called the continuous martingale part of X

(although it usually is a local martingale only). When X is d-dimensional,

so are Xc, M and A, and the components of Xc are denoted X i,c.

Now, we saw in Subsection 1.1.2 that, when two continuous local mar-

tingales M and M ′ are stochastic integrals with respect to a (possibly

multidimensional) Brownian motion, one can define the quadratic covari-

ation (or variation, if M ′ =M). The same is true of all continuous local

martingales: based on the Doob-Meyer decomposition of submartingales
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again, we have a unique (up to null sets) continuous adapted process

〈M,M ′〉 starting at 0, with finite variation, and such that

MM ′ − 〈M,M ′〉 is a local martingale,

and further 〈M,M〉 is increasing.
At this point, we can introduce the quadratic variation of a one-

dimensional semimartingale X as being

[X,X ]t = 〈Xc, Xc〉t +
∑

s≤t
(∆Xs)

2. (1.55)

The sum above makes sense, since it is a sum of positive numbers on

the countable set {s : ∆Xs 6= 0} ∩ [0, t]. What is not immediately

obvious is that it is a.s. finite, but this fact is one of the main prop-

erties of semimartingales. Hence the process [X,X | is increasing and

càdlàg, and also adapted (another intuitive but not mathematically ob-

vious property). Another name for [X,X ] is the “square bracket.” Note

that [X,X ] = 〈X,X〉 when X is a continuous local martingale, and in

general [Xc, Xc] = 〈Xc, Xc〉 is the “continuous part” of the increasing

process [X,X ] (not to be confused with its “continuous martingale part,”

which is identically 0).

For example, if Xt = σWt, where W is Brownian motion, then

[X,X ]t = σ2t. So [X,X ]t is not random, and coincides with the variance

of Xt. This is not the case in general: [X,X ]t, unlike the variance, is a

random variable. It is not defined by taking expectations. For example,

for a Poisson process, since N jumps by 1 whenever it does, [N,N ]t = Nt
is the number of jumps of the process between 0 and t, and we also have

[X,X ]t = Nt for the martingale Xt = Nt−λt if λ is the parameter of the

Poisson process N . Moreover, [X,X ]t is well defined for all semimartin-

gales, including those with infinite variance.

If now X and X ′ are two real-valued semimartingales we set

[X,X ′]t = 〈Xc, X ′c〉t +
∑

s≤t
∆Xs∆X

′
s. (1.56)

Here again the sum above is a.s. absolutely convergent, by the finiteness

in (1.55) for X and X ′ and the Cauchy-Schwarz inequality. The process

[X,X ′] is adapted and of finite variation, but not necessarily increasing

any more, and is called the quadratic covariation process of X and X ′.

For example, if Xt =
∫ t
0 σsdWs and X ′

t =
∫ t
0 σ

′
sdW

′
s, where W and W ′

are two Brownian motions with correlation coefficient ρ, then [X,X ′]t =∫ t
0 ρσsσ

′
s ds.
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For any real a and any other semimartingale X ′′ we have

[X + aX ′, X ′′] = [X,X ′′] + a[X ′, X ′′], [X,X ′] = [X ′, X ].

Another useful property, which immediately follows from this, is the po-

larization identity:

[X,X ′] =
1

4

(
[X +X ′, X +X ′]− [X −X ′, X −X ′]

)
(1.57)

which expresses the quadratic covariation in terms of quadratic variations

only. Finally, the following is obvious:

[X,X ′] = [X −X0, X
′ −X ′

0]. (1.58)

When X is d-dimensional, we thus have a d × d matrix-valued process

[X,X ] = ([X i, Xj])1≤i,j≤d. For all s, t ≥ 0 the matrix [X,X ]t+s− [X,X ]t
is symmetric nonnegative.

We end this subsection with a set of inequalities, known under

the name of Burkholder-Gundy inequalities when p > 1 and Davis-

Burkholder-Gundy when p = 1 (when p = 2 it is also a version of Doob’s

inequality). These inequalities assert that, if X is a local martingale and

p ≥ 1 and S ≤ T are two arbitrary stopping times, then

E
(
sups∈[S,T ] |XS+s −Xs|p | FS

)

≤ Kp E
(
([X,X ]T − [X,X ]S)

p/2 | FS
)
,

(1.59)

whereKp is a universal constant depending on p only, and [X,X ]T stands

on the set {T = ∞} for the increasing (possibly infinite) limit of [X,X ]t
as t increases to infinity, and [X,X ]T − [X,X ]S = 0 on the set where

S = T = ∞. As a matter of fact, we also have the inequality (1.59) in

the other direction, and with another constant Kp, but this will not be

useful for us.

1.3.3 Itô’s Formula

We are now ready to state the general form of Itô’s formula, which ex-

tends (1.15). From their very definition, semimartingales form a vector

space; linear combinations of a finite number of semimartingales are semi-

martingales. But the class of semimartingales is closed under much more

general transformations, and much of its usefulness comes from this fact.

If f is a C2 function on Rd and X is a d-dimensional semimartingale, the
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process Y = f(X) is also a semimartingale and is given by

f(Xt) = f(X0) +
d∑

i=1

∫ t

0
f ′
i(Xs−) dX

i
s

+
1

2

d∑

i,j=1

∫ t

0
f ′′
ij(Xs−) d〈X i,c, Xj,c〉s (1.60)

+
∑

s≤t

(
f(Xs)− f(Xs−)−

d∑

i=1

f ′
i(Xs−)∆X

i
s

)
.

The reader will notice that all processes f ′
i(Xt−) and f ′′

ij(Xs−) are left-

continuous with right limits, so they are locally bounded and predictable

and the first (stochastic) and second (ordinary) integrals make sense.

Moreover, the sth summand in the last sum is smaller than Kn‖∆Xs‖2
on the set {sups≤t ‖Xs‖ ≤ n}, for a constant Kn. Since

∑
s≤t ‖∆Xs‖2 <

∞ (because the quadratic variation is finite), this last sum is in fact

absolutely convergent. In other words, all terms on the right of (1.60) are

well defined.

We end this subsection with the promised proof of (1.14), in the gen-

eral setting of semimartingales. The result is stated in the form of a theo-

rem, which is unusual in this chapter but motivated by its importance in

the econometrics literature and more generally for high-frequency statis-

tics.

Theorem 1.14. Let X and X ′ be two semimartingales. For each n, let

T (n, 0) = 0 < T (n, 1) < T (n, 2) < · · · be a strictly increasing sequence

of stopping time with infinite limit, and suppose that the mesh πn(t) =

supi≥1(T (n, i) ∧ t− T (n, i− 1) ∧ t) goes to 0 for all t, as n → ∞. Then

we have the following convergence in probability:

∑
i≥1

(
XT (n,i)∧t −XT (n,i−1)∧t

)(
X ′
T (n,i)∧t −X ′

T (n,i−1)∧t
)

u.c.p.

=⇒ [X,X ′]t.
(1.61)

Moreover, for any given t we also have

∑
i≥1, T (n,i)≤t

(
XT (n,i) −XT (n,i−1)

)(
X ′
T (n,i) −X ′

T (n,i−1)

)

P−→ [X,X ′]t.
(1.62)

in restriction to the set {∆Xt = 0} ∪ {∆X ′
t = 0} on which either X or

X ′ have no jump at time t, and on the whole set Ω when further, for any

n, there is an index i such that T (n, i) = t.
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The convergence (1.62) may actually fail on the set {∆Xt 6= 0,∆X ′
t 6=

0}. For example, if for all n there is no i such that T (n, i) = t, the left

side of (1.62) converges in probability (on Ω) to the left limit [X,X ′]t−,

which equals [X,X ′]t −∆Xt∆X
′
t.

The theorem (and its proof below) assumes that πn(t) → 0 pointwise,

but the condition πn(t)
P−→ 0 is indeed enough for the results to hold.

Proof. In view of (1.58) we can replaceX andX ′ by X−X0 and X
′−X ′

0,

or equivalently assume that X0 = X ′
0 = 0. The proof is based on the

elementary equality (x− y)(x′ − y′) = xx′ + yy′ − y(x′ − y′)− y′(x− y)

applied with x = XT (n,i)∧t and y = XT (n,i−1)∧t and x
′ = X ′

T (n,i)∧t and

y′ = X ′
T (n,i−1)∧t. Summing over all i ≥ 1, we deduce that the left side of

(1.61) is equal to

XtX
′
t −

∫ t

0
Hn
s dX

′
s +

∫ t

0
H ′n
s dXs

(recall X0 = X ′
0 = 0), where we have set

Hn
s =

∑

i≥1

XT (n,i−1) 1(T (n,i−1),T (n,i)](s)

and a similar formula for H ′n
s , with X ′ instead of X . The processes Hn

are adapted and left-continuous, hence predictable, and |Hn| ≤ Z where

Z is the predictable locally bounded process defined by Zs = sup(|Xr| :
r ∈ [0, s)). Moreover, since the mesh of the subdivision goes to 0, we

have Hn → X− pointwise. Then the dominated convergence theorem

for stochastic integrals, see (1.54), yields Hn • X ′ u.c.p.
=⇒ X− • X ′, and

H ′n •X u.c.p.
=⇒ X ′

− •X holds by the same argument. In other words, the

left side of (1.61) converges in the u.c.p. sense to

XtX
′
t −

∫ t

0
Xs− dXs +

∫ t

0
X ′
s− dXs.

It remains to apply Itô’s formula to the two-dimensional semimartingale

with components X and X ′ and the function f(x, x′) = xx′: we deduce

from (1.56) that the above expression is equal to [X,X ′]t, and thus (1.61)

is proved. When for each n there is i such that T (n, i) = t, the left sides

of (1.61) and (1.62) are the same, so (1.62) is proved. Finally, in general,

the difference between the left sides of (1.61) and (1.62) is smaller than

ρ(ε) = sup(|Xt −Xt−s| |X ′
t −X ′

t−s| : s ∈ [0, ε]) as soon as πn(t) ≤ ε. On

the set {∆Xt = 0} ∪ {∆X ′
t = 0} we have ρ(ε) → 0 as ε → 0. Then the

convergence (1.62) in restriction to this set readily follows from the fact

that πn(t) → 0.
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1.3.4 Characteristics of a Semimartingale and the

Lévy-Itô Decomposition

Here, X is a d-dimensional semimartingale on (Ω,F , (Ft)t≥0,P), and we

are now almost ready to define the characteristics of X .

The process
∑
s≤t∆Xs 1{‖∆Xs‖>1}, or equivalently (x1{‖x‖>1}) ∗ µ

where µ = µX is the jump measure of X defined by (1.36), is of finite

variation. Then we can rewrite (1.52) as

Xt = X0 +A′
t +Mt +

∑

s≤t
∆Xs 1{‖∆Xs‖>1}

where M0 = A′
0 = 0 and A′ is of finite variation and M is a local

martingale. Now, one can show that the semimartingale A′ +M , which

has jumps smaller than 1 by construction, can be written in a unique (up

to null sets) way as A′ +M = B +N , where again N0 = B0 = 0 and N

is a local martingale and B is a predictable process of finite variation.

Definition 1.15. The characteristics of the semimartingale X are the

following triple (B,C, ν):

(i) B = (Bi)1≤i≤d is the predictable process of finite variation defined

above;

(ii) C = (Cij)1≤i,j≤d is the quadratic variation of the continuous local

martingale part Xc of X, that is, Cij =
〈
X i,c, Xj,c

〉
;

(iii) ν is the (predictable) compensating measure of the jump measure

µ = µX of X, as defined in (1.41).

Sometimes one says “predictable characteristics” or “local character-

istics” of the semimartingale X . The name comes from the fact that,

when X is a Lévy process with characteristics triple (b, c, F ), then its

characteristics in the semimartingale sense are

Bt(ω) = bt, Ct(ω) = ct, ν(ω, dt, dx) = dt⊗ F (dx). (1.63)

So (B,C, ν) and (b, c, F ) convey the same information. Note that in this

case the characteristics (B,C, ν) are not random. This turns out to be

“necessary and sufficient.” More precisely, a semimartingale X has non-

random characteristics if and only if it has (Ft)-independent increments;

and it has characteristics of the form (1.63) if and only if it is an (Ft)-
Lévy process.

The reader should not be misled: unlike for Lévy processes (or more

generally for processes with independent increments), the characteristics

do not characterize the law of the process in general. Whether they do
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characterize the law in specific cases is an important problem, closely

related to the uniqueness of (weak) solutions of some associated SDEs,

and we will come back to this point later.

Now, although the characteristics do not always characterize the pro-

cess X , they provide useful information, especially on the jumps. For

example, we have a (partial) analogue of (1.48): for any nonnegative

Borel function g on Rd with g(0) = 0 and any t > 0,

the two sets {(g ∧ 1) ∗ νt <∞} and {g ∗ µt <∞}
are a.s. equal

(1.64)

and in particular, similar to (1.50), for any p ≥ 0 we have

the two sets {(‖x‖p ∧ 1) ∗ νt <∞}
and

{∑
s≤t ‖∆Xs‖p <∞

}
are a.s. equal.

(1.65)

The triple (B,C, ν) satisfies a number of structural properties, coming

from its definition. The process C is such that Ct+s −Ct is a symmetric

nonnegative d × d matrix, as already mentioned. Next, B and ν are

predictable, with finite variation for B, but there are other necessary

requirements, namely there is a version of (B, ν) satisfying identically

(‖x‖2 ∧ 1) ∗ νt(ω) <∞, ν(ω, {t} × Rd) ≤ 1,

‖∆Bt(ω)‖ ≤ 1, ν(ω, {t} × Rd) = 0 ⇒ ∆Bt(ω) = 0.
(1.66)

The analogy with Lévy processes goes further; for example we have a

formula similar to the Lévy-Itô decomposition, that is,

Xt = X0 +Bt +Xc
t + (x 1{‖x‖≤1}) ∗ (µ− ν)t + (x 1{‖x‖>1}) ∗ µt, (1.67)

where the stochastic integral above makes sense because of the first prop-

erty in (1.66). However, this may look like (1.51), but µ is not a Poisson

measure and Xc is not a Brownian motion here.

1.4 Itô Semimartingales

1.4.1 The Definition

As seen above, quite a few properties of Lévy processes extend to gen-

eral semimartingales, but there are also big differences, like the fact that

ν(ω, {t}×Rd) may be positive. There is, however, a class of semimartin-

gales which is a more direct extension of Lévy processes:
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Definition 1.16. A d-dimensional semimartingale X is an Itô semi-

martingale if its characteristics (B,C, ν) are absolutely continuous with

respect to the Lebesgue measure, in the sense that

Bt =

∫ t

0
bsds, Ct =

∫ t

0
csds, ν(dt, dx) = dt Ft(dx), (1.68)

where b = (bt) is an Rd-valued process, c = (ct) is a process with values in

the set of all d× d symmetric nonnegative matrices, and Ft = Ft(ω, dx)

is for each (ω, t) a measure on Rd. The terms (bt, ct, Ft) are called the

spot characteristics of X.

These bt, ct and Ft necessarily have some additional measurability

properties, so that (1.68) makes sense: we may choose bt and ct pre-

dictable (or simply progressively measurable, this makes no difference in

the sequel and does not change the class of Itô semimartingales), and Ft
is such that Ft(A) is a predictable process for all A ∈ Rd (or progressively

measurable, again this makes no difference). The last three requirements

of (1.66) are automatically fulfilled here, and we can and will choose a

version of Ft which satisfies identically

∫
(‖x‖2 ∧ 1) Ft(ω, dx) < ∞

and
∫ t
0 ds

∫
(‖x‖2 ∧ 1) Ft(ω, dx) < ∞.

(1.69)

In view of (1.63), any Lévy process is an Itô semimartingale.

There is an apparent contradiction between Definitions 1.1 and 1.16:

a continuous Itô semimartingale in the former sense (or Brownian semi-

martingale) is also Itô in the latter sense, but the converse is not obvious

when X is continuous. However, this contradiction is only apparent.

To be more specific, assume for example that d = 1 and that X is

continuous, and an Itô semimartingale in the sense of (1.16), and also

that Bt = 0 identically, so X = Xc. The question becomes: can we find

a Brownian motion W and a progressively measurable process H such

that Xt =
∫ t
0 HsdWs ? If this is the case, we necessarily have H2

t = ct, so

since we know that ct ≥ 0, natural candidates are

Ht =
√
ct, Wt =

∫ t

0

1

Hs
dXs.

Of course the second integral does not make sense if ct vanishes some-

where, and it should thus be replaced by

Wt =

∫ t

0

1

Hs
1{Hs 6=0} dXs.
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This defines a continuous martingaleW starting at 0, and with quadratic

variation
∫ t
0 1{cs>0} ds, which may be different from t: hence W is not

necessarily a Brownian motion; when for example ct = 0 for all t ≤ 1 it

is quite possible that the σ-field F1 is trivial and thus there simply does

not exist any (Ft)-Brownian motion on (Ω,F , (Ft)t≥0,P).

The solution to this problem needs an extension of the original prob-

ability space. The need for an extension also arises in other contexts in

this book, so we devote the next subsection to the general question of

“extending” the probability space.

1.4.2 Extension of the Probability Space

The space (Ω,F , (Ft)t≥0,P) is fixed. Let (Ω
′,F ′) be another measurable

space, and Q(ω, dω′) be a transition probability from (Ω,F) into (Ω′,F ′).

We can define the products

Ω̃ = Ω× Ω′, F̃ = F ⊗ F ′, P̃(dω, dω′) = P(dω)Q(ω, dω′). (1.70)

The probability space (Ω̃, F̃ , P̃) is called an extension of

(Ω,F , (Ft)t≥0,P). Any variable or process which is defined on ei-

ther Ω or Ω′ is extended in the usual way to Ω̃, with the same symbol;

for example Xt(ω, ω
′) = Xt(ω) if Xt is defined on Ω. In the same way, a

set A ⊂ Ω is identified with the set A×Ω′ ⊂ Ω̃, and we can thus identify

Ft with Ft ⊗ {∅,Ω′}, so (Ω̃, F̃ , (Ft)t≥0, P̃) is a filtered space.

The filtration (Ft) on the extended space does not incorporate any

information about the second factor Ω′. To bridge this gap we consider

a bigger filtration (F̃t)t≥0 on (Ω̃, F̃), that is with the inclusion property

Ft ⊂ F̃t, ∀t ≥ 0.

The filtered space (Ω̃, F̃ , (F̃t)t≥0, P̃) is then called a filtered extension of

(Ω,F , (Ft)t≥0,P).

In many, but not all cases the filtration (F̃t) has the product form

F̃t = ∩s>t Fs ⊗F ′
s (1.71)

where (F ′
t) is a filtration on (Ω′,F ′). Quite often also, the transition prob-

ability Q has the simple form Q(ω, dω′) = P′(dω′) for some probability

on (Ω′,F ′). In the latter case we say that the extension is a product ex-

tension, and if further (1.71) holds we say that we have a filtered product

extension, which is simply the product of two filtered spaces.
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A filtered extension is called very good if it satisfies

ω 7→
∫
1A(ω, ω

′)Q(ω, dω′) is Ft-measurable

for all A ∈ F̃t, all t ≥ 0.
(1.72)

Under (1.71), this is equivalent to saying that ω 7→ Q(ω,A′) is Ft-
measurable for all A′ ∈ F ′

t and t ≥ 0. A very good filtered extension

is very good because it has the following nice properties:

• any martingale, local martingale, submartingale,

supermartingale on (Ω,F , (Ft)t≥0,P)

is also a martingale, local martingale, submartingale,

supermartingale on (Ω̃, F̃ , (F̃t)t≥0, P̃)

• a semimartingale on (Ω,F , (Ft)t≥0,P)

is a semimartingale on (Ω̃, F̃ , (F̃t)t≥0, P̃),

with the same characteristics.

(1.73)

Statement (1.72) is equivalent to saying that any bounded martingale

on (Ω,F , (Ft)t≥0,P) is a martingale on (Ω̃, F̃ , (F̃t)t≥0, P̃). For example

a Brownian motion on (Ω,F , (Ft)t≥0,P) is also a Brownian motion on

(Ω̃, F̃ , (F̃t)t≥0, P̃) if the extension is very good, and the same for Poisson

random measures.

Many extensions are not very good: for example take Q(ω, .) to be

the Dirac mass εU(ω), on the space (Ω′,F ′) = (R,R) endowed with the

filtration F ′
t = F ′ for all t, and where U is an R-valued variable on

(Ω,F) which is not measurable with respect to the P-completion of F1,

say. Then Q(ω,A′) = 1A′(U(ω)) is not F1-measurable in general, even

when A′ ∈ F ′
1, and the extension is not very good.

1.4.3 The Grigelionis Form of an Itô Semimartingale

We are now ready to give our representation theorem. The difficult part

comes from the jumps of our semimartingale, and it is fundamentally a

representation theorem for integer-valued random measure in terms of a

Poisson random measure, a result essentially due to Grigelionis (1971).

The form given below is Theorem (14.68) of Jacod (1979), and we will call

the representation given here the Grigelionis form of the semimartingale

X .

We have the d-dimensional Itô semimartingale X with characteristics

(B, c, ν) given by (1.68). Moreover, d′ is an arbitrary integer with d′ ≥ d,

and E is an arbitrary Polish space with a σ-finite and infinite measure
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λ having no atom, and q(dt, dx) = dt ⊗ λ(dx). Then one can construct

a very good filtered extension (Ω̃, F̃ , (F̃t)t≥0, P̃), on which are defined a

d′-dimensional Brownian motion W and a Poisson random measure p on

R+ × E with intensity measure λ, such that

Xt = X0 +
∫ t
0 bsds+

∫ s
0 σsdWs

+(δ1{‖δ‖≤1}) ⋆ (p− q)t + (δ1{‖δ‖>1}) ⋆ pt,
(1.74)

where σt is an Rd ⊗ Rd
′

-valued process on (Ω,F , (Ft)t≥0,P) which is

predictable (or only progressively measurable), and δ is a predictable

Rd-valued function on Ω×R+×E, both being such that the integrals in

(1.74) make sense.

The process bt is the same here and in (1.68), and we have close

connections between (σt, δ(t, z)) and (ct, Ft). Namely, a version of the

spot characteristics ct and Ft is given by the following:

• ct(ω) = σt(ω)σ
⋆
t (ω)

• Ft(ω, .) = the image of the measure λ

restricted to the set {x : δ(ω, t, x) 6= 0}
by the map x 7→ δ(ω, t, x).

(1.75)

Conversely, any process of the form (1.74) (with possibly b, σ and

δ defined on the extension instead of (Ω,F , (Ft)t≥0,P)) is an Itô semi-

martingale on (Ω̃, F̃ , (F̃t)t≥0, P̃), and on (Ω,F , (Ft)t≥0,P) as well if it is

further adapted to (Ft). Therefore, the formula (1.74) may serve as the

definition of Itô semimartingales, if we do not mind extending the space,

and for practical applications we do not mind ! Therefore, in the sequel

we freely use the Grigelionis form above, pretending that it is defined on

our original filtered space (Ω,F , (Ft)t≥0,P).

There is a lot of freedom in the choice of the extension, of the space E

and the function δ, and even of the dimension d′ and the process σ: for the

latter, for example, the requirement being σtσ
⋆
t = ct, we can always take

an arbitrary d′ ≥ d, or more generally a d′ not smaller than the maximal

rank of the matrices ct(ω). A natural choice for E is E = Rd, but this

is not compulsory and we may take in all cases E = R with λ being the

Lebesgue measure. For example, if we have several Itô semimartingales,

and even countably many of them, we can use the same measure p for

representing all of them at once.

For a Lévy process, the Grigelionis form coincides with its Lévy-Itô

representation, upon taking p = µ and δ(ω, t, x) = x. More generally, in

equation (1.74), the term (δ1{‖δ‖≤1}) ⋆ (p− q)t corresponds to the small



From Diffusions to Semimartingales 49

jumps of the process, while the term (δ1{‖δ‖>1}) ⋆ pt corresponds to the

big jumps of the process.

1.4.4 A Fundamental Example: Stochastic

Differential Equations Driven by a Lévy

Process

We have already mentioned stochastic differential equations (SDE) of the

form (1.18), driven by a Brownian motion. Natural extensions of them

are SDEs driven by a Lévy process Z, written as

dXt = a(Xt−) dZt, X0 = Y. (1.76)

Here Z is a q-dimensional Lévy process, the “solution” X will be d-

dimensional, so Y is an F0-measurable Rd-valued variable, and a is a

function from Rd into Rd×Rq. As for (1.18), a (strong) solution is a càdlàg

adapted process X which satisfies the following, written componentwise:

X i
t = Y i +

q∑

j=1

∫ t

0
a(Xs−)

ij dZjs . (1.77)

The fact that we take the left limit a(Xs−) in the integral above, and

not a(Xs), is absolutely crucial, because the integrand needs to be pre-

dictable, otherwise the stochastic integral a priori makes no sense. Of

course when Z is continuous, hence the solution X as well, we have

a(Xs−) = a(Xs).

Note that (1.18) is a special case of (1.76), although it may not be

apparent at first glance: in (1.18), if W is q′-dimensional, we take q =

q′ + 1 and Zj =W j for j ≤ q′ and Zqt = t, and the coefficient a defined

by aij = σij when j ≤ q′ and aiq = bi.

Here again, a wide variety of conditions on a imply existence and/or

uniqueness of the solution of (1.76). The simplest one is that a is locally

Lipschitz with at most linear growth, but many other conditions exist,

sometimes related with the specific properties of the driving Lévy process

Z.

Now, assuming (1.77), the process X is of course a semimartingale,

and even an Itô semimartingale. If (β, γ, F ) is the characteristic triple

of Z, and using the Lévy-Itô representation of Z with p = νZ and q =
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νX = dt⊗ F (dz) and σ such that σσ∗ = γ, we can rewrite (1.77) as

X i
t = X i

0 +

q∑

j=1

∫ t

0
a(Xs−)

ijβj ds+

q∑

j,k=1

∫ t

0
a(Xs−)

ijσjk dW k
s

+

q∑

j=1

∫ t

0

∫

Rq

a(Xs−)
ijzj 1{‖z‖≤1} (p− q)(ds, dz)

+

q∑

j=1

∫ t

0

∫

Rq

a(Xs−)
ijzj 1{‖z‖>1} p(ds, dz).

Therefore, the characteristics (B,C, ν) of X take the form (1.68) with

the following (where a(x)z stands for the d-dimensional vector with com-

ponents
∑q
j=1 a(x)

ijzj):

bit =
∑q
j=1 a(Xt−)ij

(
βj+

+
∫

Rq zj
(
1{‖z‖≤1} − 1{‖a(Xt−)z‖≤1}

)
F (dz)

)

cijt =
∑q
k,l=1 a(Xt−)ikγkl a(Xt−)jl

Ft(ω, dx) = the image of the measure F

by the map z 7→ a(Xt−(ω))z.

(1.78)

These characteristics have a complicated form, although they indeed

come naturally as functions of the coefficient a: the problem of find-

ing a process which is an Itô semimartingale with characteristics given a

priori in the form (1.78) reduces in fact to solving Equation (1.76).

Now, we also have, in a somewhat more immediate way, the Grigelionis

form of X , provided we take for W and p the terms coming in the Lévy-

Itô decomposition of Z. Namely, in (1.74) the process bt is the same

(complicated) process as above, but σt and δ take the simple form

σikt =

q∑

j=1

a(Xt−)
ijσjk, δ(t, z)i =

q∑

j=1

a(Xt−)
ijzj.

In fact, equations like (1.68) are not really the most natural ones to

consider in a discontinuous setting. It is also useful to consider equa-

tions which are driven directly by a Brownian motion W and a (general)

Poisson random measure p on R+ × E for some “abstract” space E and

with intensity measure q = dt ⊗ λ(dz). This amounts to considering an
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equation of the form

Xt = Y +

∫ t

0
b(Xs−)ds+

∫ s

0
σ(Xs−)dWs

+

∫ t

0

∫

E
v(Xs−, z)1{‖v(Xs−,z)‖≤1} (p− q)(ds, dz) (1.79)

+

∫ t

0

∫

E
v(Xs−, z)1{‖v(Xs−,z)‖>1} p(ds, dz),

where b is an Rd-valued function on Rd and σ is an Rd⊗Rq-valued function

on Rd (where q is the dimension of W ) and v is an Rd-valued function on

Rd ×E. This type of equation includes (1.77) and immediately gives the

Grigelionis form of the solution. When existence and uniqueness hold for

all initial conditions Y , the solution is a homogeneous Markov process,

and the restriction of its infinitesimal generator to the C2 functions takes

the form

Af(x) =
d∑

i=1

b(x)if ′
i(x) +

1

2

d∑

i,j=1

c(x)ijf ′′
ij(x)

+

∫

E

(
f(x+ v(x, z))− f(x) (1.80)

−
d∑

i=1

f ′
i(x)v(x, z)

i 1{‖v(x,z)‖≤1}
)
λ(dz),

where c = σσ∗. This extends (1.17), and one may show that any homo-

geneous Markov process which is an Itô semimartingale is of this form.

More generally even, one can interpret the Grigelionis form (1.74) as

a generalized SDE similar to (1.79), but with “coefficients” bt(ω), σt(ω)

and δ(ω, t, z) which may depend on the whole past of X before time

t, and also on ω in an arbitrary (predictable) way. In this setting the

infinitesimal generator is replaced by the so-called extended generator

Atf(x) =
d∑

i=1

bitf
′
i(x) +

1

2

d∑

i,j=1

cijt f
′′
ij(x)

+

∫

E

(
f(x+ δ(t, z))− f(x)

−
d∑

i=1

f ′
i(x)δ(t, z)

i 1{‖δ(t,z)‖≤1}
)
λ(dz),

so At is a second order integro-differential operator mapping the C2 func-

tions into the set of random variables. This extended generator is no
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longer the generator of a semi-group, but the characteristic martingale

property of the generator is preserved, and it reads as follows: for any C2

function f , the process

Mf
t = f(Xt)− f(X0)−

∫ t

0
Asf ds

is a local martingale.

As a consequence of all these considerations, one may state (in a some-

what heuristic way) that the characteristics (B,C, ν), or equivalently

(and perhaps more appropriately) (bt, ct, Ft), determine the dynamics of

the process. They are thus of fundamental importance for modeling pur-

poses. More precisely, the problem of describing the process X is often

considered as “solved” when one knows the characteristics (B,C, ν), in

connection with X itself and perhaps with other random inputs.

1.5 Processes with Conditionally

Independent Increments

In most problems considered in this book we start with an underlying

process X which is an Itô semimartingale on some given filtered prob-

ability space (Ω,F , (Ft)t≥0,P). We then consider various functionals of

X , such as the approximate quadratic variation defined as the left side of

(1.61) or (1.62). We are interested first in the convergence in probability

of these functionals, as in Theorem 1.14, and ultimately in the rate of

convergence and, whenever possible, in the “second order” asymptotic

behavior, or Central Limit Theorem, associated with the convergence in

probability. As it turns out, the limit when such a CLT holds will almost

always be defined on an extension of (Ω,F , (Ft)t≥0,P), as introduced in

(1.70), and what will be available is the law of the limit under the mea-

sures Q(ω, dω′), or equivalently the F -conditional law of the limit; the

reader can look immediately at Chapter 3 for a (relatively) simple case

for which this situation occurs.

Actually, the putative limits will (almost) always be a stochastic pro-

cess U belonging to a special and relatively restricted class, namely the

processes having F -conditionally independent increments. The aim of

this section is to describe those processes, which have an interest by

themselves and can in fact be defined independently of any limiting pro-

cedure. Toward this aim, we first need to consider processes which extend

Lévy processes.
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1.5.1 Processes with Independent Increments

A q-dimensional process U defined on a space (Ω,F , (Ft)t≥0,P) is called

a process with independent increments, relative to (Ft), if it is càdlàg,

with U0 = 0, adapted, and the increment Ut+s−Ut is independent of Ft
for all s, t ≥ 0. In other words, we have all properties of Definition 1.1

except that the law of Ut+s − Ut may depend on both s and t. When

(Ft) = (FU
t ) is the filtration generated by U we simply say a process with

independent increments.

When the increments are stationary, U is simply a Lévy process.

Otherwise, it still exhibits similar features. In particular, when it is a

semimartingale, its characteristics relative to (Ft) are deterministic (this

property characterizes semimartingales with independent increments).

We can thus decompose its third (deterministic) characteristic ν as a sum

ν = νc + νd, where, using the notation D = {t > 0 : ν({t} × Rq) > 0}
and its complement Dc in R+,

νc(dt, dx) = ν(dt, dx)1Dc(t), νd(dt, dx) =
∑

s∈D
εs(dt)⊗ ν({s}, dx)

(there is no randomness here). We thus have two types of jumps: those

occurring at a time outside the countable set D, which are like the jumps

of a Lévy process except that the associated Poisson measure is non-

homogeneous (it admits νc as its intensity measure), and those occurring

at a time in D, which are called fixed times of discontinuity because we

have

P(∆Ut 6= 0) > 0 ⇐⇒ t ∈ D.

Although it is possible to describe all processes with independent in-

crements, we restrict our attention to those which are encountered as

limits in this book. This class of processes, denoted for short as Lq0 be-

low (q stands for the dimension), is in fact rather special: it is the class

of all processes of the form

Ut =
∑

n: tn≤t
v(tn)Yn +

∫ t

0
v′(s) dW ′

s (1.81)

where

• v is a measurable function on R+, with dimension q ×Q

• v′ is a measurable locally square-integrable function on R+,

with dimension q ×Q′

• W ′ is a Q′-dimensional Brownian motion

• tn ∈ (0,∞], tn 6= tm if n 6= m and tn <∞
• the RQ-valued variables Yn are i.i.d. and independent of W ′,
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and we suppose that at least one of the following two sets of conditions

holds:

(i) 0 < E(‖Y1‖) <∞ and
∑
n: tn≤t ‖v(tn)‖ <∞

(ii) E(Y1) = 0, 0 < E(‖Y1‖2) <∞ and
∑
n: tn≤t ‖v(tn)‖2 <∞.

Under (i) the first sum in (1.81) is absolutely convergent. Under (ii)

this is no longer necessarily true, but it converges in L2 and the resulting

process is a square-integrable martingale. Since P(Yn 6= 0) > 0, the set

of fixed times of discontinuity of U is the set of all finite tn’s such that

v(tn) 6= 0.

The following (obvious) fact is important:

Any U in Lq0 has independent increments, and its law is

determined by the functions v and v′, the set

D = {tn : n ≥ 1} ∩ (0,∞), and the law η of the variables Yn,

(1.82)

and we can relabel the sequence tn at will. Finally, under the previous

conditions we have, relative to the filtration (FU
t ) generated by U :

• U is a centered Gaussian process

⇔ either η is a centered Gaussian law or v = 0 on D

• U is a continuous centered Gaussian martingale

⇔ v = 0 on D.

(1.83)

1.5.2 A Class of Processes with F-Conditionally

Independent Increments

Generally speaking, a q-dimensional process U on an extension (Ω̃, F̃ , P̃)
of the original probability space (Ω,F ,P), see (1.68), is called a process

with F-conditionally independent increments if, for P-almost all ω, it is

a process with independent increments under the measure Q(ω, .).

As previously, we restrict our attention to those U which, under

Q(ω, .), belong to the class Lq0 described above, and we even suppose

that the law η (as in (1.82)) is the same for all ω. Therefore, in order to

construct such a process, we start with the following ingredients:

• a progressively measurable process V with dimension q ×Q

• a progressively measurable, locally square-integrable

process V ′ with dimension q ×Q′

• a probability measure η on RQ

• a sequence Tn of stopping times, with Tn 6= Tm
on the set {Tn <∞} if n 6= m.
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We also suppose that V and η satisfies at least one of the following two

conditions:

(i) 0 <
∫
‖x‖ η(dx) <∞ and

∑
n:Tn≤t ‖VTn‖ <∞

(ii) 0 <
∫
‖x‖2 η(dx) <∞,

∫
x η(dx) = 0,

and
∑
n:Tn≤t ‖VTn‖2 <∞.

(1.84)

The construction of a version of the process U is now quite simple. We

choose an extra space (Ω′,F ′,P′) endowed with the following objects:

• a q′-dimensional Brownian motion W ′

• a sequence (Yi)i≥1 of i.i.d. variables,

independent of W ′, with law η.

(1.85)

Then we define the product extension

Ω̃ = Ω× Ω′, F̃ = F ⊗ F ′, P̃ = P ⊗ P′. (1.86)

We also consider the smallest filtration (F̃t)t≥0 on Ω̃ which contains

(Ft)t≥0 (recall that any variable on Ω or Ω′ can be considered as a vari-

able on the product Ω̃, so Ft is also a σ-field on Ω̃), and to which W ′

is adapted, and such that each Yn is F̃Tn -measurable. Due to the inde-

pendence built in (1.85) and (1.86), the process W ′ is an (F̃t)-Brownian
motion and the processes V, V ′ are (F̃t)-progressively measurable. Then

it is an easy job to prove that the next formula defines a process U on

the extension, with all the required properties:

Ut =
∑

n:Tn≤t
VTn Yn +

∫ t

0
V ′
s dW

′
s. (1.87)

It is useful to have explicit formulas for the conditional first and second

moments of the process U in this setting. Letting

Mj =
∫
xjη(dx), Mjk =

∫
xjxkη(dx),

C′jk
t =

∑q′

l=1

∫ t
0 V

′jl
s V ′kl

s ds,
(1.88)

we get

(1.84)-(i) ⇒ E(U jt | F) =
∑
s≤t
∑q
k=1 V

jk
s Mk

(1.84)-(ii) ⇒





E(U jt | F) = 0

E(U jt U
k
t | F) = C′jk

t

+
∑
s≤t
∑q
l,m=1 V

jl
s V

km
s Mlm.
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Finally, if D(ω) = {Tn(ω) : n ≥ 1} ∩ (0,∞), the next two equivalences

follow from (1.83):

• U is F -conditionally a centered Gaussian process

⇔ η is centered Gaussian or V = 0 on D

• U is F -conditionally a continuous

centered Gaussian martingale ⇔ V = 0 on D.

(1.89)

We conclude with an important particular case. In many instances,

the process U given by (1.87) is continuous, that is, Ut =
∫ t
0 V

′
s dW

′
s. The

law of a continuous centered process U with independent increments is

completely specified by its covariance matrix E(U itU
j
t ), as a function of

time. This is of course still true when U is continuous, with F -conditional

mean 0 and with F -conditionally independent increments. That is, the

F -conditional law of U in this case is completely specified by the process

C′ given in (1.88).

In practice, one usually goes the other way around: one starts with a

q × q-dimensional process C′ of the form

C′
t =

∫ t

0
c′s ds,

with c′ adapted, with values in the set of nonnegative symmetric q × q

matrices. Then, what precedes gives us a process U which is continuous

and F -conditionally centered and with independent increments (equiv-

alently: F -conditionally a centered Gaussian martingale). For this, it

suffices to choose a q × Q-dimensional process V which is adapted and

is a square root of c′, that is, c′t = VtV
∗
t ; this is always possible by a

measurable selection theorem, up to null sets, and with any choice of Q

with Q ≥ q, or even with Q ≥ supω,t rank(c
′
t(ω)).
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Data Considerations

Semimartingales of the type described in the previous chapter are used

as modeling tools in a number of applications including the study of In-

ternet packet flow, turbulence and other meteorological studies, genome

analysis, physiology and other biological studies, particle modeling and

finance. We will focus in this chapter on the specific characteristics of

high-frequency financial data that distinguish them from other, more

standard, time series data. The statistical methods we will describe in

this book rely on statistics of the process X sampled at times i∆n for

i = 0, . . . , [T/∆n], and sometimes at unevenly spaced times, possibly

random. In financial applications, X will typically be the log of an asset

price and many statistics will often rely only on the increments of X , or

in time series parlance the first differences of X , which are the log-returns

from that asset.

The usual rationale for first-differencing a time series is to ensure that

when T grows the process does not explode: in many models, the process

X may be close to a local martingale and thus the discrete data Xi∆n

may be close to exhibiting a unit root, whereas the first differences of X

will be stationary or at least non-explosive. In this book, the asymptotic

perspective we adopt is to have T fixed. As a result, explosive behavior is

not a concern. However, as we will see later on, many natural quantities

of interest are statistics of the log-returns, but one should be aware that

there is no obstacle in principle to using the price process instead of

the log-returns. We will see one such example in the discussion of the

consequences of rounding, since in most market mechanisms rounding is

at the level of the price itself. Let us also add that, when the horizon T is

short, such as a day or a week, prices typically change during the whole

57
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Xt

Xt+

Xt–

t

∆Xt

= Data

Jump

Figure 2.1: A single path observed discretely: discrete increments vs.

jumps.

period by a small amount only, whereas the logarithm is a “locally linear”

transformation (as is any smooth function): in other words returns and

log-returns are roughly proportional.

Finally, we do not assume that we observe the full continuous-time

sample path. This distinction is particularly relevant when jumps are

present in the underlying price process: observing, say, a relatively large

price change as in Figure 2.1 may suggest that a jump was involved, but

is not the same as observing the jump of the underlying price process

itself.

2.1 Mechanisms for Price Determination

Markets are typically either order-driven or quotes-driven, with hybrid

arrangements possible. Order-driven markets typically function through

a limit order book, with specific rules determining how and when orders

get executed. In a quotes-driven market, orders get routed through a

dealer who posts quotes that the customer may or may not accept. These

institutional arrangements and the market architecture are constantly

evolving, in response to but also under pressure from high-frequency

trading firms.

We describe these mechanisms below, very briefly; much more compre-

hensive treatments can be found in some of the books that cover market
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microstructure theory and practice such as O’Hara (1995), Harris (2003)

and Hasbrouck (2007). Biais et al. (2005) discuss some of the implica-

tions of the price formation and trading process for price discovery and

welfare. Let us also mention that microeconomic studies of how prices

are formed are drawing increasing attention, due to the availability of

ultra-high-frequency data, but we will not touch upon this topic.

2.1.1 Limit Order and Other Market Mechanisms

From the perspective of observing a price, actual recorded transactions

are the most straightforward mechanism. In high-frequency data, a trans-

action is always accompanied by a time stamp that identifies the time

at which it was recorded. This time stamp is recorded down to the sec-

ond, and in some markets now to the millisecond. A transaction is often,

but not always, accompanied by a corresponding volume as well as other

characteristics that help identify for instance where that transaction took

place such as the exchange where it was executed. Rarely, data identify-

ing the parties to the transaction will also be available; this is primarily

the case for data collected by market regulators such as the SEC and the

CFTC and made available to researchers under stringent conditions.

A limit order specifies a direction for the desired transaction (buy or

sell), quantity (number of shares) and price at which the order should be

executed (maximal price if this is a buy order, minimal price if this is a sell

order). The collection of such orders that are in existence at each time,

and have not yet been executed, is the limit order book. When a new

order arrives in the market, it is compared to the existing orders in the

book. If the new order leads to a possible transaction, for instance because

it specifies a buy order and a quantity at a price that are compatible (in

this case, higher) with one or more sell orders in the book, a transaction

takes place.

Market rules determine in what sequence orders get executed. Typi-

cally, the first priority is granted to price, meaning that an order to buy

at a higher price will be executed before an order to buy at a lower price.

The second priority is often granted to time, so orders at the same price

are executed first-in, first-out, although in some markets the second pri-

ority is given to order size instead, and in some cases orders are allocated

proportionately to each limit order in the book at the best price. Many

high-frequency trading strategies are designed to “game” the priority

rules by strategically placing multiple orders, many of which the trader

has no intention of executing: traders will use their ability to limit orders
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to hold their place in the queue, and rely on their ability to cancel orders

at a lightning fast pace whenever necessary.

Instead of a limit order, a market order may be placed. Such an order

specifies only a direction and quantity and is executed at the prevailing

price; if the quantity specified exceeds what the book is able to fulfill at

the best price, then the order may get executed at progressively worse

prices, as it “walks the book.”

The price data that get recorded from a limit order market are avail-

able in real time using subscription mechanisms for traders, which are

an important source of revenue for exchanges, and with a delay of a few

minutes for everyone else. While transactions data are readily available,

very few data sources contain the limit order book that is in existence

at each point in time, that is, the full context in which the transactions

actually took place. Reconstructing the limit order book ex post requires

a vast amount of computational effort, and access to data (such as mes-

sages exchanged between market participants and exchanges to place and

cancel orders) that are not readily available.

Although this is rapidly changing, the availability of high-frequency

futures data, with the exception of S&P 500 eMini contracts, has so

far lagged behind that for equities. One common limitation is that only

transactions leading to a price change (“tick data”) are being reported,

and sometimes no volume data are attached.

In a limit order market, consumers send their orders to the market

with minimal role for intermediaries. In a dealer market, by contrast,

multiple dealers quote bid and ask prices to potential customers. The

bid price is the price at which the dealer is willing to buy from the

customer, the ask price the price at which the dealer is willing to sell

to the customer. Transactions and quotes data emerge naturally from

this market mechanism. Whereas the limit order book is often difficult

to reconstruct in a limit order market, the sequence of quotes in effect at

each point in time is usually available in a dealer market.

Examples of dealer markets include the markets for foreign exchange,

corporate bonds and swaps. The frontier between limit order markets and

dealer markets is often fluid. For example, interdealer trade in the foreign

exchange market is often conducted via a limit order book. NASDAQ

originally operated as a dealer market. It now operates primarily as a

limit order market.

Regulatory bodies ask markets to link together to provide the best pos-

sible execution irrespectively of where an order is initially placed, while

technological developments make it easier to develop a new trading venue
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and compare in real time price and order information from competing

trading venues for the same asset. These forces tend to counteract the ef-

fect of market fragmentation. One consequence of market fragmentation

for the statistical properties of the price series is to make it more difficult

to aggregate price information that emerges from different markets, since

the time stamps may not be exactly synchronous and may or may not

be reported using the same sets of rules. Some high frequency trading

strategies attempt to take advance of any lack of synchronicity.

2.1.2 Market Rules and Jumps in Prices

Both limit order markets and dealers markets are designed to operate

continuously. By contrast, a double-sided auction is designed to operate

at discrete points in time. Trade then occurs only at periodic auctions,

called fixings, once or more often per day. Therefore, by nature, auction

markets do not lead to high-frequency transactions data. In other cases,

the market operates continuously but with periods of closure such as the

night.

One consequence for the price process is that large price increments

will often be recorded from the previous close to the new open price.

For instance, opening prices will incorporate the cumulative effect of all

information revealed overnight. For statistics that are based on price

increments, these overnight returns recorded over a long period while

the market was closed will often not be included in the sample since they

are not comparable to the fixed sampling at ∆n series. Including them

would have the effect of generating an additional, usually large, jump

every morning at opening time, in the price series; this would drastically

affect the nature of the models for jumps which, when present, are usually

thought of as occurring at random and unpredictable times.

Another aspect of market rules that can potentially have an impact on

jumps in the price series are rules detailing how the market will operate

in case of market disruption, potential or realized. These rules generally

specify trading halts and circuit breakers in certain circumstances. For

instance, if a firm is about to make a significant announcement, regu-

lators may temporarily halt trading in its stock. The temporary halt in

trading is intended to afford agents in the market a chance to assess

the information so that once trading resumes the price movement in the

stock might be less than it would otherwise have been. Circuit breakers

are designed to halt trading in the event of a large market decline.
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Figure 2.2: Transaction prices and quotes. SPY, December 1, 2010.

2.1.3 Sample Data: Transactions, Quotes and NBBO

Throughout the book, we demonstrate how to implement some of the

methods described and report the results using a few high-frequency fi-

nancial time series obtained from two sources. The first is the NYSE

Euronext Trade and Quote (TAQ) database. The TAQ database pro-

vides tick-by-tick quote and transaction data for equities listed on the

New York Stock Exchange, NYSE American Stock Exchange, NASDAQ

National Market System and SmallCap issues. The data are collected

between the consolidated tape hours of 4:00 a.m. to 6:30 p.m. EST. We

extract from the TAQ data two individual stock price series, Microsoft

and Intel, and an exchange traded fund, SPY, that tracks the perfor-

mance of the S&P500 Index over the four-year period 2005–2010.

Additionally, we employ TickData, Inc., for currency and commodity

futures and an equity index.1 The contracts we consider are EUR/USD

futures traded on the CME, NY Light Sweet Crude Oil futures traded on

the NYMEX and the Dow Jones Industrial Average cash index. We will

use the symbols EC, CL and DJ to denote these contracts respectively.

Similar to the equity data, we consider the four-year period from 2007–

2010.

1TickData provides already-filtered high-frequency time series of transaction data

including both prices and quantities through its program Tick Write 7. TickData

describes its filtering methodology in broad terms in the article “High Frequency

Data Filtering,” which can be found at http://www.tickdata.com/products/futures/

under “Data Set Generation and Filtering.”
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As TickData provides filtered high-frequency data we only concern

ourselves with filtering the TAQ data. We start by downloading unfiltered

data directly from the TAQ database for IBM and SPY into daily files.

These data include “good trades” where the TAQ user manual defines

good as regular trades which were not corrected, changed or signified

as cancel or error, as well as original trades that were later adjusted to

correct either the time or data. To construct an unfiltered time series

we analyze each day in the sample individually. At each intraday time

stamp we check for good transactions. If there are multiple transactions

at a time stamp, which is often the case for liquidly traded stocks, we

compute an average price weighting each transaction by its volume. If

there are no trades at a particular time stamp, we do not change the

price from its level at the previous time stamp.

The TAQ database also allows us to download quote data including

bids, offers and their respective sizes. When employing quotes data, one

possibility consists in constructing a price series by taking the midpoint

of the bid and ask quotes, weighted by the quantities for which they are

available. One often needs to take care to not include quotes that are far

off the mark and may have been posted by a dealer in error or simply to

withdraw, perhaps temporarily, from the market (so-called stub quotes).

Instead, we use the quotes data to construct a second time series we

call NBBO for National Best Bid and Offer. This series is constructed

by checking each intraday time stamp for all available bids and offers.

The best bid is computed as a volume weighted average of the quotes

whose volume and price fall in the highest 90% of all available quotes

at that time stamp. The best offer is computed in an analogous manner

retaining quotes with the highest volume and lowest price. Then, if the

average bid is less than or equal to the average offer, the mid or price is

constructed by taking an average of the bid and offer. Hence the NBBO

time series consists of a bid, mid and offer for each time stamp. If it

happens that the average bid is greater than the average offer, the quotes

are removed and we use the quote from the immediately preceding time

stamp. Additionally, if no quotes are available at a time stamp, we take

the bid, mid and offer from the immediately preceding one.

Finally, we construct a filtered time series using the data from the un-

filtered time series and the NBBO time series. At the outset one might

argue that any filtering method should err on the side of being conser-

vative, that is, keeping rather than removing transaction data. The un-

filtered data are not raw. The TAQ database only reports transactions

deemed as good. However, visual inspection of the data may lead one to
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be concerned about “bouncebacks.” These are transactions that visually

appear to be outliers, identified as being either higher or lower than both

the preceding and following transactions. This is perhaps related to the

SEC regulation that exchanges may report trades within 90 seconds of

when they actually occur. Reported transaction times may be delayed

for a number of reasons. But for our purposes it suffices to realize that

at any point t a good transaction may have actually occurred anytime

in the window (t − τ, : t) where τ is a 90 second window. With this in

mind we construct our filter by taking at each time t the minimum of

the NBBO bid time series and maximum of the NBBO offer time series

over the previous 90 seconds, and we remove any transactions that oc-

cur outside this window. This filtering method has the advantage that

the size of the window will be determined in part by the local volatil-

ity of the price process, providing an endogenous method for removing

bouncebacks that is hopefully conservative.

We then have three time series, unfiltered, NBBO and filtered, along

with the TickData in quarterly files. Each quarterly file pertains to an

individual security and it catalogs from 9:30:05 a.m. to 16:00:00 p.m. the

day, time, interval between prices in seconds, price and log-return.

2.2 High-Frequency Data Distinctive

Characteristics

One of the distinctive characteristics of the data consists of the fact that

they are observed at times that are random, or at least not evenly spaced.

Complicating matters, the time between observations may be informative

about the price process, with trades occurring more or less frequently

depending upon the news flow, which itself will generally influence the

price process. This form of endogeneity is difficult to deal with, and even

to properly formulate mathematically, and will largely be ignored in this

book. Related to this question is the fact that when multiple assets are

observed, transactions rarely occur at exactly the same time, resulting

in asynchronicity.

Observations are also subject to a substantial amount of noise, due

to a diverse array of market microstructure effects, either informational

or not: bid-ask spread bounces, differences in trade sizes, informational

content of price changes, gradual response of prices to a block trade, the

strategic component of the order flow, inventory control effects, discrete-

ness of price changes, etc. In some instances, transactions or quotes may
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be time-stamped to the nearest second, resulting in multiple observations

at the same second and a loss of a clear time sequencing, when in fact

traders operate on a millisecond time scale.

One additional characteristic that is relevant in practice is the sheer

quantity of data available. For example, all transactions on a liquid stock

over the course of a year can exceed one gigabyte. Limit order book data

can multiply this to a staggering amount of data. While transactions and

quotes data are more and more readily available in publicly disseminated

databases, reconstructing the limit order book in effect at each point in

time remains a time consuming and largely elusive notion, primarily due

to the lack of public information about the identity of the accounts behind

specific quotes.

Finally, the returns and volatility data may in some cases have dis-

tinctive statistical features, such as exhibiting heavy tails, long memory

in the case of volatility data, and strong intra-day and intra-week peri-

odicity.

2.2.1 Random Sampling Times

In a limit order market, orders initiated by customers arrive at random

times, so it is natural to expect that the transactions will also take place

at random times. Creating a series of equally spaced values of X with

inter-observations time ∆ therefore requires making assumptions. If there

is no observed transaction at time i∆, then we may put in its place

the last recorded transaction before that instant. To be effective, this

approach requires that ∆ be at least slightly longer than the average

time separating the actual transactions.

An advantage of quotes data is that they are available continuously,

even if slightly stale, so constructing a series of X sampled at equally

spaced times i∆ for i = 0, 1, . . . , [T/∆] is in principle straightforward.

Figure 2.3 show histograms of the distribution of inter-transaction and

inter-quotes times for the S&P500 and IBM.

An important approach to model irregularly spaced financial data con-

sists of employing point processes, with the times between transactions

or quotes labeled as durations, see Hasbrouck (1991), Engle and Russell

(1998), Bauwens and Giot (2001), Hautsch (2004, 2012) and Bauwens and

Hautsch (2009). Market events tend to be clustered over time, resulting

in durations that are typically positively autocorrelated and strongly per-

sistent. These time series properties have given rise to dynamic models
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Figure 2.3: Empirical distribution of times between observations, SPY

and IBM, 2010.

of intra-trade or intra-quotes durations, often with some features in com-

mon with autoregressive volatility models such as Engle’s ARCH (1982).

2.2.2 Market Microstructure Noise and Data Errors

A second distinct characteristic of high-frequency financial data is that

they are observed with noise, and that the noise interacts with the sam-

pling frequency in complex ways. In an efficient market, Xt is the log of

the expectation of the value of the security conditional on all publicly

available information at time t. It corresponds to the log-price that would

be in effect in a perfect market with no trading imperfections, frictions,

or informational effects.

By contrast, market microstructure noise summarizes the discrepancy

(often termed as an “observation error”) between the efficient log-price

and the observed log-price, as generated by the mechanics of the trading

process. What we have in mind as the source of noise is a diverse array

of market microstructure effects, either information or non-information

related, such as the presence of a bid-ask spread and the corresponding
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Figure 2.4: Log-plot of the marginal density of log-returns, at a frequency

of 5 seconds, empirical compared to Normal with matched variance, fil-

tered SPY transactions, 2010.

bounces, the differences in trade sizes and the corresponding differences

in representativeness of the prices, the different informational content of

price changes due to informational asymmetries of traders, the gradual

response of prices to a block trade, the strategic component of the order

flow, inventory control effects, the discreteness of price changes in markets

that are subject to a tick size, etc., all summarized into the noise term.

That these phenomena are real and important is an accepted fact in the

market microstructure literature, both theoretical and empirical. One

can in fact argue that these phenomena justify this literature.

2.2.3 Non-normality

A final characteristic of the data, which is of course strongly sugges-

tive of a departure from the Brownian-only paradigm, is non-normality.

Log-returns at high frequency can be quite far from being normally dis-

tributed, as seen in the Figure 2.4. This non-normality is a well-known

feature of empirical returns, dating back to at least the 1960s, and can in

fact be seen as having motivated the early introduction of jump processes,

such as stable processes, for modeling prices.

This non-normality feature is present at all sufficiently high frequen-
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Figure 2.5: Log-plot of the marginal density of log-returns, at frequencies

of 5, 10, 15, 30 and 45 seconds, filtered SPY transactions, 2010.

cies, as seen in Figure 2.5. Early evidence on non-normality of returns

was produced by Mandelbrot (1963) and Fama (1965).

2.3 Models for Market Microstructure

Noise

Although we will consider models with noise in greater detail in Chapter

7, we start now with a brief description of two polar models, which are

the most amenable to subsequent analysis.

2.3.1 Additive Noise

The notion that the observed transaction price in high-frequency financial

data is the unobservable efficient price plus some noise component due

to the imperfections of the trading process is a well established concept

in the market microstructure literature (see for instance Black (1986)).

A natural assumption is therefore to consider that, instead of observing

the process X at dates τi = i∆n, we observe X with error:

Yτi = Xτi + ετi (2.1)
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where in the simplest possible case the ε′τis are i.i.d. noise with mean zero

and variance a2 and are independent of the X process. In that context,

we view X as the latent efficient log-price, while Y is the observed market

log-price. Many market frictions tend to take proportional magnitudes:

for instance one may see a transaction cost expressed as some number

of basis points. Such a friction would then translate into a multiplicative

error for the price, or an additive error for the log-price as specified in

(2.1).

We can think of (2.1) as the simplest possible reduced form of struc-

tural market microstructure models. The efficient price process X is typi-

cally modeled as a semimartingale. This specification coincides with that

of Hasbrouck (1993), who discusses the theoretical market microstruc-

ture underpinnings of such a model and argues that the parameter a is

a summary measure of market quality. Structural market microstructure

models do generate (2.1). For instance, Roll (1984) proposes a model

where ε is due entirely to the bid-ask spread. Harris (1990b) notes that

in practice there are sources of noise other than just the bid-ask spread,

and studies their effect on the Roll model and its estimators.

Indeed, a disturbance ε can also be generated by adverse selection

effects as in Glosten (1987) and Glosten and Harris (1988), where the

spread has two components: one that is due to monopoly power, clearing

costs, inventory carrying costs, etc., as previously, and a second one that

arises because of adverse selection whereby the specialist is concerned

that the investor on the other side of the transaction has superior in-

formation. When asymmetric information is involved, the disturbance ε

may no longer be uncorrelated with the X process.

Following the analysis of Aı̈t-Sahalia et al. (2005), and assuming that

the log-price is a square-integrable martingale, the equality

∆n
i Y = ∆n

i X + ετi − ετi−1

implies the following covariance structure of the observed log-returns

∆n
i Y

′s, which are centered variable:

E[∆n
i Y∆n

i+jY ] =





σ2∆+ 2a2 if j = i

−a2 if j = i+ 1

0 if j > i+ 1

(2.2)

In other words, the series ∆n
i Y is an MA(1) process, as i varies.

Two important properties of the log-returns ∆n
i Y

′s emerge from this

equation (2.2). First, microstructure noise leads to spurious variance in
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observed log-returns, namely σ2∆+2a2 vs. σ2∆. This is consistent with

the predictions of some theoretical microstructure models. For instance

Easley and O’Hara (1992) develop a model linking the arrival of informa-

tion, the timing of trades, and the resulting price process. In their model,

the transaction price will be a biased representation of the efficient price

process, with a variance that is both overstated and heteroskedastic as a

result of the fact that transactions (hence the recording of observations

on the process Y ) occur at intervals that are time-varying.

Furthermore, the proportion of the total return variance that is market

microstructure-induced is

φ =
2a2

σ2∆+ 2a2
(2.3)

at observation interval ∆. As ∆ gets smaller, φ gets closer to 1, so that

a larger proportion of the variance in the observed log-return is driven

by market microstructure frictions, and correspondingly a lesser fraction

reflects the volatility of the underlying price process X.

Second, (2.2) implies that log-returns are (negatively) autocorrelated

with first order autocorrelation −a2/(σ2∆ + 2a2) = −φ/2 and a van-

ishing higher order autocorrelation. This fact is substantiated in Fig-

ure 2.6, which shows that indeed the autocorrelogram of log-returns can

be in practice very close to the autocorrelogram of an MA(1) process.

It has been noted that market microstructure noise has the potential

to explain the empirical autocorrelation of returns. For instance, in the

simple Roll model, εt = (s/2)Qt where s is the bid-ask spread and Qt,

the order flow indicator, is a binomial variable that takes the values +1

and −1 with equal probability. Therefore Var[εt] = a2 = s2/4. Since

Cov(∆n
i Y,∆

n
i−1Y ) = −a2, the bid-ask spread can be recovered in this

model as s = 2
√−ρ where ρ = −a2 is the first order autocorrelation of

returns. French and Roll (1986) proposed to adjust variance estimates to

control for such autocorrelation and Harris (1990b) studied the resulting

estimators. Zhou (1996) proposed a bias correcting approach based on

the first order autocovariances; see also Hansen and Lunde (2006), who

study the Zhou estimator.

In Sias and Starks (1997), ε arises because of the strategic trading of

institutional investors, which is then put forward as an explanation for

the observed serial correlation of returns. Lo and MacKinlay (1990) show

that infrequent trading has implications for the variance and autocorre-

lations of returns. Other empirical patterns in high-frequency financial
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Figure 2.6: Autocorrelogram of log-returns of transaction prices on SPY

sampled at a fixed 5 second frequency. For each lag j = 0, 1, 2, ... on the

x-axis, the correlation of ∆n
i Y and ∆n

i−jY, estimated from observations

i = j + 1, ..., n, is reported.
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data have been documented: leptokurtosis, deterministic patterns and

volatility clustering.

What if the data on log-returns is inconsistent with a simple MA(1)

structure ? Griffin and Oomen (2008) provide an interesting analysis of

the impact of tick vs. transaction sampling. Their results show that the

nature of the sampling mechanism can generate fairly distinct autocor-

relogram patterns for the resulting log-returns. Now, from a practical

perspective, we can view the choice of sampling scheme as one more

source of noise, this one attributable to the econometrician who is decid-

ing between different ways to approach the same original transactions or

quotes data: should we sample in calendar time? transaction time? tick

time? something else altogether? Since the sampling mechanism is not

dictated by the data, this argues for working under robust departures

from the basic assumptions.

In any case, it is of course possible to generalize the above setup to one

where the ε′τis are not serially independent, hence modifying the struc-

ture given in (2.2). A simple model to capture higher order dependence

in the log-returns is

ǫτi = Uτi + Vτi (2.4)

where U is i.i.d., V is AR(1) with first order coefficient ρ having

|ρ| < 1, and U and V are independent. Under this model, we obtain

an ARMA(1, 1) structure

E[∆n
i Y,∆

n
i−1Y ] =





σ2∆+ 2E
[
U2
]
+ 2 (1− ρ)E

[
V 2
]

if j = i

−E
[
U2
]
− (1− ρ)

2
E
[
V 2
]

if j = i+ 1

−ρj−i−1 (1− ρ)
2
E
[
V 2
]

if j > i+ 1

which can generate richer patterns of autocorrelations in the log-returns,

all due to serial correlation in the noise, and still assuming that the true

log-price is a square-integrable martingale.

2.3.2 Rounding Errors

The second situation we consider is one where the measurement error

is primarily due to the fact that transaction prices are multiples of a

tick size (e.g., Yτi = [Xτi] = miα where α is the tick size and mi is the

integer closest to Xτi/α) and can be modeled as a rounding off problem

(see Gottlieb and Kalay (1985), Jacod (1996) and Delattre and Jacod

(1997)). Markets often specify a minimum price increment, also known

as a tick size, which may be as low as one cent in the case of decimalized

stocks in the United States.
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The specification of the model in Harris (1990a) combines both the

rounding and bid-ask effects as the dual sources of the noise term ε.

Finally, structural models, such as that of Madhavan et al. (1997), also

give rise to reduced forms where the observed transaction price Y takes

the form of an unobserved fundamental value plus error.

Rounding effects are often quite important for many assets and sam-

pling frequencies. On the other hand, this effect can be small for certain

data series, such as decimalized stocks at all but the highest frequencies,

or liquid currencies which are often rounded to the fourth or fifth decimal

point, or indexes which result from computing a weighted average of the

rounded prices of a large number of prices. Ceteris paribus, this com-

ponent of the noise becomes less important as the sampling frequency

decreases. Also, it has been noted (see Harris (1991)) that when the tick

size is small, priority given to order time can become less effective since

a new order can gain priority by offering a slightly better price by one

tick; this is the practice known as “pennying.”

As noted above, a realistic treatment of rounding effects requires that

we operate on price levels instead of log returns.

2.4 Strategies to Mitigate the Impact of

Noise

Various strategies are available at the level of data pre-processing, mean-

ing before any of the methods described in the rest of this book, are

employed.

2.4.1 Downsampling

High-frequency financial data are often available every second or every

few seconds. It has been noted that market microstructure noise is linked

to each transaction, and not to the amount of time that separates succes-

sive transactions. For instance, the volatility of the underlying efficient

price process and the market microstructure noise tend to behave differ-

ently at different frequencies. Thinking in terms of signal-to-noise ratio,

a log-return observed from transaction prices over a tiny time interval is

mostly composed of market microstructure noise and brings little infor-

mation regarding the volatility of the price process since the latter is (at

least in the Brownian case) proportional to the time interval separating

successive observations. As the time interval separating the two prices

in the log-return increases, the amount of market microstructure noise
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remains constant, since each price is measured with error, while the infor-

mational content of volatility increases. Hence very high-frequency data

are mostly composed of market microstructure noise, while the volatility

of the price process is more apparent in longer horizon returns.

The simplest method consists then of sampling at a lower frequency,

with a time interval typically measured in minutes. In the volatility litera-

ture, a value of 5 to 15 minutes has often been employed. One drawback

of this approach, however, is that it leads to discarding a substantial

amount of the data that were originally available, which in purely statis-

tical terms leads to efficiency losses which can indeed be large. We will

discuss this further in Chapter 7.

2.4.2 Filtering Transactions Using Quotes

Different measurements of the stock returns lead to different properties

of the constructed price process. One particular issue that deserves care-

ful attention in the data is that of bouncebacks. Bouncebacks are price

observations that are either higher or lower than the sequences of prices

that both immediately precede and follow them. Such prices generate a

log-return from one transaction to the next that is large in magnitude,

and is followed immediately by a log-return of the same magnitude but

of the opposite sign, so that the price returns to its starting level before

that particular transaction. To the extent that we have no reason to be-

lieve that those transactions did not actually take place, as we already

eliminate transactions known to TAQ to be incorrect, we start with the

premise that bouncebacks should not be arbitrarily removed from the

sample. However one may think that bouncebacks, although significant

in a sense, should not be incorporated in the model for the “true” latent

price process, whatever this “true” might mean.

The prevalence of bouncebacks can lead to a large number of relatively

small jumps in the raw data and can bias the empirical results toward

finding more small jumps than actually happen if the data are correctly

measured, or bias the estimated degree of jump activity. By contrast, a

true jump can be followed by another jump (due to the prevalence of jump

clustering in the data), but these successive jumps will not necessarily

be of the same magnitude and of the opposite sign.

One straightforward approach to eliminate bouncebacks would be to

eliminate all log-returns that are followed immediately by another log-

return of the opposite sign, when both are greater than a predetermined

magnitude, such as some number of ticks. There is however typically in
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Figure 2.7: Transactions and filtered price, SPY, April 8, 2009.

the data a continuum of bouncebacks in terms of such magnitude, so this

approach ends up creating a discontinuity at the arbitrary predetermined

magnitude selected: many of them of size less than that level and then

none. On the other hand, setting that level within one tick would be

extreme and would change the nature of the observed prices.

To deal with bouncebacks endogenously, we can instead make use

of the matched quotes data. Transactions that take place outside the

currently prevailing quotes are known as “out-trades.” A single out-trade

will generate a bounceback. We can use the quotes data in order to

reduce the incidence rate of bouncebacks in the transactions data, in a

manner that is compatible with market rules. Incidentally, bouncebacks

can happen in quotes data as well. But they tend to appear when there is

only a very small number of quotes at that point in time, with one or more

that are off-market for the reasons just described. Quote bouncebacks

seem to be unrelated to transaction bouncebacks.

Given the computed NBBO at each point in time, we can take a

moving window of, for instance, 90 seconds. This might cover the case of

a block trade that might have its reporting delayed. Or opening trades

done manually can be delayed, for instance, even at small sizes. The 90-

second window we employ is set to reflect the SEC rules that specify

that exchanges must report trades within 90 seconds. Trades that are

delayed beyond 90 seconds are marked as “late,” and already excluded

from the starting data by our TAQ filters. We use this 90-second moving
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Figure 2.8: Filtering the transaction prices using the NBBO filter con-

structed from quotes data, SPY, April 8, 2009.

window to construct a running minimum of the national best bid prices

and a running maximum of the national best offer prices over the time

window. This NBBO bid-offer moving envelope is then used as our filter

for transactions: we retain only transactions that take place inside the

envelope.

There are many reasons for trades to be delayed, especially when some

form of manual execution is involved. For example, in the case of negoti-

ated trades, brokers might work the order over time, leading to a sequence

of smaller trades reports. Or the broker might (acting as principal) sell

the whole amount to the customer, in which case we would see a single

trade report. Another practice involves “stopping” the order: the broker

does not execute the order immediately, but does guarantee the buyer a

price. The broker can then work the order, deferring any trade reports

until the execution is complete, at which time an average price is re-

ported. The average price can appear out of line with the prices around

it and lead to a bounceback.

The NBBO filter we employ tends to be conservative – erring on the

side of retaining transactions – since there is no guarantee that an out-

trade is actually necessarily due to a time delay, or that even if delayed it

took place at a time when the bid-ask spread was less than the maximal

width of the spread over the 90-second time window. On the other hand,

block (negotiated) trades usually carry a price concession and so could
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be executed outside this envelope and thereby be wrongly excluded. To

the extent that, for it to lead to a bounceback, this is by definition a

single isolated transaction, it did not have a permanent price impact,

but rather was associated with a transient liquidity effect.

We do not make use of the NBBO quotes depth: from the list of

prevailing quotes by exchange, we already determine the best (maximum)

bid price and the best (minimum) ask price. Using the prevailing quote

list, we could sum the bid sizes for quotes at the best bid price, and sum

the ask sizes for the quotes at the best ask price. This would produce

the NBBO sizes available to trade at each point of time and one could

consider filtering out transactions of greater size. However, this might

also in some circumstances eliminate legitimate transactions, such as

block trades, or for that matter any trade that has a price impact and is

executed in one block. In any event, we find empirically that filtering the

transactions by the NBBO filter as described above reduces drastically

the number of bouncebacks in the data.

We start with the unfiltered transactions data, and this procedure re-

sults in a time series of NBBO-filtered transactions. We also produce a

series of the midpoint of the just computed NBBO bid and ask prices and

use this as our measurement of the quote price at that point in time. We

therefore end up with three different measurements of the “price” series,

for each stock: the unfiltered transactions; the NBBO-filtered transac-

tions; and the NBBO quotes midpoint. As we will see, statistical proce-

dures applied to these different series tend to yield consistent results, but

not always.





Part II

Asymptotic Concepts





This book is about econometric methods for high-frequency data: we

want to estimate some parameters of interest, or test some statistical

hypotheses, in connection with the model or family of models we use;

the “high-frequency” qualifier means that the underlying process X is

observed at discrete times, say 0,∆n, 2∆n, . . ., with a “small” time inter-

val ∆n, whereas the observation window [0, T ] is not particularly large.

Therefore the estimators or tests are based on observations inside a fixed

window, T fixed, and we wish them to be at least consistent as ∆n

shrinks to 0; and the faster the convergence of the estimators or tests

takes place, the better. Non-regular spacing between observations may

also be considered, provided the mesh continues to go to 0.

The aim of this part is to introduce the asymptotic concepts that we

employ, and it contains three chapters with very different scopes. The

first is devoted to an introduction to the emblematic problem for high-

frequency statistics, which is integrated volatility estimation. This chap-

ter concerns a simplified version of the problem and serves as a general

introduction to asymptotic theory, whereas the next chapter describes,

again in a very simplified setting, the behavior of the so-called power

variations, which play a fundamental role later. These two chapters are

designed as an introduction to the rest of the book, but the material in

them will be re-worked in fuller generality later on; hence they can be

skipped without harm (except perhaps for Sections 3.2 and 3.3 in which

the stable convergence in law and some basic facts about the convergence

of processes are established)

In the third chapter of this part, we introduce in some detail the var-

ious quantities or hypotheses which will be estimated or tested later on,

starting with the definition of what “estimating” or “testing” a quantity

or a hypothesis which is “random” might mean. This includes a number

of definitions and examples of “identifiable” parameters or hypotheses.

This is done first in the (parametric or semi-parametric) context of Lévy

processes, and then for more general Itô semimartingales, which is a fully

non-parametric case and for which most “parameters” which one wants

to estimate are fundamentally random.





Chapter 3

Introduction to

Asymptotic Theory:

Volatility Estimation for

a Continuous Process

In this chapter, we consider, as an introduction to asymptotic theory, the

very simple situation of a one-dimensional continuous martingale of the

form

Xt = X0 +

∫ t

0
σs dWs. (3.1)

Our objective is to “estimate” its integrated volatility, which is

Ct =

∫ t

0
csds, where cs = σ2

s ,

on the basis of discrete observations of X over the time interval [0, T ],

with the horizon T fixed. The sampling is the simplest possible: equidis-

tant observations, without market microstructure noise. The observation

times are i∆n for i = 0, 1, . . . , [T/∆n], where [T/∆n] is the biggest in-

teger less than or equal to T/∆n, and the time interval ∆n eventually

goes to 0: this is what is meant by high-frequency asymptotics, and will

be our asymptotic framework throughout.

The parameter CT to be estimated is in general random, so the word

“estimation” is not totally appropriate and should perhaps be replaced by

“filtering,” but use of “estimation” in the present context is predominant

in the econometrics literature. Despite the (possible) randomness of CT ,

83
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the notion of estimators is analogous to what one encounters in more

standard statistical situations: at stage n, an estimator for CT is simply

a random variable, or statistic, which only depends upon the observations

Xi∆n for i = 0, 1, . . . , [T/∆n], and the aim is to find estimators which

are (weakly) consistent, in the sense that they converge in probability to

CT . We would also like these estimators to converge as fast as possible,

and to produce confidence intervals for CT at any prescribed asymptotic

level, hence the need for a Central Limit Theorem.

An important feature of what follows is that a single path t 7→ Xt(ω) is

(partially) observed. Now, should several paths be observed, the quantity

of interest CT would in fact depend on each of those paths and having a

good (or even perfect) estimation for one would not entail an improved

estimation for the others. So, observing a simple path X(ω) exactly fits

the problem of estimating CT (ω) for that particular outcome ω. Then

of course having weak consistency does not seem to resolve the ques-

tion, and strong consistency (that is, almost sure convergence; usually

strong consistency does not hold in the context of this book) would not

either, but this is in no way different from the same problem in the usual

statistical setting.

Here Ct = [X,X ]t is the quadratic variation, so we saw in Theo-

rem 1.14 of Chapter 1 such a consistent sequence of estimators, namely

the approximate quadratic variation, often called “realized volatility”

or “realized variance,” although the latter terminology is in fact deeply

misleading:

Ĉ(∆n)t =

[t/∆n]∑

i=1

(∆n
i X)2, where ∆n

i X = Xi∆n −X(i−1)∆n
. (3.2)

Note our notation ∆n
i X for the ith return of the process, which is of

course different from the notation ∆Xs we would employ to denote the

jump at time s, if there were any jump (which is excluded by (3.1) here).

The aim of this chapter is to explain the issues involved when one

attempts to derive the rate of convergence and the limiting distribution

of the estimation error Ĉ(∆n)−C, as ∆n → 0, at the terminal time T , or

at any other time t ∈ [0, T ]. We will consider progressively more complex

specifications for the process σs, starting with the simplest possible case

where σt = σ is a constant. As the specifications become more complex,

we will see that establishing the limit result requires new tools, including

a strengthened mode of convergence known as “stable convergence in

law,” and we will include the relevant elements about the convergence
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of processes. All these tools play a crucial role in the rest of the book,

and they are explained in details in this chapter.

By contrast with the main part of the book, we try here, for peda-

gogical reasons, to demonstrate nearly every statement beyond classical

probability theory, without appealing to outside results: “demonstrate”

is in fact too ambitious a word, since complete proofs are quite intricate

in the most general situation, but we always try to give a precise scheme

for all proofs, emphasizing methods and ideas. These schematic proofs

can serve as a template for the other situations encountered in the book,

whose proofs will typically invoke general central limit theorems that are

only stated in Appendix A, or elsewhere in the literature.

Let us also mention that the estimation of integrated volatility will

be studied again, in a more general context (but with fewer details) in

Chapter 6. Therefore, a reader already well acquainted with the conver-

gence of processes and stable convergence in law can skip this chapter

without harm.

3.1 Estimating Integrated Volatility in

Simple Cases

In this section we consider the model (3.1) and establish the second order

asymptotic behavior of the estimators Ĉ(∆n)t in (3.2), or Central Limit

Theorem, successively under more and more general assumptions on the

volatility process σt. In all cases, the process

C(4)t =

∫ t

0
c2s ds =

∫ t

0
σ4
s ds,

called quarticity for obvious reasons, plays a key role. For consistency of

notation, we could write Ct = C(2)t but Ct appears so often that it is

worth its own designation.

In the model (3.1), the sign of σs is irrelevant, so we always assume

σs =
√
cs ≥ 0. We also suppose that cs is càdlàg, hence σs as well;

although one could dispense with this additional assumption, it greatly

simplifies the arguments below.

3.1.1 Constant Volatility

We begin with the simplest possible situation, where (3.1) holds with σt =

σ is a constant. The quantity to be estimated is CT = Tc, where c = σ2.

It would then look more natural to estimate c itself (estimating c or Tc
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are equivalent mathematical problems), but we stick to the estimation of

CT = Tc in order to stay coherent with the more general cases studied

below.

We are here in a classical parametric setting. The value X0 being

clearly irrelevant, at stage n we actually observe [T/∆n] i.i.d. returns

∆n
i X , or equivalently the normalized returns ∆n

i X/
√
∆n which are i.i.d.

N (0, c), with c unknown. This is a particularly simple problem, easily

coined in the usual parametric statistical setting where we have a family

of probabilities Pθ on the space RN∗

, depending on an unknown parameter

θ which here is θ = Tc.

At each stage n, the measures Pθ restricted to the σ-field generated

by the first [T/∆n] variables are all equivalent to the Lebesgue measure

on R[T/∆n]. The log-likelihood is

ln(θ) = −1

2

[T/∆n]∑

i=1

(
(∆n

i X)2

c∆n
+ log(2π c∆n)

)
(3.3)

and the MLE (maximum likelihood estimator) for θ = Tc is exactly

θ̂n = T/∆n

[T/∆n]
Ĉ(∆n)T . In this simple case the MLE, and thus Ĉ(∆n)T as

well (because 1 ≤ T/∆n

[T/∆n]
≤ 1+ ∆n

T ), are well known to be asymptotically

efficient (or optimal) in any possible sense of this word in this specific

case, with a rate of convergence 1/
√
∆n. The term T/∆n

[T/∆n]
is simply an

adjustment for the end point, or border, of the interval [0, T ], since T/∆n

is not necessarily an integer. In practice, T/∆n is most often an integer,

but even if it is not the case using the unbiased estimator θ̂n instead

of Ĉ(∆n)T does not significantly improve the estimation, except in a

situation of very small samples.

Next, the normalized estimation errors are

1√
∆n

(Ĉ(∆n)T − CT ) =
1√
∆n

[T/∆n]∑

i=1

((∆n
i X√
∆n

)2
− c
)
− T−∆n[T/∆n]√

∆n

c.

The last term above is again a border adjustment, obviously going to 0,

hence we have (since C(4)T = Tc2 here) the convergence in law

1√
∆n

(Ĉ(∆n)T − CT )
L−→ N (0, 2C(4)T ) (3.4)

by an application of the usual CLT (Central Limit Theorem) to the i.i.d.

centered variables (∆n
i X/

√
∆n)

2 − c, whose variances are 2c2.

This fact does not immediately give us a way of constructing confi-

dence intervals for CT , because the variance 2C(4)T is unknown. How-

ever, one can also find consistent estimators V nT for 2C(4)T , such as
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V nT = 2T (Ĉ(∆n)T )
2 (again the optimal estimators), or

V nT =
2

3∆n

[T/∆n]∑

i=1

(∆n
i X)4 (3.5)

(these are not the optimal estimators, but they are consistent by an

application of the Law of Large Numbers, and enjoy a CLT with rate

1/
√
∆n again by the standard CLT). Then a standardization procedure,

or Studentization, tells us that

Ĉ(∆n)T − CT√
∆n V nT

L−→ N (0, 1). (3.6)

At this point, the construction of confidence intervals with asymptotic

level α ∈ (0, 1) is straightforward: if zα denotes the two sided α-quantile

of N (0, 1), that is the number such that P(|Φ| > zα) = α where Φ is an

N (0, 1) variable, then

[
Ĉ(∆n)T − zα

√
∆n V nT , Ĉ(∆n)T + zα

√
∆n V nT

]
(3.7)

is such an interval. So far so good, and this simple case can be treated

using only the simplest tools of parametric inference.

3.1.2 Deterministic Time-Varying Volatility

We now extend the model (3.1) by allowing σt, hence ct as well, to

be time-dependent, although still non-random. We are now in a semi-

parametric model: the function ct is unknown, but we want to estimate

the real parameter θ = CT , at some fixed time T .

Again, the model fits the usual setting of (semi-parametric) statistical

models, although the notion of asymptotic efficiency becomes trickier,

and will not be analyzed here. The variables Ĉ(∆n)T of (3.2) are still

weakly consistent estimators for CT . The returns ∆
n
i X are again indepen-

dent, centered Gaussian, but no longer identically distributed. Rather,

their variances are now

vni := E
(
(∆n

i X)2
)

=

∫ i∆n

(i−1)∆n

cs ds.

With the notation ξni = 1√
∆n

(
(∆n

i X)2 − vni
)
, the normalized estimation

error is

1√
∆n

(Ĉ(∆n)T − CT ) =

[T/∆n]∑

i=1

ξni − 1√
∆n

∫ T

∆n[T/∆n]
cs ds,
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and the last term on the right is again a border effect that goes to 0 as

∆n → 0.

The variables ξni form a so-called triangular array of rowwise indepen-

dent centered variables: this means that within each “row” n the ξni ’s

are independent and centered when i varies, although in the present case

there are complicated dependencies between rows. CLTs for rowwise in-

dependent triangular arrays go back to Lindeberg. A set of conditions

ensuring the convergence in law of the row sums
∑[T/∆n]
i=1 ξni to the nor-

mal law N (0, V ) is

[T/∆n]∑

i=1

E((ξni )
2) → V,

[T/∆n]∑

i=1

E((ξni )
4) → 0. (3.8)

Since ∆n
i X is N (0, vni ), (3.7) yields E((ξni )

2) = 2∆−1
n (vni )

2 and

E((ξni )
4) = 60∆−2

n (vni )
4. In view of the càdlàg property of ct, we readily

check (3.8) with V = 2C(4)T , and hence deduce (3.4).

To make this CLT “feasible” (that is, useful for deriving confi-

dence intervals) we need consistent estimators V nT for the limiting vari-

ance 2C(4)T . Taking V
n
T = 2T (Ĉ(∆n)T )

2 here does not work, but we

can make use of (3.5) for defining V nT : applying the criterion (3.8) to

the centered variables ξni = 1

∆
3/2
n

(
(∆n

i X)4 − 3(vni )
2
)
, we obtain that

1√
∆n

(V nt − 2C(4)T ) converges in law to a centered normal variable, and

in particular V nT
P−→ 2C(4)T .

Therefore, we conclude that (3.6) still holds in the present case, and

confidence intervals are derived as in the previous subsection.

3.1.3 Stochastic Volatility Independent of the

Driving Brownian Motion W

Our next extension of the class of possible volatility processes in (3.2)

allows σt to be random but independent of the Brownian motionW that

drives the process X in (3.1). In the finance literature, where Xt is the

log-price of an asset, this is referred to as the “no-leverage” case.

Heuristically, this case reduces to the previous time varying but de-

terministic case, by conditioning on the path of ct: with G denoting the

σ-field generated by all variables ct, t ≥ 0, we condition on G. Since with-
out loss of generality one can assume that F is the σ-field generated by

the two processes W and c, this σ-field is nice enough for the existence

of a regular version of the G-conditional probability, which we denote as

Q(ω, dω′).



Introduction to Asymptotic Theory 89

Remark 3.1. We could employ the notation P(dω′|G), but this would

miss the dependence on the path ω, which is essential. Also, the condi-

tional probability of an event A given an event B requires dividing by the

probability of the event B. A difficulty arises when the conditioning event

B is too small to have a non-zero probability, such as when the event

represents an R-valued random variable taking a given value, as is the

case here. The notion of a regular version of the conditional probability is

an appropriate definition in such a case: Q(ω, dω′) is a transition proba-

bility from (Ω,G) into (Ω,F) such that for each A in F , ω 7−→ Q(ω,A)

is a version of the conditional expectation E (1A|G) . The existence of

Q requires nice properties of F which are satisfied here, such as being

separable.

Since W and c are independent, the process W remains a Brownian

motion under each Q(ω, .): the conditional law of the process W is equal

to its unconditional law, and this is the key point of the argument. The

conditioning changes the law of X , but X remains the stochastic integral

of σ w.r.t. W , with now σ being a non-random function, under Q(ω, .).

In other words, we can apply the results of the previous subsection

under each Q(ω, .), ending up with

under each Q(ω, .),




1√
∆n

(Ĉ(∆n)T − CT (ω))
L−→ N (0, 2C(4)T (ω))

Ĉ(∆n)T−CT (ω)√
∆n V n

T

L−→ N (0, 1)
(3.9)

where V nT is given by (3.4) again.

In the right side of (3.9) we write CT (ω) and C(4)T (ω) to emphasize

the dependency on the path ω, this dependency being G-measurable.

Now, we remove the conditioning and argue under the original measure

P itself. This is not a problem for the second convergence, because the

limiting law N (0, 1) does not depend on ω, and we readily deduce

Ĉ(∆n)T − CT√
∆n V nT

L−→ N (0, 1) under P, (3.10)

which is (3.6). And, since (3.6) holds, confidence intervals are constructed

as before. In other words, our statistical problem is solved in this situa-

tion.

However, it is instructive to look at what happens to the first conver-

gence in (3.9). Deconditioning yields

Yn :=
1√
∆n

(Ĉ(∆n)T − CT )
L−→ Y (3.11)
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where Y follows the mixed Gaussian law
∫
µ(dx)N (0, x), with µ being

the law of 2C(4)T . As usual, one can “realize” the limiting variable Y

in many ways, but the most natural one, which takes into account the

connection with the variable C(4)T defined on the original space, is as

follows: take the product (Ω̃, F̃) = (Ω × R,F ⊗ R) with the measure

P̃(dω, dx) = P(dω) ⊗ N (0, 1), and set Y (ω, x) = x
√
2C(4)T (ω). Hence

the limit in (3.10) is naturally defined on an extension of the original

probability space.

3.1.4 From Independence to Dependence for the

Stochastic Volatility

The previous conditioning-on-the-path-of-volatility argument loses its ef-

fectiveness when the independence between the volatility and the driving

Brownian motion fails, a situation called in finance the leverage effect.

To see why the argument fails, let’s consider the following, still oversim-

plified, class of volatility processes, which are random and dependent on

W but otherwise piecewise constant in time :

σt =
√
U0 1[0,1)(t) +

√
U1 1{t≥1},

where U0 and U1 are positive variables, respectively F0- and F1-

measurable. Then X takes the simple form (without stochastic integrals)

Xt = X0 +
√
U0W1∧t +

√
U1 (Wt −W1∧t).

The law of and the connections between the Ui’s and W are left unspec-

ified.

We again want to estimate CT , which when T > 1 is

CT =

∫ T

0
cs ds = U0 + (T − 1)U1.

The previous method would lead to conditioning on the values U0 and

U1. Under the simplifying assumption that 1/∆n is an integer for all n,

the estimator Ĉ(∆n)T splits into two parts,

Ĉ(∆n)T = Gn0 +Gn1 ,

where

Gn0 = U0

1/∆n∑

i=1

(∆n
iW )2, Gn1 = U1

[T/∆n]∑

i=1+1/∆n

(∆n
iW )2.
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If we condition on (U0, U1) we have the analogue of the first part of (3.9)

for Gn1 , but the analogue for Gn0 breaks down because, under the condi-

tional distribution Q(ω, .), the increments ∆n
iW for 1 ≤ i ≤ 1/∆n are

no longer necessarily independent, due to the fact that the conditioning

variable U1 may depend on those increments. If we simply condition on

U0 we get the first part of (3.9) for both Gn0 and Gn1 , but “separately” in

the sense that, although after centering and normalization both converge

in law, we have no guarantee that they converge jointly, whereas we need

the joint convergence to obtain the convergence of the sum.

The conclusion of the analysis of the last two cases is twofold: when

the volatility process is dependent of the Brownian motionW driving the

process X , the convergence in law of the sequence Yn of (3.11) does not

follow from elementary arguments; moreover, to be able to standardize,

we need a stronger form of convergence in law which ensures that, when

Yn converges to Y in this stronger sense and Vn converges in probability

to 2C(4)T , then the pair (Yn, Vn) jointly converges in law to (Y, 2C(4)T ).

The requirement stated above leads us to strengthen the notion of

convergence in law; we do this in the next section, devoted to introducing

the so-called stable convergence in law. As for proving the convergence in

law, or stably in law, we need to resort to more sophisticated arguments

which rely upon the functional convergence of processes: we actually

prove that the sequence of processes Y nt = 1√
∆n

(Ĉ(∆n)t−Ct) converges
stably in law, in the “functional sense,” that is, considered as random

variables taking values in a space of functions on R+. This gives us a kind

of bonus, such as automatically implying that the normalized maximal

error sups≤t |Y ns | up to time t also converges in law to the supremum over

[0, t] of the limiting process, but it is also a necessary step for proving

the convergence.

3.2 Stable Convergence in Law

The notion of stable convergence in law was introduced by Rényi (1963),

for the very same statistical reason as we need it here. We refer to Al-

dous and Eagleson (1978) for a very simple exposition and to Jacod and

Shiryaev (2003) for more details, and also to Hall and Heyde (1980) for

a somewhat different insight on the subject. However, the same notion

or very similar ones appear under different guises in control theory for

randomized strategies, or for solving stochastic differential equations in

the weak sense.
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Before getting started, and for the sake of comparison, we recall the

notions of convergence in probability and convergence in law, although

they have been used previously. Below, E denotes a Polish (that is, metric

complete and separable) space, with metric δ and Borel σ-field E . What

follows makes sense for more general state spaces, but as soon as we want

results we need additional properties, and assuming E to be Polish is not

a restriction for this book.

Let Zn be a sequence of E-valued random variables, all defined on the

same probability space (Ω,F ,P); let Z be an E-valued random variable

defined on the same space. We say that Zn converges in probability to Z

if for every fixed ε > 0

P (δ(Zn, Z) > ε) → 0

(written Zn
P−→ Z). It is useful to keep in mind that for any continuous

function g from E into another metric space E′, Zn
P−→ Z ⇒ g (Zn)

P−→
g (Z). This even holds when g is not continuous, provided it is Borel and

P (Z ∈ Dg) = 0, where Dg is the set of points of discontinuity of g.

As to convergence in law, we let (Zn) be a sequence of E-valued ran-

dom variables; we allow each of them to be defined on its own probability

space (Ωn,Fn,Pn). We say that Zn converges in law if there is a proba-

bility measure µ on (E, E) such that

En(f(Zn)) →
∫
f(x)µ(dx) (3.12)

for all functions f on E that are bounded and continuous. Usually one

“realizes” the limit as a random variable Z with law µ, on some space

(Ω,F ,P), for example on (Ω,F ,P) = (E, E , µ) with the canonical variable

Z(x) = x, and (3.12) reads as

En(f(Zn)) → E(f(Z)) (3.13)

for all f as before, and we write Zn
L−→ Z. Unlike convergence in prob-

ability, there is no requirement that Z lives on the same space as any of

the Zn’s: it is the probability distributions of the random variables that

are converging, not the values of the random variables themselves. Note

that for Zn
L−→ Z it is enough to have (3.12) or (3.13) for all functions f

which are bounded and Lipschitz, and these convergences also hold when

f if bounded Borel with µ(Df ) = 0, see e.g. Parthasarathy (1967). As

for convergence in probability, Zn
L−→ Z ⇒ g (Zn)

L−→ g (Z) when g is

continuous, or more generally when g is Borel and µ(Dg) = 0.



Introduction to Asymptotic Theory 93

For the stable convergence in law, we begin with a formal definition.

It applies to a sequence of random variables Zn, all defined on the same

probability space (Ω,F ,P), and taking their values in the state space

(E, E), again assumed to be Polish.

Definition 3.2. We say that Zn stably converges in law if there is a

probability measure η on the product (Ω×E,F⊗E), such that η(A×E) =

P(A) for all A ∈ F and

E(Y f(Zn)) →
∫
Y (ω)f(x) η(dω, dx) (3.14)

for all bounded continuous functions f on E and all bounded random

variables Y on (Ω,F).

This is an abstract definition, similar to (3.12), and as for the con-

vergence in law it is convenient to “realize” the limit Z in this situation

as well. Since, in contrast to convergence in law, all Zn here are defined

on the same space (Ω,F ,P), it is natural to realize Z on an (arbitrary)

extension (Ω̃, F̃ , P̃) of (Ω,F ,P), as defined by (1.70). We recall that ev-

ery variable defined on Ω is automatically extended as a variable on Ω̃,

with the same symbol, for example Zn(ω, ω
′) = Zn(ω). Letting Z be an

E-valued random variable defined on this extension, (3.14) is equivalent

to saying (with Ẽ denoting expectation w.r.t. P̃)

E(Y f(Zn)) → Ẽ(Y f(Z)) (3.15)

for all f and Y as above, as soon as P̃(A ∩ {Z ∈ B}) = η(A ×B) for all

A ∈ F and B ∈ E . We then say that Zn converges stably to Z, and this

convergence is denoted by Zn
L−s−→ Z. Note that, exactly as for (3.13),

the stable convergence in law holds as soon as (3.15) holds for all Y as

above and all functions f which are bounded and Lipschitz.

One can always use the following simple way to realize Z: take Ω̃ =

Ω×E and F̃ = F ⊗E and endow (Ω̃, F̃) with the probability η, and put

Z(ω, x) = x. However, exactly as in the case of the convergence in law

where usually (3.13) is stated with an “arbitrary” Z with law µ, here

we prefer to write (3.15) with an arbitrary Z, defined on an arbitrary

extension of the original space.

Clearly, when η is given, the property P̃(A ∩ {Z ∈ B}) = η(A × B)

for all A ∈ F and B ∈ E simply amounts to specifying the law of Z,

conditionally on the σ-field F , that is under the measures Q(ω, .) of

(1.70). Therefore, saying Zn
L−s−→ Z amounts to saying that we have
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stable convergence in law toward a variable Z, defined on any extension

(Ω̃, F̃ , P̃) of (Ω,F ,P), and with a specified conditional law, knowing F .

Stable convergence in law obviously implies convergence in law. But

it implies much more, and in particular the following crucial result: if

Yn and Y are variables defined on (Ω,F ,P) and with values in the same

Polish space E, then

Zn
L−s−→ Z, Yn

P−→ Y ⇒ (Yn, Zn)
L−s−→ (Y, Z). (3.16)

By contrast, if we use standard convergence in law, Zn
L−→ Z and Yn

P−→
Y do not imply the joint convergence (Yn, Zn)

L−→ (Y, Z) (and to begin

with, the law of the pair (Y, Z) is not even well characterized), unless of

course one of the two limits Y and Z is a constant. In this sense, stable

convergence in law looks like convergence in probability (not a surprise,

in view of (3.17) below), for which we have

Zn
P−→ Z, Yn

P−→ Y ⇒ (Yn, Zn)
P−→ (Y, Z).

Another useful property of the stable convergence in law is the follow-

ing one. Let F be a bounded function on Ω×E, measurable with respect

to the product σ-field F ⊗ E , and satisfying η(D) = 0, where D is the

set of all (ω, x) such that the function y 7→ F (ω, y) is not continuous at

x. Then

Zn
L−s−→ Z ⇒ E(F (., Zn)) → Ẽ(F (., Z)).

Moreover, when Z is defined on the same space Ω as all Zn, by applying

this property for the functions F (ω, x) = δ(Z(ω), x) ∧ 1, where δ is a

metric on E, we get

Zn
P−→ Z ⇐⇒ Zn

L−s−→ Z. (3.17)

We also have a simple necessary and sufficient condition for the stable

convergence in law:

the sequence Zn converges stably in law if and only if,

for any q ≥ 1 and any q-dimensional variable Y on (Ω,P),

the sequence (Zn, Y ) converges in law.

(3.18)

This criterion gives insight on the notion of stable convergence in law

but is rarely useful in practice because it gives no clue on how the limit

Z can be constructed.

The property (3.15) should hold for all Y which are F -measurable.

Now, it is enlightening (and sometimes useful too !) to see what happens
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when it holds only for all bounded Y which are measurable with respect

to some sub-σ-field G of F : if this is the case, we say that Zn converges

G-stably in law to Z. There are two extreme cases:

• If G = F , the G-stable convergence in law is the above-defined

stable convergence in law.

• If G = {Ω, ∅}, the G-stable convergence in law is the usual conver-

gence in law.

Besides these two extremal cases, it might be tempting to consider the

G-conditional law of each variable Zn, say Qn = Qn(ω, dx), and also the

G-conditional law Q = Q(ω, dx) of Z. Then

Qn converges weakly in probability to Q

=⇒ Zn converges G-stably in law to Z
(3.19)

is obvious, but the converse is wrong in general. It is true (and uninter-

esting) when G is the trivial σ-field. When G = F then Qn is the Dirac

mass sitting at Zn, so the property on the left side of (3.19) amounts to

saying that Q is also a Dirac mass sitting at some Z ′ and Zn
P−→ Z ′: so

we have Z = Z ′ a.s. and Zn
P−→ Z.

We have also the following (elementary) property:

if all Zn’s are G-measurable, the G-stable
and F -stable convergences in law are equivalent.

(3.20)

We end this section with another extension of stable convergence in

law, which will play a fundamental role in what follows. With Zn defined

on (Ω,F ,P), and if A ∈ F , we say that Yn converges stably in law to Z,

in restriction to the set A if (3.15) holds for all f continuous bounded,

and all F -measurable variables Y which are bounded and vanish outside

A. The classical notion of convergence in probability in restriction to A

is likewise defined by P (A ∩ {δ(Zn, Z) > ε}) → 0. Then, similar with

(3.16), we have

Zn
L−s−→ Z in restriction to A, Yn

P−→ Y in restriction to A

=⇒ (Yn, Zn)
L−s−→ (Y, Z) in restriction to A.

(3.21)

That one can define stable convergence in law in restriction to a set is in

deep contrast with convergence in law, for which the sentence “converges

in law in restriction to the set A” has no meaning at all.
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3.3 Convergence for Stochastic Processes

In this section we briefly review convergence of stochastic processes. We

consider a sequence of Rq-valued processes Y n, for some q ≥ 1.

The simplest notion of all is “finite-dimensional convergence”: this

means the convergence of (Y nt1 , . . . , Y
n
tk) for any choice of the integer k

and of the times t1, . . . , tk, in the appropriate sense (in probability, or

in law, or stably in law). When the convergence is in probability, the

convergence for any single fixed t implies finite-dimensional convergence,

but this is no longer true for convergence in law, or stably in law.

Finite-dimensional convergence is a weak form of convergence, for ex-

ample if Y n converges to Y in this sense, the suprema sups≤t ‖Y ns ‖ do

not converge to the supremum of the limit, in general. To remedy this,

we need a stronger form of convergence, called “functional” convergence.

This means that we consider each process Y n as taking its values in a

functional space (i.e., a space of functions from R+ into Rq), and we en-

dow this functional space with a suitable topology: as seen before, we

need this functional space to be a Polish space.

Basically, two functional spaces are going to be of interest in this book.

One is the space Cq = C(R+,R
q) of all continuous functions from R+ into

Rq, endowed with the local uniform topology corresponding for example

to the metric δU (x, y) =
∑
n≥1 2

−n (1 ∧ sups≤n ‖x(s)− y(s)‖
)
. The Borel

σ-field for this topology is σ(x(s) : s ≥ 0), and with this topology the

space Cq is a Polish space.

However, although the limiting processes Y we encounter in this book

are quite often continuous, this is rarely the case of the pre-limiting

processes Y n, which typically are based upon the discrete observations

Xi∆n : they often come up as partial sums
∑[t/∆n]
i=1 f(∆n

i X) where ∆n
i X

are the increments ofX defined in (3.2). Such a process has discontinuous,

although càdlàg, paths. Therefore, the other functional space of interest

for us is the Skorokhod space: this is the set Dq = D(R+,R
q) of all càdlàg

functions from R+ into Rq.

One possible metric on Dq is δU , which makes Dq a Banach space,

but under which it is unfortunately not separable (hence not Polish).

This prompted the development of the Skorokhod topology, introduced

by Skorokhod (1956) under the name “J1-topology.” There is a metric

δS compatible with this topology, such that Dq is a Polish space, and

again the Borel σ-field is σ(x(s) : s ≥ 0). We do not need to define this

topology here, and the reader is referred to Billingsley (1999) or Ethier

and Kurtz (1986) or Jacod and Shiryaev (2003).
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We write xn
u.c.p.−→ x if δU (xn, x) → 0 (this makes sense for any

functions xn, x), and xn
Sk−→ x if δS(xn, x) → 0 (this makes sense for

xn, x ∈ Dq). The following properties, for xn, yn, x, y ∈ Dq, are worth

stating:

xn
u.c.p.−→ x ⇒ xn

Sk−→ x

xn
Sk−→ x, x ∈ Cq ⇒ xn

u.c.p.−→ x

xn
Sk−→ x, yn

u.c.p.−→ y ⇒ xn + yn
Sk−→ x+ y.

(3.22)

These are nice properties, but the Skorokhod topology also suffers from

some drawbacks, of which the reader should be aware:

1. If xn
Sk−→ x and yn

Sk−→ y in Dq, it not always true that xn+yn
Sk−→

x + y: in other words, Dq is a linear space, but not a topological

linear space under this topology.

2. If xin and xi denote the components of xn, x ∈ Dq, the property

xn
Sk−→ x implies xin

Sk−→ xi for each i (in the space D1), but the

converse is not true.

3. The mapping x→ x(t) is not continuous for the Skorokhod topol-

ogy, although it is continuous at each point x such that x(t) = x(t−)

where x(t−) denotes the left limit of x at time t. Given that x is

càdlàg, x(t) = x(t−) means that x is continuous at time t.

Therefore, this topology is the one to be used when dealing with càdlàg

functions or processes, but a lot of care is needed when using it.

Now we come back to our sequence Y n of Rq-valued càdlàg processes,

and its potential limit Y, another Rq-valued càdlàg process. They can be

considered as random variables with values in the space Dq, and we thus

have the notions of convergence in law, or stably in law, or in probability,

of Y n toward Y . In the first case, Y is defined on an arbitrary probability

space, in the second case it is defined on an extension, and in the third

case it is defined on the same space as are all the Y n’s.

The “local uniform convergence” refers to the metric δU above on Dq,

and we write

Y n
u.c.p.
=⇒ Y if δU (Y

n, Y )
P−→ 0,

or equivalently if, for all T , supt≤T ‖Y nt − Yt‖ P−→ 0.
(3.23)

This kind of convergence was obtained in the statement of the dominated

convergence theorem for stochastic integrals, see (1.9) or (1.54), or for

the approximate quadratic variation in (1.61). When we deal with the
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Skorokhod topology, and implicitly using the metric δS , we write for

convergence in probability

Y n
P

=⇒ Y if δS(Y
n, Y )

P−→ 0.

We define similarly Y n
L

=⇒ Y and Y n
L−s
=⇒ Y for convergence in law and

stable convergence in law, using the Skorokhod topology.

For convenience of notation, we sometimes write Y n
P

=⇒ Y as Y nt
P

=⇒
Yt (and similarly for convergence in law and stable convergence in law).

This should not be confused with Y nt
P→ Yt which means convergence in

probability of the variables Y nt toward Yt, for a fixed time t. In other

words, a double arrow always means functional convergence.

The following property, about one-dimensional processes, is very use-

ful:
Y n and Y non-decreasing, Y continuous,

Y nt
P−→ Yt ∀ t ⇒ Y n

u.c.p.
=⇒ Y.

(3.24)

We now explain some general facts which relate to the convergence

of Riemann sums. We have three ingredients here: a d-dimensional semi-

martingale X (the integrator), a q × d-dimensional adapted and left-

continuous process H (the integrand), and for each n ≥ 1 a strictly

increasing sequence of stopping time T (n, 0) = 0 < T (n, 1) < T (n, 2) <

· · · , with infinite limit and with meshes πn(t) = supi≥1(T (n, i) ∧ t −
T (n, i − 1) ∧ t) going to 0 for all t in probability, as n → ∞. First, we

have

∑

i≥1

HT (n,i−1) (XT (n,i)∧t −XT (n,i−1)∧t)
u.c.p.
=⇒

∫ t

0
Hs dXs (3.25)

(here we use vector notation, so both the left and the right sides are

q-dimensional); this result is an obvious consequence of the dominated

convergence theorem (1.54), because the processes Hn defined by Hn
0 =

H0 and H
n
t = HT (n,i−1) for t ∈ (T (n, i−1), T (n, i)] converge pointwise to

H and satisfy ‖Hn‖ ≤ H ′, where H ′
t = sups≤t ‖Hs‖ is locally bounded.

The left side of (3.25) is not a genuine Riemann sum approximation

of the integral since, although the integrand is frozen on each interval

(T (n, i−1), T (n, i)], it is not the case of the integratorX which continues

to evolve. The behavior of the true Riemann sum is as follows:

∑

i≥1

HT (n,i−1) (XT (n,i) −XT (n,i−1))1{T (n,i)≤t}
P

=⇒
∫ t

0
Hs dXs. (3.26)

This is “almost” as good as (3.25): we replace the local uniform topology

by the Skorokhod topology. The convergence in (3.26) does not hold in
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the u.c.p. sense, unless of course X is continuous. In the latter case, the

same result also holds when H is right-continuous instead of being left-

continuous; those results are proved for example in Jacod and Protter

(2011).

Finally, another property will be used from time to time. It is really

about càdlàg functions, although it has an immediate extension to càdlàg

processes. It asserts that if x ∈ Dq and if for each n one has a sequence

0 = t(n, 0) < t(n, 1) < t(n, 2) < · · · of times increasing to infinity, then

supi≥1 (t ∧ t(n, i)− t ∧ t(n, i− 1)) → 0 for all t <∞
=⇒ xn

Sk−→ x

where xn(t) = x(t(n, i − 1)) for t ∈ [t(n, i− 1), t(n, i)).

(3.27)

Remark 3.3. So far we have considered Rq-valued processes. In the

next section we need to consider infinite-dimensional càdlàg processes,

and more specifically processes taking their values in the set E = RN∗

of

all infinite sequences x = (x1, x2, . . .). Upon using the metric d(x, y) =∑
n≥1 2

−n(1 ∧ |xn − yn|), for example, the space E is Polish.

One can define the Skorokhod space D(R+, E) of all càdlàg E-valued

functions. All previous considerations extend, word for word, to this sit-

uation, and in particular D(R+, E) is again a Polish space.

3.4 General Stochastic Volatility

We now come back to the estimation of the integrated volatility, and con-

sider the general case (3.1), with σt being an arbitrary càdlàg (bounded,

for simplicity) adapted process on the space (Ω,F(Ft),P) which also

supports the Brownian motion W driving the process X .

As before, we want to prove the convergence of the normalized esti-

mation errors

Y nt =
1√
∆n

(
Ĉ(∆n)t − Ct

)

and, again as before, we start by writing Y n = Zn +Rn, where

Znt =
∑[t/∆n]
i=1 ξni , ξni = 1√

∆n
((∆n

i X)2 − αni ),

αni =
∫ i∆n

(i−1)∆n
cs ds, Rnt = 1√

∆n

∫ t
∆n[t/∆n]

cs ds.

Since ct is bounded, we have supt |Rnt | → 0.

It is thus enough to prove the convergence of the partial sums Znt of the

triangular array ξni above. This array has a priori a nice form, since ξni
is Fi∆n -measurable and satisfies E(ξni | F(i−1)∆n

) = 0 by Itô’s formula.
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However, the discrete-time filtrations (Fi∆n)i≥0 are not comparable as n

varies, so the most standard CLTs for martingale differences arrays (see

e.g. Hall and Heyde (1980)) do not apply, even those for the so-called

nested filtrations and yielding stable convergence in law in that book.

In the case at hand, Theorem IX.7.28 of Jacod and Shiryaev (2003)

explicitly gives the desired result, and the reader can refer to that theorem

and stop reading this section. However, since more than half the methods

and results of this book rely upon limit theorems of the same kind as the

stable convergence in law of Znt , we present below a very detailed scheme

of the proof. We still do not provide full proofs, which would necessitate

many technical arguments, but the general ideas are simple enough to

expose.

As for most proofs for the convergence in law, when the laws of the

converging variables Znt are not explicitly known, we take two main steps:

1. Prove that the sequence Znt is “tight” (or “uniformly tight,” as of-

ten expressed), meaning that the family of laws L(Znt ) is relatively
compact for the weak convergence of probability measures; equiv-

alently, the sequence is tight if and only if from each subsequence

one may extract a further sub-subsequence which converges in law.

2. Prove that all possible limit laws of convergent subsequences of the

sequence L(Znt ) are all equal to the same probability measure.

Proving (1) is (relatively) simple. Proving (2) is complicated, and to

see why one can refer to Subsection 3.1.3 where, already in that simple

case, the limit is difficult to describe, whereas in Subsection 3.1.4 we were

unable to describe the putative limit.

The way out of these difficulties is to consider the processes Zn instead

of the values Znt for a specified t. Then one can rely upon the character-

ization of the limiting distribution as the solution of some “martingale

problem,” and then prove the uniqueness of the solution.

Step 1. To start with, we observe that, for all p ≥ 2, we have

E(|ξni |p | F(i−1)∆n
) ≤ Kp∆

p/2
n (3.28)

for a constant Kp depending on p (and also on the bound for ct): this

comes from the boundedness of ct and Burkholder-Gundy inequalities

(1.59).

Step 2. As for all CLTs for triangular arrays of martingale differences,

the first – necessary – step is to prove the convergence of the “predictable
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quadratic variation”Ant =
∑[t/∆n]
i=1 E((ξni )

2 | F(i−1)∆n
) of the martingales

Znt (they are martingales for the filtration (Fn
t )t≥0 defined by Fn

t = Fi∆n

when i∆n ≤ t < (i + 1)∆n). Note that Z ′n
t = (Znt )

2 − Ant is also a

martingale, for the same filtration (integrability is ensured by (3.28)).

To evaluate the summands giving Ant one uses Itô’s formula for the

two-dimensional semimartingale (X,C), between the two times (i−1)∆n

and i∆n, and for the function f(x, y) = (x2 − y)2. This results in (ξni )
2

being the sum of a martingale increment between these two times, plus

1

∆n

(
2(αni )

2 + 8

∫ i∆n

(i−1)∆n

(cs − c(i−1)∆n
)Mn,i

s ds
)
,

where Mn,i
t =

∫ t
(i−1)∆n

(Xs − X(i−1)∆n
)σs dWs. Burkholder-Gundy in-

equalities (1.59) applied twice yield E((Mn,i
t )2 | F(i−1)∆n

) ≤ K∆2
n if

(i − 1)∆n ≤ t ≤ i∆n. Hence, in view of the definition of αni and by

Hölder’s inequality, and with the notation

ηni =

∫ i∆n

(i−1)∆n

E((cs − c(i−1)∆n
)2 | F(i−1)∆n

) ds,

we obtain for some constant K depending on the bound of ct

∣∣E((ξni )2 | F(i−1)∆n
)− 2∆n c

2
(i−1)∆n

∣∣ ≤ K(ηni +
√
∆n ηni ).

Since ct is bounded càdlàg we have E
(∑[t/∆n]

i=1 ηni
)

→ 0 (apply

Lebesgue’s theorem), which in turn implies E
(∑[t/∆n]

i=1

√
∆nηni

)
→ 0

(apply Hölder’s inequality). On the other hand, ∆n
∑[t/∆n]
i=1 c2(i−1)∆n

con-

verges for all ω, and locally uniformly in t, to
∫ t
0 c

2
s ds (by Riemann inte-

gration). In view of the definition of An we thus deduce

Ant
u.c.p.
=⇒ At := 2

∫ t

0
c2s ds = 2C(4)t. (3.29)

Remark 3.4. The main feature is that the limit above is random. This

is in contrast with the case when the time span T goes to infinity as ∆n →
0: under minimal ergodic properties one would then find a non-random

limit. The randomness of At is the main reason why the forthcoming

analysis is somewhat involved.

Step 3. The proof of the tightness of the sequence of processes Zn is now

simple, thanks to the so-called Aldous’ tightness criterion (see Theorem

VI.4.13 of Jacod and Shiryaev (2003), the original paper being Aldous

(1978) and the specific result used here is by Rebolledo (1979)). Indeed,
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relative to the filtration (Fn
t ), the process Z

n above is a (locally) square-

integrable martingale (use (3.28)) with predictable quadratic variation

An. Then the above-mentioned criterion tells us that, since An converge

locally uniformly in time, in probability, to a continuous process (use

(3.29)), the sequence Zn is tight.

Step 4. At this stage, it remains to show the uniqueness of the law of

the limit of the sequence Zn. Unfortunately, there seems to be no simple

way of doing so, apart from resorting to “martingale problems,” and

to the following (simple) property of the convergence in law: let V n be

a sequence of martingales, possibly multi-dimensional, each one being

defined on some filtered space (Ωn,Fn, (Fn
t ),P

n), and assume that for

each t and each component index i the variables (V n,it : n ≥ 1) are

uniformly integrable. Then, if V n converges in law to a limit V , this

limit is a martingale, relative to the filtration which it generates.

We apply this in the following setting. In view of (3.20), and without

loss of generality, we can assume that the filtration (Ft) is generated

by the two processes (W,σ) and that F =
∨
t Ft. Therefore each σ-field

Ft is separable, implying the existence of a sequence (U(m) : m ≥ 3)

of variables which is dense in L1(Ω,F ,P) and such that, for each m

and some real number am, we have |U(m)| ≤ am and U(m) is Fam-

measurable. We then consider the càdlàg martingales Umt = E(U(m) |
Ft), and the infinite-dimensional process V n with components

V n,mt =





Znt if m = 1

(Znt )
2 −Ant if m = 2

Um∆n[t/∆n]
if m ≥ 3.

Note that V n is càdlàg, with values in the Polish space E = RN∗

.

As seen before, the sequence Zn is tight, and (3.28) with p = 4 yields

E
(
sup
s≤t

|∆Znt |4
)
= E

(
sup

1≤i≤[t/∆n]

|ξni |4
)
≤ E

( [t/∆n]∑

1≤i
|ξni |4

)
≤ K t∆n,

hence sups≤t |∆Znt |
P−→ 0. Therefore, not only is the sequence V n,1 =

Zn tight, but all its limits are continuous processes. Combining this

with (3.29) and also with the general properties (3.22) allows us, by the

same argument, to show that the sequence V n,2 is also tight and with

continuous limiting processes. Moreover, (3.17) and Remark 3.3 imply

that (V n,m)m≥3 converges to (Um)m≥3 for the Skorokhod topology, for

each ω.
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At this point, and upon using the last part of (3.22), we deduce that

the sequence V n is tight.

Step 5. Let us choose an arbitrary subsequence V nk which converges in

law. The limiting process V could a priori be realized on an arbitrary

probability space. However, the first two components V (1) and V (2) of V

are necessarily continuous, and V n,m converges to Um for each ω when

m ≥ 3, and (V n,1)2 − V n,2 = An converges to A in probability, hence

one would like to realize V in such a way that all these properties are

preserved. This can be done as follows: Namely, we take an extension

(Ω̃, F̃ , P̃) of the original space, as defined in (1.70), with Ω′ = C1 and

with Yt(ω
′) = ω′(t) being the canonical process, and with the Borel σ-

field F ′; the process V is defined, componentwise, as follows:

V (m)(ω, ω′) =





Y (ω′) if m = 1

Y (ω′)2 −At(ω) if m = 2

Umt (ω) if m ≥ 3.

With this formulation, what characterizes the law of V is the measure P̃

or, equivalently (because P is fixed), the transition probability Q(ω, dω′)

for P-almost all ω.

At this stage, one derives the stable convergence in law of our subse-

quence Znk in a straightforward way. Indeed, if f is a continuous bounded

function on D1 and m ≥ 3, we have

E(f(Zn)U(m)) = E(gm(V n)) → Ẽ(gm(V )) = Ẽ(f(V (1))U(m)), (3.30)

where gm(x1, x2, . . .) = f(x1)fm(xm(am)) and fm is an arbitrary

bounded continuous function on R which coincides with the identity on

the set [−am, am]: recall that am is a bound for the variable U(m), and

also that Umam = U(m), hence gm(V n) = f(Zn)U(m) and gm(V ) =

f(V (1))U(m). Since the sequence (U(m) : m ≥ 3) is dense in L1, we

deduce from (3.30) that E(f(Zn)U) → Ẽ(f(V (1))U) for all bounded

variables U . In other words, we have proved the following:

if V nk converges in law and P̃ is associated

to the limit V as above, then Znk
L−s
=⇒ Y.

Step 6. It remains to prove the uniqueness of P̃, and this is where martin-

gale problems come into play. We denote by (F ′
t) the canonical filtration
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on Ω′ and (F̃t) is defined by (1.71): this is indeed the filtration generated

by the limiting process V .

In this step we explain how the uniqueness follows from the next three

properties of the measure P̃, to be proved later:

1. Y and Y 2 −A are (F̃t)-martingales;

2. Each bounded martingale M on (Ω, (Ft),P)
is an (F̃t)-martingale;

3. For each M as above, the product YM

is an (F̃t)-martingale.

(3.31)

Property (2) implies that (Ω̃, F̃ , (F̃t), P̃) is a very good extension of

the original filtered space, see after (1.73). It also easily implies (see Ja-

cod and Shiryaev (2003), Section II-7) that all (F̃t)-martingales N on the

extended space which are such that MN is also an (F̃t)-martingale for

all bounded (Ft)-martingalesM enjoy the following property: for almost

all ω, the process N is also a martingale under Q(ω, .). Henceforth, (1)

and (3) imply that under Q(ω, .) the two continuous processes Y and

Y 2 − A are martingales, whereas A = At(ω) is an increasing continu-

ous non-random function. By a trivial extension (to “non-homogeneous”

Brownian motion) of Lévy martingale characterization of Brownian mo-

tion (1.3), these properties yield that under Q(ω, .) we have

Y is a continuous Gaussian martingale

with Y0 = 0 and 〈Y, Y 〉t = At(ω).
(3.32)

This completely characterizes the law of Y , hence Q(ω, .), which in

turn implies the uniqueness of P̃ (the existence is ensured as the limit of

the laws of the sequence V nk ; it also directly, and more simply, follows

from (3.32) because for any continuous increasing function f with f(0) =

0 there exists a continuous centered Gaussian processW ′ with covariance

E(W ′
tW

′
t+s) = f(t) for s, t ≥ 0).

Step 7. Now we take any subsequence V nk which converges in law, and

let P̃ be the associated measure on the extended space. We are left to

prove that it satisfies (3.31).

First, each component of V n is a martingale for the filtration (Fn
t ),

whereas (3.28) and the boundedness of each Um imply that for each t and

m the variables V n,mt are uniformly integrable. Hence, since (F̃t) is the

filtration generated by the process V , we deduce (1) and (2) of (3.31) from

the property recalled at the beginning of Step 5 and a density argument.
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As for (3), by a density argument again, it is enough to prove it when

M belongs to a family M of square-integrable martingales on the original

space, such that the terminal variables M∞ are total in L2(P). Let M ∈
M and Mn

t = M∆n[t/∆n] be its discretized version, and let also Bn be

the predictable compensator of the covariation process [Zn,Mn] for the

filtration (Fn
t ). Suppose for a while that we have proved

Bnt
u.c.p.
=⇒ 0 (3.33)

for all t. Since ZnMn − Bn is a martingale for the filtration (Fn
t ) with

the same uniform integrability property as above, we deduce from (3.33)

that YM is a martingale on the extended space, which is (3).

Step 8. The last – and rather technical – step is to prove (3.33). We can

choose M to be the set of all bounded martingales which are orthogonal

to W , plus the martingales W r = (Wt∧r)t≥0 which are the Brownian

motion W itself stopped at any time r > 0.

If M ∈ M is orthogonal to W , and since ξni is a stochastic integral

with respect to W , we have E(ξni ∆n
iM | F(i−1)∆n

) = 0, which in turn

implies Bn ≡ 0, and thus (3.33) trivially holds. If M = W r, we have

Bnt =
∑[t/∆n]
i=1 ζni , where ζ

n
i = 0 when i > [r/∆n] and otherwise is

ζni =
1√
∆n

E
(
((∆n

i X)2 − αni )∆
n
iW

r | F(i−1)∆n
)

=
1√
∆n

c(i−1)∆n

(
(∆n

iW )3 −∆n
iW | F(i−1)∆n

) + ζ′ni

where ζ′ni is a remainder term which can be shown (more or less as in Step

2) to satisfy
∑[r/∆n]+1
i=1 |ζ′ni | P−→ 0. The first term on the right side above

involves the conditional expectation of two odd powers of the increments

∆n
iW , which is centered Gaussian and independent of F(i−1)∆n

, so this

term vanishes. This ends the proof of (3.33).

We have thus “proved” (with somewhat heuristic arguments and let-

ting technicalities aside) the following result, which will be restated in a

more general context in Chapter 6 as Theorem 6.1:

Fact 3.5. In the model above, the processes 1√
∆n

(
Ĉ(∆n)t−Ct

)
converge

stably in law to a limiting process Y which is defined on a very good exten-

sion of (Ω,F , (Ft)t≥0,P), and which conditionally on F is a continuous

centered Gaussian martingale with (conditional) variance given by

Ẽ((Yt)
2 | F) = 2

∫ t

0
c2s ds.
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Remark 3.6. Step 8 is essential in this way: Steps 1–7 go through if

one replaces the squared increments (∆n
i X)2 by powers (∆n

i X)p or abso-

lute powers |∆n
i X |p, upon a suitable renormalization and an appropriate

choice of αni . The second part of Step 8 (when M = W r), in contrast,

would involve the conditional expectation of (∆n
iW )p+1 or |∆n

iW |p∆n
iW ,

respectively; then the argument still works in the second case but breaks

down in the first case unless p is an even integer.

3.5 What If the Process Jumps?

The continuous model (3.1) is restrictive in many respects, but it is repre-

sentative of all continuous Itô semimartingales. Now, if we have a discon-

tinuous semimartingale, one could also try to understand what happens

for an oversimplified, but still representative of the jump case, model.

Such a model is

Xt = X0 +

∫ t

0
σs dWs + Yt, (3.34)

where Yt is a compound Poisson process.

In this case, as in all discontinuous cases, the realized volatility Ĉ(∆n)t
of (3.2) converges to the quadratic variation [X,X ]t, that is,

Ĉ(∆n)t
P−→ [X,X ]t = Ct +

∑

s≤t
∆X2

s ,

where Ct =
∫ t
0 cs ds = 〈Xc, Xc〉t is still the integrated volatility.

We can then consider two different questions. The first one is to assert

the quality of Ĉ(∆n)t as estimators of [X,X ]t, and this will be consid-

ered in the next introductory chapter. The second one is to determine

estimators for Ct itself.

For the second question, several methods are available and will be

detailed in Chapter 6 in a much more general context. However, one

method (the truncation method, described in Section 6.2.1) is very simple

to understand and also to explain, in the simplified setting (3.34). It relies

upon the two following facts:

1. If an interval ((i− 1)∆n, i∆n] contains a single jump of size J , the

corresponding increment ∆n
i X is going to be close to J , which does

not depend on n and is different from 0.

2. Since X as finitely many jumps on [0, T ], say NT , and when n

is large enough, among all intervals ((i − 1)∆n, i∆n] within [0, T ]
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exactly NT of them contain a single jump, and all others contain

no jump at all.

Eliminating the increments containing jumps is then in principle easy:

we choose a sequence un decreasing to 0 and throw away all increments

with absolute size bigger than un; then, we use the other increments as

in the no-jump case, and the estimator is

Ĉ(∆n, un)T =

[T/∆n]∑

i=1

(∆n
i X)2 1{|∆n

i X|≤un}. (3.35)

In the “finite activity” (for jumps) case (3.34), taking any sequence un
going to 0 eliminates the jumps, by (1) above. However, truncating may

also eliminate increments which do not contain jumps. To avoid this, one

should take un going slowly enough to 0.

Again in the finite activity case, this is quite simple: writing X ′ =

X − Y , so X ′ is indeed given by (3.1), and assuming for simplicity that

ct is bounded (as in the previous section) we have

E(|∆n
i X

′|p) ≤ Kp∆
p/2
n

for all p ≥ 0 (another application of Burkholder-Gundy inequalities

(1.59)). Then Markov’s inequality yields

[T/∆n]∑

i=1

P(|∆n
i X

′| > un) ≤ Kp T ∆p/2−1
n /upn.

This quantity goes to 0, as n→ ∞, as soon as un ≥ α∆̟
n for some α > 0

and ̟ ∈
(
0, 12

)
, and upon taking p > 2

1−2̟ .

If un is chosen as above, and by the Borel-Cantelli lemma, for all n

large enough we indeed have |∆n
i X

′| ≤ un for all i ≤ [T/∆n]. Henceforth,

Ĉ(∆n, un)T is equal for all n large enough to the realized volatility of

X ′, say Ĉ(∆n)
′
T , minus the NT squared increments of X ′ corresponding

to the intervals containing a jump. Obviously, deleting in (3.2) a finite

number of increments, random but independent of n, does not affect the

asymptotic behavior. Then the following is a consequence of Fact 3.5

above:

Fact 3.7. In the model above, and with the above-specified choice of

the truncation levels un, the processes 1√
∆n

(
Ĉ(∆n, un)t − Ct

)
converge

stably in law to the same limiting process as in Fact 3.5.
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Of course, this is not the end of the story: how un should be chosen in

practice is a crucial issue, and when jumps have infinite activity the result

is not as simple as stated above; see Chapter 6 for extensions to more

realistic models, weakened assumptions, and practical considerations.



Chapter 4

With Jumps: An

Introduction to Power

Variations

As seen at the end of Chapter 3, the situation is indeed quite different

when the observed process is continuous and when it is not. This is why,

in this chapter, we study the simplest possible process having both a

non-trivial continuous part and jumps, that is,

Xt = X0 + σWt + Yt, (4.1)

where Yt is a compound Poisson process (see Example 1.5), the volatil-

ity σ > 0 is a constant parameter, and W is a standard Brown-

ian motion. The process X is again observed, without microstructure

noise, at regularly spaced times i∆n for i = 0, 1, . . . , [T/∆n] for some

fixed time horizon T . As before, the observed returns are denoted as

∆n
i X = Xi∆n −X(i−1)∆n

.

The aim of this chapter is mainly to introduce one of the basic building

blocks that we employ to analyze processes with jumps: approximate

(absolute) power variations. These are, for any p > 0, the (observable)

processes

B(p,∆n)t =

[t/∆n]∑

i=1

|∆n
i X |p, (4.2)

and they constitute natural extensions of the quadratic variation, cor-

responding to p = 2, that played a central role in Chapter 3. We are

interested in the asymptotic behavior of B(p,∆n)t as ∆n → 0.

109
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Why consider powers other than 2 ? When jumps are present, the

quadratic variation involves both the continuous and jump parts of the

model. On the other hand, we will see that power variations with p < 2

depend on the continuous part of X only (asymptotically, and after a

proper normalization), whereas for p > 2 they only depend on jumps;

this fact allows us to disentangle the two parts of X , continuous and

jumps, using appropriate procedures to be explained later in the book.

In fact, we will gain quite a bit of mileage from varying the value of p

according to the component of the model we seek to identify.

Another set of statistics that play a role in what follows are truncated

versions of the power variations in (4.2), namely

B(p,∆n, un)t =

[t/∆n]∑

i=1

|∆n
i X |p1{|∆n

i X|≤un}, (4.3)

for very much the same reason that they were useful at the end of Chapter

3.

We start with the asymptotic behavior of these power variations when

the model is nonparametric, that is, without specifying the law of the

jumps. We do this in the same spirit as in Chapter 3: the ideas for the

proofs are explained in details, but technicalities are omitted. Then we

consider the use of these variations in a parametric estimation setting

based on the generalized method of moments (GMM). There, we study

the ability of certain moment functions, corresponding to power varia-

tions, to achieve identification of the parameters of the model and the

resulting rate of convergence.

We will see that the general nonparametric results have a parametric

counterpart in terms of which values of the power p are better able to

identify parameters from either the continuous or jump part of the model.

4.1 Power Variations

Below, the model is (4.1), and we write c = σ2 and denote by T1, T2, . . .,

the successive jump times of X (or Y ), which form a Poisson process

on R+ with some parameter λ > 0, independent of W . We also recall

that the jump sizes ∆XTq are an i.i.d. sequence of variables with some

law G, and which are independent of W and of the times Tq. Note that

X is a Lévy process with characteristics (b, c, F ), where F = λG and

b =
∫
{|x|≤1} xF (dx).

As a matter of fact, we begin with the two special cases of purely

jump and purely continuous processes, where respectively σ = 0 and λ =
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0, even though these cases were formally excluded by our assumptions.

These two extremal cases are easy to analyze.

4.1.1 The Purely Discontinuous Case

Here we assume that X = Y is a compound Poisson process. It is conve-

nient to introduce the (random) integers i(n, q) defined as

i(n, q) = i on the set {(i− 1)∆n < Tq ≤ i∆n}

and also the process Nt =
∑
s≤t 1{Tq≤t}, which is the Poisson process

counting the jumps of X .

For any given t > 0, when n is sufficiently large (bigger than some

random integer nt(ω)), the Nt jumps before or at time t lie in distinct

intervals ((i − 1)∆n, i∆n]. If this is the case, the returns ∆n
i X for i ≤

[t/∆n] are all equal to 0, except when i = i(n, q) for some q, in which

case the return is ∆XTq . Therefore, we have

n ≥ nt, s ≤ t =⇒ B(p,∆n)s =
∑
q≥1: i(n,q)≤[s/∆n]

|∆XTq |p
=
∑

0<v≤∆n[s/∆n]
|∆Xv|p.

(4.4)

We can state this in another way, by introducing the processes

A(p)t =
∑

0<s≤t
|∆Xs|p (4.5)

(this is of course a finite sum). Then (4.4) is equivalent to saying that,

for any n ≥ nt(ω), we have B(p,∆n)s(ω) = A(p)
(n)
s (ω) for all s ∈ [0, t],

where A(p)
(n)
t = A(p)∆n[t/∆n] denotes the discretized version of A(p)

along the discretization scheme (i∆n : i ≥ 0), see (3.27).

The above trivial fact is basically the whole story: indeed, it implies

that B(p,∆n)(ω)
Sk−→ A(p)(ω) for each ω (convergence in the Skorokhod

sense), by (3.27). Moreover, since for any fixed t the probability that

X has a jump between ∆n[t/∆n] and t goes to 0, it also implies the

following:

P (B(p,∆n)t = A(p)t) → 1.

Henceforth, a Central Limit Theorem for B(p,∆n) is clearly impossible.

Instead, one indeed has a perfect fit, on a set of probability going to 1 as

∆n → 0.

Remark 4.1. The “perfect fit” mentioned above is in fact illusory in

practice: we have no clue as to whether the number n related to the ac-

tual observation scheme is larger than nt or not. And if it is not, then

B(p,∆n)t and A(p)t can differ by quite a large amount.
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Remark 4.2. Models in financial econometrics are not as simple as a

compound Poisson process. Realistic models assume either that one has a

non-trivial continuous part (see below, the results are then very different),

or that the jumps of X have infinite activity, or both, not to speak about

a possible drift term.

When X is a Lévy process without a Gaussian part and with infinite

activity for the jumps, things are also very different. First of all, the

process A(p)t is infinite for all t > 0 when p is small enough, see (1.50).

Otherwise, it is finite-valued, but the equality (4.4) fails for all values of

n. In this case we have the convergence in probability B(p,∆n)
P

=⇒ A(p)

for the Skorokhod topology, and under additional and rather complicated

assumptions we also have a genuine CLT.

4.1.2 The Continuous Case

Now, we assume that σ > 0 and λ = 0, the model of Subsection 3.1.1.

We then have

∆1−p/2
n B(p,∆n)t = ∆n

[t/∆n]∑

i=1

ξni , where ξni = σp
(
∆n
iW/

√
∆n

)p
.

The variable (ξni )i≥1 are i.i.d., with first and second moments mpσ
p and

m2pσ
2p respectively, where mr = E(|Φ|r) = 2r/2π−1/2Γ

(
r+1
2

)
denote the

rth absolute moment of an N (0, 1) variable Φ, and Γ denote the gamma

function. Then the usual CLT implies, exactly as in Subsection 3.1.1

(which corresponds to the case p = 2), that

1√
∆n

(
∆1−p/2
n B(p,∆n)t −mpσ

p t
) L−→ N

(
0, (m2p −m2

p)σ
2p t
)
. (4.6)

Using Donsker’s Theorem, one can obtain a functional convergence, and

the same arguments as in the previous chapter allow one to obtain the

stable convergence in law (since σ is a constant, the argument can be

made much easier). So, we have the following:

Fact 4.3. In the model above, the processes

1√
∆n

(
∆1−p/2
n B(p,∆n)t −mpσ

p t
)

converge stably in law to a
√
m2p −m2

p σ
pW ′, where W ′ is a standard

Brownian motion defined on a very good extension of (Ω,F , (Ft)t≥0,P)

and independent of F .
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4.1.3 The Mixed Case

Let us come back to Equation (4.1), with σ > 0 and λ > 0. We use the

notation A(p) of (4.5), and we write Xc = σW for the continuous part

of X , and Bc(p,∆n) denotes the approximate p-power variation of the

process Xc at stage n. For simplicity, we restrict our attention to the

asymptotic behavior of B(p,∆n)t at an arbitrarily fixed time t, although

a “functional” version of all that follows does exist. We also set the stable

convergence in law aside.

With the same notation nt(ω) as above, the equality (4.4) fails as such,

but is replaced by

n ≥ nt =⇒ B(p,∆n)t = Bc(p,∆n)t +Bd(p,∆n)t, where

Bd(p,∆n)t =
∑

q≥1: i(n,q)≤[t/∆n]

ζnq ,

ζnq = |∆XTq +∆n
i(n,q)X

c|p − |∆n
i(n,q)X

c|p.

The behavior of Bc(p,∆n)t is governed by (4.6) and we have, with Φ

an N (0, 1) variable,

1√
∆n

(
∆1−p/2
n Bc(p,∆n)t −mpσ

pt
) L−→

√
t(m2p −m2

p) σ
pΦ. (4.7)

As for Bd(p,∆n)t, it basically behaves as B(p,∆n) does in the purely

discontinuous case σ = 0, at least at the first order. Namely, for each q,

the variable ζnq is never equal to |∆XTq |p, but it converges to it as n→ ∞
because ∆n

i(n,q)X
c P
=⇒ 0. Thus, since there are only Nt < ∞ jumps up

to time t, one deduces

Bd(p,∆n)t
P

=⇒ A(p)t.

This is not enough for us, and we need the second order behavior, that

is, the associated CLT. With the notation {x}m = |x|m sign(x), an ex-

pansion of the function x 7→ |x|p around ∆XTq 6= 0 gives us

ζnq = |∆XTq |p + p σ{∆XTq}p−1 ∆n
i(n,q)W +OP

(
|∆n

i(n,q)W |2
)
.

The random integer i(n, q) only depends on the jumps, hence is indepen-

dent of W and one has

ζnq = |∆XTq |p +
√
∆n pσ{∆XTq}p−1 Φq +OP (∆n) (4.8)

where Φq = ∆n
i(n,q)W/

√
∆n is independent of the jump process Y

and is N (0, 1). We can say more: as soon as n ≥ nt, the integers
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i(n, q) smaller than [t/∆n] are all distinct, so the corresponding vari-

ables Φq are independent. Finally, using again the independence of Y

and W , we see that the Φq’s are independent of the process W
(n)
t =

Wt −
∑
q≥1, i(n,q)∆n≤t∆

n
i(n,q)W , whereas W (n) u.c.p.−→ W pathwise. Hence

“asymptotically” (this is not a precise mathematical statement, but this

can be straightened out in a rigorous way) the property (4.8) holds in-

deed for a sequence Φq of i.i.d. N (0, 1) variables, independent of both W

and Y , and thus of X as well.

Coming back to the definition ofBd(p,∆n), we then deduce from (4.8),

and with Φq as above, defined on an extension of the original space and

independent of F , that

1√
∆n

(
Bd(p,∆n)t −A(p)t

) L−→
Nt∑

q=1

p σ{∆XTq}p−1 Φq. (4.9)

At this point, we use the equality B(p,∆n)t = Bc(p,∆n)t+B
′(p,∆n)t,

valid for n large enough, together with (4.7) and (4.9). As a matter of

fact, to get a clear picture of what happens, it is useful to rewrite (4.7)

and (4.9) in a somewhat loose form:

(
Bc(p,∆n)t
Bd(p,∆n)t

)
L
=



∆
p/2−1
n mpσ

pt+∆
p/2−1/2
n

√
t(m2p −m2

p)σ
pΦ

A(p)t +∆
1/2
n

Nt∑
q=1

p σ{∆XTq}p−1 Φq




+

(
oP (∆

p/2−1/2
n )

oP (∆
1/2
n )

)
.

For the first order behavior, we simply observe that the leading terms

in the expressions giving Bc(p,∆n)t and B
d(p,∆n)t are ∆

p/2−1
n mp σ

p t

and A(p)t, so the result is simple enough:

p < 2 ⇒ ∆
1−p/2
n B(p,∆n)t

P
=⇒ mp σ

p t

p = 2 ⇒ B(2,∆n)t
P

=⇒ σ2 t+A(2)t = [X,X ]t

p > 2 ⇒ B(p,∆n)t
P

=⇒ A(p)t

(4.10)

(p = 2 corresponds to the well known convergence of the approximate

quadratic variation). For the second order behavior we need to single out
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seven different cases, and we get

p < 1 ⇒ 1√
∆n

(
∆

1−p/2
n B(p,∆n)t −mpσ

p t
)

L−→
√
t(m2p −m2

p)σ
p Φ

p = 1 ⇒ 1√
∆n

(
∆

1/2
n B(p,∆n)t −m1σ t

)

L−→
√
t(1 −m2

1)σΦ +A(1)t

1 < p < 2 ⇒ 1√
∆n

(
∆

1−p/2
n B(p,∆n)t −mpσ

p t

−∆
1−p/2
n A(p)t

) L−→
√
t(m2p −m2

p)σ
p Φ

p = 2 ⇒ 1√
∆n

(
B(2,∆n)t −A(2)t − σ2 t

)

L−→
√
2t σ2 Φ+

∑Nt

q=1 p σ∆XTq Φq

2 < p < 3 ⇒ 1√
∆n

(
B(p,∆n)t −A(p)t −∆

p/2−1
n mpσ

p t
)

L−→ ∑Nt

q=1 p σ{∆XTq}p−1 Φq
p = 3 ⇒ 1√

∆n

(
B(p,∆n)t −A(p)t

)

L−→ mpσ
p t+

∑Nt

q=1 p σ{∆XTq}p−1Φq
p > 3 ⇒ 1√

∆n

(
B(p,∆n)t −A(p)t

)

L−→ ∑Nt

q=1 p σ{∆XTq}p−1 Φq

(4.11)

All these results are indeed direct consequences of (4.7) and (4.9), except

for the case p = 2 of the quadratic variation, which needs further a

joint convergence for the two left sides of (4.7) and (4.9), and in which

the variable Φ is independent of the sequence Φq. We will not elaborate

further on this question, since much more general results will be stated

and used in the rest of the book.

A conclusion of this short analysis is that jumps do really complicate

matters, and for power variations we have a bona fide Central Limit

Theorem only for the powers p > 3 or p = 2 or p < 1 (also p = 3 and

p = 1 if one accepts a biased CLT).

Remark 4.4. The reader may wonder why we use the absolute power

variations in (4.3), rather than the (signed) power variations, which can

be defined as

Bsigned(p,∆n)t =

[t/∆n]∑

i=1

{∆n
i X}p

(except when p is an integer, the ordinary power (∆n
i X)p is typically not

well defined).

When p > 2, the same argument as above yields that Bsigned(p,∆n)t
converges to Asigned(p)t =

∑
s≤t{∆Xs}p: in contrast with A(p)t, which

is easily interpreted as a cumulative measure of the jump absolute sizes
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(with power p), the variable Asigned(p)t does not seem to measure any

noteworthy feature of the process: it can be small even when there are

many jumps, or big jumps (think of Y being of the form a(N ′ − N ′′),

where a > 0 and N ′, N ′′ are two independent Poisson processes).

Analogously, in the continuous case, the same argument as for (4.6)

tells us that

∆1/2−p/2
n Bsigned(p,∆n)t

L−→ N (0, (m2p −m2
p)σ

2p t).

In contrast with (4.6), which says that ∆
1−p/2
n B(p,∆n)t is an estimator

for σp (multiplied by the known quantity mpt) with rate of convergence

1/
√
∆n, the above only gives us an estimator of 0, not a very useful

statistic indeed.

4.2 Estimation in a Simple Parametric

Example: Merton’s Model

In this section, we focus on the particular example of the model (4.1), in

which the law G of the jumps is the normal law N (0, η). This is a special

case of Merton’s model, without drift. This model is often written in the

finance literature in differential form, as

dXt = σdWt + αJdNt.

Recall that c = σ2 and η = α2 and that λ is the parameter of the Poisson

process N describing the time arrivals of jumps.

Our aim is to explain the intuition which underlies some of the features

of estimation in the setting of discrete observations, and some of the

methods which are used throughout this book. So, although this section

may be skipped without harm, it might also be quite useful for a general

comprehension of what follows later on.

This is a parametric model with a three-dimensional parameter θ =

(c, λ, η). The probability measure is denoted as Pθ to emphasize the de-

pendency upon the parameter θ. We could as well replace c and η with σ

and α but, at least for the first of those parameters it is more customary

and more in line with the rest of this book to consider c. The integrated

volatility for this model is ct, and the variance of Xt is (c + λη)t. Rel-

ative to models without jumps, the primary purpose of the model is to

generate fat tails for the log-returns, as can be seen in Figure 4.1.

On the basis of discrete observations within the time interval [0, T ],

the identification problem for the three components of the parameter is
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Figure 4.1: Density of increments corresponding to the models

Xt = σWt + Yt (jumps included) and Xt = σWt (no jumps). The

parameters are such that the two distributions have the same variance.

straightforward (identifiability here means existence of a sequence of esti-

mators which is weakly consistent, as ∆n → 0). Namely, c is identifiable,

whereas λ and η are not : the identifiability of c follows from Fact 3.7,

the non-identifiability of λ and η follows from the fact that on a set of

probability e−λT the process X does not jump in [0, t], thus precluding

the existence of estimators for λ and η which are consistent on this set.

4.2.1 Some Intuition for the Identification or Lack

Thereof: The Impact of High Frequency

As said above, the identifiability problem for λ and η is easy to solve, with

a negative answer. However, we might still want to get some information

on the jumps, such as their locations or sizes. If for example we knew

the exact number NT of jumps within [0, T ], we would take 1
T NT as

an estimator for λ: this is not a sequence, and consistency is out of the

question, but this is nevertheless the “best” possible estimator for λ (and

is in fact the MLE) when X is observed over [0, T ], and it is reasonably

accurate when T is relatively large.
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We may consider inferring jumps from large realized returns, filtered

out of the sample path using a (typically endogenously determined) size

cutoff; we will discuss formally such a method in Chapter 10. In discretely

sampled data, every change in the value of the variable is by nature a

discrete jump. Given that we observe in discrete data a change in the

asset return of a given magnitude z or larger, what does that tell us

about how likely such a change involves a jump, as opposed to just a

large realization of the Brownian term ? To investigate that question, we

see from Bayes’ rule that the probability of having had one jump involved

in an increment of magnitude greater than a fixed cutoff z in an interval

of length ∆ is

Pθ (N∆ = 1 | X∆ ≥ z) = Pθ (X∆ ≥ z |N∆ = 1)
Pθ (N∆ = 1)

Pθ (X∆ −X0 ≥ z)

=
e−λ∆λ∆

(
1− Φ

(
z−b∆

(η+c∆)1/2

))

∑+∞
n=0

e−λ∆(λ∆)n

n!

(
1− Φ

(
z−b∆

(nη+c∆)1/2

))

where Φ denotes the N (0, 1) cumulative distribution function, and an

analogous formula holds if we condition upon X∆ < −z. Similarly, we

can compute Pθ(N∆ = q | X∆ ≥ z) for any other value of q, resulting in

Figure 4.2.

The figure shows that as far into the tail as 4 standard deviations,

it is still more likely that a large observed log-return was produced by

Brownian motion rather than by a jump. So when ∆ is not very small

this underscores the difficulty of relying on large observed returns as the

sole means of identifying jumps. This said, our ability to visually pick

out the jumps from the sample path increases rapidly as we increase the

sampling frequency by moving from ∆ corresponding to one day to one

hour to one minute, as seen in Figure 4.3.

The final intuition for the difficulty in telling Brownian motion apart

from jumps lies in the effect of time aggregation, which in the present

case takes the form of time smoothing. Just like a moving average is

smoother than the original series, returns observed over longer time pe-

riods are smoother than those observed over shorter horizons, and jumps

get averaged out. This effect can be severe enough to make jumps visually

disappear from the observed time series of returns. Consider for instance

the detection of the October 1987 market crash in data series at different

frequencies, in Figure 4.4. As the figure shows, the crash of October 1987

is quite visible at the daily and progressively less so as the frequency

decreases, all the way to being invisible at the annual frequency.
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Figure 4.2: Jump probabilities inferred from observing a jump in log-

return greater than a given threshold expressed as a number times σ∆1/2.

This plot shows that, as the observed log-return grows in absolute value

from 0 to a increasingly greater number of standard deviations, the most

likely number of jumps is first 0 then 1. The probabilily of inferring 2

jumps remains marginal in the range of values plotted.

4.2.2 Asymptotic Efficiency in the Absence of Jumps

In order to establish an efficiency benchmark, we start by computing

the best possible asymptotic variance (AVAR) that can be achieved for

the diffusion parameter c = σ2. When λ = 0, we simply have Xt = σWt.

According to the discussion in Subsection 3.1.1 the log-likelihood is given

by (3.3) and the MLE is the discrete approximation to the quadratic

variation of the process, normalized by T , that is,

ĉn =
1

T

[T/∆n]∑

i=1

(∆n
i X)2. (4.12)

We have the LAN property, the MLE ĉn is efficient, and its asymptotic

behavior is given by (3.4) and the asymptotic variance (AVAR) of the

estimation error ĉn−c is equivalent to the inverse of Fisher’s information.
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Figure 4.3: Probability that a 5% log-return involves one jump as a func-

tion of the sampling interval. This plot shows that the higher the observa-

tion frequency, the higher the probability that a jump can be recognized

as such from the observation of a large log-return.

We thus have here

1√
∆n

(ĉn−c) L−→ N (0, 2c2/T ), (4.13)

where AVARno jumps
MLE (c) = 2c2

∆n

T
+ o(∆n).

If we are interested in σ rather than c, the MLE is of course σ̂n =
√
ĉn,

the rate still 1/
√
∆n, and the AVAR becomes equivalent to c∆n/2T .

So, in this very simple situation of no jumps, the MLE is asymptoti-

cally efficient, the estimation variance decreases as ∆n decreases and as

T increases. It is only natural, since the statistical experiment amounts

to observe [T/∆n] i.i.d. N (0, c)-distributed variables (the normalized in-

crements ∆n
i X/

√
∆n ) with unknown variance c.

4.2.3 Asymptotic Efficiency in the Presence of Jumps

When jumps are present, the first result achieved through a computation

of the likelihood function is that, for estimating c when λ and η are

arbitrary but known, we still have the LAN property, and the MLE, say

c̃′n (not to be confused with the MLE without jumps, that is, ĉn of (4.12)),
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Figure 4.4: Log-returns on the Dow Jones Industrial Average at different

observation frequencies, between 1985 and 2002. These plots illustrate

the time averaging effect, namely the fact that jumps get averaged out

over longer time intervals. For instance, the lower right plot shows that

there was no 1987 crash as far as the annual data are concerned.

is asymptotically efficient for estimating c (whatever λ and η are) and

satisfies
1√
∆n

(ĉ′n−c)
L−→ N (0, 2c2/T ),

and AVARwith jumps
MLE (c) = 2c2∆n

T + o(∆n).
(4.14)

In other words, comparing with (4.13), we see that the MLE can in

theory perfectly disentangle c from the jumps, when using high-frequency

data, where “perfectly”means “as well as if the model contained no jump

component.” The presence of jumps imposes no cost on our ability to

estimate c, in particular the asymptotic variance is still 2c2/T (up to

normalization), and not 2(c2+λη2)/T . This can be contrasted with what

would happen if, say, we contaminated the Brownian motion with another

Brownian motion with known variance c′. In that case, we could also

estimate c, but the asymptotic variance of the MLE would be 2(c2 +

c′2)/T.

In light of the Cramer-Rao lower bound, the above establishes 2c2δn/T

as the asymptotic variance benchmark for alternative estimation methods

of c. However, the caveat here is that the MLE for c is efficient, but
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it is also unfeasible in the usual situation where (λ, η) is unknown. So

deriving estimators c̃n with the proper rate or, better, with the efficient

asymptotic behavior described in (4.14) calls for practical methods for

disentangling the jumps and the Brownian part.

4.2.4 GMM Estimation

A natural way to address this problem is the generalized method of mo-

ments (GMM in short; this is also known by statisticians as the esti-

mating function method). Let us begin with a generic description of

GMM (see Hansen (1982)). Below, we will study the estimation of a

one-dimensional parameter, c, using a single moment function, but the

q-dimensional version version is just as convenient to expose.

In the simplest version we have i.i.d. variables Y1, Y2, . . ., having a joint

distribution Pθ depending on a parameter θ running through an open

subset Θ of Rq. At stage n, we observe the first n variables Y1, . . . , Yn
which serve as placeholders for the increments ∆n

i X , and are Rd-valued.

We select an m-dimensional function h on Rd, with m ≥ q, called the

moment conditions, such that the expectations

h(θ) = Eθ(h(Y1)) (4.15)

are computable under the law Pθ, preferably in a closed form, and in

particular are all well defined. We also assume that h is C1, and a bijection

from Θ into the interior of the convex hull generated by all values h(z),

where z ranges through the union of the topological supports of the

variable Y1 under all Pθ.

We then form the centered sample average

hn(θ) ≡
1

n

n∑

i=1

(
h(Yi)− h(θ)

)
(4.16)

and obtain θ̂n by minimizing the quadratic form

Qn(θ) ≡ hn(θ)
∗ Υn hn(θ) (4.17)

where Υn is an m×m positive definite, possibly random, weight matrix

assumed to converge in probability to a positive definite limit Υ. If the

system is exactly identified, that is, m = q, the choice of Υn is irrelevant

and minimizing (4.17) amounts to setting hn(θ̂n) = 0. We let

D(θ) = ∂θh(θ), S(θ) = Eθ
(
(h(Y1)− h(θ))(h(Y1)− h(θ))∗

)
,
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and we assume that D(θ) is not degenerate and that the m×m matrix

S(θ) is positive definite. Then it follows from standard arguments that,

under Pθ,

√
n(θ̂n − θ)

L−→ N
(
0,
(
D(θ)∗S(θ)−1D(θ)

)−1 )
. (4.18)

If m > q, this holds if the weight matrix Υn is taken to be any consistent

estimator of S−1, as this is the efficient choice; choosing Υn optimally

improves the asymptotic estimation variance, but it does not improve

the rate of convergence. A consistent first-step estimator of θ, needed to

compute the optimal weight matrix Υn, can be obtained by minimizing

(4.17) with Υn = Id.

In practice, the model used to compute the expected value of h may

be misspecified. This means that we do not use the correct function h in

(4.16) but a wrong one, say H , with still the same smoothness and one-

to-one property as h has. In other words, the estimator θ̂n is based on

the sample averages Hn(θ) ≡ 1
n

∑n
i=1

(
h(∆n

i X)−H(θ)
)
and minimizes

the quadratic form Hn(θ)
∗ ΥnHn(θ).

There is a unique θ̄ such that

H(θ̄) = h(θ)

and the estimators θ̂n converge to θ̄ instead of the true value θ. Moreover,

if D(θ) = ∂θH(θ) we obtain, instead of (4.18),

√
n(θ̂n − θ̄)

L−→ N
(
0,
(
D(θ)∗S(θ)−1D(θ)

)−1 )
. (4.19)

Estimating θ instead of θ is not what we want. However, quite often in

practice, the misspecification diminishes as n increases. This may seem

strange at first glance, but this is typically what happens for the esti-

mation of c in Merton’s model when ∆n goes to 0, as we will see below;

this is due to the fact that instead of applying the GMM to an i.i.d. se-

quence of variables having a fixed law, we apply it to the i.i.d. sequence

(∆n
i X : i ≤ n), whose law depends on n and is closer and closer to a

normal law when ∆n gets smaller and smaller. In other words, at stage

n we use in place of H a function H
(n)

which converges as well as its

derivative to h and its derivative, uniformly on each compact set.

In this case the mean squared error of θ̂n has the following asymptotic

behavior, written for simplicity in the univariate case m = q = 1:

Eθ
(
(θ̂n − θ)2

)
∼ 1

D(θ)2

(S(θ)
n

+ |H(n)
(θ)− h(θ)|2

)
. (4.20)
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We have a bias term, which may be negligible in front of the variance

term, or of the same order, or perhaps is the leading term, depending on

the case, that is, on the choice of h.

4.2.5 GMM Estimation of Volatility with Power

Variations

We now come back to Merton’s model, the observation being the incre-

ments ∆n
i X , which for each n are i.i.d., but with a distribution depending

on n. Despite this fact, we use the GMM method described above, with

moment functions of the following types:

absolute

moments
:

{
h(y) = |y|p

h̄n(θ) = E(|∆n
i X |p) ,

truncated

absolute

moments

:

{
h(y) = |y|p 1{|y|≤un}

h̄n(θ) = E(|∆n
i X |p1{|∆n

i X|≤un})
,

(4.21)

for various values of the power p > 0, not necessarily integers. The trun-

cation levels in (4.21) are of the form

un = a∆̟
n , for some ̟ > 0, a > 0

(when a = ∞, this corresponds to no truncation at all and truncated

absolute moments reduce to absolute moments). We could also use the

standard moments, h(y) = yp, with p ∈ N; however, when p is even it is

also an absolute moment, and when p is odd the expectation E((∆n
i X)p)

vanishes for Merton’s model (as written here without drift and with cen-

tered jump size) for all values of (c, λ, η), so these odd moments give no

information in the present example.

In order to implement GMM with correctly centered moments, we

need to be able to evaluate the expected values h̄n(θ) appearing in (4.21)

as explicit functions of the parameters θ of the model. If the correct law

Pθ of the process is employed to calculate these expected values, then the

resulting GMM estimators will be consistent. The question becomes one

of comparing their asymptotic variances among themselves, and to that

of the MLE.

When λ and η known, the function h̄n is fully determined. Other-

wise, it is unknown and instead we take the expected value of |∆n
i X |p

and |∆n
i X |p 1{|∆n

i X|≤un} as if X were actually equal to σW ; this is a

misspecified, but simpler model, and this gives rise to the function H
(n)

described above.
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In any event, we need the form of

M(∆, p) = E(|X∆|p), Mtr(∆, p, u) = E
(
|X∆|p1{|X∆|≤u}

)
. (4.22)

One might think that only integer moments are useful, but we will

see quite the opposite later on, and considering lower order moments

(0 < p < 2) is beneficial for the purpose of identifying the continuous

component of a semimartingale. These absolute moments and truncated

absolute moments are also available in closed form in this model, using

the absolute and truncated absolute moments of N (0, 1), that is

mp = E(|U |p), mp(x) = E
(
|U |p 1{|U|≤x}

)
, where U is N (0, 1).

If

Γ(q) = Γ(q, 0), Γ(p, x) =

∫ ∞

x
e−y yq−1 dy

denote the gamma and incomplete gamma functions of order q, respec-

tively, we have

mp =
2p/2√
π
Γ
(
1+p
2

)
,

mp(x) =
2p/2√
π

(
Γ
(
1+p
2

)
− Γ

(
1+p
2 , x

2

2

))
.

(4.23)

With this notation, the moments of (4.22) are

M(∆, p) = mp e
−λ∆

∞∑

n=0

(λ∆)n

n!
(nη + c∆)p/2

Mtr(∆, p, u) = e−λ∆
∞∑

n=0

(λ∆)n

n!
(nη + c∆)p/2mp

( u√
nη + c∆

)
.

The first expression above is of course the limit of the second one, as

u→ ∞. In particular, we deduce M(∆, 2) = (c+ ηλ)∆.

These explicit moment expressions make it possible to compute cor-

rectly centered GMM estimators of c, assuming λ and η known. We are

not exactly in the setting of the previous subsection, but since the incre-

ments ∆n
i X are i.i.d. for i ≥ 1, the fact that their laws depend on n does

not impair the results: in this case we still use the correct function h of

(4.15).

If we do not assume the parameters (λ, η) of the jump part of the model

are known, then we instead rely on an approximate centering based on

computing expectations assuming that X = σW . As discussed above,

the effect of the misspecification is to bias the resulting estimator, see
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(4.20). Combining this with (4.19), and denoting the estimators as c̃n,

we have a result of the form

∆−v1
n (c̃n − cn)

L−→ N (0, v0), where cn = c+ b0∆
b1
n + o(∆b1

n ), (4.24)

with v1 ∈
[
0, 12

]
(we cannot have v1 >

1
2 , because of the property (4.18))

and v0 > 0, and also with b1 ∈ R and b0 ∈ R for the bias cn − c incurred

by the wrong centering (of course, cn = c when λ = 0). If b1 ≤ 0 and/or

v1 = 0 for some choice of (p, a,̟), then the parameter c is not identified

by a moment function based on that combination.

In what follows, we fully characterize the asymptotic distribution of

the semi-parametric estimator of c, that is, the values (b0, b1, v0, v1) in

(4.24) as functions of (p, a,̟) and of θ = (c, λ, η). We report in the

form of AVAR(c) and AVAR(c) the variances of the difference c̃n− c and
c̃n − cn, respectively, assuming that the time horizon is T = 1. Only the

first one is really useful for estimating c, but the second one gives the

behavior of the GMM estimators when the two jump parameters (λ, η)

are known. We have the following equivalences, as n→ ∞:

AVARGMM(c) ∼ v0∆
2v1
n , AVARGMM(c) ∼ v0∆

2v1
n + b20 ∆

2b1
n .

(In the second expression the leading term is v0∆
2v1
n when v1 < b1, and

b20∆
2b1
n if v1 > b1, and the sum of the two terms when v1 = b1.) Therefore

v1 = 1
2 and b1 ≥ 1

4 are the conditions for a convergence rate of 1/
√
∆n,

otherwise the rate is slower. When v1 ≤ b1 the convergence rate of the

semi-parametric estimators is identical to the rate one would obtain in

the fully parametric, correctly specified, case where the jump parameters

are known, and the same is true of the asymptotic variance itself (at the

leading order) when further v1 < b1. Centering using only the Brownian

part is of course the only feasible estimator in the semi-parametric case

where the parameters (λ, η) are unknown.

