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Preface

Econometrics is the application of mathematical, statistical, and computational
methods to economic data. Econometrics adds empirical content to economic
theory, allowing theories to be tested and used for forecasting and policy
evaluation.

One of the most important aspects of economics—and one of the most difficult
tasks in analyzing economic data—is how to properly take into account economic
risk. Proper accounting of risks is vitally important for keeping the economy stable
and prosperous.

The economic crises of the 1990s has shown that the traditional methods of risk
analysis, methods based on simplified Gaussian statistical descriptions of economic
phenomena and corresponding risks, are often not sufficient to adequately describe
economic risks. Because of this insufficiency, new methods have been developed,
in particular, methods using non-Gaussian heavy-tailed distributions, methods
using non-Gaussian copulas to properly take into account dependence between
different quantities, methods taking into account imprecise (“fuzzy”) expert
knowledge, and many other innovative techniques.

This volume contains several state-of-the-art papers devoted to econometrics of
risk. Some of these papers provide further theoretical analysis of the corresponding
mathematical, statistical, computational, and economical models. Several other
papers describe applications of the novel risk-related econometric techniques to
real-life economic situations.

We hope that this versatile volume will help practitioners to learn how to apply
new techniques of econometrics of risk, and help researchers to further improve the
existing models and to come up with new ideas on how to best take into account
economic risks.

We want to thank all the authors for their contributions and all anonymous
referees for their thorough analysis and helpful comments.

The publication of this volume is partly supported by the Chiang Mai School of
Economics (CMSE), Thailand. Our thanks to Dean Pisit Leeahtam and CMSE for
providing crucial support. Our special thanks to Prof. Hung T. Nguyen for his
valuable advice and constant support.
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We would also like to thank Prof. Janusz Kacprzyk (Series Editor) and
Dr. Thomas Ditzinger (Senior Editor, Engineering/Applied Sciences) for their
support and cooperation in this publication.

Nomi, Japan, January 2015 Van-Nam Huynh
El Paso, TX, USA Vladik Kreinovich
Chiang Mai, Thailand Songsak Sriboonchitta

Komsan Suriya
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Challenges for Panel Financial Analysis

Cheng Hsiao

Abstract We consider panel financial analysis from a statistical perspective. We
discuss some main findings and challenges in the area of (i) estimating standard
errors; (ii) joint dependence; (iii) to pool or not to pool; (iv) aggregation and pre-
dictions; (v) modeling cross-sectional dependence; and (vi) multiple-dimensional
statistics.

1 Introduction

Panel data contain more degrees of freedom and more sample variability than cross-
sectional or time series data. It not only provides the possibility of obtaining more
accurate statistical inference, but also provides the possibility of constructing and
testing more realistic behavioral hypotheses; see, e.g., [29, 30]. However, panel data
also raise many methodological challenges. This paper considers some statistical
issues of using panel data in finance research. We consider (i) estimation of standard
errors; (ii) multiple equations modeling; (iii) to pool or not to pool; (iv) aggregation
and predictions; (v) cross-sectional dependence and (vi) multi-dimensional statistics.

2 Estimation of Panel Standard Errors

Consider a single equation model often used in corporate finance or asset pricing
models for N cross-sectional units observed over T time periods,

yit = x
˜

′
itβ
˜

+ vit, i = 1, . . . , N, t = 1, . . . , T , (2.1)

C. Hsiao (B)

Department of Economics, University of Southern California, Los Angeles, USA
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4 C. Hsiao

where
vit = αi + λt + uit, (2.2)

αi denotes the individual-specific effects that vary across i, but stay constant over time,
λt denotes the time-specific effects that are individual-invariant but time-varying, and
uit denotes the impact of those omitted variables that vary across i and over time.
t. Covariance transformation is often used to remove the impacts of αi and λt ; see,
e.g., [29], Chap.3. The covariance estimator of β

˜

is defined as

β̂
c̃v

=
(

N
∑

i=1

T
∑

t=1

x̃ĩt x̃
˜

′
it

)−1 (

N
∑

i=1

T
∑

t=1

x̃ĩt ỹit

)

, (2.3)

where
x̃ĩt = (x

˜

it − x̄ĩ − x̄t̃ + x̄
˜

), yit = (yit − ȳi − ȳt + ȳ),

x̄ĩ = 1

T

T
∑

t=1

x
˜

it, x̄t̃ = 1

N

N
∑

i=1

x
˜

it, x̄
˜

= 1

N

N
∑

i=1

x̄ĩ = 1

T

∑

t

x̄t̃ .

Statistical inference on β
˜

depends on the property of uit . “Although the literature
has used an assortment of methods to estimate standard errors in panel data sets,
the chosen method is often incorrect and the literature provides little guidance to
researchers as to which method should be used. In addition, some of the advice in
the literature is simply wrong.” ([54], p. 436).

Vogelsang [64] showed that the covariancematrix estimate proposed in [22] based
on the Newey-West [48] heteroscedastic autocorrelation (HAC) covariance matrix
estimator of cross-section averages,

T

(

N
∑

i=1

T
∑

t=1

x̃ĩt x̃
˜

′
it

)−1

ˆ̄Ω
(

N
∑

i=1

T
∑

t=1

x̃ĩt x̃
˜

′
it

)−1

, (2.4)

is robust to heterosceasticity, autocorrelation and spatial dependence, where

ˆ̄Ω = 1

T

⎧

⎨

⎩

T
∑

t=1

ˆ̄v
˜

∗
t
ˆ̄v
˜

∗′
t +

T−1
∑

j=1

k

(

j

m

)

⎡

⎣

T
∑

t=j+1

ˆ̄v
˜

∗
t
ˆ̄v
˜

∗′
t−j +

T
∑

t=j+1

ˆ̄v
˜

∗
t−j

ˆ̄v
˜

∗′
t

⎤

⎦

⎫

⎬

⎭

,

v̂
˜

∗
it = x̃ĩt(ỹit − x̃

˜

′
it β̂ c̃v

), ˆ̄v
˜

∗
t = 1

N

N
∑

i=1

x̃ĩt(ỹit − x̄ĩt β̂ c̃v
) = 1

N

N
∑

i=1

ˆ̄v
˜

∗
it,

k

(

j

m

)

= 1 − j

m
if

∣

∣

∣

∣

j

m

∣

∣

∣

∣

< 1 and k

(

j

m

)

= 0 if

∣

∣

∣

∣

j

m

∣

∣

∣

∣

> 1 m an a priori chosen

positive constant less than or equal to T . The choice of m depends on how strongly
an investigator thinks about the serial correlation of the error uit .
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The Vogelsang 2012 estimator [64] of the covariance matrix of the covariance
estimator, β

˜

cv (2.4), is consistent when errors are autocorrelated and heterocedastic
provided x

˜

it is strictly exogenous. As noted by Nerlove [47], “all interesting eco-
nomic behavior is inherently dynamic, dynamic panel models are the only relevant
models; whatmight superficially appear to be a staticmodel only conceals underlying
dynamics, since any state variable presumed to influence present behavior is likely to
depend in some way on past behavior.” When lagged dependent variables appear in
the explanatory variables to capture the inertia in human behavior, strict exogeneity
of x

˜

it is violated. Not only the covariance estimator is biased if the time series dimen-
sion T is finite, no matter how large the cross-sectional dimension N is (e.g., [29],
Chap. 3 [5, 24, 35]), so is theVogelsang 2012 estimator [64] of the covariancematrix.
General formulae for the estimator and its covariancematrixwhen the errors are auto-
correlated and heterocedastic for dynamic panel model remain to be developed.

3 Multiple Equations Modeling

One of the prominent features of econometrics analysis is the incorporation of eco-
nomic theory into the analysis of numerical and institutional data. Economists, from
León Walras onwards, perceive the economy as a coherent system. The interdepen-
dence of sectors of an economy is represented by a set of functional relations, each
representing an aspect of the economy by a group of individuals, firms, or author-
ities. The variables entering into these relations consist of a set of endogenous (or
joint dependent) variables, whose formations are conditioning on a set of exogenous
variables which the economic theory regards as given; see, e.g., [57]. Combining
the joint dependence and dynamic dependence, a Cowles Commission structural
equation model could be specified as,

B
˜

y
˜

it + Γ
˜

y
˜

i,t−1 + C
˜

x
˜

it = η
˜

i + u
˜

it, i = 1, . . . , N; t = 1, . . . , T , (3.1)

where y
˜

it = (y1,it, y2,it, . . . , yG,it)
′, y
˜

i,t−1 = (y1i,t−1, y2i,t−1, . . . , yGi,t−1)
′ are G×1

contemporaneous and lagged joint dependent variables, x
˜

it is a k×1 vector of strictly
exogenous variables, η

˜

i is a G×1 vector of time-invariant individual-specific effects
and u

˜

it are assumed to be independently, identically distributed over i and t with zero
mean and nonsingular covariance matrix Ωu. We assume that y

˜

i,0 are observed.
The distinct feature of panel dynamic simultaneous equations models are the joint

dependence of y
˜

it and the presence of time persistent effects η
˜

i in the ith individual’s
time series observations. The joint dependence of y

˜

it makes B �= IG and |B| �= 0.

Premultiplying B−1 to (3.1) yields the reduced form specification

y
˜

it = H1y
˜

i,t−1 + H2x
˜

it + α
˜

i + v
˜

it, (3.2)

where H1 = −B−1Γ, H2 = −B−1C, α
˜

i = B−1η
˜

i and v
˜

it = B−1u
˜

it .
Statistical inference can only be made in terms of observed data. The joint depen-

dence of observed variables raises the possibility that many observational equivalent
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structures could generate the same observed phenomena; see, e.g., [26]. Moreover,
the presence of time-invariant individual-specific effects (η

˜

i or α
˜

i) creates correla-
tions of all current and past realized endogenous variables even u

˜

it is independently,
identically distributed across i and over t with nonsingular covariance matrix Ωu.
Hsiao and Zhou [36] show that the standard Cowles Commission rank and order
conditions (e.g., [28]) for the identification of (2.1) still holds provided the roots of
|B − λΓ | = 0 lie outside the unit circle.

When the process is stationary, both the likelihood approach and the generalized
method ofmoments (GMM) approach can be used tomake inference on (3.1) or (3.2);
see, e.g., [17, 36]. The advantages of the GMM approach are that there is no need to
specify the probability density function of the random variable or to worry about how
to treat the initial values, yi0. The disadvantages are that in many cases the GMM
approach does not guarantee a global minimum and there could be huge number of
moment conditions to consider, for instance, the number of moment conditions for
the Arellano-Bond [10] type GMM is of order T2. Moreover, Akashi and Kunitomo
[2, 3] show that the GMM approach of estimating the structural form (3.1) is incon-

sistent if
T

N
→ c �= 0 < ∞ as both N and T are large. Even though the GMM

approach can yield consistent estimator for the reduced form model (3.2), following
the approach of [2, 3, 5], Hsiao and Zhang show [35] that it is asymptotically biased

of order

√

T

N
when both N and T are large. The limited Monte Carlo studies con-

ducted by Hsiao and Zhang [35] show that whether an estimator is asymptotically
biased or not plays a pivotal role in statistical inference. The distortion of the size
of the test for the Arellano-Bond [10] type GMM test could be 100% for a nominal

size of 5% if
T

N
→�= 0 < ∞.

The advantages of the likelihood approach are that a likelihood function is a
natural objective function to maximize and the number of moment conditions is
fixed independent of N and T . The quasi maximum likelihood estimator (QMLE)
is asymptotically unbiased independent of the way N or T or both tend to infinity;
see, e.g., [35, 36]. The disadvantages are that specific assumptions about the initial
values y

˜

i0 need to be made and specific assumptions of the data generating process of
x
˜

it need to be imposed to get around the issue of incidental parameters; see, e.g., [36,
38].When the initial distributions of y

˜

i0 aremisspecified, theQMLE is consistent and

asymptotically unbiased only if N is fixed and T → ∞. When
N

T
→ c �= 0 < ∞ as

N, T → ∞, the QMLE is asymptotically biased of order

√

N

T
.

4 To Pool or Not to Pool

Panel data, by nature, focus on individual outcomes. Factors affecting individual
outcomes are numerous. Yet a model is not a mirror image of the reality, but a
simplification of reality. A good model wishes to capture the essentials that affect
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the outcomes while allowing the existence of unobserved heterogeneity. When a
variable of interest, say y, is modeled as a function of some important factors, say the
K + m variables, w

˜

= (x
˜

′, z
˜

′), where x
˜

and z
˜

are of dimension K and m, respectively,

yit = x
˜

′
itβ
˜

i + z
˜

′
itγ
˜

i + uit, i = 1, . . . , N, t = 1, . . . , T . (4.1)

One way to justify pooling is to test if β
˜

i = β̄
˜

and γ
˜

i = γ̄
ĩ
for all i. However, the

homogeneity assumption is often rejected by empirical investigation; see, e.g., [40].
Whenβ

˜

i andγ
˜

i are treated asfixed anddifferent for each i, the only advantage of pool-
ing is to put the model (4.1) in Zellner’s [65] seemingly unrelated regression frame-
work to improve the efficiency of the estimates of the individual behavioral equation.

One way to accommodate heterogeneity across individuals in pooling is to use
a mixed random and fixed coefficient framework proposed by Hsiao, Appelbe and
Dineen [37],

y
˜

= Xβ
˜

+ Zγ
˜

+ u
˜

, (4.2)

where
y
˜

= (y
˜

′
1, y

˜

′
2, . . . , y

˜

′
N ), y

˜

i = (yi1, . . . , yiT )′, i = 1, . . . , N,

NT × 1

X
NT × NK

=

⎛

⎜

⎜

⎜

⎜

⎝

X1 0
˜

. . 0
˜0

˜

X2 0
˜

. .

. . . . .

. . . . .

0
˜

. . 0
˜

XN

⎞

⎟

⎟

⎟

⎟

⎠

,

Z
NT × Nm

=

⎛

⎜

⎜

⎜

⎜

⎝

Z1 0
˜

. . 0
˜0

˜

Z2 . . .

. . . . .

. . . . .

0
˜

. . . ZN

⎞

⎟

⎟

⎟

⎟

⎠

,

Xi = (x
˜

′
it), Zi = (z

˜

′
it)

T × K T × m

u
˜

= (u
˜

′
1, . . . , u

˜

′
N )′,

NT × 1

β
˜

= (β
˜

′
1, . . . , β

˜

′
N )′, and γ

˜

′ = (γ
˜

′
1, . . . , γ

˜

′
N )′.

NK × 1 Nm × 1

The coefficients γ
˜

are assumed fixed and different. The coefficients β
˜

is assumed to
be subject to stochastic constraints of the form

β
˜

= Aβ̄
˜

+ α
˜

, (4.3)
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where A is an NK ×L matrix with known elements, β̄
˜

is an L ×1 vector of constants,
and α

˜

is assumed to be randomly distributed with mean 0 and nonsingular covariance
matrix. When A = e

˜

N ⊗ IK , where e
˜

N is an N × 1 vector of 1’s, β
˜

i = β̄
˜

+ α
˜

i, i.e.,

individual β
˜

i is randomly distributed with mean β̄
˜

. The justification for (4.3) is
that conditional on Z

˜

′
itγ
˜

i, individual’s responses towards changes in x
˜

are similar.
The difference across i is due to chance mechanism, i.e., satisfying de Finetti’s [20]
exchangeability criteria. Hsiao et al. [37] propose a Bayesian solution to obtain best
predictors of β

˜

and γ
˜

.
The advantage of Bayesian framework over the sampling framework to consider

the issue of poolability is that all sampling tests essentially exploit the implications
of a certain formulation in a specific framework; see, e.g., [15]. They are indirect
in nature. The distribution of a test statistic is derived under a specific null, but the
alternative is composite. The rejection of a null hypothesis does not automatically
imply the acceptance of a specific alternative. It would appear more appropriate to
treat the pooling issues as a model selection issue. Hsiao and Sun [32] propose to
classify the conditional variables w

˜

into x
˜

and z
˜

(i.e. the dimension of K and m) using
somewell knownmodel selection criterion such asAkaike’s information criterion [1]
or Schwarz’s Bayesian information criteria [58]. If m = 0 simple pooling is fine. If
m �= 0 then one can consider pooling conditioning onZiγ

˜

i. Their limitedMonteCarlo
studies appear to show that combining the Bayesian framework with some model
selection criterion works well in answering the question of to pool or not to pool.

5 Aggregation and Predictions

One of the tools for reducing the real world detail is through “suitable” aggrega-
tion. However, for aggregation not to distort the fundamental behavioral relations
among economic agents, certain “homogeneity” conditions must hold between the
micro units. Many economists have shown that if micro units are heterogeneous,
aggregation can lead to very different relations among macro variables from those
of the micro relations; see, e.g., [43, 44, 49, 59, 61, 63].

For instance, consider the simple dynamic equation,

yit = γiyi,t−1 + x
˜

′
itβ
˜

i + αi + uit, |γi| < 1, i = 1, . . . , N, (5.1)

where the error uit is covariance stationary. Equation (5.1) implies a long-run relation
between yit and x

˜

it ,
yit − x

˜

′
itb
˜

i − ηi = vit (5.2)

where b
˜

i = (1 − γi)
−1β

˜

i, ηi = (1 − γi)
−1αi, vit = (1 − γi)

−1uit .

Let yt =
N
∑

i=1
yit and x

˜

t =
N
∑

i=1
x
˜

it , then a similar long-run relation between y
˜

t and x
˜

t ,

yt − x
˜

′
tb
˜

− c = vt, (5.3)
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holds for a stationary vt if and only if either of the following conditions hold [39]:

(i)
1

1 − γi
β
˜

i = 1

1 − γj
β
˜

j for all i and j; or

(ii) if
1

1 − γi
β
˜

i �= 1

1 − γj
β
˜

j, then x
˜

′
t = (x

˜

′
1t, . . . , x

˜

′
Nt) must lie on the null space of

D for all t, where D′ =
(

1

1 − γ1
β
˜

′
1 − b

˜

′, . . . , 1

1 − γN
β
˜

′
N − b

˜

′
)

.

These conditions are fairly restrictive. If “heterogeneity” is indeed present in micro
units, then shall we predict the aggregate outcome based on the summation of esti-
mated micro relations or shall we predict the aggregate outcomes based on the esti-
mated aggregate relations? Unfortunately, there is not much work on this specific
issue. In choosing between whether to predict aggregate variables using aggregate
(Ha) or disaggregate equations (Hd), Grunfeld and Griliches [23] suggest using the
criterion of:

Choose Hd if e
˜

′
ee
˜

d < e
˜

′
ae
˜

a, otherwise choose Ha (5.4)

where e
˜

d and e
˜

a are the estimates of the errors in predicting aggregate outcomes
under Hd and Ha, respectively. The Grunfeld and Griliches criterion is equivalent
to using simple average of micro-unit prediction to generate aggregate prediction if
(5.4) holds. As discussed by Hsiao and Wan [34] that if cross-sectional units are not
independent, there are many other combination approaches that could yield better
aggregate forecasts, such as Bates and Granger regression approach [16], Buckland
et al. Bayesian averaging [18], Hsiao and Wan eigenvector approach [34], Swanson
and Zeng information combination [60], etc. (for a survey of forecast combinations,
see [62]). However, if a model is only a local approximation, then frequent struc-
tural breaks could occur from a model’s perspective even there is no break in the
underlying structure. In this situation, it is not clear there exists an optimal com-
bination of micro forecasts. Perhaps, “robustness” is a more relevant criterion than
“optimality”; see, e.g., [53].

6 Cross-Sectional Dependence

Most panel inference procedures assume that apart from the possible presence of
individual invariant but period varying time-specific effects, the effects of omit-
ted variables are independently distributed across cross-sectional units. Often eco-
nomic theory predicts that agents take actions that lead to interdependence among
themselves. For example, the prediction that risk averse agents will make insur-
ance contracts allowing them to smooth idiosyncratic shocks implies dependence in
consumption across individuals. Contagion of views could also lead to herding or
imitating behavior; see, e.g., [4]. Cross-sectional units could also be affected by com-
mon omitted factors. The presence of cross-sectional dependence can substantially
complicate statistical inference for a panel data model.
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Ignoring cross-sectional dependence in panel data could lead to seriouslymislead-
ing inference; see, e.g., [33, 56]. However, modeling cross-sectional dependence is
a lot more complicated than modeling serial dependence. There is a natural order
of how a variable evolves over time. Cross-sectional index is arbitrary. There is no
natural ordering. Three popular approaches for taking account the cross-sectional
dependence are: spatial approach; see, e.g., [8, 9, 41, 42], factor approach (e.g.,
[11, 12]), and cross-sectional mean augment approach (e.g., [50, 53]). The spatial
approach assumes that there exists a known N × N spatial weight matrix W , where
the i, jth element of W , wij, gives the strength of the interaction between the ith and
jth cross-sectional units. The conventional specification assumes that the diagonal
elements, wii = 0 and

∑N
j=1 wij = 1 through the row normalization. The only term

unknown is the absolute strength, ρ. However, to ensure the interaction between
the ith and jth unit has a “decaying” effect among cross-sectional units where the
“distance” between them increases, ρ is assumed to have absolute value less than 1.
Apart from the fact that it is difficult to have prior information to specify wij, it also
raises the issue of relations between observed sample and the population. If N is not
the population size, the restriction that

∑N
j=1 wij = 1 and |ρ| < 1 implies that as N

increases, each element of wij → 0.
Another approach to model cross-sectional dependence is to assume that the

variable or error follows a linear factor model,

vit =
r

∑

j=1

bijfjt + uit = b
˜

′
i f
˜

t + uit, (6.1)

where f
˜

t = (f1t, . . . , frt)
′ is a r × 1 vector of random factors with mean zero,

b
˜

i = (bi1, . . . , bir)
′, is a r × 1 nonrandom factor loading coefficients, uit represents

the effects of idiosyncratic shocks which is independent of f
˜

t and is independently
distributed across i with diagonal covariance matrix D.

An advantage of factor model over the spatial approach is that there is no need
to prespecify the strength of correlations between units i and j. The disadvantage
is that when no restriction is imposed on the factor loading matrix B = (b

˜

′
ij), it

implies strong cross-sectional dependence [19]. Unless B is known, there is no way
to find transformation to control the impact of cross-sectional dependence on sta-
tistical inference. Bai [11] has proposed methods to estimate a model with factor
structure error term. However, most financial data contains large number of cross-
sectional units. When N is large, the estimation of the factor loading matrix, B, is
not computational feasible.

Instead of estimating f
˜

t and b
˜

, Pesaran suggests [50] a simple approach to filter out
the cross-sectional dependence by augmenting the cross-sectional mean of observed
data to amodel. For instance, Pesaran, Schuermann andWeiner propose [53] a global
vector autoregressive model (VAR) for an m × 1 dimensional random variables, w

˜

it

to accommodate dynamic cross-dependence by considering

Φi(L)(w
˜

it − Γiw
˜

∗
it) = ε

˜

it, i = 1, 2, . . . , N, (6.2)
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where Φi(L) = I + Φ1iL + · · · + ΦpiLpi , and L denotes the lag operator,

w
˜

∗
it =

N
∑

j=1

rijw
˜

jt, (6.3)

rii = 0,
N

∑

j=1

rij = 1, and
N

∑

j=1

r2ij → 0 as N → ∞. (6.4)

The weight rij could be
1

N − 1
for i �= j, or constructed from trade value or other

measures of some economic distance and could be time-varying. The global average
w
˜

∗
it is inserted into the individual i’s VAR model,

Φi(L)w
˜

it = v
˜

it (6.5)

to take account of the cross-sectional dependence. When w
˜

∗
i,t−j can be treated as

weakly exogenous (predetermined), the estimation of each i can proceed using stan-
dard time series estimation techniques; see, e.g., [54]. Pesaran et al. [53] show that
the weak exogeneity assumption of w

˜

∗
it hold for all countries except for the U.S.

because of U.S.’s dominate position in the world. They also show that (6.2) yields
better results than (6.5) when cross-sectional units are correlated.

The advantage of Pesaran’s 2006 cross-sectional mean-augmented approach [50]
to take account the cross-sectional dependence is its simplicity. However, there are
restrictions on its application. The method works when b

˜

′
if
˜

t = cib̄
˜

′
ft for all t or

if f
˜

t can be considered as a linear combinations of ȳt and x̄t̃ . It is hard to ensure

b
˜

′
if
˜

t if r > 1. For instance, consider the case that r = 2, b
˜

′
i = (1, 1), b̄

˜

′ = (2, 0),

f
˜

′
t = (1, 1), then b

˜

′
if
˜

t − b̄
˜

′
f
˜

t = 2. However, if f
˜

′
s = (2, 0), then b

˜

′
if
˜

s = 2 while

b̄
˜

′
f
˜

s = 4. If b
˜

′
if
˜

t = cit b̄
˜

′
ft , cross-sectional mean c

˜

′
iw̄t̃ does not approximate (6.1).

Additional conditions are need to approximate b
˜

′
if
˜

t .

7 Multi-dimensional Statistics

Panel data is multi-dimensional. Phillips and Moon [55] have shown that the multi-
dimensional asymptotics is a lot more complicated than one-dimensional asymptot-
ics. Financial data typically have cross-sectional and time-series dimension increase
at the same rate or some arbitrary rate. Moreover, computing speed and storage capa-
bility have enabled researchers to collect, store and analyze data sets of very high
dimensions. Multi-dimensional panel will become more available. Classical asymp-
totic theorems under the assumption that the dimension of data is fixed (e.g., [7])
appear to be inadequate to analyze issues arising from finite sample of very high
dimensional data; see, e.g., [14]. For example, Bai and Saranadasa [13] proved that
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when testing the difference of means of two high dimensional populations, Demp-
ster’s 1958 non-exact test [21] is more powerful than Hotelling’s 1931 T2-test [27]
even though the latter is well defined. Another example is in the regression analysis
economists sometimes consider optimal ways to combine a set of explanatory vari-
ables to capture their essential variations as a dimension reduction method when the
degrees of freedom are limited (e.g., [6]) or to combine a number of independent
forecasts to generate a more accurate forecast; see, e.g., [62]. The former leads to
principal component analysis that chooses the combination weights as the eigenvec-
tors corresponding to the largest eigenvalues of the covariance matrix of the set of
variables in question. The latter leads to choosing the combination weights propor-
tional to the eigenvector corresponding to the smallest eigenvalue of the prediction
mean square error matrix of the set of independent forecasts [31]. However, the true
covariance matrix is unknown. Economists have to use the finite sample estimated
covariancematrix (ormean square errormatrix) in lieu of the true one. Unfortunately,
when the dimension of the matrix (p) relative to the available sample (n) is large,
p

n
= c �= 0, the sample estimates can be very different from the true ones and whose

eigenvectors may point in a random direction [46]; for an example, see [31]. Many
interesting and important issues providing insight to finite and large sample issues
for high dimensional data analysis remain to be worked out and can be very useful
to economists and/or social scientists; see, e.g., [14].

8 Concluding Remarks

Panel data containmany advantages (but they also raise manymethodological issues;
see, e.g., [29, 30]. This paper attempts to provide a selective summary of what have
been achieved and challenging issues confronting panel financial analysis. In choos-
ing an appropriate statistical method to analyze the panel financial data on hand, it
is helpful to keep several factors in mind. First, what advantages do panel data offer
us in adapting economic theory for empirical investigation over data sets consisting
of a single cross-section or time series? Second, what are the limitations of panel
data and the econometric methods that have been proposed for analyzing such data.
Third, the usefulness of panel data in providing particular answers to certain issues
depends critically on the compatibility between the assumptions underlying the sta-
tistical inference procedures and the data generating process. Fourth, when using
panel data, how can we increase the efficiency of parameter estimates? “Analyz-
ing economic data (or financial data) requires skills of synthesis, interpretation and
empirical imagination. Command of statistical methods is only a part, and sometimes
a very small part, of what is required to do a first-class empirical research” [25]. Panel
data are no panacea. Nevertheless, if “panel data are only a little window that opens
upon a great world, they are nevertheless the best window in econometrics” [45].
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Noncausal Autoregressive Model
in Application to Bitcoin/USD
Exchange Rates

Andrew Hencic and Christian Gouriéroux

Abstract This paper introduces a noncausal autoregressive process with Cauchy
errors in application to the exchange rates of the Bitcoin electronic currency
against the US Dollar. The dynamics of the daily Bitcoin/USD exchange rate
series displays episodes of local trends, which can be modelled and interpreted as
speculative bubbles. The bubbles may result from the speculative component in the
on-line trading. The Bitcoin/USD exchange rates are modelled and predicted.

JEL number: C14 · G32 · G23

1 Introduction

In recent months digital currencies (sometimes referred to as crypto-currencies) and
their standard bearer, Bitcoin, have been garnering more public attention (see [36]).
This can likely be attributed to two factors. Public adoption of the digital currency is
beginning to become more commonplace (see [26]) and its more nefarious uses are
slowly being exposed (see [19]).

A prime example of the first point is the University of Nicosia in Cyprus. The
University is the largest private university in Cyprus and is beginning to accept
bitcoins as tuition payment. The university’s reasoning is that they wish to be at
the forefront of global commerce, but there may be other reasons at play. More
recently Cyprus has gone through significant financial stress and many of the
country’s depositorswill likely face significant losses (see [35]).Mistrust of the estab-
lished financial system may lead institutions to begin accepting alternative means of
payment.
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As for the nefarious uses of bitcoins, the most recent story about the raid on
the website The Silk Road can speak to the dark side of digital and anonymous
currency. In October of 2013 the FBI shut down The Silk Road for allegedly selling
illegal drugs and charged its owner with a whole host of offenses. Critics of digital
currencies say that the anonymity provided to their users is dangerous and should
be further regulated. The government of the United States has responded to these
concerns by implementing rules to attempt to curb the use of digital currencies in
money laundering (see [34]). With the market capitalization of bitcoin surpassing
$12 Billion USD (see [4]), and its ever increasing adoption, further study of the uses,
threats and mechanisms that govern digital currencies is needed.

The objective of this paper is to examine the dynamics of the Bitcoin/USD
exchange rate and to predict its future evolution. The dynamics of the series are
characterized by the presence of local trends and short-lived episodes of soaring
Bitcoin/USD rates, followed by sudden almost vertical declines. These patterns are
referred to as bubbles. In economics, bubbles in asset prices have been introduced
in the context of the rational expectation hypothesis in the seventies and as a result
of the speculative behavior of traders. The bubbles in the Bitcoin/USD rate may
originate from (a) the fact that the bitcoin market is still an emerging market with a
lot of speculative trading, (b) the asymmetric information and crowd phenomena (see
e.g. [12] for the analogous on Nasdaq), (c) the lack of a centralized management and
control of exchange rate volatility, (d) the deterministic supply of bitcoins and the
evolution of the volumeover time.As the volumeof bitcoins available on themarket is
exogenously determined, this enhances the bitcoin price and exchange rate volatility.

Because of the presence of local explosive trends, depicted as bubbles, the
Bitcoin/USD exchange rate cannot bemodelled by any traditional ARIMA or ARCH
models (see e.g. [1]). In this paper, we use the mixed causal-noncausal autoregres-
sive process with Cauchy errors [21, 22] to estimate and predict the Bitcoin/USD
exchange rate.

The structure of the paper is as follows. In Sect. 2, we describe the bitcoin
as an electronic currency, and we explain the mechanisms of bitcoin trading and
storage. Next, we describe the data and the period of interest that includes a bubble
burst and crash. A speculative bubble is a nonlinear dynamic feature that can be
accommodated by the aforementioned noncausal autoregressive process. In Sect. 3,
we review the properties of noncausal processes and introduce the associated
inference andpredictionmethods. The application to theBitcoin/USDollar exchange
rates recorded on the Mt. Gox1 exchange market is presented in Sect. 4. The
noncausal model is used to predict the occurrence of the bubble in the Bitcoin/USD
exchange rate. Section5 concludes the paper.

1 Formerly magic: the gathering online exchange.
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2 The Bitcoin/USD Exchange Rate

2.1 Bitcoin Currency

Bitcoin (BTC) is an electronic currency originally created by a developer under
the pseudonym Satoshi Nakamoto in 2009 (see [14]). The electronic currency is
distributed on a peer-to-peer network anonymously between any two accounts. There
is no formal denomination or name for units of the currency other than 1.00 BTC
being referred to as a bitcoin and the smallest possible denomination, 10−8 BTC,
being a “satoshi”.

The bitcoin can be purchased on a virtual exchange market, such as mtgox.com
against the US Dollar or other currencies.2 Users of the currency store it on a private
digital “wallet”. This wallet has no personal identification with an individual and is
comprised of three components: an address, a private key, and a public key. There
is nothing that connects a wallet to an individual. This level of anonymity has been
one of the driving forces behind the currency’s popularity. The bitcoin can be used
to purchase a number of goods and services that are listed on the Bitcoin website.

Three types of wallets exist: the software wallet, the mobile wallet and the web
wallet. Software wallets are installed directly on a computer and allow the user
complete control over the wallet. Mobile wallets are installed on mobile devices and
operate the same way. Web wallets host an individual’s bitcoins online. All of these
wallets can be accessed with just the private key assigned to the address. Again, there
is nothing to associate a physical human being with a Bitcoin address other than if
the person owns the hardware on which the wallet is installed.

As of December 2, 2013 the total market capitalization of bitcoin is approximately
$12 billion USD (see [9]). Bitcoin is traded 24h a day on various exchanges, the
largest of which include Mt. Gox (based in Japan)3 and BTC China (recently the
world’s largest BTC exchange [28]). The former is a real time exchange whereas
BTC China is a fixed rate exchange (see [8]). Bitcoins are denominated in USD on
Mt. Gox and in Renminbi on BTC China. After a clarification by the People’s Bank
of China on Bitcoin’s status at the beginning of December 2013, the exchanges on
BTC China can only be done in Chinese Yuan, and the users have to now provide
their identity using, for example, a passport number. Trading and use of Bitcoin is
forbidden in Thailand.

The trading volume of bitcoin on Mt. Gox has slowly increased over time as
adoption of the currency has increased. On its first day of trading on Mt. Gox, the
total volume of bitcoin traded was 20 units. Obviously this is a very small number
in comparison to the 3,436,900 bitcoins in circulation at that time. However, trading
volume has gradually increased since then as Bitcoin has become more generally
accepted and garnered more attention. Trading volume reached an all-time high on

2 The transactions on this market have been suspended as of February 25, 2014. The reason is yet
to be revealed, but an attack by hackers has been declared.
3 It represented 12 % of the trades before it collapsed.
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Fig. 1 Bitcoin volume, Feb–July 2013

Fig. 2 Bitcoin transactions, Feb–July 2013

April 15, 2013 with 572,185.7 bitcoins changing hands on Mt. Gox. At the time
there were approximately 11,027,700 units in existence, meaning that on this day
approximately 5% of all bitcoins in circulation were traded on Mt. Gox.

The long term supply of BTC will never exceed 21,000,000 units. However, the
daily volume traded on the platforms can be much smaller. The traded volume was
31,800 BTC on Mt. Gox on December 8, 2013. The evolution of the traded volume
of bitcoins between February and July 2013 is displayed in Figs. 1 and 2.
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Figure1 provides the daily volume exchanged against USD while Fig. 2 provides
the daily volume of bitcoins used for real transactions that is for the sale and purchase
of goods and services offered in bitcoin. The daily volumes are small compared to the
capitalization of bitcoin, showing that this emerging market may encounter liquidity
problems.

Bitcoins are produced in such a way that the volume of new bitcoins produced
will be halved every four years until the volume of new coins produced decays to
zero. At this point the final supply of bitcoins will be fixed (the exact amount of
units varies depending on rounding, but it will be less than 21 million units) (see
[7]). Bitcoins are produced in a process referred to as “mining”. Computers on the
Bitcoin network solve complex mathematical problems and are rewarded for their
work with a predetermined amount of bitcoins, referred to as a “block reward”, and a
transaction fee. The current block reward is 25 bitcoins (see [6]). In order to control
the supply of bitcoins being produced the difficulty of these problems is automatically
adjusted so that the time between solutions averages 10min.

2.2 Bitcoin Transactions

To ensure the security of transactions, the Bitcoin system uses public key cryptog-
raphy. Each individual has one or more addresses with an associated private and
public key. The system is totally anonymous and balances are only associated with
an address and its keys. Only the user with the private key can sign a transfer of
bitcoins to another party, whereas anybody in the network can validate the signature
and transaction using the user’s public key (see [6]). When a transaction occurs, one
user sends another an amount of bitcoins and signs the transaction with their private
key. The user who sends the bitcoins announces a public key and it falls on the net-
work to verify the signature. The user then broadcasts the transaction on the Bitcoin
network. In order to prevent double spending the details about a transaction are sent
to as many other computers on the network as possible in a block. Each computer
on this network has a registry of these blocks called a “block chain”. In order for
the newest block to be accepted into the chain, it must be valid and must include
proof of work (the solution to the aforementioned math problem). When a block is
announced the miners work to verify the transaction by solving the math problem.
When a solution is reached it is verified by the rest of the network. This allows for
the tracking of the life of every individual bitcoin produced.

Thus for any individual to double spend their Bitcoins, their computing power
would have to exceed the combined computing power of all other Bitcoin computers.

Alternatives to Bitcoin have already begun to spring up. The largest competitor is
Litecoin, which as of December 2, 2013 has a market capitalization of $695,376,891
USD [8]. Litecoin seeks to be an improvement over Bitcoin by attempting to
overcome some of the more technical issues facing Bitcoin.
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Fig. 3 Bitcoin/USD exchange rate, Feb–July 2013

2.3 The Data

In our empirical study, we consider the Bitcoin/USD exchange rate from the first
part of year 2013 that includes a bubble, which bursted on April 10, 2013.

More specifically, the sample consists of 150 observations on the daily closing
values of the Bitcoin/USD exchange rate over the period February 20–July 20, 2013.
The dynamics of the data is displayed in Fig. 3. We observe a nonlinear trend as well
as the bubble that peaked at the virtual time t= 50. The sample median, interquartile
range and total range4 are 103.27, 46.69 and 208.21, respectively. For comparison,

Fig. 4 Bitcoin histogram

4 The difference between the sample max and min.
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the sample mean and variance are 96.98 and 1327.63, respectively. These standard
summary statistics can bemisleading, since their usual interpretation assumes the sta-
tionarity of the process. This assumption is clearly not satisfied for the Bitcoin/USD
exchange rate. Figure4 shows the histogram and a kernel-based density estimate of
the sample marginal density.

Both estimates display fat tails, as suggested by the fact that the total range is five
times greater than the interquartile range. Also, the histogram indicates a discontinu-
ity in the left tail, which shows as an almost bimodal pattern in the kernel-smoothed
density estimate.

3 The Model

This section presents the mixed causal-noncausal autoregressive process, explains
how this process accommodates the bubble effects observed in the Bitcoin/USD
exchange rate series and discusses the estimation and inference.

3.1 The Noncausal and Mixed Autoregressive Process

A mixed (causal-noncausal) autoregressive process is a stochastic process {yt; t =
0,±1,±2, . . . }, defined by:

Ψ (L−1)Φ(L)yt = et, (1)

where Ψ (L−1) and Φ(L) are polynomials in the negative (resp. positive) powers of
the lag operator L, such that Ψ (L−1) = 1 − ψ1L−1 − · · · − ψsL−s and Φ(L) =
1− φ1L − · · · − φrLr . The roots of both polynomials are assumed to lie outside the
unit circle, and error terms et are identically and independently distributed. When
φ1 = · · · = φr = 0, model (1) defines a pure noncausal autoregressive process of
order s, while for ψ1 = · · · = ψs = 0, the process yt is the traditional pure causal
AR(r) process. When some of the coefficients of both polynomials are non-zero, we
obtain a mixed process that contains both the lags and leads of yt . Under the above
assumptions, there exists a unique stationary solution to Eq. (1). This solution admits
a strong, two-sided moving average representation:

yt =
∞
∑

j=−∞
ξjet−j,

where the ξj’s are the coefficients of an infinite order polynomial in positive and
negative powers of the lag operator L and such that: Ξ(z) = ∑∞

j=−∞ ξjzj =
[Ψ (z−1)]−1[Φ(z)]−1.
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When errors et are normally distributed, the causal and noncausal compo-
nents of the dynamics cannot be distinguished, and model (1) is not identifi-
able. However, the causal and noncausal autoregressive coefficients are
identifiable when the process (et) is not Gaussian.5 For example, [24] consider t-
Student distributed errors, while [21, 22] discuss the properties of the purely non-
causal autoregressive process (r= 0, s= 1) with Cauchy distributed errors. In par-
ticular, the density of a Cauchy distributed random variable X with location μ and
scale γ is:

f (et) = 1

π

[

γ

(x − μ)2 + γ 2

]

In Sect. 3, we will assume that et ∼ Cauchy(0, γ ). A particular feature of the Cauchy
distribution is that the expected value as well as all populationmoments of any higher
order do not exist.

3.2 The Bubble Effect

The trajectory of the Bitcoin/USD exchange rate displays repetitive episodes of
upward trends, followed by instantaneous drops, which are called bubbles. In gen-
eral, a bubble has two phases: (1) a phase of fast upward (or downward) departure
from the stationary path that resembles an explosive pattern and displays an expo-
nential rate of growth, followed by (2) a phase of sudden almost vertical drop (or
upspring) back to the underlying fundamental path. There exist several definitions of
a bubble in the economic literature. The first definition was introduced by Blanchard
[4] in the framework of rational expectation models. The formal definition by Blan-
chard as well as the later definitions by Blanchard and Watson [5], Evans [18] all
assume a nonlinear dynamic models of xt (say) with two components, one of which
depicts the fundamental path of xt , while the second one represents the bubble effect.
The economic explanation of this phenomenon is as follows: a bubble results from
the departure of a price of an asset from its fundamental value. In the context of the
Bitcoin/USD exchange rate, the bubbles may result from the speculative trading that
makes the rate deviate quickly above its trend, although it is hard to say if the trend is
representative of the fundamental value of the bitcoin. Indeed, the bitcoin is a virtual
currency, which is backed neither on a real asset, nor on the performance of a firm
or a national economy.

So far, the bubbles were considered in the time series literature as nonstation-
ary phenomena and treated similarly to the explosive, stochastic trends due to unit
roots. In fact, the existing tests for the presence of a bubble are essentially tests of a

5 See e.g. [13], [33, Theorem 1.3.1.], for errors with finite variance, Breidt [10] for errors with finite
expectation and infinite variance, [22] for errors without finite expectation, as the Cauchy errors
considered in the application.
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breakpoint in the general explosive stochastic trend of a nonstationary process
(see e.g. [31, 32]).

Gourieroux and Zakoian [21] propose a different approach and assume that the
bubbles are rather short-lived explosive patterns caused by extreme valued shocks in
a noncausal, stationary process. Formally, that process is a noncausal AR(1) model
with Cauchy distributed errors. The approach in reverse time, based on a noncausal
model allows for accommodating the asymmetric pattern of the bubble. The merit
of the Cauchy distributed errors is in replicating the sudden spike in the reverse time
trajectory that is observed as a bubble burst from the calendar time perspective. Such
a noncausal or mixed process has to be examined conditionally on the information
of the current and past rates. It is known that a noncausal, linear autoregressive
process also has a nonlinear causal autoregressive dynamics, except in the Gaussian
case. This is the special nonlinear feature, which makes it suitable for modelling
the bubbles in Bitcoin/USD exchange rate. Moreover the noncausal autoregressive
model allows for forecasting the occurrence of a future bubble and the time of bubble
burst. The methodology of forecasting is discussed in Sect. 3.4 and illustrated in the
application in Sect. 4.

3.3 Estimation and Inference

The traditional approach to the estimation of causal time series models relies on the
Box-Jenkins methodology that consists of three steps: identification, estimation and
diagnostics. In application to noncausal and mixed processes, most of the traditional
Box-Jenkins tools of analysis need to be interpreted with caution. The reason is
that most of the traditional estimators are based on the first- and second-order sam-
ple moments of the process and rely on the Gaussian approximation of its density,
while the noncausal processes need to be non-Gaussian to solve the aforementioned
identification purpose and may have infinite moments of order one and/or two.

(a) Identification

The autocorrelation function (ACF) is the basic tool for detecting temporal depen-
dence. By construction, the ACF estimators rely on a implicit normality assumption,
as they are computed from the sample moments up to order two. Due to the afore-
mentioned nonidentifiability problem, the ACF cannot reveal whether a time series
is causal or not, as it yields identical results in either case. It remains however a valid
tool for detecting serial dependence in variables with infinite variances (see [2]). In
particular Andrews and Davis show that the total autoregressive order p = r + s can
be inferred from the autocorrelation function, while r and s need to be inferred from
the estimated models by comparing their fit criteria, computed from the sample.

For variables with infinite variance, [15] established the asymptotic properties of
the sample autocorrelation ρ̂ at lag l defined as:
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ρ̂(l) = γ̂ (l)

γ̂ (0)
, γ̂ (l) = 1

T

T−l
∑

t=1

(yt − ȳ)(yt+l − ȳ), l > 0,

where T is the sample size and ȳ = 1
T

∑T
t=1 yt .

In the presence of Cauchy errors, the standard confidence intervals of the ACF
are no longer valid as the sample ACF is no longer asymptotically normally distrib-
uted and has a nonstandard speed of convergence. By using the results of [15, 21]
(Proposition6) show that the sample autocorrelations of a noncausal AR(1) process
with Cauchy errors and autoregressive coefficient ρ have a limiting stable distrib-
ution and a rate of convergence that is different from the standard

√
T rate. More

specifically, let us denote the vector of sample autocorrelations up to lag M: by
ρ̂T = (ρ̂T (1), . . . , ρ̂T (M))′ and consider the true values ρ = (ρ, . . . , ρM)′. Then,

T

ln T
(ρ̂T − ρ)

d→ Z = (Z1, . . . , ZM),′

where for l = 1, . . . , M, Zl = ∑∞
j=1[ρj+l − ρ|j−l|]Sj/S0, and S1, S2 . . . is an i.i.d.

sequence of symmetric 1-stable random variables independent of the positive 1/2
stable random variable S0. The limiting true values can be interpreted as pseudo-
autocorrelations, as the autocorrelations themselves do not exist in a process with
infinite variance.

(b) Estimation

The standard Gaussian quasi-maximum likelihood approach can no longer be used
to estimate the autoregressive parameters due to the Gaussian-specific identification
problem.However,when the distribution of the errors is non-Gaussian, the estimation
of the parameters in noncausal and mixed processes can be based on the maximum
likelihood estimator, which preserves its speed of convergence and asymptotic nor-
mality (see [24]). The maximum likelihood method differs slightly from that used
in causal processes. It is called the “approximate maximum likelihood” for the rea-
son that the sample used in the approximate likelihood is reduced to T − (r + s)
observations.6 Indeed, the first error to be included in the likelihood function that
can be written without a value of yt prior to the sample is er+1. To see that, assume
ψ1 = · · · = ψs = 0 and write:

er+1 = yt − φ1yt−1 − · · · − φryt−r .

Suppose now that φ1 = · · · = φr = 0 The last error in the sample to be included in
the likelihood function that can be written without the values of yt posterior to the
sample is

eT−s−1 = yT − ψ1yT+1 − · · · − ψsyT+s

6 The approximate likelihood disregards the first r state variables that summarize the effect of
shocks before time r and the last s state variables that summarize the effect of shocks after time
T − s [21, 22] and is therefore constructed from shocks er+1, . . . eT−s−1 only.

http://dx.doi.org/10.1007/978-3-319-13449-9_2
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The Approximate Maximum Likelihood (AML) is defined as:

(Ψ̂ , Φ̂, θ̂ ) = Argmax Ψ,Φ,θ

T−s
∑

t=r+1

ln g[Ψ (L−1)Φ(L)yt; θ ], (2)

where g[.; θ ] denotes the probability density function of et .
Lanne and Saikkonen [24] show that the traditionalWald tests and other inference

methods, like the AIC and SBC fit criteria based on the approximated likelihood
remain valid. The fit criteria are essentially used for determining the autoregressive
orders r and s of the process. The model with the r and s that minimizes one of the
fit criteria is selected at this “ex post” identification stage, analogously to the choice
of orders p and q in an ARMA(p, q) process.

(c) Diagnostics

The diagnostic checking consists of testing if the estimated shocks êt = Ψ̂ (L−1)

Φ̂(L)yt of the model are strong white noise. The asymptotic distribution of the sam-
ple autocorrelation of the residuals is different from the standard one derived for
processes with finite variance. For instance, for a noncausal Cauchy autoregressive
process of order 1, the limiting distribution of the residual autocorrelation estimator
at lag 1 is:

T

ln T
r̂T (1)

d→ ρ∗(1 + 2ρ∗)S1/S0,

where ρ∗ is the noncausal autoregressive coefficient of process Y . Contrary to the
standard process with finite variance, the limiting distribution depends on ρ∗.

3.4 Forecasting

Due to the different dynamics of non-Gaussian processes in the calendar and the
reverse times, the “backcasting” algorithm in the spirit of Newbold [30] is no longer
valid. Nevertheless, it is possible to extend the concept of the Kalman filter and make
it applicable to noncausal and mixed processes. The approach consists of three steps
(see e.g. [20]):
Step 1 Filter shocks et for t = 1, . . . , T and the causal and noncausal state
components of the process.
Step 2 Estimate the predictive distribution of the noncausal component of the process
by a look-ahead estimator.
Step 3 Simulate the future noncausal components of the process by a sampling
importance resampling (SIR) algorithm and infer the simulated future values of the
process.
This methodology is used in the next section to derive the prediction intervals.
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4 Application

4.1 ACF Analysis

The traditional Box-Jenkins approach starts from the analysis of the sample autocor-
relation function (ACF). The ACF provides information on the possible linear serial
dependence in the series, but its interpretation can be rather misleading in the case
of extreme events.

The standard confidence interval for testing the statistical significance of the auto-
correlations is based on the approximate limiting standard normal distribution of the
autocorrelation estimator at a given lag, under the null hypothesis that the true value
of that autocorrelation is zero. Hence, with the sample size of 150, the statistically
significant autocorrelations exceed 0.16 in absolute value.

In order to establish the confidence interval for Cauchy distributed errors, we
approximate the limiting distribution of the pseudo-autocorrelation estimator given
in Sect. 3.3 by simulations. We draw independent standard normals e1, e2, e3 and
build the ratio

Z = S1
S0

= e1e23
e2

where S1 = e1
e2

is a symmetric 1-stable random variable and S0 = 1
e23

is a symmetric

0.5 stable random variable. From the 25th and 975th order statistics from a sample
of 1,000 values of Z multiplied by ln(150)

150 , we obtain the confidence interval [−0.36,
0.36]. Under the null hypothesis of zero pseudo-autocorrelation at lag l, the statisti-
cally significant autocorrelation at lag l is less than 0.36 in absolute value with the
asymptotic probability of 95%.

In Fig. 5, we plot the ACF of the data with the standard confidence interval and
the interval adjusted for infinite variance.

Fig. 5 ACF, Bitcoin
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The ACF displays slow, linear decay, which resembles the patterns observed in
unit root processes. Moreover, the Dickey-Fuller and the Augmented Dickey-Fuller
ADF(4) tests accept the null hypothesis of a unit root in the data with p-values 0.4
and 0.6, respectively. However, it is easily checked that the standard procedure of
transforming the data into first differences and estimating a stationary ARMA cannot
accommodate the nonlinear features of the series.

4.2 Global and Local Trends

In the Bitcoin/USD exchange rate series, it is important to disentangle the funda-
mental and the bubble components. The fundamental component is modelled as a
nonlinear deterministic trend7 and the bubble component as a noncausal autoregres-
sive process with Cauchy errors. Accordingly, we define the Bitcoin/USD rate as:

ratet = trendt + yt,

(a) Estimation of the trend and detrended series

In order to remove the trend, we fit a nonlinear function of time by regressing the data
on a 3rd degree polynomial in time. The detrended series, obtained as the following
series of residuals:

yt = ratet + 3.045 − 3.854t + 3.499t2 − 0.866t3

is calculated and plotted in Fig. 6. The marginal density of yt is shown in Fig. 7.

Fig. 6 Detrended series

7 Alternatively, it can be represented by a model with a stochastic trend, assumed independent of
the shocks that create the speculative bubble.
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Fig. 7 Detrended series, histogram

Fig. 8 Detrended series, ACF

We observe that the detrended series no longer displays the bimodal pattern, while
it preserves the peaked and long-tailed shape of the density of the Bitcoin/USD rate.
The ACF function of the detrended series, given in Fig. 8, shows considerably less
persistence than the original series and indicates short linear memory.

(b) Noncausal analysis of the detrended series

Next, the detrended series is modelled as a noncausal autoregressive process.
Let us first consider a noncausal Cauchy AR(1) process:

yt = ψyt+1 + et, (3)
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Table 1 AR(1) Parameter
estimates

Parameter Standard error t-ratio

ψ 0.9122 0.024 37.025

γ 2.734 0.113 8.833

− ln L 496.165 – –

where et are independent and Cauchy distributed with location 0 and scale γ , et ∼
Cauchy(0, γ ). At this point, it is interesting to compare the trajectory of yt with
the simulated path of a noncausal AR(1) with the autoregressive coefficient 0.9, as
displayed in [21, Fig. 4]. It is clear that the dynamics of the transformed Bitcoin/USD
rate and of the simulated series resemble one another. The model is estimated by
maximizing the approximated log-likelihood function, based on the Cauchy density
function:

ln L(ψ, γ ) = (T − 1)[− ln(π) + ln(γ )] −
T−1
∑

t=1

[ln((yt − ψyt+1)
2 + γ 2)]. (4)

The parameter estimates and the estimated standard errors are given in Table1:
The residuals are plotted in Fig. 9.
The model has not only removed the serial correlation, as shown in Fig. 10, but

has also removed the asymmetry due to the bubble (see Fig. 7).
The speculative subperiod is just characterized by a rather standard volatility

clustering.
An additional autoregressive term can be introduced. We consider a noncausal

AR(2) model:

Fig. 9 Residuals, noncausal AR(1)
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Fig. 10 ACF residuals, noncausal AR(1)

Table 2 AR(2) Parameter
estimates

Parameter Standard error t-ratio

ψ1 1.316 0.077 17.0465

ψ2 −0.401 0.065 −6.166

γ 2.433 0.112 7.894

− ln L 478.709 – –

yt = ψ1yt+1 + ψ2yt+2 + et, (5)

and estimate it by the approximated maximum likelihood.
The roots of the noncausal polynomial are 1.194 and 2.084 and the noncausal

AR(2) is stationary. The residuals of the noncausal AR(2) satisfy alsowhite noise fea-
tures, as their autocorrelations are not statistically significant. The noncausal AR(2)
provides good fit to the data and the value of its log likelihood function at the max-
imum is very close to that of the next model considered with the same number of
parameters (Table2).

The next specification considered is amixed autoregressivemodelMAR(1,1)with
both causal and noncausal orders equal to 1. The estimated model is:

(1 − φL)(1 − ψL−1)yt = et . (6)

The parameter estimates are provided in Table3. Both roots of the polynomials lie
outside the unit circle.

In order to accommmodate remaining residual autocorrelation, we estimate the
model MAR(2, 2) (see Table4):
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Table 3 MAR(1, 1)
Parameter estimates

Parameter Standard error t-ratio

ψ 0.678 0.028 23.864

φ 0.717 0.023 30.507

γ 2.559 0.109 8.552

− ln L 479.402 – –

Table 4 MAR(2, 2)
Parameter estimates

Parameter Standard error t-ratio

ψ1 0.739 0.025 29.495

ψ2 0.032 0.023 1.367

φ1 0.501 0.063 7.912

φ2 0.114 0.027 4.084

γ 2.413 0.112 7.842

− ln L 471.507 – –

Table 5 MAR(2, 1)
Parameter estimates

Parameter Standard error t-ratio

ψ1 0.632 0.046 13.479

φ1 0.664 0.037 17.715

φ2 0.157 0.033 4.679

γ 2.481 0.114 7.911

− ln L 470.658 – –

(1 − φ1L − φ2)(1 − ψ1L−1 − ψ2L−2)yt = et . (7)

Both polynomials have real-valued roots outside the unit circle. We observe that the
parameter ψ2 is not significant. Therefore, below, we estimate the MAR(2, 1) model
(see Table5).
The autoregressive polynomial in past y′s has real-valued roots outside the unit circle.

The noncausal AR(2) process and the MAR(1, 1) process are not equivalent from
the modeling point of view. Noncausal parameters ψj (resp. causal parameters φj)
have a significant impact on the rate of increase of the bubble (resp. decrease of the
bubble). The noncausal AR(2) model is able to fit bubbles with two possible rates of
increase, corresponding to ψ1 and ψ2, but with sharp decrease due to the absence of
causal autoregressive parameter. The mixed MAR(1, 1) model is flexible enough to
fit any asymmetric bubbles. For illustration purpose, we focus below on the mixed
MAR(1, 1) model.
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4.3 The Causal and Noncausal Components

The MAR(1, 1) process can be decomposed into a “causal” and a “noncausal” com-
ponents (see e.g. [20]):

yt = 1

1 − φψ
(ut + φvt−1), (8)

where the noncausal component is defined by

ut − ψut+1 = et, (9)

and the causal component by

vt − φvt−1 = et . (10)

The causal component vt (resp. the noncausal component ut) is a combination of
current and lagged values (resp. of the current and future values) of the noise et . This
explains the terminology used above.

In Fig. 11, we provide the filtered noise and the filtered causal and noncausal
components of the detrended series.

The series of filtered et is close to a series of independent random variables, as
suggests the ACF given in Fig. 12. From the series of filtered et , we can see the dates
of extreme shocks.

The component series determine jointly the bubble patterns. In particular, the
component u with parameterψ determines the growth phase of the bubble, while the
v component and parameter φ determine the bubble burst.

Fig. 11 Components series of the MAR(1, 1)
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Fig. 12 ACF of the MAR(1, 1) components

4.4 Prediction

Let us now consider the prediction performance of the MAR(1, 1) with nonlinear
deterministic trend. In particular, we will study its ability of predicting the future
bubbles.

For this purpose we need to predict the future path of detrended process y at
some horizon H , that is yT+1, . . . , yT+H , given the available information y1, . . . , yT .
We are interested in nonlinear prediction of this path represented by the predictive
density of yT+1, . . . , yT+H . This analysis depends on horizon H. It becomes more
complex when H increases, but also more informative concerning the possible future
downturns. There exist consistent approximations of this joint predictive density,
based on a look-ahead estimator, which admit closed form expressions. They can be
used for small H to display the predictive densities and in general to compute any
moment of the type:

E(a(yT+1, . . . , yT+H)|y1, . . . , yT ),

by simulation or numerical integration.
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Fig. 13 Predictive density at horizon 1

For s = 1, the predictive distribution at horizon H is defined as [20]:

Π̂(uT+1, . . . , uT+H |ûT ) =
{

ĝ(ûT − ψ̂uT+1)ĝ(uT+1 − ψ̂uT+2)

. . . ĝ(uT+H−1 − ψ̂uT+H)

T−1
∑

t=1

ĝ(uT+H − ψ̂ ût)

}

{

T−1
∑

t=1

ĝ(ûT − ψ̂ ût)

}−1

(11)

We display in Fig. 13 the predictive density at horizon 1, in Fig. 14 the joint
preditive density at horizon 2, and its contour plot in Fig. 15.

We observe some asymmetry in the predictive density of yT+1, which would not
have been detected with a standard Gaussian ARMA model.

The joint predictive density at horizon 2 is much more informative. For the
MAR(1, 1) process, all the predictive densities depend on the information by means
of two state variables only, which are yT , uT , or equivalently by yT , yT−1. The values
of the state variables for the Bitcoin data are: uT = 2.87, yT−1 = 9.64, yT = 12.27.
Thus at the end of the observation period we are in an increasing phase of the
detrended series. From the knowledge of the joint predictive density, we can infer
the type of pattern that will follow that increasing phase. The series can continue
to increase (the upper North-East semi-orthant in Fig. 15 from the top point with
coordinates of about (yT , yT ) = (12.27, 12.27)), increase and then slowly decrease
(the bottom North-East semi-orthant), or immediately decrease sharply (the bottom
South-West semi-orthant) and so on.
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Fig. 14 Joint predictive density at horizons 1 and 2

Fig. 15 Contour plot of the joint predictive density at horizon 2

The joint predictive density has a complicated pattern, far from Gaussian, with a
strong dependence in extreme future risks in some directions. Its associated copula
is close to an extreme value copula (see e.g. [3] for examples of extreme value
copulas). By considering Fig. 15, we see that the probability of a continuing increase
of y (North-East orthant) is rather high, but so is the probability of a sharp downturn
at date T + 1 (South-West orthant). However, the probability of a downturn at date
T + 2 (South-East orthant) is small. Thus the joint predictive density can be used
to recognize the future pattern of y by comparing the likelihood of the different
scenarios, in particular to evaluate the probability of the downturn at dates T + 1,
T + 2, etc. The above discussion based on the graphical representation is limited
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Fig. 16 Predicted dynamics

to horizon 2 (see Fig. 16). However, the probabilities of the different types of future
patterns can be evaluated numerically for larger H.

5 Conclusion

The causal-noncausal autoregressive models have been proposed as nonlinear
dynamic models that are able to fit speculative bubbles. We applied thismethod-
ology to analyse the Bitcoin/USD exchange rates over the period February–July
2013. Indeed, speculative bubbles appeared in that period and could be used to cal-
ibrate the parameters of the model. We have considered a mixed model with both
causal and noncausal orders equal to 1, estimated the parameters by the Approxi-
mated Maximum Likelihood, filtered the underlying components of the process to
better understand the type of existing bubbles. Next, we built the joint predictive
density of the future path. This joint density was used to predict the future patterns
of the process, a kind of model-based chartist approach, in particular to evaluate the
likelihood of the future dates of downturn.

The series of Bitcoin/USD exchange rates has been used as a playground for
analyzing the relevance of the causal-noncausal modeling to capture bubble phenom-
ena. It was typically an example of highly speculative emerging market. Recently,
several exchange platforms have closed, temporarily8 or definitely. Other platforms
were submitted to regulations. There is clearly a need of supervision to better pro-
tect the investors in bitcoins against the theft of their bitcoins, but also against the

8 The French platform Bitcoin-Central has been closed for 5months in 2013 due to hackers attack.
Nevertheless the customers had still the possibility to withdraw their bitcoins.
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speculative behavior of large bitcoin holders. This supervision will likely make dis-
appear the previously observed speculative bubbles and perhaps the market for this
electronic currency itself.

However, there will still exist a large number of financial markets, not necessarily
emerging, with frequently appearing bubbles. Examples are the markets for com-
modity futures, and the markets with high frequency trading. These are potential
applications for the causal-noncausal model presented in this paper.
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An Overview of the Black-Scholes-Merton
Model After the 2008 Credit Crisis

Chadd B. Hunzinger and Coenraad C.A. Labuschagne

Abstract The 2008 credit crisis exposed the over-simplified assumptions of the
Black-Scholes-Merton (BSM) model. This paper provides an overview of some of
the adjustments forced on the BSM model by the 2008 credit crisis to maintain the
relevance of the model. The inclusion of credit value adjustment (CVA), debit value
adjustment (DVA), funding value adjustment (FVA) and the posting of collateral in
the BSM model are discussed.

1 Introduction

The credit crisis of 2008 was a dramatic event for financial markets. This was the
beginning of the financial tsunami that would plague and force changes in global
markets for many years to come. The economic meltdown that followed had massive
effects on many everyday issues such as house prices, interest rates and inflation.
Investment banks were also affected and numerous investment banks either defaulted
or were taken over by the U.S. Federal Reserve to avoid default. The impact on
financial derivative pricing did not escape the 2008 credit crisis.

Prior to the 2008 credit crisis, pricing the value of a derivative was relatively
straightforward. Universally, practitioners andmany academics agreed on the pricing
method used to price a derivative. The method was well-known: discount future
expected cash flows under the risk-neutral measure to the present date using the
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risk-free rate. This method was derived from the fundamental theory laid down by
Black, Scholes andMerton in the 1970s (see Black and Scholes [3] andMerton [26]).

Although there are many known approaches to option pricing, which includes
heavy-tailed distribution techniques, the continuous time Black-Scholes-Merton
(BSM) model is considered by many financial practitioners to be adequate for option
pricing, irrespective of its over-simplified assumptions. It was and still is, widely used
in practice, as it is well understood and yields a framework in which both pricing
and hedging is possible. The deep-rooted acceptance of the BSM model is further
cemented by the fact that the discrete time Cox, Ross and Rubinstein (CRR) model,
which is a discretisation of the BSM model, is very useful and easy to implement in
practice (see Cox et al. [10]).

The 2008 credit crisis drove home the fact that what was used in practice prior
to the crisis as an approximation (also called a proxy) for the theoretical notion of a
risk-free interest rate, as required by the BSM model, is totally inadequate to yield
realistic results.

The myth that banks are risk-free was disproved by the 2008 credit crisis. The
default of what we used to call too big to fail banks, such as Lehman Brothers and
Bear Stearns, which defaulted in the 2008 credit crisis, disproved the myth that banks
are risk-free (see Gregory [15]).

The 2008 credit crisis also exposed the inadequate management of counterparty
credit risk. Counterparty credit risk (also known as default risk) between two parties,
is the two-sided risk that one of the counterparties will not pay, as obligated on a
trade or a transaction between the two parties.

Changes need to be made to the usual ways in which “business was conducted”
prior to the 2008 credit crisis and these changes need to be addressed and incorporated
in the models used prior to the 2008 credit crisis.

The aim of this paper is to present the current state of affairs with regard to the
BSM model.

For terminology not explained in the paper, the reader is referred to Alexander
[1] or Hull [18].

2 Credit Value Adjustment (CVA) and Debit Value
Adjustment (DVA)

Over-the-counter (OTC) derivative trading is done directly between two parties with-
out any supervision on an exchange (this, however, is going to change in the future
due to stipulations in the Basel III Accord).

Even before the 2008 credit crisis, banks realised that many corporate clients are
not risk-free; therefore, in OTC derivative trades, banks charged their clients a credit
value adjustment (CVA). CVA is defined as the fair market value of the expected loss
of an OTC derivative trade given that the opposite counterparty defaults.

Many of the banks’ clients believed that bankswere risk-free; therefore, the clients
would accept the price that banks offered them and in turn did not charge banks a
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CVA on the trade. Reference papers on CVA include Sorensen and Bollier [29],
Jarrow and Turnbull [24] and Duffie and Huang [13].

As a result of the 2008 credit crisis, banks are not seen as risk-free anymore.
One implication of this is the inclusion of a debit value adjustment (DVA) in the
derivative’s price. DVA is defined as the fair market value of the expected gain of
an OTC derivative given own default. The origins of DVA are found in Duffie and
Huang [13]; however, their paper deals mostly with swaps. Gregory [14] and Brigo
and Capponi [4] examine bilateral credit risk in general and derive DVA formally.
In essence, DVA is the adjustment clients charge the bank for the bank’s own credit
risk. Therefore, from the client’s point of view, the adjustment is known as CVA and
from the bank’s point of view the adjustment is known as DVA.

One aspect of pricingwith CVA andDVA is that it allows two credit-risky counter-
parties to trade with each other. If two counterparties charged each other a CVA and
do not include the offsetting DVA term, then the two counterparties would not agree
on the price of the derivative. The inclusion of DVA allows symmetric prices. The
concept of symmetric prices means that two counterparties will price the derivative
at the same price.

DVA is a hotly debated and controversial quantity. The reason for the controversy
is that the DVA amount can only be realised when the bank defaults. If the bank is
out-of-the-money on a trade and defaults, then the bank only needs to pay a recovery
of the mark-to-market (MTM); therefore, the bank benefits from its own default.
It can be compared to buying life insurance. The policy will only be realised after
the death of the policy holder. Some practitioners argue that DVA simply cannot be
hedged effectively.

Gregory and German [16] describe DVA as a double edged sword. On the one
hand, it creates a symmetric world where counterparties can readily trade with one
another, even when their underlying default probabilities are high. On the other hand,
the nature of DVA and its implications and potential unintended consequences create
some additional complexity and potential discomfort. From an accounting point of
view, adding DVA to the price makes sense; however, the regulators are not so sure.
Risk Magazine on 6th February 2012 reported that

Accountants want banks to report as profits the impact of widening credit spreads on their
liabilities, but regulators are moving in the other direction.

(see Carver [8]). The accounting rules International Financial Reporting Standards
(IRFS) 13 and Financial Accounting Standards Board (FASB) 157 require DVA.
However, the Basel III committee has decided to ignore any DVA relief in capital
calculations.

3 The Risk-Free Rate: The Proxies LIBOR Versus OIS

The BSM model requires that one has to discount future expected cash flows under
the risk-neutral measure using the risk-free rate. The risk-free rate is the theoretical
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rate of return on an investment with no risk of financial loss. The risk-free rate defines
the expected growth rates of market variables in a risk-neutral world.

In practice, the pertinent question is: which interest rate should be used as a proxy
for the risk-free rate?

The London Interbank Offered Rate (LIBOR) rate is the rate that banks could
freely borrow and lend at. Prior to the 2008 credit crisis, practitioners constructed a
curve from LIBOR rates, Eurodollar futures and swap rates, which Hull and White
[21] refer to as a LIBOR swap curve. The 3-month LIBOR swap curve was used by
practitioners as a proxy for the risk-free rate.

An overnight interest rate swap (OIS) is a swap for which the overnight rate is
exchanged for a fixed interest rate for a certain tenor (also known as maturity). An
overnight index swap references an overnight rate index, such as the Fed funds rate, as
the underlying for its floating leg, while the fixed leg would be set at an assumed rate.

Before the 2008 credit crisis, the LIBOR-OIS spread, which is the difference
between the LIBOR rate and the OIS rate, was only a few basis points. It was stable
and not significant (see Gregory [15]).

The 2008 credit crisis caused a significant spread between 3-monthLIBORand the
OIS rate. The LIBOR-OIS spread spiked to hundreds of basis points in the aftermath
of the default of Lehman Brothers in September 2008 and has remained significant
ever since. Many practitioners believe that the spread between LIBOR and OIS rates
describes the health of the banking industry. As one can see from Fig. 1 the banks in
2008 were not “in good shape” during the crisis. The fact that the LIBOR-OIS spread
has remained significant illustrates why banks are not risk-free. These shifts made it
apparent that LIBOR incorporates an adjustment for the credit risk of banks and swap

Fig. 1 The spread between 3-month LIBOR and OIS during the 2008 crisis. Source http://www.
soberlook.com, May 31, 2014

http://www.soberlook.com
http://www.soberlook.com
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rates correspond to the risk of unsecured short-term loans to financial institutions;
therefore, the LIBOR swap curve is an imperfect proxy for the risk-free rate. The
OIS rate appears to be the preferred choice as a proxy for the risk-free rate (see Hull
and White [21] and Hunzinger and Labuschagne [23]).

4 Collateral and Funding Costs

The 2008 credit crisis emphasised the importance of the managing of counterparty
credit risk.

One of the ways to mitigate counterparty credit risk is by posting collateral in a
derivative trade. Collateral is a borrower’s pledge of specific assets to a lender, to
secure repayment of a liability.

Banks required collateral posted from their counterparties on certain trades prior
to the 2008 credit crisis. But as it became apparent that banks are not risk-free, clients
require that banks now also post collateral on some transactions. For exchange traded
derivatives, i.e. stock option, counterparty credit risk is not an issue, because the two
counterparties in the trade are required to post margins to the exchange.

The posting of collateral in a derivative trade is regulated by a Credit Support
Annex (CSA). A CSA is a contract that documents collateral agreements between
counterparties in trading OTC derivative securities. The trade is documented under a
standard contract called a Master Agreement, developed by the International Swaps
and Derivatives Association (ISDA). The 2010 ISDA margin survey suggests that
70 % of net exposure arising from OTC derivative transactions are collateralised
(source: www2.isda.org).

After the 2008 credit crisis many banks have started to use OIS rates for dis-
counting collateralised transactions and LIBOR swap rates for discounting non-
collateralised transactions. This can be clarified by considering the fundamental
paper of Piterbarg [27] in which he notes fundamental facts regarding derivative
pricing when collateral is posted.

Piterbarg [27] notes that when pricing a zero-threshold CSA trade, where the
collateral is cash and in the the same currency as the derivative, the cash flows should
be discounted using the collateral rate of that particular currency. Collateral posted
overnight will earn a rate similar to the index rate referenced in an OIS. Furthermore,
when the trade is not collateralised, then the cash flows should be discounted using
the funding rate of the bank. He also notes that one may price a derivative trade by
always discounting the future expected cash flows using a collateral rate and making
a funding value adjustment (FVA). FVA is a correction made to the risk-free price
of an OTC derivative to account for the funding cost in a financial institution.

Posting collateral in an OTC trade may mitigate counterparty credit risk and
funding costs; however, this depends on the collateral posted in the trade and how
often this collateral is readjusted according to market movements. Collateral can
be changed daily, weekly or monthly, which will affect the exposures of the two
counterparties.

www2.isda.org
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The 2008 credit crisis drove home the realisation that banks are not risk-free. This
resulted in banks becoming reluctant to lend to each other and banks became unable
to borrow at preferential rates. This resulted in banks charging a FVA on transactions.
When managing a trading position, one needs cash to conduct operations such as
hedging or posting collateral. This shortfall of cash can be obtained from the treasury
of the bank. The funding cost adjustment (FCA) is the cost of lending money at a
funding rate which is higher than the risk-free rate. The firm may also receive cash
in the form of collateral or a premium. The funding benefit adjustment (FBA) is the
benefit earned when excess cash is invested at a higher rate than the risk-free rate.
Therefore, the funding value adjustment has two components

FVA = FBA + FCA,

where the FBA and the FCA terms have opposite signs.
Funding value adjustment arises because of two factors. Firstly, because banks

cannot borrow at the risk-free rate any more and secondly because of collateralised
trades. Figure2 illustrates how a funding cost adjustment arises in terms of a trading
floor set-up. Let us say for example a trader enters into a trade with a corporate client
and at this point in time the trader is in-the-money on the trade. At the same time the
trader enters into another trade with a hedge counterparty to hedge out the trader’s
exposure to the client. Because the trader is in-the-money on the client trade, the
trader will be out-the-money on the hedge. Let us also assume that the trade with
the hedge counterparty is collateralised; therefore, the trader is required to posted
collateral to the hedge counterparty. The collateral posted by the trader will earn a
collateral rate. If the client trade was not traded with a CSA (no collateral will be
posted in the trade) and then the trader needs to fund the collateral requirement from
the treasury of the bank. The trader cannot fund a short fall of cash from the treasury

Fig. 2 A graphical illustration of funding cost adjustment
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Fig. 3 A graphical ilustration of funding benefit adjustment

at the risk-free rate but at a higher funding rate. This excess cost of funding at the
funding rate is exactly a funding cost adjustment. On the other hand, if the client
trade is traded with a CSA, the client will be required to post collateral to the trader,
and hence the trader can pass this collateral amount to the hedge counterparty. This
situation results in no funding costs. The natural question at this point is: how does
this scenario now differ from that prior to 2008? Before the crisis, the trader could
fund from the treasury at a risk-free rate; hence, if the trader received collateral from
the client or required funding from the treasury, this funding is at the risk-free rate.
Therefore no funding cost adjustment would occur in this set-up.

Figure3 illustrates how a funding cost adjustment arises in terms of a trading
floor set-up. In this case, the trader is out-of-the-money on the client trade and in-
the-money on the hedge. Now the hedge counterparty is required to post collateral
with the trader. If no CSA is placed between the client and the trader, then the trader
can place these funds with the treasury and earn a rate better than the collateral rate.
This extra benefit is known as a funding benefit adjustment. If the trader is required
to post collateral to the client, then there is no resulting benefit.

In this example, we assume that rehypothecation is possible. Rehypothecation is
the practice by banks and brokers of using, for their own purposes, assets that have
been posted as collateral by their clients.

5 The FVA Debate

The inclusion of FVA in pricing financial instruments is a controversial issue. Hull
and White [19, 20] argue against it. They argue that the funding costs and benefits
realised in a trade, violate the idea of risk-neutral pricing and should not be included
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in the pricing of the derivative. Inclusion of FVA in the price of a derivative trade
violates the law of one price in the market because the two counterparties may price
a trade and obtain a different outcome.

There are views that are different from those of Hull and White. Laughton and
Vaisbrot [25] suggest that in practice the market is not complete and the uniqueness
of prices and the law of one price will not hold (see Harrison and Pliska [17]). They
state that applying the so called FVA to the risk-neutral value, is justified. Banks
with a lower funding rate will be more competitive on trades that require funding.
This is fully consistent with the current situation in the markets, as theory should aim
to be. In summary, they believe that the beautiful and elegant theory of BSM is not
applicable and needs to be rethought because of the theory’s unrealistic assumptions,
especially post the credit crisis.

Castagna [9] also disagrees with Hull and White. In the BSM model there is
only one interest rate and that is the risk-free interest rate. Castagna suggests if one
considers a framework where more than one interest rate exists, such as a risk-free
rate and a funding rate, then one could still produce a replicating portfolio which
perfectly replicates the derivative. If a bank can only invest at the risk-free rate and
fund at a higher funding rate, then it is well known that this will not impediment
the replication of the derivative (see Bergman [2], Rubinstein and Cox [28] and
Hunzinger and Labuschagne [23]). This will lead to a different prices for the buy
side and the sell side; however, a closed form solution will still exist. Castagna
suggests that models need to be amended in order to be more useful to traders. They
should remove the assumption of the ability to borrow at the risk-free rate to finance
trades.

Inclusion of both FBA and DVA in the price could also lead to double counting:
FVA references the firms own funding spread (which is the difference between the
funding rate of the bank and the risk-free rate) in both terms, FCA and FBA. The
funding spread is based on the credit rating of the firm. The counterparty’s credit
spread (which is the difference between the yield on a firm’s credit risky bond and
the yield of a risk-free bond) is referenced in the CVA term and the firm’s own credit
spread in the DVA term. A change in the credit rating of the bank leads to a change
in the price of the derivative. Since the DVA and FBA terms have the same sign, the
change in the price is reflected twice if both the DVA and FBA terms are included in
the valuation.

6 The BSM Model

In order to discuss extensions to the BSM model which follow from the discus-
sions above, we include a summary of the BSM model and its assumptions for the
convenience of the reader.

The interest rate assumptions of the BSM model are:

• The BSM model is a model with a single interest rate.
• This interest rate is the risk-free rate r.
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The extensions to BSM model are concerned with amendments to these interest rate
assumptions. The extended BSM model assumes multiple interest rates.

Other assumptions of the BSM model include:

• Stock prices follow geometric Brownian motion.
• Short selling is permitted.
• There are no taxes and transaction costs.
• No dividends on the underlying (although the BSM model can be adjusted to
include dividends).

• No arbitrage opportunities exist.
• Continous trading of securities.

Given the described assumptions, we present theBSMpartial differential equation
(PDE). Let T denote the fixed time of maturity of a derivative contract and σ as the
volatility of the underlying security, in this case a stock price. The Black-Scholes-
Merton PDE is given by

∂f

∂t
+ rS

∂f

∂S
+ 1

2
σ 2S2 ∂2f

∂S2 = rf

where f , is the price of a derivative which is contingent on the stock price St and
time t ∈ [0, T ] . For a European call and put option with strike K , the BSM PDE has
solution

Vt = α
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S0N (αd1) − Ke−r(T−t)N (αd2)
)
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K

)

+ (

r + 1
2σ

2
)

(T − t)

σ
√

(T − t)

and
d2 = d1 − σ

√
T − t,

where α = 1 for a call option and α = −1 for a put option. N (x) is the cumulative
distribution function of the standard normal distribution.

In practice a continuous-timemodel, such as the BSMmodel, is difficult to imple-
ment and is usually discretised to facilitate implementation. The Cox, Ross and
Rubinstein (CRR) discrete-time model is a discretisation of the BSMmodel. Details
of the CRR model can be found in Cox et al. [10] or Steland [30].

6.1 The BSM Model Which Includes Collateral
and Funding Costs

Standard pricing theory excludes the intricacies of the collateralisation of the market.
The posting of collateral in a derivative trade changes the traditional way in which a
derivative is priced.
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Piterbarg [27] extends the BSM continuous-time model to include collateral in a
derivative trade and shows how the posting of collateral in a derivative trade affects
the price.

In the Piterbarg model, the price of a collateralised derivative trade is given by

risky price = risk-free price + FVA.

The risk-free price is the BSM-price of a derivative that includes no credit risk and
funding costs. This price is calculated by discounting all expected cash flows at the
risk-free rate. The risky price is defined as the risk-free price plus any adjustments.
Piterbag’s paper won him the Quant of the Year Award in 2011.

It is possible to extend the CRR model to include dividends and collateral. More-
over, by using ideas along the lines of those in Hunzinger and Labuschagne [23],
it can be shown that discretising Piterbarg’s model (which is the BSM model that
includes collateral and dividends) coincides with the aforementioned model. This is
achieved by showing that Piterbarg’s PDE, which represents the value of a collater-
alised derivative trade, can be represented as an expectation via the Feynman-Kac
theorem.

6.2 The BSM Model Which Includes CVA, DVA and FCA

Currently, there are three unified frameworks which incorporate funding costs, col-
lateral and credit risk into a derivative trade. These frameworks are proposed by

1. Piterbarg (see [27]), Burgard and Kjaer (see [6, 7]).
2. Brigo et al. (see [5]).
3. Crépey (see [11, 12]).

We take a closer look at the Burgard and Kjaer framework. The model proposed
by Burgard and Kjaer [6] gives the price of a derivative trade by

risky price = risk-free price + CVA + DVA + FCA,

where the CVA and DVA terms have opposite signs. The risky price is given by the
risk-free price plus the adjustments for CVA, DVA and FCA.

It is possible to extend the CRRmodel to include CVA, DVA and FCA.Moreover,
it can be shown that discretising the Burgard and Kjaer model (which is the BSM
model that includes CVA, DVA and FCA) coincides with the aforementioned model.
This is achieved by showing that Burgard and Kjaer’s PDE can be represented as an
expectation via the Feynman-Kac theorem. The details may be found in Hunzinger
and Labuschagne [23].

Burgard and Kjaer [7] extends these two models discussed in Sects. 4 and 5 to
create a general framework to price a credit risky derivative that is collateralised. This
general framework, which is in the form of a PDE, reduces to the models presented
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in the previous two subsections if certain assumptions are made, the details of which
are contained in Burgard and Kjaer [7].

7 Conclusion

The adaptions of theBSMmodel required post the 2008 credit crisis are hotly debated
amongst academics and practitioners. There is an intense controversy in the financial
quantitative industry regarding inclusion of FVAwhen pricing financial instruments,
as it could be argued that inclusion of FVA violates the law of one price.

The 2008 crisis has had a massive effect on derivative pricing and has plagued
our markets with uncertainty. There is no general consensus about how to price a
derivative trade after the 2008 credit crisis. This uncertainty has presented regulators,
practitioners and academics with new challenges around financial markets. If all the
market participants share ideas, then these challenges could possibly be overcome.

The debate continuous.

Acknowledgments The authors would like to thank Carlous Reinecke for the helpful discussions.
The second named author was supported by the NRF (Grant Number 87502).

References

1. Alexander, C.: QuantitativeMethods in Finance,Market Risk Analysis, vol. 1.Wiley, Hoboken
(2008)

2. Bergman, Y.Z.: Option pricing with differential interest rates. Rev. Financ. Stud. 8, 475–500
(1995)

3. Black, F., Scholes, M.: The pricing of options and corporate liabilities. J. Polit. Econ. 81,
637–654 (1973)

4. Brigo, D., Capponi, A.: Bilateral counterparty risk valuation with stochastic dynamical models
and application to CDSs, SSRN working paper (2008)

5. Brigo,D., Perini,D., Pallavicini,A.: Funding, collateral and hedging: uncovering themechanics
and the subtleties of funding valuation adjustments, SSRN working paper (2011)

6. Burgard, C., Kjaer, M.: Partial differential equation representations of derivatives with bilateral
counterparty risk and funding costs. J. Credit Risk 7, 75–93 (2011)

7. Burgard, C., Kjaer, M.: Generalised CVA with funding and collateral via semi-replication,
SSRN working paper (2012)

8. Carver, L.: Show me the money: banks explore DVA hedging. Risk Mag. 25, 35–37 (2012)
9. Castagna,A.: Yes, FVA is a cost for derivatives desks, SSRNworking paper, IASON Ltd (2012)
10. Cox, J., Ross, S., Rubinstein, M.: Option pricing: a simplified approach. J. Financ. Econ. 7,

229–263 (1979)
11. Crépey, S.: Bilateral counterparty risk under funding constraints part I: pricing, forthcoming

in Mathematical Finance (2012)
12. Crépey, S.: Bilateral counterparty risk under funding constraints Part II: CVA, Forthcoming in

Mathematical Finance (2012)
13. Duffie, D., Huang, M.: Swap rates and credit quality. J. Financ. 51, 921–950 (1996)
14. Gregory, J.: Being two faced over counterparty credit risk. Risk 20, 86–90 (2009)



52 C.B. Hunzinger and C.C.A. Labuschagne

15. Gregory, J.: Counterparty Credit Risk and Credit Value Adjustment—A Continuing Challenge
for Global Financial Markets, 2nd edn. Wiley, London (2012)

16. Gregory, J., German, I.: Closing out DVA? SSRN working paper, Barclays, London (2012)
17. Harrison,M., Pliska, S.:Martingales and stochastic integrals in the theory of continuous trading,

stochastic processes and their applications. Stoch. Process. Appl. 11, 215–260 (1981)
18. Hull, J.: Options, Futures, and Other Derivatives, Harlow 8th edn. Pearson Education Limited,

Upper Saddle River (2012)
19. Hull, J., White, A.: The FVA debate. Risk (25th anniversary edition) (2012)
20. Hull, J., White, A.: The FVA debate continued. Risk 10 (2012)
21. Hull, J., White, A.: LIBOR versus OIS: the derivatives discounting dilemma. J. Invest. Manag.

11, 14–27 (2013)
22. Hull, J., White, A.: Collateral and credit issues in derivatives pricing, SSRN working paper

(2013)
23. Hunzinger, C., Labuschagne, C.C.A.: The Cox, Ross and Rubinstein tree model which includes

counterparty credit risk and funding costs. N. Am. J. Econ. Financ. 29, 200–217 (2014)
24. Jarrow, R., Turnbull, S.: Pricing options on financial securities subject to default risk. J. Financ.

1, 53–86 (1995)
25. Laughton, S., Vaisbrot, A.: In defense of FVA—a response to Hull and White. Risk 25, 18–24

(2012)
26. Merton, R.: Theory of rational option pricing. Bell. J. Econ. Manag. Sci. 4, 141–183 (1973)
27. Piterbarg, V.: Funding beyond discounting: collateral agreements and derivatives pricing, Risk

Mag. 97–102 (2010)
28. Rubinstein, M., Cox, J.C.: Options Market, 1st edn. Prentice-Hall, New York (1985)
29. Sorensen, E., Bollier, T.: Pricing swap default risk. Financ. Anal. J. 50, 23–33 (1994)
30. Steland, A.: Financial Statistics andMathematical FinanceMethods,Models and Applications.

Wiley, Singapore (2012)



What if We Only Have Approximate
Stochastic Dominance?

Vladik Kreinovich, Hung T. Nguyen and Songsak Sriboonchitta

Abstract In many practical situations, we need to select one of the two alternatives,
and we do not know the exact form of the user’s utility function—e.g., we only
know that it is increasing. In this case, stochastic dominance result says that if the
cumulative distribution function (cdf) corresponding to the first alternative is always
smaller than or equal to the cdf corresponding to the second alternative, then the first
alternative is better. This criterion works well in many practical situations, but often,
we have situations when for most points, the first cdf is smaller but at some points,
the first cdf is larger. In this paper, we show that in such situations of approximate sto-
chastic dominance, we can also conclude that the first alternative is better—provided
that the set of points x at which the first cdf is larger is sufficiently small.

1 Stochastic Dominance: Reminder and Formulation
of the Problem

In finance, we need to make decisions under uncertainty. In financial decision
making, we need to select one of the possible decisions: e.g., whether we sell or buy
a given financial instrument (share, option, etc.). Ideally, we should select a decision
which leaves us with the largest monetary value x . However, in practice, we cannot
predict exactly the monetary consequences of each action: because of the changing
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external circumstances, in similar situations the same decision can lead to gains and
to losses. Thus, we need to make a decision in a situation when we do not know the
exact consequences of each action.

In finance, we usually have probabilistic uncertainty. Numerous financial trans-
actions are occurring everymoment. For the past transactions, we know themonetary
consequences of different decisions. By analyzing these past transactions, we can
estimate, for each decision, the frequencies withwhich this decision leads to different
monetary outcomes x . When the sample size is large—and for financial transactions
it is large—the corresponding frequencies become very close to the actual probabil-
ities. Thus, in fact, we can estimate the probabilities of different values x .

Comment. Strictly speaking, this is not always true: wemay have new circumstances,
we can have a new financial instrument for which we do not have many records
of its use—but in most situations, knowledge of the probabilities is a reasonable
assumption.

How to describe the corresponding probabilities. As usual, the corresponding
probabilities can be described either by the probability density function f (x) or by

the cumulative distribution function F(t)
def= Prob(x ≤ t).

If we know the probability density function f (x), then we can reconstruct the
cumulative distribution function as F(t) = ∫ t

−∞ f (x) dx . Vice versa, if we know
the cumulative distribution function F(t), we can reconstruct the probability density
function as its derivative f (x) = F ′(x).

How to make decisions under probabilistic uncertainty: a theoretical recom-
mendation. Let us assume that we have several possible decisions whose outcomes
are characterized by the probability density functions f1(x), f2(x), . . . According
to the traditional decision making theory (see, e.g., [3, 5–7]), the decisions of a
rational person can be characterized by a function u(x) called utility function such
that this person always selects a decision with the largest value of expected utility
∫

fi (x) · u(x) dx .
A decision corresponding to the probability distribution function f1(x) is prefer-

able to the decision corresponding to the probability distribution function f2(x) if

∫

f1(x) · u(x) dx >

∫

f2(x) · u(x) dx,

i.e., equivalently, if

∫

Δ f (x) · u(x) dx > 0,

where we denoted Δ f (x)
def= f1(x) − f2(x).

Comment. It is usually assumed that small changes in x lead to small changes in
utility, i.e., in formal terms, that the function u(x) is differentiable.
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From a theoretical recommendation to practical decision. Theoretically, we
can determine the utility function of the decision maker. However, since such a
determination is very time-consuming, it is rarely done in real financial situations.
As a result, in practice, we only have a partial information about the utility function.

One thing we know for sure if that the larger the monetary gain x , the better the
resulting situation; in other words, we know that the utility u(x) grows with x , i.e.,
the utility function u(x) is increasing.

Often, this is the only information that we have about the utility function. How
can we make a decision in such a situation?

How to make decisions when we only know that utility function is increasing:
analysis of the problem. When is the integral

∫

Δ f (x) · u(x) dx positive?
To answer this question, let us first note that while theoretically, we have gains

and losses which can be arbitrarily large, in reality, both gains and losses are bounded
by some value T . In other words, fi (x) = 0 for x ≤ −T and for x ≥ T and thus,

Fi (−T ) = Probi (x ≤ −T ) = 0

and
Fi (T ) = Probi (x ≤ T ) = 1.

In this case,
∫

Δ f (x) · u(x) dx =
T

∫

−T

Δ f (x) · u(x) dx .

Let us now take into account that since Δ f (x) = f1(x) − f2(x), f1(x) = F ′
1(x),

and f2(x) = F ′
2(x), we can conclude that Δ f (x) = ΔF ′(x), where

ΔF(x)
def= F1(x) − F2(x).

We can therefore apply integration by parts

u
∫

�

a′(x) · b(x) dx = a(x) · b(x)|u� −
u

∫

�

a(x) · b′(x) dx,

with a(x) = Δ f (x) and b(x) = u(x), to the above integral. As a result, we get the
formula

T
∫

−T

Δ f (x) · u(x) dx = ΔF(x) · u(x)|T−T −
∫

ΔF(x) · u′(x) dx .

Since F1(−T ) = F2(−T ) = 0, we have



56 V. Kreinovich et al.

ΔF(−T ) = F1(−T ) − F2(−T ) = 0.

Similarly, from F1(T ) = F2(T ) = 1, we conclude that

ΔF(T ) = F1(T ) − F2(T ) = 0.

Thus, the first term in the above expression for integration by parts is equal to 0, and
we have

T
∫

−T

Δ f (x) · u(x) dx = −
∫

ΔF(x) · u′(x) dx .

We know that the utility function is increasing, so u′(x) ≥ 0 for all x . Thus,
if ΔF(x) ≤ 0 for all x—i.e., if F1(x) ≤ F2(x) for all x—then the difference
∫

Δ f (x) · u(x) dx is always non-negative and thus, the decision corresponding to
the probability distribution function f1(x) is preferable to the decision corresponding
to the probability distribution function f2(x).

This is the main idea behind stochastic dominance (see, e.g., [4, 8]):

Stochastic dominance: summary. If F1(x) ≤ F2(x) for all x and the utility func-
tion u(x) is increasing, then the decision corresponding to the probability distribution
function f1(x) is preferable to the decision corresponding to the probability distrib-
ution function f2(x).

Comments.

• The condition F1(x) ≤ F2(x) for all x is not only sufficient to conclude that the
first alternative is better, it is also necessary. Indeed, if F1(x0) > F2(x0) for some
x0, then, since both cumulative distribution functions Fi (x) are differentiable and
thus, continuous, there exists an ε > 0 such that F1(x) > F2(x) for all x from the
interval (x0 − ε, x0 + ε).
We can then take a utility function which:

– is equal to 0 for x ≤ x0 − ε,
– is equal to 1 for x ≥ x0 + ε, and
– is, e.g., linear for x between x0 − ε and x0 + ε.

For this utility function, we have
∫

F1(x) · u′(x) dx >

∫

F2(x) · u′(x) dx,

and thus,
∫

f1(x) · u(x) dx = −
∫

F1(x) · u′(x) dx < −
∫

F2(x) · u′(x) dx

=
∫

f2(x) · u(x) dx,

so the first alternative is worse.
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• Sometimes,we have additional information about the utility function. For example,
the same amount of additional money h is more valuable for a poor person than
for the rich person. This can be interpreted as saying that for every value x < y
and, the increase in utility u(x + h)− u(x) is larger than (or equal to) the increase
u(y + h) − u(y). If we take the resulting inequality

u(x + h) − u(x) ≥ u(y + h) − u(y),

divide both sides by h, and tends h to 0, we conclude that u′(x) ≥ u′(y) when
x < y. In other words, it is reasonable to conclude that the derivative u′(x) of
the utility function is decreasing with x—and thus, that its second derivative is
negative.
If this property is satisfied, then we can perform one more integration by parts and
get a more powerful criterion for decision making—for situations when we do not
know the exact utility function.

What if the stochastic dominance condition is satisfied “almost always”: formu-
lation of the problem. Let us return to the simple situation when we only know that
utility is increasing, i.e., that u′(x) ≥ 0. In this case, as we have mentioned, if we
know that F1(x) ≤ F2(x) for all x , then the first alternative is better. In many cases,
we can use this criterion and make a decision.

However, often, in practice, the inequality F1(x) ≤ F2(x) holds for “almost
all” values x—i.e., it is satisfied for most values x except for the values x from
some small interval. Unfortunately, in this case, as we have shown, the traditional
stochastic dominance approach does now allow tomake any conclusion—even when
the interval is really small. It would be nice to be able to make decisions even if we
have approximate stochastic dominance.

What we plan to do in this paper. In this paper, we show that, under reasonable
assumptions, we can make definite decisions even under approximate stochastic
dominance—provided, of course, that the deviations from stochastic dominance are
sufficiently small.

Comment. A similar—but somewhat different—problem is analyzed in [1], where it
is shown that under certain assumptions, approximate stochastic dominance implies
that the first alternative is not much worse than the second one—i.e., if we select the
first alternative instead of the second one, we may experience losses, but these losses
are bounded, and the smaller the size of the area where F1(x) is larger than F2(x),
the smaller this bound.

2 How to Make Decisions Under Approximate Stochastic
Dominance: Analysis of the Problem

Additional reasonable assumptions about the utility function u(x). In the previ-
ous text, we used the fact that the utility function u(x) increases with x , i.e., that its
derivative u′(x) is non-negative. Theoretically, we are thus allowing situations when
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this derivative is extremely small—e.g., equal to 10−40—or, vice versa, extremely
large—e.g., equal to 1040.

From the economical viewpoint, however, such too small or too large numbers
make no sense. If the derivative is too small, this means that for all practical purposes,
the person does not care whether he or she gets more money—which may be true
for a monk leading a spiritual life, but not for agents who look for profit. Similarly,
if the derivative u′(x) is, for some x , too large, this means that, in effect, the utility
function is discontinuous at this x , i.e., that adding a very small amount of money
leads to a drastic increase in utility—and this is usually not the case.

These examples show that not only the derivative u′(x) should be non-negative, it
cannot be too small and it cannot be too large. In other words, there should be some
values 0 < s < L for which

s ≤ u′(x) ≤ L

for all x .

This additional assumption helps us deal with situation of approximate stochas-
tic dominance. Let us show that the above additional assumption 0 < s ≤ u′(x) ≤ L
enables us to deal with approximate stochastic dominance. Indeed, we want to make
sure that ∫

ΔF(x) · u′(x) dx ≤ 0.

In the case of stochastic dominance, we have ΔF(x) ≤ 0 for all x , but we consider
the case of approximate stochastic dominance, when ΔF(x) > 0 for some values x .
To deal with this situation, let us represent the desired integral as the sum of the two
component integrals:

• an integral over all the values x for which ΔF(x) ≤ 0, and
• an integral over all the values x for which ΔF(x) > 0:

∫

ΔF(x) · u′(x) dx =
∫

x :ΔF(x)≤0

ΔF(x) · u′(x) dx +
∫

x :ΔF(x)>0

ΔF(x) · u′(x) dx .

We want to prove that the sum of these two component integrals is bounded, from
above, by 0. To prove this, let us find the upper bound for both integrals.

For the values x for which ΔF(x) ≤ 0, the largest possible value of the product
ΔF(x) · u′(x) is attained when the derivative u′(x) is the smallest possible—i.e.,
when this derivative is equal to s. Thus, we conclude that

ΔF(x) · u′(x) ≤ s · ΔF(x).

Therefore,

∫

x :ΔF(x)≤0

ΔF(x) · u′(x) dx ≤ s ·
∫

x :ΔF(x)≤0

ΔF(x) dx .
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Since ΔF(x) ≤ 0, we have ΔF(x) = −|ΔF(x)| and thus,

∫

x :ΔF(x)≤0

ΔF(x) · u′(x) dx ≤ −s ·
∫

x :ΔF(x)≤0

|ΔF(x)| dx .

For the values x for which ΔF(x) > 0, the largest possible value of the product
ΔF(x) ·u′(x) is attained when the derivative u′(x) is the largest possible—i.e., when
this derivative is equal to L . Thus, we conclude that

ΔF(x) · u′(x) ≤ L · ΔF(x).

Therefore,

∫

x :ΔF(x)>0

ΔF(x) · u′(x) dx ≤ L ·
∫

x :ΔF(x)>0

ΔF(x) dx .

By combining the bounds on the two component integrals, we conclude that

∫

ΔF(x) · u′(x) dx ≤ −s ·
∫

x :ΔF(x)≤0

|ΔF(x)| dx + L ·
∫

x :ΔF(x)>0

ΔF(x) dx .

The integral
∫

ΔF(x) · u′(x) dx is non-positive if the right-hand side bound is non-
positive, i.e., if

−s ·
∫

x :ΔF(x)≤0

|ΔF(x)| dx + L ·
∫

x :ΔF(x)>0

ΔF(x) dx ≤ 0,

i.e., equivalently, if

L ·
∫

x :ΔF(x)>0

ΔF(x) dx ≤ s ·
∫

x :ΔF(x)≤0

|ΔF(x)| dx,

or
∫

x :ΔF(x)>0

ΔF(x) dx ≤ s

L
·

∫

x :ΔF(x)≤0

|ΔF(x)| dx .

This condition is satisfied when the set of all the values x for which ΔF(x) > 0 is

small—in this case the integral over this set is also small and thus, smaller than the
right-hand side.

Let us describe the resulting criterion in precise terms.
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3 How to Make Decisions Under Approximate Stochastic
Dominance: Main Result

Formulation of the problem. We have two alternatives, characterized by the cumu-
lative distribution functions F1(x) and F2(x). We need to decide which of these two
alternatives is better.

What we know about the utility function u(x). We know that the utility function
u(x) describing the agent’s attitude to different monetary values x is non-decreasing:
u′(x) ≥ 0. Moreover, we assume that we know two positive numbers s < L such
that for every x , we have

s ≤ u′(x) ≤ L .

Stochastic dominance: reminder. If F1(x) ≤ F2(x) for all x , i.e., if ΔF(x) ≤ 0
for all x (where we denoted ΔF(x) = F1(x) − F2(x)), then the first alternative is
better.

New criterion for the case of approximate stochastic dominance. If ΔF(x) > 0
for some values x , but the set of all such x is small, in the sense that

∫

x :ΔF(x)>0

ΔF(x) dx ≤ s

L
·

∫

x :ΔF(x)≤0

|ΔF(x)| dx,

then the first alternative is still better.

Comments.

• It is interesting that a similar expression appears in another context: namely, in
the study of different notions of transitivity of stochastic relations; see, e.g., [2].
Indeed, adding

∫

x :ΔF(x)≤0 |ΔF(x)| dx to both sides of the above inequality, and
taking into account that the resulting integral in the left-hand side is simply an
integral of |ΔF(x)| = |F2(x) − F1(x)| over all possible x , we conclude that

∫

|F2(x) − F1(x)| dx ≤
(

1 + s

L

)

·
∫

x :F2(x)−F1(x)>0

(F2(x) − F1(x)) dx .

The right-hand side of the new inequality can be described as the interval, over all
possible x , of the function (F2(x) − F1(x))+, where, as usual, for any function

f (x), its positive part f+(x) is defined as f+(x)
def= max( f (x), 0). Thus, this

inequality can be represented as

∫

|F2(x) − F1(x)| dx ≤
(

1 + s

L

)

·
∫

(F2(x) − F1(x))+ dx,
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or, equivalently, as
∫

(F2(x) − F1(x))+ dx
∫ |F2(x) − F1(x)| dx

≥ 1

1 + s

L

.

The left-hand side of this inequality is known as the Proportional Expected Dif-
ference, it is used in several results about transitivity [2].

• The same idea can extend the stochastic dominance criterion corresponding to
u′′(x) ≤ 0 to the case when this criterion is satisfied for “almost all” values x .
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From Mean and Median Income
to the Most Adequate Way of Taking
Inequality into Account

Vladik Kreinovich, Hung T. Nguyen and Rujira Ouncharoen

Abstract How can we compare the incomes of two different countries or regions?
At first glance, it is sufficient to compare the mean incomes, but this is known to be
not a very adequate comparison: according to this criterion, a very poor country with
a few super-rich people may appear to be in good economic shape. A more adequate
description of economy is the median income. However, the median is also not
always fully adequate: e.g., raising the income of very poor people clearly improves
the overall economy but does not change the median. In this paper, we use known
techniques from group decision making—namely, Nash’s bargaining solution—to
come up with the most adequate measure of “average” income: geometric mean. On
several examples, we illustrate how this measure works.

1 Mean Income, Median Income, What Next?

Mean income and its limitations. At first glance, if we want to compare the
economies of two countries or two regions, all we need to do is divide, for each
country, the total income by the number of people and compare the resulting values
of mean income. If the mean income in country A is larger than the mean income
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in country B, this means that the economy of country A is in better shape than the
economy of country B.

In many cases, this conclusion is indeed justified, but not always. The fact that
the mean has limitations can be illustrated by a known joke: “What happens when
Bill Gates walks into a bar? On average, everyone becomes a millionaire.” This is a
joke, but this joke reflects a serious problem: if a billionaire moves into a small and
very poor country, the mean income in this country would increase but the country
would remain very poor, contrary to the increase in the mean.

In otherwords, when comparing different economies, we need to take into account
not only the total income, but also the degree of inequality in income distribution.

Comment. In technical terms, we would like the proper measure of “average” income
to not change much if we add of an outlier like Bill Gates. In statistics, the corre-
sponding property of statistical estimates is known as robustness; see, e.g., [9, 29].
In these terms, the main problem of the mean is that it is not robust.

Medium income: a more adequate measure. To avoid the above problem, econo-
mists proposed several alternatives to the mean income. The most widely used alter-
native is the median income, i.e., the income level for which the income of exactly
half of the population is above this level—and the income of the remaining half is
below this level. For example, this is how the Organization for Economic Coopera-
tion andDevelopment (OECD) compares economies of different countries: by listing
both their mean incomes and their median incomes; see, e.g., [23].

Median resolves some of the problems related to mean: for example, when Bill
Gates walks into a bar, the mean income of people in the bar changes drastically, but
the median does not change much.

Comment. The main problem with the mean, as we have mentioned, is that the mean
is not robust. From this viewpoint, median—a known robust alternatives to the mean
[9, 29]—seems a reasonable replacement of the mean.

Limitations of the median and remaining practical problem. While the median
seems to be a more adequate measure of “average” income than the mean, it is
not a perfect measure. For example, if the incomes of all the people in the poorer
half increase—but do not exceed the previous median—the median remains the
same. This is not a very adequate measure for governments that try to lift people
out of poverty. Similarly, if the income of the poorer half drastically decreases,
we should expect the adequate measure of “average” income to decrease—but the
median remains unchanged.

Comment. After we reformulated the problem with mean in terms of robustness, a
reader may be under the impression that robustness is all we seek. Alas, the above
limitation shows that the problem of finding an appropriate measure of “average”
income goes beyond robustness; namely:

• the main problem of mean is that it is not robust—it changes too much when we
would like to change it a little bit;



From Mean and Median Income to the Most Adequate … 65

• however, while the median is robust, it has another problem—it is “too robust”: it
changes too little (actually, not at all) when we would like it to change.

This example shows that we cannot solve our problem by simply reducing it to a
known statistical problem of designing robust estimates, we do need to solve the
original problem of estimating the “average” income.

How this practical problem is resolved now. At present, economists propose dif-
ferent heuristic measures of “average” income which are supposedly more adequate
than mean and median. There is no absolutely convincing arguments in favor of this
or that measure; as a result, researchers use emotional and ideological arguments;
see, e.g., [24].

What we do in this paper. In this paper, we show that under some reasonable
conditions, it is possible to find the most adequate way how to take inequality into
account when gauging the “average” income.

2 Analysis of the Problem and the Resulting Measure

The problem of gauging “average” income can be viewed as a particular case
of a problem of group decision making. For the problem of gauging “average”
income—when taken “as is”—there is no immediate solution yet. Let us show, how-
ever, that this gauging problem can be reformulated in terms of a problem for which
many good solutions have been developed—namely, the problem of group decision
making.

To explain this reformulation, let us start with the simplest possible case our main
problem: the casewhen in each of the two compared regions, there is perfect equality:
all the people in the first region have the same income x , and all the people in the
second region have the same income y. In this case clearly:

• if x > y, this means that the first region is in better economic shape, and
• if x < y, this means that the second region is in better economic shape.

What if we consider a more realistic case of inequality, when people in the first
region have, in general, different incomes x1, . . . , xn , and people in the second area
also have, in general, different incomes y1, . . . , ym? How can we then compare the
two regions?

A natural idea is to reduce this comparison to the case when all the incomes are
equal. In other words:

• first, we find the value x such that for the group of all the people from the first
region, incomes x1, . . . , xn are equivalent—in terms of group decisionmaking—to
all of them getting the same income x ;

• then, we find the value y such that for the group of all the people from the second
region, incomes y1, . . . , yn are equivalent—in terms of group decisionmaking—to
all of them getting the same income y;
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• finally, we compare the resulting values x and y: if x > y, then the first economy
is in better shape, otherwise, if x < y, the second economy is in better shape.

Comment.Ourmain idea is to reduce the econometric problem of finding an adequate
measure for “average” income” to a game-theoretic problem of cooperative group
decisionmaking. This idea is in linewith the emerging view that game theory—which
was originally invented as a general theory of group behavior—should be (and can
be) successfully applied not only to situations of conflicting competition, but also
to more general problems of economics—in particular, to problems of financial
econometrics.

