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1

1
Introduction

About the book

1.1 The aim of this book is to provide an introductory treatment
of time series econometrics that builds upon the basic statistical
and regression techniques contained in my Analysing Economic Data: 
A Concise Introduction.1 It is written from the perspective that the 
econometric analysis of economic and financial time series is of key 
importance to both students and practitioners of economics and 
should therefore be a core component of applied economics and
of economic policy making. What I wrote in the introduction of 
Analysing Economic Data thus bears repeating in the present context:
this book contains material that I think any serious student of 
economics and finance should be acquainted with if they are seeking 
to gain an understanding of a real functioning economy rather than 
having just a working knowledge of a set of academically constructed
models of some abstract aspects of an artificial economy.

1.2 After this introductory chapter the basic concepts of stochastic
processes, stationarity and autocorrelation are introduced in Chapter 
2 and the class of autoregressive-moving average (ARMA) models are
developed. How these models may be fitted to an observed time
series is illustrated by way of a sequence of examples.

Many economic time series, however, are not stationary, but may 
often be transformed to stationarity by the simple operation of differ-
encing. Chapter 3 examines some informal methods of dealing with
non-stationary data and consequently introduces the key concept 
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2  Time Series Econometrics

of an integrated process, of which the random walk is a special case,
so leading to the class of autoregressive-integrated-moving average 
(ARIMA) models. As is demonstrated by way of examples, although the
informal methods proposed in Chapter 3 often work well in practice, it
is important that formal means of testing whether a series is integrated
or not and, if it is, of testing what order of integration it might be, are
available. Chapter 4 thus develops the theory and practice of testing 
for one or more unit roots, the presence of which is the manifestation
of ‘integratedness’ of a time series. An alternative to differencing as a
means of inducing stationarity is to detrend the series using a polyno-
mial, typically a linear, function of time. How to distinguish between 
these two methods of inducing stationarity by way of generalised unit 
root tests and the differing implications of the two methods for the 
way the series reacts to shocks are also discussed in this chapter.

Up to this point we have assumed that the errors, or innovations, in 
the various models have constant variance. For many economic time 
series, particularly financial ones observed at relatively high frequen-
cies, this assumption is untenable, for it is well known that financial
markets go through periods of excessive turbulence followed by periods 
of calm, a phenomenon that goes under the general term ‘volatility’. 
The manifestation of market volatility is that error variances change 
over time, being dependent upon past behaviour. Chapter 5 therefore
introduces the class of autoregressive conditionally heteroskedastic 
(ARCH) processes. These are designed to incorporate volatility into
models and, indeed, to provide estimates of such volatility.

An important aspect of time series modelling is to forecast future
observations of the series being analysed. Chapter 6 develops a 
theory of forecasting for all the models introduced so far, empha-
sising how the properties of the forecasts depend in important ways
on the model used to fit the data.

Only individual time series have been analysed so far, and hence
the models have all been univariate in nature. Chapter 7 extends
the analysis to consider a set of stationary time series, brought
together as a vector and modelled as an autoregressive process, thus
introducing the vector autoregression (VAR). With a vector of time
series, the multivariate linkages between the individual series need
to be investigated, so leading to the concept of Granger-causality,
impulse response analysis and innovation accounting, all of which 
are discussed in this chapter.
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Introduction  3

Of course, assuming that the vector of time series is stationary is
far too restrictive, but allowing the individual series to be integrated
raises some interesting modelling issues for, as we demonstrate, it is
possible for a linear combination of two or more integrated time series 
to be stationary, a concept known as cointegration. Cointegration is 
related to the idea of a dynamic equilibrium existing between two 
or more variables and, if it exists, it enables multivariate models to 
be expressed not only in terms of the usual differences of the series 
but also by the extent to which the series lie away from equilibrium: 
incorporating this ‘equilibrium error’ leads to the class of vector error 
correction models (VECMs).

Chapter 8 thus focuses on the consequences for conventional
regression analysis when the variables in a regression are non-sta-
tionary, thus introducing the idea of spurious regression, before 
considering the implications of the variables in the regression being 
cointegrated. Tests for cointegration and estimation under cointegra-
tion are then discussed. Chapter 9 explicitly considers VECMs and
how to test for and model cointegration within a VAR framework.

The final chapter, Chapter 10, explicitly recognises that this 
is only an introductory text on time series econometrics and so 
briefly discusses several extensions that more advanced researchers 
in the modelling of economic and financial time series would need
to become familiar with. To keep within the remit of a ‘concise
introduction’, however, no mention is made of the increasingly
important subject of panel data econometrics, which combines
time series with cross-sectional data, for which several textbooks 
are available.2

Mathematical level, focus and empirical exercises

1.3 As well as knowledge of basic statistics and econometrics, at
the level provided by Analysing Economic Data, essentially all that 
is required to understand the material up to Chapter 7 is a good
grounding in basic algebra, with some knowledge of solving equa-
tions and linear algebra plus some concepts of difference equations.
Chapters 7 to 9, however, also require a basic knowledge of matrix
algebra. Some technical material is placed in the notes that accom-
pany each chapter, where key references, historical perspective and 
related discussion may also be found.3
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4  Time Series Econometrics

Several examples using actual data, typically from the UK, are 
developed throughout the book. The content is thus suitable for 
final year undergraduate and postgraduate students of economics
and finance wishing to undertake an initial foray into handling time 
series data.

1.4 Empirical exercises accompany most chapters. These are based 
on the software package Econometric Views (or EViews), now the 
industrial standard for econometric time series software, and illus-
trate how all the examples used in the book may be calculated and
suggest how they might be extended. The data are available in an 
EViews workfile available for download.4 It is assumed that readers
already have a basic working knowledge of EViews or are prepared to
obtain this knowledge via the extensive online help facility accom-
panying the package.5

1.5 A brief word on notation: as can be seen, chapter sections are 
denoted x.y, whereyy x is the chapter and y is the section. This enables
the latter to be cross-referenced as §x.y. Matrices and vectors are also yy
written in bold font, upper case for matrices, lower case for vectors, 
the latter being regarded as column vectors unless otherwise stated: 
thus A is a matrix and a is a vector.

Notes

1. Terence C. Mills, Analysing Economic Data: A Concise Introduction (Palgrave 
Macmillan, 2014).

2. A very popular text is Badi H. Baltagi, Econometric Analysis of Panel Data, 
5th edition (Wiley, 2013).

3. A convenient presentation of the matrix algebra required is Mills, Matrix 
Representation of Regression Models: a Primer (Lulu Press, 2013), chapter 2. 
Key references in time series econometrics are gathered together in Mills, 
Time Series Econometrics (Routledge, 2015).

4. At http://www.palgrave.com//resources/Product-Page-Downloads/M/Mills
%20-%20Time%20Series%20Econometrics/Resources.zip

5. EViews 8 is used throughout: see EViews 8 (Quantitative Micro Software,
LLC, Irving CA: www.eviews.com).
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5

2
Modelling Stationary Time Series:
the ARMA Approach

Stochastic processes, ergodicity and stationarity

2.1 When analysing a time series using formal statistical methods, 
it is often useful to regard the observations (x(( 1,x2,…,xT) on the series, TT

which we shall denote generically as xt, as a particular tt realisation of 
a stochastic process.1 In general, a stochastic process can be described
by a T-dimensional probability distribution, so that the relationship TT
between a realisation and a stochastic process is analogous to that 
between the sample and population in classical statistics. Specifying
the complete form of the probability distribution, however, will
typically be too ambitious a task and we usually content ourselves
with concentrating attention on the first and second moments: the
T meansT

( ) ( ) ( )1 2) ( , ,) �2( TE x E x E x(( ) ( ) ((1 2) ( , ,) �2((

T variancesT

( ) ( ) ( )1 2) ( , ,) �2( TV x V x V x(( ) ( ) ((1 2) ( , ,) �2((

and T(T – 1)/2 covariances/

( )i jCov x x i j( , ),,i j,,

If we could assume joint normality of the distribution, this set of 
expectations would then completely characterise the properties of 
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6  Time Series Econometrics

the stochastic process. Such an assumption, however, is unlikely to 
be appropriate for every economic and financial series we might 
wish to analyse. If normality cannot be assumed, but the process is
taken to be linear, in the sense that the current value of the process isrr
generated by a linear combination of previous values of the process
itself and current and past values of any other related processes, 
then again this set of expectations would capture its major proper-
ties. In either case, however, it will be impossible to infer all the 
values of the first and second moments from just one realisation of 
the process, since there are only T observations but T ( )+ 1 2)T T T((+ (
unknown parameters. Hence further simplifying assumptions must
be made to reduce the number of unknown parameters to more 
manageable proportions.

2.2 We should emphasise that the procedure of using a single 
realisation to infer the unknown parameters of a joint probability
distribution is only valid if the process is ergodic, which roughly 
means that the sample moments for finite stretches of the realisation
approach their population counterparts as the length of the realisa-
tion becomes infinite. Since it is very difficult to test for ergodicity
using just (part of) a single realisation, it will be assumed from now
on that all time series have this property.2

2.3 One important simplifying assumption is that of stationarity, yy
which requires the process to be in a particular state of ‘statistical
equilibrium’. A stochastic process is said to be strictly stationary if 
its properties are unaffected by a change of time origin. In other
words, the joint probability distribution at any set of times y 1 2 , ,�2 mt t t1 2 , ,�2

must be the same as the joint probability distribution at times
t1 + tt k,t2 + t k,...,tmtt  +k, where k is an arbitrary shift in time. For m = 1, this
implies that the marginal probability distributions at t1tt ,t2t ,... do not
depend on time, which in turn implies that, as long as 2 ,tE x < ∞ both 
the mean and variance of xt must be constant, so thatt

( ) ( ) ( ) ( )1 2) ( T ) (E x E x E x(( ) ( ) E(( ) (1 2) (( T ) (( =)E x E xE x( ) E( ) (2( T ) ( μ

and

( ) ( ) ( ) ( ) 2
1 2) ( T t x) ( )V x) ((V x V x V(( ) ( ) x V( ) (1 2) (( T ) (( =))V x V xV x( ) V( ) (2( T ) ( σ
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Modelling Stationary Time Series 7

If m = 2, strict stationarity implies that all bivariate distributions do
not depend on t, so that all covariances are functions only of thet
time-shift (or lag) k, hence implying that, for all k,

( ) ( ) ( ) ( )1 11 k k T k T) ( ) ( ) (Cov x x Cov x x Cov x x Cov(( ) ( ) ( ) (1 11 k k T k TT k T) ) ( ) (2 22) ( ,,,) (( ) ((2 22) (( k T k T) ( ) (2 2) ( ,,) ( ) (2 2) ( ,,,) (( ) ((2 22) ((Cov x x Cov x xCov x x Cov x x( ) ( )k T k Tk T kk T k T( ) ( )2 22(

Consequently, we may define the autocovariances and autocorrela-
tions as

( ) ( )( )( )(k ( ) ( )()(Cov ( )) ( )()(γ k ( ) ( )()(Cov ( )) ( )()(( )( ) ( )(( )() ( )()(= Cov ( )) ( )()(( )) ( )()(

and

( )
( )( ) ( )

1)) 2 0

k
k

) () (
Cov ((

(( ( ) (( ) () ((
= =

( ) γ
ρ

γ

respectively, both of which depend only on the lag k. Since these 
conditions apply just to the first- and second-order moments of the 
process, this is known as second-order or weak stationarity (and 
sometimes covariance stationarity or stationarity in the wide 
sense).

While strict stationarity (with finite second moments) thus
implies weak stationarity, the converse does not hold, for it 
is possible for a process to be weakly stationary but not strictlyt
stationary. This would be the case if higher moments, such as 

3( ),3
tE(  were functions of time and an important example of this 

is considered in Chapter 5. If, however, joint normality could be
assumed, so that the distribution was entirely characterised by the 
first two moments, weak stationarity would indeed imply strict
stationarity.

2.4 The autocorrelations considered as a function of k are referred 
to as the autocorrelation function (ACF). Note that since

( ) ( ) ( )k t t k t k t t t k k( ) ( ) ( )) ( ) (Cov ( ) ( ) () ( ) () ( ) ( )) ( ) (γ γ)k t t k t k t t t k( ) ( ) ( )) ( ) (Cov ( ) ( ) () ( ) (( ) ( ) () ( ) (( ) ( ) () ( ) () ( ) () ( ) () ( ) () ( ) ( )) ( ) () ( ) () () ( ) () () ( ) () () ( ) (( ) (= = = =)k k kk k k )Cov ( ) ( ) () ( ) (( )( ) ( ) () () ( ) (( )

it follows that ρkρρ   = ρ–ρρ k and so only the positive half of the ACF is usually 
given. The ACF plays a major role in modelling dependencies among
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8  Time Series Econometrics

observations since it characterises, along with the process mean 
( )E ((=μ and variance ( )2

0 ,x (0 V (((=0σ γ2
x =  the stationary stochastic process

describing the evolution of xt. It therefore indicates, by measuring the
extent to which one value of the process is correlated with previous
values, the length and strength of the ‘memory’ of the process.

Wold’s decomposition and autocorrelation

2.5 A fundamental theorem in time series analysis, known as
Wold’s decomposition, states that every weakly stationary, purely
non-deterministic, stochastic process (xt –t μ) can be written as a linearμμ
combination (or linear filter) of a sequence of uncorrelated randomrr
variables.3 By purely non-deterministic we mean that any linearly 
deterministic components have been subtracted from (xt – t μ). Such aμμ
component is one that can be perfectly predicted from past values 
of itself and examples commonly found are a (constant) mean, as
is implied by writing the process as (xt –t μ), periodic sequences (forμμ
example, sine and cosine functions), and polynomial or exponential
sequences in t.

This linear filter representation is given by

0
t t t t j t j1 1 2 21 2

j

x a a a at t t t j

∞

j t
=

+ + +a a aa a a ∑t t tt t t1 1 2 21 2t t tt 1 1 2 21 21 21 2 21 2a a aa a aa at t tt tt t tt t1 1 2 21 21 2 0 1=ψ (2.1)

The at, t  =  0, t ±1, ±2,… are a sequence of uncorrelated random vari-
ables, often known as innovations, drawn from a fixed distribution
with

( ) 0E (( = ( ) ( ) 2)) (V a E( )( () (( = < ∞) 2)E(((( σ

and

( ) ( ) 0,) ( )=)) () () () () () () (Cov (( ) () ((() () () (((  for all ≠ 0k

We will refer to such a sequence as a white noise process, occa-
sionally denoting the innovations as ( )2~ 0,((ta ~t σ .4 The coeffi-
cients (possibly infinite in number) in the linear filter are known as 
ψ-ψψ weights.
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Modelling Stationary Time Series 9

2.6 We can easily show that the model (2.1) leads to autocorrelation
in xt. From this equation it follows that

( )E (( = μ

and

2
0 ( ) ( )t tV( ) () (γ μ0 ( ) (t t) () (V( ) () () ((= V( ) () (

( )2))E ((E (= E ((
( ) ( ) ( )) ( ) () ( ) () ( ) () ( ) (( ) (( )) (E(( ) ( ) () ( )( )) (((= + + +)E( ) ( ) (( ) ( ) () ( ) () ( )( ) (( ) (() ((( )(( )(( )( )(( )( )((( )( )((( )(( �
2 2 2 2 2

1 2= + + +2 2 2 2 22 2σ ψ σ ψ σ1 2+ ++ +2 2 2 22 22 2 2
1 2 �

2 2

0 jj

∞

=
= ∑ ψ

0j=
σ 2∑

by using the result that ( ) 0E(( =  for .i j≠  Now

( )( )
( )( )
( )2

2

2

0

1((

k ( )()(
)()()()()(

k k k1

j j kj

E ( )()(
E ( )((

+k1 2

∞

=

= E ( )(( )()(
= + + +(2

21( k

= ∑

γ k ( )()(E ( )()(( )(( )(= E ( )()(( )()(
)()()()()()()()()()()()()()()()()()()()()()()()()(

σ ψ( k 1 1 22+ ++ +(2 1(( k kkk1 1 21 21 22

ψ ψ
0 jj=

σ 2∑

)()()()(
�

and this implies

0

2

0

j j kj
k

jj

∞

=
∞

=

=
∑

∑
ψ ψj

ρ
ψ

If the number of ψ-weights in (2.1) is infinite, we have to assume thatψψ

the weights are absolutely summable, so that 
0

,jj

∞

=
< ∞∑ ψ  in which 

case the linear filter representation is said to converge. This condition 
can be shown to be equivalent to assuming that xt is stationary, andt

guarantees that all moments exist and are independent of time, in
particular that the variance of xt, γ�γγ , is finite.
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10  Time Series Econometrics

First-order autoregressive processes

2.7 Although equation (2.1) may appear complicated, many realistic
models result from particular choices of the ψ-weights. Takingψψ μ = 0μ
without loss of generality, choosing j

jψ φj =  allows (2.1) to be written

( )
2

2t t t t1

t (
t t1

xt t

at

x at 1

= + + +2
2a a aa 2

t

= +at

+x 1t 1=

φ φt 1t 11 ++aa 1t 1

φ(((((((((
φ

�

or

t t t1x x a1t tt 1x 1xφxxxx (2.2)

This is known as a first-order autoregressive process, often given the
acronym AR(1).5

2.8 The backshift (or lag)gg operator B r is now introduced for nota-
tional convenience. This shifts time one step back, so that

−1t tBx x≡t ≡

and, in general, ,m
t t mB x xm
t  noting that .mB μ μ≡ The lag operator 

allows (possibly infinite) distributed lags to be written in a very 
concise way. For example, by using this notation the AR(1) process
can be written as

( )(( t tx a) tx)

so that

( ) ( )1

2
2

( ) (1
t t t( ) ( )

t t t1

x ( a)( )( (1
t t( )

at

−))((((
+2

2a2= +at �
t) (t) () ((1) (() ((

t 1t 1φ φ1 ++aa 1t 1   
(2.3)

This linear filter representation will converge as long as 1,<φ  which
is therefore the stationarity condition.

2.9 We can now deduce the ACF of an AR(1) process. Multiplying 
both sides of (2.2) by xt–k, k > 0, and taking expectations yields

( ).k k (1 E (((((1 =k 1γ φγk −
 

(2.4)
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From (2.3), 
0

.i
t t k t t k i0i

a ai
tta xt t k

∞
t t kk0k =∑∑ φ  As at is white noise, any term int

atat–k–i has zero expectation if k + i >  0. Thus (2.4) simplifies to

1 for all > 0k k −γ φγk =

and, consequently, γkγγ = φkγ0γγ . An AR(1) process therefore has an ACF
given by .k

kρ φk=  Thus if φ  >  0 the ACF decays exponentially to zero,
while if φ <  0 the ACF decays in an oscillatory pattern, both decays 
being slow if φ is close to the non-stationary boundaries of +1 and –1.φ

2.10 The ACFs for two AR(1) processes with (a) φ  =  0.5 and
(b)  φ =  –0.5 are shown in Figure 2.1, along with generated data from 
the two processes with at assumed to be normally and independ-t

ently distributed with 2 25,=σ  denoted at  ~ t NID(0,25), and with 
starting value x0  =  0 (essentially at is normally distributed white t

noise, since under normality independence implies uncorrelated-
ness). With φ  >  0 adjacent values of xt are positively correlated and t

the generated series has a tendency to be smooth, exhibiting runs
of observations having the same sign. With φ  <  0, however, adjacent 
values have negative correlation and the generated series displays
violent, rapid oscillations.

(a) φ = 0.5

–1.0

–0.5

0.0

0.5

1.0

1 2 3 4 5 6 7 8 9 10 11 12

k

ρk

Figure 2.1 ACFs and simulations of AR(1) processes
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(c) φ = 0.5, x0xx = 0
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(b) φ = −0.5
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Figure 2.1 Continued
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First-order moving average processes

2.11 Now consider the model obtained by choosing ψ1ψψ  =  –θ and θ
ψjψψ = 0, j  ≥  2, in (2.1):

1t t tx a at tt −aa θ (2.5)

or

( )1(t t( )x B a( )1((t ( )1((1( BB

This is known as the first-order moving average [MA(1)] process and
it follows immediately that6

( )2 2 2 2( )0 0( ) 0 for   > 12 2( ) kγ σ θ γ σ θ γ2(0 0( ) 2 2( )( 0( )= (2((( ) 2 22( ) 0( )(      

(d) φ = −0.5, x0 xx = 0

–20

–10

0

10

20

10 20 30 40 50 60 70 80 90 100

xtxx

t

Figure 2.1 Continued
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and hence its ACF is described by

1 21
= −

+
θ

ρ
θ  

0k =ρ for k  >  1

Thus, although observations one period apart are correlated, obser-
vations more than one period apart are not, so that the memory of 
the process is just one period: this ‘jump’ to zero autocorrelation at
k  =  2 may be contrasted with the smooth, exponential decay of the 
ACF of an AR(1) process.

2.12 The expression for ρ1 can be written as the quadratic equa-
tion 2

1 1 0.=1ρ θ θ ρ2
1 11 + ++ 11   Since θ must be real, it follows that θ 1 0.5.<ρ11

7

However, both θ andθ 1 θ will satisfy this equation and thus two MA(1)
processes can always be found that correspond to the same ACF.

Since any moving average model consists of a finite number of 
ψ-weights, all moving average models are stationary. In order to ψψ
obtain a converging autoregressive representation, however, the
restriction 1<θ  must be imposed. This restriction is known as the
invertibility condition and implies that the process can be written in
terms of an infinite autoregressive representation

t t t t1 1 2 21 2 axt t t2 21 21 2+ + +x xx x2 2t t2 21 11 1xx1 11 1

where the π-weights converge:
1

.jj

∞

=
< ∞∑ π  In fact, the MA(1) model

can be written as

( ) 11(( t tB x a) 1
t

−))B x)− θBθBBBB

and expanding ( ) 11(( B −))− θBB  yields

2 2(1 ) .2 2
t t))2 2 )))2 2

The weights πjπ = θ j will converge if 1:<θ  in other words, if the model
is invertible. This implies the reasonable assumption that the effect 
of past observations decreases with age.

2.13 Figure 2.2 presents plots of generated data from two MA(1)
processes with (a) θ = 0.8 and (b) θ = –0.8, in each case again with
at  ~  t NID(0,25). On comparison of these plots with those of the AR(1)
processes in Figure 2.1, it is seen that realisations from the two types 
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(a) θ = 0.8
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(b) θ = −0.8
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Figure 2.2 Simulations of MA(1) processes

of processes are often quite similar (the ρ1 values are 0.488 and 0.5, 
respectively, for example) suggesting that it may, on occasions, be
difficult to distinguish between the two.
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General AR and MA processes

2.14 Extensions to the AR(1) and MA(1) models are immediate. The 
general autoregressive model of order p [AR(p( )] can be written as

t t t p t p t1 1 2 21 2x x x x at t t p t pt pp tx x xx x xφ φ φt t pt t1 1 2 21 2x xx x1 1 2 21 22t t pt t p1 1 2 21 21 22 p1 2 21 2x xxx x1 1 2 21 21 1 2

or

2
1 2(1 ) ( )2 p

p t t t( )x a) ( )) (2
tt( )x( )φ φ φ1 21 2 p t)))))2 ))))))2

11 ))))2

The linear filter representation 1( ) ( )t t t( )x B a B a1( ) ( )) (t t ( )tt( )1( ))( ))( ))  can be obtained
by equating coefficients in ( ) ( ) 1.) () (φ ψ( )) 8

2.15 The stationarity conditions required for convergence of the
ψ-weights are that the roots of the characteristic equationψψ

( ) ( )( ) ( )1 2)(1 1 1 0( )( ) ( )B g B g B(( ) ( ) (1 2)(1 11(( ) ((1 2)((1 11(( )(( ) (( )(1 111( )( ) (1 2)(φ

are such that < 1ig  for .i p1,2, ,  The behaviour of the ACF is
determined by the difference equation

( ) 0kB( =φ ρ( )B(( > 0k (2.6)

which has the solution

k k k
k p p1 1 2 2A g A g A gk kk

pp1 1 2 21 2= A g A gA gk kk
1 1 2 21 2ρ

Since 1,ig <  the ACF is thus described by a mixture of damped expo-
nentials (for real roots) and damped sine waves (for complex roots).
As an example, consider the AR(2) process

( )(( t tx a) tx)

with characteristic equation

( ) ( )( )1 2)(1 1 0( )( )B g B g B(( ) ( 1 2)(1 11(( )((1 2)(( )(1 111( )(1 2)(φ
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(a) φ1 = 0.5, φ2 = 0.3

–1.0

–0.5

0.0

0.5

1.0

1 2 3 4 5 6 7 8 9 10 11 12

k

ρk

The roots g1 and g2gg  are given by

1
1 2 2

1
2g1

⎛ ⎞( )1)) 2(1

⎝ ⎠( )1 ( ⎞⎞)(((1 (1 (((11 ((((

and can both be real, or they can be a pair of complex numbers.
For stationarity, it is required that the roots be such that <1 1g  and

<2 1g  and it can be shown that these conditions imply the following 
set of restrictions on φ1 and φ2:9

1 2 1<2φ φ1 2+ 2 1 2 1− + <2φ φ1 2++1 2 21 1− <1 2φ222

The roots will be complex if 2
1 24 0,22φ2
1 24 2+ 4 2  although a necessary condi-

tion for complex roots is simply that φ2 <  0.

2.16 The behaviour of the ACF of an AR(2) process for four combi-
nations of (φ1, φ2) is shown in Figure 2.3. If g1 and g2gg  are real (cases 
(a) and (c)), the ACF is a mixture of two damped exponentials.
Depending on their sign, the autocorrelations can also damp out in
an oscillatory manner. If the roots are complex (cases (b) and (d)),
the ACF follows a damped sine wave. Figure 2.4 shows plots of gener-
ated time series from these four AR(2) processes, in each case with
at  ~  t NID(0,25). Depending on the signs of the real roots, the series 
may be either smooth or jagged, while complex roots tend to induce 
‘pseudo-periodic’ behaviour.

Figure 2.3 ACFs of various AR(2) processes

9781137525321_02_cha02.indd   17 6/15/2015   5:18:02 PM



18  Time Series Econometrics

(c) φ1 = −0.5, φ2 = 0.3
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(b) φ1 = 1, φ2 = −0.5
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Figure 2.3 Continued
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(d) φ1 = −0.5, φ2 = −0.3

–1.0

–0.5

0.0

0.5

1.0

1 2 3 4 5 6 7 8 9 10 11 12

k

ρk

Figure 2.3 Continued
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Figure 2.4 Simulations of various AR(2) processes
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(c) φ1 = −0.5, φ2 = 0.3, x0xx = x1xx = 0
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Figure 2.4 Continued
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(b) φ1 = 1, φ2 = −0.5, x0xx = x1xx = 0
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2.17 Since all AR processes have ACFs that ‘damp out’, it is some-
times difficult to distinguish between processes of different orders.
To aid with such discrimination, we may use the partial autocor-
relation function (PACF). In general, the correlation between two 
random variables is often due to both variables being correlated with 
a third. In the present context, a large portion of the correlation
between xt andt xt–k may be due to the correlation this pair have with
the intervening lags xt–1, xt–2,…, xt–k+1. To adjust for this correlation, the
partial autocorrelations may be calculated.

2.18 The kth partial autocorrelation is the coefficient φkkφφ  in the 
AR(k) process

xt  =  t φkφφ 1xt–1tt   +φkφφ 2xt–2 tt +  …  + φkkφφ xt–tt k  +  at (2.7)

and measures the additional correlation between xt and t xt–k after 
adjustments have been made for the intervening lags.

–20
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10 20 30 40 50 60 70 80 90 100

(d) φ1 = −0.5, φ2 = −0.3, x0xx = x1xx = 0

t

xtxx

Figure 2.4 Continued
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In general, φkkφφ  can be obtained from the Yule-Walker equationsr
that correspond to (2.7). These are given by the set of equations (2.6) 
with p  =  k and φi = φii, and solving for the last coefficient φkkφφ using 
Cramer’s Rule leads to

1 2 1

1 3 2

1 2 1

1 3 2

2 1

1

1

1

1

1

k

k k k1 2 1
kk

k k22 k

33 k

k k1

=

ρ ρ ρ1 2 11 2k

ρ ρ ρ1 31 31 k

ρ ρ ρ ρk kk1 2 121φ
ρ ρ ρ1 k 22

ρ ρ ρ11 1 k 33

ρ ρ ρ2k k11

� � � � �

� � � � �

Thus for k  =  1, φ11  = ρ1  = φ, while forφφ k  =  2,

1

2
1 2 2 1

22 2
1 1

1

1

1 1
1

= =
−

ρ
ρ ρ1 ρ ρ2 1−

φ22 ρ1 ρ
ρ1

It then follows from the definition of φkkφφ  that the PACFs of AR proc-
esses follow a particular pattern:

AR(1) 11 1φ ρ φ11 1= =1          0 for   > 1kk =φ

AR(2) 11 1φ ρ11 =
2

2 1
22 2

11
=

−
ρ ρ2 1−

φ
ρ  0 for   > 2kk =φ   

AR(p( ) 11 220, 0, , 0ppφ φ φ11 220, 0, ,0, ,22 p≠ 0, 0, ,0, ,22 0 for    >kk k p >=φ

Hence the partial autocorrelations for lags larger than the order of 
the process are zero. Consequently an AR(p( ) process is described by:

(i) an ACF that is infinite in extent and is a combination of damped 
exponentials and damped sine waves, and

(ii) a PACF that is zero for lags larger than p.
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2.19 The general moving average of order q [MA(q(( )] can be written asqq

t t t q t q1 1 aqx at t q t1aa tt1 1θ θaa1 1tt1 1a1 1

or

( ) ( )(t t t( ) ( )x B B a B a( ) ( )(( (( )t ((((( t)a)) t))a))

The ACF can be shown to be

2 2
11

k k q k q1

k
q

q1−
=

+
θ θ θ θ θq kq kθ k 1 q1+ + ++k kk1 11ρk θ θ2

1 + +2
1

k q= 1,2, ,�

0k =ρ k q>

The ACF of an MA(q) process therefore cuts off after lag q: the memory
of the process extends q periods, observations more than q periods 
apart being uncorrelated.

2.20 The weights in the AR(∞) representation ( ) t tB x a(( ) tπ  are given 
by π(B(( )  = θ –1(B(( ) and can be obtained by equating coefficients of BjBB  in 
π(B(( )θ(B(( )  =  1. For invertibility, the roots of

1(1 ) (1 ) (1 ) 01
q

q q1 ) (1 (1(1) (1 ) (1) (1 ) (1) (1 ) (1 )) (1 ) (1 )) (1 ) (1) (1 ) (1(1 ) (111 )1 )1 )1) (1 )) (1(1 1

must satisfy < 1ih  for 1,2, , .i q=

2.21 Figure 2.5 presents generated series from two MA(2) processes,
again using at  ~ t NID(0,25). The series tend to be fairly jagged, similar 
to AR(2) processes with real roots of opposite signs, and, of course, 
such MA processes are unable to capture periodic-type behaviour.

2.22 The PACF of an MA(q) process can be shown to be infinite
in extent, so that it tails off. Explicit expressions for the PACFs of 
MA processes are complicated but, in general, are dominated by 
combinations of exponential decays (for the real roots in θ(B(( )) and/
or damped sine waves (for the complex roots). Their patterns are thus
very similar to the ACFs of AR processes.
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Figure 2.5 Simulations of MA(2) processes
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Indeed, an important duality between AR and MA processes exists:
while the ACF of an AR(p( ) process is infinite in extent, the PACF cuts
off after lag p. The ACF of an MA(q) process, on the other hand, cuts 
off after lag q, while the PACF is infinite in extent.

Autoregressive-moving average models

2.23 We may also entertain combinations of autoregressive and 
moving average models. For example, consider the natural combina-
tion of the AR(1) and MA(1) models, known as the first-order autore-
gressive-moving average, or ARMA(1,1), process

1t t t t1 axt t 1φ θx a ax a a1t 11x aax 1 (2.8)

or

( ) ( )1( )( (t t( )B a)1) ( )) t (x) BB1) ((t (1(1) (

The ψ-weights in the MA(∞) representation are given byψψ

( ) ( )
( )
1((
((

B
B(( −

=
θBB

ψ

so that

( ) 1

1

i
t t t t t i( )

i

x B a( ) a1i
t t t t

∞⎛ ⎞∞

⎝ ⎠i 00
⎜ ⎟⎜ ⎟ ∑( ) ( )t t( ) ( )⎟⎟ ∑( ) ( )1(( ) ( )1(⎞i ii i

t( )B( ) t( )B a( ) t(( ) t t( ) ( ))( ) ( )1(( t tt( ) ( )1(i i B a aB a aB( ) ((1(( ) (1( t tt t( ) ((1(i iBBi i
(2.9)

Likewise, the π-weights in the AR(∞) representation are given by

( ) ( )
( )
((
1((B((

B
=

−
π

θBB

so that

( ) ( )1( t t(t )B x a(B( ) )1( tt)⎛ ⎞i iBBi i
∞

B x)
⎝ ⎠0i=
⎜ ⎟⎜ ⎟ ((1((1(((1((Bi i (1(Bi iBBπ( ) tB x(( ) t BB
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or

( ) 1

1

i
t t i t( )

i

x x at t it i(
∞

−

=

+( 1i xx( 1i
t it i( ∑∑θφ θ( )( )( )( )(( )(( )∑

The ARMA(1,1) process thus leads to both moving average and
autoregressive representations having an infinite number of weights.
The ψ-weights converge forψψ 1<φ  (the stationarity condition) and
the π-weights converge for 1<θ  (the invertibility condition). The
stationarity condition for the ARMA(1,1) model is thus the same as 
that for an AR(1) model.