Power Variations without Truncation In the absence of trunca-

tion (equivalently, a = ∞), the leading order terms of AVARGMM(c) and

AVARGMM (c), based on using absolute moments of order p, are given

in the following two tables, in which we also report the value obtained

when there is no jump, for the sake of comparison:
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Moment Function M(∆n, 2) M(∆n, p)

p ∈ (1, 2]

AVARwith jumps
GMM (c) 3λη2 + λ2η2 4ληp c2−p

p2cp

(
m2p +m2

pλ
)
∆2−p
n

AVARwith jumps
GMM (c) 3λη2

4m2p λη
p c2−p

p2m2
p

∆2−p
n

AVARno jumps(c) 2c2∆n
4c2(m2p−m2

p)

p2m2
p

∆n

Moment Function M(∆n, 1) M(∆n, p)

p ∈ (0, 1)

AVARwith jumps
GMM (c)

4c((1−m2
1)c+λη+m

2
1λ

2η)
m2

1
∆n

4c2(m2p−m2
p)

p2m2
p

∆n

AVARwith jumps
GMM (c)

4c((1−m2
1)c+λη)

m2
1

∆n
4c2(m2p−m2

p)

p2m2
p

∆n

AVARno jumps(c)
4c2(1−m2

1)

m2
1

∆n
4c2(m2p−m2

p)

p2m2
p

∆n

In all cases with jumps, we have v1 = b1 = 1−p/2, so we should never

take p > 2, explaining why this case is not reported in the table.

Therefore, the estimators based on absolute moments converge at rate

1/
√
∆n only when p ≤ 1, and are asymptotically unbiased only when

p < 1. When 1 < p < 2, the mixture of jumps and volatility slows down

the rate of convergence, but identification of c is maintained. We will see

later that this a generic behavior of power variations for small powers

(less than 2). When p ≥ 2, the parameter c is no longer identified if we

use this method, and when p > 2 the absolute difference |c− cn| tends to
∞, as does |c̃n − cn| (in probability, and in restriction to the set where

there is at least one jump).

When p < 1, the asymptotic variance v0 is identical to the expression

obtained without jumps, as is the case when the log-likelihood score is

used as a moment function but the GMM estimators are inefficient, not

achieving the efficient asymptotic variance 2c2∆n of (4.14), recall that

T = 1 here, and this is true even in the absence of jumps. When p = 1,

the rate of convergence remains n1/2, but v0 is larger in the presence of

jumps than without jumps, and the bias worsens the picture even more.
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To summarize, we find that, although it does not restore full maximum

likelihood efficiency, using absolute moments of order less than 2 in GMM

helps: When c is estimated using moments of orders greater than 2, then

AVARGMM(c) → ∞. If we use p = 2 this variance stays bounded but

does not vanish asymptotically, which is of course not surprising, since

using the second moment exactly amounts to taking the estimator ĉn of

(4.12), which is the quadratic variation; without jumps, this is the MLE

and is efficient, when there are jumps it converges to c plus the sum of the

squared jumps inside [0, 1]. When absolute moments of order p ∈ (0, 1)

are used, we obtain the optimal rate, but not efficiency. When p ∈ (1, 2),

we have an intermediate situation where the rate is 1/∆
1−p/2
n .

Note also that these results are consistent with the asymptotic behav-

ior of power variations obtained in (4.11), with distinct behaviors when

p < 1 or p = 1 or 1 < p < 2 or p = 2.

Power Variations With ∆
1/2
n Truncation Truncating at level

un = a∆
1/2
n with 0 < a < ∞ is natural in the presence of Brownian

motion since this is the order of magnitude of its increments. In all cases

we find v1 = 1
2 , whereas b1 = 3

2 , so the bias is asymptotically negligible

for any p > 0, in front of the variance term. More precisely, the two

variances AVARGMM(c) and AVARGMM(c) are equivalent, and we have

AVARGMM(c) ∼ c2
m2p(a/

√
c)−mp(a/

√
c)2

(
1√
2π

(
a2

c

)(p+1)/2
exp

(
− a2

2c

)
− p

2 mp(a/
√
c)
)2 ∆n.

Truncating at level ∆
1/2
n therefore restores the convergence rate

1/
√
∆n for all values of p, with AVARGMM(c) = O(∆n), and now per-

mits identification of c. We will see the counterpart of this result in the

more general nonparametric context later on. When 0 < p < 1 (where

the rate 1/
√
∆n was already achieved without truncation), truncating at

level ∆
1/2
n can lead to either a smaller or larger value of v0 than not trun-

cating, depending upon the values of the ratio a/
√
c in the truncation

level un. The value of v0 is identical to its expression when no jumps are

present.

Note also that the value v0 is always bigger than 2c2, which would

achieve efficiency in (4.14).

Power Variations With Slower Than ∆
1/2
n Truncation If we

now keep too many increments (relative to ∆
1/2
n ) by truncating according
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to 0 < ̟ < 1/2, then we have for p > 0

v1 =
1

2

∧ 2 + (2p+ 1)̟ − p

2
, b1 =

2 + (2p+ 2)̟ − p

2
.

Again, the bias is asymptotically negligible for any p > 0, in front of the

variance term, hence again AVARGMM(c) and AVARGMM(c) are equiva-

lent. We have, according to the truncation exponent ̟ adopted:

p < 1+̟
1−2̟ ⇒ AVARGMM(c) ∼ 4c2(m2p−m2

p)

p2m2
p

∆n

p = 1+̟
1−2̟ ⇒ AVARGMM(c) ∼ 4c2(m2p−m2

p+2λa2p+1/(2p+1)c2p
√
2ηπ)

p2m2
p

∆n

p > 1+̟
1−2̟ ⇒ AVARGMM(c) ∼ 8c2λa2p+1

(2p+1)c2p
√
2ηπp2m2

p
∆

2+(2p+1)̟−p
n .

When 0 < p < 1, we are automatically in the first case above, hence

keeping more than O(∆
1/2
n ) increments results in the convergence rate

1/
√
∆n and the same asymptotic variance v0 as when keeping all incre-

ments (i.e., not truncating at all). When p ≥ 1 it is possible to get the

convergence rate 1/
√
∆n by keeping more than O(∆

1/2
n ) increments, but

still “not too many” of them (take ̟ in
( p−1
2p+1 ,

1
2

)
); but even keeping a

larger fraction of the increments results in an improvement over keep-

ing all increments since 2 + (2p + 1)̟ − p > (2 − p) so that the rate

of convergence of c̃n, although slower than 1/
√
∆n, is nonetheless faster

(smaller AVARGMM (σ)) than that obtained without truncation where

we had AVARGMM (σ) = O(∆2−p
n ).

A crucial consequence of these results is what happens when p = 2.

In this case, and as soon as ̟ ∈
(
1
3 ,

1
2

)
, we are in the first case above,

with v0 = 2c2. That is, not only do the GMM estimators in this case

converge with the efficient rate, but they are efficient. Moreover, since

this corresponds to the moment function h(x) = x2, the estimator is

particularly simple:

c̃n =

[1/∆n]∑

i=1

(∆n
i X)2 1{|∆n

i X|≤un}.

This is the same as the truncated estimators (3.35), and it will be en-

countered often in more general situations later.

Power Variations With Faster Than ∆
1/2
n Truncation Finally,

if we keep too few increments (relative to ∆
1/2
n ) by truncating according

to ̟ > 1/2, then v1 = 3
4 − ̟

2 and b1 = 3
2 for all values of p > 0. Once

more the bias is negligible and

AVARGMM(c) ∼ 2(p+ 1)2
√
2π c

(2p+ 1)a
∆3/2−̟
n .
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Truncating at a rate faster than ∆
1/2
n therefore deteriorates the con-

vergence rate of the estimator from 1/
√
∆n to 1/∆

3/4−̟/2
n : while we

successfully eliminate the impact of jumps on the estimator, we are at

the same time reducing the effective sample size utilized to compute the

estimator (by truncating “too much”), which increases its asymptotic

variance. When p ∈ (0, 1], this is worse than not truncating. When p is

larger than 1, then if p−̟ > 1/2 truncating produces a lower asymptotic

variance than not truncating.

To conclude, GMM estimators of the continuous part of the model

based on absolute moments or power variations of non-integer orders less

than 2 or, on absolute moments of any order combined with truncations

at the proper rate, do better than traditional integer-based moments

such as the variance and kurtosis, a property which we will revisit in the

nonparametric context in later chapters.

4.3 References

Lépingle (1976) studied the convergence in probability of the power vari-

ations of a discretely sampled general semimartingale, thus providing an

analogue of (4.10) (for p ≥ 2) in a much more general context than here.

The first section in this chapter basically follows Jacod (2012), and the

second one is taken from Aı̈t-Sahalia (2004).



Chapter 5

High-Frequency

Observations:

Identifiability and

Asymptotic Efficiency

This chapter starts with a brief reminder about a number of concepts

and results which pertain to classical statistical models, without spe-

cific reference to stochastic processes (although the examples are always

stochastic process models). This should help the reader make the con-

nection between classical statistics and the specific statistical situations

encountered in this book.

Next, we introduce a general notion of identifiability for a parameter,

in a semi-parametric setting. A parameter can be a number (or a vec-

tor), as in classical statistics; it can also be a random variable, such as

the integrated volatility, as already seen in Chapter 3. The analysis is

first conducted for Lévy processes, because in this case parameters are

naturally non-random, and then extended to the more general situation

of (general or Itô) semimartingales.

We also devote a section to the problem of testing a hypothesis which

is “random,” such as testing whether a discretely observed path is contin-

uous or discontinuous: the null and alternative are not the usual disjoint

subsets of a parameter space, but rather two disjoint subsets of the sam-

ple space Ω, which leads us in particular to an ad hoc definition of the

level, or asymptotic level, of a test in such a context.

Finally, but only in the case of Lévy processes again, we come back to

131



132 Chapter 5

the question of efficient estimation of a parameter, which here is mainly

analyzed from the viewpoint of “Fisher efficiency.” This is of course far

from a general theory of asymptotic efficiency, which at present is not

available for semi-parametric Lévy models, let alone general semimartin-

gales.

5.1 Classical Parametric Models

The usual setting of a statistical parametric model is as follows. A sample

space (Ω,G) is endowed with a family of probability measures Pθ indexed

by a parameter θ in some subspace Θ of Rq. At each stage n, we have an

observed σ-field Gn, and we assume that
∨
n Gn = G.

Example 5.1. Let Ω be the canonical space of all real-valued continuous

functions on R+, with the canonical filtration (Ft)t≥0 and F =
∨
t Ft

and the canonical process X. We take Θ = R × R+ (so q = 2), and if

θ = (b, c) and σ =
√
c we denote by Pθ = P(b,c) the unique measure on

(Ω,F) under which

Xt = bt+ σWt,

where W is a standard Brownian motion. The time horizon is T , and we

set G = FT and Gn = σ(Xi∆n : i = 0, 1, . . . , [T/∆n]). So Gn is generated

by the discrete observations of X at times i∆n, over the time inter-

val [0, T ] (equivalently, by the increments ∆n
i X). Note that the equality∨

n Gn = G holds up to Pθ-null sets only, but this is of no importance for

us.

The quantity θ is usually called the parameter, but we may be in-

terested in estimating one of its components only, or more generally a

function of θ. So here a “parameter” is a function g on Θ, say Rp-valued.

The function g is known, and an estimator at stage n, say ĝn, is a priori

any Gn-measurable random variable. The sequence ĝn is called consistent

if for all θ ∈ Θ we have

ĝn
Pθ−→ g(θ). (5.1)

One should rather term this “weak consistency,” but since later we never

encounter “strong” consistency, which is the Pθ-almost sure convergence

above instead of convergence in probability, we more simply use the ter-

minology “consistency.”
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5.1.1 Identifiability

A parameter g, in the above sense, is called identifiable if it admits a

sequence of consistent estimators. A very simple necessary condition for

identifiability is given below:

Theorem 5.2. If the parameter g is identifiable, then for any two θ, θ′ ∈
Θ such that g(θ) 6= g(θ′) the measures Pθ and Pθ′ are mutually singular.

Proof. Suppose identifiability and let ĝn be a consistent sequence of es-

timators. Assume g(θ) 6= g(θ′). Let

An =
{
|ĝn − g(θ)| > |g(θ)− g(θ′)|

2

}
.

Applying (5.1) for θ and for θ′ yields Pθ(An) → 0 and Pθ′(An) → 1.

These two properties imply the mutual singularity of Pθ and Pθ′ .

There are no known sufficient conditions for identifiability, unless one

is willing to make the assumption that the measures Pθ are all equivalent

in restriction to each Gn, plus some regularity and non-degeneracy of the

corresponding likelihood functions. However, we do have a weaker form

of identifiability: we say that the parameter g is pairwise identifiable if for

any two θ, θ′ with g(θ) 6= g(θ′), there are estimators ĝn satisfying (5.1)

for θ and θ′; under Pθ, ĝn consistently estimates g(θ) and under Pθ′, ĝn
consistently estimates g(θ′), but this says nothing about the behavior of

ĝn under the measures Pθ′′ when θ
′′ is neither θ nor θ′.

Theorem 5.3. The parameter g is pairwise identifiable if and only if,

for any two θ, θ′ ∈ Θ with g(θ) 6= g(θ′), the measures Pθ and Pθ′ are

mutually singular.

Proof. If g is pairwise identifiable, it is also pairwise identifiable for any

submodel indexed by two points, say Θ′ = {θ, θ′}, in which case identifi-

ability and pairwise identifiability agree. Hence the necessary condition

is a consequence of the previous theorem. Conversely, if the measures

Pθ and Pθ′ are mutually singular, and since G =
∨
n Gn, there exist sets

An ∈ Gn such that Pθ(An) → 0 and Pθ′(An) → 1. Then

ĝn = g(θ) 1(An)c + g(θ′) 1An

is Gn-measurable and satisfies (5.1) for θ and θ′. This proves the sufficient

condition.
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We will encounter many parameters which are pairwise identifiable.

For most of them we come up with consistent estimators, proving de

facto their identifiability.

Example 5.1 (continued). In the setting of Example 5.1, it is well

known, and also a consequence of Theorem 5.6 below, that the measures

P(b,c) and P(b′,c′) are, in restriction to G = FT , and excluding the case

(b′, c′) = (b, c):

• mutually equivalent if c = c′ > 0, whatever b, b′,

• mutually singular otherwise.

Hence c is pairwise identifiable (and in fact identifiable), whereas b is

not.

5.1.2 Efficiency for Fully Identifiable Parametric

Models

The most common concepts of optimality or efficiency use the likelihood

functions, so we assume that for all n the restrictions Pθ,n of the measures

Pθ to the σ-field Gn are absolutely continuous with respect to a given

reference measure µn on (Ω,Gn). The likelihood at stage n, denoted as

Ln(θ), and relative to µn, is the Radon-Nikodym derivative

Ln(θ) =
dPθ,n
dµn

.

Apart from the likelihood itself, all notions or results below turn out to

be in fact independent of the particular choice of the dominating measure

µn.

There are two main notions of optimality. The first one, the Cramer-

Rao bound, is not asymptotic. It necessitates enough smoothness and

integrability on Ln(θ), so that Fisher’s information

In(θ) =

∫
∂θLn(θ) ∂θLn(θ)

∗

Ln(θ)
dµn (5.2)

is well defined (here ∂θLn is the gradient of Ln, as a function of θ, and ∗

stands for the transpose). Then In(θ) is a q × q symmetric nonnegative

matrix, which we assume below to be invertible. Then if g is a real-valued

parameter, differentiable in θ, and as soon as ĝn is an unbiased estimator

of g (that is, Eθ(ĝn) = g(θ) for all θ), we have the Cramer-Rao lower

bound on the estimation variance:

Eθ
(
(ĝn − g(θ))2

)
≥ ∂θg(θ)

∗ In(θ)
−1 ∂θg(θ). (5.3)
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There is also a version for biased estimators, which we do not recall here.

Then of course if we come up with an estimator ĝn which is unbiased and

achieves equality in (5.3), it is optimal (or efficient) in the Cramer-Rao

sense among all unbiased estimators. Note that this notion of optimality

is non-asymptotic: it makes sense for any fixed n.

Now we can look at asymptotic concepts. When θ itself is an iden-

tifiable parameter, the Cramer-Rao bound applied to each component

g(θ) = θj yields that all diagonal entries of I(θ)−1
n go to 0 (provided

there exist estimators ĝn whose estimation variances go to 0). In most

situations, it appears that I(θ)n itself explodes at some rate v2n → ∞
(we put a square here, because Fisher’s information drives the estima-

tion variance). That is, we have

1

v2n
I(θ)n → I(θ) (5.4)

for some symmetric nonnegative matrix I(θ). In this situation, we say

that a sequence ĝn of unbiased estimators of g is asymptotically variance-

efficient if for all θ,

v2n Eθ
(
(ĝn − g(θ))2

)
→ ∂θg(θ)

∗ I(θ)−1 ∂θg(θ). (5.5)

This concept is not so well defined when ĝn is biased, even when

the bias is asymptotically negligible. But there is another notion of op-

timality, developed mainly by Le Cam. This is called local asymptotic

normality, LAN in short, and goes as follows: letting ln = logLn denote

the log-likelihood, under appropriate assumptions, we have both (5.4)

and the following convergence in law under Pθ, for each θ in the interior

of Θ (so below θ + y/vn ∈ Θ for all n large enough):

ln(θ + y/vn)− ln(θ)
L−→ y∗ I(θ)−1/2 U − 1

2
y∗ I(θ)−1 y

where U is a standard q-dimensional centered Gaussian vector and the

convergence holds jointly, with the same U , for any finite family of y ∈ Rq.

In this case, there exist sequences of estimators ĝn for g which satisfy

(5.5), and also

vn (ĝn − g (θ))
L−→ Φ := ∂θg(θ)

∗ I(θ)−1/2 U. (5.6)

The sequence vn going to infinity is called the rate, or speed of conver-

gence of ĝn. Moreover, any other “regular” sequence of estimators ĝ′n
is worse than the above, in the sense that either its rate is slower or
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vn (ĝ
′
n − g (θ)) converges to a limit which is the sum Φ + Φ′, where Φ′

is independent of Φ (so Φ + Φ′ is more spread out than Φ, this is the

Hajek convolution theorem). When this holds, any sequence of estimators

satisfying (5.6) is called asymptotically efficient. The advantage of this

type of optimality is that it is not sensitive to whether the estimators

are biased or not, although it somehow implies that the bias is asymp-

totically negligible. It is also insensitive to the moment properties of ĝn:

these estimators can still be asymptotically efficient even when they have

infinite variance (or other infinite moments).

Criteria ensuring the LAN property are too complicated to be fully

explained here, and of no real use for us. Let us simply say that they are

fulfilled when the observation consists of a sample of n i.i.d. variables with

a smooth density, depending smoothly on θ as well, with the rate vn =√
n. When we observe a discretized Lévy process, so the increments ∆n

i X

are also i.i.d., although with a law depending on n, the LAN property

also typically holds when θ is fully identifiable.

Finally, suppose that we want to estimate θ itself. When the likelihood

function Ln is available one can use the maximum likelihood estimator,

or MLE, that is, the value (or one of the values) θ̂n achieving the maxi-

mum of the function θ 7→ Ln(θ), provided it exists. This method is often

considered optimal, for good reasons: if the LAN property holds and the

MLE exists, then the latter satisfies (5.6) with g(θ) = θ. However, the

MLE is sometimes difficult to compute, and it has no equivalent for a

semi-parametric model. So it usually cannot be used in the situations

studied in this book.

Example 5.1 (continued). In Example 5.1 with c = σ2 > 0, and when

the observed σ-field is Gn = σ(Xi∆n : i = 0, . . . , [Tn/∆n]) with a time

horizon Tn which may be fixed, or may go to infinity, the measures Pθ,n

are absolutely continuous with respect to Lebesgue measure on R, and the

log-likelihood is

ln(b, c) = −1

2

[Tn/∆n]∑

i=1

((∆n
i X − b∆n)

2

c∆n
+ log(2π c∆n)

)
.

A simple calculation shows that the Fisher information (5.2) is the matrix

with entries

In(b, c)
bb =

∆n [Tn/∆n]

c
, In(b, c)

cc =
[Tn/∆n]

2c2
, In(b, c)

bc = 0. (5.7)

When b is known, so θ reduces to c, we have (5.4) with vn =
√
Tn/∆n,

and the LAN property is easily checked with the same vn (it reduces to
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the ordinary Central Limit Theorem). The MLE is

1

∆n[Tn/∆n]

[Tn/∆n]∑

i=1

(∆n
i X − b∆n)

2

and satisfies (5.6) with g(c) = c. The simpler estimator

1

∆n[Tn/∆n]

[Tn/∆n]∑

i=1

(∆n
i X)2

also satisfies (5.6), as soon as ∆n → 0, if for example Tn = T is fixed.

When c > 0 is known but θ = b is unknown, (5.4) and the LAN

property hold with vn =
√
Tn, provided Tn → ∞: this is the condition

for identifiability of b, and the MLE 1
∆n[Tn/∆n]

X∆n[Tn/∆n] then satisfies

(5.6).

When both b and c are unknown, so θ = (b, c) is two-dimensional, (5.4)

holds with, necessarily, vn =
√
Tn/∆n again, if and only if ∆n converges

to a finite and positive limit ∆. In this case, the two-dimensional MLE

satisfies (5.6) with the same vn.

Remark 5.4. The previous example is somehow typical of what happens

in many practical situations. Supposing for example that θ = (θ1, θ2) is

two-dimensional, both θ1 and θ2 may be identifiable, but the optimal rates

for their estimation may be different. That is, (5.4) fails but we have two

sequences vin → ∞, such that I(θ)ijn /
(
vinv

j
n

)
→ I(θ)ij for i, j = 1, 2.

Then (5.5) still holds, with vn = vjn, when g(θ) only depends on θj.

In Example 5.1 with θ1 = b and θ2 = c, and when Tn → ∞, we have

this with the two rates v1n =
√
Tn and v2n =

√
Tn/∆n. More generally, this

happens for diffusion processes which are discretely observed on [0, Tn],

with Tn → ∞, and with a drift coefficient depending on θ1 and a diffusion

coefficient depending on θ2.

However, in this book we never let Tn → ∞, and such a situation will

typically not occur.

5.1.3 Efficiency for Partly Identifiable Parametric

Models

Example 5.1 with a fixed time horizon T is a case where the parameter

(b, c) is not fully identifiable, although the second component c is. This

makes the very definition of optimality for a sequence of estimators dif-

ficult to state in a precise mathematical way. This is also the case when,
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as in Remark 5.4, all components of θ are identifiable but the optimal

rates are different for distinct components.

We get around these difficulties in the following manner. Suppose that

θ = (θ1, θ2), with θ1 identifiable and one-dimensional, the remaining com-

ponents being gathered in θ2 and being identifiable or not. For estimating

a function g which depends on θ1 only, we can proceed as follows:

1. Find estimators ĝn which do not depend on θ1 of course, and neither

on θ2 (as any “estimator” should be !).

2. Prove that the asymptotic estimation variance Vn(θ) =

Eθ
(
(ĝn − g(θ))2

)
satisfies Vn(θ)/w

2
n → V (θ) for some sequence

wn → ∞.

3. Prove that the first diagonal element of Fisher’s information matrix

satisfies I(θ)11n /v
2
n → I(θ)11 > 0.

4. Conclude that ĝn is asymptotically variance-efficient if wn = vn
and V (θ) = g′(θ1)2/I(θ)11.

If instead of (2) and (3) above we have (2’): wn((ĝn − g(θ))
L−→ Φ

and (3’): the LAN property when θ2 is arbitrarily fixed (so we have a

statistical experiment with parameter θ1 only), we conclude that ĝn is

asymptotically efficient if wn = vn and Φ is N (0, g′(θ1)2/I(θ)11).

The foregoing procedure really amounts to fix θ2 and consider the

submodel (Pθ) in which only θ1 is varying, except that we additionally

impose that the estimators do not depend on the now fixed value θ2.

The above yields asymptotic efficiency for each of these submodels and,

loosely speaking, one cannot do better for the global model than for any

of its submodels; this is why we conclude asymptotic efficiency for the

“global” model.

Remark 5.5. The reader should be aware that the previous argument,

however plausible, is not really mathematically founded. It is correct when

Θ = Θ1 ×Θ2 has a product form. But it may go wrong if the parameter

set Θ has a more complicated structure: some information on θ1 may be

gained from a preliminary (or joint) estimation of θ2. We will see such

a (very artificial) example of this later.

Let us emphasize right now that the above procedure is an idealized

one. In many cases we can perform points (1), (2) and (3), but are unable

to obtain (4): when wn = vn we at least obtain rate-efficient estimators,

but even this is not always the case.
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5.2 Identifiability for Lévy Processes and

the Blumenthal-Getoor Indices

In this section we consider Lévy processes: the basic process X is Lévy,

and we study the pairwise identifiability of the three parameters (b, c, F )

characterizing the law of X .

5.2.1 About Mutual Singularity of Laws of Lévy

Processes

In view of Theorems 5.2 and 5.3, pairwise identifiability is closely con-

nected with the property of two Lévy processes with distinct character-

istics to having mutually singular laws. So we give a criterion ensuring

that this is the case.

The setting is as follows. We start with the canonical space

(Ω, (Ft)t≥0,F) of all càdlàg Rd-valued functions on R+, with the canoni-

cal processX . For any triple (b, c, F ) as in (1.23) we denote by P(b,c,F ) the

unique probability measure on (Ω,F) under which X is a Lévy process

with characteristics (b, c, F ). Moreover, we let P(b,c,F )|Ft
be the restric-

tion of P(b,c,F ) to the σ-field Ft.
When F and F ′ are two Lévy measures, we can write the Lebesgue

decomposition

F ′ = f • F + F ′⊥

of F ′ with respect to F : here, f is a nonnegative Borel function on Rd,

and F ′⊥ is a measure supported by an F -null set. The measure F ′⊥ is

unique, and the function f is unique up to F -null sets. Then we have

Theorem 5.6. Let (b, c, F ) and (b′, c′, F ′) be two triples as above.

a) Either the two measures P(b,c,F )|Ft
and P(b′,c′,F ′)|Ft

are mutually

singular for all t > 0, or they are not mutually singular for all t > 0.

b) Mutual singularity for all t > 0 holds if and only if at least one of

the following five properties is violated:

• F ′⊥(R) <∞
• α(F, F ′) :=

∫ (
|f(x)− 1|2 ∧ |f(x)− 1|

)
F (dx) <∞

• α′(F, F ′) :=
∫
{|x|≤1} |x| |f(x) − 1|F (dx) <∞

• b′ = b −
∫
{|x|≤1} x (f(x) − 1)F (dx) + cb̃ for some b̃ ∈ Rd

• c′ = c.

(5.8)

This follows from a combination of Theorem IV.4.39 and of the sub-

sequent Remark IV.4.40 of Jacod and Shiryaev (2003). Notice the quite
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remarkable statement (a), which is usually wrong for semimartingales

that are not Lévy processes (and wrong even for “non-homogeneous”

Lévy processes), and which is in deep contrast with the following: ei-

ther (b, c, F ) = (b′, c′, F ′) or the two measures P(b,c,F ) and P(b′,c′,F ′) are

mutually singular on (Ω,F).

As a – very important – consequence, we deduce the following (well

known) property, again for Lévy processes, and when the observations

are inside a given finite interval [0, T ]:

The drift b is not identifiable,

the variance c is pairwise identifiable.
(5.9)

(As a matter of fact, we will come up later, in a much more general

situation, with consistent estimators for c, so this parameter is indeed

identifiable.) In the one-dimensional case for example, the claim about

the drift comes from the fact that if (b, c, F ) and (b′, c, F ) are given and

if c > 0, then the measures P(b,c,F )|Ft
and P(b′,c,F )|Ft

are not mutually

singular (they are even equivalent, in this case).

Remark 5.7. Any statement like (5.9) should be taken with caution.

Indeed, the notion of identifiability is relative to a given model, parametric

or semi-parametric. In the present situation, identifiability is thus relative

to the set S of all triples (b, c, F ) which constitute our statistical model.

And the bigger the model is, the harder identifiability becomes.

For instance (5.9) is correct when S is the set of all possible triples.

More important, it is also correct as soon as S is such that, for any

b 6= b′, there are c and F such that (b, c, F ) and (b′, c, F ) are in S, and
c > 0.

However, it becomes wrong in more restricted models. A trivial (and

rather stupid) example is the case where S is the set of all triple (b, c, F )

such that F = 0 (say), and b = c > 0: then of course b, which equals

c, becomes identifiable. A less trivial example is when S is the set of all

(b, 0, F ) with F an arbitrary finite measure: then again, b is identifiable

for this model.

It remains to examine whether the Lévy measure F is identifiable

when X is discretely observed, and as the mesh ∆n goes to 0. From

the study of Merton’s model in Chapter 4, it follows that when F is a

finite measure it is not identifiable. Nonetheless, when F is infinite, some

functions of F might be identifiable, and the aim of the next subsection

is to study this question, and also to give some variance bounds, using

Fisher’s information, for some of the identifiable parameters.
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5.2.2 The Blumenthal-Getoor Indices and Related

Quantities for Lévy Processes

We introduced the Blumenthal-Getoor index of a Lévy process, BG index

in short, in (1.49). This is sometimes called the BG index of the Lévy

measure F , since it only depends on it. There is a characterization of the

BG index in terms of the behavior at 0 of the “tail” of F , that is, the

function F (x) = F ({y : ‖y‖ > x}) for x > 0. The BG index is the only

number β such that, for all ε > 0, we have

lim
x→0

xβ+ε F (x) = 0, lim sup
x→0

xβ−ε F (x) = ∞. (5.10)

Unfortunately we cannot replace the “lim sup” above by a limit, and

there exist Lévy measures for which lim infx→0 x
β−ε F (x) = 0 for all

ε ∈ (0, β). This makes a general analysis rather difficult and leads us to

somewhat restrict the class of Lévy processes under consideration below.

Moreover, β is a “global” index for the d-dimensional process, but each

component X i has its own index βi, possibly different from the others,

and β = max(β1, . . . , βd). Even in the one-dimensional case, β is an

index taking care of positive and negative jumps all together, but there

is no reason why these two kinds of jumps should behave similarly: we

can always write X = X ′ +X ′′ where X ′ and X ′′ are independent Lévy

processes having only positive and negative jumps, respectively, and with

BG indices β′ and β′′; then of course β = max(β′, β′′). Note that, here,

the drift and the continuous Gaussian part of X are, indifferently, put in

X ′ or in X ′′.

Therefore, we only consider one-dimensional Lévy processes in the

remainder of this section, and we single out the behavior of positive and

negative jumps. Toward this aim, we use the positive and negative tail

functions of the Lévy measure, defined as

x > 0 7→ F
(+)

(x) = F ((x,∞)), F
(−)

(x) = F ((−∞,−x)).

We then have two BG indices β(+) and β(−), which are the unique num-

bers satisfying (5.10) with F
(+)

and F
(−)

instead of F , respectively.

Again, we have β = max(β(+), β(−)). A straightforward extension of

(1.25), in which we consider only positive jumps, shows that for any t > 0

the variable
∑
s≤t(∆Xs)

p 1{∆Xs>0} is almost surely finite if p > β(+), and

almost surely infinite if p < β(+). A quite intuitive consequence of this

fact, to be proved below, is that β(+), and likewise β(−), are identifiable.

Now, (5.10) says that F
(+)

(x), for example, behaves more or less

(rather less than more, in fact) as a(+)/xβ
(+)

for some a(+) > 0, as
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x → 0, so identifying the constant a(+) is of interest, as well as identi-

fying the constants appearing in the successive terms of an “expansion”

of F
(+)

(x) as a sum of successive (negative) powers of x, if such a thing

exists.

Solving this problem in full generality seems to be out of range, so

we considerably restrict the class of Lévy measures under consideration.

Positive and negative jumps can indeed be studied separately and below

we introduce restrictions on, say, the positive jumps only, whereas no

restriction is imposed on negative jumps. We consider the class L(+) of

all Lévy processes whose Lévy measure has the form

F (dx) = F̃ (dx) +
∞∑
i=1

β
(+)
i a

(+)
i

x1+β
(+)
i

1(0,η](x) dx,

where η > 0 and:

(i) 0 ≤ β
(+)
i+1 ≤ β

(+)
i < 2, β

(+)
i > 0

⇒ β
(+)
i > β

(+)
i+1, limi→∞ β

(+)
i = 0

(ii) a
(+)
i > 0 ⇔ β

(+)
i > 0

(iii) 0 <
∑∞
i=1 a

(+)
i <∞

(iv) F̃ is a Lévy measure supported by [0, η]c.

(5.11)

Here (iv) means that F̃ is a positive measure with
∫
(x2 ∧ 1) F̃ (dx) <∞,

and F̃ ([0, η]) = 0. Conditions (i) and (ii) together ensure the uniqueness

of the numbers (a
(+)
i , β

(+)
i ) in the representation of F , whereas if this

representation holds for some η > 0 it also holds for all η′ ∈ (0, η), with

the same (a
(+)
i , β

(+)
i ). Condition (iii) ensures that the infinite sum in the

representation converges, without being zero (so a
(+)
1 > 0 and β

(+)
1 > 0).

Being in L(+) puts no restriction on negative jumps whatsoever, since

the restrictions of F and F̃ to R−, which are equal, are unconstrained. If

we are interested in negative jumps, we make the “symmetrical” assump-

tion, which amounts to suppose that our process belongs to the class L(−)

of all X such that −X ∈ L(+): the relevant indices and intensities are

then denoted as β
(−)
i and a

(−)
i . And of course the real interest lies in the

class L(+) ∩ L(−).

Clearly, under (5.11) we have β(+) = β
(+)
1 , and we call β

(+)
1 , β

(+)
2 , . . .

the successive BG indices for positive jumps, whereas the a
(+)
i are the

associated successive BG intensities. We also have

F
(+)

(x) =

j∑

i=1

a
(+)
i

xβ
(+)
i

+ o
( 1

xβ
(+)
j

)
(5.12)

as x → 0, for any finite j, and it is this expansion which will be used

later to generalize the successive BG indices to semimartingales.
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Below, we are interested in the identifiability of a
(+)
i and β

(+)
i . The

result, whose proof is given on page 507, goes as follows:

Theorem 5.8. We consider the class of all Lévy processes X with char-

acteristic triple (b, c, F ) with F satisfying (5.11). If we observe the path

t 7→ Xt over a finite time interval [0, T ], we have the following properties:

(i) The parameters β
(+)
1 and a

(+)
1 are pairwise identifiable within the

class L(+).

(ii) If i ≥ 2 the parameters β
(+)
i and a

(+)
i are pairwise identifiable

within the subclass of all X ∈ L(+) for which β
(+)
i ≥ β

(+)
1 /2, and are not

pairwise identifiable on the complement of this subclass.

This theorem only asserts pairwise identifiability, but in Chapter 11

we will exhibit consistent estimators for these parameters in a much more

general Itô semimartingales context, thus showing proper identifiability.

Remark 5.9. As said before, (5.10) is not really the same as having

F (x) ∼ a/xβ for some constant a > 0, as x → 0. For example it is

also compatible with a behavior like F (x) ∼ a(log 1
x )
γ/xβ, where γ ∈ R

(and compatible with many other kinds of behavior as well). So we might

replace the formula giving F in (5.11) by, for example, the following one:

F (dx) = F̂ (dx) +
∞∑

i=1

β
(+)
i a

(+)
i (log(1/x))γ

(+)
i

x1+β
(+)
i

1(0,η](x) dx,

where γ
(+)
i ∈ R, and all other ingredients are as in (5.11). Then one

may show that all three parameters (β
(+)
i , a

(+)
i , γ

(+)
i ) are pairwise identi-

fiable, for i = 1 and for all i ≥ 2 such that β
(+)
i ≥ β

(+)
1 /2. The proof is

analogous.

Remark 5.10. One deduces from the theorem that a “part” of the be-

havior of F near 0 (those β
(+)
i and a

(+)
i for which β

(+)
i ≥ β

(+)
1 /2) is

identifiable, whereas another part (the β
(+)
i ’s smaller than β

(+)
1 /2) is not,

as illustrated in Figure 5.1. This is a somewhat surprising property.

On the other hand, if η > 0, no function of the restriction of F to

the complement of the interval [−η, η] is identifiable: an application of

Theorem 5.6 shows that if two Lévy measures F and F ′ coincide on

[−η, η] and if c > 0 and b ∈ R, the two probabilities P(b,c,F )|Ft
and

P(b′,c,F ′)|Ft
are not mutually singular (when c = 0 this may or may not

be the case).
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Region where
second exponent
is not identi�ed

Region where
second exponent

is identi�ed

Compound
Poisson
process

Optimal rate
increases with
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from β2 to β1/2

First
(leading)

exponent:
always

identi�ed

Brownian
motion

BG index
of jump
activity

β1/2

β2

β1

2

Figure 5.1: Two BG component model: Regions where the components

are identified vs. not identified, and optimal rate of convergence.

5.3 Discretely Observed Semimartingales:

Identifiable Parameters

Now we suppose that the process of interest is a semimartingale. The

most striking difference with the two previous sections, as far as esti-

mation is concerned, lies in the kind of parameters we want to estimate.

More precisely, in the Lévy case all parameters of interest are functions of

the characteristic triple, since this triple completely characterizes the law

of the process. For semimartingales, the situation is similar: although the

characteristics do not always characterize the entire law, they are what

is closest to this, and the parameters of interest are typically functions of

the characteristics. This is where the fundamental difference lies: in the

semimartingale case the characteristics are random.

In other words, we want to “estimate” parameters which are random,

and likewise we want to test hypotheses which are random. The aim of

this section is to describe the nature of these “random” parameters and

to explain what identifiability might mean in this context and give some

examples of parameters that are identifiable, and some that are not.

The setting in this section is as follows. The process X is

a d-dimensional semimartingale, on some filtered probability space

(Ω,F , (Ft)t≥0,P). We denote by µ = µX its jump measure and by

(B,C, ν) its characteristics, as introduced in Chapter 1. We mostly spe-
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cialize to Itô semimartingales, thus assuming the form (1.63), that is,

Bt =

∫ t

0
bsds, Ct =

∫ t

0
csds, ν(dt, dx) = dt Ft(dx),

where the spot characteristics are an Rd-valued process b = (bt), a process

c = (ct) with values in the set of d× d symmetric nonnegative matrices,

and a measure-valued process Ft = Ft(ω, dx) on Rd.

As for the sampling scheme, at each stage n, observations occur at

times (T (n, i) : 0 ≤ i ≤ kn), increasing with i, and within some fixed

time interval [0, T ]. Although we occasionally consider observation times

T (n, i) which are irregularly spaced, or even random, in most cases we

have a regular sampling scheme, that is, T (n, i) = i∆n with a (non-

random) ∆n > 0, and kn = [T/∆n]. The term “high-frequency” means

that in all cases the mesh of the observation scheme satisfies

πn
P−→ 0, where

πn = max
(
sup1≤i≤kn (T (n, i)− T (n, i− 1)), T − T (n, kn)

) (5.13)

as n → ∞ (we use convergence in probability to accommodate random

schemes, in the regular case this is of course the same as having ∆n → 0).

Associated with the observation scheme, we introduce the increments of

the process X , or returns, as being

∆n
i X = XT (n,i) −XT (n,i−1).

5.3.1 Identifiable Parameters: A Definition

The notion of a parameter is strongly connected with the specifications

of the model, and a “random” parameter is also connected with the

possible outcomes of the experiment. To understand this, we begin with

four different and very special situations, in which the basic process X

is one-dimensional:

• Example 1: integrated volatility. We consider all Itô semimartin-

gales, and the parameter of interest is the integrated volatility, say

Z = CT =
∫ T
0 cs ds.

• Example 2: jumps or not. We consider all semimartingales, and

the parameter of interest is the indicator function Z = 1
Ω

(c)
T

, where

Ω
(c)
T is the set of all ω such that the path t 7→ Xt(ω) is continuous

on [0, T ]. Here we still use the terminology “parameter,” but it

only takes the values 0 and 1 and its estimation really amounts to

testing whether it is equal to 0 or to 1.
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• Example 3: Blumenthal-Getoor index. We consider all semimartin-

gales of the form

Xt = σWt + (Yt − YS) 1{S≤t},

where σ ≥ 0 and W is a Brownian motion and Y is a standard

symmetric stable process with index β, and S is an arbitrary (un-

specified) stopping time. The parameter of interest is Z = β, which

is the BG index of the process X on the interval [0, T ], in restric-

tion to the set {S < T }, whereas there is no jump and the BG

index vanishes on the set {S ≥ T }. This is a simple example of a

parameter which can (perhaps) be identified if the outcome belongs

to some subset (here {S < T }), but obviously not if the outcome

is such that S(ω) ≥ T .

• Example 4: co-jumps for price and volatility. We consider all Itô

semimartingales and the parameter is Z = 1Ωco-jumps
T

, where Ωco-jumps

T

is the set on which the process X and its spot volatility process c

have jumps at the same time.

From a somewhat pedantic viewpoint, one could formalize the notion

of a parameter Z as follows:

1. We have a class S of d-dimensional semimartingales. Each pro-

cess X in this class may be defined on its own probability space

(Ω,F ,P).

2. For each X in this class, the parameter is a given (known) “func-

tion” of the path t 7→ Xt, of the path of its characteristics (B,C, ν),

and on the law of X .

Statement (2) is still somehow imprecise but could easily be formal-

ized in a rigorous way. However, this is not necessary for us, since in

practice, the parameter of interest always has a clear and obvious mean-

ing. For instance in Example 1 the parameter Z = CT is a function of

the characteristics; in Example 2, Z = 1
Ω

(c)
T

is a function of the path of

X ; in Example 3, Z = β is a function of the law of X ; in Example 4, Z

is a function of the path of X and of the path of its (spot) characteristic

t 7→ ct.

Identifiability (in the asymptotic sense) of a parameter Z is relative to

a specific class S, and also to an observation scheme T = (T (n, i) : i ≥
0, n ≥ 1) satisfying (5.13). Moreover, in order to compare processes which
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may be defined on different spaces it is convenient to suppose that the ob-

servation times T (n, i) are not random (an extension to random sampling

times is possible, at the price of a significantly more complicated setting).

Each process X in S may be considered as a random variable taking its

values in the Skorokhod space, that is, the space Dd = D(R+,R
d) of all

càdlàg functions from R+ into Rd. This space was studied in some detail

in Subsection 3.3, and here we simply recall that it is equipped with the

σ-field Dd generated by the maps x 7→ x(t) for all t ≥ 0. At stage n one

really observes the ”discretized” process X(n) defined as

X
(n)
t = XT (n,i) if T (n, i) ≤ t < T (n, i+ 1), (5.14)

which again takes its values in Dd.

Any estimator at stage n is necessarily of the form Gn(X
(n)) for a

function Gn on Dd. With this view on estimators, we can give a definition:

Definition 5.11. Let A be a measurable subset of Dd. A q-dimensional

parameter Z is called (T ,S)-identifiable on the set A if there exists

a sequence Gn of Rq-valued and DT -measurable functions on (Dd,Dd)

such that, for any X in the class S, we have the following convergence

in probability, on the space (Ω,F ,P) on which X is defined:

Gn(X
(n))

P−→ Z in restriction to the set X−1(A).

It is said pairwise (T ,S)-identifiable on the set A if the above holds in

restriction to any subset of S containing only two processes.

When A = Dd, we simply say (T ,S)-identifiable, or pairwise (T ,S)-
identifiable. When Z = 1Ω0 is an indicator function, we rather say the

set Ω0 is identifiable, or pairwise identifiable.

When S is a parametric family indexed by the elements θ of a pa-

rameter space Θ, then (pairwise) identifiability for a parameter Z = g(θ)

depending on θ only is the same here and as stated before Theorems 5.2

and 5.3. As for the four previous examples, we will see below identifia-

bility in the first two cases and in the last case, and identifiability in the

third case on the set A of all functions in Dd which are not continuous

on [0, T ].

Example 5.12. A very simple case of identifiability is when the param-

eter Z takes the form Z = G(X) for a function G on Dd, which depends

only on the “past” before time T . Then, as soon as G is a continuous

function on Dd (for the Skorokhod topology), the parameter Z = G(X) is
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identifiable; we simply have to take Gn = G and apply the property that

X(n) converges to X, see (3.27). The same is true when G is only almost

surely continuous relative to the law of any X in the class S.
This example of identifiability is trivial, mathematically speaking, but

not without practical interest. For instance one might be interested in

Z = sups≤T |∆Xs|, the absolute size of the biggest jump up to time T ,

when the dimension is d = 1. This “parameter” is of the above form,

with a function G which is almost surely continuous relative to the law

of any process X satisfying P(∆XT = 0) = 0 (that is, almost surely

X does not jump at our terminal time T ). Then if S is the class of all

such processes, we have the following convergence, which even takes place

almost surely:

G(X(n)) = sup1≤i≤kn |∆n
i X | → G(X) = sups≤T |∆Xs|.

5.3.2 Identifiable Parameters: Examples

Apart from the class of examples 5.12, deciding whether a given parame-

ter is (pairwise) identifiable or not is usually not a totally trivial matter.

One of the problems in the present general situation is that we do not

have the analogues of Theorems 5.2 and 5.3, and we also lack criteria for

mutual singularity such as Theorem 5.6. However, it is still possible to

show identifiability directly, for a number of parameters which are iden-

tifiable, and which include the first three examples by which the previous

section started.

We start by looking at the integrated volatility. More generally, whenX

is an arbitrary semimartingale, the second characteristic C plays the role

of the integrated volatility. This is a crucial “parameter” in finance, so the

next result is theoretically very important (we recall that an observation

scheme T is relative to some fixed time horizon T , and that it satisfies

(5.13)):

Theorem 5.13. The second characteristic Ct is (T ,S)-pairwise identi-

fiable for any t ∈ [0, T ], when S is the class of all semimartingales and

T an arbitrary non-random observation scheme.

This result, proved on page 509, is very close to Theorem 1.14, and in

particular to the property (1.62) which exhibits consistent estimators for

the quadratic variation-covariation [X,X ]t at any time t at which X does

not jump, implying identifiability for the parameter [X,X ]t in the class

of all semimartingales X having P(∆Xt 6= 0) = 0. So in particular if we
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restrict S to be the class of all continuous semimartingales, Ct = [X,X ]t
is fully identifiable.

For the above theorem, however, we claim pairwise identifiability only,

and whether proper identifiability holds in such a general context is un-

known. The problem is that, in the proof given on page 509, the consistent

estimators explicitly depend on the two processes X and X ′ which are

considered to show pairwise identifiability. However, it will follow from

the results in the forthcoming chapters that identifiability (and much

more) holds if we restrict ourselves to the class of possibly discontinuous

Itô semimartingales.

Next, we go a step further. Since Ct =
∫ t
0 cs ds when X is an Itô

semimartingale, we can ask ourselves whether the spot volatility ct is

also identifiable for a given time t ≤ T .

Posed in such a way, the answer is obviously a no, or rather, it is not

a well posed problem. Indeed, the process Ct is not unique, but any two

versions of this process are almost surely equal, and thus identifiability

is not affected by the choice of the version of Ct. For ct the situation is

different, since even when the integral process Ct is fixed, the property

Ct(ω) =
∫ t
0 cs(ω) ds characterizes t 7→ ct(ω) only up to Lebesgue-null

sets.

Therefore the identifiability problem for ct is well posed only under

some additional regularity assumption on the map t 7→ ct, and we have

the following, proved on page 511:

Theorem 5.14. The spot volatility ct is (T ,S)-pairwise identifiable for

any t ∈ [0, T ), resp. t ∈ (0, T ], for the class S of all Itô semimartingales

for which the process c is right-continuous, resp. left-continuous, and T
is an arbitrary non-random observation scheme.

In a flagrant contradiction to the title of this subsection, we end it with

some facts about the drift, that is, the first characteristic B. In view of

the general claim (5.9), the parameter Bt is not identifiable for the class

of Lévy processes, hence even less for bigger classes of semimartingales.

However, according to the subsequent Remark 5.7 it might be identifiable

for certain classes S.
For example let S be the class of all d-dimensional semimartingales X

having locally finite variation, that is, of the form

Xt = B′
t +

∑

s≤t
∆Xs,

where the sum of jumps is absolutely convergent for all t and all ω, and

B′ is a d-dimensional process with locally finite variation, necessarily
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continuous and adapted. One can consider B′ as the “genuine” drift,

sometimes called the first modified characteristic of X , whereas the

first characteristic B is in this case Bt = B′
t +

∫ t
0

∫
{‖x‖≤1} x ν(ds, dx).

Then we have the following theorem, whose proof is analogous to the

proof of Theorem 5.13 and is thus omitted:

Theorem 5.15. The first modified characteristic B′
t is (T ,S)-pairwise

identifiable for all t ∈ [0, T ), if S is the class of all d-dimensional semi-

martingales whose paths have finite variation and T is an arbitrary non-

random observation scheme.

Now we turn to identifiability of parameters related to the jumps of

X , and begin with the following processes:

A(p)t =
∑

s≤t
‖∆Xs‖p (5.15)

for p ≥ 0 (with the convention 00 = 0, so A(0)t is exactly the number

of jumps in [0, t]). Each process A(p) is increasing, with A(p)0 = 0, with

left and right limits A(p)t− and A(p)t+, and is further right-continuous

(that is, A(p)t+ = A(p)t) at all t, except at t = S := inf(t : A(p)t = ∞)

if A(p)S− < ∞ and S < ∞, because in this case A(p)S < A(p)S+ = ∞.

When p ≥ 2, however, we always have S = ∞ a.s., hence A(p) is almost

surely càdlàg.

Theorem 5.16. Let p ≥ 0. For each t < T the variable A(p)t is (T ,S)-
pairwise identifiable for the class S of all d-dimensional semimartingales,

and any observation scheme T .

The same is true when t = T , on the set {∆XT = 0} in general, and

also on the set Ω if T (n, kn) = T for all n large enough.

As a consequence, the set Ω
(c)
T on whichX is continuous on the interval

[0, T ] is pairwise identifiable if we have for example P(∆XT = 0) = 1, as

for all Itô semimartingales; this is because Ω
(c)
T = {A(p)T = 0} for any

p ≥ 0. This theorem is proved on page 511.

Next, we associate the following random sets and random variables

with the third characteristic of the semimartingale X ; the second line

below makes sense for any semimartingale, whereas the first line assumes

that it is an Itô semimartingale:

It := {p ≥ 0 :
∫
‖x‖p ∧ 1)Ft(dx) <∞} , βt = inf It

Jt := {p ≥ 0 : (‖x‖p ∧ 1) ∗ νt <∞} , γt = inf Jt.
(5.16)

The set Jt is of the form [γt,∞) or (γt,∞); analogously, It is of the form

[βt,∞) or (βt,∞), and both γt and βt take their values in [0, 2]. When t
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increases, the set Jt decreases, and it is left-continuous in the sense that

Jt = ∩s<tJs, hence γt is increasing and left-continuous. The last two

properties are of course not true for It and βt, in general.

When X is a Lévy process, Jt = It = I and γt = βt = β are non-

random and independent of t > 0, see (1.49), and β is the Blumenthal-

Getoor index. In general, one can interpret γt as the “global” Blumenthal-

Getoor index on the interval [0, t], and βt is a “spot” index at time t.

Obviously, for each ω we have βs(ω) ≤ γt(ω) for Lebesgue-almost all s

in [0, t].

The following is proved on page 512.

Theorem 5.17. For all t ∈ [0, T ] and p ≥ 0 the variables 1Jt(p) and γt
are (T ,S)-pairwise identifiable, when S is the class of all d-dimensional

semimartingales and T is an arbitrary non-random observation scheme.

Now we turn to the spot index βt, when X is an Itô semimartingale.

The results are comparable to those for the spot volatility. Namely we

need some regularity in time, since the measure Ft, hence the value of βt
at any given fixed time t can be modified in an arbitrary way. For such

a restricted class of semimartingale, we have the following result, proved

on page 512:

Theorem 5.18. The spot index βt and the variables 1It(p) are (T ,S)-
pairwise identifiable for all t ∈ [0, T ) and p ≥ 0, resp. t ∈ (0, T ], for

any non-random observation scheme T , and for the class S of all Itô

semimartingales such that, for all ε > 0, the processes t 7→
∫
(‖x‖βt+ε ∧

1)Ft(dx) and βt are all right-continuous, resp. are all left-continuous.

Theorems 5.17 and 5.18 imply that we can determine, in principle, the

“first order” behavior of the measures ν(ω; [0, t]× dx) or Ft(ω, dx) near

0, in the sense that we know which powers ‖x‖p are integrable near 0. On

the other hand, it is fundamental to observe that the restriction of the

measure ν(ω; [0, t], dx) to the complement of any neighborhood of 0 is

not identifiable, even when S is restricted to be a class of Lévy processes,

as we saw in the previous section.

5.4 Tests: Asymptotic Properties

As seen above, the estimation problem for a parameter, even a random

one, is simple to state. For tests for which the (null and/or alternative)

hypotheses are random, it is a different matter; in this section we give

an overview of the testing problem when it is “random.”
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The overall situation is as above: we have a class S of d-dimensional

semimartingales. Each process X in this class may be defined on its own

probability space (Ω,F ,P). However, the random parameter is now re-

placed by two “random hypotheses,” the null and the alternative. That

is, for each process X in S we have two (measurable) disjoint subsets Ω0

and Ω1 of the space Ω on which it is defined, and representing respec-

tively the null hypothesis and the alternative hypothesis. As for random

parameters, these sets may depend in an implicit way on the law of X

or on its characteristics.

Equivalently, we have two “parameters” Z0 and Z1 in the previous

sense, taking only the values 0 and 1, and such that the product Z0Z1

vanishes identically. Then the two hypotheses are the sets Ω0 = {Z0 = 1}
and Ω1 = {Z1 = 1}.

Testing the null at stage n amounts to finding a rejection (critical)

region, that is, a subset Cn such that if ω ∈ Cn we reject the hypothesis.

As before, it should only depend on the observations at stage n, which

amounts to saying that Cn is the set where the discretized process X(n)

of (5.14) belongs to a suitably chosen DT -measurable subset Cn of the

Skorokhod space Dd. This notion is of course relative to the discretization

scheme T which is employed (in connection which eachX in S). It is then
natural to introduce the following definition:

Definition 5.19. In the previous setting, we say that the sequence Cn of

rejection regions, for testing the null Ω0 against the alternative Ω1, is

• null-consistent for Ω0 if P(Ω0 ∩ Cn) → 0 for any X in S,
• alternative-consistent for Ω1 if P(Ω1 ∩ (Cn)c) → 0 for any X in S.

When both properties hold, we simply say that the sequence Cn is consis-

tent.

A consistent sequence of tests “separates” asymptotically the null hy-

pothesis and the alternative hypothesis. As we will see, it is quite often

the case that consistent tests can be found. Good as it looks, this does

not really solve the problem, however, because it gives absolutely no hint

on how close to 0 the probabilities of errors are when n is fixed; this is

like consistent estimators, which may in fact converge very slowly and

which do not allow at all construction of confidence intervals if there is

no associated rate of convergence.

In other words, now comes the problem of determining the size and

power of a test Cn and, to begin with, the mathematical meaning of size

and power is a priori rather unclear. Consider for example the error of

the first kind, at stage n. We mistakenly decide that we are not in Ω0,
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that is, the outcome belongs to Cn and to Ω0 itself. Measuring the “size”

of the error made by this wrong decision, that is the level αn of the test,

can a priori be done in several ways.

1. We measure the size on a path basis, that is, for any given ω: the

answer is that the size is either 0 or 1, and in any case unknown !

2. We measure it, according to the usual procedure, by the probability

that it occurs, that is, P(Ω0 ∩Cn): this error is always smaller than

P(Ω0), even when we take Cn = Ω and thus always reject the null

hypothesis! So, perhaps a better choice is to “normalize” the error,

in such a way that it ranges from 0 in the surely correct decision

Cn = ∅ (correct from the null viewpoint, of course) to 1 in the

surely wrong decision Cn = Ω. In other words, we may take the size

to be αn = P(Cn | Ω0) =
P(Cn∩Ω0)

P(Ω0)
(assuming P(Ω0) > 0, otherwise

testing the null Ω0 makes no real sense).

3. A mid-term choice for the measure of the error, between the two

extreme cases above, consists in taking

αn = sup (P(Cn | A) : A ⊂ Ω0, P(A) > 0) ,

where P(B | A) = P(A∩B)/P(A) is the ordinary conditional prob-

ability.

Note that the size in the sense 3 cannot be smaller than the size in the

sense 2. These two ways of defining the size have one thing in common:

for computing the size we have to know P, which seems contradictory

with the “model-free” setting we employ here.

Therefore, for us the only feasible possibility is to look at asymptotic

properties, when the observed σ-fields Gn tend as n → ∞ to a σ-field G
(in the sense that G = ∨nGn, up to null sets), with respect to which Ω0

and Ω1 are measurable.

So next we take the asymptotic viewpoint, and in view of the previous

discussion there are three natural definitions for the asymptotic size:

Definition 5.20. For a sequence Cn of tests for the null hypothesis Ω0,

we have the following notions of asymptotic size:

• strong asymptotic size:

α = lim
n

P (Cn | A) , for all A ∈ F with A ⊂ Ω0 and P(A) > 0

• asymptotic size:

α = sup
(
lim sup

n
P (Cn | A) : A ∈ F , A ⊂ Ω0, P(A) > 0

)
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• weak asymptotic size:

α = lim sup
n

P (Cn | Ω0) .

The asymptotic and weak asymptotic sizes always exist, the first one

being bigger than or equal to the second one. When the strong asymptotic

size exists, it is equal to the asymptotic size. Note that, a priori, all three

kinds of level depend upon the choice of X in S. If we take the supremum

of α over all X in S, we obtain a uniform asymptotic size. It turns out

that in most tests developed in this book, the asymptotic size will actually

be a strong asymptotic size, and will also be uniform over the class of

semimartingales under consideration.

In practice, we typically go the other way around. We choose some

level α ∈ (0, 1) in the usual range, like α = .05 or α = .01. Then, among

all sequences of tests with asymptotic size not bigger than α, we try to

find some having the biggest possible power, or asymptotic power. For

the notion of asymptotic power, there are two natural counterparts to

the definition of the asymptotic size:

P1 = inf
(
lim inf

n
P(Cn | A) : A ∈ F , A ⊂ Ω1

)

P2 = lim inf
n

inf (P(Cn | A) : A ∈ F , A ⊂ Ω1) .

However, the alternative consistency of a sequence of tests is equivalent

to saying that P1 = 1, so the version P1 of the power is kind of weak since

when P1 < 1 the tests really behave badly under the alternative. On the

other hand, P2 is typically equal to the asymptotic size of the sequence of

tests (as is usual for testing problems with a composite alternative whose

closure contains the null, for which the infimum of the power function

typically equals the level), and is thus not an adequate measure of the

quality of the tests. More sophisticated versions of the power could for

example be

P3 = lim inf
n

inf (P(Cn | A) : A ∈ F , A ⊂ Ωn1 ) ,

for a suitable sequence Ωn1 increasing to Ω1, and at some “distance”

from Ω0 which shrinks to 0. But finding natural sequences Ωn1 as above

seems difficult in the kind of problems considered in this book, and the

evaluation of the corresponding power P3 seems virtually impossible.

In view of this, we will essentially look for sequences of tests such that:

1. The (uniform) asymptotic size is equal to (or not bigger than) some

arbitrarily fixed level α, so if n is large enough the actual size of

Cn is approximately equal to (or not bigger than) α.
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2. The sequence is alternative-consistent.

5.5 Back to the Lévy Case: Disentangling

the Diffusion Part from Jumps

Until the end of this chapter, we consider the problem of asymptotic effi-

ciency, and restrict our attention to Lévy processes, because this problem

is still essentially unsolved for discretely observed Itô semimartingales.

We suppose that the process is observed at discrete times, but now we

ask them to be evenly spread. In other words, we observe the returns

∆n
i X = Xi∆n −X(i−1)∆n

,

with ∆n eventually going to 0, and X will be a Lévy process with char-

acteristic triple (b, c, F ). For simplicity, we consider the one-dimensional

case only.

As seen in (5.9), the second characteristic c of a Lévy process is always

pairwise identifiable, and in fact genuinely identifiable. In the continuous

case F = 0, and also for Merton’s model in Chapter 4, the rate of conver-

gence of optimal estimators has been seen to be 1/
√
∆n. In this section,

we examine whether the ability to identify c at the same rate, with and

without jumps, is specific to Merton’s model, or whether it extends to all

possible Lévy measures, including those with infinite mass. Intuitively,

there must be a limit to how many small jumps can occur in a finite

amount of time for this to continue to hold, and in fact this question has

two different answers:

1. In a purely parametric situation, with b and F known and c un-

known, it is always possible (in principle !) to perfectly disentangle

the jumps and estimate c with the rate 1/
√
∆n, and even the same

asymptotic variance, as if there were no jumps.

2. In a semi-parametric situation, with b and F unknown, the problem

is more complicated, as we will see in Theorems 5.22 and 5.24 below.

5.5.1 The Parametric Case

We start with the fully parametric case where we know b and F , the

only unknown parameter being c. At each stage n, we have a regular

statistical experiment where the observed variables are the [T/∆n] i.i.d.
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increments distributed as X∆n . Hence if I∆(c; (b, F )) denotes Fisher’s

information associated with the observation of the single variable X∆,

Fisher’s information at stage n is simply

I(c; (b, F ))n =
[ T
∆n

]
I∆n(c; (b, F )). (5.17)

In particular when b = 0 and F = 0, so X =
√
cW , we have estab-

lished in (5.7) (with n = 1 and ∆n = ∆) that

I∆(c, (0, 0)) =
1

2c2
. (5.18)

The following gives a complete answer to our questions in the paramet-

ric setting (the proof is given on page 513, except for the LAN property

whose proof is omitted, since it is not very simple and not really useful

for the rest of this book).

Theorem 5.21. For all b ∈ R and all Lévy measures F , and when c > 0,

we have
∆ > 0 ⇒ I∆(c; (b, F )) ≤ 1

2c2

∆ → 0 ⇒ I∆(c; (b, F )) → 1
2c2 .

(5.19)

Furthermore, for the model in which only c is unknown and we observe

X at times i∆n for i = 1, . . . , [T/∆n], if ∆n → 0 the LAN property holds

at any c > 0, with rate 1/
√
∆n and asymptotic Fisher’s information

T/
(
2c2
)
.

Hence in this parametric model there is a sequence of estimators c̃n
for c such that 1√

∆n
(c̃n − c) converges in law to N (0, 2c2/T ), and this

sequence is efficient. The result is exactly as good as it is when we consider

the simple model X = σW , and neither the drift nor the jumps impair

our ability to efficiently estimate c. Moreover, the MLE is an efficient

estimator here. Figure 5.2 illustrates this convergence as the sampling

frequency increases.

5.5.2 The Semi-Parametric Case

When b and F are unknown, things are different: in this semi-parametric

setting, we need to distinguish jumps from the Brownian part in a some-

what “uniform” way, when F and b vary.

This can be done on the basis of the “uniform” behavior of Fisher’s

information, where uniformity is relative to reasonable classes of triples

(b, c, F ), which can be described as follows: we let A ≥ 1 and φ be a
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Figure 5.2: Convergence of Fisher’s information for σ =
√
c to that of the

pure Brownian model as the sampling frequency increases. F corresponds

to a Cauchy process.

bounded increasing function on R+ with φ(x) → 0 as x ↓ 0, and we set

LA,φ = the set of all triples (b, c, F ) with 1/A ≤ c ≤ A

and
∫
{|y|≤x}(y

2 ∧ 1)F (dy) ≤ φ(x) for all x > 0.

Any Lévy measure satisfies the inequality above for a suitable φ, namely

φ(x) =
∫
{|y|≤x}(y

2 ∧ 1)F (dy). When φ(x) = Ax2−α for some α ∈ (0, 2),

then LA,φ contains all stable processes with index β ≤ α, and whose pa-

rameters a(+) and a(−) as given in (1.32) satisfy a(+)+a(−) ≤ A
(
1− 2

β

)
.

The next theorem contains the second part of (5.19) as a particular

case, and is proved on page 513.

Theorem 5.22. For any A > 1 and any function φ as above we have,

as ∆ → 0,

sup(b,c,F )∈LA,φ

∣∣∣∣I∆(c; (b, F ))−
1

2c2

∣∣∣∣ → 0. (5.20)

Remark 5.23. This result is sharp, in the sense that the uniform con-

vergence fails if the function φ(x) does not go to 0 as x→ 0. For example,

letting Fβ denote the standard symmetric stable Lévy measure with index
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β and parameter a = 1 in (1.31), the family {Fβ : β ∈ (0, 2)} does not

belong to any G(φ) as above. And, indeed, if (2 − βn) log∆n → 0 the

numbers I∆n(c; (0, Fn)) converge to a limit strictly less than 1/
(
2c2
)
. In

this case the stable processes with index βn converge in law to a σ′W ,

where W is again a standard Brownian motion and c′ = σ′2 > 0, and the

above limit is 1/(2(c+ c′)2), as if the observed process were
√
c+ c′W :

the information behaves in the limit like that of the superposition of two

Gaussian processes, and we cannot identify the variance of one if we only

observe the sum of the two.

The lower bound c ≥ 1/A is also necessary for (5.20), because of

the term 1/2c2. In contrast, LA,φ puts no restriction on the drift b,

which thus does not affect the uniform convergence above. This is be-

cause I∆(c; (b, F )) = I∆(c; (0, F )).

Theorem 5.22 seems to give us the best possible asymptotic behavior

of estimators, at least for the unbiased ones, and in a “uniform” way

over large classes of Lévy processes. However, in the present setting the

existence of estimators converging with the rate 1/
√
∆n, uniformly over

the class LA,φ, is simply not true, and the next theorem brings us bad

news indeed.

For this we introduce classes of triples, somewhat similar to LA,φ,
where now A is an arbitrary positive constant and r a number in [0, 2]:

L(A, r) = the set of all triples (b, c, F ) with |b| ≤ A, c ≤ A

and
∫
(|x|r ∧ 1) dx ≤ A.

A sequence of estimators ĉn for c, which at stage n only depends on the

observations (Xi∆n , i = 0, . . . , [T/∆n]), is said to have the uniform rate

wn for estimating c, within the class L(A, r), if the family of variables

wn(ĉn − c) is uniformly tight when n ≥ 1 and when the process X runs

through all Lévy processes with characteristic triple in L(A, r). We then

have (see page 515 for the proof):

Theorem 5.24. Let A > 0 and r ∈ [0, 2). Any uniform rate wn over the

class L(A, r), for estimating c, satisfies wn ≤ Kρn for some constant K,

where

ρn =

{
1/

√
∆n if r ≤ 1

(
1

∆n
log( 1

∆n
)
)(2−r)/2

if r > 1.
(5.21)

Moreover, the bound ρn is sharp (it is a “minimax rate”), up to a multi-

plicative constant of course, and in the sense that there exists a sequence

of estimators which achieves the rate ρn uniformly on the class L(A, r).
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The sets LA,φ and L(A, r) are different, but upon taking φ(x) = Ax2−r

the conditions about the Lévy measure are about the same for the two

sets. However, when r > 1, the two previous theorems seem in complete

contradiction:

1. Theorem 5.22 points toward the existence of estimators converging

with the rate 1/
√
∆n, uniformly on the class LA,φ with φ as above.

2. Theorem 5.24 asserts that the uniform rate is at most ρn, much

slower than 1/
√
∆n if r > 1.

So, which is right ? Both, of course, but because they indeed solve two

very different problems:

1. Theorem 5.22 is basically a parametric result, holding uniformly

over a non-parametric class of processes; typically, the MLE will

achieve this, with the rate 1/
√
∆n. But neither the MLE nor any

other sequence of estimators which would converge at this rate

can be effectively constructed on the sole basis of the observations

Xi∆n if we have no information on the law of the process other

than knowing that its triple belongs to a set such as L(A, r), or as
LA,φ.

2. Theorem 5.24 is a genuine semi-parametric result. As such, it gives

no hint about the “optimal” asymptotic variance, or even about the

existence of such a thing. Moreover, as is customary in this kind

of setting, it does not prevent the existence of estimators which

converge at a faster rate than ρn for some, and even for all, Lévy

processesX in the considered family: as can be seen from the proof,

the estimators constructed to show the second part of the theorem

are of this sort, converging at a faster rate for each specified choice

in L(A, r), but this rate is not uniform, and it has in fact a slower

rate than ρn when the triple is outside L(A, r).

Certainly, Fisher’s information approach gives overall bounds for the

rate and the asymptotic variance, and the former may coincide with

the minimax rate, as when r ≤ 1 above. So if we can come up with

estimators achieving the Fisher’s information bound we have reached

optimality. Otherwise, it seems unreasonable to look for estimators con-

verging faster than the minimax rate. As we will see in Chapter 6, in the

case of “general” Itô semimartingales and for estimating the integrated

volatility, efficient estimators in Fisher’s sense are available for a class
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of semimartingales satisfying a condition akin to L(A, r), when r < 1.

Otherwise, we will construct estimators converging at a rate slower than

the minimax rate ρn, but “almost” as good, and this is probably the best

one can achieve.

5.6 Blumenthal-Getoor Indices for Lévy

Processes: Efficiency via Fisher’s

Information

In the previous section we studied efficient rates for estimating the Gaus-

sian variance c, and here we do the same for the successive BG indices of

our Lévy process, and the associated intensity coefficients. For this, we

take the viewpoint of Fisher’s information, in the same way as in Theorem

5.21 above. As exemplified by comparing Theorems 5.22 and 5.24, the

rates obtained in this way are good in a parametric setting, and probably

overoptimistic in a genuine semi-parametric situation. Nevertheless, they

are useful as overall bounds for the rates in a semi-parametric setting.

In order to be able to compute Fisher’s information we need a specific

structure of the Lévy process, and the complexity of the computations

increases rapidly with the number of BG indices. Since what follows only

serves as a benchmark, we thus restrict our attention to a very special,

but manageable, situation:

Xt = bt+
√
cWt + Y 1

t + Y 2
t ,

where Y 1 and Y 2 are two symmetric stable processes with indices β1 >

β2, and of course, W,Y 1, Y 2 are independent. Furthermore, each process

Y j depends on a scaling parameter aj , so that its Lévy measure is

F j(dx) =
aj βj
|x|1+βj

dx.

We have six parameters (b, c, β1, β2, a1, a2), among which b is not identi-

fiable, and the behavior of Fisher’s information for c is given in Theorem

5.21, so below we are interested in (β1, β2, a1, a2) only. A full solution

would require the entire Fisher’s information matrix, but since our only

purpose here is to establish a benchmark we restrict ourselves to consid-

ering the diagonal entries only.

Moreover, the relation (5.17) is valid for the full Fisher’s information

matrix. Therefore, it is enough to establish the asymptotic behavior, as

∆ → 0, of the information for the model in which the single variable X∆
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is observed. In this setting, the relevant diagonal elements of Fisher’s

information matrix are denoted as

Iβ1

∆ , Iβ2

∆ , Ia1∆ , Ia2∆ .

Actually, they all depend on (c, β1, β2, a1, a2), but not on b.

The essential difficulty in this class of problems is the fact that the

density of X∆ is not known in closed form, since we do not have a closed

form for the density of Y j∆ (except when βj = 1); however, we know its

behavior at infinity, which is what matters here, in a very precise way.

This allows us to obtain the following theorem, proved on pages 520 et

seq.:

Theorem 5.25. In the previous setting, and as soon as c > 0, we have

the following equivalences, as ∆ → 0, for the first order BG index and

intensity:

Iβ1

∆ ∼ a1
2(2− β1)β1/2 cβ1/2

∆1−β1/2 (log(1/∆))2−β1/2

Ia1∆ ∼ 2

a1(2− β1)β1/2 cβ1/2 a21

∆1−β1/2

(log(1/∆))β1/2
.

If further β2 > β1/2 we also have for the second order BG index and

intensity:

Iβ2

∆ ∼ a22 β
2
2

2a1 β1(2β2 − β1)(2− β1)β2−β1/2 cβ2−β1/2

× ∆1−β2+β1/2 (log(1/∆))2−β2+β1/2

Ia2∆ ∼ 2β2
2

a1 β1(2β2 − β1)(2 − β1)β2−β1/2 cβ2−β1/2

∆1−β2+β1/2

(log(1/∆))β2−β1/2
.

Remark 5.26. The parameter c comes in the denominator of the right

sides above, hence the assumption c > 0 is essential. When c = 0, the

leading term of X becomes Y 1, and the behavior of Fisher’s information

is quite different. One can for example prove that, in this case,

Iβ1

∆ ∼ I(β1)
(
log

1

∆

)2

, Ia1∆ → 1

a21
I(β1)

for a suitable constant I(β1) > 0.

Remark 5.27. This theorem provides the (expected) efficient estimation

rate for the two pairs of parameters (β
(+)
i , a

(+)
i ), i = 1, 2, in Theorem 5.8,

under a very special case of Assumption (5.11): we only have two indices
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(so β
(+)
3 = 0) and η = ∞ and F is symmetrical. If we have more indices

(still a finite number), the same analysis is feasible, although significantly

more complicated. In contrast, the analysis in the non-symmetrical case,

or when η is finite, is probably impossible in full generality.

As we will see just below, the previous results are compatible with con-

sistent estimators for β2 and a2 when β2 > β1/2. It says nothing in

the case where β2 = β1/2, although β2 and a2 are still identifiable in this

case. Of course, identifiability may occur even when Fisher’s information

simply does not exist.

Theorem 5.25 is only a partial answer to the global estimation prob-

lem of our parameters (c, β1, β2, a1, a2). In addition to the asymptotic

properties of the off-diagonal entries of Fisher’s information, one could

wonder whether the LAN property holds separately for each of them (the

other being kept fixed), or even globally (but with different rates for each

parameter), and whether the MLE is efficient. We do not address these

questions here.

However, coming back to the original problem of our discretely ob-

served process and using (5.17), we see that a sequence of estimators is

“Fisher-efficient” if we have the following convergences in law:

log(1/∆n)(
∆n log(1/∆n)

)β1/4 (β̂
n
1 − β1)

L−→ N (0, 1/TIβ1)

1(
∆

β1/4
n log(1/∆n)

)β1/4 (â
n
1 − a1)

L−→ N (0, 1/TIa1)
log(1/∆n)(

∆n log(1/∆n)
)β2/2−β1/4 (β̂

n
2 − β2)

L−→ N (0, 1/TIβ2)

1(
∆n log(1/∆n)

)β2/2−β1/4 (â
n
2 − a2)

L−→ N (0, 1/TIa2)





(5.22)

where Iβi and Iai are the constants in front of the term involving ∆ in

the equivalences of the theorem.

We see that the “optimal” rates for estimating β1 and a1 are, upon ne-

glecting the logarithmic terms, 1/∆
β1/4
n , whereas they are 1/∆

β2/2−β1/4
n

for β2 and a2: these are much slower than the rate 1/
√
∆n obtained for

estimating c.

This is in deep contrast with what happens when c = 0, that is, when

there is no Brownian part. By virtue of Remark 5.26, in this case the

optimal rate for estimating β1 is log(1/∆n)/
√
∆n, and it is 1/

√
∆n for

a1. In particular, for β1 it is (slightly) faster than the usual 1/
√
∆n rate

because when we observe the single variable Y 1
∆ and ∆ → 0 we already

have consistent estimators for β1, namely β̂1,∆ = − log (1/∆) / log(|Y 1
∆|),
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and the rate of convergence is log (1/∆) in this case. All this follows in

a very simple way from the scaling property of Y 1.

5.7 References

The content of Section 5.1 may be found in most textbooks on mathemat-

ical statistics, see for example Le Cam and Yang (1990) for a relatively

simple account.

There is a large literature devoted to stable processes in finance (start-

ing with the work of Mandelbrot in the 1960s, see for example Rachev

and Mittnik (2000) for newer developments). The MLE of stable pro-

cesses has been studied by DuMouchel (1973a,b, 1975). A variety of

other methods have been proposed in the literature for stable processes:

using the empirical characteristic function as an estimating equation (see

e.g. Press (1972), Fenech (1976), Feuerverger and McDunnough (1981b),

Chapter 4 in Zolotarev (1986) and Singleton (2001)), maximum likeli-

hood by Fourier inversion of the characteristic function (see Feuerverger

and McDunnough (1981a)), a regression based on the explicit form of

the characteristic function (see Koutrouvelis (1980)), and other numeri-

cal approximations (see Nolan (1997, 2001)). Some of these methods were

compared in Akgiray and Lamoureux (1989).

Section 5.2 follows Aı̈t-Sahalia and Jacod (2012b), while Sections 5.5

and 5.6 follow Aı̈t-Sahalia (2004) and Aı̈t-Sahalia and Jacod (2008), ex-

cept for Theorem 5.24, which comes from Jacod and Reiß (2013).

For fixed ∆, there exist representations of the density of a stable pro-

cess in terms of special functions (see Zolotarev (1995) and Hoffmann-

Jørgensen (1993)), whereas numerical approximations based on approxi-

mations of the densities may be found in DuMouchel (1971, 1973b, 1975),

or Nolan (1997, 2001), or Brockwell and Brown (1980).





Part III

Volatility





After all the preliminaries, theoretical considerations and data consid-

erations of the first two parts of the book, we are now ready to start

developing specific statistical methods in the setting of high-frequency

discrete observations. To begin, we consider in the third part of the book

various estimation problems connected with volatility.

That is, we have an Itô semimartingale X , possibly multidimensional,

possibly with jumps, and with second characteristic Ct =
∫ t
0 cs ds. It

is observed at discrete times, over a fixed time interval [0, T ], with a

discretization mesh going to 0. Our objects of interest are the integrated

volatility CT (or Ct, as t varies), and also the “spot” volatility c = (ct)

itself.

Let us mention that, by far, estimation of the integrated volatility

is the topic which has been studied most in high-frequency statistics.

One reason is that, at least when the process X is continuous, it is an

important quantity used for risk management and/or optimal hedging.

Another reason is that in all cases, and as we saw in Chapter 5, the

volatility is always an identifiable parameter, and quite often it is the

only identifiable one.

In Chapter 6 we consider the most basic problem of integrated volatil-

ity estimation, when there is no microstructure noise, and when the obser-

vations are equidistant. In Chapter 7 the same question is studied when

the observations are contaminated by a noise. Chapter 8 is concerned

with the estimation of the local, or spot, volatility ct, and in Chapter 9

we study the case when the observation times are no longer necessarily

equidistant, and may be random.





Chapter 6

Estimating Integrated

Volatility: The Base Case

with No Noise and

Equidistant Observations

This chapter covers the various problems arising in the estimation of

the integrated volatility, in the idealized situation where the process is

observed without error (no microstructure noise) and along a regular

observation scheme. In this case the situation is quite well understood,

although not totally straightforward when the process has jumps.

The setting is as follows: the underlying process X is a d-dimensional

Itô semimartingale (often with d = 1), defined on a filtered space

(Ω,F , (Ft)t≥0,P), and we recall the Grigelionis representation of (1.74):

Xt = X0 +

∫ t

0
bsds+

∫ t

0
σsdWs (6.1)

+ (δ1{‖δ‖≤1}) ⋆ (p− q)t + (δ1{‖δ‖>1}) ⋆ pt.

Here W is a d′-dimensional Brownian motion and p is a Poisson measure

on R+ ×E with (E, E) an auxiliary Polish space, and with compensator

q(dt, dx) = dt ⊗ λ(dx). The “coefficients” are a d-dimensional progres-

sively measurable process b, a d×d′-dimensional progressively measurable

process σ, and a d-dimensional predictable function δ on Ω × R+ × E.
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The first two characteristics of X are

Bt =

∫ t

0
bsds, Ct =

∫ t

0
csds, where ct = σt σ

∗
t .

Most often, we use the following assumption, in which r ∈ [0, 2]:

Assumption (H-r). We have (6.1) and

(i) The process b is locally bounded.

(ii) The process σ is càdlàg.

(iii) There is a sequence (τn) of stopping times increasing to ∞ and,

for each n, a deterministic nonnegative function Jn on E satisfying∫
Jn(z)λ(dz) <∞ and such that ‖δ(ω, t, z)‖r ∧ 1 ≤ Jn(z) for all (ω, t, z)

with t ≤ τn(ω).

Assumption (H-2) is not much stronger than the property of being an

Itô semimartingale, in the sense that, in virtually all models using Itô

semimartingales, it is indeed satisfied. (H-r) is basically the same as (H-

2), plus the fact that the rth absolute powers of jump sizes are summable

over each finite time interval, that is,
∑
s≤t ‖∆Xs‖r < ∞ almost surely

for all t > 0. (H-r) for some r implies (H-r′) for all r′ > r, and when X

is continuous those assumptions are the same for all r, and reformulated

as follows:

Assumption (HC). We have (6.1) and the process X is continuous,

and further the process b is locally bounded and the process σ is càdlàg.

In this chapter, our aim is to estimate the (random) quantity CT at

a given time T , upon observing the process X without error, at the

discrete times i∆n for i = 0, 1, . . . , [T/∆n], and when the mesh ∆n of

the observation scheme goes to 0. Since the initial value X0 gives no

information at all on CT , we can equivalently suppose that we observe

the returns, or log-returns

∆n
i X = Xi∆n −X(i−1)∆n

. (6.2)

Most often, T is a multiple of ∆n, for example T = n∆n, but in some

cases one wants to estimate the values CT and CS at two (or more)

different times, and assuming that both T and S are multiples of ∆n

would be somewhat restrictive.
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6.1 When the Process Is Continuous

We start with the simplest case of all: the process X is continuous, that

is, of the form

Xt = X0 +

∫ t

0
bsds+

∫ s

0
σsdWs. (6.3)

As a matter of fact, we conduct the estimation of Ct for all t ≥ 0

simultaneously; this is just as simple as the estimation at a single time,

and it provides more insight on the behavior of the integrated volatility

Ct as a process. However, an important point is that, when estimating Ct
for a particular value t, we do not use observation times i∆n occurring

after time t.

We exploit the convergence (1.14) (or (1.61) for the functional conver-

gence) of the realized volatility:

Ĉ(∆n)
jl
t =

[t/∆n]∑

i=1

∆n
i X

j∆n
i X

l u.c.p.
=⇒ Cjlt . (6.4)

Furthermore, Theorem A.15 gives us

Theorem 6.1. Under Assumption (HC) we have the following functional

stable convergence in law

1√
∆n

(Ĉ(∆n)− C)
L−s
=⇒ W (6.5)

where W = (Wjl)1≤i,j≤d is a continuous process defined on a very good

extension of the space (Ω,F , (Ft)t≥0,P) and, conditionally on F , is a

continuous centered Gaussian martingale with variance-covariance given

by (see page 56):

V ij,klt := Ẽ(W ij
t Wkl

t | F) =

∫ t

0

(
ciks c

jl
s + cils c

jk
s

)
ds . (6.6)

Remark 6.2. (Optimality) One does not know whether Ĉ(∆n)t are

asymptotically optimal, or “efficient,” for estimating Ct, since the very

notion of optimality is not even clear in a context as general as (6.3).

However, according to the discussion in Subsection 5.1.3, they are effi-

cient for the toy parametric model where ct(ω) = c (a constant matrix)

and bt(ω) = 0 (we have the LAN property and Ĉ(∆n)t is the maxi-

mum likelihood estimator). For the one-dimensional submodel for which

σt = f(Xt, Yt) with f a smooth function and Y another continuous Itô
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(s = seconds, m = minutes)
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Figure 6.1: The estimator Ĉ(∆n)t at different sampling frequencies (right

panel) computed from IBM transactions (left panel) on January 16, 2008.

martingale driven by a Brownian motion independent of X and with non-

degenerate diffusion coefficient, Clément et al. (2013) proved a convolu-

tion theorem for all possible regular estimators of Ct, with the optimal

limiting distribution being conditionally centered Gaussian with exactly

the variance given by (6.6); henceforth the estimators Ĉ(∆n)t are also

asymptotically efficient within this submodel.

As a consequence, there are good reasons to believe that Ĉ(∆n)t is

indeed asymptotically “optimal” for the general non-parametric model

(6.3), and it is certainly so in a minimax sense.

Remark 6.3. (Practical considerations) In financial practice, the esti-

mator Ĉ(∆n)t cannot be employed at a frequency that is too high, due to

the presence of market microstructure noise in the data, a topic we will

study in detail in Chapter 7. The estimator Ĉ(∆n)t is often constructed

from data sampled every few minutes, which presents a number of issues:

(i) a large quantity of data is “wasted,” resulting in additional sampling

error relative to what could be achieved; although the literature often rec-

ommends five minutes, the choice of the lower frequency to employ is

not clear, and due to smaller sample sizes the difference between the es-

timators at different sampling frequencies can be large. These effects are

illustrated in Figures 6.1 and 6.2. As the frequency decreases, and the

sample size correspondingly decreases, the estimator Ĉ(∆n)t tends to be

sensitive to the frequency of estimation: implemented at, say, four vs. five

vs. six minutes, the estimates turn out to be quite different even though

we are only changing by a small amount what is essentially an arbitrary

sampling frequency.
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Figure 6.2: The estimator Ĉ(∆n)t at different frequencies, IBM 2008 Q2

filtered data, daily computation of Ĉ(∆n)t.

6.1.1 Feasible Estimation and Confidence Bounds

Knowing that Ĉ(∆n)T is an approximation of CT with an “error” of order

of magnitude
√
∆n is good, but not sufficient for concrete applications.

For example, this simple fact does not allow us to construct a confidence

interval for CT at a given level of significance. For this, we also need a

precise evaluation of the asymptotic variance which is involved, in order

to make the previous CLT “feasible.”

Let us first discuss the one-dimensional case, d = 1, which by far is

the most useful (equivalently, the process X is multidimensional, but we

are interested in one of the diagonal parameters CjjT only). In this case,

(6.6) takes the simpler form

Ẽ
(
W2
T | F

)
= 2C(4)T , where

C (p)t =
∫ t
0 (σs)

p ds =
∫ t
0 (cs)

p/2 ds ,
(6.7)

and in particular, since C(4)T > 0 if and only if CT > 0,

L
(

WT√
2C(4)T

∣∣∣F
)

= N (0, 1)

in restriction to the F -measurable set {CT > 0}.
(6.8)

We have very simple consistent estimators for the quarticity C(4),

and more generally for C (p)t for any p > 0, under (HC) again. Namely,
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Theorem A.2 applied with k = 1 and f(x) = |x|p yields

∆
1−p/2
n

mp
B(p,∆n)

u.c.p.
=⇒ C (p) , where B(p,∆n)t =

[t/∆n]∑

i=1

|∆n
i X |p (6.9)

and mp = E(|Φ|p) denotes the pth absolute moment of the N (0, 1) vari-

able Φ, and is given by (4.23). Since m4 = 3, if we combine (6.5) and

(6.8), we obtain the following result, where for any variable Y and any

set A ∈ F with P(A) > 0 the notation L(Y | A) stands for the law of the

variable Y under the conditional probability P(· | A).

Theorem 6.4. Under Assumption (HC), if t > 0 is fixed, and for all

A ∈ F such that P(A) > 0 and A ⊂ {Ct > 0}, we have

L(Zn | A) → N (0, 1),

where Zn =





√
3
2
Ĉ(∆n)T−Ct√
B(4,∆n)t

if B(4,∆n)T > 0,

0 otherwise.

(6.10)

This statement is empty when P(CT > 0) = 0, in which case the esti-

mation of CT = 0 is a trivial and uninteresting problem. It is important

to notice that Zn = Zn,T depends on T . Of course, (6.10) holds for any

t > 0 and not just for the terminal t = T , but this convergence can-

not hold in any “functional” (in t) sense, even when we have Ct > 0

identically for all t > 0.

Similar consequences of a Central Limit Theorem such as Theorem

6.1 and of a Law of Large Number such as (6.9) will occur very often

in this book, with always the same argument for the proof. This proof

illustrates how the stable convergence in (6.5) comes into play, and thus

we give a formal proof for this, which will not be repeated later on.

Proof of (6.10). Let A ∈ F with P(A) > 0 and A ⊂ {CT > 0}. We set

Un =
1√
∆n

(ĈT (∆n)− CT ),

Vn =

{ √
3∆n/2B(4,∆n)T if B(4,∆n)T > 0

0 otherwise.

Since (2/(3∆n)) B(4,∆n)T converges in probability to 2C(4)T by (6.9)

and C(4)T > 0 on A, we deduce that Vn converges in probability to

V = 1/
√
2C(4)T in restriction to A. We then apply (3.21) and (6.5) to

obtain that (Vn, Un) stably converges in law, in restriction to A, to the
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Figure 6.3: The estimator Ĉ(∆n)t and its confidence interval. IBM 2008

Q2 filtered data, daily computation of Ĉ(∆n)t, 5 minute frequency.

bidimensional variable (V,WT ). This implies that, for any continuous

bounded function f on R, we have

E(f(Zn) 1A) = E(f(UnVn) 1A) → Ẽ(f(WT V ) 1A).

Now, again in restriction to A, the product WT V is conditionally on

F a centered Gaussian variable with variance V 2 Ẽ(W2
t | F), which is

equal to 1. The right side above is then E(f(Φ))P(A) and we deduce

that E(f(Zn) | A) → E(f(Φ)), with Φ being an N (0, 1) variable. This

completes the proof.

This theorem is the “best” possible, in the following sense: the left

side is the conditional law knowing A arbitrary (but fixed, and with a

positive probability) in F , whereas the conditional law knowing F itself

is a Dirac mass, because the variables CT , Ĉ(∆n)T and B(4,∆n)T are F -

measurable. Thus these F -conditional laws cannot converge to N (0, 1).

In practice B(4,∆n)T (ω) > 0, unless T < ∆n or the observed values

Xi∆n are all equal. Therefore, we slightly (and innocuously) abuse the

notation by writing (6.10) as

L
(√

3
2
Ĉ(∆n)t−Ct√
B(4,∆n)t

∣∣∣A
)
→ N (0, 1)

for all A ∈ F with P(A) > 0 and A ⊂ {CT > 0}.
(6.11)

This avoids introducing the auxiliary variables Zn. In the rest of this
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book, when a similar situation occurs, we systematically use the formu-

lation (6.11) rather than (6.10).

At this stage we are equipped for constructing a confidence interval for

CT , with a prescribed asymptotic level α ∈ (0, 1). We do it in some detail,

because the parameter of interest here is random and thus the situation

is not completely customary in statistics. We let zα be the α-absolute

quantile of N (0, 1), that is, the number such that P(|Φ| > zα) = α when

Φ is N (0, 1). At stage n the confidence interval will be

In = [Ĉ(∆n)T − an, Ĉ(∆n)T + an],

with an = zα

√
2B(4,∆n)T

3 .
(6.12)

The following property is an obvious consequence of (6.11):

limn P(CT /∈ In | A) = α

for all A ∈ F with P(A) > 0 and A ⊂ {CT > 0}. (6.13)

That is, the asymptotic level of this confidence interval is actually α,

in the same sense as the strong asymptotic size (or level) of a test, as

described in Definition 5.20. Figure 6.3 illustrates the application of The-

orem 6.4 to compute pointwise confidence intervals.

6.1.2 The Multivariate Case

We now turn to the multidimensional case d ≥ 2. Two different questions

naturally arise:

1. Find a confidence interval for a given off-diagonal element CjlT (di-

agonal entries have been studied above).

2. Find a “confidence region” for the matrix CT as a whole.

Let us examine the first problem. One needs consistent estimators

for the conditional variance V jl,jlT . The simplest way is to make use of

Theorem A.8 again. We need to find an integer k and a function f on

(Rd)k such that ρk⊗a (f) = ajmalr + ajralm for all a ∈ M+
d (the set of all

d× d symmetric nonnegative matrices, recall that ρa denotes the normal

law N (0, a) on Rd). Finding such an f with k = 1 is not obvious, but

using k = 2 and f(x1, x2) = xj1x
m
1 x

l
2x
r
2 +xj1x

r
1x
l
2x
m
2 does the job, and we

conclude

V (∆n)
jl,mr u.c.p.

=⇒ V jl,mr, where

V (∆n)
jl,mr
t = 1

∆n

[t/∆n]−1∑
i=1

(
∆n
i X

j∆n
i X

m∆n
i+1X

l∆n
i+1X

r

+ ∆n
i X

j∆n
i X

r∆n
i+1X

l∆n
i+1X

m
)
.

(6.14)
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Then, the same argument as for (6.11) gives us:

L
(

Ĉ(∆n)
jl
T −Cjl

T√
∆n |V (∆n)

jl,jl
T |

∣∣∣A
)
→ N (0, 1)

if A ∈ F , P(A) > 0, A ⊂ {CjjT > 0, CllT > 0}.
(6.15)

(here again the “correct” mathematical statement should be as in (6.10)).

At this stage, the reader should wonder why, in contrast with (6.11),

we have written the absolute value |V (∆n)
jl,jl
T | above. It is because

V (∆n)
jl,jl
T may take negative values (in contrast with V (∆n)

jj,jj
T when

j = l), and does so with positive probability if P(CjjT > 0, CllT > 0) > 0.

This probability goes to 0 as n → ∞, so the result is “mathematically”

correct. Nevertheless, for finite samples we might come up with a neg-

ative value for V (∆n)
jl,jl
T ; in this case it is thus clearly not a reliable

estimator of V jl,jlT (and for that matter, neither is its absolute value),

and we should use another estimator.

We have a similar problem when we try to globally estimate the ma-

trix CT (question 2 above). Finding confidence regions for a vector or

a matrix is typically not a very simple question. But when we have es-

timators which are consistent, asymptotically mixed normal, and when

additionally the consistent estimators for the asymptotic variance are

symmetric nonnegative, this is a classical problem and therefore we omit

this topic. However, here again we need symmetric nonnegative estima-

tors for the d2 × d2 matrix with entries V jl,kmT , and this is not the case

of V (∆n)
jl,km
T .

6.1.3 About Estimation of the Quarticity

In view of what precedes, it becomes necessary to take another view on

the estimation of the quarticity. There is even an additional reason for

this, which is as follows: apart from the possible lack of positivity, the

processes V (∆n)
jl,mr have nice asymptotic properties, and in particular

enjoy a CLT, with rate 1
√
∆n and a limiting process which is again of

the same type as in Theorem 6.1, according to Theorem A.13. However,

these processes never are asymptotically efficient for estimating V jl,mr,

as shown by the following example.

Example 6.5. Consider the simple model X = σW where d = 1

and σ > 0 is a constant. The quarticity at time 1 is simply σ4, and
1

3∆n
B(4,∆n)1 enjoys a CLT with rate 1/

√
∆n and an N (0, 32σ4/3)

limit. On the other hand, the MLE for σ4 obviously is (Ĉ(∆n)1)
2, en-

joying a CLT with rate 1/
√
∆n and an N (0, 8σ4) limit: the asymptotic
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variance of the MLE is strictly smaller than the asymptotic variance of

the estimators 1
3∆n

B(4,∆n)1.

A natural question is thus whether there exist “efficient” ways for

estimating V jl,mr , where efficiency is taken in the sense of Remark 6.2

(for the toy model of the previous example, and also for the special

submodel described in that remark). The answer is yes, and a method

consists in using estimators for the “spot volatility” ct.

These spot estimators will be discussed in detail in Chapter 8, here

we simply give the basic definitions. First, we choose a sequence kn ≥ 1

of integers satisfying

kn → ∞, kn∆n → 0, (6.16)

and for all i ≥ 0 we set

ĉ(kn)
jl
i =

1

kn∆n

kn−1∑

m=0

∆n
i+mX

j∆n
i+mX

l. (6.17)

The variable ĉ(kn)i = (ĉ(kn)
jl
i )1≤j,l≤d takes its values in M+

d (the set

of nonnegative symmetric d× d matrices), and the intuition behind this

formula will be explained in Chapter 8. Upon applying Theorem A.8 of

Appendix A with the functions g(a) = ajl amr for all possible indices

j, l,m, r, we get

V (∆n)
jl,mr u.c.p.

=⇒ V jl,mr , where

V (∆n)
jl,mr
t = ∆n

[t/∆n]−kn+1∑
i=0

(
ĉ(kn)

jm
i ĉ(kn)

lr
i

+ ĉ(kn)
jr
i ĉ(kn)

lm
i

)
.

(6.18)

As for (6.15) we now have

L
(

Ĉ(∆n)
jl
T −Cjl

T√
∆n V (∆n)

jl,jl
T

∣∣∣A
)
→ N (0, 1)

if A ∈ F , P(A) > 0, A ⊂ {CjjT > 0, CllT > 0}.
(6.19)

By construction, all summands for V (∆n)
jl,jl
T are nonnegative and, even

better, for each s, t ≥ 0 the d2 × d2 matrix V (∆n)
jl,mr
t+s − V (∆n)

jl,mr
t

is symmetric nonnegative; hence using these estimators for the (condi-

tional) variance-covariance matrix V jl,mrT allows us to employ classical

methods to derive confidence regions for the matrix-valued integrated

volatility CT .

The rate of convergence of V (∆n)
jl,mr to V jl,mr depends on the choice

of the sequence kn. However, as seen later in Chapter 8, see in particular
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Example 8.23, one has a rate of convergence 1/
√
∆n and also a minimal

asymptotic variance, as soon as kn satisfies kn → ∞ and k2n∆n → 0, for

the modified estimators

V
′
(∆n)

jl,mr
t =

(
1− 2

kn

)
V (∆n)

jl,mr
t , (6.20)

and provided that, on top of (HC), the volatility σt itself is an Itô

semimartingale (possibly with jumps) satisfying (H-2). Note that both

V
′
(∆n)

jl,mr
T and V (∆n)

jl,mr
T have the same first order asymptotic be-

havior.

Another estimator, again based on the spot volatility estimators, is

available. Namely, we have

V̂ (∆n)
jl,mr u.c.p.

=⇒ V jl,mr , where

V̂ (∆n)
jl,mr
t = 1

∆n

[t/∆n]−kn+1∑
i=1

(∆n
i+kn

Xj∆n
i+kn

X l −∆nĉ(kn)
jl
i )

×(∆n
i+kn

Xm∆n
i+kn

Xr −∆nĉ(kn)
mr
i ).

(6.21)

(To see this, one expands the product in each summand

above, and then apply Theorem A.3 for the sum of terms as

∆n
i+kn

Xj∆n
i+kn

X l∆n
i+kn

Xm∆n
i+kn

Xr and Theorem A.8 for the

sums of the terms which involve ĉ(kn)i.) Here again, and by construc-

tion, the matrix V̂ (∆n)
jl,mr
t is symmetric nonnegative, and (6.19) holds

with V̂ (∆n)
jl,jl
T instead of V (∆n)

jl,jl
T .

So far, the rate of convergence of V̂ (∆n)
jl,mr has not been studied, but

it is likely to be 1/
√
∆n under the same assumptions as for V (∆n)

jl,jl.

These estimators are probably not efficient, but in a sense they are the

most intuitive ones among the three families of estimators described so

far. Indeed, they look like the empirical covariance of the two time series

∆n
i X

j∆n
i X

l and ∆n
i X

m∆n
i X

r.

6.2 When the Process Is Discontinuous

Now we turn to the estimation of the same integrated volatility pro-

cess Ct, when X has the general form (6.1). In this case, the estima-

tors Ĉ(∆n)
jl
t are not even consistent, since they converge to the total

quadratic variation Cjlt +
∑
s≤t∆X

j
s ∆X

l
s. There are basically two meth-

ods to overcome this problem, the “truncation” approach and the “mul-

tipower” approach.
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6.2.1 Truncated Realized Volatility

This method, already mentioned in Section 3.5, amounts to taking the

truncated realized volatility:

Ĉ(∆n, un)
jl
t =

[t/∆n]∑

i=1

∆n
i X

j∆n
i X

l 1{‖∆n
i X‖≤un} (6.22)

where un is a suitable sequence going to 0. The idea is that the truncation

eliminates the jumps because un → 0, whereas if un is not “too small,”

and loosely speaking, it preserves the increments of the continuous part.

That is,

under (H-2) we have Ĉ(∆n, un)
jl u.c.p.

=⇒ Cjl (6.23)

as soon as un/
√
∆n log(1/∆n) → ∞ and un → 0. In view of the Lévy

modulus of continuity of the Brownian motion (1.4), these conditions on

un are sharp, but the truncation levels used in this book will always have

the following (stronger) property (where un ≍ vn means that both ratios

un/vn and vn/un are bounded):

un ≍ ∆̟
n for some ̟ ∈

(
0,

1

2

)
, (6.24)

which implies un/
√
∆n log(1/∆n) → ∞ and un → 0, hence (6.23).

Somehow duplicating Section 3.5, we start by explaining, on an intu-

itive level, why we exactly need ̟ ∈ (0, 1/2) in (6.24), and the reader can

go back to Section 4.2 for additional insight. We consider the case d = 1,

and the finite jump activity situation when only finitely many jumps oc-

cur in [0, t] and bt = 0 and σt = σ is a constant, so X = σW + J where

Jt =
∑
m≥1 Ym 1{Tm≤t} is a finite sum. In this situation, the minimum Zt

of all absolute jump sizes between 0 and t is positive and independent of n,

as well as the total number Nt of such jumps. Hence for all n large enough

any interval ((i−1)∆n, i∆n] with i ≤ [t/∆n] contains a single jump time

Tm, or none at all. In the former case, we have ∆n
i X = σ∆n

iW + Ym,

and in the latter ∆n
i X = σ∆n

iW . Moreover, by the Lévy modulus of

continuity mentioned above, we have |∆n
iW | ≤ 2

√
∆n log(1/∆n), again

for n large enough and all i ≤ [t/∆n]. Then, clearly, if ̟ > 0 we have

un → 0 and thus truncating at un eliminates all increments on inter-

vals containing one of the Tm’s, whereas all other increments are kept if

̟ < 1/2 in (6.24) because then un > 2σ
√
∆n log(1/∆n) for n large.

Moreover, we eventually eliminate only finitely many increments, so

Ĉ(∆n, un)t is the same as the variable Ĉ(∆n)t of (6.4), computed for σW

instead of X , and up to finitely many summands; this does not affect the
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Figure 6.4: Adjusting the truncation rate un and the asymptotic elimi-

nation of large jumps as ∆n → 0.

asymptotic behavior and thus Ĉ(∆n, un)t will converge to Ct, which is

equal to σ2t in this case, and even the Central Limit Theorem is not

affected.

The behavior of the density of the increments as ∆n decreases, in the

pure Brownian case, is shown in Figure 6.4, illustrating that at some

point along the asymptotics all large jumps of the process have been

eliminated by the truncation.

If we were taking instead un = α
√
∆n for some α > 0, then we would

eliminate roughly a proportion of increments due to the Brownian motion

equal to the probability P(|Φ| > α/σ) for a standard normal variable Φ,

thus introducing a bias. This is illustrated in Figure 6.5. If we were taking

̟ > 1/2, we would eventually eliminate all increments.

Now, the fact that this method also eliminates the jumps in the infinite

activity case is less obvious on an intuitive level, but it is true: we will

see that the estimators Ĉ(∆n, un)
jl
t are always consistent for estimating

Cjlt , but they enjoy an associated CLT with rate 1/
√
∆n only when the

degree of activity of the jumps is not too large.

Remark 6.6. If one does not know whether the process is continuous,

one may want to truncate, to be on the safe side. When X is continuous,
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Figure 6.5: Truncating large jumps, at a rate un slower than
√
∆n.

for any T we have Ĉ(∆n, un)t = Ĉ(∆n)t for all t ≤ T , as soon as n is

large enough. This can be proved rigorously, but also understood by the

heuristic considerations above. Thus an unnecessary truncation does no

harm.

Remark 6.7. The truncation in (6.22) is global, in the sense that we

truncate the d-dimensional increments ∆n
i X. One could also truncate

the increments of each component separately, the indicator function in

(6.22) becoming 1{|∆n
i X

j |≤u(j)n,|∆n
i X

l|≤u(l)n}, where each sequence u(j)n
is as above. This might be justified if the various components have very

different volatilities or different order of magnitudes. Otherwise, there is

no special reason to do this. So below we stick to the case where the norm

of ∆n
i X is truncated.

Remark 6.8. (Practical considerations) The condition (6.24) is an

asymptotic requirement, necessary for the forthcoming results, but it does

not help the statistician to choose the level un, especially for finite sam-

ples. The stronger condition un = α∆̟
n , for some constant α > 0, may

look more concrete but still does not really help, because we do not know

how to choose α and ̟, besides ̟ ∈ (0, 1/2). We will examine how to

effectively choose un (or, α and ̟) in Section 6.2.2. In particular we will
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see that it is convenient to express un as a given multiple of the “typical”

standard deviation of the returns of the Brownian part of the log price,

for the asset and the period of time under consideration, and typically

this multiple will be between four and eight times the standard deviation.

Exactly as in the previous section, the convergence (6.23) can be used

in a quantitative way only if there is an associated CLT, and this is where

things deteriorate. Such a CLT does not hold in general, and for it to

be true we need Assumption (H-r) for some r < 1: this basically means

that the (compensated) sum of “small” jumps of X is not too much like

a Brownian motion, and it implies that the jumps are summable, that

is,
∑
s≤t ‖∆Xs‖ <∞ almost surely for all t. The exact formulation is as

follows, by virtue of Theorem A.15:

Theorem 6.9. Under Assumption (H-r) for some r ∈ [0, 1), and (6.24)

with 1
2(2−r) ≤ ̟ < 1

2 , we have the following functional stable convergence

in law:
1√
∆n

(Ĉ(∆n, un)− C)
L−s
=⇒ W (6.25)

where W = (Wjl)1≤i,j≤d is the same as in (6.5), and in particular sat-

isfies (6.6).

The optimality of Ĉ(∆n, un)t for estimating Ct can be commented on

in the same way as in the previous section.

The reader might wonder about the condition 1
2(2−r) ≤ ̟ < 1

2 , im-

plying that the truncation level needs to be small enough. It is always

more stringent than (6.24) and impossible to achieve when r ≥ 1, which

explains the restriction r < 1. Let us give some insight on the reason of

this requirement, in the one-dimensional case. The truncation more or

less eliminates all jumps with size bigger than un. If (H-r) holds but not

(H-q) for some q < r, the total contribution to the quadratic variation of

the infinitely many jumps of size smaller than un has an overall expec-

tation of order of magnitude less than u2−rn , but bigger than u2−qn . Thus

Ĉ(∆n, un)t is approximately equal to Ct plus a term of order
√
∆n (the

“error term” due to the continuous part), plus another term of approxi-

mate order bigger than ∆
(2−q)̟
n , which is due to those small jumps. We

want this second error term to be negligible in front of the first one, and

this requires ̟ > 1
2(2−q) . When further we only know that (H-r) holds,

this should be true for all q < r, hence ̟ ≥ 1
2(2−r) .

To make the CLT in Theorem 6.9 feasible we need consistent estima-

tors for the variance-covariance of Wt, and for this we can modify in an

appropriate way all three methods described in the continuous case.
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First, in the d = 1 case the variables B(4,∆n)t won’t do any more,

since by Theorem A.1 they converge to
∑
s≤t |∆Xs|4. However, we can

again rely upon truncated power functionals, using Theorem A.3 with

k = 1 and the function f(x) = |x|p to get, with the notation

B(p,∆n, un)t =

[t/∆n]∑

i=1

|∆n
i X |p 1{|∆n

i X|≤un} , (6.26)

and for any p > 2,

(H-r) and (6.24) with r ∈ [0, 2) and p−2
2(p−r) ≤ ̟ < 1

2

⇒ ∆
1−p/2
n B(p,∆n, un)

u.c.p.
=⇒ mp C (p) .

(6.27)

Then, as for Theorem 6.4, and with the formulation (6.11), we get:

Theorem 6.10. Under Assumption (H-r) for some r ∈ [0, 1), and (6.24)

with 1
2(2−r) ≤ ̟ < 1

2 , we have

L
(√

3
2
Ĉ(∆n,un)T−CT√
B(4,∆n,un)T

∣∣∣A
)

→ N (0, 1)

if A ∈ F , P(A) > 0, A ⊂ {CT > 0},
(6.28)

The above choice of un is necessary in Ĉ(∆n, un), but in B(4,∆n, un)

one could choose a distinct level un, which only satisfies the requirement

in (6.27). Figure 6.6 illustrates the computation of confidence intervals

based on Theorem 6.10.

In the d ≥ 2 case we can use the following truncated version of (6.18)

to get

V (∆n, un)
jl,mq u.c.p.

=⇒ V jl,mq, where

V (∆n, un)
jl,mq
t = 1

∆n

[t/∆n]−1∑
i=0

(
∆n
i X

j∆n
i X

m∆n
i+1X

l∆n
i+1X

q

+ ∆n
i X

j∆n
i X

q∆n
i+1X

l∆n
i+1X

m
)

× 1{‖∆n
i X‖≤un, ‖∆n

i+1X‖≤un}.

(6.29)

Then under the same assumptions as in Theorem 6.10 we have

L
(

Ĉ(∆n,un)
jl
T −Cjl

T√
∆n |V (∆n,un)

jl,jl
T |

∣∣∣A
)
→ N (0, 1)

if A ∈ F , P(A) > 0, A ⊂ {CjjT > 0, CllT > 0}.
(6.30)

Of course, these estimators of the conditional variances suffer from the

same drawbacks (lack of positivity) as their non-truncated counterparts

for the case where X is continuous.
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Figure 6.6: The estimator Ĉ(∆n, un)t and its confidence interval. IBM

2008 Q2 filtered data, daily computation of Ĉ(∆n, un)t, 5 minute fre-

quency, with truncation level set at 4σ, see Remark 6.8.

The second possibility consists in using a truncated version of the spot

volatility estimators (6.17):

ĉ(kn, un)
jl
i =

1

kn∆n

kn−1∑

m=0

∆n
i+mX

j∆n
i+mX

l1{‖∆n
i+mX‖≤un}, (6.31)

with un as above and kn as in (6.16). Then Theorem A.8 of Appendix A

yields

V (∆n, un)
jl,mq u.c.p.

=⇒ V jl,mq , where

V (∆n, un)
jl,mq
t = ∆n

[t/∆n]−kn+1∑
i=0

(
ĉ(kn, un)

jm
i ĉ(kn, un)

lq
i

+ĉ(kn, un)
jq
i ĉ(kn, un)

lm
i

)
.

Here again, it is even better to take

V
′
(∆n, un)

jl,mq
t =

(
1− 2

kn

)
V (∆n, un)

jl,mq
t

(similar to (6.20)) with kn such that kn → ∞ and k2n∆n → 0, see Exam-

ple 8.23 in Chapter 8.
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Finally, similar to (6.21), we have

V̂ (∆n, un)
jl,mq u.c.p.

=⇒ V jl,mq , where

V̂ (∆n)
jl,mq
t = 1

∆n

[t/∆n]−kn∑
i=0

(
∆n
i+kn

Xj∆n
i+kn

X l −∆n ĉ(kn, un)
jl
i

)

×
(
∆n
i+kn

Xm∆n
i+kn

Xq −∆n ĉ(kn, un)
mq
i

)

×1{‖∆n
i+kn

X‖≤un}.

Then (6.30) holds with |V (∆n, un)
jl,jl
t | substituted with V (∆n, un)

jl,mq
t

or V
′
(∆n, un)

jl,mq
t or V̂ (∆n, un)

jl,mq
t (without absolute value). These last

estimators are necessarily nonnegative when (jl) = (mq), and considered

as d2 × d2 matrices they are symmetric nonnegative.

Remark 6.11. One could show an additional property in Theorem 6.9

(and in Theorem 6.1 as well, in the continuous case). Namely, the con-

vergence in law 1√
∆n

(Ĉ(∆n, un) − C)
L

=⇒ W holds uniformly in X ∈
S(r, A), for all A > 0 and all r ∈ [0, 1), where S(r, A) is the class of all

semimartingales X satisfying (H-r) with ‖bt‖+‖ct‖+
∫
(‖y‖r∧1)Ft(dx) ≤

A. This statement is perhaps not very significant from a purely applied

viewpoint, but it has great statistical significance: it is indeed similar to

the usual semi-parametric statements about “good” estimators, although

we are here in a non-classical semi-parametric setting.

We end this part with a brief look at the situation in which (H-r) holds

for some r ≥ 1, since this is excluded in the previous CLTs. The truncated

estimators are still consistent, but the rate of convergence deteriorates,

and one no longer has a proper CLT, but only bounds for the rate itself.

The result goes as follows:

Proposition 6.12. Under Assumption (H-r) for some r ∈ [1, 2), and

(6.24) with 0 < ̟ < 1
2 , we have the following convergence in probability:

1

∆
(2−r)̟
n

(Ĉ(∆n, un)T − CT )
P

=⇒ 0.

Exactly as in Remark 6.11, one could even show that the above con-

vergence in probability is uniform in X ∈ S(r, A) for any given constant

A > 0.

By taking ̟ close to 1/2, we get a rate which approaches 1/∆
(2−r)/2
n ,

as far as the power of ∆n is concerned. This should be compared

with Theorem 5.24, which gives the minimax rate for this ques-

tion of integrated volatility estimation, in restriction to the class

of Lévy processes. This minimax rate is 1/∆
1/2
n when r = 1 and
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(log(1/∆n))
(2−r)/2/∆(2−r)/2

n when r ∈ (1, 2). Hence the truncated es-

timators Ĉ(∆n, un)T nearly achieve the minimax rate.

Note that Theorem 5.24 precludes the existence of estimators for Ct
which would work with the rate 1/

√
∆n, for all X ∈ S(r, A) simultane-

ously, when r > 1. Of course, for any given X ∈ S(r, A), a sequence of

estimators converging with rate 1/
√
∆n might exist; but such estimators

would also depend on the law of X . For example, if X is a Lévy process

with known Lévy measure F , the MLE for CT = Tc has this rate, and

other moment estimators as well, but these specific estimators explicitly

use F in their construction and usually are not even consistent for a Lévy

process with another Lévy measure.

Proposition 6.12 tells us that, even when (H-r) holds for some r ∈
[1, 2) only, the truncated estimators are reasonably good (and almost as

good as possible, in fact). However, since no CLT is available, it seems

impossible to derive confidence bounds in that case. Also, note that under

the weakest possible assumption (H-2) no rate at all is available.

6.2.2 Choosing the Truncation Level : The One-

Dimensional Case

Below we suppose that d = 1, since in the multivariate case, the reasoning

can be repeated component by component. As we have seen, if un = α∆̟
n

for some α > 0, the results hold regardless of the value of α, whereas the

value of ̟ is restricted by the assumptions on X . This is obviously due to

the asymptotic nature of the result, and for finite (or “small”) samples

it is a different matter: for any ̟, by increasing α one increases the

empirical value of the estimator Ĉ(∆n, un)T from 0 (when α is really

small) to the non-truncated value Ĉ(∆n)T .

So indeed from a practical viewpoint ∆n is perhaps small but fixed,

and when un = α∆̟
n the values of α and ̟ are irrelevant per se ; what

matters is the value of un itself, in connection with the size ∆n, the total

number of observations n, and the size of the coefficients driving the

process X (equivalently, the size of a “typical” increment ∆n
i X).

As a matter of fact, it is convenient to, and we often do, express the

truncation level as a number of standard deviations of the Brownian part

of X : the level of truncation un is expressed in terms of the number γ

of standard deviations of the increments of the continuous martingale

part of the process, defined in multiples of the long-term (or average)

volatility η1/2 (that is, η is an “average value” of the squared volatility

ct as t varies). In other words, we write un = γη1/2∆
1/2
n , so implicitly
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Figure 6.7: The estimators Ĉ(∆n)t and Ĉ(∆n, un)t for different trunca-

tion levels. IBM 2008 Q2 filtered data, daily computation of the estima-

tors.

γ depends on n and actually should go to ∞ as n increases. Then, we

report the values of the cutoffs un in the form of γ (often written as γσ),

the “number of standard deviations.”

We illustrate this in Figure 6.7, which shows the dependence of

Ĉ(∆n, un)t on the selection of the truncation level un set at 3σ, 4σ and

5σ, with a comparison to the non-truncated Ĉ(∆n)t. This has the ad-

vantage of providing an easily interpretable size of the cutoff compared

to the size of the increments that would be expected from the Brownian

component of the process; we can then think in terms of truncating at a

level that corresponds to γ = 4, 5, . . ., standard deviations of the contin-

uous part of the model. Since the ultimate purpose of the truncation is

either to eliminate or conserve that part, it provides an immediate and

intuitively clear reference point. Of course, this way of expressing the

cutoff level would lose its effectiveness if we were primarily interested in

testing the validity of the asymptotic approximation as the sample size

varies, but for applications, by definition on a finite sample, it seems to

us that the interpretative advantage outweighs this disadvantage.

Now we come back to one possible effective determination of the cutoff

level un. Recall the rationale behind truncating increments: eliminate the

jumps, and keep the increments of the continuous part, and this tells us
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in which direction to go :

choose un as small as possible,

without throwing away too many Brownian increments.
(6.32)

This is still not quite operational, because the aforementioned “Brownian

increments” are of course multiplied by the volatility, which is unknown,

otherwise there would be no statistical problem. However, the key point

in (6.32) is to determine a sort of “lower bound” for un such that the

last property holds. To get a good insight on this, we can consider the

simplified model where X is a continuous Gaussian martingale and the

(non-random) volatility ct is piecewise constant. In this simplified setting

we can compare the realized volatility Ĉ(∆n)T (the natural estimator of

CT in this case), with the truncated version Ĉ(∆n, un)T .

Asymptotically, these two estimators are equally good, since they in-

deed are equal for n large enough, depending on t and ω, as soon as un
satisfies (6.24). But this gives no hint for finite samples. In this case,

provided ∆n is “reasonably” small (otherwise, no sensible estimation is

possible), these two estimators are approximately Gaussian with variance

2∆n

∫ T
0 c2s ds; however, the first one is correctly centered at CT (up to

an error of order ∆n), the second one is centered (again up to an er-

ror of order ∆n) at CT − AT , where AT =
∫ T
0 cs g((un/

√
cs∆n

)
ds and

g(u) =
∫
{|x|>u} x

2 ρ(dx) and ρ = N (0, 1). It is thus natural to choose un
at stage n in such a way that AT does not exceed a given fraction θ of

the standard deviation of the estimation error, that is,

∫ T

0
cs g(un/

√
cs∆n ) ds ≤ θ

(
2∆n

∫ T

0
c2s ds

)1/2
.

We can choose θ = 0.1 for example (taking θ extremely small does not

make much statistical sense here). Moreover, set

cmax = sup(cs : s ∈ [0, T ]),

cmin = inf(cs : s ∈ [0, T ]),

caver =
1

T

∫ T

0
cs ds.

Since g is a decreasing function, the previous inequality is certainly sat-

isfied if the following holds for some number ζ which is bigger than or

equal to the ratio cmax/cmin:

g

(
un

√
ζ/caver∆n

)
≤ θ

ζ

√
2∆n/T . (6.33)
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The above model, simplistic as it is, gives us reasonable guidelines

for the case of stochastic volatility, provided the volatility does not vary

too wildly within the interval of interest [0, T ]. Suppose that we know

(or assume) that the (unknown and random, in the case of a stochastic

volatility) ratio cmax/cmin is not more than some known number ζ; such

an assumption with ζ = 2 or ζ = 3 seems legitimate when we consider

intra-day high-frequency financial data and a horizon T of a day or a

week. Then with this kind of heuristics in mind, we can propose the

following procedure, in the general case when X has jumps:

1. Find a preliminary estimator caver of the “average” value of cs in

[0, T ]. This can be done in several ways. For example one may take

caver =
1

T (1− g(zη))
Ĉ(∆n, u)T

where u is chosen in such a way that a (relatively large) given

proportion η of all increments is thrown away, for example η = 0.25,

and zη is the absolute η quantile of the standard normal, that is,

the number such that P(|Φ| > zη) = η if Φ is N (0, 1). Or we may

use

caver =
1

T
C([3],∆n)T

(the estimator based on multipower variations, which will be intro-

duced in the next subsection).

2. Take for un the smallest value satisfying (6.33) (this is feasible,

since g is a known decreasing function).

We do not claim that this procedure is optimal in any sense, only that

it is reasonable. It works well when the assumption that cmax/cmin ≤ η

is likely to hold, together with (H-r) for some r < 1.

Remark 6.13. The above procedure breaks down, of course, in some

specific cases. Suppose for example that X is a compound Poisson pro-

cess with intensity λ and jumps having the law N(0, a). If by luck, or

lack of luck, λ and ∆n are such that λ∆n is of order 5 or 10, whereas

T/∆n is large (say 100 or 1000), then Ĉ(∆n)T and Ĉ(∆n, un)T with un
determined as above will be quite close one to the other, and also quite

close to λaT , because at our specific observation frequency the process

X looks very much like a Brownian motion. When ∆n becomes much

smaller, then Ĉ(∆n, un)T will eventually converge to the correct value

CT = 0, but when ∆n ∼ 10/λ, then Ĉ(∆n, un)T is far from 0 and is in

fact close to the expected quadratic variation of the whole process.
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Remark 6.14. Following the discussion above, we can perhaps improve

the truncated estimator as follows: Let ζ(n, T ) be the proportion of in-

crements that are thrown away. Since Ĉ(∆n, un)T is biased downwards,

we could correct it by taking the new estimator

1

1− g(zζ(n,T ))
Ĉ(∆n, un)T .

When ζ(n, T ) is not small (as in step 1 above), such a correction

is advisable. However, when we do the estimation of CT itself, typically

ζ(n, T ) is very small, less or much less than 1%; therefore this correction

becomes irrelevant, and it is not even clear that it is going in the right

direction — indeed, the increments which are kept are still the sum of a

Brownian increment, plus a sum of small jumps, plus of course a (small)

drift increment, so its size could very well be systematically bigger in

absolute value than the typical Brownian increment.

Remark 6.15. In any case, using a truncation level un which is the

same for the whole time period [0, T ] is reasonable only when cs stays in

a relatively narrow range over this time interval. Otherwise, one should

use an adaptive procedure, which could go as follows:

1. Choose kn ≥ 1 in such a way that cs is “not too much varying” on

intervals of length kn∆n (within this restriction, the bigger kn, the

better).

2. In the formula (6.22) use a threshold un,j for the increments ∆n
i X

such that (j−1)kn < i ≤ jkn, and where un,j is determined as spec-

ified above, with the spot volatility estimator ĉ(kn, un)
n
j of (6.31),

constructed on the basis of an a priori arbitrary choice of un.

One could even use an iterative procedure, repeating Step 2 above with

the threshold in (6.31) chosen according to the first pass of Step 1.

6.2.3 Multipower Variations

This method is primarily designed for the one-dimensional case d = 1.

In this case, consider the variables

M([p, k],∆n)t =
[t/∆n]−k+1∑

i=1
|∆n

i X |p/k|∆n
i+1X |p/k

× . . . |∆n
i+k−1X |p/k,

(6.34)

where p > 0 is a real and k ≥ 2 is an integer (if k = 1 we have

M([p, 1],∆n) = B(p,∆n)). We restrict ourselves to the case where all
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Figure 6.8: The estimators Ĉ(∆n)t, Ĉ(∆n, un)t truncated at 4σ and

Ĉ([k],∆n)t with p = 2 and k = 3 for different truncation levels. IBM

2008 Q2 filtered data, 5 minute frequency, daily computation of the es-

timators.

increments in each summand are taken with the same power, although

one could also use different powers p1, . . . , pk. Such quantities are called

multipower variations, for an obvious reason.

By virtue of Theorem A.2 we have the following convergence:

(H-2) and p < 2k ⇒ ∆1−p/2
n M([p, k],∆n)t

u.c.p.
=⇒ (mp/k)

kC (p)t . (6.35)

Therefore, for any k ≥ 2 we have the following consistent estimators:

(H-2) ⇒ Ĉ([k],∆n) :=
1

(m2/k)k
M([2, k],∆n)

u.c.p.
=⇒ C.

The reason for this convergence, and more generally for (6.35), is that

having two or more “big” jumps within k successive intervals separating

observation times is very unlikely, and a single big jump gives a big

increment, which is killed by the other (necessarily small) increments

in the product, for each summand in (6.34). Figure 6.8 compares the

estimator Ĉ([k],∆n) with Ĉ(∆n, un) and Ĉ(∆n)t.

The associated CLT requires assumptions significantly stronger than

(H-r), although in most models used in practice the non-degeneracy in

the first assumption below is satisfied, and if (H-r) holds then (K-r)

below also holds with the same real r. For the sake of later use, these

assumptions are stated in the d-dimensional case for X ; however, we only

state (K-r) when r ∈ [0, 1] (this is simpler than when r ∈ (1, 2]).
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Assumption (P). Both processes ct and ct− are everywhere invertible.

Assumption (K-r). (With r ∈ [0, 1]) We have (H-r), the process σ

is also an Itô semimartingale satisfying (H-2), and the process b′t =

bt −
∫
{‖δ(t,z)‖≤1} δ(t, z)λ(dz) (which is well defined by (H-r)) is right-

continuous with left limits (càdlàg) or left-continuous with right limits

(càglàd).

In (K-r) the requirement on b′t is rather weak, and the strong require-

ments are (H-r) and the Itô semimartingale property of the process σt.

Remark 6.16. Assuming (K-r), we have a Grigelionis representation

for σ, whose continuous martingale part may be written as
∫ t
0 σ̃s dWs +∫ t

0 σ̃
′
s dW

′
s, where W is the same Brownian motion as in (6.1) and W ′

another Brownian motion independent of W . It follows that we can write

σt = σ0 +

∫ t

0
b̃sds+

∫ t

0
σ̃sdWs +Mt +

∑

s≤t
∆σs 1{‖∆σs‖>1}, (6.36)

where M is a local martingale with ‖∆Mt‖ ≤ 1,orthogonal to W, its pre-

dictable quadratic covariation process has the form 〈M,M〉t =
∫ t
0 asds

and the predictable compensator of
∑
s≤t 1{‖∆σs‖>1} has the form

∫ t
0 ãsds

where b̃ and M are d× d′-dimensional, and σ̃ is d× d′ × d′-dimensional,

and a is d′4-dimensional and ã is one-dimensional nonnegative. Here,

M is the sum of
∫ t
0 σ̃

′
s dW

′
s and the compensated sum of jumps of σ

smaller than 1. (K-r) also implies that the processes b̃, a and ã are lo-

cally bounded. The form (6.36) will not be used explicitly, but is given

here because it often appears as such in the literature. Moreover, with the

previous notation, (K-r) implies that both σ̃ and σ̃′ are càdlàg, although

only the càdlàg property of σ̃ is necessary for what follows.

Coming back to our estimation problem, and when d = 1, the following

result is a particular case of Theorem A.13:

Theorem 6.17. Assume k ≥ 3 and Assumptions (P) and (K-2/k). Then

we have the following functional stable convergence in law:

1√
∆n

(Ĉ([k],∆n)− C)
L−s
=⇒ W(k), (6.37)

where W(k) is a continuous process defined on an extension of the space

(Ω,F , (Ft)t≥0,P) and, conditionally on F , is a continuous centered Gaus-

sian martingale with variance

Ẽ((W(k)t)
2 | F) = ϑ(k)C(4)t, (6.38)
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where ϑ(k) is the following constant:

ϑ(k) =
1

(m2/k)2k (m4/k − (m2/k)2)

{
(m4/k)

k+1 + (m4/k)
k (m2/k)

2

− (2k + 1)m4/k (m2/k)
2k + (2k − 1)(m2/k)

2k+2
}
. (6.39)

For consistent estimators of C(4)T we can use (6.26), but it seems

more appropriate in this case to also use a multipower-type estimator,

that is, to take advantage of the convergence (6.35). There is no special

reason to use the same integer k for this as in (6.38) but, if we do, we

obtain (same proof as for Theorem 6.4):

Theorem 6.18. If k ≥ 3 and under (P) and (K-2/k), we have

L
( (m4/k)

k/2

√
ϑ(k)M([4, k],∆n)T

(
Ĉ([k],∆n)t − CT

) ∣∣∣A
)
→ N (0, 1)

if A ∈ F , P(A) > 0.

Observe that, above, we do not need to specify that A is in the set

{CT > 0}, since this set is indeed Ω itself because of (P).

We also have a multivariate version, when d ≥ 2, which is in fact based

upon the polarization formula (1.57). We set

Ĉ([k],∆n)
jl
t =

1

4(m2/k)k

[t/∆n]−k+1∑

i=1

( k−1∏

m=0

|∆n
i+mX

j +∆n
i+mX

l|2/k

−
k−1∏

m=0

|∆n
i+mX

j −∆n
i+mX

l|2/k
)
.

Then for any k ≥ 2 we have

(H-2) ⇒ Ĉ([k],∆n)
u.c.p.
=⇒ C.

A CLT holds as well, under the same assumptions as above. However,

the conditional variance-covariance of the limiting process is much more

difficult to describe, and even more difficult to estimate consistently. We

will not elaborate on this, because, as said before, the multipowers are

really designed for the one-dimensional case (see the comments in the

next subsection).

6.2.4 Truncated Bipower Variations

One can in fact mix the two previous approaches and use “truncated

multipower variations.” We will do this for bipowers only, for reasons

apparent later.
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We choose a sequence un of truncation levels, satisfying (6.24) as usual.

Recalling m1 =
√
2/π, the truncated bipower variation is defined as

Ĉ([2],∆n, un)t =
π

2

[t/∆n]−1∑

i=1

|∆n
i X | |∆n

i+1X | 1{||∆n
iX|≤un}1{||∆n

i+1X|≤un}.

An application of Theorem A.13 gives us

Theorem 6.19. Under Assumptions (P) and (K-1), and as soon as un
satisfies (6.24), we have the following functional stable convergence in

law:
1√
∆n

(Ĉ([2],∆n, un)− C)
L−s
=⇒ W(2),

where W(2) is as in Theorem 6.17.

At this point, a result analogous to Theorem 6.18 is straightforward,

and left to the reader.

Remark 6.20. If we use the bipower variations without truncation, and

again under (P) and (K-1), the previous result fails and Theorem 6.17

does not apply either. However, we still have stable convergence in law of

Ĉ([2],∆n)t for each fixed t (or finitely many t’s, the functional conver-

gence no longer holds). Moreover, the limit is not W(2)t, as one could

imagine, but it is the sum W(2)t +W(2)′t, where W(2)′ is a (purely dis-

continuous) process defined on the same extended space as W(2)t, and

taking the form

W(2)′t =
∑

n:Tn≤t
|∆XTn | (σTn−U

−
n + σTn−U

+
n ), (6.40)

where (Tn)n≥1 is a sequence of stopping times weakly exhausting the

jumps of X (that is, if ∆Xs(ω) 6= 0 at time s there is a unique integer

n(ω) such that Tn(ω)(ω) = s), and the variables (U+
m, U

−
m) are all inde-

pendent standard normal, defined on the extension, and F-conditionally

independent of W(2). In other words, the limit W(2) + W(2)′ is of the

type described in (1.87), and we will obtain many limiting processes with

a form analogous to (6.40) in Chapter 10.

We will not elaborate more on this here; the interested reader can

mimic the different methods explained in Subsection 10.2.4 to construct

a “feasible” CLT of the form (6.39) (we are here in the case where W(2)′t
is F-conditionally Gaussian).
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6.2.5 Comparing Truncated Realized Volatility and

Multipower Variations

So far we have described two (or even three) competing methods for es-

timating the integrated volatility, in the presence of jumps. There is an

immediate difference between truncated realized volatility and multipow-

ers: in the multivariate case, the truncation approach provides estimators

Ĉ(∆n, un)T which (just as Ĉ(∆n)T ) are symmetric nonnegative matri-

ces, whereas the multipower estimators Ĉ([k],∆n)T are symmetric but

not necessarily nonnegative. This may cause problems when the matrix

CT is replaced by its estimator, especially when this is used as a plug-in

inside an optimization problem, such as portfolio choice.

Apart from this difference, which may be considered as a serious draw-

back for the multipower method in some circumstances, the conditions

under which these three methods provide consistent estimators are the

same, namely Assumption (H-2). All methods need some tuning parame-

ters, the integer k for multipowers, the truncation levels un for the others:

in this respect, the multipower method has a strong advantage, since it

seems reasonable to take k as small as possible (k = 2 in the case of finite

activity jumps, and k = 3 otherwise). On the other hand, the choice of

un in the truncated realized volatility or the truncated bipower variation,

as discussed in Subsection 6.2.2, is never a totally trivial matter.

When it comes to the associated CLT, we first observe that all methods

give us the same convergence rate 1/
√
∆n, so they can be compared

in terms of the assumptions they need, or in terms of the asymptotic

variance they provide:

1. About the required assumptions : The multipower method requires

(P) and (K-2/3) if we take k = 3, and stronger assumptions when

k ≥ 4. The truncated bipower method requires (P) and (K-1). The

truncated realized volatility requires (H-r) for some r < 1. Now,

although formally (K-r) is much stronger than (H-r), for usual mod-

els these two assumptions are basically the same. So in practice the

multipower method is significantly more restrictive than the other

two, which are quite analogous: (P) plus (K-1) is more restrictive

than (H-1), but this has little practical importance; conversely (H-

r) for some r < 1 is more restrictive than (H-1), but since r can be

arbitrarily close to 1 the difference is practically insignificant.

2. About the asymptotic variance: The asymptotic variances in (6.25)
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and (6.37) are C(4)T , multiplied by 2 in the first case and by ϑ(k)

in the second case, and numerical values are

k 2 3 4 5 6 7 8 9

ϑ(k)/2 1.30 1.53 1.69 1.80 1.89 1.96 2.01 2.05

which measure the (quadratic) loss incurred by using the multi-

power or truncated bipower (with then k = 2 above), versus the

truncated realized volatility. One may indeed show that the ratio

ϑ(k)/2 increases with k, the limit at infinity being π2/4 ∼ 2.465.

Therefore, from the standpoint of asymptotic estimation variance,

the truncated realized volatility is always better than the other two

methods.

6.3 Other Methods

Although the approximate quadratic variation is, in the continuous case,

the most natural estimator of the integrated variance, a few other es-

timators have been proposed in the literature, mostly with the aim of

eliminating the influence of jumps and/or noise. Below we briefly describe

other methods, only in the one-dimensional case d = 1 and without proof.

6.3.1 Range-Based Volatility Estimators

Slightly departing from our usual observation schemes framework, we

suppose that we can observe the infimum and supremum of the path of

the process X within each interval I(n, i) = ((i− 1)∆n, i∆n], that is,

X
n
i = sup(Xt : t ∈ I(n, i)), Xn

i = inf(Xt : t ∈ I(n, i)). (6.41)

As we will comment about later, this is somewhat unrealistic in a really

high-frequency setting, but in finance it made a lot of sense when only

low-frequency observations were available; for example, some forty or

thirty years ago, prices were recorded each day, or each hour, together

with the high and low prices within the day or hour.

The range of the path within the interval I(n, i) is the difference

Rni = X
n

i −Xn
i .

When X = σW is a Brownian motion times a constant σ > 0, the

variables Rni are i.i.d. as i varies. They have a density fn explicitly known

as the sum of a series, and moments of the form

E((Rni )
p) = λp σ

p∆p/2
n ,
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where for all p ≥ 1 the numbers λp are known; for example, λ2 = 4 log 2

and λ4 = 9ζ(3), where ζ is the Riemann function.

The idea consists in taking the following estimator, at stage n:

ĈR(∆n)t =
1

λ2

∑[t/∆n]

i=1
(Rni )

2. (6.42)

Then as soon as X is a continuous Itô semimartingale, we have consis-

tency, that is, ĈR(∆n)t converges in probability to Ct. Moreover, under

(HC) plus the continuity of the two processes bt and σt, we have the

following stable convergence in law, as ∆n → 0.

1√
∆n

(ĈR(∆n)− C)
L−s
=⇒

√
λ4 − (λ2)2

2λ22
W , (6.43)

where W has the same description as in Theorem 6.1, in the case d = 1.

This is the same as in (6.5), but with a different variance. At this stage,

one can standardize and get a convergence similar to (6.11) and construct

confidence intervals as in (6.12) and (6.13). In the standardization pro-

cedure, for estimating the variable C(4)t one can use 1
3∆n

B(4,∆n)t, or

(perhaps more appropriately here) the variables

1

λ4 ∆n

∑[t/∆n]

i=1
(Rni )

4,

which also converge in probability to C(4)t.

Remark 6.21. It is interesting to observe that the rate of convergence

is the same 1/
√
∆n for both Ĉ(∆n)t and ĈR(∆n)t, but the constant in

front of W is not 1 for the latter, but approximately 1/
√
5, implying that

the estimation error for ĈR(∆n)t is approximately 1/
√
5 the estimation

error for Ĉ(∆n)t.

However, the comparison, which rather strongly favors ĈR(∆n)t, is

not really fair: the observation schemes for the two estimators are indeed

quite different.

6.3.2 Range-Based Estimators in a Genuine High-

Frequency Setting

In a genuine high-frequency setting we observe the values Xi∆n , but not

the highs and lows (6.41). So instead of the true range Rni one has to

rely on the following proxies, where m ≥ 2 is some given integer:

R(m)ni = sup(X(i+j)∆n
: j = 0, . . . ,m)

− inf(X(i+j)∆n
: j = 1, . . . ,m).

(6.44)
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Then, instead of (6.42), we have two possible versions for the estimators:

ĈR1(m,∆n)t =
1

λm,2

∑[t/∆n]−m
i=1

(R(m)ni )
2,

ĈR2(m,∆n)t =
m

λm,2

∑[t/m∆n]−1

j=0
(R(m)njm)2,

where λm,2 is the expected valued of (R(m)n1 )
2 when ∆n = 1 and when

X = W is a Brownian motion in (6.44). The first estimator uses the

R(m)ni ’s on overlapping intervals, the second one does not. Then for any

given m we have consistency, and also asymptotic mixed normality, as in

(6.43), and under the same assumptions.

However, the asymptotic conditional variance of either one of the two

estimators above is bigger than the asymptotic variance of Ĉ(∆n)t; this

follows from Remark 6.2 for many submodels, including the toy model

Xt = σWt and the “Markov type” model described in that remark; but

in fact it always holds.

6.3.3 Nearest Neighbor Truncation

Another method, well suited to high-frequency observations when X has

jumps, has recently been introduced. It uses ideas in between multipowers

and range-based estimators. Namely, one considers the two estimators

ĈMin(∆n)t =
π
π−2

[t/∆n]−1∑
i=1

min(
(
∆n
i X)2, (∆n

i+1X)2
)

ĈMed(∆n)t =
π

6−4
√
3+π

[t/∆n]−2∑
i=1

med
(
(∆n

i X)2, (∆n
i+1X)2, (∆n

i+2X)2
)
,

where “med(x, y, z)” stands for the number among the three values x, y, z

which is between the other two values. The constants in front of the

sums are chosen in such a way that these estimators are consistent: both

ĈMin(∆n)t and Ĉ
Med(∆n)t converge in probability to Ct. Moreover, un-

der (K-0) (which implies that the jumps of X have finite activity), we

have the following stable convergence in law, as ∆n → 0:

1√
∆n

(ĈMin(∆n)− C)
L−s
=⇒ √

αMinW
1√
∆n

(ĈMed(∆n)− C)
L−s
=⇒ √

αMedW ,

where W is as in (6.5) and αMin and αMed are appropriate constants,

approximately equal to 1.9 and 1.48, respectively. So the asymptotic

estimation variances of these two estimators are bigger than the same

for the truncated estimators Ĉ(∆n, un), by these factors 1.9 and 1.48,
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and also slightly bigger than the asymptotic variance for the bipower

variation, which here can be used because jumps have finite activity. And

of course, at this point, one can standardize the statistics and construct

confidence intervals as in (6.12) and (6.13).

Therefore, although performing slightly worse than the other methods,

the loss in precision is rather small and this method has still reasonable

performances. It remains to extend it to infinite activity (for the jumps

of X) case, and check whether, if this works out, it does even without the

restriction of finite variation of the jumps, which is the main drawback

of the truncated and multipowers estimators.

6.3.4 Fourier-Based Estimators

There is still another method, which follows a radically different route. It

is based on Fourier transform, or rather, on Fourier series. This method

fundamentally supposes that X is continuous, so below we assume (HC).

The method goes as follows. Since it uses Fourier series, the notation

would be easier with the terminal time T = 2π, a convention which is

often used in the literature on the subject. However, in order to stay

in line with our general setting, we let T > 0 be arbitrary here. Below,

i =
√
−1 and so we refrain from using i as an index.

There is some arbitrariness in the definition of the Fourier coefficients

and for us, for any relative integer k ∈ Z, the kth Fourier coefficient of

the function t 7→ clmt on [0, T ] is

Fk(clm) =
1

2π

∫ T

0
e−2iπkt/T clmt dt.

At stage n, it will be estimated by F̂k(n,Nn; clm) for a suitable sequence

Nn of integers going to infinity, and where for any integer N one puts

F̂k(n,N ; clm) = 1
2N+1

N∑
r=−N

an,l−r a
n,m
r+k,

with an,lr = 1√
2π

[T/∆n]∑
j=1

e−2iπrj∆n/T ∆n
jX

l.

(6.45)

The rationale behind this is as follows: suppose that ct is non-random

and continuous, and thatX has no drift (recall also that it is continuous).

Then, because E(∆n
jX

l∆n
j′X) is approximately clmj∆n

∆n when j′ = j and

vanishes otherwise, the expectation α(r, k)lmn = E(an,l−r a
n,m
r+k) is easily seen

to converge to Fk(clm), and 1
2N+1

∑N
r=−N α(r, k)

lm
n converges to a quan-

tity α(k)lmn as N → ∞, which is close to Fk(clm) when n is big. Of course
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when r varies the variables an,l−r a
n,m
r+k are not independent but they sat-

isfy a kind of Law of Large Numbers: for any given n, F̂k(n,N ; clm) itself

converges to α(k)lmn as N → ∞. So, not surprisingly, if we appropriately

choose the sequence Nn, we have the consistency

F̂k(n,Nn; clm)
P−→ Fk(clm). (6.46)

When ct is random, and in presence of a drift term, the argument is more

complicated, but in any case the consistency still holds under (HC) and

the continuity of the process ct, provided Nn → ∞.

We also have a CLT, under the additional assumption that the pro-

cess σt admits a Malliavin derivative with suitable moment bounds (we

leave aside the – rather complicated and technical – formulation of the

precise assumptions, which can be found in the literature). Then, if Nn is

chosen such that T/Nn∆n converges to a limit a ∈ (0,∞), the sequence
1√
∆n

(F̂k(n,Nn; clm)− Fk(clm)) converges stably in law to a limit which

is, as usual, conditionally on F a centered Gaussian variable with condi-

tional variance u(a, k)V lm,lmT , with V lm,lmT given by (6.6) and with u(a, k)

depending on k and a only.

At this point, and coming back to integrated volatility, it remains to

observe that ClmT = 2πF0(c
lm). This leads us to define

ĈFourier(n,Nn)
lm
T = 2π F̂0(n,Nn; c

lm) (6.47)

as an estimator for ClmT (note that the complex conjugate of an,lr is an,l−r,

so the above quantity is necessarily real, and nonnegative when further

l = m).

Under the same assumptions as above, we then obtain

1√
∆n

(
ĈFourier(n,Nn)

lm
T − ClmT

) L−s−→ α(a)W lm
T , (6.48)

where the process W lm is as in Theorem 6.1, and α(a) is a number,

necessarily bigger than or equal to 1, and depending only on the limit a

of T/Nn∆n again.

Remark 6.22. So far, only the CLT for estimating each ClmT separately

is known, although a joint CLT is presumably true as well. Note also that

a functional (in time) CLT in this setting is totally out of the question,

since the estimators depend in a very special way on the terminal time

T , and cannot really be compared one with the others when T varies.

Remark 6.23. We always have α(a) ≥ 1, and α(a) = 1 if and only if a

is an integer. So if one chooses Nn = [T/2∆n] for example (the so-called
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Nyquist frequency), the Fourier-based estimators achieve asymptotic ef-

ficiency for estimating ClmT , in the same sense as Ĉ(∆n)
lm does.

We end the subsection with a few concluding comments. Even if we

take Nn as in the previous remark, we still have to impose conditions on

X , and especially on σ, which are significantly stronger than in Theorem

6.1. Moreover the results break down if X is discontinuous, and there is

no obvious way to eliminate the jumps with the Fourier-based method.

Since the realized volatility estimator Ĉ(∆n)
lm is also quite simpler to

implement than 2π F̂0(n,Nn; c
lm), the latter does not seem to really be

competitive for estimating integrated volatility and co-volatility, in the

setting of this chapter.

However, we will see later that the Fourier-based estimators still work

when there is microstructure noise, and when the observations are irreg-

ularly spaced, and even non-synchronous for different components. They

also relatively easily provide estimators of the spot volatility, or more

precisely of the whole function t 7→ ct over [0, T ], by Fourier inversion.

These questions will be examined in the next three chapters.

6.4 Finite Sample Refinements for

Volatility Estimators

As we saw, asymptotic theory predicts that the estimation error for the

volatility estimators considered above should be asymptotically mixed

normal, whereas the Studentized versions are asymptotically standard

normal. However, the simulation evidence suggests that the error distri-

butions of various realized volatility type estimators can be far from nor-

mal, for small samples and even for fairly large sample sizes. In particular,

they are skewed and heavy-tailed. This non-normality of the estimation

error (not to be confused with the non-normality of the estimator itself,

which is the rule when stochastic volatility shows up) has an unfortunate

and often very significant effect on the confidence interval one may derive

for Ct.

Two methods are heavily used in classical statistics for coping with

the non-normality for small samples, both being based upon Edgeworth

expansion. The general setting is as follows: we have estimators θ̂n for a

given one-dimensional parameter θ, such that the estimation error Sn =

wn(θ̂n − θ), normalized by some sequence wn → ∞, converges in law

to an N (0, V ) variable, for some variance V > 0. The aim is to find

confidence intervals for θ, with asymptotic level α. Suppose also that we
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have consistent estimators V̂n for V . If Φ is the distribution function of

N (0, 1), the confidence intervals

In =
[
θ̂n − zα

wn

√
V̂n, θ̂n +

zα
wn

√
V̂n
]
, where 1− Φ(zα) =

α

2
(6.49)

solve the problem (as we have seen before, see (6.12) and (6.13) for

example). The actual level of this confidence interval at stage n is

αn := P(θ /∈ In), which goes to α as n → ∞. However, for relatively

small values of n, αn may be quite different from α, for two reasons: one

is that we replace the (usually) unknown V by V̂n, the second is that the

law of Sn is not exactly centered normal.

Now, “under appropriate assumptions” (see below), the ith-cumulant

(defined on page 19) of Sn is typically of order of magnitude Cumi(Sn) =

O(1/wi−2
n ) for i ≥ 3, whereas Var(Sn) → V and E(Sn) → 0, and we have

an expansion for the distribution function Φn of Sn which, given at first

and second orders only, is written as

Φn(x) = Φ̃n
(
x−E(Sn)√
Var(Sn)

)(
1 + O(1/w2

n)
)

= Φ̃′
n

(
x−E(Sn)√
Var(Sn)

)(
1 + O(1/w3

n)
)
,

(6.50)

where

Φ̃n(x) = Φ(x)
(
1− Cum3(Sn)

6Var(Sn)3/2
(x2 − 1)

)
,

Φ̃′
n(x) = Φ̃n(x)− Φ(x)

(
Cum4(Sn)
24Var(Sn)2

(x3 + 3x)

+ Cum3(Sn)
2

72Var(Sn)3
(x5 − 10x3 + 15x)

) (6.51)

(those are Edgeworth expansions). Taking this into account, one can mod-

ify the confidence interval to get an actual level αn which is closer to the

nominal α, in two different ways:

1. Assuming E(Sn) and Var(Sn) and Cum3(Sn) known, one replaces

(6.49) by

I ′
n =

[
θ̂n − z−n,α

√
Var(Sn)+E(Sn)

wn
, θ̂n +

z+n,α

√
Var(Sn)−E(Sn)

wn

]

where 1− Φ̃n(z
−
n,α) = Φ̃n(−z+n,α) = α/2.

(6.52)

The actual level at stage n becomes α+ O(1/wn), much closer to α

than previously, and would become α+ O(1/w
3/2
n ) if Φ̃′

n were used

instead of Φ̃n (and higher order Edgeworth expansions would lead

to actual levels being arbitrarily close to the nominal one).
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In practice the moments of Sn are not exactly known, and have

to be replaced by estimators, which typically converge at the rate

wn again, so another error of order of magnitude 1/wn should be

added, although this additional error is often much smaller than

the one occurring if we use In instead of I ′
n. So in practice the first

order correction is advisable, the second or higher order ones are

probably useless.

We should also mention that in some special cases, such as estima-

tion of the mean for an i.i.d. sample, and if one uses the empirical

variance to estimate Var(Sn), then another expansion (with differ-

ent polynomials in (6.50)) is available and gives us an error which

is O(1/wn).

2. One uses the bootstrap (resampling) method, see for example Hall

(1992). We do not explain this method in detail, but it results in

the same improvement for confidence intervals as the first order

Edgeworth expansion does (and is indeed mathematically based

on this expansion). As a rule, it seems that the bootstrap works

generally better in practice than the Edgeworth correction, at least

in the classical setting of i.i.d. observations.

Of course, we need to say a few words about the “appropriate condi-

tions” under which the expansion (6.50) is valid, and this is where things

start deteriorating if we want to apply them to our problem of estimating

integrated volatility.

Initially, the validity of the Edgeworth expansion and of the boot-

strap were proved for the empirical mean of n i.i.d. variables, and the

existence of a fourth moment is enough to imply the result: here θ is the

mean, and wn =
√
n. It also holds under some weak dependence assump-

tion, and versions can be found for non-i.i.d. (but independent or weakly

dependent) variables, for both Edgeworth expansion and the bootstrap

(one speaks of “wild bootstrap” in this case). So how does this apply to

estimation of integrated volatility?

We start with the toy model X = σW and c = σ2 > 0 is a constant.

In this case, Ĉ(∆n)T is ∆n[t/∆n] = T (1+ O(∆n)) times the average

of the [T/∆n] variables |∆n
i X |2/∆n, which are i.i.d. with the same law

as the square of an N0, c) variable. Therefore what precedes applies to

Sn = (Ĉ(∆n)T−CT )/
√
∆n, and the Edgeworth expansion is still valid for

the Studentized version, if we take the empirical variance as the estimator

for the variance.
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Next, suppose that Xt =
∫ t
0 σs dWs, with σt being time-varying but

non-random. The variables |∆n
i X |2/∆n are still independent, but the

ith variable has the law of the square of an N (0, cni ) variable, where

cni = 1
∆n

∫ i∆n

(i−1)∆n
cs ds, and for any integer j ≥ 2 we set

C(j)nT = ∆n

[T/∆n]∑

i=1

(cni )
j/2,

so C(j)nT → C(j)T , with the notation (6.7). Under some regularity con-

ditions on c (unfortunately never given explicitly in the literature, except

for the case c is Lipschitz, or piecewise constant), what precedes applies,

with Sn = (Ĉ(∆n)T − CT )/
√
∆n. A simple calculation gives us

E(Sn) = 0, Var(Sn) = 2C(4)nT ,

Cum3(Sn) = 8
√
∆n C(6)

n
T , Cum4(Sn) = 48∆nC(8)T .

The first order approximation in (6.50), for instance, takes the form

Φn(x) = Φ̃n
( x√

2C(4)nT

)
(1 + O(∆n)),

Φ̃n(x) = Φ(x)
(
1−

√
2∆n C(6)

n
T

3(C(4)nT )
3/2

(x2 − 1)
)
.

Then of course one has to plug in estimators for C(j)nT , such as

Ĉ(j,∆n)T = mj∆
1−j/2
n B(j,∆n)T . In other words, we use the follow-

ing approximation for Φn:

Φ̂n(x) = Φ
( x√

2Ĉ(4,∆n)T

)
(6.53)

×
(
1−

√
2∆n Ĉ(6,∆n)T

3(Ĉ(4,∆n)T )3/2

( x2

2C(4)nT
− 1
))
.

A version of the confidence interval similar with (6.52) (with different

notation, though) is as follows:

I ′′
n =

[
Ĉ(∆n)T − z′−n,α

√
∆n, Ĉ(∆n)T + z′+n,α

√
∆n

]
,

where 1− Φ̂n(z
′−
n,α) = Φ̂n(−z′+n,α) = α

2 .
(6.54)

Alternatively, we can use the bootstrap or the wild bootstrap method.

Remark 6.24. The difference Φ̂n(x)−Φn(x) is still of order
√
∆n, be-

cause Ĉ(4,∆n)t−C(4)nt = OP (
√
∆n). However, the difference Φ̂n(z

′−
n,α)−

Φn(z
′−
n,α) is of order α

√
∆n, much smaller because α is typically small.
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So using (6.54) instead of (6.12) significantly improves things, in the

sense that the actual level of the new confidence interval is much closer

to the nominal α than the level of the previous confidence interval.

For that matter, the bootstrap is a priori much better, since the ac-

curacy becomes of order ∆n because no estimation of the cumulants is

involved.

On the other hand, the triples (Ĉ(j,∆n)T , j = 2, 4, 6) enjoy a joint

CLT, as n → ∞, so it is in principle possible to find an Edgeworth ex-

pansion for the joint laws of these (centered and normalized) estimators,

which translates into an expansion for Φn which is different from (6.53)

and accurate at order ∆n, and which involves no unknown parameter.

Now, what happens in the case of a stochastic volatility ? We restrict

our attention to the one-dimensional case of (6.3), and there are basically

two situations:

1. The process σt and the driving Brownian motion are independent

(the “non-leverage” case). According to the discussion of Subsec-

tion 3.1.3, we can consider a regular version Q(ω, ·) of the condi-

tional probability P(. | G), where G is the σ-field generated by the

process σT , and we know that the variables Sn defined just above

converge in law to N (0, 2C(4)T ) under Q(ω, ·) (at least for almost

all ω).

Then of course, as soon as the paths of σt are nice enough, one

can use the confidence interval (6.54) or the bootstrap, exactly as

before. A standing problem is the precise smoothness conditions

on the paths of ct for the validity of Edgeworth expansion or boot-

strap: here, typically, the paths of ct would be Hölder with any

index smaller than 1
2 , and the validity of the previous methods has

so far not been mathematically established. However, it is likely

that these two methods actually improve the determination of the

confidence intervals, upon the plain interval given by (6.12), even

in that case.

2. The process σt and the driving Brownian motion are dependent.

Going back to the arguments in Subsection 3.1.4 now, we observe

that Sn does not converge in law to N (0, 2C(4)T ) under the condi-

tional distributions Q(ω, ·). In this case the validity of an Edgeworth

expansion, hence of a bootstrap procedure as well, is rather ques-

tionable, although possibly true. But in any case, this is obviously

a topic of further (interesting) inquiries.
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6.5 References

Historically speaking, the convergence of the realized volatility toward

the integrated volatility is almost as old as stochastic integrals are, and is

the cornerstone of the “integration by parts” (or Itô’s) formula. The most

general statement (Theorem 1.14) goes back to Doléans (1969) for arbi-

trary martingales and Meyer (1976) for semimartingales, and the CLT

for Itô semimartingales is in Jacod and Protter (1998). But for specific

submodels, and especially parametric diffusion models, these facts are sig-

nificantly older with many authors having contributed. On the economet-

rics side, these facts have been used only relatively recently, mainly since

high-frequency data became available. The realized volatility estimator

of Section 6.1 has been used in finance (see French et al. (1987)) and

popularized in econometrics by Andersen and Bollerslev (1998), Corsi

et al. (2001), Andersen et al. (2001, 2003), Barndorff-Nielsen and Shep-

hard (2002), Gençay et al. (2002), Meddahi (2002), see also the survey

Andersen and Benzoni (2009). Before that, other estimators based for

instance on the range of the process between two successive observa-

tion times, for example the high and low daily prices, were widely used

and performed much better under the model assumptions than the re-

alized volatility computed on the basis of daily returns; see for example

Parkinson (1980), Garman and Klass (1980), Rogers and Satchell (1991),

Ball and Torous (1984), Andersen and Bollerslev (1998) or Gallant et al.

(1999) or Christensen and Podolskij (2007). Of course, the number of ob-

servations in this case is quite small, whereas with high-frequency data

one often has from 1,000 to 10,000 times more observations.

When there are jumps, the truncated estimators were introduced by

Mancini (2001), see also Mancini (2004, 2009). The corresponding CLT

and Proposition 6.12 come from Jacod (2008). The multipower varia-

tions were introduced in Barndorff-Nielsen and Shephard (2004), and

developed in many subsequent papers, see for example Barndorff-Nielsen

and Shephard (2006) and Barndorff-Nielsen et al. (2006). The truncated

bipower variations have been studied by Vetter (2010), who also proves

the results stated in Remark 6.20. Practical ways for evaluating the trun-

cation level may be found in Shimizu (2010), and an optimal choice is

given in Figueroa-López and Nisen (2013) for Lévy processes.

As said above, estimators based on the range have been used before

high-frequency methods and data prevailed. The law of the range for the

Brownian motion is much older, and due to Feller (1951). The method of

Section 6.3.3 is due to Andersen et al. (2012). Fourier-basedmethods were
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introduced by Malliavin and Mancino (2002), and the CLTs mentioned

above come from Malliavin and Mancino (2009) and Clément and Gloter

(2011). See also Cuchiero and Teichmann (2013) for recent developments

which allow one to use this method when there are jumps (under (K-r)

for some r < 1 for the CLT).

Gonçalves and Meddahi (2009) developed an Edgeworth expansion

for the RV estimator. Their expansion applies to the Studentized statis-

tic based on the standard RV estimator and it is used for assessing the

accuracy of the bootstrap in comparison to the first order asymptotic

approach; see also Dovonon et al. (2013). Edgeworth expansions for re-

alized volatility are also developed by Lieberman and Phillips (2008) for

inference in the case of long memory.

Corsi (2009) proposed a model where volatility components over dif-

ferent time periods are added together, leading to an autoregressive form

for the realized volatility.



Chapter 7

Volatility and

Microstructure Noise

In the previous chapter it is assumed that the observations are perfect, in

the sense that the valueXi∆n of the process of interest at any observation

time i∆n is observed without error. However, if Xt represents the value

at time t of some physical parameter, it is typically observed with a

measurement error, which is often assumed to be a “white noise.” In

finance, as discussed in Chapter 2, things are more complicated, and we

can consider at least three types of error, or “noise,” in asserting the

value of, for example, a log-price Xt at some observation time t.

First, there might be factual errors in recording prices; such errors are

reasonably well modeled by using a white noise (not Gaussian, though:

most prices are recorded without transcription error, so this type of noise

has a high probability of being 0). In any case, these errors are probably

relatively easy to eliminate by “cleaning” the data, at the expense of a

few missing observations.

Second, there is a rounding error: this type of error occurs in every

measurement of any kind, but in physical or biological sciences it is usu-

ally small – often negligible – compared to the order of magnitude of the

phenomenon which is observed. This is clearly not the case in finance,

where prices of an order of magnitude of a few dollars are recorded (and

transactions are executed) up to the nearest cent. This results in prices

which are often unchanged for a few consecutive observations, a prop-

erty which is not compatible with a semimartingale model with a non-

degenerate Brownian part. In other words, the rounding error is a factor

209
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which has to be taken into consideration, except perhaps in the case of

exchange rates (for which many decimal points are given) or indices.

Third, the common paradigm of mathematical finance is that the price

is a continuous-time process, and a semimartingale because of the con-

straint of no arbitrage. However, this is an idealization, since the very

existence of a price which would stand per se, even in the absence of trans-

actions, is obviously questionable. Since prices are indeed established by

the transactions themselves, in between transactions nothing exists, and

a continuous-time model really makes sense only as a kind of scaling limit,

as transactions become more and more frequent, or as the frequency of

observations decreases. The microeconomic mechanism which describes

transactions or quotes is called microstructure; the scaling limit as time

stretches out is the efficient price; in between, at high frequency (but not

as high as tick-by-tick data), one can consider that the efficient price is

polluted by the so-called microstructure noise, which is a combination of

the difference between the microstructure and its scaling limit, plus the

other errors (factual errors, rounding) mentioned before.

As should be clear from the previous discussion, the impact of mi-

crostructure noise depends in an essential way upon the frequency of ob-

servations. It is considered as negligible, for a typical fairly liquid stock,

when the inter-observations time is more than five minutes, or sometimes

one minute. It certainly is not so when the inter-observations time is of

the order of one, or a few, seconds. This can be seen in a signature plot :

if one lets ∆n go to 0, the realized volatility Ĉ(∆n)T of (6.4) at the

terminal time T should converge to the integrated volatility when X is

continuous, and more generally to the quadratic variation [X,X, ]T when

X is an arbitrary semimartingale. However, this is often not the case in

practice, where Ĉ(∆n)T seems to diverge, increasing when ∆n decreases,

as can be seen in Figure 6.1.

The literature on microstructure noise, and ways to circumvent it,

is rather large, but typically focused on specific aspects of the noise,

or specific assumptions about it, none of them being overwhelmingly

convincing: so far, to our knowledge, there is no comprehensive approach

of microstructure noise.