From the idea to the algorithm. To transform the above idea to the algorithm, let us
recall a reasonable way to perform group decisionmaking. In group decisionmaking,
we need to order situations with different individual incomes. To be more precise,
in group decision making, we consider situations with different individual utility
values u1, . . . , un—since different people value different income levels differently;
see, e.g., [6, 14, 22, 26]. In this case, as shown by theNobelist JohnNash, under some
reasonable assumptions, the most adequate solution is to select the alternative for

which the product of the utilities
n
∏

i=1
ui is the largest possible; see, e.g., [14, 21, 26].

The utility is usually proportional to a power of the money: ui = Ci · xa
i for some

a ≈ 0.5; see, e.g., [11–13]. Substituting these utility values into Nash’s formula,

we get the product
n
∏

i=1
Ci ·

n
∏

i=1
xa

i . In these terms, to find the value x for which the

selection (x1, . . . , xn) is equivalent to x , we must find x for which

n
∏

i=1

Ci ·
n

∏

i=1

xa
i =

n
∏

i=1

Ci ·
n

∏

i=1

xa .

Dividing both sides of this equality by the constant
n
∏

i=1
Ci and extracting power a

from both sides, we conclude that
n
∏

i=1
xi =

n
∏

i=1
x = xn . Thus, the value x which

describes the income distribution (x1, . . . , xn) is equal to x = n
√

x1 · . . . · xn—the
geometric mean of the income values. So, we arrive at the following conclusion.

Resulting measure of “average” income which most adequately described “aver-
age” income: geometric mean. Suppose that we need to compare the economies
of two regions. Let us denote the incomes in the first region by x1, . . . , xn and the
incomes in the second region by y1, . . . , ym . To perform this comparison, we com-
pute the geometric averages x = n

√
x1 · · · · · xn and y = m

√
y1 · · · · · ym of the two

regions; then:

• if x > y, we conclude that the first region is in better economic shape, and
• if x < y, we conclude that the second region is in better economic shape.
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From the mathematical viewpoint, comparing geometric means x and y is
equivalent to comparing the logarithms of these means. Here,

ln(x) = ln( n
√

x1 · . . . · xn ) = ln(x1) + · · · + ln(xn)

n
.

Thus, the logarithm of the geometric mean x is equal to mean value E[ln(x)] of the
logarithm of the income—and therefore,

x = exp(E[ln(x)]) = exp

(∫

ln(x) · f (x) dx

)

.

So, to compare the economies in two different regions, we need to compare the
mean values E[ln(x)] of the logarithm of the income x in these regions.

Relation between the new measure and the mean income: an observation. It
is well known that the geometric mean is always smaller than or equal than the
arithmetic mean, and they are equal if and only if all the numbers are equal; see, e.g.,
[1, 32].

Thus, the new measure of “average” income is always smaller than or equal to
the mean income, and it is equal to the mean income if and only if all the individual
incomes are the same—i.e., if and only if we have perfect equality.

3 First Example of Using the New Measure of “Average”
Income: Case of Low Inequality

Case of low inequality: informal description. Let us first consider the case when
inequality is low, i.e., whenmost people have a reasonable income, and the proportion
of very poor and very rich people is not that large.

Towards a formal description. The fact that most incomes are close to one another
means that most of these incomes are close to the mean income μ. In mathematical
statistics, deviations from the mean are usually described by the standard deviation
σ ; see, e.g., [30]. In these terms, low inequality means that the standard deviation σ

is small. Let us analyze what happens in this case.

Case of low inequality: analysis of the problem. As we have mentioned, the new
inequalitymeasure has the form x = exp(E[ln(x)]). Thus, to compare the economies
in two different regions, we need to compare the mean values E[ln(x)] of the loga-
rithm of the income x in these regions.

Since the deviations from the mean x − μ are relatively small, we have can
substitute x = μ + (x − μ) into the formula for E[ln(x)] and ignore higher order
terms in the expansion in x − μ. According to the Taylor series for the logarithm,
we have:
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ln(x) = ln(μ + (x − μ)) = ln(μ) + 1

μ
· (x − μ) − 1

2μ2 · (x − μ)2 + · · ·

By taking the mean value of both sides and taking into account that E[x − μ] =
μ − μ = 0 and that E[(x − μ)2] = σ 2, we conclude that

E[ln(x)] = ln(μ) − 1

2μ2 · σ 2 + · · ·

Since we assumed that the deviations of x from μ are small, we can preserve only
the first terms which shows the dependence on these deviations and ignore higher
order terms in this expansion. As a result, we get an approximate formula

E[ln(x)] ≈ ln(μ) − σ 2

2μ2 .

Thus, for x = exp(E[ln(x)]), we get

x = exp(E[ln(x)]) ≈ exp

(

ln(μ) − σ 2

2μ2

)

= exp(ln(μ)) · exp
(

− σ 2

2μ2

)

.

The first factor is equal to μ. To estimate the second factor, we can again use the fact
that σ is small; in this case, we can expand the function exp(z) in Taylor series and
keep only the first term depending on σ :

exp

(

− σ 2

2μ2

)

= 1 − σ 2

2μ2 + · · · ≈ 1 − σ 2

2μ2 .

Substituting this expression into the above formula for x = exp(E[ln(x)]), we con-
clude that

x = μ ·
(

1 − σ 2

2μ2

)

= μ − σ 2

2μ
.

Thus, we arrive at the following conclusion.

Resulting formula. In the case of low inequality, the “average” income is equal to

x = μ − σ 2

2μ
,

where μ is the average income and σ is the standard deviation.

Analysis of this formula. The larger the inequality, the larger the standard deviation
σ , and the less preferable is the economy. The above formula provides an exact
quantitative description of this natural qualitative idea.
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Comments.

• The new measure takes inequality into account, and it avoids the ideological ideas
of weighing inequality too much: if an increase in the mean income comes at the
expense of an increase in inequality, this is OK, as long as the above combination
of means and standard deviation increases.

• This example is one of the cases which shows that the new measure is more ade-
quate than, e.g., the median. For example, if the incomes are normally distributed,
then the median simply coincides with the mean, and so, contrary to our intuitive
expectations, the increase in inequality does not worsen the median measure of
economics. In contrast, the new measure does go down when inequality increases.

4 Second Example of Using the New Measure of “Average”
Income: Case of a Heavy-Tailed Distribution

Heavy-tailed (usually, Pareto) distributions are ubiquitous in economics. In the
1960s, Benoit Mandelbrot, the author of fractal theory, empirically studied the price
fluctuations and showed [15] that large-scale fluctuations follow the Pareto power-
law distribution, with the probability density function f (x) = A ·x−α for x ≥ x0, for
some constants α ≈ 2.7 and x0. For this distribution, variance is infinite. The above
empirical result, together with similar empirical discovery of heavy-tailed laws in
other application areas, has led to the formulation of fractal theory; see, e.g., [16, 17].

Since then, similar Pareto distributions have been empirically found in other finan-
cial situations [3–5, 7, 18, 20, 25, 28, 31, 33, 34], and in many other application
areas [2, 8, 16, 19, 27].

Formulation of the problem. Let us consider the situations when the income dis-
tribution follows Pareto law, with probability density f (x) equal to 0 for x ≤ x0 and
to A · x−α for x ≥ x0.

Oncewe know x0 andα, we can determine the parameter A from the condition that
∫

f (x) dx = 1. For the above expression, this condition leads to A · x−(α−1)
0

α − 1
= 1,

hence A = (α − 1) · xα−1
0 .

For this distribution, we want to compute the mean income, the median income,
and the newly defined “average” income.

Mean income. The mean income is equal to μ = ∫

x · f (x) dx , i.e., for the Pareto
distribution, to

∞
∫

x0

A · x1−α dx = A · x2−α

2 − α

∣

∣

∣

∣

∞

x0

= A · x2−α
0

α − 2
.

Substituting the above value of A, we conclude that the mean is equal to
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μ = α − 1

α − 2
· x0.

Median income. The median income m can be determined from the condition that
∫ ∞

m f (x) dx = 1

2
. For the Pareto distribution, this means

∞
∫

m

A · x−α dx = A · m−(α−1)

α − 1
= 1

2
.

Substituting the above expression for A into this formula, we conclude that
m−(α−1)

x−(α−1)
0

= 1

2
, hence

mα−1

xα−1
0

= 2, and m = x0 · 21/(α−1).

New measure of “average” income. For the new measure of average income x , its
logarithm is equal to the expected value of ln(x):

ln(x) =
∫

ln(x) · f (x) dx =
∞

∫

x0

ln(x) · A · x−α dx .

This integral can be computed by integration by part; so, we get

ln(x) = ln(x) · A · x1−α

1 − α

∣

∣

∣

∣

∞

x0

−
∞

∫

x0

1

x
· A · x1−α

1 − α
dx

= ln(x0) · A · x−(α−1)
0

α − 1
−

∞
∫

x0

A · x−α

1 − α
dx

= ln(x0) · A · x−(α−1)
0

α − 1
− A · x−(α−1)

(1 − α)2

∣

∣

∣

∣

∞

x0

= ln(x0) · A · x−(α−1)
0

α − 1
+ A · x−(α−1)

0

(1 − α)2
.

Substituting the expression A = (α − 1) · x−(α−1)
0 into this formula, we get

ln(x) = ln(x0) + 1

α − 1
,

hence

x = exp(ln(x)) = x0 · exp
(

1

α − 1

)

.
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Comment. When α → ∞, the distribution tends to be concentrated on a single value
x0—i.e., we have the case of absolute equality. In this case, as expected, all three
characteristics—the mean, the median, and the new geometric mean—tends to the
same value x0.

5 Auxiliary Result: The New Measure of “Average”
Income May Explain the Power-Law Character
of Income Distribution

In the previous section, we analyzed how the new measure of “average” income
x = exp(

∫

ln(x) · f (x) dx) behaves in situations when the income distribution
follows a power law.

Interestingly, the power law itself can be derived based on this inequality measure.
Indeed, suppose that all we know about the income distribution is the value x and
the lower bound δ > 0 on possible incomes (this lower bound reflects the fact that
a human being needs some minimal income to survive). There are many possible
probability distributions f (x) which are consistent with this information. In such
situation, out of all such distributions, it is reasonable to select a one for which the

entropy S
def= − ∫

f (x) · ln( f (x)) dx is the largest; see, e.g., [10].
To find the distribution that maximizes the entropy S under the constraints

exp
(∫

ln(x) · f (x) dx
) = x and

∫

f (x) dx = 1, we can use the Lagrange multi-
plier technique that reduces this constraint optimization problem to the unconstrained
problem of optimizing a functional

−
∫

f (x) · ln( f (x)) dx + λ1 ·
(

exp

(∫

ln(x) · f (x) dx

)

− x

)

+ λ2 ·
(∫

f (x) dx − 1

)

,

for appropriate Lagrange multipliers λi . Differentiating this expression with respect
to f (x) and equating the derivative to 0, we conclude that

− ln( f (x)) − 1 + λ1 · C · ln(x) + λ2 = 0,

where C
def= exp(

∫

ln(x) · f (x) dx) and thus C = x . Thus,

ln( f (x)) = (λ2 − 1) + λ1 · x · ln(x).

Applying the function exp(z) to both sides of this equality, we conclude that f (x) =
A · x−α , where A = exp(λ2 − 1) and α = −λ1 · x . So, we indeed get the empirically
observed power law for income distribution.
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Belief Aggregation in Financial Markets
and the Nature of Price Fluctuations

Daniel Schoch

Abstract We present a model of financial markets, where the belief of the market,
expressed by a normal distribution over asset returns, is formed by aggregating in a
dynamically consistent way individual subjective beliefs of the market participants,
which are likewise assumed to follow normal distributions. We apply this model to
a market of traders with standard CARA preferences with the aim of identifying
an intrinsic source of price fluctuations. We find that asset prices depend on both
Gaussian parameters mean and variance of the market belief, but argue that the latter
changes slower than the former. Consequently, price fluctuations are dominated by
the covariance matrix of the market participants’ subjective beliefs about expected
asset returns.

1 Introduction

Portfolio theory, both modern and post-modern, attempts to model investor decisions
solely by the means of preferences and public information. The basis of the decision
are statistical information on the past performance of assets, generally given in the
form of two parameters, average return, and an indicator of risk. The most simple
and classical variant is the Capital Asset Pricing Model. However, it fails to explain
stock returns [4]. Results improve when the model is generalized to include time-
dependence and considers the correlation with certain prediction variables for stock
market returns [6].

All of these rational-expectation models inherit a notion of portfolio dominance
in the mean return/risk space [12, 13]. For a given risk-free return rate, the models
predict the existence of a unique dominant market portfolio among the risky assets, if
the latter form a strictly convex set. Consequently, all investors choose the same risky
portfolio, even if their preferences differ. Although this is clearly not a realistic con-
clusion, the underlying premise of the CAPM that investors have equal expectations
is hardly challenged on its own. The main line of criticism goes against the single
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factor nature of the model. But even in generalized models with multiple factors, the
diversity of investment decisions remains unexplained as long as all of these factors
stem from the same public indicators.

A different line towards understanding price formation has been outlined in the
literature on prediction markets. The asset is a 1$ binary real option on a future event.
Investors are distributed according to their subjective belief.An equilibriumcondition
for the market price can be derived [2]. However, since subjective expected utility
maximization is assumed, investors spend their whole budget on the single asset in
question and also thismodel can not account for investment diversity.Moreover, since
themodel is based on risk-neutral preferences, it is unsuitable for belief aggregation in
financialmarkets, where subjective uncertainty should play a role. It had been noticed
that, in contrast to a widespread belief [15], the aggregated probability (average
belief) can not be equated with the market price under the assumptions of this model
[10]; this only holds if certain forms of risk aversion are introduced [5, 16]. This
points towards the significance of including some representation of subjective risk
in belief aggregation.

There is a good reason that, when subjective beliefs on risk is included, belief
aggregation is indeed more suitable for the financial market than for prediction mar-
kets. Real events cause externalities, whichmake bets on a predictionmarket suitable
as insurance against those events, which influences the prices and causes deviations
from the prices they would have if they were mere objects of speculations in itself.
Thus prices are more likely to represent beliefs in stock market than in prediction
markets.

We present amodel of dynamically consistent belief aggregation for stock returns.
As a rationality constraint, we introduce dynamic consistency as a no-arbitrage con-
dition. Beliefs about mean returns and volatilities are found to be aggregated in a
unique way.

2 Belief Aggregation

Let 〈A , X〉 denote a measure space, and m be any (not necessarily probability-)
measure. Consider a set P of probability measures with the following properties:

• All p ∈ P are m-continuous (i.e., can be represented with a measurable density
by m).

• P is convex.
• P is closed under conditionalization: If p ∈ P and p (A) > 0, then pA ∈ P, where

pA denotes the conditional measure limited to the set A.
• For each x ∈ X, the Dirac measure

δx (A) = 1A (x)

for all A ∈ A can be approximated by a sequence of measures in P with respect
to the weak topology, which is induced by the convergence of expectation values
of bounded continuous functions [9].
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We call p1, . . . , pn ∈ P compatible if and only if there is an A ∈ A such that
pi(A) > 0 for all i and B ∈ A , B ⊆ A

pi (B) > 0 ⇔ p j (B) > 0

for each i, j ∈ {1, . . . , n}. A probability aggregation function (of order n) maps
each compatible n-tuple p1, . . . , pn ∈ P to a probability measure f

(

p1, . . . , pn
) ∈ P.

Definition 1 A probability aggregation function satisfies the unanimity condition
if and only if

f (p, . . . , p) = p.

It satisfies anonymity (or symmetry) if and only if for each permutation k:
{1, . . . , n} → {1, . . . , n}

f
(

p1, . . . , pn
)

= f
(

pk(1), . . . , pk(n)
)

.

Although arbitrage possibilities may exist in real markets, we assume that traders
are aware of this fact and try to avoid giving others the opportunities to write a
Dutch book on their cost due to their diverging beliefs. They have an interest in
acting as if there is a unique market belief, such that they can formulate their trading
strategy in terms of differences of their own belief relative to the market, avoiding
exposing bilateral belief differences to third parties. Moreover, they will assure that
new incoming information is being processed in a time-consistent manner ruling out
time-dependent Dutch books.

Definition 2 A probability aggregation function f is called dynamically consistent
if and only if for any event A which is pi-non-null for i = 1, . . . , n, aggregation and
conditionalization commute: if f

(

p1, . . . , pn
) = p, then

f
(

p1A, . . . , pn
A

)

= pA.

Theorem 3 Let P be the set of Borel probability measures on the real line. A prob-
ability aggregation function on P is dynamically consistent if and only if for every
compatible set of measures p1, . . . , pn ∈ P with densities ρ1, . . . , ρn, the density
ρ of the aggregated measure f

(

p1, . . . , pn
)

can be written, up to a normalization
constant, as a weighted geometrical mixture

ρ ∝ (ρ1)
α1 · · · · · (ρn)

αn , (1)

where αi ≥ 0. The aggregation function satisfies unanimity if and only if
∑n

i=1
αi = 1. If, additionally, anonymity holds, there is exactly one probability aggregation
function, which is given by the aggregated density by the geometrical average

ρ ∝ (ρ1 · · · · · ρn)
1/n . (2)
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The proof of the theorem is given in the appendix. Let us now assume that there are n
market participants considering investment in an equity. The participants commonly
believe that returns are normally distributed, but disagree on the parameters mean
and volatility of the distribution. Just as in the CAPM, investors base their invest-
ment decisions solely on mean returns and volatility, but they use both their private
subjective beliefs and the aggregated market belief to adjust their portfolio.

From Eq. (1) we obtain immediately that univariate normal distributions
p1, . . . , pn with mean μi and standard deviation σi are aggregated to a normal dis-
tribution with mean

μ̄ =
n

∑

i=1

αi · σ̄ 2

σ 2
i

· μi (3)

and standard deviation σ̄ satisfying

1

σ̄ 2 =
n

∑

i=1

αi

σ 2
i

. (4)

These could be the common knowledge necessary to circumvent the no-trade
theorem [11].
For a symmetric aggregation function, these equations reduce to

μ̄ = 1

n

n
∑

i=1

σ̄ 2

σ 2
i

· μi (5)

and
1

σ̄ 2 = 1

n

n
∑

i=1

1

σ 2
i

. (6)

Equation (3) says that the mean belief of the market about the stock’s average
return is a weighted average of the mean beliefs of the individuals. The weighting
factors

αi · σ̄ 2

σ 2
i

(7)

are positive and sum up to one according to (4). The first subfactor αi describes the
agent’s influence on the market opinion. The second factor σ̄ 2/σ 2

i can be interpreted
as the relative subjective certainty of the agent about her belief. The lower person
i’s subjective uncertainty σ 2

i is relative to the market uncertainty σ̄ 2, the greater his
contribution to the market opinion. If the subjective certainty is greater than one, the
subject is more confident in his or her belief μi on the return than the average market
participant. According to (4), the market certainty equals the weighted average of
the individual subjective certainties.



Belief Aggregation in Financial Markets and the Nature of Price Fluctuations 79

3 The Portfolio

We adopt the most simple framework commonly used for the study of information
in financial markets [7, 14]. It consists of a market with two assets, a risky one and a
riskless one.We assume trader i to be a Subjective ExpectedUtility (SEU)maximizer
exhibiting constant absolute risk aversion (CARA) utilities of the form

Ui (wi) = − exp (−ai · wi)

depending on the wealth wi earned from the portfolio. The parameter ai is the agent’s
degree of risk aversion. Each investor is holding a certain number xi of the risky asset,
which he or she believes to yield normally distributed returns ri ∼ N

(

μi, σ
2
i

)

during
the investment period, as well a certain amount mi of a risk-free asset with constant
return rf . At the end of the investment period the investor consumes the total return
of his portfolio

wi = ri · xi + rf · mi.

The initial budget equality is given by

w0i = p · xi + mi,

with p being the price of the risky asset, in terms of the riskless asset. We rewrite

wi = (

ri − rf · p
) · xi + rf · w0i.

Maximizing SEU

E [U (wi)] = − exp
{

−ai ·
(

E [wi] − ai

2
· Var [wi]

)}

we find that the investor’s demand of the risky asset xi is proportional to the perceived
expected return in excess of r ·p and inversly proportional to the perceived variances
of the returns,

xi = μi − rf · p

ai · σ 2
i

. (8)

The proportionality factor is a direct function of the degree of risk aversion. The
demand of the risky asset turns out to be independent of the initial wealth and the
demand mi of the riskless asset. We allow the demand to become negative indicating
short selling.

We now apply this result to our belief aggregation model. The average market
demand per investor amounts to



80 D. Schoch

x̄ = 1

n

n
∑

i=1

xi = 1

n

n
∑

i=1

μi

ai · σ 2
i

− rf · p · 1
n

n
∑

i=1

1

ai · σ 2
i

. (9)

Setting the agent’s opinion weight to

αi = a

n · ai
, (10)

by (3) and (4) this can be rewritten as

x̄ = μ̄ − rf · p

a · σ̄ 2 . (11)

Noting that Eqs. (8) and (11) are identical in form we conclude that a total market
of SEUmaximizers with CARA utilities and Gaussian beliefs acts as a single CARA
agent with Gaussian beliefs. This is a well-known result (see e.g. [7]). What is
new here is the insight that this market-representing agent’s belief formation as an
aggregation of the individual beliefs can be characterized by dynamic consistency.
Unanimity requires

1 =
n

∑

i=1

αi ⇒ 1

a
= 1

n

n
∑

i=1

1

ai
,

thus the market’s inverse risk aversion turns out to be the average individual inverse
risk aversion.

The ith trader’s demand can now be written as

xi = a

ai
· σ̄ 2

σ 2
i

· x̄ + 1

ai · σ 2
i

· (μi − μ̄) (12)

Observe that the only way the demand of the risky asset depends on its price is
via the average demand x̄. If μi = μ, σi = σ , and ai = a, the equation reduces
to xi = x̄. Thus, ceteris paribus, a trader exhibiting market belief and market risk
aversion demands exactly an average share.

Equation (12) can be easily interpreted. The first term represents the decider’s
choice to buy a certain amount proportional to his or her relative certainty (7) and
relative inverse risk aversion a

ai
. For simplicity, consider the case where the agent

exhibits the market risk aversion ai = a. If she has more confidence in his belief than
the market, σi < σ , then she acquires a portion greater than the average demand, oth-
erwise she demands a less than average share of the cake.The second term represents a
further redistribution of the stock according to the trader’s ’excess bullishness’μi−μ̄

and proportional to his absolute certainty 1/σ 2
i and his inverse risk aversion 1/ai.

From (3), (4) and (10) it follows that these terms sumup to zero. The traderwill buy an
additional amount of the stock if he or she believes that the equity is underestimated
by the market, μi > μ̄, and will buy less if he considers it overestimated, μi < μ̄.
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4 The Nature of Price Fluctuations

In tradition rational expectation models, price varies due to external random sources
or demand fluctuations [7, 8]. However useful external random sources are for the
study of information, they do not provide any explanation on the nature of price
fluctuations. Prices vary according to the changing decisions of the market partici-
pants, and any external causes should be mediated through the decider’s preferences
and beliefs. To gain insight into other potential sources of price fluctuations, we
rewrite Eq. (11) to obtain the price of the risky asset,

p = 1

rf
·
(

μ̄ − a · σ̄ 2 · x̄
)

. (13)

The risk-free interest rate rf and the taste of the investors change only very slowly, and
so does the aggregated market risk aversion a, which is a function of the individual
risk aversions a1, . . . , an only. Thus for moderate investment horizonts, rf and a
could be regarded constant.

The aggregated average demand x̄ can change only if there is either some elasticity
in supply or short selling is allowed. If supply of the risky asset is infinitely inelastic,
and short selling is excluded, thenmarket clearance assures that the aggregated supply
is constant. This assumption is, for example, used in the Grossman-Stiglitz model
on informational inefficiency, where an external source of randomness is directly
attached to the returns [7]. But then, in equilibrium, also demand must be constant.
We conclude that fluctuations of x̄ can in general account for price volatility only as
far as it constitutes random deviations from the equilibrium price.

This leaves as potential explananda of volatility only the characteristics of the
aggregated market belief, which is given by the three equations

μ̄ =
n

∑

i=1

λi · μi, (14)

λi = 1

n
· a

ai
· σ̄ 2

σ 2
i

, (15)

n
∑

i=1

λi = 1. (16)

There are three reasons why the fluctuations of μ̄ can be expected to be more
influencial than those of σ̄ 2. First, since prices are positive, the first term in (13) must
dominate the second. Second, it is psychologically feasible that agents adapt beliefs
about future expected returns faster than beliefs about future risks. Beliefs on risks
depend on historical volatilities, which need longer time periods to observe than
prices themselves. Since the subjective mean returnsμ1, . . . , μn enter only equation
(14), but not Eqs. (16) and (15), fluctuations of μ̄ should be higher than those of
σ̄ 2. Third, changes in beliefs on risks are more likely to follow the market, since
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the professional traders have a professional risk management system behind them,
while noise traiders, ignorant of historical volatilities, have no reason to change their
initial risk assessment. Thus, the dominating term in the volatility of the asset price
(13) is the first summand μ̄.

As a first approximation, we can assume that changes of the subjective risks are
small and highly correlated, thus λi is nearly constant. We then can write

Var (p) = 1

r2f
λQλ, (17)

where Qij = Cov
(

μi, μj
)

is the covariance matrix of the individual expected returns
and λ is the vector of weights given by (15).

There are two interesting limited cases. If traders form their beliefs independently,
Q reduces to a diagonal matrix, and the standard deviation (volatility) of the price
decreases with 1/

√
n with the numbers of traders. A large market of independent

noise traders therefore tends to alleviate price fluctuations. The other interesting
case is that of perfect correlation due to herding behaviour. The standard deviation
of the price turns out a weighted average of the standard deviations of the individual
expected returns independent of n. Herding behaviour turns out to be necessary to
propagate individual belief changes to market price volatility.

The dominating influence on stock price volatility, however, is its inverse depen-
dency on the risk-free interest rate. Such a negative relation between low-interest
policy and high implied volatility has been established in a recent study [3]. The
authors found a “strong co-movement between the VIX, the stock market option-
based implied volatility, and monetary policy.” Risk aversion decreases with a lax
monetary policy.

Appendix: Proof of the Main Theorem

Proof We say that x, y ∈ X are separable if and only if there is an A ∈ A with
x ∈ A and y /∈ A. Clearly, x and y are separable if and only if δx = δy on A . Let
x, y, z, w ∈ X be pairwise separable and consider the probability measures

pi = ai · δx + bi · δy + ci · δz + di · δw, i = 1, . . . , n.

for ai, bi, ci, di ∈ [0, 1] with ai + bi + ci + di = 1. Since x, y, and z are pairwise
separable and A is closed under intersection, there are pairwise disjoint events
Ex � x, Ey � y, and Ez � z. Let A = Ex ∪ Ey and B = Ex ∪ Ez, then pi (A) = ri,

pi (B) = qi. The conditional measures are

pi
A = qi · δx +

(

1 − qi
)

· δy,

pi
B = ri · δx +

(

1 − ri
)

· δz.
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It is easy to see that A and B are independent, pi (A ∩ B) = pi (A) · pi (B), if and
only if di = aici

bi
.

Since by assumption, P is convex and each Dirac measure can be weakly approx-
imated by a sequence of measures in P, we can extend f uniquely to convex
combinations of Dirac measures. Applying dynamic consistency we obtain

f
(

p1, . . . , pn
)

= a · δx + b · δy + c · δz + d · δw

with a, b, c, d ∈ [0, 1] with a + b + c + d = 1. There exists a function ϕ : [0, 1]n →
[0, 1] with

ϕ

(

a1
b1

, . . . ,
an

bn

)

= a

b

for all a1, . . . , an, b1, . . . , bn with ai ≤ bi and 1 ≥ bi > 0 and

a = ϕ (a1, . . . , an) ,

b = ϕ (b1, . . . , bn) .

This implies

ϕ

(

c1
b1

, . . . ,
cn

bn

)

= c

b
,

ϕ

(

a1
c1

, . . . ,
an

cn

)

= a

c
,

and thus

ϕ

(

a1
b1

, . . . ,
an

bn

)

= ϕ

(

a1
c1

, . . . ,
an

cn

)

· ϕ

(

c1
b1

, . . . ,
cn

bn

)

.

In other words, for any x1, . . . , xn ∈ [0, 1] and y1, . . . , yn ∈ (0, 1] we find

ϕ (x1 · y1, . . . , xn · yn) = ϕ (x1, . . . , xn) · ϕ (y1, . . . , yn) .

Thus there exist real numbers α1, . . . , αn such that

ϕ (x1, . . . , xn) = xα1
1 · · · · · xαn

n .

For the probabilities we therefore obtain

a = ϕ (a1, . . . , an) = aα1
1 · · · · · aαn

n .

Since probabilities are bounded by one, the αi must be non-negative. This proves
that (1) holds for the densities.
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Unamity holds if and only if a = ϕ (a, . . . , a) if and only if
∑n

i=1 αi = 1.
Anonymity hold if and only if ϕ is symmetric with respect to permutations of the
arguments, which holds if and only if all exponents are equal (see [1]).
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The Dynamics of Hedge Fund Performance

Serge Darolles, Christian Gouriéroux and Jérome Teiletche

Abstract The ratings of fundmanagers based on past performances of the funds and
the rating dynamics are crucial information for investors. This paper proposes a sto-
chastic migration model to investigate the dynamics of performance-based ratings of
funds, for a given risk-adjusted measure of performance. We distinguish the absolute
and relative ratings and explain how to identify their idiosyncratic and systematically
persistent (resp. amplifying cycles) components. The methodology is illustrated by
the analysis of hedge fund returns extracted from the TASS database for the period
1994–2008.

1 Introduction

The journals for investors write lead articles or even make their cover page on the
ratings of funds. These ratings are generally based on (quantitative) rankings of fund
managers based on past performances of the funds. These rankings and their dynam-
ics are used to define the management fees of fund managers, by introducing money
incentives based on the evolution of their performances, such as the high water mark
scheme [see e.g. [1, 5]]. They are also used by the fund managers to attract new
clients and increase the net asset value of the fund, i.e., is the size of the portfolio to
be managed. They are finally used by the investors to construct more robust portfolio
management, such as positional portfolio management [see e.g. [14]].
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Our paper proposes a stochastic migration model to investigate the dynamics of
performance-based rankings of funds, for a given risk-adjusted measure of perfor-
mance. We distinguish the absolute and relative ranking and explain how to identify
the idiosyncratic and systematically persistent or amplifying cycles (i.e., procyclical)
components. The methodology is illustrated by the analysis of hedge fund returns
extracted from the TASS database for the period 1994–2008.

The outline of the paper is as follows. Section2 introduces a general framework
for analyzing the joint dynamics of performances of a set of funds. This analysis is
based on rankings derived from a quantitative performancemeasure. The ranking can
be absolute, when the performance level is taken into account, or relative when only
the rank of the performance matters. The ranking histories of the different funds are
used to construct matrices which provide the transition frequencies from one level to
another one. We describe the static and dynamic stochastic transition models, which
capture the uncertainty on transition and their dynamics. In Sect. 3, this methodology
is applied to a set of hedge funds. Using data from the TASS database, we estimate the
absolute and relative transitionmatrices and analyze their dynamics. In particular, we
identify the idiosyncratic and systematic persistence components. Section4 contains
the conclusions.

2 Fund Performance Dynamics

2.1 Performance and Ranking

2.1.1 Performance

There exists many risk-adjusted performance measures.1 They differ by the way they
summarize the notion of risk, by the investment horizon, or by the information taken
into account in their computation. For instance, for given horizon and historical
performance measures, several authors have proposed the Sharpe ratio [21, 22],
which is the ratio of a mean return by its realized volatility, the Sortino ratio [25],
which is the ratio of a mean return by its realized semi-standard deviation, or the
L-performances [6].

These performance measures can also be computed from conditional distribution
to account for either the increase of available information over time, or for the fact
that the investment in funds is used to complete an investment in another type of asset,
leading to the fitted performance measures [4, 17]. In the following discussions, we
consider a given risk-adjusted performance measure.

1 In the hedge fund literature, the term “performance” is often used for return, and thus is an ex-post
notion. In our paper we are interested in ex-ante performance measures, i.e., before observation.
These measures are adjusted for the uncertainty on future returns.
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2.1.2 Rating

As in the credit risk or mutual fund industry, the practice is to diffuse information
on hedge funds by means of qualitative ratings regularly elaborated by specialized
agencies. These qualitative ratings can be derived from ranking based on a selected
risk-adjusted performance measure Sit , where i denotes the hedge fund and t the
date, in different ways.

(i)Absolute rating. The idea is to select a set of thresholds a1 < · · · < aK , say, and to
define the class according to the location of the risk-adjusted performance measure
with respect to the thresholds. The best rating is obtained if aK < Sit , the second
best if aK−1 < Sit < aK , and so on …
(ii) Relative rating. Relative ratings are derived by comparing the performance of a
hedge fund to the performance of the other funds. More precisely, the different hedge
funds can be ranked according to their performances at date t from the worst one
to the best one. Then, we deduce the rank Rki,t of hedge fund i among the n funds
of the population. The relative risk-adjusted performances are these cross-sectional
ranks, and the discretization is deduced by thresholds defined on these cross-sectional
ranks. The best rating class includes for instance, the 10% of hedge funds with the
best risk-adjusted performances, and so on.

These relative performance rankings depend on the selected population of funds
(perimeter) and this perimeter can change over time. Do we compute these ranks for
all funds (mutual and hedge funds), or simply for the hedge funds? Do we include
the funds of funds? How do we treat the new created funds or correct for the survival
bias?

Thus, there exists a large number of qualitative ratings according to the underly-
ing risk-adjusted performance measure, to the absolute or relative approach, to the
number and levels of selected thresholds, and to the selected perimeter in the relative
rating case. From a mathematical point of view, both absolute and relative ratings
are sample counterparts of theoretical performance ranks. The theoretical relative
performance ranks are Rki,t = Ft (Sit ), where Ft is the distribution of performance
at time t , whereas the theoretical absolute performance ranks are Rk∗

i,t = F(Sit ),

where F is the marginal distribution of performance, i.e. F = limT →∞ 1
T

∑T
t=1 Ft

(see Appendix 1 for a more detailed discussion). Then these ranks are discretized to
get the associated qualitative rating; see Scheme1.

Scheme 1 From quantitative performance to ratings



88 S. Darolles et al.

2.2 Stochastic Migration and Migration Correlation

Let us now assume a given rating approach. The rating can be computed by fund
and date, providing individual rating histories. The rating histories define panel data
indexed by both fund and time. The total number of observations depends on the num-
ber of funds included in the group (cross-sectional dimension) and the number of
observation dates (time dimension).Wedescribe below the basic stochasticmigration
model and define the notion of migration correlation. Finally, we explain how to esti-
mate the different parameters of such a stochastic migration model [see e.g. [7, 12]].

2.2.1 Homogeneous Population of Funds

Let us denote the (qualitative) rating histories by:

Yi,t , i = 1, . . . , n, t = 1, . . . , T,

where i indicates the fund and t the date when the rating is published (or computed
from lagged returns). The variable Yi,t is a qualitative variable with alternatives
k = 1, . . . , K . These alternatives are ranked in such a way class k = 1 indicates
the best performing funds, k = 2 the second best performing funds…, up to the
last class k = K , which corresponds to inactivity, i.e. either fund default, or no
reporting. A simple type of model underlies the practice of fund rating agencies or
fund of hedge funds managers, when they aggregate individual rating histories into
transition matrices. These models rely on the following assumption:

Assumption A.1 The individual rating histories (Yi,t , t = 1, . . . , T, . . .), i =
1, . . . , n, are independent and identically distributed Markov processes, with a com-
mon sequence of transition matrices.

Intuitively, this assumption characterizes “homogeneous” populations of funds.
Indeed, the joint distribution of individual histories is not modified by permutation of
funds; thus, these funds are observationally equivalent. The homogeneity Assump-
tionA.1 can be satisfied by either absolute or relative ratings, but cannot be satisfied
for both of them simultaneously, except in very special cases.

The joint dynamics of rating histories of all funds is characterized by the sequence
of K × K time dependent transition matrices Πt , t = 1, . . . , T . The elements of Πt

are the transition probabilities from rating l to rating k between dates t and t + 1:

πkl,t = P[Yi,t+1 = k|Yi,t = l]. (1)

The transition probabilities are nonnegative and sum up to one for each row of the
transition matrix. Under AssumptionA.1, the most recent individual rating contains
all relevant information on the rating history of a given firm (when Πt is given),
and the transition can be time varying since the serial homogeneity hypothesis is
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generally not made. Moreover, the transition probabilities are the same for two dif-
ferent funds; this follows from the cross-sectional homogeneity assumption on the
population of funds.

Under AssumptionA.1, the time-varying transition matrices can be easily esti-
mated by following a cross-sectional approach. More precisely, let us consider a
given date t , and denote (i) by nk,t the number of funds in rating k at date t and, (ii)
by nkl,t the number of funds migrating from rating l to rating k between t and t + 1.
The transition probabilities are estimated by their cross-sectional counterparts:

π̂kl,t = nkl,t/nk,t . (2)

These estimators are the fixed effect maximum likelihood estimators of transition
matrices computed at each point in time. The accuracy of this ML estimator depends
on both size nk,t of the rating class and transition probabilities (nkl,t , l varying) [see
e.g. [13]].

The estimated transition probabilities can be used to check if the transition prob-
abilities are time independent, that is, if the Markov chain is time-homogeneous. For
instance, [15] accept the time homogeneity restriction for two different rating systems
of mutual funds provided by Standard &Poors and Morningstar, respectively. Other
homogeneity tests have been proposed, based on the spectral decompositions of esti-
mated transition matrices [see e.g. [8, 9]]. Applying these tests, [8] reject the null
hypothesis of homogeneous Markov chain for credit rating transitions [see also [3]].

Moreover, there exist more fundamental reasons for considering heterogeneous
Markov chain. First, as seen later in the application to hedge funds, the null hypothesis
of homogeneous Markov chain will be rejected. Second, even if the standard specifi-
cation with time-independent stochastic transition matrix features migration correla-
tion, the effect of migration correlation stay the same at all horizon.We get a flat term
structure of inactivity and migration correlation. Finally, the heterogeneous Markov
chain ismore appropriate for distinguishing themacro dynamics such as, trends, busi-
ness cycles or contagion effects, from the idiosyncratic dynamics [see Sect. 2.2.4].
It is especially appealing for the analysis of common factors, i.e. systematic risk.

2.2.2 Stochastic Intensity

This approach was considered by [12] to model migration correlation in the context
of corporate credit risk. It corresponds to an extension of the stochastic intensity
model introduced for default risk by Vasicek [27], and used in the advanced Basel 2
regulation [2] and for credit derivative pricing [20]. The specification is completed
by specifying the distribution of latent transition matrices. Two types of assumptions
denotedA.2 andA.2*, respectively, are introduced depending onwhether either a sta-
tic, or a dynamic model for transition probabilities is considered. These assumptions
are the following:

Assumption A.2 (static): The transition matrices at horizon 1 are stochastic, inde-
pendent with identical distribution.



90 S. Darolles et al.

Assumption A.2* (dynamic): The transition matrices define a time-homogeneous
Markov process, with transition pdf f [Πt |Πt−1].

Since the transition probabilities Πt are not directly observed (even if they can be
estimated by Π̂t ), the joint distribution of individual rating histories is obtained by
integrating out the latent (Πt ). This induces both serial and cross dependence. Model
(A.1)–(A.2) [or (A.1)–(A.2*)] is a nonlinear factor model in which the factors are
the elements of the transition matrices. The number of linearly independent factors
is K (K − 1) due to the unit mass restrictions.2

In general, the introduction of stochastic transitions in a Markov chain implies
a longer memory. This means that the joint process (Y1,t , . . . , Yn,t )

′ is no longer
Markov under (A.1)–(A.2*). However, it has been proved in [[12–14], Appendix 1]
that, for static factors, i.e., under (A.1)–(A.2), the joint rating vector (Y1,t , . . . , Yn,t )

′
is still an homogeneous Markov chain with K n admissible states. This result is the
basis for defining the notion of migration correlation.

2.2.3 Migration Correlation

Under (A.1)–(A.2), the migration correlation can easily be defined as follows. Let
us focus on a couple of funds i and j . Their individual transition probabilities are:

pkk∗ = P[Yi,t+1 = k|Yi,t = k∗] = E[πkk∗,t ], (3)

and their joint transition probabilities are:

pkk∗,ll∗ = P[Yi,t+1 = k, Y j,t+1 = l|Yi,t = k∗, Y j,t = l∗] = E[πkk∗,tπll∗,t ], (4)

where the expectation is taken with respect to stochastic Πt . In particular, the joint
transitions do not depend on the selected couple of funds. Let us now introduce the
state indicators:

IYi,t =k = 1 if Yi,t = k, IYi,t =k = 0 otherwise.

The migration correlation is defined as the conditional correlation of such indicator
functions:

ρkk∗,ll∗ = corr
[

IYi,t+1=k IY j,t+1=l |Yi,t = k∗, Y j,t = l∗
]

= pkk∗,ll∗ − pkk∗ pll∗

[pkk∗(1 − pkk∗)]1/2[pll∗(1 − pll∗)]1/2 . (5)

Matrices P2 = (pkk∗,ll∗) and ρ2 = (ρkk∗,ll∗) cannot be approximated from the
cross-sectional information at time t only, since an accurate estimation of E[πkk∗,ll∗
πkk∗,ll∗ ] requires observations of transitions at several dates. The quantities pkk∗ ,

2 (K − 1)2 independent factors, if the state “inactive”, i.e. state K , is an absorbing state.
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pkk∗,ll∗ , ρkk∗,ll∗ will be approximated by mixing appropriately cross-sectional and
time averaging. Typically, from Eqs. (3), (4), the individual transitions are estimated
by:

p̂kk∗ = 1

T

T
∑

t=1

π̂kk∗,t ,

and the pairwise migration probability pkk∗,ll∗ are estimated by:

p̂kk∗,ll∗ = 1

T

T
∑

t=1

π̂kk∗,t π̂ll∗,t .

The estimated migration correlations are deduced by substituting p̂kk∗ , p̂kk∗,ll∗ to
their theoretical counterparts in Eq. (5).

2.2.4 Persistence and Cycle

The dynamic of an homogeneous Markov chain with transition matrix Π is usually
analyzed by means of the eigenvalues3 of Π . Its eigenvalues can be real or complex,
but have always a modulus smaller or equal to 1. Moreover, due to the unit mass
restriction, 1 is always one of these eigenvalues. In such homogeneous chain, the
persistence (resp. the cycles) is analyzed by considering the real eigenvalues close to
1 (resp. the complex eigenvalues). The cycles are created by the complex eignevalues
with a frequency corresponding to the period of the cycle.

In the static stochastic migration model (A.1)–(A.2), this analysis can be directly
performed on individual transition matrix: P1 = (pkk∗) = (E[πkk∗ ]), and on pair-
wise matrices: P2 = (pkk∗,ll∗).

The (dynamic) stochastic migration model (A.1)–(A.2*) is more complicated,
but allows for a more detailed analysis of persistence and cycle effects. Indeed, we
can distinguish idiosyncratic from general persistence effects (resp. cycle effects).
Loosely speaking, we can first estimate the transition matrices Π̂t . Then, (i) we can
perform the spectral decomposition of each matrix Π̂t to analyze the idiosyncratic
persistence or cycles, that are conditional on factor values; (ii) This analysis is com-
pleted by considering the autocorrelation function of themultivariate series4 vec(Π̂t )

to detect the persistence and cycle effects due to the common factor Πt .

2.2.5 Ordered Probit Model

In practice, the stochastic transition matrices are generally written as function of
a smaller number of factors, i.e. Πt = Πt (Zt ), t = 1, . . . , T ; then, the whole

3 A transition matrix can always be diagonalized.
4 vec means that all the elements of the matrix (K , K ) are stacked in a single vector of dimension
(K 2, 1).

http://dx.doi.org/10.1007/978-3-319-13449-9_2
http://dx.doi.org/10.1007/978-3-319-13449-9_2
http://dx.doi.org/10.1007/978-3-319-13449-9_2
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dependence between individual histories is driven by the common factors Zt . The
static (resp. dynamic) factor models are obtained by assuming i.i.d. (resp. Markov)
factors Zt . In particular, a factor specification for transition matrices proposed in the
credit risk literature is the ordered probit model.

The approach assumes a continuous quantitative risk-adjusted performance for
each fund, used to define the qualitative class. Let us denote by sit = log Sit the
continuous latent risk-adjusted log-performance of fund i at date t , k∗ its rating at
the beginning of the period, and assume that:

sit = αk∗ + Ztβk∗ + σk∗uit ,

where the error terms uit and the common factors Zt are independent and uit are
standard Gaussian variables. (i) Let us first consider absolute rating defined from
risk-adjusted performance and denote a1 < a2 < · · · < aK the time-independent
thresholds defining the rating alternatives:

rating = k, iff ak−1 < sit < ak .

In a static model, where Zt are i.i.d. Gaussian variables, we get:

pkk∗,ll∗ = P
[

ak−1 < αk∗ + Ztβk∗ + σk∗uit < ak, al−1 < αl∗ + Ztβl∗

+σl∗uit < al ] ,

which is a bivariate probit formula.
(ii) When relative ratings are considered, for instance by deciles, the thresholds
become dependent of both time and parameters αk , βk , σk , k = 1, . . . , K . More
precisely, the cross-sectional residual distribution of the log-performances at time t
is a mixture of Gaussian distribution:

Pt =
10
∑

k=1

1

10
N

[

αk + βk Zt , σ
2
k

]

.

The thresholds (akt ) are the deciles of the distribution Pt and depend on parame-
ters α, β, σ 2 and of the value of the factor at date t . In practice, these theoretical
deciles are estimated by their empirical cross-sectional counterparts. These estima-
tors are not fully efficient since the estimation approach does not take into account
the dependence of the thresholds in parameters α, β, σ 2.

3 Application to Hedge Funds

3.1 Data

We use the November 2008 version of the TASS database for a retrospective
period covering November 1977 to October 2008. The TASS database includes
various informations related to performance, asset under management and fund
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characteristics (fees, location, style) at a monthly frequency and for a large set of
hedge funds. This database is frequently used by academic researchers, which will
allow for a comparison of our results with other results appeared in the literature.

As usual, the hedge funds databases suffer from various biases [see for inst-
ance [11]].

(i) A survivorship bias arises when the returns, performances, rating histories
of the currently inactive fund have not been kept in the database. Typically, if the
dead funds are the poorly performing ones (an hypothesis which is disputed in the
literature as stellar closed-fundsmay have no interest in reporting to databases either),
survivorship bias can lead to an overestimation of returns. For a bias correction of the
survivorship, the TASS database is made of two different sub-bases. The Live funds
database includes the funds, which are still active in October 2008. The Graveyard
database includes information on funds which are no longer active, since they have
been either liquidated, restructured, merged with other funds, or simply stopped to
report their performance.5 The comparison of the two databases can be used to correct
for survivorship bias of the Live funds database. Following [19], we exclude data
prior to January 1994 as the Graveyard database only became active in 1994.

(ii) Backfill bias arises when an additional fund is introduced in the database with
its historical track-record, including its history prior to inclusion. Very often, the
backfill bias is a form of incubation bias since the funds are proposed to a large public
after an incubation period during which the fund has to reach a minimal performance
target. Only successful funds reaching the target are made available to the public.
The TASS database provides both the inception and inclusion dates. This information
can be used for correcting the backfill bias and we can consider that all data prior to
inclusion date in the database are due to incubation bias. However, as stated by [11],
this might lead to an overestimation of the real incubation bias, since the difference
between the inception and inclusion dates can be due to switches of database, from
HFR to TASS, or to the merger of TASS and Tremont in September 2001. In our
application, we follow Kosowski et al. (2008) and treat the backfilling/incubation
bias by excluding the first 12 months of data for each fund.

There are 7,068 funds in the Live database and 5,150 funds in the Graveyard
database, respectively.We drop observationswhen: (i) The currency of denomination
is not the USD; (ii) The strategy is not reported, the fund is a fund of hedge funds,
or is investing in other funds; (ii) The performance is not net of fees; (iv) The fund
is guaranteed; (v) The Asset Under Management (AUM) are not disclosed, or only
poorly estimated; (vi) The publication of returns is not monthly; (vii) The fund has
less than 24 months of returns history. This latter condition can introduce another
type of survivorship bias, but it is required to get enough historical data for computing
Sharpe performances. After applying these various filters, we get 1,183 live funds
and 1,814 inactive funds.

5 TASS can take up to ninemonths before transferring a fund from theLive database to theGraveyard
database. This implies that some dead funds can be considered as still living in the end of the sample.
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Fig. 1 Number of funds

3.2 Summary Statistics of Returns

The number of funds is displayed in Fig. 1, where we observe that inactive funds are
dominating the sample up to 2005, and then naturally decreases.6 We have a rather
large sample, with an average of roughly 1,250 funds per months, almost equally
split between active and inactive funds.

Summary statistics of the hedge funds are reported in Table1. They are given
by style and distinguish active and inactive funds. The proportion of inactive funds
depends on the style and takes value between 52% for EmergingMarkets to 69% for
Convertible Arbitrage. The average return by style can be either smaller, or larger for
inactive funds. For instance, they are smaller for Managed Futures, Global Macro…,
larger for Event Driven and Convertible Arbitrage. The most liquid strategies, that
are Managed Futures and Global Macro, feature positive skewness, whereas the
returns corresponding to other strategies are generally left skewed. This systematic
skewness is more pronounced for active funds. As expected, the return distribution
has fat tails, with kurtosis significantly larger than 3 corresponding to the normal
distribution. Extreme risks are especially seen for the arbitrage strategies, which

6 The constant number of live funds at the end of the period should be due to lags in funds reporting
their performance. Indeed, we observe the performances for October 2008 at the end of November
2008, which implies that only funds with short notice of publication of Net Asset Value (NAV) are
incorporated at that moment. Thus, without additional information, the drop in the number of live
funds cannot be directly related to an increase in fund mortality, which seems to happen at the end
of 2008.



The Dynamics of Hedge Fund Performance 95

Table 1 Summary statistics

# funds # obs Average # obs Avg Std SK KU JB

by month (%) (%) (%)

Active funds

Convertible Arbitrage 44 4201 23.6 0.38 3.03 −2.0 16.9 90.9

Dedicated short bias 9 912 5.1 0.51 5.82 0.1 5.1 77.7

Emerging Markets 103 8385 47.1 0.88 5.16 −0.8 8.6 79.6

Equity market neutral 85 6709 37.7 0.63 2.44 −0.2 7.4 68.2

Event driven 156 14051 78.9 0.69 2.57 −0.7 7.7 80.1

Fixed income arbitrage 60 4556 25.6 0.46 2.53 −1.7 18.5 83.3

Global Macro 52 3721 20.9 1.06 4.51 0.1 5.9 44.2

Long/short eq. hedge 457 39354 221.1 0.71 4.50 −0.3 5.9 68.1

Managed Futures 128 12512 70.3 1.21 5.50 0.4 4.7 49.2

Multi-strategy 89 7512 42.2 0.74 3.27 −0.8 9.2 78.6

Total 1183 101913 572.5 0.76 4.03 −0.4 7.6 70.1

Inctive funds

Convertible Arbitrage 102 7251 41.0 0.53 2.05 −0.5 7.3 62.7

Dedicated short bias 21 1531 8.6 −0.01 6.38 0.3 4.4 52.3

Emerging Markets 113 7896 44.6 0.77 6.94 −0.5 7.6 63.7

Equity market neutral 122 6985 39.5 0.47 2.16 0.0 4.7 38.5

Event driven 226 16222 91.6 0.82 2.75 −0.2 6.5 65.0

Fixed income arbitrage 106 6584 37.2 0.46 2.32 −1.5 12.4 83.0

Global Macro 109 6841 38.6 0.47 4.17 0.2 5.8 56.8

Long/short eq. hedge 743 49930 282.1 0.88 5.03 0.1 5.4 51.2

Managed Futures 191 12157 68.7 0.57 6.28v 0.1 5.2 45.5

Multi-strategy 79 4881 27.6 0.74 2.76 −0.3 9.0 63.2

Total 1812 120278 679.5 0.72 4.34 −0.1 6.3 55.6

Notes The statistics are computed by averaging across all funds in a given category (active/inactive
and style). Avg is the mean, Std the standard deviation, SK the skewness, KU the kurtosis. JB
denotes the proportion of funds for which the null hypothesis of normality is rejected at the 95%
level for the Jarque-Bera test

are Convertible Arbitrage and Fixed Income Arbitrage. Both skewness and fat tail
explain why the normality assumption is rejected by the Jarque-Bera Test given in
the last column for a large proportion of individual funds.

3.3 The Ratings

Risk-adjusted Sharpe ratios are calculated with a rolling window of 24 months, and
a risk-free rate fixed to 4% per year.7 For each month, the funds are assigned into

7 The size 24months of thewindowhas been chosen for illustrating the approach. In amore complete
analysis, it might be preferable to consider different sizes, then to select themost informative one for
predictive purpose and/or themost relevant one for the updating frequency of the investors portfolio.
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Fig. 2 Proportion of active funds by absolute rating class

six categories according to absolute performance (resp. relative performance). For
instance, for absolute rating, the first category includes the 20%of fundswith highest
Sharpe ratios, the second category the following 20%, etc. up to the fifth category
where the worst 20% are represented. The sixth category includes the funds which
are inactive in November 2008. This provides for each fund monthly time-series of
absolute and relative ratings, evolving between grade 1 and grade 6.

For relative ratings, the proportion of active funds is equal to 20% for ratings 1,
2, 3, 4, 5 by construction. This proportion depends on time for absolute rating as
observed in Fig. 2.

Figure2 shows clearly different regimes with high performances around 1997,
2001, 2005 and 2007, and much lower performances around 1999, 2003, 2006 and
2008. Generally, when the performance is high, a large proportion of funds feature
these performances, e.g. 40% in 1997, 40% in 2005 and 35% in 2007. Symmet-
rically, in 1999–2000 and 2008, low performances are observed with 35 and 45%,
respectively, for rating 5. This is only around 2006 that the funds show rather het-
erogeneous performances.

3.4 Time Homogeneous Transition Matrices

The absolute and relative rating histories can be used to construct transition matrices
Π̂t . Recall that the absolute (resp. relative) ratings are the Sharpe performances
transformed by their historical c.d.f. (resp. cross-sectional c.d.f.) [see Sect. 2.2.1]. In
this Section, we assume time-homogeneous Markov processes Pit = Π , ∀t , and
estimate the common Π matrix by averaging matrices Π̂t , weighted by the number
of funds at each period.
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These estimated matrices are computed for investment horizons 1 month, 1 year, 2
years, 3 years and 5 years, respectively. They are given in Table2 (Panel A–E) for
relative rating and in Table3 (Panel A–E) for absolute rating.

Let us discuss the 1-month transition matrices. The last row 0, 0, 0, 0, 0, 100%
corresponds to the absorbing state NR. The last column provides the proportion of
inactive as a function of the previous rating. As expected, this proportion increases
when previous rating becomesworse. Absolute and relative persistence are observed,
since the significant transition probabilities are large on themain diagonal.Moreover,
at 1-month horizon, we can essentially observe upgrades or downgrades of at most
one grade.

When the investment horizon increases, transitions to inactivity increase and all
types of upgrades and downgrades are observed. In the long run (Tables2 (Panel
E) and 3 (Panel E)), we expect to observe the stationary distribution of the Markov
process if the time-homogeneity assumption is satisfied. For instance, in Table2
(Panel E), we expect similar values for the first five transition probabilities in each
row. Clearly, this property is not satisfied in row 1, which shows a rather strong
persistence for rating 1.

This analysis is completed by considering the eigenvalues and eigenvectors of the
transition matrices. These spectral decompositions are given in Table4 (Panel A, B).

If theMarkov homogeneity assumption is satisfied, the transitionmatrix at horizon
h is equal to the short term transitionmatrix at power h. In particular, if the eigenvalues
of the short term matrix are real positive too and decrease, the eigenvalues of the
transition matrices at larger horizon have to be real positive too and have to decrease
with the horizon. This effect is observed on the two largest eigenvalues (after the
unitary eigenvalue). The short term eigenvalues are close to 1, as usual for a transition
at short term horizon, but a part of this persistence can be due to the rolling window
of 24 months used in the computation of the risk-adjusted Sharpe ratio.

Under the homogeneity hypothesis, we have seen in Sect. 2.2.2 that the joint rating
histories are still Markov, which allow for defining joint probabilities of transition
and migration correlations. To avoid transition matrices of a too large dimension,
we aggregate the joint transition in the following way: (i) probability of jointly
maintaining the initial rating; (ii) probability of jointly being upgraded by one rating
category; (ii) probability of being jointly downgraded by one rating category; (iv)
probability of becoming jointly not rated; (v) probability of getting a same rating,
but not necessary equal to the initial common one. These five events are called
Unchanged, Upgrade, Downgrade, Non-rated, Similar Rating, respectively. The joint
transition probabilities and the migration correlations are provided in Table5 (Panel
A–H) H for absolute and relative ratings.

We observe very small migration correlations of order less than8 0.05. At 2-years
horizon, the effect of the rolling window used in computing the adjusted Sharpe ratio
disappears and the maximal migration correlations are for extreme ratings, that are

8 Very small migration correlations have not to be put to zero due to the possible leverage effects in
portfolio management strategy. Loosely speaking, even small migration correlations can allow for
gain opportunities by using appropriate correlation strategies.
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Table 2 Transition matrices at 1-month (Panel A), 1-year (Panel B), 2-years (Panel C), 3-years
(Panel D), 5-years (Panel E) horizon (static factor, relative performance)

Q1(%) Q2(%) Q3(%) Q4(%) Q5(%) NR(%)

Panel A

Q1 89.6 9.5 0.3 0.1 0.0 0.5

Q2 8.6 75.1 15.2 0.6 0.0 0.6

Q3 0.3 13.5 68.8 16.2 0.3 0.9

Q4 0.1 0.4 14.4 71.2 12.6 1.3

Q5 0.0 0.0 0.2 11.0 86.1 2.7

NR 0.0 0.0 0.0 0.0 0.0 100.0

Panel B

Q1 52.2 21.0 10.4 6.0 3.3 7.2

Q2 18.5 27.4 22.3 15.0 8.6 8.2

Q3 8.0 19.8 24.0 22.2 15.0 11.0

Q4 4.3 12.0 19.9 24.8 23.1 16.0

Q5 1.7 5.0 10.8 20.3 38.9 23.3

NR 0.0 0.0 0.0 0.0 0.0 100.0

Panel C

Q1 34.1 16.5 12.1 11.3 12.1 13.9

Q2 15.7 17.5 16.9 16.6 17.5 15.9

Q3 10.6 15.7 17.5 17.9 17.4 21.0

Q4 8.1 13.7 17.2 17.9 16.1 26.9

Q5 6.1 11.6 13.7 14.6 16.3 37.7

NR 0.0 0.0 0.0 0.0 0.0 100.0

Panel D

Q1 29.6 14.5 10.9 10.8 13.5 20.8

Q2 13.4 14.8 15.5 15.4 17.1 23.8

Q3 9.6 14.2 15.5 16.6 14.9 29.3

Q4 8.3 12.9 15.1 14.7 14.0 34.9

Q5 5.7 10.4 12.2 12.1 12.3 47.2

NR 0.0 0.0 0.0 0.0 0.0 100.0

Panel E

Q1 20.6 14.1 11.0 10.0 9.4 34.8

Q2 10.4 11.9 12.8 13.7 14.4 36.8

Q3 8.5 10.7 11.7 12.5 14.2 42.4

Q4 6.8 10.5 11.2 12.2 13.5 45.9

Q5 6.4 8.2 8.2 8.8 9.9 58.5

NR 0.0 0.0 0.0 0.0 0.0 100.0

Notes Initial ratings are in rows and arrival ratings in columns. Transition matrices are computed
for the whole panel of active and inactive funds, as observed over the period 1994–2008
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Table 3 Transition matrices at 1-month (Panel A), 1-year (Panel B), 2-years (Panel C), 3-years
(Panel D), 5-years (Panel E) horizon (static factor, absolute performance)

Q1(%) Q2(%) Q3(%) Q4(%) Q5(%) NR(%)

Panel A

Q1 88.7 10.2 0.5 0.1 0.0 0.5

Q2 9.1 73.6 15.8 0.8 0.0 0.7

Q3 0.3 14.4 66.8 17.2 0.4 1.0

Q4 0.1 0.4 15.5 70.0 12.7 1.3

Q5 0.0 0.0 0.2 11.1 86.2 2.6

NR 0.0 0.0 0.0 0.0 0.0 100.0

Panel B

Q1 48.8 21.0 11.4 6.7 4.4 7.7

Q2 18.1 27.2 21.8 15.1 9.2 8.7

Q3 9.5 18.8 22.8 21.1 15.8 12.1

Q4 4.8 12.9 19.6 24.5 22.8 15.4

Q5 1.6 5.6 11.6 21.6 37.6 22.0

NR 0.0 0.0 0.0 0.0 0.0 100.0

Panel C

Q1 31.2 17.7 12.8 11.0 12.8 14.6

Q2 14.1 16.6 17.2 17.5 17.7 16.9

Q3 10.4 14.2 16.4 18.3 18.8 21.9

Q4 9.0 13.0 16.5 18.2 17.2 26.1

Q5 8.0 13.1 14.6 14.8 14.1 35.4

NR 0.0 0.0 0.0 0.0 0.0 100.0

Panel D

Q1 27.5 14.6 11.5 11.0 12.6 22.7

Q2 12.4 14.3 14.8 16.5 17.2 24.8

Q3 9.6 13.6 14.3 16.9 16.8 28.9

Q4 8.9 12.5 15.1 15.5 14.5 33.5

Q5 7.2 12.0 13.0 11.5 11.8 44.5

NR 0.0 0.0 0.0 0.0 0.0 100.0

Panel E

Q1 21.7 14.0 10.5 9.5 10.5 33.7

Q2 9.8 12.5 13.4 13.6 14.1 36.5

Q3 9.7 11.0 12.1 13.3 13.4 40.4

Q4 8.3 10.9 11.2 11.7 12.5 45.4

Q5 7.8 9.0 9.1 9.0 8.9 56.1

NR 0.0 0.0 0.0 0.0 0.0 100.0
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Table 4 Eigenvalues of the transition matrices (static factor, relative performance)

Eig. 1 Eig. 2 Eig. 3 Eig. 4 Eig. 5 Eig. 6

Panel A

1-month 1.000 0.988 0.931 0.828 0.674 0.487

1-year 1.000 0.866 0.506 0.234 0.061 0.005

2-years 1.000 0.767 0.231 0.018 +0.004i 0.018+0.004i −0.001

3-years 1.000 0.685 0.184 −0.007 0.004−0.0006i 0.004+0.0006i

4-years 1.000 0.617 0.155 0.009−0.010i 0.009+0.010i −0.008

5-years 1.000 0.558 0.107 −0.004 0.001−0.003i 0.001+0.003i

Panel B

1-month 1.000 0.988 0.928 0.819 0.660 0.458

1-year 1.000 0.865 0.475 0.205 0.054 0.009

2-years 1.000 0.767 0.200 0.011 0.000 −0.013

3-years 1.000 0.688 0.165 0.010 −0.004 −0.026

4-years 1.000 0.629 0.156 0.004 −0.004 −0.024

5-years 1.000 0.575 0.103 −0.002−0.005i −0.002+0.005i −0.005

either rating 1 and rating 5. They are also greater for absolute ratings than for relative
ones.

3.5 Time Heterogeneous Transition Matrices

In fact, it is easily seen that the transition matricesΠt depend on time. Table6 (Panel
A–D) provides the 2-years transition matrices in January 1996 and June 2006, for
absolute and relative rating. We note that the transition matrices change consider-
ably between January 1996 and June 2006. For instance, the diagonal terms decrease,
whereas the transitions to inactivity increase. Moreover, the difference between tran-
sition matrices for absolute and relative ratings can become much more important
date by date. For instance, the probability to stay in grade 1 for absolute rating is
twice the corresponding probability for relative rating.

We also provide in Table6 (Panel A–D) the eigenvalues of the transition matrices.
The spectral decomposition allows for a discussion of the idiosyncratic persistence
and cycle phenomena. The 3 first eigenvalues (after the unitary one) are real positive,
and possible pseudo periodic effects appear for smaller eigenvalues. The first eigen-
value (after the unitary one) is close to one in 1996 for both absolute and relative
ratings, but much smaller in 2006. This shows that idiosyncratic persistence can exist
at some date, and disappear at some other ones. Similarly the number of eigenvalues
(except the unitary one), which are sufficiently large in modulus (larger than 0.1, say)
is equal to 5, 2, 3 and 2, respectively. Thus the estimated rank of the transition matrix
is also highly varying. Among these significant eigenvalues, we observe only one
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Table 5 Joint transition proba. at a 1-month (Panel A) and 2-years (Panel C);Migration correlations
at a 1-month (Panel B) and 2-years (Panel D) horizon (static factor, relative performance); Joint
transition proba. at a 1-month (Panel E) and 2-years (Panel G); Migration correlations at a 1-month
(Panel F) and 2-years (Panel H) horizon (static factor, absolute performance)

Joint rating arrivals

Initial rating Unchanged (%) Upgrade (%) Downgrade (%) Non-rated (%) Similar rating (%)

Panel A

(Q1,Q1) 81.12 0.00 89.91 0.01 82.16

(Q2,Q2) 57.69 6.21 69.27 0.01 61.01

(Q3,Q3) 48.51 9.20 59.70 0.01 53.33

(Q4,Q4) 51.55 10.39 60.48 0.03 55.58

(Q5,Q5) 74.92 9.66 0.00 0.09 76.36

Panel B

Initial rating Unchanged Non-rated

(Q1,Q1) −0.04 1.16

(Q2,Q2) 0.06 1.01

(Q3,Q3) 0.14 1.10

(Q4,Q4) 0.05 0.92

(Q5,Q5) −0.05 1.10

Panel C

Joint rating arrivals

Initial rating Unchanged Upgrade Downgrade Non-rated Similar rating

(Q1,Q1) 11.88 0.00 29.97 1.92 22.17

(Q2,Q2) 3.29 2.85 12.55 2.39 18.22

(Q3,Q3) 3.45 4.92 10.01 4.30 18.46

(Q4,Q4) 3.60 7.50 6.60 6.78 19.51

(Q5,Q5) 3.53 7.32 0.00 13.69 24.05

Panel D

Initial rating Unchanged Non-rated

(Q1,Q1) 0.71 3.79

(Q2,Q2) 0.54 3.39

(Q3,Q3) 0.56 3.37

(Q4,Q4) 0.59 2.51

(Q5,Q5) 2.84 0.99

Panel E

Joint rating arrivals

Initial rating Unchanged Upgrade Downgrade Non-rated Similar rating

(Q1,Q1) 81.37 0.00 89.71 0.01 82.85

(Q2,Q2) 56.02 6.65 67.43 0.01 60.94

(Q3,Q3) 46.35 9.59 57.48 0.02 53.27

(Q4,Q4) 50.69 10.73 59.29 0.03 56.09

(Q5,Q5) 74.07 9.78 0.00 0.11 75.92

(continued)
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Table 5 (continued)

Joint rating arrivals

Initial rating Unchanged (%) Upgrade (%) Downgrade (%) Non-rated (%) Similar rating (%)

Panel F

Initial rating Unchanged Non-rated

(Q1,Q1) 0.03 1.26

(Q2,Q2) 0.20 1.15

(Q3,Q3) 0.31 1.16

(Q4,Q4) 0.21 1.07

(Q5,Q5) −0.01 1.29

Panel G

Joint rating arrivals

Initial rating Unchanged Upgrade Downgrade Non-rated Similar rating

(Q1,Q1) 13.82 0.00 30.30 1.96 24.95

(Q2,Q2) 3.08 2.83 11.40 2.40 21.38

(Q3,Q3) 2.99 4.14 9.40 4.61 20.47

(Q4,Q4) 3.75 6.95 7.13 7.35 21.01

(Q5,Q5) 4.55 7.35 0.00 13.90 25.06

Panel H

Initial rating Unchanged Non-rated

(Q1,Q1) 4.22 3.93

(Q2,Q2) 1.96 4.32

(Q3,Q3) 0.88 4.40

(Q4,Q4) 0.83 3.59

(Q5,Q5) 4.23 1.54

possible periodicity for static factor, relative performance. The complex eigenvalues
is close to a pure imaginary one (±0.107 i), which correspond to a periodicity of 4
months.

We provide in Figs. 3 and4 the evolution of several transition probabilities for
different horizons, and for absolute /relative rating. These transitions are aggregated
on the initial rating class. We typically observe:
(i) An increase of the probability to become inactive in the recent years;
(ii) A large variability of the upgrade and downgrade probabilities;
(ii) More pronounced cycle effects on the absolute ratings. This stylized fact is partly
explained by the lack of invariance of the autocovariance with respect to nonlinear
transforms [see the discussion in Appendix A.2].

This dynamic descriptive analysis is completed in Fig. 5, where we report 4 times
the cross-sectional covariance between performances and relative ratings. This quan-
tity is equal to the Gini index of the cross sectional performance distribution.
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Table 6 Transition matrices at 2-years horizon starting 01/96 (Panel A) and 06/06 (Panel B) (static
factor, relative performance); 01/96 (Panel C) and 06/06 (Panel D) (absolute performance)

Q1(%) Q2(%) Q3(%) Q4(%) Q5(%) NR(%)

Panel A

Q1 33.33 27.27 16.67 10.61 10.61 1.52

Q2 16.67 21.21 22.73 9.09 19.70 10.61

Q3 9.09 13.64 27.27 33.33 10.61 6.06

Q4 4.55 18.18 15.15 18.18 25.76 18.18

Q5 7.69 4.62 13.85 15.38 24.62 33.85

NR 0.00 0.00 0.00 0.00 0.00 100.00

Eigenvalues 1.00 0.851 0.278 0.125 −0.004 −0.1i −0.004 +0.1i

Panel B

Q1 19.86 12.54 10.80 10.10 12.54 34.15

Q2 14.29 14.98 16.38 14.63 9.76 29.97

Q3 10.14 11.89 11.19 14.69 11.89 40.21

Q4 5.23 8.71 11.85 9.76 15.33 49.13

Q5 6.29 9.09 11.54 10.49 13.64 48.95

NR 0.00 0.00 0.00 0.00 0.00 100.00

Eigenvalues 1.00 0.529 0.107 0.023 −0.005 −0.024

Panel C

Q1 64.52 19.35 3.23 6.45 3.23 3.23

Q2 32.50 37.50 10.00 17.50 2.50 0.00

Q3 25.56 17.78 16.67 21.11 8.89 10.00

Q4 7.29 20.83 21.88 28.13 8.33 13.54

Q5 9.72 9.72 15.28 15.28 18.06 31.94

NR 0.00 0.00 0.00 0.00 0.00 100.00

Eigenvalues 1.00 0.936 0.439 0.191 0.082 0.000

Panel D

Q1 13.44 11.07 13.04 13.44 16.60 32.41

Q2 5.93 11.02 15.25 20.90 14.41 32.49

Q3 4.07 7.85 12.50 13.66 19.48 42.44

Q4 1.01 4.03 14.09 11.41 20.81 48.66

Q5 3.80 4.89 8.70 15.22 17.39 50.00

NR 0.00 0.00 0.00 0.00 0.00 100.00

Eigenvalues 1.00 0.553 0.101 0.050 −0.02−0.02i −0.02+0.02i

We observe very clearly the cycle effects on the heterogeneity of performances
which is more pronounced at the beginning of the period.
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Probability of maintaining the same rating

0%

10%

20%

30%

40%

50%

60%

1996 1998 2000 2002 2004 2006 2008

1-year horizon
2-years horizon
3-years horizon
4-years horizon
5-years horizon

Inactivity probability

0%

10%

20%

30%

40%

50%

60%

1996 1998 2000 2002 2004 2006 2008

1-year horizon
2-years horizon
3-years horizon
4-years horizon
5-years horizon

Upgrade probability

0%

5%

10%

15%

20%

25%

30%

35%

40%

1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008

1-year horizon
2-years horizon
3-years horizon
4-years horizon
5-years horizon

Downgrade probability

0%

5%

10%

15%

20%

25%

30%

35%

40%

1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008

1-year horizon 2-years horizon 3-years horizon
4-years horizon 5-years horizon

Fig. 3 Inactivity, upgrade and downgrade probabilities (static factor, relative performance)

3.6 Stochastic Transition

We have noted the variability of the different elements of the transition matrices,
and also the presence of persistence and of cycle effets. This leads to introduce
a stochastic dynamic model for the matrice of transition probabilities. In a first
step we can consider Vector Autoregressive (VAR) model on these matrices after
vectorization:

vec(Πt ) = c + Φvec(Πt−1) + ut , (6)

where vec(Πt ) is the vector obtained by stacking the columns of the transitionmatrix.
This vector has dimension 30.TheVARspecification is only afirst step in the dynamic
analysis since it does not account for the constraint 0 ≤ Π j,t ≤ 1, ∀i, j to be satisfied
by themigration probabilities [see [7, 12] for stochastic migrationmodels taking into
account these inequalities]. However the VARmodel has the advantage of simplicity
and estimationmethods easy to implement. In particular the elements of the intercept
(30 parameters) and the autoregressive matrix (900 parameters) can be estimated by
ordinary least squares. It is not possible to display these elements due to the large
dimension, but we provide in Table7 (Panel A, B) the eigenvalues of matrix Φ̂ for
relative and absolute ratings.
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Fig. 4 Inactivity, upgrade and downgrade probabilities (static factor, absolute performance)
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Fig. 5 Gini concentration coefficients (relative ratings)

The eigenvalue with the largest modulus is much larger than 1. This explo-
sive trend captures the increasing evolutions of the transitions to inactivity. The
next eigenvalue for relative performance is around 0.8, a test of unit root leads to
reject the unit root hypothesis. As expected the computation of relative ratings is
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Table 7 Eigenvalues of Φ̂ for the 2-years horizon transition probabilities (static factor, relative
performance (Panel A) and absolute performance (Panel B))

v1 v2 v3 v4 v5

27.323 0.7996 0.6494 0.2083 0.1149

Panel A

v6 v7 v8 v9 v10

0.0798 0.0534 0.0484 0.0382 0.0291

v11 v12 v13 v14 v15

0.0260+0.0046i 0.0260−0.0046i 0.0062+0.0093i 0.0062−0.0093i 0.0182

v16 v17 v18 v19 v20

0.0157 0.0136 0.0085 −0.0009+0.0051i −0.0009−0.0051i

v21 v22 v23 v24 v25

0.0043+0.0027i 0.0043−0.0027i −0.0030+0.0003i −0.0030−0.0003i 0.0016

v26 v27 v28 v29 v30

−0.0005 0 0 −0.0000+0.0000i −0.0000−0.0000i

Panel B

v1 v2 v3 v4 v5

24.7552 2.0518 0.9992 0.651 1 0.2229

v6 v7 v8 v9 v10

0.1149 0.0758 0.0567+0.0080i 0.0567−0.0080i 0.0438+0.0078i

v11 v12 v13 v14 v15

0.0438−0.0078i 0.0358 0.0249 0.0064+0.0125i 0.0064−0.0125i

v16 v17 v18 v19 v20

0.016 0.0129+0.0078i 0.0129−0.0078i 0.0072+0.0073i 0.0072−0.0073i

v21 v22 v23 v24 v25

−0.0038 0.0040+0.0038i 0.0040−0.0038i 0.0036 −0.0007+0.0011i

v26 v27 v28 v29 v30

−0.0007−0.0011i 0 0 0 0

a way of diminishing the persistence effects, especially when comparing with the
results for absolute ratings [see the discussion in Appendix A.2]. Similarly, pseudo-
periodic affects are more significant for absolute ratings. The eigenvalues v8 and
v9 in Table7 (Panel B) feature a rather small imaginary part, which indicates rather
long periodicities to be compared to the 4-month idiosyncratic periodicities seen
before).
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3.7 Duration Analysis

The knowledge of transition matrices allows for deriving the distribution of the time
of entry in inactivity by simulation. More precisely, let us consider this question for
the different models:
(i) For an homogenous Markov chain, the simulations are performed by drawing the
sequence of ratings with the estimated matrix Π̂t .
(ii) In the static case, where the stochastic transition matrices are independent iden-
tically distributed, at each date the next rating will be drawn by using a transition
matrix randomly selected among the estimated matrices Π̂t , t = 1, , T .
(ii) In the dynamic case, the method requires the introduction of a dynamics for the
transition matrix.

The duration analysis can be used to compute the Time-at-Risk (TaR), which is
the threshold at 5% for residual lifetime [see [16]].

4 Conclusion

Fund performances are often summarized by means of qualitative ratings computed
fromadjusted risk performances. These ratings canbe absolutewhen the performance
level is taken into account, or relative when the fund is simply ranked against its
competitors at a given date. Both absolute and relative ratings are interpretable as
qualitative ranks, deduced from the performance by applying the historical and cross-
sectional c.d.f., respectively. The aim of our paper was to study and compare the
dynamics of absolute and relative ratings by means of stochastic migration models.
These models are appropriate for distinguishing the idiosyncratic and systematic
persistence (resp. cycle) effects, and to compare the decompositions obtained for
absolute and relative ratings.

The stochastic transition models are factor models with transition probabilities as
factors. They are easily implemented to derive by simulation the distribution of fund
lifetime and analyze how the distribution depends on the current rating and date.
These models are preferred to factor models directly written on lifetimes. Indeed,
the lifetime is affected by the path of the stochastic transition probabilities during
the whole life of the fund.
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Appendix A: Properties of the Theoretical Ranks

We discuss in this appendix different properties of the theoretical ranks, such as the
link between levels and ranks, or the links between the cross-sectional ranks and
the historical ranks. We start by reviewing some basic results without in mind the
applications to fund performances and rankings. Then we particularize the results to
the ranking of funds.

A.1 Basic Properties

A.1.1 Definition of a Theoretical Rank

Let us consider a one-dimensional continuous random variable X and denote by F its
cumulative distribution function: F(x) = P(X < x). If its continuous distribution
admits a strictly positive probability density function (p.d.f), then the theoretical rank
of X is the random variable:

Y = F(X). (1)

The variable Y takes values in [0, 1] and follows the uniform distribution on (0, 1).

Example A.1 To understand the definition of the theoretical rank, let us consider
a large set of funds, whose performances for period t are Xi,t , i = 1, . . . , n, say.
We can construct the empirical cross-sectional c.d.f. F̂n,t = 1

n

∑n
i=1 1Xi,t <x , and the

empirical ranks Ŷi,t = F̂n,t (Xi,t ). Under cross-sectional ergodicity, the empirical
cross-sectional c.d.f. tends to a limiting one Ft , say, and the empirical rank Ŷi,t to
the theoretical rank Yi,t = Ft (Xi,t ).

A.1.2 Linear Links Between Levels and Ranks

Let us now consider a pair of continuous variable (X1, X2), with joint and marginal
c.d.f. denoted by F1,2, F1 and F2, respectively: F1,2(x1, x2) = P[X1 < x1, X2 <

x2], Fj = P[X j < x j ], j = 1, 2. The associated theoretical ranks are:

Y1 = F1(X1), Y2 = F2(X2). (2)

Y1 and Y2 are marginally uniform on [0, 1], but are dependent if X1 and X2 are. This
dependence can be characterized by their joint c.d.f.: C(y1, y2) = P[Y1 < y1, Y2 <

y2] = F1,2[F−1
1 (y1), F−1

2 (y2)], called the copula of X1 and X2. Let us now discuss
the links between all these variables, when we focus on linear links measured by
the Pearson correlations. The joint variance-covariance matrix of levels and ranks is
given by:



The Dynamics of Hedge Fund Performance 109

V

⎛

⎜

⎜

⎝

X1
X2
Y1
Y2

⎞

⎟

⎟

⎠

=

⎛

⎜

⎜

⎝

V X1 Cov(X1, X2) Cov(X1, Y1) Cov(X1, Y2)

. V X2 Cov(X2, Y2) Cov(X2, Y2)

. . V Y1 Cov(Y1, Y2)

. . . V Y2

⎞

⎟

⎟

⎠

. (3)

The different elements of this variance-covariance matrix are of the form:
Cov[G1(X1), G2(X2)], where G1, G2 are two increasing functions, either the iden-
tity function, or the c.d.f. We have the following Lemma:

Lemma A.1 If G1, G2 are increasing functions:

Cov[G1(X1), G2(X2)] =
∫ ∫

[F1,2(x1, x2) − F1(x1)F2(x2)]dG1(x1)dG2(x2).

(4)
In fact, a functional measure of dependence is the difference between the joint
c.d.f. and what would be its expression under the independence assumption, i.e.
F1,2(x1, x2) − F1(x1)F2(x2). LemmaA.1 says that any covariance of this type is
a weighted average of this functional measure, with weights equal to the deriva-
tives of functions G j . In particular, the variables X1 and X2 are independent iff
F1,2(x1, x2) = F1(x1)F2(x2),∀x1, x2, or equivalently iff Cov[G1(X1), G2(X2)] =
0, for any increasing functions G1, G2.

The formula (A.4) in LemmaA.1. provides comparable expressions of the ele-
ments of the joint variance-covariance matrix (A.3). We get:

Cov(X1, X2) =
∫ ∫

[F1,2(x1, x2) − F1(x1)F2(x2)]dx1dx2, (5)

Cov[X1, F2(X2)] =
∫ ∫

[F1,2(x1, x2) − F1(x1)F2(x2)]dx1d F2(x2), (6)

Cov[F1(X1), X2] =
∫ ∫

[F1,2(x1, x2) − F1(x1)F2(x2)]d F1(x1)dx2, (7)

Cov[F1(X1), F2(X2)] =
∫ ∫

[F1,2(x1, x2) − F1(x1)F2(x2)]d F1(x1)d F2(x2).

(8)

It is known that the covariance operator is invariant by linear affine transformations
of the variables. However we pass from levels to ranks by a nonlinear transform, i.e.
the c.d.f. This transformation can imply a loss of information concerning linear links.
For instance, by using the Frechet upper bound [10]:

F1,2(x1, x2) ≤ min[F1(x1), F2(x2)], (9)

we get:
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Cov[X1, F2(X2)] ≤
∫ ∫

[min[F1(x1)F2(x2)] − F1(x1)F2(x2)] dx1d F2(x2)

≤ Cov[X1, F1(X1)]. (10)

Similarly, by considering the Frechet lower bound [[24], Proposition 4], we get an

inequality in the other direction. Finally, we know:

− Cov[X1, F1(X1)] ≤ Cov[X1, F2(X2)] ≤ Cov[X1, F1(X1)]. (11)

A.1.3 Correlations Between Levels and Ranks

Let us now focus on the correlation matrix:

R = Corr

⎛

⎜

⎜

⎝

X1
X2

F1(X1)

F2(X2)

⎞

⎟

⎟

⎠

=

⎛

⎜

⎜

⎝

1 ρ12 λ11 λ12
. 1 λ21 λ22
. . 1 r12
. . . 1

⎞

⎟

⎟

⎠

. (12)

ρ1,2 is the standard Pearson correlation, r1,2 is the correlation of ranks defined by
[26], λ1,1 and λ2,2 are the L-moments of order 2 introduced by [18], λ1,2 and λ2,1
are the L-comoments of order 2 [see e.g. [23, 24]].

By considering the whole matrix R, we perform a joint analysis of these different
dependence measures. These correlations are constrained. First, matrix R is a posi-
tive semi-definite matrix. Second, additional constraints are due to the deterministic
increasing relationship between X1 and F1(X1) [resp. X2 and F2(X2)]. For instance,
we know that: λ11 ≥ 0, λ22 ≥ 0, |λ12|≤ min(λ11, λ22), |λ21|≤ min(λ11, λ22), from
inequalities (A.12).

These constraints can be explicited in special symmetric cases, where λ11 =
λ22 = λ, say, λ12 = λ21 = μ, say.

Proposition The different correlations ρ = ρ12, r = r12, λ = λ11 = λ22, μ =
λ12 = λ21 are constrained as follows:

(i) If ρ = 1, then r = 1, μ = λ with 0 ≤ λ ≤ 1.
(ii) If ρ = −1, then r = −1, μ = −λ with 0 ≤ λ ≤ 1.
(iii) If ρ 	= ±1, we get:

0 <|μ|< λ,
λ2 + μ2 − 2ρλμ ≤ 1 − ρ2,
λ2 − μ2 ≤ √

(1 − r2)(1 − ρ2).
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The first inequality in (iii) is equivalent to:

1

2(1 + ρ)
(λ + μ)2 + 1

2(1 − ρ)
(λ − μ)2 ≤ 1.

It corresponds to an ellipsoid with the 45◦ and −45◦ lines as it main axes. The
second inequality corresponds to the interior of an hyperbola with the same axes as
the ellipsoid above. The domain of admissible value for λ, μ for given values of r ,
ρ is the intersection of the hyperbolic and ellipsoidal domain.

A.2 Rank Autocorrelation Functions

A.2.1 The Variables

The results in Appendix A.1 are useful to interpret the joint dynamics of perfor-
mances, absolute ranks and relative ranks. Recall that these variables are defined as
follows:

Si,t denotes the risk-adjusted Sharpe performance for HF i and period t .
For these data, we can define the historical c.d.f. of S computed on averaging on

both HF and dates, and deduce the associated absolute ranks as ra
i,t = F̂(Si,t ).

We can also consider the cross-sectional c.d.f. at date t , obtained by averaging on
HF for given t , and deduce the associated relative rank as ri,t = F̂t (Si,t ).
Thus the results of Appendix A.1 can be used with the following
[X1, X2, F1(X1), F2(X2)] variables:
(i) Joint analysis of levels and absolute ranks at different dates:

X1 = Si,t , X2 = Si,t−h , F1(X1) = ra
i,t , F2(X2) = ra

i,t−h .
(ii) Joint analysis of levels and relatives ranks at different dates:

X1 = ra
i,t , X2 = ra

i,t−h , F1(X1) = ri,t , F2(X2) = ri,t−h .

A.2.2 Autocorrelograms

When the variables X1, X2 (resp. F1(X1), F2(X2)) correspond to an observation of
the same variable at different dates t , t −h, the correlation matrix in (A.12) becomes
the autocorrelation at lag h for level and ranks (or for absolute and relative ranks):

R(h) =

⎛

⎜

⎜

⎝

1 ρh λ(0) λ(h)

. 1 λ(−h) λ(0)

. . 1 r(h)

. . . 1

⎞

⎟

⎟

⎠

, (13)



112 S. Darolles et al.

where for instance:
ρ(h) is the ACF on absolute ranks,
r(h) is the ACF on relative ranks,
λ(h) is the cross ACF between absolute and relative ranks.
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The Joint Belief Function and Shapley
Value for the Joint Cooperative Game

Zheng Wei, Tonghui Wang, Baokun Li and Phuong Anh Nguyen

Abstract In this paper, the characterization of the joint distribution of random set
vectors by the belief function is investigated and the joint game in terms of the
characteristic function is given. The bivariate Shapley value of a joint cooperative
game is obtained through both cores and games. Formulas for the Shapley value
derived from two different methods are shown to be identical. For illustration of our
main results, several examples are given.

1 Introduction

Random sets can be used to model imprecise observations of random variables
where the outcomes are assigned as set valued instead of real valued. The theory of
random sets is viewed as a natural generalization of multivariate statistical analysis.
Random set data can also be viewed as imprecise or incomplete observations which
are frequent in today’s technological societies. The distribution of the univariate
random set and its properties can be found in Dempster [2], Shafer [13], Nguyen and
Wang [8], Nguyen [5], and Li and Wang [4]. Recently, the characterization of joint
distributions of random sets on co-product spaces was discussed by Schmelzer [10]
and Nguyen [6]. In this paper, this characterization is modified for discrete random
set vector.
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In the game theory, a cooperative game is a game where groups of players may
enforce cooperative behaviour, see Burger [1]. The Shapley value is a solution
concept in the cooperative game theory aiming to propose the fairest allocation of
collectively gained profits between the several collaborative agents. Let E be a finite
set of N players. A game is a mapping ν : 2E → R such that ν(∅) = 0. The Shapley
value of player i is given by

φi(ν) =
∑

S⊆E\{i}

|S|!(N − |S| − 1)!
N ! [ν(S ∪ {i}) − ν(S)],

where |S| is the cardinality of the set S. A game ν is said to be strategically equivalent
a game ν′, if there are positive number α and real numbers ci, where i ∈ E, such that
for any coalition A ⊆ E, we have ν′(A) = αν(A) + ∑

i∈A ci. It is known that every
essential coalitional game is strategically equivalent to one and only one game in the
(0, 1)-reduced form, i.e., ν′ : 2E → [0, 1]. Note that if ν′ satisfies the property of
monotone of infinite order, see [5], it can be treated as special case of belief function.
For the computational aspect of the Shapley value in the univariate case, see Li and
Wang [4]. It is natural to extend univariate coalitional games into bivariate cases
using the bivariate belief functional, which has not been discussed in literature. Also
the Shapley value of a bivariate coalitional game can be extended to the cases of the
bivariate random sets. In this paper, a formula for calculating the bivariate Shapley
value is provided.

In literature, the theory of games have been extended to the game with
vector-valued payoffs, see Fernandez et al. [3] and Roemer [9]. The vector-valued
game is a game with n players, each of whom has several goals. For example, in
the World Figure Skating Championship competition, the total points for the perfor-
mance of each figure skater or each pair of skaters is the weighted combination of
two scores, short program and free skating. In this paper, we will use the proposed
joint game to analyze the bivariate vector-valued game and treat each component as
the marginal of the joint game. Thus, the Shapley value of the bivariate vector-valued
game can be computed as those of marginal games.

The following example can be considered as an application of the joint coalition
game. In China’s transportation energy market, the gasoline and the natural gas are
two main complementary energy sources, both are used in most large cities for cars
and buses. Suppose there are n1 companies producing gasoline and n2 companies
producing nature gas. Each grade of gasoline is produced solely by a company or
produced jointly by several companies. Similarly situations are applied to natural
gas companies. Let ν(A, B) be the amount of sales (say in million dollars), where
A ⊆ {1, . . . , n1} and B ⊆ {n1 +1, . . . , n1 +n2} are coalitions of gasoline companies
and natural gas companies, respectively. In each gas station, grades of gasoline and
grades of natural gas are sold. The intersection of two sets of companies may not
be empty, since some companies produce both gasoline and natural gas. Given the
data of total sales of all combinations of grades of gasoline and natural gas, how
to estimate the sales attributed to each combination of ith gasoline company and
jth natural gas company, besides the sales attributed to each ith gasoline company
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and jth natural gas company individually? In this paper, the framework of the joint
cooperative game is established.

This paper is organized as follows. The characterization of the joint distribution of
random set vector by its joint belief functions is obtained in Sect. 2. As an application
of random set vector, the bivariate coalitional game and its properties are investigated
in Sect. 3. In Sect. 4, the Shapley value of a joint cooperative game is obtained through
cores and games. The formulas for calculating bivariate Shapley value derived by two
methods are shown to be identical. To illustrate our main results, several examples
are given.

2 The Characterization of the Joint Belief Function
of Discrete Random Set Vector

Throughout this paper, let (Ω,A , P) be a probability space and let E1 and E2 be
finite sets, where Ω is sample space, A is a σ -algebra on subsets of Ω and P is a
probability measure.

Recall that a finite random set S with values in powerset of a finite E is a map
S : Ω → 2E such that S −1({A}) = {ω ∈ Ω : S (ω) = A} ∈ A for any A ⊆ E.
Let f : 2E → [0, 1] be f (A) = P(S = A), then f is a probability density function of
S on 2E . In the following, we will extend this definition to the case of the bivariate
random set vector.

Definition 2.1 Let E1 and E2 be two finite sets. A bivariate random set vec-
tor (S1,S2) with values in 2E1 × 2E2 is a map (S1,S2) : Ω → 2E1 × 2E2

such that {ω ∈ Ω : S1(ω) = A,S2(ω) = B} ∈ A , for any A ⊆ E1 and
B ⊆ E2. The function h : 2E1 × 2E2 → [0, 1] is said to be a joint probability
density function of (S1,S2) if h ≥ 0 and

∑

A⊆E1

∑

B⊆E2
h(A, B) = 1, where

h(A, B) = P(S1(ω) = A,S2(ω) = B), A ⊆ E1, and B ⊆ E2.

Inspired by the distribution of univariate random sets, we are going to define
axiomatically the concept of joint distribution functions of the random set vector
(S1,S2). Let (S1,S2) be a (nonempty) random set vector on 2E1 × 2E2 and H :
2E1 × 2E2 → [0, 1] be

H(A, B) = P(S1 ⊆ A,S2 ⊆ B) =
∑

C⊆A

∑

D⊆B

h(C, D), A ∈ 2E1 , B ∈ 2E2 . (1)

It can be shown that H satisfies the following properties:

(i) H(∅,∅) = H(∅, B) = H(A,∅) = 0, and H(E1, E2) = 1;
(ii) H is monotone of infinite order on each component, i.e., for any B in 2E2 and

any distinct sets A1, A2, . . . , Ak in 2E1 , k ≥ 1,

H

(

k
⋃

i=1

Ai, B

)

≥
∑

∅	=I⊆{1,2,...,k}
(−1)|I|+1H

(

⋂

i∈I

Ai, B

)

, (2)
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and for any A ∈ 2E1and any distinct sets B1, B2, . . . , B� in 2E2 , � ≥ 1,

H

⎛

⎝A,

�
⋃

j=1

Bj

⎞

⎠ ≥
∑

∅	=J⊆{1,2,...,�}
(−1)|J|+1H

⎛

⎝A,
⋂

j∈J

Bj

⎞

⎠ , (3)

and
(iii) H(., .) is jointly monotone of infinite order, i.e., for distinct setsA1, A2, . . . , Ak

in 2E1 and distinct B1, B2, . . . , B� in 2E2 , where k, � are positive integers,

H

⎛

⎝

k
⋃

i=1

Ai,

�
⋃

j=1

Bj

⎞

⎠ ≥ −
∑

∅	=I⊆{1,2,...,k}

∑

∅	=J⊆{1,2,...,�}
(−1)|I|+|J|H

⎛

⎝

⋂

i∈I

Ai,
⋂

j∈J

Bj

⎞

⎠

+
∑

∅	=I⊆{1,2,...,k}
(−1)|I|+1H

⎛

⎝

⋂

i∈I

Ai,

�
⋃

j=1

Bj

⎞

⎠

+
∑

∅	=J⊆{1,2,...,�}
(−1)|J|+1H

⎛

⎝

k
⋃

i=1

Ai,
⋂

j∈J

Bj

⎞

⎠ . (4)

It turns out that the properties (i), (ii) and (iii) of H above characterize the joint
distribution function of a (nonempty) random set vector.

Definition 2.2 A set function H : 2E1 × 2E2 → [0, 1] satisfying the properties (i),
(ii) and (iii) is said to be the joint belief function of random set vector (S1,S2).

Given any given joint belief function H of (S1,S2), there exists a probability
density function h : 2E1 × 2E2 → [0, 1] corresponding to H. In fact, let H : 2E1 ×
2E2 → [0, 1] be such that

(i) H(∅,∅) = H(∅, B) = H(A,∅) = 0, and H(E1, E2) = 1,
(ii) H is monotone of infinite order on each component, and
(iii) H is joint monotone of infinite order. Then for any (A, B) ∈ 2E1 × 2E2 , there

exists a nonnegative set function h : 2E1 × 2E2 → [0, 1], called the Möbius inverse
of H, such that

H(A, B) =
∑

C⊆A

∑

D⊆B

h(C, D) (5)

and

∑

C⊆E1

∑

D⊆E2

h(C, D) = 1. (6)
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The function h : 2E1 × 2E2 → [0, 1] is of the form
h(A, B) =

∑

C⊆A

∑

D⊆B

(−1)|A\C|+|B\D|H(C, D), (7)

where A\C = A ∩ Cc and Cc is the complement of C.
Given a set function H : 2E1 × 2E2 → [0, 1], it is natural to ask whether if it is

a well-defined joint belief function. By the conditions in (i), (ii) and (iii) of H, we
only need to check that (i)–(iii) hold for all distinct sets A1, . . . , Ak and B1, . . . , B�.

Similar to conditions (i), (ii) and (iii) of H, there is a property called completely
monotone in each component, given by Schmelzer [10, 11] and Nguyen [6] as
follows.

A set function H1 : 2E1 × 2E2 → [0, 1] is said to be completely monotone in
each component, if for any k ≥ 2 and (Ai, Bi) ∈ 2E1 × 2E2 , i = 1, 2, . . . , k,

H1

(

k
⋃

i=1

Ai,

k
⋃

i=1

Bi

)

≥
∑

∅	=I⊆{1,2,...,k}
(−1)|I|+1H1

(

⋂

i∈I

Ai,
⋂

i∈I

Bi

)

. (8)

It can be shown that (8) is equivalent to (ii) and (iii). The difference between two
forms is that the (Ai, Bi)’s in (8) are not necessarily distinct sets and may be repeated
many times.

3 The Joint Cooperative Game

In the cooperative game theory (see, e.g. Burger [1]), an n-person game G is given by
n non-empty sets Si’s, the strategy sets of the players, and ui’s, the pay-off functions
of the player i = 1, 2, . . . , n, real-valued functions defined on S1 × S2 × · · · × Sn.
Such a game is denoted by G = (Si, ui : i ∈ E = {1, 2, . . . , n}). The characteristic
function of the n-person game G is a set valued function ν : 2E → R satisfies
properties (a) ν(∅) = 0 and (b) Superadditivity: if A, B ∈ 2E and A ∩ B = ∅, then
ν(A) + ν(B) ≤ ν(A ∪ B).

Motivated by this, if we consider of the same group of people playing two parts
(say, defensive and offensive parts) of a game, we can define the joint characteristic
function of the game. Without loss of generality, we assume that E1 = {1, . . . , n1}
and E2 = {n1 + 1, . . . , n1 + n2}.
Definition 3.1 The bivariate set valued function ν : 2E1 × 2E2 → R is said to be a
joint characteristic function for a joint game if it satisfies,

(a) ν(∅,∅) = ν(A,∅) = v(∅, B) = 0, for any A ⊆ E1 and B ⊆ E2;
(b) Superadditivity on each component: for each fixed A ⊆ E1,

ν(A, B1) + ν(A, B2) ≤ ν(A, B1 ∪ B2) with B1, B2 ⊆ E2, B1 ∩ B2 = ∅, (9)
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and for each fixed B ⊆ E2,

ν(A1, B) + ν(A2, B) ≤ ν(A1 ∪ A2, B) with A1, A2 ⊆ E2, A1 ∩ A2 = ∅; (10)

and,
(c) Joint superadditivity: for anyA1, A2 ⊆ E1 and B1, B2 ⊆ E2, with A1∩A2 = ∅,

and B1 ∩ B2 = ∅,

ν(A1 ∪ A2, B1 ∪ B2) ≥ ν(A1 ∪ A2, B1) + ν(A1 ∪ A2, B2)

+ ν(A1, B1∪) + ν(A2, B1 ∪ B2)

− ν(A1, B1) − ν(A2, B1) − ν(A1, B2) − ν(A2, B2). (11)

Since there are a great variety of coalitional games, it is desirable to classify them
in such a way that those games which belong to the same class will have the same
basic properties. This will allow us to consider a single representative game in a class
rather the whole class and choose the simplest one, if possible.

Definition 3.2 The joint game (E1 × E2, ν) is said to be strategically equivalent
to the game (E1 × E2, ν

∗) if there are positive number α and real numbers cij, where
i ∈ E1 and j ∈ E2, such that for any coalition A × B ∈ 2E1×E2 , we have

ν∗(A, B) = αν(A, B) +
∑

i∈A

∑

j∈B

cij.

It is easy to show strategically equivalent relation is an equivalence relation, see
Nguyen [7].

A joint game is called unessential if ν(E1, E2) = ∑

i∈E1

∑

j∈E2
ν({i}, {j}),

otherwise it is called essential, i.e., ν(E1, E2) >
∑

i∈E1

∑

j∈E2
ν({i}, {j}). Note that

for any unessential game (E1×E2, ν), it is true that ν(A, B) = ∑

i∈A
∑

j∈B ν({i}, {j})
for any A ⊆ E1, B ⊆ E2. Indeed, if not we have ν(A, B) >

∑

i∈A
∑

j∈B ν({i}, {j}) by
super-additivity. Furthermore, we have

ν(E1, E2) ≥ ν(E1, B) + ν(A, E2) + ν(E1, Bc) + ν(Ac, E2)

−ν(A, B) − ν(Ac, B) − ν(A, Bc) − ν(Ac, Bc)

≥ ν(A, E2) + ν(Ac, E2)

≥ ν(A, B) + ν(A, Bc) + ν(Ac, B) + ν(Ac, Bc)

>
∑

i∈E1

∑

j∈E2

ν({i}, {j})

which is a contradiction. Also, this implies

ν(E1, E2) =
∑

i∈E1

ν({i}, E2) and ν(E1, E2) =
∑

j∈E2

ν(E1, {j}).
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Proposition 3.1 Every unessential game is strategically equivalent to a trivial game.
Every essential game is equivalent to a (0, 1)-reduced game, i.e., a characteristic
function ν∗ : 2E1 × 2E2 → [0, 1] such that ν∗({i}, {j}) = 0 and ν∗(E1, E2) = 1.

Proof Let ν : 2E1 × 2E2 → R be an unessential game, then for any A ⊆ E1 and
B ⊆ E2,

ν(A, B) =
∑

i∈A

∑

j∈B

ν({i}, {j}).

Let α = 1 and cij = −ν({i}, {j}) for any i ∈ E1 and j ∈ E2, ν is equivalent to
ν∗(A, B) = αν(A, B) + ∑

i∈A
∑

j∈B ν(A, B) = 0.
Let ν be an essential game. Consider the system of equations with unknowns cij

and α given below.
ν∗({i}, {j}) = αν({i}, {j}) + cij = 0

and
ν∗(E1, E2) = αν(E1, E2) +

∑

i∈E1

∑

j∈E2

cij = 1.

The solutions of α and cij’s are

α =
⎡

⎣ν(E1, E2) −
∑

i∈E1

∑

j∈E2

ν({i}, {j})
⎤

⎦

−1

and cij = −αν({i}, {j})

so that the joint game ν∗(A, B) = αν(A, B) + ∑

i∈A
∑

j∈B cij is a game in (0, 1)-
reduced form. �
Remark 3.1 For any game ν : 2E1 × 2E2 → R, there exists one unique (0, 1)-
reduced game ν∗ : 2E1 × 2E2 → [0, 1] such that ν∗ is strategically equivalent to ν.
Thus, every ν can be uniquely transformed to a characteristic function ν∗. Therefore,
without loss of generality and for simplicity, we assume that ν is the the characteristic
function in the (0, 1)-reduced form, i.e., ν : 2E1 ×2E2 → [0, 1]. Also note that if we
take A1, A2 ⊆ E1 and B1, B2 ⊆ E2 with A1 ∩ A2 = ∅ and B1 ∩ B2 = ∅, then (2), (3)
and (4) in the definition of the joint belief function will be reduced to (9), (10) and
(11), and conditions (i), (ii) and (iii) in the definition of the joint belief function will
be reduced to conditions (a), (b) and (c) in the definition of the characteristic function.
Therefore, every joint belief function can be treated as a characteristic function. �

Now, assume ν is a joint characteristic function, we can define three games. let
Si = {A ⊆ E1|i ∈ A} and Tj = {B ⊆ E2|j ∈ B}, i.e., each player i in E1, and player
j in E2 has their strategies as subsets to which i and j belongs. Then, we can define
payoff functions for two marginal games and a joint game as,

u1i (s1, . . . , sn1) =
{

ν(si,E2)|si|n2 if for any i′ ∈ si, si′ = si,

ν({i},E2)
n2

otherwise,
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u2j (t1, . . . , tn2) =
⎧

⎨

⎩

ν(E1,tj)
n1|tj | if for any j′ ∈ tj, tj′ = tj,

ν(E1,{j})
n1

otherwise,

and the joint payoff functions are defined as,

uij(s1, . . . , sn1; t1, . . . , tn2)

=

⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎩

ν(si,tj)
|si||tj | if for any i′ ∈ si, j′ ∈ tj, si′ = si, tj′ = tj,

ν(si,{j})
|si| if for any i′ ∈ si, si′ = si and there exists j′ ∈ tj, tj′ 	= tj,

ν({i},tj)
|tj | if for any j′ ∈ tj, tj′ = tj and there exists i′ ∈ si, si′ 	= si,

ν({i}, {j}) otherwise.

It is easy to see that

uij(s1, . . . , sn1; E2, . . . , E2) = u1i (s1, . . . , sn1)

and
uij(E1, . . . , E1; t1, . . . , tn2) = u2j (t1, . . . , tn2),

i.e., the marginals of the joint payoff functions are exactly two univariate marginal
payoff functions.

Definition 3.3 An n1 × n2 matrix X is called the joint imputation in (E1 × E2, ν)

if it satisfies

(i) Individual rationality: xij ≥ ν({i}, {j}) for each i ∈ E1 and j ∈ E2 and
(ii) Group rationality:

∑

i∈E1

∑

j∈E2
xij = ν(E1, E2).

In terms of characteristic functions in (0, 1)-reduced form, the joint imputation
is an n1 × n2 matrix X such that xij ≥ 0 and

∑

i∈E1

∑

j∈E2
xij = 1, i.e., a probability

distribution on E1 × E2. It is a n1n2 − 1 dimensional simplex in Rn1×n2 .

Definition 3.4 Let X and Y be two joint imputations in (E1 × E2, ν), and (A, B) be
a coalition. We say that X dominates Y through (A, B) if

yij < xij for all i ∈ A, j ∈ B and
∑

i∈A

∑

j∈B

xij ≤ ν(A, B).

This partial order relation is denoted by Y ≺(A,B) X. Also we say that X dominates
Y , denoted by Y ≺ X, if there is a coalition (A, B) such that Y ≺(A,B) X. The set of all
undominated imputations of (E1 × E2, ν) is called the core of ν, denoted by C (ν).

Now we obtain one solution for a joint game.
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Theorem 3.1 An imputation X is in C (ν) if and only if

ν(A, B) ≤
∑

i∈A

∑

j∈B

xij for any coalition (A, B).

Proof For “if part”, it suffices to consider the game ν in its (0, 1)-reduced form. Let
X ∈ C (ν) and suppose that there is a coalition (A, B) such that

ν(A, B) >
∑

i∈A

∑

j∈B

xij. (12)

Note that if (12) holds, either A or B must have more than one element, otherwise let
A = {i} and B = {j}, ν({i}, {j}) > xij which contradicts the definition of imputation
(See Definition 3.3). Similarly, (12) can not hold for any (A, B) 	= (E1, E2) since

∑

i/∈A

∑

j/∈B

xij +
∑

i/∈A

∑

j∈B

xij +
∑

i∈A

∑

j/∈B

xij = ν(E1, E2) −
∑

i∈A

∑

j∈B

xij

≥ ν(A, B) −
∑

i∈A

∑

j∈B

xij > 0.

Let ε > 0 such that

0 < ε <
1

|A||B|

⎡

⎣ν(A, B) −
∑

i∈A

∑

j∈B

xij

⎤

⎦ .

We can construct an imputation Y by setting

yij = xij + ε if i ∈ A and j ∈ B

and

yij =

∑

i/∈A

∑

j/∈B
xij + ∑

i/∈A

∑

j/∈B
xij + ∑

i/∈A

∑

j/∈B
xij − |A||B|ε

|E1\A||E2\B| + |E1\A||B| + |A||E2\B|
otherwise. Then Y is an imputation, and moreover, X ≺(A,B) Y which contradicts
ν ∈ C (ν).

Now for the “only if part”, suppose X satisfies the condition for any coalition
(A, B), ν(A, B) ≤ ∑

i∈A
∑

j∈B xij. If X is dominated by some Y then there exists
some coalition (A, B), such that

∑

i∈A

∑

j∈B

xij <
∑

i∈A

∑

j∈B

yij ≤ ν(A, B),

violating the above condition. �
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4 The Bivariate Shapley Value

In game theory, the Shapley value is a solution concept in cooperative game theory,
it assigns a unique distribution (among the players) of a total surplus generated by
the coalition of all players [12]. In this section, we derive the bivariate Shapley value
through two different methods and we will show the Shapley value formulas derived
from these two methods are equivalent. The Shapley value of the univariate game
and its computational method based on random set can be found in Li and Wang [4].