2.24 From equation (2.9) it is clear that any product xt–kat–j has zero 
expectation if k > j. Thus multiplying both sides of (2.8) by xt–k and
taking expectations yields

1 for > 1k k −γ φγk =

whilst for k  =  0 and k  =  1 we obtain, respectively,

( )2 2( )0 1γ φγ σ θ φ θ σ(( ))2 ( )0 1− = − −= − ((1

and

2
1 0γ φγ θσ1 0− = −0

Eliminating σ 2 from these two equations allows the ACF of the
ARMA(1,1) process to be given, after some algebraic manipulation, 
by

( )( )
1 2

((
1 22= )()()()(ρ

θ φθ222

and

1 for > 1k k −ρ φρkk =

The ACF of an ARMA(1,1) process is therefore similar to that of an
AR(1) process, in that the autocorrelations decay exponentially at
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a rate φ. Unlike the AR(1), however, this decay starts from ρ1 rather 
than from ρ0  =  1. Moreover, ρ1 ≠  1 and, since for typical economic 
and financial series both φ and θ will be positive withθ φ  > φ θ, θ ρ1 can be
much less than φ if φ φ–θ is small.

2.25 More general ARMA models are obtained by combining AR(p( )
and MA(q) processes:

t t p t p t t q t q1 1 1 11 1x x x a a at t p t p t t qq tφ φ θ θt p t p t tt p t p t t1 1 1 11 1x x a ax x a a1 1 1 11 11 1t p t p t tt p t p t t1 1 1 11 11 11 1 111 1x x a ax a ax x a1 1 1 11 11 1 1 111 111

or

1(1 ) (1 )p q) (1) (1p t q1) (1) (1) (1 aφ11 11) (1) (1) (1 1) (1(1 111 ) (1) (1) (1) (1 1) (1(1 11 (2.10)

which may be written more concisely as

( ) ( )t t( )B x B a( ) ( )(( )φ ( ) tB x(( ) t

The resultant ARMA(p,q( ) process has the stationarity and invert-
ibility conditions associated with the constituent AR(p( ) and MA(q)
processes respectively. Its ACF will eventually follow the same 
pattern as that of an AR(p( ) process after q  –  p initial values ρ1,…,ρq–p, 
while its PACF eventually (for k > q  –  p) behaves like that of an MA(q)
process.

2.26 Throughout this development, we have assumed that the
mean of the process, μ, is zero. Non-zero means are easily accommo-
dated by replacing xt with t xt – μ in (2.10), so that in the general caseμ
of an ARMA(p,q( ) process, we have

( )( ) ( ) t) ( )B x B a( )( ) ( )(( )φ ( )( )B x(( )( )( ))

Noting that ( ) 1(1 ) (1) ,pB(φ μ φ φ μ φ μ( )) 1(1 ) (1)) (1)1 pB(( = (1 )))1  the model can equiva-
lently be written as

( ) ( )t t( )0B x B a( ) ( )(( )φ ( ) t 0B x(( ) t 000

where ( )0 1(θ φ μ( )0 1((=  is a constant or intercept.
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ARMA model building

2.27 An essential first step in fitting ARMA models to observed 
time series is to obtain estimates of the generally unknown param-
eters μ, 2

xσ  and the2
x ρk. With our stationarity and (implicit) ergodicity

assumptions, μ and μ 2
xσ  can be estimated by the sample mean and

sample variance, respectively, of the realisation ( )1 2 , , :)2 Tx x x(( 1, , ,, ,2

=
∑1

1

T

t
t

x T x−= ∑1

( )
=
∑ 2))2 1

1

T

t

((s T (= ∑2 1−

An estimate of ρk is then given by the lag k sample autocorrelation

( )( )
+=

∑
1

2

T

)(
t k=

k

( )( ()()((
rk Ts   

= �1,2,k

the set of rkr s defining the sample autocorrelation function (SACF).
For independent observations drawn from a fixed distribution with

finite variance (ρk = 0, for all k ≠  0), the variance of rkr  is approximately
given by T –1. If, as well, T is large, T kTrk will be approximately standard
normal, so that ( )~ 0, ,( )kr ~ ((k  implying that an absolute value of rkr in 
excess of 2 T may be regarded as ‘significantly’ different from zero.
More generally, if ρk = 0 for k >  q, the variance of rkr , for k > q, is

( ) ( )1 (((k ) (V r T(( )k ) − (1 ((((((T
 (2.11)

Thus, by successively increasing the value of q and replacing the ρk s 
by their sample estimates, the variances of the sequence 1 2 , ,�2 kr r r1 2 , ,�2 k

can be estimated as 1,T − ( )1 ( , ,)(((T (1 ((((( ( )1 ((T (−1 (((((  and,
of course, these will be larger, for k  >  1, than those calculated using 
the simple formula 1.T −

2.28 The sample partial autocorrelation function (SPACF) is 
usually calculated by fitting autoregressive models of increasing 
order: the estimate of the last coefficient in each model is the sample 
partial autocorrelation, φ k̂k.10 If the data follow an AR(p( ) process then,
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for lags greater than p, the variance of φ k̂k is approximately 1,T −  so
that 1ˆ ~ (0, ).1

kk (0,(0,φ

2.29 Given the rkr  and φ k̂k, along with their respective standard errors, 
the approach to ARMA model building proposed by George Box and
Gwilym Jenkins (the Box-Jenkins approach) is essentially to match
the behaviour of the SACF and SPACF of a particular time series with
that of various theoretical ACFs and PACFs, picking the best match
(or set of matches), estimating the unknown model parameters (the
φis, θiθθ s and σ2), and checking the residuals from the fitted models for 
any possible misspecifications.11

Another popular method is to select a set of models based on 
prior considerations of maximum settings of p and q, estimate each 
possible model and select that model which minimises a chosen
selection criterion based on goodness of fit considerations. These
model building procedures will not be discussed in detail: rather, 
they will be illustrated by way of a sequence of examples.

EXAMPLE 2.1 Are the returns on the S&P 500 a0
‘fair game’?

An important and often analysed financial series is the real return 
on the annual Standard & Poor (S&P) 500 stock index for the US. 0
Annual observations from 1872 to 2015 (T  =  145) are plotted in FigureT
2.6 and the SACF up to k  =12 is given in Table 2.1. It is seen that the
series appears to be stationary around a constant mean, estimated to
be 3.72%. This is confirmed by the SACF and a comparison of each of 
the rkr with their corresponding standard errors, computed using equa-
tion (2.11), shows that none are individually significantly different 
from zero, thus suggesting that the series is, in fact, white noise.

We can also construct a ‘portmanteau’ statistic based on the 
complete set of rkr s. On the hypothesis that 2~ ( , )2 ,tx ~t μ,,  then

( ) ( ) ( ) 1 2 2

1

~2
k

i k
i

T i r( ) 1(( ) 1Q k T T(( ) (( )2) i
−))))

=
(T TT T( 2)∑∑ χ

Q(k) statistics, with accompanying marginal significance levels of 
rejecting the null, are also reported in Table 2.1 for = 1,2, ,12�k  and
they confirm that there is no evidence against the null hypothesis
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Table 2.1 SACF of real S&P 500 returns and accompanying statistics

k rkr se(rkr )kk Q(k)

1 0.080 0.083 0.95 [0.33]
2 –0.163 0.083 4.89 [0.09]
3 0.074 0.085 5.70 [0.13]
4 –0.087 0.086 6.83 [0.14]
5 –0.151 0.086 10.27 [0.07]
6 0.061 0.087 10.83 [0.09]
7 0.120 0.087 13.03 [0.07]
8 –0.046 0.088 13.36 [0.10]
9 –0.055 0.089 13.82 [0.13]
10 0.040 0.089 14.07 [0.17]
11 –0.034 0.090 14.25 [0.22]
12 –0.104 0.090 15.96 [0.19]

Note: Figures in [..] give P(χ2
k > Q(k))

–40

–20

0

20

40

1875 1900 1925 1950 1975 2000

% p.a.

Figure 2.6 Real S&P 500 returns (annual 1872–2015)

that returns are white noise.12 Real returns on the S&P 500 would 
therefore appear to be consistent with the fair game model in which 
the expected return is constant, being 3.72% per annum.
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EXAMPLE 2.2  Modelling the UK interest rate spread

The ‘spread’, the difference between long and short interest rates, is 
an important variable in testing the expectations hypothesis of the
term structure of interest rates. Figure 2.7 shows the spread between
20 year UK gilts and 91 day Treasury bills using monthly observa-
tions for the period January 1952 to December 2014 (T  =  756), while T
Table 2.2 reports the SACF and SPACF up to k  =  12, with accompa-
nying standard errors.

The spread is seen to be considerably smoother than one would
expect if it was a realisation from a white noise process, and this is 
confirmed by the SACF, all of whose values are positive and signifi-
cant (the accompanying portmanteau statistic is Q(12)  =  5626!). The
SPACF has both φ̂11 and φ̂22 significant, thus identifying an AR(2)
process. Fitting such a model to the series by ordinary least squares 
(OLS) regression yields

ˆ0 035 1 192 0 224
(0.017) (0.036) (0.036)

t t t t1 2x x x at t t1 20.035 1.192 11+ +0 035 1 192 0 224x xx x 20 035 1 192 0 2241 192 1t t 20.035 1.192 1

 

ˆ 0.401=σ

–6

–4

–2

0

2

4

6

8

1960 1970 1980 1990 2000 2010

% p.a.

Figure 2.7 UK interest rate spread (January 1952 – December 2014)
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Figures in parentheses are standard errors and the intercept implies 
a fitted mean of 0 1 2

ˆ ˆ ˆˆ (1 ) 1.1282 )2μ θ 0 1 21ˆ 1 21 2(1= 0 (1 1 21 2  with standard error 0.467.
The model can therefore be written in ‘mean deviation’ form as

( ) ( )+) ˆ1 128 1 192( ) () (++ ( ) () (t t t t( ) ( )) () () () (x = a+)++ ( ) () () () () () () )t ( +)) () (1.128 1.192(++ (( ) () ()) () () (

Since 1 2
ˆ ˆ 0.968,=2φ φ1+ 1 2

ˆ ˆ 1.416= −2−φ1φ φ++1  and 2
ˆ 0.224,= −φ  the station-

arity conditions associated with an AR(2) process are satisfied but, 
although φ̂2 is negative, 2

1 2
ˆ ˆ2 4 0.52522φ 2

1 224+ 4 2  so that the roots are real,
being g1  =  0.96 and  g2gg   =  0.23. The spread is thus stationary around an
‘equilibrium’ level of 1.128: equivalently, in equilibrium, long rates
are 1.128 percentage points higher than short rates. The closeness
of g1 to unity will be discussed further in Example 4.1, but its size
means that shocks that force the spread away from its equilibrium
will take a long time to dissipate and hence the spread will have long 
departures away from this level, although as the roots are real these
departures will not follow any cyclical pattern.

Having fitted an AR(2) process, it is now necessary to establish
whether such a model is adequate. As a ‘diagnostic check’, we may 
examine the properties of the residuals at̂. Since these are estimates
of at, they should mimic its behaviour, so that they should behave astt

white noise. The portmanteau statistic Q can be used for this purpose, Q
although the degrees of freedom must be amended: if an ARMA(p( ,q)qq
process is fitted, they are reduced to k – p – q. With k  =  12, our residuals

Table 2.2 SACF and SPACF of the UK spread

k rkr se(rkr )kk φ ̂
kk se(φ ̂

kk)kk

1 0.974 0.036 0.974 0.036
2 0.938 0.061 –0.220 0.036
3 0.901 0.078 0.015 0.036
4 0.864 0.090 –0.005 0.036
5 0.827 0.100 –0.047 0.036
6 0.789 0.109 –0.049 0.036
7 0.750 0.116 –0.009 0.036
8 0.712 0.122 –0.006 0.036
9 0.677 0.127 0.042 0.036
10 0.647 0.132 0.037 0.036
11 0.618 0.136 –0.007 0.036
12 0.590 0.140 –0.016 0.036
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yield the value Q(12) = 7.50, which is now asymptotically distributed 
as χ2(10) and hence gives no evidence of model inadequacy.

An alternative approach to assessing model adequacy is to overfit. 
For example, we might consider fitting an AR(3) process or, perhaps, an
ARMA(2,1) to the series.13 These yield the following pair of models

1 2 3 ˆ0 036 1 194 0 222 0 002
(0.017) (0.036) (0.056) (0.036)

t t 1 22 ta3xt t 1 2220.036 1.194 1 221 22+ +0 036 1 194 0 222 0 002 x 30 036 1 194 0 222 0 0020 2221 194 0 2221 220.036 1.194 1 22 ˆ 0.399=σ

1ˆ ˆ0 036 1 148 0 181 0 046ˆ
1 1 1 2(0.0 ) (0. 60) (0. 56) (0. 6 )1 1 1 21 1

t t t t t1 2x x x a a0 046t t t tt1 20.036 1.148 0.181 0.0460.1810.1811 2 −t t t1 20 036 1 148 0 1811 148 0 1810 036 1 148 0 1810 1811 148 0 1811 20.036 1.148 0.1810.1810.1811.148 0.1811 2 ˆ 0.401=σ

The additional parameter is insignificant in both models, thus 
confirming the adequacy of our original choice of an AR(2) process.

EXAMPLE 2.3 Modelling returns on the
FTA-All Share Index

The broadest based stock index in the UK is the Financial Times-
Actuaries (FTA) All Share. Table 2.3 reports the SACF and SPACF (up to
k  =  12) of its nominal return calculated from monthly observations of k
the index from January 1952 to December 2014 (T  =  756). The portman-T
teau statistic is Q(12)  =  31.3, with a marginal significance level of 0.002,
and r1, r9rr and φ̂kk at lagsk k  =  1,2,3, 5 and 9 are all greater than 2 standard 
errors. This suggests that the series is best modelled by some ARMA 
process of reasonably low order, although a number of models could be
consistent with the behaviour shown by the SACF and SPACF.

Table 2.3 SACF and SPACF of FTA All Share nominal returns

k rkr se(rkr )kk φ ̂
kk se(φ ̂

kk)kk

1 0.117 0.036 0.117 0.036
2 –0.062 0.036 –0.076 0.036
3 0.061 0.037 0.080 0.036
4 0.072 0.037 0.051 0.036
5 –0.067 0.037 –0.075 0.036
6 –0.046 0.037 –0.024 0.036
7 0.027 0.037 0.018 0.036
8 –0.019 0.037 –0.026 0.036
9 0.075 0.037 0.101 0.036
10 0.008 0.037 –0.021 0.036
11 –0.029 0.037 –0.022 0.036
12 0.022 0.037 0.025 0.036
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In such circumstances, there are a variety of selection criteria that 
may be used to choose an appropriate model, of which perhaps the 
most popular is Akaike’s Information Criterion, defined as

( ) ( )2 1( )ˆ 2l) ˆAIC p q p q T(( (( )( ), log 2) 2ˆ p((log 2log 2

although a criterion that has better theoretical properties is Schwarz’s:

( ) ( )2 1( )ˆ l2 1( )l) ˆBIC p q p q T T(( , log loglog) (( )2 1( )ˆloglog (2 ( .

The criteria are used in the following way. Upper bounds, say 
pmax and qmax, are set for the orders of φ(B( ) and θ(B(( ) and, with

{ }{{p {= {{  and { }{{q {= {{ , orders p1 and q1 are selected
such that, for example,

( ) ( )AIC p q AIC p q(( ) ((1 1, min ,min) (=1  ,p p  q q∈

with parallel strategies obviously being employed in conjunction with 
BIC.14 One possible difficulty with the application of this strategy is
that no specific guidelines on how to determine p and q seem to be 
available, although they are tacitly assumed to be sufficiently large
for the range of models to contain the ‘true’ model, which we may
denote as having orders ( )((  and which, of course, will not neces-
sarily be the same as ( )1p q(( 1 , the orders chosen by the criterion under
consideration.

Given these alternative criteria, are there reasons for preferring one
to the other? If the true orders ( )((  are contained in the set ( ),)p q(( ,

Table 2.4  Model selection criteria for nominal returns

q 0 1 2 3

p
0 –3.107 –3.121 –3.123 –3.122

AIC 1 –3.117 –3.122 –3.119 –3.119
2 –3.120 –3.120 –3.141 –3.125
3 –3.123 –3.121 –3.125 –3.136

0 –3.101 –3.108 –3.104 –3.098
BIC 1 –3.105 –3.103 –3.095 –3.089

2 –3.101 –3.096 –3.110 –3.088
3 –3.099 –3.090 –3.088 –3.093
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p p∈ , q q∈ , then for all criteria, ≥1 0p p≥1 ≥  and ≥1 0q q≥1 ≥ , almost surely, as 
→ ∞T . However, BIC is strongly consistent in the sense that it willt

determine the true model asymptotically, whereas for AIC an over-
parameterised model will emerge no matter how long the available
realisation. Of course, such properties are not necessarily guaranteed 
in finite samples, as we find below.15

Given the behaviour of the SACF and SPACF of our returns series, 
we set = 3p q=  and Table 2.4 shows the resulting AIC and BIC values.
Both criteria select the orders (2,2) (an ARMA(2,2) process), although
for BIC the (0,1) (an MA(1) process) is a very close second. The two
estimated models are

2

ˆ0 017 1 056 0 821
(0.006) (0.051) (0.048)

ˆ ˆ1.177 0.883 ,2ˆ ˆ1.177
(0.043) (0.039)

t t t t1 2

t t11

x x x at t t1 20.017 1.056 1

0.8830.8831

1

1

+0 017 1 056 0 821x xx x 20 017 1 056 0 8211 056 1t t 20.017 1.056 1

+ 1.177 11

   

ˆ 5.01%=σ

1ˆ ˆ0 006 0 139ˆ
(0.002) (0.036)

t t tx a a0 139t tt0.006 0.139 −0 0060 0060.006

      
ˆ 5.08%=σ

Although these models appear quite different, they are, in fact,
similar in two respects. The estimate of the monthly mean return
implied by the ARMA(2,2) model is 0.6% (approximately 7% per 
annum), almost the same as that obtained directly from the MA(1)
model, while the sums of the weights of the respective AR(∞) repre-
sentations are very close, being 0.94 and 0.88 respectively.

There is, however, one fundamental difference between the two
models: the MA(1) does not produce an acceptable fit to the returns
series, for it has a Q(12) value of 24.2, with a marginal significance
level of 0.012. The ARMA(2,2) model, on the other hand, has an
insignificant Q(12) value of just 8.42.

Thus, although theoretically the BIC has advantages over the AIC, 
it would seem that the latter criterion nevertheless selects an iden-
tical model to that chosen by the BIC. We should also note the simi-
larity of the complex AR and MA roots in the higher order model.
These are −0.53 0.74± i and −0.59 0.73± i and this could lead to prob-
lems of parameter redundancy, with roots approximately cancelling 
out. From this perspective, the (2,2) model may be thought of as
providing a trade-off between the parsimonious, but inadequate, 
(0,1) model and other, more profligately parameterised, models.
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EViews Exercises

2.30 To obtain the simulated series shown in Figures 2.1, 2.2 and 
2.4 open the Chap _ 2 _ sims page of the workfile mills.wf1 and
issue the following series of commands

genr a = 5*nrnd (generates at  ~t  NID(0,25))

smpl 1 1 (sets initial conditions for AR(1) processes)

genr x1 = a

genr x2 = a

smpl 2 100 (generates AR(1) and MA(1) processes)

genr x1 = 0.5*x1(–1) + a

genr x2 = -0.5*x2(–1) + a

genr x3 = a – 0.8*a(–1)

genr x4 = a + 0.8*a(–1)

smpl 1 2 (sets initial conditions for AR(2) processes)

genr x5 = a

genr x6 = a

genr x7 = a

genr x8 = a

smpl 3 100 (generates AR(2) and MA(2) processes)

genr x5 = 0.5*x5(–1) + 0.3*x5(–2) + a

genr x6 = x6(–1) – 0.5*x6(–2) + a

genr x7 = –0.5*x7(–1) + 0.3*x7(–2) + a

genr x8 = –0.5*x8(–1) – 0.3*x8(–2) + a

genr x9 = a + 0.5*a(–1) – 0.3*a(–2)

genr x10 = a – 0.5*a(–1) – 0.3*a(–2)

2.31 The S&P 500 real returns data for Example 2.1 are contained 
in page Ex _ 2 _ 1 as the variable x. The SACF and Q statistics of Table 
2.1 may be obtained by opening x, clicking View/Correlogram, if 
desired changing ‘Lags to include’ to 12, and then clicking OK. The 
mean return of 3.72% may be obtained by clicking View/Descriptive 
Statistics & Tests/Histogram and Stats.
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2.32 The basic data for Example 2.2 are contained in pageEx _ 2 _ 2: 
rs and r20 are the short and long interest rates respectively. The 
spread may be computed with the command

genr spread = r20 – rs

The SACF and SPACF shown in Table 2.2 are obtained using the 
‘Correlogram’ view of spread as described above.

The two forms of the AR(2) process discussed in §2.26 may be esti-
mated with the commands

ls spread c spread(-1 to -2)
ls spread c ar(1 to 2)

It is the latter command that estimates the model in ‘mean devia-
tion’ form, so providing an estimate of the mean, this being the vari-
able c, and estimates of the roots, labelled ‘Inverted AR roots’. In 
either of the ‘Equation’ views, clicking View/Residual Diagnostics/
Correlogram-Q-statistics will obtain the Q-statistics for the resid-
uals. Overfitting with AR(3) and ARMA(2,1) models may be carried
out with the commands

ls spread c spread(-1 to -3)
ls spread c spread(-1 to -2) ma(1)

or

ls spread c ar(1 to 3)
ls spread c ar(1 to 2) ma(1)

2.33 The FTA All Share nominal return of Example 2.3 is to be
found in page Ex _ 2 _ 3 as the variable x. Note that the series runs 
from February 1952 as the January return is not available. The SACF
and SPACF of Table 2.3 can be obtained in the usual way. Table 2.4 
can be constructed by estimating all sub-models contained within
the ARMA(3,3) using variants of

ls x c ar(1 to 3) ma(1 to 3)

for example

ls x c (ARMA(0,0))
ls x c ar(1) (ARMA(1,0))
ls x c ar(1 to 2) (ARMA(2,0))

9781137525321_02_cha02.indd   37 6/15/2015   5:18:52 PM



38  Time Series Econometrics

and so on. For each estimation, the AIC and BIC values are given by
‘Akaike info criterion’ and ‘Schwarz criterion’ respectively.

Notes

1. There are numerous introductory and intermediate level text books on
time series analysis. Two that are aimed specifically at analysing economic 
and financial time series are Mills, Time Series Techniques for Economists 
(Cambridge University Press, 1990) and Mills and Raphael N. Markellos,
The Econometric Modelling of Financial Time Series, 3rd edition (Cambridge 
University Press, 2008).

2. For more technical details on ergodicity, see Clive W.J. Granger and Paul 
Newbold, Forecasting Economic Time Series, 2nd edition (Academic Press,
1986; chapter 1) and James D. Hamilton, Time Series Analysis (Princeton
University Press, 1994; chapter 3.2). See also Ian Domowitz and Mahmoud
A. El-Gamal, ‘A consistent nonparametric test of ergodicity for time series
with applications’, Journal of Econometrics 102 (2001), 365-98.

3. Herman Wold, A Study in the Analysis of Time Series (Almqvist and Wiksell, 
1938), pages 84–9, although Wold does not refer to this theorem as a
decomposition. Peter Whittle, ‘Some recent contributions to the theory 
of stationary processes’, Appendix 2 of the second edition of Wold’s book,
appears to be the first to refer to it as such. See also Mills, The Foundations
of Modern Time Series Analysis (Palgrave Macmillan, 2011; chapter 7) for
detailed discussion of the theorem.

4. The term ‘white noise’ was coined by physicists and engineers because of 
its resemblance, when examined in the frequency domain, to the optical
spectrum of white light, which consists of very narrow lines close together: 
see Gwilym M. Jenkins, ‘General considerations in the analysis of spectra’,
Technometrics 3 (1961), 133–66. The term ‘innovation’ reflects the fact that
the current error at is, by definition, independent of all previous values of t

both the error and x and hence represents unforecastable ‘news’ becoming
available at time t.

5. Autoregressions were first introduced by the famous British statistician 
George Udny Yule during the 1920s: see Yule, ‘On a method of investi-
gating periodicities in disturbed series, with special reference to Wolfer’s 
sunspot numbers’, Philosophical Transactions of the Royal Society of London,
Series A 226 (1927), 267–98. For details on the historical development of 
these models, see Mills, Foundations, and Mills, A Very British Affair: Six
Britons and the Development of Time Series Analysis (Palgrave Macmillan,
2013). Acronyms abound in time series analysis and have even prompted
a journal article on them: Granger, ‘Acronyms in time series analysis
(ATSA)’, Journal of Time Series Analysis 3 (1982), 103–7, although in the 
three decades or so since its publication many more have been suggested.

6. Moving average processes were introduced and analysed in detail by Wold,
A Study.yy
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7. The solution to the quadratic 2
1 1 0=1ρ θ θ ρ2
1 + ++  is

2
1

1

1 1 4
.

2
−1 11

=
ρ1θ

ρ

 The restriction that θ be real requires thatθ 1–4ρ2
1  >  0, which implies that

ρ2
1 >  0.25 and hence –0.5  < ρ1  <  0.5.

8. As an example of this technique, consider the AR(2) process for which
φ(B)  =  1–φ1B–φ2B2. The ψ-ψψ weights are then obtained by equating coeffi-
cients in

( )( ))()()()( 1( )( )( )()()( ))()()()(()()()()()()()(()()(
or

( ) ( ) ( )2 2( )1 1 2 1 1 2) ( ) (1 1( ) ( ) 2 2( )( ) 2 ( ) 2( ))ψ( 1 1 2 1 1 21 2 1 1) ( ) (( ) ( ) 2 ((( )1 11) (( ) ((2 ((2 1 1 22 1 1 22 1 1 22 1 1 2( ) (( �

For this equality to hold, the coefficients of B j, j  ≥  0, on each side of the 
equation have to be the same. Thus

1
1 1 1 1

2 2 2 2
2 1 1 2 1 1

3 3 3
3 1 2 2 1 1 1 1 2

: 0

:

: 0 23 3

B

B

B

ψ φ ψ φ1 1 1 11 1 101 1 ∴ =11011

φ2 22ψ 2 1 1 2 1 11 1 2 12 1 1 21 1 ∴ = +=2 22 22
1 111 101 1 21 1 2

ψ φ ψ φ ψ ψ φ φ φ3 1 2 2 1 1 1 1 21 2 2 1 1 1 1 20 23 33
3 1 2 2 1 1 11 11 2 2 1 1000 3 33

1 2 2 1 1 11 11 2 2 1 1 1

Noting that ψ3ψψ   = φ1ψ2ψψ   + φ2ψ1ψψ , the ψ-ψψ weights can then be derived recur-
sively for j ≥  2 from ψjψψ   = φ1ψj–ψψ 1  + φ2ψj–ψψ 2.

9. See Hamilton, Time Series Analysis, 17–18, for a derivation of this set of 
restrictions.

10. The successive sample partial autocorrelations may be estimated recur-
sively using the updating equations proposed by James Durbin, ‘The 
fitting of time series models’, Review of the International Statistical Institute
28 (1960), 233–44, and which are known as the Durbin-Levison algorithm.

11. George E.P. Box and Jenkins, Time Series Analysis: Forecasting and Control
(Holden Day, 1970). This is the classic reference to time series analysis:
the latest edition is the fourth (Wiley, 2008), now co-authored by Gregory 
C. Reinsel.

12. This statistic is also known as the Ljung-Box statistic: Greta M. Ljung
and Box, ‘On a measure of lack of fit in time series models’, Biometrika 65 
(1978), 297–303.

13. Estimation of models with moving average errors is usually carried out
by conditional least squares, where the initial values of the error series 
that are required for estimation are set to their conditional expectation 
of zero.

9781137525321_02_cha02.indd   39 6/15/2015   5:18:52 PM



40  Time Series Econometrics

14. Hirotugu Akaike, ‘A new look at the statistical model identification’, IEEE
Transactions on Automatic Control AC-19 (1974), 716–23; Gideon Schwarz, 
‘Estimating the dimension of a model’, Annals of Statistics 6 (1978), 
461–4.

15. See Andew Tremayne, ‘Stationary linear univariate time series models’, 
chapter 6 of Mills and Kerry Patterson (editors) Palgrave Handbook of 
Econometrics, Volume 1: Theory (Palgrave Macmillan, 2006), 215–51, for 
more discussion of information criteria and, indeed, for a survey of many
current issues in ARMA modelling.
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3
Non-stationary Time Series:
Differencing and ARIMA 
Modelling

Non-stationarity

3.1 The class of ARMA models developed in the previous chapter
relies on the assumption that the underlying process is weakly 
stationary, thus implying that the mean, variance and autocovari-
ances of the process are invariant under time shifts. As we have seen,
this restricts the mean and variance to be constant and requires the 
autocovariances to depend only on the time lag. Many economic 
and financial time series, however, are certainly not stationary and,
in particular, have a tendency to exhibit time-changing means and/
or variances.

3.2 In order to deal with such non-stationarity, we begin by assuming
that a time series can be decomposed into a non-constant mean level 
plus a random error component:

t t tx = + εtt +t (3.1)

A non-constant mean level μt in (3.1) can be modelled in a variety of t

ways. One potentially realistic possibility is that the mean evolves as 
a (non-stochastic) polynomial of order d in time. This will arise if d xt

can be decomposed into a trend component, given by the polyno-
mial, and a stochastic, stationary, but possibly autocorrelated, zero
mean error component, which is always possible given Cramer’s 
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extension of Wold’s decomposition theorem to non-stationary proc-
esses.1 Thus we may have

( )
0

d
j

t t t j t( )
j

x t B a( )t t t j (( )
=
∑ β j

jjtt
j

jjt
j

jt ttt ttt ttt ∑ (3.2)

Since

( ) ( ) ( ) 0,) ( ) (B E( ) (((( ) ((E B E( ) ( ) ( =)B E( ) ((( )( )( )

we have

( ) ( )
0

d
j

t t j) ( )) (
j

tjE ( ) (( )) (
=

(( ∑ β( )( )(( )( )( )( ) ∑

and, as the βjββ  coefficients remain constant through time, such a
trend in the mean is said to be deterministic. Trends of this type can 
be removed by a simple transformation. Consider the linear trend 
obtained by setting d = 1 where, for simplicity, the error component d
is assumed to be a white noise sequence:

t t0 1x t at 1t1100β β00 (3.3)

Lagging (3.3) one period and subtracting this from (3.3) itself yields

1t t t t1 1 a1xt t 1 11 + aa11xx 1t 1 β (3.4)

The result is a difference equation following an ARMA(1,1) process in
which, since φ = θ = 1, both autoregressive and moving average roots θ
are unity and the model is neither stationary nor invertible. If we
consider the first differences of xt, wt say, thent

( )1(t t t t t( )−1w x x (= − =− ( B x x)− = Δ)1(((t t t tt t t( ) ΔΔ( )1 (

where Δ = 1 – B is known as the first difference operator.rr  Equation
(3.4) can then be written as

t t t1 a1wt tΔ + Δ11xxt β
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and wt is thus generated by a stationary, sincet E(w(( t) =tt β1 is a constant,
but not invertible MA(1) process.

3.3 In general, if the trend polynomial is of order d andd εtεε  is charac-t

terised by the ARMA process φ(B(( )εtεε  =t θ(B(( )at, then

( )Δ 1( d))d
t t( )x B x( )= ( −1((( d))t ( )((

obtained by first differencing xt d times, will follow the processd

( )
( )

d
d

t t( )0

B((
x a

( )
( )t 0 B(((

Δ
+00Δ =dxt

θ
θ

φ

where θ0θθ  = d!βdββ . Thus the MA part of the process generating Δdxt will t

also contain the factor Δd and will therefore have d d roots of unity. d
Note also that the variance of xt will be the same as the variance of t

εtεε  and so will be constant for allt t. Figure 3.1 shows plots of gener-
ated data for both linear and quadratic trend models. Because the 
variance of the error component, here assumed to be white noise
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M1: xt xx  = 10+2t+at; M2: xt xx  = 10+5t−0.03t2+at; at ~ t NID (0,9)

Figure 3.1 Linear and quadratic trends
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and distributed as NID(0,9), is constant and independent of the level,
the variabilities of the two series are bounded about their expected 
values, and the trend components are clearly observed in the plots.