In this chapter, our approach will thus also be quite partial, and

fundamentally phenomenological, in contrast with a microeconomical

approach. That is, we assume the existence of an underlying (non-

observable) efficient price, and what is called noise below is by definition

the difference between the observed price and the efficient price. Hence-
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forth, it certainly does not apply to tick-by-tick data, even if these were

regularly spaced in time (which they are not).

In the whole chapter, with the exception of Section 7.9 in which we

briefly indicate how the results extend to the multivariate case, the un-

derlying process X is one-dimensional. We also suppose that it is a con-

tinuous Itô semimartingale:

Xt = X0 +

∫ t

0
bs ds+

∫ t

0
σs dWs (7.1)

and make a variety of assumptions, according to the case, but in all cases

we assume at least (HC).

7.1 Models of Microstructure Noise

As said before, the underlying “efficient” (log-) price process X is one-

dimensional, although extending the discussion of this section to the

multivariate case would be straightforward.

The assumptions on X are the same as in the previous chapters, de-

pending on the problem at hand, but in all cases it is at least an Itô

semimartingale. For simplicity we consider regularly spaced observations,

at times i∆n for i = 0, 1, . . ., and again over a finite time interval [0, T ].

The difference with what precedes is that now we do not observe the

variables Xi∆n , but rather the variables

Y ni = Xi∆n + ǫni , (7.2)

where ǫni is the noise. The lower index i for Y ni specifies the rank of the

observation, the upper index n specifies the frequency, and in principle

there is a compatibility relationship expressed by Y n
′

i′ = Y ni whenever

i′∆n′ = i∆n.

Equation (7.2) is simply a notation, or a definition, of the noise. The

problem is now to specify the structure of the noise, and various hypothe-

ses can be considered, which we examine in turn.

7.1.1 Additive White Noise

This is by far the setting which has been studied the most in the liter-

ature. In this model, at each stage n, the variables (ǫni )i≥0 are globally

independent of the process X and of the form

ǫni = αn χi∆n (7.3)
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where (χt)t≥0 is a white noise, that is, a family of i.i.d. variables indexed

by R+. Two variants are possible:

1. The law of ǫni , which by assumption does not depend on i, does not

depend on n either (fixed noise). In this case, we naturally set

αn = 1 (7.4)

for all n. Of course, the process (χt)t≥0 is immaterial, only its val-

ues at the observation times i∆n are “physically” meaningful. How-

ever, the formulation (7.4) is quite convenient, as it automatically

ensures the compatibility mentioned above.

2. The law of ǫni depends on n and shrinks as n increases (shrinking

noise). In that case, αn satisfies, as ∆n → 0,

αn → 0. (7.5)

Note that the compatibility relationship between various frequen-

cies no longer holds;

It is customary and not a real restriction in practice to assume that

χt has finite moments of all orders (although most results only require

finite moments up to some order p, typically p = 4). Finally, one also

assumes that the noise is centered, that is,

E(χt) = 0. (7.6)

This last condition seems restrictive, but one should keep in mind that

only the variables Y ni in (7.2) are “real,” whereas one can always add a

constant A to Xi∆n and subtract the same A from ǫni without altering

this relationship. Clearly, there is no way of deciding what the value of A

might be, hence (7.6) is by no means a restriction in the additive white

noise setting.

7.1.2 Additive Colored Noise

In a second kind of setting, one retains the independence between the

noise (χni ) and the process X , as well as the zero mean property (7.6),

but relax the i.i.d. assumption as i varies. Typically we have (7.4) or

(7.5), with a noise process (χt)t≥0 which is stationary, usually enjoying

some mixing properties.

However, even under nice mixing conditions, if the observations are

bound to be in a fixed time interval [0, T ], essentially nothing can be
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done to “remove” or filter out the noise. For example χt could very well

be a (centered and mixing) semimartingale by itself, and disentangling

the two semimartingales X and χ is a radically impossible task.

In a colored noise setting it is thus more customary to consider the

situation where ǫni = χi (or ǫ
n
i = αnχi in the shrinking noise case), where

now the sequence (χi)i∈N is stationary and (properly) mixing. In this

case, disentangling the noise from the underlying is in principle possible,

although now the compatibility property between different observation

frequencies is violated.

We will not elaborate on this kind of model in this book. The literature

is only beginning on this subject, and most statistical questions remain

unanswered so far.

7.1.3 Pure Rounding Noise

Another possibility is to consider a “pure rounding noise.” This model

has the advantage that it matches the way financial data are collected:

observed prices are multipleS of a tick size, which can be $0.01, $1/32, etc.

One implication of rounding is that both observed returns and volatility

can be zero over short intervals, an outcome that has zero probability

of occurrence in any model that contains a Brownian semimartingale

component and with non-noisy observations.

In one version, we take the closest from below rounded-off value of

the price. This amounts to having a fixed level of rounding β > 0, and

observing

Y ni = β [Xi∆n/β], (7.7)

where as usual [x] stands for the integer part of x ∈ R. Then the error

ǫni is defined by (7.2). We could also take the upper rounded-off value

β([Xi∆n/β]+ 1), or the “middle” value β([Xi∆n/β]+ 1/2): this is purely

a question of convention, and the formulation (7.7) seems to be the sim-

plest one, from a notational viewpoint. Here again, a variant consists

in observing Y ni as above, with a rounding level β = βn going to 0 as

∆n → 0 (a shrinking noise again).

The rounding noise is very different from the additive noise, in many

respects. An obvious difference is that, in contrast with the additive

noise, it is not independent from X : it is even a deterministic and known

function of X . A second obvious difference is that the rounding noise is

not centered, even if one takes the “middle value” above instead of the

lower rounded-off value. A third, less obvious but quite important and
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rather unfortunate difference is the following one:

If the observations are given by (7.7), the quadratic

variation [X,X ]T and the integrated volatility CT are

not pairwise-identifiable in the sense of Definition 5.11.

(7.8)

The reason for this is as follows: suppose that we observe the whole

path t 7→ Xt on [0, T ], up to rounding. This means that we observe the

process Yt = β [Xt/β] or, equivalently, the random sets B(m) = {t ∈
[0, T ] : mβ ≤ Xt < (m + 1)β} for all relative integers m. Knowing

all these random sets does not allow us to reconstruct the path t 7→
Xt itself since we cannot say anything about its behavior when it is

between two successive levels mβ and (m+ 1)β. There is simply no way

of circumventing this problem: no consistent estimators for the integrated

volatility exist, in the case of pure rounding at a fixed level β.

On a more mathematical level, in case X is continuous, observing all

sets B(m) amounts to observing the local times Lmβt for all t ∈ [0, T ] and

m ∈ Z, so only those local times are identifiable; see (8.53) in the next

chapter for a precise definition of local times; in this chapter we only

need to know that the local time Lx at level x is an adapted continuous

increasing process which is constant on each time interval [s, t] for which

Xu 6= x for all u ∈ [s, t].

Of course, when the rounding level β = βn goes to 0 as ∆n → 0, (7.8)

becomes wrong: all quantities which are identifiable in the perfect obser-

vation case are also identifiable under pure rounding, when the rounding

level is shrinking. When βn goes fast enough to 0, we also have that all

estimators for the integrated volatility, or for any other identifiable quan-

tity, have exactly the same behavior when we plug in the “true” values

Xi∆n or the rounded-off variables Y ni : it turns out that this holds as soon

as βn/
√
∆n → 0.

When βn/
√
∆n → 0 fails, but still βn → 0, there are so far very

few concrete results, giving for example estimators for the integrated

volatility, together with a precise asymptotic behavior. In addition, most

of the available results suppose that the process X is a (continuous)

diffusion process, and the Markov property usually plays a key role in

the proofs.

Remark 7.1. Rounding affects the price itself, whereas the process X

is usually the log-price. Consequently, instead of (7.7) one should rather

consider

Y ′n
i = log

(
β′ [eXi∆n /β′]

)
, (7.9)
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where β′ is the real rounding level (=1 cent for example). However, as

long as the price eXt stays in some interval [A− a,A+ a] with a/A and

β/a “small,” the right hand sides in (7.7) and (7.9) are very close to

one another if β = β′/A. Therefore, in practice it is very often the case

that one can use the (simpler) version (7.7) instead of the (more correct)

version (7.9).

The same caveat should be made about additive noise as well: it should

contaminate the price eXt itself. If χ′
t is the additive noise contaminating

the price (in the non-shrinking case, say), instead of Y ni = Xi∆n + χi∆n

one really observes

Y ni = log
(
eXi∆n + χ′

i∆n

)
.

When the noise is small in comparison with the price, this is approx-

imately Y ni = Xi∆n + χ′
i∆n

e−Xi∆n . The “true” noise is thus χi∆n =

χ′
i∆n

e−Xi∆n , which is no longer a white noise. However, it is reasonably

close to an independent white noise within any time interval in which the

price does not vary “too much.”

7.1.4 A Mixed Case: Rounded White Noise

Now, rounding is a prevalent feature of financial data, and assuming that

the rounding level is small (that is, we are in the asymptotic regime where

βn → 0) is probably not adequate, in front of typical price time series

observed at ultra-high frequency (say, every few seconds or higher). On

the other hand, “pure” rounding, as described just above, implies that

all statistical problems studied in this book have no solutions.

It is, however, possible to consider an intermediary situation, which

combines rounding and the fact that the efficient price is only a kind

of limit of the “real price,” taken as the transaction frequency goes to

infinity. Since we are not exactly in the limiting regime, the difference

between efficient and real prices is a first kind of noise, more or less

independent of the efficient price itself; and then, on top of this, the

“real price” is rounded off. Such considerations lead us to consider a

model where the actual observations take the form

Y ni = β [(Xi∆n + χi∆n)/β], (7.10)

where as in Subsection 7.1.1 the process (χt)t≥0 is a white noise inde-

pendent of X . It is also possible to introduce some dependency between

the additive noise above and the process, by taking

Y ni = β [(Xi∆n + γi∆nχi∆n)/β],
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with χt as before and γ a (relatively) arbitrary process, adapted to the

filtration with respect to which X itself is a semimartingale.

As it turns out, if the model is (7.10) and the noise χt is such that

the support of the law of χ0 contains an interval of length at least β, the

“negative” property (7.8) fails, and all quantities which are identifiable

in the perfect observation case are also identifiable here.

Indeed, we will often consider such a “mixed” situation, the precise

assumptions being stated in Section 7.2 below.

7.1.5 Realized Volatility in the Presence of Noise

We conclude this introductory section with a brief description, without

formal proofs, of the behavior of the realized volatility Ĉ(∆n)t, when

the underlying process X is a continuous semimartingale and when one

observes the noisy version Y ni , instead of the true values Xi∆n . This

complements the sketchy discussion of Section 2.3. So, instead of (6.4),

the (non-corrected) realized volatility becomes

Ĉnoisy(∆n)t =

[t/∆n]∑

i=1

(∆n
i Y )2, where ∆n

i Y = Y ni − Y ni−1. (7.11)

We consider only the two polar cases of (1) additive noise and (2) pure

rounding, with quite restrictive assumptions on X in the latter case. On

the other hand, we examine the case where the noise size is constant (that

is, (7.4), or (7.7) with α or β constant) and the case of a shrinking noise

(with α = αn → 0 or β = βn → 0). Although a fixed size noise (especially

in the rounding case) seems more appropriate from a practical viewpoint,

it is also intuitively clear that if the noise is very small – whatever this

might mean – one can forget about it. It is thus interesting to understand

how small the noise should be, so that it does not affect the behavior of

Ĉnoisy(∆n)t.

Additive White Noise Here the noise has the structure (7.5), with

αn either being the constant 1 or going to 0. We have

Ĉnoisy(∆n)t =
[t/∆n]∑
i=1

(∆n
i X)2 + 2αn

[t/∆n]∑
i=1

∆n
i X

(
χi∆n − χ(i−1)∆n

)

− 2α2
n

[t/∆n]∑
i=1

χ(i−1)∆n
χi∆n + α2

n

[t/∆n]∑
i=1

(
(χi∆n)

2 + (χ(i−1)∆n
)2
)
.

In the right side above, the first term goes to the quadratic variation

[X,X ]t; by the white noise property of χt and (7.6), plus the Law of
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Figure 7.1: Volatility signature plot: Empirical divergence of the RV es-

timator, Ĉnoisy(∆n)t, as ∆n → 0, 30 DJIA stocks, 2007-2010, average

pattern. By averaging over time and assets, the plot focuses on the com-

mon component, namely the increasing bias of the RV estimator as the

sampling frequency increases.

Large Numbers, it is easy to check that, among the last three sums, the

last one is the leading term, unless ∆n/α
2
n → ∞; moreover, this leading

term converges, after normalization by ∆n/α
2
n, to 2tE(χ2

0) (recall that

χt has moments of all orders). In other words, we have the following

behavior:

∆n/α
2
n → 0 ⇒ ∆n

α2
n
Ĉnoisy(∆n)T

P−→ 2T E(χ2
0)

∆n/α
2
n → θ

θ ∈ (0,∞)
⇒ Ĉnoisy(∆n)T

P−→ [X,X ]T + 2 T
θ E(χ2

0)

∆n/α
2
n → ∞ ⇒ Ĉnoisy(∆n)T

P−→ [X,X ]T .

(7.12)

So the realized volatility tends to +∞, at rate 1/∆n when the noise size

is constant (αn = 1) and at a slower rate when the noise is shrinking too

slowly; it tends to the same limit as without noise when αn goes to 0 fast

enough, and there is a boundary situation for which the limit involves

both [X,X ]T and the noise.

The reader will notice that the above argument, which is easy to

straighten out in a rigorous way, works regardless of the properties of X :

it is enough that it is a semimartingale. For the second order properties
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(Central Limit Theorem), though, we need X to be an Itô semimartin-

gale, plus ∆n/α
4
n → ∞, if we want the same limit as without noise.

Figure 7.1 illustrates the corresponding divergence that is observed on

empirical data. These theoretical results are in line with the empirical

findings, and point very strongly toward the fact that noise cannot be

ignored at high or especially ultra high frequency.

Sampling Sparsely at a Lower Frequency Faced with the diver-

gence of Ĉnoisy(∆n)T , a popular strategy in empirical work consists of

sampling sparsely, that is, constructing lower frequency returns from the

available data. For example, from transactions or quotes data observed

every second, one might sample every 5 minutes, or every 10 minutes.

This involves taking a subsample of nsparse observations. With T = 1 day,

or 6.5 hours of open trading for stocks, and we start with data sampled

every ∆n = 1 second, then for the full dataset n = [T/∆n] = 23, 400 ob-

servations; but once we sample sparsely every 5 minutes, then we sample

every 300th observation, and nsparse = 78.

We assume (7.1) for X , and we want to estimate CT . The distribution

of Ĉnoisy,sparse(∆n)T −CT , to first approximation, is given by (χ denotes

a generic noise variable)

Ĉnoisy,sparse(∆n)T − CT
L≈ 2nsparseE(χ

2)︸ ︷︷ ︸
bias due to noise

(7.13)

+
(
4nsparseE(χ

4)︸ ︷︷ ︸
due to noise

+
2t

nsparse
C(4)T

︸ ︷︷ ︸
due to discretization︸ ︷︷ ︸

)1/2

total variance

U

where U is a standard normal random variable independent of X . The

term due to discretization is of course the same term that was already

present in the analysis of the basic estimator Ĉ(∆n)T in the absence of

noise, in Section 6.1.1, and upon replacing ∆n by t/nsparse.

So there is potential for using Ĉnoisy
sparse(∆n)T to estimate CT . There is

a bias 2nsparseE(χ
2), but it goes down if one uses fewer observations. But

one should avoid sampling too sparsely, since (7.13) shows that decreas-

ing nsparse has the effect of increasing the variance of the estimator via

the discretization effect which is proportional to 1/nsparse. The tradeoff

between sampling too often and sampling too rarely can be formalized,

and an optimal frequency at which to sample sparsely can be determined.
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It is natural to minimize the mean squared error of Ĉnoisy,sparse(∆n)T ,

MSE = (2nsparse E(χ2))2 +
(
4nsparse E(χ4) +

2T

nsparse
E(C(4)T )

)

over nsparse , leading to

8nsparse

(
E(χ2)

)2
+ 4E(χ4)− 2T

n2
sparse

E(C(4)T ) ≈ 0.

The optimum n∗
sparse is approximately

n∗
sparse ≃

(
E(χ2)

)−2/3
(T
4

E(C(4)T )
)1/3

provided that E(χ4)/(E(χ2))2 is not too large. Of course such a choice of

n∗
sparse is not really feasible in practice because E(χ2) and E(C(4)T ) are

unknown, but they can be roughly pre-estimated. Not surprisingly, one

should sample more frequently when the noise is small (smaller E(χ2)),

and when the signal itself is stronger (larger C(4)T ). Of course, some

bias remains. The estimator Ĉnoisy,sparse(∆n)T can be reasonable only if

n∗
sparse E(χ2) is small.

Pure Rounding Noise Next, we suppose that the noise has the

structure (7.7), with β = βn possibly depending on n. In this case the

behavior of Ĉnoisy(∆n)t is not known in general, but it is known when

the process X is a (continuous) diffusion, of the form

Xt = X0 +

∫ t

0
bs ds+

∫ t

0
σ(Xs) dWs,

where bt is a locally bounded process, and σ is a smooth enough function

on R, which never vanishes.

Suppose first that βn = β > 0 is constant. When n is large enough,

for any i ≤ [T/∆n] we have |∆n
i X | ≤ β, hence the squared difference

(Y ni − Y ni−1)
2 is either equal to 0 (when X(i−1)∆n

and Xi∆n are in the

same interval [mβ, (m+1)β)), or equal to β2 (when X(i−1)∆n
and Xi∆n

are in two – necessarily adjacent – such intervals). Thus Ĉnoisy(∆n)T is

simply β2 times the number of crossings of one of the levels mβ by the

discretized sequence (Xi∆n : 0 ≤ i ≤ [T/∆n]). The asymptotic behavior

of the number of crossings of a level x by this discretized sequence has

to do with the local time LxT at this level and time T . More specifically,

the number of crossings multiplied by
√
∆n converges in probability to

1
σ(x)

√
2/π LxT .
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On the other hand, when βn → 0, local times no longer enter the

picture, but it is still possible to obtain a limit, after normalization. The

general result goes as follows:

βn = β

β ∈ (0,∞)
⇒

√
∆nĈ

noisy(∆n)T
P−→
√

2
π

∑
m∈Z

β2

σ(mβ)L
mβ
T

∆n/β
2
n → 0

βn → 0
⇒

√
∆n

βn
Ĉnoisy(∆n)T

P−→
√

2
π

∫ T
0 σ(Xs)ds

∆n/β
2
n → θ

θ ∈ (0,∞)
⇒ Ĉnoisy(∆n)T

P−→
∫ T
0 Γ(θ, σ(Xs))ds

∆n/β
2
n → ∞ ⇒ Ĉnoisy(∆n)T

P−→ [X,X ]t =
∫ T
0 σ(Xs)

2ds,

(7.14)

where Γ is a function on [0,∞]× R which is not useful for us here, but

which satisfies Γ(∞, x) = x2 and θΓ(θ, x) → x
√
2/π as θ → 0.

Here again, when ∆n/β
2
n → 0 the realized volatility goes to ∞, al-

though with a slower rate than for an additive white noise; when βn goes

to 0 fast enough the noise has no effect, and in a boundary case the noise

introduces a bias.

To conclude, we see that, at least in the two special cases described

above, ignoring the noise by plugging the noisy observations into the

realized volatility results in consistent estimators for +∞ (instead of

[X,X ]T !) unless the noise size is shrinking at least as fast as
√
∆n. Note

also that in the non-shrinking case, no renormalization of Ĉ(∆n)T can

result in consistent estimators for [X,X ]T : in the additive white noise

case 1
∆n

Ĉnoisy(∆n)T is a consistent estimator for 2t times the variance

of the noise, in the pure rounding case, upon dividing by 1/
√
∆n we

would “estimate” a sum of local times.

7.2 Assumptions on the Noise

The underlying process X is a one-dimensional Itô semimartingale on a

filtered probability space (Ω,F , (Ft)t≥0,P), satisfying Assumption (H-2),

or (HC) in the continuous case.

As for the noise, we basically consider two different sets of assump-

tions, corresponding to the additive white noise and to an extension of

the “mixed case” described above. In both cases this involves some ad-

ditional randomness, on top of the randomness describing the evolution

of the process X and possible covariates, which is encapsulated in the

probability space (Ω,F ,P). Since in the second case we allow the noise
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to depend on X , a possible model consists in saying that the noise is

defined on an auxiliary space (Ω′,F ′) which is endowed with a tran-

sition probability Q(ω, dω′), so the pair “process+noise” is defined on

the product space Ω̃ = Ω × Ω′ and evolves according to the probability

P(dω)Q(ω, dω′); saying that the noise is independent of F amounts to

saying that Q(ω, dω′) = Q(dω′) does not depend on ω.

This formulation is somewhat complicated, as far as notation is con-

cerned, because it involves two distinct sample spaces and probabilities.

In order to simplify notation as much as we can, we rather suppose that

the noise is defined on Ω itself, although it is not measurable with respect

to the σ-field F but with respect to a bigger σ-field F ′, and the prob-

ability P is defined on F ′. Then, we need to specify the F -conditional

distribution of the noise.

We also suppose that the noise is defined at each time t, although of

course only the noise at observation times has physical existence. Finally,

both sets of assumptions below accommodate constant sized or shrinking

noise, the noise size being regulated by a sequence αn with either αn = 1

for all n (the most interesting case), or αn → 0.

To summarize, and since we only consider regular observation schemes

with mesh size ∆n below, we have a process (χt)t≥0 and the observations

Y ni and noise χni at stage n are

Y ni = Xi∆n + ǫni , ǫni = αn χi∆n , either αn ≡ 1 or αn → 0. (7.15)

It thus remains to state the assumption on the F -conditional law, of

the process (χt)t≥0. The first one describes the additive white noise, the

second one, much weaker, describes an extension of the “mixed case”

evoked in the previous section.

Assumption (WN). The process (χt)t≥0 is independent of F and is a

white noise satisfying

E(χt) = 0 and p ∈ (0,∞) ⇒ E(|χt|p) <∞.

Assumption (GN). Conditionally on F , all variables (χt : t ≥ 0) are

independent, and we have

• E(χt | F) = 0

• for all p > 0 the process E(|χt|p | F) is (Ft)-adapted
and locally bounded

• the (conditional) variance process γt = E(|χt|2 | F)

is càdlàg.

(7.16)
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We do assume moments of all order for the noise. This is mainly for

convenience, and a very slight restriction in practice. However, all results

would remain true if the pth moment or conditional moment were finite,

or locally bounded, for a suitable value of p, typically p = 4 or p bigger

than but arbitrarily close to 4.

Remark 7.2. (GN) is much weaker than (WN). It does not imply the

independence between the noise and F , or the (unconditional) indepen-

dence of the variables χt when t varies. Note also that the F-conditional

and unconditional laws of χt may very well depend on t.

Remark 7.3. The first part of (7.16) looks innocuous at first glance,

but is indeed a very strong assumption. It can trivially be replaced by

the assumption E(χt | F) = a where a is a constant (this really amounts

to replacing Xt by Xt − a), but the constant a cannot be replaced by a

process a = at(ω), and not even by a non-random function a = a(t).

An example which does not satisfy (GN) is pure rounding noise: all

requirements in (GN) are satisfied by the pure rounding noise, except

for the first part of (7.16) (even extended as specified above); indeed, we

have E(χt | F) = Xt − β[Xt/β], which certainly is not a constant.

As we will see below, there are consistent estimators for the integrated

volatility under (GN), hence the non-identifiability statement in (7.8)

fails. It means that the first part of (7.16) cannot be dispensed with, and

weakening this assumption does not seem an easy matter: one can for

example read Li and Mykland (2007) to get some deeper insight on this

question.

Remark 7.4. Suppose for example (GN). Not only do we have identifia-

bility of the integrated volatility (by exhibiting consistent estimators), but

also identifiability of the integrated conditional moments of the noise, at

least when αn does not go too fast to 0, and up to a fundamental ambi-

guity: the shrinking parameter αn is of course unknown, and multiplying

it by a constant amounts to dividing the noise χt by the same constant.

So in fact what is identifiable about the noise is the variable∫ t
0 (αn)

p γ(p)s ds (in principle, for all t and p).

Example 7.5 (Rounded White Noise). An example of a situation where

(GN) holds is the “mixed case” of the previous section, at least when the

noise is not shrinking. That is, we have a white noise independent of F ,

say (χ′
t)t≥0 (warning: the notation χt in (7.10) is χ′

t here), and the noise

in the sense of (7.15) is

χt = β[(Xt + χ′
t)/β]−Xt. (7.17)
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If χ′
t has a density which is constant over each interval [mβ, (m+ 1)β),

a simple calculation shows that E(χt | F) is equal to a constant, which

further vanishes as soon as E(χ′
t) = 1/2.

Example 7.6 (Random Allocation on a Tick Grid). Taking into account

the bid-ask spread and the grid {mβ : m ∈ Z} of all possible ticks, one

could imagine that at any given time t the agents know in which interval

[mβ, (m + 1)β) the efficient price Xt lies, and set the price at (m+ 1)β

with the (conditional) probability p(Xt) :=
1
β ((m+1)β−Xt) and at mβ

with the probability 1 − p(Xt). In other words, the observed value at a

sampling time t is β([Xt/β] + 1) with the probability p(Xt) and β[Xt/β]

with the probability 1− p(Xt).

In fact, this model coincides with the previous model, upon taking the

white noise variables χ′
t to be uniformly distributed over [0, 1].

Example 7.7 (Modulated Rounded White Noise). We still have the

form (7.17) for the noise, but now the variables χ′
t are, conditionally on

F , independent as t varies, with densities of the form

ht,ω(x) =
∑

m∈Z
ρ(m)(ω)t 1[mβ,(m+1)β)(x), (7.18)

provided each process ρ(m) is nonnegative (Ft)-adapted, with∑
m ρ(m)t = 1 and

∑
m |m|pρ(m)t locally bounded for each p > 0,

and
∑
mmρ(m)t =

1
2 .

The following comments are important:

Remark 7.8. One could argue, quite rightly, that the previous examples

are very special; many other examples of noise do satisfy (GN), even

among those having the form (7.17). On the contrary, many examples of

noise of the form (7.17) with χ′
t a white noise do not satisfy (GN).

However, when β is small and when the law of each χ′
t has a piecewise

Lipschitz-continuous density, the noise (7.17) is well approximated (in

the distributional sense) by a noise χ′′
t of the same type, with χ′′

t having

a density like in (7.18) with ρ(m) independent of (ω, t) and equal to the

probability that χt belongs to [mβ, (m + 1)β). Therefore, although the

model (7.17) with no special assumption on the law of χ′
t does not satisfy

(GN) in general, it approximately does when β is not too large.

Since, as mentioned before, it is probably impossible to forget about

the rounding effect, it seems (to us at least) that Example 7.5 is a good

substitute to an additive white noise.

Remark 7.9. Let us also stress the fact that Assumptions (WN) of

course, but (GN) as well, require some (conditional or unconditional)
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independence of the variables χt as t varies. So they rule out all “colored”

noises.

7.3 Maximum-Likelihood and Quasi

Maximum-Likelihood Estimation

7.3.1 A Toy Model: Gaussian Additive White Noise

and Brownian Motion

We start our analysis with our usual toy model. The underlying process

is a Brownian motion with unknown variance c = σ2 > 0, that is,

Xt = σWt.

The noise is also the simplest possible, namely an additive white noise

(hence (WN) holds), which further is Gaussian: each χt follows the nor-

mal distribution N (0, γ), where γ ≥ 0 is also unknown. The observa-

tions are given by (7.3), with αn = ∆η
n for some “shrinking exponent”

η ∈ [0,∞) which is assumed to be known (when η = 0 the noise is non-

shrinking, as in (7.4); when η > 0 we are in the shrinking noise case of

(7.5)).

At stage n, one has in fact the two parameters c and γn = α2
nγ. Before

starting the detailed analysis, let us mention that the computation of the

expected value of the estimator based on the observed (noisy) returns,

that is, Ĉnoisy(∆n) of (7.11), is simple:

E
(
Ĉnoisy(∆n)t

)
= (c∆n + 2γn) [t/∆n] ∼ ct+

2γn
∆n

t,

which is consistent with the results in (7.12).

If we agree to forget a tiny part of the observations, that is, if we only

take into account the observed (noisy) log-returns ∆n
i Y defined in (7.11),

we are on known grounds: when αn = γn = 0 these variables are i.i.d.

with law N (0, c∆n), and otherwise the sequence (∆n
i Y )i≥1 is a moving

average of order 1, or MA(1), time series of the form ∆n
i Y = Zi−vnZi−1,

where (Zi) is a Gaussian white noise with variance v′n, and where




vn =
2γn+c∆n−

√
4c∆nγn+c2∆2

n

2γn
,

v′n = γn
vn

=
2γn+c∆n+

√
4c∆nγn+c2∆2

n

2

(7.19)

(note that 0 < vn < 1). Equivalently,
{
v′n(1 + v2n) = Var (∆n

i Y ) = c∆n + 2γn,

−v′nvn = Cov(∆n
i Y,∆

n
i−1Y ) = −γn.

(7.20)
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Under this model, the log-likelihood function for the n = [T/∆n] ob-

servations (∆n
i Y )i=1,...,n is given by

ln(vn, v
′
n) = −1

2
log det(Vn)−

n

2
log(2πv′n)−

1

2v′n
R′
nV

−1
n Rn, (7.21)

where the covariance matrix for the vectorRn = (∆n
1Y, ...,∆

n
nY )′ is v′nVn,

where

Vn =




1 + v2n −vn 0 · · · 0

−vn 1 + v2n −vn
. . .

...

0 −vn 1 + v2n
. . . 0

...
. . .

. . .
. . . −vn

0 · · · 0 −vn 1 + v2n




(7.22)

and det(Vn) = (1 − v2n+2
n )/(1 − v2n). The log-likelihood function can

be expressed in a computationally efficient form by triangularizing the

matrix Vn, yielding an equivalent expression that no longer requires any

matrix inversion:

ln(vn, v
′
n) = − 1

2

∑[T/∆n]
i=1

(
log(2π dni ) +

(Zn
i )2

dni

)
,

where dni = v′n
1−v2i+2

n

1−v2in
,

Zn1 = ∆n
1Y and i ≥ 2 ⇒ Zni = ∆n

i Y + vn
1−v2i−2

n

1−v2in
Zni−1.

(7.23)

The corresponding Fisher information matrix for the two parameters

vn and v′n is

I(vn, v
′
n)n,t =




n
1−v2n

− 1+3v2n
(1−v2n)2

+ an
vn
v′n

(
1

1−v2n
− a′n

)

vn
v′n

(
1

1−v2n
− a′n

)
n

2v′2n




where (implicitly, all this notation depends on T , through the value of

n) 



an =
v2wn
n

(1−v2+2wn
n )2

(
2n2 + n

3−v2n+v2+2n
n −v4+2n

n

1−v2n
+

1−v4n+2v2+2n
n −4v4+2n

n +3v6+2n
n

(1−v2n)2
)

a′n =
(1+n)v2nn
1−v2+2n

n
.

This holds when αn > 0, whereas in the case αn = 0 the natural

reparametrization is v′n = c∆n and vn = 0, instead of (7.19). The one-

dimensional Fisher’s information becomes I(0, v′n)n.t = n/
(
2v′2n

)
, as al-

ready seen in (5.18) for example.
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The parameters of interest are c (or CT = cT ) and γ and not vn and

v′n. By a change of variables, one may express Fisher’s information matrix

I(c, γ)n =

(
I(c, γ)ccn I(c, γ)cγn
I(c, γ)cγn I(c, γ)γγn

)

in terms of (c, γ). The exact expression is somewhat complicated, but

results in simple asymptotic as ∆n → 0, namely:

η < 1
2 ⇒





I(c, γ)ccn ∼ T

8∆
1/2+η
n

√
γc3

, I(c, γ)γγn ∼ T
2γ2∆n

I(c, γ)cγn ∼ T

8∆
1/2+η
n

√
γ3c

η = 1
2 ⇒

{
I(c, γ)ccn ∼ TA(c,γ)cc

∆n
, I(c, γ)γγn ∼ TA(c,γ)γγ

∆n

I(c, γ)cγn ∼ TA(c,γ)cγ

∆n

η > 1
2 ⇒

{
I(c, γ)ccn ∼ T

2c2∆n
, I(c, γ)γγn ∼ 24T

c2∆3−4η
n

I(c, γ)cγn ∼ 2T
c2∆2−2η

n

(7.24)

for some 2×2 matrix A(c, γ) which we do not need to specify here. More-

over, it can be shown that the LAN property holds for the parameter c

always, and for the parameter γ when η ≤ 1/2. Henceforth, the asymp-

totic behavior of Fisher’s information gives us exactly the characteristics

(rate and asymptotic variance) of efficient estimators.

These facts have fundamental consequences about asymptotic estima-

tion:

1. The case of asymptotically negligible noise: This corresponds to

taking η > 1/2.

(a) First, in the limit where there is no noise at all (this corre-

sponds to formally taking η = ∞), only the entry I(c, γ)ccn
of the information matrix makes sense, and it is equal to

T/
(
2c2∆n

)
(no approximation is involved in this case).

(b) Second, if 1/2 < η < ∞, (7.24) tells us that the noise has no

influence on the asymptotic rate 1/
√
∆n and the asymptotic

(normalized) variance 2c2/T of efficient estimators for c. And

it turns out that (1/T )
∑[T/∆n]
i=1 (∆n

i Y )2 is such an efficient

estimator, exactly as if there were no noise.

(c) Third, concerning the estimation of γ, (7.24) also tells us that

one cannot hope for consistent estimators when η ≥ 3/4,

whereas if η ∈ (1/2, 3/4) efficient estimators will converge with

the rate 1/∆
3/2−2η
n , with an asymptotic variance c2/24.
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2. The case η = 1/2: In this limiting case, both c and γ can efficiently

be estimated with the rate 1/
√
∆n and respective asymptotic vari-

ances given by the diagonal entries of the inverse of the matrix

A(c, γ).

3. The case of large noise: This correspond to η ∈
[
0, 1/2

)
. In this

case, efficient estimators for c converge with the rate 1/∆
1/4+η/2
n

(and thus 1/∆
1/4
n when the noise is not shrinking, η = 0), and the

asymptotic variance is 8
√
γc3/T .

By contrast, efficient estimators for γ always converge with the rate

1/
√
∆n, with asymptotic variance 2γ2/T , exactly as if only the

noise were observed. This is because, in this case, the increments

∆n
i Y look more and more like χi∆n − χ(i−1)∆n

as n increases.

Of course, the example studied in this section is not realistic for fi-

nancial data, but it sets up bounds on what can be achieved in a more

realistic context. In particular, in the non-shrinking noise case it tells

us the optimal rate of convergence 1/∆
1/4
n which we will encounter in

a much more general situation. It also tells us that when η > 1/2 (fast

shrinking noise) one can probably forget about the noise.

Equivalently, we can express the results above in the perhaps more

intuitive form of asymptotic variances. The asymptotic variance of the

MLE is given by the inverse of Fisher’s information and we obtain it

in the case where the noise is fixed (η = 0, and so γn = γ). In order

to keep the same framework as before we estimate CT = cT instead of

the more natural parameter c, and we denote the MLE estimators of the

pair (CT , γ) as (ĈMLE(∆n)T , γ̂
MLE(∆n)T ), and we have the following

convergence in law:

( 1

∆
1/4
n

(ĈMLE(∆n)T − CT ),
1

∆
1/2
n

(γ̂MLE(∆n)T − γ)
)

L−→ (UT , U
′
T ), (7.25)

where the two variables UT and U ′
T are independent, centered normal,

with respective variances

E(U2
T ) = 8c3/2γ1/2T, E(U ′2

T ) = 2γ2t−1. (7.26)

So ĈMLE(∆n)T converges to CT at rate 1/∆
1/4
n , and it is optimal to

sample as often as possible, unlike for the subsampling method analyzed

in Subsection 7.1.5. This should be compared with the rate 1/∆
1/2
n and
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the asymptotic variance 2c2T of the realized volatility estimators Ĉ(∆n)T
which is the MLE when there is no noise.

Remark 7.10. Remarkably, the assumption that the noise is Gaussian

is quite innocuous. Suppose that the noise is erroneously assumed for

the MLE computation to be normally distributed when in reality it has

a different distribution, but still i.i.d. with mean zero and variance γn.

Inference is still conducted with the log-likelihood (7.23). This means that

the components of the score vector are used as moment functions (or

“estimating equations”). Since the first order moments of these moment

functions depend only on the second order moment structure of the log-

returns (∆n
i Y )i=1,...,n, which is unchanged by non-normality of the noise,

the moment functions are unbiased under the true distribution of the ǫi’s.

Hence the estimator (ĈMLE(∆n)T , γ̂
MLE(∆n)T ) based on these mo-

ment functions is consistent and asymptotically unbiased with the same

convergence rates as before (even though the likelihood function is now

misspecified). The effect of misspecification solely lies in the variance ma-

trix of the limit (U,U ′) in (7.25): the two variables UT and U ′
T are still

centered normal independent, with variances

E(U2
T ) = 8c3/2γ1/2T, E(U ′2

T ) = 2γ2T−1 +Cum4[ǫ]

where the fourth cumulant Cum4[ǫ] = E(ǫ4) − 3
(
E(ǫ4)

)2
of the noise

measures the deviation from normality. In other words, the asymptotic

variance of ĈMLE(∆n)T is identical to its expression had the noise been

Gaussian. And, for the estimation of γ, the asymptotic estimation vari-

ance increases when the distribution of the noise departs from normality

(recall that Cum4[ǫ] = 0 in the normal case).

This estimator, although developed for the toy model where σ is con-

stant, enjoys yet another type of robustness, which we now turn to.

7.3.2 Robustness of the MLE to Stochastic Volatility

This section is concerned with analyzing the MLE described above, but

in the context of the more general model (7.1), under Assumption (HC).

The observations are given by (7.34) with a non-shrinking white noise

satisfying (WN). The variance of the noise is still denoted as γ = E(χ2
0).

The idea of a quasi-likelihood method applies to semi-parametric models,

for which one wants to estimate some parameter. The method consists

in pretending that the semi-parametric model is close enough to a para-

metric model for which the MLE allows for optimal estimation; one can

then plug the observed data into the parametric MLE.
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The parametric model used here is the toy model of the previous

subsection. This toy model is, globally, a very poor approximation of

the true model, but “locally in time” it is a reasonable approximation

because the drift term plays a negligible role in the estimation of Ct, and

the volatility σt (or ct) is càdlàg, hence is in a sense “almost constant”

on relatively small time intervals.

Let us revisit the toy model Xt = σWt with c = σ2 > 0 and CT = cT ,

and the second parameter is the variance γ of the noise, supposed to

be Gaussian here. Equation (7.23) gives the log-likelihood at stage n, in

terms of the modified parameters (vn, v
′
n), and when the noise is possibly

shrinking. However, it is also possible to give an explicit form of the

likelihood in terms of the parameters c and γn = γ, due to the form

of the covariance matrix Σn = v′nVn of the observed (noisy) returns

∆n
i Y = ∆n

i X + ∆n
i χ for i = 1, . . . , n, which from (7.20) and (7.22) is

given for 1 ≤ i, j ≤ n by

Σijn =





c∆n + 2γ if i = j

−γ if i = j ± 1

0 otherwise.

(7.27)

This matrix has an explicit inverse Σ−1
n , and the log-likelihood (7.21)

becomes

l(c, γ)n = −1

2

(
log det(Σn) + n log(2π)

+
n∑

i,j=1

(Σ−1
n )ij∆n

i Y ∆n
j Y
)
. (7.28)

After neglecting the end effects, an approximate value of (Σ−1
n )ij is

(Σ−1
n )ij =

1

v′n

(
1− v2n

)−1
(vn)

|i−j| (7.29)

(see Durbin (1959)).

Recall that the MLE estimators at stage n for (CT , γ) are such that

(1t Ĉ
MLE(∆n)T , γ̂

MLE(∆n)T ) maximizes the function (c, γ) 7→ l(c, γ)n,

and are asymptotically efficient and satisfy (7.25) and (7.26).

Now we come back to the problem at hand. We still define the (ran-

dom) function l(c, γ)n by the formula (7.28), where the dependency in

(c, γ) comes from (7.27), but now the generating data ∆n
i Y come from

the model with X of the form (7.1). Recall that we want to estimate

the integrated volatility CT , but we will get for free an estimation of the

noise variance γ as well.
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To this end, at stage n and for the terminal time T , the estimators for

CT and γ will be ĈQMLE(∆n)T and γ̂QMLE(∆n)T , where
(
1
t Ĉ

QMLE(∆n)T , γ̂
QMLE(∆n)T

)

maximizes the function (c, γ) 7→ l(c, γ)n

(in view of the explicit form of ln, the maximum is always achieved at a

single point).

The estimator ĈQMLE(∆n)T is not a quadratic estimator, in the sense

of (7.33) below. However, it is obtained, jointly with γ̂QMLE(∆n)T , and

up to the multiplicative factor 1/T , as the root of the two-dimensional

equation ∂cl(c, γ)
n
T = ∂γl(c, γ)

n
T = 0. These partial derivatives are com-

plicated functions of c and γ, but they are quadratic in the returns ∆n
i Y .

Therefore, the asymptotic behavior of them, hence the one of their roots

as well, relies upon the asymptotic behavior of suitable quadratic func-

tionals. Those functionals are somewhat similar with B′(f,∆n) of (A.8)

of Appendix A, with test functions f which are quadratic, but with coef-

ficients depending on n and involving the partial derivatives of the entries

of the matrices Σn = Σn(c, γ) and of their inverses.

The behavior of these coefficients as n → ∞ is known, and relatively

easy although tedious to infer. So we will only state the results here, re-

ferring to Xiu (2010) for the proofs. As far as assumptions are concerned,

(HC) is not enough. We need the process ct to be locally bounded away

from 0 (because in the toy model we accordingly need c > 0), that is,

Assumption (P) (see page 193). We also need the process σt to be an Itô

semimartingale satisfying (H-2), hence we assume the following:

Assumption (KC). We have (HC), the process b is either càdlàg or

càglàg, and the process σ is an Itô semimartingale satisfying (H-2).

Theorem 7.11. Assume (KC) and (P), and also (WN) with a non-

shrinking noise, and set Γ = E(χ4
0) − γ2. Then we have the following

joint stable convergence in law:
( 1

∆
1/4
n

(
ĈQMLE(∆n)T − CT

)
,

1

∆
1/2
n

(
γ̂QMLE(∆n)T − γ

)) L−s−→ (UT , U
′
T ),

where the two variables UT and U ′
T are defined on an extension of the

space (Ω,F ,P) and, conditionally on F , are independent centered Gaus-

sian variables with respective conditional variances

E(U2
T | F) =

√
γ

T CT

(
5T
∫ T
0 c2s ds+ 3(CT )

2
)
,

E(U ′2
T | F) = Γ−γ2

T .
(7.30)
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Note that if one is interested in γ, there is another, more natural and

much simpler, estimator than γ̂QMLE(∆)T , namely

γ̂′(∆n)T =
∆n

2T

[T/∆n]∑

i=1

(∆n
i Y )2. (7.31)

This estimator has the same asymptotic properties as γ̂QMLE(∆n)T .

When ct = c is a constant and the noise is Gaussian, we have Γ = 3γ2

and (7.30) agrees with (7.26). The QMLE estimator is then the MLE,

hence is efficient. In the more general situation (7.1), efficiency no longer

holds, and later we provide estimators with a strictly smaller asymptotic

variance.

This estimator works also when the observations are not regularly

spaced, under some conditions, for example when the observation times

at each stage n form a renewal process independent of X , and upon

modifying the matrix Σn of (7.27) and thus ln in an appropriate way.

On the other hand, it does not seem to work if we relax Assumption

(WN) according to which the noise is white and homogeneous in time.

7.4 Quadratic Estimators

It is reasonable to expect an estimator of Ct to be homogeneous of degree

2, as a function of the data (that is, if all observed values are multiplied by

a constant, the estimator should be multiplied by the squared constant).

This does not mean that such estimators are quadratic functions of the

data, as seen previously for the quasi-MLE estimator, which is homo-

geneous of degree 2 but not quadratic. Nevertheless it seems reasonable

(and simpler than anything else) to try estimators that are quadratic

functions of the data, as is Ĉ(∆n)t in the non-noisy case. Such quadratic

estimators are the object of our interest in this section, with the (innocu-

ous) restriction that we only consider quadratic functions of the returns.

By construction, quadratic estimators are local in nature, unlike the

likelihood-based one of Section 7.3, which is global. A quadratic estimator

at stage n is an estimator of the form

Ĉnt =

[t/∆n]∑

i,j=1

a(n, i, j, t)∆n
i Y ∆n

j Y, (7.32)

with the notation (7.11) for ∆n
i Y . Here, the a(n, i, j, t) are suitable

weights, which are symmetric in (i, j) and have to be chosen “optimally,”
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and clearly the optimal choice depends on the unknown characteristics

of the process and of the noise.

This task being obviously impossible to achieve in full generality, the

next simplification consists in taking the sum of “local” quadratic func-

tions, that is, estimators of the form

Ĉnt =
[t/∆n]−kn∑

i=0

kn∑
j,j′=1

hn
(
|j−j′|
kn

)
∆n
i+jY ∆n

i+j′Y

+ border terms,

(7.33)

for appropriately chosen functions hn on [0, 1] which act as a kernel, sim-

ilar to kernels used in non-parametric density estimation, for example.

The unspecified “border terms” are also quadratic and contain incre-

ments ∆n
i Y for 1 ≤ i ≤ kn and [t/∆n] − kn ≤ i ≤ [t/∆n], and they

appear because in the main term above those border increments are not

treated on the same footing as the others. Unfortunately, adding border

terms is in most cases necessary if we want a nice behavior for Ĉnt , and

they have to be chosen carefully, in connection with the sequence hn of

kernels. Often, but not always, the kernel functions hn are of the form

hn = anh with a kernel h independent of n and a normalizing factor an.

Finally, let us mention that the condition that each hn is supported by

[0, 1] could be relaxed. It could be a function on R, with (7.33) replaced

by

Ĉnt =
∑

i,j,j′∈Z: 1≤i+j,i+j′≤[t/∆n]

hn
(
|j′−j|
kn

)
∆n
i+jY ∆n

i+j′Y

+ border terms.

Basically, what follows holds also in this case, provided hn goes to 0 fast

enough at infinity.

We next turn to various examples of such estimators, including two

and multi-scale realized volatility, pre-averaging estimators and realized

kernel estimators. Note also that the estimation by a “Fourier transform”

type of method is of this kind as well.

7.5 Subsampling and Averaging: Two-

Scales Realized Volatility

In this section, we describe a method based on a quadratic estimator,

which, historically speaking, was the first consistent estimator of inte-

grated volatility proposed in the literature, in the presence of an addi-

tive white noise. This method in its simplest incarnation does not achieve
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the optimal rate of convergence ∆
−1/4
n , but will be extended in the next

section to achieve the optimal rate.

We consider the situation of a non-shrinking additive white noise, that

is,

Y ni = Xi∆n + χi∆n , (7.34)

where (χt)t≥0 satisfies (WN). The underlying process X is one-

dimensional, continuous of the form (7.1), and satisfies (HC).

Since asymptotically the noise cannot be ignored, one might decide to

sample at a lower frequency, as described in Subsection 7.1.5: we ignore

all data except those occurring at some multiple ∆ = kn∆n of ∆n. As

analyzed there, if kn is “large enough” the leading term in the observed

return Y ni∆−Y n(i−1)∆ is the log-price return Xi∆−X(i−1)∆, which is large

in comparison with the noise, whereas if kn is “small enough” the sum∑[t/∆]
i=1 (Xi∆ −X(i−1)∆)

2 is a reasonable approximation of Ct. These two

requirements act in opposite directions, and in any case the method,

which could be called sparse sampling or coarse subsampling, does not

enjoy any asymptotic property. Moreover, since ct and γ are unknown,

only a rule of thumb can help us to determine the best ∆, as described

in Subsection 7.1.5.

The two-scales realized volatility (TSRV), or two scales subsampling

method, is an attempt to reconcile the first requirement above (subsam-

pling at a relatively low frequency) and the possibility of having a nice

asymptotic behavior. By evaluating the quadratic variation at two differ-

ent frequencies, averaging the results over the entire sample, and taking

a suitable linear combination of the result at the two frequencies, one

obtains a consistent estimator of CT at terminal time T .

TSRV’s construction is quite simple: first, partition the original grid of

observation times G = {i∆n : i = 0, . . . , [T/∆n]} into kn subgrids G(j) =

{(j+ikn)∆n : i = 0, · · · , [T/kn∆n−j/kn]} for j = 0, ..., kn−1, for a given

sequence kn of integers, which asymptotically goes to infinity but in such

a way that kn∆n → 0 (in order to ensure the possibility of consistent

estimators). The sample size of the subgrids is n̄ = [T/kn∆n] (up to

±1), which goes to ∞. For example, for G(0) start at the first observation

and take an observation every 5 minutes; for G(1), start at the second

observation and take an observation every 5 minutes, etc. If we start

with, say, 23, 400 observations over 6.5 hours at the 1 second frequency,

we would then obtain kn = 300 subsamples of n̄ = 78 observations

each. We then average the estimators obtained on these subsamples. To

the extent that there is a benefit to sampling at a lower frequency, this
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benefit can now be retained, while the variation of the estimator will be

lessened by the averaging. This reduction in the estimator’s variability

will open the door to the possibility of doing bias correction.

For each subgrid j = 0, . . . , kn − 1 we compute the approximate

quadratic variation on the basis of the subsample G(j), and then we av-

erage over all j. This leads to a statistic of the form

Ĉsubav(∆n, kn)t =
1

kn

kn−1∑

j=0

[t/kn∆n−j/kn]∑

i=1

(Y nj+ikn − Y nj+(i−1)kn
)2

︸ ︷︷ ︸
RV estimated on the kth subsample

. (7.35)

Similar to (7.13), the approximate asymptotic properties of this estimator

are given by, with U an N (0, 1) variable which is independent of the

process X ,

Ĉsubav(∆n, kn)t − Ct
L≈ 2t

kn∆n
γ

︸ ︷︷ ︸
bias due to noise

(7.36)

+
( 4t

k2n∆n
E(χ4)

︸ ︷︷ ︸
due to noise

+
4kn∆n

3
C(4)t

︸ ︷︷ ︸
due to discretization

︸ ︷︷ ︸

)1/2

total variance

U.

While a better estimator than Ĉnoisy
sparse(∆n)t, obtained on a single sparse

sample, Ĉsubav(∆n, kn)t remains biased, but with much lower bias since

kn → ∞.

However, this bias can be removed by going one step further. As seen

before, γ can be consistently estimated for example as in (7.31). The

TSRV estimator is then computed as the bias-corrected estimator

ĈTSRV(∆n, kn)t︸ ︷︷ ︸
Two Scales RV

= Ĉsubav(∆n, kn)t︸ ︷︷ ︸
slow time scale

− 1

kn
Ĉnoisy(∆n)t

︸ ︷︷ ︸
fast time scale

, (7.37)

that is,

ĈTSRV(∆n, kn)t =
1
kn

kn−1∑
j=0

[t/kn∆n−j/kn]∑
i=1

(
(Y nj+ikn − Y nj+(i−1)kn

)2

−(∆n
j+ikn

Y )2
)
.

(7.38)

Remark 7.12. (Practical considerations) Estimators such as TSRV are

designed to work for highly liquid assets. Indeed, the bias correction relies

on the idea that RV computed with all the high-frequency observations,
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Ĉ noisy(∆n)t, consists primarily of noise. This is of course true asymp-

totically as ∆n → 0. But if the full data sample frequency is low to begin

with (for example, a stock sampled every minute instead of every second),

Ĉnoisy(∆n)t will not be entirely noise, and bias correcting as above may

overcorrect, including in extreme cases possibly yielding a negative esti-

mator in (7.38). So care must be taken to apply the estimator to settings

which are appropriate. This is designed to work for very high-frequency

data, meaning settings where the raw data are sampled every few seconds

in the case of typical financial data. If that is not the case, it may be

advisable to stop at the estimator Ĉ subav(∆n, kn)t and not attempt the

bias correction.

Remark 7.13. Also, in small samples,

ĈTSRV
adjusted(∆n, kn)t = (1− n̄

n
)
−1

ĈTSRV(∆n, kn)t

can provide a useful adjustment to the TSRV estimator.

One still has to choose the number kn of subsamples, and it turns out

that the optimal choice is kn ∼ κ∆
−2/3
n . We can now use the approxi-

mation (7.36) and take into account the bias-correcting term in (7.38) to

check the following result (it is stated under (WN), but as far as moments

of the noise are concerned, only a finite fourth moment is required):

Theorem 7.14. Assume (HC) and (WN), with (7.34), and choose the

sequence kn to be

kn ∼ κ

∆
2/3
n

, for some κ ∈ (0,∞). (7.39)

Then for each T > 0 the estimators ĈTSRV(∆n, kn)t are consistent for

estimating CT , and the variables 1

∆
1/6
n

(ĈTSRV(∆n, kn)T − CT ) converge

stably in law to a variable defined on an extension of the space (Ω,F ,P),
which conditionally on F is centered normal with (conditional) variance

8γ2

κ2
+

4κT

3
C(4)T . (7.40)

Unlike the previously considered estimators Ĉnoisy(∆n)T ,

Ĉnoisy
sparse(∆n)T and Ĉsubav(∆n, kn)T , this estimator is now correctly

centered at CT .

Remark 7.15. If we take kn such that kn∆
2/3
n → ∞, then

1√
kn∆n

(ĈTSRV(∆n, kn)T −CT ) converges stably in law to a variable hav-

ing the same description as above, but with conditional variance

4T

3
C(4)T
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Fast
Time
Scale

Use sum of
squared
log-returns
for bias
correction

Sum of squared
log-returns = RV

Subsampling
and
averaging of
sums of squared
log-returns

TSRV = subsampling and averaging, then
bias-correcting using ultra high frequency data

Sparse sampling:
every 5 minutes

Full dataset:
sampling every second

Slow
Time
Scale

Figure 7.2: Description of TSRV’s construction: sample on every grid at

the slower 5 minute frequency, average the results, then use the highest

frequency available to bias-correct the average.

instead of (7.40). Since
√
kn∆n/∆

1/6
n → ∞ in this case, the rate deteri-

orates.

In contrast, when kn∆
2/3
n → 0 we still have a Central Limit Theorem,

but with the centering term involving the noise only, instead of being CT :

we thus cannot do that for estimating CT .

When cs = c is a constant, the optimal choice for κ, leading to the

smallest asymptotic variance, is κ = (T 2c2/12 γ2)1/3. Of course γ and c

are unknown, but it is possible to use preliminary estimators for them

(using for example ∆n

T Ĉnoisy(∆n)T for γ and 1
T Ĉ

TSRV(∆n, kn)T for c

with a sequence kn satisfying (7.39) with, say, κ = 1), and then plug

in the “optimal” value of κ thus derived. When cs is not constant, this

does not work, but one may use the same method to derive an “average”

value of cs over [0, T ] to plug into the formula for the optimal κ. This of

course does not result in an optimal value, but probably improves things,

in comparison to taking a completely arbitrary κ. This is not the end of

the story: in order to have a “feasible” estimator it is necessary to have

consistent estimators for the conditional variance (7.40). This is easy for

the first term, but more difficult for the second one.

Figure 7.3 illustrates the differences between TSRV and RV, including
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0.00026

0.00027

0.00028

0.00029

RV
TSRV

Figure 7.3: Comparison of TSRV and RV.

the divergence of RV when the sampling frequency increases, and the

higher variability of RV around the 5mn sampling frequency.

We conclude this section with a few remarks:

Remark 7.16. Here, we have restricted our attention to one-

dimensional and continuous process. The multi-dimensional extension is

straightforward, at least when the noises for the different components are

independent (and in the regularly spaced observations case, of course).

The possibility of an extension to discontinuous processes is not clear.

Remark 7.17. One can also wonder whether the method extends to a

non-additive white noise. Although this has not been attempted, up to

our knowledge, it seems likely that the method works under the general

Assumption (GN) as well. It also clearly extends to the case of a shrinking

noise, with better rates depending on the sequence αn.

Remark 7.18. (From TSRV to MSRV) TSRV has been extended into

what is called as MSRV, for multi-scales realized volatility. The idea is

simple: TSRV uses two different scales (the coarsest or slowest one to

compute the realized volatility in (7.35), and then the finest or fastest
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one to average these coarse realized volatility estimators). Nothing pre-

vents us from computing the estimators Ĉsubav(∆n, k)T for all values k

from 1 to some integer Mn, and then using as an estimator a weighted

version of these preliminary estimators. Up to appropriately choosing the

weights and the integer Mn, and upon adding a de-biasing term again,

this “multi-scale” approach allows us to obtain a rate of convergence

1/∆
1/4
n , which is the optimal rate for this problem. This method is very

close to the pre-averaging method described below. Hence, for the sake

of simplicity, we will describe the MSRV method after the pre-averaging

method, see Section 7.8.

7.6 The Pre-averaging Method

In this section, we assume that X satisfies (HC), hence in particular has

the form (7.1). The noise satisfies (GN), and we have a possibly shrinking

factor which takes the form αn = ∆η
n for some known η ∈

[
0, 12

)
. The

observations are as in (7.15), that is,

Y ni = Xi∆n + ǫni , ǫni = ∆η
n χi∆n , (7.41)

and we use the notation ∆n
i Y = Y ni − Y ni−1 as before. Although we

consider the possibility of a shrinking noise (η > 0), the reader should

keep in mind that the most important case is when η = 0. Note also that

we exclude η ≥ 1/2. This eliminates the case η > 1/2 where, according

to the toy model, the estimation of Ct should not be affected by noise,

and it also eliminates the borderline case η = 1/2.

The heuristic idea is simple. Take a sequence k′n of integers such that

k′n → ∞ and k′n∆n → 0, and consider the averages

Y av,n
i =

1

k′n

∑k′n−1

j=0
Y ni+j ,

Xav,n
i =

1

k′n

∑k′n−1

j=0
X(i+j)∆n

,

ǫav,ni =
1

k′n

∑k′n−1

j=0
ǫ(i+j)∆n

.

Because k′n → ∞ and the ǫni+j ’s are F -conditionally centered and in-

dependent, with essentially bounded moments, ǫav,ni goes to 0 by an

extension of the Law of Large Numbers; because k′n∆n → 0, the variable

Xav,n
i is close to Xi∆n , and thus so is Y av,n

i = Xav,n
i + ǫav,ni . Then, basi-

cally one may expect
∑[t/∆n]−2k′n
i=1 (Y av,n

i+k′n
−Y av,n

i )2 to be, after a suitable

normalization, a reasonable estimator for Ct.



Volatility and Microstructure Noise 239

In reality, things are not quite as simple as in the previous description,

but almost. Namely, we will need to add a de-biasing term. Also, the

differences Y av,n
i+k′n

− Y av,n
i above are averages of 2k′n values of Y nj , with

weights equal to 1 or −1 and summing up to 0; however, it might be wise

to take non-uniform weights, provided they still sum up to 0.

To perform the construction, we basically need two ingredients:

• a sequence of integers kn satisfying

kn = 1

θ∆η′
n

+ o
(

1

∆
(3η′−1)/2
n

)
as n→ ∞

where θ > 0, η′ ≥ 1
2 − η;

(7.42)

• a real-valued weight function g on R, satisfying

g is continuous, null outside (0, 1),

piecewise C1 with a piecewise Lipschitz derivative g′. (7.43)

For any two bounded functions f, h on R with support in [0, 1], and

for all integers n, i ≥ 1 and all t ∈ [0, 1], we set

φ(f, h|t) =
∫ 1
t f(s− t)h(s)ds,

φ(f) = φ(f, f |0) =
∫ 1
0 f(t)

2dt,

Φ(f, h) =
∫ 1
0 φ(f, f |t)φ(h, h|t)dt,

(7.44)

and

φkn(h) =
kn∑
i=1

h
(
i
kn

)2
,

φ′kn(h) =
kn∑
i=1

(
h
(
i
kn

)
− h

(
i−1
kn

))2
.

(7.45)

By virtue of (7.43), for any weight function g we have as n→ ∞

φkn(g) = knφ(g) + O(1),

φ′kn(g) =
1
kn
φ(g′) + O

(
1
k2n

)
.

(7.46)

Next, with our observations and with kn and the weight function g

we associate the following variables (recall that g(0) = g(1) = 0, hence∑kn
j=1

(
g
(
i
kn

)
− g
(
i−1
kn

))
= 0):

Y
n

i =
kn−1∑
j=1

g
( j
kn

)
∆n
i+j−1Y = −

kn∑
j=1

(
g
( j
kn

)
− g
( j−1
kn

))
Y ni+j−2

Ŷ ni =
kn∑
j=1

(
g
( j
kn

)
− g
( j−1
kn

))2
(∆n

i+j−1Y )2.
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Example 7.19 (Triangular kernel). The simplest weight function is

g(s) = 2(s ∧ (1 − s)) for s ∈ [0, 1], for which

φ(g) =
1

3
, φ(g′) = 4, Φ(g, g) =

151

5040
, Φ(g, g′) =

1

6
, Φ(g′, g′) =

8

3
.

When kn = 2k′n is even, we also have

Y
n

i = 1
k′n

(Y ni+k′n−1 + · · ·+ Y ni+2k′n−2)− 1
k′n

(Y ni−1 + · · ·+ Y ni+k′n−2)

Ŷ ni = 1
k′2n

2k′n∑
j=1

(∆n
i+j−1Y )2.

In this case, Y
n

i is simply the difference between two successive (non-

overlapping) averages of k′n values of Y ni , that is, Y av,n
i+k′n−1 − Y av,n

i−1 with

the notation of the beginning of the section.

We are now ready to exhibit the estimators for CT . With the previous

notation and under the previous assumptions (7.42) and (7.43), they are,

as soon as t > kn∆n:

ĈPreav(∆n, kn, g)t = 1
φkn (g)

t
t−kn∆n

×
[t/∆n]−kn+1∑

i=1

(
(Y

n

i )
2 − 1

2 Ŷ
n
i

)
.

(7.47)

We also set

θ′ =

{
θ if η′ = 1/2− η

0 otherwise,
(7.48)

and define a nonnegative function (x, y) 7→ R(g;x, y) on R2
+ by

R(g;u, v) =
4

φ(g)2
(
Φ(g, g)x2 + 2Φ(g, g′)xy +Φ(g′, g′)y2

)
. (7.49)

We have the following, which combines consistency and the Central

Limit Theorem:

Theorem 7.20. Assume (GN) and (HC) (so in particular X is contin-

uous), and choose kn and g as in (7.42) and (7.43). Then for each T > 0

we have the convergence in probability

ĈPreav(∆n, kn, g)T
P−→ CT . (7.50)

If further η′ > 1
3 , we also have the stable convergence in law:

1

∆
(1−η′)/2
n

(
ĈPreav(∆n, kn, g)T − CT

) L−s−→ Unoise
T , (7.51)
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where Unoise is a process defined on an extension of the space (Ω,F ,P)
and, conditionally on F , is a continuous centered Gaussian martingale

with variance given by

V (g)T = Ẽ
(
(Unoise
T )2 | F

)
=

1

θ

∫ T

0
R(g; cs, θ

′2γs) ds. (7.52)

Proof. We use the notation (A.58) and (A.59), and observe that

f2,0(x, z) = x2 − z/2, so

ĈPreav(∆n, kn, g)T = knφ(g)
φkn (g)

T
T−kn∆n

1
φ(g)

× Bnoisy(2, 0;∆n, kn, g)T ,
(7.53)

and (7.46) implies that

∣∣knφ(g)
φkn(g)

T

T − kn∆n
− 1
∣∣ ≤ K(∆η′

n +∆1−η′
n ).

Moreover we have here [X,X ] = C. Hence (7.50) follows from (b) of

Theorem A.17 and, since ∆η′

n + ∆1−η′
n = o(∆

(1−η′)/2
n ) when η′ > 1

3 ,

(7.51) is a consequence of Theorem A.20 applied with a single compo-

nent corresponding to the weight function g (Unoise above is 1√
θ
W(2)noise

there). Moreover, a straightforward (but tedious) computation shows

that Rp(g, h;x, y) when p = 2 and g = h is exactly φ(g)2 R(g;x, y) in

(7.49).

Remark 7.21. As seen from the proof, 1
φ(g) B

noisy(2, 0;∆n, kn, g)T is the

key process to study, and was, as such, the first pre-averaged estimator

introduced in the literature. However, at least when bt ≡ 0 and ct ≡ c is

non-random and constant, this variable has expectation

φkn(g)

knφ(g)

[t/∆n]∆n − (kn − 1)∆n

T
CT .

This is why we multiply 1
φ(g) B

noisy(2, 0;∆n, kn, g)T in (7.53) by the two

correcting factors knφ(g)
φkn (g) and T

T−kn∆n
, the latter being really close to

t
[t/∆n]∆n−(kn−1)∆n

. The first correction term may be bigger or smaller

than 1, depending on kn and on g. The second correction term is always

bigger than 1, and without it the estimator is systematically downward

biased (of course these correction terms are asymptotically negligible in

the CLT above).

However, although the theorem as stated holds if we replace the

terminal time T by any t > 0, and in contrast with the processes

B noisy(2, 0;∆n, kn, g) which enjoys a functional limit theorem, this is

not the case for ĈPreav(∆n, kn, g)t, because of the correcting factor t
t−kn .
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Remark 7.22. The reader should be aware of the fact that

ĈPreav(∆n, kn, g)T may take negative values, and does so with a posi-

tive probability in most cases. This property is shared by all estimators

proposed in this chapter (TSRV estimator, and the kernel and MSRV

estimators to be seen later), and this is in deep contrast with all the esti-

mators introduced in the Chapter 6 when there is no noise. This requires

a few comments:

1. This can be considered as a serious drawback, but there re-

ally is nothing one can do about it, except for saying that if

ĈPreav(∆n, kn, g)T < 0 the estimator is not reliable (by lack of

data, for example).

2. It may happen that CT = 0, or that CT is positive but very small;

in these cases having an estimator with a negative value is not

overwhelmingly strange.

3. In any case, the estimator by itself is not the only information one

can get; we also have confidence bounds, see below. Then, unless

the confidence interval at a typical asymptotic level is completely

on the negative side, the fact that ĈPreav(∆n, kn, g)T < 0 is not

redhibitory.

In order to make this CLT feasible we also need consistent estimators

for the conditional variance given in (7.52). Indeed, suppose that we have

observable variables V nt at stage n, satisfying

1

∆1−η′
n

V nT
P−→ V (g)T , (7.54)

with further V nT > 0 almost surely on the set {CT > 0}. Then, analogous
with Theorem 6.4 and using a formulation similar to (6.11), we state the

following result:

Theorem 7.23. Under (GN) and (KC) and (7.42) with η′ > 1
3 and

(7.43), and if V nT satisfies (7.54), we have

L
(
ĈPreav(∆n,kn,g)T−CT√

V n
T

∣∣∣A
)
→ N (0, 1)

for all A ∈ F with P(A) > 0 and A ⊂ {CT > 0}.

On the basis of this convergence, it is straightforward to derive confi-

dence intervals for Ct, in exactly the same way as (6.12)–(6.13), and we

leave this to the reader.
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Our task is now to find processes V n satisfying (7.54). For this,

we rely upon Theorem A.17-(c) of Appendix A, applied with (p, q) =

(4, 0), (2, 1), (0, 2). After an elementary calculation, we see that the vari-

ables

V I(∆n, kn, g)t =
1

kn φ(g)2

[t/∆n]−kn+1∑
i=1

(
4Φ(g,g)
3φ(g)2 (Y

n
i )

4

+ 4
(

Φ(g,g′)
φ(g)φ(g′) −

Φ(g,g)
φ(g)2

)
(Y

n

i )
2 Ŷ ni

+
(
Φ(g,g)
φ(g)2 − 2Φ(g,g′)

φ(g)φ(g′) +
Φ(g′,g′)
φ(g′)2

)
(Ŷ ni )2

)
(7.55)

satisfy (7.54) (the convergence is even locally uniform in time).

According to the discussion in Remark 7.21, we can de-bias these

estimators in a sense, and use instead

V II(∆n, kn, g)t =
1

φkn (g)2
t

t−kn∆n

[t/∆n]−kn+1∑
i=1

(
4Φkn (g)
3φkn (g)2 (Y

n

i )
4

+ 4
(

Φ′
kn

(g)

φkn (g)φ′
n(g)

− Φkn (g)
φkn (g)2

)
(Y

n

i )
2 Ŷ ni

+
(

Φkn (g)
φkn (g)2 − 2Φ′

kn
(g)

φkn (g) φ′
kn

(g) +
Φ′′

kn
(g)

φ′
kn

(g)2

)
(Ŷ ni )2

)
,

(7.56)

where

Φkn(g) =
kn∑

i,j,l=0
g
( j
kn

)
g
( j−i
kn

)
g
(
l
kn

)
g
(
l−i
kn

)

Φ′
kn
(g) =

kn∑
i,j,l=0

g
( j
kn

)
g
( j−i
kn

) (
g
(
l
kn

)
− g
(
l−1
kn

)) (
g
(
l−i
kn

)
− g
(
l−1−i
kn

))

Φ′′
kn
(g) =

kn∑
i,j,l=0

(
g
( j
kn

)
− g
( j−1
kn

)) (
g
( j−i
kn

)
− g
( j−1−i

kn

))

×
(
g
(
l
kn

)
− g
(
l−1
kn

)) (
g
(
l−i
kn

)
− g
(
l−1−i
kn

))
.

(To check that V II(∆n, kn, g) and V I(∆n, kn, g) have the same asymp-

totic behavior, one may use (7.46) and the analogous properties Φkn(g) ∼
k3nΦ(g, g) and Φ′

kn
(g) ∼ knΦ(g

′, g) and Φ′′
kn
(g) ∼ Φ(g′, g′)/kn.)

Finally, when η′ > 1
2 − η, we can also take the simpler variables

V III(∆n, kn, g)t =
4Φ(g, g)

3kn φ(g)4

[t/∆n]−kn+1∑

i=1

(Y
n
i )

4. (7.57)

This seems to settle the question, but unless we can use (7.57) we

potentially have a problem here, because the variables V I(∆n, kn, g)T and

V II(∆n, kn, g)T may take negative values, exactly as in Remark 7.27 for

the pre-averaging estimator itself. This problem was already encountered

in Subsection 6.1.2. So, again, we have several ways to overcome this

problem:
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1. Apply Theorem 7.23 with V nT = |V II(∆n, kn, g)T |, which still satis-

fies (7.54) and also V nt > 0 almost surely on the set {CT > 0}.
Although asymptotically correct, this obviously does not work

in finite samples when we come up with a negative value for

V I(∆n, kn, g)T .

2. Choose a sequence un > 0 going to 0 faster than ∆1−η′
n and take

V nT = un
∨
V II(∆n, kn, g)T . Again, this is mathematically correct,

but in practice the choice of un is totally unclear, and from a prac-

tical viewpoint this method is basically the same as the previous

one.

3. Try to find estimators that are nonnegative by construction. This

is indeed possible, and an example may be found in Kinnebrock

and Podolskij (2008). However, we will not elaborate on this since,

should V II(∆n, kn, g)T be negative, this would mainly signal that

we are far from the asymptotic behavior for estimating the condi-

tional variance and, in this case, there is no reason to suppose that

it is not the case for the estimator ĈPreav(∆n, kn, g)T as well: it

might be wiser to give up the estimation, for lack of enough data.

There is no difference, in that respect, with the estimation of the

integrated cross-volatility, except that here the rate of convergence

is much slower (1/∆
1/4
n in the non-shrinking noise case, instead of

1/∆
1/2
n for the integrated volatility), rendering the problem more

acute here.

4. Another, easy to implement method consists of using a non-optimal

rate (with η′ < 1
2−η), and the variance estimators V III(∆n, kn, g)T

which are positive by construction. We loose accuracy, but in view

of the poor rate of convergence mentioned above, it does not make

a huge difference from a practical viewpoint.

Remark 7.24. In the first theorem above, the number θ occurring in

(7.42) explicitly appears in the result, through (7.52). In the second theo-

rem it has disappeared from the picture, because in some sense the prop-

erty (7.54) automatically incorporates θ in V nT (note that the versions

V I(∆n, kn, g)T , V
II(∆n, kn, g)T and V III(∆n, kn, g)t of V nT , as well as

Ĉ Preav(∆n, kn, g)T , use g and kn explicitly, but not θ itself).

Remark 7.25. Not only does θ implicitly influence the estimators, but

the power η′ also does, in a more essential way (although, as before, it

does not explicitly shows in the “feasible” theorem 7.23). The smaller the
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η′, the more accurate the estimator is, but the constraint η′ ≥ 1
2 − η is

essential.

However, assuming that we know the rate of shrinking of the noise,

as expressed by η, is in most cases totally unrealistic. So in practice one

should probably presume that the noise is not shrinking (η = 0), and thus

take η′ = 1
2 .

7.6.1 Pre-averaging and Optimality

In this subsection we state a few comments about the quality of the

estimator ĈPreav(∆n, kn, g), and in particular about its asymptotic opti-

mality (or lack thereof).

We begin with a first general comment. In (7.47) the numbers φkn(g)

appear. From a purely asymptotic viewpoint, it is possible to replace

them by knφ(g). However, when kn is not very large, it is probably more

accurate to use φkn(g), which is closer than knφ(g) to the “true” param-

eter governing the law of the variable Y
n

i , since the latter is a discrete

approximation.

Next, consider the rate of convergence. This rate is 1/∆
(1−η′)/2
n , faster

as η′ gets smaller, and this number η′ is subject to the restrictions η′ ≥
1
2 − η and η′ > 1

3 . This leads us to the following comments:

• When η = 0 (non-shrinking noise) or when 0 < η < 1
6 (slowly

shrinking noise), one should take η′ = 1
2 − η, leading to the rate

1/∆
1/4+η/2
n , and in particular 1/∆

1/4
n in the non-shrinking case.

This is in accordance with (7.24), for the toy model seen above. So

in these cases one may think that the pre-averaging estimators are

rate-optimal.

• When 1
6 ≤ η < 1

2 the choice η′ = 1
2 − η is no longer possible.

However, by taking η′ very close to, though bigger than, 1
3 , one

“approaches” the rate 1/∆
1/3
n . In view of (7.24), this is no longer

optimal.

Finally, and only in the non-shrinking noise case η = 0, let us discuss

optimality, since we already have rate-optimality, upon taking η′ = 1
2 , so

θ′ = θ. We wish to minimize the asymptotic (normalized) variance V (g)T
in (7.52). Since the processes ct and γt are fixed, although unknown, we

have two degrees of freedom, namely the choices of the weight function

g and of the number θ.

Let us first discuss the (unlikely) situation where both ct = c and

γt = γ are constants. In this situation one knows, see Section 7.3.1 above,
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that the LAN property for estimating c, or equivalently CT = cT , holds

with rate 1/∆
1/4
n and optimal (normalized) asymptotic variance V opt

t =

8t
√
c3γ, in accordance with (7.24). Coming back to the pre-averaging

estimators, for a given kernel g, we may choose θ in an optimal way.

Indeed, since

V (g)T = 4T
φ(g)2

(
Φ(g, g) c2 1

θ + 2Φ(g, g′) c γ θ +Φ(g′, g′) γ2 θ3
)
,

the optimal choice is θ = Hg(c, γ), where

Hg(x, y) =
(
x
y

√
Φ(g,g′)2+3Φ(g,g)Φ(g′ ,g′)−Φ(g,g′)

3Φ(g′,g′)

)1/2
, (7.58)

which leads to V (g)t = α(g)V opt
t , where

α(g) =
6Φ(g,g)Φ(g′,g′)+2Φ(g,g′)

√
Φ(g,g′)2+3Φ(g,g)Φ(g′ ,g′)−2Φ(g,g′)2

33/2φ(g)2Φ(g′,g′)1/2
(√

Φ(g,g′)2+3Φ(g,g)Φ(g′,g′)−Φ(g,g′)
)1/2 . (7.59)

In order to use this, one has to know c and γ, or at least the ratio c/γ:

for this, one can follow the method for deriving the optimal θ in (7.39)

for the TSRV method.

As for the choice of the weight function g, it amounts to minimizing

the number α(g) in (7.59), which cannot be smaller than 1. In the case

of the triangular kernel (Example 7.19) one easily sees that α(g) ∼ 1.07,

which is very close indeed to the minimal value 1.

In the more realistic situation where ct, and perhaps also γt, are not

constant, one should of course choose the weight function such that α(g)

is as close as possible to 1, and then choose a “reasonable” θ, close to the

value given by (7.58) with c and γ replaced by average values of ct and γt,

as estimated (or roughly guessed) according to a preliminary procedure,

as in Section 7.5 above.

There is, however, another method. In fact, minimizing the integrand

in (7.52) for each value of time leads one to take θs = Hg(cs, γs) for all s,

and in this case the conditional variance becomes the following “optimal”

value:

V opt(g)T = 8α(g)

∫ T

0

√
c3t γt dt. (7.60)

This seems unfeasible, for two good reasons: one is that ct and γt are

unknown; the other is that θ governs the ratio 1/kn∆
1/2
n (recall that we

take the optimal η′ = 1
2 since the noise is not shrinking), so if θ = θt

depends on time, then kn should also depend on time. However, it is

possible to straighten out the argument and make it feasible by dividing

the time interval [0, T ] into blocks on which one can consider ct and γt,
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hence Hg(ct, γt) as well, to be “almost” constant, and then perform the

pre-averaging with the optimal value of kn within each block. This is

what we do in the next subsection.

7.6.2 Adaptive Pre-averaging

In this subsection, the noise is not shrinking. We also suppose Assump-

tions (KC) and (P), as in Theorem 7.11, and a slight reinforcement of

(GN), namely

Assumption (GNS). We have (GN); moreover, the variance process γt
is an Itô semimartingale satisfying (H-2), and neither γt nor γt− van-

ishes.

This assumption ensures that γ is not time-varying too wildly, which

is necessary if we want local estimators for it. It could be significantly

weakened, but as stated it is not really restrictive when (GN) holds.

We fix the time horizon, say T , and also the weight function g. The

estimating procedure is performed through two steps, and we choose two

sequences of integers, subject to the conditions

ln ≍ 1

∆w
n

with w ∈
( 5
6
, 1), kn ≍ 1

∆
1/2
n

, 4 ≤ 2kn < ln < T/∆n. (7.61)

We split the data into consecutive blocks of data with size ln each (except

for the last one, with size between ln and 2ln− 1). The number of blocks

is Ln and the calendar times at which the jth block starts and ends are

T (n, j − 1) and T (n, j), as given by

Ln =
[ T

ln∆n

]
, T (n, j) =

{
jln∆n if j < Ln
T if j = Ln.

Step 1: local estimation of ct and γt. We do the adaptive procedure for

the blocks j = 2, . . . , Ln, and for this we use estimators for ct and γt
based on the second half of the previous block. More specifically, with

I(n, j) = (T (n, j − 2) + ln∆n/2, T (n, j − 1)], we estimate the following

averages:

cn(j) =
2

ln∆n

∫

I(n,j)
ct dt, γn(j) =

2

ln∆n

∫

I(n,j)
γt dt.
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The estimators will be

ĉn(j) = 2
ln∆n φkn (g)

(j−1)ln−kn∑
i=(j−1)ln−[ln/2]−kn

(
(Z(kn)

n
i )

2 − 1
2 Ẑ(kn)

n
i

)

γ̂n(j) = 1
ln

(j−1)ln∑
j=(j−1)ln−[ln/2]

(∆n
j Z)

2

(7.62)

and it turns out that

ĉn(j)− cn(j) = OPu(∆
(2w−1)/4
n ),

γ̂n(j)− γn(j) = OPu(∆
w/2
n ),

(7.63)

where V ni = OPu(vn) means that the variables V ni /vn are bounded in

probability, uniformly in i. In turn, with the notation (7.58), this implies

θ̂n(j)− θ
n
(j) = O Pu(∆

(2w−1)/4
n ),

where θ̂n(j) = Hg(ĉ
n(j), γ̂n(j)) and θ

n
(j) = Hg(c

n(j), γn(j)).

Step 2: global estimation. We set

kn,j =

{
kn if j = 1
[
2
∨
( ln2

∧ θ̂n(j)√
∆n

)
]

if j ≥ 2
(7.64)

(taking the infimum with ln/2 and the supremum with 2 is irrelevant

mathematically speaking, because θ̂nj−1/
√
∆n goes to infinity at a smaller

rate than ln; however, for small samples, this may be effective, and it

would probably be even more appropriate to take the supremum with a

value much bigger than 2, such as 10 or 20.

Note that in (7.64) the value kn,1 = kn is as in (7.61) and we do no

adaptation within the first block. The other values kn,j are random, but

known to the statistician, and our final estimator is

ĈPreav-Ad(∆n, g)T =
Ln∑
j=1

a(n,j)
φkn,j

(g)

×
J(n,j)∑

i=J(n,j−1)+1

(
(Z(kn,j)

n
i )

2 − 1
2 Ẑ(kn,j)

n
i

) (7.65)

where J(n, 0) = 0 and

1 ≤ j < Ln ⇒
{
J(n, j) = jln
a(n, j) = 1

j = Ln ⇒
{
J(n, j) = [T/∆n]− kn,Ln + 1

a(n, j) =
J(n,Ln)−J(n,Ln−1)+kn,Ln

J(n,Ln)−J(n,Ln−1) .
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We also need estimators for the conditional variance encountered be-

low. To this end, we can use

V̂ ′n
T =

Ln∑
j=1

a(n,j)
φkn,j

(g)2

J(n,j)∑
i=J(n,j−1)+1

(
4Φkn,j

(g)

3φkn,j
(g)2 (Z(kn,j)

n
i )

4

+ 4
( Φ′

kn,j
(g)

φkn,j
(g)φ′

kn,j
(g) −

Φkn,j
(g)

φkn,j
(g)2

)
(Z(kn,j)

n
i )

2 Ẑ(kn,j)
n
i

+
(

Φkn,j
(g)

φkn,j
(g)2 − 2Φ′

kn,j
(g)

φkn,j
(g)φ′

kn,j
(g) +

Φ′′
kn,j

(g)

φ′
kn,j

(g)2

)
(Ẑ(kn,j)

n
i )

2
)
.

(7.66)

The behavior of these estimators is given in the following theorem,

and we refer to Jacod and Mykland (2012) for a proof:

Theorem 7.26. Under (KC), (P) and (GNS) the variables

ĈPreav-Ad(∆n, g)T converge in probability to CT , and we have the fol-

lowing stable convergence in law:

1

∆
1/4
n

(
ĈPreav−Ad(∆n, g)T − CT

) L−s−→ U ′noise
T ,

where U ′noise
T is a variable defined on an extension of the space (Ω,F ,P)

which, conditionally on F , is centered Gaussian with conditional variance

V opt(g)T = Ẽ
(
(U ′noise
T )2 | F

)
= 8α(g)

∫ T

0

√
c3s γs ds,

where α(g) is given by (7.59).

Moreover, we have 1√
∆n

V̂ ′n
T

P−→ V opt(g)T , and thus the variables
1√
V̂ ′n
T

(ĈPreav−Ad(∆n, g)T − CT ) (stably) converge in law to a standard

normal variable.

In particular, the conditional variance achieves the optimal value (rel-

ative to the weight function g) given by (7.60). Of course, this leaves open

the choice of g, but once more the triangular kernel is nearly optimal.

Remark 7.27. For simplicity, we have taken the same weight function

g for pre-averaging in the two steps, but this is of course not necessary.

Remark 7.28. One needs (P) for the estimated value of θt to be positive,

and the last part of (GNS) for it to be finite. When the process γ is allowed

to vanish, and does indeed vanish on some interval, at these places θ̂n(j)

tends to be large, and kn,j becomes equal to 2, for n large enough and all

j with jln∆n in this interval. As easily checked from (7.65), and for the

triangular kernel g, it follows that this interval contributes 0 in the sum

defining CPreav-Ad(∆n, g)t, which precludes even the consistency of these
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estimators. For another kernel g, or if we were taking the supremum with

a number other than 2 in (7.64), the contribution would be possibly not

0 but still the consistency of the estimators for the integrated volatility

would fail.

7.7 Flat Top Realized Kernels

The pre-averaging estimators are special cases of the general quadratic

estimators described in Section 7.4, with a kernel (as in (7.33) for ex-

ample) having rather specific properties. One can look at more general

kernels, still subject to some restrictions of course. This is the aim of this

section.

One chooses a sequence kn of integers satisfying (7.42), and a kernel

function f on [0, 1] satisfying

f is C3, and f(0) = 1, f(1) = f ′(0) = f ′(1) = 0. (7.67)

The estimator of CT at stage n is

ĈFT(∆n, kn, f)T =
∑[T/∆n]−kn+2
i=kn−1

(
(∆n

i Y )2

+
∑kn−2
r=1 f

(
r−1
kn

)
(∆n

i Y ∆n
i+rY +∆n

i Y ∆n
i−rY )

)
.

(7.68)

The “flat top” qualifier refers to the fact that in each ith summand the

weights of ∆n
i Y ∆n

i+jY are equal (to 1) when j = −1, 0, 1. We associate

with f the numbers

Φ(f) =
∫ 1
0 f(s)

2 ds,

Φ
′
(f) =

∫ 1

0 f
′(s)2 ds,

Φ
′′
(f) =

∫ 1
0 f

′′(s)2 ds.

(7.69)

It is instructive to compare this with the pre-averaging estimator,

from the viewpoint of (7.33). Letting aside the border terms (for i ≤ kn
or i ≥ [T/∆n] − 2kn), and also the asymptotically negligible correcting

factor t
t−kn in the pre-averaging case, both the pre-averaging estimator

and the flat top kernel estimator are of that form, with the following

function hn on [0, 1]:

hn(x) =





• for the pre-averaging estimator:
1

knφn(g)

∑[kn(1−x)]−1
j=1 g

( j
kn

)
g
(
x ∨ 1

kn
+ j

kn

)

• for the flat top kernel estimator:
1
kn
f
((
x− 1

kn

)+)
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(only the values at x = j/kn really matter here). The functions hn are dif-

ferent in the two cases. However, as n→ ∞ the products knhn converge,

with the rate 1/kn, to the limit hPreav(x) = φ(g|x)/φ(g) and hFT = f ,

respectively.

The function hFT = f is, apart from (7.67), completely general,

whereas the function hPreav is restricted, since it is the square of g (up to

a normalizing constant) in the convolution sense. When f satisfies (7.67)

and has the form f(x) = φ(g|x)/φ(g) for a function g satisfying (7.43),

we also have f ′′(x) = −φ(g′|x) and thus, by an integration by parts, we

see that the numbers in (7.69) are indeed

Φ(f) =
Φ(g, g)

φ(g)2
, Φ

′
(f) =

Φ(g, g′)

φ(g)2
, Φ

′′
(f) =

Φ(g′, g′)

φ(g)2
.

As it turns out, only the asymptotic behavior of the function hn de-

fined above really matters for proving a theorem such as Theorem 7.20.

So one may expect a result of the following type: under (GN) and (KC)

and (7.42), plus (7.67) for f , we have

1

∆
(1−η′)/2
n

(
ĈFT(∆n, kn, f)T − CT

) L−s−→ U ′noise
T , (7.70)

where U ′noise
T is a variable defined on an extension of the space (Ω,F ,P)

which, conditionally on F , is centered Gaussian with variance

V ′(f)T = Ẽ
(
(U ′noise
T )2 | F

)

= 4
θ

∫ T
0

(
Φ(f) c2s + 2Φ

′
(f) θ′2csγs +Φ

′′
(f) θ′4γ2s

)
ds,

(7.71)

with again θ′ given by (7.48).

We will not exhibit explicit estimators for the conditional variance

occurring in (7.71). But this is of course possible, in the spirit of (7.55).

Remark 7.29. (Warning about border effects) Only the case of As-

sumption (WN) with non-shrinking noise (vn = 1) is fully treated in

Barndorff-Nielsen et al. (2008) (corresponding to η′ = 1
2 and θ′ = θ in

(7.70)), although this paper contains an informal discussion about shrink-

ing noise and about possible extensions of (WN). Moreover, the property

(7.70) is not fully correct, as stated above, that is, with the estimators

defined exactly by (7.68). This is due to the border effects, which are

not negligible at all. As a matter of fact, if one takes f(x) = φ(g|x) for

a C2 function g satisfying (7.43), so that (7.67) holds, the estimators

ĈFT(∆n, kn, f)T and ĈPreav(∆n, kn, f)T do not coincide, due to these

borders effects. The pre-averaging estimator automatically includes in its
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definition appropriate borders terms, which allows us to have Theorem

7.20. This is not the case of ĈFT(∆n, kn, f)T : appropriately modifying

the definition in a way that (7.70) holds true is possible, but is a rather

complicated matter, and we refer to the aforementioned paper for a dis-

cussion of this issue, resolved by some kind of “jittering” (suitable aver-

aging of the observations near both ends of the observation interval), and

also for a discussion of what happens if one relaxes the flat top assump-

tion, that is, if one takes f(r/kn) instead of f((r − 1)/kn) in (7.68).

Remark 7.30. (Realized kernels and optimality) Observe that

ĈFT(∆n, kn, f)T (with appropriate additional border terms) and

ĈPreav(∆n, kn, g)T have exactly the same properties, and in particu-

lar enjoy the same Central Limit Theorem, upon replacing the ratios

Φ(g, g)/φ(g)2 and Φ(g, g′)/φ(g)2 and Φ(g′, g′)/φ(g)2 in (7.49) by the

numbers Φ(f) and Φ
′
(f) and Φ

′′
(f), respectively. Therefore the discus-

sion about optimality in Subsection 7.6.1 can be reproduced here with no

change, except that instead of (7.59) one should use

α′(f) = 6Φ(f)Φ
′′
(f)+2Φ

′
(f)

√
Φ

′
(f)2+3Φ(f)Φ

′′
(f)−2Φ

′
(f)2

33/2 Φ
′′
(f)1/2

(√
Φ

′
(f)2+3Φ(fΦ

′′
(f)−Φ

′
(f)
)1/2 ,

and f is any function satisfying (7.67).

Again, the best (smallest) value for α′(f) is 1. A number of possible

kernels f can be studied:

α′(f) =





1.13 cubic kernel: f(x) = 1− 3x2 + 2x3

1.07 Parzen kernel: f(x) =

{
1− 6x2 + 6x3 if x ≤ 1/2

2(1− x)3 if x > 1/2

1.0025 Tukey-Hanning kernel of order 16:

f(x) =
(
sin(π/2(1− x)16)

)2
.

The Parzen kernel is in fact the function f(x) = φ(g|x)/φ(g) associ-

ated with the triangular kernel of Example 7.19. The Tukey-Hanning ker-

nel of order 16 is extremely close to optimality (we do not know whether

this kernel is of the form f(x) = φ(g|x) for a weight function g satisfying

(7.43)).

However, in practice, and when ct and γt are varying with time, the

main problem is the choice of the number θ; therefore all choices among

the f ’s above are essentially equivalent from a practical viewpoint, as is

the choice of the triangular kernel for the pre-averaging method. Note

also that adaptive flat top kernel estimators can probably be constructed,

along the same ideas as in the previous section.
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7.8 Multi-scales Estimators

As mentioned at the end of Section 7.5, the TSRV estimators can be

extended to Multi-Scales Realized Volatility estimators, or MSRV. This

enables one to improve the rate of convergence of the estimator from

∆
−1/6
n to the optimal ∆

−1/4
n . The noise is a non-shrinking white noise

(Assumption (WN) and αn = 1, or η = 0 in (7.41)).

These estimators require the choice of a sequence kn of integers sat-

isfying kn ∼ 1/θ
√
∆n for some number θ ∈ (0,∞) (as in (7.42), with

η′ = 1
2 ) and of a kernel function f on [0, 1], of class C3, and subject to

∫ 1

0
f(s) ds = 0,

∫ 1

0
s f(s) ds = 1.

The estimator at stage n is then

ĈMSRV(∆n, kn, f)t =
kn∑
j=1

αnj

[t/∆n]∑
i=j

(
Y ni − Y ni−j

)2
, (7.72)

where

αnj = 1
k2n
f
( j
kn

)
− 1

2k3n
f ′( j

kn

)

− 1
6k3n

(f ′(1)− f ′(0)) + 1
24k4n

(f ′′(1)− f ′′(0)).
(7.73)

This is again a quadratic estimator of type (7.33), with

hn(x) =
∑kn−j
r=1 r

(
1
k2n
f
(
x+ r

kn

)
− 1

2k3n
f ′(x+ r

kn

)

− 1
6k3n

(f ′(1)− f ′(0)) + 1
24k4n

(f ′′(1)− f ′′(0))
)

when x ∈ [0, 1], and provided we set f(x) = 0 when x > 1. The functions

hn converge to h(x) =
∫ 1−x
0 u f(x + u) du. Here, the function h is not

necessarily of the form h(x) = φ(g|x) for some g satisfying (7.43) but,

when it is, we have φ(g′|x) = h′′(x) = f(x), and thus with the notation

(7.44) we obtain after some calculations

A(f) := Φ(g, g) =
∫ 1
0 h(x)

2 dx

= 1
3

∫ 1
0 f(x) dx

∫ x
0 y

2(3x− y) f(y) dy

A′(f) := Φ(g, g′) =
∫ 1
0 f(x)h(x) dx

=
∫ 1
0 f(x) dx

∫ 1
0 (x ∧ y) f(y) dy

A′′(f) := Φ(g′, g′) =
∫ 1
0 f(x)

2 dx.

(7.74)

In view of this, the following result gives the asymptotic distribution of

the MSRV estimator:
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Theorem 7.31. Assume (HC) and also (WN) with a non-shrinking

noise, so in particular γt(ω) = γ = E(χ2
0) is a constant, and set

Γ = E(χ4
0) − γ2. Then, under (7.68) with a C3 function f , and if

kn ∼ 1/θ
√
∆n (that is, (7.42) with η′ = 1

2), for each T > 0 we have

the following stable convergence in law:

1

∆
1/4
n

(
ĈMSRV(∆n, kn, f)T − Ct

) L−s−→ UMSRV
T ,

where UMSRV
T is a variable defined on an extension of the space (Ω,F ,P)

and, conditionally on F , is centered Gaussian with variance

Ẽ
(
(UMSRV
T )2 | F

)
=

4

θ

∫ T

0

(
A(f)c2s + 2A′(f)csγθ

2

+A′′(f)γ2θ4) ds+ 4Γθ3
∫ 1

0
f(x)2 dx. (7.75)

In view of (7.74), the first term on the right-hand side of (7.75) is

exactly the same as in (7.52), when γt is a constant. There is a second

term, however. This additional summand is due to the border terms

which are implicitly contained in the definition (7.72).

It is likely (but unproved so far) that a similar result holds in the case

of shrinking noise ǫni = ∆η
n χi∆n , provided (7.42) for kn holds as stated,

and with the rate 1/∆
(1−η′)/2
n instead of 1/∆

1/4
n , and θ substituted with

θ′. When considering the more general Assumption (GN) for the noise,

though, things are more complicated, because the last term in (7.75) has

no evident counterpart in this more general case. On the other hand,

it is worth noticing that Theorem 7.31 also holds when the observation

times are not regularly spaced, but yet not “too far” from this, in an

appropriate sense.

7.9 Estimation of the Quadratic

Covariation

In this section we briefly review what happens when the underlying pro-

cess X has dimension d ≥ 2. Each diagonal element CjjT of the covaria-

tion process is the integrated volatility of the component Xj, so the only

thing which needs to be discussed about volatility estimation is the esti-

mation of the off-diagonal elements CijT , or more generally of the entire

matrix (joint estimation). We make the simplifying hypothesis that all

components are observed at the same times i∆n, as in the previous chap-
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ter (see Chapter 9 for general and possibly non-synchronous observation

schemes).

The general discussion of Section 7.1 about microstructure noise can

be reproduced word for word, although one should be aware of a specific

fact about pure rounding noise: for the off-diagonal elements CijT , and

assuming that the rounding level βn is the same for all components, the

first two claims in (7.14) become wrong. For example consider the non-

shrinking case βn = β. Then when n is large enough, and at least when

the matrix ct is never degenerate, between two successive observation

times a given component may cross one of the level kβ, but it never occurs

that two distinct components do this. So indeed the “noisy” realized

covariation satisfies

Cjl,noisy(∆n)T = 0 for all n large enough, depending on ω.

Concerning the various assumptions on the noise in Section 7.2,

nothing is changed, except of course that the variables χt are now d-

dimensional, and thus the conditional variance γt becomes a d × d co-

variance matrix.

Basically, all methods previously explained work as well in the mul-

tivariate case, with an appropriately modified version of the estimators,

and with CLTs involving multivariate limits.

Let us focus on the pre-averaging estimators, and use all notation of

Section 7.6. The definition (7.46) of Y
n

i is unchanged, and should be read

componentwise (we take the same weight function g for all components,

although taking different functions is also possible), so Y
n

i is now d-

dimensional; in contrast, Ŷ ni becomes a d × d matrix, whose definition

is

Ŷ n,lmi =
kn∑

j=1

(g′nj )2 ∆n
i+j−1Y

l∆n
i+j−1Y

m.

The estimators for the matrix Ct are now, componentwise:

ĈPreav(∆n, kn, g)
lm
t = 1

φn(g)
t

t−kn∆n

× ∑[t/∆n]−kn+1
i=1

(
Y
n,l
i Y

n,m
i − 1

2 Ŷ
n,lm
i

)
.

(7.76)

This gives matrix-valued estimators, still globally denoted as

ĈPreav(∆n, kn, g)t, and which converge in probability, locally uniformly

in time, to Ct. A simple extension of Theorem A.20 of Appendix A is as

follows:

Theorem 7.32. Under (GN) and (HC), and under (7.42) and (7.43),

for each t > 0 we have the same stable convergence in law of
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1

∆
(1−η′)/2
n

(
Ĉ Preav(∆n, kn, g)T − CT

)
toward Unoise

T as in (7.51), ex-

cept that here Unoise is d2-dimensional, with F-conditional variance-

covariance given by

V (g)lm,l
′m′

T = Ẽ
(
Unoise,lm
T Unoise,l′m′

T | F
)

=
1

θ

∫ T

0
Rlm,l

′m′

(g; cs, θ
′2γs) ds, (7.77)

where, for all d× d matrices u, v, we have

Rlm,l
′m′

(g;u, v) = 2
φ(g)2

(
Φ(g, g)

(
ull

′

umm
′

+ ulm
′

uml
′)

+Φ(g′, g′)
(
vll

′

vmm
′

+ vlm
′

vml
′)

+Φ(g, g′)
(
ull

′

vmm
′

+ ulm
′

vl
′m + ul

′mvlm
′

+ umm
′

vll
′))

.

(7.78)

In the one-dimensional case, (7.78) reduces to (7.49).
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Estimating Spot

Volatility

The estimation of integrated volatility, studied in Chapter 6, has been

the first object of interest in financial econometrics, because of its rele-

vance in finance, and also because it is the simplest object which can be

estimated. However, under mild assumptions, such as the volatility being

right-continuous or left-continuous, not only is the integrated volatility

identifiable, but the volatility process as a whole is identifiable as well,

and is potentially quite useful for financial applications. This question of

estimating the “spot volatility,” that is, the value of the volatility at a

given time, deterministic, or possibly random, time, is the object of this

chapter.

The setting is as in Chapter 6. The basic process X is observed, at the

discrete times i∆n, over a finite time interval [0, T ], and the returns are

∆n
i X = Xi∆n −X(i−1)∆n

. With the exception of Section 8.7, we suppose

the observations to be without noise. The process X is a d-dimensional

Itô semimartingale on a filtered space (Ω,F , (Ft)t≥0,P), which satisfies

(H-2) and with the Grigelionis representation

Xt = X0 +

∫ t

0
bsds+

∫ t

0
σsdWs (8.1)

+ (δ1{‖δ‖≤1}) ⋆ (p− q)t + (δ1{‖δ‖>1}) ⋆ pt,

whereW is a d′-dimensional Brownian motion and p is a Poisson measure

on R+ ×E with (E, E) an auxiliary Polish space, and with compensator

q(dt, dx) = dt ⊗ λ(dx). Due to (H-2), the d-dimensional process b is

progressively measurable and locally bounded, the d × d′-dimensional

process σ is càdlàg adapted, and δ is a d-dimensional predictable function

259
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Ω × R+ × E which satisfies |δ(ω, t, z)| ≤ Jn(z) when t ≤ τn(ω), where

τn is a sequence of stopping times increasing to ∞ and each Jn is a

non-random function on E such that
∫
(Jn(z) ∧ 1)λ(dz) <∞.

When the volatility is “state-dependent,” that is, of the form σt =

f(Xt), or more generally σt = f(Yt) where Y is another process which

is also observed at high frequency, with an unknown function f , this is

a classical non-parametric estimation of the function f . The literature

is vast on this topic, as it is in another specific situation: when σt is

unknown, but non-random.

These two situations are very special, and in a sense somewhat far from

the spirit of this book. So, here, we rather consider a “general” volatility

process which, in most of what follows, is also an Itô semimartingale,

with unspecified characteristics. Section 8.6, though, is concerned with

the state-dependent case σt = f(Xt), and focuses on the estimation of the

function f rather than on the estimation of the path t 7→ ct, although in

this case if f were known exactly one would also know exactly the values

ci∆n .

We mostly describe how the volatility (or, rather, the matrix c = σσ∗)

can be estimated at a deterministic time t, and also at a random time S,

under appropriate assumptions on S. This turns out to be quite simple

to do, although the rate of convergence is necessarily slow. After this,

we go further in the analysis of the volatility, in several directions. First,

when both X and the volatility process are continuous, we estimate the

quadratic variation of the volatility process, which is a kind of measure

of the variability of the volatility, and the covariation process between

the volatility and the (log)-price X itself, which is related to the leverage

effect. When the volatility has jumps, it is also possible to detect them,

but the techniques are analogous to the detection of jumps of X itself,

so this topic is postponed to the part about jumps, in Chapters 10 and

14. Next, we give efficient estimators for variables of the form
∫ t
0 g(cs) ds,

in connection with the problems related to quarticity and left unsolved

in Chapter 6. Finally, we explain how to modify the various estimators

when microstructure noise is present.

All this could be the beginning of a very long story telling us how to

estimate the spot volatility of the volatility, and then its volatility, and

so on. However, the convergence rates for spot volatility estimators being

already very slow, going further seems hopelessly unfeasible in practice,

at least for the kind of data and the observation frequencies encountered

in finance.
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8.1 Local Estimation of the Spot Volatility

Estimating the spot volatility ct has two aspects. The first is the esti-

mation of the value ct at a particular time t, or perhaps of cS for some

stopping time S of special interest, or even of the jump size ∆cS when c

is càdlàg. The second aspect is the estimation of the path t 7→ ct over a

given time interval [0, T ].

This is very much like non-parametric estimation of a regression func-

tion or of a density function: one can emphasize the quality of estimation

at one specific point (pointwise estimation); one can instead use global

criteria, such as an Lp norm, to assert the quality of the estimation. The

first problem is usually solved by kernel methods; the second may be

solved by the same kernel methods, and also by global methods such as

wavelets or Fourier methods.

In this section we investigate the first question, using kernel methods.

As it turns out, we even use a “constant” kernel (the indicator function

of an interval), for two reasons. One is simplicity, the other is that in our

specific setting this sort of kernel seems to be the most effective one, as

we will discuss later.

The literature on this topic was rather scarce until recently, when

it exploded. This is mainly because estimating the spot volatility re-

quires a large amount of data, which became available through very

high-frequency observations only relatively recently.

8.1.1 Some Heuristic Considerations

The most näıve idea, which turns out to be also quite efficient, is in-

deed very simple. Suppose that we have estimators Ĉnt for Ct, such that

Ĉn
u.c.p.
=⇒ C (convergence in probability, uniform in time on each bounded

interval). Then, for any t ≥ 0 and s > 0 we have Ĉnt+s−Ĉnt
P−→
∫ t+s
t cr dr.

Now, since c is right-continuous, 1
s

∫ t+s
t cr dr → ct as s decreases to 0.

Then, one may hope that, for a suitable choice of the sequence sn going

to 0, one has

ĉnt :=
Ĉnt+sn − Ĉnt

sn

P−→ ct. (8.2)

Like all estimators for Ct at stage n, t 7→ Ĉnt is constant on each interval

[i∆n, (i+1)∆n), hence it is no restriction to take sn = kn∆n, where kn ≥
1 is an integer. Moreover, Ct+sn − Ct can be reasonably approximated

by Ĉnt+sn − Ĉnt only if the number of returns between times t and t+ sn
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is large. This leads us to choose the sequence kn such that

kn → ∞, kn∆n → 0. (8.3)

We will indeed see below that, under appropriate assumptions, (8.3) is

enough to yield (8.2).

Getting an idea of the rate of convergence is slightly more complicated,

as for all non-parametric estimation problems. We devote the rest of the

subsection to heuristic arguments explaining the rates, and for this we

use simplifying assumptions: the dimension is d = 1, and the process X

is continuous and without drift, since the drift should play no role in that

matter. Furthermore, we suppose that ct is non-random, at least for a

while.

In this case, it is of course natural to take Ĉnt = Ĉ(∆n)t (the realized

volatility), as defined by (6.4), so ĉnt in (8.2) becomes

ĉnt =
1

kn∆n

[t/∆n]+kn∑

i=[t/∆n]+1

(∆n
i X)2. (8.4)

The variables ∆n
i X are independent and N (0, αni ∆n)-distributed, where

αni = 1
∆n

∫ i∆n

(i−1)∆n
cs ds. Arguing for t = 0 (but the argument is the same

for any t), we see that the estimation error En = ĉn0 − c0 is the sum

En = Dn + Sn of a deterministic error and a statistical error:

Dn =
1

kn

kn∑

i=1

αni − c0 =
1

kn∆n

∫ kn∆n

0
(cs − c0) ds,

Sn =
1

kn

kn∑

i=1

Zni ,

where the Zni ’s are independent when i varies, centered, with respec-

tive variances 2(αni )
2 and fourth moments 60 (αni )

4. A more appropriate

name for Dn would be the “target error,” because En turns out to be an

estimator of 1
kn∆n

∫ kn∆n

0 cs ds, rather than an estimator of c0.

The statistical error Sn is easy to analyze, as soon as ct → c0 as t→ 0.

Since kn∆n → 0, this implies that αni → c0 uniformly in i = 1, . . . , kn,

as n → ∞. Then the usual CLT gives us that
√
kn Sn converges in law

to N (0, 2(c0)
2). The deterministic (target) error goes to 0 as well, but

the rate of convergence is more difficult to handle and depends on the

smoothness of the function c. If for example we assume that c is Hölder

with some index ρ ∈ (0, 1], that is, |ct− c0| ≤ Atρ for a constant A, then

clearly |Dn| ≤ A(kn∆n)
ρ.
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We thus have two errors with competing rates
√
kn for Sn and

1/(kn∆n)
ρ for Dn, and in particular we get for any A ∈ (1,∞):

k
ρ+1/2
n ∆ρ

n → 0 =⇒
{
Sn dominates,√
knEn is tight

1
A ≤ k

ρ+1/2
n ∆ρ

n ≤ A =⇒





Sn and Dn

are of the same magnitude,√
knEn is tight

k
ρ+1/2
n ∆ρ

n → ∞ =⇒
{
Dn dominates,

1
(kn∆n)ρ

En is tight.

(8.5)

In the first case
√
knEn converges in law to a centered normal variable;

in the second and third cases the existence of a limit theorem depends on

the behavior of ct near 0, besides the mere Hölder property. The biggest

possible rate is achieved in the second case above, and it is 1/∆
ρ/(1+2ρ)
n .

When t > 0 what precedes obviously stays true, but we could also use

estimators of the form

ĉnt =
1

kn∆n

[t/∆n]+kn−ln∑

i=[t/∆n]+1−ln
(∆n

i X)2

with an arbitrary sequence ln of integers between 0 and kn: we estimate ct
from the right if ln = 0, and from the left if ln = kn, whereas if ln ∼ kn/2

it is a “symmetrical” estimator around t. Note that when c is piecewise

Hölder and càdlàg, everything stays true again, but of course one should

either take ln = 0 to estimate ct, or ln = kn to estimate ct−, and any

intermediate value for ln results in an estimation of some average of ct
and ct−.

The same argument applies (up to – not totally trivial – technical

details) when ct is random, and still with ρ-Hölder paths. More generally

it applies when, up to some localization, we have

E(|cS+s − cS | | FS) ≤ K sρ (8.6)

for some constant K and all finite stopping times S. In particular, this

applies when c is an Itô semimartingale satisfying (H-2), upon taking

ρ = 1
2 . To stay in the mainstream of this book, as in Chapter 6 for

example, later on we will make this assumption on c. It is noteworthy to

observe that in this case ct may jump, but even when it is continuous its

paths are ρ′-Hölder for all ρ′ < 1
2 , but nowhere 1

2 -Hölder; nonetheless,

for the estimation problem at hand the paths behave as if they were
1
2 -Hölder, even when they jump.
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Remark 8.1. (Näıve estimators versus kernel estimators) Instead of

taking averaged square returns, as in (8.4), one could take sums weighted

by a kernel function φ satisfying
∫∞
−∞ φ(x) dx = 1. Again in the case of X

being one-dimensional and continuous, the estimators for ct could then

be

ĉnt =
1

kn∆n

∑

i≥1

φ
( t− i∆n

kn∆n

)
(∆n

i X)2. (8.7)

Although φ could be arbitrary, usually it is chosen with compact support,

say [−1, 1] or [0, 1], in which case the above sum is finite. The näıve

estimator 1
kn∆n

∑[t/∆n]+kn
i=[t/∆n]+1(∆

n
i X)2 is the kernel estimator with K(x) =

1(0,1](x).

Basically, the previous discussion applies for all kernel estimators, at

least with kernels having a bounded support. Now, in non-parametric

estimation it is usually the case that taking a well-behaved kernel, in

connection with the smoothness of the function to estimate, improves

things, such as the rate of convergence of the estimators. However, two

additional remarks are in order here:

Remark 8.2. If the function to estimate is Cm+ρ, meaning m times

differentiable, with ρ-Hölder mth derivative, taking a kernel satisfying∫
xj φ(x) dx = 0 for j = 1, . . . ,m − 1 improves the rate. But, here, the

function (or path) t 7→ ct is typically behaving (in “expectation,” as ex-

plained before) as if it were Hölder with exponent 1
2 ; so all (piecewise

continuous) kernels give the same convergence rate.

Remark 8.3. The rate is thus in fact given by (8.5), in all cases of

interest. Without much loss of generality we can take kn ≍ 1/∆τ
n for

some τ ∈ (0, 1), hence the fastest rate is 1/∆
ρ/(1+2ρ)
n , corresponding to

taking τ = 2ρ
1+2ρ . With this optimal choice for τ , an appropriate choice of

the kernel results in a smaller asymptotic estimation variance, provided

of course that the variables (ĉnt − ct)/∆
ρ/(1+2ρ)
n actually converge in law.

However, such a convergence is not guaranteed and, even if it holds (as it

will under the stronger assumptions made below), the asymptotic variance

cannot be practically estimated and deriving confidence bounds is thus

impossible.

With a suboptimal value τ < 2ρ
1+2ρ , in contrast, we will see that we al-

ways obtain a Central Limit Theorem, with an asymptotic variance which

can be estimated, hence allowing us to construct confidence bounds. But,

in this case, it turns out that the minimal asymptotic variance is indeed

achieved by kernels which are indicator functions of intervals, whereas all

other kernels give bigger asymptotic variances, see Remark 8.10 below.
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Consequently, and although a large amount of the literature about

spot volatility estimation is about kernel estimators with more or less

general kernels, we consider the use below of the “näıve” kernel φ(x) =

1(0,1](x) better.

8.1.2 Consistent Estimation

At this stage, we define the spot volatility estimators which will be used

later on, and we use the näıve approach (8.2). There are several possible

versions, according to the choice of Ĉnt , which in turn depends on whether

X is continuous. Moreover, again following the previous discussion, we

may want to estimate ct, or ct−, resulting in two possible estimators.

We choose a sequence of integers kn satisfying (at least) (8.3). We also

choose a sequence un ≍ ∆̟
n of truncation levels, with 0 < ̟ < 1

2 , see

(6.23), and define componentwise the following M+
d -valued variables, as

in (6.17) and (6.31):

ĉ(kn)
jl
i = 1

kn∆n

kn−1∑
m=0

∆n
i+mX

j∆n
i+mX

l

ĉ(kn, un)
jl
i = 1

kn∆n

kn−1∑
m=0

∆n
i+mX

j ∆n
i+mX

l 1{‖∆n
i+mX‖≤un}

(8.8)

There is also a version based on multipowers, which we give in the one-

dimensional case only (since multipowers are designed for this case). For

any integer k ≥ 2 this is

ĉ(kn, [k])i =
1

(m2/k)k kn∆n

kn−1∑

m=0

|∆n
i+mX |2/k · · · |∆n

i+m+k−1X |2/k.

All these variables are a priori defined for all i ≥ 1, but it will prove

handy to extend the definition to all relative integers i ∈ Z by the same

formulas, with the convention

∆n
i X = 0 if i ≤ 0. (8.9)

Since the first estimators ĉ(kn)i are not suitable when X has jumps

(see, however, Remark 8.5 below), and since the multipower estimators

are (theoretically) not as good as the truncated ones, we will pursue

the discussion with ĉ(kn, un)i only. But it should be understood that

similar statements are valid for the other two estimators as well, plus X

continuous for the first one.

The variable ĉ(kn, un)i is an estimator for ct at time t = i∆n; this

statement does not make much sense if i is fixed, because then i∆n goes
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to 0 and ĉ(kn, un)i is really an estimator for c0. To straighten things up,

we set

ĉ(t; kn, un) = ĉ(kn, un)i+1

ĉ(t−; kn, un) = ĉ(kn, un)i−kn .

}
if (i − 1)∆n < t ≤ i∆n. (8.10)

According to the convention (8.9), this is defined for all t ∈ R, and totally

uninteresting when t < 0. When t = 0 only ĉ(t; kn, un) is meaningful.

When t > 0, we have i − kn ≥ 1 for all n large enough in (8.10). These

estimators are usually called local spot volatility estimators, by opposition

to global estimators, to be introduced later.

The notation (8.10) also applies when t = S(ω) is a random time.

Then, according to Theorem A.6 of Appendix A, for any stopping time

S we have

{
ĉ(S; kn, un)

P−→ cS on the set {S <∞}
ĉ(S−; kn, un)

P−→ cS− on the set {0 < S <∞}.
(8.11)

Remark 8.4. This applies in particular for S = t, a deterministic pos-

itive time. In this case, as soon as the process c has no fixed time of

discontinuity, we have ct− = ct almost surely. We can therefore use ei-

ther ĉ(t; kn, un) or ĉ(t−; kn, un) to estimate ct, and for that matter we

could even use ĉ(kn, un)i(n,t) for any sequence i(n, t) of integers such that

t/∆n − pkn ≤ i(n, t) ≤ t/∆n + pkn, for any fixed p ≥ 1.

Remark 8.5. As said before, (8.11) holds for the estimators based on

the multipowers ĉ(kn, [k])i, and for those based on ĉ(kn)i when X is con-

tinuous. More surprisingly it holds as well for ĉ(kn)i when X jumps,

provided S = t is deterministic, or is an arbitrary stopping time for the

first convergence, or is a jump time of X for the second convergence; this

is due to the fact that, for example in the case S is a jump time (last

case above), the contribution of the jumps occurring in the time interval

(S, S+(kn+1)∆n] is asymptotically negligible in front of the contribution

of the Brownian part. The CLT stated below, though, does not hold with

ĉ(kn)i when X is discontinuous.

8.1.3 Central Limit Theorem

According to the discussion in Subsection 8.1.1 and in particular to the

comments after (8.6), we assume that c (or σ) is itself an Itô semimartin-

gale. It is useful to have a “joint” Grigelionis representation for X , to-

gether with c and/or σ. That is, we are given a d′-dimensional Brownian
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motion W and a Poisson measure p on R+ × E, with intensity measure

q(dt, dx) = dt⊗ λ(dx), and we have

Xt = X0 +
∫ t
0 bs ds+

∫ t
0 σs dWs

+ (δ1{‖δ‖≤1}) ⋆ (p− q)t + (δ1{‖δ‖>1}) ⋆ pt
σt = σ0 +

∫ t
0 b

(σ)
s ds+

∫ t
0 σ

(σ)
s dWs

+ (δ(σ)1{‖δ(σ)‖≤1}) ⋆ (p− q)t + (δ(σ) 1{‖δ(σ)‖>1}) ⋆ pt
ct = c0 +

∫ t
0 b

(c)
s ds+

∫ t
0 σ

(c)
s dWs

+ (δ(c) 1{‖δ(c)‖≤1}) ⋆ (p− q)t + (δ(c) 1{‖δ(c)‖>1}) ⋆ pt.

(8.12)

We use here a matrix-type notation, and perhaps it is useful to recall

the dimension of the various coefficients (below the indices run through

{1, . . . , d} for i, j, k and through {1, . . . , d′} for l,m)

• X = (X i), b = (bi), δ = (δi) are d -dimensional

• σ = (σil), b(σ) = (bσ,il), δ(σ) = (δ(σ),il) are d× d′ -dimensional

• c = (cij), b(c) = (b(c),ij), δ(c) = (δ(c),ij) are d× d-dimensional

• σ(σ) = (σ(σ),il,m) is d× d′ × d′-dimensional

• σ(c) = (σ(c),ij,l) is d× d× d′-dimensional.

In (8.12) the third equation is a consequence of the second one, by

c = σσ∗ and Itô’s formula. Therefore any assumption made on the

coefficients of the second equation automatically translate into an as-

sumption on the coefficients of the third one, whereas the other way

around is not necessarily true, in case the matrix ct is degenerate at

some points. One could express b(c), σ(c), δ(c) as (deterministic) functions

of σ, b(σ), σ(σ), δ(σ), but we do not need this now.

The formulation (8.12) allows us to easily express not only the inte-

grated volatility of X (the second characteristic Ct =
∫ t
0 cs ds), but also

the (integrated and spot) volatility of the volatility c, and co-volatility

between X and c:

C
(c)
t =

∫ t
0 c

(c)
s ds, where c

(c),ij,i′j′

s =
∑d′

l=1 σ
(c),ij,l
s σ

(c),i′j′,l
s ,

C
(X,c)
t =

∫ t
0 c

(X,c)
s ds, where c

(X,c),i,i′j′

s =
∑d′

l=1 σ
il
s σ

(c),i′j′,l
s .

(8.13)

Concerning the various coefficients above, we need Assumption (K-r),

which was stated on page 193 when r ≤ 1. We state it again below to

take care of the case when r > 1, and for more clarity we formulate it in

terms of all three equations (8.12), but it is equivalent to the apparently

shorter formulations given in Appendix A, and in Chapter 6 when r ≤ 1.

Namely, for any r ∈ [0, 2] we set
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Assumption (K-r). We have (8.12) and

(i) The processes b, b(σ), b(c) are locally bounded.

(ii) The processes σ(σ), σ(c) are càdlàg.

(iii) There is a sequence (τn) of stopping times increasing to ∞ and,

for each n, a deterministic nonnegative function Jn on E satisfying∫
Jn(z)λ(dz) <∞, such that if t ≤ τn(ω) then

‖δ(ω, t, z)‖r ∧ 1 ≤ Jn(z),

‖δ(σ)(ω, t, z)‖2 ∧ 1 ≤ Jn(z),

‖δ(c)(ω, t, z)‖2 ∧ 1 ≤ Jn(z).

(iv) Moreover, with the notation

b̂s =
∫
{‖δ(s,z)‖≤1} ‖δ(s, z)‖λ(dz),

S = inf
(
t :
∫ t
0 b̂s ds = ∞

)

b′t = bt −
∫
{‖δ(t,z)‖≤1} δ(t, z)λ(dz) if t ≤ S

(b̂t is well defined and [0,∞]-valued), then

sup
(ω,t): t≤τn(ω)∧S(ω)

b̂t(ω) <∞,

and the paths t 7→ b′t on [0, S], and t 7→ bt on R+ as well when further

r > 1, are either càdlàg or càglàd.

We also single out the case where X is continuous:

Assumption (KC). We have (K-2) and the process X is continuous

(which is equivalent to having δ ≡ 0, so (iv) above reduces to b being

either càdlàg or càglàg.

Now we come to the Central Limit Theorem associated with (8.11). As

said before, the estimation error ĉ(t; kn, un)−ct is the sum of a statistical

error ĉ(t; kn, un) − Φn, where Φn = 1
kn∆n

(
Ct+kn∆n − Ct

)
plus a target

error Φn − ct which, under the present assumption, is not only of order

of magnitude
√
kn∆n, but also enjoys a CLT involving the volatility of

the volatility c
(c)
t . We are thus in the situation of (8.5), with ρ = 1

2 and

a CLT holds in all three cases.

In order to state this CLT, we need to describe the limit. It is made up

of two processes Z and Z ′, defined on an extension (Ω̃, F̃ , P̃) of the proba-
bility space (Ω,F ,P), and which conditionally on F are two independent

Rd
2

-valued Gaussian white noises (that is, the values at distinct times
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are independent and centered Gaussian), with the following conditional

covariances:

Ẽ
(
Zijt Z

kl
t | F

)
= cikt c

jl
t + cilt c

jk
t , Ẽ

(
Z ′ij
t Z ′kl

t | F
)
= c

(c),ij,kl
t . (8.14)

These limits being a (conditional) white noise, they are “very bad”

processes, with for example almost all paths t 7→ Zt being not even

measurable functions, and the supremum of Z over any time interval

of positive length being almost surely infinite. Therefore a functional

convergence in law in the previous theorem is meaningless, and we rather

use the finite-dimensional stable convergence in law already mentioned

in Section 3.2 and denoted as
Lf−s−→ : we say that Y n

Lf−s−→ Y , where Y n

and Y are q-dimensional processes, if for any finite family t1 < · · · < tl
of times we have the following stable convergence in law on (Rq)l:

(
Y nt1 , · · · , Y ntl

) L−s−→
(
Yt1 , . . . , Ytl

)
.

We start with the continuous case for X , hence use the non-truncated

versions of the estimators, see (8.8):

Theorem 8.6. Under (KC) and if kn
√
∆n → β ∈ [0,∞], we have the

following finite-dimensional stable convergence in law, with Z and Z ′ as

above:

β = 0 ⇒
(√
kn
(
ĉ(t; kn)− ct

))
t≥0

Lf−s−→ (Zt)t≥0

β ∈ (0,∞) ⇒
(√
kn
(
ĉ(t; kn)− ct

))
t≥0

Lf−s−→ (Zt + βZ ′
t)t≥0

β = ∞ ⇒
(

1√
kn∆n

(
ĉ(t; kn)− ct

))
t≥0

Lf−s−→ (Z ′
t)t≥0.

(8.15)

This result is a part of Theorem 13.3.7 of Jacod and Protter (2011).

The two limiting variables have a clear interpretation: if we come back to

the discussion around (8.5), Zt is the limit of the (normalized) statistical

error
√
kn Sn, and Z ′

t the limit of
√
knDn =

√
kn

kn∆n

∫ t+kn∆n

t0 (cs − ct) ds.

Although not immediately obvious, it turns out that in the second case,

when the two errors have the same order of magnitude, they are asymp-

totically independent.

The previous theorem stays valid if we replace ĉ(t; kn) by the truncated

versions ĉ(t; kn, un), as soon as un/∆
̟
n → ∞ for some ̟ ∈

(
0, 12

)
. In

contrast, whenX is discontinuous, we need the truncated estimators, plus

some additional conditions stated below (both forthcoming theorems are

consequences of (c) of Theorem 13.3.3 of Jacod and Protter (2011)), with

an innocuous weakening of the assumption on kn when τ 6= 1
2 below.
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Theorem 8.7. Assume (K-r) for some r ∈ [0, 2). Choose un ≍ ∆̟
n and

kn ≍ 1/∆τ
n for some ̟ and τ satisfying

0 < τ ∧ (1− τ) < 2−r
r , τ∧(1−τ)

2(2−r) < ̟ < 1
2 ,

if τ = 1
2 then kn

√
∆n → β ∈ (0,∞)

(8.16)

(so 0 < τ < 1). Then we have the following finite-dimensional stable

convergence in law, with Z and Z ′ as above:

τ < 1
2 ⇒

(√
kn (ĉ(t; kn, un)− ct)

)
t≥0

Lf−s−→ (Zt)t≥0

τ = 1
2 ⇒

(√
kn (ĉ(t; kn, un)− ct)

)
t≥0

Lf−s−→ (Zt + βZ ′
t)t≥0

τ > 1
2 ⇒

(
1√
kn∆n

(ĉ(t; kn, un)− ct)
)
t≥0

Lf−s−→ (Z ′
t)t≥0.

(8.17)

We have the same convergences (8.15) and (8.17) for ĉ(t−; kn)−ct and
ĉ(t−; kn, un)−ct, upon replacing c

(c)
t by c

(c)
t− in (8.14) (recall from Remark

8.4 that ct− = ct almost surely, for any given t). We even have the joint

convergence of (ĉ(t−; kn, un)− ct, ĉ(t; kn, un)− ct), suitably normalized,

toward two (conditionally) independent white noises, although this joint

convergence is not useful in the previous context.

In contrast, the joint convergence is useful if we replace the fixed times

t above by stopping times, which may be jump times of the process

c. So below we consider a finite or countable family of finite stopping

times Sq, with pairwise disjoint graphs in the sense that Sq′ 6= Sq for

all q′ 6= q. Somewhat surprisingly, one cannot replace the t’s in (8.17)

by the Sq’s without very specific assumptions on these stopping times.

Namely, we have to assume that each one has the form Ss = sq ∧ S′
q

where sq ∈ (0,∞] is non-random and S′
q is a “jump time” of a Poisson

random measure p (for example the one driving X and σ as in (8.12)),

that is, p({S′
q}×E) = 1. Note that necessarily Sq > 0 in this framework.

For instance, this structural assumption is satisfied if we have finite

stopping times Sq such that ‖∆XSq‖+ ‖∆cSq‖ > 0.

We then have the following (when X is continuous we can also use the

non-truncated estimators):

Theorem 8.8. Under the assumptions of the previous theorem, and if

Sq is a sequence of finite stopping times satisfying the hypotheses stated
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above, we have the following stable convergence in law:

τ < 1
2 ⇒

(√
kn (ĉ(Sq−; kn, un)− cSq−),

√
kn (ĉ(Sq; kn, un)− cSq )

)
q≥1

L−s−→ (Uq−, Uq+)q≥1

τ = 1
2 ⇒

(√
kn (ĉ(Sq−; kn, un)− cSq−),

√
kn (ĉ(Sq; kn, un)− cSq )

)
q≥1

L−s−→
(
Uq− + βU ′

q−, Uq+ + βU ′
q+

)
q≥1

τ > 1
2 ⇒

(
1√
kn∆n

(ĉ(Sq−; kn, un)− cSq−),
1√
kn∆n

(ĉ(Sq; kn, un)− cSq)
)
q≥1

L−s−→
(
U ′
q−, U

′
q+

)
q≥1

where the variables Uq−, U ′
q−, Uq+, U

′
q+ are defined on an extension

(Ω̃, F̃ , P̃) of (Ω,F ,P) and, conditionally on F , are all independent cen-

tered Gaussian with covariances

Ẽ
(
U ijq− U

kl
q− | F

)
= cikSq− c

jl
Sq− + cilSq− c

jk
Sq−,

Ẽ
(
U ijq+ U

kl
q+ | F

)
= cikSq

cjlSq
+ cilSq

cjkSq
,

Ẽ
(
U ′ij
q− U

′kl
q− | F

)
= c

(c),ij,kl
Sq− ,

Ẽ
(
U ′ij
q+ U

′kl
q+ | F

)
= c

(c),ij,kl
Sq

.

When we restrict our attention to the single variable ĉ(S; kn, un) (so

there is no longer any joint convergence), the result holds for any fi-

nite stopping time (no need for p({S} × E) = 1, see Remark 13.3.2 in

Jacod and Protter (2011)). However, this is not true for the variable

ĉ(S−; kn, un).

The rate of convergence is always 1/∆
(τ∧(1−τ))/2
n , the best rate being

thus 1/∆
1/4
n , achieved with τ = 1

2 . The reader should notice the restric-

tions in (8.16). When r ≤ 4
3 , the first condition is automatically satisfied,

we can take τ = 1
2 , and a conservative choice of ̟ is any value strictly

between 3
8 and 1

2 . When r > 4
3 things are different, since τ ∧ (1 − τ)

should be chosen smaller than 2−r
r . Thus, in order to put these estima-

tors into use, we need to assume that the activity index of the jumps of

X is bounded from above by a known constant r < 2.

In case τ ≥ 1
2 the limiting variables involve c

(c)
t , which is nearly im-

possible to estimate (see Section 8.3 below, however). When τ < 1
2 ,

though, or when kn
√
∆n → 0 when X is continuous, these theorems

allow us to construct confidence intervals for ct, or cS when S is a stop-

ping time, or cS− when S is a jump time of the (d + d2)-dimensional

process (X, c), at least in restriction to the set where c does not van-

ish. For example in dimension one, for any finite stopping time S, and

in restriction to the set {cS > 0, S < ∞}, the standardized variables√
kn (ĉ(S; kn, un)−cS)/

√
2 ĉ(S; kn, un) converge stably in law to N (0, 1);
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hence, under the assumption that c does not vanish and upon taking

τ < 1
2 , a confidence interval for cS at asymptotic level α is

[
ĉ(S; kn, un)−

√
2 ĉ(S; kn, un) zα , ĉ(S; kn, un) +

√
2 ĉ(S; kn, un) zα

]
,

where zα is the symmetric α-quantile of N (0, 1).

Let us emphasize once more that this can be done for any given t or

S, or any finite family of such, but the “confidence bounds” one might be

tempted to deduce for the path t 7→ ct are genuine confidence intervals

for each fixed t, but not for the path itself.

Remark 8.9. As mentioned in Subsection 8.1.1, one can replace As-

sumption (H-2) for σ or c which is implicit in (K-r) by (8.6) (for all

components cij). Then the results of Theorems 8.7 and 8.8 hold when

τ < 2ρ
1+2ρ . When τ ≥ 2ρ

1+2ρ , though, the convergence in law is generally

not true, but we do have the convergence rate 1/∆
ρ(1−τ)
n .

Remark 8.10. All the previous results hold if we use a kernel φ on [0, 1]

which is piecewise continuous and
∫ 1
0 φ(x) dx = 1 and modify (8.8) as

follows:

ĉ(φ; kn, un)
jl
i = 1

kn∆n

×
kn−1∑
m=0

φ
(
m
kn

)
∆n
i+mX

j∆n
i+mX

l 1{‖∆n
i+mX‖≤un}

(8.18)

as in (8.7). More precisely, the results hold, upon replacing Z and Z ′ by

a(φ)Z and a′(φ)Z ′, where

a(φ)2 =

∫ 1

0
φ(x)2 dx, a′(φ) =

∫ 1

0

( ∫ 1

x
φ(y) dy

)2
dx.

In the situation of Theorem 8.6 for example, and unless φ(x) ≡ 1, we

have a(φ)2 > 1 and thus the asymptotic (conditional) variance obtained

in the case kn
√
∆n → 0 is always bigger than for the näıve version (8.8).

In contrast, when kn
√
∆n → ∞, upon choosing φ appropriately, one can

make this variance as small as one wishes to. When kn
√
∆n → β ∈

(0,∞), this variance for (8.18) may be bigger or smaller than the one

for (8.8), but in any case it can be made as close to the variance in the

case kn
√
∆n → 0 as one wishes to by choosing β small. However, since

when kn
√
∆n does not go to 0 we obtain in fact an “unfeasible” CLT

anyway, it seems that for spot volatility estimation the näıve estimators

(8.8) actually perform better than “general” kernel estimators.
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8.2 Global Methods for the Spot Volatility

Now we turn to the “global” estimation of the spot volatility, and the

shortness of this section reflects the fact that near to nothing is known

on this topic.

The kernel estimators give us a global estimation, in the sense that

the function t 7→ ĉ(t; kn, un) can be considered as an estimator of the

function t 7→ ct. However, there seems to be no result on the behavior

of the error function c̃(t; kn) − ct, except for one very interesting but

relatively restricted result.

For this result to hold, we need (KC) (so X is continuous), and the

drift bt must satisfy a condition similar to (8.6). We also need the (rather

strong, and preventing leverage) requirement that the Brownian motion

driving X is independent of the process c : in the setting of (8.12), this

amounts to saying that σijs vanishes identically for all j > j0 for some

index j0 < d′, and that the process ct is independent of (W j)1≤j≤j0 .

Then, for all T > 0, we have

the sequence
√
kn√

log(1/∆n)
supt∈[0,T ] ‖c̃(t; kn)− ct‖

is bounded in probability.
(8.19)

Another powerful global method is the Fourier-based method, as de-

scribed in Subsection 6.3.4. Like all global methods, it is not performing

so well for “point estimation” (here, the estimation of ct at a specific time

t), but it works well for “functional estimation,” that is, the estimation

of the path t 7→ ct on the interval of interest [0, T ].

Below, we assume that both X and c are continuous, so in particular

(KC) holds. The horizon T is kept fixed, and it plays a fundamental

role, as in all global methods. Let us recall the estimators (6.45) of the

(random) kth Fourier coefficient Fk(clm) of the function t 7→ clmt on the

interval [0, T ]:

F̂k(n,Nn; clm) = 1
2Nn+1

Nn∑
r=−Nn

an,l−r a
n,m
r+k,

with an,lr = 1√
2π

[T/∆n]∑
j=1

e−2iπrj∆n/T ∆n
jX

l,

(8.20)

where Nn is a sequence of integers increasing to ∞.

The idea for estimating ct is then quite simple: we pretend that

F̂k(n,Nn; clm) is really the kth Fourier coefficient, and construct the

estimator of t 7→ clmt by Fourier inversion. Using Fejer’s formula, this
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leads us to take

ĉFourier(T, n,Nn)
lm
t = 1

2Nn+1

×
Nn∑

r=−Nn

(
1− |r|

Nn

)
e2iπrt/T F̂r(n,Nn; clm)

(8.21)

which, as in (6.47), is necessarily a real, and is nonnegative when l = m.

We plug T as an argument in this estimator, to emphasize the fact that

it fundamentally depends on this terminal time, and is of course relevant

for t ≤ T only.

Then, as soon as Nn∆n → 0 we have the following uniform conver-

gence in probability (which is deduced from the convergence (6.46) for

each k, plus some estimates):

sup
t∈[0,T ]

‖ĉFourier(T, n,Nn)t − ct‖ P−→ 0. (8.22)

So far, no rate of convergence in (8.22) is available. Another, still

open, interesting (and related) question is whether we have a rate of

convergence in Lp, in the sense that

wpn

∫ T

0
|ĉFourier(T, n,Nn)lmt − clmt |p dt is bounded in probability,

for some sequence wn → ∞. Here p could be 2, or perhaps any real in

[1,∞).

8.3 Volatility of Volatility

Now that we have seen that spot volatility can be estimated, many natu-

ral questions arise: What is the quadratic variation of c, or its continuous

part (volatility of volatility) ? What is the quadratic covariation between

X and c (sometimes referred to as a measure of the leverage effect) ?

Does c jump ? Where ?

For the time being we set aside all questions about the jumps of c,

which will be examined in Part IV. In this section and the next we con-

centrate on the quadratic variation-covariation. Although results could

be derived when X and/or c have jumps, upon appropriate modifications

such as truncations and appropriate assumptions on the jumps, such as

(H-r) for X and/or c with r < 1, below we restrict our attention to the

case where both X and c are continuous.

Everything can be done for an arbitrary dimension d, at the expense

of extremely cumbersome notation. For simplicity, and also because prac-
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tical interest mainly lies in the volatility of a single asset and its connec-

tions with the asset log-price itself, we restrict our attention to the d = 1

dimensional case. Note, however, that in (8.12) we still may have d′ ≥ 2,

and we should have d′ ≥ 2 in the case of a genuine stochastic volatility,

since there should be at least two independent linear Brownian motions

to drive the pair (X, σ).

In addition to the continuity of X and c, we need some weak smooth-

ness assumptions on the drift. We gather all these in the following, where

the double “C” in the name (KCC) refers to the fact that both the log-

price process X and the volatility process σ are continuous:

Assumption (KCC). We have (8.12), the processes b, b(σ), σ(σ) are

càdlàg, and the two coefficients δ, δ(σ) vanish identically.

Then of course δ(c) also vanishes identically, and we may rewrite (8.12)

as
Xt = X0 +

∫ t
0 bs ds+

∫ t
0 σs dWs

σt = σ0 +
∫ t
0 b

(σ)
s ds+

∫ t
0 σ

(σ)
s dWs

ct = c0 +
∫ t
0 b

(c)
s ds+

∫ t
0 σ

(c)
s dWs.

(8.23)

The processes b(c) and σ(c) are also càdlàg, since the following holds

because ct =
∑d′

l=1(σ
l
t)

2:

b
(c)
t = 2

d′∑

l=1

σlt b
(σ),l
t +

d′∑

l,m=1

(σ(σ),l,m)2, σ
(c),m
t =

d′∑

l=1

σlt σ
(σ),l,m
t .

The quadratic variation of ct is then the same as (8.13), namely [c, c]t =

C
(c)
t =

∫ t
0 c

(c)
s ds with c

(c)
s =

∑d′

l=1(σ
(c),l
s )2.

The idea for estimating C
(c)
T is indeed very simple. We know that

[T/ln∆n]∑
i=1

(
ciln∆n − c(i−1)ln∆n

)2 P−→ [c, c]T

1
ln

[T/∆n]−ln+1∑
i=1

(
c(i−1+ln)∆n

− c(i−1)∆n

)2 P−→ [c, c]T

(8.24)

for any sequence ln ≥ 1 of integers such that ln∆n → 0. These conver-

gences hold with the rate of convergence 1/
√
ln∆n and an asymptotic

variance for the second estimator (slightly) less than for the first one. Of

course, if the variables ci∆n were observed we would use this with ln = 1,

which would guarantee the minimal estimation variance. This is not the

case, but it seems natural to substitute ci∆n with the estimators ĉ(kn)i
given in (8.8), without truncation because X is continuous. This leads
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us to take

̂[c, c](∆n, kn, ln)T =
1

ln

[T/∆n]−ln−kn+1∑

i=1

(
ĉ(kn)i+ln − ĉ(kn)i

)2
, (8.25)

which only depends on the observations within [0, T ], and in view of

Theorem 8.6 the optimal choice for kn is

kn ∼ β√
∆n

for some β ∈ (0,∞). (8.26)

In contrast, the choice of ln is more subtle. From the insight given by

the convergence (8.24) it might appear that taking ln = 1 is the best

choice. However, when ln < kn, basically kn − ln terms in the difference

ĉ(kn)i+ln−ĉ(kn)i cancel out; for example, if ln = 1 the estimator becomes

̂[c, c](∆n, kn, 1)T = 2
(kn∆n)2

(
B(4,∆n)T −

[T/∆n]−kn∑
i=1

(∆n
i X)2(∆n

i+kn
X)2

)

+ negligible border terms.

Hence, by virtue of (6.9) and of a relatively simple extension of Theo-

rem A.2 of Appendix A, one can show that ̂[c, c](∆n, kn, 1)T consistently

estimates 4
β2 C(4)T , and not C

(c)
T at all ! More generally, it consistently

estimates a suitable multiple of C(4)T when ln = l, and still the same

(after normalization) when ln → ∞ with ln/kn → 0.

On the contrary, ̂[c, c](∆n, kn, ln)T consistently estimates αC
(c)
T when

ln/kn → w ∈ (0,∞], for a suitable constant α > 0. To under-

stand what α is, one should be aware that ĉ(kn)i+1 is a good esti-

mator of 1
kn∆n

∫ (i+kn−1)∆n

(i−1)∆n
cs ds, rather than of ci∆n itself. Therefore,

[̂c, c](∆n, kn, ln)T is a proxy for

1

ln(kn∆n)2

[T/∆n]−ln−kn∑

i=0

( ∫ (i+ln+kn−1)∆n

(i+ln−1)∆n

csds−
∫ (i+kn−1)∆n

(i−1)∆n

csds
)2
.

We can obtain α by computing the limit of the expected value of the

above, in the case of c a martingale with constant volatility c(c) (not a

very realistic model indeed, since in this case c can become negative, but

it is enough to understand what happens). Recalling ln/kn → w ≥ 1, one

gets α = 1 − 1/3w, whereas the asymptotic minimal variance increases

when w increases, and the rate becomes 1/
√
ln∆n, slower than 1/∆

1/4
n

when w = ∞ and equivalent to 1/∆
1/4
n otherwise.

Therefore if we want an estimator that approaches C
(c)
T as fast

as possible, we should choose ln = kn, hence w = 1, and multiply
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̂[c, c](∆n, kn, ln)T by 1/α = 3/2. In other words, a proper estimator is

indeed

Ĉ(c)
n

T =
3

2kn

[T/∆n]−2kn+1∑

i=1

(
(ĉ(kn)

n
i+kn − ĉ(kn)ni )2−

4

kn
(ĉ(kn)

n
i )

2
)
(8.27)

(this is (8.25) with ln = kn, up to the multiplicative factor 3/2, plus a

de-biasing term).

We then have the following – consistency and CLT together – result

(this is proved in Appendix B, see Section B.2, as all the results in this

section):

Theorem 8.11. Assume (KCC) and take kn as in (8.26). Then for

each T > 0 we have the consistency Ĉ(c)
n

T
P−→ C

(c)
T . We also have the

following stable convergence in law:

1

∆
1/4
n

(
Ĉ(c)

n

T − C
(c)
T

) L−s−→ U (C(c))
T , (8.28)

where U (C(c))
T is a random variable defined on an extension of the space

(Ω,F ,P), which conditionally on F is centered Gaussian with variance

E((U (C(c))
T )2 | F) =

∫ T
0

(
48
β3 (cs)

4 + 12
β (cs)

2 c
(c)
s

+ 151β
70 (c

(c)
s )2

)
ds.

(8.29)

The rate 1/∆
1/4
n is optimal, in the same minimax sense as 1/∆

1/2
n is

the optimal rate for estimating the integrated volatility CT itself. To see

this, one can consider the parametric submodel for which, in (8.23), one

has bt = b̃t = σ̃t = 0 identically, and σ̃′
t = f(θ, σt) for a smooth and non-

vanishing function f depending on a real parameter θ. Then it is proved

in Hoffmann (2002) that 1/∆
1/4
n is the optimal rate for estimating θ,

hence also for estimating
∫ T
0 f(θ, σs)

2 ds.

Finally, a feasible (standardized) CLT associated with (8.28), in the

same way as Theorem 6.4, is available. For this, we need consistent esti-

mators for the right side of (8.29), which amounts to finding consistent

estimators for the quarticity C(4)t =
∫ t
0 (cs)

2 ds, and for the two variables

Ft =
∫ t
0 (cs)

2 c
(c)
s ds and Gt =

∫ t
0 (c

(c)
s )2 ds. As seen in (6.9), we know how

to estimate C(4)t. The estimation of Ft is also simple; the estimation of

Gt is more difficult. However, we are concerned here with consistent es-

timators only and, although accurate estimators are of course preferable

to poor ones, the actual rate of convergence is not our primary concern.
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Henceforth, we propose simple – and not really accurate – estimators,

globally for the right side of (8.29). We first choose a sequence ln ≥ 1 of

integers satisfying

ln ≍ 1

∆
1/4
n

. (8.30)

Note that knln∆n → 0. With kn and ln as above, we use the simplifying

notation
∆′n
i X = Xiknln∆n −X(i−1)knln∆n

,

∆′n
i ĉ = ĉ(kn)1+iknln − ĉ(kn)1+(i−1)knln ,

(8.31)

and define the estimators by

V C
(c),n

t = 1

∆
3/2
n

[t/knln∆n]−2∑
i=1

(
16

3k6nl
3
n
(∆′n

i X)4(∆′n
i+1X)4

+ 4
k3nl

2
n
(∆′n

i X)4(∆′n
i+1ĉ)

2 + 151
70 ln

(∆′n
i ĉ)

2(∆′n
i+1 ĉ)

2
)
.

(8.32)

Then we have the following, which allows us to construct confidence

intervals in the usual way:

Theorem 8.12. Under the assumptions of Theorem 8.11, we have

V C
(c),n

T
P−→ E((U (C(c))

T )2 | F) (8.33)

and thus

L
(
Ĉ(c)

n

T−C(c)
T√

V C(c),n
T

∣∣∣A
)
→ N (0, 1)

for all A ∈ F with P(A) > 0 and A ⊂ {CT + C
(c)
T > 0}.

Remark 8.13. One can show that the rate of convergence of V C
(c),n

T is

1/∆
1/8
n , quite slow indeed, and the choice (8.30) gives the best possible

rate for estimators of the form (8.31). However, these estimators still

satisfy the consistency (8.33), as long as ln → ∞ and knln∆n → 0.

Better estimators (with rate 1/∆
1/4
n ) could be constructed, according to

the scheme proposed in Section 8.5 below or to Vetter (2011), but the

proof of the consistency would be significantly more involved, and it is

not necessary for us here.

At this juncture, the reader may wonder about the difference between

the estimator (8.27) and the sum of the second summands in the estima-

tor (8.32). As is easily proved, we have the convergence

[T/knln∆n]−1∑

i=1

(∆′n
i ĉ)

2 P−→ C
(c)
T =

∫ T

0
c(c)s ds.
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The left side above and the right side of (8.27) differ in many ways,

although they estimate the same quantity. Apart from the different nor-

malization, due to the fact that the sums in the two cases extend over

different sets of integers, the expression in (8.27) is similar to the above

with ln = 1, plus a de-biasing term. De-biasing is not necessary in the

present case, because ln → ∞, but of course the rate of convergence

becomes (much) slower.

8.4 Leverage: The Covariation between X

and c

The setting is the same as in the previous section, including dimension

d = 1 and Assumption (KCC), and we now are concerned with the

estimation of the quadratic covariation [X, c] between the process X and

its volatility c, that is, C(X,c) of (8.13).

This covariation is called, or related to, the “leverage effect.” The ter-

minology originates in the fact that an asset’s volatility tends to be neg-

atively correlated with the asset’s returns. Typically, rising asset prices

are accompanied by declining volatility, and vice versa. The term “lever-

age” refers to one possible economic interpretation of this phenomenon,

developed in Black (1976) and Christie (1982): as asset prices decline,

companies become mechanically more leveraged since the relative value

of their debt rises relative to that of their equity. As a result, it is natural

to expect that their stock becomes riskier, hence more volatile. While

this is only a hypothesis, this explanation is sufficiently prevalent in the

literature that the term “leverage effect” has been adopted to describe

the statistical regularity in question. It has also been documented that

the effect is generally asymmetric: other things equal, declines in stock

prices are accompanied by larger increases in volatility than the decline in

volatility that accompanies rising stock markets (see, e.g., Nelson (1991)

and Engle and Ng (1993)). Various discrete-time models with a leverage

effect have been estimated by Yu (2005).

The magnitude of the effect, however, seems too large to be at-

tributable solely to an increase in financial leverage: Figlewski and Wang

(2000) noted among other findings that there is no apparent effect on

volatility when leverage changes because of a change in debt or num-

ber of shares, only when stock prices change, which questions whether

the effect is linked to financial leverage at all. As always, correlation

does not imply causality. Alternative economic interpretations have been



280 Chapter 8

suggested: an anticipated increase in volatility requires a higher rate of

return from the asset, which can only be produced by a fall in the asset

price (see, e.g., French et al. (1987) and Campbell and Hentschel (1992)).

The terminology somehow drifted away, and by now “leverage effect”

qualifies the connection between the behavior of the volatility c = σ2

and the log-price X , beyond the necessary connection dXs = btdt +

σtdWt. The phenomenon described above would then be reflected by the

fact that, loosely speaking, the increments of X and of c are negatively

correlated; in a more mathematical way, this amounts to saying that the

covariation [X, c] is a decreasing process: again, this property is not well

established from an empirical viewpoint, and so there is a clear necessity

of being able to estimate the variables [X, c]T and check whether they

are negative or not.

The method for estimating C
(X,c)
T is basically the same as in Section

8.3, and it can be introduced in the same way. For any sequence ln ≥ 1

such that ln∆n → 0, we have

1
ln

[T/∆n]−ln+1∑
i=1

(
X(i+ln−1)∆n

−X(i−1)∆n

)(
c(i+ln−1)∆n

− c(i−1)∆n

)

P−→ [X, c]T ,

with the rate of convergence 1/
√
ln∆n, the best choice (giving rise to the

fastest convergence rate and smallest asymptotic variance) being ln = 1.

Exactly as before, we substitute ci∆n with the estimators ĉ(kn)i+1, which

leads us to take kn satisfying (8.26) and define

[̂X, c](∆n, kn, ln)T =

1
ln

[T/∆n]−ln−kn+1∑
i=1

(
X(i+ln−1)∆n

−X(i−1)∆n

)(
ĉ(kn)i+ln − ĉ(kn)i

)
.

(8.34)

Again as in the previous section, if we take ln = 1 above we obtain

[̂X, c](∆n, kn, 1)T =
1

kn∆n

[T/∆n]−kn∑

i=1

∆n
i X

(
(∆n

i+knX)2 − (∆n
i X)2

)
.

A simple extension of Theorem A.2 of Appendix A shows that, once

multiplied by 1/
√
∆n, this converges in law to a non-trivial variable which

only depends on the volatility c and not at all on the process of interest

[X, c] = C(X,c). The same holds for any constant sequence ln = l. Hence,

in order to estimate C(X,c) we need ln ≥ kn. Then, as in the previous
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section again, (8.34) behaves like

1
lnkn∆n

[T/∆n]−ln−kn+1∑
i=1

(
X(iln+κkn−1)∆n

−X(i−1)∆n

)

×
( ∫ (i+ln+kn−1)∆n

(i+ln−1)∆n
cs ds−

∫ (i+kn−1)∆n

(i−1)∆n
cs ds

) (8.35)

where κ = 0, but we allow ourselves to use this with κ = 1 as well, since

with κ = 1 the above expression is somewhat more symmetric. Exactly

as in the previous section again, if ln/kn → w ∈ (0,∞], (8.35) converges

to αC
(X,c)
T , and for calculating α one can consider the case where both

X and c are martingales, with [X, c]t = t, in which case α is simply the

expectation of (8.35) when T = 1. This gives us α = 1− 1−κ
2w . Moreover,

the rate is 1/
√
ln∆n, slower than 1/∆

1/4
n when w = ∞ and equivalent

to 1/∆
1/4
n otherwise, and the normalized asymptotic variance increases

with w.

Consequently, the best one can do, from an asymptotic viewpoint and

for estimators similar with (8.34), is to take ln = kn, and thus to consider

the following estimator:

Ĉ(X,c)
n

T = 1
kn

[T/∆n]−2kn+1∑
i=1

(
X(i+2kn−1)∆n

−X(i−1)∆n

)

×
(
ĉ(kn)i+kn − ĉ(kn)i

)
,

(8.36)

which corresponds to taking κ = 1 above. One could also take the ver-

sion associated with κ = 0, but it turns out that because of its lack of

“symmetry” it exhibits a bigger asymptotic variance, see Remark 8.16

below.

The main result is as follows (see Section B.2 of Appendix B for the

proof of all results in the present section):

Theorem 8.14. Assume (KCC) and take kn as in (8.26). Then for

each T > 0 we have C
(X,c)
T

P−→ C
(X,c)
T and also the following stable

convergence in law:

1

∆
1/4
n

(
Ĉ(X,c)

n

T − C
(X,c)
T

) L−s−→ U (C(X,c))
T , (8.37)

where U (C(X,c))
T is a random variable defined on an extension of the space

(Ω,F ,P), which conditionally on F is centered Gaussian with variance

E((U (C(X,c))
T )2 | F) =

∫ T
0

(
8
3β (cs)

3 + 23 β
15 c

(c)
s cs

+ 23β
30 (c

(X,c)
s )2

)
ds.

(8.38)
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The rate is again 1/∆
1/4
n and, although there is no proof for this so

far, it is probably optimal, exactly as it is optimal for Theorem 8.11.

Remark 8.15. It is possible to obtain a joint Central Limit Theorem

asserting that

( 1

∆
1/4
n

(
Ĉ(c)

n

T − C
(c)
T

)
,

1

∆
1/4
n

(
Ĉ(X,c)

n

T − C
(X,c)
T

)) L−s−→
(
U (C(c))
T ,U (C(X,c))

T

)
,

with a limit which, conditionally on F , is jointly Gaussian, centered, with

(conditional) variances given by (8.29) and (8.38) and covariance

E(U (C(,c))
T U (C(X,c))

T | F) =
∫ T
0

(
5
β (cs)

2 c
(X,c)
s

+ 151β
120 c

(c)
s c

(X,c)
s

)
ds.

(8.39)

This will be proven together with the previous theorem.

Remark 8.16. As written before, one could use another version of the

estimator, corresponding to choosing κ = 0 in (8.35), and explicitly given

by

2

kn

[T∆n]−2kn+1∑

i=1

(
X(i+kn−1)∆n

−X(i−1)∆n

)(
ĉ(kn)i+kn − ĉ(kn)i

)
.

This is the estimator proposed by Wang and Mykland (2012). It enjoys

the same properties as Ĉ(X,c)
n

T in the previous theorem, except that its

conditional variance is

∫ T

0

( 72
3β

(cs)
3 +

64 β

15
c(c)s cs +

4 β

5
(c(X,c)s )2

)
ds,

which is always bigger than the variance given in (8.38).

Notice also that these authors propose to replace ĉ(kn)i in (8.36) by

ĉ(kn)
′
i =

1

kn∆n

kn−1∑

m=0

(
∆n
i+mX −∆

n
i X
)2
,

where

∆
n
i X =

1

kn∆n
(X(i+kn)∆n

−Xi∆n).

The reason for this correction is that ∆
n
i X is a kind of estimator of the

drift, or of the averaged drift, over the interval [(i−1)∆n, (i+kn−1)∆n].

It turns out that, asymptotically speaking, ĉ(kn)
′
i has exactly the same

properties as ĉ(kn)i in (8.10) and in Theorem 8.7 or 8.8, as is fairly easy
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to check. However, although we are in a situation where no consistent

estimation of the drift is possible, “on average” the correcting variables

∆
n

i X are proper de-biasing terms, and making this correction is probably

advisable.

Note that the same correction could also be applied to the estimators

Ĉ(c)
n

T of (8.27).

A feasible (standardized) CLT is associated with (8.37). Namely, with

(8.30) and the notation (8.31), we set

V C
(X,c),n

T = 1

∆
3/2
n

[T/knln∆n]−2∑
i=1

(
8

9k3nl
2
n
(∆′n

i X)2(∆′n
i+1X)4

+ 23
15 ln

(∆′n
i X)2(∆′n

i+1ĉ)
2

+ 23
30 ln

∆′n
i X∆′n

i ĉ∆
′n
i+1X∆′n

i+1ĉ
)
.

(8.40)

Then we have the following, which allows us to construct confidence

intervals in the usual way:

Theorem 8.17. Under the assumptions of Theorem 8.14, we have

V C
(X,c),n

T
P−→ E((U (C(X,c))

T )2 | F) (8.41)

and thus

L
(
Ĉ(X,c)

n

T−C(X,c)
T√

V C(X,c),n
T

∣∣∣A
)
→ N (0, 1)

for all A ∈ F with P(A) > 0 and A ⊂ {CT + C
(c)
T > 0}.

Back to leverage. As mentioned before, what is usually called “leverage

effect” is not the covariation [X, c], but rather the “correlation” between

X and c. Of course, the correlation is in principle a non-random quantity,

which has very little to do with any particular outcome of the pair (X, c),

and the correlation stricto sensu has to be replaced by either one of the

two following quantities:

RT =
C

(X,c)
T√
CT C

(c)
T

, rt =
c
(X,c)
t√
ct c

(c)
t

. (8.42)

Here, rt is a kind of “spot” correlation at time t, and RT is a “global” cor-

relation (up to time T ): both are random, although in an ergodic situation

for σt and for the increments of Xt, then both RT and 1
T

∫ T
0 rs ds con-

verge to the stationary correlation between c and the returns, as T → ∞.
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Example 8.18. (Leverage in the Heston Model) In some examples, such

as the Heston model, it turns out that in (8.42) we have RT = rt = ρ

non-random, for all t, T . The stochastic volatility model of Heston (1993)

specifies:

dXt = (µ− ct/2)dt+ c
1/2
t dWt

dct = κ(α− ct)dt+ γc
1/2
t dW ′

t ,
(8.43)

where W and W ′ are two Brownian motions with correlation ρ, that is,

E(WtW
′
t ) = ρ t, and the parameters µ, α, κ and γ are constants. Note

that in this model

[X,X ]t = Ct, [X, c]t = γρCt, [c, c]t = γ2Ct, (8.44)

so that in (8.42) we have RT = rt = ρ and this number ρ summarizes

the leverage effect. Therefore, if we use the estimators Ĉ(c)
n

T and Ĉ(X,c)
n

T

for C
(c)
T and C

(X,c)
T , as well as the realized volatility estimator Ĉ(∆n)T

of (6.4) for CT , the statistic

ρ̂nT =
Ĉ(X,c)

n

T√
Ĉ(c)

n

T

√
Ĉ(∆n)T

(8.45)

is a consistent estimator for ρ, and by the delta method it enjoys a CLT

with convergence rate 1/∆
1/4
n and with stable convergence in law to a

limit which conditionally on F is centered Gaussian. We leave to the

reader the task of computing the asymptotic variance of the limit, and

also to derive consistent estimators for this (conditional) variance, so

that it becomes possible to construct confidence intervals.

This type of result is of course not restricted to the Heston model, but

holds for any model enjoying (8.44) for some constant γ.

8.5 Optimal Estimation of a Function of

Volatility

Let us recall that the problem of estimating the quarticity was only partly

solved in Chapter 6, in the sense that the proposed estimators were in

no way efficient in the sense of Remark 6.2. In this section we come back

to this question and, more generally, we consider the estimation of a

functional of the form

U(g)t =

∫ t

0
g(cs) ds
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for an arbitrary (smooth enough) test function g on the set M+
d . By

virtue of Theorem A.8 of Appendix A (applied with f ≡ 1, hence p′ = 0),

natural estimators are

U(∆n, g)t = ∆n

[t/∆n]−kn+1∑

i=1

g(ĉ(kn, un)i)

(in (A.26) the indicator function 1{‖∆n
i+kn

X‖≤un} shows up, but it is

useful only when the function f appearing there is not constant). More

specifically we have U(∆n, g)
u.c.p.
=⇒ U(g) (consistency), under (H-r) and

for any continuous function g on M+
d satisfying |g(x)| ≤ K(1 + ‖x‖p),

under any one of the following sets of conditions:

• X continuous and p ≥ 0

and either un ≡ ∞ or un ≍ ∆̟
n with 0 < ̟ < 1

2

• p < 1 and un ≡ ∞
• p ≤ 1 and un ≍ ∆̟

n with 0 < ̟ < 1
2

• p > 1 and un ≍ ∆̟
n with p−1

2p−r < ̟ < 1
2 .

(8.46)

Moreover, this is true for any sequence kn → ∞ such that kn∆n → 0.

Remark 8.19. Let us emphasize that Theorems A.2 or A.3 (for the

consistency) and A.13 or A.14 (for the CLT) give us another method

to estimate U(g)t. It consists in finding a function f on Rd, or more

generally on (Rd)k, such that g(x) = E(f(Φ1, . . . ,Φk)) where the Φj’s

are i.i.d. N (0, x). In this case,

B
′
(f,∆n)t = ∆n

[t/k∆n]∑

i=1

f
(∆n

ik−k+1X√
∆n

, . . . ,
∆n
ikX√
∆n

)

converges locally uniformly in time, in probability, to U(g), and under

appropriate assumptions a CLT holds, with rate 1/
√
∆n. This method is

the most widely used in practice, so far. For example, this is what the

estimator 1
3∆n

B(4,∆n) of the quarticity does when d = 1.

However, the asymptotic variance of these estimators is always bigger

than the one obtained in the CLT for the appropriate de-biased version

of U(∆n, g) given below. More important, perhaps, is that there does

not always exist a function f associated with g as above; for instance,

if it exists, then necessarily g is C∞. Moreover, even when it exists it

is often difficult to find, except for functions g that are of the product

form g(x) =
∏d
i,j=1(x

ij)l(i,j) (with l(i, j) nonnegative integers) or g(x) =
∏d
i,j=1 |xij |l(i,j) (with l(i, j) nonnegative reals), or linear combinations of

such products.
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In view of this remark, it is natural to try to find “optimal” estimators

for the variables U(g)t, in the sense that they achieve not only the optimal

rate 1/
√
∆n, but also the minimal asymptotic (conditional) variance.