4.1 The Bivariate Shapley Value Through the Cores
of the Belief Function H

Let E1 = {1, . . . , n1} and E2 = {n1 + 1, . . . , n1 + n2} be two finite sets and P be
the set of all joint probability measures on E1 × E2. Let H be a joint belief function
function on 2E1 × 2E2 . By Remark3.1, H can be treat as a characteristic function on
2E1 × 2E2 . Therefore, the cores of H is well-defined by Definition 3.4. Furthermore,
by Theorem 3.1, the cores of H can be rewrite as

core(H) ≡ {P ∈ P|H � P},

where H � P means that H(A, B) ≤ P(A, B) for all A ∈ 2E1 , B ∈ 2E2 .
Note that there are n1! and n2! different orders of the elements in E1 and E2.

Specifically, let Σ1 and Σ2 denote the set of all permutations of E1 and E2, respec-
tively. For each pair σi ∈ Σi, i = 1, 2, the elements of E1 and E2 are indexed
as {σ1(1), σ1(2), . . . , σ1(n1)} and {σ2(n1 + 1), σ2(n1 + 2), . . . , σ2(n1 + n2)}. We
associate a density pσ1,σ2 on E1 × E2 as follows.
(i) For all i ∈ E1, j ∈ E2, define,

pσ1,σ2(1, n1 + 1) = H({σ1(1)}, {σ2(1), . . . σ2(n1 + 1)}),
pσ1,σ2(1, j) = H({σ1(1)}, {σ2(1), . . . σ2(j)})

− H({σ1(1)}, {σ2(1), . . . σ2(j − 1)}),
pσ1,σ2(i, n1 + 1) = H({σ1(1), . . . , σ1(i)}, {σ2(n1 + 1)})

− H({σ1(1), . . . , σ1(i − 1)}, {σ2(n1 + 1)}). (13)

(ii) For all i ≥ 2 and j ≥ 2,

pσ1,σ2(i, j) = H({σ1(1), . . . , σ1(i)}, {σ2(n1 + 1), . . . , σ2(j)})
− H({σ1(1), . . . , σ1(i − 1)}, {σ2(n1 + 1), . . . , σ2(j)})
− H({σ1(1), . . . , σ1(i)}, {σ2(n1 + 1), . . . , σ2(j − 1)})
+ H({σ1(1), . . . , σ1(i − 1)}, {σ2(n1 + 1), . . . , σ2(j − 1)}). (14)
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Then the associated probability measure P is defined as

Pσ1,σ2(A, B) =
∑

i∈A

∑

j∈B

pσ1,σ2(i, j), (15)

forA ∈ 2E1 andB ∈ 2E2 . In the followingwewill show that this associated probability
measure P is in the core(H).

Theorem 4.1 The probability measure Pσ1,σ2 given in (15) is in the core(H), i.e.,
H(A, B) ≤ P(A, B) for all A ∈ 2E1 , B ∈ 2E2 .

Proof By the definition of pσ1,σ2(i, j), 1 ≤ i ≤ n1 and n1 + 1 ≤ j ≤ n2, we know
that

pσ1,σ2(i, j) ≥ 0 and
n1

∑

i=1

n1+n2
∑

j=n1+1

pσ1,σ2(i, j) = 1.

To show H(A, B) ≤ P(A, B) for all A ∈ 2E1 , B ∈ 2E2 , we need to show that, for any
2 ≤ i ≤ n1 and n1 + 2 ≤ j ≤ n1 + n2,

H({1, . . . , i}, {n1 + 1, . . . , j}) − H({1, . . . , i − 1}, {n1 + 1, . . . , j − 1})
= Pσ1,σ2({1, . . . , i}, {n1 + 1, . . . , j})

− Pσ1,σ2({1, . . . , i − 1}, {n1 + 1, . . . , j − 1}). (16)

Indeed, from the definition of Pσ1,σ2 , we obtain

Pσ1,σ2({1, . . . , i}, {n1 + 1, . . . , j}) − Pσ1,σ2({1, . . . , i − 1}, {n1 + 1, . . . , j − 1})

=
n1+n2
∑

t=n1+1

pσ1σ2(i, t) +
n1−1
∑

s=1

pσ1,σ2(s, j),

= H({1, . . . , i}, {n1 + 1}) − H({1, . . . , i − 1}, {n1 + 1})

+
n1+n2
∑

t=n1+2

(H({1, . . . , i}, {n1 + 1, . . . , t})

− H({1, . . . , i − 1}, {n1 + 1, . . . , t}) − H({1, . . . , i}, {n1 + 1, . . . , t − 1})
+ H({1, . . . , i − 1}, {n1 + 1, . . . , t − 1}))
+ H({1}, {n1 + 1, . . . , j}) − H({1}, {n1 + 1, . . . , j − 1})

+
n1−1
∑

s=2

(H({1, . . . , s}, {n1 + 1, . . . , j})

− H({1, . . . , s − 1}, {n1 + 1, . . . , j}) − H({1, . . . , s}, {n1 + 1, . . . , j − 1})
+ H({1, . . . , s − 1}, {n1 + 1, . . . , j − 1}))

= H({1, . . . , i}, {n1 + 1, . . . , j}) − H({1, . . . , i − 1}, {n1 + 1, . . . , j − 1}).
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Now, let i = min{s ∈ E1|s ∈ Ac} and j = min{t ∈ E2|t ∈ Bc}. DefineA′ = {1, . . . , i}
and B′ = {n1 + 1, . . . , j}. Note that A ∪ A′ = A ∪ {i}, B ∪ B′ = B ∪ {j} and
A ∩ A′ = {1, . . . , i − 1}, B ∩ B′ = {n1 + 1, . . . , j − 1}. From (8) and (16), we have

H(A ∪ {i}, B ∪ {j}) ≥ H(A, B) + H({1, . . . , i}, {n1 + 1, . . . , j})
− H({1, . . . , i − 1}, {n1 + 1, . . . , j − 1})

= H(A, B) + Pσ1,σ2(A ∪ {i}, B ∪ {j})
− Pσ1,σ2({1, . . . , i − 1}, {n1 + 1, . . . , j − 1})

≥ H(A, B) + Pσ1,σ2(A ∪ {i}, B ∪ {j}) − Pσ1,σ2({A, B}).

Therefore, we have

H(A, B) − Pσ1,σ2({A, B}) ≤ H(A ∪ {i}, B ∪ {j}) − Pσ1,σ2(A ∪ {i}, B ∪ {j}).

Furthermore, viewing A∪{i}, and B∪{j} as another A, and B in the above inequality,
and using the same argument recursively, we obtain

H(A, B) − Pσ1,σ2({A, B}) ≤ H(A ∪ {i}, B ∪ {j}) − Pσ1,σ2(A ∪ {i}, B ∪ {j})
≤ · · · ≤ H(E1, E2) − Pσ1,σ2({E1, E2}) = 1 − 1 = 0,

and hence, Pσ1,σ2 is in the core(H). �

Note that for each pair (σ1, σ2), σi ∈ Σi, i = 1, 2, we obtain an element of
core(H), denoted as Pσ1,σ2 . There are n1! × n2! of Pσ1,σ2 . These Pσ1,σ2 are extreme
points of core(H) and can be used to define the Shapley value for the joint game. The
bivariate Shapley value for (i, j) with i ∈ E1 and j ∈ E2 is defined as the arithmetic
average of all extreme points of core(H), i.e.,

φij = 1

n1!n2!
∑

σ1∈Σ1

∑

σ2∈Σ2

pσ1,σ2(i, j), (17)

where pσ1,σ2(i, j) are given in (13) and (14).

Example 4.1 Let E1 = {1, 2} and E2 = {3, 4, 5}. Consider the one joint belief
function H given in Table1.

By formula given in (17), we can calculate the bivariate Shapley value listed in
Table2.

Table 1 The joint belief
function H

H {3} {4} {5} {3,4} {3,5} {4,5} {3,4,5}

{1} 5/48 13/144 11/144 7/36 13/72 1/6 1/3

{2} 1/12 1/12 1/12 1/6 1/6 1/6 1/3

{1,2} 1/4 1/4 1/4 1/2 1/2 1/2 1



The Joint Belief Function and Shapley Value for the Joint Cooperative Game 127

Table 2 The bivariate
Shapley value for H

Φ {3} {4} {5}

{1} 0.1736111 0.1689815 0.1597222

{2} 0.1603009 0.1666667 0.1678241

4.2 The Bivariate Shapley Value Through the Joint Game

Besides the Shapley value calculation given above, we propose a procedure corre-
sponds to each joint game (E1 × E2, ν) with an imputation matrix Φ(ν) = (φij(ν))

whose components describe fair pay-offs’ to each of the players in a joint game.
For each ∅ 	= A ⊆ E1 and ∅ 	= B ⊆ E2, we define a simple game ωA,B, a game

taking values in {0, 1}, as follows,

ωA,B(C, D) =
{

1 if C ⊆ A, D ⊆ B

0 otherwise.

Note that ωA,B’s given above have the following properties,

Lemma 4.2 If ν is a (0, 1)-reduced game, then there are (2n1 − 1)(2n2 − 1) real
numbers cA,B , for each ∅ 	= A ⊆ E1 and ∅ 	= B ⊆ E2, such that

ν(C, D) =
∑

A⊆E1

∑

B⊆E2

cA,BωA,B(C, D).

Proof For each ∅ 	= A ⊆ E1 and ∅ 	= B ⊆ E2, let

cA,B =
∑

C⊆A

∑

D⊆B

(−1)|A\C|+|B\D|ν(C, D),

be the 2-dimensional Mobius inverse of ν(A, B). Then,

ν(A, B) =
∑

C⊆A

∑

D⊆B

cC,D .

Therefore, for any C, D,
∑

A⊆E1

∑

B⊆E2

cA,BωA,B(C, D) =
∑

A⊆C

∑

B⊆D

cA,B = ν(C, D). �

Suppose that the player i is in a coalition A of E1. Then by Superadditivity on the
first component we have

ν(A, B) ≥ ν(A\{i}, B) + ν({i}, B),

for any coalition B of E2. If ν(A, B) = ν(A\{i}, B) + ν({i}, B), for any i ∈ A ⊆ E1
and any B ⊂ E2, then player i ∈ E1 is unessential to any coalition in E1.
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Definition 4.1 The pair of player (i, j) is said to be dummy if
(a) for player i in E1, ν(A, B) = ν(A\{i}, B) + ν({i}, B), for any i ∈ A ⊆ E1 and any
B ⊂ E2 and
(b) for player j in E2, ν(A, B) = ν(A, B\{j}) + ν(A, {j}), for any A ⊆ E1 and any
j ∈ B ⊂ E2.
A carrier of ν is a set of all non-dummy pairs.

Note that if (i, j) is dummy, then ν({i}, B) = ∑

j∈B φij and ν(A, {j}) = ∑

i∈A φij.

Also if (T1, T2) is a carrier of ν, then ν(T1, T2) = ∑

i∈T1

∑

j∈T2
φij.

For the computational aspect of the bivariate Shapley value, we need the following
lemmas.

Lemma 4.3 For ∅ 	= A ⊂ E1 and ∅ 	= B ⊂ E2, we have for any c > 0,

φij(cωA,B) =
{

c/(|A||B|) if (i, j) ∈ (A, B),

0 otherwise.

Proof Clearly A × B is a carrier of cωA,B and cωA,B({i}, {j}) = 0 for (i, j) /∈ A × B.
We have ∑

i∈A

∑

j∈B

φij = cωA,B(A, B) = c,

On the other hand, (i, j) /∈ (A, B) is a dummy, thus

φij = cωA,B({i}, {j}) = 0.

Also, all φij of Φ(cωA,B) for (i, j) ∈ (A, B) are equal to each other, and the desired
result follows. �
Lemma 4.4 There is a unique function for the bivariate Shapley value. The bivariate
Shapley value formula is given as follow

φij(ν) =
∑

C�i

∑

D�j

[

(n1 − |C|)!(|C| − 1)!
n1!

(n2 − |D|)!(|D| − 1)!
n2!

]

(18)

× [

ν(C, D) − ν(C, D\{j}) − ν(C\{i}, D) + ν(C\{i}, D\{j})] .

The proof of Lemma 4.4 is given in Appendix. Let (E1 × E2, ν) be a joint game,
(E1, ν1) and (E2, ν2) be its two marginal games. For the marginal game (E1, ν1),
the Shapley value Φ(ν1) can be obtained by the formula of univariate case (see
Nguyen [7]),

φi(ν1) =
∑

C�i

[

(n1 − |C|)!(|C| − 1)!
n1!

]

[ν1(C) − ν1(C\{i})] for i ∈ E1.

Similarly, the Shapley value Φ(ν2) of ν2 can be obtained for the marginal game
(E2, ν1). The following result provides the relation betweenφij(ν) andφi(ν1),φj(ν2).
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Table 3 The bivariate
Shapley value for game ν

Φ(ν) {3} {4} {5}

{1} 0.1736111 0.1689815 0.1597222

{2} 0.1603009 0.1666667 0.1678241

Proposition 4.1 For each i ∈ E1, j ∈ E2,

∑

j∈E2

φij(ν) = φi(ν1) and
∑

i∈E1

φij(ν) = φj(ν2).

The proof of Proposition 4.1 is similar to proof of Lemma 4.4.
The following example illustrates the above Proposition.

Example 4.2 (Example4.1 continued) Consider the joint game given in Table1. By
the second formula of the Shapley value (18), we can calculate the bivariate Shapley
value in Table3,

From the last row and the last column of the joint belief function, we obtain
marginal games given in Table4.

Also the Shapley value for each of marginal games ν1 and ν2 listed in Table5.

Example 4.3 (See Fernandez [3] with some values changed) Consider three cell-
phone operators (namely O1, O2, and O3) that want to enter a new market. There
are two criteria that must be considered in the process. On the one hand, there is the
profit that has been estimated from themarket analysis. On the other hand, there is the
coverage, which is regulated by law. Thus, the percentage of population covered by
each operator or by merging is fixed by the government. Cover- age is very important
because it is known to improve the return in the medium and long run. Let us assume
that profit is measured in millions of dollars and coverage in percent. We represent
by vectors with two entries the values obtained by each operator: the first entry is
the profit and the second one is the coverage. Let us consider the following data that
represent the values obtained in different cooperation situations:
Let set functions ν1 and ν2 be the profit and the coverage of each coalition, respec-
tively. Note that ν1 and ν2 are converted to standardized games ν′

1 and ν′
2 which are

belief functions, given in Table6.

Table 4 Marginal games ν1(A) and ν2(B)

A {1} {2} {1,2} B {3} {4} {5} {3,4} {3,5} {4,5} {3,4,5}

ν1 1/3 1/3 1 ν2 1/4 1/4 1/4 1/2 1/2 1/2 1

Table 5 Marginal shapley value of games ν1(A) and ν2(B)

Φ(ν1) {1} {2} Φ(ν2) {3} {4} {5}

1/2 1/2 1/3 1/3 1/3
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Table 6 ν′
1 and ν′

2

Coalition {O1} {O2} {O3} {O1,O2} {O1,O3} {O2,O3} {O1,O2,O3}

ν′
1 1/6 1/4 1/3 1/2 1/2 2/3 1

ν′
2 0.2 0.4 0.1 0.7 0.3 0.5 1

Table 7 The joint game ν of ν1 and ν2

ν {O1} {O2} {O3} {O1,O2} {O1,O3} {O2,O3} {O1,O2,O3}

{O1} 0.052 0.076 0.013 0.139 0.065 0.089 1/6

{O2} 0.064 0.107 0.022 0.191 0.086 0.129 1/4

{O3} 0.059 0.13 0.035 0.225 0.094 0.164 1/3

{O1,O2} 0.126 0.213 0.045 0.38 0.171 0.258 1/2

{O1,O3} 0.111 0.206 0.048 0.363 0.159 0.253 1/2

{O2,O3} 0.131 0.266 0.067 0.464 0.199 0.333 2/3

{O1,O2,O3} 0.2 0.4 0.1 0.7 0.3 0.5 1

Table 8 The vector valued game μ

Coalition S {O1} {O2} {O3} {O1,O2} {O1,O3} {O2,O3} {O1,O2,O3}

μ(S)

(

2

20

) (

3

40

) (

3

10

) (

6

70

) (

6

30

) (

8

50

) (

12

100

)

Table 9 The bivariate
Shapley value for game ν

Φ(ν) {O1} {O2} {O3} Φ(ν1)

{O1} 0.08080939 0.1288041 0.03318769 0.2428012

{O2} 0.11365177 0.1866061 0.05838052 0.3586384

{O2} 0.11930673 0.2087663 0.07489487 0.4029679

Φ(ν2) 0.3137679 0.5241765 0.1664631 1

If we use the correlation coefficient of the profit and the coverage ρ = 0.83, and
adopt Farlie-Gumbel-Morgenstern copula Cρ(u, v) to construct the joint game (or
the joint belief function) ν, then we have the following Table7.

Note that the last row and the last column of ν can be treated as the standardized
the vector-valued game μ in Table8. Furthermore, we can find the Shapley value for
this joint game (Table9).

Acknowledgments The authors would like to thank Professor Hung T. Nguyen for introducing
this interesting topic to us and anonymous referees for their helpful comments which led to the big
improvement of this paper.
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Appendix

Proof of Lemma 4.4 Note that the left hand side of (18) is equal to

φij(ν) =
∑

A⊆E1

∑

B⊆E2

cA,Bφij(ωA,B) =
∑

A�i

∑

B�j

cA,B

|A||B|

=
∑

A�i

∑

B�j

1

|A||B|
∑

C⊆A

∑

D⊆B

(−1)|A\C|+|B\D|ν(C, D) (19)

= α1 − α2 − α3 + α4,

where

α1 =
∑

C�i

∑

D�j

⎡

⎣

∑

C⊆A

∑

D⊆B

(−1)|A\C|+|B\D| 1

|A||B|

⎤

⎦ ν(C, D)

=
∑

C�i

∑

D�j

⎡

⎣

n1
∑

s=|C|

n2
∑

t=|D|
(−1)(s−|C|)+(t−|D|) 1

st

(

n1 − |C|
s − |C|

) (

n2 − |D|
t − |D|

)

⎤

⎦ ν(C, D),

α2 =
∑

C�i

∑

D 	�j

⎡

⎣

∑

C⊆A

∑

D∪{j}⊆B

(−1)|A\C|+|B\D| 1

|A||B|

⎤

⎦ ν(C, D)

=
∑

C�i

∑

D 	�j

⎡

⎣

n1
∑

s=|C|

n2
∑

t=|D|+1

(−1)(s−|C|)+(t−|D|) 1
st

(

n1 − |C|
s − |C|

) (

n2 − |D| − 1
t − |D| − 1

)

⎤

⎦

ν(C, D),

α3 =
∑

C 	�i

∑

D�j

⎡

⎣

∑

C∪{i}⊆A

∑

D⊆B

(−1)|A\C|+|B\D| 1

|A||B|

⎤

⎦ ν(C, D)

=
∑

C 	�i

∑

D�j

⎡

⎣

n1
∑

s=|C|+1

n2
∑

t=|D|
(−1)(s−|C|)+(t−|D|) 1

st

(

n1 − |C| − 1
s − |C| − 1

)(

n2 − |D|
t − |D|

)

⎤

⎦

ν(C, D),

and

α4 =
∑

C 	�i

∑

D 	�j

⎡

⎣

∑

C∪{i}⊆A

∑

D∪{j}⊆B

(−1)|A\C|+|B\D| 1

|A||B|

⎤

⎦ ν(C, D)
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=
∑

C 	�i

∑

D 	�j

⎡

⎣

n1
∑

s=|C|+1

n2
∑

t=|D|+1

(−1)(s−|C|)+(t−|D|)

· 1

st

(

n1 − |C| − 1
s − |C| − 1

) (

n2 − |D| − 1
t − |D| − 1

)

⎤

⎦ ν(C, D).

Now by using the following equality,

n
∑

s=c

1

s
(−1)s−c

(

n − c
s − c

)

= (n − c)!(c − 1)!
n! ,

αi’s can be reduced so that the φij(ν) is

φij(ν) =
∑

C�i

∑

D�j

[

(n1 − |C|)!(|C| − 1)!
n1!

(n2 − |D|)!(|D| − 1)!
n2!

]

ν(C, D)

−
∑

C�i

∑

D 	�j

[

(n1 − |C|)!(|C| − 1)!
n1!

(n2 − |D| − 1)!|D|!
n2!

]

ν(C, D)

−
∑

C 	�i

∑

D�j

[

(n1 − |C| − 1)!|C|!
n1!

(n2 − |D|)!(|D| − 1)!
n2!

]

ν(C, D)

+
∑

C 	�i

∑

D 	�j

[

(n1 − |C| − 1)!|C|!
n1!

(n2 − |D| − 1)!|D|!
n2!

]

ν(C, D).

Therefore, the bivariate Shapley value formula is given, after simplification, by

φij(ν) =
∑

C�i

∑

D�j

[

(n1 − |C|)!(|C| − 1)!
n1!

(n2 − |D|)!(|D| − 1)!
n2!

]

× [

ν(C, D) − ν(C, D\{j}) − ν(C\{i}, D) + ν(C\{i}, D\{j})] . (20)

Note that Shavley value given in (20) is equivalent to the one given by the cores of
the joint belief function H, in (17). �
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Distortion Risk Measures Under Skew
Normal Settings

Weizhong Tian, Tonghui Wang, Liangjian Hu and Hien D. Tran

Abstract Coherent distortion risk measure is needed in the actuarial and financial
fields in order to provide incentive for active risk management. The purpose of
this study is to propose extended versions of Wang transform using skew normal
distribution functions. The main results show that the extended version of skew
normal distortion riskmeasure is coherent and its transformsatisfies the classic capital
asset pricing model. Properties of the stock price model under log-skewnormal and
its transform are also studied. A simulation based on the skew normal transforms is
given for a insurance payoff function.

1 Introduction

Riskmeasures are used to decide insurance premiums and required capital for a given
risk portfolio by examining its downside risk potential. A widely used risk measure
for the risk of loss on a specific portfolio of financial assets is the value at risk (VaR).
Mathematically, the VaR is simply a percentile of the distribution of losses.

Unfortunately, because the VaR fails to satisfy the sub-additivity property and
ignores the potential loss beyond the confidence level, distortion risk measures given
in Wang [22] have overcome these drawbacks.
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Distortion risk measures were originally applied to a wide variety of insurance
problems such as the determination of insurance premiums, capital requirements,
and capital allocations. Because insurance and investment risks are closely related,
the investment community started to apply distortion risk measures in context of the
asset allocation problem. Wang [25] also applied the distortion risk measure to price
catastrophe bonds, while Fabozzi and Steel [6] used it to price real estate derivatives.

The properties of a coherent risk measure were given by Azzalini [3]. In order to
construct a coherent risk measure, Li et al. [16] proposed two extended versions of
Type I Wang transform Wang [22] using two versions of skew normal distributions.
In this paper, a new skew normal risk measure and its properties are investigated.
It has been shown that our new skew normal risk measure satisfied the capital asset
pricing model classic capital asset model (CAPM).

This paper is organized as follows. Distortion risk measures and their properties
are discussed inSect. 2.Anewskewnormal distortion riskmeasure basedon extended
Wang transform is introduced and its properties are studied in Sect. 3. The CAPM is
introduced and the new distortion transform method satisfied the CAPM is obtained
in Sect. 4. The behavior of stock pricemodel under log-skew normal setting is studied
in Sect. 5 and a simulation based on the skewnormal transform for a insurance pay-off
function is obtained in Sect. 6.

2 Distortion Risk Measures

Let X be a non-negative loss random variable and FX(x) be its distribution function,
where FX(x) = P(X ≤ x) is the probability that X ≤ x. The survival function
SX(x) = 1 − FX(x), has a special role in calculating insurance premiums based on
the fact that the expect value of X is given by

E(X) =
∞

∫

0

SX(y)dy. (1)

An insurance layer X(a, a + m], as a payoff function, is defined by

X(a, a + m] =

⎧

⎪

⎨

⎪

⎩

0 for 0 ≤ X < a

X − a for a ≤ X < a + m

m for a + m ≤ X,

(2)

where a is called the attachment point, a point at which excess insurance or reinsur-
ance limit apply, and m is call the limit point, an amount that starts from attachment
point. The survival function for the layer X(a, a + m] is related to that of the under-
lying risk X by

SX(a,a+m](y) =
{

SX(a + y) for 0 ≤ y < m

0 for m ≤ y.
(3)
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The expected loss for the layer X(a, a + m] can be calculated by

E (X(a, a + m]) =
∞

∫

0

SX(a,a+m](y)dy =
a+m
∫

a

SX(x)dx. (4)

For a very small layer X(a, a + ε], the net premium (expected loss) is εSX(a). This
is the reason why SX is said to be the density of layer net premium. In relation to
the expected layer loss cost, Lee [14] provided a detailed account of SX . Venter [21]
showed that, for any given risk, market prices by layers always imply transformed
distributions andWang [22] suggested calculating premium by directly transforming
the survival function,

Hg(X) =
∞

∫

0

g (SX(x)) dx, (5)

where g(·) is the distortion function given below.

Definition 2.1 The increasing and continuous function g : [0, 1] → [0, 1] with
g(0) = 0 and g(1) = 1 is called a distortion function.

Remark 2.1 The distortion function transforms a probability distribution SX to a new
distributiong(SX). Themeanvalue under the distorted distribution,Hg(X), is givenby

Hg (X(a, a + m]) =
∞

∫

0

g
(

SX(a,a+m](y)
)

dy =
a+m
∫

a

g(SX)(x)dx. (6)

Lemma 2.1 (Artzner et al. [2]). The distortion function for pricing insurance layers
should meet the following properties:

(i) 0 ≤ g(u) ≤ 1, g(0) = 0, and g(1) = 1;
(ii) g(u) is an increasing function (where it exists, g′(u) ≥ 0);
(iii) g(u) is concave (where it exists, g′′(u) ≤ 0); and
(iv) g′(0) = +∞.

Note that these conditions can be explained as follows. (i) For each x ∈ [0, 1],
g (SX(x)) defines a valid probability and zero probability events will still have zero
probability after applying the distortion operator g(·). (ii) The distorted probability
g(SX(x)) defines another distribution and the risk adjusted layer premium decreases
as the layer increases for fixed limit. (iii) The risk load is non-negative for every risk
or layer and the relative risk loading increases as the attachment point increases for
a fixed limit. (iv) Unbounded relative loading at high reinsurance layers seems to
be supported by observed market reinsurance premiums (see, e.g., Venter [21] and
Artzner [2]).
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3 A New Distortion Function Based on the Wang Transform

In many real world applications, normal setting may not be a good fit because data
sets collected are not symmetrically distributed. Since data sets are skewed in most
applications, the class of skew normal distributions may be the better choice.

Univariate skew normal models have been considered by many authors, see e.g.,
Azzalini [3], Gupta et al. [7], and Wang et al. [26]. In the last three decades there has
been substantial work in the areas of skew normal (SN) and its related distributions.
The main feature of this class is that a new skewness parameter α is introduced to
control skewness and kurtosis.

Definition 3.1 A random variable X is said to have a skew normal distribution
with location parameter μ, scale parameter σ 2, and skewness parameter α, denoted
by X ∼ SN(μ, σ 2, α), if its density function is given by

f (x|μ, σ, α) = 2φ(x|μ, σ 2)Φ

[

α

(

x − μ

σ

)]

, (7)

where α ∈ 	, φ(·;μ, σ 2) and Φ(·) are the probability density function of N(μ, σ 2)

and the distribution function of N(0, 1), respectively.

Note that when α > 0, the distribution is skewed to the right and when α < 0,
the distribution is skewed to the left. Also when α = 0, the distribution is reduced
to N(μ, σ 2). The basic properties of X ∼ SN(μ, σ 2, α) are listed as follows.

Lemma 3.1 (Azzalini [3]). The mean value, variance, and skewness of random
variable X ∼ SN(μ, σ 2, α) are

E(X) =μ + σδ

√

2

π
, Var(X) = σ 2

(

1 − 2δ2

π

)

,

Sk(X) = 4 − π

2

(δ
√
2/π)3

(1 − 2δ2/π)3/2
,

where δ = α/
√
1 + α2, and Sk(·) represents the skewness for the distribution.

Note that the skewness parameter α appears in the three equations so that it has
effects on all three moments. From Lemma 3.1, we can conclude that the mean
value of the family is affected by both skew and scale parameters, the variance is
also depend on the skewness parameter, and the skewness of distribution is the only
function of the skewness parameter and is free of μ and σ 2.

Let

SNΦ(x|μ, σ 2, α) =
x

∫

−∞
f (t|μ, σ 2, α)dt (8)
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be the distribution function of X ∼ SN(μ, σ 2, α). The special case of it was given
by Wang [23] as

gλ(x) = Φ(Φ−1(x) + λ). (9)

Note that, the gλ(x) given in (9), called Type I Wang transform, is a pricing formula
that recovers the CAPM and Black-Scholes formula under normal asset-return dis-
tributions, see Wang [24] and Kijima [13] for details. Corresponding to Type I Wang
transform and its extended version given in Li et al. [16], we propose a new extended
distortion function of Type I Wang transform defined as follows.

Definition 3.2 For x > 0, the skew normal distributed distortion function is
defined by

gN (x) = SNΦ(bSNΦ−1(x) + λ|α), (10)

whereSNΦ(·|α) is the distribution functionofSN(0, 1, α),SNΦ−1(·|α) is the inverse
function of SNΦ(·|α), and λ ∈ 	.

For the illustration of gN (x)’s in (10), see Figs. 1 and 2. From Fig. 1, the values of
market price risk parameterλ effect the curves of distortion functions. From theFig. 2,
the distortion function curves are effected by the values of the skewness parameter
α. Note that, the distortion function of type I Wang transform is a special case of
gN (x) in (10), where b = 1 and α = 0.

The following result shows that the extended versions of Type I Wang transform
given in (10) is coherent.

Theorem 3.1 The distortion function gN (x) given in (10) satisfies the properties
given in Lemma 2.1.

Proof For (i), we have

gN (0) = lim
x→0

SNΦ(bSNΦ−1(x)|α) = SNΦ(−∞|α) = 0,

Fig. 1 The curves of gN (x) for α = 1 and b = 1 and different values of λ
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Fig. 2 The curves of gN (x) for λ = 1 and b = 1 and different values of α

and
gN (1) = lim

x→1
SNΦ(bSNΦ−1(x)|α) = SNΦ(∞|α) = 1.

Also it is easy to see that gN (x) is bounded in [0, 1].
For (ii), note that the first derivative of gN is

g′
N (x) = b

φ(bw + λ)Φ(α(bw + λ))

2φ(w)Φ(αw)
,

where w = SNΦ−1(x). Clearly, g′
N (x) > 0 if b > 0.

For (iii), indeed, if we let f (w) = φ(w)Φ(αw), then by (ii), we have

g′
N (x) = f (bw + λ)

2f (w)
.

Now

f ′(w) = αφ(w)

2Φ(αw)
− w

2

and

f ′(bw + λ) = bαφ (α(bw + λ)) φ(bw + λ)

2Φ(αw)φ(w)

− (bw + λ)b
φ(α(bw + λ))Φ(bw + λ)

2Φ(αw)φ(w)
.

Without loss of the generality, let b = 1 and the second derivative of gN (x) can be
simplified as

g′′
N
(x) = f ′(w + λ) · f (w) − f (w + λ) · f ′(w)

2f 3(w)
.
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Note that the numerate of g′′
N
(x) is

f ′(w + λ) · f (w) − f (w + λ) · f ′(w)

= αφ(w + λ)[φ(α(w + λ))Φ(αw) − φ(αw)Φ(α(w + λ))]
2Φ(αw)

− λφ(w + λ)Φ(α(w + λ)). (11)

Let F(w) = φ(αw)/Φ(αw). It is easy to show F ′(w) < 0 for α > 0 and w > 0.
Thus (11) is negative with an additional condition λ < 0.
For (iv),

lim
x→0

g′
N (x) = lim

w→−∞
φ(w + λ)Φ(α(w + λ))

2φ(w)Φ(αw)
. (12)

Note that

lim
w→−∞

φ(w + λ)

2φ(w)
= lim

w→−∞ exp{−λ2

2
− wλ} = +∞

and

lim
w→−∞

Φ(α(w + λ))

2Φ(αw)
lim

w→−∞
φα(w + λ)

2φ(αw)
= lim

w→−∞ exp{− (λα)2

2
− wλα2} = +∞.

Therefore, (12) tends to ∞ as x → 0 and the desired results follows. �

4 The Capital Asset Pricing Model

The CAPM is a set of predictions concerning equilibrium expected returns on assets.
The classic CAPM assumes that all investors have the same one-period horizon, and
asset returns have multivariate normal distributions. For a fixed time horizon, let Ri

andRM be the rate-of-return for the asset i and themarket portfolioM, with variances
σ 2

i and σ 2
M , respectively. The classic CAPM asserts that

E(Ri) = r + βi[E(RM) − r], (13)

where r is the risk-free rate-of-return βi = Cov(Ri, RM)/σ 2
M , and Cov(X, Y) is the

covariance of X and Y . Assume that the asset returns are normally distributed and
the time horizon is one period (e.g., one month or one year), one of the key concepts
in financial economics is the market price of risk given by

λi = E(Ri) − r

σi
. (14)

In asset portfolio management, this is also called the Sharpe Ratio, after William
Sharpe [20]. In finance, the Sharpe ratio is a way to examine the performance of
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an investment by adjusting its risk. The ratio measures the excess return (or risk
premium) per unit of deviation in an investment asset or a trading strategy.

TheCAPMprovides powerful insight regarding the risk-return relationship,where
only the systematic risk deserves an extra risk premium in an efficient market. How-
ever, the CAPM and the concept of market price of risk were developed under the
assumption of multivariate normal distributions for the asset returns. The CAPM has
serious limitations when applied to insurance pricing under loss distributions are not
normally distributed.

By (9), we propose a new transform given by

F∗(x) ≡ g(F(x)) = SNΦ[bSNΦ−1(F(x)) + λ], (15)

where where F(x) is the distribution function of X. When b = 1 and α = 0, the
above transform is reduced to the universal pricing transform given in Wang [23].

Our main result is given as follows.

Theorem 4.1 Let F be the distribution function of X ∼ SN(μ, σ 2, α). Then F∗(X) ∼
SN(μ∗, σ 2∗ , α∗), where

μ∗ = μ − λσ

b
, σ∗ = σ

b
, and α∗ = α.

Proof Since X ∼ SN(μ, σ 2, α),

F(x) =
x

∫

−∞
2φ

(

t − μ

σ

)

Φ

(

α
t − μ

σ

)

dt =
x−μ
σ

∫

−∞
2φ(u)Φ(αu)du = SNΦ

(

x − μ

σ

)

.

Thus, (X − μ/b = SNΦ−1(F(X)) and bSNΦ−1(F(X)) + λ = b(X − μ)/σ + λ.
From (15), we have

F∗(x) = SNΦ

(

b

(

x − μ

σ

)

+ λ

)

=
b
(

x−μ
σ

)

+λ
∫

−∞
2φ(t)Φ(αt)dt

=
σ−1∗ (x−μ∗)

∫

−∞
2φ(t)Φ(αt)dt

=
x

∫

−∞
2φ

(

t − μ∗
σ∗

)

Φ

(

α∗
t − μ∗

σ∗

)

dt,
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which is the distribution function of X∗ ∼ SN(μ∗, σ 2∗ , α∗) and the desired result
follows. �

From the skew normal transform F∗(X) we have the following result.

Proposition 4.1 With λ being the market price of risk for an asset, the skew normal
transform F∗(X) given in (15) replicates the classic CAPM.

Proof By Lemma (3.1), we obtain

E(X∗) = (μ − λσ

b
) + σδ

b

√

2

π
,

where δ = α/
√
1 + α2. Let r = E(X∗), then

E(X) − r = σδ

√

2

π
(1 − 1

b
) + λσ

b
.

Sovling for λ

λ = E(X) − r∗
σ∗

, (16)

where σ∗ = σ

b
, and r∗ = r + σδ

√

2

π

(

1 − 1

b

)

, which is the revised risk-free rate

to different the risk-free rate r. �

Note that our formula given in (16) is valid for any b > 0. If b = 1, λ in (16) is
reduced to the one given in (14).

5 The Model for the Behavior of Stock Prices

In practice, we do not observe stock prices following the continuous variables and
continuous-time processes. Stock prices are restricted to discrete values and changes
can be observed only when the exchange is open. But, any variable whose value
changes over time in an uncertainway is said to follow a stochastic process. AMarkov
process is a particular type of stochastic process where only the present value of a
variable is relevant for predicting the future. The Wiener process is a particular type
of Markov stochastic process with the mean change zero and the variance rate of 1.
A generalized Wiener process for a variable x can be defined in terms of dz as follows:

dx = adt + bdz, (17)

where a and b are constants. In general, for a and b are functions of the value of the
underlying variable x and time t, the generalized Wiener process will be known as
Itô process, such as

dx = a(x, t)dt + b(x, t)dz. (18)
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Lemma 5.1 (Hull [8]). Suppose that the value of a variable x follows the Itô process,
then a function G of x and t follows an Itô process

dG =
(

∂G

∂x
a + ∂G

∂t
+ 1

2

∂2G

∂x2
b2

)

dt + ∂G

∂x
bdz, (19)

where a and b are functions of x and time t.

If we assume stock prices are modeled by log-skewnormal distributions, then stock
returns should be modeled by skew normal distributions. Therefore, the equivalent
results can be obtained by applying Wang transform either to the stock price distri-
bution, or, to the stock return distribution. Now we introduce the log-skewnormal
distribution.

Definition 5.1 The positive random variable X in the 	+ has a univariate log-
skewnormal distribution if the transformed variable Y = log(X) ∼ SN(μ, σ, α),
denoted by X ∼ LSN(μ, σ, α). The probability density function of X is given by

f (x;μ, σ, α) = 2

x
φ(log x;μ, σ)Φ

(

α(log x − μ)

σ

)

. (20)

Note that it is easy to show that if X ∼ LSN(0, 1, α), then the moment generating
function of X is

MX(t) ≡ E(etX) = 2et2/2Φ(δt), δ = α√
1 + α2

.

Thus we have the following result.

Theorem 5.1 Assume the asset price Xi(t) for an individual stock satisfies the sto-
chastic differential equation

dXi(t)

Xi(t)
= μidt + σidWi, (21)

where dWi ∼ SN(0, dt, α). Then for any future time T

Xi(T)

Xi(0)
∼ LSN

(

μiT − σ 2
i T/2, σ 2

i T , α
)

, (22)

where Xi(0) is the current asset price.

Proof Clearly, from (21) we have,

dXi(t) = μiXi(t)dt + σiXi(t)dWi.
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Let G = logXi(t), then from Lemma 5.1, we obtain

dG =
(

∂G

∂Xi(t)
μXi(t) + ∂G

∂t
+ 1

2

∂2G

∂Xi(t)2
σ 2

i Xi(t)
2
)

dt + ∂G

∂Xi(t)
σiXi(t)dWi. (23)

Note that

∂G

∂Xi(t)
= 1

Xi(t)
,

∂G

∂t
= 0, and

∂2G

∂Xi(t)2
= − 1

Xi(t)2
.

Therefore (23) is reduced to

dG = (μi − σ 2
i

2
)dt + σidWi. (24)

Since dWi ∼ SN(0, dt, α), then the change in logXi(t) between 0 and future time T
is skew normally distributed, i.e.,

logXi(T) − logXi(0) ∼ SN

(

μiT − 1

2
σ 2

i T , σ 2
i T , α

)

,

which is equivalent to

Xi(T)

Xi(0)
∼ LSN

(

μiT − 1

2
σ 2

i T , σ 2
i T , α

)

. �

The following result gives the relationship between the transform F∗ and the F
of X and its proof is similar to that of Theorem 4.1.

Theorem 5.2 If F(x) be the distribution function of X ∼ LSN(μ, σ 2, α), then F∗(x)
is the distribution function of X∗ ∼ LSN(μ∗, (σ∗)2, α∗), where parameters

μ∗ = μ − λσ

b
, σ∗ = σ

b
, and α∗ = α.

Remark 5.1 From Theorem 5.2, if we let b = 1, then

X∗
i (T)

Xi(0)
∼ LSN

(

μiT − λσi
√

T − 1

2
σ 2

i T , σ 2
i T , α

)

.

Now, define an implicated parameter value

λi(T) = (μi − r)

σi

√
T = λi

√
T ,
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where r is the same risk-free rate as the one defined previously. And the λi above
coincides with the market price if the asset i is defined in Hull [8]. Note that λi is
also consistent with continuous-time CAPM (Merton [18]).

6 Simulation Results

Consider a ground-up liability risk X with a Pareto severity distribution

SX(x) =
(

2,000

2,000 + x

)1.2

, for x > 0.

To compare the risk loading by the layer, assume that the ground-up frequency is
exactly one claim. We apply the pricing formula (6) to the severity distribution. For
the numerical illustration, we choose a loading parameters α = 1, λ = 0.1, and
b = 1 for the skew normal distortion Transform in (15), and μ = 0, σ = 1 in both
transform methods. If the loss is capped by a basic limit of $50,000, the expected
loss is $4,788 and the risk-adjusted premium is $5,600, implies a 16.96 % loading
increases. As shown in Table1, the relative loading increases at higher layers.

Two comparisons can be made with Wang transform and proportional hazards
(PH) transform given in Wang [23]. A loading parameter λ = 0.1126 is selected for
Wang transform and index r = 0.913 is selected for PH transform to yield the same
relative loading (16.96%) for the basic limit layer ($0, 50,000).

Table1 shows that the PH transformmethod produces a risk loading that increases
much faster than when using Wang transform distortion function and the new skew
normal distortion function. And also the new distortion function produced a slow
increase risk loading as the layers increase. As the layers increase to infinity, both
the new skew normal distortion function and Wang distortion function should have
a same pattern.

Table 1 Risk load by layer under new skew-normal distortion, Wang distortion and PH-transform

Layer’s in
(1,000)

Expected
loss

PH
premium

Relative
loading
(%)

Wang
premium

Relative
loading
(%)

New
premium

Relative
loading
(%)

(0, 50] 4,788 5,600 17.0 5,600 17.0 5,600 17.0

(50, 100] 657 956 45.5 873 32.9 816 28.8

(100, 200] 582 908 56.0 797 36.9 764 31.3

(200, 300] 307 508 65.5 430 40.0 412 34.0

(300, 400] 203 349 71.9 290 42.9 279 37.4

(400, 500] 150 265 76.7 216 44.0 209 39.3

(500, 1,000] 428 785 84.4 624 45.8 614 41.1

(1,000, 2,000] 373 739 98.1 558 49.6 550 47.2

(2,000, 5,000] 420 906 115.7 646 53.8 641 51.7
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7 Conclusion

Like the distortion function of Wang [22], the new skew normal distortion function
still satisfied the classic CAPM. Furthermore, after introducing the behavior of stock
pricemodel under log-skewnormal distribution, our skewnormal distortion functions
are still consistent with the continuous-timeCAPM. It promotes a unified approach to
pricing financial and insurance risks. With great promise in theoretical development
and practical application, more research is needed to further explore the properties
of this pricing formula.

Acknowledgments The authors would like to thank YingWang for proofreading of this paper and
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Towards Generalizing Bayesian
Statistics: A Random Fuzzy Set Approach

Hien D. Tran and Phuong Anh Nguyen

Abstract This paper proposes a realistic way of assessing prior probabilistic
information on population parameters in an effort of making Bayesian statistics more
robust. The approach is based upon viewing the unknown parameter as a random
fuzzy set. To achieve this point of view, we elaborate on the concept of coarsening
schemes for gathering experts’ opinion, how to combine experts’ opinion, and how
to define rigorously the concept of random fuzzy sets.

1 Introduction

Bayesian statistics become again a popular statistical approach in econometrics, not
only because of reasons such as: statisticians (or engineers) could seek experts’
knowledge to assess prior information in addition to observations; when maximum
likelihoodmethod in traditional statistics is difficult to solve, say, in high dimensions,
or model structures are complicated, but mainly because of computational problems
which could be resolved by using themethod ofMarkovChainMonteCarlo (MCMC)
(which “revolutionized” Bayesian statistics).

However, the Bayesian approach to statistical inference is one of the most
controversal approaches, due essentially to its subjective nature and automatic infer-
ence engine. There is no clear cut as to which approaches (frequentist or Bayesian)
an applied statistician should choose. In practice, it looks like the choice is usually
based upon each problem at hand.

Applied econometricians will choose a tool which is the most appropriate to
analyze the problem under investigation. If the tool happens to be Bayes, are there
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anything which could “bother” you? Perhaps, you may say: I am not quite com-
fortable with specifying a precise prior probability measure on the model parameter
space. Perhaps you feel more comfortable to assess that your “true” prior probability
measure πo lies in a class of possible probability measures P , rather than specify-
ing just one probability measure. This will clearly be a generalization of Bayesian
methodology concerning assessing prior information. It will be a generalization to
make traditional Bayes more realistic, and not just a generalization per se! This nat-
ural way to generalize Bayesian prior information assignment is consistent with the
spirit of robust statistics in general. See also, robust Bayesian statistics [1].

From the knowledge of P , we can obtain bounds on the true πo, namely

F(A) = inf{P(A) : P ∈ P} ≤ πo(A) ≤ T (A) = sup{P(A) : P ∈ P}

Thus, research efforts have been focusing on weakening a specific assignment of
prior by allowing it to belong to a class of plausible probability measures instead.
Specifically, if the random variable of interest has a density f (x, θ) with θ ∈ Θ ,
then the prior probability law of θ (viewing as a random variable) is only specified
to lie in a class P of probability measures on Θ . But then, knowing only P , we
are forced to work with the set function F(.) = inf{P(.) : P ∈ P} as a lower
bound (or T (A) = sup{P(A) : P ∈ P} = 1 − F(Ac), as an upper bound). This
approach to generalizing Bayesian statistics is referred to as imprecise probabilities
in the literature. In general, these set functions are not additive (i.e., not probability
measures) and as such, it is still not clear how the familiar machinery of Bayesian
statistics (Bayes formula and posterior expectation) is going to be extended.

In the above framework, the true, but unknown parameter θo is viewed as a random
variable, taking values in Θ . We will “argue” that a more realistic point of view (the
point of view is everything!) is regarding θo as a random set, or more generally, a
random fuzzy set, i.e., a random element taking sets or fuzzy sets as values. The main
rationale of this view is that we will be working (towards generalizing Bayesian
statistics) completely within probability theory, but at a higher “level”, namely, set-
valued rather than point-valued random elements. The paper is devoted to providing
the foundations for this point of view.

2 Coarsening Schemes for Experts’ Knowledge

It is a common feature of human intelligence to coarsen a precise domain to arrive at
decisions, in everyday life. If we cannot guess the precise age of someone, or cannot
measure with accuracy, with our eyes, the distance to an obstacle to stop our car,
we coarsen the domain of ages (or the domain of measurements) such as “young,
middle age, old” (or “close, very close”). In statistics, coarse data refer to data with
low quality (see, e.g., [2]). A coarsening scheme is a procedure for transforming a
domain into a collection of subsets of it, including the special case of a collection of
subsets forming a partition (fuzzy or not) of it.
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Suppose a doctor tries to identify the cause of a symptom observed on a patient.
After making a series of medical tests, while he knows the set Θ = {θ1, θ2, . . . , θn}
of all possible causes pertinent to the observed symptom, he is still uncertain about
the correct cause. Of course, he has a “better” idea about the possible cause! If you
try to “extract” his expert’s knowledge, you could ask “what is the probability that
the real cause is θi”, for i = 1, 2, . . . , n. The doctor might try to answer you but with
much less ease than if you ask, instead, “what is the probability that the real cause
is among A?” where A is a subset of Θ . By doing so, you have presented the doctor
with a coarsening scheme to facilitate his answers. In either case, you get an expert’s
opinion!

The true cause, while unknown, is not a random variable, but since it is uncertain
(unknown), we could view it as a random variable, exactly like the Bayesians, and
we model its uncertainty by a probability distribution on Θ , which is the expert’s
knowledge. There are two levels of “randomness”: on Θ and on 2Θ which 2Θ cor-
responds to a coarsening scheme. In a rigorous setting, we have a random variable
taking values inΘ , and a random set taking values in 2Θ , both are bona fide random
elements, defined on appropriate probability spaces.

Thus, if we generalize the standard view of Bayesians, namely, viewing an
unknown model parameter as a random variable, to a random set, we are actu-
ally generalizing Bayesian methodology concerning prior information as random
variables are special cases of random sets by identifying random variables with
singleton-valued random sets.

In generalizing Bayesian methodology through coarsening schemes (i.e., using
random sets to model prior information on the parameter), we remain entirely within
the theory of probability, as now, the prior information is a probability measure, not
on some σ -field of subsets of Θ , but at a higher level, namely, on some σ -field of
subsets of 2Θ . The Bayesians might not object to this modeling!

Now, if it is appropriate to coarsen the domain Θ with fuzzy subsets of it, we
can obtain, either probabilities of fuzzy events, or more generally, consider random
fuzzy sets (see e.g. [3, 4]) as prior information modeling, combining randomness and
fuzziness. We elaborate all technical details of this approach in the next section.

3 Random Sets

Let X be an observable random element, defined on (Ω,A, P) , taking values in
X which is equiped with a σ -field σ(X ), i.e., X is A − σ(X )—measurable. The
probability law PX is assumed to be a member of the statistical model PΘ = {Pθ :
θ ∈ Θ} , where each probability measure Pθ is defined on σ(X ).

Statistical inference regarding X can be carried out once the law PX is “discov-
ered”. Usually, we use observations on X to estimate the true (but unknown) θo

corresponding to PX . The Bayesian methodology seeks additional information on
θo prior to making observations on X . Since we do not know θo, there is uncertainty
about its value in the parameter space Θ . According to the Bayesian approach, the
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uncertainty about the true parameter is modeled as a (prior) probability measure π

on the parameter space Θ . Formally, θ is viewed as a random variable, defined, say,
on (Ω,A, P), with values in Θ .

We generalize this standard Bayesian approach as follows.
Let C ⊆ 2Θ be a collection of subsets of Θ , representing a coarsening scheme of

Θ . We equip C with some σ -field σ(C) of its subsets. A random element S : Ω → C
is called a random set as it takes subsets ofΘ as values. It isA−σ(C)—measurable,
with probability law PS = P S−1, as usual. This probability measure PS will play
the role of probabilistic (prior) information on the parameter θ . In other words, we
view the parameter θ as a random set S taking values in C.

We specify the above framework in three popular settings: Θ is a finite set with
C = 2Θ , Θ ⊆ R

d (or more generally, a subset of a Hausdorff, locally compact and
separable topological space)withC being the class of closed sets, andwithC being the
class of upper-semi continuous functions (fuzzy closed sets). A unified framework
for all these settings could be built using Lawson topology on continuous lattices.

3.1 Finite Random Sets

The natural coarsening scheme of a finite set Θ is its power set 2Θ with 22
Θ
as its

σ -field.
A random set S on Θ is a map S : Ω → 2Θ such that , for any A ⊆ Θ ,

S−1({A}) = {ω ∈ Θ : S(ω) = A} ∈ A}, i.e., an A − 22
Θ
—measurable map. Its

probability law on 22
Θ
is

PS(A) = P S−1(A) =
∑

A∈A

P(S = A)

If we let f : 2Θ → [0, 1], with f (A) = P(S = A), then f (.) is a bona fide
probability density functionon2Θ , i.e., f (.) ≥ 0 and

∑

A⊆Θ f (A) = 1. If f (∅) = 0,
then we say that S is a nonempty random set. Clearly, X can be characterized either
by PS , its density f (.), or its distribution function F(.) : 2Θ → [0, 1] :

F(A) = P(S ⊆ A) =
∑

B⊆A

f (B)

Note that, in the definition of F(.) for random sets, the partial order relation (set
inclusion ⊆) replaces the partial order relation ≤ on R

d .
By Mobius inversion (see, e.g., [5]), where |A| denotes the cardinality of the set A:

f (A) =
∑

B⊆A

(−1)|A\B|F(B)
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Remark 1 The distribution function F of a (nonempty) random set S can be
defined axiomatically (just like distribution functions of random vectors) as follows.
F : 2Θ → [0, 1] is the distribution function of some nonempty random set on a
finite Θ if and only if if satisfies the axioms:

1. F(∅) = 0, F(Θ) = 1
2. For any k ≥ 2, and A1, A2, . . . , Ak subsets of Θ ,

F(∪k
j=1) ≥

∑

∅�=I⊆{1,2,...,k}
(−1)|I |+1F(∩i∈I Ai )

Here are some examples of distributions of finite random sets.

Example 1 Let Θ = {θ1, θ2, θ3}. The true Po on Θ is known only up to the extent
that Po(θ1) = 1

3 , and then, of course, Po({θ2, θ3}) = 2
3 . Let P denote the set of all

probability measures P having this condition. If we define f (θ1) = 1
3 , f ({θ2, θ3}) =

2
3 , and f (A) = 0 for all other subsets on Θ , then

F(A) =
∑

B⊆A

f (A) = inf{P(A) : P ∈ P}

noting also that P = {P : F ≤ P}.
Example 2 Let Θ = {1, 5, 10, 20}. Let

P = {P : P(1) ≥ 0.4, P(5) ≥ 0.2, P(10) ≥ 0.2, P(20) ≥ 0.1}

Let f (1) = 0.4, f (5) = 0.2, f (10) = 0.2, f (20) = 0.1, and f ({1, 5, 10, 20}) =
0.1, then

P = {P : F ≤ P} where F(A) = ∑

B⊆A f (B),

so that F = inf P .

Example 3 Let Θ1,Θ2, . . . , Θk be a partition of the finite Θ . Let

P = {P : P(Θi ) = αi , i = 1, 2, . . . , k},

then
F = inf P = inf{P : F ≤ P}

which is a distribution of some random set.
In general, F = inf P might not be a distribution function of a random set, and

hence does not have a random set interpretation. But what interesting is this. If F
is the distribution function of a random set, then it is a lower probability, i.e., there
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exists a classP of probability measures onΘ such that F(A) = inf{Q(A) : Q ∈ P},
implying that the random set approach to modeling prior information is consistent
with the main stream of generalizing Bayesian inference.

For ease of reference, here is the proof of the above fact. We denote by PF the
set of probability measures Q on Θ such that Q(.) ≥ F(.). Let f be the density on
2Θ derived from F (via Mobius inversion). From f we can construct probabilities
densities onΘ in a natural way: assigning nonnegative values to elements of A ∈ 2Θ

so that their sum is equal to f (A). An allocation of f is a function α : Θ × 2Θ →
[0, 1] such that

∑

θ∈Θ α(θ, A) = f (A) for all A ∈ 2Θ .

Example 4 Let p : Θ (finite)→ [0, 1] be a probability density. Let Q be its associ-
ated probability measure: Q(A) = ∑

θ∈A p(θ). Then

α(θ, A) = f (A)

Q(A)
p(θ)

is an allocation. In particular, if p(.) is uniform, i.e., p(θ) = 1
|Θ| , then α(θ, A) =

f (A)
|A| , for any θ ∈ Θ .

Now observe that, for each allocation α, the map

gα : θ ∈ Θ →
∑

A∈2Θ

α(θ, A)

is a probability density on Θ . Let D denote the set of densities on Θ arising from
allocations of f .

Let σ be the map which takes a density on Θ to the corresponding probability
measure on Θ . Then σ : D → PF . Indeed, let α be an allocation of f , and let Qα

be the probability measure on Θ that α induces:

Qα(A) =
∑

θ∈A

gα(θ) =
∑

θ∈A

∑

B∈2Θ

α(θ, B) =
∑

θ :θ∈A

∑

B:θ∈B

α(θ, B)

Now,
F(A) =

∑

B:B⊆A

f (B) =
∑

B:B⊆A

∑

θ :θ∈B

α(θ, B)

so that clearly F(A) ≤ Qα(A), implying that Qα ∈ PF .
In fact, σ : D → PF is onto, i.e., PF consists of probability measures on Θ

coming from allocations. The proof of this fact relies on Shapley’ theorem in game
theory (See [6], pp. 101–102). Let A ∈ 2Θ . Let α be an allocation of f such that for
θ ∈ A, for all B not contained in A, allocate 0 to α(θ, B). Then F(A) = Qα(A). It
follows that

F(A) = inf{Q(A) : Q ∈ PF }
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Thus, if we insist on having prior information about the model parameter θ as its
prior probability measure π on Θ , then we can only have a lower bound F(.) (and,
of course, an upper bound T (A) = 1 − F(Ac)) which is a nonadditive set function.
Should we “view” the distribution F or its associated probability measure PS , where

PS(A) =
∑

A∈A

∑

B⊆A

(−1)|A\B|F(B)

as a generalization of π?
Note that when working with F , we could use Choquet integral in the Bayesian

machinery for reaching posterior expectation. We will discuss this technical issue
elsewhere.

3.2 Random Closed Sets

We look now at the case where our coarsening scheme consists of a collection of
subsets of a general topological spaceΘ such asR

d , or more generally, a Hausdorff,
second countable, locally compact space. In view of [7], we take our coarsening
scheme on Θ = R

d as the collection F of all closed subsets of R
d .

In order to define rigorously the concept of random closed sets as bona fide random
elements taking values in F , besides having a probability space (Ω,A, P) in the
background, we need to equip F with some σ -field of its subsets. A standard way
to accomplish this is to topologize F and take its Borel σ -field. This was precisely
what Matheron did.

But since we will next consider a more general situation, namely “random fuzzy
closed sets”, we will employ a general construction method which produces both
types of random sets, namely that of Lawson’s topology in the theory of continuous
lattices (see [8]). Note that theMatheron’s construction of the so-called “hit-or-miss”
topology for F cannot be extended to fuzzy closed sets in a straightforward manner.

Recall that a coarsening scheme on a setΘ aims at facilating answers for experts in
the knowledge extraction process. As such, each subset A ⊆ 2Θ contains localization
information about the true (but unknown) parameter θo. In this sense, smaller sets
containmore information than larger ones. This is exactly what information theory is
all about (for example, if the information provided by the realization of an event A is
I (A) = − log P(A), then A ⊆ B =⇒ I (A) ≥ I (B)). Note that “less informative”
also means “less specific” as far as localization of an object is concerned.

Thus, in the context of coarsening, the partial order relation on 2Θ “less informa-
tive than” is nothing else than the reverse of set inclusion⊆, i.e.,⊇. The poset (2Θ,⊇)

is a complete lattice. For Θ = R
d , we will look at the class of its closed subsets F ,

rather than the whole 2Rd
. The poset (F ,⊇) is also a complete lattice. Indeed,

∧(Fi ∈ F : i ∈ I } = the closure of ∪i∈I Fi

∨{Fi ∈ F : i ∈ I } = ∩i∈I Fi
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Moreover, it is a continuous lattice, i.e., for every F ∈ F , we have F = ∨{G ∈ F :
G � F} where the finer relation � (“much less informative than” or “way below”)
is defined as: G � F (G is way below F , meaning G is much less informative than
F) if for every collection D of elements of F , for which F ⊇ ∨D, there is d ∈ D
such that G ⊇ d.

The Lawson topology τ for the continuous lattice (F ,⊇,�) has as a subbase
the sets {G ∈ F : G � F} and {G ∈ F : G � F} for all F ∈ F , i.e., open
sets are taken to be arbitrary unions of finite intersections of these sets. The Borel
σ -field σ(τ) is precisely theMatheron’s hit-or-miss σ -field σ(F). More specifically,
the Lawson topology τ on F is the Matheron’s hit-or-miss topology, since τ is
generated by the subbase consisting of subsets of the from {F ∈ F : F ∩ K = ∅}
and {F ∈ F : F ∩ G �= ∅}, for K , G compact and open, respectively. For details,
see, e.g., [4].

Thus, by a random closed set on R
d , we mean a map X : Ω → F such that

X−1(σ (F)) ⊆ A. Its probability law is a probability measure PX on σ(F). Unlike
general infinitely dimensional spaces, there is a counter part of the Lebesgue-Stieltjes
theorem for random closed sets, namely the Choquet theorem that characterizes
probability measures on σ(F) by distribution functions of random closed sets. See,
e.g., [6]. Specifically, the dual of a distrubution function, i.e., the capacity functional
T : K (class of compact sets of R

d ) → [0, 1], of a random closed set, defined by
T (K ) = P(X ∩ K �= ∅) = PX (FK ), where

FK = {F ∈ F : F ∩ K �= ∅}

characterizes PX . It is this (nonadditive) set function on K which plays the role of
distribution functions of random finite sets.

3.3 Random Fuzzy Closed Sets

Often coarsening schemes could be formed by using natural language, such as
“small”, “medium”, “large”.... The quantification of these semantics can be pro-
vided by membership functions of fuzzy sets (see, e.g., [9]). In the Bayesian spirit,
we view the unknown model parameter as a random element taking fuzzy sub-
sets of, say, R

d . We restrict ourself to the case of fuzzy closed sets. The indicator
function 1F of an (ordinary) closed subset F of R

d is upper-semi continuous, i.e.,
{x ∈ R

d : 1F (x) ≥ α} is a closed set, for every α ∈ R. Thus, a fuzzy subset is
said to be closed (a fuzzy closed set) if its membership function f : R

d → [0, 1]
is upper-semi continuous: {x ∈ R

d : f (x) ≥ α} is a closed set, for every α ∈ R.
To define a random fuzzy closed set, we will topologize the class of all fuzzy closed
sets, denoted as J , using Lawson topology, as in the case of ordinary closed sets.

As in the case of closed sets, in order to obtain a continuous lattice for J , we
consider the partial order relation “f is less informative than g” if f (x) ≥ g(x) for
all x ∈ R

d . Then (J ,≥) is a complete and continuous lattice. Its Lawson topology
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provides a Borel σ -field σ(J ) forJ fromwhich we can fomulate the rigorous notion
of random fuzzy sets. A choquet theorem for J can be obtained by embedding J
into the closed sets of R

d × [0, 1] via hypographs and using Choquet theorem for
random closed sets on it. Details were published elsewhere.

Remark 2 Perhaps a question that could come to everybody’s mind is this. What
are the benefits of having a random set representation in the process of generalizing
Bayesian statistics?We simply say this here. The random set representations provide
an appropriate (and rigorous/logical) framework for

(a) combining experts’ opinion in assessing prior information,
(b) specifying (generalized) Bayesian priors in multivariate statistical models.

The key ingredient for the above problems is copulas for random sets. Let’s elab-
orate a bit here on specifying (generalized) Bayesian priors in multivariate statistical
models.

In one dimension case, it seems not too difficult to “assign” values to the mass or
density f , just like in univariate statistical modeling. If Θ ⊆ R

d with d “high”, it
is not clear how practitioners would assign a mass function on 2Θ. Note that, what
we are facing is nothing else than multivariate statistical modeling, where, instead
of dealing with random vectors, we are dealing with random set vectors, but we still
entirely with probability theory, since random sets are bona fide random elements.

For concreteness, consider two random set representations X andY corresponding
to two distribution functions F and G, respectively, on, say, two finite domainsU and
V . The pair (X, Y ) is a vector of random sets which takes values in 2U × 2V instead
of 2U×V . If we identify (A, B) ∈ 2U × 2V with A × B ∈ 2U×V , then a vector
of random sets is a special case of bivariate (multivariate) random sets. Note that
there is no difference between multivariate random variables (point-valued maps)
and vectors of random variables. The situation is different with set-valued random
elements (random sets). A vector of random sets, or random set vector, is a special
multivariate random set, namely it only takes “rectangles” as values rather than
arbitrary subsets ofU ×V . As such, the distribution of a vector (X, Y ) on 2U ×2V is
referred to as a joint distribution of a random set vector, to distinguish with function
a multivariate distribution function in general.

Specifically, the joint distribution function associated with (X, Y ) is just the two-
dimensional version of the univariate one, namely, it is a set function H : 2U ×2V →
[0, 1], given by

H(A, B) = P(X ⊆ A, Y ⊆ B)

First of all, since 2U × 2V is finite, the “joint” probability measure P(X,Y ) on the
power set of 2U × 2V is completely determined by its joint density h : 2U × 2V →
[0, 1] , where

h(A, B) = P(X = A, Y = B)



158 H.D. Tran and P.A. Nguyen

Thus, H(., .) characterizes the probability law of the vector (X, Y ). Now,

H(A, B) = P(X ⊆ A, Y ⊆ B)

=
∑

A′⊆A,B′⊆B

P(X = A, Y = B) =
∑

A′⊆A,B′⊆B

h(A′, B ′)

The density h is recovered from its distribution H simply by Mobius inversion
on the product poset (2U × 2V ,≤) where the partial order ≤ on 2U × 2V is defined
pointwise: (A′, B ′) ≤ (A, B) means A′ ⊆ A and B ′ ⊆ B. As such, it is well-known
that the Mobius function on (2U × 2V ,≤) is simply the product, namely

μ : (2U × 2V ) × (2U × 2V ) → Z

μ[(A′, B ′), (A, B)] = (−1)|A\A′|+|B\B′|

and the Mobius inverse of H is

h(A, B) = (F ∗ μ)(A, B) =
∑

(A′,B′)≤(A,B)

μ[(A′, B ′), (A, B)]F(A′, B ′)

=
∑

(A′,B′)≤(A,B)

(−1)|A\A′|+|B\B′|F(A′, B ′)

What are the characteristic properties of a joint distribution H(A, B) = P(X ⊆
A, Y ⊆ B) of a random set vector, assuming that both X and Y are nonempty
random sets?

The recent work of [10] provides an axiomatic concept of joint distribution of
(nonempty) random sets. Specifically, a joint distribution function of a random set
vector (X, Y ) is a set function H : 2U × 2V → [0, 1], satisfying the conditions (i),
(ii) and (iii) below:

(i) H(∅, ∅) = 0
(ii) H(U, V ) = 1
(iii) H(., .) is jointly monotone of infinite order.

Remark 3 Note that (2U ,⊆) and (2V ,⊆) are (locally) finite partially ordered sets
(posets). The product 2U × 2V is then equiped with the natural order (A′, B ′) ≤
(A, B) if and only if A′ ⊆ A and B ′ ⊆ B, so that (2U × 2V ,≤) is a finite poset. It
is well-known that the Mobius function of (2U × 2V ,≤) can be obtained from the
Mobius functions on the posets (2U ,⊆) and (2V ,⊆) , namely

μ[(A′, B ′), (A, B)] = (−1)|A\A′|+|B\B′|



Towards Generalizing Bayesian Statistics … 159

As H is a real-valued function, defined on (2U × 2V ,≤), its Mobius inverse is
h = H ∗ μ, resulting in h : 2U × 2V → [0, 1]

h(A, B) =
∑

(A′,B′)≤(A,B)

(−1)|A\A′|+|B\B′| H(A′, B ′)

with

H(A, B) =
∑

(A′,B′)≤(A,B)

h(A′, B ′)

Thus, to see whether or not a function H , satisfying (i), (ii) and (iii) above admits
a random set representation, it suffices to find out whether or not h is a bona fide
joint probability density on 2U × 2V with h(∅, ∅) = 0.

If H : 2U × 2V → [0, 1] satisfies
(i) H(∅, ∅) = 0
(ii) H(U, V ) = 1
(iii) H(., .) is jointly monotone of infinite order, then there exist (Ω,A, P) and

(X, Y ) : Ω → 2U × 2V , a nonempty random set vector, such that H(A, B) =
P(X ⊆ A, Y ⊆ B).

4 Concluding Remarks

A realistic way to assess a prior probability distribution is to seek experts’ opinion.
This process may require at least two things: facilitating the acquisition of experts’
knowledge (this can be achieved by designing appropriate coarsening schemes on
the parameter space), and combining experts’ opinion (this can be achieved by using
copulas to obtain joint distributions of random fuzzy sets, in a rigorous fashion).
The combined distribution of a (finite) random fuzzy set can be served as a realistic
prior assessment for the unknown parameter. Since the analysis is entirely within
probability theory, it is expected that the Bayesian machinery for deriving posterior
distribution could be carried out. This will be our future work.
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Local Kendall’s Tau

P. Buthkhunthong, A. Junchuay, I. Ongeera, T. Santiwipanont
and S. Sumetkijakan

Abstract We introduce two local versions of Kendall’s tau conditioning on one or
two random variable(s) varying less than a fixed distance. Some basic properties
are proved. These local Kendall’s taus are computed for some shuffles of Min and
the Farlie-Gumbel-Morgenstern copulas and shown to distinguish between complete
dependence and independence copulas. A pointwise version of Kendall’s tau is also
proposed and shown to distinguish between comonotonicity and countermonotonic-
ity for complete dependence copulas.

1 Introduction and Preliminaries

Let (X, Y ) and (X ′, Y ′) be independent and identically distributed random vectors.
Then the population version of the Kendall’s tau of X, Y is defined as

τ(X, Y ) ≡ P
(

(X ′ − X)(Y ′ − Y ) > 0
) − P

(

(X ′ − X)(Y ′ − Y ) < 0
)

.

If X andY are continuous randomvariableswith joint distribution function FX,Y then
there exists a unique copula C = CX,Y such that FX,Y (u, v) = C(FX (u), FY (v))
for all u, v ∈ [0, 1] where FX and FY are the distribution functions of X and Y ,
respectively. A copula can be defined as the restriction onto I 2 of a joint distribution
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of two uniform (0, 1) random variables. See [6] for a systematic treatment of the
theory of copulas. In this setting, the Kendall’s tau can be written in terms of the
copula C as

τ(C) = τ(X, Y ) = 4
∫∫

I 2

C(u, v) dC(u, v) − 1.

Kendall’s tau is a measure of concordance in the sense of Scarsini [8], i.e. τ(X, Y )

is defined for all continuous random variables X and Y ; τ attains value in [−1, 1];
τ is equal to 0 if X and Y are independent; τ is symmetric (τ(Y, X) = τ(X, Y )); τ

is coherence (CXY ≤ CX ′Y ′ implies τ(X, Y ) ≤ τ(X ′, Y ′)); τ(−X, Y ) = −τ(X, Y );
and τ is continuous with respect to convergence in distribution.

However, there are copulas of dependent random variables whose Kendall’s tau is
zero. An extreme example is the copula S1/2, defined in Example 2.1, of continuous
random variables that are completely dependent by an injective function which is
strictly increasing on two disjoint intervals separated at the median. Its Kendall’s tau
is zero because of cancellation between local concordance and global discordance.
Local dependence has been studied in [1, 3, 4]. To bring more local dependence into
focus, we propose two local versions of Kendall’s tau called uni- and bi-conditional
local Kendall’s taus in Sects. 2 and 3. Their formulas for shuffles of Min and FGM
copulas are given and their basic properties are proved. In particular, S1/2 has non-
zero local Kendall’s taus.

Both uni- and bi-conditional local Kendall’s taus are conditioning on one or two
random variables varying less than a fixed small distance. They are measures of local
concordance/discordance between two random variables without restriction on the
range of the conditioning random variable(s). In a sense, they detect local depen-
dence globally. In order to detect true local dependence, we introduce a pointwise
Kendall’s tau in Sect. 4. Its empirical version was first introduced in [2] and shown to
detect monotonicity of two random variables. We show that the pointwise Kendall’s
tau can distinguish between comonotonicity and countermonotonicity for complete
dependence copulas.

2 Uni-conditional Local Kendall’s Tau

Let X and Y be continuous random variables with the copula C . We will consider the
difference between the probabilities of concordance and discordance conditioning
on the event that X is varying less than a fixed distance regardless of the value of
X . Since the same amount of variation of X could reflect different interpretations
depending on the X -value, we assume that X and Y are uniformly distributed on
[0, 1]. Let 0 < ε ≤ 1. The uni-conditional local Kendall’s tau of X and Y given that
X varies less than ε is defined as
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τε(C) = τε(X, Y ) = P
(

(X − X ′)(Y − Y ′) > 0||X − X ′| < ε
)

− P
(

(X − X ′)(Y − Y ′) < 0||X − X ′| < ε
)

where (X ′, Y ′) is an independent copy of (X, Y ). The following quantity shall be
needed in computing local Kendall’s tau.

TC (a, b) =
∫∫

I 2

C(u − a, v − b) dC(u, v) for − 1 ≤ a, b ≤ 1. (1)

Note that TC (a, b) = P(X ′ − X > a, Y ′ − Y > b). By uniform continuity of C , the
function TC is continuous on [−1, 1]2 and in particular TC (·, 0) : a �→ TC (a, 0) is
continuous on [−1, 1].
Proposition 2.1 1. The uni-conditional local Kendall’s tau of a copula C can be
computed by the formula

τε(C) = 4TC (0, 0) − 2 [TC (−ε, 0) + TC (ε, 0)]

ε(2 − ε)
. (2)

2. The mapping ε �→ τε(C) is continuous on (0, 1].
Proof 1. It is straightforward to verify that P(|X − X ′| < ε) = 2ε − ε2,

P
(−ε < X − X ′ < 0, Y − Y ′ < 0

) = P
(

0 < X ′ − X < ε, 0 < Y ′ − Y
)

= TC (0, 0) − TC (ε, 0), and

P
(−ε < X − X ′ < 0, 0 < Y − Y ′) = TC (−ε, 0) − TC (0, 0).

Therefore,

P
(

(X − X ′)(Y − Y ′) > 0, |X − X ′| < ε
) = 2 (TC (0, 0) − TC (ε, 0)) ,

P
(

(X − X ′)(Y − Y ′) < 0, |X − X ′| < ε
) = 2 (TC (−ε, 0) − TC (0, 0)) ,

and the formula follows.
2. This is clear from Eq. (2) and the continuity of TC (·, 0).

Recall the definition of three important copulas Π , M and W : for u, v ∈ [0, 1],
Π(u, v) = uv, M(u, v) = min(u, v) and W (u, v) = max(u + v − 1, 0). Then it can
be shown via the Eq. (2) that τε(Π) = 0, τε(M) = 1, τε(W ) = −1 for all ε ∈ (0, 1].
Example 2.1 Let us consider simple shuffles of Min introduced in [5]. Let Sα be the
shuffle of Min whose support is illustrated in Fig. 1 and defined by
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Fig. 1 The support of Sα and the uni-conditional local Kendall’s tau of Sα

Sα(x, y) =

⎧

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎩

0 if 0 ≤ x ≤ α, 0 ≤ y ≤ 1 − α,

min(x, y − (1 − α)) if 0 ≤ x ≤ α, 1 − α < y ≤ 1,

min(x − α, y) if α < x ≤ 1, 0 ≤ y ≤ 1 − α,

x + y − 1 if α < x ≤ 1, 1 − α < y ≤ 1.

(3)

Since Sα is supported on the lines �1 : y = x + (1 − α), 0 ≤ x ≤ α and �2 : y =
x − α, α ≤ x ≤ 1, we have

∫∫

I 2

f (x, y) d Sα(x, y) =
α

∫

0

f (x, x + 1 − α) dx +
1

∫

α

f (x, x − α) dx . (4)

Because Sα(x − a, y − b) has positive value on rectangles (a, b) + Ri where R1 ≡
[α, 1] × [0, 1 − α], R2 ≡ [0, α] × [1 − α, 1], R3 ≡ [α, 1] × [1 − α, 1], R4 ≡
[1,∞]×[0, 1], R5 ≡ [0, 1]×[1,∞], and R6 ≡ [1,∞]×[1,∞], it can be derived that

TSα (a, b) =
∫

L1

Sα(x − a, (x + 1− α) − b) dx +
∫

L2

Sα(x − a, (x − α) − b) dx (5)

where each L1 and L2 is a union of six non-overlapping possibly empty intervals.1

For 1
2 ≤ α < 1 and 0 < ε ≤ min(α, 1− α), TSα (0, 0) = 1

2 − α(1− α), TSα (ε, 0) =
1
2 − α − ε + α2 + ε2, TSα (−ε, 0) = 1

2 − α + α2 + ε2

2 , and hence by (2),

τε(Sα) = 2 − 3ε

2 − ε

1 L1 = [max(0, α + a, α − 1 + b),min(α, 1 + a, b)] ∪ [max(0, a, b),min(α, α + a, α + b)] ∪
[max(0, α+a, b),min(α, 1+a, b+α)]∪[max(0, 1+a, α−1+b),min(α, b+α)]∪[max(0, α+
b, a),min(α, 1+ a)] ∪ [max(0, α + b, 1+ a), α] and L2 = [max(1−α, α + a, α + b),min(1, 1+
a, 1+b)]∪[max(1−α, a, 1+b),min(1, α+a, α+1+b)]∪[max(1−α, α+a, 1+b),min(1, 1+
a, α+1+b)]∪[max(1−α, 1+a, α+b),min(1, α+1+b)]∪[max(1−α, a, α+1+b),min(1, 1+
a)] ∪ [max(1 − α, 1 + a, α + 1 + b), 1].
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as shown in Fig. 1. Surprisingly, τε(Sα) is independent of α when ε is sufficiently
small. But it is not unexpected that we obtain limε→0+ τε(Sα) = 1.

For any given copula C , we then investigate the limit of τε(C) as ε goes down to
0, denoted by τ loc(C):

τ loc(C) = lim
ε→0+ τε(C)

wherever the limit exists. The left-hand and right-hand derivatives are denoted
respectively by

∂−
1 C(u, v) = lim

ε→0−
C(u + ε, v) − C(u, v)

ε
and

∂+
1 C(u, v) = lim

ε→0+
C(u + ε, v) − C(u, v)

ε
;

and ∂1C(u, v) = ∂+
1 C(u, v) = ∂−

1 C(u, v) wherever the one-sided derivatives exist
and are equal. LetμC denote the doubly stochastic measure on [0, 1]2 induced by C .

Theorem 2.1 Let 0 < ε < 1 and C be a copula. Then

τ loc(C) =
∫∫

I 2

(

∂−
1 C(u, v) − ∂+

1 C(u, v)
)

dC(u, v)

provided that the set of points (u, v) where the left and right partial derivatives
∂−
1 C(u, v) and ∂+

1 C(u, v) exist has C-volume one.

Proof By Proposition 2.1, τε(C) can be reformulated as

τε(C) = 2

2 − ε

∫∫

I 2

[

C(u, v) − C(u − ε, v)

ε
− C(u + ε, v) − C(u, v)

ε

]

dC(u, v).

Note that both quotients are bounded by 1 and the integral is with respect to a finite
measureμC . Applying the dominated convergence theorem on the set of points (u, v)
where the first quotient converges to ∂−

1 C(u, v) and the second quotient converges
to ∂+

1 C(u, v), we have the desired identity.

Corollary 2.1 Let C be a copula. If ∂1C exists for μC -almost everywhere on I 2 then
τ loc(C) = 0.

Example 2.2 Let C be a copula. If ∂1C exists everywhere then τ loc(C) = 0. In
particular, if Cθ is a Farlie-Gumbel-Morgenstern (FGM) copula, then τ loc(Cθ ) = 0
for all θ .

Example 2.3 We show that τ loc(S) = 1 for all straight shuffles of Min S. Let (u, v)
be in the support of S. From the assumption that S is a straight shuffle of Min, there
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exists δ > 0 such that ∂1S(t, v) = 1 for u − δ < t < u and ∂1S(t, v) = 0 for
u < t < u + δ. Since S is continuous, we have ∂−

1 S(u, v) = 1 and ∂+
1 S(u, v) = 0

at all (u, v) in the support of S. Hence

τ loc(S) =
∫∫

I 2

(

∂−
1 S(u, v) − ∂+

1 S(u, v)
)

d S(u, v) = μS(supp S) = 1.

Similar arguments show that if S is a flipped shuffle of Min then τ loc(S) = −1
and for any shuffle of Min S,

τ loc(S) = λ(IS) − λ(DS)

where IS (DS) is the set of points u for which the support of S is a line of slope 1
(−1) in a neighbourhood of (u, v) ∈ S.

3 Bi-conditional Local Kendall’s Tau

For uniform (0, 1) random variables X and Y with copula C and any 0 < ε ≤ 1, the
bi-conditional local Kendall’s tau of X and Y , or equivalently of C , given that both
X and Y vary less than ε is defined as

τ[ε](C) = P ((X1 − X2)(Y1 − Y2) > 0||X1 − X2| < ε, |Y1 − Y2| < ε)

− P ((X1 − X2)(Y1 − Y2) < 0||X1 − X2| < ε, |Y1 − Y2| < ε) .

Theorem 3.1 The bi-conditional local Kendall’s tau can be computed by

τ[ε](C) = 2 [2TC (0, 0) − 3TC (ε, 0) + TC (ε, ε) − TC (−ε, 0) + TC (ε,−ε)]

TC (ε, ε) − 2TC (ε,−ε) + TC (−ε,−ε)
.

Proof This results from a long calculation similar to the proof of Proposition 2.1 but
much more tedious.

Theorem 3.2 τ[ε](C) is a continuous function of ε ∈ (0, 1].
Proof This is because TC is continuous on [−1, 1]2.

Let us define τ[loc](C) = lim
ε→0+ τ[ε](C).

Example 3.1 τ[ε](Π) = 0, τ[ε](M) = 1, τ[ε](W ) = −1 for all ε ∈ [0, 1].
Example 3.2 For α ≥ 1

2 and 0 < ε < 1
2 min(α, 1 − α), lengthy computations give

TSα (ε, ε) = 1
2 − α − ε + α2 + ε2, TSα (ε,−ε) = 1

2 − α − ε + α2 + 3ε2/2 and
TSα (−ε,−ε) = 1

2 − α + ε + α2 + ε2/2 and hence
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Fig. 2 The bi-conditional local Kendall’s tau of Sα

τ[ε](Sα) = 4 − 4ε

4 − 3ε
,

which is again independent of α. Its graph is shown in Fig. 2. So τ[loc](Sα) =
lim

ε→0+ τ[ε](Sα) = 1.

Example 3.3 Let Cθ be the FGM copulas. Then

τ[ε](Cθ ) = 2(3 − 2ε)2ε2θ

9(2 − ε)2 + (1 − ε)4(2 + ε)θ2
and τ[loc](Cθ ) = 0.

4 Pointwise Kendall’s Tau

Definition 4.1 Let X and Y be continuous random variables on a common sample
spacewithmarginal distributions F andG, respectively. Let (X1, Y1) and (X2, Y2) be
independent random vectors with identical joint distribution as (X, Y ). Let t ∈ (0, 1)
and r ∈ (0,min(t, 1−t)). Thena population version of the local Kendall’s tau around
a point t for X and Y is defined as

τX,Y,r (t) = P
[

(X1 − X2)(Y1 − Y2) > 0 | − r < Xi − F−1(t) < r , ∀i = 1, 2
]

− P
[

(X1 − X2)(Y1 − Y2) < 0 | − r < Xi − F−1(t) < r , ∀i = 1, 2
]

where −r = �F−1−r (t) = F−1(t − r) − F−1(t) and r = �F−1
r (t) = F−1(t + r) −

F−1(t). Note that

τX,Y,r = τF(X),G(Y ),r

= P [Conc| |F Xi − t | < r, ∀i = 1, 2]

− P [Disc| |F Xi − t | < r, ∀i = 1, 2]
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where

Conc = {(F X1 − F X2)(GY1 − GY2) > 0} and

Disc = {(F X1 − F X2)(GY1 − GY2) < 0} .

The following theorem shows that local Kendall’s tau around a point depends only
on the copula of continuous random variables X and Y . It can be proved straightfor-
wardly.

Theorem 4.1 Let X and Y be continuous random variables with copula C. Let t
be in (0, 1) and r be in (0,min(t, 1 − t)). Then a population version of the local
Kendall’s tau around a point t for X and Y is given by

τX,Y,r (t) = 1

r2

∫∫

(t−r,t+r)×[0,1]

(

C(x, y) − C(t − r, y) + C(t + r, y)

2

)

dC(x, y).

Since τX,Y,r depends only on the copula C , it is also called the local Kendall’s tau
around a point of C and denoted by τC,r . The pointwise Kendall’s tau of C at t is
given by

τC (t) = lim
r→0+ τC,r (t). (6)

Similar to its empirical counterpart introduced in [2], τC (t) = τX,Y (t) can detect
monotonicity at t at least in the case when Y is completely dependent on X .

Theorem 4.2 If C is the complete dependence copula CU, f (U ) for some measure
preserving function f and uniform (0, 1) random variable U, then for every conti-
nuity point t of f , τC (t) = sgn( f ′(t)).

Proof Since f is measure preserving and continuous on (t − δ, t + δ) for some
δ > 0, it must be affine on (t − δ, t + δ) with slope m = 0. Assume without loss
of generality that m > 0. Put s = f (t) so that f (t + �t) = s + m�t if |�t | < δ.
By a theorem in [7], ∂1C(x, y) = 0 for y < f (x) and ∂1C(x, y) = 1 for y > f (x).
So, for r < δ, x �→ C(x, y) is constant on [t − r, t + r ] whenever y ≥ s + mr or
y ≤ s − mr .

Let r < δ. Then

τC,r (t) = 1

r2

s+mr
∫

s−mr

t+r
∫

t−r

(

C(x, y) − C(t − r, y) + C(t + r, y)

2

)

C(dx, dy)

= 1

r2

t+r
∫

t−r

(

C(x, s + m(x − t))

− C(t − r, s + m(x − t)) + C(t + r, s + m(x − t))

2

)

dx
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where, in the last equality, we use the fact that
∫∫

I×J g(x, y) dC(x, y) = ∫

I
g(x, f (x))dx if C is supported on the line y = f (x). Since C(·, s + m(x − t))
is constant on [x, t + r ] and affine of slope 1 on [t − r, x], we have

τC,r (t) = 1

2r2

t+r
∫

t−r

C(x, s + m(x − t)) − C(t − r, s + m(x − t)) dx

= 1

2r2

t+r
∫

t−r

(x − t + r) dx = 1.

Hence τC (t) = 1. Derivation for the case m < 0 gives τC (t) = −1.
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Estimation and Prediction Using Belief
Functions: Application to Stochastic
Frontier Analysis

Orakanya Kanjanatarakul, Nachatchapong Kaewsompong,
Songsak Sriboonchitta and Thierry Denœux

Abstract We outline an approach to statistical inference based on belief functions.
For estimation, a consonant belief functions is constructed from the likelihood func-
tion. For prediction, the method is based on an equation linking the unobserved
randomquantity to be predicted, to the parameter and some underlying auxiliary vari-
able with known distribution. The approach allows us to compute a predictive belief
function that reflects both estimation and random uncertainties. Themethod is invari-
ant to one-to-one transformations of the parameter and compatible with Bayesian
inference, in the sense that it yields the same results when provided with the same
information. It does not, however, require the user to provide prior probability distrib-
utions. Themethod is applied to stochastic frontier analysis with cross-sectional data.
We demonstrate how predictive belief functions on inefficiencies can be constructed
for this problem and used to assess the plausibility of various assertions.

1 Introduction

Many problems in econometrics can be formalized using a parametric model

(Y, Z)|x ∼ fθ,x (y, z), (1)

where Y and Z are, respectively, observed and unobserved random vectors, x is an
observed vector of covariates and fθ,x is the conditional probability mass or density
function of (Y, Z)given X = x , assumed to be knownup to a parameter vector θ ∈ Θ .
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For instance, in the standard linear regression model, Y = (Y1, . . . , Yn) is a vector
of n independent observations of the response variable, with Yi ∼ N (x ′

iβ, σ 2),
Z = Yn+1 is an independent random value of the response variable distributed as
N (x ′

n+1β, σ 2), x = (x1, . . . , xn+1) and θ = (β, σ 2). Having observed a realization
y of Y (and the covariates x), we often wish to determine the unknown quantities
in the model, i.e., the parameter θ (assumed to be fixed) and the (yet) unobserved
realization z of Z . The former problem is referred to as estimation and the latter as
prediction (or forecasting).

These two problems have been addressed in different ways within several
theoretical frameworks. The three main theories are frequentist, Bayesian and
likelihood-based inference. In the following,webriefly review these three approaches
to introduce the motivation for the new method advocated in this paper.

Frequentist methods provide pre-experimental measures of the accuracy of
statistical evidence. A procedure (for computing, e.g., a confidence or prediction
interval) is decided before observing the data and its long-run behavior is deter-
mined by averaging over the whole sample space, assuming it is repeatedly applied
to an infinite number of samples drawn from the same population. It has long been
recognized that such an approach, although widely used, does not provide a reliable
measure of the strength of evidence provided by specific data. The following sim-
ple example, taken from [6], illustrates this fact. Suppose X1 and X2 are iid with
probability mass function

Pθ (Xi = θ − 1) = Pθ (Xi = θ + 1) = 1

2
, i = 1, 2, (2)

where θ ∈ R is an unknown parameter. Consider the following confidence set for θ ,

C(X1, X2) =
{

1
2 (X1 + X2) if X1 �= X2

X1 − 1 otherwise.
(3)

It is a minimum length confidence interval at level 75%. Now, let (x1, x2) be a
given realization of the random sample (X1, X2). If x1 �= x2, we know for sure that
θ = (x1 + x2)/2 and it would be absurd to take 75% as a measure of the strength of
the statistical evidence. If x1 = x2, we know for sure that θ is either x1 −1 or x1 +1,
but we have no reason to favor any of these two hypotheses in particular. Again, it
would make no sense to claim that the evidence support the hypothesis θ = x1 − 1
with 75% confidence. Although frequentist procedures do provide usable results in
many cases, the above example shows that they are based on a questionable logic
if they are used to assess the reliable of given statistical evidence, as they usually
are. Moreover, on a more practical side, confidence and prediction intervals are often
based on asymptotic assumptions and their true coverage probability, assuming it is
of interest, may be quite different from the nominal one for small sample sizes.

The other main approach to statistical inference is the Bayesian approach, which,
in contrast to the previous approach, implements some form of post-experimental
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reasoning. Here, all quantities, including parameters, are treated as random vari-
ables, and the inference aims at determining the probability distribution of unknown
quantities, given observed ones. With the notations introduced above, the estimation
and prediction problems are to determine the posterior distributions of, respectively,
θ and Z , given x and y. Of course, this is only possible if one provides a prior prob-
ability distribution π(θ) on θ , which is the main issue with this approach. There has
been a long-standing debate among statisticians about the possibility to determine
such a prior when the experimenter does not know anything about the parameter
before observing the data. For lack of space, we cannot reproduce all the arguments
of this debate here. Our personal view is that no probability distribution is truly
non-informative, which weakens the conclusions of Bayesian inference in situations
where no well-justified prior can be provided.

The last classical approach to inference is grounded in the likelihood princi-
ple (LP), which states that all the information provided by the observations about
the parameter is contained in the likelihood function. A complete exposition of the
likelihood-based approach to statistical inference can be found in the monographs
[6, 8] (see also the seminal paper of Barnard et al. [3]). Birnbaum [7] showed that
the LP can be derived from the two generally accepted principles of sufficiency and
conditionality. Frequentist inference does not comply with the LP, as confidence
intervals and significance tests depend not only on the likelihood function, but also
on the sample space. Bayesian statisticians accept the LP, but claim that the likeli-
hood function does not make sense in itself and needs to be multiplied by a prior
probability distribution to form the posterior distribution of the parameter given the
data. The reader is referred to Refs. [6, 8] for thorough discussions on this topic.
Most of the literature on likelihood-based inference deals with estimation. Several
authors have attempted to address the prediction problem using the notion of “predic-
tive likelihood” [4, 8, 18]. For instance, the predictive profile likelihood is defined
by Lx (z) = supθ fθ,x (y, z). However, this notion is quite different conceptually
from the standard notion of likelihood and, to some extent, arbitrary. While it does
have interesting theoretical properties [18], its use poses some practical difficulties
[6, p.39].

The method described in this paper builds upon the likelihood-based approach by
seeing the likelihood function as describing the plausibility of each possible value
of the parameter, in the sense of the Dempster-Shafer theory of belief functions
[9, 10, 20]. This approach of statistical inference was first proposed by Shafer [20]
and was later investigated by several authors (see, e.g., [1, 23]). It was recently
justified by Denœux in [11] and extended to prediction in [16, 17]. In this paper,
we provide a general introduction to estimation and prediction using belief functions
and demonstrate the application of this inference framework to the stochastic frontier
model. In this model, the determination of the production frontier and disturbance
parameters is an estimation problem, whereas the determination of the inefficiency
terms is a prediction problem. We will show, in particular, how this method makes
it possible to quantify both estimation uncertainty and random uncertainty, and to
evaluate the plausibility of various hypothesis about both the production frontier and
the efficiencies.
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The rest of this paper is organized as follows. The general framework for inference
and prediction will first be recalled in Sect. 2. This framework will be particularized
to the stochastic frontier model in Sects. 3 and4 will conclude the paper.

2 Inference and Prediction Using Belief Functions

Basic knowledge of the theory of belief functions will be assumed throughout this
paper. A complete exposition in the finite case can be found in Shafer’s book [20].
The reader is referred to [5] for a quick introduction on those aspects of this theory
needed for statistical inference. In this section, the definition of a belief function
from the likelihood function and the general prediction method introduced in [16]
will be recalled in Sects. 2.1 and2.2, respectively.

2.1 Inference

Let fθ,x (y) be the marginal probability mass or density function of the observed
data Y given x . In the following, the covariates (if any) will be assumed to be fixed,
so that the notation fθ,x (y) can be simplified to fθ (y). Statistical inference has
been addressed in the belief function framework by many authors, starting from
Dempster’s seminal work [9]. In [20], Shafer proposed, on intuitive grounds, a more
direct approach in which a belief function BelΘy on Θ is built from the likelihood
function. This approach was further elaborated byWasserman [23] and discussed by
Aickin [1], among others. It was recently justified by Denœux in [11], from three
basic principles: the likelihood principle, compatibility with Bayesian inference and
the least commitment principle [21]. The least committed belief function verifying
the first two principles, according to the commonality ordering [12] is the consonant
belief function BelΘy defined by the contour function

ply(θ) = L y(θ)

supθ ′∈Θ L y(θ ′)
, (4)

where L y(θ) = fθ (y) is the likelihood function. The quantity ply(θ) is interpreted
as the plaussibility that the true value of the parameter is θ . The corresponding
plausibility and belief functions can be computed from ply as:

PlΘy (A) = sup
θ∈A

ply(θ), (5a)

BelΘy (A) = 1 − sup
θ �∈A

ply(θ), (5b)

for all A ⊆ Θ . The focal sets of BelΘy are the levels sets of ply(θ) defined as follows:
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Γy(ω) = {θ ∈ Θ|ply(θ) ≥ ω}, (6)

forω ∈ [0, 1]. These sets may be called plausibility regions and can be interpreted as
sets of parameter values whose plausibility is greater than some threshold ω. When
ω is a random variable with a continuous distribution U ([0, 1]), Γy(ω) becomes a
random set equivalent to the belief function BelΘy , in the sense that

BelΘy (A) = Pω(Γy(ω) ⊆ A) (7a)

PlΘy (A) = Pω(Γy(ω) ∩ A �= ∅), (7b)

for all A ⊆ Θ such that the above expressions are well-defined.

Example 1 Let us consider the case where Y = (Y1, . . . , Yn) is an i.i.d. sample from
a normal distributionN (θ, 1). The contour function on θ given a realization y of Y
is

ply(θ) = (2π)−n/2 exp
(− 1

2

∑n
i=1(yi − θ)2

)

(2π)−n/2 exp
(− 1

2

∑n
i=1(yi − y)2

) (8a)

= exp
(

−n

2
(θ − y)2

)

, (8b)

where y is the sample mean. The plausibility and belief that θ does not exceed some
value t are given by the upper and lower cumulative distribution functions (cdfs)
defined, respectively, as

Ply(θ ≤ t) = sup
θ≤t

plx (θ) (9a)

=
{

exp
(− n

2 (t − y)2
)

if t ≤ y

1 otherwise
(9b)

and

Bely(θ ≤ t) = 1 − sup
θ>t

plx (θ) (10a)

=
{

0 if t ≤ y

1 − exp
(− n

2 (t − y)2
)

otherwise.
(10b)

The focals sets (6) are closed intervals

Γy(ω) =
[

y −
√−2 lnω

n
, y +

√−2 lnω

n

]

. (11)
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When ω has a uniform distribution on [0, 1], Γy(ω) is a closed random interval. The
cdfs of its lower and upper bounds are equal, respectively, to the lower and upper
cdfs (10a, 10b) and (9a, 9b). �

2.2 Prediction

The prediction problem can be defined as follows: having observed the realization y
of Y with distribution fθ (y), we wish to make statements about some yet unobserved
data Z ∈ Z whose conditional distribution fy,θ (z) given Y = y also depends on
θ . The uncertainty on Z has two sources: (1) the randomness of the generation
mechanism of Z given θ and y and (2) the estimation uncertainty on θ . In the
approach outlined here, the latter uncertainty is represented by the belief function
BelΘy on θ obtained by the approach described in the previous section. The random
generation mechanism for Z can be represented by a sampling model such as the
one used by Dempster [9] for inference. In this model, the new data Z is expressed
as a function of the parameter θ and an unobserved auxiliary random variable ξ with
known probability distribution independent of θ :

Z = ϕ(θ, ξ), (12)

where ϕ is defined in such a way that the distribution of Z for fixed θ is fy,θ (z).
When Z is a real random variable, a canonical model of the form (12) can be

obtained as Z = F−1
y,θ (ξ), where Fy,θ is the conditional cumulative distribution

function (cdf) of Z givenY = y, F−1
y,θ is its generalized inverse and ξ has a continuous

uniformdistribution in [0, 1]. This canonicalmodel can be extended to the casewhere
Z is a randomvector. For instance, assume that Z is a two-dimensional randomvector
(Z1, Z2). We can write

Z1 = F−1
y,θ (ξ1) (13a)

Z2 = F−1
y,θ,Z1

(ξ2), (13b)

where Fy,θ is the conditional cdf of Z1 given Y = y, Fy,θ,Z1 is the conditional cdf
of Z2 given Y = y and Z1 and ξ = (ξ1, ξ2) has a uniform distribution in [0, 1]2.

Equation (12) gives us the distribution of Z when θ is known. If we only know
that θ ∈ Γy(ω) and the value of ξ , we can assert that Z is in the set ϕ(Γy(ω), ξ).
As ω and ξ are not observed but have a joint uniform distribution on [0, 1]2, the set
ϕ(Γy(ω), ξ) is a random set. It induces belief and plausibility functions defined as

Bely(Z ∈ A) = Pω,ξ

(

ϕ(Γy(ω), ξ) ⊆ A
)

, (14a)

Ply(Z ∈ A) = Pω,ξ

(

ϕ(Γy(ω), ξ) ∩ A �= ∅)

, (14b)

for any A ⊆ Z.



Estimation and Prediction Using Belief Functions … 177

Example 2 Continuing Example1, let us assume that Z ∼ N (θ, 1) is a yet
unoberved normal random variable independent of Y . It can be written as

Z = θ + Φ−1(ξ), (15)

where Φ is the cdf of the standard normal distribution. The random set ϕ(Γy(ω), ξ)

is then the random closed interval

ϕ(Γy(ω), ξ) =
[

y −
√−2 lnω

n
+ Φ−1(ξ), y +

√−2 lnω

n
+ Φ−1(ξ)

]

. (16)

Expressions (14a, 14b) for the belief and plausibility of any assertion about Z can be
approximated by Monte Carlo simulation [16]. �

As remarked by Bjornstad [8], a prediction method should have at least two
fundamental properties: it should be invariant to any one-to-one reparametrization
of the model and it should be asymptotically consistent, in a precise sense to be
defined. An additional property that seems desirable is compatibility with Bayesian
inference, in the sense that it should yield the same result as the Bayesian approach
when a prior distribution on the parameter is provided. Our method possesses these
three properties. Parameter invariance follows from the fact that it is based on the
likelihood function; compatibility with Bayes is discussed at length in [16] and
consistency will be studied in greater detail in a forthcoming paper.

3 Application to Stochastic Frontier Analysis

In this section, we apply the above estimation and prediction framework to the
stochastic frontier model (SFM). To keep the emphasis on fundamental principles
of inference, only the simplest case of cross-sectional data will be considered. The
model as well as the inference method will be in introduced in Sect. 3.1 and an
illustration with simulated data will be presented in Sect. 3.2.

3.1 Model and Inference

The SFM [2] defines a production relationship between a p-dimensional input vector
xi and output Yi of each production unit i of the form

ln Yi = β ′ ln xi + Vi − Ui , (17)

where β is a vector of coefficients, Vi is an error term generally assumed to have a
normal distributionN (0, σ 2

v ) andUi is a positive inefficiency term.Usualmodels for
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Ui are the half-normal distribution |N (0, σ 2
u )| (i.e., the distribution of the absolute

value of a normal variable) and the exponential distribution. The SFM is thus a linear
regression model with asymmetric disturbances εi = Vi −Ui . The inefficiency terms
Ui are not observed but are of particular interest in this setting.

AssumingUi to have a half-normal distribution, let λ = σu/σv and σ 2 = σ 2
u +σ 2

v
be new parameters to be used in place of σ 2

u and σ 2
v . Although the variance ofUi is not

σ 2
u but (1− 2/π)σ 2

u , λ has an intuitive interpretation as the relative variability of the
two sources of error that distinguish firms from one another [2]. Using the notations
defined in Sect. 1, we have Y = (Y1, . . . , Yn), Z = (U1, . . . , Un) and θ = (β, σ, λ).
The determination of the inefficiency terms is thus a prediction problem.

3.1.1 Parameter Estimation

Assuming the two error components Ui and Vi to be independent, the log-likelihood
function is [14, p.540]

ln L y(θ) = −n ln σ + n

2
log

2

π
− 1

2

n
∑

i=1

(εi

σ

)2 +
n

∑

i=1

lnΦ

(

−εiλ

σ

)

. (18)

Themaximum likelihood estimate (MLE)̂θ can be found using an iterative nonlinear
optimization procedure. Parameter β may be initialized by the least squares estimate,
which is unbiased and consistent (except for the constant term) [14]. However, it may
be wise to restart the procedure from several randomly chosen initial states, as the
log-likelihood function may have several maxima for this problem. Oncêθ has been
found, the contour function (4) can be computed. The marginal contour function for
any subset of parameters is the relative profile likelihood function. For instance, the
marginal contour function of λ is

ply(λ) = sup
β,σ

ply(θ). (19)

3.1.2 Prediction

The main purpose of stochastic frontier analysis is the determination of the ineffi-
ciency terms ui , which are not observed. The usual approach is to approximate ui

by E(Ui |εi ), which is itself estimated by plugging in the MLEs and by replacing εi

by the residuals ε̂i . The main result is due to Jondrow et al. [15], who showed that
the conditional distribution of U given εi , in the half-normal case, is that of a normal
N (μ∗, σ 2∗ ) variable truncated at zero, with
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μ∗ = −σ 2
u εi

σ 2 = − εiλ
2

1 + λ2
(20a)

σ∗ = σuσv

σ
= λσ

1 + λ2
. (20b)

The conditional expectation of Ui given εi is

E(Ui |εi ) = λσ

1 + λ2

[

φ(λεi/σ)

1 − Φ(λεi/σ)
− λεi

σ

]

, (21)

where φ and Φ are, respectively, the pdf and cdf of the standard normal distribution.
As noted by Jondrow et al. [15], when replacing the unknown parameter values by
their MLEs, we do not take into account uncertainty due to sampling variability.
While this uncertainty becomes negligible when the sample size tends to infinity, it
certainly is not when the sample is of small or moderate size.

To implement the approach outlined in Sect. 2.2 for this problem, we may write
the cdf of Ui as

F(u) = Φ[(u − μ∗)/σ∗] − Φ(−μ∗/σ∗)
1 − Φ(−μ∗/σ∗)

1[0,+∞)(u). (22)

Let ξi = F(Ui ), which has a uniform distribution U ([0, 1]). Solving the equation
ξi = F(Ui ) for Ui , we get

Ui = μ∗ + σ∗Φ−1
[

ξi

(

1 − Φ

(

−μ∗
σ∗

))

+ Φ

(

−μ∗
σ∗

)]

. (23)

Replacing μ∗ and σ∗ by their expressions as functions of the parameters, we have

Ui = ϕ(θ, ξi ) = λ

1 + λ2

{

−εiλ + σΦ−1
[

ξi + Φ

(

εiλ

σ

)

(1 − ξi )

]}

(24)

with εi = ln yi −β ′ ln xi , which gives us an equation of the same formas (12), relating
the unobserved random variable Ui to the parameters and the auxiliary variable ξi .

To approximate the belief function on Z = (U1, . . . , Un), we may use the Monte
Carlo method described in [16]. More specifically, we randomly generate N n + 1-
tuples (ω( j), ξ

( j)
1 , . . . , ξ

(n)
1 ) for j = 1, . . . , N uniformly in [0, 1]n+1. For i = 1 to n

and j = 1 to N , we compute the minimum and the maximum of ϕ(θ, ξ
( j)
i ) w.r.t. θ

under the constraint

ply(θ) ≥ ω( j). (25)
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Let [u( j)
i , u( j)

i ] be the resulting interval. The belief and plausibility of any statement
Z ∈ A for A ⊂ R

n as defined by (14a, 14b) can be approximated by

Bely(Z ∈ A) ≈ 1

N
#

{

j ∈ {1, . . . , N }|[u( j)
1 , u( j)

1 ] × · · · × [u( j)
n , u( j)

n ] ⊆ A
}

,

(26a)

Ply(Z ∈ A) ≈ 1

N
#

{

j ∈ {1, . . . , N }|[u( j)
1 , u( j)

1 ] × · · · × [u( j)
n , u( j)

n ] ∩ A �= ∅
}

,

(26b)

where # denotes cardinality. We can also approximate the belief function on any
linear combination

∑n
i=1 αi ui by applying the same transformation to the intervals

[u( j)
i , u( j)

i ], using interval arithmetics. For example, the belief and plausibility of
statements of the form ui − uk ≤ c can be approximated as follows:

Bely(ui − uk ≤ c) ≈ 1

N
#

{

j ∈ {1, . . . , N }|u( j)
i − u( j)

k ≤ c
}

, (27a)

Ply(ui − uk ≤ c) ≈ 1

N
#

{

j ∈ {1, . . . , N }|u( j)
i − u( j)

k ≤ c
}

. (27b)

3.2 Simulation Experiments

To illustrate the behavior of our method, we simulated data from model (17) with
p = 1, β = (1, 0.5)′, σv = 0.175 and σu = 0.3. We thus have, for this model,
λ = 1.7143 and σ = 0.3473. Figure1 displays the marginal contour functions of β0,
β1, σ and λ for a simulated sample of size n = 100. These plots show graphically
the plausibility of any assertion of the form θ j = θ j0. For instance, we can see from
Fig. 1d that the plausibility of the assertion λ = 0 is around 0.6: consequently, the
hypothesis that inefficiencies are all equal to zero is quite plausible, given the data.

Figures2 and3 show the true and estimated inefficiencies for 20 individuals in
the above simulated sample of size n = 100 and in a simulated sample of size
n = 1,000, respectively. For the belief function estimation, we give the quantile
intervals for α = 5% and α = 25%. The lower bound of the quantile interval [16]
is the α quantile of the lower bounds u( j)

i of the prediction intervals, while the upper

bound is the 1− α quantile of the upper bounds u( j)
i . The larger intervals in the case

n = 100 reflect the higher estimation uncertainty.
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Fig. 1 Marginal contour functions for a simulated sample of size n = 100
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Fig. 2 True and predicted inefficiencies for 20 individuals in a simulated sample of size n = 100
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Fig. 3 True and predicted inefficiencies for 20 individuals in a simulated sample of size n = 1,000

4 Conclusions

We have shown how the estimation and prediction problems may be solved in the
belief function framework, and illustrated these solutions in the case of the stochastic
frontier model with cross-sectional observation. In the case of this model, the esti-
mation problem concerns the determination of the model parameters describing the
production frontier and the distributions of the noise and inefficiency terms, while
the prediction problem consists in the determination of the unobserved inefficiency
terms, which are of primary interest in this analysis. In our approach, uncertain-
ties about the parameters and the inefficiencies are both modeled by belief functions
induced by randomsets. In particular, the randomset formulation allows us to approx-
imate the belief or plausibility of any assertion about the inefficiencies, using Monte
Carlo simulation.