3.4 An alternative way of generating a non-stationary mean level
is to employ ARMA models whose autoregressive parameters do
not satisfy stationarity conditions. For example, consider the AR(1) 
process

t t t1 att 1xt +x 1t 1φxx (3.5)

where φ > 1. If the process is assumed to have started at time t = 0, thet
difference equation (3.5) has the solution

0

t
t i

t t i0
i

x x ai
t 0

=

x0 ∑∑φ ttt (3.6)

The ‘complementary function’ x0φt can be regarded as thet conditional
expectation of xt at timet t = 0 and is clearly an increasing function t
of t. The conditional expectation of xt at subsequent timest t = 1,2,...t
depends on the sequence of random shocks a1,a2,... and hence, since
this conditional expectation may be regarded as the trend of xt, the 
trend changes stochastically.yy

The variance of xt is given byt

( )
2

2
2

1
1

t

V (( −
=

−
φ

σ
φ

which is also an increasing function of time and becomes infinite as
t → ∞.2 In general, xt will have a trend in both mean and variance,t

and such processes are said to be explosive. A plot of generated data 
from the process (3.5) with φ = 1.05 andφ at ~ NIDt (0,9), and having 
starting value x0 = 10, is shown in Figure 3.2. We see that, after a
short ‘induction period’, the series essentially follows an exponen-
tial curve with the generating ats playing almost no further part.
The same behaviour would be observed if additional autoregressive 
and moving average terms were added to the model, as long as the
stationarity conditions are violated.
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ARIMA processes

3.5 As we can see from (3.6), the solution of (3.5) is explosive if φ > 1
but stationary if φ < 1. The case φ = 1 provides a process that is neatly 
balanced between the two. If xt is generated by the modelt

+t t t−1x x a= +t tt +1
(3.7)

then at is said to follow a t random walk.3 If we allow a constant, θ0θθ , 
to be included, so that

t t t1 0 a0xt t 1 +00+xx 1t 1 θ (3.8)

then xt will follow a random walk with drift. If the process starts at
t = 0, thent

0

,
t

t t i0 0
i

x x t at 0 0
=

0x tx0 ∑θ

0
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500

10 20 30 40 50 60 70
t

xtxx

xt xx = 1.05xtxx –1 tt + at, x0xx = 10; at ~t NID(0,9)

Figure 3.2 Explosive AR(1) model
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so that

( ) 0 0t (E ( )μ θ) 0t ( x)E x x t( ) 0((= E x xx( ) 0((

( ) 2
0,t (V x t( )γ σ)0,t (V x t( )((= V x( )

and

( ) ( ) 2
, 0k t (, C t k k( ) ( ) 2) ( ) 2Cov ( ) (( ) 2) ( )γ ) ( )k t (, ) ( )(= Cov ( ) (( )((

are all functions of t and hence are time varying.

3.6 The correlation between xt andt xt–k is then given by

( )
,

,
0. 0,

k t,
k t,

t k0,

t k t k
tt t k((

k tk t
= = =

γ kρ
γ γ0. 0

If t is large compared to t k, all the ρk,t will be approximately unity. Thet

sequence of xt values will therefore be very smooth, but will also bet

non-stationary since both the mean and variance of xt will change t

with t. Figure 3.3 shows generated plots of the random walks (3.7) 
and (3.8) with x0 = 10 and at ~ NIDt (0,9). In part (a) of the figure the 
drift parameter, θ0θθ , is set to zero while in part (b) we have set θ0θθ  = 2. 
The two plots differ considerably, but neither show any affinity with 
the initial value x0: indeed, the expected length of time for a random
walk to pass again through an arbitrary value is infinite.

3.7 The random walk is an example of a class of non-stationary
models known as integrated processes. Equation (3.8) can be written
as

t t0 a0xtΔ = +00xxt θ

and so first differencing xt leads to a stationary model, in this caset

the white noise process at. Generally, a series may need first differ-
encing d times to attain stationarity, and the series so obtained may 
itself be autocorrelated.
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(a) xt xx  = xtxx –1 tt + at, x0xx = 10; at ~ t NID(0,9)
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(b) xt xx  = 2 + xtxx –1 tt + at, x0xx = 10; at ~ t NID(0.9)

Figure 3.3 Random walks
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If this autocorrelation is modelled by an ARMA(p,q( ) process, then
the model for the original series is of the form

( ) ( )d
t t( )0B x( ) B a( )d (( )φ ( ) t 0B x(( ) d
t 0xx 0

d
t 0  (3.9)

which is said to be an autoregressive-integrated-moving average
process of orders p, d andd q, or ARIMA(p,d,q( ), and xt is said to be inte-t

grated of order d, denoted I(d).4

3.8 It will usually be the case that the order of integration d or, d
equivalently, the degree of differencing, will be 0, 1 or, very occa-
sionally, 2. Again it will be the case that the autocorrelations of an
ARIMA process will be close to 1 for all non-large k. For example,
consider the (stationary) ARMA(1,1) process

1t t t t1 axt t 1φ θx ax a1t 11x aa1

whose ACF has been shown to be (§2.24)

( )( )
1 2

((
1 22=

+
)()()()(ρ11 θ φθ222 ρk = φρk–1 for k > 1

As φ → 1, the ARIMA(0,1,1) process

1t t tx a at tt −Δ = −x ax at t θaa

results, and all the ρk tend to unity.

3.9 A number of points concerning the ARIMA class of models are 
of importance. Consider again (3.9), with θ0θθ  = 0 for simplicity:

( ) ( )d
t t( )x B a(B( ) )d (( )φ ( ) tB x(( ) xd
txxd
t

This process can equivalently be defined by the two equations

( ) ( )t t( )B w B a( ) ( )(( )φ ( ) tB w(( ) t

and

Δd
t tw x= Δd
t Δ (3.10)
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so that, as we have noted above, the model corresponds to assuming
that Δdxt can be represented by a stationary and invertible ARMAt

process. Alternatively, for d ≥ 1, (3.10) can be inverted to gived

d
t tx S w= d
t  (3.11)

where S is the infinite summation, or integral,l  operator defined by

( ) ( ) 1 1) ( ) 1B) (S (( ) ( )) = Δ)) 1B B BB B( 1( )( () ((

Equation (3.11) implies that xt can be obtained by summing, or ‘inte-t

grating’, the stationary series wt d times: hence the term integratedd
process.

3.10 This type of non-stationary behaviour is often referred to as 
homogenous non-stationarity, and it is important to discuss whyyy
this form of non-stationarity is felt to be useful when describing the 
behaviour of many economic and financial time series. Consider 
again the first-order autoregressive process (3.2). A basic character-
istic of the AR(1) model is that, for both 1<φ  and φ  >  1, the ‘local’ φ
behaviour of a series generated from the model is heavily dependent
upon the level of xt. In the former case local behaviour will always 
be dominated by an affinity to the mean, while in the latter the 
series will eventually increase rapidly with t. For many economic
and financial series, however, local behaviour appears to be roughly 
independent of level, and this is what we mean by homogenous 
non-stationarity.

3.11 If we want to use ARMA models for which the behaviour of 
the process is indeed independent of its level, then the autoregressive
polynomial φ(B(( ) must be chosen so that

( )( ) ( ) t) ( )B x c B x( )( ) ( )(( )φ( )( )B x c(( )( )( )))

where c is any constant. Thusc

( ) 0B c(( ) =φ
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implying that φ(1)  =  0, so that φ(B(( ) must be able to be factorised as

( ) ( )( ) ( )1 1( )( ) ,(1( ) ( )1B B( ) ( )(1( ) ( )B( )(1( ) ((1φ φ( ) 1 1( )( ) 1( )B(( ) B( )(11(( )(1(( ) 11( )

in which case the class of processes that need to be considered will 
be of the form

( ) ( )1 t t( )B w B a( ) ( )(( )φ ( )1 tB w(( ) t

where wt  =  t Δxt. Since the requirement of homogenous non-station-
arity precludes  wt increasing explosively, either φ1(B(( ) is a stationary
operator, or φ1(B( )  = φ2(B(( )(1–B), so that φ2(B(( )w*

tww   = t θ(B(( )at, where w*
tww   =   t Δ2xt. 

Since this argument can be used recursively, it follows that for time 
series that are homogenously non-stationary, the autoregressive lag
polynomial must be of the form φ(B(( )Δd, where φ(B(( ) is a stationary 
polynomial. Figure 3.4 plots generated data from the model Δ2xt  =  at t, 
where at ~ NIDt (0,9) and x0  = x1  =  10, and such a series is seen to display
random movements in both level and slope.

(1−B )2 xt xx  = at, x0xx = x1xx  = 10; at ~ t NID(0,9)
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Figure 3.4 ‘Second difference’ model
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3.12 In general, if a constant is included in the model for dth differ-
ences, then a deterministic polynomial trend of degree d is automati-d
cally allowed for. Equivalently, if θ0θθ  is allowed to be non-zero, then

( ) ) (1 )( d
t t w p) 0 1 2( ) (1) (1E w E( )( () ( ))E(( (1(1w pw 0 1 21(1(10 1 21(1(1(10 1 21(10 1 21

is non-zero, so that an alternative way of expressing (3.9) is as

( ) ( )t t( )B w B a( ) ( )(( )φ ( ) tB w(( ) t
�

where t t ww wt −w μ� .

Figure 3.5 plots generated data for Δ2xt  =  2 +t at, where again 
at  ~  NIDt (0,9) and x0  = x1  =  10. The inclusion of the deterministic
quadratic trend has a dramatic effect on the evolution of the series, 
with the non-stationary ‘noise’ being completely swamped after a 
few periods.

(1−B )2 xtxx  = t 2 + at, x0xx = x1xx  = 10; at ~ t NID(0,9)
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Figure 3.5 ‘Second difference with drift’ model
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Model (3.9) therefore allows both stochastic and deterministic
trends to be modelled. When θ0θθ   =  0 a stochastic trend is incorpo-
rated, while if θ0θθ  ≠  0 the model may be interpreted as representing
a deterministic trend (a polynomial in time of order d) buried in
non-stationary noise, which will thus be autocorrelated. The models 
presented in §§3.2–3.3 could be described as deterministic trends 
buried in stationary noise, since they can be written as

( ) ( ) ( )d d( )t d t( ) ( )B a( )(( )φ φ β θ( ) d d( )t dd( )B x(( ) d d(1 !( )t dd( )1 !( )xx (1 !( )d (1 !(( )t dd(1 !( )

Here the stationary nature of the noise in the level of xt is manifested t

in d roots of the moving average lag polynomial being unity.d

ARIMA modelling

3.13 Once the order of differencing d has been established then, d
since wt  = t Δ2xt is by definition stationary, the ARMA model buildingt

techniques discussed in §§2.27–2.29 may be applied to the suitably
differenced series. Establishing the correct order of differencing is 
by no means straightforward, however, and is discussed in detail in
§§4.4–4.7. We content ourselves here with a sequence of examples 
illustrating the modelling of ARIMA processes when d has alreadyd
been chosen: the suitability of these choices will be examined
through examples in Chapter 4.

EXAMPLE 3.1 Modelling the UK spread as an
integrated process

In Example 2.2 we modelled the spread of UK interest rates as a 
stationary, indeed AR(2), process. Here we consider modelling the
spread assuming that it is an I(1) process, so that we examine the
behaviour of the SACF and SPACF of wt  = t Δxt. Table 3.1 provides these
estimates up to k  =  12 and suggests that, as both functions cut off at 
k  =  1, either an AR(1) or an MA(1) process is identified. Estimation of 
the former obtains

ˆ ˆ0.0013 0.208 , 0.405ˆ ˆ
(0.036)(0.0147)

t t t10.00 3 0. 08 1wt 0.00 3 0. 08 10.0013 0.208 ,0 2080 0013 0 2080 208 10.0013 0.2080.208 1
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The residuals are effectively white noise, as they yield a portman-
teau statistic of Q(12)  =  8.62, and the mean of wt is seen to be insig-t

nificantly different from zero. The spread can thus be modelled as an
ARIMA(1,1,0) process without drift. In fact, fitting an ARIMA(0,1,1)
process obtains almost identical estimates, with θ estimated to be θ
0.204 and σ ̂  =  σ 0.405.

The implication of this model is that the spread evolves as a drift-
less random walk with AR(1) innovations. Being non-stationary,
the spread therefore has no equilibrium level to return to and thus
‘wanders widely’ but without any drift up or, indeed, down. All inno-
vations consequently have permanent effects, in direct contrast to the
AR(2) model of Example 2.2, in which the spread is stationary about 
an equilibrium level so that, since the series always reverts back to
this level, all innovations can have only temporary effects. A method
of distinguishing between these alternative models is introduced in
Chapter 4.

EXAMPLE 3.2 Modelling the dollar/sterling ($/£)
exchange rate

Figure 3.6 plots monthly observations of both the level and first 
differences of the $/£ exchange rate from January 1973 to December 
2014, a total of 504 observations. The levels exhibit the wandering 

Table 3.1 SACF and SPACF of the first difference of the UK spread

k rkr se(rkr )kk φ ̂
kk se(φ ̂

kk)kk

1 0.208 0.036 0.208 0.036
2 –0.027 0.038 –0.017 0.036
3 –0.019 0.038 –0.023 0.036
4 0.018 0.038 0.028 0.036
5 0.035 0.038 0.027 0.036
6 0.003 0.038 –0.011 0.036
7 –0.016 0.038 –0.014 0.036
8 –0.072 0.039 –0.067 0.036
9 –0.082 0.039 –0.058 0.036
10 –0.037 0.039 –0.009 0.036
11 –0.009 0.039 –0.002 0.036
12 –0.020 0.039 0.024 0.036
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Figure 3.6 $/£ exchange rate (January 1973–December 2014)

movement of a driftless random walk: the SACF has r1  =  0.978, 
r2  =  0.952, r3  =  0.922, r6rr   =  0.832 and r12  =  0.669 and thus displays the
slow, almost linear, decline typical of an I(1) process (this is discussed 
further in §4.2).
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The differences are stationary about zero and appear to show no 
discernable pattern: indeed, they are very close to being a white 
noise process, the only significant sample autocorrelation being
r1  =  0.128. Although the parameter estimates are significant on 
fitting either an AR(1) or MA(1) process, the R2 statistic associated 
with each model is just 0.016, which, of course, is approximately
equal to r 2

1.

EViews Exercises

3.14 The linear and quadratic trends of Figure 3.1 can be gener-
ated by opening page Chap _ 3 _ sims of mills.wf1 and issuing
the commands

genr a = 3*nrnd
genr t = @trend + 1

genr x1 = 10 + 2*t + a

genr x2 = 10 + 5*t – 0.03*(t^2) + a

The explosive AR(1) model of Figure 3.2 is obtained with

smpl 1 1

genr x3 = 10 + a

smpl 2 100

genr x3 = 1.05*x3(–1) + a

Similarly, the random walks of Figure 3.3 are obtained with the
commands

smpl 1 1

genr x4 = 10 + a

genr x5 = 12 + a

smpl 2 100

genr x4 = x4(–1) + a

genr x5 = 2 + x5(–1) + a
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The ‘second difference’ models of Figures 3.4 and 3.5 are obtained
with

smpl 1 1

genr x6 = 10

genr x7 = 10

smpl 2 2

genr x6 = 2*x6(–1) – 10 + a

genr x7 = 2*x7(–1) – 8 + a

smpl 3 100

genr x6 = 2*x6(–1) – x6(–2) + a

genr x7 = 2 + 2*x7(–1) – x7(–2) + a

3.15 In Example 3.1 the SACF and SPACF of Table 3.1 are obtained
by opening the page Ex _ 3 _ 1, opening the variable spread and 
obtaining the correlogram in the usual way, except in this case ‘First 
difference’ is selected in the Correlogram Specification.

Estimates of the AR(1) and MA(1) models for the first difference of 
the spread are obtained with the commands

ls d(spread) c d(spread(-1))

ls d(spread) c ma(1)

respectively.

3.16 The $/£ exchange rate is found in page Ex _ 3 _ 2 as the vari-
able dollar. Figure 3.6 shows this variable and its first difference,
d(dollar). The SACFs reported in Example 3.2 are obtained in the 
usual way by opening dollar and obtaining the correlogram for the
levels and first differences respectively.

Notes

1. Harold Cramer, ‘On some classes of non-stationary processes’, Proceedings
of the 4th Berkeley Symposium on Mathematical Statistics and Probability
(University of California Press, 1961), 57–78.
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2. The variance of xt is

2 2 2 1 2
2 1

2 2 4 2 1

2 2
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2 2

( ) ( ) ( )2 2 2 12 2 1
1
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1 12
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on using the white noise assumptions and the standard result that

2 11 (1 ) (1 )2 t1 (11 (1 ) (12 (11 (1 ) (1(1(1 ) (12 (1(11

with z  =  φ2.

3. The term random (or drunkard’s) walk was coined by Karl Pearson
in correspondence with Lord Rayleigh in the journal Nature in 1905. 
Although first employed by Pearson to describe a mosquito infestation
in a forest, the model was subsequently, and memorably, used to describe 
the optimal ‘search strategy’ for finding a drunk who had been left in 
the middle of a field at the dead of night! The solution is to start exactly 
where the drunk had been placed, as that point is an unbiased estimate 
of the drunk’s future position, and then walk in a randomly selected 
straight line, since he will presumably stagger along in an unpredictable
and random fashion.

  Pearson’s metaphor was, of course, in terms of spatial displacement, 
but the time series analogy should be clear. Random walks were, in fact,
first formally introduced in continuous time by Louis Bachelier in his
1900 doctoral dissertation Theorie de Speculation in order to describe the 
unpredictable evolution of stock prices. They were independently discov-
ered by Albert Einstein in 1905 and have since played a fundamental 
role in mathematics and physics as models of, for example, waiting times, 
limiting diffusion processes, and first-passage problems.

4. This terminology was introduced in Box and Jenkins, Time Series
Analysis.
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4
Unit Roots and Related Topics

Determining the order of integration of a time series

4.1 As we have shown in §§3.5–3.12, the order of integration, d, is 
a crucial determinant of the properties that a time series exhibits. 
If we restrict ourselves to the most common values of 0 and 1 for d,
so that xt is either t I(0) or I(1), then it is useful to bring together the
properties of such processes.

If xt is t I(0), which we will denote xt  ~ It (0) even though such a nota-
tion has been used previously to denote the distributional charac-
teristics of a series, then, assuming for convenience that xt has zero t

mean,

(i)  the variance of  xt is finite and does not depend ont t;
(ii)   the innovation at  has only a temporary effect on the value of xt;tt

(iii)  the expected length of times between crossings of x  =  0 is finite,
so that xt fluctuates around its mean of zero;t

(iv) the autocorrelations, ρk, decrease steadily in magnitude for large
enough k, so that their sum is finite.

If xt  ~ It (1) with x0  =  0, then

(i) the variance of xt goes to infinity ast t goes to infinity;t
(ii)  an innovation at has a permanent effect on the value of t xt becauset

xt is the sum of all previous innovations: see, for example, equa-t

tion (2.16);
(iii) the expected time between crossings of x  =  0 is infinite;
(iv)  the autocorrelations ρk →  1 for all k as t goes to infinity.
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4.2 The fact that a time series is non-stationary is often self-evident
from a plot of the series. Determining the actual form of non-sta-
tionarity, however, is not so easy from just a visual inspection and an
examination of the SACFs for various differences may be required.

To see why this may be so, recall from §2.15 that a stationary AR(p( )
process requires that all roots gi in

1 2( ) (1 )(1 ) (1 )pg g g1 2) (1 )(1 ) (1) (1 )(1 ) (11 2 p(1 )(1 ) (1)(1(1 )(1 ) (11 2φ

be such that | | 1<i . Now suppose that one of them, say g1,
approaches 1, so that g1  =  1 – δ, where δ δ is a small positive number.δ
The autocorrelations

1 1
k k k k

k p p1 1 2 2A g A g A g A g11
k k kk k

1 1 2 21 2 2= A g A g A gA g A gk k kkk k
p pp1 1 2 21 2 22 2ρ

will then be dominated by 1 1
kA g1 , since all other terms will go to zero 

more rapidly. Moreover, because g1 is close to 1, the exponential
decay 1 1

kA g1 will be slow and almost linear:

2 2
1 1 1 1 )k kA g A A k k A k1 1 1 1(11

k (1A1(1(1 δ δ δ2 2k (1 ) (1(1 )) (12 2
1)) (1 ) (1(1 )(1 ) (1) (1 2 2
1)

Hence failure of the SACF to die down quickly is an indication of non-
stationarity, its behaviour tending to be rather that of a slow, linear
decline. If the original series xt is found to be non-stationary, the t

first difference ΔxΔΔ t  is then analysed. If ΔxΔΔ t is still non-stationary, thet

next difference Δ2ΔΔ xt  is analysed, the procedure being repeated until a 
stationary difference is found, although in practice d will not exceed 2.d

4.3 Sole reliance on the SACF can sometimes lead to problems of 
over-differencing. Although further differences of a stationary seriesgg
will themselves be stationary, over-differencing can lead to serious
difficulties. Consider the stationary MA(1) process xt  =  (1 –t θBθθ )at. The
first difference of this is

(1 )(1 )t t( )( )x B B a(1 )(1 ))(1t (1 )(1 )Δxx (1 )(1)(1t (1 )(1

2(1 (1 ) )2
ta)2= (1 (1(1 )))

2
1 2(1 )2
1 22 a= (1 11
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We now have a more complicated model containing two parameters 
rather than one and, moreover, one of the roots of the θ(B(( ) polyno-
mial will be unity since θ1 + θ2 θ =  1. The model is therefore not invert-
ible, so that the AR(∞) representation does not exist and attempts to
estimate this model will almost surely run into difficulties.

Testing for a unit root

4.4 Given the importance of choosing the correct order of differ-
encing, it is clear that we need to have available a formal testing 
procedure to determine d. To introduce the issues involved in devel-
oping such a procedure, we begin by considering the simplest case, 
that of the zero mean AR(1) process:

t t t1 att 1xt +x 1t 1φxx  1,2, ,�t T= 1,2, ,�  (4.1)

where at  ~  t WN(0,σ 2) and x0  =  0. The OLS estimator of φ is given byφ

11

2

1

ˆ
T

ttt
T T

tt

x x1t

x

−=

=

=
∑
∑

φ

A conventional way of testing the null hypothesis φ   =  1 is to construct 
the t-statistictt

1 2
ˆ

1

ˆ ˆ1 1
ˆ ( )2 2

11T

T T
T

1t

t
2

=

= =
∑φt

φTT

φ 1T TT 1−1
σ (4.2)

where

1 2
ˆ 1

ˆ ( )2 2
11T

T

1t

2

=
= ∑φTT

σ

is the usual OLS standard error for φT̂ andT
2
Ts  is the OLS estimator of 

σ 2:

2 2
11

ˆ ) ( 1)2
1

T

T t T t1
(

t
) (1(s2

T ( ) () (2

=
) () (1((∑∑
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Unfortunately, the distribution of tφ does not have a limiting
normal distribution when φ  =  1. Rather, its distribution is shown
in Figure 4.1, where it is called the τ-distribution in recognition of 
its non-normality. The test statistic (4.2) is renamed τ rather than τ
tφ  and is often known as the Dickey-Fuller test, as indeed is ther
distribution.1

Figure 4.1 shows that the limiting distribution of τ is approxi-τ
mately standard normal but shifted to the left by roughly 0.3: the
large T 5%, 2.5% and 1% critical values for τ are –1.95, –2.23 andτ
–2.58, rather than the standard normal critical values of –1.65, –1.96 
and –2.33.

4.5 This case has the merit of being simple, but is not particularly
realistic, for it implies that the alternative to a driftless random walk 
is a stationary AR(1) process about a zero mean, which would rule out 
most economic and financial time series, which can typically only 
take on positive values. A more sensible alternative would thus be 
for the AR(1) process to fluctuate about a non-zero mean, so that we
have the model

t t t0 1x x at t 1 +x 1100θ φ++ xx00  t  =  1,2,…,t T (4.3)

–4 –3 –2 –1 0 1 2 3 4

.1

.2

.3

N(0,1)τ

Figure 4.1 Limiting Distribution of τ
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in which the unit root null is parameterised as θ0θθ   =  0, φ  =  1. The pres-φ
ence of an intercept alters the distribution of the test statistic, which
is now denoted τμττ  to emphasise that a non-zero mean is allowed forμ

in the regression (4.3).2 Figure 4.2 presents the simulated distribution
of τμττ . With a non-zero mean, the distribution under the unit root 
null deviates further from the standard normal than when the mean
is zero (compare with Figure 4.1), with the large T 5%, 2.5% and 1%
critical values now being –2.86, –3.12 and –3.43.

4.6 A further generalisation is to allow the innovations to be auto 
correlated. Suppose that xt is generated by the AR(t p( ) process

2
1 2(1 )2 p

p t t0x a)2
000φ1 221 22222 )2

1 x)2
222

or

1

p

t i t i t0 1i
ai t it ixt =

+ +xi t i∑∑ 1
φ

pp

0θ 0 +0 ∑ (4.4)

A more convenient representation is obtained by defining

1

p

ii=∑ φ
1

p

i=
φ = ∑

1

1

p

i j1j i

−

+i∑ φ
1p

jj1
δ i = −∑

 
1−i p= 1, 2, ,�

–5 –4 –3 –2 –1 0 1 2 3 4

.1

.2

.3

.4

.5

N(0,1)

τμ

Figure 4.2 Limiting distribution of τμττ
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so that (4.4) can be written, with k = p–1,

1

k

t t i t i t0 1 1i
ai t it ixt i t=

+ + Δ +xxi t it i∑∑ 11
δ

k

1

k

t0 1θ t0 11+ ++ xxxtt0 1 ∑ (4.5)

The null of one unit root is thus 
1

p

ii=∑ φ
1

p

i=
φ = ∑ = 1.3 OLS provides 

consistent estimators of the coefficients of (4.5) and a test of φ  = 1 can φ
be constructed as

ˆ 1
ˆ( )

T

T)se
−

=μ
φ

τ
φ

where se(φT̂) is the OLS standard error attached to the estimate TT φT̂ 

(recall §4.4). This statistic is also denoted τμττ  because it has the μ same
limiting distribution as the statistic obtained from the AR(1) model 
(4.3), although it is often referred to as the augmented Dickey-Fuller 
(ADF) test. In a similar vein, (4.5) is known as the augmented Dickey-
Fuller regression.

4.7 The above analysis has implicitly assumed that the AR order p
is known, so that we are certain that xt is generated by a t pth order 
autoregression. If the generating process is an ARMA(p( ,q), then the 
τμττ statistic obtained from estimating the model

1

k q

t t i t i t j t j0 1 1i j11
x x x a at t i t i t jj t1∑ k

1 1t0 1t0 1 θ
q

1
θ

11+ ++ xxxtt0 1 1∑ ∑k

i t i ti t i ti t i t1 i t i tt ii t i t11
Δ +

k
x ax ai t i tt it i

has the same limiting distribution as that calculated from (4.5). The
problem here, of course, is that p and q are assumed known, and this
is unlikely to be the case in practice. When p and q are unknown,
the test statistic obtained from (4.5) can still be used if k, the number
of lags of Δxt introduced as regressors, increases with the sample size.t

With typical economic and financial data, setting k at [T 0.25] should 
work well in practice, where [.] denotes the operation of taking the
integer part of the argument: for example, for T  =  50,T T 0.25 =  2.659, 
so that k is set at 2; for T  =  500, T T 0.25 =  4.729 and hence k  =  4. This 
adjustment is necessary because, as the sample size increases, the
effects of the correlation structure of the residuals on the shape of 
the distribution of τμττ  become more precise. A more accurate settingμ
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of k may be determined by using, for example, information criteria
given a maximum value of k of [T 0.25].

EXAMPLE 4.1  Unit root tests on the spread and
the $/£ exchange rate

Examples 2.2 and 3.1 examined two models for the UK interest rate
spread, a stationary AR(2) process and an I(1) process without drift.
We are now in a position to discriminate between the two through
the application of a unit root test. The fitted AR(2) model

0 036 1 192 0 224
(0.036) (0.036)(0.017)

t t t t1 2x x x at t t1 20.036 1.192 11+ +0 036 1 192 0 224x xx x 20 036 1 192 0 2241 192 1t t 20.036 1.192 1

can equivalently be written as

+ + Δ +0 036 0 969 0 224+ ++ +
(0.017) (0.008) (0.036)

t t t t−1 1−x x x a= + + Δ +Δ+ ++ ++t t t+ + Δ +1 1ΔΔ0.036 0.969++ 1 +

so that ( )0.969 1 0.008 3.93,(( )= (0 969 1 0 0081 0 008(( )μτ  which is significant at the 1%
level, this critical value being –3.44. Note that the τμττ  statistic can μ

be obtained directly as the t-ratio on tt xt–1tt  from rewriting the model
again as

Δ = − + Δ +0 036 0 031 0 224++
(0.017) (0.008) (0.036)

t t t t−1 1−xΔ =Δ aΔ +Δ− +− ++ +t t 1 1Δ0.036 0.031 1 +

We may therefore conclude that the spread does not contain a unit
root and that the appropriate specification is the stationary AR(2)
model in which there are temporary, albeit highly persistent, devia-
tions away from an equilibrium level of 1.128%.

A similar approach to testing for a unit root in the $/£ exchange
rate, the presence of which was assumed in Example 3.2, leads to the
estimated equation

Δ = − + Δ +0 039 0 024 0 136++
(0.014) (0.008) (0.044)

t t t t−1 1−xΔ =Δ aΔ +Δ− +− ++ +t t 1 1ΔΔ0.039 0.024 1 +
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Here we have τμττ   =  –2.93 and, since the 5% critical value is –2.87, this μ

is (just) significant, although it is not significant at the 1% level (the 
marginal significance level is 0.043). Thus there is some doubt as to 
whether the appropriate model for the $/£ exchange rate is indeed
a (possibly autocorrelated) random walk or whether it is stationary
around an ‘equilibrium’ rate, estimated here to be 1.672. This latter
model would have the implication that any deviation from this 
level would only be temporary and foreign exchange traders would
then have a ‘one-way’ bet in that such deviations must eventually
be reversed, which seems highly unlikely in such a competitive and 
efficient market.4 A resolution of this apparent ‘paradox’ will be 
provided in Example 5.1.

Trend versus difference stationarity

4.8 In the unit root testing strategy outlined above, the implicit
null hypothesis is that the series is generated as a driftless random 
walk with, possibly, serially correlated innovations. In popular termi-
nology, xt is said to bet difference stationary (DS),5

t txΔ =txx ε (4.6)

where εtεε  =  t θ(B(( )at, while the alternative is that xt is t stationary in levels.y
While the null of a driftless random walk is appropriate for many 
financial time series such as interest rates and exchange rates, other
economic series often do contain a drift, so that the relevant null
becomes

t txΔ =txx θ ε+ (4.7)

In this case, a plausible alternative is that xt is generated by a linear t

trend buried in stationary noise (see §3.12), now termed trend 
stationarity (TS)

t t0 1xt β β ε0 1t0 1 +t0 10 1
(4.8)

Unfortunately, the τμττ  statistic obtained from (4.5) is incapable of μ

distinguishing a stationary process around a linear trend (model
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(4.8)) from a process with a unit root and drift (model (4.7)). Indeed,
rejection of a null hypothesis of a unit root is unlikely using this 
statistic if the series is stationary around a linear trend and becomes
impossible as the sample size increases.6

4.9 A test of (4.7) against (4.8) is, however, straightforward to carry 
out by using an extension of the testing methodology discussed 
above: the ADF regression (4.5) is simply extended by the inclusion
of the time trend t as an additional regressor,t

1

k

t t i t i t0 1 1 1i
x t x x at t i t it ii t=

Δxxi t it i∑∑ 11t0 1 11 t0 1 11 1 δ
k

β β
k

t xt xt xtt0 1 111 ∑ (4.9)

and the statistic

ˆ 1
ˆ( )

T

Tse
−

=τ
φ

τ
φ

is calculated. This ‘t-statistic’ is denotedtt ττττ  to distinguish it fromτ τμ ττ
because it has a different limiting distribution, which is shown in
Figure 4.3. The large T 5%, 2.5% and 1% critical values are now –3.41, 
–3.66 and –3.96.

–5 –4 –3 –2 –1 0 1 2 3 4

.2

.4

N(0,1)

ττ

Figure 4.3 Limiting distribution of ττττ
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EXAMPLE 4.2 Are UK equity prices trend or 
difference stationary?