When g(x) = x this amounts to estimating the integrated volatility, and

a simple calculation shows that in this case U(∆n, g)t is equal to the

truncated realized volatility Ĉ(∆n, un)t, plus some (negligible) border

terms. Since it is out of the question to do any better for a general

function g (even a smooth one) than for g(x) = x, we thus need at

least Assumption (H-r) for some r ∈ [0, 1), and in fact we even need the

stronger assumption (K-r).

Now, we have to choose the window size kn in the definition of the spot

volatility estimators. A natural choice seems to be kn ∼ β/
√
∆n, because

it ensures rate optimality for the spot volatility estimators, by virtue of

Theorem 8.7. With this choice, we do obtain a CLT, in the sense that
1√
∆n

(U(∆n, g)t − U(g)t) converges stably in law for each fixed t. More-

over, the limit is F -conditionally Gaussian, with the optimal (minimal)

variance which will be described below, but not centered, and the F -

conditional mean of the limit consists of four bias terms, of the following

form (in the one-dimensional case, for simplicity):

1. A first term of the form −β
2 (g(c0) + g(ct)), due to a border effect;

2. A second term of the form 1
β

∫ t
0 g

′′(cs) (cs)2 ds (with g′′ the second

derivative of g);

3. A third term of the form − β
12

∫ t
0 g

′′(cs) c
(c)
s ds, where c

(c)
t is the

volatility of the volatility;

4. A fourth term of the form β
∑
s≤tG(cs−, cs) for a suitable function

G depending on g and which vanishes on the diagonal.

It is possible to consistently estimate these four terms, and thus bias-

correct U(∆n, g) and obtain a CLT with a conditionally centered Gaus-

sian limit. Consistent estimators for the first and second terms are easy

to derive (note that the second term is of the form U(f)t for the function

f(x) = g′′(x)x2). Consistent estimators for the last two terms, involving

the volatility and the jumps of ct, are more complicated to describe, es-

pecially the last one, and also likely to have poor performances in terms

of rate, as we saw in the previous section.

Now, if we let β go to 0, we kill the first, third and fourth bias terms

and inflate the second one. Letting β → 0 indeed amounts to choosing

kn going to infinity slower than 1/
√
∆n, and it turns out that doing
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so greatly simplifies the analysis, without affecting the efficient rate and

asymptotic variance. We need, though, for kn not to go to∞ “too slowly,”

and the necessary assumptions are as such

k2n∆n → 0, k3n∆n → ∞. (8.47)

The test function g is a C3 function on M+
d , and the two first partial

derivatives are denoted as ∂jkg and ∂2jk,lmg, since any x ∈ M+
d has d2

components xjk. The family of all partial derivatives of order j is simply

denoted as ∂jg. The modified, de-biased, estimators will be

U ′(∆n, g)
n
t = ∆n

[t/∆n]−kn+1∑
i=1

(
g(ĉ(kn, un)i)

− 1
2kn

d∑
j,k,l,m=1

∂2jk,lm g(ĉ(kn, un)i)

×
(
ĉ(kn, un)

jl
i ĉ(kn, un)

km
i + ĉ(kn, un)

jm
i ĉ(kn, un)

kl
i

))
.

(8.48)

The main result of this section, proved in Section B.2 of Appendix B

(as are all results of this section), is as follows:

Theorem 8.20. Assume (K-r) for some r < 1. Let g be a C3 function

on M+
d such that

‖∂jg(x)‖ ≤ K(1 + ‖x‖(p−j)+), j = 0, 1, 2, 3 (8.49)

for some constants K > 0, p > 1. Either suppose that X is continuous

and un/∆
ǫ
n → ∞ for some ǫ ∈ [0, 1/2) (for example un ≡ ∞, so there is

no truncation at all), or suppose that

un ≍ ∆̟
n ,

2p− 1

2(2p− r)
≤ ̟ <

1

2
. (8.50)

Finally, assume (8.47) for kn. Then we have the functional stable con-

vergence in law

1√
∆n

(U ′(∆n, g)− U(g))
L−s
=⇒ Z,

where Z is a process defined on an extension (Ω̃, F̃ , (F̃t), P̃) of

(Ω,F , (Ft),P) and which, conditionally on F , is a continuous centered

Gaussian martingale with variance

Ẽ
(
(Zt)

2 | F
)
=
∑d
j,k,l,m=1

∫ t
0 ∂jkg(cs) ∂lmg(cs)

×
(
cjls c

km
s + cjms ckls

)
ds.

(8.51)
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The restriction r < 1, necessary for (8.50) to be non-empty, is exactly

the same as in Theorem 6.9 for estimating the integrated volatility of

X in the presence of jumps. Observe also that g(x) = x satisfies (8.49)

with p = 1, so (8.50) is exactly the condition on un needed in Theorem

6.9; and of course when g(x) = x the de-biasing term vanishes and, as

mentioned before, U ′(∆n, g) = U(∆n, g) is Ĉ(∆n, un)t plus negligible

border terms. The two results here and in Theorem 6.9 agree, except

that the assumptions here are stronger.

Remark 8.21. The C3 property of g is somewhat restrictive; for ex-

ample, in the one-dimensional case it rules out the power functions

g(x) = xr on [0,∞) with r ∈ (0, 3)\{1, 2}. It could be proved that, in

the one-dimensional case again, and under (P) (that is, the processes ct
and ct− do not vanish), the result still holds when g is C3 on (0,∞) and

satisfies (8.49) with an arbitrary p > 0. Here again, Assumption (P) is

also necessary for having a CLT for the functionals of Remark 8.19 (say,

with k = 1) when the test function f is C1 outside 0 only.

It is simple to make this CLT “feasible.” Indeed, we associate with g

the following function on M+
d :

h(x) =
d∑

j,k,l,m=1

∂jk g(x) ∂lm g(x)
(
xjlxkm + xjmxkl

)
,

which is continuous with h(x) ≤ K(1 + ‖x‖2p−2), and nonnegative (and

positive at each x such that ∂g(x) 6= 0). Equation (8.50) implies the last

conditions in (8.46) and we have U(∆n, h)
u.c.p.
=⇒ U(h), with U(h)t being

the right hand side of (8.51). Then we readily deduce for any T > 0

L
(
U ′(∆n,g)t−U(g)t√

∆n U(∆n,h)t

∣∣∣A
)
→ N (0, 1)

for all A ∈ F with P(A) > 0 and A ⊂ {U(h)T > 0}.

Therefore the estimators U ′(∆n, g)T are feasible, and deducing confi-

dence bounds is then straightforward, and done as for the previous anal-

ogous situations.

Example 8.22 (Quarticity). Suppose d = 1 and take g(x) = x2, so we

want to estimate the quarticity C(4)t =
∫ t
0 c

2
s ds. In this case “optimal”

estimators for the quarticity are

∆n

(
1− 2

kn

) [t/∆n]−2kn+1∑

i=1

(ĉ(kn, un)i)
2.
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The asymptotic variance is 8
∫ t
0 c

4
s ds, to be compared with the asymp-

totic variance of the more usual estimators 1
3∆n

∑[t/∆n]
i=1 (∆n

i X)4, which

is 32
3

∫ t
0 c

4
s ds.

It turns out that, in this case, the condition (8.47) is not necessary

for the CLT to hold. It is indeed enough that k2n∆n → 0 and kn → ∞.

However, this is because the second derivative of g is a constant, and in

all other cases one needs (8.47).

Example 8.23 (Quarticity in the Multidimensional Case). Now

we suppose d ≥ 1 and wish to estimate the variables of (6.6), that is,

V jk,lmt =

∫ t

0

(
cjls c

km
s + cjms ckls

)
ds.

We take g(x) = xjlxkm+xjms xkl, and a simple calculation yields that the

“optimal” estimators are

∆n

(
1− 2

kn

) [t/∆n]−2kn+1∑

i=1

(
ĉ(kn, un)

jl
i ĉ(kn, un)

km
i +ĉ(kn, un)

jm
i ĉ(kn, un)

kl
i

)
.

Here again, the condition (8.47) is not necessary, and k2n∆n → 0 and

kn → ∞ are enough.

Finally, let us come back to optimality. In the case of the toy model

Xt = σWt with σ > 0 a constant and d = 1, the MLE for estimating

U(g)T = Tg(c) is of course Tg(ĈnT/T ), which converges to U(g)t with

rate 1/
√
∆n and a limiting variable which is centered Gaussian with vari-

ance 2Tc2g′(c)2 (here g′ is the derivative of g). This is exactly the con-

ditional variance of ZT in this special case, so the estimators U(∆n, g)T
are asymptotically efficient for the toy model. They are also efficient for

the submodel described in Remark 6.2, again because they achieve the

bound provided by the convolution theorem of Clément et al. (2013).

Moreover, in view of Theorem 5.24, the restriction r < 1 is (almost) nec-

essary for having convergence with rate 1/
√
∆n, uniformly in reasonable

non-parametric families (the case r = 1 also, perhaps, allows for the same

rate, but this is not mathematically established for the time being).

8.6 State-Dependent Volatility

The setting of this section is in a sense quite special, with respect to the

rest of this book. Besides assuming X to be continuous one-dimensional,
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we suppose that it is of “Markov type.” at least as far as volatility is

concerned. That is, instead of (8.1), we suppose that

Xt = X0 +

∫ t

0
bs ds+

∫ t

0

√
f(Xs) dWs, (8.52)

where f is an unknown function on R and bt is a locally bounded optional

process. We assume throughout that f is positive and Cr for some r ≥ 1

(when r is not an integer, this means that f is [r] times differentiable,

and its [r]th derivative is locally Hölder with index r − [r]). Since bt is

locally bounded, we thus have (HC).

The aim is to estimate the function f . This is a classical non-

parametric problem, for which there exist basically two methods, exactly

as described in Section 8.1: one is global, based for example on wavelets’

decompositions, and is well-suited for the so-called adaptive estimation,

when the function f has an unknown degree of smoothness. The other one

is kernel estimation, which supposes a known minimal degree of smooth-

ness (although adaptive estimation is also feasible); this is much easier

to explain and we will concentrate on it. In any case, our aim is a simple

and quick review of this question, which in a sense is somehow marginal

with respect to the mainstream of this book, and we make no attempt

toward completeness.

Whatever method is used, estimating f at some point x on the basis

of observations within the time interval [0, T ] is of course possible only

if X visits this point before time T ; the quality of the estimation is

related with the “number of visits” of x. Actually, as for any diffusion-

type process, if Xt = x at some time t then we also have Xs = x for

infinitely (uncountably) many times s in any interval [t − ε, t + ε] with

ε > 0. So the proper version of the “number of visits” of x during the

time interval [0, t] is the local time Lxt at level x and time t. We recall

(see for example Protter (2004)) that a version of the local time is the

process

Lxt = |Xt − x| − |X0 − x| −
∫ t

0
sign (Xs − x) dXs. (8.53)

With this definition of local time, the density of the occupation measure

at time t is x 7→ Lxt /f(x), that is,
∫ t
0 1A(Xs) ds =

∫
A

Lx
t

f(x) dx for any

Borel set A. Thus, we consider estimating f(x) at some point x only if

we are inside the following subset of Ω, implicitly depending on the time

horizon T :

Ω(x,w) = {ω : LxT (ω) ≥ wT f(x)} (8.54)
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where w > 0 is arbitrarily chosen: the estimation is done only if the time

spent by X around x, in the time interval [0, T ], is more than a minimal

value “measured” by w. On the other hand, if we want a “functional”

estimation of f over a subset A of R, we restrict our attention to the set

Ω(w)A = ∩x∈A Ω(x,w). (8.55)

If A is included into an open interval (y, z), the set on which the path

t 7→ Xt for t ∈ [0, T ] hits both points y and z is included into the union

∪w>0Ω(w)A; so, despite the fact that the intersection (8.55) defining

Ω(w)A is uncountable, this set is typically not empty when w > 0 is

small enough.

To perform the estimation, we choose a function g on R, the kernel,

satisfying

• g is continuously differentiable with support in [−1, 1]

•
∫

R
g(x) dx = 1.

For any x ∈ R we consider the processes

V (x,∆n)t =
√
∆n

∑[t/∆n]
i=1 g

(X(i−1)∆n−x√
∆n

)

V ′(x,∆n)t =
1√
∆n

∑[t/∆n]
i=1 g

(X(i−1)∆n−x√
∆n

)
(∆n

i X)2.

For any w > 0 we also define the stopping times

Sn(x,w) = T ∧ inf(s : V (x,∆n)T ≥ wT ).

The estimator of f(y) involves the preceding processes for all x on a

grid of mesh
√
∆n, and at a distance of y smaller than ∆

1/(1+2r)
n . To this

effect, we set znj = 2j
√
∆n for j ∈ Z. If x ∈ R, we set jn(x) = sup(j ∈ Z :

znj ≤ x) and vn =
[
∆

(2r−1)/(2+4r)
n

]
. Then we choose numbers (ξnj ) such

that
∑vn
j=−vn ξ

n
j = 1 + 2vn, supj,n |ξnj | <∞

i = 1, · · · , [r] ⇒ ∑vn
j=−vn ξ

n
j j

i = 0.
(8.56)

(Such a choice is clearly possible.) The point estimator at x is then

f̂(x)
n

T =
1

vn

vn∑

j=−vn
ξnj
V ′(znjn(x)+j , w,∆n)T∧Sn(x,w)

V (znjn(x)+j, w,∆n)T∧Sn(x,w)
. (8.57)

The key point here is that the processes V (x,∆n) converge in the

u.c.p. sense to 1
f(x) L

x, so for w > 0 the following sets are related to the

sets in (8.54) and (8.55):

Ω(x,w)n = ∩vnj=−vn{V (znjn(x)+j,∆n)T ≥ w},
Ω(w)nA,n = ∩x∈AΩ(x,w)n,
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and those subsets only depend on the observations at stage n. The re-

sults, proved in Jacod (2000), are as follows, where F △ G denotes the

symmetrical difference between two sets F and G:

Theorem 8.24. Suppose that f is Cr for some r ≥ 1 and is positive,

and that bt is locally bounded, in the model (8.52). Let w > 0 and A be

a compact subset of R and t > 0.

a) We have supx∈A P(Ω(x,w)n △ Ω(x,w)) → 0 and P(Ω(w)A,n △

Ω(w)A) → 0.

b) The variables 1

∆
r/(1+2r)
n

(f̂(x)
n

T − f(x)), in restriction to the set

Ω(x,w), or equivalently to the sets Ω(x,w)n, are bounded in probabil-

ity, uniformly in n ∈ N and in x ∈ A.

c) For any p ≥ 1 the variables
∫
A

∣∣ 1

∆
r/(1+2r)
n

(f̂(x)
n

T − f(x))
∣∣p dx, in

restriction to the set Ω(w)A, or equivalently to the sets Ω(w)A,n, are

bounded in probability, uniformly in n ∈ N and in x ∈ A.

The claims (b) and (c) with the sets Ω(x,w) and Ω(w)A remain true

when g is only bounded with support in [−1, 1]. Then if we take g(x) =
1
21[−1,1](x), the stopping procedure involved in (8.57) simply amounts to

stopping the two processes V (x,∆n) and V ′(x,∆n) at the time where

2w/
√
∆n observations of X have been found inside the interval [x −√

∆n, x+
√
∆n].

Note that, on the set Ω(x,w)n, the variable V (x,w,∆n)T∧Sn(x,w) is

approximately equal to wT , allowing us control of the denominator in

(8.57); this is why one stops the processes. Although necessary for the

proof, this trick is damageable because it leads us to discard some ob-

servations, which has no effect on the convergence rate, but using all

available data should give better estimators.

The choice of w is rather arbitrary: the bigger w, the smaller the

error, but on the other hand if w increases, the “useful” set Ω(x,w) on

which estimation is possible shrinks. The choice of the ξnj in (8.56) is also

relatively arbitrary. Here is an example of possible choice: if 1 ≤ r < 2,

take ξnj = 1 for all j. If r ≥ 2, let q = [r/2] and δn = [(vn − 1)/2(q + 1)];

then take ξn0 = 1 and ξnj = αnm if m = 0, . . . , q and mδn < |j| ≤ (m+1)δn
and ξnj = 0 if |j| > (q + 1)δn, where the αnm for m = 0, . . . , q are the

unique solutions of the system of q + 1 linear equations:

q∑

m=0

αnm =
vn − 1

2δn
,

q∑

m=0

αnm

(m+1)δn∑

j=mδn+1

j2i = 0, i = 1, . . . , q.
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Remark 8.25. The rate, for the point estimation and the functional

estimation (respectively (b) and (c) of the theorem), is the usual non-

parametric rate obtained in density estimation, for example. And it can

be shown that it is the optimal (minimax) rate.

On the other hand, the major drawback of what precedes is the lack of

a Central Limit Theorem for the point estimators.

Remark 8.26. There exist estimators for f which enjoy a Central Limit

Theorem, at any point x (again, conditional on the fact that X visits the

state x before time t), see Florens-Zmirou (1993). However, for this one

needs r ≥ 2 (a very slight restriction), and more importantly the rate is

1/∆
1/3
n , not depending on r and always slower than 1/∆

r/(2+r)
n .

8.7 Spot Volatility and Microstructure

Noise

All methods described so far in this chapter suppose that the underlying

process is observed without noise. However, for spot volatility one needs

data recorded at much higher frequency than for integrated volatility, in

order to obtain reasonably accurate estimators. In practice, this means

that we have to cope with the fact that data are noisy even more than

for estimating integrated volatility.

We thus devote this last section to this problem. Quite a few au-

thors have examined the question, but the given answers are often with

a “qualitative” flavor, without clear-cut conditions, or only stating the

consistency of the estimators, without attempts to reach a convergence

rate.

As a consequence, we will be rather brief and, after a few comments

on the Fourier-based method, will mainly focus on the method explained

in Section 8.1. We totally skip the extension of Sections 8.3–8.6 to the

noisy case. We suppose that X is d-dimensional and continuous, and

more precisely satisfies (KC).

In principle, the Fourier-based method is quite appropriate for auto-

matically eliminating the microstructure noise, at least when the noise

is additive, that is, (WN) holds. The reason is as follows: the Fourier co-

efficients (8.20) of the observed noisy process are the sum of the Fourier

coefficients of the (unobserved) process X , plus those of the (again un-

observed) noise itself, plus a “cross term” (because the coefficients are

quadratic functions of the observations) which turns out to be negligible

in front of the others. Since the noise is assumed to be white, its Fourier
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coefficients are “small” at low frequency (that is, for small values of the

coefficient index k). Since in (8.21) one restricts the sum to the coeffi-

cients with index smaller than Nn, one thus “automatically” eliminates

the noise, as long as Nn is not too large.

Of course, Nn should go to infinity, so there is an optimal choice

of Nn balancing the approximation error (the discrepancy between the

finite sum and its limit for the non-noisy case), and the error due to the

presence of noise.

In any case, upon appropriately choosing Nn, it can be shown that

the estimators (8.21) are robust against noise: if in (8.20) one plugs the

observed noisy returns instead of ∆n
i X , then ĉFourier(T, n,Nn)

lm
t still

converges to ct, and even satisfies (8.22). Unfortunately, so far one does

not know exactly the rate of convergence (at each t, or uniform over

t ∈ [0, T ]), in connection with the choice of Nn.

Let us now turn to the local estimators of ct. In principle, one can

de-noise the data by using any of the methods described in the previous

chapter. We focus on the pre-averaging method, but probably the quasi-

likelihood method works well in this case also, because “locally” the

processes ct and γt (conditional variance of the noise) are approximately

constant, at least in many instances. This allows us to use the relatively

weak Assumption (GN), for which we refer to page 221. For simplicity

we only consider the (most useful) case of non-shrinking noise, that is,

η = 0. At stage n the observations are

Y ni = Xi∆n + χi∆n ,

and we use the notation ∆n
i Y

l = Y ni − Y n,li−1 as before, with Y n,li the lth

component of Y ni .

For pre-averaging we choose a function g satisfying (7.43), so it is

continuous, null outside (0, 1), piecewise C1 with a piecewise Lipschitz

derivative g′. We also use a sequence kn of integers satisfying (7.42) with

η = 0 and η′ = 1
2 (which gives the best rate), that is, kn = 1/θ

√
∆n+

o(1/∆
1/4
n ), where θ > 0 is fixed. Then we set

Y
n,l

i =
∑kn−1
j=1 g

( j
kn

)
∆n
i+j−1Y

l,

Ŷ n,lmi =
∑kn
j=1

(
g
( j
kn

)
− g
( j−1
kn

))2
∆n
i+j−1Y

l∆n
i+j−1Y

m.

With φkn(g) =
∑kn
i=1 |g(i/kn)|2, we recall the pre-averaged estimator

(7.76) of integrated volatility:

ĈPreav(∆n, kn, g)
lm
t = 1

φkn (g)
t

t−kn
×∑[t/∆n]−kn+1

i=1

(
Y
n,l

i Y
n,m

i − 1
2 Ŷ

n,lm
i

)
.

(8.58)
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Since X is continuous, those consistently estimate Clmt and enjoy a CLT

with rate 1/∆
1/4
n .

For estimating ct we utilize the heuristic approach of Subsection 8.1.2,

based on (8.2) with Ĉnt = ĈPreav(∆n, kn, g)t, thus using 1
sn

(Ĉnt+sn −
Ĉnt ). As before, one must choose sn → 0 appropriately. For this, we

observe that the normalized difference above is actually an estimator of
1
sn

(Ct+sn −Ct), and we thus have a target error (the difference between

this and ct) of order
√
sn. On the other hand Theorem 7.32 with η′ = 1

2

implies that the statistical error 1
sn

(
(Ĉnt+sn − Ĉnt ) − (Ct+sn − Ct)

)
has

approximately the same law as
∆1/4

n

sn
(Unoise
t+sn − Unoise

t ), whose order of

magnitude is ∆
1/4
n /

√
sn. Equalling the rates of the two kinds of errors

leads us to take sn ≍ ∆
1/4
n , or equivalently sn = hn∆n with a sequence

hn of integers behaving as 1/∆
3/4
n and providing us with the overall rate

1/∆
1/8
n . We can also take a different behavior for hn or sn, leading to

sub-optimal rates, although in any case we must impose hn/kn → ∞ and

hn∆n → 0.

Before giving the estimators we state two further remarks.

Remark 8.27. In (8.58) the factor t
t−kn accounts for the “wrong” num-

ber of summands, but for the spot volatility, and exactly as (7.62), this

problem does not occur, hence this factor is omitted.

Remark 8.28. Second, the term 1
2 Ŷ

n
i is a de-biasing term which, when

[t/∆n] < i ≤ [(t + sn)/∆n] and sn is small, is approximately equal to
a
kn
γt for some constant a depending on g (recall that γt is the conditional

variance of the noise at time t and is càdlàg). Since φkn(g) ≍ kn, the

contribution of these de-biasing terms to the ratio 1
sn

(Ĉnt+sn − Ĉnt ) is of

order sn/k
2
n∆n ≍ sn, in all cases negligible in front of the expected rate of

convergence. Therefore, one can propose the following estimators, where

by a convention analogous to (8.9) we set Y
n
i = 0 when i ≤ 0:

ĉPreav(kn, hn)
lm
i =

1

hn∆n φkn(g)

i+hn−1∑

j=i

Y
n,l
i+j+kn Y

n,m
i+j+kn (8.59)

and, if (i − 1)∆n < t ≤ i∆n,

ĉPreav(t; kn, hn) = ĉPreav(kn, hn)i+1

ĉPreav(t−; kn, hn) = ĉPreav(kn, hn)i−(hn+1)kn .

Formula (8.59) is the same as in (7.62), up to the de-biasing term, and

with different upper and lower limits in the sum (hence a different nor-

malization as well); however, it would not hurt to keep the de-biasing

term.
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At this point, one can fairly easily straighten out the previous heuristic

argument and obtain a CLT analogous to Theorem 8.6, hence de facto

the consistency. We need to modify the characterization of the variables

Zt to incorporate the variance given by (7.77), whereas Z ′
t is unchanged.

Namely, with the notation (7.78), we simply replace the first property

(8.14) by

Ẽ
(
Zijt Z

kl
t | F

)
=

1

θ
Rij,kl(g; ct, θ

2γt).

Then, under (KC) and (GN) one can show that, similar to (8.15) but

unfortunately with much slower rates, as necessarily hn∆n → 0 and

hn
√
∆n → ∞, and assuming hn∆

3/4
n → β ∈ [0,∞]:

β = 0 ⇒
(
h
1/2
n ∆

1/4
n (ĉPreav(t; kn, hn)− ct)

)
t≥0

Lf−s−→ (Zt)t≥0

β ∈ (0,∞) ⇒
(
h
1/2
n ∆

1/4
n (ĉPreav(t; kn, hn)− ct)

)
t≥0

Lf−s−→ (Zt + βZ ′
t)t≥0

β = ∞ ⇒
(

1√
hn∆n

(ĉPreav(t; kn, hn)− ct)
)
t≥0

Lf−s−→ (Z ′
t)t≥0.

Once more, the fastest rate corresponds to the (basically unfeasible) sec-

ond case above, and is 1/∆
1/8
n , not very fast indeed. Similar properties

hold for the left-hand estimators ĉPreav(t−; kn, hn), and also for spot es-

timators evaluated at a stopping time.

A noticeable characteristic of this result is that the choices of the two

sequences kn and hn are independent: we take kn ∼ 1/θ
√
∆n and θ

appears in the characterization of Z. We take hn independently, such

as hn ∼ β/∆
3/4
n , or close to this, depending on whether one requires a

feasible estimator or not.

8.8 References

Estimation of the spot volatility started in a Markov setting (continuous

diffusion processes), in which case it amounts to estimating the diffusion

coefficient, and corresponds to state-dependent volatility. In this setting,

parametric estimation is a classic topic, non-parametric estimation is

more recent and started (in the case of discrete observations on a finite

time interval) with Genon-Catalot et al. (1992), Hoffmann (1999a,b) for

wavelets methods, and Florens-Zmirou (1993), who uses kernel estima-

tors. In Section 8.6 here, we follow Jacod (2000), which provides rate

improvements on the previously quoted paper, whereas Jiang and Knight

(1997) contains comparable results, based on the same method. In this

setting, Renò (2008) uses a Fourier-based method.
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For general continuous Itô semimartingales without noise, the first

paper about estimating spot volatility seems to be Foster and Nelson

(1996), which basically uses the method explained in Section 8.1, under

the name of rolling volatility estimators; see also Andreou and Ghysels

(2002) and Kristensen (2010). The treatment here follows Section 13.3 of

Jacod and Protter (2011), other papers being for example Fan and Wang

(2008), which contains the global statement (8.19), Ogawa and Hoang-

Long (2010), Alvarez et al. (2012), and Bandi and Renò (2011). For a

thorough study with general kernel-type estimators, combining local and

global estimation, one can consult Mancini et al. (2012). The main aim of

these papers is estimating spot volatility, but in many other places such

an estimation (without an associated rate of convergence) is performed

as a tool for solving other problems: see for example Mykland and Zhang

(2008), Lee and Mykland (2008), Aı̈t-Sahalia and Jacod (2009b) and Bos

et al. (2012).

The Fourier-based method for spot volatility, without or with noise,

is discussed in Malliavin and Mancino (2009) and Mancino and Sanfelici

(2008, 2011). Local estimators in the presence of noise are studied for

example in Kalnina and Linton (2008), Ogawa and Sanfelici (2011) and

Zu and Boswijk (2014). Wavelets methods have been used in Hoffmann

et al. (2012).

Apart from the early paper by Gloter (2000), where in a semi-

parametric setting the parameter in the volatility of volatility is esti-

mated, estimation of the quadratic variation and covariation [c, c] and

[X, c] and related questions are rather recent, and one can quote Vetter

(2011), Wang and Mykland (2012) (who also consider the case of noisy

data), Aı̈t-Sahalia et al. (2013), Vetter (2012) for a slightly different but

related problem, and Bandi and Renò (2012). Dufour et al. (2012) sepa-

rate the leverage and the volatility feedback effects.

A functional method for estimating trajectories of volatility is pro-

posed by Müller et al. (2011). Dahlhaus and Neddermeyer (2013) employ

a particle filter.

For the efficient estimation of integrals of functions of the volatility

we follow Jacod and Rosenbaum (2013), and the convolution theorem

which serves to establish efficiency is in Clément et al. (2013). Let us also

mention that Mykland and Zhang (2009) have proposed using the same

method, with kn = k a constant; for the quarticity or more generally for

estimating C(p)t, they obtain a CLT with rate 1/
√
∆n and an asymptotic

variance which approaches the optimal when k is large.





Chapter 9

Volatility and Irregularly

Spaced Observations

Up to now, we only considered regularly spaced observation times. This

is pertinent in many cases, like in physical or biological sciences where

measurement devices are set to record data every minute, or second,

or millisecond. In finance, this is also pertinent for indices, which are

computed often, but typically at regular times.

For asset prices, things are different. For example transaction prices

are recorded at actual transaction times, these times being also recorded

(in principle, although there might be some delays or approximations,

see Chapter 2). So, at least theoretically, we observe the values of X at

successive times Si, as well as the times Si themselves. Here, Si < Si+1,

and Si → ∞ as i→ ∞ because there are only finitely many transactions

occurring before any finite time.

There are mainly two ways of dealing with this question. The first is

to pretend that the observations occur at regular times i∆n, with Xi∆n

being set equal to XSj for the largest Sj smaller than or equal to i∆n. An

error is involved here, but if the asset is very liquid and ∆n moderately

small, the difference i∆n − Sj is typically small in front of ∆n, hence

the error is small, hopefully negligible. This method is quite common

in practice: it is easy to implement and has the additional advantage of

weakening the impact of microstructure noise by downsampling.

However, this method has a fundamental drawback: it uses only a

small part of the data (for instance, if an average of 10 transactions

occur in intervals of length ∆n, we only use one tenth of the data), and

299
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thus incurs a large loss of information. It is thus fundamental to develop

statistical tools allowing the use of irregularly spaced observations.

Besides the purely mathematical difficulties, such an approach raises a

few practical or methodological problems. First, it requires users to know

exactly the times Si, which in practice is not always possible. Second, it

requires assumptions on the structure of the sequence Si; for example,

are the times irregularly spaced but non-random, or are they themselves

random? In the latter case, how are they related to the underlying X ?

Moreover, in the multivariate setting, the observation times of the various

components are usually different, and one needs to model the global

behavior of the observation times for all components at once.

As a matter of fact, many authors evoked these questions, often sug-

gesting empirical solutions, but so far relatively few actually made sig-

nificant mathematical contributions to the subject. It is nevertheless a

very active and growing (and important) field, quite far from being in a

mature stage. Therefore, our ambition in this chapter is rather modest,

and we quickly review some basic results only. These results concern first

the estimation of the integrated volatility for a one-dimensional process,

and second the estimation of the covariation process for two prices ob-

served at non-synchronous times. The only situation which we consider

is the case where the underlying process is continuous. Moreover, we as-

sume that there is no observation noise. A fully realistic approach would

necessitate a mix between the content of the previous chapter and of this

one.

In the whole chapter, except for Subsection 9.1.3, the – possibly d-

dimensional – underlying process X satisfies Assumption (HC): it is a

continuous Itô semimartingale of the form

Xt = X0 +

∫ t

0
bsds+

∫ t

0
σsdWs, (9.1)

defined on a filtered space (Ω,F , (Ft)t≥0,P) which supports the q-

dimensional Brownian motion W , and bt is a locally bounded progres-

sively measurable process, and σt an adapted càdlàg process. As usual,

ct = σtσ
∗
t , and we are (mostly) interested in the process Ct =

∫ t
0 cs ds.

Finally, let us mention that the results of this chapter are stated with-

out formal proofs, and we refer to the relevant papers for these proofs.
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9.1 Irregular Observation Times: The One-

Dimensional Case

In the real world, observation times are given once and for all. However,

exactly as in the previous chapters, we are after asymptotic results, and

thus envision the (theoretical) possibility that the frequency of observa-

tions does increase to infinity. Hence at each stage n we have strictly

increasing observation times (S(n, i) : i ≥ 0), and without restriction we

may assume S(n, 0) = 0. We associate the notation

∆(n, i) = S(n, i)− S(n, i− 1),

Nn
t = sup(i : S(n, i) ≤ t),

πnt = supi=1,··· ,Nn
t +1 ∆(n, i).

(9.2)

That is, πnt is the “mesh” up to time t, by convention sup(∅) = 0, and

Nn
t is the number of observation times within (0, t]. We will assume

throughout that, with T the time horizon,

lim
i→∞

S(n, i) = ∞ for all n, πnT
P−→ 0 as n→ ∞. (9.3)

These properties ensure that at each stage n there are finitely many

observations, and that the mesh goes to 0 as n→ ∞, thus permitting us

to obtain asymptotic results.

The underlying process X satisfies (HC), without further mention. By

analogy with our general notation ∆n
i Y of (6.2), for any process Y the

returns are still written as

∆n
i Y = YS(n,i) − YS(n,i−1).

Estimating the integrated volatility Ct, in the one-dimensional case,

say, is still apparently very simple for this observation scheme. Indeed,

by Theorem 1.14 we know that, under (9.3) and as soon as all S(n, i)

are stopping times, the realized volatility
∑Nn

t
i=1(∆

n
i X)2 converges in the

u.c.p. sense to Ct. The stopping time property of S(n, i) is totally in-

nocuous to assume, from a practical viewpoint, since an observation or

trade cannot (in principle) take place at some time which anticipates the

future.

Where things deteriorate and additional assumptions are needed is

when we want to provide a rate of convergence and exhibit a Central

Limit Theorem. We devote the next subsection to describing and com-

menting about these additional assumptions.
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9.1.1 About Irregular Sampling Schemes

To begin with, we need to decide whether we consider the sampling times

S(n, i) as being random or not, although in all cases they should be

observable. This very first question has no obvious answer, but most

authors consider random sampling schemes, which indeed makes a lot

of sense: for example one may suppose that the transaction times are

distributed according to a Poisson process, with some intensity increasing

to ∞ as n→ ∞; or one may suppose that an observation occurs as soon

as the price crosses some barriers. So below we generally assume that

the S(n, i)’s are random, which of course includes as a particular case

deterministic sampling.

Next, we have to decide whether we only allow “endogenous” sampling

(that is, S(n, i) only depends on the process X and possible covariates,

such as the volatility itself) or we allow for extra randomness in the

sampling scheme; sampling at Poisson points independent of X is an

example of the second situation, whereas sampling at hitting times is

an example of the first situation. And of course there are “mixed” cases

where sampling occurs at times S(n, i) depending on X and involving

also extra randomness, if for example one samples according to a Poisson

process modulated by the underlying X .

There are various ways of mathematically modeling these endogenous

and exogenous components, exactly as for microstructure noise. Below,

for simplicity and as we did in Chapter 7, we suppose that the S(n, i)’s

are defined on the original space Ω, but measurable with respect to a σ-

field which may be bigger than F . The structural assumptions are then

conveniently expressed as follows:

Assumption (A). The probability measure P is defined on a σ-field F ′

bigger than or equal to F and we have a filtration (F ′
t) which contains

(Ft) and with respect to which W is still a Brownian motion, and each

S(n, i) is an (F ′
t)-stopping time which, conditionally on F ′

S(n,i−1), is in-

dependent of the σ-field F , and finally (9.3) holds.

This is satisfied, under (9.3), when the S(n, i)’s are non-random (de-

terministic schemes), or when the S(n, i)’s are independent of the F
(independent schemes). It is satisfied in many other cases as well. How-

ever it rules out some a priori interesting situations: when (A) holds

and the stopping time S(n, i) is measurable with respect to F , then it is

“strongly predictable” in the sense that it is F ′
S(n,i−1)-measurable. This

is quite restrictive, excluding for example the case where the S(n, i)’s
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are the successive hitting times of a spatial grid by X , but in a financial

context it might be a reasonable assumption: an agent decides to buy or

sell at time S(n, i) on the basis of the information available before, that

is, up to the previous transaction time S(n, i− 1).

(A) is a purely structural assumption, which needs to be comple-

mented by additional requirements. One of them is that not only does the

“overall” mesh πnT go to 0, but it does so at a rate which is non-random,

and that the partial meshes πnt converge to 0 at the same rate, for all

t ∈ (0, T ]. Another one is that, at each stage n, the times S(n, i) are

sufficiently evenly distributed in time. To express these requirements, we

need a preliminary notation, where q ≥ 0 is arbitrary:

D(q)nt =

Nn
t∑

i=1

∆(n, i)q.

Note that D(0)nt = Nn
t , and D(1)nt = S(n,Nn

t ), and D(2)nt is a kind of

“quadratic variation” of the sampling intervals. We will need the follow-

ing assumption for one or several values of q, depending on the problem

at hand:

Assumption (D-q). We have (A), and there is a (necessarily nonneg-

ative) process a(q) which is progressively measurable with respect to the

filtration (Ft)t≥0, and a sequence δn of positive numbers, going to 0, such

that for all t we have

δ1−qn D(q)nt
P−→

∫ t

0
a(q)s ds. (9.4)

The normalization δ1−qn is motivated by the regular schemes S(n, i) =

i∆n, for which D(q)nt = ∆q
n[t/∆n], and which thus satisfies (D-q) for

all q ≥ 0 with δn = ∆n and a(q)t = 1. Note also that, since t − πnt ≤
D(1)nt ≤ t, (9.3) implies (D-1) with a(1)t = t, and irrespective of the

sequence δn.

Note that (D-q) for some sequence δn implies (D-q) for any other

sequence δ′n satisfying δ′n/δn → α ∈ [0,∞), and the new limit in (9.4) and

when q > 1 is then αq−1a(q), and in particular vanishes when δ′n/δn →
0; the forthcoming theorems which explicitly involve δn are true but

“empty” when the limit in (9.4) vanishes identically.

The processes D(q)n are of course connected which each other. For

instance, if 0 ≤ q < p < q′, Hölder’s inequality implies that, for any

s ≤ t,

D(p)nt −D(p)ns ≤
(
D(q)nt −D(q)ns

) q′−p
q′−q

(
D(q′)nt −D(q′)ns

) p−q
q′−q . (9.5)
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Thus, if (D-q) holds for some q 6= 1 and a sequence δn, then if 1 < p < q

or q < p < 1, and from any subsequence, one may extract a further

subsequence which satisfies (D-p) with the same δn, and we have versions

of a(q) and a(p) satisfying a(p)t ≤ a(q)
(p−1)/(q−1)
t .

For a deterministic scheme, (D-q) may or may not be satisfied, but

there is no simple criterion ensuring that it holds when q 6= 1. No general

criterion for random schemes exists either, but it is possible to describe

a reasonably large class of random schemes for which this assumption

holds. These schemes are called mixed renewal schemes and are con-

structed as follows: we consider a double sequence (ε(n, i) : i, n ≥ 1) of

i.i.d. positive variables on (Ω,F ′,P), independent of F , with moments

m′
q = E(ε(n, i)q).

We may have m′
q = ∞ for q > 1, but we assume m′

1 < ∞. We also have

a sequence vn of positive (Ft)-progressively measurable processes such

that both vn and 1/vn are locally bounded, and a sequence δn of positive

numbers, going to 0. The sampling times S(n, i) are defined by induction

on i as follows:

S(n, 0) = 0, S(n, i+ 1) = S(n, i) + δn v
n
S(n,i) ε(n, i+ 1). (9.6)

The following lemma, showing some connections between the various

hypotheses above, is simple to prove:

Lemma 9.1. Any mixed renewal scheme satisfies (A). If further the

processes vn in (9.6) converge in the u.c.p. sense to a càdlàg process v

such that both v and v− do not vanish, and if m′
q < ∞ for some q ≥ 1

(this is always true for q = 1), then (D-p) holds for all p ∈ (0, q] with

a(p)t =
m′

p

m′
1
(vt)

p−1 and the same sequence δn as in (9.6).

Example 9.2. When the ε(n, i) above are exponential with parameter

1 and vn ≡ 1, the times (S(n, i) : i ≥ 1) form a Poisson process with

parameter 1/δn, independent of F , and we have independent Poisson

sampling. When vn is not constant, it becomes a kind of “modulated

Poisson scheme.” However, conditionally on F , the (S(n, i) : i ≥ 1) are

no longer (non-homogeneous) Poisson.

A genuine modulated Poisson scheme is rather a double sequence

S(n, i) such that, for each n and conditionally on F , the points times

(S(n, i) : i ≥ 1) form a non-homogeneous Poisson process with intensity

function t 7→ δn v
n
t . Lemma 9.1 holds for such schemes, for all q ≥ 0

under the same assumptions on vn.
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Both notions of a modulated Poisson scheme make sense, from a prac-

tical viewpoint. And of course if the vn’s in some sense smooth in time,

both notions are very close one to the other.

Finally, let us mention that, among all irregular schemes, there is the

special class of all schemes obtained by time-changing a regular scheme.

However, we postpone this topic until we have studied some estimation

problems for the general schemes introduced above.

9.1.2 Estimation of the Integrated Volatility and

Other Integrated Volatility Powers

In the remainder of this section, we assume that X is one-dimensional

and satisfies (HC), without further mention. We extend the family of

realized power variations B(p,∆n)t by setting, for arbitrary nonnegative

reals p, q,

Bn(p, q)t =

Nn
t∑

i=1

∆(n, i)q+1−p/2 |∆n
i X |p. (9.7)

In the regular sampling case we have Bn(p, q) = ∆
q+1−p/2
n B(p,∆n), so

when q varies these processes all convey the same information, but this

is no longer the case in the irregular sampling case.

These modified power variations enjoy a law of large numbers which

extends (6.9): namely, if p > 0 and q ≥ 0 and if Assumptions (A) and

(D-(q + 1)) hold, we have

1

δqn
Bn(p, q)

u.c.p.
=⇒ mp C(p, q), (9.8)

where

C(p, q)t =

∫ t

0
cp/2s a(q + 1)s ds.

In particular, since (D-1) with a(1)t = 1 is always true (recall that (9.3)

is assumed) and C(p, 0) = C(p), where as previously

C(p)t =

∫ t

0
cp/2s ds,

we have under (A)

Bn(p, 0)
u.c.p.
=⇒ mp C(p). (9.9)

(When p = 2, and because Bn(2, 0) is the approximate quadratic varia-

tion built upon the discretization scheme S(n, i) : i ≥ 0), the full force of
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(A) is not necessary for this; we need only (9.3) and the stopping times

property of all S(n, i).)

A Central Limit Theorem associated with the convergence (9.9) goes

as follows (recall that the σ-field F ′ on which P is defined may be strictly

bigger than F ; however, the F -stable convergence was introduced on

page 95). The most interesting case is the estimation of the integrated

volatility C = C(2), but the results are just as easy to state for any C(p)

with p ≥ 2:

Theorem 9.3. Let p ≥ 2, and assume (HC) when p = 2 and (KC)

when p > 2. Assume (D-2) for the sampling scheme. Then the processes
1√
δn

(
Bn(p, 0)−mpC(p)

)
converge F-stably in law to a process V(p) which

is defined on a very good extension of (Ω,F ′, (F ′
t),P) and, conditionally

on F , is a continuous centered Gaussian martingale with variance

E(V(p)2t | F) = (m2p −mp)C(2p, 1)t.

Moreover, for any T > 0 we have

L
(√

m2p (Bn(p,0)T−mp C(p)T )√
(m2p−mp)Bn(2p,1)T

∣∣∣A
)

→ N (0, 1)

for all A ∈ F with P (A) > 0 and A ⊂ {CT > 0}.
(9.10)

Finally, when the S(n, i)’s are strongly predictable in the sense that

each S(n, i) is F ′
S(n,i−1)-measurable, the stable convergence above holds

relative to the whole σ-field F ′.

Remark 9.4. For estimating the integrated volatility CT we use

Bn(2, 0)T , and of course this is the same as the realized volatility:

Bn(2, 0)T =

Nn
T∑

i=1

(∆n
i X)2.

When we want to estimate the quarticity, or other power functionals

C(p)T , then Bn(p, 0) is no longer the same as the normalized approxi-

mate p-power variation δ
1−p/2
n

∑Nn
T

i=1 |∆n
i X |p.

Our reason for introducing the processes Bn(p, q) for q ≥ 0, instead

of Bn(p, 0) only, is the standardization in (9.10). This property, to be

interpreted as (6.11), allows us to derive confidence bounds in the usual

way. Note that A in (9.10) should belong to FX,W,b,σ and not only to F ,

and due to (D-2) the variable C(2p, 1)T is F -measurable.

If one wants the rate 1/
√
δn for the convergence of Bn(p, 1) toward

mp C(p, 1), one needs stronger assumptions than (D-2): for example (D-

3), plus a rate faster than 1/
√
δn in the convergence (9.4), or the con-

vergence vn → v when the sampling is a mixed renewal scheme. More
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generally, it is possible to obtain a CLT for Bn(p, q), for all reals p ≥ 2

and q ≥ 0; we do not further elaborate on this here.

Remark 9.5. This theorem has a multidimensional extension, in the

sense that we can consider a finite family (pj)1≤j≤q of reals with pj ≥ 2.

We then have the F-stable convergence in law of the q-dimensional pro-

cesses with components 1√
δn

(Bn(pj , 0)−mpjC(pj)). Another easy exten-

sion consists of taking a smooth enough test function f on R and then

considering the “normalized” functionals

Nn
t∑

i=1

∆(n, i) f(∆n
i X/

√
∆(n, i)). (9.11)

Remark 9.6. The Law of Large Numbers and the associated CLT for

functionals of the form (9.11) also hold when the underlying process X is

d-dimensional (under appropriate assumptions on f and on the sampling

scheme). This extension is nearly obvious, but it should be emphasized

that dealing with functionals like (9.11) requires that all components of

X are observed at the same times S(n, i).

An interesting – and crucial – feature of the standardized version (9.10)

is that the properties of the observation scheme are not showing explicitly

in the result itself: the process a(2) and even the rates δn are absent from

the ratio
Bn(p, 0)T −mp C(p)T√
(m2p −mp)Bn(2p, 1)T

,

which only features variables which are observed by the statistician, plus

of course the quantity C(p)T to be estimated. This is fortunate, since

for example the rate δn is an abstract quantity, a priori unknown. This

is also dangerous because one might be tempted to use the result with-

out checking that the assumptions on the sampling scheme are satisfied

(which means, in this context, “reasonable” on the basis of the known ob-

servation times). In any case, and although the rate δn does not explicitly

show up, it still governs the “true” speed of convergence.

Once more, δn is unknown, but Nn
t is known (that is, observed). Then

as soon as (D-0) also holds, we have δnN
n
t

P−→
∫ t
0 a(0)sds, and so the

actual rate of convergence for the estimators is 1/
√
Nn
t , as it should be.

We end the subsection with a few comments:

About the proofs: The proof of Theorem 9.3 is rather complicated, at

least when the sampling is random, and omitted (as are indeed all formal
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proofs for this chapter). In contrast, proving (9.8) is rather simple and

somewhat enlightening, as to the role of Assumption (D-(q + 1)): there

are (tedious, and usual for this sort of problem) estimates which reduce

the problem to proving the convergence of

1

δqn

Nn
t∑

i=1

∆(n, i)q+1−p/2 cp/2S(n,i−1)|∆n
iW |p,

which is equivalent to the convergence of

1

δqn

Nn
t∑

i=1

∆(n, i)q+1 c
p/2
S(n,i−1)mp

(because of (ii) in Assumption (A): this equivalence is wrong in general,

if the structural assumption (A) fails). At this stage, one observes that

(D-(q + 1)) is in fact equivalent to the convergence

1

δqn

Nn
t∑

i=1

∆(n, i)q+1HS(n,i−1)
P−→

∫ t

0
Hs a(q + 1)s ds

for all càdlàg processes H .

About optimality, or asymptotic efficiency: We focus here on estima-

tion of C = C(2). For regular sampling the question of optimality has

been (more or less) answered in Remark 6.2, and for irregular sampling

schemes we again consider the toy model X = σW with c = σ2 a con-

stant, and CT = cT .

For regular sampling we have Ĉ(∆n)T = Bn(2, 0)T and the MLE for

CT is T/∆n

[T/∆n]
Bn(2, 0)T , which behaves as Bn(2, 0)T (up to a term of order

of magnitude ∆n). When the sampling is non-random but not regular,

we still have a Gaussian experiment for our toy model and the MLE

becomes

AnT =
T

Nn
T

Nn
T∑

i=1

1

∆(n, i)
|∆n

i X |2 =
T

Nn
T

Bn(2, 0)T .

This is again asymptotically efficient, and for each n the variance of AnT −
CT is 2c2T 2/Nn

T . Now, if further (D-2) holds, the asymptotic variance of
1√
δn

(Bn(2, 0)T − CT ) is 2c
2
∫ T
0 a(2)sds, and if (D-0) also holds we have

δnN
n
T →

∫ T
0 a(0)sds. Therefore, under both (D-0) and (D-2), the two

asymptotic variances Σ and Σ′ of 1√
δn

(Bn(2, 0)T − CT ) and
1√
δn

(AnT −
CT ) satisfy

Σ = αΣ′, where α =
1

T 2

(∫ T

0
a(2)sds

)( ∫ T

0
a(0)sds

)
.
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If we use (9.5) with q = 0 and p = 1 and q′ = 2 and go the limit,

we see that α ≥ 1, as it should be because AnT is asymptotically effi-

cient. It may happen that α = 1, of course, but this property is equiv-

alent to saying that D(0)nTD(2)nT − (D(1)nT )
2 → 0, and the equality

D(0)nTD(2)nT = (D(1)nT )
2 implies that the ∆(n, i)’s for i ≤ Nn

T are all

equal (by Cauchy-Schwarz inequality); therefore the realized volatility

Bn(2, 0)T is asymptotically efficient only when the sampling scheme is

“asymptotically” a regular sampling.

At this stage, one might wonder why we do not use AnT instead of

Bn(2, 0)T in general. This is because, and coming back to the general

stochastic volatility situation, under (D-0) we have

AnT
P−→ T

∫ T
0 cs a(0)s ds∫ T
0 a(0)s ds

,

which is different from CT =
∫ T
0 cs ds unless either cs or a(0)s do not

depend on time. In other words, AnT is not even consistent for estimating

CT in general. The reason is of course that if AnT is the MLE for the

toy model with cs = c constant (and for deterministic sampling), it is no

longer the MLE when cs is time-varying and non-random, not to speak

about the stochastic volatility case.

9.1.3 Irregular Observation Schemes: Time Changes

Below, we give a quick overview of the special class of observation schemes

which are obtained by time-changing a regular scheme. There are two

ingredients: a sequence of numbers δn > 0 which goes to 0 and represents

the meshes of the regular scheme to be time-changed; and the time change

itself, which comes in several distinct versions, in increasing order of

generality:

1. The simplest one consists of taking a function Λ = (Λt)t≥0 from R+

into itself, with the following properties for some constant A > 1:

Λ0 = 0, Λ is C1 with a derivative λ satisfying
1
A ≤ λt ≤ A and |λt − λs| ≤ A|t− s|. (9.12)

Then of course Λ is a bijection, and the reciprocal function is de-

noted as Λ and is also C1.

2. Another version consists of assuming that Λ is random, with all

paths satisfying (9.12) (with A possibly random as well), and inde-
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pendent of all the processes of interest (the log-price X , its volatil-

ity, its drift, its Lévy measures when it jumps, and so on). Up to

enlarging the filtered space, one can suppose that Λ is defined on

(Ω,F , (Ft),P) and F0-measurable.

3. A third – slightly more general – version is basically as above,

except that Λ is simply assumed to be F0-measurable: it is then

independent of the terms W and p which drive X and possibly

its volatility process, but it is no longer necessarily independent of

X itself. Then the “constant” A may be random, and taken to be

F0-measurable.

4. The fourth and most general version consists of assuming that Λ

is random, defined on (Ω,F , (Ft),P), with paths satisfying (9.12)

with A being F0-measurable, and such that for each t the variable

Λt is a stopping time. This last requirement, jointly with (9.12),

is in fact rather restrictive, although automatically satisfied by the

first three versions above.

Now, with such a Λ, plus the sequence δn, we associate the observation

scheme with observation times given by

S(n, i) = Λiδn . (9.13)

Such a scheme is naturally called a time-changed regular scheme.

What is important here is that the function or process Λ is fixed.

Because of this, it is deeply different from the renewal or mixed renewal

schemes, unless of course Λt = at for some constant a > 0 (but then

(9.13) is a regular scheme). Would Λ be allowed to depend on n, all

schemes satisfying (A) (and many more) would be of this type, but the

whole idea here is precisely that it does not depend on n. The Lipschitz

condition on λ could be weakened and the boundedness of λ and 1/λ

could be replaced by local boundedness but here, for simplicity, we stick

to the above requirements.

Like all schemes in this section, when X is multi-dimensional time-

changed regular schemes rule out asynchronous observations of the vari-

ous components. When X is one-dimensional, though, and in the absence

of a specific mechanism which would describe how observation times oc-

cur, time-changed regular schemes are reasonably general and probably

account for many schemes encountered in practice. Note, however, that

such a scheme implies that the inter-observation time ∆n(n, i) is between

δn/A and δnA, which can be viewed as a serious restriction.
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Now, a time-changed regular scheme obviously satisfies (9.3). The first

three versions described above satisfy Assumption (A), with F ′ = F ,

although the fourth might violate it. However, arguing pathwise, it is

easy to check the following:

it satisfies (D-q) for all q ≥ 0,

with a(q)t = (λΛt
)q−1 and with the sequence δn.

(9.14)

The feature which makes these schemes mathematically appealing is as

follows. Suppose thatX is an Itô semimartingale with spot characteristics

(bt, ct, Ft), and consider the time-changed process

Xt = XΛt . (9.15)

This process is adapted to the time-changed filtration F t = FΛt (this is

why we need each Λt to be a stopping time). Classical properties of time

changes, see Jacod (1979) for example, give us the following fundamental

property:

X is an Itô semimartingale relative to the time-changed

filtration (F t)t≥0,with characteristics (B,C, ν)

and spot characteristics (b, c, F ) given by

Bt = BΛt , Ct = CΛt , ν((0, t×A) = ν((0,Λt]×A)

bt = λt bΛt , ct = λt cΛt , F t = λt FΛt .

(9.16)

Now we come to the estimation of CT , say in the one-dimensional case,

when X is of the form (9.1) with (HC). More generally, we estimate the

variables C(p, q)T of (9.8) (recall CT = C(2, 0)T ); in view of (9.14), the

processes C(p, q) are now

C(p, q)T =

∫ T

0
cp/2s (λΛs

)q ds. (9.17)

In practice, only C(p, 0) seem to be of interest, but as before the estima-

tion of C(p, q) for q 6= 0 proves useful technically.

Set, for a ∈ R,

δni X = Xiδn −X(i−1)δn , λni = 1
δn

∫ iδn
(i−1)δn

λs ds

BX(p, a; δn)t =
[t/δn]∑
i=1

|δni X |p (λni )ap,
(9.18)

so BX(p, 0; δn) is simply the process B(p, δn) associated with X by (6.9),

with δn instead of ∆n. In view of the Lipschitz property of λ, and by

virtue of the extensions of Theorems A.2 and A.13 to the case of “random
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weights,” as in Chapter 7 of Jacod and Protter (2011), the processes

BX(p, a; δn) enjoy exactly the same limit theorem (LNN and CLT) as

B(p,∆n) does (for X), provided in all statements we replace ∆n by δn
and make the substitution

CX(r, a)t =

∫ t

0
(λs)

ar (cs)
r/2 ds instead of C(r)t =

∫ t

0
cr/2s ds

(this occurs with r = p/2 for the LNN and with r = p/2 and r = p for

the CLT).

Observing that Nn
t =

[
Λt/δn

]
and δni X = ∆n

i X , and recalling (9.7),

we readily get

Bn(p, q)t = δq+1−p/2
n BX

(
p,
q + 1

p
− 1

2
; δn)Λt

. (9.19)

Theorem 9.7. Assume (HC) and let (S(n, i)) be a time-changed regular

scheme with meshes δn and time change process Λ. Then all claims of

Theorem 9.3 hold here, with the definition (9.17) for C(2p, 1).

Proof. The CLT, extended as before, tells us that
1√
δn

(δ
1−p/2
n BX(p, a; δn) − CX(p, a)) stably converges in law to

some process W which conditionally on F is a continuous centered

Gaussian martingale (for the time-changed extended filtration) with

conditional variance V t = (m2p −m2
p)C

X(2p, a)t. We will use this with

a = 1
p − 1

2 , so (9.19) yields Bn(p, 0)t = δ
1−p/2
n BX

(
p, a; δn)Λt

, whereas

(9.16) and a change of variable imply CX(p, a)t = C(p, 0)Λt
= C(p)Λt

and CX(2p, a)t = C(2p, 1)Λt
. Since stable convergence in law is pre-

served by any continuous strictly increasing time change, we deduce

from what precedes that 1√
δn

(Bn(p, 0) − C(p)) stably converges in law

to Wt = WΛt
. It is elementary to check that W is a continuous centered

Gaussian martingale with conditional variance Vt = (m2p−m2
p)C(2p, 1)t.

This ends the proof of the first part of the theorem. A similar argument,

using the LLN for δ1−pn BX(2p, a; δn), with the same a as above, allows

us to deduce that 1
δn
Bn(2p, 1)

u.c.p.
=⇒ m2pC(2p, 1). Then a standard

argument yields the last result.

What precedes shows that this result may hold in some cases where (A)

fails. But what is really important is that the argument of the previous

proof carries over in many other situations. Namely, if X satisfies one of

the assumptions stated before, such as (H-r), (K-r), (P) and (KC), then

by (9.16) X satisfies the same assumption, relative to the time-changed
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filtration (F t), of course. All results stated in the previous chapters apply

to X observed along the regular grids (iδn : i ≥ 1). Then, for all such

results which hinge upon a functional LLN or CLT, the previous time-

change argument and the fact that a relation similar with (9.19) holds

most functionals of X and of X yield that the same results hold for X

observed along a time-changed regular grid.

In other words, we have:

Meta Theorem: A result which holds for regular observation schemes

holds as well, under the same assumptions on the underlying process, for

time-changed regular schemes.

This applies to all results in Subsections 6.1 and 6.2, and to most

results in Chapters 7 and 8. There is an important caveat, though: the

various standardized CLTs and the associated confidence intervals hold

for time-changed regular schemes, exactly as they are stated in the reg-

ular case, but the non-standardized limits typically exhibit a variance

which involves the function or process λt, or rather λΛt
. So each result

has to be specifically reworked (but in all cases this is very simple to do).

An – unfortunate – consequence is that all considerations made previ-

ously about optimality become wrong in this case, as we saw at the end

of the previous subsection for example (but of course rate-optimality is

preserved).

Finally, the “meta theorem” above also applies to the analysis of jumps

which is done in the last part of this book.

9.2 The Multivariate Case:

Non-synchronous Observations

As said in Remark 9.6, the previous section extends without problem to

the multivariate case for the underlying process X , provided all compo-

nents are observed at the same times. However, in high frequency finan-

cial data, when observation times are unevenly distributed, they are also

typically different for different components of the (log) price process. In

this case, things are very different, as we briefly sketch below.

We again restrict our attention to integrated volatility estimation, and

focus on the estimation of the off-diagonal elements CijT of the integrated

(co)volatility. We then can, and will, suppose that X is two-dimensional,

and try to estimate C12
T . At stage n, the sampling times of the component

Xj are the (Sj(n, i) : i ≥ 0), as described in the previous section. Other

assumptions on the observation times will be specified later.
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9.2.1 The Epps Effect

Recall once more that, by Theorem 1.14,
∑

i≥1:R(n,i)≤T
(X1

R(n,i) −X1
R(n,i−1))(X

1
R(n,i) −X1

R(n,i−1))
P−→ C12

T (9.20)

as n→ ∞, for any scheme R(n, i) of stopping times which satisfies (9.3).

Here the R(n, i)’s are the same for both components, and historically

speaking, the first attempts for estimating C12
T used (9.20): one pretends

that one actually observes both X1 and X2 at common times R(n, i),

often called refresh times. There are several ways of performing this task;

the most popular one consists of taking R(n, i) = iδn for some δn > 0 (a

regular grid) and replacing the “true” (unobserved) Xj
R(n,i) by Xj

Sj(n,k)

where Sj(n, k) is the largest actual observation time of Xj not bigger

than R(n, i). One could also rearrange the two sequences S1(n, i) and

S2(n, i) into a single strictly increasing sequence S(n, i) (for any given

n), and take for R(n, i) the value S(n, ki) for some k ≥ 1. Other variants

are possible.

This class of methods induces obvious errors, which are small

only when, for all i and for j = 1, 2, the differences R(n, i) −
supk:Sj(n,k)≤R(n,i) Sj(n, k) are small in front of δn. Unless the actual

sampling times are very close to being regular, this requirement implies

that one should choose δn quite large, say 5 or 10 to 20 times bigger than

the maximum of the meshes πn1,T and πn2,T of the two schemes S1(n, i) and

S2(n, i). Analogously, for the rearrangement method described above, the

integer k should be large enough. In all cases, this results in a huge loss

of data.

Worse: when we let δn decrease (while staying bigger than πn1,T ∨πn2,T ,
of course), we observe the so-called Epps effect, which features estimators

for C12
T that become smaller and smaller in absolute value. This effect is

easy to understand, as seen in the following (simple and intuitive, albeit

totally unrealistic from a practical viewpoint) example.

Example 9.8. The sampling scheme is

S1(n, i) =
i

n
, S2(n, i) =

{
0 if i = 0
i
n − 1

2 if i ≥ 1,

and X1 = X2 = W and T = 1, so C12
T = 1. Let Φ(n, k) be the left

side of (9.20) when T = 1 and R(n, i) = ik/n (corresponding to taking

δn = k/n) and when we replace the “true” Xj
R(n,i) by Xj

Sj(n,i)
for the

biggest Sj(n, i) smaller than R(n, i).
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The expectation of Φ(n, k) is easily seen to be 2k−1
2n

[
n
k

]
. For n large,

this is about 2k−1
k , close to 1 if k is (relatively) large, but equal to 1

2 if

k = 1. And actually, in this simple case, one easily checks that not only

the expectations, but the random variables Φ(n, k) themselves, behave in

this way, and more specifically converge in probability to 2k−1
2k .

Other choices of the regular grid R(n, i) with mesh δn generate similar

results: when δn is not much larger than 1/n the estimators (9.20) are

far from the true value 1, and if we take δn = 1/n (the smallest possible

value, which apparently makes use of all available data), the left side of

(9.20) is a consistent estimator for 1/2 instead of 1.

This example is representative of the general situation: when C12
t is

increasing in t (hence nonnegative, because C12
0 = 0) the estimators

(9.20) used with the refresh times, as described above, are downward

biased for estimating C12
T , and the bias becomes drastically more severe

when the mesh between refresh times becomes closer to the mesh πnT∨π′n
T .

When C12
t is decreasing, hence nonpositive, we analogously get an upward

bias.

9.2.2 The Hayashi-Yoshida Method

The reason why (9.20) with “refresh times” is not consistent for esti-

mating C12
T is apparent in Example 9.8, because in this case the two

components X1, X2 are martingales: the expectation of the product

of two increments (X1
t+s − X1

t )(X
2
t′+s′ − X2

t′) is the expected value of∫
[t,t+s]∩[t′,t′+s′] c

12
u du, which in the Brownian case is simply a constant

times the Lebesgue measure of [t, t+s]∩[t′, t′+s′]. Therefore, (9.20) is an
estimator for

∫
Aδn

c12s ds, where Aδn is a subset of [0, T ] whose Lebesgue

measure is a fraction of T (actually T/2 in the previous example) when

δn is “small.”

The idea of Hayashi-Yoshida estimator is to replace Aδn above by a

set which is indeed [0, T ] itself, up to (negligible) border terms near T .

This is achieved by taking the following:

ĈHY(n)12T =
∑

(i,i′)∈J(n,T )

∆n
i X

1∆n
i′X

2, (9.21)

where

∆n
i X

j = Xj
Sj(n,i)

−Xj
Sj(n,i−1)

Ij(n, i) = (Sj(n, i− 1), Sj(n, i)]

J(n, T ) =
{
(i, i′) : 0 < S1(n, i) ≤ T, 0 < S2(n, i

′) ≤ T,

I1(n, i) ∩ I2(n, i′) 6= ∅
}
.
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We then have

Theorem 9.9. Assume that the two-dimensional process X satisfies

(HC) and that the observation times (Sj(n, i)) for j = 1, 2 are stopping

times and satisfy (9.3). Then the estimators ĈHY(n)12T are consistent for

estimating C12
T , that is,

ĈHY(n)12T
P−→ C12

T .

Note that when S2(n, i) = S1(n, i) identically, the estimator ĈHY(n)12T
is simply the realized co-volatility

Nn
T∑

i=1

∆n
i X

1∆n
i X

2,

as in Remark 9.4 for the realized volatility in case of a single asset price.

If we want a rate of convergence, and an associated CLT, we need

additional assumptions on the sampling scheme and on X . There are

several versions for the assumptions on the sampling schemes, and we

only describe the simplest one below:

Assumption (DD-2). For a sequence δn of positive numbers converging

to 0, and two numbers 0 ≤ v < v′ < 1 with further v′ > 4
5 , we have:

(i) Both schemes (S1(n, i)) and (S2(n, i)) satisfy (9.3) and are consti-

tuted of stopping times relative to the filtration (F(t−δvn)+)t≥0.

(ii) With |I| denoting the length of any interval I, there are four (nec-

essarily nonnegative) (Ft ∩ FX,W,b,σ)t≥0-progressively measurable pro-

cesses a1, a2, a, a′ (with F as specified in Assumption (A)) such that for

all t and j = 1, 2 we have

1
δn

∑
i≥1

|Ij(n, i)|2 1{Sj(n,i)≤t}
P−→

∫ t
0 a

j
s ds

1
δn

∑
i,i′≥1

|I1(n, i) ∩ I2(n, i′)|2 1{S1(n,i)∨S2(n,i′)≤t}
P−→

∫ t
0 as ds

1
δn

∑
i,i′≥1

|I1(n, i)| |I2(n, i′)| 1{I1(n,i)∩I2(n,i′) 6=∅, S1(n,i)∨S2(n,i′)≤t}

P−→
∫ t
0 a

′
s ds.

(9.22)

(iii) The meshes πn1,t and π
n
2,t of the two schemes satisfy 1

δv′n

πnj,t
P−→ 0.

The first convergence above is exactly (9.2) in (D-2) for the scheme

Sj(n, i), with a
j playing the role of a(2), and with the same sequence δn

for j = 1, 2; this can be interpreted as a nice asymptotic behavior of the

“quadratic variation” of the sampling times, and the last two properties
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in (9.22) are statements about the “quadratic covariation” between the

two schemes.

Note also that, by (iii), the number δvn is (much) bigger than the two

meshes πnt and π′n
t on a set Ωn,t whose probability goes to 1, so (i) implies,

loosely speaking, that “in restriction to this set” the times S(n, i) and

S′(n, i) are strongly predictable in an even stronger sense than as stated

after Assumption (A). So although the two schemes do not necessarily

satisfy (A) as stated, they do satisfy an essentially stronger assumption.

Note that this assumption allows for samplingX1, say, more frequently

than X2, by allowing for example a′s to be significantly larger than as,

but the ratio of the sampling frequencies of the two components should

stay approximately constant. The next example illustrates this fact.

Example 9.10. If S1(n, i) = S2(n, i) = i∆n are two regular schemes

with the same mesh, (DD-2) obviously holds, with δn = ∆n and a1s =

a2s = as = a′s = 1.

If S1(n, i) = i∆n and S2(n, i) = ik∆n, so both schemes are regular

with respective meshes ∆n and k∆n for some integer k ≥ 2, we still have

(DD-2) with δn = ∆n, but now a1s = as = 1 and a2s = a′s = k.

When S1(n, i) = i∆n and S2(n, i) = iα∆n when α > 1 is not an

integer, we still have (DD-2) with as = 1 and a2s = α, and as, and a
′
s are

independent of s but rather complicated functions of α.

Example 9.11. This example shows that, although (DD-2) implies

a form of strong predictability, it nevertheless accommodates sampling

schemes with exogenous randomness. For each n one takes two indepen-

dent sequences S1(n, i) and S2(n, i) which are the arrival times of Poisson

processes with intensities nα1 and nα2, for two constants αj > 0, those

processes being also independent of (X,W, b, σ). Then upon enlarging the

filtration, without impairing the Brownian property of W and Equation

(9.1), one may assume that all Sj(n, i)’s are F0-measurable. Then (DD-

2) is satisfied with δn = 1/n and v = 0 and v′ ∈ (4/5, 1), and with

ajs =
2

αj
, as =

2

α1 + α2
, a′s =

2

α1
+

2

α2
.

We can now state the CLT for estimating C12
T :

Theorem 9.12. Assume that the two-dimensional process X satisfies

(9.1) with two processes bt and σt having paths which are uniformly

Hölder of index 1
2 − ε on [0, T ] for all ε > 0. Assume also that the obser-

vation times Sj(n, i) satisfy (DD-2). Then for any T > 0 the variables
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1√
δn

(ĈHY(n)12T −C12
T ) converge stably in law to a variable defined on an

extension of the original probability space and which conditionally on F
is centered Gaussian with variance

VT =

∫ T

0

(
c11s c22s a′s + (c12s )2 (a1s + a2s − as)

)
ds. (9.23)

In view of the comments made before, and since when X1 = X2

Assumption (DD-2) is essentially stronger than (D-2), with a1 = a2 =

a = a′ = a(2), in this case the previous result is basically Theorem 9.3

for p = 2.

Remark 9.13. The above result is exactly Theorem 8.1 of Hayashi and

Yoshida (2011), to which we refer for the proof, and upon observing that

a process Y has path which are almost surely uniformly Hölder of index
1
2 − ε on [0, T ] for all ε > 0 if and only if, for all ε > 0, the variables

1
v1/2−ε sup(‖Yt+s − Yt‖ : 0 ≤ t ≤ t + s ≤ (t + v) ∧ T ) are bounded in

probability as v varies in (0, 1).

In particular, the above assumptions on X are met when both processes

b and σ are themselves (continuous Itô) semimartingales satisfying (HC).

However, a look at the proof in the above-mentioned paper shows that

the result also holds when b and σ are possibly discontinuous Itô semi-

martingales, provided they satisfy (H-2). Let us also mention that this

paper contains analogous results under weaker (but probably difficult to

check practically) sets of assumptions.

For practical purposes, one needs consistent estimators for the condi-

tional variance given in (9.23). Here again, the problem is not completely

obvious for the same reason as before: the non-synchronicity of observa-

tion. However, consistency only is required, and not a CLT.

Following again Hayashi and Yoshida (2011), one can proceed as fol-

lows. As mentioned before, the estimators ĈHY(n)11T and ĈHY(n)22T are

defined in a way similar to (9.21) and coincide with Bn(2, 0)T written

for the one-dimensional processes X1 and X2 respectively. Then for a

suitable sequence hn > 0 eventually going to 0, we consider the following

“spot volatility estimators” at (or, around) time t:

ĉHY(t;hn)
ij =

1

hn

(
ĈHY(n)ijt+hn

− ĈHY(n)ijt
)
. (9.24)

These estimators are well suited to the non-regular sampling situation,

but in the regular sampling case S1(n, i) = S2(n, i) = i∆n they indeed

coincide with the spot estimators given in (8.10), with no truncation
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because X is continuous, and with hn here playing the role of kn∆n in

that formula.

The idea is then to approximate (9.23) by Riemann sums, and replace

ct there by ĉHY(t;hn). We also have to approximate the unknown pro-

cesses aj , a, a′, and for this we use the convergences (9.22), in which the

left side are indeed known at stage n, up to the (unknown) normaliza-

tion 1/δn. Since the estimators (9.24) are observable only when t+ hn is

smaller than the horizon T , this leads us to take

V̂ (hn)T =
∑
i,i′≥1 ĉ

HY(S1(n, i) ∨ S2(n, i
′);hn)11

× ĉHY(S1(n, i) ∨ S2(n, i
′);hn)22

× |I2(n, i′)| 1{I1(n,i)∩I2(n,i′) 6=∅} 1{S1(n,i)∨S2(n,i′)≤T−hn}
+
∑
i≥1

(
ĉHY(S1(n, i);hn)

12
)2 |I1(n, i)|2 1{S1(n,i)≤T−hn}

+
∑
i≥1

(
ĉHY(S2(n, i);hn)

12
)2 |I2(n, i)|2 1{S2(n,i)≤T−hn}

−∑i,i′≥1

(
ĉHY(S1(n, i) ∨ S2(n, i

′);hn)12
)2 |I1(n, i) ∩ I2(n, i′)|2

× 1{S1(n,i)∨S2(n,i′)≤T−hn}.

We then have the following result:

Theorem 9.14. Under the assumptions of Theorem 9.12, and as soon

as δn/h
2
n → 0, we have

1

δn
V̂ (hn)T

P−→ VT ,

and thus

L
(
ĈHY(n)12T −C12

T√
V̂ (hn)T

∣∣∣A
)
→ N (0, 1)

for all A ∈ F with P(A) > 0 and A ⊂ {C11
T + C22

T > 0}.

Since ĈHY(n)12T and V̂ (hn)T are observable at stage n, this result

allows us to derive confidence bounds in the usual way. Let us note, how-

ever, that we have the tuning parameter hn to choose, subject to δn/h
2
n

and hn going to 0, which in practice means that those numbers should be

small. There seems to be a problem here, since δn is a priori unknown,

but as seen in the previous section δn is of the order of magnitude 1/Nn
T ,

where Nn
T is the number of observations (of the first, or of the second, or

of both, components) up to time T . So one should choose hn is such a way

that h2nN
n
T is large and hn is small, for example hn ≃ 1/(Nn

T )
1/3 should

work because Nn
T itself is supposed to be reasonably large (otherwise no

accurate estimation is possible anyway).
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Remark 9.15. Good as they are, the Hayashi-Yoshida estimators suf-

fer from an unfortunate drawback. Namely, the matrix-valued estima-

tors ĈHY(n)i,jT )i,j=1,2 are symmetrical by construction but not necessarily

nonnegative. So far, only methods based on refresh time lead to nonnega-

tive symmetric matrix-valued estimators in the case of non-synchronous

observations.

9.2.3 Other Methods and Extensions

Integrated Volatility Estimation For estimating the integrated

volatility, another method allows us to deal with observations that are

irregularly spaced and/or asynchronous in the multidimensional case.

This is the Fourier-based method, for which the only difference with the

evenly spaced case is in the formula giving the Fourier coefficients.

The setting is the same as in the previous section, with a two-

dimensional process X whose component Xj is sampled at the times

0 < Sj(n, 1) < · · · < Sj(n, i) < · · · , at stage n. Of course, this ac-

commodates the one-dimensional case as well, by taking X2 = X1 and

S2(n, i) = S1(n, i).

We then modify the definition (6.45) of the estimator of the kth Fourier

coefficient of the spot (cross) volatility clm, at stage n and truncation N ,

by taking instead:

F̂k(n,N ; clm) = 1
2N+1

∑N
r=−N a

n,l
−r a

n,m
r+k,

where an,lr = 1√
2π

∑
j≥1: Sl(n,j)≤T e

−2iπrSl(n,j)/T ∆n
jX

l.

Here, ∆n
jX

l is still the jth observed return of the component X l, as

defined by (9.21). The integrated volatility estimators are still

ĈFourier(n,Nn)
lm
T = 2π F̂0(n,Nn; c

lm).

With this notation, the results stated in Subsection 6.3.4 are still valid,

under appropriate assumptions.

The problem here is in fact how to specify those assumptions. For X

this is simple: as far as consistency results are concerned, it is enough to

have (HC) and c continuous; for the Central Limit Theorem (6.48) one

additionally needs that σt admits a Malliavin derivative with suitable

moment bounds. Things are more difficult for the hypotheses on the

sampling schemes:

1. They should satisfy (9.3), of course;
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2. They should be non-random, or (perhaps) random but independent

of X ;

3. In the synchronous (S1(n, i) = S2(n, i)) but irregular case, one

should have (D-2), with some sequence δn.

When all three conditions hold, in the synchronous case, and upon

choosing Nn such that T/Nnδn → a ∈ (0,∞), we have the same CLT as

in (6.48), except that the limit takes the form
∫ T
0 α(a, a(2)s) dWs, where

a(2)s is the function (or process) showing in (9.4) and α is here a (easily

computable) function on R2.

In the non-synchronous case, conditions resembling (DD-2) ensure a

CLT of the same type, but they are somewhat difficult to state, and

even more difficult to check; details can be found in Clément and Gloter

(2011), under the name of Hypothesis A4.

Spot Volatility Estimation The above Fourier-based method also

gives, in principle, reasonable estimators for the spot volatility, given by

(8.21) again, that is,

ĉFourier(T, n,Nn)
lm
t =

1

2Nn + 1

Nn∑

r=−Nn

(
1− |r|

Nn

)
e2iπrt/T F̂r(n,Nn; clm).

On the other hand, one can adapt the method of Section 9.1 or the

Hayashi-Yoshida method to spot volatility estimation, under Assump-

tion (HC). Since X is continuous, truncated estimators are irrelevant.

We have an estimator Ĉnt for Ct, which is either the realized volatility

(that is, Bn(2, 0)t in the one-dimensional case) when we have a single

component, or two components observed synchronously, or the Hayashi-

Yoshida estimator ĈHY(n)lmt in the asynchronous case. Then, for any

sequence sn > 0 we set

c̃irr(t; sn) =
1

sn
(Ĉnt+sn − Ĉnt ),

which is the same as (9.22) in the case of the Hayashi-Yoshida estimator.

Under (HC), plus (A) and (D-2) or for time-changed regular schemes

in the synchronous case, or (DD-2) and the additional conditions on X

imposed in Theorem 9.12 in the asynchronous case, Theorem 8.7 holds

for c̃irr(t; sn), with the following changes: First, assuming sn/
√
δn → β
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for some β ∈ [0,∞], (8.17) is replaced by

β = 0 ⇒
(√

sn
δn

(c̃irr(t; sn)− ct)
)
t≥0

Lf−s−→ (Zt)t≥0

0 < β <∞ ⇒
(√

sn
δn

(c̃irr(t; sn)− ct)
)
t≥0

Lf−s−→ (Zt + βZ ′
t)t≥0

β = ∞ ⇒
(

1√
sn

(c̃irr(t; sn)− ct)
)
t≥0

Lf−s−→ g(Z ′
t)t≥0.

(9.25)

Second, Z and Z ′ are as in (8.17), except that the conditional variance

(8.14) of Zt is modified and becomes (with the notation aj, a, a′ of (9.23)

when (DD-2) holds, and a1 = a2 = a = a′ = a(2) in the synchronous

case with (D-2))

E(Zijt Zklt | F) =
(
ciit c

jj
t a′t + (cijt )

2 (ait + ajt − at).

Noisy Observations When microstructure noise is present and ob-

servations are irregularly spaced, many papers propose consistent estima-

tors for integrated, or even spot, volatility. A few recent papers analyze

associated Central Limit Theorems, under various assumptions on the

sampling times and/or the noise.

We will not report any specific method here, referring to the relevant

papers for details, and will simply make a few comments. Basically, most

“mixtures” of one of the methods proposed above for irregular schemes,

and one of the de-noising methods explained in Chapter 7, result in

consistent estimators.

Now, a nice fact about kernel methods for eliminating the noise, such

as pre-averaging, is that not only do they wipe out the noise but they

also smooth out the sampling irregularities; this is a simple effect of

taking weighted averages of successive observations. So the assumptions

on the sampling schemes need to be much less stringent in the presence

of noise than when observations are totally accurate, in order to obtain

“similar” CLTs. For instance the use of refresh times combined with a

simple average of the observations between successive refresh times leads

to reasonable estimators, because in any case the presence of noise implies

that estimators converge with a much slower rate than without noise. In

the case of non-shrinking noise, with δn being again a kind of average

time between successive observations, the best achievable rates are now

1/δ
1/4
n for the integrated volatility and 1/δ

1/8
n for the spot volatility.

What is still not clear at this stage is how far one can relax assump-

tions like the structural Assumption (A), when noise is present. In the

literature, several variants are proposed, but one lacks a thorough anal-

ysis of the “minimal” assumptions that are required.
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9.3 References

The topic of irregularly spaced observation times is relatively recent in

the literature. In a parametric setting, early works in that direction are

Dacunha-Castelle and Florens-Zmirou (1986) and, more in line with what

we do here, Genon-Catalot and Jacod (1994). Aı̈t-Sahalia and Mykland

(2003, 2004), and Duffie and Glynn (2004) consider the case of parametric

estimators with irregular observation times.

Papers dealing explicitly with the estimation of integrated volatility in

a non-parametric setting and with irregular observations are Barndorff-

Nielsen and Shephard (2005), in which time-changed regular schemes

were introduced, Mykland and Zhang (2006) in the one-dimensional (or

multidimensional with synchronous observations) case, and Hayashi and

Kusuoka (2008) and Hayashi and Yoshida (2005) for the consistency

of co-volatility estimators under asynchronous observations. The corre-

sponding Central Limit Theorems are in Hayashi and Yoshida (2008,

2011), and also in Hayashi et al. (2011) for the case studied in Section

9.1. One can find additional discussions in Griffin and Oomen (2011) and

also in Oomen (2006), which considers the behavior of the approximate

quadratic variation in the presence of additive microstructure noise, but

with a purely discontinuous price process.

The Fourier-based method for irregular sampling is studied in Malli-

avin and Mancino (2002), and then in the subsequent papers referred to

in Chapters 6 and 8.

The statement in (9.25) appears to be new.

The noisy case has been considered in some of the previously quoted

papers, including those on the Fourier method, and also, often for time-

changed regular schemes, in Barndorff-Nielsen et al. (2008, 2011), Chris-

tensen et al. (2010, 2011), Bibinger (2012) and Koike (2013) the last three

papers also providing an associated Central Limit Theorem. Bibinger

and Reiß (2014) propose localized spectral estimators for the quadratic

covariation and the spot co-volatility of a diffusion, in the presence of ad-

ditive noise. In Bibinger et al. (2013) the authors use a kind of moments

method, and put emphasis on optimality.

Finally, we should mention that what precedes applies to specific (ba-

sically strongly predictable observation times, or observation times that

are independent of X). This excludes sampling at hitting times, which

can also be viewed as a reasonable alternative for modeling irregular

sampling. This topic has been totally skipped in this book, but quite

significant work on this has been done recently, and the reader can con-
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sult Fukasawa (2010a,b) or Fukasawa and Rosenbaum (2011). One can

in fact construct a model which combines microstructure noise, including

rounding noise, and sampling at transaction times on the basis of suit-

ably defined hitting times, and then estimate the integrated volatility,

see Robert and Rosenbaum (2011, 2012). A different approach with tests

for endogenous sampling times can be found in Li et al. (2009).



Part IV

Jumps





So far, we have been interested in volatility, integrated or spot, hence in

the second characteristic Ct of the log-price process X , which describes

its continuous martingale part. Jumps of X were not excluded, but were

viewed as a nuisance for the purpose of estimating the volatility compo-

nent of the model and we tried to eliminate them in one way or another.

In this part, jumps become our main interest. We first try to answer

the fundamental question of whether there are jumps at all. When the

answer is positive, our aim is to estimate as many features of these jumps

as we can. Of course, since the overall setting is still the same, discrete

observations at high frequency of a single path of the process, up to a

finite fixed time horizon T , by necessity we have to stay modest: as seen

in Chapter 5, it is out of the question to consistently estimate the law

of the jumps, or (more to the point) the Lévy measures themselves. We

can, however, say something about the concentration of these Lévy mea-

sures near 0, and in particular estimate the Blumenthal-Getoor index, or

successive indices, of the process, under appropriate (and unfortunately

somehow restrictive) assumptions.

Still assuming that there are jumps, we can next try to find out where

they are and which size they have. It is also possible, in the multivariate

case, to decide whether two different components jump at the same time

or not, or whether one component jumps at the same time as its volatility

process.

All these questions are analyzed below. In Chapter 10 we develop

various tests for deciding whether there are jumps or not, and procedures

which allow us to pin down the jump times and sizes. Chapter 11 is

devoted to the estimation of the Blumenthal-Getoor indices, and Chapter

12 to the related question of deciding whether jumps have finite activity.

When we find that jumps have infinite activity it becomes legitimate

to ask ourselves whether the Brownian motion itself is present or if the

jumps by themselves are enough to account for the variability of the

process, and this is done in Chapter 13. Finally, Chapter 14 is concerned

with the question of the existence of co-jumps of two different prices, or

of a price process and its volatility process.

Many of the seemingly disparate problems studied in this part of the

book can be understood as part of a common framework, relying on an

analogy with spectrography (see Aı̈t-Sahalia and Jacod (2012a)). We ob-

serve a time series of high-frequency returns, that is, a single path, over

a finite length of time [0, T ]. Using that time series as input, we design

a set of statistical tools that can tell us something about specific com-

ponents of the process that produced the observations. These tools play
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the role of the measurement devices used in astrophysics to analyze the

light emanating from a star, for instance. Our observations are the high-

frequency returns; in astrophysics it would be the light, visible or not.

Here, the data generating mechanism is assumed to be a semimartingale;

in astrophysics it would be whatever nuclear reactions inside the star are

producing the light that is collected. Astrophysicists can look at a spe-

cific range of the light spectrum to learn about specific chemical elements

present in the star. Here, we design statistics that focus on specific parts

of the distribution of high-frequency returns in order to learn about the

different components of the semimartingale that produced those returns.

From the time series of returns, we can get the distribution of returns at

time interval ∆n. Based on the information contained in that distribu-

tion, we would like to figure out which components should be included

in the model (continuous? jumps? which types of jumps?) and in what

proportions. That is, we would like to deconstruct the observed series

of returns back into its original components, continuous and jumps. We

need to run the raw data through some devices that will emphasize cer-

tain components to the exclusion of others, magnify certain aspects of the

model, etc. In spectrography, one needs to be able to recognize the visual

signature of certain chemical elements. Here, we need to know what to

expect to see if a certain component of the model is present or not in

the observed data. This means that we will need to have a law of large

numbers, obtained by imagining that we had collected a large number

of sample paths instead of a single one. This allows us to determine the

visual signature of specific components of the model.
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Testing for Jumps

This chapter is devoted to the most basic question about jumps: are they

present at all ? As seen in Chapter 5, this question can be answered un-

ambiguously when the full path of the underlying process X is observed

over the time interval of interest [0, T ]. However, we suppose that X is

discretely observed along a regular scheme with lag ∆n, so no jump can

actually be exactly observed, since observing a large discrete increment

∆n
i X may be suggestive that a jump took place, but provides no certi-

tude. We wish to derive testing procedures which are at least consistent

(that is, give the right answer as ∆n → 0). This can only be done un-

der some structural hypotheses on X , and the property of being an Itô

semimartingale is a suitable one.

A priori X could be multidimensional. However, if it jumps, then at

least one of its components jumps. Hence we can test for jumps separately

for each component, and the question really is about one-dimensional

processes. So in the whole chapter, and without loss of generality, we

suppose that X is one-dimensional. It is defined on a filtered space

(Ω,F , (Ft)t≥0,P), with the usual Grigelionis representation described in

Section 1.4:

Xt = X0 +

∫ t

0
bsds+

∫ t

0
σsdWs (10.1)

+ (δ1{|δ|≤1}) ⋆ (p− q)t + (δ1{|δ|>1}) ⋆ pt.

HereW is a one-dimensional Brownian motion and p is a Poisson measure

on R+ ×E with (E, E) an auxiliary Polish space, and with compensator

q(dt, dx) = dt⊗ λ(dx). The processes b and σ are progressively measur-

able, and δ is a predictable function Ω × R+ × E. It is no restriction

to assume σt ≥ 0 identically, and as usual ct = σ2
t . We briefly recall

329
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(with any r ∈ [0, 2]) the Assumptions (H-r), (K-r) and (P) (in the one-

dimensional case, and (K-r) below is indeed the same as in Chapter 8,

despite the different formulation), and also introduce a new Assumption

(H ′). In the whole chapter we assume at least (H-2).

Assumption (H-r). We have (10.1) with b locally bounded and σ càdlàg,

and |δ(ω, t, z)|r∧1 ≤ Jn(z) whenever t ≤ τn(ω), where (τn) is a sequence

of stopping times increasing to ∞, and (Jn) is a sequence of deterministic

nonnegative functions satisfying
∫
Jn(z)λ(dz) <∞ .

Next, we introduce the notation

b̂s =
∫
{‖δ(s,z)‖≤1} ‖δ(s, z)‖λ(dz),

S = inf
(
t :
∫ t
0 b̂s ds = ∞

)

b′t = bt −
∫
{‖δ(t,z)‖≤1} δ(t, z)λ(dz) if t ≤ S,

(10.2)

so b̂t is well defined and [0,∞]-valued, and b′t is well defined as a process

when S = ∞. The following is implied by (H-1), but not by (H-r) when

r > 1:

Assumption (H′). We have (H-2) and there is a sequence (τn) of stop-

ping times increasing to ∞, such that sup(ω,t): t≤τn(ω)∧S(ω) b̂t(ω) < ∞.

Assumption (K-r). We have (H-r) and (H ′) and the process σ is an Itô

semimartingale satisfying (H-2) (hence the process c as well). Moreover,

all paths t 7→ b′t on [0, S], and when r > 1 all paths t 7→ bt on R+ as well,

are either right-continuous with left limits (càdlàg) or left-continuous

with right limits (càglàd).

Assumption (P). The processes ct and ct− never vanish.

Let us also recall the notation (where p is a positive real)

C (p)t =

∫ t

0
σps ds

(
so C = C(2)

)
, (10.3)

and, for the jumps, as in (5.15) when d = 1,

A(p)t =
∑

s≤t
|∆Xs|p, (10.4)

which may be infinite when 0 < p < 2, but is finite when p ≥ 2.
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10.1 Introduction

It is important to stress from the onset that the question is not whether

jumps are possible, but whether jumps actually took place. A process

with finite jump activity (more on that in Chapter 11) will have at most

a finite number of jumps in [0, T ], but may very well have none in that

particular time interval. This does not mean that jumps are impossible

for this process. In economics, this situation corresponds to the classical

peso problem whereby a currency may be subject to a big devaluation

risk, but, as long as its peg to another currency remains effective, no

jump in the exchange rate would be observed. So any answer we give to

that question may be specific to the interval [0, T ].

This said, the question of whether the path of X has jumps over [0, T ]

can be understood in two ways:

1. In a strict sense: we decompose the sample space Ω into two disjoint

subsets:

Ω
(c)
T = {ω : t 7→ Xt(ω) is continuous on [0, T ]}

Ω
(j)
T = {ω : t 7→ Xt(ω) is discontinuous on [0, T ]},

(10.5)

and we want to know whether the observed outcome ω belongs to

Ω
(c)
T or to Ω

(j)
T .

2. In an approximate sense: is the contribution of jumps significant,

compared to the contribution of the “continuous part”? Here, the

contribution of jumps is the sum of the last two terms in (10.1),

whereas the continuous part is the sum of the first two terms.

Put this way, the first question seems more appealing than the second

one. However, since the path is not fully observed, any effective procedure

is likely to recognize whether there are “big” jumps, and to miss the small

or very small ones. And the notion of “big” is of course relative to the

variability of the continuous part. This means that any procedure has to

somehow compare, explicitly or implicitly, the relative sizes of the jumps

(if any) and the continuous part, and the two ways of understanding the

problem are perhaps not as different as they might first appear.

Observe also that one can refine the first question above, by asking

the following third question:

3. At which times in [0, T ] do the jumps occur, and what are their

sizes ?
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If we can solve the third question then we clearly can deduce an an-

swer to the first question. However, it is immediately clear that, at a

given stage n, the third question can be answered only if there is at most

one jump within each interval ((i− 1)∆n, i∆n]; worse: if all or nearly all

of these intervals contain a jump, in practice it becomes impossible to

answer the question, so the third question can only be answered (asymp-

totically) if there are at most finitely many jumps on [0, T ]. However, as

we will see, it is still possible in practice to use a method based on a

solution to the third question to solve, or partially solve, the basic first

question.

Comparing the relative sizes of the jump part and of the continu-

ous part is not an immediately obvious matter. The most natural way,

which can be put in use for all Itô semimartingales, seems to be using

the quadratic variation, to which both the continuous martingale part

and the jump part contribute, with the same weight, unlike what hap-

pens with other power variations where one or the other part dominates

(see Chapter 4). That is, [X,X ]t = Ct + A(2)t and one may think of

Ct and A(2)t as being the “total (squared) sizes” of the continuous and

discontinuous parts. Such a statement is somewhat imprecise, but it can

be substantiated when X is a Lévy process with all Xt’s being square-

integrable, as follows: if X = Xc +Xd with Xd being a purely discon-

tinuous martingale (so there is no drift and Xc = σW ), then Ct = ct is

the second moment of Xc
t , and A(2)t, although random, is approximately

the second moment of Xd
t (assumed to be finite) when t is large, in the

sense that t−1A(2)t converges a.s. to the second moment of Xd
1 .

In any event, in all the literature we are aware of, the sizes of “the

continuous part” and “the jump part” are always quantified by Ct and

A(2)t, or by relatively simple transformations of these. For example we

can “weight” the quadratic variation, as is sometimes done in measuring

the quadratic risk in portfolio management. More precisely, with some

(random, nonnegative) predictable weight process H , usually related to

delta-hedging, one considers

C(H)t =

∫ t

0
Hs dCs,

A(2, H)t =

∫ t

0
Hs dA(2)s,

and C(H)t and A(2, H)t are interpreted as the quadratic hedging error

due to the continuous and discontinuous parts, respectively. Apart from

this question of hedging risk, one can also take H to be a function of
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the form Ht = f(t,Xt−). In this case the measures C(H)t and A(2, H)t
put more or less weight, depending on the time t and on the value of the

price.

In this chapter, we first consider in Section 10.2 tests that address

the second question, that is, we estimate Ct and A(2)t and construct a

test based on these estimators. These procedures suffer from an intrinsic

drawback: they allow us to construct tests (with a given asymptotic level)

only when the null hypothesis is Ω
(c)
T , that is, “no jump.” It is impossible

with this approach to test the null hypothesis that “jumps are present”

since that would require specifying as part of the null hypothesis that a

certain percentage of quadratic variation is due to jumps. On the other

hand, these tests have the advantage that, if the test results in rejecting

Ω
(c)
T , they also give estimators for the relative sizes of the jump and

continuous parts, that is, of the ratio A(2)T /CT (or, equivalently, of

A(2)T /[X,X ]T , for the contribution of jumps to the overall variability of

the process).

Next, we introduce in Section 10.3 procedures which allow us to treat

the two possible hypotheses Ω
(c)
T and Ω

(j)
T in an almost symmetrical way.

This approach also has the advantage of having model-free limits: they

depend neither on the law of the process nor on the coefficients of the

equation (10.1), and it does not require any preliminary estimation of

these coefficients. In Section 10.4 we explain how to estimate the location

and size of the jumps, at least for those whose size is bigger than a positive

prescribed value, that is, we (partially) solve the third question; we also

use this method to construct tests for jumps. Section 10.5 is concerned

with the jumps of the volatility process, and in Section 10.6 we examine

what happens when the price process is contaminated by microstructure

noise.

Before proceeding, we must state a theoretically important caveat.

Although the interest lies in the two complementary subsets Ω
(c)
T and

Ω
(j)
T , it is in fact impossible with the methods developed below to pro-

vide results when the outcome ω is such that CT (ω) = 0, that is, when

the Brownian part has been completely inactive on [0, T ] because the

volatility vanishes. In other words, if

Ω
(W )
T = {ω : CT (ω) > 0},

Ω
(cW )
T = Ω

(c)
T ∩Ω

(W )
T ,

Ω
(jW )
T = Ω

(j)
T ∩ Ω

(W )
T ,

(10.6)

our sets of interest will usually be Ω
(cW )
T and/or Ω

(jW )
T instead of Ω

(c)
T

and/or Ω
(j)
T . Here, the superscriptsW stand for “the continuous martin-
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gale (or Wiener) part is not vanishing identically.” The notion of a set

Ω
(cW )
T may seem curious at first, but it is possible for a process to have

continuous paths without a Brownian component if the process consists

only of a pure drift. Let us finally mention that, in many models used

in finance, we have Ω
(W )
T = Ω, but such models exclude all pure jump

models. Of course, in a pure jump model, the question of whether jumps

are present or not is meaningless.

10.2 Relative Sizes of the Jump and

Continuous Parts and Testing for

Jumps

This section is mainly concerned with the construction of a test based

on the measure of the relative sizes of the “jump part” and the “contin-

uous (or, Brownian) part” of the observed process X . The key point is

obviously to find estimators for Ct and A(2)t, or equivalently for Ct and

[X,X ]t = Ct+A(2)t. This question has essentially been solved in Chap-

ter 6, although we need some complements, given in the first subsection

below.

10.2.1 The Mathematical Tools

We start by recalling some notation. With k ≥ 2 an integer, and a se-

quence of truncation levels un satisfying un ≍ ∆̟
n for some ̟ ∈

(
0, 12

)
,

that is, (6.24), we set

Ĉ(∆n)t =
∑[t/∆n]
i=1 (∆n

i X)2

Ĉ(∆n, un)t =
∑[t/∆n]
i=1 (∆n

i X)2 1{|∆n
i X|≤un}

Ĉ([k],∆n)t = 1
(m2/k)k

∑[t/∆n]−k+1
i=1

∏k
j=1 |∆n

i+j−1X |2/k.

Under Assumption (H-2), and as already mentioned, we have

Ĉ(∆n)
P

=⇒ [X,X ],

Ĉ(∆n, un)
u.c.p.
=⇒ C, (10.7)

Ĉ([k],∆n)
u.c.p.
=⇒ C.

We also have associated Central Limit Theorems. The CLTs for

Ĉ(∆n, un) and Ĉ([k],∆n) have been mentioned in Chapter 6, but here

we need a joint CLT for these processes, together with Ĉ(∆n), which is
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stated as Theorem A.16. Namely, we have (recall that (KC) is (K-2) plus

the continuity of X)

under (H-r), r < 1, 1
2(2−r) ≤ ̟ < 1

2 :(
1√
∆n

(Ĉ(∆n)− [X,X ]), 1√
∆n

(Ĉ(∆n, un)− C)
)

L−s
=⇒ (U +W ,W)

under (P), (K-r), k ≥ 3, r ≤ 2
k ,

1
2(2−r) ≤ ̟ < 1

2 :(
1√
∆n

(Ĉ(∆n)− [X,X ]), 1√
∆n

(Ĉ(∆n, un)− C),

1√
∆n

(Ĉ([k],∆n)− C)
) L−s

=⇒ (U +W ,W ,W(k))

under (P), (KC), k ≥ 2 :
(

1√
∆n

(Ĉ(∆n)− C), 1√
∆n

(Ĉ([k],∆n)− C)
) L−s
=⇒ (W ,W(k)).

(10.8)

Here, U , W , W(k) are defined on an extension (Ω̃, F̃ , (F̃t)t≥0, P̃) of

(Ω,F , (Ft)t≥0,P) and, conditionally on F , the process U is independent

of the pair (W ,W(k)), which is a continuous centered Gaussian martin-

gale with variances-covariances given by

Ẽ((Wt)
2 | F) = 2C(4)t

Ẽ((W(k)t)
2 | F) = ϑ(k)C(4)t

Ẽ(WtW(k)t | F) = ϑ′(k)C(4)t,

with ϑ(k) given by (6.39) and

ϑ′(k) =
k (m2+2/k −m2/k)

m2/k
.

(Note that W and W(k) are as in Chapter 6, but here we provide the

joint F -conditional distribution.) Moreover, U is given by

Ut = 2
∑

q≥1:Tq≤t
∆XTq

(√
κq σTq−Ψq− +

√
1− κq σTq Ψq+

)
, (10.9)

with (Tq)q≥1 a sequence of stopping times exhausting the jumps of X

and κq,Ψq−,Ψq+ being defined on the extension and mutually indepen-

dent, independent of F and (W ,W(k)), and κq is uniform over [0, 1] and

Ψq+,Ψq− are standard normal. So conditionally on F it is a centered

process and, as soon as the processes X and σ never jump at the same

times, it is Gaussian (but of course discontinuous).

The sum U +W is of the form (1.87), with V ′
t =

√
2 ct and Vt being

two-dimensional with the two components 2∆Xtσt− and 2∆Xtσt, and
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the variables Yq having the two components
√
κq Ψq− and

√
1− κq Ψq+,

and VTqYq standing for the scalar product. In particular, we have the

conditions (ii) of (1.84), and U is indeed well defined.

We do not give the joint CLT for (Ĉ(∆n), Ĉ(∆n, un)) when X is con-

tinuous, because in this case for any t we have Ĉ(∆n)s = Ĉ(∆n, un)s
for all s ≤ t, as soon as n is large enough (depending on ω). The last

statement in (10.8) with k = 1 also holds, but reduces to the convergence

of 1√
∆n

(Ĉ(∆n)− C), because Ĉ([1],∆n) = Ĉ(∆n) and W(1) = W .

10.2.2 A “Linear” Test for Jumps

A test for jumps can be constructed using the statistics Ĉ(∆n) (realized

quadratic variation), which estimates [X,X ], and Ĉ([k],∆n) (multipower

variations), which estimates C. We do not present all the different ver-

sions of those tests here since, although they have different practical

characteristics, their mechanism boils down to either one of two proce-

dures: the first one consists of using a “linear” test statistic; the second

one consists of using “ratio” test statistics. We will show in particular

that these two kinds of tests work under our current assumptions, which

are significantly weaker than those in the existing literature.

The aim is to test the null hypothesis “no jump,” that is, the outcome

belongs to the set Ω
(c)
T of (10.5), where T is the (fixed) time horizon. The

simplest idea consists of taking an integer k ≥ 2 and using the following

fact, under (H-2):

S(J−MP1)(k,∆n) := Ĉ(∆n)T − Ĉ([k],∆n)T

P−→
{

0 on Ω
(c)
T

A(2)T =
∑
s≤T (∆Xs)

2 > 0 on Ω
(j)
T .

In view of (10.8), under (P) and (KC) (hence when X is continuous)

the normalized statistics 1√
∆n

S(J-MP1)(k,∆n) converge stably in law to

WT − W(k)T . When X has jumps but nevertheless the set Ω
(c)
T has a

positive probability, we expect the same result, but only “in restriction to

this set.” Let us recall that, in contrast with the concept of convergence

in law in restriction to a subset A of Ω, which is meaningless, stable

convergence in law in restriction to A was discussed on page 95: we say

that Zn
L−s−→ Z in restriction to A if

E(f(Zn) 1A′) → Ẽ(f(Z) 1A′)

for all bounded continuous functions f and all measurable subsets A′ ⊂
A.
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However, it turns out that the stable convergence in law of
1√
∆n

S(J-MP1)(k,∆n) in restriction to Ω
(c)
T is not a straightforward con-

sequence of (10.8), unless Ω
(c)
T = Ω of course, and in view of the problem

at hand we do not want to assume this equality here. We then explicitly

show how to deduce this stable convergence in law in restriction to Ω
(c)
T

from the same convergence when we have Ω
(c)
T = Ω in the proof of the

following theorem, at the end of the subsection. The same type of argu-

ments will be used quite often later, and no proofs will be provided since

they all are of the same sort.

Theorem 10.1. Assuming (P) and (K-2), we have the following stable

convergence in law:

1√
∆n

S(J−MP1)(k,∆n)
L−s−→ W̃(k) := WT −W(k)T

in restriction to the set Ω
(c)
T ,

(10.10)

and in particular the variable W̃(k)T is F-conditionally centered normal

with variance

E(W̃(k)2T | F) = ϑ′′(k)C(4)T , where ϑ′′(k) = ϑ(k) + 2(1− ϑ′(k)).

Let us come back to the construction of a test based on the statistic

S(J-MP1)(k,∆n). Exactly as for (6.11), we need to standardize. To esti-

mate the variable C(4)T we can use the variables Bn(4,∆n, un)T /3∆n

with a suitable cutoff sequence un, or M([4, k′],∆n)T /(m4/k′)
k′∆n (as

defined by (6.34)) for some integer k′ ≥ 2, or U ′(∆n, g)T with g(x) = x2,

according to (8.48). Using for example the multipower estimator, which

is natural here, we then obtain

L
(

(m4/k′)k
′/2

√
ϑ′′(k)M([4,k′],∆n)T

S(J−MP1)(k,∆n)
∣∣∣A
)

→ N (0, 1),

if A ∈ F , A ⊂ Ω
(cW )
T , P(A) > 0

(10.11)

(as usual, see e.g. (6.10), the ratio on the left side above is taken to be

0, or 1, or any other dummy value, when the denominator vanishes).

With a prescribed asymptotic level α ∈ (0, 1), we take at stage n the

following critical (rejection) region:

Cn =

{
S(J−MP1)(k,∆n) > z′α

√
ϑ′′(k)

(m4/k′ )k
′

√
M([4, k′],∆n)T

}
, (10.12)

where z′α is the α-quantile of N (0, 1), that is, the number such that

P(Ψ > z′α) = α when Ψ is N (0, 1). This test has the following property
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(we refer to Section 5.4 for the meaning of “strong asymptotic size”

and “consistent” in the present setting, where the null and alternative

hypotheses are subsets of the sample space Ω):

Theorem 10.2. Assuming (P) and (K-2), the tests Cn defined above

have the strong asymptotic size α for the null hypothesis Ω
(cW )
T , and are

consistent for the alternative Ω
(j)
T .

Proof. The claim about asymptotic size is a straightforward consequence

of (10.11). The second claim amounts to P(Ω
(j)
T ∩ (Cn)c) → 0, and since

S(J-MP1)(k,∆n) converges in probability to a positive limit in restriction

to Ω
(j)
T , it is clearly enough to prove that M([4, k′],∆n)T

P−→ 0. When

k′ ≥ 3, this comes from Theorem A.2 of Appendix A with the test func-

tion f(x1, . . . , xk′) =
∏k′

j=1 |xj |4/k
′

. For the case k′ = 2 we observe that

M([4, 2],∆n)T ≤ 2A2
n Ĉ(∆n)T , where An = sup(min(|∆n

i X |, |∆n
i+1X |) :

i = 1, . . . , [T/∆n]). The paths of X being càdlàg, we have An → 0, and

the property for k′ = 2 follows.

Remark 10.3. As mentioned before, we may use other estimators for

C(4)T . For example, with un ≍ ∆̟
n for some ̟ ∈

(
0, 12

)
, we can take

1
3∆n

B(4,∆n, un)T , leading to the critical region

{
|S(J−MP1)(k,∆n)| > z′α

√
ϑ′′(k)/3

√
B(4,∆n, un)T

}

(we have B(4,∆n, un)T ≤ u2n Ĉ(∆n)T , hence B(4,∆n, un)T
P−→ 0, hence

the alternative-consistency).

Remark 10.4. One might also think of taking the untruncated
1

3∆n
B(4,∆n)T as an estimator for C(4)T , since the convergence is taken

in restriction to the set Ω
(c)
T . This leads to taking

{
|S(J−MP1)(k,∆n)| > z′α

√
ϑ′′(k)/3

√
B(4,∆n)T

}
.

These tests again have asymptotic size α. However, they are not consis-

tent for the alternative Ω
(j)
T , because B(4,∆n)T does not go to 0 on the

set Ω
(j)
T . Hence such tests should be avoided.

Remark 10.5. In the same line of thought, one could imagine taking

advantage of the following convergence:

Sn = Ĉ(∆n)T − Ĉ(∆n, un)T
P−→

{
0 on Ω

(c)
T

A(2)T > 0 on Ω
(j)
T
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when un ≍ ∆̟
n for some ̟ ∈

(
0, 12

)
. However, not only do we have

the first convergence above, but actually Sn = 0 for all n large enough

(depending on ω) on the set Ω
(c)
T and, of course, there is no associated

Central Limit Theorem.

In a sense this property looks like a wonderful thing, since asymptot-

ically one can decide without error whether ω lies in Ω
(c)
T or in Ω

(j)
T .

But of course this is “too nice to be true” The problem lies here with the

choice of the truncation level un: if it is large enough, all increments are

kept and Sn = 0, whereas if it is too small, most increments are thrown

away in Ĉ(∆n, un)T and Sn is (artificially) large.

One could think of using the empirical rules established in Subsection

6.2.2 for choosing un. This typically leads to finding a positive value for

Sn above, but there seems to be no way of mathematically asserting the

size of Sn under the null Ω
(c)
T if we apply this rule. In other words, it

seems impossible to base a test on Sn which achieves a prescribed asymp-

totic level.

Remark 10.6. The previous tests work for testing the null Ω
(cW )
T .

Although we could derive from (10.8) a Central Limit Theorem for

S(J−MP1)(k,∆n) in restriction to the set Ω
(jW )
T as well, the centering

term in this CLT is the unknown variable A(2)T . Therefore it is not pos-

sible to base a test for the null Ω
(jW )
T on these statistics, if we want a

given asymptotic level.

Proof of Theorem 10.1. Suppose that there is a process X ′ such that

X ′ satisfies (KC) and (P) and P(Ω
(c)
T ∩Dc

T ) = 0,

where DT = {ω : Xs(ω) = X ′
s(ω) ∀ s ∈ [0, T ]}. (10.13)

Letting S′(J−MP1)(k,∆n) be the statistic associated with X ′ as

S(J−MP1)(k,∆n) is associated with X , we observe the following facts: on

the one hand, S′(J−MP1)(k,∆n) = S(J−MP1)(k,∆n) a.s. on Ω
(c)
T because

P(Ω
(c)
T ∩Dc

T ) = 0; on the other hand, we can apply (10.8) to X ′, yielding

the stable convergence in law to a limit W̃ ′(k) which, conditionally on

F , is centered Gaussian with variance (m4/k)
kϑ′′(k)C′(4)T , where C′(4)

is associated with X ′ as C(4) is with X . The property X ′
s = Xs for all

s ≤ T on the set Ω
(c)
T implies that the volatility σ′ of X ′ satisfies σ′

s = σs
for s ≤ T on Ω

(c)
T , up to a null set. Thus C′(4)T = C(4)T a.s. on Ω

(c)
T and,

conditional on F and on Ω
(c)
T , the variables W̃(k) and W̃ ′(k) have the

same law. It follows that E(f(S(J-MP1)(k,∆n)/
√
∆n) 1A) → Ẽ(f(Ũ) 1A)

for all measurable subsets A ⊂ Ω
(c)
T , which is (10.10). It remains to show
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(10.13). We use the notation S and b′t of (10.2), and the process X ′ will

be

X ′
t = X0 +

∫ t

0
b′s∧S ds+

∫ t

0
σs dWs,

which satisfies (P) and (KC), because X satisfies (P) and (K-2). Then

we set R = inf(t : ∆Xt 6= 0), and let µ be the jump measure of X and ν

be its compensator. Recall (1.67), that is,

Xt = X0 +

∫ t

0
bs ds+

∫ t

0
σs dWs (10.14)

+ (x 1{|x|≤1}) ∗ (µ− ν)t + (x 1{|x|>1}) ∗ µt.

By definition of R we have 1∗µR ≤ 1, hence E(1∗νR) ≤ 1 and 1∗νR <∞
a.s. It follows first that R ≤ S a.s., and second that we can rewrite (10.14)

for t ≤ R as

Xt = X0 +B′
t +

∫ t

0
σs dWs + x ∗ µt,

where

B′
t =

∫ t

0
bs ds− (x 1{|x|≤1}) ∗ νt.

Moreover, x ∗ µt = 0 when t < R, whereas the connection between the

representation (10.14) and the Grigelionis representation ofX shows that

indeed B′
t =

∫ t
0 b

′
s ds when t ≤ S. In other words, we have Xt = X ′

t a.s.

for all t < R. Since obviously R > T on the set Ω
(c)
T , we have proved the

last part of (10.13), and the proof is complete.

10.2.3 A “Ratio” Test for Jumps

The test (10.12) is “scale-free” in the sense that if we multiply the process

X by a constant γ, the critical region Cn is unchanged. The statistic

S(J-MP1)(k,∆n), though, is multiplied by γ2. One might expect, perhaps,

more stability if one chooses right away a scale-free statistic. This is

achieved, for example, by the following ratio statistic:

S(J-MP2)(k,∆n) =
Ĉ([k],∆n)T

Ĉ(∆n)T
. (10.15)

The behavior of these statistics is easily deduced from (10.7), although we

must be careful because of the presence of the denominator. Once more,

we arbitrarily take S(J-MP2)(k,∆n) = 1, for example, when Ĉ(∆n)T = 0

(that is, when Xi∆n = X0 for all i, a situation which never occurs in

practice). In the limit, the denominator [X,X ]T vanishes if and only if
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Xt = X0 +
∫ t
0 bsds for all t ≤ T . Again, this situation never occurs for

any model used in finance. Then we have under (H-2)

S(J-MP2)(k,∆n)
P−→

{
1 on Ω

(cW )
T

CT /[X,X ]T < 1 on Ω
(j)
T .

(10.16)

The behavior on Ω
(c)
T \Ω(cW )

T is not interesting for us, and not known in

general, although when the process b is càdlàg the limit is known to be

again 1 on this set.

Next, since S(J-MP2))(k,∆n) = 1− S (J−MP1)(k,∆n)/Ĉ(∆n)T , we de-

duce from Ĉ(∆n)T
P−→ CT on Ω

(c)
T and from (10.10) that, as soon as X

satisfies (P) and (K-2),

1√
∆n

(S(J-MP2)(k,∆n)− 1)
L−s−→ − W̃(k)

CT
= − W̃(k)

[X,X]T

in restriction to the set Ω
(cW )
T .

The standardized version, analogous to (10.11), goes as follows:

L
(

(m4/k)
k/2

√
Ĉ(∆n)T√

ϑ′′(k)M([4,k],∆n)T
(S (J-MP2)(k,∆n)− 1)

∣∣∣A
)
→ N (0, 1)

if A ∈ F , A ⊂ Ω
(cW )
T , P(A) > 0 ,

and a natural critical region at stage n is then

Cn =
{
S(J-MP2)(k,∆n) < 1− z′α

√
ϑ′′(k)M([4, k],∆n)T√
(m4/k)k Ĉ(∆n)T

}
. (10.17)

Note that we could substitute Ĉ(∆n)T in these two formulas with

Ĉ(∆n, un)T or Ĉ([k],∆n)T .

Exactly as for Theorem 10.2, we then have

Theorem 10.7. Assuming (P) and (K-2), the tests Cn defined in (10.17)

have the strong asymptotic level α for the null hypothesis Ω
(cW )
T , and are

consistent for the alternative Ω
(j)
T .

Mutatis mutandis, Remarks 10.3, 10.5 and 10.6 are valid here.

We can also observe that it is possible to use other ratios. Indeed,

S(J-MP2)(k,∆n) measures the ratio between the (squared) contribu-

tion of the continuous martingale part, versus the global contribu-

tion. One could prefer the ratios (Ĉ(∆n)T − Ĉ([k],∆n)/C(∆n)T or

(Ĉ(∆n)T − Ĉ([k],∆n)T )/Ĉ([k],∆n)T , the latter being the ratio between

the jump part and the continuous part, for example. The first ratio above
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is of course 1− S(J-MP2)(k,∆n). The second has an interesting practical

meaning, and its behavior is

Ĉ(∆n)T − Ĉ([k],∆n)T

Ĉ([k],∆n)T

P−→
{

0 on Ω
(cW )
T

A(2)T /CT on Ω
(j)
T

with the last expression equal to +∞ on the set Ω
(j)
T ∩ {CT = 0}. The

construction of tests based on these other ratios is completely similar to

what precedes, and those tests have the same asymptotic properties.

10.2.4 Relative Sizes of the Jump and Brownian

Parts

In this part, we compare the (cumulative) sizes of jumps to the size of the

Brownian part, and, as noted before, this is usually done by comparing

the respective contributions to the quadratic variation, which are A(2)T
and CT .

This can be achieved by using the ratiosA(2)T /[X,X ]T or CT /[X,X ]T
(which compare the jump part, or the continuous part, to the overall

quadratic variation), or the ratios A(2)T /CT or CT /A(2)T (which com-

pare the jump part to the continuous part, and vice versa). There are

obvious relationships between these various ratios, so for concreteness we

focus on the percentage of quadratic variation (QV) due to the continu-

ous part:

S =
CT

[X,X ]T
,

which is well defined on the set Ω
(cW )
T ∪ Ω

(j)
T = {[X,X ]T > 0}.

This ratio can be estimated by the statistics S(J-MP2)(k,∆n) of (10.16),

and also by

S(J-TR)(∆n, un) =
Ĉ(∆n, un)T

Ĉ(∆n)T
. (10.18)

While S(J-TR)(∆n, un) splits CT into a continuous and a jump compo-

nent, it is possible to further split the jump part of [X,X ]T into a small

and a big jump component, as illustrated in Figure 10.1, based on any

arbitrary finite cutoff ε for the jump size. The split between the con-

tinuous and jump parts is properly defined; that between small and big

jumps depends on the definition of “small” and “big”, namely on ε.

Both S
(J-MP2)
n and S

(J-TR)
n go in probability to S, in restriction to the

set {[X,X ]T > 0}.
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Figure 10.1: Splitting up the QV into continuous and jump components,

and into small and big jumps as a function of the jump size cutoff ε.

Figure 10.2 shows the empirical results for the statistics (10.18) ob-

tained from computing the fraction of quadratic variation from the Brow-

nian component using the four quarters of the years, values of un rang-

ing from 2 to 5 standard deviations, in increments of 1, and ∆n from 5

seconds to 2 minutes in the same increments as earlier. Unfiltered trans-

actions are marked U, filtered transactions are marked F and the NBBO

midpoint quotes are marked M. We find values around 75% for F and U,

and somewhat lower for M, around 60% with some stock/quarter sam-

ples leading to values that are in fact indicative of an almost pure jump

process in the quotes data.

In the middle right panel (similar but as a function of ∆n), we see

that the estimated fraction is fairly stable as we vary the sampling fre-

quency. It is also quite stable for the two different measurements of the

transactions data, F and U, and the quotes data M, going up slightly

as the sampling frequency decreases. The lower panels show a more pro-

nounced increase in the Brownian-driven part of QV as a function of the

asset’s liquidity: using both measures, we find that more liquid assets are

associated with a higher proportion of Brownian-driven QV.

In the case of the DJIA index, we find values that range from 85% to

95%, suggesting in line with the previous evidence that jumps are less



344 Chapter 10

U
UU U U U U

F
F F F F F F

M
MM M M M M

Unfiltered Transactions (U) NBBO-Filtered Transactions (F)

NBBO Quotes Midpoint (M) Median Value of %QV for (U, F, M)

Stock-Level Liquidity

NBBO-Filtered Transactions

Stock-Level Liquidity

NBBO-Filtered Transactions

%
Q

V
D

e
n

s
it

y
D

e
n

s
it

y

D
e
n

s
it

y
%

Q
V

%
Q

V

Pure Brownian

Pure jump

Pure Brownian

Pure jump

P
u

re
 B

ro
w

n
ia

n

P
u

re
 j
u

m
p

P
u

re
 B

ro
w

n
ia

n

P
u

re
 B

ro
w

n
ia

n

P
u

re
 j
u

m
p

P
u

re
 j
u

m
p

Pure Brownian

Pure jump

Average time between trades

%QV

%QV

Average transaction size

Δn (s = seconds, m = minutes)

%QV

0 5 10 15 20

0.0

0.2

0.4

0.6

0.8

1.0

300 400 500 600 700 800 900

0.0

0.2

0.4

0.6

0.8

1.0

0.0 0.2 0.4 0.6 0.8 1.0

1

2

3

4

5s 15s 30s 45s 1m 2m

0

0.25

0.5

0.75

1

0.0 0.2 0.4 0.6 0.8 1.0

1

2

3

4

0.0 0.2 0.4 0.6 0.8 1.0

1

2

3

4

Figure 10.2: Estimating the proportion of QV attributable to the con-

tinuous component: Empirical distribution of the proportion of QV at-

tributable to the continuous component for the 30 DJIA stocks, 2006,

measured using transactions (unfiltered, U, and NBBO-filtered, F) and

NBBO quotes midpoint (M), median value of %QV as a function of the

sampling interval ∆n, and nonlinear regression of %QV against stock-

level liquidity measures.
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of a factor for the index. Incidentally, one could imagine measuring the

proportion of jumps that are systematic vs. those that are idiosyncratic

on the basis of the comparison between %QV estimated for the index

and for its components.

As seen before, on Ω
(cW )
T we have a Central Limit Theorem for

S
(J-MP2)
n , whereas S

(J-TR)
n = 1 for all n large enough (see Remark 10.5 for

comments about this – too good – result). However, when X is continu-

ous it does not make much sense to evaluate the proportion of jumps. In

other words, one really would like to estimate S only when this number

is strictly between 0 and 1, that is, in restriction to the set Ω
(jW )
T defined

in (10.6). In a sense, this supposes that, prior to estimating S, one has

performed a test about the presence of jumps and concluded that there

were jumps on [0, T ] (for example the null hypothesis in one of the tests

described in the previous subsections has been rejected).

Now, (10.8) and the “delta method” allow us to get the following

CLTs for the two statistics S (J−MP2)(k,∆n) and S(J-TR)(∆n, un), and

in restriction to the set Ω
(jW )
T :

(P), (K-2/k), k ≥ 3 ⇒
1√
∆n

(
S(J−MP2)(k,∆n)− S

)

L−s−→ S(J−MP2)(k)

(H-r), r < 1,
1

2(2−r) ≤ ̟ < 1
2

⇒
1√
∆n

(
S(J−TR)(∆n, un)− S

)

L−s−→ S(J−TR)

(10.19)

(recall un ≍ ∆̟
n ), where the variables S(J-MP2)(k) and S(J-TR) are defined

on the extended space, with the help of the processes U , W and W(k)

described in Subsection 10.2.1, by the following formulas:

S(J-MP2)(k) = − CT

[X,X]2T
UT + 1

[X,X]T
W(k)T − CT

[X,X]2T
WT

S(J-TR) = − CT

[X,X]2T
UT + A(2)T

[X,X]2T
WT .

(10.20)

It is interesting to observe that the CLT for S(J-TR)(∆n, un) needs far

fewer assumptions than the CLT for S(J-MP2)(k,∆n), and in particular

it needs no assumption on the stochastic volatility σt other than being

càdlàg (and even this could be relaxed, and replaced by the fact that

C(4)t < ∞ for all t: see Theorem 5.4.2 of Jacod and Protter (2011)).

Moreover, the next proposition shows that when both CLTs hold, the

estimators S(J-TR)(∆n, un) are always asymptotically better than the es-

timators S(J-MP2)(k,∆n), in the sense that the asymptotic F -conditional

variance of the former is less than that of the latter. We even have a con-

volution theorem, as in asymptotic statistics in a situation where the
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so-called LAMN property holds, see Jeganathan (1982) or Le Cam and

Yang (1990). This is of course not surprising since, were we in a usual

parametric setting (as when σt = σ is simply a constant to be estimated,

or in the state-dependent case σt = f(t,Xt, θ) with an unknown pa-

rameter θ and a known function f), the (parametric) LAMN property

typically would hold; see Dohnal (1987) or Genon-Catalot and Jacod

(1994).

Proposition 10.8. When k ≥ 3 and (P) and (K-2/k) hold, and in

restriction to the set Ω
(jW )
T , the F-conditional distribution of the limiting

variables S(J−MP2)(k) is the convolution of the F-conditional distribution

of S(J−TR) and of the law N (0,Σ2
k), where Σ

2
k is an F-measurable positive

variable.

Proof. Not only do we have the two convergences in (10.19), but the

joint convergence also holds by (10.8). With the simplifying notation

α = −CT /[X,X ]2T and β = 1/[X,X ]T (two positive random variables on

Ω
(jW )
T ), and observing that A(2)T /[X,X ]2T = α+β, the limit of the pair

of normalized centered statistics is (S(J-MP2)(k),S(J−TR), where

S(J-MP2)(k) = αUT + βW(k)T + αWT ,

SJ−TR = αUT + (α+ β)WT .

These two variables are the sums of a “common summand” αUT , plus
two F -conditionally centered Gaussian variables, independent of Ut, and
with respective variances

a = (β2ϑ(k) + 2αβϑ′(k) + 2α2)C(4)T ,

a′ = 2(α+ β)2 C(4)T .

Then the result will follow with Σ2 = a− a′, provided we can show that

a > a′ on Ω
(jW )
T . This amounts to having f(α/β) > 0, where f(x) =

ϑ(k) + 2x(ϑ′(k) − 2) − 2. Since α/β ∈ (−1, 0) on the set Ω
(jW )
T , it is

enough to prove that f(0) ≥ 0 and f(−1) ≥ 0. The first one of these

two properties is ϑ(k) ≥ 2, which was seen in Chapter 6; the second

one follows from the fact that f(−1) is the F -conditional variance of

W(k)T −WT , divided by C(4)T .

Taking this result into account, we use S(J-TR)(∆n, un) for estimating

S below, but the following arguments would apply exactly as well for

S(J-MP2)(k,∆n), would one prefer to use it (on the basis, for example,

that it does not require the tuning parameter un).
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Since (weakly) consistent estimators are available, the next step is to

give a confidence interval, which is very similar to deriving tests. However,

we need to single out two cases, and before doing this we introduce the

following notation, for any p ≥ 2:

D(p)t =
∑

s≤t
|∆Xs|p (cs− + cs). (10.21)

Case 1: The Processes X and σ Do Not Jump Together

The reason for singling out this case is that it allows us to rewrite U as

Ut = 2
∑

q≥1

∆XTq σTq Ψq 1{Tq≤t}, (10.22)

where Ψq =
√
κq Ψq− +

√
1− κq Ψq+ is again standard normal. An im-

portant consequence of this specific form is that the process U is F -

conditionally a centered Gaussian martingale, with (conditional) variance

given by (since cs− = cs when ∆Xs 6= 0)

E(U2
t | F) = 2D(2)t = 4

∑

s≤t
(∆Xs)

2 cs

(the main difference between U and W here is that W is continu-

ous, whereas U is purely discontinuous). Therefore, the limiting vari-

able S(J-TR) is F -conditionally a centered Gaussian variable with (con-

ditional) variance

E
(
(S(J-TR))2 | F

)
= 2

C2
T D(2)T +A(2)2T C(4)T

[X,X ]4T
. (10.23)

Exactly as for the tests described before, we need weakly consistent esti-

mators for this expression. To this end, we use the following convergences

(see (6.26) for the latter one):

Ĉ(∆n)T
P−→ [X,X ]T ,

Ĉ(∆n, un)T
P−→ CT , (10.24)

1

∆n
B(4,∆n, un)T

P−→ 3C(4)T ,

which have already been used before, and we need also estimators for

D(2)T , which is more difficult.

To solve this problem, we use the spot volatility estimators of Chapter

8, see (8.8). More specifically, we choose a sequence kn of integers with

the following property:

kn → ∞, kn∆n → 0. (10.25)
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Then we set

ĉ(kn, [k])i = 1
(m2/k)k kn∆n

×
kn−1∑
m=0

|∆n
i+mX |2/k · · · |∆n

i+m+k−1X |2/k

ĉ(kn, un)i = 1
kn∆n

kn−1∑
m=0

(∆n
i+mX)2 1{|∆n

i+mX|≤un}.

(10.26)

Next, we take a sequence wn ≍ ∆̟′

n for some ̟′ ∈ (0, 1/2). We choose

ĉni to be either ĉ(kn, [k])i or ĉ(kn, un)i, as defined above, and set k = 1

in the second case. Finally, we set for any p > 0

D(∆n, p)t =
[t/∆n]−kn−k+1∑

i=kn+k

|∆n
i X |p 1{|∆n

i X|>wn}

×
(
ĉni−kn−k+1 + ĉni+1

)
.

(10.27)

(The bounds are designed in such a way that these variables, for any

given t, use all increments of X within [0, t], and no increment extending

after time t.) Then, by Theorem A.7 of Appendix A, applied with the

function g(y, y′) = y + y′, we have the following convergences (for the

Skorokhod topology), as soon as p ≥ 2:

D(∆n, p)
P

=⇒ D(p). (10.28)

Remark 10.9. The upward truncation at level wn serves the same pur-

pose of “separating” the increments due to relatively big jumps from the

others, as the truncation un in ĉ(kn, un)i. Therefore it is natural (al-

though not necessary) to take here the version ĉni = ĉ(kn, un)i, and also

wn = un, and again the same un in the definition of B(4,∆n, un).

Let us now come back to the problem at hand. In view of (10.19)

and (10.23), we obtain under (H-r) for some r < 1 and un such that
1

2(2−r) ≤ ̟ < 1
2

L
(

1√
Vn

(
S(J-TR)(∆n, un)− S

) ∣∣A
)
→ N (0, 1),

for all A ∈ F with A ⊂ Ω
(jW )
T and P(A) > 0,

where

Vn = 1

3(Ĉ(∆n)T )4

{
6∆n(Ĉ(∆n, un)T )

2D(∆n, 2)T

+ 2(Ĉ(∆n)T − Ĉ(∆n, un)T )
2B(4,∆n, un)T

}
.

(10.29)
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At this point, it is straightforward to construct a confidence interval

with asymptotic level α ∈ (0, 1) for S. Denoting again by zα the α-

absolute quantile of N (0, 1), at stage n we take the following confidence

interval for the ratio S = CT /[X,X ]T :

In = [S(J-TR)(∆n, un)− an, S
(J-TR)(∆n, un) + an],

where an = zα
√
Vn.

(10.30)

Then, exactly as in (6.13), we have

Theorem 10.10. Under (H-r) for some r < 1 and 1
2(2−r) ≤ ̟ < 1

2 in

(10.8), the confidence interval (10.30) has asymptotic level α in restric-

tion to Ω
(jW )
T , in the sense that

limn P(S /∈ In | A) = α

for all A ∈ F with P(A) > 0 and A ⊂ Ω
(jW )
T .

(10.31)

Case 2: The Processes X and σ May Jump Together

In this case (10.22) fails, and the process U is no longer F -conditionally

Gaussian. The previous argument for constructing a confidence interval

breaks down, and there are two ways to solve the problem.

A conservative confidence interval Although the limiting vari-

able S(J-TR) is no longer F -conditionally Gaussian in this case, it is still

F -conditionally centered and satisfies (10.23). Hence its F -conditional

variance is again estimated by the variables Vn of (10.29), and we deduce

from (10.24) and (10.28) that

L
(

1√
Vn

(
S(J-TR)(∆n, un)− S

) ∣∣A
)

→ LA,
for all A ∈ F with A ⊂ Ω

(jW )
T and P(A) > 0

where LA is a distribution which a priori depends on the set A and is

in general unknown, but whose mean and variance are known and equal

respectively to 0 and 1. Therefore, if we define a confidence interval for

S by

In = [S(J-TR)(∆n, un)− an, S
(J-TR)(∆n, un) + an],

where an =
√
Vn/α,

(10.32)

and by virtue of the Bienaymé-Tchebycheff inequality, we obtain the

following:
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Theorem 10.11. Under (H-r) for some r < 1 and 1
2(2−r) ≤ ̟ < 1

2 in

(10.8), the confidence interval (10.32) satisfies

lim sup
n

P(S /∈ In | A) ≤ α

for all A ∈ F with P(A) > 0 and A ⊂ Ω
(jW )
T .

(10.33)

This has to be compared with (10.31), and here the inequality is strict

in general.

A sharp confidence interval In order to avoid a strict inequality

in (10.33), which leads to an unnecessarily large confidence interval, we

can also use a Monte Carlo approach.

Indeed, what we really need is the α-absolute quantile of the limiting

variable S(J-TR), that is, the (random, F -measurable) number Zα such

that

P̃(|S(J-TR)| > Zα | F) = α.

This variable cannot be exactly calculated, but it can be estimated by

means of a Monte Carlo technique which we now explain. Recall from

(10.20) that

S(J−TR) = 2CT

[X,X]2T

∑
q≥1

∆XTq

(√
κqσTq−Ψq− +

√
1− κqσTqΨq+

)
1{Tq≤t}

+

√
2C(4)T A(2)T

[X,X]2T
Ψ′,

where (Ψq−,Ψq+, κq) are as in (10.9) and Ψ′ is another N (0, 1) variable,

independent of everything else (the sign in front of the first term of the

right side above has been changed, but this is immaterial because Ψq−
and Ψq+ are symmetrical). We also use once more the notation (10.26)

and choose ĉni to be either ĉ(kn, [k])i or ĉ(kn, un)i, in which case we set

k = 1. Then, the procedure is as follows:

1. We replace CT , [X,X ]T , C(4)T and A(2)T by their esti-

mators, namely Ĉ(∆n, un)T , Ĉ(∆n)T , B(4,∆n, un)/3∆n and

Ĉ(∆n)T − Ĉ(∆n, un)T . Then we set Ωn = {Ĉ(∆n)T >

Ĉ(∆n, un)T > 0}, and we observe that 1Ωn converges in

probability to 1
Ω

(jW )
T

(equivalently, one could use Ĉ([k],∆n)T

and/or M([4, k],∆n)T /(m4/k)
k∆n instead of Ĉ(∆n, un)T and

B(4,∆n, un)/3∆n, but for simplicity we use the truncated versions

below).

2. If the observed outcome ω is not in Ωn, we should stop here: perhaps

we are not in Ω
(jW )
T , or we do not have enough data to go on.

Otherwise, we proceed.
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3. We pretend that the jump times Tq which are “significant” are in

intervals ((i − 1)∆n, i∆n] for which |∆n
i X | > un and k + kn ≤

i ≤ [T/∆n]− kn − k+ 1. These i’s are labeled i1, i2, . . . , ir(n) (r(n)

is the (random) total number of such i’s, and r(n) ≥ 1 because

Ĉ(∆n)T > Ĉ(∆n, un)T ). Then we “replace” (∆XTq , σTq−, σTq ) by

(∆n
iqX,

√
c̃niq−kn−k,

√
ĉniq ).

4. We draw Nn copies of (Ψq−,Ψq+, κq,Ψ′), for q running from 1 to

r(n), say (Ψjq−,Ψ
j
q+, κ

j
q,Ψ

′j) for j = 1, . . . , Nn, all independent.

5. We compute the Nn variables (well defined on Ωn), for j =

1, . . . , Nn:

Sjn = 2Ĉ(∆n,un)T
Ĉ(∆n)2T

r(n)∑
q=1

∆n
iqX

(√
κjq ĉniq−knΨ

j
q−

+
√
(1− κjq)ĉniq+1Ψ

j
q+

)

+

√
2Bn(4,∆n,un)T /3∆n (Ĉ(∆n)T−Ĉ(∆n,un)T )

Ĉ(∆n)2T
Ψ′j.

(10.34)

6. We denote by Zαn the α-absolute quantile of the empirical dis-

tribution of the family (Sjn : 1 ≤ j ≤ Nn), that is, we reorder

these Nn variables so that |S1
n| ≥ |S2

n| ≥ · · · ≥ |SNn
n |, and we set

Zαn = |S[αNn]
n |.

7. We terminate the procedure by taking the following confidence in-

terval:

In = [S(J-TR)(∆n, un)− an, S
(J-TR)(∆n, un) + an],

where an = Zαn
√
∆n.

(10.35)

As stated in the following theorem, this confidence interval has the

asymptotic level α. In this theorem one has to be careful about the nota-

tion, since we have introduced some extra randomness through the Monte

Carlo. It is of course not a restriction to suppose that the additional vari-

ables (Ψjq−,Ψ
j
q+, κ

j
q,Ψ

′j) are defined on the same extension (Ω̃, F̃ , P̃) of

the original probability space, and they all are independent of the σ-field

F . But now the confidence interval In is defined on the extension, al-

though it is a “feasible” interval (the proof of the next theorem is rather

involved, and provided in Appendix B, Subsection B.3.1).

Theorem 10.12. Assume (H-r) for some r ∈ [0, 1), and take un ≍ ∆̟
n

with 1
2(2−r) ≤ ̟ < 1

2 . Then, as soon as the number of Monte Carlo

experiments Nn goes to infinity as n→ ∞, the interval (10.35) satisfies

P̃(S /∈ In | A) → α if A ∈F , P (A) > 0, A ⊂ Ω
(jW )
T . (10.36)
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Remark 10.13. The reader will have noticed that we always assume

(H-r) for some r < 1 and 1
2(2−r) ≤ ̟ < 1

2 , when we construct a confi-

dence interval. If (H-r) fails for all r < 1, no Central Limit Theorem is

available, and no confidence interval as well: this fact is of course of the

same nature as the restriction r < 1 in Theorem 6.9, for example.

10.2.5 Testing the Null Ω
(c)
T

instead of Ω
(cW )
T

As the reader already noticed, in the previous tests the null hypothesis is

Ω
(cW )
T and not Ω

(c)
T . This will also be the case for the forthcoming tests

below, for which the null may be Ω
(cW )
T or Ω

(jW )
T , but never Ω

(c)
T or Ω

(j)
T .

This is due to the fact that all the Central Limit Theorems which we

use are “trivial” (= with a vanishing limit) when the Brownian motion

is absent and the volatility identically 0.

One can overcome this problem by using the following procedure,

which we explain in the setting of the previous tests, but which works

equally well for the tests to come later. The idea is to add a fictitious

Brownian motion to the observed data. More precisely, one simulates a

Brownian motion W ′ independent of everything else, taking some σ′ > 0

(a constant) and setting c′ = σ′2. The observed increments ∆n
i X are

replaced by

∆n
i X

′ = ∆n
i X + σ′∆n

iW
′.

(Actually, one does not simulate the whole path of W ′, only the incre-

ments ∆n
iW

′ are relevant, so getting the ∆n
i X

′ is very simple.) Note

that, mathematically speaking, it is clearly not a restriction to suppose

that W ′ is defined on (Ω,F , (Ft)t≥0,P) and, up to enlarging the filtra-

tion, that it is adapted to the filtration (Ft). This correspond to the

observation of the process

X ′ = X + σ′W ′,

which is of course an Itô semimartingale, with the same first and third

characteristics as X , whereas its second characteristic is C′
t = Ct + tc′.

We denote by Ω
′(c)
T , Ω

′(j)
T , Ω

′(cW )
T and Ω

′(jW )
T the sets associated with

the new process X ′ by (10.5) and (10.6). Since we add a continuous

non-vanishing Brownian component to X , we obviously have

Ω
(c)
T = Ω

′(cW )
T , Ω

(j)
T = Ω

′(jW )
T .

Therefore, one can construct the tests described previously on the basis

of the new increments ∆n
i X

′, and this gives tests for the null hypothesis

Ω
(c)
T in an obvious way.
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We lose something, though, in the following sense: if we let c′ increase,

then the strong asymptotic size of the tests is still the prescribed value α;

but if there are jumps, we reject the null less and less often. To see this,

consider for example the first test, based on S(J-MP1)(k,∆n), which we de-

note as S ′(J-MP1)(k,∆n) if we use the observations X
′
i∆n

instead of Xi∆n .

This statistic is approximately equal to A(2)T > 0 when there are jumps,

so we basically reject when the multipowerM ′[4, k],∆n)T associated with

X ′ is smaller than A(2)2T (m4/k)
k/z′2α ϑ

′′(k). Now, M ′[4, k],∆n)T is ap-

proximately ∆n (m4/k)
k(C(4)T + c′2T ) and rejection occurs less often

when c′ increases. So the “genuine” asymptotic power decreases.

This effect is weak when c′ is small, relative to the average size of the

volatility ct on [0, T ]. But since the procedure is designed to cover the case

when ct ≡ 0, it is obviously a difficult task to choose the tuning parameter

c′. In a sense, if one suspects that ct might vanish, it is probably wiser

to first test for the presence of the Brownian motion, according to the

procedures explained in Chapter 13 below.

10.3 A Symmetrical Test for Jumps

The tests developed in the previous section are by necessity non-

symmetrical, in the sense that we can test the null hypothesis “no jumps”

(that is, Ω
(c)
T or Ω

(cW )
T ) against Ω

(j)
T , but not the other way around. In

this section, we introduce a “symmetrical” test statistics which allow us

to test both null hypotheses Ω
(cW )
T and Ω

(jW )
T .

10.3.1 The Test Statistics Based on Power Variations

The tests presented here rely on power variations, which were introduced

in (6.9) as

B(p,∆n)t =

[t/∆n]∑

i=1

|∆n
i X |p,

where p is a positive real, and here we will choose p > 2, and even p > 3

later.

Let us begin with some intuition, based on the asymptotic behavior of

B(p,∆n)T . As we will see more precisely below, these variables basically
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behave as follows when ∆n is small:

X has jumps on [0, T ] ⇒ B(p,∆n)T ≈ A(p)T > 0

X is continuous on [0, T ] ⇒ B(p,∆n)T ≈ ∆
p/2−1
n mp C(p)T ,

and C(p)T > 0 on Ω
(W )
T .

The idea is then simple: we sample at two different frequencies, the high-

est one with time lag ∆n, and a lower one with time lag k∆n for some

integer k ≥ 2, which amounts to using a subsample. We thus have the

power variations B(p,∆n)T and B(p, k∆n)T at these two frequencies,

and their ratio B(p, k∆n)T /B(p,∆n)T has the following asymptotic be-

havior:

1. If X has jumps, both power variations go to the same positive

limits, so the ratio goes to 1.

2. If X is continuous and C(p)T > 0, hence on Ω
(cW )
T , both variations

go to zero, but at rates that depend upon the sampling frequency

and the ratio goes to kp/2−1 > 1.

Thus, sampling at two different frequencies let us distinguish between

the two situations of jumps and no jumps. The key advantage of using

a ratio is that we do not need to know or estimate A(p)T or C(p)T .

All we need is for the null hypothesis to specify whether A(p)T > 0 or

A(p)T = 0. That is, in the context of Figure 10.3, on Ω
(j)
T , both variations

converge to the same finite limit A(p)T > 0 and so the ratio tends to

1 (the middle situation depicted in the figure), whereas on Ω
(cW )
T the

variation converges to 0 and the ratio tends to a limit greater than 1,

with value specifically depending upon the rate at which the variation

tends to 0 (the lower situation depicted in the figure).

There are in fact two possible versions for the power variation with

the time lag k∆n, according to whether we only use the observations

Xik∆n for i ≥ 0, or compute the variation with time lag k∆n and all

starting points 0,∆n, . . . , (k − 1)∆n and then sum up over all starting

points, hence using again all data:

B([p, k],∆n)t =
[t/∆n]−k+1∑

i=1
|X(i+k−1)∆n

−X(i−1)∆n
|p

B(p, k∆n)t =
[t/k∆n]∑
i=1

|Xik∆n −X(i−1)k∆n
|p.

(10.37)

Clearly, B([p, 1],∆n) = B(p,∆n). The behavior of these power variations

is known and stated in Appendix A; indeed, B([p, k],∆n) = B(g,∆n) and
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Ratios of Power Variations at Two Frequencies
to Identify the Asymptotic Behavior of B
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Figure 10.3: The three possible asymptotic behaviors of the power

variation B(p,∆n) (diverge to infinity, converge to a finite limit, con-

verge to zero) are identified by the asymptotic behavior of the ratio

B(p, k∆n)/B(p,∆n), without the need to estimate the actual limit.

B(p, k∆n) = B(g,∆n), the function g on Rk being

g(x1, · · · , xk) = |x1 + · · ·+ xk|p.

Then, since g(x) = O(‖x‖p) as x → 0 in Rk, Theorem A.1 tells us that,

for any time T and as soon as p > 2, we have

B([p, k],∆n)T
P−→ kA(p)T , B(p, k∆n)T

P−→ A(p)T . (10.38)

This holds for any semimartingale, at any point T such that P(∆XT 6=
0) = 0, hence for all T if X is an Itô semimartingale.

On the other hand, the test function g is homogeneous with de-

gree p, so with the notation of Appendix A we have B([p, k],∆n) =

∆
p/2−1
n B′(g,∆n) and B(p, k∆n) = ∆

p/2−1
n B

′
(g,∆n). Hence Theorem

A.2 and the property ρk⊗a (g) = (ka)p/2mp (with the notation of this

theorem) yield that, under (H′),

∆
1−p/2
n B([p, k],∆n)T

P−→ kp/2mp C (p)T
∆

1−p/2
n B(p, k∆n)T

P−→ kp/2−1mp C (p)T
both in restriction to the set Ω

(c)
T .

(10.39)
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Here, C (p)t =
∫ t
0 |σs|p ds is as usual, and p > 0. In fact, the aforemen-

tioned theorem states this result when X is continuous, and when it is

not we apply the same argument as for Theorem 10.1, hence the necessity

of (H′) instead of (H-2).

This leads us to introduce the following two test statistics, for any

integer k ≥ 2 and real p > 2:

S(J-PV1)(p, k,∆n) =
B([p, k],∆n)T
kB(p,∆n)T

, (10.40)

S(J-PV2)(p, k,∆n) =
B(p, k∆n)T
B(p,∆n)T

.

By virtue of (10.38) and (10.39), and since Ω
(j)
T = {A(p)T > 0} and

Ω
(cW )
T = {C (p)T > 0 = A(p)T } (for any p), we deduce that

S(J-PV1)(p, k,∆n)
P−→

{
1 on Ω

(j)
T under (H-2)

kp/2−1 on Ω
(cW )
T under (H′)

S(J-PV2)(p, k,∆n)
P−→

{
1 on Ω

(j)
T under (H-2)

kp/2−1 on Ω
(cW )
T under (H′)

(10.41)

Since kp/2−1 > 1 (because p > 2), this immediately leads to tests

of the following form, for the two possible null hypotheses: we reject the

null Ω
(cW )
T , resp. the null Ω

(j)
T , if S(J-PV1)(p, k,∆n) or S

(J-PV1)(p, k,∆n) is

smaller, resp. bigger, than a value between 1 and kp/2−1. However, exactly

as for the previous tests, if we want to achieve a prescribed asymptotic

level α ∈ (0, 1), we need a Central Limit Theorem for these statistics,

and this begins with a joint CLT for the pairs (B(p,∆n), B([p, k],∆n))

or (B(p,∆n), B(p, k∆n)).

10.3.2 Some Central Limit Theorems

We start with the CLT when X has jumps. This needs p > 3 and As-

sumption (H-2), and we have the following stable convergence in law, for

any fixed time T (see page 564 for the proof):

(
1√
∆n

(B([p, k],∆n)T − kA(p)T ),
1√
∆n

(B(p,∆n)T −A(p)T )
)

L−s−→ (U(p, k)T ,U(p)T )(
1√
∆n

(B(p, k∆n)T −A(p)T ),
1√
∆n

(B(p,∆n)T −A(p)T )
)

L−s−→ (U(p, k)T ,U(p)T ).

(10.42)
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Here, the limiting processes have a description similar to (10.9), with a

few more ingredients:

U(p)T = p
∑

q≥1:Tq≤T
|∆XTq |p−1sign(∆XTq )

×
(√
κq σTq− Ψq− +

√
1− κq σTq Ψq+

)
,

U(p, k)T = p
∑

q≥1:Tq≤T
|∆XTq |p−1sign(∆XTq )

×
(
σTq−

(√k(k−1)
2 Ψ′

q− + k
√
κq Ψq−

)

+σTq

(√k(k−1)
2 Ψ′

q+ + k
√
1− κq Ψq+

))

U(p, k)T = p
∑

q:Tq≤T
|∆XTq |p−1 sign(∆XTq )

×
(
σTq−

(√
κq Ψq− +

√
Lq Ψ

′
q−
)

+σTq

(√
1− κq Ψq+ +

√
k − 1− Lq Ψ

′
q+

))
,

where (Tq)q≥1 is a sequence of stopping times exhausting the jumps of

X , and

κq,Ψq−,Ψq+,Ψ′
q−,Ψ

′
q+, Lq are defined on an extension of

the space, mutually independent, independent of F ,

with κq uniform over [0, 1], Lq uniform on {0, 1, . . . , k − 1}
and Ψq± and Ψ′

q± standard normal.

(10.43)

We deduce a CLT for our statistics S(J-PV1)(p, k,∆n) and

S(J-PV2)(p, k,∆n), in restriction to the set Ω
(j)
T . Namely, by the same

argument as in Theorem 10.1, we get

1√
∆n

(
S(J-PV1)(p, k,∆n)− 1

) L−s−→ S(J-PV1)
(j) (p, k)

1√
∆n

(
S(J-PV2)(p, k,∆n)− 1

) L−s−→ S(J-PV2)
(j) (p, k),

(10.44)

both in restriction to Ω
(j)
T , with

S(J-PV1)
(j) (p, k) = p

A(p)T

∑
q≥1: Tq≤T

|∆XTq |p−1 sign(∆XTq )

×
(
σTq−

√
k−1
2k Ψ′

q− + σTq

√
k−1
2k Ψ′

q+

)

S(J-PV2)
(j) (p, k) = p

A(p)T

∑
q≥1: Tq≤T

|∆XTq |p−1sign (∆XTq )

×
(
σTq−

√
Lq Ψ

′
q− + σTq

√
k − 1− Lq Ψ

′
q+

)
.

Now we turn to the case where X is continuous. Letting Ψ, Ψ′ and

Ψ′′ be three independent N (0, 1)-variables on the space (Ω′,F ′,P′), we
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set for k ≥ 1 and j = 0, . . . , k,

m2p(k, j) = E′(|√jΨ+
√
k − jΨ′|p |√jΨ+

√
k − jΨ′′|p

)

m̃2p(k) = E′(|Ψ|p |Ψ+
√
k − 1Ψ′|p

)
− kp/2(mp)

2

m̂2p(k) = m2p(k, k) + 2
∑k−1
j=1 m2p(k, j)− (2k − 1)m2p(k, 0).

(10.45)

(Note that m̃2p(1) = m̂2p(1) = m2p − (mp)
2 and m2p(k, 0) = kp(mp)

2

and m2p(k, k) = kpm2p.) Then, under (KC), and with p > 1, we have

the following (functional) stable convergence in law (see page 566 for the

proof):

(
1√
∆n

(∆
1−p/2
n B([p, k],∆n)− kp/2mp C (p)),

1√
∆n

(∆
1−p/2
n B(p,∆n)−mp C (p))

)

L− s
=⇒ (W(p, k),W(p))

(
1√
∆n

(∆
1−p/2
n B(p, k∆n)− kp/2−1mp C (p)),

1√
∆n

(∆
1−p/2
n B(p,∆n)−mp C (p))

)

L−s
=⇒ (W(p, k),W(p)),

(10.46)

where the limiting processes (W(p, k), kW(p)) and (W(p, k),W(p)) are

defined on an extension (Ω̃, F̃ , (F̃t)t≥0, P̃) of the space (Ω,F , (Ft)t≥0,P)

and, conditionally on the σ-field F , are centered Gaussian martingales,

with the following F -conditional variance-covariance:

Ẽ
(
(W(p, k)T )

2 | F
)

= m̂2p(k)C (2p)T

Ẽ
(
(W(p)T )

2 | F
)

= (m2p − (mp)
2)C (2p)T

Ẽ
(
W(p, k)T W(p)T | F

)
= k m̃2p(k)C (2p)T

Ẽ
(
(W(p, k)T )

2 | F
)

= kp−1 (m2p − (mp)
2)C (2p)T

Ẽ
(
W(p, k)T W(p)T | F

)
= m̃2p(k)C (2p)T .

(10.47)

We deduce a CLT for our ratio statistics, using once more the same

argument as in Theorem 10.1 to extend the convergence from the case

when X is continuous to the general case, but in restriction to the set

Ω
(cW )
T . We then have under (K-2)

1√
∆n

(
S(J-PV1)(p, k,∆n)− kp/2−1

) L−s−→ S(J-PV1)
(c) (p, k)

1√
∆n

(
S(J-PV2)(p, k,∆n)− kp/2−1

) L−s−→ S(J-PV2)
(c) (p, k),

(10.48)
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Poisson Jumps: 1 Jump per Day
Non-Standardized

Cauchy Jumps: θ = 1
Non-Standardized
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Figure 10.4: Tiny jumps or no jumps: Monte Carlo distribution of the

non-standardized test statistic S(J−PV2)(p, k,∆n) for p = 4 and k = 2

and ∆n = 1 second, computed using a data generating process with

either one Poisson jump per day on average including paths that contain

no jumps (left panel) or tiny Cauchy jumps (right panel).

both in restriction to Ω(cW ), where the variables S(J-PV1)
(c) (p, k) and

S(J-PV1)
(c) (p, k) are defined on an extension of the space, and are F -

conditionally centered Gaussian with the following conditional variances:

Ẽ
(
(S(J-PV1)

(c) (p, k))2 | F) = α(p, k)1
C(2p)T
(C(p)T )2 ,

with α(p, k)1 =
m̂2p(k)+k

p(m2p−(mp)
2)−2kp/2+1 m̃2p(k)

k2(mp)2

Ẽ
(
(S(J-PV2)

(c) (p, k))2 | F) = α(p, k)2
C(2p)T
(C(p)T )2 ,

with α(p, k)2 =
kp−2(k+1)(m2p−(mp)

2)−2kp/2−1 m̃2p(k)
(mp)2

.

(10.49)

In Figure 10.4 we give the histogram of the statistic S(J-PV2)(p, k,∆n)

for p = 4 and k = 2, for 1000 Monte Carlo trials: the left panel exhibits

the case of a Brownian motion plus a Poisson process, the peak at 1 cor-

responding to the paths having at least one jump on the time interval,

the peak at 2 corresponding to the simulated paths with no jump, and

the two kinds of paths are clearly well separated by the statistic. The

right panel shows the same when X is a Brownian motion plus a Cauchy

process: the peak at 1 corresponds to paths with at least one “large”

jump, the (small) peak at 2 corresponds to those paths with only very

small jumps; we see that the statistic is able to distinguish between rela-

tively big jumps or not, but fails to distinguish when all jumps are small

(recall that in the right panel, all paths have infinitely many jumps, most

of them tiny ones.
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10.3.3 Testing the Null Hypothesis of No Jump

In this subsection, we construct a test for the null hypothesis Ω
(c)
T , or

rather Ω
(cW )
T , which in most practical cases is equal to Ω

(c)
T .

Consider for example S(J-PV1)(p, k,∆n). Under the null, this statis-

tic is asymptotically centered around kp/2−1 and F -conditionally

Gaussian, and we need to estimate the conditional variance

α(p, k)1 C(2p)T /(C(p)T )
2. This amounts to estimating C(p)T and

C(2p)T , and for this we know several methods, such as truncated power

variations or multipower variations. Both choices lead to the same theo-

retical results, and for concreteness we choose the truncated variations:

B(q,∆n, un)T =

[T/∆n]∑

i=1

|∆n
i X |q 1{|∆n

i X|≤un},

with un ≍ ∆̟
n and some ̟ ∈

(
0, 12

)
.

As a matter of fact, we really need the consistency on Ω
(cW )
T only, so

in that respect even non-truncated power variations work. So we have at

least four natural candidates

V
(1)
n = α(p, k)1

(mp)
2B(2p,∆n)T

∆nm2p (B(p,∆n)T )2 ,

V
(2)
n = α(p, k)1

(mp)
2 B(2p,∆n,un)T

∆nm2p (B(p,∆n)T )2 ,

V
(3)
n = α(p, k)1

(mp)
2B(2p,∆n)T

∆nm2p (B(p,∆n,un)T )2 ,

V
(4)
n = α(p, k)1

(mp)
2B(2p,∆n,un)T

∆nm2p (B(p,∆n,un)T )2 ,

(10.50)

which all converge in probability to the conditional variance on the set

Ω
(cW )
T . Actually, other variants are possible, such as taking in the de-

nominators above the product B(p,∆n)T B(p,∆n, un)T .

On the other hand, under the alternative hypothesis Ω
(j)
T ,

S(J-PV1)(p, k,∆n) converges to 1, smaller than kp/2−1. This leads us to

use one of the following critical regions at stage n:

C(l)
n =

{
S(J-PV1)(p, k,∆n) < kp/2−1 − z′α

√
∆n V

(l)
n

}
(10.51)

for l = 1, 2, 3, 4 and where, as usual, z′α is the α-quantile of the standard

normal distribution N (0, 1).

Theorem 10.14. Assuming (K-2) and p > 3 and k ≥ 2, the tests C(l)
n

defined above have the strong asymptotic size α for the null hypothesis

Ω
(cW )
T , for l = 1, 2, 3, 4. Moreover,

• The tests C(2)
n are consistent for the alternative Ω

(j)
T if un ≍ ∆̟

n

with ̟ ∈
(
0, 12

)
.
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• The tests C(4)
n are consistent for the alternative Ω

(jW )
T if un ≍ ∆̟

n

with ̟ ∈
(
1
2 − 1

p ,
1
2 ).

• The tests C(1)
n and C(3)

n are not consistent for the alternative Ω
(jW )
T

in general.

One should thus absolutely avoid using the tests with l = 1 or l = 3,

and probably the test with l = 2 is more powerful than the one with

l = 4 in the presence of infinitely many small jumps. On the other hand,

under the null, all V
(l)
n ’s behave in the same way, and are indeed all equal

when n is large enough.

Proof of Theorem 10.14. The first claim readily follows from (10.48) and

from the convergence in probability, in restriction to the set Ω
(cW )
T , to-

ward the conditional variance (10.49), in all cases l = 1, 2, 3, 4. For the

second claim, since S(J-PV1)(p, k,∆n)
P−→ 1 on Ω

(jW )
T , the consistency

under the alternative is obviously implied by ∆nV
(l)
n

P−→ 1 on Ω
(jW )
T or

Ω
(j)
T , according to the case, whereas if this fails the consistency also fails,

at least when z′α is large (which is true when α is small). By (10.38) we see

that ∆nV
(l)
n converge to a positive limit when l = 1, whereas V

(3)
n ≥ V

(1)
n

by construction. So alternative consistency fails in these two cases. We

now prove the consistency in the case l = 2, and leave out the case l = 4,

which is not very simple to prove (a proof can be found in Aı̈t-Sahalia

and Jacod (2009b) ). The inequality B(2p,∆n, un)T ≤ upnB(p,∆n)T is

obvious, and B(p,∆n)T converge in probability to a positive limit on

Ω
(j)
T . Then ∆nV

(2)
n

P−→ 1 on Ω
(j)
T follows from the fact that un → 0.

In a similar way, one can use the statistics S(J-PV2)(p, k,∆n). This

gives us the following (we only state the case corresponding to l = 2 in

the previous theorem):

Theorem 10.15. Assuming (K-2) and p > 3 and k ≥ 2, the tests with

critical regions

Cn =
{
S(J−PV2)(p, k,∆n) < kp/2−1 (10.52)

−z′α

√
α(p, k)2

(mp)2 B(2p,∆n, un)T
m2p (B(p,∆n)T )2

}

have the strong asymptotic size α for the null hypothesis Ω
(cW )
T and are

consistent for the alternative Ω
(j)
T if un ≍ ∆̟

n with ̟ ∈
(
0, 12

)
.
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10.3.4 Testing the Null Hypothesis of Presence of

Jumps

Now, we turn to the other the null hypothesis Ω
(j)
T , or rather Ω

(jW )
T ,

which again in most practical cases is equal to Ω
(j)
T . We start with a test

based on the statistic S(J-PV1)(p, k,∆n), which is easier to handle.

Using S(J-PV1)(p, k,∆n) for the Test

A significant advantage of S(J-PV1)(p, k,∆n) is the following: after

centering and normalization, its limiting variable S(J-PV1)
(j) (p, k) is F -

conditionally centered Gaussian, with conditional variance

Ẽ
(
(S(J-PV1)

(j) (p, k))2 | F) = p2
k − 1

2k

D(2p− 2)T
(A(p)T )2

, (10.53)

where

D(2p− 2)T =
∑

s≤T
|∆Xs|2p−2 (cs− + cs),

is as in (10.21). Note that (10.27) provides us the estimators D(∆n, 2p−
2)T for D(2p− 2)T :

D(∆n, 2p− 2)T
P−→ D(2p− 2)T .

Here, in (10.27), we take ĉni = ĉ(kn, un)i, as given by (10.26) with a

truncating sequence un ≍ ∆̟
n for some ̟ ∈

(
0, 12

)
. As for A(p)T , a

natural sequence of estimators is B(p,∆n)T , by virtue of (10.38) (which

also tells us that we could chooseB(p, k∆n)T or B([p, k],∆n)T /k, instead

of B(p,∆n)T ).

Now, in view of (10.41) and of the CLT described above, together with

the suggested estimators for D(2p−2)T and A(p)T , we are led to use the

following critical region at stage n:

Cn =
{
S(J-PV1)(p, k,∆n) > 1 (10.54)

+z′α p

√
∆n

(k − 1)D(∆n, 2p− 2)T
2k (B(p,∆n)T )2

}

where z′α is the α-quantile of the standard normal distribution N (0, 1).