We can remark that parameters and realizations of random variables (here, inef-
ficiencies) are treated differently in our approach, whereas there are not in Bayesian
inference. In particular, the likelihood-based belief functions in the parameter space
are consonant, whereas predictive belief functions are not. This difference is not due
to conceptual differences between parameters and observations, which are just con-
sidered here as unknown quantities. It is due to different natures of the evidence from
which the belief functions are constructed. In the former case, the evidence consists
of observations that provide information on parameters governing a random process.
In the latter case, evidence about the data generating process provides information
about unobserved observations generated from that process.

The evidential approach to estimation and prediction outlined in this paper is
invariant to one-to-one transformations of the parameters and compatible with
Bayesian inference, in the sense that it yields the same result when provided with the
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same initial information. It is, however, more general, as it does not require the user
to supply prior probability distributions. It is also easily implemented and does not
require asymptotic assumptions, which makes it readily applicable to a wide range
of econometric models.

The preliminary results reported in this paper need to be completed in several
ways. First, a detailed comparison, based on underlying principles, with alternative
approaches such as, e.g., the empirical Bayes method [19] or imprecise probabilities
[22] remains to be performed. Secondly, it would be interesting to study experimen-
tally how users interpret the results of the belief function analysis to make decisions
in real-world situations. Finally, theoretical properties of our method, such as asymp-
totic consistency, are currently being studied.
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The Classifier Chain Generalized
Maximum Entropy Model for Multi-label
Choice Problems

Supanika Leurcharusmee, Jirakom Sirisrisakulchai,
Songsak Sriboonchitta and Thierry Denœux

Abstract Multi-label classification can be applied to study empirically discrete
choice problems, in which each individual chooses more than one alternative.
We applied the Classifier Chain (CC) method to transform the Generalized Maxi-
mumEntropy (GME) choicemodel from a single-label model to amulti-label model.
The contribution of our CC-GMEmodel lies in the advantages of both the GME and
CC models. Specifically, the GME model can not only predict each individual’s
choice, but also robustly estimate model parameters that describe factors determin-
ing his or her choices. The CCmodel is a problem transformation method that allows
the decision on each alternative to be correlated. We used Monte-Carlo simulations
and occupational hazard data to compare the CC-GME model with other selected
methodologies for multi-label problems using the Hamming Loss, Accuracy, Pre-
cision and Recall measures. The results confirm the robustness of GME estimates
with respect to relevant parameters regardless of the true error distributions. More-
over, the CCmethod outperforms other methods, indicating that the incorporation of
the information on dependence patterns among alternatives can improve prediction
performance.

1 Introduction

The discrete choice problem describes how an individual chooses an alternative from
M ≥ 2 available ones. Empirically, the problem is similar to the single-label classi-
fication problem, in which objects are classified into M classes. However, in many
situations, we observe an individual choosing more than one alternative simultane-
ously. This problem is then empirically equivalent to the multi-label classification
problem, in which one object can be associated with a subset of classes. In this
study, we extend existing single-label choice models to multi-label choice models.
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Since the development of the random utility model, which explains individuals’
decision making process, the parameters in the empirical models can be linked to
those in the utility functions. The knowledge of the model parameters can contribute
to behavior explanation and policy implications. Consequently, the objectives of
our multi-label choice model are not only to predict a set of alternatives that each
individual chooses, but also to estimate the model parameters that describe factors
determining each individual’s decisions.

Common methods to study discrete choice problems are the Logit and Probit
models [16]. These models are limited in the sense that, being likelihood-based, they
require distributional assumptions for the errors. [4, 15] introduced the Maximum
Entropy (ME) model for discrete choice problems. [5] added the error components
to the model and extended it to the GeneralizedMaximumEntropy (GME)model for
multinomial choice problem to improve efficiency. The traditional discrete choice
models are for single-label classification. There are a few Logit and Probit models
that were developed to explain the multi-label choice problem in which each individ-
ual purchases a bundle of products. As discussed in [2], commonly used models are
the Label Powerset model with multinomial Logit and Probit estimation and the mul-
tivariate Probit or Logit models [1–3]. Although both models allow each individual
to choose more than one alternatives, none of them can cope with large choice sets.

Existing methodologies to analyze the multi-label classification problem in com-
puter science follow twomain approaches, referred to as problem transformation and
algorithm adaptation [17]. The strategy of the former approach is to transform the
multi-label problem into single-label one in order to apply traditional classification
methods. Problem transformation methods include Binary Relevance, Label Pow-
erset, Random k-labelsets, Classifier Chains, Pruned Sets, Ensemble of Classifier
Chains and Ensemble of Pruned Sets [7, 13]. The algorithm adaptation approach,
in contrast, tackles the multi-label problem directly. Algorithm adaptation methods
include Multi-label k-Nearest Neighbors, Back-Propagation Multi-label Learning
and Decision Trees [7, 13].

Since the objective of this study is to extend the single-label choicemodel tomulti-
label choice, we focus on the problem transformation approach. As discussed in [7],
the problem transformation approach is generally simpler, but it has a disadvantage
of not incorporating the dependence among alternatives. However, this is not true for
the Classifier Chain (CC) method, which can capture the dependence pattern among
alternatives. Since the choices that each individual makes are usually correlated, this
study focuses on the CCmethod. As for the base single-label choicemodel, the Logit,
Probit and GMEmodels were all developed with a main objective to estimate model
parameters that describe factors determining each individual’s decisions. However,
the GME estimates are robust to distributional assumptions. In addition, the GME
model can generally estimate under-determined problems most efficiently. In other
words, the GME method yields the estimated parameters with the smallest possible
variances [6]. Therefore, to robustly estimate all relevant parameters and capture the
dependence pattern among alternatives, we propose the CC-GME model.

For the experimental part of this study, we used Monte-Carlo simulations to
compare the CC method with the Binary Relevance (BR) and Label Powerset (LP)
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methods andwecompare theGMEmethodwith theLogit andProbitmethods. Specif-
ically, we empirically assessed the performances CC-GMEmodel against CC-Logit,
CC-Probit, BR-GME,BR-Logit, BR-Probit, LP-GME,LP-Logit andLP-Probitmod-
els. To test the robustness of the estimations, we applied all the methods to three sim-
ulated datasets with normal, logistic and uniform errors. Moreover, we also applied
all the methods to a real dataset to explain factors determining the set of occupational
hazards that each individual faces. Performance measures used in this study include
Hamming Loss, Accuracy, Precision and Recall [7, 13, 18]. The results show that the
forecasting performances are more sensitive to the choice of the problem transfor-
mation method than to the choice of single-label estimation methods. That is, the CC
model outperformed the BR and LP models with respect to all evaluation measures
expect the Precision. For the parameter estimates, the GME based methods yielded
smaller Mean Squared Error (MSE) than the Logit and Probit base methods.

This paper is organized as follows. The original GME model for single-label
choice model is recalled in Sect. 2 and the multi-label CC-GMEmodel is introduced
in Sect. 3. In Sect. 4, theCC-GMEmodel is evaluated usingMonte-Carlo simulations.
Section5 provides an empirical example using occupational hazard data. Finally,
Sect. 6 presents our conclusions and remarks.

2 The Single-Label GME Model

The concept of entropy was introduced by [14] to measure the uncertainty of a set
of events. The Shannon entropy function is H(p) = ∑

j pj log(pj), where pj is the
probability of observing outcome j [8, 9]. Proposed the Maximum Entropy (ME)
principle, stating that the probability distribution that best represents the data or
available information is the one with the largest entropy. From the ME principle,
[4, 15] developed the ME model for discrete choice problems [5]. Added error
components to the model and extended it to the GME model for discrete choice
problems.

Consider a problem in which each of N individuals chooses his or her most
preferred choice from M alternatives. From the data, we observe dummy variables
yij which equal 1 if individual i chooses alternative j and 0 otherwise. Moreover, we
observe K characteristics of each individual xik , where k = 1, . . . , K . The objective
of the GME multinomial choice model is to predict pij = Pr{yij = 1|xik} for all i
and j, which is the probability of individual i choosing each alternative j given the
set of his or her characteristics xik . That is, we want to recover pij from the observed
data yij and xik .

In the GME model, the observed data yij is assumed to be decomposed into the
signal component pij and error component eij,

yij = pij + eij. (1)
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The error component is supposed to be the expected value of a discrete random
variable with support {vh} and probabilities {wijh}: eij = ∑

h vhwijh. Following [11],
the error support is constructed using the three sigma rule, which states that the error
support should be symmetric around zero and the bounds should be −3σy and 3σy

where σy is the empirical standard deviation of the dependence variable. The number
of values for the error is usually fixed at 3 or 5. That is, the error support is usually set
to {−3σy, 0, 3σy} or {−3σy,−1.5σy, 0, 1.5σy, 3σy} [6, 11]. Premultiplying (1) with
xik and summing across i, we have MK stochastic moment constraints,

∑

i

xikyij =
∑

i

xikpij +
∑

ih

xikvhwijh, ∀j = 1, . . . , M,∀k = 1, . . . , K . (2)

From the principle of ME, pij that best represents the data must maximize the
entropy function

max
p,w

H(pij, wijh) = −
∑

ij

pij log(pij) −
∑

ijh

wijh log(wijh) (3)

subject to constraints (2) and the following normalization constraints

∑

j

pij = 1, ∀i = 1, . . . , N (4)

∑

h

wijh = 1, ∀i = 1, . . . , N,∀j = 1, . . . , M. (5)

This maximization problem can be solved using the Lagrangian method. It should
be noted that we can estimate pij and wijh without making any functional form or dis-
tributional assumptions. However, to analyze marginal effects of each characteristic
xik on pij, let us assume that

yij = pij + eij = G(xiβj) + eij (6)

for some function G and coefficients βj. Unlike the Logit or Probit-based models, the
GME model only makes the linear assumption on xiβj, but it does not need to make
assumption on function G. However, [5] show that the estimated Lagrange multiplier
for each stochastic moment constraint λj is equal to −βj and the marginal effect can
be calculated using the information from the λj.

3 The Multi-label CC-GME Model

Let Ω be a choice set that contains M alternatives. Let us observe a set of dummy
variables yij where yij = 1when individual i chooses alternative j. For themulti-label
model, each individual may choose more than one alternative. In other words, it is
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possible that yij = 1 for more than one j. Therefore, there are at most 2M possible
outcomes.

3.1 The CC Model

The multi-label CC model was introduced by [12]. The objective of the multi-label
choice model is to estimate Pr{yi = A|xik} where yi is the set of all alternatives
that individual i chooses and A ⊆ 2Ω . To allow the probability of choosing each
alternative to be correlated, the CC method uses Bayes’ rule to expand Pr{yi|xik} as
follows,

Pr{yi|xik} = Pr{yi1 = 1|xik}Pr{yi2 = 1|yi1, xik} . . .

Pr{yiM = 1|yi1, yi2, . . . , y1(M−1), xik}, (7a)

which can be denoted as

Pr{yi|xik} =
M
∏

j=1

Pr{yij = 1|x̃ij} =
M
∏

j=1

G(x̃ijβj), (7b)

where x̃ij = (yi1, . . . , yij, xi1, . . . , xiK ) for all j = 2, . . . , M and x̃i1 = (xi1, . . . ,

xiK ). In (7a, 7b), notice that the multi-label problem is decomposed into a series
of conditionally independent binary choice problems Pr{yij = 1|x̃ij} for all j =
1, . . . , M. The CCmethod reduces the dimension of the problem significantly, as 2Ω

grows exponentially with the size of the choice set Ω .
Notice that different sequences of the choices yij yield different estimates and

predictions. The criterion to select the sequence of the choice depends on the method
used to estimate Pr{yij = 1|x̃ij}. When GME is used, the criterion is to choose the
sequence that maximizes the total entropy.When the Logit or Probit models are used,
the criterion is to maximize the likelihood.

3.2 The CC-GME Model

To estimate the probability Pr{yi|xik} of individual i choosing a set A, we need
to estimate all the components of the Bayes’ decomposition in Eq. (7a, 7b). In this
section, we address the problem of estimating the parameters for each of the binomial
choice problems Pr{yij = 1|x̃ij} for all j = 1, . . . , M using the multinomial choice
GME model with two alternatives in the choice set. In this case, the yij only can
take values 0 or 1. Therefore, the two alternatives are whether individual i chooses
alternative j or not.

Let yij = p̃ij + eij = G(x̃ijβj) + eij, where eij = ∑

h vhwijh. Let kj be the index
for elements in x̃ij. To simultaneously estimate p̃ij and wijh for all j, the GME model
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can be written as

max
p̃,w

H(p̃ij, wijh) = −
∑

ij

p̃ij log(p̃ij) −
∑

ijh

wijh log(wijh) (8)

subject to

∑

i

x̃ijkj yij =
∑

i

x̃ijkj p̃ij +
∑

ih

x̃ijkj vhwijh, ∀j = 1, . . . , M,

∀kj = 1, . . . , (K + j − 1)

(9)

∑

h

wijh = 1, ∀i = 1, . . . , N,∀j = 1, . . . , M, (10)

where (8) is the entropy function, (9) are the stochastic-moment constraints and (10)
are normalization constraints. From the maximization problem, the Lagrangian can
be expressed as

L(p̃ij, wijh) = −
∑

ij

p̃ij log(p̃ij) −
∑

ijh

wijh log(wijh)

+
∑

jk

λjk

[

∑

i

x̃ijkj yij −
∑

i

x̃ijkj p̃ij −
∑

ih

x̃ijkj vhwijh

]

+
∑

ij

δij
[

1 − wijh
]

. (11)

The solutions to the above Lagrangian problem are

p̂ij = exp

(

−1 −
∑

k

λjk x̃ijkj

)

(12a)

and

ŵijh = exp(−∑

k λ̂jk x̃ijkj vh)
∑

h exp(−
∑

k λ̂jk x̃ijkj vh)
. (12b)

3.2.1 The Concentrated CC-GME Model

Following [5], the GME model can be reduced to the concentrated GME model,
which is the model with the minimum number of parameters that represents the orig-
inal GME model. From the Lagrangian (11) and the GME solutions (12a, 12b), we
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can derive the objective function for the concentrated GME model as

M(λjkj ) =
∑

ijkj

λjkj x̃ijkj yij +
∑

ij

[

exp(−1 −
∑

k

λjkj x̃ijkj )

]

+
∑

ij

⎡

⎣log
∑

h

exp(−
∑

kj

λjkj x̃ijkj vh)

⎤

⎦ . (13)

The concentrated GME model minimizes expression (13) with respect to λjkj . The
gradient can be written as

∂M

∂λjkj

=
∑

i

x̃ijkj yij −
∑

i

x̃ijkj p̃ij −
∑

i

x̃ijkj vhwijh. (14)

Notice that the objective function of the concentratedmodel is no longer a function
of p̃ij and wijh, but only a function of λjkj . As discussed in [5], the interpretation of
λjkj from the concentrated model can be compared to that of the βjkj parameters.
Specifically, it can be shown mathematically that βjkj = −λjkj .

3.3 Result Analysis

The multi-label CC-GME model can capture the marginal effects of an individual
characteristics on his or her decisions and the dependence pattern of the decisions
on all available alternatives.

3.3.1 Marginal Effects

The marginal effects measure the effect of a change in an individual characteristic
on an individual’s choice decisions. For this multi-label model, the marginal effects
are situated at two levels. The first level is to analyze the effect of a change in xk on
the probability that the individual will choose an alternative j ∈ Ω . This marginal
effects in this level is

∂Pr{yj|x̃j}
∂xk

= βjkG′(x̃jβj). (15)

The second level is to analyze the effect of a change in xk on the probability that the
individual will choose a set of alternatives A ∈ 2Ω . From Eq. (7a, 7b), the marginal
effect of xk on Pr{y|x} is

∂Pr{y|x}
∂xk

=
∑

j

⎡

⎣βjkG′(x̃jβj)
∏

q �=j

G(x̃qβq)

⎤

⎦ . (16)
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3.3.2 Dependence of the Alternatives

In the multi-label model, an individual can choose multiple alternatives. The deci-
sions of choosing each of those alternatives or not can be dependent. The dependence
between an alternative j and another alternative q, where the index q < j, can be
captured from the marginal effects of the change in yq on Pr{yj|x̃j}, which is

∂Pr{yj|x̃j}
∂yq

= βj(K+q)G
′(x̃jβj). (17)

3.3.3 Model Evaluations

The evaluation ofmulti-label choice problems requires differentmeasures from those
of single-label problems. In contrast to the single-label prediction, which can either
be correct or incorrect, the multi-label prediction can be partially correct [13]. Sum-
marized several measures to evaluate multi-label classification models. Commonly
used measures include the Hamming Loss, Accuracy, Precision and Recall. The
Hamming Loss measures the symmetric difference between the predicted and the
true choices with respect to the size of the choice set. The other three methods mea-
sures the number of correct predicted choices. The difference is in the normalizing
factors. The Accuracymeasures the number of correct predicted choices with respect
to the sum of all correct, incorrect and missing choices. The Precision and Recall
measure the number of correct predicted choices with respect to the number of all
predicted choices and the number of all true choices, respectively. The formulas for
these four measures are

Hamming Loss =
N
∑

i=1

|ŷiΔyi|
NM (18)

Accuracy =
N
∑

i=1

|ŷi∩yi|
|ŷi∪yi| (19)

Precision =
N
∑

i=1

|ŷi∩yi|
|ŷi| (20)

Recall =
N
∑

i=1

|ŷi∩yi||yi| . (21)

where | · | is the number of elements in the set, Δ is the symmetric difference
between the two sets, ∩ is the intersection of the two sets and ∪ is the union of the
two sets.
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4 Monte-Carlo Experiment

In this section, we used Monte-Carlo simulations to empirically evaluate our multi-
label CC-GME model using three simulated datasets with normal, logistic and uni-
formerrors.Wecompared theperformanceof theCC-GMEmodelwith some selected
multi-label estimations including CC-Logit, CC-Probit, BR-GME, BR-Logit, BR-
Probit, LP-GME, LP-Logit and LP-Probit models.

The BRmodel simplifies the multi-label model to an independent series of binary
single-label choice models. For example, the BR-GME model applies the GME
single-label model to estimate the probability that individual i chooses alternative
j, Pr{yij = 1|xik}. The probability that individual i chooses the set of alternatives
A is then Pr{yi = A|xik} = ∏K

j=1 Pr{yij = 1|xik}. The LP model transforms the

multi-label problem into a single-label problem of 2Ω alternatives. For example, the
LP-GME model applies the GME single-label model to estimate Pr{yi = A|xik}
where A ∈ 2Ω .

4.1 Simulation

For simplicity, we assumed N = 1,000 individuals, M = 3 alternatives and K = 2
individual characteristics. The simulation procedures are composed of two main
steps. The first step is to generate all characteristics xi, the true parameters β0

ik and
the error eij. Given the information from xi and β0

1k , we calculated the latent variable
y′

i1 = ∑

k x̃i1kβ1k + εi1. We then generated the choice variable yi1 by letting yi1 = 1
when y′

i1 ≥ 0 and yij = 0 otherwise. Once we have yi1, we can simulate yi2, . . . , yiM .
This first step provided us with the simulated data (yij, xi) and true parameters β0

ik .
The second step is to use the data from the first step and apply the CC-Logit, CC-

Probit, BR-GME, BR-Logit, BR-Probit, LP-GME, LP-Logit and LP-Probit models.
After computing the parameter estimates β̂ik , the predicted probability of individual
i choosing choice j, p̂ij, and the corresponding predicted choices, ŷi, can be obtained.
Using Monte-Carlo simulation, the standard deviation of each estimated parameter
and statistics can be estimated.

4.2 Results

The Monte-Carlo simulations allowed us to compare the performances of the CC-
Logit, CC-Probit, BR-GME, BR-Logit, BR-Probit, LP-GME, LP-Logit and LP-
Probit models.

Table1 shows the true parameters and the estimated parameters from all the CC
and the BR models. It should be noted that the LP models can also provide estimates
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Table 1 True and estimated parameters for the CC and BR models

Alternative Regressor TRUE Classifier chains Binary relevance

GME Logit Probit GME Logit Probit

Normal error

y1 x1 0.318 0.513 0.516 0.319 0.513 0.516 0.319

(0.071) (0.072) (0.044) (0.071) (0.072) (0.044)

x2 0 0.003 0.003 0.002 0.003 0.003 0.002

(0.068) (0.068) (0.042) (0.068) (0.068) (0.042)

y2 x1 −0.223 −0.382 −0.382 −0.228 −0.331 −0.333 −0.199

(0.073) (0.076) (0.045) (0.069) (0.071) (0.042)

x2 −0.659 −1.100 −1.108 −0.665 −1.073 −1.098 −0.660

(0.076) (0.077) (0.044) (0.071) (0.074) (0.043)

y1 0.243 0.404 0.382 0.228 − − −
(0.101) (0.139) (0.082)

y3 x1 0.706 1.190 1.205 0.700 0.841 1.092 0.640

(0.103) (0.107) (0.060) (0.071) (0.095) (0.053)

x2 −0.360 −0.629 −0.633 −0.368 −0.645 −0.849 −0.498

(0.092) (0.100) (0.058) (0.068) (0.092) (0.052)

y1 0.551 0.965 0.992 0.574 − − −
(0.150) (0.177) (0.102)

y2 0.844 1.407 1.442 0.837 − − −
(0.152) (0.183) (0.106)

MSE 0.001 0.143 0.005 0.001 0.112 0.006

Logistic error

y1 x1 0.318 0.324 0.325 0.203 0.324 0.325 0.203

(0.070) (0.070) (0.043) (0.070) (0.070) (0.043)

x2 0 0.006 0.006 0.004 0.006 0.006 0.004

(0.060) (0.061) (0.038) (0.060) (0.061) (0.038)

y2 x1 −0.223 −0.227 −0.228 −0.139 −0.209 −0.208 −0.127

(0.068) (0.069) (0.042) (0.068) (0.069) (0.042)

x2 −0.659 −0.665 −0.669 −0.409 −0.656 −0.666 −0.408

(0.072) (0.073) (0.043) (0.071) (0.073) (0.043)

y1 0.243 0.244 0.241 0.148 − − −
(0.099) (0.131) (0.080)

y3 x1 0.706 0.703 0.707 0.422 0.593 0.676 0.407

(0.079) (0.080) (0.046) (0.068) (0.076) (0.044)

x2 −0.360 −0.348 −0.348 −0.208 −0.390 −0.452 −0.272

(0.075) (0.079) (0.047) (0.067) (0.077) (0.046)

y1 0.551 0.563 0.581 0.348 − − −
(0.129) (0.146) (0.087)

y2 0.844 0.832 0.852 0.511 − − −
(0.133) (0.184) (0.109)

(continued)
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Table 1 (continued)

Alternative Regressor TRUE Classifier chains Binary relevance

GME Logit Probit GME Logit Probit

MSE 0.000 0.012 0.043 0.000 0.007 0.032

Uniform error

y1 x1 0.318 1.665 1.680 1.008 1.665 1.680 1.008

(0.095) (0.097) (0.054) (0.095) (0.097) (0.054)

x2 0 −0.022 −0.023 −0.013 −0.022 −0.023 −0.013

(0.082) (0.082) (0.048) (0.082) (0.082) (0.048)

y2 x1 −0.223 −1.284 −1.351 −0.780 −0.758 −0.877 −0.505

(0.148) (0.173) (0.096) (0.103) (0.124) (0.069)

x2 −0.659 −3.812 −4.011 −2.320 −3.353 −3.769 −2.172

(0.199) (0.237) (0.125) (0.170) (0.216) (0.115)

y1 0.243 1.431 1.492 0.859 − − −
(0.184) (0.293) (0.160)

y3 x1 0.706 3.581 4.488 2.552 1.359 2.801 1.580

(0.183) (0.347) (0.188) (0.068) (0.184) (0.097)

x2 −0.360 −1.818 −2.240 −1.280 −1.163 −2.456 −1.385

(0.182) (0.288) (0.155) (0.072) (0.168) (0.089)

y1 0.551 2.811 3.506 1.997 − − −
(0.293) (0.468) (0.253)

y2 0.844 4.307 5.434 3.085 − − −
(0.294) (0.533) (0.288)

MSE 0.047 7.161 1.728 0.017 3.480 0.783
1Standard deviations in parentheses

of the parameters. However, the parameters in the LPmodel are not comparable to the
true parameters generated in thisMonte-Carlo experiment. It should be noted that the
data simulation process was based on the CC model. When the errors are normally
distributed, the true model is the CC-Probit model. Therefore, the Probit-based mod-
els performed better than the Logit-based models. When the errors are logistically
distributed, the true model is the CC-Logit model and the Probit models performed
better than the Logit models. However, regardless of the error distributions, the GME
models always have the lowest MSE.

Figure1 shows the prediction regions for an individual’s decision on each alterna-
tive yij given his or her characteristics x1 and x2 using theCC-GMEmodel. Each of the
three lines represents the combinations of x1 and x2 such that Pr{yij = 1|x̃ij} = 0.5.
Regions (1) to (8) represent the choices yi = (0, 0, 0), (0, 0, 1), (0, 1, 0), (0, 1, 1),
(1, 0, 0), (1, 0, 1), (1, 1, 0) and (1, 1, 1), respectively. Therefore, the result shows
that individuals with high value x1 and low value of x2 are more likely to choose all
three alternatives. Individuals with lower x1 and high x2 are likely to choose none of
the alternatives.
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Fig. 1 Prediction regions for all possible sets of alternatives from the CC-GME estimation for the
simulation with logistic errors

Table2 reports the Hamming Loss, Accuracy, Precision and Recall statistics for
all the CC, BR and LP models. The results show that the forecasting performance
depends on the choice of the problem transformation methods, but not on the choice
of single-label estimation methods. That is, the CC model outperformed the BR and
LP models with respect to all evaluation measures, except Precision. The CC-GME,
CC-Logit and CC-Probit models yielded similar results.

5 Occupational Hazards Empirical Example

Consider a problem in which an individual chooses a job with multiple job attributes.
This problem can be viewed as an individual choosing a set of job attributes. In this
empirical example, the job attributes are a set of occupational hazards. Therefore,
each individual will choose the hazards fromwhich he or she gains the least disutility.
In this section, we apply the CC-GMEmodel to predict a set of occupational hazards
that an individual faces and the factors determining his or her choices of hazards.
For the performance evaluation, we applied the five-fold cross validation method to
compare the out-sample prediction performance between the CC-GME model and
other models [10].

5.1 Data Description

The dataset is from The Informal Worker Analysis and Survey Modeling for Efficient
Informal Worker Management Project, which aims at studying the structure and



The Classifier Chain Generalized Maximum Entropy Model for Multi-label . . . 197

Table 2 Model comparison for the simulated data

Evaluation Classifier chains Binary relevance Label powerset

Methods GME Logit Probit GME Logit Probit GME Logit Probit

Normal error

Hamming loss 0.304 0.303* 0.303* 0.341 0.314 0.315 0.326 0.327 0.331

(0.008) (0.009) (0.008) (0.008) (0.008) (0.008) (0.009) (0.009) (0.010)

Accuracy 0.589 0.590* 0.590* 0.516 0.581 0.581 0.543 0.541 0.528

(0.011) (0.013) (0.013) (0.009) (0.013) (0.013) (0.013) (0.013) (0.016)

Precision 0.726 0.725 0.725 0.737 0.713 0.713 0.736 0.737 0.745*
(0.010) (0.009) (0.009) (0.011) (0.008) (0.008) (0.013) (0.013) (0.015)

Recall 0.757 0.760* 0.760* 0.633 0.758 0.758 0.674 0.671 0.645

(0.009) (0.017) (0.017) (0.008) (0.017) (0.017) (0.017) (0.017) (0.025)

Logistic error

Hamming loss 0.364 0.363* 0.364 0.391 0.372 0.372 0.383 0.383 0.388

(0.010) (0.009) (0.009) (0.009) (0.009) (0.009) (0.011) (0.011) (0.011)

Accuracy 0.521* 0.521* 0.521* 0.455 0.516 0.516 0.475 0.473 0.460

(0.013) (0.017) (0.017) (0.010) (0.018) (0.018) (0.018) (0.018) (0.020)

Precision 0.666 0.659 0.659 0.666 0.648 0.648 0.665 0.666 0.670*
(0.014) (0.010) (0.010) (0.014) (0.010) (0.010) (0.016) (0.015) (0.017)

Recall 0.713 0.714 0.714 0.589 0.717 0.718* 0.624 0.620 0.596

(0.014) (0.029) (0.029) (0.009) (0.030) (0.030) (0.031) (0.030) (0.035)

Uniform error

Hamming loss 0.156 0.155* 0.155* 0.216 0.174 0.174 0.184 0.184 0.185

(0.005) (0.006) (0.006) (0.006) (0.007) (0.007) (0.006) (0.006) (0.006)

Accuracy 0.768 0.769* 0.769* 0.668 0.745 0.745 0.724 0.723 0.719

(0.008) (0.008) (0.008) (0.007) (0.009) (0.009) (0.008) (0.008) (0.009)

Precision 0.866 0.867 0.867 0.879* 0.849 0.849 0.867 0.870 0.874
(0.007) (0.005) (0.005) (0.008) (0.006) (0.006) (0.007) (0.007) (0.008)

Recall 0.871* 0.871* 0.871* 0.736 0.860 0.859 0.814 0.811 0.802
(0.059) (0.006) (0.006) (0.007) (0.007) (0.006) (0.007) (0.007) (0.009)

Standard deviations in parentheses. Statistics with * represent estimation methods that are the
‘best’ with respect to each evaluation metric. Statistics in bold represent estimation methods with
the prediction power not statistically different from the ‘best’ estimation method

nature of the informal sector in Chiang Mai, Thailand in 2012. In the survey, each
respondent was asked whether he or she faced each of the three types of occupational
hazards, namely, (1) physical and mechanical hazards, (2) ergonomic and psychoso-
cial hazards and (3) biological and chemical hazards. The survey also provides data
for each individual’s demographic, employment and financial status. Explanatory
variables used in this study include (1) age, (2) number of children, (3) total income
and dummy variables for (4) female, (5) high school, (6) college and (7) agricultural
household.
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Table 3 Model comparison for the occupational hazards data

Evaluation Classifier chains Binary relevance Label powerset

Methods GME Logit Probit GME Logit Probit GME Logit Probit

Hamming loss 0.263* 0.297 0.372 0.284 0.382 0.383 0.315 0.325 −
(0.049) (0.016) (0.022) (0.039) (0.032) (0.032) (0.083) (0.020)

Accuracy 0.702* 0.541 0.658 0.675 0.652 0.652 0.676 0.529 −
(0.065) (0.012) (0.041) (0.055) (0.053) (0.053) (0.080) (0.015)

Precision 0.753 0.759* 0.758 0.755 0.748 0.748 0.701 0.723 −
(0.080) (0.058) (0.047) (0.084) (0.044) (0.044) (0.102) (0.063)

Recall 0.914 0.848 0.844 0.870 0.849 0.850 0.956* 0.883 −
(0.023) (0.096) (0.112) (0.045) (0.131) (0.131) (0.040) (0.131)

Standard deviations in parentheses. TheLP-Probitmodel fails to converge. Statisticswith * represent
estimation methods that are the ‘best’ with respect to each evaluation metric. Statistics in bold
represent estimation methods with the prediction power not statistically different from the ‘best’
estimation method

5.2 Results

For the choice of problem transformingmethods, the results are similar to the simula-
tion exercises in the sense that the CCmodel outperformed the BR and LP models in
most measures (see Table3). Specifically, the CC model is superior than the BR and
LPmodelswith respect to theHammingLoss,Accuracy andPrecision criteria. For the
choice of single-label estimation methods, the GME model outperformed the Logit
and Probitmodelswith respect to theHammingLoss, Accuracy andRecallmeasures.

6 Concluding Remarks

The empirical results obtained in this study show that the forecasting performance
depends on the choice of the problem transformation methods, but not on the choice
of single-label estimation methods. Specifically, the CCmodel outperformed the BR
and LP models with respect to all evaluation measures expect the Precision. For the
parameter estimates, the GME-based methods yielded smaller MSE than those of
the Logit and Probit-based methods.

Although the Bayes’ rule implies that Pr{yi|xik} = ∏M
j=1 Pr{yij = 1|x̃ij}, it does

not imply directly that Pr{yi|xik} = ∏M
j=1 G(x̃ijβj). The CC-GME model still relies

on the linearity assumption of x̃ijβj when we set

Pr{yij = 1|x̃ij} = G(x̃ijβj). (22)

Therefore, other methods to incorporate the dependency among alternatives into
the multi-label classification problem with weaker assumptions could potentially
improve the performance.
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Asymmetric Volatility of Local Gold Prices
in Malaysia

Mohd Fahmi Ghazali and Hooi Hooi Lean

Abstract This study investigates the volatility of local gold prices inMalaysia using
daily data over the period of July 2001–May 2014. Specifically, this paper analyzes
the asymmetric reaction of gold in different weights to negative and positive news on
average at all times as well as during extreme decreases in stock market. The former
provides potential evidence for hedge, while the latter tests for the existence of a
safe haven characteristic. We find that the local gold returns demonstrate an inverted
asymmetric reaction to positive and negative innovations respectively. Positive shock
increases the gold returns volatilitymore than the negative shock in full sample aswell
as the stock market downside, thus supporting the hedge and safe haven properties
of gold investment in Malaysia.

1 Introduction

Despite the importance of gold as a hedge or safe haven asset [10, 21], studies that
investigating the volatility of gold prices are infrequent.With the exception of [8], we
are unaware of any study that analyzes the volatility of gold prices and the asymmetric
effect of market shocks on the gold prices volatility. Thus far, many researches only
focus on volatility in stock markets and its asymmetric behaviour to negative and
positive shocks. For instance, [11, 13, 14] report a larger increase of volatility in
response to negative shocks than the positive shocks. This asymmetric is explained
with the leverage of firms and volatility feedback effect.

On the other hand, [37] focus on estimating several asymmetric power GARCH
(APGARCH) models and the role of US dollar in influencing gold prices. [7] model
the volatility of a gold futures price, while [9, 10, 21] focus on hedge and safe haven
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characteristics of gold. These studies analyze some structures of the volatility of gold
prices but do not investigate the volatility asymmetry.

If the volatility of gold price increases following the bad news in economic and
financial markets, investors can transmit the increase in volatility and uncertainty
to the gold market. This scenario is interpreted by investor as a hedge and safe
haven purchase. In other words, if the empirical results show a volatility clustering
of gold returns and an inverted asymmetric reaction (positive shock increases the
volatility more than the negative shock), this effect is related to the hedge and safe
haven characteristics of gold. Accordingly, if the gold return decreases in times of
stock market and economic condition rising, investors can transmit the decrease in
volatility and uncertainty to the gold market. In other words, if the price of gold falls,
uncertainty and thus volatility is lower. This can lead to an asymmetric reaction of
the volatility of gold price which is different from the effect that observed in stock
market: the volatility of gold price increases by more with positive shocks than with
negative shocks [8].

Another explanation for the volatility asymmetry of gold price is the role of
inventory and storage. If inventory level of an asset is low, the risk of inventory
exhaustion increases and will lead to higher price and volatility. In contrast, if the
inventory level of an asset is high, the risk of inventory exhaustion decreases and
will lead to lower price and volatility. If inventory level is important for gold, it
could establish an asymmetric reaction of the volatility of gold price to past price
shocks [8].

This study investigates the asymmetric reaction of gold returns on its volatility
for two major reasons. First, if the volatility of gold return exhibits different reac-
tions to shocks than stock, the (desired) low or negative correlation of gold with
other assets might be compromised in certain conditions, therefore complements the
correlation analysis of gold with other assets. Second, the economic explanations
for asymmetric volatility for stocks, namely, time-varying risk premium or volatility
feedback effect and leverage effect are not applicable for gold. This is due to volatil-
ity feedback as discussed by, for example, [13, 19] see that an anticipated increase in
volatility would raise the required rate of return, in turn necessitating an immediate
stock-price decline to allow for higher future returns. In other words, the volatility
feedback effect justifies how an increase in volatility may result in negative returns.
The fundamental difference between the leverage and volatility feedback explana-
tions lies in the causality,where leverage effect explainswhy a negative return leads to
higher subsequent volatility. Although the term is arguably a misnomer, [11] defines
leverage effect as a negative correlation between current return and future volatility,
which means bad news will cause violent fluctuations compare to the good ones.
This model is not consistent with an inverted asymmetric reaction of gold due to the
amplification of positive returns.

This study also contributes to the literature by investigating the volatility of gold
at different weights, i.e. 1 ounce, 1/2 ounces and 1/4 ounces. Introduction of gold
with different weights by the Malaysian government is to encourage retail investors
to invest in gold through regular small purchases as well as get protection from gold
prices volatility. Relatively, investors pay a higher premium to gold with a smaller
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size because the cost of making gold is fixed. The different in gold price can be
explained by economies of scale, that is, the cost advantage that arises from the
bigger weight of gold. Per-unit fixed cost is lower because it is shared over a larger
weight of gold. Variable costs per unit are reducing due to operational efficien-
cies and synergies. We expect different weights of gold will yield different returns
and thus display how it can influence the size and magnitude of asymmetric effect.
A smaller weight of gold is more volatile because the gold is affordable and able to
be purchased relatively cheap by retail investors.

2 Literature Review

There is a large literature studying the volatility in equity markets and its asymmetric
behaviour to negative and positive shocks. As one of the primary restrictions of gen-
eralized autoregressive conditional heteroscedasticity (GARCH) that they enforce
a symmetric response of volatility to positive and negative shocks; many previous
studies using asymmetric volatility in their estimations, particularly in equity mar-
kets.Many studies examine the asymmetric volatility in equitymarkets with different
methods [11, 13, 14]. These studies report a larger increase of volatility in response
to negative shocks than positive shocks. This asymmetry in the reaction to shocks is
explained with the leverage of firms and volatility feedback effect.

Despite the importance of gold as a hedge and safe haven asset, studies that
investigating the volatility of gold are rare. [25] use GARCH(1,1) model and find
that gold is negatively correlated with the S&P 500 when realized stock market
volatility is more than two standard deviations from the mean. The diversification is
most important to investors when equity markets are experiencing high volatility and
poor performance. Using the same model, [10] report the conditional volatility of
gold for a 30-year period and analyze the safe haven hypothesis for different volatility
regimes. The results show that gold is a hedge in European markets, Switzerland and
the US and a safe haven in periods of increase volatility (90 and 95% thresholds) in
most markets. But gold does not work as a safe haven in spells of extreme volatility
(99% threshold) or uncertainty except for the US and China. [34] analyze the effect
of macroeconomic news on commodities and gold using GARCH(1,1) model. Some
commodity prices are influenced by the surprise element in macroeconomic news,
with evidence of a pro-cyclical bias, particularly when control for the effect of the US
dollar. Commodities tend to be less sensitive than financial assets, for instance, crude
oil shows no significant responsiveness to almost all announcements.Nevertheless, as
commodity markets become financialized, their sensitivity appears to rise somewhat
to both macroeconomic news and surprise interest rate changes. The gold price is
sensitive to a number of macroeconomic announcements in the US and Euro area,
including retail sales, non-farm payrolls, and inflation. High sensitivity of gold to real
interest rates and its unique role as a safe haven and store of value typically leads to
a counter-cyclical reaction to surprise news, in contrast to their commodities. It also
shows a particularly high sensitivity to negative surprises that might lead investors
to become more risk-averse.
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In the same issue, [6] investigate the impact of macroeconomic and financial
market variables on precious metals markets in a framework that utilizes monthly
data. While many studies rely on autoregressive conditional heteroscedasticity
(ARCH)/GARCH estimation to establish possible volatility relationships in pre-
cious metals markets, this study provides further information on the long-term trends
prevalent in these markets as well as identifying structural linkages which hitherto
remains uncovered. Based on the vector autoregressive (VAR) model, they find that
gold volatility does not respond to changes in equity volatility, but is instead sensi-
tive only to monetary variables during the period of 1986–1995. From 1996 to 2006,
nevertheless, gold volatility does have a positive relation to equity volatility. The
volatility of silver is not sensitive to either financial or monetary shocks in either
period. [35] also use a VAR model to examine the relation between volatility index
(VIX), oil, andmetals. UsingVIX as a proxy for global risk perceptions, they find that
gold, exchange rates, andVIX lead oil prices. VIX and oil are negatively related. VIX
has an economically significant long-run effect on oil, gold, and silver, and is itself
affected by oil and silver in the long-run. In another study, [7] analyze the volatility
structure of gold, trading as a futures contract on the Chicago Board of Trade using
intraday data from January 1999 toDecember 2005. They useGARCHmodeling and
the Garman Klass estimator and find significant variations across the trading days
consistent with microstructure theories, although volatility is only slightly positively
correlated with volume when measured by tick-count.

Some studies analyze some features of the volatility of gold but do not focus on
volatility asymmetry and its importance for safe haven property. [22] study the rela-
tion of return and volatility in the commodity and the stockmarket for indiceswithout
an explicit analysis of gold. They estimate an exponential GARCH (EGARCH) spec-
ification using the Goldman Sachs and JP Morgan Commodity Indices to find that
commodity returns in general display asymmetric volatility, where the relationship
between return and volatility in the commodity markets is the inverse of that observe
in the stockmarkets. The inverse relationshipmay exist under specific circumstances.
For instance, geopolitical concerns would pull the stock market down, but prove
positive for energy and metals because of the potential for supply disruption. Fur-
ther, changes in commodity prices do impact the share prices of companies, whether
they are commodity producers or consumers. For instance, a rise in steel prices would
be positive for producers but not for consumers. [9] find that while conditional asym-
metric volatility is significant, gold has a negative and significant relation to equities
in bear markets, but not in bull markets. [37] specify an asymmetric component
in their APGARCH model but find that the asymmetry is statistically insignificant.
They find that gold volatility is largely determined by prior period gold volatility
itself. This is true both overall and during the crisis periods of 1987 and 2001.

Parallel to research on the relationship between the asymmetric volatility and gold
returns, [8] finds that the volatility of gold returns exhibits an asymmetric reaction to
positive and negative gold returns. The asymmetric nature of this reaction allows for
its characterization as abnormal or inverted when compared to its parallel in equity
markets. In addition, since this asymmetric reaction is ten times larger for gold than
for any other commodity, [8] argues that investors interpret positive gold returns as
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an indication of future adverse conditions and uncertainty in other asset markets. [8]
further argues that this interpretation effectively introduces uncertainty into the gold
market and brings about increased volatility of gold returns.

Others examine the interaction between oil and the precious metals, for instance
[24] where they find persistent volatility effects of oil shocks (as well as interest rate
shocks) on both gold and silver. These effects are long-lasting, as indicated by sig-
nificant persistence in EGARCH (2,2) and GARCH (2,2) models. Similar with [37],
they find no evidence of volatility asymmetry in their study. [31] in their research
apply thresholdGARCH (TGARCH)models in order to describe the spillover effects
of oil and gold price returns on industrial sub-indices returns and GARCH models
in order to examine volatility spillover effects on each other. By conducting the
research, they conclude that the volatility of gold price returns has no effect on oil
price returns, while oil price return volatility has spillover effects on the volatility of
gold price returns, which means that investors can monitor gold prices by reviewing
oil prices returns. Another finding that they conclude is that previous volatility of oil
price returns spillover the volatility of Electronics and Rubber sub-indices returns.
Meanwhile, the volatility of Chemistry, Cement, Automobile, Food and Textiles
sub-indices are affected by previous volatility of gold price returns. Another research
that is focusing on the spillover effects of gold return volatility on stock return volatil-
ity is made by [36]. They study the spillover between gold, the US bonds and stocks
from 1970 to 2009 by applying VAR model together with variance decomposition.
The findings are that previous gold return has low correlation and low spillover effect
on stocks and bonds returns. Therefore, they suggest that gold can hardly be a useful
predictor for stocks and bonds; however, low correlation feature makes gold a useful
portfolio diversifier.

The findings of prior studies prove that researches on asymmetric volatility of
gold are scarce, suggesting further studies are needed to shed light on the issue. Our
sample at 2001–2014 is also the most up-to-date and takes into account the recent
global financial crisis. In addition, this study contributes to the empirical literature by
investigating the issue using different weights of gold via two types of asymmetric
GARCH model, that is, TGARCH and EGARCH to see whether the difference can
change the asymmetric pattern of gold volatility.

3 Volatility Model

The commoneconometric approach to volatilitymodelling is theGARCHframework
that was pioneered by [12, 17]. The models are handy if we model the time-varying
volatility of a financial asset. Therefore it becomes the bedrock of the dynamic
volatility models [2]. The advantage of these models is that they are practically easy
to estimate in addition to allow us to perform diagnostic tests [16]. Nevertheless,
the normal GARCH model cannot account for the entire leptokurtosis in data [28]
and a better fit is obtained using non-normal distributions such as Students t, Gen-
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eralized Error Distribution (GED), normal-Poisson mixture and normal-lognormal
distributions or the EGARCH model [4, 5, 18, 20, 27, 30].

On the other hand, several studies [14, 23, 33] point out asymmetric responses in
the conditional variance, suggesting the leverage effect and differential financial risk
depending on the direction of price change movements. In response to the weakness
of symmetric assumption, [23, 33] model a conditional variance formulation that
capture asymmetric response in the conditional variance.

3.1 TGARCH Model

Themodel is introduced by [23]. Themean equation of both systematic and threshold
analyses in this model is specified in Eqs. (1) and (2) respectively. The specification
of conditional volatility of gold return is estimated by the variance equation in Eq. (3):

rg,t = α0 + α1

k
∑

i=1

rg,t−i + β1

l
∑

j=0

rs,t− j + εt (1)

rg,t = α0 + α1

n
∑

m=1

rg,t−m + β1

q
∑

p=0

rs,t−p(q) + μt (2)

ht = δ + αε2t−1 + ϑdt−1ε
2
t−1 + ρht−1 (3)

εt ∼ G E D(0, h + t) (4)

where rg,t denotes gold return at time t. In the systematic analysis (Eq.1), the gold
returns are regressed on a constant, α0 and its own lagged returns as well as the
contemporaneous and lagged stock market shocks which are captured by rs,t− j . In
the threshold analysis which is specified in Eq. (2), we include lagged returns of gold
with the extreme stock return movements. In order to obtain the extreme values of
stock returns, we estimate the threshold value of stock return via quantile regression.
Then, we analyze the volatility of gold in times of stock market stress by including
the regressors that contain stock returns in the q % lower quantile (10, 5, 2.5 and
1%) in the mean equation.1 If the stock market returns exceed a certain (lower tail)
threshold given by the q %, the value of dummy variable D(. . .) is one and zero
otherwise.

In Eq. (3), ht is known as the conditional variance of error at time t . Parameters
to be estimated are δ, α, ϑ and ρ. The constant volatility is estimated by δ, the effect
of lagged return shocks of gold on its volatility (ARCH) is estimated by α and an
asymmetry or leverage term if the return shock is negative is captured by ϑ . When

1 The severity of the shock is taken into account by looking at a range of lower quantiles of stock
returns. The choice of the quantiles is arbitrary to some degree. Nevertheless, these quantiles have
also been analyzed in other studies, such as [3, 10, 21].
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shock is positive, the effect on volatility is α; when the shock is negative, the effect
on volatility is α + ϑ . If there is a symmetric effect of lagged shocks on the volatility
of gold, ϑ is zero, and the equation is a standard GARCH form. In contrast, if lagged
negative shocks augment the volatility by more than lagged positive shocks (ϑ > 0),
there is an asymmetric effect which is typically associated with a leverage effect or
a volatility feedback effect. If lagged negative shocks decrease the volatility of gold
(ϑ < 0) the asymmetric effect typically found for equity is inverted, that is, positive
shocks of gold increase its volatility by more than negative shocks. The influence of
the previous periods conditional volatility level (ht−1) on the current period is given
by ρ (GARCH). Since the results can be influenced by the distributional assumptions
regarding the error distribution, we estimate the asymmetric GARCH model of a
GARCH (1,1)-type by maximum-likelihood with a Gaussian error distribution and a
student-t error distribution [8]. The innovations in Eq. (4) are assumed to follow the
GED (Generalized Error Distribution). We employ the GED because of its ability
to accommodate leptokurtosis (fat tails) that usually observed in the distribution of
financial time series [33].

3.2 EGARCH Model

The EGARCHmodel which is introduced by [33] has an advantage that it requires no
non-negativity restrictions of the parameters in the variance equation as in the case
of the traditional GARCH (1,1) specification. Similar to TGARCH model, it allows
positive and negative shocks to have asymmetric influences on volatility [32]. The
mean equation of systematic analysis and threshold analysis aswell as the innovations
of gold return in EGARCH model are specified the same as in Eqs. (1), (2), and (4)
respectively. However, the corresponding time-varying conditional variance of the
regression residuals is written as follows:

ht = α1 + α2

∣

∣

∣

∣

εt−1√
ht

∣

∣

∣

∣

+ α3
εt−1√

ht
+ α4ht−1 (5)

where ht is the conditional variance of error at time t which permits the coefficients to
be negative, and thus allows the positive and negative innovations to have different
impacts on the conditional variance. The parameters to estimate are α1, α2, α3,
and α4. The constant volatility is estimated by α1. The parameter of α4 measures the
persistence in conditional volatility irrespective of anything happening in the market.
It captures the influence of past volatility on the current gold return volatility. When
α4 is relatively large, then volatility takes a long time to die out following a crisis
in the market [1]. εt−1√

ht
is the standardized value of the lagged residual and it helps

in interpreting the magnitude and the persistence of the shocks. The α3 parameter
measures the asymmetry or the leverage effect, the parameter of importance so that
the EGARCH model allows for testing of asymmetries. If α3 equals to zero and
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significant, then the model is symmetric. If α3 not equal to zero and significant,
the impact is asymmetric. When α3 less than zero, the positive shocks (good news)
generate less volatility than negative shocks (bad news), that is, leverage effect is
present. When α3 greater than zero, it implies that positive innovations are more
destabilizing than negative innovations. In other word, positive shock to gold time
series is likely to cause volatility to rise by more than a negative shock of the same
magnitude. Thus, term α3 is the asymmetrical effect term. On the other hand, the
α2 represents a magnitude effect or the symmetric effect of the model, the GARCH
effect. In the presence of a positive shock (the term εt−1√

ht
is positive), the shock impact

on the conditional variance is (α2 + α3) and when this term is negative (the leverage
effect is present) the impact is (α2 − α3).

4 Empirical Analysis

This section describes the data, report the descriptive statistics, econometric analysis
and discuss the main findings.

4.1 Data

Daily data are gathered from various sources ranging from July 18, 2001 to May 30,
2014. This study uses the prices of 1 ounce, 1/2 ounces and 1/4 ounces of Malaysian
official gold bullion, Kijang Emas which is denominated in local currency, Ringgit
Malaysia to represent the local gold prices. The prices ofKijang Emas are determined
by the prevailing international gold market price.2 Unlike the United States and the
United Kingdom, Malaysia does not have important role in the gold trading market.
Nevertheless,Malaysia is chosen due to the deep interest in gold shown byMalaysian
policymakers and investors in the face of 1997/1998Asian financial crisis as it is seen
as a stable and profitable tool for successful investments. The recent and on-going
financial crisis and the attendant strength of gold price, also cause profound interest
in this precious metal in Malaysia. Thus, answering the question of the asymmetric
volatility of gold prices would provide important information toMalaysian investors.

The Kuala Lumpur Composite Index (KLCI) is used to represent stock market.
Kijang Emas prices are collected from Central Bank of Malaysia and KLCI is from
Datastream International. Daily gold returns and stock return are computed using
continuous compounded return. A problem arises with missing observations due to
different holidays in stock market and gold market. We follow [26, 29] by adopting
the method of Occam’s razor (using the previous day’s price). Hence, it is desirable
to fill in estimate-based information from an adjacent day.

2 Source: Central Bank of Malaysia.
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4.2 Descriptive Statistics

Figure1 shows the time series plot of domestic gold prices from 2001 to 2014. The
figure shows that of the local gold prices have shown a dramatic growth for about
300%. The performance of gold is more impressive given the losses suffered in
other asset classes during the 2007/2008 financial crisis. In times of uncertainty, due
to investors unwillingness to trade, asset values become ambiguous. However, the
trades on goldmay increase because the relative simplicity of goldmarket [15]. Fears
of global recession sent a stockmarket plummeting in October 2008. As shown in the
figure, since October 2008, gold prices have surged, indicating a positive response
to the intensification of financial crisis. Gold prices show a downward trend since
2012 due to investors shift from gold market to stock market as economy around the
globe improving.

Table1 shows that the daily gold returns significantly outperform stock return
over the sample period. The volatility of stock return is significantly lower than gold
returns. KLCI return also exhibits more extreme positive and negative values than
the gold returns. The coefficient of variation which is measured by dividing standard
deviation by the mean return is lower for gold returns than the stock return. This
indicates that in measuring the degree of risk in relation to return, gold gives a better
risk-return tradeoff. Kurtosis exhibits a leptokurtic distribution and as clearly shown
by the Jarque-Bera statistics, both gold and stock returns are not normally distributed
at the 1% significance level.

Comparing between the three different weights of gold, the results illustrate that
1/2 ounces of Kijang Emas generally exhibits slightly higher average return and risk
and 1 ounce of Kijang Emas displays a most extreme value. On the other hand,
the coefficient of variation for 1/4 ounces Kijang Emas is lower than the other two
counterparts.

Fig. 1 The evolution of local gold prices from july 2001 to may 2014
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Table 1 Descriptive statistics of daily returns

1 ounce 1/2 ounces 1/4 ounces KLCI

Mean 0.04195 0.04196 0.04192 0.03229

Maximum 12.46452 12.45939 12.36455 19.86049

Minimum −11.19943 −11.18483 −11.15078 −19.24639

Standard deviation 1.17802 1.17884 1.17686 1.04034

Coefficient of variation 28.08021 28.09366 28.07182 32.21478

Skewness −0.21607 −0.21737 −0.21563 −0.17763

Kurtosis 12.96410 12.90894 12.80586 127.2971

Jarque-Bera 13652.26*** 13502.12*** 13222.79*** 2120499***

Notes (***) denotes significant at 1%

We also analyze the descriptive statistics between these asset classes by quantiles
of stock returns, to see if the results differ from the average during the periods of
extreme stock market declines. We focus on four thresholds from the left of the
return distribution i.e. 1, 2.5, 5 and 10%. The results in Table2 shows that the daily
gold returns always outperforms stock returns during extreme negative stock market
returns. With the exception of 10% quantile, gold returns also less volatile than the
stock returns in all extreme stock market conditions. In this sense, gold are more
efficient asset relative to stock during this period.

Table 2 Statistics during extreme stock market returns

Panel A Obs Mean Max Min Std.dev CV

KLCI< 10% 1 ounce 330 0.09409 12.46452 −7.81820 1.73658 18.45722

Quantile 1/2 ounces 330 0.09580 12.45939 −7.82660 1.73892 18.15104

1/4 ounces 330 0.09957 12.36455 −7.74268 1.73394 17.41289

KLCI 330 −1.53281 −0.78124 −19.2464 1.627877 −1.06202

Panel B

KLCI< 5% 1 ounce 165 0.02021 7.54567 −7.81820 1.92342 95.16238

Quantile 1/2 ounces 165 0.02319 7.53827 −7.82660 1.92314 82.92971

1/4 ounces 165 0.01554 7.53603 −7.74268 1.92107 123.589

KLCI 165 −2.12107 −1.15759 −19.2464 2.14672 −1.0121

Panel C

KLCI< 2.5% 1 ounce 83 −0.13213 6.72496 −7.81820 1.85340 −14.0271

Quantile 1/2 ounces 83 −0.12605 6.69395 −7.82660 1.85182 −14.6912

1/4 ounces 83 −0.13908 6.68942 −7.74268 1.85198 −13.316

KLCI 83 −2.88806 −1.58140 −19.2464 2.82975 −0.97981

Panel D

KLCI< 1% 1 ounce 33 0.02037 6.72496 −4.39708 1.95570 96.01817

Quantile 1/2 ounces 33 0.01979 6.69395 −4.38426 1.95153 98.61706

1/4 ounces 33 0.02605 6.68942 −4.43920 1.95560 75.08251

KLCI 33 −4.49702 −2.22536 −19.2464 4.00549 −0.8907

Notes Obs and CV are observation and coefficient of variation, respectively
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Comparing between different weights of gold, the data show that 1/4 ounces
Kijang Emas displays higher returns in the 1 and 10% quantiles, while 1/2 ounces
provide the higher return in 2.5 and 5% quantiles. 1/4 ounces Kijang Emas also
give the better risk-return tradeoff.3 Meanwhile, 1 ounce Kijang Emas provides the
highest maximum value for all quantiles. Nevertheless, in term of risk, with the
exception of 10% quantile, 1 ounce Kijang Emas is more volatile if compared with
1/2 and 1/4 ounces.

4.3 Econometrics Analysis

This section describes the estimation results of the asymmetric GARCH models
and discusses the main findings. The results of the systematic model are presented
followed by a threshold analysis of that model.

4.3.1 Systematic and Threshold Analyses Based on TGARCH Model

The main findings are presented in Tables3 and 4. The systematic model analyzes
how conditional error variance of gold reacts to shocks in average while the threshold
model analyzes the reaction of conditional error variance to shocks under extreme
stock market conditions. The analysis only uses observations on the periods when
the stock returns below the 10, 5, 2.5 and 1% quantiles.

The table contains three panels (1 ounce, 1/2 ounces and 1/4 ounces) of the
coefficient estimates and z-statistics of the asymmetric volatility model parameters
specified in Eq. (2). The estimation results can be summarized and interpreted as
follows. The systematic and threshold TGARCH models exhibit highly significant
of past shocks or innovations (α) and past volatilities (ρ) on volatility behaviour of
gold. But the value of past volatilities (around 0.931) strongly dominates the value
of past shocks (around 0.07) in all equations. This implies that past volatilities (but
not the shocks) should be used to predict volatility in the future. This also suggests
that the volatility is extremely persistent over time or takes a long time to die out,
that is, the volatility is likely to remain high over several periods. Consequently,
the volatility (information) are slowly assimilated to the gold market, thus slowly
converges to long-run equilibrium. This is due to the fact that gold is a precious
metal, and is influenced by factors that affect the demand for jewelry and recycling
but less by shocks which have short impact duration, which normally reported in
industrial metal [24].4

3 Since all variables in the denominator of the calculation are negative in 2.5% quantile, the ratio
will not make sense. Therefore, we ignore the coefficient of variation for 5% threshold.
4 [24] opine that industrial metal is more cyclical and has relatively lower volatility persistence than
gold. This is because of its lower transitory persistence partly due to the stronger impact of the short
lived shocks on it.
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Table 3 Estimation results of variance equation: systematic analysis in the TGARCH model

1 ounce 1/2 ounces 1/4 ounces

Coefficient z-stat Coefficient z-stat Coefficient z-stat

δ 0.01956 4.10576*** 0.01943 4.12738*** 0.01958 3.90454***

α 0.07209 5.81661*** 0.07219 5.85104*** 0.07174 5.69845***

ϑ −0.03552 −2.72960 ∗ ∗∗ −0.03642 −2.83059 ∗ ∗∗ −0.03369 −2.51983 ∗ ∗
ρ 0.93196 105.6566*** 0.93242 106.6097*** 0.93122 102.5347***

Note (*), (**) and (***) denote significant at 1, 5 and 10%, respectively

Table 4 Estimation results of variance equation: threshold analysis based on TGARCH model

1 ounce 1/2 ounces 1/4 ounces

Coefficient z-stat Coefficient z-stat Coefficient z-stat

Panel δ 0.01965 4.11717*** 0.01972 4.15080*** 0.01981 3.92561***

A 10% α 0.07256 5.85423*** 0.07270 5.87640*** 0.07206 5.72002***

ϑ −0.03586 −2.75353 ∗ ∗∗ −0.03625 −2.80316 ∗ ∗∗ −0.03344 −2.49331 ∗ ∗
ρ 0.93157 105.6021*** 0.93156 105.9561*** 0.93057 102.0996***

Panel δ 0.01963 4.11936*** 0.01987 4.16372*** 0.01980 3.92797***

B 5% α 0.07236 5.85036*** 0.07269 5.87576*** 0.07214 5.72516***

ϑ −0.03559 −2.73992 ∗ ∗∗ −0.03585 −2.77063 ∗ ∗∗ −0.03355 −2.50401 ∗ ∗
ρ 0.93164 105.7006*** 0.93123 105.5946*** 0.93057 102.1781***

Panel δ 0.01992 4.12131*** 0.02155 4.22829*** 0.02123 3.99943***

C 2.5% α 0.07264 5.81447*** 0.07474 5.81570*** 0.07483 5.70874***

ϑ −0.03552 −2.68073 ∗ ∗∗ −0.03427 −2.53434 ∗ ∗ −0.03404 −2.43928 ∗ ∗
ρ 0.93104 104.3244*** 0.92726 99.77087*** 0.92721 97.61037***

Panel δ 0.01964 4.11796*** 0.01960 4.14713*** 0.01965 3.91368***

D 1% α 0.07223 5.83209*** 0.07219 5.85194*** 0.07178 570253***

ϑ −0.03562 −2.73853 ∗ ∗∗ −0.03610 −2.80306 ∗ ∗∗ −0.03365 −2.51518 ∗ ∗
ρ 0.93179 105.5930*** 0.93208 106.3333*** 0.93110 102.4654***

Note (*), (**) and (***) denote significant at 1, 5 and 10%, respectively

In the systematic variance model, the asymmetric coefficients are negative, highly
significant and large in magnitude for 1/2 ounces (–0.03642), followed by 1 ounce
(–0.03552) and 1/4 ounces (–0.03369). The asymmetric terms in the threshold mod-
els also display same results, where 1/2 ounces demonstrate the highest magnitude
except in quantile 2.5%. The negative coefficient implies that negative shocks exhibit
a smaller impact on the volatility of gold than positive shocks. In otherwords, positive
shocks of gold increase the volatility of gold more than negative shocks. For exam-
ple, the increase in volatility with positive shocks (0.07) is two times larger than the
increase in volatility with negative shocks (0.03). Specifically, comparing between
different weights of gold, the increase in volatility with positive shock has the largest
magnitude for 1/2 ounces (0.07219) in the systematic analysis. The results are con-
sistent in threshold analysis at 5 and 10%quantiles.While during the negative shocks



Asymmetric Volatility of Local Gold Prices in Malaysia 215

in gold returns, the increase in volatility is smaller for 12 ounces and 1 ounce in sys-
tematic and conditional analysis (for example, the effect on volatility in systematic
analysis is 0.07219 (+) − 0.03642 = 0.03577 for 1/2 ounces, 0.03657 for 1 ounce
and 0.03805 for 1/4 ounces).

The results reveal that the volatility of gold displays an inverted asymmetry of
positive and negative shocks relative to the asymmetric volatility which normally
reported in stock markets. Since financial leverage and volatility feedback cannot
describe this effect, we believe this effect is related to the hedge and safe haven
characteristics of gold. If the price of gold increases in times of financial or macro-
economic uncertainty, then investors buy gold and transmit the volatility and uncer-
tainty to the gold market. The price and volatility of gold increase simultaneously.
If the price of gold decreases in tranquil times, investors sell gold, thereby signaling
that financial and macroeconomic uncertainty is low. This leads to a smaller increase
of volatility compared with the positive gold price change [8, 10].

4.3.2 Systematic and Threshold Analysis Based on EGARCH Model

The results of EGARCHmodel are in line with the TGARCHmodel. The conditional
current volatility is affected by past news (shocks), past volatility and asymmetric
parameter. The parameters on the lagged conditional variances (α4) are relatively
large (around 0.985) for all models, thus the volatilities are extremely persistent and
take a long time to die out.

The presence of both the standardized value of the lagged residual εt−1√
ht

and and its
absolute value implies that innovations (news) have asymmetric effects.Nevertheless,
since the coefficients of symmetric effects and asymmetric effects are positive, the
good news (εt−1 > 0) are more destabilizing and have a greater impact on the
conditional variance of error, and hence the volatility of gold, than the bad news
(εt−1 < 0). While an unanticipated fall in stock market return signals “bad” news
and an unanticipated increase of stock return implies “good” news. However, it is the
otherway in the goldmarket. Positive shocks in the goldmarket imply “bad” financial
and macroeconomic news. This demonstrates gold as a hedge and a safe haven asset
during market turmoil, thus making gold a better investment for risk-averse investors
(Tables5 and 6).

Looking at the specific weights of gold, the results are consistent with the
TGARCH model, where in the presence of a positive shocks, the shock impact
on the conditional variance is relatively large for 1/2 ounces. For example, the effect
on volatility in systematic analysis is 0.12589+0.02855=0.15444 for 1/2 ounces,
0.15337 for 1 ounce and 0.15341 for 1/4 ounces (Table5).
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Table 5 Estimation results of variance equation: systematic EGARCH model

1 ounce 1/2 ounces 1/4 ounces

Coefficient z-stat Coefficient z-stat Coefficient z-stat

α1 −0.08875 −8.59436 ∗ ∗∗ −0.08921 −8.52451 ∗ ∗∗ −0.08962 −8.47210 ∗ ∗∗
α2 0.12523 8.76053*** 0.12589 8.71628*** 0.12620 8.63656***

α3 0.02814 2.82446*** 0.02855 2.88260*** 0.02721 2.65044***

α4 0.98541 270.1471*** 0.98534 271.3851*** 0.98570 261.0569***

Notes (*), (**) and (***) denote significant at 1, 5 and 10%, respectively

Table 6 Estimation results of variance equation: threshold analysis based on EGARCH model

1 ounce 1/2 ounces 1/4 ounces

Coefficient z-stat Coefficient z-stat Coefficient z-stat

Panel A α1 –0.08913 –8.64037*** –0.08806 –8.54827*** –0.08904 –8.52184***

10% α2 0.12572 8.80592*** 0.12411 8.74695*** 0.12517 8.68702***

α3 0.02895 2.90993*** 0.02944 3.01405*** 0.02818 2.77009***

α4 0.98534 269.6158*** 0.98553 276.1395*** 0.98581 264.0566***

Panel B α1 –0.08866 –8.59083*** –0.08858 –8.52649*** –0.08932 –8.48081***

5% α2 0.12511 8.75951*** 0.12489 8.72369*** 0.12571 8.64800***

α3 0.02856 2.87184*** 0.02885 2.93541*** 0.02758 2.69584***

α4 0.98544 270.6441*** 0.98547 274.4849*** 0.98575 262.5662***

Panel C α1 –0.08674 –8.56030*** –0.08942 –8.52505*** –0.08949 –8.46603***

2.5% α2 0.12225 8.72956*** 0.12617 8.71438*** 0.12596 8.62899***

α3 0.02936 2.99567*** 0.02846 2.86814*** 0.02757 2.68149***

α4 0.98586 277.4642*** 0.98528 270.7433*** 0.98574 261.4751***

Panel D α1 –0.08688 –8.57104*** –0.08728 –8.47284*** –0.08795 –8.45290***

1% α2 0.12242 8.74469*** 0.12307 8.67556*** 0.12365 8.62355***

α3 0.02925 2.98944*** 0.02901 2.97494*** 0.02805 2.77313***

α4 0.98584 277.3846*** 0.98566 277.6297*** 0.98602 267.1033***

Notes (*), (**) and (***) denote significant at 1, 5 and 10%,respectively

5 Conclusion

This study empirically examines the volatility dynamics of gold returns in Malaysia
via TGARCH and EGARCH models. At a first glance, we perceive that current
conditional volatility of gold prices is significantly impacted by past shocks (news)
and past volatilities. Furthermore, we find that the volatility of gold returns display an
asymmetric reaction to positive and negative shocks, which can be characterized as
inverted comparedwith the findings for the volatility in stockmarkets. The findings of
this study are also in line with [8] that identifies evidence of asymmetric volatility in
the US, British, European, Switzerland and Australia; thus supporting the argument
that domestic and international gold prices follow the same volatility characteristics.
This is due to the price of domestic gold is determined by the prevailing international
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gold market price. Therefore, the usual explanation for asymmetric volatility, that
is, financial leverage and volatility feedback, cannot be applied to gold. The finding
is primarily related to the hedge and safe haven characteristics of gold. One of the
reasons why gold can be a good hedge and safe haven tool is because it is considered
as a homogeneous class of asset, whose returns are driven by an unobservable factor.
Gold, unlike property, is easily traded in a continuously open market. Nevertheless,
since rising interest rates have a dampening effect on the gold market, economic
policy makers around the world can pursue tightening monetary policy to dampen
volatilities. On comparison of the strength of asymmetric volatility effect between
different weights of gold, we find that 1/2 ounces of gold exhibits a slightly larger
magnitude if compared with 1 ounce. In other words, this result provides evidence
that 1/2 ounces of gold gives more return on average and during the financial turmoil,
thus encourages investors accumulate gold over time or retain a capacity to sell their
gold investment in small amounts in the future.
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Scheme 203/PSOSIAL/6711417 byMinistry of EducationMalaysia and Universiti SainsMalaysia.

References

1. Alexander, C.: Practical Financial Econometrics. Wiley Ltd, Chichester (2009)
2. Alexander, C., Lazar, E.: Normal mixture GARCH (1,1): application to exchange rate mod-

elling. J. Appl. Econ. 21(3), 307–336 (2006)
3. Bae, K.-H., Karolyi, G. A., Stulz, R. M.: A new approach to measuring financial contagion.

Rev. Financ. Stud. 16(3), 717–763 (2003)
4. Baillie, R.T., Bollerslev, T.: The message in daily exchange rates: a conditional-variance tale.

J. Bus. Econ. Stat. 7(3), 297–305 (1989)
5. Baillie, R.T., Bollerslev, T.: Intra-day and inter-market volatility in foreign exchange rates. Rev.

Econ. Stud. 58(3), 565–585 (1991)
6. Batten, J.A., Ciner, C., Lucey, B.M.: The macroeconomic determinants of volatility in precious

metals markets. Resour. Policy 35(2), 65–71 (2010)
7. Batten, J.A., Lucey, B.M.: Volatility in the gold futures market. Appl. Econ. Lett. 17(2), 187–

190 (2010)
8. Baur, D.G.: Asymmetric volatility in the gold market. J. Altern. Invest. 14(4), 26–38 (2012)
9. Baur, D.G., Lucey, B.M.: Is gold a hedge or a safe haven? An analysis of stocks, bonds and

gold. Financ. Rev. 45(2), 217–229 (2010)
10. Baur, D.G., McDermott, T.K.: Is gold a safe haven? International evidence. J. Banking Finan.

34(8), 1886–1898 (2010)
11. Black, F.: Studies of stock price volatility changes. Paper presented at the proceedings of the

1976 meetings of the american statistical association, Bus. Econ. Stat. (1976)
12. Bollerslev, T.: Generalized autoregressive conditional heteroskedasticity. J. Econ. 31(3), 307–

327 (1986)
13. Campbell, J.Y., Hentschel, L.: No news is good news: an asymmetric model of changing

volatility in stock returns. J. Financ. Econ. 31(3), 281–318 (1992)
14. Christie, A.A.: The stochastic behavior of common stock variances: value, leverage and interest

rate effects. J. Financ. Econ. 10(4), 407–432 (1982)
15. Dee, J., Li, L., Zheng, Z.: Is gold a hedge or a safe haven? Evidence from inflation and stock

market. Int. J. Dev. Sustain. 2(1): (In Press) (2013)



218 M.F. Ghazali and H.H. Lean

16. Drakos,A.A.,Kouretas,G.P., Zarangas, L.P.: Forecasting financial volatility of theAthens stock
exchange daily returns: An application of the asymmetric normal mixture GARCHmodel. Int.
J. Finan. Econ. 15(4), 331–350 (2010)

17. Engle, R.F.: Autoregressive conditional heteroscedasticity with estimates of the variance of
United Kingdom inflation. Econometrica 50(4), 987–1007 (1982)

18. Engle, R.F., Ito, T., Lin, W.-L.: Meteor showers or heat waves? Heteroskedastic intra-daily
volatility in the foreign exchange market. Econometrica 58(3), 525–542 (1990)

19. French, K.R., Schwert, G.W., Stambaugh, R.F.: Expected stock returns and volatility. J. Finan.
Econ. 19(1), 3–29 (1987)

20. Gau, Y-F., Engle, R.F.: Conditional volatility of exchange rates under a target zone. Department
of Economics Discussion Paper Series 06. University of California. San Diego (1997)

21. Ghazali, M.F., Lean, H.H., Bahari, Z.: Is gold a hedge or a safe haven? An empirical evidence
of gold and stocks in Malaysia. Int. J. Bus. Soc. 14(3), 428–443 (2013)

22. Giamouridis, D.G., Tamvakis, M.N.: The relation between return and volatility in the com-
modity markets. J. Altern. Invest. 4(1), 54–62 (2001)

23. Glosten, L.R., Jagannathan, R., Runkle, D.E.: On the relation between the expected value and
the volatility of the nominal excess return on stocks. J. Financ. 48(5), 1779–1801 (1993)

24. Hammoudeh, S., Yuan, Y.: Metal volatility in presence of oil and interest rate shocks. Energ.
Econ. 30(2), 606–620 (2008)

25. Hillier, D., Draper, P., Faff, R.: Do precious metals shine? Invest. Perspect. Finan. Anal. J.
62(2), 98–106 (2006)

26. Hirayama, K., Tsutsui, Y.: Threshold effect in international linkage of stock prices. Jpn. World
Econ. 10(4), 441–453 (1998)

27. Hsieh, D.A.: Modeling heteroscedasticity in daily foreign-exchange rates. J. Bus. Econ. Stat.
7(3), 307–317 (1989)

28. Hsieh, D.A.: Testing for nonlinear dependence in daily foreign exchange rates. J. Bus. 62(3),
339–368 (1989)

29. Jeon, B.N., Furstenberg, G.M.V.: Growing international co-movement in stock price indexes.
Q. Rev. Econ. Financ. 30(3), 15–30 (1990)

30. Johnston, K., Scott, E.: GARCH models and the stochastic process underlying exchange rate
price changes. J. Financ. Strateg. Decis. 13(2), 13–24 (2000)

31. Liao, S-J., Chen, J.T.: The relationship amongoil prices, gold prices and the individual industrial
sub-indices in Taiwan. Paper presented at the Int. Conf. Bus. Inf. Seoul, South Korea (2008)

32. Lobo, B.J.: Asymmetric effects of interest rate changes on stock prices. Financ. Rev. 35(3),
125–144 (2000)

33. Nelson, D.B.: Conditional heteroskedasticity in asset returns: a new approach. Econometrica
59(2), 347–370 (1991)

34. Roache, S.K., Rossi, M.: The effects of economic news on commodity prices: is gold just
another commodity? IMF Working Paper WP 09/140 (2009)

35. Sari, R., Soytas, U., Hacihasanoglu, E.: Do global risk perceptions influence world oil prices?
Energy Econ. 33(3), 515–524 (2011)

36. Sumner, S., Johnson, R., Soenen, L.: Spillover effects among gold, stocks, and bonds. J. CEN-
TRUM Cathedra 3(2), 106–120 (2010)

37. Tully, E., Lucey, B.M.: A powerGARCHexamination of the goldmarket. Res. Int. Bus. Financ.
21(2), 316–325 (2007)



Quantile Regression Under Asymmetric
Laplace Distribution in Capital Asset
Pricing Model

Kittawit Autchariyapanitkul, Somsak Chanaim
and Songsak Sriboonchitta

Abstract We used a quantile regression under asymmetric Laplace distribution for
predicting stock returns. Specifically, we apply this method to the classical capital
asset pricing model (CAPM) to estimate the beta coefficient which measure risk in
the portfolios management analysis at given levels of quantile. Quantile regression
estimation is equivalent to the parametric case where the error term is asymmetri-
cally Laplace distributed. Finally, we use the method to measures the volatility of a
portfolio relative to the market.

1 Introduction

Capital asset pricing model is the tool for evaluating portfolios investment. The basic
concept behind CAPM is that investors need to be compensated time value of money
and risk. The time value of money is represented by the risk-free rate (RF) and
compensates the investors for placing money in any investment over a period of time
rather than put money into the risk free rate asset (e.g. government bonds, T-bill).
The rest of the model represents risk and find the value of compensation the investor
needs for taking on additional risk when they choose to invest in risky asset (e.g.
stocks, corporate bonds). This is calculated by taking a risk measure that compares
the returns of the asset to the market over a period of time and to the market premium
(RM − RF).
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Normally in CAPM, asset returns are imposed normally distributed random
variables. But this is not seem to be correct. For example, high peak, large swings,
swings as big as 2 to 4 standard deviation from the standard mean, occur in the mar-
ket more regularly than we would expect in a normal distribution. CAPM assumes
that the variance of returns adequately measures risk. This may be true if returns
were distributed normally. However other risk measurements are probably better for
showing investors’ preferences. In this paper we propose to use quantile regression
with asymmetric Laplace distribution (ALD).

Quantile regression is a very popular tool since the distinguished work of Koenker
and Gilbert [3]. Unlike mean regression model, quantile regression can capture the
entire conditional distribution of the outcome variable, and is more robust to outliers
and not satisfied the error distribution. For quantile regression to modelling and
testing the CAPM, the reader is referred to e.g., Barnes and Hughes [1]. In their
studied, that the market price of beta risk is significant in both tails of the conditional
distribution of returns. In Chen et al. [2], the authors used a couple of methods to
obtain the time varying market betas in CAPM to analyze stock in the Dow Jones
Industrial for several quantiles. The results indicated that smooth transition quantile
CAPM-GARCH model is strongly preferred over the method of sharp threshold
transition and a symmetric CAPM-GARCH model.

We present a likelihood-based approach to estimation of the regression quan-
tiles based on the asymmetric Laplace distribution. In Sánchez et al. [10], the paper
investigated the distribution under the asymmetric Laplace law by using currency
exchange rates give that the ALD is successful in capturing the peakedness, lep-
tokurticity, and skewness, inherent in such data. In Kotz and Drop [5], the authors
studied refinements of the project evaluation and review technique, and developed a
reparameterization of the ALD and found that it is a useful tool for extending and
improving various three-point approximations of continuous distributions by spec-
ifying the values of two quantiles and the mode. Similarly, the works from Linden
[6] showed that the Laplace distribution has a geometric stability for the weekly and
the monthly distribution of the stock return and also ignores the high peak, the fat
tail and the skewness of the return but ALD is insufficient enough to measures the
negative skew, but it explains well with the positive skewness of the stock returns
for S&P500 and FTSE100 although it captures the high peak and the fat tail of the
stock return.

It should be noted that a complete study of QR models with various error distri-
butions is of great interests for applications in financial analysis.

The remainder of the paper is organized as follows. Section2 provides a basics
knowledge of quantile regression and asymmetric Laplace distribution. Section3
provides the theoretical concepts of the prediction. Section4 discusses the empirical
discovering and the solutions of the forecasting problem. The last section gives the
conclusion and extension of the paper.
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2 Quantile Regression Model

First, recall the classical situation of linear mean regression model: suppose we can
observe another variable X and wish to use X to predict Y , a predictor of Y is some
function of X , say, ϕ(X). If we use mean square error (MSE), then we seek ϕ∗(X)

minimizing E[Y − ϕ(X)]2 over all ϕ(X). With respect to this square loss function,
it is well-known that the conditional mean E(Y |X) is optimal.

Now, since random evolution do not obey specific “laws of motion” as dynamical
systems in physics, we need to rely on “plausible statistical models” to proceed.
A plausible model for E(Y |X) is the linear model θ X where θ is some unknown
constant. The associated (additive noise) statistical model is

Y = θ ′ X + ε, (1)

where ε is a random variable representing random error due to all sources of ran-
domness other than X . For this model (for regressing Y from X ) to be “consistent”
with E(Y |X) = θ X , we must have E(ε|X) = 0, since from Y = θ X + ε, we have

E(Y |X) = E(θ X |X) + E(ε|X) = θ X + E(ε|X). (2)

Mean linear models are motivated by best predictor E(Y |X) in the sense of
MSE. When we consider Least Absolute Deviation (LAD) instead, we talk about
median regression, and in particular linear median regression. Then we have to con-
sider about conditional median of Y given X , denoted as q1/2(Y |X). Essentially,
we replace the familiar concept of conditional expectation (mean) by the concept
of conditional median and more generally conditional quantiles. (Like conditional
mean, conditional quantiles are random variables whose existence also follows from
Radon-Nikodym theorem in probability theory.)

Recall that the α − quantile of a distribution F of a random variable X is
F−1(α) = inf{y ∈ R : F(y) ≥ α} which we write as qα(Y ).

Unlike the expectation operator, qα(.) is not additive but for a > 0 and b ∈ R,
we do have,

qα(aX + b) = aqα(X) + b. (3)

Let (X, Y ) be a random vector. The conditional distribution of Y given X = x is
FY |X=x (y) = P(X � y|X = x). The α − quantile of Y given X = x is called the
conditional α − quantile of Y given X = x , and is simply the α − quantile of the
conditional distribution FY |X=x so that P(Y � qα(Y |x)|X = x) = α.

The conditional distribution of Y given X is

FY |X (x) = P(Y � y|X) = E[1Y�y |Y ]. (4)
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The α − quantile of X given Y is defined to be

qα(Y |X) = inf{y ∈ R : FY |X (y) � α}. (5)

Thus, since E[1Y�y |X ] is a random variable, so is qα(Y |X) which is a function
of X , referred to as a quantile regression function. Given in this equation,

qα(Y |X) = F−1
Y |X (α) = ϕα(X) = θα(X). (6)

Just like the median (for special case of α = 1/2) and similar to conditional mean,
the quantile qα(Y |X) is the best predictor for Y based on X (i.e., as a function of X ) in
the sense of the predictor error Eρα(Y − (ε|X)), where ρα(u) = u(α − 1(u<0)). i.e.,
qα(Y |X) minimizes Eρα(Y − (ε|X)) over all possible ϕ(X). Indeed, using the same
proof for unconditional quantiles, qα(Y |X = x) minimizes E[ρα(Y − a)|X = x] so
that the function x → qα(Y |X = x) minimizes Eρα(Y − (ε|X)).

In general, the “quantile regression function” qα(Y |X)(which is a function of X )
is nonlinear. Amodel for it is the linear model qα(Y |X) = X ′βα , where βα is a vector
(k × 1) of unknown parameters of interest. This is what we call quantile regression,
which is in fact a semi-parameter linear model relating a response variable Y to the
explanatory variable X via “a quantile parameter”. We need an associated statistical
model representing (consistently) this linear quantile model. If we denote by εα that
disturbance in the relationship between Y and X ′βα , then we could write the quantile
regression model as

Y = X ′βα + εα. (7)

From this model we have, symbolically,

Y |X = (X ′βα + εα). (8)

We have

qα(Y |X) = qα[(X ′βα + εα)|X ] = qα(X ′βα + εα|X) = X ′βα + qα(εα|X), (9)

and since given X, X ′βα is a constant. Thus, qα(εα|X) = 0 the counterpart of the
standard condition E(ε|X) = 0 in mean linear regression model.

Note that qα(εα|X) = 0 means that 0 is the α-conditional quantile of the “noise”
εα , i.e.,

P(εα � 0|X) = α. (10)

If εα is independent of X, then the α-quantile of the noise εα is zero, that is,
∫ 0

−∞
d Fεα (u) = α. For qα(Y |X) = X ′βα,we see that βα minimize E[ρα(Y − X ′β)]
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over β. Thus, given i.i.d (Xi , Yi ), i = 1, 2, . . . , n , a plausible estimator of βα

proceeds by minimizing

̂βα = argmin
1

n

{ n
∑

i=1
ρα(Yi − X ′

iβ)

}

, (11)

ρα(·) is so called check (or loss) function defined by ρα(u) = u(α−1(u<0)),with
1(u<0) denoting the usual indicator function and this estimator is called the LAD
estimator.

Thus, suppose that the error term εα is distributed as an asymmetric Laplace
distribution (ALD) then the LAD estimator of βα is a MLE. For the MLE, the
minimization of Eρα(Yi − X ′

iβ) is the same as maximization of ALD. Given Y ∼
AL D(X ′

iβα, σ, α), i = 1, 2, ..., n are independent. Then, the likelihood function for
β, σ (see, Koenker [4] and Sánchez [10]) is

L(βα, σ |(Xi , Yi ) = αn(1 − α)n

σ n
exp

{

−
n

∑

i=1

ρα

(

Yi − X ′
iβα

σ

)

}

. (12)

3 Validating Linear Quantile Models

To see whether the linear model is a good approximation of ϕ(.), we can use variance

as a measure of variation and hence as we already know the ratio a2V ar(X)
V ar(Y )

∈ [0, 1]
can be used as indication of goodness-of-fit: the higher this ratio, the more adequate
the linear model, in the sense that the linear model captures reasonable well the

relationship between X and Y. A consistent of ratio a2V ar(X)
V ar(Y )

is simply the ratio of
	i (ŷi −ȳ)2

	i (yi −ȳ)2
which is what we call R2 (coefficient of determination). When X and Y

have finite variance, R2 is a consistent estimator of a2V ar(X)
V ar(Y )

, i.e., sufficiently close

to a2V ar(X)
V ar(Y )

, as n → ∞, with probability one.

Consider now a linear quantile regression model. To validate such a model, it is
natural to use the idea of coefficient of determination in linear mean regression. In
general a link between X and Y is given by ϕ(X) = E(Y |X). The nonparametric
coefficient of determination is

R2 = Varϕ(X)

Var(Y )
= 1 − E |Y − ϕ(X)|2

E |Y − EY |2 . (13)

Which is used for assessing the prediction power of a mean regression model. In
linear model, ϕ(X) = aX.

Note that R2 cannot answer questions such as “Does X exert any utilize any
significant effect on the tail of the distribution of Y?” Thus, in risk management
where large values of Y are of interest, we should use quantile regression instead.
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In the LAD sense, the best predictor of Y given X, at the α − quantile level, is the
conditional quantile qα(Y |X) which is a function of X, as a conditional expectation.
A validation measure for general quantile regression model is

Q(α) = 1 − E[ρα(Y − qα(Y |X))]
E[ρα(Y − qα(Y ))] , (14)

by replacing E(Y |X) and E(Y ) by qα(Y |X) and qα(Y ), respectively. The empirical
Qn(α) is obtained by estimated quantiles. We have

Qn(α) = 1 −

n
∑

i=1
[ρα(Yi − qα(Yi |Xi ))]
n
∑

i=1
[ρα(Yi − θ̂α Xi )]

. (15)

Formore results on thismeasure for validating quantile regressionmodels, includ-
ing asymptotics, we refer the reader to the paper by Noh et al. [9].

4 An Application to the Stock Market

4.1 Capital Asset Pricing Model:CAPM

The Capital Asset Pricing Model (CAPM) was developed by Sharpe [11] and John
Lintner [7]. The CAPM measures the sensitivity of the expected excess return on
security to expectedmarket risk premium. The equation of CAPM is a linear function
of the security market line:

E(RA) − RF = β0 + β1E(RM − RF). (16)

where E(RA) is the expected return of the asset, RM is the expected market portfolio
return,β0 is the intercept and RF is the risk free rate. E(RM −RF ) is the expected risk
premium, and β1 is the equity beta, denoting market risk. To measure the systematic
risk of each stock via the beta take form:

β1 = cov(RA, RM)

σ 2
M

. (17)

where σ 2
M is the variance of the expected market return. Given that, the CAPM

predicts portfolio’s expected return should be relative to its risk and the market
return. In this paper, we calculate the beta coefficients under the ALD assumption
by using quantile regressions via belief function procedures.
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4.2 Beta estimation

From above conventional method in equation (16), we estimate the β coefficient
through the quantile with ALD instead. Suppose we have observed the historical
return of stock RA = (ra1, . . . , ran) and return frommarket RM = (rm1, . . . , rmn) at
specific location over n years. These observations will be assumed an i.i.d. random
innovation from ALD(α, μ, σ ). In this case, we consider μ = 0. From quantile
equation.

RA = R′
Mβα + εα (18)

So that,
εα = RA − R′

Mβα (19)

Then, probability density function is

f (εα, σ ) = α(1 − α)

σ
exp{−ρα(

εα

σ
)} (20a)

= α(1 − α)

σ
exp{−(

εα(α − 1εα<0)

σ
)}. (20b)

And CDF is

F(εα) =
εα

∫

−∞

α(1 − α)

σ
exp{−(

εα(α − 1εα<0)

σ
)}dεα (21a)

=
εα

∫

−∞
− α(1 − α)

α − 1εα<0
exp{−(

εα(α − 1εα<0)

σ
)}d(·) (21b)

= − α(1 − α)

α − 1εα<0
exp{−(

εα(α − 1εα<0)

σ
)}|εα−∞. (21c)

where d(·) = −εα(α − 1εα<0)

σ
We get

F(εα) =

⎧

⎪

⎨

⎪

⎩

α · exp
[

(1 − α)εα

σ

]

: εα < 0

1 + (α − 1) · exp
[−αεα

σ

]

: εα ≥ 0
(22)

If we need random number for this CDF then, let F(εα) = u ∼ uniform(0, 1)

u =

⎧

⎪

⎨

⎪

⎩

α · exp
[

(1 − α)εα

σ

]

: εα < 0

1 − (1 − α) · exp
[−αεα

σ

]

: εα ≥ 0
(23)
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Table 1 Data descriptive and statistics

MUR XOM S&P500

Mean –0.0009 –0.0011 0.0024

Median –0.0019 –0.0011 0.0032

Maximum 0.0756 0.1183 0.0713

Minimum –0.0729 –0.1534 –0.0746

Std. Dev 0.0248 0.0429 0.0218

Skewness –0.1848 –0.3827 –0.3864

Kurtosis 3.8899 4.4453 4.4495

DW-test 1.8838 1.8755

Obs 209

Source All values are the log return

F−1(u) = εα =

⎧

⎪

⎨

⎪

⎩

σ(ln u − ln α)

(1 − α)
: 0 < u ≤ α

−σ

α
(ln

(1 − u)

(1 − α)
) : α < u < 1.

(24)

Using (12), (16) the corresponding to the observed data through the CAPMmodel
using quantile regression with ALD is a realization that generate likelihood function
is

Lα(βα
0 , βα

1 , σ |(rmi , rai )) = αn(1 − α)n

σ n
exp

{

−
n

∑

i=1

ρα(
rai − rmiβ

α
1 − βα

0

σ
)

}

(25)

4.3 Empirical Results

The data contain of 209weekly returns during 2010–2013 are obtained fromYahoo to
compute the log returns on the following securities. Integrated oil and gas company—
A company that participates in every aspect of the oil or gas business, which includes
the discovering, obtaining, producing, refining, and distributing oil and gas. The
integrated oil and gas company in this paper contains of two companies: Exxon
Mobil Corp. (XOM) and Murphy Oil (MUR). Due to high turn over volume and
market capitalization. Table1 displays a summary of the variables.

The appropriate risk-free rate for the CAPM in this paper, we use Treasury bills
-the bill with the shortest maturity not less than one month as a proxy belong to
Chen et al. [2] and Mukherji [8] indicated that Treasury bills are better proxies for
the risk-free rate than longer-term Treasury securities regardless of the investment
horizon, only related to the U.S. market.
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Fig. 1 The Q-Q plots of error from asymmetric Laplace distribution. a ALD Q-Q plot of XOM α

= 0:50. b ALD Q-Q plot of MUR α = 0:50

The daily returns of the treasury bills are adjusted to the weekly returns and be
used in this manner by using compound interest that take form:

Iw j =
{

N
∏

i=1
(1 + Idi )

}

− 1 (26)

where Iw j , j = 1, 2, . . . , N is the weekly interest rate and Idi , i = 1, 2, . . . , N is
the daily interest rate.

The Q-Q plots shown in Fig. 1 are based on the distribution of AL, given in
(25). In support of the Kolmogorov-Smirnov test (KS-test) gives the value of MUR,
Dn = 0.0425 and the value of XOM, Dn = 0.0500 compare with the critical value
K (α′=0.05)√

n
= 0.0941 confirm that none of themarginals rejects the null hypotheses of

the KS at the 5% level. The lines in these figures represent the 0.5th quantile. These
figures and KS values are clearly show that the asymmetric Laplace distribution
provides a good-fit to the sample data set.

The values in the Table2 exhibit the results of the parameters estimation for the
CAPM via the quantile regression under asymmetric Laplace distributions at given
level of α. The results for ALD assumption performs well for the given quantile of
these two stocks.

Now, Fig. 2 shows parameter estimation for the entire quantile. From these picture,
we summarize the results as follows:

1. The intercepts β0.5
0 increase with α, and are negative under low quantile levels

and positive under high quantile levels. They are close to 0 under α = 0.5.
2. XOM has less risky than the market except for the quantile lower than 0.07.

And more risk less at higher quantile levels, The risks decrease as the stock return
increase, but the relationship is non-monotonic.

3. MUR is more risky than the market under all quantile levels, and more risk
under bull market than under bearmarket.We cannot find anymonotonic relationship
between risks and excess returns for MUR.
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Table 2 Parameter estimated results

Parameter Stock Name α = 0.10 α = 0.40 α = 0.50 α = 0.60

β0 XOM –0.0155 –0.0032 –0.0006 0.0023

(0.0002) (0.0001) (0.0001) (0.0000)

MUR –0.0290 –0.0073 –0.0010 0.0049

(0.0000) (0.0003) (0.0000) (0.0001)

β1 XOM 0.9479 0.9344 0.9319 0.9234

(0.0572) (0.0029) (0.0012) (0.0021)

MUR 1.5355 1.4734 1.4588 1.3877

(0.0006) (0.0017) (0.0003) (0.7638)

σ XOM 0.0024 0.0048 0.0050 0.0049

(0.0002) (0.0009) (0.0003) (0.0004)

MUR 0.0046 0.0098 0.0102 0.0101

(0.0003) (0.0039) (0.0005) (0.0007)

Qn(α) XOM 0.4836 0.4699 0.4716 0.4603

MUR 0.4348 0.3725 0.3648 0.3500

LL XOM 547.7220 606.6534 607.8101 603.1395

MUR 414.6052 458.8301 459.2612 454.0436

Consistent standard errors() is in parenthesis

Most quantile levels have asymmetric behavior in market betas. Hence, we refer
that the data have asymmetric effect.Notice that risk parameter (β1) for somequantile
at the lower and higher regime conflict with others points because that may be come
from the ALD not capture well at the tails of distribution.

4.4 Measures the volatility of stock

Afterwe get all the parameters estimated.We plug them into (16). In Fig. 3: The lower
line is α = 0.05, the middle line is α = 0.50 and the upper line is α = 0.95. The
slope of the line, which is a measure of systematic risk (β1), determines the tradoff
between risk and return. The high beta may be appropriate for high risk aggressive
investors. The other way around, low beta may be suitable for low risk defensive
investors. It quite be crucial that if an investment were to lie above or below that
straight line, then an opportunity for riskless arbitrage would exist.

5 Conclusions and Extension

In this paper, we demonstrate our method of quantile CAPM with ALD for the two
stocks in S&P500. This method can be used to study the linear relationship between
the expected returns on a stock and its asymmetric market risk over various quantile
levels. However, only a systematic risk is calculated through the model, we neglect
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Fig. 2 Marginal parameter plots of two stocks at difference quantile(α). a β0 XOM, b β1 XOM,
c σ XOM, d β0 MUR, e β1 MUR, f σ MUR

the unsystematic risk under CAPM assumption. CAPM concludes that the expected
return of a security or a portfolio equals the rate on a risk-free security plus a risk
premium. If this expected return does not meet or beat the required return, then the
investment should not be undertaken.

The empirical diagnostic exhibit that this method captures the stylized factors
in financial data to describe the stock returns under most quantile levels, especially
under the middle quantile levels. Clearly, there is no monotonic relationship between
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Fig. 3 Securities characteristic line at difference quantile(α). a Security line for XOM. b Security
line for MUR

risk and stock returns for the three stocks. Stochastic intercepts are large for extreme
quantile levels and small for the middle quantile.

For future works, we are interesting to extend this model to the time series model
such as ARMA, GARCH model. A single factor, β is used on CAPM to compare
a portfolio with the market as a whole. Moreover, we can add factors to the model
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to give a better fit. The famous approach is the three factor model developed by
Fama and French in 1993. A factor model can be extended the CAPM by adding
size and value factors in addition to the market risk. So, multifactor models will be
considered.
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Evaluation of Portfolio Returns
in Fama-French Model Using Quantile
Regression Under Asymmetric Laplace
Distribution

Kittawit Autchariyapanitkul, Somsak Chanaim
and Songsak Sriboonchitta

Abstract We applied the method of quantile regression under asymmetric Laplace
distribution to predicting stock returns. Specifically, we used this method in the Fama
and French three-factor model for the five industry portfolios to estimate the beta
coefficient, which measure risk in the portfolios management analysis at given levels
of quantile. In many applications, we are concerned with the changing effects of
the covariates on the outcome across the quantiles of the distribution. Inference in
quantile regression can be proceeded by assigning an asymmetric Laplace distrib-
ution for the error term. Finally, we use the method to measures the volatility of a
portfolio relative to the market, size and value premium. It should be noted that a
complete study of quantile regression models with various error distributions is of
great interests for applications.

1 Introduction

The portfolio theory was first purposed by Markowitz in 1952, a simple idea that
described the return of the portfolio by mean and variance. These concepts were
essential to development of the famous capital asset pricing model (CAPM). CAPM
was introduced by Sharpe [19] and Lintner [14]. The classical CAPM is predicting
the return of the asset by using only market return to evaluate the return in portfolio
management. But it is only 70% given by the CAPM (within sample) explains of the
diversified portfolios returns compared with the Fama-French three-factor model can
explains over 90% (see, Fama and French [6]). The three-factor model, two more
factors namely, size and value variables are added into the original CAPM. Both
CAPM and the Fama-French model are use ordinary least square (OLS) to obtain the
beta parameters and usually assumed error term to be jointly normally distributed.
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However, this is not always true in the financial market. The Fama-French assumes
that the variance of returns adequately measures risk. This may be true if returns
are distributed normally. In this paper we introduce the quantile regression with an
asymmetric Laplace distribution (ALD) to estimate the parameters of the model and
predict portfolios returns.

Quantile regression can explain the entire conditional distribution of the outcome
variable, and ismore robust to outliers andwrong assumption of the error distribution.
For the application of quantile regression to Fama-French model, we have not seen
much about applying the quantile in the three-factor model.

Quantile regression estimation is equivalent to the parametric case where the error
term is asymmetrically Laplace distributed. The beneficial of parametric estimation
is that we can have all the properties ofMaximumLikelihood Estimates (MLE). Esti-
mators derived by themethod ofmaximum likelihood have some desirable properties
such as, sufficiency, consistency, efficiency, asymptotic normally (Fisher Informa-
tion), invariance, etc.

Many studies on the Fama-Frenchmodel is wildly used to study the diversification
of the risk parameter and the performance of protfolios, which we can found in
the studied from Abhakorn et al. [1], they used standard C-CAPM by including
two additional factor associated with Fama-French [7]. Same as in the studied of
Bartholdy and Peare [4], compared the performance of CAPM and Fama-French
models for individual stocks. In the support of Gaunt [11] tests validity between
Three factor model and CAPM, all their results shown that Fama-French model
provides a better explanation of stock returns than the CAPM model. Lin et al. [15]
studied the relation between the Fama-French factors and the latent risk factors in
Chinesemarket.More relatedwork using the Fama-Frenchmodel, we refer the reader
to the works of Mwalla and Karasneh [2], Eraslan [5], Faff et al. [10]. Grauer and
Janmatt [11]

This study extends the standard Fama-French three factor model by present a
likelihood-based approach to the estimation of regression quantiles based on the
asymmetric Laplace distribution. In [18], the authors construct the distribution of
currency exchange rates using the asymmetric Laplace distribution, which success-
fully captures the peakedness, fat tail and skewness inherent in such data. Similarly, it
is shown in [16] that the Laplace distribution has a geometric stability for the weekly
and monthly distributions of stock returns and also captures the high peak, fat tail
and the skewness of the stock returns.

The useful of regression with Fama-French model have been mentioned in Kent
[13] i.e., First, The Fama-French model can explains much more of the variation
observed in realized returns. Second, it is show that a positive alpha observed in
a CAPM regression is merely a result of exposure to either SMB or HML factors,
rather than actual manager performance.

Hence, the main objective of this study is to illustrate the method of quantile
regression under asymmetric Laplace distribution. we estimate five industrial port-
folios returns based on quantile regression under asymmetric Laplace distribution to
evaluate the returns of the portfolios. Thus, the contribution of this paper is using the
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method of quantile regression under ALD to obtained the value of betas parameter
under various market situation.

The remainder of the paper proceeds as follows. Section2 gives the overview
of quantile regression with asymmetric Laplace distribution and Fama-Frnch three
factor model. Meanwhile, Sect. 3 described the empirical method using qunatile
regression under asymmetric Laplace distribution. Section4 exhibits the empirical
solutions. The last gives the conclusion of the paper.

2 Quantile Regression and Fama-French Model

2.1 Quantile Regression with an Asymmetric
Laplace Distribution

Quantile regression (QR) supplies information about the relationship between
response and the covariates at the tails of the response distribution. In a linear QR
model Y = X ′βα + εα, the parameter βα is estimated by minimizing the empirical
objective function

∑n
i=1[ρα(Y − X ′β)] over β. Thus, given i.i.d (Xi , Yi ), a plausible

estimator of βα is

̂βα = argmin
1

n

{

n
∑

i=1

ρα(Yi − X ′
iβ)

}

. (1)

Function ρα(·) is the so called check (or loss) function defined by ρα(u) =
u(α − 1(u<0)), with 1(u<0) denoting the usual indicator function. This estimator
is called the Least Absolute Deviation (LAD) estimator. Just as minimizing a loss is
associated with normal errors, minimizing check function corresponds to assuming
a distribution called asymmetric Laplace distribution (ALD) for the error εα . Note
that, just like in mean regression model, while the OLS method provides estimators
for the model parameters, to make tests and set up confidence intervals, we need to
make an assumption about the distribution of the error term.

Thus, suppose that Yi is distributed as ALD (βα Xi , σ, α), i = 1, 2, . . . , n. Then
the likelihood is

L(βα, σ |Y1, · · · , Yn) = αn(1 − α)n

σ n
exp

{

−
n

∑

i=1

ρα

(

Yi − X ′
iβα

σ

)

}

. (2)

Maximizing L with respect toβα is equivalent tominimizing
∑n

i=1[ρα(Y −X ′β)].
Note that, the ALD of the error εα is

fεα (u) = α(1 − α)

σ
exp

{

−ρα

(

u

σα

)}

. (3)

The validation measure for general quantile regression model is
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Qn(α) = 1 −

n
∑

i=1

ρα(Yi − qα(Yi |Xi ))

n
∑

i=1

ρα(Yi − θ̂α Xi )

(4)

The empirical general quantile regression is obtained by estimated quantiles. For
more details on this measure for validating quantile regression models, see, [17].

2.2 Fama-French Three-Factor Model

The three-factor model was purposed by Fama and French [6] and has been applied
in various issue (see, [7–9]). This model provides an extended version of the CAPM
for evaluation of the portfolio. The original CAPM model is described by the linear
regression as follows

rA = r f + βA(rM − r f ) + ε, (5)

In the three-factormodel, two additional factors are added to explain excess return;
“size” and “value” to be the most significant factors. Thus, for each portfolio can be
estimate the return by the following regression:

rA = r f + βA(rM − r f ) + sA SM B + h A H M L + ε, (6)

where rA is the total return of portfolio, r f is the risk free rate, rM is the market return
and ε is the error term. SMB which is so called “Small Minus Big” accounting for
the size premium, is designed to measure the difference in return between investing
in small and big capitalization stocks, sA represents the level of exposure to size risk.
The words “Small and Big” are refer to the size of the market equity (ME) which
is the multiplication of share price and number of shares outstanding. “High Minus
Low” (HML) represents the value premium, is invented tomeasure the excess returns
for investing in high book-to-market values (BE/ME) and low BE/ME companies
and h A shows the level of exposure to value risk.

Note that, SMB is the average return on the three small portfolios minus the
average return on the three big porfolios. HML is the average return on the two value
portfolios minus the average return on the two growth portfolios. SMB and HML are
calculated from the combinations of Small Value (SV), Small Neutral (SN), Small
Growth (SG), Big Value (BV), Big Neutral (BN) and Big Growth (BG). Thus, we
have

SM B = 1

3
(SV + SN + SG) − 1

3
(BV + B N + BG) (7a)
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H M L = 1

2
(SV + BV ) − 1

2
(SG + BG) (7b)

3 Simulated Data for ALD

Consider the linear model Y = Xβα + εα , for 0 < α < 1, with Fεα |X (0) = α. Such
that this condition entails that the conditional α − quantile of Y given X is Xβα.

Recall the α − loss function

ρα(u) = u[α − 1(u<0)] =
{

u(α − 1) : u < 0

uα : u � 0
(8)

Thus, ρα( u
σ
) = ρα(u)

σ
when σ > 0. Suppose the conditional distribution of Y

given X is a AL D(μ, σ, α), where the location parameter −∞ < μ < ∞, the scale
parameter σ > 0, and the skew parameter 0 < α < 1. Given the density of εα in
(3). For simulations of ε from this distribution where we know α and σ , we seek
its distribution function Fεα to carry out the usual procedure by setting Fεα = U ,
uniformly distributed on [0,1], so that εα = F−1

εα
(U ) we have

Fεα (x) =
{

α exp{ (1−α)x
σ

} : x < 0

1 − (1 − α) exp{−αx
σ

} : x � 0
(9)

From which, we get

u = α exp

{

(1 − α)x

σ

}

⇒ x = σ(log u − logα)

1 − α
: u < α (10)

which is less than 0 when log u − logα < 0 and

u = 1 − (1 − α) exp{−αx

σ
} (11a)

x = σ [log(1 − α) − log(1 − u)]
α

� 0 : u � α (11b)

4 Application to Portfolio Evaluation

4.1 Model and Parameters Estimation

TheFama andFrench three-factor asset pricingmodel provides an option toCAPMas
an improvement to poor performance of the CAPM.With this method, the estimation
of expected excess return on portfolios will be calculated by adding twomore factors



238 K. Autchariyapanitkul et al.

namely; SMB and HML into the classic CAPM model. Suppose we have observed
the past data of stock return rai , rmi , SM Bi , H M Li , i = 1, 2, · · · , n over past n
years. These observations are assumed an i.i.d. random noise from AL D(α, μ, σ ).
In this case we consider μ = 0.

The equation of the three-factor model under asymmetric Laplace distribution at
given level of α quantile, using (2) and (6) the corresponding to the historical data
via the three-factor model is a realization that generate likelihood function is

Lα(βα
0 , βα

1 , βα
2 , βα

3 , σ |(rmi , rai , SM Bi , H M Li )) =
αn(1 − α)n

σ n
exp

{

−
n

∑

i=1

ρα(
rai − H M Liβ

α
3 − SM Biβ

α
4 − rmiβ

α
1 − βα

0

σ
)

}

.

(12)

4.2 Experimental Results

The data contain of 1050 monthly returns during 1926–2013 are original obtained
from Center for Research in Security Prices (CRSP) to compute the log returns on
the following asset. The data consist of the returns from the five industry portfolios,
Consumer (Cnsmr), Manufacturing (Manuf), Hi-Technologies (HiTec), Health care
(Hlth) and Other (Other), such as Mines, Transportation etc. Market returns (rMt )
includes all NewYork StockExchange (NYSE), American StockExchange (AMEX)
and NASDAQ Stock Market (NASDAQ) firms.

Data for SMB and HML were obtained from French’s homepage. Table1 gives
the summary of the variables.