In Example 2.3 we modelled the returns of the UK FTA All Share indexe
as an ARMA process. In fact, the returns were defined as ΔxΔΔ t, wherett xt is t

the logarithm of the index. Thus, by analysing returns, we are implic-
itly assuming that the logarithm of the index is I(1) and that xt is DS.t

Figure 4.4 plots these logarithms, which are seen to have a pronounced
tendency to drift upwards, albeit with some major ‘wanderings’ about 
trend, most notably over the last decade and a half or so of the sample
period. We may thus investigate whether this DS representation is 
appropriate or whether a TS model would be preferable.

Setting the lag augmentation at k  =  3 led to the ADF regression

3

1

ˆ ˆ0 051 0 00007 0 012
(0.021) (0.00004) (0.006)

t t i t i t1
i

x t x x ât t i t it i t i10.051 0.00007 0.012 i ti t1
=

Δxxi t it iΔ = + − +0 051 0 00007 0 012x t xx t x0 051 0 00007 0 0120 00007t tt 10.051 0.00007 0.012 ∑∑δ

This yields the test statistic ττττ   =  –2.15. Since the 10% critical value is τ

–3.13, there is thus no evidence against the hypothesis that the loga-
rithm of the index is DS, confirming the use of returns in modelling 
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Figure 4.4 FTA All Share index on a logarithmic scale (January 1952–e
December 2014)
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this series. If the logarithms of the index had been TS, this would 
have implied that they evolved as autocorrelated deviations about a
linear trend, again providing traders with a one-way bet whenever 
the index got too far away from this trend. Even a cursory examina-
tion of Figure 4.4 shows that such a representation is clearly false.

Testing for more than one unit root

4.10 The above development of unit root tests has been predicated 
on the assumption that xt containst at most one unit root, so that it ist
at most I(1). If the null hypothesis of a unit root is not rejected, then 
it may be necessary to test whether the series contains a second unit
root, in other words whether it is I(2) and thus needs differencing
twice to induce stationarity.

EXAMPLE 4.3 Do UK interest rates contain 
two unit roots?

Figure 4.5 shows plots of the UK short and long interest rates from 
which the spread, analysed in Example 4.1, is calculated. To test for
the presence of one unit root in each of the interest rates we estimate 
the regressions

1

(0.032) (0.035)(0.004)
t t t13 1RS RS RS0 063 0 010 0 303t 0.063 0.010 11ΔRS RS RRS RS0 063 0 010 0 3030 010 1t 0.063 0.010 1

220 0.025 0.004 20 0.303 20 0.122 20
(0.003) (0.003)(0.026) (0.003)

t t t t1 110.025 0.004 200.025 0.004 20 1 11R20 0 025 0 004 20 0 303 20 0 12220 0 303 20 0 1221 11ΔRR20 0.025 0.004 20 0.303 20 0.12220 0 3030 025 0 004 20 0 303 20 0 1221 1110.025 0.004 200.025 0.004 20 1 11111

where RSt and t R20t are the short and long rates, respectively. Thet τμ ττ
statistics are thus –2.28 and –1.15, so confirming that both interest 
rates are I(1).

To test for a second unit root, the following Dickey-Fuller regres-
sions were run for the first differences of the interest rates:

2
1

(0.035)
t tRS RS0 702t 0.702 −Δ2RS R0 702t 0.702

2 2
120 0.823 20 0.125 202

(0.044) (0.036)
t t t10.823 200.823 20 1

2
1Δ2R20 0.823 20 0.1250 823 20 0 12510.823 200.823 20 1
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The τμ ττ statistics are computed here to be –20.2 and –18.8, thus conclu-
sively rejecting the hypothesis of two unit roots in both series.

EViews Exercises

4.11 The unit root tests in Example 4.1 can be computed automati-
cally. To test for a unit root in the spread, open page Ex _ 3 _ 1 of 
workfile mills.wf1 and open the variable spread. Selecting View/
Unit Root test ...and clicking OK will obtain the ADF-statistic and 
the differenced form of the ADF regression. The lag length in the 
ADF regression can either be chosen by the user or selected auto-
matically by a variety of information criteria with the maximum
lag length set at [min(T/TT 3,12) × (T/TT 100)0.25]. A similar procedure for the 
dollar variable in page Ex _ 3 _ 2 will obtain the ADF test statistic
and regression for the $/£ exchange rate.

4.12 The values of the FTA All Share index are found in page 
Ex _ 4 _ 2 as the variable index. The logarithms of the index may
be obtained with the command genr p = log(index). To test
whether these logarithms are TS or DS open p and conduct a unit
root test but this time checking ‘Trend and intercept’ in the ‘Include

Figure 4.5 UK interest rates (January 1952–December 2014)

0

4

8

12

16

1960 1970 1980 1990 2000 2010

% p.a.

R20RR

RS

9781137525321_04_cha04.indd   69 6/15/2015   5:19:27 PM



70  Time Series Econometrics

in test equation’ box and choosing a lag length of 3. The lag length
could also be selected automatically but the inference will remain 
unchanged: the ADF statistic is insignificant and the series is DS.

4.13 The unit root tests for the short and long interest rates of 
Example 4.3 may be obtained in a similar fashion to those for the
spread and exchange rate using the data in page Ex _ 2 _ 2, although
to test for a second unit root, select ‘1st difference’ and ‘none’ in the 
appropriate boxes.

Notes

1. The seminal article on what has become a vast topic, and which gives 
the distribution and test their eponymous names, is David A. Dickey and 
Wayne A. Fuller, ‘Distribution of the estimators for autoregressive time 
series with a unit root’, Journal of the American Statistical Association 74 
(1979), 427–31. The statistical theory underlying the distribution is too
advanced to be considered here but see, for example, Patterson, A Primer 
for Unit Root Testing (Palgrave Macmillan, 2010) and, at a rather more tech-g
nical level, his Unit Root Tests in Time Series, Volume 1: Key Concepts and 
Problems (Palgrave Macmillan, 2011). As will be seen from these texts,
there is now a considerable number of unit root tests, differing in their 
size and power properties. Nevertheless, the original Dickey-Fuller tests
remain popular and widely used.

2. Strictly, τμττ  testsμ φ  = φ 1 conditional upon θ0θθ   =  0, so that the model under the
null is the driftless random walk xt  = t xt–1tt   + at. The joint hypothesis θ0θθ   =  0,
φ  =  1 may be tested by constructing a standard F-test, although clearly the
statistic, typically denoted Φ, will not follow the F(2,T–2) distribution. TT
For large samples, the 5% and 1% critical values of the appropriate distri-
bution are 4.59 and 6.53, rather than the 2.99 and 4.60 critical values 
of the F-distribution: see Dickey and Fuller, ‘Likelihood ratio statistics
for autoregressive time series with a unit root’, Econometrica 49 (1981), 
1057–72.

3. This generalisation is most clearly seen when p  =  2, so that

t t t t0 1 1 2 21 2 a2 2xt 2 +x2 22 20 1 1 21 10 1 1 21 11 2θ φ φ+ ++ +xxx0 1 1 21 11 10 1 1 21 11 1

 This can be written as

( )0 1 2( )
0

t t t t t t0 1 1 2 1 2 1 2 21 2 1 2 1 2

t t t1 2 11 2

t t t1 1 11 1

x x x x x at t t t t2 2

a2 1

a1 1

2

2

1

+ + + +x x x xx x x x2 2t t t t2 2

Δ +xx2 12 1=
Δ +xx1 11 1=

θ φ φ φ φ0 1 1 2 1 2 11 2 1 21 1 2 1 2 10 1 1 2 1 2 11 2 1 21 2 1 21 1 2 1 2 11 2 1 2 11 21 2 1 22 1 2 1+ + ++ + +x x xx x xx x x0 1 1 2 1 2 11 2 1 21 1 2 1 2 11 1 2 1 2 10 1 1 2 1 2 11 2 1 21 2 1 21 1 2 1 2 11 1 2 1 2 1

θ 0 1 21( ) 111θ ( )+ + −+ + −(( )0 1 211(( )x 11

θ 0 111θ δ+ ++ +0 x 11

 which is (4.5) with k  =  1.
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4. The mean deviation form of the implied stationary AR(2) model for the 
$/£ rate is estimated to be

  ( ) ( )1 672 1 113( ) () (t t t t( ) ( )) () () (x x x at t t( ) ( )) () (1.672 1.113( ) (( ) () () () ( +)1 672 1 113( ) () ( )1 672 1 113( ) () () () () () () )1.672 1.113( ) (( ) () () (

 which has two real roots of 0.97 and 0.14.
5. This terminology was introduced in Charles R. Nelson and Charles I. 

Plosser, ‘Trends and random walks in macroeconomic time series’, Journal 
of Monetary Economics 10 (1982), 139–62.

6. These results were provided by Pierre Perron, ‘Trends and random walks
in macroeconomic time series: further evidence from a new approach’,
Journal of Economic Dynamics and Control 12 (1988), 297–332.
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5
Modelling Volatility using
GARCH Processes

Volatility

5.1 Following the initial work on portfolio theory in the 1950s,
volatility has become an extremely important concept in finance, 
appearing regularly in models of, for example, asset pricing and risk 
management. Much of the interest in volatility has to do with it not
being directly observable, and several alternative measures have been 
developed to approximate it empirically. The most common measure
of volatility has been the unconditional standard deviation of histor-
ical returns. The use of this measure, however, is severely limited by
it not necessarily being an appropriate representation of financial
risk and by the fact that returns tend not to be independent and
identically distributed, so making the standard deviation a poten-
tially poor estimate of underlying volatility.

An alternative approach to measuring volatility is to embed it 
within a formal stochastic model for the time series of returns. A
simple way to do this is to allow the variance (or the conditional 
variance) of the process generating the returns series xt to change t

either continuously or at certain discrete points in time. Although 
a stationary process must have a constant variance, certain condi-
tional variances can change, so that although the unconditional 
variance V(VV xt) may be constant for alltt t, the conditional variancet
V(VV xt|xt–1, xt–2,...), which depends on the realisation of xt, is able to alter 
from period to period.
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5.2 A simple way to develop a stochastic model having time
varying conditional variances is to suppose that xt is generated byt

the product process

t t tx Ut t
(5.1)

where UtUU is at standardised process, so that E(UtUU ) = 0 and tt V(VV UtUU ) = tt

E(UtUU2) = 1 for all t, and t σtσσ  is a sequence of positive random variablest

such that

2 2 2 2( | ) (( )2 2 22 2
t t t t t t t| ) (( ) ) ( )| ) (( ) ) (V( | ) (( )| ) (( 2 22| σ)2) (( ) ) ( )) (( ) ) () (( ) )) (( ) ) ((( ) ) () (( ) )2 22) (( ) ) () (( ) )(( ) ) () (( ) ) =)(( ) ) ((( ) ) ((( ) )) )

σtσσ2 is thus the conditional variance and σtσσ  the t conditional standard 
deviation of xt.

Typically UtUU  = (t xt –μ)/μμ σtσσ  is assumed to be normal and independent t

of σtσσ : we will further assume that it is strict white noise, so that
E(UtUU   Ut t–kUU ) = 0 for kk k ≠ 0. These assumptions imply that xt has mean t μ, 
variance

2 2 2 2 2 2( ) ( ) ( ) ( ) ( )2 2 2 2 2 22 2 2 2
t t t t t t) ( ) ( ) ( ) () ( ) ( ) ( ) (E( )2 2 2 2 22 2 2 22 2 2 2 (t t t t) ( ) ( ) ( ) () ( ) () ( ) ( ) ( ) () ( ) ( ) ( )( ) ( ) ( )) ( ) (2 2 2 2 22 2 2 22 2 2 22 2) ( ) ( ) ( )) ( ) (( ) ( ) ( )) ( ) () ( ) ( ) ( )( ) ( ) (( ) ( ) ( )) ( ) (

and autocovariances

( )( ) ( ) ( ) ( ) 0)( ) ( ) ( ) ()( ) ( ) ( ) (E ( )( ) ( ) ( ) (( )( ) ( ) ( ) ()( ) ( ) ( ) ()( ) ( ) ( ) (() () () ( =)) (() (()( ) ( ) () ( ) ()( ) ( ) ()( ) ( ) () ( ) (( ) ( ))( ) ( ) ()( ) ( ) () ( ))( ) ( ) () ( ) () ( ) () ()( ) ( ) () ( )) ( ))( ) ()( ) ( ) () () ( )( ))( ) ( ((((((((

and is thus white noise. However, note that both the squared and 
absolute deviations, St = (t xt – μ)μμ 2 and MtMM  = |t xt – μ|, can be autocorre-
lated. For example,

2

2 2 2 2 2 2

2 2 2 2

( , ) ( ( ))( ( )) ( ) ( ( ))

( ) ( ) ( ( ))2 2 2 2 22 2 2

( ) ( ( ))2 2 22

t t k t t t k t t t k t, ) ( ( ))( ( )) ( ) ( (, ) ( ( ))( ( )) ( ) ( (

t t k t t k t) ( ) ( () ( ) ( (

t t k t) ( () ( (

Cov( , ) ( ( ))( ( )) ( ) ( (, ) ( ( ))( ( )) ( ) ( (, ) ( ( ))( ( )) ( ) ( (, ) ( ( ))( ( )) () ( ( ))( ( )) ( ) ( (

E(E( 2 2 2 22 22 2

E(E( 2 2

) ( ( ))( ( )) () ( ( ))( ( )) () ( ( ))( ( )) (

) () () (

( ( ))( ( )) ( )( ( ))( ( )) (( ( ))( ( )) ( )( ( ))( ( )) ( )( )) (( ( ))( ( )) (( ( ))( ( ))

= E(

= E(

) ( ) ( () ( ) ( () ( ) ( () () ( ) ( () ( ) (( ) (2 2 2 22 22 2) ( ) () (( ) () ( )() ( )) ((

) ( () ( () ( () ( () (2 2 ) ())

so that

2 4 2 2( ) ( ) ( ( ))2 4 24 2
t t t) ( ) ( () ( ) ( (E( ) ()2 444) (( () ( () ( () (4 ) ()
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and the kth autocorrelation of St ist

2 2 2 2

, 4 2 2

( ) ( ( ))2 2 22

( ) ( ( ))4 22
t t k t) ( () ( (

k S,
t t) ( () ( (

E( 2 2

E( 4=
) ( () ( () ( () ( () (2 2 ) (

ρ
) ( () ( () ( () (4 ) (

This autocorrelation will only be zero if σtσσ2 is constant, in which
case xt can be written ast xt =t μ + aμ t, where at =t σ UtUU  has zero mean and t

constant variance σ, which is just another way of definingσσ at, and 
hence xt, to be white noise.

ARCH processes

5.3 So far we have said nothing about how the conditional vari-
ances σtσσ2 might be generated. We now consider the case where they 
are a function of past values of xt:

( )2
t (f (((=σ

A simple example is

( ) ( )2))2
t ( ) () ()f ( ) (( ) ()f ( ) () (σ 2
t (( ) () () ()= f ( ) () () ()(( ) () ( (5.2)

where α0αα  and α1αα  are both positive. With UtUU  ~t NID(0,1) and inde-
pendent of σtσσ , xt =t μ + μ σtσσ UtUU  is then white noise and conditionallyt

normal,

( )| , , ~ (t t t (| , ,, (1 2x | , , ~, , ~1 2t | , ,, ,1 21 ((((

so that

( ) ( )2))) () () ()V ( ) (( ))) (((((((((

If 0 < α1αα  < 1 then the unconditional variance is V(VV xt) = tt α0αα /(1 – α1αα ) and 
xt is weakly stationary. It may be shown that the fourth moment of t

xt is finite if 3t α1αα2 < 1 and, if so, the kurtosis of xt is given by 3(1–t α1αα2 )/
(1 – 3α1αα2 ). Since this must exceed 3, the unconditional distribution 
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of xt is fatter tailed than the normal. If this moment condition is not t

satisfied, then the variance of xt
2 will be infinite and xt

2 will not be 
weakly stationary.

5.4 This model is known as the first-order autoregressive condi-
tional heteroskedastic (ARCH(1)) process.1 ARCH processes have
proved to be an extremely popular class of non-linear models for
economic and financial time series. A more convenient notation is to
define εtεε  =t xt – μ =μ UtUU σtσσ , so that the ARCH(1) model can be written as

2| , , ~ (0, )2
t t t t| , , (0,, , (0,1 21ε | , , ~ (0,t | , , (0,1 2, , ~, , ~1 2, ,, ,1 2

2 2
1t t0 1σ 2 α ε11t 0 11= +00

On defining νtνν  =t εtεε2 –σtσσ2, the model can also be written as

2 2
t t t0 1 1+2ε α α ε ν2
t tt0 1 11= + ++ 2

0 1 11 t0 1 11

Since E(νtνν | xt–1, xt–2, ...) = 0, the model corresponds directly to an AR(1)
model for the squared innovations εtεε2. However, as νtνν  =t σtσσ2 (UtUU2 – 1), the 
errors are obviously heteroskedastic.

5.5 A natural extension is to the ARCH(q) process, where (5.2) is
replaced by

2 2

1
( )

q

i t i1t t t t q1 2 02 i
f ( ) (t t t q i1 2 02 1

(f ( ) ∑ μt ii1
(

1
σ 2

t t t t q1 2 02( , , , )1 2 0222 (
1

, , , )1 2 0222 ((= f ( )( , , , ), , ,1 2 0222

where α0 αα ≥ 0 and αiαα  > 0, 1 ≤ i ≤ q. The process will be weakly stationary
if all the roots of the characteristic equation associated with the 
ARCH parameters are less than unity. This implies that ∑q

i=1
αiαα  < 1, 

in which case the unconditional variance is V(VV xt) =tt α0αα /(1 – ∑q

i=1
αiαα ). In 

terms of εtεε  andt σtσσ2, the conditional variance function is

2 2

1

q

t i t i0 1i=∑∑ α εiiσ α2
t 0= +0 ∑

or, equivalently, on defining α(B(( ) = α1αα  + α2αα B + ... + αqαα Bqq
q–1,

( )2 2( )t t t0 1( )( +2)((ε2 νt tt0 1( ) +) 2) 1)= ++ ((0 ( t0 1( )B(((((
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5.6 A practical difficulty with ARCH models is that, with q large, 
unconstrained estimation will often lead to violation of the non-
negativity constraints on the αiαα s that are needed to ensure that the
conditional variance σtσσ2 is always positive. In many early applications
of the model a rather arbitrary declining lag structure was imposed 
on the αiαα s to ensure that these constraints were met. To obtain more
flexibility, we consider a further extension, to the generalised ARCH
(GARCH) process.2 The GARCH(p,q( ) process has the conditional vari-
ance function

( ) ( )

2 2 2

1

2 2( )0 1 1( )

q p

t i t i i t i0 1i i1

11 ( )
t

=

∑ i 111∑ q 2
i1

β σii1 i1
σ 2

t 0= +0 ∑222
i t ii t iii t i11

+22
i t ii

α 0 ( )α α ε β σ( ) )2 ( ))1 ( )B B( ) (2 ((((1 ( )++ (0 ( ) 1B( ) 2
1(( ) 1

where p > 0 and βiββ  ≥ 0, i ≤ 1 ≤ p. For the conditional variance of 
the GARCH(p,q( ) process to be well defined, all the coefficients in
the corresponding ARCH(∞) model σtσσ2 = θ0θθ  + θ(B( )εtεε2 must be positive. 
Provided that α(B(( ) and β(B(( ) have no common roots and that the 
roots of 1 – β(B(( ) are all less than unity, this positivity constraint will
be satisfied if and only if all the coefficients in θ(B(( ) = α(B(( )/(1 – β(B(( ))
are non-negative. For the GARCH(1,1) process,

2 2 2
1t t t0 1 1 1 −tσ α α ε β σ2 2

1t tt0 1 1 11 11 1= + ++ 22
0 1 11 110 1 11 11

a model that has proved extremely popular for modelling financial
time series, these conditions require that all three parameters are 
non-negative.

The equivalent form of the GARCH(p,q( ) process is

( )( ) ( )( ) ( )2 2( )( ) ( ) 1t 0 11( )( ) ( ) ( )ε α α β ε ν β ν( )2 2( )( ) ( ) )t 0 111( )( ) ( ) ( )B(2)( ) ( ) (((1 ( )= + (( (( (0 (( (0 (( ( )( ) ( ) 2)( ) ( ) 11)( ) ( ) 111)(( ) (( ) (5.3)

so that εtεε2 ~ ARMA(m,p), where m = max(p,q( ). This process will be
weakly stationary if and only if the roots of 1 – α(B(( ) –β(B(( ) are all less
than unity, so that α(1) + β(1) < 1.

5.7 If α(1) + β(1) = 1 in (5.3) then 1 –α(B( ) –β(B(( ) contains a unit root
and we say that the model is integrated GARCH, or IGARCH. It isH
often the case that α(1) + β(1) is very close to unity for financial time
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series and, if this condition holds, a shock to the conditional vari-
ance is persistent in the sense that it remains important for all future 
observations.

5.8 Although we have assumed that the distribution of εtεε  is condi-t

tionally normal, this is not essential. For example, the distribution
could be Student’s-t with unknown degrees of freedom t υ that may be
estimated from the data: for υ > 2 such a distribution is leptokurtic 
and hence has thicker tails than the normal. Whatever the assumed
error distribution, estimation will require non-linear iterative tech-
niques and maximum likelihood estimation is available in many
econometric packages.

5.9 The analysis has also proceeded on the further assumption that
εtεε  = t xt – μ is serially uncorrelated. A natural extension is to allow xt

to follow an ARMA(P,Q( ) process, so that the combined ARMA(P,Q(( )–
GARCH(p,q( ) model becomes

( )( ) ( ) t) ( )B x B( )( ) (Φ ( )(B x(( )( )( ε))) ( ))B((()))

( ) ( )2 2 2( ) ( ) 1t 0 11( ) ( )σ α α ε β σ)2 2( ) ( ))t 0 11( ) ( )B(22( ) ((((1 ( )= ++ ((0 (0 (B( ) 2( ) 1( ) 1(( )

Testing for the presence of ARCH errors

5.10 Let us suppose that an ARMA model for xt has been esti-t

mated, from which the residuals et have been obtained. The pres-t

ence of ARCH may lead to serious model misspecification if it is
ignored: as with all forms of heteroskedasticity, analysis assuming
its absence will result in inappropriate parameter standard errors, 
and these will typically be too small. For example, ignoring ARCH
will lead to the identification of ARMA models that tend to be over-
parameterised.

5.11 Methods for testing whether ARCH is present are therefore essen-
tial, particularly as estimation incorporating it requires complicated
iterative techniques. Equation (5.3) has shown that if εtεε  is GARCH(t p,q( )qq
then εtεε2 is ARMA(m,p), where m = max(p,q( ), and standard ARMA theoryqq
follows through in this case. This implies that the squared residuals 
et

2 can then be used to identify m and p, and therefore q, in a similar 
fashion to the way the residuals themselves are used in conventional 
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ARMA modelling. For example, the sample autocorrelations of et
2 have 

asymptotic variance T–1 and portmanteau statistics calculated from
them are asymptotically χ2χχ  if the εtεε2 are independent.

5.12 Formal tests are also available. A test of the null hypothesis 
that εtεε  has a constant conditional variance against the alternative thatt

the conditional variance is given by an ARCH(q) process, which is aqq
test of α1αα  = ... = αqαα  = 0 conditional upon β1ββ  = ... = βpββ  = 0, may be based 
on the Lagrange Multiplier (LM) principle. The test procedure is to
run a regression of et

2 on e2
t–1,..., e2

t–q and to test the statistic T . R2 as a 
χ2χχqχχ  variate, where 2 R2 is the squared multiple correlation coefficient of 
the regression. An asymptotically equivalent form of the test, which 
may have better small sample properties, is to compute the standard 
F test from the regression.F 3 The intuition behind this test is clear. If 
the data are indeed homoskedastic, then the variance is constant and 
variations in et

2 will be purely random. If ARCH effects are present,
however, such variations will be predicted by lagged values of the 
squared residuals.

Of course, if the residuals themselves contain some remaining 
autocorrelation or, perhaps, some other form of non-linearity, then it
is quite likely that this test for ARCH will reject, since these misspeci-
fications may induce autocorrelation in the squared residuals. We 
cannot simply assume that ARCH effects are necessarily present 
when the ARCH test rejects.

5.13 When the alternative is a GARCH(p,q( ) process, some compli-
cations arise. In fact, a general test of p > 0, q > 0 against a white
noise null is not feasible, nor is a test of GARCH(p + r( 1, q + r2) errors, 
where r1 > 0 and r2 > 0, when the null is GARCH(p,q( ). Furthermore,
under this null, the LM test for GARCH(p,r( ) and ARCH(r p  +  r( ) alterna-r
tives coincide. What can be tested is the null of an ARCH(p( ) process
against a GARCH(p,q( ) alternative.4

5.14 Several modifications to the standard GARCH model result 
from allowing the relationship between σtσσ2 and εtεε to be more flex-t

ible than the quadratic relationship that has so far been assumed. 
To simplify the exposition, we shall concentrate on variants of the
GARCH(1,1) process

2 2 2 2 2 2
1t t t t t t0 1 1 1 1 0 1 1 1 11 1 1 0 1 1 1 1σ α α ε β σ α α σ β σ2 2 2 2 22 2 2

11t 0 1 1 1 1 0 1 1 1 11 1 1 0 1 11 1 1 1 0 1 1 1 11 1 1 0 1 1 1 11 0 1 11 1 1 0 1 11 1 0 1 1 1= + + = + ++ + = +2 2 2 22 2 2 22 2
0 1 1 1 1 0 1 1 11 1 1 1 0 1 1 11 1 1 1 0 10 1 1 1 1 0 1 1 11 1 1 0 1 11 1 1 1 0 1 1 11 1 1 1 0 1 U  (5.4)
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An early alternative was to model conditional standard deviations 
rather than variances:

1| | | |t t t t t t0 1 1 1 1 0 1 1 1 11 1 1 0 1 1 1 11 1 1 0 1 1 11 1 1 0 1 1 11 1 1 0 1 1σ α α ε β σ α α σ β σ11| | | |t 0 1 1 1 1 0 1 1 1 11 1 1 1 0 1 1 1 11 1 1 0 1 1 11 1 1 0 1 1 11 1 1 0 1 11 1 1 0 1 11 1 1 0 1 1 11 1 0 1 1 11 0 1 11 1 1 0 1 1 +|1= ++0 1| | ||1 1 1 0 1 11 1 1 0 1 11 1 01 1 1 0 1 10 1 1 1 1 0 1 11 1 1 0 1 11 1 1 0 11 1 01 1 1 0 1   (5.5)

This makes the conditional variance the square of a weighted average 
of absolute shocks, rather than the weighted average of squared 
shocks. Consequently, large shocks have a smaller effect on the
conditional variance than in the standard GARCH model.5 Rather 
than concentrating on the variance or standard deviation, a more
flexible and general class of power GARCH models can be obtained
by estimating an additional parameter:6

1t 0 1 1 11 11

γ γσ α ε β σ11t 0 1 1 11 111 1= + ++0 1 11 110 1 11 11

γγ = + ++ γ

5.15 An asymmetric response to shocks is made explicit in the
exponential GARCH (EGARCH) modelH 7

2 2
1)2
1log( t t t t0 1 1 1 11 1 10 1 1 1 11 1 1

2 ) ( ) log() ( ) log(2
111 1 11 1 111 1 1) 0 1 1 1 111( )( )(0 1 1 11 11 1 11 11 11 1110 1  (5.6)

where

( ) ( )1t t t tt t1 1 1 1 11 1 11 1 1 ( 1 1 11 1 11 1 1g( ) (t 1 1 1 1 11 1 11 1 11 1 1 111 1 1111 1 1111 1 1 1111 1 1111)1 1 (1 1 111 11 1 1 1111 11 1 11 1 11 1 ( 1 111 11 1 111 1 1 1111 1

The ‘news impact curve’, g(.), relates conditional volatility, here 
given by log(σtσσ 2), to ‘news’, εt–1tt . It embodies an asymmetric response
since ∂g/gg ∂εt–1tt  = 1 + θ1 when εt–1tt  > 0 and ∂g/gg ∂εt–1tt  = 1 – θ1 when εt–1tt

< 0 (note that volatility will be at a minimum when there is no 
news, εt–1tt  = 0). This asymmetry is potentially useful as it allows
volatility to respond more rapidly to falls in a market than to 
corresponding rises, which is an important stylised fact for many
financial assets and is known as the leverage effect. The EGARCH
model also has the advantage that no parameter restrictions are
necessary in order to ensure that the variance is positive. It is easy 
to show that g(εt–1tt /σtσσ –1tt ) is strict white noise with zero mean and
constant variance, so that log(σtσσ 2) is an ARMA(1,1) process and will
be stationary if β1 < 1.
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5.16 A model which nests (5.4), (5.5) and (5.6) is the non-linear 
ARCH (NARCH) model, a general form of which isH

( ) 1t 0 1 1 1( ) γσ α α ε β σ( ) 11t 0 1 1 11 1 1( ) 1) +( )( 1( )( 1( )(= ++0 10 1 gγ γ ( )= + ++ ( )g

while an alternative is the threshold ARCH process

( ) ( ) 1t 0 1 1 1( )γ( γσ α α ε β σ( ) ( ) 11t 0 1 1 11 1 1( ) 1) +( ) ( )( 1( )(= ++0 1 1( )(0 1h γ( ) ( )γ (h +( ) ( )= ++ h γ(((

where

( ) ( ) ( ) ( )1(t t t) t ( ) t (1 1 1 11 1) 1 ( ) 1 (h 1 1 1 11 11 1) 1 ( ) 1 (γ γ( )1 0( )γ(( θ ε( )( ) 1(1 1 1 11 11 1 1) 1 ( ) 1 (1 11 1( ) 1 (= 1 11 1 1 0 1( )( ((1 11 1( )( 1 ((1 11 1 1 11 1( )( 1 ((γ
1 0( )1 0( )

1(.) being the indicator function which takes the value 1 if the argu-
ment is satisfied and 0 when it is not. If γ = 1, we have theγ threshold 
ARCH (TARCH) model, while forH γ = 2 we have the γ GJR model, which 
allows a quadratic response of volatility to news but with different
coefficients for good and bad news, although it maintains the asser-
tion that the minimum volatility will result when there is no news.8

5.17 An alternative formalisation of the GARCH(1,1) model (5.4) is 
to define α1αα = ϖ(1 –α1αα  –β1), where ϖ is the unconditional variance, or ϖ
long-run volatility, to which the process reverts to:

( ) ( )2 ( ) () (t ( ) () (1( ) ()) (σ 2 ( ) () ()t 1( ) ()) (( ) () ()= ++ ( ) () (( ) (( ) () () (1( ) () (( ) (1( ) ()) (( ) (

This formalisation may be extended to allow reversion to a varying
level defined by qt:

( ) ( )2 ( ) () (t t ( ) () (t 1( ) () () () (σ 2 ( ) (t t 1( ) ()( ) () ()= ( ) () (q ( ) ()( ) (( ) () (1( ) ()( ) (t 1( ) ()( ) (
( ) ( )t t( ) () (qt (ϖ ξ ϖ ζ( ) () (((( ) (+ − ++ − +( ) (() (() ((((((

Here qt is the permanent component of volatility which converges t

to ϖ through powers of ϖ ξ, while σtσσ2 – qt is the transitory component,t

converging to 0 via powers of α1αα  + β1ββ . This component GARCH model H
can also be combined with TARCH to allow asymmetries in both
the permanent and transitory parts: this asymmetric component 
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GARCH model automatically introduces asymmetry into the transi-H
tory equation.9

5.18 There are many other variants to the basic GARCH model but 
these typically require specialised software to estimate and cannot
be treated here.

Example 5.1 GARCH models for the $/£ exchange rate

Table 5.1 presents the results of fitting various AR(1)-GARCH(p,q( )
models to the first differences of the $/£ exchange rate, Δxt. The
choice of an AR(1) model for the conditional mean equation is based
on our findings from Examples 3.2 and 4.1. Assuming homoskedastic 
(GARCH(0,0)) errors produces the estimates in the first column of 
Table 5.1. The ARCH(1) statistic, the LM test for first-order ARCH, shows 
that there is strong evidence of conditional heteroskedasticity.

A GARCH(1,1) conditional variance is fitted in the second column,
using the estimation technique of quasi-maximum likelihood (QML).
Both GARCH parameters are significant, and the LM test for any 
neglected ARCH is insignificant. The GARCH parameters sum to just 
under unity, suggesting that shocks to the conditional variance are
very persistent. Note that the AR coefficient in the mean equation
is now insignificant: its previous significance in earlier examples is
thus seen to be a consequence of incorrectly assuming that the errors 
were homoskedastic rather than generated as a GARCH process. The 
estimated ‘pure’ GARCH(1,1) model is shown in the third column:
the exchange rate is thus generated as a driftless random walk with 

Table 5.1 $/£ exchange rate: QML estimates

GARCH(0,0) GARCH(1,1) GARCH(1,1)

Φ̂1 0.129 (2.91) 0.070 (1.32) –
α̂0 – 7.38 (2.10) 8.30 (2.13)
α̂1 – 0.133 (3.86) 0.144 (3.87)
β̂0 – 0.842 (25.8) 0.828 (23.4)
α̂1  +  β̂1 – 0.975 0.972

ARCH(1) 30.2 [.00] 0.5 [.48] 0.7 [.42]
Log-L 796.7 829.3 829.7

Figures in (...) are t-statistics; Figures in […] are marginal significance levels.
Log-L is the log-likelihood. Estimates of α0αα  are scaled by φ5.
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GARCH(1,1) errors (note that overfitting using GARCH(1,2) and
GARCH(2,1) models proved unsuccessful).