Theorem 10.16. Assuming (H-2) and p > 3 and k ≥ 2, the tests Cn
defined by (10.54) have the strong asymptotic size α for the null hypoth-

esis Ω
(jW )
T , and are consistent for the alternative Ω

(cW )
T if further (H′)

holds.
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Proof. The first claim follows from (10.44) and the fact that (k −
1)p2D(∆n, 2p − 2)T /2k(B(p,∆n)T )

2 estimates the variance in (10.53).

Note that the argument works for testing Ω
(jW )
T , but not for testing Ω

(j)
T :

although the CLT in (10.44) holds on the latter set, on the set-difference

Ω
(j)
T \Ω(jW )

T the limiting variable S(J-PV1)
(j) (p, k) vanishes and there is no

standardized version of the CLT. For the second claim we use that, in

restriction to Ω
(c)
T and for all n large enough, we have |∆n

i X | ≤ un for

all i ≤ [T/∆n], implying D(∆n, 2p − 2)T = 0, whereas B(p,∆n)T > 0

for all n large enough on Ω
(cW )
T ; in this case, rejecting is the same as

having S(J-PV1)(p, k,∆n) > 1, so P(Ω
(cW )
T ∩ (Cn)c) → 0 follows from the

property S(J-PV1)(p, k,∆n)
P−→ kp/2 > 1 on Ω

(cW )
T .

Using S(J-PV2)(p, k,∆n) for the Test

When the processes X and σ do not jump together, the limiting vari-

ables S(J-PV2)
(j) (p, k) is F -conditionally centered Gaussian, with condi-

tional variance

Ẽ
(
(S(J-PV2)

(j) (p, k))2 | F) = (k − 1)p2
D(2p− 2)T
2 (A(p)T )2

. (10.55)

Exactly as above, this leads us to consider the following critical region

at stage n:

Cn =
{
S(J-PV2)(p, k,∆n) > 1 (10.56)

+z′α p

√
∆n

(k − 1)D(∆n, 2p− 2)T
2 (B(p,∆n)T )2

}
,

and we have the analogue of Theorem 10.16, with the same proof:

Theorem 10.17. Assume (H-2) and that the processes X and σ do not

jump together. If p > 3 and k ≥ 2, the tests Cn defined by (10.56) have the

strong asymptotic size α for the null hypothesis Ω
(jW )
T , and are consistent

for the alternative Ω
(cW )
T if further (H′) holds.

When the processes X and σ have some jumps at the same times, the

variable S(J-PV2)
(j) (p, k) is no longer F -conditionally Gaussian, but still

is conditionally centered with a variance given by (10.55). Then, using

Markov’s inequality, we can take the following critical regions:

Cn =
{
S(J-PV2)(p, k,∆n) > 1 (10.57)

+
p√
α

√
∆n

(k − 1)D(∆n, 2p− 2)T
2 (B(p,∆n)T )2

}
.
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Then the following result is again proved as were the previous ones:

Theorem 10.18. Assuming (H-2) and p > 3 and k ≥ 2, the tests Cn
defined by (10.57) have an asymptotic size not bigger than α for the null

hypothesis Ω
(jW )
T , and they are consistent for the alternative Ω

(cW )
T if

further (H′) holds.

The actual asymptotic level is in general much less than α, so this

test has a “conservative” level and much less power than if the actual

level were exactly α. To remedy this situation, we could do as for the

“sharp confidence interval” in Theorem 10.12. We will not do this here,

because as we will see just below the tests based upon S(J-PV1)(p, k,∆n)

are always more accurate than those based on S(J-PV2)(p, k,∆n).

Finally, we report the empirical values of S(J-PV2)(p, k,∆n), abbrevi-

ated as SJ in the next discussion, in the form of a histogram in Figure

10.5 for each of the three possible measurements of the data. The data

for the histogram are produced by computing SJ for the four quarters

of the year, the 30 stocks, and for a range of values of p from 3 to 6 (in

increments of 0.25), ∆n from 5 seconds to 2 minutes (with values 5, 15,

30, 60, 90 and 120 seconds), and k = 2, 3. The top left histogram corre-

sponds to the unfiltered transactions, the top right to the NBBO-filtered

transactions and the lower left to the NBBO midpoint quotes. In this

and the plots that follow, the values of the parameters k and p are var-

ied across the experiments; the “noise dominates” region consists of the

range of possible values of the limits of the statistic being implemented,

when k and p vary, for the two cases where the noise dominates.

As indicated in (10.82), values below 1 are indicative of noise of one

form or another dominating. We find that this is the case only for the un-

filtered transactions data, and only at the highest sampling frequencies,

the histogram then displaying a left tail. For the other data measure-

ments, the histograms display very little mass in the regions where the

noise dominates. The conclusion from SJ is that the noise is not the

major concern, except for the unfiltered transactions at the ultra high

frequencies, but once past this domain, the evidence points toward the

presence of jumps with the histograms centered around 1.

One potential caveat needs to be raised. The evidence for values

around 1 is compelling at the highest frequencies, but this is where it

is possible for the noise to exert downward pressure on the point esti-

mates, since the noise results in lower limits. It is possible that in small

samples we obtain estimates around one as a result of a procedure that is

biased downward from higher values by residual amounts of noise. This
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Figure 10.5: Testing for Jumps: Empirical distribution of

S(J−PV 2)(p, k,∆n) for all 30 DJIA stocks, 2006, measured using

transactions (unfiltered, U, and NBBO-filtered, F) and NBBO quotes

midpoint (M), median value of S(J−PV 2)(p, k,∆n) as a function of the

sampling interval ∆n, and nonlinear regression of SJ against stock-level

liquidity measures.
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conclusion is not surprising per se, even for the index and a fortiori for

the individual assets. A power law fits the data quite well and a continu-

ous component alone (with typically exponentially decaying tails) would

be rather unlikely to generate such returns.

The middle right panel in Figure 10.5 displays the median value of

SJ (across values of p and k, and the four quarters) as a function of

the sampling interval ∆n. Unfiltered transactions are marked U, filtered

transactions are marked F and the NBBO midpoint quotes are marked

M. In all cases, the median value of SJ starts around 1 at the highest

frequencies and then rises. Comparing different data measurements, we

find that SJ is generally highest for F (meaning less evidence of jumps

there), then for U and then for M. Similar results obtain if the mean is

employed instead of the median. But as the sampling frequency decreases,

the evidence in favor of the presence of jumps becomes more mixed,

when the 30 components of the DJIA are taken in the aggregate. When

implemented on the DJIA index itself, we find values of SJ that range

between 1.5 and 2.5, providing between less evidence in favor of jumps

and evidence against them for the index at the lower frequencies and for

the time period considered.

However, a point should be emphasized here. The histogram is more

spread out when frequency decreases because less data are used and the

statistical error increases, so that the procedure becomes less conclusive.

Finally, we check if any cross-sectional differences in SJ can be ex-

plained by cross-sectional differences in liquidity among the 30 stocks.

To this aim, the lower two panels on Figure 10.5 show the results of a

nonlinear regression of the statistic SJ on two stock-level measures of

liquidity, the average time between successive trades, and the average

size of the transactions. Both regressions show a slight decrease in SJ

values as the asset becomes less liquid, meaning higher time between

trades and lower transaction size, but neither result is strong enough to

be noticeable.

10.3.5 Comparison of the Tests

The families of tests above are equally good under the null hypothesis (at

least asymptotically), except for those defined by (10.57). They behave

differently, though, under the alternative.

Consider for example the tests (10.51) and (10.52) for the null Ω
(cW )
T .

We have these two tests for any given pair (p, k) with p > 3 real and k ≥ 2

integer, and those two numbers also have to be chosen. However, we start
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with p and k fixed. The key point for a comparison of the tests based on

S(J-PV1)(p, k,∆n) and S
(J-PV2)(p, k,∆n) is the following proposition:

Proposition 10.19. Assuming (H-2), and with p > 3 and k ≥ 2 fixed,

the F-conditional variances of the limits satisfy

Ẽ
(
(S(J−PV1)

(c) (p, k))2 | F) = α(p,k)1
α(p,k)2

Ẽ
(
(S(J−PV2)

(c) (p, k))2 | F) on Ω
(cW )
T

Ẽ
(
(S(J−PV1)

(j) (p, k))2 | F) = 1
k Ẽ
(
( S(J−PV2)

(j) (p, k))2 | F) on Ω
(jW )
T ,

and α(p, k)1 < α(p, k)2.

The first equality follows from (10.49), the second follows from com-

paring (10.53) and (10.55); the last claim α(p, k)1 < α(p, k)2 is not ob-

vious, and is proved on page 567.

It follows that the statistic S(J-PV1)(p, k,∆n) is (asymptotically) less

spread out around its limiting value (1 or kp/2−1 on Ω
(jW )
T and Ω

(cW )
T , re-

spectively,) than S(J-PV2)(p, k,∆n). In other words, under either null hy-

pothesis, the two tests based on S(J-PV1)(p, k,∆n) and S
(J-PV2)(p, k,∆n)

have the same asymptotic size, but those based on S(J-PV1)(p, k,∆n) have

systematically a bigger power than the others, for both possible null hy-

potheses. So, it is advisable to always use the tests (10.51) and (10.54)

based on S(J-PV1)(p, k,∆n) (not to mention the fact that under the null

Ω
(jW )
T the statistic S(J-PV2)(p, k,∆n) is usually not asymptotically nor-

mal).

The choice of p and k is more difficult. When p and/or k increase,

the two limits 1 and kp/2−1 become further apart, thus appearing to be

easier to distinguish. However, this is counterbalanced by the fact that

the limiting variances may also be increasing.

When p is fixed and k varies : Let us consider first the case where p > 3

is fixed, but k varies. Under the null Ω
(jW )
T the variance (10.53) increases

with k, and the limit as k → ∞ is three times the value for k = 2; this has

to be compared with the squared distance (kp/2−1 − 1)2, which increases

much faster and goes to ∞ as k → ∞. So if we wish to test the null

Ω
(jW )
T it is probably advisable to take k “as large as possible,” in order

to improve on the power.

Under the null Ω
(cW )
T the variance (10.49) is proportional to α(p, k)1,

whose behavior as k increases is not transparent. However, α(p, k)1 is

equivalent to α(p)1 k
p−1 for some constant α(p)1 (as k → ∞), whereas

the square (kp/2−1−1)2 behaves as kp−2, so in this case we should choose

a value of k which is not too large.

In conclusion, the “optimal” choice of k depends on the hypothesis

to be tested. And of course it also depends on the data, since in order
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to have some chance to be in the asymptotic regime, k should be much

smaller than the number [T/∆n] of observed increments.

When k is fixed and p varies : The situation here is much more difficult to

analyze, because the asymptotic variance depends on p through α(p, k)1
for the first tests, but also on the (random) numbers C (2p)T /(C (p)T )

2

or p2D(2p− 2)T /(A(p)T )
2. Therefore there seems to be no “theoretical”

rule for the choice of p.

Let us, however, mention that in the simple case where the volatil-

ity process σt = σ is a constant, then C (2p)T /(C (p)T )
2 = 1/T , so

the choice of p for the test with the null Ω
(cW )
T amounts to optimizing

α(p, k)1, in connection with (kp/2−1 − 1)2. For the other null, we then

have p2D(2p−2)T/(A(p)T )
2 = p2 σ2 A(2p−2)T/(A(p)T )

2, whose precise

behavior is again unpredictable, but which behaves as p2/ sups≤T |∆Xs|2
as p→ ∞.

So the choice of p is, overall, rather unclear. The bigger p is, the more

emphasis is put on “big” jumps (when there are jumps, of course), and in

all cases on “big” increments (or big outliers, when there is microstruc-

ture noise). We thus advocate choosing a moderate value for p, like p = 4.

It is also possible (and perhaps advisable) to construct a series of tests

with different values of p.

10.4 Detection of Jumps

The main aim of this section is not testing for jumps, but estimating the

size and location of “relatively big” jumps. As a by-product, however, we

can derive a test for the null hypothesis “the process X is continuous.”

Unfortunately, this test is not exactly of the same type as the previous

ones, as will be explained later. We mainly follow Lee and Mykland

(2008) and Lee and Hannig (2010) with suitable modifications to fit our

setting. In particular, and in contrast with these papers, we do not want

the volatility process σ to be necessarily continuous, since when X jumps

it is often the case that σ jumps at the same time.

The idea is straightforward. If X jumps at some time S in the interval

((in − 1)∆n, in∆n] for some (random) integer in, then ∆n
inX is equal to

∆XS (a non-vanishing variable, independent of n), plus a variable which

tends to 0 as n→ ∞; in contrast, if X does not jump on ((i−1)∆n, i∆n],

then ∆n
i X is of order

√
∆n, multiplied by the volatility, or a kind of

average of the volatility on the corresponding interval, plus a negligible

drift term. Hence, for deciding whether ∆n
i X is small or not, we have
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to compare it with the volatility, and thus with an estimator of it if we

want feasibility.

To this end, we use one of the estimators given in (10.26) and, as be-

fore, we write ĉni for either ĉ(kn, [k])i (with an integer k ≥ 2) or ĉ(kn, un)i
(and then we set k = 1, and un satisfies (6.24)), and in all cases we assume

a rather innocuous reinforcement of (10.25):

kn∆
η
n → ∞, kn∆

η′

n → 0 for some 0 < η < η′ < 1. (10.58)

Then we set

Zni =
∆n
i X√

∆n ĉni+1

, S(J-DET)(∆n) = sup
1≤i≤[T/∆n]−kn−k+1

|Zni |. (10.59)

Remark 10.20. Lee and Mykland (2008) use ĉn(i−kn−k+1)+ in the defi-

nition of Zni , instead of ĉni+1, and for that matter one could take ĉnj for

any integer j between (i− kn − k + 1)+ and i, at least when both X and

σ are continuous, which is the case under the null hypothesis to be tested

below. Our choice of ĉni+1 slightly simplifies the analysis.

At this stage, we notice the following:

1. In all cases, we will see that the statistics S(J-DET) (∆n) explode

(= go to ∞) as n→ ∞. However, this occurs with the rate 1/
√
∆n

when there are jumps, by virtue of what precedes. In contrast, in

the absence of jumps the rate of convergence is log(1/∆n). Thus

we decide that there is no jump if S(J-DET)(∆n) is “not too large”.

2. If, on the basis of what precedes, we conclude that there are jumps,

then we decide that a jump occurs inside ((i − 1)∆n, i∆n] if |Zni |
is large enough: this gives us the approximate location of the jump

(inside the above interval; clearly, specifying a more precise loca-

tion is simply out of reach with discrete observations), and the

corresponding increment ∆n
i X is an estimator of the size of the

jumps.

Before giving concrete specifications for the procedures heuristically

described above, we need some mathematical background.

10.4.1 Mathematical Background

To start, let us mention that in this section we assume at least (H-2),

and also (P) (that is, σt and σt− do not vanish); this is to ensure that
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the denominators in (10.59) do not go to 0 faster than
√
∆n. Assuming

(P) is in contrast with the assumptions prevailing in most of the previous

sections, and it implies Ω
(W )
T = Ω.

For describing the results, we need the same ingredients (κq,Ψq+,Ψq−)

as in (10.9), defined on an extension (Ω̃, F̃ , P̃) of the space, and also an-

other sequence (Ψq : q ≥ 1) of independent standard normal variables,

independent of the previous ones and of F . Also, (Tq)q≥1 denotes a se-

quence of stopping times exhausting the jumps of X and, without loss of

generality, we can assume that Tq < ∞ a.s. (indeed, since we are inter-

ested in what happens on [0, T ] only, it is always possible to add fictitious

jumps after time T ). Then, as before, we set

i(n, q) is the random integer such that

(i(n, q)− 1)∆n < Tq ≤ i(n, q)∆n.
(10.60)

Next, studying Zni as n → ∞ for any fixed i has no real interest,

because it is related to the behavior of X near 0 only. What is really

meaningful is the following variable, defined for each t > 0:

Zn(t) = Zni when (i− 1)∆n < t ≤ i∆n. (10.61)

Then, not surprisingly, the asymptotic behavior is as follows (the proofs

for this section are often of a technical nature, and all gathered in Sub-

section B.3.3 of Appendix B, see page 568 for the forthcoming one):

Theorem 10.21. Assume (H-2) and (P).

(a) For any finite family of (non-random) times 0 < t1 < · · · < tq
such that P(∆σtj = 0) = 1, we have the following convergence in law:

(
Zn(tj)

)
1≤j≤q

L−→
(
Ψj
)
1≤j≤q . (10.62)

(b) We have the following stable convergence in law:

(
1√
∆n

(
∆n
i(n,q)X −∆XTq

))
q≥1

L−s−→
(√

κq σTq−Ψq− +
√
1− κq σTq Ψq+

)
q≥1

,
(10.63)

and, for all ε > 0:

lim
ε→0

sup
n

P
(
{S (J−DET)(∆n) ≤ ε/

√
∆n } ∩ Ω

(j)
T

)
= 0. (10.64)

The convergence (10.62) holds true for all choices of tj when the pro-

cess σ has no fixed times of discontinuity, for example if it is itself
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an Itô semimartingale. In contrast, (10.62) for a single tj = t fails if

P(∆σt 6= 0) > 0: in this case, the sequence Zn(t) converges in law if the

“fractional part” t/∆n − [t/∆n] converges to a limit, and otherwise the

sequence Zn(t) does not converge in law at all.

The claims (a) and (b) look incompatible with one another, since

the first implies that the sequences Zn(t) are bounded in probability

and the second implies |Zni(n,q)|
P−→ ∞ on the set {∆XTq 6= 0}. This

apparent contradiction is resolved by noticing that for any fixed t we

have P(Tq = t) = 0. Note that a “joint” convergence for (10.62) and

(10.63) also holds, but we will not need this below.

Assuming that σ has no fixed time of discontinuity, we have finite-

dimensional convergence in law of the processes Zn(t), to a limit Z(t)

which is a standard “white noise,” of the same type as the one encoun-

tered in Theorem 8.7, with no possibility of a “functional” convergence.

The previous theorem gives us a lower bound for S(J-DET)(∆n) on the

set Ω
(j)
T , but no real insight about its behavior on Ω

(c)
T . For this, we need

a supplementary result related to the theory of extreme values. We recall

that a random variable ξ is called a Gumbel variable (see e.g. Embrechts

et al. (1997)) if its distribution function is

P(ξ ≤ x) = exp−e−x.

The following result is proven on page 571.

Theorem 10.22. Assume (KCC) (that is, both X and σ satisfy

(H-2) and are continuous) and (P). Then, with the notation ln =√
2 log(1/∆n), and if kn satisfies (10.58), we have

ln
(
S(J−DET)(∆n)− ln +

log(2πln)

2ln
− log 2T

ln

) L−→ ξ, (10.65)

and in particular 1
ln
S(J−DET)(∆n)

P−→ 1.

Remark 10.23. The reader will notice the – necessary – hypothesis

that the volatility σ is continuous, the result being wrong otherwise. One

could, on the other hand, relax the Itô semimartingale assumption for σ,

provided the path of σ remains Hölder with index (1/2)− ε for all ε > 0

(as is the case when it is a continuous Itô semimartingale).

An important drawback of this result is that (10.65) asserts conver-

gence in law, but not stable convergence in law (or, at least, this is not

known to us). This will have unfortunate consequences on the testing

procedure below.
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10.4.2 A Test for Jumps

Based on the previous considerations, it becomes quite simple to build

a test for the null hypothesis “no jump.” With a prescribed asymptotic

level α, we consider the α-upper quantile of the Gumbel distribution,

that is, the number

gα = log
(
1/ log

1

1− α

)
,

which is such that P(U > gα) = α when U is a Gumbel variable. We

introduce the critical (rejection) region (with ln =
√
2 log(1/∆n) again):

Cn =
{
S(J-DET)(∆n) > ln − log(2πln)

2ln
+

log(2T ) + gα
ln

}
. (10.66)

The following immediately results from Theorem 10.22 for (a), and from

(10.64) for (b):

Theorem 10.24. (a) Under (KCC) and (P), the critical regions (10.66)

satisfy P(Cn) → α.

(b) Under (H-2) and (P), the critical regions (10.66) are consistent

for the alternative Ω
(j)
T .

The consistency for the alternative has the usual meaning of Definition

5.19, namely P(Ω
(j)
T ∩ (Cn)c) → 0, and from that perspective the result

above is in line with the results for the other tests developed so far.

This is, unfortunately, not the case at all for the asymptotic size. Here,

we only have a weaker form of the asymptotic size, different from Defini-

tion 5.20, and only when P(Ω
(c)
T ) = 1. In other words, we are performing

a test in the usual statistical sense: the null hypothesis is the family of all

models (or processes) satisfying (KC) and (P), with σ being continuous.

And, even in this case, the sequence P(Cn | A) may very well converge to

a limit bigger than α, for some A with P(A) > 0 (so we have no control

on the “asymptotic size” in the sense of Definition 5.20). These problems

are due to the lack of stable convergence in law in Theorem 10.22.

Example 10.25. Suppose that we have a model with finite activity for

the jumps, that is, (10.1), with the assumptions (K-0) and (P) and with

further σ continuous. We can rewrite (10.1) as

Xt = X0 +

∫ t

0
b′sds+

∫ s

0
σsdWs + δ ⋆ p

t
, (10.67)

where

b′t = bt −
∫
δ(t, z)1{|δ(t,x)|≤1} λ(dx),
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and consider the continuous process

X ′
t = Xt −

∑

s≤t
∆Xs = X0 +

∫ t

0
b′s ds+

∫ t

0
σs dWs. (10.68)

Typically, here, both sets Ω
(j)
T and Ω

(c)
T have positive probability.

Our theorem says that, should we consider the continuous process X ′

with the corresponding statistic S′(J−DET)(∆n) and critical region C′
n,

then P(C′
n) → α. Moreover, S′(J−DET)(∆n) = S (J−DET)(∆n) on Ω

(c)
T ,

hence also Ω
(c)
T ∩ Cn = Ω

(c)
T ∩ C′

n. Then, the most we can say about the

size of the test is that lim supn P(Cn | Ω(c)
T ) ≤ α/P(Ω

(c)
T ), which may be

large when P(Ω
(c)
T ) is small.

On the other hand, the theorem also says that P(Ω
(j)
T ∩ (Cn)c) → 0.

And, as a matter of fact, this test is typically more powerful than the

tests developed in the previous sections.

Another possibility for testing the null of “no jump” stems from The-

orem 10.21: this theorem asserts that the variables Zn(t) of (10.61) are

asymptotically normal, and also asymptotically independent for distinct

values of t, under the minimal assumptions (H-2) and (P), plus the

fact that σ has no fixed time of discontinuity. This remains a “finite-

dimensional” result in the sense that it does not hold for all times at

once. However, it turns out that, when X is continuous, the variables

(Zni )i≥1 are also asymptotically normal and independent. Therefore, one

can follow Lee and Hannig (2010) and use a normality test, such as a

QQ-plot technique.

We will not elaborate on this, though, because the asymptotic theory

is in fact quite difficult to establish in a rigorous way, in view of the non-

functional convergence obtained in (a) of Theorem 10.21, and not solved

yet.

10.4.3 Finding the Jumps: The Finite Activity Case

Now we come to the problem of finding jumps, a task obviously much

easier when there are only finitely many of them. So, to start with, we

suppose finite activity for jumps in this subsection: the setting is as in

Example 10.25, except that the continuity of σ is not assumed, we have

(K-0) and (P) and the equations (10.67) and (10.68).

For each n, we let

An = {i ∈ {1, . . . , [T/∆n]} : i 6= i(n, q) ∀ q ≥ 1}
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be the set of indices i such that the interval ((i − 1)∆n, i∆n] contains

no jump. By an application of Theorem 10.22 to the continuous process

X ′, and when the Itô semimartingale σ is continuous, we have (recall

ln =
√
2 log(1/∆n), and (10.58) is assumed, see page 571 for a proof)

P
(
sup
i∈An

|Zni | > ln
)

→ 0. (10.69)

When σ has jumps, whether this still holds is unknown (probably not,

unless the jump times of σ are also jump times of X). However, to deal

with this case we take a sequence vn > 0 such that

vn ≍ ∆−̟
n for some ̟ ∈

(
0,

1

2

)
, (10.70)

so 1/vn satisfies (6.24), and we set

Z
n
i = ∆n

i X/
√
∆n.

Since X ′ is continuous with paths being Hölder with index ρ for any

ρ ∈
(
0, 12

)
, whereas ∆n

i X = ∆n
i X

′ when i ∈ An, we readily deduce from

(10.70) that

P
(
sup
i∈An

|Zni | > vn
)

→ 0. (10.71)

By assuming (10.69) or (10.71), the problem of finding the location

and size of all jumps is quite easily solved (in principle !), according to

the following procedure:

• Denote by In(1) < · · · < In(R̂n) the indices i

in {1, . . . , [T/∆n]} such that either |Zni | > ln if we

know that σ is continuous, or |Zni | > vn otherwise;

• Set T̂ (n, q) = In(q)∆n and Ĵ(n, q) = ∆n
In(q)X

for q = 1, . . . , R̂n.

(10.72)

We then conclude that the number of jumps is R̂n, located in the dis-

cretization intervals preceding the times T̂ (n, q), and with (estimated)

sizes Ĵ(n, q). This is substantiated by the following result, in which the

Sq’s denote the successive jump times of X (see page 572 for a proof).

Theorem 10.26. Assume (K-0) and (P) and, when one does not want

to assume σ to be continuous, choose any sequence vn satisfying (10.70).

Let R = sup(q : Tq ≤ T ) be the number of jumps of X within [0, T ] (recall

that P(TR = T ) = 0 because X is an Itô semimartingale). Then we have

P
(
R̂n = R, Tq ∈ (T̂ (n, q)−∆n, T̂ (n, q)] ∀ q ∈ {1, . . . , R}

)
→ 1 (10.73)
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and also the following stable convergence in law:

(
1√
∆n

(
Ĵ(n, q)−∆XTq

))
q≤R

L−s−→
(√
κq σTq−Ψq− +

√
1− κq σTq Ψq+

)
q≤R

(10.74)

where (κq,Ψq−,Ψq+) are as in Theorem 10.21.

The convergence (10.74) might look meaningless at first glance, be-

cause the number R is random; however, due to the properties of stable

convergence in law, it should be interpreted as follows: for each integer

k the stable convergence holds in restriction to the set {R = k}. Hence
(10.74) makes perfect sense, in contrast to the similar statement in which

stable convergence in law is substituted with convergence in law.

As far as the number and location of jumps are concerned, (10.73) is

obviously the best one can achieve. In particular, due to the observation

scheme, it is clearly impossible to specify a location any better than

asserting that it lies in some of the inter-observation intervals.

Concerning the estimation of the jump size, (10.74) is also the best

one can do, asymptotically speaking. This result can be converted into

feasible confidence intervals: first we estimate cTq and cTq− by the approx-

imate spot volatilities ĉnIn(q)+1 and ĉnIn(q)−kn−k, see (8.11) for example.

Next, if we believe that σ is continuous, or at least continuous at time Tq
(a property which can be assumed if c̃nIn(q)+1 and ĉnIn(q)−kn−k are close

to one another) we construct a confidence interval based on the fact that

the limit of each term in (10.74) is approximately Gaussian centered with

variance ĉnIn(q)+1. Otherwise, we can build a “conservative” confidence

interval, in the same way as in (10.32), using the fact that the asymp-

totic (conditional) variance is 1
2 (ĉ

n
In(q)

+ ĉnIn(q)−kn−k). Or we may use a

more sophisticated method, based on Monte Carlo, as in Theorem 10.12.

We somehow doubt, however, the usefulness of a sophisticated method

here, since in any case the approximations of cTq and cTq− by ĉnIn(q) and

ĉnIn(q)−kn−k are not really accurate.

Remark 10.27. This theorem is typically an asymptotic result. In prac-

tice, some jumps of X may be small. In the finite sample case, it may

thus happen that the size of the jump at time Tq, say, is quite smaller

than ln
√
∆n cTq or vn

√
∆n cTq (according to the case), and the previ-

ous procedure does not allow us to detect this jump. On the contrary, an

increment ∆n
i X may be very large, even though it does not contain any

jump, so that |Zni | > ln or |Zni | > vn, and we then wrongly conclude the

presence of a jump (spurious jump, or false alarm).



376 Chapter 10

To detect all jumps the cutoff level for Zni or Z
n

i should be as small as

possible: in that respect, if we know that σ is continuous, using |Zni | > ln
rather than |Zni | > vn is clearly preferable, and otherwise one should

use a vn with ̟ as small as possible (bigger than 0). In any case, there

is nothing one can do about very small jumps, obviously. In the case of

finite activity, this is perhaps not a very serious issue, since in most such

models used in practice the jumps do have a significantly large size, in

comparison with the volatility. In the infinite activity case, most jumps

are small or very small, and thus are beyond any possibility of detection,

as we will see in the next subsection.

On the other hand, to avoid detecting spurious jumps, one should use

a “large” cutoff, that is, in all cases |Zni | > vn, with ̟ > 0 as large as

possible (smaller than 1/2). This does not totally rule out the possibility

of detection of spurious jumps, but it drastically reduces the probability

of doing so.

Remark 10.28. The choice between the two versions with Zni or Z
n

i ,

and of vn in the second case, is very much like the choice of the cutoff

level un in the estimation of the volatility, see page 187. This is of course

not a surprise.

In a sense, using Zni and ln, when possible, is optimal, because the

(necessary, but unknown and random and time-varying) “scaling param-

eter” σ is automatically included in the statistic itself, which is not the

case for Z
n
i and vn. When σ jumps, the problem comes from the fact that

there is no good control of the supremum of the differences |ĉni −c(i−1)∆n
|.

Hence it could be that some ĉni , although always positive, is very small,

leading to a large value for Zni and to a spurious jump if one uses Zni in

this case instead of Z
n

i .

10.4.4 The General Case

Below, we drop the finite activity assumption and simply assume (K-2)

and (P). We will not consider the case where σ is continuous, since very

few models with infinite activity jumps for the price exhibit a continuous

volatility.

As noted before, it is of course impossible to reach all jumps of X .

The only sensible thing seems to be to look for jumps with absolute size

bigger than some prescribed (fixed) level, say a > 0.

For this type of problem, the situation is very similar to the finite activ-

ity case. Let T1, T1, . . . be the successive jump times of X with |∆Xs| > a
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and R = sup(q : Tq ≤ T ). Somewhat analogous with (10.72), we

• Let In(1) < · · · < In(R̂n) be the indices i

in {1, · · · , [T/∆n]} such that |∆n
i X | > a.

• Set T̂ (n, q) = In(q)∆n and Ĵ(n, q) = ∆n
In(q)

X

for q = 1, . . . , R̂n.

(10.75)

Then, by virtue of the following theorem, we conclude that R = R̂n and

that each Tq for q ≤ T is in the interval (T̂ (n, q)−∆n, T̂ (n, q)], with the

(estimated) size Ĵ(n, q) (see page 573 for a proof).

Theorem 10.29. Assuming (K-2) and (P), and with the previous nota-

tion, both (10.73) and (10.74) hold as soon as

P(|∆XTq | = a) = 0, ∀ q ≥ 1. (10.76)

The condition (10.76) may look restrictive, but it is satisfied for all a >

0 except countably many values (unfortunately, unknown). Moreover, as

soon as the Lévy measures Ft(dx) of X have a density, a situation which

prevails in all models with infinite jump activity used in finance, then

(10.76) holds for all a > 0.

The procedure (10.75) is much simpler than the procedure (10.72),

because we are only looking for jumps with size bigger than a: there is

no cutoff level (going to 0 at an appropriate rate) to choose here, and we

do not use estimators of the spot volatility. For the estimation of the size

∆XTq , the discussion given after Theorem 10.26 can be reproduced here

without any change.

However, this is again an “asymptotic” result. In the finite sample

case, one may detect spurious big jumps: we may have |∆n
i X | > a because

there was a jump in the interval ((i−1)∆n, i∆n] with size slightly smaller

than a, and likewise we can miss a jump with size slightly bigger than a.

We can also detect a spurious jump because in the interval there are two

jumps of size approximately a/2, and with the same sign. A good idea

is probably to do the detection at level a, and also at some other levels

a′ < a. Denote by R̂n(a
′) the number of “detected” jumps at level a′.

Then:

1. Consider the biggest a′ < a such that R̂n(a
′) > R̂n(a). If T̂ is one

of the jumps detected at level a′, but not at level a, one can use

the confidence intervals for the size of this jump to evaluate the

probability that its real size is bigger than a, thus asserting the

probability of a missed jump.
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2. For any T̂ (n, q) detected at level a, the corresponding confidence

intervals give us the probability that it is a jump of size smaller

than a.

10.5 Detection of Volatility Jumps

In this section, we turn to the question of estimating the jumps (location

and size) of the squared volatility process ct.

In contrast with the low-performing results about the estimation of

the quadratic variation [c, c] obtained in Section 8.3, finding the jumps

of the process c is easier. Of course, one cannot expect the same rates as

for the jumps of the underlying processX itself, as described in Theorems

10.26 and 10.29. But we still can do something. As before, we consider

the one-dimensional case only, and assume (K-r) for some r ∈ [0, 2).

Exactly as in the previous section, we fix a level a > 0 and try to

detect all jumps of c with size bigger than a. We set

T0 = 0, Tq+1 = inf(t > Tq : |∆ct| > a),

R = sup(q : Tq ≤ T ).

We use below the estimators ĉ(kn, un)i of (10.26), associated with the

sequence kn ∼ β/∆τ
n for some β > 0, and un ≍ ∆̟

n , subject to the

conditions (8.16) (and with un = ∞, that is no truncation at all, if X is

known to be continuous). Recall that ĉ(kn, un)i+1 is really an estimator

of the averaged volatility

cni =
1

kn∆n

∫ (i+kn)∆n

i∆n

cs ds.

Let us first argue in the simple case where c is equal to the constant

u on [0, S), and to the constant v > u on [S,∞), so T1 = S with the

above notation. When i increases the average volatility cni stays equal to

u for i ≤ [S/∆n] − kn, then increases “linearly” in i, and finally stays

constant again, equal to v, for i ≥ [S/∆n]+1. Consequently, the jump of

c results in kn + 1 successive small increments of cni , hardly discernible

when kn is large. In contrast, the differences ∆cni = cn(i+2)kn
−cnikn behave

as such: letting j be such that S ∈ (jkn∆n, (j + 1)kn∆n], we see that

∆cni vanishes when i ≤ j−3 or i ≥ j+1, and equals v−u when i = j−1,

whereas ∆cnj−2 +∆cnj = v − u again.

The previous argumentation, simplistic as it looks, leads us to consider

the following differences, which estimate the increments ∆cni :

Lni = ĉ(kn, un)(i+2)kn+1 − ĉ(kn, un)ikn+1. (10.77)
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Up to time T , those increments are observable for i =

0, 1, . . . , [T/kn∆n] − 3. In case of a jump ∆cS with S ∈
(jkn∆n, (j + 1)kn∆n] we may hope that Lnj−1 and Lnj−2 + Lnj are

close to ∆cS and, when i is sufficiently close to j but different from

j − 2, j − 1, j, then |Lni | is much smaller. This theoretical behavior is

blurred out by the estimation error incurred by using ĉ(kn, un)i, and

also by the intrinsic variation of the process c itself, which is of course

not constant right before or right after time S. Nevertheless, and among

many slightly different possibilities, one way to detect the jumps of c

with size bigger than a is as follows:

We start with In(0) = 0 and define by induction on q (as usual,

inf(∅) = ∞; we recall that below τ is such that kn ∼ β/∆τ
n):

In(q) = inf
(
i ∈ {In(q − 1) + 3, . . . , [T/kn∆n]− k − 3} :

|Lni−1| > a, |Lni−1 − Lni−2 − Lni | ≤ ∆
τ∧(1−τ)

4
n

)

R̂n = sup(q : In(q) <∞),

and
T̂ (n, q) = In(q)kn∆n,

Ĵ(n, q) = 1
2

(
LnIn(q)−2 + LnIn(q)−1 + LnIn(q)

)

for q = 1, . . . , R̂n. Although not explicitly mentioned, these quantities

also depend on the number a > 0, and on ∆n, kn, un.

The following theorem gives us the behavior of these estimators. It

is related to both Theorem 10.29 and Theorem 8.7, and in particular

the volatility c(c) of the volatility process ct appears: since (K-r) holds,

the quadratic variation of c is [c, c]t =
∫ t
0 c

(c)
s ds +

∑
s≤t(∆cs)

2, see for

example (8.13). The proof is given in Subsection B.3.4 of Appendix B.

Theorem 10.30. Assume (K-r) with some r ∈ [0, 2), and let a > 0 be

such that

P(∃t > 0 : |∆ct| = a) = 0, ∀ q ≥ 1. (10.78)

We also choose kn ∼ β/∆τ
n with β > 0 and un ≍ ∆̟

n with the following

conditions, which imply (8.16):

2(r−1)+

r < τ < 1, τ ∧ (1 − τ) < 2−r
r , 1−τ

2(2−r) < ̟ < 1
2 . (10.79)

Then we have

P
(
R̂n = R, Tq ∈ [T̂ (n, q), T̂ (n, q) + kn∆n]

for all q = 1, . . . , R
)

→ 1
(10.80)
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and also the following stable convergence in law:

τ < 1
2 ⇒

(√
kn (Ĵ(n, q)−∆cTq )

)
q≤R

L−s−→
(√

c2Tq− + c2Tq
Ψq
)
q≤R

τ = 1
2 ⇒

(√
kn (Ĵ(n, q)−∆cTq )

)
q≤R

L−s−→
(√

c2Tq− + c2Tq
+ β2

2 c
(c)
Tq− + β2

2 c
(c)
Tq

Ψq
)
q≤R

τ > 1
2 ⇒

(
1√
kn∆n

(Ĵ(n, q)−∆cTq )
)
q≤R

L−s−→
(√

1
2c

(c)
Tq− + 1

2 c
(c)
Tq

Ψq
)
q≤R

(10.81)

where the variables Ψq are defined on an extension of the space (Ω,F ,P),
and are independent of F and i.i.d. standard normal.

Moreover, when the process X is continuous one can dispense with the

condition (10.79): the results hold as soon as τ ∈ (0, 1) and ̟ ∈
(
0, 12

)
,

and also if in (10.77) we use the non-truncated estimators ĉ(kn)i.

Exactly as for Theorem 10.29 the condition (10.78) may look restric-

tive, but it is satisfied for all a > 0 except countably many values. It is

also satisfied for all a > 0 as soon as the Lévy measures F
(c)
t (dx) of c

have a density.

The reader will notice that the detection of jumps, that is, the local-

ization of all the times Tq, is always possible. However, we need to choose

τ and ̟ (the latter when X is discontinuous only), subject to (10.79).

This is possible only if we know that r does not exceed a specified value

r0 < 2 because (10.79) cannot hold when r = 2. The precision of the

jump localization is kn∆n, so for this purpose we should use a value of τ

as small as possible, for example τ very close to 1
3 if we know that r ≤ 4

3

(when r is bigger, then τ is also bigger and the precision deteriorates). In

the limit (not really feasible), the asymptotic precision of the localization

for the jumps is ∆
2/3
n , when r ≤ 4

3 .

For the estimation of the jump sizes, things are different: the best rate

is achieved by taking τ = 1
2 , the estimation rate being 1/∆

1/4
n in this

case. Achieving this rate necessitates r < 4
3 .

However, the estimation of ∆cTq can be considered as accom-

plished only if it goes together with confidence intervals. For this, we

again need consistent estimators for the F -conditional variance and,

when τ < 1
2 , such estimators are for example ĉ(kn, un)(In(q)−1)kn and

ĉ(kn, un)(In(q)+1)kn for cTq− and cTq , respectively. When τ ≥ 1
2 we need

estimators for c
(c)
Tq− and c

(c)
Tq

as well. But, as suggested in Section 8.3, such

an estimation cannot be performed with any kind of reasonable accuracy.

This supports a choice τ < 1
2 , whenever this is possible.
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Remark 10.31. When X is continuous, the situation is significantly

better, because there is no restriction on τ , apart from being in (0, 1). In

this case the localization of (big) jumps is asymptotically correct within

an interval of size ∆1−τ
n , with τ arbitrarily close to 0. We can almost

exactly determine in which interval ((i − 1)∆n, i∆n] each jump of size

bigger than a occurs.

Remark 10.32. The best (theoretical) rate ∆
1/4
n for the estimation of

jump sizes is probably optimal. To see that, one might consider the ex-

ample where

σt =W ′
t + αNt, Xt =

∫ t

0
σs dWs

where W and W ′ are two independent Brownian motions and N is a

standard Poisson process, and α is an unknown parameter. We are in a

classical parametric setting, and it is relatively simple to check that, in

restriction to the set {NT = 1} on which a single jump of σ occurs on

the time interval [0, T ], for example, the optimal rate at which α can be

estimated is 1/∆
1/4
n .

On the other hand, even when X is discontinuous it should be possible

to obtain localization intervals for each jump with a precision arbitrarily

close to ∆n. For instance, instead of considering the increments Lni one

might consider L′n
j = ĉ(kn, un)j+2kn − ĉ(kn, un)j and base estimators on

the whole family of these increments, indexed by j = 0, . . . , [T/∆n]−3kn,

instead of only considering Lni = L′n
ikn

for i = 0, . . . , [T/kn∆n]− 3. Un-

fortunately, this would require significantly more sophisticated methods,

which have not been developed so far.

10.6 Microstructure Noise and Jumps

In contrast to the estimation of integrated volatility, tests or estimation

methods for jumps in the presence of noise have been the object of very

few investigations so far. In this section we record a single problem, the

most basic one, which concerns tests for the existence of jumps. We also

expound a single type of test, the “symmetrical tests” of Section 10.3,

and use a single de-noising method, which is pre-averaging. However,

the other “kernel type” de-noising methods expounded in Chapter 7 can

probably be used in this context equally well.

The setting is the same as in previous discussions, plus the noise. For

simplicity, we only consider the case of non-shrinking noise, satisfying

Assumption (GN), see page 221. The observations and their returns thus
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have the form

Y ni = Xi∆n + χi∆n , ∆n
i Y = Y ni − Y ni−1.

Our aim is still to decide whether the outcome ω lies in Ω
(c)
T or in Ω

(j)
T .

As before, we need to restrict our attention to the subsets Ω
(cW )
T and/or

Ω
(jW )
T on which the Brownian motion is active.

Before starting, let us briefly mention the behavior of the two statis-

tics S(J-PV1)(p, k,∆n) and S(J-PV2)(p, k,∆n) when we plug in the noisy

returns ∆n
i Y instead of the true ones ∆n

i X . This of course depends on

the structure of the noise, and so far only the additive white noise case is

fully understood: we then denote the statistics as Snoisy−(J-PV1)(p, k,∆n)

and Snoisy−(J-PV2)(p, k,∆n), and the power variations which are used for

defining these statistics as Bnoisy([p, k],∆n) and B
noisy(p, k∆n).

In the case of an additive white noise with finite pth moment, and

with χ, χ′ denoting two independent variables with the same law as all

χni , it can be (easily) proved that, under (H-2),

∆nB
noisy([p, k],∆n)T

P−→ T E(|χ− χ′|p)
∆nB

noisy(p, k∆n)T
P−→ T

k E(|χ− χ′|p)

for all p > 0. This readily implies, under (H-2),

Snoisy−(J-PV1)(p, k,∆n)
P−→ 1

k ,

Snoisy−(J-PV2)(p, k,∆n)
P−→ 1

k .
(10.82)

In particular, and similar to the fact that the “noisy” realized volatility

is not an estimator of integrated volatility, the previous statistics cannot

be used for telling whether there are jumps or not, because they have

the same asymptotic behavior in both cases (at least at first order).

10.6.1 A Noise-Robust Jump Test Statistic

We will use below the pre-averaging method. For this, we take a sequence

of integers kn ≥ 1 satisfying

kn ∼ 1

θ
√
∆n

+ o
( 1

∆
1/4
n

)
(10.83)

for some θ > 0. We also choose a function g on R which is continuous,

null outside (0, 1), piecewise C1 with a piecewise Lipschitz derivative g′,
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that is, (7.43), and we set

Y (g)ni =
kn−1∑
j=1

g
( j
kn

)
∆n
i+j−1Y,

Ŷ n(g)i =
kn∑
j=1

(
g
( j
kn

)
− g
( j−1
kn

))2
(∆n

i+j−1Y )2.

Next, we choose an even integer p ≥ 4 and we define (ζp,j)j=0,...,p/2

as the unique numbers solving the following triangular system of linear

equations:

ζp,0 = 1,
∑j
l=0 2

l m2j−2l C
p−2j
p−2l ζp,l = 0, j = 1, 2, . . . , p/2,

where as usual mr is the rth absolute moment of the law N (0, 1). These

could be explicitly computed, and for example when p = 4 (the case used

in practice),

ζ4,0 = 1, ζ4,1 = −3, ζ4,2 =
3

4
.

Finally, we define the following processes, which depend on p, q, kn, g

where q ≥ 0 is an additional integer parameter, and which when q = 0

are a kind of de-noised and de-biased power variations of order p :

Bnoisy(p, q,∆n, kn, g)t =
1
kn

p/2∑
l=0

ζp,l

×
[t/∆n]−kn+1∑

i=1
|Y (g)ni |p−2l |Ŷ (g)ni |q+l.

(10.84)

We can now introduce the ratio statistics which will be used for

testing jumps and which are analogous with S(J-PV1)(p, k,∆n) or

S(J-PV2)(p, k,∆n). The difference is that we do not take two distinct

time lags ∆n and k∆n, but work instead with the same time lag and two

distinct weight functions g and h. Then we set, with T being the time

horizon,

SJ-noisy(p, g, h; ∆n) =
Bnoisy(p, 0,∆n, kn, g)T
Bnoisy(p, 0,∆n, kn, h)T

.

Theorem A.17 of Appendix A (with η = 0 because the noise is

not shrinking, and η′ = 1
2 because of (10.83)) yields that, for any T

fixed, the variables Bnoisy(p, 0,∆n, kn, g)T converge in probability to

φ(gp/2)A(p)T (recall the notation φ(g) =
∫ 1
0 g(x)

2 dx), whereas if fur-

ther X is continuous the variables (kn∆n)
1−p/2Bnoisy(p, 0,∆n, kn, g)T
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converge to mpφ(g)
p/2 C(p)T . Using the same argument as in Theorem

10.1, one deduces the following property, analogous with (10.41):

SJ-noisy(p, g, h; ∆n)

P−→





ηj :=
φ(gp/2)
φ(hp/2)

on the set Ω
(j)
T under (H-2)

ηc :=
φ(g)p/2

φ(h)p/2
on the set Ω

(cW )
T under (H′)

(10.85)

Unless g and h are proportional, the two numbers ηj and ηc are different.

They are known, and for concreteness we can always suppose that ηc >

ηj . Henceforth, we are in the same situation as in Section 10.3 and decide

that the path X is continuous if SJ-noisy(p, g, h; ∆n) is bigger than some

well chosen number in (ηj , ηc), and discontinuous otherwise. And, in order

to make this procedure feasible, one needs the second order behavior of

the test statistic, which is given in the next subsection.

Example 10.33. The simplest choice for the pair g, h is as follows.

First, choose g, for example the triangular kernel discussed in Example

7.19. Next, take h(x) = g(λx) for some λ > 1, so the support of h is

[0, 1/λ] ⊂ [0, 1]). A straightforward computation shows ηc = λp/2 > ηj =

λ.

10.6.2 The Central Limit Theorems for the Noise-

Robust Jump Test

Unfortunately, it is necessary to begin with a long series of notation. For

any four bounded functions g, h, g, h on R with support in [0, 1] we set

for all t ∈ R and integers p, l with 0 ≤ l ≤ p and p even

φ(g, h|t) =
∫
g(s− t)h(s) ds

hence φ(g, g|0) = φ(g) =
∫ 1
0 g(s)

2 ds, and

Φ(g, g;h, h)p− =
∫ 1
0 φ(g

p−1, g|t− 1)φ(hp−1, h|t− 1) dt

Φ(g, g;h, h)p+ =
∫ 1
0 φ(g

p−1, g|t)φ(hp−1, h|t) dt
Φ(g, h; p, l|t) =∑[(p−l)/2]

j=0 C2l
p−lm2jmp−2j φ(g)

l−p/2 φ(g, h|t)p−l−2j

×
(
φ(g)φ(h) − φ(g, h|t)2

)j
.

Next, with g, h being two weight functions and with p and r as above

and x, y ≥ 0 we set

a(g, h : p, l|t) =∑p/2
i,j=0 2i+j ζp,iζp,j φ(g

′)i φ(h′)j

×∑(2l)∧(p−2i)
w=(2l+2j−p)+ C

w
p−2i C

2l−w
p−2j

×Φ(g, h; 2l, w|t)Φ(g′, h′; 2p− 2j − 2i− 2l, p− 2i− w|t)
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A(g, h; p, l) =
∫ 1
−1 a(g, h : p, l|t) dt− 2(mp)

2 φ(g)p/2 φ(h)p/2 xp 1{l=0},

Rp(g, h;x, y) =
∑p
l=0 A(g, h; p, l)x

l yp−l,

and finally

Ξ(p; g, h)t = p2
∑
s≤t |∆Xs|2p−2

×
(
cs− Φ(g, g;h, h)p− + csΦ(g, g;h, h)p+

)
,

Ξ(p; g, h)′t = p2
∑
s≤t |∆Xs|2p−2

×
(
γs−Φ(g, g′;h, h′)p− + γsΦ(g, g

′;h, h′)p+
)
.

(10.86)

These notations may look, and are, extremely cumbersome. However,

the numbers Φ(g, g;h, h)p± and A(g, h; p, r) are quite simple to compute

numerically for explicit test functions, such as g being the triangular

kernel or its derivative. The interested reader will find an interpretation

of Rp(g, h;x, y) on pages 500 et seq. of Appendix A.

We then have two basic CLTs, coming from Theorem A.19. We use

the simplifying notation B(n)(p; g) = Bnoisy(p, 0, ,∆n, kn, g). Besides As-

sumption (GN) on the noise, the first one requires (H-2) only. Since p ≥ 4

and η′ = 1
2 , so θ

′ = θ in the pre-averaging notation, it asserts the joint

stable convergence in law (recall (10.38) for A(p)T )

1

∆
1/4
n

(
B(n)(p; g)T − φ(gp/2)A(p)T , B

(n)(p;h)T − φ(hp/2)A(p)T
) L−s−→

(
1√
θ
U(p; g)noisyT +

√
θ U ′(p; g)noisyT , 1√

θ
U(p;h)noisyT +

√
θ U ′(p;h)noisyT

)

for any fixed time T , and where (U(p; g)noisyT ,U(p;h)noisyT ) and

(U ′(p; g)noisyT ,U ′(p;h)noisyT ) are two two-dimensional variables defined on

an extension of the space which, conditionally on F , are independent

centered Gaussian, with the covariance structure

Ẽ(U(p; g)noisyT U(p;h)noisyT | F) = Ξ(p; g, h)T
Ẽ(U ′(p; g)noisyT U ′(p;h)noisyT | F) = Ξ′(p; g, h)T .

The second CLT is under (KC), so X is continuous. It asserts the joint

stable convergence in law

1

∆
1/4
n

(
(kn∆n)

1−p/2 B(n)(p; g)T −mpφ(g)
p/2C(p)T ,

(kn∆n)
1−p/2 B(n)(p;h)T −mpφ(h)

p/2C(p)T
)

L−s−→
(

1√
θ
W(p; g)noisyT , 1√

θ
W(p;h)noisyT

)

for any fixed time T , and where (W(p; g)noisyT ,W(p;h)noisyT ) is again a

two-dimensional variable defined on an extension of the space which,

conditionally on F , is centered Gaussian, with the covariance structure

Ẽ(W(p; g)noisyT W(p;h)noisyT | F) =

∫ T

0
Rp(g, h; cs, θ

2γs) ds.



386 Chapter 10

At this point, the same argument (the delta method) as for (10.44)

allows us to deduce the following partial stable convergence in law, under

(H-2):

1

∆
1/4
n

(
SJ-noisy(p, g, h; ∆n)− ηj

) L−s−→ SJ-noisy
(j) (p, g, h)

in restriction to Ω
(j)
T

(10.87)

in restriction to Ω
(j)
T , where the variable SJ-noisy

(j) (p, g, h) is defined on an

extension of the space, and is F -conditionally centered Gaussian with

conditional variance:

V J-noisy
(j) (p, g, h) := Ẽ

(
(SJ-noisy

(j) (p, g, h))2 | F)

= 1
φ(hp/2)4 A(p)2T

(
1
θ (φ(h

p/2)2 Ξ(p; g, g)T

−2φ(gp/2)φ(hp/2)Ξ(p; g, h)T + φ(gp/2)2 Ξ(p;h, h)T
+θ (φ(hp/2)2 Ξ′(p; g, g)T − 2φ(gp/2)φ(hp/2)Ξ′(p; g, h)T

+φ(gp/2)2 Ξ′(p;h, h)T )
)
.

(10.88)

In the same way, one gets under (K-2), and with the same argument

as for Theorem 10.1:

1

∆
1/4
n

(
SJ-noisy(p, g, h; ∆n)− ηc

) L−s−→ SJ-noisy
(c) (p, g, h)

in restriction to Ω
(cW )
T

(10.89)

where SJ-noisy
(c) (p, g, h) is defined on an extension and is F -conditionally

centered Gaussian with conditional variance:

V J-noisy
(c) (p, g, h) := Ẽ

(
(SJ-noisy

(c) (p, g, h))2 | F)

= 1
θ φ(h)2p (mp)2 C(p)2T

∫ T
0

(
φ(h)pRp(g, g; cs, θ

2γs)

−2φ(g)p/2φ(h)p/2 Rp(g, h; cs, θ
2γs)

+φ(g)pRp(h, h; cs, θ
2γs)

)
ds.

(10.90)

10.6.3 Testing the Null Hypothesis of No Jump in

the Presence of Noise

Here we construct tests for the null hypothesis Ω
(cW )
T . The idea is of

course the same as in Subsection 10.3.3, based on (10.89), and we need

consistent estimators for V J-noisy
(c) (p, g, h), at least in restriction to Ω

(cW )
T .

The problem is similar to the variance estimation in Subsection 10.3.3

and we will use below the version corresponding to V
(2)
n in (10.50). That

is, we estimate C(p)T in the denominator of (10.48) by using a non-

truncated estimator and taking advantage of the property

(kn∆n)
1−p/2Bnoisy(p, 0;∆n, kn, g)T

P−→ mp φ(g
p/2)C(p)T

in restriction to Ω
(cW )
T ,
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which follows from Theorem A.17 in the usual way.

For estimating the integral in (10.90) we observe that Rp(g, h;x, y)

is a polynomial in (x, y), and we make use of the truncated versions of

(10.84), which are

Bnoisy(p, q; ∆n, kn, g;un)t =
1
kn

∑p/2
l=0 ζp,l

×∑[t/∆n]−kn+1
i=1 |Y (g)ni |p−2l |Ŷ (g)ni |q+l 1{|Y (g)ni |≤un}

where un ≍ ∆̟
n for some ̟ ∈

(
0, 14

)
(note that here ̟ is more restricted

than in the usual truncation procedure, due to the fact that the typical

size of |Y (g)ni | is ∆
1/4
n , instead of ∆

1/2
n for |∆n

i X |). Let us also pick

another weight function f (which can be g or h, for example) and set

R̂(g, h)n = 1
(kn∆n)p−1

∑p
l=0

A(g,h;p,l)
m2l 2p−l φ(f)l φ(f ′)p−l

×Bnoisy(2l, p− l; ∆n, kn, f ;un)T .

In view of the last equation in (10.42), Theorem A.18-(a) of Appendix A

gives us

R̂(g, h)n
P−→

∫ T
0 Rp(g, h; cs, θ

2γs) ds,

in restriction to Ω
(cW )
T .

All these properties imply that the variables

V̂ n(c) =
kn

√
∆n φ(g

p/2)2

φ(h)2p (mp)2 (Bnoisy(p,0;∆n,kn,g)T )2

(
φ(h)pR̂(g, g)n

− 2φ(g)p/2φ(h)p/2R̂(g, h)n + φ(g)p R̂(h, h)n
) (10.91)

converge in probability to V J-noisy
(c) (p, g, h), in restriction to the set Ω

(cW )
T .

Recalling that ηc > ηj , this leads us to use the following critical region

at stage n:

Cn =
{
SJ-noisy(p, g, h; ∆n) < ηc − z′α∆

1/4
n

√
V̂ n(c)

}
(10.92)

where z′α is the α-quantile of the standard normal distribution N (0, 1).

Theorem 10.34. Assume (K-2) and (GN). Let p ≥ 4 be an even integer

and choose g, h, f as above, and kn satisfying (10.83), and un ≍ (∆n)
̟

for some ̟ ∈
(
0, 14

)
. Then the tests (10.92) have the strong asymptotic

size α for the null hypothesis Ω
(cW )
T . They are also consistent for the

alternative Ω
(j)
T , as soon as ̟ > p−2

4(p−1) .

Proof. The first claim follows from (10.89) and V̂ n(c)
P−→ V J-noisy

(c) (p, g, h)

on Ω
(cW )
T . For the second claim, by the first part of (10.85) and ηj < ηc,
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it suffices to show that
√
∆n V̂

n
(c)

P−→ 0 on Ω
(jW )
T . Toward this aim, we

first observe that the denominator of (10.91) converges in probability to

a limit which is positive on Ω
(jW )
T , by an application of (A.61). Hence it

is indeed enough to prove that
√
∆n R̂(g, h)n

P−→ 0 for any two functions

g, h. Now, we set

H(l)n =

[T/∆n]−kn+1∑

i=1

|Y (f)ni |2p−2l |Ŷ (f)ni |l 1{|Y (f)ni |≤un}.

We clearly have
√
∆n |R̂(g, h)n| ≤ K∆

3/2−p/2
n

∑p
l=0H(l)n, whereas

Hölder’s inequality implies H(l)n ≤ (H(0)n)
(p−l)/p (H(p)n)

l/p. Hence-

forth we are left to prove that ∆
3/2−p/2
n H(l)n

P−→ 0 for l = 0 and

for l = p. For this, we can rely upon the localization procedure men-

tioned in Section A.5 of Appendix A, which allows us to assume the

strengthened assumptions (SH-2) and (SGN) instead of (H-2) and (GN).

In this case, the estimates (A.79) give us E(|Y (f)ni |2) ≤ K∆
1/2
n and

E(|Ŷ (f)ni |p) ≤ K∆
p/2
n , from which we deduce

E(H(0)n) ≤ u2p−2
n

∑[T/∆n]−kn+1
i=1 E(|Y (f)ni |2) ≤ KT∆

(2p−2)̟−1/2
n ,

E(H(p)n) ≤ KT∆
p/2−1
n .

Since ̟ > p−2
4(p−1) , we obtain the result.

10.6.4 Testing the Null Hypothesis of Presence of

Jumps in the Presence of Noise

Based on the behavior (10.85) of the statistic SJ-noisy(p, g, h; ∆n) and

on its associated CLT (10.87), we now test the null hypothesis Ω
(jW )
T .

We need consistent estimators for the conditional variance (10.88),

which amounts to consistent estimators for the variables Ξ(p; g, h)T
and φ(h)p/2 A(p)T . For the latter, and as seen before, we can use

Bnoisy(p, 0,∆n, kn, h)T . For the former, we use Theorem A.18-(b) of Ap-

pendix A: if un > 0 and k′n ∈ N satisfy

k′n
kn

→ ∞, k′n∆n → 0, un ≍ ∆̟/2
n for some ̟ ∈

(
0,

1

2

)
, (10.93)



Testing for Jumps 389

and if

Fn+= 1
k2nk

′
n∆n

∑[t/∆n]−k′n−kn+1
i=1 |Y (f)ni |2p−2

×∑k′n
j=1

(
(Y (f)ni+j)

2 − 1
2 Ŷ (f)ni+j

)
1{|Y (g)ni+j)|≤un}

Fn−= 1
k2nk

′
n∆n

∑[t/∆n]−kn+1
i=kn+k′n

|Y (f)ni |2p−2

×∑k′n
j=1

(
(Y (f)ni−j)

2 − 1
2 Ŷ

n(f)i−j
)
1{|Y (f)ni−j)|≤un}

F ′
n+= 1

k2nk
′
n∆n

∑[t/∆n]−k′n−kn+1
i=1 |Y (f)ni |2p−2

×∑k′n
j=1 Ŷ

n(f)i+j1{|Y (f)ni+j)|≤un}

F ′
n−= 1

k2nk
′
n∆n

∑[t/∆n]−kn+1
i=kn+k′n

|Y (f)ni |2p−2
∑k′n
j=1 Ŷ (f)ni−j1{|Y (f)ni−j)|≤un},

for an arbitrary weight function f (for example f = g or f = h), we have

Fn+
P−→ φ(f)φ(fp−1)

∑
s≤t

cs|∆Xs|2p−2

Fn−
P−→ φ(f)φ(fp−1)

∑
s≤t

cs−|∆Xs|p

F ′
n+

P−→ 2θ2φ(f ′)φ(fp−1)
∑
s≤t

γs|∆Xs|2p−2

F ′
n−

P−→ 2θ2φ(f ′)φ(fp−1)
∑
s≤t

γs−|∆Xs|2p−2.

Then, in view of (10.86) and (10.88), the next variables converge in

probability to V J-noisy
(j) (p, g, h):

V̂ n(j) =
p2 kn

√
∆n

φ(hp/2)2 φ(fp−1) (Bnoisy(p,0,∆n,kn,h)T )2

×
(

1
φ(f)

(
(φ(hp/2)2 Φ(g, g; g, g)p− − 2φ(gp/2)φ(hp/2)Φ(g, g;h, h)p−

+ φ(gp/2)2 Φ(h, h;h, h)p−
)
Fn−

+ 1
φ(f)

(
(φ(hp/2)2 Φ(g, g; g, g)p+ − 2φ(gp/2)φ(hp/2)Φ(g, g;h, h)p+

+ φ(gp/2)2 Φ(h, h;h, h)p+
)
Fn+

+ 1
2φ(f ′)

(
(φ(hp/2)2 Φ(g, g′; g, g′)p− − 2φ(gp/2)φ(hp/2)Φ(g, g′;h, h′)p−

+ φ(gp/2)2 Φ(h, h′;h, h′)p−
)
F ′
n−

+ 1
2φ(f ′)

(
(φ(hp/2)2 Φ(g, g′; g, g′)p+ − 2φ(gp/2)φ(hp/2)Φ(g, g′;h, h′)p+

+ φ(gp/2)2 Φ(h, h′;h, h′)p+
)
F ′
n+

)
.

Note that although these formulas are rather lengthy, the quantities

involved are easy to compute numerically. The main result is then as

follows:

Theorem 10.35. Assume (H-2) and (GN). Let p ≥ 4 and choose g, h, f

as above, and kn, k
′
n, un satisfying (10.83) and (10.93). Then the tests
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with critical regions

Cn =
{
SJ−noisy(p, g, h; ∆n) > ηj + z′α∆

1/4
n

√
V̂ n(j)

}
,

have the strong asymptotic size α for the null hypothesis Ω
(jW )
T , and are

consistent for the alternative Ω
(cW )
T if further (H′) holds.

Proof. Since V̂ n(j)
P−→ V J-noisy

(j) (p, g, h) > 0 on Ω
(W )
T , the first claim follows

from (10.87), and the second one from the second part of (10.85) and

from ηc > ηj .

10.7 References

The literature about tests for jumps is not as abundant as for the estima-

tion of integrated volatility, but still quite vast, and the above account

is not exhaustive. Among the procedures which have not been analyzed

here, one may mention the following ones: the first test for jumps of a

discretely sampled process was proposed by Aı̈t-Sahalia (2002); that test

is designed for diffusion (Markov) processes and is based on properties

of the transition density of the process over discrete time intervals and

as such is not specific to high-frequency data, and it involves techniques

that are different from those that are the main subject of this book.

Using high-frequency data, Carr and Wu (2003b) exploit the differen-

tial behavior of short dated options to test for the presence of jumps.

Of course, the structure of the data in such tests is different from here,

as it is in Jiang and Oomen (2008), who use variance swaps. Podolskij

and Ziggel (2011) provide a test based on a form of bootstrap is given

while Christensen et al. (2011) features an overview of empirical results

on jumps from Press (1967) up to the most recent work.

The “linear” test and some forms of the “ratio” test of Section 10.2 are

due to Barndorff-Nielsen and Shephard (2006) and Huang and Tauchen

(2005); for multipowers, the first authors use k = 2 while the second ones

propose several versions, using k = 2 and k = 3. Corsi et al. (2010) use

a ratio test based on truncated multipowers.

The estimators of the ratio based on truncations in Section 10.2 was

proposed in Aı̈t-Sahalia and Jacod (2012a), while the method underlying

the “sharp confidence intervals” and based on Monte Carlo in Subsection

10.2.4 was developed by Jacod and Todorov (2009) for a different pur-

pose. The idea of adding an extra Brownian motion in Subsection 10.2.5

is due to Corsi et al. (2010), again for a different purpose.
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The symmetrical tests of Section 10.3 for jumps vs. continuous and

continuous vs. jumps are due to Aı̈t-Sahalia and Jacod (2009b) for

the statistic S(J-PV2)(p, k,∆n), and the improvement consisting in us-

ing S(J-PV1)(p, k,∆n) is due to Fan and Fan (2011).

Section 10.4 mainly follows Lee and Mykland (2008) and Lee and

Hannig (2010) with suitable modifications to fit our setting. In particular,

and in contrast with these papers, we do not want the volatility process

σ to be necessarily continuous, since when X jumps it is often the case

that σ jumps at the same time. Andersen et al. (2007) modify Lee and

Mykland (2008) by taking in the denominator the estimated average

volatility over the time interval, instead of the estimated spot volatility.

Subsections 10.4.3 and 10.4.4 contain essentially new material, al-

though a connected study in the finite activity case may be found in

Clément et al. (2014). Section 10.5 about detection of volatility jumps is

also new, whereas Section 10.6 about jump tests in the presence of mi-

crostructure noise is taken, without proofs, from Aı̈t-Sahalia et al. (2012),

while Li (2013) contains some additional material.

Finally, two papers, by Dumitru and Urga (2012) and Theodosiou

and Zikes (2011), propose a comparison of some of the tests, including

those descrined in this chapter and some of those which have only been

mentioned here.





Chapter 11

Finer Analysis of Jumps:

The Degree of Jump

Activity

After having developed tests for deciding whether the underlying process

X has jumps, we go further in the statistical analysis of the jumps. This

of course makes sense only if we believe that jumps exist, for example

because one of the tests of the previous chapter rejects the “continuous”

hypothesis.

The previous analysis can be extended in two different directions. One

direction amounts to studying the same kind of testing problems in more

complex situations, such as finding whether two components of a multi-

dimensional process have jumps at the same times (always, sometimes,

never?), or whether a process and its volatility have jumps at the same

times, or, when this is the case, whether the sizes of the jumps of the

price and of the volatility are correlated or not. These sorts of questions

will be (partially) answered in Chapter 14.

In this chapter, we pursue another direction. The underlying process

is one-dimensional again, but our aim is to estimate the parameters gov-

erning the jumps (that is, which are constitutive of the Lévy measure of

the process) and which are identifiable in the sense of Chapter 5.

Theorem 5.8, which solves the identifiability question for Lévy pro-

cesses, serves as a guideline for the forthcoming investigations: basically,

for a Lévy process X which is (discretely or continuously) observed on a

fixed time interval [0, T ], the Lévy measure F , which describes the law

of the jumps, can never be identified on the basis of the observation of

393
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a single path. However, one may still say something about the behavior

of F near 0. More specifically, the behavior near 0 of the Lévy measure

is related with small and very small jumps, and in particular it some-

how describes the concentration of these small jumps. For example, the

“explosion” rate at 0 of the measure F is characterized by the following

objects:

I =

{
p ≥ 0 :

∫
(|x|p ∧ 1)F (dx) <∞

}
, β = inf I

(this is (1.49)), and according to (1.50), we have p ∈ I if and only if

A(p)t =
∑
s≤t |∆Xs|p <∞ almost surely for all t, and otherwise A(p)t =

∞ almost surely for all t > 0. In particular, jumps have finite activity if

and only if 0 ∈ I, in which case β = 0 (we may have β = 0 and jumps

with infinite activity, in the case of a gamma process for example). The

number β is called the Blumenthal-Getoor (BG) index and belongs to

[0, 2]. Furthermore I is either (β,∞) or [β,∞), and 2 ∈ I always. So the

bigger β, the faster the measure F diverges near 0, hence, in a sense, the

more small or tiny jumps we have. These properties are what motivate

our calling β a jump activity index, and our interest in estimating it.

Coming back to identifiability of F , the restriction of F to the comple-

ment of any neighborhood of 0 is never identifiable. On the other hand,

β and the set I are identifiable, because the variables A(p)T are observed

(in the case of continuous observations) or approximated (when observa-

tions are discrete), for all p. Even more, if F enjoys a kind of “expansion”

near 0 we have not only β, but also further BG indices β2 > β3 > · · · ,
all smaller than β = β1, and those (together with their associated inten-

sities) are identifiable as long as they are bigger than β/2. Clearly β, its

associated intensity, and even the successive BG indices and associated

intensities, are only a tiny part of the whole measure F . But one should

understand that they are essentially the only parts of F which can be

identified, or consistently estimated: this is for Lévy processes, but it is

of course even more true for more general semimartingales.

The notions of BG indices can be extended to Itô (or even, general)

semimartingales, see (5.16) for example, and successive BG indices also

make sense for semimartingales. Our primary concern in this chapter is

the estimation of those quantities, together with the related intensities.

For general Itô semimartingales the problem seems utterly intractable,

so we need some assumptions on the process, which may be considered

as restrictive from a theoretical point of view. However, in practice all

models used by practitioners fulfill these assumptions. Our objective in
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doing so is to provide specification tools for financial models, where the

presence or at least the possibility of large jumps is generally accepted.

There is much less consensus in the literature regarding the nature or

even the need for small jumps, and this is where knowing the BG index

might prove very useful for modeling.

11.1 The Model Assumptions

The underlying process X is our usual one-dimensional Itô semimartin-

gale, defined on some filtered space (Ω,F , (Ft)t≥0,P). It has the Grige-

lionis representation (1.74), that is,

Xt = X0 +

∫ t

0
bsds+

∫ t

0
σsdWs (11.1)

+ (δ1{|δ|≤1}) ⋆ (p− q)t + (δ1{|δ|>1}) ⋆ pt,

with the usual notation: W is a one-dimensional Brownian motion, p

is a Poisson measure on R+ × E with (E, E) a Polish space, and with

compensator q(dt, dx) = dt⊗ λ(dx).

The Blumenthal-Getoor index is most easily expressed in terms of the

characteristics of the process. These characteristics are of the form (1.68),

that is,

Bt =

∫ t

0
bsds, Ct =

∫ t

0
csds, ν(dt, dx) = dt Ft(dx),

where b is the same as in (11.1), and c = σ2, and Ft(ω, dx) is the restric-

tion to R\{0} of the image of λ by the map z 7→ δ(ω, t, z).

The main assumption in this chapter is the same as in (H-2) for the

processes b and σ, but is quite stronger for δ (or for the Lévy measures

Ft, as it is expressed), and as stated below it only makes sense when

X is one-dimensional. We first need to introduce the “tail” functions of

the Lévy measure Ft: they are the functions on (0,∞) (also depending

implicitly on ω) given by

F
(+)
t (x) = Ft((x,∞)),

F
(−)

t (x) = Ft((−∞,−x)),
F t(x) = F

(+)

t (x) + F
(+)

t (x).

There is a priori no reason for which positive and negative jumps

should behave in the same way, so we have two indices, one for posi-

tive jumps and the other for negative jumps, as explained for Lévy pro-

cesses in Subsection 5.2.2. However, for a clearer exposition, we start
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with the (partly) symmetrical case where positive and negative jumps

have the same index, the non-symmetrical case being examined in Sub-

section 11.2.4 below. So we introduce the following assumption:

Assumption (L). The process X is of the form (11.1), with bt locally

bounded and σt càdlàg, and there are two constants 0 ≤ β′ < β < 2 such

that

x ∈ (0, 1] ⇒
∣∣xβ F (±)

t (x) − a
(±)
t

∣∣ ≤ Lt x
β−β′

, (11.2)

where a
(+)
t and a

(−)
t and Lt are nonnegative predictable (or optional) and

locally bounded processes.

Under (L) we introduce the following increasing processes:

A
(+)
t =

∫ t
0 a

(+)
s ds,

A
(−)
t =

∫ t
0 a

(−)
s ds,

At = A
(+)
t +A

(−)
t .

(11.3)

Note that for any Lévy process satisfying (L), a
(±)
t (ω) = a(±) are con-

stants.

Recalling the “global” Blumenthal-Getoor index γt (on the time in-

terval [0, t]) and the “spot” index βt (at time t) defined in (5.16), we see

that under Assumption (L) we have γt = β on the set {At > 0}, whereas
γt ≤ β′ on the complement {At = 0}. Analogously, we have βt = β on

the set {a(+)
t + a

(−)
t > 0} and βt ≤ β′ on its complement.

Example 11.1. We first give examples of Lévy processes which satisfy

(L). This is clearly true of a stable process with index β (the assumption

is designed for that !), and also of a tempered stable process whose Lévy

measure has the form

F (dx) =
β

|x|1+β
(
f+(x)1{x>0} + f−(x)1{x<0}

)
dx (11.4)

with f±(x) = a(±) e−B±|x| for some constants a(+), a(−), B(+), B(−) > 0.

It turns out that the measure F given by (11.4) satisfies (L) for much

more general functions f± than the negative exponentials. Namely, as

soon as
∫∞
1 f+(x)x

−1−β dx < ∞ and |f+(x) − 1| ≤ Kxβ−β
′

and all

x ∈ (0, 1], plus the same conditions on f−, on the negative side, then (L)

is satisfied.

Example 11.2. Still about Lévy processes: if X and Y are two indepen-

dent Lévy processes, with X satisfying (L), and Y having a Blumenthal-

Getoor less than β′, then X + Y also satisfies (L), with the same

β, β′, a(+), a(−) as X.
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Example 11.3. Many examples of Lévy models proposed in finance for

asset returns satisfy (L), with either fixed values of β, or β being a free

parameter. (We will discuss estimating β below.) Examples are included

in Figure 1.1. They include compound Poisson-based models starting with

Merton (1976), the normal inverse Gaussian model of Barndorff-Nielsen

(1998) (β = 1), the variance gamma model of Madan and Seneta (1990)

and Madan et al. (1998) (β = 0), the hyperbolic model of Eberlein

and Keller (1995), the generalized hyperbolic model of Barndorff-Nielsen

(1977) and the CGMY model of Carr et al. (2002) (in which β is a free

parameter).

Example 11.4. Very often semimartingales are obtained by stochas-

tic integration against a Lévy process. In this case, Assumption (L) is

preserved. That is, if Z is a Lévy process satisfying (L) and without

Brownian part, and if H is a locally bounded predictable process, the

semimartingale

Xt = X0 +

∫ t

0
bs ds+

∫ t

0
σs dWs +

∫ t

0
Hs dZs (11.5)

satisfies (L) as well, with the same indices β and β′, as soon as b is

locally bounded and σ is càdlàg.

Example 11.5. A similar type of assumption on Ft consists of assuming

that we have

Ft(dx) =
β

|x|1+β
(
a
(+)
t 1{x>0} + a

(−)
t 1{x<0}

)
dx+ F ′

t (dx),

where a
(+)
t and a

(−)
t are as in (L) and F ′

t is a signed measure with the

following property: if |F ′
t | denotes the absolute value of F ′

t , that is, the

smallest positive measure such that both |F ′
t |−F ′

t and |F ′
t |+F ′

t are positive

measures, then

the process

∫
(|x|β′ ∧ 1) |F ′

t |(dx) is locally bounded.

(Of course, although F ′
t may be a signed measure, the measure Ft should

be a positive measure.) This assumption implies (L), with the same

β, β′, a(±)
t , and is in fact “almost” the same as (L).

Remark 11.6. The previous examples suggest that (L) is a reasonably

weak assumption, and in any case it is satisfied by all models used in

finance, when they have jumps.
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The latter fact does not really mean, though, that it is a reasonable

assumption to model real data. Indeed, (L) contains two (intertwined)

hypotheses:

(L1). The measure Ft is close to a stable Lévy measure, by an amount

measured by β − β′ (see the previous comments), as far as small

jumps are concerned (it says nothing about the finiteness of mo-

ments of the jumps, in contrast with the Lévy stable case).

(L2). The index β, which a priori could be βt(ω), is indeed not random

and not time-dependent.

Hypothesis (L1) seems reasonable (although from a mathematical view-

point one could replace |x|β in (11.2) by L(x)|x|β , with L a slowly varying

function, and accordingly modify the forthcoming results; note that if, for

example, L(x) = (log |x|)γ for some γ ∈ R, then not only β but γ as well

are identifiable on the basis of the observation of a single path on a finite

time interval).

On the other hand, hypothesis (L2) is less likely to hold. One would

rather expect β = βt to be varying (slowly?) with time. The dependence

upon ω would also be a natural hypothesis, but in contrast with the de-

pendency upon t, it is irrelevant in the context of the observation of a

single path.

A last mention: although we need β to be non-random and constant

over time, we do not require a
(±)
t to be strictly positive at all times. We

may have “intermittencies”: when a
(+)
t = a

(−)
t = 0 the spot Blumenthal-

Getoor index is not bigger than β′ at those times.

Remark 11.7. It is also worth mentioning that having (L) plus a
(+)
t =

a
(−)
t = 0 identically amounts to saying that the BG index of all spot Lévy

measures Ft does not exceed the fixed number β′. In this case, the index

β itself has no relevant meaning for the process X.

Under (L), Theorem 5.17 tells us that the parameter β, which here is

non-random and equal to γT in (5.16) on the set

Ω
(β)
T = {AT > 0}, (11.6)

is identifiable, or at least pairwise identifiable, on the basis of the obser-

vation over [0, T ].

Moreover, although stated only for Lévy processes, Theorem 5.8 sug-

gests that the variables A
(±)
t are also identifiable for all t ≤ T (and the
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two processes a
(±)
t as well, when they are càdlàg or càglàd). Therefore,

there should exist estimators for β and A
(±)
T , at each stage n, when the

process is discretely observed with observation lag ∆n, which are consis-

tent as ∆n → 0, and hopefully enjoy good distributional properties, so

that we can for example construct confidence intervals: this is the object

of the next section. We could also construct estimators for a
(±)
t (somehow

looking like the spot volatility estimators), but we will not touch upon

this topic below.

There is a strong connection between (H-r) and (L), or rather between

(H-r) and the following assumption, which is obviously weaker than (L)

for any given index β:

Assumption (L′). The process X is of the form (11.1), with bt locally

bounded and σt càdlàg and, for some constant β ∈ [0, 2], the process

supx∈(0,1] x
β F t(x) is locally bounded.

We then have the following lemma (proved on page 583), which yields

that under (L) we have (H-r) for all r > β; it also yields that (L′) with

β = 0 is the same as (H-0).

Lemma 11.8. If (H-r) holds for some r ∈ [0, 2], we have (L′) for all

β ∈ [r, 2], and conversely if (L′) holds for some β ∈ [0, 2), there exists a

Grigelionis decomposition (11.1) which satisfies (H-r) for all r ∈ (β, 2],

and also for r = 0 when β = 0.

11.2 Estimation of the First BG Index and

of the Related Intensity

Below we suppose that X satisfies (L) and that it is observed at regularly

spaced times i∆n within the time interval [0, T ]. As always, the returns

are denoted as ∆n
i X = Xi∆n −X(i−1)∆n

.

11.2.1 Construction of the Estimators

One of the main challenges raised by the estimation of β and A
(±)
T is

that these quantities are related to the small (or, rather, very small)

jumps, because they describe the behavior of the Lévy measures “at 0”

in the sense that the “tail” functions at 0 of the Lévy measure Ft satisfy

F
(±)

t (x) ∼ a
(±)
t /xβ as x ↓ 0. Hence it is natural to expect that the small

increments of the process are going to be the ones that are most informa-

tive about β. On the other hand (see Subsection 10.4.4), recovering small



400 Chapter 11

jumps is an impossible task, because there are infinitely many of them,

and also they are blurred out by the “Brownian increments” due to the

continuous martingale part in (11.1). Being able to “see through” the

continuous part of the semimartingale in order to say something about

the number and concentration of small jumps is therefore going to be the

challenge we face as we attempt to estimate β.

The key ideas for deriving estimators are as follows:

• Throw away small increments, because those are mainly due to

the Brownian part, plus the sum of infinitely many infinitesimal

jumps; those small increments provide no useful information on

“individual” small jumps. This step is performed by choosing a

cutoff level un going to 0 and deleting all increments with size

smaller than un. Note that the truncation is now to the right, unlike

that of Section 6.2.1.

• Pretend that increments bigger than un are jumps: that is, if

|∆n
i X | > un, then the interval ((i − 1)∆n, i∆n] contains a jump

with size bigger than un, and only one, and further ∆n
i X itself is a

good approximation for this jump size. This property is of course

not literally true, and is even quite wrong in a sense, but one of

our main tasks is to show that it is “right enough.”

• Estimate β and A
(±)
t , as if we had observed exactly all jumps with

size bigger than un, and also as if the sizes of these jumps were

independent.

The choice of the cutoff levels un raises the same problems as those for

estimating the integrated volatility when there are jumps, except that we

are now interested in the jumps instead of trying to eliminate them; it is

natural for the same reasons to take a sequence satisfying (6.24), that is,

un ≍ ∆̟
n for some ̟ ∈

(
0,

1

2

)
. (11.7)

The rationale behind this choice of ̟ is that increments of order of mag-

nitude less than or equal to
√
∆n are mainly “Brownian increments,”

thus giving no or very little information on the jumps themselves. Since

∆
1/2
n ≪ ∆̟

n , the upward truncation at level un eliminates these uninfor-

mative (for jumps) returns, while still keeping some information about

small jumps because un → 0 so the number of kept increments goes to

infinity as soon as there are infinite activity jumps.
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First estimators based on counting increments greater than the

truncation cutoff For these first estimators, the main role is played

by the following integer-valued functionals:

J(∆n, un)
(+)
t =

[t/∆n]∑
i=1

1{∆n
i X>un}

J(∆n, un)
(−)
t =

[t/∆n]∑
i=1

1{∆n
i X<−un}

J(∆n, un)t = J(∆n, un)
(+)
t + J(∆n, un)

(−)
t .

(11.8)

These are very simple-minded functionals: they simply count how many

increments are bigger than un, or smaller than −un, or bigger than un
in absolute value. They lead to empirical quantiles of the distribution of

log-returns. By using the statistic J(∆n, un)t, which simply counts the

number of large increments – those greater than un – we are retaining

only those increments of X that are not predominantly made of contri-

butions from its continuous martingale part, which are Op(∆
1/2
n ), and

instead are predominantly made of contributions due to a jump.

The key property of the functionals J(∆n, un)t is their convergence in

probability

uβn J(∆n, un)t
P−→ At, (11.9)

which we will show holds under Assumption (L). This property leads to

an estimator of β at each stage n. Fix γ > 1 and, recalling the time

horizon T , define

β̂n(γ;un) =
log(J(∆n, un)T /J(∆n, γun)T )

log(γ)
(11.10)

if J(∆n, γun)T > 0, and 0 otherwise. β̂n(γ;un) is at least consistent

for estimating β on the set {AT > 0}. Note that 0 in the definition

of β̂n(γ;un) when J(∆n, γun)T = 0 is a dummy value, which could be

replaced by anything else.

This β̂n is constructed from a suitably scaled ratio of two J ’s evaluated

on the same time scale ∆n but at two different truncation levels. In a

way, this construction is in the same spirit as the classical estimator of

Hill (1975), who conducts inference about the tails of a distribution based

on ratios of various extremes.

A number of variants are possible. Taking k ≥ 1 an integer and two

sequences un and vn of truncation levels, and with a fixed time horizon

T , we can set

β̂′
n(un; vn; k) =

log(J(∆n, un)T /J(k∆n, vn)T )

log(vn/un)
(11.11)
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Figure 11.1: Estimates of the jump activity index β obtained from β̂n at

5 and 10 seconds for Intel and Microsoft, all 2006 transactions.

if J(∆n, un)T > 0 and J(k∆n, vn)T ) > 0, and 0 otherwise. These more

general estimators have the same asymptotic properties as the former

ones have. In this formulation, k seems to play no role, but it indeed

does in the associated Central Limit Theorem. A natural choice could

be k ≥ 2 and either vn = un
√
k or vn = unk

̟ (recall (11.7)). However,

it seems that β̂n(γ;un) = β̂′
n(un; γun; 1) already offers enough flexibility,

with γ ranging from 1 to ∞.

Note that for any given n it may happen that β̂n(γ;un) is not infor-

mative. This is of course the case when J(∆n, γun)T = 0, but also when

this variable is relatively small: indeed, J(∆n, γun)T is the number of re-

turns which are really used in the statistical analysis, and thus it should

be reasonably large. If this is not the case, one may take a smaller value

for the truncation level un.

For example, Figure 11.1 shows the results of implementing the esti-

mator β̂n.

Improved estimators based on a smooth truncation In the

heuristic justification of the pertinence of the previous estimators based

on counting “large” returns, it is of course not exactly true that the
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jumps bigger than un are in one-to-one correspondence with the returns

∆n
i X bigger than un: by using J(∆n, un)t we quite likely miss some jumps

slightly bigger than un, and mistakenly count some jumps slightly smaller

than un. To partly alleviate this, we can use a smooth test function g to

construct a smooth approximation to the indicator functions 1(un,∞) or

1(−∞,−un) in (11.8). We then set

J(g; ∆n, un)t =

[t/∆n]∑

i=1

g(∆n
i X/un). (11.12)

We will assume that, for some real p ≥ 1, the test function g satisfies

• g is bounded, even, nonnegative, continuous,

piecewise C1, with g(0) = 0;

• |g′(x)| ≤ K(|x|p−1 ∧ 1),
∫
|g′(y)| dy <∞;

• x, x+ y ∈ [−1, 1]

⇒ |g′(x+ y)− g′(x)| ≤ K|x|(p−2)+ |y|(p−1)∧1.

(11.13)

In particular, we have |g(x)| ≤ K(|x|p ∧ 1). The evenness assumption is

rather innocuous: it means that we treat the positive and the negative

jumps in exactly the same way, and it simplifies notation. Note that if

(11.13) holds with p, it also holds with all p′ > p. For example, we may

take

g(x) = |x|p ∧ 1, or g(x) = (|x| − 1)+ ∧ 1. (11.14)

The first one satisfies (11.13) with p equal to the exponent of |x|; the
second one, like any bounded continuous and piecewise C1 even function

vanishing on [−1, 1], satisfies (11.13) for all p > 0.

Before exhibiting the estimators, we also associate with any g satis-

fying (11.13) the following functions, where x ∈ R and y ∈ (0, p) and

z > 1:

g+(x) = g(x) 1{x>0},

g−(x) = g(x)1{x<0} = g+(−x),
vg(y) = y

∫∞
0

g(x)
x1+y dx,

vg(y, z) =
y

(log z)2 vg(y)2

∫∞
0

(g(x)−zy g(x/z))2
x1+y dx.

(11.15)

The estimation is performed through two successive steps, by estimat-

ing β first and then A
(±)
T . We fix a sequence un satisfying (11.7), a number

γ > 1, and a function g satisfying (11.13) and not identically equal to

0. As usual, the time horizon T is fixed, and not explicitly mentioned in

the estimators which we presently introduce:

β̂(γ, g;un) =
log
(
J(g; ∆n, un)T /J(g; ∆n, γun)T

)

log γ
(11.16)
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if J(g; ∆n, un)T > 0 and J(g; ∆n, γun)T > 0, and 0 otherwise, where 0

is a dummy value, as in (11.10), which could indeed be replaced by any

arbitrary number. Next, with the convention vg(0) = 1 (again a dummy

value !), we set

Â(±)(γ, g;un) =
(un)

β̂(γ,g;un)

vg(β̂(γ, g;un))
J(g±; ∆n, un)T . (11.17)

Remark 11.9. As we will see below, it is best to choose a test function g

which satisfies g(x) > 0 for all x 6= 0, in which case β̂(γ, g;un) takes the

dummy value 0 on the set where ∆n
i X = 0 for all i ≤ [T/∆n], a set with

vanishing probability in all practical situations. Otherwise, one may have

β̂(γ, g;un) = 0 on a set with positive probability. However, the limit the-

orems obtained below are in restriction to the set Ω
(β)
T = {AT > 0}, and

on this set both J(g; ∆n, un)T and J(g; ∆n, γun)T (properly normalized)

go to a positive limit. Thus, asymptotically at least, this dummy value 0

is immaterial.

In practice, β̂(γ, g;un) = 0 means that the estimation of β is impos-

sible at stage n with the chosen test function g and truncation level un,

and we stop here: this could be because un is not small enough, but more

likely it is because we are outside the set Ω
(β)
T , and probably even because

the observed path has finitely many jumps, or even none at all.

Remark 11.10. The above estimators estimate β, A
(+)
T and A

(−)
T , under

(L). Now, in this assumption we allow for a
(+)
t and a

(−)
t to be different,

whereas the BG index β is the same for positive and negative jumps,

although when a
(+)
t > 0 = a

(−)
t for example, β is the BG index for

positive jumps, and the BG index for negative jumps is at most β′. The

situation where the indices for positive and negative jumps are distinct,

with the necessary specific assumptions, is considered in some detail in

Subsection 11.2.4.

11.2.2 Asymptotic Properties

The key point is the asymptotic behavior of the functionals

J(g±; ∆n, un): here un ≍ ∆̟
n with ̟ allowed to be an arbitrary pos-

itive number (instead of ̟ ∈ (0, 12
)
, we will need this wider generality

later), and g is a function satisfying (11.13), with the exponent p.

First, by Theorem B.20-(a) with β+ = β− = β, we have the following

convergence in probability, locally uniform in time:

uβn J(g; ∆n, un)
u.c.p.
=⇒ vg(β)A (11.18)
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(recall that vg(β) is finite when p > β, as is the case below; this extends

(11.9) upon noticing that vg(β) = 1 when g(x) = 1{|x|≥1}, although this

particular function does not satisfy (11.13)), under (L) and either one of

the following two conditions on the triple (β, p,̟):

(i) p > 2, ̟ < p−2
2(p−β)

(ii) σt ≡ 0 and

{
p > 1, ̟ < p−1

p−β if β < 1

p > β, ̟ < 1
β if β ≥ 1.

(11.19)

Moreover, we have a CLT associated with (11.18), with the rate u
β/2
n ,

as soon as β′ < β/2 and either one of the following two conditions is

satisfied:

(i) p > 2, ̟ < 1
2+β

∧ p−2
2p−β

(ii) σt ≡ 0 and

{
p > 1, ̟ < 2

2+β

∧ 2p−2
2p−β if β < 1

p > β, ̟ < 2
β(2+β)

∧ 2p−2β
β(2p−β) if β ≥ 1.

(11.20)

In view of the form of our estimators, the following result is now

(almost) evident, and formally proved, together with the next CLT, on

pages 593 et seq.

Theorem 11.11. Assume (L) and let un ≍ ∆̟
n for some ̟ ∈

(
0, 12 ).

Then for all γ > 1 and g satisfying (11.13) with p > 2−β̟
1−2̟ (always

satisfied when p ≥ 4 if ̟ ≤ 1
4) we have

β̂(γ, g;un)
P−→ β

Â(±)(γ, g;un)
P−→ A

(±)
T

}
in restriction to the set Ω

(β)
T .

The associated Central Limit Theorem is less obvious, and it takes

the following form:

Theorem 11.12. Assume (L) with β′ < β/2, and let un ≍ ∆̟
n for some

̟ ∈
(
0, 1

2+β ) and γ > 1 and g satisfying (11.13) with p > 2−β̟
1−2̟ (these

conditions on (p,̟) are satisfied for all β ∈ (0, 2) if p ≥ 4 and ̟ ≤ 1
4).

Then the following joint stable convergence in law holds, in restriction to

the set Ω
(β)
T , and where Φ is a standard normal variable, defined on an

extension of the space (Ω,F , P) and independent of F :

(
β̂(γ,g;un)−β

u
β/2
n

,
Â(+)(γ,g;un)−A(+)

T

u
β/2
n log(1/un)

,
Â(−)(γ,g;un)−A(−)

T

u
β/2
n log(1/un)

)

L−s−→
(√

vg(β,γ)
AT

Φ,−
√

vg(β,γ)
AT

A
(+)
T Φ,−

√
vg(β,γ)
AT

A
(−)
T Φ

)
.

(11.21)



406 Chapter 11

A striking feature of this result is the degeneracy of the three-

dimensional limit. The estimation errors for all three quantities β, A
(+)
T

and A
(−)
T are the same, up to multiplicative F -measurable variables. The

error in the estimation of β actually drives the other two errors, because

in (11.17) the term involving the biggest error is u
β̂(γ,g;un)
n .

The rate of convergence is 1/u
β/2
n ≍ 1/∆

β̟/2
n , so we should use ̟ as

large as possible, that is, ̟ = 1
4 . In this case the rate becomes 1/∆

β/8
n .

This is a conservative result, assuming that a priori β ranges through

the whole interval (0, 2). However, if for some reason we “know” that β

is strictly smaller than a given value β0, we can choose ̟ bigger than 1
4 ,

hence improving the estimation. More specifically, in this case the CLT

holds for all β ∈ (0, β0) under the following conditions:

̟ =
1

2 + β0
, p ≥ 4− 2β0

β0
(11.22)

and the rate becomes 1/∆
β/(4+2β0)
n .

Remark 11.13. If we take g(x) = 1{|x|>1} we have β̂(γ, g;un) =

β̂(γ;un), as given by (11.9). This function g satisfies (11.13) for all

p > 0, except that it is discontinuous at the two points −1 and 1. Never-

theless, one has exactly the same results (consistency and CLT), although

we need stronger requirements on ̟, due to the lack of smoothness of g:

for example the CLT holds for all β ∈ (0, 2) when ̟ ≤ 1
5 only. So the

best rate of convergence with these estimators is significantly lower, and

it is not advisable to use (11.9) in practice.

Remark 11.14. As mentioned above, the rate improves when one knows

that β < β0 for some value β0 < 2. When further β is known (a rather un-

likely event in practice, but perhaps true in other contexts than finance),

we can do better for the estimation of A
(±)
T . In this case, we substitute

β̂(γ, g;un) with β in (11.17). Then, with Â
(±)
n denoting the new estima-

tors, the rate of convergence becomes the slightly faster u
−β/2
n (the log

term disappears), and we have

(
Â(+)

n −A(+)
T

u
β/2
n

,
Â(−)

n −A(−)
T

u
β/2
n

) L−s−→
(√

vg2 (β)A
(+)
T

vg(β)
Φ+,

√
vg2 (β)A

(−)
T

vg(β)
Φ−
)

in restriction to the set Ω
(β)
T , and where Φ+ and Φ− are two standard

normal variables, independent, and independent of F (see page 597 for

the proof).

In order to make the estimations above feasible, one needs consis-

tent estimators for the (conditional) asymptotic variances in (11.21).
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For example, the variance of β̂(γ, g;un) − β is asymptotically equiva-

lent to uβn vg(γ, β)/AT , which involves AT and also the unknown value

β in two ways: in vg(β, γ) and in the rate u
β/2
n . Since β 7→ vg(β, γ) and

β 7→ vg(β) are continuous functions we can plug in the estimator of β; for

uβn/vg(β)AT we can use the consistency result (11.18) and approximate

this quantity by 1/J(g; ∆n, un)T .

Putting these ideas to use, we can then give confidence bounds for β

and A
(±)
T . Namely, if zα is the α-absolute quantile of N (0, 1), the interval

In =
[
β̂(γ, g;un)− anzα, β̂(γ, g;un) + anzα

]
,

with an =

√
vg(γ,β̂(γ,g;un) vg(γ,β̂(γ,g;un))

J(g;∆n,un)T

(11.23)

is a confidence interval for β, at stage n, with asymptotic significance

level α in the sense that

limn P(β /∈ In | B) = α

for all B ∈ F with P(B) > 0 and B ⊂ Ω
(β)
T = {AT > 0}.

In the same way, confidence intervals for A
(+)
T and A

(−)
T with asymp-

totic significance level α are given, at stage n, by

I(±)
n =

[
Â(±)(γ, g;un)

(
1− anzα log(1/un)

)
,

Â(±)(γ, g;un)
(
1 + anzα log(1/un)

)]

with an as in (11.23).

Remark 11.15. The reader will have noticed that the asymptotic prop-

erties of the three estimators above hold on the set Ω
(β)
T (under (L)), and

thus they work as well if there is no Brownian motion at all, that is, when

σt is identically 0.

If we know that there is no Brownian motion (tests for this eventuality

are given in Chapter 13), and if we also know that β does not exceed

some known value β0 (as before Remark 11.13) we can even improve

the rate. Indeed, instead of (11.22) we can take ̟ to be smaller than
p−1
p ∧ 2

(β0∨1)(2+β0)
, but as close to this value as we wish to, and p ≥ 3

(this follows from Theorem B.20 and the same proof as for the previous

theorem).

11.2.3 How Far from Asymptotic Optimality ?

This subsection is devoted to various comments about the optimality,

or lack thereof, of the estimators constructed above. This concerns in

particular the choice of the tuning “parameters” γ > 1 and un and of

the function g itself.
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About the Rate of Convergence The most important parameter

is the one governing the rate of convergence, that is the sequence un:

the rate for estimating β being u
β/2
n , one should take un “as small” as

possible, in comparison with ∆n of course. That is, since un ≍ ∆̟
n ,

one should take ̟ as large as possible, that is, ̟ = 1
4 (or bigger when

possible, as in the situation described in (11.22)). More precisely, the

squared estimation errors have the following order of magnitude: if un =

α∆̟
n , then

(β̂(γ, g;un)− β)2 ≈ vg(β,γ)α
β

AT
∆β̟
n

(Â(±)(γ, g;un)−A
(±)
T )2 ≈ vg(β,γ)α

β̟2(A
(±)
T )2

AT
∆β̟
n

(
log 1

∆n

)2 (11.24)

(the right sides above are the asymptotic conditional variances). These

convergence rates are quite slow. To understand why they are so slow,

and how close to (or far from) optimality they are, one can consider the

model studied in Section 5.2, with only one stable process. That is, our

underlying process has the form

X = σW + Y, (11.25)

where σ > 0 and Y is a symmetric stable process with Lévy measure

F (dx) = (aβ/2|x|1+β) dx (this differs from the model in Section 5.2 by

a factor 1/2, in order to fit the notation of the present chapter). There

are three parameters in this model: c = σ2 > 0, β ∈ (0, 2), and a > 0.

Further, (L) holds, with the same β and a
(±)
t = a/2, hence AT = Ta.

In such a parametric model, an overall lower bound for the estima-

tion variance of a parameter at stage n is given by the inverse of the

corresponding Fisher information at this stage. Theorem 5.25 and (5.22)

provide us with the rate at which Fisher-efficient estimators θ̂n converge

to θ, that is, such that the normalized sequence rn(θ̂n − θ) converge to

a proper limit, for the two parameters θ = β and θ = a (or equivalently

θ = aT ):

• for β: rn(opt) ∼ 1/∆
β/4
n (log(1/∆n))

β/4−1

• for a: rn(opt) ∼ 1/∆
β/4
n (log(1/∆n))

β/4.
(11.26)

A comparison between (11.24) and (11.26) shows how far from rate

optimality our estimators are, in the setting of (11.25): if we neglect the

logarithmic terms, the rates rn = 1/∆
β̟/2
n in (11.24) and rn(opt) =

1/∆
β/4
n in (11.26) satisfy

rn ≈ rn(opt)
2̟.
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When β ranges through (0, 2), we need ̟ = 1
4 and the rate rn is roughly

(up to logarithmic terms again) the square root of the optimal rate. If we

know that β ∈ (0, β0) for some β0 < 2, then we can take ̟ = 1
2+β0

, see

(11.22), hence the rate rn approaches the optimal rate when β0 is small.

One should, however, be aware that the rates deteriorate as β decreases,

but this is an intrinsic property already of the optimal rates above.

This comparison is perhaps not totally fair, since (11.26) holds when

σ is known, and for a very special parametric submodel. However, the

situation here is in deep contrast with the estimation of the integrated

volatility, which can be done with the same rate, and even the same

asymptotic variance as the optimal estimation of σ2 in the model (11.25).

Remark 11.16. One should be aware that any estimator for β which

uses only the increments bigger than un, as the estimators β̂(γ, g;un)

basically do (because g(x) is small, when |x| is small) is likely to have

a rate not faster than 1/u
β/2
n (as again our estimators do): indeed, the

number of increments bigger than un is of order of magnitude AT /u
β
n as

soon as un is large enough to eliminate the “Brownian increments” (this

is what taking ̟ < 1
2 does), hence the rate can hardly be faster than the

square root 1/u
β/2
n .

The Asymptotic Variance Once the rate is fixed, that is, once ̟

with un ≍ ∆̟
n is chosen (typically ̟ = 1

4 ), we still have to choose the

tuning parameters α if un = α∆̟
n , and γ > 1, and the test function g.

First, one should choose α as small as possible. Since the truncation is

mainly aimed at eliminating the “Brownian increments,” and as for the

truncations occurring in the previous chapters, in practice un is chosen to

be something like three to five times the standard deviation of a typical

Brownian increment, that is,
√
σ2 ∆n, where σ

2 is the average squared

volatility.

Next we should choose g and γ which minimize the variance vg (note

that this quantity, as well as the estimators, are invariant if we multiply

g by a constant, so if we restrict our attention to bounded test functions

we can always standardize in such a way that sup |g| = 1). A complete

study seems to be out of reach, but we can consider the first example of

(11.14), that is, g(x) = gp(x) = |x|p ∧ 1 with p > β. A calculation shows

that

vg(β) =
p

p− β
, vg(β, γ) =

2(p− β)

(log γ)2
× p(γβ − 1)− βγβ(1− γ−p)

p(2p− β)
.

When p is fixed, vg(β, γ) decreases from +∞ to some positive value when
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γ increases from 0 to some value γ(p, β), and then it increases back to

∞. When γ is fixed, vg(β, γ) increases with p in (β,∞), from 0 up to

(γβ−1)/2: consequently, it is best to use the test function g(x) = |x|p∧1

with s as small as possible, that is, p = 4 when no prior knowledge on

β is assumed, and p = 4−2β0

β0
if we know that β is smaller than a given

value β0.

Practical Considerations and Results In practice, and apart from

the choice of un which has been discussed above, one should be aware

that the rate is low, hence confidence bounds are wide apart. We suggest

using the previous procedure for g as described above (with p = 4) and

with several values of γ, ranging from 1.5 to 5 for example. Then one can

perform a regression on the different values of γ.

Estimating β requires large sample size due to the reliance on trun-

cating from the right to eliminate the contributions from the continuous

part of the model. That is, the estimators of β discard by construction

a large fraction of the original sample, and to retain a sufficient num-

ber of observations to the right of a cutoff un, we need to have a large

sample to begin with. So we will generally estimate β using only the

highest sampling frequencies. Of course, these sampling frequencies are

the most likely to be subject to market microstructure noise. Because

we are only retaining the increments larger than the cutoff un instead of

those smaller than the cutoff, this could be less of a concern despite the

ultra high sampling frequencies.

We find in practice estimated β’s in the range from 1.5 to 1.8, indicat-

ing a very high degree of jump activity, in effect much closer to Brownian

motion than to compound Poisson. The filtered transactions produce the

highest estimates of β, leading on average to a process that effectively

looks like Brownian motion. Figure 11.2 reports the values of the esti-

mator β̂ computed for the four quarters of the year, a range of values

of α from 5 to 10 standard deviations, and ∆n from 5 to 10 seconds.

The middle right plot reports the corresponding data against the limited

range of ∆n employed. The lower panels, relating the estimated values

of β to stock-level liquidity, do not display strong patterns. Looking at

the DJIA index itself, to the extent that an infinite activity component is

present, we find that it is less active, with estimated values of β ranging

from 0.9 to 1.4. But in light of the results of the test of finite vs. infinite

jump activity (see the next chapter) it is even likely that the jumps of

the index have finite activity.

This discrepancy between the behavior of the DJIA index and its
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Figure 11.2: Estimating the index of jump activity β : Empirical distri-

bution of β for all 30 DJIA stocks, 2006, measured using transactions

(unfiltered, U, and NBBO-filtered, F) and NBBO quotes midpoint (M),

and median value of the estimated β as a function of the sampling inter-

val ∆n, and nonlinear regression of the estimated β against stock-level

liquidity measures.
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individual stock components can be interpreted in light of a factor model

with systematic and idiosyncratic components. If we further decompose

the jump part of individual stocks into a common component and an

idiosyncratic component, then when an idiosyncratic jump occurs the

other stock prices do not jump, so the influence of this particular jump

on the index, which is an average, is essentially wiped out: the index

will not exhibit a jump of significant size. In contrast, a systematic jump

will typically occur at the same time (and often with the same sign)

for most or all stocks, resulting in a jump of the index. Therefore, the

absence of empirical evidence in favor of infinite activity jumps in the

index, combined with their presence in the individual components, point

toward purely idiosyncratic small jump components in the individual

assets.

This makes sense if we think of most systematic, that is, market-wide,

price moves as driven by important macroeconomic news and therefore

likely to be large. On the other hand, small infinite activity jumps are

more likely to reflect individual stock-level considerations, such as stock-

specific information and its immediate trading environment, and there-

fore are more likely to be idiosyncratic.

Consistent with this, we also found that the proportion of quadratic

variation attributable to jumps is lower for the index than for its individ-

ual components. One could conceivably measure the proportion of jumps

that are systematic vs. those that are idiosyncratic on the basis of the

comparison between the proportions of quadratic variation estimated for

the index and for its components. Doing this using the empirical results

above would suggest a proportion of systematic jumps representing about

10% of the total quadratic variation, and a proportion of idiosyncratic

jumps representing about 15% of total quadratic variation, with the re-

maining 75% representing the continuous part of the total quadratic vari-

ation. This breakdown ultimately determines the empirical importance

of (different types of) jumps as a source of asset returns variance.

A Bias Correction By construction, we are forced by the presence

of a continuous martingale part to rely on a small fraction of the sample –

those increments larger than un = α∆̟
n or using smoother cutoff function

– for the purpose of estimating β. As a result, the effective sample size

utilized by the estimator of β is small, even if we sample at a relatively

high frequency. This situation calls for an analysis of the small sample

behavior of the estimator.

Such a small sample analysis is out of reach in general but it can be
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carried out explicitly for the model Xt = σWt+Yt, where W is a Wiener

process and Y is a symmetric β-stable process, hence with the process At
of (11.3) of the form At = at and the Lévy measure F (dx) = aβ/2|x|1+β
for some a > 0. We denote as h and hβ the respective densities of the

variables W1 and Y1. Following Zolotarev (1986), Theorem 2.4.2 and

Corollary 2 of Theorem 2.5.1, we have the expansion

hβ(x) =
aβ

2|x|1+β
(
1− a′

|x|β +O
( 1

|x|2β
))
, as |x| → ∞ (11.27)

for a suitable constant a′ > 0 depending on a and β. By the scaling

properties of W and Z, the expected value of g(∆n
i X/un), for a test

function g satisfying (11.14) with some p ≥ 4, is

αn =

∫ ∫
h(y)hβ(z) g

(yσ∆1/2
n + z∆

1/β
n

un

)
dy dz

=
un

∆
1/β
n

∫ ∫
h(y) g(x)hβ

(
∆−1/β
n (xun − yσ∆1/2

n )
)
dx dy,

where the last formula results from a change of variables. Since un ≍
∆̟
n with ̟ ∈ (0, 1/2) and β ∈ (0, 2), for all x, y 6= 0 we have

∆
−1/β
n

un

∆
1/β
n

(xun − yσ∆
1/2
n ) → ∞ and also yσ∆

1/2
n /xun → 0. Thus

(11.27) and an expansion of (1− yσ∆
1/2
n /xun)

−(1+jβ) for j = 1, 2, yield

un

∆
1/β
n

hβ
(xun − yσ∆

1/2
n

∆
1/β
n

)
=

aβ∆n

2uβn |x|1+β
(
1 + σy

∆
1/2
n

unx
+ σ2y2

∆n

u2nx
2

−a′ ∆n

uβn|x|β
+ o
(∆3/2

n

u3

))

for suitable positive constants α, α′, α′′ (the remainder term above de-

pends on x, y, of course).

Arguing somewhat heuristically (the argument can be made rigor-

ous), and taking advantage of
∫
yh(y) dy = 0 and

∫
y2h(y) dy = 1, re-

calling vg as defined in (11.15), and using the fact that the expectation

of J(g; ∆n, un)t is [t/∆n]αn, we deduce that, for two positive constants

d1, d2 (depending on a, β, σ, g),

uβn E(J(g; ∆n, un)t) = a t vg(β)
(
1 + d1

∆n

u2n
− d2

∆n

uβn

)
+ smaller terms.

The two correction terms partly compensate each other, although the first

one is bigger asymptotically than the second one (but not necessarily for

finite samples). The first correction term is due to the interaction between
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the Wiener and the stable processes, while the second one is due to the

more accurate approximation of the tail of the stable process in (11.27)

compared to the leading order term.

For more insight on the first correction term, one can consider the func-

tion g(x) = 1{|x|>1}, corresponding to using the first estimators β̂n(γ;un)

of (11.10): we are just counting the increments ∆n
i X bigger than un, and

pretending that it is the same as counting the increments ∆n
i Y bigger

than un. But in fact we may have ∆n
i X > un and ∆n

i Y ≤ un, when the

latter increment is close but smaller than un, or have ∆n
i X ≤ un and

∆n
i Y > un. These two sources of error somehow compensate each other,

but not completely, so the need for a correction for g as above, and for a

smooth function g as well.

Turning now to the general case of a semimartingale satisfying (L),

the same argument shows that, for uβn J(g; ∆n, un)t, a more accurate cen-

tering than vg(β)At is as follows, where D1 and D2 are two nonnegative

random variables:

vg(β)At
(
1 +D1

∆n

u2n
−D2

∆n

uβn

)
. (11.28)

The effect on the estimator β̂(γ, g;un) itself is that, instead of β, a cor-

rected centering term is

β +
1

log γ

(
D1

(
1− 1

γ2

) ∆n

u2n
+D2

( 1

γβ
− 1
) ∆n

uβn

)
. (11.29)

Asymptotically, the first of the two correcting terms above is the larger

one.

This suggests a small sample bias correction for the estimator

β̂(γ, g;un) obtained by subtracting from it an estimator of the two cor-

rection terms on the right hand side of (11.29). As seen in simulation

studies, this correction is quite effective in practice. We also note that

the two correcting terms are asymptotically negligible at the rate 1/u
β/2
n

at which the central limit occurs. Consequently, the bias-corrected esti-

mator has the same asymptotic distribution as the original estimator.

To implement the bias correction in practice, we need to estimate the

two variables D1 and D2. One can rewrite (11.28) as

uβn J(g; ∆n, γun)t ∼ w0
1
γβ + w1

1
γ2+β + w2

1
γ2β

+ a conditionally centered Gaussian term,

where w0 = vg(β)At, w1 = w0D1
∆n

u2
n
, w2 = −w0D2

∆n

uβ
n

(11.30)

(of course, the wj ’s are random variables, depending on n). A concrete

procedure is then as follows:
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1. Compute the preliminary estimator β̂n = β̂(γ, g;un), for some given

γ > 1.

2. For a bunch of distinct γ1, . . . , γk compute uβn J(g; ∆n, γjun)t
and estimate the unknown coefficients w0, w1, w2 in (11.30) by a

straightforward linear regression of uβn J(g; ∆n, γjun)t on 1/γβ̂n,

1/γ2+β̂n and 1/γ2β̂n .

3. Given the estimators ŵj of the regression coefficients, a bias-

corrected estimator is given by

β̂(γ, g;un)
bias-corrected = β̂(γ, g;un)−

1

log γ

( ŵ1

ŵ0

(
1− 1

γ2

)

+
ŵ2

ŵ0

(
1− 1

γβ

))
.

11.2.4 The Truly Non-symmetric Case

In this subsection we consider a situation where positive and negative

jumps possibly have different degrees of activity. In this case, the two

types of jumps are treated completely independently, and below we put

more emphasis on positive jumps, with of course no loss of generality.

Note that if, even without compelling evidence, we suspect that posi-

tive and negative jumps might behave differently, we should do the analy-

sis as described below. This is in particular true if, after a “symmetrical”

analysis, we come out with an estimate for A
(−)
T which is “much smaller”

or “much bigger” than the one for A
(+)
T .

We have two different assumptions, according to whether we are in-

terested in positive jumps or in negative jumps. In the first case, the

assumption for the restrictions of the Lévy measures Ft to R+ is the

same as in (L), whereas the assumption on their restrictions to R− is

minimal, and the other way around in the second case.

Assumption (L+). The process X is of the form (11.1), with bt locally

bounded and σt càdlàg, and there are three constants 0 ≤ β′
+ < β+ ≤

β < 2 such that

x ∈ (0, 1] ⇒
{ ∣∣xβ+ F

(+)

t (x)− a
(+)
t

∣∣ ≤ Lt x
β+−β′

+

xβ F
(−)

t (x) ≤ Lt,
(11.31)

where a
(+)
t and Lt are nonnegative predictable (or optional) and locally

bounded processes.
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Assumption (L−). The process X is of the form (11.1), with bt locally

bounded and σt càdlàg, and there are three constants 0 ≤ β′
− < β− ≤

β < 2 such that

x ∈ (0, 1] ⇒
{ ∣∣xβ− F

(−)
t (x)− a

(−)
t

∣∣ ≤ Lt x
β−−β′

−

xβ F
(+)

t (x) ≤ Lt,
(11.32)

where a
(−)
t and Lt are nonnegative predictable (or optional) and locally

bounded processes.

Remark 11.17. If (L) holds with β, β′, a(±)
t we have both (L+) and

(L−), with the same β as in (L) and β+ = β− = β and β′
+ = β′

− = β′

and also the same processes a
(±)
t .

Conversely, if (L+) and (L−) hold with respectively β+, β
′
+, a

(+)
t and

β−, β′
−, a

(−)
t , the second inequalities in (11.31) and (11.32) hold with

β = β+ ∨ β−, and we have (L) with this β. The specification of β′ in

(L), and of the two processes in (11.2), which we denote as a
(±,L)
t in this

remark for clarity, is as follows:

1. If β+ = β−(= β), then a
(±,L)
t = a

(±)
t and β′ = β′

+ ∨ β′
−.

2. If β+ 6= β−, we may assume for example that β− < β+(= β), the

other case being similar. Then a
(+,L)
t = a

(+)
t and a

(−,L)
t = 0 and

β′ = β′
+ ∨ β−.

Under (L+), resp. (L−), we define A
(+)
t , resp. A

(−)
t , as in (11.3),

whereas we replace (11.6) by the sets

Ω
(β+,+)
T = {A(+)

T > 0}, Ω
(β−,−)
T = {A(−)

T > 0},

according to the case. Assuming for example (L+), our aim is to estimate

β+ and A
(+)
T , in restriction to the set Ω

(β+,+)
T . The procedure is of course

the same as previously, except that we only consider (truncated) positive

increments. With a sequence un ≍ ∆̟
n of truncation levels, and with a

test function g satisfying (11.13) (except that g need not be even, since

below we only consider its restriction g+(x) = g(x) 1{x>0} to R+), and

with any γ > 1, we construct the estimators

β̂+(γ, g;un) =
log
(
J(g+; ∆n, un)T /J(g+; ∆n, γun)T

)

log γ
(11.33)

if J(g+; ∆n, un)T > 0 and J(g+; ∆n, γun)T > 0, and 0 otherwise, and

Â(+)(γ, g;un) =
(un)

β̂+(γ,g;un)

vg(β̂+(γ, g;un))
J(g+; ∆n, un)T . (11.34)
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The last formula is the same as (11.17), except that we use β̂+(γ, g;un)

instead of β̂(γ, g;un).

When (L−) holds, we define β̂−(γ, g;un) and Â(−)(γ, g;un) in the same

way, except that we are using g−(x) = g(x) 1{x<0} instead of g+.

Exactly as in the “symmetrical” case, Theorem B.20 yields

u
β+
n J(g+; ∆n, un)

u.c.p.
=⇒ vg(β+)A

(+) as soon as ̟ < 1
2(1+β−β+) and

p > 2−2β+̟
1−2̟ , whereas the associated CLT requires ̟ < 1

2+2β−β+
and

p > 2−β+̟
1−2̟ . Then we have the analogues of Theorems 11.11 (consis-

tency) and 11.12 (the CLT for the estimators), and these results are

proved simultaneously with the preceding theorems, on pages 593 et seq.

(we only give the results under (L+), but the analogous result under (L−)

is straightforward).

Theorem 11.18. Let un ≍ ∆̟
n for some ̟ ∈

(
0, 1

2(1+β−β+) ], and γ > 1

and g be a function satisfying (11.13) with some p > 2−2β+̟
1−2̟ (those

conditions hold for all 0 ≤ β+ < β < 2 if ̟ ≤ 1
6 and p ≥ 3). Then under

(L+) we have

β̂+(γ, g;un)
P−→ β+

Â(+)(γ, g;un)
P−→ A

(+)
T

}
in restriction to the set Ω

(β+,+)
T .

Theorem 11.19. Let un ≍ ∆̟
n for some ̟ > 0 and γ > 1 and g be a

function satisfying (11.13) with some p.

a) Under (L+) with β′
+ < β+/2 and if further ̟ < 1

2+2β−β+
and

p > 2−β+̟
1−2̟ (those conditions hold for all 0 ≤ 2β+ < β < 2 if ̟ ≤

1
6 and p ≥ 3), we have the following joint stable convergence in law,

in restriction to the set Ω
(β+,+)
T , and where Φ+ is a standard normal

variable, defined on an extension of the space (Ω,F ,P) and independent

of F :

(
β̂+(γ,g;un)−β+

u
β+/2
n

,
Â(+)(γ,g;un)−A(+)

T

u
β+/2
n log(1/un)

)

L−s−→
(√

vg(β+,γ)

A
(+)
T

Φ+, −
√
vg(β+, γ)A

(+)
T Φ+

)
.

b) If both (L+) and (L−) hold, with β′
± < β±/2 and ̟ <

1
2+2β+∨β−−β+∧β−

and p > 2−β+∧β−̟
1−2̟ (again automatically satisfied if

̟ ≤ 1
6 and p ≥ 3), we also have the following joint stable convergence in

law, in restriction to the set Ω
(β+,+)
T ∩Ω

(β−,−)
T , with Φ− another standard
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normal variable independent of Φ+ above and of F :
(
β̂+(γ,g;un)−β+

u
β+/2
n

, β̂−(γ,g;un)−β−

u
β−/2
n

,

Â(+)(γ,g;un)−A(+)
T

u
β+/2
n log(1/un)

,
Â(−)(γ,g;un)−A(−)

T

u
β−/2
n log(1/un)

)

L−s−→
(√

vg(β+,γ)

A
(+)
T

Φ+,

√
vg(β−,γ)

A
(−)
T

Φ−,

−
√
vg(β+, γ)A

(+)
T Φ+, −

√
vg(β−, γ)A

(−)
T Φ−

)
.

(11.35)

Even more in this non-symmetric case, there is no reason to take the

same constant γ, or the same test function g, for positive and negative

jumps. The statement as well as the proof are modified in an obvious

way if we take different γ and/or g.

The various comments or remarks stated after Theorem 11.12 are

obviously valid in the present situation, including the construction of

confidence intervals: the precise formulation is left to the reader.

Remark 11.20. It is interesting to compare Theorem 11.12 with (b) of

Theorem 11.19, when β+ = β−. In this case, (L) is the same as (L+)

and (L−), and the restrictions on ̟ and p are also the same in the two

theorems. However, the results differ in two respects:

1. In (b) above we have two asymptotically (F-conditionally) inde-

pendent estimators for the same parameter β = β+ = β−, both

with a bigger asymptotic variance than β̂(γ, g;un). And any convex

linear combination aβ̂+(γ, g;un) + (1 − a)β̂−(γ, g;un) also has a

bigger asymptotic variance than β̂(γ, g;un), so it is better to use

β̂(γ, g;un) if for some reason we know that β+ = β−.

2. In (b) above the estimators for A
(+)
T and A

(−)
T are asymptotically

(F-conditionally) independent, unlike in Theorem 11.12. This is

due to the asymptotic independence of the estimators for β+ and

β−.

This theorem allows us to construct a test for the null hypothesis

that β+ = β−, under (L+) and (L−), and in restriction to the set

Ω
(β+,+)
T ∩ Ω

(β−,−)
T . Toward this aim, by (11.35) and under the null (so

β+ = β− = β), the variables u
−β/2
n

(
β̂+(γ, g;un) − β̂−(γ, g;un)

)
con-

verge stably in law to
√
vg(β+, γ)

(
Φ+/

√
A

(+)
T − Φ−/

√
A

(−)
T

)
, which

is F -conditionally centered Gaussian with variance vg(β+, γ)
(
1/A

(+)
T +

1/A
(−)
T

)
. This variance is consistently estimated by u−βn Vn, where

Vn = vg(β+, γ) vg(β)
( 1

J(g+; ∆n, un)T
+

1

J(g−; ∆n, un)T

)
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(recall (11.18), note that Vn is observable, whereas the unobservable u−βn
cancels out below).

Hence, with zα denoting as usual the α-absolute quantile of N (0, 1),

the critical regions

Cn =
{
|β̂+(γ, g;un)− β̂−(γ, g;un)| > zα

√
Vn
}

have the strong asymptotic size α for testing the null hypothesis β+ = β−,

and they are consistent for the alternative hypothesis β+ 6= β− (because

u−εn
∣∣β̂+(γ, g;un) − β̂−(γ, g;un)

∣∣ converge in probability to +∞ for any

ε > 0 when β+ 6= β−.

Likewise, one may construct tests for the unilateral hypotheses β+ ≤
β− or β+ ≥ β−, and also tests for A

(+)
T = A

(−)
T (the latter when β+ = β−,

otherwise this makes no practical sense).

11.3 Successive BG Indices

The notion of successive Blumenthal-Getoor indices was been introduced

in Subsection 5.2.2 of Chapter 5, for Lévy processes. The usual BG index

β for a semimartingale satisfying Assumption (L), for example, describes

how Lévy measures Ft diverge near 0, in the sense that it basically im-

poses the following behavior for the tail functions F t:

F t(x) ∼ at
xβ
, as x ↓ 0, (11.36)

where at ≥ 0 is a process.

We can think of (11.36) as providing the leading term, near 0, of the

jump measure of X . Given that this term is identifiable, but that the

full Lévy measures are not, our aim is to examine where the boundary

between what can vs. cannot be identified lies. Toward this aim, one di-

rection to go is to view (11.36) as giving the first term of the expansion of

the “tail” F t(ω, u) near 0, and go further by assuming a series expansion

such as

F t(x) ∼
∑

i≥1

ait
xβi

, as x ↓ 0, (11.37)

with successive powers β1 = β > β2 > β3 > · · · (this extends (5.12)).

Those βi’s are the “successive BG indices.” This series expansion can

for example result from the superposition of processes with different BG

indices, in a model consisting of a sum of such processes.

The question then becomes one of identifying the successive terms in

that expansion. As seen in Theorem 5.8, for Lévy processes we have the
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somewhat surprising result that the first index β1 is always identifiable

and that the subsequent indices βi are identifiable if they are bigger

than β1/2, whereas those smaller are not. An intuition for this particular

value of the identifiability boundary can be gained from Theorem 11.12

or, rather, from its proof: the estimation of β is based on a preliminary

estimation of the processes uβn
∫ t
0 F s(un) ds for a sequence un ↓ 0, at least

when one uses the version (11.10) with the test function g(x) = 1{|x|>1}.

Moreover, in this estimation the rate of convergence is u
−β/2
n . This means

that any term contributing to F t(un) by an amount less than u
−β/2
n , as

un → 0, is fundamentally unreachable. This shows that there are limits

to our ability to identify these successive terms.

Our aim below is to show that, in accordance with Theorem 5.8 but

in a more general Itô semimartingale setting, one can indeed construct

estimators which are consistent for estimating the successive indices βi,

as long as they are bigger than β/2. We also determine their rate of

convergence, which we will see are slow.

11.3.1 Preliminaries

Our first task is to extend Assumption (L) to the case of successive

indices, as in (11.37). To avoid complicated notation, we restrict our

attention to the case where the jumps are “asymptotically” symmetric

near 0, that is, when both F
(+)

t and F
(−)

t have an expansion near 0 with

the same negative powers of x; however, it would also be possible to treat

positive and negative jumps separately, in the spirit of Subsection 11.2.4

above. With j is an integer, we set

Assumption (L-j). The process X is of the form (11.1), with bt locally

bounded and σt càdlàg, and there are constants 0 ≤ βj+1 < βj < . . . <

β1 < 2 with βj > β1/2 and such that

x ∈ (0, 1] ⇒
∣∣∣F (±)

t (x) −
j∑

i=1

ai±t
xβi

∣∣∣ ≤ Lt
xβj+1

, (11.38)

where ai+t and ai−t and Lt are nonnegative predictable (or optional) and

locally bounded processes.

As with (L), we associate with this assumption the following increasing

processes:

Ai+t =

∫ t

0
ai+s ds, Ai−t =

∫ t

0
ai−s ds, Ait = Ai+t +Ai−t .
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Under this assumption, the βi’s for i = 1, . . . , j are naturally called the

successive Blumenthal-Getoor indices. They should rather be referred to

as “potential” BG indices, since if for example AiT (ω) = 0 the index βi is

immaterial for the process X , up to time T and for the specific outcome

ω. Note that βj+1 is usually not by itself a BG index.

When X is a Lévy process, we know by Theorem 5.8 that βi and A
i
t

are pairwise identifiable for i = 1, . . . , j because βj > β1/2, whereas if

βj < β1/2 were allowed the parameter βj would not be identifiable. We

will in fact exhibit consistent estimators for βi, and for the variables Ai+T
and Ai−T , when X is an Itô semimartingale satisfying (L-j). In particular,

this will ensure that those quantities are identifiable.

(L-j) implies (L), with β = β1 and β′ = β2 and a
(±)
t = a1±t , and

(L-1)=(L): below we restrict our attention to the case j ≥ 2, since the

case j = 1 is established in the previous sections.

For example, if X is the sum of a (continuous) Itô semimartingale

satisfying (HC), plus j independent symmetrical stable (or tempered

stable) processes with indices βi, then (L-j) is satisfied. It is also satisfied

by the process

Xt = X0 +

∫ t

0
bs ds+

∫ t

0
σs dWs + Zt +

j∑

i=1

∫ t

0
Hi
s dY

i
s ,

if the sum of the four first terms on the right above define a semimartin-

gale satisfying (H-βj+1), and the Y i’s are stable or tempered stable pro-

cesses with indices βi, mutually independent and independent of W , and

the Hi’s are predictable locally bounded processes.

Clearly, the estimation of all the βi’s, for example, cannot be more

accurate than the estimation of β = β1 in the previous section. Worse,

even: as soon as j ≥ 2 we have (L) with β′ > β
2 , hence Theorem 11.12 does

not apply as is, and the available rates are much slower than previously.

The “natural” assumption (L-j) is in fact not quite enough for us, and

we will need the following, where ε > 0:

Assumption (L-j-ε). We have (L-j), and furthermore:

• There is a known number ε > 0 such that βi − βi+1 > ε for all

i = 1, . . . , j − 1;

• We have AiT > 0 almost surely for i = 1, . . . , j.

This assumption contains two requirements. One is that the various

BG indices are sufficiently far apart; that the minimal distance is bigger

than some ε > 0 is of course always true, but the point here is that this ε
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is known: this number is explicitly used for constructing the estimators,

The other requirement implies that the “component parts” of the pro-

cess X corresponding to each index βi are all “active” at some point in

the interval [0, T ]. In other words, the βi’s are the genuine successive BG

indices on the time interval [0, T ]. This is of course a little bit restrictive,

but it greatly simplifies the analysis. It also implies that in the forthcom-

ing limit results one does not have the usual qualifier “in restriction to

a suitable subset” of Ω.

The estimation is based on a two-step procedure, the first step being

devoted to preliminary estimators β̃in and Ãi±n for βi and A
i±
T , the final

estimators being denoted β̂in and Âi±n .

11.3.2 First Estimators

As before, we choose a sequence un ≍ ∆̟
n of truncation levels, with some

̟ ∈
(
0, 1/4

)
. We also take a test function g satisfying (11.13) for some

p ≥ 4. These bounds on ̟ and p are those needed in Theorem 11.12 and

are thus a fortiori needed here.

The preliminary estimators for β1 and A1±
T are the same as in (11.16)

and (11.17), namely

β̃1
n =

log
(
J(g; ∆n, un)T /J(g; ∆n, γun)T

)

log γ

Ã1±
n =

(un)
β̃1
n

vg(β̃1
n)
J(g±; ∆n, un)T ,

where γ > 1 is chosen arbitrarily. As usual, the above definition of β̃1
n

holds if J(g; ∆n, un)T > 0 and J(g; ∆n, γun)T > 0; β̃1
n is defined to be 0

otherwise.

Next, the estimators for j ≥ 2 are constructed by induction on j in

the following way. We use the number ε for which Assumption (L-j-ε)

holds and set for all i ≥ 1:

un,i = u(ε/2)
i−1

n (11.39)

(so un,1 = un). We denote by I(k, l) the set of all subsets of {1, . . . , j}
having l elements. Then, assuming that β̃ni and Ãni± are already known
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for i = 1, . . . , k − 1, we set (with x ≥ 1 below)

Un(k, x) =
k−1∑
l=0

(−1)lJ(g; ∆n, xγ
lun,k)T

∑
R∈I(k−1,l)

γ
∑

i∈R β̃
i
n

β̃kn =





log
(
Un(k,1)/Un(k,γ)

)
log γ if Un(k, 1) > 0, Un(k, γ) > 0

0 otherwise

Ãk±n =
u
β̃k
n

n,k

vg(β̃k
n)

(
J(g±; ∆n, un,k)T −

k−1∑
i=1

vg(β̃
i
n) Ã

i±
n u

−β̃i
n

n,k

)
.

(11.40)

Finally, in order to state the result, we need a further notation for

i = 1, . . . , j − 1:

Hi =
Ai+1
T vg(βi+1)

AiT vg(βi) log γ

∏i
l=1

(
γβl−βi+1 − 1

)
∏i−1
l=1 (γ

βl−βi − 1)
(11.41)

(recall that we assume AiT > 0 here). The asymptotic behavior of our

preliminary estimators is described in the following theorem:

Theorem 11.21. Assume (L-j-ε) for some j ≥ 2 and ε > 0, choose

un ≍ ∆̟
n for some ̟ ∈

(
0, 14

)
and a function g satisfying (11.8) with

some p ≥ 3, and finally let γ > 1. Then the estimators defined above

satisfy, for i = 1, . . . , j − 1,

β̃in − βi

u
βi−βi+1

n,i

P−→ −Hi,
Ãi±n −AiT

u
βi−βi+1

n,i log(1/un,i)

P−→ HiA
i±
T , (11.42)

and furthermore the following variables are bounded in probability as n

varies:

β̃jn − βj

u
βj−(β1/2)∨βj+1

n,j

,
Ãj±n −Aj±T

u
βj− (β1/2)∨βj+1

n,i log(1/un,j)
. (11.43)

(See page 597 for the proof.) Note the differences between this re-

sult and Theorem 11.11 for example: in the latter we have a stable con-

vergence in law, allowing us to construct confidence intervals. Here the

convergence takes place in probability, with a limit which is a function

of the quantities to be estimated. Hence this result gives us a rate of

convergence, but no feasible way to construct a confidence interval. In

other words, this type of result is potentially much less useful than the

previous ones.

Remark 11.22. It is possible for the estimators Ãi±n to be negative, in

which case we may replace them by 0, or by any other positive number.
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It may also happen that the sequence β̃in is not decreasing, and we can

then reorder the whole family to obtain a decreasing family (we relabel

the estimators of Ai±T accordingly, of course). All these modifications are

asymptotically immaterial.

11.3.3 Improved Estimators

The preliminary estimators not only do not provide us with confidence

intervals, but their rates are exceedingly slow, especially for higher or-

der indices. If we start with the “optimal” choice ̟ = 1
4 for the trun-

cation levels un ≍ ∆̟
n , the convergence rate for β̃in for example is

1/∆
(βi−βi−1)ε

i−1/2i+1

n , with ε as in Assumption (L-j-ε). Even when j = 2,

that is, when we have two BG indices, the rate for β2 is 1/∆
(β1−β2)ε/8
n

and ε is smaller than β1 − β2 and should in fact be chosen much smaller

than this, because the βi’s are unknown.

This is why we propose improved estimators, constructed on the basis

of the previous preliminary estimators. Those new estimators are still

not amenable to constructing confidence intervals, and their rates are

still slow, but not so far from the optimal rates, as we will see below: it

will appear that the slow rates of convergence are partly a defect of the

estimators we construct, but also are an inherent limitation imposed by

the problem at hand.

The method consists of minimizing, at each stage n, a suitably chosen

contrast function Φn. We still assume (L-j-ε) for some j ≥ 2 and some

ε > 0. First we take an integer L ≥ 2j and numbers 1 = δ1 < δ2 <

· · · < δL. We also choose positive weights wk (typically wk = 1, but any

choice is indeed possible), and we take truncation levels un ≍ ∆̟
n with

̟ ∈
(
0, 14

)
(unfortunately, the “optimal” ̟ = 1

4 is excluded). We also let

D be the set of all (xi, y
+
i , y

−
i )1≤i≤j with 0 ≤ xj ≤ xj−1 ≤ · · · ≤ x1 ≤ 2

and y±i ≥ 0. Finally, g is a function satisfying (11.13) with some p ≥ 3,

and the contrast function is defined on D by

Φn(x1, y
+
1 , y

−
1 , . . . , xj , y

+
j , y

−
j ) =

L∑
l=1

wl
((
J(g+; ∆n, δlun)T

−
j∑
i=1

y+i vg(xi)

(δlun)xi

)2
+
(
J(g−; ∆n, δlun)T −

j∑
i=1

y−i vg(xi)

(δlun)xi

)2)
.

Then the estimation consists of the following two steps:

1. We construct preliminary estimators β̃in (decreasing in i) and Ãi±n
(nonnegative) for βi and A

i±
T for i = 1, . . . , j, such that (β̃i−βi)/uηn

and (Ãi±n − Ai±T )/uηn go to 0 in probability for some η > 0. For
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example, we may choose those described in the previous section,

see Remark 11.22; the consistency requirement is then fulfilled for

any η < (ε/2)j.

2. We denote by Dn the (compact and non-empty) random subset of

D defined by

Dn =
{
(xi, y

+
i , y

−
i ) ∈ D : |xi − β̃in| ≤ ζuηn,

|y+i − Ãi+n | ≤ ζuηn, |y−i − Ãi−n | ≤ ζuηn, ∀i = 1, . . . , j
}

for some arbitrary (fixed) ζ > 0. Then the final estimators β̂in and

Âi±n will be

(β̂in, Â
i+
n , Âi−n )1≤i≤j = argmin

Dn

Φn(x1, y
+
1 , y

−
i , . . . , xj , y

+
j , y

−
j ),

which always exists, because Dn is compact and Φn is a continuous

(random) function on D.

Theorem 11.23. Assume (L-j-ε) for some j ≥ 2 and ε > 0. Choose

un ≍ ∆̟
n for some ̟ ∈

(
0, 14

)
, and a function g satisfying (11.8) with

some p ≥ 3, and the number γ > 1. Then, for all choices of δ2, . . . , δL
outside a Lebesgue-null subset of the set {(zi)2≤i≤L : 1 < z2 < · · · < zL}
(depending on the βi’s), the sequences of variables

β̂in − βi

u
βi−(β1/2)∨βj+1−µ
n

,
Âi+n −Ai+T

u
βi−(β1/2)∨βj+1−µ
n

,
Âi−n −Ai−T

u
βi−(β1/2)∨βj+1−µ
n

(11.44)

are bounded in probability for all i = 1, . . . , j and all µ > 0 .

The rates obtained here are much better than in Theorem 11.21. For

example, for β1 the rate is faster than 1/u
β1/2−µ
n for any µ > 0 instead

of being 1/uβ1−β2
n . And for βj it is faster than 1/u

βj−β1/2−µ
n instead of

1/u
(ε/2)j−1(βj−β1/2)
n .

For example, consider j = 2 and extend (11.25) as

X = σW + Y 1 + Y 2

with σ > 0 and Y 1, Y 2 two stable symmetric processes with indices

β1 > β2 and intensities ai. We have (L-2-ε) and Ait = tai. In this case,

(5.22) shows that the optimal rates are given by (11.26) for β1 and a1,

whereas for β2 and a2 they are

• for β2: rn(opt) = 1/∆
β2/2−β1/4
n (log(1/∆n))

β2/2−β1/4−1

• for a2: rn(opt) = 1/∆
β2/2−β1/4
n (log(1/∆n))

β2/2−β1/4.
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Hence, exactly as in the previous section, and upon taking un ≍ ∆̟
n with

̟ very close to 1
4 , we see that the rates in Theorem 11.23 are roughly

the square roots of the optimal rates, in this very special case.

Remark 11.24. As stated, we only need L = 2j, and choosing L > 2j

does not improve the asymptotic properties. However, from a practical

viewpoint it is probably wise to take L bigger than 2j in order to smooth

out the contrast function somehow, especially for (relatively) small sam-

ples. A choice of the weights wl > 0 other than wl = 1, such as wl
decreasing in l, may serve to put less emphasis on the large truncation

values unδl for which less data are effectively used.

Remark 11.25. The result does not hold for all choices of the δl’s, but

only when (δ2, . . . , δL) (recall δ1 = 1) does not belong to some Lebesgue-

null set G(β1, . . . , βj). This seems a priori a serious restriction, because

(β1, . . . , βj) and this set G(β1, . . . , βj) are unknown. In practice, we

choose a priori (δ2, . . . , δL), so we may have bad luck, just as we may

have bad luck for the particular outcome ω which is drawn ...; we can

also perform the estimation several times, for different values of the δi’s,

and compare the results.

Remark 11.26. In the last theorem we impose the assumption (L-j-

ε), although ε does not show in the result itself and can thus be taken

arbitrarily small (recall that (L-j-ε) with ε arbitrarily small amounts to

(L-j) plus the fact that all variables AiT are strictly positive); this is in

principle enough to ensure that Theorem 11.23 holds.

However, we need (L-j-ε) to construct the preliminary estimators,

hence it is also stated as an assumption in the theorem. Were we able

to come up with other preliminary estimators satisfying the required hy-

potheses in Step 1 of our algorithm, then (L-j-ε) could be replaced by

(L-j) and AiT > 0 for all i ≤ j. On the other hand, relaxing AiT > 0 does

not seem to be obvious.

Remark 11.27. We have a rate of convergence for our estimators, but

no associated Central Limit Theorem. Such a CLT is radically impossible

to obtain since, as seen in the subsection devoted to preliminary estima-

tors, the first order terms for the normalized estimation errors are bias

terms.

As a consequence, we can estimate the successive indices βi, but we

cannot provide confidence bounds for them.
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11.4 References

As already mentioned, the Blumenthal-Getoor index was introduced in

Blumenthal and Getoor (1961) in the context of Lévy processes. There is

a large literature about estimation of the stability index for a sample of

stable variables and about the Hill or similar estimators, in various con-

texts; however, the methods always rely upon analyzing large T , and are

thus not relevant in the context of this book. Recently a number of au-

thors have studied the estimation of the Lévy measure of a Lévy process

which is sampled at high frequency, but when simultaneously the time

horizon goes to infinity, see for example Basawa and Brockwell (1982),

Figueroa-López and Houdré (2006), Nishiyama (2008), Neumann and

Reiß (2009), Figueroa-López (2009), Comte and Genon-Catalot (2009,

2011).

By contrast, the literature about estimation of the identifiable part

of the Lévy measure from high-frequency data on a fixed time interval

is more limited. The extension of the BG index to semimartingales and

the corresponding estimation method in Section 11.2 originates in Aı̈t-

Sahalia and Jacod (2009a), and was subsequently improved in Jing et al.

(2011).

Successive BG indices, studied in Section 11.3, were introduced and

estimated in Aı̈t-Sahalia and Jacod (2012b).

Belomestny (2010) considered the BG index of a Lévy process. Reiß

(2013) proposes tests on the volatility, the jump measure and the BG

index of a Lévy process, using the empirical characteristic function. Other

papers are concerned with the “overall’ activity index of a semimartingale

discretely observed on a finite time interval, which equals 2 when there

is a Brownian motion and otherwise is the BG index; see for example

Woerner (2011) and Todorov and Tauchen (2010).





Chapter 12

Finite or Infinite Activity

for Jumps?

The previous chapter was concerned with the estimation of the degree of

activity of the jumps of a process X , that is, of its Blumenthal-Getoor

index. If the resulting confidence interval does not contain the value 0,

one may conclude that the genuine activity index is positive, and thus the

jumps have infinite activity (infinitely many jumps inside the observation

interval [0, T ]). Otherwise the true BG index may be equal to 0, and then

a natural question to ask oneself is whether or not the observed path has

infinitely many jumps on [0, T ]. As we know, if this is the case the BG

index vanishes, whereas the converse is not quite true: a gamma process

has jumps with infinite activity and yet a vanishing BG index. Of course,

it is possible to reverse the order of the questions, and ask first whether

X has jumps with finite or infinite activity, and only in the latter case

attempt to estimate the BG index.

The question posed above is quite important in practice. Indeed, a

process with jumps of finite activity looks pretty much like Merton’s

model (including a drift, of course, and with jumps which are not neces-

sarily Gaussian), and in any case is much simpler to specify and also to

understand than a process with jumps of infinite activity.

In other words, our aim in this chapter is to construct tests which

allow us to decide in which of the following two subsets of the sample

space the observed path lies:

Ω
(fa)
T = {ω : t 7→ Xt(ω) has finitely many jumps in [0, T ]}

Ω
(ia)
T = {ω : t 7→ Xt(ω) has infinitely many jumps in [0, T ]}.

(12.1)

429
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Note that, by virtue of Theorem 5.16, these sets are identifiable (at least

pairwise), because for example Ω
(ia)
T = {A(0)T = ∞}, with the nota-

tion (5.15). These two subsets are the “null hypotheses” for which we

construct tests, successively, in the two sections of this chapter.

As for the process X , as previously it is a one-dimensional Itô semi-

martingale on some filtered space (Ω,F , (Ft)t≥0,P), with Grigelionis rep-

resentation

Xt = X0 +

∫ t

0
bsds+

∫ t

0
σsdWs (12.2)

+ (δ1{|δ|≤1}) ⋆ (p− q)t + (δ1{|δ|>1}) ⋆ pt

and characteristics of the form

Bt =

∫ t

0
bsds, Ct =

∫ t

0
csds, ν(dt, dx) = dt Ft(dx)

(same notation as in the previous chapters). Additional assumptions will

be made as required.

12.1 When the Null Hypothesis Is Finite

Jump Activity

We start with the null hypothesis of “finite activity” of jumps. Exactly

as for testing for the existence of jumps, here we cannot test the null

hypothesis Ω
(fa)
T as stated in (12.1) and we will take the null to be Ω

(fa)
T ∩

Ω
(W )
T , where Ω

(W )
T = {CT > 0} is the set (already encountered in (10.6))

on which the Brownian motion is active.

Next, exactly as in Theorems 10.14 and 10.15 for testing for jumps, if

we want alternative consistency we must restrict the alternative to Ω
(ia)
T ∩

Ω
(W )
T as well. But this is not enough: we need additional assumptions

on the structure of the jumps of X , in the spirit of Assumption (L) of

the previous chapter, and accordingly reduce further, if necessary, the

alternative hypothesis. We basically have two ways to do this:

1. Assume (L), see page 396, in which case the alternative hypothesis

will not be Ω
(ia)
T ∩Ω

(W )
T but rather the set Ω

(β)
T ∩Ω

(W )
T ; see (11.5).

This method has the advantage of being coherent with the tests

when the null is “infinite activity,” as constructed later and for

which (L) is really needed. However, (L) supposes that the putative

BG index β is positive; hence it rules out some interesting cases,

such as when the jumps of X are those of a gamma process, which

has infinite activity and at the same time a vanishing BG index.
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2. Consider the “global” BG index γt up to time t, defined in (5.16)

as

γt = inf(p ≥ 0 :

∫ t

0
ds

∫
(|x|p ∧ 1)Fs(dx) <∞),

and which is non-decreasing in t. Then the additional assumption

is expressed in terms of this global index, as follows:

Assumption (J). The process X is of the form (12.2) with bt locally

bounded and σt càdlàg. Moreover, the global BG index γt takes its val-

ues in [0, 2) (the value 2 is excluded), and for all ε > 0 the process

supx∈(0,1] x
γt+εF t(x) is locally bounded, where F t is the two-sided tail

function F t(x) = Ft((−∞,−x) ∪ (x,∞)) for x > 0.

This assumption is a mild local boundedness assumption, which is

made even weaker by the fact that we use the global BG index γt instead

of the (perhaps more natural) instantaneous index βt.

Even under (J), the alternative still cannot be Ω
(ia)
T ∩ Ω

(W )
T , but a

subset of it. It has a somewhat complicated description, and we first

need a notation (for u ∈ (0, 1] and q ≥ 0):

G(q, u)t = inf
x∈(0,u/2]

xq
(
F t(x)− F t(u)

)
. (12.3)

Then we set

Ω
(iia)
T = Ω

(i,γ>0)
T ∪ Ω

(i,γ=0)
T , (12.4)

where, with lT denoting the Lebesgue measure on [0, T ],

Ω
(i,γ>0)
T =

{
ω : γT (ω) > 0,

lT
({
t : lim infu→0 G(q, u)t(ω) = ∞

})
> 0 for all q < γT (ω)

}
,

Ω
(i,γ=0)
T =

{
ω : γT (ω) = 0,

lT
({
t : limx→0 (F t(x

1+ρ)− F t(x))(ω) = ∞
})
> 0 for all ρ > 0

}
.

Remark 12.1. The sets Ω
(i,γ>0)
T and Ω

(i,γ=0)
T are often easy to describe

in particular examples, as shown below, but it is not so easy to grasp their

meaning in general. The former set is basically the set on which there are

“enough” times t in [0, T ] at which the local BG index βt is arbitrarily

close to γT , plus some (implicit) condition implying that F t(x) converges

to +∞ “regularly enough,” for enough times t, as x→ 0.

In contrast, the latter set says that, again for “enough” times t, F t(x)

is large enough.
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The connections between (L) and (J) and between Ω
(ia)
T and either

Ω
(β)
T or Ω

(iia)
T are explicated in the next lemma, which, like all results of

this subsection, is proved on pages 604 et seq.

Lemma 12.2. We have the following implications:

a) If (J) holds, then Ω
(iia)
T ⊂ Ω

(ia)
T almost surely.

b) If (L) holds with either β′ = 0 or At > 0 for all t > 0, then (J)

holds.

c) If (L) holds, then Ω
(β)
T ⊂ Ω

(ia)
T almost surely.

d) If (L) holds with β′ = 0, then Ω
(β)
T = Ω

(ia)
T = Ω

(iia)
T almost surely.

The reader should not be misled by this statement: Assumption (J)

is fundamentally much weaker than (L), although formally we may have

(L) and not (J). By part (b) of this lemma, we see that all examples of

Section 11.1, except Example 11.5, satisfy (J).

Example 12.3. When X is a Lévy process, so γt(ω) = β is the BG

index of the Lévy measure F , and both Ω
(i,γ>0)
T and Ω

(i,γ=0)
T are either

empty or equal to Ω itself, according to the following:

1. Ω
(i,γ>0)
T = Ω if and only if β > 0 and xβ−εF (x) → ∞ for all

ε > 0, as x→ 0.

2. Ω
(i,γ=0)
T = Ω if and only if β = 0 and F (x1+ρ) − F (x) → ∞ for

all ρ > 0, as x→ 0.

The latter condition is satisfied if F (x) ∼ a
(
log(1/x)

)v
for any v > 0

and a > 0 (the case v = 1 includes gamma processes), but not when v = 0

(that is, X is a compound Poisson process, with β = 0 and Ω
(i,γ=0)
T = ∅).

It is also not satisfied when F (x) ∼ a log(log(1/x)), in which case β = 0

again and Ω
(i,γ=0)
T = ∅, although Ω

(ia)
T = Ω.

Example 12.4. This is similar to Example 11.4, with X of the form

(11.5) and the Lévy measure F of the Lévy process Z satisfying

F (x) ∼ (log(1/x))v

xw
as x ↓ 0

for some w ∈ [0, 2) and v ∈ R, with v ≥ 0 when w = 0. Then we have

(L) with β = w, if and only if w > 0 and v = 0, whereas (J) holds in

all cases. Note that γt = w if Ht =
∫ t
0 |Hs| ds is positive, and γt = 0

otherwise.

In this example we have the following equalities, up to null sets of

course:

w > 0 ⇒ Ω
(ia)
T = Ω

(iia)
T = Ω

(i,γ>0)
T = {HT > 0}

w = 0, v > 0 ⇒ Ω
(ia)
T = Ω

(iia)
T = Ω

(i,γ=0)
T = {HT > 0},
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whereas when w = v = 0 the measure F is finite, hence Ω
(ia)
T = ∅. Note

also that Ω
(ia)
T = Ω

(β)
T as well when w = β > 0 and v = 0 (so (L) holds).

After these preliminaries, we turn to the description of the tests. The

idea is very close to what was done in Section 10.3, except that here we

truncate the increments at some cutoff levels un which, as usual, satisfy

(11.7). The rationale is that, on the set Ω
(fa)
T , for n large enough, all

increments ∆n
i X on intervals without jumps and inside [0, T ] are smaller

than un, whereas all the (finitely many) others are bigger than un, and

are thus eliminated by the truncation. Thus the statistics used in Section

10.3, once increments are substituted with truncated increments, behave

on the set Ω
(fa)
T as they behaved without truncation on the set Ω

(c)
T .

As a matter of fact, using statistics like B(p,∆n, un) (see (6.26)), is

possible but, exactly as for the estimation of the BG index, it looks

preferable to take “smooth” test functions, provided they behave as |x|p
near 0 and vanish far from 0. This is why we suggest taking the function

gp(x) = |x|p
∧

(2− |x|)+, (12.5)

but any function satisfying (11.13) and equal to |x|p on a neighborhood

of 0 and with compact support could be used here. The building blocks

for constructing the estimators are thus the following modifications of

the functionals J(g; ∆n, un) given by (11.12):

J([gp, k],∆n, un)t =
[t/∆n]−k+1∑

i=1
gp
(X(i+k−1)∆n−X(i−1)∆n

un

)

J(gp, k∆n, un)t =
[t/k∆n]∑
i=1

gp
(Xik∆n−X(i−1)k∆n

un

)
,

where p > 0 and k is a positive integer. Of course when k = 1 we have

J([gp, k],∆n, un) = J(gp, k∆n, un) = J(gp,∆n, un), so below we take

k ≥ 2. The statistics are then defined in a similar way to (10.40):

S(FA-PV1)(p, k,∆n, un) =
J([gp,k],∆n,un)T
kJ(gp,∆n,un)T

S(FA-PV2)(p, k,∆n, un) =
J(gp,k∆n,un)T
J(gp,∆n,un)T

.
(12.6)

The asymptotic behavior of these statistics is given by the following the-

orem (compare with (10.41) and (10.48); the proof is on page 613):

Theorem 12.5. Assume (K-2) and let p > 2 and k ≥ 2 and let un ≍ ∆̟
n

with ̟ ∈
(
0, 12

)
.

a) In restriction to the set Ω
(fa,W )
T = Ω

(fa)
T ∩Ω

(W )
T we have

S(FA−PV1)(p, k,∆n, un)
P−→ kp/2−1,

S(FA−PV2)(p, k,∆n, un)
P−→ kp/2−1

(12.7)
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and also the following stable convergences in law, again on Ω
(fa,W )
T :

1√
∆n

(
S(FA−PV1)(p, k,∆n, un)− kp/2−1

) Ls−→ S(FA−PV1)
(c) (p, k)

1√
∆n

(
S(FA−PV2)(p, k,∆n, un)− kp/2−1

) Ls−→ S(FA−PV2)
(c) (p, k),

(12.8)

where S(J−PV1)(p, k) and S (J−PV2)(p, k) are the variables of (10.48).

b) Assume further that ̟ < p−2
2p . Then, in restriction to the set Ω

(iia)
T

if (J) holds, and in restriction to the set Ω
(β)
T if (L) holds, we have

S(FA−PV1)(p, k,∆n, un)
P−→ 1,

S(FA−PV2)(p, k,∆n, un)
P−→ 1.

(12.9)

As usual, in order to construct the tests we need consistent estimators

for the conditional variances of the limits in (12.8). To this aim, and if

for example we use the first test statistics S(FA−PV1)(p, k,∆n, un), we

can take one of the estimators provided by formula (10.50). In view of

Theorem 10.14 and of the subsequent comments, it is presumably best

to take the second among those estimators, that is, V
(2)
n .

At this point, we can reproduce word for word the proof of Theorems

10.14 and 10.15 and we obtain the following result, where z′α is the α-

quantile of the standard normal distribution N (0, 1) (the critical regions

below are identical to those in the two previously mentioned theorems):

Theorem 12.6. Assume (K-2), and let p > 2 and k ≥ 2 and un ≍ ∆̟
n .

Let also α(p, k)1 and α(p, k)2 be given by (10.49).

a) The tests with critical regions

Cn =
{
S(FA−PV1)(p, k,∆n, un) < kp/2−1

− z′α

√
α(p, k)1

(mp)2 B(2p,∆n,un)T
m2p (B(p,∆n,un)T )2

} (12.10)

have the strong asymptotic level α for the null hypothesis Ω
(fa)
T ∩Ω

(W )
T . If

further ̟ < p−2
2p , then under (J) they are consistent for the alternative

Ω
(iia)
T ∩Ω(W )

T , and under (L) they are consistent for the alternative Ω
(β)
T ∩

Ω
(W )
T .

b) The same properties hold for the following critical regions:

Cn =
{
S(FA−PV2)(p, k,∆n, un) < kp/2−1

− z′α

√
α(p, k)2

(mp)2B(2p,∆n,un)T
m2p (B(p,∆n,un)T )2

}
.

(12.11)

Proposition 10.19 and all the subsequent comments (concerning the

null Ω
(cW )
T ) apply here without change. In particular, the tests (12.10)
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are better than the tests (12.11), from the viewpoint of the power of the

test, and we should choose a small value for k, such as k = 2. Although

the asymptotic size is not affected by the choice of ̟, in order to achieve

alternative consistency one should choose ̟ < p−2
2p .

Remark 12.7. Since our statistics S(FA−PV1)(p, k,∆n, un) and

S(FA−PV2)(p, k,∆n, un) are based on the variables J(gp; ∆n, un)T , it is

perhaps more coherent to use the same in the estimators of the asymp-

totic variances. In other words, we could replace B(p,∆n, un)T and

B(2p,∆n, un)T by J(gp; ∆n, un)T and J(g2p; ∆n, un)T , respectively, in

the above definitions of the critical regions. Such a substitution does not

alter the results.

Now we turn to empirical considerations. Each one of the statistics

below is computed separately for each quarter of 2006 and for each as-

set. The data for the histogram in Figure 12.1 are produced by com-

puting for the four quarters of the year and each stock the value of

S(FA-PV2)(p, k,∆n, un), abbreviated as SFA in the forthcoming discus-

sion, for a range of values of p from 3 to 6, α from 5 to 10 standard

deviations, ∆n from 5 seconds to 2 minutes, and k = 2, 3. We find that

the empirical values of S FA are distributed around 1, which is indicative

of infinite activity jumps. That is, even as we truncate, the statistic con-

tinues to behave as if jumps are present. If only a finite number of jumps

had been present, then the statistic should have behaved as if the process

were continuous. But the histograms do display a fat right tail, indicative

of finite activity jumps for at least some of the DJIA components. The

histograms are quite similar for all three data measurements, suggesting

that they tend to differ only because of the larger increments: those are

indeed the ones that are filtered in F compared to U, but since they are

truncated away by S FA anyway, then for the purpose of computing SFA

the two data measurements produce close results.

The middle right panel in Figure 12.1 displays the mean value of SFA

(across the four quarters, two stocks, and values of p, α and k) as a

function of ∆n. A pattern similar to the corresponding plot in Figure 10.5

emerges. Even for very small values of ∆n, the noise does not dominate

(limits below 1); instead the limit is around 1 as ∆n increases away from

the frequencies where the noise would have been expected to dominate.

Unless we start downsampling more (reaching 5 to 10 minutes), the limit

does not get close to kp/2−1. The lower panels examine any patterns

linking SFA to stock-level measures of liquidity; no strong cross-sectional

pattern emerges.
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Figure 12.1: Testing whether jumps have finite or infinite activity: Empir-

ical distribution of S(FA−PV 2)(p, k,∆n, un) for all 30 DJIA stocks, 2006,

measured using transactions (unfiltered, U, and NBBO-filtered, F) and

NBBO quotes midpoint (M), median value of S(FA−PV 2)(p, k,∆n, un) as

a function of the sampling interval ∆n, and nonlinear regression of SFA
against stock-level liquidity measures.
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Overall, the evidence suggests the presence of infinite activity jumps

in the DJIA 30 components. To the extent that jumps are present in the

DJIA index itself, the evidence is in favor of finite activity jumps: we find

values of SFA ranging from 1.7 to 2.2 for the index.

12.2 When the Null Hypothesis Is Infinite

Jump Activity

Now we turn to the other possible null hypothesis, that of “infinite activ-

ity” of jumps. For this problem, we must be able to evaluate the asymp-

totic level of our tests, and to do so we need some rather strong as-

sumptions on X , namely (L): the situation is in fact quite similar to the

estimation of the BG index. However, and as before, even though we

assume (L) we do not want to suppose that the index β is known.

Under this assumption, the null hypothesis will be Ω
(β)
T , which is in-

cluded in Ω
(ia)
T , and the alternative will be Ω

(fa,W )
T = Ω

(fa)
T ∩ Ω

(W )
T .

The construction of the test statistics is slightly complicated, because

we want an asymptotic behavior which is model-free within the class of

models satisfying (L), and in particular does not depend on the unknown

value of β under the null. To achieve this, we take two powers p > p′ > 2

and a real γ > 1; we use the variables J(g; ∆n, un)T of (11.12), with a

sequence un ≍ ∆̟
n for some ̟ ∈

(
0, 12

)
, and with the test functions gp

and gp′ defined by (12.5). With all these ingredients we construct the

statistics as follows:

S(IA-PV)(p, p′, γ,∆n, un) =
J(gp; ∆n, γun)T J(gp′ ; ∆n, un)T
J(gp; ∆n, un)T J(gp′ ; ∆n, γun)T

.

In other words, unlike for the previous statistic S(FA−PV1)(p, k,∆n, un),

we now play with different powers p and p′, and different levels of trun-

cation un and γun, but otherwise sample at the same frequency ∆n.

The next theorem, proved on page 610, gives us the asymptotic be-

havior of our statistics, and we need some preliminary notation. Each of

the following four functions satisfies (11.13), as well as any product of

them:
h1(x) = gp(x/γ), h2(x) = gp(x),

h3(x) = gp′(x), h4(x) = gp′(x/γ).
(12.12)

Observe that, with the notation (11.15), we have vhj (β) = vhj+1 (β)/γ
β

when j = 1, 3. The functions hi are “known,” in the sense that they

depend only on the parameters p, p′, γ chosen by the statistician. In con-

trast, we introduce the following functions, which also depend on the
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unknown β and thus cannot be used directly, but are convenient for

stating the result:

lj =
hj

vhj
(β) for j = 1, 2, 3, 4,

g =
(
l1 − l2 + l3 − l4

)2
=
∑4
i,j=1(−1)i+j lilj .

(12.13)

Note that the function g also satisfies (11.13), with the exponent 2p′, so

vlj (β) is well defined. We have vlj (β) = 1 by construction.

Theorem 12.8. Assume (K-2) and (L), and let p > p′ ≥ 4 and γ > 1

and un ≍ ∆̟
n with ̟ ∈

(
0, 14

]
.

a) We have

S(IA−PV)(p, p′, γ,∆n, un)
P−→
{

1 on the set Ω
(β)
T

γp
′−p on the set Ω

(fa,W )
T .