The Q-Q plots shown in Fig. 1 are based on the distribution of AL, given in
(2). The lines in these figures represent the 0.5th quantile. These figures are clearly
show that the asymmetric Laplace distribution provides a good-fit to the sample data
set. Moreover, the Kolmogorov-Smirnov test (KS-test) in Table2 ensure that all the

Table 1 Summary statistics

Cnsmr Manuf HiTec Hlth Other rMt SMB HML

Mean 0.726 0.696 0.655 0.803 0.627 0.649 0.234 0.394

Median 0.965 0.935 0.930 0.775 0.975 1.030 0.065 0.230

Maximum 43.750 41.310 33.850 37.030 58.790 38.040 37.450 34.080

Minimum −28.590 −29.880 −26.780 −34.140 −29.960 −29.100 −16.390 −12.680

Std. dev 5.363 5.552 5.652 5.649 6.514 5.414 3.232 3.512

Skewness 0.120 0.334 −0.183 0.114 0.882 0.157 2.060 1.920

Kurtosis 10.570 11.082 6.566 9.589 15.985 10.392 23.558 18.722

Obs 1050

All values are the log return
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Fig. 1 The Q-Q plots of error under asymmetric Laplace distribution. a ALD Q-Q plot of Cnsm
α = 0.50. b ALD Q-Q plot of Hlth α = 0.50. c ALD Q-Q plot of HiTec α = 0.50. d ALD Q-Q plot
of Manuf α = 0.50. e ALD Q-Q plot of Other α = 0.50

marginals are follow the ALD compare with the critical value K (α′=0.05)√
n

= 0.042,

all of the marginals accepts the null hypotheses of the KS-test at 5% level.
The values in the Table2 exhibit the results of the parameters estimation for the

Fama and French three-factor model via the quantile regression under asymmetric
Laplace distributions at given level of α. The results for ALD assumption performs
well for the given quantile of these five industrial portfolios.
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Table 2 Parameter estimated results

Industries Parameters α = 0.20 α = 0.40 α = 0.50 α = 0.60

Cnsmr β0 −1.1814 −0.2704 0.1281 0.4767

(0.0002) (0.0144) (0.0125) (0.0008)

β1 0.9164 0.9386 0.9396 0.9342

(0.0003) (0.0366) (0.0053) (0.0007)

β2 0.0822 0.0653 0.0457 0.0344

(0.0003) (0.0463) (0.0041) (0.0003)

β3 −0.0577 −0.0593 −0.0666 −0.0535

(0.0001) (0.0000) (0.0347) (0.0044)

σ 0.4941 0.6563 0.6766 0.6601

(0.0151) (0.0190) (0.0203) (0.0192)

Qn(α) 0.6561 0.6474 0.6419 0.6359

L L 2233.9 2106.2 2095.3 2112.2

KS-test(Dn) 0.0318

Hlth β0 −1.8832 −0.3510 0.2227 0.9299

(0.0011) (0.0362) (0.0023) (0.3184)

β1 0.8881 0.8784 0.8642 0.8608

(0.0008) (0.0757) (0.0013) (0.4387)

β2 −0.1341 −0.0911 −0.1090 −0.1035

(0.0008) (0.0869) (0.0022) (1.278)

β3 −0.2062 −0.2528 −0.2521 −0.2857

(0.0011) (0.0391) (0.0009) (0.4881)

σ 0.8609 0.6563 0.6766 0.6601

(0.0224) (0.0255) (0.0337) (0.1057)

Qn(α) 0.4191 0.4161 0.4091 0.4017

L L 2816.9.1 2687.6 2682.2 2706.9

KS-test(Dn) 0.0374

HiTech β0 −1.3758 −0.2920 0.1262 0.5110

(0.0002) (0.3468) (0.0483) (0.0034)

β1 0.9535 0.9655 0.9701 0.9852

(0.0001) (0.0014) (0.6291) (0.0060)

β2 0.0246 0.0702 0.0567 0.0422

(0.0001) (0.0601) (0.4999) (0.0245)

β3 −0.3052 −0.2797 −0.2735 −0.2829

(0.0001) (0.0015) (0.9118) (0.0152)

σ 0.5540 0.7351 0.7562 0.7379

(0.0180) (0.0587) (0.0219) (0.0266)

Qn(α) 0.6456 0.6327 0.6269 0.6212

L L 2354.0 2225.2 2212.0 2229.2

KS-test(Dn) 0.0291

(continued)
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Table 2 (continued)

Industries Parameters α = 0.20 α = 0.40 α = 0.50 α = 0.60

Manuf β0 −0.8635 −0.2670 −0.0480 0.2131

(0.0156) (0.0237) (0.0001) (0.0003)

β1 0.9935 1.0060 0.9955 0.9982

(0.0097) (0.0009) (0.0024) (0.0000)

β2 −0.1037 −0.1053 −0.1090 −0.1021

(0.0155) (0.0068) (0.0024) (0.0001)

β3 0.1482 0.1367 0.1508 0.1529

(0.0103) (0.0015) (0.9118) (0.0152)

σ 0.3696 0.4814 0.4987 0.4923

(0.0089) (0.0587) (0.0219) (0.0266)

Qn(α) 0.7497 0.7449 0.7393 0.7324

L L 1928.8 1780.9 17775.0 1804.4

KS-test(Dn) 0.0328

Other β0 −1.4527 −0.5941 −0.1880 0.1755

(0.0006) (0.0756) (0.0002) (0.0362)

β1 1.0704 1.0584 1.0606 1.0539

(0.0001) (0.5700) (0.0003) (0.0217)

β2 0.0684 0.0936 0.0936 0.1172

(0.0003) (0.8370) (0.0017) (0.0184)

β3 0.3311 0.3379 0.3512 0.3394

(0.0002) (0.5059) (0.0005) (0.0114)

σ 0.4932 0.6509 0.6680 0.6480

(0.0150) (0.0092) (0.0185) (0.0179)

Qn(α) 0.7129 0.7024 0.6983 0.6948

L L 2521.5 2225.2 2212.0 2229.2

KS-test(Dn) 0.0378

Consistent standard errors() is in parenthesis

Now, Fig. 2 shows parameter estimation for the entire quantile. From these picture,
we summarize the results, e.g. the return from Cnsmr portfolio as follows:

For the quantile lower than 0.90, Cnsmr has less risky than the market and more
risk at higher quantile levels, The risks decrease as the stock return increase, but we
cannot find any monotonic relationship between risks and excess reurns.

For the lower quantile less than 0.9, positive exposure to size risk increases the
average excess return while negative exposure to size risk reduces the average excess
retrun regarding medium and small size portfolios. We conclude that the size factor
SMB is not effect on large scale of portfolio returns.

For every quantile,HMLcapturing the value risk effect ofCnsmr portfolio on aver-
age excess returns. Since, it has a negative value, it is expected that high book to mar-
ket value (B E/M E) decrease average excess return more than the low (B E/M E)

one.
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Fig. 2 Marginal parameter plots of Cnsmr portfolio at difference quantile(α). a β0 Cnsmr. b β1
Cnsmr. c β2 Cnsmr. d β3 Cnsmr. e σ Cnsmr

4.3 In Sample prediction

To predict the in-sample expected return of the asset r̂a,n for a given market portfolio
return rm,n , we compute the estimated values of ra,n given rm,n at fixed α by

r̂Cnsmr = r f + β0 + β1(rM − r f ) + β2 SM B + β3 H M L + εi , (13)
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Fig. 3 In-sample prediction at difference quantile (α). a Prediction at α = 0.20. b Prediction at
α = 0.40. c Prediction at α = 0.50. d Prediction at α = 0.60

where εi is asymmetric Laplace distribution. Figure3 displays the in-sample predic-
tion at different quantile. It is clearly that the predicted values are very close to actual
values for the given level of quantile under ALD.

5 Conclusions

In this paper, we used method of quantile with ALD assumption applied to the Fama
and French three factor model for the five industry portfolios stocks markets, which
includes all NewYork StockExchange (NYSE), American StockExchange (AMEX)
and NASDAQ Stock Market (NASDAQ) firms. The Fama and French model is an
extension of original CAPMmodel by adding two more important variables namely,
“size premium” and “value premium” into the model. This method can be used to
evaluate the linear relationship between the expected returns on a portfolio and its
asymmetric market risk with size and value variables over various quantile levels.

The empirical results show that the method of quantile regression under ALD
can captures the stylized factors in financial data to describe the stock returns under
most quantile levels, especially under the middle quantile levels. Clearly, there is no
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monotonic relationship between risk and stock returns for the these portfolios. This
suggests that during that time frame, the ability to increase the returns of portfolios
beyond the risk exposure would be achieve by using quantile regression for the risk
measurement.
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Analysis of Branching Ratio
of Telecommunication Stocks
in Thailand Using Hawkes Process

Niwattisaiwong Seksiri and Napat Harnpornchai

Abstract The aim of the research is to study the branching ratios of the
telecommunication stocks in Thailand, ADVANC and DTAC, both listed on the
Stock Exchange of Thailand (SET). The branching ratio is the parameter defined
in the Hawkes process and directly measures the influential degree of endogeneity.
The results indicate to what extent the stock price changes are affected by internal
factors. The study found that the branching ratio of ADVANC is at 29%, which
means ADVANCs price change is only 29%, caused by internal factors, while the
remaining 71% derives from external factors. Meanwhile, DTACs branching ratio is
at 55%, meaning DTACs price change is 55% due to internal factors and 45% due
to external. Knowing to what extent the stock price is affected by external factors can
strengthen investor strategy. Stocks with a low branching ratio are more speculative
than those having a high branching ratio.

1 Introduction

Thailand stock market plays an important role for Thai economy, especially in terms
of its influence on industrial growth and country development, formany reasons. First
of all, it provides companies a way to raise money through issuing corporate bonds or
shares. According to Stanlake [17], a stock exchange is of high importance because
without one, it will be difficult for companies to find share buyers and sellers, thus
making this type of securities illiquid. The companies are only able to raise funds
from selling their IPO shares in a primarymarket. Therefore, share price changes rely
only on trading in a secondary marketa stock exchange. Investors profit from price
increases anddividendpay-outswhile companies gainmoney fromselling IPOshares
only.Having a stock exchangemeans that companies have a long-term source of fund-
ing for their business expansion. The companies also pay attention to the changes
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in their share price because, according to Shauna [16], most of their executives are
the major shareholders. When the price is up, these executives gain higher profits.
Moreover, the companies often offer a certain amount of shares to their executives
as a year-end bonus. When the share price continues to increase, executives have an
incentive to work harder. Second, equity investment is a savings alternative which
requires no use of intermediaries like financial institutions and commercial banks.
Investors are also able to diversify risks more efficiently when investing through
stock markets. Third, a stock market is a key driver of a countrys economic growth.
In Thailand, the number of stock traders is relatively low considering the number of
citizens, due to the lack of understanding and wrong attitudes toward stock markets.
However, a stock exchange is still substantially influential to the economy. Foreign
investors are more interested in stock investment in emerging markets, including
Thailand, as it provides higher returns than when investing in developed countries.
McGregor [10] stated that the stock market is an indicator of listed companies finan-
cial health. The healthier these companies are in terms of finance, the more foreign
investors think the country has a solid financial status. Note that a strong financial
health reflects well on the companys performance and solvency, which makes finan-
cial institutes confident in giving out loans. Consequently, investors are more likely
to buy the companys shares, which leads to an increase in its share price.

However, Engel and Rangel [4] found that stock markets in developing countries
are different from those in developed countries. Stockmarkets in developing countries
have been growing rapidly over the past two and a half decades. Because these
countries still have lots of volatility, their stock markets remain sensitive to external
factors such as domestic political situations, economic circumstances (both domestic
and overseas), and other macro factors.

According to Oyama [13], in the short run, share prices are greatly influenced
by market expectations, which usually contradict actual economic fundamentals.
The Thailand Security Institute (TSI) [18] noted that share prices tend to change
drastically in the short run due to a number of factors, such as economic condi-
tions, corporate fundamentals, and psychological factors. Investors tend to overreact
and sell out their shares upon hearing good/bad news, causing the share price to
increase/decrease rapidly. Other investors then panic and begin increasing/dumping
their shares accordingly, which leads to a continued slide in the share price.

From the viewpoint of risk management, it is thus crucial to comprehend the
price movement whether it is dominated by the endogenous or exogenous factors.
Accordingly, the so-calledbranching ratiowhich is a parameter in theHawkesprocess
can be used for such a purpose. The branching ratio give the information about the
influences of endogenous and exogenous factors on the price movement [5].

Since telecommunication stocks are one of major stocks contributing the SET
market, the study of branching ratios for important telecommunication stock prices
is highly informative for both the companies and investors for appropriate financial
decisions.
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This paper investigates the effects of endogenous and exogenous influences on
the stock prices of leading telecommunication companies via the branching ratio of
the Hawkes process. The content of the paper is as follows. After this introduction
section, the second section is a review of the key literature related to the Hawkes
process and its application in finance. Discussed in the third section includes the
univariate Hawkes process, the parameter estimation using Maximum Likelihood
Estimation (MLE), and the compensator of the Hawkes process. The test procedure
for the goodness-of-fit of the resulting model is also described in this section. In the
fourth section, the investigation of the ADVANC and DTAC stock prices are shown.
Finally, the fifth section provides a conclusion of this study and also discusses topics
that can be addressed in future research.

2 Literature Review

The Hawkes process was initially adapted to model earthquake aftershocks. As we
know, an earthquake is followed constantly by aftershocks, so researchers use the
Hawkes process to predict how long the aftershocks will occur. The Hawkes process
is commonly used in the area of seismology for this reason—it considers the influence
of past events on current conditional intensity. Although it was invented in the 1970s,
the Hawkes process was first adapted in finance just around 2007.

Among the first research works to use the Hawkes process in the financial market
was Bowsher [2], Modelling Security Market Events in Continuous Time: Intensity
Based, Multivariate Point Process Models. The studys objective is to develop a gen-
eralized Hawkes model, described in terms of its vector conditional intensity, and
apply the bivariate version of it to explain the durations of trades and mid-quote
changes. Bowsher [2] used the dataset of trades and changes to the mid-quote that
occurred for General Motors Corporation (GM) for a period of 40 trading days in
2000. He found that there is a two-way interaction between trades and changes in
the mid-price where the occurrence of a trade increases the intensity of mid-price
changes, and mid-price changes increase trade intensity.

Another widely-recognized study using the Hawkes Process in finance is “Clus-
tering of Order Arrivals, Price Impact and Trade Path Optimisation”, conducted by
Hewlett [7]. The aimwas to use a bivariateHawkes process inmodelling an order flow
in the FX market. Hewlett proposed that one could predict future trading intensity
that depends on the pattern of past trading modelled via the Hawkes process. More-
over, the model he developed demonstrates how the liquidity taker should behave,
given the reaction of the market maker, by assuming that the process of order arrival
follows a bivariate Hawkes process. The dataset used in this study consists of records
of market orders maintained on EBS over two months. According to the study, the
more risk-averse the traders, the more quickly they dispose of their inventory. The
traders were assumed to start with an inventory of 10 units at time zero. Moreover,
for risk-averse, impatient traders, the price changes are expected to overshoot its
equilibrium value of –10, and the average price received is considerably lower than
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this equilibrium value. For ‘average’ traders, the average price paid is around the
same level as the equilibrium value. For patient traders, the average price paid is
lower than the equilibrium value.

Toke and Pomponio’s [19] “Modelling Trades-Through in a Limit Order Book
Using Hawkes Processes” sought to model trades-through using a simple bivariate
Hawkes process. They used the Thomson-Reuters tick-by-tick data on the Euronext-
Paris stock, called the BNP Paribas (BNPP.PA), trading for 108days from June to
October 2010. The result shows that the dataset fits the Hawkes process well.

Filimonov and Sornette [5] conducted a study entitled “Quantifying Reflexivity
in Financial Markets: Towards a Prediction of Flash Crashes”. They proposed a
market endogeneity measurement which indicates whether price changes are a result
of exogenous events such as the companys general news or economic situations, or
rather certain events that occurred endogenously. These endogenous events might
happen due to market movements causing positive feedback mechanisms that induce
correlation among price changes. Filimonov and Sornette [5] used the branching
ratio of a Hawkes process model as a proxy for market endogeneity and provided an
estimation usingMaximumLikelihood. The dataset is extracted from theE-mini S&P
500 Futures for the period 1998–2010. According to the study, the branching ratio
was about 0.3 before 2000, showing that the market endogeneity was relatively low.
After 2004, the branching ratio increased to almost 0.9. In addition, the branching
ratio during the period was quite stable as long as it was satisfied by some exogenous
news. Filimonov and Sornette [5] cited the downgraded debt ratings of Greece and
Portugal on April 27, 2010 as an example of such news. Nevertheless, the branching
ratio increased dramatically during the crash of May 6, 2010—widely known as
the Flash Crash—when stock markets fell without any relevant exogenous news.
Filimonov and Sornette [5] also noticed that the increase in the branching ratio
coincides with the rise in activity by high-frequency traders. The Flash Crash itself,
despite there being no evidence that it was triggered by high-frequency trading, was
to some extent associatedwith the presence of high-speed, automated trading systems
that might have exacerbated the extreme market movements observed on that day.

Lorenzen’s [9] “Analysis ofOrderClusteringUsingHighFrequencyData:APoint
Process Approach” used a Hawkes model and high-frequency stock market data to
estimate durations, trades, and quotes. The study follows the estimation performed
by Filimonov and Sornette [5], but instead of using the duration of mid-price changes
of the E-mini S&P 500 contract, it used the data on equity markets obtained from 2
different databases: (1) the Trades and Quotes (TAQ), comprising stocks traded in
the US exchanges (stock selected was Yahoo Inc. [YHOO]); and (2) the Thomson
Reuters database, comprising stocks traded in European exchanges (stock selected
was Vodafone [VOD]). Another difference between the work of Lorenzen [9] and
that of Filimonov and Sornette [5] is that the former’s data do not fully rely on
the randomization of timestamps, which sets up a strong assumption. Lorenzen [9]
attempted to assess the impact of the randomization of timestamps on the estimates
and the fit of the Hawkesmodel. The result showed that the best robustness check one
can perform to assess the impact of the randomization of timestamps in the estimates
and in the fit of the Hawkes process is use data that distinguishes among events
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at the same second. This check is conducted by constructing a randomized dataset
from a ‘real’ dataset that has a precision higher than one second. This randomized
dataset is obtained by simply rounding to the nearest second the timestamps with
high precision and adding a randomized precision component to the rounded data.

3 Methodology

3.1 Hawkes Process

As the Hawkes process combines endogenous responses and exogenous influences,
the process is employed to measure the ratio of the price movements due to endoge-
nous and exogenous effects. In particular, the Hawkes process defines the branching
ratio, which is the parameter directly measures the influential degree of endogene-
ity. In other words, the branching ratios obtained through parameter estimation in
the Hawkes process displays factors affecting the price changes, indicating by how
many percentage points the price movements are affected by endogenous factors (the
stock’s fundamentals).

The Hawkes process is a generalization of the nonhomogeneous Poisson process,
whose intensity λt depends not only on time t but also on the past effects. It is thus
a continuous-time process. The Hawkes process was first introduced by Hawkes in
1971 [6]. Accordingly, the intensity λt where t = 1, 2, 3, . . . given by:

λt = μ0(t) + Σti <(t)g(t − ti ) (1)

where λt is a conditional intensity and ti is some random variable that satisfies
t1 < t2 < · · · < tN .

The first termμ0(t) is the original intensity of themodel that determines the arrival
rate of the first-order event per unit of time. μ0(t) represents a background intensity
that accounts for exogenous events (i.e., independent on history).There is no specific
function form forμ0(t), but it is generally assumed time-invariant. Consider the case
of the first-order event-the stock price falls for the first time in 5 trading days. The fall
in the stock price is the first-order event while the period of 5 trading days is a unit of
time.The second term is a summationof the response functions g(t−ti )which explain
the events following the first-order event. According to the stock price example,
aftershocks i.e. the fall of stock price in the following days due to the investor’s
panic in falling in the stock price in the previous day, are the response functions
which can occur countless times. The summation of these aftershocks constitutes the
clustering property of the model. From Bowsher [2] and Hewlett [7], the response
functions are in the form of exponential function, g(t − ti ) = αe(−β(t−ti )).

As a result, the intensity of the Hawkes process is given by

λt = μ0(t) + Σ(ti<t )αe(−β(t−ti )) (2)
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A branching ratio ζ is derived as

ζ =
∞

∫

0

αe−βt dt = α

β
(3)

If ζ < 1, the process is in the sub-critical regime and if ζ = 1, the process is
in the critical regime. The branching ratio can be used to measure the proportion
of all events that depend on the first-order event (see, Filimonov and Sornette [5]).
Basically speaking, the branching ratio canmeasure the proportion of all aftershocks.
If ζ < 1, ϕ will be higher than 1, meaning that aftershocks will occur for a certain
period of time. If ζ = 1, ϕ would equal +∞, which means aftershocks will keep
occurring infinitely and endlessly.

3.2 Parameter Estimation of Hawkes Process

According to Ozaki [13], the Hawkes Process can be estimated by using the
Maximum Likelihood Estimation. Meanwhile, Ogata [11] found that the asymp-
totic properties of the Maximum Likelihood estimator in the Hawkes Process is in
the form of a log-likelihood function with a response function. This can be written as

log L(t1, t2, . . . , tN ) = −
tN

∫

−∞
λ(t |θ)dt +

tN
∫

0

log λ(t |θ)d N (t) (4)

where λ(t |θ) is the conditional intensity of the process.
In this paper, the event is the up-crossing of the stock price across the mid-price

of the stock of interest. An index i which runs from 1 to N will label each event.
Note that the times when an event takes place must satisfy t1 < t2 < · · · < tN . Ozaki
[13] demonstrated that the Hawkes Process’s log-likelihood function described by
Eq. (2) can be shown as

log L(t1, . . . , tN |θ) = −μtN +
N

∑

i=1

α

β
(e−β(tN −ti ) − 1) + (i = 1)N log(+(i)) (5)

where Ω(i) is derived from

Ω(i) =
{

∑

t j <ti e−β(ti −t j ), for i ≥ 2

0, otherwise ti+1.
(6)
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3.3 Compensator of Hawkes Process

The compensator of Hawkes Process is defined as the integral of the intensity over
the overall history of the time process.

Λ(t) =
t

∫

0

λ(r)dr (7)

If we look at only a certain period of time, such as from the period ti to ti+1, the
solution can be written

Λ(ti , tt+1) =
tt+1
∫

ti

λ(r)dr (8)

The time changes in the (11) process is random. Therefore, the result from (11)
can be called the residual process.

The compensator of the Hawkes process with the intensity (2) from the period ti
to ti+1 is given by

Λ(ti , tt+1) =
ti+1
∫

ti

μ(r)dr +
tt+1
∫

ti

∑

tk<r

αe−β(r−tk )dr (9)

When μ(r) = μ, then

Λ(ti , tt+1) = μ(ti+1 − ti ) −
i

∑

k=1

α

β
[e−β(ti+1−tk ) − e−β(ti −tk )] (10)

3.4 Goodness of fit

Because the compensator follows a unit-rate exponential distribution, the QQ-plot
between the simulated univariate Hawkes process and the estimated compensator is
used as a measure of goodness of fit here. An alternative approach introduced by
Daley and Vero-Jones [3] is the Kolmogorov-Smirnov.
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4 Empirical Results

The telecommunication stock prices that are considered in this study are ADVANC
and DTAC. Both stocks are listed on the SET and are major communications stocks
traded by many investors. The average prices of ADVANC and DTAC in the period
between January 4, 2012 and March 18, 2014 are used as mid-prices in this study.
A total of 543 data points for the period January 4, 2012 to March 18, 2014 are
analysed. Figure1 shows the historical daily average prices of ADVANC, and Fig. 2
portrays the historical daily average prices of DTAC.

It should be noted that the time scale is represented by day collapse of which the
starting day is 4 Jan 2012 and set to be day 1 although the Day-axis begins from 0.
The mid-price is defined as the average value of the data and is obtained as 216.31
Bath for ADVANC stock and 93.29 Baht for DTAC. The interested events in this
paper are those in which the daily-average prices pass the mid-price in an upward
direction.

Fig. 1 Historical daily average stock prices of ADVANC for the period January 4, 2014–March
18, 2014. Source the Stock Exchange of Thailand [15]

Fig. 2 Historical daily average stock prices of DTAC for the period January 4, 2014–March 18,
2014. Source the Stock Exchange of Thailand [15]
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Fig. 3 The days on which the interested events occur for ADVANC

Fig. 4 The days on which the interested events occur for DTAC

Figures3 and 4 display the days on which the interested events occur. ADVANC
shows the events for seven days, namely Day 158, 164, 167, 227, 292, 522, and 542.
DTACs events occur for five days, namely Day 298, 303, 312, 493, and 512.

The parameter estimation of the corresponding Hawkes process is carried out
\based on the maximization of the following likelihood function [11, 14]:

log L(t1, . . . , tN |θ) = −μtN +
N

∑

i=1

α

β
(e−β(tN −ti ) − 1)+

N
∑

i=1

log(μ+αΩ(i)) (11)

where A(i) = ∑

t j <ti e−μ(ti −t j ) for i ≥ 2 and ti denotes the time of occurrence of
the i denotes the time of occurrence of the ith event A(1) = 0.

The parameters to be estimated are μ, α, and β, respectively. The determination
of those parameters is carried out by the genetic algorithm in Mathlab program. The
results are shown in Table1.

Table1 demonstrates that both ADVANC and DTAC have μ at 0.01 whereas μ

means the base rate the process returns to. Meanwhile, α shows the rise of intensity
after an event occurrence. α of ADVANC is lower than that of DTAC. β shows the
exponential intensity decay which is higher in ADVANC than in DTAC. Moreover,
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Table 1 Estimated
parameters

μ α β

ADVANC 0.01 0.04 0.14

DTAC 0.01 0.06 0.11

Table1 showsα < β which confirms that the intensity decreases quicker thanwhen it
increases with the occurrence of the new events, otherwise the process could explode.

Afterwards, the estimators obtained are used to create a model:

ADVANCE = λt = 0.01(t) +
∑

ti <t

0.04e−0.14(t−ti ) (12)

DTAC = λt = 0.01(t) +
∑

ti <t

0.06e−0.11(t−ti ) (13)

According to themodel, the time-dependent intensityλ(t)ofADVANCandDTAC
can be calculated as shown in Figs. 5 and 6, respectively.

Fig. 5 The time-dependent intensity according to the ADVANC data

Fig. 6 The time-dependent intensity according to the DTAC data
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Fig. 7 The QQ plots

At this point, the estimators and the model are obtained, but there is no telling
whether the created model is good enough, to which extent it can describe the events,
and how accurate it can predict the future. Therefore, the goodness of fit of the model
has to be checked.

The goodness of fit can be evaluated through a number of methods. One is by
comparing Akaike information criterion (AIC) with a homogenous Poisson model,
and another is by evaluating the residuals. According to Lorenzen [9], the residual
process should be homogenous and have inter-event times, if the model is a good fit.
As a result, a QQ-plot against an exponential distribution confirms this. Below is the
plot that shows an excellent fit as it is closely to a 45-degree line (Fig. 7).

Branching Ratio

The estimators acquired in Table1 can be used to calculate the branching ratios
through Eq.5 written as

ς =
∞

∫

0

αe−βt dt = α

β
(14)

Low branching ratios indicate that the price change is more influenced by exter-
nal factors than internal, an information which leads to different trading strategies
performed by different types of investors. Stocks with a low branching ratio are more
appropriate for speculation than those having a high branching ratio, as they are more
likely to be volatile due to external factors than their own fundamentals.

According to Eq. (5), the branching ratio of ADVANC equals 0.29, while DTAC
gives the branching ratio of 0.55. This result indicates that ADVANCs price change
is only 29% caused by internal factors, while the rest 71% of the change is caused
by external factors. Meanwhile, the change of DTAC price is 55% due to internal
factors and 45% external. Accordingly, ADVANC is more speculative than DTAC,
because external factors influence as much as 71% of the price change, while DTAC,
which has a 55% branching ratio, is only 45% affected by external factors.
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When comparing the branching ratios calculated by the aforementioned method
against the economic and political events in Thailand, the results obtained are in
the same direction. ADVANC is greatly influenced by external factors, especially
political factors. This is because the major shareholder of ADVANC is Shin Cor-
poration Plc, the company founded by former Prime Minister Thaksin Shinawatra.
When Thai and foreign traders believe Thaksin or amember of the Shinawatra family
is likely to become the next prime minister, ADVANC receives a positive impact.
When a political event occurs, ADVANCs price change tends to be more obvious
than DTAC. If the event shows a positive impact on the Shinwatra family, ADVANC
price usually goes up. On the contrary, when the situation negatively affects the fam-
ily, ADVANC usually falls, while DTAC and TRUE are on the rise. Consider the
news from Manager Newspaper [1], which reported that the entrance of Yingluck
Shinawatra, former PrimeMinister Thaksin Shinawatra’s youngest sister, to Govern-
ment House had caused the Shinawatra-related stocks to surge. One of the stocks was
ADVANCwhich ended at 85 baht a share onDecember 30, 2010, before rising to 140
baht a year later. ADVANC’s price soared to 209 baht as of December 30, 2012, but
fell to 175.94 baht on December 27, 2013 following the anti-Yingluck movement.
The share price continued to drop when it was becoming more and more obvious
that Yingluck would be ousted. In addition, according to a KKTrade analysis [8],
the National Broadcasting and Telecommunications Commission (NBTC) states that
the political conflicts have led to a campaign against using AIS mobile numbers. The
NBTCs inspection during February 20–21 shows that the mobile number transfers
from AIS to other mobile network operators increase from 700 numbers a day to
1,400 numbers a day. Of the total, 70% switch to DTAC and 30% to TRUE. The
event affects the stock sentiment. In the short run, concerns over the effects from the
number transfers draw a psychological impact on the stock price, but a slight effect
on ADVANCs fundamentals.

5 Conclusion and Further Study

This study focuses on the branching ratios acquired through the Hawkes process
and uses the data from two telecommunication stocks listed on the Stock Exchange
of Thailand, namely ADVANC and DTAC. The data set has 543 data points. The
parameters are estimated in the Hawkes process using the MLE technique. The
estimators obtained are inserted into an equation. Later, the QQ-plot is created to
check whether the model fits the empirical data. The estimators are used to find the
branching ratios. The results indicate how much the stock price changes are affected
by internal factors. The study finds that the branching ratio of ADVANC is at 29%,
which means ADVANCs price change is only 29% caused by internal factors, while
the rest 71% derives from external factors. Meanwhile, DTACs branching ratio is at
55%,meaning DTACs price change is 55% due to internal factors and 45% external.
Knowing to which extent the stock price is affected by external factors can strengthen
investors strategy. Stocks with a low branching ratio are more speculative than those
having a high branching ratio.
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A further study will address the external factors that affect telecommunication
stocks. Currently, we believe political events are a much influential factor affecting
ADVANCs price. However, we will explore in details our expectation based on
statistical data. We are also interested in finding the strategies investors should use
with stocks having different branching ratios.
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Forecasting Risk and Returns:
CAPM Model with Belief Functions

Sutthiporn Piamsuwannakit and Songsak Sriboonchitta

Abstract This paper presents a CAPM model with a belief function approach for
forecasting the IntegratedOil andGas Company (CHK) stock and the S&P500 index.
The approach composed of two steps. First, we estimate the systematic risk or the
beta coefficient in the CAPMmodel using the maximum likelihood method. Second,
to improve the forecasting performance, we incorporate the likelihood-based belief
functionmethod. Likelihood-based belief functions are calculated from the historical
data. The data set contains of 209 weekly returns during the period of 2010–2013.
The finding shows evidence on systematic risk which is associated by the belief
function derived from the distribution likelihood function given the market return.
Finally, we use the method to predict the return of a particular stock.

1 Introduction

Most investors focus on the stock market return forecasting. The aim is to gain high
profit by using the best trading strategies. The more successful in stock return predic-
tion, the more profitable it becomes in stock market investment. The uncertainty and
volatility of stock prices have an effect on the investor’s decision. The knowledge on
the dependence pattern between stock andmarket returns can help portfolio investors
to diversify their assets better as well as reducing their risk at the suitable moments.
The Capital Asset PricingModel (CAPM) is a foundation and widely used model for
evaluating the risk of a portfolio of assets with respect to the market risk which was
introduced by Sharpe [21]. The CAPM is a linear model that estimates asset prices
using the information on the risk free rate and the market returns. The CAPM takes
into account the non-diversifiable risk, which is captured by the parameter β. The
CAPM non-diversifiable risk depends on the correlation between particular stock
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and overall stock market. Essentially, the standard CAPM model depends on the
assumptions of normality of returns and quadratic utility functions of investors.

However, the numerous empirical evidences that have been carried out to ana-
lyze the applicability of CAPM in different stock markets have failed to maintain
this relationship due to the inadequacy of the market beta alone in explaining the
variations in stock returns and the assumptions of CAPM model. For example,
Isa et al. [11] applied CAPM in theMalaysian stockmarket by using the linear regres-
sion method, which was carried out on four models. The result indicated that both of
the standard CAPMmodels with constant beta and time varying beta are statistically
insignificant. On the other hand, the CAPM models conditional on segregating pos-
itive and negative market risk premiums are statistically significant. Nikolaos [18]
evaluated of CAPM’s validity in the British Stock Exchange. The result showed that
under the two steps procedure, the CAPM does not have a statistical significance in
portfolio selection. Choudhary and Choudhary [6] applied the CAPM model for the
Indian stock. There is a lack of substantiating the theory’s basic result illustrating
that there is higher risk (beta) is associated with higher levels of return. Masood et al.
[15] examined the validity of the CAPM in the capital markets of the Pakistan. The
least squares method (OLS) is used to find the beta of the stocks in the first step
and then searches for the regression equations in second step. The result showed
that there is no support with the CAPM. The intercept term is equal to zero. Also,
there is a positive relation between the risk and return. In addition, the market risk
premium is a significant explanatory variable for the determining to see if the stock’s
risk premium are rejected. Zhang and Meng [22] analyzed the CAPM model in the
Chinese stock market. The main problem of their studies was found that the effective
test method did not exist.

From the above literature reviewed, CAPM is a useful tool to estimate the stock
market return in different stock index. It can be concluded that there is no one model
that can claim to have the absolute ability to predict the expected stock return by
using the standard CAPM model. Then, there is a need of accurate forecast model
that consistently predict uncertainty and volatility of the stock market prices. The
stock market investor would be able to make decisions on the investment that is
more informed and accurate. Therefore, various techniques are used for handling the
uncertainty data. One such method applied is the Dempster-Shafer belief function
theory, which is a useful tool for forecasting. Many studies have applied the belief
function model to predict the uncertainty data. For instance, Nampak et al. [17] used
thebelief functionmodel in order to forecast groundwater of specific area inMalaysia.
Abdallah et al. [3] cooperated the statistical judgementswith expert evidence by using
belief function for prediction the future centennial sea level which climate change is
considered. Kanjanatarakul et al. [13] used the Bass model for innovation diffusion
together with past sales data and the formalism of belief functions to quantify the
uncertainty on future sales. In their studies, a piece of evidence as a belief functionwas
consideredwhich can be viewed as the distribution of a random set. Furthermore, two
main reasons for using the belief function formalism in this paper are the following:
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(1) The belief function approach does not require the statistician to arbitrarily
provide a prior probability distribution when prior knowledge is not available.

(2) We wish to measure the weight of statistical evidence that pertains to some
specific questions, whereas confidence and prediction intervals are related to
sequences of trials.

For more discussion on the comparison bet the belief function approach and
classical methods of inference, the reader can find more information with the regards
to the work done by Kanjanatarakul et al. [13].

In this contributions, we propose and alternative method for drawing inference via
a likelihood based on a belief function approach for estimation of linear regression
of CAPM. The objectives of this study are to (1) analyze the dependence pattern
between the CHK stock and market returns and to (2) forecast the CHK stock returns
using belief functions.

The remainder of the paper is organized as follows. Section2 provides the
MaximumLikelihoodEstimationof capital asset pricingmodel andSect. 3 introduces
the prediction machinery using belief functions. Section4 discusses the empirical
solutions to the forecasting problem. The last section summarizes the paper.

2 Maximum Likelihood Estimation of Capital Asset Pricing
Model

The CAPM represents a positive and linear relationship between asset return and
systematic risk relative the overall market. The linear regression model is defined as

E(Ri ) − Rf = α + βE(Rm − Rf ) (1)

where E(Ri ) is the expected return of the asset, Rm is the expected market portfolio
return, Rf is the risk free rate, α is the intercept and β is the equity beta, representing
market risk. The observed the historical returns of stock Ri = (ri1, . . . , rin) and
returns from market Rm = (rm1, . . . , rmn). The estimator of β is a measure of risk
for financial analysis and also for risk and portfolio managers. The parameter β

estimation procedure is defined by Arellano-Valle et al. [1] Let us consider in Eq. (1)
has extended into Eq. (2) as follow:

ri − rf = α + β(rmi − rf ) + εi (2)

or
yi = α + βxi + εi (3)

where ri denotes the return of stock i , rm is the market return and rf corresponds to
the risk free return, so that



262 S. Piamsuwannakit and S. Sriboonchitta

yi = ri − rf (4)

and
xi = rm − rf (5)

represent the return of an asset in excess of risk free rate and the excess return of the
market portfolio of assets.

The estimation method with the considering in the financial model is based on
the least squares theory under the assumption of the random errors ε1, . . . εn are
independent and identically distributed according to the normal distribution.

N (εi , 0, σ
2) = 1√

2πσ 2
exp

{ −1

2σ 2 (y − xβ)2
}

(6)

The likelihood function is given by

L = Πn
n=1N (yi ; xi , β, σ 2) = (2πσ 2)

−n
2 exp

{ −1

2σ 2 (y − xβ)′(y − xβ)

}

(7)

3 Statistical Inference and Prediction Using Belief Functions

3.1 Belief Functions

The theory of belief function is a formalism for reasoning with the uncertain,
inaccurate and incomplete information. It was developed by Dempster [9] and
later formalized by Shafer [20]. The model comprises several functions includ-
ing Bel(degree of belief), Dis(degree of disbelief), Unc(degree of uncertainty) and
Pls(degree of plausibilty), in range of [0, 1]. Belief function can be defined on finite
set and infinite set. Let us begin with finite case.

3.1.1 Belief Functions on Finite Set

In the formalism of belief functions, we assign probabilities to sets (Pearl) [12]. The
belief model as given below, see Frikha [10], Liu et al. [14], and Nampak et al. [17].

Let Θ be a finite set, Θ is called frame of discernment of the problem of
consideration. The power set of Θ , denoted by 2Θ .

A basic probability assignment (BPA) is a function m(.) from 2Θ to [0, 1] that
assigns a number [0, 1] to each subset A of Θ . The quantity m(A), called the mass
of A, which represents the degree of belief attributed exactly to A, and to no one of
its subsets. This function satisfies the following condition:

0 ≤ m(A) ≤ 1, m(φ) = 0,
∑

A⊆Θ

m(A) = 1 (8)
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When m(A) > 0, A is called focal element of m. To each BPA, we can associate a
belief function and a plausibility function are a mapping Bel(A) : 2Θ → [0, 1] and
Pl(A) : 2Θ → [0, 1] respectively, defined as:

Bel(A) =
∑

B⊆A

m(B) (9)

pl(A) =
∑

A∩B �=φ

m(B) (10)

Bel(A) measures the total belief completely attributed to A ⊆ Θ . It is interpreted
as the lower bound of probability of A. Pl(A) is interpreted as the upper bound of
probability of A.

The two functions satisfied the following properties:

Bel(A) ≤ Pl(A) (11)

Pl(A) = 1 − Bel( Ā) (12)

where A is the complement of A and Bel( Ā) is called a degree of disbelief in A.

Pl(A) − Bel(A) = Unc (13)

Equation (13) represents the difference between belief and plausibility.
If Unc = 0, then Bel(A) = Pl(A).
Figure1 shows a schematic descriptionof the relationship betweenbelief, disbelief

and uncertain functions.

Fig. 1 Schematic description of the relationship between belief, disbelief and uncertainty [4]
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3.1.2 Belief Functions on Infinite Set

In an infinite case, there may not be a mass function associated with completely
monotone function as in the finite case, Denoeux [7]. The definitions are provided
which defined by Denoeux [7] as following;

Let (Ω, B) be a measurable space (i.e., B is a sigma-field, that is a non-empty
subset of 2Θ closed under complementation and countable union). A belief function
on B is a function Bel : B → [0, 1] verifying the following three conditions:

1. Bel(φ) = 0
2. Bel(Ω) = 1
3. For any k ≤ 2 and any collection B1, . . . , Bk of elements of B,

Bel(U k
i=1Bi ) ≥

∑

φ �=I (1,...,k)

(−1)|I |+1Bel(∩i∈I Bi ) (14)

Furthermore, a belief function Bel on (Ω, B) is continuous if for any decreasing
sequence B1 ⊃ B2 ⊃ B3 ⊃ · · · of elements of B,

lim
i→+∞ Bel(Bi ) = Bel(∩i∈I Bi ) (15)

3.2 Likelihood-based Belief Functions

The likelihood-based belief functions have been derived by Shafer [20]. They have
been applied by Abdallah et al. [3], among others, and justified by Denoeux [8].

Let x ∈ X be the observable data with a probability density function (pdf) pθ X ,
where θ ∈ Θ is an unknown parameter. In this paper, we use the method proposed by
Shafer [20]. The belief function be derived from the Likelihood Principle and Least
Commitment Principle(LCP). The information about Θ can be represented by the
likelihood function which is defined by Lx (θ) = pθ X for all θ ∈ Θ . The likelihood
ratio is meant to be a “relative plausibility”, which can be written as:

plx (θ1)

plx (θ2)
= Lx (θ1)

Lx (θ2)
(16)

for all (θ1, θ2) ∈ Θ2 or, equivalently, plx (θ) = cLx (θ)

for all θ ∈ Θ and some positive constant c. From LCP, it can be implied that the
highest possible value of c is 1

supθ∈Θ
L(θ |x). Thus, the contour function is defined as

follow:

pl(θ; x) = L(θ; x)

supθ∈Θ L(θ; x)
(17)
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The information about θ are expressed by the belief function BelΘA with contour
function plx , i.e.,with correspondingplausibility function plΘx (A) = supθ∈A plx (A),
for all A ⊆ Θ The focal sets of BelΘA are the levels sets of plx defined as follows:

Γx (ω) = {θ ∈ Θ|plx (θ) ≥ ω} (18)

for θ ∈ [0, 1]. Equation (18) is called plausibility regions. With the inducing of the
Lebesgue measure λ on [0,1] and multi-valued mapping Γx from [0, 1] → Θ2 the
belief function is equivalent to the random set, see Kanjanatarakul et al. [13]. We
remark that the MLE of θ is the value of θ with highest plausibility.

3.3 Incorporating the Belief Functions

The objective of this section is to forecast the risk premium of the return of stock i ,
yi = ri − rf . The methodology to incorporate the belief function framework into the
prediction procedure follows Kanjanatarakul et al. [13]. From the CAPM equation
from the previous section, the return equation can be written as:

yi = α + βx + σ F−1(u) (19)

where F ∼ Normal(0, 1) and U ∼ Uni f orm(0, 1)
As discussed in Kanjanatarakul et al. [13], the forecasting problem is the inverse

problem of the regular inference problem. Given the knowledge on the set of parame-
ters θ = (α, β, σ ) and the distribution F(.), the future value of yi can be forecasted.

Belief function framework allows us to forecast an interval [yL
i , yU

i ] for the future
value of yi . The estimation of [yL

i , yU
i ] can be done using Monte Carlo method.

Given a set of two independently Uni f orm(0, 1) random variables (us, ωs), in each
simulation s, the lower bound yL

i,s and the upper bound yU
i,s solve the following

optimization problems respectively,

yL
i,s = minθα + βx + σ F−1(us) (20)

subject to
pl(θ) ≥ ωs (21)

and

yU
i,s = maxθα + βx + σ F−1(us) (22)

subject to

pl(θ) ≥ ωs (23)
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In the constraints, the plausibility function pl(θ) can be derived from the likelihood
function. Therefore, using the likelihood function in Eq. (7), the plausibility function
is as follows:

pl(θ) = L(θ)

L(θ∗)
(24)

where θ∗ is such that L(θ∗) ≥ L(θ), ∀θ . The belief and the plausibility functions
corresponding to a given set A can be calculated by:

Bel(A) = 1

N
�{s ∈ {1, · · · , N }|[yL

i,s, yU
i,s] ⊂ A} (25a)

Pl(A) = 1

N
�{s ∈ {1, · · · , N }|[yL

i,s, yU
i,s] ∩ A �= ∅} (25b)

The lower and the upper of the expectation for yi is, thus,

ŷL
i = E(yL

i,s) = 1

N
ΣyL

i,s (26a)

ˆyU
i = E(yU

i,s) = 1

N
ΣyU

i,s (26b)

4 An Application to Stock Market

4.1 Data

The data contain of 209 weekly returns during the period of 2010–2013: they were
obtained from Yahoo Finance to compute the log returns on integrated oil and gas
company (CHK) stock. The log returns prices by using the formula:

rt = ln(
Pt

Pt−1
) (27)

where Pt and Pt−1 are the weekly closing prices at time t and t − 1 respectively.
Mukherji [16] indicated that the treasury bills are better proxies for the risk-free rate
than longer-term treasury securities regardless of the investment horizon, which is
only related to the U.S. market. In this paper, the treasury bills stand for the risk free
rate. The daily returns of the treasury bills are adjusted to the weekly returns and can
be used in this manner by using the compound interest that take form:

Iw j = {
N

∏

i=1

(1 + Idi )} − 1 (28)
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Table 1 Parameter estimation results

Stock name Parameters

CHK β0 −0.001**(0.0031)

β1 1.436**(0.1417)

σ 2 .0020**(1.91739e−4)

The ** shows significant at 5% level. Standard errors in parentheses

where Iw j , j = 1, N is the weekly interest rate and Idi , i = 1, N is the daily interest
rate. The Maximum Likelihood estimates of the parameters are shown in Table1

Figure2 displays two-dimensional marginal contour functions, with one of the
three parameters fixed to its MLE.
Figure3 shows themarginal contour functions for parameters β0, β1, σ

2. These three
plausibilities will be used to perform plausibility intervals for each of the three
parameters.

To predict the expected return of the asset yi,n+1 for a newmarket portfolio return
Xi,n+1 we compute the minimum and maximum of yi,n+1 given Xi,n+1 by

yi,n+1 = β0 + β1Xi,n+1 + σ F−1(us) (29)

Fig. 2 Displays two-dimensional marginal contour functions
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Fig. 3 Marginal plausibility of β0, β1 and σ 2

under the constraint pl(θ) ≥ ωs , where F−1(us)is the inverse cumulative distribution
function (cdf) of the normal distribution and u, ω are independent random variables
with the same uniform distribution U ([0, 1]). Given (29), we randomize indepen-
dently N pairs of the random number, (us, ωs); s = 1, 2, N resulting in N intervals
[yL

i,s(us, ωs), yU
i,s(us, ωs] For any A ⊂ R, the stock returns Belyi (A) and Plyi (A)

can be estimated by Eq. (3). The estimated lower and upper expectations of ra,n+1
are then:

yL
i,s =

N
∑

s=1

yL
s (us, ωs)

N
(30)

yU
i,s =

N
∑

s=1

yU
s (us, ωs)

N
(31)

Figure (4) displays the lower and upper cdfs Belyi ([−∞, yi ]) and Plyi ([−∞, yi ]).
This function give us the summary of the predictive belief function Belyi .
Figure (5) shows the upper and lower bound of stock return via CAPM using belief
function.
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Fig. 4 Lower and Upper cumulative distribution function

Fig. 5 Lower and Upper interval of stock return via CAPM using belief function

The another representation of uncertainty prediction can be defined as the
lower-upper expectations of stock returns, the uncertainty and randomness estima-
tion are considered. From the empirical result, the gap between the lower and upper
cdfs is quite narrow, which shows that estimation uncertainty is small as compared
to random uncertainty. Therefore, the investor can use these results to increase the
gain of portfolio investment Autchariyapanikul et al. [2].
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5 Conclusions

In this paper, we presented the method of standard CAPM with normal distribution
for CHK stock in S&P500 in the belief function framework. The Dempster-Shafer
belief function theory was used in order to identify the uncertainty. The statistical
prediction based on historical data and a financial model. Thismethod consists of two
steps. First, a belief function is defined from the normalized likelihood function given
the past datawhich is refered to the uncertainty on the parameter vector θ . Second, the
return of stock yi is illustrated as ϕ(θ, u), where u is a stochastic variable with known
distribution. Then, belief on θ and u are transferred through ϕ, resulting in a belief
function on yi . This approach has been adapted to the prediction of the stock returns.
A possible extension of this work is to consider uncertainty on the independent
variable rm , which can also be expressed as a belief function and combined with
other uncertainties to compute a belief function on yi .
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Correlation Evaluation with Fuzzy
Data and its Application
in the Management Science

Berlin Wu, Wei-Shun Sha and Juei-Chao Chen

Abstract How to evaluate an appropriate correlation with fuzzy data is an important
topic in the educational and psychological measurement. Especially when the data
illustrate uncertain, inconsistent and incomplete type, fuzzy statistical method has
some promising features that help resolving the unclear thinking in human logic and
recognition. Traditionally, we use Pearson’s Correlation Coefficient to measure the
correlation between data with real value. However, when the data are composed of
fuzzy numbers, it is not feasible to use such a traditional approach to determine the
fuzzy correlation coefficient. This study proposes the calculation of fuzzy correla-
tion with three types of fuzzy data: interval, triangular and trapezoidal. Empirical
studies are used to illustrate the application for evaluating fuzzy correlations. More
related practical phenomena can be explained by this appropriate definition of fuzzy
correlation.

1 Introduction

Traditional statistics reflects the results from a two-valued logic world, which often
reduces the accuracy of inferential procedures. To investigate the population, peo-
ple’s opinions or the complexity of a subjective event more accurately, fuzzy logic
should be utilized to account for the full range of possible values. Especially, when
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dealing with psychometric measures, fuzzy statistics provides a powerful research
tool. Since Zadeh [1] developed fuzzy set theory, its applications have been extended
to traditional statistical inferences and methods in social sciences, including medical
diagnosis or stock investment systems. For example, a successive series of studies
demonstrated approximate reasoning methods for econometrics [2–4] and a fuzzy
time series model to overcome the bias of stock markets was developed [5].

Within the framework of classical statistical theory, observations should follow a
specificprobability distribution.However, in practice, the observations are sometimes
described by linguistic terms such as “Very satisfactory”, “Satisfactory”, “Normal”,
“Unsatisfactory”, “Very unsatisfactory”, or are only approximately known, rather
than equating with randomness. How to measure the correlation between two vari-
ables involving fuzziness is a challenge to the classical statistical theory. The number
of studies which focus on fuzzy correlation analysis and its application in the social
science fields has been steadily increasing [6–9]. For example [9, 10] define a cor-
relation formula to measure the interrelation of intuitionist fuzzy sets. However, the
range of their defined correlation is from 0 to 1, which contradicts with the conven-
tional awareness of correlation which should range from −1 to 1. An article [11]
also has the same problems of lying the correlations between 0 and 1 for the interval
valued fuzzy numbers. In order to overcome this issue, [12] takes random sample
from the fuzzy sets and treat the membership grades as the crisp observations. Their
derived coefficient is between −1 and 1; however, the sense the fuzziness is gone [8]
calculated the fuzzy correlation coefficient based on Zadeh’s extension principles.
They used a mathematical programming approach to derive fuzzy measures based
on the classical definition of the correlation coefficient. Their derivation is quite
promising, but in order to employ their approach, the mathematical programming is
required.

In addition,most previous studies dealwith the interval fuzzydata, their definitions
cannot deal with triangle or trapezoid data. In addition, formulas in these studies
are quite complicated or required some mathematical programming which really
limited the access of some researchers with no strong mathematical background.
In this study, we give a simple solution of a fuzzy correlation coefficient without
programming or the aid of computer resources. In addition, the provided solutions
are based on the classical definition of Pearson correlation which should quite easy
and straightforward. The definitions provided in this study can also be used for
interval-valued, triangular and trapezoid fuzzy data.

Traditionally, if one wishes to understand the relationship between the vari-
ables x and y, the most direct and simple way is to draw a scatter plot, which can
approximately illustrate the relationshipbetween these variables: positive correlation,
negative correlation, or zero correlation. The issue at hand is how to measure the
relationship in a rational way. Statistically, the simplest way to measure the linear
relationship between two variables is using Pearson’s correlation coefficient, which
expresses both the magnitude and the direction of the relationship between the two
variables with a range of values from 1 to −1. However, Pearson correlations can
only be applied to variables that are real numbers and is not suitable for a fuzzy
dataset.
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Whenconsidering the correlation for fuzzydata, two aspects should be considered:
centroid and data shape. If the two centroids of the two fuzzy dataset are close, the
correlation shouldbehigh. In addition, if the data shapeof the two fuzzy sets is similar,
the correlation should also be high. An approach to dealing with these two aspects
simultaneously will be presented later in this study. Before illustrating the approach
of calculating fuzzy correlations, a review of fuzzy theory and fuzzy datasets are
presented in the next section.

2 Fuzzy Theory and Fuzzy Data

Traditional statistics dealswith single answers or certain ranges of the answer through
sampling surveys, but it has difficulty in reflecting people’s incomplete and uncertain
thoughts. In other words, these processes often ignore the intriguing and complicated
yet sometimes conflicting human logic and feeling. For example, we would like to
investigate the a person’s favorite topics. In this case, consider a fuzzy set of favorite
topics for a person as shown in Table1. Note that in the extreme cases when a
degree is given as 1 or 0, that is “like” or “dislike”, a standard “yes” and “no” are
in a complementary relationship, as in binary logic. Let A1 represent for “favorite
topics”, A2 “dislike the topics”.

Based on the analysis of binary logic, we can find that he likes culture, religions
and finance but dislikes politics and recreation. On the other hand, the fuzzy statistical
result can be represented as:

μA1 = 0Ipolitics(x) + 0.8Iculture(x)

+ 0.6Ireligions(x) + 0.9Ifinance(x) + 0.3Irecreation(x);
μA2 = 1Ipolitics(x) + 0.2Iculture(x)

+ 0.4Ireligions(x) + 0.1Ifinance(x) + 0.7Irecreation(x).

Thismeans that the person likes the topic of politics 0%, culture 80%, and religion
60%. etc. He dislikes the topic of finance 10%, dislikes culture 20%, dislikes religion
40%, and dislikes recreation with 70%. The percentages for each category represent
the degree of their perceptions based on their own concept.

Table 1 Comparing fuzzy numbers with crisp numbers

Fuzzy Logic Binary Logic

Favorite topics A1 = like A2 = dislike A1 = like A2 = dislike

Politics 0 1 V

Culture 0.8 0.2 V

Religions 0.6 0.4 V

Finance 0.9 0.1 V

Recreation 0.3 0.7 V
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Therefore, based on the binary (like or dislike) logic, we can see only the
superficial feeling about people’s favorite topics. With the information of fuzzy
response we will see a more detailed data representation. In illustrating human feel-
ings with degrees, we encounter the problems that measurement cast the uncertainty
and fuzzy property. Hence, a precise explanation about fuzzy numbers is illustrative
and convincing.

2.1 Continuous Fuzzy Data

Continuous fuzzy data has beenwidely used inmany applications. It can be classified
into several types, such as interval-valued numbers, triangular numbers, trapezoid
numbers, and exponential numbers. Typically, the nomenclature is based on the shape
of the membership function. Even though there are various types of fuzzy numbers,
here we limit the discussion to three usual types: interval-valued numbers, triangular
numbers and trapezoid numbers. The definitions of the three types of fuzzy data are
given as follows.

Definition 1 A fuzzy number X = [a, b, c, d] defined on the universe set U of real
numbers R with its vertices a ≤ b ≤ c ≤ d , is called a trapezoidal fuzzy number if
its membership function is given by

u A(x) =

⎧

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎩

x − a

b − a
, a ≤ x ≤ b

1, b ≤ x ≤ c
d − x

d − c
, c ≤ x ≤ d

0, otherwise

When b = c, X is called a triangular fuzzy number; when a = b and c = d, X is
called an interval-valued fuzzy number.

2.2 Collecting Continuous Fuzzy Data

Respondents choose one single answer or certain range of the answer in traditional
sampling surveys. But traditional methods are not able to truly reflect the complex
thoughts of each respondent. If people can express the degree of their feelings byusing
membership functions, the answer presented will be closer to real human thoughts.
But unfortunately scholars disagree in opinion about the construction of continuous
fuzzy data. Many studies use continuous fuzzy without describing the construction
method. The core of all the questions is fuzzy data determined by its membership
function, but the construction of membership function is quite subjective. To reflect
this, we ask the respondents to determine the membership function on Geometer’s
Sketchpad (GSP).
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Fig. 1 A fuzzy answer for the expected marriage age

Figure1 is the image of a fuzzy questionnaire item querying the prime time for
marriage. Before answering the fuzzy questionnaire, respondents could click the
three buttons to realize the meaning of each section and points. For example, people
may decide: AB which represents the desire for marriage grows continuously for
2years from 26 to 28, BC represents the desire for optimal marriage is 28–30, C D
represents the desire for marriage falling continuously from 30 until it reaches 35.

Respondents can decide their own membership function of the prime time for
marriage by moving the four points A, B, C , and D. By moving the four points, the
age corresponding to the points will be changed automatically. There are probably
three types of fuzzy data: The first is trapezoid; the second is triangular; the third is
interval-valued type. Figure2 illustrates these three kinds of fuzzy data. Triangular

Fig. 2 Fuzzy observation for idea marriage year
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data is a special case of trapezoid when point B equals to point C . It represents the
prime time for marriage is only 30. The interval valued data shows the prime time
for marriage is 28–30.

3 Fuzzy Correlation

The correlation coefficient is a commonly used statistics that presents a measure of
how two randomvariables are linearly related in a sample. The population correlation
coefficient, which is generally denoted by the symbol ρ is defined for two variables
x and y by the formula:

ρ = σX,Y

σXσY
= Cov(X, Y )

σXσY
.

In this case, the more positive ρ is, the more positive the association is. This also
indicates that when ρ close to 1, an individual with a high value for one variable will
likely have a high value for the other, and an individual with a lower value for one
variable will likely to have a low value for the other. On the other hand, the more
negative ρ is, the more negative the association is, this also indicate that an individual
with a high value for one variable will likely have a low value for the other when ρ

is close to −1 and conversely. When ρ is close to 0, this means there is little linear
association between two variables. In order to obtain the correlation coefficient, we
need to obtain σ 2

X , σ
2
Y , and the covariance of x and y. In practice, these parameters

for the population are unknown or difficult to obtain. Thus, we usually use rxy , which
can be obtained from a sample, to estimate the unknown population parameter. The
sample correlation coefficient is expressed as:

rxy =

n
∑

i=1
(xi − x̄)(yi − ȳ)

√

n
∑

i=1
(xi − x̄)2

√

n
∑

i=1
(yi − ȳ)2

, (1)

where (xi , yi ) is the i th pair observation value, i = 1, 2, . . . , n, x̄ and ȳ are sample
means for x and y respectively.

Pearson correlation is a straightforward approach to evaluate the relationship
between two variables. However, if the variables considered are not real numbers,
but fuzzy data, the formula above is problematic. For example, Mr. Smith is a new
graduate from college; his expected annual income is 50,000 dollars. However, he
can accept a lower salary if there is a promising offer. In his case, the annual income
is not a definite number but more like a range. Mr. Smith’s acceptable salary range
is from 45,000 to 50,000. We can express his annual salary as an interval [45,000,
50,000]. In addition, when Mr. Smith has a job interview, the manager may ask how
many hours he can work per day. In this case, Mr. Smith may not be able to provide



Correlation Evaluation with Fuzzy Data and its Application … 279

Fig. 3 Fuzzy correlation with interval data

a definite number since his everyday schedule is different. However, Mr. Smith may
tell the manger that his expected working hours per day is an interval [8, 10].

We know Mr. Smith’s expected salary ranges from [45,000, 50,000] and his
expected working hours are [8, 10]. If we collect this kind of data from many new
graduates, how can we use this data and calculate the correlation between expected
salary and working hours? Suppose Ix is the expected salary for each new graduate,
Iy is the number of working hours they desired, then the scatter plot for these two
sets of fuzzy interval numbers would approximate that shown in Fig. 3.

For the interval valued fuzzy number, we need to take out samples frompopulation
X and Y . Each fuzzy interval data for sample X has centroids xi , and for sample Y
has centroids yi . For the interval data, we also have to consider whether the length
of interval fuzzy data are similar or not. In Mr. Smith’s example, if the correlation
between the expected salary and working hours are high, then we can expect two
things: (1) the higher salary the new employee expects, the more working hours he
can endure; (2) the wider the range of the expected salary, the wider the range of
the working hours should be. However, how should one combine the information
from both centroid and length? In addition, the effect of length should not be greater
than the impact of centroids. In order to get the rational fuzzy correlations, we used
natural logarithms to make some adjustments.

Let (Xi = [ai , bi , ci , di ], Yi = [ei , fi , gi , hi ]; i = 1, 2, . . . , n) be a sequence of
paired trapezoid fuzzy sample on population Ω with its pair of centroids (cxi , cyi )

and pair of areas (‖xi‖ = area(xi ), ‖yi‖ = area(yi )). The adjusted correlation for
the pair of area will be

Definition 2 Let (Xi = [ai , bi , ci , di ], Yi = [ei , fi , gi , hi ]; i = 1, 2, . . . , n) be a
sequence of paired trapezoid fuzzy sample on populationΩ with its pair of centroids
(cxi , cyi ) and pair of areas ‖xi‖ = area(xi ), ‖yi‖ = area(yi ). Let

crxy =

n
∑

i=1
(xi − cx)(cyi − cy)

√

n
∑

i=1
(cxi − cx)2

√

n
∑

i=1
(cyi − cy)2

;
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arxy =

n
∑

i=1
(‖xi‖ − ‖x‖)(‖yi‖ − ‖y‖)

√

n
∑

i=1
(‖xi‖ − ‖x‖)2

√

n
∑

i=1
(‖yi‖ − ‖y‖)2

. (2)

Then fuzzy correlation is defined as as

FC = β1crxy + β2arxy, (β1 + β2 = 1).

Wechoose a pair of (β1, β2)depending on theweight of practical use. For instance,
if we think the location correlation is much more important than that of area scale,
β1 = 0.7 and β2 = 0.3 will be a good suggestion.

Example 1 Suppose we have the following data as shown in Table2.

In this case, the correlation between the two centroids is

crxy =

n
∑

i=1
(xi − 26.62)(cyi − 1.7)

√

n
∑

i=1
(cxi − 26.62)2

√

n
∑

i=1
(cyi − 1.7)2

= 0.17;

Table 2 Numerical example for interval-valued, triangular, and trapezoidal fuzzy data

X

Student Data Centroid Area (length)

A [23, 25] 24 2

B [21, 23, 26] 23.3 2.5

C [26, 27, 29, 35] 28.3 5.5

D [28, 30] 29 2

E [25, 26, 28, 35] 28.5 6

(fuzzy) mean [24.6, 25.12, 29, 30.2] 26.62 3.6

Y

Student Data Centroid Area (length)

A [1, 2] 1.5 1

B [0, 2, 3] 1.7 1.5

C [0, 1] 0.5 1

D [1, 2, 4] 2.3 1.5

E [1, 2, 3, 4] 2.5 2

(fuzzy) mean [0.6, 1.4, 2, 2.8] 1.7 1.4
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arxy =

n
∑

i=1
(‖xi‖ − 3.6)(‖yi‖ − 1.4)

√

n
∑

i=1
(‖xi‖ − 3.6)2

√

n
∑

i=1
(‖yi‖ − 1.4)2

.

Considering the contribution of (area) length correlation to the fuzzy correlation, the
idea of correlation interval is proposed. Suppose we fix the (area) length correlation
by the following adjusted values

λarxy = 1 − ln(1 + |arxy |)
|arxy | .

Since −1 ≤ arxy ≤ 1, the range of λarxy will be 0 < λarxy < 0.3069.
We will have the following definition for fuzzy correlation interval.

Definition 3 Let (Xi = [ai , bi , ci , di ], Yi = [ei , fi , gi , hi ]; i = 1, 2, . . . , n) be a
sequence of paired trapezoid fuzzy sample on populationΩ with its pair of centroids
(cxi , cyi ) and pair of areas ‖xi‖ = area(xi ), ‖yi‖ = area(yi ). Let

crxy =

n
∑

i=1
(xi − cx)(cyi − cy)

√

n
∑

i=1
(cxi − cx)2

√

n
∑

i=1
(cyi − cy)2

;

arxy =

n
∑

i=1
(‖xi‖ − ‖x‖)(‖yi‖ − ‖y‖)

√

n
∑

i=1
(‖xi‖ − ‖x‖)2

√

n
∑

i=1
(‖yi‖ − ‖y‖)2

,

and

λarxy = 1 − ln(1 + |arxy |)
|arxy | .

Then fuzzy correlation is defined as follows:

(i) When crxy ≥ 0 and λarxy ≥ 0, fuzzy correlation = (crxy,min(1, crxy +
λarxy)).

(ii) When crxy ≥ 0 and λarxy < 0, fuzzy correlation = (crxy − λarxy, crxy).

(iii) When crxy < 0 and λarxy ≥ 0, fuzzy correlation = (crxy, crxy + λarxy).
(iv) When crxy < 0 and λarxy < 0, fuzzy correlation = (max(−1, crxy −

λarxy), crxy).
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Example 2 Suppose we have the following data as shown in Table2.
In this case, the correlation between the two centroids is crxy = 0.17. Similarly,

the correlation between two lengths is arxy = 0.32, so

λarxy = 1 − ln(1 + 0.32)

0.32
= 0.13.

Since the centroids correlation arxy ≥ 0, and the area (length) correlation λarxy ≥ 0,
thus, fuzzy correlation = (arxy,min(1, arxy + λarxy)) = (0.17,min(1, 0.30)) =
(0.17, 0.30). This implied that the relationship between the X and Y are quite small.

4 Empirical Studies

In this section, 11 samples (5 girls and 6 boys) are collected from a middle high
school at Taipei city in Taiwan. We want to investigate which factors will impact
their academic achievement. The results present the correlation for fuzzy data and in
comparisonwith the traditional person correlation to demonstrate the difference. Sup-
pose we are interesting in measuring the strength of the linear relationship between
the students: sleeping hours per day (X ), play hours on Internet per day (Y ), studying
hours in exercising mathematics per day (Z ), and grades (range) of mathematical
tests in last two months (T ), as shown in Table2.

The data set consists of interval-valued, triangular and trapezoidal fuzzy numbers.
For example, for variable X , the data [8, 8.5, 9.5] represents a triangular fuzzy num-
ber, which represents that normal sleeping hours per day is 8.5h, but the range of
his/her sleeping hours is 8 to 9.5h. Similarly, the data [9, 10.5, 11, 12] represented
a trapezoidal fuzzy data, in this case, the normal sleeping hours is 10.5–11, and the
range of sleeping time falls from 9 to 12h (Table3).

Table 3 Survey of fuzzy data

Sample X Y Z T

1 [8, 8.5, 9.5] [1, 1.5] [2, 2.5] [90, 95]
2 [7, 7.5] [1, 2, 3.5] [2, 3.5, 4] [92, 96]
3 [9, 10.5, 11, 12] [1, 3] [1, 2] [85, 87]
4 [8, 8.5] [1.5, 2.5] [0, 0.5, 1] [70, 72]
5 [6, 7.5] [1, 1.5] [2, 3] [90, 97]
6 [10, 11, 13] [1, 2, 4] [0.5, 1] [56, 63]
7 [7, 8] [3, 3.5, 5] [0, 1] [35, 67]
8 [8, 10, 11] [1, 2] [1.5, 2] [80, 85]
9 [6.5, 8] [0, 1.5, 2, 2.5] [2, 2.5, 3] [92, 100]
10 [7.5, 8.5] [2, 2.5, 4] [0.5, 1] [35, 55]
11 [8, 8.5] [1, 2] [1, 1.5] [60, 67]
Fuzzy mean 8.50 2.02 1.58 75.9
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Table 4 Correlation with fuzzy data

Fuzzy corr X Y Z T

X 1 [−0.01, 0.09] [−0.38, −0.27] [−0.18, −0.17]
Y 1 [−0.59, −0.49] [−0.73, −0.66]
Z 1 [0.87, 0.96]
T 1

Table 5 Pearson correlations based on centroids

Pearson corr. (center) X Y Z T

X 1 −0.01 −0.38 −0.18

Y 1 −0.59 −0.73

Z 1 0.87

T 1

Based on Tables4 and5, we have the following findings. First, besides the
correlation of studying hours in exercising mathematics per day (Z ) and grades
(range) of mathematical tests last two month (T ) is positive, all of the other mea-
sures were negatively correlated.

Second, the correlation between X and Z is close to 0. This means there is almost
no relationship between sleeping hours per day and studying hours in exercising
mathematics per day. Third, the correlations between Y and Z and between Y and
T are moderately negative. This means if the students spend more time on internet,
then they will have less time study mathematics. In addition, the more time they
spend on internet, the lower math grade will be. Fourth, the correlations between
X and Z and between X and T are slightly negative. This means the relationship
between student’s sleeping hours and time study on mathematics are weakly related.
The relationship between the sleeping hours and student math grades are also weakly
related.

Table4 is the fuzzy correlation, and the correlations in Table4 are fuzzy numbers.
This overcomes the deficiency of those studies which the correlation coefficients cal-
culated are crisp values, rather than the intuitively believed fuzzy numbers. Table5
is the Pearson correlation, which calculated based on the centroids of two dataset.
It is found that the results of Tables4 and 5 are quite close, the difference is the
correlations in Table4 are fuzzy numbers, and in Table5 are crisp values. This is
because the calculation of fuzzy correlation considered not only the correlations of
centroids, but also the correlation between the area (length) of two dataset, and the
fuzzy correlation expands based on the direction of the two dataset’s area correlation.
For example, the Pearson correlation between two centroids of Y and Z is −0.59.
However, after considering the area (length) of two fuzzy dataset, the fuzzy corre-
lation becomes [−0.59,−0.49]. This is due to the area(length) correlation of two
dataset are positive, and this positive effect push the actual fuzzy correlation to the
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positive side. On the other hand, the Pearson correlation between X and T is −0.18,
and the fuzzy correlation is [−0.18,−0.17]. The range of this fuzzy correlation is
quite narrow compare to the correlation between Y and Z . This is because the area
correlation between two fuzzy dataset is quite small, thus the fuzzy correlation are
mainly impacted by the correlations between two centroids.

5 Conclusions

This paper uses a simple way to derive fuzzy measures based on the classical defini-
tion of Pearson correlation coefficient which are easy and straightforward.Moreover,
the range of the calculated fuzzy coefficient is a fuzzy number with domain [−1, 1],
which consist with the conventional range of Pearson correlation. In the formula we
provided, when all observations are real numbers, the developed model becomes the
classical Pearson correlation formula.

There are some suggestions for future studies. First, the main purpose of this
study is to provide the formula of calculating fuzzy correlations. Only few samples
are collected to illustrate how to employ the formula. Future interested researchers
can use formula and collect a large-scale fuzzy questionnaires to make this formulas
implement in practice. Second, when calculating the fuzzy correlation, we adopt
λarxy to adjust the correlations, but researchers can set up their own λarxy values
if there are defensible reasons. However, it is suggested that the impact of length
correlation should not exceed the impact of centroid correlation. Third, this study
only considered the fuzzy correlation for continuous data. It would be interested to
investigate the fuzzy correlation for discrete fuzzy data.

In practice, many applications are fuzzy in nature. We can absolutely ignore
the fuzziness and make the existing methodology for crisp values. However, this
will make the researcher over confident with their results. With the methodology
developed in this paper, a more realistic correlation is obtained, which provides the
decision maker with more knowledge and confident to make better decisions.
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Abstract This study proposes a dynamic vine copula based ARMAX-GARCH
model to explore the dependence structures between energy futures and agricultural
futures, and between corn future and soybean future conditional on energy futures
etc. The more important thing is that we employ the empirical results of dynamic
vine copulas to forecast the expected shortfall (ES) and the optimal portfolio weights
(OPW) based on minimum ES and Monte Carlo simulation method results showed
that the appropriate margins were skewed student t distribution for soybean future
return, and student t distribution for crude oil, palm oil and corn future returns, and
the time-varying copulas T copula, R-BB8(180◦), R-BB8(180◦), Gaussian copula,
R-Joe(180◦) and T copula can preferably capture the dependences compared with
static copulas in C-vine copula structure. Moreover, we found that the values of ES
will converge to −0.0121,−0.0145 and −0.0164 at period t+1 under 5, 2 and 1%
level, respectively. Meanwhile, As long as we invest in strict accordance with the
optimal portfolio weights, the ES will reduce 56, 54 and 53% at 5, 2 and 1% level,
respectively.
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1 Introduction

With the rapid development of world economic integration, there are the increasingly
close ties between the various commodities. Crude oil and other energy commodities
also manifest increasing the influence to non-energy commodities, and the spillover
effect is more pronounced compared to the last century, especially after the financial
crisis in 2008. Crude oil futures prices were more than $147 per barrel on July 11,
2008, and after 3months (2008-09-10) the same forward contracts had fallen back
below the $100 mark and stayed there until the following January. At the same
time, the prices of biofuel feedstocks such palm oil, corn, and soybeans all displayed
strong volatility. Kilian [1] showed that oil price shocks impacted the U.S. and global
economy significantly. Du et al. [2] have shown empirically that volatility spillovers
among crude oil, corn, and wheat markets occurred after the Fall of 2006, while
Ji [3] demonstrated the existence of significant volatility spillovers between crude
oil and non-energy commodity markets. Despite this evidence of price co-movement
between agricultural commodities and conventional energy fuel, conditional and
time-varying co-movement with nonlinear correlations have still not been formally
estimated. In other words, we have observed apparent financial linkage between the
agricultural and energy commodities, but we do not know how much correlation is
there, nor how it changes over time? Thus for a given trend in energy future prices
are known, we would want to know the direction, magnitude, and timing of impacts
on biofuel feedstock futures.

A good literature already exists on volatility and dependence between energy and
agriculture futures. Pindyck andRotemberg [4] found that the prices of rawcommodi-
ties have a persistent tendency tomove together. Palaskas andVarangis [5] confirmed
co-movement between all commodity pairs using cointergration tests. Babula and
Somwaru [6] studied the dynamic impact of a shock in crude oil prices on agricul-
tural chemical and fertilizer prices using Vector Auto-Regression (VAR) methods,
and Noel [7] revealed linkage between crude oil prices and agricultural employ-
ment using Granger causality tests. Campiche et al. [8] investigated links between
crude oil and agriculture commodities using cointegration and VEC methods, with
results suggesting crude oil is more strongly correlated with soy than corn. Nazli-
oglu and Soytas [9] examined the short-run and long-run interdependence between
world oil prices, exchange rates, and Turkish agricultural prices, including cotton,
soybean, wheat, and maize. Guo et al. [10] confirmed interaction between crude oil
and agricultural commodities prices and applied Granger causality tests. Malliaris
andUrrutia [11] examined correlation between futures prices across agriculture com-
modities. Chang et al. [12] estimated a long memory volatility model for 16 different
agricultural commodity future prices. Choudhry [13] applied six GARCHmodels to
analyze the volatilities of agricultural future prices.

Although VAR, VEC, cointegration tests, and Grange causality models are effi-
cient and feasible for analyzing volatility and price interaction, copula models have
emerged rapidly for application to the same class of problems. In particular, copula
based GARCHmodels have been used to investigate exchange rate dependence [14],
conditional dependence of internet stock prices [15], the co-movement of oil prices
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and exchange rates [16] and option prices [17]. Furthermore, vine copulas (more flex-
ible and transparent than their multivariate counterparts) have been used to elucidate
the conditional interdependence of asset returns. Various studies have demonstrated
their properties, classifications, structures and merits [18–23].

This paper complements the above literature by applying vine copula based
GARCH model to investigate the direct linkages among conventional energy fuels
(proxied by crude oil) and biofuel feedstock crops, i.e. palm oil, corn and soybean
futures. The purposes of this paper are to examine the volatility of crude oil and palm
oil future prices, and agricultural commodities future prices that include corn and
soybean, and study their co-movements, especially to shed new light on what is the
co-movement of conditional on crude oil and palm oil between corn and soybean.
In addition, our analysis takes fully account of the time-varying characteristics non-
linear correlations (Kendall’s tau parameter). This approach enables us to estimate
expected shortfalls and identify risk characteristics. Finally, and just as importantly,
we can estimate optimal invested portfolio weights based on the best copula model
for next period. The main contributions of the paper are three: (1) We apply the vine
copula based GARCH model to analyze the conditional dependences, and consider
the time-varying Kendall’s tau of conditional dependences. (2) We show how this
framework can be used to estimate expected shortfalls and optimal portfolio weights
using the results of copulas and Monte Carlo simulation method. (3) The optimal
portfolio weights of selected assets are constructed under the minimum expected
shortfall framework, allowing for global optimization via a Differential Evolution
algorithm.

The remainder of this paper is organized as follows. Section2 introduces the basic
estimation framework, including static and time-varying copula models. Section3
presents vine copulas. Section4 presents the data and discusses our empirical results.
Section5 presents our ES and OPW estimation results. Section6 offers conclusions.

2 Copula Based ARMAX-GARCH Models

The whole idea of a copula is that it provides information beyond the marginals. In
the present application we use a ARMAX-GARCH model as the marginal distribu-
tion with respect to the copula for multiple asset returns. This approach allows, for
example, more general symmetry characteristics for joint distributions, as well as
more detailed and decomposable treatment of covariability and dependence struc-
tures. In the sub-section, the ARMAX-GARCH model, copulas and time-varying
copulas are considered sequentially.

2.1 ARMAX-GARCH Model

The essential characteristic of copulamodel is that anymultivariate distribution func-
tion canbedecomposed intomarginal distributions.Therefore, theARMAX-GARCH
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model is used to describe the marginal distribution of each series. Following Lee and
Lin [24], the ARMAX-GARCH model can be expressed as:

rt = c +
p

∑

i=1

φirt−i +
q

∑

i=1

ψiεt−i + ϕiXit + εt (1)

εt = ht · ηt (2)

h2t = ω +
k

∑

i=1

αiε
2
t−i +

l
∑

i=1

βih
2
t−i (3)

where
∑p

i=1 φi <1, ω > 0, αi ≥ 0, βi ≥ 0, and
∑k

i=1 αi + ∑l
i=1 βi < 1. ηt

is the standardized residual, which can be assumed for any distribution. Normally,
we assumed that it is Gaussian, student t or skewed-t distribution. In particular,
skewed-t distribution can capture characteristics of heavy tail and asymmetry, which
was proposed by Hansen [25] whose model has two parameters λ and υ are the
asymmetry and kurtosis parameters, respectively, and symmetric heavy tails can be
captured by student-t distribution.

2.2 Copulas

After an early example by Sklar [26], copula methods have recently enjoyed rapidly
growing interest in econometrics, economics, finance. Let x = (x1, x2, . . . , xn)

be a random vector with joint distribution function H and marginal distribution
F1, F2, . . . , Fn, then there exists a function C that is called copula:

F (x1, x2, . . . , xn) = C (F1 (x1) , F2 (x2) , . . . , Fn (xn)) (4)

In the light of formula (4), the copula function can be expressed as:

C(u1, u2, . . . , un) = F(F−1
1 (u1), F−1

2 (u2), . . . , F−1
n (un)) (5)

If Fi is an absolutely continuous with strictly increasing, we have the density
function as

f (x1, . . . . . . , xn) = ∂F(x1, . . . . . . , xn)

∂x1, . . . , ∂xn

= ∂C(u1, . . . , un)

∂u1, . . . , ∂un
×

∏ ∂F(xi)

∂xi

= c(u1, . . . , un) ×
∏

fi(xi)
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The joint distribution F contains all statistical information about x = (x1, x2, . . . , xn).
In particular, marginal distributions of the components are derived as

Fi (xi) = F (∞,∞, . . . , xi,∞, . . . ,∞) (6)

Patton [14] extended (unconditional) copulas to conditional copulas, and applied
them to time-varying conditional dependence for the analysis of exchange rates.

For concreteness, consider an example where ro,t , rp,t , rc,t , rs,t represent asset
returns to biofuel feedstock futures, e.g. crude oil, palm oil, corn and soybean forward
contracts, with marginal conditional CDF uo,t = F

(

ro,t |ψt−1
) = F

(

ηo,t
)

, vp,t =
F

(

rp,t |ψt−1
) = F

(

ηp,t
)

, wc,t = F
(

rc,t |ψt−1
) = F

(

ηc,t
)

and zs,t = F
(

rs,t |ψt−1
) =

F
(

ηs,t
)

, where ψt−1 represent historical information. Thus, for a sample interaction
between crude oil and palm oil, the corresponding bivariate conditional copula can
be written as

F
(

ro,t, rp,t |ψt−1
) = C

(

uo,t, vp,t |ψt−1
)

(7)

It should be noted that the probability distributions will not be uniform over [0, 1]
if we derive the marginal distribution using a misspecified model. In this paper, we
experimented with Gaussian copula, T copula, Clayton copula, Frank copula, Gum-
bel copula, Joe copula, BB1 copula, BB6 copula, BB7 copula, BB8 copula and rotate
copulas to elucidate the energy price the dependence structures. The Gaussian copula
can reflect positive and negative correlation, and the Pearson correlation ρ can be
transformed toKendall’s tau,which equals 2/arcsin(ρ). Clayton copula has the capac-
ity to capture lower tail dependence. Frank copula can describe both positive and
negative dependence. Gumbel copula is an asymmetric copula of the Archimedean
family, allowing for upper tail dependence. Joe copula also helps explain upper tail
dependence. BBX copulas are two parameter copulas, and BB8 can capture the upper
tail dependence. But both BB1 and BB7 copulas can capture upper tail and lower
tail dependence.

2.3 Time-Varying Copulas

Patton [14] observed that it is very difficult to identify the determinants of copula
model parameters, and assumed they were generated in Gaussian and SJC copula by
an ARMA (1,10) process. Manner and Reznikova [27], Wu [16], Liu and Sriboon-
chitta [28] and Ng [29] extended this approach without a definitive specification.
Our study relies on this precedence, but also extends it with new time-varying, two
parameter copulas described below:

(1) Time-varying Gaussian copula

ρt = Λ̃(ωN +βN1 ·ρt−1+· · · +βNp ·ρt−p +αN · 1
q

q
∑

j=1

Φ−1(u1t−j)·Φ−1(u2t−j))

(8)
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where Φ represents standard normal distribution, Λ̃ is a logistic transformation
which is defined as follows: ˜Λ(x) = (1−e−x)(1+e−x)−1. The purpose of using
this logistic transformation is to keep the correlation coefficient ρ belonging to
(−1, 1).

(2) Time-varying T copula

ρt = Λ̃(ωT + βT1 · ρt−1 + · · · +βTp · ρt−p

+ αT · 1
q

q
∑

j=1

T−1
ν (u1t−j; ν)·T−1

ν (u2t−j; ν)) (9)

where Tν represents student-t distribution with degree of freedom ν, T copula
has two parameters that are Pearson correlation ρ and degree of freedom νc.
Obviously, assume that fixed the degree of freedom, just let the correlation be
change with time.

(3) Time-varying (rotate) Gumbel copula

τt = Λ(ωG + βG1 · τt−1 + · · · + βGp · τt−p + αG · 1
q

q
∑

j=1

∣

∣u1t−j − u2t−j
∣

∣) (10)

where Λ(x) = (1 + e−x)−1. This guarantees that the Kendall’s tau will be
between −1 and 1, and the time varying Joe copula employ the same form as it.

(4) Time-varying (rotate) Clayton copula

τt = Λ(ωC + βC1 · τt−1+ · · ·+βCp · τt−p + αC1 · |u1t−1 − u2t−1|
+ · · · + αCq · ∣

∣u1t−q − u2t−q
∣

∣) (11)

(5) Time-varying BBX copula
BB1, BB7 and BB8 are two parameter copula specifications, we assume that the
parameters in each copula vary over, following an ARMA (p, q) type process.
Specially, our case is an ARMA (1, 20) type process, which performs better than
the original ARMA (1, 10) proposed by Patton [14].

θt = HBBX

⎛

⎝ωBBX + βBBX · θt−1 + · · · + βBBXp · θt−p

+αBBX · 1
q

q
∑

j=1

∣

∣u1t−j − u2t−j
∣

∣

⎞

⎠ (12)
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δt = H̃BBX

⎛

⎝ωBBX + βBBX · δt−1 + · · · + βBBXp · δt−p

+αBBX · 1
q

q
∑

j=1

∣

∣u1t−j − u2t−j
∣

∣

⎞

⎠ (13)

where the HBBX(x) and H̃BBX(x) are the logistic transformations, HBB1(x) =
1/e−x , H̃BB1(x) = 1/e−x + 1, HBB1(x) = H̃BB7(x), H̃BB1(x) = HBB7(x) =
HBB8(x), and H̃BB8(x) = Λ(x).

3 Vine Copulas

A bivariate copula specification is called a pair-copula construction or a vine cop-
ula. Standard multivariate copulas do not allow for different dependency structures
between pairs of variables. While vine approach is more flexible, as we can select
bivariate copulas from a wide range of (parametric) families. Vine copulas involve
marginal conditional distributions that can be expressed by the formF (rt |υ). Joe [30]
showed that

F(r|υ) = ∂Cr,υj|υ−j
(F(r|υ−j), F(υj

∣

∣υ−j))

∂F(υj|υ−j)
(14)

where υ denotes all conditional variables. If the υ is univariate, the marginal condi-
tional distribution is a special case that can be written as

F(r1|r2) = ∂Cr1,r2(F(r1), F(r2))

∂F(r2)
(15)

Bedford and Cooke [20, 31] gave the definition of the regular vine copula. The
class of regular vines comprises a large number of pair-copula decompositions. In
this section, we focus on the two special cases of regular vine copulas, the so-
called Canonical vine and Drawable vine, which we present in a four-dimensional
framework.

(1) C-vine copula. The four-dimensional C-vine structure can be written as:

f (x1, x2, x3, x4) = f (x1) · f (x2) · f (x3) · f (x4) · c12(F(x1), F(x2))

· c13(F(x1), F(x3)) · c14(F(x1), F(x4))

· c23|1(F(x2|1), F(x3|1)) · c24|1(F(x2|1),
F(x4|1)) · c34|12(F(x3|12), F(x4|12)) (16)
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where lowercase c denotes the density function of copulas. F(x2|1 ), F(x3|1 ) and
F(x4|1 ) can be derived from expression 4 above. The function c23|1 represents
the joint density function (copula) of x2 and x3, conditional on x1, and so on.
According to the formula (14), the marginal distributions of x3|12 and x4|12 are

F(x3|12 ) = ∂C23|1 (F(x3|1 ), F(x2|1 )

∂F(x2|1 )
and F(x4|12 ) = ∂C24|1 (F(x4|1 ), F(x2|1 )

∂F(x2|1 )
(17)

(2) D-vine copula. The four-dimensional D-vine structure can be shown as:

f (x1, x2, x3, x4) = f (x1) · f (x2) · f (x3) · f (x4) · c12(F(x1), F(x2))

· c23(F(x2), F(x3)) · c34(F(x3), F(x4))

· c13|2(F(x1|2), F(x3|2)) · c24|3(F(x2|3), F(x4|3)
· c14|23(F(x1|23), F(x4|23)) (18)

Comparing the structure of D-vine with C-vine, we see that the C-vine has a central
variable x1, but the structure of D-vine is ordered by the sequence of the variables.
The small letter x1, x2, x3 and x4 is here used to denote returns of crude oil, palm oil,
corn and soybean, respectively.

4 The Data and Empirical Results

4.1 The Data

This study uses crude oil and US dollar index futures from ICE market, corn and
soybean futures from CBOT market and palm oil from MDEX market to analyze
the issues that we have proposed in introduction part. Our sample covers the period
January 2, 2008 to May 3, 2012, and, to eliminate spurious correlation arising from
holidays, we drop those observations for any holiday associated with least one index.
The asset returns are calculated by using the difference between logarithmic closing
prices for each contract type.

Table1 provides descriptive statistics for this data. It shows that crude oil, palm
oil, corn and the dollar index all exhibit slight negative skewness and excess kur-
tosis, while soybean contracts show strong negative skewness and excess kurtosis.
In addition, these results show that corn futures has the maximum return, soybean
futures the minimum return, during the period considered. Standard deviations show
clear evidence that crude oil more price volatile than the other commodities. The
Jarque-Bera test results show that the distribution of asset returns strongly rejects
an assumption of normality, while the unconditional correlation coefficients high
degree of linear dependence between future corn and soybean returns and negative
dependency between dollar return and the other asset returns.
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Table 1 Data descriptive and statistics

Crude oil Palm oil Corn Soybean Dollar

Mean 0.0001 0 0.0001 0.0001 0

Median 0.0003 0 0 0.0007 −0.0001

Maximum 0.0551 0.0424 0.0554 0.0356 0.0119

Minimum −0.0475 −0.0479 −0.0452 −0.0891 −0.0132

Std. dev 0.0113 0.0090 0.0104 0.0098 0.00281

Skewness −0.2717 −0.3165 0.0514 −1.334 0.0054

Kurtosis 5.9813 6.6814 4.9561 11.5958 4.4304

Jarque-Bera 393.3751 597.6917 164.3429 3469.7810 87.6443

Correlations

Crude oil 1 0.2683 0.3774 0.3284 −0.3910

Palm oil 0.2683 1 0.2114 0.2057 −0.1731

Corn 0.3774 0.2114 1 0.5097 −0.3122

Soybean 0.3284 0.2057 0.5097 1 −0.2387

Dollar −0.3910 −0.1731 −0.3122 −0.2387 1

4.2 The Results of ARMAX-GARCH Model

Table2 shows the estimated results for the ARMAX-GARCH model. To insure the
marginal distributions are correctly specified, we assume that crude oil, palm oil and
corn are all t-distribution because of non-normality, the slight skewness and kurtosis,
but on the contrary, soybean is assumed to follow a skewed student-t distribution.
The sum of ARCH and GARCH terms can be interpreted to measure the persistence
of volatility. Each value of this sum is greater than 0.97, which means unforeseen
shock will enhance volatility for a long time or, alternatively conditional variance
convergence to long-term variance can be thought to take longer. Moreover, the
ARCH LM tests are calculated for testing whether squared residuals remain serially
correlated up to lags 10 and 20. In copula functions, we assume that the marginal
distribution must be iid uniformly on (0, 1). The tests are performed by Box-Liung
and Kolmogorov-Smirnov (KS) test, and the test results are reported in Table3. The
Box-Liung test evaluates whether u, v, w and z are serially correlated, i.e. we examine
the serial correlation for first four moments of each asset return. The p-value from
Box-Liung and KS test reported in Table3 generally do not reject null hypothesizes,
meaning that all series satisfy iid-uniform (0, 1) condition.

4.3 Results for the Static and Time-Varying C-Vine Copula

Tables4 and 5 report parameter estimates for the appropriate C-vine copula from a set
of static and time-varying possible copula families according to theAIC, respectively.



296 J. Liu et al.

Table 2 Fitted asset returns from a ARMAX-GARCH model

Parameters Crude oil Palm oil Corn Soybean

c 0.0005*** 0.0002 0.0003 0.0001

(0.0002) (0.0002) (0.0003) (0.0002)

ϕ −1.4224*** −0.3791*** −0.9541*** 0.6742***

(0.1001) (0.0748) (0.1011) (0.0856)

ω 7.75E-07* 3.42E-07 5.22E-06 (6.19E-07)

(4.09E-07) (2.39E-07) (3.75E-06) (6.19E-07)

α 0.0553*** 0.0645*** 0.0833*** 0.0391***

(0.0108) (0.0160) (0.0368) (0.0129)

β 0.9363*** 0.9307*** 0.8681*** 0.9500***

(0.0114) (0.0164) (0.0665) (0.0165)

ν 7.0032*** 8.7328*** 5.894*** 5.1281***

(1.4964) (2.0847) (0.9893) (0.6685)

λ −0.1492***

(0.0405)

logL 3419 3599 3335 3453

Long-term var 9.23E-05 7.13E-05 0.0001 9.36E-05

AIC −6827 −7185 −6659 −6892

BIC −6797 −7156 −6629 −6857

LM(10) 0.3164 0.7307 0.9263 0.9876

LM(20) 0.7420 0.9038 0.9792 0.9924

Note Signif. codes are as follows: 0 ***0.001 **0.01 * 0.05. The numbers in the parentheses are
the standard deviations

Note that this copula selection proceeds tree by tree, since the conditional pairs in
trees 2 and 3 depend upon the specification of the previous trees through formula
3 in Sect. 4. We implemented the most common single parameter copula families,
such as the Gaussian, Clayton, Gumbel, Frank and Joe, and five copula families
with two parameters, namely, student-t, BB1, BB6, BB7 and BB8. Moreover, the
rotated copulas such as Clayton, Gumbel, Joe, BB1, BB6, BB7 and BB8 are put to
use as well. Furthermore, the variable order was chosen to correspond to crude oil,
palm oil, corn and soybean future returns. According to the AIC, the optimal choices
are T copula, R-BB8 (180◦) copula and R-BB8 (180◦) copula for tree 1, Gaussian
copula, R-Joe (180◦) copula for tree 2 and T copula for tree 3. We can see that the
dependency parameter of the bivariate T copula between crude oil and palm oil has a
low value of 0.22, Kendall’s tau equals to 0.14, and estimated tail dependence is very
low (0.0053) as well, while the dependency parameter of T copula between corn and
soybean conditional on crude oil and palm oil has the largest correlation 0.47, tail
dependence equals 0.18, and Kendall’tau is 0.31. Comparing values of AIC and BIC
in Table4 with Table5, all the time-varying copula dependence structures exhibit
better explanatory ability than static copulas. The value of the β parameter in C23|1
is close to unity, implying the time-varying dependence between palm oil and corn
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Table 3 Serial correlation tests

Box-Liung test

Crude oil X-squared p-value Palm oil X-squared p-value

First moment 4.8287 0.9023 First moment 16.794 0.07905

Second moment 2.0944 0.9956 Second moment 10.3769 0.4081

Third moment 4.4029 0.9273 Third moment 17.3687 0.06659

Fourth moment 3.7289 0.9588 Fourth moment 10.3148 0.4133

Corn X-squared p-value Soybean X-squared p-value

First moment 14.5332 0.15 First moment 6.2957 0.7898

Second moment 5.9983 0.8154 Second moment 9.2183 0.5115

Third moment 8.7697 0.5541 Third moment 4.4453 0.925

Fourth moment 3.966 0.9489 Fourth moment 8.5842 0.572

KS test

Statistics p-value Statistics p-value

Crude oil 0.001 1 Corn 0.001 1

Palm oil 0.001 1 Soybean 0.001 1

Table 4 The results of C-vine copula and Kendall’tau

Parameters Tail dependence Kendall’tau AIC BIC

T copula (C12) 0.2200*** 0.0053 0.1412 −48.8391 −38.9703

(0.0310)

15.1672 0.0053

(8.3718)

R-BB8 (180) (C13) 1.8180*** 0 0.2055 −112.0967 −102.2279

(0.2426)

0.8746*** 0

(0.0700)

R-BB8 (180) (C14) 1.4542*** 0 0.1637 −82.3986 −72.5298

(0.1203)

0.9559*** 0

(0.0374)

Gaussian copula (C23|1) 0.0975*** 0 0.0622 −7.6219 −2.6875

(0.0310)

R-Joe (180) (C24|1) 1.0827*** 0 0.04541 −12.3508 −7.4164

(0.0287)

T copula (C34|12) 0.4730*** 0.1832 0.3136 −284.0692 −274.2004

(0.0262)

5.2572*** 0.1832

(1.0628)

Note Signif. codes are as follows: 0 ***0.001 **0.01 *0.05. The numbers in the parentheses are the
standard deviations
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Table 5 The results of time-varying C-vine copula

Copulas W β α AIC BIC

T copula (C12) 0.7085*** −0.1381*** −1.45189*** −49.5000 −42.5669

(0.0102) (0.0100) (0.0456)

R-BB8 (180) (C13) −2.1098*** 9.9297*** 2.5683*** −122.1628 −117.2284

(0.0215) (0.0919) (0.0116)

1.5112*** −3.149*** 0.1486***

(0.0329) (0.0677) (0.0081)

R-BB8 (180) (C14) 4.0864*** −1.284*** 0.2346***

(0.0513) (0.2725) (0.0451)

−0.284*** 0.2841*** 0.6007***

(0.0037) (0.0130) (0.0042)

Gaussian copula (C23|1) 0.2974*** 0.8730*** −2.0388*** −14.2621 −8.3277

(0.0031) (0.0110) (0.0002)

R-Joe (180) (C24|1) 1.4806*** −0.2543*** −1.4272*** −209.5979 −203.6635

(0.0161) (0.0077) (0.0297)

T copula (C34|12) 1.1411*** 0.3789*** −1.6895*** −286.9409 −275.0721

(0.0051) (0.0044) (0.0131)

Note Signif. codes are as follows: 0 ***0.001 **0.01 *0.05. The numbers in the parentheses are the
standard deviations

returns persists through time under the condition of crude oil, while the autoregressive
parameter β inC24|1 andC34|12 shows slight autocorrelation. Figures1, 2, and 3 show
the time-varying dependence structures in C23|1, C24|1 and C34|12, respectively. The
lines of dashes are the average values of time-varying dependence. Although C23|1
and C34|12 are Gaussian and student-t copulas that can capture linear dependence,
we transform them into nonlinear correlations Kendall’s tau as described in Figs. 2
and 3. Meanwhile, the parameter in C24|1 is transformed into Kendall’s tau. The
fluctuation range for C23|1, C24|1 and C34|12 is from −0.18 to 0.31, from 0.17 to 0.31
and from 0.25 to 0.6, respectively.

Note: the best bivariate copula between corn and soybean is student-t copula as
well. The parameter estimates of T copula equal 0.5194 for correlation, 5.4592 for
the degree of freedom, 0.1995 for the tail dependence and 0.3477 for the Kendall’s
tau. Therefore, this is significant evidence that crude oil and palm oil have affected
the dependence structure between corn and soybean. Compare C34 with C34|12, the
dependence fall by 8.93% and the Kendall’s tau fall by 9.81%.

5 Forecasting of the ES and Optimal Portfolio

In last section, we examined the volatility and dependence structures between futures
returns on energy and biofuel feedstocks, and between corn and soybean futures
returns conditional on crude oil and palm oil futures returns, using a copula based
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Fig. 2 Time-varying Joe copula of 24 given 1

ARMAX-GARCH model. However, we must take note of estimation results that
may not have an economically useful application. Hence, in this section, we use
Monte Carlo simulation for the copula based ARMAX-GARCH model to calculate
the expected shortfall of an equally weighted portfolio. After that, optimal portfolio
weights of selected assets are constructed under a minimum expected shortfall (ES)
framework, using global optimization with the differential evolution algorithm.

First, we summarize the five steps for calculating ES and optimal portfolio
weights:

(1) Use of the estimation results of bivariate copulas (C12, C13 and C14) to generate
random number 1027, the length of our observations.
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Fig. 3 Time-varying T copula of 34 given 12

(2) Use inverse functions of the Student’s t (for crude oil, palm oil and corn) and
skewed Student’s-t distributions (for soybean) to get the standardize residuals
ηoil, ηpalm, ηcorn and ηsoy of each variable.

(3) Forecast the values of roil,t+1, rpalm,t+1, rcorn,t+1 and rsoy,t+1 for subsequent
periods using the ARMAX-GARCH model, giving equal weight (0.25) to each,
i.e., r = 0.25 ∗ roil,t+1 + 0.25 ∗ rpalm,t+1 + 0.25 ∗ rcorn,t+1 + 0.25 ∗ rsoy,t+1.

(4) Calculate the quantiles of r at 5, 2 and 1% level, respectively. The “expected
shortfall at q% level” is the expected return on the portfolio in the worst q% of
the cases.

Repeat steps (1)–(4) 1,000, 2,000 and 5,000 times, and calculate the average ES.
Generally, each mean of ES should be close to its true value.

After this procedure, we calculated optimal portfolio weights using the results of
copula based ARMAX-GARCH model with the following strategy:

(1) Repeat the first two steps above, calculating ES for optimal portfolio weights.
(2) Now consider an investor who wants to minimize ES at 50, 25, 5, 2 and 1%

subject to achieving a particular expected return. Let wi be weight vector of
portfolio weights on risky assets, namely, crude oil, palm oil, corn and soybean
future returns. The investor solves the following optimization problem:
Min ES = E[r|r ≤ rα]
Subject to
r = w1 × roil,t+1 + w2 × rpalm,t+1 + w3 × rcorn,t+1 + w4 × rsoy,t+1
w1 + w2 + w3 + w4 = 1
0 ≤ wi ≤ 1, i = 1, 2, 3, 4

(3) Global optimization can then solve this problem with maximum iterations to be
25 and only 10 repetitions. Even at this small simulation scale, the estimated
weights still converge.
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Table 6 Expected shortfall
of equally weighted portfolio

ES 5% 2% 1%

1,000 times −0.01212 −0.01454 −0.01640

2,000 times −0.01208 −0.01452 −0.01641

5,000 times −0.01208 −0.01454 −0.01639

Table 7 Optimal portfolio
weights based on minimum
ES with MC simulation given
copulas

w1 w2 w3 w4 O.P.R

50% 0.1677 0.5224 0.2053 0.1045 −0.0021

25% 0.1775 0.5410 0.2048 0.0767 −0.0031

5% 0.1935 0.4646 0.1639 0.1780 −0.0053

2% 0.2172 0.3984 0.1773 0.2071 −0.0067

1% 0.2328 0.4491 0.2041 0.1139 −0.0077

C.E 0.1842 0.4982 0.2346 0.0830 −0.0052

Table6 presents the ES at levels of 5, 2 and 1%. We can see that the estimated ES
will converge to −0.0121,−0.0145 and −0.0164 at period t+1 under 5, 2 and 1%
level, respectively. Table7 reports the optimal portfolio weighting estimates results
at period t+1. We can find that the optimal weight of crude oil futures rises with
gradually increasing risk, meaning crude oil future has high risk and high return,
significant evidence that crude oil futures have higher volatility than others. The
weight of palm oil accounts for about 50% at each risk level, suggesting this asset
has lower investment risk.The above-mentioned conclusions are further substantiated
by the standard deviation results in Table1. As long as we invest in strict accordance
with the optimal portfolio weights, the ESwill mitigate risk by 56, 54 and 53% at 5, 2
and 1%, respectively. This shows clear evidence of the strategy’s hedging potential.

6 Conclusions

This paper used a vine copula basedARMAX-GARCHmodel tomodel dependencies
between energy futures and those of biofuel feedstock commodities, and between
corn future and soybean futures, conditional on energy futures, etc. When returns
are non-normal, it is often difficult to specify the multivariate distribution relating
two or more return series, in spite of the bivariate Student’s-t distribution imposes
a symmetric dependence structure, but the assumed degrees of freedom of that is
assumed are the same.

We provide the ARMAX-GARCH model to fit the marginal distributions. These
perform quite well, capturing fundamental properties of skewness, kurtosis, heavy
tail and volatility. In this context, we apply a static and time-varying vine copula to
join these complicated univariate margins. Then, to enhance the practical application
of this methodology, we calculated the expected shortfall and optimal portfolio allo-
cation for this model. Empirical evidence reveals that all the dependencies between
energy and agricultural future returns are time varying and, in particular, the time-
varying dependence structure between palm oil and corn returns persists under the
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condition of crude oil, while C24|1 and C34|12 show lesser persistence. Finally, the
ES results for ES and optimal portfolio weights are very suggest a wide range of
practical application to hedging and other investment strategies and dynamic asset
allocation problems.
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Optimal Portfolio Selection Using Maximum
Entropy Estimation Accounting for the Firm
Specific Characteristics

Xue Gong and Songsak Sriboonchitta

Abstract The estimated return and variance for the Markowitz mean-variance
optimization have been demonstrated to be inaccurate; thereafter it could make the
traditional mean-variance optimization inefficient. This paper applied the Maximum
Entropy (ME) principle in portfolio selection while accounting for firm specific char-
acteristics; they are the firm size, return on equity and also lagged 12months return.
Since these characteristics are found not only related to the stock’s expected return,
variance and correlation with other stocks, they can be good variables to estimate the
weights. Furthermore, this method used Generalized Cross Entropy to shrink port-
folio weights to the equal weights; therefore solving the problem of concentrated
weights in Markowitz mean-variance framework. Also in our empirical study, six
stocks are used to investigate the effect of maximum entropy based methods. The
results show that the in-sample forecasts that are in comparison with other traditional
methods are good, however, in the out-of-sample forecasts the results are mixed.

1 Introduction

The Markowitz’s portfolio selection, which is based on mean and variance, is one
of the most important models of normative investment behavior in modern finance
[1, 2]. However, optimal portfolio selection requires knowledge of expected return
andvariance.AsMerton [3] argued, rather than the variance and covariance becoming
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stable over time, the expected returns are not easy to detect. When we only
approximately know that these values are using the historical information or para-
metric method, the portfolio optimized for not-exactly-correct value may lead to a
poor performance [4].

Therefore, it leads to several critical problems of optimalmean-variance portfolio;
first, the optimal weights are concentrated on some stocks due to the dominatedmean
and variance [2]. However, the principle of sharing risk is diversification. Second,
it is well known that the out-of-sample forecasting results are not so good [5]. The
drawbacks of traditional mean-variance method have raised up a lot of attentions for
further studies from the scholars and practitioners [4, 6–8].

Frost and Savarino [6] and Jorion [7] used empirical Bayesian approaches to
derive those shrinkage estimators of return and variance, to make the portfolio more
diversified. Later, the resampling scheme was first proposed by [8]. This method
used a bootstrap to find more “truth” on the data; it makes more to be diversified
and intuitively less risky than one on a corresponding Markowitz efficient frontier.
Bai et al. [4] developed new bootstrap-corrected estimations for the optimal return
and its asset allocation. The study shows that these bootstrap-corrected estimates are
proportionally consistent with their theoretic counterparts.

On the other hand, the stock characteristics, such as the firms’ market capitaliza-
tion, return on equity (ROE), and lagged return etc., are found not only related to
the stock’s expected return, variance and correlation with other stocks. Based on the
results, it can explain optimal portfolio weights [9, 10]. The traditional way to incor-
porate the firm’s characteristics into the function of mean, variance and covariance
is very complicated and creates unstable results, since it needs to estimate a large
number of parameters [8, 9]. Therefore, in practice, the traditional method based on
firm characteristics is rarely applied, although it may largely improve the accuracy
of the estimates.

To best utilize the information, and build a correct portfolio weights, in this paper
we modified a maximum entropy method to the portfolio selection problem account-
ing for the firm characteristics. The previous work of Bera and Park [11] has applied
the cross entropy method to the portfolio selection, and uses the results of out-
of-sample forecasting to show that the new method outperform the other popular
nonparametric methods. Our study parameterize the weight invested in each stock as
a function of the firm’s characteristics, due to the fact that these characteristics fully
capture the information of the joint distribution of returns that are all relevant for
forming optimal portfolios. We maximized the Generalized Cross Entropy (GCE)
problem subject to certain constraints. This estimation improved the previous works
since it adds more information when considering the characteristics of each firm,
and shrinks to the equal weights and makes a diversified portfolio.

Moreover, we implemented this information-based method to several six firm
stocks as a portfolio and we evaluated the performance of our entropy based method
with firm characteristics and related method. The results show that the two cross
entropy method outperform other traditional methods in terms of in-sample case,



Optimal Portfolio Selection Using Maximum Entropy … 307

and have mixed results when considering the out-of-sample forecasts. The objective
of this study is to apply the maximum entropy principle to optimal portfolio selection
among different stocks with firm characteristics variables.

The rest of the paper is organized as follows. In Sect. 2, we provide a critical review
of the existing methodologies. In Sect. 3, we discuss portfolio selection procedures
using the ME principle based on the CE measure methodologies. In Sect. 4, we
provide an empirical application using six stocks portfolio. The conclusion of this
paper is in Sect. 5.

2 Literature Review

2.1 The Problem of Portfolio Selection Weights

In Markowitz’s [1] mean-variance (MV) optimization, the portfolio weights are
gained from two steps: the first step is to obtain the first moment and second moment
of each stocks, and then assume the estimates are true parameters, the mean variance
portfolio selection problem is solved separately: we either maximize the expected
return under given bounds on risk or, equivalently, we minimize risk under the con-
straint that the expected returns should be at least a given value.

This approach works well if we know the expected returns of each financial
instrument and we know the correlation between these returns. In practice, the prob-
lem of these steps is that the samples estimates are treated as the accurate values,
which is absolutely not true [3, 7, 12]. The expected returns are not easy to detect.
And, as a result, the portfolio optimized for not-exactly-correct value may lead to a
poor performance.