Finally, if the lagged level of the exchange rate is added to the
mean equation then this will provide a test of a unit root under
GARCH(1,1) errors: doing so yields a coefficient estimate of –0.0005 
with a t-statistic of just –0.41. The paradox found in Example 4.1
thus disappears: once the error is correctly specified as a GARCH
process, there is no longer any evidence against the hypothesis that
the exchange rate is a random walk.

The conditional standard deviations from this model are shown
in Figure 5.1 along with the differences Δxt. Large values of σ^tσσ  are t

seen to match up with periods of high volatility in the exchange
rate, most notably around the UK’s departure from the Exchange 
Rate Mechanism (ERM) in September 1992 and during the financial
crisis of 2008–2009, in which the $/£ rate dropped by over a quarter
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Figure 5.1 First differences of the $/£ exchange rate (top panel). Conditional
standard deviations from GARCH(1,1) model (bottom panel)
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in just a few months (recall Figure 3.6). Note also the ‘asymmetric’
nature of σ^tσσ : rapid increases are followed by much slower declines, 
thus reflecting the persistence implied by the fitted models.

EViews Exercises

5.19 The AR(1)-GARCH(0,0) regression reported in Table 5.1 may be 
obtained by opening the Ex _ 3 _ 2 page and issuing the standard
least squares command

ls d(dollar) d(dollar(-1))

The ARCH(1) test statistic can be obtained by clicking View/Residual 
Diagnostics/Heteroskedasticity Tests… and selecting ARCH as the
test type.

The AR(1)-GARCH(1,1) regression can then be estimated by 
clicking Estimate and selecting ARCH – Autoregressive Conditional 
Heteroskedasticity as the estimation method. The conditional
standard deviation plot shown in Figure 5.1 is then obtained by
clicking View/Garch Graph/Conditional Standard Deviation and
freezing the graph.
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6
Forecasting with Univariate
Models

Forecasting with ARIMA models

6.1 A very important use of time series models is in forecasting. To
be more precise, given a realisation (x1–d,x2–d,���xT) from a general TT

ARIMA(p( ,d,q) process

( ) ( )d
t t( )0B x B a( ) ( )d (( )φ ( ) t 0B x(( ) d
t 0xx 0

d
t 0  (6.1)

how do we forecast a future value xT+TT h?1,2 If we let

( ) ( ) ( )d ((B B( ) ( ) d ((B( ) d ((α φ( ) ( ) (B(( ) BB(( ) (((d (((

(6.1) becomes, for time T +T h,

( ) ( )T h T h( )0B x B( ) ( a)( )h Th T( )0 (( )α ( ) TB x(( ) T hh 0h 000

or, when written out fully,

1

T h T h T h p d T h p d T h1 1 2 2 01 2 2

T h q T h q

x x x x aT h T h T h p d T h p d

a
h T h T h p d T h p d Th T h T h p d T h p d T1 1 2 2 01 2 21 2 2h T h T h p d T h p d 0

h q T hh1 q

+00

−

θ1 1 2 21 2 21 2 22 21 1 2 21 2 21 2 21 2 22 2+ + + +x x xx xx x xT h T h p d T h p dh h dh d h dT h T h p d T h p d1 1 2 21 2 21 2 22 22 21 1 2 21 21 21 22 2

θ θ1aT h 111a

Clearly, observations from T + 1 onwards will be unavailable, but a T
minimum mean square error (MMSE) forecast of xT +T h made at time T, TT
which we shall denote fTff ,TT h, is given by the conditional expectation
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0T h T h T h p d T h p d, 1 1 2 21 1 2 2f E x x x(T h, 11 1 2 21 2 21 2 21 2 21 2 2E(( θ1 1 2 21 2 221 2 22 2 +h dx x xxx xh h dh h dhh h1 1 2 21 2 21 2 22 21 1 2 21 2 21 2 221 2 22 22 2

)1| , ,1T h T h q T h q T TaT a |h |h T h q T h q T T1 111h+ −aT hh θ θ1 11 1aT h1 11 1 �,1 (6.2)

Now

0
( | , , )1

0

T j

T j T T| ,| ,
T j,

x j,T j
E( | ,| ,| ,| ,

f j,T j,

| ,| ,| ,| ,
⎧
⎪
⎧⎧

= ⎨
⎪⎪

⎪
⎨⎨
⎩⎪⎪

and

1

0
( | , , )1

0, 0

T j
T j T T| ,| ,

a j,T jE( | ,| ,| ,| ,
j

j T T| ,| ,| ,| ,
⎧⎪⎧⎧= ⎨
⎪⎪

⎪
⎨⎨
⎩⎪⎪

so that, to evaluate fTff ,TT h, all we need to do is: (i) replace past expec-
tations (j≤ 0) by known values, xT+TT j+  and aT+TT j+ , and (ii) replace future 
expectations (j > 0) by forecast values, fTff ,TT j and 0.

6.2 Three examples will illustrate the procedure. Consider first the 
AR(2) model (1  –  φ1B – φ2B2)xt  = t θ0θθ   + at, so that α(B( )  =  (1  –  φ1B –  φ2B2).
Here

T h T h T h T h1 1 2 2 01 2x x x aT h T h T hh T h T h Th T h T h T1 1 2 2 01 21 2 0h + + +x xx x 00φ φ θ1 1 2 21 21 22 21 1 2 21 21 21 22 2+ ++ +x xxx xT h T hh hT h T h1 1 2 21 21 22 22 21 1 2 21 21 21 22 22 2

and hence, for h  =  1, we have

,1 1 2 1 0T ,1 1 2f x x1T ,1 1 2 θ11 221 +1x xx1 221 21 221 2

f 2=or h

,2 1 ,1 2 0T ,2 1 ,1 2f f x2T ,2 1 ,1 2 θff1 ,1 2,1 21 ,1 +f xf1 1 21 21 1 21 1 21 21 1 2

and, for h  >  2,

, 1 , 1 2 , 2 0T , 1 , 1 2 ,1 , 1 2 ,f f fT h, 1 , 1 21 , 1 2, 1 2 θ2,,1 , 1 2, 1 2, 1 21 , 1f ff 1 2 +2hf ff hhh1 1 21 21 21 1 2
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An alternative expression for fTff ,TT h can be obtained by noting that

, 1 2 , 1 2 , 1 , 2 0( ) ( )T , 1 2 , 1 2 , 1 ,1 2 , 1 2 , 1 ,f ( ) ((T h, 1 2 , 1 2 , 11 2 , 1 2 , 1, 1 2 , 1(( θ2 )2,,,,) (()1 2 , 1 2 , 1, 1 2 , 1, 1 2 , 11 2 , 11 2 , 1 2 , 1, 1 2, 1 2 , 1, 1 2 , 11 2 , 11 2 111 2 +)2) (() ()) ((()1 2 1 2 11 21 2 11 2 11 2 1

from which, by repeated substitution, we may obtain

1

1 2
0

)2

h h1
h j j( )T h T T h j T h j, 1 2 21 2

j j0

f ( )T h, 1 2 21 2

1

0

(( ∑0j j1 2 , 1 , 2, 1 , 21 2 , 1, 1, 1∑ ∑jj( ) ( )( ) ( )( ) ( 1111()1 2 21 21 2 21 2 ( 1()))))1 2 21 2 00, 2, 2, 2, 21 2 , 1, 1, 111 2 , 11 2 , 1, 11 2211 )( ) ( ) 0)22( ) () (( ) (( ) (1 2 11 2 111

where, by convention, we take fTff ,0TT   = xT and T fTff ,–1TT   = xT–1 . Thus, for 
stationary processes ( )1 2 1, | | 12|2φ φ(( 1 2 1 |+ <22 1 | , as the forecast horizon, or lead 
time, h→∞,

0
,

1 2

( )
1T h t, 1

f E0 (T h, (
1

=)E0 ((
−

θ
μ

φ φ1 2−

so that for long lead times the best forecast of a future observation is 
eventually the mean of the process.

6.3 Next consider the ARIMA(0,1,1) model Δxt  =  (1  – t θBθθ )at. Here 
α(B(( )  =  (1  –  B) and so

1T h T h T h T hx x a aT h T h T hh T h T h T hh T h 1h T hh T 1 +x ax aT h T hT hT h 1T h 1 θaa

For h  =  1, we have

,1T T T,1f x a1T TT,1 xxT aa

for h  =  2

,2 ,1T T T T,2 ,1f f x a2T T TT,2 ,1f xf x1 T1 aa

and, in general,

, , 1 1T , ,,f f h1T h, ,, >f h1h
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Thus, for all lead times, the forecasts from origin T will follow aT
straight line parallel to the time axis and passing through fTff ,1TT . Note
that, since

,T h T T,f x aT h TT, xxT aa

and

( )( ) 11 1( )(T T( )( )a ( B x) 11 1(( )(( )T ( )(1 1( )( −))BB(1 1( )((1 1( )( BB

the h-step ahead forecast can be written as

( )( ) 1
,h T( )( )T ,f B x( )( ) 11 1(( )(T h ( )( ), 1( −))))(1((1( BB1)(()(1)(1)(1)(

( )( )1((= −(1( θ)((θ)()(((

so that the forecast for all future values of x is an exponentially 
weighted moving average of current and past values.

6.4 Finally, consider the ARIMA(0,2,2) model Δ2ΔΔ xt  =  (1  –  t θ1θθ B  – θ2θθ B2)at, tt

with α(B(( )  =  (1  –  B)2  =  (1  –  2B  +  B2):

22T h T h T h T h T h T hx x x a a aT h T h T h T h T h 2h T h T h T h T h T hh T h 1 2 1 1 22 1 1 22 1 1 2h T hh T 1 2 1 1 222 1 1 22 +2x x ax x a2 T h T h T hT h T hT h T h1 2222 T h 1 22222 θ θ1 11 11 11 1a h1 11 1

For h  =  1, we have

,1 1 1 2 1T ,1 1 1 21 1 2f x x a a1 1 1 22T ,1 1 1 21 11 1 21 1 2x xx x 12 1 aa11a11

for h  =  2,

,2 ,1 1T T T T,2 ,1 1,1f f x a2 1 12T T T,2 ,1 1,1,1f xf x112 111

for h  =  3,

,3 ,2 ,1T ,3 ,2,2f f f= −3 2= 2T ,3 ,2,2,2=
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and thus, for h ≥  3,

, , 1 , 2−T h T h T h, , 1 ,, 1 ,f f f= −2T h T h T=, , 1, 1, 1−=

Hence, for all lead times, the forecasts from origin T will follow a T
straight line passing through the forecasts fTff ,1TT  and fTff ,2TT .

Forecast errors

6.5 The h-step ahead forecast error for origin T is

, , 1 1 1 1T h T h T h T h T h h T, , 1 1 1, 1 1 1e x f a a aT h T h T h T h T h h, , 1 1 1, 1 11 1 1, 1 1 1, 1 1 1, 1, 1 1 1, 1 1, 1 1 1, 1 1x f a ax f a ah h hh hh h h 1 11 1a h1 11 1

where ψ1ψψ ,�,ψhψψ –1 are the first h –  1 ψ-weights inψψ ψ(B(( )  = α –1(B(( )θ(B(( ). The
variance of this forecast error is then

2 2 2 2
, 1 2 1( ) (1 )2 2 2 2

1T , 1 21 2) (1) (1, 1 21 2V( 2 2 22 2
1 21 21 21 2(1(12 2 22 22(1(1 1 21 21  (6.3)

The forecast error is therefore a linear combination of the unobserv-
able future shocks entering the system after time T and, in particular, T
the one-step ahead forecast error will be

,1 1 ,1 1+T ,1 1 ,11 ,1+e x f a= − =−1 1 1= =T ,1 1 ,111 1+= =

Thus, for a MMSE forecast, the one-step ahead forecast errors must 
be uncorrelated. However, h-step ahead forecasts made at different
origins will not be uncorrelated, and neither will be forecasts for
different lead times made at the same origin.3

6.6 For the AR(2) model, we have 2
1 1 2 1 2ψ φ ψ φ φ2
1 1 2 11 2 2= = += 2

1 2 11 21 2  and, for j  >  2,
ψjψψ  = φ1ψj–ψψ 1  +  φ2ψj–ψψ 2 (recall §2.13). Since we are assuming stationarity, 
these ψ-weights converge absolutely, which implies that ψψ 2

1
.

h

jj=
< ∞∑ ψ

Consequently V(VV eT,hee ) converges to a finite value, which is the vari-
ance of the process about the ultimate forecast μ.

For the ARIMA(0,1,1) model, ψjψψ   =  1  – θ, θ j  =  1,2,�. Thus we have

2 2
,( ) (1 ( 1)(1 ) )2 2

T h,,V( ) 2(1 ( 1)(1(1 ( 1)(1(1 (2 1)(11)(1(1 (2
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which increases with h. Similarly, the ARIMA(0,2,2) model has
ψ-weights given byψψ ψjψψ   = 1 +θ2 θ + j(1  – θ1 – θ2θ ), j  =  1,2,�, and an h-step 
ahead forecast error variance of

2 2 2
, 2 1 2 )( 2 1 22T ,,V( ) 2 222

2 122 1222
2 222 1)(11)(1 1(1 ( 1)(1 ) ( 1)(21)(1 ) ( 1)(2( 1)(1 ) ((1 ( 1)(12 2222 1

2222

              2 1 2( 1)(1 )(1 ))2 1 2h(h( 1)(11)(1+ h( )(1)(12 11)(1)(12 1

which again increases with h but potentially more rapidly than the
ARIMA(0,1,1).

These examples show how the degree of differencing (equivalently, 
the order of integration) determines not only how successive fore-
casts are related to each other, but also the behaviour of the associ-
ated error variances.

EXAMPLE 6.1 ARIMA forecasting of the spread

Example 2.2 fitted an AR(2) model to the UK interest rate spread, 
yielding parameter estimates φ1  =  1.192, φ2  =  –0.224 and θ0θθ  =  0.035. 
With the last two observations being xT–1TT   =  2.31 (November 2014)
and xT  =  2.06 (December 2014), forecasts are obtained asT

,1 1 0.035 1.9751T ,1f x x1 1 192 0 224T ,1 0.0350.03511 192 0 2240 224
  

(January 2015)

,2 ,1 0.035 1.929T T T,2 ,1f f x2 1 192 0 224T T,2 ,1 0.2241 0.0350.0351 192 0 2240 2241 0.2241   
(February 2015)

,3 ,2 ,1 0.035 1.894+ =1T ,3 ,2f f f=3 = 1 192 0 2240 224−−−T ,3 ,2,2,2= 222   
(March 2015)

and so on. As h increases, the forecasts eventually tend to 1.174, 
the sample mean of the spread, although the large autoregressive
root makes this convergence to the sample mean rather slow. The
ψ-weights are given byψψ

1 1 1.192=1ψ φ1 =

2
2 1 2 1.197=2ψ φ φ2
2 11= ++2

111

3
3 1 1 22 1.16022ψ φ3
3 1 11 12 11= +3

11 2 11
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4 2 2
4 1 1 2 2 1.1142 2

2
2
2ψ φ4

4 1 1 21 1 2
22
1 21 2= +4

11 3 22
1 21 2

and, hence,

21 192 0 224h h h1 hψ ψ ψ1 192 0 224h hh 11.192 0.22411= 1 1921 192 1

With 0.401,=σ  the forecast error variances are thus

( ) 20.401 0.1612V (( = 0 401

( ) ( )2 (0.401 1 1.192 0.389( )2 ((V (( = 0.401 1 1.192( )(2 (
( ) ( )2 (0.401 1 1.192 1.197 0.620( )(2 ((V (( = 0.401 1 1.192 1.197( )(2 (
( ) ( )2 (0.401 1 1.192 1.197 1.160 0.836( )2 ((V (( = 0.401 1 1.192 1.197 1.160( )(2 (

�

these eventually converging to the sample variance of the spread,
3.406.

If, however, we use the ARIMA(0,1,1) process of Example 3.1
to model the spread, with θ ̂ =  0.204 and σ ̂ =  0.405 (conveniently
setting the insignificant drift to 0), then our forecasts are (using the
December 2014 residual aT̂  =  –0.236)T

=,1 2.06 0.204 0.236 2.012+ × =+ ×TfT

and, for h  >  1,

=, ,1 2.012T ,f f=T h =, =

so that there is no tendency for the forecasts to converge to the 
sample mean or, indeed, to any other value. Furthermore, the fore-
cast error variances are given by

2
,( ) 0.405 (1 0.634( 1)) 0.164 0.104( 1)T h,,V( ) 0.405 (1 0.634( 1)) 0.164 0.104() 0.405 (1 0.634( 1)) 0.164 0.104(20.405 (1 0.634( 1)) 0.164 0.104(1)) 0.164 0.104(0.405 (1 0.634( 1)) 0.1642

which, of course, increase with h, rather than tending to a constant. 
This example thus illustrates, within a forecasting context, the radi-
cally different properties of ARMA models which have, on the one
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hand, a unit autoregressive root and, on the other, a root that is large
but less than unity.

Forecasting a trend stationary process

6.7 Let us now consider the TS process

t t0 1xt β β ε0 1t0 1 +t0 10 1  ( ) ( )t t( )B B a( ) ( )(( )φ ε( ) tB(( ) t (6.4)

The forecast of xT +h made at time T is

( ), 0 ,( )T h T h, 0 1 ,0 1 ( )f T h g(( )T h, 0 1 ( )T hh(( )( )1 ( )β β0000

where gTgg ,TT h is the forecast of εT εε + h, which from (6.2) is given by

,T h,g ET h,

⎛ ⎞1 1 2 2 1 1T h T h p T h p T h T hha11 2 2 11 2 2 11 2 2 11

⎜ ⎟
p p⎛ ⎞⎛ ⎞p p

⎝ ⎠1,1q T h q T Th q T Th ,⎜ ⎟⎜ ⎟− −
11 h 11 2 21 2 21 2 22 2+ + + + −+ +h hh hh2 222 22 2 a h2 2222 22 2

q T h q T ,T h TT ,aa ,1q T h q T ,h q T ,

Since εtεε  is, by assumption, stationary,t gTgg ,TT h →  0 as h →  ∞. Thus, for
large h, fTff ,TT h  → β0ββ   + β1(T  + T h) and forecasts will be given simply by the
extrapolated linear trend. For smaller h there will also be the compo-
nent gTgg ,TT h, but this will decrease in size as h increases. The forecast 
error will be

, , ,T h T h T h T h T h, , ,,e x f gT h T h T h T hT h T h T h, ,,,,,h T h Th T h T,,, T hx fx fT h T hT hT h T h

and hence the uncertainty in any TS forecast is due solely to the error 
in forecasting the ARMA component. As a consequence, the forecast 
error variance is bounded by the sample variance of εtεε , and this is 
in sharp contrast to the forecast error variance of the ARIMA(p( ,2,q)
process, which, from §6.4, also has forecasts that lie on a (different)
linear trend, but these have unbounded error variances. In the simplestd
case in which εtεε  is white noise,t all forecasts of a TS process have the 
same error variance, σ2σσ .

9781137525321_06_cha06.indd   92 6/15/2015   5:16:33 PM



Forecasting with Univariate Models  93

EXAMPLE 6.2 Forecasting the FTA All Share
index as a TS process

A TS model fitted to (the logarithms of) the FTA All Share index was 
estimated to be

3 905 0 0060t t3.905 0.0060x t3 905 0 0060t 3.905 0.0060 +t3 905 0 00603.905 0.0060 ε

1 111 0 123t t t t1 2 a1= − +21 111 0 123 2ε t t 11.111 1= −1 111 0 12311.111 1

That this is a misspecified model is clear from Figure 6.1, which
superimposes the fitted linear trend and reveals that there are highly
persistent deviations of the series from the trend, confirmed by the
largest autoregressive root being estimated to be 0.99. The artifici-
ality of this example notwithstanding, very long horizon forecasts
of xT + h would then be given by fTff ,TT h  = 3.905 + 0.0060(T  +  T h), although
shorter horizon forecasts will have appended the forecast of the
AR(2) component, gTgg ,TT h  = 1.111gTgg ,TT h–1 – 0.123 gTgg ,TT h–2. Because of the (very 
near) non-stationarity of this component, gTgg ,TT h will decline only very
slowly to 0, so that fTff ,TT h will continue to lie well below the extrapo-
lated trend for h reasonably large: the December 2015 (h  =  12) fore-
cast is fTff ,12TT   =  8.27 compared to the extrapolated trend of 8.53.

3

4

5

6

7

8

9

1960 1970 1980 1990 2000 2010

Figure 6.1 Logarithms of the FTA All Share index with linear trend
superimposed
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Forecasting from an ARMA-GARCH model

6.8 Suppose we have the ARMA(P(( ,PP Q)-GARCH(p( ,q) model of §5.8,

t t P t P t t Q t Q1 1 0 1 11 0 1xt Q t1 0 1 10 11 0 1= Φ + + Φ + Θ + − Θ − − Θ1 1 01 0x xx1 111 εQ1 111− Θ − − Θ− Θ1 11100 1 111 (6.5)

2 2 2 2 2
t t p t p t q t q0 1 1 1 11 1 tσ α α ε α ε β σ β σ2 2 2 22
t t p t p t qt p t p t q0 1 1 1 11 11 1 1 q1 1 111 1= + + + + + ++ + + +2 2 22 2 22 2

0 1 1 1 11 11 1 1t p t p t0 1 1 1 11 11 11 1 11 1111 111 (6.6)

Forecasts of xT+TT h can be obtained from the ‘mean equation’ (6.5) in
the manner outlined in §§6.1-6.4. When calculating forecast error
variances, however, it can no longer be assumed that the error vari-
ance itself is constant. Thus (6.2) must be amended to

2 2 2 2 2
, 1 1 1 1( )t h T h T h h T, 1 1 11 1 1),V( 1 1 11 1 11= 2 2 22 2 ψ σ22

hh 111 1 11 11 11 1 1+ + ++2 2 22 22
h hhh 1 111 111 1111 11

with the 2
T hσ  obtained recursively from (6.6).

EXAMPLE 6.3 Forecasting the $/£ exchange rate

In Example 5.1 we found that this exchange rate could be modelled as

t t t1xt = +1t 1x ε

2 2 2
1

22
t t t11

22σ 2 σ0 828t t 10.000083 0.144 1= 0 000083 0 1440 144 22
10.000083 0.144 1

Forecasts of the exchange rate are thus given by fTff ,TT h  =  1.564 for all 
h, this being the December 2014 rate. Since a pure random walk has
ψiψψ   =  1 for all i, the forecast error variances are given by

2 2 2
, , , 1 ,1( )t h T h T h T, , , 1, , 1),V( = 2 22 σ11+ + ++2 22

h hhh 11

where, using the December 2014 residual eTee   =  –0.014 and conditionalT

error variance 2ˆ 0.001043T =σ ,

2 2 2
,1

2

22

0.000083 0.144 0.014 0.828 0.0010432

0.000975

T T T,1
22

= 0.000083 0.144 0.014 0.8280.144 0.014 0.8282

=

σ σ2 2
1 0 828T T1 0.000083 0.144 0.828= 0 000083 0 1440 144 220.000083 0.144

2 2
1T j T j, ,,σ 2 σ0 828T j 0 828= 0 0000830 000083 ≥ 2j
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Figure 6.2 shows the exchange rate enclosed by 2 conditional standard
error bounds for 2000 onwards and with forecasts from January 
2015 to December 2015. Note how the width of the bounds interval
varies through time, most notably increasing during the large fall 
in the exchange rate during the financial crisis from August 2008
to April 2009. Also note how the conditional standard error bounds 
increase rapidly in the forecast period, so that the forecasts quickly 
become very imprecise: the December 2015 forecast ‘interval’ (which 
is approximately a 95% one) is 1.32–1.80 $/£.

EViews Exercises

6.9 The competing forecasts of the spread may be computed using 
the variable spread given in page Ex _ 6 _ 1, which extends the 
sample range out to December 2015 to accommodate the forecasts
for 2015. The AR(2) forecasts are obtained from the regression

ls spread c spread(–1 to –2)

by clicking Forecast, selecting the forecast sample ast 2015m01
2015m12 and, optionally, changing the forecast name to, say,

1.2

1.4

1.6

1.8

2.0

2.2

2000 2002 2004 2006 2008 2010 2012 2014

Figure 6.2 $/£ exchange rate from 2000 onwards with 2 conditional standard 
error bounds and forecasts out to December 2015
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spread _ ar and unchecking ‘Insert actuals for out-of-sample 
observations’. Inserting ar _ se, say, into the ‘S.E. (optional) box’
will place standard errors for the forecast sample into this variable.

The forecasts from the ARIMA(0,1,1) model, estimated by ls 
d(spread) ma(1), can be obtained by repeating the procedure 
but ensuring that spread is selected as the series to be forecast,
optionally changing the forecast and standard errors names to, say, 
spread _ ma and ma _ se.

6.10 The forecasts for the TS model of the FTA All Share index in 
Example 6.2 may be calculated using the logarithms of the index,
the variable p of Ex _ 6 _ 2. The TS model can be estimated with the
command

ls p c @trend ar(1) ar(2)

The extrapolated trend, p _ trend say, can be obtained by forecasting
over the entire sample 1952m01 2015m12 on selecting the ‘Dynamic
Forecast’ method. The forecasts fTff ,TT h, p _ f say, can be obtained by 
selecting the ‘Static Forecast’ method, but this only gives the forecast
fTff ,1TT , the January 2015 (2015m01) forecast. The remaining forecasts can
be computed with the commands

smpl 2015m02 2015m12

genr p _ f = p _ trend + 1.1112*(p _ f(–1) – p _ trend(–1))
–0.1229*(p _ f(–2) – p _ trend(–2))

6.11 In constructing Figure 6.2, the conditional standard error
bounds for 2000 to 2014 can be obtained by estimating the
GARCH(1,1) model for d(dollar) as in §5.19 and clicking Proc/Make 
GARCH Variance Series ... and saving the series as, say, garch01. 
Two conditional standard error bounds may then be computed as

genr dollar _ upp = dollar + 2*sqr(garch01)

genr dollar _ low = dollar – 2*sqr(garch01)

The forecasts and forecast standard errors for 2015 may be obtained
by computing a dynamic forecast for dollar for the period 2015m01
2015m12. Upper and lower bounds may then be constructed as
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above and the various series put together to form the graph shown
as Figure 6.2.

Notes

1. A detailed exposition of forecasting from ARIMA models is provided by
Box and Jenkins, Time Series Analysis, Chapter 5. A wide ranging discus-
sion of forecasting economic time series is to be found in Granger and 
Newbold, Forecasting Economic Time Series.

2. Throughout this chapter we use ‘forecast’ rather than ‘predict’, even
though they are commonly regarded as synonyms. This is because the
modern literature on the econometrics of forecasting defines the two
terms differently, although the difference is subtle and rather deep. For 
a detailed discussion of these definitions, see Michael P. Clements and 
David F. Hendry, Forecasting Economic Time Series (Cambridge University 
Press, 1998; chapter 2). Briefly, predictability is defined to be a property 
of a random variable in relation to an information set (the conditional
and unconditional distributions of the variable do not coincide). It is a
necessary, but not sufficient, condition for forecastability, as the latter 
also requires knowledge of what information is relevant for forecasting
and how it enters the causal mechanism.

3. See, for example, Box and Jenkins, Time Series Analysis, appendix A5.1.
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7
Modelling Multivariate Time
Series: Vector Autoregressions
and Granger Causality

Dynamic regression models

7.1 So far our focus has just been on modelling individual time 
series but we now extend the analysis to multivariate models. To 
develop methods of modelling a vector of time series, consider again
the AR(1) process, now written for the stationary series yt and with at

slightly different notation to that used before:

t t ty y at tt 1 +y 1t 1θ φ++ (7.1)

The standard dynamic regression model adds exogenous vari-
ables, perhaps with lags, to the right-hand side of (7.1); to take the 
simplest example of a single exogenous variable xt having a single t

lag, consider

t t t t t0y c ay b x b x e= + + + ++ + ++ ++ ++t t t tt t t−+ + + ++ 1 0 1 110 1 −+ ++ +++ (7.2)

Again, note the change of notation as coefficients and innovations
will not, in general, be the same across (7.1) and (7.2): c and a will
differ from θ and θ φ, as will the variance of φφ et,

2
eσ , differ from that of 

at, 
2
aσ , with, typically, 2 2

e a<σ σ2
e <  if the additional coefficients b0 and b1 

are non-zero.

7.2 Now suppose that we have two endogenous variables, y1,t  and
y2,t, that may both be related to xt and its lags and also to lags of eacht

other; again, in the simplest case
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1, 1 11 1, 1 12 2, 1 10 11 1 1,t1 11 1, 1 12 2, 1 10 11 1 1,, , 0y c a y a y b x b x u= + + + + ++ + + +1, 1 11 1, 1 12 2, 1 10 11 1= + + + + ++ + + ++ + + +1 11 1, 1 12 2, 1 10 11 11 11 1, 1 12 2, 1 10 111 11 1, 1 12 2, 1 10 11 1− − −−−+ + + + ++ + + ++ + ++ + + +
 (7.3)

2, 2 21 1, 1 22 2, 1 20 21 1 2,t2 21 1, 1 22 2, 1 20 21 1 2,, , 0y c a y a y b x b x u= + + + + ++ + + +2, 2 21 1, 1 22 2, 1 20 21 1= + + + + ++ + + ++ + + +2 21 1, 1 22 2, 1 20 21 12 21 1, 1 22 2, 1 20 212 21 1, 1 22 2, 1 20 21 1− − −−−+ + + + ++ + + ++ + ++ + + +

The ‘system’ contained in equation (7.3) is known as the multivar-
iate dynamic regression model.1 Note that the ‘contemporaneous’
variables, y1,t and t y2,t, are not included as regressors in the equations
for y2,t andt y1,t, respectively, as this would lead to simultaneity and an
identification problem, in the sense that the two equations making
up (7.3) would then be statistically indistinguishable, there being the
same variables in both. Of course, y1,t andt y2,t may well be contempo-t

raneously correlated, and any such correlation can be modelled by 
allowing the covariance between the innovations to be non-zero, so
that 1, 2, 12( )1, 2,2,2,2,2,E 1 = σ  say, the variances of the two innovations being

2 2
1 1( )2
1E( = σ and 2 2

2 2( )2
2E = σ .

Vector autoregressions

7.3 The pair of equations in (7.3) may be generalised to a model 
containing n endogenous variables and k exogenous variables.2

Gathering these together in the vectors , , ,( , , , )t t t n t1, 2, ,2,( , , , ,, , ,, , ,1 2221, 2,2,2,1, 2,2,2,2,=′y  and 

, , ,( , , , ),t t t k t1, 2, ,2,( , , ,1, 2, ,2,2,, , ,, , ,1 2222=′x  the general form of the model may be written 
as

∑ 0=

p q∑t i t i i t i t∑ 0=i i=1 ∑=
y c A y B x u= + + ++ +∑ ++

q∑+t i t i i t ii t i i t i−= + + ++ +∑ ∑++
0=∑= ∑− (7.4)

where there are a maximum of p lags on the endogenous variables and 
a maximum of q lags on the exogenous variables. Here c′  =  (c(( 1,c2,�,cn)nn

is a 1×n vector of constants and A1,A2,�,ApA and  B0,B1, B2,�,Bq are 
sets of n×n and n×k matrices of regression coefficients, respectively, 
such that

⎡ ⎤
⎢ ⎥
⎡ ⎤⎡ ⎤

⎢ ⎥
⎢ ⎥⎢ ⎥

= ⎢ ⎥
⎢ ⎥⎢ ⎥

⎢ ⎥
⎢ ⎥⎢ ⎥
⎢ ⎥⎢ ⎥
⎣ ⎦⎢ ⎥⎢ ⎥
⎢ ⎥⎢ ⎥⎢ ⎥⎢ ⎥

iA

 

⎡ ⎤
⎢ ⎥
⎡ ⎤⎡ ⎤

⎢ ⎥
⎢ ⎥⎢ ⎥

= ⎢ ⎥
⎢ ⎥⎢ ⎥

⎢ ⎥
⎢ ⎥⎢ ⎥
⎢⎢ ⎥⎥
⎣ ⎦⎥⎥

⎥⎥⎥⎥
⎢⎢
⎢⎢⎢⎢

iB
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, , ,( , , , )t t t n t1, 2, ,2,( , , ,1, 2, ,2,2,, , ,, , ,1 2221 2222=′u  is a 1×n vector of innovations (or errors), whose
variances and covariances can be gathered together in the symmetric
n×n error covariance matrix

( )E

⎡ ⎤2
1n

⎢ ⎥
1 12 1

2
n⎡ ⎤⎡ ⎤1 12 1n

⎢ ⎥
2

12 2 2n
⎢ ⎥⎢ ⎥2

Ω = =( )E ⎢ ⎥
⎢ ⎥⎢ ⎥

⎢ ⎥2

⎢ ⎥⎢ ⎥

⎢ ⎥2⎢ ⎥⎢ ⎥2
⎣ ⎦1n n n2⎢ ⎥⎢ ⎥2

1 n n2

(((

2
1 12121 1212

2
12 22

1 2n2

It is assumed that these errors are mutually uncorrelated, so that
( )E 0( )( =  for tt ≠  s, where 0 is an n×n null matrix.