(12.14)

b) When β′ < β
2 in (L), the variables

u−β/2n

(
S(IA−PV)(p, p′, γ,∆n, un)− 1

)

converge stably in law, in restriction to the set Ω
(β)
T , to a variable defined

on an extension of the space, which, conditionally on the σ-field F , is

centered Gaussian with the following (conditional) variance, where g is

given by (12.13) and depending on β:

V = vg(β)/AT .

c) The variables

Vn =
4∑

i,j=1

(−1)i+j
J(hihj ; ∆n, un)T

J(hi; ∆n, un)T J(hj ; ∆n, un)T
(12.15)

satisfy

u−βn Vn
P−→

{
V on the set Ω

(β)
T

0 on the set Ω
(fa,W )
T .

(12.16)

The functions hj are known, so the statistic Vn can be explicitly com-

puted using the data only. According to the established scheme, we de-

duce that the normalized statistics

S(IA-PV)(p, p′, γ,∆n, un)− 1√
Vn

converge stably in law, in restriction to the set Ω
(β)
T , to a standard normal

law. Since the second limit in (12.14) is smaller than 1, we are thus led

to use the following rejection region, at stage n:

Cn =
{
S(IA-PV)(p, p′, γ,∆n, un) < 1− z′α /

√
Vn
}
, (12.17)
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where z′α is again the α-quantile of N (0, 1), and of course Vn is

given by (12.15). The same proof as for the previous analogous re-

sults readily yields the result (for the consistency for the alterna-

tive, one may use the fact that, on Ω
(fa,W )
T , the standardized variable

(S(IA-PV)(p, p′, γ,∆n, un) − 1)/
√
Vn converges in probability to −∞, as

a consequence of (12.14) and (12.16)).

Theorem 12.9. Assume (K-2) and (L) with β′ < β
2 , and let p′ > p ≥ 4

and γ > 1 and un ≍ ∆̟
n with ̟ ∈

(
0, 14

]
. The tests with critical regions

given by (12.17) have the strong asymptotic level α for the null hypothesis

Ω
(β)
T , and they are consistent for the alternative Ω

(fa,W )
T .

Some comments are in order here. First, the structure of the sum

(12.15), indeed a quadratic form, implies that Vn ≥ 0 always. So the

critical region is well defined.

Second, the rate under the null is not apparent in the definition of the

critical region, since it is automatically “absorbed” by the estimator Vn;

however, the true rate is u
β/2
n , so it is best to take un as small as possible,

hence ̟ = 1
4 . Note that all these results are still valid when p′ is smaller

than 4, although bigger than 2; in this case we need ̟ ≤ p′−2
2p′ < 1

4 , so it

is not advisable to choose p′ ∈ (2, 4) and one should take p′ ≥ 4.

Finally, the assumptions are rather strong because we need (L), exactly

as for estimating the BG index. This is of course not a surprise, and

the proofs show that indeed the two types of result (this test and the

estimation of β) are very closely related. On the other hand, we need not

incorporate Ω
(W )
T into the null hypothesis here.

12.3 References

The tests presented here are borrowed from Aı̈t-Sahalia and Jacod

(2011), and are improved here using the same approach as Jing et al.

(2011) for the BG estimation. A related problem, namely testing whether

jumps have finite variation or not, has been studied by Cont and Mancini

(2011).
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Is Brownian Motion

Really Necessary?

So far we have explained how to test the presence of jumps and, when

the answer to this question is positive, how to test whether the jumps

have finite activity or not, and how to estimate the activity index (or BG

index) of the jumps.

Now suppose that these procedures end up with the answer that jumps

have infinite activity, and perhaps, even, that the BG index is “high”

(on its scale: between 0 and 2). In the latter case, high-activity (compen-

sated) jumps look pretty much like a Brownian motion plus occasional

large jumps. It is thus legitimate to ask oneself the question of whether,

in addition to those very active jumps, there is also a driving Brown-

ian motion, or whether the process is “pure jump,” that is, without a

continuous martingale part.

When there are no jumps, or finitely many jumps, and no Brownian

motion, X reduces to a pure drift plus occasional jumps, and such a

model is fairly unrealistic in the context of most financial data series,

although it may be realistic in some other situations. But for financial

applications one can certainly consider models that consist only of a jump

component, plus perhaps a drift, if that jump component is allowed to

be infinitely active.

Many models in mathematical finance do not include jumps. But

among those that do, the framework most often adopted consists of a

jump-diffusion: these models include a drift term, a Brownian-driven

continuous part, and a finite activity jump part; see for example Mer-

ton (1976), Ball and Torous (1983) and Bates (1991). When infinitely
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many jumps are included, however, a number of models in the literature

dispense with the Brownian motion altogether. The log-price process is

then a purely discontinuous Lévy process with infinite activity jumps, or

more generally is driven by such a process; see for example Madan and

Seneta (1990), Eberlein and Keller (1995) and Carr and Wu (2003a).

The mathematical treatment of models relying on pure jump processes

is quite different from the treatment of models where a Brownian motion

is present. For instance, risk management procedures, derivative pricing

and portfolio optimization are all significantly altered, so there is interest

from the mathematical finance side in finding out which model is more

likely to have generated the data.

The aim of this short chapter is thus to provide explicit testing proce-

dures to decide whether the Brownian motion is necessary to model the

observed path, or whether the process is entirely driven by its jumps.

The structural assumption is the same as in the previous two chapters,

with the underlying process X being a one-dimensional Itô semimartin-

gale, since in the multi-dimensional case we can again perform the test

on each component separately. The process is defined on a filtered space

(Ω,F , (Ft)t≥0,P) and has the Grigelionis representation (1.74), that is,

Xt = X0 +

∫ t

0
bsds+

∫ t

0
σsdWs (13.1)

+ (δ1{|δ|≤1}) ⋆ (p− q)t + (δ1{|δ|>1}) ⋆ pt,

with the usual notation (W is a one-dimensional Brownian motion, p

is a Poisson measure on R+ × E with (E, E) a Polish space, and with

compensator q(dt, dx) = dt⊗ λ(dx)). The characteristics of X are thus

Bt =

∫ t

0
bsds, Ct =

∫ t

0
csds, ν(dt, dx) = dt Ft(dx),

where b is the same as in (13.1), and c = σ2, and Ft(ω, dx) is the re-

striction to R\{0} of the image of λ by the map z 7→ δ(ω, t, z). We often

use Assumptions (H-r) and (K-r) and (H′), defined at the beginning of

Chapter 10 (page 330), and (L) defined page 396.

Our aim is to construct a test allowing us to separate the following

two disjoint hypotheses:

Ω
(W )
T = {CT > 0}, Ω

(noW )
T = {CT = 0},

with the idea that if we decide that the observed outcome is in Ω
(W )
T , the

Brownian motion in (13.1) is really necessary, whereas otherwise one can

omit it. The observations are, as before, regularly spaced at times i∆n,

over the fixed time interval [0, T ], and ∆n goes to 0.
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13.1 Tests for the Null Hypothesis That the

Brownian Is Present

We start with testing the null hypothesis Ω
(W )
T , under which the Brow-

nian is necessary.

Probably, the most natural idea to do this is as follows. In Chap-

ter 10 we introduced two statistics, S(J-MP2)(k,∆n) in (10.15) and

S(J-TR)(∆n, un) in (10.18), to test the null hypothesis that there is no

jump, in which case they are close to 1. When there are jumps, but

no Brownian motion, both of them are close to 0, whereas if there are

jumps and Brownian motion, both converge to the positive (random) ra-

tio S = CT /[X,X ]T . One can thus try to use these statistics for testing

whether the outcome ω is in Ω
(W )
T as well.

Using statistics which converge to S above induces serious problems,

though: when the null is Ω
(noW )
T , that is, S = 0, we have nothing like

a Central Limit Theorem which would give us some help finding the

asymptotic size. All CLTs at our disposal, so far, give degenerate results

when the Brownian part vanishes. When, as in this section, the null is

Ω
(W )
T = {S > 0}, we still have a problem: we do have a CLT, under

suitable assumptions on the process, but since S is unknown under the

null (apart from the fact that it is positive) we cannot properly center

the statistics S(J-MP2)(k,∆n) or S
(J−TR)(∆n, un) in order to construct

a test, even.

To overcome this difficulty, we may look for statistics which converge

to a known (non-random) limit on the set Ω
(W )
T , and for this we re-

sort again to some ratio of power, or rather truncated power, variations.

More precisely, we consider the same test functions gp as in the previous

chapter:

gp(x) = |x|p
∧

(2− |x|)+, (13.2)

but any function satisfying (11.13) and equal to |x|p on a neighborhood

of 0 could be used here (we do not need this function to have compact

support below, in contrast to the requirements in the previous chapter).

We associate the same processes as in (11.12), that is,

J([gp, k],∆n, un)t =
[t/∆n]−k+1∑

i=1
gp
(X(i+k−1)∆n−X(i−1)∆n

un

)

J(gp, k∆n, un)t =
[t/k∆n]∑
i=1

gp
(Xik∆n−X(i−1)k∆n

un

)
,

(13.3)

Here, k ≥ 1 is an integer, and un is a sequence of truncation levels

satisfying un ≍ ∆̟
n for some ̟ ∈

(
0, 12

)
.
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The statistics we will use are those of (12.6), which we recall:

S(FA-PV1)(p, k,∆n, un) =
J([gp,k],∆n,un)T
kJ(gp,∆n,un)T

S(FA-PV2)(p, k,∆n, un) =
J(gp,k∆n,un)T
J(gp,∆n,un)T

.

There is a big difference, however: for testing for finite activity of jumps

we were using a power p > 2, whereas here we will use p < 2, and the

reason is as follows: if we take p > 2 and assume (L) for example, then

these ratios converge to 1 on the set Ω
(β)
T , as seen in (12.9), irrespective

of whether we are in Ω
(β)
T ∩ Ω

(W )
T or in Ω

(β)
T ∩ Ω

(noW )
T . In other words,

with p > 2 these statistics cannot distinguish between the null and the

alternative.

When p < 2, things are totally different. On Ω
(W )
T the Brownian part

plays the main role and the convergence (12.7) holds (that is, the above

statistics converge in probability to kp/2−1), irrespective of the properties

of the jumps. On the other hand, on the set Ω
(β)
T ∩Ω(noW )

T , when (L) holds

and p > β, these statistics still converge to 1, as in (12.9) again.

We state all these consistency results, together with the associated

Central Limit Theorem under the null, in the next theorem (all results

of this chapter are proved on pages 612 et seq.).

Theorem 13.1. Let p ∈ (1, 2) and k ≥ 2 and un ≍ ∆̟
n with ̟ ∈

(
0, 12

)
.

a) Under (K-2), and in restriction to the set Ω
(W )
T , we have

S(FA−PV1)(p, k,∆n, un)
P−→ kp/2−1,

S(FA−PV2)(p, k,∆n, un)
P−→ kp/2−1.

(13.4)

b) Assuming (K-r) for some r ∈ [0, 1) and ̟ ≥ p−1
2(p−r) , we have the

following stable convergences in law, in restriction to the set Ω
(W )
T :

1√
∆n

(
S(FA−PV1)(p, k,∆n, un)− kp/2−1

) L−s−→ S(J−PV1)
(c) (p, k)

1√
∆n

(
S(FA−PV2)(p, k,∆n, un)− kp/2−1

) L−s−→ S(J−PV1)
(c) (p, k),

where S(J−PV1)(p, k) and S (J−PV1)(p, k) are the variables of (10.48).

c) Assuming (K-r) for some r ∈ [0, 1) and (L) with some β (necessar-

ily β ∈ (0, 1)), and ̟ ≤ p−1
p , then in restriction to the set Ω

(β)
T ∩Ω

(noW )
T ,

we have
S(FA−PV1)(p, k,∆n, un)

P−→ 1,

S(FA−PV2)(p, k,∆n, un)
P−→ 1.

(13.5)

Once more, to apply this result for a concrete test, we need to stan-

dardize our statistics. This is done exactly as in Theorem 12.6, and with
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z′α denoting the α-quantile of the standard normal distribution N (0, 1)

we construct our tests and obtain their properties in the next theorem (it

looks exactly the same as Theorem 12.6, but beware of the conditions,

which are significantly different; notice also the sign change in the critical

regions, which occurs because kp/2−1 is smaller than 1 here instead of

being bigger as in Theorem 12.6).

Theorem 13.2. Assume (K-r) for some r ∈ [0, 1) and let p ∈ [2r, 2)

and k ≥ 2 and un ≍ ∆̟
n with p−1

2(p−r) ≤ ̟ ≤ p−1
p . Let also α(p, k)1 and

α(p, k)2 be given by (10.49).

a) The tests with critical regions

Cn =
{
S(FA−PV1)(p, k,∆n, un) > kp/2−1

+ z′α

√
α(p, k)1

(mp)2B(2p,∆n,un)T
m2p (B(p,∆n,un)T )2

}

have strong asymptotic size α for the null hypothesis Ω
(W )
T . If further (L)

holds they are consistent for the alternative Ω
(β)
T ∩ Ω

(noW )
T .

b) The same properties hold for the following critical regions:

Cn =
{
S(FA−PV2)(p, k,∆n, un) > kp/2−1

+ z′α

√
α(p, k)2

(mp)2 B(2p,∆n,un)T
m2p (B(p,∆n,un)T )2

}
.

Exactly as in Remark 12.7, one could replace B(p,∆n, un)T and

B(2p,∆n, un)T in the above definitions of the critical regions by

J(gp; ∆n, un)T and J(g2p; ∆n, un)T , respectively.

An important drawback of these tests should be emphasized. Apart

from the somewhat restrictive assumption (L) needed for the alternative

consistency, the previous tests can be used only when one knows that

(K-r) holds for some r < 1. This is quite unfortunate, because one is

more likely to test whether a Brownian motion is necessary in the case

where the jump activity is relatively close to 2; here, it should be smaller

than 1. Note that, as already mentioned in (c) of Theorem 13.1, this

implies that when (L) holds for the alternative consistency, necessarily

β < 1 (this comes from Lemma 11.8).

The conditions on ̟ above exactly combine the conditions for (b) and

(c) in Theorem 13.1, and if they are satisfied we must have p ≥ 2r. So,

not only do we have to assume (K-r) for some r < 1, but we need an

a priori bound r0 < 1 such that the unknown r does not exceed r0, in

order to choose p.

As we will see below, testing the null Ω
(noW )
T does not suffer from the

same drawback: we will need (L), but without the restriction that β < 1.
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Figure 13.1 displays histograms of the distribution of S(FA-PV1) ob-

tained by computing its value for the four quarters of the year for a

range of values of p from 1 to 1.75, α in un = α∆̟
n from 5 to 10 stan-

dard deviations, ∆n from 5 seconds to 2 minutes, and k = 2, 3. The

empirical estimates are always on the side of the limit arising in the

presence of a continuous component. Even as the sampling frequency in-

creases, the noise does not seem to be a dominant factor, although as

usual, lower values of S(FA-PV1) below 1 are now obtained, and for very

high sampling frequencies the results are consistent with some mixture

of the noise driving the asymptotics.

This is confirmed by the middle right panel in Figure 13.1 which dis-

plays the median value of S(FA-PV1) (across the four quarters, two stocks,

and values of p, α and k) as a function of ∆n. As we downsample away

from the noise-dominated frequencies, the average value of the statis-

tic settles down toward the one indicating the presence of a Brownian

motion.

Because values of p less than 2 are employed by the statistic S(W−PV1),

we find relatively small differences between the results for filtered and

unfiltered transactions: since they differ mainly by a few of their large

increments, but values of p < 2 tend to underemphasize large increments,

we obtain similar results for F and U. The lower panels look at the re-

lationship between S(FA−PV1) and the underlying asset’s liquidity. Like

S(J−PV1), we find that there is a very slight increase in the value of the

statistic as the asset becomes more liquid. In the case of the DJIA index,

we find that a Brownian motion is likely present, except at the high-

est frequencies. Indeed, increments of the index tend to be very smooth

owing to the nature of the index as an average. It is possible that the av-

eraging involved in the construction of the index may enable us to detect

a spurious Brownian component in the index.

13.2 Tests for the Null Hypothesis That the

Brownian Is Absent

There are two ways to our knowledge to test for the null hypothesis

“there is no Brownian motion.” The first is quite simple and, exactly as

for the previous tests, it needs (H-r) for some r < 1, but it does not need

(L) at all, and neither does it need (K-r). The second one needs (L), but

without restriction on the value of β.
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Figure 13.1: Testing for the presence of Brownian motion: Empirical

distribution of S(W−PV 1)(p, k,∆n, un) for all 30 DJIA stocks, 2006,

measured using transactions (unfiltered, U, and NBBO-filtered, F) and

NBBO quotes midpoint (M), median value of S(W−PV 1)(p, k,∆n, un) as

a function of the sampling interval ∆n, and nonlinear regression of SW
against stock-level liquidity measures.
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13.2.1 Adding a Fictitious Brownian

Here the null hypothesis is Ω
(noW )
T . The idea is to add a fictitious Brow-

nian motion to the observed data, exactly as in Subsection 10.2.5. More

precisely, one simulates a Wiener process W ′, independent of everything

else, and takes some σ′ > 0 (a constant, and we set c′ = σ′2). Then the

observed increments ∆n
i X are replaced by the following increments:

∆n
i Y = ∆n

i X + σ′∆n
iW

′ (13.6)

which are those of the process Y = X + σ′W ′ (without restriction we

can assume that W ′ is defined on (Ω, F ,P) and adapted to the filtration

(Ft). This simply amounts to replacing the second characteristic Ct of

X by the second characteristic C′
t = Ct + tc′ of Y .

Our null hypothesis can now be expressed as

Ω
(noW )
T = {C′

T = c′T }. (13.7)

It follows that since c′ is a known number, we can test whether C′
T is

bigger than c′T . For this, we can use the estimators for the integrated

volatility, developed in Chapter 6 with their associated distributional

theories, but put to use with the increments ∆n
i Y of (13.6) instead of

∆n
i X .

In other words, we can use the estimator Ĉ(∆n, un) of (6.22), based

on truncated increments (we are in the one-dimensional case here); or we

may use the estimator Ĉ([k],∆n) of (6.35), based on multipower varia-

tions. The analysis is of course the same in the two cases, and in view

of the discussion in Subsection 6.2.5 we conduct the test on the basis of

truncated realized volatility only.

As usual, we take a sequence un ≍ ∆̟
n for some ̟ ∈

(
0, 12

)
. The

associated truncated realized volatility of the process Y is

ĈY (∆n, un)T =

[T/∆n]∑

i=1

(∆n
i Y )2 1{|∆n

i Y |≤un}.

We also need the following estimators for the quarticity:

BY (4,∆n, un)T =

[T/∆n]∑

i=1

(∆n
i Y )4 1{|∆n

i Y |≤un},

which converges in probability to 3
∫ T
0 (cs+ c′)2 ds (we could replace this

by the other, more efficient, estimators for the quarticity discussed in

Section 8.5).
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With these notations, we can reformulate (6.28) as follows: Assuming

(H-r) for some r ∈ (0, 1), and provided ̟ ≥ 1
2(2−r) , we have that

√
3

2

ĈY (∆n, un)T − C′
T√

BY (4,∆n, un)T

converges stably to an N (0, 1) variable, independent of F .

Recalling (13.7), plus the fact that C′
T ≥ c′T , we straightforwardly

deduce the following result (as always, z′α is the one-sided α-quantile of

N (0, 1)):

Theorem 13.3. Assume (H-r) for some r ∈ [0, 1) and let un ≍ ∆̟
n with

1
2(2−r) ≤ ̟ < 1

2 . The tests with critical regions

Cn =
{
ĈY (∆n, un)T > c′T +

z′α√
3

√
2BY (4,∆n, un)T

}

have the strong asymptotic size α for the null hypothesis Ω
(noW )
T , and

they are consistent for the alternative Ω
(W )
T under (H’).

Once again, a nice thing about this procedure is that it tests exactly

the null and the alternative which we want, without extra restriction like

being in Ω
(β)
T . But it suffers the same kind of drawback as the tests of the

previous section, namely the jump activity index has to be smaller than

1; this is especially bad if we take the null to be “no Brownian motion,”

as here.

This test needs specifying the truncation levels un, as do most tests in

this book, and for this one can take advantage of the procedure outlined

in Subsection 6.2.2, of course replacing the true volatility ct by ct + c′.

There is another tuning parameter, which is the number c′. Clearly, the

actual power of the test increases as c′ decreases, so one should take c′T

“small,” relative to the total quadratic variation [X,X ]T (estimated by

Ĉ(∆n)T , for the process X of course).

13.2.2 Tests Based on Power Variations

The null hypothesis is still Ω
(noW )
T here, and we want tests which do

not require any restriction on the activity index of jumps, or as little as

possible. The price we have to pay is that we need Assumption (L).

We use the same ratio test statistics as for testing for infinite activity,

except that instead of taking two powers p > p′ > 2 we now take p >

p′ = 2. In other words, we use the following test statistics:

S(IA−PV)(p, 2, γ,∆n, un) =
J(gp; ∆n, γun)T J(g2; ∆n, un)T
J(gp; ∆n, un)T J(g2; ∆n, γun)T

.
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The truncation levels are un ≍ ∆̟
n as before, and the functions gp of

(13.2), and γ > 1.

Here again, the key point is the behavior of J(gp; ∆n, un)T , as de-

scribed by (11.18), when (L) holds: under appropriate conditions on ̟,

we have that uβn J(gp; ∆n, un)T converges in probability to vgp(β), if p > 2

always, and if p = 2 when there is no Brownian motion, in which case

our statistics go to 1. On the other hand, in the presence of the Brown-

ian motion, u2nJ(g2; ∆n, un)T is also basically the same as the truncated

realized volatility B(2,∆n, un)T , which converges to CT > 0; this results

in a limit equal to γβ for our statistics.

We state the conditions for this, and also the associated Central Limit

Theorem, in the next result, proved on page 613. First, we recall the

notation (12.12):

h1(x) = gp(x/γ), h2(x) = gp(x),

h3(x) = g2(x/γ), h4(x) = g2(x).

Theorem 13.4. Assume (L) with some β strictly smaller than a given

number β0 ∈ (0, 2), and let p ≥ 4 and γ > 1 and un ≍ ∆̟
n with ̟ ∈(

0, 14 ∧ 4−2β0

β0(4−β0)

]
.

a) We have

S(IA−PV)(p, 2, γ,∆n, un)
P−→
{
1 on the set Ω

(noW )
T ∩ Ω

(β)
T

γ2−β on the set Ω
(W )
T ∩ Ω

(β)
T .

(13.8)

b) Assuming β′ < β
2 in (L), the variables

u−β/2n

(
S(IA−PV)(p, 2, γ,∆n, un)− 1

)

converge stably in law, in restriction to the set Ω
(noW )
T ∩Ω(β)

T , to a variable

defined on an extension of the space, which, conditionally on the σ-field

F , is centered Gaussian with (conditional) variance

V =
4∑

i,j=1

(−1)i+j
vhihj (β)

vhi(β) vhj (β)AT
.

c) The variables

Vn =
4∑

i,j=1

(−1)i+j
J(hihj ; ∆n, un)T

J(hi; ∆n, un)T J(hj ; ∆n, un)T
(13.9)

satisfy, for some strictly positive variable V ′,

u−βn Vn
P−→

{
V on the set Ω

(noW )
T ∩ Ω

(β)
T

V ′ on the set Ω
(W )
T ∩Ω

(β)
T .

(13.10)
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Observe that the second limit in (13.8) is unknown, because it involves

β, but it is always bigger than 1. Therefore, for testing the null hypoth-

esis “no Brownian motion” we can take the following critical (rejection)

region, with again z′α the one-sided α-quantile of N (0, 1) and Vn given

by (13.9):

Cn =
{
S(IA-PV))(p, 2, γ,∆n, un) > 1 + z′α /

√
Vn
}
. (13.11)

The following result is thus obtained in the same way as all our results

about tests:

Theorem 13.5. Assume (L) with β′ < β/2, and assume also that β < β0
for some given β0 ∈ (0, 2). Let p > 2 and γ > 1 and un ≍ ∆̟

n with

̟ ∈
(
0, 14 ∧ 4−2β0

β0(4−β0)

]
.

The tests with critical regions given by (13.11) have the strong asymp-

totic size α for the null hypothesis Ω
(β)
T ∩Ω

(noW )
T , and they are consistent

for the alternative Ω
(β)
T ∩Ω

(W )
T .

As seen above, we need to assume the unknown β is smaller than

some known (or chosen by the statistician) number β0. This is needed to

effectively construct the test, in the sense that it comes in the choice of ̟

(in practice, ̟, or rather un, is often chosen as described in Subsection

6.2.2, so this question may seem slightly immaterial).

The fact that β should be smaller than this number β0 is, again, a

theoretical restriction, somewhat of the same nature as the restriction

β < 1 in the previous tests of this chapter. It is, however, much less

serious, in the sense that β0 can be chosen arbitrarily close to 2. In other

words, whatever β is, there is always a choice of ̟ for which the tests

described here work.

Finally, as often for those tests, the actual rate of convergence of the

tests under the null is not apparent in Theorem 12.9. It is indeed 1/u
β/2
n ≍

1/∆
β̟/2
n . Thus, as usual, it is best to take ̟ as large as possible.

13.3 References

The test for the null “the Brownian is present” in Section 13.1, and

the test for the other possible null in Section 13.2.1, are taken from

Aı̈t-Sahalia and Jacod (2010), with the smooth truncation modification

analogous to Jing et al. (2011). The test for the null “the Brownian is

absent” of Section 13.2.2 is taken from Cont and Mancini (2011). Im-

plicitly, Woerner (2011) and Todorov and Tauchen (2010), which deal
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with the overall activity of the process, could also be concerned with

the presence or absence of the Brownian motion, although they do not

ask that question and do not provide tests for these occurrences. In the

context of a specific parametric model, allowing for jump components of

finite or infinite activity on top of a Brownian component, Carr et al.

(2002) find that the time series of index returns are likely to be devoid of

a continuous component. For the null hypothesis ΩWT , Jing et al. (2012)

propose another ratio test based on counting returns smaller than un,

with un ≍ ∆̟
n but now ̟ > 1/2, under an assumption stronger than

(L) but which works also when β ≥ 1.

Let us also mention that another question, not treated here at all, is

connected with the problem studied in this chapter. This is, in the multi-

dimensional case, the determination of the rank of the volatility matrix

ct, or rather the maximal rank of this matrix over the interval [0, T ]: if

this rank is r < d, then an r-dimensional Brownian motion is enough

to drive X (model with r factors) and, if r = 0, there is no Brownian

motion at all. In this direction, one may look at Jacod et al. (2008) and

Jacod and Podolskij (2013).



Chapter 14

Co-jumps

So far, and except for Chapter 6 about volatility estimation, we have

mainly considered one-dimensional processes, or at least addressed one-

dimensional questions. The real (financial) world, however, is multidi-

mensional. This is why, in this chapter, we study some questions which

only make sense in a multivariate setting.

We will be concerned with two problems: one is about a multidimen-

sional underlying process X , and we want to decide whether two partic-

ular components of X jump at the same time: this can happen always,

or never, or for some but not all jump times. The second problem is

again about a one-dimensional underlying process X , but we study the

pair (X, σ), with the second component being the volatility of the first

component X ; again, we want to decide whether X and σ jump at the

same times, always, or never, or sometimes.

As usual, the processX is observed at the regularly spaced observation

times i∆n, within a finite time interval [0, T ].

14.1 Co-jumps for the Underlying Process

14.1.1 The Setting

The question of finding whether the components of a multidimensional

process jump at the same times or not is a rather intricate problem. A

complete answer to this question involves all possible subsets of com-

ponents and tells us whether all those particular components jump

together or not, always, or sometimes. Our aim here is much more

modest, as we only consider pairs of components: the problem is ba-

453
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sically two-dimensional, and we can suppose that the underlying process

X = (X1, X2) is two-dimensional (or, discard the other components).

This underlying Itô semimartingale X is defined on a filtered space

(Ω,F , (Ft)t≥0,P), with the Grigelionis representation

Xt = X0 +

∫ t

0
bsds+

∫ t

0
σsdWs (14.1)

+ (δ1{‖δ‖≤1}) ⋆ (p− q)t + (δ1{‖δ‖>1}) ⋆ pt.

HereW is a d′-dimensional Brownian motion and p is a Poisson measure

on R+ × E with (E, E) an auxiliary Polish space, and with compen-

sator q(dt, dx) = dt⊗λ(dx). The two-dimensional and 2×d′-dimensional

processes b = (bi)i=1,2 and σ = (σij)i=1,2;1≤j≤d′ are progressively mea-

surable, and δ = (δi)i=1,2 is a predictable R2-valued function Ω×R+×E.

As usual, we set ct = σtσ
∗
t , which here takes its values in the set of all

2 × 2 symmetric nonnegative matrices. In the whole chapter we make

Assumption (H-r), which we briefly recall:

Assumption (H-r). We have (10.1) with b locally bounded and σ càdlàg,

and ‖δ(ω, t, z)‖r∧1 ≤ Jn(z) whenever t ≤ τn(ω), where (τn) is a sequence

of stopping times increasing to ∞, and (Jn) is a sequence of deterministic

nonnegative functions satisfying
∫
Jn(z)λ(dz) <∞ .

We also sometimes need the following additional hypothesis:

Assumption (CoJ). If τ = inf(: ∆X1
t ∆X

2
t 6= 0) is the infimum of the

common jump times of the two components, the process

1{t≤τ}

∫

{‖δ(t,z)‖≤1, δ1(t,z)δ2(t,z) 6=0}
‖δ(t, z)‖λ(dz)

is locally bounded.

This is implied by (H-1), but not by (H-r) when r > 1. In any case, it

is a mild additional assumption, since it turns out that we always have

∫ τ

0
dt

∫

{‖δ(t,z)‖≤1, δ1(t,z)δ2(t,z) 6=0}
‖δ(t, z)‖λ(dz) < ∞ a.s.

Finally, for simplicity we make the following assumption (one could

dispense with it, at the expense of much more complicated statements,

and it is most often satisfied in practice):

Assumption (P). The processes ct and ct− are everywhere invertible.
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Now we introduce the subsets of Ω which we want to test. Below, a

“common jump,” say at time t, means that both components jump at

this time, but not that their jump sizes are the same. In principle, X1

or X2 or both could be continuous on [0, T ], in which case there is no

possibility of common jumps. However, we suppose that in a first stage

we have tested each component (according to one of the tests described in

Chapter 10 for example) for jumps, and that we have decided that both

have jumps. In other words, we are a priori interested in the following

four sets:

Ω
(Coj)
T = {ω : supt∈[0,T ] |∆X1

t (ω)∆X
2
t (ω)| > 0}

Ω
(noCoj)
T = {ω : t 7→ X i

t(ω) for i = 1, 2

are discontinuous and never jump together on [0, T ]}
Ω

(1⇒2)
T = {ω : X1 is discontinuous

and if t ≤ T and ∆X1
t (ω) 6= 0, then ∆X2

t (ω) 6= 0}
Ω

(2⇒1)
T = {ω : X2 is discontinuous

and if t ≤ T and ∆X2
t (ω) 6= 0, then ∆X1

t (ω) 6= 0}.

(14.2)

The two sets Ω
(Coj)
T on which we have “co-jumps,” and Ω

(noCoj)
T on which

we have no co-jumps, are disjoint; their union is not Ω but the set on

which both components have at least a jump on [0, T ]. Unlike in Chapter

10, we do not need to consider the set Ω
(W )
T (or its two-dimensional

counterpart) on which the Brownian motion is active, because we assume

(P), which implies Ω
(W )
T = Ω.

Although knowing whether we are in the set Ω
(1⇒2)
T for example is

interesting for modeling purposes, tests for this set considered as the

null hypothesis are so far unavailable. So below we will test the two null

hypotheses Ω
(noCoj)
T and Ω

(Coj)
T against the corresponding alternative hy-

potheses Ω
(Coj)
T and Ω

(noCoj)
T , respectively (note that Ω

(i⇒j)
T ⊂ Ω

(Coj)
T ).

For these tests we use power functionals again, but with specific powers

of the two components of our process. Given an arbitrary Borel function

g on R2 and an integer k ≥ 1, we set

B(f,∆n)t =
∑[t/∆n]
i=1 f(∆n

i X)

B(f, [k],∆n)t =
∑[t/∆n]−k+1
i=1 f(X(i+k−1)∆n

−X(i−1)∆n
).

We have B(f, [1],∆n) = B(f,∆n), and this notation is similar to (10.37).

According to Theorem A.1 of Appendix A one applies (A.15) to the

symmetrical function g(x1, . . . , xk) = f(x1 + · · ·+ xk), and as soon as g
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is continuous and f(x) = o(‖x‖2) as x→ 0, we get

B(f, [k],∆n)T
P−→ k f ∗ µT = k

∑

s≤T
f(∆Xs). (14.3)

Below, we mainly use these functionals with the following power test

function:

x = (x1, x2) ∈ R2 7→ h(x) = (x1x2)2. (14.4)

14.1.2 Testing for Common Jumps

Unlike in Section 10.3, we cannot find a single test statistic allowing us

to test both possible null hypotheses, and here we introduce the statistic

used for testing the null Ω
(Coj)
T , that is, there are common jumps. This

statistic needs to choose an integer k ≥ 2, and it is

S(CoJ)(k,∆n) =
B(h, [k],∆n)T
kB(h,∆n)T

.

In view of (14.3), and since Ω
(Coj)
T is exactly the set {h ∗ µT > 0}, we

readily obtain

S(CoJ)(k,∆n)
P−→ 1 on Ω

(Coj)
T . (14.5)

This is true without any assumption on X besides being a semimartin-

gale; but from now on we suppose at least (H-2) and (P).

The behavior of the statistic outside Ω
(Coj)
T is more complicated to es-

tablish, because both numerator and denominator go to 0 as n→ ∞. We

can use the “second order CLT” stated in Appendix A as Theorem A.10

to get the following convergence (warning: in contrast with (14.5), the

convergence below does not take place in probability, but is the weaker

stable convergence in law):

S(CoJ)(k,∆n)
L−s−→ S̃(CoJ) in restriction to Ω

(noCoj)
T , (14.6)

where S̃(CoJ) is a variable defined on an extension of the space, satisfying

P(S̃(CoJ) = 1) = 0.

See page 614 and seq. for a proof of this result, as well as of the other

results of this subsection.

Combining (14.5) and (14.6) allows us to use S(CoJ)(k,∆n) to con-

struct tests which asymptotically separate the two hypotheses. Going

further and constructing tests with a prescribed asymptotic level needs a
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feasible Central Limit Theorem under the null, which is available. First,

as a consequence of Theorem A.9 of Appendix A, under (H-2) we have

the following stable convergence in law:

1√
∆n

(
S(CoJ)(k,∆n)− 1

) L−s−→ S(CoJ) in restriction to Ω
(Coj)
T , (14.7)

where S(CoJ) is a variable defined on an extension of the space and is,

conditionally on the σ-field F , a centered Gaussian variable with (con-

ditional) variance

E
(
(S(CoJ))2 | F

)
= 4k2−6k+2

3k
(∑

s≤T (∆X1
s ∆X2

s )
2
)2

∑
s≤T

(∆X1
s ∆X

2
s )

2

×
(
(∆X1

s )
2(c22s− + c22s ) + (∆X2

s )
2(c11s− + c11s )

+2∆X1
s ∆X

2
s (c

12
s− + c12s )

)
.

(14.8)

Now, we need consistent estimators for the above conditional asymp-

totic variance. Such estimators are available, on the basis of the conver-

gences (14.3) and (A.25). We first set

ĉ(kn, un)
jl
i = 1

kn∆n

kn∑
m=1

∆n
i+mX

j ∆n
i+mX

l 1{‖∆n
i+mX‖≤un}

Ĝn =
[T/∆n]−kn∑
i=kn+1

(
∆n
i X

1 ∆n
i X

2
)2

1{‖∆n
i X‖>un}

×
2∑

j,l=1

∆n
i X

j∆n
i X

l
(
ĉ(kn, un)

jl
i−kn−1 + ĉ(kn, un)

jl
i ),

(14.9)

where as usual un ≍ ∆̟
n for some ̟ ∈

(
0, 12

)
and kn ≥ 1 is a se-

quence of integers increasing to infinity and such that kn∆n → 0. Here,

ĉ(kn, un)
jl
i is the spot volatility estimator introduced in (6.31) and thor-

oughly studied in Chapter 8. Then the following observable variables

converge in probability to the right side of (14.8), in restriction to the

set Ω
(Coj)
T = {h ∗ µT > 0}:

Vn =
4k2 − 6k + 2

3k

Ĝn
(B(h,∆n)T )2

.

Again, we have a problem here: on the alternative set Ω
(noCoj)
T , both

Gn and B(h,∆n)T go to 0 in probability. As explained in Remark 14.3

below, it turns out that the product ∆nVn converges stably in law to a

non-trivial limit on this set, and this might affect the alternative con-

sistency of the tests defined below. This is why we consider a modified

estimator, involving a sequence wn of numbers and defined as

V ′
n = Vn

∧
wn, with wn → ∞, wn∆n → 0.
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Note that since wn → ∞, we still have the convergence in probability of

V ′
n to the right side of (14.8), in restriction to the set Ω

(Coj)
T .

At this stage, the critical regions for the tests can be constructed as

follows, where zα is the α-absolute quantile of the law N (0, 1). We indeed

have two critical regions, corresponding to Vn and V ′
n above:

Cn =
{∣∣S(CoJ)(k,∆n)− 1

∣∣ > zα
√
∆n Vn

}

C′
n =

{∣∣S(CoJ)(k,∆n)− 1
∣∣ > zα

√
∆n V ′

n

}
.

(14.10)

Note that here we reject when the test statistic is too small or too large,

because on the alternative it converges stably in law to a limit which is

almost surely different from 1, but may be bigger or smaller than 1.

The following result is proved beginning on page 614:

Theorem 14.1. Assume (H-2) and (P). Both tests Cn and C′
n defined

above have the strong asymptotic size α for the null hypothesis Ω
(Coj)
T .

Moreover, under the additional assumption (CJ), the second tests C′
n are

consistent for the alternative Ω
(noCoj)
T .

Remark 14.2. The second test C′
n is difficult to apply, because one has

to choose the sequence wn. Although any choice is possible, subject to the

very weak conditions wn → ∞ and wn∆n → 0, in practice ∆n is given

and we need to choose the single number wn. One has really no clue for

this choice: the important thing is whether it is smaller or bigger than

the observed value Vn, but again there seems to be no specific reason to

choose either possibility.

One way out of this problem is probably to compute Vn for the highest

frequency observations, corresponding to ∆n, and also for various sub-

sampling grids, corresponding to j∆n for a few (small) values of the

integer j: we thus have estimators Vn(j) for j = 1, 2, . . . , J , where J is

reasonable, say J = 5. If these computations lead to approximately the

same values Vn(j), then one takes V ′
n = Vn. If, in contrast, the values

Vn(j) clearly increase when j decreases, this might mean either that the

number of observations is too small to estimate the conditional variance

accurately, or that Vn is actually going to infinity as n → ∞ and thus

one should reject the null hypothesis.

Remark 14.3. The previous remark leads us to examine the asymptotic

power of the first tests Cn more closely. Similar to the convergence (14.6)

and as mentioned before, one can prove that in restriction to the alter-

native Ω
(noCoj)
T the normalized variables ∆nVn converge stably in law to
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some limiting variable V. We even have, in restriction to Ω
(noCoj)
T again,

the joint convergence of (S(CoJ)(k,∆n),∆nVn) to (S(CoJ),V). Moreover,

it turns out that the F-conditional joint law of the limit admits a density

on R2 in restriction to Ω
(noCoj)
T . We call this density ϕ = ϕ(ω;x, y).

Therefore, if A ⊂ Ω
(noCoj)
T with P(A) > 0, we have for the (ordinary)

conditional probabilities

P(Cn | A) → 1

P(A)
E
(
1A

∫

{(x,y): |x−1|>zα
√
y}
ϕ(.;x, y) dx dy

)
.

This is unavailable in practice because, of course, the density ϕ is not

computable, but in all cases it is strictly smaller than 1, preventing those

tests Cn to be alternative-consistent.

Remark 14.4. The statistic S(CoJ)(k,∆n) here looks like

S(J−PV1)(p, k,∆n) in (10.40), with p = 4 (the degree of the polynomial

h here). One could also use a statistic similar to S(J−PV2)(p, k,∆n),

namely the ratio B(h, k∆n)T /B(h,∆n)T , as in Jacod and Todorov

(2009); but, in view of the discussion in Subsection 10.3.5, it is better to

use S(CoJ)(k,∆n).

14.1.3 Testing for Disjoint Jumps

Now we turn to the null hypothesis “disjoint jumps,” that is the null

set Ω
(noCoj)
T . The method is based on the following very simple statistic,

where h is the same function as in (14.4):

S(NoCoJ)(∆n) = B(h,∆n)T .

We can specialize (14.3) as follows:

S(NoCoJ)(∆n)
P−→

{
0 on Ω

(noCoj)
T

h ∗ p
T

on Ω
(Coj)
T .

(14.11)

Again, this is true without any assumption on X besides being a semi-

martingale, but below we assume (H-2), (P) and (CoJ).

In this setting, we have a Central Limit Theorem associated with both

convergences above. The one of interest for us here is associated with

the first part of (14.11) and is given by the second order CLT stated as

Theorem A.9 of Appendix A. To state the result, we need some notation.

First, we set

Ht =

∫ t

0

(
c11s c

22
s + 2(c12s )2

)
ds,
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an increasing process. Our second notation is very close to (10.9), but in

a two-dimensional setting and adapted to the result at hand (below, Rq
is two-dimensional, with components R1

q and R2
q):

Ũt =
∑
q≥1:Tq≤t

((
∆X2

Tq
R1
q

)2
+
(
∆X1

Tq
R2
q

)2)
,

Rq =
√
κq σTq− Ψq− +

√
1− κq σTq Ψq+,

where (Tq)q≥1 is a sequence of stopping times exhausting the jumps of

X and κq,Ψq−,Ψq+ are defined on an extension of the space and are

mutually independent, independent of F , with κq uniform over [0, 1] and

Ψq± standard normal d′-dimensional.

The process Ũ is nondecreasing and nonnegative. Its F -conditional

mean is

Ẽ(Ũt | F) = H ′
t :=

1

2

∑

s≤t

(
(∆X2

s )
2(c11s− + c11s ) + (∆X1

s )
2(c22s− + c22s )

)
.

With all this notation, the following stable convergence in law holds:

1
∆n

S(NoCoJ)(∆n)
L−s−→ S(NoCoJ) := ŨT +HT

in restriction to Ω
(noCoj)
T .

(14.12)

Unfortunately, conditionally on F the limiting variable S(NoCoJ), being

nonnegative, is not Gaussian. When the two processes X and σ do not

jump at the same time, it is basically a weighted sum of squared Gaussian

variables, with weights related to the (non-observable) jumps of X . In the

general case it is even more difficult to describe. Therefore, for designing

a test based on the above statistic, with a prescribed asymptotic level, we

face the same difficulties as for the test for jumps in the one-dimensional

case, using S(J-PV1)(p, kn,∆n). And, exactly as in that case, we have two

ways to solve the problem.

A Conservative Test The first method, not a very efficient one, uses

Markov’s inequality to bound the actual level of the test. This can be

done because one has consistent estimators for the F -conditional mean

HT +H ′
T of the limit S(NoCoJ). First, as in (14.9), consistent estimators

for H ′
T are

Ĥ ′
n = 1

2

[T/∆n]−kn∑
i=kn+1

((
∆n
i X

2
)2(

ĉ(kn, un)
11
i−kn−1 + ĉ(kn, un)

11
i

)

+
(
∆n
i X

1
)2(

ĉ(kn, un)
22
i−kn−1 + ĉ(kn, un)

22
i

))
1{‖∆n

i X‖>un}



Co-jumps 461

where the sequence un satisfies un ≍ ∆̟
n for some ̟ ∈

(
0, 12

)
and kn ≥ 1

is a sequence of integers increasing to infinity and such that kn∆n → 0.

As for the estimation of HT , on the basis of Section 8.5 one can use

(among many other possible choices) the following estimators:

Ĥn = ∆n
∑[T/∆n]−kn+1
i=1

(
ĉ(kn, un)

11
i ĉ(kn, un)

22
i

+2
(
ĉ(kn, un)

12
i

)2)
.

(14.13)

The standardized statistics S(NoCoJ)(∆n)/(Ĥn + Ĥ ′
n) converge stably

in law, in restriction to the set Ω
(noCoj)
T , to a variable, again defined

on an extension of the space, and with F -conditional mean equal to

1. Therefore, in view of (14.11), a natural family of critical regions for

testing the null hypothesis Ω
(noCoj)
T is as follows, where α ∈ (0, 1) is the

intended asymptotic level:

Cn =
{
S(NoCoJ)(∆n) > ∆n

Ĥn + Ĥ ′
n

α

}
.

We reject when the test statistic is too large, because it is positive on

the alternative and vanishes on the null. The following result is proved

on page 617:

Theorem 14.5. Assume (H-2), (P) and (CoJ). The tests Cn defined

above have an asymptotic size not bigger than α for the null hypothesis

Ω
(noCoj)
T , and are consistent for the alternative Ω

(Coj)
T .

Typically, these tests have no strong asymptotic sizes. More impor-

tant, the actual asymptotic size is usually significantly smaller than the

prescribed level α. So we advise the procedure described next.

A Sharp Test This family of tests uses a Monte Carlo approach,

already described before and in Theorem 10.12. Let us rewrite the limit

S(NoCoJ) more explicitly as

S(NoCoJ) = HT +
∑
q≥1:Tq≤T

(
∆X2

Tq

(√
κq (σTq− Ψq−)1

+
√
1− κq (σTq Ψq+)

1
)
+∆X1

Tq

(√
κq (σTq−Ψq−)2

+
√
1− κq (σTq Ψq+)

2
))

where (Ψq−,Ψq+, κq) are mutually independent, and independent of F ,

with Ψq± being N (0, Id′) and κq being uniform on (0, 1). Note that here

d′ and σt are somewhat arbitrary, subject to σtσ
∗
t = ct. It is always

possible to choose d′ = 2, and we will do this below.

The procedure is as follows:
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1. We replace HT by its estimator Ĥn, given in (14.13).

2. We pretend that the jump times Tq which are “significant” corre-

spond to the intervals ((i− 1)∆n, i∆n] for which ‖∆n
iX‖ > un and

k+kn ≤ i ≤ [T/∆n]−kn−k+1. Those i’s are labeled i1, i2, . . . , ir(n),

where r(n) is the (random) total number of such i’s. Observing that

by construction the estimating matrices ĉ(kn, un)i are symmetric

nonnegative, for each one we choose a 2 × 2 square root, denoted

as σ̃ni .

3. We draw Nn copies of (Ψq−,Ψq+, κq), for q running from 1 to r(n),

say (Ψ(j)q−,Ψ(j)q+, κ(j)q) for j = 1, . . . , Nn, all independent (re-

call that the Ψjq± are two-dimensional standard Gaussian).

4. We compute the following variables, for j = 1, . . . , Nn:

Sjn = Ĥn +
r(n)∑
q=1

(
∆n
iqX

2
(√

κ(j)q (σ̃
n
iq−kn Ψ(j)q−)1

+
√
1− κ(j)q (σ̃

n
iq+1 Ψ(j)q+)

1
)
+∆n

iqX
1
(√

κ(j)q (σ̃
n
iq−kn Ψ(j)q−)2

+
√
1− κ(j)q (σ̃

n
iq+1 Ψ(j)q+)

2
))
.

5. We denote by Zαn the α-quantile of the empirical distribution of the

family (Sjn : 1 ≤ j ≤ Nn), that is, we re-order these Nn variables

so that S1
n ≥ S2

n ≥ · · · ≥ SNn
n , and we set Zαn = S

[αNn]
n .

6. We terminate the procedure by taking the following rejection re-

gion:

Cn =
{
S(NoCoJ)(∆n) > Zαn ∆n

}
. (14.14)

It is not a restriction to suppose that the additional variables

(Ψ(j)q−,Ψ(j)q+, κ(j)q) are defined on the same extension of the orig-

inal probability space, and they all are independent of the σ-field F .

Hence, although the critical region Cn is also defined on this extension,

it is nevertheless a “feasible” critical region.

We then have the following result, proved on page 618:

Theorem 14.6. Assume (H-2), (P) and (CoJ), and choose any sequence

Nn which goes to infinity. The tests Cn defined by (14.14) have a strong

asymptotic size α for the null hypothesis Ω
(noCoj)
T , and are consistent for

the alternative Ω
(Coj)
T .
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14.1.4 Some Open Problems

We end this section with the description of a few open problems which

could be solved in a similar fashion, but are not detailed in this book,

and so far have not been explicitly worked out with all mathematical

details.

1. The first open problem is to construct a test for the null hypothesis

Ω
(1⇒2)
T , introduced in (14.2). Often for this kind of problem, the question

amounts to finding test statistics which behave differently under the null,

and under the alternative, which here might be Ω
(Coj)
T \Ω(1⇒2)

T because

one would not address this question unless one was sure that there are

common jumps.

One might think for instance to use

S(1⇒2,V 1)(∆n, un) =

[t/∆n]∑

i=1

|∆n
i X

1|p 1{|∆n
i X

2|≤un}

for a suitable power p > 2 and a sequence un ≍ ∆̟
n for some ̟ ∈

(
0, 12

)
.

Indeed, we have

S(1⇒2,V 1)(∆n, un)

P−→∑
s≤T |∆X1

s |p1{∆X2
s=0}

{
= 0 on Ω

(1⇒2)
T

> 0 on Ω
(Coj)
T \Ω(1⇒2)

T .

Another possibility consists of using a ratio test statistic, for example of

the form

S(1⇒2,V 2)(∆n, un) =
S(1⇒2,V 1)(∆n, un)∑[t/∆n]

i=1 |∆n
i X

1|p
,

which basically has the same asymptotic behavior as S(1⇒2,V 1)(∆n, un),

but is probably more stable.

However, so far, no Central Limit Theorem is available for this type

of variable, although we may expect one if we take p > 3.

2. Another type of – interesting – problem is to determine whether, under

the hypothesis of common jumps, the two components of the jump are

related to one another. This may take various forms:

(i) One question is whether, conditionally on the fact that there is a

common jump time, and also conditionally on the past before this

time, the two jump sizes are independent or not. This is related

to the behavior of the Lévy measures Ft of the two-dimensional
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process X , and more precisely to the fact that these Lévy measures

on R2 are products of two measures on R, or not.

However, this question cannot be answered if the observation in-

terval [0, T ] is kept fixed, by virtue of the identifiability (or, rather,

non-identifiability) of the Lévy measure when the time horizon is

fixed. When T = Tn → ∞ as ∆n → 0, though, and under some

appropriate stationarity or ergodicity assumptions, this question

could probably be answered.

(ii) On the opposite side of the spectrum of all related questions, one

may ask whether there is a “functional relationship” between the

jumps of X1 and those of X2. For example, for a given function φ

from R into itself, do we necessarily have ∆X2
t = φ(∆X1

t ) for all

t, or perhaps ∆X2
t = aφ(∆X1

t ) for an unknown constant a ? When

the function φ is totally unknown, there seems to be no way for

testing this property. In contrast, if φ is known, or belongs to some

known parametric family, it is possible to develop such tests.

14.2 Co-jumps between the Process and Its

Volatility

Now we come back to the one-dimensional case for the underlying process

X . We still have (14.1), with nowW a one-dimensional Brownian motion.

The processes b and σ and the function δ are one-dimensional as well,

and ct = σ2
t . In all this section, we suppose that X satisfies (K-r) for

some r ∈ [0, 2), an assumption already encountered several times before.

Our aim is to test whether X and the volatility σ, or equivalently c,

have jumps in common.

We can do this for “all” jumps of X and c, over the fixed time interval

[0, T ]. However, although this looks at first glance as the best thing to do,

one may argue the following: the spot volatility is estimated with quite

a slow convergence rate, so when one tries to determine the volatility

jumps it is rather likely that many spurious jumps are detected and many

genuine jumps are missed. When the jumps of X have finite activity,

they are rather accurately detected, see Section 10.4, and, asymptotically,

spurious jumps of c will typically not occur at the same time as a jump

of X . In the infinite activity case, things are different, and it might be

more appropriate to test whether there are jump times t of c that are
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also jump times of X with |∆Xt| bigger than some a priori given size

a > 0.

However, as we will see, it is still possible to asymptotically discrim-

inate whether X and c have common jumps or not, even in the infinite

activity case. Therefore, to accommodate the two situations above, we

consider a subset A of R of the following type:

A = (−∞,−a) ∪ (a,∞) for some a ≥ 0, (14.15)

and restrict our attention to those jumps of X which lie in A, that is, all

jumps when a = 0, and only those with size bigger than a when a > 0. In

the latter case, and exactly as in Theorem 10.29, one needs the additional

assumption (10.76) on X , which we state again:

P(∃ t > 0 with |∆Xt| = a) = 0. (14.16)

Recall that this is satisfied for any a > 0 under very weak assumptions,

such as the Lévy measures Ft of X having a density.

Now, in connection with A above, the subsets of Ω which we want to

test are the following ones:

Ω
(A,cj)
T = {ω : ∃s ∈ (0, T ] with ∆Xs(ω) ∈ A\{0}

and ∆cs(ω) 6= 0}
Ω

(A,dj)
T = {ω : ∀s ∈ (0, T ], ∆Xs(ω) ∈ A\{0} ⇒ ∆cs(ω) = 0

and ∃s ∈ (0, T ] with ∆Xs(ω) ∈ A\{0}}.

(14.17)

So Ω
(A,cj)
T is the set on which X and c have common jumps, with addi-

tionally the jump size of X being in A, and Ω
(A,dj)
T is the set on which

this does not occur, although there are jumps of X with size in A. When

a = 0, testing one of the above as the null hypothesis against the other

one makes sense only if we already know that X jumps. When a > 0, it

additionally requires that X has jumps with size bigger than a: hence,

prior to doing these tests, one should check whether there are such jumps

for X , by using for example the techniques developed in Section 10.4.

Remark 14.7. The set A in (14.15) is just an example. It is possible to

conduct the tests with A being any subset of R such that, almost surely, X

has no jump with size in the topological boundary of A. However, in this

case the assumptions are (slightly) more complicated to state, whereas

this example with an arbitrary a ≥ 0 undoubtedly covers the most useful

practical situations.
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Remark 14.8. It is also possible to take into consideration the jumps of

c whose size lies inside another set A′ as in (14.15), with some a′ ≥ 0,

or even a more general set A′. The first set in (14.17) would then be

Ω
(A,A′,cj)
T = {ω : ∃s ∈ (0, T ] with ∆Xs(ω) ∈ A\{0}

and ∆cs(ω) ∈ A′\{0}},

with a similar modification for the second one.

For example it would be interesting to test whether jumps of X result

in positive jumps of c, as is often postulated in financial statistics. This

would happen if we accept Ω
(R⋆,(0,∞),cj)
T and reject Ω

(R⋆,(−∞,0),cj)
T , where

R⋆ = R\{0}.

14.2.1 Limit Theorems for Functionals of Jumps and

Volatility

The tests presented below are constructed on the basis of functionals of

the following type. We consider two test functions f on R and g on R2,

and the associated process

A(f, g)t =
∑

s≤t
f(∆Xs) g(cs−, cs),

provided of course that the potentially infinite series above is absolutely

convergent, for example when g is of linear growth and f(x) = O(x2)

as x → 0. The – unfortunately unobservable – variable A(f, g)T tells us

whether we are in Ω
(A,dj)
T or Ω

(A,cj)
T if we choose f and g appropriately.

For example, if f, g are nonnegative, and g(y, y′) > 0 if and only if y 6= y′,

and f(x) > 0 if and only if x ∈ A\{0}, then A(f, g)T > 0 on Ω
(A,cj)
T and

A(f, g)T = 0 on Ω
(A,dj)
T .

We can approximate A(f, g)T by functionals of the observed returns

∆n
i X and the spot volatility estimators constructed in (8.8) and recalled

in (14.9). Namely, with kn → ∞ and kn∆n → 0, and truncation levels

un ≍ ∆̟
n for some ̟ ∈

(
0, 12

)
, and any two functions f on R and g on

R2, we set

D(f, g; kn, un,∆n)t =
[t/∆n]−kn∑
i=kn+1

f(∆n
i X)

×g(ĉ(kn, un)i−kn , ĉ(kn, un)i+1) 1{|∆n
i X|>un}.

(14.18)

Next, we state the assumptions needed on f and g. With the notation

∂f for the first derivative of f and ∂ig and ∂2ijg (for i, j = 1, 2) for the

first and second partial derivatives of g, those assumptions (in connection
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with the set A in (14.15), and also with the index r for which Assumption

(K-r) needed below holds) are:

• f is C1and positive on A, null on the complement [−a, a],
locally bounded,

and if a = 0 we have |∂f(x)| ≤ K|x| for |x| ≤ 1

• g is C2, null on the diagonal of R2 and positive outside,

with ∂ig(y, y) = 0, ∂211g(y, y) + ∂222g(y, y) > 0,

and if a = 0 and r > 0 in (K-r),

the first and second derivatives of g are bounded.

(14.19)

According to Theorem A.7 of Appendix A, if we assume (H-2) and

(14.19), or if we assume (H-r) for some r ∈ [0, 2) and replace the

conditions on g by the property that it is continuous and satisfies

|g(y, z)| ≤ K(1 + |y|p + |y|p)) for some p ≥ 1, plus ̟ ≥ p−1
2p−r , we have

D(f, g; kn, un,∆n)t
P−→ A(f, g)t. (14.20)

Next, we turn to the associated Central Limit Theorem or, rather,

theorems: there is a “first order” CLT and also, when the limit in it

vanishes, a “second order” CLT. Since we will use the functionals (14.18)

associated with kn and, at the same time, those associated with wkn for

some integer w ≥ 2, we need a joint CLT. To state the first CLT, we

introduce the following processes:

Ũt =
√
2

∑
q≥1: Tq≤t

f(∆XTq )

×
(
∂1g(cTq−, cTq )cTq−Ψq− + ∂2g(cTq−, cTq )cTqΨq+

)

Ũ ′
t =

√
2

∑
q≥1:Tq≤t

f(∆XTq )

×
(
∂1g(cTq−, cTq )cTq−Ψ

′
q− + ∂2g(cTq−, cTq )cTqΨ

′
q+

)

(14.21)

where (Tq)q≥1 is a sequence of stopping times exhausting the jumps of X

and Ψq−,Ψq+,Ψ′
q−,Ψ

′
q+ are defined on an extension of the space and are

mutually independent, independent of F , and N (0, 1)-distributed. These

two processes are, conditionally on F , centered (discontinuous) Gaussian

martingales and independent with the same law, characterized by the

conditional variances

Ẽ((Ũt)2 | F) = A(f2, G)t,

where G(y, z) = 2(∂1g(y, z)
2y2 + ∂2g(y, z)

2z2
)
.

(14.22)

The next two theorems are basically the same as Theorems 13.4.1 and

13.4.2 of Jacod and Protter (2011), in a special situation. However, the
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conditions on the test functions are weaker here (and we need this below),

so we provide a proof for them, on pages 621 and 629, respectively.

Theorem 14.9. Assume (K-r) for some r ∈ [0, 2) and choose f and g

satisfying (14.19) with A as in (14.15), with further (14.16) when a > 0.

Let un and kn satisfy

un ≍ ∆̟
n , kn ≍ ∆−τ

n ,

with

• if a > 0 or r = 0 :

{
0 < ̟ < 1

2

0 < τ < ((̟(4 − 2r))
∧ 2−r

r

∧ 1
2

• otherwise :

{
1

4−r < ̟ < 1
2

∧ 1
2r

0 < τ < ((̟(4 − r) − 1)
∧ 1

2 .

(14.23)

Then, for any given time T > 0 and any integer w ≥ 2, the two-

dimensional variables
(√

kn
(
D(f, g; kn, un∆n)T −A(f, g)T

)
,

√
kn
(
D(f, g;wkn, un∆n)T −A(f, g)T

))

converge stably in law to the variables
(
ŨT , 1

w (ŨT +
√
w − 1 Ũ ′

T )).

Remark 14.10. The condition on ̟ and τ is weaker when a > 0 or

r = 0 than in the other cases, as expected.

The conditions (14.19) on f, g are designed in view of the tests to

come. However, for the previous result, one can relax the properties f > 0

on A and g(y, y) = ∂jg(y, y) = 0 and g(y, z) > 0 when y 6= z. These

assumptions, however, are needed for what follows.

On the set Ω
(A,dj)
T , not only does the limit A(f, g)T vanish, but the

variables Ũ(1)T and Ũ ′(1)T vanish as well. However, we have another CLT

with normalization kn instead of
√
kn. For stating the result we again

need to describe the limiting processes. With (Tq,Ψq−,Ψq+,Ψ′
q−,Ψ

′
q+)

as in (14.21), for any integer w ≥ 1 we set

Ũ(w)t = 1
w2

∑
q≥1:Tq≤t}

c2Tq
f(∆XTq )

×
(
∂211 g(cTq , cTq )

(
Ψq− +

√
w − 1Ψ′

q−
)2

+2∂212 g(cTq , cTq )
(
Ψq− +

√
w − 1Ψ′

q−
)(
Ψq+ +

√
w − 1Ψ′

q+

)

+∂222 g(cTq , cTq )
(
Ψq+ +

√
w − 1Ψ′

q+

)2)
.

(14.24)
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This process is of finite variation and with F -conditional mean given by

Ẽ(Ũ(w)t | F) = 1
w A(f,G

′)T ,

where G′(y, z) = z2
(
∂211 g(z, z) + ∂222 g(z, z)

)
.

(14.25)

Theorem 14.11. Assume (K-r) for some r ∈ [0, 2) and choose f and

g satisfying (14.19), with further (14.16) when a > 0. Let un and kn
satisfy (14.23). Then, for any given time T > 0 and any integer w ≥ 2,

the variables
(
knD(f, g; kn, un∆n)T , knD(f, g;wkn, un∆n)T

)

converge stably in law, in restriction to the set Ω
(A,dj)
T to the variables(

Ũ(1)T , Ũ(w)T ).

Remark 14.12. The reader will observe that in these two theorems we do

not claim the “functional” stable convergence, which is an open question

in general, although of no importance for us below. When a > 0 or r = 0,

though, this functional convergence does hold.

14.2.2 Testing the Null Hypothesis of No Co-jump

Here we take the null hypothesis to be “X and σ have no common jump”

with jump size of X in A, that is, Ω
(A,dj)
T , for A either being at a posi-

tive distance of 0, or containing a neighborhood of 0. We construct two

families of tests.

Some General Tests Below, we assume (K-r) for some r ∈ [0, 2).

We choose two functions f and g satisfying (14.19), and use the fact that

Ω
(A,dj)
T = {D(f, g)T = 0}. We choose kn and un satisfying (14.23). We

will also need another sequence u′n of truncation levels subject to

u′n ≍ ∆̟′

n ,
1

4− r
< ̟′ <

1

2
. (14.26)

On the basis of the convergence (14.20), we use the statistics

D(f, g; kn, un∆n)T , which satisfy

D(f, g; kn, un∆n)T
P−→

{
0 on Ω

(A,dj)
T

A(f, g)T > 0 on Ω
(A,cj)
T .

In order to assert the size of a test based on D(f, g; kn, un∆n)T we need

a CLT in restriction to Ω
(A,dj)
T , and it is provided by Theorem 14.11 since

in Theorem 14.9 the limit vanishes. On the set Ω
(A,dj)
T the limit Ũ(1)T of
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knD(f, g; kn, un∆n)T has an unknown F -conditional distribution, but

its conditional expectation is A(f,G′)T by (14.25). Observe also that,

because of (14.19), we have A(f,G′)T ≥ 0, and even A(f,G′)T > 0 on

Ω
(A,dj)
T ∪ Ω

(A,cj)
T .

We need now to construct an estimator for A(f,G′)T . The func-

tion G has a quadratic growth, so (14.20) yields that the statistics

D(f,G′; kn, u′n,∆n)T are consistent estimators of A(f,G′)T , but only

because we assume (14.26), which is the reason for introducing these

new truncation levels. Note that we can take u′n = un, or ̟
′ = ̟ only

when r < 4
3 . So, by our usual argument using stable convergence in law,

plus the fact that A(f,G′)T > 0 on the set Ω
(A,dj)
T ∪Ω

(A,cj)
T (use the last

property in (14.19)), we deduce that

knD(f, g; kn, un∆n)T
D(f,G′; kn, u′n,∆n)T

L−s−→ Ũ(1)T
A(f,G′)T

in restriction to Ω
(A,dj)
T ,

and the limiting variable above is nonnegative, with F -conditional ex-

pectation equal to 1. On the other hand, the left side above goes to +∞
on Ω

(A,cj)
T in probability, because its numerator does so by Theorem 14.9.

Thus, using Markov’s inequality, we obtain the following result:

Theorem 14.13. Assume (K-r) for some r ∈ [0, 2), choose f and g

satisfying (14.19), with further (14.16) when a > 0, and let kn and un
satisfy (14.23) and u′n satisfy (14.26). For all α ∈ (0, 1) the tests

Cn =
{
D(f, g; kn, un∆n)T >

D(f,G′; kn, u′n,∆n)T
αkn

}
.

have an asymptotic size not bigger than α for the null hypothesis Ω
(A,dj)
T ,

and are consistent for the alternative Ω
(A,cj)
T .

Remark 14.14. As in many of the previous tests, in order to choose τ ,

̟ and ̟′ in such a way that (14.23) and (14.26) hold, one must have a

prior knowledge of the value of r for which (K-r) holds, or at least of a

number r0 < 2 which r cannot exceed.

Observing that the actual rate of convergence is kn, it is advisable

to choose τ as large as possible. We should then choose ̟ as large as

possible, close to 1
2 ∧ 1

2r0
, and then τ close to ((̟(4− r0)− 1)∧ 1

2 . As for

̟′, we take any value satisfying (14.26) with r = r0. We end up with a

rate which is close to 1/∆
1/2
n when r0 < 1 and to 1/∆

(2−r0)/2
n otherwise.

The actual asymptotic size of this test is usually much lower than α,

because Markov’s inequality is a crude approximation, and it is not a
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strong asymptotic size. However, one can use a Monte Carlo approach

similar to the “sharp test” of Theorem 14.6. It goes as follows:

1. The indices i of the intervals ((i−1)∆n, i∆n] for which |∆n
i X | > un

and k + kn ≤ i ≤ [T/∆n]− kn − k + 1. are labeled i1, i2, . . . , ir(n).

2. We draw Nn independent copies of (Ψq−,Ψq+), for q running from

1 to r(n), denoted as (Ψ(j)q−,Ψ(j)q+), for j = 1, . . . , Nn (those

are N (0, 1)).

3. We compute the following variables, for j = 1, . . . , Nn, and with

the shorthand notation ĉni = ĉ(kn, un)i:

Y jn =
r(n)∑
q=1

(ĉniq+1)
2 f(∆n

iqX)
(
∂211 g(ĉ

n
iq+1, ĉ

n
iq+1)Ψ(j)2q−

+2∂212 g(ĉ
n
iq+1, ĉ

n
iq+1)Ψ(j)q−Ψ(j)q+ + ∂222 g(ĉ

n
iq+1, ĉ

n
iq+1)Ψ(j)2q+

)
.

4. We denote by Zαn the α-quantile of the empirical distribution of

the family (Y jn : 1 ≤ j ≤ Nn).

5. We terminate the procedure by taking the following rejection re-

gion:

Cn =
{
D(f, g; kn, un∆n)T > Zαn/kn

}
. (14.27)

We then have the following result, whose proof is exactly as the proof

of Theorem 14.6 and thus omitted:

Theorem 14.15. Assume (K-r) for some r ∈ [0, 2), choose f and g

satisfying (14.19), with further (14.16) when a > 0, and let kn and un
satisfy (14.26). Choose any sequence Nn going to infinity. The tests de-

fined by (14.27) have strong asymptotic size α for the null hypothesis

Ω
(A,dj)
T , and are consistent for the alternative Ω

(A,cj)
T .

A Specific Test Among all possible tests of the type above (that is,

among all possible choices of the test functions f and g), and although

they seem to perform asymptotically in exactly the same way, some are

better than others in terms of the actual power. Deriving optimality in

this context is a difficult, even impossible, task.

Nevertheless, there are specific choices which are easier to handle, and

in this part we describe such a choice, for which we do not need the

Monte Carlo procedure in order to achieve a strong asymptotic size.
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This choice applies when a > 0 (then we assume (14.16)), and also

when a = 0 in the case (K-0) holds, meaning, basically, that the jumps

of X are known to be of finite activity. We choose the functions

f(x) = 1A(x), g(y, z) = 2 log
y + z

2
− log y − log z, (14.28)

which clearly satisfy the conditions in (14.19) when a > 0, or when r = 0

in Assumption (K-r).

This g corresponds to the log-likelihood ratio test for testing that two

independent samples of i.i.d. zero-mean normal variables have the same

variance. The link with our testing comes from the fact that around a

jump time the high-frequency increments of X are “approximately” i.i.d.

normal.

With the choice (14.28), the first expression (14.24) is written as

Ũ(1)t =
1

2

∑

q≥1: Tq≤t
(Ψq− −Ψq+)

2 1{|∆XTq |>a}.

So the limiting distribution of the test statistics depends only on the

number of jumps, and is thus straightforward to implement. Condition-

ally on F , this variable has the same law as a chi-square variable with

NT degrees of freedom, where NT =
∑
p≥1 1{|∆XTp |>a} is the number of

jumps of X taken into consideration. The variable NT is not observable.

However, we have

Nn
T =

[T/∆n]∑

i=1

1{|∆n
i X|>a∨un}

P−→ NT ,

due to (14.16), and since these are integer-valued variables we even have

P(Nn
T = NT ) → 1.

Thus, denoting by z(α, n) the α-quantile of a chi-square variable

χ2
n with n degrees of freedom, that is, the number such that P(χ2

n >

z(α, n)) = α, we may take the following critical region at stage n:

Cn =
{
D(f, g; kn, un∆n)T > z(α,Nn

t )/kn
}
. (14.29)

These critical regions enjoy the following properties (the alternative con-

sistency holds because z(α,Nn
t ) is eventually equal to z(α,Nt) > 0, so

z(α,Nn
t )/kn

P−→ 0, whereas D(f, g; kn, un∆n)T
P−→ A(f, g)T > 0 on

Ω
(A,cj)
T ).

Theorem 14.16. Assume that (K-r) holds with r ∈ (0, 2) and a > 0, or

with r = 0, and also (14.16) when a > 0. Choose f and g as in (14.28)
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and let kn and un satisfy (14.23) (first condition). Then the tests (14.29)

have strong asymptotic size α for the null hypothesis Ω
(A,dj)
T , and are

consistent for the alternative Ω
(A,cj)
T .

14.2.3 Testing the Null Hypothesis of the Presence

of Co-jumps

Now we consider the null hypothesis to be “X and σ have common

jumps” with jump sizes in A for X , that is, Ω
(A,cj)
T . We still assume

(K-r) for some r ∈ [0, 2). We take an integer w ≥ 2 and a pair (f, g)

satisfying (14.19), together with kn and un satisfying (14.23), and with

u′n satisfying (14.26).

The test statistics will be

Sn(kn, w)
(CJ-Vol) =

D(f, g;wkn, un,∆n)T
D(f, g; kn, un,∆n)T

,

which implicitly depends upon f, g, un,∆n.

If we combine (14.20) and Theorem 14.11, we first obtain

Sn(kn, w)
(CJ-Vol) P−→ 1 on the set Ω

(A,cj)
T

Sn(kn, w)
(CJ-Vol) L−s−→ S(CJ-Vol) = Ũ(w)T

Ũ(1)T
6= 1 a.s. on the set Ω

(A,dj)
T

(that S(CJ-Vol) 6= 1 almost surely on Ω
(A,dj)
T comes from the fact that the

pair (Ũ(w)T , Ũ(1)T ) has a density, conditionally on F). Next, Theorem

14.9 yields

√
kn (Sn(kn, w)

(CJ-Vol) − 1)
L−s−→ S(CJ-Vol) =

√
w − 1 Ũ ′

T − (1− w)ŨT
wA(f, g)T

,

in restriction to the set Ω
(A,cj)
T . By virtue of (14.22), the limit is, condi-

tionally on F , centered Gaussian with variance

E((S(CJ-Vol))2 | F) =
(w − 1)A(f,G)T
wA(f, g)2T

and, as in the previous subsection, this conditional variance may be con-

sistently estimated on Ω
(A,cj)
T by knVn, where

Vn =
(w − 1)D(f,G; kn, u

′
n,∆n)T

kn w (D(f, g; kn, un,∆n)T )2
.

Hence (Sn(kn, w)
(CJ-Vol)− 1)/

√
Vn converges stably in law to an N (0, 1)

variable on Ω
(A,cj)
T . We are thus led to choose the following critical re-

gions, with zα the α-absolute quantile of N (0, 1):

Cn =
{
|Sn(kn, w)(CJ-Vol) − 1| > zα

√
Vn
}
. (14.30)
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Similar to Theorem 14.9, we have a problem with this choice under the

alternative Ω
(A,dj)
T on which, by Theorem 14.11, Vn/kn converges stably

in law and thus (Sn(kn, w)
(CJ-Vol) − 1)/

√
Vn converges to 0 on this set.

Thus the tests above are not alternative-consistent and the “asymptotic

power” is even 0. However, we can “truncate” Vn and define new critical

regions as follows:

C′
n =

{
|Sn(kn, w)(CJ−Vol) − 1| > zα

√
Vn ∧

√
kn
}
. (14.31)

Then, with exactly the same proof as for 14.1, we have:

Theorem 14.17. Assume (K-r) for some r ∈ [0, 2), choose f and g sat-

isfying (14.19), and let kn and un satisfy (14.23) and u′n satisfy (14.26).

Both tests Cn and C′
n defined above have the strong asymptotic size α for

the null hypothesis Ω
(A,cj)
T .

Moreover, the second tests C′
n are consistent for the alternative Ω

(A,dj)
T .

All comments of Remark 14.14 are valid here, except that the “rate”

under the null is
√
kn instead of kn.

Remark 14.18. Exactly as in the previous subsection, if a > 0 or if (K-

0) holds we can take the test function f, g given by (14.28). But for this

test there does not seem to be a real advantage in doing so: the simplest

test functions in this case are probably f = 1A and g(y, z) = (y − z)2.

Remark 14.19. For implementing this test, and in addition to the choice

of kn, un and u′n discussed in Remark 14.14, we also have to choose the

integer w.

Under the null Ω
(A,cj)
T the asymptotic F-conditional variance of√

kn (Sn(kn, w)
(CJ−Vol) − 1) takes the form w−1

w Φ, where Φ =

A(f,G)T /(Q(f, g)T )
2 does not depend on w. The minimum of w−1

w for

w ≥ 2 is achieved at w = 2, so it is probably advisable to always choose

w = 2.

14.3 References

The content of this chapter is mainly borrowed from two papers by Ja-

cod and Todorov (2009, 2010), with a few simplifications. Co-jumps be-

tween two prices have also been considered in Gobbi and Mancini (2012)

where the correlation between co-jumps is studied, and in Bibinger and

Winkelmann (2013) in the case of noisy observations. Price and volatility

co-jumps are also considered in Bandi and Renò (2012, 2013).
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The existence of a functional relationship between co-jumps of the

price and volatility is studied in Jacod et al. (2013a), and Jacod et al.

(2013b) provides tests for non-zero correlation between these co-jumps.





Appendix A

Asymptotic Results for

Power Variations

In this appendix, we gather most Laws of Large Numbers and Central

Limit Theorems needed in the book and relative to the power variations,

truncated or not, for Itô semimartingales, as well as some useful limiting

results for a few other processes. We do not aim toward completeness, and

unless otherwise specified the proofs can be found in Jacod and Protter

(2011), abbreviated below as [JP].

A.1 Setting and Assumptions

We have a d-dimensional semimartingale X = (X i)1≤i≤d, defined on a

given filtered probability space (Ω,F , (Ft)t≥0,P). Although a few of the

subsequent results may be true without further assumptions on X , we

nevertheless assume throughout that X is an Itô semimartingale, with

jump measure µ and characteristics (B,C, ν), with

Bt =

∫ t

0
bsds, Ct =

∫ t

0
csds, ν(dt, dx) = dt Ft(dx), (A.1)

where b = (bt) is an Rd-valued process, c = (ct) is a process with values

in the set of d×d symmetric nonnegative matrices, and Ft = Ft(ω, dx) is

for each (ω, t) a measure on Rd, all those being progressively measurable

in (ω, t).

477
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We also use the Grigelionis form of X :

Xt = X0 +

∫ t

0
bsds+

∫ t

0
σsdWs (A.2)

+ (δ1{‖δ‖≤1}) ⋆ (p− q)t + (δ1{‖δ‖>1}) ⋆ pt.

Recall that W is a d′-dimensional Brownian motion and p is a Poisson

measure on R+ × E with (E, E) an auxiliary Polish space, and b is as

in (A.1) and σ is a d× d′-dimensional progressively measurable process,

and δ is a predictable function on Ω× R+ × E, with

• ct(ω) = σt(ω)σ
⋆
t (ω)

• Ft(ω, .) = the image of the measure λ restricted to the

set{x : δ(ω, t, x) 6= 0} by the map x 7→ δ(ω, t, x).

Quite often we need the process σt to be an Itô semimartingale as

well. In this case, and upon modifying p and W , and especially upon

increasing the dimension of the latter, we can write the Grigelionis form

of σ as follows, with the same W, p, q as above:

σt = σ0 +

∫ t

0
b(σ)s ds+

∫ t

0
σ(σ)
s dWs (A.3)

+ (δ(σ)1{|δ(σ)‖≤1}) ⋆ (p− q)t + (δ(σ) 1{‖δ(σ)‖>1}) ⋆ pt.

This automatically implies

ct = c0 +

∫ t

0
b(c)s ds+

∫ t

0
σ(c)
s dWs

+ (δ(c)1{|δ(c)‖≤1}) ⋆ (p− q)t + (δ(c) 1{‖δ(c)‖>1}) ⋆ pt

where the coefficients can be explicitly computed in terms of those in

(A.3) and σt itself.

Now we state a variety of assumptions on X , which will be used in

the various limit theorems. Some of them involve a real r, always in the

interval [0, 2].

Assumption (H-r). We have (A.2) and

(i) The process b is locally bounded.

(ii) The process σ is càdlàg.

(iii) There is a sequence (τn) of stopping times increasing to ∞ and,

for each n, a deterministic nonnegative function Jn on E satisfying∫
Jn(z)λ(dz) <∞ and such that ‖δ(ω, t, z)‖r ∧ 1 ≤ Jn(z) for all (ω, t, z)

with t ≤ τn(ω).
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Assumption (H′). We have (H-2) and there is a sequence (τn) of stop-

ping times increasing to ∞, such that if

S = inf
(
t :
∫ t
0 b̂s ds = ∞

)
,

where b̂s =
∫
{‖δ(s,z)‖≤1} ‖δ(s, z)‖λ(dz)

(A.4)

(the process b̂t is well defined but it may be infinite for some, or even all,

values of (ω, t)), then sup(ω,t): t≤τn(ω)∧S(ω) b̂t(ω) <∞.

Assumption (H-2) is little more than assuming simply that X is an Itô

semimartingale. (H-r) becomes stronger as r decreases, and (H-1) implies

(H′) with S = ∞ because under (H-1) we have |̂bs| ≤
∫
Jn(z)λ(dz) if

s ≤ τn.

Under (H-2) the variables

b′t = bt −
∫

{‖δ(t,z)‖≤1}
δ(t, z)λ(dz) (A.5)

are well defined on the set {S ≥ t}. Under (H-1), and since then S = ∞,

the process b′t is well defined at all times, and we can rewrite X as

Xt = X0 +

∫ t

0
b′s ds+

∫ t

0
σs dWs + δ ∗ p

t
, (A.6)

and so the process b′ can be viewed as the genuine drift.

Assumption (K-r). We have (H-r) and (H′) and the process σ is an Itô

semimartingale satisfying (H-2) (hence the process c as well). Moreover,

with the notation (A.5), all paths t 7→ b′t on [0, S] as well as all paths

t 7→ bt on R+ when further r > 1 are either right-continuous with left

limits (càdlàg) or left-continuous with right limits (càglàd).

When X is continuous, if it satisfies (H-2), resp. (K-2), then it also sat-

isfies (H-r), resp. (K-r), for all r ∈ [0, 2]. For convenience, we reformulate

the assumptions in this case:

Assumption (HC). We have (A.1) and X is continuous, the process

b is locally bounded and the process σ is càdlàg (equivalently, we have

(H-2) and X is continuous).

Assumption (KC). We have (HC), the process b is either càdlàg or

càglàg, and the process σ is an Itô semimartingale satisfying (H-2) (equiv-

alently, we have (K-2) and X is continuous).
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Assumption (KCC). We have (KC), the process σ is also continuous,

and the process b(σ) in (A.3) is càdlàg.

Another type of assumption is sometimes needed:

Assumption (P). Both processes ct and ct− are everywhere invertible.

Next, we turn to another kind of assumption, which says more or less

that the small jumps are somewhat similar to those of a stable process.

The two assumptions below make sense as stated only when d = 1,

which is implicitly assumed. We introduce the “tail” functions of the

Lévy measure Ft as being the following functions on (0,∞):

F
(+)

t (x) = Ft((x,∞)),

F
(−)

t (x) = Ft((−∞,−x)),
F t(x) = F

(+)
t (x) + F

(+)
t (x).

Assumption (L). We have (A.2) with bt locally bounded and σt càdlàg,

and there are two constants 0 ≤ β′ < β < 2 such that

x ∈ (0, 1] ⇒
∣∣xβ F (±)

t (x) − a
(±)
t

∣∣ ≤ Lt x
β−β′

, (A.7)

where a
(+)
t and a

(−)
t and Lt are nonnegative predictable (or optional)

locally bounded processes.

This assumption is rather strong, in the sense that, for example, it

implies that the local BG index βt defined in (5.16) equals β (a constant,

depending neither on t nor on ω) as soon as a
(+)
t + a

(−)
t > 0, and the

global index γt also equals β if
∫ t
0 (a

(+)
s + a

(−)
s ) ds > 0. As proved in

Lemma 11.8, it also implies (H-r) for all r > β. The next assumption,

although not formally weaker than (L), is indeed much weaker in spirit:

Assumption (J). We have (A.2) with bt locally bounded and σt càdlàg.

Moreover, the global BG index γt = inf(p ≥ 0 :
∫ t
0 ds

∫
(|x|p ∧ 1)Fs(dx) <

∞) takes its values in [0, 2) (the value 2 is excluded), and for all ε > 0

the process supx∈(0,1] x
γt+εF t(x) is locally bounded.

A.2 Laws of Large Numbers

A.2.1 LLNs for Power Variations and Related

Functionals

We recall the following notation, associated with the sequence ∆n going

to 0 as n→ ∞:

∆n
i X = Xi∆n −X(i−1)∆n

.



Asymptotic Results for Power Variations 481

With any function f on (Rd)k, where k ≥ 1, we associate the processes

B(f,∆n)t =
[t/∆n]−k+1∑

i=1
f(∆n

i X, . . . ,∆
n
i+k−1X)

B′(f,∆n)t = ∆n

[t/∆n]−k+1∑
i=1

f
(
∆n

i X√
∆n
, . . . ,

∆n
i+k−1X√

∆n

)
.

(A.8)

When k ≥ 2, each increment ∆n
i X appears in several summands, so one

could also consider the processes

B(f,∆n)t =
[t/k∆n]∑
i=1

f(∆n
ik−k+1X, . . . ,∆

n
ikX)

B
′
(f,∆n)t = ∆n

[t/k∆n]∑
i=1

f
(
∆n

ik−k+1X√
∆n

, . . . ,
∆n

ikX√
∆n

)
.

(A.9)

When k = 1 there is no difference between (A.8) and (A.9).

We also consider the truncated versions, with a sequence of truncation

levels un > 0 satisfying

un ≍ ∆̟
n , where 0 < ̟ <

1

2
, (A.10)

and which are

B(f,∆n, un)t =
[t/∆n]−k+1∑

i=1
f(∆n

i X, . . . ,∆
n
i+k−1X)

×∏k−1
j=0 1{‖∆n

i+jX‖≤un}

B′(f,∆n, un)t = ∆n

[t/∆n]−k+1∑
i=1

f
(
∆n

i X√
∆n
, . . . ,

∆n
i+k−1X√

∆n

)

×∏k−1
j=0 1{‖∆n

i+jX‖≤un}.

(A.11)

When the test function f , depending on k successive increments, has

the form f(x1, . . . , xk) = g(x1 + · · ·+ xk), then, instead of B′(f,∆n, un)

above it is more natural to consider the following truncated version:

B′([g, k],∆n, un)t = ∆n

[t/∆n]−k+1∑
i=1

g
(
∆n

i X+···+∆n
i+k−1X√

∆n

)

×1{‖∆n
i X+···+∆n

i+k−1X‖≤un}.
(A.12)

For all these functionals, the test function f may be q-dimensional:

the associated functionals are also q-dimensional, and the previous def-

initions should be read componentwise. Recall that
P

=⇒ stands for the

convergence in probability for processes, relative to the Skorokhod topol-

ogy.
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Theorem A.1. [JP, Theorems 3.3.1 and 7.3.3] Assume that X is a

semimartingale and that the q-dimensional function f on (Rd)k is con-

tinuous and satisfies ‖f(z)‖ = o(‖z‖2) as z → 0 in (Rd)k.

(a) If k = 1 we have

B(f,∆n)
P

=⇒ f ∗ µ. (A.13)

(b) If k ≥ 1 and with the functions fj on Rd defined by fj(x) =

f(0, . . . , 0, x, 0, . . . , 0) with x ∈ Rd occurring as the jth argument, we

have for each t

B(f,∆n)t
P−→

k∑

j=1

fj ∗ µt on the set {∆Xt = 0}. (A.14)

(c) If k ≥ 2 and if f is invariant by permutation of its k arguments

(we also say “symmetrical”), so fj = f1 for all j = 2, . . . , k, we have

B(f,∆n)
P

=⇒ f1 ∗ µ. (A.15)

In contrast with (A.13), the convergence of B(f,∆n) when k ≥ 2

does not take place for the Skorokhod topology in general. Moreover,

even when k = 1, the convergence in (A.14) usually fails on the set

{∆Xt 6= 0}. However, if X is an Itô semimartingale, this set is negligible,

so the convergence in (A.14) holds on the whole space Ω. Note also that

when k ≥ 2 the sequence B(f,∆n) does not converge (functionally, or

even for fixed times t) when the functions fj are not all the same.

For the next theorem we need some notation. If a is any matrix in the

set M+
d of all d×d symmetric nonnegative matrices, we denote by ρa the

law N (0, a) on Rd. We write ρa(f) =
∫
f(x)ρa(dx) when f is a function

on Rd and, more generally, ρk⊗a (f) =
∫
f(x1, . . . , xk) ρa(dx1) · · · ρa(dxk)

when f is a function on (Rd)k. In (A.16) below the convergence is, as

stated in (3.23), in probability and locally uniform in time, despite the

fact that on the right side we write the time t in order to define the

limiting process.

Theorem A.2. [JP, Theorems 3.4.1 and 7.2.2] Assume (H-2) and that

the q-dimensional function f on (Rd)k is continuous and of polynomial

growth. Then we have

B′(f,∆n)
u.c.p.
=⇒

∫ t

0
ρk⊗cs (f) ds (A.16)

B
′
(f,∆n)

u.c.p.
=⇒ 1

k

∫ t

0
ρk⊗cs (f) ds (A.17)



Asymptotic Results for Power Variations 483

in the following two cases:

(a) When X is continuous (that is, (HC) holds).

(b) When ‖f(x1, . . . , xk)‖ ≤ ∏k
j=1 Ψ(‖xj‖)(1 + ‖xj‖2) for some con-

tinuous function Ψ on R+ tending to 0 at infinity.

Now we turn to the truncated functionals:

Theorem A.3. [JP, Theorems 9.2.1] Assume (H-r) for some r ∈ [0, 2]

and that the q-dimensional function f on (Rd)k is continuous and of

polynomial growth. Then we have

B′(f,∆n, un)
u.c.p.
=⇒ U ′(f)t =

∫ t

0
ρk⊗cs (f) ds

and also, when f(x1, · · · , xk) = g(x1 + . . .+ xk),

B′([g, k],∆n, un)
u.c.p.
=⇒ U ′([g, k])t =

∫ t

0
ρkcs(g) ds,

in the following two cases:

(a) When X is continuous (that is, (HC) holds).

(b) When ‖f(x1, . . . , xk)‖ ≤ K
∏k
j=1(1 + ‖xj‖p) for some constant K

and the pair (p,̟) satisfies

either p ≤ 2 or r < 2 < p, ̟ ≥ p− 2

2(p− r)
.

The conditions on f above are much weaker than in Theorem A.2. For

the functionals truncated from below, that is B(f,∆n) − B(f,∆n, un),

the conditions are also much weaker than in Theorem A.1 (but X should

satisfy (H-r) instead of being an arbitrary semimartingale), and we have:

Theorem A.4. [JP, Theorem 9.1.1] Assume (H-r) for some r ∈ [0, 2]

and that the q-dimensional function f on Rd is continuous with ‖f(x)‖ =

O(‖x‖r) as x→ 0. Then we have

B(f,∆n)−B(f,∆n, un)
P

=⇒ U(f) = f ∗ µ.

We could also truncate the functionals B
′
(f,∆n) when k ≥ 2, and

obtain similar results, but those are of no interest for us in this book.

Remark A.5. All the LLNs above still hold when we relax the continuity

assumption on the test function, in the following way (we keep, however,

the various growth conditions or behavior near 0). Namely, we can replace

the continuity by the property that it is “almost surely continuous,” in
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the following sense, and where Df denotes the set of all points where the

function f is not continuous:

(a) For Theorems A.1 and A.4 the function f (or fj, according to the

case) is such that P(∃t > 0 with ∆Xt ∈ Df ) = 0.

(b) For Theorems A.2 and A.3 we have
∫∞
0 ρk⊗cs (Df ) ds = 0; this con-

dition is implied, when (P) holds, by the fact that the Lebesgue measure

of Df equals 0; without (P) and in the one-dimensional case d = k = 1

it is also implied by the same property, plus the additional property that

0 /∈ Df .

The same remark holds as well for all convergences in probability en-

countered in the sequel.

A.2.2 LLNs for the Integrated Volatility

When the test function is quadratic, that is, f is the d2-dimensional

function on Rd (so k = 1) with components f(x)jl = xjxl, we have

B(f jl,∆n)t = B′(f jl,∆n)t = Ĉ(∆n)
jl
t :=

[t/∆n]∑

i=1

∆n
i X

j∆n
i X

l. (A.18)

The d2-dimensional process Ĉ(∆n) with components Ĉ(∆n)
jl is the re-

alized quadratic variation, which would perhaps be more appropriately

denoted as [X,X ]n. Neither Theorem A.1 nor Theorem A.2 applies in

this case, unlessX is continuous. Nevertheless (1.61) and the fact that for

any given càdlàg process its discretized versions converge to the process

for the Skorokhod topology give

Ĉ(∆n)
P

=⇒ [X,X ]

(where [X,X ] has components [Xj , X l]). This is true without any as-

sumption on X , other than being a semimartingale. The convergence

Ĉ(∆n)t
P−→ [X,X ]t does not necessarily hold for each t. It does, how-

ever, when X is an Itô semimartingale, because ∆Xt = 0 a.s. for any

given t.

Next, if we apply Theorem A.3 with the quadratic f as above, we get

under (A.10)

Ĉ(∆n, un)
jl
t = B′(f jl,∆n, un)t

=
∑[t/∆n]
i=1 ∆n

i X
j∆n

i X
l 1{‖∆n

i X‖≤un}
u.c.p.
=⇒ Cjlt .

(A.19)

Finally, we can consider the multipower variations, defined for any integer
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k ≥ 2, as

Ĉ([k],∆n)
jl
t = 1

4(m2/k)k

[t/∆n]−k+1∑
i=1

(
|∆n

i X
j +∆n

i X
l|2/k

· · · |∆n
i+k−1X

j +∆n
i+k−1X

l|2/k
− |∆n

i X
j −∆n

i X
l|2/k

· · · |∆n
i+k−1X

j −∆n
i+k−1X

l|2/k
)
,

(A.20)

where mp denotes the pth absolute moment of N (0, 1). Then, Theorem

A.2 applied with the function

f(x1, . . . , xk) =
k∏

m=1

|xjm + xlm|2/k −
k∏

m=1

|xjm − xlm|2/k

gives us

Ĉ([k],∆n)
u.c.p.
=⇒ C. (A.21)

A.2.3 LLNs for Estimating the Spot Volatility

We assume (H-2) throughout the whole subsection. For estimating the

spot volatility ct there are mainly three possible estimators, all based on

the choice of a sequence kn of integers with the following properties:

kn → ∞, kn∆n → 0, (A.22)

and those estimators are (with k ≥ 2 an integer, for the second one)

ĉ(kn)
jl
i = 1

kn∆n

kn−1∑
m=0

∆n
i+mX

j ∆n
i+mX

l

ĉ(kn, [k])
jl
i = 1

4(m2/k)k kn∆n

kn−1∑
m=0

(
|∆n

i+mX
j +∆n

i+mX
l|2/k

· · · |∆n
i+m+k−1X

j +∆n
i+m+k−1X

l|2/k
− |∆n

i+mX
j −∆n

i+mX
l|2/k

· · · |∆n
i+m+k−1X

j −∆n
i+m+k−1X

l|2/k
)

ĉ(kn, un)
jl
i = 1

kn∆n

kn−1∑
m=0

∆n
i+mX

j∆n
i+mX

l 1{‖∆n
i+mX‖≤un}.

(A.23)

These are a priori defined when i ≥ 1, but for convenience we extend the

definition to all relative integers i, by the same formulas, and with the

convention that ∆n
i X ≡ 0 when i ≤ 0. This convention is in force all the

way below. Note that the matrix-valued variables ĉ(kn)i and ĉ(kn, un)i
take their values in the set M+

d , but this is not the case of ĉ(kn, [k])i.
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Next, for any time t ≥ 0 (possibly random), we set if (i− 1)∆n < t ≤
i∆n

ĉ(t−; kn) = ĉ(kn)i−kn , ĉ(t; kn) = ĉ(kn)i+1

ĉ(t−; kn, [k]) = ĉ(kn, [k])i−kn−k+1, ĉ(t; kn, [k]) = ĉ(kn, [k])i+1

ĉ(t−; kn, un) = ĉ(kn, un)i−kn , ĉ(t; kn, un) = ĉ(kn, un)i+1.

,

where i runs through N. So when t is non-random for example, ĉ(t−; kn)

is really meaningful only when t > (kn + 1)∆n, which holds for n large

enough when t > 0.

Theorem A.6. [JP, Theorem 9.3.2] Assume (H-2), and let kn satisfy

(A.22) and un satisfy (A.10). Then, for any finite stopping time T , we

have
ĉ(T ; kn)

P−→ cT

ĉ(T ; kn, [k])
P−→ cT

ĉ(T ; kn, un)
P−→ cT .

If further T is positive, and if either T > S identically for some other

stopping time S and T is FS-measurable, or the process ct is an Itô semi-

martingale and p({T } × E) = 1 a.s. (p is any Poisson random measure

driving both X and σ, so this means that T is a “jump time” of p), then

ĉ(T−; kn)
P−→ cT−

ĉ(T−; kn, [k])
P−→ cT−

ĉ(T−; kn, un)
P−→ cT−.

(A.24)

This result is remarkable because we do not need to truncate or take

multipowers to obtain consistent estimators, even when there are jumps.

In some places, we need to approximate quantities such as

∑

s≤t
f(∆Xs)g(cs−, cs)

for suitable functions f and g. This is of course related to the estimation

of the spot volatility, and natural estimators take the form

D(f, g; kn, un, wn,∆n)t =
[t/∆n]−kn∑
i=kn+1

f(∆n
i X)

×g(ĉ(kn, un)i−kn , ĉ(kn, un)i+1) 1{‖∆n
i X‖>wn}

D(f, g; kn, [k], wn∆n)t =
[t/∆n]−kn−k∑
i=kn+1

f(∆n
i X)

×g(ĉ(kn, [k])i−kn , ĉ(kn, [k])i+1) 1{‖∆n
i X‖>wn}.
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Theorem A.7. [JP, Theorem 9.5.1 and Remark 9.5.2-(c)] Assume that

X satisfies (H-r) for some r ∈ [0, 2]. Let f and g be as follows:

• f is a continuous function on Rd such that f(x) = o(‖x‖r) as x→ 0;

• g is a continuous function on
(
Rd ⊗ Rd

)2
such that |g(z, z′)| ≤

K(1 + ‖z‖p)(1 + ‖z′‖p).
Let wn satisfy either wn ≍ ∆̟′

n with 0 < ̟′ < 1
2 , or wn = 0 for all n in

the case when f(x) = o(‖x‖2) as x→ 0. Then:

(i) For any sequence un ≍ ∆̟
n with p−1

2p−r ≤ ̟ < 1
2 when p > 1, we

have the following Skorokhod convergence in probability:

D(f, g; kn, un, wn,∆n)t
P

=⇒
∑

s≤t
f(∆Xs) g(cs−, cs). (A.25)

(ii) For any integer k > p, we have the following Skorokhod conver-

gence in probability:

D(f, g; kn, [k], wn∆n)
P

=⇒
∑

s≤t
f(∆Xs) g(cs−, cs).

Finally, one may be interested in approximating
∫ t
0 g(cs) ds for some

function g on the set M+
d . When g takes the form g(a) = ρk⊗a (f) for a

continuous function f on (Rd)k with polynomial growth, for some integer

k, one can use B′(f,∆n)t and take advantage of (A.16). However, this

puts some restriction on g, for instance that it is C∞. Moreover, if g ≥ 0

for example, one may wish for an approximation which is always nonneg-

ative, and this is not necessarily the case of B′(f,∆n)t. So the following,

which is Theorem 9.4.1 of [JP] when f ≡ 1 and a simple extension of it

otherwise, will be useful for us:

Theorem A.8. Assume that X satisfies (H-r) for some r ∈ [0, 2]. Let

g be a continuous function on M+
d , such that |g(a)| ≤ K(1 + ‖a‖p)

for some p ≥ 0. Let also f be a continuous function on Rd such that

|f(x)| ≤ K(1 + ‖x‖p′) for some p′ ≥ 0.

(i) If either X is continuous, or p < 1 and p′ < 2, we have

∆n

[t/∆n]−kn+1∑
i=0

g(ĉ(kn)i) f
(
∆n

i+kn
X√

∆n

)
u.c.p.
=⇒

∫ t
0 g(cs) ρcs(f) ds.

(ii) If either p ≤ 1 and p′ ≤ 2, or p > 1 and p′ > 2 and (H-r)

holds for some r ∈ [0, 2) and the sequence un satisfies (A.10) with ̟ ≥
p−1
2p−r ∧

p′−2
2(p′−r) , we have

∆n

[t/∆n]−kn+1∑
i=0

g(ĉ(kn, un)i) f
(
∆n

i+kn
X√

∆n

)
1{‖∆n

i+kn
X‖≤un}

u.c.p.

=⇒
∫ t
0 g(cs) ρcs(f) ds.

(A.26)
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A.3 Central Limit Theorems

A.3.1 CLTs for the Processes B(f,∆n) and B(f,∆n)

We now consider the Central Limit Theorems (CLTs) associated with

each LLN of the previous section. In all cases, the limiting process is de-

fined on an extension (Ω̃, F̃ , P̃) of the original probability space (Ω,F ,P)
of type (1.86), with a variety of processes V ′ and V ′′ and of probability

measures η, but always with the same sequence Tn of stopping times

which we now specify.

The sequence of stopping times (Tn)n≥1 weakly exhausts the jumps

of X , in the following sense :

• n 6= m ⇒ {Tn = Tm <∞} = ∅
• ∆Xt(ω) 6= 0 ⇒ ∃n = n(ω, t) such that t = Tn(ω).

(A.27)

Such a sequence always exists, due to the fact that X is càdlàg adapted,

and many different ones exist. The qualifier “weakly” stands for the fact

that we do not require that X actually jumps at each finite Tn, that

is, ∆XTn may vanish on a subset of {Tn < ∞}. It would be possible to

impose this additional condition (then (Tn) would be called an exhausting

sequence for the jumps). Again, many different such sequences exist in

general, unless X is continuous (in this case the only exhausting sequence

is of course Tn ≡ ∞).

The reason for using a weakly exhausting sequence is the greater flex-

ibility; for example, we can choose a sequence that weakly exhausts the

jumps of X , and perhaps also those of another process of interest. In any

case, we fix below the weakly exhausting sequence Tn, and the results do

not depend on this particular choice.

For the CLT associated with Theorem A.1 we need some notation, in

connection with the number k of arguments of the test function f which

is used. We set K− = {−k+1,−k+2, . . . ,−1} and K+ = {1, 2, . . . , k−1}
and K = K− ∪K+. We consider variables Ψn,j , Ψn−, Ψn+, κn, Ln on an

auxiliary space (Ω′,F ′,P′), all independent and with the following laws:

Ψn,j,Ψn−,Ψn+ are d′-dimensional, N (0, Id′)

κn is uniform on [0, 1]

Ln is integer-valued, uniform on {0, 1, . . . , k − 1}.
(A.28)

On the product extension (1.86) we define the following d-dimensional
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random variables

Rn,j =





σTn−Ψn,j if j ∈ K−√
κnσTn−Ψn− +

√
1− κnσTnΨn+ if j = 0

σTnΨn,j if j ∈ K+.

(A.29)

The test function f is an Rq-valued function on (Rd)k, where k ≥ 2.

When it is C1 the first derivatives are globally denoted by ∇f , but we

also need some more specific notation: the d-dimensional arguments of f

are x1, . . . , xk, and xj has the components xij for i = 1, . . . , d. Then we

write (with x ∈ Rd)

fj(x) = f(0, . . . , 0, x, 0, . . . , 0)

∂if(l);j(x) = ∂f
∂xi

l
(0, . . . , 0, x, 0, . . . , 0)

∂2ii′f(ll′);j(x) = ∂2f

∂xi
l ∂x

i′

l′

(0, . . . , 0, x, 0, . . . , 0)

(A.30)

where x is at the jth place.

With all this notation, the limiting processes will be the q-dimensional

processes defined on the product extension (Ω̃, F̃ , P̃) as

U(f)t =
∑

n: Tn≤t

k∑
j,l=1

d∑
i=1

∂if(l);j(∆XTn)R
i
n,l−j

U(f)t =
∑

n: Tn≤t

k∑
j,l=1

d∑
i=1

∂if(l);j(∆XTn)R
i
n,l−j 1{Ln=j−1}.

(A.31)

These are of the form (1.87) with V ′ = 0, and for U(f), say, with q′′ =
2kd′+1 and the variables Yn having the components Ψin,j and

√
κnΨ

i
n−

and
√
1− κnΨ

i
n+, and the components of the process V ′′ being linear

combinations of σijTn− and σijTn
times ∂if

r
(l);j(∆XTn). Therefore, as soon

as f is such that ‖∂if(l);j‖ = O(‖x‖) as x → 0, the processes U(f) (and
U(f) as well) are well defined and are martingales on the extended space.

Furthermore the F -conditional variance-covariances are

Ẽ(U(f i)t U(f i
′

)t | F) =
∑
s≤t

d∑
r,r′=1

(
1
2

k∑
j,j′=1

(∂rf
i
(j);j ∂r′f

i′

(j′);j′)(∆Xs) (c
rr′

s− + crr
′

s )

+
k∑
j=2

j−1∑
l=1

k+l−j∑
l′=1

(∂rf
i
(l);j ∂r′f

i′

(l′);j+l′−l)(∆Xs) c
rr′

s−

+
k−1∑
j=1

k∑
l=j+1

k∑
l′=1+l−j

(∂rf
i
(l);j ∂r′f

i′

(l′);j+l′−l)(∆Xs) c
rr′

s

)

Ẽ(U(f i)t U(f i′)t | F) =∑
s≤t
∑d
r,r′=1

1
2 (∂rf

i ∂r′f
i′ + (k − 1)∂∗r f

i ∂∗r′f
i′)(∆Xs)(c

rr′

s− + crr
′

s ).
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Theorem A.9. [JP, Theorem 11.1.1] Assume (H-2), and let f be a C2

function from (Rd)k into Rq, satisfying

f(0) = 0, ∇f(0) = 0, ‖∇2f(z)‖ = o(‖z‖) as z → 0 in (Rd)k. (A.32)

(a) For each fixed t we have

1√
∆n

(
B(f,∆n)t −

k∑

j=1

fj ⋆ µt
) L−s−→ U(f)t. (A.33)

(b) If f is invariant by permutation of its k arguments, we have the

following functional convergence

1√
∆n

(
B(f,∆n)t − f1 ⋆ µk∆n[t/k∆n]

) L−s
=⇒ U(f), (A.34)

and for each fixed t we also have

1√
∆n

(
B(f,∆n)t − f1 ⋆ µt

) L−s−→ U(f)t. (A.35)

Moreover, the processes U(f) and U(f) are F-conditionally Gaussian as

soon as the two processes X and σ have no common jumps.

A functional convergence like (A.34) for B(f,∆n) does not hold, unless

of course k = 1.

A.3.2 A Degenerate Case

The functional B(f,∆n) may be “degenerate,” in the sense that the

limit U(f) in the previous CLT vanishes identically. We will encounter

this situation in a special case, which we explain below.

The test function f is a two-dimensional function on (Rd)k with com-

ponents

f j(x1, · · · , xk) =
{
h(x1) if j = 1

h(x1 + · · ·+ xk) if j = 2.
(A.36)

where h(x) = (x1 x2)2. This function is C2 with f(z) = O(‖z‖4) as z → 0,

is globally homogeneous with degree 4, and satisfies

∂1h(x) = 2x1(x2)2, ∂2h(x) = 2(x1)2x2

∂211h(x) = 2(x2)2, ∂222h(x) = 2(x1)2, ∂212h(x) = 4x1x2.
(A.37)

The functions associated with f in (A.30) become

f1
1 = f2

j = h, ∂if
1
(1);1 = ∂if

2
(l);j = ∂ih,

∂2i,i′f
1
(1,1);1 = ∂2i,i′f

2
(l,l′);1 = ∂2ii′h,

(A.38)
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with all other functions f1
j , ∂if

1
(l);j and ∂

2
i,i′f

1
(l,l′);j being 0.

We also assume the following property for the process X , which is at

least two-dimensional:

∆X1
t ∆X

2
t = 0 identically, (A.39)

that is, the two components X1 and X2 never jump at the same times.

In this case, the special form of f implies that fj ∗ µ = 0 and U(f) = 0

identically, so the result (A.33) is degenerate.

The next result may be considered in view of the convergence rate

1/∆n instead of 1/
√
∆n as a “second order” Central Limit Theorem.

Theorem A.10. [JP, Theorem 15.2.4] Assume (H-2) and the condition

(A.39). Let f be the function defined by (A.36). Then for each t, we have

the following stable convergence in law:

1

∆n
Bn(f,∆n)t

L− s−→ Ũ(f)t + C(f)t,

where C(f) is the following two-dimensional process:

C(f)jt =

{
Ht if j = 1

k2Ht if j = 2,
where Ht =

∫ t

0

(
c11s c

22
s + 2(c12s )2

)
ds

and where U(f) is defined on an extension of the probability space by the

following formula, where the Rn’s are as in (A.31):

Ũ(f)t =
1

2

∞∑

n=1

( k∑

j,l,l′=1

2∑

i,i′=1

∂2i,i′f(l,l′),j(∆XTn)R
i
n,l−j R

i′

n,l′−j
)
1{Tn≤t}.

Moreover, conditionally on F , the process U(f) has independent incre-

ments, with mean function

Ẽ(Ũ(f j , X)t | F) =

{
H ′
t if j = 1

k2H ′
t if j = 2,

(A.40)

where H ′
t =

1
2

∑
s≤t

(
(∆X1

s )
2(c11s− + c11s ) + (∆X2

s )
2(c22s− + c22s )

)
.

Here, C(f) plays the role of a drift, since it is F -measurable. The

process Ũ(f) is of the form (1.87) with V ′ = 0, and with the sequence

Vn satisfying (i) of (1.84).
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A.3.3 CLTs for the Processes B′(f,∆n) and B
′
(f,∆n)

For the CLT associated with Theorem A.8 we again need some prelimi-

nary notation for describing the limit. Before this, we describe the class

TF of test functions f which will be considered. This class looks compli-

cated, because we want to accommodate a number of different situations.

Definition A.11. A test function in TF is a possibly multidimensional

function on (Rd)k, for an arbitrary integer k ≥ 1. Each of its components

is a linear combination of functions of the type

either (x1, . . . , xk) 7→ ∏
j∈I gj(xj)

or (x1, . . . , xk) 7→ g1(x1 + · · ·+ xk),
(A.41)

where I is a non-empty subset of {1, . . . , k} and where each gj is a func-

tion of the following form:

gj(x) = gj(x
1, . . . , xd) = hj(x)

d∏

i=1

|xi|wj,i , wi,j ≥ 0,
d∑

i=1

wj,i > 0

(with the convention 00 = 1), where hj is a C
2 function, bounded as well

as its first and second partial derivatives, and which is a globally even

function on Rd.

Here, globally even means that hj(−x) = hj(x) for any x ∈ Rd. If f is a

test function in the above sense, each component is a linear combination

of functions of type (A.41), each one of these involving a number of

exponents of the form wj,i: denoting by W the family of all exponents

appearing in at least one of those functions, we then set

w = max(W), w = min(w : w ∈ W, w > 0). (A.42)

Note that the functionals Ĉn and Ĉn(k) defined before are equal to

B′(f,∆n) for functions f in TF, as well as the multipowers Ĉn([k],∆n)

of (A.20).

Next, we describe the limiting process. It will be a continuous process

of the form (1.87), with V ′′ = 0 (so there is no law η), and we need to

describe the process V ′. To this end, for any d×d symmetric nonnegative

matrix a we consider a sequence Φn of independent N (0, a) variable on

some space (Ω′′,F ′′,P′′), and the σ-fields G and G′, respectively gener-

ated by Φ1, . . . ,Φk−1 and Φ1, . . . ,Φk. Then, with f1, . . . , f q being the
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components of f , we set

Ra(f)
il =

k−1∑
j,j′=0

E′′
(
E′′(f i(Φk−j , . . . ,Φ2k−j−1) | G′)

×E′′(f l(Φk−j′ , . . . ,Φ2k−j′−1) | G′)

−E′′(f i(Φk−j , . . . ,Φ2k−j−1) | G
)

×E′′(f l(Φk−j′ , . . . ,Φ2k−j′−1) | G
))

Ra(f)
jl = 1

k

(
E′′((f jf l)(Φ1, . . . ,Φk)

)

−E′′(f j(Φ1, . . . ,Φk)
)

E′′(f l(Φ1, . . . ,Φk)
))
.

(A.43)

With the notation ρa used in the previous section, we also have

Ra(f)
jl = 1

k

(
ρ⊗ka (f jf l)− ρ⊗ka (f j)ρ⊗ka (f l)

)

k = 1 ⇒ Ra(f)
jl = Ra(f)

jl = ρa(f
jf l)− ρa(f

j)ρa(f
l).

Both Ra(f) and Ra(f) are q×q symmetric nonnegative matrices, contin-

uous as a function of a (recall that any test function f is continuous with

polynomial growth). We can thus find progressively measurable q × q-

measurable processes Ht and Ht which are square roots of Rct(f) and

Rct(f) respectively. Then we set

W(f)t =

∫ t

0
Hs dW

′
s, W(f)t =

∫ t

0
Hs dW

′
s, (A.44)

on the product extension (Ω̃, F̃ , P̃) of (Ω,F ,P) defined by (1.86), and

where W ′ is a q-dimensional Brownian motion on (Ω′,F ′,P′). Note that

W(f) and W(f) are continuous locally square-integrable martingales on

the extension, with

Ẽ(W ′(f i)tW(f j)t | F) =
∫ t
0 Rcs(f)

ij ds

Ẽ(W ′
(f i)tW ′

(f j)t | F) =
∫ t
0 Rcs(f)

ij ds.
(A.45)

Remark A.12. The multipowers Ĉn([k],∆n) of (A.20) are of partic-

ular interest in dimension d = 1. More generally one can consider

the same expression, with 2/k substituted with p/k for an arbitrary

p > 0. This corresponds to considering B′n(fp,k) with the test function

fk,p(x1, . . . , xk) =
∏k
j=1 |xj |p/k. It is then worth noticing that the quanti-

ties Ra(f) and Ra(f) take a simple form (here, a is simply a nonnegative

real number):

Ra(fp,k) = ϑ(k, p) ap/2,

Ra(fk,p) =
(
(m2p/k)

k − (mp/k)
2k
)
ap/2,

(A.46)
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where

ϑ(p, k) = 1
m2p/k−(mp/k)2

{
(m2p/k)

k+1 + (m2p/k)
k (mp/k)

2

− (2k + 1)m2p/k (mp/k)
2k + (2k − 1)(mp/k)

2k+2
}
.

Note that ϑ(2, k) is the number ϑ(k) defined in (6.39).

Theorem A.13. [JP, Theorem 11.2.2] Let f be a q-dimensional test

function on (Rd)k, belonging to the class TF, and we associate the nota-

tion (A.42). Suppose that X satisfies (K-r) for some r ∈ [0, 1) and also

(P) when w ≤ 1.

(i) If X is continuous (that is, (KC) holds), we have

1√
∆n

(
B′(f,∆n)t −

∫ t

0
ρ⊗kcs (f) ds

) L− s
=⇒ W(f) (A.47)

1√
∆n

(
B

′
(f,∆n)t −

1

k

∫ t

0
ρ⊗kcs (f) ds

) L−s
=⇒ W(f), (A.48)

where W(f) and W(f) are defined in (A.44), and in particular are F-

conditionally continuous Gaussian centered martingales with conditional

variance-covariances given by (A.45).

(ii) The same is true when X is discontinuous, if r ≤ w and w < 1.

The conditions on f are reasonably weak when X is continuous. Oth-

erwise, (K-r) with r < 1 is a strong restriction on the degree of activity

of the jumps, and the condition w < 1 is also a very strong restriction on

f . The latter can be substantially weakened if we consider the truncated

functionals, and the limit is still the same as in the previous theorem :

Theorem A.14. [JP, Theorem 13.2.1] Let f be a q-dimensional test

function on (Rd)k, belonging to the class TF, and with the associated

notation (A.42). Let un ≍ ∆̟
n and suppose that X satisfies (P) when

w ≤ 1, and that any one of the following three conditions is satisfied:

• (KC) holds (so X is continuous) and 0 < ̟ < 1
2 .

• (K-1) holds and w = w = 1 and 0 < ̟ < 1
2 .

• (K-r) holds for some r ∈ [0, 1) ∩ [0, w] and 1∨w−1
2(1∨w−r) < ̟ < 1

2 .

Then we have

1√
∆n

(
B′(f,∆n, un)t −

∫ t

0
ρ⊗kcs (f) ds

) L− s
=⇒ W(f)

with W(f) as in the previous theorem. Moreover, for any real γ > 0 we

have

1√
∆n

(
B′(f,∆n, un)t −B′(f,∆n, γun)t

) u.c.p.
=⇒ 0, (A.49)
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and also, when f(x1, . . . , xk) = g(x1 + · · ·+ xk),

1√
∆n

(
B′(f,∆n, un)t −B′([g, k],∆n, γun)t

) u.c.p.
=⇒ 0. (A.50)

A.3.4 CLTs for the Quadratic Variation

The CLT associated with the convergence (A.18) does not follow from

the previous theorems, but it exists, and it mixes the limits U = U(f)
and W = W(f) in Theorems A.9 and A.13, as given by (A.31) and

(A.44) (with k = 1 and f the quadratic function with components

f(x)jl = xj xl). These limits use as ingredients the variables of (A.28)

and a d2-dimensional Brownian motion W ′, all defined on the auxiliary

space (Ω′,F ′,P′), and with W ′ being independent of all the other vari-

ables. In other words, using our specific form of f , we have with the

notation (A.28)

U ijt =
∑
q≥1

d′∑
l=1

(
∆X i

Tq

(√
κq σ

jl
Tq−Ψ

l
q− +

√
1− κq σ

jl
Tq

Ψlq+
)

+∆Xj
Tq

(√
κq σ

il
Tq−Ψ

l
q− +

√
1− κq σ

il
Tq

Ψlq+
))

1{Tq≤t}

W ij
t =

d∑
k,l=1

∫ t
0 H

ij,kl
s dW ′kl

s ,

where
∑d
u,v=1H

ij,uv
s Hkl;uv

s = ciks c
jl
s + cils c

jk
s . Moreover, conditionally of

F the two processes U and W are independent, with independent incre-

ments and centered, and W is a Gaussian martingale, as is U when the

two processes X and σ have no jumps at the same times. Hence the F -

conditional law of W , and that of U as well when X and σ have no com-

mon jumps, is characterized by the (conditional) variances-covariances

given by

E(U ijt Uklt | F) = 1
2

∑
s≤t

(
∆X i

s∆X
k
s (c

jl
s− + cjls )

+∆X i
s∆X

l
s(c

jk
s− + cjks ) + ∆Xj

s∆X
k
s (c

il
s− + cils )

+∆Xj
s∆X

l
s(c

ik
s− + ciks )

)

E(W ij
t Wkl

t | F) =
∫ t
0

(
ciks c

jl
s + cils c

jk
s

)
ds.

(A.51)

Theorem A.15. [JP, Theorem 5.4.2] Under (H-2), and with U and W
as defined above, we have

1√
∆n

(
Ĉ(∆n)t − [X,X ]∆n[t/∆n]

) L−s
=⇒ U +W .
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If we want to estimate the continuous part Ct of the quadratic

variation [X,X ]t, we can use either Ĉ(∆n, un) or Ĉ([k],∆n) as de-

fined by (A.19) and (A.20). We then have a joint CLT for the triple

(Ĉ(∆n), Ĉ([k],∆n), Ĉ(∆n, un)). Since we do not have an “explicit” form

for the conditional covariance of the limit in the CLT for Ĉn([k],∆n),

except when d = 1, the joint CLT below is given without restriction on

d when only Ĉn and Ĉn(un−) are considered, and for d = 1 otherwise.

Theorem A.16. [JP, Theorem 13.2.6] Assume (H-r) for some r ∈ [0, 1),

and let un be given by (A.10) with 1
2(2−r) ≤ ̟ < 1

2 . Then

(
1√
∆n

(Ĉ(∆n)t − [X,X ]∆n[t/∆n])
1√
∆n

(Ĉ(∆n, un)t − Ct)

)
L−s
=⇒

(
U +W
W

)
,

where U and W are as in Theorem A.15.

When further d = 1 and (P) holds, as well as either k ≥ 3 and (K-

2/k), or k ≥ 2 and (KC) (so X is continuous), we also have




1√
∆n

(Ĉ(∆n)t − [X,X ]∆n[t/∆n])
1√
∆n

(Ĉ(∆n, un)t − Ct)
1√
∆n

(Ĉ([k],∆n)t − Ct)




L−s
=⇒




U +W
W

W(k)


 ,

with U as above and where the pair (W ,W(k)) is, conditionally on F ,

independent of U , and a centered continuous Gaussian martingale whose

variance-covariance is given by

Ẽ((Wt)
2 | F) = 2

∫ t
0 c

2
s ds

Ẽ((W(k)t)
2 | F) = ϑ(2,k)

(m2/k)2k

∫ t
0 c

2
s ds

Ẽ(WtW(k)t | F) =
k (m2+2/k−m2/k)

m2/k

∫ t
0 c

2
s ds.

(A.52)

The first line in (A.52) is the same as the last line in (A.51) when

d = 1, and ϑ(2, k) = ϑ(k) is as in (6.39) or (A.46).

A.4 Noise and Pre-averaging:

Limit Theorems

In this section we restrict our attention to the one-dimensional case,

d = 1. We only record the results which are strictly needed in the main

part of this book.
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A.4.1 Assumptions on Noise and Pre-averaging

Schemes

The noise (χt)t≥0 is a process defined on Ω, and each χt is measurable

with respect to a σ-field F ′ bigger than F , and P is a probability on

(Ω,F ′). The observed variables are

Y ni = Xi∆n +∆η
n χi∆n , where η ∈

[
0,

1

2

)
. (A.53)

The assumptions on (χt)t≥0 are as follows:

Assumption (GN). Conditionally on F , all variables (χt : t ≥ 0) are

independent and satisfy

• E(χt | F) = 0.

• For all p > 0 the process E(|χt|p | F) is (Ft)-adapted
and locally bounded.

• The (conditional) variance process γt = R((χt)
2 | F) is càdlàg.

We choose integers kn ≥ 1 satisfying

kn = 1

θ∆η′
n

+ o
(

1

∆
(3η′−1)/2
n

)
as n→ ∞

where θ > 0, η′ > 0, η + η′ ≥ 1
2 ,

and we set θ′ =

{
θ if η + η′ = 1/2

0 if η + η′ > 1/2.

(A.54)

A weight function is a real-valued, not identically vanishing, function

g on R, satisfying

g is continuous, null outside (0, 1), piecewise C1

with a piecewise Lipschitz derivative g′. (A.55)

For any continuous function h on R, we set

φn(h) =
kn∑
i=1

h
(
i
kn

)2
, φ′n(h) =

kn∑
i=1

(
h
(
i
kn

)
− h

(
i−1
kn

))2
,

φ(h) =
∫ 1
0 h(s)

2 ds,

and for any weight function g we have as n→ ∞

φn(g) = knφ(g) + O(1), φ′n(g) =
1

kn
φ(g′) + O

( 1

k2n

)
. (A.56)

Finally, with our observations and with kn and the weight function g

we associate the following variables (recall that g(0) = g(1) = 0, hence
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∑kn
j=1

(
g
(
i
kn

)
− g
(
i−1
kn

))
= 0):

Y
n

i =
kn−1∑
j=1

g
(
i
kn

)
∆n
i+j−1Y = −

kn∑
j=1

(
g
(
i
kn

)
− g
(
i−1
kn

))
Y ni+j−2

Ŷ ni =
kn∑
j=1

(
g
(
i
kn

)
− g
(
i−1
kn

))2
(∆n

i+j−1Y )2.

(A.57)

A.4.2 LLNs for Noise

We restrict our attention to a very special kind of test function: poly-

nomials in Y
n

i and Ŷ ni . For each even nonnegative integer p (including

p = 0) we let the sequence ζp,l for l = 0, . . . , p/2 be the solution of

the following triangular system of linear equations (Cqp = p!
q!(p−q)! is the

binomial coefficient, and mq is the qth absolute moment of N (0, 1)):

ζp,0 = 1∑j
l=0 2

l m2j−2l C
p−2j
p−2l ζp,l = 0, j = 1, 2, . . . , p2 ,

hence ζp,1 = − 1
2 C2

p , and ζp,2 = 3
4 C4

p if p ≥ 4. We define the function

fp,q on R × R by

fp,q(x, z) =

p/2∑

l=0

ζp,l x
p−2l zl+q, (A.58)

and in particular f0,q(x, z) = zq. The (non-truncated and truncated)

processes of interest are

Bnoisy(p, q; ∆n, kn, g)t =
1
kn

∑[t/∆n]−kn+1
i=1 fp,q(Y

n

i , Ŷ
n
i ), (A.59)

Bnoisy(p, q; ∆n, kn, g;un)t

= 1
kn

∑[t/∆n]−kn+1
i=1 fp,q(Y

n
i , Ŷ

n
i )1{|Y n

i |≤un}.
(A.60)

Since Bnoisy(p, q; ∆n, kn, g) equals (kn∆n)
q+p/2−1 V ′n(fp/2,q, g, kn, Z

n)

with the notation of [JP], by combining Theorems 16.5.3, 16.6.1 and

16.5.1 of that reference, respectively (recall that φ(gp/2) =
∫ 1
0 g(x)

p dx),

plus (A.54) and (A.56), we get

Theorem A.17. Let X be a semimartingale and assume (GN) for the

noise. Let p be an even integer, and assume (A.54).

(a) If p ≥ 4 and η′ ≥ 2 1−pη
2+p , for each t ≥ 0 we have

Bnoisy(p, 0;∆n, kn, g)t
P−→ φ(gp/2)

∑

s<t

|∆Xs|p. (A.61)
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(b) Under (H-2), for each t ≥ 0 we have

Bnoisy(2, 0;∆n, kn, g)t
P−→ φ(g) [X,X ]t.

(c) Under (HC), so X is continuous, and with q ∈ N, we have

(kn∆n)
1−p/2−q Bnoisy(p, q; ∆n, kn, g)

u.c.p.
=⇒ mp 2

q φ(g)p/2 φ(g′)q θ′2q
∫ t
0 c

p/2
s γqs ds .

(A.62)

Finally, we need the behavior of the truncated functionals (A.60) and

an analogue of Theorem A.7. For this, and besides kn satisfying (A.54),

one considers another sequence k′n ≥ 1 of integers and a sequence un > 0

of truncation levels, such that

k′n/kn → ∞, k′n∆n → 0, un ≍ ∆̟
n

for some ̟ ∈
(
0, 1−η

′

2

)
.

(A.63)

Theorems 16.4.2 and 16.5.4 and Remark 16.5.5 of [JP], plus the fact

that in both theorems one may take ̟′ > 1 − η′, which amounts to no

truncation for Ŷ ni below, give us the following (note also that ̟ here is

(1 − η′)̟ in those theorems):

Theorem A.18. Assume (H-2) and (GN), and also (A.54) and (A.63),

and let p be an even integer and q an integer, with p+ 2q ≥ 2.

(a) If X is continuous (and in other cases, not useful for us, as well),

we have
(kn∆n)

1−p/2−q Bnoisy(p, q; ∆n, kn, g;un)
u.c.p.
=⇒ mp 2

q φ(g)p/2 φ(g′)q θ′2q
∫ t
0 c

p/2
s γqs ds.

(b) For each t ≥ 0 we have

1
k2n k

′
n ∆n

[t/∆n]−k′n−kn+1∑
i=1

|Y ni |p
k′n∑
j=1

(
(Y

n
i+j)

2 − 1
2 Ŷ

n
i+j

)
1{|Y n

i+j)|≤un}
P−→ φ(g)φ(gp/2)

∑
s≤t cs|∆Xs|p,

1
k2n k

′
n ∆n

[t/∆n]−kn+1∑
i=kn+k′n

|Y ni |p
k′n∑
j=1

(
(Y

n
i−j)

2 − 1
2 Ŷ

n
i−j
)
1{|Y n

i−j)|≤un}

P−→ φ(g)φ(gp/2)
∑
s≤t cs−|∆Xs|p,

1
k2n k

′
n ∆n

[t/∆n]−k′n−kn+1∑
i=1

|Y ni |p
k′n∑
j=1

Ŷ ni+j 1{|Y n
i+j)|≤un}

P−→ 2θ′2φ(g′)φ(gp/2)
∑
s≤t γs|∆Xs|p,

1
k2n k

′
n ∆n

[t/∆n]−kn+1∑
i=kn+k′n

|Y ni |p
k′n∑
j=1

Ŷ ni−j 1{|Y n
i−j)|≤un}

P−→ 2θ′2φ(g′)φ(gp/2)
∑
s≤t γs−|∆Xs|p.
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A.4.3 CLTs for Noise

For the CLTs associated with the LLNs in Theorem A.17 one needs

quite a lot of notation. For any four bounded functions g, h, g, h on R

with support in [0, 1] we set for all t ∈ R and integers p, r with 0 ≤ r ≤ p

and p even

φ(g, h|t) =
∫
g(s− t)h(s) ds (hence φ(g, g|0) = φ(g))

Φ(g, g;h, h)p− =
∫ 1
0 φ(g

p−1, g|t− 1)φ(hp−1, h|t− 1) dt

Φ(g, g;h, h)p+ =
∫ 1

0 φ(g
p−1, g|t)φ(hp−1, h|t) dt

Φ(g, h; p, r|t) =∑[(p−r)/2]
l=0 C2l

p−rm2lmp−2l

×φ(g)r−p/2 φ(g, h|t)p−r−2l
(
φ(g)φ(h) − φ(g, h|t)2

)l
.

(A.64)

To understand the last formula, consider on some filtered space a Brow-

nian motion W and the two Gaussian processes Lgt =
∫∞
0 g(u − t) dWu

and similarly for Lht . They are jointly stationary, centered, and with co-

variance E(Lgs L
h
s−t) = φ(g, h|t) (here t ∈ R, but s ≥ 0 and s − t ≥ 0).

Then Φ(g, h; p, r|t) = E((Lgs)
r (Lhs−t)

p−r), which does not depend on s.

Next, with g, h being two weight functions and with p and r as above

and x, y ≥ 0 we set

a(g, h : p, r|t) =∑p/2
l,j=0 2l+j ζp,lζp,j φ(g

′)l φ(h′)j

×∑(2r)∧(p−2l)
w=(2r+2j−p)+ C

w
p−2l C

2r−w
p−2j

×Φ(g, h; 2r, w|t)Φ(g′, h′; 2p− 2j − 2l− 2r, p− 2l − w|t)
A(g, h; p, r) =

∫ 1

−1 a(g, h : p, r|t) dt
Rp(g, h;x, y) =

∑p
r=0A(g, h; p, r)x

r yp−r − 2(mp)
2 φ(g)p/2 φ(h)p/2 xp.

The interpretation of R(g, h;x, y) is as follows: we consider the previous

Gaussian processes Lg, Lh, and construct two other processes (globally

independent of the others) L′g′ , L′h′

, associated in the same way with

the derivatives g′ and h′ and another independent Brownian motion W ′.

Then Rp(g, h;x, y) =
∫ 1
−1 at dt, where at is the covariance of the two vari-

ables fp(
√
xLg1 +

√
y L′g′

1 , 2yφ(g′)) and fp(
√
xLh1−t +

√
y L′h′

1−t, 2yφ(h
′)),

with fp given by (A.58). In particular, if g1, . . . , gq is a family of weight

functions, for all x, y ≥ 0 the matrix (Rp(g
i, gj ;x, y))i,j is symmetric

nonnegative.

Now, we are ready to explain the limits which are found in the CLT.

We fix a family g1, . . . , gq of weight functions satisfying (A.55). First, the

matrices Φp± = (Φ(gi, gi; gj, gj)p±) and Φ′
p± = (Φ(gi, (gi)′; gj, (gj)′)p±)

are symmetric nonnegative. We can then associate four processes which

also take their values in the set of q× q symmetric nonnegative matrices
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(the series defining Ξ(p)t and Ξ̃(p)t are absolutely convergent because the

maps s 7→ cs and s 7→ γs are locally bounded and
∑
s≤t |∆Xs|2p−2 <∞

because p ≥ 2):

ξ(p)s = p2 |∆Xs|2p−2
(
cs− Φp− + csΦp+

)
, Ξ(p)t =

∑
s≤t ξ(p)s

ξ′(p)s = p2 |∆Xs|2p−2
(
γs−Φ′

p− + γsΦ
′
p+

)
, Ξ′(p)t =

∑
s≤t ξ

′(p)s.

We consider an auxiliary space (Ω′,F ′,P′) supporting two sequences

(Ψn) and (Ψ′
n) of i.i.d. N (0, Iq)-distributed q-dimensional variables, and

a q-dimensional Brownian motion W ′, all these being independent. We

choose a weakly exhausting sequence (Tn) for the jumps of X , as in

(A.27). We also choose two processes α(p)s and α′(p)s which are q × q-

dimensional (measurable) square roots of the processes ξ(p)s and ξ′(p)s
above, and a (measurable) square root R

1/2
p (x, y) of the symmetric non-

negative matrix (Rp(g
i, gj ;x, y)). Then, on the product extension (1.86),

one may define (componentwise) three q-dimensional processes as follows:

U(p)noisy,jt =
∑
m≥1:Tm≤t

∑q
l=1 α(p)

jl
Tm

Ψlm
U ′(p)noisy,jt =

∑
m≥1:Tm≤t

∑q
l=1 α̃(p)

′jl
Tm

Ψ′l
m

W(p)noisy,jt =
∑q
l=1

∫ t
0 R

1/2
p (cs, θ

′2γs)jl dW ′l
s .

These depend on p, but also implicitly on the weight functions gj . They

have the form (1.87), the first two being purely discontinuous, and the

last being continuous. Conditionally on F , they are independent, centered

Gaussian martingales, with the following (conditional) covariances:

Ẽ(U(p)noisy,jt U(p)noisy,lt | F) = Ξ(p)jlt
Ẽ(U ′(p)noisy,jt U ′(p)noisy,lt | F) = Ξ′(p)jlt
Ẽ(W(p)noisy,jt W(p) noisy,l

t | F) =
∫ t
0 Rp(g

j , gl; cs, θ
′2γs) ds.

The following result is a combination of Theorems 16.5.6 and 16.5.7

of [JP] (warning: the notation is slightly different, for example p here is

2p there; we also have a single p here instead of a family p1, . . . , pq), plus

(A.54). Below, all previous notation is in force.

Theorem A.19. Assume (GN) and (A.54). Let p ≥ 2 be an even integer,

and let g1, . . . , gq be q weight functions satisfying (A.55).

(a) Under (H-2) and if p ≥ 4 and If η′ > 3−2pη
3+p

∨ 1
3 , for each t > 0

we have the following stable convergence in law:

1

∆
(1−η′)/2
n

(
Bnoisy(p, 0,∆n, kn, g

j)t − φ((gj)p/2
∑
s≤t |∆Xs|p

)
1≤j≤q

L−s−→ 1√
θ

(
U(p)noisyt + θ′U ′(p)noisyt

)
.
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b) Under (KC) (so X is continuous) and η′ > 1
3 , we have the (follow-

ing functional stable convergence in law:

1

∆
(1−η′)/2
n

(
(kn∆n)

1−p/2Bnoisy(p, 0,∆n, kn, g
j)t

−mpφ(g
j)p/2

∫ t
0 c

p/2
s ds

)
1≤j≤q

L−s
=⇒ 1√

θ
W(p)noisy.

This theorem clearly distinguishes between the continuous and the

discontinuous cases, the latter holding when p ≥ 4 only. But, as in The-

orem A.16, when p = 2 we still have a CLT which mixes the two kinds

of limits above :

Theorem A.20. [JP, Theorem 16.6.2] Assume (H-2), (GN), (A.54) and

η′ > 1
3 . Let g be a weight function satisfying (A.55). Then for each t > 0

we have the following stable convergence in law:

1

∆
(1−η′)/2
n

(
Bnoisy(p, 0;∆n, kn, g)t − φ(g) [X,X ]t

)

L−s−→ 1√
θ

(
U(2)noisyt + θ′U ′(2)noisyt +W(2)noisyt

)
.

(A.65)

A.5 Localization and Strengthened

Assumptions

The results recalled above, both LLNs and CLTs, are proved under

strengthened assumptions first, and extended to the ad hoc assumptions

by a procedure called localization. This localization procedure has been

used many times in the literature and it is fully described in Subsection

4.4.1 of [JP] (the following, inconsequential, correction is needed on page

117: in Assumption 4.4.7 one should require ‖∆Xt(ω)‖ ≤ A instead of

‖Xt(ω)‖ ≤ A). The same procedure will also be used, when necessary,

in the proofs given in the Appendix B, and will shortly be refereed to,

without further explanation, as follows: “by the localization procedure,

we can use the strengthened assumptions...”

Now, we describe below these strengthened assumptions, which bear

the same names as the original ones, preceded by the letter S. They are

in fact the original assumptions, plus a boundedness property for some

of the ingredients. The list is as follows:

Assumption (SH-r). We have (H-r), and the processes b and σ are

bounded, and ‖δ(ω, t, z)‖r ≤ J(z) for all (ω, t, z), where J is a bounded

function satisfying
∫
J(z)λ(dz) <∞.
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Assumption (SK-r). We have (K-r) and (SH-r) and the process σ sat-

isfies (SH-2), and further sup(‖b̂′t(ω)‖ : ω ∈ Ω, t ≤ S(ω)) < ∞ (with

the notation (A.4), the latter condition being implied by the others when

r ≤ 1).

Assumption (SKC). We have (SK-0) and the process X is continuous.

Assumption (SKCC). We have (SKC), the process σ is continuous,

and b(σ) is càdlàg or càglàd.

Assumption (SP). There is ε > 0 such that for all ω ∈ Ω and x ∈ Rd

we have x∗ct(ω)x ≥ ε‖x‖2 if t ≥ 0 and x∗ct−(ω)x ≥ ε‖x‖2 if t > 0.

Assumption (SGN). We have (GN) and the conditional moments

E(|χt|p | F) are bounded for all p.

An important property is that, under (SH-2), we may rewrite (A.2)

as

Xt = X0 +

∫ t

0
bs ds+

∫ t

0
σs dWs + δ ∗ (p− q)t, (A.66)

where bt = bt+
∫
{‖δ(t,z)‖>1} δ(t, z)λ(dz) is again bounded. Under (SH-1)

we have (A.6) and b′t is bounded.

Remark A.21. In this book, a process H is called locally bounded if

|Hs| ≤ n for all 0 < s ≤ Sn, where Sn is a sequence of stopping times

increasing to infinity, and this tells us nothing about the initial variable

H0; it is more common in the literature to call H locally bounded if

it satisfies |Hs| ≤ an for all 0 ≤ s ≤ Sn with Sn as above and with

constants an (so then |H0| ≤ a1). However, when the specific value H0 is

irrelevant, the two notions coincide, because we can replace the original

H0 by H0 = 0. This explains why we can for example replace (H-r)

by (SH-r) (by localization), since the value of b at any specific time is

irrelevant and can be arbitrarily set to 0.

Finally, we end this appendix with a few estimates for the increments

of the processes X and the volatility σ, under these strengthened as-

sumptions. We let T be a finite stopping time and t > 0. We also have

an arbitrary exponent p > 0, and the constant K below (varying from

line to line) depends on the various bounds appearing in the relevant

strengthened assumptions, and on p as well.
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First, we assume (SH-2). We then have by (2.1.44) of [JP]:

E
(
sup
s≤t

‖XT+s −XT ‖p | FT
)
≤
{
K tp/2 if X is continuous

K t1∧(p/2) otherwise.
(A.67)

In the same way, under (SK-2),

E
(
sup
s≤t

‖σT+s − σT ‖p | FT
)
≤
{
K tp/2 if σ is continuous

K t1∧(p/2) otherwise.
(A.68)

Next, Lemmas 2.1.4–2.1.7 of [JP] give us the following. Let α(q),

α(q, y), α′(q) and α′′(q) be (non-random, possibly infinite) numbers such

that ∫
{‖δ(ω,t,z)‖≤y} ‖δ(ω, t, z)‖qλ(dz) ≤ α(q, y),

α(q) = α(q,∞)∫
(‖δ(ω, t, z)‖q ∧ ‖δ(ω, t, z)‖)λ(dz) ≤ α′(q)∫
(‖δ(ω, t, z)‖q ∧ 1)λ(dz) ≤ α′′(q)

(A.69)

identically. Let also H be a predictable process. Then, if α(2) < ∞ and∫ t
0 H

2
s ds <∞ for all t, the process Y = (Hδ) ∗ (p− q) is well defined (it

is a square-integrable martingale) and satisfies

E
(
sups≤t ‖YT+s − YT ‖p | FT

)

≤
{
Kα(p)E

( ∫ T+t
T |Hs|pds | FT

)
if 1 ≤ p ≤ 2

K
(
α(p) + tp/2−1α(2)p/2

)
E
( ∫ T+t

T |Hs|pds | FT
)

if p ≥ 2,

(A.70)

and the process Z = δ ∗ (p− q), when r ∈ [1, 2] and χ ∈ (0, 1/r], satisfies

p ≥ r ⇒
{

E
(
sups≤t

(‖ZT+s−ZT ‖
tχ

∧
1
)p | FT

)

≤ K t1−χr
(
α(r, t

χ
2 ) + t

χ(r−1)
2 α′(r)

)
.

(A.71)

When α(1) <∞ and
∫ t
0 |Hs| ds <∞ for all t, the process Y = (Hδ)∗p

is well defined and satisfies

E
(
sups≤t ‖YT+s − YT ‖p | FT

)

≤
{
Kα(p)E

( ∫ T+t
T |Hs|pds | FT

)
if 0 < p ≤ 1

K
(
α(p) + tp−1α(1)p

)
E
( ∫ T+t

T |Hs|pds | FT
)

if p ≥ 1,

(A.72)

and the process Z = δ ∗ p, when r ∈ [0, 1] and χ ∈ (0, 1/r], satisfies

p ≥ r ⇒
{

E
(
sups≤t

(‖ZT+s−ZT ‖
tχ

∧
1
)p | FT

)

≤ K t1−χr
(
α(r, t

χ
2 ) + t

χr
2 α′′(r)

)
.

(A.73)
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The previous estimates yield, if |δ(ω, t, z)|r ≤ J(z) with [0, 2], and if

w > 0, that the process Z equal to (δ 1{J≤w}) ∗ (p− q) when r > 1 and

to (δ 1{J≤w}) ∗ p when r ≤ 1 satisfies

p ≥ r, t ≤ wr ⇒
{

E
(
sups≤t ‖ZT+s − ZT ‖p | FT

)

≤ K twp−r (α ∨ αp). (A.74)

In the same setting, but with w = ∞ above in the definition of Z, Corol-

lary 2.1.9 of [JP] gives us, with φ a function depending on J, r, p but not

on δ and satisfying φ(t) → 0 as t→ 0,

p ≥ r, t ≤ 1,

0 < χ < 1
r

}
⇒

{
E
(
sups≤t

( ‖ZT+s−ZT ‖
tχ

∧
1
)p | FT

)

≤ K t1−χr φ(t).
(A.75)

It is sometimes useful to extend these inequalities to stopping times

T with respect to a bigger filtration. Below, we consider a measurable

subset A of E, and pA denotes the restriction of p to the set R+ × A.

Then we introduce two σ-fields and two filtrations on Ω, as follows:

• HW = σ(Wt : t ≥ 0), HA = σ(pA(D) : D ∈ R+ ⊗ E)
• (GAt ) is the smallest filtration containing (Ft)
and with HA ⊂ GA0

• (GA,Wt ) is the smallest filtration containing (GAt )
and with HW ⊂ GA,W0 .

(A.76)

Then Proposition 2.19 of [JP] yields, with T any stopping time relative

to the relevant extended filtration,

δ(ω, s, x) = 0 if T < s ≤ T + t, z ∈ A ⇒



• (A.67) holds with (GAt ) instead of (Ft)
• (A.70), (A.71), (A.72), (A.73), (A.74)

and (A.75) hold with (GA,Wt ) instead of (Ft).

(A.77)

Analogously, when (SK-2) holds, and with the notation δσ of (A.3), we

have

δσ(ω, s, x) = 0 if T < s ≤ T + t, z ∈ A

⇒ (A.68) holds with (GAt ) instead of (Ft).
(A.78)

Our last estimates are in the presence of noise, under Assumptions

(SH-2) and (SGN) and (A.53). Then, with the notation (A.57) we have,

by Lemma 16.4.3 of [JP] (those are quite elementary estimates, close to

(A.67))

E(|Y ni |2) ≤ K kn∆n, E(|Ŷ ni |p) ≤ K(kn∆n)
p. (A.79)
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Miscellaneous Proofs

We now provide the proof of many results left unproven in the main

text. Some are more or less reproduced from published papers, most

with improvements and quite a few are new. This is not to say that

all results stated in this book are given a full proof (either in the main

text or below). The choice of giving a proof or not is of course arbitrary,

and our choice certainly reflects our preferences but is also motivated by

our concern about writing a self-contained book. In a field such as this,

and with the wish of describing or at least mentioning many different

methods, a totally self-contained book is virtually impossible to write,

but we tried to be as self-contained as possible. Here again, we abbreviate

the reference Jacod and Protter (2011) as [JP].

B.1 Proofs for Chapter 5

B.1.1 Proofs for Sections 5.2 and 5.3

Proof of Theorem 5.8. Here we consider one-dimensional Lévy processes

with characteristic (b, c, F ), with F satisfying (5.11), and for simplicity

we omit the index (+) stressing that this condition, which we recall for

the reader’s convenience, concerns positive jumps only:

F (dx) = F̃ (dx) +
∞∑
i=1

βi ai
x1+βi

1(0,η](x) dx, where η > 0 and

(i) 0 ≤ βi+1 ≤ βi < 2, βi > 0 ⇒ βi > βi+1, limi→∞ βi = 0

(ii) ai > 0 ⇔ βi > 0

(iii) 0 <
∑∞
i=1 ai <∞

(iv) F̃ is a Lévy measure supported by (0, η]c.

(B.1)

507
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We fix the time horizon T > 0 and observe the paths t 7→ Xt over the

interval [0, T ].

(i) For the first claim, and in view of Theorem 5.2, we need to show the

following property: let (b, c, F ) and (b′, c′, F ′) be two characteristic triples

such that F and F ′ satisfy (B.1) with (ai, βi, η, F̃ ) and (a′i, β
′
i, η

′, F̃ ′),

respectively. We also set

j = inf
(
i ≥ 1 : (βi, ai) 6= (β′

i, a
′
i)
)

(B.2)

and let P(b,c,F )|Ft
be the restriction to Ft of the unique measure on

the canonical space (Ω,F , (Ft)t≥0) under which the canonical process

is Lévy with characteristic triple (b, c, F ). Then we need to prove that,

where P ⊥ Q denotes mutual singularity,

βj ≥
β1
2

⇒ P(b,c,F )|FT
⊥ P(b′,c′,F ′)|FT

. (B.3)

Upon exchanging (b, c, F ) and (b′, c′, F ′) if necessary, we can assume

that
β1 > 0 (hence a1 > 0),

and either βj > β′
j , or βj = β′

j and aj > a′j .
(B.4)

Upon incorporating the restriction of F to (η′, η] into F̃ if η′ < η, or the

restriction of F ′ to (η, η′] into F̃ ′ if η′ > η, it is no restriction to suppose

η = η′. Set

F̂ (dx) =
∑∞
i=1

βi ai
x1+βi

1(0,η](x) dx, F̂ ′(dx) =
∑∞
i=1

β′
i a

′
i

x1+β′
i
1(0,η](x) dx

H(x) =
∑j−1
i=1

βi ai
x1+βi

1(0,η](x), G(x) =
∑∞
i=j

βi ai
x1+βi

1(0,η](x),

G′(x) =
∑∞
i=j

β′
i a

′
i

x1+β′
i
1(0,η](x).

If g = H+G and g′ = H+G′ and f = g′/g (with the convention 0
0 = 1),

we have F̂ ′ = f • F̂ . Then f − 1 = G′−G
g on (0, η), and

G(x) −G′(x) =
βjaj

x1+βj

(
1− β′

ja
′
j

βjaj
xβj−β′

j +
∑∞
i=j+1

βiai
βjaj

xβj−βi

−∑∞
i=j+1

β′
ia

′
i

βjaj
xβj−β′

i

)
1(0,η](x).

Conditions (ii), (iii) and (iv) of (B.1) and (B.4) imply, for some constants

A+ > A− > 0 and ε ∈ (0, η],

A−

x1+β1
1(0,η](x) ≤ g(x) ≤ A+

x1+β1
1(0,η](x)

A− xβ1−βj 1(0,ε](x) ≤ |f(x)− 1| ≤ A+ x
β1−βj 1(0,η](x).

(B.5)
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We now use the singularity criterion given in Theorem 5.6, and the

notation therein, in particular the numbers α(F, F ′). We have

α(F, F ′) ≥ α(F̂ , F̂ ′) =
∫ η
0 g(x)

(
|f(x)− 1| ∧ |f(x)− 1|2) dx

≥
∫ ε
0

A2
−

x1+β2

∧ A3
−

x1+2βj−β1
dx,

and the last integral is infinite when βj ≥ β1/2, hence (B.3) follows.

(ii) For the second claim, and again because of Theorem 5.2, it is

enough to show the following property: letting (b, c, F ) be as above, and

assuming the existence of a j such that 0 < βj < β1/2, one can find

b′ ∈ R and a Lévy measure F ′ satisfying (B.1) with some (a′i, β
′
i, η

′, F̃ ′),

such that (a′i, β
′
i) = (ai, βi) for all i < j and (a′j , β

′
j) 6= (aj , βj), and such

that

P(b,c,F )|FT
⊥/ P(b′,c,F ′)|FT

. (B.6)

To this aim, we take for F ′ the measure given by (B.1) with the same

η, F̃ , and with (a′i, β
′
i) = (ai, βi) for all i 6= j, whereas either β′(j) is

arbitrary in (βj+1, βj) and a′j > 0 is arbitrary, or β′(j) = βj and a′j is

arbitrary in (0, aj). Then, with the notation of the first part of the proof,

we have (B.2), (B.4) and (B.5), and also F ′ = f • F , so

α′(F, F ′) =

∫ η

0
x |f(x) − 1| g(x) dx ≤ A2

+

∫ η

0
x−βj dx,

which is finite because βj < β1/2 < 1. Therefore the number b′ =

b −
∫ η∧1
0 x(f(x) − 1)g(x) dx is well defined. The two triples (b, c, F ) and

(b′, c, F ′) satisfy the first and the last three properties in (5.8), whereas

(B.5) yields

α(F, F ′) =
∫ η

0
(|f(x) − 1|2 ∧ |f(x)− 1|)g(x)dx ≤

∫ η

0

A3
+

x1+2βj−β1
dx,

which is finite because βj < β1/2. Then all conditions in (5.8) are satis-

fied, and we have (B.6).

Proof of Theorem 5.13. We let X and X ′ be two d-dimensional semi-

martingales on (Ω,F ,P) and (Ω′,F ′,P′), respectively, with second char-

acteristics C and C′. Consider the d2-dimensional processes V (n) with

components

V (n)jlt =
∑

i≥1

(
Xj
T (n,i)∧t −Xj

T (n,i−1)∧t

)(
X l
T (n,i)∧t −X l

T (n,i−1)∧t
)
.

By Theorem 1.14 we have V (n)
u.c.p.
=⇒ V , where the components of V

are V jl = [Xj , X l], and thus (X,V (n))
u.c.p.
=⇒ (X,V ) also. Then Propo-

sition VI.6.37 of Jacod and Shiryaev (2003) yields that the discretized
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versions satisfy (X(n), V (n)(n))
P

=⇒ (X,V ) (convergence in probability

for the Skorokhod topology), and where V (n)(n) is the discretized process

associated with V (n) by (5.14). Set

y ∈ R+ 7→ φ(y) = (y − 1)+ ∧ 1,

x ∈ Rd, u > 0 7→ φu(x) = φ(‖x‖/u) (B.7)

and, for any integer m ≥ 1,

Z(m)nt = V (n)
(n)
t −∑s≤t φ1/m(∆X

(n)
s )∆V (n)

(n)
s ,

Z(m)t = Vt −
∑
s≤t φ1/m(∆Xs)∆Vs.

Since φ1/m vanishes on a neighborhood of 0, another property of the

Skorokhod topology, see for example Corollary VI.2.28 in Jacod and

Shiryaev (2003), allows us to deduce from (X(n), V (n)(n))
P

=⇒ (X,V )

that Z(m)n
P

=⇒ Z(m) for each fixed m. On the other hand, φ1/m con-

verges to the indicator function of the singleton {0}, hence by (1.56) we

have

Z(m)jlt = Cjlt +
∑

s≤t
∆Xj

s ∆X
l
s (1− φ1/m(∆Xs)) → Cjlt as m→ ∞

where the convergence holds locally uniformly in t, hence a fortiori for

the Skorokhod topology. The same properties hold for X ′, with C′ and

the similar processes Z ′(m)n, Z ′(m). Now, we recall a well known fact: if

Un(m), U(m), U and U ′
n(m), U ′(m), U ′ are random variables on (Ω,F ,P)

and (Ω′,F ′, P′) respectively, with values in a metric space E, then





• U(m)
P−→ U and U ′(m)

P′

−→ U ′ as m→ ∞,

• Un(m)
P−→ U(m) and U ′

n(m)
P′

−→ U ′(m)

as n→ ∞ for each m,

=⇒ there is a sequence mn such that

Un(mn)
P−→ U and U ′(mn)

P′

−→ U ′.

(B.8)

Applying this with Un(m) = Z(m)n, U(m) = Z(m) and U = C, which

take their values in Dd
2

, and with the analogous processes related with

X ′, we deduce the existence of a sequence mn such that Z(mn)
n P
=⇒ C

and Z ′(mn)
n P′

=⇒ C′. If tn = sup(T (n, i) : i ≥ 0, T (n, i) ≤ t), and

because C and C′ are continuous in time, we deduce Z(mn)
n
tn

P−→ Ct and

Z ′(mn)
n
tn

P′

−→C′
t. Observing that Z(mn)

n
tn = Gn(X

(n)) and Z ′(mn)
n
tn =

Gn(X
′(n)) for a suitable Dd

T -measurable function Gn on Dd when t ≤ T ,

we deduce the claim.
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Proof of Theorem 5.14. We use the notation and assumptions of the pre-

vious proof, and assume for example that the spot volatilities ct and

c′t are right-continuous, and we take t ∈ [0, T ). What precedes implies

that 1
s (Z(mn)

n
(t+s)n

− Z(mn)
n
tn)

P−→ 1
s (Ct+s − Ct) as n → ∞, for any

s > 0, whereas 1
s (Ct+s − Ct) → ct as s → 0. The same holds for

the process X ′ and c′t, with the same sequence mn. So again, one can

find a sequence sn such that 1
sn

(Z(mn)
n
(t+sn)n

− Z(mn)
n
tn)

P−→ ct and

1
sn

(Z ′(mn)
n
(t+sn)n

− Z ′(mn)
n
tn)

P−→ c′t, which yields the result.

Proof of Theorem 5.16. When p > 2, and when the sampling scheme is

a regular scheme, the result is an obvious consequence of Theorem A.1 in

Appendix A, which in addition gives proper identifiability (and proper

identifiability could also be proved when p ≤ 2). However, below we give

the proof for an arbitrary (non-random) scheme T , and for any p > 0.

We introduce some notation, unnecessarily complicated for the present

proof but which will be useful for the proof of the next results. Let X

and X ′ be two semimartingales, defined on the spaces (Ω,F ,P) and

(Ω′,F ′,P′). Let g be an increasing continuous function on R+, with

g(x) = x for all x ∈ [0, η] and some η > 0. This function does not

show in the notation, and will be specified later. With the notation φu of

(B.7), for all integers m ≥ 1 and reals t ≥ s ≥ 0 we define the following

functions on the Skorokhod space Dd:

A(p)s,t(x) =
∑
r∈(s,t] g(‖∆x(r)‖)p,

A(p,m)s,t(x) =
∑
r∈(s,t] g(‖∆x(r)‖)p φ1/m(∆x(r)).

In particular, when g(x) = x we see that A(p)t = A(p)t(X) (composition

of mappings, if we consider X as a mapping from Ω into Dd). The reason

for introducing A(p)s,t for all t ≥ s ≥ 0 and not simply A(p)0,t for t ≥ 0 is

that the equality A(p)s,t = A(p)0,t−A(p)0,s obviously holds if A(p)0,s <

∞, but is meaningless otherwise. We also associate with t the sequence

tn = inf(T (n, i) : i ≥ 0, T (n, i) ≥ t), and analogously the sequence sn
with s (note that tn here differs from tn in the proof of Theorem 5.13).

On the one hand, observing that A(p,m)s,t is a finite sum, we see that

for each m ≥ 1 and p ≥ 0 we have A(p,m)sn,tn(X
(n)) → A(p,m)s,t(X)

pointwise, as n → ∞, and also A(p,m)sn,tn(X) → A(p,m)s,t(X) on the

set {∆Xt = ∆Xs = 0}. On the other hand, A(p,m)s,t increases to A(p)s,t
(either finite or infinite) as m→ ∞. Then, for any subset D of R+ which

is at most countable we can apply (B.8) with E = [0,∞]D to obtain a
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sequence mn such that

p ∈ D ⇒





• A(p,mn)sn,tn(X
(n)) → A(p)s,t(X)

• A(p,mn)s,t(X
(n)) → A(p)t(X)

on {∆Xt = ∆Xs = 0}
(B.9)

(these convergences hold for each ω), and the same for X ′, with the same

sequencemn. Then, since A(p)t = A(p)t(X) if g(x) = x, and upon taking

s = sn = 0 and D = {p}, we deduce the first claim of the theorem. The

last claim is an easy consequence of the first one and of the previous

proof.

Proof of Theorem 5.17. Due to the left continuity of Jt and γt, it is

enough to prove the identifiability when t ≤ T is such that P(∆Xt =

0) = P′(∆X ′
t = 0) = 1. We use the notation of the previous proof. First,

take g(x) = x and s = sn = 0 and D = {p}. Then (B.9) and P(∆Xt =

0) = P′(∆X ′
t = 0) = 1 yield the existence of a sequence un → ∞ such

that 1{A(p,mn)0,t(X(n))≤un} and 1{A(p,mn)0,t(X′(n))≤un} converge in proba-

bility under P and P′, to 1{A(p)t<∞} and 1{A′(p)t<∞} respectively, where

A′(p)t =
∑
s≤t ‖∆X ′

s‖p: this proves pairwise identifiability of the “pa-

rameter” 1{A(p)t<∞}. Since by (1.65) we have Jt = {p ≥ 0 : A(p)t <∞}
outside a null set, we deduce pairwise identifiability of 1Jt(p). Second,

we take for g a function which is strictly increasing and bounded by

1. Then p 7→ A(p)0,t is decreasing, and even strictly decreasing unless

A(p)0,t = 0 for all p (note that A(p)0,t(x) = 0 for some x ∈ Dd and all

p ≥ 0 if and only if x is continuous on [0, t]). Then we pick a count-

able subset D which is dense in R+. Applying (B.9) with this function

g, and still with s = sn = 0, and using the fact that p 7→ A(p,m)0,t is

strictly decreasing for all m large enough, we see that the measurable

functions Hn,k,t(x) = sup(p ∈ D : A(p,mn)0,t(x) > k) on Dd satisfy

Hn,k,t(X
(n))

P−→ G(k)t := sup(p ∈ D : A(p)t(X) > k) as n → ∞ for

all k > 0, and a similar statement holds for X ′ with the same sequence

mn. Now, G(k)t → γt as k → ∞. Then we can find a sequence kn → ∞
such that Hn,kn,t(X

(n))
P−→ γt, and the same for X ′: this shows pairwise

identifiability for the parameter γt.

Proof of Theorem 5.18. We consider below the right-continuous case

only, so we fix t ∈ [0, T ). Again, we use the notation of the proof of

Theorem 5.16. We set γt,s = inf
(
p ≥ 0 :

∫ s
t dr

∫ ∫
(‖x‖p∧1)Fr(dx) <∞

)

when s > t, and Φε =
∫
(‖x‖βt+ε ∧ 1)Ft(dx). By the assumed regu-

larity properties, for any η > 0 we have
∫
(‖x‖βt−η ∧ 1)Fr(dx) = ∞ and
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∫
(‖x‖βt+η∧1)Fr(dx) < Φη+1, for all r in a (random) interval of positive

length starting at t. Therefore, for each ω we have for some s = s(ω) > t

∫ s
t dr

∫
(‖x‖βt+η ∧ 1)Fr(dx) ≤ Φε + 1,∫ s

t dr
∫
(‖x‖βt−η ∧ 1)Fr(dx) = ∞.

In view of (5.16), we deduce γt,s ≥ βt − η and γt,s ≤ βt + η. This

being true for all η > 0, it follows that γt,s ≥ βt for all s > t, and

also γt,s → βt, as s decreases to t. Now, we reproduce the proof of

the previous theorem, using (B.9) with (t, s) instead of (0, t), to obtain

that, for any s ∈ (t, T ) the variable γt,s is pairwise identifiable, so we

have measurable functions Gt,s,n on Dd such that Gt,s,n(X
(n))

P−→ γt,s,

and also Gt,s,n(X
(n))

P′

−→ γt,s, where γ
′
t,s is associated with X ′. Since

γt,s → βt as s ↓ t, we deduce the existence of a sequence tn decreasing

to t and such that Gt,tn,n(X
(n))

P−→ βt, and the same for X ′ (with the

same sequence tn), thus implying pairwise identifiability for βt.

B.1.2 Proofs for Section 5.5

We recall that I∆(c; (b, F )) denotes Fisher’s information of the statistical

model where the single variable X∆ is observed, and where X is a one-

dimensional Lévy process whose characteristic triple is (b, c, F ), with b

and F fixed, whereas the parameter is c and varies through (0,∞).

Proof of Theorems 5.21 and 5.22. Step 1. As already mentioned, we

omit the proof of the LAN property. We need to prove the following

two properties:

(a) We have

∆ > 0 ⇒ I∆(c; (b, F )) ≤ 1
2c2

∆ → 0 ⇒ I∆(c; (b, F )) → 1
2c2 .