Therefore, to improve traditional method and make the portfolio more robust, we
introduce the maximum entropy-based method.

2.2 The Firm Characteristics Influence on Optimal Weights

There is several literatures investigating the relationshipbetween theoptimal portfolio
weights and a set of firm characteristics variables [9, 13]. The channel of the firm
characteristics impact on the portfolio weights is the following: the characteristics
are important factors of the expected returns, variances, covariances, and even higher
order moments of returns, and then these factors all affect the distribution of the opti-
mized portfolio’s returns and finally the investor’s utility. As Brandt et al. [9] stated,
the deviations of the optimal weights from the benchmark weights decrease with the
firms’ size, increases with its book-to-market ratio, and increases with firms’ lagged
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12-month returns. Nigmatullin [14] used a nonparametric method to incorporate and
model the weights in each asset class. But he adopted different variables which are
specific to the asset classes as a separate function.

3 Methodology

3.1 Introduction to Maximum Entropy Method

As Jaynes [15] suggest that ‘a certain probability distribution maximizes entropy
subject to certain constraints representing a piece of incomplete information, is the
fundamental property which justifies use of that distribution for inference; it agrees
with everything that is known, but carefully avoids assuming anything that is not
known’ (p. 1). When we want to approximate this unknown probability distribution,
what should be the best approximation? Jaynes [16] gave a general answer to this
question:‘the best approach is to ensure that the approximation satisfies any con-
straints on the unknown distribution that we are aware of, and that subject to those
constraints, the distribution should have maximum entropy’. This is known as the
maximum-entropy principle. The Shannon entropy of π is defined as:

SE(π) = −
N

∑

i=1

πi ln(πi ) (1)

To better understand the approach wewill conduct, we introduce the classical dice
problem which had been first stated by Jaynes [17]. In a classical dice problem, we
know the empirical mean value (first moment) of a six-sided die, say μ0. Suppose
we would like to predict the probabilities π = (π1, π2, . . . , π6) for each possible
outcomes of a six-sided die for the next throw. We also know that the probability
is appropriate, that is, the sum of the probabilities is one

∑

π . Undoubtedly, there
are infinite number of sets of values of π that satisfy the conditions. The difficulty
of this problem is clear, there are six values to predict but only two observed value:
the mean and the sum of the outcomes [18]. Using the maximum entropy principle,
we can solve the optimization problem easily. The problem can be formed as the
following:

max SE(π) = −
6

∑

i=1

πi ln(πi ) (2)

st.
∑

πk xk = y and
∑

k

πk = 1 (3)

where xk = 1, . . . , 6 for k = 1, . . . , 6 respectively. The solution for the problem is
constructed by the Lagrangean function:
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L = −
6

∑

k=1

πk ln πk + λ(y −
∑

k

πk xk) + μ(1 −
∑

k

πk) (4)

π̂ = exp(−λ̂xk)
∑6

k=1 exp(−λ̂xk)
(5)

3.2 The Maximum Entropy Method to Portfolio Selection
Accounting for Firm Characteristics

Optimal portfolio weights for different stocks can be regarded as probabilities in the
above dice problem. What we should do next is to find what is known and what is
unknown and give constraints to the problem. However, if we use the cross entropy as
the dice problem, we cannot allow short-selling and also cannot incorporate the firm
characteristic into the weight function. Based on these two points, the Generalized
Cross Entropy method is adopted in our study. Let’s illustrate a little bit about cross
entropy. We define the portfolio allocation with the unknown probability distribution
π = (π1, π2, . . . , πN )′ among N risky assets, with proper constraint that

∑

πi = 1.
Also, we can add some side constraints such as the variance (σ 2 = π ′ ∑π ) is less
than certain values or the utility function of the investor (π ′ R − λ

2σ ) is greater than
some values. Here we adopt the latter one.

Consider a diversified portfolio, we have the prior qi = 1/N , which is an equal
chance on each stock. Suppose a portfolio weight changes from πi to qi . In our
analysis wewill emphasize theminimization of cross entropyC E(π, q) for a given q.
Thus, we start from an initial portfolio allocation, by minimization of CE we can
obtain a more diversified portfolio. The objective function and constraint function
are the following:

min
π

CE(π |q) = −
N

∑

i=1

πi ln(πi/qi ) (6)

U (μ, σ 2|π, λ) = π ′ R − λ

2
σ 2 ≥ U0, π ≥ 0 and π ′1N = 1 (7)

The disadvantage of the cross entropy method is obvious: Any negative weights
cannot be estimated in ln(.), therefore this method constrain short-selling. There-
fore, we turn to the Generalized Cross entropy method with short-selling and firm
characteristic variables. The details of this approach can be found in Golan et al. [18].
The weights of the optimal portfolio can be expressed by firm characteristics:

w = Xβ (8)



310 X. Gong and S. Sriboonchitta

where w is a M × 1 vector of portfolio weights, X is an M × K matrix of firm
characteristic variables, and β is a K × 1 vector of unknown parameters.

We can estimate the unknown probabilities by the maximum entropy method
in a discrete probability distribution pi = (pi1, pi2, . . . , pi M )′ over a set of sup-
port points zi for each unknown parameter. Here we assume that both the unknown
parameters and unknown errors should be bounded a priori. The maximum and
minimum support point of zi is the possible largest and smallest the value of β. The
parameter supports can be based on prior information or economic theory. In our
study, we use the support points between [−3, 3]. Let zk be the M ×1 support vector
for the kth parameter and let pk be the associated M × 1 vector of probabilities of
these support points. The unknown parameter vector β:

β = Z p =

⎛

⎜

⎜

⎜

⎝

z′
1 0 . . . 0
0 z′

2 . . . 0
...

...
...

. . .

0 0 . . . z′
k

⎞

⎟

⎟

⎟

⎠

⎛

⎜

⎜

⎜

⎝

p1
p2
...

pk

⎞

⎟

⎟

⎟

⎠

In our case, k=3 for firm’s size, ROE and also lag return. Therefore we can con-
sider the following GCEminimization problem which allowing the short-selling and
incorporate firms’ characteristics:

min
N

∑

i=1

M
∑

m=1

pim ln(pim/wim) (9)

(Xβ)′m̂ − λ

2
(Xβ)′�̂(Xβ) ≥ Ĝ−1(r) (10)

p′
i1M = 1 (11)

(Xβ)′1N = 1 (12)

Note that the prior of wim can come from either minimization of variance problem
or equal weights. It is not difficult to solve the optimization problem, but how to find
out an explicit value of U0. In Bera and Park [11]’s work, they use bootstrap to get
the utility. However, we use the utility value:

U0 = r × (π̂ ′ R − λ

2
π̂ ′ ∑ π̂)) (13)

where λ is equal to 1, and π̂ ′ from minimization of variance problem. In our
empirical study, we give r different values, r = 1.0 and 1.1. Therefore, er represents an
investor’s strength of belief, when r is larger, the investor has less uncertainty interval.
The similar explanation can be found in detail in Bera and Park [11]. The differences
between our work and theirs are as following aspects: first, they use bootstrap to
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obtain the threshold of utility function values, however it is easy to use the utility
from the minimized variance method. In our study, we try this out and find that this
utility can make the calculation easier and also useful. And second, we add the firm’
characteristics into the weight directly, the results show that this change improved
the out-of-sample forecasting.

3.3 Discussion of Advantage and Disadvantage

We use the whole sample span, which will be introduced in the next section to
test our method. In Fig. 1, the point A and B are minimize the variance, as well as
efficient portfolio by setting a target return and also minimizing the variance. The
dash line is the efficient frontier. In addition, C is cross entropy method with short-
sell constraints, and D is the generalized cross entropy with firm’s characteristic
variables. The comparison of different methods is explicitly shown in the Table1.
Means and standard deviations of A, B, C and portfolios are (0.03, 3.253), (0.506,
4.887), (−0.0826, 3.596), and (0.021, 3.256), respectively. Table2 gives the supports
and resulting probabilities (p). It can be seen that the firm size has negative effects
on the weights, the return on equity has positive effects and the lagged return has
mixed effects in different companies. Since we assume that the effects of the firm
characteristic variables are constant over the time. When we forecast one-month
aheadweights, theweights sometimes do not sum to one. In such a case,we normalize
it to one. In addition, we try different supports range, the results are almost consistent.

Fig. 1 Efficient frontier
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Table 1 The weights of different portfolio

Naive MV1 MV2 CE GCE

AMD 0.167 −0.085 −0.360 0.060 −0.100

APPL 0.167 0.074 0.243 0.122 0.085

BOA 0.167 0.048 −0.327 0.125 0.038

CISCO 0.167 0.840 1.39 0.460 0.850

JCP 0.167 0.100 −0.134 0.161 0.100

SIRI 0.167 0.022 0.190 0.069 0.027

Mean −0.125 0.003 0.506 −0.082 0.021

SD 4.244 3.253 4.887 3.596 3.256

S.R −0.029 0.001 0.104 −0.007 0.007

CEQ −9.132 −5.288 −11.435 −6.450 −5.260

Note S.R is the sharpe ratio and CEQ is the certainty equivalent return

Table 2 The support points and probabilities of three firm characteristics

Supports −3 −1.5 0 1.5 3 Mean

AMD 0.283 0.239 0.199 0.159 0.12 −0.609

APPL 0.469 0.033 0.000 0.097 0.402 −0.105

Size BOA 0.363 0.093 0.137 0.181 0.226 −0.279

CISCO 0.357 0.025 0.000 0.518 0.1 −0.032

JCP 0.431 0.158 0.146 0.136 0.128 −0.942

SIRI 0.335 0.067 0.133 0.198 0.267 −0.007

Supports −3 −1.5 0 1.5 3 Mean

AMD 0.222 0.163 0.107 0.057 0.452 0.531

APPL 0.151 0.205 0.21 0.215 0.219 0.219

ROE BOA 0.249 0.224 0.2 0.176 0.151 −0.366

CISCO 0.159 0.205 0.208 0.212 0.216 0.1815

JCP 0.198 0.196 0.199 0.202 0.205 0.03

SIRI 0.191 0.194 0.199 0.206 0.211 0.078

Supports −10 −5 0 5 10 Mean

AMD 0.231 0.214 0.199 0.185 0.171 −0.745

APPL 0.13 0.206 0.214 0.221 0.229 1.065

Lag Ret BOA 0.231 0.214 0.199 0.185 0.171 −0.745

CISCO 0.221 0.197 0.196 0.194 0.192 −0.305

JCP 0.068 0.063 0.058 0.054 0.756 6.835

SIRI 0.205 0.201 0.199 0.198 0.197 −0.095
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4 Empirical Application

4.1 Data Description

To illustrate the effectiveness of our maximum entropy based method, we present
an empirical application of six stocks from the period from January 2004 to August
2014, totaling 127 observations. The six companies are: Advanced Micro Devices,
INC. (AMD), Apple Computer, INC (AAPL), Bank of America (BOA), Cisco Sys-
tems, INC (CISCO), J.C. Penney Company, INC (JC), and Sirius XMHoldings INC
(Siri), which are in the area of microprocessor, electronic computers, finance, routing
system, department stores, broadcasting and cable TV; they cover different business.
The summary of the data can be found in Table3 and Fig. 2. Table4 presents the
correlation and covariance matrix of the stocks. It can be seen that the correlation
among stocks are generally significant and positive.

For each firm, we collected the data from the annual report (2004–2014) to con-
struct the following variables: log of total asset (the size of the firms), and the firm’s
return on equity (ROE), defining as net income divided by shareholder’s equity
(total asset minus liability), which represent a firm’s profitability revealing the profit
a company generates with the money that the shareholders have invested in. For the
last eight months in 2014, we used the quarterly report instead of the annual one if
the annual report had not been published on time. And for the third variable lag in
one-year return (lagret), we used the return in the same month of last year. For every
characteristics variable, we standardized them into zero mean and unit standard devi-
ation. Similar characteristics are commonly used in the literatures [9, 10]. Figure3,
with three sub figures provides further details about the firm-level data.

4.2 The Results of Out-of-Sample Forecasts

We compared the performance of the above portfolio allocation models, they are
MV1 efficient method (with minimizing variance functions); MV2 efficient method

Table 3 The description of six stocks

AMD APPL BOA CISCO JCP SIRI

Mean −0.43 0.51 −0.57 −0.01 −0.33 0.09

Min −21.59 −83.32 −33.04 −10.37 −18.91 −36.80

Max 18.30 13.11 23.72 8.99 18.44 33.99

S.D 7.44 9.02 6.72 3.43 5.87 8.09

Skewness −0.10 −6.51 −1.38 −0.20 −0.18 −0.30

Kurtosis 0.14 56.53 6.88 0.42 0.96 5.49

JB statistics 0.39 18402.32 303.92 2.04 6.27 169.00

Probabiltiy 0.82 0.00 0.00 0.36 0.04 0.00
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Fig. 2 The return of six stocks from 2004 to 2014

Table 4 The correlation and covariance of six stocks

AMD APPL BOA CISCO JCP SIRI

AMD X 9.690 14.917 13.980 15.926 22.568

APPL 0.144 X 4.037 5.042 6.206 14.566

BOA 0.298 0.066 X 9.283 11.969 17.662

CISCO 0.547 0.162 0.402 X 8.504 9.193

JCP 0.364 0.117 0.303 0.422 X 13.917

SIRI 0.374 0.199 0.324 0.331 0.293 X

Note The upper triangle is the covariance matrix, the lower triangle is the correlation matrix

Fig. 3 The three firm characteristics: size, ROE and lag return (Note From left to right, they are
size, ROE and lag return, respectively)

(with minimizing variance and set a certain target); naive method (equally weighted
portfolio) and CE1 (with short-selling constraints), GCE2 (with firm characteristics).
In the MV1 method, the optimizing problem is built as:

min(π ′ ∑ π) s.t. π ′ R = μ̄ (14)
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And in the MV2 method, the objective function(criterion) changes into:

min(π ′ ∑ π) (15)

With the help of program GAMS to handle the optimization problem [19], in order
to analyze the portfolio performance with different methods we used the “rolling
window” scheme. We considered two window lengths, W = 25, 49months, they are
two and four year time span. To evaluate the performance of each model, we used
two evaluation measures; they are the Sharpe ratio (SR) and the certainty equivalent
return (CEQ). The Sharpe ratio is widely used in finance, generally speaking, it is
the ratio between the portfolio mean and standard deviation. Therefore, the meaning
is very clear, when there is a greater number, the portfolio becomes better since it
has higher return but lower risk [20, 21]. The equation is the following:

Sharpe Ratio = 1

T − W

T
∑

t=W

π̂ ′
t m̂t

(π̂ ′
t

ˆ∑

t π̂t )1/2
(16)

CEQ = π̂ ′
t R − λ

2
π̂ ′

t
ˆ∑

t

π̂t (17)

Here the only unknown parameter is λ. Actually we should evaluate portfolio per-
formances by several different risk aversion parameter to represent different groups,
λ can be any number in (0, 1), when λ approach to zero, the investor is the risk-lover,
when λ approach to one, the investor is risk adverse. We present the results of λ = 1
due to the results are not much different. In Table5, we show the rolling window
length W = 25 and 49. And the portfolio weights are plot in Fig. 3. There are some
interesting findings: first, CE performs the best in terms of both SR and CEQ among

Table 5 The in-sample and out-of-sample forecasts

In-Sample(25)

Measures Naive MV1 MV2 CE1 GCE1 CE2 GCE2

SR 0.229 0.206 0.645 0.400 0.476 0.371 0.466

CEQ −5.016 −2.114 −2.535 −1.876 −1.874 −2.063 −2.062

Out-of-Sample(25)

SR −0.078 −0.106 −0.022 −0.082 −0.117 −0.072 −0.127

CEQ −10.079 −12.201 −10.607 −9.681 −9.631 −8.561 −10.630

In-Sample(49)

SR −0.036 0.088 0.294 0.129 0.137 0.103 0.104

CEQ −7.253 −4.283 −6.186 −2.366 −2.372 −2.603 −2.597

Out-of-Sample(49)

SR −0.057 −0.141 −0.069 −0.127 −0.050 −0.132 −0.048

CEQ −12.403 −22.081 −29.609 −23.062 −13.609 −23.581 −14.976
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Fig. 4 The weights of optimal portfolios using different models

all considered models for in-sample case. Second, the out-of-sample of traditional
MV method are not good, compared with the CE1 and GCE2. These results agree
with those of Jorion [7], he compares the MV method with other nonparametric
methods. Third, the results of out-of-sample forecasting are generally worse than the
in-sample one and the naive method is better than others (Fig. 4).
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The out-of-sample CEQ of CE1 for r = 1.1, W = 24 is −8.561 which is the
highest value among all considered models. On the other hand, the poor out-
of-sample performance of GCE2 shows that choosingMV portfolio with minimizing
variance as q is not enough to improve the performance. As we increase the window
length W from 25 to 49, we find that CEQ values of MV1 are lower than that of CE1
(Table5). This better performance of MV is due to increased accuracy of the sample
covariance estimates with relatively larger number of observations. For larger value
of W, the performance of CE2 is also much improved due to firm characteristics
variable and shrinkage towards the equal weights. When W = 49, GCE2 (r = 1) has
the better out-of-sample SR and CEQ than C E1.

5 Conclusion

This paper applies maximum entropy estimation in portfolio selection of six stocks,
while accounting for the firm characteristics which complements the work of Bera
and Park [11] proposing the cross entropy measure to portfolio diversification. This
method combines the idea of shrinkage and firm characteristics variable, and over-
comes the disadvantage of traditional Markowitz MV method. When the sample
mean and variance are estimated incorrectly, it usually makes the portfolio concen-
trates on some stock and creates poor out-of-sample performances.

When we introduced the idea of firm characteristics to estimate the portfolio
optimization using generalized cross entropy, the firm specific information about the
stocks are brought into estimation. Furthermore, the cross entropy can be thought
of as a direct shrinkage to the benchmark weights or MV portfolio weights. We
also simplified the previous works and adopted an easy utility value instead of the
bootstrap one. Although our method is simple, our empirical results show that it is
equally efficient.

Moreover, in the empirical study, we analyzed the portfolio including six stocks.
The results show that the Cross Entropy based model outperforms the traditional
MV method; this demonstrates the model produces a better out-of-sample forecast.
Although it is not better than the naive method, it can serve as a alternative tool in
portfolio selection for investors, stock managers, and shareholders in the future.
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Risk, Return and International Portfolio
Analysis: Entropy and Linear Belief
Functions

Apiwat Ayusuk and Songsak Sriboonchitta

Abstract In this study, we analyze the international portfolio with respect to risk
and return aspects.We applied entropymethods to find the optimal portfolio weights.
In this method, we used entropy as the objective function and we also compared our
results with the conventional method. Moreover, we use the linear belief function to
build a portfolio, which can represent market information and financial knowledge
and then we use matrix sweepings to integrate the knowledge for evaluating portfolio
performance. Overall, our empirical analysis indicates that all entropy methods per-
formed better thanMarkowitz method, and the finding also suggests that the investor
should take the benefit from ASEAN market.

1 Introduction

Risk and return are important factors when investing in the capital market. According
to the risk and return trade-off, the capital invested in the market cannot make higher
returns without the possibility of investment loss. In classical work, Markowitz [14]
is a well-known for the foundation of modern portfolio theory; which is mean and
variance based method to find the optimal portfolio weights. Several researches
were extensively studied in both theoretical and empirical works. (See, Tobin [19],
Markowitz [15], Hakansson [6], Zenios and Kang [20], Konno and Kobayashi
[10], etc.)

The modern world of economic globalization has a quick changing impact on
the capital markets that contributed to an increase in international capital flow
across countries. Many researches on topics related to international diversifica-
tion, including Cavaglia et al. [1], Li [18], Fletcher and Marshall [4], Chiou [2]
and Herrero and Vzquez [7] recommend that international diversification improves
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portfolio performance. During the last decade, The Chinese economy has been
rapidly developed and played an important role in Asia and the world. Jayasuriya [8]
found evidence that the stock market behavior of China had an impact on the stock
market behavior of the East Asia and Pacific. Zhou et al. [21] found that the impact
of the Chinese stock market on Asian markets had become increasingly powerful
after 2005. Glick and Hutchison [5] also found that the strength of the correlation
of stock markets between China and other Asia countries has increased markedly
during 2008–2010 and has remained high in 2010–2012. In 2015, the ASEAN Eco-
nomic Community (AEC)will induce regional economic integration, which provides
a competitive advantage and economic benefits. Hence, to take advantage of invest-
ment diversification an international level, this study focuses on the stock markets in
ASEAN, China and The U.S., which is the world major stock market.

In our review of the literature, we found two specific research questions. First,
what is the most efficient tool for portfolio allocation under international risk and
return strategy? Second, which portfolio should we invest in? Therefore, the primary
objective of this research is to suggest new portfolio selectionmethods under risk and
return using an information theory to select the optimal portfolio and the linear belief
function to combine evidence. The secondary objective is to evaluate international
portfolio performance.

The remainder of this paper is organized as follows. We give more details about
the portfolio optimization methods and portfolio analysis in the system of the linear
belief function in Sect. 2. We examine the data selection, descriptive statistics and
the results of portfolio analysis in Sect. 3. Finally provides a brief conclusion.

2 Methodology

2.1 Portfolio Selection Methods

In this section we present four different methods to determine the optimal portfolio
based on risk-return framework. The basic notations are defined by: ri,t is the return
of market i at time t, μi is the expected return of market i, σi,j is the covariance
between the market of i and j, pi and pj are the weights assigned to markets i and j,
μp is the expected return of portfolio, σ 2

p is the portfolio risk.Whilem denote number
of markets in portfolio, then expected return and variance of return of portfolio can
be described by μp = ∑m

i piμi and σ 2
p = ∑m

i=1
∑m

j=1 pipjσi,j respectively.

2.1.1 Mean-Variance Markowitz Method

The conventional work of MV method is well known for the portfolio optimization
approach. The goal of an investor is to find the optimal weight determinations in a
portfolio by minimizing risk subjecting to the expected return of the portfolio being
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greater than or equal to risk free rate. The problem can be stated as:

Minimize σ 2
p

st.
m

∑

i

piμi ≥ μ0,

m
∑

i

pi = 1 (1)

2.1.2 Mean Entropy Method

Entropy is a one of the methods to measure uncertainty in random variables. This
study uses the Shannon entropy, S(p) = −∑m

i piln(pi) under the principle of max-
imum entropy introduced by Jaynes [9]. The optimization problem is to choose the
probability (or weight) in a portfolio by maximizing entropy function subject to the
expected return (mean) of the portfolio being greater than or equal to risk free rate.

Maximize −
m

∑

i

piln(pi)

st.
m

∑

i

piμi ≥ μ0,

m
∑

i

pi = 1 (2)

2.1.3 Mean-Variance Entropy Method

As the constraint of the principle of maximum entropy can be flexible, then we
can provide more information. This optimization problem becomes maximizing the
Shannon entropy subject to the expected return condition and the risk limitation
strategy.

Maximize −
m

∑

i

piln(pi)

st.
m

∑

i

piμi ≥ μ0,

m
∑

i=1

m
∑

j=1

pipjσi,j ≤ σ 2
p ,

m
∑

i

pi = 1 (3)

2.1.4 Sharpe Ratio Entropy Method

The Sharpe ratio is introduced by Sharpe [16] to measure the portfolio performance
that is described in unit of return per unit of risk. Therefore, we propose this
methodology based on the Sharpe ratio into the principle of maximum entropy. The
optimization problem ismaximizing the Shannon entropywith an additional criterion
of excess return per unit of risk.
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Maximize −
m

∑

i

piln(pi)

st.
μp

σp
≥ μ0

σ0
,

m
∑

i

pi = 1 (4)

After we complete the solutions from each method, we use the Sharpe ratio to
compare the performance of the portfolio selection methods.

2.2 Linear Belief Function

According to Dempster [3] and Liu [11], Linear belief functions is a special type
of belief functions in expert system such as linear equations, linear regressions and
Kalman filters, and also including Gaussian distributions that explain probabilistic
knowledge on a set of variables in the continuous case. Liu et al. [13] used matrix
sweepings to combine information from the linear belief function. In this study, we
extended by using the linear time series belief function. Consequently, this study
considers the linear time series to model portfolio investment by using the reduced
form vector autoregressive (VAR) model with market returns as follows:

ri,t = Φ0 + Φ1ri,t−1 + et (5)

where ri,t = [r1,t, r2,t, r3,t]′ is a 3 × 1 market return vector at time t that consists
of ASEAN (AS), Chinese (CN) andU.S. markets, respectively.Φ0 is a 3×1 vector of
intercepts, Φ1 is a time-invariant 3×3, et is a 3×1 vector of error terms and assume
Gaussian distribution et ∼ N(0,Σ)with satisfying E(et) = 0, E

(

et, e′
t−1

) = 0 is no
serial correlation in error term and E

(

et, e′
t

) = Σij is the variance-covariance matrix
of error term that allowing non-zero correlation between error terms. The parameters
of the VAR model can be estimated consistently by the OLS method when sample
size is large. We construct a graphical structure for international portfolio analysis
as follows:

InFig. 1weused the linear relationship fromaVARmodel combiningwith optimal
portfolioweight to construct a graphical structure of international portfolio. There are
ten variable nodes: ASt, CNt, USt, ASt−1, CNt−1, USt−1, EASt , ECNt , EUSt , P and
ten belief function nodes. Four linear belief functions represent the relationship
between the variables, e.g. Bel(ASt, ASt−1, CNt−1, USt−1, EASt ) is a linear belief
function of the ASEAN return that depended on the first lag of past returns of itself,
China, and the U.S. and a residual variable. Bel(P, ASt, CNt, USt) is a linear belief
function of portfolio return that is integrated with three market returns and opti-
mal portfolio weights from best methods. And six linear belief functions represent
an individual variable, e.g. Bel(EASt ) is the true value of a residual variable from
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Fig. 1 A graphical structure of international portfolio

first function. Thus, we can analyze the linear belief function into the moment matrix
approach.

The concept of Dempster’s rule used to combine multiple focal elements that
are independent evidence from several sources. Liu [11] proved the combination
rule in Gaussian linear belief function of variable space was equivalent to that of
Dempster [3]’s for continuous case. Liu [12] also proved that combination and mar-
ginalization of Gaussian linear belief function satisfies the axioms of Shenoy and
Shafer [17] and showed Dempster’s rule for the combination could be interpreted by
matrix sweepings.

According to thematrix sweeping technique forGaussian linear belief function is a
matrix operation or amatrix transformation that including forward sweep and reverse
sweep to consider. We can sweep a matrix from variance and covariance matrix
move to conditional representation. Let ri be a random variable representing the
market returns that are assuming Gaussian distribution with expected mean: E(ri) =
μi, variance: Var(ri) = Σii and covariance Cov(ri, rj) = Σij, i, j = 1, 2, . . . , n,

then we can write the moment matrix as m =
(

μj

Σij

)

, This matrix represents the

distribution of the randomvariables.We can define the operation onmomentmatrices
by definitions below.

Definition 1 (Marginalization) Liu [12], the marginalization of a linear belief func-
tion is simply a projection in variable space. Let r1 and r2 are two random variables
in the moment matrix: m(r1, r2), its marginal to r1 as

m↓r1(r1, r2) =
(

μj

Σij

)

(6)

where m↓r1 is the marginalization of the moment matrix that represent to the
conditional moment matrix of linear regression coefficient.

Definition 2 (Forward sweep) Liu [12], Forward sweeping is the transformation of
the moment matrix to be the conditional moment matrix. Let n market returns in
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portfolio and then we can operate a forward sweep of m(r1, , rn) from rs as follows:

m(r1, . . . , rs−1,
−→rs , rs+1, . . . , rn) =

(

μj,s

Σij,s

)

(7)

where

μj,s =
{

μj − μsΣ
−1
ss Σsj, for j �= s

μsΣ
−1
ss , for j = s

Σij,s =

⎧

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎩

−Σ−1
ss , for i = s = j

ΣisΣ
−1
ss , for j = s �= i

Σ−1
ss Σsj, for i = s �= j

Σij − ΣisΣ
−1
ss Σsj, for otherwise

Definition 3 (Reverse sweep) Liu [12], Let n market returns in portfolio and then
we can operate a reverse sweep of m(−→r1 , ,−→rn ) from rs as follows:

m(−→r 1, . . . ,
−→r s−1, rs,

−→r s+1, . . . ,
−→r n) =

(

μj,s

Σij,s

)

(8)

where

μj,s =
{

μj − μsΣ
−1
ss Σsj, for j �= s

−μsΣ
−1
ss , for j = s

Σij,s =

⎧

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎩

−Σ−1
ss , for i = s = j

−ΣisΣ
−1
ss , for j = s �= i

−Σ−1
ss Σsj, for i = s �= j

Σij − ΣisΣ
−1
ss Σsj, for otherwise

Definition 4 (The combined linear belief function) Liu [12] The combination of two
linear belief functions is the sum of fully swept matrices: −→m = −→m1 ⊕ −→m2 and then
we can write this combination as follows:

−→m = −→m1 ⊕ −→m2 =
(−→μ1 + −→μ2−→

Σ1 + −→
Σ2

)

(9)

3 An Application to International Portfolio Evaluation

The research is performed as follows: Firstly, we calculate the optimal weights of
international portfolio. There are differentmethods to optimize the portfolio selection
problem; Mean-Variance Markowitz (MV) method, Mean Entropy (ME) method,
Mean-Variance Entropy (MVE) method. Secondly, we use the Sharpe ratio to mea-
sure the portfolio performance and select the best performance method. Thirdly, we
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Fig. 2 The Optimal portfolio weight for four methods

construct the network of portfolio structure by using linear time series belief func-
tion. Finally, applying matrix sweepings to integrate the knowledge and information
from second and third to evaluate the portfolio performance.

We collected daily data from January of 2009 to December of 2013 from Data
Stream.Asmentioned before, we considered a portfolio selection problem from three
attractive markets, which are ASEAN (FTSE/ASEAN index), China (The Shanghai
Composite index) and the U.S. (The S&P 500 index) markets.

Figure2 presents the optimal weights of portfolios that are computed from four
different methods. Table1 presents the performances of the portfolio selection meth-
ods. From the results of Sharpe ratios, ME, MVE and SRE perform better than MV.
MVE is better than other considered methods. Its optimal weights are 34.0%, 32.6%
and 33.4% in ASEAN, China and The U.S. markets respectively.

Table2 shows the results of the parameter estimates in a VARmodel. It represents
the relationship between international markets, which should have an influence on
each other. The results show that the first lag of theU.S. has high influence inASEAN
and China.

According to the financial information and market knowledge from the above
results, we useMVE to optimize the portfolio weights because this method performs
better than others. The optimal weight can represent by using the partially swept

Table 1 Comparison results for the portfolio selection methods

Methods Portfolio returns Portfolio variance Sharpe ratios

MV 0.000549 0.000145 0.0373

ME 0.000421 0.000066 0.0396

MVE 0.000424 0.000065 0.0402

SRE 0.000421 0.000066 0.0396

MV Mean-Variance Markowitz method, ME Mean Entropy method,
MVE Mean-Variance Entropy method, SRE Sharpe Ratio Entropy method
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Table 2 Estimates of a VAR model

Methods ASEAN China U.S

ASEAN(−1) −0.010810 −0.067352 0.004051

[0.02801] [0.04710] [0.04308]

China(−1) −0.040520 0.002412 0.015236

[0.01770] [0.02977] [0.02722]

U.S.(−1) 0.330312 0.221640 −0.092744

[0.01870] [0.03145] [0.02876]

Constant 0.000431 0.000031 0.000596

[0.00022] [0.00037] [0.00033]

R-squared 0.202821 0.036987 0.008427

Schwarz SC −6.846264 −5.806809 −5.985372

In parentheses are standard errors of the coefficient estimates

matrix as

m(P,
−→
ASt,

−→
CNt,

−→
USt) =

⎛

⎜

⎜

⎜

⎜

⎝

0 0 0 0
0 0.3403 0.3255 0.3255

0.3403 0 0 0
0.3255 0 0 0
0.3255 0 0 0

⎞

⎟

⎟

⎟

⎟

⎠

(10)

Figure1 Bel(ASt, ASt−1, CNt−1, USt−1, EASt ), we can define by the partially swept

matrix from the first equation in a VARmodel, m(ASt,
−→
ASt−1,

−→
CNt−1,

−→
USt−1,

−→
E ASt )

with Var(eASt ) = 0.00006 is a variance of residual and Cov(eASt , eCNtt ) = 0.00004,
Cov(eASt , eCNt ) = 0.00004 are covariance of residual as follows:

m(ASt,
−→
ASt−1,

−→
CNt−1,

−→
USt−1,

−→
E ASt )

=

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

0.000431 0 0 0 0 0 0
0 −0.01081 −0.04052 0.33031 1 1 1

−0.01081 0 0 0 0 0 0
−0.04052 0 0 0 0 0 0
0.33031 0 0 0 0 0 0

1 0 0 0 0.00006 0.00004 0.00004
1 0 0 0 0.00004 0 0
1 0 0 0 0.00004 0 0

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

(11)

Therefore, to analyze the portfolio performance when the markets are related by
using the linear belief function. We use six step method of Liu, Shenoy and Shenoy
[13] to integrate knowledge using the combination of matrix sweeping.
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Table 3 The results for
moment matrix in portfolio

Portfolio ASEAN China U.S

Return 0.000584 0.0005942 0.000110 0.000551

Var-Cov 0.000051

0.000058 0.000077

0.000007 0.000011 0.000180

0.000031 −0.000005 −0.000003 0.000146

Sharpe ratio 0.067433

Table3 presents portfolio performance using the linear belief function. The result
shows risks and returns in a portfolio: theASEANreturn 0.0594% is highest, the stan-
dard deviation of ASEAN 0.8775% is smallest, and the portfolio return is 0.0584%
with the standard deviation 0.7141%.

4 Conclusions

This study provided empirical example for ASEAN, China and the U.S. markets
between January 2009 and December 2013. We use three entropy methods base on
Sharnon measure, which are ME, MVE and SRE, to select the optimal weights and
compare its performances with conventional method, which is MV. Moreover, we
use the linear belief function to extend portfolio evaluation because the belief func-
tion method can allow us to add information on the conditions of the relationship
between international markets. There are two main findings from this study. First, all
entropy methods perform better than MV because the entropy method well handles
uncertainty information from simulations. Moreover, we found that MVE has higher
performed than ME and SRE since MVE has added more information in constrains.
Second, after integrating the information between the optimal portfolio strategy and
international market relationship using linear belief function, we found that the port-
folio risk is decreased and the portfolio return is increased. This implies that the
relationship of international markets affects portfolio performance and this finding
suggests that an investor should increase the investment proportion in the ASEAN
market.
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Forecasting Inbound Tourism Demand
to China Using Time Series Models
and Belief Functions

Jiechen Tang, Songsak Sriboonchitta and Xinyu Yuan

Abstract Modeling uncertainty is a key issue in forecasting. In the tourism area,
forecasts are used by governments, airline companies and operators to design tourism
policies and they should include a quantification of uncertainties. This paper pro-
posed a new approach to forecast the tourism demand, which is time series models
combined with belief functions. We used this method to predict the demand for
China international tourism, with an explicit representation of forecast uncertainty.
The monthly data of international tourist arrival cover the period from January 1991
to June 2013. The result show that time series models combined with belief functions
is a computationally simple and effective method.

1 Introduction

In the last three decades, a large number of studies focused on tourism demand
forecasting. The forecasting methods that have remained the most popular over the
years in tourism are Times series models, which explain a variable with regard to its
own past and a random disturbance term (e.g., [1–9]). Although these empirical can
forecast the tourism demand, they do not consider the some measure of uncertainty.
In order to fill this drawback, the purpose of this paper is to demonstrate the use of
time series models combined with belief functions to forecast Chinese international
tourism demand.

China has become one of most important tourism destinations among the world
tourism. According to UNWTO Tourism Highlights [10], China ranks third in
the world by arrivals with 57.7 million. Furthermore, China shares 5.57% tourist
arrivals in the world’s market of 2012. Since Deng Xiaoping’s economic reforms
in 1978, inbound tourism demand, or tourism arrivals, to China has experienced
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dramatic changes due to economic reform and political environment.1 Specially,
China international arrivals reached 57.7 million in 2012, up from 55.89 million in
1978. This information highlights that China inbound tourismmarket play important
role in international tourism industry. Hence, we select China to study.

This paper is organized as follows. Section2 briefly introduces ourmethodological
approach, including time series models and belief functions. Section3 presents a
study of several time series models applied to tourism data. The prediction method
using time series models and belief functions is then investigated in Sect. 4. Finally,
conclusions are presented in the last section.

2 Methodology

2.1 Time Series Models

In the past four decades, time series models have been widely used for tourism
demand forecasting [5]. In this study, three different time series models were applied
to forecast the monthly Chinese international tourist arrivals: Autoregressive inte-
gratedmoving average (ARIMA), seasonal autoregressive integratedmoving average
(SARIMA) and generalized autoregressive conditional heteroskedasticity (GARCH)
models.

The general expression of an ARIMA(p, d, q) model is the following:

φ(L)Δd yt = c + θ(L)εt (1)

where L is the backward-shift operator, φ(L) = (1 − φ1L1 − φ2L2 − · · · − φp L p)

is a regular autoregressive polynomial, θ(L) = (1 + θ1L1 + θ2L2 + · · · + θq Lq)

is a regular moving average polynomial, Δd is the regular difference operator, εt is
an independent and identically distributed innovation term. The seasonal ARIMA
(p, d, q) model can be written as SARIMA(p, d, q) × (P, D, Q), defined by the
following expression:

Φs
(

Ls) φ (L) ΔD
s Δd yt = c + Θs

(

Ls) θ (L) εt (2)

whereΦs (Ls)= (

1 − Φ1s L1s−Φ2s L2s− · · · −ΦPs L Ps
)

is a seasonal autoregressive
polynomial, Θs (Ls) = (

1 + Θ1s L1s + Θ2s L2s + · · · + ΘQs L Qs
)

a seasonal mov-
ing average polynomial, ΔD

S is the seasonal difference operator, s is the periodicity
of the considered time series.

1 Although the founding of New China is in 1949, the ban on inbound travel for any purpose
was enforced between 1949 and 1976. Since Deng Xiaoping’s economic reforms in 1978, inbound
tourism in China rapidly developed due to change in this policy (Lim and Pan [11]).
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The general expression of the ARIMA(p, d, q) -GARCH(P, Q) model [12] can
be written as:

φ(L)Δd yt = θ(L)εt

σ 2
t = α0 +

P
∑

i=1

αiε
2
t−i +

Q
∑

j=1

β jσ
2
t− j (3)

εt = ztσt

where r is the lag length of the moving average ARCH term, m is the lag length of
the autoregressive GARCH term, σt is the conditional variance of volatility of εt , αi

is the ARCH parameter associated with ε2t−i , β j is the GARCH parameter associated
with σ 2

t− j ,αi and β j are required to be positive, and zt to be the standardized residual.
The sum

∑

αi + ∑

β j should be less than unity to satisfy stationary conditions.
In order to apply these three models with forecasting purposes, we designed an

algorithm that identifies that best suited model, including the necessary number of
differences D and d and the number of lags that should be included in the model.
Following [5], the best-fit models were identified based on the lowest Akaike Infor-
mation Criteria (AIC).

2.2 Likelihood-Based Belief Function

In this section, we followed Denoeux [13], Abdallah et al. [14] and Kanjanatarakul
et al. [15] to recall the definition of a belief functions from the likelihood function
and its justification. Let x ∈ X denote the observable data, ϕ ∈ Ψ the parameter of
interest and fϕ(x) the probability mass or density function of X .

Denoeux [13] proved that the least committed belief function verifying plx (φ) ∝
Lx (φ) is the consonant belief function BelΨx , whose contour function is the relative
likelihood function2:

plx (ϕ) = Lx (ϕ)

supϕ′∈Ψ Lx (ϕ′)
(4)

2 According to the likelihood principle, Lx (φ) is the likelihood function defined by Lx (φ) = ξ fφ(x),
for all φ ∈ Ψ , where ξ is any positive multiplicative constant. On the basis of compatibility with
Bayesian inference, the contour function plx (φ) associated to BelΨx should be proportional to the
likelihood function: plx (φ) ∝ Lx (ϕ). More details can be found in Denoeux (2014).
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This belief function is called the likelihood based belief function on Ψ induced
by x . From plx (φ), we compute the corresponding plausibility function as:

PlΨx (A) = sup
ϕ∈A

plx (ϕ) (5)

where all A ∈ Ψ . The focal sets of BelΨx are the levels sets of plx (φ), defined as:

Γx (ω) = {ϕ ∈ Ψ |plx (ϕ) ≥ ω} (6)

whereω ∈ [0, 1]. The setsΓx (ω) are called plausibility regions and can be interpreted
as sets of parameter values whose plausibility is greater than some threshold ω

Denoeux [13]. According to Nguyen [16], the belief function BelΨx is equivalent to
to the random set induced by the Lebesgue measure λ on the [0, 1] and the multi-
valued mapping Γx form [0, 1] to 2Ψ . In particular, the following equalities hold:

BelΨx (A) = λ ({ω ∈ [0, 1] |Γx (ω) ⊆ A})
PlΨx (A) = λ

({

ω ∈ [0, 1] |Γx (ω) ∩A �= ∅
})

(7)

for all A ⊆ Ψ such that the above expressions are well-defined.

3 Estimation and Comparison of Time-Series Models

3.1 Data Description

The data set examined in this study is monthly total tourist arrivals in China.3 The
data used in this study are monthly inbound tourist arrivals in China from January
1991 to June 2013, which are obtained from EcoWin. Figure1 shows that monthly
international tourist arrivals exhibit a deterministic pattern of long-termupward trend.
Note that the number of tourist arrivals has been increasing and the series appear
to be non-stationary in that the mean is increasing over time. In order to satisfy the
assumption of constant error variance, we first transformed the data using the log
transformation.

To analyze China’s inbound tourism demand, the descriptive statistics of the
international tourist arrivals and logarithm international tourist arrivals are reported
in Table1. From Table1, we find that the means of the international tourist arrivals
and logarithm international tourist arrivals are 7485.7050 and 8.8194, respective.
Second, JB test (Jarque and Bera [17]) show that the international tourist arrivals
and logarithm international tourist arrivals are rejected to be normally distributed at

3 Total tourist arrivals are all those traveling China on non-Chinese passports, include holders of
Hong Kong, Macau and Republic of China (Taiwan) passports and travel documents.
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Fig. 1 Monthly international tourist arrivals to China

Table 1 Summary statistics of international tourist arrivals (in thousands) and result of unit root
test

Data description

Mean Maximum Minimum Skewness Kurtosis JB

yt 7485.7050 12276.7000 2392.8000 −0.1174 1.5057 25.7393***

ln(yt ) 8.8194 9.4155 7.7802 −0.4914 1.8267 26.3524***

Unit root test

ADF KPSS

ln(yt ) Δ ln(yt ) ln(yt ) Δ ln(yt ) ln(yt ) Δ ln(yt )

2.0588 −3.5802*** 2.0588 −3.5802*** 2.0588 −3.5802***

Note JB is JarqueBera test. ln(yt ), Δ ln(yt ), ΔΔ12 ln(yt ) denote logarithm monthly tourist arrivals,
first difference of logarithmmonthly tourist arrivals andfirst-twelfth difference of logarithmmonthly
tourist arrivals, respectively. This table shows the values of t-statistics and LM-statistics for ADF
and KPSS unit root tests, respectively. ***, ** and * denote rejection of the null hypothesis at the
1%, 5%, and 10% significance levels, respectively

the 1% significance level, inferring that the normal distribution is not appropriate to
model international tourist arrivals and logarithm international tourist arrivals.

Moreover, QQ plot is plotted in Fig. 2, which also suggest tourist arrivals, is not
normally distributed. Hence, we introduced the student-t distribution in the time
series models and belief functions.

3.2 Empirical Results

The most popular time series models to forecast tourism demand are ARIMA
and SARIMA. Although the ARIMA-GARCH model is uncommon in tourism
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Fig. 2 QQ Plot of tourist arrivals

forecasting studies, it has been very popular in forecasting research in Finance.
Hence, the ARIMA, SARIMA, and ARIMA-GARCH models have been consid-
ered. It is rare for the order (P, Q) of a GARCH model to be high, indeed the liter-
ature suggests that the parsimonious GARCH(1, 1) is often adequate for capturing
volatility in time series data (Coshall [18]). For that reason, we used the ARIMA-
GARCH (1, 1). This study follow the Box-Jenkins methodology to identify the most
suitable ARIMAand SARIMA,ARIMA-GARCH(1, 1)models based on the estima-
tion sample for tourist arrivals series.4 The autocorrelation function (ACF) and partial
autocorrelation function (PACF) were used to select the order of ARIMA, SARIMA
and ARIMA-GARCH (1, 1) models. In additional, the best-fit models were identi-
fied based on the lowest AIC. In the ARIMA model and ARIMA-GARCH model,
monthly tourist arrivals are processed by taking the first-order regular difference
(denoted by ∇1) in order to remove the growth trend and make sure the data is
stationary. In the SARIMA model, monthly tourist arrivals are processed by taking
the first-order regular difference (denoted by ∇1) and the first seasonal differencing
(denoted by ∇1

12) in an effort to remove the growth trend and the seasonality char-
acteristics and make sure the data is stationary. The best-fit ARIMA, ASRIMA and
ARIMA-GARCHmodels for monthly tourist arrivals in China were estimated using
on maximum likelihood estimation procedure. For monthly tourist arrivals series,
the best fit of ARIMA, SARIMA and ARIMA-GARCH models generated from the
datasets are presented below:

4 Training data (insample data) is form January 1991 to June 2012. The remaining period from July
2013 to June 2013 are testing data (out-of-sample data).
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ARIMA model:
(

1 − φ1L1 − φ3L3 − φ12L12 − φ13L13 − φ15L15 − φ24L24
)

Δ1 ln yt

=
(

1 + θ2L2 + θ6L6 + θ12L12
)

εt

SARIMA model:
(

1 − φ1L1
) (

1 − Θ12L12
)

Δ1Δ1
12 ln yt =

(

1 + θ1L1
)

εt

ARIMA-GARCH model:
(

1 − φ12L12
)

Δ1 ln yt =
(

1 + θ1L1 + θ12L12 + θ13L13
)

εt

σ 2
t = c + α1ε

2
t−1 + β1σ

2
t−1

where εt follows a Student-t distribution.
The results of the best-fit ARIMA, ASRIMA and ARIMA-GARCH models are

given in Table2, where the estimated parameters providing all of the AR and MA
terms are statistically significant at the 10% level. In order to confirm the adequacy of
the selected models, we used the ACF and PACF diagnostic correlograms as well as
theLjungeBox (LB) test to verify that the residuals can be considered as independent.
As shown in Table1, the p-value of the LB test is greater than 0.05. Therefore, we
cannot reject the null hypothesis that the residual are independent.Moreover, we used
QQ plots to check that the residuals have approximately a student-t distribution.5

It is important to check the forecasting accuracy of three selected models using
out-of-sample data between July 2012 and June 2013. The overall forecasting perfor-
mances of SARIMA,ARIMAandARIMA-GARCHare shown in Table3 of PanelA.
Along with these three modes, the forecasts with minimal absolute forecast error are
bold-faced. Except July, August and October of 2012, and March of 2013, SARIMA
is the best model for all other monthly forecasts. Moreover, accurate forecast is very
important for business planning. A variety of measures have been used to assess
forecasting accuracy on studies of international tourism demand The mean absolute
percentage error (MAPE) and the root mean squared percentage error (RMSPE) are
amongst themost commonly usedmeasures of errormagnitude.Hence,we used these
measures to assess forecasting accuracy (out-of-sample) in this study.6 MAPE and
RMSE measures were used to compare the accuracy of the forecasts obtained from
SARIMA, ARIMA and ARIMA-GARCH models were given in Table3 of Panel B.
Numerical results obtained from the best model are bold-faced. From the Panel B
of Table3, we found that the MAPE of ARIMA, SARIMA and ARIMA-GARCH

5 The QQ plots of error term are available on request.
6 The MAPE and RMSE are defined as:

MAPE = 1

K

N+K
∑

t=N+1

∣

∣

∣

ŷt −yt
yt

∣

∣

∣ × 100,RSME =
√

1

K

N+K
∑

t=N+1

(

ŷt − yt
)2.
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Table 2 Results of best-fit ARIMA, ASRIMA and ARIMA-GARCH models for monthly tourist
arrivals

Dependence variable: ln(tourist arrival)

ARIMA(p, 1, q) SARIMA(p, 1, q) × (P, 1, Q)12 ARIMA(p, 1, q)-GARCH(P, Q)

Explanatory
variables

Coefficients Explanatory
variables

Coefficients Explanatory
variables

Coefficients

φ1 −0.5143*** φ1 0.3933*** φ12 0.9781***

(0.0453) −0.082 −0.0148

φ2 −0.0782** Θ12 −0.4212*** θ1 −0.6150***

(0.0375) −0.0537 −0.0491

φ12 0.6826*** θ1 −0.8637*** θ12 −0.7315***

(0.0490) −0.0435 −0.0425

φ13 0.4315*** DoF 2.7755*** θ13 0.4389***

(0.0455) −0.5112 −0.0541

φ15 0.0834** Variance 0.0704*** c 0.0001*

(0.0351) −0.0046 0

φ24 0.2035*** α1 0.1275**

(0.0424) −0.0586

θ2 −0.3992*** β1 0.8375***

(0.0476) −0.0577

θ6 −0.1833*** DoF 4.0651***

(0.0504) −0.0586

θ12 −0.2380***

(0.0581)

DoF 2.5880***

(0.5461)

Variance 0.0049**

(0.0019)

AIC −789.5928 AIC −787.6734 AIC −782.3853

BIC −746.4117 BIC −766.0829 BIC −753.5979

LB(10) 0.4274 LB(10) 0.2744 LB(10) 0.6079

Note ∗, ∗∗, and ∗∗∗ indicate that the test is significant at the 0.10, 0.05, and 0.01 significance level,
respectively. Stand errors of the coefficients are in parentheses

models were 4.32, 3.75 and 4.77, respectively. Moreover, the RMSE measures were
545.36 (ARIMA), 485.67 (SARIMA) and 583.79 (ARIMA-GARCH). These results
indicated that the SARIMA model outperforms the ARIMA and ARIMA-GARCH
models in terms of forecasting accuracy.
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Table 3 Forecasting performance and comparison of prediction error of three models

Periods Actual ARIMA model SARIMA model ARIMA-GARCH model

Panel A: forecasting performance

Forecast Forecast
error (%)

Forecast Forecast
error (%)

Forecast Forecast
error (%)

Jul 2012 11056.3 11685.45 −5.69 11619.04 −5.09 11600.39 −4.92

Aug 2012 11282.9 11487.33 −1.81 11669.10 −3.42 11698.24 −3.68

Sep 2012 10953.7 11064.53 −1.01 11039.11 −0.78 11126.60 −1.58

Oct 2012 11206.5 11724.08 −4.62 11744.03 −4.80 11799.28 −5.29

Nov 2012 10831.1 11189.15 −3.31 11082.25 −2.32 11201.40 −3.42

Dec 2012 11186.9 11667.94 −4.30 11569.18 −3.42 11673.70 −4.35

Jan 2013 10798.7 10880.20 −0.75 10812.95 −0.13 11019.19 −2.04

Feb 2013 9430.8 10200.58 −8.16 9900.10 −4.98 10157.77 −7.71

Mar 2013 11853.9 11695.97 1.33 11446.05 3.44 11631.75 1.87

Apr 2013 10813.4 11926.28 −10.29 11923.90 −10.27 12066.57 −11.59

May 2013 10652.5 11247.49 −5.59 11074.50 −3.96 11290.24 −5.99

Jun 2013 10562.3 11086.68 −4.96 10809.71 −2.34 11074.43 −4.85

Panel B: forecasting comparison

ARIMA model SARIMA model ARIMA-GARCH model

MAPE 4.32 3.75 4.77

RSME 545.36 485.67 583.79

Note The forecasted absolute tourist arrivals have been transformed from the forecasted values of
ln (monthly tourist arrivals). The actual and forecasted values are stated in thousands

4 Forecast Using the Belief Function Approach

In Sect. 3, it was shown that SARIMA is the best fitting model. Hence, this model
was chosen to compute a predictive belief function for the tourism arrival data, using
the methodology introduced by Kanjanatarakul et al. [15]. The best fitting model is:

(

1 − φ1L1
) (

1 − Θ12L12
)

∇1∇1
12 ln yt =

(

1 + θ1L1
)

εt

Introducing the notation xt = ∇1∇1
12 ln yt , we transform the general expression

of this model to

xt = φ1xt−1 + Θ12 (xt−12 − φ1xt−13) + θ1εt−1 + εt

where εt has a student-t distribution εt ∼ i id tλ(0, σ 2), with λ degrees of freedom
and variance σ . To keep the computation simple, we assume λ to be known.
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The likelihood function is thus

Lxt (β) =
T

∏

t=13

f ( xt | εt ;β) =
T

∏

t=13

f ( xt | εt ;φ1, θ1,Θ12, σ
2)

The contour function of the parameter vector β = (

φ1, θ1,Θ12, σ
2
)

is

plyt (β) = Lxt (β)

Lxt

(

β̂
) = Lxt

(

φ1, θ1,Θ12, σ
2
)

Lxt

(

φ̂1, θ̂1, Θ̂12, σ̂ 2
)

Then, the future data in t + i can be written as:

xt+i = ψ (φ1, θ1,Θ12, σ )

= φ1xt+i−1 + Θ12 (xt+i−12 − φ1xt+i−13) + θ1εt+i−1 + σ F−1
λ (v)

and

εt+i−1 = xt+i−1 − φ1xt+i−2 − Θ12(xt+i−13 − φ1xt+i−14) − θ1εt+i−2

Hence

xt+i = ψ (φ1, θ1,Θ12, σ )

= φ1xt+i−1 + Θ12
(

xt+i−12 − φ1xt+i−13
)

+ θ1
(

xt+i−1 − φ1xt+i−2 − Θ12(xt+i−13 − φ1xt+i−14
) − θ1εt+i−2) + σ F−1

λ (v)

where F−1
λ (v) is inverse cdf of tλ(0, 1) and v ∼ i id U (0, 1). For any (w, v) in

|0, 1|×R, the setΨ (Γx+i (ω), v) is the interval
[

x L
t+i (ω, v) , xU

t+i (ω, v)
]

defined by
the following lower and upper bounds:

x L
t+i = min{β|plxt+i−1 (β)≥w} ψ (φ1, θ1,Θ12, σ, v)

xU
t+i = max{β|plxt+i−1 (β)≥w} ψ (φ1, θ1,Θ12, σ, v)

with w ∼ i id U [0, 1]. We used a constrained nonlinear optimization algorithm
to compute the intervals [x L

t+i , xU
t+i ]. Using Monte Carlo simulation, simulating

independently N pairs (ωn, vn) , n = 1, . . . , N , we obtained N intervals [x L
t+i , xU

t+i ].
Then we transfer the x to y. we we obtained N intervals [yL

t+i , yU
t+i ]. For any B ⊂ R,

the quantities Bel(B) and Pl(B) can then be estimated as
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Fig. 3 The predictions for the number of tourist arrivals and α-quantile intervals with α ∈
(0.05, 0.25, 0.5)
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Fig. 4 Lower and upper cdfs for the number of Chinese total tourist arrivals in June 2013

̂Bel (B) = 1

N
#

{

n ∈ {1, · · · , N } |
[

yL
t+i , yU

t+i

]

⊆ B
}

̂Pl (B) = 1

N
#

{

n ∈ {1, · · · , N } |
[

yL
t+i , yU

t+i

]

∩ B �= ∅
}

When R is the real line, the lower and upper predictive cdfs of Y are defined as
follow:

F L (y) = ̂Bel ((−∞, y])

FU (y) = ̂Pl ((−∞, y])

For any y ⊂ R.
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The approach described above was applied to China Inbound Tourism Demand
data. Figure3 shows the predictions for the number of tourist arrivals in the
periods April, May and June 2013. We also plot α-quantile intervals with α ∈
(0.05, 0.25, 0.5) in Fig. 3. From the Fig. 3, we find that the observed data are con-
tained in the 0.05-quantile intervals. The lower and upper cdfs F L and FU are plot-
ted in Fig. 4. Figure4 shows show additional information about the predictive belief
function concerning the forecasted number of tourist arrival for June 2013. Form the
figure, we know that when the tourist arrivals for January are less than 11,600,000,
possibility of belief is 60.2% and possibility of plausibility is 53.1%. Moreover,
under the conditional belief and plausibility of 90%, the number tourist arrivals in
China for June 2013 less than [12, 242, 939, 12, 391, 306]. The empirical result show
that time series models combined with belief functions is a computationally simple
and effective method.

5 Conclusions

The purpose of this paper was to demonstrate the application of time series models
combined with belief functions to forecast the demand for China international
tourism. The analysis was conducted using monthly inflow of international tourist
arrivals covering the period from January 1991 to June 2013. The method of this
study was divided into two steps. In the first step, three time series model were
considered, namely, ARIMA, SARIMA and ARIMA-GARCH models. These three
models were used to forecast tourism demand based on observed data. The MAPE
andRMSEmeasures were used to compare the forecast accuracies and the best fitting
model was selected. In the second step, the best fitting model was combined with
belief function to forecast Chinese international tourism demand, taking into account
both estimation uncertainty and random variability. The empirical result show that
time series models combined with belief functions is a computationally simple and
effective method.

Modeling uncertainty is a key issue in forecasting. In the tourism area, forecasts
are used by governments, airline companies and operators to design tourism policies
and they should include a quantification of uncertainties. In this paper, we have shown
that the predictive belief function approach introduced by Kanjanatarakul et al. [15]
is a computationally simple and effective method that can be used with time series
models.
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Forecasting Tourist Arrivals to Thailand
Using Belief Functions

Nyo Min, Jirakom Sirisrisakulchai and Songsak Sriboonchitta

Abstract This paper applies the belief function approach to statistical forecasting
of tourist arrivals to Thailand. Seasonal autoregressive integrated moving average
(SARIMA) model was applied to forecast the tourists arrivals to Thailand using
the time series data during the period of 1997–2013. To quantify the uncertainty
of statistical forecasting, we used the method proposed by Kanjanatarakul et al. [5].
We utilized the statistical model, SARIMA to obtain parameter spacewhichwas con-
structed from the normalized likelihood given the observed data. Then, we rewrote
the forecasting equation as a function of parameters and an auxiliary random vari-
able with known distribution not depending on the parameters in prediction stage.
Combining beliefs about parameters and auxiliary random variable gave us a pre-
dictive belief function for tourist arrivals. The finding supports the statement that the
method can be used with any parametric model such as linear regression and time
series models including SARIMA.

1 Introduction

Travel and Tourism play a very important role for growth of nation not only
for Thailand but for the countries around the world. Tourism affects the coun-
tries with both direct and indirect contributions to their GDPs. According to the
World Travel and Tourism Council (WTTC), Thailand has growths in tourism in
terms of GDP, employment in tourism, visitor exports, and investment in tourism.
The tourism contributed 9.0%(THB1, 074.0bn) of total GDP in 2013 directly and
20.2%(THB2, 401.1bn) of GDP in total including indirect impact in 2013. The
WTTC forecasted that the contribution of tourism to rise by 6.7% pa, from 2014–
2024, to THB2, 046.7bn (10.4% of total GDP) in 2024 [12].
This calculation reveals that the forecasting in tourists’ arrival is essential analytical
tool for the policy makers and other stakeholders for the policy, planning, and
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development. Many researchers have tried to get more and more reliable forecast
interval of tourists’ arrival, but all could have concluded for the better model by
comparing with others. As result, the forecasting in tourism is an open issue for
researchers to work on for the best model.

In the paper, we intend to handle highly uncertainty situations to become the
reliable forecast by applying the Dempster-Shafer Theory [12]. The motivation for
using Dempster-Shafer Theory is about its characteristics relating to the uncertainty.
The theory is a highly developed among non-traditional theories linking to uncer-
tainties. Although it is a new concept, it links with traditional uncertainty theories
and set theory. In practice, this theory has been approved in the engineering areas.
Dempster’s rule of combination can handle different types of evidence, and can deal
with many conflicts that can be incorporated when combining the multi sources of
information. One of the most important features of Dempster-Shafer (DS) theory
is that the model is designed to cope with varying levels of precision due to the
information and no further assumptions are needed to represent the information. It
also allows for the direct representation of uncertainty of system responses where an
imprecise input can be characterized by a set or an interval and the resulting output
is a set or an interval.

In this paper we analyzed nature of data set, tourist arrivals to Thailand between
1997 January and 2013 September to know whether the data are stationary or not.
Due to small break points the data set is non-stationary. Then, we took log return
to make the data set stationary. As GARCH family had been famous in forecasting
tourists’ arrival, we checked if the GARCH family is applicable to our work. The
results showed that the GARCH family is not relevant with our work and finally
we chose the best fit model among potential SARIMA models. To select the best
fit SARIMA model we tested the data not only with Akaike Information Criterion
(AIC) and Bayesian Information Criterion (BIC) values, but also with root mean
square error (RMSE) and mean absolute percentage error (MAPE). After getting the
statisticalmodel,we applied belief functions such as likelihood-based belief function,
plausibility function, and Dempster’s rule of combination on this statistical function
to obtain reliable forecasting interval. We favored the belief function approach to
quantify the uncertainty pertaining to statistical forecasts for the following reasons.
First, the method of forecasting and inference using the belief function approach
generalizes Bayesian inference. However, in the belief function approach, we did
not have to provide the information on prior distribution. Second, this approach
could be used in the situations where the data are scarce and imprecise. Finally, we
used this approach further by considering the combination of the statistical evidence
and the expert opinion, which is very important in the policy analysis. The advantages
of the belief function approach were discussed at length in Kanjanatarakul et al. [5]
and Denoeux [3]. The reader is referred to these references for further details and
discussion about this method of inference.

The paper is organized as follows. In the next section, we provide a brief review
on some definitions of belief function, the literature review on related model and
concepts of the paper, and methodology. Section3 gives details of data, application
that we used in this paper, and empirical results we obtained, and Sect. 4: provides
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discussion for how to combine or verify the results generated from historical data
with experts opinion. Our conclusions are drawn in Sect. 5.

2 Definitions, Literature Reviews and Methodology

2.1 Basics of Belief Functions

We briefly explain the theory of belief function in this section. We first start with
the belief function in a finite domain. Suppose that θ is a variable taking values in
a finite domain Θ , called the frame of discernment. We can assign a mass function
m : 2Θ −→ [0, 1], such that m(∅) = 0 and

∑

A∈Θ m(A) = 1, to represent the
uncertain evidence about θ . Any subset A of Θ , such that m(A) > 0, is called a focal
set of m. The interpretation of m(A) is a degree of belief attached to the proposition
θ ∈ A ([11]). Shafer used the following framework to explain the meaning of the
degrees of belief. Let Ω = {ω1, . . . , ωn} be a set of codes, one of which is selected
at random. We know exactly the list of possible codes and the probability pi attached
to each code. The way using code to decode the encoded message gives us a message
of the form θ ∈ Ai for some Ai ⊆ Θ . Thus, the probability that the original message
θ ∈ A can be computed by m(A) = ∑

(1≤i≤n:Ai=A) Pi. This setting consists of a

probability measure P on a set Ω and a multi-valued mapping Γ : Ω −→ 2Θ\{∅}
such thatAi = Γ (ωi) for all i. Fromamathematical point of view, the triple (Ω, P, Γ )

defines a finite random set [7]. The interpretation of a random set usually means a
random experiment in which the outcome is a set. However, the interpretation of
mass function is different. Here m(A) can be viewed as the chance of the evidence
meaning that θ ∈ A [9].

We formally define belief and plausibility function corresponding to a mass
function m for Ω as a function: 2Θ −→ [0, 1] such that

Bel(A) = P(ω ∈ Ω | Γ (ω) ∈ A) =
∑

B∈A

m(B), (1)

Pl(A) = P(ω ∈ Ω | Γ (ω) ∩ A = ∅) =
∑

B∩A�=∅
m(B), (2)

for all A ∈ Θ .
We note here that Pl(A) ≥ Bel(A), for all A ⊆ Θ , and Pl(A) = 1 − Bel(Ac),

where Ac is the complement of A in Θ . The function pl : Θ −→ [0, 1] such
that pl(Θ) = Pl({θ}) for all θ ∈ Θ is called the contour function associated to
m. If all focal set elements of Bel are singleton subsets, then Pl(A) = Bel(A), for
all A ⊆ Θ , a probability function. In the infinite domain of Θ , there may not be
a mass function associated with a completely monotone function, thus we have to
define a belief function axiomatically from its properties. Let (Θ, B) be a measurable
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space, where is a sigma-field, and which is a non-empty subset of 2Θ closed under
complementation and countable union. A belief function on (Θ, B) is a function
Bel: 2Θ −→ [0, 1] satisfying the following conditions,

1. Bel(∅) = 0, Bel(Θ) = 1.
2. For any k ≥ 2 and any collection A1, . . . , Ak of subset of Θ ,

Bel(
k

⋃

i=1

Ai) ≥
∑

∅�=I⊆1,...,k

(−1)|I|+1Bel(
⋂

i∈I

Ai).

where | I | is cardinality of the set I.

2.2 Likelihood-Based Belief Function

Let x be the observed data of the random variable X. The random variable X has a
probability density function (pdf) p(x; θ), where θ ∈ Θ is an unknown parameter.
[11] proposed a method to represent the statistical evidence of x on θ by using
belief function. This belief function can be derived from the Likelihood and Least
Commitment Principles (see, Denoeux [3] and Kanjanatarakul et al. [5]). According
to the Likelihood Principle, the information about θ is supposed to be represented by
the likelihood function, L(θ; x) = p(x, θ). In statistics, the likelihood ratio is meant
to be a relative plausibility, which can be compared with the likelihood ratio in the
belief function framework as follows (see, Denoeux [3] and Kanjanatarakul et al.
[5]):

pl(θ1; x)

pl(θ2; x)
= L(θ1, x)

L(θ2; x)
, (3)

for all (θ1, θ2) ∈ Θ2 or, equivalently,

pl(θ; x) = cL(θ; x), (4)

for all θ ∈ Θ and some positive constants, c. According to the Least Commitment
Principle, we can get the highest possible value of constant c, i.e., defining pl(θ; x)
as the relative likelihood:

pl(θ; x) = L(θ; x)

supθ ′;xL(θ
′ ; x)

, (5)

and we can represent information about θ by the belief function Bel(·; x) via the
contour function pl(·; x), i.e.,
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Pl(A; x) = sup
θ∈A

pl(θ; x) = supθ∈A L(θ; x)

supθ ′∈Θ L(θ ′; x)
, (6)

for all A ⊆ Θ . Note that the likelihood function has to be bounded in order to carry
out the analysis, which is usually the case for most parametric model. The focal sets
of Bel(·; x) are the level sets of pl(θ; x) defined as follows:

Γx(ω) = {θ ∈ Θ | pl(θ; x) ≥ ω}, (7)

for ω ∈ [0, 1]. These sets are called plausibility regions. The corresponding belief
function is equivalent to the random set induced by the Lebesgue measure λ on
[0, 1] and the multi-valued mapping Γx : [0, 1] −→ 2Θ . The belief and plausibility
function can be expressed in these following equations:

Belx(A) = λ(ω ∈ [0, 1] | Γx(ω) ⊆ A), (8)

Plx(A) = λ(ω ∈ [0, 1] | Γx(ω)
⋂

A �= ∅), (9)

for allA ⊆ Θ .We remark that themaximum likelihood estimation can be represented
as the value of highest plausibility.

2.3 Forecasting Using Belief Functions

In this section, we describe how to use the belief function defined in the previous
section for prediction. Let X have a probability density function f (x; θ), for
θ ∈ Θ . Suppose that we have observed X = x. With some evidences given about θ

through Bel(Θ; x), we can predict the future value of a random variable Y whose
probability density function g(y; θ) also depends on the same θ . Kanjanatarakul
et al. [5] proposed a model for prediction using belief function theory. In this model,
Y can be written in a function of the parameter θ , observed data X = x and an
unobserved auxiliary variable u ∈ U with known probability measure μ, but not
depending on θ :

Y = ϕ(θ; u), (10)

From Eq. (10), we can derive the multi-valued mapping Γx : [0, 1] −→ 2Θ with
ϕ(θ; u) to get a new multi-valued mapping Γ

′
x : [0, 1] × U −→ 2Y defined as

(ω, u) −→ ϕ(Γx(ω), u), (11)

Then we can construct the predictive belief Belx and plausibility Plx functions on the
sample space Y of Y as follows,
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Belx(A) = (λ ⊗ μ)((ω, u) ∈ [0, 1] | ϕ(Γx(ω, u) ⊆ A), (12)

Plx(A) = (λ ⊗ μ)((ω, u) ∈ [0, 1] | ϕ(Γx(ω, u)
⋂

A �= ∅), (13)

for all measurable subset A of Y , where λ⊗μ is the product measure on [0, 1]× U.

2.4 Review of the Seasonal ARIMA Model

A time series Zt | t = 1, 2, . . . , k is generated by a SARIMA (p, d, q)(P, D, Q)s

process with mean of the Box—Jenkins’s model if

Φ(B)Φ(Bs)(1 − B)d(1 − Bs)D(Zt − μ) = θ(B)θ(Bs)at, (14)

where p, d, q, P, D and Q are integers, s is periodicity,Φ(B),Φ(Bs), θ(B) and θ(Bs)

are polynomials in B of degrees p, q, P and Q; B is the backward shift operator, d is
the number of regular differences; D is the number of seasonal differences, and Zt

denotes observed value of time series data, t = 1, 2, . . . , k.
Generally, observations for SARIMA should be at least 50 and preferably 100

observations or more. Due to uncertainty and rapid changes, forecasting future situ-
ations should be for a short time-span by using little data, but it is difficult to verify
that the data have a normal distribution [13].

3 Application to Tourist Arrivals to Thailand

3.1 Data

This paper used the monthly tourist arrivals to Thailand for model estimation and
evaluation. The data range covered from January 1997 to September 2013. All data
that we used for the paper were taken from EcoWin data base and the paper inten-
tionally ignored the seasonality adjusted data to prove the effectiveness of the model
and belief functions. To overcome seasonality, the paper used SARIMA model with
seasonal difference on log return and chose the best fit model by comparing values
of Akaike’s Information Criterion (AIC), Schwarz’s Bayesian information criterion
(BIC),mean absolute percentage error (MAPE) and rootmean squared error (RMSE).
According to the data, the tourist arrivals varied all the time and fluctuated up and
down. The data revealed that tourist arrivals to Thailand were increasing as a trend
but there was no significant structural change (Fig. 1).

201 observations of tourist arrival to Thailand between January 1997 and
September 2013 showed us two potential breaks in May 2003 and May 2010.
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Fig. 1 Tourist arrivals to Thailand, 1997 to 2013

In 2003 there was Severe Acute Respiratory Syndrome (SARS) in Asia region
and it affected on tourism of Thailand. InMay 2010, Bangkok dangerous street fights
also affected tourism in Thailand.

3.2 SARIMA Models

Due to the breaks and slightly structural change in the data observed, the sample size
for the paper was non-stationary. Therefore, we took log return to make the data sta-
tionary. The Generalized Autoregressive Conditional Heteroskedasticity (GARCH)
family had been prominent in forecasting field and many researchers including
[1, 2, 4, 6] applied GARCH models to forecast the tourists arrival, so we tested to
know whether or not GARCH models are applicable to our data observed. All tests
led us to reject predicting the data with GARCH family members that we checked.
Therefore, we emphasized our work to some different types of SARIMA models,
ARIMA models and seasonal patterns displayed by seasonal ARIMA model. When
we sought for the best model, we tailored data, from raw data, to log return, and to
seasonal log return, etc (Fig. 2).

Table1 presented four models for the tourists’ arrival to Thailand, tested by
EViews 7 Econometric software and these models were chosen in accordance with
ACF and PACF results. Among these four models, Model 1 has lowest values of AIC
and SBC. Therefore we assumed that Model 1 is the best fitting model to describe the
tourist arrivals to Thailand during the period we observed. Tomake sure thatModel 1
is the best fitted model for our work, we checked residual diagnostic tests, and results
showed favor for the model we adopted. For the test result for ACF and PACF, we
got all Q statistics were favorable and significant. When we tested for LM test the
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Fig. 2 Errors distribution of selected model, (12, 0, 12)(0, 1, 0)12

Table 1 Estimates of selected ARIMA models for tourist arrivals to Thailand with normal
distribution

Variable Coefficient t-Statistics AIC/SBC LM(SC)

Model 1

C 0.0009 0.5990

AR(4) −0.1975 −2.4084

AR(12) −0.1788 −2.6611 AIC = −2.1037 F-statistics = 1.0893

MA(12) −0.9399 −41.5408 SC = −2.0317 P = 0.3536

Model 2

C 0.0067 3.1900

AR(6) −0.2559 −3.3704

MA(2) −0.4638 −7.0800 AIC = −1.5616 F-statistics = 3.3334

SMA(3) −0.3888 −5.3617 SC = −1.4942 P = 0.0000

Model 3

C 0.0065 3.3405

AR(6) −0.2748 −3.8548

AR(9) −0.1690 −2.3934

SMA(3) −0.3303 −4.6118 AIC = −1.5896 F-statistics = 3.0782

MA(2) −0.4746 −7.0558 SC = −1.5045 P=0.0000

Model 4

C 0.0065 2.2366

AR(6) −0.2814 −3.9902

AR(9) −0.2626 −3.6626 AIC = −1.4983 F-statistics = 3.8674

MA(2) −0.4533 −6.6844 SC = −1.4302 P = 0.0000

Note: AIC and SBC are the Akaike Information Criterion and Schwarz Bayesian Criterion, respec-
tively. LM(SC) refers to the Lagrange multiplier test for serial correlation
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results showed that F statistics was 2.524235 with probability 0.0045, but normality
test showed that the error doesn’t distribute normally. Therefore we continued our
test with student’s t distribution. The results from Kolmogorov-Smirnov test showed
that the error distributed as t distribution. Thus, we used the model 1 with the t
distribution for random error as the forecasting model in the next section (Table2).

As traditionalmethods, we checked all error terms of differentmodels with RMSE
andMAPE. RMSE stands for the root-mean-square deviation (RMSD) or root-mean-
square error (RMSE). It measures the differences between values predicted by a
model or an estimator and the values actually observed. Generally, the RMSD rep-
resents the sample standard deviation of the differences between predicted values
and observed values. MAPE stands for the mean absolute percentage error (MAPE),
also known as mean absolute percentage deviation (MAPD). It measures accuracy of
a method for constructing fitted time series values in statistics, specifically in trend
estimation. According to the RMSE and MAPE values, the model (1) that we had
chosen, had lowest error values, RMSE 0.0826 and MAPE −0.0028 and it means
the model we had chosen was the best fit model among the models we had compared
(Table3).

The tourist arrivals to Thailand between 1997 and 2013 had two significant breaks
and one potential structural change. Therefore we tested to know if the whole sample
is good enough for the prediction or two sub-samples due to deterministic breaks
provide better prediction.We usedChowBreakpoint Test on break point ofMay 2003
and found that there was no break at specific break point with F-statistic 1.4438 and
Probability 0.2217. For a second time, we checked on break point, May 2010 and
also found that there was no break at specific break point with F-statistic 1.818735
and Probability 0.1275.

Saleh et al. [8] stated in their conference paper that exogenous shocks such as the
September 11 2001, SARS outbreak in 2003, war in Iraq in 2003, global recession
(in early 2000s) and Asian financial crisis (during 1997–1998) had only temporary
effect on the number of arrivals to Thailand from the ten countries [8]. They also
commented that the tourism industry recovered strongly in a short period of time.
In theory, the effects of breaks and structural changes are likely to come up again

Table 2 Estimates of
selected SARIMA model for
tourist arrivals to Thailand
with Student’s t distribution

Variable Coefficient SE

Model 1

C 0.0004 0.0009

D12LRTN(-4) 0.0126 0.0597

D12LRTN(-12) 0.1105 0.0684

MA(12) −0.8913 0.0391

Table 3 RMSE and MAPE
values of the models
compared

Method Model1 Model2 Model3 Model4

RMSE 0.0826 0.1086 0.1065 0.1120

MAPE −0.0028 −3.40057E − 05 0.0009 0.0008
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in the future forecast horizon, but fortunately, our work is only forecasting a period
head. Therefore we preceded our empirical work with the selected model to the
period we focused.

3.3 Approach with Belief Functions

Once we had chosen the best fitted statistical model, we continued to estimation
and prediction by using belief functions. In first stage, we applied observed data
with normalized likelihood in order for building belief function on parameter space.
Then, we predicted forecast for nearest future on observed data. In this prediction
stage, we rewrote our forecast model as the function of parameters and a random
auxiliary variable in accordance with Dempster’s statistical inference.

In order to implement our empirical work, we stated the SARIMA model as
follows,

(1 − β1B4 − β2B12) �12 Yt = (1 + γ L12εt). (15)

This model is equivalent to,

�12 Yt = α + β1 �12 Yt−4 + β2 �12 Yt−12 + γ εt−12 + εt, (16)

where Yt = log return of tourist arrivals to Thailand α = Constant term, βs =
coefficients forAR terms,where s = 1, 2γ = coefficient forMAterms, ε = residual.
From the adopted model, we can get

εt = �12Yt − α − β1 �12 Yt−4 − β2 �12 Yt−12 − γ εt−12. (17)

Then, we wrote likelihood function as follows,

L(αs; v; θ; Yt) =
T

∏

t=1

Γ [ (v+1)
2 ]

√
(v − 2)πΓ [ v

2 ]( (1+ε2t )

v )
(v+1)
2

, (18)

where v = degree of freedom for v > 2, and Γ = Gamma function.
By using the value of likelihood function, we developed ’belief function’ on

our parameter space. This belief function is called the likelihood-based belief
function on parameter space Θ induced by observed data. The belief function on
θ = (α, β1, β2, γ ) is defined by the contour function,

pl(θ; Yt) = L(θ; Yt)

L(θ̂; Yt)
. (19)
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3.4 Forecasting Using Belief Functions

Forecasting is the use of historic data to predict future trends and no one can guarantee
the forecasting is accurate because it connects to uncertainty. There are two types
of forecasting methods, qualitative and quantitative. In this paper we applied the
quantitative method.

Based on parameters, α, βs and γ , we predicted forecast value for the tourist
arrivals for a period ahead. We had the statistical model for the paper,

�12 Yt = α + β1 �12 Yt−4 + β2 �12 Yt−12 + γ εt−12 + εt . (20)

Then, we extended the model in order to forecast as follows,

�12 Yt+1 = α + β1 �12 Yt−3 + β2 �12 Yt−11 + γ εt−11 + εt+1. (21)

It could be written down in short as

�12 Yt+1 = ϕ(α, βs, γ, σ ; Z), (22)

where εt+1 = σZ , Z = F−1
t (u), and F−1

t is the inverse cumulative distribution
function of the standard t distribution with degree of freedom v and u is independent
random variable with the uniform distribution U(0, 1).

To predict the log return of the tourists arrival�12Yt+1,we computed theminimum
and maximum of the function ϕ(α, βs, γ, σ ; Z)

(Max
Min )ϕ(α, βs, γ, σ ; Z), (23)

under the constraint
pl(α, βs, γ, σ ; Yt) ≥ ω.

where ω is an independent random variable with the uniform distribution U(0, 1).
From the above optimization problem, we randomized independently N pairs of

the randomnumber (ωi, ui), i = 1, 2, 3, . . . , N resulting inN intervals [�12YL
t+1,�12

YU
t+1]. For any A ⊂ R, the belief function ( ˆBelY

x ) and plausibility function ( ˆPlY
x )

defined by Eqs. (12) and (13) can be approximated by:

ˆBelYx = 1

N
#

{

i ∈ {1, . . . , N}
∣

∣

∣ [�12YL
t+1,�12YU

t+1] ⊆ A
}

, (24)

ˆPlYx = 1

N
#

{

i ∈ {1, . . . , N}
∣

∣

∣ [�12YL
t+1,�12YU

t+1] ∩ A �= φ
}

. (25)

Figure3 displays the lower and upper cumulative distribution functions ˆBelYx and
ˆPlYx of one period ahead forecasting tourist arrivals. These functions gave us the

summary of the predictive belief function. The most plausible forecasting values
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Fig. 3 Lower and upper cumulative distribution functions for the number of tourist arrivals in
October 2013, forecasted in September 2013

Fig. 4 Forecastingmade in September, 2013 for the tourist arrivals in the period October to Decem-
ber, 2013

ỹ are displayed in Fig. 4, together with α-quantile intervals with α ∈ {0.05, 0.25}.
Assuming that Y was continuous, we could compute its lower and upper predictive
quantiles at levelα, for anyα ∈ (0, 1), by qL

α = (FU
x )−1(α) and qU

α = (FL
x )−1(α).We

approximated the most plausible value ỹ by the maximum value of P̂l
Y
x ({y}). The ỹ
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can be taken as a point forecasting of Y.We saw that the numbers of tourist arrivals to
Thailand in October to December, 2013 were slightly overestimated by ỹ. However,
the observed data were contained in the 0.05-quantile intervals. The most plausible
forecasting values in October to December, 2013 were 2,251,701, 2,549,605, and
2,969,196 persons in comparison with the real observations 2,065,518, 2,399,240,
2,598,015 persons, respectively.

4 Discussion

The datawe used for the empirical work, projected some breaks and a slight structural
change and led us to check stability test to validate the model of the paper. Since we
took log on the number of tourists arrival to Thailand, the data had been stationary.
To make ensure we validated the statistical model with Chow’s test, and the dynamic
stability test. The results revealed that the data set became stable and overcame breaks
and a slight structural change. Since we used seasonality in the model, we did not
need to use dummy variables.

Although model selection for the statistical model was a little tedious and trou-
blesome task as the data distribution were not informative, the analytical part to find
out if the belief function was applicable for forecasting in tourism sector, and was
proved relevant with better forecasted interval than traditional methods. We com-
pared the forecasted interval resulted by belief functions with accrual tourist arrivals
in October, 2013. Even though the result was not a point, but an interval, it was more
efficient than the traditional forecasting methods and the forecasting interval could
capture actual number of tourist arrivals. In addition, we showed that point forecasts
for October, November, and December 2013 were overestimated, but these forecasts
were contained in the 0.05-quantile intervals.

In case to improve the results with Experts’ opinion, the paper suggested request-
ing some experts’ opinion for their point estimate and interval estimate. Then, the
paper advised combining these data with Dempster’s rules. Since there was no expert
opinion, we did not apply this idea to the paper. In case, one combines statistical result
and expert opinion, finally, the relatively reliable forecast interval would be resulted.

4.1 Combining Historical Data with Expert Opinions

The expert’s opinion is relatively informal technique, but it has many advantages as
it can cover the time constant and time varying information. In addition, it can take
into account some information that the econometric models could not catch up. To
get support under complex situation, expert’s opinion can be applied.

Dempster’s rule can apply to combine not only for intervals but also for triangle
data with different degree of confidence. The combination for intervals is simple
and follows traditional rule i.e. Dempster’s rule of combination. The combination
for triangle data is the extension of the Dempster’s rule. In this case there might be
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debate for the way of assigning degree of confidence. To construct the triangle data,
researcher needs to ask the experts opinions for interval and point forecast. Then the
researcher can assign confidence between 0 and 1. The point forecast must be nearly
0 confidence as it has high degree of potential to bewrong and interval forecast can be
assigned between 1 and 99% or 100% for sure as this interval is large. Reasonably,
the experts will give larger interval than the forecast interval in their mind to avoid
wrong prediction.

For tourist arrivals to Thailand, we recommend to get experts’ opinions from
some tourism experts from different nature of tour operator or destination manage-
ment organization (DMO). Then, one can combine these experts’ opinions with the
statistical results of the paper by using Dempster’s rule of combination, since the
idea of Dempster’s rule is that two independent bodies of evidences make pool-
ing them similarly combining two stochastically independent randomly coded mes-
sages [10].

5 Concluding Remarks

The paper focused on the tourist arrivals to Thailand and used the statistical model,
SARIMA (12, 0, 12)(0, 1, 0)12. This paper overcame the potential bias relating
to seasonality with a SARIMA model, and belief functions including Dempster’s
rule of combination. In applying belief functions, there are two stages, estima-
tion stage and prediction stage. The paper followed formalism of Dempster-Shafer
Theory as this method is general and can be applied almost all statistical models.
This theory is an extension of Bayesian probability theory and the paper suggests
updating the belief with more and more information if accessible as per Bayesian
theory.

The results pointed out that the tourist arrivals to Thailand can be forecasted by
applying belief functions. In addition, the paper suggested improving the confidence
level of the result by using experts opinions on the tourist arrival sinceDempster’s rule
of combination is applicable to combine these intervals. By following the forecasting
method mentioned in the paper, we can extend our forecasting not only to the nearest
future period but to some near future by depending on the length of lags for the
model. For that reason, the method is very useful and efficient for the time series
data.

The questionmay occur for the assigning weight to the degree of confidence to the
different expert opinions. Can we assign the weight uniformly to all experts’ forecast
intervals, or canwe assign differentweight or degree of confidence to experts’ opinion
for different time? What are the driving facts to assign confidence level? These
questions are also a contribution of the paper to further debate for belief function
users.
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Copula Based Polychotomous Choice
Selectivity Model: Application
to Occupational Choice and Wage
Determination of Older Workers

Anyarat Wichian, Jirakom Sirisrisakulchai and Songsak Sriboonchitta

Abstract This paper aims to estimate the occupational choice equation
simultaneously with wage equation for older workers in Thailand by applying the
copula approach to a polychotomous choice selectivity model. Several of the copula
functions, such as the Frank and Student’s t copulas are compared to the standard
model which is restricted to a joint normality assumption. This paper demonstrates
that a polychotomous choice selectivity model based on the copula approach per-
forms better than the standard one. And, it is evident that among the copula based
model, the Frank copula-based model provides the best fit. Also, these results show
the presence of highly significant dependency of unobservable factors between the
occupational choice regression and the wage regression for unskilled and skilled
workers, which implies that the selectivity bias exists. The empirical results show
that the older workers who live in Bangkok earn higher wage than those who live
outside Bangkok. The gender variable has no impact on wages for the high skilled
older workers. For the unskilled, the male worker earns more. A surprised result is
that the experience has the significantly negative impact on the wages regardless of
the level of the skill of the older workers. This needs serious further research in depth
to explain this phenomena.

1 Introduction

Labor supply is a key component in economic growth, especially, the labor force par-
ticipation of workers aged 15–59. However, at the present, the demographic structure
is undergoing a change because of an aging society. In Thailand, between 2000 and
2010, the proportion of people aged 0–14 has been on a decline, while the proportion
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of people aged 60 and above has been showing an increase. The proportion of the
latter has increased from 9.5% in 2000 to 12.9% in 2010 [1]. These data point out
that in the future, older workers will inevitably become significant contributors to
Thailand’s economic activity. Our idea of interest is that the earnings are different in
each choice of occupation. The older workers, who are highly skilled workers, may
have relatively better earnings than those who are low skilled workers. This leads to
selectivity bias, which occurs when unobserved disturbances of occupation choice
equation are correlated with those of wage equation. Thus, we could not estimate
the wage equation separately. There are two main approaches to correct the selectiv-
ity bias; the applications are the two-step procedure and full information maximum
likelihood (FIML). The latter method is more efficient and performs better when
compared to the former one (see Nawata [2], Nawata and Li [3]). Also, the two-step
procedure may have biased estimators due to the collinearity problem between the
regression in the selection equation and the outcome equation (Bohara and krieg [4];
Puhani [5]);. However, the FIMLmethod has some crucial drawbacks; namely, it has
strong assumptions of bivariate normality for the joint distribution, which leads to
incorrect conclusion about the existence of sample selection bias. Thus, econometri-
cians have tried to find the best procedure which can relax the above assumptions and
attain the robust estimators. The early important article is due to Lee [6] who allowed
the marginal distribution of the disturbances to be non-normal and then transformed
it into normal distribution. Although Lee tried to avoid the strong assumption, this
method still maintains the bivariate normal distribution, which implies linear depen-
dence between the disturbances.

In recent times, the copula approach has been widely used in the sample selection
framework due to many benefits (see Trivedi and Zimmer [7]). The main useful-
ness is that the joint distributions can be derived when the marginal distributions
are allowed to be non-normal margins. Moreover, the concepts and measures of
dependence of this approach go beyond the linear correlation which can be devel-
oped. Several researchers have tried to apply this approach to the sample selection
model due to its main usefulness. Firstly, Smith [8] suggested the general form for
the self-selection model using the properties of copula to measure the dependence
of the disturbances in the FIML. Actually, Lee’s [6] method cited above is among
the early works in the copula framework, but the term “copula” is not explicitly
used (see Trivedi and Zimmer [7]). The term of the copula has obviously been
employed in Smith’s [8] paper. Subsequently, there are several papers which have
followed Smith’s [8] procedure (for example, Smith [9], Genius and Strazzera [10],
Eberth and Smith [11], Hasebe and Vijverberg [12], Chinnakum et al. [13], etc.).
Nevertheless, these papers applied the copula approach whether it’s on the binary
choice selectivity or endogenous switching model. Actually, copula approach could
be applied to polychotomous choice selectivity model, which Lee [6] generalized the
binary choice selectivitymodel to illustrate the polychotomous choice problemswith
mixed continuous and discrete dependent variables in the same paper that had been
cited above. There are few studies that follow Lee’s [6] approach with regards to the
polychotomous choice selectivity model. For example, Spissu et al. [14] developed
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a copula-based joint multinomial discrete-continuous model of vehicle type choice
and miles of travel in field of transportation.

In this current paper we are mainly concerned with the selectivity bias. Therefore,
we try to estimate the wage equation of older workers in each of occupation choice
by applying the copula approach to the polychotomous choice selectivity model and
optimize the data with the FIML. To our knowledge, this current paper is regarded
as the first application of copula-based polychotomous choice selectivity model in
the context of labor economics. These results will be useful for policy makers to
promote the campaigns that can increase the earnings in each of the occupational
choices. Furthermore, following thismethodwill attain the efficient estimators,which
could reduce the risk that may occur from some strong assumptions.

This paper is organized as follows: Sect. 2 reviews the related literature. Section3
describes the copula theory, the definitions, and the main properties, bounds of
copulas, related measures of dependence, and some examples of copula. Section4
describes the polychotomous choice selectivity model, as well as explaining on how
to apply the copula functions. Section5 describes the data. Section6 is devoted to the
application of the copula based polychotonomous choice selectivity model to esti-
mate the wage determination according to the occupational choice for older workers.
Finally, Sect. 7 provides the conclusion of this paper.

2 Literature Review

Lee [6] extended the binary choice selectivity model to model the polychotomous
choice problems with mixed continuous and discrete dependent variables. Impor-
tantly, Lee proposed a two-step method, which allowed the marginal distribution of
the disturbances to be non-normal, and then transformed it into normal distribution.
Another three procedures were proposed by Dubin and McFadden [15], Dahl [16]
and Bourguignon et al. [17], which are different in the form of selectivity correction
term.Most of the studies on labor economics have followed Lee’s [6] two-step proce-
dure; examples are from Dolton and Kidd [18], Tansel [19], Hoyos [20], Demoussis
et al. [21]. Although, Lee [6] proposed the FIML method used in the papers cited
above, most empirical studies pointed out that the FIML estimator is more efficient
and outperforms other methods when it is compared to the two-step estimator (see
Lee and Trost [22], Nawata [2], Oya [23]). However, few studies have paid attention
on the full information maximum likelihood method (FIML). One such case is the
study from Bohara and Krieg [4] that estimated multinomial logit migration equa-
tion simultaneously with a system of earnings equations for individuals by migration
status. Actually, FIML method has some crucial drawbacks; namely, it has strong
assumptions of bivariate normality for the joint distribution, which leads to incorrect
conclusion about the existence of sample selection bias. Thus, econometricians have
tried to find the best procedure that can relax this strong assumption. Fortunately, in
recent times, the copula approach has beenwidely used in the sample selection frame-
work. Due to various advantages (see Trivedi and Zimmer [7]). Actually, Lee’s [6]
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this method is among the early work in the copula framework, but the term “copula”
is not explicitly used (see Trivedi and Zimmer [7]). The properties of the copulas
have obviously been employed in Smith’s [8, 9] papers which suggest the gen-
eral form for the self-selection model using the properties of copula to measure
the dependence of the disturbances in the FIML. There are several papers which
have followed Smith’s [8] procedure; for example, Genius and Strazzera [10], Bhat
and Eluru [24], Eberth and Smith [11], Hasebe and Vijverberg [12], an Chinnakum
et al. [13], etc.

The previous studies found that copula-based model performs better than the tra-
ditional model which is restricted to normality distribution (for example, Smith [9],
Genius and Strazzera [10], Chinnakum et al. [13], etc.). However, these papers
focused on a sample selection or type 2 Tobit model and endogenous switching
model. Since Lee’s [6] work, few studies have been based on polychotomous choice
selectivity model; for example the study of Spissu et al. [14]. This study developed
a copula-based joint multinomial discrete-continuous model for transportation.

Finally, the copula approach has various advantages that had been mentioned
above. Also, there are few studies done on the polychotomous choice selectivity
model. Therefore, this current paper aims to apply the copula approach to a poly-
chotomous choice selectivity model and estimate the wage determination according
to the occupational choice for older workers in Thailand. To our knowledge, this is
the first application of a copula-based polychotomous choice selectivity model in
labor economics.

3 Copula Theory

3.1 Definition and Properties

The term “copula” and theorem were introduced by Sklar’s work in 1959 and 1973,
respectively, according to Trivedi and Zimmer [7]. Recently, copula approach has
been widely used in various topics in the econometrics fields since it has several
advantages. Copula is defined as functions that link or connect multivariate distri-
butions to their one-dimensional margins (see Trivedi and Zimmer [7]). We begin
with a bivariate copula function, a simple case, which is defined as the following
(see Nelsen [25, p. 10]):

Definition 1 A copula is a function C : [0, 1]2 → [0, 1] with the following proper-
ties

1. For every u,v in [0, 1],C(u, 0) = 0 = C(0, v) andC(u, 1) = u andC(1, v) = v
2. For every u1, u2, v1, v2 in [0,1]such that u1 ≤ u2 and v1 ≤ v2,
C(u2, v2) − C(u2, v1) − C(u1, v2) + C(u1, v1) ≥ 0.
Essentially, the theoretical foundation is provided by Sklar’s theorem, as given

below (see Nelsen [25, p. 18]):
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Theorem 1 Sklar’s theorem. Let X and Y be random variables and F be a joint
distribution function with margins F1 and F2, which are the cumulative distribution
functions of the random variables X and Y , respectively. Then, there exists a copula
C such that for all real number x,y.

F(x, y) = C(F1(x), F2(y)) (1)

If F1 and F2 are continuous, then C is unique; otherwise, C is uniquely determined
on Ran(F1) × Ran(F2), where Ran(Fi ) is the range of a funtion Fi . Conversely, if
C is a copula and F1 and F2 are distribution functions, then the function F defined
by Eq. (1) is a joint distribution function with margins F1 and F2.

By Sklar’s theorem and the method of inversion, the corresponding copula can be
generated by using the unique inverse transformations x = F−1

1 (u) and y = F−1
2 (v).

Therefore,
C(u, v) = F(F−1

1 (u), F−1
2 (v)), (2)

where u and v are standard uniform variates.

3.2 Empirical Application of Copula

The Sklar’s theorem implies that the copula can be used to specify multivariate
distribution in terms of its marginal distributions (Trivedi and Zimmer [7]). When
the univariate marginal distribution functions are given, copulas allow researchers to
bind together joint distribution function. Thus a two-variate functionwithmargins F1
and F2, the copula associated with F is a distribution function C : [0, 1]2 → [0, 1]
that satisfies

F(x, y) = C(F1(x), F2(y); θ), (3)

where θ is a parameter of the copula called the dependence parameter, which mea-
sures the dependence between the marginals (see Trivedi and Zimmer [7]). Further-
more, the dependence parameter can be used to denote the families of the copulas
as notation Cθ (u, v). There are several examples of families of copulas, such as
the Gaussian (Normal) copula, the FGM (Farlie-Gumbel-Morgenstern) copula, the
Plackett copula, etc.

3.3 Bounds of Copula

Since copulas relate to the dependence parameter, so defining the bounds of copula
has been concentrated on. Usually, the copula lies between two bounds, which is
the Fréchet-Hoeffding lower bound, it corresponds to negative dependence and the
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Fréchet-Hoeffding upper bound which corresponds to positive dependence. Appli-
cation of the Fréchet-Hoeffding bounds to a copula in the bivariate case, for any
copula C and for all u, v in [0,1], is given by

W (u, v) = max(u + v − 1, 0) ≤ C(u, v) ≤ min(u, v) = M(u, v), (4)

where W is the Fréchet-Hoeffding lower bound, and M is the Fréchet-Hoeffding
upper bound. In addition, in special cases of copulas, the product copula can be
defined if the margins are independent (see Schmidt [26], Trivedi and Zimmer [7]).
Some families of copulas are called comprehensive if they include both Fréchet-
Hoeffding bounds and product copula, such as the Gaussian and the Frank copulas.
While the FGM, Clayton, Gumbel, and Joe copulas are not comprehensive, which
make it necessary to calculate the measures of dependence, as described below.

3.4 Measures of Dependence

Themeasure of dependence can be used to assess the coverage of the copula, which is
not comprehensive. Themost familiar and often usedmethod is the linear correlation,
such as the Pearson’s product moment correlation coefficient. But this measure has
some drawbacks: first, in general zero correlation, it does not imply independence.
Second, it is not defined for the heavy-tailed distribution whose second moments
does not exist. Third, it is not invariant under strictly increasing non-linear transfor-
mations (see Trivedi and Zimmer [7]). The alternative methods are the concordance
measures, such as Kendall’s τ and Spearman’s ρS which the statistician usually uses
for application. The former is defined as the following:

τ = P((X − X ′)(Y − Y ′) > 0) − P((X − X ′)(Y − Y ′) < 0), (5)

and the latter is defined as follows:

ρS = 3(P((X − X ′)(Y − Y ′′) > 0) − P((X − X ′)(Y − Y ′′) < 0)), (6)

where (X, Y ),(X ′, Y ′),and (X ′′, Y ′′) are independent randomvectors, and eachvector
has a joint distribution function F(., .) whose margins are F1 and F2. Since (X ,Y )
are continuous random variables whose copula is Cθ (u, v), the Kendall’s τ can be
expressed in terms of copulas (see Nelson [27, p. 129]):

τ = 4
∫ ∫

[0,1]2
Cθ (u, v)dCθ (u, v) − 1 = 4E(Cθ (U, V )) − 1, (7)

where the second expression is the expected value of the function Cθ (U, V ) of
uniform (0,1) random variables U and V with a joint distribution function C . Also,
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Spearman’s ρS can be simplified thus, in terms of copulas:

ρS = 12
∫ ∫

[0,1]2
uvdCθ (u, v) − 3 = 12E(U V ) − 3, (8)

whereU = F(X) and V = F(Y ) are uniform (0,1) random variables with a joint dis-
tribution function Cθ (u, v). Both of the concordance measures are bounded between
−1 and 1, and zero under the product copula.

3.5 Some Bivariate Copulas

There are several families of copulas, which are different in functional forms, char-
acteristics and distribution shapes such as symmetric or asymmetric, left or right
skewness, thin or fat tails, etc. Table1 gives the functional forms and characteristics
of some copulas.

It can be crudely concluded that the Gaussian, or Normal copula, was proposed
by Lee [6] for selectivity models. This copula is comprehensive since it includes the
product copula and both of the Fréchet-Hoeffding bounds, and captures both positive
and negative dependences. Also, it is radially symmetric in its dependence structure
and strong central dependency. In addition, the range of dependence parameter is
allowed to −1 ≤ θ ≤ 1 and for Kendall’s τ to −1 ≤ τ ≤ 1. This copula is given by

C(u, v; θ) = Φ2(Φ
−1(u),Φ−1(v); θ) (9)

or

Table 1 Functional forms and characteristics of bivariate copulas

Copula Function C(u,v) Generation function Range of θ Range of Kendall’s τ

Gaussian Φ2(Φ
−1(u),Φ−1(v); θ) – −1 ≤ θ ≤ 1 −1 ≤ τ ≤ 1

Student’s t tυ,ρ(t−1(u), t−1(v); υ, ρ) – −1 ≤ θ ≤ 1 −1 ≤ τ ≤ 1

FGM uv(1 + θ(1 − u)(1 − v)) – −1 ≤ θ ≤ 1 −2/9 ≤ τ ≤ 2/9

AMH uv/(1− θ(1− u)(1− v)) log 1−θ(1−t)
t −1 ≤ θ ≤ 1 −0.18 ≤ τ < 1/3

Clayton (u−θ + v−θ − 1)−1/θ (1/θ)(t−θ − 1) 0 < θ < α 0 < τ < 1

Frank − 1
θ

ln{1 +
(e−θu−1)(e−θv−1)

e−θ −1
}

−ln[(eθ t − 1)(eθ − 1)] −α < θ < α −1 ≤ τ ≤ 1

Gumbel exp(−[(−lnu)θ +
(−lnv)θ ]1/θ )

(−lnt)θ 1 ≤ θ < α 0 ≤ τ < 1

Joe 1−[(1−u)θ + (1−v)θ −
(1 − u)θ (1 − v)θ ]1/θ

−ln[1 − (1 − t)θ ] 1 ≤ θ < α 0 ≤ τ < 1

Source The copula function are given as presented in Trivedi and Zimmer [7] and Smith [8]
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C(u, v; θ) =
Φ−1(u)
∫

−∞

Φ−1(v)
∫

−∞

1

2π(1 − θ2)1/2
× {−(s2 − 2θst + t2)

2(1 − θ2)
}dsdt (10)

where Φ−1 is the inverse of cdf of standard normal distribution, and Φ2(u, v) is the
standard bivariate normal distribution with dependence parameter θ .

The Student’s t copula is similar to the Gaussian copula but have two dependence
parameters, degrees of freedom (υ) and correlation (ρ) (Trivedi and Zimmer [7]).
Moreover, this copula allows for joint fat tails (Aas [28]). This copula is given by
(see Embrechts et al. [29])

C(u, v;υ, ρ) = tυ,ρ(t−1(u), t−1(v);υ, ρ) (11)

or (see Trivedi and Zimmer [7])

C(u, v;υ, ρ) =
t−1
υ (u)
∫

−∞

t−1
ρ (v)
∫

−∞

1

2π(1 − ρ2)1/2
× {1 + (s2 − 2ρst + t2)

υ(1 − ρ2)
}−(υ+2)/2dsdt

(12)
where t−1

υ (u) is the inverse of cdf of standard t-distributionwithυ degrees of freedom,
which controls the tails heaviness. And tυ,ρ is the bivariate t distributionwith degrees
of freedom, υ and dependence parameter, ρ.

Another family of copula is FGM(Farlie-Gumbel-Morgenstern) copula.Although
this copula is radially symmetric it is similar to the Gaussian copula. But the depen-
dence structure is weaker than that of the Gaussian copula. In addition, this copula
is only useful in cases of moderate dependency (see Trivedi and Zimmer [7]). More-
over, it is not comprehensive because it includes only the product copula, and not the
Fréchet-Hoeffding lower and upper bounds. The range for Kendall’s τ is restricted
to −2/9 ≤ τ ≤ 2/9. The importance class of copula is the Archimedean copu-
las for example; the Clayton, Frank, Gumbel and Joe copulas which are popular
in empirical works for several reasons. These copulas can display a wide range of
dependence properties for different choices of generator function (see Trivedi and
Zimmer [7]). Furthermore, Smith [8] pointed out that it makes estimation of the
maximum likelihood and calculation of the score function relatively easy. In order to
better understand the Archimedean copulas, we need to mention some properties of
these copulas. The bivariate Archimedean copulas can be generated in the following
form:

Cθ (u, v) = ϕ−1[ϕ(u) + ϕ(v)], (13)

where ϕ : [0, 1] → [0, α] is a generator function which satisfies the following
properties: ϕ(1) = 0, ϕ′(t) < 0, and ϕ′′(t) > 0 for 0 < t < 1. In addition, if
ϕ(0) = α, then the inverse function ϕ−1exists. The above form can be written as
follows:

ϕ(Cθ (u, v)) = ϕ(u) + ϕ(v), (14)
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Taking the differential with respect to v in the above equation, we obtain the result
which will be used in the sample selection model, which can be given as

∂(C(u, v))

∂(v)
= ϕ′(v)

ϕ′(C(u, v))
, (15)

Also, for the Archimedean copula, Kendall’s τ can be described in simple form, as
follows:

τ = 1 + 4

1
∫

0

ϕ(t)

ϕ′(t)
dt, (16)

where ϕ′(t) = ∂ϕ(t)/∂(t).
It can be concluded that there is only Frank copula in theArchimedean classwhich

is comprehensive, symmetric and central dependence, and similar toGaussian copula.
However, the dependence structure is stronger than that of the Gaussian copula. Also,
the range for Kendall’s τ is allowed to−1 ≤ τ ≤ 1. In contrast, the Clayton, Gumbel
and Joe copulas are not comprehensive and asymmetric. The Clayton copula has
strong left tail dependence, and is opposite to Joe and Gumbel copula. Nevertheless,
the Gumbel is weaker dependence than the Joe copula. All of them have their ranges
for Kendall’s τ restricted to 0 ≤ τ < 1.

In recent times, the bivariate copulas such as Gaussian copula, Student’s t cop-
ula, etc. have been widely used in several economic research fields such as financial
economics (for examples: Patton [30], Boonyanuphong and Sriboonchitta [31] etc.),
tourism economics (for examples Puarattanaarunkorn and Sriboonchitta [32] etc.)
and agricultural economics (for examples Sriboonchitta et al. [33] Xue and Sriboon-
chitta [34] etc.). Moreover, the Archimedean copulas such as the Clayton, Frank,
Gumbel and Joe copulas, have been extensively used in empirical work (for exam-
ple, Genius and Strazzera [10], Sener and Bhat [35], Hasebe and Vijverberg [12],
Chinnakum et al. [13]). These copulas are different in the generation function, which
lead to differences in the functional forms (which are demonstrated in Table1) and
essential dependence structures.

4 Copula Based Polychotomous Choice Selectivity Model

In this current paper, we estimate a multinomial logit equation simultaneous with a
wage equation for individual by occupational choice: (1) high skilled worker e.g.,
managers, senior officials, and professionals (2) skilled worker e.g., skilled agri-
culture, machine operators (3) unskilled workers and use the FIML. Lee [6] called
polychotomous choice selectivitymodel or polychotomous choicemodel withmixed
continuous and discrete data (Maddala [36, p. 275]). Thismodel relates to correct the
selectivity bias, which occurs when unobserved disturbances of occupational choice
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equation are correlated with those of wage equation. This can be demonstrated by
the system of equations below:

Consider the multinomial logit model, with M categories and wage equation in
each category. (see Lee [6], Maddala [36, p. 275]).

lnwsi = xsiβs + usi (s = 1, 2, 3) (17)

I ∗
si = zsiγs + ηsi (18)

where lnwsi is the natural log of daily wage for each of i th individual, xs and
zs are explanatory variables; E(us |xs, zs) = 0, lnwsi is observed only if the sth
occupational choice is chosen; I is a polychotomous variables with value 1 to 3 and
I = s if the sth occupational choice is chosen. The i th individual will choose the sth
occupational choice if

I ∗
si > Max I ∗

j i ( j = 1, 2, 3, j �= s) (19)

Let εsi = Max I ∗
j i − ηsi .