7.4 The model (7.4) may be estimated by (multivariate) least squares 
if there are exactly p lags of the endogenous variables and q lags of 
the exogenous variables in each equation. If there are different lag
lengths in individual equations then a systems estimator needs to be 
used to obtain efficient estimates.3

7.5 Suppose the model (7.4) does not contain any exogenous vari-
ables, so that all the Bi matrices are 0, and that there are p lags of the 
endogenous variables in every equation:y

=∑ 1

p

i t i t=t ∑ 1i
y c A y u= + ++ ∑ p

i t it i−=
+t = + ∑ 1

(7.5)

Because (7.5) is now simply a pth order autoregression in the vector
yt it is known as a vector autoregression (VAR(p( )) of dimension n
and again can be estimated by multivariate least squares.4 VARs have
become extremely popular for modelling multivariate systems of 
economic and financial time series because the absence of xt termst

precludes having to make any endogenous-exogenous classification
of the variables, for such distinctions are often considered to be
highly contentious.

Granger causality

7.6 In the VAR (7.5) the presence of non-zero off-diagonal elements
in the Ai matrices, ars,i ≠  0, r ≠ s, implies that there are dynamic rela-
tionships between the variables, otherwise the model would collapse
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to a set of n univariate AR processes. The presence of such dynamic
relationships is known as Granger (–Sims) causality.yy 5 The variable 
ysyy  does not Granger-cause the variable yr if r ars,i =  0 for all i  =  1,2,�,p. 
If, on the other hand, there is at least one ars,i ≠  0 then ysyy  is said to 
Granger-cause yr because if that is the case then past values of ysyy  are 
useful in forecasting the current value of yr: Granger-causality is thus
a criterion of ‘forecastability’. If yr also Granger-causesr ysyy , the pair of 
variables are said to exhibit feedback.

7.7 The presence of non-zero off-diagonal elements in the error
covariance matrix Ω signals the presence of simultaneity. For 
example, σrsσσ  ≠  0 implies that yr,t andt ys,tyy  are contemporaneously corre-t

lated. It might be tempting to try and model such correlation by 
including  yr,t in the equation for t ys,tyy  but, if this is done, thent ys,tyy  couldt

equally well be included in the yr,t equation. As was pointed out in t

§7.2, this would lead to an identification problem, since the two
equations would be statistically indistinguishable and the VAR could 
no longer be estimated. The presence of σrsσσ  ≠  0 is sometimes referred
to as instantaneous causality, although we should be careful whenyy
interpreting this phrase, as no causal direction can be inferred from 
σrsσσ  being non-zero (recall the ‘correlation does not imply causation’
argument found in any basic statistics text).6

Determining the lag order of a VAR and
testing for causality

7.8 To enable the VAR to become operational the lag order p,
which will typically be unknown, has to be determined empirically. 
A traditional way of selecting the lag order is to use a sequential 
testing procedure. Consider the model (7.5) with error covariance 
matrix ( )p t t(EΩ =p , where a p subscript is included to emphasise
that the matrix is related to a VAR(p( ). An estimate of this matrix is
given by

( )−))Ω = ( ′1 ˆ ˆˆ
p p p( )(T p( −(((( U Upp

where ˆ ˆ ˆ( , , )ˆ ˆp n1( , ,1 ′ˆU ( , ,, ,1ˆ ,p ( ,1= ˆ  is the matrix of residuals obtained by OLS
estimation of the VAR(p( ), ˆ ˆ ˆ( , , )ˆ ˆr r p r T, 1 ,1( , ,, ,, 1 ,111 ′=u  being the residual
vector from the rth equation (noting that with a sample of size T, TT
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p observations will be lost through lagging). A likelihood ratio (LR) 
statistic for testing the order p against the order m, m  < p, is

( ) ( ) ( )2
2, log ~) ( ) ( )( )ˆ ˆ
n ((2LR p m(( , ) ((( χ (7.6)

Thus if LR(p( ,m) exceeds the α critical value of the α χ2χχ  distribution 
with n2(p ( –  m) degrees of freedom then the hypothesis that the VAR 
order is m is rejected at the α level in favour of the higher orderα p. The 
statistic uses the scaling factor T  – np rather than T  – p to account for
possible small-sample bias.

The statistic (7.6) may then be used sequentially beginning with a 
maximum value of p, pmax say, testing first pmax against pmax  – 1 using 
LR(p( max, pmax  – 1) and, if this statistic is not significant, then testing
pmax  – 1 against pmax – 2 using LR(p( max  – 1, pmax – 2), continuing until a
significant test is obtained.

7.9 Alternatively, some type of information criterion can be mini-
mised. These are essentially multivariate extensions of those intro-
duced in Example 2.3: for example, the multivariate AIC and BIC 
criteria are defined as

( ) ( ) 1) −ˆl (p T( ))MAIC p(( )= log ((Ω +Ω ((
( ) 2 1ˆl l2 1

pMBIC p n pT T(( )= log lnΩ +Ω 2 1−

 max0 1p p= 0,1, ,�

7.10 After an order has been selected and the VAR fitted, checks
on its adequacy need to be performed. There are analogues to the
diagnostic checks used for univariate models and introduced in the 
examples of Chapter 2, but with vector time series there is probably
no substitute for detailed inspection of the residual correlation struc-
ture, including cross-correlations, for revealing subtle relationships
that may indicate important directions for model improvement.

EXAMPLE 7.1 The interaction of the UK bond 
and gilt markets

The VAR framework requires that the time series making up the 
vector yt be stationary. Example 4.3 demonstrated that short andt
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long UK interest rates are I(1), so that their differences, ΔRSt andt

ΔR20t, will be stationary. Since these series may be thought of as 
being representative of the bond and gilt markets, respectively, 
the interaction between the two markets may be investigated 
by first determining the order of the two-dimensional VAR for 
yt = (ΔRSt,ΔR20t)tt ′. Table 7.1 shows various statistics for doing this 
for a maximum setting of pmax  =  4. The LR and MAIC statistics select
an order of 2 while the MBIC selects an order of 1, although the 
VAR(1) fit leaves a significant second order residual autocorrelation 
in the ΔR20 equation. An order of 2 was therefore chosen, with the 
fitted VAR(2) being

⎡ ⎤ ⎡ ⎤0 217 0 281 0 021 0 066⎡ ⎤tRSt ⎡ ⎤2RS⎡ ⎤ ⎡ ⎤0 217 0 281 0 021 0 066RSRS0 217 0 281 0 021 0 066 RΔRSR t RSRSRS( ) ( ) ( ) ( )
0.217 0.281 0.021 0.066

t( ) ( )0.041 0.063( ) ( ) 1 ( ) ( ))0.040 0.063( ) ((0 041 0 063( ) ( ) )0 040 0 063( ) (1 ( ) ( )0.0 0 0.063( ) (RSRSRS( ) ( ) ( ) ( )0 041 0 063 0 040 0 063(( ) (( ) (( ) (( )0 040 0 063(( ) (((0 041 0 063(( ) (( ) )0 040 0 063(( ) ((RSRSRSRSRS( ) ( ) ( ) ( )
⎢ ⎥

2

20
t ⎤⎤2

⎢ ⎥20
t

R20
⎡⎡ t ⎢ ⎥( (tt( ) ( ) ( ) ( )1 ( ) ( )t( ) ( ) 1 ( ) ( )

= ⎢ ⎥( ( tt( ) ( ) 1
⎢ ⎥⎢ ⎥20202020202020202020202020

⎢ ⎥⎢ ⎥+⎢ ⎥⎢ ⎥
R20 202020202020 ⎣ ⎦220t

⎥⎥20⎣ ⎦20tR20⎢⎢ΔRR20R20 202020202020 1202020202020202020202020
⎣ ⎦ ⎣ ⎦( ) ( ) ( ) ( )0.026 0.041 0.026 0.041(( ) (( ) (( ) ((⎣ ⎦⎣ ⎦( )0 026 0 041 0 026 0 041(( ) (( ) (( ) ((tt( ) ( ) )1 (1 ) ( )0 026 0 041 0 026 0 041( ) ( ) ( ) (1 ( ) (1 ) )t 10.0 0.3 0 120 120 120 120 1

⎡ ⎤1ˆ tu
+ ⎢ ⎥

1,

ˆ
t⎡ ⎤⎡ ⎤1 t

⎣ ⎦2,tu⎢ ⎥⎢ ⎥u

The intercept vector c has been excluded from the model as, 
consistent with Example 4.3, it was found to be insignificant. 
Various checks on the residuals of the VAR(2) failed to uncover any 
model inadequacy.

7.11 Within a VAR(p( ), Granger-causality running from ysyy  to yr, rr

which may be depicted as ys yy → yr, can be evaluated by settingrr

up the null hypothesis of non-Granger-causality ( →/→→s r→/→→y y ), 

0 : 0,,1 ,rs rs p,1 ,,1,1 ,,1H0 : 111  and testing this with a Wald (F(( )-statistic, a 
multivariate extension of the standard F-statistic for testing a set of 
zero restrictions in a conventional regression model.7

Table 7.1 Order determination statistics for yt  = (ΔRSΔΔ t,ΔRΔΔ 20t)tt ′

p log L LR(p( ,p–1) MAIC MBIC

0 –539.15 – 1.441 1.453
1 –477.55 122.70 1.288 1.325*
2 –471.39 12.24* 1.282* 1.344
3 –470.63 1.51 1.291 1.377
4 –469.92 1.40 1.299 1.410

LR(p( , p –  1) ~ χ2χχ
4

χχ   χ2χχ
4 

χχ (0.05)  =  9.49
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EXAMPLE 7.2 Testing for Granger-causality 
between the UK gilt and bond markets

Within the estimated AR(2) model of Example 7.1, the Wald statistics
for Granger-causality test a12,1  = a12,2  =  0 for the null Δ →/→→R RSΔΔ → ΔΔ→→20 , and 
a21,1  = a21,2  =  0 for the null Δ → Δ/→→ 20RS RΔ → ΔΔ → Δ→→ . These statistics are 20.13 and
0.76, respectively, and reveal that the long-rate Granger causes the
short rate but that there is no feedback: movements in the gilt market
thus lead, and so help to forecast, movements in the bond market.

Variance decompositions and innovation accounting

7.12 While the estimated coefficients of a VAR(1) are relatively easy
to interpret, this quickly becomes problematic for higher order VARs 
because not only does the number of coefficients increase rapidly, 
but many of the coefficients will be imprecisely estimated and highly 
inter-correlated, so becoming statistically insignificant, as can be 
seen in the estimated VAR(2) of Example 7.1, where only a2̂2,2 in Â2 is 
significant. This has led to the development of several techniques for 
examining the ‘information content’ of a VAR that are based on the
vector moving average representation of yt. Suppose that the VAR is
written in lag operator form as

( ) t tA y u( ) =tB((

where

( ) p
n p�1 BpA I A A( )B BB(( )= − − −− �1 �n 1

is a matrix polynomial in B. Analogous to the univariate case (recall
§§2.7–2.8), the (infinite) vector MA representation is

( ) ( ) ∞

=∑1

1 i t i−=t t t t( ) ( ) ∑ 1i
y A u u u u( ) ( )= = Ψ = + Ψ= Ψ =( )− ∑1

t t t t it t t i( ) ( )
=

= = Ψ = + Ψ= Ψ =( ) ∑ 1
B B( ) (= Ψ= Ψ( ) (= Ψ= Ψ(( ) (( (7.7)

where

1
I 0

i

i j i j n i01j
iΨ =

i

i ∑ A Ij i j n i0 IΨ Ψ = Ij i ji j 0 I

this recursion being obtained by equating coefficients of B in 
Ψ(B(( )A(B(( )  =  In.
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7.13 The ΨiΨΨ  matrices can be interpreted as the dynamic multipliers
of the system, since they represent the model’s response to a unit
shock in each of the variables. The response of yr to a unit shock in ysyy
(produced by us,t taking the value unity rather than its expected value t

of 0) is therefore given by the impulse response function, which is the
sequence ψrsψψ ,1, ψrsψψ ,2,�, where ψrsψψ ,i is the r,rr sth element of the matrix ΨiΨΨ .

Since ( )Ω =p t t(E ((( is not required to be diagonal, the components
of ut are allowed to be contemporaneously correlated. If these corre-t

lations are high, simulation of a shock to ysyy , while all other compo-
nents of ut are held constant, could be misleading, as there is no way t

of separating out the response of yr to a ysyy  shock from its response
to other shocks that are correlated with us,t. However, if we define
the lower triangular matrix S such that SS′  = ΩpΩ  and define vt  = t S–1ut, 
then E(v(( tvt t′)  = In and the transformed errors vt are orthogonal to each t

other (this is known as a Cholesky decomposition). The MA represen-
tation can then be renormalised into the recursive form

( )∞ ∞( )∑ ∑( )( )∞ ( )( )0 0=
O
i t i−0=t ∑ i=0 ( ) ∑( )( )( )= ( )( )y S S u v= Ψ = Ψ∑)∑ ( )((Ψ =Ψ =( )( ( )( O

t i t i i= Ψ = Ψ∑ ∑( )( )(Ψ =Ψ =( )( )( 0=∑( )( )= ∑( )( ))( )( )

where Ψ = ΨO
i i= Ψ S (so that Ψ = Ψ0 0= ΨO S is lower triangular). The impulse 

response function of yr to ar ysyy  shock is then given by the sequence 
,0 ,1 ,2 , ,,2

O O O
rs,0 ,1,1ψ ψ ψ0 11111
O OO
rs,0 ,1,1,1,1,1  where each impulse response can be written

compactly as

,
O
rs i r i s, = ′e Ser ir iΨr′ψ (7.8)

Here es is the n ×  1 selection vector containing unity as the sth 
element and zeroes elsewhere. This sequence is known as the orthog-
onalised impulse response function.

7.14 The uncorrelatedness of the vts allows the error variance of 
the h-step ahead forecast of yr to be decomposed into componentsr

accounted for by these innovations, a technique thus known as
innovation accounting.gg 8 In particular, the proportion of the h-step 
ahead forecast error variance of yr accounted for by the orthogonal-r

ised innovations to ysyy  is given by

( )2 2))
0

,

0

h h( )2) (
0O i 0 ( )

rs h, h h

r i p i r0i i0

Vr = =i 0

′ ′
h

Ψ Ω Ψ
h

∑ ∑( )h ( )2)))i (0 ( )))0 ( ))
∑h

r i p i ri 0 r i p i r0
′Ψ Ω Ψ

((((
er i p ir i p iΨ Ω Ψr i pi p ′Ψ Ω Ψr i p i rΨ Ω Ψi p i ri p′Ψ Ω Ψ

(((((
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For large h, this orthogonalised forecast error variance decomposi-
tion allows the isolation of those relative contributions to variability 
that are, intuitively, ‘persistent’.

The technique of orthogonalisation does, however, have an impor-
tant disadvantage, for the choice of the S matrix is not unique, so that 
different choices (most notably, different orderings of the variables)
will alter the ,

O
rs iψ  coefficients and hence the impulse response func-

tions and variance decompositions. The extent of these changes will 
depend on the size of the contemporaneous correlations between the
innovations.9

7.15 Apart from comparing the impulse responses and variance 
decompositions for alternative orderings of the variables, one solu-
tion to this problem is to use generalised impulse responses, defined 
by replacing S in (7.8) with 1

r p
− Ωσ :10

1G
rs i r r i p s, = 1 Ψ Ωr

− ′ er i pr i pΨ Ωr iiψ G
rs i, =

The generalised impulse responses are invariant to the ordering of 
the variables, are unique, and fully take into account the historical 
patterns of correlations observed amongst the different shocks. 
The orthogonalised and generalised impulse responses coincide
only when pΩ  is diagonal, and in general are only the same for
s   =  1.

EXAMPLE 7.3 Variance decomposition and innovation
accounting for the bond and gilt markets

From Example 7.1, the VAR(2) fitted to yt  = (ΔRSΔΔ t, ΔRΔΔ 20t)tt ′ has

⎡ ⎤
= ⎢ ⎥

⎡ ⎤⎡ ⎤

⎣ ⎦
⎢ ⎥⎢ ⎥−1Â

 

⎡ ⎤
= ⎢ ⎥

⎡ ⎤⎡ ⎤

⎣ ⎦
⎢ ⎥⎢ ⎥2

−ˆ
−

A

The vector MA representation (7.7) then has coefficient matrices 
given by

2i i i1 1 21 21 2Ψ2Ψ =i A AΨ +Ψ +iii1 11
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so that

⎡ ⎤
Ψ = Ψ = ⎢ ⎥

⎡ ⎤⎡ ⎤

⎣ ⎦
⎢ ⎥⎢ ⎥−1 1 0= Ψ= ΨA

2

2 1 1 2 0

⎡ ⎤ ⎡ ⎤
20.217 0.281 0.021 0.0662

Ψ =2 0Ψ =2

⎡ ⎤
⎢ ⎥ ⎢ ⎥0 011 0 310 0 022 0 139

⎡ ⎤⎡ ⎤
+

⎡ ⎤⎡ ⎤

⎣ ⎦ ⎣ ⎦0.011 0.310 0.022 0.139⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎢ ⎥0 011 0 310 0 022 0 139−0 011 0 310 0 022

⎡ ⎤0.065 0.082
= ⎢ ⎥0 016 0 046

⎡ ⎤⎡ ⎤

⎣ ⎦0.016 0.046⎢ ⎥⎢ ⎥0 016 0 046

1 1A AΨ +Ψ +1 111 1

⎡ ⎤
Ψ = Ψ + Ψ = ⎢ ⎥

⎡ ⎤⎡ ⎤

⎣ ⎦
⎢ ⎥⎢ ⎥3 1 2 2 1= Ψ + Ψ= Ψ + Ψ

−
−

A AΨ +Ψ +Ψ +ΨΨ +

�

The estimated error covariance matrix is

⎡ ⎤
Ω = ⎢ ⎥

⎡ ⎤⎡ ⎤

⎣ ⎦
⎢ ⎥⎢ ⎥2

ˆ

so that the contemporaneous correlation between the innovations is
0.46, thus necessitating orthogonalisation. The Cholesky decomposi-
tion of Ω2

ˆ  for the ordering2 ΔRS, ΔΔ ΔRΔΔ 20 is

⎡ ⎤
= = Ψ

⎡ ⎤
⎢ ⎥
⎡ ⎤⎡ ⎤

⎣ ⎦
⎢ ⎥⎢ ⎥ 0

OS

with

− ⎡ ⎤
= ⎢ ⎥

⎡ ⎤⎡ ⎤

⎣ ⎦
⎢ ⎥⎢ ⎥−

1S

Thus

⎡ ⎤
Ψ = Ψ = ⎢ ⎥

⎡ ⎤⎡ ⎤

⎣ ⎦
⎢ ⎥⎢ ⎥1 1= Ψ= ΨO S
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⎡ ⎤
Ψ = Ψ = ⎢ ⎥

⎡ ⎤⎡ ⎤

⎣ ⎦
⎢ ⎥⎢ ⎥2 2= Ψ= Ψ

−
O S

⎡ ⎤
Ψ = Ψ = ⎢ ⎥

⎡ ⎤⎡ ⎤

⎣ ⎦
⎢ ⎥⎢ ⎥−3 3= Ψ= Ψ

−
−

O S

�

The orthogonalised impulse response functions are then, for y1  = ΔRSΔΔ
and y2  =  ΔRΔΔ 20,

12,0 0,O =ψ
  [ ]12,1 0.071,[ ][[ ][O ⎡ ⎤ ⎡ ⎤0.131 0.071 0

= [[ ]
⎣ ⎦ ⎣ ⎦0.035 0.078 1⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎢ ⎥0 035 0 078 1

ψ
   12,2 0.021,O =ψ �

21,0 0.013,O =ψ
   [ ]21,1 0.035,[ ][[ ][O ⎡ ⎤ ⎡ ⎤0.131 0.071 1

= [[ ][
⎣ ⎦ ⎣ ⎦0.035 0.078 0⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎢ ⎥0 035 0 078 0

ψ
   21,2 0.001,O =ψ

These response functions, along with their accumulations, are 
shown in Figure 7.1. Also shown are their counterparts when the
ordering is reversed. There is a considerable difference between
the two, showing clearly how a sizeable contemporaneous corre-
lation between the innovations can alter the impulse responses.
Nevertheless, the response of ΔRS to an innovation in ΔR20 is 
clearly complete within six months and there is a smooth conver-
gence of the accumulated response to a new positive ‘level’. The 
response of ΔR20 to an ΔRS  innovation is very small when ΔR20 
is ordered first.

Figure 7.2 shows the generalised impulse response functions. 
The generalised responses for ΔRSΔΔ  are similar to the orthogonalised 
responses when ΔRΔΔ 20 is first in the ordering and vice versa for ΔRΔΔ 20 
itself. Figure 7.3 shows the associated variance decompositions when 
ΔRΔΔ 20 is first in the ordering. These show that innovations to ΔRΔΔ 20 
explain around 25% of the variation in ΔRSΔΔ  but that innovations to 
ΔRSΔΔ explain none of the variation in ΔRΔΔ 20.
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Figure 7.1 Orthogonalised impulse response functions: DRS and DR20 denote 

ΔRSΔΔ andS ΔRΔΔ 20 respectively; 2 standard error bounds shown as dashed lines
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EViews Exercises

7.16 To estimate and analyse the VARs of Examples 7.1–7.3, open
page Ex _ 2 _ 2 and first explicitly generate the first differences of 
short and long interest rates:

genr drs = d(rs)

genr dr20 = d(r20)

Generalized impulse responses
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Figure 7.2 Generalised impulse response functions

Figure 7.3 Variance decompositions
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Opening these variables as a group, clicking Open Var ...and
clicking OK will, by default, estimate a VAR(2) with a constant vector
included. To obtain the lag order statistics of Table 7.1, click View/
Lag structure/Lag Length Criteria and choose 4 as the ‘Lags to 
include’. To estimate a VAR(1) without the (insignificant) constant 
vector, click Estimate, change ‘Lag intervals for Endogenous’ to 1 1
and remove c from the list of ‘Exogenous Variables’. Clicking View/
Residual Tests/Correlograms will produce plots of the residual 
autocorrelation functions and cross-correlation functions for the 
default setting of 12 lags. Note the significant negative residual
autocorrelation at lag 2 in the dr20 equation. Repeating the esti-
mation with ‘Lag intervals for Endogenous’ changed back to 1 2
will estimate the VAR(2) without c: the residual correlograms now
indicate no misspecification.

7.17 The Granger-causality test statistics reported in Example 7.2 
may then be obtained by clicking View/Lag Structure/Granger 
Causality-Block Exogeneity Tests.

Plots of impulse response functions may be obtained by clicking 
Impulse and OK. The default setting is to use a Cholesky decomposi-
tion with the order of the variables being that of the original group
selection, which in this case should be drs dr20; this ordering can 
be changed on clicking Impulse definition and it is here where other 
types of impulses, such as generalised impulses, may be selected.
The number of periods over which the impulses are computed and
whether the impulses are accumulated may also be chosen in the 
Display window.11

To compute variance decompositions click View/Variance 
Decomposition and complete the boxes of the view accordingly.

Notes

1. This model is treated in some detail in Aris Spanos, Statistical Foundations
of Econometric Modelling (Cambridge University Press, 1986; Chapter 24).g

2. The concepts of endogeneity and exogeneity being used here are the
simplest possible: essentially a variable is termed endogenous if it is 
determined within the model, exogenous if it is determined outside of 
the model. These terms are deliberately kept loose but there are various
tighter definitions in use for the models being discussed here. For an 
introductory text book discussion of these concepts, see Mills and
Markellos, Econometric Modelling, chapter 8.6; for more detailed treatment, gg
see Hendry, Dynamic Econometrics (Oxford University Press, 1995).
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3. When the lag lengths p and q are the same across all equations then each 
of the equations will contain the same regressors. The model is then of 
a special type that can be efficiently estimated by OLS applied to each
equation separately, known as multivariate least squares. When the lag
lengths differ across equations this result no longer holds and a systems 
estimator must be used. A natural estimator is then seemingly unrelated 
least squares: see Arnold Zellner, ‘An efficient method of estimating
seemingly unrelated regressions and tests of aggregation bias’, Journal of 
the American Statistical Association 57 (1962), 348–68.

4. The VAR was brought to the attention of economists by Christopher 
A. Sims, ‘Macroeconomics and reality’, Econometrica 48 (1980), 1–48,
although a more general model, the vector ARMA, had been introduced
over 20 years earlier by Maurice H. Quenouille, The Analysis of Multiple 
Time Series (Griffin, 1957). Even more general is the dynamic structural 
equation model (DSEM), which extends the multivariate dynamic regres-
sion model in two directions; first, by allowing simultaneity between the
endogenous variables and, second, by explicitly considering the process 
generating the exogenous variables, for example

0 1

m m

i t i t11t i i1∑ i 111∑m
A y c A y B x u0

m
+i ii= + ∑ ∑m

++i ii ii

1

m

t i t i t21i=∑∑x d C x u
m

t i t ii t i +i t ii= + ∑

where A0  ≠ In. If there are no exogenous variables then the model reduces
to a structural VAR (SVAR). For a development of these models, see Helmut 
Lütkepohl, New Introduction to Multiple Time Series (Springer Verlag, 
2005).

5. The seminal papers on causality are Granger, ‘Investigating causal rela-
tions by econometric models and cross-spectral methods’, Econometrica
37 (1969), 424–38, and Sims, ‘Money, income and causality’, American 
Economic Review 62 (1972), 540–52. Although Granger provided an illustra-w
tive example to show the potential usefulness of the concept, he couched
causality in a cross-spectral framework (which is generally unappealing to
many economists) in which an estimation and testing methodology was 
not developed. Thus an appreciation of the concept’s importance had to 
wait until a time domain approach to estimation and testing was devel-
oped, and this was provided soon after by Sims, who certainly helped to
further popularise the concept by choosing as an example the then very
‘hot’ topic of the causal links between money and income.

  Granger fully recognised that a precursor of his causality framework 
had been proposed over a decade earlier by Norbert Wiener (‘The theory of 
prediction’, in E.F. Breckenback (editor), Modern Mathematics for Engineers
(McGraw-Hill, 1956), 165–90) and he typically referred to it as Wiener–
Granger causality. For a detailed treatment of the concept, see Mills, 
A Very British Affair, chapter 9.rr

6. See, for example, Mills, Analysing Economic Data, §5.4.
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 7. See, for example, Mills, Analysing Economic Data, §13.3.
 8. See Sims, ‘An autoregressive index model for the US 1948–1975’, in Jan 

Kmenta and James B. Ramsey (editors), Large-scale Macroeconometric 
Models (North-Holland, 1981), 283–327.

 9. This ‘non-invariance property’ has generated much detailed analysis and
criticism of the variance decomposition methodology, mainly focusing
on the inability of VARs to be regarded as ‘structural’ in the traditional 
econometric sense, so that shocks cannot be uniquely identified with
a particular variable unless prior identifying assumptions are made,
without which the computed impulse response functions and variance 
decompositions would be invalid. The triangular ‘recursive’ structure of 
S has been criticised for being atheoretical and has led to the develop-l
ment of other sets of identifying restrictions that are based more explic-
itly on economic considerations using the SVAR approach: see Thomas
F. Cooley and Stephen F. LeRoy, ‘Atheoretical macroeconometrics: a 
critique’, Journal of Monetary Economics 16 (1985), 283–308, and Olivier J. 
Blanchard, ‘A traditional interpretation of macroeconomic fluctuations’, 
American Economic Review 79 (1989), 1146–64.

10. These were introduced by M. Hashem Pesaran and Yeongcheol Shin,
‘Generalized impulse response analysis in linear multivariate models’,
Economics Letters 58 (1997), 17–29.

11. The vector MA coefficient matrices can be read off from the impulse 
response function when ‘Residual-one unit’ is selected as the
Decomposition Method and ‘Table’ is selected as the Display Format.
The first (second) row of ψjψψ  is given by the response of drs (dr20) in 
period j  +  1.
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8
Cointegration in Single Equations

Spurious regression

8.1 The VAR framework of the previous chapter requires that all the 
time series contained in the model be stationary. Whilst stationarity
can be achieved, if necessary, by differencing each of the individual 
series, is this always an appropriate approach to take when working 
within an explicitly multivariate framework? We begin our answer to 
this question by introducing the simulation example considered by
Clive Granger and Paul Newbold in an important article examining
some of the likely empirical consequences of nonsense, or spurious,
regressions in econometrics.1

Granger and Newbold proposed a simulation set-up in which 
yt andt xt are generated by the t independent random walkst

, , 1,2, ,=t t t t t ty y v x x w t= +++ , ,= += +==t t t t t t−1 1+ +1− (8.1)

where vt and t wt are independent white noises. The regression of t yt  on 
a constant and xt is then considered:

ˆ ˆˆ 1 2t t tx u t T++y = ˆ , 1,2, ,=t T T t tt= + +++βˆ ++ˆ TT ++ (8.2)

With T  =  50,T y0  = x0  =  100 and vt andt wt drawn from independentt

N(0,1) distributions, the regression (8.2) was estimated for 100 pairs 
of yt andt xt series generated using (8.1). Clearly, sincet vt and t wt are t

independent white noises, yt andt xt must themselves be independentt
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integrated processes and so there should be no relationship between 
them. However, for these 100 regressions, Granger and Newbold 
reported that in 76 of them the (correct) null hypothesis of β  =  0β
was rejected using the conventional t-statistic for assessing thett
significance of β 5̂0 at the 5% level (so the critical value is approxi-
mately 2). In other words, rather than a rejection rate of 5%, they
observed a rejection rate of 76%! In fact, they showed that to ensure 
a 5% rejection rate a critical t-value of over 10 should be used, as 
the standard deviation of β 5̂0  was being under-estimated by a factor
of over 5.2

8.2 When five independent random walks were included as regres-
sors in a multiple regression, things got even worse, for the rejection 
rate of a conventional F-statistic testing that the entire coefficient
vector is zero rose to 96%. For regressions involving independent
ARIMA(0,1,1) series the corresponding rejection rates were 64% and 
90%. Granger and Newbold thus concluded that, when regressors
were generated as statistically independent integrated processes, 
conventional significance tests were seriously biased towards rejec-
tion of the null hypothesis of no relationship, and hence towards the 
acceptance of a spurious relationship.

8.3 Moreover, they also found that the regressions were frequently 
accompanied by large R2 values and highly autocorrelated residuals, 
as indicated by very low Durbin-Watson (dw) statistics. These find-w
ings led Granger and Newbold to suggest that, in the joint circum-
stances of a high R2 and a low dw statistic (a useful rule beingw R2  > dw), w
regressions should be run on the first differences of the variables, so
providing support for the practice of differencing to induce station-
arity in time series regressions.

8.4 These essentially empirical conclusions were later given an 
analytical foundation by Peter Phillips, who showed that the standard
distributional results of least squares regression actually broke down
when regressors were integrated processes.3 Phillips obtained four
analytical results that went a long way towards explaining the
simulation findings reported by Granger and Newbold, although it 
suffices here to provide purely verbal and graphical explanations.

The first result shows that, in contrast to standard regression
theory, α T̂ andT β T̂ do not converge in probability to constants asT
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T→∞. β T̂ has, in fact, a non-degenerate limiting distribution (the T

sampling distribution does not converge to the single true value of 
β as β T→ ∞), so that different, yet arbitrary, large samples will yield 
randomly differing estimates of β. The distribution of α T̂ actually T

diverges, so that estimates are likely to get farther and farther away 
from the true value of α as the sample size increases. Thus the uncer-α
tainty about the regression (8.2) stemming from its spurious nature 
is not a small sample problem, for it persists asymptotically in these 
limiting distributions.

The second result shows that the conventional t-ratios on tt α T̂ and T

β T̂ do not haveT t-distributions, and indeed do not havett any limitingy
distribution, diverging as T→∞ so that there are no asymptotically 
correct values for these tests. We should thus expect the rejection rate 
when tests are based on a critical value delivered from conventional
asymptotics (such as 1.96) to continue to increase with sample size, 
and this therefore explains the findings of Granger and Newbold.