(B.10)

(b) For any A > 1 and any bounded increasing function φ on [0,∞)

such that φ(x) → 0 as x→ 0, we have, as ∆ → 0,

sup(b,c,F )∈LA,φ

∣∣∣I∆(c; (b, F ))−
1

2c2

∣∣∣ → 0. (B.11)

where LA,φ is the set of all triples (b, c, F ) with 1
A ≤ c ≤ A and∫

{|y|≤x}(y
2 ∧ 1)F (dy) ≤ φ(x) for all x > 0.

The second part of (B.10) is a special case of (B.11). Observing that

I∆(c; (b, F )) = I∆(c; (0, F )), by translation invariance, we may assume

without loss of generality that b = 0.
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Step 2. We begin with an auxiliary result. We may write X = σW +Y ,

where σ =
√
c and Y is a Lévy process independent of W and with

characteristic triple (0, 0, F ), and also Y = M + N , where Nt =∑
s≤t∆Ys 1{|∆Ys|>1} and M is a martingale with |∆M | ≤ 1. We will

apply to these processes M and N the estimates (A.71) and (A.73) of

Appendix A, respectively. The jump measure µ of Y is a Poisson random

measure with compensator ν(dt, dx) = dt⊗F (dx), soM is as Z in (A.71)

with δ(ω, t, x) = x1{|x|≤1}; moreover, if (b, c, F ) ∈ LA,φ, one can take the

bounds in (A.69) to be α(2, y) = φ(y) and α′(2) = φ(1). Similarly, N is

as Z in (A.73) with δ(ω, t, x) = x1{|x|>1}, and the bounds in (A.69) can

be taken to be α(1, y) = 0 for y < 1 and α′′(1) = φ(∞) (recall that φ is

increasing and bounded). Therefore (A.71) applied to M with p = r = 2

and (A.73) applied to N with p = 2, r = 1, and χ = 1/2 in both cases,

give us

E
(Y 2

∆

∆

∧
1
)

≤ K
(
φ(∆1/4) + φ(∞)∆1/4

)
. (B.12)

Step 3. Next, we compute Fisher’s information. Below, h is the standard

normal density, and G∆ is the law of the variable Y∆, so the law of X∆

admits the following convolution product as a density x 7→ p∆(c, x):

p∆(c, x) =
1√
c∆

∫
h
(x− y√

c∆

)
G∆(dy). (B.13)

Clearly, p∆ is C∞ in (c, x) on (0,∞)× R and, with the notation h̆(x) =

h(x) + h′(x) = (1 − x)h(x), the first partial derivative with respect to c

is

∂c p∆(c, x) = − 1

2c
√
c∆

∫
h̆
(x− y√

c∆

)
G∆(dy). (B.14)

Recall that Fisher’s information I∆(b, (c, F )) = I∆ is

I∆ =

∫
(∂c p∆(c, x))

2

p∆(c, x)
dx. (B.15)

Next, we denote by G′
∆ the distribution of the variable Y∆/

√
∆. By the

change of variable x↔ x/
√
c∆ in (B.15), and taking advantage of (B.13)

and (B.14), we deduce

I∆ = 1
4c2

∫
ψ(G′

∆, x) dx

where ψ(G′
∆, x) =

(
∫
h̆(x−u/√c)G′

∆(du))
2

∫
h(x−u/√c)G′

∆(du)
.

(B.16)
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Step 4. We now turn to the first part of (B.10). We have

ψ(G′
∆, x) ≤

∫
h̃(x−u/

√
c)G′

∆(du), where h̃(x) =
h̆(x)2

h(x)
= (1−x)2h(x)

by the Cauchy-Schwarz inequality applied to h̆/
√
h and

√
h. Hence (B.16)

yields

I∆ ≤ 1
4c2

∫
dx
∫
h̃(x − u/

√
c)G′

∆(du)

= 1
c2

∫
h̃(x) dx = 1

c2

∫
(1− x)2h(x) dx = 1

2c2 .

Step 5. Finally, in order to obtain (B.11), it is enough to show that if a

sequence (0, cn, Fn) in LA,φ is such that cn → c > 0, then

I∆n(cn; (0, Fn)) → 1

2c2
. (B.17)

Toward this aim, we observe that the Lévy process with characteristic

triple (0, cn, Fn) can be written as
√
cnW + Y n. We deduce from (B.12)

and the property φ(x) → 0 as x→ 0 that the laws G′n
∆n

of the variables

Y n∆n
weakly converge to the Dirac measure ε0. Since h and h̆ are bounded

continuous, ψ(G′n
∆n
, x) → h̃(x) for all x follows. Then (B.16) and Fatou’s

lemma yield lim infn I∆n(cn; (0, Fn)) ≥ 1/2c2. Combining this with Step

3 above, we get (B.17).

Proof of Theorem 5.24. With A > 0 and r ∈ [0, 2] we associate the set

L(A, r) of all triples (b, c, F ) with |b| ≤ A, c ≤ A and
∫
(|x|r∧1) dx ≤ A.

We need to prove that if we have a sequence of estimators ĉn for c and a

sequence of numbers wn > 0 such that the family of variables wn(ĉn− c)

is uniformly tight when n ≥ 1 and when the process X runs through all

Lévy processes with (b, c, F ) ∈ L(A, r), then necessarily wn ≤ Kρn for

some constant K, where

ρn =

{
1/

√
∆n if r ≤ 1

(
1

∆n
log( 1

∆n
)
)(2−r)/2

if r > 1.
(B.18)

We also need to exhibit estimators which achieve the rate ρn uniformly

for all X as above.

Step 1. We start with the proof of the bound (B.18). By the results of

Subsection 3.1.1 the optimal rate is 1/
√
∆n for the subclass of continuous

Lévy processes, so we necessarily have wn ≤ K/
√
∆n. It thus suffices to

prove that wn ≤
(
log(1/∆n)/∆n

)(2−r)/2
, up to a multiplicative constant,

of course, and when r > 1.
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By scaling, if the result holds for one A > 0, it holds for all A > 0.

So below we will construct two sequences Xn and Y n of Lévy processes,

with respective characteristics (0, 1 + an, Fn) and (0, 1, Gn), with an =(
∆n/ log(1/∆n)

)(2−r)/2
and with the two Lévy measures Fn and Gn

satisfying
∫
(|x|r ∧ 1)Fn(dx) ≤ K,

∫
(|x|r ∧ 1)Gn(dx) ≤ K (B.19)

for some constantK (possibly changing from line to line, but not depend-

ing on n). Hence all Xn, Y n belong to L(A, r), if A is the supremum of K

in (B.19) and of all 1+an (note that an → 0). For any processX we write

PnX for the joint law of the increments Xn = (∆n
i X : i = 1, . . . , [T/∆n]).

We claim that, if further

the total variation distance

between the laws PnXn and PnY n tends to 0,
(B.20)

then the result holds.

To see this, we recall that an estimator at stage n, evaluated for a pro-

cess X , is simply a function ĉn(Xn). If a sequence of such estimators has

uniform rate wn → ∞ on L(A, r) for estimating the second characteris-

tic, then the two sequences wn(ĉn(X
n
)n− (1+an)) and wn(ĉn(Y

n
)n−1)

are tight under PnXn and PnY n , respectively, and thus (B.20) implies that

the sequence wn(ĉn(Y
n
)n − (1 + an)) is also tight under PnY n . This is

possible only if supn wnan <∞, which is the desired result.

Step 2. We take un = 2/a
1/(2−r)
n and the even and C2 functions hn on R

defined by

hn(u) = an
(
1{|u|≤un} + e−(|u|−un)

3

1{|u|>un}
)
.

For the Fourier transform we use the convention Fg(u) =
∫
eiux g(x) dx,

so the inverse is F−1h(x) = 1
2π

∫
e−iux h(u) du, and g(p) denotes the pth

derivative of g, when it exists.

Since h
(q)
n ∈ Lp for all p ≥ 1 and q = 0, 1, 2, we can define

Hn = F−1hn, and we have h
(q)
n = iqFHn,q, where Hn,q(x) = xqHn(x).

Plancherel identity yields (since also un → ∞)

‖Hn‖L2 ≤ Kanu
1/2
n ≤ Ka

(3−2r)/(4−2r)
n ,

q = 1, 2 ⇒ ‖Hn,q‖L2 ≤ ‖h(q)n ‖L2 ≤ Kan.
(B.21)

Then the Cauchy-Schwarz inequality applied to the functions 1√
1+x2

and

Hn(x)
√
1 + x2 yields

∫
|Hn(x)| dx ≤ K(1 + a(3−2r)/(4−2r)

n ) ≤ K. (B.22)
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(Note, however, that Hn(0) > anun → ∞.) Therefore the two measures

Fn(dx) =
|Hn(x)|
x2

dx, Gn(dx) = Fn(dx) +
Hn(x)

x2
dx

are nonnegative and integrate x2, hence are Lévy measures. Moreover,

splitting the integration domain in the integral
∫
e−iux hn(u) du into the

sets {|u| ≤ un} and {|u| > un}, we get

|Hn(x)| ≤ Kan
(
| sin(unx)|

|x| + 1
)

≤ Kan
(
un 1{|x|≤1/un} +

1
|x| 1{1/un<|x|≤1} + 1{|x|>1}

)
.

In turn, the integration domain in
∫ |x|r∧1

x2 |Hn(x)| dx can be split into

{|x| ≤ 1/un}, {1/un < |x| ≤ 1} and {|x| > 1}, and recalling 1 < r < 2

we deduce from the above that
∫ |x|r ∧ 1

x2
|Hn(x)| dx ≤ Kan(u

2−r
n + 1) ≤ K.

It follows that the measures Fn and Gn satisfy (B.19), and it remains to

prove (B.20).

Step 3. We denote by φn and ψn the characteristic functions of Xn
∆n

and

Y n∆n
, and ηn = φn−ψn. These functions are real (because Hn is an even

function) and given by

φn(u) = exp
(
− ∆n

2

(
u2 + anu

2 + 2φ̃n(u)
))
,

ψn(u) = exp
(
− ∆n

2

(
u2 + 2φ̃n(u) + 2η̃n(u)

))

where
φ̃n(u) =

∫
(1− cos(ux)) |Hn(x)|

x2 dx,

η̃n(u) =
∫
(1− cos(ux)) Hn(x)

x2 dx.

Equation (B.21) implies that φ̃n and η̃n are twice differentiable. Since

φ̃′n(u) =
∫
sin(ux) |Hn(x)|

x dx and | sin(ux)| ≤ |ux|, (B.22) yields

0 ≤ φ̃n(u) ≤ K(1 + a
(3−2r)/(4−2r)
n )u2,

|φ̃′n(u)| ≤ K(1 + a
(3−2r)/(4−2r)
n ) |u|

(B.23)

(since 1 < r < 2 the exponent of an in the right sides above may be

positive or negative). Moreover, η̃′′n(u) =
∫
cos(ux)Hn(x) dx = hn(u)

and η̃(0) = η̃′(0) = 0, hence by the definition of hn one deduces

|u| ≤ un ⇒ η̃n(u) =
anu

2

2 , η̃′n(u) = anu

|u| ≥ un ⇒ |η̃n(u)| ≤ anu
2

2 , |η̃′n(u)| ≤ an|u|.
(B.24)
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Step 4. Since Xn and Y n have a non-vanishing Gaussian part, the vari-

ables Xn
∆n

and Y n∆n
have densities, denoted by fn and gn, and we set

kn = fn − gn. Since X
n and Y n are Lévy processes, the variation dis-

tance between PnXn and PnY n is not more than [T/∆n] times
∫
|kn(x)| dx,

and we are thus left to show that 1
∆n

∫
|kn(x)| dx → 0.

To check this, we use the same argument as for (B.22): if kn,1(x) =

xkn(x), by the Cauchy-Schwarz inequality we have
∫
|kn(x)| dx ≤

K(‖kn‖L2 + ‖kn,1‖L2), whereas ηn = Fkn and also, since ηn is twice

differentiable, η′n = iFkn,1. By Plancherel identity, it is thus enough to

prove that

1

∆2
n

∫
|ηn(u)|2 du → 0,

1

∆2
n

∫
|η′n(u)|2 du → 0. (B.25)

We have φ̃n + η̃n ≥ 0, which implies ψn(u) ≤ e−u
2∆n/2, hence (B.24)

yields

|ηn(u)| = ψn(u)
∣∣∣1− φn(u)

ψn(u)

∣∣∣
= ψn(u)

∣∣1− e−∆n(anu
2−2η̃n(u))/2

∣∣
≤ ∆nanu

2

2 e−∆nu
2/2 1{|u|>un},

and
|η′n(u)| = ∆n

∣∣(u+ uan + φ̃′n(u)
)
φn(u)

−
(
u+ φ̃′n(u) + η̃′n(u)

)
ψn(u)

∣∣ 1{|u|>un}.

Then, upon using (B.24) again and (B.23) and φn(u) ≤ e−u
2∆n(1+an)/2

(because φ̃n ≥ 0), we get

|η′n(u)| ≤ ∆n

(
an|u|e−∆nu

2/2 + |η̃′n(u)|e−∆nu
2/2

+|u+ φ̃′n(u)| |ηn(u)|
)
1{|u|>un}

≤ K∆nan |u| e−∆nu
2/2
(
1 +

(
1 + a

3−2r
4−2r
n )∆n u

2
)
1{|u|>un}.

Now, since un = 2
( log(1/∆n)

∆n

)1/2
, a change of variables gives us for

q ≥ 1
∫
{|u|>un}(∆nu

2)q e−∆nu
2

du = 1√
∆n

∫∞
4 log(1/∆n)

xq−1/2 e−x dx

≤ K∆
7/2
n (log(1/∆n))

q−1/2.

Hence, using the definition of an and r < 2, we obtain (with K below

depending on r):
∫

|ηn(u)|2 du ≤ Ka2n∆
7/2
n

(
log(1/∆n)

)3/2 ≤ K∆7/2
n

∫
|η′n(u)|2 du ≤ K

(
a2n + a

7−2e
2−r
n

)
∆9/2
n

(
log(1/∆n)

)7/2 ≤ K∆9/2
n .
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Then (B.25) follows, and this completes the proof of (5.21).

Step 5. It remains to show that the bound (5.21) is sharp, and for this

we need to exhibit estimators achieving this bound. These are based on

the empirical characteristic function of the observed returns, that is,

φ̂n(u) =
1

[T/∆n]

[T/∆n]∑

j=1

eiu∆
n
jX

for u ∈ R. We are concerned with the set of Lévy processes whose char-

acteristic triples belong to L(A, r) for some A > 0 and r ∈ [0, 2), and the

estimators for c will be

ĉn = − 2

∆nv2n

(
log |φ̂n(vn)|

)
1{φ̂n(vn) 6=0},

where

vn =





1√
∆n

if r ≤ 1√
(r−1) log(1/∆n)√

2A∆n
if r > 1.

Let φn denote the characteristic function of X∆n , with X a Lévy

process with characteristics (b, c, F ) in L(A, r). Its modulus at u = vn is

e−
∆n
2

(
cv2n+γn

)
, where γn = 2

∫
(1−cos(vnx))F (dx). The estimation error

ĉn − c is the sum Gn +Hn of the deterministic and stochastic errors:

Gn = − 2
∆nv2n

log |φn(vn)| − c = γn
v2n
,

Hn = 2
∆nv2n

(
log |φn(vn)| −

(
log |φ̂n(vn)|

)
1{φ̂n(vn) 6=0}

)
.

We study these two errors separately, and below the constants K and

n0 may depend on r and A, but on nothing else, and in particular not

on (b, c, F ). We have 1 − cos y ≤ 1 ∧ y2 ≤ |y|r ∧ 1, and by hypothesis∫
(|x|r ∧ 1)F (dx) ≤ A, hence 0 ≤ γn ≤ 2

∫
(|vnx|r ∧ 1)F (dx) ≤ 2Avrn.

With the notation (5.21), this implies, for all n large enough to have

vrn ≤ v2n/2,

|Gn| ≤ 2A
v2−r
n

≤ K
ρn
,

1
|φn(vn)| = e∆n(cv

2
n+γn)/2 ≤ eA∆nv

2
n ≤ K

∆
(r−1)+/2
n

.
(B.26)

Next, the variables exp(vn∆
n
jX) are i.i.d. as j varies, with modulus 1

and expectation φn(vn), hence Vn = φ̂n(vn)−φn(vn) satisfies E(|Vn|2) ≤
T∆n. Thus, on the set {|Vn| ≤ ∆

r/4
n }, we have |Vn/φn(vn)| ≤ 1/2 and

φ̂n(vn) = Vn + φn(vn) 6= 0 for all n ≥ n0, by (B.26), yielding

|Hn| =
2

∆nv2n

∣∣∣ log
∣∣1 + Vn

φn(vn)

∣∣
∣∣∣ ≤ K

|Vn|
∆n v2n |φn(vn)|

,
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E
(
|Hn| 1{|Vn|≤∆

1/4
n }

)
≤
{
K
√
T
√
∆n if r ≤ 1

K
√
T

∆(2−r)/2
n

log(1/∆n)
if r > 1.

The latter estimate and the first part of (B.26), plus the fact that

P(|Vn| > ∆
r/4
n ) ≤ T∆

(2−r)/4
n (by Bienaymé-Tchebycheff inequality), and

the equality ĉn−c = Gn+Hn, yield that the variables ρn(ĉn−c) are tight,
uniformly in n and also in the choice of the triple (b, c, F ) in L(A, r).

B.1.3 Proof of Theorem 5.25

For this theorem the underlying process is Xt = bt +
√
cWt + Y 1

t +

Y 2
t , where Y

1 and Y 2 are two symmetric stable processes with indices

β1 > β2, the three processes W,Y 1, Y 2 being independent, and the Lévy

measure of Y j is

F j(dx) =
aj βj
|x|1+βj

dx.

Our aim is to prove the following equivalences, as ∆ → 0, for the diagonal

element of Fisher’s information matrix, for the statistical model where

X∆ is observed and (β1, β2, a1, a2) vary:

Iβ1

∆ ∼ a1
2(2− β1)β1/2 cβ1/2

∆1−β1/2 (log(1/∆))2−β1/2 (B.27)

Ia1∆ ∼ 2

a1(2− β1)β1/2 cβ1/2 a21

∆1−β1/2

(log(1/∆))β1/2
. (B.28)

Iβ2

∆ ∼ a22 β
2
2

2a1 β1(2β2 − β1)(2 − β1)β2−β1/2 cβ2−β1/2
(B.29)

×∆1−β2+β1/2 (log(1/∆))2−β2+β1/2

Ia2∆ ∼ 2β2
2

a1 β1(2β2 − β1)(2− β1)β2−β1/2 cβ2−β1/2
(B.30)

× ∆1−β2+β1/2

(log(1/∆))β2−β1/2
,

and when further β2 > β1/2 for the last two equivalences.

The proof is analogous to the proof of Theorem 5.21, although with

many more steps. As in that theorem, we may and will assume that b = 0.

Fisher’s Information In our first step we compute the Fisher in-

formations Iβi

∆ and Iai∆ . We start with some notation. Recall that h is

the density of N (0, 1), and denote by hβ the density of the symmet-

ric stable variable with index β, standardized in such a way that the

Lévy measure of its distribution has the density β/|x|1+β ; if the Lévy
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density were βa/|x|1+β , the density of the variable itself would then be

a1/β hβ(a
1/βx). The function (β, x) 7→ hβ(x) is C

∞ on (0, 2)× R, and if

h̆β(x) = hβ(x) + x∂xhβ(x) the following behavior as |x| → ∞ is know,

see for example Zolotarev (1995):

hβ(x) = β
|x|1+β +O

(
1

|x|1+2β

)

h̆β(x) = − β2

|x|1+β +O
(

1
|x|1+2β

)

∂βhβ(x) = − β log |x|−1
|x|1+β +O

( log |x|
|x|1+2β

)
.

(B.31)

Let Y
j
be the stable process with index βj and scaling parameter

1 instead of aj, so that Y j∆ has the same law as (∆aj)
1/βj Y j1 . Hence,

similar to (B.13), and omitting the dependency upon the five parameters

(c, β1, β2, a1, a2), the density x 7→ p∆(x) of X∆ is written as

p∆(x) =
1√
c∆

∫
h
(
x−(∆a1)

1/β1y1−(∆a2)
1/β2y2√

c∆

)
hβ1(y1)hβ2(y2)dy1dy2.

Set

ui =
∆

1
βi

− 1
2 a

1
βi
i√

c
, vi =

1
βi(2−βi)

(
2 + log(ai/c)

log(1/ui)

)
,

a =
(
cβ1−β2 a

2−β1
2

a
2−β2
1

) 1
2−β1

,

(B.32)

so ui → 0 and u2

u1
→ 0 and vi → 2

βi(2−βi)
as ∆ → 0. Differentiating the

expression giving p∆, integrating by part, and using ∂x(xhβ(x)) = h̆β(x),

we get with h′ the derivative of h:

∂aip∆(x) = − 1
aiβi

√
c∆

∫
h′
(

x√
c∆

− uiy − u3−iz
)
uiyhβi(y)hβ3−i(z)dydz

= − 1
aiβi

√
c∆

∫
h
(

x√
c∆

− uiy − u3−iz
)
h̆βi(y)hβ3−i(z)dydz,

and in the same way, upon using log(∆ai)
β2
i

= −vi log 1
ui
,

∂βip∆(x) =
1√
c∆

∫
h
(

x√
c∆

− uiy − u3−iz
)

×
(
∂βhβi(y)− vi log

1
ui
h̆βi(y)

)
hβ3−i(z)dydz.

We introduce now a family of functions on R, for i = 1, 2:

S∆(x) =
∫
h(x− u1y1 − u2y2)hβ1(y1)hβ2(y2)dy1dy2

Ri,0∆ (x) = 1

u
βi
i

∫
h(x− uiy − u3−iz)h̆βi(yi)hβ3−i(yj)dydz

Ri,1∆ (x) = 1

u
βi
i log(1/ui)

∫
h(x− uiy − u3−iz)∂βhβi(y)hβ3−i(z)dydz,

and the following numbers, where l,m ∈ {0, 1}:

J i,lm∆ =

∫
Ri,l∆ (x)Ri,m∆ (x)

S∆(x)
dx.
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At this point, the formulas giving the various entries of the Fisher

information matrix, and the previous formulas for p∆ and its derivatives,

plus a change of variables, readily yield

Iβi

∆ = u2βi

i (log(1/ui))
2
(
J i,11∆ − 2viJ

i,01
∆ + v2i J

i,00
∆

)
,

Iai∆ =
u
2βi
i

a2i β
2
i
J i,00∆ .

(B.33)

Some Auxiliary Functions We now proceed to studying a few

auxiliary functions. In the whole discussion, φ denotes a continuous in-

creasing bounded function on R+ with φ(0) = 0, which may vary from

line to line, or even within a line, as does the constant K. Also here

β > 0, p is either 0 or 1, and θ is either 1 or 2.

Step 1. Set

gθ(x) =
1
θh
(
x
θ

)
, fpβ(x) =

{
1 if |x| ≤ 1
1
∨
(log |x|)p
|x|1+β if |x| > 1.

Dθ,β,p(x) =
∫
{|z|>1} gθ(x− z)fpβ(z) dz .

(B.34)

The function Dθ,β,p takes its values in (0, 1) and can be decomposed as

Dθ,β,p = D′ +D′′, where, with the notation A′
x = {z : |z| > 1, |x− z| ≥√

|x|} and A′′
x = {z : |z| > 1, |x− z| <

√
|x|},

D′(x) =
∫

A′
x

gθ(x− z)fpβ(z) dz, D′′(x) =
∫

A′′
x

gθ(x − z)fpβ(z) dz.

On the one hand, gθ(x − z) ≤ Ke−|x|/2θ2 on A′
x, hence D′(x) ≤

Ke−|x|/2θ2, and D′(x)/fpβ (x) → 0 as |x| → ∞. On the other hand,

D′′(x)

fpβ(x)
=

∫
gθ(x− z)kx(z) dz, where kx(z) =

fpβ(z)

fpβ(x)
1A′′

x
(z).

If |x| ≥ 3 we have |z| > 1 if |x − z| <
√
|x|, hence the function kx

converges pointwise to 1 as |x| → ∞, and |kx(z)| ≤ K for all |x| ≥ 3.

Then the dominated convergence theorem yields

Dθ,β,p(x) ∼ fpβ(x) as |x| → ∞. (B.35)

Since 0 < Dθ,β,p < 1, (B.34) and (B.35) imply the existence of a constant

C > 1 such that
1

C
fpβ ≤ Dθ,β,p ≤ Cfpβ . (B.36)
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Step 2. In this step we fix p (either 0 or 1) and consider two numbers b ∈ R

and b ≥ 0, and a bounded continuous even function l on R, satisfying
∫
l(x) dx = b, l(x) = bfpβ(x)

(
1 + O

( 1

|x|β
))

as |x| → ∞. (B.37)

For all w ∈
(
0, 1 ∧ 1

3

]
we set

T θ,lw (x) =

∫
gθ(x− wy) l(y) dy. (B.38)

In the following estimates we use the facts that a primitive of xq(log x)p

(for x ≥ 1) is xq+1/(q+1) when p = 0 and (−1+(q+1) logx)xq+1/(q+1)2

when p = 1, and that when |z| > 3 then fpβ(z) = (log |z|)p/|z|1+β, and
otherwise fpβ(z) ≤ K/|z|1+β. An easy calculation shows that |∂2xgθ(x −
y)| ≤ Kg2θ(x) for all x ∈ R, |y| ≤ 1. Then, since g′θ(x) = − x

θ2 gθ(x), we

have

|y| ≤ 1 ⇒
∣∣gθ(x− y)− gθ(x) +

y

θ2
gθ(x)

∣∣ ≤ Ky2 g2θ(x).

Since l is an even function, and in view of (B.37), we deduce

∣∣∣
∫
{|z|≤ 1

w }

(
gθ(x− wz)− gθ(x)

)
l(z) dz

∣∣∣
≤ Kg2θ(x)

∫
{|z|≤ 1

w }(wz)
2 |l(z)| dz

≤ Kg2θ(x)w
β
(
1 + p log 1

w

)
.

(B.39)

We also have (recall p ∈ {0, 1} and w ≤ 1
3 , so f

p
β(x/w) = w1+β(fpβ (x) +

pf0
β(x) log

1
w ) if |x| > 1),

∫
{|z|> 1

w } |l(z)| dz ≤ Kwβ
(
1 + p log 1

w

)

∫
{|z|> 1

w } gθ(x− wz)
fp
β (z)

|z|β dz ≤ wβ−1
∫
{|x|>1} gθ(x− x)fpβ

(
x
w

)
dz

≤ Kw2β
(
Dθ,β,p(x) + pDθ,β,0(x) log 1

w

)

and since (B.37) implies |l(x)− bfpβ(x)| ≤ Kfpβ(x)/|x|β we deduce

∣∣∣
∫
{|z|> 1

w } gθ(x− wz) l(z) dz − b wβ
(
Dθ,β,p(x) + pDθ,β,0(x) log 1

w

)∣∣∣
≤ Kw2β

(
Dθ,β,p(x) + pDθ,β,0(x) log 1

w

)
.

Putting all these estimates together, and using also (B.36) and gθ ≤
Kg2θ ≤ Kf0

β , we obtain

∣∣∣T θ,lw − b gθ − b wβ
(
Dθ,β,p + pDθ,β,0 log 1

w

)∣∣∣
≤ Kwβ

((
1 + p log 1

w

)
(g2θ + wβf0

β) + pwβf1
β

)
.

(B.40)
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In particular, this implies

|T θ,lw | ≤ K bgθ +Kwβ
((
1 + p log 1

w

)
f0
β + pf1

β

)

|T θ,lw − bp gθ| ≤ Kwβ
((
1 + p log 1

w

)
f0
β + pf1

β

)
,

(B.41)

and also (using (B.36) again) the existence of two constants C0, w0 > 0

(depending on b, b, β, θ) such that

b > 0, p = 0, w ∈ (0, w0] ⇒ T θ,lw ≥ C0(gθ + wβf0
β). (B.42)

Step 3. Here we consider two continuous even functions l and l′ satisfying

l(x) ∼ bfpβ(x), l′(x) ∼ b′fp
′

β′ (x), as |x| → ∞, (B.43)

where again p and p′ are either 0 or 1. For w ∈ (0, 1/3] we set

Hw(l, l
′)(x) =

∫
l(x− wy)l′(y) dy. (B.44)

We will give various estimates and study the behavior at infinity of

Hw(l, l
′) and, since this function is bounded (uniformly in w), contin-

uous and even, it suffices to consider what happens when x > 3.

We begin with a lower bound. If x > 3 and |wy| ≤ 1
3 (B.34) readily

implies f0
β(x− wy) ≥ f0

β(x)/8, hence

Hw(f
0
β , hβ′)(x) ≥ 1

8
f0
β(x)

∫ 1/3w

−1/3w
hβ′(y)dy = Cf0

β(x)

for some constant C > 0 (independent of w). Since Hw(f
0
β , hβ′) > 0

everywhere, we deduce

f0
β ≤ KHw(f

0
β , hβ′). (B.45)

Next, coming back to general functions l, l′, we consider the function

kx(y) = l(x− wy)l′(y) and the four sets, for x > 3:

A1
x = (−∞,−x/2w] ∪ [3x/2w,∞),

A2
x = ((x − 1)/w, (x+ 1)/w)

A3
x = [x/2w, (x− 1)/w] ∪ [(x+ 1)/w, 3x/2w)

A4
x = (−x/2w, x/2w).

We have |kx(y)| ≤ K (log |y|)p′

x1+β/2|y|1+β′ if y ∈ A1
x, hence

∫
A1

x
|kx(y)|dy ≤

Kwβ
′

f0
β′(x)

(
log 1

w

)p′
is obvious. If y ∈ A2

x we have |kx(y)| ≤ Kfp
′

β′ (y),
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and∫

A2
x

fp
′

β′ (y)dy =

wβ
′

β′2

(β′ + p′(β′ log x−1
w + 1− β′)

(x− 1)β′ − β′ + p′(β′ log x+1
w + 1− β′)

(x + 1)β′

)
,

which is smaller than Kwβ
′

(fp
′

β′ (x) + p′f0
β′(x) log 1

w ). If y ∈ A3
x we have

|kx(y)| ≤ Kw1+β′

(fp
′

β′ (x) + p′f0
β′(x) log 1

w )mx(y), where mx(y) = fpβ(x−
wy), and by a change of variables we get

∫

A3
x

mx(y)dy =
2

w

∫ x/2−1

0

(1
∨
log(u+ 1))p

(u + 1)1+β
du ≤ K

w
.

In other words, we have proved so far that
∫

A1
x∪A2

x∪A3
x

|kx(y)| dy ≤ Kwβ
′
(
fp

′

β′ (x) + p′f0
β′(x) log

1

w

)
. (B.46)

It remains to consider the integral on A4
x. On this set, |kx(y)| ≤

Kfpβ(x)|l′(y)|, and l′ is integrable, so the integral is smaller than Kfpβ(x).

Therefore (recalling that the above holds when x > 3, and also when

x < −3, and Hw(l, l
′) is bounded, and inf |x|≤3 f

p
β(x) > 0),

|Hw(l, l
′)| ≤ Kfpβ +Kwβ

′
(
fp

′

β′ + p′f0
β′ log

1

w

)
. (B.47)

Now we study the behavior at infinity, when l′ = hβ′ . For this we

write A5
x = (−√

x/w,
√
x/w), which is included into A4

x, and we set

A6
x = A4

x\A5
x. On the one hand,

∫

A6
x

|kx(y)| dy ≤ Kfpβ(x)

∫

{y:|y|>√
x/w}

hβ′(y)dy ≤ Kfpβ(x)
wβ

′/2

xβ′/2
,

where the last inequality follows from (B.31). On the other hand, re-

calling (B.43), if y ∈ A5
x we have kx(y) = mx(y)hβ′(y), where mx(y) =

bfpβ(x)(1 + εx(y, w)) and supy∈A5
x,w∈(0,1/3] |εx(y, w)| → 0 as x → ∞.

Hence

1

fpβ(x)

∫

A5
x

kx(y)dy = b

∫

A5
x

(1 + εx(y, w))hβ′(y)dy → b uniformly in w

because A5
x increases to R as x→ ∞. These two properties, plus (B.46),

imply the following:
∣∣Hw(l, hβ′)(x) − bfpβ(x)

∣∣ ≤ fpβ(x)φ(1/x) +Kwβ
′

f0
β′(x) (B.48)

(recall that φ denotes a generic continuous bounded function with

limx↓0 φ(x) = 0).
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Estimates for S∆ With the notation (B.38), we can write S∆ in two

ways:

S∆(x) =
∫
T

1,hβ2
u2 (x− u1y)hβ1(y) dy

=
∫
T

1,hβ1
u1 (x− u2y)hβ2(y) dy.

(B.49)

First, if i = 1, 2 the function l = hβi satisfies (B.37) with p = 0,

hence (B.42) yields T
1,hβi
ui ≥ C0h, implying in turn S∆ ≥ C0 T

1,hβ3−i
u3−i .

Then, another application of (B.42) shows that g ≤ KS∆, where g = h+

uβ1

1 f
0
β1
+uβ2

2 f
0
β2
. On the other hand, (B.41) yields T

1,hβ2
u2 ≤ K(h+uβ2

2 f
0
β2
),

hence (B.47) and (B.41) again give us S∆ ≤ Kg. In other words, there

is a constant C > 1 such that, if ∆ ≤ 1,

1

C
(h+ uβ1

1 f
0
β1

+ uβ2

2 f
0
β2
) ≤ S∆ ≤ C(h+ uβ1

1 f
0
β1

+ uβ2

2 f
0
β2
). (B.50)

Second, (B.40) and (B.49) yield, by integration, and by using the first

part of (B.31),

∣∣S∆ − T
1,hβ2
u2 − β1 u

β1

1 Hu2(D
1,β1,0, hβ2)

∣∣
≤ Kuβ1

1

(
T

2,hβ2
u2 + uβ1

1 Hu2(f
0
β1
, hβ2)

)
.

Another application of (B.40), plus (B.47) and uβ2

2 ≤ Kuβ1

2 (because

β2 < β1), gives

∣∣S∆ − h− β2u
β2

2 D
1,β2,0 − β1u

β1

1 Hu2(D
1,β1,0, hβ2)

∣∣
≤ K(uβ2

2 g2 + uβ1

1 h+ u2β1

1 f0
β1

+ uβ1

1 u
β2

2 f
0
β2
).

(B.51)

The last estimate will be used as follows: taking (B.35), (B.36), (B.48)

and (B.50) into consideration, together with the properties uβ2

2 /u
β1

1 ≤
K∆(β1−β2)/2 and gθ(x)/f

0
βi
(x) → 0 as |x| → ∞, we deduce that for

all Γ ≥ 1 (recalling that φ is a generic increasing bounded continuous

function on R+, vanishing at 0):

|x| ≤ Γ ⇒ S∆(x) ≥ h(x)/2 if ∆ < CΓ , for some CΓ > 0

|x| ≥ Γ ⇒ |S∆(x) − S′
∆(x)| ≤ S∆(x)(φ(1/Γ) + φ(∆))

where S′
∆ = h+ β1 u

β1

1 f
0
β1

+ β2 u
β2

2 f
0
β2
.

(B.52)

Estimates for Ri,0∆ Below, we fix Γ ≥ 1. If i = 1 we set ψ = hβ2 and

Ψ = h̆β1 , whereas if i = 2 we set ψ = h̆β2 and Ψ = hβ1 . We then have

Ri,0∆ (x) =
1

uβi

i

∫
T 1,ψ
u2

(x − u1y)Ψ(y) dy.
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Suppose first i = 1. Since uβ2

2 /u
β1

1 ≤ K∆(β1−β2)/2, (B.41) applied to

T
1,hβ2
u2 (so with p = 0 and b = 1) and an integration give

∣∣∣R1,0
∆ − 1

uβ1

1

T
1,h̆β1
u1

∣∣∣ ≤ K∆(β1−β2)/2Hu1(f
0
β2
, h̆β1).

Then (B.31) and (B.40) and (B.47), plus
∫
h̆β(x)dx = 0, yield

|R1,0
∆ + β2

1 D
1,β1,0| ≤ K(g2 + uβ1

1 f
0
β1

+∆(β1−β2)/2f0
β2
).

Finally, since g2(x)/f
0
β1
(x) → 0 as |x| → ∞, we deduce from (B.35) that

|R1,0
∆ | ≤ K(g2 + f0

β1
+ f0

β2
)

|x| ≥ Γ ⇒
{

|R1,0
∆ (x) + β2

1 f
0
β1
(x)|

≤ K(f0
β1
(x)φ(1/Γ) + ∆(β1−β2)/2f0

β2
(x)).

(B.53)

Now, we turn to R2,0
∆ . By the same arguments as above, we have

|R2,0
∆ + β2

2 Hu1(D
1,β2,0, hβ1)| ≤ K(T

2,hβ1
u1 + uβ2

2 Hu1(f
0
β2
, hβ1))

≤ K(g2 + uβ1

1 f
0
β1

+ uβ2

2 f
0
β2
).

Then (B.35) and (B.48) and the above estimates yield

|R2,0
∆ (x)| ≤ K(g2 + f0

β1
+ f0

β2
)

|x| ≥ Γ ⇒ |R2,0
∆ (x) + β2

2 f
0
β2
(x)| ≤ f0

β2
(x)φ(1/Γ).

(B.54)

Estimates for Ri,1∆ We argue as in the previous part. For notational

purposes we write here ḣβ = ∂βhβ . We take below ψ = hβ2 and Ψ = ḣβ1

when i = 1, and ψ = ḣβ2 and Ψ = hβ1 when i = 2, to get

Ri,1∆ (x) =
1

uβi

i log(1/ui)

∫
T 1,ψ
u2

(x− u1y)Ψ(y) dy.

The estimates in (B.41) yields

∣∣∣R1,1
∆ − 1

uβ1

1 log(1/u1)
T

1,ḣβ1
u1

∣∣∣ ≤ K
∆(β1−β2)/2

log(1/u1)
Hu1(f

0
β2
, ḣβ1).

Note that (B.31) implies ḣβ1 = l0 + l1 for two functions li satisfying

(B.37) with p = i and with the constants bi and bi such that b0 + b1 =∫
ḣβ1(x)dx = 0 and b0 = 1 and b1 = −β1. Then (B.40) and (B.47) again

yield ∣∣∣R1,1
∆ + β1

(
D1,β1,0 + D1,β1,1

log(1/u1)

)∣∣∣

≤ K
(
g2 + uβ1

1 f
0
β1

+
u
β1
1 f1

β1
+f0

β1
+∆(β1−β2)/2f0

β2

log(1/u1)

)
.
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Hence, since f0
β1
(x)/f1

β1
(x) → 0 as |x| → ∞,

|R1,1
∆ | ≤ K(g2 + f1

β1
+ f1

β2
)

|x| ≥ Γ ⇒





|R1,1
∆ (x) + β1f

0
β1
(x)|

≤ f0
β1
(x)φ(1/Γ)

+
f1
β1

(x)

log(1/u1)
+K∆(β1−β2)/2

log(1/u1)
f0
β2
(x).

(B.55)

In the same way, we have
∣∣R2,1

∆ + β2Hu1(D
1,β2,0, hβ1)

∣∣

≤ K
(
T

2,hβ1
u1 +

Hu1 (f
1
β1
,hβ1

)

log(1/u2)
+ uβ2

2 Hu1(f
1
β2
, hβ1)

)

≤ K
(
g2 +

f1
β1

log(1/u2)
+ uβ2

2 f
1
β2

)
,

implying

|R2,1
∆ | ≤ K(g2 + f1

β1
+ f1

β2
)

|x| ≥ Γ ⇒
{ |R2,1

∆ (x) + β2f
0
β2
(x)|

≤ f0
β2
(x)φ(1/Γ) +

f1
β2

(x)

log(1/u2)
.

(B.56)

Some Useful Integrals Before proceeding to the proof of Theorem

5.25 we still need to study the behavior, as ∆ → 0, of integrals of the

following type (recall (B.52) for S′
∆):

Θβ,p∆,Γ =

∫

{|x|>Γ}

fpβ(x)
2

S′
∆(x)

dx, (B.57)

where as above p ∈ {0, 1} and β ∈ (β1/2, β1] and Γ > 3.

We will use the following (easy) property: for y ≥ 1 and y′ ∈ (y,∞],

ψpβ(y, y
′) =

∫
{y<|x|<y′}

fp
β (x)2

f0
β1

(x)
dx ∼ Ψpβ(y) =

2(log y)2p

(2β−β1)y2β−β1

as y → ∞, y′

y → ∞.
(B.58)

Since both functions h/f0
β1

and f0
β1
/f0
β2

are ultimately strictly decreasing,

for all u > 0 small enough there are unique numbers Lu and Mu such

that, with a given by (B.32),

|x| > Lu ⇔ f0
β1
(x) < auβ1

β1−β2
2−β1 f0

β2
(x),

|x| > Mu ⇔ h(x) < uβ1f0
β1
(x)

(B.59)

and of course the inequalities above become equalities when x = Lu and

x =Mu, respectively. The following properties are easy to check:

Lu =
1

a
1

β1−β2 u
β1

2−β1

, u→ 0 ⇒ Mu ∼
√
2β1 log(1/u). (B.60)
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Let µ ∈ (0, 1). If Mu1µ < |x| < Lu1/µ, (B.59) yields h(x) <

(u1µ)
β1f0

β1
(x) and uβ2

2 f
0
β2
(x) < µβ1(β1−β2)/(2−β1) uβ1

1 f
0
β1
(x), the latter

inequality using also (B.32) and a simple calculation. Thus if δ(µ) =

1 +
(
µβ1/β1 + β2µ

β1(β1−β2)/(2−β1)
)
/β1, and in view of the definition of

S′
∆, we get S′

∆(x) ≤ β1u
β1

1 δ(µ) f0
β1
(x). It follows that, for u1 (hence ∆)

small enough so that Mu1µ > Γ,

Θβ,p∆,Γ ≥
∫

{Mu1µ<|x|<Lu1/µ
}

fpβ(x)
2

S′
∆(x)

dx ≥ 1

δ(µ)

1

β1 u
β1

1

ψpβ(Mu1µ, Lu1/µ).

By (B.60) we have Lu1/µ/Mu1µ → ∞ for each µ, whereas

Ψpβ(Mu1µ)/Ψ
p
β(Mu1) → 1. Thus (B.58) and the fact that δ(µ) → 1 as

µ → 0 give

lim inf
∆→0

β1 u
β1

1

Ψpα(Mu1)
Θβ,p∆,Γ ≥ 1. (B.61)

On the other hand, let γ ∈ (0, 1). We have h(x) ≥ h(Mu1)
γ2

if |x| ≤
γMu1 , whereas S

′
∆ is bigger than both h and β1u

β1

1 f
0
β1
. Then we deduce

from (B.59) and α :=
∫
fpβ(x)

2 dx <∞ that

Θβ,p∆,Γ ≤
∫
{|x|≤γMu1}

fp
β (x)

2

h(x) dx+ 1

β1u
β1
1

∫
{|x|>γMu1}

fp
β (x)2

f0
β1

(x)
dx

≤ ψp
β(γMu1 ,∞)

β1u
β1
1

(1 + ψ′p
β (γ, u1)),

where

ψ′p
β (γ, u1) =

αβ1u
β1

1

ψpβ(γMu1 ,∞)h(Mu1)
γ2 =

αβ1u
(1−γ2)β1

1 M
γ2(1+β1)
u1

ψpβ(γMu1 ,∞)

(recall h(Mu1) = uβ1

1 /M
1+β1
u1

for u1 small enough, which

gives the last equality above). We deduce from (B.58) that

ψpβ(γMu1 ,∞)/Ψpβ(γMu1) → 1, and we draw two consequences: first,

ψ′p
β (γ, u1) ≍ uβ1

1 M
γ2(1+β1)+2β−β1
u1 /(logMu1)

2p, hence ψ′p
β (γ, u1) → 0 by

(B.60); second, we have

lim sup
∆→0

β1 u
β1

1

Ψpβ(Mγu1)
Θβ,p∆,Γ ≤ 1.

This holds for any γ ∈ (0, 1), whereas (B.58) again implies

Ψpβ(γMu1)/Ψ
p
β(Mu1) → 1/γ2β−β1. Hence, letting γ → 1 above, and com-

bining with (B.61), we obtain Θβ,p∆,Γ ∼ Ψpβ(Mu1)/β1u
β1

1 , as ∆ → 0. In

view of (B.58), and after some calculations, this leads us to

Θβ,p∆,Γ ∼ ψ
p

β(∆) := 21−2p cβ1/2

a1 β1(2β−β1)(2−β1)β−β1/2

× (log log(1/∆))2p

∆1−β1/2(log(1/∆))β−β1/2 .
(B.62)
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Proof of Theorem 5.25 We are finally in a position to prove the

result. We let Γ > 3 and i ∈ {1, 2} and l,m ∈ {0, 1}, and we write

γ
i,0 = β2

i and γi,1 = βi. Then, we set

J
i,lm

∆,Γ =

∫

{|x|≤Γ}

Ri,l∆ (x)Ri,m∆ (x)

S∆(x)
dx,

Li,lm∆,Γ =

∫

{|x|>Γ}

(Ri,l∆ (x) + γi,lf
0
βi
(x))(Ri,m∆ (x) + γi,mf

0
βi
(x))

S∆(x)
dx,

L
i,m

∆,Γ =

∫

{|x|>Γ}

f0
βi
(x)(Ri,m∆ (x) + γi,mf

0
βi
(x))

S∆(x)
dx,

and

M i,m
∆,Γ =

∫

{|x|>Γ}

fmβi
(x)2

S∆(x)
dx.

With this notation, we have by a simple calculation

J i,lm∆ = J
i,lm

∆,Γ + γi,lγi,mM
i,0
∆,Γ + Li,lm∆,Γ − γi,lL

i,m

∆,Γ − γi,mL
i,l

∆,Γ. (B.63)

Now, we proceed with some estimates. First, if we apply the estimates

(B.52)–(B.56), we see that for any Γ, and with CΓ as in (B.52), we have

sup
(Ri,l

∆ (x)Ri,m
∆ (x)

S∆(x) : ∆ < CΓ, |x| ≤ Γ
)
< ∞. Hence there is a constant

KΓ depending on Γ, such that

|J i,lm∆,Γ | ≤ KΓ for all ∆ small enough. (B.64)

Next, the Cauchy-Schwarz inequality yields

|Li,m∆,Γ| ≤
√
Li,mm∆,Γ M i,0

∆,Γ, |Li,lm∆,Γ | ≤
√
Li,ll∆,ΓL

i,mm
∆,Γ . (B.65)

Equation (B.52) yields |M i,m
∆,Γ − Θβi,m

∆,Γ | ≤ Θβi,m
∆,Γ (φ(1/Γ) + φ(∆)). Thus,

applying (B.62), we first deduce Θβi,m
∆,Γ → ∞, and therefore

lim
Γ→∞

lim sup
∆→0

∣∣∣
M i,m

∆,Γ

ψ
m

βi
(∆)

− 1
∣∣∣ = 0. (B.66)

Moreover, (B.53)–(B.56) yield

Li,mm∆,Γ ≤ M i,0
∆,Γ(φ(1/Γ) + ∆(β1−β2)/2) +

M i,m
∆,Γ

log(1/ui)
.

By (B.62), we have ψ
1

βi
(∆)/ψ

0

βi
(∆) log(1/ui) → 0. Hence by (B.66),

lim
Γ→∞

lim sup
∆→0

Li,mm∆,Γ

ψ
0

βi
(∆)

= 0.
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This and (B.64)–(B.66), plus lim∆→0 ψ
p

β(∆) = ∞, yield for all i,m, l

lim
Γ→∞

lim sup
∆→0

1

ψ
0

βi
(∆)

(|J i,lm∆,Γ |+ |Li,m∆,Γ|+ |Li,lm∆,Γ |) = 0.

At this stage, we use (B.63) to deduce J i,lm∆ ∼ γi,l γi,m ψ
0

βi
(∆) when

∆ → 0. This, combined with (B.33) and the definition (B.62), plus the

fact that vi → 2
βi(2−βi)

as ∆ → 0, yield all results in Theorem 5.25.

B.2 Proofs for Chapter 8

After an introductory part, we first prove a number of useful estimates

and then study some properties of the spot volatility estimators. Then

we proceed to the proofs for Subsections 8.3–8.5, in a somewhat different

order than in the main text.

B.2.1 Preliminaries

Below we assume at least (K-r) for some r ∈ [0, 2]. For the sake of clarity,

we recall the setting. We have the following structure, in matrix notation:

Xt = X0 +
∫ t
0 bs ds+

∫ t
0 σs dWs

+(δ1{‖δ‖≤1}) ⋆ (p− q)t + (δ1{‖δ‖>1}) ⋆ pt
σt = σ0 +

∫ t
0 b

(σ)
s ds+

∫ t
0 σ

(σ)
s dWs

+(δ(σ)1{‖δ(σ)‖≤1}) ⋆ (p− q)t + (δ(σ) 1{‖δ(σ)‖>1}) ⋆ pt
ct = c0 +

∫ t
0 b

(c)
s ds+

∫ t
0 σ

(c)
s dWs

+(δ(c) 1{‖δ(c)‖≤1}) ⋆ (p− q)t + (δ(c) 1{‖δ(c)‖>1}) ⋆ pt.

(B.67)

We emphasize that the third equation above follows by Itô’s formula

from the second one, and b(c), σ(c), δ(c) are deterministic functions of

σ, b(σ), σ(σ), δ(σ). We also recall the (integrated and spot) volatility of

the volatility c, and co-volatility between X and c:

C
(c)
t =

∫ t
0 c

(c)
s ds, c

(c),ij,i′j′

s =
∑d′

l=1 σ
(c),ij,l
s σ

(c),i′j′,l
s

C
(X,c)
t =

∫ t
0 c

(X,c)
s ds, c

(X,c),i,i′j′

s =
∑d′

l=1 σ
il
s σ

(c),i′j′,l
s .

(B.68)

We assume (K-r), or (KC), or (KCC), according to the case. How-

ever, by a “localization procedure” we can replace these assumptions by

strengthened ones, as explained on page 502. Upon using the notation

S = inf
(
t :
∫ t
0 b̂s ds = ∞

)
, where

b̂s =
∫
{‖δ(s,z)‖≤1} ‖δ(s, z)‖λ(dz)

t ∈ [0,∞) ∩ [0, S] ⇒ b′t = bt −
∫
{‖δ(t,z)‖≤1} δ(t, z)λ(dz),

(B.69)
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these assumptions, denoted as (SK-r), (SKC) and (SKCC), can be de-

scribed in terms of the coefficients of the first two equations of (B.67),

as follows :

Assumption (SK-r). We have (B.67), the processes b, b(σ), σ, σ(σ) are

bounded, as well as b̂t on {t ≤ S}; the processes σ(σ), and b when

r > 1, and b′ in restriction to [0, S] are càdlàg or càglàd; we have

‖δ(t, z)‖r ≤ J(z) and ‖δ(σ)(t, z)‖2 ≤ J(z) identically, where J is a

bounded nonnegative function on E with
∫
J(z)λ(dz) <∞.

Assumption (SKC). We have (SK-0) with δ identically vanishing, so

X is continuous.

Assumption (SKCC). We have (B.67), and δ, δ(σ) are identically van-

ishing, and b, b(σ) are bounded càdlàg or càglàd, and σ(σ) is bounded

càdlàg, and σ is bounded (of course continuous).

In the sequel, the constant K may change from line to line and may

depend on the bounds in the previous assumptions, but never on n or on

the various indices i, j, . . .; when it depends on an extra parameter p it

is denoted as Kp. We also use the shorthand notation Fn
i for Fi∆n .

Under (SK-r), and by (A.66), one may rewrite (B.67) as

Xt = X0 +
∫ t
0 bs ds+

∫ t
0 σs dWs + δ ⋆ (p− q)t

σt = σ0 +
∫ t
0 b

(σ)

s ds+
∫ t
0 σ

(σ)
s dWs + δ(σ) ⋆ (p− q)t

ct = c0 +
∫ t
0 b

(c)

s ds+
∫ t
0 σ

(c)
s dWs + δ(c) ⋆ (p− q)t.

(B.70)

Here, bt = bt +
∫
δ(t, z) 1{‖δ(t,z)‖>1} λ(dz), and likewise for b

(σ)

t and b
(c)

t .

Observe that we have (upon multiplying the function J by a constant)

‖bt‖+ ‖σt‖+ ‖b(σ)t ‖+ ‖σ(σ)
t ‖

+ ‖ct‖+ ‖b(c)t ‖+ ‖σ(c)
t ‖+ ‖c(X,c)t ‖ ≤ K,

‖δ(t, z)‖r + ‖δ(σ)(t, z)‖2 + ‖δ(c)(t, z)‖2 ≤ J(z).

(B.71)

When (SK-r) with r ≤ 1 holds, the process b′t of (B.69) is defined for all

times and bounded, and according to (A.6), we also have

Xt = X0 +

∫ t

0
b′s ds+

∫ t

0
σs dWs + δ ⋆ p

t
. (B.72)

We end this introduction with three general results. In the first two

we have a sequence kn ≥ 1 of integers satisfying kn∆n → 0.
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First, with any q-dimensional càdlàg bounded process Y we associate

the variables

ηni,j =
√

E(sups∈(0,j∆n] ‖Y(i−1)∆n+s − Y(i−1)∆n
‖2 | Fn

i−1),

ηni = ηni,1, η′ni = ηni,2kn .
(B.73)

Lemma B.1. For all i ≤ i′ < i + j ≤ i′ + 2kn we have E(ηni′,j |
Fn
i−1) ≤ 2η′ni , and for all t we have ∆nE

(∑[t/∆n]
i=1 η′ni

)
→ 0 and

∆nE
(∑[t/∆n]

i=1 ηni
)
→ 0.

Proof. The first claim follows from Cauchy-Schwarz inequality. For the

second one, setting γnt = sups∈(0,(2kn+1)∆n] ‖Yt+s − Ys‖2, we observe

that E((η′ni )2) is smaller than a constant always, and smaller than
1

∆n

∫ (i−1)∆n

(i−2)∆n
E(γns ) ds when i ≥ 2. Hence

∆nE
(∑[t/∆n]

i=1 η′ni
)

≤
√
t
(

E
(
∆n

∑[t/∆n]
i=1 (η′ni )2

))1/2

≤
√
t
(
K∆n + E

( ∫ t
0 γ

n
s ds

))1/2
.

We have γns ≤ K and the càdlàg property of Y yields that γns (ω) → 0

for all ω, and all s except for countably many strictly positive values

(depending on ω). Then, the second claim follows by the dominated con-

vergence theorem, and it clearly implies the third.

Lemma B.2. For any reals ani with |ani | ≤ L for all n, i, and any array

ξni of q-dimensional variables such that each ξni is Fn
i -measurable and

satisfies

‖E(ξni | Fn
i−1)‖ ≤ L′, E(‖ξni ‖q | Fn

i−1) ≤ Lq,

where q ≥ 2 and L,L′, Lq are constants, we have

∥∥∥E
( 2kn−1∑

j=1
anj ξ

n
i+j | Fn

i−1

)∥∥∥ ≤ LL′kn,

E
(∥∥∥

2kn−1∑
j=1

anj ξ
n
i+j

∥∥∥
q

| Fn
i−1

)
≤ Kq L

q(Lqk
q/2
n + L′qkqn).

Proof. Set ξ′ni = E(ξni | Fn
i−1) and ξ′′ni = ξni − ξ′ni , and also A′

n =∑2kn−1
j=1 anj ξ

′n
i+j and A′′

n =
∑2kn−1
j=1 anj ξ

′′n
i+j . We obviously have ‖A′

n‖ ≤
LL′kn, implying the first claim.

The variables ξ′′ni+j are martingale increments for the discrete-time fil-

tration (Fn
i+j)j≥0. Then Burkholder-Gundy and Hölder inequalities give
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us

E(‖Alnl′′‖q | Fn
i−1) ≤ Kq E

((∑2kn−1
j=0 ‖anj ξ′′ni+j‖2

)q/2
| Fn

i−1

)

≤ LqKq k
q/2−1
n E

(∑2kn−1
j=0 ‖ξ′′ni+j‖q | Fn

i−1

)
,

which, since E(‖ξ′ni+j‖q | Fn
i−1) ≤ E(‖ξni+j‖q | Fn

i−1), is smaller than

KqL
qLqk

q/2
n . The second claim readily follows.

Finally, we prove some estimates which are slightly finer than those in

Appendix A, for a q-dimensional continuous semimartingale of the form

Yt =

∫ t

0
bYs ds+

∫ t

0
σYs dWs.

Note that Y0 = 0 here. Here, W is a q′-dimensional Brownian motion,

with q′ arbitrary, and cY = σY σY ⋆. We assume that for some constant

A we have

‖bY ‖ ≤ A, ‖σY ‖ ≤ A. (B.74)

In connection with (B.73), we associate with any process Z the variables

η(Z)t =
√

E
(
sups≤t ‖Zs − Z0‖2 | F0

)
.

Lemma B.3. In the previous setting, and with the constant K below

only depending on A in (B.74), we have for t ∈ [0, 1]

∥∥E(Yt | F0)− t bY0
∥∥ ≤ t η(bY )t ≤ Kt∣∣E(Y jt Y mt | F0)− t cY,jm0

∣∣
≤ Kt(t+

√
t η(bY )t + η(cY )t) ≤ Kt.

(B.75)

If further

‖E(cYt − cY0 | F0)‖+ E(‖cYt − cY0 ‖2 | F0) ≤ At (B.76)

for all t, we also have

∣∣E(Y jt Y mt | F0)− t cY,jm0

∣∣ ≤ K t3/2(
√
t+ η(bY )t) ≤ Kt3/2. (B.77)

∣∣E
(
Y jt Y

k
t Y

l
t Y

m
t | F0

)

−t2(cY,jk0 cY,lm0 + cY,jl0 cY,km0 + cY,jm0 cY,kl0 )
∣∣ ≤ Kt5/2.

(B.78)

Proof. The first part of (B.75) follows by taking the F0-conditional ex-

pectation in the decomposition Yt =Mt+ tb
Y
0 +

∫ t
0 (b

Y
s −bY0 ) ds, whereM
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is a q-dimensional martingale with M0 = 0. For the second part, we de-

duce from Itô’s formula that Y jY m is the sum of a martingale vanishing

at 0, plus the process

bY,j0

∫ t
0Y

m
s ds+ bY,m0

∫ t
0 Y

j
s ds+

∫ t
0 Y

m
s (bY,js − bY,j0 ) ds

+
∫ t
0Y

j
s (b

Y,m
s − bY,m0 ) ds+ cY,jm0 t+

∫ t
0 (c

Y,jm
s − cY,jm0 ) ds.

Since E(‖Yt‖ | F0) ≤ K
√
t by (A.67) of Appendix A, we deduce both

the second part of (B.75) and (B.77) by taking again the conditional

expectation and by using the Cauchy-Schwarz inequality and the first

part.

For any indices j1, . . . , j4 Itô’s formula yields that, with M a martin-

gale vanishing at 0,

∏4
l=1 Y

jl
t = Mt +

∑p
l=1

∫ t
0 b

Y,jl
s

∏
1≤m≤p,m 6=l Y

jm
s ds

+ 1
2

∑
1≤l,l′≤d,l 6=l′ c

Y,jljl′
0

∫ t
0

∏
1≤m≤4,m 6=l,l′ Y

jm
s ds

+ 1
2

∑
1≤l,l′≤d,l 6=l′

∫ t
0 (c

Y,jljl′
s − c

Y,jljl′
0 )

×∏1≤m≤4,m 6=l,l′ Y
jm
s ds.

Again, we take the F0-conditional expectation; using E(‖Yt‖q | F0) ≤
Kq t

q/2 for all q ≥ 0 (see (A.67)) and (B.76), plus Fubini’s theorem and

the Cauchy-Schwarz inequality, one checks that the contribution of the

second and fourth terms on the right side above is smaller than Kt5/2.

For the third term we additionally use (B.77), and a simple calculation

yields (B.78).

B.2.2 Estimates for the Increments of X and c

In all this subsection we suppose X to be continuous, thus assuming at

least (SKC). The estimates of Appendix A give us for all q ≥ 0

E
(
supw∈[0,s] ‖Xt+w −Xt‖q | Ft

)
≤ Kq s

q/2,

‖E(Xt+s −Xt | Fs)‖ ≤ Ks,

E
(
supw∈[0,s] ‖ct+w − ct‖q | Ft

)
≤ Kq s

1∧(q/2),

‖E(ct+s − ct | Fs)‖ ≤ Ks.

(B.79)

This is unfortunately not enough for us, and we proceed to giving a series

of other estimates. For simpler notation later on, we define the following

multidimensional variables

ζ(1)ni = 1
∆n

∆n
i X∆n

i X
∗ − c(i−1)∆n

, ζ(2)ni = ∆n
i c, ζ(3)n,ji = ∆n

i X

ζ′(r)ni = E(ζ(r)ni | Fn
i−1), ζ′′(r)ni = ζ(r)ni − ζ′(r)ni
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and

αni = 1
kn

∑kn−1
j=0 ζ(1)ni+j ,

βni = 1
kn

∑kn−1
j=0 c(i+j−1)∆n

β
n

i = βni − c(i−1)∆n
= 1

kn

∑kn−1
j=0 (c(i+j−1)∆n

− c(i−1)∆n
)

= 1
kn

∑kn−1
j=0 (kn − j − 1) ζ(2)ni+j .

(B.80)

Here, kn is the sequence of integers used to construct the spot volatil-

ity estimators, and it either satisfies kn ∼ β/
√
∆n for some β > 0, or

kn
√
∆n → 0.

Estimates Under (SKCC) We first assume (SKCC), and set

ηni , η
′n
i associated by (B.73)

with the process Y = (b, b(c), σ(c), c(c), c(X,c)).
(B.81)

We apply (B.79) and also Lemma B.3 to the processes Yt =

X(i−1)∆n+t −X(i−1)∆n
or Yt = c(i−1)∆n+t − c(i−1)∆n

, to obtain

‖ζ′(1)ni ‖ ≤ K
√
∆n

(√
∆n + ηni

)
≤ K

√
∆n,

E(‖ζ(1)ni ‖q | Fn
i−1) ≤ Kq

‖ζ′(2)ni − b
(c)
(i−1)∆n

∆n‖+ ‖ζ′(3)ni − b(i−1)∆n
∆n‖

≤ K∆n

(√
∆n + ηni

)
≤ K∆n

E(‖ζ(2)ni ‖q | Fn
i−1) + E(‖ζ(3)ni ‖q | Fn

i−1) ≤ Kq∆
q/2
n

(B.82)

and also, with ζ(r)ni denoting either ζ(r)ni or ζ′′(r)ni :

∣∣E(ζ(1)n,jki ζ(1)n,lmi | Fn
i−1)

−(cjl(i−1)∆n
ckm(i−1)∆n

+ cjm(i−1)∆n
ckl(i−1)∆n

)
∣∣ ≤ K

√
∆n∣∣E(ζ(2)n,jl ζ(2)n,km | Fn

i−1)− c
(c),jl,km
(i−1)∆n

∆n

∣∣ ≤ K(∆2
n +∆

3/2
n ηni )∣∣E(ζ(3)n,ji ζ(3)n,ki | F (n)

i−1)− cjk(i−1)∆n
∆n

∣∣ ≤ K(∆2
n +∆

3/2
n ηni )∣∣E(ζ(2)n,jki ) ζ(3)n,li | Fn

i−1)− c
(X,c),jk,l
(i−1)∆n

∆n

∣∣ ≤ K(∆2
n +∆

3/2
n ηni )∣∣E(ζ(1)n,jki ) ζ(2)n,lmi ) | Fn

i−1)
∣∣ ≤ K∆n∣∣E(ζ(1)n,jki ) ζ(3)n,li | Fn

i−1)
∣∣ ≤ K∆n.

(B.83)

Finally, for any bounded martingale N which is orthogonal to W ,

and with the notation N∗n
t =

(
E(supt∈((i−1)∆n,i∆n] |Nt − N(i−1)∆n

|2 |
Fn
i−1)

)1/2
, and upon using Itô’s formula, one gets

∣∣E(ζ′′(1)n,jki ∆n
i N | Fn

i−1)
∣∣ ≤ K

√
∆nN

∗n
i∣∣E(ζ′′(2)n,jki ∆n

i N | Fn
i−1)

∣∣ ≤ K∆nN
∗n
i∣∣E(ζ′′(3)n,ji ∆n

i N | Fn
i−1)

∣∣ ≤ K∆nN
∗n
i ,

(B.84)
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whereas when N =W l is one of the components of W , we have instead

∣∣E(ζ′′(1)n,jki ∆n
iW

l | Fn
i−1)

∣∣ ≤ K∆n∣∣E(ζ′′(2)n,jki ∆n
iW

l | Fn
i−1)− σ

(c),jk,l
(i−1)∆n

∆n

∣∣ ≤ K∆n η
n
i∣∣E(ζ′′(3)n,ji ∆n

iW
l | Fn

i−1)− σjl(i−1)∆n
∆n

∣∣ ≤ K∆
3/2
n ,

(B.85)

Estimates Under (SKC) Here we no longer assume (SKCC), but

only (SKC). We set

ηni , η
′n
i associated by (B.73) with the process Y = b. (B.86)

Some of the estimates in (B.82) or (B.83) fail, but we now have the

following ones, for q ≥ 2:

‖ζ′(1)ni ‖ ≤ K
√
∆n

(√
∆n + ηni

)
,

E(‖ζ(1)ni ‖q | Fn
i−1) ≤ Kq

‖ζ′(2)ni ‖ ≤ K∆n,E(‖ζ(2)ni ‖q | Fn
i−1) ≤ Kq∆n∣∣E(ζ(1)n,jki ζ(1)n,lmi | Fn

i−1)

−(cjl(i−1)∆n
ckm(i−1)∆n

+ cjm(i−1)∆n
ckl(i−1)∆n

)
∣∣ ≤ K

√
∆n∣∣E(ζ(1)n,jki ) ζ(2)n,lmi ) | Fn

i−1)
∣∣ ≤ K∆n.

(B.87)

Recalling the definition of αni and β
n

i in (B.80), we then have:

Lemma B.4. Under (SKC) we have for all q ≥ 2

∥∥E(αni | Fn
i−1)

∥∥ ≤ K
√
∆n (

√
∆n + η′ni )∣∣E(αn,jki αn,lmi | Fn

i−1)− 1
kn

(cjl(i−1)∆n
ckm(i−1)∆n

+ cjm(i−1)∆n
ckl(i−1)∆n

)
∣∣

≤ K
√
∆n

(
1
kn

+ η′ni
)

E(‖αni ‖q | Fn
i−1) ≤ Kq

(
∆
q/2
n + k

−q/2
n

)
∣∣E
(
αn,jki β

n,lm

i | Fn
i−1)

∣∣ ≤ Kkn∆n∥∥E
(
β
n

i | Fn
i−1)

∥∥ ≤ Kkn∆n,

E
(
‖βni ‖q | Fn

i−1) ≤
{
Kq(kn∆n)

q/2 if c is continuous

Kqkn∆n otherwise.

Proof. The first claim above directly follows from (B.87). For the sec-

ond claim, we set ξni = cjl(i−1)∆n
ckm(i−1)∆n

+ cjm(i−1)∆n
ckl(i−1)∆n

and write

αn,jki αn,lmi as

1
k2n

∑kn−1
u=0 ζ(1)n,jki+u ζ(1)

n,lm
i+u

+ 1
k2n

∑kn−2
u=0

∑kn−1
v=u+1

(
ζ(1)n,jki+u ζ(1)

n,lm
i+v + ζ(1)n,lmi+u ζ(1)

n,jk
i+v

)
.
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By (B.87) and successive conditioning and the first part of Lemma B.1,

the Fn
i−1-conditional expectation of the last term above is smaller than

K
√
∆n (

√
∆n + η′ni ). The conditional expectation of the first term, up

to K
√
∆n /kn, is

1
k2n

∑kn−1
u=0 E(ξni+u | Fn

i−1). Using the boundedness of ct

and (B.79), we easily check that
∣∣E(ξni+u | Fn

i−1) − ξni
∣∣ ≤ Kkn∆n when

u ≤ kn, and the second claim follows.

For the third claim, we use (B.87) and Hölder’s inequality, plus

Burkholder-Gundy inequality applied to the martingale increments

ζ(1)′′ni+j . For the fourth claim, we use (B.87) and Hölder’s inequality

again, plus successive conditioning. The last two claims are obvious con-

sequences of (B.79).

B.2.3 Estimates for the Spot Volatility Estimators

Let us recall the spot volatility estimators, associated with the sequence

of integers kn and possibly a truncation sequence un > 0:

ĉ(kn)
jl
i = 1

kn∆n

kn−1∑
m=0

∆n
i+mX

j∆n
i+mX

l

ĉ(kn, un)
jl
i = 1

kn∆n

kn−1∑
m=0

∆n
i+mX

j∆n
i+mX

l 1{‖∆n
i+mX‖≤un}.

(B.88)

Since ĉ(kn)i − c(i−1)∆n
= β

n

i + αni , Lemma B.4 yields for q ≥ 2 and

under (SKC)

∥∥E(ĉ(kn)i − c(i−1)∆n
| Fn

i−1)
∥∥ ≤ K(

√
∆n + kn∆n)

E
(
‖ĉ(kn)ni − c(i−1)∆n

‖q | Fn
i−1

)

≤
{
Kq((kn∆n)

q/2 + k
−q/2
n ) if ct is continuous

Kq(∆
q/2
n + k

−q/2
n + kn∆n) otherwise.

(B.89)

Lemma B.5. Assume (SH-r) for some r ∈ [0, 2), and let X ′ be the

continuous Itô semimartingale equal to X − δ ⋆ (p − q) when r > 1 and

to X − δ ⋆ p if r ≤ 1. Let also ĉ′(kn)i be the non-truncated spot volatility

estimators associated with the process X ′. Then if un ≍ ∆̟
n with 0 <

̟ < 1
2 , for all q > 0 we have

E
(
‖ĉ(kn, un)i − ĉ′(kn)i‖q | Fn

i−1

)

≤
{

∆
(2q−r)̟−q+1
n ψn if q > 2r(1−r̟)

2+r−4r̟

Kq,ε∆
q 2−r

2r −ε
n if q ≤ 2r(1−r̟)

2+r−4r̟

(B.90)

(when q ≥ r we are in the first case above) for all ε > 0 and where ψn is

a sequence (depending on q) going to 0 as n→ ∞.
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Of course, for this result to have any interest at all, the exponents of

∆n in the right side should be positive, implying q < 1−r̟
1−2̟ .

Proof. By (B.79) applied to X ′ and (A.75) to X − X ′ we have for all

q > 0 and p ≥ r

E
(
‖∆n

i X
′‖q | Fn

i−1

)
≤ Kq∆

q/2
n ,

E
(
‖∆n

i (X−X′)‖p

up
n

∧
1 | Fn

i−1

)
≤ Kp∆

1−r̟
n ψn

with ψn as in the statement of the lemma (this sequence will change from

line to line, with always ψn → 0). On the other hand, for any x, y ∈ Rd

and u, v, q > 0 we have

∥∥ (x+ y)(x + y)⋆ 1{‖x+y‖>u} − xx⋆
∥∥q

≤ Kq,v

(
u2q

(‖y‖
u ∧ 1

)2q
+ ‖x‖quq

(‖y‖
u ∧ 1

)q
+ ‖x‖q(2+v)

uqv

)
.

Applying this with x = ∆n
i X

′ and y = ∆n
i (X −X ′), we deduce from the

previous estimates and Hölder’s inequality that, for some ε > 0 arbitrar-

ily small,

E
(∥∥(∆n

i X∆n
i X

∗) 1{‖∆n
i X‖≤un} − (∆n

i X
′∆n

i X
′∗)
∥∥q | Fn

i−1

∣∣
≤ Kq,ε,v

(
∆

(2q−r)̟+1
n ψn +∆

q
2+q̟+(1−r̟)(1∧ q

r )−ε
n +∆

q(1+ v
2 (1−2̟))

n

)
,

and the same is of course true if we condition with respect to Fn
i−j for

j > 1. Then it follows from (B.88) and Hölder’s inequality that the left

side of (B.90) is smaller than

Kq,ε,v

(
∆

(2q−r)̟+1−q
n ψn +∆

− q
2+q̟+(1−r̟)(1∧ q

r )−ε
n +∆

q v
2 (1−2̟)

n

)
.

The last summand above is negligible in front of the other two summands

if v is chosen large enough, and the second summand is negligible in front

of the first one when ε > 0 is small enough if and only if q > 2r(1−r̟)
2+r−4r̟ ,

and in particular when q ≥ r. This yields (B.90).

This lemma has the following important consequence:

Lemma B.6. If Theorem 8.20 holds under (SKC) and for the non-

truncated estimators ĉ(kn)
n
i , it also holds under (K-r) with r < 1 and for

the truncated estimators ĉ(kn, un)
n
i , as soon as un satisfies (8.50).

Proof. By localization we may and will assume (SK-r). We use the nota-

tion X ′ and ĉ′(kn)i of the previous lemma, and observe that X ′ satisfies

(SKC).
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By (8.49), we have

|g(ĉ(kn, un)i)− g(ĉ′(kn)i)|
≤ K(1 + ‖ĉ(kn, un)i‖+ ‖ĉ′(kn)i‖)p−1 ‖ĉ(kn, un)i − ĉ′(kn)i‖ ≤ Kξni

where

ξni = (1 + ‖ĉ′(kn)i‖)p−1 ‖ĉ(kn, un)i − ĉ′(kn)
n
i ‖+ ‖ĉ(kn, un)i − ĉ′(kn)

n
i ‖p.

Note that (B.89) implies E(‖ĉ′(kn)i‖q) ≤ Kq, since c is bounded. Hence,

since r < 1 < p we deduce from (B.90) and Hölder’s inequality that, for

all q > 1 and some sequence ψn → 0 depending on p and q,

E(ξni ) ≤
(
∆

(2q−r)̟−q+1
q

n +∆(2p−r)̟−p+1
n

)
ψn.

By taking q close enough to 1, the right side above is smaller than

∆
(2p−r)̟−p+1
n ψn. Therefore, if U

′
(∆n, g)

n
t is given by (8.48) with ĉ′(kn)i

instead of ĉ(kn, un)i, we have

E
(
|U ′

(∆n, g)
n
t − U ′(∆n, g)

n
t |
)
≤ t ψn∆

(2p−r)̟+1−p
n = o

( 1√
∆n

)
,

where the last part comes from (8.50). This shows the result for Theorem

8.20.

B.2.4 A Key Decomposition for Theorems 8.11 and

8.14

In this subsection we make the specific choice (8.26) for the sequence kn
of integers, that is,

kn ∼ β√
∆n

for some β ∈ (0,∞). (B.91)

Some Auxiliary Sequences We will prove both Theorems 8.11

and 8.14 together, and toward this aim we first introduce some useful

specific sequences of numbers. With m ∈ {0, . . . , 2kn − 1} and j, l ∈ Z

and u, v, u′, v′ ∈ {1, 2, 3} we set

ε(1)nm =

{
−1 if 0 ≤ m < kn
1 if kn ≤ m < 2kn,

ε(2)nm =
2kn−1∑
q=m+1

ε(1)nq = (m+ 1) ∧ (2kn −m− 1), ε(3)nm = 1

ynu,v =

{
3/2k3n if u, v ∈ {1, 2}
1/k2n otherwise

, znu,v =

{
1/∆n if u = v = 1

1 otherwise
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and

γ(u, v;m)nj,l = ynu,v

(l−m−1)∧(2kn−m−1)∑
q=0∨(j−m)

ε(u)nq ε(v)
n
q+m,

Γ(u, v)nm = γ(u, v;m)n0,2kn

H(u, v;u′v′)n = znu,u′ znv,v′
2kn−1∑
m=1

Γ(u, v)nm Γ(u′, v′)nm

which clearly satisfy (we never need the – trivial – case u = v = 3)

j ≤ m, l ≥ 2kn ⇒ γ(u, v;m)nj,l = Γ(u, v)nm
γ̃nu,v = supj,l,m |γ(u, v;m)nj,l|

≤





K if (u, v) = (2, 2), (2, 3), (3, 2)

K/kn if (u, v) = (1, 2), (2, 1), (1, 3), (3, 1)

K/k2n if (u, v) = (1, 1).

(B.92)

We also need, for m ∈ {0, . . . , kn − 1} and j, l ∈ Z and u, v ∈ {1, 2},
the numbers

ε(1)nm = 1, ε(2)nm = kn −m− 1,

γ(u, v;m)nj,l =
6
k4n

(l−m−1)∧(kn−m−1)∑
q=0∨(j−m)

ε(u)nq ε(v)
n
q+m,

which satisfy

|γ(u, v;m)nj,l| ≤





K/kn if (u, v) = (2, 2)

K/k2n if (u, v) = (1, 2), (2, 1)

K/k3n if (u, v) = (1, 1).

(B.93)

We need to compute the numbers Γ(u, v)nm: a tedious but elementary

calculation shows that they are as follows, when m ≤ kn − 1 and when

m ≥ kn (these two values being separated by ‖ below):

Γ(1, 1)nm = 6kn−9m
2k3n

‖ − 6kn−3m
2k3n

Γ(1, 3)nm = − m
k2n

‖ − 2kn−m
k2n

Γ(3, 1)nm = m
k2n

‖ 2kn−m
k2n

Γ(1, 2)nm = − 12knm−9m2+6kn−9m
4k3n

‖ − 3(2kn−m)(2kn−m−1)
4k3n

Γ(2, 1)nm = 12knm−9m2−6kn+9m
4k3n

‖ 3(2kn−m)(2kn−m+1)
4k3n

Γ(2, 2)nm =
4k3n−6knm

2+3m3+2kn−3m
4k3n

‖ (2kn−m)3−2kn+m
4k3n

Γ(2, 3)nm =
2k2n−m2+m

2k2n
‖ (2kn−m)(2kn−m+1)

2k2n

Γ(3, 2)nm =
2k2n−m2−m

2k2n
‖ (2kn−m)(2kn−m−1)

2k2n
.

This yields the following behavior ofH(u, v;u′; v′)n, as n→ ∞, stated for

(u, v) ≤ (u′, v′) only because of the obvious symmetry H(u, v;u′, v′)n =
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H(u′, v′;u, v)n (recall also (B.91)):

√
∆nH(u, v;u′, v′)n (B.94)

→





3/β3 if (u, v, u′, v′) = (1, 1, 1, 1)

3/4β if (u, v, u′, v′) = (1, 2, 1, 2), (2, 1, 2, 1)

5/8β if (u, v, u′, v′) = (1, 2, 1, 3), (2, 1, 3, 1)

2/3β if (u, v, u′, v′) = (1, 3, 1, 3), (3, 1, 3, 1)

151 β/280 if (u, v, u′, v′) = (2, 2, 2, 2)

151 β/240 if (u, v, u′, v′) = (2, 2, 2, 3), (2, 2, 3, 2)

23 β/30 if (u, v, u′, v′) = (2, 3, 2, 3), (2, 3, 3, 2), (3, 2, 3, 2)

0 otherwise.

The Decomposition Recall (SKCC) and d = 1. We have

ĉ(kn)i = c(i−1)∆n
+ 1

kn

kn−1∑
j=0

2∑
u=1

ε(u)nj ζ(u)
n
i+j

ĉ(kn)i+kn − ĉ(kn)i =
1
kn

2kn−1∑
j=0

2∑
u=1

ε(u)nj ζ(u)
n
i+j

X(i+2kn−1)∆n
−X(i−1)∆n

=
2kn−1∑
j=0

ε(3)nj ζ(3)
n
i+j .

Thus

(ĉ(kn)i)
2 = (c(i−1)∆n

)2 +
2c(i−1)∆n

kn

2∑
u=1

kn−1∑
j=0

ε(u)nj ζ(u)
n
i+j

+ 1
k2n

2∑
u,v=1

( kn−1∑
j=0

ε(u)nj ε(v)
n
j ζ(u)

n
i+j ζ(v)

n
i+j

+2
kn−2∑
j=0

kn−1∑
l=j+1

ε(u)nj ζ(u)
n
i+j ε(v)

n
l ζ(v)

n
i+l

)

(ĉ(kn)i+kn − ĉ(kn)i)
2 = 1

k2n

2∑
u,v=1

( 2kn−1∑
j=0

ε(u)nj ε(v)
n
j ζ(u)

n
i+j ζ(v)

n
i+j

+2
2kn−2∑
j=0

2kn−1∑
l=j+1

ε(u)nj ζ(u)
n
i+j ε(v)

n
l ζ(v)

n
i+l

)

(ĉ(kn)i+kn − ĉ(kn)i)(X(i+2kn−1)∆n
−Xn

(i−1)∆n
)

= 1
kn

2∑
u=1

( 2kn−1∑
j=0

ε(u)nj ε(3)
n
j ζ(u)

n
i+j ζ(3)

n
i+j

+
2kn−2∑
j=0

2kn−1∑
l=j+1

(
ε(u)nj ζ(u)

n
i+j ε(3)

n
l ζ(3)

n
i+l

+ ε(3)nj ζ(3)
n
i+j ε(u)

n
l ζ(u)

n
i+l

))
.
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Then we set, with the convention
∑a′

i=a = 0 when a > a′,

A(0)nt = 6
k2n

[t/∆n]−2kn+1∑
i=1

(c(i−1)∆n
)2,

A(1;u)nt = 12
k3n

[t/∆n]−2kn+1∑
i=1

c(i−1)∆n

kn−1∑
j=0

ε(u)nj ζ(u)
n
i+j

A(2;u, v)nt =
[t/∆n]−kn∑

i=1
γ(u, v; 0)i−1−[t/∆n],i ζ(u)

n
i ζ(v)

n
i

A(3;u, v)nt =
[t/∆n]−kn∑

i=2

( (i−1)∧(kn−1)∑
m=1

γ(u, v;m)ni−1−[t/∆n],i
ζ(u)ni−m

)
ζ(v)ni

and

ρ(u, v)ni =
2kn−1∑

m=1

Γ(u, v)nm ζ(u)
n
i−m, Z(u, v)nt =

[t/∆n]∑

i=2kn

ρ(u, v)ni ζ
′′(v)ni

A(1;u, v)nt = Γ(u, v)n0

[t/∆n]∑
i=1

ζ(u)ni ζ(v)
n
i

A(2;u, v)nt =
[t/∆n]∑
i=1

(
γ(u, v; 0)i+2kn−1−[t/∆n],i − Γ(u, v)n0

)
ζ(u)ni ζ(v)

n
i

A(3;u, v)nt =
[t/∆n]∑
i=2

( (i−1)∧(2kn−1)∑
m=1

γ(u, v;m)ni−1+2kn−[t/∆n],i
ζ(u)ni−m

−ρ(u, v)ni 1{i≥2kn}
)
ζ(v)ni

A(4;u, v)nt =
[t/∆n]∑
i=2kn

ρ(u, v)ni ζ
′(v)ni .

If we do the appropriate changes of order of summations, and after

some tedious computations, we arrive at the following decompositions for

the estimators Ĉ(c)
n

T and Ĉ(X,c)
n

T given by (8.27) and (8.36):

Ĉ(c)
n

T = AnT + UnT −A
n

T , Ĉ(X,c)
n

T = A′n
T + U ′n

T , (B.95)

where

An =
2∑

u,v=1

(
A(1;u, v)n +A(2;u, v)n + 2A(3;u, v)n + 2A(4;u, v)n

)

A
n
= A(0)n +

2∑
u=1

A(1;u)n +
2∑

u,v=1

(
A(2;u, v)n + 2A(3;u, v)n

)

A′n =
2∑

u=1

(
A(1;u, 3)n +A(2;u, 3)n +A(3;u, 3)n

+A(3; 3, u)n +A(4;u, 3)n +A(4; 3, u)n
)

Un = 2
2∑

u,v=1
Z(u, v)n, U ′n =

2∑
u=1

(
Z(u, 3)n + Z(3, u)n

)
.
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The Negligible Terms The aim of this part is to show the following

negligibility result.

Proposition B.7. Under (SKCC), and for all t, both 1

∆
1/4
n

(Ant −A
n

t −
C

(c)
t ) and 1

∆
1/4
n

(A′n
t − C

(X,c)
t ) go to 0 in probability.

We first recall a simple criterion for asymptotic negligibility of a tri-

angular array:

Lemma B.8. If mn, ln ≥ 1 are arbitrary integers, and if for all n ≥ 1

and 1 ≤ i ≤ mn the variable ξni is Fn
i+ln

-measurable, we have

∑mn

i=1 |E(ξni | Fn
i−1)|

P−→ 0

ln
∑mn

i=1 E(|ξni |2) −→ 0

}
⇒ sup

j≤mn

∣∣∣
j∑

i=1

ξni

∣∣∣ P−→ 0. (B.96)

Proof. With the convention ξni = 0 when i > mn, we set

ξ′ni = E(ξni | Fn
i−1), ξ′′ni = ξni − ξ′ni ,

An =
mn∑
i=1

|ξ′ni |,

M(k)ni =
i∑

j=0
ξ′′nk+lnj , M(k)n = supi≤[(mn−k)/ln] |M(k)ni |,

so

sup
j≤mn

∣∣∣
j∑

i=1

ξni

∣∣∣ ≤ An +
ln∑

k=1

M(k)n.

The first condition in (B.96) implies An
P−→ 0. On the

other hand, each sequence M(k)n is a martingale, relative to the

discrete-time filtration (Fn
k+iln

)i≥0, hence Doob’s inequality gives

us E(|M(k)n|2) ≤ 4
∑[(mn−k)/ln]
j=0 E(|ξ′′nk+lnj |2), which in turn is

smaller than 4
∑[(mn−k)/ln]
j=0 E(|ξnk+lnj |2). Since E

(∣∣∑ln
k=1M(k)n

∣∣2) ≤
ln
∑ln
k=1 E

(
M(k)n|2

)
, the second condition in (B.96) yields that this ex-

pectation goes to 0, and this completes the proof.

We also state the following consequence of Lemma B.2 and (B.82). If

the ani ’s are reals, all bounded by some constant L, then for all q ≥ 2 we

have (recall kn
√
∆n ≤ K)

E
(∣∣∣

2kn−1∑

j=0

anj ζ(u)
n
i+j

∣∣∣
q)

≤
{
KqL

q k
q/2
n if u = 1

KqL
q/k

q/2
n if u = 2, 3.

(B.97)
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Proof of Proposition B.7. Step 1. We first study the “non-trivial” terms

A(1; 1, 1)n, A(1; 2, 2)n, A(1; 2, 3)n and A(0)n. First, Γ(2, 2)n0 = 1+

O(1/k2n) and Γ(2, 3)n0 = 1, hence the CLT for the approximate quadratic

variation of the process (X, c), see Theorem A.15, yields

1

∆
1/4
n

(
A(1; 2, 2)n − C(c)

) u.c.p.
=⇒ 0,

1

∆
1/4
n

(
A(1; 2, 3)n − C(X,c)

) u.c.p.
=⇒ 0.

Next, Theorem 10.3.2 of [JP] for the function F ((x, y), (x′, y′)) = (x′2 −
y)2 and the process (X, c), plus Γ(1, 1)n0 = 3/k2n, yield (with C(4)t =∫ t
0 (cs)

2 ds being the quarticity)

1

∆
1/4
n

(k2n∆nA(1; 1, 1)
n
t − 6C(4)t)

u.c.p.
=⇒ 0.

Finally, since c satisfies (HC), Theorem 6.1.2 of [JP] yields

1

∆
1/4
n

(k2n∆n A(0)
n
t − 6C(4)t)

u.c.p.
=⇒ 0.

In view of these and of the definition of An, A
n
and A′n, it remains

to prove
1

∆
1/4
n

Bnt
P−→ 0 (B.98)

in the cases

(a) Bn = A(1;u)n, u = 1, 2

(b) Bn = A(j;u, v)n, j = 2, 3, u = 1, 2, v = 1, 2

(c) Bn = A(1;u, v)n, (u, v) = (1, 2), (2, 1), (1, 3)

(d) Bn = A(j;u, v)n, j = 2, 3, 4, all (u, v) except (u, v) = (3, 3).

Step 2. Here we consider case (a) in (B.98). The variable χni =∑kn−1
j=0 ε(u)nj ζ(u)

n
i+j is Fn

i+kn
-measurable, and by (B.82) and (B.97) it

satisfies for both u = 1, 2

|E(χni | Fn
i−1)| ≤ K, E(|χni |2 | Fn

i−1)| ≤ Kkn.

The result readily follows from (B.96) applied to the array ξni =
12

k3n∆
1/4
n

c(i−1)∆n
χni .

Step 3. Here we prove (B.98) in case (b), first when j = 2.

Upon using (B.82) and (B.93), we see that the variable ξni =

γ(u, v; 0)i+kn−1−[t/∆n],i ζ(u)
n
i ζ(v)

n
i has E(|ξni |) ≤ K/k3n for all u, v = 1, 2,

and E(|Bnt |) ≤ Kt
√
∆n follows, implying (B.98).
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Next suppose j = 3, and denote by χni the ith summand in the sum

defining A(3;u, v)nt , which is Fn
i -measurable. By (B.82), (B.93) and suc-

cessive conditioning one gets for all u, v = 1, 2:

E
(∣∣E(χni | Fn

i−1)
∣∣) ≤ K∆3/2

n , E(|χni |2) ≤ K∆5/2
n ,

and (B.98) follows from (B.96) applied to the array ξni = χni /∆
1/4
n .

Step 4. Here we consider case (c), say for (u, v) = (1, 2). As in step

1, Theorem 10.3.2 of [JP] applied to the process (X, c) and the func-

tion F ((x, y), (x′, y′)) = (x′2−y)y′ implies that
√
∆n

∑[t/∆n]
i=1 ζ(1)ni ζ(2)

n
i

converges in law to some limiting process. Since Γ(1, 2)n0 = −3/2k2n, we

deduce that Bn satisfies (B.98). A similar argument shows the result for

(u, v) = (2, 1), (1, 3).

Step 5. Here we prove (B.98) in case (d), when j = 2. By the first part of

(B.92) all summands in Bnt vanish, except for 4kn − 2 of them, namely

those for i between 1 and 2kn − 1, and between [t/∆n] − 2kn + 2 and

[t/∆n], and for the summands which are non-vanishing the coefficient in

front of ζ(u)ni ζ(v)
n
i is smaller than γ̃nu,v. In view of (B.92) and (B.82),

it follows (using the Cauchy-Schwarz inequality when u 6= v) that in all

cases E
(
|Bnt |

)
≤ K

√
∆n, and (B.98) follows.

Step 6. Next, we prove (B.98) in case (d), when j = 3. As above, all

summands in Bnt vanish, except for 4kn − 2 values of i. Below we treat

only the first 2kn − 1 summand (for simplicity of notation), but the last

2kn − 2 are treated analogously. We can rewrite the sum of these first

summands as

B
n,(1)
t =

(2kn−1)∧([t/∆n]∑

i=1

χni , χni = δni ζ(v)
n
i , δni =

i−1∑

m=1

ani,m ζ(u)
n
i−m,

where the ani,m are reals such that |ani,m| ≤ 2γ̃nu,v, and of course depend

on (u, v). We can then apply (B.97) with L = 2γ̃nu,v and (B.92) to get

E(|δni |p) ≤
{
Kp/k

3p/2
n if v = 1

Kp/k
p/2
n if v = 2, 3.

(B.99)

Moreover δni is Fn
i−1-measurable, so (B.82) yields

E
(∣∣E(χni | Fn

i−1)
∣∣) ≤ K∆5/4

n , E(|χni |2) ≤ K∆3/2
n ,

and B
n,(1)
t

P−→ 0 follows from (B.96) applied with mn = 2kn − 1 and

ln = 1 and ξni = χni /∆
1/4
n .
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Step 7. Finally, we show (B.98) in Case (d), when j = 4. Exactly as for

(B.99), we have

E(|ρ(u, v)ni |p | Fn
i−2kn) ≤

{
Kp/k

3p/2
n if v = 1

Kp/k
p/2
n if v = 2, 3.

(B.100)

In view of (B.82), we have for u = 1, 2, 3:

E
(
|A(4;u, 1)nt |

)
≤ K∆5/4

n E
( [t/∆n]∑

i=1

(
√
∆n + ηni

)
.

By Lemma B.1, this implies A(4;u, 1)nt /∆
1/4
n

P−→ 0.

Now, let v = 2, 3. If V (2) = b(c) and V (3) = b, and using (B.82) and

the first part of Lemma B.1, we see that E(|ζ′(v)ni −V (v)(i−2kn)∆n
∆n|2 |

Fn
i−2kn

) ≤ K(∆nη
′n
i−2kn+1)

2. Then the Cauchy-Schwarz inequality and

(B.100) for p = 2, plus Lemma B.1, yield

E
(∣∣∣ 1

∆
1/4
n

[t/∆n]∑
i=2kn

ρ(u, v)ni
(
ζ′(v)ni − V (v)

(n)
(i−2kn)∆n

∆n

)∣∣∣
)

≤ K∆n E
( [t/∆n]∑
i=2kn

(√
∆n + η′ni

))
→ 0.

Observe that ∆
3/4
n
∑[t/∆n]
i=2kn

ρ(u, v)ni V (v)(i−2kn)∆n
= Gn +Mn, where

ξni,t =
[t/∆n]−i)∧(2kn−1)∑
m=(2kn−i)∨1

Γ(u, v)nm V (s)(i+m−2kn)∆n

Gnt = ∆
3/4
n

[t/∆n]−1∑
i=1

ξni,t ζ
′(u)ni , Mn

t = ∆
3/4
n

[t/∆n]−1∑
i=1

ξni,t ζ
′′(u)ni .

We have |ξni,t| ≤ Kknγ̃
n
u,v, so (B.82) and (B.92) yield E(|ξni,t ζ′(u)ni |) ≤

K
√
∆n in all cases, and Gnt

P−→ 0 follows. On the other hand, ξni,t is Fn
i−1-

measurable, hence Doob’s inequality and (B.82) and (B.92) again yield

E
(
sups≤t |Mn

s |2
)
≤ Kt

√
∆n → 0 in all cases. The proof is complete.

B.2.5 Proof of Theorems 8.11 and 8.14 and Remark

8.15

Scheme of the Proof In view of (B.95) and Proposition B.7, we are

left to prove a CLT for the processes Un and U ′n. To this end, suppose

that we have proved the following (joint) stable convergence in law, where

(u, v) runs through the set P = {1, 2, 3}2\{(3, 3)}:
( 1

∆
1/4
n

Z(u, v)n
)
(u,v)∈P

L−s
=⇒ Z = (Z(u, v))(u,v)∈P , (B.101)
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where Z is defined on a very good extension (Ω̃, F̃ , (F̃t), P̃) of

(Ω,F , (Ft),P) and is, conditionally on F , a continuous centered Gaussian

martingale with covariance structure

Ẽ(Z(u, v)t Z(u
′, v′)t | F) = G(u, v;u′, v′)t

=

∫ t

0
g(u, v;u′, v′)s ds, (B.102)

where the process g(u, v;u′, v′) is given in the following display:

g(u, v;u′, v′)t =



12
β3 (ct)

4 if (u, v;u′, v′) = (1, 1; 1, 1)
3
2β (ct)

2c
(c)
t if (u, v;u′, v′) = (1, 2; 1, 2), (2, 1; 2, 1)

151β
280 (c

(c)
t )2 if (u, v;u′, v′) = (2, 2; 2, 2)

5
4β (ct)

2c
(X,c)
t if

{
(u, v;u′, v′) = (1, 2; 1, 3),

(2, 1; 3, 1), (1, 3; 1, 2), (3, 1; 2, 1)
4
3β (ct)

3 if (u, v;u′, v′) = (1, 3; 1, 3), (3, 1; 3, 1)

151β
240 c

(c)
t c

(X,c)
t if

{
(u, v;u′, v′) = (2, 2; 2, 3),

(2, 2; 3, 2), (2, 3; 2, 2), (3, 2; 2, 2)
23β
30 c

(c)
t ct if (u, v;u′, v′) = (2, 3; 2, 3), (3, 2; 3, 2)

23β
30 (c

(X,c)
t )2 if (u, v;u′, v′) = (2, 3; 3, 2)

0 otherwise.

(B.103)

Indeed, suppose that (B.101) holds. We thus have (8.28) and (8.37)

with

U (C(c))
T = 2

2∑

u,v=1

Z(u, v)T , U (C(X,c))
T =

2∑

u=1

(Z(u, 3)T + Z(3, u)T ).

Then both U (C(c))
T and U (C(X,c))

T are, conditionally on F , centered Gaus-

sian variables with variances given by (8.29) and (8.38), respectively, as a

simple calculation shows: thus both Theorems 8.11 and 8.14 are proved,

and Remark 8.15 as well.

We are thus left to prove (B.101). We have

1

∆
1/4
n

Z(u, v)nt =

[t/∆n]∑

i=2kn

ξ(u, v)ni , ξ(u, v)ni =
1

∆
1/4
n

ρ(u, v)ni ζ
′′(v)ni ,

and the ξ(u, v)ni are martingale increments, relative to the discrete time

filtration (Fn
i ). Then, using a standard criterion for the stable conver-

gence of triangular arrays of martingale increments (see e.g. Theorem
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2.2.15 of [JP]), in order to obtain the convergence (B.101), it suffices to

prove the following three properties: for all t > 0, all (u, v), (u′, v′) ∈ R,

and all martingales N which are either bounded and orthogonal to W ,

or equal to one component W j :

G(u, v;u′, v′)nt :=

[t/∆n]∑

i=2kn

E
(
ξ(u, v)ni ξ(u

′, v′)ni | Fn
i−1

)

P−→ G(u, v;u′, v′)t (B.104)

[t/∆n]∑

i=2kn

E
(
|ξ(u, v)ni |4 | Fn

i−1

) P−→ 0 (B.105)

B(N ;u, v)nt :=

[t/∆n]∑

i=2kn

E
(
ξ(u, v)ni ∆

n
i N | Fn

i−1

) P−→ 0. (B.106)

The property (B.105) is simple. If we combine (B.82) and (B.100), by

successive conditioning, we see that E
(
|ξ(u, v)ni |4) ≤ K∆2

n in all cases,

obviously implying (B.105).

Proof of (B.106) When N is a bounded martingale orthogonal to

W , we apply the estimates (B.84), successive conditioning, and (B.100),

to get

E
(
|B(N ;u, v)nt |

)
≤ K∆n

[t/∆n]∑

i=1

E(N∗n
i ).

Doob’s inequality yields (N∗n
i )2 ≤ 4E((∆n

i N)2 | Fn
i−1

)
, hence by the

Cauchy-Schwarz inequality

E
(
|B(N ;u, v)nt |

)
≤ K

√
t∆n

(
E
( [t/∆n]∑

i=1
(∆n

i N)2
))1/2

= K
√
t∆n

(
E([N,N ]∆n[t/∆n]

)1/2
.

Since N is a bounded martingale, E([N,N ]t) ≤ K for all t, and (B.106)

follows.

We now turn to the case N = W j for some j = 1, . . . , d′, and we

will essentially reproduce step 7 of the proof of Proposition B.7, with a

different meaning for the notation V (v). Namely, we set V (1) = 0 and

V (2) = σ(c),j and V (3) = σj and also

B′(N ;u, v)nt = ∆3/4
n

[t/∆n]∑

i=2kn

ρ(u, v)ni V (v)(i−2kn−1)∆n
.
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Then (B.85) and the property

E((V (v)i∆n − V (v)(i−2kn−1)∆n
)2 | Fn

i−2kn−1) ≤ K(∆n + (η′ni−2kn−1)
2),

plus again (B.100), the Cauchy-Schwarz inequality and Lemma B.1, yield

E
(
|B(N ;u, v)nt −B′(N ;u, v)nt |

)
≤ K∆n E

( [t/∆n]∑

i=1

η′ni
)

→ 0.

Moreover,B′(N ;u, 1)n ≡ 0, so it remains to show that B′(N ;u, v)nt
P−→ 0

when v = 2, 3. This is proved as in Step 7 of the proof of Proposition

B.7, since here B′(N ;u, v)n,δ is exactly Gn +Mn there (the processes

V (s) are different but still bounded).

Proof of (B.104) We fix the two pairs (u, v) and (u′, v′) and begin

with a reduction of the problem, in the same spirit as in the previous

proof. Set

Vt =





2(ct)
2 if (v, v′) = (1, 1)

c
(c)
t if (v, v′) = (2, 2)

c
(X,c)
t if (v, v′) = (2, 3), (3, 2)

ct if (v, v′) = (3, 3)

0 otherwise

and

V t =





2(ct)
2 if (u, u′) = (1, 1)

c
(c)
t if (u, u′) = (2, 2)

c
(X,c)
t if (u, u′) = (2, 3), (3, 2)

ct if (u, u′) = (3, 3)

0 otherwise.

Recall that znv,v′ is 1/∆n if v = v′ = 1 and is 1 otherwise. Then, with

the notation

G
n

t = znv,v′
√
∆n

[t/∆n]∑

i=2kn

ρ(u, v)ni ρ(u
′, v′)ni V(i−1)∆n

,

we deduce from (B.83) and (B.100) that

E(|G(u, v;u′, v′)nt −G
n

t |) ≤ Kt
√
∆n.

So it remains to prove that G
n

t
P−→ G(u, v;u′, v′)t, and the only non-

trivial cases are when (v, v′) = (1, 1), (2, 2), (2, 3), (3, 2), (3, 3), since oth-

erwise these processes are identically vanishing.
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A further reduction is amenable. Namely, set

G
′n
t = znv,v′

√
∆n

[t/∆n]∑

i=2kn

ρ(u, v)ni ρ(u
′, v′)ni V(i−2kn)∆n

. (B.107)

We have E(|V(i−1)∆n
− V(i−2kn)∆n

|2) ≤ KE(∆n + (η′ni−2kn
)2). Then,

Lemma B.1 and (B.100) and the Cauchy-Schwarz inequality yield

E(|Gnt −G
′n
t |) ≤ K

√
t
(
∆n

[t/∆n]∑

i=1

E
(
(η′ni )2

))1/2
→ 0.

So we are left to show that for (v, v′) = (1, 1), (2, 2), (2, 3), (3, 2), (3, 3),

we have

G
′n
t

P−→ G(u, v;u′, v′)t. (B.108)

In view of (B.107) we need to express the product ρ(u, v)ni ρ(u
′, v′)ni

in a more tractable way. We have

G
′n
t =

3∑
j=1

Ĝ(j)nt , Ĝ(j)nt = znv,v′
√
∆n

[t/∆n]∑
i=2kn

ρ̂(j)ni V(i−2kn)∆n

ρ̂(1)ni =
2kn−1∑
m=1

Γ(u, v)nm Γ(u′, v′)nm ζ(u)
n
i−m ζ(u

′)ni−m

ρ̂(2)ni =
2kn−2∑
m=1

Γ(u, v)nm ζ(u)
n
i−m

2kn−1∑
m′=m+1

Γ(u′, v′)nm′ ζ(u′)ni−m′

ρ̂(3)ni =
2kn−2∑
m′=1

Γ(u′, v′)nm′ ζ(u′)ni−m′

2kn−1∑
m=m′+1

Γ(u, v)nm ζ(u)
n
i−m.

Observe that Ĝ(2)nt =
∑[t/∆n]−1
i=2 ξni ζ(u)

n
i , where

ξni = znv,v′
√
∆n

([t/∆n]−i)∧(2kn−2)∑
m=1∨(2kn−i)

Γ(u, v)nm V(i+m−2kn)∆n

×
2kn−1∑
m′=m+1

Γ(u′, v′)nm′ ζ(u′)ni−m′

is Fn
i−1-measurable. Then

∑2kn−1
m′=m+1 Γ(u

′, v′)nw′ ζ(u′)ni−m′ satisfies (B.97)

with L = γ̃nu′,v′ and u′ instead of u, whereas Vt is bounded, hence we

obtain for p = 1, 2, and with a = 1/2 if u′ = 1 and a = −1/2 when

u′ ≥ 2, that E(|ξn, |p) ≤ Kp(z
n
s,s′ γ̃

n
u,vγ̃

n
u′,v′k

a
n)
p. An examination of all

possible cases (recall that (v, v′) = (1, 1), (2, 2), (2, 3), (3, 2)) leads us to

E(|ξni |p) ≤
{
K∆

3p/4
n if u = 1

K∆
p/4
n if u = 2, 3.
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If we combine this with (B.82), plus the martingale increment property

of ζ′′(u)ni , we obtain by our usual argument

E
(∣∣∣
∑[t/∆n]−1
i=2 ξni ζ

′(u)ni

∣∣∣
)
→ 0,

E
(∣∣∣
∑[t/∆n]−1
i=2 ξni ζ

′′(u)ni

∣∣∣
2)

→ 0.

Therefore Ĝ(2)nt
P−→ 0, and the property Ĝ(3)nt

P−→ 0 is obtained in

exactly the same way.

At this stage it remains to prove that Ĝ(1)nt
P−→ G(u, v;u′, v′)t. Let-

ting now ξni = ζ(u)ni ζ(u
′)ni and ξ′ni = E(ξni | Fn

i−1) and ξ
′′n
i = ξni − ξ′ni ,

we have

Ĝ(1)n = Ĝ′n + Ĝ′′n, Ĝ′n
t =

|t/∆n]−1∑
i=1

µni,t ξ
′n
i , Ĝ′′n

t =
|t/∆n]−1∑
i=1

µni,t ξ
′′n
i

with

µni,t = znv,v′
√
∆n

[t/∆n]−i)∧(2kn−1)∑
w=1∨(2kn−i)

Γ(u, v)nm Γ(u′, v′)nw V(i+m−2kn)∆n
.

It thus suffices to show that

Ĝ′n
t

P−→ G(u, v;u′, v′)t, Ĝ′′n
t

P−→ 0. (B.109)

We observe that µni,t is Fn
i−1-measurable and

|µni,t| ≤ Kznv,v′ γ̃
n
u,vγ̃

n
u′,v′ ≤





K∆n if u = u′ = 1

K
√
∆n if u ∧ u′ = 1 < u ∨ u′

K if u, u′ ≥ 2.

(B.110)

In view of (B.82) and the martingale increment property of ξ′′ni , we de-

duce E((Ĝ′′n
t )2) ≤ Kt∆n in all cases, implying the second part of (B.109).

For the first part of (B.109) we use (B.83) and (B.110) and our usual

argument (as above for Ĝ(2)nt ) to obtain E(|Ĝ′n
t − Ĝnt |) → 0 in all cases,

where

Ĝnt = ∆n

|t/∆n]−1∑
i=1

µni,t V(i−1)∆n
V (i−1)∆n

,

µni,t = znv,v′z
n
u,u′

√
∆n

([t/∆n]−i)∧(2kn−1)∑
m=1∨(2kn−i)

Γ(u, v)nm Γ(u′, v′)nm.

We have |µni,t| ≤ Kznv,v′z
n
u,u′ γ̃nu,vγ̃

n
u′,v′ , which is bounded by (B.84). We

also have the equality µni,t =
√
∆nH(u, v;u′, v′)n except when i ≤ 2kn−2

or i ≥ [t/∆n]−2kn+2. Therefore, in view of (B.94), in which the limit is

denoted byH(u, v;u′, v′), and by Riemann integration, we obtain (B.109)

with G(u, v, u′, v′)t = H(u, v;u′, v′)
∫ t
0 Vs V s ds, and the proof of (B.104)

is complete.
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B.2.6 Proof of Theorems 8.12 and 8.17

As for all standardized CLTs, and on the basis of Theorems 8.11 and

8.14, it is enough to prove the two convergences (8.33) and (

Below, we use the notation (8.31), and also ∆′n
i c = ciknln∆n −

c(i−1)knln∆n
and ∆′

n = knln∆n, and we set

H(j)n = (B.111)




1
(∆′

n)
3

∑[T/knln∆n]−2
i=1 (∆′n

i X)4 (∆′n
i+1X)4 if j = 1

1
(∆′

n)
2

∑[T/knln∆n]−2
i=1 (∆′n

i X)4 (∆′n
i+1ĉ)

2 if j = 2
1

∆′
n

∑[T/knln∆n]−2
i=1 (∆′n

i ĉ)
2 (∆′n

i+1ĉ)
2 if j = 3

1
(∆′

n)
2

∑[T/knln∆n]−2
i=1 (∆′n

i X)2 (∆′n
i+1X)4 if j = 4

1
∆′

n

∑[T/knln∆n]−2
i=1 (∆′n

i X)2 (∆′n
i+1 ĉ)

2 if j = 5
1

∆′
n

∑[T/knln∆n]−2
i=1 ∆′n

i X∆′n
i+1ĉ∆

′n
i+1X∆′n

i+1ĉ if j = 6.

In view of (8.29) and (8.38), plus kn ∼ γ/
√
∆n and the definitions (8.32)

and (8.40) of the estimators, it is clearly enough to show that H(j)n
P−→

H(j), where

H(1) = 9
∫ T
0 (cs)

4 ds, H(2) = 3
∫ T
0 (cs)

2 c
(c)
s ds,

H(3) =
∫ T
0 (c

(c)
s )2 ds, H(4) = 3

∫ T
0 (cs)

3 ds,

H(5) =
∫ T
0 cs c

(c)
s ds, H(6) =

∫ T
0 (c

(X,c)
s )2 ds.

Let us denote as H ′(j)n the same variables as in (B.111), upon substi-

tuting ∆′n
i ĉ and ∆′n

i+1ĉ with ∆′n
i c and ∆′n

i+1c everywhere. It is obviously

sufficient to prove that

H(j)n −H ′(j)n
P−→ 0, H ′(j)n

P−→ A(j) (B.112)

as n→ ∞, and for j = 1, 2, 3, 4, 5, 6.

Let us examine the definition of each H ′(j)n: comparing with (A.8)

of Appendix A, we observe that H ′(j)n = B′(fj ,∆′
n)T−2∆′

n
, with time

lag ∆′
n instead of ∆n, with k = 2, with the two-dimensional continuous

semimartingale process (X, c) instead of X , and with the test functions

fj((x, y), (z, v)) given as follows, successively for j = 1, 2, 3, 4, 5, 6:

x4z4, x4v2, y2v2, x2z4, x2v2, xyzv.

Then the second part of (B.112) is an immediate consequence of Theorem

A.2.

As to the first part of (B.112), it is trivial when j = 1, 4, since

then H(j)n = H ′(j)n. Otherwise, we use the estimates E(|∆′n
i X |q) ≤
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Kq(∆
′
n)
q/2 and E(|∆′n

i c|q) ≤ Kq(∆
′
n)
q/2 for all q > 0 (since both X and

c are continuous semimartingales with bounded coefficients), together

with the second part of (B.89). An applications of Hölder’s inequality

gives us E′|H(j)n −H ′(j)n|) ≤ KT/
√
ln, in all cases j = 2, 3, 5, 6: hence

the first part of (B.112) holds true, and the proof is complete.

B.2.7 Proof of Theorem 8.20

We recall that we want to estimate the variable U(g)t =
∫ t
0 g(cs) ds for

a test function g on M+
d which is C3 and satisfies

‖∂jg(x)‖ ≤ K(1 + ‖x‖(p−j)+), j = 0, 1, 2, 3. (B.113)

In the context of Theorem 8.20, the window size kn for spot volatility

estimators satisfies

k2n∆n → 0, k3n∆n → ∞. (B.114)

By localization and Lemma B.6, it is enough to consider the case when

(SKC) holds and when we use the non-truncated estimators for the spot

volatility. So we aim toward a CLT for the variables

U ′(∆n, g)
n
t = ∆n

[t/∆n]−kn+1∑
i=1

(
g(ĉ(kn)i)

− 1
2kn

d∑
j,k,l,m=1

∂2jk,lm g(ĉ(kn)i)

×
(
ĉ(kn)

jl
i ĉ(kn)

km
i + ĉ(kn)

jm
i ĉ(kn)

kl
i

))
.

(B.115)

We now derive a decomposition for U ′(∆n, g)− U(g), in the spirit of

Subsection B.2.4, with a few negligible terms, plus a leading term which

enjoys a CLT. We still use the notation (B.80), so ĉ(kn)i − c(i−1)∆n
=

αni + β
n

i , as soon as t > kn∆n, and thus

1√
∆n

(
U ′(∆n, g)

n
t − U(g)t

)
=

4∑

r=1

U(r)nt ,
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where, with all sums over j, k, l,m below extending from 1 to d,

U(1)nt = 1√
∆n

[t/∆n]−kn+1∑
i=1

∫ i∆n

(i−1)∆n
(g(c(i−1)∆n

)− g(cs)) ds

− 1√
∆n

∫ t
∆n([t/∆n]−kn+1 g(cs) ds

U(2)nt =
√
∆n

[t/∆n]−kn+1∑
i=1

∑
l,m

∂lmg(c(i−1)∆n
)β

n,lm

i

U(3)nt =
√
∆n

[t/∆n]−kn+1∑
i=1

(
g(ĉ(kn)i)− g(c(i−1)∆n

)

−∑
l,m

∂lmg(c(i−1)∆n
) (αn,lmi + β

n,lm

i )

− 1
2kn

∑
j,k,l,m

∂2jk,lm g(ĉ(kn)i)
(
ĉ(kn,)

jl
i ĉ(kn,)

km
i + ĉ(kn,)

jm
i ĉ(kn,)

kl
i

))

U(4)nt =
√
∆n

[t/∆n]−kn+1∑
i=1

∑
l,m

∂lmg(c(i−1)∆n
)αn,lmi .

Therefore, Theorem 8.20 readily follows from the next two lemmas:

Lemma B.9. Under (SKC) and (B.114) we have U(j)n
u.c.p.

=⇒ 0 for j =

1, 2, 3.

Lemma B.10. Under (SKC) we have the functional stable convergence

in law U(4)n
L−s
=⇒ Z, where Z is as described in Theorem 8.20.

Proof of Lemma B.9. The case j = 1: Since g(cs) is bounded, the ab-

solute value of the last term in U(1)nt is smaller than Kkn
√
∆n, which

goes to 0 by (8.47). The first term of U(1)nt is
∑[t/∆n]−kn+1
i=1 ξni , where

ξni = 1√
∆n

∫ i∆n

(i−1)∆n
(g(c(i−1)∆n

) − g(cs)) ds is Fn
i -measurable, and the

process g(ct) is itself an Itô semimartingale satisfying (SH-2). We deduce

from (B.79) applied to g(ct) instead of ct that |E(ξni | Fn
i−1)| ≤ K∆

3/2
n

and E(|ξni |2 | Fn
i−1)| ≤ K∆2

n. Then U(1)n
u.c.p.
=⇒ 0 follows from (B.96)

applied with ln = 1 and mn = [t/∆n].

The case j = 2: Here we set ξni =
√
∆n

∑
l,m ∂lmg(c(i−1)∆n

)β
n

i ,

which is Fn
i+kn−1-measurable, and satisfies |E(ξni | Fn

i−1)| ≤ K∆
3/2
n and

E(|ξni |2 | Fn
i−1)| ≤ K∆2

n by Lemma B.4. Then U(2)n
u.c.p.
=⇒ 0 follows from

(B.96) applied with ln = kn and mn = [t/∆n].

The case j = 3: Using (B.113) and a Taylor expansion of g, plus the

property ĉ(kn)i − c(i−1)∆n
= αni + β

n

i again, we easily check that the ith
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summand in the definition of U(3)nt is vni + wni , where

vni =
√
∆n

2

∑
j,k,l,m ∂

2
jk,lm g(cni )

(
αn,jki αn,lmi + αn,jki β

n,lm

i + β
n,jk

i αn,lmi

− 1
kn

(
cjl(i−1)∆n

ckm(i−1)∆n
+ cjm(i−1)∆n

ckl(i−1)∆n

))

|wni | ≤ K
√
∆n

(
‖αni ‖p + ‖αni ‖3 + ‖βni ‖ 1+‖αn

i ‖p−1

kn

+‖βni ‖2(1 + ‖αni ‖(p−3)+)
)

and we thus have U(3)nt = Gnt +Hn
t , with

Gnt =
[t/∆n]−kn+1∑

i=1
(wni + E(vni | Fn

i−1)),

Hn
t =

[t/∆n]−kn+1∑
i=1

(vni − E(vni | Fn
i−1)).

In view of Lemma B.4 and Hölder’s inequality, we have

|wni + E(vni | Fn
i−1)| ≤ K∆n

(
1√
kn

+ 1√
k3n∆n

+ kn
√
∆n + η′ni

)
,

E(|vni |2) ≤ K∆n

kn

(
1
kn

+
√
kn∆n

)
,

and we readily deduce from Lemma B.1, from (B.96) and the Fn
i+kn−1-

measurability of vni , and from the properties k2n∆n → 0 and k3n∆n → ∞,

that both Gn and Hn converge to 0 in the u.c.p. sense, thus implying

the result.

Proof of Lemma B.10. Using the definition of αni , and upon a change of

the order of summation, we have

U(4)nt =
√
∆n

[t/∆n]∑

i=1

∑

l,m

wn,lmi ζ(1)n,lmi ,

where

wn,lmi =
1

kn

(i−1)∧(kn−1)∑

j=(i−[t/∆n]+kn−1)+

∂lmg(c(i−j−1)∆n
).

We set

U ′(1)nt =
√
∆n

[t/∆n]∑
i=1

∑
l,m ∂lmg(c(i−1)∆n

) ζ(1)n,lmi

vn,lmi = 1
kn

(i−1)∧(kn−1)∑
j=(i−[t/∆n]+kn−1)+

∂lmg(c(i−j−1)∆n
)− ∂lmg(c(i−1)∆n

).

Equation (B.113) and the boundedness of c yield |vn,lmi | ≤
K sups∈[(i−1)∆n,(i+kn−1)∆n] ‖cs − c(i−1)∆n

‖, hence (B.79) im-

plies E(|vn,lmi |2) ≤ K
√
∆n when kn ≤ i ≤ [t/∆n] − kn and
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|vn,lmi | ≤ K always, whereas vn,lmi is Fn
i−1-measurable. Therefore

ξni =
√
∆n

∑
l,m v

n,l,m
i ζ(1)n,lmi satisfies |E(ξni | Fn

i−1)| ≤ K∆
5/4
n

and E(|ξni |2 | Fn
i−1)| ≤ K∆

3/2
n when kn ≤ i ≤ [t/∆n] − kn, and

|E(ξni | Fn
i−1)| ≤ K∆

3/4
n and E(|ξni |2 | Fn

i−1)| ≤ K∆n otherwise. It

then follows that (B.96) holds with ln = 1 and mn = [t/∆n] and thus

U(1)nt − U ′(1)nt
P−→ 0.

It remains to show that U ′(1)n
L−s−→ Z: this is exactly what Theorem

10.3.2 of [JP] tells us, when applied to the pair (X, c) and the function

F on Rd×M+
d with components F

lm
((x, y), (x′, y′)) = ∂lmg(y)(x

′lx′m−
ylm), up to one point: the component X of (X, c) satisfies (K-r) for some

r < 1 (and even (K-0), but not the component c. However, in the function

F
lm

((x, y), (x′, y′)) the argument y′ does not show up, so a close look at

the proof reveals that one does not need (K-r) for the component c of

(X, c), and (H-2) for c is enough. Hence the aforementioned theorem

applies here, and the proof is complete.

B.3 Proofs for Chapter 10

B.3.1 Proof of Theorem 10.12

This theorem is rather intuitive, but its formal proof is somewhat in-

volved. We use the notation of Section 10.2 without special mention, and

in particular the processes U or W introduced in (10.8).

We begin with an auxiliary result showing how to approximate the

F -conditional law of a variable such as UT or WT by quantities involving

only the observed increments ∆n
i X . Since we need this type of result in

various circumstances, we consider below a rather general (and compli-

cated) setting which answers all our needs. We fix some integer k ≥ 1

and set K = {−k+1, . . . , k− 1} (this is K∪{0} with the notation intro-

duced before (A.28)). We also take another finite set K′
of indices, and

real functions gj,l on Rd and g′j,l on N, indexed by (j, l) ∈ L = K × K′

and three F -measurable real-valued variables γ, γ′, γ′′. With the nota-

tion (A.27), (A.28) and (A.29) for Tn,Ψn,j,Ψn±, κn, Ln, Rn,j and with

Ψ denoting another N (0, 1) variable, independent of everything else, we

consider the real-valued variable

Y = γ
∑

m:Tm≤T

∑

(j,l)∈L
gj,l(∆XTm , Rm,j)g

′
j,l(Lm) + γ′ Ψ+ γ′′ (B.116)

on the extended space, provided the gj,l’s are such that this makes sense.

Note that T > 0 is fixed throughout the whole subsection.
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Next, we have to describe the variables which will approximate Y .

Since Rm,j involves the volatility, we need to incorporate one of the

estimators (A.23) for the (squared) spot volatility and then take a square

root. The non-truncated ĉni will not work (as it does not in Theorem A.7).

The multipower version ĉni (kn, [k]) is not so easy to deal with, because

it is typically not symmetric nonnegative when d > 1, hence we use the

truncated version below. However, when d = 1 the same arguments work

exactly in the same way with the multipower version ĉni (kn, [k]). We set

σ̃ni is a (measurable) d× d′ matrix, with σ̃ni σ̃
n∗
i = ĉni (kn, un). (B.117)

Next, with the variables (κm,Ψm±,Ψm,j) of (A.28) again, we set

R̃nm,j =





σ̃nm−knΨm,j if j ∈ K−√
κmσ̃

n
m−knΨm− +

√
1− κmσ̃

n
m+1Ψm+ if j = 0

σ̃nm+1Ψm,j if j ∈ K+.

(B.118)

The variables γ, γ′ and γ′′, to be used later, are not necessarily observable

at stage n, but we assume that they enjoy consistent estimators: we have

F -measurable variables γn, γ
′
n, γ

′′
n with

γn
P−→ γ, γ′n

P−→ γ′, γ′′n
P−→ γ′′. (B.119)

Finally we choose a sequence wn ≥ 0, and the approximation to Y is

Yn = γn
[T/∆n]−kn∑
i=kn+1

∑
(j,l)∈L

gj,l(∆
n
i X, R̃

n
i,j) g

′
j,l(Li) 1{|∆n

i X|>wn}

+ γ′nΨ+ γ′′n.

(B.120)

We then have an auxiliary result, which is of some interest on its own:

Theorem B.11. Assume (H-r) for some r ∈ [0, 2] and (B.117), and

that each gj,l is continuous and satisfies |gj,l(x, y)| ≤ h(x)h′(y), for two

nonnegative continuous functions h andh′ such that

• h(x) = o(‖x‖r) as x→ 0;

• h′(x) = O(‖x‖p) as ‖x‖ → ∞, for some p ≥ 0.

Choose un and wn such that un ≍ ∆̟
n with 0 < ̟ < 1

2 and also ̟ ≥
p−1

2p−2r when p > 2, and wn ≍ ∆̟′

n with 0 < ̟′ < 1
2 , or wn = 0 when

h(x) = o(‖x‖2) as x → 0. Then, the F-conditional distributions Γ and

Γn of Y and Yn satisfy

Γn
P−→ Γ (convergence in probability, for the weak topology). (B.121)
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Proof. Step 1. First we perform several simplifications. First, by a local-

ization procedure, we may assume the strengthened assumption (SH-r).

Next, we set Y ′ = γ′Ψ + γ′′ and Y ′
n = γ′nΨ+ γ′′n, and also Y ′′ = Y − Y ′

and Y ′′
n = Yn − Y ′

n. We also denote by Γ′,Γ′′,Γ′
n,Γ

′′
n the F -conditional

distributions of the variables Y ′, Y ′′, Y ′
n, Y

′′
n .

In view of (B.119), the convergence Γ′
n

P−→ Γ′ is clear, and since

Γ = Γ′ ∗ Γ′′ and Γn = Γ′
n ∗ Γ′′

n (convolution products) we are left to

prove Γ′′
n

P−→ Γ′′. By (B.119) again, it is also clear that we may assume

γn = γ = 1 identically. In other words, we can come back to Y and Yn,

under the following additional assumptions:

γn = γ = 1, γ′n = γ′ = 0, γ′′n = γ′′ = 0. (B.122)

Step 2. In a second step we prove the result when, for some ε > 0, all

functions gj,l satisfy gj,l(x, y) = 0 when ‖x‖ ≤ ε. In this case, as soon

as wn < ε, we have ‖∆n
i X‖ > wn when gj,l(∆

n
i X, R̃

n
i,j) 6= 0, so we can

dispense with the truncation in (B.120).

Let S1, S2, . . . be the successive jump times of X with jump sizes

bigger than ε/2. We also write i(n, p) for the unique integer such that

(i(n, p) − 1)∆n < Sp ≤ i(n, p)∆n, and M = sup(p : Sp ≤ T ). Let Ωn be

the set (depending on T ) of all ω satisfying the following properties:

(a) ‖∆n
i X‖ ≤ ε for all integers i between 1 and [T/∆n] + 1 which are

not one of the i(n, p)’s;

(b) i(n,M) ≤ [T/∆n] and i(n, p) < i(n, p+ 1) for all p ≤M .

On the one hand, P(Ωn) → 1 as n→ ∞. On the other hand, in restriction

to Ωn, we have (up to relabeling the variables (Rm,j)j∈K, which does not

change their joint F -conditional distribution):

Y =
∑

(j,l)∈L

M∑
m=1

gj,l(∆XSm , Rm,j) g
′
j,l(Lm)

Yn =
∑

(j,l)∈L

M∑
m=1

gj,l(∆
n
i(n,m)X, R̃

n
i(n,m),j) g

′
j,l(Li(n,m)).

(B.123)

As an obvious consequence of the definition (A.29), the variables

((Rm,j : j ∈ K), Lm), conditionally on F , are independent when

m varies and each one has a law which only depends on the pair

(cTm−, cTm), in a continuous way. That is, this (conditional) law has the

form F (cTm−, cTm ; dx), where (z, z′) 7→ F ((z, z′), dx) is (weakly) contin-

uous. Analogously, conditionally on F , the variables ((R̃ni(n,m),j : j ∈
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K), Li(n,m)) are independent when m varies, with the law

F (ĉni(n,m)−kn(kn, un), ĉ
n
i(n,m)+1(kn, un); dx).

Here, F is the same as for Rm,j , and this property does not depend on

the particular choice of σ̃ni which is made in (B.117). Therefore, the two

conditional laws Γ and Γn are indeed of the form

Γ(dx) = F
(
M, (∆XSm , cTm−, cTm)1≤m≤M , dx

)

Γn(dx) = F
(
M, (∆n

i(n,m)X, ĉ
n
i(n,m)−kn(kn, un),

ĉni(n,m)+1(kn, un))1≤m≤M , dx
)

with the same F , which further depends (weakly) continuously on the

various arguments, because the gj,l’s are continuous functions. Therefore,

(B.121) is a straightforward consequence of the following convergences:

∆n
i(n,m)X

P−→ ∆XSm ,

ĉni(n,m)−kn(kn, un)
P−→ cTm− ,

ĉni(n,m)+1(kn, un)
P−→ cTm .

(B.124)

The first convergence above comes from the definition of i(n,m) (it holds

in fact for each ω). The two others come from Theorem A.6, once ob-

served that ĉni(n,m)−kn(kn, un) = ĉn(kn, un)(Sm−) and ĉ
n
i(n,m)+1(kn, un) =

ĉn(kn, un)(Sm).

Step 3. We now remove the assumption that each gj,l vanishes on a

neighborhood of 0. To this effect, we truncate the functions gj,l in the

following way. We take a continuous function ψ on R+, with 1[0,1/2] ≤
ψ ≤ 1[0,1] and, for any ε > 0, we set

gεj,l(x, y) = gj,l(x, y)ψ(‖x‖/ε), g′εj,l(x, y) = gj,l(x, y)(1− ψ(‖x‖/ε)),
so gj,l = gεj,l+g

′ε
j,l. We also write Y and Yn as Y ε and Y εn if we substitute

all gj,l with gεj,l, and as Y ′ε and Y ′ε
n if it is with g′εj,l , and accordingly

the F -conditional distributions are written as Γε,Γεn,Γ
′ε,Γ′ε

n .

The previous step gives us that, for any ε > 0 fixed, Γ′ε
n

P−→ Γ′ε as

n → ∞. So, (B.121) will hold if we prove the following two properties,

for any bounded Lipschitz function f on R and any η > 0:

limε→0 P
(
Γε(f)− Γ(f)| > η

)
= 0,

limε→0 lim supn→∞ P
(
|Γ′ε
n (f)− Γε(f)| > η

)
= 0.

Since Y = Y ε+Y ′ε and Yn = Y εn+Y
′ε
n , these two properties are obviously

satisfied if

Ẽ
(
|Y ′ε|

∣∣F
) P−→ 0 as ε→ 0,

limε→0 lim supn→∞ P
(
Ẽ
(
|Y ′ε
n |
∣∣ F
)
> η

)
= 0.

(B.125)
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In view of the properties of the functions gj,l, plus the boundedness of

the process c (because of (SH-r)) and the definition of Rm,j and R̃
n
m,j , a

simple calculation shows that, with hε(x) = h(x)ψ(‖x‖/ε), we have

Ẽ
(
|Y ′ε|

∣∣F
)

≤ K
∑

s≤t
hε(∆Xs), Ẽ

(
|Y ′ε
n |
∣∣F
)

≤ KZεn,

where

Zεn =
[t/∆n]−kn∑
i=kn+1

hε(∆
n
i X) 1{‖∆n

i X‖>wn}

×(1 + ‖ĉni−kn(un−)‖p/2 + ‖ĉni+1(un−)‖p/2).

(H-r) implies that
∑
s≤t h(∆Xs) < ∞, so the first part of (B.125)

follows from the dominated convergence theorem because hε ≤ h and

hε → 0 pointwise. For the second part, we use Theorem A.7 with φε and

g(z) = 1 + ‖z‖p/2 (so p is substituted with p/2), to obtain

Zεn
P−→

∑

s≤t
hε(∆Xs) (‖cs−‖p/2 + ‖cs)‖p/2)

as n → ∞, and the right side above goes to 0 as ε → 0. This gives the

second part of (B.125), and the proof is complete.

Proof of Theorem 10.12. In this proof we use all notation preceding the

statement of Theorem 10.12, without special mention.

Step 1. The algorithm for constructing the confidence interval In in

(10.35) stops at Step 2 when ω /∈ Ωn, and the result only concerns what

happens on Ω
(jW )
T , which is also the limit (in probability) of Ωn. How-

ever, for the proof it is convenient to complete the algorithm “outside

Ωn,” that is, we skip Step 2 and proceed even if ω /∈ Ωn. Analogously,

the limiting variable S(J-TR) is in principle irrelevant outside Ω
(jW )
T , so

we can change it at will outside this set. Therefore, recalling Ψ′j in Step

4 of the algorithm, we set

Sjn = Ψ′j outside Ωn, and S(J-TR) = Ψ′1 outside Ω
(jW )
T . (B.126)

Then Steps 5 and 6 of the algorithm are performed with this definition.

We denote below Γ and Γn the F -conditional distributions of S(J-TR)

and S1
n, respectively. In (10.20) and in the second formula in (10.34), the

last summand is F -conditionally independent of the first one and is an

N (0, 1) variable independent of F , multiplied by a positive F -measurable

variable, whereas in (B.126) the variables are N (0, 1). This allows us to

deduce that

Γ and Γn have positive densities on R. (B.127)
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Therefore the functions Γ(x) = Γ([−x, x)c) and Γn(x) = Γ′
n[−x, x]c) on

R+ are continuous and strictly decreasing from 1 to 0. We denote their

inverses byGx and Gxn, which are continuous strictly decreasing functions

on (0, 1), and are of course F -measurable as functions of ω.

Step 2. We observe that S(J-TR) is exactly the variable Y of (B.116), with

k = 1 and L = {(0, 0)}, and provided we take g(x, y) = xy and g′(l) = 1,

and
γ = − 2CT

[X,X]2T
1
Ω

(jW )
T

,

γ′ =
A(2)T

√
2C(4)T

[X,X]2T
1
Ω

(jW )
T

+ 1
(Ω

(jW )
T )c

,

γ′′ = 0.

Similarly, the variable S1
n is Yn of (B.120), with the same g, h, h′ and

γ′′n = 0 and

γn = − 2Ĉ(∆n,un)T
Ĉ(∆n)2T

1Ωn ,

γ′n =
(Ĉ(∆n)T−Ĉ(∆n,un)T )

√
2Bn(4,∆n,un)T /3∆n

Ĉ(∆n)2T
1Ωn + 1(Ωn)c .

The condition (B.119) is implied by (10.24) and the property 1Ωn

P−→
1
Ω

(jw)
T

. Since (H-r) holds for some r < 1, all assumptions of Theorem

B.11 are fulfilled, and we conclude that Γn
P−→ Γ weakly.

This property yields Γn(x)
P−→ Γ(x) for each x, and even uniformly

in x. This and the fact that x 7→ Gx is continuous strictly decreasing

readily give us for each ε > 0

sup
x∈[ε,1−ε]

|Gxn −Gx| P−→ 0. (B.128)

Step 3. Now we prove an auxiliary result, which goes as follows: let

(Zj)1≤j≤N be an i.i.d. sequence of positive variables with a purely non-

atomic law, and denote by φ the unique right-continuous (decreasing)

function such that P(Zi > φ(x)) = x for all x ∈ (0, 1). Fix α ∈ (0, 1) and

an integer N such that N > 4/α(1−α). Set U(x) = 1
N

∑N
i=1 1{Zi>x} and

call Z ′(α) the [αN ]th variable in the family (Zj : j = 1, . . . , N), after they

have been rearranged in decreasing order. Then, if ε ∈ (4/N, α(1 − α))

and Z ′(α) > φ(α− ε), we have

U(φ(α − ε)) ≥ U(Z ′(α)) =
[αN ]− 1

N
≥ α− 2

N
≥ α− ε

2
,

that is, U(φ(α−ε))− (α−ε) ≥ ε/2. In a similar way, if Z ′(α) < φ(α+ε)

we have U(φ(α + ε)) − (α + ε) ≤ −ε. Since the variables U(φ(x)) have
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mean x and variance smaller than 1/4N , it follows from the Bienaymé-

Tchebycheff inequality that

P(Z ′(α) /∈ [φ(α + ε), φ(α− ε)])

≤ P(U(φ(α − ε))− (α− ε) ≥ ε/2)

+ P(U(φ(α+ ε))− (α+ ε) ≤ ε)

≤ 5
4Nε2 .

(B.129)

Step 4. We come back to the problem at hand. With any α ∈ (0, 1)

we apply the previous auxiliary result with Nn large enough to have
4
Nn

< 1

N
1/4
n

< α(1− α) and with ε = vn = 1/N
1/4
n and the variables |Sjn|

under their F -conditional laws Γn. Observe that φ(x) is now Gxn, and

Z ′(α) is the empirical quantile Zαn defined in Step 6 of our algorithm.

Then (B.129) is read as

P̃
(
Zαn /∈ [Gα+vnn , Gα−vnn ] | F

)
≤ 5

4N
1/2
n

. (B.130)

Letting Tn = (S(J-TR)(∆n, un) − S)/
√
∆n, the claim amounts to the

convergence

P̃
(
{|Tn| > Znα} ∩ A) → αP(A)

if A ∈F , P (A) > 0, A ⊂ Ω
(jW )
T .

(B.131)

If Bn = {Zαn /∈ [Gα+vnn , Gα−vnn ]}, we have

P ({|Tn| > Gα−vnn } ∩ A)− P̃(Bn) ≤ P̃ ({|Tn| > Znα} ∩ A)
≤ P ({|Tn| > Gα+vnn } ∩ A) + P̃(Bn).

Then, since (B.130) implies P̃(Bn) → 0, in order to get (B.131) it is

enough to prove that

P ({|Tn| > Gα−vnn } ∩ A) → αP(A),

P ({|Tn| > Gα+vnn } ∩ A) → αP(A).
(B.132)

If y ∈ (0, 1) and D = {(ω, x) : ω ∈ A, |x| > Gy(ω)}, the function

F (ω, x) = 1D is bounded, F ⊗R-measurable, and x 7→ F (ω, x) is contin-

uous for Γ(ω, dx)-almost all x because of (B.127). Since Tn
L−s−→ S (J-TR)

by (10.19) on the set Ω
(jW )
T and A ⊂ Ω

(jW )
T , it follows from (3.16) that

P
(
{|Tn| > Gy} ∩ A

)
→ P̃

(
{|S(J-TR) > Gy} ∩ A

)
= y P(A), (B.133)
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where the last equality comes from the definition of Gy and by condi-

tioning on F . If a > 0 we have

P̃ ({|Tn| > Gα−a} ∩ A)− P (Gα−a < Gα−vnn )

≤ P ({|Tn| > Gα−vn} ∩ A)
≤ P ({|Tn| > Gα+vn} ∩A)
≤ P̃ ({|Tn| > Gα+a} ∩A) + P (Gα+a > Gα+vnn ) .

Now, (B.128) and the fact that x 7→ Gx is strictly decreasing implies

P(Gα−a < Gα−vnn ) → 0 and P(Gα+a > Gα+vnn ) → 0. Therefore, we

deduce (B.132) from (B.133) and from the fact that a > 0 is arbitrarily

small. This completes the proof.

B.3.2 Proofs for Section 10.3

Below we provide the proofs for the properties left unproven in Section

10.3, namely (10.42), (10.46) and Proposition 10.19.

Proof of (10.42). We assume p > 3. With the two-dimensional test func-

tion with components

f1(x1, . . . , xk) = |x1 + · · ·+ xk|p,
f2(x1, . . . , xk) = |x1|p + · · ·+ |xk|p,

(B.134)

we have
B([p, k],∆n)t = B(f1,∆n)t,

kB(p,∆n)t = B(f2,∆n)t +Hn
t ,

B(p, k∆n)t = B(f1,∆n)t,

B(p,∆n)t = B(f2,∆n)t +H
n

t ,

(B.135)

where H
n

t =
∑[t/∆n]
i=k[t/k∆n]+1 |∆n

i X |p and Hn
t is a similar border term

(slightly more complicated to express). Observe that

Hn
t +H

n

t ≤ k2+p/2∆
p/2
n (X(0; k∆n) +X(t; k∆n)),

where X(t; v) = sups∈[0,v]
|Xt+s−Xt|√

v
,

(B.136)

and under (SH-2), which we can assume by a localization argument (see

page 502), the family of variables (X(t; v) : v ∈ [0, 1]) is bounded in

probability for any fixed t ≥ 0 (see for example (2.1.33), (2.1.34) and

Lemma 2.1.5 of [JP]. Since p > 3, it follows that

kB(p,∆n)t −B(f2,∆n)t = oP(
√
∆n),

B(p,∆n)t −B(f2,∆n)t = oP(
√
∆n).

(B.137)
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The conditions (A.32) needed in Theorem A.9 hold because p > 3. With

the notation (A.30) we have

f1
j (x) = f2

j (x) = |x|p,
∂f1

(l);j(x) = p|x|p−1 sign(x),

∂f2
(l);j(x) = p|x|p−1 sign(x) δlj

(δlj is the Kronecker symbol). Since f is invariant by a permutation of

its arguments, (A.33) and (A.35) yield that, for any fixed t, and with the

notation (A.27) and (A.28),
(

1√
∆n

(B(f1,∆n)t − kA(p)t),
1√
∆n

(B(f2,∆n)t − kA(p)t)
)

L− s−→ (U(f1)t,U(f2)t)(
1√
∆n

(B(f1,∆n)t −A(p)t),
1√
∆n

(B(f2,∆n)t −A(p)t)
)

L−s−→ (U(f1)t,U(f2)t)

where
U(f1)t = p

∑
q:Tq≤t |∆XTq |p−1 sign(∆XTq )

×
(
σTq−

(
k
√
κq Ψq− +

∑−1
j=1−k(j + k)Ψq,j

)

+σTq

(
k
√
1− κq Ψq+ +

∑k−1
j=1 (k − j)Ψq,j

))

U(f2)t = k p
∑
q: Tq≤t |∆XTq |p−1 sign(∆XTq )

×
(
σTq−

√
κq Ψq− + σTq

√
1− κq Ψq+

)

and
U(f1)t = p

∑
q: Tq≤t |∆XTq |p−1 sign(∆XTq )

×
(
σTq−

(√
κq Ψq− +

∑−1
j=−Ln

Ψq,j
)

+σTq

(√
1− κq Ψq+ +

∑k−1−Ln

j=1 Ψq,j
))

U(f2)t =
∑
q: Tq≤t |∆XTq |p−1 sign(∆XTq )

×
(
σTq−

√
κq Ψq− + σTq

√
1− κq Ψq+

)
.

The pairs

( −1∑

j=1−k
(j + k)Ψq,j ,

k−1∑

j=1

Ψq,j
)
and

(√
k(k − 1)/2Ψ′

q−,
√
k(k − 1)/2Ψ′

q+

)

(notation (10.43)), resp. the pairs

( −1∑

j=−Ln

Ψq,j ,
k−1−Ln∑

j=1

Ψq,j
)
and

(√
LnΨ

′
q−,
√
k − 1− LnΨ

′
q+

)
,

have the same law. Thus in view of (B.135) and (B.137) we deduce

(10.42).
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Proof of (10.46). Here we assume (KC), so X is continuous. The two-

dimensional test function f given by (B.134) is globally even and homo-

geneous of degree p, and as for (B.135) we have

∆
1−p/2
n B([p, k],∆n)t = B′(f1,∆n)t,

∆
1−p/2
n kB′(p,∆n)t = B′(f2,∆n)t +∆

1−p/2
n Hn

t ,

∆
1−p/2
n B′(p, k∆n)t = B

′
(f1,∆n)t,

∆
1−p/2
n B′(p,∆n)t = B

′
(f2,∆n)t +∆

1−p/2
n H

n

t ,

with appropriate border terms Hn
t and H

n
t . Exactly as for (B.137), one

deduces from (B.136) that

∆
1−p/2
n kB′(p,∆n)t −B′(f2,∆n)t = oP(

√
∆n)

∆
1−p/2
n B′(p,∆n)t −B

′
(f2,∆n)t = oP(

√
∆n).

(B.138)

Next, we need to compute Ra(f) and Ra(f), as given by (A.43). This

is elementary but rather tedious, and we only give the result here. With

the notation (10.45), it turns out that

Ra(f)
11 = ap m̂2p(k)

Ra(f)
11 = ap kp−1(m2p − (mp)

2)

Ra(f)
12 = ap k2 m̃2p(k)

Ra(f)
12 = ap m̃2p(k)

Ra(f)
22 = ap k2(m2p − (mp)

2)

Ra(f)
22 = ap (m2p − (mp)

2).

(B.139)

An application of (A.47) yields the following functional stable conver-

gences in law:

(
1√
∆n

(B′(f1,∆n)− kp/2mp C (p)), 1√
∆n

(B′(f2,∆n)t − kmp C (p))
)

L−s
=⇒ (W(f1),W(f2))(

1√
∆n

(B
′
(f1,∆n)− kp/2−1mp C (p)), 1√

∆n
(B

′
(f2,∆n)t −mp C (p))

)

L−s
=⇒ (W(f1),W(f2))

where the limiting processes are defined on an extension of the space and,

conditionally on F , are centered Gaussian martingales with variance-

covariance given by (A.45). Then (10.46) follows, upon using (B.138) and

observing that a version of W(f2) is kW(f2) and renaming the limiting

processes asW(f1) = W(p, k) andW(f1) = W(p, k) andW(f2) = W(p).

The covariance formula (10.47) follows from (B.139).
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Proof of Proposition 10.19. The only claim to prove is α(p, k)1 <

α(p, k)2. Let U0, U1, U2, . . . be i.i.d. standard normal variables. With p

and k fixed, and for j, l ≥ 0 with j+ l ≤ k, x ∈ R, we introduce functions

Fj on Rj, numbers γj and variables Yj,l(x) by

Fj(x1, . . . , xj) = E
(
|x1 + · · ·+ xj +

√
k − j U0|p),

γj = E
(
|Fj(U1 + · · ·+ Uj)− F0|2

)

Yj,l(x) = Fk(U1, . . . , Uk) + xFj(U1, . . . , Uj)

+xFl(Uj+1, . . . , Uj+l)− (1 + 2x)F0.

Note that F0 = kp/2mp is a constant, and E(Fj(U1, . . . , Uj)) =

E(Fl(Uj+1, . . . , Uj+l)) = F0. By successive conditioning, we also have

E
(
Fj(U1, . . . , Uj)Fk(U1, . . . , Uk)

)
= E

(
Fj(U1, . . . , Uj)

2
)

E
(
Fl(Uj+1, . . . , Uj+l)Fk(U1, . . . , Uk)

)
= E

(
Fl(Uj+1, . . . , Uj+l)

2
)
.

Then a simple computation shows that

E(Yj,l(x)
2) = γk + 2x(γj + γl) + x2(γj + γl).

The variables Yj,l(x) are non-degenerate, implying E(Yl,j(x)
2) > 0. Thus

the polynomial x 7→ E(Yl,j(x)
2) of degree 2 has no real root, hence its

discriminant is strictly negative, that is,

γj + γl < γk.

Adding up these inequalities for all pairs (j, k − j) for j = 1, . . . , k−1
2

when k is odd, and for j = 1, . . . , k2 when k is even, we obtain in all cases

2
k−1∑

j=1

γj < (k − 1)γk.

Coming back to the notation (10.45), we see that m2p(k, j) = γj +

(F0)
2, whereas γ0 = 0. Thus

m̂2p(k) = γk + 2
∑k−1

j=1
γj < kγk.

Since

α(p, k)2 − α(p, k)1 =
kp+1(m2p − (mp)

2)− m̂2p(k)

k2 (mp)2
,

and kp+1(m2p − (mp)
2) = kγk, we deduce α(p, k)1 < α(p, k)2, and the

proof is complete.
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B.3.3 Proofs for Section 10.4

Below, we give a (sketchy) proof of the results of Section 10.4. By lo-

calization one can replace any assumption, such as (H-2) or (P), by its

strengthened version (SH-2) or (SP).

Proof of Theorem 10.21. Let i[n, t] be the integer such that (i[n, t] −
1)∆n < t ≤ i[n, t]∆n, and ĉ

n
(t) = ĉni[n,t], so

Zn(t) = ∆n
i[n,t]X/

√
∆n ĉn(t). (B.140)

On the one hand,
(
∆n
i[n,tj ]

W/
√
∆n

)
1≤j≤q stably converges in law to

(Ψj)1≤j≤q , by an elementary result on stable convergence. On the other

hand, ĉn(t)
P−→ ct by Theorem A.6, and if P(∆σt = 0) = 1 we have

σ(i[n,t]−1)∆n

P−→ σt as well. Thus, in view of (SP), (a) follows from the

property

P(∆σt = 0) = 1

⇒ ∆n
i[n,t]X − σ(i[n,t]−1)∆n

∆n
i[n,t]W = oP(

√
∆n).

(B.141)

To check this, we observe that by (A.66),

∆n
i X − σ(i−1)∆n

∆n
iW = ξni + ξ′ni + ξ′′ni ,

where
ξni =

∫ i∆n

(i−1)∆n
bs ds,

ξ′ni =
∫ i∆n

(i−1)∆n

(
σs − σ(i−1)∆n

)
dWs,

ξ′′ni = ∆n
i (δ ∗ (p− q)).

We have ξni[n,t]/
√
∆n → 0 because b is bounded. By Doob’s inequality,

E
((
ξ′ni[n,t]/

√
∆n

)2) ≤ 1
∆n

E
( ∫ i[n,t]∆n

(i[n,t]−1)∆n

(
σs − σ(i[n,t]−1)∆n

)2)
,

which goes to 0 by the dominated convergence theorem when P(∆σt =

0) = 1. Finally, an application of (A.75) with p = r = 2 shows that

E
((
1∧(ξ′′ni[n,t]/

√
∆n)

)2) ≤ Kφ(∆n), which goes to 0 as n→ ∞. Therefore

we conclude (B.141).

Now we turn to (b). Equation (10.63) is a known result, which is the

main building block of the proof of Theorem A.9; see Proposition 4.4.5

in [JP]. Next, (10.63) implies that

S(J-DET)(∆n) ≥ 1√
ĉn
i(n,q)+1

( |∆XTq |√
∆n

+OP(1)
)

on Ωn,q = {Tq < T − (kn + k − 1)∆n},
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whereas ĉni(n,q)+1
P−→ cTq , and cTq > 0 by (P). Therefore, for all q we

have

lim
ε→0

sup
n

P
(
{S (J−DET)(∆n) ≤ ε/

√
∆n } ∩ Ωn,q ∩ {∆XTq 6= 0}

)
= 0.

Since the sets ∪q≥1(Ωn,q ∩ {∆XTq 6= 0}) converge almost surely to Ω
(j)
T

as n→ ∞, (10.64) follows.

Before proving Theorem 10.22 we need a few auxiliary results, for

which kn and k are as in the theorem and X and σ are continuous. We

use the following notation:

Mn = supi≤[T/∆n] |∆n
iW |/√∆n

Mn(1) = supi≤[T/∆n] |∆n
i X − σ(i−1)∆n

∆n
iW |/√∆n

Mn(2) = supi≤[T/∆n] supt∈(0,(kn+k−1)∆n] |σ(i−1)∆n+t − σ(i−1)∆n
|

Mn(3) = supi≤[T/∆n]−kn−k+1 |ĉni+1 − c(i−1)∆n
|.

Lemma B.12. Recalling ln =
√
2 log(1/∆n), we have the following

convergence in law:

ln
(
Mn − ln +

log(2πln)

2ln
− log 2T

ln

) L−→ ξ, (B.142)

where ξ is a Gumbel variable, and in particular Mn/ln
P−→ 1.

Proof. We set vn = [T/∆n] for the number of increments taken into

consideration in Mn, and wn =
√
2 log vn. One easily checks that wn =

ln + (logT )/ln+ O(1/l3n), so (B.142) amounts to

Mn := wn
(
Mn − wn − log 2

wn
+

log(2πwn)

2wn

) L−s−→ ξ,

Classical results on extremes, see e.g. page 147 of Embrechts et al. (1997),

plus the fact that the variables ∆n
iW/

√
∆n for i ≥ 1 are i.i.d. standard

normal, and that we use the maximum of the absolute values of the

increments instead of the maximum of the increments, which explains

the additional term with log 2 above, yield that the variables Mn above

converge in law to ξ. The last claim readily follows from (B.142).

Lemma B.13. Under (KC) and if σ is continuous, we have

lρnMn(j)
P−→ 0 for all ρ ≥ 0 and j = 1, 2, 3.

Proof. Without restriction we may assume (SKC). We have

∆n
i X − σ(i−1)∆n

∆n
iW = ζni + ζ′ni ,
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where
ζni =

∫ i∆n

(i−1)∆n
bs ds,

ζ′ni =
∫ i∆n

(i−1)∆n
(σs − σ(i−1)∆n

) dWs.

We have |ζni | ≤ K∆n because bt is bounded. When p ≥ 2, by virtue of

(A.68) and the Burkholder-Gundy inequality, E(|ζ′ni |p) ≤ K∆p
n. Thus

E((Mn(1))
p) ≤ K∆p/2

n +
K

∆
p/2
n

[T/∆n]∑

i=1

E(|ζ′ni |p) ≤ K(∆p/2
n + T∆p/2−1

n )

and, since lρn∆
ε
n → 0 for all ρ, ε > 0, the claim aboutMn(1) follows upon

taking p > 2.

In the same way, another application of (A.68) yields, when σ is con-

tinuous,

E((Mn(2))
p) ≤

[T/∆n]∑

i=1

E( sup
t∈((i−1)∆n,(i+kn−1)∆n)

|σt − σ(i−1)∆n
|p)

≤ KT
(kn∆n)

p/2

∆n
.

Hence, in view of (10.58) and lρn∆
ε
n → 0 for all ρ, ε > 0 again, the claim

about Mn(2) follows upon taking p > 2/η′.

Now we turn toMn(3). We prove the result in the case ĉni = ĉni (kn, un)

only (so k = 1), the other case being similar. First, |∆n
i X | ≤ (Mn(1) +

Mn)
√
∆n for all i ≤ [T/∆n]. Hence Lemma B.12 and lnMn(1)

P−→ 0

yield supi≤[T/∆n] |∆n
i X | ≤ 2ln

√
∆n on a set Ωn whose probability goes

to 1. Since un ≍ ∆̟
n for some ̟ ∈ (0, 12 ) we deduce that, with the

notation (A.23), we have ĉni = ĉ(kn)
n
i (the estimator without truncation)

for all i ≤ [T/∆n] on Ωn. It is thus enough to prove the result when, in

the definition of Mn(3), we substitute ĉ(kn)
n
i with ĉni . Moreover,

∆n
i+mX = σ(i−1)∆n

∆n
i+mW + (σ(i+m−1)∆n

− σ(i−1)∆n
)∆n

i+mW

+∆n
i+mX − σ(i+m−1)∆n

∆n
i+mW.

Hence, since σ is bounded, we have for m = 1, . . . , kn:
∣∣(∆n

i+mX)2 − c(i−1)∆n
(∆n

i+mW )2
∣∣

≤ K∆n

(
Mn(1)

2 +MnMn(1) +M2
nMn(2)

)
.

Then we deduce from Lemma B.12 and from lρ+2
n Mn(j)

P−→ 0 for j = 1, 2

that

lρn sup
i≤[T/∆n]−kn−k+1

∣∣∣ĉ(kn)ni+1 −
c(i−1)∆n

kn∆n

kn∑

m=1

(∆n
i+mW )2

∣∣∣ P−→ 0
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Thus, letting Cni = 1
kn∆n

∑kn
m=1(∆

n
i+mW )2 − 1 and Nn =

supi≤[T/∆n]−kn |Cni |, it remains to prove that lρnNn
P−→ 0. Observe that

Cni has the same law as 1
kn

∑kn
j=1(U

2
j −1), where the Uj are i.i.d. N (0, 1),

so the Burkholder-Gundy inequality yields E((Cni )
p) ≤ K/k

p/2
n for all

p > 1. Hence E(Np
n) ≤ KT/∆nk

p/2
n and, since kn∆

η
n → ∞ by (10.58),

the result follows by choosing p > 2/η.

Proof of Theorem 10.22. We assume (SKC) and (SP). The latter implies

that A = inft,ω ct(ω) > 0, and also that one can choose σ to be always

positive. By Lemma B.12, we only have to prove that

ln
(
S(J-DET)(∆n)−Mn

) P−→ 0. (B.143)

For all i ≤ [T/∆n]− kn+ k+1 we have |ĉni+1 − c(i−1)∆n
| ≤Mn(3), hence

ĉni ≥ A/2 on the set Ωn = {Mn(3) ≤ A/2}, which satisfies P(Ωn) → 1

by Lemma B.13.

Now,

∣∣∣Zni − ∆n
iW√
∆n

∣∣∣ ≤ |∆n
i X − σ(i−1)∆n

∆n
iW |√

∆n ĉni+1

+
|∆n

iW |√
∆n

∣∣∣
σ(i−1)∆n√

ĉni+1

− 1
∣∣∣.

We have |1−
√
x/y| ≤ K|x− y| when x, y ≥ A/2, and | supxi− sup yi| ≤

sup |xi − yi| when xi, yi ≥ 0, hence

ln
∣∣S(J-DET)(∆n)−Mn

∣∣ ≤ Kln
(
Mn(1) +MnMn(3)

)
on the set Ωn.

At this stage, (B.143) follows from P(Ωn) → 1 and from the previous two

lemmas.

Proof of (10.69). We prove the result only in the case when we take for

ĉni in (10.59) the version ĉni = ĉni (kn, un). We may assume (SP) and (SK-

0). Recall that σ is continuous. We consider the process X ′ of (10.68),

the associated variables Z ′n
i and statistics S′(J-DET)(∆n), and

ξn = ln
(
S′(J-DET))(∆n)− ln +

log(2πln)

2ln
− log 2T

ln

)
,

which converges in law to the Gumbel variable ξ by (10.65) because

X ′ satisfies (KC) and (P). Since S′(J-DET)(∆n) >
l2n

1+ln
implies ξn >

log(2πln)
2 − log 2T − 1

2 as soon as ln ≥ 1, we deduce

P
(
S′(J-DET)(∆n) >

l2n
1 + ln

)
→ 0. (B.144)
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Of course, the Z ′n
i are computed with the estimators ĉ′ni = ĉ′ni (kn, un)

associated with the process X ′. We thus have to compare ĉni and ĉ′ni .

To this end, we recall that (SK-0) implies 1{δ(t,z) 6=0} ≤ J(z) for some

λ-integrable function J on E. We can thus replace the Poisson measure

p by its restriction to R+×{J ≥ 1}, hence λ by its restriction to {J ≥ 1},
without modifying X . In other words, we may assume that λ is a finite

measure. The sequence Sq = inf(t : 1 ∗ p
t
= q) is then strictly increasing

to ∞, and the number Q = max(q : Sq ≤ T ) of Sq’s in [0, T ] is a Poisson

random variable, and we associate i′(n, q) with Sq as i(n, q) is associated

with Tq in (10.60). For simplicity we write below In = {1, . . . , [T/∆n]},
and I ′n for the set of all i such that i = i′(n, q)−m for some q ≤ Q and

some m ∈ {0, . . . , kn}, and I ′′n = In\I ′n.
As in the proof of Theorem 10.22 there is a constant A > 0 such

that Ωn = {infi≤[T/∆n] ĉ
′n
i ≥ A/2} satisfies P(Ωn) → 1. The set

Ωn,ε on which, for any q = 1, . . . , Q, we have either |∆XSq | > ε or

∆XSq = 0, and also |∆n
i X

′| ≤ un/2 for all i ≤ [T/∆n], satisfies

limε→0 lim infn P(Ωn,ε) = 1. On Ωn,ε, and as soon as un < ε/2, for all

i ∈ In we have either ∆n
i X = ∆n

i X
′ or |∆n

i X | > un, the latter occurring

only if i = i′(n, q) for some q ≤ Q. Then on Ωn,ε we have

i ∈ I ′′n ⇒ ĉ′ni = ĉni ,

i ∈ I ′n ⇒ 0 ≤ ĉ′ni − ĉni ≤ Vn = 1
kn∆n

∑Q
m=1(∆

n
i′(n,m)X

′)2.

If we use the first part of (A.77) (with (GAt ) and A = E), plus the fact that

Q is GAt -measurable and has finite expectation, we obtain E(Vn) ≤ K/kn,

hence lρn Vn
P−→ 0 for all ρ > 0 because of (10.58). Thus Ω′

n,ε = Ωn ∩
Ωn,ε ∩ {Vn < A/4ln} satisfies limε→0 lim infn P(Ω′

n,ε) = 1.

Now, on Ω′
n,ε and if un ≤ ε/2, we have ĉ′ni > A/2 and ĉni > A/4 if i ∈

In, whereas ∆
n
i X = ∆n

i X
′ when i ∈ An, hence |Z ′n

i −Zni | ≤ 4Z ′n
i Vn/A ≤

Z ′n
i /ln for all i ∈ An, implying supi∈An

|Zni | ≤ 1+ln
ln

S′(J-DET)(∆n).

Therefore, as soon as un ≤ ε/2,

P
(
sup
i∈An

|Zni | > ln) ≤ P(Ω′
n,ε) + P

(
S′(J-DET)(∆n) >

l2n
1 + ln

)

and (10.69) follows from (B.144) and limε→0 lim infn P(Ω′
n,ε) = 1.

Proof of Theorem 10.26. We use the notation i(n, q) of (10.60), with Tq
being the successive jump times of X , and first assume that σ is con-

tinuous. In view of (10.63) and ĉni(n,q)+1

P−→ cTq > 0 (recall (A.24)) and

ln
√
∆n → 0 and |∆XTq | > 0, we obtain P(|Zni(n,q)| > ln) → 1 for all q.
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Hence the set

Ωn =
{
TR ≤ ∆n[T/∆n], supi∈An

|Zni | ≤ ln,

q ≤ R ⇒ i(n, q) < i(n, q + 1) and |Zni(n,q)| > ln
}

satisfies P(Ωn) → 1 by (10.69).

On Ωn we have R̂n = R and In(q) = i(n, q) (hence Tq ∈ (T̂ (n, q) −
∆n, T̂ (n, q)]) for all q ≤ R by the definition (10.72). Hence (10.73) follows

from P(Ωn) → 1. On Ωn we also have Ĵ(n, q) = ∆n
i(n,q)X for q ≤ R, so

(10.74) follows from (10.64) and the fact that σTq− = σTq under our

assumptions.

In the case where σ may jump, we simply replace supi∈An
|Zni | ≤ ln by

supi∈An
|Zni | ≤ vn in the definition of Ωn, and observe that P(|Zni(n,q)| >

vn) → 1 for all q because of (10.70).

Proof of Theorem 10.29. We use again the notation i(n, q) of (10.60),

with Tq now being as in Theorem 10.26. Let also

X ′′
t = Xt −

∑

s≤t
∆Xs 1{|∆Xs|>a}.