Thus we can write below:
I = s iff εs < zsγs , where the index i has been quit, for easiness.
As shown in Domencich and McFadden [37], η j ( j = 1, 2, ..., M) are assumed

to be independently and identically distributed, with the type I extreme value distri-
bution. Then (see Lee [6], Maddala [36, p. 275])

Prob(εs < zsγs) = Prob(I = s) = exp(zsγ )
∑

j exp(zsγ )
(20)

Thus,

Fs(ε) = Prob(εs < ε) = exp(ε)

exp(ε) + ∑

j=1,2,..M, j �=s exp(z jγ )
(21)

Lee [6] suggested a general transformation to normality. Consider transformation as
below:

ε∗
s = Js(εs) = Φ−1[Fs(εs)]

u∗
s = Gs(us) = Φ−1[Gs(us)]

where Js(εs) and Gs(us) are the distribution functions of εs and us . Φ(.) is the
distribution function of the standard normal. Φ−1(.) is the inverse of the standard
normal distribution function. Thus ε∗

s and u∗
s have N (0, 1) distributions. Then the

multinomial logit and regression equation are estimated jointly by using the full
information maximum likelihood method (FIML) (Lee [6]).
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The general joint likelihood function can be written as below: (Spissu et al. [14])

L =
T

∏

i=1

[

M
∏

s=1

{P(lnwsi |zsiγs > εs) × P(zsiγs > εs)}Rsi

]

(22)

where Rsi is a dichotomous variable that take the value 0 and 1, with Rsi = 1 if the
sth occupational choice is chosen by the i th individual and Rsi = 0 otherwise.

Let Fεs(.) and Fus(.) be the cumulative distribution functions of the disturbance
terms εs and us , respectively. Spissu et al. [14] used normal distribution functions
for the marginal Fεs(.) and Fus(.) And the Eq. (22) can be expressed in terms of the
copula approach as below (see Spissu et al. [14])

L =
T

∏

i=1

[

M
∏

s=1

{

1

σus
× ∂Cθs(u, v)

∂v
fus

(

lnwsi − xsiβs

σus

)}Rsi
]

(23)

where Cθs(., .) is the copula equivalent to Fεs,us(u, v) with u = Fεs(zsγs) and

v = Fus

(

lnwsi −xsi βs
σus

)

. fus is the probability density function of usi , and σus is the

scale parameter of usi . The expression for the component of ∂Cθs(u, v)/∂v can be
simplified by using Eq. (15). And this is given by the selected families of copulas, as
presented in Table2.

The one appealing advantage of a copula approach is that, it allows for flexibility
in the families of copulas for the dependence between the disturbance terms in the
multinomial logit equation (εs) and those in the wage equations (us). However,
some of copulas such as Clayton, Gumbel and Joe copulas are not comprehensive
and cannot account for negative dependence. Although the FGM and AMH copula
can capture both positive and negative dependences, but the range for Kendall’s τ

are restricted to −2/9 ≤ τ ≤ 2/9 and −0.18 ≤ τ < 1/3, respectively. Thus in the

Table 2 Expressions for ∂
∂v Cθ (u, v)

Copula Expressions for ∂
∂v Cθ (u, v)

Gaussian Φ{(Φ−1(u) − θΦ−1(v))/
√
1 − θ2}

Student’s t tυ+1

⎛

⎝

t−1
υ (u)−ρt−1

υ (v)
√

(υ+(t−1
υ (v))2)(1−ρ2)

υ+1

⎞

⎠

FGM u [1 + θ(1 − u)(1 − 2v)]

Clayton u−(θ+1)
(

u−θ + v−θ − 1
)− 1+θ

θ

Frank
[

1 − eθCθ (u,v)
]

(1 − eθv)−1

Gumbel v−1(− ln v)θ−1Cθ (u, v)
[

(− ln u)θ + (− ln v)θ
]( 1

θ
−1)

Joe vθ−1(1 − uθ )
[

uθ + vθ − uθ vθ
]
1
θ
−1

Notes: (1) The expressions are presented in Bhat and Eluru [24] and Aas et al. [38]. (2) u =
1 − u, v = 1 − v
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current paper, we consider 3 different families of copulas such as Gaussian, Student’s
t and Frank copula. Moreover, the family of Student−tv distribution is the appealing
and appropriate one for wage density, according to Heckman et al. [39]. Thus we
specify Student−tv distribution for margin Fus .

Last, but not the least, the AIC (Akaike information criterion) and the BIC
(Bayesian information criterion) can be used to select between the competing
copula models. The AIC and the BIC values are equal to −2 ln(L) + 2K and
−2 ln(L) + ln(Q)K , respectively, where ln(L) is the log-likelihood value at con-
vergence, K is the number of parameters, and Q is the number of observations.
The better copula-based model is identified by the lowest values of AIC or BIC.
Fortunately, if the competing copula models have same exogenous variables and
univariate margins fixed across the model, choosing based on these selection criteria
is equivalent to selection based on the maximized log-likelihood (see Smith [9], Bhat
and Eluru [24], Hasebe [40]). Bhat and Eluru [24] also concluded that in the case of
non-nest models, the BIC is the most widely used approach to select from among
the competing models.

5 Data

The data set used for this analysis is a sample from the “The Labor Force Sur-
vey Whole Kingdom, Quarter 3: July–September 2012” conducted by the National
Statistical Office. The sample used consisted of 1,513 observations regarding older
workers, 477 and 130 of whom decided to hire as production workers and managers
respectively.

This current paper uses occupational choices as the dependent variables for the
multinomial logit equation, whichwe assume that individuals face three occupational
choices, which are unskilled workers ( j = 0), skilled worker ( j = 1) e.g., skilled
agriculture,machine operators and high skilledworker ( j = 2) e.g.,managers, senior
officials, and professionals. And we use logarithm of current wage per day of the
individual (lwpd) as the dependent variables for the wage equations. As far as the
multinomial logit equation was concerned to investigate the choice of occupations,
the regressing of the dependent variable was done on gender and education (years).
The regressors of the wage equation were as follows: experience (years), gender and
region.

6 Results

This current paper aims to apply the copula approach to a polychotomous choice
selectivity model and estimate the wage determination according to occupational
choice for older workers in Thailand. Importantly, we estimated the dependence
parameters between the disturbance terms in the occupational choices equation
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(εs) and those in the three wage equations (us). In other words we estimated the
dependence parameters between the residuals of the occupational choices equa-
tion and those of wage regressions for unskilled workers, skilled workers and high
skilled workers or ρ0, ρ1 and ρ2, respectively. In this current paper we use the
same copula dependence structure for those three dependence structures such as
Gaussian-Gaussian-Gaussian (Gaussian copula based-model or standard model),
Frank-Frank-Frank (Frank copula-based model) and Student’s t- Student’s t- Stu-
dent’s t (Student’s t copula-based model). Also, we estimated the independence
model to confirm the existence of the selectivity bias. Furthermore, occupational
choices and wage equations are estimated jointly using FIML. The results for the
standard polychotomous choice selectivity model and the copula-based model are
presented in Table3.

The main result shows that all of the copula-based models perform better than
the standard one, which is restricted to the normal distribution assumption, based on
the evaluated AIC and BIC criteria-especially the Frank copula-based model. The
log-likelihood value at convergence and the BIC value of the Frank copula-based
model are −2073.131 and 4321.987, respectively (as shown in Table3). Moreover,
the log-likelihood value at for the independent model is −2099.725. The estimated
dependence parameter between the residual of the occupational choices equation and
those of wage regressions for unskilled workers, and skilled workers or ρ0, and ρ1,
respectively are significantly different from zero in all of the copula-based models.
Although ρ2 or the dependence parameter between the residuals of the occupational
choices equation and those ofwage regression for high skilledworkers is insignificant
in standard and Student’s t copula-basedmodel, it was found to be significant at 10%
level for the Frank copula-based model. This implies that there exists significant
dependence between these disturbance terms, which explains the existence of the
selectivity bias. Importantly, this result shows the significant dependence parameter
of ρ2 only in the Frank copula-based model. In addition, this implies that all of
the regimes are suitable for central dependence, it is not suitable in the cases of
clustering of values in the tail dependence, regardless of whether it is left or right tail
dependence.

The estimated parameters from both the standardmodel and the candidate copula-
based model are illustrated in Table3. The main results are the following: First, the
estimated parameters are similar to all of the models. These findings are similar to
those obtained in several of the previous studies (for example, Smith [9], Genius and
Strazzera [10]).

Consider the Frank copula-based model results in Table3. The estimated para-
meters in the occupational choice equations indicate that gender has a significantly
negative impact on occupational choice, while it is the opposite in the case of the
variable of education level, whatever the choice of occupations. The female workers
have a lower probability of being skilled or highly skilledworkers thanmale workers.
However, older workers with higher education have a significantly higher probability
of being skilled or highly skilled workers.

Table3 also shows the results for wage regressions, these results surprisingly
indicate that years of experience have a significantly negative impact on wages,
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Table 3 Estimates of Independent, Standard and Copula-based Models

Variable Independent Standard Frank copula Student’s t copula

Occupations choice equation (for skilled workers)

Constant −0.919***(0.099) −1.141***(0.010) −1.084***(0.100) −1.097***(0.010)

Gender −1.671***(0.148) −1.826***(0.151) −1.705***(0.146) −1.906***(0.155)

Education 0.179***(0.017) 0.232***(0.017) 0.220***(0.018) 0.227***(0.017)

Occupations choice equation (for high skilled workers)

Constant −3.188***(0.189) −3.134***(0.187) −3.165***(0.186) −3.127***(0.183)

Gender −2.669***(0.324) −2.563***(0.317) −2.716***(0.323) −2.869***(0.331)

Education 0.321***(0.022) 0.317***(0.023) 0.326***(0.023) 0.330***(0.023)

Wage equation (for unskilled workers)

Constant 6.626***(0.142) 6.383***(0.148) 6.194***(0.144) 6.823***(0.159)

Experience −0.021***(0.003) −0.019***(0.003) −0.017***(0.003) −0.027***(0.003)

Gender −0.171***(0.025) −0.099***(0.029) −0.036***(0.028) −0.084***(0.031)

Region 0.579***(0.062) 0.555***(0.060) 0.540***(0.057) 0.549***(0.060)

σ0 0.419***(0.013) 0.431***(0.015) 0.454***(0.017) 0.444***(0.016)

ρ0 – −0.373***(0.067) −4.488***(0.624) −0.402***(0.084)

τ0 – −0.243 −0.423 −0.264

υ0 – – – 4.948(4.188)

Wage equation (for skilled workers)

Constant 9.799***(0.206) 9.266***(0.225) 9.605***(0.247) 9.543***(0.236)

Experience −0.075***(0.004) −0.056***(0.005) −0.063***(0.006) −0.062***(0.005)

Gender 0.058(0.069) 0.330***(0.082) 0.207***(0.083) 0.337***(0.080)

Region 0.326***(0.075) 0.409***(0.085) 0.314***(0.082) 0.369***(0.082)

σ1 0.554***(0.023) 0.733***(0.061) 0.678***(0.061) 0.687***(0.053)

ρ1 – 0.791***(0.068) 5.023***(1.515) 0.786***(0.060)

τ1 – 0.581 0.458 0.576

υ1 – – – 2.389(2.883)

Wage equation (for high skilled workers)

Constant 8.5289***(0.446) 8.488***(0.450) 8.560***(0.448) 9.282***(0.525)

Experience −0.049***(0.009) −0.051***(0.010) −0.045***(0.010) −0.058***(0.020)

Gender 0.031(0.189) −0.034(0.214) 0.086(0.195) 0.051(0.312)

Region 1.012***(0.215) 1.052***(0.222) 0.992***(0.214) 0.924***(0.249)

σ2 0.653***(0.051) 0.646***(0.051) 0.680***(0.064) 0.629***(0.102)

ρ2 – −0.164(0.232) 1.618*(1.290) 0.285(0.662)

τ2 – −0.105 0.175 0.184

υ2 – – – 6.581***(3.447)

LogL −2099.725 −2080.803 −2073.131 −2080.051

AIC 4241.449 4209.606 4194.262 4214.102

BIC 4353.208 4337.331 4321.987 4357.792

Notes: The standard errors are given in the brackets. The significance levels are the following:
* 10%,
** 5%,
*** 1%
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regardless of the choice of occupation. These results need in depth further research
to explain this important phenomena. The variable that is also significantly positive
impact on wages is the region. The older workers who live in Bangkok province
are likely to have higher wages than outside Bangkok. Gender has no impact on the
wages of the high skilled older workers, while the female has lower wage in the
unskilled older workers. This is not a surprised result.

7 Conclusion

This current study aims to estimate the wage determination according to occupa-
tional choice for older worker in Thailand by applying the copula approach to a
polychotomous choice selectivity model and using “The Labor Force Survey of
Whole Kingdom, Quarter 3: July-September 2012” data set. The main results are as
follows: First, based on the log-likelihood value and the criterion of BIC, the copula
approach to a polychotomous choice selectivity model (which allows for flexibility
in the dependence of the disturbance terms in the occupational choices equation (εs)

and those in the three wage equations (us) performed better than the standard one
(which is restricted by the normal distribution assumption). Also it is evident that
among the copula based models, the Frank copula-based model provides the best fit.

Second, these results show the presence of significant dependency of unobservable
factors between the occupational choice regression and the wage regressions for
unskilled and skilled workers, which implies that the selectivity bias exists. However,
we found that the estimated dependence parameter for the wage regression of high
skilled workers is lowly significant.

Third, female workers earn less than the males in the unskilled older workers,
while there is no difference in the high skilled. Fourth, surprisingly, the experience
has the significantly negative impact on the wage earned, which needs to do more in
depth research to explain this phenomena. Fifth, older workers who live in Bangkok
earn higher wage than those live outside Bangkok.
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Estimating Oil Price Value at Risk
Using Belief Functions

Panisara Phochanachan, Jirakom Sirisrisakulchai
and Songsak Sriboonchitta

Abstract We consider extreme value theory to study extreme price movements in
crude oil market. Autoregressive-Moving-Average models are developed to describe
daily log return of crude oil price. Peak-over-thresholdmodels are then used tomodel
the log return forecasting errors (residuals). The maximum residuals are expressed
in terms of value-at-risk or return level corresponding to accepted levels of risk
so that appropriate risk measures can be taken. A likelihood-based belief function
is constructed to quantify estimation uncertainty. As a result, we can assess the
plausibility of various assertions about the value-at-risk of the idiosyncratic shocks
in the world crude oil market.

1 Introduction

Oil prices have increased dramatically and fluctuated wildly in the past decade.
Many world events have led to oil disruption. The oil crisis started in October 1973
following political and military turmoil, especially in the middle-East with the Arab
oil embargo and the conflict between Egypt and Syria against Israel. The 1979–1980
(or second) oil crisis originated from the Iranian revolution. Particularly, the 1980
outbreak of the Iran–Iraq War and the 1990–1991 Persian Gulf war resulted in oil
crises. The third oil crisis in 2003–2008 and the inflation resulted in a slight increase
in the price of a barrel of crude oil on NYMEX.

In the past, prices in the oil market have been volatile and difficult to predict.
Therefore, there is a need of protection against market risk. In this paper, we study
oil price fluctuations and implement an effective tool for oil price risk manage-
ment. Particularly, Extreme value theory (EVT) has been successfully applied to the
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measurement of risk in finance. Even though many studies have been conducted to
forecast the return of crude oil prices, there has been little work the application of
on EVT-based calculation of value-at-risk (VaR) on crude oil market. We can men-
tion the study of price risk in NYMEX energy complex and the application of the
conditional and unconditional factors to estimate VaR by [14], the study of the daily
spot of Brent and WTI oil prices by applying both unconditional and conditional
EVT models to forecast Value at Risk by [15], and the study of the application of
EVT by Peak Over Threshold method to daily returns of Canadian spot oil price and
measuring VaR and ES by [19].

In this study, we use theDempster-Shafer theory introduced by [5, 20] to construct
a belief function on the VaR. The Generalized Pareto distribution (GPD) is used for
its ability to capture the tail distribution in the financial market. We propose an
alternative method to assess the plausibility of extreme value based on the belief
functions. The plausibility obtained can be used in further study to combine other
evidence or expert opinions.

The main classical approaches to statistical inference are (1) the frequentist
approach, relying on confidence intervals and significance testing, (2) Bayesian infer-
ence and (3) the likelihood-based approach [3, 8]. A detailed discussion of the limita-
tions of these methods, which motivate the introduction of new inference procedures
based on belief functions, is beyond the scope of this paper. In short, the confidence
levels and p-values computed using frequentist methods are pre-experimental mea-
sures that relate to sequences of trails rather than to specific questions [6]. Bayesian
inference does provide post-experimental analysis but relies on prior probability dis-
tributions, which are often not available in practice. The inference procedures used
in this paper are more in the spirit of likelihood-based inference in that a belief
function in the parameter space is derived directly from the likelihood function. The
method is also compatible with Bayesian inference, as it provides the same results
when a probabilistic prior is provided [7]. However, the belief function approach do
not require any information on prior. The advantages of the belief function approach
as compared to the frequentist and Bayesian approaches are discussed at length in
[7] and [13], among others. The reader is referred to these references for a detailed
exposition of the motivations underlying this method of inference.

This paper is organized as follows. Section2discusses themethodology andSect. 3
reports empirical results. Conclusions are presented in Sect. 4.

2 Methodology

The objective of this study is to estimate the Value at Risk (VaR) of the returns from
investing in oil price using an Autoregressive Moving Average (ARMA) model,
extreme value theory and belief functions. The ARMA model was applied to the
mean equation of the returns. The extreme value method then allowed us to model
the unobserved shocks, whichwere basically the residuals from theARMAequation.
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Finally, a likelihood-based belief functionwas constructed to quantify the uncertainty
on estimated parameter. As a result, we obtained a plausibility function on the VaR
of the idiosyncratic shocks in the world crude oil market.

2.1 ARMA Model

The ARMAmodel is based on the assumption that the current value of a time-series
is a linear combination of its previous values plus a combination of current and
previous values of the residuals [4]. Thus, the general linear ARMA(p, q) model for
the conditional mean is expressed as

rt = c +
p

∑

i=1

βi rt−i +
q

∑

j=1

α jεt− j + εt , (1)

where rt is the dependent variable at time t , c is a constant, p is the order of the
autoregressive (AR) part, q is the order of moving average (MA) part, the βi are
AR coefficients, the α j are MA coefficients and εt is the error. To estimate coef-
ficients c, βt and αt the error terms εt are assumed to be independent and to have
a normal distribution with zero mean and constant variance. The orders of the AR
and MA processes can be determined from the Autocorrelation Function (ACF) and
the Partial Autocorrelation Function (PACF). A diagnostic check can be performed
by analyzing the residuals using the Ljung-Box Q-statistics, which should not show
any significant autocorrelations in the residuals. Moreover, the best model can be
selected using the Akaike Information Criterion (AIC) or the Bayesian Information
Criterion (BIC) [11].

2.2 Extreme Value Theory

Extreme Value Theory (EVT) is used to model the extreme shocks of the returns.
Our variable of interest here is the residual from the ARMA model εi . We assume
that the shocks are independent and identically distributed (i.i.d.) to satisfy the EVT
assumptions.

The EVT method was designed to analyze maxima or minima of some events.
The method is commonly used to study the tail behavior of a variable distribution in
financial markets. This is because the method relies on the asymptotic distribution of
the tail and is robust to distributional assumption of the variable. EVT has two main
approaches [9, 18]. The first approach is the Block Maxima method (BMM), which
divides the data into blocks and examines the behaviors of themaximumorminimum
observations from each of the block. The BMM uses the Generalized Extreme Value
(GEV) distribution as it is the limiting distribution of normalized maxima or minima
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for a series of i.i.d randomvariables. The second approach is the PeakOver Threshold
(POT) method, which examines the behavior of the exceedances, i.e., all observa-
tions that exceed a given threshold. The parametric POT method is based on the
extreme value theorem by [17], which states that the exceedances are asymptotically
distributed the Generalized Pareto distribution (GPD), following [16]. Therefore, the
GPD is used to describe the tail behavior [10, 12]. As the BMM requires large data
sets, we used the POT approach in this study.

Let the exceedances over the threshold be yt = εt − u, where u is the threshold.
The conditional excess distribution function Fu(y) above of threshold u from the
random variable εt is defined as

Fu(y) = P (εt − u ≤ y | εt > u) . (2)

The selection of the suitable threshold in this study follows [1, 17]. To choose the
threshold, we face a trade-off between variance and bias. When using a lower thresh-
old, the number of observations above the threshold increases; as a result, the para-
meter estimates have smaller variance but are biased. On the other hand, choosing
a high threshold decreases the number of observations, thus reducing the bias but
making the estimator more volatile. The standard approach for threshold selection
is the empirical Mean Excess (ME) plot as discussed in [9]. In [1] and [17], the
authors developed the extreme value theorem for the POT method stating that, for
any distribution Fu(.), the conditional distribution of the exceedances asymptotically
converges to the generalized Pareto distribution (GPD) [9]. That is, the exceedance
variable Y has the following distribution:

Gξ,σ,μ(y) =
⎧

⎨

⎩

1 − (

1 + ξ
y−u
σ

)−1/ξ
, ξ �= 0,

1 − exp
(−(y−u)

σ

)

, ξ = 0,
(3)

where Gξ,σ,μ(.) is the GPD function, σ ≥ 0, and y ≥ 0 when ξ ≥ 0 and 0 ≤ y ≤
−σ/ξ when ξ < 0.

The tail index ξ and scale parameter σ are estimated bymaximizing the likelihood
function for the sample exceeding the threshold u. The individual probability density
function is derived from G as follows:

g(yi ) = 1

σ

(

1 + ξ

(

yi − u

σ

))
−1−ξ

ξ

. (4)

For ξ = 0, the individual density function is obtained as

g(yi ) = 1

σ
exp

(−1

σ
(yi − u)

)

. (5)

The likelihood function L(ξ, σ | yi ) for the GPD is the joint density of the n
observations. It is defined as
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L(ξ, σ | yi ) =
{

σ−n ∏n
i=1

(

1 + ξ(
yi −u

σ
)
)

−1−ξ
ξ , ξ �= 0,

σ−n ∏n
i=1 exp

(−1
σ

(yi − u)
)

, ξ = 0.
(6)

2.2.1 Measure of Extreme Risk

According to [22], the Value at risk (VaR) is a measure of extreme risk in term of
the possible gains or losses given the distribution F . The VaR is the α-th quantile of
the distribution F ,

VaRα = F−1(α), (7)

where F (−1)is the quantile function, which is the inverse of the distribution function
F .

Using Eq. (2), Fu(y) = F(y+u)−F(u)
1−F(u)

and setting εt = u + y for εt ≥ u we can
express the model in term of the tail of the underlying distribution F(εt ),

F(εt ) = (1 − F(u))Gξ,σ (εt − u) + F(u) (8)

Replacing Fu by the generalized Pareto distribution (GPD) and Fu by the estimate
(n−Nu)/n, where n is the number of observations and Nu the number of observations
above the threshold u, we have

F̂(εt ) = 1 − Nu

n

(

1 + ξ̂

σ̂
(εt − u)

)−1
ξ

, (9)

from which we get the VaR qα ,

qα = u + σ̂

ξ̂

[(

n

Nu

)

(1 − α)−ξ − 1

]

. (10)

2.3 Representation of Statistical Evidence Using
Belief Function

2.3.1 Basics of Belief Function

In this section, we briefly present the theory of belief functions, which can be used
as a formal framework for reasoning and making decisions under uncertainty. It
originates from the work of [5, 6] who introduced a new approach to statistical
inference based on lower and the upper probabilities induced by a multi-valued
mapping. Later, Shafer [20] showed that belief functions can be used to represent
uncertain information or data in a very general setting. This framework is usually
referred to as Dempster-Shafer theory.
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We can define a belief function on an arbitrary measurable space (Θ,B) as a
function Bel satisfying the following conditions [20],

1. Bel(∅) = 0 , Bel(Θ) = 1;
2. For any k ≥ 2 and any collection A1, . . . Ak of elements of B,

Bel

(

k
⋃

i=1

Ai

)

≥
∑

∅�=I⊆{1,...,K }
(−1)|I |+1Bel

(

⋂

i∈I

Ai

)

, (11)

where | I | is the cardinality of the set I .

When Θ is finite, we can represent the uncertain evidence about θ ∈ Θ by a mass
function m on Θ , defined as a function m : 2Θ −→ [0, 1] such that m(∅) = 0 and
∑

A⊆Θ m(A) = 1. Any subset A of Θ such that m(A) > 0 is called a focal set of m.
Shafer [20] interpreted each number m(A) as a degree of belief attached specifically
to the proposition θ ∈ A and to no more specific proposition. The function

Bel(A) =
∑

B⊆A

m(B), (12a)

for all A ⊆ Θ is then a belief function, and

Pl(A) =
∑

B∩A �=∅
m(B), (12b)

is a plausibility function, related to Bel by the following relation: Pl(A) = 1 −
Bel(Ac) for all A, where Ac is the complement of A inΘ . The quantities Bel(A) and
Pl(A)can be interpreted, respectively, as the degree to which the evidence support
A and the degree to which the evidence is not contradictory with A. The function
pl : Θ −→ [0, 1] such that pl({Θ}) = Pl({θ}) for all θ ∈ Θ is called the contour
function associated to m. If the focal sets are nested, Bel is said to be consonant.

In the case whereΘ is infinite, a belief function can generally not be defined from
(12a) because a mass function may not exist. However, we can conveniently define a
belief function from a multi-valued mapping Γ from a probability space (S,A , μ)

to 2Θ such that, for all B ∈ B, {s ∈ S|Γ (s) ∩ B �= ∅} belongs toA . We then have,
for all B ∈ B,

Pl(B) = μ({s ∈ S|Γ (s) ∩ B �= ∅})

and Bel(B) = 1 − Pl(Bc). In the analysis using belief function described in the
next section, the frame of discernment Θ is assumed to be a closed interval of
the real line and the multi-valued mapping Γ will define a random closed interval,
Γ (s) = [U (s), V (s)]. We then have

Bel(B) = μ({s ∈ S | [U (s), V (s)] ⊆ B}) (13a)
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Pl(B) = μ({s ∈ S | [U (s), V (s)] ∩ B �= ∅}), (13b)

for all elements B of the Borel sigma-algebra B(R) [6].

2.3.2 Likelihood-Based Belief Function

In this section, we briefly recall how to represent the statistical evidence using belief
function. Suppose that we observe a sample of random vector X with probability
density function f (x; θ), where θ ∈ Θ is an unknown parameter. According to
the likelihood principle, all the information about θ is supposed to be contained
in the likelihood function, which is L(θ; x) = f (θ; x) for all θ ∈ Θ . Shafer [20]
proposed to represent the information aboutΘ from the observed sample by a conso-
nant likelihood-based belief function, whose contour function equals the normalized
likelihood function:

pl(θ; x) = L(θ; x)

supθ ′∈Θ L(θ ′; x)
, (14)

assuming the denominator in (15) to be finite. Thus, the corresponding plausibility
function can be defined as:

pl(A; x) = sup
θ∈A

pl(θ; x) = supθ∈A L(θ; x)

supθ ′∈Θ L(θ ′; x)
, (15)

for all measurable subsets A of Θ . This method was shown to follow from the
Likelihood and Least Commitment principles by Denoeux [7].

2.4 Application to Oil Price Value-at-Risk Estimation

In this section, we describe how to apply the belief function theory to represent
the statistical evidence from the estimation of VaRα(ε). In other words, the contour
function of a consonant belief function with the normalized likelihood can be viewed
as the estimation uncertainty of VaRα(ε). The contour function is estimated in the
belief function framework using a procedure similar to the one proposed in [2].

From the Sect. 2.2, we have y � G(θ)where G(.) is the GPDwith the parameters
θ = (u, ξ, σ ) ∈ Θ . Assuming that u = 0 and ξ �= 0, we have

Gξ,σ (y) = 1 −
(

1 + ξ
y

σ

)
−1
ξ

. (16)

The VaR is the quantile of variable y, i.e., VaRα = qα . Therefore,
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G(qα) = 1 −
(

1 + ξ
qα

α

)
−1
ξ = α. (17)

Solving the above equation, we get

σ = ξqα

(1 − α)−ξ−1 . (18)

As the parameter of interest is q, Eq. (19) can be used to reparameterize the likelihood
function. Thus the log-likelihood function becomes

L(ξ, q|yt ) =
(

ξq

(1 − α)−ξ−1

)−n n
∏

i=1

(

1 +
(

yt (1 − α)−ξ−1

q

))

−1−ξ
ξ

(19)

The plausibility function pl(ξ, q|yt ) can be derived from the likelihood function
as

pl(ξ, q | yi ) = L(ξ, q | yt )

supξ,q L(ξ, q | yt )
. (20)

Since we are interested to learn about the plausibility of q, parameter ξ can be
marginalized out by

pl(q | yt ) = sup
ξ

pl(ξ, q | yt ). (21)

3 Data and Results

3.1 Data

In this section, we study the spot daily oil price of West Texas Intermediate (WTI).
The data set of WTI covers the period from January 21, 1986 to November 21, 2013
(7025 observations). As shown in Fig. 1, the time series is not stationary after early
2008. To overcome the non-stationary issue, we computed the log-returns (lower
graph of Fig. 1).

Figure2 shows some descriptive statistics for the return ofWTI time series of data.
The data has a left-skewed shape and excess kurtosis. In addition, the Jarque-Bera
test indicates that the returns are not normally distributed at the 99% confidence
interval.
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Fig. 1 Daily spot prices and return on WTI crude oil

Fig. 2 Summary of Descriptive Statistic; daily return crude oil price of West Texas Intermediate
(WTI)

3.2 Results

In this study, we examined both positive and negative extreme returns from investing
in the WTI market. That is, we first applied the ARMAmodel to fit the deterministic
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Table 1 Maximum likelihood parameter estimates for both return shocks

Parameter estimation Positive return shock Negative return shock

u = 0.05 u = 0.10

σ̂ 0.0197 0.0255

(0.0025) (0.0065)

ξ̂ 0.1290 0.2487

(0.1002) (0.1823)

Standard errors in parentheses

trend of the returns and computed the residuals from the model. Then, we applied
the extreme value and belief function methods to model and estimate the positive
and negative extreme shocks separately.

3.2.1 Deterministic Trend

The ARMA model requires the dependent variable or the return rt to be stationary.
In this part, we first tested stationarity using the augmented Dicky Fuller test. The
test confirms that the return is stationary at the 1% significant level.

For theWTI return data, the AIC andBIC statistics suggest that we use theARMA
model with the order 4 and 8. That is, the deterministic trend of the returns can be
captured using the following ARMA(4,8) model,

rW T I = 0.0002 + 1.0957rt−1 − 0.5456rt−2 + 1.1445rt−3 − 0.8937rt−4

− 1.1106εt−1 + 0.5154εt−2 − 1.1326εt−3 + 0.9312εt−4 − 0.0261εt−5

+ 0.0201εt−6 − 0.06212εt−7 + 0.0480εt−8.

3.2.2 Estimation of Value at Risk

The residuals from the ARMAmodel represent the return shocks. The extreme value
model requires the shock variable to be independent and identically distributed (iid).
Therefore, we tested the serial correlation using the Breusch-Godfrey Serial Correla-
tion LMTest. The result suggests that there is no autocorrelation in the residuals. The
estimates of the scale parameter σ and the shape parameter ξ of the GPD are shown
in Table1. The diagnostic plots for positive and negative shocks are shown in Figs. 3
and 4. For positive return shocks, none of the plots gives any cause for concern about
the quality of fitted model. However, the goodness-of-fit in the probability plot for
the fitted model of the negative return shock seems unconvincing. There is outlier
that can also be seen in the return level plot.

As compared to the traditional point estimation of VaRα , the belief function
method provides us with the plausibility function of the VaR shown in Fig. 5. We
can see that the plausibility is not symmetric. Therefore, information on the mean of
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Fig. 3 Diagnostic plots for POT model fitted to positive return shock

Fig. 4 Diagnostic plots for POT model fitted to negative return shock

VaR does not well represent the actual distribution. The most plausible VaRs at the
95% level based on the statistical evidence, for positive and negative return shocks,
are about 0.107 and 0.122, respectively.
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Fig. 5 Plausibility of for positive (left) and negative (right) return shocks

4 Conclusions

In this paper, we introduced a method to estimate the VaR of crude oil price. The
method is based on three steps. First, the log-returns are fitted with an ARMAmodel.
The extreme values of residuals computed from the POT method are then modeled
by a GDP. Lastly, a belief function on the VaR is computed from the normalized
likelihood function. This belief function quantifies estimation uncertainty and can
be propagated in decision or forecasting procedures. In contrast with the Bayesian
approach, the belief function method of inference does not require a prior probability
distribution. However, the two methods coincide when a Bayesian prior is provided.
The prediction of oil price could also be addressed using the same framework [13].
This topic is left for further research.
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Broad Monetary Condition Index:
An Indicator for Short-Run Monetary
Management in Vietnam

Pham Thi Tuyet Trinh and Nguyen Thien Kim

Abstract We construct broad monetary condition index (MCI) for monetary policy
management in Vietnam. MCI is composed of key monetary transmission variables
including interest rate, exchange rate, credit and stock market price. Weights of
composite variables are derived from reduced form IS-PC framework and impulse
response function based on vector autoregressive model with data in first difference
form and difference-with-long-term-trend form. The best MCI is chosen based on
three criteria: its causal relationship with output growth, its ability to explain output
growth in short-run and its out-of-sample performance in forecasting output growth.
Movement of chosenMCI indicates that the indicator has two essential characteristics
of a supporting index for short-term monetary policy management, including quick
responses to monetary policy changes and close relation with policy goal.

1 Introduction

To achieve policy goal of monetary policy, central banks construct some supporting
targets in short run, known as operational target and intermediate target. In Vietnam,
policy goal has been stated clearly to focus on inflation control under the Law on The
State Bank of Vietnam 2010,1 however, supporting targets for managing monetary
to obtain policy goal have not been sufficient and transparent yet. Particularly, inter-
mediate target is not officially announced though the State Bank of Vietnam (SBV)
has relied mainly on annual objectives of money supply growth and credit growth as

1 Previously, Vietnam has multiple policy goals including economic growth, price control, …,
indicated in Law on The State Bank of Vietnam 1997.
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Table 1 Target and actual money supply and credit growth

Year Money supply growth (%) Credit growth (%)

Targeta Actualb Targeta Actualb

2000 – 24.50 – 34.19

2000 – 24.50 – 34.19

2001 – 21.1 – 30.4

2002 – 24 – 28

2003 – 20.6 – 26.2

2004 – 23.6 25 41.65

2005 22 29.65 25 31.1

2006 23–25 33.59 18–20 25.44

2007 23–25 46.12 17–21 53.89

2008 <32 20.31 <30 23.38

2009 25 28.99 21–23 37.53

25–27∗

2010 25 33.3 25 31.19

2011 14–16 9.27 15–17 10.9

2012 14–16 18.46 15–17 8.85

2013 14–16 7.31∗∗ 12 4.72∗∗

Note ∗Adjusted within fiscal year; ∗∗first 6 months
Source aSBV
bIFS

orientation for monetary policy management in fiscal year. Also, operational target is
absolutely absent in monetary framework though short-run management aims to sta-
bilize interest rate, exchange rate and ensure liquidity of the banking system, which
is clearly indicated inmonetary directives issued at the beginning of each fiscal year.2

These limitations restrain the support and orientation of short-run target for monetary
policy management, which have been revealed through the fact that: (i) Intermedi-
ate target does not quantitatively correlate with policy goal. SBV usually breaks the
annual objectives of money supply and credit growth in other to achieve economic
growth and inflation target (Table1); (ii) Lack of operational target causes mone-
tary policy slowly respond to market changes. Noticeably, interventions to control
inflation have to wait signals from the response of money supply and credit or even
price fluctuation. Therefore, the paper aims to compute Monetary Conditions Index
(MCI) for Vietnam as a short-run indicator for SBV to partly fulfill the insufficiency
of monetary framework.

MCI, formerly known as, is a weighted average of changes in values of interest
rate and exchange rate to their relative values in a base period, which represents
the impacts of these parameters to policy goal (usually output growth and inflation).
In this paper, we follow the approach of MCI but modify some natures to make it

2 Such as Directive 02/2010/CT-NHNN, Directive 01/2011/CT-NHNN, Directive 01/2012/CT-
NHNN, Directive 01/2013/CT-NHNN.
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appropriate with the characteristics of Vietnamese economy. In specific, beside inter-
est rate and exchange rate, other key monetary transmission channels in Vietnam are
incorporated, including real credit and stock price. Also, weights of composite vari-
ables are estimated by applying weighted-sum approach with two different methods:
reduced form IS-PC framework and impulse response function (IRF) based on VAR.

2 Monetary Conditions Index (MCI)

MCI is firstly computed by Bank of Canada at the beginning of 1990s to reflect
the state of monetary policy and used as a supportive indicator for central banks to
managemonetary policy in short run. The idea for this index is based on transmission
monetary mechanisms with two main channels including interest rate and exchange
rate. MCI is defined as a weighted average of changes in values of interest rate (r)
and exchange rate (e) to their relative values in a base period, in which, weights of
interest rate and exchange rate express the impacts of these parameters on policy
goal (usually output growth and inflation).3

MCIt = θr · (rt − r0) + θe · (e0 − et) (1)

where MCIt is MCI at time t, θr and θe are the relative weights of interest rate and
exchange rate. The exchange rate is usually in logarithms or percent deviations from
its base level while interest rate is at level. Both variables could be either in nominal
(as MCI of Bank of Canada [3]) or real term (as MCI of Sveriges Riksbank [16]). In
short-run,MCIs estimated from nominal and real terms have similar movement since
relative prices and inflation rates are reasonably the same [10]. MCI decreases when
interest rate decreases and exchange rate rises, reflecting contractionary monetary
policy.MCI increases when interest rate increases and exchange rate falls, expressing
expansionary monetary policy. Stable MCI addresses monetary policy is unchanged.

MCI canbeused for various objectives including anoperational target, an indicator
and a monetary rule. In the first case, MCI is believed to be associated with long-run
goals of monetary policy. For that reason, it is suggested that actual MCI should be
brought in line with its desired value. This application is formerly employed by Bank
of Canada from 1995 to 2006 and Reserve Bank of New Zealand from 1996 to 1999.
As an indicator, MCI offers information about the level of monetary policy stance.
In fact, when relatively calculated comparing to the previous period, MCI shows that
policy has become tighter or looser. In other words, MCI acts as a leading indicator
of policy stance. In the last case, MCI can be set to obtain a policy rule such as to
correct deviations of inflation from objective and output from potential [2]. Norges
Bank and Sveriges Riksbank have use MCI as an inflation target [10]. Apart from

3 The formula is adjusted from the original formula (which is MCIt = θr(rt − r0) + θe(et − e0)) to
appropriate with direct exchange rate quotation used in the paper.
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central banks, MCI is also estimated by other organizations. For example, the index
is constructed and reported in World Economic Outlook by International Monetary
Fund (IMF) for policy evaluation of individual countries [18]. The application ofMCI
is also expanded into the business area. Financial Times showedMCIs’ chart for four
main EU countries accompanying with policy recommendations for Germany [7].
Goldman Sachs and JP Morgan discussed MCIs for a number of economies in their
circulated publications [8, 31].

Since MCI is widely used, there have been many researches regarding the pros
and cons of this index. Ericsson et al. considered MCI as an attractive indicator for
two reasons. First, the concept of MCI is simple [11]. In fact, exchange rates and
interest rates are two main transmission channels of monetary policy. Especially, in
small open economies, exchange rate is one of themain factors influencing aggregate
demand. Therefore, examining exchange rates and interest rates may be significant
in policy making and economy’s behavior understanding. The second attractive fea-
ture of this index is the simplicity in methodology of calculation. However, many
researches criticize that MCI has limitations. Since the weights of variables included
in MCI cannot be directly observed but empirically derived from a model, MCI
is model dependent [10]. Similar to other empirical models, MCI’s equation bears
strong assumptions about parameter constancy, cointergration, dynamics, exogene-
ity and choices of variables. Moreover, MCI cannot capture the shocks affecting to
the movements of monetary policy [4]. For these disadvantages, models employed
to estimate MCI should be cautiously considered.

The robustness of this indicator is also suspected by its plainness. Since the index
is constructed basing only on two transmission channels including interest rate and
exchange rate, MCI does not fully reflect the effects of monetary policy on the
economy. Recent theoretical and empirical research findings exhibit that property
and equity prices play an important role in the transmission monetary mechanism
through wealth effect [24] and credit channel [5]. For that reason, original MCI
is modified by adding other parameters into calculation formula, representing for
different transmission channels of monetary policy beside exchange rate and inter-
est rate. The selecting parameters differ from country to country depending on the
characteristics of particular economy. Goodhart and Hofmann applied coefficients
summarized across lags to each contemporaneous component in constructing broad
MCI for G7 countries including short term interest rate, real exchange rate, real prop-
erty price and real share price [14]; Gauthier at el used the similar approach with
housing price, share price and price differences among high yield bonds for esti-
mating MCI of Canada [13]; Swiston employed a dynamic weight structure which
accurately incorporates the timing of transmission from financial markets to real
activity including bond price, stock price, exchange rate and credit availability [32].
In addition, original MCI is also modified by adjusting the formula to various form
[14, 22, 23, 26]. These different ways of modification define broad version of MCI
which is not unified as its original version but different to each other depending on
specific conditions of each country.

Regarding to the methodology, literature addresses different approaches to
estimate the weight of component variables of MCI. The most popular ones include
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large-scale macro-econometric models, reduced-form of IS-PC model [1, 19, 27],
impulse-response functions (IRFs) from a vector autoregression (VAR) [13, 32] and
factor analysis [13]. The first approach is employed by national central banks and
governmental institutions. According to Goodhart and Hofmann, large-scale macro-
econometric models are obviously superior to reduced-form IS-PC model and VAR
model since the structural features of the economy and the interaction among all
variables are able to take into account [14]. However, due to data accessibility, this
approach is considerably hard to apply by researchers. Whereas, reduced-form of IS-
PCmodel and VARmodel are widely used to estimate broadMCI. These twomodels
also inherit potential limitations similar to the methodology applied to estimate orig-
inal version of MCI such as model dependency, dynamics, parameter inconstancy
and non-exogeneity of regressors [14]. However, some of these technical problems
are recently defeated. For examples, Gauthier et al. employed the sum of coeffi-
cients on lags of variables and individual lags to take into account the dynamics of
parameters [13]. In addition, generalized impulse response functions from a VAR
and factor analysis are used to conquer the criticism of non-exogeneity of regressors
and model dependency. Noticeably, because of not employing an empirical model,
factor analysis approach does not face regarded limitations. Finally, high data fre-
quency is adopted to avoid potential structural breaks and parameter inconstancy
problem [13].

Although there are still limitations addressed in the estimated broad MCI, the
index is still simultaneously studied and used for many different purposes including
short term monetary policy. Besides, there is no perfect index or variable to support
monetary policy operations in short term, MCI still be regarded as a considerable
reference for central banks [12].

3 Methodology

3.1 Estimation Model

We employ formula (2) which is popularly used in recent researches (e.g. [22]) to
calculate a broad MCI for Vietnam:

MCIt =
n

∑

i=1

wi · Xi,t (2)

In which,Xi(i = 1, 2, 3 , . . .) includes composite variables ofMCI, which also repre-
sent for key monetary transmission channels in Vietnam, including real interest rate
(r), real exchange rate (e), real credit (cre), and stock price (vni) [6, 17, 21, 25, 29];
wi is weight of variable Xi with sign (negative or positive) depending on impact
direction of variable i on output.
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Weights (wi) of composite variables are estimated by applying weighted-sum
approach with two different methods: reduced form IS-PC framework and impulse
response function (IRF) based on VAR.

Following studies of Duguay [9], Goodhard and Hofmann [14] and Abdul Majid
[1], reduced form IS-PC model includes an output equation (IS) and a Phillips curve
equation (PC). The former has output (Yt) as dependent variable and composite
variables of MCI (Xi) as explanation variables. We also construct foreign output,
world commodity price and fiscal policy as control variables which are represented
by lag of output Yt−i and dummy (Dum) representing for impact of global crisis from
the third quarter of 2008. The latter describes relationship between output (Yt) and
price (πt) with world commodity price (wcpt) as control variable.

Yt = α1 +
n

∑

i=1

βi · Yt−i +
n

∑

j=1

γi,j · Xi,t−j + Dumt + ε1t (3)

πt = α2 +
n

∑

a=1

σ1a · πt−a +
n

∑

b=1

σ2b · Yt−b +
n

∑

c=0

σ3c · wpct−c + ε2t (4)

The above equations of IS-PC model are estimated separately by OLS. In IS
equation, we apply 2 years as maximum lag length for all variables in the right hand-
side because that is time horizon monetary policy is thought to have its full impact
on output and inflation [13]. Lag length of each composite variable is specified by
general-to-specific method. Weights of composite variables are calculated by adding
all significant coefficients. We expect weights of composite variables as follows: (i)
that of interest rate is negative (–), implying increase in interest rate as a result of tight
monetary policy leads to decrease in output and vice versa; (ii) those of exchange rate,
credit and stock price are positive (+), respectively implying increases in exchange
rate, in credit and stock price as a result of expansionary monetary policy leads to
increase in output and vice versa. In PC equation, maximum lag length is based on
Akaike Information Criterion (AIC).4

Typical VARmodel of Sims [30] is used to estimate weights of composite variable
as follows:

Xt = C +
p

∑

i=1

Ψi · Xt−i + θ · Zt + εt (5)

In which, Xt represents for endogenous vector includes output, price, interest
rate, exchange rate, credit and stock price Xt = (Y , π, i, e, cre, vni); C is vector of
constant;Ψi is matrix of auto-regressive coefficient; Zt are exogeneous vector includ-
ing US interest rate (ffrt), world commodity price (wcpt), world output (wgdpt) rep-
resent for impact of world financial market, commodity market and foreign demand
respectively; θ is coefficient matrix of exogenous variables. Lag length of model (5)

4 We do not report estimation result of PC equation in the main contend of this paper.
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is determined by AIC. Weight of each composite variable is calculated by accumu-
lated response of output to its shock within two years. We use generalized impulse
response function developed by Pesaran and Shin [28] since the result of estimated
response is not sensitive to order of variables in the VAR system.

3.2 Variables Definition and Data Description

We use two forms of data including first difference specification and deviation-from-
long-term-trend specification (hereafter gap specification) for estimation. With the
two specifications of data, variables in reduced form IS-PC model and VAR model
are defined as in Table2.

Output (Yt) is proxied by real gross domestic production (GDP) of Vietnam in
index form from Data Stream. Real deposit interest rate is employed as a proxy of
interest rate (rt). This selection relies on four reasons. Firstly, deposit rate is one of
the three interest rates (along with lending rate and interbank rate) expressed in the
Annual Statement of SBV. Secondly, interbank rate is not a good indicator for money
market in Vietnam [33]. In SBV’s Statements, interbank rate is only mentioned from
2008. Thirdly, lending rate of commercial banks is determined mainly on deposit
rate. Finally, although ceiling on deposit rate is applied from March 2011, it aims to
control the race of raising deposit rate among commercial banks during the period
but not to distort the market. Real interest rate is obtained by subtracting inflation
rate from nominal interest rate taken from IFS. Exchange rate (et) is proxied by
real effective exchange rate (REER) of Vietnam with 17 main trading partners5

accounting for about 90% annual total foreign trade of Vietnam. REER is calculated
by geometric mean method6 with data taken from various sources including: (i)
nominal VND/USD rate is from SBV; (ii) nominal rate of USD against other foreign
currency, price index of foreign country are from IFS; (iii) bilateral foreign trades of
Vietnam and 17 main trading partners are from General Statistic Office of Vietnam.
Credit (cret), proxied by real credit of the economy, price of Vietnam (πt), proxied by
consumer price index, world commodity price (wcpt), proxied by world commodity
price index and fed fund rate (ffrt) are from IFS. Stock price (vnit) is proxied by
Stock price index of Hochiminh Stock Exchange (Vnindex). World output (wgdpt)
is calculated as weighted average of real GDP volume in index form of 17 main
trading partners with Vietnam taken from IFS.

For data in gap specification, output, interest rate, exchange rate, credit, stock
price are percentage deviation of their actual levels from their long-term-trend levels

5 Including China, Singapore, Japan, Korea, Thailand, Malaysia, Hong Kong, The United State,
Indonesia, Germany, Australia, UK, France, Russia, Philippines, Taiwan and Netherland.
6 REERt = ∏k

i=1(NERit · P∗
it

Pn
)wit in which NERi is nominal exchange rate of currency i against

VND, wi represent for attached trade weigh of currency i in currency basket, P∗
i represents for

producer price index or whole sale price index of country i; Pn represent for consumer price index
(CPI) of Vietnam.
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which are calculated by Hodrick Prescott filter (HP) with smoothing parameter of
1600. Meanwhile, Vietnam price and world commodity price, world output are year-
over-year inflation and growth rate.

We use quarterly data from the first quarter of 2000 to the second quarter of
2013 for estimation. Research period is chosen depending mainly on data availabil-
ity. In addition, this is also strong integration period of Vietnam economy into the
world economy through bilateral and multilateral trade agreements. Besides, SBV
has issued new regulation for exchange rate quotation at commercial banks with
Decision 64/1999/QD/NHNN and 65/1999/QD/NHNN since 1999. All data series
(except for interest rate and fed fund rate) are in natural logarithm and seasonally
adjusted by Census X12. Thus, we have two data sets (first difference specification
and gap specification) depicted in Figs. 1 and 2.

Two sets of data series are also tested stationarity by Augmented Dickey-Fuller
(ADF) v Phillips-Perron (PP). The results reported in Table3 indicate that, in first
difference specification, all series, except for output and credit, are stationary signifi-
cantly at 1 and 5%according to bothADF and PP.Output and credit are not stationary
according to ADF but stationary significantly at 1% according to PP.We accept these

Fig. 1 Series data in first difference specification. Note * denotes data in percentage per annum.
Source Authors’ calculation
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Fig. 2 Series data in gap specification. Note ∗ and ∗∗ denote series data in percentage per annum
and in year-over-year growth rate respectively. Source Authors’ calculation

Table 3 Result of ADF and PP stationary test

Variable First difference specification Gap specification

t-stat, ADF test t-sat, PP test t-stat, ADF test t-stat, PP test

Y −2.111 −7.7917∗∗∗ −3.0859∗∗ −3.4659∗∗

R −4.6743∗∗∗ −3.9213∗∗∗ −4.7679∗∗∗ −2.8368∗∗

E −9.9298∗∗∗ −10.0537∗∗∗ −4.2027∗∗∗ −4.2875∗∗∗

cre −2.3111 −5.5715∗∗∗ −3.1811∗∗ −2.8096∗∗

vni −5.9697∗∗∗ −5.9554∗∗∗ −2.7229∗ −2.7229∗

πb −6.9940∗∗∗ −7.0403∗∗∗ −2.4596 −1.8938

ffra −3.2625∗∗ −3.4669∗∗

wcpb −6.4737∗∗∗ −6.4609∗∗∗ −5.0722∗∗∗ −3.0536∗∗

wgdpb −8.7765∗∗∗ −8.8595∗∗∗ −3.2581∗∗ −3.2729∗∗

Note ∗∗∗, ∗∗, ∗ indicate significance at 1, 5 and 10% respectively;
a Data in percentage per annum %;
b Data in year-over-year growth rate in gap specification
Source Authors’ calculation
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two data series are stationary. In gap specification, all data series (except for price)
are stationary significantly at 10% and above. Price is not stationary according to
both ADF and PP, therefore, we take first difference form of year-over-year inflation
for estimation in gap specification.

4 Weight Estimation Results

With two estimation models and two data specifications, we generate four weight
groups called as in Table4.

4.1 Estimated Weight from Reduced Form IS-PC Model

Table5 shows estimated results of IS equation with data in first difference specifi-
cation (column 1 and 2) and in gap specification (column 3 and 4). Diagnostic tests
also indicate the significance of estimated results (Residual has normal distribution
and stability, no serial correlation, no heteroskedasticity).

With first difference specification, coefficients of output are significant at lag 1, 2,
3 and 4; those of interest rate are significant at lag 3, 4 and 5; those of exchange rate are
significant at lag 2 and 6; those of credit are significant at lag 3 and 5; those of stock
price is at lag 1, 3, 4 and 6; financial crisis has negative impact on output. Thus, the
summations of significant coefficients of interest rate, exchange rate, credit and stock
price are −0.035, 0.081, 0.086 and 0.035 respectively. All coefficient summations
have expected signs indicating decrease in interest rate, increase in exchange rate,
credit and stock price reflects monetary expansion and lead to increase in output
while increase in interest rate, decrease in exchange rate, credit and stock price
reflects monetary tightening and cause output to decrease. With gap specification,
output has significant impact at lag 4 and 6; interest rate has significant impact at
lag 4; exchange rate has significant impact at lag 2; credit has significant impact at
lag 4 and 5; stock price has significant impact at lag 1 and 3; financial crisis also
has significant negative impact on output. Summations of significant coefficient of
interest rate, exchange rate, credit and stock price are−0.059, 0.023, 0.008 and 0.019
respectively and have expected sign.

Table 4 Weight groups

Variable First difference specification Gap specification

Specification Reduce form IS-PC model IRF based on VAR model

First difference Group 1 Group 3

Gap Group 2 Group 4

Source Authors
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Table 5 Estimated result of IS equation

First difference specification Gap specification

Variables Coefficients Variables Coefficients

(1) (standard error) (3) (standard error)

(2) (4)

C 0.0374∗∗∗ (0.0089) C −0.0621 (0.0722)

Yt−1 −0.4436∗∗∗ (0.1486) cret−1 0.0231∗∗ (0.0099)

vnit−1 0.0121∗∗∗ (0.0037) vnit−1 0.0114∗∗∗ (0.0017)

Yt−2 −0.5475∗∗∗ (0.1542) et−2 0.0235∗ (0.0151)

et−2 0.0418∗∗ (0.0208) vnit−3 0.0087∗∗∗ (0.0022)

Yt−3 −0.5745∗∗∗ (0.1511) Yt−4 0.5057∗∗∗ (0.0968)

it−3 0.1107∗∗ (0.0439) it−4 −0.0590∗∗ (0.0255)

cret−3 0.0483∗∗ (0.0191) cret−4 −0.0463∗∗ (0.0178)

vnit−3 0.0111∗∗∗ (0.0035) cret−5 0.0317∗ (0.0159)

Yt−4 0.2465∗ (0.1557) Yt−6 −0.7009∗∗∗ (0.0913)

it−4 −0.1983∗∗∗ (0.0541) Dum −0.3289∗∗∗ (0.1178)

vnit−4 0.0071∗∗ (0.0032)

it−5 0.1356∗∗ (00511)

cret−5 0.0380∗ (0.0209)

it−6 −0.0044304

et−6 0.0407∗ (0.0219)

vnit−6 0.0050∗ (0.0030)

Dum −0.0069∗∗ (0.0026)

R2 0.7959 R2 0.8514

Ad.R2 0.6719 Ad.R2 0.8113

Loglikelihood 197.2829 Loglikelihood −9.3392

F-statistic(Prob) 6.4213 (0.0000) F-statistic(Prob) 21.2130 (0.0000)

AIC −7.7949 AIC 0.8474

SBC −7.0793 SBC 1.2762

DWstat 2.4717 DWstat 2.1863

Note ∗∗∗, ∗∗, ∗ indicate significance at 1, 5 and 10% respectively
Source Authors’ calculation

4.2 Estimated Weight from IRF Based on VAR Model

Table6 shows accumulated impulse responses of output to shocks of interest rate,
exchange rate, credit and stock price with data in first difference and gap specifi-
cations. Output has expected responses to shocks (negative response to interest rate
shock and positive responses to shocks of exchange rate, credit and stock price).
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Table 6 Accumulated impulse response of output to interest rate, exchange rate, credit and stock
price shock

Period R e cre vni

First difference Specification

1 −0.000562 0.002041 0.002688 −0.000375

2 −0.001609 0.001846 0.004072 0.000189

3 −0.000917 0.002899 0.005495 0.000497

4 −0.001312 0.005742 0.008229 0.000848

5 −0.001356 0.005329 0.009389 0.000546

6 −0.001366 0.004388 0.009254 0.004867

7 −0.001468 0.003569 0.008945 0.003172

8 −0.001475 0.002886 0.008316 0.00114

Gap specification

1 −0.143242 0.121949 0.159473 0.1581645

2 −0.316881 0.107188 0.272079 0.417559

3 −0.457483 0.172672 0.317857 0.554801

4 −0.57895 0.292024 0.409699 0.672792

5 −0.701296 0.312977 0.502208 0.79685

6 −0.817582 0.305276 0.550239 0.871414

7 −0.916458 0.325827 0.573775 0.900803

8 −0.977595 0.311965 0.588562 0.917666

Note Generalized impulse response function based on VAR estimation with 3 lag chosen by AIC
Source Authors’ calculation

Table 7 Normalized weight groups

Group 1 Group 2 Group 3 Group 4

r −1 −7.38 −1 −3.14

e 2.31 2.88 2 1

cre 2.46 1 8 1.89

vni 1 2.38 2 2.95

MCI MCI1 MCI2 MCI3 MCI4

Source Authors’ calculation

After 8 quarter, accumulated responses of output to the four shocks in first difference
specification are −0.001475, 0.002886, 0.008316 and 0.001140 respectively and in
gap specification are −0.977595, 0.311965, 0.588562 and 0.917666 respectively.
Diagnostic and stability tests of estimatedVARmodels also indicate estimated results
are stable and significant.

With four estimated weight groups, we process to normalize and obtain
results reported in Table7. Four normalized weight groups are different with each
other, reflecting differences in method and data specifications for estimation.
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Fig. 3 Calculated nominal and real MCIs. Source Authors’ calculation

Gauthier et al. [13]7 and Osorio et al. [26]8 also use various methodologies and data
forms and find different weights of composite variables to calculate MCI. Among
weight groups, group 1 and 3 has weight of credit as the largest, that of exchange rate
as the smaller, and those of interest rate and stock price as the smallest; meanwhile,
group 2 and 4 has weight of interest rate as the largest, that of exchange rate (of
group 2) and stock price (of group 4) as the smaller, stock price and credit (of group
2) or credit and exchange rate (of group 4) as the largest.

5 MCI Calculation Results

With four normalized weight groups in Table6, we calculate four nominal MCIs
(NMCI) and four real MCIs (RMCI) by using formula 1. NMCIs are calculated by
nominal data of interest rate, exchange rate, credit and stock price while RMCIs are
calculated by their real data. We calculate both NMCIs and RMCIs because Vietnam
is high inflation economywith annual average inflation rate at 7% in thewhole period
(2000–2013), which can lead to different movements of nominal and real MCIs in
both short and long term. Figure3 depicts movements of calculated NMCIs and
RMCIs indicating all NMCIs have rather similar movements. However, fluctuation
of NMCI3 is much larger than that of the other NMCIs due to largest weight of credit,
causing NMCI3 to separate from the rests. This is also the difference of RMCI3 with
the other RMCIs. Figure4 indicate that pairs of MCI1, MCI3, MCI4 are highly
correlated while correlation of NMCI2 and RMCI2 is very low.

7 The authors use three methods including: reduced-form IS-PC model, IRF based on VAR and
factor analysis with data in first difference form and difference-with-long-term form.
8 The authors use IRFbased onVARandDynamic factormodel to calculatedMCIs for 13 economies
including China, Australia, HongKong, Indonesia, India, Japan, Korea, Malaysia, New Zealand,
Philippines, Singapore, Thailand and Taiwan.
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Fig. 4 Correlation between MCI pairs. Source Authors’ calculation

6 MCIs Appraisal

6.1 Criteria of Appraisal

MCI can be used to support short-term monetary policy management, thus the index
must have close relation with policy goals. We rely on three criteria which are also
three various tests to appraise computed MCI and select the best MCI among var-
ious MCIs. The first is causal relationship of MCIs with output growth based on
Granger Causality Test. MCI found to be no Granger cause with output growth is not
appropriate for monetary policy management and will be eliminated in other method
appraisal. The second is ability to explain for output growth in short run. We follow
Guamata et al. [15], Osorio et al. [26] to use below simple Eq. (6).
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growtht+h = α +
q

∑

i=1

βi · growtht+1−i + δ · INDEXt + εt (6)

In which, growth is real output growth of Vietnam economy; h is forecast horizon
and is set at 1, 2, 3, and 4 quarters ahead; i is optimal lag length of growth based on
AIC9 which indicates 3 lag; INDEX represents for MCIs and individual monetary
variables10 including real interest rate, real exchange rate, real credit and stock price.
Equation (6) implies that when coefficient δ is different from zero significantly and
has expected sign, INDEX can explain for output growth at h period ahead. In order to
compare explaining ability ofMCIs andmonetary variables, we rely on SumSquared
Residuals (SSR) of estimated equations. The third is ability ofMCIs to predict output
growth in the short-run by out-of-sample forecast. In this forecasting exercise, we
use Eq. (6) again and perform 1, 2, 3 and 4 steps-ahead forecast for the period of
2010Q1–2013Q2. Forecast results are compared with actual output growth to judge
predictive power of MCIs by Root Mean Square Error (RMSE).

6.2 Appraisal Results

Table8 presents results of Granger causality test, indicating NMCI1, NMCI3,
RMCI2, RMCI4 are not Granger cause of output growth while NMCI2, NMCI4,
RMCI1, RMCI3 are Granger cause of output growth. Therefore, we eliminate
NMCI1, NMCI3, RMCI2, RMCI4 in later tests. The results also show output growth
is not causality of all calculated MCIs.

Table9 indicates that estimated coefficients of all INDEX (except interest rate
and credit) at 1, 2 and 3 step ahead have expected signs significantly. Coefficients of
interest rate are significantly positive (which is contrary to theory) while coefficients
of credit are not significant. Comparing SSRs of estimated equations, we find that:
(i) between MCIs and monetary variables, SSRs of the former are smaller than
those of the latter, implying MCIs, an indicator combining variables representing for
transmission channels of monetary policy, have more powerful ability to explain for
output growth than monetary variables; (ii) amongMCIs, SSRs of RMCI are smaller
than those of NMCIs. This result also reflects economic decisions are usually made
based on real factors; and (iii) among RMCIs, SSR of RMCI1 is smaller than that of
RMCI3, implying RMCI1 is the most powerful index in explaining output growth.

Figure5 shows actual output growth and forecasted output growth at 1, 2, and 3
steps ahead11 in period of 2010Q1–2013Q2. All forecasted output growths (growthf)
have downward trend in the period after financial crisis, which is also key trend

9 We determine lag of growth without INDEX to apply the same lag of growth into various equation
estimation, therefore, SSRs of estimated equation can reflect explaining ability of INDEX.
10 We also explore explanatory ability of othermonetary variables to comparewith that of calculated
MCIs.
11 We do not forecast at four steps ahead because all coefficient of MCIs at foure steps ahead are
not significant as presented in Table8.
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Table 8 Granger causality test results

Null hypothesis F-statstistic

Lag 1 Lag 2 Lag 3 Lag 4

NMCI1 does not Granger cause GROWTH 0.8103 1.1742 1.9047 2.4097∗

GROWTH does not Granger cause NMCI1 0.4522 0.2778 0.1688 0.17

NMCI2 does not Granger cause GROWTH 8.2102∗∗∗ 4.6271∗∗ 3.3302∗∗ 5.0897∗∗∗

GROWTH does not Granger cause NMCI2 0.0058 0.9293 0.6709 1.3511

NMCI3 does not Granger cause GROWTH 1.201 1.4065 1.7241 1.5624

GROWTH does not Granger cause NMCI3 0.3452 0.2028 0.1772 0.2024

NMCI4 does not Granger cause GROWTH 4.4717∗∗ 2.4074∗ 2.2278∗ 2.5219∗

GROWTH does not Granger cause NMCI4 0.0209 0.3737 0.2954 0.3149

RMCI1 does not Granger cause GROWTH 4.5304∗∗ 2.5062∗ 3.5207∗∗ 3.7632∗∗

GROWTH does not Granger cause RMCI1 0.0819 0.4555 0.5799 0.5137

RMCI2 does not Granger cause GROWTH 2.0193 1.7083 1.4895 1.7959

GROWTH does not Granger cause RMCI2 3.0869∗∗ 2.3470∗ 2.0461 1.3494

RMCI3 does not Granger cause GROWTH 5.9215∗∗ 3.0208∗ 3.1613∗∗ 3.1722∗∗

GROWTH does not Granger cause RMCI3 0.4319 0.0848 0.2662 0.1972

RMCI4 does not Granger cause GROWTH 0.9994 0.5626 1.2579 1.1701

GROWTH does not Granger cause RMCI4 0.5742 0.6751 0.9488 0.9936

Note ∗∗∗, ∗∗, ∗ indicate significance at 1, 5 and 10% respectively
Source Authors’ calculation

Table 9 Ability to explain output growth of MCIs and monetary variables

INDEX h = 1 h = 2 h = 3 h = 4

δ SSR δ SSR δ SSR δ SSR

NMCI2 0.022∗∗∗
(0.007)

35.938 0.034∗∗∗
(0.008)

47.538 0.023∗∗
(0.009)

62.978 0.005
(0.010)

65.11

NMCI4 0.017∗∗
(0.008)

39.232 0.021∗∗
(0.010)

57.301 0.010
(0.011)

65.32 −0.003
(0.011)

65.474

RMCI1 0.013∗∗
(0.005)

35.122 0.022∗∗∗
(0.005)

47.255 0.011∗
(0.006)

62.534 0.001
(0.007)

65.529

RMCI3 0.005∗∗∗
(0.001)

36.428 0.007∗∗∗
(0.002)

48.873 0.004∗
(0.002)

61.528 0.0009
(0.002)

65.402

r 0.114∗∗∗
(0.034)

34.233 0.182∗∗∗
(0.037)

40.534 0.130∗∗∗
(0.044)

54.632 0.048
(0.048)

63.994

e −3.616
(3.379)

42.329 7.791∗
(4.466)

59.409 9.256∗
(4.873)

61.115 1.089
(5.122)

65.534

cre 0.013
(0.014)

42.62 0.006
(0.017)

63.589 −0.011
(0.018)

66.031 −0.022
(0.019)

63.455

vni 0.694∗∗
(0.288)

38.213 1.171∗∗∗
(0.331)

48.9096 1.031∗∗∗
(0.357)

55.163 0.593
(0.383)

61.823

Note ∗∗∗, ∗∗, ∗ indicate significance at 1, 5 and 10% respectively
Source Authors’ calculation
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Fig. 5 Actual output growth and forecasted output growth at 1, 2, and 3 step-ahead. Note growthf
denotes forecasted output growth. Source Authors’ calculation

of actual growth output. Although forecast results are not quite coincident with
actual performance, all forecasts have similar movements with actual output growth.
Predictive powers of MCIs reported in Table10 show RMCI1 has smallest RMSE,
implying forecast results of model with RMCI1 is closer with actual output growth
than those of the others.

In summary, results of three tests indicate RMCI1 outperforms the others in
explaining and forecasting output growth in short run. Therefore, we choose RMCI1
to analyse for the purpose of exploring how the index performs in comparison with
monetary policy management in studied period.
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Table 10 Predictive power of MCIs

MCI RMSE

h = 1 h = 2 h = 3

NMCI2 1.0821 1.0096 1.0547

NMCI4 1.0618 1.1104 1.2184

RMCI1 1.0673 1.0086 1.0494

RMCI3 1.1157 1.1373 1.2313

Source Authors’ calculation

7 Analysis of MCI Evolution

In studied period,MCI evolution can be divided into five phases corresponding to five
periods of monetary policy management performed by the changes in policy rates
including rediscount rate, refinancing rate, base rate, and by movements of interme-
diate target variable (money supply growth), and leading to appropriate response of
the economy through the changes of output growth and inflation (Figs. 6 and 7).

In 2000Q1–2001Q4, MCI fluctuated tremendously reflecting constant changes
of monetary policy in very short time of the post-crisis period with volatile policy
rates. Rediscount rate and refinancing rate declined to 4.2% (from 4.8% previ-
ously) and 4.8% (from 5.4% previously) in 8/2000, then rebounded to 5.4 and 6%
in 11/2000 respectively. Again, the rates respectively decreased by 4.8 and 5.4%
in 4/2001 while refinancing rate continued reducing to 4.8% in 7/2001. Conse-
quently, the economy spent hard time with low output growth and deflation. In
2002Q1–2007Q4, MCI tended to move upward, showing consistent expansion of
monetary policy to pursue output growth target, which was mainly implemented by:

Fig. 6 Evolution of MCI, M2 growth and output growth, inflation. Source Authors’ estimation
(MCI); Data stream (GDP growth); IFS (Inflation, M2 growth)
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Fig. 7 Policy rates in 2000–2013. Source SBV

(i) keeping policy rates to be stable. Rediscount, refinancing and based rate were
upward adjusted only three times within 2005 to 4.5, 7.5 and 8.25% respectively to
curb high inflation pressure in 2004 and stayed unchanged for the whole phase; (ii)
keeping reserve requirement unchanged. SBV only raised reserve requirement twice
times in 7/2004 and in 6/2007 to control inflation pressure also; (iii) maintaining the
growth of money supply at over 30% from 2003Q3 and over 40% in the last three
quarter in 2007. The expansion successfully achieved annual average output growth
at 7.5% but was undeniably one of the main causes of high inflation pressure at the
end of 2007. In this period, MCI also appropriately declined in 2004Q2–2004Q3 and
2005Q4–2006Q1 to reflect tight monetary policy to curb inflation rising in the end
of 2004. In 2008Q1–008Q4, MCI declined drastically when monetary policy turned
to be tightened to control inflation. At the beginning of 2008, monetary policy was
remarkably tightened by: (i) repeatedly adjusting policy rates upward. Rediscount
rate and base rate were raised three times to 13 and 14% respectively while refinanc-
ing ratewas raised fourth times to 14%; (ii) increasing reserve requirement by1%and
applying this compulsory deposit for all terms (Decision 187/2008/QD-NHNN)12;
(iii) issuing compulsory T-Bills worth 20,300 billion Vietnam dong to commercial
banks (Decision 346/QD-NHNN); (iv) controlling total banking outstanding loans,
discount financial instruments used to invest in the security market accounting for
20% chartered capital of credit institutions, raising risk ratio for mortgage loans
and security investment loans to 250% (from 150% previously) (Decision 03/2008/
QD-NHNN). In 2009Q1–2009Q4, due to dramatic monetary expansion against the
impact of global crisis with five times reduce all policy rates from 10/2008, MCI
reversed to rise in the early of 2009. Monetary policy was remarkably expanded in

12 Previously reserve requirements were only applied to current deposits and under 24 month
deposits.
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Fig. 8 Contribution of composite variables in MCI evolution. Source Authors’ estimation

2009 through credit channel with two stimulus packages of the Government. This
timely support made the economy successfully overcome recession with economic
growth at 5.32% and inflation at 6.5%. In 2010Q1–2013Q2, after expansionary
period to avoid recession, monetary policy was tightened again to control inflation
pressure occurring at the end of 2009, which led to downward movement of MCI for
the whole period. The tight monetary policy successfully controlled inflation in 2012
at 8% and in the first half of 2013 at 2.4% but traded off with low output growth.
In the period of curbing inflation, MCI also reversed to rise in 2010Q3–2011Q1 and
2012Q4, reflecting monetary expansion to pursue output growth target in the second
half of 2010 and the end of 2012, also indicating SBV still gives considerable weight
for output growth. Figure8 indicates that the evolution of MCI is mainly determined
by movement of credit and exchange rate which are also key transmission channels
of Vietnam founded in various empirical studied such as Guamata et al. [15] and Le
[20]. Meanwhile, interest rate and stock price generally can explain little of MCI
evolution, showing the limited transmission of these two channels also founded in
studies of Le [21], Pham [29]. Besides, Fig. 8 also implies that all variables do not
have the same fluctuations with each other and with MCI at all time. This means
the variables have different responses to the dynamics of monetary policy. Thus, the
parameters having the greatest response tomonetary policy operations can determine
the direction of MCI fluctuations as well as the economy response.

The analysis of innovation of MCI with monetary policy performance in stud-
ied period indicates that calculated MCI has very close relation with both monetary
instruments (i.e. policy rates) and intermediate target variable (money supply) and
policy goals (output growth and inflation). However, the calculated MCI also has
some limitations. First, MCI does not have consistent lag response with changes of
monetary instruments since composite variables of MCI have different lag response.
For example, interest rate quickly reacts to policy rates changes (usually, in the same
quarter); similarly, exchange rate also immediately responds to published interbank
exchange rate adjustments; meanwhile, credit and stock price have slow reactions
(usually from 1 to 2 quarter). Therefore, the variable having prominent reaction in
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a specific period of time determines lag response of MCI. Second, in some period,
SBV is forced to use its instruments to adjust official market variables under market
pressure but has no intention to change the direction of monetary policy. However,
changes of official market variable (e.g. exchange rate, interest rate) cause MCI to
change reflecting change of monetary policy stance. For instant, due to significant
increase of published interbank exchange rate in other to allow exchange rate quoted
at commercial bank to follow market pressure in 2/2011,13 MCI suddenly increases,
reflecting monetary policy turn to expand though SBV is trying to control high infla-
tion. These limitations of computedMCI can be explained by three reasons. The first
one is that we calculate MCI based on weighted-sum approach with static weight
but dynamic weight. The second limitation is intervention of SBV is to follow the
market but not orient the market. For example, only when the deviation between
exchange rate quoted at commercial banks and that used in the free market is consid-
erably high, does SBV decide to raises published interbank exchange rate to cancel
the gap. The third one comes from the nature of MCI while the weights included in
the equation encompass the effects of other factors to aggregate demand rather than
monetary policy operating only.

8 Conclusion and Recommendations

Although MCI constructed in this study are not appropriate with monetary manage-
ment at all time, this indicator still have two essential characteristics of a supporting
index for short termmonetary policymanagement, including quick responses tomon-
etary policy changes and close relation with policy goal. For that reason, SBV should
consider to employ this indicator in short-run management of monetary policy.
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Analysis of International Tourism
Demand for Cambodia

Chantha Hor and Nalitra Thaiprasert

Abstract This study uses fixed–effect and random–effect models to analyze six
sets of panel data over the period of 17years (1996–2012) in order to investigate
determinant factors that could affect international tourism demand for Cambodia.
We find that the GDP per capita of the origin countries in the previous year has a
significant and positive effect on international tourist arrivals to Cambodia, except for
tourist arrivals from ASEAN and Europe. Higher relative prices in Cambodia have
a significant and negative effect on tourist arrivals to Cambodia, except for tourist
arrivals from Oceania and Europe. Appreciated Cambodian riel has a significant
and negative effect on tourist arrivals from Oceania and North America, but has a
significant and positive effect on tourist arrivals fromEurope. Transportation cost has
a significant and positive effect on tourist arrivals from Asia and Europe. This may
suggest that tourists from these two regions are less sensitive to the transportation
cost compared with other factors that drive them to visit Cambodia. The dummy
variables which represent the significant events all yield the expected signs.

1 Introduction

Tourism is the world’s expeditious growth industry which can contribute signifi-
cantly to economic growth in both developed and developing countries. The industry
directly employs more than 98 million people around the world, or around 3% of all
jobs. The job expansion in travel and tourism is forecasted to average about 1.9% per
year over the next decade, compared with the 1.2% annual growth rate forecasted
for the total number of jobs in the global economy [26]. Moreover, tourism is the
world’s largest export earner, generating around US$ 1.3 trillion and representing
6% of the world’s exports in 2013. International tourist arrivals climbed up 5% to
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US$ 1.087 billion from US$ 1.035 billion in 2012. It is forecasted to grow up to US$
1.8 billion in 2030 [27].

Tourism inCambodia started to flourish in the 1960s, but it was seriously damaged
in the 1970s and 1980s by the civil conflict and genocidal policies of the Pol Pot era,
which destroyed all the related tourism systems in the country. The industry could
turn around only after Cambodia had gained some peace through the 1991Paris Peace
Agreement [6]. Since then Cambodia’s tourism industry has played an important role
as an engine of its economic growth. It is the second largest profit-earning industry for
theCambodian national account after the garment industry, accounting for 12%share
of the whole economy in 2013 [31]. Tourist arrivals have increased dramatically to an
average of 20% annually during the period from 1993 to 2013. In 2004, international
tourists contributed around 50.5% to Cambodia’s Gross Domestic Product (GDP)
and around 24.4% in 2012. The revenue from international tourism has increased
from $2.21 billion in 2012 to $2.55 billion in 2013 [14]. Additionally, according to
the World Travel and Tourism Council report in 2012, Cambodia’s tourism industry
has created around 1.45 million direct jobs in 2011, and the number is estimated to
rise to 1.5 million in 2012 and 1.95 million in 2022 [31].

Cambodia has realized that the tourism industry is a key economic driver for
helping Cambodia to achieve the United Nations Millennium Development Goals
(MDG) and Cambodia’s national development plan. The government has put much
effort into building the available tourism system for attracting international tourists by
developing the infrastructure, such as roads, bridges, airports, river and sea harbors,
and power and water supply, and has undertaken the developing of more and more
innovative tourist places for increasing the lengths of stay of international tourists.
National tourism strategic plans and policies have been released to stimulate eco-
nomic growth through tourism. Furthermore, the government has authorized the right
to the ministry of tourism to cooperate with private sectors, NGOs, and international
development partners in pushing the plans and policies into effect.

As the role of tourism industry in Cambodia has grown larger, however, there is
still little attention paid to investigate factors affecting international tourists’ decision
to visit Cambodia. Since there has never been a research done using quantitative
analysis for Cambodia’s tourism industry, this paper is the first study to perform
an econometric analysis on international tourism demand for Cambodia’s tourism
in order to understand factors influencing international tourists’ decision-making
in coming to Cambodia. Results from this study will help to develop the tourism
industry in Cambodia.

2 Literature Review

Many analysis tools have been used in analyzing the tourism industry around the
world, namely the classical multivariate regression, advanced modern econometric
approaches (such as VAR model), vector autoregressive model, ARMAX model,
system-of equation approach, autoregressive distributed lag model, co-integration
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test, error-correction model, generalized method of moment (GMM) model, novel
hybrid system, simple time-series models (such as naïve, simple autoregressive,
smoothing exponential, and trend curve analysis), and advanced time-series models
(such as seasonal ARIMA and conditional volatility models).

There are plenty of international tourism demand studies which use time series
models in their analysis. For example, [18] use the ARMAXmodel to investigate the
dynamic relationship between tourism demand and real income of Japan for New
Zealand and Taiwan. The outcomes indicate that international travel is positively
correlated to income of the origin country. Ouerfelli [22] uses co-integration analysis
and error correction model to investigate European tourism demand in Tunisia and
finds a large elasticity magnitude, which may be a reflection of tourism as a luxury
goods bought by European countries, and the supply factor is a significant effect
on the tourists’ decision-making in visiting Tunisia. Sr and Croes [25] employ time
series data using linear and double log-linear models to study the demand of the
U.S. tourists to Aruba. The study reveals that the effects of income dominate those
of prices and exchange rates. In general, the U.S. tourists appeared to be highly
sensitive to the income variables and inelastic with respect to price. The exchange
rate variable is not significant. Habibi et al. [9] use co-integration to find the UK
and the U.S. tourism demand for Malaysia and find that the long-run equilibrium
does exist among the variables selected (income in origin countries, tourism prices in
Malaysia, and transportation cost between country of origin and destination country),
and the tourists seem to be strongly sensitive to tourism prices. In addition to the
studies mentioned above, there are plenty of international tourism demand studies
using time series models, such as [1, 2, 5, 16, 17, 21, 28, 29].

There are also a handful of studies which use panel data in their econometric
analysis. Serra et al. [24] use a dynamic panel model to estimate the international
tourist overnight stays in Portugal from the six main countries (The UK, Germany,
The Netherlands, Ireland, France, and Spain). Various controlled variables (income
per capita, harmonized household consumption, unemployment rate, and final house-
hold consumption) are utilized in this study. Results from the study show that some
tourist places in Portugal have high elasticity to the income per capita. [33] use panel
three-stage least squares (3SLS) to investigate leading indicators influencing Aus-
tralian domestic tourism demand by using -three dependent variables (numbers of
nights stayed by holiday-makers, business travelers, and visitors who visit friends
and relatives), and using the consumer sentiment index, household debt, and work-
ing hours of consumers as independent variables in the study. They find that the
consumer sentiment index has significant impacts on visitors who visit friends and
relatives, but not on holiday and business tourists. Also, household debt is increased
because of domestic travels. Garin-Munoz and Montero-Martin [8] use panel data
from 14 countries during the period of 1991–2003 and a dynamic model to study
tourism in the Balearic Islands. Numerous explanatory variables are used to explain
the number of tourist arrivals. They find that previous tourism consumption has a sig-
nificant effect on consumers’ willingness to visit the destination country. Moreover,
the results suggest that demand is heavily dependent on the development of economic
activity in the origin countries and on the cost of living in the destination country.
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The authors suggest that tourism advertisement and high-quality services should be
included in tourism policy. Ibrahim [12] uses panel data to investigate international
tourism demand for Egypt and finds that all the explanatory variables except pop-
ulation are significant. Real gross domestic per capita, real exchange rate, and cost
of living in Egypt are significant and inelastic, and tourism in Egypt is sensitive to
relative prices. Apart from the studies mentioned above, there are many other studies
that use panel data, such as [7, 15, 19, 20, 23].

3 Methodology

The panel data model is used in this study due to its two main advantages. Firstly, the
use of annual data avoids the seasonality problem, which is dominant in this sector.
Secondly, the utilization of panel data set involves relatively large numbers of obser-
vations and consequent increase in degrees of freedom, which reduces collinearity
and improves the efficiency of the estimates [11].

The two main models, fixed effect and random effect, are originated from the
panel data sets of 26 countries of origin during the period of 1996–2012 to explore
the determinant factors that influence international tourism demand to Cambodia.

The estimation of international tourism demand to Cambodia from 26 countries
of origin is presented in the following formula:

Qi,t = f (GDPPCi,t−1, RPi,t , ERi,t , TCi,t , D1, . . . , D11) (1)

Or,

ln Qi,t = α0 + β1 lnGDPPCi,t−1 + β2 lnRPi,t + β3 lnERi,t + β4 ln TCi,t

+ θ1D1 + . . . + θ11D11 + εi,t (2)

where
ln Qi,t = logarithm of number of tourist arrivals to Cambodia from country of

origin i during year t , where t is the period of 1996–2012.
lnGDPPCi,t−1 = logarithm of GDP per capita of the origin country i at time

t − 1 in constant term.
lnPRi,t = logarithm of the relative price level, using CPI in Cambodia over CPI

in the origin country i at time t .
lnERi,t = logarithm of the exchange rate, using origin country’s currency per

USD i over Cambodian riel per USD at time t .
ln TCi,t = logarithms of total cost of trip from country of origin i to Cambo-

dia, which is measured by multiplying the distance between the origin country to
Cambodia by the average annual price of crude oil per barrel in USD.

α0 = the common value in the constant.
β = the parameter of independent variables (GDPPC, RP, ER, and TC).
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θ = the parameter of dummy variables.
D1 = the global financial crisis during 2008–2009, for which D1 = 1 in the

period of 2008–2009, and D1 = 0 = otherwise.
D2 = the financial crisis in Asia in the period of 1998–1999, for which D2 = 1

during 1998–1999, and D2 = 0 = otherwise.
D3 = the September 11 attack in the U.S. during 2001–2002, for which D3 = 1

in the period of 2001–2002, and D3 = 0 = otherwise.
D4 = the Thai military coup in 2006, for which D4 = 1 in 2006, and D4 = 0 =

otherwise.
D5 = the Cambodia-Thai border dispute during 2008–2011, for which D5 =

1during 2008–2011, and D5 = 0 = otherwise.
D6 = the SARS epidemic in East Asia in 2003, for which D6 = 1in 2003, and

D6 = 0 = otherwise.
D7 = the political instability and political deadlock Cambodia in 1997–1998 and

2003, for which D7 = 1 in 1997–1998 and 2003, and D7 = 0 = otherwise.
D8 = the tsunami in Japan during 2011–2012, for which D8 = 1 in the period of

2011–2012, and D8 = 0 = otherwise.
D9 = the tsunami in Southeast Asia during 2004–2005, for which D9 = 1 in the

period of 2004–2005, and D9 = 0 = otherwise.
D10 = the single visa entry scheme to enter five ASEAN countries (Cambodia,

Laos, Myanmar, Thailand, and Vietnam), started in 2012, for which D10 = 1 in
2012, and D10 = 0 = otherwise.

D11 = the visa exemption among ASEAN countries in the period of 2006–2012,
for which D11 = 1 during 2006–2012, and D11 = 0 = otherwise.

In exploring the determinants of the demand for tourism,we allow for the existence
of individual effects which are potentially correlatedwith explanatory variables, such
that

εi,t = λi + γi t (3)

Here, λi is unobserved country-specific effect that varies across countries but is
invariant within a country over time, and γ is a white noise error term. To solve
with the unobservable individual effect in a panel data model, using a within-panel
estimator, fixed–effect or random–effect technique, omitting the individual effect is
a standard estimation method. The fixed effect model assumes that each country
has an individual unobserved country-specific effect and estimates the constant term
(unobserved country-specific effect) for each country, while the random effect model
estimates only one constant term by assuming that the unobserved country-specific
effect follows a normal distribution [3, 4, 13, 30, 32]. Either the fixed–effect or the
random–effect model is chosen through the Hausman test [10] for its results.
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Table 1 List of regions used in panel data

Regions Countries

ASEAN(8) Brunei, Indonesia, Loa PDR, Malaysia, The Philippines,
Singapore, Thailand, and Vietnam

East Asia (4) China, Japan, South Korea, and Taiwan

South Asia (1) India

Oceania (2) Australia and New Zealand

Europe (9) Belgium, Denmark, France, Germany, Italy, The
Netherlands, Norway, The United Kingdom, and
Switzerland

North America (2) Canada and The U.S

4 Data

The dependent variable for this study is the number of tourist arrivals from 26 coun-
tries (origin countries), covering 6 main regions (see Table1 for members in each
region), over the period of 17years (1996–2012). The number of tourist arrivals is
used as a proxy for the international tourism demand. The independent variables are
divided into two types, economic and non-economic variables. As for the economic
variables, there are Gross Domestic Product per capita in constant term at time t − 1
(GDPPC); relative price (RP) which is a ratio of consumer price index (CPI) of the
destination country (Cambodia) over the CPI of each origin country; exchange rate
(ER) which is the ratio of each origin country’s currency per USD over Cambodia’s
riel per USD; and transportation cost (TC) which is measured by multiplying the dis-
tance from each origin country to Cambodia by the average annual price of a barrel of
oil. The data for the economic variables are obtained from theCEICdatabase installed
at the faculty of Economics, Chiang Mai University, the U.S. Energy Information
Administration, and http://www.distancefromto.net. For the non-economic factors,
dummy variables are used with 1 representing periods when each event occurs and
(still a strong impact is maintained). The periods used in the dummy variables are
from the authors’ observation of each event.

5 Results and Discussion

Results either from the fixed–effect or the random–effect model, after being chosen
according to the Hausman test, are reported in Table 2. The random–effect model is
more appropriate for the 26-country group, ASEAN, Europe, and North America,
while the fixed–effect model is more appropriate for Asia and Oceania.

Results from the analysis show that GDP per capita of the origin countries
in the previous year has a significant and positive effect on international tourist
arrivals to Cambodia, except for tourist arrivals from ASEAN and Europe. Higher
relative prices in Cambodia have a significant and negative effect on international

http://www.distancefromto.net
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Table 2 RegressionAnalysisResults,UsingNumber of International TouristArrivals asDependent
Variable

Variables Total 26
countries

ASEAN Asia (EA+SA) Oceania Europe North America

Random Random Fixed Fixed Random Random

Constant 4.200* 9.949* −13.203* −21.65* −2.791 −80.29***

(0.026) (0.026) (0.012) (0.013) (0.661) (0.000)

ln GDPPC(t−1) 0.502*** 0.388 1.362*** 1.707* 0.336 7.849***

(0.001) (0.378) (0.002) (0.086) (0.583) (0.000)

LnRP −0.575*** −0.588** −2.772*** −0.074 −0.450 −5.286***

(0.000) (0.041) (0.004) (0.914) (0.430) (0.000)

LnER 0.020 0.177 −0.126 −1.543*** 0.041** −0.695***

(0.505) (0.329) (0.823) (0.004) (0.030) (0.006)

LnTC −0.035 −0.416 0.797** 0.082 0.623*** 0.049

(0.824) (0.187) (0.015) (0.680) (0.000) (0.785)

D1 −0.088 −0.157 −0.063 0.173* −0.051 −0.468**

(0.384) (0.555) (0.803) (0.092) (0.593) (0.000)

D2 −0.129 −0.452** 0.291 −0.187 0.248** 0.314

(0.164) (0.045) (0.297) (0.296) (0.049) (0.104)

D3 0.096 −0.123 0.109 0.239** 0.213** −0.264***

(0.235) (0.565) (0.592) (0.025) (0.014) (0.007)

D4 −0.194* −0.194 −0.239 0.016 −0.073 −0.263**

(0.099) (0.529) (0.372) (0.864) (0.452) (0.032)

D5 0.211* 0.287 0.378 −0.003 0.219 1.388***

(0.076) (0.355) (0.231) (0.982) (0.153) (0.000)

D6 −0.244*** −0.215 −0.103 −0.244*** −0.203*** −0.195**

(0.005) (0.325) (0.616) (0.007) (0.008) (0.030)

D7 −0.244*** −0.215 −0.103 −0.244*** −0.203*** −0.195**

(0.005) (0.325) (0.616) (0.007) (0.008) (0.030)

D8 1.473*** 1.943*** 1.178*** 0.884*** 1.290*** 0.987***

(0.000) (0.000) (0.000) (0.000) (0.000) (0.000)

D9 1.337*** 1.215*** 0.933*** 0.584*** 1.186*** 0.443***

(0.000) (0.000) (0.000) (0.000) (0.000) (0.000)

D10 0.387** 0.648 0.463** 0.1032 0.292 1.463***

(0.020) (0.138) (0.012) (0.567) (0.118) (0.000)

D11 0.668*** 0.801*

(0.000) (0.063)

R-square 0.8106 0.7583 0.8190 0.9940 0.9398 0.9828

#of countries 26 8 5 2 9 2

#of obs 442 136 88 34 153 34

Note The numbers in parentheses are the p-values.
“*”, “**” and “***” denote the statistical significance levels at 10%, 5%, and 1%, respectively
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tourist arrivals to Cambodia, except for tourist arrivals from Oceania and Europe.
Appreciated Cambodian riel has a significant and negative effect on tourist arrivals
from Oceania and North America, but has a significant and positive effect on tourist
arrivals from Europe. The transportation cost has a significant and positive effect
on tourist arrivals from Asia and Europe. The distance between Asia and Cambodia
is logically not an obstacle for discouraging tourists from travelling to Cambodia,
while tourists from Europe might take a trip to Cambodia via neighboring countries
where it is convenient and easy to get into Cambodia.

The global financial crisis in the period of 2008-2009 (D1) has a significant posi-
tive and negative effect on tourist arrivals from Oceania and North America, respec-
tively. The result is likely because of the hardship caused by the crisis that had more
effect on tourist arrivals from North America, which discourages them from visiting
Cambodia, while the event might not have impacted tourist arrivals from Oceania.
The financial crisis in Asia in the period of 1998–1999 (D2) has a significant and
negative effect on tourist arrivals from ASEAN, but has a significant and positive
effect on tourist arrivals from Europe. This suggests that people from ASEAN were
hard hit by the Asian financial crisis and were discouraged from visiting Cambodia,
while the crisis may not have impacted people in Europe much as the results of
the appreciated Cambodian riel also suggest that Europeans may be less sensitive
to these two factors when compared with their motive to visit Cambodia. The Sep-
tember 11 attack in the U.S. during 2001–2002 (D3) has a significant and negative
effect on tourist arrivals fromNorth America, but has a significant and positive effect
on tourist arrivals from Oceania and Europe. This result supports the fact that the
American sentiment was low right after the September 11 attack and that the event
probably discouraged them from traveling abroad.

The Thai military coup in 2006 (D4) has a significant and negative effect on
tourist arrivals from the 26-country group and North America. This may suggest that
international tourists, especially North American tourists, may plan to visit several
ASEAN countries in one trip. Thus, turmoil in Cambodia’s neighboring countries
could also affect the tourism industry in Cambodia. The SARS epidemic in Asia
in 2003 (D6) has a significant and negative effect on tourist arrivals from the 26-
country group, Oceania, Europe, and North America. This result may suggest that
SARS epidemic, though not so severe in Cambodia, could send out a very strong
negative image of the situation that could discourage tourists from visiting Asia
altogether. The political instability and political deadlock in Cambodia in the period
of 1997-1998 and 2003 (D7) has a significant and negative effect on tourist arrivals
from the 26-country group, Oceania, Europe, and North America. This suggests
that internal conflicts in Cambodia could be very harmful to the tourism industry
as they discourage tourists, especially from long-distance countries, from visiting
Cambodia.

The tsunami in Japan in the period of 2011–2012 (D8) and the tsunami in South-
east Asia in the period of 2004–2005 (D9) have a significant and positive effect
on international tourist arrivals to Cambodia from every region. This suggests that
although the events are horrific and dismal to the affected countries, they benefit
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Cambodias tourism industry as tourists may change their plan from traveling to the
impacted countries to traveling to Cambodia instead.

The single visa entry scheme to enter five ASEAN countries (Cambodia, Laos,
Myanmar, Thailand, andVietnam), whichwas started in 2012 (D10), has a significant
and positive effect on tourist arrivals from the 26-country group, Asia, and North
America. This suggests that international tourists, especially from Asia and North
America, may enjoy this benefit of the single visa as they may plan to visit several
countries in ASEAN at the same time. The visa exemption among the ASEAN
countries in the period of 2006–2012 (D11) has a significant and positive effect
on tourist arrivals from ASEAN. This policy, no doubt, has created more tourist
movements among the ASEAN countries.

6 Conclusions

This study explores determinant factors that influence international tourism demand
in Cambodia over the period of 17years (1996–2012) by employing panel data and
analyzing with fixed–effect and random–effect models. We find that GDP per capita
of the origin countries in the previous year has a significant and positive effect on
international tourist arrivals to Cambodia, except for tourist arrivals from ASEAN
and Europe. Higher relative prices in Cambodia have a significant and negative effect
on tourist arrivals to Cambodia, except for tourist arrivals from Oceania and Europe.
Appreciated Cambodian riel has a significant and negative effect on tourist arrivals
from Oceania and North America, but has a significant and positive effect on tourist
arrivals from Europe. Transportation cost has a significant and positive effect on
tourist arrivals from Asia and Europe. This may suggest that tourists from these
two regions are less sensitive to the transportation cost compared with the other
factors that drive them to visit Cambodia. The global financial crisis in the period
of 2008-2009 (D1) has a significant positive and negative effect on tourist arrivals
from Oceania and North America, respectively. The financial crisis in Asia in the
period of 1998–1999 (D2) has a significant and negative effect on tourist arrivals from
ASEAN, but has a significant and positive effect on tourist arrivals from Europe. The
September 11 attack in theU.S. during 2001–2002 (D3) has a significant and negative
effect on tourist arrivals fromNorth America, but has a significant and positive effect
on tourist arrivals from Oceania and Europe. The Thai military coup in 2006 (D4)
has a significant and negative effect on tourist arrivals from the 26-country group
and North America, while the Cambodia-Thai border dispute in the period of 2008-
2011 (D5) has a positive impact on the 26-country group and North America. The
Cambodia-Thai border dispute in the period of 2008-2011 (D5) has a positive impact
on the 26-country group and North America. The result may suggest that the dispute
had become an unexpected publicity for the Cambodian tourism industry, which
might have encouraged tourists to visit Cambodia. The SARS epidemic in Asia in
2003 (D6) has a significant and negative effect on tourist arrivals from the 26-country
group, Oceania, Europe, and North America. The political instability and political
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deadlock in Cambodia in 1998 and 2003 (D7) has a significant and negative effect
on tourist arrivals from the 26-country group, Oceania, Europe, and North America.
The tsunami in Japan during 2011–2012 (D8) and the tsunami in Southeast Asia
during 2004–2005 (D9) have a significant and positive effect on international tourist
arrivals to Cambodia from every region. The single visa entry scheme to enter five
ASEAN countries (Cambodia, Laos, Myanmar, Thailand, and Vietnam), which was
started in 2012 (D10), has a significant and positive effect on tourist arrivals from the
26-country group, Asia, and North America. In addition, the visa exemption among
theASEAN countries in the period of 2006–2012 (D11) has a significant and positive
effect on tourist arrivals from ASEAN.

Results from the study suggest that the government of Cambodia should carefully
monitor relative price changes in Cambodia. The government should also try to
prevent any internal conflicts in the country since such conflicts could discourage
tourists from visiting Cambodia.
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Modeling the Impact of Internet
Broadband on e-Government Service
Using Structural Equation Model

Sumate Pruekruedee, Komsan Suriya and Niwattisaiwong Seksiri

Abstract The aim of this study is to test the hypothesis whether the e-Government
service is positively affected by the readiness of physical telecommunications
infrastructure especially internet broadband and mobile broadband while negatively
impacted by the inefficiency of bureaucratic system. It applies the structural equa-
tion model (SEM) with limited cross-sectional data of the Networked Readiness
Index (NRI) from 140 countries. The style of the modelling is quite similar to the
single-equation regression with the difference at the estimation method using latent
variables. The results reveal that the e-Government service is ready to provide to peo-
ple alongwith the readiness of the telecommunications infrastructure. Unfortunately,
the service is pulled back and slowed down by the inefficiency in the bureaucratic
system. It is a must for the government to improve the efficiency and incentives
for staffs in related government agencies to make them proactive to catch up with
updated situation among the competition in the digital world.

1 Introduction

Internet broadband empowers the government to deliver better services to peo-
ple. It shortens the queuing for citizens in doing transactions with the government.
It lessens the paper works and leads to paperless society. It reduces time to fill the
same information in various forms. It speeds up the time to find essential information
from government agencies.
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The online government service or e-Government is flourishing in the era of
the third generation of mobile phone (3G). Mobile broadband even catalyzes the
benefits of internet broadband on the government service with its power to allow
e-Government service to access anyone, anywhere and anytime. It is easier for peo-
ple to pay tax via smart phone compared to traveling to the local revenue department.
It also enhances scholars to access to government’s data or announcements freely and
rapidly on the website. It also encourages people to send complaints to government
immediately right after their contacts to the incidents.

However, the benefits of internet broadband especially mobile broadband are
unclear in current literatures. First, it may be to early too observe its impact in devel-
oping countries where internet broadband penetrates less than 20% of the citizens.
Eventhough the penetration ratio of mobile broadband is much higher and almost
covers 90–95% of population but the speed is limited to 2G rather than 3G. The
3G service in many countries are still emerging and covers less than half of their
population. Second, the government in developing countries deliver low quality of
e-Government services; In worse cases, some countries provide no e-Government
service at all.

The quality of e-Government service then depends on two sides, the readiness of
the physical telecommunications infrastructure and the readiness and effectiveness of
government agencies to provide the e-Government service. The e-Government faces
some uncertainties from both sides. On the readiness of the infrastructure, the service
cannot control the stability of the connection provided by telecommunications oper-
ators. Drop calls and the weak signals will make the quality of e-Government service
low. The narrow coverage of the mobile broadband over geographical areas restricts
the e-Government service to reach just some big cities. Moreover, the subscriptions
of fixed and mobile broadband limits the number of people that can access to the
e-Government service.

On the readiness of the government agencies, the uncertainty is at the inefficiency
of the bureaucratic system. The first inefficiency appears at the obsolete information
provided online. Government officials are not active to update the information onto
the servers. The second one disappoints people when the link in the website is broken
and unavailable. The maintenance of the website takes too much time. The third one
is at the reliability of the system especially when people deals with financial matters
with the government such as paying tax online. These risks discourages people to
use e-Government.

This paper will test the hypothesis whether the e-Government service is affected
positively by the readiness of the physical telecommunications infrastructure and
negatively by the inefficiency of bureaucratic system. The results will suggest the
strategies to improve and upgrade the e-Government service by the application of
internet broadband especially the mobile broadband.
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2 Literature Review

There are hundred of literatures that evaluate the impact of internet broadband on
e-Government in many countries. Among them, the work of Ferro et al. [1], Omar
[2] and Trkman and Turk [3] may be relevant to the modeling in this study.

Ferro et al. [1] study the impact of internet broadband on e-Government in Italy.
They find the positive relationship between the internet broadband and the supply
of e-Government services. The crucial factor is the coverage of telecommunica-
tions network. Small town with less than 10,000 residents risks to be excluded from
the e-Government service. This study emphasizes on the supply side especially at
the importance of the telecommunication infrastructure as a foundation to supply
e-Government services.

Omar [2] investigate the determinants of the adoption of e-Government service in
Jordan. He discovers that the attitude of people toward the usage of e-Government
affects the adoption more than the perceived benefits from the usage. This
study switches the focus into the demand side. Regardless of the quality of the
e-Government services, people in the Arab word rather choose to use the services by
emotional and psychological reasons than the intrinsic benefits of the e-Government.

Trkman and Turk [3] include the analysis both on the demand and supply sides.
They try to construct the framework to find the interaction between internet broad-
band and e-Government. They begin the development at the broadband develop-
ment or e-readiness. Then, they link the internet broadband directly to the usage of
e-Government services which produces both the government internal benefits and
the benefits from serving people. This study categorizes e-Government services into
four groups. They are the demand-side for economic usage, demand-side for social
activities, supply-side for economic usage and supply-side for social activities. They
give some examples of the e-Government services in each category.

From these literatures, modeling the impact of internet broadband on
e-Government service should include both the supply and demand sides. On the
supply side, the readiness of telecommunication infrastructure should be empha-
sized. On the demand side, the readiness of the user should be focused. However,
to make this study different from previous literatures and contribute to the academic
world, it models the demand side by the readiness of the government which is an
important user of e-Government by itself as mentioned by Trkman and Turk [3] that
government agencies are the biggest customers of the e-Government service. How-
ever, the readiness of government agencies can be viewed both as the users (demand
side) and providers (supply side) of the e-Government service.

3 Methodology and Data

This study uses the structural equation model (SEM). Usually, the model is a multi-
layer analysis. The analysis is popular among social scientist and becomes more
popular among economists to find the significant path that carries the effect of a
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Fig. 1 The multi-layer analysis in the structural equation model (SEM)

policy-related variable to the target variable via some transaction variables in the
middle (Fig. 1).

At the first place, this study aims at modeling the impact of mobile broadband on
e-Government service in the multi-layer analysis style. However, by the limitation of
the data from the networked readiness index (NRI) of 140 countries in 2013 provided
by the World Economic Forum (WEF), the analysis needs to shorten the layers into
two. The analysis is then compatible to the single equation regression. However,
the estimation method is to make via latent variables that represent the readiness of
the physical infrastructure, the readiness of government agencies and the quality of
e-Government service.

The conceptual framework of the structural equation model in this study is as
follows:

In Fig. 2, the quality of e-Government service depends on the physical readiness
and government readiness. For the physical readiness, it is divided into the internet
broadband and mobile broadband. Additionally, the model presents the effects of the
readiness of both sides on government usage of internet too which may affect the
e-Government service indirectly.

Fig. 2 Conceptual framework of structural equation model in this study
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Fig. 3 The result of the impact of internet broadband on e-Government service

4 Results

It is shown by the results in Fig. 3, it is a conventional approach to present SEM
result [4, 5]. The readiness of physical telecommunications infrastructures, both
the internet broadband (BIS with loading factor of 0.911) and mobile broadband
(MBS with loading factor of 0.726) are significant to the quality of e-Government
service through the coefficient of 0.287 from the readiness of physical infrastructure
(PSR) to the e-Government service (ESERV). The bureaucratic system almost affects
the e-Government negatively (GOV with the coefficient of –0.068); however, the
relationship is insignificant.

The explanations of all variables in the model are presented below:
The first layer: The readiness of the physical infrastructure and of the government
agencies.

PSR: Latent variable of the readiness of physical infrastructure.
MBS: Mobile broadband subscriptions/100 pop.
BIS: Broadband Internet subscriptions/100 pop.
ELEC: Electricity production, kWh/capita.
SEDU: Secondary education gross enrollment rate.

GOV: Latent variable of the readiness of government agencies.
PAR: Effectiveness of law-making bodies.
LAW: Laws relating to ICT.
IPP: Intellectual property protection.
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Table 1 Goodness of fit of the model

Chi-square (df) p-value SRMR RMSEA CFI TLI

24.323 (16) 0.083 0.036** 0.068* 0.985** 0.974**

Remark * is acceptable fit level
** is good fit level

The second layer: The quality of e-Government service.

ESERV: Latent variable of the e-Government service.
GOSI: Government Online Service Index.

Table1 provides conventional fit indices both absolute and incremental one. All
incremental fit indices: Comparative Fit Index (CFI) and Tucker-Lewis Index (TLI)
are at good fit level. Absolute fit indices: Standard Root Mean Square Residual
(SRMR) is at good fit level, Root Mean Square Error of Approximation (RMSEA) is
at acceptable fit level, while Chi-square and its p-value are not fit at significant level
as usual when the number of observation is high [6].

5 Discussions

The availability of telecommunications infrastructure is ready for the government to
provide a good quality of e-Government service but the service is not good enough
because the bureaucratic system in the government. It is easy to change the infrastruc-
ture just by the investment in the hardware but it is hard to change the culture of gov-
ernment officials to bemore proactive to provide a good service to people via internet
broadband. The investment in human capital is not enough to help this. It crates the
market for internet broadband and generates demand for the e-Government service
but it cannot create smart persons in smart working environmental in government
agencies to catch up with updated information and provide accurate information to
people at the speed that allows the individuals and private firms to compete in the
digital world.

6 Conclusions

This study uses structural equation model (SEM) to investigate the determinants of
the quality of e-Government service with the data from 140 countries provided by the
World Economic Forum (WEF). The model is limited by the number of observations
so that its architecture is quite compatible to the single-equation regression. The
results reveal that e-Government is ready to be served by the readiness of physical
telecommunications infrastructures but restricted by the inefficiency of bureaucratic
system. An only suggestion to the government is that it must pay a serious attention
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to the “mobile integration” and make its e-Government service better for people.
Otherwise the individuals and private firms will lose their competitiveness even
though the investment in the telecommunications infrastructure goes beyond the
sufficient level. The government should find ways to eradicate the inefficiency in
the bureaucratic system and raise the incentives for staffs in government agencies to
work more productively in order to catch up with the internet broadband and mobile
broadband technologies in this digital world.
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Assessing Sectoral Risk Through Skew-Error
Capital Asset Pricing Model: Empirical
Evidence from Thai Stock Market

Nuttanan Wichitaksorn and S.T. Boris Choy

Abstract This paper presents a new approach to analyze sectoral risk premium
using skew-error regression for capital asset pricing model (CAPM). We adopt the
skew distributions proposed by Wichitaksorn et al. [16] to model the sectoral risk
premium for the returns in Thai stock market. Applying these skew distributions to
the CAPM allows us to (1) better assess the sectoral risk from the financial returns,
which are usually slightly-skewed and heavy-tailed, and (2) efficiently implement
the model using Bayesian Markov chain Monte Carlo methods. Results from an
empirical study suggest that different sectors posses different risk levels.

1 Introduction

It has been well-known that many financial return data are slightly skewed and
leptokurtic [3, 6, 8, 10]. Therefore, assuming a normal distribution to model the
data is a misspecification and a biased parameter estimation is resulted. In the field
of financial econometrics, the capital asset pricing model (CAPM) is mainly used
to quantify the relationship between individual excess return (or risk premium) and
market excess return and it has been widely used for assessing risk of financial
returns. See, for example, Markowitz [11–13], Sharpe [15] and Lintner [9]. Over the
past few decades, CAPM has been extended in various ways. But a major criticism
is that, in parametric settings, the individual risk premium is always assumed to be
normally distributed.

In this paper, we extend the analysis of CAPM by proposing a new approach
to analyze sectoral risk premium using skew-error regression. The skew normal and
skew Student-t error distributions that we adopt for statistical inference are presented
in Wichitaksorn et al. [16]. The way that these skew distributions are constructed
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simplifies the Gibbs sampling algorithm for Bayesian statistical inference. In addi-
tion, the skew Student-t error distribution provide a better assessment of the sectoral
risk from the leptokurtic financial returns. In the empirical study of excess returns
from 21 sectors in the Stock Exchange of Thailand, we implement the CAPM using
three error distributions: normal, skew normal and skew Student-t. We show that the
CAPM with skew Student-t error distribution performs significantly better than that
of other two error distributions.