The third and fourth results show that R2 has a non-degenerate 
limiting distribution and that dw converges in probability to 0 asw
T→∞. Low values for dw and moderate values of w R2  are therefore to 
be expected in spurious regressions such as (8.2) with data generated 
by integrated processes, again confirming the simulation findings
reported by Granger and Newbold.

8.5 These results are easily extended to multiple regressions of the 
form

′+ +′ ˆˆt T T t ty = + u+t T T t= + ++ bT (8.3)

where xt  =  (t x1t,�,xkt)tt ′ is a vector of I(1) processes. Phillips showed
that analogous results to those discussed in §8.4 hold for (8.3) and, 
in particular, that the distribution of the customary F-statistic for 
testing a set of linear restrictions on β diverges asβ T→∞ and so there 
are no asymptotically correct critical values for this statistic either. 
Moreover, the divergence rate for the F-statistic is greater than that
for individual t-tests, implying that, in a regression with many regres-tt
sors, we might expect a noticeably greater rejection rate for a ‘block’ 
F-test than for individual t-tests or for a test with fewer regressors, tt
and this is again consistent with the results reported by Granger and 
Newbold.
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8.6 We should emphasise that, although yt and t xt have been assumed t

to be independent in (8.2) and (8.3), so that the true values of α and α
β are zero, this is not crucial to the major conclusions. Although the
correlation properties of the time series do have quantitative effects
on the limiting distributions, such effects do not interfere with the
main qualitative results. To reiterate, these are that α T̂ and T β T̂  do
not converge in probability to constants, the distributions of F- and
t-statistics diverge astt T→∞, dw converges in probability to 0, andw R2

has a non-degenerate limiting distribution as T→ ∞.

8.7 A simulation similar to that of Granger and Newbold enables 
us to interpret these results in a perhaps more transparent fashion. 
The independent random walks yt and xt were generated for a sample t

now of size T  =  1000, with T vt and t wt  again drawn from independent
N(0,1) populations with y0  = x0  =  0, using 10,000 iterations.

Figures 8.1 to 8.4 present the density functions of β 1̂000, its associ-
ated t-ratio, and the tt R2 and dw statistics. The distribution of w β 1̂000 

shown in Figure 8.1 is almost normally distributed (a central limit 
theorem does, in fact, hold as the simulations use independent repli-
cations). Although the sample mean of –0.005 is very close to the true
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Figure 8.1 Simulated frequency distribution of β 1̂000
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β value of 0, the sample standard deviation is 0.635, thus confirmingβ
that, for large T, the distribution does not converge to a constant andTT
different samples produce very different estimates of β, the range of ββ
estimates being approximately ±3.0.

The distribution of the t-ratio, shown in Figure 8.2, is again normal tt
but with a standard deviation of 23.62. The 5% critical values from
this distribution are ±48.3 while using a value of ±1.96 would entail 
a rejection rate of 93.4%! The distribution of the R2 statistic, shown 
in Figure 8.3, has a mean of 0.24, a standard deviation of 0.23 and
a maximum value of 0.94, while that for dw (Figure 8.4) has a mean w
of 0.018, a standard deviation of 0.011, and a maximum value of 
only 0.10.4 Both sampling distributions thus illustrate the theoretical 
predictions of Phillips’ analysis.

8.8 It should be emphasised that, in the general spurious regres-
sion set-up discussed here, both yt andt xt aret I(1) processes. The error,
ut, since it is by definition a linear combination of I(1) processes, 
will therefore also be integrated, unless a special restriction, to be 
discussed in §8.12, holds. Moreover, the usual re-specification of 
the model to include yt–1 as an additional regressor on the finding
of a very low dw value will have pronounced consequences. Thew
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Figure 8.2 Simulated frequency distribution of the t-ratio of tt β 1̂000
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Figure 8.4 Simulated frequency distribution of the spurious regression dw
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estimated coefficient on yt–1 will converge to unity, while those on
the integrated regressors will converge to 0, thus highlighting the
spurious nature of the static regression.

Indeed, the spurious nature of the regression is, in fact, a conse-
quence of the error being I(1). Achieving a stationary, or I(0), error 
is usually a minimum criterion to meet in econometric modelling,
for much of the focus of recent developments in the construction of 
dynamic regression models has been to ensure that the error is not
only I(0) but white noise, and this underlies the general-to-specific
model building philosophy of dynamic econometrics.5 Whether the 
error in a regression between integrated variables is stationary is thus 
a matter of considerable empirical importance.

8.9 It is fair to say that many econometricians were extremely scep-
tical of Granger and Newbold’s ‘prescription’ of differencing vari-
ables to induce stationary regressors. This scepticism stemmed from 
noting that the static regression yt  = t α  + α βxββ t  + t ut with errors followingt

the stationary process ut  = t ρut–1  + εtεε ,tt |ρ|  <  1, can be written as

( )t t t t t( ) 1y =t t t( ) 1α ρ β ρβ ρ ε( )− + − + +( ) +1−+ − +− +− +)( +t ttt( ) −++( ) 1 + (8.4)

which is a restricted version of the general dynamic regression

+ + + +0 3t t t t t0 33y x x y w= + + + ++ +t t t t+ + + +0 1 2 1 3 12 1 3 −+ + +++ + ++ + ++ +++ +0 1 2 1221 2 1−+ + ++ ++++ + (8.5)

The restriction imposed on (8.5) to obtain (8.4) is γ2γγ   + γ1γγ γ3γγ   =  0 and 
whether this restriction is satisfied or not determines how regres-
sions with autocorrelated variables should best be modelled: if the 
restriction is satisfied then the relationship between yt and t xt is t

appropriately modelled as a static regression with an autocorrelated 
error; if it is not then the correct specification is the dynamic regres-
sion (8.5).6

8.10 This set-up still lies within a stationary environment but 
suppose (8.5) is now considered in isolation. Imposing the pair of 
restrictions γ1γγ  + γ2γγ   =  0 and γ2γγ   =  1 on (8.5) produces the ‘restriction
form’

Δ = + Δ +t t t0y x wΔ = + Δ += + Δt tt+ Δ ++ ΔΔ0 1+++0 + (8.6)
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This may be compared with the ‘operator form’, implicitly considered 
by Granger and Newbold and which transforms (8.5) by differencing
throughout to obtain

Δ = Δ + Δ + Δ + Δ3t t t t t33y x x y wΔ = Δ + Δ + Δ + Δ= Δ + Δ + ΔΔΔt t t tΔ + Δ + Δ + Δ1 2 1 3 12 1 3 −ΔΔΔ + Δ ++ ΔΔ + Δ +Δ + Δ +Δ + Δ+ ΔΔ +1 2 1222 1−Δ + Δ +Δ + Δ+ Δ+ ΔΔ + (8.7)

If the coefficient restrictions imposed on (8.5) to obtain (8.6) are valid 
then, if wt is white noise in (8.5) (or, in general, stationary), so must bet

the error in (8.6). Moreover, the operator form (8.7) is then misspeci-
fied in that it incorrectly includes Δxt–1tt  and ΔyΔΔ t–1tt , excludes the inter-
cept, and has a non-invertible moving average error. Alternatively, if 
wt  is a random walk in (8.5) (more generally, I(1)) then the operator
form (8.7) becomes the correct specification.7

8.11 Even so, both (8.6) and (8.7) have some unacceptable features in
terms of being universally valid formulations for economic systems.
In particular, (8.6) either has no equilibrium solution in terms of 
yt and t xt or one that collapses to zero if t γ1γγ   =  0. Moreover, in either 
specification the time paths that yt can describe will be independentt

of the states of disequilibrium existing in prior periods.
From this perspective, there must be other ways of transforming 

to stationarity than by just differencing, with the choice of which
transformation to adopt potentially being based on considerations
from economic theory. For example, while marginal adjustments 
might favour differencing, long-run considerations could suggest
specifications of the form

( )( )Δ = + Δ + − − +( )( )t t t t t( )0 ( )(yΔ = + Δ += + Δ ( w− +)( ))(t t t t )+ Δ + +)0 1 2( )()(+ Δ ++ (+ Δ ++ (0 1 (+ Δ ++ Δ ( (8.8)

which is obtained from (8.5) by imposing the restriction that 
γ1γγ  + γ2γγ   + γ3γγ   =  1. This allows an equilibrium solution to emerge when 
ΔyΔΔ t  =  t Δxt  =  t wt  =  0, for thent

= +
−

0

21t ty =t

γ
γ

which would be appropriate if yt andt xt are logarithms and there is t

postulated to be a long-run unit elasticity between the variables.
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Equations of the form (8.8) quickly became known as error correc-
tion models, as the term yt–1tt – xt–1tt  measures the extent to which the
system is away from equilibrium and hence it represents the error 
that must be ‘corrected’.8

Cointegrated processes

8.12 Notwithstanding the discussion of §§8.9-8.11, the general 
implication of the above analysis is that a linear combination of I(1) 
processes will usually also be I(1). In general, if yt and t xt are both t I(d), 
then the linear combination

t t tu y ax= −t tt (8.9)

will also usually be I(d). It is possible, however, that ut may be inte-t

grated of a lower order, say I(d  –  b), where b  >  0, in which case a
special constraint operates on the long-run components of the two
series.9

If d  =  d b  =  1, so that yt andt xt are botht I(1) and dominated by
long-run components (recall Figure 3.3), ut will bet I(0) and hence will
not contain any such components: yt andt axt must therefore havet

long-run components that cancel out to produce a stationary ut. In 
these circumstances, yt andt xt are said to be t cointegrated; we empha-
sise that it will not generally be true that there will exist ant a which 
makes ut ~t I(0) or, in general, I(d – b).10

8.13 The idea of cointegration can be related to the concept of 
long-run equilibrium discussed in §8.11, a connection which we 
may illustrate with the bivariate relationship

t ty ax=t

or

= 0t ty ax−t

In this context, ut given by (8.9) measures the extent to which thet

‘system’ is out of equilibrium, and it can therefore be termed the 
equilibrium error. Assuming thatrr d  = d b  =  1, so that yt and t xt are both t
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I(1), the equilibrium error will then be I(0) and ut will rarely drift far t

from 0, and will often cross the zero line. In other words, equilibrium
will occasionally occur, at least to a close approximation, whereas if 
yt andt xt are not cointegrated, so that t ut ~t I(1), the equilibrium error 
will wander widely and zero-crossings would be rare, suggesting that
under these circumstances the concept of equilibrium has no prac-
tical implications (recall the distinctions between the properties of 
I(0) and I(1) processes listed in §4.1).

8.14 How, though, is the concept of cointegration linked to the
analysis of spurious regressions? To answer this, we need to define 
the covariance matrix

⎡ ⎤
Σ = ⎢ ⎥

⎡ ⎤⎡ ⎤

⎣ ⎦
⎢ ⎥⎢ ⎥S

where σvwσσ is the covariance between w vt and t wt, which is not neces-
sarily 0. The results of §8.4 actually require Σs to be non-singular. If 
this is not the case, then the asymptotic theory yielding these results 
no longer holds.

For Σs to be singular, we require |Σs | = σ 2
v σ 2

w– σ 2
vw = 0. This impliesw

that Σsγs   =  0, where γ 9 = (1, –a) and a = σvwσσ /σ 2
w. The singularity of Σs is, 

in fact, a necessary condition for yt andt xt to be cointegrated, since in t

this case |Σs|  =  0 implies that the correlation between the innovations
vt andt wt, given by ρvw =w σvwσσ /σv σσ σwσσ , is unity. For values of ρvw less thanw

unity, yt and t xt are not cointegrated, although they are clearly corre-t

lated, and when ρvw  = w 0, so that vt and t wt are independent, we have t

Granger and Newbold’s spurious regression.

8.15 What differences to the asymptotic regression theory for 
integrated regressors outlined in §§8.4–8.7 are there when yt ist

cointegrated with xt? Since the equilibrium error ut can be regardedt

as the error term in the regression of yt on t xt, we may consider the
model

+t t ty x u= +t tt +β (8.10)

+t t t−1x x w= +t tt +1

9781137525321_08_cha08.indd   123 6/15/2015   5:20:13 PM



124  Time Series Econometrics

where ut and t wt are contemporaneously correlated white noise, sot

that E(utwt)  =  tt σuwσσ . This non-zero correlation implies that xt is endog-t

enous rather than exogenous.
Several theoretical results can be demonstrated via simulation. 

The model given by (8.10) was used with the correlation between ut

and wt parameterised ast ut  = t γwγγ t +t vt, so that γ  = σvwσσ /σ 2
w. The simula-

tions set β  =  0, β σ 2
w =w σ 2

u = 1 and 2 σuwσσ   = w 0.75, so that γ  =  0.75. With once γ
again T  =  1000 and 10,000 iterations, Figure 8.5 shows the simu-T
lated frequency distribution of β 1̂000. The sample mean is 0.0028 and
95% of the estimates lie in a very small interval, –0.0016 to 0.0093, 
around 0, reflecting what is known as the super-consistency prop-
erty of cointegration. However, this interval also shows the skewness 
of the distribution, which is a consequence of the presence of endo-
geneity bias caused by the lack of exogeneity of xt (this is known as t

second-order bias).
Figure 8.6 shows the simulated t-ratio. The distribution is nottt

standard normal, although it is normal in shape, being centred not 
on 0 but on 0.994 and with a standard deviation of just 0.884, so that
the 2.5% critical value is approximately 2.8 rather than 2.
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Figure 8.5 Simulated frequency distribution of β 1̂000 from the cointegrated
model with endogenous regressor
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8.16 Figures 8.7–8.9 show the results of three related simulations.
Figure 8.7 provides the simulated frequency distribution of the slope 
coefficient of the regression of yt on t xt when t xt  is generated by the 
stationary AR(1) process xt  =  0.5t xt–1tt  +wt rather than the random walk t

of (8.10), but where all other settings remain the same. The endog-
eneity bias is now readily apparent, with the distribution, although
normal, having a mean of 0.565 rather than 0, and a standard devia-
tion of 0.035.

Figure 8.8 shows the simulated frequency distribution of the slope 
coefficient in the same stationary regression but where now σuwσσ   =  0,w

so that there is no endogeneity: consequently, the distribution is
centred on 0. Finally, Figure 8.9 shows the frequency distribution of 
β 1̂000 from the cointegrated model but with σuwσσ   =  0. With no endog-w

eneity, the distribution is normal, as compared to Figure 8.5, but has 
a standard error of just 0.0035, thus reflecting the super-consistency 
property of a cointegrated regression when compared to its stationary
counterpart in Figure 8.8.
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Figure 8.6 Simulated frequency distribution of the t-ratio on β 1̂000 from the 
cointegrated model with endogenous regressor
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Figure 8.7 Simulated frequency distribution of the slope coefficient from 7
the stationary model with endogeneity
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Figure 8.8 Simulated frequency distribution of the slope coefficient from 
the stationary model without endogeneity
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8.17 The assumption made in all these simulations is that xt is t

without drift. This assumption is not innocuous, however, for the
inclusion of a drift restores the asymptotic normality of β T̂ irrespec-T

tive of whether there is endogeneity or not. For multiple regressions 
this result does not hold although the estimator continues to be 
super-consistent.11

Testing for cointegration in regression

8.18 Given the crucial role that cointegration plays in regression 
models with integrated variables, it is clearly important to be able to
test for its presence. A number of tests have been proposed that are 
based on the residuals from the cointegrating regression

− − ˆˆ ˆt t T T tu y=t = xα bT (8.11)

Such residual-based procedures seek to test a null hypothesis
of no cointegration. Perhaps the simplest test to use is the usual 
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Figure 8.9 Simulated frequency distribution of the t-ratio on β 1̂000 from the 
cointegrated model with exogenous regressor
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Durbin–Watson dw statistic but, since the non-cointegration null is w
that ût ist I(1), the value of the test statistic under this null is dw  =  0, w
with rejection in favour of the I(0) alternative occurring for values of 
dw greater than 0.

Unfortunately, there are several difficulties associated with this 
simple test which mirror those that affect the conventional Durbin–
Watson test. For example, the asymptotic distribution of dw underw
the null depends on nuisance parameters such as the correlations
within the vector Δxt; the critical value bounds diverge as the
number of regressors increases, becoming so wide as to have no prac-
tical value for inference; and the statistic assumes that under the null
ut  is a pure random walk, and under the alternativet ut is a stationary t

AR(1) process. If this actually is the case, then dw has excellent powerw
properties, but the critical bounds will not be correct if ut has moret

complicated autocorrelation properties.12

8.19 A more popular test is to use the t-ratio ontt ût–1 from the regres-
sion of Δût ont ût–1 and lagged values of Δût, in a manner analogous
to the unit root testing approach for an observed series discussed in 
§§4.4–4.8. This is often known as the Engle–Granger test for cointe-
gration. The problem here is that Δût is derived as a residual from at

regression in which the cointegrating vector is estimated. If the null of 
non-cointegration was actually true then such a vector would not be
identified. However, least squares will nevertheless estimate the cointe-
grating vector which minimises the residual variance and hence is most 
likely to result in a stationary residual series, so that using the Dickey–
Fuller τμττ critical values would reject the null too often. Moreover, an μ

additional factor that influences the distribution of the t-ratio is thett
number of regressors contained in xt. Critical values are available from
many sources: for example, the large T 5%, 2.5% and 1% critical valuesT
when xt  =  t xt are –3.37, –3.64 and –3.96. As with conventional unit roott

tests, different sets of critical values are to be used if there is either no
constant in the cointegrating regression or if there is both a constant
and a trend (corresponding to the τ andτ ττττ  variants).τ

EXAMPLE 8.1 Are short and long interest rates 
cointegrated?

The findings that the interest rate spread, the difference R20t  –  RSt, 
is I(0) in Example 4.1, and that individually RSt and t R20t are botht
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I(1) in Example 4.4, may be interpreted as implying that RSt andt

R20t are cointegrated. Note that the plot of the two series in Figuret

4.5 certainly suggests that they are ‘bound together’ through 
time. The Engle–Granger (EG) test for cointegration is obtained
by first regressing RSt on a constant and t R20t and then subjectingt

the residuals to a unit root test. Doing so yields τμτ   =  –3.94, which
is significant at the 1% level (the marginal significance level 
being 0.009). Of course, choosing RSt to be the dependent vari-t

able in the cointegrating regression is arbitrary: we could just as 
well regress R20t on a constant and t RSt. If we do this we obtain 
τμττ   =  –3.48, which is significant at 5% (marginal significance level
0.036). We are thus able to confirm that RSt andt R20t are indeed t

cointegrated.

Estimating cointegrating regressions

8.20 As we have seen, OLS estimation of the cointegrating regres-
sion produces estimates that, although super-consistent, are never-
theless (second-order) biased even in large samples (recall Figure 8.5,
which showed a biased sampling distribution of β 1̂000 when there was 
endogeneity between yt and t xt: autocorrelation in ut will exacerbatet

the situation further).
A general set-up that allows for both contemporaneous correla-

tion and autocorrelation is an extension of (8.10) to the multivariate 
‘triangular’ system

+t t ty u= +t t +b (8.12)

Δ =t tw=t

We can assume that ut andt wt are stationary, but not necessarily whitet

noise, processes which may be correlated. As discussed above, OLS
estimates are second-order biased and, of course, this arises because
of the contemporaneous and serial correlation of the regressors. This 
bias may be eliminated by using the fully-modified OLS (FM-OLS)
estimator.13

8.21 Several other estimators have been proposed that correct for
both correlation between ut and t wt  and autocorrelation in ut while t

still continuing to use standard least squares techniques. The most
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popular of these is to augment (8.12) with leads and lags of Δxt whent

there is correlation between ut andt wt:

+ Δ +∑ p

t t s t s∑ ts p=−=−
uΔ +s t s−y =t t ∑ =−

ΔΔb ++ ∑ p++tt ∑ =
++ (8.13)

where p is chosen such that the correlation between ut and t wt is zero t

for |s|  >  p. This is known as dynamic OLS (DOLS). If xt is strongly t

exogenous, so that ut does not Granger-causet wt, then leads of Δxt

will not be required (γ( s  =  0, s  <  0).14

Autocorrelation in ut may be captured by assuming thatt ut follows t

an AR(p( ) process and estimating (8.13) either by generalised least
squares (GLS), by including lags of ΔyΔΔ t as additional regressors, or byt

using a non-parametric correction of the standard errors.

EXAMPLE 8.2 Estimating the cointegrating regression 
between short and long interest rates

OLS estimation of the cointegrating regression R20t  = t α  + α βRSββ t  +  t ut

produces

ˆ
(0.121) (0.016)

t t t3R RS u+ ˆ20 2.536 0.788= ++ tt +2.536 0.788++

but, as we have seen, such a regression should not be used for infer-
ence. FM-OLS estimation with a non-parametric correction for auto-
correlation produces

ˆ
(0.131)(0.973)

t t tR RS u+ ˆ20 1.110 1.009= ++t tt +1.110 1.009++

These estimates are very different to those from OLS and show that 
α is insignificantly different from 0 andα β insignificantly different β
from unity; indeed, the joint hypothesis α  =  0 and α β  =  1 cannot be β
rejected using an F-test at the 5% level. The DOLS estimator with a 
similar correction for autocorrelation produces

ˆ
(0.045)(0.336)

t t tR RS u+ ˆ20 1.720 0.908= ++t tt +1.720 0.908++
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and is again consistent with the ‘spread hypothesis’ that R20t  – t RSt ist

stationary, so that RSt and t R20t are cointegrated with t cointegrating 
vector (l,  –1). However, from Example 2.2, recall that the spread has
a non-zero mean, which requires that α should be non-zero, in fact α
positive (the estimate was 1.128). The estimates of α from FM-OLSα
and DOLS are both consistent with this value.

EViews Exercises

8.22 In page Ex _ 2 _ 2 open r20 and rs as a group and click View/ 
Cointegration Test/Single-Equation Cointegration Test ... . The
default settings are appropriate and clicking OK produces the two
EG test statistics (called the ‘tau-statistics’) reported in Example 8.1.

8.23 The standard OLS command

ls r20 c rs

produces the OLS estimated cointegrating regression of Example 8.2.
To obtain the FM-OLS estimates click Estimate and selectCOINTREG –
Cointegrating Regression as the estimation method. In the
‘Specification’ window click ‘Options’ in ‘Nonstationary estimation
settings’ (noting that ‘Fully-modified OLS (FMOLS)’ is the default 
estimation method) and then choose ‘Auto-AIC’ as the lag specifi-
cation, whereupon the estimates reported in Example 8.2 will be
produced. The test of the joint hypothesis α  =  0 and α β  =  1 is obtained β
by clicking View/Coefficient Diagnostics/Wald test – Coefficient 
Restrictions in the ‘Stats’ window and entering c(1)= 1,c(2)= 0 in 
the coefficient restrictions box. The F-statistic is seen to be (just)
insignificant at the 5% level.

The DOLS estimates may be obtained by clicking ‘Estimate’ and now 
selecting ‘Dynamic OLS (DOLS)’ as the method. Selecting ‘Akaike’ as
the ‘Lag & Lead method’ will then produce the DOLS estimates.

Notes

1. Granger and Newbold, ‘Spurious regressions in econometrics’, Journal of 
Econometrics 2 (1974), 111–20. Spurious (or nonsense) regressions had first e
been analysed by Yule almost 50 years earlier in ‘Why do we sometimes
get nonsense-correlations between time-series? A study in sampling and
the nature of time series’, Journal of the Royal Statistical Society 89 (1926),
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 1–63. See Mills, A Very British Affair, chapters 2 and 10, for detailedrr
discussion of the two papers.

 2. Granger has recounted that when he presented these simulation results
during a seminar presentation at the LSE they were ‘met with total disbe-
lief. Their reaction was that we must have done the programming incor-
rectly’ (Peter C.B. Phillips, ‘The ET interview: Professor Clive Granger’,
Econometric Theory 13 (1997), 262). Paul Newbold, who had actually done
the programming, confirmed this story to me some years ago over a
couple of pints in the Nottingham University Staff Club.

 3. Phillips, ‘Understanding spurious regressions in econometrics’, Journal of 
Econometrics 33 (1986), 311–40.

 4. Note that the smoothing involved in constructing the density functions
leads to negative values in the left-hand tails of these two distributions: 
the actual minimum sample values of R2 and dw are, of course, positive,w
although extremely small, being 0.0008 for dw and of the order of 10w –10

for R2.
 5 See, for example, Hendry, Dynamic Econometrics.
 6 These alternative specifications were emphasised in Hendry and 

Grayham E. Mizon, ‘Serial correlation as a convenient simplification, 
not a nuisance: a comment on a study of the demand for money by the 
Bank of England’, Economic Journal 88 (1978), 549–63.

 7. These different interpretations and implications of differencing had, 
in fact, been discovered half a century earlier by Bradford B. Smith,
‘Combining the advantages of first-difference and deviation-from-trend 
methods of correlating time series’, Journal of the American Statistical
Association 21 (1926), 55–9. This was a remarkably prescient article that 
quickly disappeared without trace until it was rediscovered by Mills,
‘Bradford Smith: an econometrician decades ahead of his time’, Oxford 
Bulletin of Economics and Statistics 73 (2011), 276–85.

 8. These models were popularised by James Davidson, Hendry, Frank Srba 
and Stephen Yeo, ‘Econometric modelling of the aggregate time-series 
relationship between consumers’ expenditure and income in the United 
Kingdom’, Economic Journal 88 (1978), 861–92.

 9. Granger recalls discussing this possibility with Hendry: ‘he was saying
that he had a case where he had two I(1) variables, but their difference 
was I(0), and I said that is not possible, speaking as a theorist. He said he
thought it was. So I went away to prove that I was right, and I managed to 
prove that he was right’ (Phillips, 1997; page 25); also see Granger, ‘Some 
thoughts on the development of cointegration’, Journal of Econometrics
158 (2010), 3–6, for further recollections of this episode.

10. The concept of cointegration was first introduced in Granger, ‘Some 
properties of time series data and their use in econometric model speci-
fication’, Journal of Econometrics 16 (1981), 121–30, was further developed
in Granger and Andrew A. Weiss, ‘Time series analysis of error correcting 
models’, in Samual Karlin, Takeshi Amemiya and Leo A. Goodman
(editors), Studies in Econometrics, Time Series and Multivariate Statistics
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(Academic Press, 1983), 255–78, and came to prominence with Engle and
Granger, ‘Cointegration and error correction: representation, estimation 
and testing’, Econometrica 55 (1987), 251–76, which has since become the 
most heavily cited paper in time series econometrics.

   Such has been the impact of cointegration that Granger, jointly with 
Engle, was awarded the 2003 Severiges Riksbank Prize in Economic
Science in memory of Alfred Nobel in ‘recognition of his achievements 
in developing methods of analysing economic time series with common 
trends (co-integration)’. See Mills, A Very British Affair, chapter 10, for a rr
detailed treatment of the subject.

11. A fuller treatment of the model with drifting regressors may be found in 
Mills and Markellos, Econometric Modelling, chapter 9.2.

12. The dw statistic as a test for cointegration has been analysed by J. Denis
Sargan and Alok S. Bhargava, ‘Testing residuals from least squares regres-
sion for being generated by the Gaussian random walk’, Econometrica 51
(1983), 153–74, and Bhargava, ‘On the theory of testing for unit roots in
observed time series’, Review of Economic Studies 53 (1986), 369–84.

13. This was proposed by Phillips and Bruce E. Hansen, ‘Statistical infer-
ence in instrumental variables regression with I(1) processes’, Review of 
Economic Studies 57 (1990), 99–125: see Mills and Markellos, Econometric 
Modelling, chapter 9.4, for details.gg

14. See, for example, Phillips and Mica Loretan. ‘Estimating long-run
economic equilibria’, Review of Economic Studies 58 (1991), 407–36; 
Penti Saikkonen, ‘Asymptotically efficient estimation of cointegrating
regressions’, Econometric Theory 7 (1991), 1–21; James H. Stock and Mark 
W. Watson, ‘A simple estimator of cointegrating vectors in higher order 
integrated systems’, Econometrica 61 (1993), 783–820.
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9
Cointegration in Systems of 
Equations

VARs with integrated variables

9.1 How do non-stationarity and the possible presence of cointegra-
tion manifest themselves in systems of equations? Consider again 
the VAR(p( ) process of §7.5

=∑ 1

p

i t i t=t ∑ 1i
y c= + A y u+∑ p

i t ii t i−=
+t = + ∑ 1  (9.1)

where yt andt ut are botht n × 1 vectors,

E(u(( t) =tt 0

and

( ) Ω =⎧
= ⎨

⎧⎧
≠⎩

⎨⎨
,

,
p t s=

E
t s≠0

From §7.12, (9.1) can be written in lag operator form as

( ) t tA y c u( ) = +t +B((  (9.2)

where

( )
=∑ 1

p i
n i=∑ 1i

BiA A( ) ∑ p
B(( )= Ι − ∑ p

n ∑
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Assuming p > 1, the matrix polynomial A(B(( ) can always be written 
as1

( ) ( ) ( ) ( )1(B B B) ( ) (− Φ −) (( ) (1(((A ( ) (B(( ) (= ((

where

=∑ 1

p

ii
A A= ∑ p

and

( ) − −
=

Φ( ∑ 1 1
1

,
p i

ii
B) = Φ) ∑ 1p

i +
Φ = −∑ 1

p

i j+
= ∑ 1j i=

A

The Φi can be obtained recursively from Φ1 = –A + A1 as Φi = Φi–1 + Ai, 
i = 2,...,p  –  1. With this decomposition of A(B( ), (9.2) can always be
written as

or

( )(( ) ( )

( )

t t

t t t t( ) 1 1

y c u)(( ) ( ) = +=)) t +) () ((

y c y Ay u( )= + Φ Δ + ++ Φ Δ +( ) ++t t tt t( ) −+ Φ Δ + ++ Φ Δ( ) 1 1−++B((((

An equivalent representation is

( )Δ = + Φ Δ + Π +( )t t t t( )B((y c y y u= + Φ Δ + Π += + Φ Δ + Π( ) + Π+ Πt t tt t( ) −+ Φ Δ + Π ++ Φ Δ+ Φ Δ( ) 1 1−+ Π+ Π(((  (9.3)

where

( )Π = 1((nA A− Ι = −

is known as the long-run matrix. The representation (9.3) is the 
multivariate counterpart of the ADF regression (recall Example 4.1)
and we should emphasise that it is a purely algebraic transformation 
of (9.2) as no assumptions about the properties of the yt vector havet

been made up to this point.
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9.2 Consider now the case where A = In, so that Π = 0 in (9.3) and
ΔyΔΔ t follows the VAR(t p ( –  1) process

( )Δ = + Φ ( Δ +)t t t( )B((y c y u= + Φ= ( Δ +)t tt( ) −Δ +)+ Φ ( 1(((  (9.4)

Setting A = In implies that

|Π| = |A1 + ... + ApA  – In| = 0 (9.5)

Since this is the multivariate extension of the unit root condition of 
§4.6, the VAR (9.2) is then said to contain at least one unit root, yt is t

an I(1) process and a VAR in the first differences ΔyΔΔ t, as in (9.4), is the 
appropriate specification.

VARs with cointegrated variables

9.3 Note that (9.5) does not necessarily imply that A = In and it 
is this fact that leads to cointegrated VARs. Thus suppose that (9.5)
holds, so that the long-run matrix Π is singular and |Π| = 0, but Π ≠ 0
and A ≠ In. Being singular, Π will thus have reduced rank, say r, whererr
0 < r <r n. In such circumstances, Π can be expressed as the product 
of two n × r matrices r β andβ α, both of full column rank r, so thatrr
Π = βα9.

To see why this is the case, note that α9 can be defined as the
matrix containing the r linearly independent rows of r Π, so that Π
must be able to be written as a linear combination of α9: β is then the
matrix of coefficients that are needed to be able to do this. These r
linearly independent rows of Π, contained as the rows of α9 = (α1,..., 
α r)rr 9, are known as the cointegrating vectors and Π will contain only
n – r unit roots, rather than ther n unit roots that it would contain if 
Π = 0, which will be the case if r = 0.2

9.4 Why are the rows of α9 known as cointegrating vectors?
Substituting Π = βα9 into (9.4) yields

( ) ′Δ = + Φ Δ + +( ) ′t t t t( )y = + Φ= ( uΔ + ++) ++t t tt t( ) −+ Φ Δ + ++ Φ Δ+ Φ Δ( ) 1 1−++ b
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The assumption that yt ist I(1) implies that, since ΔyΔΔ t must then bet

I(0), α9yt must also bet I(0) for both sides of the equation to ‘balance’. 
In other words, α9 is a matrix whose rows, when post-multiplied by 
yt, produce stationary linear combinations of yt: the r linear combina-r
tions α1yt,..., αr yt are all stationary.t

9.5 Consequently, if yt is cointegrated with cointegrated rank t r, then rr
it can be represented as the vector error correction model (VECM)l

( )Δ = + Φ ( Δ + +)t t t t( )y c y e u= + Φ= ( Δ + ++) ++t t tt t( ) −Δ + +)+ Φ ( 1 1−++b  (9.6)

where et =t α9yt are the t r stationaryr error corrections. This is known 
as Granger’s Representation Theorem and is clearly the multivariate
extension and generalisation of (8.8).