Since X is càdlàg, we have for all sample paths in the set Ωa = {ω :

|∆Xs(ω)| 6= a ∀ s > 0} and all q ≥ 1

lim sup
n→∞

sup
i≤[T/∆n]

|∆n
i X

′′| < a, lim
n→∞

|∆n
i(n,q)X

′′| = 0.

This implies that on this set Ωa we have R̂n = R and In(q) = i(n, q)

for all q ≤ R, as soon as n is large enough. Since (10.76) amounts to

P(Ωa) = 1, we deduce (10.73). Finally, (10.74) is proved as in the previous

theorem.

B.3.4 Proofs for Section 10.5

In this subsection we prove Theorem 10.30, and as before it is no restric-

tion to assume the strengthened Assumption (SK-r). In particular, we

have (B.70) and (B.71) with J bounded.

We are given the number a > 0, and we suppose that kn ∼ β/∆τ
n with

β > 0 and un ≍ ∆̟
n with

2(r − 1)+

r
< τ < 1, τ ∧(1−τ) < 2− r

r
,

1− τ

2(2− r)
< ̟ <

1

2
. (B.145)

We start with an auxiliary lemma. Set A = {z ∈ E : J(z) > a2/16}
and let S1, S2, . . . be the successive jump times of the process 1A ∗ p.
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Any jump of c with size bigger than a/4 occurs at some time Sp, be-

cause |δ(c)(t, z)|2 ≤ J(z). Note that all Sp’s are almost surely finite

when λ(A) > 0, and almost surely infinite otherwise, in which case

the next result is void. For convenience we set S0 = 0. We denote by

m(n, p) the unique (random) integer such that m(n, p)kn∆n < Sp ≤
(m(n, p) + 1)kn∆n. Recall also that R ≤ R′ = max(p : Sp < T ).

The next lemma is closely related to Theorem 8.8, which exhibits a

different behavior as τ is smaller than, equal to, or greater than 1
2 ; recall

that kn ∼ β/∆τ
n here. In order to unify the statement, we make the

following convention:

τ < 1
2 ⇒ wn = 1/

√
kn, ct = ct

τ = 1
2 ⇒ wn = 1/

√
kn, ct =

√
c2t + β2c

(c)
t /2

τ > 1
2 ⇒ wn =

√
kn∆n, ct =

√
c
(c)
t /2.

(B.146)

With the shorthand notation c̃ni = c̃(kn, un)i, we also recall that Lni =

ĉn(i+2)kn+1 − ĉnikn+1, see (10.77).

Lemma B.14. Under the previous assumption we have the following

stable convergences in law:

(
1
wn

(Ln
m(n,p)−2+L

n
m(n,p)−1+L

n
m(n,p)

2 −∆cSp

))
p≥1

L−s−→
(
cSp−U

−
p + cSpU

+
p

)
p≥1(

Lnm(n,p)−2, L
n
m(n,p)−1, L

n
m(n,p)

)
p≥1

L−s−→
(
(1− κp)∆cSp ,∆cSp , κp∆cSp

)
p≥1

(B.147)

where the variables (U−
p , U

+
p , κp)p≥1 are defined on an extension of the

space (Ω,F ,P) and are all mutually independent and independent of F ,

with U±
p standard normal and κp uniform on (0, 1). Moreover, for all

p ≥ 1,

Lnm(n,p)−1 −∆cSp = OP(wn)

Lnm(n,p)−1 − Lnm(n,p)−2 − Lnm(n,p) = OP(wn)

j ∈ Z\{0, 1, 2} ⇒ Lnm(n,p)−j = OP(wn).

(B.148)

Proof. The proof is based on the following extension of Theorem 8.8,

which is proved exactly as Theorem 13.3.3 of [JP]. Namely, recalling

that (B.145) implies (8.16), for any finite subset J ⊂ {1, 2, . . .} we have
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the following stable convergence in law:
(

1
wn

(
ĉn1+(m(n,p)−j)kn − cSp−

)
, 1
wn

(
ĉn1+(m(n,p)+j)kn

− cSp

))
p≥1,j∈J

L−s−→
(√

2 cSp− U
j−
p ,

√
2 cSp U

j+
p

)
p≥1,j∈J(

ĉn1+m(n,p)kn

)
p≥1

L−s−→
(
κp cSp− + (1 − κp)cSp

)
p≥1

where the variables (U j−p , U j+p , κp)p≥1,j∈J are defined on an extension of

the space, are mutually independent and also independent of F , and U j±p
are standard normal and κp are uniform on (0, 1).

Recall that for any k ∈ Z,

Lnm(n,p)+k = ĉn1+(m(n,p)+2+k)kn
− ĉn1+(m(n,p)+k)kn

Lnm(n,p)−2 + Lnm(n,p)−1 + Lnm(n,p) = −ĉn1+(m(n,p)−2)kn

− ĉn1+(m(n,p)−1)kn
+ ĉn1+(m(n,p)+1)kn

+ ĉn1+(m(n,p)+2)kn

Lnm(n,p)−1 − Lnm(n,p)−2 − Lnm(n,p) = ĉn1+(m(n,p)−2)kn

− ĉn1+(m(n,p)−1)kn
+ ĉn1+(m(n,p)+1)kn

− ĉn1+(m(n,p)+2)kn
.

Then (B.148) readily follows, as well as (B.147). For the later we take

U−
p = −(U2−

p + U1−
p )/

√
2 and U+

p = (U2+
p + U1+

p )/
√
2 for the first

convergence, whereas we also use ĉn(m(n,p)+2)kn

P−→ cSp for the second

convergence.

Proof of Theorem 10.30. We need a number of steps.

Step 1. Suppose that (10.80) holds, and we prove (10.81). The key point

is of course the convergence (B.147), but one has to be careful; indeed,

the Sp’s are the jump times of 1A ∗ p, whereas the Tq’s in (10.81) are the

jump times of c with jump size bigger than a. As already mentioned, any

Tq is also a jump time of 1A ∗ p, but usually not the other way around,

so we need some care. We also use the simplifying notation (B.146).

For any q ≥ 1 we let pq be the unique (random) integer such that Tq =

Spq . Then, for l ≥ 1 and 1 ≤ j1 < · · · < jl we denote by D(l; j1, . . . , jl)

the F -measurable set on which R = l and pq = jq for q = 1, . . . , l. These

sets are pairwise disjoint and constitute a partition of Ω, so by virtue of

the properties of the stable convergence in law it is enough to prove the

convergence (10.81) in restriction to each of those sets D(l; j1, . . . , jl).

On the set D(l; j1, . . . , jl) we have Ln(In(q) − j) = Lnm(n,jq)
and

Tq = Sjq for q = 1, . . . , l. Thus (B.147) yields that, in restriction to

D(l; j1, . . . , jl),
(√

kn
(
Ln

In(q)−2+L
n
In(q)−1+L

n
In(q)

2 −∆cSp

))
1≤q≤l

L−s−→
(
cTq−U

−
jq
+ cTqU

+
jq

)
1≤q≤l.
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Since the sequence
(
cTq−U

−
jq

+ cTqU
+
jq

)
q≥1

has the same F -conditional

distribution as the sequence
(√

c2Tq− + c2Tq
Ψq
)
q≥1

, where the variables

Ψq are again i.i.d., N (0, 1), and independent of F , we deduce the con-

vergence (10.81) on the set D(l; j1, . . . , jl), and this proves the result.

Therefore, it remains to prove (10.80), which is the difficult part of

the proof. For simplicity, we rewrite this property as P(Ωn) → 1, where

Ωn =
{
R̂n = R, Tq ∈ [T̂ (n, q), T̂ (n, q) + kn∆n] ∀ q ∈ {1, · · · , R}

}
.

Step 2. We set ρn = ∆
(τ∧(1−τ))/4
n , and we recall that by (10.78), and up

to throwing away a null set, we have |∆ct| 6= a identically. We denote

by In = {0, . . . , [T/kn∆n] − 3} the family of all possible indices i for

the variables Lni which are taken into consideration. We also introduce

some other (random, possibly empty) families of indices (recall that R′ =

max(p : Sp < T )):

I+ =
{
p ∈ {1, . . . , R′} : |∆cSp | > a

}
,

I− =
{
p ∈ {1, . . . , R′} : |∆cSp | < a

}
,

I0 =
{
p ∈ {1, . . . , R′} : ∆cSp = 0

}
,

I ′0 =
{
p ∈ {1, . . . , R′} : ∆cSp 6= 0

}
,

and

Jn =
{
i ∈ In : ∀p ∈ {1, . . . , R′} we have |j −m(n, p)| ≥ 3

}

With the usual conventions infp∈∅ xp = ∞ and supp∈∅ xp = 0 when

xp ≥ 0, we define the following subsets of Ω:

A(n, 1) =
{
infp∈I+ |Lnm(n,p)−1| ≤ a

}

A(n, 2) =
{
supp∈I− |Lnm(n,p)−1| > a

}

A(n, 3) =
{
sup1≤p≤R′ |Lnm(n,p)−1 − Lnm(n,p)−2 − Lnm(n,p)| > ρn

}

A(n, 4) = ∪j=−1,1

{
supp∈I0 |Lnm(n,p)+j−1| > a

}

A(n, 5) = ∪j=−1,1

{
infp∈I′0 |Lnm(n,p)+j−1 − Lnm(n,p)+j−2

−Lnm(n,p)+j| ≤ ρn
}

A(n, 6) = ∪j=−2,2

{
sup1≤p≤R′ |Lnm(n,p)+j−1| > a

}

A(n, 7) =
{
∃ i ∈ Jn with |Lni−1| > a and |Lni−1 − Lni−2 − Lni | ≤ ρn

}
.

Then, a thorough – and rather tedious – examination of the definition

of Ωn (using in particular the fact that any jump of c of size bigger

than a occurs at some Sp) reveals that its complement is contained in
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∪7
j=1A(n, j). Therefore, it remains to prove that, for k ∈ {1, . . . , 7}, we

have

P(A(n, k)) → 0. (B.149)

Step 3. This step is devoted to proving (B.149) for k ∈ {1, . . . , 6}. Since
R′ is finite, we have

supp≤R′

(
|Lnm(n,p)−1 −∆cSp |+ |Lnm(n,p)−1 − Lnm(n,p)−2 − Lnm(n,p)|

)

= OP(wn) = OP(ρ
2
n)

from (B.148). We also have infp∈I+ |∆cSp | > a and supp∈I− |∆cSp | < a,

when the sets I+ and I−, respectively, are not empty. Therefore (B.149)

follows when k = 1, 2, 3. Next, the second part of (B.147) implies that

Lnm(n,p)+j
P−→ 0 for j = −1, 1 when ∆cSp = 0, hence the same argument

as above yields (B.149) for k = 4. In the same way we get the result for

k = 6 by applying the last part of (B.148).

Finally, if we combine the last parts of (B.147) and (B.148), we see

that

Y nj := infp∈I′0 |Lnm(n,p)+j−1 − Lnm(n,p)+j−2 − Lnm(n,p)+j|
L−s−→ Yj =

{
infp∈I′0(1− κp)|∆cSp | if j = −1

infp∈I′0 κp|∆cSp | if j = 1,

and Yj > 0 almost surely (note that Yj = ∞ is I ′0 = ∅). It follows that

P(Y nj ≤ ρn) → 0. This clearly yields (B.149) for k = 5.

Step 4. For the proof of (B.149) for k = 7 we need another auxiliary

result. We fix θ > 0, to be specified later. Set ζni = ĉnikn − c(ikn−1)∆n
.

Two successive applications of (B.89) and (B.90) with q = 1, for the

index j2kn first, and then for the index j1kn (note that the variable ζnj1
is Fj2kn∆n -measurable), plus the Markov’s inequality, yield

P
(
|ζnj1 | > θ, |ζnj2 | > θ

)
≤ Kε

θ2
η(n, ε)2

for all ε > 0 and all 0 ≤ j1 < j2, and where η(n, ε) = ∆
(2−r)(̟∧(1/2r))−ε
n .

The number of pairs (j1, j2) in {0, . . . , [T/kn∆n]} with j1 < j2 ≤ j1+4

being smaller than 4[T/kn∆n], and since η(n, ε)2/kn∆n → 0 for ε > 0

small enough, by virtue of (B.145), we deduce from the Borel-Cantelli

lemma that P(ΩnT (θ)) → 1, where

ΩnT (θ) = the set on which, for any i ∈ {0, · · · , [T/kn∆n]}
we have |ζnj | > θ for at most one value of j

in {i, i+ 1, i+ 2, i+ 3, i+ 4}.
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Therefore, it remains to prove that

P
(
ΩnT (θ) ∩ A(n, 7)

)
→ 0. (B.150)

Step 5. In this last step, we recall that the process c has no jump bigger

than a/4 outside the set S = {S1, S2, . . .}. We introduce the “modulus

of continuity” of the function s 7→ cs on [0, T ] and outside the set S, for
the time lag 4kn∆n:

ζn = sup
(
|cr+s− cr| : 0 ≤ r ≤ r+ s ≤ T, s ≤ 4kn∆n, (r, r+ s)∩S = ∅

)
.

The key property used here is that, for all ω, lim supn ζn ≤ a
4 . Hence

P(ζn ≤ a
4 +θ) → 0 for any θ > 0, and instead of (B.150) it is thus enough

to prove that, for some θ > 0, we have

P(Ω′n
T (θ) ∩ A(n, 7)) → 0,

where Ω′n
T (θ) = ΩnT (θ) ∩ {ζn ≤ a

4 + θ}. (B.151)

Now we choose θ ∈
(
0, a36

)
. We also suppose that n is large enough to

have ρn < θ, and we write

L
n

i = c(i+2)kn∆n
− cikn∆n .

By the definition of A(n, 7) we see that on the set ΩnT (θ) ∩A(n, 7) there
exists a (random) i ∈ In such that ((i − 2)kn∆n, (i + 3)kn∆n) ∩ S = ∅
and satisfying the following properties for at least one j in {−1, 1}:

|Lni−1| > a, |Lni−1+j | > a−ρn
2 ⇒ min(|Lni−1|, |Lni−1+j |) > a

3

⇒ max(|Lni−1|, |L
n
i−1+j |) > a

3 − 2θ

(here we have used the fact that among all |ζnj | for j = i− 2, i− 1, i, i+

1, i+2, at most one is bigger than θ). But if further ζn ≤ a
4 +θ, for all i as

above we have |Lni−1+j | ≤ a
4 + θ for j = −1, 0, 1, whereas a

3 − 2θ > a
4 + θ

if θ < a
36 . It follows that indeed Ω′n

T (θ) ∩ A(n, 7) = ∅, implying (B.151)

and thus (B.149) for k = 7, and the proof is complete

B.4 Limit Theorems for the Jumps of an Itô

Semimartingale

In this section we prove a few results which are scattered in the liter-

ature, and are about some functionals of the jumps of the process X ,
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supposed to be a one-dimensional Itô semimartingale X . No discretiza-

tion is involved here, but the results will be used later in the framework

of discretely observed processes.

Our functionals of interest are the following, for u > 0 and g a function

on R:

J(g;u)t =
∑

s≤t
g
(
∆Xs/u

)
. (B.152)

Our aim is to describe their behavior as u = un goes to 0, under suitable

assumptions on g and X . We assume the condition (11.13) on g, which

we recall here for the reader’s convenience:

g is bounded, even, nonnegative, continuous,

piecewise C1, with g(0) = 0,

|g′(x)| ≤ K(|x|p−1 ∧ 1),
∫
|g′(y)| dy <∞,

and x, x+ y ∈ [−1, 1]

⇒ |g′(x+ y)− g′(x)| ≤ K|x|(p−2)+ |y|(p−1)∧1,

(B.153)

which in particular implies g(x) ≤ K(|x|p ∧ 1): here, p ≥ 1 is a real,

subject to various conditions later. The results of this section do not

require the last property in (B.153), but for simplicity we stick to this

condition, since it will be needed later. We associate with such a function

g and with any β ∈ [0, 2] and z > 1 the following quantities, as in (11.15):

g+(x) = g(x) 1{x>0},

g−(x) = g(x)1{x<0} = g+(−x)
vg(β) = β

∫∞
0

g(x)
x1+β dx,

vg(β, z) =
β

((log z) vg(β))
2

∫∞
0

(g(x)−zβ g(x/z))2
x1+β dx.

(B.154)

Note that, in general, p > β is required for vg(β) < ∞ and for vg(β, z)

to be well defined.

As for the process X , we suppose that it is an Itô semimartingale,

although here we only need conditions on the jumps, expressed in terms

of the Lévy measures. Namely, if Ft denotes the spot Lévy measure of

X , we introduce the following assumptions, where for x > 0 the tail

functions are
F

+
t (x) = Ft((x,∞)),

F
−
t (x) = Ft((−∞,−x)),

F t(x) = F
+
t (x) + F

−
t (x).

Assumption (L′′
+). We have nonnegative predictable (or optional) pro-

cesses a
(+)
t and Lt and numbers 0 ≤ β′

+ < β+ ≤ 2 such that

x ∈ (0, 1] ⇒
∣∣xβ+ F

(+)

t (x) − a
(+)
t

∣∣ ≤ Lt x
β+−β′

+ .
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Assumption (L′′
−). We have nonnegative predictable (or optional) pro-

cesses a
(−)
t and Lt and numbers 0 ≤ β′

− < β− ≤ 2 such that

x ∈ (0, 1] ⇒
∣∣xβ− F

(−)
t (x)− a

(+)
t

∣∣ ≤ Lt x
β−−β′

− .

Below, we treat positive and negative jumps separately, by using for

example J(g+;u)t with g+ as given by (B.154) for positive jumps. As

is natural for this kind of problem, the key role will be played by the

compensators of the processes J(g+;u), which are

J̃(g+;u)t =
∫ t
0 Fs(g+;u) ds,

where Ft(f ;u) =
∫
f(x/u)Ft(dx),

(B.155)

as soon as the process Fs(g+;u) is locally bounded, which is for example

the case under (L′′
+) if g satisfies (B.153) with p > β+. As a rule, we put

emphasis on positive jumps, negative jumps being treated in a completely

symmetric way.

Our first result is a bound on the difference J(g+;u)− J̃(g+;u):

Lemma B.15. If the process supx∈(0,1] x
β+ F

+

t (x) is locally bounded for

some β+ ∈ [0, 2], and g satisfies (B.153) with some p > β, then for all t

we have

sup
s≤t

|J(g+;u)s − J̃(g+;u)s| = OP(u
−β+/2), as u→ 0. (B.156)

Proof. Our usual localization argument allows us to assume that

xβ+F
+

t (x) ≤ K for all x ∈ (0, 1]. Fubini’s theorem yields

Ft(g+;u) =
∫∞
0 Ft(dx)

∫ x∧1
u

0 g′(y)dy

+
∫∞
1

(
g(x/u)− g(1/u)

)
Ft(dx)

=
∫ 1/u

0 g′(y)F
(+)
t (uy) dy

+
∫∞
1

(
g(x/u)− g(1/u)

)
Ft(dx).

(B.157)

Then g′(x) ≤ K(|x|p−1 ∧ 1 and g(x) ≤ K and
∫
|g′(x)|dx < ∞ yield, if

p > β+ and u ∈ (0, 1],

Ft(g+;u) ≤ Ku−β+. (B.158)

The process M(u) = J(g+;u)− J̃(g+;u) is a locally square-integrable

martingale with predictable quadratic variation 〈M(u),M(u)〉 =

J̃(g2+;u) (because (∆J(g+;u)s)
2 = ∆J(g2+;u)s). Hence (B.158) and the

fact that the function g2 also satisfy (B.153), with 2p instead of p, yield

by Doob’s inequality

E
(
sup
s≤t

|M(u)s|2
)

≤ 4E
(
J̃(g2+;u)t

)
≤ Ktu−β+ . (B.159)
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This gives us (B.156).

Theorem B.16. Assume (L′′
+) and set A

(+)
t =

∫ t
0 a

(+)
s ds. Let g sat-

isfy (B.153) with p > β+. Then we have the following convergence in

probability, locally uniform in time, as u→ 0:

uβ+ J(g+;u)
u.c.p.

=⇒ A
(+)

(g) := vg(β+)A
(+). (B.160)

The same result holds under (L′′
−), upon replacing β+, A

(+) and A
(+)

(g)

by β−, A
(−)
t =

∫ t
0 a

(−)
s ds and A

(−)
(g) = vg(β−)A(−).

Proof. We prove only the first claim. By localization, we may assume that

|xβ+F
+

t (x)− a
(+)
t | ≤ Kxβ+−β′

+ for some β′
+ < β+ and some constant K.

We have (B.157), and also by the same argument

vg(β+) =

∫ 1/u

0

g′(y)

yβ+
dy +

∫ ∞

1/u

(
g(x)− g(1/u)

) β+
x1+β+

dx.

Then in view of (B.153) and (A.7) with Lt being a constant (due to our

strengthened assumption),
∣∣uβ+Ft(g+;u)− vg(β+) a

(+)
t

∣∣

≤
∫ 1/u
0 |g′(y)|

∣∣∣uβ+F
(+)

t (uy)− a
(+)
t

yβ+

∣∣∣ dy
+ Kuβ+ F t(1) +K

∫∞
1/u

β+

x1+β+
dx

≤ Kuβ+−β′
+
∫∞
0

|g′(y)|
y
β′
+
dy +Kuβ+

≤ K uβ+−β′
+ ,

(B.161)

where we also applied p > β+ > β′
+ and

∫
|g′(x)| dx < ∞ and |g′(x)| ≤

K(|x|p−1 ∧ 1). Recalling (B.155), we deduce

sup
s≤t

∣∣uβ+ J̃(g+;u)x −A
(+)

(g)s
∣∣ ≤ K tuβ+−β′

+ . (B.162)

Combining this and (B.156) gives us the result.

We also have an associated Central Limit Theorem, in the form of

a joint convergence for several processes of the type (B.152). Below, we

consider a sequence un ↓ 0 and a family (gj)1≤j≤q of functions satisfying

(B.153). Assume (L′′
+), and associate the q-dimensional process Zn,+ with

components

Zn,+i = u−β+/2
n

(
uβ+
n J(gj+;un)−A

(+)
(gj)

)
. (B.163)

If further we have (L′′
−), we also have another q-dimensional process Zn,−

with components

Zn,−i = u−β−/2
n

(
uβ−
n J(gj−;un)−A

(−)
(gj)

)
. (B.164)
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Theorem B.17. Assume (L′′
+) with β′

+ < β+/2, and suppose that all

functions gj satisfy (B.153) with p > β+. Then the q-dimensional pro-

cesses Zn,+ converge stably in law to a limiting process Z+, defined on

an extension (Ω̃, F̃ , (F̃t)t≥0, P̃) of (Ω,F , (Ft)t≥0,P), and which is con-

tinuous and, conditionally on F , is a centered Gaussian martingale with

variance-covariances given by

Ẽ(Z+i
t Z+j

t | F) = A
(+)

(gigj)t. (B.165)

If further (L′′
−) holds with β′

− < β−/2 and p > β−, then the 2q-

dimensional processes (Zn,+, Zn,−) converge stably in law to a limiting

process (Z+,Z−) having the same description as above, with additionally

Ẽ(Z−i
t Z−j

t | F) = A
(−)

(gigj)t, Ẽ(Z+i
t Z−j

t | F) = 0. (B.166)

Proof. We will prove the second claim only, and by localization we

may assume |xβ+F
+

t (x) − a
(+)
t | ≤ Kxβ+−β′

+ and |xβ−F
−
t (x) − a

(−)
t | ≤

Kxβ−−β′
− for all x ∈ (0, 1]. We consider the 2q-dimensional processesMn

with components

Mn,+i = u
−β+/2
n

(
u
β+
n J(gi+;un)− J̃(gj+;un)

)
,

Mn,−i = u
−β−/2
n

(
u
β−
n J(gi−;un)− J̃(gi−;un)

)
.

Since β′
± < β±/2, one deduces from (B.162) that Zn,±i −Mn,±i u.c.p.

=⇒ 0,

so it is enough to prove the stable convergence in law of the processes

Mn.

Each component Mn,±i is a locally square-integrable martingale, and

in fact a compensated sum of jumps with jumps smaller than Ku
β±/2
n

by construction, and u
β±/2
n → 0. Therefore, by Theorem IX.7.3 of Jacod

and Shiryaev (2003) applied with Z = Z(n) = 0 and with the trunca-

tion function h(x) = x, we see that it is enough to show the following

properties, where ε and η are either + or − and δε,η is 1 if ε = η and 0

otherwise:

〈Mn,εi,Mn,ηj〉t P−→ δε,η A
(ε)

(giεg
j
ε)t (B.167)

〈Mn,εi, N〉t P−→ 0, (B.168)

for any t > 0 and any N is a class N of bounded martingales which is

total in the L2 sense in the set of all bounded martingales.

Since ∆Mn,εi
s ∆Mn,ηj

s vanishes when ε 6= η and otherwise is equal to

uβε
n ∆J(giεg

j
ε;un)s, we have

〈Mn,εi,Mn,ηj〉 = δε,η uβε
n J̃(giεg

j
ε;un).
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Then (B.167) follows from (B.162), because the product giεg
j
ε satisfies

(B.153) with some p > βε.

Next we turn to (B.168). The jump measure µ of X has the compen-

sator ν(dt, dx) = dt Ft(dx), so ν({t}×R) = 0 for all t and a decomposition

theorem for martingales (Theorem III.4.20 of Jacod and Shiryaev (2003))

tells us that we can take for N the union N = N1 ∪N2, where N1 is the

class of all bounded martingales which are orthogonal (in the martingale

sense) to all stochastic integrals of the form ψ ∗ (µ − ν) and N2 is the

class of all bounded martingales of the form N = (ψ 1{|x|>a}) ∗ (µ − ν),

with a > 0 arbitrary (and ψ bounded, since N is).

When N ∈ N1 we have 〈Mn,εi, N〉t = 0, hence (B.168) holds. When

N = (ψ 1{|x|>a})∗ (µ− ν) is in N2, and since Mn,εi = φn ∗ (µ− ν), where
φn(ω, t, x) = u

βε/2
n giε(x/un), We have

〈Mn,εi, N〉t = uβε/2
n

∫ t

0
ds

∫

{|x|>a}
ψ(s, x) giε(x/un)Fs(dx).

Since giε and ψ are bounded, the absolute value of the above variable is

smaller than Ku
βε/2
n ν([0, t] × {x : |x| > a}), and (B.168) follows again.

B.5 A Comparison Between Jumps and

Increments

The main object of this section is to compare the functionals

J(g; ∆n, un)t =

[t/∆n]∑

i=1

g(∆n
i X/un) (B.169)

with the functionals J(g;un) of the previous section, for suitable test

functions g. We assume throughout that X is a one-dimensional Itô semi-

martingale of the (usual) form (A.2), satisfying (H-r) for some r ∈ [0, 2],

although the càdlàg property of σ is not needed (only the boundedness

is).

However, we begin with the proof of Lemma 11.8.

Proof of Lemma 11.8. We first assume (H-r) for some r ∈ [0, 2]. By lo-

calization we can assume (SH-r), so that |δ(ω, t, z)|r ≤ J(z) for some

bounded and λ-integrable function J ≥ 0. Using (1.75) and Markov’s

inequality, for x ∈ (0, 1] we come up with

F t(x) = λ
(
{z : δ(t, z)| > x}

)

≤ λ
(
{z : J(z) > xr}

)
≤ 1

xr

∫
J(z)λ(dz)
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for any x ∈ (0, 1]. Then (L′) for β = r, hence for all β ∈ [r, 2], follows.

Conversely, we assume (L′) for some β ∈ [0, 2], and again by localiza-

tion we may assume that

x ∈ (0, 1] ⇒ xβ F t(x) ≤ L (B.170)

for a constant L. As mentioned in Chapter 1, there are many Grigelionis

representations for X , and to begin with there is a large choice for the

driving Poisson measure p. However, in the one-dimensional case, it is

always possible to choose the following one: we take E = R and

δ(ω, t, z) =





inf(x : F
(+)

ω,t (x) > z) if z > 0

0 if z = 0

− inf(x : F
(−)

ω,t (x) > −z) if z < 0,

with the convention inf(∅) = 0. It follows that the measure Fω,t is the

restriction to R\{0} of the image of the Lebesgue measure λ(dz) = dz

by the mapping z 7→ δ(ω, t, z). Therefore, by Theorem (14.56) of Jacod

(1979), X admits the representation (A.2) with this δ and p a Poisson

random measure on R+ × R with intensity measure q(dt, dx) = dt⊗ dx.

Now, (B.170) and the definition of δ yield that |δ(ω, t, z)|r ∧ 1 ≤ J(z),

where J(z) = Lr/β

|z|r/β ∧ 1. Then (H-r) holds for all r > β because in

this case
∫
J(z) dz < ∞. Finally, when β = 0, (B.170) again implies

|δ(ω, t, z)|0 ∧ 1 = 1{δ(ω,t,z) 6=0} ≤ 1[−L,L](z), which in turn implies implies

(H-0).

Next, we look for the numbers η for which the difference J(g; ∆n, un)−
J(g;un) multiplied by ∆η

n goes to 0. In view of the convergence results

in Theorems B.16 and B.17, and when un ≍ ∆̟
n for some ̟ > 0 and

(L+) for example holds, this has interest only if we find that η < β+̟

and η < β+̟/2, respectively. In view of Lemma 11.8, we are thus led to

compare the possible exponents η with r̟ or r̟/2, when (H-r) holds.

Proposition B.18. Assume (H-r) for some r ∈ [0, 2], and let p > r ∨ 1

and g be a function satisfying (B.153). Let un ≍ ∆̟
n for some ̟ ∈

(
0, 1r

]
.

Then

∆η
n

(
J(g±; ∆n, un)− J(g±;un)

) u.c.p.
=⇒ 0, (B.171)

under any one of the following conditions:

(a) Xc ≡ 0 and either r ≤ 1 and B − (δ 1{|δ|≤1}) ∗ q ≡ 0 (that is,

Xt = X0 +
∑
s≤t∆Xs, recall that B is the first characteristic of X) or
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r > 1, and in all cases (with the convention (p−1)∧r
r = 1 when r = 0)

η > ηa = ηa(p, r,̟) where

ηa(p, r,̟) := (B.172){
̟ + (r̟ − 1) (p−1)∧r

r if r ≤ 1(
r̟ + (r̟ − 1) (p−r)∧1

r

)∨ ( r̟
2 + (r̟ − 1) (2p−2)∧r

2r

)
if r > 1.

(b) r ≤ 1 and Xc ≡ 0 and η > ηb = ηb(p, r,̟) where

ηb(p, r,̟) := (̟ + r̟ − 1)
∨

(p̟ + 1− p). (B.173)

(c) ̟ < 1
2 and η > ηc = ηc(p, r,̟) where

ηc(p, r,̟) :=
(
̟ + r̟ − 1

2

)∨(
p̟ + 1− p

2

)
. (B.174)

Note that ηc ≥ ηb when r ≤ 1, and ηc ≥ ηa always, as it should be

(these inequalities are obvious when r ≤ 1, and the latter is tedious but

straightforward to check when r > 1). All three bounds ηa, ηb, ηc are

increasing, as functions of r: when we have (H-r′) for some r′ > r but

not (H-r), the process X is “closer” in a sense to the Brownian part, so

it is “more difficult” for J(g±; ∆n, un) to be close to J(g±;un), and in

order to have (B.171) the exponent η should be bigger.

Proof. The proof of this result is given only for g+, the case of g− being

similar. It is divided into a number of technical steps, which are conducted

under the strengthened assumption (SH-r): by localization, this is not a

restriction.

Step 1. By (SH-r) we have |δ(t, z)|r ≤ J(z), where J is bounded and

λ-integrable. As soon as n is large enough to have un < 1 we have the

following decompositions of X :

X = X0 + Z +Xn + Y n, where Xn = (δ 1{J>ur
n/2}) ∗ p

and

r > 1 ⇒
{
Z = Xc

Y n = B − (δ 1{J>ur
n/2, |δ|≤1}) ∗ q + (δ 1{J≤ur

n/2}) ∗ (p− q)

r ≤ 1 ⇒
{
Z = Xc +B − (δ 1{|δ|≤1}) ∗ q
Y n = (δ 1{J≤ur

n/2}) ∗ p.

We write gn(x) = g+(x/un), so J(g+; ∆n, un) = J(gn; ∆n, 1) and

J(g+;un) = J(gn; 1). We introduce the intervals I(n, i) = ((i −
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1)∆n, i∆n], and τ(n, i) denotes the number of jumps of the Poisson pro-

cess 1{J>ur
n/2} ∗ p in the time interval I(n, i). Note that

τ(n, i) is independent of F(i−1)∆n
, and Poisson

with parameter smaller than K∆1−r̟
n .

(B.175)

Step 2. We derive some consequences of (SH-r). Since 0 ≤ g(x) ≤ K(|x|∧
1)p, we have for w ∈ (0,∞]

pq ≥ r ⇒
∫
gn(δ(t, z))

q λ(dz)

≤ K
∫ (J(z)pq/r

upq
n

∧ 1
)
λ(dz)

≤ K
∫ J(z)r

ur
n
λ(dx) ≤ K

ur
n

q ≥ 0 ⇒
∫
|δ(t, z)|q 1{J(z)>ur

n/2} λ(dz) ≤
Kq

u
(r−q)+
n

,

q ≥ r ⇒
∫
|δ(t, z)|q 1{J(z)≤ur

n/2} λ(dz) ≤ Kqu
q−r
n .

(B.176)

Let (Gnt ) be the smallest filtration containing ( F t) and such that the

variables τ(n, i) for i ≥ 1 are all Gn0 -measurable.

We first deduce from (B.176) that both functions gn(δ) and

gn(δ) 1{J>ur
n/2} on Ω× R+ × E satisfy (A.69) with α(q) = Kq/u

r
n when

q ≥ 1 (recall p > r), hence by from (A.72) and its improvement (A.77)

we get, for q ≥ 1,

T a finite (Ft)-stopping time

⇒ E
(( ∑

s∈(T,T+∆n]

gn(∆Xs)
)q

| FT
)

≤ Kq∆
1−r̟
n

T a finite (Gnt )-stopping time

⇒ E
(( ∑

s∈(T,T+∆n]

gn(∆Y
n
s )
)q

| GnT
)

≤ Kq∆
1−r̟
n .

(B.177)

Analogously, the function δ 1{J>ur
n/2} satisfies (A.69) with α(q) =

α′(q) = α′′(q) = Kq when q ≥ r, and with α(1) = Ku1−rn when

r > 1. We also have Xn = (δ 1{J(x)>ur
n/2}) ∗ (p − q) + Un with

Un = (δ 1{J(x)>ur
n/2}) ∗ q and sups≤∆n

|Unt+s − Unt | ≤ K∆nu
1−r
n when

r > 1 (use again (B.176)). Hence (A.72) for the first estimate below, and

(A.71) when r > 1 and (A.73) when r ≤ 1 for the second one yield for

q ≥ r, and since r̟ < 1,

E
(
sups≤∆n

|Xn
T+s −Xn

T |q | FT
)

≤ Kq∆n

E
(
sups≤∆n

( |Xn
T+s−Xn

T |
un

∧
1
)q | FT

)
≤ Kq∆

1−r̟
n .

(B.178)

In the same way, the function δ 1{J≤un/2} satisfies (A.69) with α(q) =

α′(q) = α′′(q) = Kqu
q−r
n when q ≥ r. Upon using the improvement
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(A.77), we then obtain after some calculation using again (B.176) and

the boundedness of the first spot characteristic bt that, for any finite

(Gnt )-stopping time T and any bounded predictable process H and for

q ≥ r,

E
(
sups≤∆n

∣∣ ∫ T+s
T Hu dY

n
u

∣∣q | GnT
)

≤ Kq∆
(q−r)̟
n E

( ∫ T+∆n

T |Hu|q du | GnT
)

E
(
sups≤∆n

( |Y n
T+s−Y n

T |
un

∧
1
)q | GnT

)
≤ Kq∆

1−r̟
n .

(B.179)

Step 3. Coming back to the processes of interest, we have the decompo-

sition

J(g+; ∆n, un)− J(g+;un) =
∑5
j=1 V

n(j)

where V n(j)t =
∑[t/∆n]
i=1 ζni (j) and

ζni (1) = gn(∆
n
i X)− gn(∆

n
i X

n +∆n
i Y

n)

ζni (2) =
(
gn(∆

n
i Y

n)−∑s∈I(n,i) gn(∆Y
n
s )
)
1{τ(n,i)=0}

ζni (3) =
(
gn(∆

n
i X

n +∆n
i Y

n)−∑s∈I(n,i) gn(∆Xs)
)
1{τ(n,i)≥2}

ζni (4) =
(
gn(∆

n
i X

n +∆n
i Y

n)− gn(∆
n
i X

n)
)
1{τ(n,i)=1}

ζni (5) = −∑s∈I(n,i) gn(∆Y
n
s ) 1{τ(n,i)=1}

(use ∆Xs = ∆Xn
s + ∆Y ns , plus the fact that Y n and Xn do not jump

together, and the fact that if τ(n, i) = 1 the increment ∆n
i X

n is equal to

the unique jump of Xn on the interval I(n, i), whereas ∆n
i X

n = 0 when

τ(n, i) = 0). Then, the proof consists in showing that

∀ε > 0, t > 0 : E
(
sup
s≤t

|V n(j)s|
)
≤ Kt,ε∆

θj−ε
n (B.180)

for j = 1, 2, 3, 4, 5, for some θj , with the following properties: θj ≥ −ηa
for j = 2, 3, 4, 5, and θ1 ≥ −ηb in Case (b), and θ1 ≥ −ηc in case (c)

(note that in Case (a) we have Z = 0, hence V n(1) ≡ 0).

Step 4. Here we prove (B.180) for j = 3. Since 0 ≤ gn ≤ K, we deduce

from (B.175) that

E
(
gn(∆

n
i X

n +∆n
i Y

n) 1{τ(n,i)≥2}
)

≤ KP(τ(n, i) ≥ 2) ≤ K∆2−2r̟
n .

(B.181)

Since r < p, Hölder’s inequality and the last inequality above and (B.177)

give for conjugate exponents u,w

E
(
1{τ(n,i)≥2}

∑

s∈I(n,i)
gn(∆Xs)

)
≤ Kv∆

(1−r̟)/u+2(1−r̟)/w
n .
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Taking w close to 1, and using again (B.181), we deduce that E(|ζni (3)|) ≤
Kε∆

2(1−r̟)−ε
n for any ε > 0, hence (B.180) holds with θ3 = 1 − 2r̟,

which clearly satisfies θ3 ≥ −ηa.
Step 5. Here we prove (B.180) for j = 5. We use the second part of

(B.177) and (B.175) and successive conditioning to obtain E(|ζni (5)|) ≤
K∆

2(1−r̟)
n . So (B.180) holds with θ5 = θ3.

Step 6. Next we prove (B.180) for j = 4. Equation (B.153) yields |g(x+
y)− g(x)| ≤ K(|y| ∧ 1), hence

|ζni (4)| ≤ K
( |∆n

i Y
n|

un

∧
1
)
1{τ(n,i)=1}.

By (B.179), plus Hölder’s inequality when r > 1, and (B.175) and suc-

cessive conditioning, we obtain E(|ζni (4)|) ≤ K∆
(1−r̟)(1+1/(r∨1)
n . Thus

(B.180) holds with θ4 = (1 − r̟) 1
r∨1 − r̟, which is easily checked to

satisfy θ4 ≥ −ηa.
Step 7. The proof of (B.180) for j = 2 is the most delicate part, accom-

plished through several steps.

Sub-step (i). We need additional notation. For t ≥ (i− 1)∆n we set

Y n,it = Y nt − Y n(i−1)∆n
,

Un,it = gn(Y
n,i
t )−∑s∈((i−1)∆n,t]

gn(∆Y
n,i
s ).

If S(n, i) = (i∆n) ∧ inf(t > 0 : |Y n,i| > un/2), we then have

ζni (2) = (vni + wni )1{τ(n,i)=0},

with vni = Un,iS(n,i) and w
n
i = Un,ii∆n

− Un,iS(n,i).

We can further decompose vni as follows. We set Bn = B −
(δ 1{J>ur

n/2, |δ|≤1}) ∗ q and Mn = (δ 1{J≤ur
n/2}) ∗ (p − q) when r > 1

(so Y n = Bn +Mn), and Bn = 0 when r ≤ 1, and also

kn(x, y) =

{
gn(x + y)− gn(x)− gn(y) if r ≤ 1

gn(x + y)− gn(x)− gn(y)− g′n(x)y if r > 1.

χni =

{
0 if r ≤ 1∫ S(n,i)
(i−1)∆n

g′n(Y
n,i
s )dMn

s if r > 1.

Since p > 1∨ r, (B.154) implies that the restriction of g to [−1, 1], hence

of gn to [−un, un] as well, is Cr: this means C1 in the usual sense when

r = 1, and Hölder with index r when r ∈ [0, 1), and C1 with its derivative

Hölder with index r − 1 when r ∈ (1, 2]. On the other hand, |∆Y n| ≤
un/2, so the semimartingale Y n,it∧S(n,i), which is without a continuous
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martingale part, takes its values in [−un, un], and Y n,is− ∈ [−un/2, un/2]
if s ≤ S(n, i). In other words, the function gn and the process Y n,i satisfy

the properties required to apply the extension of Itô’s formula given in

Theorem 3.3.2 of [JP], and this formula gives us the decomposition

vni = ξni + χni

where

ξni =

∫ S(n,i)

(i−1)∆n

g′n(Y
n,i
s )dBns +

∑

s∈((i−1)∆n,S(n,i)]

kn(Y
n,i
s− ,∆Y ns ).

We thus end up with ζni (2) = (ξni + χni + wni )1{τ(n,i)=0}.

Suppose for a while that, for some θ ∈ R,

E(|wni |) ≤ K∆θ+1
n ,

E(|ξni |) ≤ K∆θ+1
n ,

E(|χni |2) ≤ K∆2θ+1
n .

(B.182)

This implies E
(∑[t/∆n]

i=1 (|wni | + |ξni |)
)
≤ Kt∆θ

n. Moreover, χni = 0 when

r ≤ 1, and otherwise Mn is a martingale, hence E(χni | Fi−1) = 0. Then

when r > 1 Doob’s inequality yields

E
(
sup
s≤t

∣∣
[t/∆n]∑

i=1

χni
∣∣2
)

≤ 4

[t/∆n]∑

i=1

E(|χni |2) ≤ Kt∆2θ
n .

Thus (B.180) holds with Kt = K(t +
√
t) and θ2 = θ. Hence it remains

to prove (B.182) with θ ≥ −ηa.
Sub-step (ii). For the first claim of (B.182) we use gn(x) ≤ K(1 ∧
(|x|/un)p) and combine (B.177) and (B.179) with T = S(n, i), to get

E(|wni | | GnS(n,i)) ≤ K∆1−r̟
n 1{S(n,i)<i∆n}, whereas P(S(n, i) < i∆n) ≤

K∆1−r̟
n by (B.179) again. Hence E(|wni |) ≤ K∆2−2r̟

n , and the first

part of (B.182) holds for θ = 1− 2r̟ ≥ −ηa.
Substep (iii). Next, we turn to the second claim of (B.182). By singling

out the two cases |x| ≥ |y| and |x| < |y|, we deduce from (B.153) that in

both cases r ≤ 1 and r > 1 we have

x, y ∈ [−un/2, un/2] ⇒ |kn(x, y)| ≤ K
∣∣∣ y
un

∣∣∣
r ( |x|
un

∧
1
)(p−r)∧1

.

Therefore
∑
s∈((i−1)∆n,S(n,i)]

|kn(Y n,is− ,∆Y ns )|
≤ K

ur
n

∫
I(n,i)×{z:J(z)≤ur

n/2}

( |Y n,i
s− |
un

∧
1
)(p−r)∧1

J(z) p(ds, dz).
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The expectation of the above equals the expectation of the same integral,

but with respect to the compensator q. Combining this with the fact that

Bnt =
∫ t
0 b

n
s ds with a process bn satisfying |bnt | ≤ K/u

(r−1)+

n by (B.176),

whereas |g′n(x)| ≤ K
un

( |x|
un

∧ 1
)p−1

, we readily obtain

E(|ξni |) ≤ K
∫
I(n,i) E

(
1
ur
n

(
|Y n,i

s |
un

∧
1
)(p−r)∧1

+ 1
ur∨1
n

(
|Y n,i

s |
un

∧
1
)p−1

ds
)
ds.

Then (B.179) and Hölder’s inequality yield

E(|ξni |) ≤





K∆
1−̟+(1−r̟) (p−1)∧r

r
n if r ≤ 1

K∆
(1−r̟)(1+ (p−r)∧1

r )
n if r > 1.

Hence the second part of (B.182) holds for θ = −ηa.
Sub-step (iv). Since χni = 0 when r ≤ 1 it remains to prove the third part

of (B.182) when r > 1. By (A.70) and (B.176) we have

E(|χni |2) ≤ Ku2−rn E
( ∫

I(n,i) g
′
n(Y

n,i
s )2 ds

)

≤ Ku−rn E
( ∫

I(n,i)

( |Y n,i
s |
un

∧ 1
)2p−2

ds
)
.

We apply (B.179) again to obtain E(|χni |2) ≤ K∆
(1−r̟)

(
1+ (2p−2)∧r

r

)
n ,

hence the third part of (B.182) for θ = 1
2

(
(1− r̟) (2p−2)∧r

r − r̟
)
, which

is not smaller than −ηa (recall p > r ∨ 1).

Putting all these partial results together, we deduce that (B.180) holds

for j = 2, with θ2 ≥ −ηa.
Step 8. Now we prove (B.180) for j = 1. In case (b) we have r ≤ 1 and

Zt =
∫ t
0 zs ds for some bounded process zs. Since

|gn(x + y)− gn(x)| ≤ K
(( |y|
un

∧
1
)p

+
|y|
un

( |x|
un

∧
1
)p−1

)
. (B.183)

it follows from (B.178) and (B.179) plus Hölder’s inequality when p−1 <

r that (B.180) for j = 1 holds with θ1 = (p−1−p̟)∧
(
(1−r̟) (p−1)∧r

r −
̟
)
, which is not smaller than −ηb.
Finally consider case (c) with ̟ < 1

2 . We have Zt = Xc
t +

∫ t
0 zs ds for

some bounded process zs. Then exactly as previously, and upon using

Hölder’s inequality and the property E(|∆n
i Z|q) ≤ Kq∆

q/2
n for any q > 0,

we obtain

E(|ζni (1)|) ≤ Kε

(
∆p(1−2̟)/2
n +∆

(1−2̟)/2+(1−r̟) (p−1)∧r
r

n

)
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Therefore (B.182) holds for j = 1 when θ1 =
( p
2 − 1 − p̟

)
∧
(
(1 −

r̟) (p−1)∧r
r −̟− 1

2

)
, which is not smaller than −ηc. This completes the

proof.

Next, we derive a useful corollary:

Corollary B.19. Let g satisfy (B.153) for some p > 2 and un ≍ ∆̟
n

for some ̟ ∈
(
0, p−2

2p

)
(hence ̟ < 1

2).

(a) There exists a number χ ∈
(
1
2 , 1
)
depending on ̟ and p, such that

we have, as soon as (H-r) holds for some r ∈ [0, 2]:

urχn
(
J(g±; ∆n, un)− J(g±;un)

) u.c.p.
=⇒ 0

urχn
(
J(g±; ∆n, un)− J̃(g±;un)

) u.c.p.

=⇒ 0.
(B.184)

(b) There exists a number χ′ > 0 depending on ̟ and p, such that if

(H-r) holds for all r ∈ (0, 2], we have

1

∆χ′

n

(
J(g±; ∆n, un)− J(g±;un)

) u.c.p.
=⇒ 0. (B.185)

Proof. For the first part of (B.184), and in view of (B.171), it is enough

to show the existence of χ ∈
(
1
2 , 1
)
such that rχ̟ > ηc(p, r,̟) for all

r ∈ [0, 2] (with p, ̟ being fixed). Since p > 2 and ̟ < p−2
2p , any χ in(

1
2 , 1
)
and bigger than 6̟−1

4̟ , which is smaller than 1, solves our problem.

The second part of (B.184) readily follows from the first part, plus

(B.156), which one can apply with β± = r, plus the fact that χ > 1
2 ,

implying rχ > β±

2 .

For (b), we apply (B.171), and notice that under our conditions on p

and ̟ we have ηc(p, r,̟) < 0 when r is close enough to 0.

We are now ready for the Law of Large Numbers and the Central Limit

Theorem for J(g; ∆n, un). Recall that Assumptions (L+) and (L−) are

defined in Subsection 11.2.4.

Theorem B.20. Let un ≍ ∆̟
n for some ̟ > 0.

(a) Assume (L+) and let g be a function satisfying (11.13), with the

exponent p. Then we have the following convergence in probability, locally

uniform in time:

uβ+
n J(g+; ∆n, un)

u.c.p.
=⇒ vg(β+)A

(+), (B.186)

provided one of the following two conditions holds (with the convention
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1
0 = ∞):

(i) p > 2 and ̟ < 1
2(1+β−β+)

∧ p−2
2(p−β+)

(ii) σ ≡ 0 and



β < 1 ⇒
{
p > 1

̟ < 1
1+β−β+

∧ p−1
p−β+

β ≥ 1 ⇒





p > β

̟ < 1
β(β+1−β+)

∧ p−β
β(p−β+)∧ 1

2(β−β+)

∧ 2p−2
β(β+2p−2−2β+)+ .

(B.187)

The same holds under (L−), provided we replace g+, β+, A
(+) by

g−, β−, A(−).

(b) Assume (L+) with β′
+ < β+/2 and let g1, . . . , gq be functions sat-

isfying (B.153) with the same p. The q-dimensional processes with com-

ponents u
−β+/2
n

(
u
β+
n J(gj+; ∆n, un)− vgj (β+)A

(+)
)
converge stably in law

to the same limiting process Z+ as in Theorem B.17, under each one of

the following two conditions:

(i) p > 2 and ̟ < 1
2+2β−β+

∧ p−2
2p−β+

(ii) σ ≡ 0 and



β < 1 ⇒
{
p > 1

̟ < 2
2+2β−β+

∧ 2p−2
2p−β+

β ≥ 1 ⇒





p > β

̟ < 1
β(β+1−β+/2)

∧ p−β
β(p−β+/2)∧ 1

2β−β+

∧ 2p−2
β(β+2p−2−β+) .

(B.188)

The same holds under (L−), provided we replace gj+, β+, A
(+) by

gj−, β−, A
(−).

(c) If (L+) and (L−) hold (so we can take β = β+ ∨
β− in both assumptions), with β′

+ < β+/2 and β′
− < β−/2,

and if (B.188) holds with β+ and also with β− instead of β+,

we have the stable convergence in law of the 2q-dimensional pro-

cesses with components u
−β+/2
n

(
u
β+
n J(gj+; ∆n, un) − vgj (β+)A

(+)
)
and

u
−β−/2
n

(
u
β−
n J(gj−; ∆n, un) − vgj (β−)A

(−)
)
to (Z+,Z−), as defined in

Theorem B.17 again.

Notice that the conditions (B.187) and (B.188) involve β, as well as

β+ when we only have (L+); since β ≥ β+, these conditions are more

stringent than if they featured β+ everywhere instead of β. The reason

is that, even though in (a) above, for example, we are not interested

in negative jumps, those enter the increments ∆n
i X , hence also their
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positive parts (∆n
i X)+. Therefore we need a kind of control on negative

jumps, which necessitates (B.187) with β and not simply β+.

Proof. (a) In view of Theorem B.16, it is enough to show that (B.171)

holds with η = β+̟. By Lemma 11.8 we know that (H-r) holds for any

r > β. Then Proposition B.18 yields the result, provided we have ̟ < 1
2

when σ is not identically 0, and

β+̟ >





ηb(p, β,̟) if σ ≡ 0, β < 1

ηa(p, β,̟) if σ ≡ 0, β ≥ 1

ηc(p, β,̟) otherwise.

(B.189)

Note that here we have written ηa(p, β,̟) for example, instead of

ηa(p, r,̟) for some r > β, but the two formulations are equivalent

because r 7→ ηa(p, r,̟) is continuous and non-decreasing. It is easily

checked that, in view of the definitions of ηa, ηb, ηc, and since we also

must have p > β ∨ 1, (B.187) and (B.189) are equivalent.

(b) We apply Theorem B.17, so now we have to check that (B.171)

holds with η = β+̟/2. Therefore it is enough to show that (B.188) is

equivalent to the properties in (B.189), except that the left side is now

β+̟/2: this is again an easy check.

(c) When both (L+) and (L−) hold, we apply the second part of Theo-

rem B.17 for the joint convergence, in exactly the same way as above.

B.6 Proofs for Chapter 11

B.6.1 Proof of Theorems 11.11, 11.12, 11.18, 11.19,

and Remark 11.14

Step 1. We use common notation for all four theorems. The function g

satisfying (B.153) with some p, and the number γ > 1, are fixed, and we

associate the following function, which again satisfies (B.153) with the

same p:

h(x) = g(x/γ), so vh(β) = vg(β)/γ
β .

We assume at least (L+), with 0 ≤ β′
+ < β+ ≤ β < 2; in this case the

process A(+) is well defined, and we set

Zn,1 = u
β+
n J(g+; ∆n, un)− vg(β+)A

(+),

Zn,2 = u
β+
n J(h+; ∆n, un)− vh(β+)A

(+).

When (L−) also holds, with 0 ≤ β′
− < β− ≤ β < 2, we recall that we

can take the common value β = β+ ∨ β− for the constant β in both
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assumptions. Then A(−) is well defined and we set

Zn,3 = u
β−
n J(g−; ∆n, un)− vg(β+)A

(−),

Zn,4 = u
β−
n J(h−; ∆n, un)− vh(β+)A

(−).

Recall also that (L) implies (L+) and (L−), with β+ = β− = β and β′
+ =

β′
− = β′. We thus have, according to the case, a process Zn = (Zn,j)

which is of dimension 2 or 4.

We use the simplifying notation β̂n+ = β̂+(γ, g;un) and Â
(+)
n =

Â(+)(γ, g;un) for the estimators defined in (11.33), and accordingly the

estimators for negative jumps under (L−) are denoted β̂n− and Â
(−)
n .

These estimators are properly defined on the sets

Ω+
T,n = {J(g+; ∆n, un)T > 0, J(h+; ∆n, un)T > 0}

Ω−
T,n = {J(g−; ∆n, un)T > 0, J(h−; ∆n, un)T > 0}

and we have on the set Ω+
T,n :

β̂n+ − β+ = 1
log γ log

1+Zn,1
T /vg(β+)A

(+)
T

1+γβ+Zn,2
T /vg(β+)A

(+)
T

Â
(+)
n −A

(+)
T =

(
u
β̂n+−β+
n

vg(β+)

vg(β̂n+)
− 1
)
A

(+)
T + u

β̂n+−β+
n

vg(β̂n+)
Zn,1T .

(B.190)

Analogously, under (L−) we have on the set Ω−
T,n:

β̂n− − β− = 1
log γ log

1+Zn,3
T /vg(β−)A

(−)
T

1+γβ−Zn,4
T /vg(β−)A

(−)
T

Â
(−)
n −A

(−)
T =

(
u
β̂n−−β−
n

vg(β−)

vg(β̂n−)
− 1
)
A

(−)
T + u

β̂n−−β−
n

vg(β̂n−)
Zn,3T .

(B.191)

Finally, when (L) holds, the estimators defined in (11.16) and (11.17)

are abbreviated as β̂n,L and Â
(±)
n,L and are given on the set Ω+

T,n ∩ Ω−
T,n

by

β̂n,L − β = 1
log γ log

1+(Zn,1
T +Zn,3

T )/vg(β)AT

1+γβ(Zn,2
T +Zn,4

T )/vg(β)AT

Â
(+)
n,L −A

(+)
T =

(
u
β̂n,L−β
n

vg(β)

vg(β̂n,L)
− 1
)
A

(+)
T + u

β̂n,L−β
n

vg(β̂n,L)
Zn,1T

Â
(−)
n,L −A

(−)
T =

(
u
β̂n,L−β
n

vg(β)

vg(β̂n,L)
− 1
)
A

(−)
T + u

β̂n,L−β
n

vg(β̂n,L)
Zn,3T

(B.192)

Step 2. Next we prove the consistency results, that is Theorems 11.11

and 11.18. The conditions on (̟, p) in these theorems exactly amount to

(i) of (B.187). In particular, (B.186) yields

(L+) ⇒ P(Ω
(β+,+)
T ∩ (Ω+

T,n)
c) → 0

(L) ⇒ P(Ω
(β)

T ∩ (Ω+
T,n ∩ Ω−

T,n)
c) → 0.

(B.193)
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It also follows from Theorem B.20 that, for some ε > 0, we have

Zn,jT = oP(u
ε
n) (B.194)

for j = 1, 3 under (L+), and for j = 1, 2, 3, 4 if further (L−) holds, and

in particular under (L).

A first consequence of these two properties, jointly with (B.190) and

(B.192), is that

(L+) ⇒ β̂n+ − β+ = oP(u
ε
n), in restriction to Ω

(β+,+)
T

(L) ⇒ β̂n,L − β = o P(u
ε
n), in restriction to Ω

(β)
T ,

yielding in particular the consistency of β̂n+ on the set Ω
(β+,+)
T and

of β̂n,L on the set Ω
(β)
T , according to the case. The above also implies

u
β̂n+−β+
n

P−→ 1 on Ω
(β+,+)
T , and also vg(β)/vg(β̂n+)

P−→ 1 because the

function vg is differentiable. Then another application of (B.190) and

(B.194) yields the consistency of Â
(+)
n for estimating A

(+)
T , on the set

Ω
(β+,+)
T again. The consistency of Â

(±)
n,L under (L) is proved in the same

way. This completes the proof of Theorems 11.11 and 11.18.

Step 3. For the Central Limit Theorems 11.12 and 11.19, we observe

that the conditions on (̟, p) in these theorems are the same as (ii) of

(B.187). We only consider the case where both (L+) and (L−) hold, with

0 ≤ β′
± < β±. This includes the case where (L) holds, and the case where

only (L+) holds is similar (and in fact simpler).

We reformulate (c) of Theorem B.20. As said in the previous step

already, (i) of (B.188) holds. Therefore, we have the following stable

convergence in law:

(
u
−β+/2
n Zn,1T , u

−β+/2
n Zn,2T , u

−β−/2
n Zn,3T , u

−β−/2
n Zn,4T

)
L−s−→

(
Z1
T ,Z2

T ,Z3
T ,Z4

T

)
,

(B.195)

where the four-dimensional random vector ZT is F -conditionally cen-

tered Gaussian, with (conditional) covariance Γij = Ẽ(Zi
T Zj

T | F) given

by

Γij =





vg2(β+)A
(+)
T if i = j = 1

vh2(β+)A
(+)
T if i = j = 2

vgh(β+)A
(+)
T if i = 1, j = 2

vg2(β−)A
(−)
T if i = j = 3

vh2(β−)A
(−)
T if i = j = 4

vgh(β−)A
(−)
T if i = 3, j = 4

0 if i ≤ 2, j ≥ 3.

(B.196)
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Step 4. This step is devoted to proving Theorem 11.12, so we have (L)

and β+ = β− = β. In view of (B.192) and (B.193) and (B.195), the delta

method gives us the following stable convergence in law:

β̂n,L−β
u
β/2
n

L−s−→ Ψ :=
Z1

T+ Z3
T−γβ(Z2

T+Z4
T )

vg(β) (log γ)AT
on the set Ω

(β)
T (B.197)

(recall that in this case A = A(+) + A(−)). In turn, and because vg is a

C1 function on (0, 2) with derivative denoted as v′g, this yields

1

u
β/2
n log(1/un)

(
uβ̂n−β
n − 1

) L−s−→ −Ψ,

1

u
β/2
n

(
1

vg(β̂n)
− 1

vg(β)

) L−s−→ − v′g(β)

vg(β)2
Ψ

(B.198)

on Ω
(β)
T again, and jointly with the convergence (B.197). Now, if we

use (B.192) and the boundedness in probability of n−β/2 ZnT , we deduce

the joint stable convergence in law of the left side of (11.21) toward(
Ψ,−A(+)

T Ψ,−A(−)
T Ψ

)
.

The variable Ψ is, conditionally on F and in restriction to Ω
(β)
T , cen-

tered Gaussian and, by (B.196), its (conditional) variance V is

vg2(β) + γ2β vh2(β) − 2γβ vgh(β)

vg(β)2 (log γ)2AT
,

which equals vg(β, γ)/AT by a simple calculation. This completes the

proof of Theorem 11.12.

Step 5. Next we prove (b) of Theorem 11.19, in the same way as in the

previous step. By (B.190), (B.191), (B.193) and (B.195) we have the

following joint stable convergence in law, on the set Ω
(β+,+)
T ∩Ω

(β−,−)
T :

(
β̂n+−β+

u
β+/2
n

, β̂n−−β
u
β−/2
n

)

L−s−→ (Ψ+,Ψ−) :=
(

Z1
T−γβ+Z2

T

vg(β) (log γ)A
(+)
T

,
Z3

T−γβ−Z4
T

vg(β) (log γ)A
(−)
T

)

Then, as in (B.198), we have

1

u
β±/2
n log(1/un)

(
u
β̂n±−β±
n − 1

) L−s−→ −Ψ±,

1

u
β±/2
n

(
1

vg(β̂n±)
− 1

vg(β)

) L−s−→ − v′g(β)

vg(β)2
Ψ± ,

on Ω
(β+,+)
T ∩ Ω

(β−,−)
T again, and jointly with the previous conver-

gence. Then, exactly as in the previous step, we deduce the sta-

ble convergence in law of the left side of (11.35) toward the limit
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(
Ψ+,Ψ−,−A(+)

T Ψ+,−A(−)
T Ψ−

)
. It remains to observe that, by (B.196),

the two variables Ψ+ and Ψ− are, conditionally on F , two inde-

pendent centered Gaussian variables with variances vg(β, γ)/A
(+)
T and

vg(β, γ)/A
(−)
T , and the proof is complete.

Step 6. It remains to show the statement of Remark 11.14. The estimators

for A
(+)
T now satisfy, instead of (B.192),

Â
(+)
n,L −A

(+)
T =

1

vg(β)
Zn,1T , Â

(−)
n,L −A

(−)
T =

1

vg(β)
Zn,3T . (B.199)

The result readily follows from the convergence (B.195).

B.6.2 Proof of Theorem 11.21

Step 1. We assume (L-j-ε) for some j ≥ 2 and ε > 0, and we use all

notation preceding Theorem 11.21. By localization, we may assume that

the processes Lt and a
i±
t are all bounded. Since (L) holds with β = β1

and (i) of (B.187) holds, as in Theorem B.20 we have the fundamental

convergence result:

uβ1/2
n

(
J(g±; ∆n, un)− J(g± : un)

) u.c.p.
=⇒ 0. (B.200)

Another useful property follows from (11.39) and βi − βi+1 > ε for i =

1, . . . , j−1 and β1−βj < 1, which imply βi−βi+1 > ε >
(
ε
2

)k−i
(βi−βk+1)

when i < k ≤ j:

1 ≤ i < k < j

⇒ u
βi−βi+1

n,i log 1
un,i

= o
(
u
βi−βk+1

n,k

)
= o

(
u
βk−βk+1

n,k

)
.

(B.201)

Observe also that if (11.38) holds for βj+1, it also holds for any β′
j+1

bigger than βj+1 and smaller than βj . Therefore, since βj > β1/2, it is

no restriction to assume that βj+1 ≥ β1/2.

Step 2. We can apply (B.161) to the functions g+ and g−, to deduce from

(11.38) and the boundedness of the processes ai+t and ai−t and Lt that,

instead of (B.162), and for all u ∈ (0, 1], we have

∣∣∣uβ1 J̃(g±, u)t −
j∑

i=1

uβ1−βi vg(βi)A
i±
t

∣∣∣ ≤ K tuβ1−βj+1 .

Moreover, (B.159) holds, and it implies uχnM(un)
u.c.p.
=⇒ 0 for all χ > β1/2,

and the same if we replace g+ by g−. Thus, recalling βj+1 ≥ β1/2, we

deduce that, as long as wn ↓ 0,

J(g±; ∆n, wn)T −
j∑

i=1

1

wβi
n

vg(βi)A
i±
T = OP(w

−βj+1
n ). (B.202)
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Step 3. In this step, we prove (11.42) when i = 1. A simple calculation,

using the property AiT > 0 for i = 1, 2 and (B.202) with wn = un and

with wn = γun, yields

β̃1
n = β1 + uβ1−β2

n

vg(β2)A
2
T

(log γ) vg(β1)A
1
T

(
1− γβ1−β2

)
+ oP(u

β1−β2
n )

= β1 − uβ1−β2
n H1 + oP(u

β1−β2
n ).

This gives the first part of (11.42). It also implies that

uβ̃
1
n
n = uβ1

n e
−(β̃1

n−β1) log(1/un)

= uβ1
n

(
1 +H1u

β1−β2
n log(1/un) + oP (u

β1−β2
n log(1/un))

)
.

Since vg is differentiable on (0, 2), we also have vg(β̃
1
n) − vg(β1) =

OP(u
β1−β2
n ). Therefore in view of (B.202) we obtain the second part of

(11.42).

Step 4. Now we suppose that (11.42) holds for all i ≤ k − 1, for some

k ∈ {2, . . . , j−1}, and in this step we show that it also holds for i = k. We

have the following identity, for all y = (y1, . . . , yk+1) and r = 1, . . . , k+1

(and I(k, l) is defined before (11.39)):

k−1∑

l=0

(−1)lγ−lyr
∑

J∈I(k−1,l)

γ
∑

j∈J yj =
k−1∏

l=1

(
1− γyi−yr

)
,

hence

k−1∑

l=0

(−1)lγ−lyr
∑

J∈I(k−1,l)

γ
∑

j∈J yj =





0 if r ≤ k − 1

G(k, y, γ) if r = k

G′(k, y, γ) if r = k + 1

where G(k, y, γ) =
∏k−1
i=1

(
1 − γyi−yk

)
and G′(k, y, γ) =

∏k−1
i=1

(
1 −

γyi−yk+1
)
. Therefore, (B.202) applied to wn = xγlun,k and the definition

(11.40) of Un(k, x) yield (upon a tedious but straightforward calculation)

that, for all x ≥ 1 fixed, and with β = (β1, . . . , βk+1),

Un(k, x) =
k−1∑
r=1

vg(βr)A
r
T

(xun,k)βr

k−1∑
l=0

(−1)l
(
γ−lβr − γ−lβ̃

r
n

) ∑
J∈I(k−1,l)

γ
∑

j∈J β̃
j
n

+
k+1∑
r=k

vg(βr)A
r
T

(xun,k)αr

k−1∑
l=0

(−1)lγ−lβr
∑

J∈I(k−1,l)

(
γ
∑

j∈J β̃
j
n − γ

∑
j∈J βj

)

+
vg(βk)A

k
T

(xun,k)
βk
G(k, β, γ) +

vg(βk+1)A
k+1
T

(xun,k)
βk+1

G′(k, β, γ) + oP(u
−βk+1

n,k )
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(we used the property βk+2 < βk+1, because k ≤ j − 1). The functions

z 7→ γ−lz are C∞. The induction hypothesis gives β̃in−βi = OP(u
βi−βi+1

n,i )

for i = 1, . . . , k − 1, hence by (B.201) we get

1 ≤ r ≤ k − 1 ⇒ γ−lβr − γ−lβ̃
r
n = oP(u

βr−βr+1
n,r ) = oP(u

βr−βk+1

n,k )

0 ≤ l ≤ k − 1, J ∈ I(k − 1, l) ⇒ γ
∑

j∈J β̃
j
n − γ

∑
j∈J βj = oP(u

βk−1−βk+1

n,k ).

Therefore we finally obtain

Un(k, x) =
vg(βk)A

k
T G(k,β,γ)

(xun,k)
βk

+
vg(βk+1)A

k+1
T G′(k,β,γ)

(xun,k)
βk+1

+ oP(u
−βk+1

n,k )

=
vg(βk)A

k
T G(k,β,γ)

(xun,k)βk

(
1 + Hk log γ

γβk−βk+1−1
(xun,k)

βk−βk+1

+ oP (u
βk−βk+1

n,k )
)
,

(B.203)

where the last equality comes from the definition of Hk in (11.41). Then

exactly as in Step 3, a simple calculation shows the first half of (11.42)

for i = k.

For the second part of (11.42), as in Step 3 again, and using also the

differentiability of the function 1/vg on (0, 2), we first deduce from the

above that

u
β̃k
n

n,k

vg(β̃k
n)

=
u
βk
n,k

vg(βk)

(
1 +Hk u

βk−βk+1

n,k log(1/un,k)

+ oP(u
βk−βk+1

n,k log(1/un,k))
)
.

Therefore it is enough to show that

u
βk
n,k

vg(βk)

(
J(g±; ∆n, un,k)T −∑k−1

i=1 vg(β̃
i
n) Ã

i±
n u

−β̃i
n

n,k

)

= Ak±T + oP(u
βk−βk+1

n,k log(1/un,k)).

Taking (B.202) with wn = un,k into consideration, this amounts to prov-

ing that, for i = 1, . . . , k − 1,

vg(β̃
i
n) Ã

i±
n u

βk−β̃i
n

n,k − vg(βi)A
i±
T uβk−βi

n,k

= oP(u
βk−βk+1

n,k log(1/un,k)).
(B.204)

The induction hypothesis and the differentiability of vg yield

vg(β̃
i
n)u

βk−β̃i
n

n,k = vg(βi)u
βk−βi

n,k

(
1 + OP(u

βi−βi+1

n,i log(1/un,i))
)
,

Ãin = AiT +OP(u
βi−βi+1

n,i log(1/un,i)).
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Thus, the left side of (B.204) is OP(u
βi−βi+1

n,i log(1/un,i)), which by

(B.201) is oP(u
βk−βk+1

n,k ) when j ≤ k − 1, and (B.204) is proved.

Step 5. It remains to prove that the variables in (11.43) are bounded

in probability. The difference with the previous case is that (B.203) no

longer hold when k = j, but it can be replaced by

Un(j, x) =
vg(βj)A

j
T G(j, β, γ)

xβj u
βj

n,j

(
1 + OP(u

βj−βj+1

n,j )
)
.

The rest of the proof of Step 4 is unchanged.

B.6.3 Proof of Theorem 11.23

We use a simplifying notation: a point in D is θ = (xi, y
+
i , y

−
i )1≤i≤j , and

we define the functions

Fn,l(θ)
± =

j∑

i=1

y±i vg(xi)/(δlun)
xi (B.205)

on D. The “true value” of the parameter is θ0 = (βi, A
i+
T , Ai−T )1≤i≤j ,

the preliminary estimators are θ̃n = (β̃in, Ã
i+
n , Ãi−n )1≤i≤j , and the final

estimators are θ̂n = (β̂in, Â
i+
n , Âi+n )1≤i≤j .

As in the previous proof we may and will assume βj+1 ≥ β1/2. We

prove only the claims about β̂in and Âi+n , the one about Âi−n being proved

in the same way.

Step 1. For m ≥ 2 we set Gm = (1,∞)m−1, a point in Gm being denoted

as δ = (δ2, . . . , δm). For 1 ≤ k ≤ j and δ ∈ G2k, and with the convention

δ1 = 1, we let Σ(δ) be the 2k × 2k matrix with entries

Σ(δ)l,i =

{
δ−βi

l if 1 ≤ i ≤ k

δ
−βi−k

l log δl if k + 1 ≤ i ≤ 2k.
(B.206)

The aim of this step is to show that the set Zk of all δ ∈ G2k for which

the matrix Σ(δ) is invertible satisfies λ2k((Zk)
c) = 0, where λr is the

Lebesgue measure on Gr .

When 1 ≤ m ≤ 2k and δ ∈ G2k, we denote by Mm(δ) the family

of all m × m sub-matrices of the m × 2k matrix (Σ(δ)l,r : 1 ≤ l ≤
m, 1 ≤ r ≤ 2k). A key fact is that Mm(δ) = Mm(δm) only depends

on the restriction δm = (δ2, . . . , δm) of δ to its first m − 1 coordinates.

Moreover, Σ(δ)1i equals 1 if i ≤ k and 0 otherwise: so the entries of the

first column of any M ∈ Mm(δ) are 0 or 1, and M′
m(δ) denotes the
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subset of all M ∈ Mm(δ) for which M1,i = 1 for at least one value of i.

Finally, Rm stands for the set of all δm ∈ Gm such that allM ∈ M′
m(δm)

are invertible. Since M′
2k(δ) is the singleton {Σ(δ)}, we have Zk = R2k.

If m ≥ 2 and δm = (δ2, . . . , δm) ∈ Gm and M ∈ M′
m(δm), by expand-

ing along the last column we see that

det(M) =
k∑

i=1

δβi
m

(
ai + ak+i log δm

)
, (B.207)

where each ar is of the following form: either (i) ar is plus or minus

det(Mr) for some Mr ∈ Mm−1(δm) (for m values of r), or (ii) ar = 0

(for the other 2k −m values of r). Note that we can also have ar = 0 in

case (i), and since M ∈ M′
m(δm) there is at least one ar of type (i) with

Mr ∈ M′
m−1(δm).

When at least one ar in (B.207) is not 0, the right side of this expres-

sion, as a function of δm, has finitely many roots only, because all βi’s

are distinct. Since M′
1(δ) is the 1× 1 matrix equal to 1, it follows that,

with (δm−1, δm) = (δ2, . . . , δm−1, δm) when δm−1 = (δ2, . . . , δm−1), and

recalling that λ2 is the Lebesgue measure on (1,∞):

• m = 2 ⇒ λ2((R2)
c) = 0

• m ≥ 3, δm−1 ∈ Rm−1

⇒ λ2
(
δm : (δm−1, δm) /∈ Rm}

)
= 0.

(B.208)

Since

λm((Rm)c) =

∫

Gm−1

λ2
(
δm : (δm−1, δm) /∈ Rm}

)
λm−1(dδm−1),

which equals
∫
Rm−1

λ1
(
δm : (δm−1, δm) /∈ Rm}

)
λm−1(dδm−1) if

λm−1((Rm−1)
c) = 0, when m ≥ 3, we deduce from (B.208), by induc-

tion on m, that indeed λm((Rm)c) = 0 for all m = 2, . . . , 2k. Recalling

Zk = R2k, the result follows.

Since the claim of the theorem holds for all (δ2, . . . , δL) outside a

λL-null set only, and L ≥ 2k, we thus can and will assume below that

the numbers δl are such that δ2k = (δ2, . . . , δ2k) ∈ Zk, hence Σ(δ2k) is

invertible, for all k = 1, . . . , j.

Step 2. Our assumptions on the preliminary estimators yield that the set

Ωn on which ‖θ̃ni − θ0‖ ≤ uηn satisfies P(Ωn) → 1. So below we argue on

the set Ωn, or equivalently (and more conveniently) we suppose Ωn = Ω.

By localization, we may also assume that 1
C ≤ AiT ≤ C for all i and some

constant C > 1 (recall AiT > 0 by our hypothesis). Then θ̂n converges

pointwise to θ0, which belongs to all the sets Dn.
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We set hn = log(1/un) and

yni = Ai+T (β̂in − βi), zni = Âi+n −Ai+T − yni hn, ani = |yni |hn + |zni |.

We have ani ≤ Kuηnhn because Ωn = Ω. Since vg is a C
∞ positive function

on (0, 2], with first derivative denoted as v′g, an expansion of (x,w) 7→
wvg(x)/(δlun)

x around (βi, A
i+
T ) yields for all l

Âi+
n vg(β̂i)

(δlun)
β̂i
n

− Ai+
T vg(βi)

(δlun)βi

= 1
(δlun)βi

(
vg(βi)z

n
i + vg(βi)y

n
i log δl + v′g(βi)y

n
i + xni,l

) (B.209)

for suitable variables xni,l satisfying

|xni,l| ≤ K|yni |hn(|zni |+ |yni |) ≤ K|yni |hnani ≤ K(ani )
2.

Combining (B.202) and (B.205), we see that

J(g+; ∆n, δlun)T − F+
n,l(θ0) = OP(u

−βj+1
n ),

and of course the same estimate holds for J(g−; ∆n, δlun)T − F−
n,l(θ0).

Since

Φn(θ) =
∑L
l=1 wl

((
J(g+; ∆n, δlun)T − F+

n,l(θ)
)2

+
(
J(g−; ∆n, δlun)T − F−

n,l(θ)
)2)

,

we deduce Φn(θ0) = OP(u
−2βj+1
n ). Since θ0 ∈ Dn and θ̂n minimizes Φn

overDn, we also have Φn(θ̂n) = OP(u
−2βj+1
n ), hence F±

n,l(θ0)−F±
n,l(θ̂n) =

OP(u
−βj+1
n ) for all l (recall that wl > 0). In view of (B.205) and (B.209),

this implies in particular

∑j
i=1

1
(δlun)βi

(
vg(βi)z

n
i + (v′g(βi) + vg(βi) log δl)y

n
i + xni,l

)

= OP(u
−βj+1
n ).

(B.210)

Step 3. Taking k between 1 and j, we consider the 2k-dimensional vectors

ζ(k, n) and ξ(k, n) with components (for l = 1, . . . , 2k):

ζ(k, n)l =
∑k
i=1

1
(δlun)βi

(
vg(βi)z

n
i + (v′g(βi) + vg(βi) log δl)y

n
i

)

ξ(k, n)l =

{ (
vg(βl)z

n
i + v′g(βi)y

n
l

)
u−βl
n if 1 ≤ l ≤ k

vg(βl−k)ynl−k u
−βl−k
n if k + 1 ≤ l ≤ 2k.

With matrix notation and (B.206) and recalling δ2k = (δ2, . . . , δ2k), we

have ζ(k, n) = Σ(δ2k)ξ(k, n), and since the matrix Σ(δ2k) is invertible

we can write

ξ(k, n) = Σ(δ2k)
−1 ζ(k, n). (B.211)
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Next, we have

1
(δlun)βi

∣∣vg(βi)zni + (v′g(βi) + vg(βi) log δl)y
n
i + xni,l

∣∣ ≤ Kani
u
βi
n

,
|xn

i,l|
(δlun)βi

≤ K(ani )
2

u
βi
n

,

hence (B.210) and ani ≤ Kuηnhn ≤ K/h2n ≤ K yield

|ζ(k, n)l| ≤ K
(∑k−1

i=1 (a
n
i )

2 u−βi
n +

ank
h2
n
u−βk
n +

∑j
i=k+1 a

n
i u

−βi
n

)

+ OP(u
−βj+1
n ).

By (B.211) the variables ξ(k, n)l satisfy the same estimate. Since ank ≤
(|ξ(k, n)k|+ |ξ(k, n)2k|hn)uβk

n ,

ank ≤ Chn
(∑k−1

i=1 (a
n
i )

2uβk−βi
n +

ank
h2
n
+
∑j
i=k+1 a

n
i u

βk−βi
n

)

+ OP(hnu
βk−βj+1
n )

for some constant C. When n is large enough, C/hn ≤ 1
2 , and we deduce

ank ≤ 2Chn
(∑k−1

i=1 (a
n
i )

2uβk−βi
n +

∑j
i=k+1 a

n
i u

βk−βi
n

)

+OP(hnu
βk−βj+1
n ).

(B.212)

Step 4. In view of the definition of yni and zni , to get boundedness in

probability for the first two sequences in (11.44), and recalling that in

this proof we assume βj+1 ≥ β1/2, it is clearly enough to prove the

existence of a number ν > 0 such that, for all i = 1, . . . , j, we have

ani = OP(h
ν
n u

βi−βj+1
n ). (B.213)

To this aim, we introduce the following property, denoted (Pm,q,r),

where r runs through {1, . . . , j} and m, q ≥ 1, and where we use the

notation ζr = βr − βr+1:

i = 1, . . . , r ⇒ ani = OP

(
hmn (uβi−βr+qζr

n + uβi−βr+1
n )

)
. (B.214)

Since ani ≤ K, applying (B.212) with k = 1 yields an1 = OP(hnu
β1−β2
n ),

which is (P1,1,1).

Next, we suppose that (Pm,q,r) holds for some r < j, and for some

m, q ≥ 1. Letting first k = r + 1, we deduce from (B.212) that, since

again ani ≤ K,

ank = OP

(
h1+2m
n

k−1∑
i=1

(
u
βk−βi+2(βi−βr+qζr)
n + u

βi−βr+1
n

)

+hn
j∑

i=k+1

uβk−βi
n + hnu

βk−βj+1
n

)

= OP

(
h1+2m
n

(
uβk−βr+2qζr
n + uζrn + u

βk−βr+2
n

))
,

(B.215)
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where the last line holds because k = r+1 and hn > 1 for n large enough

and the sequence βi is decreasing. This in turn implies, for k = r+1 again,

ank = OP

(
hr+2−k+2m
n

(
uβk−βr+2qζr
n + uβk−βr+1

n

))
. (B.216)

Then, exactly as above, we apply (B.212) with k = r, and (B.214)

and also (B.216) with k = r + 1, to get that (B.216) holds for k = r as

well. Repeating the argument, a downward induction yields that indeed

(B.216) holds for all k between 1 and r + 1. Thus (B.214) holds with

q and m substituted with 2q and r + 1 + 2m. Hence (Pm,q,r) implies

(Pr+1+2m,2q,r). Since obviously (Pm,q,r) ⇒ (Pm,q′,r) for any q′ ∈ [1, q],

by a repeated use of the previous argument we deduce that if (Pm,1,r)

holds for some m ≥ 1, then for any q′ ≥ 1 we can find m(q′) ≥ 1 such

that (Pm(q′),q′,r) holds as well.

Now, assuming (Pm,q,r) for some m, q, r, we take q′ = ζr+1

2ζr
∨ 1 and

m′ = m(q′). What precedes yields (Pm′,q′,r), hence (B.215) holds for all

k ≤ r + 1, with q′ and m′. In view of our choice of q′, this implies that

(Pr+1+m′,1,r+1) holds. Since (P1,1,1) holds, we see by induction that for

any r ≤ j there exists mr ≥ 1 such that (Pmr,1,r) holds.

It remains to apply (B.214) with r = j and m = mr and q = 1, and

we get (B.213) with ν = mj . This completes the proof.

B.7 Proofs for Chapter 12

Proof of Lemma 12.2. It is convenient below to replace the process

A(p)t =
∑
s≤t |∆Xs|p by A′(p) which, together with Ã′(p), is defined

as

A′(p)t =
∑

s≤t
|∆Xs|p ∧ 1, Ã′(p)t =

∫ t

0
ds

∫
(|x|p ∧ 1)Fs(dx).

Those two processes A′(p) and Ã′(p) are increasing, and finite-valued

when p ≥ 2. When p < 2 we have to be more careful. Let R = inf(t :

A′(p)t = ∞) and R′ = inf(t : Ã′(p)t = ∞). Then A′(p) is finite càdlàg

on [0, R) and, if R < ∞, infinite on (R,∞) and A′(p)R− ≤ A′(p)R ≤
A′(p)R+ = ∞, both inequalities being possibly strict. As for Ã′(p), it

is finite continuous on [0, R′), infinite on (R′,∞), left-continuous at R′

when R′ <∞, but again Ã′(p)R <∞ is possible.

However, we have the following property:

{A′(p)S <∞} = {Ã′(p)S <∞} a.s.,

for any finite random time S.
(B.217)
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To see this, we set Rn = inf(t : A′(p)t ≥ n) andR′
n = inf(t : Ã′(p)t ≥

n), and observe that A′(p)Rn ≤ n + 1 and Ã′(p)R′
n
≤ n. This entails

{A′(p)S < ∞} = ∪n≥1{S ≤ Rn} and {Ã′(p)S < ∞} = ∪n≥1{S ≤ R′
n}.

Since Ã′(p) is the predictable compensator of A′(p), we have E(Ã′(p)τ ) =

E(A′(p)τ ) for any stopping time τ , hence A′(p)R′
n
<∞ and Ã′(p)Rn <∞

a.s., and (B.217) follows.

We now prove (a). In view of (B.217), it suffices to show that, al-

most surely, we have Ã′(0)T = ∞ on the set Ω
(iia)
T . By the very def-

inition of γT this is true when γT > 0, hence on the set Ω
(i,γ>0)
T . If

lim infx→0 (F t(x
1+ρ) − F t(x)) = ∞ we have Ft(R) = ∞. Therefore

Ã′(0)T = ∞ on the set Ω
(i,γ=0)
T , and (a) holds.

From now on, we assume (L). By Fubini’s theorem,
∫ ∞

0
(|x|p ∧ 1)Ft(dx) = p

∫ 1

0
yp−1 F t(y) dy

for all p > 0. If a
(+)
t + a

(−)
t > 0 we have lim infy↓0 yβF t(y) > 0, hence

the above yields that
∫ 1
0 y

p−1 F t(y) = ∞ for all p ≤ β. Thus on the set

Ω
(β)
T = {AT > 0} we have Ã′(p)T = ∞ for all p ≤ β, hence A′(p)T = ∞

almost surely by (B.217), and (c) of the lemma follows.

We can now prove (b). When At > 0 almost surely for all t > 0, we

obviously have γt = β a.s. for all t > 0, whereas xβ F t(x) ≤ Lt + a
(+)
t +

a
(−)
t if x ∈ (0, 1] by (11.2), hence (J) clearly holds. When β′ = 0 we have

γt = 0 when At = 0 and γt = β if At > 0: then sups≤t x
γt+ε F t(x) ≤

Lt+sups≤t(a
(+)
s +a

(−)
s ) for any ε > 0 and x ∈ (0, 1], and (J) holds again.

This completes the proof of (b).

Finally, we prove (d) and assume β′ = 0 again. We have that αt =

Ft(R) 1{a(+)
t =a

(−)
t =0} is smaller than Lt. Therefore Ã

′(0)T ≤ TLT < ∞
on the set {AT = 0} and, by (B.217) again, A′(0)T , which is the number

of jumps on [0, T ], is a.s. finite on this set. Since Ω
(β)
T = {AT > 0} and

Ω
(ia)
T = {Ã′(0)T = ∞}, we deduce Ω

(ia)
T ⊂ Ω

(β)
T almost surely. By virtue

of (a) and (b) it thus remains to show that Ω
(β)
T ⊂ Ω

(i,γ>0)
T almost surely.

On the set Ω
(β)
T we have γT = β > 0 and the set ΓT = {t ∈ [0, T ] : =

a
(+)
t + a

(−)
t > 0} has positive Lebesgue measure. Now, if t ∈ ΓT , and by

(11.2) with β′ = 0, we have F t(x)−F t(u) ≥ η/xβ for all x ∈ (0, u/2] for

all u > 0 small enough and some η > 0 depending on (ω, t); this readily

implies that for t ∈ Γt we have G(q, u)t → ∞ as u ↓ 0 for all q < β. We

deduce Ω
(β)
T ⊂ Ω

(i,γ>0)
T , and the proof is complete.

The proof of Theorem 12.5 requires two preliminary lemmas. In this

theorem, (K-2) is assumed, but for further reference these lemmas are
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stated under weaker assumptions. We write

X̃t = X0 +

∫ t

0
(bs − bs∧S) ds+

∫ t

0
σs dWs,

where

S = inf
(
t :
∫ t
0 ds

∫
{|δ(s,z)|≤1} |δ(s, z)|λ(dz) = ∞

)
,

t ≤ S ⇒ bt =
∫
{|δ(t,z)|≤1} δ(t, z)λ(dz)

(S as in (A.4)). The process X̃ satisfies (HC) and (H′), as soon as X

satisfies (H-2) and (H′); however, if (H′) fails and (H-2) holds for X ,

then (H-2) may fail for X̃. We associate with X̃ the processes defined by

(10.37), which we denote below as B̃([p, k],∆n) and B̃(p, k∆n).

Lemma B.21. Assume (H-2) and (H′), and let un ≍ ∆̟
n for some

̟ ∈
(
0, 12

)
. Then for any p > 0 and any k ≥ 1 we have in restriction to

the set Ω
(fa)
T (recall gp(x) = |x|p ∧ (2− x)+)

upn J([gp, k],∆n, un)T − B̃([p, k],∆n)T = oP(∆
p−1
2

n )

upn J(gp, k∆n, un)T − B̃(p, k∆n)T = oP(∆
p−1
2

n ).
(B.218)

Proof. By localization we may assume (SH-2) for X̃. Define S0 = 0 and

Sq = inf(t > Sq−1 : ∆Xt 6= 0) for q ≥ 1. We may have Sq = 0 for

all q; however, on the set Ω
(fa)
T there are Q jumps on [0, T ] (with Q a

random integer), and we do have SQ ≤ T ≤ SQ+1 (we may also have

Sq = T for all q > Q), and we do have SQ ≤ T ≤ SQ+1, and also

0 < S1 < · · · < SQ−1 < SQ if Q ≥ 1. Hence, on the set Ω
(fa)
T , we have

for all t ≤ T

Xt = X̃t +

Q∑

q=1

∆XSq 1{Sq≤t}.

In view of (A.67), E(|∆n
i X̃|r) ≤ K∆

r/2
n for all r > 0. Thus, if we

take some ̟′ ∈
(
̟ ∨ p−1

2p ,
1
2

)
we see that P(|∆n

i X̃| > ∆̟′

n ) ≤ K∆2
n by

Markov’s inequality applied with r = 4
1−2̟′ . Moreover, Sq − Sq−1 > 0

and |∆XSq | > 0 for all q = 1, . . . , Q, on the set Ω
(fa)
T . Hence, upon taking

n large enough to have kun ≥ ∆̟′

n , and using the Borel-Cantelli lemma,

we obtain

P(Ω
(fa)
T ∩ (Ωn)

c) → 0, with Ωn the set on which:{
q ≤ Q ⇒ Sq − Sq−1 > k∆n, |∆XSq | > 3un

i = 1, · · · , [T/∆n] ⇒ |∆n
i X̃| ≤ ∆̟′

n ≤ un

k .
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Now, on Ωn and for any i ≤ [T/∆n] − k + 1, we have |X̃(i+k−1)∆n
−

X̃(i−1)∆n
| ≤ k∆̟′

n , and also |X(i+k−1)∆n
− X(i−1)∆n

| = |X̃(i+k−1)∆n
−

X̃(i−1)∆n
| ≤ un for all i except at most Qk values, for which

|X(i+k−1)∆n
− X(i−1)∆n

| = |X̃(i+k−1)∆n
− X̃(i−1)∆n

+ ∆XSq | for some

q ≤ Q, implying |X(i+k−1)∆n
−X(i−1)∆n

| > 2un. Since gp(x) = 0 when

|x| ≥ 2 and gp(x) = |x|p when |x| ≤ 1, it follows that both left sides

in (B.218) are smaller in absolute value than Qkp+1∆p̟′

n . This, together

with P(Ω
(fa)
T ∩ (Ωn)

c) → 0, implies the result.

Lemma B.22. Assume (J), and let g satisfy (B.153) for some p > 2

and un ≍ ∆̟
n for some ̟ ∈

(
0, p−2

2p

)
. Then there exists ε > 0 such that

for any T > 0 (recall (B.155) for the definition of J̃(g;u))

• u(1−ε)γTn supt≤T |J(g; ∆n, un)t − J(g;un)t| P−→ 0

on {γT > 0}
• u(1−ε)γTn supt≤T |J(g; ∆n, un)t − J̃(g;un)t| P−→ 0

on {γT > 0}

(B.219)

and

1

∆ε
n

sup
t≤T

|J(g; ∆n, un)t − J(g, un)t| P−→ 0 on {γT = 0}. (B.220)

Proof. We begin with (B.219). We consider the number χ = χ(̟, p)

constructed in Corollary B.19, and the result will hold with any choice of

ε in (0, 1 − χ). We pick α in the (non-empty) interval ( χ
1−ε , 1), and also

an integerm > (2/α)∨(1/ε), and we set z1 = 2−1/m and zj = αzj−1 for

j ≥ 2. The intervals (zj+1, zj ] for j ≥ 1 form a partition of (0, 2− 1/m],

and since γT < 2 and m is arbitrarily large, for getting (B.219) on {γT >
0} it is enough to prove it separately on each set ΩjT = {zj+1 < γT ≤ zj}.

Below, j ≥ 1 is fixed. The process γt is optional and increasing (not

necessarily càdlàg, though), so the left limit γt− is predictable and we

can set

Xt = X0 +

∫ t

0
bsds+

∫ t

0
σsdWs

+

∫ t

0
1{γs−≤zj}

∫
x1{|x|≤1}(µ− ν)(ds, dx)

+

∫ t

0
1{γs−≤zj}

∫
x1{|x|>1}µ(ds, dx).

This process obviously satisfies (J), with a global BG index zj∧γt instead
of γt. Moreover, on the set ΩjT we have Xt = Xt for all t ≤ T . Hence it
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is enough to prove the result for X instead of X . Or, in other words, we

can assume that X itself satisfies (J) with γt ≤ zj for all t, and thus also

(L′) for any β > zj, hence (H-r) for any r > zj as well by Lemma 11.8.

In particular, r =
zj+1(1−ε)

χ satisfies r > zj, hence we have (B.184) for

this specific value of r.

It remains to observe that, on ΩjT , we have γT (1− ε) > zj+1(1− ε) =

rχ; we then readily deduce (B.219) on ΩjT from (B.184).

The proof of (B.220) is analogous: we define X as above, except that

we take zj = 0, hence Xt = Xt for all t ≤ T if γT = 0. Thus it is enough

to prove the result for X, or equivalently for X when γt = 0 identically,

and consequently we have (H-r) for all r > 0 by the same argument as

above. Hence (B.220) follows from (B.185).

Proof of Theorem 12.5. The proof goes through several steps.

Step 1. We begin with (a). Since X satisfies (K-2), the process X̃ defined

before Lemma B.21 satisfies (KC), hence the variables B̃([p, k],∆n, un)T
and B̃(p, k∆n, un)T satisfy (10.39) and (10.46) (on the set Ω). Now, an-

other way of writing (B.218) is

1√
∆n

(
∆1−p/2
n upnJ([gp, k],∆n, un)T −∆1−p/2

n B̃([p, k],∆n)T
) P−→ 0

on the set Ω
(fa)
T and the same for J(gp, k∆n, un)T . Therefore

upn J([gp, k],∆n, un)T and upn J(gp, k∆n, un)T satisfy (10.39) and (10.46)

in restriction to the set Ω
(fa,W )
T , and (a) of Theorem 12.5 is exactly the

same as the convergences (10.41) (the cases of Ω
(cW )
T ) and (10.48).

Step 2. The proof of (b) is more complicated. For any j = 1, . . . , k we set

Jjn =

[(1−j+T/∆n)/k]∑

i=1

gp
(
(X(j−1+ki)∆n

−X(j−1+k(i−1))∆n
)/un

)
. (B.221)

For homogeneity of notation below, we write J0
n = J(gp; ∆n, un)T and

Jk+1
n = 1

k

(
J1
n + · · ·+ Jkn

)
(no longer given by (B.221), of course), hence

J1
n = J(gp; k∆n, un)T and Jk+1

n = J([gp, k]; ∆n, un).

Under (J) we take ε > 0 as in Lemma B.22, and under (L) we choose

χ as in (B.184) and r ∈ (β, β/χ) (so in particular (H-r) holds by Lemma

11.8); with these numbers, Lemma B.22 and (B.184) yield the following

for j = 0:

U jn := vn (J
j
n − Zn)

P−→ 0 (B.222)
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on the set Ω0, where





under (L): Ω0 = Ω
(β)
T , vn = urχn , Zn = J̃(gp, un)T

under (J): Ω0 = Ω
(i,γ>0)
T , vn = u

γT (1−ε)
n , Zn = J̃(gp, un)T

under (J): Ω0 = Ω
(i,γ=0)
T , vn = ∆−ε

n , Zn = J(gp, un)T .

Upon replacing ∆n by k∆n we get the same when j = 1. When 2 ≤ j ≤ k

and in the last case we obtain instead that vn (J
j
n−(J(gp, un)T+(j−1)∆n

−
J(gp, un)(j−1)∆n

)
P−→ 0. However, the expectations of the nonnega-

tive variables J(gp, un)(j−1)∆n
and J(gp, un)T+(j−1)∆n

− J(gp, un)T are

smaller than K∆n, whereas ∆n/vn → 0, hence (B.222) also holds for

j = 2, . . . , k. A similar argument shows (B.222) in the first and second

cases as well, for j = 2, . . . , k. Finally, by summation over j, we deduce

(B.222) for j = k + 1 also.

Step 3. With the previous notation, we observe that our statistics become

S(FA-PV1)(p, k,∆n, un) =
Jk+1
n

J0
n

, S(FA-PV2)(p, k,∆n, un) =
J1
n

J0
n

.

At this point, suppose that we have proven the following property, with

vn and Ω0 as in (B.222):

vn Zn
P−→ +∞ on the set Ω0. (B.223)

Combining this with (B.222), we deduce that Ωn0 = Ω0∩{Zn > 0} satisfies
P(Ωn0 ) → P(Ω0), and on Ωn0 we have Jjn = Zn (1 + V jn ), where V

j
n equal

U jn/vnZn on Ωn0 and 0 otherwise. We have V jn
P−→ 0, and the previous

test statistics are equal to (1+V k+1
n )/(1+V 0

n ) and (1+V 1
n )/(1+V

0
n ) on

Ωn0 , respectively, hence their convergence in probability to 1 in restriction

to Ω0 becomes obvious.

Step 4. It thus remains to prove (B.223), and in the case under (L) with

Ω0 = Ω
(β)
T it is a simple consequence of rχ < β and of (B.162).

Next, we consider the case Ω0 = Ω
(i,γ>0)
T , under (J). In view of the

definition (12.5) of gp we have for 0 < q < p and u > 0

∫
gp(x/u)Ft(dx) ≥ 1

up

∫

{|x|≤u/2}
|x|p Ft(x)

=
p

up

∫ u/2

0
yp−1

(
F t(y)− F t(u)

)
dy

≥ p

p− q

G(q, u)t
2p−q uq

,
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the equality following from Fubini’s theorem, and the last inequality from

the definition (12.3). We deduce from (B.155) and (12.4) and Fatou’s

lemma that uqnZn → ∞ on the set Ω
(i,γ>0)
T ∩{γT > q}, for any q ∈ (0, p).

This implies vn Zn → ∞ on the set Ω
(i,γ>0)
T ∩ {γT (1 − ε) < q < γT }, for

any q ∈ (0, p) and with vn = u
γT (1−ε)
n . Since p > 2 > γT , (B.223) follows

in the case Ω0 = Ω
(i,γ>0)
T .

Step 5. Finally, consider Ω0 = Ω
(i,γ=0)
T , under (J). We choose ρ ∈

(0, ε/2p̟), and we set G(x)t = F t(x
1+ρ) − F t(x) and denote as Γ the

set of all t ∈ [0, T ] such that G(x)t → ∞ as x → 0. We also introduce a

counting process Hn and its compensator H̃n by

Hn
t =

∑

s≤t
1{u1+ρ

n <|∆Xs|≤un}, H̃n
t =

∫ t

0
G(un)s ds.

On the set Ω
(i,γ=0)
T the Lebesgue measure of Γ is positive, hence Fatou’s

lemma gives us

H̃n
T → ∞ on the set Ω

(i,γ=0)
T . (B.224)

Set Sn = inf(t : Hn
t > 0). We have Hn

Sn
≤ 1, so E(H̃n

Sn
) = E(Hn

Sn
) ≤ 1

and thus

P({Sn ≥ T } ∩Ω
(i,γ=0)
T ) ≤ P(H̃n

Sn
> A) + P(Ω

(i,γ=0)
T ∩ {H̃n

T ≤ A})

≤ 1

A
+ P(Ω

(i,γ=0)
T ∩ {H̃n

T ≤ A}).

So, P({Sn ≥ T }∩Ω
(i,γ=0)
T ) → 0 follows from (B.224) by choosing first A

large and then n large. Since {Hn
T = 0} = {Sn > T }, we deduce

P
(
Ω

(i,γ=0)
T,q ∩ {Hn

T = 0}
)

→ 0. (B.225)

Now, if Hn
T ≥ 1 and since gp(x) = |x|p if x| ≤ 1, we have Zn =

J(gp, un)T ≥ upρn , which is bigger than ∆
ε/2
n for all n large enough by

virtue of un ≍ ∆̟
n and of the choice of ρ. Therefore vnZn ≥ 1/∆ε

n on

the set {Hn
T ≥ 1}, and we conclude (B.223) from (B.225).

Proof of Theorem 12.8. We again have several steps.

Step 1. We first consider the behavior on the alternative set Ω
(fa,W )
T .

Exactly as in the proof of Theorem 12.5, on this set one may replace

uqn J(gq; ∆n, un) and (γun)
q J(gq; ∆n, γun) by B̃(q,∆n) (for any q > 0,

see Lemma B.21 and before) and then use the property ∆
1−q/2
n B̃(q,∆n)T

P−→ C(q)T , see for example (10.39), applied for the continuous process
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X̃ . Applying this with q equal to p and p′ readily gives the second con-

vergence in (12.14).

Denote by V ijn the (i, j)th term in the sum (12.15), and consider for

example the term (i = 1, j = 4). The same argument as above yields

V 1,4
n ∼ − B̃(p+ p′,∆n)T

B̃(p,∆n)T B̃(p′,∆n)T
,

hence V 1,4
n /∆n

P−→ −C(p+p′)T /C(p)T C(p′)T on the set Ω
(W )
T . A similar

convergence holds, with the same normalization, for all other terms, and

the second convergence in (12.16) follows because ∆n/u
β
n → 0.

Step 2. For the results in restriction to the null hypothesis set Ω
(β)
T , the

proofs are mostly similar to those in Subsection B.6.1. To simplify nota-

tion we write Sn = S(IA-PV)(p, p′, γ,∆n, un). We use the functions hj , lj
and g defined in (12.12) and (12.13). We also need the four-dimensional

process Zn with components

Zn,j = uβnJ(lj ; ∆n, un)−A.

By definition of the lj ’s, we have J(gp; ∆n, γun) =

γ−βvgp(β)J(l1; ∆n, un) and J(gp; ∆n, un) = vgp(β)J(l2; ∆n, un),

and similar relationships for the power p′. Therefore

Sn =
(AT + Zn,1T )(AT + Zn,3T )

(AT + Zn,2T )(AT + Zn,4T )
. (B.226)

Recall that ̟ ≤ 1
4 , whereas p > p′ ≥ 4. First, we can apply

(11.18) to obtain Zn,jT
P−→ 0 for j = 1, 2, 3, 4, implying the first

convergence in (12.14). A second consequence of (11.18) is that, con-

sidering again separately all terms V ijn in the sum (12.15), we have

u−βn V ijn
P−→ vhihj (β)/vhi(β) vhj (β)AT on the set Ω

(β)
T . Using the def-

inition (12.13) of g, it is easy to check that
∑4
i,j=1 vhihj (β)/vhi(β) vhj (β)

is indeed equal to vg(β), hence we have the first convergence in (12.16).

Step 3. When β′ < β
2 in (L), and since (B.188) with β+ = β− = β

holds here for p and p′ by hypothesis, we can apply Theorem B.20 to get

the stable convergence in law of the processes u
−β/2
n Zn to a limiting pro-

cess Z defined on an extension (Ω̃, F̃ , (F̃t)t≥0, P̃) of (Ω,F , (Ft)t≥0,P) and

which, conditionally on F , is a continuous centered Gaussian martingale

with variance-covariance given by

Ẽ(Zi
t Zj

t | F) = vlilj At.
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Coming back to (B.226), an application of the delta method allows us

to deduce that u
−β/2
n (Sn − 1) converges stably in law, in restriction to

the set Ω
(β)
T , to the variable

S =
1

AT

(
Z1
T −Z2

T + Z3
T −Z4

T

)
.

This variable is, conditionally on F and in restriction to Ω
(β)
T , centered

normal with (conditional) variance V given by (12.13). This completes

the proof of Theorem 12.8.

B.8 Proofs for Chapter 13

Without surprise, the proofs for Section 13.1 are simple modifications of

those for Chapter 12.

Proof of Theorem 13.1. We start with (a) and (b), which we prove to-

gether. We set f(x) = |x|p and F (x1, . . . , xk) = |x1 + · · · + xk|p on

Rk. Recalling (13.3), we see that f(x) 1{|x|≤1} ≤ gp(x) ≤ f(x) 1{|x|≤2}.

Hence, by a simple calculation, and with the notation (A.11) and (A.12),

∆
p/2−1
n B′(f,∆n, un) ≤ upn J(gp; ∆n, un)

≤ ∆
p/2−1
n B′(f,∆n, 2un),

∆
p/2−1
n B′([F, k],∆n, un) ≤ upn J([gp, k]; ∆n, un)

≤ ∆
p/2−1
n B′([F, k],∆n, 2un).

(B.227)

Since ρcs(F ) = kp/2c
p/2
s and p < 2, we deduce from Theorem A.3 that

upn∆
1−p/2
n J(gp; k∆n, un)

u.c.p.
=⇒ kp/2−1 C(p),

upn∆
1−p/2
n J([gp, k]; ∆n, un)

u.c.p.
=⇒ kp/2 C(p),

which immediately yields (13.4) in restriction to the set Ω
(W )
T =

{C(p)T > 0}.
Next, we apply Theorem A.14, upon observing that the condi-

tions on r and ̟ are satisfied (here w = p). We first deduce

from (A.49) and (A.50) and (B.227) that the joint CLT for the

processes upn∆
1−p/2
n J([gp, k]; k∆n, un) and upn∆

1−p/2
n J(gp; ∆n, un) and

upn∆
1−p/2
n J(gp; k∆n, un) is the same as the joint CLT for the processes

B′([f, k],∆n, un) and B′(f,∆n, un) and B′(f, k∆n, un). Second, we de-

duce from the same theorem that the CLT for the latter is the same as if

X were continuous. Therefore Step 1 of the proof of Theorem 12.5 gives

(b).
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We now turn to (c), and assume (L) with some β. By our usual argu-

ment, proving (13.5) on Ω
(β)
T ∩Ω(noW )

T amounts to proving (13.5) on Ω
(β)
T ,

when we additionally suppose that the volatility σt vanishes identically.

So below we assume σt ≡ 0.

Recall that (K-r), hence (H-r), holds for some r < 1, so in view

of Lemma 11.8 we necessarily have β < 1 in (L). When ̟ ≤ p−1
p

(hence ̟ < 1
2 ), we thus have (ii) of (11.19), hence by (11.18) we

have uβn J(gp; ∆n, un)T
P−→ vgp(β)AT . The same convergence holds for

J(gp; k∆n, un)T , whatever k ≥ 2. Moreover J([gp, k]; ∆n, un)T is the

sum of the k variables Jni defined in (B.221), which is J(gp; k∆n, un)T
when i = 0 and otherwise have a similar structure, we deduce that

J([gp, k]; ∆n, un)T
P−→ kvg(β)AT . At this point, (13.5) is obvious.

Proof of Theorem 13.2. The claims about the asymptotic sizes of the

two critical regions follows in the usual way from (b) of Theorem 13.1,

plus the fact that if Vn = B(2p,∆n, un)T /(B(p,∆n, un)T )
2, then the

variables α(p, k)i(mm)2Vn/m2p for i = 1, 2 converge in probability to the

conditional variances of S(J-PV1)
(c) (p, k) and S(J-PV1)

(c) (p, k), respectively, in

restriction to the set Ω
(W )
T (this is a consequence of (6.27)).

For the alternative consistency, we have to establish the asymptotic

behavior of Vn, on the set Ω
(β)
T , when (L) holds with some β < 1 (because

(K-r) holds for some r < 1), and when σt ≡ 0: the argument for this is

as in Step 2 of the previous proof. We use (B.227) plus the fact that

∆
p/2−1
n B′(f,∆n, un) = B(p,∆n, un) to obtain

Vn ≤ 2p J(g2p; ∆n, un)T
(J(gp; ∆n, un/2)T )2

.

We also have (lun/2)
β J(glp; ∆n, lun/2)T

P−→ vglp(β)AT for l = 1, 2,

again as in the previous proof. We deduce that Vn
P−→ 0 on the set Ω

(β)
T .

Since the statistics S(FA-PV1)(p, k,∆n, un) and S(FA-PV2)(p, k,∆n, un)

converge to 1 in probability on Ω
(β)
T and 1 > kp/2−1 here, the property

P(Cn ∩ Ω
(β)
T ) → P(Ω

(β)
T ) follows, and the proof is complete.

Proof of Theorem 13.4. For (b) and for (13.8) and (13.10) in restriction

to Ω
(noW )
T ∩ Ω

(β)
T , and by the usual argument, we can assume that the

volatility is identically 0. Then, for these cases, the present theorem is

proved exactly as Theorem 12.8. Note, however, that here we need to

fulfill the condition (ii) of (B.188) with β− = β+ = β, for the power

p > 2 occurring in the definition of the statistic S(IA-PV)(p, 2, γ,∆n, un),



614 Appendix B

and also for the power 2 which appears as well in this definition, and this

for all β ∈ (0, β0). This results in the condition ̟ ≤ 2
4−β0

(
1 ∧ 2−β0

β0

)
.

For (13.8) in restriction to Ω
(W )
T ∩Ω

(β)
T we apply (a) of Theorem B.20

and so we need condition (i) of (B.187) for all β− = β+ = β ∈ (0, β0).

This amounts to having ̟ ≤ p−2
2p , and it gives us

J(gp; ∆n, γun)T
J(gp; ∆n, un)T

P−→ γ−β on Ω
(W )
T ∩Ω

(β)
T .

For the ratio of the two terms involving g2 we need another argument.

We observe that g2(x) = x2 ∧ (2− x)+ yields

Ĉ(∆n, un) ≤ u2n J(g2; ∆n, un) ≤ Ĉ(∆n, 2un), (B.228)

whereas Ĉ(∆n, un)
P−→ CT by (6.23), hence

J(g2; ∆n, un)T
J(g2; ∆n, γun)T

P−→ 1 on Ω
(W )
T .

Therefore, the second part of (13.8) holds, under the above-specified con-

dition on ̟. The proof of the second part of (13.10) is similar: under

̟ ≤ p−2
2p ∧ 1

4 , and since hihj satisfies (11.13) with an exponent equal

at least to 4, we have uβnJ(hihj ; ∆n, un)T
P−→ U i,j and analogously

uβnJ(hi; ∆n, un)T
P−→ U i when i = 1, 2, in restriction to Ω

(W )
T ∩ Ω

(β)
T ,

for some positive variables U i,j , U i. On the other hand, (B.228) implies

u2nJ(hi; ∆n, un)T
P−→ U iCT when i = 3, 4. Combining all these conver-

gences, one readily deduces the second part of (13.10) with V equal to∑4
i,j=3 U

i,j/U iU j on the set Ω
(W )
T ∩Ω

(β)
T , and to 1 outside.

It remains to check that the condition on ̟ given in the theorem

implies all the conditions on ̟ stated above, and the proof is complete.

B.9 Proofs for Chapter 14

B.9.1 Proofs for Section 14.1

Proof of (14.7). As usual, we need a joint CLT for the numer-

ator and the denominator of S(CoJ)(k,∆n), which is the ratio

B(h, [k],∆n)T /k B(h,∆n)T and with h(x) = (x1x2)2 as given by (14.4).

This CLT is provided by Theorem A.9, for the two-dimensional test func-

tion f with components f1(x1, . . . , xk) = kh(x1) and f2(x1, . . . , xk) =
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h(x1 + · · · + xk). Recalling (A.37) and (A.38), and with the notation

(A.31), an elementary calculation shows the stable convergence in law of

(
1√
∆n

(kB(h,∆n)T − kh ∗ µT ),
1√
∆n

(B(h, [k],∆n)T − kh ∗ µT )
) L−s−→ (U1

T ,U2
T ),

(B.229)

where (below σTq Ψq,+ for example is the vector with components

(σTq Ψq,+)
i =

∑d′

j=1 σ
ij
Tq

Ψjq,+)

U1
T = 2k

∑
q≥1: Tq≤T

∆X1
Tq

∆X2
Tq

×
(√

κq
(
∆X2

Tq
(σTq− Ψq,−)1 +∆X1

Tq
(σTq− Ψq,−)2

)

+
√
1− κq

(
∆X2

Tq
(σTq Ψq,+)

1 +∆X1
Tq
(σTq Ψq,+)

2
))

U2
T = U1

T + 2
∑

q≥1: Tq≤T
∆X1

Tq
∆X2

Tq

×
( ∑

1≤l<j≤k

(
∆X2

Tq
(σTq− Ψq,l−j)1 +∆X1

Tq
(σTq− Ψq,l−j)2

)

+
∑

1≤j<l≤k

(
∆X2

Tq
(σTq Ψq,l−j)

1 +∆X1
Tq
(σTq Ψq,l−j)

2
))

(recall that (Tq) is a sequence of stopping times which weakly exhausts

the jumps of X , and κq,Ψq,j,Ψj±, with q ≥ 1 and −k+1 ≤ j ≤ k−1 are

defined on an extension of the space, are independent of F and mutually

independent, with κq uniform on (0, 1), and all other variables N (0, Id′)-

distributed, d′ being the dimension of the Brownian motion driving the

process X).

Thus U2
T−U1

T , being a linear combination of the variables Ψq,j with no

variables κq involved, is conditionally on F a centered Gaussian variable,

and its conditional variance is, upon a straightforward calculation,

F = 4k3−6k2+2k)(2k−1)
3

∑
s≥T

(∆X1
s ∆X

2
s )

2
(
(∆X1

s )
2(c22s− + c22s )

+ (∆X2
s )

2(c11s− + c1s) + 2∆X1
s ∆X

2
s (c

12
s− + c12s )

)
.

Now, (B.229), the propertyB(h,∆n)T
P−→ h∗µT and the delta method

give us (14.7) with

S(CoJ) =
U2
T − U1

T

k h ∗ µT
in restriction to the set Ω

(Coj)
T = {h∗µT > 0}. From what precedes, we see

that this variable is F -conditionally centered Gaussian, with conditional

variance given by (14.8), which is V = F/k2 (h ∗ µT )2.
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Proof of (14.6). We suppose first that, in addition to (H-2) and (P), the

two components X1 and X2 never jump together; in other words, (A.39)

holds. We are thus in a position to apply Theorem A.10, with the same

two-dimensional test function f as in Step 1 above. Below we use the

notation of this theorem, and in particular the processes Ht and H
′
t. We

deduce (
1

∆n
kB(h,∆n)T ,

1
∆n

B(h, [k],∆n)T
)

L−s−→ (kŨ1
T + kHT , Ũ2

T + k2HT )
(B.230)

for some variables (Ũ1
T , Ũ2

T ). Since h and the test function f satisfy (A.37)

and (A.38), and with the notation (A.29), these variables take the form

Ũ1
T =

∑
q≥1: Tq≤T

(
(∆X1

Tq
R2
q,0)

2 + (∆X2
Tq
R1
q,0)

2
)

Ũ2
T = kŨ1

T +
∑

q≥1:Tq≤T

(
(∆X1

Tq
)2
( k∑
j,l=1

R2
q,j−l 1{l 6=j}

)2

+(∆X2
Tq
)2
( k∑
j,l=1

R1
q,j−l 1{l 6=j}

)2)
.

(B.231)

Note that obviously the two variables Ũ1
T and Ũ ′

T = Ũ2
T −kŨ1

T are non-

negative. They are also F -conditionally independent, because the vari-

ables Rq,j are F -conditionally independent by construction when q and

j vary. Furthermore, we easily deduce from (A.29) and (P) that for each

q and j and for any numbers a, b, the variable (aR2
q,j)

2 + (bR1
q,j)

2 has

F -conditionally a density, unless a = b = 0, in which case it is identically

0. Recalling the process H ′ of (A.40), we can summarize these findings

as follows:

• the variables Ũ1
T and Ũ ′

T

are F -conditionally independent

• both have F -conditionally a density on {H ′
T > 0}

and vanish on {H ′
T = 0}.

(B.232)

Since HT > 0, whereas Ũ1
T ≥ 0 and Ũ ′

T ≥ 0, we deduce from (B.230)

that

S(CoJ)(k,∆n)
L−s−→ S̃(CoJ) =

k̃U1

T + Ũ ′
T + k2HT

kŨ1
T + kHT

. (B.233)

What precedes shows the first part of (14.6), and we still need to

show P(S̃(CoJ) = 1) = 0. For this we observe that S̃(CoJ) equals k on

the set {H ′
T = 0}, whereas in restriction on the set {H ′

T > 0}, it has F -

conditionally a density, by virtue of its form (B.233) and of the properties
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(B.232) (recall that HT is F -measurable). Then it almost surely does not

take the value 1, and this completes the proof of P(S̃(CoJ) = 1) = 0.

It remains to remove the additional assumption (A.39), and this is

where we need Assumption (CoJ). We do as for the proof of (10.10), on

page 339: since Ω
(noCoj)
T ⊂ {τ > T }, where τ = inf(t : ∆X1

t ∆X
2
t 6= 0) is

the the first time of occurrence of a common jump, according to the same

argument it is enough to show the existence of another semimartingale

X ′ satisfying (H-2) and also

t < τ ⇒ Xt = X ′
t, t > 0 ⇒ ∆X ′1

t ∆X ′2
t = 0. (B.234)

We set

Yt = ∆Xτ 1{τ≤t}, X ′
t = Xt∧τ − Yt +

∫ t

t∧τ
σs dWs.

By the definition of τ , (B.234) holds. So it remains to prove that X ′

satisfies (H-2) and (P). Since (P) is obvious, this amounts to proving that

Y satisfies (H-2). Observe that if Γ = {(ω, t, z) : δ1(ω, t, z)δ2(ω, t, z) 6=
0, t ≤ τ(ω)} (a predictable set), we can rewrite Y as

Yt = (δ 1Γ) ∗ pt =
∫ t

0
b′s ds+(δ 1Γ 1{‖δ‖≤1}) ∗ (p− q)t+(δ 1Γ 1{‖δ‖>1}) ∗ pt,

where b′t =
∫
{‖δ(t,z)‖≤1} δ(t, z) 1Γ(t, z)λ(dz). This is always true, in the

sense that the process b′t above is always well defined and locally inte-

grable. But under (CJ), this process b′t is obviously locally bounded: it

is then clear that Y satisfies (H-2), and the proof is complete.

Proof of Theorem 14.1. Let Cn and C′
n be the critical regions defined by

(14.10). We know that Vn
P−→ V , hence V ′

n
P−→ V as well (because

wn → ∞), in restriction to the set Ω
(Coj)
T . Then, it readily follows from

(14.7) that, as in all previous tests in this book, the asymptotic levels of

both Cn and C′
n are equal to α for testing the null hypothesis Ω

(Coj)
T .

Since wn∆n → 0, the consistency of the critical regions C′
n for the

alternative hypothesis is a trivial consequence of (14.6).

Proof of (14.12) and of Theorem 14.5. Equation (14.12) is nothing else

than the convergence (B.230) restricted to the first component, divided

by k; so it holds under the additional assumption (A.39), and without it

as well (on Ω
(noCoj)
T of course) by the argument of the end of the proof

of (14.6) above.

Since Ĥn + Ĥ ′
n

P−→ HT + H ′
T and H ′

T ≥ 0 and HT > 0 (because

of (P)), we have the stable convergence in law, restricted to Ω
(noCoj)
T
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of the standardized statistics S(NoCoJ)/(Ĥn + Ĥ ′
n) to a variable whose

F -conditional mean equals 1; the first claim of Theorem 14.5 is then

obvious. Finally, in restriction to the alternative set Ω
(Coj)
T we still have

Ĥn+ Ĥ
′
n

P−→ HT +H ′
T , with a finite limit, together with the second part

of (14.11). These facts clearly imply the consistency of the tests for the

alternative.

Proof of Theorem 14.6. We use Theorem B.11 with the variables

Y = S(DiJ)
(d−j) = HT +

∑
m≥1:Tm≤T

((
∆X2

Tm
R1
m,0

)2
+
(
∆X1

Tm
R1
m,0

)2)

Yn = Ĥn +
[T/∆n]−kn∑
i=kn+1

((
∆n
i X

2R̃n,1i,0
)2

+
(
∆n
i X

1R̃n,1i,0
)2)

1{|∆n
i X‖>un},

where the two-dimensional variables R̃nm,0 are R̃
n
m,0 =

√
κm σ̃nm−knΨm−+√

1− κm σ̃nm+1Ψm+. These are like (B.116) and (B.120), with γ = γn = 1

and γ′ = γ′n = 0 and γ′′ = HT and γ′′n = Ĥn and k = 1 (so L = {(0, 0)})
and finally the functions g0,0(x, y) = (x2y1)2 + (x1y2)2 for x, y ∈ R2 and

g′0,0 ≡ 1. The conditions of Theorem B.11 are thus satisfied with r = 2

and p = 1, and we deduce that the F -conditional distributions Γn and Γ

of Yn and Y , respectively, satisfy (B.121).

As in (B.233), the law Γ(ω, .) admits a positive density on (0,∞) as

soon as the path t 7→ Xt(ω) has at least a jump on [0, T ], hence for all

ω ∈ Ω
(noCoj)
T ∪ Ω

(Coj)
T . In the same way, Γn(ω, .) has a density as soon

as at least one increment ∆n
i X does not vanish, that is, for almost all

ω. Therefore, substituting R with R+, we have (B.127) almost surely on

Ω
(noCoj)
T . It follows, again as on page 561, that the functions x 7→ Gx, Gxn

which are the inverses of x 7→ Γ([0, x]), Γn([0, x]) satisfy

∀ε > 0, sup
x∈[0,1−ε]

|Gxn −Gx| P−→ 0 on Ω
(d−j)
T ∪ Ω

(Coj)
T . (B.235)

(The difference from (B.128) is due to the fact that Γ and Γn are

supported by R+ here.) At this stage, one can reproduce the proof of

Steps 3–5 of the proof of Theorem 10.12, page 563, upon replacing ev-

erywhere the absolute quantiles by the ordinary quantiles, upon tak-

ing Tn = S(NoCoJ)(∆n)/∆n and upon arguing in restriction to the set

Ω
(noCoj)
T ∪ Ω

(Coj)
T always. This leads to the first claim of Theorem 14.6.

For the second claim, about alternative consistency, we deduce from

(B.235) and (B.130) that

P̃
(
Zαn > G2α | F)

P−→ 0 on Ω
(noCoj)
T ∪Ω

(Coj)
T .
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Since Gα < ∞ almost surely, we deduce that the sequence of random

variables Zαn restricted to Ω
(c−j)
T is bounded in probability. Since on this

set S(NoCoJ)(∆n) converges in probability to a positive random variable,

we readily deduce P̃(Cn ∩ Ω
(Coj)
T ) → P(Ω

(Coj)
T ), which the desired result.

B.9.2 Proofs for Section 14.2

By the usual localization argument, we may and will assume throughout

(SK-r), instead of (K-r). We write the triple (X, σ, c) as in (B.67), and

d = 1 here. Of course, in order to accommodate σ and c together with X ,

we cannot assume in general that W is one-dimensional (as is stated in

Section 14.2), but we may take it to be two-dimensional, and such that

the two-dimensional process σ has its second component σ2 vanishing

identically, so ct = (σ1
t )

2. In (B.70), and we have (B.71) for some bounded

and λ-integrable function J on E.

We need a sequence of stopping times weakly exhausting the jumps

of X , and we make a specific choice: for each integer m ≥ 1 we denote

by (S(m, p) : p ≥ 1) the successive jump times of the counting (Poisson)

process p([0, t]×{z : m−1/r < J(z) ≤ (m− 1)1/r}). Then we relabel the

double sequence (S(m, p) : m, p ≥ 1) as a single sequence (Sq : q ≥ 1),

which clearly exhausts the jumps of X and satisfies 0 < Sq <∞.

The key point is a mild extension of Theorem 8.8 (in case τ < 1
2

and d = 1 only), to the effect that the convergence holds jointly for the

sequence kn and the sequence wkn, for any integer w ≥ 2. This extension

is explicitly proved in Jacod and Todorov (2010) and its proof, being

also a straightforward extension of the proof of Theorem 13.3.3 of [JP],

is thus omitted.

More specifically, let kn ≍ ∆−τ
n and u ≍ ∆̟

n with (in connection with

a in (14.19)):

• if a > 0 or if r = 0 :

{
0 < ̟ < 1

2

0 < τ < (̟(4− 2r))
∧ 2−r

r

∧ 1
2

• otherwise:

{
1

4−r < ̟ < 1
2

∧ 1
2r

0 < τ < (̟(4− r) − 1)
∧ 1

2 .

(B.236)

Then under (SK-r) (hence also under (K-r)) for some r ∈ [0, 2) and for
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any integer w ≥ 2 we have the following stable convergence in law:

√
kn
((
ĉ(Sq−; kn, un)− cSq−

)
,
(
ĉ(Sq; kn, un)− cSq

)
,

(
ĉ(Sq−;wkn, un)− cSq−

)
,
(
ĉ(Sq;wkn, un)− cSq

))
q≥1

L−s−→
√
2
(
cSq−Ψq−, cSqΨq+,

1
w cSq−

(
Ψq− +

√
w − 1Ψ′

q−
)
,

1
w cSq

(
Ψq+ +

√
w − 1Ψ′

q+

))
q≥1

.

(B.237)

Next, we introduce a good deal of notation to be used for the proofs

of Theorems 14.9 and 14.11. Recalling the stopping times S(m, q) used

to specify the sequence (Sp), for any m ≥ 1 we denote by Tm the set of

all p’s such that Sp = S(m′, q) for some q ≥ 1 and some m′ ∈ {1, . . . ,m}.
Recalling the integer w ≥ 2, we set

I(n, i) = ((i − 1)∆n, i∆n],

i(n, q) = the unique integer such that Sq ∈ I(n, i(n, q))

L(n,m) = {i(n, q) : q ∈ Tm},
L′(n,m) = N∗\I(n,m)

and

Ωn,t,m =
⋂

p 6=q, p,q∈Tm

{Sp > t, or Sp > 3wkn∆n and |Sp−Sq| > 6wkn∆n}.

We write X as X = X ′ +X ′′, where

X ′
t = X0 +

∫ t

0
b′′sds+

∫ t

0
σs dWs,

b′′t =

{
bt +

∫
{|δ(t,z)|>1} δ(t, z)λ(dz) if r > 1

bt −
∫
{|δ(t,z)|≤1} δ(t, z)λ(dz) if r ≤ 1,

and

X ′′ =

{
δ ∗ (p− q) if r > 1

δ ∗ p if r ≤ 1.

Then, for any integer m ≥ 0 we set

Γm = {z : J(z) ≤ m−1/r}, γm =
∫
Γm

J(z)λ(dz)

X ′(m)t = X0 +
∫ t
0 b

′′(m)s ds+
∫ t
0 σs dWs,

b′′(m)t =

{
b′′t −

∫
(Γm)c δ(t, z)λ(dz) if r > 1

b′′t if r ≤ 1

X ′′(m) =

{
(δ 1Γm) ∗ (p− q) if r > 1

(δ 1Γm) ∗ p if r ≤ 1

Y (m)t = (δ 1(Γm)c) ∗ pt,
Y (m) = X ′(m) +X ′′(m) = X − Y (m),

(B.238)
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and

Ω′
n,t,m =

{
|∆n

i Y (m)| ≤ 2

m
, |∆n

i X
′(m)| ≤ un/2 for all i = 1, . . . , [t/∆n]

}
.

Note that Γ0 = E, b′′(0) = b′′, Y (0) = 0, X ′(0) = X ′ and X ′′(0) = X ′′.

When r ≤ 1, we can also define those quantities when m = ∞, in which

case Γ∞ = {z : J(z) = 0}, b′′(∞) = b′′, Y (∞) = X ′′, X ′(∞) = X ′

and X ′′(∞) = 0. We have kn∆n → 0, and Y (m) is càdlàg with jump

sizes smaller than 1/m, and E(|∆n
i X

′(m)|8(1−̟)) ≤ K∆2
n (recall that

̟ < 1
2 and that b′′(m) is bounded), implying by Markov’s inequality

that P(|∆n
i X

′(m)| > un/2) ≤ K∆2
n. Thus, for all t > 0, m ≥ 1 we have

lim
n→∞

P(Ωn,t,m) = 1, lim
n→∞

P(Ω′
n,t,m) = 1. (B.239)

Next, we recall that the time horizon T is fixed. For m ≥ 1 we set

M(n,m) = L′(n,m) ∩ {kn + 1, kn + 2, . . . , [T/∆n]− kn}
Dn(m) =

∑
q∈Tm, Sq≤T

f(∆n
i(n,q)X)

×g(ĉ(Sq−; kn, un), ĉ(Sq; kn, un) 1{|∆n
i(n,q)

X|>un}
D
n
(m) =

∑
i∈M(n,m)

f(∆n
i Y (m))

×g(ĉ(kn, un)i−kn , ĉ(kn, un)i+1) 1{|∆n
i Y (m)|>un}

A(m) =
∑

q∈Tm, Sq≤T
f(∆XSq ) g(cSq−, cSq ),

A(m) = A(f, g)T −A(m)

Gn(m) = Dn(m)−A(m),

G
n
(m) = D

n
(m)−A(m).

(B.240)

We defineM ′n(n,m), D′n(m), D
′n
(m), G′n(m) and G

′n
(m) analogously,

with wkn instead of kn, and finally we set

ηnq− =
√
kn
(
ĉ(Sq−; kn, un)

n − cSq−
)
,

ηnq− =
√
kn
(
ĉ(Sq; kn, un)− cSq

)
,

η′nq− =
√
kn
(
ĉ(Sq−;wkn, un)− cSq−

)
,

η′nq− =
√
kn
(
ĉ(Sq;wkn, un)cSq

)
.

With all this notation, we are ready to start the proofs.

Proof of Theorem 14.9. We need several steps. Below, we assume

(B.236).

Step 1. We write Ũ(m) and Ũ ′(m) for the processes (14.21), when the

sum is extended over all q ∈ Tm only. In this step we prove the following
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stable convergence in law, for each fixed m:

(√
knG

n(m),
√
knG

′n(m)
)

L−s−→
(
Ũ(m)T ,

1
w (Ũ(m)T +

√
w − 1 Ũ ′(m)T )

)
.

(B.241)

To this end we first observe that

Gn(m) =
∑
q∈Tm, Sq≤T ζ

n
q ,

G′n(m) =
∑
q∈Tm, Sq≤T ζ

′n
q ,

where

ζnq = f(∆n
i(n,q)X) g(ĉ(Sq−; kn, un), ĉ(Sq; kn, un))

×1{|∆n
i(n,q)

X|>un} − f(∆XSq ) g(cSq−, cSq )

ζ′nq = f(∆n
i(n,q)X) g(ĉ(Sq−;wkn, un), ĉ(Sq;wkn, un))

×1{|∆n
i(n,q)

X|>un} − f(∆XSq ) g(cSq−, cSq ).

We also set

ζ
n

q = f(∆XSq)
(
∂1g(cSq−, cSq )η

n
q− + ∂2g(cSq−, cSq )η

n
q+

)

ζ
′n
q = f(∆XSq)

(
∂1g(cSq−, cSq )η

′n
q− + ∂2g(cSq−, cSq )η

′n
q+

)
.

(B.242)

Recall that a sequence of càdlàg functions of the form yn(t) =∑
q≥1 a(q)n1{t≥s(q)n} converges for the Skorokhod topology to the limit

y(t) =
∑
q≥1 a(q)1{t≥s(q)}, where the sequences s(q)n and s(q) indexed

by q are positive strictly increasing and converging to infinity, as soon as

for each q we have s(q)n → s(q) and a(q)n → a(q). Then, we can apply

(B.237) and the definitions of Ũ(m) and Ũ ′(m), plus P(Sq = T ) = 0 for

all q, to deduce that

∑

q∈Tm, Sq≤T

(
ζ
n

q , ζ
′n
q

) L−s−→
(
Ũ(m)T ,

1

w
(Ũ(m)T +

√
w − 1 Ũ ′(m)T )

)
.

This and the fact that the number of q ∈ Tm such that Sq ≤ T is finite

and independent of n imply that proving (B.241) amounts to show that

for each q ∈ Tm we have

√
kn ζ

n
q − ζ

n

q
P−→ 0,

√
kn ζ

′n
q − ζ

′n
q

P−→ 0. (B.243)

These two properties are proved similarly, so we only show the first

one. First, ĉ(Sq±; kn, un) = cSq± + ηnq±/
√
kn, and the sequences ηnq± are

bounded in probability for each q by (B.237). Thus a Taylor expansion

of the function g yields

√
kn f(∆XSq)

(
g(ĉ(Sq−; kn, un), ĉ(Sq; kn, un))−g(cSq−, cSq)

)
−ζnq

P−→ 0.
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This also implies that the sequence g(ĉ(Sq−; kn, un), ĉ(Sq; kn, un)) is

bounded in probability. Hence, by virtue of the definition of ζnq , in order

to obtain (B.243) it suffices to show that

√
kn
(
f(∆n

i(n,q)X) 1{∆n
i(n,q)

X|>un} − f(∆XSq )
)

P−→ 0,

which is obviously implied by the following two properties (recall f(0) = 0

and f ≥ 0):

√
kn
(
f(∆n

i(n,q)X)− f(∆XSq )
) P−→ 0

√
kn f(∆

n
i(n,q)X) 1{∆n

i(n,q)
X|≤un}

P−→ 0.
(B.244)

To prove this, we use (SK-r) and apply (A.67) to the process Y (m),

with its improvement (A.77) relative to the filtration (G(m)
t = GΓc

m
t ) de-

fined by (A.76), plus the fact that the random integer i(n, q) is G(m)
0 -

measurable, to get E(|∆n
i(n,q)Y (m)|2) ≤ K∆n, which yields

the sequence
1√
∆n

∆n
i(n,q)Y (m) is bounded in probability. (B.245)

We also observe that ∆n
i(n,q)X = ∆XSq + ∆n

i(n,q)Y (m). Since (14.16)

holds when a > 0, the function f is almost surely differentiable at the

point ∆XSq by (14.19). Then the first part of (B.244) holds because of

(B.245) and the property kn∆n → 0, and the second part also holds on

the set {∆XSs 6= 0} because P(∆XSq 6= 0, |∆n
i(n,q)X | ≤ un) → 0. Finally,

f(x) ≤ Kx2 when |x| ≤ 1 by (14.19) again, so when ∆XSq = 0 we have

f(∆n
i(n,q)X) ≤ K|∆n

i(n,q)Y (m)|2 for n large enough, and we conclude the

second part of (B.244) on {∆XSs = 0} from (B.245) again.

Step 2. In this short step we prove the theorem when a > 0, and also

when a = 0 and (K-0) holds (the finite activity case for the jumps of X).

For this, we observe that

D(f, g; kn, un,∆n)T = Dn(m) +D
n
(m)

D(f, g;wkn, un,∆n)T = D′n(m) +D
′n
(m)

(B.246)

on the set Ωn,T,m.

Suppose first that a > 0, so f(x) = 0 when |x| ≤ a. If we takem > 2/A

we see that on the set Ω′
n,T,m we have D

n
(m) = D

′n
(m) = 0. We also

have ŨT = Ũ(m)T and Ũ ′
T = Ũ ′(m)T everywhere, as well asA(m) = 0.

Then the result follows from (B.239), (B.241), and (B.246).

Second, suppose that (K-0) holds. In this case, the set {z : J(z) > 0}
is λ-integrable and we can use m = ∞ above. Then of course ŨT =
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Ũ(∞)T and Ũ ′
T = Ũ ′(∞)T and A(∞) = A(f, g)T , whereas the first part of

(B.239) still holds with m = ∞. Furthermore, since ̟ < 1
2 , we know that

for all n large enough (depending on ω) we have |∆n
i X(∞)| = |∆n

i X
′| <

un for all i = 1, . . . , [T/∆n], so that D
n
(∞) = D

′n
(∞) = 0. Then again

the result follows from (B.241), and (B.246).

Step 3. Now we assume r > 0 and a = 0. Exactly as for (14.22), and by

the boundedness of ct, the properties of f in (14.19), and the property

|∆XSq | ≤ 1
m if q ∈ Tm, we have for all m ≥ 1

Ẽ
(
|ŨT − Ũ(m)T |2 | F

)
≤ ∑

s≤T
f(∆Xs)G(cs−, cs) 1{|∆Xs|≤1/m}

≤ K
∑
s≤T

|∆Xs|2 1{|∆Xs|≤1/m}.

This goes to 0 as m→ ∞ because
∑
s≤T |∆Xs|2 <∞, and it follows that

Ũ(m)T
P−→ ŨT , and in the same way, Ũ ′(m)T

P−→ Ũ ′(1)T , as m → ∞.

Therefore, in view of (B.239), (B.241) and (B.246) it remains to prove

that for all η > 0,

lim
m→∞

lim sup
n→∞

P
(√

kn |Gn(m)| > η
)

= 0, (B.247)

and the same for G
′n
(m). These two properties being similar, we prove

(B.247) only below.

Letting H(n,m) = (0, T ]\
(
∩i∈M(n,m) I(n, i)

)
and cni = ci∆n and

c′ni = c(i−1)∆n
, we see that

√
knG

n
(m) =

∑4
j=1 V (m, j)n, where

V (m, j)n =





[T/∆n]∑
i=1

ζ(m, j)ni if j = 1, 2, 3

−√
kn

∑
s∈H(n,m)

f(∆Y (m)s) g(cs−, cs) if j = 4

with

ζ(m, 1)ni =
√
kn f(∆

n
i Y (m)) 1{|∆n

i Y (m)|>un}
×
(
g(ĉ(kn, un)i−kn , ĉ(kn, un)i+1)− g(c′ni , c

n
i )
)
1{i∈M(n,m)}

ζ(m, 2)ni =
√
kn
(
f(∆n

i Y (m)) 1{|∆n
i Y (m)|>un}

−∑s∈I(n,i) f(∆Y (m)s)
)
g(c′ni , c

n
i ) 1{i∈M(n,m)}

ζ(m, 3)ni =
√
kn
(∑

s∈I(n,i) f(∆Y (m)s)

×(g(c′ni , c
n
i )− g(cs−, cs))

)
1{i∈M(n,m)}.

Recalling f(x) ≤ Kx2 for |x| ≤ 1, whereas |∆Y (m)s| ≤ 1
m and g(cs−, cs)

is bounded, we see that 0 ≤ −V (m, 4)n ≤ K
√
kn
∑
s∈H(n,m) |∆Y (m)s|2.

Now, the compensator of the jump measure of Y (m) is the same, relative
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to (Ft), and relative to the filtration (G(m)
t ) defined in Step 1. Since

the random set H(n,m) is G(m)
0 -measurable, with length smaller than

∆n(2kn+Q(m)), whereQ(m) is the (G(m)
0 -measurable and finite) number

of q in Tm such that Sq ≤ T , we deduce

E
(
|V (m, 4)n| | Gm0

)
≤ K

√
kn E

( ∫
H(n,m) ds

∫
Γm

|δ(s, z)|2 λ(dz) | Gm0
)

≤ K
√
kn∆n(2kn +Q(m)).

Since k
3/2
n ∆n → 0, this and Markov’s inequality yield V (m, 4)n

P−→ 0

as n → ∞, for all m. Therefore (B.247) will follow, if we can prove the

existence of sets Ω(n,m, j) satisfying for j = 1, 2, 3

m large enough ⇒ limn→∞ P(Ω(n,m, j)) = 1

limm→∞ lim supn→∞ E
(
1Ω(n,m,j)

[T/∆n]∑
i=1

|ζ(m, j)ni |
)

= 0.
(B.248)

Step 4. In this step we prove (B.248) for j = 1. On the set Ω′
n,T,m,

for all i ≤ [T/∆n] such that |∆n
i Y (m)| > un we have |∆n

i Y (m)| ≤
|∆n

i X
′′(m)| ≤ 2

m + un

2 ≤ 1 as soon as un ≤ 1 and m ≥ 4; since f(x) ≤
Kx2 if |x| ≤ 1 and g has bounded derivatives, we deduce |ζ(m, 1)ni | ≤
Kζ(m, 4)ni , where

ζ(m, 4)ni =
√
kn |∆n

i X
′′(m)|2

(
|ĉ(kn, un)i−kn − c′ni |

+|ĉ(kn, un)i+1 − cni |
)
1{i∈M(n,m)}.

Then in view of (B.239), we see that (B.248) for j = 1 and Ω(n,m, 1) =

Ωn,T,m ∩ Ω′
n,T,m will hold if the second part of (B.248) for j = 4 holds

with Ω(n,m, 4) = Ωn,T,m.

In restriction to the G(m)
0 -measurable set {i ∈M(n,m)}, the variables

ĉ(kn, un)i−kn , ĉ(kn, un)i+1, c
′n
i and cni are the same as if they were com-

puted with Y (m) instead of X . Then, using the improvement (A.77), we

see that (B.89) and (B.90) hold relative to the filtration (G(m)
t ), in re-

striction to the G(m)
0 -measurable set {i ∈M(n,m)}∩Ω(n,m, 4). So, these

estimates and the property E(|c(i−1)∆n
− c(i−kn)∆n

|2 | G(m)
0 ) ≤ Kkn∆n,

which again holds in restriction to {i ∈ M(n,m)}, imply that on

{i ∈M(n,m)} ∩ Ω(n,m, 4) we have

E(|ĉ(kn, un)i−kn − c′ni |2 | Gm0 ) + E(|ĉ(kn, un)i+1 − cni |2 | Gmi∆n
)

≤ K
(

1
kn

+ kn∆n +∆
(4−r)̟−1
n

)
≤ K

kn
,

(B.249)

where the last inequality is implied by (B.236). On the other hand,

(A.67) improved as above yields E(|∆n
i X

′′(m)|2 | Gm(i−1)∆n
) ≤ K∆nγm
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on the set {i ∈M(n,m)}. Then, since ĉ(kn, un)i−kn − c′ni and ∆n
i X

′′(m)

are measurable with respect to Gm(i−1)∆n
and Gmi∆n

, respectively, we

obtain by successive conditioning and Cauchy-Schwarz inequality that

E(ζ(m, 4)ni 1Ω(n,m,4)) ≤ K∆nγm. Since γm → 0 as m → ∞, we deduce

(B.248) for j = 4.

Step 5. Now we prove (B.248) for j = 3, with Ω(n,m, 3) = Ω, so the first

part is obvious. Since |∆Y (m)s| ≤ 1
m , as in the previous step we have

|ζ(m, 3)ni | ≤ K(ζ(m, 5)ni + ζ(m, 6)ni ), where

ζ(m, 5)ni =
√
kn
∑
s∈I(n,i) |∆Y (m)s|2 |cs− − c′ni |

ζ(m, 6)ni =
√
kn
∑
s∈I(n,i) |∆Y (m)s|2 |cni − cs|.

So it is enough to prove (B.248) for j = 5, 6, and with M(n,m) sub-

stituted with {1, . . . , [T/∆n]}. The process |cs− − c′ni |1s>(i−1)∆n
is pre-

dictable, hence

E(ζ(m, 5)ni ) =
√
kn E

( ∫ i∆n

(i−1)∆n

∫

Γm

|cs− − c′ni | δ(s, z)2 p(ds, dz)
)

=
√
kn E

( ∫ i∆n

(i−1)∆n

|cs− − c′ni | ds
∫

Γm

δ(s, z)2 λ(dz)
)

≤ Kk1/2n ∆3/2
n ,

where the last inequality comes from (A.68). For j = 6 we use again

(A.68) to get

E(ζ(m, 6)ni ) =
√
kn
∑

q≥1

E
(
|∆Y (m)Sq |2 |cni − cSq | 1Sq∈I(n,i)

)

≤ Kk1/2n ∆1/2
n

∑

p≥1

E
(
|∆Y (m)Sq |2 1Sq∈I(n,i)

)

≤ Kk1/2n ∆3/2
n .

Then (B.248) for j = 5, 6 and Ω(n,m, j) = Ω, hence for j = 3 as well,

follows because kn∆n → 0.

Step 6. Now we start proving (B.248) for j = 2. Set

ζ(m, 7)ni =
√
kn g(c

′n
i , c

n
i )
(
f(∆n

i Y (m)) 1{∆n
i Y (m)|>un}

− ∑
s∈I(n,i)

f(∆Y (m)s)1{∆Y (m)s|>un}

)
.

We have

|ζ(m, 2)ni − ζ(m, 7)ni | ≤ K
√
kn

∑
s∈I(n,i)

|∆Y (m)s|2 1{|∆Y (m)s|≤un}

≤ Kk
1/2
n u2−rn

∑
s∈I(n,i)

|∆Xs|r,
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and E
(∑

s∈I(n,i) |∆Xs|r
)
≤ K∆n by (SH-r). Since τ < ̟(4 − 2r) we

deduce that

lim
n→∞

E
( [T/∆n]∑

i=1

|ζ(m, 2)ni − ζ(m, 7)ni |
)

= 0

and it remains to prove (B.248) for j = 7.

Step 7. This step is devoted to an auxiliary result, for which m and some

number l ∈ (1, 1/2r̟) are fixed (this is possible by (B.236)). We also

suppose that m is large enough, so that γm ≤ 1. We will be mainly

concerned with the process Y (m), so we freely use the filtration (Gmt )

instead of (Ft) below, which does not change the characteristics of the

semimartingale Y (m). We write vn = [(un)
−l]. Since un → 0 and unvn →

∞ and ∆nv
r
n → 0, we can and will also suppose below that n is big

enough for having 1/vn < un < 1/m and ∆nv
r
n ≤ 1. We complement the

notation (B.238) with

Γ′
n = Γm ∩ (Γvn)

c = {v−1/r
n < J ≤ m−1/r},

Y n = (δ 1Γ′
n
) ∗ p, Zn = (J1/r 1Γ′

n
) ∗ p,

bnt =

{
−
∫
Γ′
n
δ(t, z)λ(dz) if r > 1

0 if r ≤ 1,

Bnt =
∫ t
0 b

n
s ds, Nn

t = p([0, t]× Γ′
n),

Y
n
= Y (m)− Y n = X ′(m) +X ′′(vn) +Bn

G(n, i) =
{
|∆n

i Y
n| ≤ un

2

}
∩ {∆n

i N
n ≤ 1

}
.

(B.250)

First, Nn is a Poisson process with parameter λ(Γ′
n) ≤ Kγm v

r
n, hence

P(∆n
i N

n ≥ 2 | G(m)
(i−1)∆n

) ≤ (∆n λ(Γ
′
n))

2 ≤ K∆2−2rl̟
n . (B.251)

Second, we have ∆nv
r
n ≤ ∆1−rl̟

n ≤ 1 and |bnt | ≤ vr−1
n γm when r > 1

and bnt = 0 if r ≤ 1 and |b′′(m)t| ≤ Km. Then by (A.74), strengthened

according to (A.77), we have after a simple calculation, and as soon as

∆n ≤ 1/m2, so m∆p
n ≤ ∆

p/2
n for all p ≥ r,

E(|∆n
i Y

n|p | G(vn)
(i−1)∆n

) ≤ Kp

(
∆p/2
n +∆1+(p−r)l̟

n

)
. (B.252)

This applied with p large enough and Markov’s inequality yield

P(|∆n
i Y

n| > un/2) ≤ K∆2
n. (B.253)

Next, on the set G(n, i), we have |∆n
i Y

n| ≤ un/2 and |∆n
i Y

n| ≤
1/m, and also |∆Y (m)s| ≤ un for all s ∈ I(n, i), except possibly when
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∆n
i N

n = 1, in which case this may fail for a single value of s for which

∆Y (m)s = ∆n
i Y

n (whose absolute value may be smaller or greater than

un). In other words, on G(n, i) we have

ζ(m, 7)ni =
√
kn g(c

′n
i , c

n
i )
(
f(∆n

i Y
n +∆n

i Y
n
) 1{|∆n

i Y
n+∆n

i Y
n|>un}

−f(∆n
i Y

n) 1{|∆n
i Y

n|>un}
)
1{|∆n

i Y
n|≤1/m, |∆n

i Y
n|≤un/2}.

The following estimate, when u ∈ (0, 1/m), is easy to prove, upon using

(14.19):

|x| ≤ 1
m , |x′| ≤ u

2

⇒
∣∣f(x+ x′)1{|x+x′|>u} − f(x)1{|x|>u}

∣∣ ≤ K
(
|x| |x′|+ (|x| ∧ u)2

)
.

Therefore, since c and thus g(c′ni , c
n
i ) are bounded,

|ζ(m, 7)ni | ≤ K
√
kn
(
|∆n

i Y
n| |∆n

i Y
n|+ (|∆n

i Y
n| ∧ un)2

)
(B.254)

on G(n, i).

Apply (A.75) with p = 2 and χ = ̟ to obtain

E
(
(|∆n

i Y
n| ∧ un)2 | G(m)

(i−1)∆n

)
≤ K∆1+(2−r)̟

n .

On the other hand, E
(
|∆n

i Y
n| | G(vn)

(i−1)∆n
) ≤ K

√
∆n follows from (B.252)

with p = 2 and the Cauchy-Schwarz inequality. We also have |∆n
i Y

n| ≤
∆n
i Z

n and ∆n
i Z

n is G(vn)
0 -measurable; moreover Zn has the same form

as the process Z of (A.74), with the same J as here, and with r = 1 and

w = sup J and α ≤ Kv
(r−1)+

n , hence E(|∆n
i Z

n|) ≤ K∆
1−(r−1)+l̟
n . Thus

E
(
|∆n

i Y
n| |∆n

i Y
n|
)

≤ E
(
∆n
i Z

n E
(
|∆n

i Y
n| | G(vn)

(i−1)∆n

))

≤ K∆
3/2−(r−1)+l̟
n .

Putting all these estimates together, we deduce from (B.254) that

E
(
|ζ(m, 7)ni | 1G(n,i)

)
≤ K

√
kn
(
∆1+(2−r)̟
n +∆3/2−(r−1)+l̟

n

)
. (B.255)

Step 8. Now we are ready to prove (B.248) for j = 7. We take Ω(n,m, 7) =

∩1≤i≤[T/∆n]G(n, i). Putting together (B.251), (B.253) and (B.255), and

recalling 2rl̟ < 1, we get

P(Ω(n,m, 7)c) ≤ ∑[T/∆n]
i=1 P(G(n, i)c) ≤ KT (∆n +∆1−2rl̟

n )

E
(
1Ω(n,m,7)

∑[T/∆n]
i=1 |ζ(m, 7)ni |

)
≤∑[T/∆n]

i=1 E(|ζ(m, 7)ni | 1G(n,i))

≤ K
√
kn T (∆

(2−r)̟
n +∆

1/2−(r−1)+l̟
n

)
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The first expression goes to 0 because l < 1/2r̟; the second goes to

0 for an appropriate choice of l, because when l decreases to 1, then

1 − 2(r − 1)+l̟ → 1 − 2(r − 1)+̟, which is bigger than τ by (B.236).

Thus (B.248) holds for j = 7, and the proof is complete.

Proof of Theorem 14.11. The proof is basically the same as the previous

one. We assume (B.236) and (SK-r), as before.

Step 1. For any w ≥ 1 we write Ũ(w,m) for the processes (14.24), when

the sum is extended over all q ∈ Tm only. The aim of this step is to prove

that, for each fixed m, and with the notation (B.240):

(
knD

n(m), knD
′n(m)

) L−s−→
(
Ũ(1,m)T , (Ũ(w,m)T

)
(B.256)

on the set Ω
(A,dj)
T . For this, we follow the argument of Step 1 of the

previous proof, with a few changes. Since g(y, y) = 0 and f(x) = 0 when

x /∈ A, we now have Gn(m) = Dn(m) and G′n(m) = D′n(m) on Ω
(A,dj)
T .

We define ζnq and ζ′nq as before, and replace (B.242) by

ζ
n

q = 1
2 f(∆XSq)

(
∂211 g(cSq−, cSq )(η

n
q−)

2 + ∂222 g(cSq−, cSq)(η
n
q+)

2

+ 2∂212 g(cSq−, cSq )η
n
q−η

n
q+

)

ζ
′n
q = 1

2 f(∆XSq)
(
∂211 g(cSq−, cSq )(η

′n
q−)

2 + ∂222 g(cSq−, cSq )(η
′n
q+)

2

+ 2∂212 g(cSq−, cSq )η
′n
q−η

′n
q+

)
.

Then, we have
∑

q∈Tm, Sq≤T

(
ζ
n

q , ζ
′n
q

) L−s−→
(
Ũ(1,m)T , Ũ(w,m)T

)
,

and it is thus enough to prove the following, instead of (B.243):

kn ζ
n
q − ζ

n

q
P−→ 0, kn ζ

′n
q − ζ

′n
q

P−→ 0,

on the set Ω
(A,dj)
T ∩ {Sq ≤ T }.

Once more, only the first part of (B.243) will be proved. Recall that

g(y, y) = ∂jg(y, y) = 0, whereas cSq− = cSq when f(∆XSq ) > 0, on the

set Ω
(A,dj)
T ∩ {Sq ≤ T }. So, now, we use a second order Taylor expansion

to get

kn f(XSq ) g(ĉ(Sq−; kn, un), ĉ(Sq; kn, un))− ζ
n

q
P−→ 0

on the set Ω
(A,dj)
T ∩ {Sq ≤ T }, and it remains to prove that, instead of

(B.244),

kn
(
f(∆n

i(n,q)X)− f(∆XSq )
) P−→ 0,

kn f(∆
n
i(n,q)X) 1{∆n

i(n,q)
X|≤un}

P−→ 0.
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This is proved exactly as (B.244), upon using kn
√
∆n → 0 instead of

kn∆n → 0.

At this stage, we deduce that our theorem holds when a > 0, or when

r = 0, in exactly the same way as in Step 2 of the previous proof.

Step 2. From now on, we assume r > 0 and a = 0. We prove Ũ(w,m)T
P−→

Ũ(w)T for any integer w as in Step 3 of the previous proof, and, instead

of (B.247), it thus remains to show that for all η > 0,

lim
m→∞

lim sup
n→∞

P
(
{kn |Gn(m)| > η} ∩ Ω

(A,dj)
T

)
= 0, (B.257)

and the same for G
′n
(m), and again we prove (B.247) only.

We have G
n
(m) = D

n
(m) on Ω

(A,dj)
T . Therefore, with the notation

ρ(m, 1)ni = kn f(∆
n
i Y (m)) 1{∆n

i Y (m)|>un}
× g(ĉ(kn, un)i−kn , ĉ(kn, un)i+1) 1{i∈M(n,m)},

it remains to prove the existence of sets Ω(n,m, 1) such that the following

holds for j = 1:

Ω(n,m, 1) ⊂ Ω
(A,dj)
T

m large enough ⇒ limn→∞ P(Ω(n,m, j)) = P(Ω
(A,dj)
T )

limm→∞ lim supn→∞ E
(
1Ω(n,m,j)

∑[T/∆n]
i=1 |ρ(m, j)ni |

)
= 0.

(B.258)

On Ω′
n,T,m, arguing as for ζ(m, 1)ni in Step 4 of the previous proof,

plus a Taylor expansion of g around the points of the diagonal, together

with g(y, y) = ∂ig(y, y) = 0, we see that for all i ≤ [T/∆n] we have

|ρ(m, 1)ni | ≤ K(ρ(m, 2)ni + ρ(m, 3)ni ), where

ρ(m, 2)ni = kn |∆n
i X

′′(m)|2
(
|ĉ(kn, un)i−kn − c′ni |2

+ |ĉ(kn, un)i+1 − cni |2
)
1{i∈M(n,m)}

ρ(m, 3)ni = kn |∆n
i X

′′(m)|2 |∆n
i c|2.

Hence, in view of (B.239), and upon taking Ω(n,m, 1) = Ω(n,m, 2) ∩
Ω(n,m, 3) ∩ Ω′

n,T,m we are left to prove that (B.258) holds for j = 2, 3,

for suitable sets Ω(n,m, j).

For j = 2, this is proved as in Step 4 of the previous proof, with

Ω(n,m, 2) = Ωn,T,m ∩ Ω
(A,dj)
T : indeed, we have (B.249), and successive

conditioning yields E(ρ(m, 2)ni 1Ω(n,m,2)) ≤ K∆nγm. Using γm → 0 as

m→ ∞ and (B.239), we deduce (B.258) for j = 2.

Step 3. At this stage it remains to show (B.258) for j = 3, and we will

prove the stronger claim

E
(
1
Ω

(A,dj)
T

[T/∆n]∑

i=1

|ρ(m, 3)ni |
)

→ 0 (B.259)
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as n → ∞, for each m. So below we fix m. We take l = 1/r̟, and use

the notation vn = [(un)
−l] and (B.250), and for simplicity later we also

write

Z(4)n = Bn, Z(5)n = X ′′(vn), Z(6)n = Y n,

so X ′′(m) =
∑6
j=4 Z(j)

n, and we associate the variables

ρ(m, j)ni = kn |∆n
i Z(j)|2 |∆n

i c|2.

It is thus enough to prove (B.259) when j = 4, 5, 6. First, we have

|∆n
i Z(4)

n| ≤ K∆
1−l̟(r−1)+

n and thus by (A.68) we get E(ρ(m, 4)ni ) ≤
K∆

2−l(r−1)+̟
n , and (B.259) for j = 4 holds.

Next, we can apply (B.252) with X ′′(vn) instead of Y
n
, with the effect

of dropping the first summand on the right side. Thus E(|∆n
i Z(5)|p) ≤

Kp∆
1+(p−r)l̟
n = Kp∆

p/r
n for all p ≥ r. This and (A.68) and Hölder’s in-

equality yield that, for any θ > 0, we have E(ρ(m, 5)ni ) ≤ Kθkn∆
1+2/r−θ
n .

Since τ < 1 < 2/r, we deduce (B.259) for j = 5.

Finally, we set Y (n, i)t =
∑

(i−1)∆n<s≤t |∆Y ns | for t ∈ I(n, i). Observe

that

|∆n
i Z(6)

n|2 ≤ Y (n, i)2∆n
=

∑

s∈I(n,i)

(
|∆Y ns |2 + 2Y (n, i)s−|∆Y ns |

)
.

Thus, since ∆cs = 0 when ∆Y ns 6= 0 for all s ≤ T on the set Ω
(A,dj)
T , we

see that

ρ(m, 6)ni ≤ K(ρ(m, 7)ni + ρ(m, 8)ni + ρ(m, 9)ni )

for all i ≤ [T/∆n] on this set, where

ρ(m, 7)ni = kn
∑

s∈I(n,i)
|∆Y ns |2 |cs− − c′ni |2 + ∑

s∈I(n,i)
|∆Y ns |2 |cni − cs|2

ρ(m, 8)ni = kn
∑

s∈I(n,i)
Y (n, i)s− |∆Y ns | |cs− − c′ni |2

ρ(m, 9)ni = kn
∑

s∈I(n,i)
Y (n, i)s− |∆Y ns | |cni − cs|2,

and it remains to show (B.259) for j = 7, 8, 9.

Since |∆Y ns | ≤ |∆Y (m)s|, we have ρ(m, 7)ni ≤ √
kn (ζ(m, 5)

n
i +

ζ(m, 6)ni ), with the notation of the previous proof, hence by virtue of

Step 5 of that proof we obtain the estimate E(ρ(m, 7)ni ) ≤ Kkn∆
3/2
n , so

(B.259) holds for j = 7 because kn
√
∆n → 0. For the cases j = 8, 9 we

use the same argument as in this Step 5 again, thus getting

E(ρ(m, 8)ni ) ≤ Kkn
∫
I(n,i) E

(
Y (n, i)s− |cs− − c′ni |2

)
ds
∫
Γ′
n
J(z)λ(dz)

≤ Kknv
(r−1)+

n

∫
I(n,i) E

(
Y (n, i)s− |cs− − c′ni |2

)
ds
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and

E(ρ(m, 9)ni ) ≤ Kkn∆n E
(∑

s∈I(n,i) Y (n, i)r−1
s− |∆Y ns |

)

≤ Kkn∆n E
(
sups≤i∆n

(Y (n, i)s)
2
)
.

Observe that Y (n, i) has the same form as the process Z of (A.74),

with w = 1 and (J ′, r′) given by J ′ = J 1{J>1/vn} and r′ = 1, hence the

number α there satisfies α ≤ Kv
(r−1)+

n . Since vn ≍ ∆
−1/r
n , we obtain

E
(

sup
s≤i∆n

(Y (n, i)s)
2
)
≤ K∆1−2(r−1)+/r

n .

Using E(|cs−−c′ni |4) ≤ K∆n and Cauchy-Schwarz inequality, one deduces

E(ρ(m, 8)ni ) + E(ρ(m, 9)ni ) ≤ Kkn∆
2−2(r−1)+/r
n .

Then (B.259) readily follows for j = 15, 16 by virtue of (B.236). This

completes the proof of the theorem.
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stable distributions. In Lévy Processes: Theory and Applications (O. E.

Barndorff-Nielsen, T. Mikosch and S. I. Resnick, eds.). Birkhäuser,
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Rényi, A. (1963). On stable sequences of events. Sankyā Series A, 25
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