This paper is organized as follows. Section2 presents the generic CAPM and
regression model with skew error distributions. Section3 provides the details of the
MCMC algorithms for skew Student-t distribution in CAPM. Section4 presents the
results of an empirical study on Thailand sectoral return data. Finally, conclusions
are described in Sect. 5.

2 Model

2.1 Capital Asset Pricing Model

In modern portfolio theory, the CAPM aims to quantify the risk of an individual
stock (or portfolio) resulted from investor’s utility maximizing behavior [9, 11, 15].
On the other hand, CAPM incorporates the mean and variance of the return of an
associated stock to assess its individual risk toward the market risk. Let R(i)

t denote

the return of stock or sector i at time t, R f
t denote the risk-free rate, and Rm

t denote
the market return. The CAPM is given by

E[R(i)
t ] − R f

t = β(i)(E[Rm
t ] − R f

t )

whereE[R(i)
t ]−R f

t is the risk premium of sector i,E[Rm
t ]−R f

t is themarket premium
and β(i) indicates the relative risk between the risk premium of sector i and market
premium. For β(i) = 1, sector i has the same risk level as that of the market. For
β(i) > 1, it is more risky than the market and investors expect to achieve higher
return. On the contrary, it is less risky if β(i) < 1. Since β(i) is the coefficient in
the relationship between the sectorial risk premium and market premium, it is also a
measure of the sensitivity of the sectorial risk premium to market premium. Hence,
β(i) can be expressed as

β(i) = Cov[R(i), Rm]
Var[Rm]

where Cov[A, B] is the covariance of A and B and Var[A] is the variance of A. As a
result, the CAPM for sector i can be expressed by the following regression model

R(i)
t − R f

t = α(i) + β(i)(Rm
t − R f

t ) + ε
(i)
t , for t = 1, . . . , T
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where α(i) is the additional intercept term and ε
(i)
t is the error term. Other than being

simply interpreted as an intercept, α(i) measures the risk-adjusted performance of
sector i. It indicates the level of excess return of the sector over the benchmark and is
used as a technical indicator in portfolio theory. Therefore, ifα(i) = 0, there is no risk-
adjusted performance and if α(i) > 0 (α(i) < 0), there is a positive (negative) risk-
adjusted performance and a higher (lower) return is expected for sector i. However,
the method of least squares fails to provide efficient and unbiased estimators for α(i)

if the error distribution is asymmetric; seeMcDonald et al. [14]. Therefore, this paper
adopts a skew error distribution to obtain an efficient and unbiased estimator for α(i).

2.2 CAPM with Skew Error Distributions

Using normal scale mixtures [2, 5], Wichitaksorn et al. [16] propose a class of skew
probability distributions whose pdf is given by

fskd(ε|0, 1, p) = 2

∞
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f (λ)dλ,

where skd denotes a (generic) skew distribution, p, 0 < p < 1, is the skewness
parameter, N(x|a, b) is the normal pdf with mean a and variance b and f (λ) is the
pdf of the scale mixture variable λ. For the standard skew Student-t distribution, the
pdf is given by
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where ν is the degrees of freedom. The corresponding normal scale mixtures
presentation is

fst(ε|0, 1, ν, p) = 2
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where

IG(x|a, b) = 1

Γ (a)
bax−(a+1) exp

(

−bx−1
)

, x > 0, a > 0, b > 0,



438 N. Wichitaksorn and S.T. Boris Choy

is the pdf of the inverse gamma IG(a, b) distribution. With scale parameter σ , the
standard deviation of the skew Student-t distribution is given by

σst = σ
√

ν[π2(ν − 1)2(1 − 3p + 3p2) − 4(ν − 2)(1 − 2p)2]
2π(ν − 1)p(1 − p)

√
ν − 2

, ν > 2.

If the scale mixture variable λ has a degenerate distribution at λ = 1, the normal
scale mixtures representation of the skew normal distribution is

fsn(ε|0, 1, p) = 2
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which after some algebra gives

fsn(ε|0, 1, p) = 4p(1 − p)√
2π

exp
{

−2ε2(p − I(ε ≤ 0))2
}

.

With scale parameter σ , the standard deviation of the skew normal distribution is
given by

σsn = σ
√

π(1 − 3p + 3p2) − 2(1 − 2p)2

2p(1 − p)
√

π
.

The skew distributions, including the skew normal and skew Student-t, in
Wichitaksorn et al. [16] are positively (negatively) skewed for p < 0.5 (p > 0.5)
and are symmetric for p = 0.5.

Let y(i)
t = R(i)

t − Rf
t and xt = Rm

t − Rf
t . The CAPM regression for sector i is

y(i)
t = α(i) + β(i)xt + σ (i)ε

(i)
t

or
y(i)

t = x′
tβ

(i) + σ (i)ε
(i)
t ,

where β(i) = (α(i), β(i))′, xt = (1, xt)
′, σ (i) is a scale parameter and ε

(i)
t is the

random error that follows a skew distribution with location 0 and scale 1.

3 Bayesian Inference

In this section, the implementation of CAPM relies on Bayesian computational
approach with Gibbs sampling algorithm. To simplify the Gibbs sampler, we adopt
the normal scale mixtures representation for the pdfs of the skew normal and skew
Student-t error distributions.
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Let θ (i) = (β(i), σ (i), p(i))′, y(i) = (y(i)
1 , . . . , y(i)

T )′, X = (x1, ..., xT )′ is a T × 2

matrix of covariates, and f (λ(i)
t ) are the pdf of the scale mixture variables. For sector

i, the likelihood function is given by

L(θ (i)|y(i), X) =
T
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for a generic skew error distribution. The likelihood functions for the skew normal
and skewStudent-t error distributions can be obtained accordingly.With independent
prior distributions assigned to the parameters, we derive the full conditional posterior
densities as follows. For simplicity, we omit the sector superscript (i).

Posterior Density for β

For the regression coefficients β, we use a conjugate normal prior distribution with
2-dimensional mean vector β0 and 2× 2 covariance matrix B0. The full conditional
distribution of β can be easily shown to be a bivariate normal distribution, i.e.,

β|σ 2, p,λ, y, X ∼ N2

(

β̄, σ 2B1

)

,

where λ is the T -dimensional vector of scale mixture variables, N2 denotes the
bivariate normal distribution,

β̄ = B1

[

4
T
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t yt(p − I(yt ≤ x′
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0 β0

]

and

B1 =
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4
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tβ))2xtx′
t + B−1

0

]−1

.

Posterior Density for σ 2

A conjugate inverse gamma IG(aσ , bσ ) prior distribution is assumed for σ 2. As a
result, we have the following inverse gamma full conditional distribution for σ 2.

σ 2|β, p,λ, y, X ∼ IG

(

a0 + T

2
,

b0
2

+ 2
T

∑
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tβ)2(p − I(yt ≤ x′
tβ))2
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Posterior Density for p
For skewness parameter p, we adopt a uniform U(0, 1) distribution to express our
ignorance about the parameter prior to data collection. Hence, it has a full conditional
density given by

f (p|β, σ 2,λ, y, X)∝ pT (1−p)T exp

{

− 2

σ 2

T
∑

t=1

λ−1
t (yt − x′

tβ)2(p − I(yt ≤ x′
tβ))2

}

for 0 < p < 1. Since this posterior density is intractable, we use the independent
kernel Metropolis-Hastings (M-H) algorithm to obtain a posterior realization from
it. The proposal distribution is a truncated normal distribution to the (0, 1) interval
with mean and variance evaluated from maximizing the logarithm of the above full
conditional density using a constrained numerical optimization (Newton’s) method.

Posterior Density for λt

The full conditional distribution of the scale mixture variable λt depends on its scale
mixture distribution. For the skew normal distribution, all λt degenerate to 1 and no
MCMC updating step is required. For the skew Student-t distribution, the inverse
gamma scale mixture distribution results in a conjugate full conditional distribution
for λt , i.e. for t = 1, ..., T ,

λt |β, σ 2, ν, p, y, X ∼ IG

(

ν + 1

2
,
ν

2
+ 2(yt − x′

tβ)2(p − I(yt ≤ x′
tβ))2

σ 2

)

.

Posterior Density for ν

For the degrees of freedom parameter ν, we adopt a uniform U(2, 30) prior
distribution and the full conditional density is given by

f (ν|β, σ 2, p,λ, y, X) ∝ νTν/2

(�(ν/2))T

T
∏

t=1

λ
−ν/2
t exp

{

−
T

∑

t=1

ν

2λt

}

, 2 < ν < 30.

Similar to p, simulation of posterior realizations from this non-standard density
relies on the independent kernel M-H algorithm with a truncated normal density to
the (2, 30) interval as the proposal density. The mean and variance of the normal
distribution are obtained from the constrained numerical maximization.

4 Data Analysis of Sectoral Index Returns of the Stock Exchange
of Thailand

In this empirical study, the CAPM regression with various skew error distributions is
used to analyze sectoral daily index returns of the Stock Exchange of Thailand (SET).
Sectoral daily price indices are collected from Datastream. Upon data availability,
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Table 1 Sector description and data availability

Sector Description Date

AGRI Agribusiness 2/16/2001–8/31/2011

AUTO Automotive 2/16/2001–8/31/2011

BANK Banking 2/16/2001–8/31/2011

INFO Information and communication technology 2/16/2001–8/31/2011

COMM Commerce 2/16/2001–8/31/2011

CONM Construction materials 2/16/2001–8/31/2011

ELEC Electronic components 2/16/2001–8/31/2011

ENER Energy and utilities 2/16/2001–8/31/2011

MEDIA Media and publishing 2/16/2001–8/31/2011

FOOD Food and beverage 2/16/2001–8/31/2011

FASH Fashion 2/16/2001–8/31/2011

FINS Finance and securities 2/16/2001–8/31/2011

HELTH Health care services 2/16/2001–8/31/2011

HOME Home and office products 2/16/2001–8/31/2011

TOUR Tourism and leisure 2/16/2001–8/31/2011

MACH Industrial materials and machinery 4/07/2006–8/31/2011

INSU Insurance 2/16/2001–8/31/2011

PACK Packaging 2/16/2001–8/31/2011

PROP Property development 2/16/2001–8/31/2011

PETRO Petrochemicals and chemicals 2/16/2001–8/31/2011

TRAN Transportation and logistics 2/16/2001–8/31/2011

daily index return for 24 sectors are obtained for the period from February 2, 2001 to
August 31, 2011. However, Mining, Professional Services, and Paper and Printing
Materials are three sectors that are excluded from the analysis due to high volume of
inactive price index. The remaining 21 sectors for analysis are presented in Table1.

Let r(i)
t denote the price of sectoral index i at time t. The percentage return of

index i is given by

R(i)
t = 100 ×

(

ln r(i)
t − ln r(i)

t−1

)

, for i = 1, . . . , I, and t = 1, . . . , T .

The market rates, Rm
t , t = 1, . . . , T are the percentage returns of the SET index.

For the risk-free rates, we use the yields of the 3-month treasury bill, which are
deannualized and then converted to returns, Rf

t , t = 1, . . . , T . Summary statis-
tics of the risk-free rate, market rate and percentage returns of the 21 sectors are
displayed in Table2 and summary statistics of the individual risk premiums and
market premium are given in Table3. Obviously, risk premiums of all sectors are
heavier-tailed than the normal distribution and are slightly skewed either posi-
tively or negatively. In particular, the Industrial Materials and Machinery sector
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Table 2 Summary statistics of risk-free rate, market rate and percentage returns of 21 sectors

Obs Mean S.D Median Skewness Ex Kurtosis

Rf 2573 −0.005 0.345 0.000 −0.931 23.558

Rm 2573 0.046 1.584 0.046 −0.727 7.989

R(i)

AGRI 2573 0.065 1.341 0.038 −0.179 1.035

AUTO 2573 0.055 1.214 0.040 0.067 2.594

BANK 2573 0.032 1.977 −0.025 −0.407 5.304

INFO 2573 0.021 1.928 0.028 −0.549 9.135

COMM 2573 0.088 1.179 0.049 −0.041 2.085

CONM 2573 0.071 1.651 0.051 −0.149 1.988

ELEC 2573 0.006 1.646 −0.036 −0.094 3.005

ENER 2573 0.081 1.800 0.092 −0.373 5.405

MEDIA 2573 0.005 1.564 0.028 −0.508 8.116

FOOD 2573 0.078 1.137 0.072 −0.470 3.181

FASH 2573 0.038 0.875 0.030 0.021 10.688

FINS 2573 0.001 2.018 −0.055 −0.153 5.024

HELTH 2573 0.121 1.477 0.059 0.459 1.941

HOME 2573 0.048 1.346 0.048 −0.108 5.598

TOUR 2573 0.032 1.025 0.024 −0.225 5.120

MACH 1259 −0.014 1.981 −0.039 −2.161 30.191

INSU 2573 0.079 0.787 0.056 −0.002 4.825

PACK 2573 0.072 1.721 0.040 0.687 5.253

PROP 2573 0.062 1.857 0.080 −0.394 2.763

PETRO 2573 0.086 2.137 0.072 −0.015 0.988

TRAN 2573 0.021 2.017 0.015 −0.274 5.649

has the largest negative skewness and excess kurtosis amongst the 21 sectors.
For these reasons, modeling risk premium using CAPM regression with a skew
Student-t error distribution is a natural and better choice than using the normal error
distribution.

In the Bayesian model implementation, we assign vague prior distributions to
the two regression coefficients, an inverse gamma IG(6, 0.4) prior distribution to
σ 2, a uniform U(0, 1) prior distribution to the skewness parameter p and a uniform
U(2, 30) prior distribution to the degrees of freedom ν. The Gibbs sampler was run
for 5,000 iterations in the burn-in period, and then another 10,000 iterations to gen-
erate realizations which mimic a random sample of size 10,000 from the intractable
joint posterior distribution for statistical inference. In the Gibbs sampling proce-
dure, parameters with non-standard full conditional density function were simulated
using Metropolis-Hastings algorithm and the convergence of the Markov chain is
monitored using the trace plots.
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Table 3 Summary statistics of market premium and 21 individual risk premiums

Mean S.D Median Skewness Ex Kurtosis

Rm − Rf 0.051 1.620 0.061 −0.641 6.223

R(i) − Rf

AGRI 0.070 1.391 0.026 −0.036 0.451

AUTO 0.060 1.266 0.053 0.116 1.726

BANK 0.038 2.009 −0.011 −0.349 4.331

INFO 0.026 1.967 0.030 −0.450 7.411

COMM 0.093 1.236 0.057 −0.030 1.080

CONM 0.076 1.681 0.048 −0.135 1.187

ELEC 0.011 1.678 −0.001 −0.055 2.379

ENER 0.086 1.828 0.089 −0.365 4.408

MEDIA 0.010 1.600 0.022 −0.461 6.694

FOOD 0.083 1.187 0.065 −0.382 1.858

FASH 0.043 0.950 0.032 0.238 8.867

FINS 0.006 2.044 −0.029 −0.118 4.139

HELTH 0.126 1.518 0.054 0.453 1.527

HOME 0.053 1.400 0.038 −0.022 4.194

TOUR 0.038 1.090 0.029 −0.163 3.286

MACH −0.021 1.995 −0.039 −2.150 28.555

INSU 0.084 0.857 0.058 0.055 3.499

PACK 0.078 1.761 0.041 0.616 4.647

PROP 0.067 1.884 0.080 −0.392 1.987

PETRO 0.091 2.164 0.082 −0.045 0.833

TRAN 0.026 2.038 0.038 −0.241 4.959

Table4 reports the posteriormeans, standarddeviations and95%credible intervals
for the parameters α, β, ν, p and σst of the CAPM regression with skew Student-t
error distribution for the 21 sectors. For the intercept α, it is significantly differ-
ent from zero for the sectors AGRI, AUTO, BANK, CONM, ELEC, FINS, HOME,
MACH, PACK, PETRO and TRAN and its estimated value is negative for 20 sectors.

For the slope β, BANK has an estimate which is significantly greater than one and
therefore the banking section is considered to be more risky than the market. It is also
the riskiest sector amongst all 21 sectors under study. A reason is that Thailand is still
on the track of recovering from the 1997 financial crisis during the study period and
the banking sector remains vulnerable. Though their β values are close to but less
than 1, the sectors ENER, PROP, PETRO and FINS are riskier than other sectors.
Note that the energy sector is risky due to the upsurge of the global fuel prices, the
government’s energy policy and the privatization of the nation’s largest petroleum
enterprise. Similar to the banking sector, the property sector and finance sector have
not yet fully recovered from the 1997 financial crisis. The petrochemical sector is
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also risky due to the drop in plastic price in the global market that has caused unsound
financial conditions to some companies in this sector.

For the degrees of freedom ν, its estimate ranges from approximately 2.5–5.1 for
the 21 sectors and this signifies that the error distribution is heavy-tailed than the
normal distribution and the choice of a Student-t error distribution is reasonable. For
the skewness parameter p, the estimate ranges from 0.43 to 0.49 for all 21 sectors
and this means that the risk premiums are slightly positively skewed. However, the
skewness parameter of five sectors namely INFO, ENER,MEDIA, FASH and PROP
is not significantly different from 0.5 and perhaps a symmetric Student-t distribution
will provide a better fit to the risk premium. The standard deviation of the skew
Student-t distribution, σst , is estimated to be within the range from 0.16 for INSU
and 0.54 for PETRO. Though not given here, the standard deviation of the skew
normal distribution, σsn, is, on average, twice bigger than σst .

Finally, to compare the normal, skew normal and skew t distributions in fitting the
risk premium for the 21 sectors, Bayesian information criterion (BIC) and deviance
information criterion (DIC) are used. Table5 presents the BIC and DIC values of
the three error distributions for each of the 21 sectors. Obviously, the skew Student-t

Table 5 Model Comparisons using DIC and BIC

DIC BIC

Normal Skew normal Skew student-t Normal Skew normal Skew student-t

AGRI 8,076 8,060 7,749 8,102 8,084 7,779

AUTO 7,693 7,654 7,301 7,718 7,679 7,331

BANK 6,762 6,732 6,531 6,788 6,757 6,562

INFO 8,623 8,622 8,352 8,648 8,647 8,383

COMM 7,102 7,098 6,908 7,127 7,123 6,939

CONM 7,345 7,316 7,133 7,370 7,341 7,164

ELEC 8,770 8,759 8,401 8,796 8,783 8,432

ENER 7,002 6,998 6,635 7,027 7,023 6,666

MEDIA 8,228 8,227 7,946 8,253 8,252 7,976

FOOD 6,888 6,883 6,747 6,913 6,907 6,778

FASH 6,418 6,411 5,713 6,443 6,436 5,744

FINS 8,403 8,382 8,068 8,428 8,406 8,099

HELTH 8,972 8,922 8,435 8,998 8,946 8,466

HOME 8,319 8,295 7,693 8,344 8,320 7,724

TOUR 7,294 7,293 6,727 7,320 7,318 6,757

MACH 4,687 4,688 4,298 4,710 4,710 4,326

INSU 5,964 5,949 5,335 5,990 5,974 5,366

PACK 9,642 9,590 8,814 9,667 9,615 8,845

PROP 7,579 7,578 7,397 7,604 7,602 7,428

PETRO 9,338 9,315 9,043 9,364 9,339 9,074

TRAN 9,129 9,102 8,601 9,155 9,127 8,632
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CAPMoutperforms the normal CAPM and skew normal CAPM in all cases. One can
see that there is only a minor improvement from the normal distribution to the skew
normal distribution but the improvement of using the skew Student-t distribution is
remarkable.

5 Concluding Remarks

This paper extends the CAPM to the skew Student-t distribution for modeling indi-
vidual risk premiums. By expressing the skew Student-t density function into a nor-
mal scalemixture representation, the computational burden of implementingMCMC
algorithms can be significantly reduced. In addition, the skewness parameter p, which
ranges from 0 to 1, provides a simple interpretation. The distribution is symmetric if
p = 0.5 and it is positively (negatively) skewed if p < 0.5 (p > 0.5). In the empirical
study of daily return data of sectoral indices of the Stock Exchange of Thailand using
CAPM, it confirms that returns of all sectoral indices are heavy-tailed and slightly
positively skewed, albeit some of themare insignificantly different from0.5 at the 5%
significance level. Meanwhile, model comparisons based on BIC and DIC confirm
that the skew t distribution is superior to the normal and skew normal distributions
in CAPM of sectoral indices of Thailand.

The proposed CAPMwith skew errors can be easily extended to CAPMwith time
varying market risk [7] and multi-regime CAPMmodel with GARCH-type volatility
[4]. Moreover, the proposed MCMC algorithm can be easily modified for handling
multivariate skew Student-t distribution in asset pricing and portfolio selection ([1]).
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Strategic Path to Enhance the Impact
of Internet Broadband on the Creative
Economy in Thailand: An Analysis
with Structural Equation Model

Sumate Pruekruedee and Komsan Suriya

Abstract This paper aims at finding the impact of internet broadband on the
creative economy in Thailand. It investigates the strength of linkages from the usage
behavior of internet broadband to the goals of the production of creative products and
the adjustment of organization that facilitates the production, via the applications of
the making the digital database and analysing the data. It uses the structural equation
model (SEM) to model this multi-layer relationship. The data are collected from
field survey of 400 Small and Medium Enterprises (SMEs). The results reveal that
the usage of internet broadband for communication is crucial for the production of
creative products. It also discovers that the digital database is important for themodifi-
cation of organization structure. The digital database is based on the usage of internet
broadband in marketing research, searching for contents and collects transactional
data of clients. These paths leads to a huge opportunity formobile broadband technol-
ogy to enhance the creative economywhen the functions for communication, search-
ing for contents and marketing research can be done conveniently by mobile devices.

1 The Creative Economy and Ways to Make It Successful

John Howkins [4] is the founder of the concept of the creative economy. He defines
the creative product as an economic good or service that results from creativity and
has economic value. Then he defines the creative economy as the transactions in
these creative products. He includes four major industries into the creative economy
which are the copyright industries, the patent industries, the trademark industries and
the design industries.

The creative economy includes fifteen sectors by the definition of Howkins. They
are advertising, architecture, art, crafts, design, fashion, film, music, performing arts,
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publishing, research and development, software, toys and games, TV and radio and
video games. Most of the sectors are labeled as soft innovation by Stoneman [7] later
in 2010.

It is interesting to find out the strategy to make the creative economy success.
In this case, John Howkins [4] also develop ten rules for success in the creative
economy. The rules are listed as follows:

Rule 1: Invent yourself
Rule 2: Put the priority on ideas not on data
Rule 3: Be nomadic
Rule 4: Define yourself by your own (thinking) activities
Rule 5: Learn endlessly
Rule 6: Exploit fame and celebrity
Rule 7: Treat the virtual as real and vice versa
Rule 8: Be kind
Rule 9: Admire success openly
Rule 10: Be ambitious

Moreover, in his book, Howkins constructs seven laws for the creative economy
and writes them under the title of each chapter as follows:

Law 1: Create or die.
Law 2: Patents and copyright are the currency of the information age.
Law 3: CE = CP × T which means the value of the creative economy equals to

the price of the creative subject times the rounds or copies of its sales.
Law 4: Creativity is a proper job.
Law 5: Stories come first.
Law 6: The new economy is creative plus electronics.
Law 7: Creative capital arises whenever someone holds back an idea, or part of an

idea, for the future.

These suggestions of rules and laws are from the intuition of Howkins without any
quantitative evidence supporting his idea. Therefore, it is risky for practitioners to
follow his rules and laws then expects for the success in the creation of new products
or innovation.

This paper tries to find the strategy bases on quantitative analysis to guide the
practitioners to the success in the production of creative product and build a good
organization to facilitate the creativity. It may also find some evidences to respond
to Howkins upon his rules and laws for the success in the creative economy.

2 Methodology and Data

This paper uses the structural equation model (SEM) to analyze the data from the
survey of 400 small andmedium sized enterprises (SMEs) in Thailand. The datawere
collected by Poonchan [6] in 2012 in order to fulfill her thesis in 2013. The original
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survey focuses on internet broadband without the separation between fixed and
mobile broadband. The analysis in Poonchan [6] is based on single-layer analysis
with seemingly unrelated regression (SURE).

The structural equation model (SEM) differs from SURE in that SEM is a
multi-layer analysis [5]. It can show the paths that carry the effect of the policy
variables on the target variables via the transaction variables. Therefore, the analyst
can view not only the direct effect of the policy variables, as seen in the single-layer
analysis, but also its indirect effect that acts upon some activities that lie in themiddle
of the process. This enables the analyst to choose appropriate strategies based on the
significant path in the model to enhance the effects of the policy variables on the
target variables.

In this study, there are three layers in the analysis. The first layer is on the usage
behavior of internet broadband. This is to explore how staffs use the internet broad-
band and the functions that internet broadband can serve the organization. Most
of them can be seen as routine procedures without specific focuses on the cre-
ative economy. The second layer is on the applications of internet broadband.
This layer emphasizes two specific functions which are making the digital data-
base and analysis the data. It focuses on the activities that support the creation
of the creative product and the construction of good organization to facilitate the
creativity. The third layer is the goals of the applications of the internet broad-
band. They focus specifically on the creative economy. The first goal is to pro-
duce the creative products and the second goal is to create a good environment in
the organization that empowers and attracts staffs to create and deliver the creative
products.

First layer: Usage behavior of internet broadband

MKT: The usage of internet broadband in market research
QO: Online questionnaire
SOCM: The creation of online society that use and give comments to the
products
PRO: The distribution of testers on internet

SEAR: The usage of internet broadband in searching for information
TECH: Searching for new production techniques or new services
CREA: Searching for ideas to create new designs or new products
CRIT: Searching for customer’s feedback

TRAN: The usage of internet broadband in doing transactions
PROD: Delivery of digital products
SERV: After sales service
ODR: Receiving purchasing orders via internet
PAY: Receiving payments via internet

COM: The usage of internet broadband in communication
INTER: Communication within organization
GOV:Communication between the organization and government agencies
SUPP: Communication between the organization and suppliers
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Second layer: Applications of internet broadband

DB: The application of internet broadband in making digital database
SPEC: Digital database to search for specialists
EXPR: Digital database to store knowledge and experience of the organiza-
tion
CONS: Digital database to store transactions with customers and other orga-
nizations

AN: The application of internet broadband in analyzing data
GOAL: The analysis to determine the targets of the organization
FIN: Financial analysis
SATIS: The analysis of customers satisfaction
GRW: The analysis of the market growth

Third layer: Goals of the applications of internet broadband

CO: Organizational management to facilitate the creativity
INC: Updating the latest creation in the organization to staffs
CONC: Updating the latest creation in the organization to customers
KM: Application of knowledge management in the organization

CP: Production of creative products
NEW: Production by the creation of new designs with new idea
CUL: Production by applied local intelligence
TRY: Production by trial and error

3 Result

The results of themodel are presented inFig. 1, it is a conventional approach to present
SEM result [1, 2]. It is clear that there are strategic paths that carry the effect of the
usage behavior of internet broadband to the goals of the creation of creative products
via the activities of both the making of digital database and the analyzing the data.

The strongest path is the linkage between the usage of internet broadband for com-
munication (COM in the first layer) to the production of the creative products (CP in
the third layer). This is a direct link. The loading factor in the first layer are distrib-
uted quite equally among the communication within organization (INTER, 0.767),
communication between the organization and government agencies (GOV, 0.773),
and the communication between the organization and customers (SUPP, 0.741).

Table1 provides conventional fit indices both absolute and incremental one. Incre-
mental fit indices: Comparative Fit Index (CFI) and Tucker-Lewis Index (TLI) are
at good fit level and acceptable fit level respectively. Absolute fit indices: Standard
Root Mean Square Residual (SRMR) is at good fit level, Root Mean Square Error of
Approximation (RMSEA) is at acceptable fit level, while Chi-square and its p-value
are not fit at significant level as usual when the number of observation is high [5].

The usage of internet broadband for communication also plays a significant role
via the analyzing of data (AN in the second layer) in order to affect the production
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Fig. 1 The strategic path to enhance the impact of internet broadband on the creative economy

Table 1 Goodness of fit of the model

Chi-square (df) p-value SRMR RMSEA CFI TLI

522.93 (277) 0.000 0.049∗∗ 0.050∗ 0.957∗∗ 0.950∗

Remark ∗∗ is good fit level
∗ is acceptable fit level

of creative products. Even though this linkage is quite weaker than the direct effect,
it is significant enough to ensure the presence of the indirect effect.

For the building of the creative organization which facilitate the production of
creative products (CO in the third layer), it can be seen that both the direct effect
from the usage of internet broadband for communication (COM in the first layer)
and the indirect effect via the making of digital database (DB in the second layer)
are significant. Interestingly, the making of digital database are the outputs of other
usages of internet broadband (MKT, SEAR and TRAN in the first layer) but except
for the communication. Moreover, the analyzing of data (AN in the second layer)
does not affect the building of the creative organization.

4 Discussions

The results are consistent with the Thai culture in creating the creative economy.
The Thai verify the data and information by asking peers rather than relying on
data mining techniques. Therefore, the communication is crucial for the production
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of creative products. In the era of internet broadband when data are easy to find
but hard to believe, the peer reviewing by verbal communication is critical to fil-
ter the information in order to trust them. These validated information enters the
production of creative products as inputs. It can be also viewed as the fifth kind of
factors of production when information is another input for the production of creative
products.

The building of organization relies on fact rather than just information reviewed
by peers. The digital database collecting the transactions, market-research results,
and searching results are crucial for the modification of the organizational structure
and functions. This is relevant to the management by numbers suggested by Bill
Gates [3]. The building of organization cannot rely on only the peer suggestions but
must be based on facts and numbers. This is to ensure the efficiency of functions of
the organization that can serves clients appropriately. Indeed, as Bill Gates mention,
the digital database supports this function extremely well.

To respond to rules and laws proposed by Howkins [4], the study seems to support
rule number 2, put the priority on ideas not on data, when the strongest linkage deliv-
ers the effect from the usage of internet broadband for communication to exchange
idea and analyze the information to create the creative products. At the same time, the
linkage from the digital database to the production of creative products is insignifi-
cant.Moreover, the studymay support rule number 5, learn endlessly, when the usage
of internet broadband for marketing research, searching for contents and collect the
database of transaction are significant linkages to the success in the building good
organization that facilitate the production of creative products.

The study may also convince readers that law number 5 of Howkins, stories come
first, and law number 6, the new economy is creative plus electronics, are correct. The
stories to create the creative products can mainly come from communication. Stories
that are exchanged among peers within the organization may be the most important
factor that deliver the success. The 6th law of Howkins are eventually confirmed by
the significance of the usage and application of internet broadband on the production
of creative products, building the organization that facilitate the creation, and the
creation of the creative economy as appeared from the results of many significant
linkages and paths in this structural equation model.

5 Conclusions

This paper analyses the paths that carry the effects of internet broadband on the
production of creative products and the building of organization to facilitate the
production of the creative products via the activities of making digital database and
analyzing the data. It uses the structural equation model (SEM) to reflect the multi-
layer effects from the first layer of the usage behavior of internet broadband, the
second layer of the applications of internet broadband, and the third layer of the goal
to achieve the creative products and creative organization. It uses the data from 400
SMEs collected by field survey in 2012.



Strategic Path to Enhance the Impact of Internet Broadband … 455

The results reveal that the usage of internet broadband for communication is the
most important factor for the production of creative products. It also discovers that the
making of digital database is crucial for the building the organization that supports
the creation of creative products. These digital databases are based on the usage of
internet broadband in doing marketing research, searching for contents and collect
information on transactions of clients.

The strategic path to enhance the impact of internet broadband on the creative
economy, thus, is to strengthen the communication at all levels and among all agents,
and tomanage the organization by facts and numbers. The combination of both strate-
gies will ensure the success to achieve both the creative products and the creative
organization that facilitate the production of these creative products. This strategy
brings the mobile broadband technology to become an important catalyze when the
technology suits: the activity of communication, searching for contents and knowl-
edge, and assisting the marketing research, e.g. the filling the online questionnaire,
so well and conveniently. Thus, it can be believed that the creative economy will be
growing by the enhancement by both the internet broadband as awhole and especially
the mobile broadband.
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Impact of Mobile Broadband on Non-life
Insurance Industry in Thailand
and Singapore

Niwattisaiwong Seksiri and Komsan Suriya

Abstract This study investigates whether the non-life insurance industries in
Thailand and Singapore are growing by the usage of mobile broadband technol-
ogy. It examines the impact of the third generation (3G) mobile phone in Thailand
and compares the same to the impact in Singapore as a benchmark. It also figures
out the impact of the fourth generation (4G) mobile phone in Singapore to learn the
impact that may occur in Thailand after the country begins to offer the service later.
It uses the piecewise regression to analyze the trend before and after those countries
adopted the mobile technologies. The results show that the mobile broadband both
in terms of 3G and 4G technologies does not significantly affect the growth of the
non-life insurance industry in both countries. They reveal that the insurance com-
panies are incapable of catching up with the “mobile integration” to such a degree
that they can use the mobile broadband to create opportunity, boost sales, and make
profit for their businesses. Insurance companies should emphasize their priorities in
order to encourage their customers to access information regarding their products,
purchase their products, and notify any accidents or incidents on a real-time basis
via mobile broadband. These strategies will enhance the impact of mobile broadband
technology on the non-life insurance industry and empower the industry to grow in
the era of the mobile broadband.

1 Background and Rationale

The wireless and mobile broadband technology has brought about a lot of opportuni-
ties to the insurance business, such as the opportunity to directly communicate with
existing and new customers, the opportunity to present new products faster, and the
opportunity to enhance the efficiency of the insurers internal operations. A growing
number of customers has turned to using insurance services through wireless elec-
tronic devices such as smartphones and tablets. The advantages of utilizing wireless
and mobile broadband in the insurance business include the fact that customers gain
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access to the services and insurers anywhere and anytime,while insurance companies
could use the technology to improve their service efficiency. Customers usually
access mobile webs to view product descriptions, report claims, and pay insurance
premiums [7]. In general, insurance companies use the wireless and mobile broad-
band technology to connect with wireless electronic devices in order to (1) publicize
their products, (2) improve customer services, and (3) develop new products [1].

The wireless and mobile broadband technology has high potential for bolstering
insurance business operations, helping insurance companies maintain current cus-
tomers, solving problems, and improving facilities by offering more convenient and
faster services to customers. Insurers can also attract new customers as insurance
information is being disseminated through the technology. Existing customers might
as well recommend products and services to new customers. Moreover, the growing
number of foreign insurance businesses tends to use wireless and mobile broadband
in their operations. This study will examine whether the utilization of wireless and
mobile broadband can propel the insurance industry in Thailand.

The aim of this research is to study the impact of mobile broadband on the insur-
ance business in Thailand in contrast with that of Singapore. The study results will
provide the basic data for the government to outline a proactive policy in developing
the countrys mobile broadband infrastructure which draws level with international
standards.

2 Non-life Insurance Business in Thailand

An initial study found that every insurance company in Thailand provides Internet-
based services through their websites. Interestingly, every company’s website can
be accessed through wireless communications devices like smartphones and tablets.
However, only some non-life insurance companies, such as Viriyah Insurance and
Bangkok Insurance, are more interested in providing information through mobile
devices by developing a mobile platform for their websites and have created mobile
applications in order to serve customers faster. These applications let customers
receive product information, file claims, view the insured’s profiles, pay premi-
ums, and contact the insurance companies. General insurance products mostly have
common standards. They offer shorter period of coverage, mostly require a single-
premium payment, and provide a shorter insurance term. Travel insurance is an
example of general insurance, offering protection during the trip only and requiring
a single premium payment.

Insurance companies are trying to improve their electronic services to meet cus-
tomer demands, save expenses on insurance brokerage or agency, and enhance their
competitiveness. The main advantage of electronic services is that the services are
not limited by working hours or locations. Customers can browse through company
websites anytime and from anywhere. However, customers are often found to be
using online services only when they search for information, and they still opt to buy
insurance or report claims via agents or brokers with whom they have direct contact.
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Table 1 Number of policies sold through non-life insurance distribution channels (unit million)

Year Agency Broker BA Post Telesale DI CS Internet Others Total

2555 9.40 23.40 8.97 0.49 4.91 2.16 2.75 1.13 0.38 53.60

2556 10.71 36.62 7.52 0.002 7.69 1.61 2.81 1.74 0.56 69.25

Total 20.11 60.02 16.49 0.49 12.60 3.77 5.56 2.87 0.94 122.85

Source Office of the Insurance Commission (OIC) [8]
BA Banc-Assurance, DI Direct Contact with Insurers, CS Corporate Solutions

Fig. 1 The number of
non-life insurance policies
purchased via the Internet
during 2012–2013. Source
office of the insurance
commission (OIC) [9]

Consider the statistics of distribution channels in non-life insurance, as shown in
Table1. The most common channel that the Thai people use to buy non-life insur-
ance and process claims is brokerage, followed by agency.

The main reason customers still prefer using services through agents or brokers
is because of the limitations of electronic services in their general characteristics.
Generally, electronic systems require skillful users and high self-dependence because
no staff will be there for customer support. Businesses that have complicated service
platforms [10], such as the insurance business, find it difficult to provide electronic
services as customers might not have adequate understanding of the procedures and
other conditions, because of which the customers may be unable to buy products or
services completely by themselves.

However, purchases of non-life insurance products via the Internet have increased
by around 54% during 2012–2013, as presented in Fig. 1. The statistics is apparently
a sign which indicates that customers have begun to rely more on the electronic
system when it comes to buying non-life insurance.

3 Non-life Insurance Business in Singapore

Singapore’s insurance market is one of the most developed markets in Asia, with an
impressive growth rate, to which can be attributed the increasing numbers of aging
population and higher income. The life insurance business dominates Singapore’s
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insurance market, with it being the main driver of the market’s growth. However, the
non-life sector has been gaining momentum in recent years, with a large number of
sub-sectors owning small shares in the overall industry.

The non-life insurance business in Singapore expanded strongly at the end of
2013, with total gross premiums amounting to 3.5 billion dollars, an increase of
4.54%. Total net earned premiums increased by 5.46% to 2.5 billion dollars. Such a
growthwas in linewith that of the previous year when gross and net earned premiums
grew by 5.41 and 6.47%, respectively. However, underwriting profit decreased by
1.10% to 285 million dollars, a huge decline from the 15.99% growth to 288.21
million dollars in 2012.

As for the insurance distribution channels in Singapore [3], more insurers are
using the multi-distribution channel strategy as they attempt to balance the needs
of different consumer groups against the distribution costs. A certain distribution
channel is not necessarily appropriate for every product and service. Distribution
channels in Singapore are Insurance Agents, Trade Specific Agents (TSAs), Insur-
ance Brokers, Online Internet Portals, and Direct Marketing. It is only the Online
Internet Portals that will be discussed in this paper.

4 Online Internet Portals in Non-life Insurance Business
in Singapore

4.1 Corporate Portals

People are spending more time on the Internet thanks to the growing network of
online information. The Internet has also become a new market for online insurance
products.

In recent years, numerous insurance companies have emerged in Singapore. These
companies offer motor, travel, residence, and personal accident insurance products.
Singapore’s business platform leads to the possibility of offering insurance directly
online, with availability of a 24h customer support center as well as a full-fledged
claim department.

In Singapore, most of the insurance products sold online are personal products
covering home, motor, golf, travel, card protection, personal accident, income during
hospitalization, and, even, maid packages. General insurers have to sell the products
through their websites which provide quotations and accessibility to web brochures,
proposal forms, and policy details.

4.2 Individual Portals

Apart from corporate portals, individual portals are also available. These portals are
“passive”, meaning they do not directly sell insurance plans and are not required to
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be registered with the Agents Registration Board (ARB) of the General Insurance
Association (GIA) of Singapore.

These passive portals are not involved with any sales distribution functions. For
instance,

1. These portals do not sell or provide product advice, but offer product information
without comments on product features, including premiums not being considered
product advance;

2. They are not involved with any premium collections or insurance proposals;
3. They do not issue policies on behalf of insurers; and
4. The fees must not depend on the premiums.

It should be noted that the fee for online services must not be tied to the premi-
ums of the products being sold. A premium-based fee paid will be considered sales
commission which is involved in the distribution process.

Any online portals not meeting the above mentioned criteria will be deemed
insurance intermediaries as defined by theMonetary Authority of Singapore (MAS).
In that case, they will have to be registered with the ARB as agents, or licensed by
the MAS as brokers.

5 Accessibility to Mobile Broadband in Singapore

The data from the InfocommDevelopment Authority of Singapore (IDA) [5] demon-
strates accessibility to high-speed Internet through mobile broadband in Singapore
during 1997–2014. Figure2 shows that Singapores total number of mobile phone
users has been increasing and tends to continue increasing.

Fig. 2 The total number of mobile phone users [5]
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The number of mobile users can be divided according to the mobile networks,
namely 2G, 3G, and 4G. Note that Singapore has adopted the 3G technology since
April 2001 and 4G since July 2012.

Figure3a shows the total number of 2G users, which shows a declining trend,
while the number of 3G users is obviously increasing, as presented in Fig. 3b. By
comparing the numbers of 2G and 3G users, it can be found that, during 2005–2009
(Fig. 3c), the number of 2G users is stable, but that it clearly begins to decrease
constantly from 2010. Meanwhile, 3G technology has been growing rapidly since
2005, and 3G users have outnumbered 2G users since 2010.

Figure3d portrays the total number of 4G users. The 4G usage in Singapore is
making a leap and tends to be growing. Figure3e shows that the number of 3G users
in Singapore continues in its downward trend, while the number of 4G users is on
an increasing trend.

Fig. 3 Variation in volatility and auto-correlation plots [5]. a The total number of 2G users. b The
total number of 3G users. c The comparison between the numbers of 2G and 3G users. d The total
number of 4G users. e The comparison between the numbers of 2G and 3G users
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6 Literature Review

Jarno Salonen et al. [6] conducted a research entitled “Exploring the Possibilities for
Mobile Insurance Services”, in which the development from web-based insurance
services to mobile insurance services is discussed. The study finds that the develop-
ment of either web-based insurance services or mobile insurance services was not
an easy task because the insurance business is complicated and difficult to under-
stand for most people. Therefore, people do not prefer buying insurance through
the electronic channels and would rather depend on insurance agents or brokers.
Moreover, the 3G (Third Generation Wireless Broadband Mobile Communications)
and AIPN (All-IP Mobile Network) technologies, which offer high-speed Internet
connections,will becomeone of the communication channels and supportmobile ser-
vices in the future. However, only a few mobile insurance applications are available
at the moment. In the USA (2004), mobile applications represented only 10% of all
the distribution channels in the life and health insurance segments, and the proportion
was only 3% in the other non-life segments. The number of mobile application users
is, however, increasing. One example of successful mobile insurance applications is
“Pay As You Drive,” developed by Norwich Group, the largest insurance group in
the United Kingdom. Using this application, the company collects monthly motor
insurance premiums calculated from the car usage. A telematics system installed in
the car sends a satellite signal to identify the car’s location whenever the car is in use.
The system keeps track of the cars journey and reports it to the insurer in real-time. In
case of a car theft, the telematics tool can also identify where the car is being taken to.

Frost and Sullivan [2] undertook a study entitled “Using Mobile Solutions to
Improve Insurance Sector Performance Control costs, manage risk, and create new
revenue”whichproposes howsmartphones and tablets should be adapted in insurance
operations. The study finds that mobile technology will become a significant growth
engine for insurance business in the future because it saves costs, reduces risks,
and improves efficiency in insurance operations, helping insurance companies to
attract new customers and maintain their existing customer base. Utilizing mobile
technolgy along with data network, mobile devices, and mobile applications will
make insurance products and services more interesting. Insurers will be able to
respond faster to customers, thus offering greater value for money. Moreover, the
use of wireless Internet and mobile broadband has substantially increased due to
the inexpensive charges and user friendliness. Insurance companies know that it is
important to use wireless and mobile broadband to improve and develop products,
manage risks, and control expenses. The study also found that mobile technology
could streamline services in two areas. First, in-vehicle telemetics systems can be
developed. The M2M communication systems help collect and report driving data
to insurers. The data received are highly accurate and can be transferred even when
the car owners are far from the insurance companies locations. Telematics is cost-
efficient and allows insurers to use the provided information to impose premiums
required for the next payment more properly and accurately. Second, networks on
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demand is possible through mobile technology. Field insurance agents often have to
be at accident spots. Insurers can use wireless and mobile solutions to reach their
agents anytime, and can support their customers immediately after the occurrence of
any accidents, using the technology.

Hiwarkar and Khot [4] carried out a research on “E-Insurance: Analysis of the
Collision and Allegation of E-Commerce on the Insurance and Banking” whose aim
was to propose how the Internet should be utilized in the insurance and banking sec-
tor. The study finds that many insurance companies have introduced their products
online, such as motor insurance products. However, a lot of customers are hesitant to
accept such a policy to provide insurance online, which makes the development of
online insurance services slower than that of other industries. There are also fewer
life insurance transactions than general insurance transactions, as life insurance is
naturally more complicated. Nevertheless, insurance companies are still developing
online services because these services (1) are more cost-saving to manage; (2) help
reduce brokerage fees, which keeps the premiums low and attracts more customers;
(3) deliver a greater information management system; (4) shorten the insurance pur-
chasing and claim handling processes; (5) allow customers to access insurance prod-
uct information anytime and anywhere; and (6) save expenses on insurance office
rentals.

7 Research Methodology

The study explores the impacts of mobile broadband on Thailands and Singapore’s
insurance businesses. To study the impacts on Thailands non-life sector, the direct
gross non-life premiums the secondary data compiled by the Office of the Insurance
Commission (OIC) are taken into account (the direct gross non-life premiums in
Singapore, the secondary data compiled by the Monetary Authority of Singapore
[MAS]) [8]. Piecewise regression is used to evaluate the structural changes in the
value of direct gross non-life premiums after the 3G service is available in Thailand
and Singapore, in this study.

The paper uses piecewise regression to evaluate the structural changes in the value
of Thailands direct gross non-life premiums after the 3G service is available, as well
as the value of Singapores gross premiums following the introduction of 3G and 4G
networks.

Piecewise regression uses time-series data to find the structural changes that may
divide a time horizon into two periods. Once the turning point is identified, that is, at
the beginning of the 3G and 4G services in Thailand and Singapore, the regression
measures the slopes of the time trend before and after that point. When the slopes
are not significantly different, the effects from the turning point might be too small,
or it may be too early to detect the impacts. On the other hand, when the slopes are
significantly different, it means that structural changes might have occurred at the
turning point. The differences between the projected time trend and the estimated
result obtained from the piecewise regression at the point after the turning point
measure the impacts of the 3G or 4G technologies.
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The setting of the piecewise regression is as follows:

Yi = α + β1Ti + β2(Ti − T∗)Di + ui (1)

where Yi is the value of direct premiums in the period Ti, when i = 0, 1, 2, . . . , T ;
α, β are the parameters to be estimated; Ti is the time when i = 0, 1, 2, . . . , T ;
T∗ is the time at the turning point where 3G and 4G services are launched;
Di is the dummy variable whose value is 1 when Ti is after T∗(Ti > T∗) and 0
when Ti is before T∗(Ti < T∗); and
ui is the error term.
Before the 3G or 4G availability, the model specification is defined by α and β1

only; this is becauseDi is equal to 0. Therefore, theY-intercept isα and the slope isβ1:

Yi = α + β1Ti + ui. (2)

After 3G or 4G becomes available, Di becomes equal to 1. The Y-intercept is
α − β2T∗, and the slope is β1 + β2. As a result, the specification of the model can
be written as follows:

Yi = (α − β2T∗) + (β1 + β2)Ti + ui. (3)

When plotting a graph from both the models, the intersection will be at the turning
point T∗ which is the time at which the 3G or 4G networks are available in the
respective country. Therefore, the impacts of 3G or 4G can be measured from the
differences between Yi, obtained from the time trend and the one estimated by the
piecewise regression.

This paper measures the impacts of 3G technology using Thailand and Singapore
as the case studies, while the impacts of 4G is evaluated based on the case of Sin-
gapore. When comparing the impacts in Thailand and Singapore, the results will be
the ratio of the insurance sales volumes that occur after the turning point estimated
by the piecewise regression to the volumes forecast by the time trend.

8 Models

This study measures the impacts of 3G technology on Thailand’s and Singapore’s
direct gross non-life insurance premiums, and the impacts of 4G technology on the
direct premiums in Singapores non-life insurance sector through an application of
the following models:

Model 1: The impacts of a 3G service on Thailand’s and Singapore’s direct premiums
of non-life insurance business:

Thailand: VTH
i = α1 + β11Ti + β21(Ti − TTH

3G )DTH
3G,i + β31C1 + β41C2 + ui (4)

Singapore: VSG
i = α2 + β12Ti + β22(Ti − TSG

3G )DSG
3G,i + β32C1 + β42C2 + γi (5)
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Model 2: The impacts of a 4G service onThailand’s and Singapore’s direct premiums
of non-life insurance business:

VSG
i = α3 + β13Ti + β23(Ti − TSG

4G )DSG
4G,i + β33C1 + β43C2 + εi, (6)

where VTH
i is the decycled and seasonalized data of the value of Thailand’s direct

non-life insurance premiums at constant prices in 2003,
VSG

i is the decycled data of the value of Singapore’s direct non-life insurance
premiums at constant prices in 1997,

α, β are the parameters to be estimated,
Ti is the time on a monthly basis for Thailand and an annual basis for Singapore,
TTH
3G is the time a 3G service is launched in Thailand,

TSG
3G is the time a 3G service is launched in Singapore,

TTH
4G is the time a 4G service is launched in Singapore,

DTH
3G,i is the dummy variable indicating the 3G availability in Thailand after the

bidding for the 2,100 MHz spectrum,
DSG
3G,i is the dummy variable indicating the 3G availability in Singapore,

DSG
4G,i is the dummy variable indicating the 4G availability in Singapore,

C1 is the dummy variable indicating the subprime crisis in 2008,
C2 is the dummy variable indicating the tsunami incident in 2011,
ui, γi, εi are error terms.
The values of the direct non-life insurance premiums were constructed at constant

prices in 2003 for Thailand and at constant prices in 1997 for Singapore to de-cycle
the time series. To calculate the cyclical index, the average prices for each year were
obtained by dividing the value of the annual direct gross premiums over the number
of policies issued per year. Doing this makes the prices turn into indices starting at
100 in 2003 for Thailand and in 1997 for Singapore. Finally, the value at the constant
prices is calculated by dividing the sales values on a monthly basis over the price
indices in the related years.

The deseasonalization process begins with creating a seasonal index that compiles
the data for every year for the period 2003–2013. The index is a ratio between
the average monthly values of purchases to the mean of those averages. Note that
the data for Singapore is based on an annual basis only, so it does not have to be
deseasonalized.

The explanatory variables of the models are obtained from the following infor-
mation. The 3G service was launched in May 2013 in Thailand. Singapore’s 3G
service was available from April 2001, while 4G was first launched in July 2012.
The impacts of each crisis were set to last for 36 months, starting with the subprime
crisis in September 2008, and then the tsunami crisis in March 2011. Rehabilitation
from each of the crises is estimated to take at least three years.
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9 Results

9.1 Case Study of Thailand

The study uses the direct premiums of non-life insurance business, compiled by
the Office of the Insurance Commission (OIC) [9]. The methodology adopted is the
piecewise regressionwhichmeasureswhether the provision of 3Gmobile technology
in Thailand draws positive, negative, or no impacts on the Thai general insurance
business.

The results show that the sales of Thailand’s general insurance tended to increase
over the past decade, considering the positive trend (Ti) presented in Table2. How-
ever, the positive value has no significance. The coefficient of (Ti − TTH

3G )DTH
3G,i is

also negative. If the coefficient is significant, it means the 3G availability draws
negative impacts on the insurance business, that is, the sales decrease. The table
below, however, shows that such a conclusion is invalid because the coefficient of
(Ti − TTH

3G )DTH
3G,i has no significance, meaning the application of 3G technology in

the non-life insurance sector does not affect the business. Moreover, the table shows
that what actually negatively affect Thailand’s general insurance business are the
subprime and the tsunami crises, although the impacts are not significant.

9.2 Case Study of Singapore

The study uses the direct premiums of non-life insurance business compiled by the
Monetary Authority of Singapore (MAS). The methodology adopted is the piece-
wise regression which measures whether the provision of 3G mobile technology in
Singapore draws positive, negative, or no impacts on Singapore’s non-life insurance
business.

The results show that the sales of Singapore’s non-life insurance tended to increase
over the past decade, considering the positive trend (Ti) presented in Table3. How-
ever, the positive value has no significance. The coefficient of (Ti −TSG

3G )DSG
3G,i is also

positive. If the coefficient is significant, it means the 3G availability draws positive

Table 2 Impacts of 3G service on Thailand’s non-life insurance business

Dependent variable: VTH
i Unit Baht

Method: OLS Number of observations: 132 R-square: 0.0096

Variables Coeff. S.D. t Prob. 95% Confident interval

Ti 2,058.696 2,692.329 0.76 0.446 −3,268.937 7,386.329

(Ti − TTH
3G )DTH

3G,i −59,720.22 67,609.42 −0.88 0.379 −193,507.1 74,066.62

C1 −188,253.8 200,758.1 −0.94 0.350 −585,517.8 209,010.3

C2 −148,901.1 248,913.8 −0.60 0.551 −641,456.6 343,654.4

Constant 5,853,400 145,066.6 40.35* 0.000 5,566,340 6,140,461

Source The authors own calculation
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Table 3 Impacts of 3G service on Singapore’s non-life insurance business

Dependent variable: VSG
i Unit USD

Method: OLS Number of observations: 16 R-square: 0.9743

Variables Coeff. S.D. t Prob. 95% Confident interval

Ti 56.44977 46.09987 1.22 0.246 −45.01535 157.9149

(Ti − TSG
3G )DSG

3G,i 91.85159 53.15268 1.73 0.112 −25.13668 208.8399

C1 −157.123 86.8474 −1.81 0.098 −348.2728 34.02689

C2 109.4349 128.8912 0.85 0.414 −174.2527 393.1226

Constant 1,484.45 147.1234 10.09* 0.000 1,160.634 1,808.267

Source The authors’ own calculation
* 1% Significant level

impacts on the insurance business, that is, the sales increase. Table3, however, shows
that the coefficient of (Ti − TSG

3G )DSG
3G,i has no significance, meaning the application

of 3G technology in the non-life insurance sector does not affect the business. More-
over, it is found that the subprime crisis draws negative impacts, while the tsunami
crisis’s impacts are positive, but the coefficients of both the variables are found to
be not significant, which means that both the crises do not draw any impacts on
Singapore’s non-life insurance business.

Furthermore, this paper studies the impacts of 4G, as well, on Singapore’s non-life
insurance sector. The study results, as displayed in Table4, show that the people in
Singapore tend to buy more non-life insurance products, given that Ti is positive and
significant. Also, the coefficient of (Ti − TSG

4G )DSG
4G,i is positive, but not significant,

so it is not conclusive whether the 4G availability does increase the sales of non-life
insurance products. The subprime crisis affects the business negatively, while the
tsunami draws positive impacts. However, the coefficients of both the incidents are
not significant, meaning the crises have no impacts on Singapore’s non-life insurance
sector.

Table 4 Impacts of 4G service on Singapore’s non-life insurance business

Dependent variable: VSG
i Unit USD

Method: OLS Number of observations: 16 R-square: 0.9743

Variables Coeff. S.D. t Prob. 95% Confident interval

Ti 134.5205 9.789643 13.74* 0.000 112.9737 156.0674

(Ti − TSG
4G )DSG

4G,i 68.57934 205.0733 0.33 0.744 −382.784 519.9427

C1 −180.9149 96.17553 −1.88 0.087 −392.5959 30.76597

C2 72.34941 333.7366 0.22 0.832 −662.2 806.8988

Constant 1,264.864 82.01233 15.42* 0.000 1,084.356 1,445.372

Source The authors’ own calculation
* 1% Significant level
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10 Conclusion

This research studies the impacts of 3G technology on Thailand’s and Singapore’s
non-life insurance business, using the direct premiums data fromThailand’s Office of
the Insurance Commission (OIC) and the Monetary Authority of Singapore (MAS).
The piecewise regression method is applied in the study. The results show that 3G
technology has no impacts on Thailand’s non-life insurance sector, possibly because
it is uncommon for the Thai people to buy insurance products through wireless elec-
tronic devices. Most of the people are unaware of the benefits of general insurance;
to make matters worse, there are not enough personnel providing advices about pur-
chasing general insurance through electronics channels. Therefore, the provision of
the technology does not increase people’s demand for general insurance products.
Likewise, the 3G availability in Singapore does not impact the local non-life insur-
ance business. Singapore has adopted a 4G network since 2012, so the study also
explores the impacts of such technology. It finds that 4G technology does not affect
Singapore’s non-life insurance business, probably due to the complicated nature of
general insurance. Buyers generally need advice before making a decision to buy,
while many types of insurance also require long-term premium payments. Because
of these reasons, people do not prefer buying general insurance through wireless
devices. The availability of 3G and 4G services does not significantly increase the
number of general insurance buyers through the electronic channels. It could be
projected that, for Thailand, the arrival of 4G will not affect the non-life insurance
business.

It is clear that the insurance industry has not caught up with the “mobile integra-
tion” and seems to be missing the tremendous opportunity to enhance its growth by
applying the mobile broadband technology. The study points it out to the insurance
companies that they should find some strategies to integrate the mobile broadband
technology into their businesses; otherwise, they are bound to be left behind in the
digital and connected world. Among the strategies, the priority should be placed on
the provision of product information, online purchase, and real-time notification with
location-based tracking system of any accidents or incidents such that the insurance
companies can rush their rapid assistance to the customers.
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Using Conditional Copula to Estimate
Value-at-Risk in Vietnam’s
Foreign Exchange Market

Vu-Linh Nguyen and Van-Nam Huynh

Abstract In this paper, we briefly review the basics of copula theory and the problem
of estimating Value-at-Risk (VaR) of portfolio composed by several assets. We
present two VaR estimation models in which each return series is assumed to follow
AR(1)-GARCH(1, 1) model and the innovations are simultaneously generated using
Gaussian copula and Student t copula. The presented models are applied to estimate
VaR of a portfolio consisting of six currencies toVND. The results are comparedwith
results from two VaR estimation models using AR(1)-GARCH(1, 1) model and the
innovations are separately generated using univariate standard normal and Student t
distribution.

1 Introduction

The theory of copula is a very powerful tool for modeling joint distributions because
it does not require the assumption of joint normality which is rarely adequate in
application [3, 15]. Applications based on copula theory center around Sklar theorem
which allows to decompose any N -dimensional joint distribution into its N marginal
distributions and a copula functionwhich describes the dependence structure between
the variables [3, 11, 15, 17]. Furthermore, the converse of Sklar theorem can be
used to learn the dependence structure given prior information about distribution
and copula.

During the last years, copula based models have been increasingly applied in
finance and economics. Thosemodels have shownadvantages comparingwith the tra-
ditional models, specially where dependency is non-linear and the involved random
variables follow different univariate distributions. The book of Nelsen [12] pro-
vided a very good introduction about copulas including the basic of copula theory
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as well as advantages of using copulas to construct the joint distribution and learn
the dependence [11]. Also, Cherubini et al. [3] provided a comprehensive guide for
applying copulas in financial problems for example, asset pricing, risk management
and credit risk analysis [3]. Bouye et al. [1] provided a statistical inference framework
of copulas in the estimation problem [1]. Embrechts et al. [5] highlighted the pitfalls
when finding the multivariate models and suggested simulation algorithms to avoid
those problems [5]. Georges [8] used the normal copula to model options time of
exercise and for derivative pricing [8]. Meneguzzo and Vecchiato [10] used copulas
tomodel the risk of credit derivatives [10]. Cherubini andLuciano [2] proposed aVaR
estimation model using the Archimedean copula family and the historical empirical
marginal distribution [2]. Fortin and Kuzmics [7] used convex linear combinations
of copulas to estimate the VaR of a portfolio consisting of the FSTE and DAX stock
indices [7]. Embrechts et al. [6] used copula to learn the optimal bounds for risk
measures of functions of dependent risks [6]. Rockinger and Jondeau [16] used the
Plackett copula with GARCH process with innovations modeled by the Student-t
asymmetrical distribution to learn the change of dependence through time of daily
return of stock market indices [16]. Patton and Andrew [14] used conditional copula
based models to explore the dependence structure of exchange rates [14]. Palaro and
Hotta [15] used the SJC, Plackett and Student-t conditional copula to modeled the
innovations of GARCH process and used simulation methods to estimate VaR of
portfolio composed by Nasdaq and S&P500 stock indices [15].

Themarket of foreign exchange (forex) in Vietnam has remained relatively poorly
developed despite more than two decades of general reform throughout the econ-
omy. Also, research on Vietnam’s foreign exchange market is rather limited. In their
studies, Nguyen et al. [12, 13] have pointed out that Vietnam’s foreign exchange
(forex) market has remained far less active and sophisticated than forex markets in
many other countries.

In this paper, we apply conditional copula based models to estimate VaR of
a portfolio composed by six currencies to VND namely VND/AUD, VND/EUR,
VND/GBP, VND/JPY, VND/USD and VND/CNY. The paper is organized as fol-
lows. Section2 summarizes the market risk problem and defines VaR measure. The
basic of copulas is presented in Sect. 3. Section4 presents two conditional copula
based models for estimating VaR in which each return series is modeled using
AR(1)-GARCH(1, 1) model and innovations are simultaneously modeled using the
Gaussian copula and Student t copula. In Sect. 5, the presented models are applied
to estimate VaR of a portfolio composed by six daily rate return and log return
series of currencies. The results are compared with those obtained using simulation
AR(1)-GARCH(1, 1) models where innovations are separately modeled using uni-
variate standard normal and student t distributions. Finally, the conclusion is given
in Sect. 6.

2 Market Risk Problem

Let us consider the problem of measuring the risk of holding an portfolio consists
of N assets with returns at T th day, denoted as xn,T , given the historical data
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{xn,t |t = 1, 2, . . . , T − 1}, for n = 1, 2, . . . , N [15]. The portfolio return at t th
day, denoted as xt , is approximately equal to

xt = ω1x1,t + ω2x2,t + · · · + ωN xN ,t, (1)

where ωn is the portfolio weigh of asset n and
∑N

n=1 ωn,t = 1, for t = 1, 2, . . . , T ,
n = 1, 2, . . . , N .

In 1994, the American bank JP Morgan published a risk control method knows as
Riskmetrics, based mainly on a parameter named Value-at-Risk (VaR). For a given
time horizon T and confidence level p, the VaR is defined as the loss in market value
over the time horizon T that is exceeded with probability 1− p. More precisely, VaR
of a portfolio can be defined as follows.

Definition 1 Let HT (xT | �) be the conditional distribution function of the returns
of portfolio consisting of x1, x2, . . . ,xN at time T with conditional set �.

� = {Xn,t |n = 1, 2, . . . , N , t = 1, 2, . . . , T − 1} (2)

� represents the past information from day 1 to day T − 1. Then the VaR of the
portfolio at time T , with confidence level p, where p ∈ (0, 1) is defined by

VaRT (p) = inf{s =: HT (s | �) ≥ 1 − p}. (3)

Figure1 illustrates VaR and p.
In this paper, VaR is approximated using simulation models. The exchange rate

series are assumed to fit the AR(1)-GARCH(1, 1) models with standard normal and
student t innovations. The historical data of innovations is used to fit the multi-
variate copula which then used to generated values of innovations simultaneously.
The generated values of portfolio distribution obtained by substituting the values of
innovation into AR(1)-GARCH(1, 1) models. Finally, VaR is approximated as the
corresponding element of simulation series after increasingly ordering the simulated
values of portfolio distribution.

Fig. 1 The Value-at-Risk
VaR and level α = 1 − p
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3 Copula

The concept of copulas was introduced by Sklar (1959), and has been recognized as a
powerful tool for modeling dependence between random variables. Almost applica-
tions based on copula theory centralize around the Sklar theorem which ensures
the relation between a N -dimensional distribution and a corresponding copula
[3, 11].

A copula is a multivariate probability distribution for which the marginal proba-
bility distribution of each variable is uniform.

Definition 2 A N -dimensional copula (N -copula) is a function C , whose domain
is [0, 1]N and whose range is [0, 1] with the following properties:

1, For every u ∈ [0, 1]N , C(u) = 0 if at least one coordinate of u is 0 and if all
coordinates of u are 1 except un , then C(u) = un , n = 1, 2, . . . , N .

2, For every a, b ∈ [0, 1]n such that a ≤ b, VC ([a, b]) ≥ 0.

Sklar theorem is perhaps the most important result regarding copulas [17]. It ensures
the relation between a N -dimensional distribution function and a corresponding
copula and is used in essentially all applications of copula.

Theorem 1 Let H be a N-dimensional distribution function with 1 dimensional
margins F1, F2, . . . , FN . Then there exists a N-copulas C such that for all x
in R

N ,

H(x1, x2, . . . , xN ) = C(F1(x1), F2(x2), . . . , FN (xN )). (4)

If F1, F2, . . . , FN are all continuous, then C is unique; Otherwise C is uniquely
determined on RanF1 × RanF2 × · · · × RanFN .

Conversely, if C is a N-copula and F1, F2, . . . , FN are distribution functions,
then the function H defined by (4) is a N-distribution function with margins.

The following corollary is often known as the converse of Sklar theorem. We can
use this corollary to find copula when the margins and joint distributions are
given.

Corollary 1 Let H, C, F1, . . . , FN be as in Theorem1 and F (−1)
1 , . . . , F (−1)

N be
quasi-inverses of F1, . . . , FN , respectively. Then, for any u in [0, 1]N

C(u1, u2, . . . , uN ) = H(F (−1)
1 (u1), F (−1)

2 (u2), . . . , F (−1)
N (uN )). (5)

By applying Sklar theorem and exploiting the relation between the distribution
and the density function, we can easily derive the multivariate copula density

c(F1(x1), F2(x2), . . . , FN (xN ))

associated with a copula function C(F1(x1), F2(x2), . . . , FN (xN )):
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h(x1, x2, . . . , xN ) = ∂ N [C(F1(x1), F2(x2), . . . , FN (xN ))]
∂ F1(x1) · · · ∂ FN (xN )

N
∏

n=1

fn(xn)

= c(F1(x1), F2(x2), . . . , FN (xN ))

N
∏

n=1

fn(xn), (6)

where we define

c(F1(x1), F2(x2), . . . , FN (xN )) = f (x1, x2, . . . , xN )
∏N

n=1 fn(xn)
. (7)

The results of Sklar theorem and its corollary can be extended in conditional case
as follows

H(x1, x2, . . . , xN | �) = C(F1(x1 | �), F2(x2 | �), . . . FN (xN | �) | �), (8)

and

C(u1, u2, . . . , uN | �) = H(F−1
1 (u1 | �), F−1

2 (u2 | �), . . . , F−1
N (uN | �) | �)),

(9)
where � is given the conditional set.

The Gaussian copula is a distribution over the unit cube [0, 1]N . It is constructed
from a multivariate normal distribution over RN by using the probability integral
transform. Formally, Gaussian copula is defined as follows

Definition 3 Let R be a symmetric, positive definite matrix with diag(R) = 1 and
let ΦR the standardized multivariate normal distribution with correlation matrix R.
Then the multivariate Gaussian copula is defined by

CGauss(u1, u2, . . . , uN ; R) = ΦR(Φ−1(u1),Φ
−1(u2), . . . , Φ

−1(uN )), (10)

where Φ−1
R denotes the inverse of the standard univariate normal distribution

function ΦR .

The associated multinormal copula density is

cGauss(Φ(x1),Φ(x2), . . . , Φ(xN ); R) = f Gauss(x1, x2, . . . , xN )
∏N

n=1 f Gauss
n (xn)

=
1

(2π)
N
2 |R| 12

exp(− 1
2 x

′
R−1x)

∏N
n=1

1√
2π

exp(− 1
2 x2n )

, (11)

and hence, fixing un = Φ(xn), and denote

Using conditional copula to estimate VaR in Vietnam’s foreign exchange market
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ζ = (Φ−1(u1),Φ
−1(u2), . . . , Φ

−1(uN )
′
)

the vector of the Gaussian univariate distribution functions, we have

c(u1, u2, . . . , uN ; R) = 1

|R| 12
exp[−1

2
ζ

′
(R−1 − I )ζ ]. (12)

The student t copula is defined as follows

Definition 4 Let R be a symmetric, positive definite matrix with diag(R) = 1 and
let TR,ν the standardized multivariate Student t distribution with correlation matrix
R and ν degree of freedom. Then the multivariate Student t copula is defined as
follows

C(u1, u2, . . . , uN ; R, ν) = TR,ν(t
−1
ν (u1), t−1

ν (u2), . . . , t−1
ν (uN )), (13)

where t−1
ν (un) denotes the inverse of the Student t cumulative distribution function.

The associated Student t copula density is:

c(u1, u2, . . . , uN ; R, ν) = f Student(x1, x2, . . . , xN )
∏N

n=1 f Student
n (xn)

= |R|− 1
2
Γ (ν+N

2 )

Γ ( ν
2 )

[

Γ (v
2 )

Γ ( ν+1
2 )

]N
(1 + ζ

′
R−1ζ
ν

)− ν+N
2

∏N
n=1(1 + ζ 2n

ν
)− ν+1

2

,

(14)

where ζ = (t−1
ν (u1), t−1

ν (u2), . . . , t−1
ν (uN ))

′
.

4 Using Conditional Copula to Estimate VaR

This section presents two simulation models using conditional copulas to estimate
VaR of a portfolio consists of several assets, namely AR(1)-GARCH(1, 1) +
Gaussian copula and AR(1)-GARCH(1, 1) + Student t copula. In those models,
each return series is assumed to follow AR(1)-GARCH(1, 1) models and the inno-
vations are simultaneously generated using copulas.

4.1 Modeling the Marginal Distributions

Returns series has been successfully modeled by ARMA-GARCH models [4, 15].
In this paper, the AR(1)-GARCH(1, 1) models are used to model the margins as
follows
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xn,t = μn + φn xn,t−1 + εn,t ;
εn,t = σn,tηn,t ; (15)

σ 2
n,t = αn + βnε2n,t−1 + γnσ 2

n,t−1;

where {ηn,t } is white noise process, αn , βn , γn satisfy the condition of GARCH
model: βn + γn < 1, for n = 1, 2, . . . , N and t = 1, 2, . . . , T . The conditional
distribution of the standardized innovations

ηn,t = εn,t

σn,t
|�n,T , n = 1, 2, . . . , N ,

was modeled by white noises and denoted by Fn,t in general case (the marginal
distributions). We consider the case that ηn,t are standard normal distributions and
student t distributions with the same degree of freedom, n = 1, 2, . . . , N .

The joint distribution of innovation vector ηt = (η1,t , η2,t , . . . , ηN ,t ) is model by
conditional copula.

Let un,t = Fn,t (ηn,t |�), F1,t , F2,t , . . . and FN ,t are marginal distributions condi-
tioned to �, the information available up to time T − 1. If the models were correctly
specified then series {un,t |t = 1, 2, . . . , T − 1} will be standard uniform series.

4.2 Modeling the Copula

We assume that (η1,T , η2,T , . . . , ηN ,T ) has multivariate distribution function

HT (η1,T , . . . , ηn,T ; θ1,T , θ2,T | �) (16)

and continuous univariatemarginal distribution functions Fn,T (ηn,T ; θn,T | �)where
� = {ηn,t |n = 1, 2, . . . , N , t = 1, 2, . . . , T − 1}.

Since the marginal distributions are continuous, the conditional copula CT is
uniquely defined according to Sklar theory. Furthermore, we have

CT (F1,T (η1,T ; θ1,T | �), . . . , FN ,T (ηN ,T ; θN ,T | �); θ2,T | �)

= HT (η1,T , . . . , ηN ,T ; θ1,T , θ2,T | �), (17)

where θ1,T is the margins’ parameters and θ2,T is copula’s parameters of copula
function CT .

The parameters θ1,T , θ2,T are estimated by using IFM (inference for the margins)
method as follows

1. Firstly, we estimate the margin’s parameters ̂θ1,T by performing the estimation
of the univariate marginal distributions

̂θ1,T = argmax
θ1,T

T −1
∑

t=1

N
∑

n=1

ln fn,T (ηn,t ; θ1,T ). (18)
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2. Secondly, given ̂θ1,T , we perform the estimation of the copula parameter̂θ2,T as
follows

̂θ2,T = argmax
θ2,T

T −1
∑

t=1

ln cT (F1,T (η1,t ;̂θ1,T ), . . . , Fn,T (ηn,t ;̂θ1,T ); θ2,T ). (19)

If the marginal distributions Fn,T are standard normal distributions then CT is a
multivariate Gaussian copula with correlationmatrix θ2,T = RT . And if themarginal
distributions Fn,T are Student’s t distributions with same degree of freedom θ1,T =
νT , then CT is a Student’s t copula with parameter θ2,tT = RT . In this case, N
marginal distributions are assumed to have the same degree of freedom.

4.3 Monte Carlo Simulation

We use Gaussian and student t copula to simulate K vectors

ηT,k = (η1,T,k, η2,T,k, . . . , ηN ,T,k), (20)

for k = 1, 2, . . . , K .
In case of multivariate Gaussian copula, the Monte Carlo simulation can be

processed as follows:

1. Find the Cholesky decomposition A of the linear correlation matrix R.
2. Simulate N i.i.d. z = (z1, z2, . . . , zN )

′
from N (0, 1)

3. Set η
′
T,k = Az

Similarly, we have the Monte Carlo simulation for multivariate student t copula

1. Find the Cholesky decomposition A of the linear correlation matrix R.
2. Simulate N i.i.d. z = (z1, z2, . . . , zN )

′
from N (0, 1)

3. Simulate a random variate s from χ2
ν independent of z

4. Set y = Az
5. Set η

′
T,k = √

(ν/s)y

Then, we can simulate K vectors (x1,T,k, x2,T,k, . . . , xN ,T,K ) and K values of xT,k

by using model (15), for k = 1, 2, . . . , K . We order series {xT,k} in increasing order.
Then we have the VaR of portfolio by VaRT (α) = xT,K p , equivalently, it is exactly
the K pth element of simulation series after ordering by increasing order.

5 Application

In this section, the presented copula based models are applied to estimate VaR of
a portfolio composed by six currencies to VND namely VND/AUD, VND/EUR,
VND/GBP, VND/JPY, VND/USD and VND/CNY. The results are compared with



Using Conditional Copula to Estimate Value-at-Risk . . . 479

results ofwithAR(1)-GARCH(1, 1)+NandAR(1)-GARCH(1, 1)+ t inwhich each
return series is assumed to follow AR(1)-GARCH(1, 1) models with the innovations
are separately modeled by univariate standard normal and student t distribution.

5.1 Data Description

The database contains 1328 daily closing prices, from January 2nd 2007 to March
30th 2012.Wedenote the log-returns, of six exchange rates byvariable x1, x2, . . . , x6,
respectively. Note that for each exchange rate n, the log-return at day t is defined by
xn,t = ln(pn,t ) − ln(pn,t−1), where pn,t is the closing price of currency n at day t ,
n = 1, 2, . . . , 6 and t = 1, 2, . . . , 1328. Figure2 presents the plots of six series and
Table1 contains descriptive statistics.

In Fig. 2, we can see the evidence of volatility clustering which can be processed
using GARCH models. Table1 shows that all of six return series distributions
have large kurtosis, especially VND/USD and VND/CNY have very large kurtosis

Fig. 2 Daily log returns of six currencies to VND

Table 1 Descriptive statistics of daily log-returns of six currencies to VND

Statistics VND/AUD VND/EUR VND/GBP VND/JPY VND/USD VND/CNY

Mean 17.16E–5 8.68E–05 1.72E–05 20.32E–5 8.53E–05 15.56E–5

Std 5.08E–3 3.50E–3 3.35E–3 3.66E–3 1.55E–3 1.56E–3

Minimum −0.0303 −0.0222 −0.0221 −0.0250 −0.0198 −0.0133

Median 55.37E–5 19.14E–5 9.46E–05 10.47E–5 2.08E–05 5.94E–05

Maximum 0.0364 0.0157 0.0136 0.0186 0.0130 0.0212

Kurtosis 9.0186 5.5229 5.9954 7.8918 42.4722 59.0849

Asymmetry −0.4711 −0.1548 −0.4275 −0.2536 −1.7482 3.1359
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which make difficulty to capture its perturbation. The asymmetry of VND/EUR and
VND/JPY are small implies that its distribution is nearly symmetric while other
series have larger asymmetry.

5.2 Results and Evaluation

Let us consider a portfolio with equal weights for six indices, or in other word, the
log return of portfolio at day t th is xt = 1

6

∑6
n=1 xn,t .

In order to assess the accuracy of the estimated VaR we backtest the models at
95, 97.5, 99 and 99.5% confidence level by the following procedure. For each day
T = 751, 752, . . . ,1,327, data in the 750 previous days are used to estimated VaR
using AR(1)-GARCH(1, 1)+Gaussian copula and AR(1)-GARCH(1, 1)+ Student
t copula models. Since the dataset contains 1,327 observations, we have a total of
577 tests for VaR at each level α. We also do backtesting with AR(1)-GARCH(1, 1)
+ N and AR(1)-GARCH(1, 1) + t models in which each return series is assumed
to follow AR(1)-GARCH(1, 1) model with the innovations are separately modeled
using univariate standard normal and student t distribution. For each model, we
repeat the test 10 times to access the robustness. To compare the performance of VaR
estimation models, we compare the maximum, minimum and average of proportion
of observations and number of proportion where the portfolio loss exceeded the
estimated VaR among 10 testing times. The average number is average of proportion
of observation (number of observations) in 10 testing times. The results are presented
in Table2.

InTable2, the first two columns are corresponding toVaRestimationmodels using
Gaussian and Student t copulas. Similarly, the last two columns are corresponding
to VaR estimation models using AR(1)-GARCH(1, 1) and innovations are generated

Table 2 Proportion of observations (number of observations in brackets), for t = 751–1,327,
where the portfolio loss exceeded the estimated VaR for α = 0.005, 0.01, 0.025 and 0.05

Alpha (α) Proportion GARCH + Gaussian GARCH + Student GARCH + N GARCH + t

α = 0.5% Average 0.0279(16.1) 0.0307(17.7) 0.0808(46.6) 0.0858(49.5)

Minimum 0.0260(15) 0.0277(16) 0.0780(45) 0.0832(48)

Maximum 0.0312(18) 0.0329(19) 0.0832(48) 0.0858(50)

α = 1% Average 0.0387(22.3) 0.0392(22.6) 0.0984(56.8) 0.1083(62.5)

Minimum 0.0364(21) 0.0381(22) 0.0936(54) 0.1057(61)

Maximum 0.0416(24) 0.0416(24) 0.1040(60) 0.1083(64)

α = 2.5% Average 0.0655(37.8) 0.0747(43.1) 0.1322(76.3) 0.1336(77.1)

Minimum 0.0624(36) 0.0728(42) 0.1300(75) 0.1300(75)

Maximum 0.0693(40) 0.0780(45) 0.1352(78) 0.1369(79)

α = 5% Average 0.0924(53.3) 0.0978(56.4) 0.1537(88.7) 0.1535(88.6)

Minimum 0.0936(52) 0.0953(55) 0.1525(88) 0.1525(88)

Maximum 0.0936(54) 0.0988(57) 0.1560(90) 0.1560(90)
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Table 3 Proportion of observations (number of observations in brackets), for t = 751–1,327,
where the portfolio loss exceeded the estimated VaR for α = 0.005, 0.01, 0.025 and 0.05

Alpha (α) Proportion GARCH + Gaussian GARCH + Student GARCH + N GARCH + t

α = 0.5% Average 0.0289(16.7) 0.0302(17.4) 0.0801(46.2) 0.0854(49.3)

Minimum 0.0243(14) 0.0260(15) 0.0780(45) 0.0832(48)

Maximum 0.0312(18) 0.0329(19) 0.0832(48) 0.0884(51)

α = 1% Average 0.0397(22.9) 0.0395(22.8) 0.1010(58.3) 0.1092(63.0)

Minimum 0.0364(21) 0.0364(21) 0.0953(55) 0.1057(61)

Maximum 0.0416(24) 0.0416(24) 0.1057(61) 0.1127(65)

α = 2.5% Average 0.0660(38.1) 0.0768(44.3) 0.1314(75.8) 0.1335(77.0)

Minimum 0.0641(37) 0.0745(43) 0.1300(75) 0.1317(76)

Maximum 0.0693(40) 0.0797(46) 0.1335(77) 0.1352(78)

α = 5% Average 0.0946(54.6) 0.1003(57.9) 0.1323(75.8) 0.1539(88.8)

Minimum 0.0919(53) 0.0988(57) 0.1525(88) 0.1525(88)

Maximum 0.0971(56) 0.1040(60) 0.1560(90) 0.1560(90)

using standard normal and Student t distribution. The results show that the AR(1)-
GARCH(1, 1)+Gaussian copula model provided the best results for VaR estimation
for all four levels of α. Two conditional copula based models provided better results
comparing with two other models. Furthermore, the small difference between the
minimum, maximum and average numbers of observations (proportion) among 10
repeated times shows that all four models are stable.

We also repeated the experiment for daily rate returns of six exchange rate with
the rate return at day t is defined by xn,t = pn,t −pn,t−1

pn,t−1
, where t = 1, 2, . . . ,1,328

and n = 1, 2, . . . , 6. The results are presented in Table3.
Similar to the case of log return, all the experiment results of copula models are

better than other models. The reason is that the copula could capture the dependence
between series, which is then used to estimate portfolio distribution, while other
models process without considering this dependency.

6 Conclusion

In this paper, we briefly review the basics of copula theory and two VaR estimation
models namely AR(1)-GARCH(1, 1) + Gaussian copula and AR(1)-GARCH(1, 1)
+ Student t copula. Thosemodels are applied to capture the dependency and estimate
VaRof portfolio consists of six foreign exchange rate inVietnam’smarket. The results
of conditional copula based models are better than AR(1)-GARCH(1, 1) + N and
AR(1)-GARCH(1, 1) + Student t models in which each return series is assumed to
follow AR(1)-GARCH(1, 1) model and innovations are separately generated using
standard normal and student t distribution. We repeat the estimation process 10 time
and analyze the results to assess the stability of four models and make the conclusion
that all considered models are quite stable.
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The Effects of Foreign Direct Investment
and Economic Development on Carbon
Dioxide Emissions

Shu-Chen Chang and Wan-Tran Huang

Abstract This paper uses a threshold model to estimate the regime-specific
marginal effect of foreign direct investment (FDI) and economic development on
environmental carbon dioxide (CO2) emissions within different regimes of popula-
tion density. Our results demonstrate an asymmetrical nonlinear relationship between
gross domestic product per capita and CO2 emissions in different regimes of popula-
tion density. In addition, our results reveal that CO2 emissions decline significantly
along with increasing FDI until a certain level of population density is reached. Our
results also show that CO2 emissions increase along with increasing value-added in
industry during the early and growth stages of the industrial life cycle and decrease
during its mature stage, when it has higher energy efficiency.

JEL Classification: C33 · G11 · Q53

1 Introduction

There is no uniform conclusion regarding whether foreign direct investment (FDI)
and economic development are good or bad for the environment. There are two
different findings on the issue of FDI and pollution. The first is that FDI decreases
environmental pollution because foreign enterprises have clean technology, which
improves energy efficiency and resource usage [3, 19, 30, 32, 38, 45]. The sec-
ond is that FDI increases environmental pollution because pollution-intensive indus-
tries (such as chemicals, pesticides, oil refining, textiles, metal smelting, iron and
steel, and food processing industries) flow from home countries to host countries
[3, 10, 16, 24].
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At the same time, there are two different findings on the issue of economic
development and pollution. The first is that economic development decreases pollu-
tion because pollution is measured as an inferior good at high levels of income. In
other words, pollution and economic development increase together up to a certain
income level, after which the trend reverses. The second is that economic devel-
opment increases pollution. At low levels of income, the “pollution is an inferior
good” finding is not obtained by the effect of the increase in economic activities.
Thus, the relationship between economic development and environmental quality is
an inverted U-shape, called an environmental Kuznets curve (EKC) by Grossman
and Krueger [21, 22]. As per the above discussion, the impact of FDI inflows and
economic development on environmental pollution is nonlinear. Althoughmany pre-
vious studies (e.g., [3, 10, 16, 24]) have discussed the effect of income on pollution
(or the effect of FDI inflows on pollution), their models include income, its square
and cubic term (or FDI and its square) to measure the nonlinear relationship between
FDI and pollution or between income and pollution.

Based on neo-Malthusian theory, increased population density creates environ-
mental degradation. In contrast, ecological evolutionary theory proposes that higher
population density or urban agglomeration increases technological efficiency in the
use of fossil fuels and reduces CO2 emissions. To clearly define the impacts of
both FDI and economic development on environmental degradation, this paper uses
population density to be a threshold variable.

Someprevious studies have suggested that the relationship between environmental
degradation and FDI should introduce additional explanatory variables, such as the
quality of political institutions [11] or population density [24]. Although some studies
have shown that the environmental degradation effect of FDI depends on the quality
of political institutions and used an interaction term to measure it, the “interaction
term” approach did not allow the marginal impact of FDI and economic development
to be regime specific. In other words, their estimation cannot capture that the effect
of FDI and economic development on environmental degradation is different across
regimes. Furthermore, their results may suffer from multicollinearity because the
interaction term is highly correlated with original variables when an interaction term
is derived by multiplying two predictor variables.

Hansens [23] threshold regression considered thresholds or asymmetry effects
and split sample data into several distinct regimes according to a specific threshold
variable. Thus, this paper uses Hansens threshold approach in regarding population
density as a threshold variable, tests whether the threshold effect exists, and then
estimates howmarginal effects of FDI and economic development on CO2 emissions
differ across regimes that are identified by population density.

The remainder of this article is organized into six sections. Section2 provides a
review of the literature on FDI, economic development, and environmental degrada-
tion. Section3 discusses the methodology. Section4 presents the empirical results.
Section5 concludes and presents some implications of our findings.



The Effects of Foreign Direct Investment and Economic Development . . . 485

2 Literature Review

2.1 Economic Development and Environmental Degradation

Greenhouse gases are produced by human activity primarily through the burning
of fossil fuels. CO2 emissions comprise the most important contributor to green-
house gases and are directly related to energy use, which is an essential factor in
economic activities such as industrial production and consumption. Although CO2
emissions contribute to global warning and its social costs, Arrow et al. [1] and Friedl
and Getzner [17] suggest that free-rider behavior in CO2 emissions creates a close
relationship between CO2 emissions and income at all levels of income per capita.
Thus, CO2 emissions play an important role in the current debate on environmental
degradation, so the relationship between CO2 emissions and income is worthy of
investigation.

In the past two decades, most previous studies used cross-section, panel data, and
time series to investigate the EKChypothesis onCO2 emissions. In this case, the EKC
hypothesis claims that the relationship between income per capita andCO2 emissions
has an inverted U-shape. In the CO2-income framework, Coondoo and Dinda [9],
Galeotti and Lanza [18], Moomaw and Unruh [35], and Shandra et al. [41] use a
linear-quadratic model to support the EKC hypothesis on CO2 emissions. When the
linear-quadratic form is extended to a linear-cubic form for theCO2 emissionsmodel,
Galeotti and Lanza [18] and Moomaw and Unruh [35] find an N-shaped relationship
between CO2 emissions and income, implying that as income grows over time, CO2
emissions first increase, then decrease after the threshold income has been reached,
and then increase again as income continues to grow that is, reducing CO2 emissions
exists in a narrow income range. Asici [2] find that positive effect of income on
pollution is in middle income countries, but in high income countries, the effect is
a statistically significant-negative result. Recently, Chang and Chang [7] use a panel
data set from 1995 to 2005 that includes 57 countries, and also demonstrate the
threshold effect of income on CO2 emissions. In contrast, other studies [6, 8, 25, 40]
found that CO2 emissions increase monotonically with income per capita. Thus, the
relationship between CO2 emissions and income is mixed, and the validity of these
studies has been questioned by Stern [44].

2.2 Population Density and Environmental Degradation

Although early studies, such as Grossman and Krueger [22], Moomaw and Unruh
[35], and Shafik [40], concentrated on income as an explanatory variable and used
ordinary least squares (OLS), later studies introduce additional explanatory vari-
ables to decompose factors of pollutant emissions. CO2 emissions are attributed to
direct and indirect effects. Direct effects occurred because of population density and
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fossil-fuel use on CO2 emissions while FDI is referred to as an indirect effect.
Several studies assume a unitary elasticity of CO2 emissions with respect to
population [14, 46].

A few studies did not assume that the elasticity of CO2 emissions with respect
to population is unity but, on the contrary, they considered population an additional
explanatory variable in their EKC model. However, their findings are inconsistent.
For example, Bruvoll and Medin [6], Cropper and Griffiths [13], and Dietz and
Rosa [14] find significant monotonically increasing relationships between popula-
tion and CO2 emissions, supporting the Malthusian assertion. Alternatively, Lantz
and Feng [29] point out that the findings in Selden and Song [39] and Patel et al. [37]
show a negative relationship between population density and CO2 emissions, imply-
ing that population growth increases consideration of environmental degradation.
Shi [42], using 93 countries over the period 1975–1996, found evidence of an out-of-
sample EKC for CO2 emissions per capita, in which the turning point is far beyond
the maximum income in sample data and shows a monotonically increasing relation-
ship between CO2 emissions per capita and population. Lantz and Feng [29], using
Canada over the period 1970–2000, did not support an EKC hypothesis for CO2
emissions, but show an inverted-U-shaped relationship between CO2 emissions and
population as well as a U-shaped relationship between CO2 emissions and technol-
ogy, adding population and technology variables.

The indirect effects of CO2 emissions can be classified in three categories: scale,
composition, and technique effects. The scale effect relates to economic activity and is
measured using income or economic growth variables. The composition effect relates
to structural change in the economy, and the technique effect relates to technology
adoption.Grossman [20] used economicgrowth, industrial composition, and environ-
mental regulation to measure scale, composition, and technique effects, respectively.
He found that these effects play an important role in pollution. Some studies include
scale, composition, and technique variables in their EKC model, but their findings
are inconsistent.

In the early 1990s, the International Bank for Reconstruction and Development
[26] argued that an inverted-U-shaped relationship could be influenced by advanced
techniques or structural changes due to globalization. This implies that economic
growth leads to environmental degradation in the early stages of economic growth
while it improves environmental quality in later stages due to environmentally
friendly production techniques [5, 41]. For example, Neumayer [36] and Shafik [40],
find evidence that the relationship between technology and CO2 emissions is increas-
ing, but Bruvoll and Medin [6], Shi [42], and Talukdar and Meisner [45] find a
decreasing relationship between these two variables. The former finding implies
that technological innovations and structural changes increase energy consumption
while the latter finding shows that technological innovations and structural changes
lead to production activities that are environmentally friendly. Lantz and Feng [29]
found a U-shaped relationship between CO2 emissions and technology in Canada
and cited Shafiks [40] argument to explain that this effect is from “enhancing more
environmentally friendly production techniques” to “encouraging CO2 emissions
enhancing production”. These previous studies have in common that they find a
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linear relationship between CO2 emissions, income, and other variables, but their
findings are not consistent.

2.3 FDI and Environmental Degradation

Some studies have attempted to investigate the ambiguous relationship between
income, pollution, and FDI by applying a nonlinear model [11, 12, 16]. Their models
suggest that the environmental pollution effect of FDI depends on socioeconomic
conditions, such as population density [24, 28], national income[16], and political
institutions [11, 12]. Among these socioeconomic conditions, population density is
often used as a socioeconomic condition. With respect to population density, He [24]
and Lan et al. [28] showed that pollution increases with high population density,
given the same income and pollution levels. Shandra et al. [41] used population den-
sity to capture urbanization and examine the effect of population density on CO2
emissions. In addition, regarding political institutions, Cole et al. [12] and Cole and
Fredriksson [11] suggested that the degree of local government corruptibility plays
an important role in the effect on environmental degradation of FDI because it affects
the success of industrial lobbying.

3 Empirical Methodology

3.1 Theoretical Framework

FDI inflows provide high-technology or low-technology transfer and knowhow that
is embodied in human capital. Technology can be expressed as a function of FDI.
Previous studies also use FDI as a proxy for technology [4, 27, 33]. Regarding the
relationship between technology, income and environmental pollution, Ehrlich and
Holdrens [15] develop an IPAT model to discuss it, and provide a following simple
theoretical framework.

Iit = f1(Pit, Ait, Tit) (1)

where I denotes environmental impact (e.g., environmental pollution); P denotes
population size; A denotes affluence; and T denotes technology. Equation (1) shows
these variables on the right-hand side as complex 8 interactions, which are therefore
simplified in the model. Dividing by P, Eq. (1) can be rewritten as follows.

yit = f2(Ait, Tit) (2)

where yit = Iit

Pit
and yit is per capita environmental pollution. The equation provides a

way to analyze per capita environmental pollution and its distribution across countries
and over time. Equation (2) is a modified version of the traditional EKC framework
in which income is the only explanatory variable. The difference between Eq. (2)
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and the traditional EKC framework is that Eq. (2) relates technology and income to
per capita environmental pollution. That is, per capita environmental pollution in a
country is the result of its affluence and the technology that it has implemented.

Because the IPAT framework is a useful instrument for illustrating environmental
impact, previous empirical studies have tried to quantify the contribution of popu-
lation, affluence, and technology to environmental deterioration. However, proxies
for per capita affluence and technology cannot be readily identified. Thus, per capita
real income is often used as a proxy for affluence. With respect to technology, that
which results from research and development is transferred by FDI.

3.2 Empirical Model

This paper attempts to identify the driving forces behind environmental pollution on
the basis of the IPAT framework and the EKC. Following previous studies in an IPAT
framework, this paper uses per-capita GDP to proxy per-capita affluence and FDI as
an indicator of technology to control for the spillover effects on the environment.

Based on the ecological-modernization perspective that the relationship
between economic development and environmental degradation takes an inverted
U-shape [22], here we add GDP per capita and its square to the environmental
degradation model to capture this nonmonotonic relationship. The hypothesis of
an inverted-U-shaped curve is proven when the coefficients of GDP per capita are
positive and that of its square are negative. The inverted-U-shaped curve reflects a
progression from relatively dirty technologies to cleaner technologies.

As described in the above discussion, in this paper the reduced-form relationship
between FDI, economic development, and environmental degradation is modeled as
follows,

POit = f(FDIit,GDPit, GDP2
it, xit) + uit (3)

where f (·) is a linear function. POit denotes environmental degradation. FDIit is the
ratio of net inflows of FDI in GDP; GDPit represents economic development. GDP2

it
is the square of GDP per capita. xit is a set of control variables including composition
changes (IVit), energy efficiency (ENGit) and government consumption (GOVit).

To capture the nonlinear effect of FDI inflows and economic development on
environmental pollution, there are two ways: regressions with interaction terms and
threshold regressions. Because the regressions with interaction term might cause
multicollinearity, this paper uses threshold regressions to avoid this problem. Given
a threshold variable, the relationship between FDI, economic development, and CO2
emissions per capita can be described as follows:

POit = μi +
(

FDIitGDPitGDP2
it

)

I(qit ≤ γ )A1

+
(

FDIitGDPitGDP2
it

)

I(qit > γ )A2 + B′Xit + εit (4)
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where the subscript i refers to countries and t refers to years. A parameter qit is
an exogenous threshold variable, which is used by population density to capture
urbanization-economies [43]. I(·) is an indicator function. Variable γ is the threshold
value to be estimated; εit is an error term;A1,A2, andB are parameters to be estimated.

4 Empirical Results

4.1 Results of Panel Unit-Root Test

The sample data comprise ten-year balanced panel data from 1996 to 2005 covering
84 countries (see Appendix, Table7). Data definitions and statistical descriptions
of these variables are shown in Tables1 and2, respectively. This paper examines
stationarity of the variables using Levin et al. [31] panel unit-root test. In applying
this test, the optimal lag structure was determined by Schwarzs Information Criteria.
Table3 shows that p-values can reject the unit-root hypothesis at the 5% significance
level. The finding indicates that all data are stationary over time.

Table 1 Data definitions

Symbol Variable Definition and source

CO2it CO2 emissions
development

CO2 emissions per capita. Source: World Bank, World
Development Indicators (WDI) 2007. (Unit: metric tons per
capita)

GDPit Economic GDP per capita expressed in constant PPP (purchasing
power parity), in constant 2005 US$. Source: World bank,
WDI 2007 (Unit: U.S. dollars)

FDIit Foreign direct
investment

Ratio of net inflows of foreign direct investment to GDP.
Source: World bank, WDI 2007. (Unit: %)

IVit Composition
changes

Ratio of value added of industry to GDP. WDI 2007.
(Unit: %) Source: World bank,

ENGit Energy efficiency GDP per unit of energy used based on 2005 US$. Source:
World bank, WDI 2007. (Unit: U.S. dollars constant PPP, in
constant per kg of oil equivalent)

qit Population density Population density. Source: World bank, WDI 2007.
(Unit: people per sq km)

GOVit Government
consumption

Ratio of general government expenditure to GDP.
Source: World bank, WDI 2007. (Unit: %)

EEit Economic freedom The index is from 0 (most free) to 100 (least free).
Source: Heritage foundation

CFit Corruption freedom The index is from 0 (highest corruption) to 100
(lowest corruption) Source: Heritage foundation

EDit Degree of universal
education

School enrollment, secondary. Source: World bank,
WDI 2007 (Unit: %)
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Table 2 Statistical description of all variables

CO2it GDPit IVit ENGit qit GOVit FDIit EEit CFit EDit

Mean 4.63 11,116.16 31.44 5.51 115.24 15.07 3.37 60.89 44.05 76.23

Median 3.51 7,764.88 29.74 5.07 73.31 14.38 2.43 60.88 40 81.16

Maximum 24.67 41,873.25 63.60 13.39 1176.32 28.39 45.14 82.33 100 130.95

Minimum 0.06 499.27 10.52 1.20 1.47 4.36 −15.10 30.02 4 5.76

Std. dev 4.40 10,253.11 9.46 2.48 149.05 5.07 4.24 8.95 22.81 27.50

Obs 840 840 840 840 840 840 840 840 840 840

Table 3 Result of LLC’s panel unit root test

Level First difference

CO2it 24.28(0.00)∗ 27.22(0.00)∗

GDPit 9.36(0.00)∗ 38.00(0.00)∗

IVit 12.42(0.00)∗ 34.11(0.00)∗

ENGit 12.08(0.00)∗ 38.46(0.00)∗

qit 32.07(0.00)∗ 32.07(0.00)∗

GOVit 21.19(0.00)∗ 28.60(0.00)∗

FDIit 21.83(0.00)∗ 15.31(0.00)∗

EEit 7.07(0.00)∗ 9.91(0.00)∗

CFit 13.19(0.00)∗ 13.57(0.00)∗

EDit 7.35(0.00)∗ 18.91(0.00)∗

*statistically significant at the 5% level. Numbers in parentheses are p-values

Table 4 Tests of threshold effects

Threshold variable: population density

Null hypotheses LR statistic (p-value) R2

No threshold effect 164.264∗ (0.05) 0.464

Single threshold effect 194.022∗∗ (0.00) 0.539

Double threshold effect 104.645 (0.13) 0.595

p-values are critical values of LR statistic, and are generated on the basis of 1000 iterations.
∗ and ∗∗ indicate statistically significant at the 5 and 1% level, respectively

4.2 Results of Threshold Tests

This paper applies the LR statistic using 1,000 bootstrap replications to test whether
the relationship between FDI, economic development, and CO2 emissions has more
threshold effects. The results are reported in Table4. In Table4, the p-values in
tests of no threshold and single threshold are 0.05 and 0.00, respectively. These
the p-values can be rejected at the 10 significance level. However, the p-values in
the double-threshold test cannot be rejected at the same level. Hence, there is a
double-threshold effect on the CO2 emissions model, which uses population density
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Table 5 Robust test

Threshold variables

Corruption Degree of universal Economic freedom

education

Null hypothesis LR statistic R2 LR statistic R2 LR statistic R2

(p-value) (p-value) (p-value)

No threshold effect 20.852 (0.54) 0.365 65.891 (0.19) 0.400 28.345 (0.47) 0.371

p-values are critical values of LR statistic, and are generated on the basis of 1000 iterations

as a threshold variable. All observations are split into three regimes (most densely
populated economies, least densely populated economies, and moderately densely
populated economies) depending on population density.

4.3 Results of Robust Test

In choosing a threshold variable for robustness, this paper uses one of the three
variables (i.e. economic freedom, freedom from corruption, and degree of universal
education) in turn as a threshold variable to threshold effect. The results are presented
in Table5. Comparing Table5with Table4, it shows that economic freedom, freedom
from corruption, and degree of universal education are insignificant at the 10%
significance level while population density is significant at the same level and has a
larger R2. This implies that population density is a significant and better threshold
variable than the others. In addition, consideration of threshold effect with population
density can improve the model’s fitness considerably.

4.4 Results of Estimated Effects on CO2 Emissions

The results for marginal effects of FDI and economic development on CO2 emissions
are reported in Table6. The three regimes are referred to as “most densely popu-
lated economies”, “moderately densely populated economies”, and “least densely
populated economies”, where the value relative to population density falls to
qit > 252.935, 10.330 < qit ≤ 252.935, and qit ≤ 10.330, respectively. In Table6,
GDP per capita has a positive and significant effect on CO2 emissions at the 5%
significance level, but the square of GDP per capita has a negative and significant
effect on the first and second regimes at the same level. This finding supports the
ecological modernization theory, which indicates that the relationship between eco-
nomic development and CO2 emissions takes an inverted-U shape. It also supports
the findings of Shandra et al. [41]. However, when population density is viewed as a
threshold variable in the pollutionmodel, our results show that the size of coefficients
for CO2 emissions of GDP per capita differ across regimes. A 1% increase in GDP
per capita increases CO2 emissions by 0.209% in least densely populated economies,
0.468% in moderately densely populated economies, and 0.808% in most densely
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Table 6 Estimation results of FDI and economic development on CO2 emissions

Independent variables Coefficients Standard deviation

IVit 0.019** 0.006

ENGit −0.614** 0.047

GOVit −0.011 0.010

FDIit(qit ≤ γ1) −0.068** 0.018

FDIit(γ1 ≤ qit ≤ γ2) −0.014** 0.005

FDIit(qit ≤ γ2) −0.005 0.019

GDPit(qit ≤ γ1) 0.209** 0.052

GDPit(γ1 ≤ qit ≤ γ2) 0.468** 0.043

GDPit(qit ≥ γ2) 0.808** 0.049

GDP2
it(qit ≤ γ1) 0.001 0.001

GDP2
it(γ1 < qit < γ2) −0.005** 0.001

GDP2
it(qit ≥ γ2) −0.012** 0.002

R2 0.539

LR statistic (p-value) 194.022 (0.000)

Bootstrap p-value is generated on the basis of 1,000 iterations. The * denotes statistically significant
at the 5% level

populated economies. Among these three regimes, our results show that the most
densely populated economies show the largest effect for GDP per capita on CO2
emissions, and the least densely populated economies show the least effect. This
finding shows that CO2 emissions increase along with increasing GDP. In addition,
it provides an economic interpretation that increasing population and GDP, which
both increase energy consumption, sharply raises CO2 emissions. Therefore, asym-
metric effects argue that the nonlinear relationship between GDP per capita and CO2
emissions depends on densely populated economies.

Regarding the effect of FDI on CO2 emissions, a 1% increase in FDI would
decrease CO2 emissions by 0.068% in least densely populated economies and by
0.014% in moderately densely populated economies. Although its effect in the most
densely populated economies is negative, it is insignificant at the 5% significance
level. This finding shows that CO2 emissions decline along with increasing FDI up to
a certain level of population density. Three factors explain this result. First, coun-
tries with the highest population density, where value-added by industry to GDP is
between 23.07 and 59.34%, tend to have pollution-intensive production. In addition,
Moomaws [34] research has also shown that industries located in the most densely
populated economies tend to have pollution-intensive production. Second, in mod-
erately densely populated economies, the ratio of value-added by industry to GDP is
between 4.77 and 36.4% over the sample period. These countries tend to have less
pollution-intensive production, comparing to themost densely populated economies.
It is reasonable to conclude that decreases in pollution-intensive production will be
the driving force behind decreases in future CO2 emissions. Third, in the sample
countries with the lowest population density, the value-added by services to GDP is
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between 30.82 and 70.62% over the sample period. This implies that these countries
have more higher production from the service sector and thus lower CO2 emissions.

In the same table, government consumption GOVit has an insignificant effect on
CO2 emissions at the 5% significance level. Composition changes IVit, which are
measured by industry’s share of GDP, have a significant and positive effect (0.019)
on CO2 emissions at the 5% significance level. This finding shows that increases in
industry raise CO2 emissions. However, energy efficiency ENGit, which is related to
energy consumption per GDP, has a significant and negative effect (0.614) on CO2
emissions at the 5% significance level. This finding implies that energy efficiency
reduces pollutionwhen countries replace low-quality with high-quality energy. Thus,
as illustrated in the above discussion on the effects of composition changes and energy
efficiency,CO2 emissions increase substantially alongwith increasing value-added in
industry, which depends significantly upon the use of fossil fuels when its life cycle is
in the early and growth stages. However, industry adopts advanced energy efficiency
and less energy intensity as its life cycle approachesmaturity,which later reducesCO2
emissions. Our findings are consistent with Boserup’s [5] and Shandra et al.’s [41]
argument that as industry approaches a mature stage it experiences improved energy
efficiency and less energy intensity and thus produces lower emissions of CO2.

5 Conclusion and Economic Implication

Although the effect of FDI on environmental pollution has been previously investi-
gated, there is little research on the threshold relationship between FDI, economic
development, and CO2 emissions. This study uses the following procedures to inves-
tigate the marginal effects of FDI and economic development on CO2 emissions
under regimes with varying levels of population density: (1) modeling environmen-
tal CO2 emissions, including FDI, GDP per capita, a threshold variable, and control
variables; (2) testing 17 threshold effects by using the level of population density
as a threshold variable; and (3) estimating the marginal pollution effects of FDI
and economic development. This paper checks robustness using different threshold
variables.

This study suggests several findings and economic implications. First, population
density is a better choice of threshold variable than the others (such as political
institutions variable, economic freedom, and degree of universal education). There is
a double-threshold effect of FDI and economic development on CO2 emissions using
population density as the threshold variable, which allows our sample to split into
three regimes identified as most, moderately, and least densely populated economies.
Second, our results in the most and least densely populated economies support the
EKC hypothesis and the ecological-modernization theory that an inverted-U-shaped
curve exists in the relationship between income and CO2 emissions. In addition, the
marginal effect of economic development on CO2 emissions is nonlinear effect.

Third, our findings show that CO2 emissions decline significantly along with
increasing FDI up to a certain level of population density. Based on Adam Smiths
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theory of comparative advantage, densely populated countries have a labor-pool
advantage. Therefore, these countries easily attract inflows of labor-intensive
industries (e.g., primary metals, printing, chemicals, and fabricated metals), which
increases pollution. In contrast, countries with low or moderate population density
may have the advantage of capital intensity or land intensity. Such countries focus
on enhancing energy efficiency and agricultural production.

Final, while increased composition changes increase CO2 emissions, energy effi-
ciency reduces pollution. It implies that increasing value-added of industry raises
CO2 emissions during the early and growth stages of the industry life cycle, but
decreases CO2 emissions when it approaches maturity.

Appendix

See Table7

Table 7 Country sample

Belgium, Denmark, Finland, France, Germany, Greece, Ireland, Italy, Netherlands,

Spain, Sweden, Iceland, Norway, Switzerland, Albania, Bulgaria, Czech Republic,

Hungary, Poland, Romania, Slovak Republic, Canada, Mexico, USA, Australia,

Japan, New Zealand, South Korea, Turkey, Botswana, Côte d′Ivoire, Egypt,
Kenya, Madagascar, Malawi, Namibia, Senegal, South Africa, Tanzania, Tunisia,

Uganda, China, Hong Kong, India, Indonesia, Israel, Jordan, Malaysia, Philippines,

Singapore, Sri Lanka, Thailand, Vietnam, Argentina, Brazil, Chile, Colombia,

Costa Rica, Dominican Republic, El Salvador, Nicaragua, Panama, Paraguay, Peru,

Trinidad and Tobago, Uruguay, Venezuela
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