9.6 Several additional points are worth mentioning. The parameter 
matrices α and β are not uniquely identified, since for any non-sin-β
gular r × r matrixr ξ, the productsξ βα9 and βξ(ξ ξ–1ξξ α9) will both equal Π. 
If r = 0 then we have already seen in §9.2 that the model becomes
the VAR(p( –1) process (9.4) in the first differences ΔyΔΔ t. If, on the other
hand, r = n, then Π is of full rank and is non-singular, and yt willt

contain no unit roots and will be I(0), so that a VAR(p( ) in the levels of 
yt is appropriate from the outset.t

The error corrections et, although stationary, are not restricted
to having zero means, so that, as (9.6) stands, growth in yt can t

come about via both the error correction et and the autonomous t

drift component c. How this constant, and also, perhaps, a trend,
are treated is important in determining the appropriate estimation 
procedure and the set of critical values used for inference.3

Estimation of VECMs and tests of cointegrating rank

9.7 Maximum likelihood (ML) estimation of the VECM (9.6) is 
discussed in many texts and computational routines are available
in most econometrics packages. Without going into unnecessary 
technical details, ML estimates are obtained in the following way.
Consider (9.6) again but now written as

−

=
′Φ Δ + +′Δ = + ∑ 1

1

p

i t i t t=t ∑ 11i
y = + Φ Δ += + Φ Δ u+t i t i ti t i t− −=

= + Φ Δ + += + Φ Δ ++ Φ Δ +∑ 11
b

 (9.7)
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The first step is to estimate (9.7) under the restriction bαb 9= 0. As this 
is simply a VAR(p( –1) in ΔyΔΔ t, OLS estimation will yield the set of resid-
uals u^ t, from which is calculated the sample covariance matrix

=
′∑1

00 1
ˆ ˆT

t tt
S u u−= ∑1

00 ˆ ˆT

tT

The second step is to estimate the multivariate regression

−

=∑ 1

1

p

i t i t=1t ∑1 i
y d y v= + Ξ Δ ++ Ξ Δ∑ 1p

t i t ii t i− −=
= + Ξ Δ +Δ+ Ξ Δ∑1 1

and use the OLS residuals v^tvv  to calculate the covariance matricest

=
′∑1

11 1
ˆ ˆ

T

t tt
S v v−= ∑1

11 ˆ ˆ
T

tT

and

=
′ ′∑1

10 01=∑ 1
ˆ ˆ

T

t
S u v S−= =′∑1

10 = =∑ ˆ ˆ
T

T

In effect, these two regressions partial out the effects of ΔyΔΔ t–1,...,ΔyΔΔ t–p+1

from ΔyΔΔ t andt yt–1, leaving us to concentrate on the relationship
between ΔyΔΔ t andt yt–1, which is parameterised by bαb 9. α is then esti-α
mated by the r linear combinations of r yt–1 which have the largest
squared partial correlations with ΔyΔΔ t: this is known as a reduced rank
regression.

9.8 More precisely, this procedure maximises the likelihood of (9.7) 
by solving a set of equations of the form

(λiλλ S11 –S10S
–1
00S01)υiυ  = 0 i = 1,...,n (9.8)

where λ
^

1 > λ
^

2λ  > ... > λ
^

nλλ  are the set of eigenvalues and V = (υ( 1υυ ,υ2υ ,...,υn) 
contains the set of associated eigenvectors, subject to the 
normalisation

11' nV S V I11' =
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The ML estimate of α is then given by the eigenvectors corresponding 
to the r largest eigenvalues:

α̂ = (α̂ υ( 1υυ ,υ2υ ,...,υr)rr

and the ML estimate of b is consequently calculated asb

β̂ = β S01α̂

which is equivalent to the estimate of b that would be obtained by
substituting α̂ into (9.7) and estimating by OLS, which also providesα̂
ML estimates of the remaining parameters in the model.4

9.9 Of course, ML estimation is based upon a known value of the
cointegrating rank r and in practice this value will be unknown. r
Fortunately, the set of equations (9.8) also provides a method of 
determining the value of r. If rr r = n and Π is unrestricted, the maxim-
ised log likelihood is given by

( ) ( ) ( )
1

2 log) ((
1

n

i
L n K T(( ) (( =

log (2)K TK ( ∑∑

where K = –(K T/2)(TT n(1 + log2π) + log|π S00|). For a given value of r < n, 
only the first r eigenvalues should be positive, and the restricted logr
likelihood is

( ) ( ) ( )
1

2 log) ((
1

r

i
L r K T(( ) T(( =

log (2)K TK ( ∑∑

An LR test of the hypothesis that there are r cointegrating vectors r
against the alternative that there are n is thus given by

( )(( )( ) ( ) ( )
1

n (
1

g (
1r ( )( ) ( )( )( ) ( )

i r +r∑∑η ( )( ) ( )2( )( ) ( ) (log ((n
log ((

1r 2( )( ) ( )( )( (( ) (( )( )(( ) (( ) log (log (= 2(2(( )( ) ( )( )( ) ( ) ∑

This is known as the trace statistic and testing proceeds in the c
sequence η0,η1,...,ηn–1. A cointegrating rank of r is selected if the r last
significant statistic is ηr–1rr , which thereby rejects the hypothesis of 
n – r + 1 unit roots inr Π. The trace statistic measures the importance
of the adjustment coefficients b on the eigenvectors to be potentially b
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omitted. An alternative test of the significance of the largest eigen-
value is

( )r (g (ζ (= − log ((r log (T 0,1, , 1−�r = 0,1, ,�

which is known as the maximal-eigenvalue or λ-max statistic. Both 
ηr and r ζrζζ  have non-standard limiting distributions that are gener-r

alisations of the Dickey–Fuller unit root distributions. The limiting
distributions depend on n and on restrictions imposed on the behav-
iour of the constant and trend appearing in the VECM. For example,
if c in (9.7) is replaced by c0 + c1t, then both the ML estimation and t
testing procedures need to be amended to take into account the pres-
ence of a linear trend and the various possible restrictions that could 
be placed on c0 and c1t.5

EXAMPLE 9.1 A simple example of the algebra 
of VECMs

Let us assume that p = n = 2, so that we have a VAR(2) in the variables 
y1 and y2 (intercepts are omitted for simplicity):

+ + + +1, 11,1 1, 1 12,1 2, 1 11,2 1, 2 12,2 2, 2 1,t11,1 1, 1 12,1 2, 1 11,2 1, 2 12,2 2, 2 1,, , , , , , , ,y a y a y a y a y u= + + + ++ + +1, 11,1 1, 1 12,1 2, 1 11,2 1, 2 12,2 2, 2= + + + ++ + ++ + +11,1 1, 1 12,1 2, 1 11,2 1, 2 12,2 2, 211,1 1, 1 12,1 2, 1 11,2 1, 2 12,2 2,11,1 1, 1 12,1 2, 1 11,2 1, 2 12,2 2, 2− − − −− −− −− −+ + + ++ + ++ + ++ + +

+ + + +2, 21,1 1, 1 22,1 2, 1 21,2 1, 2 22,2 2, 2 2,t21,1 1, 1 22,1 2, 1 21,2 1, 2 22,2 2, 2 2,, , , , , , , ,y a y a y a y a y u= + + + ++ + +2, 21,1 1, 1 22,1 2, 1 21,2 1, 2 22,2 2, 2= + + + ++ + ++ + +21,1 1, 1 22,1 2, 1 21,2 1, 2 22,2 2, 221,1 1, 1 22,1 2, 1 21,2 1, 2 22,2 2,21,1 1, 1 22,1 2, 1 21,2 1, 2 22,2 2, 2− − − −− −− −− −+ + + ++ + ++ + ++ + +

The various coefficient matrices required for (9.3) are

⎡ ⎤
= ⎢ ⎥

⎡ ⎤⎡ ⎤

⎣ ⎦
⎢ ⎥⎢ ⎥1A

⎡ ⎤
= ⎢ ⎥

⎡ ⎤⎡ ⎤

⎣ ⎦
⎢ ⎥⎢ ⎥2A

⎡ ⎤+ + ⎡ ⎤
= + = =⎢ ⎥

⎡ ⎤⎡ ⎤
⎢ ⎥
⎡ ⎤⎡ ⎤

⎣ ⎦
⎢ ⎥⎢ ⎥

⎣ ⎦
⎢ ⎥⎢ ⎥1 2++

+ ++ +
+ ++ +

A A A= +++

⎡ ⎤ ⎡ ⎤
Π = − =

⎡
⎢ ⎥ ⎢ ⎥

⎤⎤
=

⎡⎡

⎣ ⎦ ⎣ ⎦
⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎢ ⎥−

⎤ ⎡⎤ ⎡⎤
⎢
⎡⎡⎤⎤

⎦ ⎣⎦ ⎣

−
A I−−
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The singularity condition on the long-run matrix Π is

= = 11 22 12 210 π π π π−11 22 1222 12Π

which implies that

⎡ ⎤
= ⎢ ⎥( ) ( )

⎡ ⎤⎡ ⎤

⎣ ⎦( ) ( )⎢ ⎥⎢ ⎥( ) ( )) ( )) ( )) ( )) ( )Π

and

⎡ ⎤
= ⎢ ⎥

⎡ ⎤⎡ ⎤

⎣ ⎦
⎢ ⎥⎢ ⎥b [ ]′= [[a

or, equivalently, using ξ =ξ π11,

⎡ ⎤
= ⎢ ⎥( )

⎡ ⎤⎡ ⎤

⎣ ⎦( )⎢ ⎥⎢ ⎥( ))b ))) [ ]′= [a

The VECM (9.7) is then

′Δ t t t ty A y y u′= − Δ + += − Δ + ′Δ +Δ ++1t t tt tΔ + +2 1−1 −Δ +Δ +1 b

or

[ ]

⎡ ⎤⎡ ⎤ ⎡ ⎤1 −Δ Δ⎡ ⎤
⎢ ⎥

,⎡⎡
⎢ ⎥

1, ⎤⎤−= − ⎢ ⎥⎥ ⎢⎥ ⎢⎢ ⎥
⎣ ⎦2, −⎣ ⎦,

⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎢ ⎥Δ ⎥ ⎢⎥ ⎢⎥ ⎢⎢ ⎥
⎣ ⎦
⎢ ⎥⎢ ⎥

⎡ ⎤ ⎡ ⎤⎡ ⎤
+ [ ]⎢ ⎥ ⎢ ⎥

⎡ ⎤ ⎡ ⎤⎡ ⎤ ⎡ ⎤
+⎢ ⎥( )

⎡ ⎤⎡ ⎤
( )⎣ ⎦( )⎢ ⎥⎢ ⎥( ) ⎣ ⎦ ⎣ ⎦

⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎢ ⎥⎥ ⎢⎥ ⎢+
⎦ ⎣⎦ ⎣)

11,1

2,

⎥ ⎢
⎦ ⎣

⎤ ⎡⎤ ⎡1 ΔΔ 11,1

2, ΔΔ 2
⎥ ⎢⎥ ⎢⎢ ⎥⎢ ⎥

⎤ ⎡⎤ ⎡⎤ ⎡⎤ ⎡−
⎥ ⎢
⎤ ⎡⎤ ⎡−

⎦ ⎣⎦ ⎣
⎥ ⎢⎥ ⎢⎥ ⎢
⎦ ⎣⎦ ⎣−)))

Written equation by equation, this is

Δ = − Δ − Δ + +1, 11,2 1, 1 12,2 2, 1 11 1 1,t11,2 1, 1 12,2 2, 1 11 1 1,, , , ,y a y a y e uΔ = − Δ − Δ + += − Δ − Δ +1, 11,2 1, 1 12,2 2, 1 11 1= Δ Δ + += Δ Δ +Δ Δ +11,2 1, 1 12,2 2, 1 11 111,2 1, 1 12,2 2, 1 1111,2 1, 1 12,2 2, 1 11 1− − −−−Δ Δ + +Δ Δ +Δ Δ +Δ Δ +

( )Δ = − Δ − Δ + +( ), , , , , ,( ) 2 t21,2 1, 1 22,2 2, 1 22 12 11 1 2,, , , , ( )y a y a y e uΔ = − Δ − Δ + += − Δ − Δ + ( )2, 21,2 1, 1 22,2 2, 1 22 12 11 1= Δ Δ + += Δ Δ +Δ Δ + (21,2 1, 1 22,2 2, 1 22 12 11 121,2 1, 1 22,2 2, 1 22 12 1121,2 1, 1 22,2 2, 1 22 12 11 1( )( )− − −−− ( )Δ Δ + +Δ Δ +Δ Δ +Δ Δ + ( ))))

9781137525321_09_cha09.indd   141 6/15/2015   5:17:09 PM



142  Time Series Econometrics

( )1, 12 11 2,( )t t t1, 12 11 2,( )e y y( )= −1 12 11( )t 1, 12 11( )

The various πrs coefficients can themselves be expressed in terms of 
the ars,i coefficients, r, s, i = 1,2, if desired.

EXAMPLE 9.2 A VECM representation of 
long and short interest rates

We now consider the vector of interest rate levels, yt = (t RSt, R20t)tt 9.
Since lag order criteria statistics are not affected by the presence 
of possible unit roots in yt, Table 9.1 shows that p = 3 is a suitable 
choice for the order of the levels VAR. Since n = 2, setting r = 0r
would imply that there was no cointegration and the representa-
tion would be that found in Example 7.1, a VAR(2) in the differ-
ences ΔRS and ΔR20. If r = 1 there will ber a single cointegrating 
vector with the error correction et =t α1RSt +t α2α R20t + t α0αα , where a
constant is allowed. If r = 2 then there are no unit roots and ther
levels VAR(3) is appropriate.

Including c in (9.7), allowing a constant in the cointegrating
vector and estimating by ML obtains the eigenvalues λ1λλ = 0.0201 
and λ2λλ  = 0.0018, using which the trace statistics η0 = 16.67 and
η1 = 1.39 and maximum eigenvalue statistics ξ0ξξ  = 15.28 and ξ1 = 1.39 
are calculated. The η0 and ξ0ξξ  statistics reject the null hypothesis of 
r = 0 in favour of r r > 0 at marginal significance levels of 0.033 and 0.035 r
respectively, but the η1 and ξ1 statistics, which by definition are equal
in this example, cannot reject the null of r = 1 in favour of r r = 2. We arer
thus led to the conclusion that RS and R20 are indeed cointegrated.

Table 9.1 Order determination statistics for yt = (t RSt, R20t)tt 9

p logL LR(p( ,p–1) MAIC MBIC

0 –3508.4 – 9.336 9.348
1 –533.9 5925.20 1.436 1.473
2 –468.8 129.27 1.273 1.335*
3 –462.7 12.09*   1.268* 1.354
4 –462.2 0.94 1.277 1.388

LR(p, p–1)1  ~ χ2
4 χ2

4
(0.05) = 9.49
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ML estimation of the implied VECM obtained the following esti-
mates, written in individual equation form for convenience

Δ

−

1−

2 1 1,

0 226 0 039 0 272 20
0 (0.062)(0.041) (0.04 )0

ˆ0.079 20 0.026Δ
(0.063) (0.008)

t t t t−1 22−−−0. 6 1 22

t t t−2 1 1,−

RSΔ =Δ 0 226 0 039 0 2720 039 0 272Δ + Δ + ΔΔ + Δ ++ Δ+ Δ + Δ+ ΔΔ +t 0.226 ΔΔ 1 222+ Δ + Δ+ ΔΔ +Δ + Δ

e u++ ˆ20 0.026Δ ++Δ +2 11 +2 +

Δ

−

1−

2 1 2,

20 0.012 0.020 0.311 20
(0.027) (0.02 )6 (0.041)

ˆ0.137 20 0.003Δ
(0.005)(0.041)

t t t t−1 22−−−0.00.0 1 2

t t t−2 1 2,−2

RΔΔ 20 0.012 0.020 0.3110 020 0 311= − Δ + Δ + Δ= − Δ + Δ ++ Δ+ Δ + Δ+ ΔΔ +0.0120.012 ΔΔΔ 1 222+ Δ + Δ+ ΔΔ +Δ + Δ

e u++ ˆ20 0.003Δ −−Δ 11 +2

20 1.053 0.827−
(0.997)(0.132)

t t t20 1.0531.053e R= 20 1 053−−t 20 1.053

The error correction has been normalised by setting α2αα  = 1; this helps
to identify the cointegrating vector. Examination of the estimated
coefficients suggests two important potential restrictions: the error 
correction in the ΔR20 equation is insignificantly different from 0 
and the coefficient on RS in the cointegrating vector is insignificantly 
different from unity. The first would imply that R20 is exogenous 
in the long-run, while the second implies that the error correction
can be interpreted as being the deviation from the spread. Imposing 
β1 = 0 and α1αα  = 1 produces

Δ

−

1−

2 1 1,

0 226 0 038 0 272 20
(0.062)(0.040)(0.041)
ˆ0.079 20 0.030Δ

(0.063) (0.008)

t t t t−1 22−−−1 2

t t t−2 1 1,−2

RSΔ =Δ 0 226 0 038 0 2720 038 0 272Δ + Δ + ΔΔ + Δ ++ Δ+ Δ + Δ+ ΔΔ +t 0.226 ΔΔ 1 222+ Δ + Δ+ ΔΔ +Δ + Δ

e u++ ˆ20 0.030Δ ++Δ + 11 +2 +

Δ

−

1−

2 2,

20 0.013 0.019 0.312 20
(0.041)(0.026)(0.027)

ˆ0.137 20Δ
(0.041)

t t t t−1 22−−−30.0 3 1 2

t t−2 2,

RΔΔ 20 0.013 0.019 0.3120 019 0 312= − Δ + Δ + Δ= − Δ + Δ ++ Δ+ Δ + Δ+ ΔΔ +0.0130.013 ΔΔΔ 1 222+ Δ + Δ+ ΔΔ +Δ + Δ

u++ ˆ20ΔΔ t 2 +

20 1.184−
(0.473)

t t te R= 20 −t t20
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The two restrictions are not rejected by an LR test and thus confirm 
that R20 is exogenous; in fact, since the coefficients on the lagged 
ΔRS terms in the ΔR20 equation are both insignificant, R20 is there-
fore completely exogenous and could be represented as a univariate 
AR(2) process in the differences. The spread is found to be the cointe-
grating vector, so that the error correction is the deviation of the 
spread from its equilibrium value of 1.184. Figure 9.1 shows the error
correction and it is clearly seen to be stationary.

The VECM may thus be interpreted as saying that a shock to the
gilt market, leading to a change in the long interest rate, induces a
change in short interest rates in the bond market, but a shock to the 
bond market does not produce any change in the long rate.

Nevertheless, there is a long-run equilibrium in which the spread
between long and short rates is around 1.2%. When interest rates move
so much that the spread deviates substantially from this equilibrium,
factors come into play to ensure that this deviation is eradicated as the 
equilibrium error corrects itself. However, the adjustment coefficient 
of 0.030 ensures that this correction is slow, so that equilibrium errors 
are very persistent, and this is consistent with the findings from the
univariate analysis of the spread given in Examples 2.2 and 4.1.

–6

–4

–2

0

2

4

6

1960 1970 1980 1990 2000 2010

Figure 9.1 Error correction et =t R20t –t RSt – 1.184t
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EViews Exercises

9.10 To produce the results contained in Example 9.2 open r20 and
rs in page Ex _ 2 _ 2 as a group. Table 9.1 can be constructed by 
following the procedure of §7.16. The trace and max-eigenvalue statis-
tics for cointegration are obtained by clicking View/Cointegration 
Test/Johansen System Cointegration Test and changing ‘Lag inter-
vals’ to 1 2.

To produce the VECM estimates, click Proc/Make Vector 
Autoregression ... , select ‘Vector Error Correction’ as the ‘VAR Type’, 
click Cointegration and choose option 2 as the ‘Deterministic Trend 
Specification’. To estimate the restricted VECM click Estimate/VEC
Restrictions and in the ‘VEC Coefficient Restrictions’ box check 
‘Impose Restrictions’ and insert

b(1,1)=1, b(1,2)=-1, a(1,1)=0

The test for the validity of these restrictions is provided and is clearly 
insignificant. To obtain the error correction of Figure 9.1 click View/
Cointegration Graph.

Impulse responses and variance decompositions for the VECM 
may be obtained in exactly the same way as for the VAR in §7.17.

Notes

1. This representation is the matrix equivalent of the univariate AR repre-
sentation of §4.6. Again it is most clearly seen for p = 2:

 A(B) = I – A1B – A2B2

 = I – A1B – A2B + A2B – A2B2

 = I – (A1 + A2)B + A2B (1 – B)
 = I – AB – Φ1B (1 – B)

since here A = A1 + A2 and Φ1 = – A2.
2. For detailed text book treatments of this argument, see Anindya

Banerjee, Juan Dolado, John W. Galbraith and Hendry, Co-integration,
Error-Correction, and the Econometric Analysis of Non-stationary Data
(Oxford University Press, 1993) and Søren Johansen, Likelihood-Based 
Inference in Cointegrated Vector Autoregressive Models (Oxford University
Press, 1995).

3. Mills and Markellos, Econometric Modelling, chapter 9.5, discuss how to gg
deal with the inclusion of both constants and trends into VECMs.
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4. This procedure can be straightforwardly adapted when a linear trend is
included in (9.7) and when various restrictions are placed upon the inter-
cept and trend coefficients. This involves adjusting the first and second
step regressions to accommodate these alterations.

5. See, for example, Johansen, Likelihood-Based Inference, chapters 6 and 15, 
for extended discussion.
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10
Extensions and Developments

Seasonality, Non-linearities and Breaks

10.1 As we emphasised in Chapter 1, this text book is very much 
an introduction to time series econometrics: consequently, some 
topics have not been covered either because they are too peripheral
to the main themes or are too advanced. Three areas not covered, 
but which nevertheless can be important when analysing time series 
data, are seasonality, non-linearities and breaks.

10.2 Many economic time series have seasonal patterns and,
although seasonal adjustment procedures have been developed over
many years and form the basis for ‘agency’ approaches to adjusting 
seasonal data prior to their analysis or, indeed, publication, there are 
many circumstances where it is preferable to incorporate seasonal
patterns directly into the modelling framework.

The most notable univariate approach is Box and Jenkins’ exten-
sion of ARIMA models to incorporate seasonal patterns using a
multiplicative modelling framework. This is best seen in terms of 
an ARIMA(0,1,1) model for monthly data. Here the observed series is
characterised by the seasonal process

12 12(1 ) (1 )12 12
t t(1 )) (1) (112 ) () (1) (112 (1 α

whose error αtαα  follows the non-seasonal processt

( ) ( )1 1(( ) (t t( )B) B a)1) ( ))α t ( BB1((t (1(1(
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The two processes may then be combined to produce the multiplica-
tive ARIMA(0,1,1)×(0,1,1)12 model

( )( ) ( )( )) ( )(1(( )( ) ( )(t t( )( )a))( ) ( )( ))()()(()()(()( ) t (B B x)( )1 11 1)( )( () ((t (1(
 (10.1)

Box and Jenkins found that this model fitted a time series of inter-
national airline passenger numbers extremely well and it has since
become known as the ‘airline model’. An extension of the identifi-
cation procedures outlined in Chapters 2 and 3 to non-stationary
seasonal time series is straightforward to apply.1

The presence of the multiplicative difference filter

( )( ) ( ) ( )2 () ( )2)1(( )(− () ( )2))(( − = −− = −)( )( ( ) (() (( ) (() ( ) (2))

in (10.1) shows that the airline model assumes that xt contains a set of t

unit roots, so that the seasonal pattern is both stochastic and non-sta-
tionary. There are seasonal unit root tests available with which to test
this assumption and, indeed, there are further modelling techniques
that will test whether seasonality is stochastic, and so needs to be
modelled by some form of ARMA process, or whether it is deterministic,
in which case it may be represented as a set of seasonal dummies.2

10.3 Recent years have seen great advances in non-linear time series
modelling, most notably models that attempt to capture regime
switching, such as the SETAR (self-exciting threshold autoregres-gg
sive), STAR (smooth transition autoregressive) and Markov switching 
processes. Neural networks and chaotic processes have also proved
popular for modelling financial time series.3

Although not strictly non-linear, long memory processes have
become a feature of modelling financial time series. Long memory
is associated with an autocorrelation function that declines hyper-
bolically, so that the decline is slower than the exponential decline
of a stationary process but faster than the linear decline associated
with an I(1) process. Long memory can be characterised by the use of 
fractional differencing through the operatorg

( ) ( ) ( )( )Δ = − = − + − +( �3)2−
1( −((

2! 3!
d))d d d d d d(( ) ( )(− 1 11) (( )((1 11) ( )(−−−) (( )((2 (( )((

B dB B B) dB− + −+ −( ) ( )( ))( )( )) 1) =)d)))))) d d(( )( ) 2 ( )(( )(1) 2 (( )((
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where d is now allowed to take any value greater than –1, not just
integers: Δdxt =t at then defines t fractional white noise and, if |d| < 0.5, 
xt is stationary and invertible but will exhibit long memory. If t at is t

autocorrelated it may be modelled as an ARMA process, thus leading 
to the AR-fractionally integrated-MA, or ARFIMA, process.4

10.4 Although in §4.8 we contrasted DS and TS processes, a great
deal of interest has recently focused on a third type of process, the
segmented (or breaking)gg trend model, in which the series evolves as 
stationary deviations around a linear trend that ‘breaks’ in one or 
more places. Such models allow shocks to the series to be typically 
transitory but occasionally permanent when a break occurs (on this
perspective a random walk is a breaking trend model with the breaks
occurring every period).

Under a breaking trend model, unit root testing procedures need to 
be amended and whether the timings of the breaks are known (exog-
enously determined breaks) or whether they are unknown and must
themselves be estimated (endogenous breaks) becomes an extremely 
important question since, for example, critical values of test statis-
tics are affected. Breaks may also be introduced into cointegration
relationships, thus leading to the concept of temporary cointegra-
tion, in which the cointegrating relationship can be switched on or 
off depending, for example, on the nature of the policy regime in
place.5

Unobserved Component Models and
Trend and Cycle Extraction

10.5 Seasonal adjustment procedures typically have underlying
them an unobserved components (UC) decomposition in which 
the observed series xt is represented as either the sum or productt

of the unobserved non-seasonal, nt, and seasonal, st, components: 
xt = t nt + st is an additive decomposition while t xt = t nt × st is a multipli-t

cative decomposition, the latter implying that there is an additive 
decomposition of the logarithms. Signal extraction procedures thus
attempt to estimate the unobserved components from a realisation 
of xt. When there are assumed, typically ARIMA, models for nt andt

st then we have model-based seasonal adjustment, for example, butt

general filters can be used to extract trend and cyclical components 
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from extended decompositions. The Hodrick–Prescott trend is a
popular example of a filter of this type, but several others have also
been proposed.6

UC models can often be given a state space representation within 
which estimation of their parameters, forecasting of future values, 
and estimation of the components (known as smoothing) can all be
performed using the Kalman filter.rr 7

Common Trends and Features and Co-breaking

10.6 The presence of cointegration is often thought of in terms of 
there being common stochastic trends: if a set of n time series have
r cointegrating vectors then they equivalently have n – r common r
stochastic trends. The concept of common trends may be extended
to that of common features: for example, if two series individu-
ally contain seasonal or cyclical patterns but a linear combination
of them does not, then these series contain common seasonal or
cyclical features.8

One important manifestation of a common feature is when there 
are common structural breaks across a set of series, a phenom-
enon known as co-breaking and which has clear links with models g
of cointegration in the presence of structural breaks or regime 
shifts.9

Generalisations of Cointegration and VECMs

10.7 Several generalisations of VECM modelling are now available 
(it is now often termed cointegrated VAR (CVAR) modelling). The 
possibility of cointegrated I(2) series may be entertained, although
the analysis is considerably more complicated than the standard
approach when the data are just I(1).10

10.8 A variety of non-linear extensions to cointegration have been
proposed. These typically take one of two forms; either a linear 
cointegration vector is allowed to enter as a non-linear error correc-
tion, or the cointegrating relationship itself is specified to be non-
linear. A popular approach is to use threshold-type processes for
modelling non-linear error corrections, so that only large errors from
equilibrium, those above some threshold, are corrected.11
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Notes

1. Mills, Foundations, chapter 14, provides discussion of the historical evolu-
tion of seasonal adjustment procedures and also sets out the Box–Jenkins
approach to seasonal ARIMA modelling, the original development being 
contained in chapter 9 of their Time Series Analysis.

2. The initial paper on testing for seasonal unit roots is Sven Hylleberg, Engle,
Granger and Byung Sam Yoo, ‘Seasonal integration and cointegration’,
Journal of Econometrics 44 (1990), 215–38. How to distinguish between 
different forms of seasonal patterns is considered in Mills and Alessandra 
G. Mills, ‘Modelling the seasonal patterns in UK macroeconomic time
series’, Journal of the Royal Statistical Society, Series A 155 (1992), 61–75.

3. A useful text book on non-linear models is Philip Hans Franses and Dick 
van Dijk, Non-linear Time Series Models in Empirical Finance (Cambridge
University Press, 2000). Timo Teräsvirta, ‘Univariate nonlinear time series 
models’, chapter 10 of Mills and Patterson, Palgrave Handbook, Volume 1,
396–424, is a recent survey of the area.

4. Long memory is also referred to as persistency and is sometimes known as 
the Hurst effect, after the hydrologist Harold E. Hurst, who encountered t
this phenomenon when analysing records of river flow for the Nile.

   The notion of fractional differencing seems to have been proposed
contemporaneously and independently by J.R.M. Hosking, ‘Fractional
differencing’, Biometrika 68 (1981), 165–76, and Granger and Roselyn
Joyeux, ‘An introduction to long memory time series models and frac-
tional differencing’, Journal of Time Series Analysis 1 (1981), 15–29. A recent 
survey is Luis A. Gil-Alana and Javier Hualde, ‘Fractional integration and 
cointegration: an overview and an empirical application’, chapter 10 of 
Mills and Patterson, Palgrave Handbook of Econometrics, Volume II: Applied 
Econometrics, 434–69 (Cambridge University Press, 2009).

5. Testing for unit roots in breaking trend models was first considered in
Perron, ‘The Great Crash, the oil price shock, and the unit root hypoth-
esis’, Econometrica 57 (1989), 1361–401. The literature on modelling breaks 
has since grown enormously: see, for example, Perron, ‘Dealing with struc-
tural breaks’, chapter 8 of Mills and Patterson, Palgrave Handbook, Volume 
1, 278–352. Temporary cointegration was introduced by Pierre Siklos and 
Granger, ‘Temporary cointegration with an application to interest rate 
parity’, Macroeconomic Dynamics 1 (1997), 640–57, and various tests of 
breaks in cointegrating relationships have been proposed.

6. Robert J. Hodrick and Edward C. Prescott, ‘Postwar U.S. business cycles: 
an empirical investigation’, Journal of Money, Credit and Banking 29 (1997), g
1–16. An introductory text book on the modelling of trends and cycles 
is Mills, Modelling Trends and Cycles in Economic Time Series (Palgrave
Macmillan, 2003), while a more detailed treatment is provided by 
D. Stephen G. Pollock, ‘Investigating economic trends and cycles’, chapter
6 of Mills and Patterson, Palgrave Handbook of Econometrics, Volume II,I
243–307.
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 7. Textbook treatments are provided by Andrew C. Harvey, Forecasting, 
Structural Time Series Models and the Kalman Filter (Cambridge University r
Press, 1989) and Durbin and Siem Jan Koopman, Time Series Analysis by 
State Space Methods, 2nd edition (Oxford University Press, 2012).

 8. This common trends interpretation is emphasised by Stock and Watson,
‘Testing for common trends’, Journal of the American Statistical Association
83 (1988), 1097–107. Testing for and modelling common features were
first introduced in Engle and Sharon Kozicki, ‘Testing for common 
features’, Journal of Business Economics and Statistics 11 (1993), 369–80,
and is generalised and surveyed in Farshid Vahid, ‘Common cycles’, 
chapter 16 of Mills and Patterson, Palgrave Handbook of Econometrics, 
Volume I, 610–30.I

 9. See Hendry and Michael Massmann, ‘Co-breaking: recent advances and 
a synopsis of the literature’, Journal of Business Economics and Statistics 25
(2007), 33–51.

10. See Johansen, ‘A statistical analysis of cointegration for I(2) variables’, 
Econometric Theory 11 (1995), 25–59 and, for a detailed empirical appli-y
cation, Katerina Juselius, ‘The long swings puzzle: what the data tell
when allowed to speak freely’, chapter 8 of Mills and Patterson, Palgrave 
Handbook of Econometrics, Volume II, 349–84.I

11. A convenient survey of non-linear cointegration models is provided by
Mills and Markellos, Econometric Modelling, Chapter 10.2.gg
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